Use unique_xmalloc_ptr in c_type_print_base
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
61baf725 4 Copyright (C) 1986-2017 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
06600e06 41#include "observer.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
ff862be4 63#include "solist.h"
372316f1 64#include "event-loop.h"
243a9253 65#include "thread-fsm.h"
8d297bbf 66#include "common/enum-flags.h"
5ed8105e
PA
67#include "progspace-and-thread.h"
68#include "common/gdb_optional.h"
46a62268 69#include "arch-utils.h"
c906108c
SS
70
71/* Prototypes for local functions */
72
11db9430 73static void info_signals_command (char *, int);
c906108c 74
96baa820 75static void handle_command (char *, int);
c906108c 76
2ea28649 77static void sig_print_info (enum gdb_signal);
c906108c 78
96baa820 79static void sig_print_header (void);
c906108c 80
74b7792f 81static void resume_cleanups (void *);
c906108c 82
4ef3f3be 83static int follow_fork (void);
96baa820 84
d83ad864
DB
85static int follow_fork_inferior (int follow_child, int detach_fork);
86
87static void follow_inferior_reset_breakpoints (void);
88
96baa820 89static void set_schedlock_func (char *args, int from_tty,
488f131b 90 struct cmd_list_element *c);
96baa820 91
a289b8f6
JK
92static int currently_stepping (struct thread_info *tp);
93
e58b0e63
PA
94void nullify_last_target_wait_ptid (void);
95
2c03e5be 96static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
97
98static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
99
2484c66b
UW
100static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
101
8550d3b3
YQ
102static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
103
372316f1
PA
104/* Asynchronous signal handler registered as event loop source for
105 when we have pending events ready to be passed to the core. */
106static struct async_event_handler *infrun_async_inferior_event_token;
107
108/* Stores whether infrun_async was previously enabled or disabled.
109 Starts off as -1, indicating "never enabled/disabled". */
110static int infrun_is_async = -1;
111
112/* See infrun.h. */
113
114void
115infrun_async (int enable)
116{
117 if (infrun_is_async != enable)
118 {
119 infrun_is_async = enable;
120
121 if (debug_infrun)
122 fprintf_unfiltered (gdb_stdlog,
123 "infrun: infrun_async(%d)\n",
124 enable);
125
126 if (enable)
127 mark_async_event_handler (infrun_async_inferior_event_token);
128 else
129 clear_async_event_handler (infrun_async_inferior_event_token);
130 }
131}
132
0b333c5e
PA
133/* See infrun.h. */
134
135void
136mark_infrun_async_event_handler (void)
137{
138 mark_async_event_handler (infrun_async_inferior_event_token);
139}
140
5fbbeb29
CF
141/* When set, stop the 'step' command if we enter a function which has
142 no line number information. The normal behavior is that we step
143 over such function. */
144int step_stop_if_no_debug = 0;
920d2a44
AC
145static void
146show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
147 struct cmd_list_element *c, const char *value)
148{
149 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
150}
5fbbeb29 151
b9f437de
PA
152/* proceed and normal_stop use this to notify the user when the
153 inferior stopped in a different thread than it had been running
154 in. */
96baa820 155
39f77062 156static ptid_t previous_inferior_ptid;
7a292a7a 157
07107ca6
LM
158/* If set (default for legacy reasons), when following a fork, GDB
159 will detach from one of the fork branches, child or parent.
160 Exactly which branch is detached depends on 'set follow-fork-mode'
161 setting. */
162
163static int detach_fork = 1;
6c95b8df 164
237fc4c9
PA
165int debug_displaced = 0;
166static void
167show_debug_displaced (struct ui_file *file, int from_tty,
168 struct cmd_list_element *c, const char *value)
169{
170 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
171}
172
ccce17b0 173unsigned int debug_infrun = 0;
920d2a44
AC
174static void
175show_debug_infrun (struct ui_file *file, int from_tty,
176 struct cmd_list_element *c, const char *value)
177{
178 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
179}
527159b7 180
03583c20
UW
181
182/* Support for disabling address space randomization. */
183
184int disable_randomization = 1;
185
186static void
187show_disable_randomization (struct ui_file *file, int from_tty,
188 struct cmd_list_element *c, const char *value)
189{
190 if (target_supports_disable_randomization ())
191 fprintf_filtered (file,
192 _("Disabling randomization of debuggee's "
193 "virtual address space is %s.\n"),
194 value);
195 else
196 fputs_filtered (_("Disabling randomization of debuggee's "
197 "virtual address space is unsupported on\n"
198 "this platform.\n"), file);
199}
200
201static void
202set_disable_randomization (char *args, int from_tty,
203 struct cmd_list_element *c)
204{
205 if (!target_supports_disable_randomization ())
206 error (_("Disabling randomization of debuggee's "
207 "virtual address space is unsupported on\n"
208 "this platform."));
209}
210
d32dc48e
PA
211/* User interface for non-stop mode. */
212
213int non_stop = 0;
214static int non_stop_1 = 0;
215
216static void
217set_non_stop (char *args, int from_tty,
218 struct cmd_list_element *c)
219{
220 if (target_has_execution)
221 {
222 non_stop_1 = non_stop;
223 error (_("Cannot change this setting while the inferior is running."));
224 }
225
226 non_stop = non_stop_1;
227}
228
229static void
230show_non_stop (struct ui_file *file, int from_tty,
231 struct cmd_list_element *c, const char *value)
232{
233 fprintf_filtered (file,
234 _("Controlling the inferior in non-stop mode is %s.\n"),
235 value);
236}
237
d914c394
SS
238/* "Observer mode" is somewhat like a more extreme version of
239 non-stop, in which all GDB operations that might affect the
240 target's execution have been disabled. */
241
d914c394
SS
242int observer_mode = 0;
243static int observer_mode_1 = 0;
244
245static void
246set_observer_mode (char *args, int from_tty,
247 struct cmd_list_element *c)
248{
d914c394
SS
249 if (target_has_execution)
250 {
251 observer_mode_1 = observer_mode;
252 error (_("Cannot change this setting while the inferior is running."));
253 }
254
255 observer_mode = observer_mode_1;
256
257 may_write_registers = !observer_mode;
258 may_write_memory = !observer_mode;
259 may_insert_breakpoints = !observer_mode;
260 may_insert_tracepoints = !observer_mode;
261 /* We can insert fast tracepoints in or out of observer mode,
262 but enable them if we're going into this mode. */
263 if (observer_mode)
264 may_insert_fast_tracepoints = 1;
265 may_stop = !observer_mode;
266 update_target_permissions ();
267
268 /* Going *into* observer mode we must force non-stop, then
269 going out we leave it that way. */
270 if (observer_mode)
271 {
d914c394
SS
272 pagination_enabled = 0;
273 non_stop = non_stop_1 = 1;
274 }
275
276 if (from_tty)
277 printf_filtered (_("Observer mode is now %s.\n"),
278 (observer_mode ? "on" : "off"));
279}
280
281static void
282show_observer_mode (struct ui_file *file, int from_tty,
283 struct cmd_list_element *c, const char *value)
284{
285 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
286}
287
288/* This updates the value of observer mode based on changes in
289 permissions. Note that we are deliberately ignoring the values of
290 may-write-registers and may-write-memory, since the user may have
291 reason to enable these during a session, for instance to turn on a
292 debugging-related global. */
293
294void
295update_observer_mode (void)
296{
297 int newval;
298
299 newval = (!may_insert_breakpoints
300 && !may_insert_tracepoints
301 && may_insert_fast_tracepoints
302 && !may_stop
303 && non_stop);
304
305 /* Let the user know if things change. */
306 if (newval != observer_mode)
307 printf_filtered (_("Observer mode is now %s.\n"),
308 (newval ? "on" : "off"));
309
310 observer_mode = observer_mode_1 = newval;
311}
c2c6d25f 312
c906108c
SS
313/* Tables of how to react to signals; the user sets them. */
314
315static unsigned char *signal_stop;
316static unsigned char *signal_print;
317static unsigned char *signal_program;
318
ab04a2af
TT
319/* Table of signals that are registered with "catch signal". A
320 non-zero entry indicates that the signal is caught by some "catch
321 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
322 signals. */
323static unsigned char *signal_catch;
324
2455069d
UW
325/* Table of signals that the target may silently handle.
326 This is automatically determined from the flags above,
327 and simply cached here. */
328static unsigned char *signal_pass;
329
c906108c
SS
330#define SET_SIGS(nsigs,sigs,flags) \
331 do { \
332 int signum = (nsigs); \
333 while (signum-- > 0) \
334 if ((sigs)[signum]) \
335 (flags)[signum] = 1; \
336 } while (0)
337
338#define UNSET_SIGS(nsigs,sigs,flags) \
339 do { \
340 int signum = (nsigs); \
341 while (signum-- > 0) \
342 if ((sigs)[signum]) \
343 (flags)[signum] = 0; \
344 } while (0)
345
9b224c5e
PA
346/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
347 this function is to avoid exporting `signal_program'. */
348
349void
350update_signals_program_target (void)
351{
a493e3e2 352 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
353}
354
1777feb0 355/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 356
edb3359d 357#define RESUME_ALL minus_one_ptid
c906108c
SS
358
359/* Command list pointer for the "stop" placeholder. */
360
361static struct cmd_list_element *stop_command;
362
c906108c
SS
363/* Nonzero if we want to give control to the user when we're notified
364 of shared library events by the dynamic linker. */
628fe4e4 365int stop_on_solib_events;
f9e14852
GB
366
367/* Enable or disable optional shared library event breakpoints
368 as appropriate when the above flag is changed. */
369
370static void
371set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
372{
373 update_solib_breakpoints ();
374}
375
920d2a44
AC
376static void
377show_stop_on_solib_events (struct ui_file *file, int from_tty,
378 struct cmd_list_element *c, const char *value)
379{
380 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
381 value);
382}
c906108c 383
c906108c
SS
384/* Nonzero after stop if current stack frame should be printed. */
385
386static int stop_print_frame;
387
e02bc4cc 388/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
389 returned by target_wait()/deprecated_target_wait_hook(). This
390 information is returned by get_last_target_status(). */
39f77062 391static ptid_t target_last_wait_ptid;
e02bc4cc
DS
392static struct target_waitstatus target_last_waitstatus;
393
0d1e5fa7
PA
394static void context_switch (ptid_t ptid);
395
4e1c45ea 396void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 397
53904c9e
AC
398static const char follow_fork_mode_child[] = "child";
399static const char follow_fork_mode_parent[] = "parent";
400
40478521 401static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
402 follow_fork_mode_child,
403 follow_fork_mode_parent,
404 NULL
ef346e04 405};
c906108c 406
53904c9e 407static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
408static void
409show_follow_fork_mode_string (struct ui_file *file, int from_tty,
410 struct cmd_list_element *c, const char *value)
411{
3e43a32a
MS
412 fprintf_filtered (file,
413 _("Debugger response to a program "
414 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
415 value);
416}
c906108c
SS
417\f
418
d83ad864
DB
419/* Handle changes to the inferior list based on the type of fork,
420 which process is being followed, and whether the other process
421 should be detached. On entry inferior_ptid must be the ptid of
422 the fork parent. At return inferior_ptid is the ptid of the
423 followed inferior. */
424
425static int
426follow_fork_inferior (int follow_child, int detach_fork)
427{
428 int has_vforked;
79639e11 429 ptid_t parent_ptid, child_ptid;
d83ad864
DB
430
431 has_vforked = (inferior_thread ()->pending_follow.kind
432 == TARGET_WAITKIND_VFORKED);
79639e11
PA
433 parent_ptid = inferior_ptid;
434 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
435
436 if (has_vforked
437 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 438 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
439 && !(follow_child || detach_fork || sched_multi))
440 {
441 /* The parent stays blocked inside the vfork syscall until the
442 child execs or exits. If we don't let the child run, then
443 the parent stays blocked. If we're telling the parent to run
444 in the foreground, the user will not be able to ctrl-c to get
445 back the terminal, effectively hanging the debug session. */
446 fprintf_filtered (gdb_stderr, _("\
447Can not resume the parent process over vfork in the foreground while\n\
448holding the child stopped. Try \"set detach-on-fork\" or \
449\"set schedule-multiple\".\n"));
450 /* FIXME output string > 80 columns. */
451 return 1;
452 }
453
454 if (!follow_child)
455 {
456 /* Detach new forked process? */
457 if (detach_fork)
458 {
d83ad864
DB
459 /* Before detaching from the child, remove all breakpoints
460 from it. If we forked, then this has already been taken
461 care of by infrun.c. If we vforked however, any
462 breakpoint inserted in the parent is visible in the
463 child, even those added while stopped in a vfork
464 catchpoint. This will remove the breakpoints from the
465 parent also, but they'll be reinserted below. */
466 if (has_vforked)
467 {
468 /* Keep breakpoints list in sync. */
469 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
470 }
471
472 if (info_verbose || debug_infrun)
473 {
8dd06f7a
DB
474 /* Ensure that we have a process ptid. */
475 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
476
223ffa71 477 target_terminal::ours_for_output ();
d83ad864 478 fprintf_filtered (gdb_stdlog,
79639e11 479 _("Detaching after %s from child %s.\n"),
6f259a23 480 has_vforked ? "vfork" : "fork",
8dd06f7a 481 target_pid_to_str (process_ptid));
d83ad864
DB
482 }
483 }
484 else
485 {
486 struct inferior *parent_inf, *child_inf;
d83ad864
DB
487
488 /* Add process to GDB's tables. */
79639e11 489 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
490
491 parent_inf = current_inferior ();
492 child_inf->attach_flag = parent_inf->attach_flag;
493 copy_terminal_info (child_inf, parent_inf);
494 child_inf->gdbarch = parent_inf->gdbarch;
495 copy_inferior_target_desc_info (child_inf, parent_inf);
496
5ed8105e 497 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 498
79639e11 499 inferior_ptid = child_ptid;
d83ad864 500 add_thread (inferior_ptid);
2a00d7ce 501 set_current_inferior (child_inf);
d83ad864
DB
502 child_inf->symfile_flags = SYMFILE_NO_READ;
503
504 /* If this is a vfork child, then the address-space is
505 shared with the parent. */
506 if (has_vforked)
507 {
508 child_inf->pspace = parent_inf->pspace;
509 child_inf->aspace = parent_inf->aspace;
510
511 /* The parent will be frozen until the child is done
512 with the shared region. Keep track of the
513 parent. */
514 child_inf->vfork_parent = parent_inf;
515 child_inf->pending_detach = 0;
516 parent_inf->vfork_child = child_inf;
517 parent_inf->pending_detach = 0;
518 }
519 else
520 {
521 child_inf->aspace = new_address_space ();
522 child_inf->pspace = add_program_space (child_inf->aspace);
523 child_inf->removable = 1;
524 set_current_program_space (child_inf->pspace);
525 clone_program_space (child_inf->pspace, parent_inf->pspace);
526
527 /* Let the shared library layer (e.g., solib-svr4) learn
528 about this new process, relocate the cloned exec, pull
529 in shared libraries, and install the solib event
530 breakpoint. If a "cloned-VM" event was propagated
531 better throughout the core, this wouldn't be
532 required. */
533 solib_create_inferior_hook (0);
534 }
d83ad864
DB
535 }
536
537 if (has_vforked)
538 {
539 struct inferior *parent_inf;
540
541 parent_inf = current_inferior ();
542
543 /* If we detached from the child, then we have to be careful
544 to not insert breakpoints in the parent until the child
545 is done with the shared memory region. However, if we're
546 staying attached to the child, then we can and should
547 insert breakpoints, so that we can debug it. A
548 subsequent child exec or exit is enough to know when does
549 the child stops using the parent's address space. */
550 parent_inf->waiting_for_vfork_done = detach_fork;
551 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
552 }
553 }
554 else
555 {
556 /* Follow the child. */
557 struct inferior *parent_inf, *child_inf;
558 struct program_space *parent_pspace;
559
560 if (info_verbose || debug_infrun)
561 {
223ffa71 562 target_terminal::ours_for_output ();
6f259a23 563 fprintf_filtered (gdb_stdlog,
79639e11
PA
564 _("Attaching after %s %s to child %s.\n"),
565 target_pid_to_str (parent_ptid),
6f259a23 566 has_vforked ? "vfork" : "fork",
79639e11 567 target_pid_to_str (child_ptid));
d83ad864
DB
568 }
569
570 /* Add the new inferior first, so that the target_detach below
571 doesn't unpush the target. */
572
79639e11 573 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
574
575 parent_inf = current_inferior ();
576 child_inf->attach_flag = parent_inf->attach_flag;
577 copy_terminal_info (child_inf, parent_inf);
578 child_inf->gdbarch = parent_inf->gdbarch;
579 copy_inferior_target_desc_info (child_inf, parent_inf);
580
581 parent_pspace = parent_inf->pspace;
582
583 /* If we're vforking, we want to hold on to the parent until the
584 child exits or execs. At child exec or exit time we can
585 remove the old breakpoints from the parent and detach or
586 resume debugging it. Otherwise, detach the parent now; we'll
587 want to reuse it's program/address spaces, but we can't set
588 them to the child before removing breakpoints from the
589 parent, otherwise, the breakpoints module could decide to
590 remove breakpoints from the wrong process (since they'd be
591 assigned to the same address space). */
592
593 if (has_vforked)
594 {
595 gdb_assert (child_inf->vfork_parent == NULL);
596 gdb_assert (parent_inf->vfork_child == NULL);
597 child_inf->vfork_parent = parent_inf;
598 child_inf->pending_detach = 0;
599 parent_inf->vfork_child = child_inf;
600 parent_inf->pending_detach = detach_fork;
601 parent_inf->waiting_for_vfork_done = 0;
602 }
603 else if (detach_fork)
6f259a23
DB
604 {
605 if (info_verbose || debug_infrun)
606 {
8dd06f7a
DB
607 /* Ensure that we have a process ptid. */
608 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
609
223ffa71 610 target_terminal::ours_for_output ();
6f259a23
DB
611 fprintf_filtered (gdb_stdlog,
612 _("Detaching after fork from "
79639e11 613 "child %s.\n"),
8dd06f7a 614 target_pid_to_str (process_ptid));
6f259a23
DB
615 }
616
617 target_detach (NULL, 0);
618 }
d83ad864
DB
619
620 /* Note that the detach above makes PARENT_INF dangling. */
621
622 /* Add the child thread to the appropriate lists, and switch to
623 this new thread, before cloning the program space, and
624 informing the solib layer about this new process. */
625
79639e11 626 inferior_ptid = child_ptid;
d83ad864 627 add_thread (inferior_ptid);
2a00d7ce 628 set_current_inferior (child_inf);
d83ad864
DB
629
630 /* If this is a vfork child, then the address-space is shared
631 with the parent. If we detached from the parent, then we can
632 reuse the parent's program/address spaces. */
633 if (has_vforked || detach_fork)
634 {
635 child_inf->pspace = parent_pspace;
636 child_inf->aspace = child_inf->pspace->aspace;
637 }
638 else
639 {
640 child_inf->aspace = new_address_space ();
641 child_inf->pspace = add_program_space (child_inf->aspace);
642 child_inf->removable = 1;
643 child_inf->symfile_flags = SYMFILE_NO_READ;
644 set_current_program_space (child_inf->pspace);
645 clone_program_space (child_inf->pspace, parent_pspace);
646
647 /* Let the shared library layer (e.g., solib-svr4) learn
648 about this new process, relocate the cloned exec, pull in
649 shared libraries, and install the solib event breakpoint.
650 If a "cloned-VM" event was propagated better throughout
651 the core, this wouldn't be required. */
652 solib_create_inferior_hook (0);
653 }
654 }
655
656 return target_follow_fork (follow_child, detach_fork);
657}
658
e58b0e63
PA
659/* Tell the target to follow the fork we're stopped at. Returns true
660 if the inferior should be resumed; false, if the target for some
661 reason decided it's best not to resume. */
662
6604731b 663static int
4ef3f3be 664follow_fork (void)
c906108c 665{
ea1dd7bc 666 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
667 int should_resume = 1;
668 struct thread_info *tp;
669
670 /* Copy user stepping state to the new inferior thread. FIXME: the
671 followed fork child thread should have a copy of most of the
4e3990f4
DE
672 parent thread structure's run control related fields, not just these.
673 Initialized to avoid "may be used uninitialized" warnings from gcc. */
674 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 675 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
676 CORE_ADDR step_range_start = 0;
677 CORE_ADDR step_range_end = 0;
678 struct frame_id step_frame_id = { 0 };
8980e177 679 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
680
681 if (!non_stop)
682 {
683 ptid_t wait_ptid;
684 struct target_waitstatus wait_status;
685
686 /* Get the last target status returned by target_wait(). */
687 get_last_target_status (&wait_ptid, &wait_status);
688
689 /* If not stopped at a fork event, then there's nothing else to
690 do. */
691 if (wait_status.kind != TARGET_WAITKIND_FORKED
692 && wait_status.kind != TARGET_WAITKIND_VFORKED)
693 return 1;
694
695 /* Check if we switched over from WAIT_PTID, since the event was
696 reported. */
697 if (!ptid_equal (wait_ptid, minus_one_ptid)
698 && !ptid_equal (inferior_ptid, wait_ptid))
699 {
700 /* We did. Switch back to WAIT_PTID thread, to tell the
701 target to follow it (in either direction). We'll
702 afterwards refuse to resume, and inform the user what
703 happened. */
704 switch_to_thread (wait_ptid);
705 should_resume = 0;
706 }
707 }
708
709 tp = inferior_thread ();
710
711 /* If there were any forks/vforks that were caught and are now to be
712 followed, then do so now. */
713 switch (tp->pending_follow.kind)
714 {
715 case TARGET_WAITKIND_FORKED:
716 case TARGET_WAITKIND_VFORKED:
717 {
718 ptid_t parent, child;
719
720 /* If the user did a next/step, etc, over a fork call,
721 preserve the stepping state in the fork child. */
722 if (follow_child && should_resume)
723 {
8358c15c
JK
724 step_resume_breakpoint = clone_momentary_breakpoint
725 (tp->control.step_resume_breakpoint);
16c381f0
JK
726 step_range_start = tp->control.step_range_start;
727 step_range_end = tp->control.step_range_end;
728 step_frame_id = tp->control.step_frame_id;
186c406b
TT
729 exception_resume_breakpoint
730 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 731 thread_fsm = tp->thread_fsm;
e58b0e63
PA
732
733 /* For now, delete the parent's sr breakpoint, otherwise,
734 parent/child sr breakpoints are considered duplicates,
735 and the child version will not be installed. Remove
736 this when the breakpoints module becomes aware of
737 inferiors and address spaces. */
738 delete_step_resume_breakpoint (tp);
16c381f0
JK
739 tp->control.step_range_start = 0;
740 tp->control.step_range_end = 0;
741 tp->control.step_frame_id = null_frame_id;
186c406b 742 delete_exception_resume_breakpoint (tp);
8980e177 743 tp->thread_fsm = NULL;
e58b0e63
PA
744 }
745
746 parent = inferior_ptid;
747 child = tp->pending_follow.value.related_pid;
748
d83ad864
DB
749 /* Set up inferior(s) as specified by the caller, and tell the
750 target to do whatever is necessary to follow either parent
751 or child. */
752 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
753 {
754 /* Target refused to follow, or there's some other reason
755 we shouldn't resume. */
756 should_resume = 0;
757 }
758 else
759 {
760 /* This pending follow fork event is now handled, one way
761 or another. The previous selected thread may be gone
762 from the lists by now, but if it is still around, need
763 to clear the pending follow request. */
e09875d4 764 tp = find_thread_ptid (parent);
e58b0e63
PA
765 if (tp)
766 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
767
768 /* This makes sure we don't try to apply the "Switched
769 over from WAIT_PID" logic above. */
770 nullify_last_target_wait_ptid ();
771
1777feb0 772 /* If we followed the child, switch to it... */
e58b0e63
PA
773 if (follow_child)
774 {
775 switch_to_thread (child);
776
777 /* ... and preserve the stepping state, in case the
778 user was stepping over the fork call. */
779 if (should_resume)
780 {
781 tp = inferior_thread ();
8358c15c
JK
782 tp->control.step_resume_breakpoint
783 = step_resume_breakpoint;
16c381f0
JK
784 tp->control.step_range_start = step_range_start;
785 tp->control.step_range_end = step_range_end;
786 tp->control.step_frame_id = step_frame_id;
186c406b
TT
787 tp->control.exception_resume_breakpoint
788 = exception_resume_breakpoint;
8980e177 789 tp->thread_fsm = thread_fsm;
e58b0e63
PA
790 }
791 else
792 {
793 /* If we get here, it was because we're trying to
794 resume from a fork catchpoint, but, the user
795 has switched threads away from the thread that
796 forked. In that case, the resume command
797 issued is most likely not applicable to the
798 child, so just warn, and refuse to resume. */
3e43a32a 799 warning (_("Not resuming: switched threads "
fd7dcb94 800 "before following fork child."));
e58b0e63
PA
801 }
802
803 /* Reset breakpoints in the child as appropriate. */
804 follow_inferior_reset_breakpoints ();
805 }
806 else
807 switch_to_thread (parent);
808 }
809 }
810 break;
811 case TARGET_WAITKIND_SPURIOUS:
812 /* Nothing to follow. */
813 break;
814 default:
815 internal_error (__FILE__, __LINE__,
816 "Unexpected pending_follow.kind %d\n",
817 tp->pending_follow.kind);
818 break;
819 }
c906108c 820
e58b0e63 821 return should_resume;
c906108c
SS
822}
823
d83ad864 824static void
6604731b 825follow_inferior_reset_breakpoints (void)
c906108c 826{
4e1c45ea
PA
827 struct thread_info *tp = inferior_thread ();
828
6604731b
DJ
829 /* Was there a step_resume breakpoint? (There was if the user
830 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
831 thread number. Cloned step_resume breakpoints are disabled on
832 creation, so enable it here now that it is associated with the
833 correct thread.
6604731b
DJ
834
835 step_resumes are a form of bp that are made to be per-thread.
836 Since we created the step_resume bp when the parent process
837 was being debugged, and now are switching to the child process,
838 from the breakpoint package's viewpoint, that's a switch of
839 "threads". We must update the bp's notion of which thread
840 it is for, or it'll be ignored when it triggers. */
841
8358c15c 842 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
843 {
844 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
845 tp->control.step_resume_breakpoint->loc->enabled = 1;
846 }
6604731b 847
a1aa2221 848 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 849 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
850 {
851 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
852 tp->control.exception_resume_breakpoint->loc->enabled = 1;
853 }
186c406b 854
6604731b
DJ
855 /* Reinsert all breakpoints in the child. The user may have set
856 breakpoints after catching the fork, in which case those
857 were never set in the child, but only in the parent. This makes
858 sure the inserted breakpoints match the breakpoint list. */
859
860 breakpoint_re_set ();
861 insert_breakpoints ();
c906108c 862}
c906108c 863
6c95b8df
PA
864/* The child has exited or execed: resume threads of the parent the
865 user wanted to be executing. */
866
867static int
868proceed_after_vfork_done (struct thread_info *thread,
869 void *arg)
870{
871 int pid = * (int *) arg;
872
873 if (ptid_get_pid (thread->ptid) == pid
874 && is_running (thread->ptid)
875 && !is_executing (thread->ptid)
876 && !thread->stop_requested
a493e3e2 877 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
878 {
879 if (debug_infrun)
880 fprintf_unfiltered (gdb_stdlog,
881 "infrun: resuming vfork parent thread %s\n",
882 target_pid_to_str (thread->ptid));
883
884 switch_to_thread (thread->ptid);
70509625 885 clear_proceed_status (0);
64ce06e4 886 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
887 }
888
889 return 0;
890}
891
5ed8105e
PA
892/* Save/restore inferior_ptid, current program space and current
893 inferior. Only use this if the current context points at an exited
894 inferior (and therefore there's no current thread to save). */
895class scoped_restore_exited_inferior
896{
897public:
898 scoped_restore_exited_inferior ()
899 : m_saved_ptid (&inferior_ptid)
900 {}
901
902private:
903 scoped_restore_tmpl<ptid_t> m_saved_ptid;
904 scoped_restore_current_program_space m_pspace;
905 scoped_restore_current_inferior m_inferior;
906};
907
6c95b8df
PA
908/* Called whenever we notice an exec or exit event, to handle
909 detaching or resuming a vfork parent. */
910
911static void
912handle_vfork_child_exec_or_exit (int exec)
913{
914 struct inferior *inf = current_inferior ();
915
916 if (inf->vfork_parent)
917 {
918 int resume_parent = -1;
919
920 /* This exec or exit marks the end of the shared memory region
921 between the parent and the child. If the user wanted to
922 detach from the parent, now is the time. */
923
924 if (inf->vfork_parent->pending_detach)
925 {
926 struct thread_info *tp;
6c95b8df
PA
927 struct program_space *pspace;
928 struct address_space *aspace;
929
1777feb0 930 /* follow-fork child, detach-on-fork on. */
6c95b8df 931
68c9da30
PA
932 inf->vfork_parent->pending_detach = 0;
933
5ed8105e
PA
934 gdb::optional<scoped_restore_exited_inferior>
935 maybe_restore_inferior;
936 gdb::optional<scoped_restore_current_pspace_and_thread>
937 maybe_restore_thread;
938
939 /* If we're handling a child exit, then inferior_ptid points
940 at the inferior's pid, not to a thread. */
f50f4e56 941 if (!exec)
5ed8105e 942 maybe_restore_inferior.emplace ();
f50f4e56 943 else
5ed8105e 944 maybe_restore_thread.emplace ();
6c95b8df
PA
945
946 /* We're letting loose of the parent. */
947 tp = any_live_thread_of_process (inf->vfork_parent->pid);
948 switch_to_thread (tp->ptid);
949
950 /* We're about to detach from the parent, which implicitly
951 removes breakpoints from its address space. There's a
952 catch here: we want to reuse the spaces for the child,
953 but, parent/child are still sharing the pspace at this
954 point, although the exec in reality makes the kernel give
955 the child a fresh set of new pages. The problem here is
956 that the breakpoints module being unaware of this, would
957 likely chose the child process to write to the parent
958 address space. Swapping the child temporarily away from
959 the spaces has the desired effect. Yes, this is "sort
960 of" a hack. */
961
962 pspace = inf->pspace;
963 aspace = inf->aspace;
964 inf->aspace = NULL;
965 inf->pspace = NULL;
966
967 if (debug_infrun || info_verbose)
968 {
223ffa71 969 target_terminal::ours_for_output ();
6c95b8df
PA
970
971 if (exec)
6f259a23
DB
972 {
973 fprintf_filtered (gdb_stdlog,
974 _("Detaching vfork parent process "
975 "%d after child exec.\n"),
976 inf->vfork_parent->pid);
977 }
6c95b8df 978 else
6f259a23
DB
979 {
980 fprintf_filtered (gdb_stdlog,
981 _("Detaching vfork parent process "
982 "%d after child exit.\n"),
983 inf->vfork_parent->pid);
984 }
6c95b8df
PA
985 }
986
987 target_detach (NULL, 0);
988
989 /* Put it back. */
990 inf->pspace = pspace;
991 inf->aspace = aspace;
6c95b8df
PA
992 }
993 else if (exec)
994 {
995 /* We're staying attached to the parent, so, really give the
996 child a new address space. */
997 inf->pspace = add_program_space (maybe_new_address_space ());
998 inf->aspace = inf->pspace->aspace;
999 inf->removable = 1;
1000 set_current_program_space (inf->pspace);
1001
1002 resume_parent = inf->vfork_parent->pid;
1003
1004 /* Break the bonds. */
1005 inf->vfork_parent->vfork_child = NULL;
1006 }
1007 else
1008 {
6c95b8df
PA
1009 struct program_space *pspace;
1010
1011 /* If this is a vfork child exiting, then the pspace and
1012 aspaces were shared with the parent. Since we're
1013 reporting the process exit, we'll be mourning all that is
1014 found in the address space, and switching to null_ptid,
1015 preparing to start a new inferior. But, since we don't
1016 want to clobber the parent's address/program spaces, we
1017 go ahead and create a new one for this exiting
1018 inferior. */
1019
5ed8105e
PA
1020 /* Switch to null_ptid while running clone_program_space, so
1021 that clone_program_space doesn't want to read the
1022 selected frame of a dead process. */
1023 scoped_restore restore_ptid
1024 = make_scoped_restore (&inferior_ptid, null_ptid);
6c95b8df
PA
1025
1026 /* This inferior is dead, so avoid giving the breakpoints
1027 module the option to write through to it (cloning a
1028 program space resets breakpoints). */
1029 inf->aspace = NULL;
1030 inf->pspace = NULL;
1031 pspace = add_program_space (maybe_new_address_space ());
1032 set_current_program_space (pspace);
1033 inf->removable = 1;
7dcd53a0 1034 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1035 clone_program_space (pspace, inf->vfork_parent->pspace);
1036 inf->pspace = pspace;
1037 inf->aspace = pspace->aspace;
1038
6c95b8df
PA
1039 resume_parent = inf->vfork_parent->pid;
1040 /* Break the bonds. */
1041 inf->vfork_parent->vfork_child = NULL;
1042 }
1043
1044 inf->vfork_parent = NULL;
1045
1046 gdb_assert (current_program_space == inf->pspace);
1047
1048 if (non_stop && resume_parent != -1)
1049 {
1050 /* If the user wanted the parent to be running, let it go
1051 free now. */
5ed8105e 1052 scoped_restore_current_thread restore_thread;
6c95b8df
PA
1053
1054 if (debug_infrun)
3e43a32a
MS
1055 fprintf_unfiltered (gdb_stdlog,
1056 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1057 resume_parent);
1058
1059 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1060 }
1061 }
1062}
1063
eb6c553b 1064/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1065
1066static const char follow_exec_mode_new[] = "new";
1067static const char follow_exec_mode_same[] = "same";
40478521 1068static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1069{
1070 follow_exec_mode_new,
1071 follow_exec_mode_same,
1072 NULL,
1073};
1074
1075static const char *follow_exec_mode_string = follow_exec_mode_same;
1076static void
1077show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1078 struct cmd_list_element *c, const char *value)
1079{
1080 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1081}
1082
ecf45d2c 1083/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1084
c906108c 1085static void
ecf45d2c 1086follow_exec (ptid_t ptid, char *exec_file_target)
c906108c 1087{
95e50b27 1088 struct thread_info *th, *tmp;
6c95b8df 1089 struct inferior *inf = current_inferior ();
95e50b27 1090 int pid = ptid_get_pid (ptid);
94585166 1091 ptid_t process_ptid;
ecf45d2c
SL
1092 char *exec_file_host;
1093 struct cleanup *old_chain;
7a292a7a 1094
c906108c
SS
1095 /* This is an exec event that we actually wish to pay attention to.
1096 Refresh our symbol table to the newly exec'd program, remove any
1097 momentary bp's, etc.
1098
1099 If there are breakpoints, they aren't really inserted now,
1100 since the exec() transformed our inferior into a fresh set
1101 of instructions.
1102
1103 We want to preserve symbolic breakpoints on the list, since
1104 we have hopes that they can be reset after the new a.out's
1105 symbol table is read.
1106
1107 However, any "raw" breakpoints must be removed from the list
1108 (e.g., the solib bp's), since their address is probably invalid
1109 now.
1110
1111 And, we DON'T want to call delete_breakpoints() here, since
1112 that may write the bp's "shadow contents" (the instruction
1113 value that was overwritten witha TRAP instruction). Since
1777feb0 1114 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1115
1116 mark_breakpoints_out ();
1117
95e50b27
PA
1118 /* The target reports the exec event to the main thread, even if
1119 some other thread does the exec, and even if the main thread was
1120 stopped or already gone. We may still have non-leader threads of
1121 the process on our list. E.g., on targets that don't have thread
1122 exit events (like remote); or on native Linux in non-stop mode if
1123 there were only two threads in the inferior and the non-leader
1124 one is the one that execs (and nothing forces an update of the
1125 thread list up to here). When debugging remotely, it's best to
1126 avoid extra traffic, when possible, so avoid syncing the thread
1127 list with the target, and instead go ahead and delete all threads
1128 of the process but one that reported the event. Note this must
1129 be done before calling update_breakpoints_after_exec, as
1130 otherwise clearing the threads' resources would reference stale
1131 thread breakpoints -- it may have been one of these threads that
1132 stepped across the exec. We could just clear their stepping
1133 states, but as long as we're iterating, might as well delete
1134 them. Deleting them now rather than at the next user-visible
1135 stop provides a nicer sequence of events for user and MI
1136 notifications. */
8a06aea7 1137 ALL_THREADS_SAFE (th, tmp)
95e50b27
PA
1138 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1139 delete_thread (th->ptid);
1140
1141 /* We also need to clear any left over stale state for the
1142 leader/event thread. E.g., if there was any step-resume
1143 breakpoint or similar, it's gone now. We cannot truly
1144 step-to-next statement through an exec(). */
1145 th = inferior_thread ();
8358c15c 1146 th->control.step_resume_breakpoint = NULL;
186c406b 1147 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1148 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1149 th->control.step_range_start = 0;
1150 th->control.step_range_end = 0;
c906108c 1151
95e50b27
PA
1152 /* The user may have had the main thread held stopped in the
1153 previous image (e.g., schedlock on, or non-stop). Release
1154 it now. */
a75724bc
PA
1155 th->stop_requested = 0;
1156
95e50b27
PA
1157 update_breakpoints_after_exec ();
1158
1777feb0 1159 /* What is this a.out's name? */
94585166 1160 process_ptid = pid_to_ptid (pid);
6c95b8df 1161 printf_unfiltered (_("%s is executing new program: %s\n"),
94585166 1162 target_pid_to_str (process_ptid),
ecf45d2c 1163 exec_file_target);
c906108c
SS
1164
1165 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1166 inferior has essentially been killed & reborn. */
7a292a7a 1167
c906108c 1168 gdb_flush (gdb_stdout);
6ca15a4b
PA
1169
1170 breakpoint_init_inferior (inf_execd);
e85a822c 1171
ecf45d2c
SL
1172 exec_file_host = exec_file_find (exec_file_target, NULL);
1173 old_chain = make_cleanup (xfree, exec_file_host);
ff862be4 1174
ecf45d2c
SL
1175 /* If we were unable to map the executable target pathname onto a host
1176 pathname, tell the user that. Otherwise GDB's subsequent behavior
1177 is confusing. Maybe it would even be better to stop at this point
1178 so that the user can specify a file manually before continuing. */
1179 if (exec_file_host == NULL)
1180 warning (_("Could not load symbols for executable %s.\n"
1181 "Do you need \"set sysroot\"?"),
1182 exec_file_target);
c906108c 1183
cce9b6bf
PA
1184 /* Reset the shared library package. This ensures that we get a
1185 shlib event when the child reaches "_start", at which point the
1186 dld will have had a chance to initialize the child. */
1187 /* Also, loading a symbol file below may trigger symbol lookups, and
1188 we don't want those to be satisfied by the libraries of the
1189 previous incarnation of this process. */
1190 no_shared_libraries (NULL, 0);
1191
6c95b8df
PA
1192 if (follow_exec_mode_string == follow_exec_mode_new)
1193 {
6c95b8df
PA
1194 /* The user wants to keep the old inferior and program spaces
1195 around. Create a new fresh one, and switch to it. */
1196
17d8546e
DB
1197 /* Do exit processing for the original inferior before adding
1198 the new inferior so we don't have two active inferiors with
1199 the same ptid, which can confuse find_inferior_ptid. */
1200 exit_inferior_num_silent (current_inferior ()->num);
1201
94585166
DB
1202 inf = add_inferior_with_spaces ();
1203 inf->pid = pid;
ecf45d2c 1204 target_follow_exec (inf, exec_file_target);
6c95b8df
PA
1205
1206 set_current_inferior (inf);
94585166 1207 set_current_program_space (inf->pspace);
6c95b8df 1208 }
9107fc8d
PA
1209 else
1210 {
1211 /* The old description may no longer be fit for the new image.
