Fix stdin ending up not registered after a Quit
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
61baf725 4 Copyright (C) 1986-2017 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
06600e06 41#include "observer.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
ff862be4 63#include "solist.h"
372316f1 64#include "event-loop.h"
243a9253 65#include "thread-fsm.h"
8d297bbf 66#include "common/enum-flags.h"
5ed8105e
PA
67#include "progspace-and-thread.h"
68#include "common/gdb_optional.h"
46a62268 69#include "arch-utils.h"
c906108c
SS
70
71/* Prototypes for local functions */
72
2ea28649 73static void sig_print_info (enum gdb_signal);
c906108c 74
96baa820 75static void sig_print_header (void);
c906108c 76
74b7792f 77static void resume_cleanups (void *);
c906108c 78
4ef3f3be 79static int follow_fork (void);
96baa820 80
d83ad864
DB
81static int follow_fork_inferior (int follow_child, int detach_fork);
82
83static void follow_inferior_reset_breakpoints (void);
84
a289b8f6
JK
85static int currently_stepping (struct thread_info *tp);
86
e58b0e63
PA
87void nullify_last_target_wait_ptid (void);
88
2c03e5be 89static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
90
91static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
92
2484c66b
UW
93static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
94
8550d3b3
YQ
95static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
96
372316f1
PA
97/* Asynchronous signal handler registered as event loop source for
98 when we have pending events ready to be passed to the core. */
99static struct async_event_handler *infrun_async_inferior_event_token;
100
101/* Stores whether infrun_async was previously enabled or disabled.
102 Starts off as -1, indicating "never enabled/disabled". */
103static int infrun_is_async = -1;
104
105/* See infrun.h. */
106
107void
108infrun_async (int enable)
109{
110 if (infrun_is_async != enable)
111 {
112 infrun_is_async = enable;
113
114 if (debug_infrun)
115 fprintf_unfiltered (gdb_stdlog,
116 "infrun: infrun_async(%d)\n",
117 enable);
118
119 if (enable)
120 mark_async_event_handler (infrun_async_inferior_event_token);
121 else
122 clear_async_event_handler (infrun_async_inferior_event_token);
123 }
124}
125
0b333c5e
PA
126/* See infrun.h. */
127
128void
129mark_infrun_async_event_handler (void)
130{
131 mark_async_event_handler (infrun_async_inferior_event_token);
132}
133
5fbbeb29
CF
134/* When set, stop the 'step' command if we enter a function which has
135 no line number information. The normal behavior is that we step
136 over such function. */
137int step_stop_if_no_debug = 0;
920d2a44
AC
138static void
139show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
140 struct cmd_list_element *c, const char *value)
141{
142 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
143}
5fbbeb29 144
b9f437de
PA
145/* proceed and normal_stop use this to notify the user when the
146 inferior stopped in a different thread than it had been running
147 in. */
96baa820 148
39f77062 149static ptid_t previous_inferior_ptid;
7a292a7a 150
07107ca6
LM
151/* If set (default for legacy reasons), when following a fork, GDB
152 will detach from one of the fork branches, child or parent.
153 Exactly which branch is detached depends on 'set follow-fork-mode'
154 setting. */
155
156static int detach_fork = 1;
6c95b8df 157
237fc4c9
PA
158int debug_displaced = 0;
159static void
160show_debug_displaced (struct ui_file *file, int from_tty,
161 struct cmd_list_element *c, const char *value)
162{
163 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
164}
165
ccce17b0 166unsigned int debug_infrun = 0;
920d2a44
AC
167static void
168show_debug_infrun (struct ui_file *file, int from_tty,
169 struct cmd_list_element *c, const char *value)
170{
171 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
172}
527159b7 173
03583c20
UW
174
175/* Support for disabling address space randomization. */
176
177int disable_randomization = 1;
178
179static void
180show_disable_randomization (struct ui_file *file, int from_tty,
181 struct cmd_list_element *c, const char *value)
182{
183 if (target_supports_disable_randomization ())
184 fprintf_filtered (file,
185 _("Disabling randomization of debuggee's "
186 "virtual address space is %s.\n"),
187 value);
188 else
189 fputs_filtered (_("Disabling randomization of debuggee's "
190 "virtual address space is unsupported on\n"
191 "this platform.\n"), file);
192}
193
194static void
eb4c3f4a 195set_disable_randomization (const char *args, int from_tty,
03583c20
UW
196 struct cmd_list_element *c)
197{
198 if (!target_supports_disable_randomization ())
199 error (_("Disabling randomization of debuggee's "
200 "virtual address space is unsupported on\n"
201 "this platform."));
202}
203
d32dc48e
PA
204/* User interface for non-stop mode. */
205
206int non_stop = 0;
207static int non_stop_1 = 0;
208
209static void
eb4c3f4a 210set_non_stop (const char *args, int from_tty,
d32dc48e
PA
211 struct cmd_list_element *c)
212{
213 if (target_has_execution)
214 {
215 non_stop_1 = non_stop;
216 error (_("Cannot change this setting while the inferior is running."));
217 }
218
219 non_stop = non_stop_1;
220}
221
222static void
223show_non_stop (struct ui_file *file, int from_tty,
224 struct cmd_list_element *c, const char *value)
225{
226 fprintf_filtered (file,
227 _("Controlling the inferior in non-stop mode is %s.\n"),
228 value);
229}
230
d914c394
SS
231/* "Observer mode" is somewhat like a more extreme version of
232 non-stop, in which all GDB operations that might affect the
233 target's execution have been disabled. */
234
d914c394
SS
235int observer_mode = 0;
236static int observer_mode_1 = 0;
237
238static void
eb4c3f4a 239set_observer_mode (const char *args, int from_tty,
d914c394
SS
240 struct cmd_list_element *c)
241{
d914c394
SS
242 if (target_has_execution)
243 {
244 observer_mode_1 = observer_mode;
245 error (_("Cannot change this setting while the inferior is running."));
246 }
247
248 observer_mode = observer_mode_1;
249
250 may_write_registers = !observer_mode;
251 may_write_memory = !observer_mode;
252 may_insert_breakpoints = !observer_mode;
253 may_insert_tracepoints = !observer_mode;
254 /* We can insert fast tracepoints in or out of observer mode,
255 but enable them if we're going into this mode. */
256 if (observer_mode)
257 may_insert_fast_tracepoints = 1;
258 may_stop = !observer_mode;
259 update_target_permissions ();
260
261 /* Going *into* observer mode we must force non-stop, then
262 going out we leave it that way. */
263 if (observer_mode)
264 {
d914c394
SS
265 pagination_enabled = 0;
266 non_stop = non_stop_1 = 1;
267 }
268
269 if (from_tty)
270 printf_filtered (_("Observer mode is now %s.\n"),
271 (observer_mode ? "on" : "off"));
272}
273
274static void
275show_observer_mode (struct ui_file *file, int from_tty,
276 struct cmd_list_element *c, const char *value)
277{
278 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
279}
280
281/* This updates the value of observer mode based on changes in
282 permissions. Note that we are deliberately ignoring the values of
283 may-write-registers and may-write-memory, since the user may have
284 reason to enable these during a session, for instance to turn on a
285 debugging-related global. */
286
287void
288update_observer_mode (void)
289{
290 int newval;
291
292 newval = (!may_insert_breakpoints
293 && !may_insert_tracepoints
294 && may_insert_fast_tracepoints
295 && !may_stop
296 && non_stop);
297
298 /* Let the user know if things change. */
299 if (newval != observer_mode)
300 printf_filtered (_("Observer mode is now %s.\n"),
301 (newval ? "on" : "off"));
302
303 observer_mode = observer_mode_1 = newval;
304}
c2c6d25f 305
c906108c
SS
306/* Tables of how to react to signals; the user sets them. */
307
308static unsigned char *signal_stop;
309static unsigned char *signal_print;
310static unsigned char *signal_program;
311
ab04a2af
TT
312/* Table of signals that are registered with "catch signal". A
313 non-zero entry indicates that the signal is caught by some "catch
314 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
315 signals. */
316static unsigned char *signal_catch;
317
2455069d
UW
318/* Table of signals that the target may silently handle.
319 This is automatically determined from the flags above,
320 and simply cached here. */
321static unsigned char *signal_pass;
322
c906108c
SS
323#define SET_SIGS(nsigs,sigs,flags) \
324 do { \
325 int signum = (nsigs); \
326 while (signum-- > 0) \
327 if ((sigs)[signum]) \
328 (flags)[signum] = 1; \
329 } while (0)
330
331#define UNSET_SIGS(nsigs,sigs,flags) \
332 do { \
333 int signum = (nsigs); \
334 while (signum-- > 0) \
335 if ((sigs)[signum]) \
336 (flags)[signum] = 0; \
337 } while (0)
338
9b224c5e
PA
339/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
340 this function is to avoid exporting `signal_program'. */
341
342void
343update_signals_program_target (void)
344{
a493e3e2 345 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
346}
347
1777feb0 348/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 349
edb3359d 350#define RESUME_ALL minus_one_ptid
c906108c
SS
351
352/* Command list pointer for the "stop" placeholder. */
353
354static struct cmd_list_element *stop_command;
355
c906108c
SS
356/* Nonzero if we want to give control to the user when we're notified
357 of shared library events by the dynamic linker. */
628fe4e4 358int stop_on_solib_events;
f9e14852
GB
359
360/* Enable or disable optional shared library event breakpoints
361 as appropriate when the above flag is changed. */
362
363static void
eb4c3f4a
TT
364set_stop_on_solib_events (const char *args,
365 int from_tty, struct cmd_list_element *c)
f9e14852
GB
366{
367 update_solib_breakpoints ();
368}
369
920d2a44
AC
370static void
371show_stop_on_solib_events (struct ui_file *file, int from_tty,
372 struct cmd_list_element *c, const char *value)
373{
374 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
375 value);
376}
c906108c 377
c906108c
SS
378/* Nonzero after stop if current stack frame should be printed. */
379
380static int stop_print_frame;
381
e02bc4cc 382/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
383 returned by target_wait()/deprecated_target_wait_hook(). This
384 information is returned by get_last_target_status(). */
39f77062 385static ptid_t target_last_wait_ptid;
e02bc4cc
DS
386static struct target_waitstatus target_last_waitstatus;
387
0d1e5fa7
PA
388static void context_switch (ptid_t ptid);
389
4e1c45ea 390void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 391
53904c9e
AC
392static const char follow_fork_mode_child[] = "child";
393static const char follow_fork_mode_parent[] = "parent";
394
40478521 395static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
396 follow_fork_mode_child,
397 follow_fork_mode_parent,
398 NULL
ef346e04 399};
c906108c 400
53904c9e 401static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
402static void
403show_follow_fork_mode_string (struct ui_file *file, int from_tty,
404 struct cmd_list_element *c, const char *value)
405{
3e43a32a
MS
406 fprintf_filtered (file,
407 _("Debugger response to a program "
408 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
409 value);
410}
c906108c
SS
411\f
412
d83ad864
DB
413/* Handle changes to the inferior list based on the type of fork,
414 which process is being followed, and whether the other process
415 should be detached. On entry inferior_ptid must be the ptid of
416 the fork parent. At return inferior_ptid is the ptid of the
417 followed inferior. */
418
419static int
420follow_fork_inferior (int follow_child, int detach_fork)
421{
422 int has_vforked;
79639e11 423 ptid_t parent_ptid, child_ptid;
d83ad864
DB
424
425 has_vforked = (inferior_thread ()->pending_follow.kind
426 == TARGET_WAITKIND_VFORKED);
79639e11
PA
427 parent_ptid = inferior_ptid;
428 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
429
430 if (has_vforked
431 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 432 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
433 && !(follow_child || detach_fork || sched_multi))
434 {
435 /* The parent stays blocked inside the vfork syscall until the
436 child execs or exits. If we don't let the child run, then
437 the parent stays blocked. If we're telling the parent to run
438 in the foreground, the user will not be able to ctrl-c to get
439 back the terminal, effectively hanging the debug session. */
440 fprintf_filtered (gdb_stderr, _("\
441Can not resume the parent process over vfork in the foreground while\n\
442holding the child stopped. Try \"set detach-on-fork\" or \
443\"set schedule-multiple\".\n"));
444 /* FIXME output string > 80 columns. */
445 return 1;
446 }
447
448 if (!follow_child)
449 {
450 /* Detach new forked process? */
451 if (detach_fork)
452 {
d83ad864
DB
453 /* Before detaching from the child, remove all breakpoints
454 from it. If we forked, then this has already been taken
455 care of by infrun.c. If we vforked however, any
456 breakpoint inserted in the parent is visible in the
457 child, even those added while stopped in a vfork
458 catchpoint. This will remove the breakpoints from the
