Make single-step breakpoints be per-thread
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
ecd75fc8 4 Copyright (C) 1986-2014 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
06600e06 41#include "observer.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
c906108c
SS
63
64/* Prototypes for local functions */
65
96baa820 66static void signals_info (char *, int);
c906108c 67
96baa820 68static void handle_command (char *, int);
c906108c 69
2ea28649 70static void sig_print_info (enum gdb_signal);
c906108c 71
96baa820 72static void sig_print_header (void);
c906108c 73
74b7792f 74static void resume_cleanups (void *);
c906108c 75
96baa820 76static int hook_stop_stub (void *);
c906108c 77
96baa820
JM
78static int restore_selected_frame (void *);
79
4ef3f3be 80static int follow_fork (void);
96baa820 81
d83ad864
DB
82static int follow_fork_inferior (int follow_child, int detach_fork);
83
84static void follow_inferior_reset_breakpoints (void);
85
96baa820 86static void set_schedlock_func (char *args, int from_tty,
488f131b 87 struct cmd_list_element *c);
96baa820 88
a289b8f6
JK
89static int currently_stepping (struct thread_info *tp);
90
96baa820
JM
91static void xdb_handle_command (char *args, int from_tty);
92
93void _initialize_infrun (void);
43ff13b4 94
e58b0e63
PA
95void nullify_last_target_wait_ptid (void);
96
2c03e5be 97static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
98
99static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
100
2484c66b
UW
101static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
102
5fbbeb29
CF
103/* When set, stop the 'step' command if we enter a function which has
104 no line number information. The normal behavior is that we step
105 over such function. */
106int step_stop_if_no_debug = 0;
920d2a44
AC
107static void
108show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
109 struct cmd_list_element *c, const char *value)
110{
111 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
112}
5fbbeb29 113
1777feb0 114/* In asynchronous mode, but simulating synchronous execution. */
96baa820 115
43ff13b4
JM
116int sync_execution = 0;
117
b9f437de
PA
118/* proceed and normal_stop use this to notify the user when the
119 inferior stopped in a different thread than it had been running
120 in. */
96baa820 121
39f77062 122static ptid_t previous_inferior_ptid;
7a292a7a 123
07107ca6
LM
124/* If set (default for legacy reasons), when following a fork, GDB
125 will detach from one of the fork branches, child or parent.
126 Exactly which branch is detached depends on 'set follow-fork-mode'
127 setting. */
128
129static int detach_fork = 1;
6c95b8df 130
237fc4c9
PA
131int debug_displaced = 0;
132static void
133show_debug_displaced (struct ui_file *file, int from_tty,
134 struct cmd_list_element *c, const char *value)
135{
136 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
137}
138
ccce17b0 139unsigned int debug_infrun = 0;
920d2a44
AC
140static void
141show_debug_infrun (struct ui_file *file, int from_tty,
142 struct cmd_list_element *c, const char *value)
143{
144 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
145}
527159b7 146
03583c20
UW
147
148/* Support for disabling address space randomization. */
149
150int disable_randomization = 1;
151
152static void
153show_disable_randomization (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155{
156 if (target_supports_disable_randomization ())
157 fprintf_filtered (file,
158 _("Disabling randomization of debuggee's "
159 "virtual address space is %s.\n"),
160 value);
161 else
162 fputs_filtered (_("Disabling randomization of debuggee's "
163 "virtual address space is unsupported on\n"
164 "this platform.\n"), file);
165}
166
167static void
168set_disable_randomization (char *args, int from_tty,
169 struct cmd_list_element *c)
170{
171 if (!target_supports_disable_randomization ())
172 error (_("Disabling randomization of debuggee's "
173 "virtual address space is unsupported on\n"
174 "this platform."));
175}
176
d32dc48e
PA
177/* User interface for non-stop mode. */
178
179int non_stop = 0;
180static int non_stop_1 = 0;
181
182static void
183set_non_stop (char *args, int from_tty,
184 struct cmd_list_element *c)
185{
186 if (target_has_execution)
187 {
188 non_stop_1 = non_stop;
189 error (_("Cannot change this setting while the inferior is running."));
190 }
191
192 non_stop = non_stop_1;
193}
194
195static void
196show_non_stop (struct ui_file *file, int from_tty,
197 struct cmd_list_element *c, const char *value)
198{
199 fprintf_filtered (file,
200 _("Controlling the inferior in non-stop mode is %s.\n"),
201 value);
202}
203
d914c394
SS
204/* "Observer mode" is somewhat like a more extreme version of
205 non-stop, in which all GDB operations that might affect the
206 target's execution have been disabled. */
207
d914c394
SS
208int observer_mode = 0;
209static int observer_mode_1 = 0;
210
211static void
212set_observer_mode (char *args, int from_tty,
213 struct cmd_list_element *c)
214{
d914c394
SS
215 if (target_has_execution)
216 {
217 observer_mode_1 = observer_mode;
218 error (_("Cannot change this setting while the inferior is running."));
219 }
220
221 observer_mode = observer_mode_1;
222
223 may_write_registers = !observer_mode;
224 may_write_memory = !observer_mode;
225 may_insert_breakpoints = !observer_mode;
226 may_insert_tracepoints = !observer_mode;
227 /* We can insert fast tracepoints in or out of observer mode,
228 but enable them if we're going into this mode. */
229 if (observer_mode)
230 may_insert_fast_tracepoints = 1;
231 may_stop = !observer_mode;
232 update_target_permissions ();
233
234 /* Going *into* observer mode we must force non-stop, then
235 going out we leave it that way. */
236 if (observer_mode)
237 {
d914c394
SS
238 pagination_enabled = 0;
239 non_stop = non_stop_1 = 1;
240 }
241
242 if (from_tty)
243 printf_filtered (_("Observer mode is now %s.\n"),
244 (observer_mode ? "on" : "off"));
245}
246
247static void
248show_observer_mode (struct ui_file *file, int from_tty,
249 struct cmd_list_element *c, const char *value)
250{
251 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
252}
253
254/* This updates the value of observer mode based on changes in
255 permissions. Note that we are deliberately ignoring the values of
256 may-write-registers and may-write-memory, since the user may have
257 reason to enable these during a session, for instance to turn on a
258 debugging-related global. */
259
260void
261update_observer_mode (void)
262{
263 int newval;
264
265 newval = (!may_insert_breakpoints
266 && !may_insert_tracepoints
267 && may_insert_fast_tracepoints
268 && !may_stop
269 && non_stop);
270
271 /* Let the user know if things change. */
272 if (newval != observer_mode)
273 printf_filtered (_("Observer mode is now %s.\n"),
274 (newval ? "on" : "off"));
275
276 observer_mode = observer_mode_1 = newval;
277}
c2c6d25f 278
c906108c
SS
279/* Tables of how to react to signals; the user sets them. */
280
281static unsigned char *signal_stop;
282static unsigned char *signal_print;
283static unsigned char *signal_program;
284
ab04a2af
TT
285/* Table of signals that are registered with "catch signal". A
286 non-zero entry indicates that the signal is caught by some "catch
287 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
288 signals. */
289static unsigned char *signal_catch;
290
2455069d
UW
291/* Table of signals that the target may silently handle.
292 This is automatically determined from the flags above,
293 and simply cached here. */
294static unsigned char *signal_pass;
295
c906108c
SS
296#define SET_SIGS(nsigs,sigs,flags) \
297 do { \
298 int signum = (nsigs); \
299 while (signum-- > 0) \
300 if ((sigs)[signum]) \
301 (flags)[signum] = 1; \
302 } while (0)
303
304#define UNSET_SIGS(nsigs,sigs,flags) \
305 do { \
306 int signum = (nsigs); \
307 while (signum-- > 0) \
308 if ((sigs)[signum]) \
309 (flags)[signum] = 0; \
310 } while (0)
311
9b224c5e
PA
312/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
313 this function is to avoid exporting `signal_program'. */
314
315void
316update_signals_program_target (void)
317{
a493e3e2 318 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
319}
320
1777feb0 321/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 322
edb3359d 323#define RESUME_ALL minus_one_ptid
c906108c
SS
324
325/* Command list pointer for the "stop" placeholder. */
326
327static struct cmd_list_element *stop_command;
328
c906108c
SS
329/* Function inferior was in as of last step command. */
330
331static struct symbol *step_start_function;
332
c906108c
SS
333/* Nonzero if we want to give control to the user when we're notified
334 of shared library events by the dynamic linker. */
628fe4e4 335int stop_on_solib_events;
f9e14852
GB
336
337/* Enable or disable optional shared library event breakpoints
338 as appropriate when the above flag is changed. */
339
340static void
341set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
342{
343 update_solib_breakpoints ();
344}
345
920d2a44
AC
346static void
347show_stop_on_solib_events (struct ui_file *file, int from_tty,
348 struct cmd_list_element *c, const char *value)
349{
350 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
351 value);
352}
c906108c 353
c906108c
SS
354/* Nonzero means expecting a trace trap
355 and should stop the inferior and return silently when it happens. */
356
357int stop_after_trap;
358
642fd101
DE
359/* Save register contents here when executing a "finish" command or are
360 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
361 Thus this contains the return value from the called function (assuming
362 values are returned in a register). */
363
72cec141 364struct regcache *stop_registers;
c906108c 365
c906108c
SS
366/* Nonzero after stop if current stack frame should be printed. */
367
368static int stop_print_frame;
369
e02bc4cc 370/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
371 returned by target_wait()/deprecated_target_wait_hook(). This
372 information is returned by get_last_target_status(). */
39f77062 373static ptid_t target_last_wait_ptid;
e02bc4cc
DS
374static struct target_waitstatus target_last_waitstatus;
375
0d1e5fa7
PA
376static void context_switch (ptid_t ptid);
377
4e1c45ea 378void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 379
53904c9e
AC
380static const char follow_fork_mode_child[] = "child";
381static const char follow_fork_mode_parent[] = "parent";
382
40478521 383static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
384 follow_fork_mode_child,
385 follow_fork_mode_parent,
386 NULL
ef346e04 387};
c906108c 388
53904c9e 389static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
390static void
391show_follow_fork_mode_string (struct ui_file *file, int from_tty,
392 struct cmd_list_element *c, const char *value)
393{
3e43a32a
MS
394 fprintf_filtered (file,
395 _("Debugger response to a program "
396 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
397 value);
398}
c906108c
SS
399\f
400
d83ad864
DB
401/* Handle changes to the inferior list based on the type of fork,
402 which process is being followed, and whether the other process
403 should be detached. On entry inferior_ptid must be the ptid of
404 the fork parent. At return inferior_ptid is the ptid of the
405 followed inferior. */
406
407static int
408follow_fork_inferior (int follow_child, int detach_fork)
409{
410 int has_vforked;
411 int parent_pid, child_pid;
412
413 has_vforked = (inferior_thread ()->pending_follow.kind
414 == TARGET_WAITKIND_VFORKED);
415 parent_pid = ptid_get_lwp (inferior_ptid);
416 if (parent_pid == 0)
417 parent_pid = ptid_get_pid (inferior_ptid);
418 child_pid
419 = ptid_get_pid (inferior_thread ()->pending_follow.value.related_pid);
420
421 if (has_vforked
422 && !non_stop /* Non-stop always resumes both branches. */
423 && (!target_is_async_p () || sync_execution)
424 && !(follow_child || detach_fork || sched_multi))
425 {
426 /* The parent stays blocked inside the vfork syscall until the
427 child execs or exits. If we don't let the child run, then
428 the parent stays blocked. If we're telling the parent to run
429 in the foreground, the user will not be able to ctrl-c to get
430 back the terminal, effectively hanging the debug session. */
431 fprintf_filtered (gdb_stderr, _("\
432Can not resume the parent process over vfork in the foreground while\n\
433holding the child stopped. Try \"set detach-on-fork\" or \
434\"set schedule-multiple\".\n"));
435 /* FIXME output string > 80 columns. */
436 return 1;
437 }
438
439 if (!follow_child)
440 {
441 /* Detach new forked process? */
442 if (detach_fork)
443 {
444 struct cleanup *old_chain;
445
446 /* Before detaching from the child, remove all breakpoints
447 from it. If we forked, then this has already been taken
448 care of by infrun.c. If we vforked however, any
449 breakpoint inserted in the parent is visible in the
450 child, even those added while stopped in a vfork
451 catchpoint. This will remove the breakpoints from the
452 parent also, but they'll be reinserted below. */
453 if (has_vforked)
454 {
455 /* Keep breakpoints list in sync. */
456 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
457 }
458
459 if (info_verbose || debug_infrun)
460 {
461 target_terminal_ours ();
462 fprintf_filtered (gdb_stdlog,
463 "Detaching after fork from "
464 "child process %d.\n",
465 child_pid);
466 }
467 }
468 else
469 {
470 struct inferior *parent_inf, *child_inf;
471 struct cleanup *old_chain;
472
473 /* Add process to GDB's tables. */
474 child_inf = add_inferior (child_pid);
475
476 parent_inf = current_inferior ();
477 child_inf->attach_flag = parent_inf->attach_flag;
478 copy_terminal_info (child_inf, parent_inf);
479 child_inf->gdbarch = parent_inf->gdbarch;
480 copy_inferior_target_desc_info (child_inf, parent_inf);
481
482 old_chain = save_inferior_ptid ();
483 save_current_program_space ();
484
485 inferior_ptid = ptid_build (child_pid, child_pid, 0);
486 add_thread (inferior_ptid);
487 child_inf->symfile_flags = SYMFILE_NO_READ;
488
489 /* If this is a vfork child, then the address-space is
490 shared with the parent. */
491 if (has_vforked)
492 {
493 child_inf->pspace = parent_inf->pspace;
494 child_inf->aspace = parent_inf->aspace;
495
496 /* The parent will be frozen until the child is done
497 with the shared region. Keep track of the
498 parent. */
499 child_inf->vfork_parent = parent_inf;
500 child_inf->pending_detach = 0;
501 parent_inf->vfork_child = child_inf;
502 parent_inf->pending_detach = 0;
503 }
504 else
505 {
506 child_inf->aspace = new_address_space ();
507 child_inf->pspace = add_program_space (child_inf->aspace);
508 child_inf->removable = 1;
509 set_current_program_space (child_inf->pspace);
510 clone_program_space (child_inf->pspace, parent_inf->pspace);
511
512 /* Let the shared library layer (e.g., solib-svr4) learn
513 about this new process, relocate the cloned exec, pull
514 in shared libraries, and install the solib event
515 breakpoint. If a "cloned-VM" event was propagated
516 better throughout the core, this wouldn't be
517 required. */
518 solib_create_inferior_hook (0);
519 }
520
521 do_cleanups (old_chain);
522 }
523
524 if (has_vforked)
525 {
526 struct inferior *parent_inf;
527
528 parent_inf = current_inferior ();
529
530 /* If we detached from the child, then we have to be careful
531 to not insert breakpoints in the parent until the child
532 is done with the shared memory region. However, if we're
533 staying attached to the child, then we can and should
534 insert breakpoints, so that we can debug it. A
535 subsequent child exec or exit is enough to know when does
536 the child stops using the parent's address space. */
537 parent_inf->waiting_for_vfork_done = detach_fork;
538 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
539 }
540 }
541 else
542 {
543 /* Follow the child. */
544 struct inferior *parent_inf, *child_inf;
545 struct program_space *parent_pspace;
546
547 if (info_verbose || debug_infrun)
548 {
549 target_terminal_ours ();
550 if (has_vforked)
551 fprintf_filtered (gdb_stdlog,
552 _("Attaching after process %d "
553 "vfork to child process %d.\n"),
554 parent_pid, child_pid);
555 else
556 fprintf_filtered (gdb_stdlog,
557 _("Attaching after process %d "
558 "fork to child process %d.\n"),
559 parent_pid, child_pid);
560 }
561
562 /* Add the new inferior first, so that the target_detach below
563 doesn't unpush the target. */
564
565 child_inf = add_inferior (child_pid);
566
567 parent_inf = current_inferior ();
568 child_inf->attach_flag = parent_inf->attach_flag;
569 copy_terminal_info (child_inf, parent_inf);
570 child_inf->gdbarch = parent_inf->gdbarch;
571 copy_inferior_target_desc_info (child_inf, parent_inf);
572
573 parent_pspace = parent_inf->pspace;
574
575 /* If we're vforking, we want to hold on to the parent until the
576 child exits or execs. At child exec or exit time we can
577 remove the old breakpoints from the parent and detach or
578 resume debugging it. Otherwise, detach the parent now; we'll
579 want to reuse it's program/address spaces, but we can't set
580 them to the child before removing breakpoints from the
581 parent, otherwise, the breakpoints module could decide to
582 remove breakpoints from the wrong process (since they'd be
583 assigned to the same address space). */
584
585 if (has_vforked)
586 {
587 gdb_assert (child_inf->vfork_parent == NULL);
588 gdb_assert (parent_inf->vfork_child == NULL);
589 child_inf->vfork_parent = parent_inf;
590 child_inf->pending_detach = 0;
591 parent_inf->vfork_child = child_inf;
592 parent_inf->pending_detach = detach_fork;
593 parent_inf->waiting_for_vfork_done = 0;
594 }
595 else if (detach_fork)
596 target_detach (NULL, 0);
597
598 /* Note that the detach above makes PARENT_INF dangling. */
599
600 /* Add the child thread to the appropriate lists, and switch to
601 this new thread, before cloning the program space, and
602 informing the solib layer about this new process. */
603
604 inferior_ptid = ptid_build (child_pid, child_pid, 0);
605 add_thread (inferior_ptid);
606
607 /* If this is a vfork child, then the address-space is shared
608 with the parent. If we detached from the parent, then we can
609 reuse the parent's program/address spaces. */
610 if (has_vforked || detach_fork)
611 {
612 child_inf->pspace = parent_pspace;
613 child_inf->aspace = child_inf->pspace->aspace;
614 }
615 else
616 {
617 child_inf->aspace = new_address_space ();
618 child_inf->pspace = add_program_space (child_inf->aspace);
619 child_inf->removable = 1;
620 child_inf->symfile_flags = SYMFILE_NO_READ;
621 set_current_program_space (child_inf->pspace);
622 clone_program_space (child_inf->pspace, parent_pspace);
623
624 /* Let the shared library layer (e.g., solib-svr4) learn
625 about this new process, relocate the cloned exec, pull in
626 shared libraries, and install the solib event breakpoint.
627 If a "cloned-VM" event was propagated better throughout
628 the core, this wouldn't be required. */
629 solib_create_inferior_hook (0);
630 }
631 }
632
633 return target_follow_fork (follow_child, detach_fork);
634}
635
e58b0e63
PA
636/* Tell the target to follow the fork we're stopped at. Returns true
637 if the inferior should be resumed; false, if the target for some
638 reason decided it's best not to resume. */
639
6604731b 640static int
4ef3f3be 641follow_fork (void)
c906108c 642{
ea1dd7bc 643 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
644 int should_resume = 1;
645 struct thread_info *tp;
646
647 /* Copy user stepping state to the new inferior thread. FIXME: the
648 followed fork child thread should have a copy of most of the
4e3990f4
DE
649 parent thread structure's run control related fields, not just these.
650 Initialized to avoid "may be used uninitialized" warnings from gcc. */
651 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 652 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
653 CORE_ADDR step_range_start = 0;
654 CORE_ADDR step_range_end = 0;
655 struct frame_id step_frame_id = { 0 };
17b2616c 656 struct interp *command_interp = NULL;
e58b0e63
PA
657
658 if (!non_stop)
659 {
660 ptid_t wait_ptid;
661 struct target_waitstatus wait_status;
662
663 /* Get the last target status returned by target_wait(). */
664 get_last_target_status (&wait_ptid, &wait_status);
665
666 /* If not stopped at a fork event, then there's nothing else to
667 do. */
668 if (wait_status.kind != TARGET_WAITKIND_FORKED
669 && wait_status.kind != TARGET_WAITKIND_VFORKED)
670 return 1;
671
672 /* Check if we switched over from WAIT_PTID, since the event was
673 reported. */
674 if (!ptid_equal (wait_ptid, minus_one_ptid)
675 && !ptid_equal (inferior_ptid, wait_ptid))
676 {
677 /* We did. Switch back to WAIT_PTID thread, to tell the
678 target to follow it (in either direction). We'll
679 afterwards refuse to resume, and inform the user what
680 happened. */
681 switch_to_thread (wait_ptid);
682 should_resume = 0;
683 }
684 }
685
686 tp = inferior_thread ();
687
688 /* If there were any forks/vforks that were caught and are now to be
689 followed, then do so now. */
690 switch (tp->pending_follow.kind)
691 {
692 case TARGET_WAITKIND_FORKED:
693 case TARGET_WAITKIND_VFORKED:
694 {
695 ptid_t parent, child;
696
697 /* If the user did a next/step, etc, over a fork call,
698 preserve the stepping state in the fork child. */
699 if (follow_child && should_resume)
700 {
8358c15c
JK
701 step_resume_breakpoint = clone_momentary_breakpoint
702 (tp->control.step_resume_breakpoint);
16c381f0
JK
703 step_range_start = tp->control.step_range_start;
704 step_range_end = tp->control.step_range_end;
705 step_frame_id = tp->control.step_frame_id;
186c406b
TT
706 exception_resume_breakpoint
707 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
17b2616c 708 command_interp = tp->control.command_interp;
e58b0e63
PA
709
710 /* For now, delete the parent's sr breakpoint, otherwise,
711 parent/child sr breakpoints are considered duplicates,
712 and the child version will not be installed. Remove
713 this when the breakpoints module becomes aware of
714 inferiors and address spaces. */
715 delete_step_resume_breakpoint (tp);
16c381f0
JK
716 tp->control.step_range_start = 0;
717 tp->control.step_range_end = 0;
718 tp->control.step_frame_id = null_frame_id;
186c406b 719 delete_exception_resume_breakpoint (tp);
17b2616c 720 tp->control.command_interp = NULL;
e58b0e63
PA
721 }
722
723 parent = inferior_ptid;
724 child = tp->pending_follow.value.related_pid;
725
d83ad864
DB
726 /* Set up inferior(s) as specified by the caller, and tell the
727 target to do whatever is necessary to follow either parent
728 or child. */
729 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
730 {
731 /* Target refused to follow, or there's some other reason
732 we shouldn't resume. */
733 should_resume = 0;
734 }
735 else
736 {
737 /* This pending follow fork event is now handled, one way
738 or another. The previous selected thread may be gone
739 from the lists by now, but if it is still around, need
740 to clear the pending follow request. */
e09875d4 741 tp = find_thread_ptid (parent);
e58b0e63
PA
742 if (tp)
743 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
744
745 /* This makes sure we don't try to apply the "Switched
746 over from WAIT_PID" logic above. */
747 nullify_last_target_wait_ptid ();
748
1777feb0 749 /* If we followed the child, switch to it... */
e58b0e63
PA
750 if (follow_child)
751 {
752 switch_to_thread (child);
753
754 /* ... and preserve the stepping state, in case the
755 user was stepping over the fork call. */
756 if (should_resume)
757 {
758 tp = inferior_thread ();
8358c15c
JK
759 tp->control.step_resume_breakpoint
760 = step_resume_breakpoint;
16c381f0
JK
761 tp->control.step_range_start = step_range_start;
762 tp->control.step_range_end = step_range_end;
763 tp->control.step_frame_id = step_frame_id;
186c406b
TT
764 tp->control.exception_resume_breakpoint
765 = exception_resume_breakpoint;
17b2616c 766 tp->control.command_interp = command_interp;
e58b0e63
PA
767 }
768 else
769 {
770 /* If we get here, it was because we're trying to
771 resume from a fork catchpoint, but, the user
772 has switched threads away from the thread that
773 forked. In that case, the resume command
774 issued is most likely not applicable to the
775 child, so just warn, and refuse to resume. */
3e43a32a
MS
776 warning (_("Not resuming: switched threads "
777 "before following fork child.\n"));
e58b0e63
PA
778 }
779
780 /* Reset breakpoints in the child as appropriate. */
781 follow_inferior_reset_breakpoints ();
782 }
783 else
784 switch_to_thread (parent);
785 }
786 }
787 break;
788 case TARGET_WAITKIND_SPURIOUS:
789 /* Nothing to follow. */
790 break;
791 default:
792 internal_error (__FILE__, __LINE__,
793 "Unexpected pending_follow.kind %d\n",
794 tp->pending_follow.kind);
795 break;
796 }
c906108c 797
e58b0e63 798 return should_resume;
c906108c
SS
799}
800
d83ad864 801static void
6604731b 802follow_inferior_reset_breakpoints (void)
c906108c 803{
4e1c45ea
PA
804 struct thread_info *tp = inferior_thread ();
805
6604731b
DJ
806 /* Was there a step_resume breakpoint? (There was if the user
807 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
808 thread number. Cloned step_resume breakpoints are disabled on
809 creation, so enable it here now that it is associated with the
810 correct thread.
6604731b
DJ
811
812 step_resumes are a form of bp that are made to be per-thread.
813 Since we created the step_resume bp when the parent process
814 was being debugged, and now are switching to the child process,
815 from the breakpoint package's viewpoint, that's a switch of
816 "threads". We must update the bp's notion of which thread
817 it is for, or it'll be ignored when it triggers. */
818
8358c15c 819 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
820 {
821 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
822 tp->control.step_resume_breakpoint->loc->enabled = 1;
823 }
6604731b 824
a1aa2221 825 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 826 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
827 {
828 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
829 tp->control.exception_resume_breakpoint->loc->enabled = 1;
830 }
186c406b 831
6604731b
DJ
832 /* Reinsert all breakpoints in the child. The user may have set
833 breakpoints after catching the fork, in which case those
834 were never set in the child, but only in the parent. This makes
835 sure the inserted breakpoints match the breakpoint list. */
836
837 breakpoint_re_set ();
838 insert_breakpoints ();
c906108c 839}
c906108c 840
6c95b8df
PA
841/* The child has exited or execed: resume threads of the parent the
842 user wanted to be executing. */
843
844static int
845proceed_after_vfork_done (struct thread_info *thread,
846 void *arg)
847{
848 int pid = * (int *) arg;
849
850 if (ptid_get_pid (thread->ptid) == pid
851 && is_running (thread->ptid)
852 && !is_executing (thread->ptid)
853 && !thread->stop_requested
a493e3e2 854 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
855 {
856 if (debug_infrun)
857 fprintf_unfiltered (gdb_stdlog,
858 "infrun: resuming vfork parent thread %s\n",
859 target_pid_to_str (thread->ptid));
860
861 switch_to_thread (thread->ptid);
70509625 862 clear_proceed_status (0);
a493e3e2 863 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
6c95b8df
PA
864 }
865
866 return 0;
867}
868
869/* Called whenever we notice an exec or exit event, to handle
870 detaching or resuming a vfork parent. */
871
872static void
873handle_vfork_child_exec_or_exit (int exec)
874{
875 struct inferior *inf = current_inferior ();
876
877 if (inf->vfork_parent)
878 {
879 int resume_parent = -1;
880
881 /* This exec or exit marks the end of the shared memory region
882 between the parent and the child. If the user wanted to
883 detach from the parent, now is the time. */
884
885 if (inf->vfork_parent->pending_detach)
886 {
887 struct thread_info *tp;
888 struct cleanup *old_chain;
889 struct program_space *pspace;
890 struct address_space *aspace;
891
1777feb0 892 /* follow-fork child, detach-on-fork on. */
6c95b8df 893
68c9da30
PA
894 inf->vfork_parent->pending_detach = 0;
895
f50f4e56
PA
896 if (!exec)
897 {
898 /* If we're handling a child exit, then inferior_ptid
899 points at the inferior's pid, not to a thread. */
900 old_chain = save_inferior_ptid ();
901 save_current_program_space ();
902 save_current_inferior ();
903 }
904 else
905 old_chain = save_current_space_and_thread ();
6c95b8df
PA
906
907 /* We're letting loose of the parent. */
908 tp = any_live_thread_of_process (inf->vfork_parent->pid);
909 switch_to_thread (tp->ptid);
910
911 /* We're about to detach from the parent, which implicitly
912 removes breakpoints from its address space. There's a
913 catch here: we want to reuse the spaces for the child,
914 but, parent/child are still sharing the pspace at this
915 point, although the exec in reality makes the kernel give
916 the child a fresh set of new pages. The problem here is
917 that the breakpoints module being unaware of this, would
918 likely chose the child process to write to the parent
919 address space. Swapping the child temporarily away from
920 the spaces has the desired effect. Yes, this is "sort
921 of" a hack. */
922
923 pspace = inf->pspace;
924 aspace = inf->aspace;
925 inf->aspace = NULL;
926 inf->pspace = NULL;
927
928 if (debug_infrun || info_verbose)
929 {
930 target_terminal_ours ();
931
932 if (exec)
933 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
934 "Detaching vfork parent process "
935 "%d after child exec.\n",
6c95b8df
PA
936 inf->vfork_parent->pid);
937 else
938 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
939 "Detaching vfork parent process "
940 "%d after child exit.\n",
6c95b8df
PA
941 inf->vfork_parent->pid);
942 }
943
944 target_detach (NULL, 0);
945
946 /* Put it back. */
947 inf->pspace = pspace;
948 inf->aspace = aspace;
949
950 do_cleanups (old_chain);
951 }
952 else if (exec)
953 {
954 /* We're staying attached to the parent, so, really give the
955 child a new address space. */
956 inf->pspace = add_program_space (maybe_new_address_space ());
957 inf->aspace = inf->pspace->aspace;
958 inf->removable = 1;
959 set_current_program_space (inf->pspace);
960
961 resume_parent = inf->vfork_parent->pid;
962
963 /* Break the bonds. */
964 inf->vfork_parent->vfork_child = NULL;
965 }
966 else
967 {
968 struct cleanup *old_chain;
969 struct program_space *pspace;
970
971 /* If this is a vfork child exiting, then the pspace and
972 aspaces were shared with the parent. Since we're
973 reporting the process exit, we'll be mourning all that is
974 found in the address space, and switching to null_ptid,
975 preparing to start a new inferior. But, since we don't
976 want to clobber the parent's address/program spaces, we
977 go ahead and create a new one for this exiting
978 inferior. */
979
980 /* Switch to null_ptid, so that clone_program_space doesn't want
981 to read the selected frame of a dead process. */
982 old_chain = save_inferior_ptid ();
983 inferior_ptid = null_ptid;
984
985 /* This inferior is dead, so avoid giving the breakpoints
986 module the option to write through to it (cloning a
987 program space resets breakpoints). */
988 inf->aspace = NULL;
989 inf->pspace = NULL;
990 pspace = add_program_space (maybe_new_address_space ());
991 set_current_program_space (pspace);
992 inf->removable = 1;
7dcd53a0 993 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
994 clone_program_space (pspace, inf->vfork_parent->pspace);
995 inf->pspace = pspace;
996 inf->aspace = pspace->aspace;
997
998 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 999 inferior. */
6c95b8df
PA
1000 do_cleanups (old_chain);
1001
1002 resume_parent = inf->vfork_parent->pid;
1003 /* Break the bonds. */
1004 inf->vfork_parent->vfork_child = NULL;
1005 }
1006
1007 inf->vfork_parent = NULL;
1008
1009 gdb_assert (current_program_space == inf->pspace);
1010
1011 if (non_stop && resume_parent != -1)
1012 {
1013 /* If the user wanted the parent to be running, let it go
1014 free now. */
1015 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1016
1017 if (debug_infrun)
3e43a32a
MS
1018 fprintf_unfiltered (gdb_stdlog,
1019 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1020 resume_parent);
1021
1022 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1023
1024 do_cleanups (old_chain);
1025 }
1026 }
1027}
1028
eb6c553b 1029/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1030
1031static const char follow_exec_mode_new[] = "new";
1032static const char follow_exec_mode_same[] = "same";
40478521 1033static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1034{
1035 follow_exec_mode_new,
1036 follow_exec_mode_same,
1037 NULL,
1038};
1039
1040static const char *follow_exec_mode_string = follow_exec_mode_same;
1041static void
1042show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1043 struct cmd_list_element *c, const char *value)
1044{
1045 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1046}
1047
1777feb0 1048/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 1049
c906108c 1050static void
3a3e9ee3 1051follow_exec (ptid_t pid, char *execd_pathname)
c906108c 1052{
4e1c45ea 1053 struct thread_info *th = inferior_thread ();
6c95b8df 1054 struct inferior *inf = current_inferior ();
7a292a7a 1055
c906108c
SS
1056 /* This is an exec event that we actually wish to pay attention to.
1057 Refresh our symbol table to the newly exec'd program, remove any
1058 momentary bp's, etc.
1059
1060 If there are breakpoints, they aren't really inserted now,
1061 since the exec() transformed our inferior into a fresh set
1062 of instructions.
1063
1064 We want to preserve symbolic breakpoints on the list, since
1065 we have hopes that they can be reset after the new a.out's
1066 symbol table is read.
1067
1068 However, any "raw" breakpoints must be removed from the list
1069 (e.g., the solib bp's), since their address is probably invalid
1070 now.
1071
1072 And, we DON'T want to call delete_breakpoints() here, since
1073 that may write the bp's "shadow contents" (the instruction
1074 value that was overwritten witha TRAP instruction). Since
1777feb0 1075 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1076
1077 mark_breakpoints_out ();
1078
c906108c
SS
1079 update_breakpoints_after_exec ();
1080
1081 /* If there was one, it's gone now. We cannot truly step-to-next
1777feb0 1082 statement through an exec(). */
8358c15c 1083 th->control.step_resume_breakpoint = NULL;
186c406b 1084 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1085 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1086 th->control.step_range_start = 0;
1087 th->control.step_range_end = 0;
c906108c 1088
a75724bc
PA
1089 /* The target reports the exec event to the main thread, even if
1090 some other thread does the exec, and even if the main thread was
1091 already stopped --- if debugging in non-stop mode, it's possible
1092 the user had the main thread held stopped in the previous image
1093 --- release it now. This is the same behavior as step-over-exec
1094 with scheduler-locking on in all-stop mode. */
1095 th->stop_requested = 0;
1096
1777feb0 1097 /* What is this a.out's name? */
6c95b8df
PA
1098 printf_unfiltered (_("%s is executing new program: %s\n"),
1099 target_pid_to_str (inferior_ptid),
1100 execd_pathname);
c906108c
SS
1101
1102 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1103 inferior has essentially been killed & reborn. */
7a292a7a 1104
c906108c 1105 gdb_flush (gdb_stdout);
6ca15a4b
PA
1106
1107 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
1108
1109 if (gdb_sysroot && *gdb_sysroot)
1110 {
1111 char *name = alloca (strlen (gdb_sysroot)
1112 + strlen (execd_pathname)
1113 + 1);
abbb1732 1114
e85a822c
DJ
1115 strcpy (name, gdb_sysroot);
1116 strcat (name, execd_pathname);
1117 execd_pathname = name;
1118 }
c906108c 1119
cce9b6bf
PA
1120 /* Reset the shared library package. This ensures that we get a
1121 shlib event when the child reaches "_start", at which point the
1122 dld will have had a chance to initialize the child. */
1123 /* Also, loading a symbol file below may trigger symbol lookups, and
1124 we don't want those to be satisfied by the libraries of the
1125 previous incarnation of this process. */
1126 no_shared_libraries (NULL, 0);
1127
6c95b8df
PA
1128 if (follow_exec_mode_string == follow_exec_mode_new)
1129 {
1130 struct program_space *pspace;
6c95b8df
PA
1131
1132 /* The user wants to keep the old inferior and program spaces
1133 around. Create a new fresh one, and switch to it. */
1134
1135 inf = add_inferior (current_inferior ()->pid);
1136 pspace = add_program_space (maybe_new_address_space ());
1137 inf->pspace = pspace;
1138 inf->aspace = pspace->aspace;
1139
1140 exit_inferior_num_silent (current_inferior ()->num);
1141
1142 set_current_inferior (inf);
1143 set_current_program_space (pspace);
1144 }
9107fc8d
PA
1145 else
1146 {
1147 /* The old description may no longer be fit for the new image.