1212 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1213 old description; we'll read a new one below. No need to do
1214 this on "follow-exec-mode new", as the old inferior stays
1215 around (its description is later cleared/refetched on
1216 restart). */
1217 target_clear_description ();
1218 }
6c95b8df
PA
1219
1220 gdb_assert (current_program_space == inf->pspace);
1221
ecf45d2c
SL
1222 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1223 because the proper displacement for a PIE (Position Independent
1224 Executable) main symbol file will only be computed by
1225 solib_create_inferior_hook below. breakpoint_re_set would fail
1226 to insert the breakpoints with the zero displacement. */
1227 try_open_exec_file (exec_file_host, inf, SYMFILE_DEFER_BP_RESET);
c1e56572 1228
ecf45d2c 1229 do_cleanups (old_chain);
c906108c 1230
9107fc8d
PA
1231 /* If the target can specify a description, read it. Must do this
1232 after flipping to the new executable (because the target supplied
1233 description must be compatible with the executable's
1234 architecture, and the old executable may e.g., be 32-bit, while
1235 the new one 64-bit), and before anything involving memory or
1236 registers. */
1237 target_find_description ();
1238
bf93d7ba
SM
1239 /* The add_thread call ends up reading registers, so do it after updating the
1240 target description. */
1241 if (follow_exec_mode_string == follow_exec_mode_new)
1242 add_thread (ptid);
1243
268a4a75 1244 solib_create_inferior_hook (0);
c906108c 1245
4efc6507
DE
1246 jit_inferior_created_hook ();
1247
c1e56572
JK
1248 breakpoint_re_set ();
1249
c906108c
SS
1250 /* Reinsert all breakpoints. (Those which were symbolic have
1251 been reset to the proper address in the new a.out, thanks
1777feb0 1252 to symbol_file_command...). */
c906108c
SS
1253 insert_breakpoints ();
1254
1255 /* The next resume of this inferior should bring it to the shlib
1256 startup breakpoints. (If the user had also set bp's on
1257 "main" from the old (parent) process, then they'll auto-
1777feb0 1258 matically get reset there in the new process.). */
c906108c
SS
1259}
1260
c2829269
PA
1261/* The queue of threads that need to do a step-over operation to get
1262 past e.g., a breakpoint. What technique is used to step over the
1263 breakpoint/watchpoint does not matter -- all threads end up in the
1264 same queue, to maintain rough temporal order of execution, in order
1265 to avoid starvation, otherwise, we could e.g., find ourselves
1266 constantly stepping the same couple threads past their breakpoints
1267 over and over, if the single-step finish fast enough. */
1268struct thread_info *step_over_queue_head;
1269
6c4cfb24
PA
1270/* Bit flags indicating what the thread needs to step over. */
1271
8d297bbf 1272enum step_over_what_flag
6c4cfb24
PA
1273 {
1274 /* Step over a breakpoint. */
1275 STEP_OVER_BREAKPOINT = 1,
1276
1277 /* Step past a non-continuable watchpoint, in order to let the
1278 instruction execute so we can evaluate the watchpoint
1279 expression. */
1280 STEP_OVER_WATCHPOINT = 2
1281 };
8d297bbf 1282DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1283
963f9c80 1284/* Info about an instruction that is being stepped over. */
31e77af2
PA
1285
1286struct step_over_info
1287{
963f9c80
PA
1288 /* If we're stepping past a breakpoint, this is the address space
1289 and address of the instruction the breakpoint is set at. We'll
1290 skip inserting all breakpoints here. Valid iff ASPACE is
1291 non-NULL. */
8b86c959 1292 const address_space *aspace;
31e77af2 1293 CORE_ADDR address;
963f9c80
PA
1294
1295 /* The instruction being stepped over triggers a nonsteppable
1296 watchpoint. If true, we'll skip inserting watchpoints. */
1297 int nonsteppable_watchpoint_p;
21edc42f
YQ
1298
1299 /* The thread's global number. */
1300 int thread;
31e77af2
PA
1301};
1302
1303/* The step-over info of the location that is being stepped over.
1304
1305 Note that with async/breakpoint always-inserted mode, a user might
1306 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1307 being stepped over. As setting a new breakpoint inserts all
1308 breakpoints, we need to make sure the breakpoint being stepped over
1309 isn't inserted then. We do that by only clearing the step-over
1310 info when the step-over is actually finished (or aborted).
1311
1312 Presently GDB can only step over one breakpoint at any given time.
1313 Given threads that can't run code in the same address space as the
1314 breakpoint's can't really miss the breakpoint, GDB could be taught
1315 to step-over at most one breakpoint per address space (so this info
1316 could move to the address space object if/when GDB is extended).
1317 The set of breakpoints being stepped over will normally be much
1318 smaller than the set of all breakpoints, so a flag in the
1319 breakpoint location structure would be wasteful. A separate list
1320 also saves complexity and run-time, as otherwise we'd have to go
1321 through all breakpoint locations clearing their flag whenever we
1322 start a new sequence. Similar considerations weigh against storing
1323 this info in the thread object. Plus, not all step overs actually
1324 have breakpoint locations -- e.g., stepping past a single-step
1325 breakpoint, or stepping to complete a non-continuable
1326 watchpoint. */
1327static struct step_over_info step_over_info;
1328
1329/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1330 stepping over.
1331 N.B. We record the aspace and address now, instead of say just the thread,
1332 because when we need the info later the thread may be running. */
31e77af2
PA
1333
1334static void
8b86c959 1335set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1336 int nonsteppable_watchpoint_p,
1337 int thread)
31e77af2
PA
1338{
1339 step_over_info.aspace = aspace;
1340 step_over_info.address = address;
963f9c80 1341 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1342 step_over_info.thread = thread;
31e77af2
PA
1343}
1344
1345/* Called when we're not longer stepping over a breakpoint / an
1346 instruction, so all breakpoints are free to be (re)inserted. */
1347
1348static void
1349clear_step_over_info (void)
1350{
372316f1
PA
1351 if (debug_infrun)
1352 fprintf_unfiltered (gdb_stdlog,
1353 "infrun: clear_step_over_info\n");
31e77af2
PA
1354 step_over_info.aspace = NULL;
1355 step_over_info.address = 0;
963f9c80 1356 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1357 step_over_info.thread = -1;
31e77af2
PA
1358}
1359
7f89fd65 1360/* See infrun.h. */
31e77af2
PA
1361
1362int
1363stepping_past_instruction_at (struct address_space *aspace,
1364 CORE_ADDR address)
1365{
1366 return (step_over_info.aspace != NULL
1367 && breakpoint_address_match (aspace, address,
1368 step_over_info.aspace,
1369 step_over_info.address));
1370}
1371
963f9c80
PA
1372/* See infrun.h. */
1373
21edc42f
YQ
1374int
1375thread_is_stepping_over_breakpoint (int thread)
1376{
1377 return (step_over_info.thread != -1
1378 && thread == step_over_info.thread);
1379}
1380
1381/* See infrun.h. */
1382
963f9c80
PA
1383int
1384stepping_past_nonsteppable_watchpoint (void)
1385{
1386 return step_over_info.nonsteppable_watchpoint_p;
1387}
1388
6cc83d2a
PA
1389/* Returns true if step-over info is valid. */
1390
1391static int
1392step_over_info_valid_p (void)
1393{
963f9c80
PA
1394 return (step_over_info.aspace != NULL
1395 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1396}
1397
c906108c 1398\f
237fc4c9
PA
1399/* Displaced stepping. */
1400
1401/* In non-stop debugging mode, we must take special care to manage
1402 breakpoints properly; in particular, the traditional strategy for
1403 stepping a thread past a breakpoint it has hit is unsuitable.
1404 'Displaced stepping' is a tactic for stepping one thread past a
1405 breakpoint it has hit while ensuring that other threads running
1406 concurrently will hit the breakpoint as they should.
1407
1408 The traditional way to step a thread T off a breakpoint in a
1409 multi-threaded program in all-stop mode is as follows:
1410
1411 a0) Initially, all threads are stopped, and breakpoints are not
1412 inserted.
1413 a1) We single-step T, leaving breakpoints uninserted.
1414 a2) We insert breakpoints, and resume all threads.
1415
1416 In non-stop debugging, however, this strategy is unsuitable: we
1417 don't want to have to stop all threads in the system in order to
1418 continue or step T past a breakpoint. Instead, we use displaced
1419 stepping:
1420
1421 n0) Initially, T is stopped, other threads are running, and
1422 breakpoints are inserted.
1423 n1) We copy the instruction "under" the breakpoint to a separate
1424 location, outside the main code stream, making any adjustments
1425 to the instruction, register, and memory state as directed by
1426 T's architecture.
1427 n2) We single-step T over the instruction at its new location.
1428 n3) We adjust the resulting register and memory state as directed
1429 by T's architecture. This includes resetting T's PC to point
1430 back into the main instruction stream.
1431 n4) We resume T.
1432
1433 This approach depends on the following gdbarch methods:
1434
1435 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1436 indicate where to copy the instruction, and how much space must
1437 be reserved there. We use these in step n1.
1438
1439 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1440 address, and makes any necessary adjustments to the instruction,
1441 register contents, and memory. We use this in step n1.
1442
1443 - gdbarch_displaced_step_fixup adjusts registers and memory after
1444 we have successfuly single-stepped the instruction, to yield the
1445 same effect the instruction would have had if we had executed it
1446 at its original address. We use this in step n3.
1447
237fc4c9
PA
1448 The gdbarch_displaced_step_copy_insn and
1449 gdbarch_displaced_step_fixup functions must be written so that
1450 copying an instruction with gdbarch_displaced_step_copy_insn,
1451 single-stepping across the copied instruction, and then applying
1452 gdbarch_displaced_insn_fixup should have the same effects on the
1453 thread's memory and registers as stepping the instruction in place
1454 would have. Exactly which responsibilities fall to the copy and
1455 which fall to the fixup is up to the author of those functions.
1456
1457 See the comments in gdbarch.sh for details.
1458
1459 Note that displaced stepping and software single-step cannot
1460 currently be used in combination, although with some care I think
1461 they could be made to. Software single-step works by placing
1462 breakpoints on all possible subsequent instructions; if the
1463 displaced instruction is a PC-relative jump, those breakpoints
1464 could fall in very strange places --- on pages that aren't
1465 executable, or at addresses that are not proper instruction
1466 boundaries. (We do generally let other threads run while we wait
1467 to hit the software single-step breakpoint, and they might
1468 encounter such a corrupted instruction.) One way to work around
1469 this would be to have gdbarch_displaced_step_copy_insn fully
1470 simulate the effect of PC-relative instructions (and return NULL)
1471 on architectures that use software single-stepping.
1472
1473 In non-stop mode, we can have independent and simultaneous step
1474 requests, so more than one thread may need to simultaneously step
1475 over a breakpoint. The current implementation assumes there is
1476 only one scratch space per process. In this case, we have to
1477 serialize access to the scratch space. If thread A wants to step
1478 over a breakpoint, but we are currently waiting for some other
1479 thread to complete a displaced step, we leave thread A stopped and
1480 place it in the displaced_step_request_queue. Whenever a displaced
1481 step finishes, we pick the next thread in the queue and start a new
1482 displaced step operation on it. See displaced_step_prepare and
1483 displaced_step_fixup for details. */
1484
cfba9872
SM
1485/* Default destructor for displaced_step_closure. */
1486
1487displaced_step_closure::~displaced_step_closure () = default;
1488
fc1cf338
PA
1489/* Per-inferior displaced stepping state. */
1490struct displaced_step_inferior_state
1491{
1492 /* Pointer to next in linked list. */
1493 struct displaced_step_inferior_state *next;
1494
1495 /* The process this displaced step state refers to. */
1496 int pid;
1497
3fc8eb30
PA
1498 /* True if preparing a displaced step ever failed. If so, we won't
1499 try displaced stepping for this inferior again. */
1500 int failed_before;
1501
fc1cf338
PA
1502 /* If this is not null_ptid, this is the thread carrying out a
1503 displaced single-step in process PID. This thread's state will
1504 require fixing up once it has completed its step. */
1505 ptid_t step_ptid;
1506
1507 /* The architecture the thread had when we stepped it. */
1508 struct gdbarch *step_gdbarch;
1509
1510 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1511 for post-step cleanup. */
1512 struct displaced_step_closure *step_closure;
1513
1514 /* The address of the original instruction, and the copy we
1515 made. */
1516 CORE_ADDR step_original, step_copy;
1517
1518 /* Saved contents of copy area. */
1519 gdb_byte *step_saved_copy;
1520};
1521
1522/* The list of states of processes involved in displaced stepping
1523 presently. */
1524static struct displaced_step_inferior_state *displaced_step_inferior_states;
1525
1526/* Get the displaced stepping state of process PID. */
1527
1528static struct displaced_step_inferior_state *
1529get_displaced_stepping_state (int pid)
1530{
1531 struct displaced_step_inferior_state *state;
1532
1533 for (state = displaced_step_inferior_states;
1534 state != NULL;
1535 state = state->next)
1536 if (state->pid == pid)
1537 return state;
1538
1539 return NULL;
1540}
1541
372316f1
PA
1542/* Returns true if any inferior has a thread doing a displaced
1543 step. */
1544
1545static int
1546displaced_step_in_progress_any_inferior (void)
1547{
1548 struct displaced_step_inferior_state *state;
1549
1550 for (state = displaced_step_inferior_states;
1551 state != NULL;
1552 state = state->next)
1553 if (!ptid_equal (state->step_ptid, null_ptid))
1554 return 1;
1555
1556 return 0;
1557}
1558
c0987663
YQ
1559/* Return true if thread represented by PTID is doing a displaced
1560 step. */
1561
1562static int
1563displaced_step_in_progress_thread (ptid_t ptid)
1564{
1565 struct displaced_step_inferior_state *displaced;
1566
1567 gdb_assert (!ptid_equal (ptid, null_ptid));
1568
1569 displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1570
1571 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1572}
1573
8f572e5c
PA
1574/* Return true if process PID has a thread doing a displaced step. */
1575
1576static int
1577displaced_step_in_progress (int pid)
1578{
1579 struct displaced_step_inferior_state *displaced;
1580
1581 displaced = get_displaced_stepping_state (pid);
1582 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1583 return 1;
1584
1585 return 0;
1586}
1587
fc1cf338
PA
1588/* Add a new displaced stepping state for process PID to the displaced
1589 stepping state list, or return a pointer to an already existing
1590 entry, if it already exists. Never returns NULL. */
1591
1592static struct displaced_step_inferior_state *
1593add_displaced_stepping_state (int pid)
1594{
1595 struct displaced_step_inferior_state *state;
1596
1597 for (state = displaced_step_inferior_states;
1598 state != NULL;
1599 state = state->next)
1600 if (state->pid == pid)
1601 return state;
237fc4c9 1602
8d749320 1603 state = XCNEW (struct displaced_step_inferior_state);
fc1cf338
PA
1604 state->pid = pid;
1605 state->next = displaced_step_inferior_states;
1606 displaced_step_inferior_states = state;
237fc4c9 1607
fc1cf338
PA
1608 return state;
1609}
1610
a42244db
YQ
1611/* If inferior is in displaced stepping, and ADDR equals to starting address
1612 of copy area, return corresponding displaced_step_closure. Otherwise,
1613 return NULL. */
1614
1615struct displaced_step_closure*
1616get_displaced_step_closure_by_addr (CORE_ADDR addr)
1617{
1618 struct displaced_step_inferior_state *displaced
1619 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1620
1621 /* If checking the mode of displaced instruction in copy area. */
1622 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1623 && (displaced->step_copy == addr))
1624 return displaced->step_closure;
1625
1626 return NULL;
1627}
1628
fc1cf338 1629/* Remove the displaced stepping state of process PID. */
237fc4c9 1630
fc1cf338
PA
1631static void
1632remove_displaced_stepping_state (int pid)
1633{
1634 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1635
fc1cf338
PA
1636 gdb_assert (pid != 0);
1637
1638 it = displaced_step_inferior_states;
1639 prev_next_p = &displaced_step_inferior_states;
1640 while (it)
1641 {
1642 if (it->pid == pid)
1643 {
1644 *prev_next_p = it->next;
1645 xfree (it);
1646 return;
1647 }
1648
1649 prev_next_p = &it->next;
1650 it = *prev_next_p;
1651 }
1652}
1653
1654static void
1655infrun_inferior_exit (struct inferior *inf)
1656{
1657 remove_displaced_stepping_state (inf->pid);
1658}
237fc4c9 1659
fff08868
HZ
1660/* If ON, and the architecture supports it, GDB will use displaced
1661 stepping to step over breakpoints. If OFF, or if the architecture
1662 doesn't support it, GDB will instead use the traditional
1663 hold-and-step approach. If AUTO (which is the default), GDB will
1664 decide which technique to use to step over breakpoints depending on
1665 which of all-stop or non-stop mode is active --- displaced stepping
1666 in non-stop mode; hold-and-step in all-stop mode. */
1667
72d0e2c5 1668static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1669
237fc4c9
PA
1670static void
1671show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1672 struct cmd_list_element *c,
1673 const char *value)
1674{
72d0e2c5 1675 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1676 fprintf_filtered (file,
1677 _("Debugger's willingness to use displaced stepping "
1678 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1679 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1680 else
3e43a32a
MS
1681 fprintf_filtered (file,
1682 _("Debugger's willingness to use displaced stepping "
1683 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1684}
1685
fff08868 1686/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1687 over breakpoints of thread TP. */
fff08868 1688
237fc4c9 1689static int
3fc8eb30 1690use_displaced_stepping (struct thread_info *tp)
237fc4c9 1691{
3fc8eb30 1692 struct regcache *regcache = get_thread_regcache (tp->ptid);
ac7936df 1693 struct gdbarch *gdbarch = regcache->arch ();
3fc8eb30
PA
1694 struct displaced_step_inferior_state *displaced_state;
1695
1696 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1697
fbea99ea
PA
1698 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1699 && target_is_non_stop_p ())
72d0e2c5 1700 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1701 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30
PA
1702 && find_record_target () == NULL
1703 && (displaced_state == NULL
1704 || !displaced_state->failed_before));
237fc4c9
PA
1705}
1706
1707/* Clean out any stray displaced stepping state. */
1708static void
fc1cf338 1709displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1710{
1711 /* Indicate that there is no cleanup pending. */
fc1cf338 1712 displaced->step_ptid = null_ptid;
237fc4c9 1713
cfba9872 1714 delete displaced->step_closure;
6d45d4b4 1715 displaced->step_closure = NULL;
237fc4c9
PA
1716}
1717
1718static void
fc1cf338 1719displaced_step_clear_cleanup (void *arg)
237fc4c9 1720{
9a3c8263
SM
1721 struct displaced_step_inferior_state *state
1722 = (struct displaced_step_inferior_state *) arg;
fc1cf338
PA
1723
1724 displaced_step_clear (state);
237fc4c9
PA
1725}
1726
1727/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1728void
1729displaced_step_dump_bytes (struct ui_file *file,
1730 const gdb_byte *buf,
1731 size_t len)
1732{
1733 int i;
1734
1735 for (i = 0; i < len; i++)
1736 fprintf_unfiltered (file, "%02x ", buf[i]);
1737 fputs_unfiltered ("\n", file);
1738}
1739
1740/* Prepare to single-step, using displaced stepping.
1741
1742 Note that we cannot use displaced stepping when we have a signal to
1743 deliver. If we have a signal to deliver and an instruction to step
1744 over, then after the step, there will be no indication from the
1745 target whether the thread entered a signal handler or ignored the
1746 signal and stepped over the instruction successfully --- both cases
1747 result in a simple SIGTRAP. In the first case we mustn't do a
1748 fixup, and in the second case we must --- but we can't tell which.
1749 Comments in the code for 'random signals' in handle_inferior_event
1750 explain how we handle this case instead.
1751
1752 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1753 stepped now; 0 if displaced stepping this thread got queued; or -1
1754 if this instruction can't be displaced stepped. */
1755
237fc4c9 1756static int
3fc8eb30 1757displaced_step_prepare_throw (ptid_t ptid)
237fc4c9 1758{
2989a365 1759 struct cleanup *ignore_cleanups;
c1e36e3e 1760 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9 1761 struct regcache *regcache = get_thread_regcache (ptid);
ac7936df 1762 struct gdbarch *gdbarch = regcache->arch ();
8b86c959 1763 const address_space *aspace = regcache->aspace ();
237fc4c9
PA
1764 CORE_ADDR original, copy;
1765 ULONGEST len;
1766 struct displaced_step_closure *closure;
fc1cf338 1767 struct displaced_step_inferior_state *displaced;
9e529e1d 1768 int status;
237fc4c9
PA
1769
1770 /* We should never reach this function if the architecture does not
1771 support displaced stepping. */
1772 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1773
c2829269
PA
1774 /* Nor if the thread isn't meant to step over a breakpoint. */
1775 gdb_assert (tp->control.trap_expected);
1776
c1e36e3e
PA
1777 /* Disable range stepping while executing in the scratch pad. We
1778 want a single-step even if executing the displaced instruction in
1779 the scratch buffer lands within the stepping range (e.g., a
1780 jump/branch). */
1781 tp->control.may_range_step = 0;
1782
fc1cf338
PA
1783 /* We have to displaced step one thread at a time, as we only have
1784 access to a single scratch space per inferior. */
237fc4c9 1785
fc1cf338
PA
1786 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1787
1788 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1789 {
1790 /* Already waiting for a displaced step to finish. Defer this
1791 request and place in queue. */
237fc4c9
PA
1792
1793 if (debug_displaced)
1794 fprintf_unfiltered (gdb_stdlog,
c2829269 1795 "displaced: deferring step of %s\n",
237fc4c9
PA
1796 target_pid_to_str (ptid));
1797
c2829269 1798 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1799 return 0;
1800 }
1801 else
1802 {
1803 if (debug_displaced)
1804 fprintf_unfiltered (gdb_stdlog,
1805 "displaced: stepping %s now\n",
1806 target_pid_to_str (ptid));
1807 }
1808
fc1cf338 1809 displaced_step_clear (displaced);
237fc4c9 1810
2989a365 1811 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
ad53cd71
PA
1812 inferior_ptid = ptid;
1813
515630c5 1814 original = regcache_read_pc (regcache);
237fc4c9
PA
1815
1816 copy = gdbarch_displaced_step_location (gdbarch);
1817 len = gdbarch_max_insn_length (gdbarch);
1818
d35ae833
PA
1819 if (breakpoint_in_range_p (aspace, copy, len))
1820 {
1821 /* There's a breakpoint set in the scratch pad location range
1822 (which is usually around the entry point). We'd either
1823 install it before resuming, which would overwrite/corrupt the
1824 scratch pad, or if it was already inserted, this displaced
1825 step would overwrite it. The latter is OK in the sense that
1826 we already assume that no thread is going to execute the code
1827 in the scratch pad range (after initial startup) anyway, but
1828 the former is unacceptable. Simply punt and fallback to
1829 stepping over this breakpoint in-line. */
1830 if (debug_displaced)
1831 {
1832 fprintf_unfiltered (gdb_stdlog,
1833 "displaced: breakpoint set in scratch pad. "
1834 "Stepping over breakpoint in-line instead.\n");
1835 }
1836
d35ae833
PA
1837 return -1;
1838 }
1839
237fc4c9 1840 /* Save the original contents of the copy area. */
224c3ddb 1841 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
ad53cd71 1842 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1843 &displaced->step_saved_copy);
9e529e1d
JK
1844 status = target_read_memory (copy, displaced->step_saved_copy, len);
1845 if (status != 0)
1846 throw_error (MEMORY_ERROR,
1847 _("Error accessing memory address %s (%s) for "
1848 "displaced-stepping scratch space."),
1849 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1850 if (debug_displaced)
1851 {
5af949e3
UW
1852 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1853 paddress (gdbarch, copy));
fc1cf338
PA
1854 displaced_step_dump_bytes (gdb_stdlog,
1855 displaced->step_saved_copy,
1856 len);
237fc4c9
PA
1857 };
1858
1859 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1860 original, copy, regcache);
7f03bd92
PA
1861 if (closure == NULL)
1862 {
1863 /* The architecture doesn't know how or want to displaced step
1864 this instruction or instruction sequence. Fallback to
1865 stepping over the breakpoint in-line. */
2989a365 1866 do_cleanups (ignore_cleanups);
7f03bd92
PA
1867 return -1;
1868 }
237fc4c9 1869
9f5a595d
UW
1870 /* Save the information we need to fix things up if the step
1871 succeeds. */
fc1cf338
PA
1872 displaced->step_ptid = ptid;
1873 displaced->step_gdbarch = gdbarch;
1874 displaced->step_closure = closure;
1875 displaced->step_original = original;
1876 displaced->step_copy = copy;
9f5a595d 1877
fc1cf338 1878 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1879
1880 /* Resume execution at the copy. */
515630c5 1881 regcache_write_pc (regcache, copy);
237fc4c9 1882
ad53cd71
PA
1883 discard_cleanups (ignore_cleanups);
1884
237fc4c9 1885 if (debug_displaced)
5af949e3
UW
1886 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1887 paddress (gdbarch, copy));
237fc4c9 1888
237fc4c9
PA
1889 return 1;
1890}
1891
3fc8eb30
PA
1892/* Wrapper for displaced_step_prepare_throw that disabled further
1893 attempts at displaced stepping if we get a memory error. */
1894
1895static int
1896displaced_step_prepare (ptid_t ptid)
1897{
1898 int prepared = -1;
1899
1900 TRY
1901 {
1902 prepared = displaced_step_prepare_throw (ptid);
1903 }
1904 CATCH (ex, RETURN_MASK_ERROR)
1905 {
1906 struct displaced_step_inferior_state *displaced_state;
1907
16b41842
PA
1908 if (ex.error != MEMORY_ERROR
1909 && ex.error != NOT_SUPPORTED_ERROR)
3fc8eb30
PA
1910 throw_exception (ex);
1911
1912 if (debug_infrun)
1913 {
1914 fprintf_unfiltered (gdb_stdlog,
1915 "infrun: disabling displaced stepping: %s\n",
1916 ex.message);
1917 }
1918
1919 /* Be verbose if "set displaced-stepping" is "on", silent if
1920 "auto". */
1921 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1922 {
fd7dcb94 1923 warning (_("disabling displaced stepping: %s"),
3fc8eb30
PA
1924 ex.message);
1925 }
1926
1927 /* Disable further displaced stepping attempts. */
1928 displaced_state
1929 = get_displaced_stepping_state (ptid_get_pid (ptid));
1930 displaced_state->failed_before = 1;
1931 }
1932 END_CATCH
1933
1934 return prepared;
1935}
1936
237fc4c9 1937static void
3e43a32a
MS
1938write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1939 const gdb_byte *myaddr, int len)
237fc4c9 1940{
2989a365 1941 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
abbb1732 1942
237fc4c9
PA
1943 inferior_ptid = ptid;
1944 write_memory (memaddr, myaddr, len);
237fc4c9
PA
1945}
1946
e2d96639
YQ
1947/* Restore the contents of the copy area for thread PTID. */
1948
1949static void
1950displaced_step_restore (struct displaced_step_inferior_state *displaced,
1951 ptid_t ptid)
1952{
1953 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1954
1955 write_memory_ptid (ptid, displaced->step_copy,
1956 displaced->step_saved_copy, len);
1957 if (debug_displaced)
1958 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1959 target_pid_to_str (ptid),
1960 paddress (displaced->step_gdbarch,
1961 displaced->step_copy));
1962}
1963
372316f1
PA
1964/* If we displaced stepped an instruction successfully, adjust
1965 registers and memory to yield the same effect the instruction would
1966 have had if we had executed it at its original address, and return
1967 1. If the instruction didn't complete, relocate the PC and return
1968 -1. If the thread wasn't displaced stepping, return 0. */
1969
1970static int
2ea28649 1971displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1972{
1973 struct cleanup *old_cleanups;
fc1cf338
PA
1974 struct displaced_step_inferior_state *displaced
1975 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
372316f1 1976 int ret;
fc1cf338
PA
1977
1978 /* Was any thread of this process doing a displaced step? */
1979 if (displaced == NULL)
372316f1 1980 return 0;
237fc4c9
PA
1981
1982 /* Was this event for the pid we displaced? */
fc1cf338
PA
1983 if (ptid_equal (displaced->step_ptid, null_ptid)
1984 || ! ptid_equal (displaced->step_ptid, event_ptid))
372316f1 1985 return 0;
237fc4c9 1986
fc1cf338 1987 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1988
e2d96639 1989 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9 1990
cb71640d
PA
1991 /* Fixup may need to read memory/registers. Switch to the thread
1992 that we're fixing up. Also, target_stopped_by_watchpoint checks
1993 the current thread. */
1994 switch_to_thread (event_ptid);
1995
237fc4c9 1996 /* Did the instruction complete successfully? */
cb71640d
PA
1997 if (signal == GDB_SIGNAL_TRAP
1998 && !(target_stopped_by_watchpoint ()
1999 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
2000 || target_have_steppable_watchpoint)))
237fc4c9
PA
2001 {
2002 /* Fix up the resulting state. */
fc1cf338
PA
2003 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
2004 displaced->step_closure,
2005 displaced->step_original,
2006 displaced->step_copy,
2007 get_thread_regcache (displaced->step_ptid));
372316f1 2008 ret = 1;
237fc4c9
PA
2009 }
2010 else
2011 {
2012 /* Since the instruction didn't complete, all we can do is
2013 relocate the PC. */
515630c5
UW
2014 struct regcache *regcache = get_thread_regcache (event_ptid);
2015 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 2016
fc1cf338 2017 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 2018 regcache_write_pc (regcache, pc);
372316f1 2019 ret = -1;
237fc4c9
PA
2020 }
2021
2022 do_cleanups (old_cleanups);
2023
fc1cf338 2024 displaced->step_ptid = null_ptid;
372316f1
PA
2025
2026 return ret;
c2829269 2027}
1c5cfe86 2028
4d9d9d04
PA
2029/* Data to be passed around while handling an event. This data is
2030 discarded between events. */
2031struct execution_control_state
2032{
2033 ptid_t ptid;
2034 /* The thread that got the event, if this was a thread event; NULL
2035 otherwise. */
2036 struct thread_info *event_thread;
2037
2038 struct target_waitstatus ws;
2039 int stop_func_filled_in;
2040 CORE_ADDR stop_func_start;
2041 CORE_ADDR stop_func_end;
2042 const char *stop_func_name;
2043 int wait_some_more;
2044
2045 /* True if the event thread hit the single-step breakpoint of
2046 another thread. Thus the event doesn't cause a stop, the thread
2047 needs to be single-stepped past the single-step breakpoint before
2048 we can switch back to the original stepping thread. */
2049 int hit_singlestep_breakpoint;
2050};
2051
2052/* Clear ECS and set it to point at TP. */
c2829269
PA
2053
2054static void
4d9d9d04
PA
2055reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2056{
2057 memset (ecs, 0, sizeof (*ecs));
2058 ecs->event_thread = tp;
2059 ecs->ptid = tp->ptid;
2060}
2061
2062static void keep_going_pass_signal (struct execution_control_state *ecs);
2063static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 2064static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 2065static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
2066
2067/* Are there any pending step-over requests? If so, run all we can
2068 now and return true. Otherwise, return false. */
2069
2070static int
c2829269
PA
2071start_step_over (void)
2072{
2073 struct thread_info *tp, *next;
2074
372316f1
PA
2075 /* Don't start a new step-over if we already have an in-line
2076 step-over operation ongoing. */
2077 if (step_over_info_valid_p ())
2078 return 0;
2079
c2829269 2080 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 2081 {
4d9d9d04
PA
2082 struct execution_control_state ecss;
2083 struct execution_control_state *ecs = &ecss;
8d297bbf 2084 step_over_what step_what;
372316f1 2085 int must_be_in_line;
c2829269 2086
c65d6b55
PA
2087 gdb_assert (!tp->stop_requested);
2088
c2829269 2089 next = thread_step_over_chain_next (tp);
237fc4c9 2090
c2829269
PA
2091 /* If this inferior already has a displaced step in process,
2092 don't start a new one. */
4d9d9d04 2093 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
c2829269
PA
2094 continue;
2095
372316f1
PA
2096 step_what = thread_still_needs_step_over (tp);
2097 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2098 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 2099 && !use_displaced_stepping (tp)));
372316f1
PA
2100
2101 /* We currently stop all threads of all processes to step-over
2102 in-line. If we need to start a new in-line step-over, let
2103 any pending displaced steps finish first. */
2104 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2105 return 0;
2106
c2829269
PA
2107 thread_step_over_chain_remove (tp);
2108
2109 if (step_over_queue_head == NULL)
2110 {
2111 if (debug_infrun)
2112 fprintf_unfiltered (gdb_stdlog,
2113 "infrun: step-over queue now empty\n");
2114 }
2115
372316f1
PA
2116 if (tp->control.trap_expected
2117 || tp->resumed
2118 || tp->executing)
ad53cd71 2119 {
4d9d9d04
PA
2120 internal_error (__FILE__, __LINE__,
2121 "[%s] has inconsistent state: "
372316f1 2122 "trap_expected=%d, resumed=%d, executing=%d\n",
4d9d9d04
PA
2123 target_pid_to_str (tp->ptid),
2124 tp->control.trap_expected,
372316f1 2125 tp->resumed,
4d9d9d04 2126 tp->executing);
ad53cd71 2127 }
1c5cfe86 2128
4d9d9d04
PA
2129 if (debug_infrun)
2130 fprintf_unfiltered (gdb_stdlog,
2131 "infrun: resuming [%s] for step-over\n",
2132 target_pid_to_str (tp->ptid));
2133
2134 /* keep_going_pass_signal skips the step-over if the breakpoint
2135 is no longer inserted. In all-stop, we want to keep looking
2136 for a thread that needs a step-over instead of resuming TP,
2137 because we wouldn't be able to resume anything else until the
2138 target stops again. In non-stop, the resume always resumes
2139 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2140 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2141 continue;
8550d3b3 2142
4d9d9d04
PA
2143 switch_to_thread (tp->ptid);
2144 reset_ecs (ecs, tp);
2145 keep_going_pass_signal (ecs);
1c5cfe86 2146
4d9d9d04
PA
2147 if (!ecs->wait_some_more)
2148 error (_("Command aborted."));
1c5cfe86 2149
372316f1
PA
2150 gdb_assert (tp->resumed);
2151
2152 /* If we started a new in-line step-over, we're done. */
2153 if (step_over_info_valid_p ())
2154 {
2155 gdb_assert (tp->control.trap_expected);
2156 return 1;
2157 }
2158
fbea99ea 2159 if (!target_is_non_stop_p ())
4d9d9d04
PA
2160 {
2161 /* On all-stop, shouldn't have resumed unless we needed a
2162 step over. */
2163 gdb_assert (tp->control.trap_expected
2164 || tp->step_after_step_resume_breakpoint);
2165
2166 /* With remote targets (at least), in all-stop, we can't
2167 issue any further remote commands until the program stops
2168 again. */
2169 return 1;
1c5cfe86 2170 }
c2829269 2171
4d9d9d04
PA
2172 /* Either the thread no longer needed a step-over, or a new
2173 displaced stepping sequence started. Even in the latter
2174 case, continue looking. Maybe we can also start another
2175 displaced step on a thread of other process. */
237fc4c9 2176 }
4d9d9d04
PA
2177
2178 return 0;
237fc4c9
PA
2179}
2180
5231c1fd
PA
2181/* Update global variables holding ptids to hold NEW_PTID if they were
2182 holding OLD_PTID. */
2183static void
2184infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2185{
fc1cf338 2186 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
2187
2188 if (ptid_equal (inferior_ptid, old_ptid))
2189 inferior_ptid = new_ptid;
2190
fc1cf338
PA
2191 for (displaced = displaced_step_inferior_states;
2192 displaced;
2193 displaced = displaced->next)
2194 {
2195 if (ptid_equal (displaced->step_ptid, old_ptid))
2196 displaced->step_ptid = new_ptid;
fc1cf338 2197 }
5231c1fd
PA
2198}
2199
237fc4c9
PA
2200\f
2201/* Resuming. */
c906108c
SS
2202
2203/* Things to clean up if we QUIT out of resume (). */
c906108c 2204static void
74b7792f 2205resume_cleanups (void *ignore)
c906108c 2206{
34b7e8a6
PA
2207 if (!ptid_equal (inferior_ptid, null_ptid))
2208 delete_single_step_breakpoints (inferior_thread ());
7c16b83e 2209
c906108c
SS
2210 normal_stop ();
2211}
2212
53904c9e
AC
2213static const char schedlock_off[] = "off";
2214static const char schedlock_on[] = "on";
2215static const char schedlock_step[] = "step";
f2665db5 2216static const char schedlock_replay[] = "replay";
40478521 2217static const char *const scheduler_enums[] = {
ef346e04
AC
2218 schedlock_off,
2219 schedlock_on,
2220 schedlock_step,
f2665db5 2221 schedlock_replay,
ef346e04
AC
2222 NULL
2223};
f2665db5 2224static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2225static void
2226show_scheduler_mode (struct ui_file *file, int from_tty,
2227 struct cmd_list_element *c, const char *value)
2228{
3e43a32a
MS
2229 fprintf_filtered (file,
2230 _("Mode for locking scheduler "
2231 "during execution is \"%s\".\n"),
920d2a44
AC
2232 value);
2233}
c906108c
SS
2234
2235static void
96baa820 2236set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 2237{
eefe576e
AC
2238 if (!target_can_lock_scheduler)
2239 {
2240 scheduler_mode = schedlock_off;
2241 error (_("Target '%s' cannot support this command."), target_shortname);
2242 }
c906108c
SS
2243}
2244
d4db2f36
PA
2245/* True if execution commands resume all threads of all processes by
2246 default; otherwise, resume only threads of the current inferior
2247 process. */
2248int sched_multi = 0;
2249
2facfe5c
DD
2250/* Try to setup for software single stepping over the specified location.
2251 Return 1 if target_resume() should use hardware single step.
2252
2253 GDBARCH the current gdbarch.
2254 PC the location to step over. */
2255
2256static int
2257maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2258{
2259 int hw_step = 1;
2260
f02253f1 2261 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2262 && gdbarch_software_single_step_p (gdbarch))
2263 hw_step = !insert_single_step_breakpoints (gdbarch);
2264
2facfe5c
DD
2265 return hw_step;
2266}
c906108c 2267
f3263aa4
PA
2268/* See infrun.h. */
2269
09cee04b
PA
2270ptid_t
2271user_visible_resume_ptid (int step)
2272{
f3263aa4 2273 ptid_t resume_ptid;
09cee04b 2274
09cee04b
PA
2275 if (non_stop)
2276 {
2277 /* With non-stop mode on, threads are always handled
2278 individually. */
2279 resume_ptid = inferior_ptid;
2280 }
2281 else if ((scheduler_mode == schedlock_on)
03d46957 2282 || (scheduler_mode == schedlock_step && step))
09cee04b 2283 {
f3263aa4
PA
2284 /* User-settable 'scheduler' mode requires solo thread
2285 resume. */
09cee04b
PA
2286 resume_ptid = inferior_ptid;
2287 }
f2665db5
MM
2288 else if ((scheduler_mode == schedlock_replay)
2289 && target_record_will_replay (minus_one_ptid, execution_direction))
2290 {
2291 /* User-settable 'scheduler' mode requires solo thread resume in replay
2292 mode. */
2293 resume_ptid = inferior_ptid;
2294 }
f3263aa4
PA
2295 else if (!sched_multi && target_supports_multi_process ())
2296 {
2297 /* Resume all threads of the current process (and none of other
2298 processes). */
2299 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2300 }
2301 else
2302 {
2303 /* Resume all threads of all processes. */
2304 resume_ptid = RESUME_ALL;
2305 }
09cee04b
PA
2306
2307 return resume_ptid;
2308}
2309
fbea99ea
PA
2310/* Return a ptid representing the set of threads that we will resume,
2311 in the perspective of the target, assuming run control handling
2312 does not require leaving some threads stopped (e.g., stepping past
2313 breakpoint). USER_STEP indicates whether we're about to start the
2314 target for a stepping command. */
2315
2316static ptid_t
2317internal_resume_ptid (int user_step)
2318{
2319 /* In non-stop, we always control threads individually. Note that
2320 the target may always work in non-stop mode even with "set
2321 non-stop off", in which case user_visible_resume_ptid could
2322 return a wildcard ptid. */
2323 if (target_is_non_stop_p ())
2324 return inferior_ptid;
2325 else
2326 return user_visible_resume_ptid (user_step);
2327}
2328
64ce06e4
PA
2329/* Wrapper for target_resume, that handles infrun-specific
2330 bookkeeping. */
2331
2332static void
2333do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2334{
2335 struct thread_info *tp = inferior_thread ();
2336
c65d6b55
PA
2337 gdb_assert (!tp->stop_requested);
2338
64ce06e4 2339 /* Install inferior's terminal modes. */
223ffa71 2340 target_terminal::inferior ();
64ce06e4
PA
2341
2342 /* Avoid confusing the next resume, if the next stop/resume
2343 happens to apply to another thread. */
2344 tp->suspend.stop_signal = GDB_SIGNAL_0;
2345
8f572e5c
PA
2346 /* Advise target which signals may be handled silently.
2347
2348 If we have removed breakpoints because we are stepping over one
2349 in-line (in any thread), we need to receive all signals to avoid
2350 accidentally skipping a breakpoint during execution of a signal
2351 handler.
2352
2353 Likewise if we're displaced stepping, otherwise a trap for a
2354 breakpoint in a signal handler might be confused with the
2355 displaced step finishing. We don't make the displaced_step_fixup
2356 step distinguish the cases instead, because:
2357
2358 - a backtrace while stopped in the signal handler would show the
2359 scratch pad as frame older than the signal handler, instead of
2360 the real mainline code.
2361
2362 - when the thread is later resumed, the signal handler would
2363 return to the scratch pad area, which would no longer be
2364 valid. */
2365 if (step_over_info_valid_p ()
2366 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
64ce06e4
PA
2367 target_pass_signals (0, NULL);
2368 else
2369 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2370
2371 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2372
2373 target_commit_resume ();
64ce06e4
PA
2374}
2375
c906108c
SS
2376/* Resume the inferior, but allow a QUIT. This is useful if the user
2377 wants to interrupt some lengthy single-stepping operation
2378 (for child processes, the SIGINT goes to the inferior, and so
2379 we get a SIGINT random_signal, but for remote debugging and perhaps
2380 other targets, that's not true).
2381
c906108c
SS
2382 SIG is the signal to give the inferior (zero for none). */
2383void
64ce06e4 2384resume (enum gdb_signal sig)
c906108c 2385{
74b7792f 2386 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5 2387 struct regcache *regcache = get_current_regcache ();
ac7936df 2388 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2389 struct thread_info *tp = inferior_thread ();
515630c5 2390 CORE_ADDR pc = regcache_read_pc (regcache);
8b86c959 2391 const address_space *aspace = regcache->aspace ();
b0f16a3e 2392 ptid_t resume_ptid;
856e7dd6
PA
2393 /* This represents the user's step vs continue request. When
2394 deciding whether "set scheduler-locking step" applies, it's the
2395 user's intention that counts. */
2396 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2397 /* This represents what we'll actually request the target to do.