459 parent also, but they'll be reinserted below. */
460 if (has_vforked)
461 {
462 /* Keep breakpoints list in sync. */
463 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
464 }
465
466 if (info_verbose || debug_infrun)
467 {
8dd06f7a
DB
468 /* Ensure that we have a process ptid. */
469 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
470
223ffa71 471 target_terminal::ours_for_output ();
d83ad864 472 fprintf_filtered (gdb_stdlog,
79639e11 473 _("Detaching after %s from child %s.\n"),
6f259a23 474 has_vforked ? "vfork" : "fork",
8dd06f7a 475 target_pid_to_str (process_ptid));
d83ad864
DB
476 }
477 }
478 else
479 {
480 struct inferior *parent_inf, *child_inf;
d83ad864
DB
481
482 /* Add process to GDB's tables. */
79639e11 483 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
484
485 parent_inf = current_inferior ();
486 child_inf->attach_flag = parent_inf->attach_flag;
487 copy_terminal_info (child_inf, parent_inf);
488 child_inf->gdbarch = parent_inf->gdbarch;
489 copy_inferior_target_desc_info (child_inf, parent_inf);
490
5ed8105e 491 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 492
79639e11 493 inferior_ptid = child_ptid;
d83ad864 494 add_thread (inferior_ptid);
2a00d7ce 495 set_current_inferior (child_inf);
d83ad864
DB
496 child_inf->symfile_flags = SYMFILE_NO_READ;
497
498 /* If this is a vfork child, then the address-space is
499 shared with the parent. */
500 if (has_vforked)
501 {
502 child_inf->pspace = parent_inf->pspace;
503 child_inf->aspace = parent_inf->aspace;
504
505 /* The parent will be frozen until the child is done
506 with the shared region. Keep track of the
507 parent. */
508 child_inf->vfork_parent = parent_inf;
509 child_inf->pending_detach = 0;
510 parent_inf->vfork_child = child_inf;
511 parent_inf->pending_detach = 0;
512 }
513 else
514 {
515 child_inf->aspace = new_address_space ();
516 child_inf->pspace = add_program_space (child_inf->aspace);
517 child_inf->removable = 1;
518 set_current_program_space (child_inf->pspace);
519 clone_program_space (child_inf->pspace, parent_inf->pspace);
520
521 /* Let the shared library layer (e.g., solib-svr4) learn
522 about this new process, relocate the cloned exec, pull
523 in shared libraries, and install the solib event
524 breakpoint. If a "cloned-VM" event was propagated
525 better throughout the core, this wouldn't be
526 required. */
527 solib_create_inferior_hook (0);
528 }
d83ad864
DB
529 }
530
531 if (has_vforked)
532 {
533 struct inferior *parent_inf;
534
535 parent_inf = current_inferior ();
536
537 /* If we detached from the child, then we have to be careful
538 to not insert breakpoints in the parent until the child
539 is done with the shared memory region. However, if we're
540 staying attached to the child, then we can and should
541 insert breakpoints, so that we can debug it. A
542 subsequent child exec or exit is enough to know when does
543 the child stops using the parent's address space. */
544 parent_inf->waiting_for_vfork_done = detach_fork;
545 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
546 }
547 }
548 else
549 {
550 /* Follow the child. */
551 struct inferior *parent_inf, *child_inf;
552 struct program_space *parent_pspace;
553
554 if (info_verbose || debug_infrun)
555 {
223ffa71 556 target_terminal::ours_for_output ();
6f259a23 557 fprintf_filtered (gdb_stdlog,
79639e11
PA
558 _("Attaching after %s %s to child %s.\n"),
559 target_pid_to_str (parent_ptid),
6f259a23 560 has_vforked ? "vfork" : "fork",
79639e11 561 target_pid_to_str (child_ptid));
d83ad864
DB
562 }
563
564 /* Add the new inferior first, so that the target_detach below
565 doesn't unpush the target. */
566
79639e11 567 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
568
569 parent_inf = current_inferior ();
570 child_inf->attach_flag = parent_inf->attach_flag;
571 copy_terminal_info (child_inf, parent_inf);
572 child_inf->gdbarch = parent_inf->gdbarch;
573 copy_inferior_target_desc_info (child_inf, parent_inf);
574
575 parent_pspace = parent_inf->pspace;
576
577 /* If we're vforking, we want to hold on to the parent until the
578 child exits or execs. At child exec or exit time we can
579 remove the old breakpoints from the parent and detach or
580 resume debugging it. Otherwise, detach the parent now; we'll
581 want to reuse it's program/address spaces, but we can't set
582 them to the child before removing breakpoints from the
583 parent, otherwise, the breakpoints module could decide to
584 remove breakpoints from the wrong process (since they'd be
585 assigned to the same address space). */
586
587 if (has_vforked)
588 {
589 gdb_assert (child_inf->vfork_parent == NULL);
590 gdb_assert (parent_inf->vfork_child == NULL);
591 child_inf->vfork_parent = parent_inf;
592 child_inf->pending_detach = 0;
593 parent_inf->vfork_child = child_inf;
594 parent_inf->pending_detach = detach_fork;
595 parent_inf->waiting_for_vfork_done = 0;
596 }
597 else if (detach_fork)
6f259a23
DB
598 {
599 if (info_verbose || debug_infrun)
600 {
8dd06f7a
DB
601 /* Ensure that we have a process ptid. */
602 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
603
223ffa71 604 target_terminal::ours_for_output ();
6f259a23
DB
605 fprintf_filtered (gdb_stdlog,
606 _("Detaching after fork from "
79639e11 607 "child %s.\n"),
8dd06f7a 608 target_pid_to_str (process_ptid));
6f259a23
DB
609 }
610
611 target_detach (NULL, 0);
612 }
d83ad864
DB
613
614 /* Note that the detach above makes PARENT_INF dangling. */
615
616 /* Add the child thread to the appropriate lists, and switch to
617 this new thread, before cloning the program space, and
618 informing the solib layer about this new process. */
619
79639e11 620 inferior_ptid = child_ptid;
d83ad864 621 add_thread (inferior_ptid);
2a00d7ce 622 set_current_inferior (child_inf);
d83ad864
DB
623
624 /* If this is a vfork child, then the address-space is shared
625 with the parent. If we detached from the parent, then we can
626 reuse the parent's program/address spaces. */
627 if (has_vforked || detach_fork)
628 {
629 child_inf->pspace = parent_pspace;
630 child_inf->aspace = child_inf->pspace->aspace;
631 }
632 else
633 {
634 child_inf->aspace = new_address_space ();
635 child_inf->pspace = add_program_space (child_inf->aspace);
636 child_inf->removable = 1;
637 child_inf->symfile_flags = SYMFILE_NO_READ;
638 set_current_program_space (child_inf->pspace);
639 clone_program_space (child_inf->pspace, parent_pspace);
640
641 /* Let the shared library layer (e.g., solib-svr4) learn
642 about this new process, relocate the cloned exec, pull in
643 shared libraries, and install the solib event breakpoint.
644 If a "cloned-VM" event was propagated better throughout
645 the core, this wouldn't be required. */
646 solib_create_inferior_hook (0);
647 }
648 }
649
650 return target_follow_fork (follow_child, detach_fork);
651}
652
e58b0e63
PA
653/* Tell the target to follow the fork we're stopped at. Returns true
654 if the inferior should be resumed; false, if the target for some
655 reason decided it's best not to resume. */
656
6604731b 657static int
4ef3f3be 658follow_fork (void)
c906108c 659{
ea1dd7bc 660 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
661 int should_resume = 1;
662 struct thread_info *tp;
663
664 /* Copy user stepping state to the new inferior thread. FIXME: the
665 followed fork child thread should have a copy of most of the
4e3990f4
DE
666 parent thread structure's run control related fields, not just these.
667 Initialized to avoid "may be used uninitialized" warnings from gcc. */
668 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 669 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
670 CORE_ADDR step_range_start = 0;
671 CORE_ADDR step_range_end = 0;
672 struct frame_id step_frame_id = { 0 };
8980e177 673 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
674
675 if (!non_stop)
676 {
677 ptid_t wait_ptid;
678 struct target_waitstatus wait_status;
679
680 /* Get the last target status returned by target_wait(). */
681 get_last_target_status (&wait_ptid, &wait_status);
682
683 /* If not stopped at a fork event, then there's nothing else to
684 do. */
685 if (wait_status.kind != TARGET_WAITKIND_FORKED
686 && wait_status.kind != TARGET_WAITKIND_VFORKED)
687 return 1;
688
689 /* Check if we switched over from WAIT_PTID, since the event was
690 reported. */
691 if (!ptid_equal (wait_ptid, minus_one_ptid)
692 && !ptid_equal (inferior_ptid, wait_ptid))
693 {
694 /* We did. Switch back to WAIT_PTID thread, to tell the
695 target to follow it (in either direction). We'll
696 afterwards refuse to resume, and inform the user what
697 happened. */
698 switch_to_thread (wait_ptid);
699 should_resume = 0;
700 }
701 }
702
703 tp = inferior_thread ();
704
705 /* If there were any forks/vforks that were caught and are now to be
706 followed, then do so now. */
707 switch (tp->pending_follow.kind)
708 {
709 case TARGET_WAITKIND_FORKED:
710 case TARGET_WAITKIND_VFORKED:
711 {
712 ptid_t parent, child;
713
714 /* If the user did a next/step, etc, over a fork call,
715 preserve the stepping state in the fork child. */
716 if (follow_child && should_resume)
717 {
8358c15c
JK
718 step_resume_breakpoint = clone_momentary_breakpoint
719 (tp->control.step_resume_breakpoint);
16c381f0
JK
720 step_range_start = tp->control.step_range_start;
721 step_range_end = tp->control.step_range_end;
722 step_frame_id = tp->control.step_frame_id;
186c406b
TT
723 exception_resume_breakpoint
724 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 725 thread_fsm = tp->thread_fsm;
e58b0e63
PA
726
727 /* For now, delete the parent's sr breakpoint, otherwise,
728 parent/child sr breakpoints are considered duplicates,
729 and the child version will not be installed. Remove
730 this when the breakpoints module becomes aware of
731 inferiors and address spaces. */
732 delete_step_resume_breakpoint (tp);
16c381f0
JK
733 tp->control.step_range_start = 0;
734 tp->control.step_range_end = 0;
735 tp->control.step_frame_id = null_frame_id;
186c406b 736 delete_exception_resume_breakpoint (tp);
8980e177 737 tp->thread_fsm = NULL;
e58b0e63
PA
738 }
739
740 parent = inferior_ptid;
741 child = tp->pending_follow.value.related_pid;
742
d83ad864
DB
743 /* Set up inferior(s) as specified by the caller, and tell the
744 target to do whatever is necessary to follow either parent
745 or child. */
746 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
747 {
748 /* Target refused to follow, or there's some other reason
749 we shouldn't resume. */
750 should_resume = 0;
751 }
752 else
753 {
754 /* This pending follow fork event is now handled, one way
755 or another. The previous selected thread may be gone
756 from the lists by now, but if it is still around, need
757 to clear the pending follow request. */
e09875d4 758 tp = find_thread_ptid (parent);
e58b0e63
PA
759 if (tp)
760 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
761
762 /* This makes sure we don't try to apply the "Switched
763 over from WAIT_PID" logic above. */
764 nullify_last_target_wait_ptid ();
765
1777feb0 766 /* If we followed the child, switch to it... */
e58b0e63
PA
767 if (follow_child)
768 {
769 switch_to_thread (child);
770
771 /* ... and preserve the stepping state, in case the
772 user was stepping over the fork call. */
773 if (should_resume)
774 {
775 tp = inferior_thread ();
8358c15c
JK
776 tp->control.step_resume_breakpoint
777 = step_resume_breakpoint;
16c381f0
JK
778 tp->control.step_range_start = step_range_start;
779 tp->control.step_range_end = step_range_end;
780 tp->control.step_frame_id = step_frame_id;
186c406b
TT
781 tp->control.exception_resume_breakpoint
782 = exception_resume_breakpoint;
8980e177 783 tp->thread_fsm = thread_fsm;
e58b0e63
PA
784 }
785 else
786 {
787 /* If we get here, it was because we're trying to
788 resume from a fork catchpoint, but, the user
789 has switched threads away from the thread that
790 forked. In that case, the resume command
791 issued is most likely not applicable to the
792 child, so just warn, and refuse to resume. */
3e43a32a 793 warning (_("Not resuming: switched threads "
fd7dcb94 794 "before following fork child."));
e58b0e63
PA
795 }
796
797 /* Reset breakpoints in the child as appropriate. */
798 follow_inferior_reset_breakpoints ();
799 }
800 else
801 switch_to_thread (parent);
802 }
803 }
804 break;
805 case TARGET_WAITKIND_SPURIOUS:
806 /* Nothing to follow. */
807 break;
808 default:
809 internal_error (__FILE__, __LINE__,
810 "Unexpected pending_follow.kind %d\n",
811 tp->pending_follow.kind);
812 break;
813 }
c906108c 814
e58b0e63 815 return should_resume;
c906108c
SS
816}
817
d83ad864 818static void
6604731b 819follow_inferior_reset_breakpoints (void)
c906108c 820{
4e1c45ea
PA
821 struct thread_info *tp = inferior_thread ();
822
6604731b
DJ
823 /* Was there a step_resume breakpoint? (There was if the user
824 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
825 thread number. Cloned step_resume breakpoints are disabled on
826 creation, so enable it here now that it is associated with the
827 correct thread.
6604731b
DJ
828
829 step_resumes are a form of bp that are made to be per-thread.
