bfd/
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
6aba47ca 4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
9b254dd1
DJ
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008 Free Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include <ctype.h>
26#include "symtab.h"
27#include "frame.h"
28#include "inferior.h"
60250e8b 29#include "exceptions.h"
c906108c 30#include "breakpoint.h"
03f2053f 31#include "gdb_wait.h"
c906108c
SS
32#include "gdbcore.h"
33#include "gdbcmd.h"
210661e7 34#include "cli/cli-script.h"
c906108c
SS
35#include "target.h"
36#include "gdbthread.h"
37#include "annotate.h"
1adeb98a 38#include "symfile.h"
7a292a7a 39#include "top.h"
c906108c 40#include <signal.h>
2acceee2 41#include "inf-loop.h"
4e052eda 42#include "regcache.h"
fd0407d6 43#include "value.h"
06600e06 44#include "observer.h"
f636b87d 45#include "language.h"
a77053c2 46#include "solib.h"
f17517ea 47#include "main.h"
a77053c2 48
9f976b41 49#include "gdb_assert.h"
034dad6f 50#include "mi/mi-common.h"
4f8d22e3 51#include "event-top.h"
c906108c
SS
52
53/* Prototypes for local functions */
54
96baa820 55static void signals_info (char *, int);
c906108c 56
96baa820 57static void handle_command (char *, int);
c906108c 58
96baa820 59static void sig_print_info (enum target_signal);
c906108c 60
96baa820 61static void sig_print_header (void);
c906108c 62
74b7792f 63static void resume_cleanups (void *);
c906108c 64
96baa820 65static int hook_stop_stub (void *);
c906108c 66
96baa820
JM
67static int restore_selected_frame (void *);
68
69static void build_infrun (void);
70
4ef3f3be 71static int follow_fork (void);
96baa820
JM
72
73static void set_schedlock_func (char *args, int from_tty,
488f131b 74 struct cmd_list_element *c);
96baa820 75
4e1c45ea 76static int currently_stepping (struct thread_info *tp);
96baa820
JM
77
78static void xdb_handle_command (char *args, int from_tty);
79
6a6b96b9 80static int prepare_to_proceed (int);
ea67f13b 81
96baa820 82void _initialize_infrun (void);
43ff13b4 83
5fbbeb29
CF
84/* When set, stop the 'step' command if we enter a function which has
85 no line number information. The normal behavior is that we step
86 over such function. */
87int step_stop_if_no_debug = 0;
920d2a44
AC
88static void
89show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
90 struct cmd_list_element *c, const char *value)
91{
92 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
93}
5fbbeb29 94
43ff13b4 95/* In asynchronous mode, but simulating synchronous execution. */
96baa820 96
43ff13b4
JM
97int sync_execution = 0;
98
c906108c
SS
99/* wait_for_inferior and normal_stop use this to notify the user
100 when the inferior stopped in a different thread than it had been
96baa820
JM
101 running in. */
102
39f77062 103static ptid_t previous_inferior_ptid;
7a292a7a 104
237fc4c9
PA
105int debug_displaced = 0;
106static void
107show_debug_displaced (struct ui_file *file, int from_tty,
108 struct cmd_list_element *c, const char *value)
109{
110 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
111}
112
527159b7 113static int debug_infrun = 0;
920d2a44
AC
114static void
115show_debug_infrun (struct ui_file *file, int from_tty,
116 struct cmd_list_element *c, const char *value)
117{
118 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
119}
527159b7 120
d4f3574e
SS
121/* If the program uses ELF-style shared libraries, then calls to
122 functions in shared libraries go through stubs, which live in a
123 table called the PLT (Procedure Linkage Table). The first time the
124 function is called, the stub sends control to the dynamic linker,
125 which looks up the function's real address, patches the stub so
126 that future calls will go directly to the function, and then passes
127 control to the function.
128
129 If we are stepping at the source level, we don't want to see any of
130 this --- we just want to skip over the stub and the dynamic linker.
131 The simple approach is to single-step until control leaves the
132 dynamic linker.
133
ca557f44
AC
134 However, on some systems (e.g., Red Hat's 5.2 distribution) the
135 dynamic linker calls functions in the shared C library, so you
136 can't tell from the PC alone whether the dynamic linker is still
137 running. In this case, we use a step-resume breakpoint to get us
138 past the dynamic linker, as if we were using "next" to step over a
139 function call.
d4f3574e 140
cfd8ab24 141 in_solib_dynsym_resolve_code() says whether we're in the dynamic
d4f3574e
SS
142 linker code or not. Normally, this means we single-step. However,
143 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
144 address where we can place a step-resume breakpoint to get past the
145 linker's symbol resolution function.
146
cfd8ab24 147 in_solib_dynsym_resolve_code() can generally be implemented in a
d4f3574e
SS
148 pretty portable way, by comparing the PC against the address ranges
149 of the dynamic linker's sections.
150
151 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
152 it depends on internal details of the dynamic linker. It's usually
153 not too hard to figure out where to put a breakpoint, but it
154 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
155 sanity checking. If it can't figure things out, returning zero and
156 getting the (possibly confusing) stepping behavior is better than
157 signalling an error, which will obscure the change in the
158 inferior's state. */
c906108c 159
c906108c
SS
160/* This function returns TRUE if pc is the address of an instruction
161 that lies within the dynamic linker (such as the event hook, or the
162 dld itself).
163
164 This function must be used only when a dynamic linker event has
165 been caught, and the inferior is being stepped out of the hook, or
166 undefined results are guaranteed. */
167
168#ifndef SOLIB_IN_DYNAMIC_LINKER
169#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
170#endif
171
c2c6d25f 172
7a292a7a
SS
173/* Convert the #defines into values. This is temporary until wfi control
174 flow is completely sorted out. */
175
692590c1
MS
176#ifndef CANNOT_STEP_HW_WATCHPOINTS
177#define CANNOT_STEP_HW_WATCHPOINTS 0
178#else
179#undef CANNOT_STEP_HW_WATCHPOINTS
180#define CANNOT_STEP_HW_WATCHPOINTS 1
181#endif
182
c906108c
SS
183/* Tables of how to react to signals; the user sets them. */
184
185static unsigned char *signal_stop;
186static unsigned char *signal_print;
187static unsigned char *signal_program;
188
189#define SET_SIGS(nsigs,sigs,flags) \
190 do { \
191 int signum = (nsigs); \
192 while (signum-- > 0) \
193 if ((sigs)[signum]) \
194 (flags)[signum] = 1; \
195 } while (0)
196
197#define UNSET_SIGS(nsigs,sigs,flags) \
198 do { \
199 int signum = (nsigs); \
200 while (signum-- > 0) \
201 if ((sigs)[signum]) \
202 (flags)[signum] = 0; \
203 } while (0)
204
39f77062
KB
205/* Value to pass to target_resume() to cause all threads to resume */
206
207#define RESUME_ALL (pid_to_ptid (-1))
c906108c
SS
208
209/* Command list pointer for the "stop" placeholder. */
210
211static struct cmd_list_element *stop_command;
212
c906108c
SS
213/* Function inferior was in as of last step command. */
214
215static struct symbol *step_start_function;
216
c906108c
SS
217/* Nonzero if we want to give control to the user when we're notified
218 of shared library events by the dynamic linker. */
219static int stop_on_solib_events;
920d2a44
AC
220static void
221show_stop_on_solib_events (struct ui_file *file, int from_tty,
222 struct cmd_list_element *c, const char *value)
223{
224 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
225 value);
226}
c906108c 227
c906108c
SS
228/* Nonzero means expecting a trace trap
229 and should stop the inferior and return silently when it happens. */
230
231int stop_after_trap;
232
233/* Nonzero means expecting a trap and caller will handle it themselves.
234 It is used after attach, due to attaching to a process;
235 when running in the shell before the child program has been exec'd;
236 and when running some kinds of remote stuff (FIXME?). */
237
c0236d92 238enum stop_kind stop_soon;
c906108c 239
c906108c
SS
240/* Save register contents here when about to pop a stack dummy frame,
241 if-and-only-if proceed_to_finish is set.
242 Thus this contains the return value from the called function (assuming
243 values are returned in a register). */
244
72cec141 245struct regcache *stop_registers;
c906108c 246
c906108c
SS
247/* Nonzero after stop if current stack frame should be printed. */
248
249static int stop_print_frame;
250
e02bc4cc 251/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
252 returned by target_wait()/deprecated_target_wait_hook(). This
253 information is returned by get_last_target_status(). */
39f77062 254static ptid_t target_last_wait_ptid;
e02bc4cc
DS
255static struct target_waitstatus target_last_waitstatus;
256
0d1e5fa7
PA
257static void context_switch (ptid_t ptid);
258
4e1c45ea 259void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7
PA
260
261void init_infwait_state (void);
a474d7c2 262
c906108c
SS
263/* This is used to remember when a fork, vfork or exec event
264 was caught by a catchpoint, and thus the event is to be
265 followed at the next resume of the inferior, and not
266 immediately. */
267static struct
488f131b
JB
268{
269 enum target_waitkind kind;
270 struct
c906108c 271 {
3a3e9ee3
PA
272 ptid_t parent_pid;
273 ptid_t child_pid;
c906108c 274 }
488f131b
JB
275 fork_event;
276 char *execd_pathname;
277}
c906108c
SS
278pending_follow;
279
53904c9e
AC
280static const char follow_fork_mode_child[] = "child";
281static const char follow_fork_mode_parent[] = "parent";
282
488f131b 283static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
284 follow_fork_mode_child,
285 follow_fork_mode_parent,
286 NULL
ef346e04 287};
c906108c 288
53904c9e 289static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
290static void
291show_follow_fork_mode_string (struct ui_file *file, int from_tty,
292 struct cmd_list_element *c, const char *value)
293{
294 fprintf_filtered (file, _("\
295Debugger response to a program call of fork or vfork is \"%s\".\n"),
296 value);
297}
c906108c
SS
298\f
299
6604731b 300static int
4ef3f3be 301follow_fork (void)
c906108c 302{
ea1dd7bc 303 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
c906108c 304
6604731b 305 return target_follow_fork (follow_child);
c906108c
SS
306}
307
6604731b
DJ
308void
309follow_inferior_reset_breakpoints (void)
c906108c 310{
4e1c45ea
PA
311 struct thread_info *tp = inferior_thread ();
312
6604731b
DJ
313 /* Was there a step_resume breakpoint? (There was if the user
314 did a "next" at the fork() call.) If so, explicitly reset its
315 thread number.
316
317 step_resumes are a form of bp that are made to be per-thread.
318 Since we created the step_resume bp when the parent process
319 was being debugged, and now are switching to the child process,
320 from the breakpoint package's viewpoint, that's a switch of
321 "threads". We must update the bp's notion of which thread
322 it is for, or it'll be ignored when it triggers. */
323
4e1c45ea
PA
324 if (tp->step_resume_breakpoint)
325 breakpoint_re_set_thread (tp->step_resume_breakpoint);
6604731b
DJ
326
327 /* Reinsert all breakpoints in the child. The user may have set
328 breakpoints after catching the fork, in which case those
329 were never set in the child, but only in the parent. This makes
330 sure the inserted breakpoints match the breakpoint list. */
331
332 breakpoint_re_set ();
333 insert_breakpoints ();
c906108c 334}
c906108c 335
1adeb98a
FN
336/* EXECD_PATHNAME is assumed to be non-NULL. */
337
c906108c 338static void
3a3e9ee3 339follow_exec (ptid_t pid, char *execd_pathname)
c906108c 340{
3a3e9ee3 341 ptid_t saved_pid = pid;
7a292a7a 342 struct target_ops *tgt;
4e1c45ea 343 struct thread_info *th = inferior_thread ();
7a292a7a 344
c906108c
SS
345 /* This is an exec event that we actually wish to pay attention to.
346 Refresh our symbol table to the newly exec'd program, remove any
347 momentary bp's, etc.
348
349 If there are breakpoints, they aren't really inserted now,
350 since the exec() transformed our inferior into a fresh set
351 of instructions.
352
353 We want to preserve symbolic breakpoints on the list, since
354 we have hopes that they can be reset after the new a.out's
355 symbol table is read.
356
357 However, any "raw" breakpoints must be removed from the list
358 (e.g., the solib bp's), since their address is probably invalid
359 now.
360
361 And, we DON'T want to call delete_breakpoints() here, since
362 that may write the bp's "shadow contents" (the instruction
363 value that was overwritten witha TRAP instruction). Since
364 we now have a new a.out, those shadow contents aren't valid. */
365 update_breakpoints_after_exec ();
366
367 /* If there was one, it's gone now. We cannot truly step-to-next
368 statement through an exec(). */
4e1c45ea
PA
369 th->step_resume_breakpoint = NULL;
370 th->step_range_start = 0;
371 th->step_range_end = 0;
c906108c 372
c906108c 373 /* What is this a.out's name? */
a3f17187 374 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
c906108c
SS
375
376 /* We've followed the inferior through an exec. Therefore, the
377 inferior has essentially been killed & reborn. */
7a292a7a 378
c906108c 379 gdb_flush (gdb_stdout);
e85a822c 380 generic_mourn_inferior ();
488f131b 381 /* Because mourn_inferior resets inferior_ptid. */
3a3e9ee3 382 inferior_ptid = saved_pid;
e85a822c
DJ
383
384 if (gdb_sysroot && *gdb_sysroot)
385 {
386 char *name = alloca (strlen (gdb_sysroot)
387 + strlen (execd_pathname)
388 + 1);
389 strcpy (name, gdb_sysroot);
390 strcat (name, execd_pathname);
391 execd_pathname = name;
392 }
c906108c
SS
393
394 /* That a.out is now the one to use. */
395 exec_file_attach (execd_pathname, 0);
396
cce9b6bf
PA
397 /* Reset the shared library package. This ensures that we get a
398 shlib event when the child reaches "_start", at which point the
399 dld will have had a chance to initialize the child. */
400 /* Also, loading a symbol file below may trigger symbol lookups, and
401 we don't want those to be satisfied by the libraries of the
402 previous incarnation of this process. */
403 no_shared_libraries (NULL, 0);
404
405 /* Load the main file's symbols. */
1adeb98a 406 symbol_file_add_main (execd_pathname, 0);
c906108c 407
7a292a7a 408#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 409 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2
MK
410#else
411 solib_create_inferior_hook ();
7a292a7a 412#endif
c906108c
SS
413
414 /* Reinsert all breakpoints. (Those which were symbolic have
415 been reset to the proper address in the new a.out, thanks
416 to symbol_file_command...) */
417 insert_breakpoints ();
418
419 /* The next resume of this inferior should bring it to the shlib
420 startup breakpoints. (If the user had also set bp's on
421 "main" from the old (parent) process, then they'll auto-
422 matically get reset there in the new process.) */
c906108c
SS
423}
424
425/* Non-zero if we just simulating a single-step. This is needed
426 because we cannot remove the breakpoints in the inferior process
427 until after the `wait' in `wait_for_inferior'. */
428static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
429
430/* The thread we inserted single-step breakpoints for. */
431static ptid_t singlestep_ptid;
432
fd48f117
DJ
433/* PC when we started this single-step. */
434static CORE_ADDR singlestep_pc;
435
9f976b41
DJ
436/* If another thread hit the singlestep breakpoint, we save the original
437 thread here so that we can resume single-stepping it later. */
438static ptid_t saved_singlestep_ptid;
439static int stepping_past_singlestep_breakpoint;
6a6b96b9 440
ca67fcb8
VP
441/* If not equal to null_ptid, this means that after stepping over breakpoint
442 is finished, we need to switch to deferred_step_ptid, and step it.
443
444 The use case is when one thread has hit a breakpoint, and then the user
445 has switched to another thread and issued 'step'. We need to step over
446 breakpoint in the thread which hit the breakpoint, but then continue
447 stepping the thread user has selected. */
448static ptid_t deferred_step_ptid;
c906108c 449\f
237fc4c9
PA
450/* Displaced stepping. */
451
452/* In non-stop debugging mode, we must take special care to manage
453 breakpoints properly; in particular, the traditional strategy for
454 stepping a thread past a breakpoint it has hit is unsuitable.
455 'Displaced stepping' is a tactic for stepping one thread past a
456 breakpoint it has hit while ensuring that other threads running
457 concurrently will hit the breakpoint as they should.
458
459 The traditional way to step a thread T off a breakpoint in a
460 multi-threaded program in all-stop mode is as follows:
461
462 a0) Initially, all threads are stopped, and breakpoints are not
463 inserted.
464 a1) We single-step T, leaving breakpoints uninserted.
465 a2) We insert breakpoints, and resume all threads.
466
467 In non-stop debugging, however, this strategy is unsuitable: we
468 don't want to have to stop all threads in the system in order to
469 continue or step T past a breakpoint. Instead, we use displaced
470 stepping:
471
472 n0) Initially, T is stopped, other threads are running, and
473 breakpoints are inserted.
474 n1) We copy the instruction "under" the breakpoint to a separate
475 location, outside the main code stream, making any adjustments
476 to the instruction, register, and memory state as directed by
477 T's architecture.
478 n2) We single-step T over the instruction at its new location.
479 n3) We adjust the resulting register and memory state as directed
480 by T's architecture. This includes resetting T's PC to point
481 back into the main instruction stream.
482 n4) We resume T.
483
484 This approach depends on the following gdbarch methods:
485
486 - gdbarch_max_insn_length and gdbarch_displaced_step_location
487 indicate where to copy the instruction, and how much space must
488 be reserved there. We use these in step n1.
489
490 - gdbarch_displaced_step_copy_insn copies a instruction to a new
491 address, and makes any necessary adjustments to the instruction,
492 register contents, and memory. We use this in step n1.
493
494 - gdbarch_displaced_step_fixup adjusts registers and memory after
495 we have successfuly single-stepped the instruction, to yield the
496 same effect the instruction would have had if we had executed it
497 at its original address. We use this in step n3.
498
499 - gdbarch_displaced_step_free_closure provides cleanup.
500
501 The gdbarch_displaced_step_copy_insn and
502 gdbarch_displaced_step_fixup functions must be written so that
503 copying an instruction with gdbarch_displaced_step_copy_insn,
504 single-stepping across the copied instruction, and then applying
505 gdbarch_displaced_insn_fixup should have the same effects on the
506 thread's memory and registers as stepping the instruction in place
507 would have. Exactly which responsibilities fall to the copy and
508 which fall to the fixup is up to the author of those functions.
509
510 See the comments in gdbarch.sh for details.
511
512 Note that displaced stepping and software single-step cannot
513 currently be used in combination, although with some care I think
514 they could be made to. Software single-step works by placing
515 breakpoints on all possible subsequent instructions; if the
516 displaced instruction is a PC-relative jump, those breakpoints
517 could fall in very strange places --- on pages that aren't
518 executable, or at addresses that are not proper instruction
519 boundaries. (We do generally let other threads run while we wait
520 to hit the software single-step breakpoint, and they might
521 encounter such a corrupted instruction.) One way to work around
522 this would be to have gdbarch_displaced_step_copy_insn fully
523 simulate the effect of PC-relative instructions (and return NULL)
524 on architectures that use software single-stepping.
525
526 In non-stop mode, we can have independent and simultaneous step
527 requests, so more than one thread may need to simultaneously step
528 over a breakpoint. The current implementation assumes there is
529 only one scratch space per process. In this case, we have to
530 serialize access to the scratch space. If thread A wants to step
531 over a breakpoint, but we are currently waiting for some other
532 thread to complete a displaced step, we leave thread A stopped and
533 place it in the displaced_step_request_queue. Whenever a displaced
534 step finishes, we pick the next thread in the queue and start a new
535 displaced step operation on it. See displaced_step_prepare and
536 displaced_step_fixup for details. */
537
538/* If this is not null_ptid, this is the thread carrying out a
539 displaced single-step. This thread's state will require fixing up
540 once it has completed its step. */
541static ptid_t displaced_step_ptid;
542
543struct displaced_step_request
544{
545 ptid_t ptid;
546 struct displaced_step_request *next;
547};
548
549/* A queue of pending displaced stepping requests. */
550struct displaced_step_request *displaced_step_request_queue;
551
552/* The architecture the thread had when we stepped it. */
553static struct gdbarch *displaced_step_gdbarch;
554
555/* The closure provided gdbarch_displaced_step_copy_insn, to be used
556 for post-step cleanup. */
557static struct displaced_step_closure *displaced_step_closure;
558
559/* The address of the original instruction, and the copy we made. */
560static CORE_ADDR displaced_step_original, displaced_step_copy;
561
562/* Saved contents of copy area. */
563static gdb_byte *displaced_step_saved_copy;
564
565/* When this is non-zero, we are allowed to use displaced stepping, if
566 the architecture supports it. When this is zero, we use
567 traditional the hold-and-step approach. */
568int can_use_displaced_stepping = 1;
569static void
570show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
571 struct cmd_list_element *c,
572 const char *value)
573{
574 fprintf_filtered (file, _("\
575Debugger's willingness to use displaced stepping to step over "
576"breakpoints is %s.\n"), value);
577}
578
579/* Return non-zero if displaced stepping is enabled, and can be used
580 with GDBARCH. */
581static int
582use_displaced_stepping (struct gdbarch *gdbarch)
583{
584 return (can_use_displaced_stepping
585 && gdbarch_displaced_step_copy_insn_p (gdbarch));
586}
587
588/* Clean out any stray displaced stepping state. */
589static void
590displaced_step_clear (void)
591{
592 /* Indicate that there is no cleanup pending. */
593 displaced_step_ptid = null_ptid;
594
595 if (displaced_step_closure)
596 {
597 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
598 displaced_step_closure);
599 displaced_step_closure = NULL;
600 }
601}
602
603static void
604cleanup_displaced_step_closure (void *ptr)
605{
606 struct displaced_step_closure *closure = ptr;
607
608 gdbarch_displaced_step_free_closure (current_gdbarch, closure);
609}
610
611/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
612void
613displaced_step_dump_bytes (struct ui_file *file,
614 const gdb_byte *buf,
615 size_t len)
616{
617 int i;
618
619 for (i = 0; i < len; i++)
620 fprintf_unfiltered (file, "%02x ", buf[i]);
621 fputs_unfiltered ("\n", file);
622}
623
624/* Prepare to single-step, using displaced stepping.
625
626 Note that we cannot use displaced stepping when we have a signal to
627 deliver. If we have a signal to deliver and an instruction to step
628 over, then after the step, there will be no indication from the
629 target whether the thread entered a signal handler or ignored the
630 signal and stepped over the instruction successfully --- both cases
631 result in a simple SIGTRAP. In the first case we mustn't do a
632 fixup, and in the second case we must --- but we can't tell which.
633 Comments in the code for 'random signals' in handle_inferior_event
634 explain how we handle this case instead.