1148 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1149 old description; we'll read a new one below. No need to do
1150 this on "follow-exec-mode new", as the old inferior stays
1151 around (its description is later cleared/refetched on
1152 restart). */
1153 target_clear_description ();
1154 }
6c95b8df
PA
1155
1156 gdb_assert (current_program_space == inf->pspace);
1157
1777feb0 1158 /* That a.out is now the one to use. */
6c95b8df
PA
1159 exec_file_attach (execd_pathname, 0);
1160
c1e56572
JK
1161 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1162 (Position Independent Executable) main symbol file will get applied by
1163 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1164 the breakpoints with the zero displacement. */
1165
7dcd53a0
TT
1166 symbol_file_add (execd_pathname,
1167 (inf->symfile_flags
1168 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
1169 NULL, 0);
1170
7dcd53a0
TT
1171 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1172 set_initial_language ();
c906108c 1173
9107fc8d
PA
1174 /* If the target can specify a description, read it. Must do this
1175 after flipping to the new executable (because the target supplied
1176 description must be compatible with the executable's
1177 architecture, and the old executable may e.g., be 32-bit, while
1178 the new one 64-bit), and before anything involving memory or
1179 registers. */
1180 target_find_description ();
1181
268a4a75 1182 solib_create_inferior_hook (0);
c906108c 1183
4efc6507
DE
1184 jit_inferior_created_hook ();
1185
c1e56572
JK
1186 breakpoint_re_set ();
1187
c906108c
SS
1188 /* Reinsert all breakpoints. (Those which were symbolic have
1189 been reset to the proper address in the new a.out, thanks
1777feb0 1190 to symbol_file_command...). */
c906108c
SS
1191 insert_breakpoints ();
1192
1193 /* The next resume of this inferior should bring it to the shlib
1194 startup breakpoints. (If the user had also set bp's on
1195 "main" from the old (parent) process, then they'll auto-
1777feb0 1196 matically get reset there in the new process.). */
c906108c
SS
1197}
1198
963f9c80 1199/* Info about an instruction that is being stepped over. */
31e77af2
PA
1200
1201struct step_over_info
1202{
963f9c80
PA
1203 /* If we're stepping past a breakpoint, this is the address space
1204 and address of the instruction the breakpoint is set at. We'll
1205 skip inserting all breakpoints here. Valid iff ASPACE is
1206 non-NULL. */
31e77af2 1207 struct address_space *aspace;
31e77af2 1208 CORE_ADDR address;
963f9c80
PA
1209
1210 /* The instruction being stepped over triggers a nonsteppable
1211 watchpoint. If true, we'll skip inserting watchpoints. */
1212 int nonsteppable_watchpoint_p;
31e77af2
PA
1213};
1214
1215/* The step-over info of the location that is being stepped over.
1216
1217 Note that with async/breakpoint always-inserted mode, a user might
1218 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1219 being stepped over. As setting a new breakpoint inserts all
1220 breakpoints, we need to make sure the breakpoint being stepped over
1221 isn't inserted then. We do that by only clearing the step-over
1222 info when the step-over is actually finished (or aborted).
1223
1224 Presently GDB can only step over one breakpoint at any given time.
1225 Given threads that can't run code in the same address space as the
1226 breakpoint's can't really miss the breakpoint, GDB could be taught
1227 to step-over at most one breakpoint per address space (so this info
1228 could move to the address space object if/when GDB is extended).
1229 The set of breakpoints being stepped over will normally be much
1230 smaller than the set of all breakpoints, so a flag in the
1231 breakpoint location structure would be wasteful. A separate list
1232 also saves complexity and run-time, as otherwise we'd have to go
1233 through all breakpoint locations clearing their flag whenever we
1234 start a new sequence. Similar considerations weigh against storing
1235 this info in the thread object. Plus, not all step overs actually
1236 have breakpoint locations -- e.g., stepping past a single-step
1237 breakpoint, or stepping to complete a non-continuable
1238 watchpoint. */
1239static struct step_over_info step_over_info;
1240
1241/* Record the address of the breakpoint/instruction we're currently
1242 stepping over. */
1243
1244static void
963f9c80
PA
1245set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1246 int nonsteppable_watchpoint_p)
31e77af2
PA
1247{
1248 step_over_info.aspace = aspace;
1249 step_over_info.address = address;
963f9c80 1250 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
31e77af2
PA
1251}
1252
1253/* Called when we're not longer stepping over a breakpoint / an
1254 instruction, so all breakpoints are free to be (re)inserted. */
1255
1256static void
1257clear_step_over_info (void)
1258{
1259 step_over_info.aspace = NULL;
1260 step_over_info.address = 0;
963f9c80 1261 step_over_info.nonsteppable_watchpoint_p = 0;
31e77af2
PA
1262}
1263
7f89fd65 1264/* See infrun.h. */
31e77af2
PA
1265
1266int
1267stepping_past_instruction_at (struct address_space *aspace,
1268 CORE_ADDR address)
1269{
1270 return (step_over_info.aspace != NULL
1271 && breakpoint_address_match (aspace, address,
1272 step_over_info.aspace,
1273 step_over_info.address));
1274}
1275
963f9c80
PA
1276/* See infrun.h. */
1277
1278int
1279stepping_past_nonsteppable_watchpoint (void)
1280{
1281 return step_over_info.nonsteppable_watchpoint_p;
1282}
1283
6cc83d2a
PA
1284/* Returns true if step-over info is valid. */
1285
1286static int
1287step_over_info_valid_p (void)
1288{
963f9c80
PA
1289 return (step_over_info.aspace != NULL
1290 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1291}
1292
c906108c 1293\f
237fc4c9
PA
1294/* Displaced stepping. */
1295
1296/* In non-stop debugging mode, we must take special care to manage
1297 breakpoints properly; in particular, the traditional strategy for
1298 stepping a thread past a breakpoint it has hit is unsuitable.
1299 'Displaced stepping' is a tactic for stepping one thread past a
1300 breakpoint it has hit while ensuring that other threads running
1301 concurrently will hit the breakpoint as they should.
1302
1303 The traditional way to step a thread T off a breakpoint in a
1304 multi-threaded program in all-stop mode is as follows:
1305
1306 a0) Initially, all threads are stopped, and breakpoints are not
1307 inserted.
1308 a1) We single-step T, leaving breakpoints uninserted.
1309 a2) We insert breakpoints, and resume all threads.
1310
1311 In non-stop debugging, however, this strategy is unsuitable: we
1312 don't want to have to stop all threads in the system in order to
1313 continue or step T past a breakpoint. Instead, we use displaced
1314 stepping:
1315
1316 n0) Initially, T is stopped, other threads are running, and
1317 breakpoints are inserted.
1318 n1) We copy the instruction "under" the breakpoint to a separate
1319 location, outside the main code stream, making any adjustments
1320 to the instruction, register, and memory state as directed by
1321 T's architecture.
1322 n2) We single-step T over the instruction at its new location.
1323 n3) We adjust the resulting register and memory state as directed
1324 by T's architecture. This includes resetting T's PC to point
1325 back into the main instruction stream.
1326 n4) We resume T.
1327
1328 This approach depends on the following gdbarch methods:
1329
1330 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1331 indicate where to copy the instruction, and how much space must
1332 be reserved there. We use these in step n1.
1333
1334 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1335 address, and makes any necessary adjustments to the instruction,
1336 register contents, and memory. We use this in step n1.
1337
1338 - gdbarch_displaced_step_fixup adjusts registers and memory after
1339 we have successfuly single-stepped the instruction, to yield the
1340 same effect the instruction would have had if we had executed it
1341 at its original address. We use this in step n3.
1342
1343 - gdbarch_displaced_step_free_closure provides cleanup.
1344
1345 The gdbarch_displaced_step_copy_insn and
1346 gdbarch_displaced_step_fixup functions must be written so that
1347 copying an instruction with gdbarch_displaced_step_copy_insn,
1348 single-stepping across the copied instruction, and then applying
1349 gdbarch_displaced_insn_fixup should have the same effects on the
1350 thread's memory and registers as stepping the instruction in place
1351 would have. Exactly which responsibilities fall to the copy and
1352 which fall to the fixup is up to the author of those functions.
1353
1354 See the comments in gdbarch.sh for details.
1355
1356 Note that displaced stepping and software single-step cannot
1357 currently be used in combination, although with some care I think
1358 they could be made to. Software single-step works by placing
1359 breakpoints on all possible subsequent instructions; if the
1360 displaced instruction is a PC-relative jump, those breakpoints
1361 could fall in very strange places --- on pages that aren't
1362 executable, or at addresses that are not proper instruction
1363 boundaries. (We do generally let other threads run while we wait
1364 to hit the software single-step breakpoint, and they might
1365 encounter such a corrupted instruction.) One way to work around
1366 this would be to have gdbarch_displaced_step_copy_insn fully
1367 simulate the effect of PC-relative instructions (and return NULL)
1368 on architectures that use software single-stepping.
1369
1370 In non-stop mode, we can have independent and simultaneous step
1371 requests, so more than one thread may need to simultaneously step
1372 over a breakpoint. The current implementation assumes there is
1373 only one scratch space per process. In this case, we have to
1374 serialize access to the scratch space. If thread A wants to step
1375 over a breakpoint, but we are currently waiting for some other
1376 thread to complete a displaced step, we leave thread A stopped and
1377 place it in the displaced_step_request_queue. Whenever a displaced
1378 step finishes, we pick the next thread in the queue and start a new
1379 displaced step operation on it. See displaced_step_prepare and
1380 displaced_step_fixup for details. */
1381
237fc4c9
PA
1382struct displaced_step_request
1383{
1384 ptid_t ptid;
1385 struct displaced_step_request *next;
1386};
1387
fc1cf338
PA
1388/* Per-inferior displaced stepping state. */
1389struct displaced_step_inferior_state
1390{
1391 /* Pointer to next in linked list. */
1392 struct displaced_step_inferior_state *next;
1393
1394 /* The process this displaced step state refers to. */
1395 int pid;
1396
1397 /* A queue of pending displaced stepping requests. One entry per
1398 thread that needs to do a displaced step. */
1399 struct displaced_step_request *step_request_queue;
1400
1401 /* If this is not null_ptid, this is the thread carrying out a
1402 displaced single-step in process PID. This thread's state will
1403 require fixing up once it has completed its step. */
1404 ptid_t step_ptid;
1405
1406 /* The architecture the thread had when we stepped it. */
1407 struct gdbarch *step_gdbarch;
1408
1409 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1410 for post-step cleanup. */
1411 struct displaced_step_closure *step_closure;
1412
1413 /* The address of the original instruction, and the copy we
1414 made. */
1415 CORE_ADDR step_original, step_copy;
1416
1417 /* Saved contents of copy area. */
1418 gdb_byte *step_saved_copy;
1419};
1420
1421/* The list of states of processes involved in displaced stepping
1422 presently. */
1423static struct displaced_step_inferior_state *displaced_step_inferior_states;
1424
1425/* Get the displaced stepping state of process PID. */
1426
1427static struct displaced_step_inferior_state *
1428get_displaced_stepping_state (int pid)
1429{
1430 struct displaced_step_inferior_state *state;
1431
1432 for (state = displaced_step_inferior_states;
1433 state != NULL;
1434 state = state->next)
1435 if (state->pid == pid)
1436 return state;
1437
1438 return NULL;
1439}
1440
1441/* Add a new displaced stepping state for process PID to the displaced
1442 stepping state list, or return a pointer to an already existing
1443 entry, if it already exists. Never returns NULL. */
1444
1445static struct displaced_step_inferior_state *
1446add_displaced_stepping_state (int pid)
1447{
1448 struct displaced_step_inferior_state *state;
1449
1450 for (state = displaced_step_inferior_states;
1451 state != NULL;
1452 state = state->next)
1453 if (state->pid == pid)
1454 return state;
237fc4c9 1455
fc1cf338
PA
1456 state = xcalloc (1, sizeof (*state));
1457 state->pid = pid;
1458 state->next = displaced_step_inferior_states;
1459 displaced_step_inferior_states = state;
237fc4c9 1460
fc1cf338
PA
1461 return state;
1462}
1463
a42244db
YQ
1464/* If inferior is in displaced stepping, and ADDR equals to starting address
1465 of copy area, return corresponding displaced_step_closure. Otherwise,
1466 return NULL. */
1467
1468struct displaced_step_closure*
1469get_displaced_step_closure_by_addr (CORE_ADDR addr)
1470{
1471 struct displaced_step_inferior_state *displaced
1472 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1473
1474 /* If checking the mode of displaced instruction in copy area. */
1475 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1476 && (displaced->step_copy == addr))
1477 return displaced->step_closure;
1478
1479 return NULL;
1480}
1481
fc1cf338 1482/* Remove the displaced stepping state of process PID. */
237fc4c9 1483
fc1cf338
PA
1484static void
1485remove_displaced_stepping_state (int pid)
1486{
1487 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1488
fc1cf338
PA
1489 gdb_assert (pid != 0);
1490
1491 it = displaced_step_inferior_states;
1492 prev_next_p = &displaced_step_inferior_states;
1493 while (it)
1494 {
1495 if (it->pid == pid)
1496 {
1497 *prev_next_p = it->next;
1498 xfree (it);
1499 return;
1500 }
1501
1502 prev_next_p = &it->next;
1503 it = *prev_next_p;
1504 }
1505}
1506
1507static void
1508infrun_inferior_exit (struct inferior *inf)
1509{
1510 remove_displaced_stepping_state (inf->pid);
1511}
237fc4c9 1512
fff08868
HZ
1513/* If ON, and the architecture supports it, GDB will use displaced
1514 stepping to step over breakpoints. If OFF, or if the architecture
1515 doesn't support it, GDB will instead use the traditional
1516 hold-and-step approach. If AUTO (which is the default), GDB will
1517 decide which technique to use to step over breakpoints depending on
1518 which of all-stop or non-stop mode is active --- displaced stepping
1519 in non-stop mode; hold-and-step in all-stop mode. */
1520
72d0e2c5 1521static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1522
237fc4c9
PA
1523static void
1524show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1525 struct cmd_list_element *c,
1526 const char *value)
1527{
72d0e2c5 1528 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1529 fprintf_filtered (file,
1530 _("Debugger's willingness to use displaced stepping "
1531 "to step over breakpoints is %s (currently %s).\n"),
fff08868
HZ
1532 value, non_stop ? "on" : "off");
1533 else
3e43a32a
MS
1534 fprintf_filtered (file,
1535 _("Debugger's willingness to use displaced stepping "
1536 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1537}
1538
fff08868
HZ
1539/* Return non-zero if displaced stepping can/should be used to step
1540 over breakpoints. */
1541
237fc4c9
PA
1542static int
1543use_displaced_stepping (struct gdbarch *gdbarch)
1544{
72d0e2c5
YQ
1545 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1546 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1547 && gdbarch_displaced_step_copy_insn_p (gdbarch)
8213266a 1548 && find_record_target () == NULL);
237fc4c9
PA
1549}
1550
1551/* Clean out any stray displaced stepping state. */
1552static void
fc1cf338 1553displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1554{
1555 /* Indicate that there is no cleanup pending. */
fc1cf338 1556 displaced->step_ptid = null_ptid;
237fc4c9 1557
fc1cf338 1558 if (displaced->step_closure)
237fc4c9 1559 {
fc1cf338
PA
1560 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1561 displaced->step_closure);
1562 displaced->step_closure = NULL;
237fc4c9
PA
1563 }
1564}
1565
1566static void
fc1cf338 1567displaced_step_clear_cleanup (void *arg)
237fc4c9 1568{
fc1cf338
PA
1569 struct displaced_step_inferior_state *state = arg;
1570
1571 displaced_step_clear (state);
237fc4c9
PA
1572}
1573
1574/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1575void
1576displaced_step_dump_bytes (struct ui_file *file,
1577 const gdb_byte *buf,
1578 size_t len)
1579{
1580 int i;
1581
1582 for (i = 0; i < len; i++)
1583 fprintf_unfiltered (file, "%02x ", buf[i]);
1584 fputs_unfiltered ("\n", file);
1585}
1586
1587/* Prepare to single-step, using displaced stepping.
1588
1589 Note that we cannot use displaced stepping when we have a signal to
1590 deliver. If we have a signal to deliver and an instruction to step
1591 over, then after the step, there will be no indication from the
1592 target whether the thread entered a signal handler or ignored the
1593 signal and stepped over the instruction successfully --- both cases
1594 result in a simple SIGTRAP. In the first case we mustn't do a
1595 fixup, and in the second case we must --- but we can't tell which.
1596 Comments in the code for 'random signals' in handle_inferior_event
1597 explain how we handle this case instead.
1598
1599 Returns 1 if preparing was successful -- this thread is going to be
1600 stepped now; or 0 if displaced stepping this thread got queued. */
1601static int
1602displaced_step_prepare (ptid_t ptid)
1603{
ad53cd71 1604 struct cleanup *old_cleanups, *ignore_cleanups;
c1e36e3e 1605 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1606 struct regcache *regcache = get_thread_regcache (ptid);
1607 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1608 CORE_ADDR original, copy;
1609 ULONGEST len;
1610 struct displaced_step_closure *closure;
fc1cf338 1611 struct displaced_step_inferior_state *displaced;
9e529e1d 1612 int status;
237fc4c9
PA
1613
1614 /* We should never reach this function if the architecture does not
1615 support displaced stepping. */
1616 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1617
c1e36e3e
PA
1618 /* Disable range stepping while executing in the scratch pad. We
1619 want a single-step even if executing the displaced instruction in
1620 the scratch buffer lands within the stepping range (e.g., a
1621 jump/branch). */
1622 tp->control.may_range_step = 0;
1623
fc1cf338
PA
1624 /* We have to displaced step one thread at a time, as we only have
1625 access to a single scratch space per inferior. */
237fc4c9 1626
fc1cf338
PA
1627 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1628
1629 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1630 {
1631 /* Already waiting for a displaced step to finish. Defer this
1632 request and place in queue. */
1633 struct displaced_step_request *req, *new_req;
1634
1635 if (debug_displaced)
1636 fprintf_unfiltered (gdb_stdlog,
1637 "displaced: defering step of %s\n",
1638 target_pid_to_str (ptid));
1639
1640 new_req = xmalloc (sizeof (*new_req));
1641 new_req->ptid = ptid;
1642 new_req->next = NULL;
1643
fc1cf338 1644 if (displaced->step_request_queue)
237fc4c9 1645 {
fc1cf338 1646 for (req = displaced->step_request_queue;
237fc4c9
PA
1647 req && req->next;
1648 req = req->next)
1649 ;
1650 req->next = new_req;
1651 }
1652 else
fc1cf338 1653 displaced->step_request_queue = new_req;
237fc4c9
PA
1654
1655 return 0;
1656 }
1657 else
1658 {
1659 if (debug_displaced)
1660 fprintf_unfiltered (gdb_stdlog,
1661 "displaced: stepping %s now\n",
1662 target_pid_to_str (ptid));
1663 }
1664
fc1cf338 1665 displaced_step_clear (displaced);
237fc4c9 1666
ad53cd71
PA
1667 old_cleanups = save_inferior_ptid ();
1668 inferior_ptid = ptid;
1669
515630c5 1670 original = regcache_read_pc (regcache);
237fc4c9
PA
1671
1672 copy = gdbarch_displaced_step_location (gdbarch);
1673 len = gdbarch_max_insn_length (gdbarch);
1674
1675 /* Save the original contents of the copy area. */
fc1cf338 1676 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1677 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1678 &displaced->step_saved_copy);
9e529e1d
JK
1679 status = target_read_memory (copy, displaced->step_saved_copy, len);
1680 if (status != 0)
1681 throw_error (MEMORY_ERROR,
1682 _("Error accessing memory address %s (%s) for "
1683 "displaced-stepping scratch space."),
1684 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1685 if (debug_displaced)
1686 {
5af949e3
UW
1687 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1688 paddress (gdbarch, copy));
fc1cf338
PA
1689 displaced_step_dump_bytes (gdb_stdlog,
1690 displaced->step_saved_copy,
1691 len);
237fc4c9
PA
1692 };
1693
1694 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1695 original, copy, regcache);
237fc4c9
PA
1696
1697 /* We don't support the fully-simulated case at present. */
1698 gdb_assert (closure);
1699
9f5a595d
UW
1700 /* Save the information we need to fix things up if the step
1701 succeeds. */
fc1cf338
PA
1702 displaced->step_ptid = ptid;
1703 displaced->step_gdbarch = gdbarch;
1704 displaced->step_closure = closure;
1705 displaced->step_original = original;
1706 displaced->step_copy = copy;
9f5a595d 1707
fc1cf338 1708 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1709
1710 /* Resume execution at the copy. */
515630c5 1711 regcache_write_pc (regcache, copy);
237fc4c9 1712
ad53cd71
PA
1713 discard_cleanups (ignore_cleanups);
1714
1715 do_cleanups (old_cleanups);
237fc4c9
PA
1716
1717 if (debug_displaced)
5af949e3
UW
1718 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1719 paddress (gdbarch, copy));
237fc4c9 1720
237fc4c9
PA
1721 return 1;
1722}
1723
237fc4c9 1724static void
3e43a32a
MS
1725write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1726 const gdb_byte *myaddr, int len)
237fc4c9
PA
1727{
1728 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1729
237fc4c9
PA
1730 inferior_ptid = ptid;
1731 write_memory (memaddr, myaddr, len);
1732 do_cleanups (ptid_cleanup);
1733}
1734
e2d96639
YQ
1735/* Restore the contents of the copy area for thread PTID. */
1736
1737static void
1738displaced_step_restore (struct displaced_step_inferior_state *displaced,
1739 ptid_t ptid)
1740{
1741 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1742
1743 write_memory_ptid (ptid, displaced->step_copy,
1744 displaced->step_saved_copy, len);
1745 if (debug_displaced)
1746 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1747 target_pid_to_str (ptid),
1748 paddress (displaced->step_gdbarch,
1749 displaced->step_copy));
1750}
1751
237fc4c9 1752static void
2ea28649 1753displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1754{
1755 struct cleanup *old_cleanups;
fc1cf338
PA
1756 struct displaced_step_inferior_state *displaced
1757 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1758
1759 /* Was any thread of this process doing a displaced step? */
1760 if (displaced == NULL)
1761 return;
237fc4c9
PA
1762
1763 /* Was this event for the pid we displaced? */
fc1cf338
PA
1764 if (ptid_equal (displaced->step_ptid, null_ptid)
1765 || ! ptid_equal (displaced->step_ptid, event_ptid))
237fc4c9
PA
1766 return;
1767
fc1cf338 1768 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1769
e2d96639 1770 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9
PA
1771
1772 /* Did the instruction complete successfully? */
a493e3e2 1773 if (signal == GDB_SIGNAL_TRAP)
237fc4c9
PA
1774 {
1775 /* Fix up the resulting state. */
fc1cf338
PA
1776 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1777 displaced->step_closure,
1778 displaced->step_original,
1779 displaced->step_copy,
1780 get_thread_regcache (displaced->step_ptid));
237fc4c9
PA
1781 }
1782 else
1783 {
1784 /* Since the instruction didn't complete, all we can do is
1785 relocate the PC. */
515630c5
UW
1786 struct regcache *regcache = get_thread_regcache (event_ptid);
1787 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1788
fc1cf338 1789 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1790 regcache_write_pc (regcache, pc);
237fc4c9
PA
1791 }
1792
1793 do_cleanups (old_cleanups);
1794
fc1cf338 1795 displaced->step_ptid = null_ptid;
1c5cfe86 1796
237fc4c9 1797 /* Are there any pending displaced stepping requests? If so, run
fc1cf338
PA
1798 one now. Leave the state object around, since we're likely to
1799 need it again soon. */
1800 while (displaced->step_request_queue)
237fc4c9
PA
1801 {
1802 struct displaced_step_request *head;
1803 ptid_t ptid;
5af949e3 1804 struct regcache *regcache;
929dfd4f 1805 struct gdbarch *gdbarch;
1c5cfe86 1806 CORE_ADDR actual_pc;
6c95b8df 1807 struct address_space *aspace;
237fc4c9 1808
fc1cf338 1809 head = displaced->step_request_queue;
237fc4c9 1810 ptid = head->ptid;
fc1cf338 1811 displaced->step_request_queue = head->next;
237fc4c9
PA
1812 xfree (head);
1813
ad53cd71
PA
1814 context_switch (ptid);
1815
5af949e3
UW
1816 regcache = get_thread_regcache (ptid);
1817 actual_pc = regcache_read_pc (regcache);
6c95b8df 1818 aspace = get_regcache_aspace (regcache);
1c5cfe86 1819
6c95b8df 1820 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1821 {
1c5cfe86
PA
1822 if (debug_displaced)
1823 fprintf_unfiltered (gdb_stdlog,
1824 "displaced: stepping queued %s now\n",
1825 target_pid_to_str (ptid));
1826
1827 displaced_step_prepare (ptid);
1828
929dfd4f
JB
1829 gdbarch = get_regcache_arch (regcache);
1830
1c5cfe86
PA
1831 if (debug_displaced)
1832 {
929dfd4f 1833 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1834 gdb_byte buf[4];
1835
5af949e3
UW
1836 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1837 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1838 read_memory (actual_pc, buf, sizeof (buf));
1839 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1840 }
1841
fc1cf338
PA
1842 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1843 displaced->step_closure))
a493e3e2 1844 target_resume (ptid, 1, GDB_SIGNAL_0);
99e40580 1845 else
a493e3e2 1846 target_resume (ptid, 0, GDB_SIGNAL_0);
1c5cfe86
PA
1847
1848 /* Done, we're stepping a thread. */
1849 break;
ad53cd71 1850 }
1c5cfe86
PA
1851 else
1852 {
1853 int step;
1854 struct thread_info *tp = inferior_thread ();
1855
1856 /* The breakpoint we were sitting under has since been
1857 removed. */
16c381f0 1858 tp->control.trap_expected = 0;
1c5cfe86
PA
1859
1860 /* Go back to what we were trying to do. */
1861 step = currently_stepping (tp);
ad53cd71 1862
1c5cfe86 1863 if (debug_displaced)
3e43a32a 1864 fprintf_unfiltered (gdb_stdlog,
27d2932e 1865 "displaced: breakpoint is gone: %s, step(%d)\n",
1c5cfe86
PA
1866 target_pid_to_str (tp->ptid), step);
1867
a493e3e2
PA
1868 target_resume (ptid, step, GDB_SIGNAL_0);
1869 tp->suspend.stop_signal = GDB_SIGNAL_0;
1c5cfe86
PA
1870
1871 /* This request was discarded. See if there's any other
1872 thread waiting for its turn. */
1873 }
237fc4c9
PA
1874 }
1875}
1876
5231c1fd
PA
1877/* Update global variables holding ptids to hold NEW_PTID if they were
1878 holding OLD_PTID. */
1879static void
1880infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1881{
1882 struct displaced_step_request *it;
fc1cf338 1883 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
1884
1885 if (ptid_equal (inferior_ptid, old_ptid))
1886 inferior_ptid = new_ptid;
1887
fc1cf338
PA
1888 for (displaced = displaced_step_inferior_states;
1889 displaced;
1890 displaced = displaced->next)
1891 {
1892 if (ptid_equal (displaced->step_ptid, old_ptid))
1893 displaced->step_ptid = new_ptid;
1894
1895 for (it = displaced->step_request_queue; it; it = it->next)
1896 if (ptid_equal (it->ptid, old_ptid))
1897 it->ptid = new_ptid;
1898 }
5231c1fd
PA
1899}
1900
237fc4c9
PA
1901\f
1902/* Resuming. */
c906108c
SS
1903
1904/* Things to clean up if we QUIT out of resume (). */
c906108c 1905static void
74b7792f 1906resume_cleanups (void *ignore)
c906108c 1907{
34b7e8a6
PA
1908 if (!ptid_equal (inferior_ptid, null_ptid))
1909 delete_single_step_breakpoints (inferior_thread ());
7c16b83e 1910
c906108c
SS
1911 normal_stop ();
1912}
1913
53904c9e
AC
1914static const char schedlock_off[] = "off";
1915static const char schedlock_on[] = "on";
1916static const char schedlock_step[] = "step";
40478521 1917static const char *const scheduler_enums[] = {
ef346e04
AC
1918 schedlock_off,
1919 schedlock_on,
1920 schedlock_step,
1921 NULL
1922};
920d2a44
AC
1923static const char *scheduler_mode = schedlock_off;
1924static void
1925show_scheduler_mode (struct ui_file *file, int from_tty,
1926 struct cmd_list_element *c, const char *value)
1927{
3e43a32a
MS
1928 fprintf_filtered (file,
1929 _("Mode for locking scheduler "
1930 "during execution is \"%s\".\n"),
920d2a44
AC
1931 value);
1932}
c906108c
SS
1933
1934static void
96baa820 1935set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1936{
eefe576e
AC
1937 if (!target_can_lock_scheduler)
1938 {
1939 scheduler_mode = schedlock_off;
1940 error (_("Target '%s' cannot support this command."), target_shortname);
1941 }
c906108c
SS
1942}
1943
d4db2f36
PA
1944/* True if execution commands resume all threads of all processes by
1945 default; otherwise, resume only threads of the current inferior
1946 process. */
1947int sched_multi = 0;
1948
2facfe5c
DD
1949/* Try to setup for software single stepping over the specified location.
1950 Return 1 if target_resume() should use hardware single step.
1951
1952 GDBARCH the current gdbarch.
1953 PC the location to step over. */
1954
1955static int
1956maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1957{
1958 int hw_step = 1;
1959
f02253f1
HZ
1960 if (execution_direction == EXEC_FORWARD
1961 && gdbarch_software_single_step_p (gdbarch)
99e40580 1962 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 1963 {
99e40580 1964 hw_step = 0;
2facfe5c
DD
1965 }
1966 return hw_step;
1967}
c906108c 1968
09cee04b
PA
1969ptid_t
1970user_visible_resume_ptid (int step)
1971{
1972 /* By default, resume all threads of all processes. */
1973 ptid_t resume_ptid = RESUME_ALL;
1974
1975 /* Maybe resume only all threads of the current process. */
1976 if (!sched_multi && target_supports_multi_process ())
1977 {
1978 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1979 }
1980
1981 /* Maybe resume a single thread after all. */
1982 if (non_stop)
1983 {
1984 /* With non-stop mode on, threads are always handled
1985 individually. */
1986 resume_ptid = inferior_ptid;
1987 }
1988 else if ((scheduler_mode == schedlock_on)
03d46957 1989 || (scheduler_mode == schedlock_step && step))
09cee04b
PA
1990 {
1991 /* User-settable 'scheduler' mode requires solo thread resume. */
1992 resume_ptid = inferior_ptid;
1993 }
1994
70509625
PA
1995 /* We may actually resume fewer threads at first, e.g., if a thread
1996 is stopped at a breakpoint that needs stepping-off, but that
1997 should not be visible to the user/frontend, and neither should
1998 the frontend/user be allowed to proceed any of the threads that
1999 happen to be stopped for internal run control handling, if a
2000 previous command wanted them resumed. */
09cee04b
PA
2001 return resume_ptid;
2002}
2003
c906108c
SS
2004/* Resume the inferior, but allow a QUIT. This is useful if the user
2005 wants to interrupt some lengthy single-stepping operation
2006 (for child processes, the SIGINT goes to the inferior, and so
2007 we get a SIGINT random_signal, but for remote debugging and perhaps
2008 other targets, that's not true).
2009
2010 STEP nonzero if we should step (zero to continue instead).
2011 SIG is the signal to give the inferior (zero for none). */
2012void
2ea28649 2013resume (int step, enum gdb_signal sig)
c906108c 2014{
74b7792f 2015 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
2016 struct regcache *regcache = get_current_regcache ();
2017 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 2018 struct thread_info *tp = inferior_thread ();
515630c5 2019 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 2020 struct address_space *aspace = get_regcache_aspace (regcache);
b0f16a3e 2021 ptid_t resume_ptid;
a09dd441
PA
2022 /* From here on, this represents the caller's step vs continue
2023 request, while STEP represents what we'll actually request the
2024 target to do. STEP can decay from a step to a continue, if e.g.,
2025 we need to implement single-stepping with breakpoints (software
2026 single-step). When deciding whether "set scheduler-locking step"
2027 applies, it's the callers intention that counts. */
2028 const int entry_step = step;
c7e8a53c 2029
c906108c
SS
2030 QUIT;
2031
74609e71
YQ
2032 if (current_inferior ()->waiting_for_vfork_done)
2033 {
48f9886d
PA
2034 /* Don't try to single-step a vfork parent that is waiting for
2035 the child to get out of the shared memory region (by exec'ing
2036 or exiting). This is particularly important on software
2037 single-step archs, as the child process would trip on the
2038 software single step breakpoint inserted for the parent
2039 process. Since the parent will not actually execute any
2040 instruction until the child is out of the shared region (such
2041 are vfork's semantics), it is safe to simply continue it.
