* frame.c (frame_pop, frame_observer_target_changed): Call
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
6aba47ca
DJ
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
8621d6a9 6 Free Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b
JM
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
197e01b6
EZ
22 Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
c906108c
SS
24
25#include "defs.h"
26#include "gdb_string.h"
27#include <ctype.h>
28#include "symtab.h"
29#include "frame.h"
30#include "inferior.h"
60250e8b 31#include "exceptions.h"
c906108c 32#include "breakpoint.h"
03f2053f 33#include "gdb_wait.h"
c906108c
SS
34#include "gdbcore.h"
35#include "gdbcmd.h"
210661e7 36#include "cli/cli-script.h"
c906108c
SS
37#include "target.h"
38#include "gdbthread.h"
39#include "annotate.h"
1adeb98a 40#include "symfile.h"
7a292a7a 41#include "top.h"
c906108c 42#include <signal.h>
2acceee2 43#include "inf-loop.h"
4e052eda 44#include "regcache.h"
fd0407d6 45#include "value.h"
06600e06 46#include "observer.h"
f636b87d 47#include "language.h"
a77053c2 48#include "solib.h"
f17517ea 49#include "main.h"
a77053c2 50
9f976b41 51#include "gdb_assert.h"
034dad6f 52#include "mi/mi-common.h"
c906108c
SS
53
54/* Prototypes for local functions */
55
96baa820 56static void signals_info (char *, int);
c906108c 57
96baa820 58static void handle_command (char *, int);
c906108c 59
96baa820 60static void sig_print_info (enum target_signal);
c906108c 61
96baa820 62static void sig_print_header (void);
c906108c 63
74b7792f 64static void resume_cleanups (void *);
c906108c 65
96baa820 66static int hook_stop_stub (void *);
c906108c 67
96baa820
JM
68static int restore_selected_frame (void *);
69
70static void build_infrun (void);
71
4ef3f3be 72static int follow_fork (void);
96baa820
JM
73
74static void set_schedlock_func (char *args, int from_tty,
488f131b 75 struct cmd_list_element *c);
96baa820 76
96baa820
JM
77struct execution_control_state;
78
79static int currently_stepping (struct execution_control_state *ecs);
80
81static void xdb_handle_command (char *args, int from_tty);
82
ea67f13b
DJ
83static int prepare_to_proceed (void);
84
96baa820 85void _initialize_infrun (void);
43ff13b4 86
c906108c
SS
87int inferior_ignoring_startup_exec_events = 0;
88int inferior_ignoring_leading_exec_events = 0;
89
5fbbeb29
CF
90/* When set, stop the 'step' command if we enter a function which has
91 no line number information. The normal behavior is that we step
92 over such function. */
93int step_stop_if_no_debug = 0;
920d2a44
AC
94static void
95show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
96 struct cmd_list_element *c, const char *value)
97{
98 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
99}
5fbbeb29 100
43ff13b4 101/* In asynchronous mode, but simulating synchronous execution. */
96baa820 102
43ff13b4
JM
103int sync_execution = 0;
104
c906108c
SS
105/* wait_for_inferior and normal_stop use this to notify the user
106 when the inferior stopped in a different thread than it had been
96baa820
JM
107 running in. */
108
39f77062 109static ptid_t previous_inferior_ptid;
7a292a7a
SS
110
111/* This is true for configurations that may follow through execl() and
112 similar functions. At present this is only true for HP-UX native. */
113
114#ifndef MAY_FOLLOW_EXEC
115#define MAY_FOLLOW_EXEC (0)
c906108c
SS
116#endif
117
7a292a7a
SS
118static int may_follow_exec = MAY_FOLLOW_EXEC;
119
527159b7 120static int debug_infrun = 0;
920d2a44
AC
121static void
122show_debug_infrun (struct ui_file *file, int from_tty,
123 struct cmd_list_element *c, const char *value)
124{
125 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
126}
527159b7 127
d4f3574e
SS
128/* If the program uses ELF-style shared libraries, then calls to
129 functions in shared libraries go through stubs, which live in a
130 table called the PLT (Procedure Linkage Table). The first time the
131 function is called, the stub sends control to the dynamic linker,
132 which looks up the function's real address, patches the stub so
133 that future calls will go directly to the function, and then passes
134 control to the function.
135
136 If we are stepping at the source level, we don't want to see any of
137 this --- we just want to skip over the stub and the dynamic linker.
138 The simple approach is to single-step until control leaves the
139 dynamic linker.
140
ca557f44
AC
141 However, on some systems (e.g., Red Hat's 5.2 distribution) the
142 dynamic linker calls functions in the shared C library, so you
143 can't tell from the PC alone whether the dynamic linker is still
144 running. In this case, we use a step-resume breakpoint to get us
145 past the dynamic linker, as if we were using "next" to step over a
146 function call.
d4f3574e
SS
147
148 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
149 linker code or not. Normally, this means we single-step. However,
150 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
151 address where we can place a step-resume breakpoint to get past the
152 linker's symbol resolution function.
153
154 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
155 pretty portable way, by comparing the PC against the address ranges
156 of the dynamic linker's sections.
157
158 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
159 it depends on internal details of the dynamic linker. It's usually
160 not too hard to figure out where to put a breakpoint, but it
161 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
162 sanity checking. If it can't figure things out, returning zero and
163 getting the (possibly confusing) stepping behavior is better than
164 signalling an error, which will obscure the change in the
165 inferior's state. */
c906108c 166
c906108c
SS
167/* This function returns TRUE if pc is the address of an instruction
168 that lies within the dynamic linker (such as the event hook, or the
169 dld itself).
170
171 This function must be used only when a dynamic linker event has
172 been caught, and the inferior is being stepped out of the hook, or
173 undefined results are guaranteed. */
174
175#ifndef SOLIB_IN_DYNAMIC_LINKER
176#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
177#endif
178
c2c6d25f
JM
179/* We can't step off a permanent breakpoint in the ordinary way, because we
180 can't remove it. Instead, we have to advance the PC to the next
181 instruction. This macro should expand to a pointer to a function that
182 does that, or zero if we have no such function. If we don't have a
183 definition for it, we have to report an error. */
488f131b 184#ifndef SKIP_PERMANENT_BREAKPOINT
c2c6d25f
JM
185#define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
186static void
c2d11a7d 187default_skip_permanent_breakpoint (void)
c2c6d25f 188{
8a3fe4f8 189 error (_("\
c2c6d25f
JM
190The program is stopped at a permanent breakpoint, but GDB does not know\n\
191how to step past a permanent breakpoint on this architecture. Try using\n\
8a3fe4f8 192a command like `return' or `jump' to continue execution."));
c2c6d25f
JM
193}
194#endif
488f131b 195
c2c6d25f 196
7a292a7a
SS
197/* Convert the #defines into values. This is temporary until wfi control
198 flow is completely sorted out. */
199
200#ifndef HAVE_STEPPABLE_WATCHPOINT
201#define HAVE_STEPPABLE_WATCHPOINT 0
202#else
203#undef HAVE_STEPPABLE_WATCHPOINT
204#define HAVE_STEPPABLE_WATCHPOINT 1
205#endif
206
692590c1
MS
207#ifndef CANNOT_STEP_HW_WATCHPOINTS
208#define CANNOT_STEP_HW_WATCHPOINTS 0
209#else
210#undef CANNOT_STEP_HW_WATCHPOINTS
211#define CANNOT_STEP_HW_WATCHPOINTS 1
212#endif
213
c906108c
SS
214/* Tables of how to react to signals; the user sets them. */
215
216static unsigned char *signal_stop;
217static unsigned char *signal_print;
218static unsigned char *signal_program;
219
220#define SET_SIGS(nsigs,sigs,flags) \
221 do { \
222 int signum = (nsigs); \
223 while (signum-- > 0) \
224 if ((sigs)[signum]) \
225 (flags)[signum] = 1; \
226 } while (0)
227
228#define UNSET_SIGS(nsigs,sigs,flags) \
229 do { \
230 int signum = (nsigs); \
231 while (signum-- > 0) \
232 if ((sigs)[signum]) \
233 (flags)[signum] = 0; \
234 } while (0)
235
39f77062
KB
236/* Value to pass to target_resume() to cause all threads to resume */
237
238#define RESUME_ALL (pid_to_ptid (-1))
c906108c
SS
239
240/* Command list pointer for the "stop" placeholder. */
241
242static struct cmd_list_element *stop_command;
243
244/* Nonzero if breakpoints are now inserted in the inferior. */
245
246static int breakpoints_inserted;
247
248/* Function inferior was in as of last step command. */
249
250static struct symbol *step_start_function;
251
252/* Nonzero if we are expecting a trace trap and should proceed from it. */
253
254static int trap_expected;
255
c906108c
SS
256/* Nonzero if we want to give control to the user when we're notified
257 of shared library events by the dynamic linker. */
258static int stop_on_solib_events;
920d2a44
AC
259static void
260show_stop_on_solib_events (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262{
263 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
264 value);
265}
c906108c 266
c906108c
SS
267/* Nonzero means expecting a trace trap
268 and should stop the inferior and return silently when it happens. */
269
270int stop_after_trap;
271
272/* Nonzero means expecting a trap and caller will handle it themselves.
273 It is used after attach, due to attaching to a process;
274 when running in the shell before the child program has been exec'd;
275 and when running some kinds of remote stuff (FIXME?). */
276
c0236d92 277enum stop_kind stop_soon;
c906108c
SS
278
279/* Nonzero if proceed is being used for a "finish" command or a similar
280 situation when stop_registers should be saved. */
281
282int proceed_to_finish;
283
284/* Save register contents here when about to pop a stack dummy frame,
285 if-and-only-if proceed_to_finish is set.
286 Thus this contains the return value from the called function (assuming
287 values are returned in a register). */
288
72cec141 289struct regcache *stop_registers;
c906108c
SS
290
291/* Nonzero if program stopped due to error trying to insert breakpoints. */
292
293static int breakpoints_failed;
294
295/* Nonzero after stop if current stack frame should be printed. */
296
297static int stop_print_frame;
298
299static struct breakpoint *step_resume_breakpoint = NULL;
c906108c 300
e02bc4cc 301/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
302 returned by target_wait()/deprecated_target_wait_hook(). This
303 information is returned by get_last_target_status(). */
39f77062 304static ptid_t target_last_wait_ptid;
e02bc4cc
DS
305static struct target_waitstatus target_last_waitstatus;
306
c906108c
SS
307/* This is used to remember when a fork, vfork or exec event
308 was caught by a catchpoint, and thus the event is to be
309 followed at the next resume of the inferior, and not
310 immediately. */
311static struct
488f131b
JB
312{
313 enum target_waitkind kind;
314 struct
c906108c 315 {
488f131b 316 int parent_pid;
488f131b 317 int child_pid;
c906108c 318 }
488f131b
JB
319 fork_event;
320 char *execd_pathname;
321}
c906108c
SS
322pending_follow;
323
53904c9e
AC
324static const char follow_fork_mode_child[] = "child";
325static const char follow_fork_mode_parent[] = "parent";
326
488f131b 327static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
328 follow_fork_mode_child,
329 follow_fork_mode_parent,
330 NULL
ef346e04 331};
c906108c 332
53904c9e 333static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
334static void
335show_follow_fork_mode_string (struct ui_file *file, int from_tty,
336 struct cmd_list_element *c, const char *value)
337{
338 fprintf_filtered (file, _("\
339Debugger response to a program call of fork or vfork is \"%s\".\n"),
340 value);
341}
c906108c
SS
342\f
343
6604731b 344static int
4ef3f3be 345follow_fork (void)
c906108c 346{
ea1dd7bc 347 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
c906108c 348
6604731b 349 return target_follow_fork (follow_child);
c906108c
SS
350}
351
6604731b
DJ
352void
353follow_inferior_reset_breakpoints (void)
c906108c 354{
6604731b
DJ
355 /* Was there a step_resume breakpoint? (There was if the user
356 did a "next" at the fork() call.) If so, explicitly reset its
357 thread number.
358
359 step_resumes are a form of bp that are made to be per-thread.
360 Since we created the step_resume bp when the parent process
361 was being debugged, and now are switching to the child process,
362 from the breakpoint package's viewpoint, that's a switch of
363 "threads". We must update the bp's notion of which thread
364 it is for, or it'll be ignored when it triggers. */
365
366 if (step_resume_breakpoint)
367 breakpoint_re_set_thread (step_resume_breakpoint);
368
369 /* Reinsert all breakpoints in the child. The user may have set
370 breakpoints after catching the fork, in which case those
371 were never set in the child, but only in the parent. This makes
372 sure the inserted breakpoints match the breakpoint list. */
373
374 breakpoint_re_set ();
375 insert_breakpoints ();
c906108c 376}
c906108c 377
1adeb98a
FN
378/* EXECD_PATHNAME is assumed to be non-NULL. */
379
c906108c 380static void
96baa820 381follow_exec (int pid, char *execd_pathname)
c906108c 382{
c906108c 383 int saved_pid = pid;
7a292a7a
SS
384 struct target_ops *tgt;
385
386 if (!may_follow_exec)
387 return;
c906108c 388
c906108c
SS
389 /* This is an exec event that we actually wish to pay attention to.
390 Refresh our symbol table to the newly exec'd program, remove any
391 momentary bp's, etc.
392
393 If there are breakpoints, they aren't really inserted now,
394 since the exec() transformed our inferior into a fresh set
395 of instructions.
396
397 We want to preserve symbolic breakpoints on the list, since
398 we have hopes that they can be reset after the new a.out's
399 symbol table is read.
400
401 However, any "raw" breakpoints must be removed from the list
402 (e.g., the solib bp's), since their address is probably invalid
403 now.
404
405 And, we DON'T want to call delete_breakpoints() here, since
406 that may write the bp's "shadow contents" (the instruction
407 value that was overwritten witha TRAP instruction). Since
408 we now have a new a.out, those shadow contents aren't valid. */
409 update_breakpoints_after_exec ();
410
411 /* If there was one, it's gone now. We cannot truly step-to-next
412 statement through an exec(). */
413 step_resume_breakpoint = NULL;
414 step_range_start = 0;
415 step_range_end = 0;
416
c906108c 417 /* What is this a.out's name? */
a3f17187 418 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
c906108c
SS
419
420 /* We've followed the inferior through an exec. Therefore, the
421 inferior has essentially been killed & reborn. */
7a292a7a
SS
422
423 /* First collect the run target in effect. */
424 tgt = find_run_target ();
425 /* If we can't find one, things are in a very strange state... */
426 if (tgt == NULL)
8a3fe4f8 427 error (_("Could find run target to save before following exec"));
7a292a7a 428
c906108c
SS
429 gdb_flush (gdb_stdout);
430 target_mourn_inferior ();
39f77062 431 inferior_ptid = pid_to_ptid (saved_pid);
488f131b 432 /* Because mourn_inferior resets inferior_ptid. */
7a292a7a 433 push_target (tgt);
c906108c
SS
434
435 /* That a.out is now the one to use. */
436 exec_file_attach (execd_pathname, 0);
437
438 /* And also is where symbols can be found. */
1adeb98a 439 symbol_file_add_main (execd_pathname, 0);
c906108c
SS
440
441 /* Reset the shared library package. This ensures that we get
442 a shlib event when the child reaches "_start", at which point
443 the dld will have had a chance to initialize the child. */
7a292a7a 444#if defined(SOLIB_RESTART)
c906108c 445 SOLIB_RESTART ();
7a292a7a
SS
446#endif
447#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 448 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2
MK
449#else
450 solib_create_inferior_hook ();
7a292a7a 451#endif
c906108c
SS
452
453 /* Reinsert all breakpoints. (Those which were symbolic have
454 been reset to the proper address in the new a.out, thanks
455 to symbol_file_command...) */
456 insert_breakpoints ();
457
458 /* The next resume of this inferior should bring it to the shlib
459 startup breakpoints. (If the user had also set bp's on
460 "main" from the old (parent) process, then they'll auto-
461 matically get reset there in the new process.) */
c906108c
SS
462}
463
464/* Non-zero if we just simulating a single-step. This is needed
465 because we cannot remove the breakpoints in the inferior process
466 until after the `wait' in `wait_for_inferior'. */
467static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
468
469/* The thread we inserted single-step breakpoints for. */
470static ptid_t singlestep_ptid;
471
fd48f117
DJ
472/* PC when we started this single-step. */
473static CORE_ADDR singlestep_pc;
474
9f976b41
DJ
475/* If another thread hit the singlestep breakpoint, we save the original
476 thread here so that we can resume single-stepping it later. */
477static ptid_t saved_singlestep_ptid;
478static int stepping_past_singlestep_breakpoint;
c906108c
SS
479\f
480
481/* Things to clean up if we QUIT out of resume (). */
c906108c 482static void
74b7792f 483resume_cleanups (void *ignore)
c906108c
SS
484{
485 normal_stop ();
486}
487
53904c9e
AC
488static const char schedlock_off[] = "off";
489static const char schedlock_on[] = "on";
490static const char schedlock_step[] = "step";
488f131b 491static const char *scheduler_enums[] = {
ef346e04
AC
492 schedlock_off,
493 schedlock_on,
494 schedlock_step,
495 NULL
496};
920d2a44
AC
497static const char *scheduler_mode = schedlock_off;
498static void
499show_scheduler_mode (struct ui_file *file, int from_tty,
500 struct cmd_list_element *c, const char *value)
501{
502 fprintf_filtered (file, _("\
503Mode for locking scheduler during execution is \"%s\".\n"),
504 value);
505}
c906108c
SS
506
507static void
96baa820 508set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 509{
eefe576e
AC
510 if (!target_can_lock_scheduler)
511 {
512 scheduler_mode = schedlock_off;
513 error (_("Target '%s' cannot support this command."), target_shortname);
514 }
c906108c
SS
515}
516
517
518/* Resume the inferior, but allow a QUIT. This is useful if the user
519 wants to interrupt some lengthy single-stepping operation
520 (for child processes, the SIGINT goes to the inferior, and so
521 we get a SIGINT random_signal, but for remote debugging and perhaps
522 other targets, that's not true).
523
524 STEP nonzero if we should step (zero to continue instead).
525 SIG is the signal to give the inferior (zero for none). */
526void
96baa820 527resume (int step, enum target_signal sig)
c906108c
SS
528{
529 int should_resume = 1;
74b7792f 530 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
c906108c
SS
531 QUIT;
532
527159b7 533 if (debug_infrun)
8a9de0e4
AC
534 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
535 step, sig);
527159b7 536
ef5cf84e
MS
537 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
538
c906108c 539
692590c1
MS
540 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
541 over an instruction that causes a page fault without triggering
542 a hardware watchpoint. The kernel properly notices that it shouldn't
543 stop, because the hardware watchpoint is not triggered, but it forgets
544 the step request and continues the program normally.