635
636 Returns 1 if preparing was successful -- this thread is going to be
637 stepped now; or 0 if displaced stepping this thread got queued. */
638static int
639displaced_step_prepare (ptid_t ptid)
640{
641 struct cleanup *old_cleanups;
642 struct regcache *regcache = get_thread_regcache (ptid);
643 struct gdbarch *gdbarch = get_regcache_arch (regcache);
644 CORE_ADDR original, copy;
645 ULONGEST len;
646 struct displaced_step_closure *closure;
647
648 /* We should never reach this function if the architecture does not
649 support displaced stepping. */
650 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
651
652 /* For the first cut, we're displaced stepping one thread at a
653 time. */
654
655 if (!ptid_equal (displaced_step_ptid, null_ptid))
656 {
657 /* Already waiting for a displaced step to finish. Defer this
658 request and place in queue. */
659 struct displaced_step_request *req, *new_req;
660
661 if (debug_displaced)
662 fprintf_unfiltered (gdb_stdlog,
663 "displaced: defering step of %s\n",
664 target_pid_to_str (ptid));
665
666 new_req = xmalloc (sizeof (*new_req));
667 new_req->ptid = ptid;
668 new_req->next = NULL;
669
670 if (displaced_step_request_queue)
671 {
672 for (req = displaced_step_request_queue;
673 req && req->next;
674 req = req->next)
675 ;
676 req->next = new_req;
677 }
678 else
679 displaced_step_request_queue = new_req;
680
681 return 0;
682 }
683 else
684 {
685 if (debug_displaced)
686 fprintf_unfiltered (gdb_stdlog,
687 "displaced: stepping %s now\n",
688 target_pid_to_str (ptid));
689 }
690
691 displaced_step_clear ();
692
515630c5 693 original = regcache_read_pc (regcache);
237fc4c9
PA
694
695 copy = gdbarch_displaced_step_location (gdbarch);
696 len = gdbarch_max_insn_length (gdbarch);
697
698 /* Save the original contents of the copy area. */
699 displaced_step_saved_copy = xmalloc (len);
700 old_cleanups = make_cleanup (free_current_contents,
701 &displaced_step_saved_copy);
702 read_memory (copy, displaced_step_saved_copy, len);
703 if (debug_displaced)
704 {
705 fprintf_unfiltered (gdb_stdlog, "displaced: saved 0x%s: ",
706 paddr_nz (copy));
707 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
708 };
709
710 closure = gdbarch_displaced_step_copy_insn (gdbarch,
711 original, copy, regcache);
712
713 /* We don't support the fully-simulated case at present. */
714 gdb_assert (closure);
715
716 make_cleanup (cleanup_displaced_step_closure, closure);
717
718 /* Resume execution at the copy. */
515630c5 719 regcache_write_pc (regcache, copy);
237fc4c9
PA
720
721 discard_cleanups (old_cleanups);
722
723 if (debug_displaced)
724 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to 0x%s\n",
725 paddr_nz (copy));
726
727 /* Save the information we need to fix things up if the step
728 succeeds. */
729 displaced_step_ptid = ptid;
730 displaced_step_gdbarch = gdbarch;
731 displaced_step_closure = closure;
732 displaced_step_original = original;
733 displaced_step_copy = copy;
734 return 1;
735}
736
737static void
738displaced_step_clear_cleanup (void *ignore)
739{
740 displaced_step_clear ();
741}
742
743static void
744write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
745{
746 struct cleanup *ptid_cleanup = save_inferior_ptid ();
747 inferior_ptid = ptid;
748 write_memory (memaddr, myaddr, len);
749 do_cleanups (ptid_cleanup);
750}
751
752static void
753displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
754{
755 struct cleanup *old_cleanups;
756
757 /* Was this event for the pid we displaced? */
758 if (ptid_equal (displaced_step_ptid, null_ptid)
759 || ! ptid_equal (displaced_step_ptid, event_ptid))
760 return;
761
762 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
763
764 /* Restore the contents of the copy area. */
765 {
766 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
767 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
768 displaced_step_saved_copy, len);
769 if (debug_displaced)
770 fprintf_unfiltered (gdb_stdlog, "displaced: restored 0x%s\n",
771 paddr_nz (displaced_step_copy));
772 }
773
774 /* Did the instruction complete successfully? */
775 if (signal == TARGET_SIGNAL_TRAP)
776 {
777 /* Fix up the resulting state. */
778 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
779 displaced_step_closure,
780 displaced_step_original,
781 displaced_step_copy,
782 get_thread_regcache (displaced_step_ptid));
783 }
784 else
785 {
786 /* Since the instruction didn't complete, all we can do is
787 relocate the PC. */
515630c5
UW
788 struct regcache *regcache = get_thread_regcache (event_ptid);
789 CORE_ADDR pc = regcache_read_pc (regcache);
237fc4c9 790 pc = displaced_step_original + (pc - displaced_step_copy);
515630c5 791 regcache_write_pc (regcache, pc);
237fc4c9
PA
792 }
793
794 do_cleanups (old_cleanups);
795
796 /* Are there any pending displaced stepping requests? If so, run
797 one now. */
798 if (displaced_step_request_queue)
799 {
800 struct displaced_step_request *head;
801 ptid_t ptid;
802
803 head = displaced_step_request_queue;
804 ptid = head->ptid;
805 displaced_step_request_queue = head->next;
806 xfree (head);
807
808 if (debug_displaced)
809 fprintf_unfiltered (gdb_stdlog,
810 "displaced: stepping queued %s now\n",
811 target_pid_to_str (ptid));
812
813
814 displaced_step_ptid = null_ptid;
815 displaced_step_prepare (ptid);
816 target_resume (ptid, 1, TARGET_SIGNAL_0);
817 }
818}
819
5231c1fd
PA
820/* Update global variables holding ptids to hold NEW_PTID if they were
821 holding OLD_PTID. */
822static void
823infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
824{
825 struct displaced_step_request *it;
826
827 if (ptid_equal (inferior_ptid, old_ptid))
828 inferior_ptid = new_ptid;
829
830 if (ptid_equal (singlestep_ptid, old_ptid))
831 singlestep_ptid = new_ptid;
832
833 if (ptid_equal (displaced_step_ptid, old_ptid))
834 displaced_step_ptid = new_ptid;
835
836 if (ptid_equal (deferred_step_ptid, old_ptid))
837 deferred_step_ptid = new_ptid;
838
839 for (it = displaced_step_request_queue; it; it = it->next)
840 if (ptid_equal (it->ptid, old_ptid))
841 it->ptid = new_ptid;
842}
843
237fc4c9
PA
844\f
845/* Resuming. */
c906108c
SS
846
847/* Things to clean up if we QUIT out of resume (). */
c906108c 848static void
74b7792f 849resume_cleanups (void *ignore)
c906108c
SS
850{
851 normal_stop ();
852}
853
53904c9e
AC
854static const char schedlock_off[] = "off";
855static const char schedlock_on[] = "on";
856static const char schedlock_step[] = "step";
488f131b 857static const char *scheduler_enums[] = {
ef346e04
AC
858 schedlock_off,
859 schedlock_on,
860 schedlock_step,
861 NULL
862};
920d2a44
AC
863static const char *scheduler_mode = schedlock_off;
864static void
865show_scheduler_mode (struct ui_file *file, int from_tty,
866 struct cmd_list_element *c, const char *value)
867{
868 fprintf_filtered (file, _("\
869Mode for locking scheduler during execution is \"%s\".\n"),
870 value);
871}
c906108c
SS
872
873static void
96baa820 874set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 875{
eefe576e
AC
876 if (!target_can_lock_scheduler)
877 {
878 scheduler_mode = schedlock_off;
879 error (_("Target '%s' cannot support this command."), target_shortname);
880 }
c906108c
SS
881}
882
883
884/* Resume the inferior, but allow a QUIT. This is useful if the user
885 wants to interrupt some lengthy single-stepping operation
886 (for child processes, the SIGINT goes to the inferior, and so
887 we get a SIGINT random_signal, but for remote debugging and perhaps
888 other targets, that's not true).
889
890 STEP nonzero if we should step (zero to continue instead).
891 SIG is the signal to give the inferior (zero for none). */
892void
96baa820 893resume (int step, enum target_signal sig)
c906108c
SS
894{
895 int should_resume = 1;
74b7792f 896 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
897 struct regcache *regcache = get_current_regcache ();
898 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 899 struct thread_info *tp = inferior_thread ();
515630c5 900 CORE_ADDR pc = regcache_read_pc (regcache);
c906108c
SS
901 QUIT;
902
527159b7 903 if (debug_infrun)
237fc4c9
PA
904 fprintf_unfiltered (gdb_stdlog,
905 "infrun: resume (step=%d, signal=%d), "
4e1c45ea
PA
906 "trap_expected=%d\n",
907 step, sig, tp->trap_expected);
c906108c 908
692590c1
MS
909 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
910 over an instruction that causes a page fault without triggering
911 a hardware watchpoint. The kernel properly notices that it shouldn't
912 stop, because the hardware watchpoint is not triggered, but it forgets
913 the step request and continues the program normally.
914 Work around the problem by removing hardware watchpoints if a step is
915 requested, GDB will check for a hardware watchpoint trigger after the
916 step anyway. */
c36b740a 917 if (CANNOT_STEP_HW_WATCHPOINTS && step)
692590c1 918 remove_hw_watchpoints ();
488f131b 919
692590c1 920
c2c6d25f
JM
921 /* Normally, by the time we reach `resume', the breakpoints are either
922 removed or inserted, as appropriate. The exception is if we're sitting
923 at a permanent breakpoint; we need to step over it, but permanent
924 breakpoints can't be removed. So we have to test for it here. */
237fc4c9 925 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
6d350bb5 926 {
515630c5
UW
927 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
928 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5
UW
929 else
930 error (_("\
931The program is stopped at a permanent breakpoint, but GDB does not know\n\
932how to step past a permanent breakpoint on this architecture. Try using\n\
933a command like `return' or `jump' to continue execution."));
934 }
c2c6d25f 935
237fc4c9
PA
936 /* If enabled, step over breakpoints by executing a copy of the
937 instruction at a different address.
938
939 We can't use displaced stepping when we have a signal to deliver;
940 the comments for displaced_step_prepare explain why. The
941 comments in the handle_inferior event for dealing with 'random
942 signals' explain what we do instead. */
515630c5 943 if (use_displaced_stepping (gdbarch)
4e1c45ea 944 && tp->trap_expected
237fc4c9
PA
945 && sig == TARGET_SIGNAL_0)
946 {
947 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
948 {
949 /* Got placed in displaced stepping queue. Will be resumed
950 later when all the currently queued displaced stepping
7f7efbd9
VP
951 requests finish. The thread is not executing at this point,
952 and the call to set_executing will be made later. But we
953 need to call set_running here, since from frontend point of view,
954 the thread is running. */
955 set_running (inferior_ptid, 1);
d56b7306
VP
956 discard_cleanups (old_cleanups);
957 return;
958 }
237fc4c9
PA
959 }
960
515630c5 961 if (step && gdbarch_software_single_step_p (gdbarch))
c906108c
SS
962 {
963 /* Do it the hard way, w/temp breakpoints */
515630c5 964 if (gdbarch_software_single_step (gdbarch, get_current_frame ()))
e6590a1b
UW
965 {
966 /* ...and don't ask hardware to do it. */
967 step = 0;
968 /* and do not pull these breakpoints until after a `wait' in
969 `wait_for_inferior' */
970 singlestep_breakpoints_inserted_p = 1;
971 singlestep_ptid = inferior_ptid;
237fc4c9 972 singlestep_pc = pc;
e6590a1b 973 }
c906108c
SS
974 }
975
c906108c 976 /* If there were any forks/vforks/execs that were caught and are
6604731b 977 now to be followed, then do so. */
c906108c
SS
978 switch (pending_follow.kind)
979 {
6604731b
DJ
980 case TARGET_WAITKIND_FORKED:
981 case TARGET_WAITKIND_VFORKED:
c906108c 982 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
6604731b
DJ
983 if (follow_fork ())
984 should_resume = 0;
c906108c
SS
985 break;
986
6604731b 987 case TARGET_WAITKIND_EXECD:
c906108c 988 /* follow_exec is called as soon as the exec event is seen. */
6604731b 989 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
c906108c
SS
990 break;
991
992 default:
993 break;
994 }
c906108c
SS
995
996 /* Install inferior's terminal modes. */
997 target_terminal_inferior ();
998
999 if (should_resume)
1000 {
39f77062 1001 ptid_t resume_ptid;
dfcd3bfb 1002
488f131b 1003 resume_ptid = RESUME_ALL; /* Default */
ef5cf84e 1004
cd76b0b7
VP
1005 /* If STEP is set, it's a request to use hardware stepping
1006 facilities. But in that case, we should never
1007 use singlestep breakpoint. */
1008 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1009
1010 if (singlestep_breakpoints_inserted_p
1011 && stepping_past_singlestep_breakpoint)
c906108c 1012 {
cd76b0b7
VP
1013 /* The situation here is as follows. In thread T1 we wanted to
1014 single-step. Lacking hardware single-stepping we've
1015 set breakpoint at the PC of the next instruction -- call it
1016 P. After resuming, we've hit that breakpoint in thread T2.
1017 Now we've removed original breakpoint, inserted breakpoint
1018 at P+1, and try to step to advance T2 past breakpoint.
1019 We need to step only T2, as if T1 is allowed to freely run,
1020 it can run past P, and if other threads are allowed to run,
1021 they can hit breakpoint at P+1, and nested hits of single-step
1022 breakpoints is not something we'd want -- that's complicated
1023 to support, and has no value. */
1024 resume_ptid = inferior_ptid;
1025 }
c906108c 1026
e842223a 1027 if ((step || singlestep_breakpoints_inserted_p)
4e1c45ea 1028 && tp->trap_expected)
cd76b0b7 1029 {
74960c60
VP
1030 /* We're allowing a thread to run past a breakpoint it has
1031 hit, by single-stepping the thread with the breakpoint
1032 removed. In which case, we need to single-step only this
1033 thread, and keep others stopped, as they can miss this
1034 breakpoint if allowed to run.
1035
1036 The current code actually removes all breakpoints when
1037 doing this, not just the one being stepped over, so if we
1038 let other threads run, we can actually miss any
1039 breakpoint, not just the one at PC. */
ef5cf84e 1040 resume_ptid = inferior_ptid;
c906108c 1041 }
ef5cf84e 1042
94cc34af
PA
1043 if (non_stop)
1044 {
1045 /* With non-stop mode on, threads are always handled
1046 individually. */
1047 resume_ptid = inferior_ptid;
1048 }
1049 else if ((scheduler_mode == schedlock_on)
1050 || (scheduler_mode == schedlock_step
1051 && (step || singlestep_breakpoints_inserted_p)))
c906108c 1052 {
ef5cf84e 1053 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 1054 resume_ptid = inferior_ptid;
c906108c 1055 }
ef5cf84e 1056
515630c5 1057 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1058 {
1059 /* Most targets can step a breakpoint instruction, thus
1060 executing it normally. But if this one cannot, just
1061 continue and we will hit it anyway. */
237fc4c9 1062 if (step && breakpoint_inserted_here_p (pc))
c4ed33b9
AC
1063 step = 0;
1064 }
237fc4c9
PA
1065
1066 if (debug_displaced
515630c5 1067 && use_displaced_stepping (gdbarch)
4e1c45ea 1068 && tp->trap_expected)
237fc4c9 1069 {
515630c5
UW
1070 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1071 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1072 gdb_byte buf[4];
1073
1074 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
1075 paddr_nz (actual_pc));
1076 read_memory (actual_pc, buf, sizeof (buf));
1077 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1078 }
1079
39f77062 1080 target_resume (resume_ptid, step, sig);
2020b7ab
PA
1081
1082 /* Avoid confusing the next resume, if the next stop/resume
1083 happens to apply to another thread. */
1084 tp->stop_signal = TARGET_SIGNAL_0;
c906108c
SS
1085 }
1086
1087 discard_cleanups (old_cleanups);
1088}
1089\f
237fc4c9 1090/* Proceeding. */
c906108c
SS
1091
1092/* Clear out all variables saying what to do when inferior is continued.
1093 First do this, then set the ones you want, then call `proceed'. */
1094
1095void
96baa820 1096clear_proceed_status (void)
c906108c 1097{
4e1c45ea
PA
1098 if (!ptid_equal (inferior_ptid, null_ptid))
1099 {
1100 struct thread_info *tp = inferior_thread ();
1101
1102 tp->trap_expected = 0;
1103 tp->step_range_start = 0;
1104 tp->step_range_end = 0;
1105 tp->step_frame_id = null_frame_id;
078130d0 1106 tp->step_over_calls = STEP_OVER_UNDEBUGGABLE;
32400beb 1107
414c69f7
PA
1108 tp->stop_step = 0;
1109
32400beb
PA
1110 tp->proceed_to_finish = 0;
1111
347bddb7
PA
1112 /* Discard any remaining commands or status from previous
1113 stop. */
1114 bpstat_clear (&tp->stop_bpstat);
4e1c45ea
PA
1115 }
1116
c906108c 1117 stop_after_trap = 0;
c0236d92 1118 stop_soon = NO_STOP_QUIETLY;
c906108c
SS
1119 breakpoint_proceeded = 1; /* We're about to proceed... */
1120
d5c31457
UW
1121 if (stop_registers)
1122 {
1123 regcache_xfree (stop_registers);
1124 stop_registers = NULL;
1125 }
c906108c
SS
1126}
1127
ea67f13b
DJ
1128/* This should be suitable for any targets that support threads. */
1129
1130static int
6a6b96b9 1131prepare_to_proceed (int step)
ea67f13b
DJ
1132{
1133 ptid_t wait_ptid;
1134 struct target_waitstatus wait_status;
1135
1136 /* Get the last target status returned by target_wait(). */
1137 get_last_target_status (&wait_ptid, &wait_status);
1138
6a6b96b9 1139 /* Make sure we were stopped at a breakpoint. */
ea67f13b 1140 if (wait_status.kind != TARGET_WAITKIND_STOPPED
6a6b96b9 1141 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
ea67f13b
DJ
1142 {
1143 return 0;
1144 }
1145
6a6b96b9 1146 /* Switched over from WAIT_PID. */
ea67f13b 1147 if (!ptid_equal (wait_ptid, minus_one_ptid)
515630c5 1148 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 1149 {
515630c5
UW
1150 struct regcache *regcache = get_thread_regcache (wait_ptid);
1151
1152 if (breakpoint_here_p (regcache_read_pc (regcache)))
ea67f13b 1153 {
515630c5
UW
1154 /* If stepping, remember current thread to switch back to. */
1155 if (step)
1156 deferred_step_ptid = inferior_ptid;
ea67f13b 1157
515630c5
UW
1158 /* Switch back to WAIT_PID thread. */
1159 switch_to_thread (wait_ptid);
6a6b96b9 1160
515630c5
UW
1161 /* We return 1 to indicate that there is a breakpoint here,
1162 so we need to step over it before continuing to avoid
1163 hitting it straight away. */
1164 return 1;
1165 }
ea67f13b
DJ
1166 }
1167
1168 return 0;
ea67f13b 1169}
e4846b08 1170
c906108c
SS
1171/* Basic routine for continuing the program in various fashions.
1172
1173 ADDR is the address to resume at, or -1 for resume where stopped.
1174 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 1175 or -1 for act according to how it stopped.
c906108c 1176 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
1177 -1 means return after that and print nothing.
1178 You should probably set various step_... variables
1179 before calling here, if you are stepping.
c906108c
SS
1180
1181 You should call clear_proceed_status before calling proceed. */
1182
1183void
96baa820 1184proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c 1185{
515630c5
UW
1186 struct regcache *regcache = get_current_regcache ();
1187 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1188 struct thread_info *tp;
515630c5 1189 CORE_ADDR pc = regcache_read_pc (regcache);
c906108c 1190 int oneproc = 0;
2020b7ab 1191 enum target_signal stop_signal;
c906108c
SS
1192
1193 if (step > 0)
515630c5 1194 step_start_function = find_pc_function (pc);
c906108c
SS
1195 if (step < 0)
1196 stop_after_trap = 1;
1197
2acceee2 1198 if (addr == (CORE_ADDR) -1)
c906108c 1199 {
515630c5 1200 if (pc == stop_pc && breakpoint_here_p (pc))
3352ef37
AC
1201 /* There is a breakpoint at the address we will resume at,
1202 step one instruction before inserting breakpoints so that
1203 we do not stop right away (and report a second hit at this
1204 breakpoint). */
c906108c 1205 oneproc = 1;
515630c5
UW
1206 else if (gdbarch_single_step_through_delay_p (gdbarch)
1207 && gdbarch_single_step_through_delay (gdbarch,
1208 get_current_frame ()))
3352ef37
AC
1209 /* We stepped onto an instruction that needs to be stepped
1210 again before re-inserting the breakpoint, do so. */
c906108c
SS
1211 oneproc = 1;
1212 }
1213 else
1214 {
515630c5 1215 regcache_write_pc (regcache, addr);
c906108c
SS
1216 }
1217
527159b7 1218 if (debug_infrun)
8a9de0e4
AC
1219 fprintf_unfiltered (gdb_stdlog,
1220 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
1221 paddr_nz (addr), siggnal, step);
527159b7 1222
94cc34af
PA
1223 if (non_stop)
1224 /* In non-stop, each thread is handled individually. The context
1225 must already be set to the right thread here. */
1226 ;
1227 else
1228 {
1229 /* In a multi-threaded task we may select another thread and
1230 then continue or step.
c906108c 1231
94cc34af
PA
1232 But if the old thread was stopped at a breakpoint, it will
1233 immediately cause another breakpoint stop without any
1234 execution (i.e. it will report a breakpoint hit incorrectly).
1235 So we must step over it first.
c906108c 1236
94cc34af
PA
1237 prepare_to_proceed checks the current thread against the
1238 thread that reported the most recent event. If a step-over
1239 is required it returns TRUE and sets the current thread to
1240 the old thread. */
1241 if (prepare_to_proceed (step))
1242 oneproc = 1;
1243 }
c906108c 1244
4e1c45ea
PA
1245 /* prepare_to_proceed may change the current thread. */
1246 tp = inferior_thread ();
1247
c906108c 1248 if (oneproc)
74960c60 1249 {
4e1c45ea 1250 tp->trap_expected = 1;
237fc4c9
PA
1251 /* If displaced stepping is enabled, we can step over the
1252 breakpoint without hitting it, so leave all breakpoints
1253 inserted. Otherwise we need to disable all breakpoints, step
1254 one instruction, and then re-add them when that step is
1255 finished. */
515630c5 1256 if (!use_displaced_stepping (gdbarch))
237fc4c9 1257 remove_breakpoints ();
74960c60 1258 }
237fc4c9
PA
1259
1260 /* We can insert breakpoints if we're not trying to step over one,
1261 or if we are stepping over one but we're using displaced stepping
1262 to do so. */
4e1c45ea 1263 if (! tp->trap_expected || use_displaced_stepping (gdbarch))
c36b740a 1264 insert_breakpoints ();
c906108c 1265
2020b7ab
PA
1266 if (!non_stop)
1267 {
1268 /* Pass the last stop signal to the thread we're resuming,
1269 irrespective of whether the current thread is the thread that
1270 got the last event or not. This was historically GDB's
1271 behaviour before keeping a stop_signal per thread. */
1272
1273 struct thread_info *last_thread;
1274 ptid_t last_ptid;
1275 struct target_waitstatus last_status;
1276
1277 get_last_target_status (&last_ptid, &last_status);
1278 if (!ptid_equal (inferior_ptid, last_ptid)
1279 && !ptid_equal (last_ptid, null_ptid)
1280 && !ptid_equal (last_ptid, minus_one_ptid))
1281 {
1282 last_thread = find_thread_pid (last_ptid);
1283 if (last_thread)
1284 {
1285 tp->stop_signal = last_thread->stop_signal;
1286 last_thread->stop_signal = TARGET_SIGNAL_0;
1287 }
1288 }
1289 }
1290
c906108c 1291 if (siggnal != TARGET_SIGNAL_DEFAULT)
2020b7ab 1292 tp->stop_signal = siggnal;
c906108c
SS
1293 /* If this signal should not be seen by program,
1294 give it zero. Used for debugging signals. */
2020b7ab
PA
1295 else if (!signal_program[tp->stop_signal])
1296 tp->stop_signal = TARGET_SIGNAL_0;
c906108c
SS
1297
1298 annotate_starting ();
1299
1300 /* Make sure that output from GDB appears before output from the
1301 inferior. */
1302 gdb_flush (gdb_stdout);
1303
e4846b08
JJ
1304 /* Refresh prev_pc value just prior to resuming. This used to be
1305 done in stop_stepping, however, setting prev_pc there did not handle
1306 scenarios such as inferior function calls or returning from
1307 a function via the return command. In those cases, the prev_pc
1308 value was not set properly for subsequent commands. The prev_pc value
1309 is used to initialize the starting line number in the ecs. With an
1310 invalid value, the gdb next command ends up stopping at the position
1311 represented by the next line table entry past our start position.