830 Since we created the step_resume bp when the parent process
831 was being debugged, and now are switching to the child process,
832 from the breakpoint package's viewpoint, that's a switch of
833 "threads". We must update the bp's notion of which thread
834 it is for, or it'll be ignored when it triggers. */
835
8358c15c 836 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
837 {
838 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
839 tp->control.step_resume_breakpoint->loc->enabled = 1;
840 }
6604731b 841
a1aa2221 842 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 843 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
844 {
845 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
846 tp->control.exception_resume_breakpoint->loc->enabled = 1;
847 }
186c406b 848
6604731b
DJ
849 /* Reinsert all breakpoints in the child. The user may have set
850 breakpoints after catching the fork, in which case those
851 were never set in the child, but only in the parent. This makes
852 sure the inserted breakpoints match the breakpoint list. */
853
854 breakpoint_re_set ();
855 insert_breakpoints ();
c906108c 856}
c906108c 857
6c95b8df
PA
858/* The child has exited or execed: resume threads of the parent the
859 user wanted to be executing. */
860
861static int
862proceed_after_vfork_done (struct thread_info *thread,
863 void *arg)
864{
865 int pid = * (int *) arg;
866
867 if (ptid_get_pid (thread->ptid) == pid
868 && is_running (thread->ptid)
869 && !is_executing (thread->ptid)
870 && !thread->stop_requested
a493e3e2 871 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
872 {
873 if (debug_infrun)
874 fprintf_unfiltered (gdb_stdlog,
875 "infrun: resuming vfork parent thread %s\n",
876 target_pid_to_str (thread->ptid));
877
878 switch_to_thread (thread->ptid);
70509625 879 clear_proceed_status (0);
64ce06e4 880 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
881 }
882
883 return 0;
884}
885
5ed8105e
PA
886/* Save/restore inferior_ptid, current program space and current
887 inferior. Only use this if the current context points at an exited
888 inferior (and therefore there's no current thread to save). */
889class scoped_restore_exited_inferior
890{
891public:
892 scoped_restore_exited_inferior ()
893 : m_saved_ptid (&inferior_ptid)
894 {}
895
896private:
897 scoped_restore_tmpl<ptid_t> m_saved_ptid;
898 scoped_restore_current_program_space m_pspace;
899 scoped_restore_current_inferior m_inferior;
900};
901
6c95b8df
PA
902/* Called whenever we notice an exec or exit event, to handle
903 detaching or resuming a vfork parent. */
904
905static void
906handle_vfork_child_exec_or_exit (int exec)
907{
908 struct inferior *inf = current_inferior ();
909
910 if (inf->vfork_parent)
911 {
912 int resume_parent = -1;
913
914 /* This exec or exit marks the end of the shared memory region
915 between the parent and the child. If the user wanted to
916 detach from the parent, now is the time. */
917
918 if (inf->vfork_parent->pending_detach)
919 {
920 struct thread_info *tp;
6c95b8df
PA
921 struct program_space *pspace;
922 struct address_space *aspace;
923
1777feb0 924 /* follow-fork child, detach-on-fork on. */
6c95b8df 925
68c9da30
PA
926 inf->vfork_parent->pending_detach = 0;
927
5ed8105e
PA
928 gdb::optional<scoped_restore_exited_inferior>
929 maybe_restore_inferior;
930 gdb::optional<scoped_restore_current_pspace_and_thread>
931 maybe_restore_thread;
932
933 /* If we're handling a child exit, then inferior_ptid points
934 at the inferior's pid, not to a thread. */
f50f4e56 935 if (!exec)
5ed8105e 936 maybe_restore_inferior.emplace ();
f50f4e56 937 else
5ed8105e 938 maybe_restore_thread.emplace ();
6c95b8df
PA
939
940 /* We're letting loose of the parent. */
941 tp = any_live_thread_of_process (inf->vfork_parent->pid);
942 switch_to_thread (tp->ptid);
943
944 /* We're about to detach from the parent, which implicitly
945 removes breakpoints from its address space. There's a
946 catch here: we want to reuse the spaces for the child,
947 but, parent/child are still sharing the pspace at this
948 point, although the exec in reality makes the kernel give
949 the child a fresh set of new pages. The problem here is
950 that the breakpoints module being unaware of this, would
951 likely chose the child process to write to the parent
952 address space. Swapping the child temporarily away from
953 the spaces has the desired effect. Yes, this is "sort
954 of" a hack. */
955
956 pspace = inf->pspace;
957 aspace = inf->aspace;
958 inf->aspace = NULL;
959 inf->pspace = NULL;
960
961 if (debug_infrun || info_verbose)
962 {
223ffa71 963 target_terminal::ours_for_output ();
6c95b8df
PA
964
965 if (exec)
6f259a23
DB
966 {
967 fprintf_filtered (gdb_stdlog,
968 _("Detaching vfork parent process "
969 "%d after child exec.\n"),
970 inf->vfork_parent->pid);
971 }
6c95b8df 972 else
6f259a23
DB
973 {
974 fprintf_filtered (gdb_stdlog,
975 _("Detaching vfork parent process "
976 "%d after child exit.\n"),
977 inf->vfork_parent->pid);
978 }
6c95b8df
PA
979 }
980
981 target_detach (NULL, 0);
982
983 /* Put it back. */
984 inf->pspace = pspace;
985 inf->aspace = aspace;
6c95b8df
PA
986 }
987 else if (exec)
988 {
989 /* We're staying attached to the parent, so, really give the
990 child a new address space. */
991 inf->pspace = add_program_space (maybe_new_address_space ());
992 inf->aspace = inf->pspace->aspace;
993 inf->removable = 1;
994 set_current_program_space (inf->pspace);
995
996 resume_parent = inf->vfork_parent->pid;
997
998 /* Break the bonds. */
999 inf->vfork_parent->vfork_child = NULL;
1000 }
1001 else
1002 {
6c95b8df
PA
1003 struct program_space *pspace;
1004
1005 /* If this is a vfork child exiting, then the pspace and
1006 aspaces were shared with the parent. Since we're
1007 reporting the process exit, we'll be mourning all that is
1008 found in the address space, and switching to null_ptid,
1009 preparing to start a new inferior. But, since we don't
1010 want to clobber the parent's address/program spaces, we
1011 go ahead and create a new one for this exiting
1012 inferior. */
1013
5ed8105e
PA
1014 /* Switch to null_ptid while running clone_program_space, so
1015 that clone_program_space doesn't want to read the
1016 selected frame of a dead process. */
1017 scoped_restore restore_ptid
1018 = make_scoped_restore (&inferior_ptid, null_ptid);
6c95b8df
PA
1019
1020 /* This inferior is dead, so avoid giving the breakpoints
1021 module the option to write through to it (cloning a
1022 program space resets breakpoints). */
1023 inf->aspace = NULL;
1024 inf->pspace = NULL;
1025 pspace = add_program_space (maybe_new_address_space ());
1026 set_current_program_space (pspace);
1027 inf->removable = 1;
7dcd53a0 1028 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1029 clone_program_space (pspace, inf->vfork_parent->pspace);
1030 inf->pspace = pspace;
1031 inf->aspace = pspace->aspace;
1032
6c95b8df
PA
1033 resume_parent = inf->vfork_parent->pid;
1034 /* Break the bonds. */
1035 inf->vfork_parent->vfork_child = NULL;
1036 }
1037
1038 inf->vfork_parent = NULL;
1039
1040 gdb_assert (current_program_space == inf->pspace);
1041
1042 if (non_stop && resume_parent != -1)
1043 {
1044 /* If the user wanted the parent to be running, let it go
1045 free now. */
5ed8105e 1046 scoped_restore_current_thread restore_thread;
6c95b8df
PA
1047
1048 if (debug_infrun)
3e43a32a
MS
1049 fprintf_unfiltered (gdb_stdlog,
1050 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1051 resume_parent);
1052
1053 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1054 }
1055 }
1056}
1057
eb6c553b 1058/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1059
1060static const char follow_exec_mode_new[] = "new";
1061static const char follow_exec_mode_same[] = "same";
40478521 1062static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1063{
1064 follow_exec_mode_new,
1065 follow_exec_mode_same,
1066 NULL,
1067};
1068
1069static const char *follow_exec_mode_string = follow_exec_mode_same;
1070static void
1071show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1072 struct cmd_list_element *c, const char *value)
1073{
1074 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1075}
1076
ecf45d2c 1077/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1078
c906108c 1079static void
ecf45d2c 1080follow_exec (ptid_t ptid, char *exec_file_target)
c906108c 1081{
95e50b27 1082 struct thread_info *th, *tmp;
6c95b8df 1083 struct inferior *inf = current_inferior ();
95e50b27 1084 int pid = ptid_get_pid (ptid);
94585166 1085 ptid_t process_ptid;
ecf45d2c
SL
1086 char *exec_file_host;
1087 struct cleanup *old_chain;
7a292a7a 1088
c906108c
SS
1089 /* This is an exec event that we actually wish to pay attention to.
1090 Refresh our symbol table to the newly exec'd program, remove any
1091 momentary bp's, etc.
1092
1093 If there are breakpoints, they aren't really inserted now,
1094 since the exec() transformed our inferior into a fresh set
1095 of instructions.
1096
1097 We want to preserve symbolic breakpoints on the list, since
1098 we have hopes that they can be reset after the new a.out's
1099 symbol table is read.
1100
1101 However, any "raw" breakpoints must be removed from the list
1102 (e.g., the solib bp's), since their address is probably invalid
1103 now.
1104
1105 And, we DON'T want to call delete_breakpoints() here, since
1106 that may write the bp's "shadow contents" (the instruction
1107 value that was overwritten witha TRAP instruction). Since
1777feb0 1108 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1109
1110 mark_breakpoints_out ();
1111
95e50b27
PA
1112 /* The target reports the exec event to the main thread, even if
1113 some other thread does the exec, and even if the main thread was
1114 stopped or already gone. We may still have non-leader threads of
1115 the process on our list. E.g., on targets that don't have thread
1116 exit events (like remote); or on native Linux in non-stop mode if
1117 there were only two threads in the inferior and the non-leader
1118 one is the one that execs (and nothing forces an update of the
1119 thread list up to here). When debugging remotely, it's best to
1120 avoid extra traffic, when possible, so avoid syncing the thread
1121 list with the target, and instead go ahead and delete all threads
1122 of the process but one that reported the event. Note this must
1123 be done before calling update_breakpoints_after_exec, as
1124 otherwise clearing the threads' resources would reference stale
1125 thread breakpoints -- it may have been one of these threads that
1126 stepped across the exec. We could just clear their stepping
1127 states, but as long as we're iterating, might as well delete
1128 them. Deleting them now rather than at the next user-visible
1129 stop provides a nicer sequence of events for user and MI
1130 notifications. */
8a06aea7 1131 ALL_THREADS_SAFE (th, tmp)
95e50b27
PA
1132 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1133 delete_thread (th->ptid);
1134
1135 /* We also need to clear any left over stale state for the
1136 leader/event thread. E.g., if there was any step-resume
1137 breakpoint or similar, it's gone now. We cannot truly
1138 step-to-next statement through an exec(). */
1139 th = inferior_thread ();
8358c15c 1140 th->control.step_resume_breakpoint = NULL;
186c406b 1141 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1142 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1143 th->control.step_range_start = 0;
1144 th->control.step_range_end = 0;
c906108c 1145
95e50b27
PA
1146 /* The user may have had the main thread held stopped in the
1147 previous image (e.g., schedlock on, or non-stop). Release
1148 it now. */
a75724bc
PA
1149 th->stop_requested = 0;
1150
95e50b27
PA
1151 update_breakpoints_after_exec ();
1152
1777feb0 1153 /* What is this a.out's name? */
94585166 1154 process_ptid = pid_to_ptid (pid);
6c95b8df 1155 printf_unfiltered (_("%s is executing new program: %s\n"),
94585166 1156 target_pid_to_str (process_ptid),
ecf45d2c 1157 exec_file_target);
c906108c
SS
1158
1159 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1160 inferior has essentially been killed & reborn. */
7a292a7a 1161
c906108c 1162 gdb_flush (gdb_stdout);
6ca15a4b
PA
1163
1164 breakpoint_init_inferior (inf_execd);
e85a822c 1165
ecf45d2c
SL
1166 exec_file_host = exec_file_find (exec_file_target, NULL);
1167 old_chain = make_cleanup (xfree, exec_file_host);
ff862be4 1168
ecf45d2c
SL
1169 /* If we were unable to map the executable target pathname onto a host
1170 pathname, tell the user that. Otherwise GDB's subsequent behavior
1171 is confusing. Maybe it would even be better to stop at this point
1172 so that the user can specify a file manually before continuing. */
1173 if (exec_file_host == NULL)
1174 warning (_("Could not load symbols for executable %s.\n"
1175 "Do you need \"set sysroot\"?"),
1176 exec_file_target);
c906108c 1177
cce9b6bf
PA
1178 /* Reset the shared library package. This ensures that we get a
1179 shlib event when the child reaches "_start", at which point the
1180 dld will have had a chance to initialize the child. */
1181 /* Also, loading a symbol file below may trigger symbol lookups, and
1182 we don't want those to be satisfied by the libraries of the
1183 previous incarnation of this process. */
1184 no_shared_libraries (NULL, 0);
1185
6c95b8df
PA
1186 if (follow_exec_mode_string == follow_exec_mode_new)
1187 {
6c95b8df
PA
1188 /* The user wants to keep the old inferior and program spaces
1189 around. Create a new fresh one, and switch to it. */
1190
17d8546e
DB
1191 /* Do exit processing for the original inferior before adding
1192 the new inferior so we don't have two active inferiors with
1193 the same ptid, which can confuse find_inferior_ptid. */
1194 exit_inferior_num_silent (current_inferior ()->num);
1195
94585166
DB
1196 inf = add_inferior_with_spaces ();
1197 inf->pid = pid;
ecf45d2c 1198 target_follow_exec (inf, exec_file_target);
6c95b8df
PA
1199
1200 set_current_inferior (inf);
94585166 1201 set_current_program_space (inf->pspace);
6c95b8df 1202 }
9107fc8d
PA
1203 else
1204 {
1205 /* The old description may no longer be fit for the new image.