545 Work around the problem by removing hardware watchpoints if a step is
546 requested, GDB will check for a hardware watchpoint trigger after the
547 step anyway. */
548 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
549 remove_hw_watchpoints ();
488f131b 550
692590c1 551
c2c6d25f
JM
552 /* Normally, by the time we reach `resume', the breakpoints are either
553 removed or inserted, as appropriate. The exception is if we're sitting
554 at a permanent breakpoint; we need to step over it, but permanent
555 breakpoints can't be removed. So we have to test for it here. */
556 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
557 SKIP_PERMANENT_BREAKPOINT ();
558
b0ed3589 559 if (SOFTWARE_SINGLE_STEP_P () && step)
c906108c
SS
560 {
561 /* Do it the hard way, w/temp breakpoints */
c5aa993b 562 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
c906108c
SS
563 /* ...and don't ask hardware to do it. */
564 step = 0;
565 /* and do not pull these breakpoints until after a `wait' in
566 `wait_for_inferior' */
567 singlestep_breakpoints_inserted_p = 1;
9f976b41 568 singlestep_ptid = inferior_ptid;
fd48f117 569 singlestep_pc = read_pc ();
c906108c
SS
570 }
571
c906108c 572 /* If there were any forks/vforks/execs that were caught and are
6604731b 573 now to be followed, then do so. */
c906108c
SS
574 switch (pending_follow.kind)
575 {
6604731b
DJ
576 case TARGET_WAITKIND_FORKED:
577 case TARGET_WAITKIND_VFORKED:
c906108c 578 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
6604731b
DJ
579 if (follow_fork ())
580 should_resume = 0;
c906108c
SS
581 break;
582
6604731b 583 case TARGET_WAITKIND_EXECD:
c906108c 584 /* follow_exec is called as soon as the exec event is seen. */
6604731b 585 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
c906108c
SS
586 break;
587
588 default:
589 break;
590 }
c906108c
SS
591
592 /* Install inferior's terminal modes. */
593 target_terminal_inferior ();
594
595 if (should_resume)
596 {
39f77062 597 ptid_t resume_ptid;
dfcd3bfb 598
488f131b 599 resume_ptid = RESUME_ALL; /* Default */
ef5cf84e 600
8fb3e588
AC
601 if ((step || singlestep_breakpoints_inserted_p)
602 && (stepping_past_singlestep_breakpoint
603 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
c906108c 604 {
ef5cf84e
MS
605 /* Stepping past a breakpoint without inserting breakpoints.
606 Make sure only the current thread gets to step, so that
607 other threads don't sneak past breakpoints while they are
608 not inserted. */
c906108c 609
ef5cf84e 610 resume_ptid = inferior_ptid;
c906108c 611 }
ef5cf84e 612
8fb3e588
AC
613 if ((scheduler_mode == schedlock_on)
614 || (scheduler_mode == schedlock_step
615 && (step || singlestep_breakpoints_inserted_p)))
c906108c 616 {
ef5cf84e 617 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 618 resume_ptid = inferior_ptid;
c906108c 619 }
ef5cf84e 620
c4ed33b9
AC
621 if (CANNOT_STEP_BREAKPOINT)
622 {
623 /* Most targets can step a breakpoint instruction, thus
624 executing it normally. But if this one cannot, just
625 continue and we will hit it anyway. */
626 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
627 step = 0;
628 }
39f77062 629 target_resume (resume_ptid, step, sig);
c906108c
SS
630 }
631
632 discard_cleanups (old_cleanups);
633}
634\f
635
636/* Clear out all variables saying what to do when inferior is continued.
637 First do this, then set the ones you want, then call `proceed'. */
638
639void
96baa820 640clear_proceed_status (void)
c906108c
SS
641{
642 trap_expected = 0;
643 step_range_start = 0;
644 step_range_end = 0;
aa0cd9c1 645 step_frame_id = null_frame_id;
5fbbeb29 646 step_over_calls = STEP_OVER_UNDEBUGGABLE;
c906108c 647 stop_after_trap = 0;
c0236d92 648 stop_soon = NO_STOP_QUIETLY;
c906108c
SS
649 proceed_to_finish = 0;
650 breakpoint_proceeded = 1; /* We're about to proceed... */
651
652 /* Discard any remaining commands or status from previous stop. */
653 bpstat_clear (&stop_bpstat);
654}
655
ea67f13b
DJ
656/* This should be suitable for any targets that support threads. */
657
658static int
659prepare_to_proceed (void)
660{
661 ptid_t wait_ptid;
662 struct target_waitstatus wait_status;
663
664 /* Get the last target status returned by target_wait(). */
665 get_last_target_status (&wait_ptid, &wait_status);
666
667 /* Make sure we were stopped either at a breakpoint, or because
668 of a Ctrl-C. */
669 if (wait_status.kind != TARGET_WAITKIND_STOPPED
8fb3e588
AC
670 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
671 && wait_status.value.sig != TARGET_SIGNAL_INT))
ea67f13b
DJ
672 {
673 return 0;
674 }
675
676 if (!ptid_equal (wait_ptid, minus_one_ptid)
677 && !ptid_equal (inferior_ptid, wait_ptid))
678 {
679 /* Switched over from WAIT_PID. */
680 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
681
682 if (wait_pc != read_pc ())
683 {
684 /* Switch back to WAIT_PID thread. */
685 inferior_ptid = wait_ptid;
686
687 /* FIXME: This stuff came from switch_to_thread() in
688 thread.c (which should probably be a public function). */
35f196d9 689 reinit_frame_cache ();
ea67f13b
DJ
690 registers_changed ();
691 stop_pc = wait_pc;
ea67f13b
DJ
692 }
693
8fb3e588
AC
694 /* We return 1 to indicate that there is a breakpoint here,
695 so we need to step over it before continuing to avoid
696 hitting it straight away. */
697 if (breakpoint_here_p (wait_pc))
698 return 1;
ea67f13b
DJ
699 }
700
701 return 0;
8fb3e588 702
ea67f13b 703}
e4846b08
JJ
704
705/* Record the pc of the program the last time it stopped. This is
706 just used internally by wait_for_inferior, but need to be preserved
707 over calls to it and cleared when the inferior is started. */
708static CORE_ADDR prev_pc;
709
c906108c
SS
710/* Basic routine for continuing the program in various fashions.
711
712 ADDR is the address to resume at, or -1 for resume where stopped.
713 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 714 or -1 for act according to how it stopped.
c906108c 715 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
716 -1 means return after that and print nothing.
717 You should probably set various step_... variables
718 before calling here, if you are stepping.
c906108c
SS
719
720 You should call clear_proceed_status before calling proceed. */
721
722void
96baa820 723proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c
SS
724{
725 int oneproc = 0;
726
727 if (step > 0)
728 step_start_function = find_pc_function (read_pc ());
729 if (step < 0)
730 stop_after_trap = 1;
731
2acceee2 732 if (addr == (CORE_ADDR) -1)
c906108c 733 {
c906108c 734 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
3352ef37
AC
735 /* There is a breakpoint at the address we will resume at,
736 step one instruction before inserting breakpoints so that
737 we do not stop right away (and report a second hit at this
738 breakpoint). */
c906108c 739 oneproc = 1;
3352ef37
AC
740 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
741 && gdbarch_single_step_through_delay (current_gdbarch,
742 get_current_frame ()))
743 /* We stepped onto an instruction that needs to be stepped
744 again before re-inserting the breakpoint, do so. */
c906108c
SS
745 oneproc = 1;
746 }
747 else
748 {
749 write_pc (addr);
c906108c
SS
750 }
751
527159b7 752 if (debug_infrun)
8a9de0e4
AC
753 fprintf_unfiltered (gdb_stdlog,
754 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
755 paddr_nz (addr), siggnal, step);
527159b7 756
c906108c
SS
757 /* In a multi-threaded task we may select another thread
758 and then continue or step.
759
760 But if the old thread was stopped at a breakpoint, it
761 will immediately cause another breakpoint stop without
762 any execution (i.e. it will report a breakpoint hit
763 incorrectly). So we must step over it first.
764
ea67f13b 765 prepare_to_proceed checks the current thread against the thread
c906108c
SS
766 that reported the most recent event. If a step-over is required
767 it returns TRUE and sets the current thread to the old thread. */
ea67f13b
DJ
768 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
769 oneproc = 1;
c906108c 770
c906108c
SS
771 if (oneproc)
772 /* We will get a trace trap after one instruction.
773 Continue it automatically and insert breakpoints then. */
774 trap_expected = 1;
775 else
776 {
81d0cc19
GS
777 insert_breakpoints ();
778 /* If we get here there was no call to error() in
8fb3e588 779 insert breakpoints -- so they were inserted. */
c906108c
SS
780 breakpoints_inserted = 1;
781 }
782
783 if (siggnal != TARGET_SIGNAL_DEFAULT)
784 stop_signal = siggnal;
785 /* If this signal should not be seen by program,
786 give it zero. Used for debugging signals. */
787 else if (!signal_program[stop_signal])
788 stop_signal = TARGET_SIGNAL_0;
789
790 annotate_starting ();
791
792 /* Make sure that output from GDB appears before output from the
793 inferior. */
794 gdb_flush (gdb_stdout);
795
e4846b08
JJ
796 /* Refresh prev_pc value just prior to resuming. This used to be
797 done in stop_stepping, however, setting prev_pc there did not handle
798 scenarios such as inferior function calls or returning from
799 a function via the return command. In those cases, the prev_pc
800 value was not set properly for subsequent commands. The prev_pc value
801 is used to initialize the starting line number in the ecs. With an
802 invalid value, the gdb next command ends up stopping at the position
803 represented by the next line table entry past our start position.
804 On platforms that generate one line table entry per line, this
805 is not a problem. However, on the ia64, the compiler generates
806 extraneous line table entries that do not increase the line number.
807 When we issue the gdb next command on the ia64 after an inferior call
808 or a return command, we often end up a few instructions forward, still
809 within the original line we started.
810
811 An attempt was made to have init_execution_control_state () refresh
812 the prev_pc value before calculating the line number. This approach
813 did not work because on platforms that use ptrace, the pc register
814 cannot be read unless the inferior is stopped. At that point, we
815 are not guaranteed the inferior is stopped and so the read_pc ()
816 call can fail. Setting the prev_pc value here ensures the value is
8fb3e588 817 updated correctly when the inferior is stopped. */
e4846b08
JJ
818 prev_pc = read_pc ();
819
c906108c
SS
820 /* Resume inferior. */
821 resume (oneproc || step || bpstat_should_step (), stop_signal);
822
823 /* Wait for it to stop (if not standalone)
824 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
825 /* Do this only if we are not using the event loop, or if the target
826 does not support asynchronous execution. */
362646f5 827 if (!target_can_async_p ())
43ff13b4
JM
828 {
829 wait_for_inferior ();
830 normal_stop ();
831 }
c906108c 832}
c906108c
SS
833\f
834
835/* Start remote-debugging of a machine over a serial link. */
96baa820 836
c906108c 837void
8621d6a9 838start_remote (int from_tty)
c906108c
SS
839{
840 init_thread_list ();
841 init_wait_for_inferior ();
c0236d92 842 stop_soon = STOP_QUIETLY;
c906108c 843 trap_expected = 0;
43ff13b4 844
6426a772
JM
845 /* Always go on waiting for the target, regardless of the mode. */
846 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 847 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
848 nothing is returned (instead of just blocking). Because of this,
849 targets expecting an immediate response need to, internally, set
850 things up so that the target_wait() is forced to eventually
851 timeout. */
852 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
853 differentiate to its caller what the state of the target is after
854 the initial open has been performed. Here we're assuming that
855 the target has stopped. It should be possible to eventually have
856 target_open() return to the caller an indication that the target
857 is currently running and GDB state should be set to the same as
858 for an async run. */
859 wait_for_inferior ();
8621d6a9
DJ
860
861 /* Now that the inferior has stopped, do any bookkeeping like
862 loading shared libraries. We want to do this before normal_stop,
863 so that the displayed frame is up to date. */
864 post_create_inferior (&current_target, from_tty);
865
6426a772 866 normal_stop ();
c906108c
SS
867}
868
869/* Initialize static vars when a new inferior begins. */
870
871void
96baa820 872init_wait_for_inferior (void)
c906108c
SS
873{
874 /* These are meaningless until the first time through wait_for_inferior. */
875 prev_pc = 0;
c906108c 876
c906108c
SS
877 breakpoints_inserted = 0;
878 breakpoint_init_inferior (inf_starting);
879
880 /* Don't confuse first call to proceed(). */
881 stop_signal = TARGET_SIGNAL_0;
882
883 /* The first resume is not following a fork/vfork/exec. */
884 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
c906108c 885
c906108c 886 clear_proceed_status ();
9f976b41
DJ
887
888 stepping_past_singlestep_breakpoint = 0;
c906108c 889}
c906108c 890\f
b83266a0
SS
891/* This enum encodes possible reasons for doing a target_wait, so that
892 wfi can call target_wait in one place. (Ultimately the call will be
893 moved out of the infinite loop entirely.) */
894
c5aa993b
JM
895enum infwait_states
896{
cd0fc7c3
SS
897 infwait_normal_state,
898 infwait_thread_hop_state,
cd0fc7c3 899 infwait_nonstep_watch_state
b83266a0
SS
900};
901
11cf8741
JM
902/* Why did the inferior stop? Used to print the appropriate messages
903 to the interface from within handle_inferior_event(). */
904enum inferior_stop_reason
905{
11cf8741
JM
906 /* Step, next, nexti, stepi finished. */
907 END_STEPPING_RANGE,
11cf8741
JM
908 /* Inferior terminated by signal. */
909 SIGNAL_EXITED,
910 /* Inferior exited. */
911 EXITED,
912 /* Inferior received signal, and user asked to be notified. */
913 SIGNAL_RECEIVED
914};
915
cd0fc7c3
SS
916/* This structure contains what used to be local variables in
917 wait_for_inferior. Probably many of them can return to being
918 locals in handle_inferior_event. */
919
c5aa993b 920struct execution_control_state
488f131b
JB
921{
922 struct target_waitstatus ws;
923 struct target_waitstatus *wp;
924 int another_trap;
925 int random_signal;
926 CORE_ADDR stop_func_start;
927 CORE_ADDR stop_func_end;
928 char *stop_func_name;
929 struct symtab_and_line sal;
488f131b
JB
930 int current_line;
931 struct symtab *current_symtab;
932 int handling_longjmp; /* FIXME */
933 ptid_t ptid;
934 ptid_t saved_inferior_ptid;
68f53502 935 int step_after_step_resume_breakpoint;
488f131b
JB
936 int stepping_through_solib_after_catch;
937 bpstat stepping_through_solib_catchpoints;
488f131b
JB
938 int new_thread_event;
939 struct target_waitstatus tmpstatus;
940 enum infwait_states infwait_state;
941 ptid_t waiton_ptid;
942 int wait_some_more;
943};
944
945void init_execution_control_state (struct execution_control_state *ecs);
946
947void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 948
c2c6d25f 949static void step_into_function (struct execution_control_state *ecs);
44cbf7b5 950static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
14e60db5 951static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
44cbf7b5
AC
952static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
953 struct frame_id sr_id);
104c1213
JM
954static void stop_stepping (struct execution_control_state *ecs);
955static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 956static void keep_going (struct execution_control_state *ecs);
488f131b
JB
957static void print_stop_reason (enum inferior_stop_reason stop_reason,
958 int stop_info);
104c1213 959
cd0fc7c3
SS
960/* Wait for control to return from inferior to debugger.
961 If inferior gets a signal, we may decide to start it up again
962 instead of returning. That is why there is a loop in this function.
963 When this function actually returns it means the inferior
964 should be left stopped and GDB should read more commands. */
965
966void
96baa820 967wait_for_inferior (void)
cd0fc7c3
SS
968{
969 struct cleanup *old_cleanups;
970 struct execution_control_state ecss;
971 struct execution_control_state *ecs;
c906108c 972
527159b7 973 if (debug_infrun)
8a9de0e4 974 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
527159b7 975
8601f500 976 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
c906108c 977 &step_resume_breakpoint);
cd0fc7c3
SS
978
979 /* wfi still stays in a loop, so it's OK just to take the address of
980 a local to get the ecs pointer. */
981 ecs = &ecss;
982
983 /* Fill in with reasonable starting values. */
984 init_execution_control_state (ecs);
985
c906108c 986 /* We'll update this if & when we switch to a new thread. */
39f77062 987 previous_inferior_ptid = inferior_ptid;
c906108c 988
cd0fc7c3
SS
989 overlay_cache_invalid = 1;
990
991 /* We have to invalidate the registers BEFORE calling target_wait
992 because they can be loaded from the target while in target_wait.
993 This makes remote debugging a bit more efficient for those
994 targets that provide critical registers as part of their normal
995 status mechanism. */
996
997 registers_changed ();
b83266a0 998
c906108c
SS
999 while (1)
1000 {
9a4105ab
AC
1001 if (deprecated_target_wait_hook)
1002 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
cd0fc7c3 1003 else
39f77062 1004 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
c906108c 1005
cd0fc7c3
SS
1006 /* Now figure out what to do with the result of the result. */
1007 handle_inferior_event (ecs);
c906108c 1008
cd0fc7c3
SS
1009 if (!ecs->wait_some_more)
1010 break;
1011 }
1012 do_cleanups (old_cleanups);
1013}
c906108c 1014
43ff13b4
JM
1015/* Asynchronous version of wait_for_inferior. It is called by the
1016 event loop whenever a change of state is detected on the file
1017 descriptor corresponding to the target. It can be called more than
1018 once to complete a single execution command. In such cases we need
1019 to keep the state in a global variable ASYNC_ECSS. If it is the
1020 last time that this function is called for a single execution
1021 command, then report to the user that the inferior has stopped, and
1022 do the necessary cleanups. */
1023
1024struct execution_control_state async_ecss;
1025struct execution_control_state *async_ecs;
1026
1027void
fba45db2 1028fetch_inferior_event (void *client_data)
43ff13b4
JM
1029{
1030 static struct cleanup *old_cleanups;
1031
c5aa993b 1032 async_ecs = &async_ecss;
43ff13b4
JM
1033
1034 if (!async_ecs->wait_some_more)
1035 {
488f131b 1036 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
c5aa993b 1037 &step_resume_breakpoint);
43ff13b4
JM
1038
1039 /* Fill in with reasonable starting values. */
1040 init_execution_control_state (async_ecs);
1041
43ff13b4 1042 /* We'll update this if & when we switch to a new thread. */
39f77062 1043 previous_inferior_ptid = inferior_ptid;
43ff13b4
JM
1044
1045 overlay_cache_invalid = 1;
1046
1047 /* We have to invalidate the registers BEFORE calling target_wait
c5aa993b
JM
1048 because they can be loaded from the target while in target_wait.