2042 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2043 the parent, and tell it to `keep_going', which automatically
2044 re-sets it stepping. */
74609e71
YQ
2045 if (debug_infrun)
2046 fprintf_unfiltered (gdb_stdlog,
2047 "infrun: resume : clear step\n");
a09dd441 2048 step = 0;
74609e71
YQ
2049 }
2050
527159b7 2051 if (debug_infrun)
237fc4c9 2052 fprintf_unfiltered (gdb_stdlog,
c9737c08 2053 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2054 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2055 step, gdb_signal_to_symbol_string (sig),
2056 tp->control.trap_expected,
0d9a9a5f
PA
2057 target_pid_to_str (inferior_ptid),
2058 paddress (gdbarch, pc));
c906108c 2059
c2c6d25f
JM
2060 /* Normally, by the time we reach `resume', the breakpoints are either
2061 removed or inserted, as appropriate. The exception is if we're sitting
2062 at a permanent breakpoint; we need to step over it, but permanent
2063 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2064 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2065 {
515630c5
UW
2066 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
2067 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5 2068 else
ac74f770
MS
2069 error (_("\
2070The program is stopped at a permanent breakpoint, but GDB does not know\n\
2071how to step past a permanent breakpoint on this architecture. Try using\n\
2072a command like `return' or `jump' to continue execution."));
6d350bb5 2073 }
c2c6d25f 2074
c1e36e3e
PA
2075 /* If we have a breakpoint to step over, make sure to do a single
2076 step only. Same if we have software watchpoints. */
2077 if (tp->control.trap_expected || bpstat_should_step ())
2078 tp->control.may_range_step = 0;
2079
237fc4c9
PA
2080 /* If enabled, step over breakpoints by executing a copy of the
2081 instruction at a different address.
2082
2083 We can't use displaced stepping when we have a signal to deliver;
2084 the comments for displaced_step_prepare explain why. The
2085 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2086 signals' explain what we do instead.
2087
2088 We can't use displaced stepping when we are waiting for vfork_done
2089 event, displaced stepping breaks the vfork child similarly as single
2090 step software breakpoint. */
515630c5 2091 if (use_displaced_stepping (gdbarch)
16c381f0 2092 && (tp->control.trap_expected
a09dd441 2093 || (step && gdbarch_software_single_step_p (gdbarch)))
a493e3e2 2094 && sig == GDB_SIGNAL_0
74609e71 2095 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2096 {
fc1cf338
PA
2097 struct displaced_step_inferior_state *displaced;
2098
237fc4c9 2099 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
2100 {
2101 /* Got placed in displaced stepping queue. Will be resumed
2102 later when all the currently queued displaced stepping
251bde03
PA
2103 requests finish. The thread is not executing at this
2104 point, and the call to set_executing will be made later.
2105 But we need to call set_running here, since from the
2106 user/frontend's point of view, threads were set running.
2107 Unless we're calling an inferior function, as in that
2108 case we pretend the inferior doesn't run at all. */
2109 if (!tp->control.in_infcall)
a09dd441 2110 set_running (user_visible_resume_ptid (entry_step), 1);
d56b7306
VP
2111 discard_cleanups (old_cleanups);
2112 return;
2113 }
99e40580 2114
ca7781d2
LM
2115 /* Update pc to reflect the new address from which we will execute
2116 instructions due to displaced stepping. */
2117 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2118
fc1cf338 2119 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
a09dd441
PA
2120 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2121 displaced->step_closure);
237fc4c9
PA
2122 }
2123
2facfe5c 2124 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2125 else if (step)
2facfe5c 2126 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2127
30852783
UW
2128 /* Currently, our software single-step implementation leads to different
2129 results than hardware single-stepping in one situation: when stepping
2130 into delivering a signal which has an associated signal handler,
2131 hardware single-step will stop at the first instruction of the handler,
2132 while software single-step will simply skip execution of the handler.
2133
2134 For now, this difference in behavior is accepted since there is no
2135 easy way to actually implement single-stepping into a signal handler
2136 without kernel support.
2137
2138 However, there is one scenario where this difference leads to follow-on
2139 problems: if we're stepping off a breakpoint by removing all breakpoints
2140 and then single-stepping. In this case, the software single-step
2141 behavior means that even if there is a *breakpoint* in the signal
2142 handler, GDB still would not stop.
2143
2144 Fortunately, we can at least fix this particular issue. We detect
2145 here the case where we are about to deliver a signal while software
2146 single-stepping with breakpoints removed. In this situation, we
2147 revert the decisions to remove all breakpoints and insert single-
2148 step breakpoints, and instead we install a step-resume breakpoint
2149 at the current address, deliver the signal without stepping, and
2150 once we arrive back at the step-resume breakpoint, actually step
2151 over the breakpoint we originally wanted to step over. */
34b7e8a6 2152 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2153 && sig != GDB_SIGNAL_0
2154 && step_over_info_valid_p ())
30852783
UW
2155 {
2156 /* If we have nested signals or a pending signal is delivered
2157 immediately after a handler returns, might might already have
2158 a step-resume breakpoint set on the earlier handler. We cannot
2159 set another step-resume breakpoint; just continue on until the
2160 original breakpoint is hit. */
2161 if (tp->control.step_resume_breakpoint == NULL)
2162 {
2c03e5be 2163 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2164 tp->step_after_step_resume_breakpoint = 1;
2165 }
2166
34b7e8a6 2167 delete_single_step_breakpoints (tp);
30852783 2168
31e77af2 2169 clear_step_over_info ();
30852783 2170 tp->control.trap_expected = 0;
31e77af2
PA
2171
2172 insert_breakpoints ();
30852783
UW
2173 }
2174
b0f16a3e
SM
2175 /* If STEP is set, it's a request to use hardware stepping
2176 facilities. But in that case, we should never
2177 use singlestep breakpoint. */
34b7e8a6 2178 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2179
b0f16a3e
SM
2180 /* Decide the set of threads to ask the target to resume. Start
2181 by assuming everything will be resumed, than narrow the set
2182 by applying increasingly restricting conditions. */
a09dd441 2183 resume_ptid = user_visible_resume_ptid (entry_step);
cd76b0b7 2184
251bde03
PA
2185 /* Even if RESUME_PTID is a wildcard, and we end up resuming less
2186 (e.g., we might need to step over a breakpoint), from the
2187 user/frontend's point of view, all threads in RESUME_PTID are now
2188 running. Unless we're calling an inferior function, as in that
2189 case pretend we inferior doesn't run at all. */
2190 if (!tp->control.in_infcall)
2191 set_running (resume_ptid, 1);
2192
b0f16a3e 2193 /* Maybe resume a single thread after all. */
34b7e8a6 2194 if ((step || thread_has_single_step_breakpoints_set (tp))
b0f16a3e
SM
2195 && tp->control.trap_expected)
2196 {
2197 /* We're allowing a thread to run past a breakpoint it has
2198 hit, by single-stepping the thread with the breakpoint
2199 removed. In which case, we need to single-step only this
2200 thread, and keep others stopped, as they can miss this
2201 breakpoint if allowed to run. */
2202 resume_ptid = inferior_ptid;
2203 }
d4db2f36 2204
b0f16a3e
SM
2205 if (gdbarch_cannot_step_breakpoint (gdbarch))
2206 {
2207 /* Most targets can step a breakpoint instruction, thus
2208 executing it normally. But if this one cannot, just
2209 continue and we will hit it anyway. */
2210 if (step && breakpoint_inserted_here_p (aspace, pc))
2211 step = 0;
2212 }
ef5cf84e 2213
b0f16a3e
SM
2214 if (debug_displaced
2215 && use_displaced_stepping (gdbarch)
2216 && tp->control.trap_expected)
2217 {
2218 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
2219 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2220 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2221 gdb_byte buf[4];
2222
2223 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2224 paddress (resume_gdbarch, actual_pc));
2225 read_memory (actual_pc, buf, sizeof (buf));
2226 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2227 }
237fc4c9 2228
b0f16a3e
SM
2229 if (tp->control.may_range_step)
2230 {
2231 /* If we're resuming a thread with the PC out of the step
2232 range, then we're doing some nested/finer run control
2233 operation, like stepping the thread out of the dynamic
2234 linker or the displaced stepping scratch pad. We
2235 shouldn't have allowed a range step then. */
2236 gdb_assert (pc_in_thread_step_range (pc, tp));
2237 }
c1e36e3e 2238
b0f16a3e
SM
2239 /* Install inferior's terminal modes. */
2240 target_terminal_inferior ();
2241
2242 /* Avoid confusing the next resume, if the next stop/resume
2243 happens to apply to another thread. */
2244 tp->suspend.stop_signal = GDB_SIGNAL_0;
2245
2246 /* Advise target which signals may be handled silently. If we have
6cc83d2a
PA
2247 removed breakpoints because we are stepping over one (in any
2248 thread), we need to receive all signals to avoid accidentally
2249 skipping a breakpoint during execution of a signal handler. */
2250 if (step_over_info_valid_p ())
b0f16a3e
SM
2251 target_pass_signals (0, NULL);
2252 else
2253 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2455069d 2254
b0f16a3e 2255 target_resume (resume_ptid, step, sig);
c906108c
SS
2256
2257 discard_cleanups (old_cleanups);
2258}
2259\f
237fc4c9 2260/* Proceeding. */
c906108c
SS
2261
2262/* Clear out all variables saying what to do when inferior is continued.
2263 First do this, then set the ones you want, then call `proceed'. */
2264
a7212384
UW
2265static void
2266clear_proceed_status_thread (struct thread_info *tp)
c906108c 2267{
a7212384
UW
2268 if (debug_infrun)
2269 fprintf_unfiltered (gdb_stdlog,
2270 "infrun: clear_proceed_status_thread (%s)\n",
2271 target_pid_to_str (tp->ptid));
d6b48e9c 2272
70509625
PA
2273 /* If this signal should not be seen by program, give it zero.
2274 Used for debugging signals. */
2275 if (!signal_pass_state (tp->suspend.stop_signal))
2276 tp->suspend.stop_signal = GDB_SIGNAL_0;
2277
16c381f0
JK
2278 tp->control.trap_expected = 0;
2279 tp->control.step_range_start = 0;
2280 tp->control.step_range_end = 0;
c1e36e3e 2281 tp->control.may_range_step = 0;
16c381f0
JK
2282 tp->control.step_frame_id = null_frame_id;
2283 tp->control.step_stack_frame_id = null_frame_id;
2284 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
a7212384 2285 tp->stop_requested = 0;
4e1c45ea 2286
16c381f0 2287 tp->control.stop_step = 0;
32400beb 2288
16c381f0 2289 tp->control.proceed_to_finish = 0;
414c69f7 2290
17b2616c
PA
2291 tp->control.command_interp = NULL;
2292
a7212384 2293 /* Discard any remaining commands or status from previous stop. */
16c381f0 2294 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2295}
32400beb 2296
a7212384 2297void
70509625 2298clear_proceed_status (int step)
a7212384 2299{
6c95b8df
PA
2300 if (!non_stop)
2301 {
70509625
PA
2302 struct thread_info *tp;
2303 ptid_t resume_ptid;
2304
2305 resume_ptid = user_visible_resume_ptid (step);
2306
2307 /* In all-stop mode, delete the per-thread status of all threads
2308 we're about to resume, implicitly and explicitly. */
2309 ALL_NON_EXITED_THREADS (tp)
2310 {
2311 if (!ptid_match (tp->ptid, resume_ptid))
2312 continue;
2313 clear_proceed_status_thread (tp);
2314 }
6c95b8df
PA
2315 }
2316
a7212384
UW
2317 if (!ptid_equal (inferior_ptid, null_ptid))
2318 {
2319 struct inferior *inferior;
2320
2321 if (non_stop)
2322 {
6c95b8df
PA
2323 /* If in non-stop mode, only delete the per-thread status of
2324 the current thread. */
a7212384
UW
2325 clear_proceed_status_thread (inferior_thread ());
2326 }
6c95b8df 2327
d6b48e9c 2328 inferior = current_inferior ();
16c381f0 2329 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2330 }
2331
c906108c 2332 stop_after_trap = 0;
f3b1572e 2333
31e77af2
PA
2334 clear_step_over_info ();
2335
f3b1572e 2336 observer_notify_about_to_proceed ();
c906108c 2337
d5c31457
UW
2338 if (stop_registers)
2339 {
2340 regcache_xfree (stop_registers);
2341 stop_registers = NULL;
2342 }
c906108c
SS
2343}
2344
99619bea
PA
2345/* Returns true if TP is still stopped at a breakpoint that needs
2346 stepping-over in order to make progress. If the breakpoint is gone
2347 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2348
2349static int
99619bea
PA
2350thread_still_needs_step_over (struct thread_info *tp)
2351{
2352 if (tp->stepping_over_breakpoint)
2353 {
2354 struct regcache *regcache = get_thread_regcache (tp->ptid);
2355
2356 if (breakpoint_here_p (get_regcache_aspace (regcache),
2357 regcache_read_pc (regcache)))
2358 return 1;
2359
2360 tp->stepping_over_breakpoint = 0;
2361 }
2362
2363 return 0;
2364}
2365
483805cf
PA
2366/* Returns true if scheduler locking applies. STEP indicates whether
2367 we're about to do a step/next-like command to a thread. */
2368
2369static int
2370schedlock_applies (int step)
2371{
2372 return (scheduler_mode == schedlock_on
2373 || (scheduler_mode == schedlock_step
2374 && step));
2375}
2376
99619bea
PA
2377/* Look a thread other than EXCEPT that has previously reported a
2378 breakpoint event, and thus needs a step-over in order to make
2379 progress. Returns NULL is none is found. STEP indicates whether
2380 we're about to step the current thread, in order to decide whether
2381 "set scheduler-locking step" applies. */
2382
2383static struct thread_info *
2384find_thread_needs_step_over (int step, struct thread_info *except)
ea67f13b 2385{
99619bea 2386 struct thread_info *tp, *current;
5a437975
DE
2387
2388 /* With non-stop mode on, threads are always handled individually. */
2389 gdb_assert (! non_stop);
ea67f13b 2390
99619bea 2391 current = inferior_thread ();
d4db2f36 2392
99619bea
PA
2393 /* If scheduler locking applies, we can avoid iterating over all
2394 threads. */
483805cf 2395 if (schedlock_applies (step))
ea67f13b 2396 {
99619bea
PA
2397 if (except != current
2398 && thread_still_needs_step_over (current))
2399 return current;
515630c5 2400
99619bea
PA
2401 return NULL;
2402 }
0d9a9a5f 2403
034f788c 2404 ALL_NON_EXITED_THREADS (tp)
99619bea
PA
2405 {
2406 /* Ignore the EXCEPT thread. */
2407 if (tp == except)
2408 continue;
2409 /* Ignore threads of processes we're not resuming. */
2410 if (!sched_multi
2411 && ptid_get_pid (tp->ptid) != ptid_get_pid (inferior_ptid))
2412 continue;
2413
2414 if (thread_still_needs_step_over (tp))
2415 return tp;
ea67f13b
DJ
2416 }
2417
99619bea 2418 return NULL;
ea67f13b 2419}
e4846b08 2420
c906108c
SS
2421/* Basic routine for continuing the program in various fashions.
2422
2423 ADDR is the address to resume at, or -1 for resume where stopped.
2424 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2425 or -1 for act according to how it stopped.
c906108c 2426 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2427 -1 means return after that and print nothing.
2428 You should probably set various step_... variables
2429 before calling here, if you are stepping.
c906108c
SS
2430
2431 You should call clear_proceed_status before calling proceed. */
2432
2433void
2ea28649 2434proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
c906108c 2435{
e58b0e63
PA
2436 struct regcache *regcache;
2437 struct gdbarch *gdbarch;
4e1c45ea 2438 struct thread_info *tp;
e58b0e63 2439 CORE_ADDR pc;
6c95b8df 2440 struct address_space *aspace;
c906108c 2441
e58b0e63
PA
2442 /* If we're stopped at a fork/vfork, follow the branch set by the
2443 "set follow-fork-mode" command; otherwise, we'll just proceed
2444 resuming the current thread. */
2445 if (!follow_fork ())
2446 {
2447 /* The target for some reason decided not to resume. */
2448 normal_stop ();
f148b27e
PA
2449 if (target_can_async_p ())
2450 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2451 return;
2452 }
2453
842951eb
PA
2454 /* We'll update this if & when we switch to a new thread. */
2455 previous_inferior_ptid = inferior_ptid;
2456
e58b0e63
PA
2457 regcache = get_current_regcache ();
2458 gdbarch = get_regcache_arch (regcache);
6c95b8df 2459 aspace = get_regcache_aspace (regcache);
e58b0e63 2460 pc = regcache_read_pc (regcache);
2adfaa28 2461 tp = inferior_thread ();
e58b0e63 2462
c906108c 2463 if (step > 0)
515630c5 2464 step_start_function = find_pc_function (pc);
c906108c
SS
2465 if (step < 0)
2466 stop_after_trap = 1;
2467
99619bea
PA
2468 /* Fill in with reasonable starting values. */
2469 init_thread_stepping_state (tp);
2470
2acceee2 2471 if (addr == (CORE_ADDR) -1)
c906108c 2472 {
6c95b8df 2473 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
b2175913 2474 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2475 /* There is a breakpoint at the address we will resume at,
2476 step one instruction before inserting breakpoints so that
2477 we do not stop right away (and report a second hit at this
b2175913
MS
2478 breakpoint).
2479
2480 Note, we don't do this in reverse, because we won't
2481 actually be executing the breakpoint insn anyway.
2482 We'll be (un-)executing the previous instruction. */
99619bea 2483 tp->stepping_over_breakpoint = 1;
515630c5
UW
2484 else if (gdbarch_single_step_through_delay_p (gdbarch)
2485 && gdbarch_single_step_through_delay (gdbarch,
2486 get_current_frame ()))
3352ef37
AC
2487 /* We stepped onto an instruction that needs to be stepped
2488 again before re-inserting the breakpoint, do so. */
99619bea 2489 tp->stepping_over_breakpoint = 1;
c906108c
SS
2490 }
2491 else
2492 {
515630c5 2493 regcache_write_pc (regcache, addr);
c906108c
SS
2494 }
2495
70509625
PA
2496 if (siggnal != GDB_SIGNAL_DEFAULT)
2497 tp->suspend.stop_signal = siggnal;
2498
17b2616c
PA
2499 /* Record the interpreter that issued the execution command that
2500 caused this thread to resume. If the top level interpreter is
2501 MI/async, and the execution command was a CLI command
2502 (next/step/etc.), we'll want to print stop event output to the MI
2503 console channel (the stepped-to line, etc.), as if the user
2504 entered the execution command on a real GDB console. */
2505 inferior_thread ()->control.command_interp = command_interp ();
2506
527159b7 2507 if (debug_infrun)
8a9de0e4 2508 fprintf_unfiltered (gdb_stdlog,
c9737c08
PA
2509 "infrun: proceed (addr=%s, signal=%s, step=%d)\n",
2510 paddress (gdbarch, addr),
2511 gdb_signal_to_symbol_string (siggnal), step);
527159b7 2512
94cc34af
PA
2513 if (non_stop)
2514 /* In non-stop, each thread is handled individually. The context
2515 must already be set to the right thread here. */
2516 ;
2517 else
2518 {
99619bea
PA
2519 struct thread_info *step_over;
2520
94cc34af
PA
2521 /* In a multi-threaded task we may select another thread and
2522 then continue or step.
c906108c 2523
94cc34af
PA
2524 But if the old thread was stopped at a breakpoint, it will
2525 immediately cause another breakpoint stop without any
2526 execution (i.e. it will report a breakpoint hit incorrectly).
2527 So we must step over it first.
c906108c 2528
99619bea
PA
2529 Look for a thread other than the current (TP) that reported a
2530 breakpoint hit and hasn't been resumed yet since. */
2531 step_over = find_thread_needs_step_over (step, tp);
2532 if (step_over != NULL)
2adfaa28 2533 {
99619bea
PA
2534 if (debug_infrun)
2535 fprintf_unfiltered (gdb_stdlog,
2536 "infrun: need to step-over [%s] first\n",
2537 target_pid_to_str (step_over->ptid));
2538
2539 /* Store the prev_pc for the stepping thread too, needed by
2540 switch_back_to_stepping thread. */
2541 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2542 switch_to_thread (step_over->ptid);
2543 tp = step_over;
2adfaa28 2544 }
94cc34af 2545 }
c906108c 2546
31e77af2
PA
2547 /* If we need to step over a breakpoint, and we're not using
2548 displaced stepping to do so, insert all breakpoints (watchpoints,
2549 etc.) but the one we're stepping over, step one instruction, and
2550 then re-insert the breakpoint when that step is finished. */
99619bea 2551 if (tp->stepping_over_breakpoint && !use_displaced_stepping (gdbarch))
30852783 2552 {
31e77af2
PA
2553 struct regcache *regcache = get_current_regcache ();
2554
2555 set_step_over_info (get_regcache_aspace (regcache),
963f9c80 2556 regcache_read_pc (regcache), 0);
30852783 2557 }
31e77af2
PA
2558 else
2559 clear_step_over_info ();
30852783 2560
31e77af2 2561 insert_breakpoints ();
30852783 2562
99619bea
PA
2563 tp->control.trap_expected = tp->stepping_over_breakpoint;
2564
c906108c
SS
2565 annotate_starting ();
2566
2567 /* Make sure that output from GDB appears before output from the
2568 inferior. */
2569 gdb_flush (gdb_stdout);
2570
e4846b08 2571 /* Refresh prev_pc value just prior to resuming. This used to be
22bcd14b 2572 done in stop_waiting, however, setting prev_pc there did not handle
e4846b08
JJ
2573 scenarios such as inferior function calls or returning from
2574 a function via the return command. In those cases, the prev_pc
2575 value was not set properly for subsequent commands. The prev_pc value
2576 is used to initialize the starting line number in the ecs. With an
2577 invalid value, the gdb next command ends up stopping at the position
2578 represented by the next line table entry past our start position.
2579 On platforms that generate one line table entry per line, this
2580 is not a problem. However, on the ia64, the compiler generates
2581 extraneous line table entries that do not increase the line number.
2582 When we issue the gdb next command on the ia64 after an inferior call
2583 or a return command, we often end up a few instructions forward, still
2584 within the original line we started.
2585
d5cd6034
JB
2586 An attempt was made to refresh the prev_pc at the same time the
2587 execution_control_state is initialized (for instance, just before
2588 waiting for an inferior event). But this approach did not work
2589 because of platforms that use ptrace, where the pc register cannot
2590 be read unless the inferior is stopped. At that point, we are not
2591 guaranteed the inferior is stopped and so the regcache_read_pc() call
2592 can fail. Setting the prev_pc value here ensures the value is updated
2593 correctly when the inferior is stopped. */
4e1c45ea 2594 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 2595
c906108c 2596 /* Resume inferior. */
99619bea 2597 resume (tp->control.trap_expected || step || bpstat_should_step (),
0de5618e 2598 tp->suspend.stop_signal);
c906108c
SS
2599
2600 /* Wait for it to stop (if not standalone)
2601 and in any case decode why it stopped, and act accordingly. */
43ff13b4 2602 /* Do this only if we are not using the event loop, or if the target
1777feb0 2603 does not support asynchronous execution. */
362646f5 2604 if (!target_can_async_p ())
43ff13b4 2605 {
e4c8541f 2606 wait_for_inferior ();
43ff13b4
JM
2607 normal_stop ();
2608 }
c906108c 2609}
c906108c
SS
2610\f
2611
2612/* Start remote-debugging of a machine over a serial link. */
96baa820 2613
c906108c 2614void
8621d6a9 2615start_remote (int from_tty)
c906108c 2616{
d6b48e9c 2617 struct inferior *inferior;
d6b48e9c
PA
2618
2619 inferior = current_inferior ();
16c381f0 2620 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 2621
1777feb0 2622 /* Always go on waiting for the target, regardless of the mode. */
6426a772 2623 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 2624 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
2625 nothing is returned (instead of just blocking). Because of this,
2626 targets expecting an immediate response need to, internally, set
2627 things up so that the target_wait() is forced to eventually
1777feb0 2628 timeout. */
6426a772
JM
2629 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2630 differentiate to its caller what the state of the target is after
2631 the initial open has been performed. Here we're assuming that
2632 the target has stopped. It should be possible to eventually have
2633 target_open() return to the caller an indication that the target
2634 is currently running and GDB state should be set to the same as
1777feb0 2635 for an async run. */
e4c8541f 2636 wait_for_inferior ();
8621d6a9
DJ
2637
2638 /* Now that the inferior has stopped, do any bookkeeping like
2639 loading shared libraries. We want to do this before normal_stop,
2640 so that the displayed frame is up to date. */
2641 post_create_inferior (&current_target, from_tty);
2642
6426a772 2643 normal_stop ();
c906108c
SS
2644}
2645
2646/* Initialize static vars when a new inferior begins. */
2647
2648void
96baa820 2649init_wait_for_inferior (void)
c906108c
SS
2650{
2651 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 2652
c906108c
SS
2653 breakpoint_init_inferior (inf_starting);
2654
70509625 2655 clear_proceed_status (0);
9f976b41 2656
ca005067 2657 target_last_wait_ptid = minus_one_ptid;
237fc4c9 2658
842951eb 2659 previous_inferior_ptid = inferior_ptid;
0d1e5fa7 2660
edb3359d
DJ
2661 /* Discard any skipped inlined frames. */
2662 clear_inline_frame_state (minus_one_ptid);
c906108c 2663}
237fc4c9 2664
c906108c 2665\f
b83266a0
SS
2666/* This enum encodes possible reasons for doing a target_wait, so that
2667 wfi can call target_wait in one place. (Ultimately the call will be
2668 moved out of the infinite loop entirely.) */
2669
c5aa993b
JM
2670enum infwait_states
2671{
cd0fc7c3 2672 infwait_normal_state,
d983da9c 2673 infwait_step_watch_state,
cd0fc7c3 2674 infwait_nonstep_watch_state
b83266a0
SS
2675};
2676
0d1e5fa7 2677/* Current inferior wait state. */
8870954f 2678static enum infwait_states infwait_state;
cd0fc7c3 2679
0d1e5fa7
PA
2680/* Data to be passed around while handling an event. This data is
2681 discarded between events. */
c5aa993b 2682struct execution_control_state
488f131b 2683{
0d1e5fa7 2684 ptid_t ptid;
4e1c45ea
PA
2685 /* The thread that got the event, if this was a thread event; NULL
2686 otherwise. */
2687 struct thread_info *event_thread;
2688
488f131b 2689 struct target_waitstatus ws;
7e324e48 2690 int stop_func_filled_in;
488f131b
JB
2691 CORE_ADDR stop_func_start;
2692 CORE_ADDR stop_func_end;
2c02bd72 2693 const char *stop_func_name;
488f131b 2694 int wait_some_more;
4f5d7f63 2695
2adfaa28
PA
2696 /* True if the event thread hit the single-step breakpoint of
2697 another thread. Thus the event doesn't cause a stop, the thread
2698 needs to be single-stepped past the single-step breakpoint before
2699 we can switch back to the original stepping thread. */
2700 int hit_singlestep_breakpoint;
488f131b
JB
2701};
2702
ec9499be 2703static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2704
568d6575
UW
2705static void handle_step_into_function (struct gdbarch *gdbarch,
2706 struct execution_control_state *ecs);
2707static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2708 struct execution_control_state *ecs);
4f5d7f63 2709static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 2710static void check_exception_resume (struct execution_control_state *,
28106bc2 2711 struct frame_info *);
611c83ae 2712
bdc36728 2713static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 2714static void stop_waiting (struct execution_control_state *ecs);
104c1213 2715static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2716static void keep_going (struct execution_control_state *ecs);
94c57d6a 2717static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 2718static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 2719
252fbfc8
PA
2720/* Callback for iterate over threads. If the thread is stopped, but
2721 the user/frontend doesn't know about that yet, go through
2722 normal_stop, as if the thread had just stopped now. ARG points at
2723 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2724 ptid_is_pid(PTID) is true, applies to all threads of the process
2725 pointed at by PTID. Otherwise, apply only to the thread pointed by
2726 PTID. */
2727
2728static int
2729infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2730{
2731 ptid_t ptid = * (ptid_t *) arg;
2732
2733 if ((ptid_equal (info->ptid, ptid)
2734 || ptid_equal (minus_one_ptid, ptid)
2735 || (ptid_is_pid (ptid)
2736 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2737 && is_running (info->ptid)
2738 && !is_executing (info->ptid))
2739 {
2740 struct cleanup *old_chain;
2741 struct execution_control_state ecss;
2742 struct execution_control_state *ecs = &ecss;
2743
2744 memset (ecs, 0, sizeof (*ecs));
2745
2746 old_chain = make_cleanup_restore_current_thread ();
2747
f15cb84a
YQ
2748 overlay_cache_invalid = 1;
2749 /* Flush target cache before starting to handle each event.
2750 Target was running and cache could be stale. This is just a
2751 heuristic. Running threads may modify target memory, but we
2752 don't get any event. */
2753 target_dcache_invalidate ();
2754
252fbfc8
PA
2755 /* Go through handle_inferior_event/normal_stop, so we always
2756 have consistent output as if the stop event had been
2757 reported. */
2758 ecs->ptid = info->ptid;
e09875d4 2759 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8 2760 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 2761 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
2762
2763 handle_inferior_event (ecs);
2764
2765 if (!ecs->wait_some_more)
2766 {
2767 struct thread_info *tp;
2768
2769 normal_stop ();
2770
fa4cd53f 2771 /* Finish off the continuations. */
252fbfc8 2772 tp = inferior_thread ();
fa4cd53f
PA
2773 do_all_intermediate_continuations_thread (tp, 1);
2774 do_all_continuations_thread (tp, 1);
252fbfc8
PA
2775 }
2776
2777 do_cleanups (old_chain);
2778 }
2779
2780 return 0;
2781}
2782
2783/* This function is attached as a "thread_stop_requested" observer.
2784 Cleanup local state that assumed the PTID was to be resumed, and
2785 report the stop to the frontend. */
2786
2c0b251b 2787static void
252fbfc8
PA
2788infrun_thread_stop_requested (ptid_t ptid)
2789{
fc1cf338 2790 struct displaced_step_inferior_state *displaced;
252fbfc8
PA
2791
2792 /* PTID was requested to stop. Remove it from the displaced
2793 stepping queue, so we don't try to resume it automatically. */
fc1cf338
PA
2794
2795 for (displaced = displaced_step_inferior_states;
2796 displaced;
2797 displaced = displaced->next)
252fbfc8 2798 {
fc1cf338 2799 struct displaced_step_request *it, **prev_next_p;
252fbfc8 2800
fc1cf338
PA
2801 it = displaced->step_request_queue;
2802 prev_next_p = &displaced->step_request_queue;
2803 while (it)
252fbfc8 2804 {
fc1cf338
PA
2805 if (ptid_match (it->ptid, ptid))
2806 {
2807 *prev_next_p = it->next;
2808 it->next = NULL;
2809 xfree (it);
2810 }
252fbfc8 2811 else
fc1cf338
PA
2812 {
2813 prev_next_p = &it->next;
2814 }
252fbfc8 2815
fc1cf338 2816 it = *prev_next_p;
252fbfc8 2817 }
252fbfc8
PA
2818 }
2819
2820 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2821}
2822
a07daef3
PA
2823static void
2824infrun_thread_thread_exit (struct thread_info *tp, int silent)
2825{
2826 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2827 nullify_last_target_wait_ptid ();
2828}
2829
0cbcdb96
PA
2830/* Delete the step resume, single-step and longjmp/exception resume
2831 breakpoints of TP. */
4e1c45ea 2832
0cbcdb96
PA
2833static void
2834delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 2835{
0cbcdb96
PA
2836 delete_step_resume_breakpoint (tp);
2837 delete_exception_resume_breakpoint (tp);
34b7e8a6 2838 delete_single_step_breakpoints (tp);
4e1c45ea
PA
2839}
2840
0cbcdb96
PA
2841/* If the target still has execution, call FUNC for each thread that
2842 just stopped. In all-stop, that's all the non-exited threads; in
2843 non-stop, that's the current thread, only. */
2844
2845typedef void (*for_each_just_stopped_thread_callback_func)
2846 (struct thread_info *tp);
4e1c45ea
PA
2847
2848static void
0cbcdb96 2849for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 2850{
0cbcdb96 2851 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
4e1c45ea
PA
2852 return;
2853
2854 if (non_stop)
2855 {
0cbcdb96
PA
2856 /* If in non-stop mode, only the current thread stopped. */
2857 func (inferior_thread ());
4e1c45ea
PA
2858 }
2859 else
0cbcdb96
PA
2860 {
2861 struct thread_info *tp;
2862
2863 /* In all-stop mode, all threads have stopped. */
2864 ALL_NON_EXITED_THREADS (tp)
2865 {
2866 func (tp);
2867 }
2868 }
2869}
2870
2871/* Delete the step resume and longjmp/exception resume breakpoints of
2872 the threads that just stopped. */
2873
2874static void
2875delete_just_stopped_threads_infrun_breakpoints (void)
2876{
2877 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
2878}
2879
2880/* Delete the single-step breakpoints of the threads that just
2881 stopped. */
7c16b83e 2882
34b7e8a6
PA
2883static void
2884delete_just_stopped_threads_single_step_breakpoints (void)
2885{
2886 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
2887}
2888
1777feb0 2889/* A cleanup wrapper. */
4e1c45ea
PA
2890
2891static void
0cbcdb96 2892delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
4e1c45ea 2893{
0cbcdb96 2894 delete_just_stopped_threads_infrun_breakpoints ();
4e1c45ea
PA
2895}
2896
223698f8
DE
2897/* Pretty print the results of target_wait, for debugging purposes. */
2898
2899static void
2900print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2901 const struct target_waitstatus *ws)
2902{
2903 char *status_string = target_waitstatus_to_string (ws);
2904 struct ui_file *tmp_stream = mem_fileopen ();
2905 char *text;
223698f8
DE
2906
2907 /* The text is split over several lines because it was getting too long.
2908 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2909 output as a unit; we want only one timestamp printed if debug_timestamp
2910 is set. */
2911
2912 fprintf_unfiltered (tmp_stream,
dfd4cc63
LM
2913 "infrun: target_wait (%d", ptid_get_pid (waiton_ptid));
2914 if (ptid_get_pid (waiton_ptid) != -1)
223698f8
DE
2915 fprintf_unfiltered (tmp_stream,
2916 " [%s]", target_pid_to_str (waiton_ptid));
2917 fprintf_unfiltered (tmp_stream, ", status) =\n");
2918 fprintf_unfiltered (tmp_stream,
2919 "infrun: %d [%s],\n",
dfd4cc63
LM
2920 ptid_get_pid (result_ptid),
2921 target_pid_to_str (result_ptid));
223698f8
DE
2922 fprintf_unfiltered (tmp_stream,
2923 "infrun: %s\n",
2924 status_string);
2925
759ef836 2926 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
2927
2928 /* This uses %s in part to handle %'s in the text, but also to avoid
2929 a gcc error: the format attribute requires a string literal. */
2930 fprintf_unfiltered (gdb_stdlog, "%s", text);
2931
2932 xfree (status_string);
2933 xfree (text);
2934 ui_file_delete (tmp_stream);
2935}
2936
24291992
PA
2937/* Prepare and stabilize the inferior for detaching it. E.g.,
2938 detaching while a thread is displaced stepping is a recipe for
2939 crashing it, as nothing would readjust the PC out of the scratch
2940 pad. */
2941
2942void
2943prepare_for_detach (void)
2944{
2945 struct inferior *inf = current_inferior ();
2946 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2947 struct cleanup *old_chain_1;
2948 struct displaced_step_inferior_state *displaced;
2949
2950 displaced = get_displaced_stepping_state (inf->pid);
2951
2952 /* Is any thread of this process displaced stepping? If not,
2953 there's nothing else to do. */
2954 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2955 return;
2956
2957 if (debug_infrun)
2958 fprintf_unfiltered (gdb_stdlog,
2959 "displaced-stepping in-process while detaching");
2960
2961 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2962 inf->detaching = 1;
2963
2964 while (!ptid_equal (displaced->step_ptid, null_ptid))
2965 {
2966 struct cleanup *old_chain_2;
2967 struct execution_control_state ecss;
2968 struct execution_control_state *ecs;
2969
2970 ecs = &ecss;
2971 memset (ecs, 0, sizeof (*ecs));
2972
2973 overlay_cache_invalid = 1;
f15cb84a
YQ
2974 /* Flush target cache before starting to handle each event.