1312 On platforms that generate one line table entry per line, this
1313 is not a problem. However, on the ia64, the compiler generates
1314 extraneous line table entries that do not increase the line number.
1315 When we issue the gdb next command on the ia64 after an inferior call
1316 or a return command, we often end up a few instructions forward, still
1317 within the original line we started.
1318
1319 An attempt was made to have init_execution_control_state () refresh
1320 the prev_pc value before calculating the line number. This approach
1321 did not work because on platforms that use ptrace, the pc register
1322 cannot be read unless the inferior is stopped. At that point, we
515630c5 1323 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
e4846b08 1324 call can fail. Setting the prev_pc value here ensures the value is
8fb3e588 1325 updated correctly when the inferior is stopped. */
4e1c45ea 1326 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 1327
59f0d5d9 1328 /* Fill in with reasonable starting values. */
4e1c45ea 1329 init_thread_stepping_state (tp);
59f0d5d9 1330
59f0d5d9
PA
1331 /* Reset to normal state. */
1332 init_infwait_state ();
1333
c906108c 1334 /* Resume inferior. */
2020b7ab 1335 resume (oneproc || step || bpstat_should_step (), tp->stop_signal);
c906108c
SS
1336
1337 /* Wait for it to stop (if not standalone)
1338 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
1339 /* Do this only if we are not using the event loop, or if the target
1340 does not support asynchronous execution. */
362646f5 1341 if (!target_can_async_p ())
43ff13b4 1342 {
ae123ec6 1343 wait_for_inferior (0);
43ff13b4
JM
1344 normal_stop ();
1345 }
c906108c 1346}
c906108c
SS
1347\f
1348
1349/* Start remote-debugging of a machine over a serial link. */
96baa820 1350
c906108c 1351void
8621d6a9 1352start_remote (int from_tty)
c906108c 1353{
c906108c 1354 init_wait_for_inferior ();
b0f4b84b 1355 stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 1356
6426a772
JM
1357 /* Always go on waiting for the target, regardless of the mode. */
1358 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 1359 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
1360 nothing is returned (instead of just blocking). Because of this,
1361 targets expecting an immediate response need to, internally, set
1362 things up so that the target_wait() is forced to eventually
1363 timeout. */
1364 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1365 differentiate to its caller what the state of the target is after
1366 the initial open has been performed. Here we're assuming that
1367 the target has stopped. It should be possible to eventually have
1368 target_open() return to the caller an indication that the target
1369 is currently running and GDB state should be set to the same as
1370 for an async run. */
ae123ec6 1371 wait_for_inferior (0);
8621d6a9
DJ
1372
1373 /* Now that the inferior has stopped, do any bookkeeping like
1374 loading shared libraries. We want to do this before normal_stop,
1375 so that the displayed frame is up to date. */
1376 post_create_inferior (&current_target, from_tty);
1377
6426a772 1378 normal_stop ();
c906108c
SS
1379}
1380
1381/* Initialize static vars when a new inferior begins. */
1382
1383void
96baa820 1384init_wait_for_inferior (void)
c906108c
SS
1385{
1386 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 1387
c906108c
SS
1388 breakpoint_init_inferior (inf_starting);
1389
c906108c
SS
1390 /* The first resume is not following a fork/vfork/exec. */
1391 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
c906108c 1392
c906108c 1393 clear_proceed_status ();
9f976b41
DJ
1394
1395 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 1396 deferred_step_ptid = null_ptid;
ca005067
DJ
1397
1398 target_last_wait_ptid = minus_one_ptid;
237fc4c9 1399
0d1e5fa7
PA
1400 previous_inferior_ptid = null_ptid;
1401 init_infwait_state ();
1402
237fc4c9 1403 displaced_step_clear ();
c906108c 1404}
237fc4c9 1405
c906108c 1406\f
b83266a0
SS
1407/* This enum encodes possible reasons for doing a target_wait, so that
1408 wfi can call target_wait in one place. (Ultimately the call will be
1409 moved out of the infinite loop entirely.) */
1410
c5aa993b
JM
1411enum infwait_states
1412{
cd0fc7c3
SS
1413 infwait_normal_state,
1414 infwait_thread_hop_state,
d983da9c 1415 infwait_step_watch_state,
cd0fc7c3 1416 infwait_nonstep_watch_state
b83266a0
SS
1417};
1418
11cf8741
JM
1419/* Why did the inferior stop? Used to print the appropriate messages
1420 to the interface from within handle_inferior_event(). */
1421enum inferior_stop_reason
1422{
11cf8741
JM
1423 /* Step, next, nexti, stepi finished. */
1424 END_STEPPING_RANGE,
11cf8741
JM
1425 /* Inferior terminated by signal. */
1426 SIGNAL_EXITED,
1427 /* Inferior exited. */
1428 EXITED,
1429 /* Inferior received signal, and user asked to be notified. */
1430 SIGNAL_RECEIVED
1431};
1432
0d1e5fa7
PA
1433/* The PTID we'll do a target_wait on.*/
1434ptid_t waiton_ptid;
1435
1436/* Current inferior wait state. */
1437enum infwait_states infwait_state;
cd0fc7c3 1438
0d1e5fa7
PA
1439/* Data to be passed around while handling an event. This data is
1440 discarded between events. */
c5aa993b 1441struct execution_control_state
488f131b 1442{
0d1e5fa7 1443 ptid_t ptid;
4e1c45ea
PA
1444 /* The thread that got the event, if this was a thread event; NULL
1445 otherwise. */
1446 struct thread_info *event_thread;
1447
488f131b 1448 struct target_waitstatus ws;
488f131b
JB
1449 int random_signal;
1450 CORE_ADDR stop_func_start;
1451 CORE_ADDR stop_func_end;
1452 char *stop_func_name;
488f131b 1453 int new_thread_event;
488f131b
JB
1454 int wait_some_more;
1455};
1456
1457void init_execution_control_state (struct execution_control_state *ecs);
1458
1459void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 1460
c2c6d25f 1461static void step_into_function (struct execution_control_state *ecs);
44cbf7b5 1462static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
14e60db5 1463static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
44cbf7b5
AC
1464static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
1465 struct frame_id sr_id);
611c83ae
PA
1466static void insert_longjmp_resume_breakpoint (CORE_ADDR);
1467
104c1213
JM
1468static void stop_stepping (struct execution_control_state *ecs);
1469static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 1470static void keep_going (struct execution_control_state *ecs);
488f131b
JB
1471static void print_stop_reason (enum inferior_stop_reason stop_reason,
1472 int stop_info);
104c1213 1473
4e1c45ea
PA
1474/* Callback for iterate_over_threads. */
1475
1476static int
1477delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
1478{
1479 if (is_exited (info->ptid))
1480 return 0;
1481
1482 delete_step_resume_breakpoint (info);
1483 return 0;
1484}
1485
1486/* In all-stop, delete the step resume breakpoint of any thread that
1487 had one. In non-stop, delete the step resume breakpoint of the
1488 thread that just stopped. */
1489
1490static void
1491delete_step_thread_step_resume_breakpoint (void)
1492{
1493 if (!target_has_execution
1494 || ptid_equal (inferior_ptid, null_ptid))
1495 /* If the inferior has exited, we have already deleted the step
1496 resume breakpoints out of GDB's lists. */
1497 return;
1498
1499 if (non_stop)
1500 {
1501 /* If in non-stop mode, only delete the step-resume or
1502 longjmp-resume breakpoint of the thread that just stopped
1503 stepping. */
1504 struct thread_info *tp = inferior_thread ();
1505 delete_step_resume_breakpoint (tp);
1506 }
1507 else
1508 /* In all-stop mode, delete all step-resume and longjmp-resume
1509 breakpoints of any thread that had them. */
1510 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
1511}
1512
1513/* A cleanup wrapper. */
1514
1515static void
1516delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
1517{
1518 delete_step_thread_step_resume_breakpoint ();
1519}
1520
cd0fc7c3 1521/* Wait for control to return from inferior to debugger.
ae123ec6
JB
1522
1523 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1524 as if they were SIGTRAP signals. This can be useful during
1525 the startup sequence on some targets such as HP/UX, where
1526 we receive an EXEC event instead of the expected SIGTRAP.
1527
cd0fc7c3
SS
1528 If inferior gets a signal, we may decide to start it up again
1529 instead of returning. That is why there is a loop in this function.
1530 When this function actually returns it means the inferior
1531 should be left stopped and GDB should read more commands. */
1532
1533void
ae123ec6 1534wait_for_inferior (int treat_exec_as_sigtrap)
cd0fc7c3
SS
1535{
1536 struct cleanup *old_cleanups;
0d1e5fa7 1537 struct execution_control_state ecss;
cd0fc7c3 1538 struct execution_control_state *ecs;
c906108c 1539
527159b7 1540 if (debug_infrun)
ae123ec6
JB
1541 fprintf_unfiltered
1542 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1543 treat_exec_as_sigtrap);
527159b7 1544
4e1c45ea
PA
1545 old_cleanups =
1546 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 1547
cd0fc7c3 1548 ecs = &ecss;
0d1e5fa7
PA
1549 memset (ecs, 0, sizeof (*ecs));
1550
cd0fc7c3
SS
1551 overlay_cache_invalid = 1;
1552
e0bb1c1c
PA
1553 /* We'll update this if & when we switch to a new thread. */
1554 previous_inferior_ptid = inferior_ptid;
1555
cd0fc7c3
SS
1556 /* We have to invalidate the registers BEFORE calling target_wait
1557 because they can be loaded from the target while in target_wait.
1558 This makes remote debugging a bit more efficient for those
1559 targets that provide critical registers as part of their normal
1560 status mechanism. */
1561
1562 registers_changed ();
b83266a0 1563
c906108c
SS
1564 while (1)
1565 {
9a4105ab 1566 if (deprecated_target_wait_hook)
0d1e5fa7 1567 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
cd0fc7c3 1568 else
0d1e5fa7 1569 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
c906108c 1570
4e1c45ea
PA
1571 ecs->event_thread = find_thread_pid (ecs->ptid);
1572
ae123ec6
JB
1573 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
1574 {
1575 xfree (ecs->ws.value.execd_pathname);
1576 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1577 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
1578 }
1579
cd0fc7c3
SS
1580 /* Now figure out what to do with the result of the result. */
1581 handle_inferior_event (ecs);
c906108c 1582
cd0fc7c3
SS
1583 if (!ecs->wait_some_more)
1584 break;
1585 }
4e1c45ea 1586
cd0fc7c3
SS
1587 do_cleanups (old_cleanups);
1588}
c906108c 1589
43ff13b4
JM
1590/* Asynchronous version of wait_for_inferior. It is called by the
1591 event loop whenever a change of state is detected on the file
1592 descriptor corresponding to the target. It can be called more than
1593 once to complete a single execution command. In such cases we need
a474d7c2
PA
1594 to keep the state in a global variable ECSS. If it is the last time
1595 that this function is called for a single execution command, then
1596 report to the user that the inferior has stopped, and do the
1597 necessary cleanups. */
43ff13b4
JM
1598
1599void
fba45db2 1600fetch_inferior_event (void *client_data)
43ff13b4 1601{
0d1e5fa7 1602 struct execution_control_state ecss;
a474d7c2 1603 struct execution_control_state *ecs = &ecss;
4f8d22e3
PA
1604 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
1605 int was_sync = sync_execution;
43ff13b4 1606
0d1e5fa7
PA
1607 memset (ecs, 0, sizeof (*ecs));
1608
59f0d5d9 1609 overlay_cache_invalid = 1;
43ff13b4 1610
e0bb1c1c
PA
1611 /* We can only rely on wait_for_more being correct before handling
1612 the event in all-stop, but previous_inferior_ptid isn't used in
1613 non-stop. */
1614 if (!ecs->wait_some_more)
1615 /* We'll update this if & when we switch to a new thread. */
1616 previous_inferior_ptid = inferior_ptid;
1617
4f8d22e3
PA
1618 if (non_stop)
1619 /* In non-stop mode, the user/frontend should not notice a thread
1620 switch due to internal events. Make sure we reverse to the
1621 user selected thread and frame after handling the event and
1622 running any breakpoint commands. */
1623 make_cleanup_restore_current_thread ();
1624
59f0d5d9
PA
1625 /* We have to invalidate the registers BEFORE calling target_wait
1626 because they can be loaded from the target while in target_wait.
1627 This makes remote debugging a bit more efficient for those
1628 targets that provide critical registers as part of their normal
1629 status mechanism. */
43ff13b4 1630
59f0d5d9 1631 registers_changed ();
43ff13b4 1632
9a4105ab 1633 if (deprecated_target_wait_hook)
a474d7c2 1634 ecs->ptid =
0d1e5fa7 1635 deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
43ff13b4 1636 else
0d1e5fa7 1637 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
43ff13b4 1638
94cc34af
PA
1639 if (non_stop
1640 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
1641 && ecs->ws.kind != TARGET_WAITKIND_EXITED
1642 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
1643 /* In non-stop mode, each thread is handled individually. Switch
1644 early, so the global state is set correctly for this
1645 thread. */
1646 context_switch (ecs->ptid);
1647
4e1c45ea
PA
1648 ecs->event_thread = find_thread_pid (ecs->ptid);
1649
43ff13b4 1650 /* Now figure out what to do with the result of the result. */
a474d7c2 1651 handle_inferior_event (ecs);
43ff13b4 1652
a474d7c2 1653 if (!ecs->wait_some_more)
43ff13b4 1654 {
4e1c45ea 1655 delete_step_thread_step_resume_breakpoint ();
f107f563 1656
83c265ab
PA
1657 if (stop_soon == NO_STOP_QUIETLY)
1658 normal_stop ();
1659
af679fd0
PA
1660 if (target_has_execution
1661 && ecs->ws.kind != TARGET_WAITKIND_EXITED
1662 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
1663 && ecs->event_thread->step_multi
414c69f7 1664 && ecs->event_thread->stop_step)
c2d11a7d
JM
1665 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1666 else
1667 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4 1668 }
4f8d22e3
PA
1669
1670 /* Revert thread and frame. */
1671 do_cleanups (old_chain);
1672
1673 /* If the inferior was in sync execution mode, and now isn't,
1674 restore the prompt. */
1675 if (was_sync && !sync_execution)
1676 display_gdb_prompt (0);
43ff13b4
JM
1677}
1678
cd0fc7c3
SS
1679/* Prepare an execution control state for looping through a
1680 wait_for_inferior-type loop. */
1681
1682void
96baa820 1683init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3
SS
1684{
1685 ecs->random_signal = 0;
0d1e5fa7
PA
1686}
1687
1688/* Clear context switchable stepping state. */
1689
1690void
4e1c45ea 1691init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 1692{
2afb61aa
PA
1693 struct symtab_and_line sal;
1694
0d1e5fa7
PA
1695 tss->stepping_over_breakpoint = 0;
1696 tss->step_after_step_resume_breakpoint = 0;
1697 tss->stepping_through_solib_after_catch = 0;
1698 tss->stepping_through_solib_catchpoints = NULL;
2afb61aa 1699
4e1c45ea 1700 sal = find_pc_line (tss->prev_pc, 0);
2afb61aa
PA
1701 tss->current_line = sal.line;
1702 tss->current_symtab = sal.symtab;
cd0fc7c3
SS
1703}
1704
e02bc4cc 1705/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
1706 target_wait()/deprecated_target_wait_hook(). The data is actually
1707 cached by handle_inferior_event(), which gets called immediately
1708 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
1709
1710void
488f131b 1711get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 1712{
39f77062 1713 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
1714 *status = target_last_waitstatus;
1715}
1716
ac264b3b
MS
1717void
1718nullify_last_target_wait_ptid (void)
1719{
1720 target_last_wait_ptid = minus_one_ptid;
1721}
1722
dcf4fbde 1723/* Switch thread contexts. */
dd80620e
MS
1724
1725static void
0d1e5fa7 1726context_switch (ptid_t ptid)
dd80620e 1727{
fd48f117
DJ
1728 if (debug_infrun)
1729 {
1730 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1731 target_pid_to_str (inferior_ptid));
1732 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 1733 target_pid_to_str (ptid));
fd48f117
DJ
1734 }
1735
0d1e5fa7 1736 switch_to_thread (ptid);
dd80620e
MS
1737}
1738
4fa8626c
DJ
1739static void
1740adjust_pc_after_break (struct execution_control_state *ecs)
1741{
24a73cce
UW
1742 struct regcache *regcache;
1743 struct gdbarch *gdbarch;
8aad930b 1744 CORE_ADDR breakpoint_pc;
4fa8626c 1745
4fa8626c
DJ
1746 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1747 we aren't, just return.
9709f61c
DJ
1748
1749 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
1750 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1751 implemented by software breakpoints should be handled through the normal
1752 breakpoint layer.
8fb3e588 1753
4fa8626c
DJ
1754 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1755 different signals (SIGILL or SIGEMT for instance), but it is less
1756 clear where the PC is pointing afterwards. It may not match
b798847d
UW
1757 gdbarch_decr_pc_after_break. I don't know any specific target that
1758 generates these signals at breakpoints (the code has been in GDB since at
1759 least 1992) so I can not guess how to handle them here.
8fb3e588 1760
e6cf7916
UW
1761 In earlier versions of GDB, a target with
1762 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
1763 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1764 target with both of these set in GDB history, and it seems unlikely to be
1765 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
1766
1767 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1768 return;
1769
1770 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1771 return;
1772
24a73cce
UW
1773 /* If this target does not decrement the PC after breakpoints, then
1774 we have nothing to do. */
1775 regcache = get_thread_regcache (ecs->ptid);
1776 gdbarch = get_regcache_arch (regcache);
1777 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
1778 return;
1779
8aad930b
AC
1780 /* Find the location where (if we've hit a breakpoint) the
1781 breakpoint would be. */
515630c5
UW
1782 breakpoint_pc = regcache_read_pc (regcache)
1783 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 1784
1c0fdd0e
UW
1785 /* Check whether there actually is a software breakpoint inserted
1786 at that location. */
1787 if (software_breakpoint_inserted_here_p (breakpoint_pc))
8aad930b 1788 {
1c0fdd0e
UW
1789 /* When using hardware single-step, a SIGTRAP is reported for both
1790 a completed single-step and a software breakpoint. Need to
1791 differentiate between the two, as the latter needs adjusting
1792 but the former does not.
1793
1794 The SIGTRAP can be due to a completed hardware single-step only if
1795 - we didn't insert software single-step breakpoints
1796 - the thread to be examined is still the current thread
1797 - this thread is currently being stepped
1798
1799 If any of these events did not occur, we must have stopped due
1800 to hitting a software breakpoint, and have to back up to the
1801 breakpoint address.