1049 This makes remote debugging a bit more efficient for those
1050 targets that provide critical registers as part of their normal
1051 status mechanism. */
43ff13b4
JM
1052
1053 registers_changed ();
1054 }
1055
9a4105ab 1056 if (deprecated_target_wait_hook)
488f131b 1057 async_ecs->ptid =
9a4105ab 1058 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4 1059 else
39f77062 1060 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4
JM
1061
1062 /* Now figure out what to do with the result of the result. */
1063 handle_inferior_event (async_ecs);
1064
1065 if (!async_ecs->wait_some_more)
1066 {
adf40b2e 1067 /* Do only the cleanups that have been added by this
488f131b
JB
1068 function. Let the continuations for the commands do the rest,
1069 if there are any. */
43ff13b4
JM
1070 do_exec_cleanups (old_cleanups);
1071 normal_stop ();
c2d11a7d
JM
1072 if (step_multi && stop_step)
1073 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1074 else
1075 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4
JM
1076 }
1077}
1078
cd0fc7c3
SS
1079/* Prepare an execution control state for looping through a
1080 wait_for_inferior-type loop. */
1081
1082void
96baa820 1083init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3 1084{
6ad80df0 1085 ecs->another_trap = 0;
cd0fc7c3 1086 ecs->random_signal = 0;
68f53502 1087 ecs->step_after_step_resume_breakpoint = 0;
cd0fc7c3 1088 ecs->handling_longjmp = 0; /* FIXME */
cd0fc7c3
SS
1089 ecs->stepping_through_solib_after_catch = 0;
1090 ecs->stepping_through_solib_catchpoints = NULL;
cd0fc7c3
SS
1091 ecs->sal = find_pc_line (prev_pc, 0);
1092 ecs->current_line = ecs->sal.line;
1093 ecs->current_symtab = ecs->sal.symtab;
1094 ecs->infwait_state = infwait_normal_state;
39f77062 1095 ecs->waiton_ptid = pid_to_ptid (-1);
cd0fc7c3
SS
1096 ecs->wp = &(ecs->ws);
1097}
1098
e02bc4cc 1099/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
1100 target_wait()/deprecated_target_wait_hook(). The data is actually
1101 cached by handle_inferior_event(), which gets called immediately
1102 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
1103
1104void
488f131b 1105get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 1106{
39f77062 1107 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
1108 *status = target_last_waitstatus;
1109}
1110
ac264b3b
MS
1111void
1112nullify_last_target_wait_ptid (void)
1113{
1114 target_last_wait_ptid = minus_one_ptid;
1115}
1116
dd80620e
MS
1117/* Switch thread contexts, maintaining "infrun state". */
1118
1119static void
1120context_switch (struct execution_control_state *ecs)
1121{
1122 /* Caution: it may happen that the new thread (or the old one!)
1123 is not in the thread list. In this case we must not attempt
1124 to "switch context", or we run the risk that our context may
1125 be lost. This may happen as a result of the target module
1126 mishandling thread creation. */
1127
fd48f117
DJ
1128 if (debug_infrun)
1129 {
1130 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1131 target_pid_to_str (inferior_ptid));
1132 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1133 target_pid_to_str (ecs->ptid));
1134 }
1135
dd80620e 1136 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
488f131b 1137 { /* Perform infrun state context switch: */
dd80620e 1138 /* Save infrun state for the old thread. */
0ce3d317 1139 save_infrun_state (inferior_ptid, prev_pc,
dd80620e 1140 trap_expected, step_resume_breakpoint,
15960608 1141 step_range_start,
aa0cd9c1 1142 step_range_end, &step_frame_id,
dd80620e
MS
1143 ecs->handling_longjmp, ecs->another_trap,
1144 ecs->stepping_through_solib_after_catch,
1145 ecs->stepping_through_solib_catchpoints,
f2c9ca08 1146 ecs->current_line, ecs->current_symtab);
dd80620e
MS
1147
1148 /* Load infrun state for the new thread. */
0ce3d317 1149 load_infrun_state (ecs->ptid, &prev_pc,
dd80620e 1150 &trap_expected, &step_resume_breakpoint,
15960608 1151 &step_range_start,
aa0cd9c1 1152 &step_range_end, &step_frame_id,
dd80620e
MS
1153 &ecs->handling_longjmp, &ecs->another_trap,
1154 &ecs->stepping_through_solib_after_catch,
1155 &ecs->stepping_through_solib_catchpoints,
f2c9ca08 1156 &ecs->current_line, &ecs->current_symtab);
dd80620e
MS
1157 }
1158 inferior_ptid = ecs->ptid;
35f196d9 1159 reinit_frame_cache ();
dd80620e
MS
1160}
1161
4fa8626c
DJ
1162static void
1163adjust_pc_after_break (struct execution_control_state *ecs)
1164{
8aad930b 1165 CORE_ADDR breakpoint_pc;
4fa8626c
DJ
1166
1167 /* If this target does not decrement the PC after breakpoints, then
1168 we have nothing to do. */
1169 if (DECR_PC_AFTER_BREAK == 0)
1170 return;
1171
1172 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1173 we aren't, just return.
9709f61c
DJ
1174
1175 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1176 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1177 by software breakpoints should be handled through the normal breakpoint
1178 layer.
8fb3e588 1179
4fa8626c
DJ
1180 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1181 different signals (SIGILL or SIGEMT for instance), but it is less
1182 clear where the PC is pointing afterwards. It may not match
1183 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1184 these signals at breakpoints (the code has been in GDB since at least
1185 1992) so I can not guess how to handle them here.
8fb3e588 1186
4fa8626c
DJ
1187 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1188 would have the PC after hitting a watchpoint affected by
1189 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set
1190 in GDB history, and it seems unlikely to be correct, so
1191 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */
1192
1193 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1194 return;
1195
1196 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1197 return;
1198
8aad930b
AC
1199 /* Find the location where (if we've hit a breakpoint) the
1200 breakpoint would be. */
1201 breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1202
1203 if (SOFTWARE_SINGLE_STEP_P ())
1204 {
1205 /* When using software single-step, a SIGTRAP can only indicate
8fb3e588
AC
1206 an inserted breakpoint. This actually makes things
1207 easier. */
8aad930b
AC
1208 if (singlestep_breakpoints_inserted_p)
1209 /* When software single stepping, the instruction at [prev_pc]
1210 is never a breakpoint, but the instruction following
1211 [prev_pc] (in program execution order) always is. Assume
1212 that following instruction was reached and hence a software
1213 breakpoint was hit. */
1214 write_pc_pid (breakpoint_pc, ecs->ptid);
1215 else if (software_breakpoint_inserted_here_p (breakpoint_pc))
1216 /* The inferior was free running (i.e., no single-step
1217 breakpoints inserted) and it hit a software breakpoint. */
1218 write_pc_pid (breakpoint_pc, ecs->ptid);
1219 }
1220 else
1221 {
1222 /* When using hardware single-step, a SIGTRAP is reported for
8fb3e588
AC
1223 both a completed single-step and a software breakpoint. Need
1224 to differentiate between the two as the latter needs
90225438
AS
1225 adjusting but the former does not.
1226
1227 When the thread to be examined does not match the current thread
1228 context we can't use currently_stepping, so assume no
1229 single-stepping in this case. */
1230 if (ptid_equal (ecs->ptid, inferior_ptid) && currently_stepping (ecs))
8aad930b
AC
1231 {
1232 if (prev_pc == breakpoint_pc
1233 && software_breakpoint_inserted_here_p (breakpoint_pc))
1234 /* Hardware single-stepped a software breakpoint (as
1235 occures when the inferior is resumed with PC pointing
1236 at not-yet-hit software breakpoint). Since the
1237 breakpoint really is executed, the inferior needs to be
1238 backed up to the breakpoint address. */
1239 write_pc_pid (breakpoint_pc, ecs->ptid);
1240 }
1241 else
1242 {
1243 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1244 /* The inferior was free running (i.e., no hardware
1245 single-step and no possibility of a false SIGTRAP) and
1246 hit a software breakpoint. */
1247 write_pc_pid (breakpoint_pc, ecs->ptid);
1248 }
1249 }
4fa8626c
DJ
1250}
1251
cd0fc7c3
SS
1252/* Given an execution control state that has been freshly filled in
1253 by an event from the inferior, figure out what it means and take
1254 appropriate action. */
c906108c 1255
7270d8f2
OF
1256int stepped_after_stopped_by_watchpoint;
1257
cd0fc7c3 1258void
96baa820 1259handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 1260{
8bbde302
BE
1261 /* NOTE: bje/2005-05-02: If you're looking at this code and thinking
1262 that the variable stepped_after_stopped_by_watchpoint isn't used,
1263 then you're wrong! See remote.c:remote_stopped_data_address. */
1264
c8edd8b4 1265 int sw_single_step_trap_p = 0;
8fb3e588 1266 int stopped_by_watchpoint = -1; /* Mark as unknown. */
cd0fc7c3 1267
e02bc4cc 1268 /* Cache the last pid/waitstatus. */
39f77062 1269 target_last_wait_ptid = ecs->ptid;
e02bc4cc
DS
1270 target_last_waitstatus = *ecs->wp;
1271
4fa8626c
DJ
1272 adjust_pc_after_break (ecs);
1273
488f131b
JB
1274 switch (ecs->infwait_state)
1275 {
1276 case infwait_thread_hop_state:
527159b7 1277 if (debug_infrun)
8a9de0e4 1278 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
488f131b
JB
1279 /* Cancel the waiton_ptid. */
1280 ecs->waiton_ptid = pid_to_ptid (-1);
65e82032 1281 break;
b83266a0 1282
488f131b 1283 case infwait_normal_state:
527159b7 1284 if (debug_infrun)
8a9de0e4 1285 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
488f131b
JB
1286 stepped_after_stopped_by_watchpoint = 0;
1287 break;
b83266a0 1288
488f131b 1289 case infwait_nonstep_watch_state:
527159b7 1290 if (debug_infrun)
8a9de0e4
AC
1291 fprintf_unfiltered (gdb_stdlog,
1292 "infrun: infwait_nonstep_watch_state\n");
488f131b 1293 insert_breakpoints ();
c906108c 1294
488f131b
JB
1295 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1296 handle things like signals arriving and other things happening
1297 in combination correctly? */
1298 stepped_after_stopped_by_watchpoint = 1;
1299 break;
65e82032
AC
1300
1301 default:
e2e0b3e5 1302 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b
JB
1303 }
1304 ecs->infwait_state = infwait_normal_state;
c906108c 1305
35f196d9 1306 reinit_frame_cache ();
c906108c 1307
488f131b 1308 /* If it's a new process, add it to the thread database */
c906108c 1309
488f131b 1310 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
b9b5d7ea 1311 && !ptid_equal (ecs->ptid, minus_one_ptid)
488f131b
JB
1312 && !in_thread_list (ecs->ptid));
1313
1314 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1315 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1316 {
1317 add_thread (ecs->ptid);
c906108c 1318
488f131b
JB
1319 ui_out_text (uiout, "[New ");
1320 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1321 ui_out_text (uiout, "]\n");
488f131b 1322 }
c906108c 1323
488f131b
JB
1324 switch (ecs->ws.kind)
1325 {
1326 case TARGET_WAITKIND_LOADED:
527159b7 1327 if (debug_infrun)
8a9de0e4 1328 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
488f131b
JB
1329 /* Ignore gracefully during startup of the inferior, as it
1330 might be the shell which has just loaded some objects,
1331 otherwise add the symbols for the newly loaded objects. */
c906108c 1332#ifdef SOLIB_ADD
c0236d92 1333 if (stop_soon == NO_STOP_QUIETLY)
488f131b
JB
1334 {
1335 /* Remove breakpoints, SOLIB_ADD might adjust
1336 breakpoint addresses via breakpoint_re_set. */
1337 if (breakpoints_inserted)
1338 remove_breakpoints ();
c906108c 1339
488f131b
JB
1340 /* Check for any newly added shared libraries if we're
1341 supposed to be adding them automatically. Switch
1342 terminal for any messages produced by
1343 breakpoint_re_set. */
1344 target_terminal_ours_for_output ();
aff6338a 1345 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
1346 stack's section table is kept up-to-date. Architectures,
1347 (e.g., PPC64), use the section table to perform
1348 operations such as address => section name and hence
1349 require the table to contain all sections (including
1350 those found in shared libraries). */
aff6338a 1351 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
1352 exec_ops to SOLIB_ADD. This is because current GDB is
1353 only tooled to propagate section_table changes out from
1354 the "current_target" (see target_resize_to_sections), and
1355 not up from the exec stratum. This, of course, isn't
1356 right. "infrun.c" should only interact with the
1357 exec/process stratum, instead relying on the target stack
1358 to propagate relevant changes (stop, section table
1359 changed, ...) up to other layers. */
aff6338a 1360 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
488f131b
JB
1361 target_terminal_inferior ();
1362
1363 /* Reinsert breakpoints and continue. */
1364 if (breakpoints_inserted)
1365 insert_breakpoints ();
1366 }
c906108c 1367#endif
488f131b
JB
1368 resume (0, TARGET_SIGNAL_0);
1369 prepare_to_wait (ecs);
1370 return;
c5aa993b 1371
488f131b 1372 case TARGET_WAITKIND_SPURIOUS:
527159b7 1373 if (debug_infrun)
8a9de0e4 1374 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
1375 resume (0, TARGET_SIGNAL_0);
1376 prepare_to_wait (ecs);
1377 return;
c5aa993b 1378
488f131b 1379 case TARGET_WAITKIND_EXITED:
527159b7 1380 if (debug_infrun)
8a9de0e4 1381 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
488f131b
JB
1382 target_terminal_ours (); /* Must do this before mourn anyway */
1383 print_stop_reason (EXITED, ecs->ws.value.integer);
1384
1385 /* Record the exit code in the convenience variable $_exitcode, so
1386 that the user can inspect this again later. */
1387 set_internalvar (lookup_internalvar ("_exitcode"),
1388 value_from_longest (builtin_type_int,
1389 (LONGEST) ecs->ws.value.integer));
1390 gdb_flush (gdb_stdout);
1391 target_mourn_inferior ();
1392 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1393 stop_print_frame = 0;
1394 stop_stepping (ecs);
1395 return;
c5aa993b 1396
488f131b 1397 case TARGET_WAITKIND_SIGNALLED:
527159b7 1398 if (debug_infrun)
8a9de0e4 1399 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
488f131b
JB
1400 stop_print_frame = 0;
1401 stop_signal = ecs->ws.value.sig;
1402 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 1403
488f131b
JB
1404 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1405 reach here unless the inferior is dead. However, for years
1406 target_kill() was called here, which hints that fatal signals aren't
1407 really fatal on some systems. If that's true, then some changes
1408 may be needed. */
1409 target_mourn_inferior ();
c906108c 1410
488f131b
JB
1411 print_stop_reason (SIGNAL_EXITED, stop_signal);
1412 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1413 stop_stepping (ecs);
1414 return;
c906108c 1415
488f131b
JB
1416 /* The following are the only cases in which we keep going;
1417 the above cases end in a continue or goto. */
1418 case TARGET_WAITKIND_FORKED:
deb3b17b 1419 case TARGET_WAITKIND_VFORKED:
527159b7 1420 if (debug_infrun)
8a9de0e4 1421 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
488f131b
JB
1422 stop_signal = TARGET_SIGNAL_TRAP;
1423 pending_follow.kind = ecs->ws.kind;
1424
8e7d2c16
DJ
1425 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1426 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
c906108c 1427
5a2901d9
DJ
1428 if (!ptid_equal (ecs->ptid, inferior_ptid))
1429 {
1430 context_switch (ecs);
35f196d9 1431 reinit_frame_cache ();
5a2901d9
DJ
1432 }
1433
488f131b 1434 stop_pc = read_pc ();
675bf4cb 1435
00d4360e 1436 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
675bf4cb 1437
488f131b 1438 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
04e68871
DJ
1439
1440 /* If no catchpoint triggered for this, then keep going. */
1441 if (ecs->random_signal)
1442 {
1443 stop_signal = TARGET_SIGNAL_0;
1444 keep_going (ecs);
1445 return;
1446 }
488f131b
JB
1447 goto process_event_stop_test;
1448
1449 case TARGET_WAITKIND_EXECD:
527159b7 1450 if (debug_infrun)
fc5261f2 1451 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b
JB
1452 stop_signal = TARGET_SIGNAL_TRAP;
1453
7d2830a3 1454 /* NOTE drow/2002-12-05: This code should be pushed down into the
8fb3e588
AC
1455 target_wait function. Until then following vfork on HP/UX 10.20
1456 is probably broken by this. Of course, it's broken anyway. */
488f131b
JB
1457 /* Is this a target which reports multiple exec events per actual
1458 call to exec()? (HP-UX using ptrace does, for example.) If so,
1459 ignore all but the last one. Just resume the exec'r, and wait
1460 for the next exec event. */
1461 if (inferior_ignoring_leading_exec_events)
1462 {
1463 inferior_ignoring_leading_exec_events--;
488f131b
JB
1464 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1465 prepare_to_wait (ecs);
1466 return;
1467 }
1468 inferior_ignoring_leading_exec_events =
1469 target_reported_exec_events_per_exec_call () - 1;
1470
1471 pending_follow.execd_pathname =
1472 savestring (ecs->ws.value.execd_pathname,
1473 strlen (ecs->ws.value.execd_pathname));
1474
488f131b
JB
1475 /* This causes the eventpoints and symbol table to be reset. Must
1476 do this now, before trying to determine whether to stop. */
1477 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1478 xfree (pending_follow.execd_pathname);
c906108c 1479
488f131b
JB
1480 stop_pc = read_pc_pid (ecs->ptid);
1481 ecs->saved_inferior_ptid = inferior_ptid;
1482 inferior_ptid = ecs->ptid;
675bf4cb 1483
00d4360e 1484 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
675bf4cb 1485
488f131b
JB
1486 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1487 inferior_ptid = ecs->saved_inferior_ptid;
04e68871 1488
5a2901d9
DJ
1489 if (!ptid_equal (ecs->ptid, inferior_ptid))
1490 {
1491 context_switch (ecs);
35f196d9 1492 reinit_frame_cache ();
5a2901d9
DJ
1493 }
1494
04e68871
DJ
1495 /* If no catchpoint triggered for this, then keep going. */
1496 if (ecs->random_signal)
1497 {
1498 stop_signal = TARGET_SIGNAL_0;
1499 keep_going (ecs);
1500 return;
1501 }
488f131b
JB
1502 goto process_event_stop_test;
1503
b4dc5ffa
MK
1504 /* Be careful not to try to gather much state about a thread
1505 that's in a syscall. It's frequently a losing proposition. */
488f131b 1506 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 1507 if (debug_infrun)
8a9de0e4 1508 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
488f131b
JB
1509 resume (0, TARGET_SIGNAL_0);
1510 prepare_to_wait (ecs);
1511 return;
c906108c 1512
488f131b
JB
1513 /* Before examining the threads further, step this thread to
1514 get it entirely out of the syscall. (We get notice of the
1515 event when the thread is just on the verge of exiting a
1516 syscall. Stepping one instruction seems to get it back
b4dc5ffa 1517 into user code.) */
488f131b 1518 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 1519 if (debug_infrun)
8a9de0e4 1520 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
488f131b 1521 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
488f131b
JB
1522 prepare_to_wait (ecs);
1523 return;
c906108c 1524
488f131b 1525 case TARGET_WAITKIND_STOPPED:
527159b7 1526 if (debug_infrun)
8a9de0e4 1527 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
488f131b
JB
1528 stop_signal = ecs->ws.value.sig;
1529 break;
c906108c 1530
488f131b
JB
1531 /* We had an event in the inferior, but we are not interested
1532 in handling it at this level. The lower layers have already
8e7d2c16 1533 done what needs to be done, if anything.