1206 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1207 old description; we'll read a new one below. No need to do
1208 this on "follow-exec-mode new", as the old inferior stays
1209 around (its description is later cleared/refetched on
1210 restart). */
1211 target_clear_description ();
1212 }
6c95b8df
PA
1213
1214 gdb_assert (current_program_space == inf->pspace);
1215
ecf45d2c
SL
1216 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1217 because the proper displacement for a PIE (Position Independent
1218 Executable) main symbol file will only be computed by
1219 solib_create_inferior_hook below. breakpoint_re_set would fail
1220 to insert the breakpoints with the zero displacement. */
1221 try_open_exec_file (exec_file_host, inf, SYMFILE_DEFER_BP_RESET);
c1e56572 1222
ecf45d2c 1223 do_cleanups (old_chain);
c906108c 1224
9107fc8d
PA
1225 /* If the target can specify a description, read it. Must do this
1226 after flipping to the new executable (because the target supplied
1227 description must be compatible with the executable's
1228 architecture, and the old executable may e.g., be 32-bit, while
1229 the new one 64-bit), and before anything involving memory or
1230 registers. */
1231 target_find_description ();
1232
bf93d7ba
SM
1233 /* The add_thread call ends up reading registers, so do it after updating the
1234 target description. */
1235 if (follow_exec_mode_string == follow_exec_mode_new)
1236 add_thread (ptid);
1237
268a4a75 1238 solib_create_inferior_hook (0);
c906108c 1239
4efc6507
DE
1240 jit_inferior_created_hook ();
1241
c1e56572
JK
1242 breakpoint_re_set ();
1243
c906108c
SS
1244 /* Reinsert all breakpoints. (Those which were symbolic have
1245 been reset to the proper address in the new a.out, thanks
1777feb0 1246 to symbol_file_command...). */
c906108c
SS
1247 insert_breakpoints ();
1248
1249 /* The next resume of this inferior should bring it to the shlib
1250 startup breakpoints. (If the user had also set bp's on
1251 "main" from the old (parent) process, then they'll auto-
1777feb0 1252 matically get reset there in the new process.). */
c906108c
SS
1253}
1254
c2829269
PA
1255/* The queue of threads that need to do a step-over operation to get
1256 past e.g., a breakpoint. What technique is used to step over the
1257 breakpoint/watchpoint does not matter -- all threads end up in the
1258 same queue, to maintain rough temporal order of execution, in order
1259 to avoid starvation, otherwise, we could e.g., find ourselves
1260 constantly stepping the same couple threads past their breakpoints
1261 over and over, if the single-step finish fast enough. */
1262struct thread_info *step_over_queue_head;
1263
6c4cfb24
PA
1264/* Bit flags indicating what the thread needs to step over. */
1265
8d297bbf 1266enum step_over_what_flag
6c4cfb24
PA
1267 {
1268 /* Step over a breakpoint. */
1269 STEP_OVER_BREAKPOINT = 1,
1270
1271 /* Step past a non-continuable watchpoint, in order to let the
1272 instruction execute so we can evaluate the watchpoint
1273 expression. */
1274 STEP_OVER_WATCHPOINT = 2
1275 };
8d297bbf 1276DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1277
963f9c80 1278/* Info about an instruction that is being stepped over. */
31e77af2
PA
1279
1280struct step_over_info
1281{
963f9c80
PA
1282 /* If we're stepping past a breakpoint, this is the address space
1283 and address of the instruction the breakpoint is set at. We'll
1284 skip inserting all breakpoints here. Valid iff ASPACE is
1285 non-NULL. */
8b86c959 1286 const address_space *aspace;
31e77af2 1287 CORE_ADDR address;
963f9c80
PA
1288
1289 /* The instruction being stepped over triggers a nonsteppable
1290 watchpoint. If true, we'll skip inserting watchpoints. */
1291 int nonsteppable_watchpoint_p;
21edc42f
YQ
1292
1293 /* The thread's global number. */
1294 int thread;
31e77af2
PA
1295};
1296
1297/* The step-over info of the location that is being stepped over.
1298
1299 Note that with async/breakpoint always-inserted mode, a user might
1300 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1301 being stepped over. As setting a new breakpoint inserts all
1302 breakpoints, we need to make sure the breakpoint being stepped over
1303 isn't inserted then. We do that by only clearing the step-over
1304 info when the step-over is actually finished (or aborted).
1305
1306 Presently GDB can only step over one breakpoint at any given time.
1307 Given threads that can't run code in the same address space as the
1308 breakpoint's can't really miss the breakpoint, GDB could be taught
1309 to step-over at most one breakpoint per address space (so this info
1310 could move to the address space object if/when GDB is extended).
1311 The set of breakpoints being stepped over will normally be much
1312 smaller than the set of all breakpoints, so a flag in the
1313 breakpoint location structure would be wasteful. A separate list
1314 also saves complexity and run-time, as otherwise we'd have to go
1315 through all breakpoint locations clearing their flag whenever we
1316 start a new sequence. Similar considerations weigh against storing
1317 this info in the thread object. Plus, not all step overs actually
1318 have breakpoint locations -- e.g., stepping past a single-step
1319 breakpoint, or stepping to complete a non-continuable
1320 watchpoint. */
1321static struct step_over_info step_over_info;
1322
1323/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1324 stepping over.
1325 N.B. We record the aspace and address now, instead of say just the thread,
1326 because when we need the info later the thread may be running. */
31e77af2
PA
1327
1328static void
8b86c959 1329set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1330 int nonsteppable_watchpoint_p,
1331 int thread)
31e77af2
PA
1332{
1333 step_over_info.aspace = aspace;
1334 step_over_info.address = address;
963f9c80 1335 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1336 step_over_info.thread = thread;
31e77af2
PA
1337}
1338
1339/* Called when we're not longer stepping over a breakpoint / an
1340 instruction, so all breakpoints are free to be (re)inserted. */
1341
1342static void
1343clear_step_over_info (void)
1344{
372316f1
PA
1345 if (debug_infrun)
1346 fprintf_unfiltered (gdb_stdlog,
1347 "infrun: clear_step_over_info\n");
31e77af2
PA
1348 step_over_info.aspace = NULL;
1349 step_over_info.address = 0;
963f9c80 1350 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1351 step_over_info.thread = -1;
31e77af2
PA
1352}
1353
7f89fd65 1354/* See infrun.h. */
31e77af2
PA
1355
1356int
1357stepping_past_instruction_at (struct address_space *aspace,
1358 CORE_ADDR address)
1359{
1360 return (step_over_info.aspace != NULL
1361 && breakpoint_address_match (aspace, address,
1362 step_over_info.aspace,
1363 step_over_info.address));
1364}
1365
963f9c80
PA
1366/* See infrun.h. */
1367
21edc42f
YQ
1368int
1369thread_is_stepping_over_breakpoint (int thread)
1370{
1371 return (step_over_info.thread != -1
1372 && thread == step_over_info.thread);
1373}
1374
1375/* See infrun.h. */
1376
963f9c80
PA
1377int
1378stepping_past_nonsteppable_watchpoint (void)
1379{
1380 return step_over_info.nonsteppable_watchpoint_p;
1381}
1382
6cc83d2a
PA
1383/* Returns true if step-over info is valid. */
1384
1385static int
1386step_over_info_valid_p (void)
1387{
963f9c80
PA
1388 return (step_over_info.aspace != NULL
1389 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1390}
1391
c906108c 1392\f
237fc4c9
PA
1393/* Displaced stepping. */
1394
1395/* In non-stop debugging mode, we must take special care to manage
1396 breakpoints properly; in particular, the traditional strategy for
1397 stepping a thread past a breakpoint it has hit is unsuitable.
1398 'Displaced stepping' is a tactic for stepping one thread past a
1399 breakpoint it has hit while ensuring that other threads running
1400 concurrently will hit the breakpoint as they should.
1401
1402 The traditional way to step a thread T off a breakpoint in a
1403 multi-threaded program in all-stop mode is as follows:
1404
1405 a0) Initially, all threads are stopped, and breakpoints are not
1406 inserted.
1407 a1) We single-step T, leaving breakpoints uninserted.
1408 a2) We insert breakpoints, and resume all threads.
1409
1410 In non-stop debugging, however, this strategy is unsuitable: we
1411 don't want to have to stop all threads in the system in order to
1412 continue or step T past a breakpoint. Instead, we use displaced
1413 stepping:
1414
1415 n0) Initially, T is stopped, other threads are running, and
1416 breakpoints are inserted.
1417 n1) We copy the instruction "under" the breakpoint to a separate
1418 location, outside the main code stream, making any adjustments
1419 to the instruction, register, and memory state as directed by
1420 T's architecture.
1421 n2) We single-step T over the instruction at its new location.
1422 n3) We adjust the resulting register and memory state as directed
1423 by T's architecture. This includes resetting T's PC to point
1424 back into the main instruction stream.
1425 n4) We resume T.
1426
1427 This approach depends on the following gdbarch methods:
1428
1429 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1430 indicate where to copy the instruction, and how much space must
1431 be reserved there. We use these in step n1.
1432
1433 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1434 address, and makes any necessary adjustments to the instruction,
1435 register contents, and memory. We use this in step n1.
1436
1437 - gdbarch_displaced_step_fixup adjusts registers and memory after
1438 we have successfuly single-stepped the instruction, to yield the
1439 same effect the instruction would have had if we had executed it
1440 at its original address. We use this in step n3.
1441
237fc4c9
PA
1442 The gdbarch_displaced_step_copy_insn and
1443 gdbarch_displaced_step_fixup functions must be written so that
1444 copying an instruction with gdbarch_displaced_step_copy_insn,
1445 single-stepping across the copied instruction, and then applying
1446 gdbarch_displaced_insn_fixup should have the same effects on the
1447 thread's memory and registers as stepping the instruction in place
1448 would have. Exactly which responsibilities fall to the copy and
1449 which fall to the fixup is up to the author of those functions.
1450
1451 See the comments in gdbarch.sh for details.
1452
1453 Note that displaced stepping and software single-step cannot
1454 currently be used in combination, although with some care I think
1455 they could be made to. Software single-step works by placing
1456 breakpoints on all possible subsequent instructions; if the
1457 displaced instruction is a PC-relative jump, those breakpoints
1458 could fall in very strange places --- on pages that aren't
1459 executable, or at addresses that are not proper instruction
1460 boundaries. (We do generally let other threads run while we wait
1461 to hit the software single-step breakpoint, and they might
1462 encounter such a corrupted instruction.) One way to work around
1463 this would be to have gdbarch_displaced_step_copy_insn fully
1464 simulate the effect of PC-relative instructions (and return NULL)
1465 on architectures that use software single-stepping.
1466
1467 In non-stop mode, we can have independent and simultaneous step
1468 requests, so more than one thread may need to simultaneously step
1469 over a breakpoint. The current implementation assumes there is
1470 only one scratch space per process. In this case, we have to
1471 serialize access to the scratch space. If thread A wants to step
1472 over a breakpoint, but we are currently waiting for some other
1473 thread to complete a displaced step, we leave thread A stopped and
1474 place it in the displaced_step_request_queue. Whenever a displaced
1475 step finishes, we pick the next thread in the queue and start a new
1476 displaced step operation on it. See displaced_step_prepare and
1477 displaced_step_fixup for details. */
1478
cfba9872
SM
1479/* Default destructor for displaced_step_closure. */
1480
1481displaced_step_closure::~displaced_step_closure () = default;
1482
fc1cf338
PA
1483/* Per-inferior displaced stepping state. */
1484struct displaced_step_inferior_state
1485{
1486 /* Pointer to next in linked list. */
1487 struct displaced_step_inferior_state *next;
1488
1489 /* The process this displaced step state refers to. */
1490 int pid;
1491
3fc8eb30
PA
1492 /* True if preparing a displaced step ever failed. If so, we won't
1493 try displaced stepping for this inferior again. */
1494 int failed_before;
1495
fc1cf338
PA
1496 /* If this is not null_ptid, this is the thread carrying out a
1497 displaced single-step in process PID. This thread's state will
1498 require fixing up once it has completed its step. */
1499 ptid_t step_ptid;
1500
1501 /* The architecture the thread had when we stepped it. */
1502 struct gdbarch *step_gdbarch;
1503
1504 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1505 for post-step cleanup. */
1506 struct displaced_step_closure *step_closure;
1507
1508 /* The address of the original instruction, and the copy we
1509 made. */
1510 CORE_ADDR step_original, step_copy;
1511
1512 /* Saved contents of copy area. */
1513 gdb_byte *step_saved_copy;
1514};
1515
1516/* The list of states of processes involved in displaced stepping
1517 presently. */
1518static struct displaced_step_inferior_state *displaced_step_inferior_states;
1519
1520/* Get the displaced stepping state of process PID. */
1521
1522static struct displaced_step_inferior_state *
1523get_displaced_stepping_state (int pid)
1524{
1525 struct displaced_step_inferior_state *state;
1526
1527 for (state = displaced_step_inferior_states;
1528 state != NULL;
1529 state = state->next)
1530 if (state->pid == pid)
1531 return state;
1532
1533 return NULL;
1534}
1535
372316f1
PA
1536/* Returns true if any inferior has a thread doing a displaced
1537 step. */
1538
1539static int
1540displaced_step_in_progress_any_inferior (void)
1541{
1542 struct displaced_step_inferior_state *state;
1543
1544 for (state = displaced_step_inferior_states;
1545 state != NULL;
1546 state = state->next)
1547 if (!ptid_equal (state->step_ptid, null_ptid))
1548 return 1;
1549
1550 return 0;
1551}
1552
c0987663
YQ
1553/* Return true if thread represented by PTID is doing a displaced
1554 step. */
1555
1556static int
1557displaced_step_in_progress_thread (ptid_t ptid)
1558{
1559 struct displaced_step_inferior_state *displaced;
1560
1561 gdb_assert (!ptid_equal (ptid, null_ptid));
1562
1563 displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1564
1565 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1566}
1567
8f572e5c
PA
1568/* Return true if process PID has a thread doing a displaced step. */
1569
1570static int
1571displaced_step_in_progress (int pid)
1572{
1573 struct displaced_step_inferior_state *displaced;
1574
1575 displaced = get_displaced_stepping_state (pid);
1576 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1577 return 1;
1578
1579 return 0;
1580}
1581
fc1cf338
PA
1582/* Add a new displaced stepping state for process PID to the displaced
1583 stepping state list, or return a pointer to an already existing
1584 entry, if it already exists. Never returns NULL. */
1585
1586static struct displaced_step_inferior_state *
1587add_displaced_stepping_state (int pid)
1588{
1589 struct displaced_step_inferior_state *state;
1590
1591 for (state = displaced_step_inferior_states;
1592 state != NULL;
1593 state = state->next)
1594 if (state->pid == pid)
1595 return state;
237fc4c9 1596
8d749320 1597 state = XCNEW (struct displaced_step_inferior_state);
fc1cf338
PA
1598 state->pid = pid;
1599 state->next = displaced_step_inferior_states;
1600 displaced_step_inferior_states = state;
237fc4c9 1601
fc1cf338
PA
1602 return state;
1603}
1604
a42244db
YQ
1605/* If inferior is in displaced stepping, and ADDR equals to starting address
1606 of copy area, return corresponding displaced_step_closure. Otherwise,
1607 return NULL. */
1608
1609struct displaced_step_closure*
1610get_displaced_step_closure_by_addr (CORE_ADDR addr)
1611{
1612 struct displaced_step_inferior_state *displaced
1613 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1614
1615 /* If checking the mode of displaced instruction in copy area. */
1616 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1617 && (displaced->step_copy == addr))
1618 return displaced->step_closure;
1619
1620 return NULL;
1621}
1622
fc1cf338 1623/* Remove the displaced stepping state of process PID. */
237fc4c9 1624
fc1cf338
PA
1625static void
1626remove_displaced_stepping_state (int pid)
1627{
1628 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1629
fc1cf338
PA
1630 gdb_assert (pid != 0);
1631
1632 it = displaced_step_inferior_states;
1633 prev_next_p = &displaced_step_inferior_states;
1634 while (it)
1635 {
1636 if (it->pid == pid)
1637 {
1638 *prev_next_p = it->next;
1639 xfree (it);
1640 return;
1641 }
1642
1643 prev_next_p = &it->next;
1644 it = *prev_next_p;
1645 }
1646}
1647
1648static void
1649infrun_inferior_exit (struct inferior *inf)
1650{
1651 remove_displaced_stepping_state (inf->pid);
1652}
237fc4c9 1653
fff08868
HZ
1654/* If ON, and the architecture supports it, GDB will use displaced
1655 stepping to step over breakpoints. If OFF, or if the architecture
1656 doesn't support it, GDB will instead use the traditional
1657 hold-and-step approach. If AUTO (which is the default), GDB will
1658 decide which technique to use to step over breakpoints depending on
1659 which of all-stop or non-stop mode is active --- displaced stepping
1660 in non-stop mode; hold-and-step in all-stop mode. */
1661
72d0e2c5 1662static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1663
237fc4c9
PA
1664static void
1665show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1666 struct cmd_list_element *c,
1667 const char *value)
1668{
72d0e2c5 1669 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1670 fprintf_filtered (file,
1671 _("Debugger's willingness to use displaced stepping "
1672 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1673 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1674 else
3e43a32a
MS
1675 fprintf_filtered (file,
1676 _("Debugger's willingness to use displaced stepping "
1677 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1678}
1679
fff08868 1680/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1681 over breakpoints of thread TP. */
fff08868 1682
237fc4c9 1683static int
3fc8eb30 1684use_displaced_stepping (struct thread_info *tp)
237fc4c9 1685{
3fc8eb30 1686 struct regcache *regcache = get_thread_regcache (tp->ptid);
ac7936df 1687 struct gdbarch *gdbarch = regcache->arch ();
3fc8eb30
PA
1688 struct displaced_step_inferior_state *displaced_state;
1689
1690 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1691
fbea99ea
PA
1692 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1693 && target_is_non_stop_p ())
72d0e2c5 1694 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1695 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30
PA
1696 && find_record_target () == NULL
1697 && (displaced_state == NULL
1698 || !displaced_state->failed_before));
237fc4c9
PA
1699}
1700
1701/* Clean out any stray displaced stepping state. */
1702static void
fc1cf338 1703displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1704{
1705 /* Indicate that there is no cleanup pending. */
fc1cf338 1706 displaced->step_ptid = null_ptid;
237fc4c9 1707
cfba9872 1708 delete displaced->step_closure;
6d45d4b4 1709 displaced->step_closure = NULL;
237fc4c9
PA
1710}
1711
1712static void
fc1cf338 1713displaced_step_clear_cleanup (void *arg)
237fc4c9 1714{
9a3c8263
SM
1715 struct displaced_step_inferior_state *state
1716 = (struct displaced_step_inferior_state *) arg;
fc1cf338
PA
1717
1718 displaced_step_clear (state);
237fc4c9
PA
1719}
1720
1721/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1722void
1723displaced_step_dump_bytes (struct ui_file *file,
1724 const gdb_byte *buf,
1725 size_t len)
1726{
1727 int i;
1728
1729 for (i = 0; i < len; i++)
1730 fprintf_unfiltered (file, "%02x ", buf[i]);
1731 fputs_unfiltered ("\n", file);
1732}
1733
1734/* Prepare to single-step, using displaced stepping.