1802
1803 As a special case, we could have hardware single-stepped a
1804 software breakpoint. In this case (prev_pc == breakpoint_pc),
1805 we also need to back up to the breakpoint address. */
1806
1807 if (singlestep_breakpoints_inserted_p
1808 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
1809 || !currently_stepping (ecs->event_thread)
1810 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 1811 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 1812 }
4fa8626c
DJ
1813}
1814
0d1e5fa7
PA
1815void
1816init_infwait_state (void)
1817{
1818 waiton_ptid = pid_to_ptid (-1);
1819 infwait_state = infwait_normal_state;
1820}
1821
94cc34af
PA
1822void
1823error_is_running (void)
1824{
1825 error (_("\
1826Cannot execute this command while the selected thread is running."));
1827}
1828
1829void
1830ensure_not_running (void)
1831{
1832 if (is_running (inferior_ptid))
1833 error_is_running ();
1834}
1835
cd0fc7c3
SS
1836/* Given an execution control state that has been freshly filled in
1837 by an event from the inferior, figure out what it means and take
1838 appropriate action. */
c906108c 1839
cd0fc7c3 1840void
96baa820 1841handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 1842{
c8edd8b4 1843 int sw_single_step_trap_p = 0;
d983da9c
DJ
1844 int stopped_by_watchpoint;
1845 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 1846 struct symtab_and_line stop_pc_sal;
cd0fc7c3 1847
20874c92
VP
1848 breakpoint_retire_moribund ();
1849
e02bc4cc 1850 /* Cache the last pid/waitstatus. */
39f77062 1851 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 1852 target_last_waitstatus = ecs->ws;
e02bc4cc 1853
ca005067
DJ
1854 /* Always clear state belonging to the previous time we stopped. */
1855 stop_stack_dummy = 0;
1856
4fa8626c
DJ
1857 adjust_pc_after_break (ecs);
1858
8c90c137
LM
1859 reinit_frame_cache ();
1860
1861 /* If it's a new process, add it to the thread database */
1862
1863 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1864 && !ptid_equal (ecs->ptid, minus_one_ptid)
1865 && !in_thread_list (ecs->ptid));
1866
1867 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1868 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1869 add_thread (ecs->ptid);
1870
1871 if (ecs->ws.kind != TARGET_WAITKIND_IGNORE)
1872 {
1873 /* Mark the non-executing threads accordingly. */
1874 if (!non_stop
1875 || ecs->ws.kind == TARGET_WAITKIND_EXITED
1876 || ecs->ws.kind == TARGET_WAITKIND_SIGNALLED)
1877 set_executing (pid_to_ptid (-1), 0);
1878 else
1879 set_executing (ecs->ptid, 0);
1880 }
1881
0d1e5fa7 1882 switch (infwait_state)
488f131b
JB
1883 {
1884 case infwait_thread_hop_state:
527159b7 1885 if (debug_infrun)
8a9de0e4 1886 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
488f131b 1887 /* Cancel the waiton_ptid. */
0d1e5fa7 1888 waiton_ptid = pid_to_ptid (-1);
65e82032 1889 break;
b83266a0 1890
488f131b 1891 case infwait_normal_state:
527159b7 1892 if (debug_infrun)
8a9de0e4 1893 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
1894 break;
1895
1896 case infwait_step_watch_state:
1897 if (debug_infrun)
1898 fprintf_unfiltered (gdb_stdlog,
1899 "infrun: infwait_step_watch_state\n");
1900
1901 stepped_after_stopped_by_watchpoint = 1;
488f131b 1902 break;
b83266a0 1903
488f131b 1904 case infwait_nonstep_watch_state:
527159b7 1905 if (debug_infrun)
8a9de0e4
AC
1906 fprintf_unfiltered (gdb_stdlog,
1907 "infrun: infwait_nonstep_watch_state\n");
488f131b 1908 insert_breakpoints ();
c906108c 1909
488f131b
JB
1910 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1911 handle things like signals arriving and other things happening
1912 in combination correctly? */
1913 stepped_after_stopped_by_watchpoint = 1;
1914 break;
65e82032
AC
1915
1916 default:
e2e0b3e5 1917 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 1918 }
0d1e5fa7 1919 infwait_state = infwait_normal_state;
c906108c 1920
488f131b
JB
1921 switch (ecs->ws.kind)
1922 {
1923 case TARGET_WAITKIND_LOADED:
527159b7 1924 if (debug_infrun)
8a9de0e4 1925 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
1926 /* Ignore gracefully during startup of the inferior, as it might
1927 be the shell which has just loaded some objects, otherwise
1928 add the symbols for the newly loaded objects. Also ignore at
1929 the beginning of an attach or remote session; we will query
1930 the full list of libraries once the connection is
1931 established. */
c0236d92 1932 if (stop_soon == NO_STOP_QUIETLY)
488f131b 1933 {
488f131b
JB
1934 /* Check for any newly added shared libraries if we're
1935 supposed to be adding them automatically. Switch
1936 terminal for any messages produced by
1937 breakpoint_re_set. */
1938 target_terminal_ours_for_output ();
aff6338a 1939 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
1940 stack's section table is kept up-to-date. Architectures,
1941 (e.g., PPC64), use the section table to perform
1942 operations such as address => section name and hence
1943 require the table to contain all sections (including
1944 those found in shared libraries). */
aff6338a 1945 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
1946 exec_ops to SOLIB_ADD. This is because current GDB is
1947 only tooled to propagate section_table changes out from
1948 the "current_target" (see target_resize_to_sections), and
1949 not up from the exec stratum. This, of course, isn't
1950 right. "infrun.c" should only interact with the
1951 exec/process stratum, instead relying on the target stack
1952 to propagate relevant changes (stop, section table
1953 changed, ...) up to other layers. */
b0f4b84b 1954#ifdef SOLIB_ADD
aff6338a 1955 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
b0f4b84b
DJ
1956#else
1957 solib_add (NULL, 0, &current_target, auto_solib_add);
1958#endif
488f131b
JB
1959 target_terminal_inferior ();
1960
b0f4b84b
DJ
1961 /* If requested, stop when the dynamic linker notifies
1962 gdb of events. This allows the user to get control
1963 and place breakpoints in initializer routines for
1964 dynamically loaded objects (among other things). */
1965 if (stop_on_solib_events)
1966 {
1967 stop_stepping (ecs);
1968 return;
1969 }
1970
1971 /* NOTE drow/2007-05-11: This might be a good place to check
1972 for "catch load". */
488f131b 1973 }
b0f4b84b
DJ
1974
1975 /* If we are skipping through a shell, or through shared library
1976 loading that we aren't interested in, resume the program. If
1977 we're running the program normally, also resume. But stop if
1978 we're attaching or setting up a remote connection. */
1979 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
1980 {
74960c60
VP
1981 /* Loading of shared libraries might have changed breakpoint
1982 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
1983 if (stop_soon == NO_STOP_QUIETLY
1984 && !breakpoints_always_inserted_mode ())
74960c60 1985 insert_breakpoints ();
b0f4b84b
DJ
1986 resume (0, TARGET_SIGNAL_0);
1987 prepare_to_wait (ecs);
1988 return;
1989 }
1990
1991 break;
c5aa993b 1992
488f131b 1993 case TARGET_WAITKIND_SPURIOUS:
527159b7 1994 if (debug_infrun)
8a9de0e4 1995 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
1996 resume (0, TARGET_SIGNAL_0);
1997 prepare_to_wait (ecs);
1998 return;
c5aa993b 1999
488f131b 2000 case TARGET_WAITKIND_EXITED:
527159b7 2001 if (debug_infrun)
8a9de0e4 2002 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
488f131b
JB
2003 target_terminal_ours (); /* Must do this before mourn anyway */
2004 print_stop_reason (EXITED, ecs->ws.value.integer);
2005
2006 /* Record the exit code in the convenience variable $_exitcode, so
2007 that the user can inspect this again later. */
2008 set_internalvar (lookup_internalvar ("_exitcode"),
8b9b9e1a 2009 value_from_longest (builtin_type_int32,
488f131b
JB
2010 (LONGEST) ecs->ws.value.integer));
2011 gdb_flush (gdb_stdout);
2012 target_mourn_inferior ();
1c0fdd0e 2013 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
2014 stop_print_frame = 0;
2015 stop_stepping (ecs);
2016 return;
c5aa993b 2017
488f131b 2018 case TARGET_WAITKIND_SIGNALLED:
527159b7 2019 if (debug_infrun)
8a9de0e4 2020 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
488f131b 2021 stop_print_frame = 0;
488f131b 2022 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 2023
488f131b
JB
2024 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
2025 reach here unless the inferior is dead. However, for years
2026 target_kill() was called here, which hints that fatal signals aren't
2027 really fatal on some systems. If that's true, then some changes
2028 may be needed. */
2029 target_mourn_inferior ();
c906108c 2030
2020b7ab 2031 print_stop_reason (SIGNAL_EXITED, ecs->ws.value.sig);
1c0fdd0e 2032 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
2033 stop_stepping (ecs);
2034 return;
c906108c 2035
488f131b
JB
2036 /* The following are the only cases in which we keep going;
2037 the above cases end in a continue or goto. */
2038 case TARGET_WAITKIND_FORKED:
deb3b17b 2039 case TARGET_WAITKIND_VFORKED:
527159b7 2040 if (debug_infrun)
8a9de0e4 2041 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
488f131b
JB
2042 pending_follow.kind = ecs->ws.kind;
2043
3a3e9ee3 2044 pending_follow.fork_event.parent_pid = ecs->ptid;
8e7d2c16 2045 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
c906108c 2046
5a2901d9
DJ
2047 if (!ptid_equal (ecs->ptid, inferior_ptid))
2048 {
0d1e5fa7 2049 context_switch (ecs->ptid);
35f196d9 2050 reinit_frame_cache ();
5a2901d9
DJ
2051 }
2052
488f131b 2053 stop_pc = read_pc ();
675bf4cb 2054
347bddb7 2055 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
675bf4cb 2056
347bddb7 2057 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
04e68871
DJ
2058
2059 /* If no catchpoint triggered for this, then keep going. */
2060 if (ecs->random_signal)
2061 {
2020b7ab 2062 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
04e68871
DJ
2063 keep_going (ecs);
2064 return;
2065 }
2020b7ab 2066 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
2067 goto process_event_stop_test;
2068
2069 case TARGET_WAITKIND_EXECD:
527159b7 2070 if (debug_infrun)
fc5261f2 2071 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b
JB
2072 pending_follow.execd_pathname =
2073 savestring (ecs->ws.value.execd_pathname,
2074 strlen (ecs->ws.value.execd_pathname));
2075
488f131b
JB
2076 /* This causes the eventpoints and symbol table to be reset. Must
2077 do this now, before trying to determine whether to stop. */
3a3e9ee3 2078 follow_exec (inferior_ptid, pending_follow.execd_pathname);
488f131b 2079 xfree (pending_follow.execd_pathname);
c906108c 2080
515630c5 2081 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 2082
0d1e5fa7
PA
2083 {
2084 /* The breakpoints module may need to touch the inferior's
2085 memory. Switch to the (stopped) event ptid
2086 momentarily. */
2087 ptid_t saved_inferior_ptid = inferior_ptid;
2088 inferior_ptid = ecs->ptid;
675bf4cb 2089
347bddb7 2090 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
0d1e5fa7 2091
347bddb7 2092 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
0d1e5fa7
PA
2093 inferior_ptid = saved_inferior_ptid;
2094 }
04e68871 2095
5a2901d9
DJ
2096 if (!ptid_equal (ecs->ptid, inferior_ptid))
2097 {
0d1e5fa7 2098 context_switch (ecs->ptid);
35f196d9 2099 reinit_frame_cache ();
5a2901d9
DJ
2100 }
2101
04e68871
DJ
2102 /* If no catchpoint triggered for this, then keep going. */
2103 if (ecs->random_signal)
2104 {
2020b7ab 2105 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
04e68871
DJ
2106 keep_going (ecs);
2107 return;
2108 }
2020b7ab 2109 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
2110 goto process_event_stop_test;
2111
b4dc5ffa
MK
2112 /* Be careful not to try to gather much state about a thread
2113 that's in a syscall. It's frequently a losing proposition. */
488f131b 2114 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 2115 if (debug_infrun)
8a9de0e4 2116 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
488f131b
JB
2117 resume (0, TARGET_SIGNAL_0);
2118 prepare_to_wait (ecs);
2119 return;
c906108c 2120
488f131b
JB
2121 /* Before examining the threads further, step this thread to
2122 get it entirely out of the syscall. (We get notice of the
2123 event when the thread is just on the verge of exiting a
2124 syscall. Stepping one instruction seems to get it back
b4dc5ffa 2125 into user code.) */
488f131b 2126 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 2127 if (debug_infrun)
8a9de0e4 2128 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
488f131b 2129 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
488f131b
JB
2130 prepare_to_wait (ecs);
2131 return;
c906108c 2132
488f131b 2133 case TARGET_WAITKIND_STOPPED:
527159b7 2134 if (debug_infrun)
8a9de0e4 2135 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
2020b7ab 2136 ecs->event_thread->stop_signal = ecs->ws.value.sig;
488f131b 2137 break;
c906108c 2138
488f131b
JB
2139 /* We had an event in the inferior, but we are not interested
2140 in handling it at this level. The lower layers have already
8e7d2c16 2141 done what needs to be done, if anything.
8fb3e588
AC
2142
2143 One of the possible circumstances for this is when the
2144 inferior produces output for the console. The inferior has
2145 not stopped, and we are ignoring the event. Another possible
2146 circumstance is any event which the lower level knows will be
2147 reported multiple times without an intervening resume. */
488f131b 2148 case TARGET_WAITKIND_IGNORE:
527159b7 2149 if (debug_infrun)
8a9de0e4 2150 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
8e7d2c16 2151 prepare_to_wait (ecs);
488f131b
JB
2152 return;
2153 }
c906108c 2154
488f131b
JB
2155 if (ecs->new_thread_event)
2156 {
94cc34af
PA
2157 if (non_stop)
2158 /* Non-stop assumes that the target handles adding new threads
2159 to the thread list. */
2160 internal_error (__FILE__, __LINE__, "\
2161targets should add new threads to the thread list themselves in non-stop mode.");
2162
2163 /* We may want to consider not doing a resume here in order to
2164 give the user a chance to play with the new thread. It might
2165 be good to make that a user-settable option. */
2166
2167 /* At this point, all threads are stopped (happens automatically
2168 in either the OS or the native code). Therefore we need to
2169 continue all threads in order to make progress. */
2170
488f131b
JB
2171 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
2172 prepare_to_wait (ecs);
2173 return;
2174 }
c906108c 2175
237fc4c9
PA
2176 /* Do we need to clean up the state of a thread that has completed a
2177 displaced single-step? (Doing so usually affects the PC, so do
2178 it here, before we set stop_pc.) */
2020b7ab
PA
2179 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
2180 displaced_step_fixup (ecs->ptid, ecs->event_thread->stop_signal);
237fc4c9 2181
515630c5 2182 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 2183
527159b7 2184 if (debug_infrun)
237fc4c9
PA
2185 {
2186 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n",
2187 paddr_nz (stop_pc));
2188 if (STOPPED_BY_WATCHPOINT (&ecs->ws))
2189 {
2190 CORE_ADDR addr;
2191 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2192
2193 if (target_stopped_data_address (&current_target, &addr))
2194 fprintf_unfiltered (gdb_stdlog,
2195 "infrun: stopped data address = 0x%s\n",
2196 paddr_nz (addr));
2197 else
2198 fprintf_unfiltered (gdb_stdlog,
2199 "infrun: (no data address available)\n");
2200 }
2201 }
527159b7 2202
9f976b41
DJ
2203 if (stepping_past_singlestep_breakpoint)
2204 {
1c0fdd0e 2205 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
2206 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2207 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2208
2209 stepping_past_singlestep_breakpoint = 0;
2210
2211 /* We've either finished single-stepping past the single-step
8fb3e588
AC
2212 breakpoint, or stopped for some other reason. It would be nice if
2213 we could tell, but we can't reliably. */
2020b7ab 2214 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 2215 {
527159b7 2216 if (debug_infrun)
8a9de0e4 2217 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
9f976b41 2218 /* Pull the single step breakpoints out of the target. */
e0cd558a 2219 remove_single_step_breakpoints ();
9f976b41
DJ
2220 singlestep_breakpoints_inserted_p = 0;
2221
2222 ecs->random_signal = 0;
2223
0d1e5fa7 2224 context_switch (saved_singlestep_ptid);
9a4105ab
AC
2225 if (deprecated_context_hook)
2226 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
2227
2228 resume (1, TARGET_SIGNAL_0);
2229 prepare_to_wait (ecs);
2230 return;
2231 }
2232 }
2233
2234 stepping_past_singlestep_breakpoint = 0;
2235
ca67fcb8 2236 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 2237 {
94cc34af
PA
2238 /* In non-stop mode, there's never a deferred_step_ptid set. */
2239 gdb_assert (!non_stop);
2240
6a6b96b9
UW
2241 /* If we stopped for some other reason than single-stepping, ignore
2242 the fact that we were supposed to switch back. */
2020b7ab 2243 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
6a6b96b9 2244 {
4e1c45ea
PA
2245 struct thread_info *tp;
2246
6a6b96b9
UW
2247 if (debug_infrun)
2248 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 2249 "infrun: handling deferred step\n");
6a6b96b9
UW
2250
2251 /* Pull the single step breakpoints out of the target. */
2252 if (singlestep_breakpoints_inserted_p)
2253 {
2254 remove_single_step_breakpoints ();
2255 singlestep_breakpoints_inserted_p = 0;
2256 }
2257
2258 /* Note: We do not call context_switch at this point, as the
2259 context is already set up for stepping the original thread. */
ca67fcb8
VP
2260 switch_to_thread (deferred_step_ptid);
2261 deferred_step_ptid = null_ptid;
6a6b96b9
UW
2262 /* Suppress spurious "Switching to ..." message. */
2263 previous_inferior_ptid = inferior_ptid;
2264
2265 resume (1, TARGET_SIGNAL_0);
2266 prepare_to_wait (ecs);
2267 return;
2268 }
ca67fcb8
VP
2269
2270 deferred_step_ptid = null_ptid;
6a6b96b9
UW
2271 }
2272
488f131b
JB
2273 /* See if a thread hit a thread-specific breakpoint that was meant for
2274 another thread. If so, then step that thread past the breakpoint,
2275 and continue it. */
2276
2020b7ab 2277 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
488f131b 2278 {
9f976b41
DJ
2279 int thread_hop_needed = 0;
2280
f8d40ec8
JB
2281 /* Check if a regular breakpoint has been hit before checking
2282 for a potential single step breakpoint. Otherwise, GDB will
2283 not see this breakpoint hit when stepping onto breakpoints. */
c36b740a 2284 if (regular_breakpoint_inserted_here_p (stop_pc))
488f131b 2285 {
c5aa993b 2286 ecs->random_signal = 0;
4fa8626c 2287 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
9f976b41
DJ
2288 thread_hop_needed = 1;
2289 }
1c0fdd0e 2290 else if (singlestep_breakpoints_inserted_p)
9f976b41 2291 {
fd48f117
DJ
2292 /* We have not context switched yet, so this should be true
2293 no matter which thread hit the singlestep breakpoint. */
2294 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2295 if (debug_infrun)
2296 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2297 "trap for %s\n",
2298 target_pid_to_str (ecs->ptid));
2299
9f976b41
DJ
2300 ecs->random_signal = 0;
2301 /* The call to in_thread_list is necessary because PTIDs sometimes
2302 change when we go from single-threaded to multi-threaded. If
2303 the singlestep_ptid is still in the list, assume that it is
2304 really different from ecs->ptid. */
2305 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2306 && in_thread_list (singlestep_ptid))
2307 {
fd48f117
DJ
2308 /* If the PC of the thread we were trying to single-step
2309 has changed, discard this event (which we were going
2310 to ignore anyway), and pretend we saw that thread
2311 trap. This prevents us continuously moving the
2312 single-step breakpoint forward, one instruction at a
2313 time. If the PC has changed, then the thread we were
2314 trying to single-step has trapped or been signalled,
2315 but the event has not been reported to GDB yet.
2316
2317 There might be some cases where this loses signal
2318 information, if a signal has arrived at exactly the
2319 same time that the PC changed, but this is the best
2320 we can do with the information available. Perhaps we
2321 should arrange to report all events for all threads
2322 when they stop, or to re-poll the remote looking for
2323 this particular thread (i.e. temporarily enable
2324 schedlock). */
515630c5
UW
2325
2326 CORE_ADDR new_singlestep_pc
2327 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
2328
2329 if (new_singlestep_pc != singlestep_pc)
fd48f117 2330 {
2020b7ab
PA
2331 enum target_signal stop_signal;
2332
fd48f117
DJ
2333 if (debug_infrun)
2334 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2335 " but expected thread advanced also\n");
2336
2337 /* The current context still belongs to
2338 singlestep_ptid. Don't swap here, since that's
2339 the context we want to use. Just fudge our
2340 state and continue. */
2020b7ab
PA
2341 stop_signal = ecs->event_thread->stop_signal;
2342 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
fd48f117 2343 ecs->ptid = singlestep_ptid;
4e1c45ea 2344 ecs->event_thread = find_thread_pid (ecs->ptid);
2020b7ab 2345 ecs->event_thread->stop_signal = stop_signal;
515630c5 2346 stop_pc = new_singlestep_pc;
fd48f117
DJ
2347 }
2348 else
2349 {
2350 if (debug_infrun)
2351 fprintf_unfiltered (gdb_stdlog,
2352 "infrun: unexpected thread\n");
2353
2354 thread_hop_needed = 1;
2355 stepping_past_singlestep_breakpoint = 1;
2356 saved_singlestep_ptid = singlestep_ptid;
2357 }
9f976b41
DJ
2358 }
2359 }
2360
2361 if (thread_hop_needed)
8fb3e588 2362 {
237fc4c9 2363 int remove_status = 0;
8fb3e588 2364
527159b7 2365 if (debug_infrun)
8a9de0e4 2366 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 2367
8fb3e588
AC
2368 /* Saw a breakpoint, but it was hit by the wrong thread.
2369 Just continue. */
2370
1c0fdd0e 2371 if (singlestep_breakpoints_inserted_p)
488f131b 2372 {
8fb3e588 2373 /* Pull the single step breakpoints out of the target. */
e0cd558a 2374 remove_single_step_breakpoints ();
8fb3e588
AC
2375 singlestep_breakpoints_inserted_p = 0;
2376 }
2377
237fc4c9
PA
2378 /* If the arch can displace step, don't remove the
2379 breakpoints. */
2380 if (!use_displaced_stepping (current_gdbarch))
2381 remove_status = remove_breakpoints ();
2382
8fb3e588
AC
2383 /* Did we fail to remove breakpoints? If so, try
2384 to set the PC past the bp. (There's at least
2385 one situation in which we can fail to remove
2386 the bp's: On HP-UX's that use ttrace, we can't
2387 change the address space of a vforking child
2388 process until the child exits (well, okay, not
2389 then either :-) or execs. */
2390 if (remove_status != 0)
9d9cd7ac 2391 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
2392 else
2393 { /* Single step */
8fb3e588 2394 if (!ptid_equal (inferior_ptid, ecs->ptid))
0d1e5fa7
PA
2395 context_switch (ecs->ptid);
2396
94cc34af
PA
2397 if (!non_stop)
2398 {
2399 /* Only need to require the next event from this
2400 thread in all-stop mode. */
2401 waiton_ptid = ecs->ptid;
2402 infwait_state = infwait_thread_hop_state;
2403 }
8fb3e588 2404
4e1c45ea 2405 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588
AC
2406 keep_going (ecs);
2407 registers_changed ();
2408 return;
2409 }
488f131b 2410 }
1c0fdd0e 2411 else if (singlestep_breakpoints_inserted_p)
8fb3e588
AC
2412 {
2413 sw_single_step_trap_p = 1;
2414 ecs->random_signal = 0;
2415 }
488f131b
JB
2416 }
2417 else
2418 ecs->random_signal = 1;
c906108c 2419
488f131b 2420 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
2421 so, then switch to that thread. */
2422 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 2423 {
527159b7 2424 if (debug_infrun)
8a9de0e4 2425 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 2426
0d1e5fa7 2427 context_switch (ecs->ptid);
c5aa993b 2428
9a4105ab
AC
2429 if (deprecated_context_hook)
2430 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 2431 }
c906108c 2432
1c0fdd0e 2433 if (singlestep_breakpoints_inserted_p)
488f131b
JB
2434 {
2435 /* Pull the single step breakpoints out of the target. */
e0cd558a 2436 remove_single_step_breakpoints ();
488f131b
JB
2437 singlestep_breakpoints_inserted_p = 0;
2438 }
c906108c 2439
d983da9c
DJ
2440 if (stepped_after_stopped_by_watchpoint)
2441 stopped_by_watchpoint = 0;
2442 else
2443 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
2444
2445 /* If necessary, step over this watchpoint. We'll be back to display
2446 it in a moment. */
2447 if (stopped_by_watchpoint
2448 && (HAVE_STEPPABLE_WATCHPOINT
2449 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
488f131b 2450 {
488f131b
JB
2451 /* At this point, we are stopped at an instruction which has
2452 attempted to write to a piece of memory under control of
2453 a watchpoint. The instruction hasn't actually executed
2454 yet. If we were to evaluate the watchpoint expression
2455 now, we would get the old value, and therefore no change
2456 would seem to have occurred.
2457
2458 In order to make watchpoints work `right', we really need
2459 to complete the memory write, and then evaluate the
d983da9c
DJ
2460 watchpoint expression. We do this by single-stepping the
2461 target.
2462
2463 It may not be necessary to disable the watchpoint to stop over
2464 it. For example, the PA can (with some kernel cooperation)
2465 single step over a watchpoint without disabling the watchpoint.