2975 Target was running and cache could be stale. This is just a
2976 heuristic. Running threads may modify target memory, but we
2977 don't get any event. */
2978 target_dcache_invalidate ();
24291992 2979
24291992
PA
2980 if (deprecated_target_wait_hook)
2981 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2982 else
2983 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2984
2985 if (debug_infrun)
2986 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2987
2988 /* If an error happens while handling the event, propagate GDB's
2989 knowledge of the executing state to the frontend/user running
2990 state. */
3e43a32a
MS
2991 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2992 &minus_one_ptid);
24291992
PA
2993
2994 /* Now figure out what to do with the result of the result. */
2995 handle_inferior_event (ecs);
2996
2997 /* No error, don't finish the state yet. */
2998 discard_cleanups (old_chain_2);
2999
3000 /* Breakpoints and watchpoints are not installed on the target
3001 at this point, and signals are passed directly to the
3002 inferior, so this must mean the process is gone. */
3003 if (!ecs->wait_some_more)
3004 {
3005 discard_cleanups (old_chain_1);
3006 error (_("Program exited while detaching"));
3007 }
3008 }
3009
3010 discard_cleanups (old_chain_1);
3011}
3012
cd0fc7c3 3013/* Wait for control to return from inferior to debugger.
ae123ec6 3014
cd0fc7c3
SS
3015 If inferior gets a signal, we may decide to start it up again
3016 instead of returning. That is why there is a loop in this function.
3017 When this function actually returns it means the inferior
3018 should be left stopped and GDB should read more commands. */
3019
3020void
e4c8541f 3021wait_for_inferior (void)
cd0fc7c3
SS
3022{
3023 struct cleanup *old_cleanups;
c906108c 3024
527159b7 3025 if (debug_infrun)
ae123ec6 3026 fprintf_unfiltered
e4c8541f 3027 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3028
0cbcdb96
PA
3029 old_cleanups
3030 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3031 NULL);
cd0fc7c3 3032
c906108c
SS
3033 while (1)
3034 {
ae25568b
PA
3035 struct execution_control_state ecss;
3036 struct execution_control_state *ecs = &ecss;
29f49a6a 3037 struct cleanup *old_chain;
963f9c80 3038 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3039
ae25568b
PA
3040 memset (ecs, 0, sizeof (*ecs));
3041
ec9499be 3042 overlay_cache_invalid = 1;
ec9499be 3043
f15cb84a
YQ
3044 /* Flush target cache before starting to handle each event.
3045 Target was running and cache could be stale. This is just a
3046 heuristic. Running threads may modify target memory, but we
3047 don't get any event. */
3048 target_dcache_invalidate ();
3049
9a4105ab 3050 if (deprecated_target_wait_hook)
47608cb1 3051 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 3052 else
47608cb1 3053 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3054
f00150c9 3055 if (debug_infrun)
223698f8 3056 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3057
29f49a6a
PA
3058 /* If an error happens while handling the event, propagate GDB's
3059 knowledge of the executing state to the frontend/user running
3060 state. */
3061 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3062
cd0fc7c3
SS
3063 /* Now figure out what to do with the result of the result. */
3064 handle_inferior_event (ecs);
c906108c 3065
29f49a6a
PA
3066 /* No error, don't finish the state yet. */
3067 discard_cleanups (old_chain);
3068
cd0fc7c3
SS
3069 if (!ecs->wait_some_more)
3070 break;
3071 }
4e1c45ea 3072
cd0fc7c3
SS
3073 do_cleanups (old_cleanups);
3074}
c906108c 3075
1777feb0 3076/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3077 event loop whenever a change of state is detected on the file
1777feb0
MS
3078 descriptor corresponding to the target. It can be called more than
3079 once to complete a single execution command. In such cases we need
3080 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3081 that this function is called for a single execution command, then
3082 report to the user that the inferior has stopped, and do the
1777feb0 3083 necessary cleanups. */
43ff13b4
JM
3084
3085void
fba45db2 3086fetch_inferior_event (void *client_data)
43ff13b4 3087{
0d1e5fa7 3088 struct execution_control_state ecss;
a474d7c2 3089 struct execution_control_state *ecs = &ecss;
4f8d22e3 3090 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 3091 struct cleanup *ts_old_chain;
4f8d22e3 3092 int was_sync = sync_execution;
0f641c01 3093 int cmd_done = 0;
963f9c80 3094 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3095
0d1e5fa7
PA
3096 memset (ecs, 0, sizeof (*ecs));
3097
c5187ac6
PA
3098 /* We're handling a live event, so make sure we're doing live
3099 debugging. If we're looking at traceframes while the target is
3100 running, we're going to need to get back to that mode after
3101 handling the event. */
3102 if (non_stop)
3103 {
3104 make_cleanup_restore_current_traceframe ();
e6e4e701 3105 set_current_traceframe (-1);
c5187ac6
PA
3106 }
3107
4f8d22e3
PA
3108 if (non_stop)
3109 /* In non-stop mode, the user/frontend should not notice a thread
3110 switch due to internal events. Make sure we reverse to the
3111 user selected thread and frame after handling the event and
3112 running any breakpoint commands. */
3113 make_cleanup_restore_current_thread ();
3114
ec9499be 3115 overlay_cache_invalid = 1;
f15cb84a
YQ
3116 /* Flush target cache before starting to handle each event. Target
3117 was running and cache could be stale. This is just a heuristic.
3118 Running threads may modify target memory, but we don't get any
3119 event. */
3120 target_dcache_invalidate ();
3dd5b83d 3121
32231432
PA
3122 make_cleanup_restore_integer (&execution_direction);
3123 execution_direction = target_execution_direction ();
3124
9a4105ab 3125 if (deprecated_target_wait_hook)
a474d7c2 3126 ecs->ptid =
47608cb1 3127 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 3128 else
47608cb1 3129 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 3130
f00150c9 3131 if (debug_infrun)
223698f8 3132 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3133
29f49a6a
PA
3134 /* If an error happens while handling the event, propagate GDB's
3135 knowledge of the executing state to the frontend/user running
3136 state. */
3137 if (!non_stop)
3138 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3139 else
3140 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3141
353d1d73
JK
3142 /* Get executed before make_cleanup_restore_current_thread above to apply
3143 still for the thread which has thrown the exception. */
3144 make_bpstat_clear_actions_cleanup ();
3145
7c16b83e
PA
3146 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3147
43ff13b4 3148 /* Now figure out what to do with the result of the result. */
a474d7c2 3149 handle_inferior_event (ecs);
43ff13b4 3150
a474d7c2 3151 if (!ecs->wait_some_more)
43ff13b4 3152 {
d6b48e9c
PA
3153 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
3154
0cbcdb96 3155 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3156
d6b48e9c 3157 /* We may not find an inferior if this was a process exit. */
16c381f0 3158 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
3159 normal_stop ();
3160
af679fd0 3161 if (target_has_execution
0e5bf2a8 3162 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
af679fd0
PA
3163 && ecs->ws.kind != TARGET_WAITKIND_EXITED
3164 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3165 && ecs->event_thread->step_multi
16c381f0 3166 && ecs->event_thread->control.stop_step)
c2d11a7d
JM
3167 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
3168 else
0f641c01
PA
3169 {
3170 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3171 cmd_done = 1;
3172 }
43ff13b4 3173 }
4f8d22e3 3174
29f49a6a
PA
3175 /* No error, don't finish the thread states yet. */
3176 discard_cleanups (ts_old_chain);
3177
4f8d22e3
PA
3178 /* Revert thread and frame. */
3179 do_cleanups (old_chain);
3180
3181 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
3182 restore the prompt (a synchronous execution command has finished,
3183 and we're ready for input). */
b4a14fd0 3184 if (interpreter_async && was_sync && !sync_execution)
92bcb5f9 3185 observer_notify_sync_execution_done ();
0f641c01
PA
3186
3187 if (cmd_done
3188 && !was_sync
3189 && exec_done_display_p
3190 && (ptid_equal (inferior_ptid, null_ptid)
3191 || !is_running (inferior_ptid)))
3192 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3193}
3194
edb3359d
DJ
3195/* Record the frame and location we're currently stepping through. */
3196void
3197set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3198{
3199 struct thread_info *tp = inferior_thread ();
3200
16c381f0
JK
3201 tp->control.step_frame_id = get_frame_id (frame);
3202 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
3203
3204 tp->current_symtab = sal.symtab;
3205 tp->current_line = sal.line;
3206}
3207
0d1e5fa7
PA
3208/* Clear context switchable stepping state. */
3209
3210void
4e1c45ea 3211init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7
PA
3212{
3213 tss->stepping_over_breakpoint = 0;
963f9c80 3214 tss->stepping_over_watchpoint = 0;
0d1e5fa7 3215 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
3216}
3217
c32c64b7
DE
3218/* Set the cached copy of the last ptid/waitstatus. */
3219
3220static void
3221set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3222{
3223 target_last_wait_ptid = ptid;
3224 target_last_waitstatus = status;
3225}
3226
e02bc4cc 3227/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
3228 target_wait()/deprecated_target_wait_hook(). The data is actually
3229 cached by handle_inferior_event(), which gets called immediately
3230 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
3231
3232void
488f131b 3233get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 3234{
39f77062 3235 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
3236 *status = target_last_waitstatus;
3237}
3238
ac264b3b
MS
3239void
3240nullify_last_target_wait_ptid (void)
3241{
3242 target_last_wait_ptid = minus_one_ptid;
3243}
3244
dcf4fbde 3245/* Switch thread contexts. */
dd80620e
MS
3246
3247static void
0d1e5fa7 3248context_switch (ptid_t ptid)
dd80620e 3249{
4b51d87b 3250 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
3251 {
3252 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3253 target_pid_to_str (inferior_ptid));
3254 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 3255 target_pid_to_str (ptid));
fd48f117
DJ
3256 }
3257
0d1e5fa7 3258 switch_to_thread (ptid);
dd80620e
MS
3259}
3260
4fa8626c
DJ
3261static void
3262adjust_pc_after_break (struct execution_control_state *ecs)
3263{
24a73cce
UW
3264 struct regcache *regcache;
3265 struct gdbarch *gdbarch;
6c95b8df 3266 struct address_space *aspace;
118e6252 3267 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 3268
4fa8626c
DJ
3269 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3270 we aren't, just return.
9709f61c
DJ
3271
3272 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
3273 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3274 implemented by software breakpoints should be handled through the normal
3275 breakpoint layer.
8fb3e588 3276
4fa8626c
DJ
3277 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3278 different signals (SIGILL or SIGEMT for instance), but it is less
3279 clear where the PC is pointing afterwards. It may not match
b798847d
UW
3280 gdbarch_decr_pc_after_break. I don't know any specific target that
3281 generates these signals at breakpoints (the code has been in GDB since at
3282 least 1992) so I can not guess how to handle them here.
8fb3e588 3283
e6cf7916
UW
3284 In earlier versions of GDB, a target with
3285 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
3286 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3287 target with both of these set in GDB history, and it seems unlikely to be
3288 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
3289
3290 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
3291 return;
3292
a493e3e2 3293 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
3294 return;
3295
4058b839
PA
3296 /* In reverse execution, when a breakpoint is hit, the instruction
3297 under it has already been de-executed. The reported PC always
3298 points at the breakpoint address, so adjusting it further would
3299 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3300 architecture:
3301
3302 B1 0x08000000 : INSN1
3303 B2 0x08000001 : INSN2
3304 0x08000002 : INSN3
3305 PC -> 0x08000003 : INSN4
3306
3307 Say you're stopped at 0x08000003 as above. Reverse continuing
3308 from that point should hit B2 as below. Reading the PC when the
3309 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3310 been de-executed already.
3311
3312 B1 0x08000000 : INSN1
3313 B2 PC -> 0x08000001 : INSN2
3314 0x08000002 : INSN3
3315 0x08000003 : INSN4
3316
3317 We can't apply the same logic as for forward execution, because
3318 we would wrongly adjust the PC to 0x08000000, since there's a
3319 breakpoint at PC - 1. We'd then report a hit on B1, although
3320 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3321 behaviour. */
3322 if (execution_direction == EXEC_REVERSE)
3323 return;
3324
24a73cce
UW
3325 /* If this target does not decrement the PC after breakpoints, then
3326 we have nothing to do. */
3327 regcache = get_thread_regcache (ecs->ptid);
3328 gdbarch = get_regcache_arch (regcache);
118e6252
MM
3329
3330 decr_pc = target_decr_pc_after_break (gdbarch);
3331 if (decr_pc == 0)
24a73cce
UW
3332 return;
3333
6c95b8df
PA
3334 aspace = get_regcache_aspace (regcache);
3335
8aad930b
AC
3336 /* Find the location where (if we've hit a breakpoint) the
3337 breakpoint would be. */
118e6252 3338 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 3339
1c5cfe86
PA
3340 /* Check whether there actually is a software breakpoint inserted at
3341 that location.
3342
3343 If in non-stop mode, a race condition is possible where we've
3344 removed a breakpoint, but stop events for that breakpoint were
3345 already queued and arrive later. To suppress those spurious
3346 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3347 and retire them after a number of stop events are reported. */
6c95b8df
PA
3348 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3349 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 3350 {
77f9e713 3351 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
abbb1732 3352
8213266a 3353 if (record_full_is_used ())
77f9e713 3354 record_full_gdb_operation_disable_set ();
96429cc8 3355
1c0fdd0e
UW
3356 /* When using hardware single-step, a SIGTRAP is reported for both
3357 a completed single-step and a software breakpoint. Need to
3358 differentiate between the two, as the latter needs adjusting
3359 but the former does not.
3360
3361 The SIGTRAP can be due to a completed hardware single-step only if
3362 - we didn't insert software single-step breakpoints
3363 - the thread to be examined is still the current thread
3364 - this thread is currently being stepped
3365
3366 If any of these events did not occur, we must have stopped due
3367 to hitting a software breakpoint, and have to back up to the
3368 breakpoint address.
3369
3370 As a special case, we could have hardware single-stepped a
3371 software breakpoint. In this case (prev_pc == breakpoint_pc),
3372 we also need to back up to the breakpoint address. */
3373
34b7e8a6 3374 if (thread_has_single_step_breakpoints_set (ecs->event_thread)
1c0fdd0e 3375 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
3376 || !currently_stepping (ecs->event_thread)
3377 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 3378 regcache_write_pc (regcache, breakpoint_pc);
96429cc8 3379
77f9e713 3380 do_cleanups (old_cleanups);
8aad930b 3381 }
4fa8626c
DJ
3382}
3383
edb3359d
DJ
3384static int
3385stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3386{
3387 for (frame = get_prev_frame (frame);
3388 frame != NULL;
3389 frame = get_prev_frame (frame))
3390 {
3391 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3392 return 1;
3393 if (get_frame_type (frame) != INLINE_FRAME)
3394 break;
3395 }
3396
3397 return 0;
3398}
3399
a96d9b2e
SDJ
3400/* Auxiliary function that handles syscall entry/return events.
3401 It returns 1 if the inferior should keep going (and GDB
3402 should ignore the event), or 0 if the event deserves to be
3403 processed. */
ca2163eb 3404
a96d9b2e 3405static int
ca2163eb 3406handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 3407{
ca2163eb 3408 struct regcache *regcache;
ca2163eb
PA
3409 int syscall_number;
3410
3411 if (!ptid_equal (ecs->ptid, inferior_ptid))
3412 context_switch (ecs->ptid);
3413
3414 regcache = get_thread_regcache (ecs->ptid);
f90263c1 3415 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
3416 stop_pc = regcache_read_pc (regcache);
3417
a96d9b2e
SDJ
3418 if (catch_syscall_enabled () > 0
3419 && catching_syscall_number (syscall_number) > 0)
3420 {
3421 if (debug_infrun)
3422 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3423 syscall_number);
a96d9b2e 3424
16c381f0 3425 ecs->event_thread->control.stop_bpstat
6c95b8df 3426 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 3427 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 3428
ce12b012 3429 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
3430 {
3431 /* Catchpoint hit. */
ca2163eb
PA
3432 return 0;
3433 }
a96d9b2e 3434 }
ca2163eb
PA
3435
3436 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
3437 keep_going (ecs);
3438 return 1;
a96d9b2e
SDJ
3439}
3440
7e324e48
GB
3441/* Lazily fill in the execution_control_state's stop_func_* fields. */
3442
3443static void
3444fill_in_stop_func (struct gdbarch *gdbarch,
3445 struct execution_control_state *ecs)
3446{
3447 if (!ecs->stop_func_filled_in)
3448 {
3449 /* Don't care about return value; stop_func_start and stop_func_name
3450 will both be 0 if it doesn't work. */
3451 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3452 &ecs->stop_func_start, &ecs->stop_func_end);
3453 ecs->stop_func_start
3454 += gdbarch_deprecated_function_start_offset (gdbarch);
3455
591a12a1
UW
3456 if (gdbarch_skip_entrypoint_p (gdbarch))
3457 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
3458 ecs->stop_func_start);
3459
7e324e48
GB
3460 ecs->stop_func_filled_in = 1;
3461 }
3462}
3463
4f5d7f63
PA
3464
3465/* Return the STOP_SOON field of the inferior pointed at by PTID. */
3466
3467static enum stop_kind
3468get_inferior_stop_soon (ptid_t ptid)
3469{
3470 struct inferior *inf = find_inferior_pid (ptid_get_pid (ptid));
3471
3472 gdb_assert (inf != NULL);
3473 return inf->control.stop_soon;
3474}
3475
05ba8510
PA
3476/* Given an execution control state that has been freshly filled in by
3477 an event from the inferior, figure out what it means and take
3478 appropriate action.
3479
3480 The alternatives are:
3481
22bcd14b 3482 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
3483 debugger.
3484
3485 2) keep_going and return; to wait for the next event (set
3486 ecs->event_thread->stepping_over_breakpoint to 1 to single step
3487 once). */
c906108c 3488
ec9499be 3489static void
96baa820 3490handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 3491{
d6b48e9c
PA
3492 enum stop_kind stop_soon;
3493
28736962
PA
3494 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3495 {
3496 /* We had an event in the inferior, but we are not interested in
3497 handling it at this level. The lower layers have already
3498 done what needs to be done, if anything.
3499
3500 One of the possible circumstances for this is when the
3501 inferior produces output for the console. The inferior has
3502 not stopped, and we are ignoring the event. Another possible
3503 circumstance is any event which the lower level knows will be
3504 reported multiple times without an intervening resume. */
3505 if (debug_infrun)
3506 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3507 prepare_to_wait (ecs);
3508 return;
3509 }
3510
0e5bf2a8
PA
3511 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3512 && target_can_async_p () && !sync_execution)
3513 {
3514 /* There were no unwaited-for children left in the target, but,
3515 we're not synchronously waiting for events either. Just
3516 ignore. Otherwise, if we were running a synchronous
3517 execution command, we need to cancel it and give the user
3518 back the terminal. */
3519 if (debug_infrun)
3520 fprintf_unfiltered (gdb_stdlog,
3521 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3522 prepare_to_wait (ecs);
3523 return;
3524 }
3525
1777feb0 3526 /* Cache the last pid/waitstatus. */
c32c64b7 3527 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 3528
ca005067 3529 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 3530 stop_stack_dummy = STOP_NONE;
ca005067 3531
0e5bf2a8
PA
3532 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3533 {
3534 /* No unwaited-for children left. IOW, all resumed children
3535 have exited. */
3536 if (debug_infrun)
3537 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3538
3539 stop_print_frame = 0;
22bcd14b 3540 stop_waiting (ecs);
0e5bf2a8
PA
3541 return;
3542 }
3543
8c90c137 3544 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 3545 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
3546 {
3547 ecs->event_thread = find_thread_ptid (ecs->ptid);
3548 /* If it's a new thread, add it to the thread database. */
3549 if (ecs->event_thread == NULL)
3550 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
3551
3552 /* Disable range stepping. If the next step request could use a
3553 range, this will be end up re-enabled then. */
3554 ecs->event_thread->control.may_range_step = 0;
359f5fe6 3555 }
88ed393a
JK
3556
3557 /* Dependent on valid ECS->EVENT_THREAD. */
3558 adjust_pc_after_break (ecs);
3559
3560 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3561 reinit_frame_cache ();
3562
28736962
PA
3563 breakpoint_retire_moribund ();
3564
2b009048
DJ
3565 /* First, distinguish signals caused by the debugger from signals
3566 that have to do with the program's own actions. Note that
3567 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3568 on the operating system version. Here we detect when a SIGILL or
3569 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3570 something similar for SIGSEGV, since a SIGSEGV will be generated
3571 when we're trying to execute a breakpoint instruction on a
3572 non-executable stack. This happens for call dummy breakpoints
3573 for architectures like SPARC that place call dummies on the
3574 stack. */
2b009048 3575 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
3576 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3577 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3578 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 3579 {
de0a0249
UW
3580 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3581
3582 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3583 regcache_read_pc (regcache)))
3584 {
3585 if (debug_infrun)
3586 fprintf_unfiltered (gdb_stdlog,
3587 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 3588 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 3589 }
2b009048
DJ
3590 }
3591
28736962
PA
3592 /* Mark the non-executing threads accordingly. In all-stop, all
3593 threads of all processes are stopped when we get any event
3594 reported. In non-stop mode, only the event thread stops. If
3595 we're handling a process exit in non-stop mode, there's nothing
3596 to do, as threads of the dead process are gone, and threads of
3597 any other process were left running. */
3598 if (!non_stop)
3599 set_executing (minus_one_ptid, 0);
3600 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3601 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
7aee8dc2 3602 set_executing (ecs->ptid, 0);
8c90c137 3603
488f131b
JB
3604 switch (ecs->ws.kind)
3605 {
3606 case TARGET_WAITKIND_LOADED:
527159b7 3607 if (debug_infrun)
8a9de0e4 3608 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
5c09a2c5
PA
3609 if (!ptid_equal (ecs->ptid, inferior_ptid))
3610 context_switch (ecs->ptid);
b0f4b84b
DJ
3611 /* Ignore gracefully during startup of the inferior, as it might
3612 be the shell which has just loaded some objects, otherwise
3613 add the symbols for the newly loaded objects. Also ignore at
3614 the beginning of an attach or remote session; we will query
3615 the full list of libraries once the connection is
3616 established. */
4f5d7f63
PA
3617
3618 stop_soon = get_inferior_stop_soon (ecs->ptid);
c0236d92 3619 if (stop_soon == NO_STOP_QUIETLY)
488f131b 3620 {
edcc5120
TT
3621 struct regcache *regcache;
3622
edcc5120
TT
3623 regcache = get_thread_regcache (ecs->ptid);
3624
3625 handle_solib_event ();
3626
3627 ecs->event_thread->control.stop_bpstat
3628 = bpstat_stop_status (get_regcache_aspace (regcache),
3629 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 3630
ce12b012 3631 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
3632 {
3633 /* A catchpoint triggered. */
94c57d6a
PA
3634 process_event_stop_test (ecs);
3635 return;
edcc5120 3636 }
488f131b 3637
b0f4b84b
DJ
3638 /* If requested, stop when the dynamic linker notifies
3639 gdb of events. This allows the user to get control
3640 and place breakpoints in initializer routines for
3641 dynamically loaded objects (among other things). */
a493e3e2 3642 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
3643 if (stop_on_solib_events)
3644 {
55409f9d
DJ
3645 /* Make sure we print "Stopped due to solib-event" in
3646 normal_stop. */
3647 stop_print_frame = 1;
3648
22bcd14b 3649 stop_waiting (ecs);
b0f4b84b
DJ
3650 return;
3651 }
488f131b 3652 }
b0f4b84b
DJ
3653
3654 /* If we are skipping through a shell, or through shared library
3655 loading that we aren't interested in, resume the program. If
5c09a2c5 3656 we're running the program normally, also resume. */
b0f4b84b
DJ
3657 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3658 {
74960c60
VP
3659 /* Loading of shared libraries might have changed breakpoint
3660 addresses. Make sure new breakpoints are inserted. */
a25a5a45 3661 if (stop_soon == NO_STOP_QUIETLY)
74960c60 3662 insert_breakpoints ();
a493e3e2 3663 resume (0, GDB_SIGNAL_0);
b0f4b84b
DJ
3664 prepare_to_wait (ecs);
3665 return;
3666 }
3667
5c09a2c5
PA
3668 /* But stop if we're attaching or setting up a remote
3669 connection. */
3670 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3671 || stop_soon == STOP_QUIETLY_REMOTE)
3672 {
3673 if (debug_infrun)
3674 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 3675 stop_waiting (ecs);
5c09a2c5
PA
3676 return;
3677 }
3678
3679 internal_error (__FILE__, __LINE__,
3680 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 3681
488f131b 3682 case TARGET_WAITKIND_SPURIOUS:
527159b7 3683 if (debug_infrun)
8a9de0e4 3684 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 3685 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 3686 context_switch (ecs->ptid);
a493e3e2 3687 resume (0, GDB_SIGNAL_0);
488f131b
JB
3688 prepare_to_wait (ecs);
3689 return;
c5aa993b 3690
488f131b 3691 case TARGET_WAITKIND_EXITED:
940c3c06 3692 case TARGET_WAITKIND_SIGNALLED:
527159b7 3693 if (debug_infrun)
940c3c06
PA
3694 {
3695 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3696 fprintf_unfiltered (gdb_stdlog,
3697 "infrun: TARGET_WAITKIND_EXITED\n");
3698 else
3699 fprintf_unfiltered (gdb_stdlog,
3700 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3701 }
3702
fb66883a 3703 inferior_ptid = ecs->ptid;
6c95b8df
PA
3704 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3705 set_current_program_space (current_inferior ()->pspace);
3706 handle_vfork_child_exec_or_exit (0);
1777feb0 3707 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 3708
0c557179
SDJ
3709 /* Clearing any previous state of convenience variables. */
3710 clear_exit_convenience_vars ();
3711
940c3c06
PA
3712 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3713 {
3714 /* Record the exit code in the convenience variable $_exitcode, so
3715 that the user can inspect this again later. */
3716 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3717 (LONGEST) ecs->ws.value.integer);
3718
3719 /* Also record this in the inferior itself. */
3720 current_inferior ()->has_exit_code = 1;
3721 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 3722
98eb56a4
PA
3723 /* Support the --return-child-result option. */
3724 return_child_result_value = ecs->ws.value.integer;
3725
fd664c91 3726 observer_notify_exited (ecs->ws.value.integer);
940c3c06
PA
3727 }
3728 else
0c557179
SDJ
3729 {
3730 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3731 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3732
3733 if (gdbarch_gdb_signal_to_target_p (gdbarch))
3734 {
3735 /* Set the value of the internal variable $_exitsignal,
3736 which holds the signal uncaught by the inferior. */
3737 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
3738 gdbarch_gdb_signal_to_target (gdbarch,
3739 ecs->ws.value.sig));
3740 }
3741 else
3742 {
3743 /* We don't have access to the target's method used for
3744 converting between signal numbers (GDB's internal
3745 representation <-> target's representation).
3746 Therefore, we cannot do a good job at displaying this
3747 information to the user. It's better to just warn
3748 her about it (if infrun debugging is enabled), and
3749 give up. */
3750 if (debug_infrun)
3751 fprintf_filtered (gdb_stdlog, _("\
3752Cannot fill $_exitsignal with the correct signal number.\n"));
3753 }
3754
fd664c91 3755 observer_notify_signal_exited (ecs->ws.value.sig);
0c557179 3756 }
8cf64490 3757
488f131b
JB
3758 gdb_flush (gdb_stdout);
3759 target_mourn_inferior ();
488f131b 3760 stop_print_frame = 0;
22bcd14b 3761 stop_waiting (ecs);
488f131b 3762 return;
c5aa993b 3763
488f131b 3764 /* The following are the only cases in which we keep going;
1777feb0 3765 the above cases end in a continue or goto. */
488f131b 3766 case TARGET_WAITKIND_FORKED:
deb3b17b 3767 case TARGET_WAITKIND_VFORKED:
527159b7 3768 if (debug_infrun)
fed708ed
PA
3769 {
3770 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3771 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3772 else
3773 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3774 }
c906108c 3775
e2d96639
YQ
3776 /* Check whether the inferior is displaced stepping. */
3777 {
3778 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3779 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3780 struct displaced_step_inferior_state *displaced
3781 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3782
3783 /* If checking displaced stepping is supported, and thread
3784 ecs->ptid is displaced stepping. */
3785 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3786 {
3787 struct inferior *parent_inf
3788 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3789 struct regcache *child_regcache;
3790 CORE_ADDR parent_pc;
3791
3792 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3793 indicating that the displaced stepping of syscall instruction
3794 has been done. Perform cleanup for parent process here. Note
3795 that this operation also cleans up the child process for vfork,
3796 because their pages are shared. */
a493e3e2 3797 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
e2d96639
YQ
3798
3799 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3800 {
3801 /* Restore scratch pad for child process. */
3802 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3803 }
3804
3805 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3806 the child's PC is also within the scratchpad. Set the child's PC
3807 to the parent's PC value, which has already been fixed up.
3808 FIXME: we use the parent's aspace here, although we're touching
3809 the child, because the child hasn't been added to the inferior
3810 list yet at this point. */
3811
3812 child_regcache
3813 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3814 gdbarch,
3815 parent_inf->aspace);
3816 /* Read PC value of parent process. */
3817 parent_pc = regcache_read_pc (regcache);
3818
3819 if (debug_displaced)
3820 fprintf_unfiltered (gdb_stdlog,
3821 "displaced: write child pc from %s to %s\n",
3822 paddress (gdbarch,
3823 regcache_read_pc (child_regcache)),
3824 paddress (gdbarch, parent_pc));
3825
3826 regcache_write_pc (child_regcache, parent_pc);
3827 }
3828 }
3829
5a2901d9 3830 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 3831 context_switch (ecs->ptid);
5a2901d9 3832
b242c3c2
PA
3833 /* Immediately detach breakpoints from the child before there's
3834 any chance of letting the user delete breakpoints from the
3835 breakpoint lists. If we don't do this early, it's easy to
3836 leave left over traps in the child, vis: "break foo; catch
3837 fork; c; <fork>; del; c; <child calls foo>". We only follow
3838 the fork on the last `continue', and by that time the
3839 breakpoint at "foo" is long gone from the breakpoint table.
3840 If we vforked, then we don't need to unpatch here, since both
3841 parent and child are sharing the same memory pages; we'll
3842 need to unpatch at follow/detach time instead to be certain
3843 that new breakpoints added between catchpoint hit time and
3844 vfork follow are detached. */
3845 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3846 {
b242c3c2
PA
3847 /* This won't actually modify the breakpoint list, but will
3848 physically remove the breakpoints from the child. */
d80ee84f 3849 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
3850 }
3851
34b7e8a6 3852 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 3853
e58b0e63
PA
3854 /* In case the event is caught by a catchpoint, remember that
3855 the event is to be followed at the next resume of the thread,
3856 and not immediately. */
3857 ecs->event_thread->pending_follow = ecs->ws;
3858
fb14de7b 3859 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 3860
16c381f0 3861 ecs->event_thread->control.stop_bpstat
6c95b8df 3862 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3863 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 3864
ce12b012
PA
3865 /* If no catchpoint triggered for this, then keep going. Note
3866 that we're interested in knowing the bpstat actually causes a
3867 stop, not just if it may explain the signal. Software
3868 watchpoints, for example, always appear in the bpstat. */
3869 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 3870 {
6c95b8df
PA
3871 ptid_t parent;
3872 ptid_t child;
e58b0e63 3873 int should_resume;
3e43a32a
MS
3874 int follow_child
3875 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 3876
a493e3e2 3877 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
3878
3879 should_resume = follow_fork ();
3880
6c95b8df
PA
3881 parent = ecs->ptid;
3882 child = ecs->ws.value.related_pid;
3883
3884 /* In non-stop mode, also resume the other branch. */
3885 if (non_stop && !detach_fork)
3886 {
3887 if (follow_child)
3888 switch_to_thread (parent);
3889 else
3890 switch_to_thread (child);
3891
3892 ecs->event_thread = inferior_thread ();
3893 ecs->ptid = inferior_ptid;
3894 keep_going (ecs);
3895 }
3896
3897 if (follow_child)
3898 switch_to_thread (child);
3899 else
3900 switch_to_thread (parent);
3901
e58b0e63
PA
3902 ecs->event_thread = inferior_thread ();
3903 ecs->ptid = inferior_ptid;
3904
3905 if (should_resume)
3906 keep_going (ecs);
3907 else
22bcd14b 3908 stop_waiting (ecs);
04e68871
DJ
3909 return;
3910 }
94c57d6a
PA
3911 process_event_stop_test (ecs);
3912 return;
488f131b 3913
6c95b8df
PA
3914 case TARGET_WAITKIND_VFORK_DONE:
3915 /* Done with the shared memory region. Re-insert breakpoints in
3916 the parent, and keep going. */
3917
3918 if (debug_infrun)
3e43a32a
MS
3919 fprintf_unfiltered (gdb_stdlog,
3920 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
3921
3922 if (!ptid_equal (ecs->ptid, inferior_ptid))
3923 context_switch (ecs->ptid);
3924
3925 current_inferior ()->waiting_for_vfork_done = 0;
56710373 3926 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
3927 /* This also takes care of reinserting breakpoints in the
3928 previously locked inferior. */
3929 keep_going (ecs);
3930 return;
3931
488f131b 3932 case TARGET_WAITKIND_EXECD:
527159b7 3933 if (debug_infrun)
fc5261f2 3934 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 3935
5a2901d9 3936 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 3937 context_switch (ecs->ptid);
5a2901d9 3938
fb14de7b 3939 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 3940
6c95b8df
PA
3941 /* Do whatever is necessary to the parent branch of the vfork. */
3942 handle_vfork_child_exec_or_exit (1);
3943
795e548f
PA
3944 /* This causes the eventpoints and symbol table to be reset.