1735
1736 Note that we cannot use displaced stepping when we have a signal to
1737 deliver. If we have a signal to deliver and an instruction to step
1738 over, then after the step, there will be no indication from the
1739 target whether the thread entered a signal handler or ignored the
1740 signal and stepped over the instruction successfully --- both cases
1741 result in a simple SIGTRAP. In the first case we mustn't do a
1742 fixup, and in the second case we must --- but we can't tell which.
1743 Comments in the code for 'random signals' in handle_inferior_event
1744 explain how we handle this case instead.
1745
1746 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1747 stepped now; 0 if displaced stepping this thread got queued; or -1
1748 if this instruction can't be displaced stepped. */
1749
237fc4c9 1750static int
3fc8eb30 1751displaced_step_prepare_throw (ptid_t ptid)
237fc4c9 1752{
2989a365 1753 struct cleanup *ignore_cleanups;
c1e36e3e 1754 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9 1755 struct regcache *regcache = get_thread_regcache (ptid);
ac7936df 1756 struct gdbarch *gdbarch = regcache->arch ();
8b86c959 1757 const address_space *aspace = regcache->aspace ();
237fc4c9
PA
1758 CORE_ADDR original, copy;
1759 ULONGEST len;
1760 struct displaced_step_closure *closure;
fc1cf338 1761 struct displaced_step_inferior_state *displaced;
9e529e1d 1762 int status;
237fc4c9
PA
1763
1764 /* We should never reach this function if the architecture does not
1765 support displaced stepping. */
1766 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1767
c2829269
PA
1768 /* Nor if the thread isn't meant to step over a breakpoint. */
1769 gdb_assert (tp->control.trap_expected);
1770
c1e36e3e
PA
1771 /* Disable range stepping while executing in the scratch pad. We
1772 want a single-step even if executing the displaced instruction in
1773 the scratch buffer lands within the stepping range (e.g., a
1774 jump/branch). */
1775 tp->control.may_range_step = 0;
1776
fc1cf338
PA
1777 /* We have to displaced step one thread at a time, as we only have
1778 access to a single scratch space per inferior. */
237fc4c9 1779
fc1cf338
PA
1780 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1781
1782 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1783 {
1784 /* Already waiting for a displaced step to finish. Defer this
1785 request and place in queue. */
237fc4c9
PA
1786
1787 if (debug_displaced)
1788 fprintf_unfiltered (gdb_stdlog,
c2829269 1789 "displaced: deferring step of %s\n",
237fc4c9
PA
1790 target_pid_to_str (ptid));
1791
c2829269 1792 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1793 return 0;
1794 }
1795 else
1796 {
1797 if (debug_displaced)
1798 fprintf_unfiltered (gdb_stdlog,
1799 "displaced: stepping %s now\n",
1800 target_pid_to_str (ptid));
1801 }
1802
fc1cf338 1803 displaced_step_clear (displaced);
237fc4c9 1804
2989a365 1805 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
ad53cd71
PA
1806 inferior_ptid = ptid;
1807
515630c5 1808 original = regcache_read_pc (regcache);
237fc4c9
PA
1809
1810 copy = gdbarch_displaced_step_location (gdbarch);
1811 len = gdbarch_max_insn_length (gdbarch);
1812
d35ae833
PA
1813 if (breakpoint_in_range_p (aspace, copy, len))
1814 {
1815 /* There's a breakpoint set in the scratch pad location range
1816 (which is usually around the entry point). We'd either
1817 install it before resuming, which would overwrite/corrupt the
1818 scratch pad, or if it was already inserted, this displaced
1819 step would overwrite it. The latter is OK in the sense that
1820 we already assume that no thread is going to execute the code
1821 in the scratch pad range (after initial startup) anyway, but
1822 the former is unacceptable. Simply punt and fallback to
1823 stepping over this breakpoint in-line. */
1824 if (debug_displaced)
1825 {
1826 fprintf_unfiltered (gdb_stdlog,
1827 "displaced: breakpoint set in scratch pad. "
1828 "Stepping over breakpoint in-line instead.\n");
1829 }
1830
d35ae833
PA
1831 return -1;
1832 }
1833
237fc4c9 1834 /* Save the original contents of the copy area. */
224c3ddb 1835 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
ad53cd71 1836 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1837 &displaced->step_saved_copy);
9e529e1d
JK
1838 status = target_read_memory (copy, displaced->step_saved_copy, len);
1839 if (status != 0)
1840 throw_error (MEMORY_ERROR,
1841 _("Error accessing memory address %s (%s) for "
1842 "displaced-stepping scratch space."),
1843 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1844 if (debug_displaced)
1845 {
5af949e3
UW
1846 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1847 paddress (gdbarch, copy));
fc1cf338
PA
1848 displaced_step_dump_bytes (gdb_stdlog,
1849 displaced->step_saved_copy,
1850 len);
237fc4c9
PA
1851 };
1852
1853 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1854 original, copy, regcache);
7f03bd92
PA
1855 if (closure == NULL)
1856 {
1857 /* The architecture doesn't know how or want to displaced step
1858 this instruction or instruction sequence. Fallback to
1859 stepping over the breakpoint in-line. */
2989a365 1860 do_cleanups (ignore_cleanups);
7f03bd92
PA
1861 return -1;
1862 }
237fc4c9 1863
9f5a595d
UW
1864 /* Save the information we need to fix things up if the step
1865 succeeds. */
fc1cf338
PA
1866 displaced->step_ptid = ptid;
1867 displaced->step_gdbarch = gdbarch;
1868 displaced->step_closure = closure;
1869 displaced->step_original = original;
1870 displaced->step_copy = copy;
9f5a595d 1871
fc1cf338 1872 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1873
1874 /* Resume execution at the copy. */
515630c5 1875 regcache_write_pc (regcache, copy);
237fc4c9 1876
ad53cd71
PA
1877 discard_cleanups (ignore_cleanups);
1878
237fc4c9 1879 if (debug_displaced)
5af949e3
UW
1880 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1881 paddress (gdbarch, copy));
237fc4c9 1882
237fc4c9
PA
1883 return 1;
1884}
1885
3fc8eb30
PA
1886/* Wrapper for displaced_step_prepare_throw that disabled further
1887 attempts at displaced stepping if we get a memory error. */
1888
1889static int
1890displaced_step_prepare (ptid_t ptid)
1891{
1892 int prepared = -1;
1893
1894 TRY
1895 {
1896 prepared = displaced_step_prepare_throw (ptid);
1897 }
1898 CATCH (ex, RETURN_MASK_ERROR)
1899 {
1900 struct displaced_step_inferior_state *displaced_state;
1901
16b41842
PA
1902 if (ex.error != MEMORY_ERROR
1903 && ex.error != NOT_SUPPORTED_ERROR)
3fc8eb30
PA
1904 throw_exception (ex);
1905
1906 if (debug_infrun)
1907 {
1908 fprintf_unfiltered (gdb_stdlog,
1909 "infrun: disabling displaced stepping: %s\n",
1910 ex.message);
1911 }
1912
1913 /* Be verbose if "set displaced-stepping" is "on", silent if
1914 "auto". */
1915 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1916 {
fd7dcb94 1917 warning (_("disabling displaced stepping: %s"),
3fc8eb30
PA
1918 ex.message);
1919 }
1920
1921 /* Disable further displaced stepping attempts. */
1922 displaced_state
1923 = get_displaced_stepping_state (ptid_get_pid (ptid));
1924 displaced_state->failed_before = 1;
1925 }
1926 END_CATCH
1927
1928 return prepared;
1929}
1930
237fc4c9 1931static void
3e43a32a
MS
1932write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1933 const gdb_byte *myaddr, int len)
237fc4c9 1934{
2989a365 1935 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
abbb1732 1936
237fc4c9
PA
1937 inferior_ptid = ptid;
1938 write_memory (memaddr, myaddr, len);
237fc4c9
PA
1939}
1940
e2d96639
YQ
1941/* Restore the contents of the copy area for thread PTID. */
1942
1943static void
1944displaced_step_restore (struct displaced_step_inferior_state *displaced,
1945 ptid_t ptid)
1946{
1947 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1948
1949 write_memory_ptid (ptid, displaced->step_copy,
1950 displaced->step_saved_copy, len);
1951 if (debug_displaced)
1952 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1953 target_pid_to_str (ptid),
1954 paddress (displaced->step_gdbarch,
1955 displaced->step_copy));
1956}
1957
372316f1
PA
1958/* If we displaced stepped an instruction successfully, adjust
1959 registers and memory to yield the same effect the instruction would
1960 have had if we had executed it at its original address, and return
1961 1. If the instruction didn't complete, relocate the PC and return
1962 -1. If the thread wasn't displaced stepping, return 0. */
1963
1964static int
2ea28649 1965displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1966{
1967 struct cleanup *old_cleanups;
fc1cf338
PA
1968 struct displaced_step_inferior_state *displaced
1969 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
372316f1 1970 int ret;
fc1cf338
PA
1971
1972 /* Was any thread of this process doing a displaced step? */
1973 if (displaced == NULL)
372316f1 1974 return 0;
237fc4c9
PA
1975
1976 /* Was this event for the pid we displaced? */
fc1cf338
PA
1977 if (ptid_equal (displaced->step_ptid, null_ptid)
1978 || ! ptid_equal (displaced->step_ptid, event_ptid))
372316f1 1979 return 0;
237fc4c9 1980
fc1cf338 1981 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1982
e2d96639 1983 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9 1984
cb71640d
PA
1985 /* Fixup may need to read memory/registers. Switch to the thread
1986 that we're fixing up. Also, target_stopped_by_watchpoint checks
1987 the current thread. */
1988 switch_to_thread (event_ptid);
1989
237fc4c9 1990 /* Did the instruction complete successfully? */
cb71640d
PA
1991 if (signal == GDB_SIGNAL_TRAP
1992 && !(target_stopped_by_watchpoint ()
1993 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1994 || target_have_steppable_watchpoint)))
237fc4c9
PA
1995 {
1996 /* Fix up the resulting state. */
fc1cf338
PA
1997 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1998 displaced->step_closure,
1999 displaced->step_original,
2000 displaced->step_copy,
2001 get_thread_regcache (displaced->step_ptid));
372316f1 2002 ret = 1;
237fc4c9
PA
2003 }
2004 else
2005 {
2006 /* Since the instruction didn't complete, all we can do is
2007 relocate the PC. */
515630c5
UW
2008 struct regcache *regcache = get_thread_regcache (event_ptid);
2009 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 2010
fc1cf338 2011 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 2012 regcache_write_pc (regcache, pc);
372316f1 2013 ret = -1;
237fc4c9
PA
2014 }
2015
2016 do_cleanups (old_cleanups);
2017
fc1cf338 2018 displaced->step_ptid = null_ptid;
372316f1
PA
2019
2020 return ret;
c2829269 2021}
1c5cfe86 2022
4d9d9d04
PA
2023/* Data to be passed around while handling an event. This data is
2024 discarded between events. */
2025struct execution_control_state
2026{
2027 ptid_t ptid;
2028 /* The thread that got the event, if this was a thread event; NULL
2029 otherwise. */
2030 struct thread_info *event_thread;
2031
2032 struct target_waitstatus ws;
2033 int stop_func_filled_in;
2034 CORE_ADDR stop_func_start;
2035 CORE_ADDR stop_func_end;
2036 const char *stop_func_name;
2037 int wait_some_more;
2038
2039 /* True if the event thread hit the single-step breakpoint of
2040 another thread. Thus the event doesn't cause a stop, the thread
2041 needs to be single-stepped past the single-step breakpoint before
2042 we can switch back to the original stepping thread. */
2043 int hit_singlestep_breakpoint;
2044};
2045
2046/* Clear ECS and set it to point at TP. */
c2829269
PA
2047
2048static void
4d9d9d04
PA
2049reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2050{
2051 memset (ecs, 0, sizeof (*ecs));
2052 ecs->event_thread = tp;
2053 ecs->ptid = tp->ptid;
2054}
2055
2056static void keep_going_pass_signal (struct execution_control_state *ecs);
2057static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 2058static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 2059static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