2466
2467 It is far more common to need to disable a watchpoint to step
2468 the inferior over it. If we have non-steppable watchpoints,
2469 we must disable the current watchpoint; it's simplest to
2470 disable all watchpoints and breakpoints. */
2471
2472 if (!HAVE_STEPPABLE_WATCHPOINT)
2473 remove_breakpoints ();
488f131b
JB
2474 registers_changed ();
2475 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
0d1e5fa7 2476 waiton_ptid = ecs->ptid;
d983da9c 2477 if (HAVE_STEPPABLE_WATCHPOINT)
0d1e5fa7 2478 infwait_state = infwait_step_watch_state;
d983da9c 2479 else
0d1e5fa7 2480 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
2481 prepare_to_wait (ecs);
2482 return;
2483 }
2484
488f131b
JB
2485 ecs->stop_func_start = 0;
2486 ecs->stop_func_end = 0;
2487 ecs->stop_func_name = 0;
2488 /* Don't care about return value; stop_func_start and stop_func_name
2489 will both be 0 if it doesn't work. */
2490 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2491 &ecs->stop_func_start, &ecs->stop_func_end);
cbf3b44a
UW
2492 ecs->stop_func_start
2493 += gdbarch_deprecated_function_start_offset (current_gdbarch);
4e1c45ea 2494 ecs->event_thread->stepping_over_breakpoint = 0;
347bddb7 2495 bpstat_clear (&ecs->event_thread->stop_bpstat);
414c69f7 2496 ecs->event_thread->stop_step = 0;
488f131b
JB
2497 stop_print_frame = 1;
2498 ecs->random_signal = 0;
2499 stopped_by_random_signal = 0;
488f131b 2500
2020b7ab 2501 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4e1c45ea 2502 && ecs->event_thread->trap_expected
3352ef37 2503 && gdbarch_single_step_through_delay_p (current_gdbarch)
4e1c45ea 2504 && currently_stepping (ecs->event_thread))
3352ef37 2505 {
b50d7442 2506 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37
AC
2507 also on an instruction that needs to be stepped multiple
2508 times before it's been fully executing. E.g., architectures
2509 with a delay slot. It needs to be stepped twice, once for
2510 the instruction and once for the delay slot. */
2511 int step_through_delay
2512 = gdbarch_single_step_through_delay (current_gdbarch,
2513 get_current_frame ());
527159b7 2514 if (debug_infrun && step_through_delay)
8a9de0e4 2515 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4e1c45ea 2516 if (ecs->event_thread->step_range_end == 0 && step_through_delay)
3352ef37
AC
2517 {
2518 /* The user issued a continue when stopped at a breakpoint.
2519 Set up for another trap and get out of here. */
4e1c45ea 2520 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
2521 keep_going (ecs);
2522 return;
2523 }
2524 else if (step_through_delay)
2525 {
2526 /* The user issued a step when stopped at a breakpoint.
2527 Maybe we should stop, maybe we should not - the delay
2528 slot *might* correspond to a line of source. In any
ca67fcb8
VP
2529 case, don't decide that here, just set
2530 ecs->stepping_over_breakpoint, making sure we
2531 single-step again before breakpoints are re-inserted. */
4e1c45ea 2532 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
2533 }
2534 }
2535
488f131b
JB
2536 /* Look at the cause of the stop, and decide what to do.
2537 The alternatives are:
0d1e5fa7
PA
2538 1) stop_stepping and return; to really stop and return to the debugger,
2539 2) keep_going and return to start up again
4e1c45ea 2540 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
2541 3) set ecs->random_signal to 1, and the decision between 1 and 2
2542 will be made according to the signal handling tables. */
2543
2544 /* First, distinguish signals caused by the debugger from signals
03cebad2
MK
2545 that have to do with the program's own actions. Note that
2546 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
2547 on the operating system version. Here we detect when a SIGILL or
2548 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
2549 something similar for SIGSEGV, since a SIGSEGV will be generated
2550 when we're trying to execute a breakpoint instruction on a
2551 non-executable stack. This happens for call dummy breakpoints
2552 for architectures like SPARC that place call dummies on the
237fc4c9 2553 stack.
488f131b 2554
237fc4c9
PA
2555 If we're doing a displaced step past a breakpoint, then the
2556 breakpoint is always inserted at the original instruction;
2557 non-standard signals can't be explained by the breakpoint. */
2020b7ab 2558 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4e1c45ea 2559 || (! ecs->event_thread->trap_expected
237fc4c9 2560 && breakpoint_inserted_here_p (stop_pc)
2020b7ab
PA
2561 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_ILL
2562 || ecs->event_thread->stop_signal == TARGET_SIGNAL_SEGV
2563 || ecs->event_thread->stop_signal == TARGET_SIGNAL_EMT))
b0f4b84b
DJ
2564 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
2565 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 2566 {
2020b7ab 2567 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
488f131b 2568 {
527159b7 2569 if (debug_infrun)
8a9de0e4 2570 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
2571 stop_print_frame = 0;
2572 stop_stepping (ecs);
2573 return;
2574 }
c54cfec8
EZ
2575
2576 /* This is originated from start_remote(), start_inferior() and
2577 shared libraries hook functions. */
b0f4b84b 2578 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 2579 {
527159b7 2580 if (debug_infrun)
8a9de0e4 2581 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
2582 stop_stepping (ecs);
2583 return;
2584 }
2585
c54cfec8 2586 /* This originates from attach_command(). We need to overwrite
a0d21d28
PA
2587 the stop_signal here, because some kernels don't ignore a
2588 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
2589 See more comments in inferior.h. On the other hand, if we
a0ef4274 2590 get a non-SIGSTOP, report it to the user - assume the backend
a0d21d28
PA
2591 will handle the SIGSTOP if it should show up later.
2592
2593 Also consider that the attach is complete when we see a
2594 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
2595 target extended-remote report it instead of a SIGSTOP
2596 (e.g. gdbserver). We already rely on SIGTRAP being our
2597 signal, so this is no exception. */
a0ef4274 2598 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
2020b7ab
PA
2599 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_STOP
2600 || ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP))
c54cfec8
EZ
2601 {
2602 stop_stepping (ecs);
2020b7ab 2603 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
c54cfec8
EZ
2604 return;
2605 }
2606
fba57f8f 2607 /* See if there is a breakpoint at the current PC. */
347bddb7 2608 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
fba57f8f
VP
2609
2610 /* Following in case break condition called a
2611 function. */
2612 stop_print_frame = 1;
488f131b 2613
73dd234f 2614 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
2615 at one stage in the past included checks for an inferior
2616 function call's call dummy's return breakpoint. The original
2617 comment, that went with the test, read:
73dd234f 2618
8fb3e588
AC
2619 ``End of a stack dummy. Some systems (e.g. Sony news) give
2620 another signal besides SIGTRAP, so check here as well as
2621 above.''
73dd234f
AC
2622
2623 If someone ever tries to get get call dummys on a
2624 non-executable stack to work (where the target would stop
03cebad2
MK
2625 with something like a SIGSEGV), then those tests might need
2626 to be re-instated. Given, however, that the tests were only
73dd234f 2627 enabled when momentary breakpoints were not being used, I
03cebad2
MK
2628 suspect that it won't be the case.
2629
8fb3e588
AC
2630 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2631 be necessary for call dummies on a non-executable stack on
2632 SPARC. */
73dd234f 2633
2020b7ab 2634 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
488f131b 2635 ecs->random_signal
347bddb7 2636 = !(bpstat_explains_signal (ecs->event_thread->stop_bpstat)
4e1c45ea
PA
2637 || ecs->event_thread->trap_expected
2638 || (ecs->event_thread->step_range_end
2639 && ecs->event_thread->step_resume_breakpoint == NULL));
488f131b
JB
2640 else
2641 {
347bddb7 2642 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
488f131b 2643 if (!ecs->random_signal)
2020b7ab 2644 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
2645 }
2646 }
2647
2648 /* When we reach this point, we've pretty much decided
2649 that the reason for stopping must've been a random
2650 (unexpected) signal. */
2651
2652 else
2653 ecs->random_signal = 1;
488f131b 2654
04e68871 2655process_event_stop_test:
488f131b
JB
2656 /* For the program's own signals, act according to
2657 the signal handling tables. */
2658
2659 if (ecs->random_signal)
2660 {
2661 /* Signal not for debugging purposes. */
2662 int printed = 0;
2663
527159b7 2664 if (debug_infrun)
2020b7ab
PA
2665 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
2666 ecs->event_thread->stop_signal);
527159b7 2667
488f131b
JB
2668 stopped_by_random_signal = 1;
2669
2020b7ab 2670 if (signal_print[ecs->event_thread->stop_signal])
488f131b
JB
2671 {
2672 printed = 1;
2673 target_terminal_ours_for_output ();
2020b7ab 2674 print_stop_reason (SIGNAL_RECEIVED, ecs->event_thread->stop_signal);
488f131b 2675 }
2020b7ab 2676 if (signal_stop_state (ecs->event_thread->stop_signal))
488f131b
JB
2677 {
2678 stop_stepping (ecs);
2679 return;
2680 }
2681 /* If not going to stop, give terminal back
2682 if we took it away. */
2683 else if (printed)
2684 target_terminal_inferior ();
2685
2686 /* Clear the signal if it should not be passed. */
2020b7ab
PA
2687 if (signal_program[ecs->event_thread->stop_signal] == 0)
2688 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
488f131b 2689
4e1c45ea
PA
2690 if (ecs->event_thread->prev_pc == read_pc ()
2691 && ecs->event_thread->trap_expected
2692 && ecs->event_thread->step_resume_breakpoint == NULL)
68f53502
AC
2693 {
2694 /* We were just starting a new sequence, attempting to
2695 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 2696 Instead this signal arrives. This signal will take us out
68f53502
AC
2697 of the stepping range so GDB needs to remember to, when
2698 the signal handler returns, resume stepping off that
2699 breakpoint. */
2700 /* To simplify things, "continue" is forced to use the same
2701 code paths as single-step - set a breakpoint at the
2702 signal return address and then, once hit, step off that
2703 breakpoint. */
237fc4c9
PA
2704 if (debug_infrun)
2705 fprintf_unfiltered (gdb_stdlog,
2706 "infrun: signal arrived while stepping over "
2707 "breakpoint\n");
d3169d93 2708
44cbf7b5 2709 insert_step_resume_breakpoint_at_frame (get_current_frame ());
4e1c45ea 2710 ecs->event_thread->step_after_step_resume_breakpoint = 1;
9d799f85
AC
2711 keep_going (ecs);
2712 return;
68f53502 2713 }
9d799f85 2714
4e1c45ea 2715 if (ecs->event_thread->step_range_end != 0
2020b7ab 2716 && ecs->event_thread->stop_signal != TARGET_SIGNAL_0
4e1c45ea
PA
2717 && (ecs->event_thread->step_range_start <= stop_pc
2718 && stop_pc < ecs->event_thread->step_range_end)
9d799f85 2719 && frame_id_eq (get_frame_id (get_current_frame ()),
4e1c45ea
PA
2720 ecs->event_thread->step_frame_id)
2721 && ecs->event_thread->step_resume_breakpoint == NULL)
d303a6c7
AC
2722 {
2723 /* The inferior is about to take a signal that will take it
2724 out of the single step range. Set a breakpoint at the
2725 current PC (which is presumably where the signal handler
2726 will eventually return) and then allow the inferior to
2727 run free.
2728
2729 Note that this is only needed for a signal delivered
2730 while in the single-step range. Nested signals aren't a
2731 problem as they eventually all return. */
237fc4c9
PA
2732 if (debug_infrun)
2733 fprintf_unfiltered (gdb_stdlog,
2734 "infrun: signal may take us out of "
2735 "single-step range\n");
2736
44cbf7b5 2737 insert_step_resume_breakpoint_at_frame (get_current_frame ());
9d799f85
AC
2738 keep_going (ecs);
2739 return;
d303a6c7 2740 }
9d799f85
AC
2741
2742 /* Note: step_resume_breakpoint may be non-NULL. This occures
2743 when either there's a nested signal, or when there's a
2744 pending signal enabled just as the signal handler returns
2745 (leaving the inferior at the step-resume-breakpoint without
2746 actually executing it). Either way continue until the
2747 breakpoint is really hit. */
488f131b
JB
2748 keep_going (ecs);
2749 return;
2750 }
2751
2752 /* Handle cases caused by hitting a breakpoint. */
2753 {
2754 CORE_ADDR jmp_buf_pc;
2755 struct bpstat_what what;
2756
347bddb7 2757 what = bpstat_what (ecs->event_thread->stop_bpstat);
488f131b
JB
2758
2759 if (what.call_dummy)
2760 {
2761 stop_stack_dummy = 1;
c5aa993b 2762 }
c906108c 2763
488f131b 2764 switch (what.main_action)
c5aa993b 2765 {
488f131b 2766 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
611c83ae
PA
2767 /* If we hit the breakpoint at longjmp while stepping, we
2768 install a momentary breakpoint at the target of the
2769 jmp_buf. */
2770
2771 if (debug_infrun)
2772 fprintf_unfiltered (gdb_stdlog,
2773 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2774
4e1c45ea 2775 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 2776
91104499 2777 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
60ade65d
UW
2778 || !gdbarch_get_longjmp_target (current_gdbarch,
2779 get_current_frame (), &jmp_buf_pc))
c5aa993b 2780 {
611c83ae
PA
2781 if (debug_infrun)
2782 fprintf_unfiltered (gdb_stdlog, "\
2783infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
488f131b 2784 keep_going (ecs);
104c1213 2785 return;
c5aa993b 2786 }
488f131b 2787
611c83ae
PA
2788 /* We're going to replace the current step-resume breakpoint
2789 with a longjmp-resume breakpoint. */
4e1c45ea 2790 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae
PA
2791
2792 /* Insert a breakpoint at resume address. */
2793 insert_longjmp_resume_breakpoint (jmp_buf_pc);
c906108c 2794
488f131b
JB
2795 keep_going (ecs);
2796 return;
c906108c 2797
488f131b 2798 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
527159b7 2799 if (debug_infrun)
611c83ae
PA
2800 fprintf_unfiltered (gdb_stdlog,
2801 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2802
4e1c45ea
PA
2803 gdb_assert (ecs->event_thread->step_resume_breakpoint != NULL);
2804 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae 2805
414c69f7 2806 ecs->event_thread->stop_step = 1;
611c83ae
PA
2807 print_stop_reason (END_STEPPING_RANGE, 0);
2808 stop_stepping (ecs);
2809 return;
488f131b
JB
2810
2811 case BPSTAT_WHAT_SINGLE:
527159b7 2812 if (debug_infrun)
8802d8ed 2813 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4e1c45ea 2814 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b
JB
2815 /* Still need to check other stuff, at least the case
2816 where we are stepping and step out of the right range. */
2817 break;
c906108c 2818
488f131b 2819 case BPSTAT_WHAT_STOP_NOISY:
527159b7 2820 if (debug_infrun)
8802d8ed 2821 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 2822 stop_print_frame = 1;
c906108c 2823
d303a6c7
AC
2824 /* We are about to nuke the step_resume_breakpointt via the
2825 cleanup chain, so no need to worry about it here. */
c5aa993b 2826
488f131b
JB
2827 stop_stepping (ecs);
2828 return;
c5aa993b 2829
488f131b 2830 case BPSTAT_WHAT_STOP_SILENT:
527159b7 2831 if (debug_infrun)
8802d8ed 2832 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 2833 stop_print_frame = 0;
c5aa993b 2834
d303a6c7
AC
2835 /* We are about to nuke the step_resume_breakpoin via the
2836 cleanup chain, so no need to worry about it here. */
c5aa993b 2837
488f131b 2838 stop_stepping (ecs);
e441088d 2839 return;
c5aa993b 2840
488f131b 2841 case BPSTAT_WHAT_STEP_RESUME:
527159b7 2842 if (debug_infrun)
8802d8ed 2843 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
527159b7 2844
4e1c45ea
PA
2845 delete_step_resume_breakpoint (ecs->event_thread);
2846 if (ecs->event_thread->step_after_step_resume_breakpoint)
68f53502
AC
2847 {
2848 /* Back when the step-resume breakpoint was inserted, we
2849 were trying to single-step off a breakpoint. Go back
2850 to doing that. */
4e1c45ea
PA
2851 ecs->event_thread->step_after_step_resume_breakpoint = 0;
2852 ecs->event_thread->stepping_over_breakpoint = 1;
68f53502
AC
2853 keep_going (ecs);
2854 return;
2855 }
488f131b
JB
2856 break;
2857
488f131b
JB
2858 case BPSTAT_WHAT_CHECK_SHLIBS:
2859 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
c906108c 2860 {
527159b7 2861 if (debug_infrun)
8802d8ed 2862 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
488f131b
JB
2863
2864 /* Check for any newly added shared libraries if we're
2865 supposed to be adding them automatically. Switch
2866 terminal for any messages produced by
2867 breakpoint_re_set. */
2868 target_terminal_ours_for_output ();
aff6338a 2869 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
2870 stack's section table is kept up-to-date. Architectures,
2871 (e.g., PPC64), use the section table to perform
2872 operations such as address => section name and hence
2873 require the table to contain all sections (including
2874 those found in shared libraries). */
aff6338a 2875 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
2876 exec_ops to SOLIB_ADD. This is because current GDB is
2877 only tooled to propagate section_table changes out from
2878 the "current_target" (see target_resize_to_sections), and
2879 not up from the exec stratum. This, of course, isn't
2880 right. "infrun.c" should only interact with the
2881 exec/process stratum, instead relying on the target stack
2882 to propagate relevant changes (stop, section table
2883 changed, ...) up to other layers. */
a77053c2 2884#ifdef SOLIB_ADD
aff6338a 2885 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
a77053c2
MK
2886#else
2887 solib_add (NULL, 0, &current_target, auto_solib_add);
2888#endif
488f131b
JB
2889 target_terminal_inferior ();
2890
488f131b
JB
2891 /* If requested, stop when the dynamic linker notifies
2892 gdb of events. This allows the user to get control
2893 and place breakpoints in initializer routines for
2894 dynamically loaded objects (among other things). */
877522db 2895 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 2896 {
488f131b 2897 stop_stepping (ecs);
d4f3574e
SS
2898 return;
2899 }
c5aa993b 2900
488f131b
JB
2901 /* If we stopped due to an explicit catchpoint, then the
2902 (see above) call to SOLIB_ADD pulled in any symbols
2903 from a newly-loaded library, if appropriate.
2904
2905 We do want the inferior to stop, but not where it is
2906 now, which is in the dynamic linker callback. Rather,
2907 we would like it stop in the user's program, just after
2908 the call that caused this catchpoint to trigger. That
2909 gives the user a more useful vantage from which to
2910 examine their program's state. */
8fb3e588
AC
2911 else if (what.main_action
2912 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
c906108c 2913 {
488f131b
JB
2914 /* ??rehrauer: If I could figure out how to get the
2915 right return PC from here, we could just set a temp
2916 breakpoint and resume. I'm not sure we can without
2917 cracking open the dld's shared libraries and sniffing
2918 their unwind tables and text/data ranges, and that's
2919 not a terribly portable notion.
2920
2921 Until that time, we must step the inferior out of the
2922 dld callback, and also out of the dld itself (and any
2923 code or stubs in libdld.sl, such as "shl_load" and
2924 friends) until we reach non-dld code. At that point,
2925 we can stop stepping. */
347bddb7 2926 bpstat_get_triggered_catchpoints (ecs->event_thread->stop_bpstat,
4e1c45ea
PA
2927 &ecs->
2928 event_thread->
488f131b 2929 stepping_through_solib_catchpoints);
4e1c45ea 2930 ecs->event_thread->stepping_through_solib_after_catch = 1;
488f131b
JB
2931
2932 /* Be sure to lift all breakpoints, so the inferior does
2933 actually step past this point... */
4e1c45ea 2934 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 2935 break;
c906108c 2936 }
c5aa993b 2937 else
c5aa993b 2938 {
488f131b 2939 /* We want to step over this breakpoint, then keep going. */
4e1c45ea 2940 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 2941 break;
c5aa993b 2942 }
488f131b 2943 }
488f131b 2944 break;
c906108c 2945
488f131b
JB
2946 case BPSTAT_WHAT_LAST:
2947 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 2948
488f131b
JB
2949 case BPSTAT_WHAT_KEEP_CHECKING:
2950 break;
2951 }
2952 }
c906108c 2953
488f131b
JB
2954 /* We come here if we hit a breakpoint but should not
2955 stop for it. Possibly we also were stepping
2956 and should stop for that. So fall through and
2957 test for stepping. But, if not stepping,
2958 do not stop. */
c906108c 2959
9d1ff73f
MS
2960 /* Are we stepping to get the inferior out of the dynamic linker's
2961 hook (and possibly the dld itself) after catching a shlib
2962 event? */
4e1c45ea 2963 if (ecs->event_thread->stepping_through_solib_after_catch)
488f131b
JB
2964 {
2965#if defined(SOLIB_ADD)
2966 /* Have we reached our destination? If not, keep going. */
2967 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2968 {
527159b7 2969 if (debug_infrun)
8a9de0e4 2970 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
4e1c45ea 2971 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 2972 keep_going (ecs);
104c1213 2973 return;
488f131b
JB
2974 }
2975#endif
527159b7 2976 if (debug_infrun)
8a9de0e4 2977 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
488f131b
JB
2978 /* Else, stop and report the catchpoint(s) whose triggering
2979 caused us to begin stepping. */
4e1c45ea 2980 ecs->event_thread->stepping_through_solib_after_catch = 0;
347bddb7
PA
2981 bpstat_clear (&ecs->event_thread->stop_bpstat);
2982 ecs->event_thread->stop_bpstat
2983 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
4e1c45ea 2984 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
488f131b
JB
2985 stop_print_frame = 1;
2986 stop_stepping (ecs);
2987 return;
2988 }
c906108c 2989
4e1c45ea 2990 if (ecs->event_thread->step_resume_breakpoint)
488f131b 2991 {
527159b7 2992 if (debug_infrun)
d3169d93
DJ
2993 fprintf_unfiltered (gdb_stdlog,
2994 "infrun: step-resume breakpoint is inserted\n");
527159b7 2995
488f131b
JB
2996 /* Having a step-resume breakpoint overrides anything
2997 else having to do with stepping commands until
2998 that breakpoint is reached. */
488f131b
JB
2999 keep_going (ecs);
3000 return;
3001 }
c5aa993b 3002
4e1c45ea 3003 if (ecs->event_thread->step_range_end == 0)
488f131b 3004 {
527159b7 3005 if (debug_infrun)
8a9de0e4 3006 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 3007 /* Likewise if we aren't even stepping. */
488f131b
JB
3008 keep_going (ecs);
3009 return;
3010 }
c5aa993b 3011
488f131b 3012 /* If stepping through a line, keep going if still within it.
c906108c 3013
488f131b
JB
3014 Note that step_range_end is the address of the first instruction
3015 beyond the step range, and NOT the address of the last instruction
3016 within it! */
4e1c45ea
PA
3017 if (stop_pc >= ecs->event_thread->step_range_start
3018 && stop_pc < ecs->event_thread->step_range_end)
488f131b 3019 {
527159b7 3020 if (debug_infrun)
8a9de0e4 3021 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
4e1c45ea
PA
3022 paddr_nz (ecs->event_thread->step_range_start),
3023 paddr_nz (ecs->event_thread->step_range_end));
488f131b
JB
3024 keep_going (ecs);
3025 return;
3026 }
c5aa993b 3027
488f131b 3028 /* We stepped out of the stepping range. */
c906108c 3029
488f131b
JB
3030 /* If we are stepping at the source level and entered the runtime
3031 loader dynamic symbol resolution code, we keep on single stepping
3032 until we exit the run time loader code and reach the callee's
3033 address. */
078130d0 3034 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 3035 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 3036 {
4c8c40e6
MK
3037 CORE_ADDR pc_after_resolver =
3038 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
c906108c 3039
527159b7 3040 if (debug_infrun)
8a9de0e4 3041 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
527159b7 3042
488f131b
JB
3043 if (pc_after_resolver)
3044 {
3045 /* Set up a step-resume breakpoint at the address
3046 indicated by SKIP_SOLIB_RESOLVER. */
3047 struct symtab_and_line sr_sal;
fe39c653 3048 init_sal (&sr_sal);
488f131b
JB
3049 sr_sal.pc = pc_after_resolver;
3050
44cbf7b5 3051 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c5aa993b 3052 }
c906108c 3053
488f131b
JB
3054 keep_going (ecs);
3055 return;
3056 }
c906108c 3057
4e1c45ea 3058 if (ecs->event_thread->step_range_end != 1
078130d0
PA
3059 && (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3060 || ecs->event_thread->step_over_calls == STEP_OVER_ALL)
42edda50 3061 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
488f131b 3062 {
527159b7 3063 if (debug_infrun)
8a9de0e4 3064 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
42edda50 3065 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
3066 a signal trampoline (either by a signal being delivered or by
3067 the signal handler returning). Just single-step until the
3068 inferior leaves the trampoline (either by calling the handler
3069 or returning). */
488f131b
JB
3070 keep_going (ecs);
3071 return;
3072 }
c906108c 3073
c17eaafe
DJ
3074 /* Check for subroutine calls. The check for the current frame
3075 equalling the step ID is not necessary - the check of the
3076 previous frame's ID is sufficient - but it is a common case and
3077 cheaper than checking the previous frame's ID.