3945 Must do this now, before trying to determine whether to
3946 stop. */
71b43ef8 3947 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 3948
16c381f0 3949 ecs->event_thread->control.stop_bpstat
6c95b8df 3950 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3951 stop_pc, ecs->ptid, &ecs->ws);
795e548f 3952
71b43ef8
PA
3953 /* Note that this may be referenced from inside
3954 bpstat_stop_status above, through inferior_has_execd. */
3955 xfree (ecs->ws.value.execd_pathname);
3956 ecs->ws.value.execd_pathname = NULL;
3957
04e68871 3958 /* If no catchpoint triggered for this, then keep going. */
ce12b012 3959 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 3960 {
a493e3e2 3961 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
3962 keep_going (ecs);
3963 return;
3964 }
94c57d6a
PA
3965 process_event_stop_test (ecs);
3966 return;
488f131b 3967
b4dc5ffa
MK
3968 /* Be careful not to try to gather much state about a thread
3969 that's in a syscall. It's frequently a losing proposition. */
488f131b 3970 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 3971 if (debug_infrun)
3e43a32a
MS
3972 fprintf_unfiltered (gdb_stdlog,
3973 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 3974 /* Getting the current syscall number. */
94c57d6a
PA
3975 if (handle_syscall_event (ecs) == 0)
3976 process_event_stop_test (ecs);
3977 return;
c906108c 3978
488f131b
JB
3979 /* Before examining the threads further, step this thread to
3980 get it entirely out of the syscall. (We get notice of the
3981 event when the thread is just on the verge of exiting a
3982 syscall. Stepping one instruction seems to get it back
b4dc5ffa 3983 into user code.) */
488f131b 3984 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 3985 if (debug_infrun)
3e43a32a
MS
3986 fprintf_unfiltered (gdb_stdlog,
3987 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
3988 if (handle_syscall_event (ecs) == 0)
3989 process_event_stop_test (ecs);
3990 return;
c906108c 3991
488f131b 3992 case TARGET_WAITKIND_STOPPED:
527159b7 3993 if (debug_infrun)
8a9de0e4 3994 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 3995 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
4f5d7f63
PA
3996 handle_signal_stop (ecs);
3997 return;
c906108c 3998
b2175913 3999 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
4000 if (debug_infrun)
4001 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 4002 /* Reverse execution: target ran out of history info. */
eab402df 4003
34b7e8a6 4004 delete_just_stopped_threads_single_step_breakpoints ();
fb14de7b 4005 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
fd664c91 4006 observer_notify_no_history ();
22bcd14b 4007 stop_waiting (ecs);
b2175913 4008 return;
488f131b 4009 }
4f5d7f63
PA
4010}
4011
4012/* Come here when the program has stopped with a signal. */
4013
4014static void
4015handle_signal_stop (struct execution_control_state *ecs)
4016{
4017 struct frame_info *frame;
4018 struct gdbarch *gdbarch;
4019 int stopped_by_watchpoint;
4020 enum stop_kind stop_soon;
4021 int random_signal;
c906108c 4022
f0407826
DE
4023 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
4024
4025 /* Do we need to clean up the state of a thread that has
4026 completed a displaced single-step? (Doing so usually affects
4027 the PC, so do it here, before we set stop_pc.) */
4028 displaced_step_fixup (ecs->ptid,
4029 ecs->event_thread->suspend.stop_signal);
4030
4031 /* If we either finished a single-step or hit a breakpoint, but
4032 the user wanted this thread to be stopped, pretend we got a
4033 SIG0 (generic unsignaled stop). */
4034 if (ecs->event_thread->stop_requested
4035 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4036 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 4037
515630c5 4038 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 4039
527159b7 4040 if (debug_infrun)
237fc4c9 4041 {
5af949e3
UW
4042 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4043 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
4044 struct cleanup *old_chain = save_inferior_ptid ();
4045
4046 inferior_ptid = ecs->ptid;
5af949e3
UW
4047
4048 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
4049 paddress (gdbarch, stop_pc));
d92524f1 4050 if (target_stopped_by_watchpoint ())
237fc4c9
PA
4051 {
4052 CORE_ADDR addr;
abbb1732 4053
237fc4c9
PA
4054 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
4055
4056 if (target_stopped_data_address (&current_target, &addr))
4057 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
4058 "infrun: stopped data address = %s\n",
4059 paddress (gdbarch, addr));
237fc4c9
PA
4060 else
4061 fprintf_unfiltered (gdb_stdlog,
4062 "infrun: (no data address available)\n");
4063 }
7f82dfc7
JK
4064
4065 do_cleanups (old_chain);
237fc4c9 4066 }
527159b7 4067
36fa8042
PA
4068 /* This is originated from start_remote(), start_inferior() and
4069 shared libraries hook functions. */
4070 stop_soon = get_inferior_stop_soon (ecs->ptid);
4071 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4072 {
4073 if (!ptid_equal (ecs->ptid, inferior_ptid))
4074 context_switch (ecs->ptid);
4075 if (debug_infrun)
4076 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4077 stop_print_frame = 1;
22bcd14b 4078 stop_waiting (ecs);
36fa8042
PA
4079 return;
4080 }
4081
4082 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4083 && stop_after_trap)
4084 {
4085 if (!ptid_equal (ecs->ptid, inferior_ptid))
4086 context_switch (ecs->ptid);
4087 if (debug_infrun)
4088 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4089 stop_print_frame = 0;
22bcd14b 4090 stop_waiting (ecs);
36fa8042
PA
4091 return;
4092 }
4093
4094 /* This originates from attach_command(). We need to overwrite
4095 the stop_signal here, because some kernels don't ignore a
4096 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4097 See more comments in inferior.h. On the other hand, if we
4098 get a non-SIGSTOP, report it to the user - assume the backend
4099 will handle the SIGSTOP if it should show up later.
4100
4101 Also consider that the attach is complete when we see a
4102 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4103 target extended-remote report it instead of a SIGSTOP
4104 (e.g. gdbserver). We already rely on SIGTRAP being our
4105 signal, so this is no exception.
4106
4107 Also consider that the attach is complete when we see a
4108 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4109 the target to stop all threads of the inferior, in case the
4110 low level attach operation doesn't stop them implicitly. If
4111 they weren't stopped implicitly, then the stub will report a
4112 GDB_SIGNAL_0, meaning: stopped for no particular reason
4113 other than GDB's request. */
4114 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4115 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4116 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4117 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4118 {
4119 stop_print_frame = 1;
22bcd14b 4120 stop_waiting (ecs);
36fa8042
PA
4121 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4122 return;
4123 }
4124
488f131b 4125 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
4126 so, then switch to that thread. */
4127 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 4128 {
527159b7 4129 if (debug_infrun)
8a9de0e4 4130 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 4131
0d1e5fa7 4132 context_switch (ecs->ptid);
c5aa993b 4133
9a4105ab
AC
4134 if (deprecated_context_hook)
4135 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 4136 }
c906108c 4137
568d6575
UW
4138 /* At this point, get hold of the now-current thread's frame. */
4139 frame = get_current_frame ();
4140 gdbarch = get_frame_arch (frame);
4141
2adfaa28 4142 /* Pull the single step breakpoints out of the target. */
34b7e8a6 4143 if (gdbarch_software_single_step_p (gdbarch))
488f131b 4144 {
34b7e8a6 4145 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
2adfaa28
PA
4146 {
4147 struct regcache *regcache;
4148 struct address_space *aspace;
4149 CORE_ADDR pc;
4150
4151 regcache = get_thread_regcache (ecs->ptid);
4152 aspace = get_regcache_aspace (regcache);
4153 pc = regcache_read_pc (regcache);
34b7e8a6
PA
4154
4155 /* However, before doing so, if this single-step breakpoint was
4156 actually for another thread, set this thread up for moving
4157 past it. */
4158 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
4159 aspace, pc))
4160 {
4161 if (single_step_breakpoint_inserted_here_p (aspace, pc))
4162 {
4163 if (debug_infrun)
4164 {
4165 fprintf_unfiltered (gdb_stdlog,
4166 "infrun: [%s] hit another thread's "
4167 "single-step breakpoint\n",
4168 target_pid_to_str (ecs->ptid));
4169 }
4170 ecs->hit_singlestep_breakpoint = 1;
4171 }
4172 }
4173 else
2adfaa28
PA
4174 {
4175 if (debug_infrun)
4176 {
4177 fprintf_unfiltered (gdb_stdlog,
34b7e8a6
PA
4178 "infrun: [%s] hit its "
4179 "single-step breakpoint\n",
4180 target_pid_to_str (ecs->ptid));
2adfaa28 4181 }
2adfaa28
PA
4182 }
4183 }
4184
34b7e8a6 4185 delete_just_stopped_threads_single_step_breakpoints ();
488f131b 4186 }
c906108c 4187
963f9c80
PA
4188 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4189 && ecs->event_thread->control.trap_expected
4190 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
4191 stopped_by_watchpoint = 0;
4192 else
4193 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4194
4195 /* If necessary, step over this watchpoint. We'll be back to display
4196 it in a moment. */
4197 if (stopped_by_watchpoint
d92524f1 4198 && (target_have_steppable_watchpoint
568d6575 4199 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 4200 {
488f131b
JB
4201 /* At this point, we are stopped at an instruction which has
4202 attempted to write to a piece of memory under control of
4203 a watchpoint. The instruction hasn't actually executed
4204 yet. If we were to evaluate the watchpoint expression
4205 now, we would get the old value, and therefore no change
4206 would seem to have occurred.
4207
4208 In order to make watchpoints work `right', we really need
4209 to complete the memory write, and then evaluate the
d983da9c
DJ
4210 watchpoint expression. We do this by single-stepping the
4211 target.
4212
7f89fd65 4213 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
4214 it. For example, the PA can (with some kernel cooperation)
4215 single step over a watchpoint without disabling the watchpoint.
4216
4217 It is far more common to need to disable a watchpoint to step
4218 the inferior over it. If we have non-steppable watchpoints,
4219 we must disable the current watchpoint; it's simplest to
963f9c80
PA
4220 disable all watchpoints.
4221
4222 Any breakpoint at PC must also be stepped over -- if there's
4223 one, it will have already triggered before the watchpoint
4224 triggered, and we either already reported it to the user, or
4225 it didn't cause a stop and we called keep_going. In either
4226 case, if there was a breakpoint at PC, we must be trying to
4227 step past it. */
4228 ecs->event_thread->stepping_over_watchpoint = 1;
4229 keep_going (ecs);
488f131b
JB
4230 return;
4231 }
4232
4e1c45ea 4233 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 4234 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
4235 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4236 ecs->event_thread->control.stop_step = 0;
488f131b 4237 stop_print_frame = 1;
488f131b 4238 stopped_by_random_signal = 0;
488f131b 4239
edb3359d
DJ
4240 /* Hide inlined functions starting here, unless we just performed stepi or
4241 nexti. After stepi and nexti, always show the innermost frame (not any
4242 inline function call sites). */
16c381f0 4243 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
4244 {
4245 struct address_space *aspace =
4246 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4247
4248 /* skip_inline_frames is expensive, so we avoid it if we can
4249 determine that the address is one where functions cannot have
4250 been inlined. This improves performance with inferiors that
4251 load a lot of shared libraries, because the solib event
4252 breakpoint is defined as the address of a function (i.e. not
4253 inline). Note that we have to check the previous PC as well
4254 as the current one to catch cases when we have just
4255 single-stepped off a breakpoint prior to reinstating it.
4256 Note that we're assuming that the code we single-step to is
4257 not inline, but that's not definitive: there's nothing
4258 preventing the event breakpoint function from containing
4259 inlined code, and the single-step ending up there. If the
4260 user had set a breakpoint on that inlined code, the missing
4261 skip_inline_frames call would break things. Fortunately
4262 that's an extremely unlikely scenario. */
09ac7c10 4263 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
4264 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4265 && ecs->event_thread->control.trap_expected
4266 && pc_at_non_inline_function (aspace,
4267 ecs->event_thread->prev_pc,
09ac7c10 4268 &ecs->ws)))
1c5a993e
MR
4269 {
4270 skip_inline_frames (ecs->ptid);
4271
4272 /* Re-fetch current thread's frame in case that invalidated
4273 the frame cache. */
4274 frame = get_current_frame ();
4275 gdbarch = get_frame_arch (frame);
4276 }
0574c78f 4277 }
edb3359d 4278
a493e3e2 4279 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 4280 && ecs->event_thread->control.trap_expected
568d6575 4281 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 4282 && currently_stepping (ecs->event_thread))
3352ef37 4283 {
b50d7442 4284 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 4285 also on an instruction that needs to be stepped multiple
1777feb0 4286 times before it's been fully executing. E.g., architectures
3352ef37
AC
4287 with a delay slot. It needs to be stepped twice, once for
4288 the instruction and once for the delay slot. */
4289 int step_through_delay
568d6575 4290 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 4291
527159b7 4292 if (debug_infrun && step_through_delay)
8a9de0e4 4293 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
4294 if (ecs->event_thread->control.step_range_end == 0
4295 && step_through_delay)
3352ef37
AC
4296 {
4297 /* The user issued a continue when stopped at a breakpoint.
4298 Set up for another trap and get out of here. */
4e1c45ea 4299 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4300 keep_going (ecs);
4301 return;
4302 }
4303 else if (step_through_delay)
4304 {
4305 /* The user issued a step when stopped at a breakpoint.
4306 Maybe we should stop, maybe we should not - the delay
4307 slot *might* correspond to a line of source. In any
ca67fcb8
VP
4308 case, don't decide that here, just set
4309 ecs->stepping_over_breakpoint, making sure we
4310 single-step again before breakpoints are re-inserted. */
4e1c45ea 4311 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4312 }
4313 }
4314
ab04a2af
TT
4315 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4316 handles this event. */
4317 ecs->event_thread->control.stop_bpstat
4318 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4319 stop_pc, ecs->ptid, &ecs->ws);
db82e815 4320
ab04a2af
TT
4321 /* Following in case break condition called a
4322 function. */
4323 stop_print_frame = 1;
73dd234f 4324
ab04a2af
TT
4325 /* This is where we handle "moribund" watchpoints. Unlike
4326 software breakpoints traps, hardware watchpoint traps are
4327 always distinguishable from random traps. If no high-level
4328 watchpoint is associated with the reported stop data address
4329 anymore, then the bpstat does not explain the signal ---
4330 simply make sure to ignore it if `stopped_by_watchpoint' is
4331 set. */
4332
4333 if (debug_infrun
4334 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 4335 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 4336 GDB_SIGNAL_TRAP)
ab04a2af
TT
4337 && stopped_by_watchpoint)
4338 fprintf_unfiltered (gdb_stdlog,
4339 "infrun: no user watchpoint explains "
4340 "watchpoint SIGTRAP, ignoring\n");
73dd234f 4341
bac7d97b 4342 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
4343 at one stage in the past included checks for an inferior
4344 function call's call dummy's return breakpoint. The original
4345 comment, that went with the test, read:
03cebad2 4346
ab04a2af
TT
4347 ``End of a stack dummy. Some systems (e.g. Sony news) give
4348 another signal besides SIGTRAP, so check here as well as
4349 above.''
73dd234f 4350
ab04a2af
TT
4351 If someone ever tries to get call dummys on a
4352 non-executable stack to work (where the target would stop
4353 with something like a SIGSEGV), then those tests might need
4354 to be re-instated. Given, however, that the tests were only
4355 enabled when momentary breakpoints were not being used, I
4356 suspect that it won't be the case.
488f131b 4357
ab04a2af
TT
4358 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4359 be necessary for call dummies on a non-executable stack on
4360 SPARC. */
488f131b 4361
bac7d97b 4362 /* See if the breakpoints module can explain the signal. */
47591c29
PA
4363 random_signal
4364 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4365 ecs->event_thread->suspend.stop_signal);
bac7d97b
PA
4366
4367 /* If not, perhaps stepping/nexting can. */
4368 if (random_signal)
4369 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4370 && currently_stepping (ecs->event_thread));
ab04a2af 4371
2adfaa28
PA
4372 /* Perhaps the thread hit a single-step breakpoint of _another_
4373 thread. Single-step breakpoints are transparent to the
4374 breakpoints module. */
4375 if (random_signal)
4376 random_signal = !ecs->hit_singlestep_breakpoint;
4377
bac7d97b
PA
4378 /* No? Perhaps we got a moribund watchpoint. */
4379 if (random_signal)
4380 random_signal = !stopped_by_watchpoint;
ab04a2af 4381
488f131b
JB
4382 /* For the program's own signals, act according to
4383 the signal handling tables. */
4384
ce12b012 4385 if (random_signal)
488f131b
JB
4386 {
4387 /* Signal not for debugging purposes. */
24291992 4388 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
c9737c08 4389 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 4390
527159b7 4391 if (debug_infrun)
c9737c08
PA
4392 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
4393 gdb_signal_to_symbol_string (stop_signal));
527159b7 4394
488f131b
JB
4395 stopped_by_random_signal = 1;
4396
252fbfc8
PA
4397 /* Always stop on signals if we're either just gaining control
4398 of the program, or the user explicitly requested this thread
4399 to remain stopped. */
d6b48e9c 4400 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 4401 || ecs->event_thread->stop_requested
24291992 4402 || (!inf->detaching
16c381f0 4403 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 4404 {
22bcd14b 4405 stop_waiting (ecs);
488f131b
JB
4406 return;
4407 }
b57bacec
PA
4408
4409 /* Notify observers the signal has "handle print" set. Note we
4410 returned early above if stopping; normal_stop handles the
4411 printing in that case. */
4412 if (signal_print[ecs->event_thread->suspend.stop_signal])
4413 {
4414 /* The signal table tells us to print about this signal. */
4415 target_terminal_ours_for_output ();
4416 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
4417 target_terminal_inferior ();
4418 }
488f131b
JB
4419
4420 /* Clear the signal if it should not be passed. */
16c381f0 4421 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 4422 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 4423
fb14de7b 4424 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 4425 && ecs->event_thread->control.trap_expected
8358c15c 4426 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
4427 {
4428 /* We were just starting a new sequence, attempting to
4429 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 4430 Instead this signal arrives. This signal will take us out
68f53502
AC
4431 of the stepping range so GDB needs to remember to, when
4432 the signal handler returns, resume stepping off that
4433 breakpoint. */
4434 /* To simplify things, "continue" is forced to use the same
4435 code paths as single-step - set a breakpoint at the
4436 signal return address and then, once hit, step off that
4437 breakpoint. */
237fc4c9
PA
4438 if (debug_infrun)
4439 fprintf_unfiltered (gdb_stdlog,
4440 "infrun: signal arrived while stepping over "
4441 "breakpoint\n");
d3169d93 4442
2c03e5be 4443 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 4444 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4445 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4446 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
4447
4448 /* If we were nexting/stepping some other thread, switch to
4449 it, so that we don't continue it, losing control. */
4450 if (!switch_back_to_stepped_thread (ecs))
4451 keep_going (ecs);
9d799f85 4452 return;
68f53502 4453 }
9d799f85 4454
16c381f0 4455 if (ecs->event_thread->control.step_range_end != 0
a493e3e2 4456 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
ce4c476a 4457 && pc_in_thread_step_range (stop_pc, ecs->event_thread)
edb3359d 4458 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 4459 ecs->event_thread->control.step_stack_frame_id)
8358c15c 4460 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
4461 {
4462 /* The inferior is about to take a signal that will take it
4463 out of the single step range. Set a breakpoint at the
4464 current PC (which is presumably where the signal handler
4465 will eventually return) and then allow the inferior to
4466 run free.
4467
4468 Note that this is only needed for a signal delivered
4469 while in the single-step range. Nested signals aren't a
4470 problem as they eventually all return. */
237fc4c9
PA
4471 if (debug_infrun)
4472 fprintf_unfiltered (gdb_stdlog,
4473 "infrun: signal may take us out of "
4474 "single-step range\n");
4475
2c03e5be 4476 insert_hp_step_resume_breakpoint_at_frame (frame);
2455069d
UW
4477 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4478 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4479 keep_going (ecs);
4480 return;
d303a6c7 4481 }
9d799f85
AC
4482
4483 /* Note: step_resume_breakpoint may be non-NULL. This occures
4484 when either there's a nested signal, or when there's a
4485 pending signal enabled just as the signal handler returns
4486 (leaving the inferior at the step-resume-breakpoint without
4487 actually executing it). Either way continue until the
4488 breakpoint is really hit. */
c447ac0b
PA
4489
4490 if (!switch_back_to_stepped_thread (ecs))
4491 {
4492 if (debug_infrun)
4493 fprintf_unfiltered (gdb_stdlog,
4494 "infrun: random signal, keep going\n");
4495
4496 keep_going (ecs);
4497 }
4498 return;
488f131b 4499 }
94c57d6a
PA
4500
4501 process_event_stop_test (ecs);
4502}
4503
4504/* Come here when we've got some debug event / signal we can explain
4505 (IOW, not a random signal), and test whether it should cause a
4506 stop, or whether we should resume the inferior (transparently).
4507 E.g., could be a breakpoint whose condition evaluates false; we
4508 could be still stepping within the line; etc. */
4509
4510static void
4511process_event_stop_test (struct execution_control_state *ecs)
4512{
4513 struct symtab_and_line stop_pc_sal;
4514 struct frame_info *frame;
4515 struct gdbarch *gdbarch;
cdaa5b73
PA
4516 CORE_ADDR jmp_buf_pc;
4517 struct bpstat_what what;
94c57d6a 4518
cdaa5b73 4519 /* Handle cases caused by hitting a breakpoint. */
611c83ae 4520
cdaa5b73
PA
4521 frame = get_current_frame ();
4522 gdbarch = get_frame_arch (frame);
fcf3daef 4523
cdaa5b73 4524 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 4525
cdaa5b73
PA
4526 if (what.call_dummy)
4527 {
4528 stop_stack_dummy = what.call_dummy;
4529 }
186c406b 4530
cdaa5b73
PA
4531 /* If we hit an internal event that triggers symbol changes, the
4532 current frame will be invalidated within bpstat_what (e.g., if we
4533 hit an internal solib event). Re-fetch it. */
4534 frame = get_current_frame ();
4535 gdbarch = get_frame_arch (frame);
e2e4d78b 4536
cdaa5b73
PA
4537 switch (what.main_action)
4538 {
4539 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4540 /* If we hit the breakpoint at longjmp while stepping, we
4541 install a momentary breakpoint at the target of the
4542 jmp_buf. */
186c406b 4543
cdaa5b73
PA
4544 if (debug_infrun)
4545 fprintf_unfiltered (gdb_stdlog,
4546 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 4547
cdaa5b73 4548 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 4549
cdaa5b73
PA
4550 if (what.is_longjmp)
4551 {
4552 struct value *arg_value;
4553
4554 /* If we set the longjmp breakpoint via a SystemTap probe,
4555 then use it to extract the arguments. The destination PC
4556 is the third argument to the probe. */
4557 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4558 if (arg_value)
8fa0c4f8
AA
4559 {
4560 jmp_buf_pc = value_as_address (arg_value);
4561 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
4562 }
cdaa5b73
PA
4563 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4564 || !gdbarch_get_longjmp_target (gdbarch,
4565 frame, &jmp_buf_pc))
e2e4d78b 4566 {
cdaa5b73
PA
4567 if (debug_infrun)
4568 fprintf_unfiltered (gdb_stdlog,
4569 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4570 "(!gdbarch_get_longjmp_target)\n");
4571 keep_going (ecs);
4572 return;
e2e4d78b 4573 }
e2e4d78b 4574
cdaa5b73
PA
4575 /* Insert a breakpoint at resume address. */
4576 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4577 }
4578 else
4579 check_exception_resume (ecs, frame);
4580 keep_going (ecs);
4581 return;
e81a37f7 4582
cdaa5b73
PA
4583 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4584 {
4585 struct frame_info *init_frame;
e81a37f7 4586
cdaa5b73 4587 /* There are several cases to consider.
c906108c 4588
cdaa5b73
PA
4589 1. The initiating frame no longer exists. In this case we
4590 must stop, because the exception or longjmp has gone too
4591 far.
2c03e5be 4592
cdaa5b73
PA
4593 2. The initiating frame exists, and is the same as the
4594 current frame. We stop, because the exception or longjmp
4595 has been caught.
2c03e5be 4596
cdaa5b73
PA
4597 3. The initiating frame exists and is different from the
4598 current frame. This means the exception or longjmp has
4599 been caught beneath the initiating frame, so keep going.
c906108c 4600
cdaa5b73
PA
4601 4. longjmp breakpoint has been placed just to protect
4602 against stale dummy frames and user is not interested in
4603 stopping around longjmps. */
c5aa993b 4604
cdaa5b73
PA
4605 if (debug_infrun)
4606 fprintf_unfiltered (gdb_stdlog,
4607 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 4608
cdaa5b73
PA
4609 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4610 != NULL);
4611 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 4612
cdaa5b73
PA
4613 if (what.is_longjmp)
4614 {
b67a2c6f 4615 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 4616
cdaa5b73 4617 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 4618 {
cdaa5b73
PA
4619 /* Case 4. */
4620 keep_going (ecs);
4621 return;
e5ef252a 4622 }
cdaa5b73 4623 }
c5aa993b 4624
cdaa5b73 4625 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 4626
cdaa5b73
PA
4627 if (init_frame)
4628 {
4629 struct frame_id current_id
4630 = get_frame_id (get_current_frame ());
4631 if (frame_id_eq (current_id,
4632 ecs->event_thread->initiating_frame))
4633 {
4634 /* Case 2. Fall through. */
4635 }
4636 else
4637 {
4638 /* Case 3. */
4639 keep_going (ecs);
4640 return;
4641 }
68f53502 4642 }
488f131b 4643
cdaa5b73
PA
4644 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
4645 exists. */
4646 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 4647
bdc36728 4648 end_stepping_range (ecs);
cdaa5b73
PA
4649 }
4650 return;
e5ef252a 4651
cdaa5b73
PA
4652 case BPSTAT_WHAT_SINGLE:
4653 if (debug_infrun)
4654 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4655 ecs->event_thread->stepping_over_breakpoint = 1;
4656 /* Still need to check other stuff, at least the case where we
4657 are stepping and step out of the right range. */
4658 break;
e5ef252a 4659
cdaa5b73
PA
4660 case BPSTAT_WHAT_STEP_RESUME:
4661 if (debug_infrun)
4662 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 4663
cdaa5b73
PA
4664 delete_step_resume_breakpoint (ecs->event_thread);
4665 if (ecs->event_thread->control.proceed_to_finish
4666 && execution_direction == EXEC_REVERSE)
4667 {
4668 struct thread_info *tp = ecs->event_thread;
4669
4670 /* We are finishing a function in reverse, and just hit the
4671 step-resume breakpoint at the start address of the
4672 function, and we're almost there -- just need to back up
4673 by one more single-step, which should take us back to the
4674 function call. */
4675 tp->control.step_range_start = tp->control.step_range_end = 1;
4676 keep_going (ecs);
e5ef252a 4677 return;
cdaa5b73
PA
4678 }
4679 fill_in_stop_func (gdbarch, ecs);
4680 if (stop_pc == ecs->stop_func_start
4681 && execution_direction == EXEC_REVERSE)
4682 {
4683 /* We are stepping over a function call in reverse, and just
4684 hit the step-resume breakpoint at the start address of
4685 the function. Go back to single-stepping, which should
4686 take us back to the function call. */
4687 ecs->event_thread->stepping_over_breakpoint = 1;
4688 keep_going (ecs);
4689 return;
4690 }
4691 break;
e5ef252a 4692
cdaa5b73
PA
4693 case BPSTAT_WHAT_STOP_NOISY:
4694 if (debug_infrun)
4695 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4696 stop_print_frame = 1;
e5ef252a 4697
99619bea
PA
4698 /* Assume the thread stopped for a breapoint. We'll still check
4699 whether a/the breakpoint is there when the thread is next
4700 resumed. */
4701 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 4702
22bcd14b 4703 stop_waiting (ecs);
cdaa5b73 4704 return;
e5ef252a 4705
cdaa5b73
PA
4706 case BPSTAT_WHAT_STOP_SILENT:
4707 if (debug_infrun)
4708 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4709 stop_print_frame = 0;
e5ef252a 4710
99619bea
PA
4711 /* Assume the thread stopped for a breapoint. We'll still check
4712 whether a/the breakpoint is there when the thread is next
4713 resumed. */
4714 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 4715 stop_waiting (ecs);
cdaa5b73
PA
4716 return;
4717
4718 case BPSTAT_WHAT_HP_STEP_RESUME:
4719 if (debug_infrun)
4720 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4721
4722 delete_step_resume_breakpoint (ecs->event_thread);
4723 if (ecs->event_thread->step_after_step_resume_breakpoint)
4724 {
4725 /* Back when the step-resume breakpoint was inserted, we
4726 were trying to single-step off a breakpoint. Go back to
4727 doing that. */
4728 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4729 ecs->event_thread->stepping_over_breakpoint = 1;
4730 keep_going (ecs);
4731 return;
e5ef252a 4732 }
cdaa5b73
PA
4733 break;
4734
4735 case BPSTAT_WHAT_KEEP_CHECKING:
4736 break;
e5ef252a 4737 }
c906108c 4738
cdaa5b73
PA
4739 /* We come here if we hit a breakpoint but should not stop for it.
4740 Possibly we also were stepping and should stop for that. So fall
4741 through and test for stepping. But, if not stepping, do not
4742 stop. */
c906108c 4743
a7212384
UW
4744 /* In all-stop mode, if we're currently stepping but have stopped in
4745 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
4746 if (switch_back_to_stepped_thread (ecs))
4747 return;
776f04fa 4748
8358c15c 4749 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 4750 {
527159b7 4751 if (debug_infrun)
d3169d93
DJ
4752 fprintf_unfiltered (gdb_stdlog,
4753 "infrun: step-resume breakpoint is inserted\n");
527159b7 4754
488f131b
JB
4755 /* Having a step-resume breakpoint overrides anything
4756 else having to do with stepping commands until
4757 that breakpoint is reached. */
488f131b
JB
4758 keep_going (ecs);
4759 return;
4760 }
c5aa993b 4761
16c381f0 4762 if (ecs->event_thread->control.step_range_end == 0)
488f131b 4763 {
527159b7 4764 if (debug_infrun)
8a9de0e4 4765 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 4766 /* Likewise if we aren't even stepping. */
488f131b
JB
4767 keep_going (ecs);
4768 return;
4769 }
c5aa993b 4770
4b7703ad
JB
4771 /* Re-fetch current thread's frame in case the code above caused
4772 the frame cache to be re-initialized, making our FRAME variable
4773 a dangling pointer. */
4774 frame = get_current_frame ();
628fe4e4 4775 gdbarch = get_frame_arch (frame);
7e324e48 4776 fill_in_stop_func (gdbarch, ecs);
4b7703ad 4777
488f131b 4778 /* If stepping through a line, keep going if still within it.
c906108c 4779
488f131b
JB
4780 Note that step_range_end is the address of the first instruction
4781 beyond the step range, and NOT the address of the last instruction
31410e84
MS
4782 within it!
4783
4784 Note also that during reverse execution, we may be stepping
4785 through a function epilogue and therefore must detect when
4786 the current-frame changes in the middle of a line. */
4787
ce4c476a 4788 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 4789 && (execution_direction != EXEC_REVERSE
388a8562 4790 || frame_id_eq (get_frame_id (frame),
16c381f0 4791 ecs->event_thread->control.step_frame_id)))
488f131b 4792 {
527159b7 4793 if (debug_infrun)
5af949e3
UW
4794 fprintf_unfiltered
4795 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
4796 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4797 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 4798
c1e36e3e
PA
4799 /* Tentatively re-enable range stepping; `resume' disables it if
4800 necessary (e.g., if we're stepping over a breakpoint or we
4801 have software watchpoints). */
4802 ecs->event_thread->control.may_range_step = 1;
4803
b2175913
MS
4804 /* When stepping backward, stop at beginning of line range
4805 (unless it's the function entry point, in which case
4806 keep going back to the call point). */
16c381f0 4807 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
4808 && stop_pc != ecs->stop_func_start
4809 && execution_direction == EXEC_REVERSE)
bdc36728 4810 end_stepping_range (ecs);
b2175913
MS
4811 else
4812 keep_going (ecs);
4813
488f131b
JB
4814 return;
4815 }
c5aa993b 4816
488f131b 4817 /* We stepped out of the stepping range. */
c906108c 4818
488f131b 4819 /* If we are stepping at the source level and entered the runtime
388a8562
MS
4820 loader dynamic symbol resolution code...
4821
4822 EXEC_FORWARD: we keep on single stepping until we exit the run
4823 time loader code and reach the callee's address.
4824
4825 EXEC_REVERSE: we've already executed the callee (backward), and
4826 the runtime loader code is handled just like any other
4827 undebuggable function call. Now we need only keep stepping
4828 backward through the trampoline code, and that's handled further
4829 down, so there is nothing for us to do here. */
4830
4831 if (execution_direction != EXEC_REVERSE
16c381f0 4832 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 4833 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 4834 {
4c8c40e6 4835 CORE_ADDR pc_after_resolver =
568d6575 4836 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 4837
527159b7 4838 if (debug_infrun)
3e43a32a
MS
4839 fprintf_unfiltered (gdb_stdlog,
4840 "infrun: stepped into dynsym resolve code\n");
527159b7 4841
488f131b
JB
4842 if (pc_after_resolver)
4843 {
4844 /* Set up a step-resume breakpoint at the address
4845 indicated by SKIP_SOLIB_RESOLVER. */
4846 struct symtab_and_line sr_sal;
abbb1732 4847
fe39c653 4848 init_sal (&sr_sal);
488f131b 4849 sr_sal.pc = pc_after_resolver;
6c95b8df 4850 sr_sal.pspace = get_frame_program_space (frame);
488f131b 4851
a6d9a66e
UW
4852 insert_step_resume_breakpoint_at_sal (gdbarch,
4853 sr_sal, null_frame_id);
c5aa993b 4854 }
c906108c 4855
488f131b
JB
4856 keep_going (ecs);
4857 return;
4858 }
c906108c 4859
16c381f0
JK
4860 if (ecs->event_thread->control.step_range_end != 1
4861 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4862 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 4863 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 4864 {
527159b7 4865 if (debug_infrun)
3e43a32a
MS
4866 fprintf_unfiltered (gdb_stdlog,
4867 "infrun: stepped into signal trampoline\n");
42edda50 4868 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
4869 a signal trampoline (either by a signal being delivered or by
4870 the signal handler returning). Just single-step until the
4871 inferior leaves the trampoline (either by calling the handler
4872 or returning). */
488f131b
JB
4873 keep_going (ecs);
4874 return;
4875 }
c906108c 4876
14132e89
MR
4877 /* If we're in the return path from a shared library trampoline,
4878 we want to proceed through the trampoline when stepping. */
4879 /* macro/2012-04-25: This needs to come before the subroutine
4880 call check below as on some targets return trampolines look
4881 like subroutine calls (MIPS16 return thunks). */
4882 if (gdbarch_in_solib_return_trampoline (gdbarch,
4883 stop_pc, ecs->stop_func_name)
4884 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4885 {
4886 /* Determine where this trampoline returns. */
4887 CORE_ADDR real_stop_pc;
4888
4889 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4890
4891 if (debug_infrun)
4892 fprintf_unfiltered (gdb_stdlog,
4893 "infrun: stepped into solib return tramp\n");
4894
4895 /* Only proceed through if we know where it's going. */
4896 if (real_stop_pc)
4897 {
4898 /* And put the step-breakpoint there and go until there. */
4899 struct symtab_and_line sr_sal;
4900
4901 init_sal (&sr_sal); /* initialize to zeroes */
4902 sr_sal.pc = real_stop_pc;
4903 sr_sal.section = find_pc_overlay (sr_sal.pc);
4904 sr_sal.pspace = get_frame_program_space (frame);
4905
4906 /* Do not specify what the fp should be when we stop since
4907 on some machines the prologue is where the new fp value
4908 is established. */
4909 insert_step_resume_breakpoint_at_sal (gdbarch,
4910 sr_sal, null_frame_id);
4911
4912 /* Restart without fiddling with the step ranges or
4913 other state. */
4914 keep_going (ecs);
4915 return;
4916 }
4917 }
4918
c17eaafe
DJ
4919 /* Check for subroutine calls. The check for the current frame
4920 equalling the step ID is not necessary - the check of the
4921 previous frame's ID is sufficient - but it is a common case and
4922 cheaper than checking the previous frame's ID.