8fb3e588
AC
1534
1535 One of the possible circumstances for this is when the
1536 inferior produces output for the console. The inferior has
1537 not stopped, and we are ignoring the event. Another possible
1538 circumstance is any event which the lower level knows will be
1539 reported multiple times without an intervening resume. */
488f131b 1540 case TARGET_WAITKIND_IGNORE:
527159b7 1541 if (debug_infrun)
8a9de0e4 1542 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
8e7d2c16 1543 prepare_to_wait (ecs);
488f131b
JB
1544 return;
1545 }
c906108c 1546
488f131b
JB
1547 /* We may want to consider not doing a resume here in order to give
1548 the user a chance to play with the new thread. It might be good
1549 to make that a user-settable option. */
c906108c 1550
488f131b
JB
1551 /* At this point, all threads are stopped (happens automatically in
1552 either the OS or the native code). Therefore we need to continue
1553 all threads in order to make progress. */
1554 if (ecs->new_thread_event)
1555 {
1556 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1557 prepare_to_wait (ecs);
1558 return;
1559 }
c906108c 1560
488f131b
JB
1561 stop_pc = read_pc_pid (ecs->ptid);
1562
527159b7 1563 if (debug_infrun)
8a9de0e4 1564 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
527159b7 1565
9f976b41
DJ
1566 if (stepping_past_singlestep_breakpoint)
1567 {
8fb3e588
AC
1568 gdb_assert (SOFTWARE_SINGLE_STEP_P ()
1569 && singlestep_breakpoints_inserted_p);
9f976b41
DJ
1570 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1571 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1572
1573 stepping_past_singlestep_breakpoint = 0;
1574
1575 /* We've either finished single-stepping past the single-step
8fb3e588
AC
1576 breakpoint, or stopped for some other reason. It would be nice if
1577 we could tell, but we can't reliably. */
9f976b41 1578 if (stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 1579 {
527159b7 1580 if (debug_infrun)
8a9de0e4 1581 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
9f976b41
DJ
1582 /* Pull the single step breakpoints out of the target. */
1583 SOFTWARE_SINGLE_STEP (0, 0);
1584 singlestep_breakpoints_inserted_p = 0;
1585
1586 ecs->random_signal = 0;
1587
1588 ecs->ptid = saved_singlestep_ptid;
1589 context_switch (ecs);
9a4105ab
AC
1590 if (deprecated_context_hook)
1591 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
1592
1593 resume (1, TARGET_SIGNAL_0);
1594 prepare_to_wait (ecs);
1595 return;
1596 }
1597 }
1598
1599 stepping_past_singlestep_breakpoint = 0;
1600
488f131b
JB
1601 /* See if a thread hit a thread-specific breakpoint that was meant for
1602 another thread. If so, then step that thread past the breakpoint,
1603 and continue it. */
1604
1605 if (stop_signal == TARGET_SIGNAL_TRAP)
1606 {
9f976b41
DJ
1607 int thread_hop_needed = 0;
1608
f8d40ec8
JB
1609 /* Check if a regular breakpoint has been hit before checking
1610 for a potential single step breakpoint. Otherwise, GDB will
1611 not see this breakpoint hit when stepping onto breakpoints. */
4fa8626c 1612 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
488f131b 1613 {
c5aa993b 1614 ecs->random_signal = 0;
4fa8626c 1615 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
9f976b41
DJ
1616 thread_hop_needed = 1;
1617 }
1618 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1619 {
fd48f117
DJ
1620 /* We have not context switched yet, so this should be true
1621 no matter which thread hit the singlestep breakpoint. */
1622 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
1623 if (debug_infrun)
1624 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
1625 "trap for %s\n",
1626 target_pid_to_str (ecs->ptid));
1627
9f976b41
DJ
1628 ecs->random_signal = 0;
1629 /* The call to in_thread_list is necessary because PTIDs sometimes
1630 change when we go from single-threaded to multi-threaded. If
1631 the singlestep_ptid is still in the list, assume that it is
1632 really different from ecs->ptid. */
1633 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1634 && in_thread_list (singlestep_ptid))
1635 {
fd48f117
DJ
1636 /* If the PC of the thread we were trying to single-step
1637 has changed, discard this event (which we were going
1638 to ignore anyway), and pretend we saw that thread
1639 trap. This prevents us continuously moving the
1640 single-step breakpoint forward, one instruction at a
1641 time. If the PC has changed, then the thread we were
1642 trying to single-step has trapped or been signalled,
1643 but the event has not been reported to GDB yet.
1644
1645 There might be some cases where this loses signal
1646 information, if a signal has arrived at exactly the
1647 same time that the PC changed, but this is the best
1648 we can do with the information available. Perhaps we
1649 should arrange to report all events for all threads
1650 when they stop, or to re-poll the remote looking for
1651 this particular thread (i.e. temporarily enable
1652 schedlock). */
1653 if (read_pc_pid (singlestep_ptid) != singlestep_pc)
1654 {
1655 if (debug_infrun)
1656 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
1657 " but expected thread advanced also\n");
1658
1659 /* The current context still belongs to
1660 singlestep_ptid. Don't swap here, since that's
1661 the context we want to use. Just fudge our
1662 state and continue. */
1663 ecs->ptid = singlestep_ptid;
1664 stop_pc = read_pc_pid (ecs->ptid);
1665 }
1666 else
1667 {
1668 if (debug_infrun)
1669 fprintf_unfiltered (gdb_stdlog,
1670 "infrun: unexpected thread\n");
1671
1672 thread_hop_needed = 1;
1673 stepping_past_singlestep_breakpoint = 1;
1674 saved_singlestep_ptid = singlestep_ptid;
1675 }
9f976b41
DJ
1676 }
1677 }
1678
1679 if (thread_hop_needed)
8fb3e588
AC
1680 {
1681 int remove_status;
1682
527159b7 1683 if (debug_infrun)
8a9de0e4 1684 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 1685
8fb3e588
AC
1686 /* Saw a breakpoint, but it was hit by the wrong thread.
1687 Just continue. */
1688
1689 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
488f131b 1690 {
8fb3e588
AC
1691 /* Pull the single step breakpoints out of the target. */
1692 SOFTWARE_SINGLE_STEP (0, 0);
1693 singlestep_breakpoints_inserted_p = 0;
1694 }
1695
1696 remove_status = remove_breakpoints ();
1697 /* Did we fail to remove breakpoints? If so, try
1698 to set the PC past the bp. (There's at least
1699 one situation in which we can fail to remove
1700 the bp's: On HP-UX's that use ttrace, we can't
1701 change the address space of a vforking child
1702 process until the child exits (well, okay, not
1703 then either :-) or execs. */
1704 if (remove_status != 0)
1705 {
1706 /* FIXME! This is obviously non-portable! */
1707 write_pc_pid (stop_pc + 4, ecs->ptid);
1708 /* We need to restart all the threads now,
1709 * unles we're running in scheduler-locked mode.
1710 * Use currently_stepping to determine whether to
1711 * step or continue.
1712 */
1713 /* FIXME MVS: is there any reason not to call resume()? */
1714 if (scheduler_mode == schedlock_on)
1715 target_resume (ecs->ptid,
1716 currently_stepping (ecs), TARGET_SIGNAL_0);
488f131b 1717 else
8fb3e588
AC
1718 target_resume (RESUME_ALL,
1719 currently_stepping (ecs), TARGET_SIGNAL_0);
1720 prepare_to_wait (ecs);
1721 return;
1722 }
1723 else
1724 { /* Single step */
1725 breakpoints_inserted = 0;
1726 if (!ptid_equal (inferior_ptid, ecs->ptid))
1727 context_switch (ecs);
1728 ecs->waiton_ptid = ecs->ptid;
1729 ecs->wp = &(ecs->ws);
1730 ecs->another_trap = 1;
1731
1732 ecs->infwait_state = infwait_thread_hop_state;
1733 keep_going (ecs);
1734 registers_changed ();
1735 return;
1736 }
488f131b 1737 }
f8d40ec8 1738 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
8fb3e588
AC
1739 {
1740 sw_single_step_trap_p = 1;
1741 ecs->random_signal = 0;
1742 }
488f131b
JB
1743 }
1744 else
1745 ecs->random_signal = 1;
c906108c 1746
488f131b 1747 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
1748 so, then switch to that thread. */
1749 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 1750 {
527159b7 1751 if (debug_infrun)
8a9de0e4 1752 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 1753
488f131b 1754 context_switch (ecs);
c5aa993b 1755
9a4105ab
AC
1756 if (deprecated_context_hook)
1757 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 1758 }
c906108c 1759
488f131b
JB
1760 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1761 {
1762 /* Pull the single step breakpoints out of the target. */
1763 SOFTWARE_SINGLE_STEP (0, 0);
1764 singlestep_breakpoints_inserted_p = 0;
1765 }
c906108c 1766
488f131b
JB
1767 /* It may not be necessary to disable the watchpoint to stop over
1768 it. For example, the PA can (with some kernel cooperation)
1769 single step over a watchpoint without disabling the watchpoint. */
1770 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1771 {
527159b7 1772 if (debug_infrun)
8a9de0e4 1773 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
488f131b
JB
1774 resume (1, 0);
1775 prepare_to_wait (ecs);
1776 return;
1777 }
c906108c 1778
488f131b
JB
1779 /* It is far more common to need to disable a watchpoint to step
1780 the inferior over it. FIXME. What else might a debug
1781 register or page protection watchpoint scheme need here? */
1782 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1783 {
1784 /* At this point, we are stopped at an instruction which has
1785 attempted to write to a piece of memory under control of
1786 a watchpoint. The instruction hasn't actually executed
1787 yet. If we were to evaluate the watchpoint expression
1788 now, we would get the old value, and therefore no change
1789 would seem to have occurred.
1790
1791 In order to make watchpoints work `right', we really need
1792 to complete the memory write, and then evaluate the
1793 watchpoint expression. The following code does that by
1794 removing the watchpoint (actually, all watchpoints and
1795 breakpoints), single-stepping the target, re-inserting
1796 watchpoints, and then falling through to let normal
1797 single-step processing handle proceed. Since this
1798 includes evaluating watchpoints, things will come to a
1799 stop in the correct manner. */
1800
527159b7 1801 if (debug_infrun)
8a9de0e4 1802 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
488f131b
JB
1803 remove_breakpoints ();
1804 registers_changed ();
1805 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
c5aa993b 1806
488f131b
JB
1807 ecs->waiton_ptid = ecs->ptid;
1808 ecs->wp = &(ecs->ws);
1809 ecs->infwait_state = infwait_nonstep_watch_state;
1810 prepare_to_wait (ecs);
1811 return;
1812 }
1813
1814 /* It may be possible to simply continue after a watchpoint. */
1815 if (HAVE_CONTINUABLE_WATCHPOINT)
00d4360e 1816 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
488f131b
JB
1817
1818 ecs->stop_func_start = 0;
1819 ecs->stop_func_end = 0;
1820 ecs->stop_func_name = 0;
1821 /* Don't care about return value; stop_func_start and stop_func_name
1822 will both be 0 if it doesn't work. */
1823 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1824 &ecs->stop_func_start, &ecs->stop_func_end);
782263ab 1825 ecs->stop_func_start += DEPRECATED_FUNCTION_START_OFFSET;
488f131b
JB
1826 ecs->another_trap = 0;
1827 bpstat_clear (&stop_bpstat);
1828 stop_step = 0;
1829 stop_stack_dummy = 0;
1830 stop_print_frame = 1;
1831 ecs->random_signal = 0;
1832 stopped_by_random_signal = 0;
1833 breakpoints_failed = 0;
1834
3352ef37
AC
1835 if (stop_signal == TARGET_SIGNAL_TRAP
1836 && trap_expected
1837 && gdbarch_single_step_through_delay_p (current_gdbarch)
1838 && currently_stepping (ecs))
1839 {
1840 /* We're trying to step of a breakpoint. Turns out that we're
1841 also on an instruction that needs to be stepped multiple
1842 times before it's been fully executing. E.g., architectures
1843 with a delay slot. It needs to be stepped twice, once for
1844 the instruction and once for the delay slot. */
1845 int step_through_delay
1846 = gdbarch_single_step_through_delay (current_gdbarch,
1847 get_current_frame ());
527159b7 1848 if (debug_infrun && step_through_delay)
8a9de0e4 1849 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
3352ef37
AC
1850 if (step_range_end == 0 && step_through_delay)
1851 {
1852 /* The user issued a continue when stopped at a breakpoint.
1853 Set up for another trap and get out of here. */
1854 ecs->another_trap = 1;
1855 keep_going (ecs);
1856 return;
1857 }
1858 else if (step_through_delay)
1859 {
1860 /* The user issued a step when stopped at a breakpoint.
1861 Maybe we should stop, maybe we should not - the delay
1862 slot *might* correspond to a line of source. In any
1863 case, don't decide that here, just set ecs->another_trap,
1864 making sure we single-step again before breakpoints are
1865 re-inserted. */
1866 ecs->another_trap = 1;
1867 }
1868 }
1869
488f131b
JB
1870 /* Look at the cause of the stop, and decide what to do.
1871 The alternatives are:
1872 1) break; to really stop and return to the debugger,
1873 2) drop through to start up again
1874 (set ecs->another_trap to 1 to single step once)
1875 3) set ecs->random_signal to 1, and the decision between 1 and 2
1876 will be made according to the signal handling tables. */
1877
1878 /* First, distinguish signals caused by the debugger from signals
03cebad2
MK
1879 that have to do with the program's own actions. Note that
1880 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1881 on the operating system version. Here we detect when a SIGILL or
1882 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1883 something similar for SIGSEGV, since a SIGSEGV will be generated
1884 when we're trying to execute a breakpoint instruction on a
1885 non-executable stack. This happens for call dummy breakpoints
1886 for architectures like SPARC that place call dummies on the
1887 stack. */
488f131b
JB
1888
1889 if (stop_signal == TARGET_SIGNAL_TRAP
8fb3e588
AC
1890 || (breakpoints_inserted
1891 && (stop_signal == TARGET_SIGNAL_ILL
1892 || stop_signal == TARGET_SIGNAL_SEGV
1893 || stop_signal == TARGET_SIGNAL_EMT))
1894 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
488f131b
JB
1895 {
1896 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1897 {
527159b7 1898 if (debug_infrun)
8a9de0e4 1899 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
1900 stop_print_frame = 0;
1901 stop_stepping (ecs);
1902 return;
1903 }
c54cfec8
EZ
1904
1905 /* This is originated from start_remote(), start_inferior() and
1906 shared libraries hook functions. */
c0236d92 1907 if (stop_soon == STOP_QUIETLY)
488f131b 1908 {
527159b7 1909 if (debug_infrun)
8a9de0e4 1910 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
1911 stop_stepping (ecs);
1912 return;
1913 }
1914
c54cfec8
EZ
1915 /* This originates from attach_command(). We need to overwrite
1916 the stop_signal here, because some kernels don't ignore a
1917 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1918 See more comments in inferior.h. */
c0236d92 1919 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
c54cfec8
EZ
1920 {
1921 stop_stepping (ecs);
1922 if (stop_signal == TARGET_SIGNAL_STOP)
1923 stop_signal = TARGET_SIGNAL_0;
1924 return;
1925 }
1926
d303a6c7
AC
1927 /* Don't even think about breakpoints if just proceeded over a
1928 breakpoint. */
1929 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
527159b7
RC
1930 {
1931 if (debug_infrun)
8a9de0e4 1932 fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n");
527159b7
RC
1933 bpstat_clear (&stop_bpstat);
1934 }
488f131b
JB
1935 else
1936 {
1937 /* See if there is a breakpoint at the current PC. */
8fb3e588 1938 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
00d4360e 1939 stopped_by_watchpoint);
488f131b 1940
488f131b
JB
1941 /* Following in case break condition called a
1942 function. */
1943 stop_print_frame = 1;
1944 }
1945
73dd234f 1946 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
1947 at one stage in the past included checks for an inferior
1948 function call's call dummy's return breakpoint. The original
1949 comment, that went with the test, read:
73dd234f 1950
8fb3e588
AC
1951 ``End of a stack dummy. Some systems (e.g. Sony news) give
1952 another signal besides SIGTRAP, so check here as well as
1953 above.''
73dd234f
AC
1954
1955 If someone ever tries to get get call dummys on a
1956 non-executable stack to work (where the target would stop
03cebad2
MK
1957 with something like a SIGSEGV), then those tests might need
1958 to be re-instated. Given, however, that the tests were only
73dd234f 1959 enabled when momentary breakpoints were not being used, I
03cebad2
MK
1960 suspect that it won't be the case.
1961
8fb3e588
AC
1962 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1963 be necessary for call dummies on a non-executable stack on
1964 SPARC. */
73dd234f 1965
488f131b
JB
1966 if (stop_signal == TARGET_SIGNAL_TRAP)
1967 ecs->random_signal
1968 = !(bpstat_explains_signal (stop_bpstat)
1969 || trap_expected
488f131b 1970 || (step_range_end && step_resume_breakpoint == NULL));
488f131b
JB
1971 else
1972 {
73dd234f 1973 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
488f131b
JB
1974 if (!ecs->random_signal)
1975 stop_signal = TARGET_SIGNAL_TRAP;
1976 }
1977 }
1978
1979 /* When we reach this point, we've pretty much decided
1980 that the reason for stopping must've been a random
1981 (unexpected) signal. */
1982
1983 else
1984 ecs->random_signal = 1;
488f131b 1985
04e68871 1986process_event_stop_test:
488f131b
JB
1987 /* For the program's own signals, act according to
1988 the signal handling tables. */
1989
1990 if (ecs->random_signal)
1991 {
1992 /* Signal not for debugging purposes. */
1993 int printed = 0;
1994
527159b7 1995 if (debug_infrun)
8a9de0e4 1996 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
527159b7 1997
488f131b
JB
1998 stopped_by_random_signal = 1;
1999
2000 if (signal_print[stop_signal])
2001 {
2002 printed = 1;
2003 target_terminal_ours_for_output ();
2004 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2005 }
2006 if (signal_stop[stop_signal])
2007 {
2008 stop_stepping (ecs);
2009 return;
2010 }
2011 /* If not going to stop, give terminal back
2012 if we took it away. */
2013 else if (printed)
2014 target_terminal_inferior ();
2015
2016 /* Clear the signal if it should not be passed. */
2017 if (signal_program[stop_signal] == 0)
2018 stop_signal = TARGET_SIGNAL_0;
2019
68f53502
AC
2020 if (prev_pc == read_pc ()
2021 && !breakpoints_inserted
2022 && breakpoint_here_p (read_pc ())
2023 && step_resume_breakpoint == NULL)
2024 {
2025 /* We were just starting a new sequence, attempting to
2026 single-step off of a breakpoint and expecting a SIGTRAP.