2398 This can decay from a step to a continue, if e.g., we need to
2399 implement single-stepping with breakpoints (software
2400 single-step). */
6b403daa 2401 int step;
c7e8a53c 2402
c65d6b55 2403 gdb_assert (!tp->stop_requested);
c2829269
PA
2404 gdb_assert (!thread_is_in_step_over_chain (tp));
2405
c906108c
SS
2406 QUIT;
2407
372316f1
PA
2408 if (tp->suspend.waitstatus_pending_p)
2409 {
2410 if (debug_infrun)
2411 {
23fdd69e
SM
2412 std::string statstr
2413 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2414
372316f1 2415 fprintf_unfiltered (gdb_stdlog,
23fdd69e
SM
2416 "infrun: resume: thread %s has pending wait "
2417 "status %s (currently_stepping=%d).\n",
2418 target_pid_to_str (tp->ptid), statstr.c_str (),
372316f1 2419 currently_stepping (tp));
372316f1
PA
2420 }
2421
2422 tp->resumed = 1;
2423
2424 /* FIXME: What should we do if we are supposed to resume this
2425 thread with a signal? Maybe we should maintain a queue of
2426 pending signals to deliver. */
2427 if (sig != GDB_SIGNAL_0)
2428 {
fd7dcb94 2429 warning (_("Couldn't deliver signal %s to %s."),
372316f1
PA
2430 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2431 }
2432
2433 tp->suspend.stop_signal = GDB_SIGNAL_0;
2434 discard_cleanups (old_cleanups);
2435
2436 if (target_can_async_p ())
2437 target_async (1);
2438 return;
2439 }
2440
2441 tp->stepped_breakpoint = 0;
2442
6b403daa
PA
2443 /* Depends on stepped_breakpoint. */
2444 step = currently_stepping (tp);
2445
74609e71
YQ
2446 if (current_inferior ()->waiting_for_vfork_done)
2447 {
48f9886d
PA
2448 /* Don't try to single-step a vfork parent that is waiting for
2449 the child to get out of the shared memory region (by exec'ing
2450 or exiting). This is particularly important on software
2451 single-step archs, as the child process would trip on the
2452 software single step breakpoint inserted for the parent
2453 process. Since the parent will not actually execute any
2454 instruction until the child is out of the shared region (such
2455 are vfork's semantics), it is safe to simply continue it.
2456 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2457 the parent, and tell it to `keep_going', which automatically
2458 re-sets it stepping. */
74609e71
YQ
2459 if (debug_infrun)
2460 fprintf_unfiltered (gdb_stdlog,
2461 "infrun: resume : clear step\n");
a09dd441 2462 step = 0;
74609e71
YQ
2463 }
2464
527159b7 2465 if (debug_infrun)
237fc4c9 2466 fprintf_unfiltered (gdb_stdlog,
c9737c08 2467 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2468 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2469 step, gdb_signal_to_symbol_string (sig),
2470 tp->control.trap_expected,
0d9a9a5f
PA
2471 target_pid_to_str (inferior_ptid),
2472 paddress (gdbarch, pc));
c906108c 2473
c2c6d25f
JM
2474 /* Normally, by the time we reach `resume', the breakpoints are either
2475 removed or inserted, as appropriate. The exception is if we're sitting
2476 at a permanent breakpoint; we need to step over it, but permanent
2477 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2478 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2479 {
af48d08f
PA
2480 if (sig != GDB_SIGNAL_0)
2481 {
2482 /* We have a signal to pass to the inferior. The resume
2483 may, or may not take us to the signal handler. If this
2484 is a step, we'll need to stop in the signal handler, if
2485 there's one, (if the target supports stepping into
2486 handlers), or in the next mainline instruction, if
2487 there's no handler. If this is a continue, we need to be
2488 sure to run the handler with all breakpoints inserted.
2489 In all cases, set a breakpoint at the current address
2490 (where the handler returns to), and once that breakpoint
2491 is hit, resume skipping the permanent breakpoint. If
2492 that breakpoint isn't hit, then we've stepped into the
2493 signal handler (or hit some other event). We'll delete
2494 the step-resume breakpoint then. */
2495
2496 if (debug_infrun)
2497 fprintf_unfiltered (gdb_stdlog,
2498 "infrun: resume: skipping permanent breakpoint, "
2499 "deliver signal first\n");
2500
2501 clear_step_over_info ();
2502 tp->control.trap_expected = 0;
2503
2504 if (tp->control.step_resume_breakpoint == NULL)
2505 {
2506 /* Set a "high-priority" step-resume, as we don't want
2507 user breakpoints at PC to trigger (again) when this
2508 hits. */
2509 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2510 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2511
2512 tp->step_after_step_resume_breakpoint = step;
2513 }
2514
2515 insert_breakpoints ();
2516 }
2517 else
2518 {
2519 /* There's no signal to pass, we can go ahead and skip the
2520 permanent breakpoint manually. */
2521 if (debug_infrun)
2522 fprintf_unfiltered (gdb_stdlog,
2523 "infrun: resume: skipping permanent breakpoint\n");
2524 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2525 /* Update pc to reflect the new address from which we will
2526 execute instructions. */
2527 pc = regcache_read_pc (regcache);
2528
2529 if (step)
2530 {
2531 /* We've already advanced the PC, so the stepping part
2532 is done. Now we need to arrange for a trap to be
2533 reported to handle_inferior_event. Set a breakpoint
2534 at the current PC, and run to it. Don't update
2535 prev_pc, because if we end in
44a1ee51
PA
2536 switch_back_to_stepped_thread, we want the "expected
2537 thread advanced also" branch to be taken. IOW, we
2538 don't want this thread to step further from PC
af48d08f 2539 (overstep). */
1ac806b8 2540 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2541 insert_single_step_breakpoint (gdbarch, aspace, pc);
2542 insert_breakpoints ();
2543
fbea99ea 2544 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2545 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
af48d08f 2546 discard_cleanups (old_cleanups);
372316f1 2547 tp->resumed = 1;
af48d08f
PA
2548 return;
2549 }
2550 }
6d350bb5 2551 }
c2c6d25f 2552
c1e36e3e
PA
2553 /* If we have a breakpoint to step over, make sure to do a single
2554 step only. Same if we have software watchpoints. */
2555 if (tp->control.trap_expected || bpstat_should_step ())
2556 tp->control.may_range_step = 0;
2557
237fc4c9
PA
2558 /* If enabled, step over breakpoints by executing a copy of the
2559 instruction at a different address.
2560
2561 We can't use displaced stepping when we have a signal to deliver;
2562 the comments for displaced_step_prepare explain why. The
2563 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2564 signals' explain what we do instead.
2565
2566 We can't use displaced stepping when we are waiting for vfork_done
2567 event, displaced stepping breaks the vfork child similarly as single
2568 step software breakpoint. */
3fc8eb30
PA
2569 if (tp->control.trap_expected
2570 && use_displaced_stepping (tp)
cb71640d 2571 && !step_over_info_valid_p ()
a493e3e2 2572 && sig == GDB_SIGNAL_0
74609e71 2573 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2574 {
3fc8eb30 2575 int prepared = displaced_step_prepare (inferior_ptid);
fc1cf338 2576
3fc8eb30 2577 if (prepared == 0)
d56b7306 2578 {
4d9d9d04
PA
2579 if (debug_infrun)
2580 fprintf_unfiltered (gdb_stdlog,
2581 "Got placed in step-over queue\n");
2582
2583 tp->control.trap_expected = 0;
d56b7306
VP
2584 discard_cleanups (old_cleanups);
2585 return;
2586 }
3fc8eb30
PA
2587 else if (prepared < 0)
2588 {
2589 /* Fallback to stepping over the breakpoint in-line. */
2590
2591 if (target_is_non_stop_p ())
2592 stop_all_threads ();
2593
a01bda52 2594 set_step_over_info (regcache->aspace (),
21edc42f 2595 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2596
2597 step = maybe_software_singlestep (gdbarch, pc);
2598
2599 insert_breakpoints ();
2600 }
2601 else if (prepared > 0)
2602 {
2603 struct displaced_step_inferior_state *displaced;
99e40580 2604
3fc8eb30
PA
2605 /* Update pc to reflect the new address from which we will
2606 execute instructions due to displaced stepping. */
2607 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
ca7781d2 2608
3fc8eb30
PA
2609 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2610 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2611 displaced->step_closure);
2612 }
237fc4c9
PA
2613 }
2614
2facfe5c 2615 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2616 else if (step)
2facfe5c 2617 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2618
30852783
UW
2619 /* Currently, our software single-step implementation leads to different
2620 results than hardware single-stepping in one situation: when stepping
2621 into delivering a signal which has an associated signal handler,
2622 hardware single-step will stop at the first instruction of the handler,
2623 while software single-step will simply skip execution of the handler.
2624
2625 For now, this difference in behavior is accepted since there is no
2626 easy way to actually implement single-stepping into a signal handler
2627 without kernel support.
2628
2629 However, there is one scenario where this difference leads to follow-on
2630 problems: if we're stepping off a breakpoint by removing all breakpoints
2631 and then single-stepping. In this case, the software single-step
2632 behavior means that even if there is a *breakpoint* in the signal
2633 handler, GDB still would not stop.
2634
2635 Fortunately, we can at least fix this particular issue. We detect
2636 here the case where we are about to deliver a signal while software
2637 single-stepping with breakpoints removed. In this situation, we
2638 revert the decisions to remove all breakpoints and insert single-
2639 step breakpoints, and instead we install a step-resume breakpoint
2640 at the current address, deliver the signal without stepping, and
2641 once we arrive back at the step-resume breakpoint, actually step
2642 over the breakpoint we originally wanted to step over. */
34b7e8a6 2643 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2644 && sig != GDB_SIGNAL_0
2645 && step_over_info_valid_p ())
30852783
UW
2646 {
2647 /* If we have nested signals or a pending signal is delivered
2648 immediately after a handler returns, might might already have
2649 a step-resume breakpoint set on the earlier handler. We cannot
2650 set another step-resume breakpoint; just continue on until the
2651 original breakpoint is hit. */
2652 if (tp->control.step_resume_breakpoint == NULL)
2653 {
2c03e5be 2654 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2655 tp->step_after_step_resume_breakpoint = 1;
2656 }
2657
34b7e8a6 2658 delete_single_step_breakpoints (tp);
30852783 2659
31e77af2 2660 clear_step_over_info ();
30852783 2661 tp->control.trap_expected = 0;
31e77af2
PA
2662
2663 insert_breakpoints ();
30852783
UW
2664 }
2665
b0f16a3e
SM
2666 /* If STEP is set, it's a request to use hardware stepping
2667 facilities. But in that case, we should never
2668 use singlestep breakpoint. */
34b7e8a6 2669 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2670
fbea99ea 2671 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2672 if (tp->control.trap_expected)
b0f16a3e
SM
2673 {
2674 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2675 hit, either by single-stepping the thread with the breakpoint
2676 removed, or by displaced stepping, with the breakpoint inserted.
2677 In the former case, we need to single-step only this thread,
2678 and keep others stopped, as they can miss this breakpoint if
2679 allowed to run. That's not really a problem for displaced
2680 stepping, but, we still keep other threads stopped, in case
2681 another thread is also stopped for a breakpoint waiting for
2682 its turn in the displaced stepping queue. */
b0f16a3e
SM
2683 resume_ptid = inferior_ptid;
2684 }
fbea99ea
PA
2685 else
2686 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2687
7f5ef605
PA
2688 if (execution_direction != EXEC_REVERSE
2689 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2690 {
372316f1
PA
2691 /* There are two cases where we currently need to step a
2692 breakpoint instruction when we have a signal to deliver:
2693
2694 - See handle_signal_stop where we handle random signals that
2695 could take out us out of the stepping range. Normally, in
2696 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2697 signal handler with a breakpoint at PC, but there are cases
2698 where we should _always_ single-step, even if we have a
2699 step-resume breakpoint, like when a software watchpoint is
2700 set. Assuming single-stepping and delivering a signal at the
2701 same time would takes us to the signal handler, then we could
2702 have removed the breakpoint at PC to step over it. However,
2703 some hardware step targets (like e.g., Mac OS) can't step
2704 into signal handlers, and for those, we need to leave the
2705 breakpoint at PC inserted, as otherwise if the handler
2706 recurses and executes PC again, it'll miss the breakpoint.
2707 So we leave the breakpoint inserted anyway, but we need to
2708 record that we tried to step a breakpoint instruction, so
372316f1
PA
2709 that adjust_pc_after_break doesn't end up confused.
2710
2711 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2712 in one thread after another thread that was stepping had been
2713 momentarily paused for a step-over. When we re-resume the
2714 stepping thread, it may be resumed from that address with a
2715 breakpoint that hasn't trapped yet. Seen with
2716 gdb.threads/non-stop-fair-events.exp, on targets that don't
2717 do displaced stepping. */
2718
2719 if (debug_infrun)
2720 fprintf_unfiltered (gdb_stdlog,
2721 "infrun: resume: [%s] stepped breakpoint\n",
2722 target_pid_to_str (tp->ptid));
7f5ef605
PA
2723
2724 tp->stepped_breakpoint = 1;
2725
b0f16a3e
SM
2726 /* Most targets can step a breakpoint instruction, thus
2727 executing it normally. But if this one cannot, just
2728 continue and we will hit it anyway. */
7f5ef605 2729 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2730 step = 0;
2731 }
ef5cf84e 2732
b0f16a3e 2733 if (debug_displaced
cb71640d 2734 && tp->control.trap_expected
3fc8eb30 2735 && use_displaced_stepping (tp)
cb71640d 2736 && !step_over_info_valid_p ())
b0f16a3e 2737 {
d9b67d9f 2738 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
ac7936df 2739 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2740 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2741 gdb_byte buf[4];
2742
2743 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2744 paddress (resume_gdbarch, actual_pc));
2745 read_memory (actual_pc, buf, sizeof (buf));
2746 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2747 }
237fc4c9 2748
b0f16a3e
SM
2749 if (tp->control.may_range_step)
2750 {
2751 /* If we're resuming a thread with the PC out of the step
2752 range, then we're doing some nested/finer run control
2753 operation, like stepping the thread out of the dynamic
2754 linker or the displaced stepping scratch pad. We
2755 shouldn't have allowed a range step then. */
2756 gdb_assert (pc_in_thread_step_range (pc, tp));
2757 }
c1e36e3e 2758
64ce06e4 2759 do_target_resume (resume_ptid, step, sig);
372316f1 2760 tp->resumed = 1;
c906108c
SS
2761 discard_cleanups (old_cleanups);
2762}
2763\f
237fc4c9 2764/* Proceeding. */
c906108c 2765
4c2f2a79
PA
2766/* See infrun.h. */
2767
2768/* Counter that tracks number of user visible stops. This can be used
2769 to tell whether a command has proceeded the inferior past the
2770 current location. This allows e.g., inferior function calls in
2771 breakpoint commands to not interrupt the command list. When the
2772 call finishes successfully, the inferior is standing at the same
2773 breakpoint as if nothing happened (and so we don't call
2774 normal_stop). */
2775static ULONGEST current_stop_id;
2776
2777/* See infrun.h. */
2778
2779ULONGEST
2780get_stop_id (void)
2781{
2782 return current_stop_id;
2783}
2784
2785/* Called when we report a user visible stop. */
2786
2787static void
2788new_stop_id (void)
2789{
2790 current_stop_id++;
2791}
2792
c906108c
SS
2793/* Clear out all variables saying what to do when inferior is continued.
2794 First do this, then set the ones you want, then call `proceed'. */
2795
a7212384
UW
2796static void
2797clear_proceed_status_thread (struct thread_info *tp)
c906108c 2798{
a7212384
UW
2799 if (debug_infrun)
2800 fprintf_unfiltered (gdb_stdlog,
2801 "infrun: clear_proceed_status_thread (%s)\n",
2802 target_pid_to_str (tp->ptid));
d6b48e9c 2803
372316f1
PA
2804 /* If we're starting a new sequence, then the previous finished
2805 single-step is no longer relevant. */
2806 if (tp->suspend.waitstatus_pending_p)
2807 {
2808 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2809 {
2810 if (debug_infrun)
2811 fprintf_unfiltered (gdb_stdlog,
2812 "infrun: clear_proceed_status: pending "
2813 "event of %s was a finished step. "
2814 "Discarding.\n",
2815 target_pid_to_str (tp->ptid));
2816
2817 tp->suspend.waitstatus_pending_p = 0;
2818 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2819 }
2820 else if (debug_infrun)
2821 {
23fdd69e
SM
2822 std::string statstr
2823 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2824
372316f1
PA
2825 fprintf_unfiltered (gdb_stdlog,
2826 "infrun: clear_proceed_status_thread: thread %s "
2827 "has pending wait status %s "
2828 "(currently_stepping=%d).\n",
23fdd69e 2829 target_pid_to_str (tp->ptid), statstr.c_str (),
372316f1 2830 currently_stepping (tp));
372316f1
PA
2831 }
2832 }
2833
70509625
PA
2834 /* If this signal should not be seen by program, give it zero.
2835 Used for debugging signals. */
2836 if (!signal_pass_state (tp->suspend.stop_signal))
2837 tp->suspend.stop_signal = GDB_SIGNAL_0;
2838
243a9253
PA
2839 thread_fsm_delete (tp->thread_fsm);
2840 tp->thread_fsm = NULL;
2841
16c381f0
JK
2842 tp->control.trap_expected = 0;
2843 tp->control.step_range_start = 0;
2844 tp->control.step_range_end = 0;
c1e36e3e 2845 tp->control.may_range_step = 0;
16c381f0
JK
2846 tp->control.step_frame_id = null_frame_id;
2847 tp->control.step_stack_frame_id = null_frame_id;
2848 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2849 tp->control.step_start_function = NULL;
a7212384 2850 tp->stop_requested = 0;
4e1c45ea 2851
16c381f0 2852 tp->control.stop_step = 0;
32400beb 2853
16c381f0 2854 tp->control.proceed_to_finish = 0;
414c69f7 2855
856e7dd6 2856 tp->control.stepping_command = 0;
17b2616c 2857
a7212384 2858 /* Discard any remaining commands or status from previous stop. */
16c381f0 2859 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2860}
32400beb 2861
a7212384 2862void
70509625 2863clear_proceed_status (int step)
a7212384 2864{
f2665db5
MM
2865 /* With scheduler-locking replay, stop replaying other threads if we're
2866 not replaying the user-visible resume ptid.
2867
2868 This is a convenience feature to not require the user to explicitly
2869 stop replaying the other threads. We're assuming that the user's
2870 intent is to resume tracing the recorded process. */
2871 if (!non_stop && scheduler_mode == schedlock_replay
2872 && target_record_is_replaying (minus_one_ptid)
2873 && !target_record_will_replay (user_visible_resume_ptid (step),
2874 execution_direction))
2875 target_record_stop_replaying ();
2876
6c95b8df
PA
2877 if (!non_stop)
2878 {
70509625
PA
2879 struct thread_info *tp;
2880 ptid_t resume_ptid;
2881
2882 resume_ptid = user_visible_resume_ptid (step);
2883
2884 /* In all-stop mode, delete the per-thread status of all threads
2885 we're about to resume, implicitly and explicitly. */
2886 ALL_NON_EXITED_THREADS (tp)
2887 {
2888 if (!ptid_match (tp->ptid, resume_ptid))
2889 continue;
2890 clear_proceed_status_thread (tp);
2891 }
6c95b8df
PA
2892 }
2893
a7212384
UW
2894 if (!ptid_equal (inferior_ptid, null_ptid))
2895 {
2896 struct inferior *inferior;
2897
2898 if (non_stop)
2899 {
6c95b8df
PA
2900 /* If in non-stop mode, only delete the per-thread status of
2901 the current thread. */
a7212384
UW
2902 clear_proceed_status_thread (inferior_thread ());
2903 }
6c95b8df 2904
d6b48e9c 2905 inferior = current_inferior ();
16c381f0 2906 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2907 }
2908
f3b1572e 2909 observer_notify_about_to_proceed ();
c906108c
SS
2910}
2911
99619bea
PA
2912/* Returns true if TP is still stopped at a breakpoint that needs
2913 stepping-over in order to make progress. If the breakpoint is gone
2914 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2915
2916static int
6c4cfb24 2917thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2918{
2919 if (tp->stepping_over_breakpoint)
2920 {
2921 struct regcache *regcache = get_thread_regcache (tp->ptid);
2922
a01bda52 2923 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2924 regcache_read_pc (regcache))
2925 == ordinary_breakpoint_here)
99619bea
PA
2926 return 1;
2927
2928 tp->stepping_over_breakpoint = 0;
2929 }
2930
2931 return 0;
2932}
2933
6c4cfb24
PA
2934/* Check whether thread TP still needs to start a step-over in order
2935 to make progress when resumed. Returns an bitwise or of enum
2936 step_over_what bits, indicating what needs to be stepped over. */
2937
8d297bbf 2938static step_over_what
6c4cfb24
PA
2939thread_still_needs_step_over (struct thread_info *tp)
2940{
8d297bbf 2941 step_over_what what = 0;
6c4cfb24
PA
2942
2943 if (thread_still_needs_step_over_bp (tp))
2944 what |= STEP_OVER_BREAKPOINT;
2945
2946 if (tp->stepping_over_watchpoint
2947 && !target_have_steppable_watchpoint)
2948 what |= STEP_OVER_WATCHPOINT;
2949
2950 return what;
2951}
2952
483805cf
PA
2953/* Returns true if scheduler locking applies. STEP indicates whether
2954 we're about to do a step/next-like command to a thread. */
2955
2956static int
856e7dd6 2957schedlock_applies (struct thread_info *tp)
483805cf
PA
2958{
2959 return (scheduler_mode == schedlock_on
2960 || (scheduler_mode == schedlock_step
f2665db5
MM
2961 && tp->control.stepping_command)
2962 || (scheduler_mode == schedlock_replay
2963 && target_record_will_replay (minus_one_ptid,
2964 execution_direction)));
483805cf
PA
2965}
2966
c906108c
SS
2967/* Basic routine for continuing the program in various fashions.
2968
2969 ADDR is the address to resume at, or -1 for resume where stopped.
2970 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2971 or -1 for act according to how it stopped.
c906108c 2972 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2973 -1 means return after that and print nothing.
2974 You should probably set various step_... variables
2975 before calling here, if you are stepping.
c906108c
SS
2976
2977 You should call clear_proceed_status before calling proceed. */
2978
2979void
64ce06e4 2980proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2981{
e58b0e63
PA
2982 struct regcache *regcache;
2983 struct gdbarch *gdbarch;
4e1c45ea 2984 struct thread_info *tp;
e58b0e63 2985 CORE_ADDR pc;
4d9d9d04
PA
2986 ptid_t resume_ptid;
2987 struct execution_control_state ecss;
2988 struct execution_control_state *ecs = &ecss;
2989 struct cleanup *old_chain;
2990 int started;
c906108c 2991
e58b0e63
PA
2992 /* If we're stopped at a fork/vfork, follow the branch set by the
2993 "set follow-fork-mode" command; otherwise, we'll just proceed
2994 resuming the current thread. */
2995 if (!follow_fork ())
2996 {
2997 /* The target for some reason decided not to resume. */
2998 normal_stop ();
f148b27e
PA
2999 if (target_can_async_p ())
3000 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
3001 return;
3002 }
3003
842951eb
PA
3004 /* We'll update this if & when we switch to a new thread. */
3005 previous_inferior_ptid = inferior_ptid;
3006
e58b0e63 3007 regcache = get_current_regcache ();
ac7936df 3008 gdbarch = regcache->arch ();
8b86c959
YQ
3009 const address_space *aspace = regcache->aspace ();
3010
e58b0e63 3011 pc = regcache_read_pc (regcache);
2adfaa28 3012 tp = inferior_thread ();
e58b0e63 3013
99619bea
PA
3014 /* Fill in with reasonable starting values. */
3015 init_thread_stepping_state (tp);
3016
c2829269
PA
3017 gdb_assert (!thread_is_in_step_over_chain (tp));
3018
2acceee2 3019 if (addr == (CORE_ADDR) -1)
c906108c 3020 {
af48d08f
PA
3021 if (pc == stop_pc
3022 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 3023 && execution_direction != EXEC_REVERSE)
3352ef37
AC
3024 /* There is a breakpoint at the address we will resume at,
3025 step one instruction before inserting breakpoints so that
3026 we do not stop right away (and report a second hit at this
b2175913
MS
3027 breakpoint).
3028
3029 Note, we don't do this in reverse, because we won't
3030 actually be executing the breakpoint insn anyway.
3031 We'll be (un-)executing the previous instruction. */
99619bea 3032 tp->stepping_over_breakpoint = 1;
515630c5
UW
3033 else if (gdbarch_single_step_through_delay_p (gdbarch)
3034 && gdbarch_single_step_through_delay (gdbarch,
3035 get_current_frame ()))
3352ef37
AC
3036 /* We stepped onto an instruction that needs to be stepped
3037 again before re-inserting the breakpoint, do so. */
99619bea 3038 tp->stepping_over_breakpoint = 1;
c906108c
SS
3039 }
3040 else
3041 {
515630c5 3042 regcache_write_pc (regcache, addr);
c906108c
SS
3043 }
3044
70509625
PA
3045 if (siggnal != GDB_SIGNAL_DEFAULT)
3046 tp->suspend.stop_signal = siggnal;
3047
4d9d9d04
PA
3048 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3049
3050 /* If an exception is thrown from this point on, make sure to
3051 propagate GDB's knowledge of the executing state to the
3052 frontend/user running state. */
3053 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3054
3055 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3056 threads (e.g., we might need to set threads stepping over
3057 breakpoints first), from the user/frontend's point of view, all
3058 threads in RESUME_PTID are now running. Unless we're calling an
3059 inferior function, as in that case we pretend the inferior
3060 doesn't run at all. */
3061 if (!tp->control.in_infcall)
3062 set_running (resume_ptid, 1);
17b2616c 3063
527159b7 3064 if (debug_infrun)
8a9de0e4 3065 fprintf_unfiltered (gdb_stdlog,
64ce06e4 3066 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 3067 paddress (gdbarch, addr),
64ce06e4 3068 gdb_signal_to_symbol_string (siggnal));
527159b7 3069
4d9d9d04
PA
3070 annotate_starting ();
3071
3072 /* Make sure that output from GDB appears before output from the
3073 inferior. */
3074 gdb_flush (gdb_stdout);
3075
3076 /* In a multi-threaded task we may select another thread and
3077 then continue or step.
3078
3079 But if a thread that we're resuming had stopped at a breakpoint,
3080 it will immediately cause another breakpoint stop without any
3081 execution (i.e. it will report a breakpoint hit incorrectly). So
3082 we must step over it first.
3083
3084 Look for threads other than the current (TP) that reported a
3085 breakpoint hit and haven't been resumed yet since. */
3086
3087 /* If scheduler locking applies, we can avoid iterating over all
3088 threads. */
3089 if (!non_stop && !schedlock_applies (tp))
94cc34af 3090 {
4d9d9d04
PA
3091 struct thread_info *current = tp;
3092
3093 ALL_NON_EXITED_THREADS (tp)
3094 {
3095 /* Ignore the current thread here. It's handled
3096 afterwards. */
3097 if (tp == current)
3098 continue;
99619bea 3099
4d9d9d04
PA
3100 /* Ignore threads of processes we're not resuming. */
3101 if (!ptid_match (tp->ptid, resume_ptid))
3102 continue;
c906108c 3103
4d9d9d04
PA
3104 if (!thread_still_needs_step_over (tp))
3105 continue;
3106
3107 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3108
99619bea
PA
3109 if (debug_infrun)
3110 fprintf_unfiltered (gdb_stdlog,
3111 "infrun: need to step-over [%s] first\n",
4d9d9d04 3112 target_pid_to_str (tp->ptid));
99619bea 3113
4d9d9d04 3114 thread_step_over_chain_enqueue (tp);
2adfaa28 3115 }
31e77af2 3116
4d9d9d04 3117 tp = current;
30852783
UW
3118 }
3119
4d9d9d04
PA
3120 /* Enqueue the current thread last, so that we move all other
3121 threads over their breakpoints first. */
3122 if (tp->stepping_over_breakpoint)
3123 thread_step_over_chain_enqueue (tp);
30852783 3124
4d9d9d04
PA
3125 /* If the thread isn't started, we'll still need to set its prev_pc,
3126 so that switch_back_to_stepped_thread knows the thread hasn't
3127 advanced. Must do this before resuming any thread, as in
3128 all-stop/remote, once we resume we can't send any other packet
3129 until the target stops again. */
3130 tp->prev_pc = regcache_read_pc (regcache);
99619bea 3131
a9bc57b9
TT
3132 {
3133 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
85ad3aaf 3134
a9bc57b9 3135 started = start_step_over ();
c906108c 3136
a9bc57b9
TT
3137 if (step_over_info_valid_p ())
3138 {
3139 /* Either this thread started a new in-line step over, or some
3140 other thread was already doing one. In either case, don't
3141 resume anything else until the step-over is finished. */
3142 }
3143 else if (started && !target_is_non_stop_p ())
3144 {
3145 /* A new displaced stepping sequence was started. In all-stop,
3146 we can't talk to the target anymore until it next stops. */
3147 }
3148 else if (!non_stop && target_is_non_stop_p ())
3149 {
3150 /* In all-stop, but the target is always in non-stop mode.
3151 Start all other threads that are implicitly resumed too. */
3152 ALL_NON_EXITED_THREADS (tp)
fbea99ea
PA
3153 {
3154 /* Ignore threads of processes we're not resuming. */
3155 if (!ptid_match (tp->ptid, resume_ptid))
3156 continue;
3157
3158 if (tp->resumed)
3159 {
3160 if (debug_infrun)
3161 fprintf_unfiltered (gdb_stdlog,
3162 "infrun: proceed: [%s] resumed\n",
3163 target_pid_to_str (tp->ptid));
3164 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3165 continue;
3166 }
3167
3168 if (thread_is_in_step_over_chain (tp))
3169 {
3170 if (debug_infrun)
3171 fprintf_unfiltered (gdb_stdlog,
3172 "infrun: proceed: [%s] needs step-over\n",
3173 target_pid_to_str (tp->ptid));
3174 continue;
3175 }
3176
3177 if (debug_infrun)
3178 fprintf_unfiltered (gdb_stdlog,
3179 "infrun: proceed: resuming %s\n",
3180 target_pid_to_str (tp->ptid));
3181
3182 reset_ecs (ecs, tp);
3183 switch_to_thread (tp->ptid);
3184 keep_going_pass_signal (ecs);
3185 if (!ecs->wait_some_more)
fd7dcb94 3186 error (_("Command aborted."));
fbea99ea 3187 }
a9bc57b9
TT
3188 }
3189 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
3190 {
3191 /* The thread wasn't started, and isn't queued, run it now. */
3192 reset_ecs (ecs, tp);
3193 switch_to_thread (tp->ptid);
3194 keep_going_pass_signal (ecs);
3195 if (!ecs->wait_some_more)
3196 error (_("Command aborted."));
3197 }
3198 }
c906108c 3199
85ad3aaf
PA
3200 target_commit_resume ();
3201
4d9d9d04 3202 discard_cleanups (old_chain);
c906108c 3203
0b333c5e
PA
3204 /* Tell the event loop to wait for it to stop. If the target
3205 supports asynchronous execution, it'll do this from within
3206 target_resume. */
362646f5 3207 if (!target_can_async_p ())
0b333c5e 3208 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3209}
c906108c
SS
3210\f
3211
3212/* Start remote-debugging of a machine over a serial link. */
96baa820 3213
c906108c 3214void
8621d6a9 3215start_remote (int from_tty)
c906108c 3216{
d6b48e9c 3217 struct inferior *inferior;
d6b48e9c
PA
3218
3219 inferior = current_inferior ();
16c381f0 3220 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3221
1777feb0 3222 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3223 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3224 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3225 nothing is returned (instead of just blocking). Because of this,
3226 targets expecting an immediate response need to, internally, set
3227 things up so that the target_wait() is forced to eventually
1777feb0 3228 timeout. */
6426a772
JM
3229 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3230 differentiate to its caller what the state of the target is after
3231 the initial open has been performed. Here we're assuming that
3232 the target has stopped. It should be possible to eventually have
3233 target_open() return to the caller an indication that the target
3234 is currently running and GDB state should be set to the same as
1777feb0 3235 for an async run. */
e4c8541f 3236 wait_for_inferior ();
8621d6a9
DJ
3237
3238 /* Now that the inferior has stopped, do any bookkeeping like
3239 loading shared libraries. We want to do this before normal_stop,
3240 so that the displayed frame is up to date. */
3241 post_create_inferior (&current_target, from_tty);
3242
6426a772 3243 normal_stop ();
c906108c
SS
3244}
3245
3246/* Initialize static vars when a new inferior begins. */
3247
3248void
96baa820 3249init_wait_for_inferior (void)
c906108c
SS
3250{
3251 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3252
c906108c
SS
3253 breakpoint_init_inferior (inf_starting);
3254
70509625 3255 clear_proceed_status (0);
9f976b41 3256
ca005067 3257 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3258
842951eb 3259 previous_inferior_ptid = inferior_ptid;
0d1e5fa7 3260
edb3359d
DJ
3261 /* Discard any skipped inlined frames. */
3262 clear_inline_frame_state (minus_one_ptid);
c906108c 3263}
237fc4c9 3264
c906108c 3265\f
488f131b 3266
ec9499be 3267static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3268
568d6575
UW
3269static void handle_step_into_function (struct gdbarch *gdbarch,
3270 struct execution_control_state *ecs);
3271static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3272 struct execution_control_state *ecs);
4f5d7f63 3273static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3274static void check_exception_resume (struct execution_control_state *,
28106bc2 3275 struct frame_info *);
611c83ae 3276
bdc36728 3277static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3278static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3279static void keep_going (struct execution_control_state *ecs);
94c57d6a 3280static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3281static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3282
252fbfc8
PA
3283/* This function is attached as a "thread_stop_requested" observer.
3284 Cleanup local state that assumed the PTID was to be resumed, and
3285 report the stop to the frontend. */
3286
2c0b251b 3287static void
252fbfc8
PA
3288infrun_thread_stop_requested (ptid_t ptid)
3289{
c2829269 3290 struct thread_info *tp;
252fbfc8 3291
c65d6b55
PA
3292 /* PTID was requested to stop. If the thread was already stopped,
3293 but the user/frontend doesn't know about that yet (e.g., the
3294 thread had been temporarily paused for some step-over), set up
3295 for reporting the stop now. */
c2829269
PA
3296 ALL_NON_EXITED_THREADS (tp)
3297 if (ptid_match (tp->ptid, ptid))
3298 {
c65d6b55
PA
3299 if (tp->state != THREAD_RUNNING)
3300 continue;
3301 if (tp->executing)
3302 continue;
3303
3304 /* Remove matching threads from the step-over queue, so
3305 start_step_over doesn't try to resume them
3306 automatically. */
c2829269
PA
3307 if (thread_is_in_step_over_chain (tp))
3308 thread_step_over_chain_remove (tp);
252fbfc8 3309
c65d6b55
PA
3310 /* If the thread is stopped, but the user/frontend doesn't
3311 know about that yet, queue a pending event, as if the
3312 thread had just stopped now. Unless the thread already had
3313 a pending event. */
3314 if (!tp->suspend.waitstatus_pending_p)
3315 {
3316 tp->suspend.waitstatus_pending_p = 1;
3317 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3318 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3319 }
3320
3321 /* Clear the inline-frame state, since we're re-processing the
3322 stop. */
3323 clear_inline_frame_state (tp->ptid);
3324
3325 /* If this thread was paused because some other thread was
3326 doing an inline-step over, let that finish first. Once
3327 that happens, we'll restart all threads and consume pending
3328 stop events then. */
3329 if (step_over_info_valid_p ())
3330 continue;
3331
3332 /* Otherwise we can process the (new) pending event now. Set
3333 it so this pending event is considered by
3334 do_target_wait. */
3335 tp->resumed = 1;
3336 }
252fbfc8
PA
3337}
3338
a07daef3
PA
3339static void
3340infrun_thread_thread_exit (struct thread_info *tp, int silent)
3341{
3342 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3343 nullify_last_target_wait_ptid ();
3344}
3345
0cbcdb96
PA
3346/* Delete the step resume, single-step and longjmp/exception resume
3347 breakpoints of TP. */
4e1c45ea 3348
0cbcdb96
PA
3349static void
3350delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3351{
0cbcdb96
PA
3352 delete_step_resume_breakpoint (tp);
3353 delete_exception_resume_breakpoint (tp);
34b7e8a6 3354 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3355}
3356
0cbcdb96
PA
3357/* If the target still has execution, call FUNC for each thread that
3358 just stopped. In all-stop, that's all the non-exited threads; in
3359 non-stop, that's the current thread, only. */
3360
3361typedef void (*for_each_just_stopped_thread_callback_func)
3362 (struct thread_info *tp);
4e1c45ea
PA
3363
3364static void
0cbcdb96 3365for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3366{
0cbcdb96 3367 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
4e1c45ea
PA
3368 return;
3369
fbea99ea 3370 if (target_is_non_stop_p ())
4e1c45ea 3371 {
0cbcdb96
PA
3372 /* If in non-stop mode, only the current thread stopped. */
3373 func (inferior_thread ());
4e1c45ea
PA
3374 }
3375 else
0cbcdb96
PA
3376 {
3377 struct thread_info *tp;
3378
3379 /* In all-stop mode, all threads have stopped. */
3380 ALL_NON_EXITED_THREADS (tp)
3381 {
3382 func (tp);
3383 }
3384 }
3385}
3386
3387/* Delete the step resume and longjmp/exception resume breakpoints of
3388 the threads that just stopped. */
3389
3390static void
3391delete_just_stopped_threads_infrun_breakpoints (void)
3392{
3393 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3394}
3395
3396/* Delete the single-step breakpoints of the threads that just
3397 stopped. */
7c16b83e 3398
34b7e8a6
PA
3399static void
3400delete_just_stopped_threads_single_step_breakpoints (void)
3401{
3402 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3403}
3404
1777feb0 3405/* A cleanup wrapper. */
4e1c45ea
PA
3406
3407static void
0cbcdb96 3408delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
4e1c45ea 3409{
0cbcdb96 3410 delete_just_stopped_threads_infrun_breakpoints ();
4e1c45ea
PA
3411}
3412
221e1a37 3413/* See infrun.h. */
223698f8 3414
221e1a37 3415void
223698f8
DE
3416print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3417 const struct target_waitstatus *ws)
3418{
23fdd69e 3419 std::string status_string = target_waitstatus_to_string (ws);
d7e74731 3420 string_file stb;
223698f8
DE
3421
3422 /* The text is split over several lines because it was getting too long.