14e60db5
DJ
3078
3079 NOTE: frame_id_eq will never report two invalid frame IDs as
3080 being equal, so to get into this block, both the current and
3081 previous frame must have valid frame IDs. */
4e1c45ea
PA
3082 if (!frame_id_eq (get_frame_id (get_current_frame ()),
3083 ecs->event_thread->step_frame_id)
3084 && frame_id_eq (frame_unwind_id (get_current_frame ()),
3085 ecs->event_thread->step_frame_id))
488f131b 3086 {
95918acb 3087 CORE_ADDR real_stop_pc;
8fb3e588 3088
527159b7 3089 if (debug_infrun)
8a9de0e4 3090 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 3091
078130d0 3092 if ((ecs->event_thread->step_over_calls == STEP_OVER_NONE)
4e1c45ea
PA
3093 || ((ecs->event_thread->step_range_end == 1)
3094 && in_prologue (ecs->event_thread->prev_pc,
3095 ecs->stop_func_start)))
95918acb
AC
3096 {
3097 /* I presume that step_over_calls is only 0 when we're
3098 supposed to be stepping at the assembly language level
3099 ("stepi"). Just stop. */
3100 /* Also, maybe we just did a "nexti" inside a prolog, so we
3101 thought it was a subroutine call but it was not. Stop as
3102 well. FENN */
414c69f7 3103 ecs->event_thread->stop_step = 1;
95918acb
AC
3104 print_stop_reason (END_STEPPING_RANGE, 0);
3105 stop_stepping (ecs);
3106 return;
3107 }
8fb3e588 3108
078130d0 3109 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
8567c30f
AC
3110 {
3111 /* We're doing a "next", set a breakpoint at callee's return
3112 address (the address at which the caller will
3113 resume). */
14e60db5 3114 insert_step_resume_breakpoint_at_caller (get_current_frame ());
8567c30f
AC
3115 keep_going (ecs);
3116 return;
3117 }
a53c66de 3118
95918acb 3119 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
3120 calling routine and the real function), locate the real
3121 function. That's what tells us (a) whether we want to step
3122 into it at all, and (b) what prologue we want to run to the
3123 end of, if we do step into it. */
52f729a7 3124 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
95918acb 3125 if (real_stop_pc == 0)
52f729a7
UW
3126 real_stop_pc = gdbarch_skip_trampoline_code
3127 (current_gdbarch, get_current_frame (), stop_pc);
95918acb
AC
3128 if (real_stop_pc != 0)
3129 ecs->stop_func_start = real_stop_pc;
8fb3e588 3130
cfd8ab24 3131 if (in_solib_dynsym_resolve_code (ecs->stop_func_start))
1b2bfbb9
RC
3132 {
3133 struct symtab_and_line sr_sal;
3134 init_sal (&sr_sal);
3135 sr_sal.pc = ecs->stop_func_start;
3136
44cbf7b5 3137 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
8fb3e588
AC
3138 keep_going (ecs);
3139 return;
1b2bfbb9
RC
3140 }
3141
95918acb 3142 /* If we have line number information for the function we are
8fb3e588 3143 thinking of stepping into, step into it.
95918acb 3144
8fb3e588
AC
3145 If there are several symtabs at that PC (e.g. with include
3146 files), just want to know whether *any* of them have line
3147 numbers. find_pc_line handles this. */
95918acb
AC
3148 {
3149 struct symtab_and_line tmp_sal;
8fb3e588 3150
95918acb
AC
3151 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
3152 if (tmp_sal.line != 0)
3153 {
3154 step_into_function (ecs);
3155 return;
3156 }
3157 }
3158
3159 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
3160 set, we stop the step so that the user has a chance to switch
3161 in assembly mode. */
078130d0
PA
3162 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3163 && step_stop_if_no_debug)
95918acb 3164 {
414c69f7 3165 ecs->event_thread->stop_step = 1;
95918acb
AC
3166 print_stop_reason (END_STEPPING_RANGE, 0);
3167 stop_stepping (ecs);
3168 return;
3169 }
3170
3171 /* Set a breakpoint at callee's return address (the address at
8fb3e588 3172 which the caller will resume). */
14e60db5 3173 insert_step_resume_breakpoint_at_caller (get_current_frame ());
95918acb 3174 keep_going (ecs);
488f131b 3175 return;
488f131b 3176 }
c906108c 3177
488f131b
JB
3178 /* If we're in the return path from a shared library trampoline,
3179 we want to proceed through the trampoline when stepping. */
e76f05fa
UW
3180 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
3181 stop_pc, ecs->stop_func_name))
488f131b 3182 {
488f131b 3183 /* Determine where this trampoline returns. */
52f729a7
UW
3184 CORE_ADDR real_stop_pc;
3185 real_stop_pc = gdbarch_skip_trampoline_code
3186 (current_gdbarch, get_current_frame (), stop_pc);
c906108c 3187
527159b7 3188 if (debug_infrun)
8a9de0e4 3189 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
527159b7 3190
488f131b 3191 /* Only proceed through if we know where it's going. */
d764a824 3192 if (real_stop_pc)
488f131b
JB
3193 {
3194 /* And put the step-breakpoint there and go until there. */
3195 struct symtab_and_line sr_sal;
3196
fe39c653 3197 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 3198 sr_sal.pc = real_stop_pc;
488f131b 3199 sr_sal.section = find_pc_overlay (sr_sal.pc);
44cbf7b5
AC
3200
3201 /* Do not specify what the fp should be when we stop since
3202 on some machines the prologue is where the new fp value
3203 is established. */
3204 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c906108c 3205
488f131b
JB
3206 /* Restart without fiddling with the step ranges or
3207 other state. */
3208 keep_going (ecs);
3209 return;
3210 }
3211 }
c906108c 3212
2afb61aa 3213 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 3214
1b2bfbb9
RC
3215 /* NOTE: tausq/2004-05-24: This if block used to be done before all
3216 the trampoline processing logic, however, there are some trampolines
3217 that have no names, so we should do trampoline handling first. */
078130d0 3218 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 3219 && ecs->stop_func_name == NULL
2afb61aa 3220 && stop_pc_sal.line == 0)
1b2bfbb9 3221 {
527159b7 3222 if (debug_infrun)
8a9de0e4 3223 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
527159b7 3224
1b2bfbb9 3225 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
3226 undebuggable function (where there is no debugging information
3227 and no line number corresponding to the address where the
1b2bfbb9
RC
3228 inferior stopped). Since we want to skip this kind of code,
3229 we keep going until the inferior returns from this
14e60db5
DJ
3230 function - unless the user has asked us not to (via
3231 set step-mode) or we no longer know how to get back
3232 to the call site. */
3233 if (step_stop_if_no_debug
eb2f4a08 3234 || !frame_id_p (frame_unwind_id (get_current_frame ())))
1b2bfbb9
RC
3235 {
3236 /* If we have no line number and the step-stop-if-no-debug
3237 is set, we stop the step so that the user has a chance to
3238 switch in assembly mode. */
414c69f7 3239 ecs->event_thread->stop_step = 1;
1b2bfbb9
RC
3240 print_stop_reason (END_STEPPING_RANGE, 0);
3241 stop_stepping (ecs);
3242 return;
3243 }
3244 else
3245 {
3246 /* Set a breakpoint at callee's return address (the address
3247 at which the caller will resume). */
14e60db5 3248 insert_step_resume_breakpoint_at_caller (get_current_frame ());
1b2bfbb9
RC
3249 keep_going (ecs);
3250 return;
3251 }
3252 }
3253
4e1c45ea 3254 if (ecs->event_thread->step_range_end == 1)
1b2bfbb9
RC
3255 {
3256 /* It is stepi or nexti. We always want to stop stepping after
3257 one instruction. */
527159b7 3258 if (debug_infrun)
8a9de0e4 3259 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
414c69f7 3260 ecs->event_thread->stop_step = 1;
1b2bfbb9
RC
3261 print_stop_reason (END_STEPPING_RANGE, 0);
3262 stop_stepping (ecs);
3263 return;
3264 }
3265
2afb61aa 3266 if (stop_pc_sal.line == 0)
488f131b
JB
3267 {
3268 /* We have no line number information. That means to stop
3269 stepping (does this always happen right after one instruction,
3270 when we do "s" in a function with no line numbers,
3271 or can this happen as a result of a return or longjmp?). */
527159b7 3272 if (debug_infrun)
8a9de0e4 3273 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
414c69f7 3274 ecs->event_thread->stop_step = 1;
488f131b
JB
3275 print_stop_reason (END_STEPPING_RANGE, 0);
3276 stop_stepping (ecs);
3277 return;
3278 }
c906108c 3279
2afb61aa 3280 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
3281 && (ecs->event_thread->current_line != stop_pc_sal.line
3282 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
3283 {
3284 /* We are at the start of a different line. So stop. Note that
3285 we don't stop if we step into the middle of a different line.
3286 That is said to make things like for (;;) statements work
3287 better. */
527159b7 3288 if (debug_infrun)
8a9de0e4 3289 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
414c69f7 3290 ecs->event_thread->stop_step = 1;
488f131b
JB
3291 print_stop_reason (END_STEPPING_RANGE, 0);
3292 stop_stepping (ecs);
3293 return;
3294 }
c906108c 3295
488f131b 3296 /* We aren't done stepping.
c906108c 3297
488f131b
JB
3298 Optimize by setting the stepping range to the line.
3299 (We might not be in the original line, but if we entered a
3300 new line in mid-statement, we continue stepping. This makes
3301 things like for(;;) statements work better.) */
c906108c 3302
4e1c45ea
PA
3303 ecs->event_thread->step_range_start = stop_pc_sal.pc;
3304 ecs->event_thread->step_range_end = stop_pc_sal.end;
3305 ecs->event_thread->step_frame_id = get_frame_id (get_current_frame ());
3306 ecs->event_thread->current_line = stop_pc_sal.line;
3307 ecs->event_thread->current_symtab = stop_pc_sal.symtab;
488f131b 3308
527159b7 3309 if (debug_infrun)
8a9de0e4 3310 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 3311 keep_going (ecs);
104c1213
JM
3312}
3313
3314/* Are we in the middle of stepping? */
3315
3316static int
4e1c45ea 3317currently_stepping (struct thread_info *tp)
104c1213 3318{
4e1c45ea
PA
3319 return (((tp->step_range_end && tp->step_resume_breakpoint == NULL)
3320 || tp->trap_expected)
3321 || tp->stepping_through_solib_after_catch
104c1213
JM
3322 || bpstat_should_step ());
3323}
c906108c 3324
c2c6d25f
JM
3325/* Subroutine call with source code we should not step over. Do step
3326 to the first line of code in it. */
3327
3328static void
3329step_into_function (struct execution_control_state *ecs)
3330{
3331 struct symtab *s;
2afb61aa 3332 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f
JM
3333
3334 s = find_pc_symtab (stop_pc);
3335 if (s && s->language != language_asm)
a433963d
UW
3336 ecs->stop_func_start = gdbarch_skip_prologue
3337 (current_gdbarch, ecs->stop_func_start);
c2c6d25f 3338
2afb61aa 3339 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
3340 /* Use the step_resume_break to step until the end of the prologue,
3341 even if that involves jumps (as it seems to on the vax under
3342 4.2). */
3343 /* If the prologue ends in the middle of a source line, continue to
3344 the end of that source line (if it is still within the function).
3345 Otherwise, just go to end of prologue. */
2afb61aa
PA
3346 if (stop_func_sal.end
3347 && stop_func_sal.pc != ecs->stop_func_start
3348 && stop_func_sal.end < ecs->stop_func_end)
3349 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 3350
2dbd5e30
KB
3351 /* Architectures which require breakpoint adjustment might not be able
3352 to place a breakpoint at the computed address. If so, the test
3353 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
3354 ecs->stop_func_start to an address at which a breakpoint may be
3355 legitimately placed.
8fb3e588 3356
2dbd5e30
KB
3357 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
3358 made, GDB will enter an infinite loop when stepping through
3359 optimized code consisting of VLIW instructions which contain
3360 subinstructions corresponding to different source lines. On
3361 FR-V, it's not permitted to place a breakpoint on any but the
3362 first subinstruction of a VLIW instruction. When a breakpoint is
3363 set, GDB will adjust the breakpoint address to the beginning of
3364 the VLIW instruction. Thus, we need to make the corresponding
3365 adjustment here when computing the stop address. */
8fb3e588 3366
2dbd5e30
KB
3367 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
3368 {
3369 ecs->stop_func_start
3370 = gdbarch_adjust_breakpoint_address (current_gdbarch,
8fb3e588 3371 ecs->stop_func_start);
2dbd5e30
KB
3372 }
3373
c2c6d25f
JM
3374 if (ecs->stop_func_start == stop_pc)
3375 {
3376 /* We are already there: stop now. */
414c69f7 3377 ecs->event_thread->stop_step = 1;
488f131b 3378 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
3379 stop_stepping (ecs);
3380 return;
3381 }
3382 else
3383 {
3384 /* Put the step-breakpoint there and go until there. */
fe39c653 3385 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
3386 sr_sal.pc = ecs->stop_func_start;
3387 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
44cbf7b5 3388
c2c6d25f 3389 /* Do not specify what the fp should be when we stop since on
488f131b
JB
3390 some machines the prologue is where the new fp value is
3391 established. */
44cbf7b5 3392 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c2c6d25f
JM
3393
3394 /* And make sure stepping stops right away then. */
4e1c45ea 3395 ecs->event_thread->step_range_end = ecs->event_thread->step_range_start;
c2c6d25f
JM
3396 }
3397 keep_going (ecs);
3398}
d4f3574e 3399
d3169d93 3400/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
3401 This is used to both functions and to skip over code. */
3402
3403static void
3404insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
3405 struct frame_id sr_id)
3406{
611c83ae
PA
3407 /* There should never be more than one step-resume or longjmp-resume
3408 breakpoint per thread, so we should never be setting a new
44cbf7b5 3409 step_resume_breakpoint when one is already active. */
4e1c45ea 3410 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
d3169d93
DJ
3411
3412 if (debug_infrun)
3413 fprintf_unfiltered (gdb_stdlog,
3414 "infrun: inserting step-resume breakpoint at 0x%s\n",
3415 paddr_nz (sr_sal.pc));
3416
4e1c45ea
PA
3417 inferior_thread ()->step_resume_breakpoint
3418 = set_momentary_breakpoint (sr_sal, sr_id, bp_step_resume);
44cbf7b5 3419}
7ce450bd 3420
d3169d93 3421/* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
14e60db5 3422 to skip a potential signal handler.
7ce450bd 3423
14e60db5
DJ
3424 This is called with the interrupted function's frame. The signal
3425 handler, when it returns, will resume the interrupted function at
3426 RETURN_FRAME.pc. */
d303a6c7
AC
3427
3428static void
44cbf7b5 3429insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
3430{
3431 struct symtab_and_line sr_sal;
3432
f4c1edd8 3433 gdb_assert (return_frame != NULL);
d303a6c7
AC
3434 init_sal (&sr_sal); /* initialize to zeros */
3435
bf6ae464
UW
3436 sr_sal.pc = gdbarch_addr_bits_remove
3437 (current_gdbarch, get_frame_pc (return_frame));
d303a6c7
AC
3438 sr_sal.section = find_pc_overlay (sr_sal.pc);
3439
44cbf7b5 3440 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
d303a6c7
AC
3441}
3442
14e60db5
DJ
3443/* Similar to insert_step_resume_breakpoint_at_frame, except
3444 but a breakpoint at the previous frame's PC. This is used to
3445 skip a function after stepping into it (for "next" or if the called
3446 function has no debugging information).
3447
3448 The current function has almost always been reached by single
3449 stepping a call or return instruction. NEXT_FRAME belongs to the
3450 current function, and the breakpoint will be set at the caller's
3451 resume address.
3452
3453 This is a separate function rather than reusing
3454 insert_step_resume_breakpoint_at_frame in order to avoid
3455 get_prev_frame, which may stop prematurely (see the implementation
eb2f4a08 3456 of frame_unwind_id for an example). */
14e60db5
DJ
3457
3458static void
3459insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
3460{
3461 struct symtab_and_line sr_sal;
3462
3463 /* We shouldn't have gotten here if we don't know where the call site
3464 is. */
eb2f4a08 3465 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
14e60db5
DJ
3466
3467 init_sal (&sr_sal); /* initialize to zeros */
3468
bf6ae464 3469 sr_sal.pc = gdbarch_addr_bits_remove
eb2f4a08 3470 (current_gdbarch, frame_pc_unwind (next_frame));
14e60db5
DJ
3471 sr_sal.section = find_pc_overlay (sr_sal.pc);
3472
eb2f4a08 3473 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
14e60db5
DJ
3474}
3475
611c83ae
PA
3476/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
3477 new breakpoint at the target of a jmp_buf. The handling of
3478 longjmp-resume uses the same mechanisms used for handling
3479 "step-resume" breakpoints. */
3480
3481static void
3482insert_longjmp_resume_breakpoint (CORE_ADDR pc)
3483{
3484 /* There should never be more than one step-resume or longjmp-resume
3485 breakpoint per thread, so we should never be setting a new
3486 longjmp_resume_breakpoint when one is already active. */
4e1c45ea 3487 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
611c83ae
PA
3488
3489 if (debug_infrun)
3490 fprintf_unfiltered (gdb_stdlog,
3491 "infrun: inserting longjmp-resume breakpoint at 0x%s\n",
3492 paddr_nz (pc));
3493
4e1c45ea 3494 inferior_thread ()->step_resume_breakpoint =
611c83ae
PA
3495 set_momentary_breakpoint_at_pc (pc, bp_longjmp_resume);
3496}
3497
104c1213
JM
3498static void
3499stop_stepping (struct execution_control_state *ecs)
3500{
527159b7 3501 if (debug_infrun)
8a9de0e4 3502 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 3503
cd0fc7c3
SS
3504 /* Let callers know we don't want to wait for the inferior anymore. */
3505 ecs->wait_some_more = 0;
3506}
3507
d4f3574e
SS
3508/* This function handles various cases where we need to continue
3509 waiting for the inferior. */
3510/* (Used to be the keep_going: label in the old wait_for_inferior) */
3511
3512static void
3513keep_going (struct execution_control_state *ecs)
3514{
d4f3574e 3515 /* Save the pc before execution, to compare with pc after stop. */
4e1c45ea 3516 ecs->event_thread->prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
d4f3574e 3517
d4f3574e
SS
3518 /* If we did not do break;, it means we should keep running the
3519 inferior and not return to debugger. */
3520
2020b7ab
PA
3521 if (ecs->event_thread->trap_expected
3522 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
d4f3574e
SS
3523 {
3524 /* We took a signal (which we are supposed to pass through to
4e1c45ea
PA
3525 the inferior, else we'd not get here) and we haven't yet
3526 gotten our trap. Simply continue. */
2020b7ab
PA
3527 resume (currently_stepping (ecs->event_thread),
3528 ecs->event_thread->stop_signal);
d4f3574e
SS
3529 }
3530 else
3531 {
3532 /* Either the trap was not expected, but we are continuing
488f131b
JB
3533 anyway (the user asked that this signal be passed to the
3534 child)
3535 -- or --
3536 The signal was SIGTRAP, e.g. it was our signal, but we
3537 decided we should resume from it.
d4f3574e 3538
c36b740a 3539 We're going to run this baby now!
d4f3574e 3540
c36b740a
VP
3541 Note that insert_breakpoints won't try to re-insert
3542 already inserted breakpoints. Therefore, we don't
3543 care if breakpoints were already inserted, or not. */
3544
4e1c45ea 3545 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 3546 {
237fc4c9
PA
3547 if (! use_displaced_stepping (current_gdbarch))
3548 /* Since we can't do a displaced step, we have to remove
3549 the breakpoint while we step it. To keep things
3550 simple, we remove them all. */
3551 remove_breakpoints ();
45e8c884
VP
3552 }
3553 else
d4f3574e 3554 {
e236ba44 3555 struct gdb_exception e;
569631c6
UW
3556 /* Stop stepping when inserting breakpoints
3557 has failed. */
e236ba44
VP
3558 TRY_CATCH (e, RETURN_MASK_ERROR)
3559 {
3560 insert_breakpoints ();
3561 }
3562 if (e.reason < 0)
d4f3574e
SS
3563 {
3564 stop_stepping (ecs);
3565 return;
3566 }
d4f3574e
SS
3567 }
3568
4e1c45ea 3569 ecs->event_thread->trap_expected = ecs->event_thread->stepping_over_breakpoint;
d4f3574e
SS
3570
3571 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
3572 specifies that such a signal should be delivered to the
3573 target program).