2027 Intead this signal arrives. This signal will take us out
2028 of the stepping range so GDB needs to remember to, when
2029 the signal handler returns, resume stepping off that
2030 breakpoint. */
2031 /* To simplify things, "continue" is forced to use the same
2032 code paths as single-step - set a breakpoint at the
2033 signal return address and then, once hit, step off that
2034 breakpoint. */
44cbf7b5 2035 insert_step_resume_breakpoint_at_frame (get_current_frame ());
68f53502 2036 ecs->step_after_step_resume_breakpoint = 1;
9d799f85
AC
2037 keep_going (ecs);
2038 return;
68f53502 2039 }
9d799f85
AC
2040
2041 if (step_range_end != 0
2042 && stop_signal != TARGET_SIGNAL_0
2043 && stop_pc >= step_range_start && stop_pc < step_range_end
2044 && frame_id_eq (get_frame_id (get_current_frame ()),
2045 step_frame_id)
2046 && step_resume_breakpoint == NULL)
d303a6c7
AC
2047 {
2048 /* The inferior is about to take a signal that will take it
2049 out of the single step range. Set a breakpoint at the
2050 current PC (which is presumably where the signal handler
2051 will eventually return) and then allow the inferior to
2052 run free.
2053
2054 Note that this is only needed for a signal delivered
2055 while in the single-step range. Nested signals aren't a
2056 problem as they eventually all return. */
44cbf7b5 2057 insert_step_resume_breakpoint_at_frame (get_current_frame ());
9d799f85
AC
2058 keep_going (ecs);
2059 return;
d303a6c7 2060 }
9d799f85
AC
2061
2062 /* Note: step_resume_breakpoint may be non-NULL. This occures
2063 when either there's a nested signal, or when there's a
2064 pending signal enabled just as the signal handler returns
2065 (leaving the inferior at the step-resume-breakpoint without
2066 actually executing it). Either way continue until the
2067 breakpoint is really hit. */
488f131b
JB
2068 keep_going (ecs);
2069 return;
2070 }
2071
2072 /* Handle cases caused by hitting a breakpoint. */
2073 {
2074 CORE_ADDR jmp_buf_pc;
2075 struct bpstat_what what;
2076
2077 what = bpstat_what (stop_bpstat);
2078
2079 if (what.call_dummy)
2080 {
2081 stop_stack_dummy = 1;
c5aa993b 2082 }
c906108c 2083
488f131b 2084 switch (what.main_action)
c5aa993b 2085 {
488f131b
JB
2086 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2087 /* If we hit the breakpoint at longjmp, disable it for the
2088 duration of this command. Then, install a temporary
2089 breakpoint at the target of the jmp_buf. */
527159b7 2090 if (debug_infrun)
8802d8ed 2091 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
488f131b
JB
2092 disable_longjmp_breakpoint ();
2093 remove_breakpoints ();
2094 breakpoints_inserted = 0;
2095 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
c5aa993b 2096 {
488f131b 2097 keep_going (ecs);
104c1213 2098 return;
c5aa993b 2099 }
488f131b
JB
2100
2101 /* Need to blow away step-resume breakpoint, as it
2102 interferes with us */
2103 if (step_resume_breakpoint != NULL)
104c1213 2104 {
488f131b 2105 delete_step_resume_breakpoint (&step_resume_breakpoint);
104c1213 2106 }
c906108c 2107
8fb3e588 2108 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
488f131b
JB
2109 ecs->handling_longjmp = 1; /* FIXME */
2110 keep_going (ecs);
2111 return;
c906108c 2112
488f131b
JB
2113 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2114 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
527159b7 2115 if (debug_infrun)
8802d8ed 2116 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
488f131b
JB
2117 remove_breakpoints ();
2118 breakpoints_inserted = 0;
488f131b
JB
2119 disable_longjmp_breakpoint ();
2120 ecs->handling_longjmp = 0; /* FIXME */
2121 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2122 break;
2123 /* else fallthrough */
2124
2125 case BPSTAT_WHAT_SINGLE:
527159b7 2126 if (debug_infrun)
8802d8ed 2127 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
488f131b 2128 if (breakpoints_inserted)
c5aa993b 2129 {
488f131b 2130 remove_breakpoints ();
c5aa993b 2131 }
488f131b
JB
2132 breakpoints_inserted = 0;
2133 ecs->another_trap = 1;
2134 /* Still need to check other stuff, at least the case
2135 where we are stepping and step out of the right range. */
2136 break;
c906108c 2137
488f131b 2138 case BPSTAT_WHAT_STOP_NOISY:
527159b7 2139 if (debug_infrun)
8802d8ed 2140 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 2141 stop_print_frame = 1;
c906108c 2142
d303a6c7
AC
2143 /* We are about to nuke the step_resume_breakpointt via the
2144 cleanup chain, so no need to worry about it here. */
c5aa993b 2145
488f131b
JB
2146 stop_stepping (ecs);
2147 return;
c5aa993b 2148
488f131b 2149 case BPSTAT_WHAT_STOP_SILENT:
527159b7 2150 if (debug_infrun)
8802d8ed 2151 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 2152 stop_print_frame = 0;
c5aa993b 2153
d303a6c7
AC
2154 /* We are about to nuke the step_resume_breakpoin via the
2155 cleanup chain, so no need to worry about it here. */
c5aa993b 2156
488f131b 2157 stop_stepping (ecs);
e441088d 2158 return;
c5aa993b 2159
488f131b
JB
2160 case BPSTAT_WHAT_STEP_RESUME:
2161 /* This proably demands a more elegant solution, but, yeah
2162 right...
c5aa993b 2163
488f131b
JB
2164 This function's use of the simple variable
2165 step_resume_breakpoint doesn't seem to accomodate
2166 simultaneously active step-resume bp's, although the
2167 breakpoint list certainly can.
c5aa993b 2168
488f131b
JB
2169 If we reach here and step_resume_breakpoint is already
2170 NULL, then apparently we have multiple active
2171 step-resume bp's. We'll just delete the breakpoint we
2172 stopped at, and carry on.
2173
2174 Correction: what the code currently does is delete a
2175 step-resume bp, but it makes no effort to ensure that
2176 the one deleted is the one currently stopped at. MVS */
c5aa993b 2177
527159b7 2178 if (debug_infrun)
8802d8ed 2179 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
527159b7 2180
488f131b
JB
2181 if (step_resume_breakpoint == NULL)
2182 {
2183 step_resume_breakpoint =
2184 bpstat_find_step_resume_breakpoint (stop_bpstat);
2185 }
2186 delete_step_resume_breakpoint (&step_resume_breakpoint);
68f53502
AC
2187 if (ecs->step_after_step_resume_breakpoint)
2188 {
2189 /* Back when the step-resume breakpoint was inserted, we
2190 were trying to single-step off a breakpoint. Go back
2191 to doing that. */
2192 ecs->step_after_step_resume_breakpoint = 0;
2193 remove_breakpoints ();
2194 breakpoints_inserted = 0;
2195 ecs->another_trap = 1;
2196 keep_going (ecs);
2197 return;
2198 }
488f131b
JB
2199 break;
2200
2201 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
527159b7 2202 if (debug_infrun)
8802d8ed 2203 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_THROUGH_SIGTRAMP\n");
488f131b
JB
2204 /* If were waiting for a trap, hitting the step_resume_break
2205 doesn't count as getting it. */
2206 if (trap_expected)
2207 ecs->another_trap = 1;
2208 break;
2209
2210 case BPSTAT_WHAT_CHECK_SHLIBS:
2211 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
c906108c 2212 {
527159b7 2213 if (debug_infrun)
8802d8ed 2214 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
488f131b
JB
2215 /* Remove breakpoints, we eventually want to step over the
2216 shlib event breakpoint, and SOLIB_ADD might adjust
2217 breakpoint addresses via breakpoint_re_set. */
2218 if (breakpoints_inserted)
2219 remove_breakpoints ();
c5aa993b 2220 breakpoints_inserted = 0;
488f131b
JB
2221
2222 /* Check for any newly added shared libraries if we're
2223 supposed to be adding them automatically. Switch
2224 terminal for any messages produced by
2225 breakpoint_re_set. */
2226 target_terminal_ours_for_output ();
aff6338a 2227 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
2228 stack's section table is kept up-to-date. Architectures,
2229 (e.g., PPC64), use the section table to perform
2230 operations such as address => section name and hence
2231 require the table to contain all sections (including
2232 those found in shared libraries). */
aff6338a 2233 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
2234 exec_ops to SOLIB_ADD. This is because current GDB is
2235 only tooled to propagate section_table changes out from
2236 the "current_target" (see target_resize_to_sections), and
2237 not up from the exec stratum. This, of course, isn't
2238 right. "infrun.c" should only interact with the
2239 exec/process stratum, instead relying on the target stack
2240 to propagate relevant changes (stop, section table
2241 changed, ...) up to other layers. */
a77053c2 2242#ifdef SOLIB_ADD
aff6338a 2243 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
a77053c2
MK
2244#else
2245 solib_add (NULL, 0, &current_target, auto_solib_add);
2246#endif
488f131b
JB
2247 target_terminal_inferior ();
2248
2249 /* Try to reenable shared library breakpoints, additional
2250 code segments in shared libraries might be mapped in now. */
2251 re_enable_breakpoints_in_shlibs ();
2252
2253 /* If requested, stop when the dynamic linker notifies
2254 gdb of events. This allows the user to get control
2255 and place breakpoints in initializer routines for
2256 dynamically loaded objects (among other things). */
877522db 2257 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 2258 {
488f131b 2259 stop_stepping (ecs);
d4f3574e
SS
2260 return;
2261 }
c5aa993b 2262
488f131b
JB
2263 /* If we stopped due to an explicit catchpoint, then the
2264 (see above) call to SOLIB_ADD pulled in any symbols
2265 from a newly-loaded library, if appropriate.
2266
2267 We do want the inferior to stop, but not where it is
2268 now, which is in the dynamic linker callback. Rather,
2269 we would like it stop in the user's program, just after
2270 the call that caused this catchpoint to trigger. That
2271 gives the user a more useful vantage from which to
2272 examine their program's state. */
8fb3e588
AC
2273 else if (what.main_action
2274 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
c906108c 2275 {
488f131b
JB
2276 /* ??rehrauer: If I could figure out how to get the
2277 right return PC from here, we could just set a temp
2278 breakpoint and resume. I'm not sure we can without
2279 cracking open the dld's shared libraries and sniffing
2280 their unwind tables and text/data ranges, and that's
2281 not a terribly portable notion.
2282
2283 Until that time, we must step the inferior out of the
2284 dld callback, and also out of the dld itself (and any
2285 code or stubs in libdld.sl, such as "shl_load" and
2286 friends) until we reach non-dld code. At that point,
2287 we can stop stepping. */
2288 bpstat_get_triggered_catchpoints (stop_bpstat,
2289 &ecs->
2290 stepping_through_solib_catchpoints);
2291 ecs->stepping_through_solib_after_catch = 1;
2292
2293 /* Be sure to lift all breakpoints, so the inferior does
2294 actually step past this point... */
2295 ecs->another_trap = 1;
2296 break;
c906108c 2297 }
c5aa993b 2298 else
c5aa993b 2299 {
488f131b 2300 /* We want to step over this breakpoint, then keep going. */
c5aa993b 2301 ecs->another_trap = 1;
488f131b 2302 break;
c5aa993b 2303 }
488f131b 2304 }
488f131b 2305 break;
c906108c 2306
488f131b
JB
2307 case BPSTAT_WHAT_LAST:
2308 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 2309
488f131b
JB
2310 case BPSTAT_WHAT_KEEP_CHECKING:
2311 break;
2312 }
2313 }
c906108c 2314
488f131b
JB
2315 /* We come here if we hit a breakpoint but should not
2316 stop for it. Possibly we also were stepping
2317 and should stop for that. So fall through and
2318 test for stepping. But, if not stepping,
2319 do not stop. */
c906108c 2320
9d1ff73f
MS
2321 /* Are we stepping to get the inferior out of the dynamic linker's
2322 hook (and possibly the dld itself) after catching a shlib
2323 event? */
488f131b
JB
2324 if (ecs->stepping_through_solib_after_catch)
2325 {
2326#if defined(SOLIB_ADD)
2327 /* Have we reached our destination? If not, keep going. */
2328 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2329 {
527159b7 2330 if (debug_infrun)
8a9de0e4 2331 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
488f131b
JB
2332 ecs->another_trap = 1;
2333 keep_going (ecs);
104c1213 2334 return;
488f131b
JB
2335 }
2336#endif
527159b7 2337 if (debug_infrun)
8a9de0e4 2338 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
488f131b
JB
2339 /* Else, stop and report the catchpoint(s) whose triggering
2340 caused us to begin stepping. */
2341 ecs->stepping_through_solib_after_catch = 0;
2342 bpstat_clear (&stop_bpstat);
2343 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2344 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2345 stop_print_frame = 1;
2346 stop_stepping (ecs);
2347 return;
2348 }
c906108c 2349
488f131b
JB
2350 if (step_resume_breakpoint)
2351 {
527159b7 2352 if (debug_infrun)
8a9de0e4 2353 fprintf_unfiltered (gdb_stdlog, "infrun: step-resume breakpoint\n");
527159b7 2354
488f131b
JB
2355 /* Having a step-resume breakpoint overrides anything
2356 else having to do with stepping commands until
2357 that breakpoint is reached. */
488f131b
JB
2358 keep_going (ecs);
2359 return;
2360 }
c5aa993b 2361
488f131b
JB
2362 if (step_range_end == 0)
2363 {
527159b7 2364 if (debug_infrun)
8a9de0e4 2365 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 2366 /* Likewise if we aren't even stepping. */
488f131b
JB
2367 keep_going (ecs);
2368 return;
2369 }
c5aa993b 2370
488f131b 2371 /* If stepping through a line, keep going if still within it.
c906108c 2372
488f131b
JB
2373 Note that step_range_end is the address of the first instruction
2374 beyond the step range, and NOT the address of the last instruction
2375 within it! */
2376 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2377 {
527159b7 2378 if (debug_infrun)
8a9de0e4 2379 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
527159b7
RC
2380 paddr_nz (step_range_start),
2381 paddr_nz (step_range_end));
488f131b
JB
2382 keep_going (ecs);
2383 return;
2384 }
c5aa993b 2385
488f131b 2386 /* We stepped out of the stepping range. */
c906108c 2387
488f131b
JB
2388 /* If we are stepping at the source level and entered the runtime
2389 loader dynamic symbol resolution code, we keep on single stepping
2390 until we exit the run time loader code and reach the callee's
2391 address. */
2392 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
a77053c2
MK
2393#ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2394 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2395#else
2396 && in_solib_dynsym_resolve_code (stop_pc)
2397#endif
2398 )
488f131b 2399 {
4c8c40e6
MK
2400 CORE_ADDR pc_after_resolver =
2401 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
c906108c 2402
527159b7 2403 if (debug_infrun)
8a9de0e4 2404 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
527159b7 2405
488f131b
JB
2406 if (pc_after_resolver)
2407 {
2408 /* Set up a step-resume breakpoint at the address
2409 indicated by SKIP_SOLIB_RESOLVER. */
2410 struct symtab_and_line sr_sal;
fe39c653 2411 init_sal (&sr_sal);
488f131b
JB
2412 sr_sal.pc = pc_after_resolver;
2413
44cbf7b5 2414 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c5aa993b 2415 }
c906108c 2416
488f131b
JB
2417 keep_going (ecs);
2418 return;
2419 }
c906108c 2420
42edda50
AC
2421 if (step_range_end != 1
2422 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2423 || step_over_calls == STEP_OVER_ALL)
2424 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
488f131b 2425 {
527159b7 2426 if (debug_infrun)
8a9de0e4 2427 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
42edda50 2428 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
2429 a signal trampoline (either by a signal being delivered or by
2430 the signal handler returning). Just single-step until the
2431 inferior leaves the trampoline (either by calling the handler
2432 or returning). */
488f131b
JB
2433 keep_going (ecs);
2434 return;
2435 }
c906108c 2436
c17eaafe
DJ
2437 /* Check for subroutine calls. The check for the current frame
2438 equalling the step ID is not necessary - the check of the
2439 previous frame's ID is sufficient - but it is a common case and
2440 cheaper than checking the previous frame's ID.
14e60db5
DJ
2441
2442 NOTE: frame_id_eq will never report two invalid frame IDs as
2443 being equal, so to get into this block, both the current and
2444 previous frame must have valid frame IDs. */
c17eaafe
DJ
2445 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2446 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
488f131b 2447 {
95918acb 2448 CORE_ADDR real_stop_pc;
8fb3e588 2449
527159b7 2450 if (debug_infrun)
8a9de0e4 2451 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 2452
95918acb
AC
2453 if ((step_over_calls == STEP_OVER_NONE)
2454 || ((step_range_end == 1)
2455 && in_prologue (prev_pc, ecs->stop_func_start)))
2456 {
2457 /* I presume that step_over_calls is only 0 when we're
2458 supposed to be stepping at the assembly language level
2459 ("stepi"). Just stop. */
2460 /* Also, maybe we just did a "nexti" inside a prolog, so we
2461 thought it was a subroutine call but it was not. Stop as
2462 well. FENN */
2463 stop_step = 1;
2464 print_stop_reason (END_STEPPING_RANGE, 0);
2465 stop_stepping (ecs);
2466 return;
2467 }
8fb3e588 2468
8567c30f
AC
2469 if (step_over_calls == STEP_OVER_ALL)
2470 {
2471 /* We're doing a "next", set a breakpoint at callee's return
2472 address (the address at which the caller will
2473 resume). */
14e60db5 2474 insert_step_resume_breakpoint_at_caller (get_current_frame ());
8567c30f
AC
2475 keep_going (ecs);
2476 return;
2477 }
a53c66de 2478
95918acb 2479 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
2480 calling routine and the real function), locate the real
2481 function. That's what tells us (a) whether we want to step
2482 into it at all, and (b) what prologue we want to run to the
2483 end of, if we do step into it. */
95918acb
AC
2484 real_stop_pc = skip_language_trampoline (stop_pc);
2485 if (real_stop_pc == 0)
2486 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2487 if (real_stop_pc != 0)
2488 ecs->stop_func_start = real_stop_pc;
8fb3e588 2489
a77053c2
MK
2490 if (
2491#ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2492 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2493#else
2494 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2495#endif
2496)
1b2bfbb9
RC
2497 {
2498 struct symtab_and_line sr_sal;
2499 init_sal (&sr_sal);
2500 sr_sal.pc = ecs->stop_func_start;
2501
44cbf7b5 2502 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
8fb3e588
AC
2503 keep_going (ecs);
2504 return;
1b2bfbb9
RC
2505 }
2506
95918acb 2507 /* If we have line number information for the function we are
8fb3e588 2508 thinking of stepping into, step into it.