3423 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3424 output as a unit; we want only one timestamp printed if debug_timestamp
3425 is set. */
3426
d7e74731
PA
3427 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3428 ptid_get_pid (waiton_ptid),
3429 ptid_get_lwp (waiton_ptid),
3430 ptid_get_tid (waiton_ptid));
dfd4cc63 3431 if (ptid_get_pid (waiton_ptid) != -1)
d7e74731
PA
3432 stb.printf (" [%s]", target_pid_to_str (waiton_ptid));
3433 stb.printf (", status) =\n");
3434 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3435 ptid_get_pid (result_ptid),
3436 ptid_get_lwp (result_ptid),
3437 ptid_get_tid (result_ptid),
3438 target_pid_to_str (result_ptid));
23fdd69e 3439 stb.printf ("infrun: %s\n", status_string.c_str ());
223698f8
DE
3440
3441 /* This uses %s in part to handle %'s in the text, but also to avoid
3442 a gcc error: the format attribute requires a string literal. */
d7e74731 3443 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3444}
3445
372316f1
PA
3446/* Select a thread at random, out of those which are resumed and have
3447 had events. */
3448
3449static struct thread_info *
3450random_pending_event_thread (ptid_t waiton_ptid)
3451{
3452 struct thread_info *event_tp;
3453 int num_events = 0;
3454 int random_selector;
3455
3456 /* First see how many events we have. Count only resumed threads
3457 that have an event pending. */
3458 ALL_NON_EXITED_THREADS (event_tp)
3459 if (ptid_match (event_tp->ptid, waiton_ptid)
3460 && event_tp->resumed
3461 && event_tp->suspend.waitstatus_pending_p)
3462 num_events++;
3463
3464 if (num_events == 0)
3465 return NULL;
3466
3467 /* Now randomly pick a thread out of those that have had events. */
3468 random_selector = (int)
3469 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3470
3471 if (debug_infrun && num_events > 1)
3472 fprintf_unfiltered (gdb_stdlog,
3473 "infrun: Found %d events, selecting #%d\n",
3474 num_events, random_selector);
3475
3476 /* Select the Nth thread that has had an event. */
3477 ALL_NON_EXITED_THREADS (event_tp)
3478 if (ptid_match (event_tp->ptid, waiton_ptid)
3479 && event_tp->resumed
3480 && event_tp->suspend.waitstatus_pending_p)
3481 if (random_selector-- == 0)
3482 break;
3483
3484 return event_tp;
3485}
3486
3487/* Wrapper for target_wait that first checks whether threads have
3488 pending statuses to report before actually asking the target for
3489 more events. */
3490
3491static ptid_t
3492do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3493{
3494 ptid_t event_ptid;
3495 struct thread_info *tp;
3496
3497 /* First check if there is a resumed thread with a wait status
3498 pending. */
3499 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3500 {
3501 tp = random_pending_event_thread (ptid);
3502 }
3503 else
3504 {
3505 if (debug_infrun)
3506 fprintf_unfiltered (gdb_stdlog,
3507 "infrun: Waiting for specific thread %s.\n",
3508 target_pid_to_str (ptid));
3509
3510 /* We have a specific thread to check. */
3511 tp = find_thread_ptid (ptid);
3512 gdb_assert (tp != NULL);
3513 if (!tp->suspend.waitstatus_pending_p)
3514 tp = NULL;
3515 }
3516
3517 if (tp != NULL
3518 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3519 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3520 {
3521 struct regcache *regcache = get_thread_regcache (tp->ptid);
ac7936df 3522 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3523 CORE_ADDR pc;
3524 int discard = 0;
3525
3526 pc = regcache_read_pc (regcache);
3527
3528 if (pc != tp->suspend.stop_pc)
3529 {
3530 if (debug_infrun)
3531 fprintf_unfiltered (gdb_stdlog,
3532 "infrun: PC of %s changed. was=%s, now=%s\n",
3533 target_pid_to_str (tp->ptid),
3534 paddress (gdbarch, tp->prev_pc),
3535 paddress (gdbarch, pc));
3536 discard = 1;
3537 }
a01bda52 3538 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1
PA
3539 {
3540 if (debug_infrun)
3541 fprintf_unfiltered (gdb_stdlog,
3542 "infrun: previous breakpoint of %s, at %s gone\n",
3543 target_pid_to_str (tp->ptid),
3544 paddress (gdbarch, pc));
3545
3546 discard = 1;
3547 }
3548
3549 if (discard)
3550 {
3551 if (debug_infrun)
3552 fprintf_unfiltered (gdb_stdlog,
3553 "infrun: pending event of %s cancelled.\n",
3554 target_pid_to_str (tp->ptid));
3555
3556 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3557 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3558 }
3559 }
3560
3561 if (tp != NULL)
3562 {
3563 if (debug_infrun)
3564 {
23fdd69e
SM
3565 std::string statstr
3566 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 3567
372316f1
PA
3568 fprintf_unfiltered (gdb_stdlog,
3569 "infrun: Using pending wait status %s for %s.\n",
23fdd69e 3570 statstr.c_str (),
372316f1 3571 target_pid_to_str (tp->ptid));
372316f1
PA
3572 }
3573
3574 /* Now that we've selected our final event LWP, un-adjust its PC
3575 if it was a software breakpoint (and the target doesn't
3576 always adjust the PC itself). */
3577 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3578 && !target_supports_stopped_by_sw_breakpoint ())
3579 {
3580 struct regcache *regcache;
3581 struct gdbarch *gdbarch;
3582 int decr_pc;
3583
3584 regcache = get_thread_regcache (tp->ptid);
ac7936df 3585 gdbarch = regcache->arch ();
372316f1
PA
3586
3587 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3588 if (decr_pc != 0)
3589 {
3590 CORE_ADDR pc;
3591
3592 pc = regcache_read_pc (regcache);
3593 regcache_write_pc (regcache, pc + decr_pc);
3594 }
3595 }
3596
3597 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3598 *status = tp->suspend.waitstatus;
3599 tp->suspend.waitstatus_pending_p = 0;
3600
3601 /* Wake up the event loop again, until all pending events are
3602 processed. */
3603 if (target_is_async_p ())
3604 mark_async_event_handler (infrun_async_inferior_event_token);
3605 return tp->ptid;
3606 }
3607
3608 /* But if we don't find one, we'll have to wait. */
3609
3610 if (deprecated_target_wait_hook)
3611 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3612 else
3613 event_ptid = target_wait (ptid, status, options);
3614
3615 return event_ptid;
3616}
3617
24291992
PA
3618/* Prepare and stabilize the inferior for detaching it. E.g.,
3619 detaching while a thread is displaced stepping is a recipe for
3620 crashing it, as nothing would readjust the PC out of the scratch
3621 pad. */
3622
3623void
3624prepare_for_detach (void)
3625{
3626 struct inferior *inf = current_inferior ();
3627 ptid_t pid_ptid = pid_to_ptid (inf->pid);
24291992
PA
3628 struct displaced_step_inferior_state *displaced;
3629
3630 displaced = get_displaced_stepping_state (inf->pid);
3631
3632 /* Is any thread of this process displaced stepping? If not,
3633 there's nothing else to do. */
3634 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3635 return;
3636
3637 if (debug_infrun)
3638 fprintf_unfiltered (gdb_stdlog,
3639 "displaced-stepping in-process while detaching");
3640
9bcb1f16 3641 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992
PA
3642
3643 while (!ptid_equal (displaced->step_ptid, null_ptid))
3644 {
3645 struct cleanup *old_chain_2;
3646 struct execution_control_state ecss;
3647 struct execution_control_state *ecs;
3648
3649 ecs = &ecss;
3650 memset (ecs, 0, sizeof (*ecs));
3651
3652 overlay_cache_invalid = 1;
f15cb84a
YQ
3653 /* Flush target cache before starting to handle each event.
3654 Target was running and cache could be stale. This is just a
3655 heuristic. Running threads may modify target memory, but we
3656 don't get any event. */
3657 target_dcache_invalidate ();
24291992 3658
372316f1 3659 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3660
3661 if (debug_infrun)
3662 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3663
3664 /* If an error happens while handling the event, propagate GDB's
3665 knowledge of the executing state to the frontend/user running
3666 state. */
3e43a32a
MS
3667 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3668 &minus_one_ptid);
24291992
PA
3669
3670 /* Now figure out what to do with the result of the result. */
3671 handle_inferior_event (ecs);
3672
3673 /* No error, don't finish the state yet. */
3674 discard_cleanups (old_chain_2);
3675
3676 /* Breakpoints and watchpoints are not installed on the target
3677 at this point, and signals are passed directly to the
3678 inferior, so this must mean the process is gone. */
3679 if (!ecs->wait_some_more)
3680 {
9bcb1f16 3681 restore_detaching.release ();
24291992
PA
3682 error (_("Program exited while detaching"));
3683 }
3684 }
3685
9bcb1f16 3686 restore_detaching.release ();
24291992
PA
3687}
3688
cd0fc7c3 3689/* Wait for control to return from inferior to debugger.
ae123ec6 3690
cd0fc7c3
SS
3691 If inferior gets a signal, we may decide to start it up again
3692 instead of returning. That is why there is a loop in this function.
3693 When this function actually returns it means the inferior
3694 should be left stopped and GDB should read more commands. */
3695
3696void
e4c8541f 3697wait_for_inferior (void)
cd0fc7c3
SS
3698{
3699 struct cleanup *old_cleanups;
e6f5c25b 3700 struct cleanup *thread_state_chain;
c906108c 3701
527159b7 3702 if (debug_infrun)
ae123ec6 3703 fprintf_unfiltered
e4c8541f 3704 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3705
0cbcdb96
PA
3706 old_cleanups
3707 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3708 NULL);
cd0fc7c3 3709
e6f5c25b
PA
3710 /* If an error happens while handling the event, propagate GDB's
3711 knowledge of the executing state to the frontend/user running
3712 state. */
3713 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3714
c906108c
SS
3715 while (1)
3716 {
ae25568b
PA
3717 struct execution_control_state ecss;
3718 struct execution_control_state *ecs = &ecss;
963f9c80 3719 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3720
ae25568b
PA
3721 memset (ecs, 0, sizeof (*ecs));
3722
ec9499be 3723 overlay_cache_invalid = 1;
ec9499be 3724
f15cb84a
YQ
3725 /* Flush target cache before starting to handle each event.
3726 Target was running and cache could be stale. This is just a
3727 heuristic. Running threads may modify target memory, but we
3728 don't get any event. */
3729 target_dcache_invalidate ();
3730
372316f1 3731 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3732
f00150c9 3733 if (debug_infrun)
223698f8 3734 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3735
cd0fc7c3
SS
3736 /* Now figure out what to do with the result of the result. */
3737 handle_inferior_event (ecs);
c906108c 3738
cd0fc7c3
SS
3739 if (!ecs->wait_some_more)
3740 break;
3741 }
4e1c45ea 3742
e6f5c25b
PA
3743 /* No error, don't finish the state yet. */
3744 discard_cleanups (thread_state_chain);
3745
cd0fc7c3
SS
3746 do_cleanups (old_cleanups);
3747}
c906108c 3748
d3d4baed
PA
3749/* Cleanup that reinstalls the readline callback handler, if the
3750 target is running in the background. If while handling the target
3751 event something triggered a secondary prompt, like e.g., a
3752 pagination prompt, we'll have removed the callback handler (see
3753 gdb_readline_wrapper_line). Need to do this as we go back to the
3754 event loop, ready to process further input. Note this has no
3755 effect if the handler hasn't actually been removed, because calling
3756 rl_callback_handler_install resets the line buffer, thus losing
3757 input. */
3758
3759static void
3760reinstall_readline_callback_handler_cleanup (void *arg)
3761{
3b12939d
PA
3762 struct ui *ui = current_ui;
3763
3764 if (!ui->async)
6c400b59
PA
3765 {
3766 /* We're not going back to the top level event loop yet. Don't
3767 install the readline callback, as it'd prep the terminal,
3768 readline-style (raw, noecho) (e.g., --batch). We'll install
3769 it the next time the prompt is displayed, when we're ready
3770 for input. */
3771 return;
3772 }
3773
3b12939d 3774 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3775 gdb_rl_callback_handler_reinstall ();
3776}
3777
243a9253
PA
3778/* Clean up the FSMs of threads that are now stopped. In non-stop,
3779 that's just the event thread. In all-stop, that's all threads. */
3780
3781static void
3782clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3783{
3784 struct thread_info *thr = ecs->event_thread;
3785
3786 if (thr != NULL && thr->thread_fsm != NULL)
8980e177 3787 thread_fsm_clean_up (thr->thread_fsm, thr);
243a9253
PA
3788
3789 if (!non_stop)
3790 {
3791 ALL_NON_EXITED_THREADS (thr)
3792 {
3793 if (thr->thread_fsm == NULL)
3794 continue;
3795 if (thr == ecs->event_thread)
3796 continue;
3797
3798 switch_to_thread (thr->ptid);
8980e177 3799 thread_fsm_clean_up (thr->thread_fsm, thr);
243a9253
PA
3800 }
3801
3802 if (ecs->event_thread != NULL)
3803 switch_to_thread (ecs->event_thread->ptid);
3804 }
3805}
3806
3b12939d
PA
3807/* Helper for all_uis_check_sync_execution_done that works on the
3808 current UI. */
3809
3810static void
3811check_curr_ui_sync_execution_done (void)
3812{
3813 struct ui *ui = current_ui;
3814
3815 if (ui->prompt_state == PROMPT_NEEDED
3816 && ui->async
3817 && !gdb_in_secondary_prompt_p (ui))
3818 {
223ffa71 3819 target_terminal::ours ();
3b12939d 3820 observer_notify_sync_execution_done ();
3eb7562a 3821 ui_register_input_event_handler (ui);
3b12939d
PA
3822 }
3823}
3824
3825/* See infrun.h. */
3826
3827void
3828all_uis_check_sync_execution_done (void)
3829{
0e454242 3830 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3831 {
3832 check_curr_ui_sync_execution_done ();
3833 }
3834}
3835
a8836c93
PA
3836/* See infrun.h. */
3837
3838void
3839all_uis_on_sync_execution_starting (void)
3840{
0e454242 3841 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3842 {
3843 if (current_ui->prompt_state == PROMPT_NEEDED)
3844 async_disable_stdin ();
3845 }
3846}
3847
1777feb0 3848/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3849 event loop whenever a change of state is detected on the file
1777feb0
MS
3850 descriptor corresponding to the target. It can be called more than
3851 once to complete a single execution command. In such cases we need
3852 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3853 that this function is called for a single execution command, then
3854 report to the user that the inferior has stopped, and do the
1777feb0 3855 necessary cleanups. */
43ff13b4
JM
3856
3857void
fba45db2 3858fetch_inferior_event (void *client_data)
43ff13b4 3859{
0d1e5fa7 3860 struct execution_control_state ecss;
a474d7c2 3861 struct execution_control_state *ecs = &ecss;
4f8d22e3 3862 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 3863 struct cleanup *ts_old_chain;
0f641c01 3864 int cmd_done = 0;
963f9c80 3865 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3866
0d1e5fa7
PA
3867 memset (ecs, 0, sizeof (*ecs));
3868
c61db772
PA
3869 /* Events are always processed with the main UI as current UI. This
3870 way, warnings, debug output, etc. are always consistently sent to
3871 the main console. */
4b6749b9 3872 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3873
d3d4baed
PA
3874 /* End up with readline processing input, if necessary. */
3875 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3876
c5187ac6
PA
3877 /* We're handling a live event, so make sure we're doing live
3878 debugging. If we're looking at traceframes while the target is
3879 running, we're going to need to get back to that mode after
3880 handling the event. */
3881 if (non_stop)
3882 {
3883 make_cleanup_restore_current_traceframe ();
e6e4e701 3884 set_current_traceframe (-1);
c5187ac6
PA
3885 }
3886
5ed8105e
PA
3887 gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3888
4f8d22e3
PA
3889 if (non_stop)
3890 /* In non-stop mode, the user/frontend should not notice a thread
3891 switch due to internal events. Make sure we reverse to the
3892 user selected thread and frame after handling the event and
3893 running any breakpoint commands. */
5ed8105e 3894 maybe_restore_thread.emplace ();
4f8d22e3 3895
ec9499be 3896 overlay_cache_invalid = 1;
f15cb84a
YQ
3897 /* Flush target cache before starting to handle each event. Target
3898 was running and cache could be stale. This is just a heuristic.
3899 Running threads may modify target memory, but we don't get any
3900 event. */
3901 target_dcache_invalidate ();
3dd5b83d 3902
b7b633e9
TT
3903 scoped_restore save_exec_dir
3904 = make_scoped_restore (&execution_direction, target_execution_direction ());
32231432 3905
0b333c5e
PA
3906 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3907 target_can_async_p () ? TARGET_WNOHANG : 0);
43ff13b4 3908
f00150c9 3909 if (debug_infrun)
223698f8 3910 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3911
29f49a6a
PA
3912 /* If an error happens while handling the event, propagate GDB's
3913 knowledge of the executing state to the frontend/user running
3914 state. */
fbea99ea 3915 if (!target_is_non_stop_p ())
29f49a6a
PA
3916 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3917 else
3918 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3919
353d1d73
JK
3920 /* Get executed before make_cleanup_restore_current_thread above to apply
3921 still for the thread which has thrown the exception. */
3922 make_bpstat_clear_actions_cleanup ();
3923
7c16b83e
PA
3924 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3925
43ff13b4 3926 /* Now figure out what to do with the result of the result. */
a474d7c2 3927 handle_inferior_event (ecs);
43ff13b4 3928
a474d7c2 3929 if (!ecs->wait_some_more)
43ff13b4 3930 {
c9657e70 3931 struct inferior *inf = find_inferior_ptid (ecs->ptid);
243a9253
PA
3932 int should_stop = 1;
3933 struct thread_info *thr = ecs->event_thread;
388a7084 3934 int should_notify_stop = 1;
d6b48e9c 3935
0cbcdb96 3936 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3937
243a9253
PA
3938 if (thr != NULL)
3939 {
3940 struct thread_fsm *thread_fsm = thr->thread_fsm;
3941
3942 if (thread_fsm != NULL)
8980e177 3943 should_stop = thread_fsm_should_stop (thread_fsm, thr);
243a9253
PA
3944 }
3945
3946 if (!should_stop)
3947 {
3948 keep_going (ecs);
3949 }
c2d11a7d 3950 else
0f641c01 3951 {
243a9253
PA
3952 clean_up_just_stopped_threads_fsms (ecs);
3953
388a7084
PA
3954 if (thr != NULL && thr->thread_fsm != NULL)
3955 {
3956 should_notify_stop
3957 = thread_fsm_should_notify_stop (thr->thread_fsm);
3958 }
3959
3960 if (should_notify_stop)
3961 {
4c2f2a79
PA
3962 int proceeded = 0;
3963
388a7084
PA
3964 /* We may not find an inferior if this was a process exit. */
3965 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4c2f2a79 3966 proceeded = normal_stop ();
243a9253 3967
4c2f2a79
PA
3968 if (!proceeded)
3969 {
3970 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3971 cmd_done = 1;
3972 }
388a7084 3973 }
0f641c01 3974 }
43ff13b4 3975 }
4f8d22e3 3976
29f49a6a
PA
3977 /* No error, don't finish the thread states yet. */
3978 discard_cleanups (ts_old_chain);
3979
4f8d22e3
PA
3980 /* Revert thread and frame. */
3981 do_cleanups (old_chain);
3982
3b12939d
PA
3983 /* If a UI was in sync execution mode, and now isn't, restore its
3984 prompt (a synchronous execution command has finished, and we're
3985 ready for input). */
3986 all_uis_check_sync_execution_done ();
0f641c01
PA
3987
3988 if (cmd_done
0f641c01
PA
3989 && exec_done_display_p
3990 && (ptid_equal (inferior_ptid, null_ptid)
3991 || !is_running (inferior_ptid)))
3992 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3993}
3994
edb3359d
DJ
3995/* Record the frame and location we're currently stepping through. */
3996void
3997set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3998{
3999 struct thread_info *tp = inferior_thread ();
4000
16c381f0
JK
4001 tp->control.step_frame_id = get_frame_id (frame);
4002 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
4003
4004 tp->current_symtab = sal.symtab;
4005 tp->current_line = sal.line;
4006}
4007
0d1e5fa7
PA
4008/* Clear context switchable stepping state. */
4009
4010void
4e1c45ea 4011init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 4012{
7f5ef605 4013 tss->stepped_breakpoint = 0;
0d1e5fa7 4014 tss->stepping_over_breakpoint = 0;
963f9c80 4015 tss->stepping_over_watchpoint = 0;
0d1e5fa7 4016 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
4017}
4018
c32c64b7
DE
4019/* Set the cached copy of the last ptid/waitstatus. */
4020
6efcd9a8 4021void
c32c64b7
DE
4022set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4023{
4024 target_last_wait_ptid = ptid;
4025 target_last_waitstatus = status;
4026}
4027
e02bc4cc 4028/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
4029 target_wait()/deprecated_target_wait_hook(). The data is actually
4030 cached by handle_inferior_event(), which gets called immediately
4031 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
4032
4033void
488f131b 4034get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 4035{
39f77062 4036 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
4037 *status = target_last_waitstatus;
4038}
4039
ac264b3b
MS
4040void
4041nullify_last_target_wait_ptid (void)
4042{
4043 target_last_wait_ptid = minus_one_ptid;
4044}
4045
dcf4fbde 4046/* Switch thread contexts. */
dd80620e
MS
4047
4048static void
0d1e5fa7 4049context_switch (ptid_t ptid)
dd80620e 4050{
4b51d87b 4051 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
4052 {
4053 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4054 target_pid_to_str (inferior_ptid));
4055 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 4056 target_pid_to_str (ptid));
fd48f117
DJ
4057 }
4058
0d1e5fa7 4059 switch_to_thread (ptid);
dd80620e
MS
4060}
4061
d8dd4d5f
PA
4062/* If the target can't tell whether we've hit breakpoints
4063 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4064 check whether that could have been caused by a breakpoint. If so,
4065 adjust the PC, per gdbarch_decr_pc_after_break. */
4066
4fa8626c 4067static void
d8dd4d5f
PA
4068adjust_pc_after_break (struct thread_info *thread,
4069 struct target_waitstatus *ws)
4fa8626c 4070{
24a73cce
UW
4071 struct regcache *regcache;
4072 struct gdbarch *gdbarch;
118e6252 4073 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4074
4fa8626c
DJ
4075 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4076 we aren't, just return.
9709f61c
DJ
4077
4078 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4079 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4080 implemented by software breakpoints should be handled through the normal
4081 breakpoint layer.
8fb3e588 4082
4fa8626c
DJ
4083 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4084 different signals (SIGILL or SIGEMT for instance), but it is less
4085 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4086 gdbarch_decr_pc_after_break. I don't know any specific target that
4087 generates these signals at breakpoints (the code has been in GDB since at
4088 least 1992) so I can not guess how to handle them here.
8fb3e588 4089
e6cf7916
UW
4090 In earlier versions of GDB, a target with
4091 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4092 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4093 target with both of these set in GDB history, and it seems unlikely to be
4094 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4095
d8dd4d5f 4096 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4097 return;
4098
d8dd4d5f 4099 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4100 return;
4101
4058b839
PA
4102 /* In reverse execution, when a breakpoint is hit, the instruction
4103 under it has already been de-executed. The reported PC always
4104 points at the breakpoint address, so adjusting it further would
4105 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4106 architecture:
4107
4108 B1 0x08000000 : INSN1
4109 B2 0x08000001 : INSN2
4110 0x08000002 : INSN3
4111 PC -> 0x08000003 : INSN4
4112
4113 Say you're stopped at 0x08000003 as above. Reverse continuing
4114 from that point should hit B2 as below. Reading the PC when the
4115 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4116 been de-executed already.
4117
4118 B1 0x08000000 : INSN1
4119 B2 PC -> 0x08000001 : INSN2
4120 0x08000002 : INSN3
4121 0x08000003 : INSN4
4122
4123 We can't apply the same logic as for forward execution, because
4124 we would wrongly adjust the PC to 0x08000000, since there's a
4125 breakpoint at PC - 1. We'd then report a hit on B1, although
4126 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4127 behaviour. */
4128 if (execution_direction == EXEC_REVERSE)
4129 return;
4130
1cf4d951
PA
4131 /* If the target can tell whether the thread hit a SW breakpoint,
4132 trust it. Targets that can tell also adjust the PC
4133 themselves. */
4134 if (target_supports_stopped_by_sw_breakpoint ())
4135 return;
4136
4137 /* Note that relying on whether a breakpoint is planted in memory to
4138 determine this can fail. E.g,. the breakpoint could have been
4139 removed since. Or the thread could have been told to step an
4140 instruction the size of a breakpoint instruction, and only
4141 _after_ was a breakpoint inserted at its address. */
4142
24a73cce
UW
4143 /* If this target does not decrement the PC after breakpoints, then
4144 we have nothing to do. */
d8dd4d5f 4145 regcache = get_thread_regcache (thread->ptid);
ac7936df 4146 gdbarch = regcache->arch ();
118e6252 4147
527a273a 4148 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4149 if (decr_pc == 0)
24a73cce
UW
4150 return;
4151
8b86c959 4152 const address_space *aspace = regcache->aspace ();
6c95b8df 4153
8aad930b
AC
4154 /* Find the location where (if we've hit a breakpoint) the
4155 breakpoint would be. */
118e6252 4156 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4157
1cf4d951
PA
4158 /* If the target can't tell whether a software breakpoint triggered,
4159 fallback to figuring it out based on breakpoints we think were
4160 inserted in the target, and on whether the thread was stepped or
4161 continued. */
4162
1c5cfe86
PA
4163 /* Check whether there actually is a software breakpoint inserted at
4164 that location.
4165
4166 If in non-stop mode, a race condition is possible where we've
4167 removed a breakpoint, but stop events for that breakpoint were
4168 already queued and arrive later. To suppress those spurious
4169 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4170 and retire them after a number of stop events are reported. Note
4171 this is an heuristic and can thus get confused. The real fix is
4172 to get the "stopped by SW BP and needs adjustment" info out of
4173 the target/kernel (and thus never reach here; see above). */
6c95b8df 4174 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4175 || (target_is_non_stop_p ()
4176 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4177 {
07036511 4178 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 4179
8213266a 4180 if (record_full_is_used ())
07036511
TT
4181 restore_operation_disable.emplace
4182 (record_full_gdb_operation_disable_set ());
96429cc8 4183
1c0fdd0e
UW
4184 /* When using hardware single-step, a SIGTRAP is reported for both
4185 a completed single-step and a software breakpoint. Need to
4186 differentiate between the two, as the latter needs adjusting
4187 but the former does not.
4188
4189 The SIGTRAP can be due to a completed hardware single-step only if
4190 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4191 - this thread is currently being stepped
4192
4193 If any of these events did not occur, we must have stopped due
4194 to hitting a software breakpoint, and have to back up to the
4195 breakpoint address.
4196
4197 As a special case, we could have hardware single-stepped a
4198 software breakpoint. In this case (prev_pc == breakpoint_pc),
4199 we also need to back up to the breakpoint address. */
4200
d8dd4d5f
PA
4201 if (thread_has_single_step_breakpoints_set (thread)
4202 || !currently_stepping (thread)
4203 || (thread->stepped_breakpoint
4204 && thread->prev_pc == breakpoint_pc))
515630c5 4205 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4206 }
4fa8626c
DJ
4207}
4208
edb3359d
DJ
4209static int
4210stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4211{
4212 for (frame = get_prev_frame (frame);
4213 frame != NULL;
4214 frame = get_prev_frame (frame))
4215 {
4216 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4217 return 1;
4218 if (get_frame_type (frame) != INLINE_FRAME)
4219 break;
4220 }
4221
4222 return 0;
4223}
4224
c65d6b55
PA
4225/* If the event thread has the stop requested flag set, pretend it
4226 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4227 target_stop). */
4228
4229static bool
4230handle_stop_requested (struct execution_control_state *ecs)
4231{
4232 if (ecs->event_thread->stop_requested)
4233 {
4234 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4235 ecs->ws.value.sig = GDB_SIGNAL_0;
4236 handle_signal_stop (ecs);
4237 return true;
4238 }
4239 return false;
4240}
4241
a96d9b2e
SDJ
4242/* Auxiliary function that handles syscall entry/return events.
4243 It returns 1 if the inferior should keep going (and GDB
4244 should ignore the event), or 0 if the event deserves to be
4245 processed. */
ca2163eb 4246
a96d9b2e 4247static int
ca2163eb 4248handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4249{
ca2163eb 4250 struct regcache *regcache;
ca2163eb
PA
4251 int syscall_number;
4252
4253 if (!ptid_equal (ecs->ptid, inferior_ptid))
4254 context_switch (ecs->ptid);
4255
4256 regcache = get_thread_regcache (ecs->ptid);
f90263c1 4257 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
4258 stop_pc = regcache_read_pc (regcache);
4259
a96d9b2e
SDJ
4260 if (catch_syscall_enabled () > 0
4261 && catching_syscall_number (syscall_number) > 0)
4262 {
4263 if (debug_infrun)
4264 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4265 syscall_number);
a96d9b2e 4266
16c381f0 4267 ecs->event_thread->control.stop_bpstat
a01bda52 4268 = bpstat_stop_status (regcache->aspace (),
09ac7c10 4269 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4270
c65d6b55
PA
4271 if (handle_stop_requested (ecs))
4272 return 0;
4273
ce12b012 4274 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4275 {
4276 /* Catchpoint hit. */
ca2163eb
PA
4277 return 0;
4278 }
a96d9b2e 4279 }
ca2163eb 4280
c65d6b55
PA
4281 if (handle_stop_requested (ecs))
4282 return 0;
4283
ca2163eb 4284 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4285 keep_going (ecs);
4286 return 1;
a96d9b2e
SDJ
4287}
4288
7e324e48
GB
4289/* Lazily fill in the execution_control_state's stop_func_* fields. */
4290
4291static void
4292fill_in_stop_func (struct gdbarch *gdbarch,
4293 struct execution_control_state *ecs)
4294{
4295 if (!ecs->stop_func_filled_in)
4296 {
4297 /* Don't care about return value; stop_func_start and stop_func_name
4298 will both be 0 if it doesn't work. */
4299 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4300 &ecs->stop_func_start, &ecs->stop_func_end);
4301 ecs->stop_func_start
4302 += gdbarch_deprecated_function_start_offset (gdbarch);
4303
591a12a1
UW
4304 if (gdbarch_skip_entrypoint_p (gdbarch))
4305 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4306 ecs->stop_func_start);
4307
7e324e48
GB
4308 ecs->stop_func_filled_in = 1;
4309 }
4310}
4311
4f5d7f63
PA
4312
4313/* Return the STOP_SOON field of the inferior pointed at by PTID. */
4314
4315static enum stop_kind
4316get_inferior_stop_soon (ptid_t ptid)
4317{
c9657e70 4318 struct inferior *inf = find_inferior_ptid (ptid);
4f5d7f63
PA
4319
4320 gdb_assert (inf != NULL);
4321 return inf->control.stop_soon;
4322}
4323
372316f1
PA
4324/* Wait for one event. Store the resulting waitstatus in WS, and
4325 return the event ptid. */
4326
4327static ptid_t
4328wait_one (struct target_waitstatus *ws)
4329{
4330 ptid_t event_ptid;
4331 ptid_t wait_ptid = minus_one_ptid;
4332
4333 overlay_cache_invalid = 1;
4334
4335 /* Flush target cache before starting to handle each event.
4336 Target was running and cache could be stale. This is just a
4337 heuristic. Running threads may modify target memory, but we
4338 don't get any event. */
4339 target_dcache_invalidate ();
4340
4341 if (deprecated_target_wait_hook)
4342 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4343 else
4344 event_ptid = target_wait (wait_ptid, ws, 0);
4345
4346 if (debug_infrun)
4347 print_target_wait_results (wait_ptid, event_ptid, ws);
4348
4349 return event_ptid;
4350}
4351
4352/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4353 instead of the current thread. */
4354#define THREAD_STOPPED_BY(REASON) \
4355static int \
4356thread_stopped_by_ ## REASON (ptid_t ptid) \
4357{ \
2989a365 4358 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
372316f1
PA
4359 inferior_ptid = ptid; \
4360 \
2989a365 4361 return target_stopped_by_ ## REASON (); \
372316f1
PA
4362}
4363
4364/* Generate thread_stopped_by_watchpoint. */
4365THREAD_STOPPED_BY (watchpoint)
4366/* Generate thread_stopped_by_sw_breakpoint. */
4367THREAD_STOPPED_BY (sw_breakpoint)
4368/* Generate thread_stopped_by_hw_breakpoint. */
4369THREAD_STOPPED_BY (hw_breakpoint)
4370
4371/* Cleanups that switches to the PTID pointed at by PTID_P. */
4372
4373static void
4374switch_to_thread_cleanup (void *ptid_p)
4375{
4376 ptid_t ptid = *(ptid_t *) ptid_p;
4377
4378 switch_to_thread (ptid);
4379}
4380
4381/* Save the thread's event and stop reason to process it later. */
4382
4383static void
4384save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4385{
4386 struct regcache *regcache;
372316f1
PA
4387
4388 if (debug_infrun)
4389 {
23fdd69e 4390 std::string statstr = target_waitstatus_to_string (ws);
372316f1 4391
372316f1
PA
4392 fprintf_unfiltered (gdb_stdlog,
4393 "infrun: saving status %s for %d.%ld.%ld\n",
23fdd69e 4394 statstr.c_str (),
372316f1
PA
4395 ptid_get_pid (tp->ptid),
4396 ptid_get_lwp (tp->ptid),
4397 ptid_get_tid (tp->ptid));
372316f1
PA
4398 }
4399
4400 /* Record for later. */
4401 tp->suspend.waitstatus = *ws;
4402 tp->suspend.waitstatus_pending_p = 1;
4403
4404 regcache = get_thread_regcache (tp->ptid);
8b86c959 4405 const address_space *aspace = regcache->aspace ();
372316f1
PA
4406
4407 if (ws->kind == TARGET_WAITKIND_STOPPED
4408 && ws->value.sig == GDB_SIGNAL_TRAP)
4409 {
4410 CORE_ADDR pc = regcache_read_pc (regcache);
4411
4412 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4413
4414 if (thread_stopped_by_watchpoint (tp->ptid))
4415 {
4416 tp->suspend.stop_reason
4417 = TARGET_STOPPED_BY_WATCHPOINT;
4418 }
4419 else if (target_supports_stopped_by_sw_breakpoint ()
4420 && thread_stopped_by_sw_breakpoint (tp->ptid))
4421 {
4422 tp->suspend.stop_reason
4423 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4424 }
4425 else if (target_supports_stopped_by_hw_breakpoint ()
4426 && thread_stopped_by_hw_breakpoint (tp->ptid))
4427 {
4428 tp->suspend.stop_reason
4429 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4430 }
4431 else if (!target_supports_stopped_by_hw_breakpoint ()
4432 && hardware_breakpoint_inserted_here_p (aspace,
4433 pc))
4434 {
4435 tp->suspend.stop_reason
4436 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4437 }
4438 else if (!target_supports_stopped_by_sw_breakpoint ()
4439 && software_breakpoint_inserted_here_p (aspace,
4440 pc))
4441 {
4442 tp->suspend.stop_reason
4443 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4444 }
4445 else if (!thread_has_single_step_breakpoints_set (tp)
4446 && currently_stepping (tp))
4447 {
4448 tp->suspend.stop_reason
4449 = TARGET_STOPPED_BY_SINGLE_STEP;
4450 }
4451 }
4452}
4453
65706a29
PA
4454/* A cleanup that disables thread create/exit events. */
4455
4456static void
4457disable_thread_events (void *arg)
4458{
4459 target_thread_events (0);
4460}
4461
6efcd9a8 4462/* See infrun.h. */
372316f1 4463
6efcd9a8 4464void
372316f1
PA
4465stop_all_threads (void)
4466{
4467 /* We may need multiple passes to discover all threads. */
4468 int pass;
4469 int iterations = 0;
4470 ptid_t entry_ptid;
4471 struct cleanup *old_chain;
4472
fbea99ea 4473 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4474
4475 if (debug_infrun)
4476 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4477
4478 entry_ptid = inferior_ptid;
4479 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4480
65706a29
PA
4481 target_thread_events (1);
4482 make_cleanup (disable_thread_events, NULL);
4483
372316f1
PA
4484 /* Request threads to stop, and then wait for the stops. Because
4485 threads we already know about can spawn more threads while we're
4486 trying to stop them, and we only learn about new threads when we
4487 update the thread list, do this in a loop, and keep iterating
4488 until two passes find no threads that need to be stopped. */
4489 for (pass = 0; pass < 2; pass++, iterations++)
4490 {
4491 if (debug_infrun)
4492 fprintf_unfiltered (gdb_stdlog,
4493 "infrun: stop_all_threads, pass=%d, "
4494 "iterations=%d\n", pass, iterations);
4495 while (1)
4496 {
4497 ptid_t event_ptid;
4498 struct target_waitstatus ws;
4499 int need_wait = 0;
4500 struct thread_info *t;
4501
4502 update_thread_list ();
4503
4504 /* Go through all threads looking for threads that we need
4505 to tell the target to stop. */
4506 ALL_NON_EXITED_THREADS (t)
4507 {
4508 if (t->executing)
4509 {
4510 /* If already stopping, don't request a stop again.
4511 We just haven't seen the notification yet. */
4512 if (!t->stop_requested)
4513 {
4514 if (debug_infrun)
4515 fprintf_unfiltered (gdb_stdlog,
4516 "infrun: %s executing, "
4517 "need stop\n",
4518 target_pid_to_str (t->ptid));
4519 target_stop (t->ptid);
4520 t->stop_requested = 1;
4521 }
4522 else
4523 {
4524 if (debug_infrun)
4525 fprintf_unfiltered (gdb_stdlog,
4526 "infrun: %s executing, "
4527 "already stopping\n",
4528 target_pid_to_str (t->ptid));
4529 }
4530
4531 if (t->stop_requested)
4532 need_wait = 1;
4533 }
4534 else
4535 {
4536 if (debug_infrun)
4537 fprintf_unfiltered (gdb_stdlog,
4538 "infrun: %s not executing\n",
4539 target_pid_to_str (t->ptid));
4540
4541 /* The thread may be not executing, but still be
4542 resumed with a pending status to process. */
4543 t->resumed = 0;
4544 }
4545 }
4546
4547 if (!need_wait)
4548 break;
4549
4550 /* If we find new threads on the second iteration, restart
4551 over. We want to see two iterations in a row with all
4552 threads stopped. */
4553 if (pass > 0)
4554 pass = -1;
4555
4556 event_ptid = wait_one (&ws);
4557 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4558 {
4559 /* All resumed threads exited. */
4560 }
65706a29
PA
4561 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4562 || ws.kind == TARGET_WAITKIND_EXITED
372316f1
PA
4563 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4564 {
4565 if (debug_infrun)
4566 {
4567 ptid_t ptid = pid_to_ptid (ws.value.integer);
4568
4569 fprintf_unfiltered (gdb_stdlog,
4570 "infrun: %s exited while "
4571 "stopping threads\n",
4572 target_pid_to_str (ptid));
4573 }
4574 }
4575 else
4576 {
6efcd9a8
PA
4577 struct inferior *inf;
4578
372316f1
PA
4579 t = find_thread_ptid (event_ptid);
4580 if (t == NULL)
4581 t = add_thread (event_ptid);
4582
4583 t->stop_requested = 0;
4584 t->executing = 0;
4585 t->resumed = 0;
4586 t->control.may_range_step = 0;
4587
6efcd9a8
PA
4588 /* This may be the first time we see the inferior report
4589 a stop. */
4590 inf = find_inferior_ptid (event_ptid);
4591 if (inf->needs_setup)
4592 {
4593 switch_to_thread_no_regs (t);
4594 setup_inferior (0);
4595 }
4596
372316f1
PA
4597 if (ws.kind == TARGET_WAITKIND_STOPPED
4598 && ws.value.sig == GDB_SIGNAL_0)
4599 {
4600 /* We caught the event that we intended to catch, so
4601 there's no event pending. */
4602 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4603 t->suspend.waitstatus_pending_p = 0;
4604
4605 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4606 {
4607 /* Add it back to the step-over queue. */
4608 if (debug_infrun)
4609 {
4610 fprintf_unfiltered (gdb_stdlog,
4611 "infrun: displaced-step of %s "
4612 "canceled: adding back to the "
4613 "step-over queue\n",
4614 target_pid_to_str (t->ptid));
4615 }
4616 t->control.trap_expected = 0;
4617 thread_step_over_chain_enqueue (t);
4618 }
4619 }
4620 else
4621 {
4622 enum gdb_signal sig;
4623 struct regcache *regcache;
372316f1
PA
4624
4625 if (debug_infrun)
4626 {
23fdd69e 4627 std::string statstr = target_waitstatus_to_string (&ws);
372316f1 4628
372316f1
PA
4629 fprintf_unfiltered (gdb_stdlog,
4630 "infrun: target_wait %s, saving "
4631 "status for %d.%ld.%ld\n",
23fdd69e 4632 statstr.c_str (),
372316f1
PA
4633 ptid_get_pid (t->ptid),
4634 ptid_get_lwp (t->ptid),
4635 ptid_get_tid (t->ptid));
372316f1
PA
4636 }
4637
4638 /* Record for later. */
4639 save_waitstatus (t, &ws);
4640
4641 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4642 ? ws.value.sig : GDB_SIGNAL_0);
4643
4644 if (displaced_step_fixup (t->ptid, sig) < 0)
4645 {
4646 /* Add it back to the step-over queue. */
4647 t->control.trap_expected = 0;
4648 thread_step_over_chain_enqueue (t);
4649 }
4650
4651 regcache = get_thread_regcache (t->ptid);
4652 t->suspend.stop_pc = regcache_read_pc (regcache);
4653
4654 if (debug_infrun)
4655 {
4656 fprintf_unfiltered (gdb_stdlog,
4657 "infrun: saved stop_pc=%s for %s "
4658 "(currently_stepping=%d)\n",
4659 paddress (target_gdbarch (),
4660 t->suspend.stop_pc),
4661 target_pid_to_str (t->ptid),
4662 currently_stepping (t));
4663 }
4664 }
4665 }
4666 }
4667 }
4668
4669 do_cleanups (old_chain);
4670
4671 if (debug_infrun)
4672 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4673}
4674
f4836ba9
PA
4675/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4676
4677static int
4678handle_no_resumed (struct execution_control_state *ecs)
4679{
4680 struct inferior *inf;
4681 struct thread_info *thread;
4682
3b12939d 4683 if (target_can_async_p ())
f4836ba9 4684 {
3b12939d
PA
4685 struct ui *ui;
4686 int any_sync = 0;
f4836ba9 4687
3b12939d
PA
4688 ALL_UIS (ui)
4689 {
4690 if (ui->prompt_state == PROMPT_BLOCKED)
4691 {
4692 any_sync = 1;
4693 break;
4694 }
4695 }
4696 if (!any_sync)
4697 {
4698 /* There were no unwaited-for children left in the target, but,
4699 we're not synchronously waiting for events either. Just
4700 ignore. */
4701
4702 if (debug_infrun)
4703 fprintf_unfiltered (gdb_stdlog,
4704 "infrun: TARGET_WAITKIND_NO_RESUMED "
4705 "(ignoring: bg)\n");
4706 prepare_to_wait (ecs);
4707 return 1;
4708 }
f4836ba9
PA
4709 }
4710
4711 /* Otherwise, if we were running a synchronous execution command, we
4712 may need to cancel it and give the user back the terminal.
4713
4714 In non-stop mode, the target can't tell whether we've already
4715 consumed previous stop events, so it can end up sending us a
4716 no-resumed event like so:
4717
4718 #0 - thread 1 is left stopped
4719
4720 #1 - thread 2 is resumed and hits breakpoint
4721 -> TARGET_WAITKIND_STOPPED
4722
4723 #2 - thread 3 is resumed and exits
4724 this is the last resumed thread, so
4725 -> TARGET_WAITKIND_NO_RESUMED
4726
4727 #3 - gdb processes stop for thread 2 and decides to re-resume
4728 it.
4729
4730 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4731 thread 2 is now resumed, so the event should be ignored.
4732
4733 IOW, if the stop for thread 2 doesn't end a foreground command,
4734 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4735 event. But it could be that the event meant that thread 2 itself
4736 (or whatever other thread was the last resumed thread) exited.