2060
2061/* Are there any pending step-over requests? If so, run all we can
2062 now and return true. Otherwise, return false. */
2063
2064static int
c2829269
PA
2065start_step_over (void)
2066{
2067 struct thread_info *tp, *next;
2068
372316f1
PA
2069 /* Don't start a new step-over if we already have an in-line
2070 step-over operation ongoing. */
2071 if (step_over_info_valid_p ())
2072 return 0;
2073
c2829269 2074 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 2075 {
4d9d9d04
PA
2076 struct execution_control_state ecss;
2077 struct execution_control_state *ecs = &ecss;
8d297bbf 2078 step_over_what step_what;
372316f1 2079 int must_be_in_line;
c2829269 2080
c65d6b55
PA
2081 gdb_assert (!tp->stop_requested);
2082
c2829269 2083 next = thread_step_over_chain_next (tp);
237fc4c9 2084
c2829269
PA
2085 /* If this inferior already has a displaced step in process,
2086 don't start a new one. */
4d9d9d04 2087 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
c2829269
PA
2088 continue;
2089
372316f1
PA
2090 step_what = thread_still_needs_step_over (tp);
2091 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2092 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 2093 && !use_displaced_stepping (tp)));
372316f1
PA
2094
2095 /* We currently stop all threads of all processes to step-over
2096 in-line. If we need to start a new in-line step-over, let
2097 any pending displaced steps finish first. */
2098 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2099 return 0;
2100
c2829269
PA
2101 thread_step_over_chain_remove (tp);
2102
2103 if (step_over_queue_head == NULL)
2104 {
2105 if (debug_infrun)
2106 fprintf_unfiltered (gdb_stdlog,
2107 "infrun: step-over queue now empty\n");
2108 }
2109
372316f1
PA
2110 if (tp->control.trap_expected
2111 || tp->resumed
2112 || tp->executing)
ad53cd71 2113 {
4d9d9d04
PA
2114 internal_error (__FILE__, __LINE__,
2115 "[%s] has inconsistent state: "
372316f1 2116 "trap_expected=%d, resumed=%d, executing=%d\n",
4d9d9d04
PA
2117 target_pid_to_str (tp->ptid),
2118 tp->control.trap_expected,
372316f1 2119 tp->resumed,
4d9d9d04 2120 tp->executing);
ad53cd71 2121 }
1c5cfe86 2122
4d9d9d04
PA
2123 if (debug_infrun)
2124 fprintf_unfiltered (gdb_stdlog,
2125 "infrun: resuming [%s] for step-over\n",
2126 target_pid_to_str (tp->ptid));
2127
2128 /* keep_going_pass_signal skips the step-over if the breakpoint
2129 is no longer inserted. In all-stop, we want to keep looking
2130 for a thread that needs a step-over instead of resuming TP,
2131 because we wouldn't be able to resume anything else until the
2132 target stops again. In non-stop, the resume always resumes
2133 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2134 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2135 continue;
8550d3b3 2136
4d9d9d04
PA
2137 switch_to_thread (tp->ptid);
2138 reset_ecs (ecs, tp);
2139 keep_going_pass_signal (ecs);
1c5cfe86 2140
4d9d9d04
PA
2141 if (!ecs->wait_some_more)
2142 error (_("Command aborted."));
1c5cfe86 2143
372316f1
PA
2144 gdb_assert (tp->resumed);
2145
2146 /* If we started a new in-line step-over, we're done. */
2147 if (step_over_info_valid_p ())
2148 {
2149 gdb_assert (tp->control.trap_expected);
2150 return 1;
2151 }
2152
fbea99ea 2153 if (!target_is_non_stop_p ())
4d9d9d04
PA
2154 {
2155 /* On all-stop, shouldn't have resumed unless we needed a
2156 step over. */
2157 gdb_assert (tp->control.trap_expected
2158 || tp->step_after_step_resume_breakpoint);
2159
2160 /* With remote targets (at least), in all-stop, we can't
2161 issue any further remote commands until the program stops
2162 again. */
2163 return 1;
1c5cfe86 2164 }
c2829269 2165
4d9d9d04
PA
2166 /* Either the thread no longer needed a step-over, or a new
2167 displaced stepping sequence started. Even in the latter
2168 case, continue looking. Maybe we can also start another
2169 displaced step on a thread of other process. */
237fc4c9 2170 }
4d9d9d04
PA
2171
2172 return 0;
237fc4c9
PA
2173}
2174
5231c1fd
PA
2175/* Update global variables holding ptids to hold NEW_PTID if they were
2176 holding OLD_PTID. */
2177static void
2178infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2179{
fc1cf338 2180 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
2181
2182 if (ptid_equal (inferior_ptid, old_ptid))
2183 inferior_ptid = new_ptid;
2184
fc1cf338
PA
2185 for (displaced = displaced_step_inferior_states;
2186 displaced;
2187 displaced = displaced->next)
2188 {
2189 if (ptid_equal (displaced->step_ptid, old_ptid))
2190 displaced->step_ptid = new_ptid;
fc1cf338 2191 }
5231c1fd
PA
2192}
2193
237fc4c9
PA
2194\f
2195/* Resuming. */
c906108c
SS
2196
2197/* Things to clean up if we QUIT out of resume (). */
c906108c 2198static void
74b7792f 2199resume_cleanups (void *ignore)
c906108c 2200{
34b7e8a6
PA
2201 if (!ptid_equal (inferior_ptid, null_ptid))
2202 delete_single_step_breakpoints (inferior_thread ());
7c16b83e 2203
c906108c
SS
2204 normal_stop ();
2205}
2206
53904c9e
AC
2207static const char schedlock_off[] = "off";
2208static const char schedlock_on[] = "on";
2209static const char schedlock_step[] = "step";
f2665db5 2210static const char schedlock_replay[] = "replay";
40478521 2211static const char *const scheduler_enums[] = {
ef346e04
AC
2212 schedlock_off,
2213 schedlock_on,
2214 schedlock_step,
f2665db5 2215 schedlock_replay,
ef346e04
AC
2216 NULL
2217};
f2665db5 2218static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2219static void
2220show_scheduler_mode (struct ui_file *file, int from_tty,
2221 struct cmd_list_element *c, const char *value)
2222{
3e43a32a
MS
2223 fprintf_filtered (file,
2224 _("Mode for locking scheduler "
2225 "during execution is \"%s\".\n"),
920d2a44
AC
2226 value);
2227}
c906108c
SS
2228
2229static void
eb4c3f4a 2230set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
c906108c 2231{
eefe576e
AC
2232 if (!target_can_lock_scheduler)
2233 {
2234 scheduler_mode = schedlock_off;
2235 error (_("Target '%s' cannot support this command."), target_shortname);
2236 }
c906108c
SS
2237}
2238
d4db2f36
PA
2239/* True if execution commands resume all threads of all processes by
2240 default; otherwise, resume only threads of the current inferior
2241 process. */
2242int sched_multi = 0;
2243
2facfe5c
DD
2244/* Try to setup for software single stepping over the specified location.
2245 Return 1 if target_resume() should use hardware single step.
2246
2247 GDBARCH the current gdbarch.
2248 PC the location to step over. */
2249
2250static int
2251maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2252{
2253 int hw_step = 1;
2254
f02253f1 2255 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2256 && gdbarch_software_single_step_p (gdbarch))
2257 hw_step = !insert_single_step_breakpoints (gdbarch);
2258
2facfe5c
DD
2259 return hw_step;
2260}
c906108c 2261
f3263aa4
PA
2262/* See infrun.h. */
2263
09cee04b
PA
2264ptid_t
2265user_visible_resume_ptid (int step)
2266{
f3263aa4 2267 ptid_t resume_ptid;
09cee04b 2268
09cee04b
PA
2269 if (non_stop)
2270 {
2271 /* With non-stop mode on, threads are always handled
2272 individually. */
2273 resume_ptid = inferior_ptid;
2274 }
2275 else if ((scheduler_mode == schedlock_on)
03d46957 2276 || (scheduler_mode == schedlock_step && step))
09cee04b 2277 {
f3263aa4
PA
2278 /* User-settable 'scheduler' mode requires solo thread
2279 resume. */
09cee04b
PA
2280 resume_ptid = inferior_ptid;
2281 }
f2665db5
MM
2282 else if ((scheduler_mode == schedlock_replay)
2283 && target_record_will_replay (minus_one_ptid, execution_direction))
2284 {
2285 /* User-settable 'scheduler' mode requires solo thread resume in replay
2286 mode. */
2287 resume_ptid = inferior_ptid;
2288 }
f3263aa4
PA
2289 else if (!sched_multi && target_supports_multi_process ())
2290 {
2291 /* Resume all threads of the current process (and none of other
2292 processes). */
2293 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2294 }
2295 else
2296 {
2297 /* Resume all threads of all processes. */
2298 resume_ptid = RESUME_ALL;
2299 }
09cee04b
PA
2300
2301 return resume_ptid;
2302}
2303
fbea99ea
PA
2304/* Return a ptid representing the set of threads that we will resume,
2305 in the perspective of the target, assuming run control handling
2306 does not require leaving some threads stopped (e.g., stepping past
2307 breakpoint). USER_STEP indicates whether we're about to start the
2308 target for a stepping command. */
2309
2310static ptid_t
2311internal_resume_ptid (int user_step)
2312{
2313 /* In non-stop, we always control threads individually. Note that
2314 the target may always work in non-stop mode even with "set
2315 non-stop off", in which case user_visible_resume_ptid could
2316 return a wildcard ptid. */
2317 if (target_is_non_stop_p ())
2318 return inferior_ptid;
2319 else
2320 return user_visible_resume_ptid (user_step);
2321}
2322
64ce06e4
PA
2323/* Wrapper for target_resume, that handles infrun-specific
2324 bookkeeping. */
2325
2326static void
2327do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2328{
2329 struct thread_info *tp = inferior_thread ();
2330
c65d6b55
PA
2331 gdb_assert (!tp->stop_requested);
2332
64ce06e4 2333 /* Install inferior's terminal modes. */
223ffa71 2334 target_terminal::inferior ();
64ce06e4
PA
2335
2336 /* Avoid confusing the next resume, if the next stop/resume
2337 happens to apply to another thread. */
2338 tp->suspend.stop_signal = GDB_SIGNAL_0;
2339
8f572e5c
PA
2340 /* Advise target which signals may be handled silently.
2341
2342 If we have removed breakpoints because we are stepping over one
2343 in-line (in any thread), we need to receive all signals to avoid
2344 accidentally skipping a breakpoint during execution of a signal
2345 handler.
2346
2347 Likewise if we're displaced stepping, otherwise a trap for a
2348 breakpoint in a signal handler might be confused with the
2349 displaced step finishing. We don't make the displaced_step_fixup
2350 step distinguish the cases instead, because:
2351
2352 - a backtrace while stopped in the signal handler would show the
2353 scratch pad as frame older than the signal handler, instead of
2354 the real mainline code.
2355
2356 - when the thread is later resumed, the signal handler would
2357 return to the scratch pad area, which would no longer be
2358 valid. */
2359 if (step_over_info_valid_p ()
2360 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
64ce06e4
PA
2361 target_pass_signals (0, NULL);
2362 else
2363 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2364
2365 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2366
2367 target_commit_resume ();
64ce06e4
PA
2368}
2369
c906108c
SS
2370/* Resume the inferior, but allow a QUIT. This is useful if the user
2371 wants to interrupt some lengthy single-stepping operation
2372 (for child processes, the SIGINT goes to the inferior, and so
2373 we get a SIGINT random_signal, but for remote debugging and perhaps
2374 other targets, that's not true).
2375
c906108c
SS
2376 SIG is the signal to give the inferior (zero for none). */
2377void
64ce06e4 2378resume (enum gdb_signal sig)
c906108c 2379{
74b7792f 2380 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5 2381 struct regcache *regcache = get_current_regcache ();
ac7936df 2382 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2383 struct thread_info *tp = inferior_thread ();
515630c5 2384 CORE_ADDR pc = regcache_read_pc (regcache);
8b86c959 2385 const address_space *aspace = regcache->aspace ();
b0f16a3e 2386 ptid_t resume_ptid;
856e7dd6
PA
2387 /* This represents the user's step vs continue request. When
2388 deciding whether "set scheduler-locking step" applies, it's the
2389 user's intention that counts. */
2390 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2391 /* This represents what we'll actually request the target to do.