3574
3575 Typically, this would occure when a user is debugging a
3576 target monitor on a simulator: the target monitor sets a
3577 breakpoint; the simulator encounters this break-point and
3578 halts the simulation handing control to GDB; GDB, noteing
3579 that the break-point isn't valid, returns control back to the
3580 simulator; the simulator then delivers the hardware
3581 equivalent of a SIGNAL_TRAP to the program being debugged. */
3582
2020b7ab
PA
3583 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3584 && !signal_program[ecs->event_thread->stop_signal])
3585 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
d4f3574e 3586
2020b7ab
PA
3587 resume (currently_stepping (ecs->event_thread),
3588 ecs->event_thread->stop_signal);
d4f3574e
SS
3589 }
3590
488f131b 3591 prepare_to_wait (ecs);
d4f3574e
SS
3592}
3593
104c1213
JM
3594/* This function normally comes after a resume, before
3595 handle_inferior_event exits. It takes care of any last bits of
3596 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 3597
104c1213
JM
3598static void
3599prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 3600{
527159b7 3601 if (debug_infrun)
8a9de0e4 3602 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
0d1e5fa7 3603 if (infwait_state == infwait_normal_state)
104c1213
JM
3604 {
3605 overlay_cache_invalid = 1;
3606
3607 /* We have to invalidate the registers BEFORE calling
488f131b
JB
3608 target_wait because they can be loaded from the target while
3609 in target_wait. This makes remote debugging a bit more
3610 efficient for those targets that provide critical registers
3611 as part of their normal status mechanism. */
104c1213
JM
3612
3613 registers_changed ();
0d1e5fa7 3614 waiton_ptid = pid_to_ptid (-1);
104c1213
JM
3615 }
3616 /* This is the old end of the while loop. Let everybody know we
3617 want to wait for the inferior some more and get called again
3618 soon. */
3619 ecs->wait_some_more = 1;
c906108c 3620}
11cf8741
JM
3621
3622/* Print why the inferior has stopped. We always print something when
3623 the inferior exits, or receives a signal. The rest of the cases are
3624 dealt with later on in normal_stop() and print_it_typical(). Ideally
3625 there should be a call to this function from handle_inferior_event()
3626 each time stop_stepping() is called.*/
3627static void
3628print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
3629{
3630 switch (stop_reason)
3631 {
11cf8741
JM
3632 case END_STEPPING_RANGE:
3633 /* We are done with a step/next/si/ni command. */
3634 /* For now print nothing. */
fb40c209 3635 /* Print a message only if not in the middle of doing a "step n"
488f131b 3636 operation for n > 1 */
414c69f7
PA
3637 if (!inferior_thread ()->step_multi
3638 || !inferior_thread ()->stop_step)
9dc5e2a9 3639 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3640 ui_out_field_string
3641 (uiout, "reason",
3642 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
11cf8741 3643 break;
11cf8741
JM
3644 case SIGNAL_EXITED:
3645 /* The inferior was terminated by a signal. */
8b93c638 3646 annotate_signalled ();
9dc5e2a9 3647 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3648 ui_out_field_string
3649 (uiout, "reason",
3650 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8b93c638
JM
3651 ui_out_text (uiout, "\nProgram terminated with signal ");
3652 annotate_signal_name ();
488f131b
JB
3653 ui_out_field_string (uiout, "signal-name",
3654 target_signal_to_name (stop_info));
8b93c638
JM
3655 annotate_signal_name_end ();
3656 ui_out_text (uiout, ", ");
3657 annotate_signal_string ();
488f131b
JB
3658 ui_out_field_string (uiout, "signal-meaning",
3659 target_signal_to_string (stop_info));
8b93c638
JM
3660 annotate_signal_string_end ();
3661 ui_out_text (uiout, ".\n");
3662 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
3663 break;
3664 case EXITED:
3665 /* The inferior program is finished. */
8b93c638
JM
3666 annotate_exited (stop_info);
3667 if (stop_info)
3668 {
9dc5e2a9 3669 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3670 ui_out_field_string (uiout, "reason",
3671 async_reason_lookup (EXEC_ASYNC_EXITED));
8b93c638 3672 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
3673 ui_out_field_fmt (uiout, "exit-code", "0%o",
3674 (unsigned int) stop_info);
8b93c638
JM
3675 ui_out_text (uiout, ".\n");
3676 }
3677 else
3678 {
9dc5e2a9 3679 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3680 ui_out_field_string
3681 (uiout, "reason",
3682 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8b93c638
JM
3683 ui_out_text (uiout, "\nProgram exited normally.\n");
3684 }
f17517ea
AS
3685 /* Support the --return-child-result option. */
3686 return_child_result_value = stop_info;
11cf8741
JM
3687 break;
3688 case SIGNAL_RECEIVED:
3689 /* Signal received. The signal table tells us to print about
3690 it. */
8b93c638
JM
3691 annotate_signal ();
3692 ui_out_text (uiout, "\nProgram received signal ");
3693 annotate_signal_name ();
84c6c83c 3694 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3695 ui_out_field_string
3696 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b
JB
3697 ui_out_field_string (uiout, "signal-name",
3698 target_signal_to_name (stop_info));
8b93c638
JM
3699 annotate_signal_name_end ();
3700 ui_out_text (uiout, ", ");
3701 annotate_signal_string ();
488f131b
JB
3702 ui_out_field_string (uiout, "signal-meaning",
3703 target_signal_to_string (stop_info));
8b93c638
JM
3704 annotate_signal_string_end ();
3705 ui_out_text (uiout, ".\n");
11cf8741
JM
3706 break;
3707 default:
8e65ff28 3708 internal_error (__FILE__, __LINE__,
e2e0b3e5 3709 _("print_stop_reason: unrecognized enum value"));
11cf8741
JM
3710 break;
3711 }
3712}
c906108c 3713\f
43ff13b4 3714
c906108c
SS
3715/* Here to return control to GDB when the inferior stops for real.
3716 Print appropriate messages, remove breakpoints, give terminal our modes.
3717
3718 STOP_PRINT_FRAME nonzero means print the executing frame
3719 (pc, function, args, file, line number and line text).
3720 BREAKPOINTS_FAILED nonzero means stop was due to error
3721 attempting to insert breakpoints. */
3722
3723void
96baa820 3724normal_stop (void)
c906108c 3725{
73b65bb0
DJ
3726 struct target_waitstatus last;
3727 ptid_t last_ptid;
3728
3729 get_last_target_status (&last_ptid, &last);
3730
4f8d22e3
PA
3731 /* In non-stop mode, we don't want GDB to switch threads behind the
3732 user's back, to avoid races where the user is typing a command to
3733 apply to thread x, but GDB switches to thread y before the user
3734 finishes entering the command. */
3735
c906108c
SS
3736 /* As with the notification of thread events, we want to delay
3737 notifying the user that we've switched thread context until
3738 the inferior actually stops.
3739
73b65bb0
DJ
3740 There's no point in saying anything if the inferior has exited.
3741 Note that SIGNALLED here means "exited with a signal", not
3742 "received a signal". */
4f8d22e3
PA
3743 if (!non_stop
3744 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
3745 && target_has_execution
3746 && last.kind != TARGET_WAITKIND_SIGNALLED
3747 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
3748 {
3749 target_terminal_ours_for_output ();
a3f17187 3750 printf_filtered (_("[Switching to %s]\n"),
c95310c6 3751 target_pid_to_str (inferior_ptid));
b8fa951a 3752 annotate_thread_changed ();
39f77062 3753 previous_inferior_ptid = inferior_ptid;
c906108c 3754 }
c906108c 3755
4fa8626c 3756 /* NOTE drow/2004-01-17: Is this still necessary? */
c906108c
SS
3757 /* Make sure that the current_frame's pc is correct. This
3758 is a correction for setting up the frame info before doing
b798847d 3759 gdbarch_decr_pc_after_break */
b87efeee
AC
3760 if (target_has_execution)
3761 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
b798847d 3762 gdbarch_decr_pc_after_break, the program counter can change. Ask the
b87efeee 3763 frame code to check for this and sort out any resultant mess.
b798847d 3764 gdbarch_decr_pc_after_break needs to just go away. */
2f107107 3765 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
c906108c 3766
74960c60 3767 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
3768 {
3769 if (remove_breakpoints ())
3770 {
3771 target_terminal_ours_for_output ();
a3f17187
AC
3772 printf_filtered (_("\
3773Cannot remove breakpoints because program is no longer writable.\n\
3774It might be running in another process.\n\
3775Further execution is probably impossible.\n"));
c906108c
SS
3776 }
3777 }
c906108c 3778
c906108c
SS
3779 /* If an auto-display called a function and that got a signal,
3780 delete that auto-display to avoid an infinite recursion. */
3781
3782 if (stopped_by_random_signal)
3783 disable_current_display ();
3784
3785 /* Don't print a message if in the middle of doing a "step n"
3786 operation for n > 1 */
af679fd0
PA
3787 if (target_has_execution
3788 && last.kind != TARGET_WAITKIND_SIGNALLED
3789 && last.kind != TARGET_WAITKIND_EXITED
3790 && inferior_thread ()->step_multi
414c69f7 3791 && inferior_thread ()->stop_step)
c906108c
SS
3792 goto done;
3793
3794 target_terminal_ours ();
3795
7abfe014
DJ
3796 /* Set the current source location. This will also happen if we
3797 display the frame below, but the current SAL will be incorrect
3798 during a user hook-stop function. */
3799 if (target_has_stack && !stop_stack_dummy)
3800 set_current_sal_from_frame (get_current_frame (), 1);
3801
c906108c 3802 if (!target_has_stack)
d51fd4c8 3803 goto done;
c906108c 3804
32400beb
PA
3805 if (last.kind == TARGET_WAITKIND_SIGNALLED
3806 || last.kind == TARGET_WAITKIND_EXITED)
3807 goto done;
3808
c906108c
SS
3809 /* Select innermost stack frame - i.e., current frame is frame 0,
3810 and current location is based on that.
3811 Don't do this on return from a stack dummy routine,
3812 or if the program has exited. */
3813
3814 if (!stop_stack_dummy)
3815 {
0f7d239c 3816 select_frame (get_current_frame ());
c906108c
SS
3817
3818 /* Print current location without a level number, if
c5aa993b
JM
3819 we have changed functions or hit a breakpoint.
3820 Print source line if we have one.
3821 bpstat_print() contains the logic deciding in detail
3822 what to print, based on the event(s) that just occurred. */
c906108c 3823
d01a8610
AS
3824 /* If --batch-silent is enabled then there's no need to print the current
3825 source location, and to try risks causing an error message about
3826 missing source files. */
3827 if (stop_print_frame && !batch_silent)
c906108c
SS
3828 {
3829 int bpstat_ret;
3830 int source_flag;
917317f4 3831 int do_frame_printing = 1;
347bddb7 3832 struct thread_info *tp = inferior_thread ();
c906108c 3833
347bddb7 3834 bpstat_ret = bpstat_print (tp->stop_bpstat);
917317f4
JM
3835 switch (bpstat_ret)
3836 {
3837 case PRINT_UNKNOWN:
b0f4b84b
DJ
3838 /* If we had hit a shared library event breakpoint,
3839 bpstat_print would print out this message. If we hit
3840 an OS-level shared library event, do the same
3841 thing. */
3842 if (last.kind == TARGET_WAITKIND_LOADED)
3843 {
3844 printf_filtered (_("Stopped due to shared library event\n"));
3845 source_flag = SRC_LINE; /* something bogus */
3846 do_frame_printing = 0;
3847 break;
3848 }
3849
aa0cd9c1 3850 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
3851 (or should) carry around the function and does (or
3852 should) use that when doing a frame comparison. */
414c69f7 3853 if (tp->stop_step
347bddb7 3854 && frame_id_eq (tp->step_frame_id,
aa0cd9c1 3855 get_frame_id (get_current_frame ()))
917317f4 3856 && step_start_function == find_pc_function (stop_pc))
488f131b 3857 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 3858 else
488f131b 3859 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3860 break;
3861 case PRINT_SRC_AND_LOC:
488f131b 3862 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3863 break;
3864 case PRINT_SRC_ONLY:
c5394b80 3865 source_flag = SRC_LINE;
917317f4
JM
3866 break;
3867 case PRINT_NOTHING:
488f131b 3868 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
3869 do_frame_printing = 0;
3870 break;
3871 default:
e2e0b3e5 3872 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 3873 }
c906108c 3874
9dc5e2a9 3875 if (ui_out_is_mi_like_p (uiout))
b1a268e5
VP
3876 {
3877
3878 ui_out_field_int (uiout, "thread-id",
3879 pid_to_thread_id (inferior_ptid));
3880 if (non_stop)
3881 {
3882 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end
3883 (uiout, "stopped-threads");
3884 ui_out_field_int (uiout, NULL,
3885 pid_to_thread_id (inferior_ptid));
3886 do_cleanups (back_to);
3887 }
3888 else
3889 ui_out_field_string (uiout, "stopped-threads", "all");
3890 }
c906108c
SS
3891 /* The behavior of this routine with respect to the source
3892 flag is:
c5394b80
JM
3893 SRC_LINE: Print only source line
3894 LOCATION: Print only location
3895 SRC_AND_LOC: Print location and source line */
917317f4 3896 if (do_frame_printing)
b04f3ab4 3897 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
3898
3899 /* Display the auto-display expressions. */
3900 do_displays ();
3901 }
3902 }
3903
3904 /* Save the function value return registers, if we care.
3905 We might be about to restore their previous contents. */
32400beb 3906 if (inferior_thread ()->proceed_to_finish)
d5c31457
UW
3907 {
3908 /* This should not be necessary. */
3909 if (stop_registers)
3910 regcache_xfree (stop_registers);
3911
3912 /* NB: The copy goes through to the target picking up the value of
3913 all the registers. */
3914 stop_registers = regcache_dup (get_current_regcache ());
3915 }
c906108c
SS
3916
3917 if (stop_stack_dummy)
3918 {
dbe9fe58
AC
3919 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3920 ends with a setting of the current frame, so we can use that
3921 next. */
3922 frame_pop (get_current_frame ());
c906108c 3923 /* Set stop_pc to what it was before we called the function.
c5aa993b
JM
3924 Can't rely on restore_inferior_status because that only gets
3925 called if we don't stop in the called function. */
c906108c 3926 stop_pc = read_pc ();
0f7d239c 3927 select_frame (get_current_frame ());
c906108c
SS
3928 }
3929
c906108c
SS
3930done:
3931 annotate_stopped ();
af679fd0
PA
3932 if (!suppress_stop_observer
3933 && !(target_has_execution
3934 && last.kind != TARGET_WAITKIND_SIGNALLED
3935 && last.kind != TARGET_WAITKIND_EXITED
3936 && inferior_thread ()->step_multi))
347bddb7
PA
3937 {
3938 if (!ptid_equal (inferior_ptid, null_ptid))
3939 observer_notify_normal_stop (inferior_thread ()->stop_bpstat);
3940 else
3941 observer_notify_normal_stop (NULL);
3942 }
94cc34af
PA
3943 if (target_has_execution
3944 && last.kind != TARGET_WAITKIND_SIGNALLED
3945 && last.kind != TARGET_WAITKIND_EXITED)
3946 {
347bddb7
PA
3947 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3948 Delete any breakpoint that is to be deleted at the next stop. */
3949 breakpoint_auto_delete (inferior_thread ()->stop_bpstat);
3950
94cc34af
PA
3951 if (!non_stop)
3952 set_running (pid_to_ptid (-1), 0);
3953 else
3954 set_running (inferior_ptid, 0);
3955 }
d51fd4c8
PA
3956
3957 /* Look up the hook_stop and run it (CLI internally handles problem
3958 of stop_command's pre-hook not existing). */
3959 if (stop_command)
3960 catch_errors (hook_stop_stub, stop_command,
3961 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3962
c906108c
SS
3963}
3964
3965static int
96baa820 3966hook_stop_stub (void *cmd)
c906108c 3967{
5913bcb0 3968 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
3969 return (0);
3970}
3971\f
c5aa993b 3972int
96baa820 3973signal_stop_state (int signo)
c906108c 3974{
a0ef4274
DJ
3975 /* Always stop on signals if we're just gaining control of the
3976 program. */
3977 return signal_stop[signo] || stop_soon != NO_STOP_QUIETLY;
c906108c
SS
3978}
3979
c5aa993b 3980int
96baa820 3981signal_print_state (int signo)
c906108c
SS
3982{
3983 return signal_print[signo];
3984}
3985
c5aa993b 3986int
96baa820 3987signal_pass_state (int signo)
c906108c
SS
3988{
3989 return signal_program[signo];
3990}
3991
488f131b 3992int
7bda5e4a 3993signal_stop_update (int signo, int state)
d4f3574e
SS
3994{
3995 int ret = signal_stop[signo];
3996 signal_stop[signo] = state;
3997 return ret;
3998}
3999
488f131b 4000int
7bda5e4a 4001signal_print_update (int signo, int state)
d4f3574e
SS
4002{
4003 int ret = signal_print[signo];
4004 signal_print[signo] = state;
4005 return ret;
4006}
4007
488f131b 4008int
7bda5e4a 4009signal_pass_update (int signo, int state)
d4f3574e
SS
4010{
4011 int ret = signal_program[signo];
4012 signal_program[signo] = state;
4013 return ret;
4014}
4015
c906108c 4016static void
96baa820 4017sig_print_header (void)
c906108c 4018{
a3f17187
AC
4019 printf_filtered (_("\
4020Signal Stop\tPrint\tPass to program\tDescription\n"));
c906108c
SS
4021}
4022
4023static void
96baa820 4024sig_print_info (enum target_signal oursig)
c906108c
SS
4025{
4026 char *name = target_signal_to_name (oursig);
4027 int name_padding = 13 - strlen (name);
96baa820 4028
c906108c
SS
4029 if (name_padding <= 0)
4030 name_padding = 0;
4031
4032 printf_filtered ("%s", name);
488f131b 4033 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
4034 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
4035 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
4036 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
4037 printf_filtered ("%s\n", target_signal_to_string (oursig));
4038}
4039
4040/* Specify how various signals in the inferior should be handled. */
4041
4042static void
96baa820 4043handle_command (char *args, int from_tty)
c906108c
SS
4044{
4045 char **argv;
4046 int digits, wordlen;
4047 int sigfirst, signum, siglast;
4048 enum target_signal oursig;
4049 int allsigs;
4050 int nsigs;
4051 unsigned char *sigs;
4052 struct cleanup *old_chain;
4053
4054 if (args == NULL)
4055 {
e2e0b3e5 4056 error_no_arg (_("signal to handle"));
c906108c
SS
4057 }
4058
4059 /* Allocate and zero an array of flags for which signals to handle. */
4060
4061 nsigs = (int) TARGET_SIGNAL_LAST;
4062 sigs = (unsigned char *) alloca (nsigs);
4063 memset (sigs, 0, nsigs);
4064
4065 /* Break the command line up into args. */
4066
4067 argv = buildargv (args);
4068 if (argv == NULL)
4069 {
4070 nomem (0);
4071 }
7a292a7a 4072 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
4073
4074 /* Walk through the args, looking for signal oursigs, signal names, and
4075 actions. Signal numbers and signal names may be interspersed with
4076 actions, with the actions being performed for all signals cumulatively
4077 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
4078
4079 while (*argv != NULL)
4080 {
4081 wordlen = strlen (*argv);
4082 for (digits = 0; isdigit ((*argv)[digits]); digits++)
4083 {;
4084 }
4085 allsigs = 0;
4086 sigfirst = siglast = -1;
4087
4088 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
4089 {
4090 /* Apply action to all signals except those used by the
4091 debugger. Silently skip those. */
4092 allsigs = 1;
4093 sigfirst = 0;
4094 siglast = nsigs - 1;
4095 }
4096 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
4097 {
4098 SET_SIGS (nsigs, sigs, signal_stop);
4099 SET_SIGS (nsigs, sigs, signal_print);
4100 }
4101 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
4102 {
4103 UNSET_SIGS (nsigs, sigs, signal_program);
4104 }
4105 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
4106 {
4107 SET_SIGS (nsigs, sigs, signal_print);
4108 }
4109 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
4110 {
4111 SET_SIGS (nsigs, sigs, signal_program);
4112 }
4113 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
4114 {
4115 UNSET_SIGS (nsigs, sigs, signal_stop);
4116 }
4117 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
4118 {
4119 SET_SIGS (nsigs, sigs, signal_program);
4120 }
4121 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
4122 {
4123 UNSET_SIGS (nsigs, sigs, signal_print);
4124 UNSET_SIGS (nsigs, sigs, signal_stop);
4125 }
4126 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
4127 {
4128 UNSET_SIGS (nsigs, sigs, signal_program);
4129 }
4130 else if (digits > 0)
4131 {
4132 /* It is numeric. The numeric signal refers to our own
4133 internal signal numbering from target.h, not to host/target
4134 signal number. This is a feature; users really should be
4135 using symbolic names anyway, and the common ones like
4136 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
4137
4138 sigfirst = siglast = (int)
4139 target_signal_from_command (atoi (*argv));
4140 if ((*argv)[digits] == '-')
4141 {
4142 siglast = (int)
4143 target_signal_from_command (atoi ((*argv) + digits + 1));
4144 }
4145 if (sigfirst > siglast)
4146 {
4147 /* Bet he didn't figure we'd think of this case... */
4148 signum = sigfirst;
4149 sigfirst = siglast;
4150 siglast = signum;
4151 }
4152 }
4153 else
4154 {
4155 oursig = target_signal_from_name (*argv);
4156 if (oursig != TARGET_SIGNAL_UNKNOWN)
4157 {
4158 sigfirst = siglast = (int) oursig;
4159 }
4160 else
4161 {
4162 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 4163 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
4164 }
4165 }
4166
4167 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 4168 which signals to apply actions to. */
c906108c
SS
4169
4170 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
4171 {
4172 switch ((enum target_signal) signum)
4173 {
4174 case TARGET_SIGNAL_TRAP:
4175 case TARGET_SIGNAL_INT:
4176 if (!allsigs && !sigs[signum])
4177 {
4178 if (query ("%s is used by the debugger.\n\
488f131b 4179Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
4180 {
4181 sigs[signum] = 1;
4182 }
4183 else
4184 {
a3f17187 4185 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
4186 gdb_flush (gdb_stdout);
4187 }
4188 }
4189 break;
4190 case TARGET_SIGNAL_0:
4191 case TARGET_SIGNAL_DEFAULT:
4192 case TARGET_SIGNAL_UNKNOWN:
4193 /* Make sure that "all" doesn't print these. */
4194 break;
4195 default:
4196 sigs[signum] = 1;
4197 break;
4198 }
4199 }
4200
4201 argv++;
4202 }
4203
39f77062 4204 target_notice_signals (inferior_ptid);
c906108c
SS
4205
4206 if (from_tty)
4207 {
4208 /* Show the results. */
4209 sig_print_header ();
4210 for (signum = 0; signum < nsigs; signum++)
4211 {
4212 if (sigs[signum])
4213 {
4214 sig_print_info (signum);
4215 }
4216 }
4217 }
4218
4219 do_cleanups (old_chain);
4220}
4221
4222static void
96baa820 4223xdb_handle_command (char *args, int from_tty)
c906108c
SS
4224{
4225 char **argv;
4226 struct cleanup *old_chain;
4227
4228 /* Break the command line up into args. */
4229
4230 argv = buildargv (args);
4231 if (argv == NULL)
4232 {
4233 nomem (0);
4234 }
7a292a7a 4235 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
4236 if (argv[1] != (char *) NULL)
4237 {
4238 char *argBuf;
4239 int bufLen;
4240
4241 bufLen = strlen (argv[0]) + 20;
4242 argBuf = (char *) xmalloc (bufLen);
4243 if (argBuf)
4244 {
4245 int validFlag = 1;
4246 enum target_signal oursig;
4247
4248 oursig = target_signal_from_name (argv[0]);
4249 memset (argBuf, 0, bufLen);
4250 if (strcmp (argv[1], "Q") == 0)
4251 sprintf (argBuf, "%s %s", argv[0], "noprint");
4252 else
4253 {
4254 if (strcmp (argv[1], "s") == 0)
4255 {
4256 if (!signal_stop[oursig])
4257 sprintf (argBuf, "%s %s", argv[0], "stop");
4258 else
4259 sprintf (argBuf, "%s %s", argv[0], "nostop");
4260 }
4261 else if (strcmp (argv[1], "i") == 0)
4262 {
4263 if (!signal_program[oursig])
4264 sprintf (argBuf, "%s %s", argv[0], "pass");
4265 else
4266 sprintf (argBuf, "%s %s", argv[0], "nopass");
4267 }
4268 else if (strcmp (argv[1], "r") == 0)
4269 {
4270 if (!signal_print[oursig])
4271 sprintf (argBuf, "%s %s", argv[0], "print");
4272 else
4273 sprintf (argBuf, "%s %s", argv[0], "noprint");
4274 }
4275 else
4276 validFlag = 0;
4277 }
4278 if (validFlag)
4279 handle_command (argBuf, from_tty);
4280 else
a3f17187 4281 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 4282 if (argBuf)
b8c9b27d 4283 xfree (argBuf);
c906108c
SS
4284 }
4285 }
4286 do_cleanups (old_chain);
4287}
4288
4289/* Print current contents of the tables set by the handle command.