4737
4738 To address this we refresh the thread list and check whether we
4739 have resumed threads _now_. In the example above, this removes
4740 thread 3 from the thread list. If thread 2 was re-resumed, we
4741 ignore this event. If we find no thread resumed, then we cancel
4742 the synchronous command show "no unwaited-for " to the user. */
4743 update_thread_list ();
4744
4745 ALL_NON_EXITED_THREADS (thread)
4746 {
4747 if (thread->executing
4748 || thread->suspend.waitstatus_pending_p)
4749 {
4750 /* There were no unwaited-for children left in the target at
4751 some point, but there are now. Just ignore. */
4752 if (debug_infrun)
4753 fprintf_unfiltered (gdb_stdlog,
4754 "infrun: TARGET_WAITKIND_NO_RESUMED "
4755 "(ignoring: found resumed)\n");
4756 prepare_to_wait (ecs);
4757 return 1;
4758 }
4759 }
4760
4761 /* Note however that we may find no resumed thread because the whole
4762 process exited meanwhile (thus updating the thread list results
4763 in an empty thread list). In this case we know we'll be getting
4764 a process exit event shortly. */
4765 ALL_INFERIORS (inf)
4766 {
4767 if (inf->pid == 0)
4768 continue;
4769
4770 thread = any_live_thread_of_process (inf->pid);
4771 if (thread == NULL)
4772 {
4773 if (debug_infrun)
4774 fprintf_unfiltered (gdb_stdlog,
4775 "infrun: TARGET_WAITKIND_NO_RESUMED "
4776 "(expect process exit)\n");
4777 prepare_to_wait (ecs);
4778 return 1;
4779 }
4780 }
4781
4782 /* Go ahead and report the event. */
4783 return 0;
4784}
4785
05ba8510
PA
4786/* Given an execution control state that has been freshly filled in by
4787 an event from the inferior, figure out what it means and take
4788 appropriate action.
4789
4790 The alternatives are:
4791
22bcd14b 4792 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4793 debugger.
4794
4795 2) keep_going and return; to wait for the next event (set
4796 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4797 once). */
c906108c 4798
ec9499be 4799static void
0b6e5e10 4800handle_inferior_event_1 (struct execution_control_state *ecs)
cd0fc7c3 4801{
d6b48e9c
PA
4802 enum stop_kind stop_soon;
4803
28736962
PA
4804 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4805 {
4806 /* We had an event in the inferior, but we are not interested in
4807 handling it at this level. The lower layers have already
4808 done what needs to be done, if anything.
4809
4810 One of the possible circumstances for this is when the
4811 inferior produces output for the console. The inferior has
4812 not stopped, and we are ignoring the event. Another possible
4813 circumstance is any event which the lower level knows will be
4814 reported multiple times without an intervening resume. */
4815 if (debug_infrun)
4816 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4817 prepare_to_wait (ecs);
4818 return;
4819 }
4820
65706a29
PA
4821 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4822 {
4823 if (debug_infrun)
4824 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4825 prepare_to_wait (ecs);
4826 return;
4827 }
4828
0e5bf2a8 4829 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
4830 && handle_no_resumed (ecs))
4831 return;
0e5bf2a8 4832
1777feb0 4833 /* Cache the last pid/waitstatus. */
c32c64b7 4834 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4835
ca005067 4836 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4837 stop_stack_dummy = STOP_NONE;
ca005067 4838
0e5bf2a8
PA
4839 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4840 {
4841 /* No unwaited-for children left. IOW, all resumed children
4842 have exited. */
4843 if (debug_infrun)
4844 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4845
4846 stop_print_frame = 0;
22bcd14b 4847 stop_waiting (ecs);
0e5bf2a8
PA
4848 return;
4849 }
4850
8c90c137 4851 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4852 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4853 {
4854 ecs->event_thread = find_thread_ptid (ecs->ptid);
4855 /* If it's a new thread, add it to the thread database. */
4856 if (ecs->event_thread == NULL)
4857 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4858
4859 /* Disable range stepping. If the next step request could use a
4860 range, this will be end up re-enabled then. */
4861 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4862 }
88ed393a
JK
4863
4864 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4865 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4866
4867 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4868 reinit_frame_cache ();
4869
28736962
PA
4870 breakpoint_retire_moribund ();
4871
2b009048
DJ
4872 /* First, distinguish signals caused by the debugger from signals
4873 that have to do with the program's own actions. Note that
4874 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4875 on the operating system version. Here we detect when a SIGILL or
4876 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4877 something similar for SIGSEGV, since a SIGSEGV will be generated
4878 when we're trying to execute a breakpoint instruction on a
4879 non-executable stack. This happens for call dummy breakpoints
4880 for architectures like SPARC that place call dummies on the
4881 stack. */
2b009048 4882 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4883 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4884 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4885 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4886 {
de0a0249
UW
4887 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4888
a01bda52 4889 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
4890 regcache_read_pc (regcache)))
4891 {
4892 if (debug_infrun)
4893 fprintf_unfiltered (gdb_stdlog,
4894 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4895 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4896 }
2b009048
DJ
4897 }
4898
28736962
PA
4899 /* Mark the non-executing threads accordingly. In all-stop, all
4900 threads of all processes are stopped when we get any event
e1316e60 4901 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4902 {
4903 ptid_t mark_ptid;
4904
fbea99ea 4905 if (!target_is_non_stop_p ())
372316f1
PA
4906 mark_ptid = minus_one_ptid;
4907 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4908 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4909 {
4910 /* If we're handling a process exit in non-stop mode, even
4911 though threads haven't been deleted yet, one would think
4912 that there is nothing to do, as threads of the dead process
4913 will be soon deleted, and threads of any other process were
4914 left running. However, on some targets, threads survive a
4915 process exit event. E.g., for the "checkpoint" command,
4916 when the current checkpoint/fork exits, linux-fork.c
4917 automatically switches to another fork from within
4918 target_mourn_inferior, by associating the same
4919 inferior/thread to another fork. We haven't mourned yet at
4920 this point, but we must mark any threads left in the
4921 process as not-executing so that finish_thread_state marks
4922 them stopped (in the user's perspective) if/when we present
4923 the stop to the user. */
4924 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4925 }
4926 else
4927 mark_ptid = ecs->ptid;
4928
4929 set_executing (mark_ptid, 0);
4930
4931 /* Likewise the resumed flag. */
4932 set_resumed (mark_ptid, 0);
4933 }
8c90c137 4934
488f131b
JB
4935 switch (ecs->ws.kind)
4936 {
4937 case TARGET_WAITKIND_LOADED:
527159b7 4938 if (debug_infrun)
8a9de0e4 4939 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
5c09a2c5
PA
4940 if (!ptid_equal (ecs->ptid, inferior_ptid))
4941 context_switch (ecs->ptid);
b0f4b84b
DJ
4942 /* Ignore gracefully during startup of the inferior, as it might
4943 be the shell which has just loaded some objects, otherwise
4944 add the symbols for the newly loaded objects. Also ignore at
4945 the beginning of an attach or remote session; we will query
4946 the full list of libraries once the connection is
4947 established. */
4f5d7f63
PA
4948
4949 stop_soon = get_inferior_stop_soon (ecs->ptid);
c0236d92 4950 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4951 {
edcc5120
TT
4952 struct regcache *regcache;
4953
edcc5120
TT
4954 regcache = get_thread_regcache (ecs->ptid);
4955
4956 handle_solib_event ();
4957
4958 ecs->event_thread->control.stop_bpstat
a01bda52 4959 = bpstat_stop_status (regcache->aspace (),
edcc5120 4960 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4961
c65d6b55
PA
4962 if (handle_stop_requested (ecs))
4963 return;
4964
ce12b012 4965 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4966 {
4967 /* A catchpoint triggered. */
94c57d6a
PA
4968 process_event_stop_test (ecs);
4969 return;
edcc5120 4970 }
488f131b 4971
b0f4b84b
DJ
4972 /* If requested, stop when the dynamic linker notifies
4973 gdb of events. This allows the user to get control
4974 and place breakpoints in initializer routines for
4975 dynamically loaded objects (among other things). */
a493e3e2 4976 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4977 if (stop_on_solib_events)
4978 {
55409f9d
DJ
4979 /* Make sure we print "Stopped due to solib-event" in
4980 normal_stop. */
4981 stop_print_frame = 1;
4982
22bcd14b 4983 stop_waiting (ecs);
b0f4b84b
DJ
4984 return;
4985 }
488f131b 4986 }
b0f4b84b
DJ
4987
4988 /* If we are skipping through a shell, or through shared library
4989 loading that we aren't interested in, resume the program. If
5c09a2c5 4990 we're running the program normally, also resume. */
b0f4b84b
DJ
4991 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4992 {
74960c60
VP
4993 /* Loading of shared libraries might have changed breakpoint
4994 addresses. Make sure new breakpoints are inserted. */
a25a5a45 4995 if (stop_soon == NO_STOP_QUIETLY)
74960c60 4996 insert_breakpoints ();
64ce06e4 4997 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
4998 prepare_to_wait (ecs);
4999 return;
5000 }
5001
5c09a2c5
PA
5002 /* But stop if we're attaching or setting up a remote
5003 connection. */
5004 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5005 || stop_soon == STOP_QUIETLY_REMOTE)
5006 {
5007 if (debug_infrun)
5008 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 5009 stop_waiting (ecs);
5c09a2c5
PA
5010 return;
5011 }
5012
5013 internal_error (__FILE__, __LINE__,
5014 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 5015
488f131b 5016 case TARGET_WAITKIND_SPURIOUS:
527159b7 5017 if (debug_infrun)
8a9de0e4 5018 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
c65d6b55
PA
5019 if (handle_stop_requested (ecs))
5020 return;
64776a0b 5021 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 5022 context_switch (ecs->ptid);
64ce06e4 5023 resume (GDB_SIGNAL_0);
488f131b
JB
5024 prepare_to_wait (ecs);
5025 return;
c5aa993b 5026
65706a29
PA
5027 case TARGET_WAITKIND_THREAD_CREATED:
5028 if (debug_infrun)
5029 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
c65d6b55
PA
5030 if (handle_stop_requested (ecs))
5031 return;
65706a29
PA
5032 if (!ptid_equal (ecs->ptid, inferior_ptid))
5033 context_switch (ecs->ptid);
5034 if (!switch_back_to_stepped_thread (ecs))
5035 keep_going (ecs);
5036 return;
5037
488f131b 5038 case TARGET_WAITKIND_EXITED:
940c3c06 5039 case TARGET_WAITKIND_SIGNALLED:
527159b7 5040 if (debug_infrun)
940c3c06
PA
5041 {
5042 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5043 fprintf_unfiltered (gdb_stdlog,
5044 "infrun: TARGET_WAITKIND_EXITED\n");
5045 else
5046 fprintf_unfiltered (gdb_stdlog,
5047 "infrun: TARGET_WAITKIND_SIGNALLED\n");
5048 }
5049
fb66883a 5050 inferior_ptid = ecs->ptid;
c9657e70 5051 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
5052 set_current_program_space (current_inferior ()->pspace);
5053 handle_vfork_child_exec_or_exit (0);
223ffa71 5054 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 5055
0c557179
SDJ
5056 /* Clearing any previous state of convenience variables. */
5057 clear_exit_convenience_vars ();
5058
940c3c06
PA
5059 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5060 {
5061 /* Record the exit code in the convenience variable $_exitcode, so
5062 that the user can inspect this again later. */
5063 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5064 (LONGEST) ecs->ws.value.integer);
5065
5066 /* Also record this in the inferior itself. */
5067 current_inferior ()->has_exit_code = 1;
5068 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 5069
98eb56a4
PA
5070 /* Support the --return-child-result option. */
5071 return_child_result_value = ecs->ws.value.integer;
5072
fd664c91 5073 observer_notify_exited (ecs->ws.value.integer);
940c3c06
PA
5074 }
5075 else
0c557179
SDJ
5076 {
5077 struct regcache *regcache = get_thread_regcache (ecs->ptid);
ac7936df 5078 struct gdbarch *gdbarch = regcache->arch ();
0c557179
SDJ
5079
5080 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5081 {
5082 /* Set the value of the internal variable $_exitsignal,
5083 which holds the signal uncaught by the inferior. */
5084 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5085 gdbarch_gdb_signal_to_target (gdbarch,
5086 ecs->ws.value.sig));
5087 }
5088 else
5089 {
5090 /* We don't have access to the target's method used for
5091 converting between signal numbers (GDB's internal
5092 representation <-> target's representation).
5093 Therefore, we cannot do a good job at displaying this
5094 information to the user. It's better to just warn
5095 her about it (if infrun debugging is enabled), and
5096 give up. */
5097 if (debug_infrun)
5098 fprintf_filtered (gdb_stdlog, _("\
5099Cannot fill $_exitsignal with the correct signal number.\n"));
5100 }
5101
fd664c91 5102 observer_notify_signal_exited (ecs->ws.value.sig);
0c557179 5103 }
8cf64490 5104
488f131b 5105 gdb_flush (gdb_stdout);
bc1e6c81 5106 target_mourn_inferior (inferior_ptid);
488f131b 5107 stop_print_frame = 0;
22bcd14b 5108 stop_waiting (ecs);
488f131b 5109 return;
c5aa993b 5110
488f131b 5111 /* The following are the only cases in which we keep going;
1777feb0 5112 the above cases end in a continue or goto. */
488f131b 5113 case TARGET_WAITKIND_FORKED:
deb3b17b 5114 case TARGET_WAITKIND_VFORKED:
527159b7 5115 if (debug_infrun)
fed708ed
PA
5116 {
5117 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5118 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5119 else
5120 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5121 }
c906108c 5122
e2d96639
YQ
5123 /* Check whether the inferior is displaced stepping. */
5124 {
5125 struct regcache *regcache = get_thread_regcache (ecs->ptid);
ac7936df 5126 struct gdbarch *gdbarch = regcache->arch ();
e2d96639
YQ
5127
5128 /* If checking displaced stepping is supported, and thread
5129 ecs->ptid is displaced stepping. */
c0987663 5130 if (displaced_step_in_progress_thread (ecs->ptid))
e2d96639
YQ
5131 {
5132 struct inferior *parent_inf
c9657e70 5133 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
5134 struct regcache *child_regcache;
5135 CORE_ADDR parent_pc;
5136
5137 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5138 indicating that the displaced stepping of syscall instruction
5139 has been done. Perform cleanup for parent process here. Note
5140 that this operation also cleans up the child process for vfork,
5141 because their pages are shared. */
a493e3e2 5142 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
c2829269
PA
5143 /* Start a new step-over in another thread if there's one
5144 that needs it. */
5145 start_step_over ();
e2d96639
YQ
5146
5147 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5148 {
c0987663
YQ
5149 struct displaced_step_inferior_state *displaced
5150 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
5151
e2d96639
YQ
5152 /* Restore scratch pad for child process. */
5153 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5154 }
5155
5156 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5157 the child's PC is also within the scratchpad. Set the child's PC
5158 to the parent's PC value, which has already been fixed up.
5159 FIXME: we use the parent's aspace here, although we're touching
5160 the child, because the child hasn't been added to the inferior
5161 list yet at this point. */
5162
5163 child_regcache
5164 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5165 gdbarch,
5166 parent_inf->aspace);
5167 /* Read PC value of parent process. */
5168 parent_pc = regcache_read_pc (regcache);
5169
5170 if (debug_displaced)
5171 fprintf_unfiltered (gdb_stdlog,
5172 "displaced: write child pc from %s to %s\n",
5173 paddress (gdbarch,
5174 regcache_read_pc (child_regcache)),
5175 paddress (gdbarch, parent_pc));
5176
5177 regcache_write_pc (child_regcache, parent_pc);
5178 }
5179 }
5180
5a2901d9 5181 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 5182 context_switch (ecs->ptid);
5a2901d9 5183
b242c3c2
PA
5184 /* Immediately detach breakpoints from the child before there's
5185 any chance of letting the user delete breakpoints from the
5186 breakpoint lists. If we don't do this early, it's easy to
5187 leave left over traps in the child, vis: "break foo; catch
5188 fork; c; <fork>; del; c; <child calls foo>". We only follow
5189 the fork on the last `continue', and by that time the
5190 breakpoint at "foo" is long gone from the breakpoint table.
5191 If we vforked, then we don't need to unpatch here, since both
5192 parent and child are sharing the same memory pages; we'll
5193 need to unpatch at follow/detach time instead to be certain
5194 that new breakpoints added between catchpoint hit time and
5195 vfork follow are detached. */
5196 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5197 {
b242c3c2
PA
5198 /* This won't actually modify the breakpoint list, but will
5199 physically remove the breakpoints from the child. */
d80ee84f 5200 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5201 }
5202
34b7e8a6 5203 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5204
e58b0e63
PA
5205 /* In case the event is caught by a catchpoint, remember that
5206 the event is to be followed at the next resume of the thread,
5207 and not immediately. */
5208 ecs->event_thread->pending_follow = ecs->ws;
5209
fb14de7b 5210 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 5211
16c381f0 5212 ecs->event_thread->control.stop_bpstat
a01bda52 5213 = bpstat_stop_status (get_current_regcache ()->aspace (),
09ac7c10 5214 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 5215
c65d6b55
PA
5216 if (handle_stop_requested (ecs))
5217 return;
5218
ce12b012
PA
5219 /* If no catchpoint triggered for this, then keep going. Note
5220 that we're interested in knowing the bpstat actually causes a
5221 stop, not just if it may explain the signal. Software
5222 watchpoints, for example, always appear in the bpstat. */
5223 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5224 {
6c95b8df
PA
5225 ptid_t parent;
5226 ptid_t child;
e58b0e63 5227 int should_resume;
3e43a32a
MS
5228 int follow_child
5229 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5230
a493e3e2 5231 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
5232
5233 should_resume = follow_fork ();
5234
6c95b8df
PA
5235 parent = ecs->ptid;
5236 child = ecs->ws.value.related_pid;
5237
a2077e25
PA
5238 /* At this point, the parent is marked running, and the
5239 child is marked stopped. */
5240
5241 /* If not resuming the parent, mark it stopped. */
5242 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5243 set_running (parent, 0);
5244
5245 /* If resuming the child, mark it running. */
5246 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5247 set_running (child, 1);
5248
6c95b8df 5249 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5250 if (!detach_fork && (non_stop
5251 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5252 {
5253 if (follow_child)
5254 switch_to_thread (parent);
5255 else
5256 switch_to_thread (child);
5257
5258 ecs->event_thread = inferior_thread ();
5259 ecs->ptid = inferior_ptid;
5260 keep_going (ecs);
5261 }
5262
5263 if (follow_child)
5264 switch_to_thread (child);
5265 else
5266 switch_to_thread (parent);
5267
e58b0e63
PA
5268 ecs->event_thread = inferior_thread ();
5269 ecs->ptid = inferior_ptid;
5270
5271 if (should_resume)
5272 keep_going (ecs);
5273 else
22bcd14b 5274 stop_waiting (ecs);
04e68871
DJ
5275 return;
5276 }
94c57d6a
PA
5277 process_event_stop_test (ecs);
5278 return;
488f131b 5279
6c95b8df
PA
5280 case TARGET_WAITKIND_VFORK_DONE:
5281 /* Done with the shared memory region. Re-insert breakpoints in
5282 the parent, and keep going. */
5283
5284 if (debug_infrun)
3e43a32a
MS
5285 fprintf_unfiltered (gdb_stdlog,
5286 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
5287
5288 if (!ptid_equal (ecs->ptid, inferior_ptid))
5289 context_switch (ecs->ptid);
5290
5291 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5292 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5293
5294 if (handle_stop_requested (ecs))
5295 return;
5296
6c95b8df
PA
5297 /* This also takes care of reinserting breakpoints in the
5298 previously locked inferior. */
5299 keep_going (ecs);
5300 return;
5301
488f131b 5302 case TARGET_WAITKIND_EXECD:
527159b7 5303 if (debug_infrun)
fc5261f2 5304 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 5305
cbd2b4e3
PA
5306 /* Note we can't read registers yet (the stop_pc), because we
5307 don't yet know the inferior's post-exec architecture.
5308 'stop_pc' is explicitly read below instead. */
5a2901d9 5309 if (!ptid_equal (ecs->ptid, inferior_ptid))
cbd2b4e3 5310 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5311
6c95b8df
PA
5312 /* Do whatever is necessary to the parent branch of the vfork. */
5313 handle_vfork_child_exec_or_exit (1);
5314
795e548f
PA
5315 /* This causes the eventpoints and symbol table to be reset.
5316 Must do this now, before trying to determine whether to
5317 stop. */
71b43ef8 5318 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5319
1bb7c059
SM
5320 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5321
17d8546e
DB
5322 /* In follow_exec we may have deleted the original thread and
5323 created a new one. Make sure that the event thread is the
5324 execd thread for that case (this is a nop otherwise). */
5325 ecs->event_thread = inferior_thread ();
5326
16c381f0 5327 ecs->event_thread->control.stop_bpstat
a01bda52 5328 = bpstat_stop_status (get_current_regcache ()->aspace (),
09ac7c10 5329 stop_pc, ecs->ptid, &ecs->ws);
795e548f 5330
71b43ef8
PA
5331 /* Note that this may be referenced from inside
5332 bpstat_stop_status above, through inferior_has_execd. */
5333 xfree (ecs->ws.value.execd_pathname);
5334 ecs->ws.value.execd_pathname = NULL;
5335
c65d6b55
PA
5336 if (handle_stop_requested (ecs))
5337 return;
5338
04e68871 5339 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5340 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5341 {
a493e3e2 5342 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5343 keep_going (ecs);
5344 return;
5345 }
94c57d6a
PA
5346 process_event_stop_test (ecs);
5347 return;
488f131b 5348
b4dc5ffa
MK
5349 /* Be careful not to try to gather much state about a thread
5350 that's in a syscall. It's frequently a losing proposition. */
488f131b 5351 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 5352 if (debug_infrun)
3e43a32a
MS
5353 fprintf_unfiltered (gdb_stdlog,
5354 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 5355 /* Getting the current syscall number. */
94c57d6a
PA
5356 if (handle_syscall_event (ecs) == 0)
5357 process_event_stop_test (ecs);
5358 return;
c906108c 5359
488f131b
JB
5360 /* Before examining the threads further, step this thread to
5361 get it entirely out of the syscall. (We get notice of the
5362 event when the thread is just on the verge of exiting a
5363 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5364 into user code.) */
488f131b 5365 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 5366 if (debug_infrun)
3e43a32a
MS
5367 fprintf_unfiltered (gdb_stdlog,
5368 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
5369 if (handle_syscall_event (ecs) == 0)
5370 process_event_stop_test (ecs);
5371 return;
c906108c 5372
488f131b 5373 case TARGET_WAITKIND_STOPPED:
527159b7 5374 if (debug_infrun)
8a9de0e4 5375 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
4f5d7f63
PA
5376 handle_signal_stop (ecs);
5377 return;
c906108c 5378
b2175913 5379 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
5380 if (debug_infrun)
5381 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 5382 /* Reverse execution: target ran out of history info. */
eab402df 5383
d1988021
MM
5384 /* Switch to the stopped thread. */
5385 if (!ptid_equal (ecs->ptid, inferior_ptid))
5386 context_switch (ecs->ptid);
5387 if (debug_infrun)
5388 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5389
34b7e8a6 5390 delete_just_stopped_threads_single_step_breakpoints ();
d1988021 5391 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
c65d6b55
PA
5392
5393 if (handle_stop_requested (ecs))
5394 return;
5395
fd664c91 5396 observer_notify_no_history ();
22bcd14b 5397 stop_waiting (ecs);
b2175913 5398 return;
488f131b 5399 }
4f5d7f63
PA
5400}
5401
0b6e5e10
JB
5402/* A wrapper around handle_inferior_event_1, which also makes sure
5403 that all temporary struct value objects that were created during
5404 the handling of the event get deleted at the end. */
5405
5406static void
5407handle_inferior_event (struct execution_control_state *ecs)
5408{
5409 struct value *mark = value_mark ();
5410
5411 handle_inferior_event_1 (ecs);
5412 /* Purge all temporary values created during the event handling,
5413 as it could be a long time before we return to the command level
5414 where such values would otherwise be purged. */
5415 value_free_to_mark (mark);
5416}
5417
372316f1
PA
5418/* Restart threads back to what they were trying to do back when we
5419 paused them for an in-line step-over. The EVENT_THREAD thread is
5420 ignored. */
4d9d9d04
PA
5421
5422static void
372316f1
PA
5423restart_threads (struct thread_info *event_thread)
5424{
5425 struct thread_info *tp;
372316f1
PA
5426
5427 /* In case the instruction just stepped spawned a new thread. */
5428 update_thread_list ();
5429
5430 ALL_NON_EXITED_THREADS (tp)
5431 {
5432 if (tp == event_thread)
5433 {
5434 if (debug_infrun)
5435 fprintf_unfiltered (gdb_stdlog,
5436 "infrun: restart threads: "
5437 "[%s] is event thread\n",
5438 target_pid_to_str (tp->ptid));
5439 continue;
5440 }
5441
5442 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5443 {
5444 if (debug_infrun)
5445 fprintf_unfiltered (gdb_stdlog,
5446 "infrun: restart threads: "
5447 "[%s] not meant to be running\n",
5448 target_pid_to_str (tp->ptid));
5449 continue;
5450 }
5451
5452 if (tp->resumed)
5453 {
5454 if (debug_infrun)
5455 fprintf_unfiltered (gdb_stdlog,
5456 "infrun: restart threads: [%s] resumed\n",
5457 target_pid_to_str (tp->ptid));
5458 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5459 continue;
5460 }
5461
5462 if (thread_is_in_step_over_chain (tp))
5463 {
5464 if (debug_infrun)
5465 fprintf_unfiltered (gdb_stdlog,
5466 "infrun: restart threads: "
5467 "[%s] needs step-over\n",
5468 target_pid_to_str (tp->ptid));
5469 gdb_assert (!tp->resumed);
5470 continue;
5471 }
5472
5473
5474 if (tp->suspend.waitstatus_pending_p)
5475 {
5476 if (debug_infrun)
5477 fprintf_unfiltered (gdb_stdlog,
5478 "infrun: restart threads: "
5479 "[%s] has pending status\n",
5480 target_pid_to_str (tp->ptid));
5481 tp->resumed = 1;
5482 continue;
5483 }
5484
c65d6b55
PA
5485 gdb_assert (!tp->stop_requested);
5486
372316f1
PA
5487 /* If some thread needs to start a step-over at this point, it
5488 should still be in the step-over queue, and thus skipped
5489 above. */
5490 if (thread_still_needs_step_over (tp))
5491 {
5492 internal_error (__FILE__, __LINE__,
5493 "thread [%s] needs a step-over, but not in "
5494 "step-over queue\n",
5495 target_pid_to_str (tp->ptid));
5496 }
5497
5498 if (currently_stepping (tp))
5499 {
5500 if (debug_infrun)
5501 fprintf_unfiltered (gdb_stdlog,
5502 "infrun: restart threads: [%s] was stepping\n",
5503 target_pid_to_str (tp->ptid));
5504 keep_going_stepped_thread (tp);
5505 }
5506 else
5507 {
5508 struct execution_control_state ecss;
5509 struct execution_control_state *ecs = &ecss;
5510
5511 if (debug_infrun)
5512 fprintf_unfiltered (gdb_stdlog,
5513 "infrun: restart threads: [%s] continuing\n",
5514 target_pid_to_str (tp->ptid));
5515 reset_ecs (ecs, tp);
5516 switch_to_thread (tp->ptid);
5517 keep_going_pass_signal (ecs);
5518 }
5519 }
5520}
5521
5522/* Callback for iterate_over_threads. Find a resumed thread that has
5523 a pending waitstatus. */
5524
5525static int
5526resumed_thread_with_pending_status (struct thread_info *tp,
5527 void *arg)
5528{
5529 return (tp->resumed
5530 && tp->suspend.waitstatus_pending_p);
5531}
5532
5533/* Called when we get an event that may finish an in-line or
5534 out-of-line (displaced stepping) step-over started previously.
5535 Return true if the event is processed and we should go back to the
5536 event loop; false if the caller should continue processing the
5537 event. */
5538
5539static int
4d9d9d04
PA
5540finish_step_over (struct execution_control_state *ecs)
5541{
372316f1
PA
5542 int had_step_over_info;
5543
4d9d9d04
PA
5544 displaced_step_fixup (ecs->ptid,
5545 ecs->event_thread->suspend.stop_signal);
5546
372316f1
PA
5547 had_step_over_info = step_over_info_valid_p ();
5548
5549 if (had_step_over_info)
4d9d9d04
PA
5550 {
5551 /* If we're stepping over a breakpoint with all threads locked,
5552 then only the thread that was stepped should be reporting
5553 back an event. */
5554 gdb_assert (ecs->event_thread->control.trap_expected);
5555
c65d6b55 5556 clear_step_over_info ();
4d9d9d04
PA
5557 }
5558
fbea99ea 5559 if (!target_is_non_stop_p ())
372316f1 5560 return 0;
4d9d9d04
PA
5561
5562 /* Start a new step-over in another thread if there's one that
5563 needs it. */
5564 start_step_over ();
372316f1
PA
5565
5566 /* If we were stepping over a breakpoint before, and haven't started
5567 a new in-line step-over sequence, then restart all other threads
5568 (except the event thread). We can't do this in all-stop, as then
5569 e.g., we wouldn't be able to issue any other remote packet until
5570 these other threads stop. */
5571 if (had_step_over_info && !step_over_info_valid_p ())
5572 {
5573 struct thread_info *pending;
5574
5575 /* If we only have threads with pending statuses, the restart
5576 below won't restart any thread and so nothing re-inserts the
5577 breakpoint we just stepped over. But we need it inserted
5578 when we later process the pending events, otherwise if
5579 another thread has a pending event for this breakpoint too,
5580 we'd discard its event (because the breakpoint that
5581 originally caused the event was no longer inserted). */
5582 context_switch (ecs->ptid);
5583 insert_breakpoints ();
5584
5585 restart_threads (ecs->event_thread);
5586
5587 /* If we have events pending, go through handle_inferior_event
5588 again, picking up a pending event at random. This avoids
5589 thread starvation. */
5590
5591 /* But not if we just stepped over a watchpoint in order to let
5592 the instruction execute so we can evaluate its expression.
5593 The set of watchpoints that triggered is recorded in the
5594 breakpoint objects themselves (see bp->watchpoint_triggered).
5595 If we processed another event first, that other event could
5596 clobber this info. */
5597 if (ecs->event_thread->stepping_over_watchpoint)
5598 return 0;
5599
5600 pending = iterate_over_threads (resumed_thread_with_pending_status,
5601 NULL);
5602 if (pending != NULL)
5603 {
5604 struct thread_info *tp = ecs->event_thread;
5605 struct regcache *regcache;
5606
5607 if (debug_infrun)
5608 {
5609 fprintf_unfiltered (gdb_stdlog,
5610 "infrun: found resumed threads with "
5611 "pending events, saving status\n");
5612 }
5613
5614 gdb_assert (pending != tp);
5615
5616 /* Record the event thread's event for later. */
5617 save_waitstatus (tp, &ecs->ws);
5618 /* This was cleared early, by handle_inferior_event. Set it
5619 so this pending event is considered by
5620 do_target_wait. */
5621 tp->resumed = 1;
5622
5623 gdb_assert (!tp->executing);
5624
5625 regcache = get_thread_regcache (tp->ptid);
5626 tp->suspend.stop_pc = regcache_read_pc (regcache);
5627
5628 if (debug_infrun)
5629 {
5630 fprintf_unfiltered (gdb_stdlog,
5631 "infrun: saved stop_pc=%s for %s "
5632 "(currently_stepping=%d)\n",
5633 paddress (target_gdbarch (),
5634 tp->suspend.stop_pc),
5635 target_pid_to_str (tp->ptid),
5636 currently_stepping (tp));
5637 }
5638
5639 /* This in-line step-over finished; clear this so we won't
5640 start a new one. This is what handle_signal_stop would
5641 do, if we returned false. */
5642 tp->stepping_over_breakpoint = 0;
5643
5644 /* Wake up the event loop again. */
5645 mark_async_event_handler (infrun_async_inferior_event_token);
5646
5647 prepare_to_wait (ecs);
5648 return 1;
5649 }
5650 }
5651
5652 return 0;
4d9d9d04
PA
5653}
5654
4f5d7f63
PA
5655/* Come here when the program has stopped with a signal. */
5656
5657static void
5658handle_signal_stop (struct execution_control_state *ecs)
5659{
5660 struct frame_info *frame;
5661 struct gdbarch *gdbarch;
5662 int stopped_by_watchpoint;
5663 enum stop_kind stop_soon;
5664 int random_signal;
c906108c 5665
f0407826
DE
5666 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5667
c65d6b55
PA
5668 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5669
f0407826
DE
5670 /* Do we need to clean up the state of a thread that has
5671 completed a displaced single-step? (Doing so usually affects
5672 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5673 if (finish_step_over (ecs))
5674 return;
f0407826
DE
5675
5676 /* If we either finished a single-step or hit a breakpoint, but
5677 the user wanted this thread to be stopped, pretend we got a
5678 SIG0 (generic unsignaled stop). */
5679 if (ecs->event_thread->stop_requested
5680 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5681 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5682
515630c5 5683 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 5684
527159b7 5685 if (debug_infrun)
237fc4c9 5686 {
5af949e3 5687 struct regcache *regcache = get_thread_regcache (ecs->ptid);
ac7936df 5688 struct gdbarch *gdbarch = regcache->arch ();
2989a365 5689 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
7f82dfc7
JK
5690
5691 inferior_ptid = ecs->ptid;
5af949e3
UW
5692
5693 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5694 paddress (gdbarch, stop_pc));
d92524f1 5695 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5696 {
5697 CORE_ADDR addr;
abbb1732 5698
237fc4c9
PA
5699 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5700
5701 if (target_stopped_data_address (&current_target, &addr))
5702 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5703 "infrun: stopped data address = %s\n",
5704 paddress (gdbarch, addr));
237fc4c9
PA
5705 else
5706 fprintf_unfiltered (gdb_stdlog,
5707 "infrun: (no data address available)\n");
5708 }
5709 }
527159b7 5710
36fa8042
PA
5711 /* This is originated from start_remote(), start_inferior() and
5712 shared libraries hook functions. */
5713 stop_soon = get_inferior_stop_soon (ecs->ptid);
5714 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5715 {
5716 if (!ptid_equal (ecs->ptid, inferior_ptid))
5717 context_switch (ecs->ptid);
5718 if (debug_infrun)
5719 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5720 stop_print_frame = 1;
22bcd14b 5721 stop_waiting (ecs);
36fa8042
PA
5722 return;
5723 }
5724
36fa8042
PA
5725 /* This originates from attach_command(). We need to overwrite
5726 the stop_signal here, because some kernels don't ignore a
5727 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5728 See more comments in inferior.h. On the other hand, if we
5729 get a non-SIGSTOP, report it to the user - assume the backend
5730 will handle the SIGSTOP if it should show up later.
5731
5732 Also consider that the attach is complete when we see a
5733 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5734 target extended-remote report it instead of a SIGSTOP
5735 (e.g. gdbserver). We already rely on SIGTRAP being our
5736 signal, so this is no exception.
5737
5738 Also consider that the attach is complete when we see a
5739 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5740 the target to stop all threads of the inferior, in case the
5741 low level attach operation doesn't stop them implicitly. If
5742 they weren't stopped implicitly, then the stub will report a
5743 GDB_SIGNAL_0, meaning: stopped for no particular reason
5744 other than GDB's request. */
5745 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5746 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5747 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5748 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5749 {
5750 stop_print_frame = 1;
22bcd14b 5751 stop_waiting (ecs);
36fa8042
PA
5752 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5753 return;
5754 }
5755
488f131b 5756 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
5757 so, then switch to that thread. */
5758 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 5759 {
527159b7 5760 if (debug_infrun)
8a9de0e4 5761 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5762
0d1e5fa7 5763 context_switch (ecs->ptid);
c5aa993b 5764
9a4105ab 5765 if (deprecated_context_hook)
5d5658a1 5766 deprecated_context_hook (ptid_to_global_thread_id (ecs->ptid));
488f131b 5767 }
c906108c 5768
568d6575
UW
5769 /* At this point, get hold of the now-current thread's frame. */
5770 frame = get_current_frame ();
5771 gdbarch = get_frame_arch (frame);
5772
2adfaa28 5773 /* Pull the single step breakpoints out of the target. */
af48d08f 5774 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5775 {
af48d08f 5776 struct regcache *regcache;
af48d08f 5777 CORE_ADDR pc;
2adfaa28 5778
af48d08f 5779 regcache = get_thread_regcache (ecs->ptid);
8b86c959
YQ
5780 const address_space *aspace = regcache->aspace ();
5781
af48d08f 5782 pc = regcache_read_pc (regcache);
34b7e8a6 5783
af48d08f
PA
5784 /* However, before doing so, if this single-step breakpoint was
5785 actually for another thread, set this thread up for moving
5786 past it. */
5787 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5788 aspace, pc))
5789 {
5790 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5791 {
5792 if (debug_infrun)
5793 {
5794 fprintf_unfiltered (gdb_stdlog,
af48d08f 5795 "infrun: [%s] hit another thread's "
34b7e8a6
PA
5796 "single-step breakpoint\n",
5797 target_pid_to_str (ecs->ptid));
2adfaa28 5798 }
af48d08f
PA
5799 ecs->hit_singlestep_breakpoint = 1;
5800 }
5801 }
5802 else
5803 {
5804 if (debug_infrun)
5805 {
5806 fprintf_unfiltered (gdb_stdlog,
5807 "infrun: [%s] hit its "
5808 "single-step breakpoint\n",
5809 target_pid_to_str (ecs->ptid));
2adfaa28
PA
5810 }
5811 }
488f131b 5812 }
af48d08f 5813 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5814
963f9c80
PA
5815 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5816 && ecs->event_thread->control.trap_expected
5817 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5818 stopped_by_watchpoint = 0;
5819 else
5820 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5821
5822 /* If necessary, step over this watchpoint. We'll be back to display
5823 it in a moment. */
5824 if (stopped_by_watchpoint
d92524f1 5825 && (target_have_steppable_watchpoint
568d6575 5826 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5827 {
488f131b
JB
5828 /* At this point, we are stopped at an instruction which has
5829 attempted to write to a piece of memory under control of
5830 a watchpoint. The instruction hasn't actually executed
5831 yet. If we were to evaluate the watchpoint expression
5832 now, we would get the old value, and therefore no change
5833 would seem to have occurred.
5834
5835 In order to make watchpoints work `right', we really need
5836 to complete the memory write, and then evaluate the
d983da9c
DJ
5837 watchpoint expression. We do this by single-stepping the
5838 target.
5839
7f89fd65 5840 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5841 it. For example, the PA can (with some kernel cooperation)
5842 single step over a watchpoint without disabling the watchpoint.
5843
5844 It is far more common to need to disable a watchpoint to step
5845 the inferior over it. If we have non-steppable watchpoints,
5846 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5847 disable all watchpoints.
5848
5849 Any breakpoint at PC must also be stepped over -- if there's
5850 one, it will have already triggered before the watchpoint
5851 triggered, and we either already reported it to the user, or
5852 it didn't cause a stop and we called keep_going. In either
5853 case, if there was a breakpoint at PC, we must be trying to
5854 step past it. */
5855 ecs->event_thread->stepping_over_watchpoint = 1;
5856 keep_going (ecs);
488f131b
JB
5857 return;
5858 }
5859
4e1c45ea 5860 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5861 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5862 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5863 ecs->event_thread->control.stop_step = 0;
488f131b 5864 stop_print_frame = 1;
488f131b 5865 stopped_by_random_signal = 0;
488f131b 5866
edb3359d
DJ
5867 /* Hide inlined functions starting here, unless we just performed stepi or
5868 nexti. After stepi and nexti, always show the innermost frame (not any
5869 inline function call sites). */
16c381f0 5870 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 5871 {
8b86c959 5872 const address_space *aspace =
a01bda52 5873 get_thread_regcache (ecs->ptid)->aspace ();
0574c78f
GB
5874
5875 /* skip_inline_frames is expensive, so we avoid it if we can
5876 determine that the address is one where functions cannot have
5877 been inlined. This improves performance with inferiors that
5878 load a lot of shared libraries, because the solib event
5879 breakpoint is defined as the address of a function (i.e. not
5880 inline). Note that we have to check the previous PC as well
5881 as the current one to catch cases when we have just
5882 single-stepped off a breakpoint prior to reinstating it.
5883 Note that we're assuming that the code we single-step to is
5884 not inline, but that's not definitive: there's nothing
5885 preventing the event breakpoint function from containing
5886 inlined code, and the single-step ending up there. If the
5887 user had set a breakpoint on that inlined code, the missing
5888 skip_inline_frames call would break things. Fortunately
5889 that's an extremely unlikely scenario. */
09ac7c10 5890 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
5891 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5892 && ecs->event_thread->control.trap_expected
5893 && pc_at_non_inline_function (aspace,
5894 ecs->event_thread->prev_pc,
09ac7c10 5895 &ecs->ws)))
1c5a993e
MR
5896 {
5897 skip_inline_frames (ecs->ptid);
5898
5899 /* Re-fetch current thread's frame in case that invalidated
5900 the frame cache. */
5901 frame = get_current_frame ();
5902 gdbarch = get_frame_arch (frame);
5903 }
0574c78f 5904 }
edb3359d 5905
a493e3e2 5906 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5907 && ecs->event_thread->control.trap_expected
568d6575 5908 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5909 && currently_stepping (ecs->event_thread))
3352ef37 5910 {
b50d7442 5911 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5912 also on an instruction that needs to be stepped multiple
1777feb0 5913 times before it's been fully executing. E.g., architectures
3352ef37
AC
5914 with a delay slot. It needs to be stepped twice, once for
5915 the instruction and once for the delay slot. */
5916 int step_through_delay
568d6575 5917 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5918
527159b7 5919 if (debug_infrun && step_through_delay)
8a9de0e4 5920 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5921 if (ecs->event_thread->control.step_range_end == 0
5922 && step_through_delay)
3352ef37
AC
5923 {
5924 /* The user issued a continue when stopped at a breakpoint.