95918acb 2509
8fb3e588
AC
2510 If there are several symtabs at that PC (e.g. with include
2511 files), just want to know whether *any* of them have line
2512 numbers. find_pc_line handles this. */
95918acb
AC
2513 {
2514 struct symtab_and_line tmp_sal;
8fb3e588 2515
95918acb
AC
2516 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2517 if (tmp_sal.line != 0)
2518 {
2519 step_into_function (ecs);
2520 return;
2521 }
2522 }
2523
2524 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
2525 set, we stop the step so that the user has a chance to switch
2526 in assembly mode. */
95918acb
AC
2527 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2528 {
2529 stop_step = 1;
2530 print_stop_reason (END_STEPPING_RANGE, 0);
2531 stop_stepping (ecs);
2532 return;
2533 }
2534
2535 /* Set a breakpoint at callee's return address (the address at
8fb3e588 2536 which the caller will resume). */
14e60db5 2537 insert_step_resume_breakpoint_at_caller (get_current_frame ());
95918acb 2538 keep_going (ecs);
488f131b 2539 return;
488f131b 2540 }
c906108c 2541
488f131b
JB
2542 /* If we're in the return path from a shared library trampoline,
2543 we want to proceed through the trampoline when stepping. */
2544 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2545 {
488f131b 2546 /* Determine where this trampoline returns. */
5cf4d23a 2547 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
c906108c 2548
527159b7 2549 if (debug_infrun)
8a9de0e4 2550 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
527159b7 2551
488f131b 2552 /* Only proceed through if we know where it's going. */
d764a824 2553 if (real_stop_pc)
488f131b
JB
2554 {
2555 /* And put the step-breakpoint there and go until there. */
2556 struct symtab_and_line sr_sal;
2557
fe39c653 2558 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 2559 sr_sal.pc = real_stop_pc;
488f131b 2560 sr_sal.section = find_pc_overlay (sr_sal.pc);
44cbf7b5
AC
2561
2562 /* Do not specify what the fp should be when we stop since
2563 on some machines the prologue is where the new fp value
2564 is established. */
2565 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c906108c 2566
488f131b
JB
2567 /* Restart without fiddling with the step ranges or
2568 other state. */
2569 keep_going (ecs);
2570 return;
2571 }
2572 }
c906108c 2573
7ed0fe66
DJ
2574 ecs->sal = find_pc_line (stop_pc, 0);
2575
1b2bfbb9
RC
2576 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2577 the trampoline processing logic, however, there are some trampolines
2578 that have no names, so we should do trampoline handling first. */
2579 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66
DJ
2580 && ecs->stop_func_name == NULL
2581 && ecs->sal.line == 0)
1b2bfbb9 2582 {
527159b7 2583 if (debug_infrun)
8a9de0e4 2584 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
527159b7 2585
1b2bfbb9 2586 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
2587 undebuggable function (where there is no debugging information
2588 and no line number corresponding to the address where the
1b2bfbb9
RC
2589 inferior stopped). Since we want to skip this kind of code,
2590 we keep going until the inferior returns from this
14e60db5
DJ
2591 function - unless the user has asked us not to (via
2592 set step-mode) or we no longer know how to get back
2593 to the call site. */
2594 if (step_stop_if_no_debug
2595 || !frame_id_p (frame_unwind_id (get_current_frame ())))
1b2bfbb9
RC
2596 {
2597 /* If we have no line number and the step-stop-if-no-debug
2598 is set, we stop the step so that the user has a chance to
2599 switch in assembly mode. */
2600 stop_step = 1;
2601 print_stop_reason (END_STEPPING_RANGE, 0);
2602 stop_stepping (ecs);
2603 return;
2604 }
2605 else
2606 {
2607 /* Set a breakpoint at callee's return address (the address
2608 at which the caller will resume). */
14e60db5 2609 insert_step_resume_breakpoint_at_caller (get_current_frame ());
1b2bfbb9
RC
2610 keep_going (ecs);
2611 return;
2612 }
2613 }
2614
2615 if (step_range_end == 1)
2616 {
2617 /* It is stepi or nexti. We always want to stop stepping after
2618 one instruction. */
527159b7 2619 if (debug_infrun)
8a9de0e4 2620 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
1b2bfbb9
RC
2621 stop_step = 1;
2622 print_stop_reason (END_STEPPING_RANGE, 0);
2623 stop_stepping (ecs);
2624 return;
2625 }
2626
488f131b
JB
2627 if (ecs->sal.line == 0)
2628 {
2629 /* We have no line number information. That means to stop
2630 stepping (does this always happen right after one instruction,
2631 when we do "s" in a function with no line numbers,
2632 or can this happen as a result of a return or longjmp?). */
527159b7 2633 if (debug_infrun)
8a9de0e4 2634 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
488f131b
JB
2635 stop_step = 1;
2636 print_stop_reason (END_STEPPING_RANGE, 0);
2637 stop_stepping (ecs);
2638 return;
2639 }
c906108c 2640
488f131b
JB
2641 if ((stop_pc == ecs->sal.pc)
2642 && (ecs->current_line != ecs->sal.line
2643 || ecs->current_symtab != ecs->sal.symtab))
2644 {
2645 /* We are at the start of a different line. So stop. Note that
2646 we don't stop if we step into the middle of a different line.
2647 That is said to make things like for (;;) statements work
2648 better. */
527159b7 2649 if (debug_infrun)
8a9de0e4 2650 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
488f131b
JB
2651 stop_step = 1;
2652 print_stop_reason (END_STEPPING_RANGE, 0);
2653 stop_stepping (ecs);
2654 return;
2655 }
c906108c 2656
488f131b 2657 /* We aren't done stepping.
c906108c 2658
488f131b
JB
2659 Optimize by setting the stepping range to the line.
2660 (We might not be in the original line, but if we entered a
2661 new line in mid-statement, we continue stepping. This makes
2662 things like for(;;) statements work better.) */
c906108c 2663
488f131b 2664 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
c5aa993b 2665 {
488f131b
JB
2666 /* If this is the last line of the function, don't keep stepping
2667 (it would probably step us out of the function).
2668 This is particularly necessary for a one-line function,
2669 in which after skipping the prologue we better stop even though
2670 we will be in mid-line. */
527159b7 2671 if (debug_infrun)
8a9de0e4 2672 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n");
488f131b
JB
2673 stop_step = 1;
2674 print_stop_reason (END_STEPPING_RANGE, 0);
2675 stop_stepping (ecs);
2676 return;
c5aa993b 2677 }
488f131b
JB
2678 step_range_start = ecs->sal.pc;
2679 step_range_end = ecs->sal.end;
aa0cd9c1 2680 step_frame_id = get_frame_id (get_current_frame ());
488f131b
JB
2681 ecs->current_line = ecs->sal.line;
2682 ecs->current_symtab = ecs->sal.symtab;
2683
aa0cd9c1
AC
2684 /* In the case where we just stepped out of a function into the
2685 middle of a line of the caller, continue stepping, but
2686 step_frame_id must be modified to current frame */
65815ea1
AC
2687#if 0
2688 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2689 generous. It will trigger on things like a step into a frameless
2690 stackless leaf function. I think the logic should instead look
2691 at the unwound frame ID has that should give a more robust
2692 indication of what happened. */
8fb3e588
AC
2693 if (step - ID == current - ID)
2694 still stepping in same function;
2695 else if (step - ID == unwind (current - ID))
2696 stepped into a function;
2697 else
2698 stepped out of a function;
2699 /* Of course this assumes that the frame ID unwind code is robust
2700 and we're willing to introduce frame unwind logic into this
2701 function. Fortunately, those days are nearly upon us. */
65815ea1 2702#endif
488f131b 2703 {
aa0cd9c1
AC
2704 struct frame_id current_frame = get_frame_id (get_current_frame ());
2705 if (!(frame_id_inner (current_frame, step_frame_id)))
2706 step_frame_id = current_frame;
488f131b 2707 }
c906108c 2708
527159b7 2709 if (debug_infrun)
8a9de0e4 2710 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 2711 keep_going (ecs);
104c1213
JM
2712}
2713
2714/* Are we in the middle of stepping? */
2715
2716static int
2717currently_stepping (struct execution_control_state *ecs)
2718{
d303a6c7 2719 return ((!ecs->handling_longjmp
104c1213
JM
2720 && ((step_range_end && step_resume_breakpoint == NULL)
2721 || trap_expected))
2722 || ecs->stepping_through_solib_after_catch
2723 || bpstat_should_step ());
2724}
c906108c 2725
c2c6d25f
JM
2726/* Subroutine call with source code we should not step over. Do step
2727 to the first line of code in it. */
2728
2729static void
2730step_into_function (struct execution_control_state *ecs)
2731{
2732 struct symtab *s;
2733 struct symtab_and_line sr_sal;
2734
2735 s = find_pc_symtab (stop_pc);
2736 if (s && s->language != language_asm)
2737 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2738
2739 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2740 /* Use the step_resume_break to step until the end of the prologue,
2741 even if that involves jumps (as it seems to on the vax under
2742 4.2). */
2743 /* If the prologue ends in the middle of a source line, continue to
2744 the end of that source line (if it is still within the function).
2745 Otherwise, just go to end of prologue. */
c2c6d25f
JM
2746 if (ecs->sal.end
2747 && ecs->sal.pc != ecs->stop_func_start
2748 && ecs->sal.end < ecs->stop_func_end)
2749 ecs->stop_func_start = ecs->sal.end;
c2c6d25f 2750
2dbd5e30
KB
2751 /* Architectures which require breakpoint adjustment might not be able
2752 to place a breakpoint at the computed address. If so, the test
2753 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2754 ecs->stop_func_start to an address at which a breakpoint may be
2755 legitimately placed.
8fb3e588 2756
2dbd5e30
KB
2757 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2758 made, GDB will enter an infinite loop when stepping through
2759 optimized code consisting of VLIW instructions which contain
2760 subinstructions corresponding to different source lines. On
2761 FR-V, it's not permitted to place a breakpoint on any but the
2762 first subinstruction of a VLIW instruction. When a breakpoint is
2763 set, GDB will adjust the breakpoint address to the beginning of
2764 the VLIW instruction. Thus, we need to make the corresponding
2765 adjustment here when computing the stop address. */
8fb3e588 2766
2dbd5e30
KB
2767 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2768 {
2769 ecs->stop_func_start
2770 = gdbarch_adjust_breakpoint_address (current_gdbarch,
8fb3e588 2771 ecs->stop_func_start);
2dbd5e30
KB
2772 }
2773
c2c6d25f
JM
2774 if (ecs->stop_func_start == stop_pc)
2775 {
2776 /* We are already there: stop now. */
2777 stop_step = 1;
488f131b 2778 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
2779 stop_stepping (ecs);
2780 return;
2781 }
2782 else
2783 {
2784 /* Put the step-breakpoint there and go until there. */
fe39c653 2785 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
2786 sr_sal.pc = ecs->stop_func_start;
2787 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
44cbf7b5 2788
c2c6d25f 2789 /* Do not specify what the fp should be when we stop since on
488f131b
JB
2790 some machines the prologue is where the new fp value is
2791 established. */
44cbf7b5 2792 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c2c6d25f
JM
2793
2794 /* And make sure stepping stops right away then. */
2795 step_range_end = step_range_start;
2796 }
2797 keep_going (ecs);
2798}
d4f3574e 2799
44cbf7b5
AC
2800/* Insert a "step resume breakpoint" at SR_SAL with frame ID SR_ID.
2801 This is used to both functions and to skip over code. */
2802
2803static void
2804insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2805 struct frame_id sr_id)
2806{
2807 /* There should never be more than one step-resume breakpoint per
2808 thread, so we should never be setting a new
2809 step_resume_breakpoint when one is already active. */
2810 gdb_assert (step_resume_breakpoint == NULL);
2811 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2812 bp_step_resume);
2813 if (breakpoints_inserted)
2814 insert_breakpoints ();
2815}
7ce450bd 2816
14e60db5
DJ
2817/* Insert a "step resume breakpoint" at RETURN_FRAME.pc. This is used
2818 to skip a potential signal handler.
7ce450bd 2819
14e60db5
DJ
2820 This is called with the interrupted function's frame. The signal
2821 handler, when it returns, will resume the interrupted function at
2822 RETURN_FRAME.pc. */
d303a6c7
AC
2823
2824static void
44cbf7b5 2825insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
2826{
2827 struct symtab_and_line sr_sal;
2828
d303a6c7
AC
2829 init_sal (&sr_sal); /* initialize to zeros */
2830
7ce450bd 2831 sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (return_frame));
d303a6c7
AC
2832 sr_sal.section = find_pc_overlay (sr_sal.pc);
2833
44cbf7b5 2834 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
d303a6c7
AC
2835}
2836
14e60db5
DJ
2837/* Similar to insert_step_resume_breakpoint_at_frame, except
2838 but a breakpoint at the previous frame's PC. This is used to
2839 skip a function after stepping into it (for "next" or if the called
2840 function has no debugging information).
2841
2842 The current function has almost always been reached by single
2843 stepping a call or return instruction. NEXT_FRAME belongs to the
2844 current function, and the breakpoint will be set at the caller's
2845 resume address.
2846
2847 This is a separate function rather than reusing
2848 insert_step_resume_breakpoint_at_frame in order to avoid
2849 get_prev_frame, which may stop prematurely (see the implementation
2850 of frame_unwind_id for an example). */
2851
2852static void
2853insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
2854{
2855 struct symtab_and_line sr_sal;
2856
2857 /* We shouldn't have gotten here if we don't know where the call site
2858 is. */
2859 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
2860
2861 init_sal (&sr_sal); /* initialize to zeros */
2862
2863 sr_sal.pc = ADDR_BITS_REMOVE (frame_pc_unwind (next_frame));
2864 sr_sal.section = find_pc_overlay (sr_sal.pc);
2865
2866 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
2867}
2868
104c1213
JM
2869static void
2870stop_stepping (struct execution_control_state *ecs)
2871{
527159b7 2872 if (debug_infrun)
8a9de0e4 2873 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 2874
cd0fc7c3
SS
2875 /* Let callers know we don't want to wait for the inferior anymore. */
2876 ecs->wait_some_more = 0;
2877}
2878
d4f3574e
SS
2879/* This function handles various cases where we need to continue
2880 waiting for the inferior. */
2881/* (Used to be the keep_going: label in the old wait_for_inferior) */
2882
2883static void
2884keep_going (struct execution_control_state *ecs)
2885{
d4f3574e 2886 /* Save the pc before execution, to compare with pc after stop. */
488f131b 2887 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
d4f3574e 2888
d4f3574e
SS
2889 /* If we did not do break;, it means we should keep running the
2890 inferior and not return to debugger. */
2891
2892 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2893 {
2894 /* We took a signal (which we are supposed to pass through to
488f131b
JB
2895 the inferior, else we'd have done a break above) and we
2896 haven't yet gotten our trap. Simply continue. */
d4f3574e
SS
2897 resume (currently_stepping (ecs), stop_signal);
2898 }
2899 else
2900 {
2901 /* Either the trap was not expected, but we are continuing
488f131b
JB
2902 anyway (the user asked that this signal be passed to the
2903 child)
2904 -- or --
2905 The signal was SIGTRAP, e.g. it was our signal, but we
2906 decided we should resume from it.
d4f3574e 2907
68f53502 2908 We're going to run this baby now! */
d4f3574e 2909
68f53502 2910 if (!breakpoints_inserted && !ecs->another_trap)
d4f3574e
SS
2911 {
2912 breakpoints_failed = insert_breakpoints ();
2913 if (breakpoints_failed)
2914 {
2915 stop_stepping (ecs);
2916 return;
2917 }
2918 breakpoints_inserted = 1;
2919 }
2920
2921 trap_expected = ecs->another_trap;
2922
2923 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
2924 specifies that such a signal should be delivered to the
2925 target program).
2926
2927 Typically, this would occure when a user is debugging a
2928 target monitor on a simulator: the target monitor sets a
2929 breakpoint; the simulator encounters this break-point and
2930 halts the simulation handing control to GDB; GDB, noteing
2931 that the break-point isn't valid, returns control back to the
2932 simulator; the simulator then delivers the hardware
2933 equivalent of a SIGNAL_TRAP to the program being debugged. */
2934
2935 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
d4f3574e
SS
2936 stop_signal = TARGET_SIGNAL_0;
2937
d4f3574e
SS
2938
2939 resume (currently_stepping (ecs), stop_signal);
2940 }
2941
488f131b 2942 prepare_to_wait (ecs);
d4f3574e
SS
2943}
2944
104c1213
JM
2945/* This function normally comes after a resume, before
2946 handle_inferior_event exits. It takes care of any last bits of
2947 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 2948
104c1213
JM
2949static void
2950prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 2951{
527159b7 2952 if (debug_infrun)
8a9de0e4 2953 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213
JM
2954 if (ecs->infwait_state == infwait_normal_state)
2955 {
2956 overlay_cache_invalid = 1;
2957
2958 /* We have to invalidate the registers BEFORE calling
488f131b
JB
2959 target_wait because they can be loaded from the target while
2960 in target_wait. This makes remote debugging a bit more
2961 efficient for those targets that provide critical registers
2962 as part of their normal status mechanism. */
104c1213
JM
2963
2964 registers_changed ();
39f77062 2965 ecs->waiton_ptid = pid_to_ptid (-1);
104c1213
JM
2966 ecs->wp = &(ecs->ws);
2967 }
2968 /* This is the old end of the while loop. Let everybody know we
2969 want to wait for the inferior some more and get called again
2970 soon. */
2971 ecs->wait_some_more = 1;
c906108c 2972}
11cf8741
JM
2973
2974/* Print why the inferior has stopped. We always print something when
2975 the inferior exits, or receives a signal. The rest of the cases are
2976 dealt with later on in normal_stop() and print_it_typical(). Ideally
2977 there should be a call to this function from handle_inferior_event()
2978 each time stop_stepping() is called.*/
2979static void
2980print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2981{
2982 switch (stop_reason)
2983 {
11cf8741
JM
2984 case END_STEPPING_RANGE:
2985 /* We are done with a step/next/si/ni command. */
2986 /* For now print nothing. */
fb40c209 2987 /* Print a message only if not in the middle of doing a "step n"
488f131b 2988 operation for n > 1 */
fb40c209 2989 if (!step_multi || !stop_step)
9dc5e2a9 2990 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
2991 ui_out_field_string
2992 (uiout, "reason",
2993 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
11cf8741 2994 break;
11cf8741
JM
2995 case SIGNAL_EXITED:
2996 /* The inferior was terminated by a signal. */
8b93c638 2997 annotate_signalled ();
9dc5e2a9 2998 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
2999 ui_out_field_string
3000 (uiout, "reason",
3001 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8b93c638
JM
3002 ui_out_text (uiout, "\nProgram terminated with signal ");
3003 annotate_signal_name ();
488f131b
JB
3004 ui_out_field_string (uiout, "signal-name",
3005 target_signal_to_name (stop_info));
8b93c638
JM
3006 annotate_signal_name_end ();
3007 ui_out_text (uiout, ", ");
3008 annotate_signal_string ();
488f131b
JB
3009 ui_out_field_string (uiout, "signal-meaning",
3010 target_signal_to_string (stop_info));
8b93c638
JM
3011 annotate_signal_string_end ();
3012 ui_out_text (uiout, ".\n");
3013 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
3014 break;
3015 case EXITED:
3016 /* The inferior program is finished. */
8b93c638
JM
3017 annotate_exited (stop_info);
3018 if (stop_info)
3019 {
9dc5e2a9 3020 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3021 ui_out_field_string (uiout, "reason",
3022 async_reason_lookup (EXEC_ASYNC_EXITED));
8b93c638 3023 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
3024 ui_out_field_fmt (uiout, "exit-code", "0%o",
3025 (unsigned int) stop_info);
8b93c638
JM
3026 ui_out_text (uiout, ".\n");
3027 }
3028 else
3029 {
9dc5e2a9 3030 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3031 ui_out_field_string
3032 (uiout, "reason",
3033 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8b93c638
JM
3034 ui_out_text (uiout, "\nProgram exited normally.\n");
3035 }
f17517ea
AS
3036 /* Support the --return-child-result option. */
3037 return_child_result_value = stop_info;
11cf8741
JM
3038 break;
3039 case SIGNAL_RECEIVED:
3040 /* Signal received. The signal table tells us to print about
3041 it. */
8b93c638
JM
3042 annotate_signal ();
3043 ui_out_text (uiout, "\nProgram received signal ");
3044 annotate_signal_name ();
84c6c83c 3045 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3046 ui_out_field_string
3047 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b
JB
3048 ui_out_field_string (uiout, "signal-name",
3049 target_signal_to_name (stop_info));
8b93c638
JM
3050 annotate_signal_name_end ();
3051 ui_out_text (uiout, ", ");
3052 annotate_signal_string ();
488f131b
JB
3053 ui_out_field_string (uiout, "signal-meaning",
3054 target_signal_to_string (stop_info));
8b93c638
JM
3055 annotate_signal_string_end ();
3056 ui_out_text (uiout, ".\n");
11cf8741
JM
3057 break;
3058 default:
8e65ff28 3059 internal_error (__FILE__, __LINE__,
e2e0b3e5 3060 _("print_stop_reason: unrecognized enum value"));
11cf8741
JM
3061 break;
3062 }
3063}
c906108c 3064\f
43ff13b4 3065
c906108c
SS
3066/* Here to return control to GDB when the inferior stops for real.