4290 It is possible we should just be printing signals actually used
4291 by the current target (but for things to work right when switching
4292 targets, all signals should be in the signal tables). */
4293
4294static void
96baa820 4295signals_info (char *signum_exp, int from_tty)
c906108c
SS
4296{
4297 enum target_signal oursig;
4298 sig_print_header ();
4299
4300 if (signum_exp)
4301 {
4302 /* First see if this is a symbol name. */
4303 oursig = target_signal_from_name (signum_exp);
4304 if (oursig == TARGET_SIGNAL_UNKNOWN)
4305 {
4306 /* No, try numeric. */
4307 oursig =
bb518678 4308 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
4309 }
4310 sig_print_info (oursig);
4311 return;
4312 }
4313
4314 printf_filtered ("\n");
4315 /* These ugly casts brought to you by the native VAX compiler. */
4316 for (oursig = TARGET_SIGNAL_FIRST;
4317 (int) oursig < (int) TARGET_SIGNAL_LAST;
4318 oursig = (enum target_signal) ((int) oursig + 1))
4319 {
4320 QUIT;
4321
4322 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 4323 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
4324 sig_print_info (oursig);
4325 }
4326
a3f17187 4327 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
c906108c
SS
4328}
4329\f
7a292a7a
SS
4330struct inferior_status
4331{
4332 enum target_signal stop_signal;
4333 CORE_ADDR stop_pc;
4334 bpstat stop_bpstat;
4335 int stop_step;
4336 int stop_stack_dummy;
4337 int stopped_by_random_signal;
ca67fcb8 4338 int stepping_over_breakpoint;
7a292a7a
SS
4339 CORE_ADDR step_range_start;
4340 CORE_ADDR step_range_end;
aa0cd9c1 4341 struct frame_id step_frame_id;
5fbbeb29 4342 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
4343 CORE_ADDR step_resume_break_address;
4344 int stop_after_trap;
c0236d92 4345 int stop_soon;
7a292a7a
SS
4346
4347 /* These are here because if call_function_by_hand has written some
4348 registers and then decides to call error(), we better not have changed
4349 any registers. */
72cec141 4350 struct regcache *registers;
7a292a7a 4351
101dcfbe
AC
4352 /* A frame unique identifier. */
4353 struct frame_id selected_frame_id;
4354
7a292a7a
SS
4355 int breakpoint_proceeded;
4356 int restore_stack_info;
4357 int proceed_to_finish;
4358};
4359
7a292a7a 4360void
96baa820
JM
4361write_inferior_status_register (struct inferior_status *inf_status, int regno,
4362 LONGEST val)
7a292a7a 4363{
3acba339 4364 int size = register_size (current_gdbarch, regno);
7a292a7a
SS
4365 void *buf = alloca (size);
4366 store_signed_integer (buf, size, val);
0818c12a 4367 regcache_raw_write (inf_status->registers, regno, buf);
7a292a7a
SS
4368}
4369
c906108c
SS
4370/* Save all of the information associated with the inferior<==>gdb
4371 connection. INF_STATUS is a pointer to a "struct inferior_status"
4372 (defined in inferior.h). */
4373
7a292a7a 4374struct inferior_status *
96baa820 4375save_inferior_status (int restore_stack_info)
c906108c 4376{
72cec141 4377 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
4e1c45ea 4378 struct thread_info *tp = inferior_thread ();
7a292a7a 4379
2020b7ab 4380 inf_status->stop_signal = tp->stop_signal;
c906108c 4381 inf_status->stop_pc = stop_pc;
414c69f7 4382 inf_status->stop_step = tp->stop_step;
c906108c
SS
4383 inf_status->stop_stack_dummy = stop_stack_dummy;
4384 inf_status->stopped_by_random_signal = stopped_by_random_signal;
4e1c45ea
PA
4385 inf_status->stepping_over_breakpoint = tp->trap_expected;
4386 inf_status->step_range_start = tp->step_range_start;
4387 inf_status->step_range_end = tp->step_range_end;
4388 inf_status->step_frame_id = tp->step_frame_id;
078130d0 4389 inf_status->step_over_calls = tp->step_over_calls;
c906108c 4390 inf_status->stop_after_trap = stop_after_trap;
c0236d92 4391 inf_status->stop_soon = stop_soon;
c906108c
SS
4392 /* Save original bpstat chain here; replace it with copy of chain.
4393 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
4394 hand them back the original chain when restore_inferior_status is
4395 called. */
347bddb7
PA
4396 inf_status->stop_bpstat = tp->stop_bpstat;
4397 tp->stop_bpstat = bpstat_copy (tp->stop_bpstat);
c906108c
SS
4398 inf_status->breakpoint_proceeded = breakpoint_proceeded;
4399 inf_status->restore_stack_info = restore_stack_info;
32400beb 4400 inf_status->proceed_to_finish = tp->proceed_to_finish;
c5aa993b 4401
594f7785 4402 inf_status->registers = regcache_dup (get_current_regcache ());
c906108c 4403
206415a3 4404 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
7a292a7a 4405 return inf_status;
c906108c
SS
4406}
4407
c906108c 4408static int
96baa820 4409restore_selected_frame (void *args)
c906108c 4410{
488f131b 4411 struct frame_id *fid = (struct frame_id *) args;
c906108c 4412 struct frame_info *frame;
c906108c 4413
101dcfbe 4414 frame = frame_find_by_id (*fid);
c906108c 4415
aa0cd9c1
AC
4416 /* If inf_status->selected_frame_id is NULL, there was no previously
4417 selected frame. */
101dcfbe 4418 if (frame == NULL)
c906108c 4419 {
8a3fe4f8 4420 warning (_("Unable to restore previously selected frame."));
c906108c
SS
4421 return 0;
4422 }
4423
0f7d239c 4424 select_frame (frame);
c906108c
SS
4425
4426 return (1);
4427}
4428
4429void
96baa820 4430restore_inferior_status (struct inferior_status *inf_status)
c906108c 4431{
4e1c45ea
PA
4432 struct thread_info *tp = inferior_thread ();
4433
2020b7ab 4434 tp->stop_signal = inf_status->stop_signal;
c906108c 4435 stop_pc = inf_status->stop_pc;
414c69f7 4436 tp->stop_step = inf_status->stop_step;
c906108c
SS
4437 stop_stack_dummy = inf_status->stop_stack_dummy;
4438 stopped_by_random_signal = inf_status->stopped_by_random_signal;
4e1c45ea
PA
4439 tp->trap_expected = inf_status->stepping_over_breakpoint;
4440 tp->step_range_start = inf_status->step_range_start;
4441 tp->step_range_end = inf_status->step_range_end;
4442 tp->step_frame_id = inf_status->step_frame_id;
078130d0 4443 tp->step_over_calls = inf_status->step_over_calls;
c906108c 4444 stop_after_trap = inf_status->stop_after_trap;
c0236d92 4445 stop_soon = inf_status->stop_soon;
347bddb7
PA
4446 bpstat_clear (&tp->stop_bpstat);
4447 tp->stop_bpstat = inf_status->stop_bpstat;
c906108c 4448 breakpoint_proceeded = inf_status->breakpoint_proceeded;
32400beb 4449 tp->proceed_to_finish = inf_status->proceed_to_finish;
c906108c 4450
c906108c
SS
4451 /* The inferior can be gone if the user types "print exit(0)"
4452 (and perhaps other times). */
4453 if (target_has_execution)
72cec141 4454 /* NB: The register write goes through to the target. */
594f7785 4455 regcache_cpy (get_current_regcache (), inf_status->registers);
72cec141 4456 regcache_xfree (inf_status->registers);
c906108c 4457
c906108c
SS
4458 /* FIXME: If we are being called after stopping in a function which
4459 is called from gdb, we should not be trying to restore the
4460 selected frame; it just prints a spurious error message (The
4461 message is useful, however, in detecting bugs in gdb (like if gdb
4462 clobbers the stack)). In fact, should we be restoring the
4463 inferior status at all in that case? . */
4464
4465 if (target_has_stack && inf_status->restore_stack_info)
4466 {
c906108c 4467 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
4468 walking the stack might encounter a garbage pointer and
4469 error() trying to dereference it. */
488f131b
JB
4470 if (catch_errors
4471 (restore_selected_frame, &inf_status->selected_frame_id,
4472 "Unable to restore previously selected frame:\n",
4473 RETURN_MASK_ERROR) == 0)
c906108c
SS
4474 /* Error in restoring the selected frame. Select the innermost
4475 frame. */
0f7d239c 4476 select_frame (get_current_frame ());
c906108c
SS
4477
4478 }
c906108c 4479
72cec141 4480 xfree (inf_status);
7a292a7a 4481}
c906108c 4482
74b7792f
AC
4483static void
4484do_restore_inferior_status_cleanup (void *sts)
4485{
4486 restore_inferior_status (sts);
4487}
4488
4489struct cleanup *
4490make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
4491{
4492 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
4493}
4494
c906108c 4495void
96baa820 4496discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
4497{
4498 /* See save_inferior_status for info on stop_bpstat. */
4499 bpstat_clear (&inf_status->stop_bpstat);
72cec141 4500 regcache_xfree (inf_status->registers);
72cec141 4501 xfree (inf_status);
7a292a7a
SS
4502}
4503
47932f85 4504int
3a3e9ee3 4505inferior_has_forked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
4506{
4507 struct target_waitstatus last;
4508 ptid_t last_ptid;
4509
4510 get_last_target_status (&last_ptid, &last);
4511
4512 if (last.kind != TARGET_WAITKIND_FORKED)
4513 return 0;
4514
3a3e9ee3 4515 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
4516 return 0;
4517
4518 *child_pid = last.value.related_pid;
4519 return 1;
4520}
4521
4522int
3a3e9ee3 4523inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
4524{
4525 struct target_waitstatus last;
4526 ptid_t last_ptid;
4527
4528 get_last_target_status (&last_ptid, &last);
4529
4530 if (last.kind != TARGET_WAITKIND_VFORKED)
4531 return 0;
4532
3a3e9ee3 4533 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
4534 return 0;
4535
4536 *child_pid = last.value.related_pid;
4537 return 1;
4538}
4539
4540int
3a3e9ee3 4541inferior_has_execd (ptid_t pid, char **execd_pathname)
47932f85
DJ
4542{
4543 struct target_waitstatus last;
4544 ptid_t last_ptid;
4545
4546 get_last_target_status (&last_ptid, &last);
4547
4548 if (last.kind != TARGET_WAITKIND_EXECD)
4549 return 0;
4550
3a3e9ee3 4551 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
4552 return 0;
4553
4554 *execd_pathname = xstrdup (last.value.execd_pathname);
4555 return 1;
4556}
4557
ca6724c1
KB
4558/* Oft used ptids */
4559ptid_t null_ptid;
4560ptid_t minus_one_ptid;
4561
4562/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 4563
ca6724c1
KB
4564ptid_t
4565ptid_build (int pid, long lwp, long tid)
4566{
4567 ptid_t ptid;
4568
4569 ptid.pid = pid;
4570 ptid.lwp = lwp;
4571 ptid.tid = tid;
4572 return ptid;
4573}
4574
4575/* Create a ptid from just a pid. */
4576
4577ptid_t
4578pid_to_ptid (int pid)
4579{
4580 return ptid_build (pid, 0, 0);
4581}
4582
4583/* Fetch the pid (process id) component from a ptid. */
4584
4585int
4586ptid_get_pid (ptid_t ptid)
4587{
4588 return ptid.pid;
4589}
4590
4591/* Fetch the lwp (lightweight process) component from a ptid. */
4592
4593long
4594ptid_get_lwp (ptid_t ptid)
4595{
4596 return ptid.lwp;
4597}
4598
4599/* Fetch the tid (thread id) component from a ptid. */
4600
4601long
4602ptid_get_tid (ptid_t ptid)
4603{
4604 return ptid.tid;
4605}
4606
4607/* ptid_equal() is used to test equality of two ptids. */
4608
4609int
4610ptid_equal (ptid_t ptid1, ptid_t ptid2)
4611{
4612 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 4613 && ptid1.tid == ptid2.tid);
ca6724c1
KB
4614}
4615
4616/* restore_inferior_ptid() will be used by the cleanup machinery
4617 to restore the inferior_ptid value saved in a call to
4618 save_inferior_ptid(). */
ce696e05
KB
4619
4620static void
4621restore_inferior_ptid (void *arg)
4622{
4623 ptid_t *saved_ptid_ptr = arg;
4624 inferior_ptid = *saved_ptid_ptr;
4625 xfree (arg);
4626}
4627
4628/* Save the value of inferior_ptid so that it may be restored by a
4629 later call to do_cleanups(). Returns the struct cleanup pointer
4630 needed for later doing the cleanup. */
4631
4632struct cleanup *
4633save_inferior_ptid (void)
4634{
4635 ptid_t *saved_ptid_ptr;
4636
4637 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
4638 *saved_ptid_ptr = inferior_ptid;
4639 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
4640}
c5aa993b 4641\f
488f131b 4642
ad52ddc6
PA
4643int non_stop = 0;
4644static int non_stop_1 = 0;
4645
4646static void
4647set_non_stop (char *args, int from_tty,
4648 struct cmd_list_element *c)
4649{
4650 if (target_has_execution)
4651 {
4652 non_stop_1 = non_stop;
4653 error (_("Cannot change this setting while the inferior is running."));
4654 }
4655
4656 non_stop = non_stop_1;
4657}
4658
4659static void
4660show_non_stop (struct ui_file *file, int from_tty,
4661 struct cmd_list_element *c, const char *value)
4662{
4663 fprintf_filtered (file,
4664 _("Controlling the inferior in non-stop mode is %s.\n"),
4665 value);
4666}
4667
4668
c906108c 4669void
96baa820 4670_initialize_infrun (void)
c906108c 4671{
52f0bd74
AC
4672 int i;
4673 int numsigs;
c906108c
SS
4674 struct cmd_list_element *c;
4675
1bedd215
AC
4676 add_info ("signals", signals_info, _("\
4677What debugger does when program gets various signals.\n\
4678Specify a signal as argument to print info on that signal only."));
c906108c
SS
4679 add_info_alias ("handle", "signals", 0);
4680
1bedd215
AC
4681 add_com ("handle", class_run, handle_command, _("\
4682Specify how to handle a signal.\n\
c906108c
SS
4683Args are signals and actions to apply to those signals.\n\
4684Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4685from 1-15 are allowed for compatibility with old versions of GDB.\n\
4686Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4687The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
4688used by the debugger, typically SIGTRAP and SIGINT.\n\
4689Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
4690\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
4691Stop means reenter debugger if this signal happens (implies print).\n\
4692Print means print a message if this signal happens.\n\
4693Pass means let program see this signal; otherwise program doesn't know.\n\
4694Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 4695Pass and Stop may be combined."));
c906108c
SS
4696 if (xdb_commands)
4697 {
1bedd215
AC
4698 add_com ("lz", class_info, signals_info, _("\
4699What debugger does when program gets various signals.\n\
4700Specify a signal as argument to print info on that signal only."));
4701 add_com ("z", class_run, xdb_handle_command, _("\
4702Specify how to handle a signal.\n\
c906108c
SS
4703Args are signals and actions to apply to those signals.\n\
4704Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4705from 1-15 are allowed for compatibility with old versions of GDB.\n\
4706Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4707The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
4708used by the debugger, typically SIGTRAP and SIGINT.\n\
4709Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
4710\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
4711nopass), \"Q\" (noprint)\n\
4712Stop means reenter debugger if this signal happens (implies print).\n\
4713Print means print a message if this signal happens.\n\
4714Pass means let program see this signal; otherwise program doesn't know.\n\
4715Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 4716Pass and Stop may be combined."));
c906108c
SS
4717 }
4718
4719 if (!dbx_commands)
1a966eab
AC
4720 stop_command = add_cmd ("stop", class_obscure,
4721 not_just_help_class_command, _("\
4722There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 4723This allows you to set a list of commands to be run each time execution\n\
1a966eab 4724of the program stops."), &cmdlist);
c906108c 4725
85c07804
AC
4726 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
4727Set inferior debugging."), _("\
4728Show inferior debugging."), _("\
4729When non-zero, inferior specific debugging is enabled."),
4730 NULL,
920d2a44 4731 show_debug_infrun,
85c07804 4732 &setdebuglist, &showdebuglist);
527159b7 4733
237fc4c9
PA
4734 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
4735Set displaced stepping debugging."), _("\
4736Show displaced stepping debugging."), _("\
4737When non-zero, displaced stepping specific debugging is enabled."),
4738 NULL,
4739 show_debug_displaced,
4740 &setdebuglist, &showdebuglist);
4741
ad52ddc6
PA
4742 add_setshow_boolean_cmd ("non-stop", no_class,
4743 &non_stop_1, _("\
4744Set whether gdb controls the inferior in non-stop mode."), _("\
4745Show whether gdb controls the inferior in non-stop mode."), _("\
4746When debugging a multi-threaded program and this setting is\n\
4747off (the default, also called all-stop mode), when one thread stops\n\
4748(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
4749all other threads in the program while you interact with the thread of\n\
4750interest. When you continue or step a thread, you can allow the other\n\
4751threads to run, or have them remain stopped, but while you inspect any\n\
4752thread's state, all threads stop.\n\
4753\n\
4754In non-stop mode, when one thread stops, other threads can continue\n\
4755to run freely. You'll be able to step each thread independently,\n\
4756leave it stopped or free to run as needed."),
4757 set_non_stop,
4758 show_non_stop,
4759 &setlist,
4760 &showlist);
4761
c906108c 4762 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 4763 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
4764 signal_print = (unsigned char *)
4765 xmalloc (sizeof (signal_print[0]) * numsigs);
4766 signal_program = (unsigned char *)
4767 xmalloc (sizeof (signal_program[0]) * numsigs);
4768 for (i = 0; i < numsigs; i++)
4769 {
4770 signal_stop[i] = 1;
4771 signal_print[i] = 1;
4772 signal_program[i] = 1;
4773 }
4774
4775 /* Signals caused by debugger's own actions
4776 should not be given to the program afterwards. */
4777 signal_program[TARGET_SIGNAL_TRAP] = 0;
4778 signal_program[TARGET_SIGNAL_INT] = 0;
4779
4780 /* Signals that are not errors should not normally enter the debugger. */
4781 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4782 signal_print[TARGET_SIGNAL_ALRM] = 0;
4783 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4784 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4785 signal_stop[TARGET_SIGNAL_PROF] = 0;
4786 signal_print[TARGET_SIGNAL_PROF] = 0;
4787 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4788 signal_print[TARGET_SIGNAL_CHLD] = 0;
4789 signal_stop[TARGET_SIGNAL_IO] = 0;
4790 signal_print[TARGET_SIGNAL_IO] = 0;
4791 signal_stop[TARGET_SIGNAL_POLL] = 0;
4792 signal_print[TARGET_SIGNAL_POLL] = 0;
4793 signal_stop[TARGET_SIGNAL_URG] = 0;
4794 signal_print[TARGET_SIGNAL_URG] = 0;
4795 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4796 signal_print[TARGET_SIGNAL_WINCH] = 0;
4797
cd0fc7c3
SS
4798 /* These signals are used internally by user-level thread
4799 implementations. (See signal(5) on Solaris.) Like the above
4800 signals, a healthy program receives and handles them as part of
4801 its normal operation. */
4802 signal_stop[TARGET_SIGNAL_LWP] = 0;
4803 signal_print[TARGET_SIGNAL_LWP] = 0;
4804 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4805 signal_print[TARGET_SIGNAL_WAITING] = 0;
4806 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4807 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4808
85c07804
AC
4809 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4810 &stop_on_solib_events, _("\
4811Set stopping for shared library events."), _("\
4812Show stopping for shared library events."), _("\
c906108c
SS
4813If nonzero, gdb will give control to the user when the dynamic linker\n\
4814notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
4815to the user would be loading/unloading of a new library."),
4816 NULL,
920d2a44 4817 show_stop_on_solib_events,
85c07804 4818 &setlist, &showlist);
c906108c 4819
7ab04401
AC
4820 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4821 follow_fork_mode_kind_names,
4822 &follow_fork_mode_string, _("\
4823Set debugger response to a program call of fork or vfork."), _("\
4824Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
4825A fork or vfork creates a new process. follow-fork-mode can be:\n\
4826 parent - the original process is debugged after a fork\n\
4827 child - the new process is debugged after a fork\n\
ea1dd7bc 4828The unfollowed process will continue to run.\n\
7ab04401
AC
4829By default, the debugger will follow the parent process."),
4830 NULL,
920d2a44 4831 show_follow_fork_mode_string,
7ab04401
AC
4832 &setlist, &showlist);
4833
4834 add_setshow_enum_cmd ("scheduler-locking", class_run,
4835 scheduler_enums, &scheduler_mode, _("\
4836Set mode for locking scheduler during execution."), _("\
4837Show mode for locking scheduler during execution."), _("\
c906108c
SS
4838off == no locking (threads may preempt at any time)\n\
4839on == full locking (no thread except the current thread may run)\n\
4840step == scheduler locked during every single-step operation.\n\
4841 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
4842 Other threads may run while stepping over a function call ('next')."),
4843 set_schedlock_func, /* traps on target vector */
920d2a44 4844 show_scheduler_mode,
7ab04401 4845 &setlist, &showlist);
5fbbeb29 4846
5bf193a2
AC
4847 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4848Set mode of the step operation."), _("\
4849Show mode of the step operation."), _("\
4850When set, doing a step over a function without debug line information\n\
4851will stop at the first instruction of that function. Otherwise, the\n\
4852function is skipped and the step command stops at a different source line."),
4853 NULL,
920d2a44 4854 show_step_stop_if_no_debug,
5bf193a2 4855 &setlist, &showlist);
ca6724c1 4856
237fc4c9 4857 add_setshow_boolean_cmd ("can-use-displaced-stepping", class_maintenance,
1f41b062 4858 &can_use_displaced_stepping, _("\
237fc4c9
PA
4859Set debugger's willingness to use displaced stepping."), _("\
4860Show debugger's willingness to use displaced stepping."), _("\
1f41b062 4861If zero, gdb will not use displaced stepping to step over\n\
237fc4c9 4862breakpoints, even if such is supported by the target."),
1f41b062
MS
4863 NULL,
4864 show_can_use_displaced_stepping,
4865 &maintenance_set_cmdlist,
237fc4c9
PA
4866 &maintenance_show_cmdlist);
4867
ca6724c1
KB
4868 /* ptid initializations */
4869 null_ptid = ptid_build (0, 0, 0);
4870 minus_one_ptid = ptid_build (-1, 0, 0);
4871 inferior_ptid = null_ptid;
4872 target_last_wait_ptid = minus_one_ptid;
237fc4c9 4873 displaced_step_ptid = null_ptid;
5231c1fd
PA
4874
4875 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
c906108c 4876}
This page took 1.287467 seconds and 4 git commands to generate.