5925 Set up for another trap and get out of here. */
4e1c45ea 5926 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5927 keep_going (ecs);
5928 return;
5929 }
5930 else if (step_through_delay)
5931 {
5932 /* The user issued a step when stopped at a breakpoint.
5933 Maybe we should stop, maybe we should not - the delay
5934 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5935 case, don't decide that here, just set
5936 ecs->stepping_over_breakpoint, making sure we
5937 single-step again before breakpoints are re-inserted. */
4e1c45ea 5938 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5939 }
5940 }
5941
ab04a2af
TT
5942 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5943 handles this event. */
5944 ecs->event_thread->control.stop_bpstat
a01bda52 5945 = bpstat_stop_status (get_current_regcache ()->aspace (),
ab04a2af 5946 stop_pc, ecs->ptid, &ecs->ws);
db82e815 5947
ab04a2af
TT
5948 /* Following in case break condition called a
5949 function. */
5950 stop_print_frame = 1;
73dd234f 5951
ab04a2af
TT
5952 /* This is where we handle "moribund" watchpoints. Unlike
5953 software breakpoints traps, hardware watchpoint traps are
5954 always distinguishable from random traps. If no high-level
5955 watchpoint is associated with the reported stop data address
5956 anymore, then the bpstat does not explain the signal ---
5957 simply make sure to ignore it if `stopped_by_watchpoint' is
5958 set. */
5959
5960 if (debug_infrun
5961 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5962 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5963 GDB_SIGNAL_TRAP)
ab04a2af
TT
5964 && stopped_by_watchpoint)
5965 fprintf_unfiltered (gdb_stdlog,
5966 "infrun: no user watchpoint explains "
5967 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5968
bac7d97b 5969 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5970 at one stage in the past included checks for an inferior
5971 function call's call dummy's return breakpoint. The original
5972 comment, that went with the test, read:
03cebad2 5973
ab04a2af
TT
5974 ``End of a stack dummy. Some systems (e.g. Sony news) give
5975 another signal besides SIGTRAP, so check here as well as
5976 above.''
73dd234f 5977
ab04a2af
TT
5978 If someone ever tries to get call dummys on a
5979 non-executable stack to work (where the target would stop
5980 with something like a SIGSEGV), then those tests might need
5981 to be re-instated. Given, however, that the tests were only
5982 enabled when momentary breakpoints were not being used, I
5983 suspect that it won't be the case.
488f131b 5984
ab04a2af
TT
5985 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5986 be necessary for call dummies on a non-executable stack on
5987 SPARC. */
488f131b 5988
bac7d97b 5989 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5990 random_signal
5991 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5992 ecs->event_thread->suspend.stop_signal);
bac7d97b 5993
1cf4d951
PA
5994 /* Maybe this was a trap for a software breakpoint that has since
5995 been removed. */
5996 if (random_signal && target_stopped_by_sw_breakpoint ())
5997 {
5998 if (program_breakpoint_here_p (gdbarch, stop_pc))
5999 {
6000 struct regcache *regcache;
6001 int decr_pc;
6002
6003 /* Re-adjust PC to what the program would see if GDB was not
6004 debugging it. */
6005 regcache = get_thread_regcache (ecs->event_thread->ptid);
527a273a 6006 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
6007 if (decr_pc != 0)
6008 {
07036511
TT
6009 gdb::optional<scoped_restore_tmpl<int>>
6010 restore_operation_disable;
1cf4d951
PA
6011
6012 if (record_full_is_used ())
07036511
TT
6013 restore_operation_disable.emplace
6014 (record_full_gdb_operation_disable_set ());
1cf4d951
PA
6015
6016 regcache_write_pc (regcache, stop_pc + decr_pc);
1cf4d951
PA
6017 }
6018 }
6019 else
6020 {
6021 /* A delayed software breakpoint event. Ignore the trap. */
6022 if (debug_infrun)
6023 fprintf_unfiltered (gdb_stdlog,
6024 "infrun: delayed software breakpoint "
6025 "trap, ignoring\n");
6026 random_signal = 0;
6027 }
6028 }
6029
6030 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6031 has since been removed. */
6032 if (random_signal && target_stopped_by_hw_breakpoint ())
6033 {
6034 /* A delayed hardware breakpoint event. Ignore the trap. */
6035 if (debug_infrun)
6036 fprintf_unfiltered (gdb_stdlog,
6037 "infrun: delayed hardware breakpoint/watchpoint "
6038 "trap, ignoring\n");
6039 random_signal = 0;
6040 }
6041
bac7d97b
PA
6042 /* If not, perhaps stepping/nexting can. */
6043 if (random_signal)
6044 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6045 && currently_stepping (ecs->event_thread));
ab04a2af 6046
2adfaa28
PA
6047 /* Perhaps the thread hit a single-step breakpoint of _another_
6048 thread. Single-step breakpoints are transparent to the
6049 breakpoints module. */
6050 if (random_signal)
6051 random_signal = !ecs->hit_singlestep_breakpoint;
6052
bac7d97b
PA
6053 /* No? Perhaps we got a moribund watchpoint. */
6054 if (random_signal)
6055 random_signal = !stopped_by_watchpoint;
ab04a2af 6056
c65d6b55
PA
6057 /* Always stop if the user explicitly requested this thread to
6058 remain stopped. */
6059 if (ecs->event_thread->stop_requested)
6060 {
6061 random_signal = 1;
6062 if (debug_infrun)
6063 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6064 }
6065
488f131b
JB
6066 /* For the program's own signals, act according to
6067 the signal handling tables. */
6068
ce12b012 6069 if (random_signal)
488f131b
JB
6070 {
6071 /* Signal not for debugging purposes. */
c9657e70 6072 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 6073 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 6074
527159b7 6075 if (debug_infrun)
c9737c08
PA
6076 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6077 gdb_signal_to_symbol_string (stop_signal));
527159b7 6078
488f131b
JB
6079 stopped_by_random_signal = 1;
6080
252fbfc8
PA
6081 /* Always stop on signals if we're either just gaining control
6082 of the program, or the user explicitly requested this thread
6083 to remain stopped. */
d6b48e9c 6084 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 6085 || ecs->event_thread->stop_requested
24291992 6086 || (!inf->detaching
16c381f0 6087 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 6088 {
22bcd14b 6089 stop_waiting (ecs);
488f131b
JB
6090 return;
6091 }
b57bacec
PA
6092
6093 /* Notify observers the signal has "handle print" set. Note we
6094 returned early above if stopping; normal_stop handles the
6095 printing in that case. */
6096 if (signal_print[ecs->event_thread->suspend.stop_signal])
6097 {
6098 /* The signal table tells us to print about this signal. */
223ffa71 6099 target_terminal::ours_for_output ();
b57bacec 6100 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
223ffa71 6101 target_terminal::inferior ();
b57bacec 6102 }
488f131b
JB
6103
6104 /* Clear the signal if it should not be passed. */
16c381f0 6105 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 6106 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 6107
fb14de7b 6108 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 6109 && ecs->event_thread->control.trap_expected
8358c15c 6110 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
6111 {
6112 /* We were just starting a new sequence, attempting to
6113 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 6114 Instead this signal arrives. This signal will take us out
68f53502
AC
6115 of the stepping range so GDB needs to remember to, when
6116 the signal handler returns, resume stepping off that
6117 breakpoint. */
6118 /* To simplify things, "continue" is forced to use the same
6119 code paths as single-step - set a breakpoint at the
6120 signal return address and then, once hit, step off that
6121 breakpoint. */
237fc4c9
PA
6122 if (debug_infrun)
6123 fprintf_unfiltered (gdb_stdlog,
6124 "infrun: signal arrived while stepping over "
6125 "breakpoint\n");
d3169d93 6126
2c03e5be 6127 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 6128 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6129 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6130 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
6131
6132 /* If we were nexting/stepping some other thread, switch to
6133 it, so that we don't continue it, losing control. */
6134 if (!switch_back_to_stepped_thread (ecs))
6135 keep_going (ecs);
9d799f85 6136 return;
68f53502 6137 }
9d799f85 6138
e5f8a7cc
PA
6139 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6140 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6141 || ecs->event_thread->control.step_range_end == 1)
edb3359d 6142 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 6143 ecs->event_thread->control.step_stack_frame_id)
8358c15c 6144 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
6145 {
6146 /* The inferior is about to take a signal that will take it
6147 out of the single step range. Set a breakpoint at the
6148 current PC (which is presumably where the signal handler
6149 will eventually return) and then allow the inferior to
6150 run free.
6151
6152 Note that this is only needed for a signal delivered
6153 while in the single-step range. Nested signals aren't a
6154 problem as they eventually all return. */
237fc4c9
PA
6155 if (debug_infrun)
6156 fprintf_unfiltered (gdb_stdlog,
6157 "infrun: signal may take us out of "
6158 "single-step range\n");
6159
372316f1 6160 clear_step_over_info ();
2c03e5be 6161 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 6162 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6163 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6164 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
6165 keep_going (ecs);
6166 return;
d303a6c7 6167 }
9d799f85
AC
6168
6169 /* Note: step_resume_breakpoint may be non-NULL. This occures
6170 when either there's a nested signal, or when there's a
6171 pending signal enabled just as the signal handler returns
6172 (leaving the inferior at the step-resume-breakpoint without
6173 actually executing it). Either way continue until the
6174 breakpoint is really hit. */
c447ac0b
PA
6175
6176 if (!switch_back_to_stepped_thread (ecs))
6177 {
6178 if (debug_infrun)
6179 fprintf_unfiltered (gdb_stdlog,
6180 "infrun: random signal, keep going\n");
6181
6182 keep_going (ecs);
6183 }
6184 return;
488f131b 6185 }
94c57d6a
PA
6186
6187 process_event_stop_test (ecs);
6188}
6189
6190/* Come here when we've got some debug event / signal we can explain
6191 (IOW, not a random signal), and test whether it should cause a
6192 stop, or whether we should resume the inferior (transparently).
6193 E.g., could be a breakpoint whose condition evaluates false; we
6194 could be still stepping within the line; etc. */
6195
6196static void
6197process_event_stop_test (struct execution_control_state *ecs)
6198{
6199 struct symtab_and_line stop_pc_sal;
6200 struct frame_info *frame;
6201 struct gdbarch *gdbarch;
cdaa5b73
PA
6202 CORE_ADDR jmp_buf_pc;
6203 struct bpstat_what what;
94c57d6a 6204
cdaa5b73 6205 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6206
cdaa5b73
PA
6207 frame = get_current_frame ();
6208 gdbarch = get_frame_arch (frame);
fcf3daef 6209
cdaa5b73 6210 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6211
cdaa5b73
PA
6212 if (what.call_dummy)
6213 {
6214 stop_stack_dummy = what.call_dummy;
6215 }
186c406b 6216
243a9253
PA
6217 /* A few breakpoint types have callbacks associated (e.g.,
6218 bp_jit_event). Run them now. */
6219 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6220
cdaa5b73
PA
6221 /* If we hit an internal event that triggers symbol changes, the
6222 current frame will be invalidated within bpstat_what (e.g., if we
6223 hit an internal solib event). Re-fetch it. */
6224 frame = get_current_frame ();
6225 gdbarch = get_frame_arch (frame);
e2e4d78b 6226
cdaa5b73
PA
6227 switch (what.main_action)
6228 {
6229 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6230 /* If we hit the breakpoint at longjmp while stepping, we
6231 install a momentary breakpoint at the target of the
6232 jmp_buf. */
186c406b 6233
cdaa5b73
PA
6234 if (debug_infrun)
6235 fprintf_unfiltered (gdb_stdlog,
6236 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6237
cdaa5b73 6238 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6239
cdaa5b73
PA
6240 if (what.is_longjmp)
6241 {
6242 struct value *arg_value;
6243
6244 /* If we set the longjmp breakpoint via a SystemTap probe,
6245 then use it to extract the arguments. The destination PC
6246 is the third argument to the probe. */
6247 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6248 if (arg_value)
8fa0c4f8
AA
6249 {
6250 jmp_buf_pc = value_as_address (arg_value);
6251 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6252 }
cdaa5b73
PA
6253 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6254 || !gdbarch_get_longjmp_target (gdbarch,
6255 frame, &jmp_buf_pc))
e2e4d78b 6256 {
cdaa5b73
PA
6257 if (debug_infrun)
6258 fprintf_unfiltered (gdb_stdlog,
6259 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6260 "(!gdbarch_get_longjmp_target)\n");
6261 keep_going (ecs);
6262 return;
e2e4d78b 6263 }
e2e4d78b 6264
cdaa5b73
PA
6265 /* Insert a breakpoint at resume address. */
6266 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6267 }
6268 else
6269 check_exception_resume (ecs, frame);
6270 keep_going (ecs);
6271 return;
e81a37f7 6272
cdaa5b73
PA
6273 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6274 {
6275 struct frame_info *init_frame;
e81a37f7 6276
cdaa5b73 6277 /* There are several cases to consider.
c906108c 6278
cdaa5b73
PA
6279 1. The initiating frame no longer exists. In this case we
6280 must stop, because the exception or longjmp has gone too
6281 far.
2c03e5be 6282
cdaa5b73
PA
6283 2. The initiating frame exists, and is the same as the
6284 current frame. We stop, because the exception or longjmp
6285 has been caught.
2c03e5be 6286
cdaa5b73
PA
6287 3. The initiating frame exists and is different from the
6288 current frame. This means the exception or longjmp has
6289 been caught beneath the initiating frame, so keep going.
c906108c 6290
cdaa5b73
PA
6291 4. longjmp breakpoint has been placed just to protect
6292 against stale dummy frames and user is not interested in
6293 stopping around longjmps. */
c5aa993b 6294
cdaa5b73
PA
6295 if (debug_infrun)
6296 fprintf_unfiltered (gdb_stdlog,
6297 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6298
cdaa5b73
PA
6299 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6300 != NULL);
6301 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6302
cdaa5b73
PA
6303 if (what.is_longjmp)
6304 {
b67a2c6f 6305 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6306
cdaa5b73 6307 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6308 {
cdaa5b73
PA
6309 /* Case 4. */
6310 keep_going (ecs);
6311 return;
e5ef252a 6312 }
cdaa5b73 6313 }
c5aa993b 6314
cdaa5b73 6315 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6316
cdaa5b73
PA
6317 if (init_frame)
6318 {
6319 struct frame_id current_id
6320 = get_frame_id (get_current_frame ());
6321 if (frame_id_eq (current_id,
6322 ecs->event_thread->initiating_frame))
6323 {
6324 /* Case 2. Fall through. */
6325 }
6326 else
6327 {
6328 /* Case 3. */
6329 keep_going (ecs);
6330 return;
6331 }
68f53502 6332 }
488f131b 6333
cdaa5b73
PA
6334 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6335 exists. */
6336 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6337
bdc36728 6338 end_stepping_range (ecs);
cdaa5b73
PA
6339 }
6340 return;
e5ef252a 6341
cdaa5b73
PA
6342 case BPSTAT_WHAT_SINGLE:
6343 if (debug_infrun)
6344 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6345 ecs->event_thread->stepping_over_breakpoint = 1;
6346 /* Still need to check other stuff, at least the case where we
6347 are stepping and step out of the right range. */
6348 break;
e5ef252a 6349
cdaa5b73
PA
6350 case BPSTAT_WHAT_STEP_RESUME:
6351 if (debug_infrun)
6352 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6353
cdaa5b73
PA
6354 delete_step_resume_breakpoint (ecs->event_thread);
6355 if (ecs->event_thread->control.proceed_to_finish
6356 && execution_direction == EXEC_REVERSE)
6357 {
6358 struct thread_info *tp = ecs->event_thread;
6359
6360 /* We are finishing a function in reverse, and just hit the
6361 step-resume breakpoint at the start address of the
6362 function, and we're almost there -- just need to back up
6363 by one more single-step, which should take us back to the
6364 function call. */
6365 tp->control.step_range_start = tp->control.step_range_end = 1;
6366 keep_going (ecs);
e5ef252a 6367 return;
cdaa5b73
PA
6368 }
6369 fill_in_stop_func (gdbarch, ecs);
6370 if (stop_pc == ecs->stop_func_start
6371 && execution_direction == EXEC_REVERSE)
6372 {
6373 /* We are stepping over a function call in reverse, and just
6374 hit the step-resume breakpoint at the start address of
6375 the function. Go back to single-stepping, which should
6376 take us back to the function call. */
6377 ecs->event_thread->stepping_over_breakpoint = 1;
6378 keep_going (ecs);
6379 return;
6380 }
6381 break;
e5ef252a 6382
cdaa5b73
PA
6383 case BPSTAT_WHAT_STOP_NOISY:
6384 if (debug_infrun)
6385 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6386 stop_print_frame = 1;
e5ef252a 6387
99619bea
PA
6388 /* Assume the thread stopped for a breapoint. We'll still check
6389 whether a/the breakpoint is there when the thread is next
6390 resumed. */
6391 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6392
22bcd14b 6393 stop_waiting (ecs);
cdaa5b73 6394 return;
e5ef252a 6395
cdaa5b73
PA
6396 case BPSTAT_WHAT_STOP_SILENT:
6397 if (debug_infrun)
6398 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6399 stop_print_frame = 0;
e5ef252a 6400
99619bea
PA
6401 /* Assume the thread stopped for a breapoint. We'll still check
6402 whether a/the breakpoint is there when the thread is next
6403 resumed. */
6404 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6405 stop_waiting (ecs);
cdaa5b73
PA
6406 return;
6407
6408 case BPSTAT_WHAT_HP_STEP_RESUME:
6409 if (debug_infrun)
6410 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6411
6412 delete_step_resume_breakpoint (ecs->event_thread);
6413 if (ecs->event_thread->step_after_step_resume_breakpoint)
6414 {
6415 /* Back when the step-resume breakpoint was inserted, we
6416 were trying to single-step off a breakpoint. Go back to
6417 doing that. */
6418 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6419 ecs->event_thread->stepping_over_breakpoint = 1;
6420 keep_going (ecs);
6421 return;
e5ef252a 6422 }
cdaa5b73
PA
6423 break;
6424
6425 case BPSTAT_WHAT_KEEP_CHECKING:
6426 break;
e5ef252a 6427 }
c906108c 6428
af48d08f
PA
6429 /* If we stepped a permanent breakpoint and we had a high priority
6430 step-resume breakpoint for the address we stepped, but we didn't
6431 hit it, then we must have stepped into the signal handler. The
6432 step-resume was only necessary to catch the case of _not_
6433 stepping into the handler, so delete it, and fall through to
6434 checking whether the step finished. */
6435 if (ecs->event_thread->stepped_breakpoint)
6436 {
6437 struct breakpoint *sr_bp
6438 = ecs->event_thread->control.step_resume_breakpoint;
6439
8d707a12
PA
6440 if (sr_bp != NULL
6441 && sr_bp->loc->permanent
af48d08f
PA
6442 && sr_bp->type == bp_hp_step_resume
6443 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6444 {
6445 if (debug_infrun)
6446 fprintf_unfiltered (gdb_stdlog,
6447 "infrun: stepped permanent breakpoint, stopped in "
6448 "handler\n");
6449 delete_step_resume_breakpoint (ecs->event_thread);
6450 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6451 }
6452 }
6453
cdaa5b73
PA
6454 /* We come here if we hit a breakpoint but should not stop for it.
6455 Possibly we also were stepping and should stop for that. So fall
6456 through and test for stepping. But, if not stepping, do not
6457 stop. */
c906108c 6458
a7212384
UW
6459 /* In all-stop mode, if we're currently stepping but have stopped in
6460 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6461 if (switch_back_to_stepped_thread (ecs))
6462 return;
776f04fa 6463
8358c15c 6464 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6465 {
527159b7 6466 if (debug_infrun)
d3169d93
DJ
6467 fprintf_unfiltered (gdb_stdlog,
6468 "infrun: step-resume breakpoint is inserted\n");
527159b7 6469
488f131b
JB
6470 /* Having a step-resume breakpoint overrides anything
6471 else having to do with stepping commands until
6472 that breakpoint is reached. */
488f131b
JB
6473 keep_going (ecs);
6474 return;
6475 }
c5aa993b 6476
16c381f0 6477 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6478 {
527159b7 6479 if (debug_infrun)
8a9de0e4 6480 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6481 /* Likewise if we aren't even stepping. */
488f131b
JB
6482 keep_going (ecs);
6483 return;
6484 }
c5aa993b 6485
4b7703ad
JB
6486 /* Re-fetch current thread's frame in case the code above caused
6487 the frame cache to be re-initialized, making our FRAME variable
6488 a dangling pointer. */
6489 frame = get_current_frame ();
628fe4e4 6490 gdbarch = get_frame_arch (frame);
7e324e48 6491 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6492
488f131b 6493 /* If stepping through a line, keep going if still within it.
c906108c 6494
488f131b
JB
6495 Note that step_range_end is the address of the first instruction
6496 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6497 within it!
6498
6499 Note also that during reverse execution, we may be stepping
6500 through a function epilogue and therefore must detect when
6501 the current-frame changes in the middle of a line. */
6502
ce4c476a 6503 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 6504 && (execution_direction != EXEC_REVERSE
388a8562 6505 || frame_id_eq (get_frame_id (frame),
16c381f0 6506 ecs->event_thread->control.step_frame_id)))
488f131b 6507 {
527159b7 6508 if (debug_infrun)
5af949e3
UW
6509 fprintf_unfiltered
6510 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6511 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6512 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6513
c1e36e3e
PA
6514 /* Tentatively re-enable range stepping; `resume' disables it if
6515 necessary (e.g., if we're stepping over a breakpoint or we
6516 have software watchpoints). */
6517 ecs->event_thread->control.may_range_step = 1;
6518
b2175913
MS
6519 /* When stepping backward, stop at beginning of line range
6520 (unless it's the function entry point, in which case
6521 keep going back to the call point). */
16c381f0 6522 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6523 && stop_pc != ecs->stop_func_start
6524 && execution_direction == EXEC_REVERSE)
bdc36728 6525 end_stepping_range (ecs);
b2175913
MS
6526 else
6527 keep_going (ecs);
6528
488f131b
JB
6529 return;
6530 }
c5aa993b 6531
488f131b 6532 /* We stepped out of the stepping range. */
c906108c 6533
488f131b 6534 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6535 loader dynamic symbol resolution code...
6536
6537 EXEC_FORWARD: we keep on single stepping until we exit the run
6538 time loader code and reach the callee's address.
6539
6540 EXEC_REVERSE: we've already executed the callee (backward), and
6541 the runtime loader code is handled just like any other
6542 undebuggable function call. Now we need only keep stepping
6543 backward through the trampoline code, and that's handled further
6544 down, so there is nothing for us to do here. */
6545
6546 if (execution_direction != EXEC_REVERSE
16c381f0 6547 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 6548 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 6549 {
4c8c40e6 6550 CORE_ADDR pc_after_resolver =
568d6575 6551 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 6552
527159b7 6553 if (debug_infrun)
3e43a32a
MS
6554 fprintf_unfiltered (gdb_stdlog,
6555 "infrun: stepped into dynsym resolve code\n");
527159b7 6556
488f131b
JB
6557 if (pc_after_resolver)
6558 {
6559 /* Set up a step-resume breakpoint at the address
6560 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6561 symtab_and_line sr_sal;
488f131b 6562 sr_sal.pc = pc_after_resolver;
6c95b8df 6563 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6564
a6d9a66e
UW
6565 insert_step_resume_breakpoint_at_sal (gdbarch,
6566 sr_sal, null_frame_id);
c5aa993b 6567 }
c906108c 6568
488f131b
JB
6569 keep_going (ecs);
6570 return;
6571 }
c906108c 6572
16c381f0
JK
6573 if (ecs->event_thread->control.step_range_end != 1
6574 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6575 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6576 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6577 {
527159b7 6578 if (debug_infrun)
3e43a32a
MS
6579 fprintf_unfiltered (gdb_stdlog,
6580 "infrun: stepped into signal trampoline\n");
42edda50 6581 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6582 a signal trampoline (either by a signal being delivered or by
6583 the signal handler returning). Just single-step until the
6584 inferior leaves the trampoline (either by calling the handler
6585 or returning). */
488f131b
JB
6586 keep_going (ecs);
6587 return;
6588 }
c906108c 6589
14132e89
MR
6590 /* If we're in the return path from a shared library trampoline,
6591 we want to proceed through the trampoline when stepping. */
6592 /* macro/2012-04-25: This needs to come before the subroutine
6593 call check below as on some targets return trampolines look
6594 like subroutine calls (MIPS16 return thunks). */
6595 if (gdbarch_in_solib_return_trampoline (gdbarch,
6596 stop_pc, ecs->stop_func_name)
6597 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6598 {
6599 /* Determine where this trampoline returns. */
6600 CORE_ADDR real_stop_pc;
6601
6602 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6603
6604 if (debug_infrun)
6605 fprintf_unfiltered (gdb_stdlog,
6606 "infrun: stepped into solib return tramp\n");
6607
6608 /* Only proceed through if we know where it's going. */
6609 if (real_stop_pc)
6610 {
6611 /* And put the step-breakpoint there and go until there. */
51abb421 6612 symtab_and_line sr_sal;
14132e89
MR
6613 sr_sal.pc = real_stop_pc;
6614 sr_sal.section = find_pc_overlay (sr_sal.pc);
6615 sr_sal.pspace = get_frame_program_space (frame);
6616
6617 /* Do not specify what the fp should be when we stop since
6618 on some machines the prologue is where the new fp value
6619 is established. */
6620 insert_step_resume_breakpoint_at_sal (gdbarch,
6621 sr_sal, null_frame_id);
6622
6623 /* Restart without fiddling with the step ranges or
6624 other state. */
6625 keep_going (ecs);
6626 return;
6627 }
6628 }
6629
c17eaafe
DJ
6630 /* Check for subroutine calls. The check for the current frame
6631 equalling the step ID is not necessary - the check of the
6632 previous frame's ID is sufficient - but it is a common case and
6633 cheaper than checking the previous frame's ID.
14e60db5
DJ
6634
6635 NOTE: frame_id_eq will never report two invalid frame IDs as
6636 being equal, so to get into this block, both the current and
6637 previous frame must have valid frame IDs. */
005ca36a
JB
6638 /* The outer_frame_id check is a heuristic to detect stepping
6639 through startup code. If we step over an instruction which
6640 sets the stack pointer from an invalid value to a valid value,
6641 we may detect that as a subroutine call from the mythical
6642 "outermost" function. This could be fixed by marking
6643 outermost frames as !stack_p,code_p,special_p. Then the
6644 initial outermost frame, before sp was valid, would
ce6cca6d 6645 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6646 for more. */
edb3359d 6647 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6648 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6649 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6650 ecs->event_thread->control.step_stack_frame_id)
6651 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6652 outer_frame_id)
885eeb5b
PA
6653 || (ecs->event_thread->control.step_start_function
6654 != find_pc_function (stop_pc)))))
488f131b 6655 {
95918acb 6656 CORE_ADDR real_stop_pc;
8fb3e588 6657
527159b7 6658 if (debug_infrun)
8a9de0e4 6659 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6660
b7a084be 6661 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6662 {
6663 /* I presume that step_over_calls is only 0 when we're
6664 supposed to be stepping at the assembly language level
6665 ("stepi"). Just stop. */
388a8562 6666 /* And this works the same backward as frontward. MVS */
bdc36728 6667 end_stepping_range (ecs);
95918acb
AC
6668 return;
6669 }
8fb3e588 6670
388a8562
MS
6671 /* Reverse stepping through solib trampolines. */
6672
6673 if (execution_direction == EXEC_REVERSE
16c381f0 6674 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6675 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6676 || (ecs->stop_func_start == 0
6677 && in_solib_dynsym_resolve_code (stop_pc))))
6678 {
6679 /* Any solib trampoline code can be handled in reverse
6680 by simply continuing to single-step. We have already
6681 executed the solib function (backwards), and a few
6682 steps will take us back through the trampoline to the
6683 caller. */
6684 keep_going (ecs);
6685 return;
6686 }
6687
16c381f0 6688 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6689 {
b2175913
MS
6690 /* We're doing a "next".
6691
6692 Normal (forward) execution: set a breakpoint at the
6693 callee's return address (the address at which the caller
6694 will resume).
6695
6696 Reverse (backward) execution. set the step-resume
6697 breakpoint at the start of the function that we just
6698 stepped into (backwards), and continue to there. When we
6130d0b7 6699 get there, we'll need to single-step back to the caller. */
b2175913
MS
6700
6701 if (execution_direction == EXEC_REVERSE)
6702 {
acf9414f
JK
6703 /* If we're already at the start of the function, we've either
6704 just stepped backward into a single instruction function,
6705 or stepped back out of a signal handler to the first instruction
6706 of the function. Just keep going, which will single-step back
6707 to the caller. */
58c48e72 6708 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 6709 {
acf9414f 6710 /* Normal function call return (static or dynamic). */
51abb421 6711 symtab_and_line sr_sal;
acf9414f
JK
6712 sr_sal.pc = ecs->stop_func_start;
6713 sr_sal.pspace = get_frame_program_space (frame);
6714 insert_step_resume_breakpoint_at_sal (gdbarch,
6715 sr_sal, null_frame_id);
6716 }
b2175913
MS
6717 }
6718 else
568d6575 6719 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6720
8567c30f
AC
6721 keep_going (ecs);
6722 return;
6723 }
a53c66de 6724
95918acb 6725 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6726 calling routine and the real function), locate the real
6727 function. That's what tells us (a) whether we want to step
6728 into it at all, and (b) what prologue we want to run to the
6729 end of, if we do step into it. */
568d6575 6730 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6731 if (real_stop_pc == 0)
568d6575 6732 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6733 if (real_stop_pc != 0)
6734 ecs->stop_func_start = real_stop_pc;
8fb3e588 6735
db5f024e 6736 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 6737 {
51abb421 6738 symtab_and_line sr_sal;
1b2bfbb9 6739 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6740 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6741
a6d9a66e
UW
6742 insert_step_resume_breakpoint_at_sal (gdbarch,
6743 sr_sal, null_frame_id);
8fb3e588
AC
6744 keep_going (ecs);
6745 return;
1b2bfbb9
RC
6746 }
6747
95918acb 6748 /* If we have line number information for the function we are
1bfeeb0f
JL
6749 thinking of stepping into and the function isn't on the skip
6750 list, step into it.
95918acb 6751
8fb3e588
AC
6752 If there are several symtabs at that PC (e.g. with include
6753 files), just want to know whether *any* of them have line
6754 numbers. find_pc_line handles this. */
95918acb
AC
6755 {
6756 struct symtab_and_line tmp_sal;
8fb3e588 6757
95918acb 6758 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6759 if (tmp_sal.line != 0
85817405 6760 && !function_name_is_marked_for_skip (ecs->stop_func_name,
de7985c3 6761 tmp_sal))
95918acb 6762 {
b2175913 6763 if (execution_direction == EXEC_REVERSE)
568d6575 6764 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6765 else
568d6575 6766 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6767 return;
6768 }
6769 }
6770
6771 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6772 set, we stop the step so that the user has a chance to switch
6773 in assembly mode. */
16c381f0 6774 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6775 && step_stop_if_no_debug)
95918acb 6776 {
bdc36728 6777 end_stepping_range (ecs);
95918acb
AC
6778 return;
6779 }
6780
b2175913
MS
6781 if (execution_direction == EXEC_REVERSE)
6782 {
acf9414f
JK
6783 /* If we're already at the start of the function, we've either just
6784 stepped backward into a single instruction function without line
6785 number info, or stepped back out of a signal handler to the first
6786 instruction of the function without line number info. Just keep
6787 going, which will single-step back to the caller. */
6788 if (ecs->stop_func_start != stop_pc)
6789 {
6790 /* Set a breakpoint at callee's start address.
6791 From there we can step once and be back in the caller. */
51abb421 6792 symtab_and_line sr_sal;
acf9414f
JK
6793 sr_sal.pc = ecs->stop_func_start;
6794 sr_sal.pspace = get_frame_program_space (frame);
6795 insert_step_resume_breakpoint_at_sal (gdbarch,
6796 sr_sal, null_frame_id);
6797 }
b2175913
MS
6798 }
6799 else
6800 /* Set a breakpoint at callee's return address (the address
6801 at which the caller will resume). */
568d6575 6802 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6803
95918acb 6804 keep_going (ecs);
488f131b 6805 return;
488f131b 6806 }
c906108c 6807
fdd654f3
MS
6808 /* Reverse stepping through solib trampolines. */
6809
6810 if (execution_direction == EXEC_REVERSE
16c381f0 6811 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
6812 {
6813 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6814 || (ecs->stop_func_start == 0
6815 && in_solib_dynsym_resolve_code (stop_pc)))
6816 {
6817 /* Any solib trampoline code can be handled in reverse
6818 by simply continuing to single-step. We have already
6819 executed the solib function (backwards), and a few
6820 steps will take us back through the trampoline to the
6821 caller. */
6822 keep_going (ecs);
6823 return;
6824 }
6825 else if (in_solib_dynsym_resolve_code (stop_pc))
6826 {
6827 /* Stepped backward into the solib dynsym resolver.
6828 Set a breakpoint at its start and continue, then
6829 one more step will take us out. */
51abb421 6830 symtab_and_line sr_sal;
fdd654f3 6831 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6832 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6833 insert_step_resume_breakpoint_at_sal (gdbarch,
6834 sr_sal, null_frame_id);
6835 keep_going (ecs);
6836 return;
6837 }
6838 }
6839
2afb61aa 6840 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 6841
1b2bfbb9
RC
6842 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6843 the trampoline processing logic, however, there are some trampolines
6844 that have no names, so we should do trampoline handling first. */
16c381f0 6845 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6846 && ecs->stop_func_name == NULL
2afb61aa 6847 && stop_pc_sal.line == 0)
1b2bfbb9 6848 {
527159b7 6849 if (debug_infrun)
3e43a32a
MS
6850 fprintf_unfiltered (gdb_stdlog,
6851 "infrun: stepped into undebuggable function\n");
527159b7 6852
1b2bfbb9 6853 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6854 undebuggable function (where there is no debugging information
6855 and no line number corresponding to the address where the
1b2bfbb9
RC
6856 inferior stopped). Since we want to skip this kind of code,
6857 we keep going until the inferior returns from this
14e60db5
DJ
6858 function - unless the user has asked us not to (via
6859 set step-mode) or we no longer know how to get back
6860 to the call site. */
6861 if (step_stop_if_no_debug
c7ce8faa 6862 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6863 {
6864 /* If we have no line number and the step-stop-if-no-debug
6865 is set, we stop the step so that the user has a chance to
6866 switch in assembly mode. */
bdc36728 6867 end_stepping_range (ecs);
1b2bfbb9
RC
6868 return;
6869 }
6870 else
6871 {
6872 /* Set a breakpoint at callee's return address (the address
6873 at which the caller will resume). */
568d6575 6874 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6875 keep_going (ecs);
6876 return;
6877 }
6878 }
6879
16c381f0 6880 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6881 {
6882 /* It is stepi or nexti. We always want to stop stepping after
6883 one instruction. */
527159b7 6884 if (debug_infrun)
8a9de0e4 6885 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6886 end_stepping_range (ecs);
1b2bfbb9
RC
6887 return;
6888 }
6889
2afb61aa 6890 if (stop_pc_sal.line == 0)
488f131b
JB
6891 {
6892 /* We have no line number information. That means to stop
6893 stepping (does this always happen right after one instruction,
6894 when we do "s" in a function with no line numbers,
6895 or can this happen as a result of a return or longjmp?). */
527159b7 6896 if (debug_infrun)
8a9de0e4 6897 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6898 end_stepping_range (ecs);
488f131b
JB
6899 return;
6900 }
c906108c 6901
edb3359d
DJ
6902 /* Look for "calls" to inlined functions, part one. If the inline
6903 frame machinery detected some skipped call sites, we have entered
6904 a new inline function. */
6905
6906 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6907 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
6908 && inline_skipped_frames (ecs->ptid))
6909 {
edb3359d
DJ
6910 if (debug_infrun)
6911 fprintf_unfiltered (gdb_stdlog,
6912 "infrun: stepped into inlined function\n");
6913
51abb421 6914 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 6915
16c381f0 6916 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6917 {
6918 /* For "step", we're going to stop. But if the call site
6919 for this inlined function is on the same source line as
6920 we were previously stepping, go down into the function
6921 first. Otherwise stop at the call site. */
6922
6923 if (call_sal.line == ecs->event_thread->current_line
6924 && call_sal.symtab == ecs->event_thread->current_symtab)
6925 step_into_inline_frame (ecs->ptid);
6926
bdc36728 6927 end_stepping_range (ecs);
edb3359d
DJ
6928 return;
6929 }
6930 else
6931 {
6932 /* For "next", we should stop at the call site if it is on a
6933 different source line. Otherwise continue through the
6934 inlined function. */
6935 if (call_sal.line == ecs->event_thread->current_line
6936 && call_sal.symtab == ecs->event_thread->current_symtab)
6937 keep_going (ecs);
6938 else
bdc36728 6939 end_stepping_range (ecs);
edb3359d
DJ
6940 return;
6941 }
6942 }
6943
6944 /* Look for "calls" to inlined functions, part two. If we are still
6945 in the same real function we were stepping through, but we have
6946 to go further up to find the exact frame ID, we are stepping
6947 through a more inlined call beyond its call site. */
6948
6949 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6950 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6951 ecs->event_thread->control.step_frame_id)
edb3359d 6952 && stepped_in_from (get_current_frame (),
16c381f0 6953 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6954 {
6955 if (debug_infrun)
6956 fprintf_unfiltered (gdb_stdlog,
6957 "infrun: stepping through inlined function\n");
6958
16c381f0 6959 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
6960 keep_going (ecs);
6961 else
bdc36728 6962 end_stepping_range (ecs);
edb3359d
DJ
6963 return;
6964 }
6965
2afb61aa 6966 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6967 && (ecs->event_thread->current_line != stop_pc_sal.line
6968 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
6969 {
6970 /* We are at the start of a different line. So stop. Note that
6971 we don't stop if we step into the middle of a different line.
6972 That is said to make things like for (;;) statements work
6973 better. */
527159b7 6974 if (debug_infrun)
3e43a32a
MS
6975 fprintf_unfiltered (gdb_stdlog,
6976 "infrun: stepped to a different line\n");
bdc36728 6977 end_stepping_range (ecs);
488f131b
JB
6978 return;
6979 }
c906108c 6980
488f131b 6981 /* We aren't done stepping.
c906108c 6982
488f131b
JB
6983 Optimize by setting the stepping range to the line.
6984 (We might not be in the original line, but if we entered a
6985 new line in mid-statement, we continue stepping. This makes
6986 things like for(;;) statements work better.) */
c906108c 6987
16c381f0
JK
6988 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6989 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 6990 ecs->event_thread->control.may_range_step = 1;
edb3359d 6991 set_step_info (frame, stop_pc_sal);
488f131b 6992
527159b7 6993 if (debug_infrun)
8a9de0e4 6994 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 6995 keep_going (ecs);
104c1213
JM
6996}
6997
c447ac0b
PA
6998/* In all-stop mode, if we're currently stepping but have stopped in
6999 some other thread, we may need to switch back to the stepped
7000 thread. Returns true we set the inferior running, false if we left
7001 it stopped (and the event needs further processing). */
7002
7003static int
7004switch_back_to_stepped_thread (struct execution_control_state *ecs)
7005{
fbea99ea 7006 if (!target_is_non_stop_p ())
c447ac0b
PA
7007 {
7008 struct thread_info *tp;
99619bea
PA
7009 struct thread_info *stepping_thread;
7010
7011 /* If any thread is blocked on some internal breakpoint, and we
7012 simply need to step over that breakpoint to get it going
7013 again, do that first. */
7014
7015 /* However, if we see an event for the stepping thread, then we
7016 know all other threads have been moved past their breakpoints
7017 already. Let the caller check whether the step is finished,
7018 etc., before deciding to move it past a breakpoint. */
7019 if (ecs->event_thread->control.step_range_end != 0)
7020 return 0;
7021
7022 /* Check if the current thread is blocked on an incomplete
7023 step-over, interrupted by a random signal. */
7024 if (ecs->event_thread->control.trap_expected
7025 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 7026 {
99619bea
PA
7027 if (debug_infrun)
7028 {
7029 fprintf_unfiltered (gdb_stdlog,
7030 "infrun: need to finish step-over of [%s]\n",
7031 target_pid_to_str (ecs->event_thread->ptid));
7032 }
7033 keep_going (ecs);
7034 return 1;
7035 }
2adfaa28 7036
99619bea
PA
7037 /* Check if the current thread is blocked by a single-step
7038 breakpoint of another thread. */
7039 if (ecs->hit_singlestep_breakpoint)
7040 {
7041 if (debug_infrun)
7042 {
7043 fprintf_unfiltered (gdb_stdlog,
7044 "infrun: need to step [%s] over single-step "
7045 "breakpoint\n",
7046 target_pid_to_str (ecs->ptid));
7047 }
7048 keep_going (ecs);
7049 return 1;
7050 }
7051
4d9d9d04
PA
7052 /* If this thread needs yet another step-over (e.g., stepping
7053 through a delay slot), do it first before moving on to
7054 another thread. */
7055 if (thread_still_needs_step_over (ecs->event_thread))
7056 {
7057 if (debug_infrun)
7058 {
7059 fprintf_unfiltered (gdb_stdlog,
7060 "infrun: thread [%s] still needs step-over\n",
7061 target_pid_to_str (ecs->event_thread->ptid));
7062 }
7063 keep_going (ecs);
7064 return 1;
7065 }
70509625 7066
483805cf
PA
7067 /* If scheduler locking applies even if not stepping, there's no
7068 need to walk over threads. Above we've checked whether the
7069 current thread is stepping. If some other thread not the
7070 event thread is stepping, then it must be that scheduler
7071 locking is not in effect. */
856e7dd6 7072 if (schedlock_applies (ecs->event_thread))
483805cf
PA
7073 return 0;
7074
4d9d9d04
PA
7075 /* Otherwise, we no longer expect a trap in the current thread.