2392 This can decay from a step to a continue, if e.g., we need to
2393 implement single-stepping with breakpoints (software
2394 single-step). */
6b403daa 2395 int step;
c7e8a53c 2396
c65d6b55 2397 gdb_assert (!tp->stop_requested);
c2829269
PA
2398 gdb_assert (!thread_is_in_step_over_chain (tp));
2399
c906108c
SS
2400 QUIT;
2401
372316f1
PA
2402 if (tp->suspend.waitstatus_pending_p)
2403 {
2404 if (debug_infrun)
2405 {
23fdd69e
SM
2406 std::string statstr
2407 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2408
372316f1 2409 fprintf_unfiltered (gdb_stdlog,
23fdd69e
SM
2410 "infrun: resume: thread %s has pending wait "
2411 "status %s (currently_stepping=%d).\n",
2412 target_pid_to_str (tp->ptid), statstr.c_str (),
372316f1 2413 currently_stepping (tp));
372316f1
PA
2414 }
2415
2416 tp->resumed = 1;
2417
2418 /* FIXME: What should we do if we are supposed to resume this
2419 thread with a signal? Maybe we should maintain a queue of
2420 pending signals to deliver. */
2421 if (sig != GDB_SIGNAL_0)
2422 {
fd7dcb94 2423 warning (_("Couldn't deliver signal %s to %s."),
372316f1
PA
2424 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2425 }
2426
2427 tp->suspend.stop_signal = GDB_SIGNAL_0;
2428 discard_cleanups (old_cleanups);
2429
2430 if (target_can_async_p ())
2431 target_async (1);
2432 return;
2433 }
2434
2435 tp->stepped_breakpoint = 0;
2436
6b403daa
PA
2437 /* Depends on stepped_breakpoint. */
2438 step = currently_stepping (tp);
2439
74609e71
YQ
2440 if (current_inferior ()->waiting_for_vfork_done)
2441 {
48f9886d
PA
2442 /* Don't try to single-step a vfork parent that is waiting for
2443 the child to get out of the shared memory region (by exec'ing
2444 or exiting). This is particularly important on software
2445 single-step archs, as the child process would trip on the
2446 software single step breakpoint inserted for the parent
2447 process. Since the parent will not actually execute any
2448 instruction until the child is out of the shared region (such
2449 are vfork's semantics), it is safe to simply continue it.
2450 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2451 the parent, and tell it to `keep_going', which automatically
2452 re-sets it stepping. */
74609e71
YQ
2453 if (debug_infrun)
2454 fprintf_unfiltered (gdb_stdlog,
2455 "infrun: resume : clear step\n");
a09dd441 2456 step = 0;
74609e71
YQ
2457 }
2458
527159b7 2459 if (debug_infrun)
237fc4c9 2460 fprintf_unfiltered (gdb_stdlog,
c9737c08 2461 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2462 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2463 step, gdb_signal_to_symbol_string (sig),
2464 tp->control.trap_expected,
0d9a9a5f
PA
2465 target_pid_to_str (inferior_ptid),
2466 paddress (gdbarch, pc));
c906108c 2467
c2c6d25f
JM
2468 /* Normally, by the time we reach `resume', the breakpoints are either
2469 removed or inserted, as appropriate. The exception is if we're sitting
2470 at a permanent breakpoint; we need to step over it, but permanent
2471 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2472 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2473 {
af48d08f
PA
2474 if (sig != GDB_SIGNAL_0)
2475 {
2476 /* We have a signal to pass to the inferior. The resume
2477 may, or may not take us to the signal handler. If this
2478 is a step, we'll need to stop in the signal handler, if
2479 there's one, (if the target supports stepping into
2480 handlers), or in the next mainline instruction, if
2481 there's no handler. If this is a continue, we need to be
2482 sure to run the handler with all breakpoints inserted.
2483 In all cases, set a breakpoint at the current address
2484 (where the handler returns to), and once that breakpoint
2485 is hit, resume skipping the permanent breakpoint. If
2486 that breakpoint isn't hit, then we've stepped into the
2487 signal handler (or hit some other event). We'll delete
2488 the step-resume breakpoint then. */
2489
2490 if (debug_infrun)
2491 fprintf_unfiltered (gdb_stdlog,
2492 "infrun: resume: skipping permanent breakpoint, "
2493 "deliver signal first\n");
2494
2495 clear_step_over_info ();
2496 tp->control.trap_expected = 0;
2497
2498 if (tp->control.step_resume_breakpoint == NULL)
2499 {
2500 /* Set a "high-priority" step-resume, as we don't want
2501 user breakpoints at PC to trigger (again) when this
2502 hits. */
2503 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2504 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2505
2506 tp->step_after_step_resume_breakpoint = step;
2507 }
2508
2509 insert_breakpoints ();
2510 }
2511 else
2512 {
2513 /* There's no signal to pass, we can go ahead and skip the
2514 permanent breakpoint manually. */
2515 if (debug_infrun)
2516 fprintf_unfiltered (gdb_stdlog,
2517 "infrun: resume: skipping permanent breakpoint\n");
2518 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2519 /* Update pc to reflect the new address from which we will
2520 execute instructions. */
2521 pc = regcache_read_pc (regcache);
2522
2523 if (step)
2524 {
2525 /* We've already advanced the PC, so the stepping part
2526 is done. Now we need to arrange for a trap to be
2527 reported to handle_inferior_event. Set a breakpoint
2528 at the current PC, and run to it. Don't update
2529 prev_pc, because if we end in
44a1ee51
PA
2530 switch_back_to_stepped_thread, we want the "expected
2531 thread advanced also" branch to be taken. IOW, we
2532 don't want this thread to step further from PC
af48d08f 2533 (overstep). */
1ac806b8 2534 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2535 insert_single_step_breakpoint (gdbarch, aspace, pc);
2536 insert_breakpoints ();
2537
fbea99ea 2538 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2539 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
af48d08f 2540 discard_cleanups (old_cleanups);
372316f1 2541 tp->resumed = 1;
af48d08f
PA
2542 return;
2543 }
2544 }
6d350bb5 2545 }
c2c6d25f 2546
c1e36e3e
PA
2547 /* If we have a breakpoint to step over, make sure to do a single
2548 step only. Same if we have software watchpoints. */
2549 if (tp->control.trap_expected || bpstat_should_step ())
2550 tp->control.may_range_step = 0;
2551
237fc4c9
PA
2552 /* If enabled, step over breakpoints by executing a copy of the
2553 instruction at a different address.
2554
2555 We can't use displaced stepping when we have a signal to deliver;
2556 the comments for displaced_step_prepare explain why. The
2557 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2558 signals' explain what we do instead.
2559
2560 We can't use displaced stepping when we are waiting for vfork_done
2561 event, displaced stepping breaks the vfork child similarly as single
2562 step software breakpoint. */
3fc8eb30
PA
2563 if (tp->control.trap_expected
2564 && use_displaced_stepping (tp)
cb71640d 2565 && !step_over_info_valid_p ()
a493e3e2 2566 && sig == GDB_SIGNAL_0
74609e71 2567 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2568 {
3fc8eb30 2569 int prepared = displaced_step_prepare (inferior_ptid);
fc1cf338 2570
3fc8eb30 2571 if (prepared == 0)
d56b7306 2572 {
4d9d9d04
PA
2573 if (debug_infrun)
2574 fprintf_unfiltered (gdb_stdlog,
2575 "Got placed in step-over queue\n");
2576
2577 tp->control.trap_expected = 0;
d56b7306
VP
2578 discard_cleanups (old_cleanups);
2579 return;
2580 }
3fc8eb30
PA
2581 else if (prepared < 0)
2582 {
2583 /* Fallback to stepping over the breakpoint in-line. */
2584
2585 if (target_is_non_stop_p ())
2586 stop_all_threads ();
2587
a01bda52 2588 set_step_over_info (regcache->aspace (),
21edc42f 2589 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2590
2591 step = maybe_software_singlestep (gdbarch, pc);
2592
2593 insert_breakpoints ();
2594 }
2595 else if (prepared > 0)
2596 {
2597 struct displaced_step_inferior_state *displaced;
99e40580 2598
3fc8eb30
PA
2599 /* Update pc to reflect the new address from which we will
2600 execute instructions due to displaced stepping. */
2601 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
ca7781d2 2602
3fc8eb30
PA
2603 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2604 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2605 displaced->step_closure);
2606 }
237fc4c9
PA
2607 }
2608
2facfe5c 2609 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2610 else if (step)
2facfe5c 2611 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2612
30852783
UW
2613 /* Currently, our software single-step implementation leads to different
2614 results than hardware single-stepping in one situation: when stepping
2615 into delivering a signal which has an associated signal handler,
2616 hardware single-step will stop at the first instruction of the handler,
2617 while software single-step will simply skip execution of the handler.
2618
2619 For now, this difference in behavior is accepted since there is no
2620 easy way to actually implement single-stepping into a signal handler
2621 without kernel support.
2622
2623 However, there is one scenario where this difference leads to follow-on
2624 problems: if we're stepping off a breakpoint by removing all breakpoints
2625 and then single-stepping. In this case, the software single-step
2626 behavior means that even if there is a *breakpoint* in the signal
2627 handler, GDB still would not stop.
2628
2629 Fortunately, we can at least fix this particular issue. We detect
2630 here the case where we are about to deliver a signal while software
2631 single-stepping with breakpoints removed. In this situation, we
2632 revert the decisions to remove all breakpoints and insert single-
2633 step breakpoints, and instead we install a step-resume breakpoint
2634 at the current address, deliver the signal without stepping, and
2635 once we arrive back at the step-resume breakpoint, actually step
2636 over the breakpoint we originally wanted to step over. */
34b7e8a6 2637 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2638 && sig != GDB_SIGNAL_0
2639 && step_over_info_valid_p ())
30852783
UW
2640 {
2641 /* If we have nested signals or a pending signal is delivered
2642 immediately after a handler returns, might might already have
2643 a step-resume breakpoint set on the earlier handler. We cannot
2644 set another step-resume breakpoint; just continue on until the
2645 original breakpoint is hit. */
2646 if (tp->control.step_resume_breakpoint == NULL)
2647 {
2c03e5be 2648 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2649 tp->step_after_step_resume_breakpoint = 1;
2650 }
2651
34b7e8a6 2652 delete_single_step_breakpoints (tp);
30852783 2653
31e77af2 2654 clear_step_over_info ();
30852783 2655 tp->control.trap_expected = 0;
31e77af2
PA
2656
2657 insert_breakpoints ();
30852783
UW
2658 }
2659
b0f16a3e
SM
2660 /* If STEP is set, it's a request to use hardware stepping
2661 facilities. But in that case, we should never
2662 use singlestep breakpoint. */
34b7e8a6 2663 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2664
fbea99ea 2665 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2666 if (tp->control.trap_expected)
b0f16a3e
SM
2667 {
2668 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2669 hit, either by single-stepping the thread with the breakpoint
2670 removed, or by displaced stepping, with the breakpoint inserted.
2671 In the former case, we need to single-step only this thread,
2672 and keep others stopped, as they can miss this breakpoint if
2673 allowed to run. That's not really a problem for displaced
2674 stepping, but, we still keep other threads stopped, in case
2675 another thread is also stopped for a breakpoint waiting for
2676 its turn in the displaced stepping queue. */
b0f16a3e
SM
2677 resume_ptid = inferior_ptid;
2678 }
fbea99ea
PA
2679 else
2680 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2681
7f5ef605
PA
2682 if (execution_direction != EXEC_REVERSE
2683 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2684 {
372316f1
PA
2685 /* There are two cases where we currently need to step a
2686 breakpoint instruction when we have a signal to deliver:
2687
2688 - See handle_signal_stop where we handle random signals that
2689 could take out us out of the stepping range. Normally, in
2690 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2691 signal handler with a breakpoint at PC, but there are cases
2692 where we should _always_ single-step, even if we have a
2693 step-resume breakpoint, like when a software watchpoint is
2694 set. Assuming single-stepping and delivering a signal at the
2695 same time would takes us to the signal handler, then we could
2696 have removed the breakpoint at PC to step over it. However,
2697 some hardware step targets (like e.g., Mac OS) can't step
2698 into signal handlers, and for those, we need to leave the
2699 breakpoint at PC inserted, as otherwise if the handler
2700 recurses and executes PC again, it'll miss the breakpoint.
2701 So we leave the breakpoint inserted anyway, but we need to
2702 record that we tried to step a breakpoint instruction, so
372316f1
PA
2703 that adjust_pc_after_break doesn't end up confused.
2704
2705 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2706 in one thread after another thread that was stepping had been
2707 momentarily paused for a step-over. When we re-resume the
2708 stepping thread, it may be resumed from that address with a
2709 breakpoint that hasn't trapped yet. Seen with
2710 gdb.threads/non-stop-fair-events.exp, on targets that don't
2711 do displaced stepping. */
2712
2713 if (debug_infrun)
2714 fprintf_unfiltered (gdb_stdlog,
2715 "infrun: resume: [%s] stepped breakpoint\n",
2716 target_pid_to_str (tp->ptid));
7f5ef605
PA
2717
2718 tp->stepped_breakpoint = 1;
2719
b0f16a3e
SM
2720 /* Most targets can step a breakpoint instruction, thus
2721 executing it normally. But if this one cannot, just
2722 continue and we will hit it anyway. */
7f5ef605 2723 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2724 step = 0;
2725 }
ef5cf84e 2726
b0f16a3e 2727 if (debug_displaced
cb71640d 2728 && tp->control.trap_expected
3fc8eb30 2729 && use_displaced_stepping (tp)
cb71640d 2730 && !step_over_info_valid_p ())
b0f16a3e 2731 {
d9b67d9f 2732 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
ac7936df 2733 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2734 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2735 gdb_byte buf[4];
2736
2737 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2738 paddress (resume_gdbarch, actual_pc));
2739 read_memory (actual_pc, buf, sizeof (buf));
2740 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2741 }
237fc4c9 2742
b0f16a3e
SM
2743 if (tp->control.may_range_step)
2744 {
2745 /* If we're resuming a thread with the PC out of the step
2746 range, then we're doing some nested/finer run control
2747 operation, like stepping the thread out of the dynamic
2748 linker or the displaced stepping scratch pad. We
2749 shouldn't have allowed a range step then. */
2750 gdb_assert (pc_in_thread_step_range (pc, tp));
2751 }
c1e36e3e 2752
64ce06e4 2753 do_target_resume (resume_ptid, step, sig);
372316f1 2754 tp->resumed = 1;
c906108c
SS
2755 discard_cleanups (old_cleanups);
2756}
2757\f
237fc4c9 2758/* Proceeding. */
c906108c 2759
4c2f2a79
PA
2760/* See infrun.h. */
2761
2762/* Counter that tracks number of user visible stops. This can be used
2763 to tell whether a command has proceeded the inferior past the
2764 current location. This allows e.g., inferior function calls in
2765 breakpoint commands to not interrupt the command list. When the
2766 call finishes successfully, the inferior is standing at the same
2767 breakpoint as if nothing happened (and so we don't call
2768 normal_stop). */
2769static ULONGEST current_stop_id;
2770
2771/* See infrun.h. */
2772
2773ULONGEST
2774get_stop_id (void)
2775{
2776 return current_stop_id;
2777}
2778
2779/* Called when we report a user visible stop. */
2780
2781static void
2782new_stop_id (void)
2783{
2784 current_stop_id++;
2785}
2786
c906108c
SS
2787/* Clear out all variables saying what to do when inferior is continued.