14e60db5
DJ
4923
4924 NOTE: frame_id_eq will never report two invalid frame IDs as
4925 being equal, so to get into this block, both the current and
4926 previous frame must have valid frame IDs. */
005ca36a
JB
4927 /* The outer_frame_id check is a heuristic to detect stepping
4928 through startup code. If we step over an instruction which
4929 sets the stack pointer from an invalid value to a valid value,
4930 we may detect that as a subroutine call from the mythical
4931 "outermost" function. This could be fixed by marking
4932 outermost frames as !stack_p,code_p,special_p. Then the
4933 initial outermost frame, before sp was valid, would
ce6cca6d 4934 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 4935 for more. */
edb3359d 4936 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 4937 ecs->event_thread->control.step_stack_frame_id)
005ca36a 4938 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
4939 ecs->event_thread->control.step_stack_frame_id)
4940 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a
JB
4941 outer_frame_id)
4942 || step_start_function != find_pc_function (stop_pc))))
488f131b 4943 {
95918acb 4944 CORE_ADDR real_stop_pc;
8fb3e588 4945
527159b7 4946 if (debug_infrun)
8a9de0e4 4947 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 4948
16c381f0
JK
4949 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4950 || ((ecs->event_thread->control.step_range_end == 1)
d80b854b 4951 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 4952 ecs->stop_func_start)))
95918acb
AC
4953 {
4954 /* I presume that step_over_calls is only 0 when we're
4955 supposed to be stepping at the assembly language level
4956 ("stepi"). Just stop. */
4957 /* Also, maybe we just did a "nexti" inside a prolog, so we
4958 thought it was a subroutine call but it was not. Stop as
4959 well. FENN */
388a8562 4960 /* And this works the same backward as frontward. MVS */
bdc36728 4961 end_stepping_range (ecs);
95918acb
AC
4962 return;
4963 }
8fb3e588 4964
388a8562
MS
4965 /* Reverse stepping through solib trampolines. */
4966
4967 if (execution_direction == EXEC_REVERSE
16c381f0 4968 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
4969 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4970 || (ecs->stop_func_start == 0
4971 && in_solib_dynsym_resolve_code (stop_pc))))
4972 {
4973 /* Any solib trampoline code can be handled in reverse
4974 by simply continuing to single-step. We have already
4975 executed the solib function (backwards), and a few
4976 steps will take us back through the trampoline to the
4977 caller. */
4978 keep_going (ecs);
4979 return;
4980 }
4981
16c381f0 4982 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 4983 {
b2175913
MS
4984 /* We're doing a "next".
4985
4986 Normal (forward) execution: set a breakpoint at the
4987 callee's return address (the address at which the caller
4988 will resume).
4989
4990 Reverse (backward) execution. set the step-resume
4991 breakpoint at the start of the function that we just
4992 stepped into (backwards), and continue to there. When we
6130d0b7 4993 get there, we'll need to single-step back to the caller. */
b2175913
MS
4994
4995 if (execution_direction == EXEC_REVERSE)
4996 {
acf9414f
JK
4997 /* If we're already at the start of the function, we've either
4998 just stepped backward into a single instruction function,
4999 or stepped back out of a signal handler to the first instruction
5000 of the function. Just keep going, which will single-step back
5001 to the caller. */
58c48e72 5002 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f
JK
5003 {
5004 struct symtab_and_line sr_sal;
5005
5006 /* Normal function call return (static or dynamic). */
5007 init_sal (&sr_sal);
5008 sr_sal.pc = ecs->stop_func_start;
5009 sr_sal.pspace = get_frame_program_space (frame);
5010 insert_step_resume_breakpoint_at_sal (gdbarch,
5011 sr_sal, null_frame_id);
5012 }
b2175913
MS
5013 }
5014 else
568d6575 5015 insert_step_resume_breakpoint_at_caller (frame);
b2175913 5016
8567c30f
AC
5017 keep_going (ecs);
5018 return;
5019 }
a53c66de 5020
95918acb 5021 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
5022 calling routine and the real function), locate the real
5023 function. That's what tells us (a) whether we want to step
5024 into it at all, and (b) what prologue we want to run to the
5025 end of, if we do step into it. */
568d6575 5026 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 5027 if (real_stop_pc == 0)
568d6575 5028 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
5029 if (real_stop_pc != 0)
5030 ecs->stop_func_start = real_stop_pc;
8fb3e588 5031
db5f024e 5032 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
5033 {
5034 struct symtab_and_line sr_sal;
abbb1732 5035
1b2bfbb9
RC
5036 init_sal (&sr_sal);
5037 sr_sal.pc = ecs->stop_func_start;
6c95b8df 5038 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 5039
a6d9a66e
UW
5040 insert_step_resume_breakpoint_at_sal (gdbarch,
5041 sr_sal, null_frame_id);
8fb3e588
AC
5042 keep_going (ecs);
5043 return;
1b2bfbb9
RC
5044 }
5045
95918acb 5046 /* If we have line number information for the function we are
1bfeeb0f
JL
5047 thinking of stepping into and the function isn't on the skip
5048 list, step into it.
95918acb 5049
8fb3e588
AC
5050 If there are several symtabs at that PC (e.g. with include
5051 files), just want to know whether *any* of them have line
5052 numbers. find_pc_line handles this. */
95918acb
AC
5053 {
5054 struct symtab_and_line tmp_sal;
8fb3e588 5055
95918acb 5056 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 5057 if (tmp_sal.line != 0
85817405
JK
5058 && !function_name_is_marked_for_skip (ecs->stop_func_name,
5059 &tmp_sal))
95918acb 5060 {
b2175913 5061 if (execution_direction == EXEC_REVERSE)
568d6575 5062 handle_step_into_function_backward (gdbarch, ecs);
b2175913 5063 else
568d6575 5064 handle_step_into_function (gdbarch, ecs);
95918acb
AC
5065 return;
5066 }
5067 }
5068
5069 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
5070 set, we stop the step so that the user has a chance to switch
5071 in assembly mode. */
16c381f0 5072 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 5073 && step_stop_if_no_debug)
95918acb 5074 {
bdc36728 5075 end_stepping_range (ecs);
95918acb
AC
5076 return;
5077 }
5078
b2175913
MS
5079 if (execution_direction == EXEC_REVERSE)
5080 {
acf9414f
JK
5081 /* If we're already at the start of the function, we've either just
5082 stepped backward into a single instruction function without line
5083 number info, or stepped back out of a signal handler to the first
5084 instruction of the function without line number info. Just keep
5085 going, which will single-step back to the caller. */
5086 if (ecs->stop_func_start != stop_pc)
5087 {
5088 /* Set a breakpoint at callee's start address.
5089 From there we can step once and be back in the caller. */
5090 struct symtab_and_line sr_sal;
abbb1732 5091
acf9414f
JK
5092 init_sal (&sr_sal);
5093 sr_sal.pc = ecs->stop_func_start;
5094 sr_sal.pspace = get_frame_program_space (frame);
5095 insert_step_resume_breakpoint_at_sal (gdbarch,
5096 sr_sal, null_frame_id);
5097 }
b2175913
MS
5098 }
5099 else
5100 /* Set a breakpoint at callee's return address (the address
5101 at which the caller will resume). */
568d6575 5102 insert_step_resume_breakpoint_at_caller (frame);
b2175913 5103
95918acb 5104 keep_going (ecs);
488f131b 5105 return;
488f131b 5106 }
c906108c 5107
fdd654f3
MS
5108 /* Reverse stepping through solib trampolines. */
5109
5110 if (execution_direction == EXEC_REVERSE
16c381f0 5111 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
5112 {
5113 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5114 || (ecs->stop_func_start == 0
5115 && in_solib_dynsym_resolve_code (stop_pc)))
5116 {
5117 /* Any solib trampoline code can be handled in reverse
5118 by simply continuing to single-step. We have already
5119 executed the solib function (backwards), and a few
5120 steps will take us back through the trampoline to the
5121 caller. */
5122 keep_going (ecs);
5123 return;
5124 }
5125 else if (in_solib_dynsym_resolve_code (stop_pc))
5126 {
5127 /* Stepped backward into the solib dynsym resolver.
5128 Set a breakpoint at its start and continue, then
5129 one more step will take us out. */
5130 struct symtab_and_line sr_sal;
abbb1732 5131
fdd654f3
MS
5132 init_sal (&sr_sal);
5133 sr_sal.pc = ecs->stop_func_start;
9d1807c3 5134 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
5135 insert_step_resume_breakpoint_at_sal (gdbarch,
5136 sr_sal, null_frame_id);
5137 keep_going (ecs);
5138 return;
5139 }
5140 }
5141
2afb61aa 5142 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 5143
1b2bfbb9
RC
5144 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5145 the trampoline processing logic, however, there are some trampolines
5146 that have no names, so we should do trampoline handling first. */
16c381f0 5147 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 5148 && ecs->stop_func_name == NULL
2afb61aa 5149 && stop_pc_sal.line == 0)
1b2bfbb9 5150 {
527159b7 5151 if (debug_infrun)
3e43a32a
MS
5152 fprintf_unfiltered (gdb_stdlog,
5153 "infrun: stepped into undebuggable function\n");
527159b7 5154
1b2bfbb9 5155 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
5156 undebuggable function (where there is no debugging information
5157 and no line number corresponding to the address where the
1b2bfbb9
RC
5158 inferior stopped). Since we want to skip this kind of code,
5159 we keep going until the inferior returns from this
14e60db5
DJ
5160 function - unless the user has asked us not to (via
5161 set step-mode) or we no longer know how to get back
5162 to the call site. */
5163 if (step_stop_if_no_debug
c7ce8faa 5164 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
5165 {
5166 /* If we have no line number and the step-stop-if-no-debug
5167 is set, we stop the step so that the user has a chance to
5168 switch in assembly mode. */
bdc36728 5169 end_stepping_range (ecs);
1b2bfbb9
RC
5170 return;
5171 }
5172 else
5173 {
5174 /* Set a breakpoint at callee's return address (the address
5175 at which the caller will resume). */
568d6575 5176 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
5177 keep_going (ecs);
5178 return;
5179 }
5180 }
5181
16c381f0 5182 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
5183 {
5184 /* It is stepi or nexti. We always want to stop stepping after
5185 one instruction. */
527159b7 5186 if (debug_infrun)
8a9de0e4 5187 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 5188 end_stepping_range (ecs);
1b2bfbb9
RC
5189 return;
5190 }
5191
2afb61aa 5192 if (stop_pc_sal.line == 0)
488f131b
JB
5193 {
5194 /* We have no line number information. That means to stop
5195 stepping (does this always happen right after one instruction,
5196 when we do "s" in a function with no line numbers,
5197 or can this happen as a result of a return or longjmp?). */
527159b7 5198 if (debug_infrun)
8a9de0e4 5199 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 5200 end_stepping_range (ecs);
488f131b
JB
5201 return;
5202 }
c906108c 5203
edb3359d
DJ
5204 /* Look for "calls" to inlined functions, part one. If the inline
5205 frame machinery detected some skipped call sites, we have entered
5206 a new inline function. */
5207
5208 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5209 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
5210 && inline_skipped_frames (ecs->ptid))
5211 {
5212 struct symtab_and_line call_sal;
5213
5214 if (debug_infrun)
5215 fprintf_unfiltered (gdb_stdlog,
5216 "infrun: stepped into inlined function\n");
5217
5218 find_frame_sal (get_current_frame (), &call_sal);
5219
16c381f0 5220 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
5221 {
5222 /* For "step", we're going to stop. But if the call site
5223 for this inlined function is on the same source line as
5224 we were previously stepping, go down into the function
5225 first. Otherwise stop at the call site. */
5226
5227 if (call_sal.line == ecs->event_thread->current_line
5228 && call_sal.symtab == ecs->event_thread->current_symtab)
5229 step_into_inline_frame (ecs->ptid);
5230
bdc36728 5231 end_stepping_range (ecs);
edb3359d
DJ
5232 return;
5233 }
5234 else
5235 {
5236 /* For "next", we should stop at the call site if it is on a
5237 different source line. Otherwise continue through the
5238 inlined function. */
5239 if (call_sal.line == ecs->event_thread->current_line
5240 && call_sal.symtab == ecs->event_thread->current_symtab)
5241 keep_going (ecs);
5242 else
bdc36728 5243 end_stepping_range (ecs);
edb3359d
DJ
5244 return;
5245 }
5246 }
5247
5248 /* Look for "calls" to inlined functions, part two. If we are still
5249 in the same real function we were stepping through, but we have
5250 to go further up to find the exact frame ID, we are stepping
5251 through a more inlined call beyond its call site. */
5252
5253 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5254 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5255 ecs->event_thread->control.step_frame_id)
edb3359d 5256 && stepped_in_from (get_current_frame (),
16c381f0 5257 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
5258 {
5259 if (debug_infrun)
5260 fprintf_unfiltered (gdb_stdlog,
5261 "infrun: stepping through inlined function\n");
5262
16c381f0 5263 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
5264 keep_going (ecs);
5265 else
bdc36728 5266 end_stepping_range (ecs);
edb3359d
DJ
5267 return;
5268 }
5269
2afb61aa 5270 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
5271 && (ecs->event_thread->current_line != stop_pc_sal.line
5272 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
5273 {
5274 /* We are at the start of a different line. So stop. Note that
5275 we don't stop if we step into the middle of a different line.
5276 That is said to make things like for (;;) statements work
5277 better. */
527159b7 5278 if (debug_infrun)
3e43a32a
MS
5279 fprintf_unfiltered (gdb_stdlog,
5280 "infrun: stepped to a different line\n");
bdc36728 5281 end_stepping_range (ecs);
488f131b
JB
5282 return;
5283 }
c906108c 5284
488f131b 5285 /* We aren't done stepping.
c906108c 5286
488f131b
JB
5287 Optimize by setting the stepping range to the line.
5288 (We might not be in the original line, but if we entered a
5289 new line in mid-statement, we continue stepping. This makes
5290 things like for(;;) statements work better.) */
c906108c 5291
16c381f0
JK
5292 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5293 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 5294 ecs->event_thread->control.may_range_step = 1;
edb3359d 5295 set_step_info (frame, stop_pc_sal);
488f131b 5296
527159b7 5297 if (debug_infrun)
8a9de0e4 5298 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 5299 keep_going (ecs);
104c1213
JM
5300}
5301
c447ac0b
PA
5302/* In all-stop mode, if we're currently stepping but have stopped in
5303 some other thread, we may need to switch back to the stepped
5304 thread. Returns true we set the inferior running, false if we left
5305 it stopped (and the event needs further processing). */
5306
5307static int
5308switch_back_to_stepped_thread (struct execution_control_state *ecs)
5309{
5310 if (!non_stop)
5311 {
5312 struct thread_info *tp;
99619bea 5313 struct thread_info *stepping_thread;
483805cf 5314 struct thread_info *step_over;
99619bea
PA
5315
5316 /* If any thread is blocked on some internal breakpoint, and we
5317 simply need to step over that breakpoint to get it going
5318 again, do that first. */
5319
5320 /* However, if we see an event for the stepping thread, then we
5321 know all other threads have been moved past their breakpoints
5322 already. Let the caller check whether the step is finished,
5323 etc., before deciding to move it past a breakpoint. */
5324 if (ecs->event_thread->control.step_range_end != 0)
5325 return 0;
5326
5327 /* Check if the current thread is blocked on an incomplete
5328 step-over, interrupted by a random signal. */
5329 if (ecs->event_thread->control.trap_expected
5330 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 5331 {
99619bea
PA
5332 if (debug_infrun)
5333 {
5334 fprintf_unfiltered (gdb_stdlog,
5335 "infrun: need to finish step-over of [%s]\n",
5336 target_pid_to_str (ecs->event_thread->ptid));
5337 }
5338 keep_going (ecs);
5339 return 1;
5340 }
2adfaa28 5341
99619bea
PA
5342 /* Check if the current thread is blocked by a single-step
5343 breakpoint of another thread. */
5344 if (ecs->hit_singlestep_breakpoint)
5345 {
5346 if (debug_infrun)
5347 {
5348 fprintf_unfiltered (gdb_stdlog,
5349 "infrun: need to step [%s] over single-step "
5350 "breakpoint\n",
5351 target_pid_to_str (ecs->ptid));
5352 }
5353 keep_going (ecs);
5354 return 1;
5355 }
5356
483805cf
PA
5357 /* Otherwise, we no longer expect a trap in the current thread.
5358 Clear the trap_expected flag before switching back -- this is
5359 what keep_going does as well, if we call it. */
5360 ecs->event_thread->control.trap_expected = 0;
5361
70509625
PA
5362 /* Likewise, clear the signal if it should not be passed. */
5363 if (!signal_program[ecs->event_thread->suspend.stop_signal])
5364 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5365
483805cf
PA
5366 /* If scheduler locking applies even if not stepping, there's no
5367 need to walk over threads. Above we've checked whether the
5368 current thread is stepping. If some other thread not the
5369 event thread is stepping, then it must be that scheduler
5370 locking is not in effect. */
5371 if (schedlock_applies (0))
5372 return 0;
5373
5374 /* Look for the stepping/nexting thread, and check if any other
5375 thread other than the stepping thread needs to start a
5376 step-over. Do all step-overs before actually proceeding with
5377 step/next/etc. */
5378 stepping_thread = NULL;
5379 step_over = NULL;
034f788c 5380 ALL_NON_EXITED_THREADS (tp)
483805cf
PA
5381 {
5382 /* Ignore threads of processes we're not resuming. */
5383 if (!sched_multi
5384 && ptid_get_pid (tp->ptid) != ptid_get_pid (inferior_ptid))
5385 continue;
5386
5387 /* When stepping over a breakpoint, we lock all threads
5388 except the one that needs to move past the breakpoint.
5389 If a non-event thread has this set, the "incomplete
5390 step-over" check above should have caught it earlier. */
5391 gdb_assert (!tp->control.trap_expected);
5392
5393 /* Did we find the stepping thread? */
5394 if (tp->control.step_range_end)
5395 {
5396 /* Yep. There should only one though. */
5397 gdb_assert (stepping_thread == NULL);
5398
5399 /* The event thread is handled at the top, before we
5400 enter this loop. */
5401 gdb_assert (tp != ecs->event_thread);
5402
5403 /* If some thread other than the event thread is
5404 stepping, then scheduler locking can't be in effect,
5405 otherwise we wouldn't have resumed the current event
5406 thread in the first place. */
5407 gdb_assert (!schedlock_applies (1));
5408
5409 stepping_thread = tp;
5410 }
5411 else if (thread_still_needs_step_over (tp))
5412 {
5413 step_over = tp;
5414
5415 /* At the top we've returned early if the event thread
5416 is stepping. If some other thread not the event
5417 thread is stepping, then scheduler locking can't be
5418 in effect, and we can resume this thread. No need to
5419 keep looking for the stepping thread then. */
5420 break;
5421 }
5422 }
99619bea 5423
483805cf 5424 if (step_over != NULL)
99619bea 5425 {
483805cf 5426 tp = step_over;
99619bea 5427 if (debug_infrun)
c447ac0b 5428 {
99619bea
PA
5429 fprintf_unfiltered (gdb_stdlog,
5430 "infrun: need to step-over [%s]\n",
5431 target_pid_to_str (tp->ptid));
c447ac0b
PA
5432 }
5433
483805cf 5434 /* Only the stepping thread should have this set. */
99619bea
PA
5435 gdb_assert (tp->control.step_range_end == 0);
5436
99619bea
PA
5437 ecs->ptid = tp->ptid;
5438 ecs->event_thread = tp;
5439 switch_to_thread (ecs->ptid);
5440 keep_going (ecs);
5441 return 1;
5442 }
5443
483805cf 5444 if (stepping_thread != NULL)
99619bea
PA
5445 {
5446 struct frame_info *frame;
5447 struct gdbarch *gdbarch;
5448
483805cf
PA
5449 tp = stepping_thread;
5450
c447ac0b
PA
5451 /* If the stepping thread exited, then don't try to switch
5452 back and resume it, which could fail in several different
5453 ways depending on the target. Instead, just keep going.
5454
5455 We can find a stepping dead thread in the thread list in
5456 two cases:
5457
5458 - The target supports thread exit events, and when the
5459 target tries to delete the thread from the thread list,
5460 inferior_ptid pointed at the exiting thread. In such
5461 case, calling delete_thread does not really remove the
5462 thread from the list; instead, the thread is left listed,
5463 with 'exited' state.
5464
5465 - The target's debug interface does not support thread
5466 exit events, and so we have no idea whatsoever if the
5467 previously stepping thread is still alive. For that
5468 reason, we need to synchronously query the target
5469 now. */
5470 if (is_exited (tp->ptid)
5471 || !target_thread_alive (tp->ptid))
5472 {
5473 if (debug_infrun)
5474 fprintf_unfiltered (gdb_stdlog,
5475 "infrun: not switching back to "
5476 "stepped thread, it has vanished\n");
5477
5478 delete_thread (tp->ptid);
5479 keep_going (ecs);
5480 return 1;
5481 }
5482
c447ac0b
PA
5483 if (debug_infrun)
5484 fprintf_unfiltered (gdb_stdlog,
5485 "infrun: switching back to stepped thread\n");
5486
5487 ecs->event_thread = tp;
5488 ecs->ptid = tp->ptid;
5489 context_switch (ecs->ptid);
2adfaa28
PA
5490
5491 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5492 frame = get_current_frame ();
5493 gdbarch = get_frame_arch (frame);
5494
5495 /* If the PC of the thread we were trying to single-step has
99619bea
PA
5496 changed, then that thread has trapped or been signaled,
5497 but the event has not been reported to GDB yet. Re-poll
5498 the target looking for this particular thread's event
5499 (i.e. temporarily enable schedlock) by:
2adfaa28
PA
5500
5501 - setting a break at the current PC
5502 - resuming that particular thread, only (by setting
5503 trap expected)
5504
5505 This prevents us continuously moving the single-step
5506 breakpoint forward, one instruction at a time,
5507 overstepping. */
5508
5509 if (gdbarch_software_single_step_p (gdbarch)
5510 && stop_pc != tp->prev_pc)
5511 {
5512 if (debug_infrun)
5513 fprintf_unfiltered (gdb_stdlog,
5514 "infrun: expected thread advanced also\n");
5515
7c16b83e
PA
5516 /* Clear the info of the previous step-over, as it's no
5517 longer valid. It's what keep_going would do too, if
5518 we called it. Must do this before trying to insert
5519 the sss breakpoint, otherwise if we were previously
5520 trying to step over this exact address in another
5521 thread, the breakpoint ends up not installed. */
5522 clear_step_over_info ();
5523
2adfaa28
PA
5524 insert_single_step_breakpoint (get_frame_arch (frame),
5525 get_frame_address_space (frame),
5526 stop_pc);
2adfaa28 5527 ecs->event_thread->control.trap_expected = 1;
2adfaa28
PA
5528
5529 resume (0, GDB_SIGNAL_0);
5530 prepare_to_wait (ecs);
5531 }
5532 else
5533 {
5534 if (debug_infrun)
5535 fprintf_unfiltered (gdb_stdlog,
5536 "infrun: expected thread still "
5537 "hasn't advanced\n");
5538 keep_going (ecs);
5539 }
5540
c447ac0b
PA
5541 return 1;
5542 }
5543 }
5544 return 0;
5545}
5546
b3444185 5547/* Is thread TP in the middle of single-stepping? */
104c1213 5548
a289b8f6 5549static int
b3444185 5550currently_stepping (struct thread_info *tp)
a7212384 5551{
8358c15c
JK
5552 return ((tp->control.step_range_end
5553 && tp->control.step_resume_breakpoint == NULL)
5554 || tp->control.trap_expected
8358c15c 5555 || bpstat_should_step ());
a7212384
UW
5556}
5557
b2175913
MS
5558/* Inferior has stepped into a subroutine call with source code that
5559 we should not step over. Do step to the first line of code in
5560 it. */
c2c6d25f
JM
5561
5562static void
568d6575
UW
5563handle_step_into_function (struct gdbarch *gdbarch,
5564 struct execution_control_state *ecs)
c2c6d25f
JM
5565{
5566 struct symtab *s;
2afb61aa 5567 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 5568
7e324e48
GB
5569 fill_in_stop_func (gdbarch, ecs);
5570
c2c6d25f
JM
5571 s = find_pc_symtab (stop_pc);
5572 if (s && s->language != language_asm)
568d6575 5573 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 5574 ecs->stop_func_start);
c2c6d25f 5575
2afb61aa 5576 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
5577 /* Use the step_resume_break to step until the end of the prologue,
5578 even if that involves jumps (as it seems to on the vax under
5579 4.2). */
5580 /* If the prologue ends in the middle of a source line, continue to
5581 the end of that source line (if it is still within the function).
5582 Otherwise, just go to end of prologue. */
2afb61aa
PA
5583 if (stop_func_sal.end
5584 && stop_func_sal.pc != ecs->stop_func_start
5585 && stop_func_sal.end < ecs->stop_func_end)
5586 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 5587
2dbd5e30
KB
5588 /* Architectures which require breakpoint adjustment might not be able
5589 to place a breakpoint at the computed address. If so, the test
5590 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5591 ecs->stop_func_start to an address at which a breakpoint may be
5592 legitimately placed.
8fb3e588 5593
2dbd5e30
KB
5594 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5595 made, GDB will enter an infinite loop when stepping through
5596 optimized code consisting of VLIW instructions which contain
5597 subinstructions corresponding to different source lines. On
5598 FR-V, it's not permitted to place a breakpoint on any but the
5599 first subinstruction of a VLIW instruction. When a breakpoint is
5600 set, GDB will adjust the breakpoint address to the beginning of
5601 the VLIW instruction. Thus, we need to make the corresponding
5602 adjustment here when computing the stop address. */
8fb3e588 5603
568d6575 5604 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
5605 {
5606 ecs->stop_func_start
568d6575 5607 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 5608 ecs->stop_func_start);
2dbd5e30
KB
5609 }
5610
c2c6d25f
JM
5611 if (ecs->stop_func_start == stop_pc)
5612 {
5613 /* We are already there: stop now. */
bdc36728 5614 end_stepping_range (ecs);
c2c6d25f
JM
5615 return;
5616 }
5617 else
5618 {
5619 /* Put the step-breakpoint there and go until there. */
fe39c653 5620 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
5621 sr_sal.pc = ecs->stop_func_start;
5622 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 5623 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 5624
c2c6d25f 5625 /* Do not specify what the fp should be when we stop since on
488f131b
JB
5626 some machines the prologue is where the new fp value is
5627 established. */
a6d9a66e 5628 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
5629
5630 /* And make sure stepping stops right away then. */
16c381f0
JK
5631 ecs->event_thread->control.step_range_end
5632 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
5633 }
5634 keep_going (ecs);
5635}
d4f3574e 5636
b2175913
MS
5637/* Inferior has stepped backward into a subroutine call with source
5638 code that we should not step over. Do step to the beginning of the
5639 last line of code in it. */
5640
5641static void
568d6575
UW
5642handle_step_into_function_backward (struct gdbarch *gdbarch,
5643 struct execution_control_state *ecs)
b2175913
MS
5644{
5645 struct symtab *s;
167e4384 5646 struct symtab_and_line stop_func_sal;
b2175913 5647
7e324e48
GB
5648 fill_in_stop_func (gdbarch, ecs);
5649
b2175913
MS
5650 s = find_pc_symtab (stop_pc);
5651 if (s && s->language != language_asm)
568d6575 5652 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
5653 ecs->stop_func_start);
5654
5655 stop_func_sal = find_pc_line (stop_pc, 0);
5656
5657 /* OK, we're just going to keep stepping here. */
5658 if (stop_func_sal.pc == stop_pc)
5659 {
5660 /* We're there already. Just stop stepping now. */
bdc36728 5661 end_stepping_range (ecs);
b2175913
MS
5662 }
5663 else
5664 {
5665 /* Else just reset the step range and keep going.
5666 No step-resume breakpoint, they don't work for
5667 epilogues, which can have multiple entry paths. */
16c381f0
JK
5668 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5669 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
5670 keep_going (ecs);
5671 }
5672 return;
5673}
5674
d3169d93 5675/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
5676 This is used to both functions and to skip over code. */
5677
5678static void
2c03e5be
PA
5679insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5680 struct symtab_and_line sr_sal,
5681 struct frame_id sr_id,
5682 enum bptype sr_type)
44cbf7b5 5683{
611c83ae
PA
5684 /* There should never be more than one step-resume or longjmp-resume
5685 breakpoint per thread, so we should never be setting a new
44cbf7b5 5686 step_resume_breakpoint when one is already active. */
8358c15c 5687 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 5688 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
5689
5690 if (debug_infrun)
5691 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5692 "infrun: inserting step-resume breakpoint at %s\n",
5693 paddress (gdbarch, sr_sal.pc));
d3169d93 5694
8358c15c 5695 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
5696 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5697}
5698
9da8c2a0 5699void
2c03e5be
PA
5700insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5701 struct symtab_and_line sr_sal,
5702 struct frame_id sr_id)
5703{
5704 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5705 sr_sal, sr_id,
5706 bp_step_resume);
44cbf7b5 5707}
7ce450bd 5708
2c03e5be
PA
5709/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5710 This is used to skip a potential signal handler.
7ce450bd 5711
14e60db5
DJ
5712 This is called with the interrupted function's frame. The signal
5713 handler, when it returns, will resume the interrupted function at
5714 RETURN_FRAME.pc. */
d303a6c7
AC
5715
5716static void
2c03e5be 5717insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
5718{
5719 struct symtab_and_line sr_sal;
a6d9a66e 5720 struct gdbarch *gdbarch;
d303a6c7 5721
f4c1edd8 5722 gdb_assert (return_frame != NULL);
d303a6c7
AC
5723 init_sal (&sr_sal); /* initialize to zeros */
5724
a6d9a66e 5725 gdbarch = get_frame_arch (return_frame);
568d6575 5726 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 5727 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5728 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 5729
2c03e5be
PA
5730 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5731 get_stack_frame_id (return_frame),
5732 bp_hp_step_resume);
d303a6c7
AC
5733}
5734
2c03e5be
PA
5735/* Insert a "step-resume breakpoint" at the previous frame's PC. This
5736 is used to skip a function after stepping into it (for "next" or if
5737 the called function has no debugging information).
14e60db5
DJ
5738
5739 The current function has almost always been reached by single
5740 stepping a call or return instruction. NEXT_FRAME belongs to the
5741 current function, and the breakpoint will be set at the caller's
5742 resume address.