7076 Clear the trap_expected flag before switching back -- this is
7077 what keep_going does as well, if we call it. */
7078 ecs->event_thread->control.trap_expected = 0;
7079
7080 /* Likewise, clear the signal if it should not be passed. */
7081 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7082 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7083
7084 /* Do all pending step-overs before actually proceeding with
483805cf 7085 step/next/etc. */
4d9d9d04
PA
7086 if (start_step_over ())
7087 {
7088 prepare_to_wait (ecs);
7089 return 1;
7090 }
7091
7092 /* Look for the stepping/nexting thread. */
483805cf 7093 stepping_thread = NULL;
4d9d9d04 7094
034f788c 7095 ALL_NON_EXITED_THREADS (tp)
483805cf 7096 {
fbea99ea
PA
7097 /* Ignore threads of processes the caller is not
7098 resuming. */
483805cf 7099 if (!sched_multi
1afd5965 7100 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
483805cf
PA
7101 continue;
7102
7103 /* When stepping over a breakpoint, we lock all threads
7104 except the one that needs to move past the breakpoint.
7105 If a non-event thread has this set, the "incomplete
7106 step-over" check above should have caught it earlier. */
372316f1
PA
7107 if (tp->control.trap_expected)
7108 {
7109 internal_error (__FILE__, __LINE__,
7110 "[%s] has inconsistent state: "
7111 "trap_expected=%d\n",
7112 target_pid_to_str (tp->ptid),
7113 tp->control.trap_expected);
7114 }
483805cf
PA
7115
7116 /* Did we find the stepping thread? */
7117 if (tp->control.step_range_end)
7118 {
7119 /* Yep. There should only one though. */
7120 gdb_assert (stepping_thread == NULL);
7121
7122 /* The event thread is handled at the top, before we
7123 enter this loop. */
7124 gdb_assert (tp != ecs->event_thread);
7125
7126 /* If some thread other than the event thread is
7127 stepping, then scheduler locking can't be in effect,
7128 otherwise we wouldn't have resumed the current event
7129 thread in the first place. */
856e7dd6 7130 gdb_assert (!schedlock_applies (tp));
483805cf
PA
7131
7132 stepping_thread = tp;
7133 }
99619bea
PA
7134 }
7135
483805cf 7136 if (stepping_thread != NULL)
99619bea 7137 {
c447ac0b
PA
7138 if (debug_infrun)
7139 fprintf_unfiltered (gdb_stdlog,
7140 "infrun: switching back to stepped thread\n");
7141
2ac7589c
PA
7142 if (keep_going_stepped_thread (stepping_thread))
7143 {
7144 prepare_to_wait (ecs);
7145 return 1;
7146 }
7147 }
7148 }
2adfaa28 7149
2ac7589c
PA
7150 return 0;
7151}
2adfaa28 7152
2ac7589c
PA
7153/* Set a previously stepped thread back to stepping. Returns true on
7154 success, false if the resume is not possible (e.g., the thread
7155 vanished). */
7156
7157static int
7158keep_going_stepped_thread (struct thread_info *tp)
7159{
7160 struct frame_info *frame;
2ac7589c
PA
7161 struct execution_control_state ecss;
7162 struct execution_control_state *ecs = &ecss;
2adfaa28 7163
2ac7589c
PA
7164 /* If the stepping thread exited, then don't try to switch back and
7165 resume it, which could fail in several different ways depending
7166 on the target. Instead, just keep going.
2adfaa28 7167
2ac7589c
PA
7168 We can find a stepping dead thread in the thread list in two
7169 cases:
2adfaa28 7170
2ac7589c
PA
7171 - The target supports thread exit events, and when the target
7172 tries to delete the thread from the thread list, inferior_ptid
7173 pointed at the exiting thread. In such case, calling
7174 delete_thread does not really remove the thread from the list;
7175 instead, the thread is left listed, with 'exited' state.
64ce06e4 7176
2ac7589c
PA
7177 - The target's debug interface does not support thread exit
7178 events, and so we have no idea whatsoever if the previously
7179 stepping thread is still alive. For that reason, we need to
7180 synchronously query the target now. */
2adfaa28 7181
2ac7589c
PA
7182 if (is_exited (tp->ptid)
7183 || !target_thread_alive (tp->ptid))
7184 {
7185 if (debug_infrun)
7186 fprintf_unfiltered (gdb_stdlog,
7187 "infrun: not resuming previously "
7188 "stepped thread, it has vanished\n");
7189
7190 delete_thread (tp->ptid);
7191 return 0;
c447ac0b 7192 }
2ac7589c
PA
7193
7194 if (debug_infrun)
7195 fprintf_unfiltered (gdb_stdlog,
7196 "infrun: resuming previously stepped thread\n");
7197
7198 reset_ecs (ecs, tp);
7199 switch_to_thread (tp->ptid);
7200
7201 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7202 frame = get_current_frame ();
2ac7589c
PA
7203
7204 /* If the PC of the thread we were trying to single-step has
7205 changed, then that thread has trapped or been signaled, but the
7206 event has not been reported to GDB yet. Re-poll the target
7207 looking for this particular thread's event (i.e. temporarily
7208 enable schedlock) by:
7209
7210 - setting a break at the current PC
7211 - resuming that particular thread, only (by setting trap
7212 expected)
7213
7214 This prevents us continuously moving the single-step breakpoint
7215 forward, one instruction at a time, overstepping. */
7216
7217 if (stop_pc != tp->prev_pc)
7218 {
7219 ptid_t resume_ptid;
7220
7221 if (debug_infrun)
7222 fprintf_unfiltered (gdb_stdlog,
7223 "infrun: expected thread advanced also (%s -> %s)\n",
7224 paddress (target_gdbarch (), tp->prev_pc),
7225 paddress (target_gdbarch (), stop_pc));
7226
7227 /* Clear the info of the previous step-over, as it's no longer
7228 valid (if the thread was trying to step over a breakpoint, it
7229 has already succeeded). It's what keep_going would do too,
7230 if we called it. Do this before trying to insert the sss
7231 breakpoint, otherwise if we were previously trying to step
7232 over this exact address in another thread, the breakpoint is
7233 skipped. */
7234 clear_step_over_info ();
7235 tp->control.trap_expected = 0;
7236
7237 insert_single_step_breakpoint (get_frame_arch (frame),
7238 get_frame_address_space (frame),
7239 stop_pc);
7240
372316f1 7241 tp->resumed = 1;
fbea99ea 7242 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7243 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7244 }
7245 else
7246 {
7247 if (debug_infrun)
7248 fprintf_unfiltered (gdb_stdlog,
7249 "infrun: expected thread still hasn't advanced\n");
7250
7251 keep_going_pass_signal (ecs);
7252 }
7253 return 1;
c447ac0b
PA
7254}
7255
8b061563
PA
7256/* Is thread TP in the middle of (software or hardware)
7257 single-stepping? (Note the result of this function must never be
7258 passed directly as target_resume's STEP parameter.) */
104c1213 7259
a289b8f6 7260static int
b3444185 7261currently_stepping (struct thread_info *tp)
a7212384 7262{
8358c15c
JK
7263 return ((tp->control.step_range_end
7264 && tp->control.step_resume_breakpoint == NULL)
7265 || tp->control.trap_expected
af48d08f 7266 || tp->stepped_breakpoint
8358c15c 7267 || bpstat_should_step ());
a7212384
UW
7268}
7269
b2175913
MS
7270/* Inferior has stepped into a subroutine call with source code that
7271 we should not step over. Do step to the first line of code in
7272 it. */
c2c6d25f
JM
7273
7274static void
568d6575
UW
7275handle_step_into_function (struct gdbarch *gdbarch,
7276 struct execution_control_state *ecs)
c2c6d25f 7277{
7e324e48
GB
7278 fill_in_stop_func (gdbarch, ecs);
7279
51abb421 7280 compunit_symtab *cust = find_pc_compunit_symtab (stop_pc);
43f3e411 7281 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7282 ecs->stop_func_start
7283 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7284
51abb421 7285 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7286 /* Use the step_resume_break to step until the end of the prologue,
7287 even if that involves jumps (as it seems to on the vax under
7288 4.2). */
7289 /* If the prologue ends in the middle of a source line, continue to
7290 the end of that source line (if it is still within the function).
7291 Otherwise, just go to end of prologue. */
2afb61aa
PA
7292 if (stop_func_sal.end
7293 && stop_func_sal.pc != ecs->stop_func_start
7294 && stop_func_sal.end < ecs->stop_func_end)
7295 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7296
2dbd5e30
KB
7297 /* Architectures which require breakpoint adjustment might not be able
7298 to place a breakpoint at the computed address. If so, the test
7299 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7300 ecs->stop_func_start to an address at which a breakpoint may be
7301 legitimately placed.
8fb3e588 7302
2dbd5e30
KB
7303 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7304 made, GDB will enter an infinite loop when stepping through
7305 optimized code consisting of VLIW instructions which contain
7306 subinstructions corresponding to different source lines. On
7307 FR-V, it's not permitted to place a breakpoint on any but the
7308 first subinstruction of a VLIW instruction. When a breakpoint is
7309 set, GDB will adjust the breakpoint address to the beginning of
7310 the VLIW instruction. Thus, we need to make the corresponding
7311 adjustment here when computing the stop address. */
8fb3e588 7312
568d6575 7313 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7314 {
7315 ecs->stop_func_start
568d6575 7316 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7317 ecs->stop_func_start);
2dbd5e30
KB
7318 }
7319
c2c6d25f
JM
7320 if (ecs->stop_func_start == stop_pc)
7321 {
7322 /* We are already there: stop now. */
bdc36728 7323 end_stepping_range (ecs);
c2c6d25f
JM
7324 return;
7325 }
7326 else
7327 {
7328 /* Put the step-breakpoint there and go until there. */
51abb421 7329 symtab_and_line sr_sal;
c2c6d25f
JM
7330 sr_sal.pc = ecs->stop_func_start;
7331 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7332 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7333
c2c6d25f 7334 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7335 some machines the prologue is where the new fp value is
7336 established. */
a6d9a66e 7337 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7338
7339 /* And make sure stepping stops right away then. */
16c381f0
JK
7340 ecs->event_thread->control.step_range_end
7341 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7342 }
7343 keep_going (ecs);
7344}
d4f3574e 7345
b2175913
MS
7346/* Inferior has stepped backward into a subroutine call with source
7347 code that we should not step over. Do step to the beginning of the
7348 last line of code in it. */
7349
7350static void
568d6575
UW
7351handle_step_into_function_backward (struct gdbarch *gdbarch,
7352 struct execution_control_state *ecs)
b2175913 7353{
43f3e411 7354 struct compunit_symtab *cust;
167e4384 7355 struct symtab_and_line stop_func_sal;
b2175913 7356
7e324e48
GB
7357 fill_in_stop_func (gdbarch, ecs);
7358
43f3e411
DE
7359 cust = find_pc_compunit_symtab (stop_pc);
7360 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7361 ecs->stop_func_start
7362 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913
MS
7363
7364 stop_func_sal = find_pc_line (stop_pc, 0);
7365
7366 /* OK, we're just going to keep stepping here. */
7367 if (stop_func_sal.pc == stop_pc)
7368 {
7369 /* We're there already. Just stop stepping now. */
bdc36728 7370 end_stepping_range (ecs);
b2175913
MS
7371 }
7372 else
7373 {
7374 /* Else just reset the step range and keep going.
7375 No step-resume breakpoint, they don't work for
7376 epilogues, which can have multiple entry paths. */
16c381f0
JK
7377 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7378 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7379 keep_going (ecs);
7380 }
7381 return;
7382}
7383
d3169d93 7384/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7385 This is used to both functions and to skip over code. */
7386
7387static void
2c03e5be
PA
7388insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7389 struct symtab_and_line sr_sal,
7390 struct frame_id sr_id,
7391 enum bptype sr_type)
44cbf7b5 7392{
611c83ae
PA
7393 /* There should never be more than one step-resume or longjmp-resume
7394 breakpoint per thread, so we should never be setting a new
44cbf7b5 7395 step_resume_breakpoint when one is already active. */
8358c15c 7396 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7397 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7398
7399 if (debug_infrun)
7400 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7401 "infrun: inserting step-resume breakpoint at %s\n",
7402 paddress (gdbarch, sr_sal.pc));
d3169d93 7403
8358c15c 7404 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
7405 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7406}
7407
9da8c2a0 7408void
2c03e5be
PA
7409insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7410 struct symtab_and_line sr_sal,
7411 struct frame_id sr_id)
7412{
7413 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7414 sr_sal, sr_id,
7415 bp_step_resume);
44cbf7b5 7416}
7ce450bd 7417
2c03e5be
PA
7418/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7419 This is used to skip a potential signal handler.
7ce450bd 7420
14e60db5
DJ
7421 This is called with the interrupted function's frame. The signal
7422 handler, when it returns, will resume the interrupted function at
7423 RETURN_FRAME.pc. */
d303a6c7
AC
7424
7425static void
2c03e5be 7426insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7427{
f4c1edd8 7428 gdb_assert (return_frame != NULL);
d303a6c7 7429
51abb421
PA
7430 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7431
7432 symtab_and_line sr_sal;
568d6575 7433 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7434 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7435 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7436
2c03e5be
PA
7437 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7438 get_stack_frame_id (return_frame),
7439 bp_hp_step_resume);
d303a6c7
AC
7440}
7441
2c03e5be
PA
7442/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7443 is used to skip a function after stepping into it (for "next" or if
7444 the called function has no debugging information).
14e60db5
DJ
7445
7446 The current function has almost always been reached by single
7447 stepping a call or return instruction. NEXT_FRAME belongs to the
7448 current function, and the breakpoint will be set at the caller's
7449 resume address.
7450
7451 This is a separate function rather than reusing
2c03e5be 7452 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7453 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7454 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7455
7456static void
7457insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7458{
14e60db5
DJ
7459 /* We shouldn't have gotten here if we don't know where the call site
7460 is. */
c7ce8faa 7461 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7462
51abb421 7463 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7464
51abb421 7465 symtab_and_line sr_sal;
c7ce8faa
DJ
7466 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7467 frame_unwind_caller_pc (next_frame));
14e60db5 7468 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7469 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7470
a6d9a66e 7471 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7472 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7473}
7474
611c83ae
PA
7475/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7476 new breakpoint at the target of a jmp_buf. The handling of
7477 longjmp-resume uses the same mechanisms used for handling
7478 "step-resume" breakpoints. */
7479
7480static void
a6d9a66e 7481insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7482{
e81a37f7
TT
7483 /* There should never be more than one longjmp-resume breakpoint per
7484 thread, so we should never be setting a new
611c83ae 7485 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7486 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7487
7488 if (debug_infrun)
7489 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7490 "infrun: inserting longjmp-resume breakpoint at %s\n",
7491 paddress (gdbarch, pc));
611c83ae 7492
e81a37f7 7493 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 7494 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
7495}
7496
186c406b
TT
7497/* Insert an exception resume breakpoint. TP is the thread throwing
7498 the exception. The block B is the block of the unwinder debug hook
7499 function. FRAME is the frame corresponding to the call to this
7500 function. SYM is the symbol of the function argument holding the
7501 target PC of the exception. */
7502
7503static void
7504insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7505 const struct block *b,
186c406b
TT
7506 struct frame_info *frame,
7507 struct symbol *sym)
7508{
492d29ea 7509 TRY
186c406b 7510 {
63e43d3a 7511 struct block_symbol vsym;
186c406b
TT
7512 struct value *value;
7513 CORE_ADDR handler;
7514 struct breakpoint *bp;
7515
63e43d3a
PMR
7516 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7517 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7518 /* If the value was optimized out, revert to the old behavior. */
7519 if (! value_optimized_out (value))
7520 {
7521 handler = value_as_address (value);
7522
7523 if (debug_infrun)
7524 fprintf_unfiltered (gdb_stdlog,
7525 "infrun: exception resume at %lx\n",
7526 (unsigned long) handler);
7527
7528 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7529 handler, bp_exception_resume);
c70a6932
JK
7530
7531 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7532 frame = NULL;
7533
5d5658a1 7534 bp->thread = tp->global_num;
186c406b
TT
7535 inferior_thread ()->control.exception_resume_breakpoint = bp;
7536 }
7537 }
492d29ea
PA
7538 CATCH (e, RETURN_MASK_ERROR)
7539 {
7540 /* We want to ignore errors here. */
7541 }
7542 END_CATCH
186c406b
TT
7543}
7544
28106bc2
SDJ
7545/* A helper for check_exception_resume that sets an
7546 exception-breakpoint based on a SystemTap probe. */
7547
7548static void
7549insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7550 const struct bound_probe *probe,
28106bc2
SDJ
7551 struct frame_info *frame)
7552{
7553 struct value *arg_value;
7554 CORE_ADDR handler;
7555 struct breakpoint *bp;
7556
7557 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7558 if (!arg_value)
7559 return;
7560
7561 handler = value_as_address (arg_value);
7562
7563 if (debug_infrun)
7564 fprintf_unfiltered (gdb_stdlog,
7565 "infrun: exception resume at %s\n",
6bac7473 7566 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7567 handler));
7568
7569 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7570 handler, bp_exception_resume);
5d5658a1 7571 bp->thread = tp->global_num;
28106bc2
SDJ
7572 inferior_thread ()->control.exception_resume_breakpoint = bp;
7573}
7574
186c406b
TT
7575/* This is called when an exception has been intercepted. Check to
7576 see whether the exception's destination is of interest, and if so,
7577 set an exception resume breakpoint there. */
7578
7579static void
7580check_exception_resume (struct execution_control_state *ecs,
28106bc2 7581 struct frame_info *frame)
186c406b 7582{
729662a5 7583 struct bound_probe probe;
28106bc2
SDJ
7584 struct symbol *func;
7585
7586 /* First see if this exception unwinding breakpoint was set via a
7587 SystemTap probe point. If so, the probe has two arguments: the
7588 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7589 set a breakpoint there. */
6bac7473 7590 probe = find_probe_by_pc (get_frame_pc (frame));
729662a5 7591 if (probe.probe)
28106bc2 7592 {
729662a5 7593 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7594 return;
7595 }
7596
7597 func = get_frame_function (frame);
7598 if (!func)
7599 return;
186c406b 7600
492d29ea 7601 TRY
186c406b 7602 {
3977b71f 7603 const struct block *b;
8157b174 7604 struct block_iterator iter;
186c406b
TT
7605 struct symbol *sym;
7606 int argno = 0;
7607
7608 /* The exception breakpoint is a thread-specific breakpoint on
7609 the unwinder's debug hook, declared as:
7610
7611 void _Unwind_DebugHook (void *cfa, void *handler);
7612
7613 The CFA argument indicates the frame to which control is
7614 about to be transferred. HANDLER is the destination PC.
7615
7616 We ignore the CFA and set a temporary breakpoint at HANDLER.
7617 This is not extremely efficient but it avoids issues in gdb
7618 with computing the DWARF CFA, and it also works even in weird
7619 cases such as throwing an exception from inside a signal
7620 handler. */
7621
7622 b = SYMBOL_BLOCK_VALUE (func);
7623 ALL_BLOCK_SYMBOLS (b, iter, sym)
7624 {
7625 if (!SYMBOL_IS_ARGUMENT (sym))
7626 continue;
7627
7628 if (argno == 0)
7629 ++argno;
7630 else
7631 {
7632 insert_exception_resume_breakpoint (ecs->event_thread,
7633 b, frame, sym);
7634 break;
7635 }
7636 }
7637 }
492d29ea
PA
7638 CATCH (e, RETURN_MASK_ERROR)
7639 {
7640 }
7641 END_CATCH
186c406b
TT
7642}
7643
104c1213 7644static void
22bcd14b 7645stop_waiting (struct execution_control_state *ecs)
104c1213 7646{
527159b7 7647 if (debug_infrun)
22bcd14b 7648 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7649
cd0fc7c3
SS
7650 /* Let callers know we don't want to wait for the inferior anymore. */
7651 ecs->wait_some_more = 0;
fbea99ea
PA
7652
7653 /* If all-stop, but the target is always in non-stop mode, stop all
7654 threads now that we're presenting the stop to the user. */
7655 if (!non_stop && target_is_non_stop_p ())
7656 stop_all_threads ();
cd0fc7c3
SS
7657}
7658
4d9d9d04
PA
7659/* Like keep_going, but passes the signal to the inferior, even if the
7660 signal is set to nopass. */
d4f3574e
SS
7661
7662static void
4d9d9d04 7663keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7664{
c4dbc9af
PA
7665 /* Make sure normal_stop is called if we get a QUIT handled before
7666 reaching resume. */
7667 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7668
4d9d9d04 7669 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
372316f1 7670 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7671
d4f3574e 7672 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
7673 ecs->event_thread->prev_pc
7674 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 7675
4d9d9d04 7676 if (ecs->event_thread->control.trap_expected)
d4f3574e 7677 {
4d9d9d04
PA
7678 struct thread_info *tp = ecs->event_thread;
7679
7680 if (debug_infrun)
7681 fprintf_unfiltered (gdb_stdlog,
7682 "infrun: %s has trap_expected set, "
7683 "resuming to collect trap\n",
7684 target_pid_to_str (tp->ptid));
7685
a9ba6bae
PA
7686 /* We haven't yet gotten our trap, and either: intercepted a
7687 non-signal event (e.g., a fork); or took a signal which we
7688 are supposed to pass through to the inferior. Simply
7689 continue. */
c4dbc9af 7690 discard_cleanups (old_cleanups);
64ce06e4 7691 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7692 }
372316f1
PA
7693 else if (step_over_info_valid_p ())
7694 {
7695 /* Another thread is stepping over a breakpoint in-line. If
7696 this thread needs a step-over too, queue the request. In
7697 either case, this resume must be deferred for later. */
7698 struct thread_info *tp = ecs->event_thread;
7699
7700 if (ecs->hit_singlestep_breakpoint
7701 || thread_still_needs_step_over (tp))
7702 {
7703 if (debug_infrun)
7704 fprintf_unfiltered (gdb_stdlog,
7705 "infrun: step-over already in progress: "
7706 "step-over for %s deferred\n",
7707 target_pid_to_str (tp->ptid));
7708 thread_step_over_chain_enqueue (tp);
7709 }
7710 else
7711 {
7712 if (debug_infrun)
7713 fprintf_unfiltered (gdb_stdlog,
7714 "infrun: step-over in progress: "
7715 "resume of %s deferred\n",
7716 target_pid_to_str (tp->ptid));
7717 }
7718
7719 discard_cleanups (old_cleanups);
7720 }
d4f3574e
SS
7721 else
7722 {
31e77af2 7723 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7724 int remove_bp;
7725 int remove_wps;
8d297bbf 7726 step_over_what step_what;
31e77af2 7727
d4f3574e 7728 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7729 anyway (if we got a signal, the user asked it be passed to
7730 the child)
7731 -- or --
7732 We got our expected trap, but decided we should resume from
7733 it.
d4f3574e 7734
a9ba6bae 7735 We're going to run this baby now!
d4f3574e 7736
c36b740a
VP
7737 Note that insert_breakpoints won't try to re-insert
7738 already inserted breakpoints. Therefore, we don't
7739 care if breakpoints were already inserted, or not. */
a9ba6bae 7740
31e77af2
PA
7741 /* If we need to step over a breakpoint, and we're not using
7742 displaced stepping to do so, insert all breakpoints
7743 (watchpoints, etc.) but the one we're stepping over, step one
7744 instruction, and then re-insert the breakpoint when that step
7745 is finished. */
963f9c80 7746
6c4cfb24
PA
7747 step_what = thread_still_needs_step_over (ecs->event_thread);
7748
963f9c80 7749 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7750 || (step_what & STEP_OVER_BREAKPOINT));
7751 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7752
cb71640d
PA
7753 /* We can't use displaced stepping if we need to step past a
7754 watchpoint. The instruction copied to the scratch pad would
7755 still trigger the watchpoint. */
7756 if (remove_bp
3fc8eb30 7757 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7758 {
a01bda52 7759 set_step_over_info (regcache->aspace (),
21edc42f
YQ
7760 regcache_read_pc (regcache), remove_wps,
7761 ecs->event_thread->global_num);
45e8c884 7762 }
963f9c80 7763 else if (remove_wps)
21edc42f 7764 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7765
7766 /* If we now need to do an in-line step-over, we need to stop
7767 all other threads. Note this must be done before
7768 insert_breakpoints below, because that removes the breakpoint
7769 we're about to step over, otherwise other threads could miss
7770 it. */
fbea99ea 7771 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7772 stop_all_threads ();
abbb1732 7773
31e77af2 7774 /* Stop stepping if inserting breakpoints fails. */
492d29ea 7775 TRY
31e77af2
PA
7776 {
7777 insert_breakpoints ();
7778 }
492d29ea 7779 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
7780 {
7781 exception_print (gdb_stderr, e);
22bcd14b 7782 stop_waiting (ecs);
de1fe8c8 7783 discard_cleanups (old_cleanups);
31e77af2 7784 return;
d4f3574e 7785 }
492d29ea 7786 END_CATCH
d4f3574e 7787
963f9c80 7788 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7789
c4dbc9af 7790 discard_cleanups (old_cleanups);
64ce06e4 7791 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7792 }
7793
488f131b 7794 prepare_to_wait (ecs);
d4f3574e
SS
7795}
7796
4d9d9d04
PA
7797/* Called when we should continue running the inferior, because the
7798 current event doesn't cause a user visible stop. This does the
7799 resuming part; waiting for the next event is done elsewhere. */
7800
7801static void
7802keep_going (struct execution_control_state *ecs)
7803{
7804 if (ecs->event_thread->control.trap_expected
7805 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7806 ecs->event_thread->control.trap_expected = 0;
7807
7808 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7809 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7810 keep_going_pass_signal (ecs);
7811}
7812
104c1213
JM
7813/* This function normally comes after a resume, before
7814 handle_inferior_event exits. It takes care of any last bits of
7815 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7816
104c1213
JM
7817static void
7818prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7819{
527159b7 7820 if (debug_infrun)
8a9de0e4 7821 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7822
104c1213 7823 ecs->wait_some_more = 1;
0b333c5e
PA
7824
7825 if (!target_is_async_p ())
7826 mark_infrun_async_event_handler ();
c906108c 7827}
11cf8741 7828
fd664c91 7829/* We are done with the step range of a step/next/si/ni command.
b57bacec 7830 Called once for each n of a "step n" operation. */
fd664c91
PA
7831
7832static void
bdc36728 7833end_stepping_range (struct execution_control_state *ecs)
fd664c91 7834{
bdc36728 7835 ecs->event_thread->control.stop_step = 1;
bdc36728 7836 stop_waiting (ecs);
fd664c91
PA
7837}
7838
33d62d64
JK
7839/* Several print_*_reason functions to print why the inferior has stopped.
7840 We always print something when the inferior exits, or receives a signal.
7841 The rest of the cases are dealt with later on in normal_stop and
7842 print_it_typical. Ideally there should be a call to one of these
7843 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7844 stop_waiting is called.
33d62d64 7845
fd664c91
PA
7846 Note that we don't call these directly, instead we delegate that to
7847 the interpreters, through observers. Interpreters then call these
7848 with whatever uiout is right. */
33d62d64 7849
fd664c91
PA
7850void
7851print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7852{
fd664c91 7853 /* For CLI-like interpreters, print nothing. */
33d62d64 7854
112e8700 7855 if (uiout->is_mi_like_p ())
fd664c91 7856 {
112e8700 7857 uiout->field_string ("reason",
fd664c91
PA
7858 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7859 }
7860}
33d62d64 7861
fd664c91
PA
7862void
7863print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7864{
33d62d64 7865 annotate_signalled ();
112e8700
SM
7866 if (uiout->is_mi_like_p ())
7867 uiout->field_string
7868 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7869 uiout->text ("\nProgram terminated with signal ");
33d62d64 7870 annotate_signal_name ();
112e8700 7871 uiout->field_string ("signal-name",
2ea28649 7872 gdb_signal_to_name (siggnal));
33d62d64 7873 annotate_signal_name_end ();
112e8700 7874 uiout->text (", ");
33d62d64 7875 annotate_signal_string ();
112e8700 7876 uiout->field_string ("signal-meaning",
2ea28649 7877 gdb_signal_to_string (siggnal));
33d62d64 7878 annotate_signal_string_end ();
112e8700
SM
7879 uiout->text (".\n");
7880 uiout->text ("The program no longer exists.\n");
33d62d64
JK
7881}
7882
fd664c91
PA
7883void
7884print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7885{
fda326dd
TT
7886 struct inferior *inf = current_inferior ();
7887 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7888
33d62d64
JK
7889 annotate_exited (exitstatus);
7890 if (exitstatus)
7891 {
112e8700
SM
7892 if (uiout->is_mi_like_p ())
7893 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7894 uiout->text ("[Inferior ");
7895 uiout->text (plongest (inf->num));
7896 uiout->text (" (");
7897 uiout->text (pidstr);
7898 uiout->text (") exited with code ");
7899 uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus);
7900 uiout->text ("]\n");
33d62d64
JK
7901 }
7902 else
11cf8741 7903 {
112e8700
SM
7904 if (uiout->is_mi_like_p ())
7905 uiout->field_string
7906 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7907 uiout->text ("[Inferior ");
7908 uiout->text (plongest (inf->num));
7909 uiout->text (" (");
7910 uiout->text (pidstr);
7911 uiout->text (") exited normally]\n");
33d62d64 7912 }
33d62d64
JK
7913}
7914
012b3a21
WT
7915/* Some targets/architectures can do extra processing/display of
7916 segmentation faults. E.g., Intel MPX boundary faults.
7917 Call the architecture dependent function to handle the fault. */
7918
7919static void
7920handle_segmentation_fault (struct ui_out *uiout)
7921{
7922 struct regcache *regcache = get_current_regcache ();
ac7936df 7923 struct gdbarch *gdbarch = regcache->arch ();
012b3a21
WT
7924
7925 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7926 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7927}
7928
fd664c91
PA
7929void
7930print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 7931{
f303dbd6
PA
7932 struct thread_info *thr = inferior_thread ();
7933
33d62d64
JK
7934 annotate_signal ();
7935
112e8700 7936 if (uiout->is_mi_like_p ())
f303dbd6
PA
7937 ;
7938 else if (show_thread_that_caused_stop ())
33d62d64 7939 {
f303dbd6 7940 const char *name;
33d62d64 7941
112e8700
SM
7942 uiout->text ("\nThread ");
7943 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
f303dbd6
PA
7944
7945 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7946 if (name != NULL)
7947 {
112e8700
SM
7948 uiout->text (" \"");
7949 uiout->field_fmt ("name", "%s", name);
7950 uiout->text ("\"");
f303dbd6 7951 }
33d62d64 7952 }
f303dbd6 7953 else
112e8700 7954 uiout->text ("\nProgram");
f303dbd6 7955
112e8700
SM
7956 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7957 uiout->text (" stopped");
33d62d64
JK
7958 else
7959 {
112e8700 7960 uiout->text (" received signal ");
8b93c638 7961 annotate_signal_name ();
112e8700
SM
7962 if (uiout->is_mi_like_p ())
7963 uiout->field_string
7964 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7965 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 7966 annotate_signal_name_end ();
112e8700 7967 uiout->text (", ");
8b93c638 7968 annotate_signal_string ();
112e8700 7969 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
7970
7971 if (siggnal == GDB_SIGNAL_SEGV)
7972 handle_segmentation_fault (uiout);
7973
8b93c638 7974 annotate_signal_string_end ();
33d62d64 7975 }
112e8700 7976 uiout->text (".\n");
33d62d64 7977}
252fbfc8 7978
fd664c91
PA
7979void
7980print_no_history_reason (struct ui_out *uiout)
33d62d64 7981{
112e8700 7982 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 7983}
43ff13b4 7984
0c7e1a46
PA
7985/* Print current location without a level number, if we have changed
7986 functions or hit a breakpoint. Print source line if we have one.
7987 bpstat_print contains the logic deciding in detail what to print,
7988 based on the event(s) that just occurred. */
7989
243a9253
PA
7990static void
7991print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
7992{
7993 int bpstat_ret;
f486487f 7994 enum print_what source_flag;
0c7e1a46
PA
7995 int do_frame_printing = 1;
7996 struct thread_info *tp = inferior_thread ();
7997
7998 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7999 switch (bpstat_ret)
8000 {
8001 case PRINT_UNKNOWN:
8002 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8003 should) carry around the function and does (or should) use
8004 that when doing a frame comparison. */
8005 if (tp->control.stop_step
8006 && frame_id_eq (tp->control.step_frame_id,
8007 get_frame_id (get_current_frame ()))
885eeb5b 8008 && tp->control.step_start_function == find_pc_function (stop_pc))
0c7e1a46
PA
8009 {
8010 /* Finished step, just print source line. */
8011 source_flag = SRC_LINE;
8012 }
8013 else
8014 {
8015 /* Print location and source line. */
8016 source_flag = SRC_AND_LOC;
8017 }
8018 break;
8019 case PRINT_SRC_AND_LOC:
8020 /* Print location and source line. */
8021 source_flag = SRC_AND_LOC;
8022 break;
8023 case PRINT_SRC_ONLY:
8024 source_flag = SRC_LINE;
8025 break;
8026 case PRINT_NOTHING:
8027 /* Something bogus. */
8028 source_flag = SRC_LINE;
8029 do_frame_printing = 0;
8030 break;
8031 default:
8032 internal_error (__FILE__, __LINE__, _("Unknown value."));
8033 }
8034
8035 /* The behavior of this routine with respect to the source
8036 flag is:
8037 SRC_LINE: Print only source line
8038 LOCATION: Print only location
8039 SRC_AND_LOC: Print location and source line. */
8040 if (do_frame_printing)
8041 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
8042}
8043
243a9253
PA
8044/* See infrun.h. */
8045
8046void
8047print_stop_event (struct ui_out *uiout)
8048{
243a9253
PA
8049 struct target_waitstatus last;
8050 ptid_t last_ptid;
8051 struct thread_info *tp;
8052
8053 get_last_target_status (&last_ptid, &last);
8054
67ad9399
TT
8055 {
8056 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 8057
67ad9399 8058 print_stop_location (&last);
243a9253 8059
67ad9399
TT
8060 /* Display the auto-display expressions. */
8061 do_displays ();
8062 }
243a9253
PA
8063
8064 tp = inferior_thread ();
8065 if (tp->thread_fsm != NULL
8066 && thread_fsm_finished_p (tp->thread_fsm))
8067 {
8068 struct return_value_info *rv;
8069
8070 rv = thread_fsm_return_value (tp->thread_fsm);
8071 if (rv != NULL)
8072 print_return_value (uiout, rv);
8073 }
0c7e1a46
PA
8074}
8075
388a7084
PA
8076/* See infrun.h. */
8077
8078void
8079maybe_remove_breakpoints (void)
8080{
8081 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8082 {
8083 if (remove_breakpoints ())
8084 {
223ffa71 8085 target_terminal::ours_for_output ();
388a7084
PA
8086 printf_filtered (_("Cannot remove breakpoints because "
8087 "program is no longer writable.\nFurther "
8088 "execution is probably impossible.\n"));
8089 }
8090 }
8091}
8092
4c2f2a79
PA
8093/* The execution context that just caused a normal stop. */
8094
8095struct stop_context
8096{
8097 /* The stop ID. */
8098 ULONGEST stop_id;
c906108c 8099
4c2f2a79 8100 /* The event PTID. */
c906108c 8101
4c2f2a79
PA
8102 ptid_t ptid;
8103
8104 /* If stopp for a thread event, this is the thread that caused the
8105 stop. */
8106 struct thread_info *thread;
8107
8108 /* The inferior that caused the stop. */
8109 int inf_num;
8110};
8111
8112/* Returns a new stop context. If stopped for a thread event, this
8113 takes a strong reference to the thread. */
8114
8115static struct stop_context *
8116save_stop_context (void)
8117{
224c3ddb 8118 struct stop_context *sc = XNEW (struct stop_context);
4c2f2a79
PA
8119
8120 sc->stop_id = get_stop_id ();
8121 sc->ptid = inferior_ptid;
8122 sc->inf_num = current_inferior ()->num;
8123
8124 if (!ptid_equal (inferior_ptid, null_ptid))
8125 {
8126 /* Take a strong reference so that the thread can't be deleted
8127 yet. */
8128 sc->thread = inferior_thread ();
803bdfe4 8129 sc->thread->incref ();
4c2f2a79
PA
8130 }
8131 else
8132 sc->thread = NULL;
8133
8134 return sc;
8135}
8136
8137/* Release a stop context previously created with save_stop_context.
8138 Releases the strong reference to the thread as well. */
8139
8140static void
8141release_stop_context_cleanup (void *arg)
8142{
9a3c8263 8143 struct stop_context *sc = (struct stop_context *) arg;
4c2f2a79
PA
8144
8145 if (sc->thread != NULL)
803bdfe4 8146 sc->thread->decref ();
4c2f2a79
PA
8147 xfree (sc);
8148}
8149
8150/* Return true if the current context no longer matches the saved stop
8151 context. */
8152
8153static int
8154stop_context_changed (struct stop_context *prev)
8155{
8156 if (!ptid_equal (prev->ptid, inferior_ptid))
8157 return 1;
8158 if (prev->inf_num != current_inferior ()->num)
8159 return 1;
8160 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8161 return 1;
8162 if (get_stop_id () != prev->stop_id)
8163 return 1;
8164 return 0;
8165}
8166
8167/* See infrun.h. */
8168
8169int
96baa820 8170normal_stop (void)
c906108c 8171{
73b65bb0
DJ
8172 struct target_waitstatus last;
8173 ptid_t last_ptid;
29f49a6a 8174 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
e1316e60 8175 ptid_t pid_ptid;
73b65bb0
DJ
8176
8177 get_last_target_status (&last_ptid, &last);
8178
4c2f2a79
PA
8179 new_stop_id ();
8180
29f49a6a
PA
8181 /* If an exception is thrown from this point on, make sure to
8182 propagate GDB's knowledge of the executing state to the
8183 frontend/user running state. A QUIT is an easy exception to see
8184 here, so do this before any filtered output. */
c35b1492
PA
8185 if (!non_stop)
8186 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
e1316e60
PA
8187 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8188 || last.kind == TARGET_WAITKIND_EXITED)
8189 {
8190 /* On some targets, we may still have live threads in the
8191 inferior when we get a process exit event. E.g., for
8192 "checkpoint", when the current checkpoint/fork exits,
8193 linux-fork.c automatically switches to another fork from
8194 within target_mourn_inferior. */
8195 if (!ptid_equal (inferior_ptid, null_ptid))
8196 {
8197 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8198 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8199 }
8200 }
8201 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 8202 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 8203
b57bacec
PA
8204 /* As we're presenting a stop, and potentially removing breakpoints,
8205 update the thread list so we can tell whether there are threads
8206 running on the target. With target remote, for example, we can
8207 only learn about new threads when we explicitly update the thread
8208 list. Do this before notifying the interpreters about signal
8209 stops, end of stepping ranges, etc., so that the "new thread"
8210 output is emitted before e.g., "Program received signal FOO",
8211 instead of after. */
8212 update_thread_list ();
8213
8214 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8215 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8216
c906108c
SS
8217 /* As with the notification of thread events, we want to delay
8218 notifying the user that we've switched thread context until
8219 the inferior actually stops.
8220
73b65bb0
DJ
8221 There's no point in saying anything if the inferior has exited.
8222 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8223 "received a signal".