3067 Print appropriate messages, remove breakpoints, give terminal our modes.
3068
3069 STOP_PRINT_FRAME nonzero means print the executing frame
3070 (pc, function, args, file, line number and line text).
3071 BREAKPOINTS_FAILED nonzero means stop was due to error
3072 attempting to insert breakpoints. */
3073
3074void
96baa820 3075normal_stop (void)
c906108c 3076{
73b65bb0
DJ
3077 struct target_waitstatus last;
3078 ptid_t last_ptid;
3079
3080 get_last_target_status (&last_ptid, &last);
3081
c906108c
SS
3082 /* As with the notification of thread events, we want to delay
3083 notifying the user that we've switched thread context until
3084 the inferior actually stops.
3085
73b65bb0
DJ
3086 There's no point in saying anything if the inferior has exited.
3087 Note that SIGNALLED here means "exited with a signal", not
3088 "received a signal". */
488f131b 3089 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
3090 && target_has_execution
3091 && last.kind != TARGET_WAITKIND_SIGNALLED
3092 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
3093 {
3094 target_terminal_ours_for_output ();
a3f17187 3095 printf_filtered (_("[Switching to %s]\n"),
39f77062
KB
3096 target_pid_or_tid_to_str (inferior_ptid));
3097 previous_inferior_ptid = inferior_ptid;
c906108c 3098 }
c906108c 3099
4fa8626c 3100 /* NOTE drow/2004-01-17: Is this still necessary? */
c906108c
SS
3101 /* Make sure that the current_frame's pc is correct. This
3102 is a correction for setting up the frame info before doing
3103 DECR_PC_AFTER_BREAK */
b87efeee
AC
3104 if (target_has_execution)
3105 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3106 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
3107 frame code to check for this and sort out any resultant mess.
3108 DECR_PC_AFTER_BREAK needs to just go away. */
2f107107 3109 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
c906108c 3110
c906108c
SS
3111 if (target_has_execution && breakpoints_inserted)
3112 {
3113 if (remove_breakpoints ())
3114 {
3115 target_terminal_ours_for_output ();
a3f17187
AC
3116 printf_filtered (_("\
3117Cannot remove breakpoints because program is no longer writable.\n\
3118It might be running in another process.\n\
3119Further execution is probably impossible.\n"));
c906108c
SS
3120 }
3121 }
3122 breakpoints_inserted = 0;
3123
3124 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3125 Delete any breakpoint that is to be deleted at the next stop. */
3126
3127 breakpoint_auto_delete (stop_bpstat);
3128
3129 /* If an auto-display called a function and that got a signal,
3130 delete that auto-display to avoid an infinite recursion. */
3131
3132 if (stopped_by_random_signal)
3133 disable_current_display ();
3134
3135 /* Don't print a message if in the middle of doing a "step n"
3136 operation for n > 1 */
3137 if (step_multi && stop_step)
3138 goto done;
3139
3140 target_terminal_ours ();
3141
7abfe014
DJ
3142 /* Set the current source location. This will also happen if we
3143 display the frame below, but the current SAL will be incorrect
3144 during a user hook-stop function. */
3145 if (target_has_stack && !stop_stack_dummy)
3146 set_current_sal_from_frame (get_current_frame (), 1);
3147
5913bcb0
AC
3148 /* Look up the hook_stop and run it (CLI internally handles problem
3149 of stop_command's pre-hook not existing). */
3150 if (stop_command)
3151 catch_errors (hook_stop_stub, stop_command,
3152 "Error while running hook_stop:\n", RETURN_MASK_ALL);
c906108c
SS
3153
3154 if (!target_has_stack)
3155 {
3156
3157 goto done;
3158 }
3159
3160 /* Select innermost stack frame - i.e., current frame is frame 0,
3161 and current location is based on that.
3162 Don't do this on return from a stack dummy routine,
3163 or if the program has exited. */
3164
3165 if (!stop_stack_dummy)
3166 {
0f7d239c 3167 select_frame (get_current_frame ());
c906108c
SS
3168
3169 /* Print current location without a level number, if
c5aa993b
JM
3170 we have changed functions or hit a breakpoint.
3171 Print source line if we have one.
3172 bpstat_print() contains the logic deciding in detail
3173 what to print, based on the event(s) that just occurred. */
c906108c 3174
206415a3 3175 if (stop_print_frame)
c906108c
SS
3176 {
3177 int bpstat_ret;
3178 int source_flag;
917317f4 3179 int do_frame_printing = 1;
c906108c
SS
3180
3181 bpstat_ret = bpstat_print (stop_bpstat);
917317f4
JM
3182 switch (bpstat_ret)
3183 {
3184 case PRINT_UNKNOWN:
aa0cd9c1 3185 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
3186 (or should) carry around the function and does (or
3187 should) use that when doing a frame comparison. */
917317f4 3188 if (stop_step
aa0cd9c1
AC
3189 && frame_id_eq (step_frame_id,
3190 get_frame_id (get_current_frame ()))
917317f4 3191 && step_start_function == find_pc_function (stop_pc))
488f131b 3192 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 3193 else
488f131b 3194 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3195 break;
3196 case PRINT_SRC_AND_LOC:
488f131b 3197 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3198 break;
3199 case PRINT_SRC_ONLY:
c5394b80 3200 source_flag = SRC_LINE;
917317f4
JM
3201 break;
3202 case PRINT_NOTHING:
488f131b 3203 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
3204 do_frame_printing = 0;
3205 break;
3206 default:
e2e0b3e5 3207 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 3208 }
fb40c209 3209 /* For mi, have the same behavior every time we stop:
488f131b 3210 print everything but the source line. */
9dc5e2a9 3211 if (ui_out_is_mi_like_p (uiout))
fb40c209 3212 source_flag = LOC_AND_ADDRESS;
c906108c 3213
9dc5e2a9 3214 if (ui_out_is_mi_like_p (uiout))
39f77062 3215 ui_out_field_int (uiout, "thread-id",
488f131b 3216 pid_to_thread_id (inferior_ptid));
c906108c
SS
3217 /* The behavior of this routine with respect to the source
3218 flag is:
c5394b80
JM
3219 SRC_LINE: Print only source line
3220 LOCATION: Print only location
3221 SRC_AND_LOC: Print location and source line */
917317f4 3222 if (do_frame_printing)
b04f3ab4 3223 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
3224
3225 /* Display the auto-display expressions. */
3226 do_displays ();
3227 }
3228 }
3229
3230 /* Save the function value return registers, if we care.
3231 We might be about to restore their previous contents. */
3232 if (proceed_to_finish)
72cec141
AC
3233 /* NB: The copy goes through to the target picking up the value of
3234 all the registers. */
3235 regcache_cpy (stop_registers, current_regcache);
c906108c
SS
3236
3237 if (stop_stack_dummy)
3238 {
dbe9fe58
AC
3239 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3240 ends with a setting of the current frame, so we can use that
3241 next. */
3242 frame_pop (get_current_frame ());
c906108c 3243 /* Set stop_pc to what it was before we called the function.
c5aa993b
JM
3244 Can't rely on restore_inferior_status because that only gets
3245 called if we don't stop in the called function. */
c906108c 3246 stop_pc = read_pc ();
0f7d239c 3247 select_frame (get_current_frame ());
c906108c
SS
3248 }
3249
c906108c
SS
3250done:
3251 annotate_stopped ();
7a464420 3252 observer_notify_normal_stop (stop_bpstat);
c906108c
SS
3253}
3254
3255static int
96baa820 3256hook_stop_stub (void *cmd)
c906108c 3257{
5913bcb0 3258 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
3259 return (0);
3260}
3261\f
c5aa993b 3262int
96baa820 3263signal_stop_state (int signo)
c906108c
SS
3264{
3265 return signal_stop[signo];
3266}
3267
c5aa993b 3268int
96baa820 3269signal_print_state (int signo)
c906108c
SS
3270{
3271 return signal_print[signo];
3272}
3273
c5aa993b 3274int
96baa820 3275signal_pass_state (int signo)
c906108c
SS
3276{
3277 return signal_program[signo];
3278}
3279
488f131b 3280int
7bda5e4a 3281signal_stop_update (int signo, int state)
d4f3574e
SS
3282{
3283 int ret = signal_stop[signo];
3284 signal_stop[signo] = state;
3285 return ret;
3286}
3287
488f131b 3288int
7bda5e4a 3289signal_print_update (int signo, int state)
d4f3574e
SS
3290{
3291 int ret = signal_print[signo];
3292 signal_print[signo] = state;
3293 return ret;
3294}
3295
488f131b 3296int
7bda5e4a 3297signal_pass_update (int signo, int state)
d4f3574e
SS
3298{
3299 int ret = signal_program[signo];
3300 signal_program[signo] = state;
3301 return ret;
3302}
3303
c906108c 3304static void
96baa820 3305sig_print_header (void)
c906108c 3306{
a3f17187
AC
3307 printf_filtered (_("\
3308Signal Stop\tPrint\tPass to program\tDescription\n"));
c906108c
SS
3309}
3310
3311static void
96baa820 3312sig_print_info (enum target_signal oursig)
c906108c
SS
3313{
3314 char *name = target_signal_to_name (oursig);
3315 int name_padding = 13 - strlen (name);
96baa820 3316
c906108c
SS
3317 if (name_padding <= 0)
3318 name_padding = 0;
3319
3320 printf_filtered ("%s", name);
488f131b 3321 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
3322 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3323 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3324 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3325 printf_filtered ("%s\n", target_signal_to_string (oursig));
3326}
3327
3328/* Specify how various signals in the inferior should be handled. */
3329
3330static void
96baa820 3331handle_command (char *args, int from_tty)
c906108c
SS
3332{
3333 char **argv;
3334 int digits, wordlen;
3335 int sigfirst, signum, siglast;
3336 enum target_signal oursig;
3337 int allsigs;
3338 int nsigs;
3339 unsigned char *sigs;
3340 struct cleanup *old_chain;
3341
3342 if (args == NULL)
3343 {
e2e0b3e5 3344 error_no_arg (_("signal to handle"));
c906108c
SS
3345 }
3346
3347 /* Allocate and zero an array of flags for which signals to handle. */
3348
3349 nsigs = (int) TARGET_SIGNAL_LAST;
3350 sigs = (unsigned char *) alloca (nsigs);
3351 memset (sigs, 0, nsigs);
3352
3353 /* Break the command line up into args. */
3354
3355 argv = buildargv (args);
3356 if (argv == NULL)
3357 {
3358 nomem (0);
3359 }
7a292a7a 3360 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3361
3362 /* Walk through the args, looking for signal oursigs, signal names, and
3363 actions. Signal numbers and signal names may be interspersed with
3364 actions, with the actions being performed for all signals cumulatively
3365 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3366
3367 while (*argv != NULL)
3368 {
3369 wordlen = strlen (*argv);
3370 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3371 {;
3372 }
3373 allsigs = 0;
3374 sigfirst = siglast = -1;
3375
3376 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3377 {
3378 /* Apply action to all signals except those used by the
3379 debugger. Silently skip those. */
3380 allsigs = 1;
3381 sigfirst = 0;
3382 siglast = nsigs - 1;
3383 }
3384 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3385 {
3386 SET_SIGS (nsigs, sigs, signal_stop);
3387 SET_SIGS (nsigs, sigs, signal_print);
3388 }
3389 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3390 {
3391 UNSET_SIGS (nsigs, sigs, signal_program);
3392 }
3393 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3394 {
3395 SET_SIGS (nsigs, sigs, signal_print);
3396 }
3397 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3398 {
3399 SET_SIGS (nsigs, sigs, signal_program);
3400 }
3401 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3402 {
3403 UNSET_SIGS (nsigs, sigs, signal_stop);
3404 }
3405 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3406 {
3407 SET_SIGS (nsigs, sigs, signal_program);
3408 }
3409 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3410 {
3411 UNSET_SIGS (nsigs, sigs, signal_print);
3412 UNSET_SIGS (nsigs, sigs, signal_stop);
3413 }
3414 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3415 {
3416 UNSET_SIGS (nsigs, sigs, signal_program);
3417 }
3418 else if (digits > 0)
3419 {
3420 /* It is numeric. The numeric signal refers to our own
3421 internal signal numbering from target.h, not to host/target
3422 signal number. This is a feature; users really should be
3423 using symbolic names anyway, and the common ones like
3424 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3425
3426 sigfirst = siglast = (int)
3427 target_signal_from_command (atoi (*argv));
3428 if ((*argv)[digits] == '-')
3429 {
3430 siglast = (int)
3431 target_signal_from_command (atoi ((*argv) + digits + 1));
3432 }
3433 if (sigfirst > siglast)
3434 {
3435 /* Bet he didn't figure we'd think of this case... */
3436 signum = sigfirst;
3437 sigfirst = siglast;
3438 siglast = signum;
3439 }
3440 }
3441 else
3442 {
3443 oursig = target_signal_from_name (*argv);
3444 if (oursig != TARGET_SIGNAL_UNKNOWN)
3445 {
3446 sigfirst = siglast = (int) oursig;
3447 }
3448 else
3449 {
3450 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 3451 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
3452 }
3453 }
3454
3455 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 3456 which signals to apply actions to. */
c906108c
SS
3457
3458 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3459 {
3460 switch ((enum target_signal) signum)
3461 {
3462 case TARGET_SIGNAL_TRAP:
3463 case TARGET_SIGNAL_INT:
3464 if (!allsigs && !sigs[signum])
3465 {
3466 if (query ("%s is used by the debugger.\n\
488f131b 3467Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
3468 {
3469 sigs[signum] = 1;
3470 }
3471 else
3472 {
a3f17187 3473 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
3474 gdb_flush (gdb_stdout);
3475 }
3476 }
3477 break;
3478 case TARGET_SIGNAL_0:
3479 case TARGET_SIGNAL_DEFAULT:
3480 case TARGET_SIGNAL_UNKNOWN:
3481 /* Make sure that "all" doesn't print these. */
3482 break;
3483 default:
3484 sigs[signum] = 1;
3485 break;
3486 }
3487 }
3488
3489 argv++;
3490 }
3491
39f77062 3492 target_notice_signals (inferior_ptid);
c906108c
SS
3493
3494 if (from_tty)
3495 {
3496 /* Show the results. */
3497 sig_print_header ();
3498 for (signum = 0; signum < nsigs; signum++)
3499 {
3500 if (sigs[signum])
3501 {
3502 sig_print_info (signum);
3503 }
3504 }
3505 }
3506
3507 do_cleanups (old_chain);
3508}
3509
3510static void
96baa820 3511xdb_handle_command (char *args, int from_tty)
c906108c
SS
3512{
3513 char **argv;
3514 struct cleanup *old_chain;
3515
3516 /* Break the command line up into args. */
3517
3518 argv = buildargv (args);
3519 if (argv == NULL)
3520 {
3521 nomem (0);
3522 }
7a292a7a 3523 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3524 if (argv[1] != (char *) NULL)
3525 {
3526 char *argBuf;
3527 int bufLen;
3528
3529 bufLen = strlen (argv[0]) + 20;
3530 argBuf = (char *) xmalloc (bufLen);
3531 if (argBuf)
3532 {
3533 int validFlag = 1;
3534 enum target_signal oursig;
3535
3536 oursig = target_signal_from_name (argv[0]);
3537 memset (argBuf, 0, bufLen);
3538 if (strcmp (argv[1], "Q") == 0)
3539 sprintf (argBuf, "%s %s", argv[0], "noprint");
3540 else
3541 {
3542 if (strcmp (argv[1], "s") == 0)
3543 {
3544 if (!signal_stop[oursig])
3545 sprintf (argBuf, "%s %s", argv[0], "stop");
3546 else
3547 sprintf (argBuf, "%s %s", argv[0], "nostop");
3548 }
3549 else if (strcmp (argv[1], "i") == 0)
3550 {
3551 if (!signal_program[oursig])
3552 sprintf (argBuf, "%s %s", argv[0], "pass");
3553 else
3554 sprintf (argBuf, "%s %s", argv[0], "nopass");
3555 }
3556 else if (strcmp (argv[1], "r") == 0)
3557 {
3558 if (!signal_print[oursig])
3559 sprintf (argBuf, "%s %s", argv[0], "print");
3560 else
3561 sprintf (argBuf, "%s %s", argv[0], "noprint");
3562 }
3563 else
3564 validFlag = 0;
3565 }
3566 if (validFlag)
3567 handle_command (argBuf, from_tty);
3568 else
a3f17187 3569 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 3570 if (argBuf)
b8c9b27d 3571 xfree (argBuf);
c906108c
SS
3572 }
3573 }
3574 do_cleanups (old_chain);
3575}
3576
3577/* Print current contents of the tables set by the handle command.