5743
5744 This is a separate function rather than reusing
2c03e5be 5745 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 5746 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 5747 of frame_unwind_caller_id for an example). */
14e60db5
DJ
5748
5749static void
5750insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5751{
5752 struct symtab_and_line sr_sal;
a6d9a66e 5753 struct gdbarch *gdbarch;
14e60db5
DJ
5754
5755 /* We shouldn't have gotten here if we don't know where the call site
5756 is. */
c7ce8faa 5757 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
5758
5759 init_sal (&sr_sal); /* initialize to zeros */
5760
a6d9a66e 5761 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
5762 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5763 frame_unwind_caller_pc (next_frame));
14e60db5 5764 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5765 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 5766
a6d9a66e 5767 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 5768 frame_unwind_caller_id (next_frame));
14e60db5
DJ
5769}
5770
611c83ae
PA
5771/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5772 new breakpoint at the target of a jmp_buf. The handling of
5773 longjmp-resume uses the same mechanisms used for handling
5774 "step-resume" breakpoints. */
5775
5776static void
a6d9a66e 5777insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 5778{
e81a37f7
TT
5779 /* There should never be more than one longjmp-resume breakpoint per
5780 thread, so we should never be setting a new
611c83ae 5781 longjmp_resume_breakpoint when one is already active. */
e81a37f7 5782 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
5783
5784 if (debug_infrun)
5785 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5786 "infrun: inserting longjmp-resume breakpoint at %s\n",
5787 paddress (gdbarch, pc));
611c83ae 5788
e81a37f7 5789 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 5790 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
5791}
5792
186c406b
TT
5793/* Insert an exception resume breakpoint. TP is the thread throwing
5794 the exception. The block B is the block of the unwinder debug hook
5795 function. FRAME is the frame corresponding to the call to this
5796 function. SYM is the symbol of the function argument holding the
5797 target PC of the exception. */
5798
5799static void
5800insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 5801 const struct block *b,
186c406b
TT
5802 struct frame_info *frame,
5803 struct symbol *sym)
5804{
bfd189b1 5805 volatile struct gdb_exception e;
186c406b
TT
5806
5807 /* We want to ignore errors here. */
5808 TRY_CATCH (e, RETURN_MASK_ERROR)
5809 {
5810 struct symbol *vsym;
5811 struct value *value;
5812 CORE_ADDR handler;
5813 struct breakpoint *bp;
5814
5815 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5816 value = read_var_value (vsym, frame);
5817 /* If the value was optimized out, revert to the old behavior. */
5818 if (! value_optimized_out (value))
5819 {
5820 handler = value_as_address (value);
5821
5822 if (debug_infrun)
5823 fprintf_unfiltered (gdb_stdlog,
5824 "infrun: exception resume at %lx\n",
5825 (unsigned long) handler);
5826
5827 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5828 handler, bp_exception_resume);
c70a6932
JK
5829
5830 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5831 frame = NULL;
5832
186c406b
TT
5833 bp->thread = tp->num;
5834 inferior_thread ()->control.exception_resume_breakpoint = bp;
5835 }
5836 }
5837}
5838
28106bc2
SDJ
5839/* A helper for check_exception_resume that sets an
5840 exception-breakpoint based on a SystemTap probe. */
5841
5842static void
5843insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 5844 const struct bound_probe *probe,
28106bc2
SDJ
5845 struct frame_info *frame)
5846{
5847 struct value *arg_value;
5848 CORE_ADDR handler;
5849 struct breakpoint *bp;
5850
5851 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5852 if (!arg_value)
5853 return;
5854
5855 handler = value_as_address (arg_value);
5856
5857 if (debug_infrun)
5858 fprintf_unfiltered (gdb_stdlog,
5859 "infrun: exception resume at %s\n",
6bac7473 5860 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
5861 handler));
5862
5863 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5864 handler, bp_exception_resume);
5865 bp->thread = tp->num;
5866 inferior_thread ()->control.exception_resume_breakpoint = bp;
5867}
5868
186c406b
TT
5869/* This is called when an exception has been intercepted. Check to
5870 see whether the exception's destination is of interest, and if so,
5871 set an exception resume breakpoint there. */
5872
5873static void
5874check_exception_resume (struct execution_control_state *ecs,
28106bc2 5875 struct frame_info *frame)
186c406b 5876{
bfd189b1 5877 volatile struct gdb_exception e;
729662a5 5878 struct bound_probe probe;
28106bc2
SDJ
5879 struct symbol *func;
5880
5881 /* First see if this exception unwinding breakpoint was set via a
5882 SystemTap probe point. If so, the probe has two arguments: the
5883 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5884 set a breakpoint there. */
6bac7473 5885 probe = find_probe_by_pc (get_frame_pc (frame));
729662a5 5886 if (probe.probe)
28106bc2 5887 {
729662a5 5888 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
5889 return;
5890 }
5891
5892 func = get_frame_function (frame);
5893 if (!func)
5894 return;
186c406b
TT
5895
5896 TRY_CATCH (e, RETURN_MASK_ERROR)
5897 {
3977b71f 5898 const struct block *b;
8157b174 5899 struct block_iterator iter;
186c406b
TT
5900 struct symbol *sym;
5901 int argno = 0;
5902
5903 /* The exception breakpoint is a thread-specific breakpoint on
5904 the unwinder's debug hook, declared as:
5905
5906 void _Unwind_DebugHook (void *cfa, void *handler);
5907
5908 The CFA argument indicates the frame to which control is
5909 about to be transferred. HANDLER is the destination PC.
5910
5911 We ignore the CFA and set a temporary breakpoint at HANDLER.
5912 This is not extremely efficient but it avoids issues in gdb
5913 with computing the DWARF CFA, and it also works even in weird
5914 cases such as throwing an exception from inside a signal
5915 handler. */
5916
5917 b = SYMBOL_BLOCK_VALUE (func);
5918 ALL_BLOCK_SYMBOLS (b, iter, sym)
5919 {
5920 if (!SYMBOL_IS_ARGUMENT (sym))
5921 continue;
5922
5923 if (argno == 0)
5924 ++argno;
5925 else
5926 {
5927 insert_exception_resume_breakpoint (ecs->event_thread,
5928 b, frame, sym);
5929 break;
5930 }
5931 }
5932 }
5933}
5934
104c1213 5935static void
22bcd14b 5936stop_waiting (struct execution_control_state *ecs)
104c1213 5937{
527159b7 5938 if (debug_infrun)
22bcd14b 5939 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 5940
31e77af2
PA
5941 clear_step_over_info ();
5942
cd0fc7c3
SS
5943 /* Let callers know we don't want to wait for the inferior anymore. */
5944 ecs->wait_some_more = 0;
5945}
5946
a9ba6bae
PA
5947/* Called when we should continue running the inferior, because the
5948 current event doesn't cause a user visible stop. This does the
5949 resuming part; waiting for the next event is done elsewhere. */
d4f3574e
SS
5950
5951static void
5952keep_going (struct execution_control_state *ecs)
5953{
c4dbc9af
PA
5954 /* Make sure normal_stop is called if we get a QUIT handled before
5955 reaching resume. */
5956 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5957
d4f3574e 5958 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
5959 ecs->event_thread->prev_pc
5960 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 5961
16c381f0 5962 if (ecs->event_thread->control.trap_expected
a493e3e2 5963 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
d4f3574e 5964 {
a9ba6bae
PA
5965 /* We haven't yet gotten our trap, and either: intercepted a
5966 non-signal event (e.g., a fork); or took a signal which we
5967 are supposed to pass through to the inferior. Simply
5968 continue. */
c4dbc9af 5969 discard_cleanups (old_cleanups);
2020b7ab 5970 resume (currently_stepping (ecs->event_thread),
16c381f0 5971 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5972 }
5973 else
5974 {
31e77af2
PA
5975 volatile struct gdb_exception e;
5976 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
5977 int remove_bp;
5978 int remove_wps;
31e77af2 5979
d4f3574e 5980 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
5981 anyway (if we got a signal, the user asked it be passed to
5982 the child)
5983 -- or --
5984 We got our expected trap, but decided we should resume from
5985 it.
d4f3574e 5986
a9ba6bae 5987 We're going to run this baby now!
d4f3574e 5988
c36b740a
VP
5989 Note that insert_breakpoints won't try to re-insert
5990 already inserted breakpoints. Therefore, we don't
5991 care if breakpoints were already inserted, or not. */
a9ba6bae 5992
31e77af2
PA
5993 /* If we need to step over a breakpoint, and we're not using
5994 displaced stepping to do so, insert all breakpoints
5995 (watchpoints, etc.) but the one we're stepping over, step one
5996 instruction, and then re-insert the breakpoint when that step
5997 is finished. */
963f9c80
PA
5998
5999 remove_bp = (ecs->hit_singlestep_breakpoint
6000 || thread_still_needs_step_over (ecs->event_thread));
6001 remove_wps = (ecs->event_thread->stepping_over_watchpoint
6002 && !target_have_steppable_watchpoint);
6003
6004 if (remove_bp && !use_displaced_stepping (get_regcache_arch (regcache)))
45e8c884 6005 {
31e77af2 6006 set_step_over_info (get_regcache_aspace (regcache),
963f9c80 6007 regcache_read_pc (regcache), remove_wps);
45e8c884 6008 }
963f9c80
PA
6009 else if (remove_wps)
6010 set_step_over_info (NULL, 0, remove_wps);
45e8c884 6011 else
31e77af2 6012 clear_step_over_info ();
abbb1732 6013
31e77af2
PA
6014 /* Stop stepping if inserting breakpoints fails. */
6015 TRY_CATCH (e, RETURN_MASK_ERROR)
6016 {
6017 insert_breakpoints ();
6018 }
6019 if (e.reason < 0)
6020 {
6021 exception_print (gdb_stderr, e);
22bcd14b 6022 stop_waiting (ecs);
31e77af2 6023 return;
d4f3574e
SS
6024 }
6025
963f9c80 6026 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 6027
a9ba6bae
PA
6028 /* Do not deliver GDB_SIGNAL_TRAP (except when the user
6029 explicitly specifies that such a signal should be delivered
6030 to the target program). Typically, that would occur when a
6031 user is debugging a target monitor on a simulator: the target
6032 monitor sets a breakpoint; the simulator encounters this
6033 breakpoint and halts the simulation handing control to GDB;
6034 GDB, noting that the stop address doesn't map to any known
6035 breakpoint, returns control back to the simulator; the
6036 simulator then delivers the hardware equivalent of a
6037 GDB_SIGNAL_TRAP to the program being debugged. */
a493e3e2 6038 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 6039 && !signal_program[ecs->event_thread->suspend.stop_signal])
a493e3e2 6040 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
d4f3574e 6041
c4dbc9af 6042 discard_cleanups (old_cleanups);
2020b7ab 6043 resume (currently_stepping (ecs->event_thread),
16c381f0 6044 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
6045 }
6046
488f131b 6047 prepare_to_wait (ecs);
d4f3574e
SS
6048}
6049
104c1213
JM
6050/* This function normally comes after a resume, before
6051 handle_inferior_event exits. It takes care of any last bits of
6052 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 6053
104c1213
JM
6054static void
6055prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 6056{
527159b7 6057 if (debug_infrun)
8a9de0e4 6058 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 6059
104c1213
JM
6060 /* This is the old end of the while loop. Let everybody know we
6061 want to wait for the inferior some more and get called again
6062 soon. */
6063 ecs->wait_some_more = 1;
c906108c 6064}
11cf8741 6065
fd664c91 6066/* We are done with the step range of a step/next/si/ni command.
b57bacec 6067 Called once for each n of a "step n" operation. */
fd664c91
PA
6068
6069static void
bdc36728 6070end_stepping_range (struct execution_control_state *ecs)
fd664c91 6071{
bdc36728 6072 ecs->event_thread->control.stop_step = 1;
bdc36728 6073 stop_waiting (ecs);
fd664c91
PA
6074}
6075
33d62d64
JK
6076/* Several print_*_reason functions to print why the inferior has stopped.
6077 We always print something when the inferior exits, or receives a signal.
6078 The rest of the cases are dealt with later on in normal_stop and
6079 print_it_typical. Ideally there should be a call to one of these
6080 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 6081 stop_waiting is called.
33d62d64 6082
fd664c91
PA
6083 Note that we don't call these directly, instead we delegate that to
6084 the interpreters, through observers. Interpreters then call these
6085 with whatever uiout is right. */
33d62d64 6086
fd664c91
PA
6087void
6088print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 6089{
fd664c91 6090 /* For CLI-like interpreters, print nothing. */
33d62d64 6091
fd664c91
PA
6092 if (ui_out_is_mi_like_p (uiout))
6093 {
6094 ui_out_field_string (uiout, "reason",
6095 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
6096 }
6097}
33d62d64 6098
fd664c91
PA
6099void
6100print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 6101{
33d62d64
JK
6102 annotate_signalled ();
6103 if (ui_out_is_mi_like_p (uiout))
6104 ui_out_field_string
6105 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
6106 ui_out_text (uiout, "\nProgram terminated with signal ");
6107 annotate_signal_name ();
6108 ui_out_field_string (uiout, "signal-name",
2ea28649 6109 gdb_signal_to_name (siggnal));
33d62d64
JK
6110 annotate_signal_name_end ();
6111 ui_out_text (uiout, ", ");
6112 annotate_signal_string ();
6113 ui_out_field_string (uiout, "signal-meaning",
2ea28649 6114 gdb_signal_to_string (siggnal));
33d62d64
JK
6115 annotate_signal_string_end ();
6116 ui_out_text (uiout, ".\n");
6117 ui_out_text (uiout, "The program no longer exists.\n");
6118}
6119
fd664c91
PA
6120void
6121print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 6122{
fda326dd
TT
6123 struct inferior *inf = current_inferior ();
6124 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
6125
33d62d64
JK
6126 annotate_exited (exitstatus);
6127 if (exitstatus)
6128 {
6129 if (ui_out_is_mi_like_p (uiout))
6130 ui_out_field_string (uiout, "reason",
6131 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
6132 ui_out_text (uiout, "[Inferior ");
6133 ui_out_text (uiout, plongest (inf->num));
6134 ui_out_text (uiout, " (");
6135 ui_out_text (uiout, pidstr);
6136 ui_out_text (uiout, ") exited with code ");
33d62d64 6137 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 6138 ui_out_text (uiout, "]\n");
33d62d64
JK
6139 }
6140 else
11cf8741 6141 {
9dc5e2a9 6142 if (ui_out_is_mi_like_p (uiout))
034dad6f 6143 ui_out_field_string
33d62d64 6144 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
6145 ui_out_text (uiout, "[Inferior ");
6146 ui_out_text (uiout, plongest (inf->num));
6147 ui_out_text (uiout, " (");
6148 ui_out_text (uiout, pidstr);
6149 ui_out_text (uiout, ") exited normally]\n");
33d62d64 6150 }
33d62d64
JK
6151}
6152
fd664c91
PA
6153void
6154print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64
JK
6155{
6156 annotate_signal ();
6157
a493e3e2 6158 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
33d62d64
JK
6159 {
6160 struct thread_info *t = inferior_thread ();
6161
6162 ui_out_text (uiout, "\n[");
6163 ui_out_field_string (uiout, "thread-name",
6164 target_pid_to_str (t->ptid));
6165 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
6166 ui_out_text (uiout, " stopped");
6167 }
6168 else
6169 {
6170 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 6171 annotate_signal_name ();
33d62d64
JK
6172 if (ui_out_is_mi_like_p (uiout))
6173 ui_out_field_string
6174 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 6175 ui_out_field_string (uiout, "signal-name",
2ea28649 6176 gdb_signal_to_name (siggnal));
8b93c638
JM
6177 annotate_signal_name_end ();
6178 ui_out_text (uiout, ", ");
6179 annotate_signal_string ();
488f131b 6180 ui_out_field_string (uiout, "signal-meaning",
2ea28649 6181 gdb_signal_to_string (siggnal));
8b93c638 6182 annotate_signal_string_end ();
33d62d64
JK
6183 }
6184 ui_out_text (uiout, ".\n");
6185}
252fbfc8 6186
fd664c91
PA
6187void
6188print_no_history_reason (struct ui_out *uiout)
33d62d64 6189{
fd664c91 6190 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
11cf8741 6191}
43ff13b4 6192
0c7e1a46
PA
6193/* Print current location without a level number, if we have changed
6194 functions or hit a breakpoint. Print source line if we have one.
6195 bpstat_print contains the logic deciding in detail what to print,
6196 based on the event(s) that just occurred. */
6197
6198void
6199print_stop_event (struct target_waitstatus *ws)
6200{
6201 int bpstat_ret;
6202 int source_flag;
6203 int do_frame_printing = 1;
6204 struct thread_info *tp = inferior_thread ();
6205
6206 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
6207 switch (bpstat_ret)
6208 {
6209 case PRINT_UNKNOWN:
6210 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
6211 should) carry around the function and does (or should) use
6212 that when doing a frame comparison. */
6213 if (tp->control.stop_step
6214 && frame_id_eq (tp->control.step_frame_id,
6215 get_frame_id (get_current_frame ()))
6216 && step_start_function == find_pc_function (stop_pc))
6217 {
6218 /* Finished step, just print source line. */
6219 source_flag = SRC_LINE;
6220 }
6221 else
6222 {
6223 /* Print location and source line. */
6224 source_flag = SRC_AND_LOC;
6225 }
6226 break;
6227 case PRINT_SRC_AND_LOC:
6228 /* Print location and source line. */
6229 source_flag = SRC_AND_LOC;
6230 break;
6231 case PRINT_SRC_ONLY:
6232 source_flag = SRC_LINE;
6233 break;
6234 case PRINT_NOTHING:
6235 /* Something bogus. */
6236 source_flag = SRC_LINE;
6237 do_frame_printing = 0;
6238 break;
6239 default:
6240 internal_error (__FILE__, __LINE__, _("Unknown value."));
6241 }
6242
6243 /* The behavior of this routine with respect to the source
6244 flag is:
6245 SRC_LINE: Print only source line
6246 LOCATION: Print only location
6247 SRC_AND_LOC: Print location and source line. */
6248 if (do_frame_printing)
6249 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
6250
6251 /* Display the auto-display expressions. */
6252 do_displays ();
6253}
6254
c906108c
SS
6255/* Here to return control to GDB when the inferior stops for real.
6256 Print appropriate messages, remove breakpoints, give terminal our modes.
6257
6258 STOP_PRINT_FRAME nonzero means print the executing frame
6259 (pc, function, args, file, line number and line text).
6260 BREAKPOINTS_FAILED nonzero means stop was due to error
6261 attempting to insert breakpoints. */
6262
6263void
96baa820 6264normal_stop (void)
c906108c 6265{
73b65bb0
DJ
6266 struct target_waitstatus last;
6267 ptid_t last_ptid;
29f49a6a 6268 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
6269
6270 get_last_target_status (&last_ptid, &last);
6271
29f49a6a
PA
6272 /* If an exception is thrown from this point on, make sure to
6273 propagate GDB's knowledge of the executing state to the
6274 frontend/user running state. A QUIT is an easy exception to see
6275 here, so do this before any filtered output. */
c35b1492
PA
6276 if (!non_stop)
6277 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
6278 else if (last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
6279 && last.kind != TARGET_WAITKIND_EXITED
6280 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 6281 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 6282
b57bacec
PA
6283 /* As we're presenting a stop, and potentially removing breakpoints,
6284 update the thread list so we can tell whether there are threads
6285 running on the target. With target remote, for example, we can
6286 only learn about new threads when we explicitly update the thread
6287 list. Do this before notifying the interpreters about signal
6288 stops, end of stepping ranges, etc., so that the "new thread"
6289 output is emitted before e.g., "Program received signal FOO",
6290 instead of after. */
6291 update_thread_list ();
6292
6293 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
6294 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
6295
c906108c
SS
6296 /* As with the notification of thread events, we want to delay
6297 notifying the user that we've switched thread context until
6298 the inferior actually stops.
6299
73b65bb0
DJ
6300 There's no point in saying anything if the inferior has exited.
6301 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
6302 "received a signal".
6303
6304 Also skip saying anything in non-stop mode. In that mode, as we
6305 don't want GDB to switch threads behind the user's back, to avoid
6306 races where the user is typing a command to apply to thread x,
6307 but GDB switches to thread y before the user finishes entering
6308 the command, fetch_inferior_event installs a cleanup to restore
6309 the current thread back to the thread the user had selected right
6310 after this event is handled, so we're not really switching, only
6311 informing of a stop. */
4f8d22e3
PA
6312 if (!non_stop
6313 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
6314 && target_has_execution
6315 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
6316 && last.kind != TARGET_WAITKIND_EXITED
6317 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
6318 {
6319 target_terminal_ours_for_output ();
a3f17187 6320 printf_filtered (_("[Switching to %s]\n"),
c95310c6 6321 target_pid_to_str (inferior_ptid));
b8fa951a 6322 annotate_thread_changed ();
39f77062 6323 previous_inferior_ptid = inferior_ptid;
c906108c 6324 }
c906108c 6325
0e5bf2a8
PA
6326 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
6327 {
6328 gdb_assert (sync_execution || !target_can_async_p ());
6329
6330 target_terminal_ours_for_output ();
6331 printf_filtered (_("No unwaited-for children left.\n"));
6332 }
6333
b57bacec 6334 /* Note: this depends on the update_thread_list call above. */
a25a5a45 6335 if (!breakpoints_should_be_inserted_now () && target_has_execution)
c906108c
SS
6336 {
6337 if (remove_breakpoints ())
6338 {
6339 target_terminal_ours_for_output ();
3e43a32a
MS
6340 printf_filtered (_("Cannot remove breakpoints because "
6341 "program is no longer writable.\nFurther "
6342 "execution is probably impossible.\n"));
c906108c
SS
6343 }
6344 }
c906108c 6345
c906108c
SS
6346 /* If an auto-display called a function and that got a signal,
6347 delete that auto-display to avoid an infinite recursion. */
6348
6349 if (stopped_by_random_signal)
6350 disable_current_display ();
6351
b57bacec 6352 /* Notify observers if we finished a "step"-like command, etc. */
af679fd0
PA
6353 if (target_has_execution
6354 && last.kind != TARGET_WAITKIND_SIGNALLED
6355 && last.kind != TARGET_WAITKIND_EXITED
16c381f0 6356 && inferior_thread ()->control.stop_step)
b57bacec 6357 {
31cc0b80 6358 /* But not if in the middle of doing a "step n" operation for
b57bacec
PA
6359 n > 1 */
6360 if (inferior_thread ()->step_multi)
6361 goto done;
6362
6363 observer_notify_end_stepping_range ();
6364 }
c906108c
SS
6365
6366 target_terminal_ours ();
0f641c01 6367 async_enable_stdin ();
c906108c 6368
7abfe014
DJ
6369 /* Set the current source location. This will also happen if we
6370 display the frame below, but the current SAL will be incorrect
6371 during a user hook-stop function. */
d729566a 6372 if (has_stack_frames () && !stop_stack_dummy)
5166082f 6373 set_current_sal_from_frame (get_current_frame ());
7abfe014 6374
251bde03
PA
6375 /* Let the user/frontend see the threads as stopped, but do nothing
6376 if the thread was running an infcall. We may be e.g., evaluating
6377 a breakpoint condition. In that case, the thread had state
6378 THREAD_RUNNING before the infcall, and shall remain set to
6379 running, all without informing the user/frontend about state
6380 transition changes. If this is actually a call command, then the
6381 thread was originally already stopped, so there's no state to
6382 finish either. */
6383 if (target_has_execution && inferior_thread ()->control.in_infcall)
6384 discard_cleanups (old_chain);
6385 else
6386 do_cleanups (old_chain);
dd7e2d2b
PA
6387
6388 /* Look up the hook_stop and run it (CLI internally handles problem
6389 of stop_command's pre-hook not existing). */
6390 if (stop_command)
6391 catch_errors (hook_stop_stub, stop_command,
6392 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6393
d729566a 6394 if (!has_stack_frames ())
d51fd4c8 6395 goto done;
c906108c 6396
32400beb
PA
6397 if (last.kind == TARGET_WAITKIND_SIGNALLED
6398 || last.kind == TARGET_WAITKIND_EXITED)
6399 goto done;
6400
c906108c
SS
6401 /* Select innermost stack frame - i.e., current frame is frame 0,
6402 and current location is based on that.
6403 Don't do this on return from a stack dummy routine,
1777feb0 6404 or if the program has exited. */
c906108c
SS
6405
6406 if (!stop_stack_dummy)
6407 {
0f7d239c 6408 select_frame (get_current_frame ());
c906108c 6409
d01a8610
AS
6410 /* If --batch-silent is enabled then there's no need to print the current
6411 source location, and to try risks causing an error message about
6412 missing source files. */
6413 if (stop_print_frame && !batch_silent)
0c7e1a46 6414 print_stop_event (&last);
c906108c
SS
6415 }
6416
6417 /* Save the function value return registers, if we care.
6418 We might be about to restore their previous contents. */
9da8c2a0
PA
6419 if (inferior_thread ()->control.proceed_to_finish
6420 && execution_direction != EXEC_REVERSE)
d5c31457
UW
6421 {
6422 /* This should not be necessary. */
6423 if (stop_registers)
6424 regcache_xfree (stop_registers);
6425
6426 /* NB: The copy goes through to the target picking up the value of
6427 all the registers. */
6428 stop_registers = regcache_dup (get_current_regcache ());
6429 }
c906108c 6430
aa7d318d 6431 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 6432 {
b89667eb
DE
6433 /* Pop the empty frame that contains the stack dummy.
6434 This also restores inferior state prior to the call
16c381f0 6435 (struct infcall_suspend_state). */
b89667eb 6436 struct frame_info *frame = get_current_frame ();
abbb1732 6437
b89667eb
DE
6438 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6439 frame_pop (frame);
3e43a32a
MS
6440 /* frame_pop() calls reinit_frame_cache as the last thing it
6441 does which means there's currently no selected frame. We
6442 don't need to re-establish a selected frame if the dummy call
6443 returns normally, that will be done by
6444 restore_infcall_control_state. However, we do have to handle
6445 the case where the dummy call is returning after being
6446 stopped (e.g. the dummy call previously hit a breakpoint).
6447 We can't know which case we have so just always re-establish
6448 a selected frame here. */
0f7d239c 6449 select_frame (get_current_frame ());
c906108c
SS
6450 }
6451
c906108c
SS
6452done:
6453 annotate_stopped ();
41d2bdb4
PA
6454
6455 /* Suppress the stop observer if we're in the middle of:
6456
6457 - a step n (n > 1), as there still more steps to be done.
6458
6459 - a "finish" command, as the observer will be called in
6460 finish_command_continuation, so it can include the inferior
6461 function's return value.
6462
6463 - calling an inferior function, as we pretend we inferior didn't
6464 run at all. The return value of the call is handled by the
6465 expression evaluator, through call_function_by_hand. */
6466
6467 if (!target_has_execution
6468 || last.kind == TARGET_WAITKIND_SIGNALLED
6469 || last.kind == TARGET_WAITKIND_EXITED
0e5bf2a8 6470 || last.kind == TARGET_WAITKIND_NO_RESUMED
2ca0b532
PA
6471 || (!(inferior_thread ()->step_multi
6472 && inferior_thread ()->control.stop_step)
16c381f0
JK
6473 && !(inferior_thread ()->control.stop_bpstat
6474 && inferior_thread ()->control.proceed_to_finish)
6475 && !inferior_thread ()->control.in_infcall))
347bddb7
PA
6476 {
6477 if (!ptid_equal (inferior_ptid, null_ptid))
16c381f0 6478 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
1d33d6ba 6479 stop_print_frame);
347bddb7 6480 else
1d33d6ba 6481 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 6482 }
347bddb7 6483
48844aa6
PA
6484 if (target_has_execution)
6485 {
6486 if (last.kind != TARGET_WAITKIND_SIGNALLED
6487 && last.kind != TARGET_WAITKIND_EXITED)
6488 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6489 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 6490 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 6491 }
6c95b8df
PA
6492
6493 /* Try to get rid of automatically added inferiors that are no
6494 longer needed. Keeping those around slows down things linearly.
6495 Note that this never removes the current inferior. */
6496 prune_inferiors ();
c906108c
SS
6497}
6498
6499static int
96baa820 6500hook_stop_stub (void *cmd)
c906108c 6501{
5913bcb0 6502 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
6503 return (0);
6504}
6505\f
c5aa993b 6506int
96baa820 6507signal_stop_state (int signo)
c906108c 6508{
d6b48e9c 6509 return signal_stop[signo];
c906108c
SS
6510}
6511
c5aa993b 6512int
96baa820 6513signal_print_state (int signo)
c906108c
SS
6514{
6515 return signal_print[signo];
6516}
6517
c5aa993b 6518int
96baa820 6519signal_pass_state (int signo)
c906108c
SS
6520{
6521 return signal_program[signo];
6522}
6523
2455069d
UW
6524static void
6525signal_cache_update (int signo)
6526{
6527 if (signo == -1)
6528 {
a493e3e2 6529 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
6530 signal_cache_update (signo);
6531
6532 return;
6533 }
6534
6535 signal_pass[signo] = (signal_stop[signo] == 0
6536 && signal_print[signo] == 0
ab04a2af
TT
6537 && signal_program[signo] == 1
6538 && signal_catch[signo] == 0);
2455069d
UW
6539}
6540
488f131b 6541int
7bda5e4a 6542signal_stop_update (int signo, int state)
d4f3574e
SS
6543{
6544 int ret = signal_stop[signo];
abbb1732 6545
d4f3574e 6546 signal_stop[signo] = state;
2455069d 6547 signal_cache_update (signo);
d4f3574e
SS
6548 return ret;
6549}
6550
488f131b 6551int
7bda5e4a 6552signal_print_update (int signo, int state)
d4f3574e
SS
6553{
6554 int ret = signal_print[signo];
abbb1732 6555
d4f3574e 6556 signal_print[signo] = state;
2455069d 6557 signal_cache_update (signo);
d4f3574e
SS
6558 return ret;
6559}
6560
488f131b 6561int
7bda5e4a 6562signal_pass_update (int signo, int state)
d4f3574e
SS
6563{
6564 int ret = signal_program[signo];
abbb1732 6565
d4f3574e 6566 signal_program[signo] = state;
2455069d 6567 signal_cache_update (signo);
d4f3574e
SS
6568 return ret;
6569}
6570
ab04a2af
TT
6571/* Update the global 'signal_catch' from INFO and notify the
6572 target. */
6573
6574void
6575signal_catch_update (const unsigned int *info)
6576{
6577 int i;
6578
6579 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6580 signal_catch[i] = info[i] > 0;
6581 signal_cache_update (-1);
6582 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6583}
6584
c906108c 6585static void
96baa820 6586sig_print_header (void)
c906108c 6587{
3e43a32a
MS
6588 printf_filtered (_("Signal Stop\tPrint\tPass "
6589 "to program\tDescription\n"));
c906108c
SS
6590}
6591
6592static void
2ea28649 6593sig_print_info (enum gdb_signal oursig)
c906108c 6594{
2ea28649 6595 const char *name = gdb_signal_to_name (oursig);
c906108c 6596 int name_padding = 13 - strlen (name);
96baa820 6597
c906108c
SS
6598 if (name_padding <= 0)
6599 name_padding = 0;
6600
6601 printf_filtered ("%s", name);
488f131b 6602 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
6603 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6604 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6605 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 6606 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
6607}
6608
6609/* Specify how various signals in the inferior should be handled. */
6610
6611static void
96baa820 6612handle_command (char *args, int from_tty)
c906108c
SS
6613{
6614 char **argv;
6615 int digits, wordlen;
6616 int sigfirst, signum, siglast;
2ea28649 6617 enum gdb_signal oursig;
c906108c
SS
6618 int allsigs;
6619 int nsigs;
6620 unsigned char *sigs;
6621 struct cleanup *old_chain;
6622
6623 if (args == NULL)
6624 {
e2e0b3e5 6625 error_no_arg (_("signal to handle"));
c906108c
SS
6626 }
6627
1777feb0 6628 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 6629
a493e3e2 6630 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
6631 sigs = (unsigned char *) alloca (nsigs);
6632 memset (sigs, 0, nsigs);
6633
1777feb0 6634 /* Break the command line up into args. */
c906108c 6635
d1a41061 6636 argv = gdb_buildargv (args);
7a292a7a 6637 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6638
6639 /* Walk through the args, looking for signal oursigs, signal names, and
6640 actions. Signal numbers and signal names may be interspersed with
6641 actions, with the actions being performed for all signals cumulatively
1777feb0 6642 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
6643
6644 while (*argv != NULL)
6645 {
6646 wordlen = strlen (*argv);
6647 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6648 {;
6649 }
6650 allsigs = 0;
6651 sigfirst = siglast = -1;
6652
6653 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6654 {
6655 /* Apply action to all signals except those used by the
1777feb0 6656 debugger. Silently skip those. */
c906108c
SS
6657 allsigs = 1;
6658 sigfirst = 0;
6659 siglast = nsigs - 1;
6660 }
6661 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6662 {
6663 SET_SIGS (nsigs, sigs, signal_stop);
6664 SET_SIGS (nsigs, sigs, signal_print);
6665 }
6666 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6667 {
6668 UNSET_SIGS (nsigs, sigs, signal_program);
6669 }
6670 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6671 {
6672 SET_SIGS (nsigs, sigs, signal_print);
6673 }
6674 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6675 {
6676 SET_SIGS (nsigs, sigs, signal_program);
6677 }
6678 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6679 {
6680 UNSET_SIGS (nsigs, sigs, signal_stop);
6681 }
6682 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6683 {
6684 SET_SIGS (nsigs, sigs, signal_program);
6685 }
6686 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6687 {
6688 UNSET_SIGS (nsigs, sigs, signal_print);
6689 UNSET_SIGS (nsigs, sigs, signal_stop);
6690 }
6691 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6692 {
6693 UNSET_SIGS (nsigs, sigs, signal_program);
6694 }
6695 else if (digits > 0)
6696 {
6697 /* It is numeric. The numeric signal refers to our own
6698 internal signal numbering from target.h, not to host/target
6699 signal number. This is a feature; users really should be
6700 using symbolic names anyway, and the common ones like
6701 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6702
6703 sigfirst = siglast = (int)
2ea28649 6704 gdb_signal_from_command (atoi (*argv));
c906108c
SS
6705 if ((*argv)[digits] == '-')
6706 {
6707 siglast = (int)
2ea28649 6708 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
6709 }
6710 if (sigfirst > siglast)
6711 {
1777feb0 6712 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
6713 signum = sigfirst;
6714 sigfirst = siglast;
6715 siglast = signum;
6716 }
6717 }
6718 else
6719 {
2ea28649 6720 oursig = gdb_signal_from_name (*argv);
a493e3e2 6721 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
6722 {
6723 sigfirst = siglast = (int) oursig;
6724 }
6725 else
6726 {
6727 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 6728 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
6729 }
6730 }
6731
6732 /* If any signal numbers or symbol names were found, set flags for
1777feb0 6733 which signals to apply actions to. */
c906108c
SS
6734
6735 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6736 {
2ea28649 6737 switch ((enum gdb_signal) signum)
c906108c 6738 {
a493e3e2
PA
6739 case GDB_SIGNAL_TRAP:
6740 case GDB_SIGNAL_INT:
c906108c
SS
6741 if (!allsigs && !sigs[signum])
6742 {
9e2f0ad4 6743 if (query (_("%s is used by the debugger.\n\
3e43a32a 6744Are you sure you want to change it? "),
2ea28649 6745 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
6746 {
6747 sigs[signum] = 1;
6748 }
6749 else
6750 {
a3f17187 6751 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
6752 gdb_flush (gdb_stdout);
6753 }
6754 }
6755 break;
a493e3e2
PA
6756 case GDB_SIGNAL_0:
6757 case GDB_SIGNAL_DEFAULT:
6758 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
6759 /* Make sure that "all" doesn't print these. */
6760 break;
6761 default:
6762 sigs[signum] = 1;
6763 break;
6764 }
6765 }
6766
6767 argv++;
6768 }
6769
3a031f65
PA
6770 for (signum = 0; signum < nsigs; signum++)
6771 if (sigs[signum])
6772 {
2455069d 6773 signal_cache_update (-1);
a493e3e2
PA
6774 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6775 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 6776
3a031f65
PA
6777 if (from_tty)
6778 {
6779 /* Show the results. */
6780 sig_print_header ();
6781 for (; signum < nsigs; signum++)
6782 if (sigs[signum])
6783 sig_print_info (signum);
6784 }
6785
6786 break;
6787 }
c906108c
SS
6788
6789 do_cleanups (old_chain);
6790}
6791
de0bea00
MF
6792/* Complete the "handle" command. */
6793
6794static VEC (char_ptr) *
6795handle_completer (struct cmd_list_element *ignore,
6f937416 6796 const char *text, const char *word)
de0bea00
MF
6797{
6798 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
6799 static const char * const keywords[] =
6800 {
6801 "all",
6802 "stop",
6803 "ignore",
6804 "print",
6805 "pass",
6806 "nostop",
6807 "noignore",
6808 "noprint",
6809 "nopass",
6810 NULL,
6811 };
6812
6813 vec_signals = signal_completer (ignore, text, word);
6814 vec_keywords = complete_on_enum (keywords, word, word);
6815
6816 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
6817 VEC_free (char_ptr, vec_signals);
6818 VEC_free (char_ptr, vec_keywords);
6819 return return_val;
6820}
6821
c906108c 6822static void
96baa820 6823xdb_handle_command (char *args, int from_tty)
c906108c
SS
6824{
6825 char **argv;
6826 struct cleanup *old_chain;
6827
d1a41061
PP
6828 if (args == NULL)
6829 error_no_arg (_("xdb command"));
6830
1777feb0 6831 /* Break the command line up into args. */
c906108c 6832
d1a41061 6833 argv = gdb_buildargv (args);
7a292a7a 6834 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6835 if (argv[1] != (char *) NULL)
6836 {
6837 char *argBuf;
6838 int bufLen;
6839
6840 bufLen = strlen (argv[0]) + 20;
6841 argBuf = (char *) xmalloc (bufLen);
6842 if (argBuf)
6843 {
6844 int validFlag = 1;
2ea28649 6845 enum gdb_signal oursig;
c906108c 6846
2ea28649 6847 oursig = gdb_signal_from_name (argv[0]);
c906108c
SS
6848 memset (argBuf, 0, bufLen);
6849 if (strcmp (argv[1], "Q") == 0)
6850 sprintf (argBuf, "%s %s", argv[0], "noprint");
6851 else
6852 {
6853 if (strcmp (argv[1], "s") == 0)
6854 {
6855 if (!signal_stop[oursig])
6856 sprintf (argBuf, "%s %s", argv[0], "stop");
6857 else
6858 sprintf (argBuf, "%s %s", argv[0], "nostop");
6859 }
6860 else if (strcmp (argv[1], "i") == 0)
6861 {
6862 if (!signal_program[oursig])
6863 sprintf (argBuf, "%s %s", argv[0], "pass");
6864 else
6865 sprintf (argBuf, "%s %s", argv[0], "nopass");
6866 }
6867 else if (strcmp (argv[1], "r") == 0)
6868 {
6869 if (!signal_print[oursig])
6870 sprintf (argBuf, "%s %s", argv[0], "print");
6871 else
6872 sprintf (argBuf, "%s %s", argv[0], "noprint");
6873 }
6874 else
6875 validFlag = 0;
6876 }
6877 if (validFlag)
6878 handle_command (argBuf, from_tty);
6879 else
a3f17187 6880 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 6881 if (argBuf)
b8c9b27d 6882 xfree (argBuf);
c906108c
SS
6883 }
6884 }
6885 do_cleanups (old_chain);
6886}
6887
2ea28649
PA
6888enum gdb_signal
6889gdb_signal_from_command (int num)
ed01b82c
PA
6890{
6891 if (num >= 1 && num <= 15)
2ea28649 6892 return (enum gdb_signal) num;
ed01b82c
PA
6893 error (_("Only signals 1-15 are valid as numeric signals.\n\
6894Use \"info signals\" for a list of symbolic signals."));
6895}
6896
c906108c
SS
6897/* Print current contents of the tables set by the handle command.