8224
8225 Also skip saying anything in non-stop mode. In that mode, as we
8226 don't want GDB to switch threads behind the user's back, to avoid
8227 races where the user is typing a command to apply to thread x,
8228 but GDB switches to thread y before the user finishes entering
8229 the command, fetch_inferior_event installs a cleanup to restore
8230 the current thread back to the thread the user had selected right
8231 after this event is handled, so we're not really switching, only
8232 informing of a stop. */
4f8d22e3
PA
8233 if (!non_stop
8234 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
8235 && target_has_execution
8236 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8237 && last.kind != TARGET_WAITKIND_EXITED
8238 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8239 {
0e454242 8240 SWITCH_THRU_ALL_UIS ()
3b12939d 8241 {
223ffa71 8242 target_terminal::ours_for_output ();
3b12939d
PA
8243 printf_filtered (_("[Switching to %s]\n"),
8244 target_pid_to_str (inferior_ptid));
8245 annotate_thread_changed ();
8246 }
39f77062 8247 previous_inferior_ptid = inferior_ptid;
c906108c 8248 }
c906108c 8249
0e5bf2a8
PA
8250 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8251 {
0e454242 8252 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8253 if (current_ui->prompt_state == PROMPT_BLOCKED)
8254 {
223ffa71 8255 target_terminal::ours_for_output ();
3b12939d
PA
8256 printf_filtered (_("No unwaited-for children left.\n"));
8257 }
0e5bf2a8
PA
8258 }
8259
b57bacec 8260 /* Note: this depends on the update_thread_list call above. */
388a7084 8261 maybe_remove_breakpoints ();
c906108c 8262
c906108c
SS
8263 /* If an auto-display called a function and that got a signal,
8264 delete that auto-display to avoid an infinite recursion. */
8265
8266 if (stopped_by_random_signal)
8267 disable_current_display ();
8268
0e454242 8269 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8270 {
8271 async_enable_stdin ();
8272 }
c906108c 8273
388a7084
PA
8274 /* Let the user/frontend see the threads as stopped. */
8275 do_cleanups (old_chain);
8276
8277 /* Select innermost stack frame - i.e., current frame is frame 0,
8278 and current location is based on that. Handle the case where the
8279 dummy call is returning after being stopped. E.g. the dummy call
8280 previously hit a breakpoint. (If the dummy call returns
8281 normally, we won't reach here.) Do this before the stop hook is
8282 run, so that it doesn't get to see the temporary dummy frame,
8283 which is not where we'll present the stop. */
8284 if (has_stack_frames ())
8285 {
8286 if (stop_stack_dummy == STOP_STACK_DUMMY)
8287 {
8288 /* Pop the empty frame that contains the stack dummy. This
8289 also restores inferior state prior to the call (struct
8290 infcall_suspend_state). */
8291 struct frame_info *frame = get_current_frame ();
8292
8293 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8294 frame_pop (frame);
8295 /* frame_pop calls reinit_frame_cache as the last thing it
8296 does which means there's now no selected frame. */
8297 }
8298
8299 select_frame (get_current_frame ());
8300
8301 /* Set the current source location. */
8302 set_current_sal_from_frame (get_current_frame ());
8303 }
dd7e2d2b
PA
8304
8305 /* Look up the hook_stop and run it (CLI internally handles problem
8306 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8307 if (stop_command != NULL)
8308 {
8309 struct stop_context *saved_context = save_stop_context ();
8310 struct cleanup *old_chain
8311 = make_cleanup (release_stop_context_cleanup, saved_context);
8312
bf469271
PA
8313 TRY
8314 {
8315 execute_cmd_pre_hook (stop_command);
8316 }
8317 CATCH (ex, RETURN_MASK_ALL)
8318 {
8319 exception_fprintf (gdb_stderr, ex,
8320 "Error while running hook_stop:\n");
8321 }
8322 END_CATCH
4c2f2a79
PA
8323
8324 /* If the stop hook resumes the target, then there's no point in
8325 trying to notify about the previous stop; its context is
8326 gone. Likewise if the command switches thread or inferior --
8327 the observers would print a stop for the wrong
8328 thread/inferior. */
8329 if (stop_context_changed (saved_context))
8330 {
8331 do_cleanups (old_chain);
8332 return 1;
8333 }
8334 do_cleanups (old_chain);
8335 }
dd7e2d2b 8336
388a7084
PA
8337 /* Notify observers about the stop. This is where the interpreters
8338 print the stop event. */
8339 if (!ptid_equal (inferior_ptid, null_ptid))
8340 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8341 stop_print_frame);
8342 else
8343 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 8344
243a9253
PA
8345 annotate_stopped ();
8346
48844aa6
PA
8347 if (target_has_execution)
8348 {
8349 if (last.kind != TARGET_WAITKIND_SIGNALLED
8350 && last.kind != TARGET_WAITKIND_EXITED)
8351 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8352 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8353 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8354 }
6c95b8df
PA
8355
8356 /* Try to get rid of automatically added inferiors that are no
8357 longer needed. Keeping those around slows down things linearly.
8358 Note that this never removes the current inferior. */
8359 prune_inferiors ();
4c2f2a79
PA
8360
8361 return 0;
c906108c 8362}
c906108c 8363\f
c5aa993b 8364int
96baa820 8365signal_stop_state (int signo)
c906108c 8366{
d6b48e9c 8367 return signal_stop[signo];
c906108c
SS
8368}
8369
c5aa993b 8370int
96baa820 8371signal_print_state (int signo)
c906108c
SS
8372{
8373 return signal_print[signo];
8374}
8375
c5aa993b 8376int
96baa820 8377signal_pass_state (int signo)
c906108c
SS
8378{
8379 return signal_program[signo];
8380}
8381
2455069d
UW
8382static void
8383signal_cache_update (int signo)
8384{
8385 if (signo == -1)
8386 {
a493e3e2 8387 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8388 signal_cache_update (signo);
8389
8390 return;
8391 }
8392
8393 signal_pass[signo] = (signal_stop[signo] == 0
8394 && signal_print[signo] == 0
ab04a2af
TT
8395 && signal_program[signo] == 1
8396 && signal_catch[signo] == 0);
2455069d
UW
8397}
8398
488f131b 8399int
7bda5e4a 8400signal_stop_update (int signo, int state)
d4f3574e
SS
8401{
8402 int ret = signal_stop[signo];
abbb1732 8403
d4f3574e 8404 signal_stop[signo] = state;
2455069d 8405 signal_cache_update (signo);
d4f3574e
SS
8406 return ret;
8407}
8408
488f131b 8409int
7bda5e4a 8410signal_print_update (int signo, int state)
d4f3574e
SS
8411{
8412 int ret = signal_print[signo];
abbb1732 8413
d4f3574e 8414 signal_print[signo] = state;
2455069d 8415 signal_cache_update (signo);
d4f3574e
SS
8416 return ret;
8417}
8418
488f131b 8419int
7bda5e4a 8420signal_pass_update (int signo, int state)
d4f3574e
SS
8421{
8422 int ret = signal_program[signo];
abbb1732 8423
d4f3574e 8424 signal_program[signo] = state;
2455069d 8425 signal_cache_update (signo);
d4f3574e
SS
8426 return ret;
8427}
8428
ab04a2af
TT
8429/* Update the global 'signal_catch' from INFO and notify the
8430 target. */
8431
8432void
8433signal_catch_update (const unsigned int *info)
8434{
8435 int i;
8436
8437 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8438 signal_catch[i] = info[i] > 0;
8439 signal_cache_update (-1);
8440 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8441}
8442
c906108c 8443static void
96baa820 8444sig_print_header (void)
c906108c 8445{
3e43a32a
MS
8446 printf_filtered (_("Signal Stop\tPrint\tPass "
8447 "to program\tDescription\n"));
c906108c
SS
8448}
8449
8450static void
2ea28649 8451sig_print_info (enum gdb_signal oursig)
c906108c 8452{
2ea28649 8453 const char *name = gdb_signal_to_name (oursig);
c906108c 8454 int name_padding = 13 - strlen (name);
96baa820 8455
c906108c
SS
8456 if (name_padding <= 0)
8457 name_padding = 0;
8458
8459 printf_filtered ("%s", name);
488f131b 8460 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8461 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8462 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8463 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8464 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8465}
8466
8467/* Specify how various signals in the inferior should be handled. */
8468
8469static void
96baa820 8470handle_command (char *args, int from_tty)
c906108c 8471{
c906108c
SS
8472 int digits, wordlen;
8473 int sigfirst, signum, siglast;
2ea28649 8474 enum gdb_signal oursig;
c906108c
SS
8475 int allsigs;
8476 int nsigs;
8477 unsigned char *sigs;
c906108c
SS
8478
8479 if (args == NULL)
8480 {
e2e0b3e5 8481 error_no_arg (_("signal to handle"));
c906108c
SS
8482 }
8483
1777feb0 8484 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8485
a493e3e2 8486 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
8487 sigs = (unsigned char *) alloca (nsigs);
8488 memset (sigs, 0, nsigs);
8489
1777feb0 8490 /* Break the command line up into args. */
c906108c 8491
773a1edc 8492 gdb_argv built_argv (args);
c906108c
SS
8493
8494 /* Walk through the args, looking for signal oursigs, signal names, and
8495 actions. Signal numbers and signal names may be interspersed with
8496 actions, with the actions being performed for all signals cumulatively
1777feb0 8497 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8498
773a1edc 8499 for (char *arg : built_argv)
c906108c 8500 {
773a1edc
TT
8501 wordlen = strlen (arg);
8502 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8503 {;
8504 }
8505 allsigs = 0;
8506 sigfirst = siglast = -1;
8507
773a1edc 8508 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8509 {
8510 /* Apply action to all signals except those used by the
1777feb0 8511 debugger. Silently skip those. */
c906108c
SS
8512 allsigs = 1;
8513 sigfirst = 0;
8514 siglast = nsigs - 1;
8515 }
773a1edc 8516 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8517 {
8518 SET_SIGS (nsigs, sigs, signal_stop);
8519 SET_SIGS (nsigs, sigs, signal_print);
8520 }
773a1edc 8521 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8522 {
8523 UNSET_SIGS (nsigs, sigs, signal_program);
8524 }
773a1edc 8525 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8526 {
8527 SET_SIGS (nsigs, sigs, signal_print);
8528 }
773a1edc 8529 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8530 {
8531 SET_SIGS (nsigs, sigs, signal_program);
8532 }
773a1edc 8533 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8534 {
8535 UNSET_SIGS (nsigs, sigs, signal_stop);
8536 }
773a1edc 8537 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8538 {
8539 SET_SIGS (nsigs, sigs, signal_program);
8540 }
773a1edc 8541 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8542 {
8543 UNSET_SIGS (nsigs, sigs, signal_print);
8544 UNSET_SIGS (nsigs, sigs, signal_stop);
8545 }
773a1edc 8546 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8547 {
8548 UNSET_SIGS (nsigs, sigs, signal_program);
8549 }
8550 else if (digits > 0)
8551 {
8552 /* It is numeric. The numeric signal refers to our own
8553 internal signal numbering from target.h, not to host/target
8554 signal number. This is a feature; users really should be
8555 using symbolic names anyway, and the common ones like
8556 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8557
8558 sigfirst = siglast = (int)
773a1edc
TT
8559 gdb_signal_from_command (atoi (arg));
8560 if (arg[digits] == '-')
c906108c
SS
8561 {
8562 siglast = (int)
773a1edc 8563 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8564 }
8565 if (sigfirst > siglast)
8566 {
1777feb0 8567 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
8568 signum = sigfirst;
8569 sigfirst = siglast;
8570 siglast = signum;
8571 }
8572 }
8573 else
8574 {
773a1edc 8575 oursig = gdb_signal_from_name (arg);
a493e3e2 8576 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8577 {
8578 sigfirst = siglast = (int) oursig;
8579 }
8580 else
8581 {
8582 /* Not a number and not a recognized flag word => complain. */
773a1edc 8583 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8584 }
8585 }
8586
8587 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8588 which signals to apply actions to. */
c906108c
SS
8589
8590 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8591 {
2ea28649 8592 switch ((enum gdb_signal) signum)
c906108c 8593 {
a493e3e2
PA
8594 case GDB_SIGNAL_TRAP:
8595 case GDB_SIGNAL_INT:
c906108c
SS
8596 if (!allsigs && !sigs[signum])
8597 {
9e2f0ad4 8598 if (query (_("%s is used by the debugger.\n\
3e43a32a 8599Are you sure you want to change it? "),
2ea28649 8600 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8601 {
8602 sigs[signum] = 1;
8603 }
8604 else
8605 {
a3f17187 8606 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8607 gdb_flush (gdb_stdout);
8608 }
8609 }
8610 break;
a493e3e2
PA
8611 case GDB_SIGNAL_0:
8612 case GDB_SIGNAL_DEFAULT:
8613 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8614 /* Make sure that "all" doesn't print these. */
8615 break;
8616 default:
8617 sigs[signum] = 1;
8618 break;
8619 }
8620 }
c906108c
SS
8621 }
8622
3a031f65
PA
8623 for (signum = 0; signum < nsigs; signum++)
8624 if (sigs[signum])
8625 {
2455069d 8626 signal_cache_update (-1);
a493e3e2
PA
8627 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8628 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 8629
3a031f65
PA
8630 if (from_tty)
8631 {
8632 /* Show the results. */
8633 sig_print_header ();
8634 for (; signum < nsigs; signum++)
8635 if (sigs[signum])
aead7601 8636 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8637 }
8638
8639 break;
8640 }
c906108c
SS
8641}
8642
de0bea00
MF
8643/* Complete the "handle" command. */
8644
eb3ff9a5 8645static void
de0bea00 8646handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8647 completion_tracker &tracker,
6f937416 8648 const char *text, const char *word)
de0bea00 8649{
de0bea00
MF
8650 static const char * const keywords[] =
8651 {
8652 "all",
8653 "stop",
8654 "ignore",
8655 "print",
8656 "pass",
8657 "nostop",
8658 "noignore",
8659 "noprint",
8660 "nopass",
8661 NULL,
8662 };
8663
eb3ff9a5
PA
8664 signal_completer (ignore, tracker, text, word);
8665 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8666}
8667
2ea28649
PA
8668enum gdb_signal
8669gdb_signal_from_command (int num)
ed01b82c
PA
8670{
8671 if (num >= 1 && num <= 15)
2ea28649 8672 return (enum gdb_signal) num;
ed01b82c
PA
8673 error (_("Only signals 1-15 are valid as numeric signals.\n\
8674Use \"info signals\" for a list of symbolic signals."));
8675}
8676
c906108c
SS
8677/* Print current contents of the tables set by the handle command.
8678 It is possible we should just be printing signals actually used
8679 by the current target (but for things to work right when switching
8680 targets, all signals should be in the signal tables). */
8681
8682static void
11db9430 8683info_signals_command (char *signum_exp, int from_tty)
c906108c 8684{
2ea28649 8685 enum gdb_signal oursig;
abbb1732 8686
c906108c
SS
8687 sig_print_header ();
8688
8689 if (signum_exp)
8690 {
8691 /* First see if this is a symbol name. */
2ea28649 8692 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8693 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8694 {
8695 /* No, try numeric. */
8696 oursig =
2ea28649 8697 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8698 }
8699 sig_print_info (oursig);
8700 return;
8701 }
8702
8703 printf_filtered ("\n");
8704 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8705 for (oursig = GDB_SIGNAL_FIRST;
8706 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8707 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8708 {
8709 QUIT;
8710
a493e3e2
PA
8711 if (oursig != GDB_SIGNAL_UNKNOWN
8712 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8713 sig_print_info (oursig);
8714 }
8715
3e43a32a
MS
8716 printf_filtered (_("\nUse the \"handle\" command "
8717 "to change these tables.\n"));
c906108c 8718}
4aa995e1
PA
8719
8720/* The $_siginfo convenience variable is a bit special. We don't know
8721 for sure the type of the value until we actually have a chance to
7a9dd1b2 8722 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8723 also dependent on which thread you have selected.
8724
8725 1. making $_siginfo be an internalvar that creates a new value on
8726 access.
8727
8728 2. making the value of $_siginfo be an lval_computed value. */
8729
8730/* This function implements the lval_computed support for reading a
8731 $_siginfo value. */
8732
8733static void
8734siginfo_value_read (struct value *v)
8735{
8736 LONGEST transferred;
8737
a911d87a
PA
8738 /* If we can access registers, so can we access $_siginfo. Likewise
8739 vice versa. */
8740 validate_registers_access ();
c709acd1 8741
4aa995e1
PA
8742 transferred =
8743 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8744 NULL,
8745 value_contents_all_raw (v),
8746 value_offset (v),
8747 TYPE_LENGTH (value_type (v)));
8748
8749 if (transferred != TYPE_LENGTH (value_type (v)))
8750 error (_("Unable to read siginfo"));
8751}
8752
8753/* This function implements the lval_computed support for writing a
8754 $_siginfo value. */
8755
8756static void
8757siginfo_value_write (struct value *v, struct value *fromval)
8758{
8759 LONGEST transferred;
8760
a911d87a
PA
8761 /* If we can access registers, so can we access $_siginfo. Likewise
8762 vice versa. */
8763 validate_registers_access ();
c709acd1 8764
4aa995e1
PA
8765 transferred = target_write (&current_target,
8766 TARGET_OBJECT_SIGNAL_INFO,
8767 NULL,
8768 value_contents_all_raw (fromval),
8769 value_offset (v),
8770 TYPE_LENGTH (value_type (fromval)));
8771
8772 if (transferred != TYPE_LENGTH (value_type (fromval)))
8773 error (_("Unable to write siginfo"));
8774}
8775
c8f2448a 8776static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8777 {
8778 siginfo_value_read,
8779 siginfo_value_write
8780 };
8781
8782/* Return a new value with the correct type for the siginfo object of
78267919
UW
8783 the current thread using architecture GDBARCH. Return a void value
8784 if there's no object available. */
4aa995e1 8785
2c0b251b 8786static struct value *
22d2b532
SDJ
8787siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8788 void *ignore)
4aa995e1 8789{
4aa995e1 8790 if (target_has_stack
78267919
UW
8791 && !ptid_equal (inferior_ptid, null_ptid)
8792 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8793 {
78267919 8794 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8795
78267919 8796 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8797 }
8798
78267919 8799 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8800}
8801
c906108c 8802\f
16c381f0
JK
8803/* infcall_suspend_state contains state about the program itself like its
8804 registers and any signal it received when it last stopped.
8805 This state must be restored regardless of how the inferior function call
8806 ends (either successfully, or after it hits a breakpoint or signal)
8807 if the program is to properly continue where it left off. */
8808
8809struct infcall_suspend_state
7a292a7a 8810{
16c381f0 8811 struct thread_suspend_state thread_suspend;
16c381f0
JK
8812
8813 /* Other fields: */
7a292a7a 8814 CORE_ADDR stop_pc;
b89667eb 8815 struct regcache *registers;
1736ad11 8816
35515841 8817 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
8818 struct gdbarch *siginfo_gdbarch;
8819
8820 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8821 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8822 content would be invalid. */
8823 gdb_byte *siginfo_data;
b89667eb
DE
8824};
8825
16c381f0
JK
8826struct infcall_suspend_state *
8827save_infcall_suspend_state (void)
b89667eb 8828{
16c381f0 8829 struct infcall_suspend_state *inf_state;
b89667eb 8830 struct thread_info *tp = inferior_thread ();
1736ad11 8831 struct regcache *regcache = get_current_regcache ();
ac7936df 8832 struct gdbarch *gdbarch = regcache->arch ();
1736ad11
JK
8833 gdb_byte *siginfo_data = NULL;
8834
8835 if (gdbarch_get_siginfo_type_p (gdbarch))
8836 {
8837 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8838 size_t len = TYPE_LENGTH (type);
8839 struct cleanup *back_to;
8840
224c3ddb 8841 siginfo_data = (gdb_byte *) xmalloc (len);
1736ad11
JK
8842 back_to = make_cleanup (xfree, siginfo_data);
8843
8844 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8845 siginfo_data, 0, len) == len)
8846 discard_cleanups (back_to);
8847 else
8848 {
8849 /* Errors ignored. */
8850 do_cleanups (back_to);
8851 siginfo_data = NULL;
8852 }
8853 }
8854
41bf6aca 8855 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
8856
8857 if (siginfo_data)
8858 {
8859 inf_state->siginfo_gdbarch = gdbarch;
8860 inf_state->siginfo_data = siginfo_data;
8861 }
b89667eb 8862
16c381f0 8863 inf_state->thread_suspend = tp->suspend;
16c381f0 8864
35515841 8865 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
8866 GDB_SIGNAL_0 anyway. */
8867 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8868
b89667eb
DE
8869 inf_state->stop_pc = stop_pc;
8870
1736ad11 8871 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
8872
8873 return inf_state;
8874}
8875
8876/* Restore inferior session state to INF_STATE. */
8877
8878void
16c381f0 8879restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8880{
8881 struct thread_info *tp = inferior_thread ();
1736ad11 8882 struct regcache *regcache = get_current_regcache ();
ac7936df 8883 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 8884
16c381f0 8885 tp->suspend = inf_state->thread_suspend;
16c381f0 8886
b89667eb
DE
8887 stop_pc = inf_state->stop_pc;
8888
1736ad11
JK
8889 if (inf_state->siginfo_gdbarch == gdbarch)
8890 {
8891 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
8892
8893 /* Errors ignored. */
8894 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 8895 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
8896 }
8897
b89667eb
DE
8898 /* The inferior can be gone if the user types "print exit(0)"
8899 (and perhaps other times). */
8900 if (target_has_execution)
8901 /* NB: The register write goes through to the target. */
1736ad11 8902 regcache_cpy (regcache, inf_state->registers);
803b5f95 8903
16c381f0 8904 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8905}
8906
8907static void
16c381f0 8908do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 8909{
9a3c8263 8910 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
b89667eb
DE
8911}
8912
8913struct cleanup *
16c381f0
JK
8914make_cleanup_restore_infcall_suspend_state
8915 (struct infcall_suspend_state *inf_state)
b89667eb 8916{
16c381f0 8917 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
8918}
8919
8920void
16c381f0 8921discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 8922{
c0e383c6 8923 delete inf_state->registers;
803b5f95 8924 xfree (inf_state->siginfo_data);
b89667eb
DE
8925 xfree (inf_state);
8926}
8927
8928struct regcache *
16c381f0 8929get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
8930{
8931 return inf_state->registers;
8932}
8933
16c381f0
JK
8934/* infcall_control_state contains state regarding gdb's control of the
8935 inferior itself like stepping control. It also contains session state like
8936 the user's currently selected frame. */
b89667eb 8937
16c381f0 8938struct infcall_control_state
b89667eb 8939{
16c381f0
JK
8940 struct thread_control_state thread_control;
8941 struct inferior_control_state inferior_control;
d82142e2
JK
8942
8943 /* Other fields: */
8944 enum stop_stack_kind stop_stack_dummy;
8945 int stopped_by_random_signal;
7a292a7a 8946
b89667eb 8947 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 8948 struct frame_id selected_frame_id;
7a292a7a
SS
8949};
8950
c906108c 8951/* Save all of the information associated with the inferior<==>gdb
b89667eb 8952 connection. */
c906108c 8953
16c381f0
JK
8954struct infcall_control_state *
8955save_infcall_control_state (void)
c906108c 8956{
8d749320
SM
8957 struct infcall_control_state *inf_status =
8958 XNEW (struct infcall_control_state);
4e1c45ea 8959 struct thread_info *tp = inferior_thread ();
d6b48e9c 8960 struct inferior *inf = current_inferior ();
7a292a7a 8961
16c381f0
JK
8962 inf_status->thread_control = tp->control;
8963 inf_status->inferior_control = inf->control;
d82142e2 8964
8358c15c 8965 tp->control.step_resume_breakpoint = NULL;
5b79abe7 8966 tp->control.exception_resume_breakpoint = NULL;
8358c15c 8967
16c381f0
JK
8968 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8969 chain. If caller's caller is walking the chain, they'll be happier if we
8970 hand them back the original chain when restore_infcall_control_state is
8971 called. */
8972 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
8973
8974 /* Other fields: */
8975 inf_status->stop_stack_dummy = stop_stack_dummy;
8976 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 8977
206415a3 8978 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 8979
7a292a7a 8980 return inf_status;
c906108c
SS
8981}
8982
bf469271
PA
8983static void
8984restore_selected_frame (const frame_id &fid)
c906108c 8985{
bf469271 8986 frame_info *frame = frame_find_by_id (fid);
c906108c 8987
aa0cd9c1
AC
8988 /* If inf_status->selected_frame_id is NULL, there was no previously
8989 selected frame. */
101dcfbe 8990 if (frame == NULL)
c906108c 8991 {
8a3fe4f8 8992 warning (_("Unable to restore previously selected frame."));
bf469271 8993 return;
c906108c
SS
8994 }
8995
0f7d239c 8996 select_frame (frame);
c906108c
SS
8997}
8998
b89667eb
DE
8999/* Restore inferior session state to INF_STATUS. */
9000
c906108c 9001void
16c381f0 9002restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 9003{
4e1c45ea 9004 struct thread_info *tp = inferior_thread ();
d6b48e9c 9005 struct inferior *inf = current_inferior ();
4e1c45ea 9006
8358c15c
JK
9007 if (tp->control.step_resume_breakpoint)
9008 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9009
5b79abe7
TT
9010 if (tp->control.exception_resume_breakpoint)
9011 tp->control.exception_resume_breakpoint->disposition
9012 = disp_del_at_next_stop;
9013
d82142e2 9014 /* Handle the bpstat_copy of the chain. */
16c381f0 9015 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 9016
16c381f0
JK
9017 tp->control = inf_status->thread_control;
9018 inf->control = inf_status->inferior_control;
d82142e2
JK
9019
9020 /* Other fields: */
9021 stop_stack_dummy = inf_status->stop_stack_dummy;
9022 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 9023
b89667eb 9024 if (target_has_stack)
c906108c 9025 {
bf469271 9026 /* The point of the try/catch is that if the stack is clobbered,
101dcfbe
AC
9027 walking the stack might encounter a garbage pointer and
9028 error() trying to dereference it. */
bf469271
PA
9029 TRY
9030 {
9031 restore_selected_frame (inf_status->selected_frame_id);
9032 }
9033 CATCH (ex, RETURN_MASK_ERROR)
9034 {
9035 exception_fprintf (gdb_stderr, ex,
9036 "Unable to restore previously selected frame:\n");
9037 /* Error in restoring the selected frame. Select the
9038 innermost frame. */
9039 select_frame (get_current_frame ());
9040 }
9041 END_CATCH
c906108c 9042 }
c906108c 9043
72cec141 9044 xfree (inf_status);
7a292a7a 9045}
c906108c 9046
74b7792f 9047static void
16c381f0 9048do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 9049{
9a3c8263 9050 restore_infcall_control_state ((struct infcall_control_state *) sts);
74b7792f
AC
9051}
9052
9053struct cleanup *
16c381f0
JK
9054make_cleanup_restore_infcall_control_state
9055 (struct infcall_control_state *inf_status)
74b7792f 9056{
16c381f0 9057 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
9058}
9059
c906108c 9060void
16c381f0 9061discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 9062{
8358c15c
JK
9063 if (inf_status->thread_control.step_resume_breakpoint)
9064 inf_status->thread_control.step_resume_breakpoint->disposition
9065 = disp_del_at_next_stop;
9066
5b79abe7
TT
9067 if (inf_status->thread_control.exception_resume_breakpoint)
9068 inf_status->thread_control.exception_resume_breakpoint->disposition
9069 = disp_del_at_next_stop;
9070
1777feb0 9071 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 9072 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 9073
72cec141 9074 xfree (inf_status);
7a292a7a 9075}
b89667eb 9076\f
7f89fd65 9077/* See infrun.h. */
0c557179
SDJ
9078
9079void
9080clear_exit_convenience_vars (void)
9081{
9082 clear_internalvar (lookup_internalvar ("_exitsignal"));
9083 clear_internalvar (lookup_internalvar ("_exitcode"));
9084}
c5aa993b 9085\f
488f131b 9086
b2175913
MS
9087/* User interface for reverse debugging:
9088 Set exec-direction / show exec-direction commands
9089 (returns error unless target implements to_set_exec_direction method). */
9090
170742de 9091enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
9092static const char exec_forward[] = "forward";
9093static const char exec_reverse[] = "reverse";
9094static const char *exec_direction = exec_forward;
40478521 9095static const char *const exec_direction_names[] = {
b2175913
MS
9096 exec_forward,
9097 exec_reverse,
9098 NULL
9099};
9100
9101static void
9102set_exec_direction_func (char *args, int from_tty,
9103 struct cmd_list_element *cmd)
9104{
9105 if (target_can_execute_reverse)
9106 {
9107 if (!strcmp (exec_direction, exec_forward))
9108 execution_direction = EXEC_FORWARD;
9109 else if (!strcmp (exec_direction, exec_reverse))
9110 execution_direction = EXEC_REVERSE;
9111 }
8bbed405
MS
9112 else
9113 {
9114 exec_direction = exec_forward;
9115 error (_("Target does not support this operation."));
9116 }
b2175913
MS
9117}
9118
9119static void
9120show_exec_direction_func (struct ui_file *out, int from_tty,
9121 struct cmd_list_element *cmd, const char *value)
9122{
9123 switch (execution_direction) {
9124 case EXEC_FORWARD:
9125 fprintf_filtered (out, _("Forward.\n"));
9126 break;
9127 case EXEC_REVERSE:
9128 fprintf_filtered (out, _("Reverse.\n"));
9129 break;
b2175913 9130 default:
d8b34453
PA
9131 internal_error (__FILE__, __LINE__,
9132 _("bogus execution_direction value: %d"),
9133 (int) execution_direction);
b2175913
MS
9134 }
9135}
9136
d4db2f36
PA
9137static void
9138show_schedule_multiple (struct ui_file *file, int from_tty,
9139 struct cmd_list_element *c, const char *value)
9140{
3e43a32a
MS
9141 fprintf_filtered (file, _("Resuming the execution of threads "
9142 "of all processes is %s.\n"), value);
d4db2f36 9143}
ad52ddc6 9144
22d2b532
SDJ
9145/* Implementation of `siginfo' variable. */
9146
9147static const struct internalvar_funcs siginfo_funcs =
9148{
9149 siginfo_make_value,
9150 NULL,
9151 NULL
9152};
9153
372316f1
PA
9154/* Callback for infrun's target events source. This is marked when a
9155 thread has a pending status to process. */
9156
9157static void
9158infrun_async_inferior_event_handler (gdb_client_data data)
9159{
372316f1
PA
9160 inferior_event_handler (INF_REG_EVENT, NULL);
9161}
9162
c906108c 9163void
96baa820 9164_initialize_infrun (void)
c906108c 9165{
52f0bd74
AC
9166 int i;
9167 int numsigs;
de0bea00 9168 struct cmd_list_element *c;
c906108c 9169
372316f1
PA
9170 /* Register extra event sources in the event loop. */
9171 infrun_async_inferior_event_token
9172 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9173
11db9430 9174 add_info ("signals", info_signals_command, _("\
1bedd215
AC
9175What debugger does when program gets various signals.\n\
9176Specify a signal as argument to print info on that signal only."));
c906108c
SS
9177 add_info_alias ("handle", "signals", 0);
9178
de0bea00 9179 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9180Specify how to handle signals.\n\
486c7739 9181Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9182Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9183If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9184will be displayed instead.\n\
9185\n\
c906108c
SS
9186Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9187from 1-15 are allowed for compatibility with old versions of GDB.\n\
9188Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9189The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9190used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9191\n\
1bedd215 9192Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9193\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9194Stop means reenter debugger if this signal happens (implies print).\n\
9195Print means print a message if this signal happens.\n\
9196Pass means let program see this signal; otherwise program doesn't know.\n\
9197Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9198Pass and Stop may be combined.\n\
9199\n\
9200Multiple signals may be specified. Signal numbers and signal names\n\
9201may be interspersed with actions, with the actions being performed for\n\
9202all signals cumulatively specified."));
de0bea00 9203 set_cmd_completer (c, handle_completer);
486c7739 9204
c906108c 9205 if (!dbx_commands)
1a966eab
AC
9206 stop_command = add_cmd ("stop", class_obscure,
9207 not_just_help_class_command, _("\
9208There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9209This allows you to set a list of commands to be run each time execution\n\
1a966eab 9210of the program stops."), &cmdlist);
c906108c 9211
ccce17b0 9212 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9213Set inferior debugging."), _("\
9214Show inferior debugging."), _("\
9215When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9216 NULL,
9217 show_debug_infrun,
9218 &setdebuglist, &showdebuglist);
527159b7 9219
3e43a32a
MS
9220 add_setshow_boolean_cmd ("displaced", class_maintenance,
9221 &debug_displaced, _("\
237fc4c9
PA
9222Set displaced stepping debugging."), _("\
9223Show displaced stepping debugging."), _("\
9224When non-zero, displaced stepping specific debugging is enabled."),
9225 NULL,
9226 show_debug_displaced,
9227 &setdebuglist, &showdebuglist);
9228
ad52ddc6
PA
9229 add_setshow_boolean_cmd ("non-stop", no_class,
9230 &non_stop_1, _("\
9231Set whether gdb controls the inferior in non-stop mode."), _("\
9232Show whether gdb controls the inferior in non-stop mode."), _("\
9233When debugging a multi-threaded program and this setting is\n\
9234off (the default, also called all-stop mode), when one thread stops\n\
9235(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9236all other threads in the program while you interact with the thread of\n\
9237interest. When you continue or step a thread, you can allow the other\n\
9238threads to run, or have them remain stopped, but while you inspect any\n\
9239thread's state, all threads stop.\n\
9240\n\
9241In non-stop mode, when one thread stops, other threads can continue\n\
9242to run freely. You'll be able to step each thread independently,\n\
9243leave it stopped or free to run as needed."),
9244 set_non_stop,
9245 show_non_stop,
9246 &setlist,
9247 &showlist);
9248
a493e3e2 9249 numsigs = (int) GDB_SIGNAL_LAST;
8d749320
SM
9250 signal_stop = XNEWVEC (unsigned char, numsigs);
9251 signal_print = XNEWVEC (unsigned char, numsigs);
9252 signal_program = XNEWVEC (unsigned char, numsigs);
9253 signal_catch = XNEWVEC (unsigned char, numsigs);
9254 signal_pass = XNEWVEC (unsigned char, numsigs);
c906108c
SS
9255 for (i = 0; i < numsigs; i++)
9256 {
9257 signal_stop[i] = 1;
9258 signal_print[i] = 1;
9259 signal_program[i] = 1;
ab04a2af 9260 signal_catch[i] = 0;
c906108c
SS
9261 }
9262
4d9d9d04
PA
9263 /* Signals caused by debugger's own actions should not be given to
9264 the program afterwards.
9265
9266 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9267 explicitly specifies that it should be delivered to the target
9268 program. Typically, that would occur when a user is debugging a
9269 target monitor on a simulator: the target monitor sets a
9270 breakpoint; the simulator encounters this breakpoint and halts
9271 the simulation handing control to GDB; GDB, noting that the stop
9272 address doesn't map to any known breakpoint, returns control back
9273 to the simulator; the simulator then delivers the hardware
9274 equivalent of a GDB_SIGNAL_TRAP to the program being
9275 debugged. */
a493e3e2
PA
9276 signal_program[GDB_SIGNAL_TRAP] = 0;
9277 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9278
9279 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9280 signal_stop[GDB_SIGNAL_ALRM] = 0;
9281 signal_print[GDB_SIGNAL_ALRM] = 0;
9282 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9283 signal_print[GDB_SIGNAL_VTALRM] = 0;
9284 signal_stop[GDB_SIGNAL_PROF] = 0;
9285 signal_print[GDB_SIGNAL_PROF] = 0;
9286 signal_stop[GDB_SIGNAL_CHLD] = 0;
9287 signal_print[GDB_SIGNAL_CHLD] = 0;
9288 signal_stop[GDB_SIGNAL_IO] = 0;
9289 signal_print[GDB_SIGNAL_IO] = 0;
9290 signal_stop[GDB_SIGNAL_POLL] = 0;
9291 signal_print[GDB_SIGNAL_POLL] = 0;
9292 signal_stop[GDB_SIGNAL_URG] = 0;
9293 signal_print[GDB_SIGNAL_URG] = 0;
9294 signal_stop[GDB_SIGNAL_WINCH] = 0;
9295 signal_print[GDB_SIGNAL_WINCH] = 0;
9296 signal_stop[GDB_SIGNAL_PRIO] = 0;
9297 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9298
cd0fc7c3
SS
9299 /* These signals are used internally by user-level thread
9300 implementations. (See signal(5) on Solaris.) Like the above
9301 signals, a healthy program receives and handles them as part of
9302 its normal operation. */
a493e3e2
PA
9303 signal_stop[GDB_SIGNAL_LWP] = 0;
9304 signal_print[GDB_SIGNAL_LWP] = 0;
9305 signal_stop[GDB_SIGNAL_WAITING] = 0;
9306 signal_print[GDB_SIGNAL_WAITING] = 0;
9307 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9308 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9309 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9310 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9311
2455069d
UW
9312 /* Update cached state. */
9313 signal_cache_update (-1);
9314
85c07804
AC
9315 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9316 &stop_on_solib_events, _("\
9317Set stopping for shared library events."), _("\
9318Show stopping for shared library events."), _("\
c906108c
SS
9319If nonzero, gdb will give control to the user when the dynamic linker\n\
9320notifies gdb of shared library events. The most common event of interest\n\
85c07804 9321to the user would be loading/unloading of a new library."),
f9e14852 9322 set_stop_on_solib_events,
920d2a44 9323 show_stop_on_solib_events,
85c07804 9324 &setlist, &showlist);
c906108c 9325
7ab04401
AC
9326 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9327 follow_fork_mode_kind_names,
9328 &follow_fork_mode_string, _("\
9329Set debugger response to a program call of fork or vfork."), _("\
9330Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9331A fork or vfork creates a new process. follow-fork-mode can be:\n\
9332 parent - the original process is debugged after a fork\n\
9333 child - the new process is debugged after a fork\n\
ea1dd7bc 9334The unfollowed process will continue to run.\n\
7ab04401
AC
9335By default, the debugger will follow the parent process."),
9336 NULL,
920d2a44 9337 show_follow_fork_mode_string,
7ab04401
AC
9338 &setlist, &showlist);
9339
6c95b8df
PA
9340 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9341 follow_exec_mode_names,
9342 &follow_exec_mode_string, _("\
9343Set debugger response to a program call of exec."), _("\
9344Show debugger response to a program call of exec."), _("\
9345An exec call replaces the program image of a process.\n\
9346\n\
9347follow-exec-mode can be:\n\
9348\n\
cce7e648 9349 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9350to this new inferior. The program the process was running before\n\
9351the exec call can be restarted afterwards by restarting the original\n\
9352inferior.\n\
9353\n\
9354 same - the debugger keeps the process bound to the same inferior.\n\
9355The new executable image replaces the previous executable loaded in\n\
9356the inferior. Restarting the inferior after the exec call restarts\n\
9357the executable the process was running after the exec call.\n\
9358\n\
9359By default, the debugger will use the same inferior."),
9360 NULL,
9361 show_follow_exec_mode_string,
9362 &setlist, &showlist);
9363
7ab04401
AC
9364 add_setshow_enum_cmd ("scheduler-locking", class_run,
9365 scheduler_enums, &scheduler_mode, _("\
9366Set mode for locking scheduler during execution."), _("\
9367Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9368off == no locking (threads may preempt at any time)\n\
9369on == full locking (no thread except the current thread may run)\n\
9370 This applies to both normal execution and replay mode.\n\
9371step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9372 In this mode, other threads may run during other commands.\n\
9373 This applies to both normal execution and replay mode.\n\
9374replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9375 set_schedlock_func, /* traps on target vector */
920d2a44 9376 show_scheduler_mode,
7ab04401 9377 &setlist, &showlist);
5fbbeb29 9378
d4db2f36
PA
9379 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9380Set mode for resuming threads of all processes."), _("\
9381Show mode for resuming threads of all processes."), _("\
9382When on, execution commands (such as 'continue' or 'next') resume all\n\
9383threads of all processes. When off (which is the default), execution\n\
9384commands only resume the threads of the current process. The set of\n\
9385threads that are resumed is further refined by the scheduler-locking\n\
9386mode (see help set scheduler-locking)."),
9387 NULL,
9388 show_schedule_multiple,
9389 &setlist, &showlist);
9390
5bf193a2
AC
9391 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9392Set mode of the step operation."), _("\
9393Show mode of the step operation."), _("\
9394When set, doing a step over a function without debug line information\n\
9395will stop at the first instruction of that function. Otherwise, the\n\
9396function is skipped and the step command stops at a different source line."),
9397 NULL,
920d2a44 9398 show_step_stop_if_no_debug,
5bf193a2 9399 &setlist, &showlist);
ca6724c1 9400
72d0e2c5
YQ
9401 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9402 &can_use_displaced_stepping, _("\
237fc4c9
PA
9403Set debugger's willingness to use displaced stepping."), _("\
9404Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9405If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9406supported by the target architecture. If off, gdb will not use displaced\n\
9407stepping to step over breakpoints, even if such is supported by the target\n\
9408architecture. If auto (which is the default), gdb will use displaced stepping\n\
9409if the target architecture supports it and non-stop mode is active, but will not\n\
9410use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9411 NULL,
9412 show_can_use_displaced_stepping,
9413 &setlist, &showlist);
237fc4c9 9414
b2175913
MS
9415 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9416 &exec_direction, _("Set direction of execution.\n\
9417Options are 'forward' or 'reverse'."),
9418 _("Show direction of execution (forward/reverse)."),
9419 _("Tells gdb whether to execute forward or backward."),
9420 set_exec_direction_func, show_exec_direction_func,
9421 &setlist, &showlist);
9422
6c95b8df
PA
9423 /* Set/show detach-on-fork: user-settable mode. */
9424
9425 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9426Set whether gdb will detach the child of a fork."), _("\
9427Show whether gdb will detach the child of a fork."), _("\
9428Tells gdb whether to detach the child of a fork."),
9429 NULL, NULL, &setlist, &showlist);
9430
03583c20
UW
9431 /* Set/show disable address space randomization mode. */
9432
9433 add_setshow_boolean_cmd ("disable-randomization", class_support,
9434 &disable_randomization, _("\
9435Set disabling of debuggee's virtual address space randomization."), _("\
9436Show disabling of debuggee's virtual address space randomization."), _("\
9437When this mode is on (which is the default), randomization of the virtual\n\
9438address space is disabled. Standalone programs run with the randomization\n\
9439enabled by default on some platforms."),
9440 &set_disable_randomization,
9441 &show_disable_randomization,
9442 &setlist, &showlist);
9443
ca6724c1 9444 /* ptid initializations */
ca6724c1
KB
9445 inferior_ptid = null_ptid;
9446 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
9447
9448 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 9449 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 9450 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 9451 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
9452
9453 /* Explicitly create without lookup, since that tries to create a
9454 value with a void typed value, and when we get here, gdbarch
9455 isn't initialized yet. At this point, we're quite sure there
9456 isn't another convenience variable of the same name. */
22d2b532 9457 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9458
9459 add_setshow_boolean_cmd ("observer", no_class,
9460 &observer_mode_1, _("\
9461Set whether gdb controls the inferior in observer mode."), _("\
9462Show whether gdb controls the inferior in observer mode."), _("\
9463In observer mode, GDB can get data from the inferior, but not\n\
9464affect its execution. Registers and memory may not be changed,\n\
9465breakpoints may not be set, and the program cannot be interrupted\n\
9466or signalled."),
9467 set_observer_mode,
9468 show_observer_mode,
9469 &setlist,
9470 &showlist);
c906108c 9471}
This page took 4.760365 seconds and 4 git commands to generate.