3578 It is possible we should just be printing signals actually used
3579 by the current target (but for things to work right when switching
3580 targets, all signals should be in the signal tables). */
3581
3582static void
96baa820 3583signals_info (char *signum_exp, int from_tty)
c906108c
SS
3584{
3585 enum target_signal oursig;
3586 sig_print_header ();
3587
3588 if (signum_exp)
3589 {
3590 /* First see if this is a symbol name. */
3591 oursig = target_signal_from_name (signum_exp);
3592 if (oursig == TARGET_SIGNAL_UNKNOWN)
3593 {
3594 /* No, try numeric. */
3595 oursig =
bb518678 3596 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
3597 }
3598 sig_print_info (oursig);
3599 return;
3600 }
3601
3602 printf_filtered ("\n");
3603 /* These ugly casts brought to you by the native VAX compiler. */
3604 for (oursig = TARGET_SIGNAL_FIRST;
3605 (int) oursig < (int) TARGET_SIGNAL_LAST;
3606 oursig = (enum target_signal) ((int) oursig + 1))
3607 {
3608 QUIT;
3609
3610 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 3611 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
3612 sig_print_info (oursig);
3613 }
3614
a3f17187 3615 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
c906108c
SS
3616}
3617\f
7a292a7a
SS
3618struct inferior_status
3619{
3620 enum target_signal stop_signal;
3621 CORE_ADDR stop_pc;
3622 bpstat stop_bpstat;
3623 int stop_step;
3624 int stop_stack_dummy;
3625 int stopped_by_random_signal;
3626 int trap_expected;
3627 CORE_ADDR step_range_start;
3628 CORE_ADDR step_range_end;
aa0cd9c1 3629 struct frame_id step_frame_id;
5fbbeb29 3630 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
3631 CORE_ADDR step_resume_break_address;
3632 int stop_after_trap;
c0236d92 3633 int stop_soon;
72cec141 3634 struct regcache *stop_registers;
7a292a7a
SS
3635
3636 /* These are here because if call_function_by_hand has written some
3637 registers and then decides to call error(), we better not have changed
3638 any registers. */
72cec141 3639 struct regcache *registers;
7a292a7a 3640
101dcfbe
AC
3641 /* A frame unique identifier. */
3642 struct frame_id selected_frame_id;
3643
7a292a7a
SS
3644 int breakpoint_proceeded;
3645 int restore_stack_info;
3646 int proceed_to_finish;
3647};
3648
7a292a7a 3649void
96baa820
JM
3650write_inferior_status_register (struct inferior_status *inf_status, int regno,
3651 LONGEST val)
7a292a7a 3652{
3acba339 3653 int size = register_size (current_gdbarch, regno);
7a292a7a
SS
3654 void *buf = alloca (size);
3655 store_signed_integer (buf, size, val);
0818c12a 3656 regcache_raw_write (inf_status->registers, regno, buf);
7a292a7a
SS
3657}
3658
c906108c
SS
3659/* Save all of the information associated with the inferior<==>gdb
3660 connection. INF_STATUS is a pointer to a "struct inferior_status"
3661 (defined in inferior.h). */
3662
7a292a7a 3663struct inferior_status *
96baa820 3664save_inferior_status (int restore_stack_info)
c906108c 3665{
72cec141 3666 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
7a292a7a 3667
c906108c
SS
3668 inf_status->stop_signal = stop_signal;
3669 inf_status->stop_pc = stop_pc;
3670 inf_status->stop_step = stop_step;
3671 inf_status->stop_stack_dummy = stop_stack_dummy;
3672 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3673 inf_status->trap_expected = trap_expected;
3674 inf_status->step_range_start = step_range_start;
3675 inf_status->step_range_end = step_range_end;
aa0cd9c1 3676 inf_status->step_frame_id = step_frame_id;
c906108c
SS
3677 inf_status->step_over_calls = step_over_calls;
3678 inf_status->stop_after_trap = stop_after_trap;
c0236d92 3679 inf_status->stop_soon = stop_soon;
c906108c
SS
3680 /* Save original bpstat chain here; replace it with copy of chain.
3681 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
3682 hand them back the original chain when restore_inferior_status is
3683 called. */
c906108c
SS
3684 inf_status->stop_bpstat = stop_bpstat;
3685 stop_bpstat = bpstat_copy (stop_bpstat);
3686 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3687 inf_status->restore_stack_info = restore_stack_info;
3688 inf_status->proceed_to_finish = proceed_to_finish;
c5aa993b 3689
72cec141 3690 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
c906108c 3691
72cec141 3692 inf_status->registers = regcache_dup (current_regcache);
c906108c 3693
206415a3 3694 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
7a292a7a 3695 return inf_status;
c906108c
SS
3696}
3697
c906108c 3698static int
96baa820 3699restore_selected_frame (void *args)
c906108c 3700{
488f131b 3701 struct frame_id *fid = (struct frame_id *) args;
c906108c 3702 struct frame_info *frame;
c906108c 3703
101dcfbe 3704 frame = frame_find_by_id (*fid);
c906108c 3705
aa0cd9c1
AC
3706 /* If inf_status->selected_frame_id is NULL, there was no previously
3707 selected frame. */
101dcfbe 3708 if (frame == NULL)
c906108c 3709 {
8a3fe4f8 3710 warning (_("Unable to restore previously selected frame."));
c906108c
SS
3711 return 0;
3712 }
3713
0f7d239c 3714 select_frame (frame);
c906108c
SS
3715
3716 return (1);
3717}
3718
3719void
96baa820 3720restore_inferior_status (struct inferior_status *inf_status)
c906108c
SS
3721{
3722 stop_signal = inf_status->stop_signal;
3723 stop_pc = inf_status->stop_pc;
3724 stop_step = inf_status->stop_step;
3725 stop_stack_dummy = inf_status->stop_stack_dummy;
3726 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3727 trap_expected = inf_status->trap_expected;
3728 step_range_start = inf_status->step_range_start;
3729 step_range_end = inf_status->step_range_end;
aa0cd9c1 3730 step_frame_id = inf_status->step_frame_id;
c906108c
SS
3731 step_over_calls = inf_status->step_over_calls;
3732 stop_after_trap = inf_status->stop_after_trap;
c0236d92 3733 stop_soon = inf_status->stop_soon;
c906108c
SS
3734 bpstat_clear (&stop_bpstat);
3735 stop_bpstat = inf_status->stop_bpstat;
3736 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3737 proceed_to_finish = inf_status->proceed_to_finish;
3738
72cec141
AC
3739 /* FIXME: Is the restore of stop_registers always needed. */
3740 regcache_xfree (stop_registers);
3741 stop_registers = inf_status->stop_registers;
c906108c
SS
3742
3743 /* The inferior can be gone if the user types "print exit(0)"
3744 (and perhaps other times). */
3745 if (target_has_execution)
72cec141
AC
3746 /* NB: The register write goes through to the target. */
3747 regcache_cpy (current_regcache, inf_status->registers);
3748 regcache_xfree (inf_status->registers);
c906108c 3749
c906108c
SS
3750 /* FIXME: If we are being called after stopping in a function which
3751 is called from gdb, we should not be trying to restore the
3752 selected frame; it just prints a spurious error message (The
3753 message is useful, however, in detecting bugs in gdb (like if gdb
3754 clobbers the stack)). In fact, should we be restoring the
3755 inferior status at all in that case? . */
3756
3757 if (target_has_stack && inf_status->restore_stack_info)
3758 {
c906108c 3759 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
3760 walking the stack might encounter a garbage pointer and
3761 error() trying to dereference it. */
488f131b
JB
3762 if (catch_errors
3763 (restore_selected_frame, &inf_status->selected_frame_id,
3764 "Unable to restore previously selected frame:\n",
3765 RETURN_MASK_ERROR) == 0)
c906108c
SS
3766 /* Error in restoring the selected frame. Select the innermost
3767 frame. */
0f7d239c 3768 select_frame (get_current_frame ());
c906108c
SS
3769
3770 }
c906108c 3771
72cec141 3772 xfree (inf_status);
7a292a7a 3773}
c906108c 3774
74b7792f
AC
3775static void
3776do_restore_inferior_status_cleanup (void *sts)
3777{
3778 restore_inferior_status (sts);
3779}
3780
3781struct cleanup *
3782make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3783{
3784 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3785}
3786
c906108c 3787void
96baa820 3788discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
3789{
3790 /* See save_inferior_status for info on stop_bpstat. */
3791 bpstat_clear (&inf_status->stop_bpstat);
72cec141
AC
3792 regcache_xfree (inf_status->registers);
3793 regcache_xfree (inf_status->stop_registers);
3794 xfree (inf_status);
7a292a7a
SS
3795}
3796
47932f85
DJ
3797int
3798inferior_has_forked (int pid, int *child_pid)
3799{
3800 struct target_waitstatus last;
3801 ptid_t last_ptid;
3802
3803 get_last_target_status (&last_ptid, &last);
3804
3805 if (last.kind != TARGET_WAITKIND_FORKED)
3806 return 0;
3807
3808 if (ptid_get_pid (last_ptid) != pid)
3809 return 0;
3810
3811 *child_pid = last.value.related_pid;
3812 return 1;
3813}
3814
3815int
3816inferior_has_vforked (int pid, int *child_pid)
3817{
3818 struct target_waitstatus last;
3819 ptid_t last_ptid;
3820
3821 get_last_target_status (&last_ptid, &last);
3822
3823 if (last.kind != TARGET_WAITKIND_VFORKED)
3824 return 0;
3825
3826 if (ptid_get_pid (last_ptid) != pid)
3827 return 0;
3828
3829 *child_pid = last.value.related_pid;
3830 return 1;
3831}
3832
3833int
3834inferior_has_execd (int pid, char **execd_pathname)
3835{
3836 struct target_waitstatus last;
3837 ptid_t last_ptid;
3838
3839 get_last_target_status (&last_ptid, &last);
3840
3841 if (last.kind != TARGET_WAITKIND_EXECD)
3842 return 0;
3843
3844 if (ptid_get_pid (last_ptid) != pid)
3845 return 0;
3846
3847 *execd_pathname = xstrdup (last.value.execd_pathname);
3848 return 1;
3849}
3850
ca6724c1
KB
3851/* Oft used ptids */
3852ptid_t null_ptid;
3853ptid_t minus_one_ptid;
3854
3855/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 3856
ca6724c1
KB
3857ptid_t
3858ptid_build (int pid, long lwp, long tid)
3859{
3860 ptid_t ptid;
3861
3862 ptid.pid = pid;
3863 ptid.lwp = lwp;
3864 ptid.tid = tid;
3865 return ptid;
3866}
3867
3868/* Create a ptid from just a pid. */
3869
3870ptid_t
3871pid_to_ptid (int pid)
3872{
3873 return ptid_build (pid, 0, 0);
3874}
3875
3876/* Fetch the pid (process id) component from a ptid. */
3877
3878int
3879ptid_get_pid (ptid_t ptid)
3880{
3881 return ptid.pid;
3882}
3883
3884/* Fetch the lwp (lightweight process) component from a ptid. */
3885
3886long
3887ptid_get_lwp (ptid_t ptid)
3888{
3889 return ptid.lwp;
3890}
3891
3892/* Fetch the tid (thread id) component from a ptid. */
3893
3894long
3895ptid_get_tid (ptid_t ptid)
3896{
3897 return ptid.tid;
3898}
3899
3900/* ptid_equal() is used to test equality of two ptids. */
3901
3902int
3903ptid_equal (ptid_t ptid1, ptid_t ptid2)
3904{
3905 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 3906 && ptid1.tid == ptid2.tid);
ca6724c1
KB
3907}
3908
3909/* restore_inferior_ptid() will be used by the cleanup machinery
3910 to restore the inferior_ptid value saved in a call to
3911 save_inferior_ptid(). */
ce696e05
KB
3912
3913static void
3914restore_inferior_ptid (void *arg)
3915{
3916 ptid_t *saved_ptid_ptr = arg;
3917 inferior_ptid = *saved_ptid_ptr;
3918 xfree (arg);
3919}
3920
3921/* Save the value of inferior_ptid so that it may be restored by a
3922 later call to do_cleanups(). Returns the struct cleanup pointer
3923 needed for later doing the cleanup. */
3924
3925struct cleanup *
3926save_inferior_ptid (void)
3927{
3928 ptid_t *saved_ptid_ptr;
3929
3930 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3931 *saved_ptid_ptr = inferior_ptid;
3932 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3933}
c5aa993b 3934\f
488f131b 3935
7a292a7a 3936static void
96baa820 3937build_infrun (void)
7a292a7a 3938{
72cec141 3939 stop_registers = regcache_xmalloc (current_gdbarch);
7a292a7a 3940}
c906108c 3941
c906108c 3942void
96baa820 3943_initialize_infrun (void)
c906108c 3944{
52f0bd74
AC
3945 int i;
3946 int numsigs;
c906108c
SS
3947 struct cmd_list_element *c;
3948
046a4708
AC
3949 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3950 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
0f71a2f6 3951
1bedd215
AC
3952 add_info ("signals", signals_info, _("\
3953What debugger does when program gets various signals.\n\
3954Specify a signal as argument to print info on that signal only."));
c906108c
SS
3955 add_info_alias ("handle", "signals", 0);
3956
1bedd215
AC
3957 add_com ("handle", class_run, handle_command, _("\
3958Specify how to handle a signal.\n\
c906108c
SS
3959Args are signals and actions to apply to those signals.\n\
3960Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3961from 1-15 are allowed for compatibility with old versions of GDB.\n\
3962Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3963The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
3964used by the debugger, typically SIGTRAP and SIGINT.\n\
3965Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
3966\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3967Stop means reenter debugger if this signal happens (implies print).\n\
3968Print means print a message if this signal happens.\n\
3969Pass means let program see this signal; otherwise program doesn't know.\n\
3970Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 3971Pass and Stop may be combined."));
c906108c
SS
3972 if (xdb_commands)
3973 {
1bedd215
AC
3974 add_com ("lz", class_info, signals_info, _("\
3975What debugger does when program gets various signals.\n\
3976Specify a signal as argument to print info on that signal only."));
3977 add_com ("z", class_run, xdb_handle_command, _("\
3978Specify how to handle a signal.\n\
c906108c
SS
3979Args are signals and actions to apply to those signals.\n\
3980Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3981from 1-15 are allowed for compatibility with old versions of GDB.\n\
3982Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3983The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
3984used by the debugger, typically SIGTRAP and SIGINT.\n\
3985Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
3986\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3987nopass), \"Q\" (noprint)\n\
3988Stop means reenter debugger if this signal happens (implies print).\n\
3989Print means print a message if this signal happens.\n\
3990Pass means let program see this signal; otherwise program doesn't know.\n\
3991Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 3992Pass and Stop may be combined."));
c906108c
SS
3993 }
3994
3995 if (!dbx_commands)
1a966eab
AC
3996 stop_command = add_cmd ("stop", class_obscure,
3997 not_just_help_class_command, _("\
3998There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 3999This allows you to set a list of commands to be run each time execution\n\
1a966eab 4000of the program stops."), &cmdlist);
c906108c 4001
85c07804
AC
4002 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
4003Set inferior debugging."), _("\
4004Show inferior debugging."), _("\
4005When non-zero, inferior specific debugging is enabled."),
4006 NULL,
920d2a44 4007 show_debug_infrun,
85c07804 4008 &setdebuglist, &showdebuglist);
527159b7 4009
c906108c 4010 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 4011 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
4012 signal_print = (unsigned char *)
4013 xmalloc (sizeof (signal_print[0]) * numsigs);
4014 signal_program = (unsigned char *)
4015 xmalloc (sizeof (signal_program[0]) * numsigs);
4016 for (i = 0; i < numsigs; i++)
4017 {
4018 signal_stop[i] = 1;
4019 signal_print[i] = 1;
4020 signal_program[i] = 1;
4021 }
4022
4023 /* Signals caused by debugger's own actions
4024 should not be given to the program afterwards. */
4025 signal_program[TARGET_SIGNAL_TRAP] = 0;
4026 signal_program[TARGET_SIGNAL_INT] = 0;
4027
4028 /* Signals that are not errors should not normally enter the debugger. */
4029 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4030 signal_print[TARGET_SIGNAL_ALRM] = 0;
4031 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4032 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4033 signal_stop[TARGET_SIGNAL_PROF] = 0;
4034 signal_print[TARGET_SIGNAL_PROF] = 0;
4035 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4036 signal_print[TARGET_SIGNAL_CHLD] = 0;
4037 signal_stop[TARGET_SIGNAL_IO] = 0;
4038 signal_print[TARGET_SIGNAL_IO] = 0;
4039 signal_stop[TARGET_SIGNAL_POLL] = 0;
4040 signal_print[TARGET_SIGNAL_POLL] = 0;
4041 signal_stop[TARGET_SIGNAL_URG] = 0;
4042 signal_print[TARGET_SIGNAL_URG] = 0;
4043 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4044 signal_print[TARGET_SIGNAL_WINCH] = 0;
4045
cd0fc7c3
SS
4046 /* These signals are used internally by user-level thread
4047 implementations. (See signal(5) on Solaris.) Like the above
4048 signals, a healthy program receives and handles them as part of
4049 its normal operation. */
4050 signal_stop[TARGET_SIGNAL_LWP] = 0;
4051 signal_print[TARGET_SIGNAL_LWP] = 0;
4052 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4053 signal_print[TARGET_SIGNAL_WAITING] = 0;
4054 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4055 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4056
85c07804
AC
4057 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4058 &stop_on_solib_events, _("\
4059Set stopping for shared library events."), _("\
4060Show stopping for shared library events."), _("\
c906108c
SS
4061If nonzero, gdb will give control to the user when the dynamic linker\n\
4062notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
4063to the user would be loading/unloading of a new library."),
4064 NULL,
920d2a44 4065 show_stop_on_solib_events,
85c07804 4066 &setlist, &showlist);
c906108c 4067
7ab04401
AC
4068 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4069 follow_fork_mode_kind_names,
4070 &follow_fork_mode_string, _("\
4071Set debugger response to a program call of fork or vfork."), _("\
4072Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
4073A fork or vfork creates a new process. follow-fork-mode can be:\n\
4074 parent - the original process is debugged after a fork\n\
4075 child - the new process is debugged after a fork\n\
ea1dd7bc 4076The unfollowed process will continue to run.\n\
7ab04401
AC
4077By default, the debugger will follow the parent process."),
4078 NULL,
920d2a44 4079 show_follow_fork_mode_string,
7ab04401
AC
4080 &setlist, &showlist);
4081
4082 add_setshow_enum_cmd ("scheduler-locking", class_run,
4083 scheduler_enums, &scheduler_mode, _("\
4084Set mode for locking scheduler during execution."), _("\
4085Show mode for locking scheduler during execution."), _("\
c906108c
SS
4086off == no locking (threads may preempt at any time)\n\
4087on == full locking (no thread except the current thread may run)\n\
4088step == scheduler locked during every single-step operation.\n\
4089 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
4090 Other threads may run while stepping over a function call ('next')."),
4091 set_schedlock_func, /* traps on target vector */
920d2a44 4092 show_scheduler_mode,
7ab04401 4093 &setlist, &showlist);
5fbbeb29 4094
5bf193a2
AC
4095 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4096Set mode of the step operation."), _("\
4097Show mode of the step operation."), _("\
4098When set, doing a step over a function without debug line information\n\
4099will stop at the first instruction of that function. Otherwise, the\n\
4100function is skipped and the step command stops at a different source line."),
4101 NULL,
920d2a44 4102 show_step_stop_if_no_debug,
5bf193a2 4103 &setlist, &showlist);
ca6724c1
KB
4104
4105 /* ptid initializations */
4106 null_ptid = ptid_build (0, 0, 0);
4107 minus_one_ptid = ptid_build (-1, 0, 0);
4108 inferior_ptid = null_ptid;
4109 target_last_wait_ptid = minus_one_ptid;
c906108c 4110}
This page took 0.83925 seconds and 4 git commands to generate.