6898 It is possible we should just be printing signals actually used
6899 by the current target (but for things to work right when switching
6900 targets, all signals should be in the signal tables). */
6901
6902static void
96baa820 6903signals_info (char *signum_exp, int from_tty)
c906108c 6904{
2ea28649 6905 enum gdb_signal oursig;
abbb1732 6906
c906108c
SS
6907 sig_print_header ();
6908
6909 if (signum_exp)
6910 {
6911 /* First see if this is a symbol name. */
2ea28649 6912 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 6913 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
6914 {
6915 /* No, try numeric. */
6916 oursig =
2ea28649 6917 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
6918 }
6919 sig_print_info (oursig);
6920 return;
6921 }
6922
6923 printf_filtered ("\n");
6924 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
6925 for (oursig = GDB_SIGNAL_FIRST;
6926 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 6927 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
6928 {
6929 QUIT;
6930
a493e3e2
PA
6931 if (oursig != GDB_SIGNAL_UNKNOWN
6932 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
6933 sig_print_info (oursig);
6934 }
6935
3e43a32a
MS
6936 printf_filtered (_("\nUse the \"handle\" command "
6937 "to change these tables.\n"));
c906108c 6938}
4aa995e1 6939
c709acd1
PA
6940/* Check if it makes sense to read $_siginfo from the current thread
6941 at this point. If not, throw an error. */
6942
6943static void
6944validate_siginfo_access (void)
6945{
6946 /* No current inferior, no siginfo. */
6947 if (ptid_equal (inferior_ptid, null_ptid))
6948 error (_("No thread selected."));
6949
6950 /* Don't try to read from a dead thread. */
6951 if (is_exited (inferior_ptid))
6952 error (_("The current thread has terminated"));
6953
6954 /* ... or from a spinning thread. */
6955 if (is_running (inferior_ptid))
6956 error (_("Selected thread is running."));
6957}
6958
4aa995e1
PA
6959/* The $_siginfo convenience variable is a bit special. We don't know
6960 for sure the type of the value until we actually have a chance to
7a9dd1b2 6961 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
6962 also dependent on which thread you have selected.
6963
6964 1. making $_siginfo be an internalvar that creates a new value on
6965 access.
6966
6967 2. making the value of $_siginfo be an lval_computed value. */
6968
6969/* This function implements the lval_computed support for reading a
6970 $_siginfo value. */
6971
6972static void
6973siginfo_value_read (struct value *v)
6974{
6975 LONGEST transferred;
6976
c709acd1
PA
6977 validate_siginfo_access ();
6978
4aa995e1
PA
6979 transferred =
6980 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6981 NULL,
6982 value_contents_all_raw (v),
6983 value_offset (v),
6984 TYPE_LENGTH (value_type (v)));
6985
6986 if (transferred != TYPE_LENGTH (value_type (v)))
6987 error (_("Unable to read siginfo"));
6988}
6989
6990/* This function implements the lval_computed support for writing a
6991 $_siginfo value. */
6992
6993static void
6994siginfo_value_write (struct value *v, struct value *fromval)
6995{
6996 LONGEST transferred;
6997
c709acd1
PA
6998 validate_siginfo_access ();
6999
4aa995e1
PA
7000 transferred = target_write (&current_target,
7001 TARGET_OBJECT_SIGNAL_INFO,
7002 NULL,
7003 value_contents_all_raw (fromval),
7004 value_offset (v),
7005 TYPE_LENGTH (value_type (fromval)));
7006
7007 if (transferred != TYPE_LENGTH (value_type (fromval)))
7008 error (_("Unable to write siginfo"));
7009}
7010
c8f2448a 7011static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
7012 {
7013 siginfo_value_read,
7014 siginfo_value_write
7015 };
7016
7017/* Return a new value with the correct type for the siginfo object of
78267919
UW
7018 the current thread using architecture GDBARCH. Return a void value
7019 if there's no object available. */
4aa995e1 7020
2c0b251b 7021static struct value *
22d2b532
SDJ
7022siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
7023 void *ignore)
4aa995e1 7024{
4aa995e1 7025 if (target_has_stack
78267919
UW
7026 && !ptid_equal (inferior_ptid, null_ptid)
7027 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 7028 {
78267919 7029 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 7030
78267919 7031 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
7032 }
7033
78267919 7034 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
7035}
7036
c906108c 7037\f
16c381f0
JK
7038/* infcall_suspend_state contains state about the program itself like its
7039 registers and any signal it received when it last stopped.
7040 This state must be restored regardless of how the inferior function call
7041 ends (either successfully, or after it hits a breakpoint or signal)
7042 if the program is to properly continue where it left off. */
7043
7044struct infcall_suspend_state
7a292a7a 7045{
16c381f0 7046 struct thread_suspend_state thread_suspend;
dd80ea3c 7047#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 7048 struct inferior_suspend_state inferior_suspend;
dd80ea3c 7049#endif
16c381f0
JK
7050
7051 /* Other fields: */
7a292a7a 7052 CORE_ADDR stop_pc;
b89667eb 7053 struct regcache *registers;
1736ad11 7054
35515841 7055 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
7056 struct gdbarch *siginfo_gdbarch;
7057
7058 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
7059 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
7060 content would be invalid. */
7061 gdb_byte *siginfo_data;
b89667eb
DE
7062};
7063
16c381f0
JK
7064struct infcall_suspend_state *
7065save_infcall_suspend_state (void)
b89667eb 7066{
16c381f0 7067 struct infcall_suspend_state *inf_state;
b89667eb 7068 struct thread_info *tp = inferior_thread ();
974a734b 7069#if 0
16c381f0 7070 struct inferior *inf = current_inferior ();
974a734b 7071#endif
1736ad11
JK
7072 struct regcache *regcache = get_current_regcache ();
7073 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7074 gdb_byte *siginfo_data = NULL;
7075
7076 if (gdbarch_get_siginfo_type_p (gdbarch))
7077 {
7078 struct type *type = gdbarch_get_siginfo_type (gdbarch);
7079 size_t len = TYPE_LENGTH (type);
7080 struct cleanup *back_to;
7081
7082 siginfo_data = xmalloc (len);
7083 back_to = make_cleanup (xfree, siginfo_data);
7084
7085 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
7086 siginfo_data, 0, len) == len)
7087 discard_cleanups (back_to);
7088 else
7089 {
7090 /* Errors ignored. */
7091 do_cleanups (back_to);
7092 siginfo_data = NULL;
7093 }
7094 }
7095
41bf6aca 7096 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
7097
7098 if (siginfo_data)
7099 {
7100 inf_state->siginfo_gdbarch = gdbarch;
7101 inf_state->siginfo_data = siginfo_data;
7102 }
b89667eb 7103
16c381f0 7104 inf_state->thread_suspend = tp->suspend;
dd80ea3c 7105#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 7106 inf_state->inferior_suspend = inf->suspend;
dd80ea3c 7107#endif
16c381f0 7108
35515841 7109 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
7110 GDB_SIGNAL_0 anyway. */
7111 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 7112
b89667eb
DE
7113 inf_state->stop_pc = stop_pc;
7114
1736ad11 7115 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
7116
7117 return inf_state;
7118}
7119
7120/* Restore inferior session state to INF_STATE. */
7121
7122void
16c381f0 7123restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
7124{
7125 struct thread_info *tp = inferior_thread ();
974a734b 7126#if 0
16c381f0 7127 struct inferior *inf = current_inferior ();
974a734b 7128#endif
1736ad11
JK
7129 struct regcache *regcache = get_current_regcache ();
7130 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 7131
16c381f0 7132 tp->suspend = inf_state->thread_suspend;
dd80ea3c 7133#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 7134 inf->suspend = inf_state->inferior_suspend;
dd80ea3c 7135#endif
16c381f0 7136
b89667eb
DE
7137 stop_pc = inf_state->stop_pc;
7138
1736ad11
JK
7139 if (inf_state->siginfo_gdbarch == gdbarch)
7140 {
7141 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
7142
7143 /* Errors ignored. */
7144 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 7145 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
7146 }
7147
b89667eb
DE
7148 /* The inferior can be gone if the user types "print exit(0)"
7149 (and perhaps other times). */
7150 if (target_has_execution)
7151 /* NB: The register write goes through to the target. */
1736ad11 7152 regcache_cpy (regcache, inf_state->registers);
803b5f95 7153
16c381f0 7154 discard_infcall_suspend_state (inf_state);
b89667eb
DE
7155}
7156
7157static void
16c381f0 7158do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 7159{
16c381f0 7160 restore_infcall_suspend_state (state);
b89667eb
DE
7161}
7162
7163struct cleanup *
16c381f0
JK
7164make_cleanup_restore_infcall_suspend_state
7165 (struct infcall_suspend_state *inf_state)
b89667eb 7166{
16c381f0 7167 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
7168}
7169
7170void
16c381f0 7171discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
7172{
7173 regcache_xfree (inf_state->registers);
803b5f95 7174 xfree (inf_state->siginfo_data);
b89667eb
DE
7175 xfree (inf_state);
7176}
7177
7178struct regcache *
16c381f0 7179get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
7180{
7181 return inf_state->registers;
7182}
7183
16c381f0
JK
7184/* infcall_control_state contains state regarding gdb's control of the
7185 inferior itself like stepping control. It also contains session state like
7186 the user's currently selected frame. */
b89667eb 7187
16c381f0 7188struct infcall_control_state
b89667eb 7189{
16c381f0
JK
7190 struct thread_control_state thread_control;
7191 struct inferior_control_state inferior_control;
d82142e2
JK
7192
7193 /* Other fields: */
7194 enum stop_stack_kind stop_stack_dummy;
7195 int stopped_by_random_signal;
7a292a7a 7196 int stop_after_trap;
7a292a7a 7197
b89667eb 7198 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 7199 struct frame_id selected_frame_id;
7a292a7a
SS
7200};
7201
c906108c 7202/* Save all of the information associated with the inferior<==>gdb
b89667eb 7203 connection. */
c906108c 7204
16c381f0
JK
7205struct infcall_control_state *
7206save_infcall_control_state (void)
c906108c 7207{
16c381f0 7208 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
4e1c45ea 7209 struct thread_info *tp = inferior_thread ();
d6b48e9c 7210 struct inferior *inf = current_inferior ();
7a292a7a 7211
16c381f0
JK
7212 inf_status->thread_control = tp->control;
7213 inf_status->inferior_control = inf->control;
d82142e2 7214
8358c15c 7215 tp->control.step_resume_breakpoint = NULL;
5b79abe7 7216 tp->control.exception_resume_breakpoint = NULL;
8358c15c 7217
16c381f0
JK
7218 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
7219 chain. If caller's caller is walking the chain, they'll be happier if we
7220 hand them back the original chain when restore_infcall_control_state is
7221 called. */
7222 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
7223
7224 /* Other fields: */
7225 inf_status->stop_stack_dummy = stop_stack_dummy;
7226 inf_status->stopped_by_random_signal = stopped_by_random_signal;
7227 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 7228
206415a3 7229 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 7230
7a292a7a 7231 return inf_status;
c906108c
SS
7232}
7233
c906108c 7234static int
96baa820 7235restore_selected_frame (void *args)
c906108c 7236{
488f131b 7237 struct frame_id *fid = (struct frame_id *) args;
c906108c 7238 struct frame_info *frame;
c906108c 7239
101dcfbe 7240 frame = frame_find_by_id (*fid);
c906108c 7241
aa0cd9c1
AC
7242 /* If inf_status->selected_frame_id is NULL, there was no previously
7243 selected frame. */
101dcfbe 7244 if (frame == NULL)
c906108c 7245 {
8a3fe4f8 7246 warning (_("Unable to restore previously selected frame."));
c906108c
SS
7247 return 0;
7248 }
7249
0f7d239c 7250 select_frame (frame);
c906108c
SS
7251
7252 return (1);
7253}
7254
b89667eb
DE
7255/* Restore inferior session state to INF_STATUS. */
7256
c906108c 7257void
16c381f0 7258restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 7259{
4e1c45ea 7260 struct thread_info *tp = inferior_thread ();
d6b48e9c 7261 struct inferior *inf = current_inferior ();
4e1c45ea 7262
8358c15c
JK
7263 if (tp->control.step_resume_breakpoint)
7264 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
7265
5b79abe7
TT
7266 if (tp->control.exception_resume_breakpoint)
7267 tp->control.exception_resume_breakpoint->disposition
7268 = disp_del_at_next_stop;
7269
d82142e2 7270 /* Handle the bpstat_copy of the chain. */
16c381f0 7271 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 7272
16c381f0
JK
7273 tp->control = inf_status->thread_control;
7274 inf->control = inf_status->inferior_control;
d82142e2
JK
7275
7276 /* Other fields: */
7277 stop_stack_dummy = inf_status->stop_stack_dummy;
7278 stopped_by_random_signal = inf_status->stopped_by_random_signal;
7279 stop_after_trap = inf_status->stop_after_trap;
c906108c 7280
b89667eb 7281 if (target_has_stack)
c906108c 7282 {
c906108c 7283 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
7284 walking the stack might encounter a garbage pointer and
7285 error() trying to dereference it. */
488f131b
JB
7286 if (catch_errors
7287 (restore_selected_frame, &inf_status->selected_frame_id,
7288 "Unable to restore previously selected frame:\n",
7289 RETURN_MASK_ERROR) == 0)
c906108c
SS
7290 /* Error in restoring the selected frame. Select the innermost
7291 frame. */
0f7d239c 7292 select_frame (get_current_frame ());
c906108c 7293 }
c906108c 7294
72cec141 7295 xfree (inf_status);
7a292a7a 7296}
c906108c 7297
74b7792f 7298static void
16c381f0 7299do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 7300{
16c381f0 7301 restore_infcall_control_state (sts);
74b7792f
AC
7302}
7303
7304struct cleanup *
16c381f0
JK
7305make_cleanup_restore_infcall_control_state
7306 (struct infcall_control_state *inf_status)
74b7792f 7307{
16c381f0 7308 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
7309}
7310
c906108c 7311void
16c381f0 7312discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 7313{
8358c15c
JK
7314 if (inf_status->thread_control.step_resume_breakpoint)
7315 inf_status->thread_control.step_resume_breakpoint->disposition
7316 = disp_del_at_next_stop;
7317
5b79abe7
TT
7318 if (inf_status->thread_control.exception_resume_breakpoint)
7319 inf_status->thread_control.exception_resume_breakpoint->disposition
7320 = disp_del_at_next_stop;
7321
1777feb0 7322 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 7323 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 7324
72cec141 7325 xfree (inf_status);
7a292a7a 7326}
b89667eb 7327\f
ca6724c1
KB
7328/* restore_inferior_ptid() will be used by the cleanup machinery
7329 to restore the inferior_ptid value saved in a call to
7330 save_inferior_ptid(). */
ce696e05
KB
7331
7332static void
7333restore_inferior_ptid (void *arg)
7334{
7335 ptid_t *saved_ptid_ptr = arg;
abbb1732 7336
ce696e05
KB
7337 inferior_ptid = *saved_ptid_ptr;
7338 xfree (arg);
7339}
7340
7341/* Save the value of inferior_ptid so that it may be restored by a
7342 later call to do_cleanups(). Returns the struct cleanup pointer
7343 needed for later doing the cleanup. */
7344
7345struct cleanup *
7346save_inferior_ptid (void)
7347{
7348 ptid_t *saved_ptid_ptr;
7349
7350 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7351 *saved_ptid_ptr = inferior_ptid;
7352 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7353}
0c557179 7354
7f89fd65 7355/* See infrun.h. */
0c557179
SDJ
7356
7357void
7358clear_exit_convenience_vars (void)
7359{
7360 clear_internalvar (lookup_internalvar ("_exitsignal"));
7361 clear_internalvar (lookup_internalvar ("_exitcode"));
7362}
c5aa993b 7363\f
488f131b 7364
b2175913
MS
7365/* User interface for reverse debugging:
7366 Set exec-direction / show exec-direction commands
7367 (returns error unless target implements to_set_exec_direction method). */
7368
32231432 7369int execution_direction = EXEC_FORWARD;
b2175913
MS
7370static const char exec_forward[] = "forward";
7371static const char exec_reverse[] = "reverse";
7372static const char *exec_direction = exec_forward;
40478521 7373static const char *const exec_direction_names[] = {
b2175913
MS
7374 exec_forward,
7375 exec_reverse,
7376 NULL
7377};
7378
7379static void
7380set_exec_direction_func (char *args, int from_tty,
7381 struct cmd_list_element *cmd)
7382{
7383 if (target_can_execute_reverse)
7384 {
7385 if (!strcmp (exec_direction, exec_forward))
7386 execution_direction = EXEC_FORWARD;
7387 else if (!strcmp (exec_direction, exec_reverse))
7388 execution_direction = EXEC_REVERSE;
7389 }
8bbed405
MS
7390 else
7391 {
7392 exec_direction = exec_forward;
7393 error (_("Target does not support this operation."));
7394 }
b2175913
MS
7395}
7396
7397static void
7398show_exec_direction_func (struct ui_file *out, int from_tty,
7399 struct cmd_list_element *cmd, const char *value)
7400{
7401 switch (execution_direction) {
7402 case EXEC_FORWARD:
7403 fprintf_filtered (out, _("Forward.\n"));
7404 break;
7405 case EXEC_REVERSE:
7406 fprintf_filtered (out, _("Reverse.\n"));
7407 break;
b2175913 7408 default:
d8b34453
PA
7409 internal_error (__FILE__, __LINE__,
7410 _("bogus execution_direction value: %d"),
7411 (int) execution_direction);
b2175913
MS
7412 }
7413}
7414
d4db2f36
PA
7415static void
7416show_schedule_multiple (struct ui_file *file, int from_tty,
7417 struct cmd_list_element *c, const char *value)
7418{
3e43a32a
MS
7419 fprintf_filtered (file, _("Resuming the execution of threads "
7420 "of all processes is %s.\n"), value);
d4db2f36 7421}
ad52ddc6 7422
22d2b532
SDJ
7423/* Implementation of `siginfo' variable. */
7424
7425static const struct internalvar_funcs siginfo_funcs =
7426{
7427 siginfo_make_value,
7428 NULL,
7429 NULL
7430};
7431
c906108c 7432void
96baa820 7433_initialize_infrun (void)
c906108c 7434{
52f0bd74
AC
7435 int i;
7436 int numsigs;
de0bea00 7437 struct cmd_list_element *c;
c906108c 7438
1bedd215
AC
7439 add_info ("signals", signals_info, _("\
7440What debugger does when program gets various signals.\n\
7441Specify a signal as argument to print info on that signal only."));
c906108c
SS
7442 add_info_alias ("handle", "signals", 0);
7443
de0bea00 7444 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 7445Specify how to handle signals.\n\
486c7739 7446Usage: handle SIGNAL [ACTIONS]\n\
c906108c 7447Args are signals and actions to apply to those signals.\n\
dfbd5e7b 7448If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
7449will be displayed instead.\n\
7450\n\
c906108c
SS
7451Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7452from 1-15 are allowed for compatibility with old versions of GDB.\n\
7453Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7454The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7455used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 7456\n\
1bedd215 7457Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
7458\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7459Stop means reenter debugger if this signal happens (implies print).\n\
7460Print means print a message if this signal happens.\n\
7461Pass means let program see this signal; otherwise program doesn't know.\n\
7462Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
7463Pass and Stop may be combined.\n\
7464\n\
7465Multiple signals may be specified. Signal numbers and signal names\n\
7466may be interspersed with actions, with the actions being performed for\n\
7467all signals cumulatively specified."));
de0bea00 7468 set_cmd_completer (c, handle_completer);
486c7739 7469
c906108c
SS
7470 if (xdb_commands)
7471 {
1bedd215
AC
7472 add_com ("lz", class_info, signals_info, _("\
7473What debugger does when program gets various signals.\n\
7474Specify a signal as argument to print info on that signal only."));
7475 add_com ("z", class_run, xdb_handle_command, _("\
7476Specify how to handle a signal.\n\
c906108c
SS
7477Args are signals and actions to apply to those signals.\n\
7478Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7479from 1-15 are allowed for compatibility with old versions of GDB.\n\
7480Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7481The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7482used by the debugger, typically SIGTRAP and SIGINT.\n\
cce7e648 7483Recognized actions include \"s\" (toggles between stop and nostop),\n\
c906108c
SS
7484\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7485nopass), \"Q\" (noprint)\n\
7486Stop means reenter debugger if this signal happens (implies print).\n\
7487Print means print a message if this signal happens.\n\
7488Pass means let program see this signal; otherwise program doesn't know.\n\
7489Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 7490Pass and Stop may be combined."));
c906108c
SS
7491 }
7492
7493 if (!dbx_commands)
1a966eab
AC
7494 stop_command = add_cmd ("stop", class_obscure,
7495 not_just_help_class_command, _("\
7496There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 7497This allows you to set a list of commands to be run each time execution\n\
1a966eab 7498of the program stops."), &cmdlist);
c906108c 7499
ccce17b0 7500 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
7501Set inferior debugging."), _("\
7502Show inferior debugging."), _("\
7503When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
7504 NULL,
7505 show_debug_infrun,
7506 &setdebuglist, &showdebuglist);
527159b7 7507
3e43a32a
MS
7508 add_setshow_boolean_cmd ("displaced", class_maintenance,
7509 &debug_displaced, _("\
237fc4c9
PA
7510Set displaced stepping debugging."), _("\
7511Show displaced stepping debugging."), _("\
7512When non-zero, displaced stepping specific debugging is enabled."),
7513 NULL,
7514 show_debug_displaced,
7515 &setdebuglist, &showdebuglist);
7516
ad52ddc6
PA
7517 add_setshow_boolean_cmd ("non-stop", no_class,
7518 &non_stop_1, _("\
7519Set whether gdb controls the inferior in non-stop mode."), _("\
7520Show whether gdb controls the inferior in non-stop mode."), _("\
7521When debugging a multi-threaded program and this setting is\n\
7522off (the default, also called all-stop mode), when one thread stops\n\
7523(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7524all other threads in the program while you interact with the thread of\n\
7525interest. When you continue or step a thread, you can allow the other\n\
7526threads to run, or have them remain stopped, but while you inspect any\n\
7527thread's state, all threads stop.\n\
7528\n\
7529In non-stop mode, when one thread stops, other threads can continue\n\
7530to run freely. You'll be able to step each thread independently,\n\
7531leave it stopped or free to run as needed."),
7532 set_non_stop,
7533 show_non_stop,
7534 &setlist,
7535 &showlist);
7536
a493e3e2 7537 numsigs = (int) GDB_SIGNAL_LAST;
488f131b 7538 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
7539 signal_print = (unsigned char *)
7540 xmalloc (sizeof (signal_print[0]) * numsigs);
7541 signal_program = (unsigned char *)
7542 xmalloc (sizeof (signal_program[0]) * numsigs);
ab04a2af
TT
7543 signal_catch = (unsigned char *)
7544 xmalloc (sizeof (signal_catch[0]) * numsigs);
2455069d 7545 signal_pass = (unsigned char *)
4395285e 7546 xmalloc (sizeof (signal_pass[0]) * numsigs);
c906108c
SS
7547 for (i = 0; i < numsigs; i++)
7548 {
7549 signal_stop[i] = 1;
7550 signal_print[i] = 1;
7551 signal_program[i] = 1;
ab04a2af 7552 signal_catch[i] = 0;
c906108c
SS
7553 }
7554
7555 /* Signals caused by debugger's own actions
7556 should not be given to the program afterwards. */
a493e3e2
PA
7557 signal_program[GDB_SIGNAL_TRAP] = 0;
7558 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
7559
7560 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
7561 signal_stop[GDB_SIGNAL_ALRM] = 0;
7562 signal_print[GDB_SIGNAL_ALRM] = 0;
7563 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7564 signal_print[GDB_SIGNAL_VTALRM] = 0;
7565 signal_stop[GDB_SIGNAL_PROF] = 0;
7566 signal_print[GDB_SIGNAL_PROF] = 0;
7567 signal_stop[GDB_SIGNAL_CHLD] = 0;
7568 signal_print[GDB_SIGNAL_CHLD] = 0;
7569 signal_stop[GDB_SIGNAL_IO] = 0;
7570 signal_print[GDB_SIGNAL_IO] = 0;
7571 signal_stop[GDB_SIGNAL_POLL] = 0;
7572 signal_print[GDB_SIGNAL_POLL] = 0;
7573 signal_stop[GDB_SIGNAL_URG] = 0;
7574 signal_print[GDB_SIGNAL_URG] = 0;
7575 signal_stop[GDB_SIGNAL_WINCH] = 0;
7576 signal_print[GDB_SIGNAL_WINCH] = 0;
7577 signal_stop[GDB_SIGNAL_PRIO] = 0;
7578 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 7579
cd0fc7c3
SS
7580 /* These signals are used internally by user-level thread
7581 implementations. (See signal(5) on Solaris.) Like the above
7582 signals, a healthy program receives and handles them as part of
7583 its normal operation. */
a493e3e2
PA
7584 signal_stop[GDB_SIGNAL_LWP] = 0;
7585 signal_print[GDB_SIGNAL_LWP] = 0;
7586 signal_stop[GDB_SIGNAL_WAITING] = 0;
7587 signal_print[GDB_SIGNAL_WAITING] = 0;
7588 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7589 signal_print[GDB_SIGNAL_CANCEL] = 0;
cd0fc7c3 7590
2455069d
UW
7591 /* Update cached state. */
7592 signal_cache_update (-1);
7593
85c07804
AC
7594 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7595 &stop_on_solib_events, _("\
7596Set stopping for shared library events."), _("\
7597Show stopping for shared library events."), _("\
c906108c
SS
7598If nonzero, gdb will give control to the user when the dynamic linker\n\
7599notifies gdb of shared library events. The most common event of interest\n\
85c07804 7600to the user would be loading/unloading of a new library."),
f9e14852 7601 set_stop_on_solib_events,
920d2a44 7602 show_stop_on_solib_events,
85c07804 7603 &setlist, &showlist);
c906108c 7604
7ab04401
AC
7605 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7606 follow_fork_mode_kind_names,
7607 &follow_fork_mode_string, _("\
7608Set debugger response to a program call of fork or vfork."), _("\
7609Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
7610A fork or vfork creates a new process. follow-fork-mode can be:\n\
7611 parent - the original process is debugged after a fork\n\
7612 child - the new process is debugged after a fork\n\
ea1dd7bc 7613The unfollowed process will continue to run.\n\
7ab04401
AC
7614By default, the debugger will follow the parent process."),
7615 NULL,
920d2a44 7616 show_follow_fork_mode_string,
7ab04401
AC
7617 &setlist, &showlist);
7618
6c95b8df
PA
7619 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7620 follow_exec_mode_names,
7621 &follow_exec_mode_string, _("\
7622Set debugger response to a program call of exec."), _("\
7623Show debugger response to a program call of exec."), _("\
7624An exec call replaces the program image of a process.\n\
7625\n\
7626follow-exec-mode can be:\n\
7627\n\
cce7e648 7628 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
7629to this new inferior. The program the process was running before\n\
7630the exec call can be restarted afterwards by restarting the original\n\
7631inferior.\n\
7632\n\
7633 same - the debugger keeps the process bound to the same inferior.\n\
7634The new executable image replaces the previous executable loaded in\n\
7635the inferior. Restarting the inferior after the exec call restarts\n\
7636the executable the process was running after the exec call.\n\
7637\n\
7638By default, the debugger will use the same inferior."),
7639 NULL,
7640 show_follow_exec_mode_string,
7641 &setlist, &showlist);
7642
7ab04401
AC
7643 add_setshow_enum_cmd ("scheduler-locking", class_run,
7644 scheduler_enums, &scheduler_mode, _("\
7645Set mode for locking scheduler during execution."), _("\
7646Show mode for locking scheduler during execution."), _("\
c906108c
SS
7647off == no locking (threads may preempt at any time)\n\
7648on == full locking (no thread except the current thread may run)\n\
7649step == scheduler locked during every single-step operation.\n\
7650 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
7651 Other threads may run while stepping over a function call ('next')."),
7652 set_schedlock_func, /* traps on target vector */
920d2a44 7653 show_scheduler_mode,
7ab04401 7654 &setlist, &showlist);
5fbbeb29 7655
d4db2f36
PA
7656 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7657Set mode for resuming threads of all processes."), _("\
7658Show mode for resuming threads of all processes."), _("\
7659When on, execution commands (such as 'continue' or 'next') resume all\n\
7660threads of all processes. When off (which is the default), execution\n\
7661commands only resume the threads of the current process. The set of\n\
7662threads that are resumed is further refined by the scheduler-locking\n\
7663mode (see help set scheduler-locking)."),
7664 NULL,
7665 show_schedule_multiple,
7666 &setlist, &showlist);
7667
5bf193a2
AC
7668 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7669Set mode of the step operation."), _("\
7670Show mode of the step operation."), _("\
7671When set, doing a step over a function without debug line information\n\
7672will stop at the first instruction of that function. Otherwise, the\n\
7673function is skipped and the step command stops at a different source line."),
7674 NULL,
920d2a44 7675 show_step_stop_if_no_debug,
5bf193a2 7676 &setlist, &showlist);
ca6724c1 7677
72d0e2c5
YQ
7678 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7679 &can_use_displaced_stepping, _("\
237fc4c9
PA
7680Set debugger's willingness to use displaced stepping."), _("\
7681Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
7682If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7683supported by the target architecture. If off, gdb will not use displaced\n\
7684stepping to step over breakpoints, even if such is supported by the target\n\
7685architecture. If auto (which is the default), gdb will use displaced stepping\n\
7686if the target architecture supports it and non-stop mode is active, but will not\n\
7687use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
7688 NULL,
7689 show_can_use_displaced_stepping,
7690 &setlist, &showlist);
237fc4c9 7691
b2175913
MS
7692 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7693 &exec_direction, _("Set direction of execution.\n\
7694Options are 'forward' or 'reverse'."),
7695 _("Show direction of execution (forward/reverse)."),
7696 _("Tells gdb whether to execute forward or backward."),
7697 set_exec_direction_func, show_exec_direction_func,
7698 &setlist, &showlist);
7699
6c95b8df
PA
7700 /* Set/show detach-on-fork: user-settable mode. */
7701
7702 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7703Set whether gdb will detach the child of a fork."), _("\
7704Show whether gdb will detach the child of a fork."), _("\
7705Tells gdb whether to detach the child of a fork."),
7706 NULL, NULL, &setlist, &showlist);
7707
03583c20
UW
7708 /* Set/show disable address space randomization mode. */
7709
7710 add_setshow_boolean_cmd ("disable-randomization", class_support,
7711 &disable_randomization, _("\
7712Set disabling of debuggee's virtual address space randomization."), _("\
7713Show disabling of debuggee's virtual address space randomization."), _("\
7714When this mode is on (which is the default), randomization of the virtual\n\
7715address space is disabled. Standalone programs run with the randomization\n\
7716enabled by default on some platforms."),
7717 &set_disable_randomization,
7718 &show_disable_randomization,
7719 &setlist, &showlist);
7720
ca6724c1 7721 /* ptid initializations */
ca6724c1
KB
7722 inferior_ptid = null_ptid;
7723 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
7724
7725 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 7726 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 7727 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 7728 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
7729
7730 /* Explicitly create without lookup, since that tries to create a
7731 value with a void typed value, and when we get here, gdbarch
7732 isn't initialized yet. At this point, we're quite sure there
7733 isn't another convenience variable of the same name. */
22d2b532 7734 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
7735
7736 add_setshow_boolean_cmd ("observer", no_class,
7737 &observer_mode_1, _("\
7738Set whether gdb controls the inferior in observer mode."), _("\
7739Show whether gdb controls the inferior in observer mode."), _("\
7740In observer mode, GDB can get data from the inferior, but not\n\
7741affect its execution. Registers and memory may not be changed,\n\
7742breakpoints may not be set, and the program cannot be interrupted\n\
7743or signalled."),
7744 set_observer_mode,
7745 show_observer_mode,
7746 &setlist,
7747 &showlist);
c906108c 7748}
This page took 2.158772 seconds and 4 git commands to generate.