2788 First do this, then set the ones you want, then call `proceed'. */
2789
a7212384
UW
2790static void
2791clear_proceed_status_thread (struct thread_info *tp)
c906108c 2792{
a7212384
UW
2793 if (debug_infrun)
2794 fprintf_unfiltered (gdb_stdlog,
2795 "infrun: clear_proceed_status_thread (%s)\n",
2796 target_pid_to_str (tp->ptid));
d6b48e9c 2797
372316f1
PA
2798 /* If we're starting a new sequence, then the previous finished
2799 single-step is no longer relevant. */
2800 if (tp->suspend.waitstatus_pending_p)
2801 {
2802 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2803 {
2804 if (debug_infrun)
2805 fprintf_unfiltered (gdb_stdlog,
2806 "infrun: clear_proceed_status: pending "
2807 "event of %s was a finished step. "
2808 "Discarding.\n",
2809 target_pid_to_str (tp->ptid));
2810
2811 tp->suspend.waitstatus_pending_p = 0;
2812 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2813 }
2814 else if (debug_infrun)
2815 {
23fdd69e
SM
2816 std::string statstr
2817 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2818
372316f1
PA
2819 fprintf_unfiltered (gdb_stdlog,
2820 "infrun: clear_proceed_status_thread: thread %s "
2821 "has pending wait status %s "
2822 "(currently_stepping=%d).\n",
23fdd69e 2823 target_pid_to_str (tp->ptid), statstr.c_str (),
372316f1 2824 currently_stepping (tp));
372316f1
PA
2825 }
2826 }
2827
70509625
PA
2828 /* If this signal should not be seen by program, give it zero.
2829 Used for debugging signals. */
2830 if (!signal_pass_state (tp->suspend.stop_signal))
2831 tp->suspend.stop_signal = GDB_SIGNAL_0;
2832
243a9253
PA
2833 thread_fsm_delete (tp->thread_fsm);
2834 tp->thread_fsm = NULL;
2835
16c381f0
JK
2836 tp->control.trap_expected = 0;
2837 tp->control.step_range_start = 0;
2838 tp->control.step_range_end = 0;
c1e36e3e 2839 tp->control.may_range_step = 0;
16c381f0
JK
2840 tp->control.step_frame_id = null_frame_id;
2841 tp->control.step_stack_frame_id = null_frame_id;
2842 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2843 tp->control.step_start_function = NULL;
a7212384 2844 tp->stop_requested = 0;
4e1c45ea 2845
16c381f0 2846 tp->control.stop_step = 0;
32400beb 2847
16c381f0 2848 tp->control.proceed_to_finish = 0;
414c69f7 2849
856e7dd6 2850 tp->control.stepping_command = 0;
17b2616c 2851
a7212384 2852 /* Discard any remaining commands or status from previous stop. */
16c381f0 2853 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2854}
32400beb 2855
a7212384 2856void
70509625 2857clear_proceed_status (int step)
a7212384 2858{
f2665db5
MM
2859 /* With scheduler-locking replay, stop replaying other threads if we're
2860 not replaying the user-visible resume ptid.
2861
2862 This is a convenience feature to not require the user to explicitly
2863 stop replaying the other threads. We're assuming that the user's
2864 intent is to resume tracing the recorded process. */
2865 if (!non_stop && scheduler_mode == schedlock_replay
2866 && target_record_is_replaying (minus_one_ptid)
2867 && !target_record_will_replay (user_visible_resume_ptid (step),
2868 execution_direction))
2869 target_record_stop_replaying ();
2870
6c95b8df
PA
2871 if (!non_stop)
2872 {
70509625
PA
2873 struct thread_info *tp;
2874 ptid_t resume_ptid;
2875
2876 resume_ptid = user_visible_resume_ptid (step);
2877
2878 /* In all-stop mode, delete the per-thread status of all threads
2879 we're about to resume, implicitly and explicitly. */
2880 ALL_NON_EXITED_THREADS (tp)
2881 {
2882 if (!ptid_match (tp->ptid, resume_ptid))
2883 continue;
2884 clear_proceed_status_thread (tp);
2885 }
6c95b8df
PA
2886 }
2887
a7212384
UW
2888 if (!ptid_equal (inferior_ptid, null_ptid))
2889 {
2890 struct inferior *inferior;
2891
2892 if (non_stop)
2893 {
6c95b8df
PA
2894 /* If in non-stop mode, only delete the per-thread status of
2895 the current thread. */
a7212384
UW
2896 clear_proceed_status_thread (inferior_thread ());
2897 }
6c95b8df 2898
d6b48e9c 2899 inferior = current_inferior ();
16c381f0 2900 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2901 }
2902
f3b1572e 2903 observer_notify_about_to_proceed ();
c906108c
SS
2904}
2905
99619bea
PA
2906/* Returns true if TP is still stopped at a breakpoint that needs
2907 stepping-over in order to make progress. If the breakpoint is gone
2908 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2909
2910static int
6c4cfb24 2911thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2912{
2913 if (tp->stepping_over_breakpoint)
2914 {
2915 struct regcache *regcache = get_thread_regcache (tp->ptid);
2916
a01bda52 2917 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2918 regcache_read_pc (regcache))
2919 == ordinary_breakpoint_here)
99619bea
PA
2920 return 1;
2921
2922 tp->stepping_over_breakpoint = 0;
2923 }
2924
2925 return 0;
2926}
2927
6c4cfb24
PA
2928/* Check whether thread TP still needs to start a step-over in order
2929 to make progress when resumed. Returns an bitwise or of enum
2930 step_over_what bits, indicating what needs to be stepped over. */
2931
8d297bbf 2932static step_over_what
6c4cfb24
PA
2933thread_still_needs_step_over (struct thread_info *tp)
2934{
8d297bbf 2935 step_over_what what = 0;
6c4cfb24
PA
2936
2937 if (thread_still_needs_step_over_bp (tp))
2938 what |= STEP_OVER_BREAKPOINT;
2939
2940 if (tp->stepping_over_watchpoint
2941 && !target_have_steppable_watchpoint)
2942 what |= STEP_OVER_WATCHPOINT;
2943
2944 return what;
2945}
2946
483805cf
PA
2947/* Returns true if scheduler locking applies. STEP indicates whether
2948 we're about to do a step/next-like command to a thread. */
2949
2950static int
856e7dd6 2951schedlock_applies (struct thread_info *tp)
483805cf
PA
2952{
2953 return (scheduler_mode == schedlock_on
2954 || (scheduler_mode == schedlock_step
f2665db5
MM
2955 && tp->control.stepping_command)
2956 || (scheduler_mode == schedlock_replay
2957 && target_record_will_replay (minus_one_ptid,
2958 execution_direction)));
483805cf
PA
2959}
2960
c906108c
SS
2961/* Basic routine for continuing the program in various fashions.
2962
2963 ADDR is the address to resume at, or -1 for resume where stopped.
2964 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2965 or -1 for act according to how it stopped.
c906108c 2966 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2967 -1 means return after that and print nothing.
2968 You should probably set various step_... variables
2969 before calling here, if you are stepping.
c906108c
SS
2970
2971 You should call clear_proceed_status before calling proceed. */
2972
2973void
64ce06e4 2974proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2975{
e58b0e63
PA
2976 struct regcache *regcache;
2977 struct gdbarch *gdbarch;
4e1c45ea 2978 struct thread_info *tp;
e58b0e63 2979 CORE_ADDR pc;
4d9d9d04
PA
2980 ptid_t resume_ptid;
2981 struct execution_control_state ecss;
2982 struct execution_control_state *ecs = &ecss;
2983 struct cleanup *old_chain;
2984 int started;
c906108c 2985
e58b0e63
PA
2986 /* If we're stopped at a fork/vfork, follow the branch set by the
2987 "set follow-fork-mode" command; otherwise, we'll just proceed
2988 resuming the current thread. */
2989 if (!follow_fork ())
2990 {
2991 /* The target for some reason decided not to resume. */
2992 normal_stop ();
f148b27e
PA
2993 if (target_can_async_p ())
2994 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2995 return;
2996 }
2997
842951eb
PA
2998 /* We'll update this if & when we switch to a new thread. */
2999 previous_inferior_ptid = inferior_ptid;
3000
e58b0e63 3001 regcache = get_current_regcache ();
ac7936df 3002 gdbarch = regcache->arch ();
8b86c959
YQ
3003 const address_space *aspace = regcache->aspace ();
3004
e58b0e63 3005 pc = regcache_read_pc (regcache);
2adfaa28 3006 tp = inferior_thread ();
e58b0e63 3007
99619bea
PA
3008 /* Fill in with reasonable starting values. */
3009 init_thread_stepping_state (tp);
3010
c2829269
PA
3011 gdb_assert (!thread_is_in_step_over_chain (tp));
3012
2acceee2 3013 if (addr == (CORE_ADDR) -1)
c906108c 3014 {
af48d08f
PA
3015 if (pc == stop_pc
3016 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 3017 && execution_direction != EXEC_REVERSE)
3352ef37
AC
3018 /* There is a breakpoint at the address we will resume at,
3019 step one instruction before inserting breakpoints so that
3020 we do not stop right away (and report a second hit at this
b2175913
MS
3021 breakpoint).
3022
3023 Note, we don't do this in reverse, because we won't
3024 actually be executing the breakpoint insn anyway.
3025 We'll be (un-)executing the previous instruction. */
99619bea 3026 tp->stepping_over_breakpoint = 1;
515630c5
UW
3027 else if (gdbarch_single_step_through_delay_p (gdbarch)
3028 && gdbarch_single_step_through_delay (gdbarch,
3029 get_current_frame ()))
3352ef37
AC
3030 /* We stepped onto an instruction that needs to be stepped
3031 again before re-inserting the breakpoint, do so. */
99619bea 3032 tp->stepping_over_breakpoint = 1;
c906108c
SS
3033 }
3034 else
3035 {
515630c5 3036 regcache_write_pc (regcache, addr);
c906108c
SS
3037 }
3038
70509625
PA
3039 if (siggnal != GDB_SIGNAL_DEFAULT)
3040 tp->suspend.stop_signal = siggnal;
3041
4d9d9d04
PA
3042 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3043
3044 /* If an exception is thrown from this point on, make sure to
3045 propagate GDB's knowledge of the executing state to the
3046 frontend/user running state. */
3047 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3048
3049 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3050 threads (e.g., we might need to set threads stepping over
3051 breakpoints first), from the user/frontend's point of view, all
3052 threads in RESUME_PTID are now running. Unless we're calling an
3053 inferior function, as in that case we pretend the inferior
3054 doesn't run at all. */
3055 if (!tp->control.in_infcall)
3056 set_running (resume_ptid, 1);
17b2616c 3057
527159b7 3058 if (debug_infrun)
8a9de0e4 3059 fprintf_unfiltered (gdb_stdlog,
64ce06e4 3060 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 3061 paddress (gdbarch, addr),
64ce06e4 3062 gdb_signal_to_symbol_string (siggnal));
527159b7 3063
4d9d9d04
PA
3064 annotate_starting ();
3065
3066 /* Make sure that output from GDB appears before output from the
3067 inferior. */
3068 gdb_flush (gdb_stdout);
3069
3070 /* In a multi-threaded task we may select another thread and
3071 then continue or step.
3072
3073 But if a thread that we're resuming had stopped at a breakpoint,
3074 it will immediately cause another breakpoint stop without any
3075 execution (i.e. it will report a breakpoint hit incorrectly). So
3076 we must step over it first.
3077
3078 Look for threads other than the current (TP) that reported a
3079 breakpoint hit and haven't been resumed yet since. */
3080
3081 /* If scheduler locking applies, we can avoid iterating over all
3082 threads. */
3083 if (!non_stop && !schedlock_applies (tp))
94cc34af 3084 {
4d9d9d04
PA
3085 struct thread_info *current = tp;
3086
3087 ALL_NON_EXITED_THREADS (tp)
3088 {
3089 /* Ignore the current thread here. It's handled
3090 afterwards. */
3091 if (tp == current)
3092 continue;
99619bea 3093
4d9d9d04
PA
3094 /* Ignore threads of processes we're not resuming. */
3095 if (!ptid_match (tp->ptid, resume_ptid))
3096 continue;
c906108c 3097
4d9d9d04
PA
3098 if (!thread_still_needs_step_over (tp))
3099 continue;
3100
3101 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3102
99619bea
PA
3103 if (debug_infrun)
3104 fprintf_unfiltered (gdb_stdlog,
3105 "infrun: need to step-over [%s] first\n",
4d9d9d04 3106 target_pid_to_str (tp->ptid));
99619bea 3107
4d9d9d04 3108 thread_step_over_chain_enqueue (tp);
2adfaa28 3109 }
31e77af2 3110
4d9d9d04 3111 tp = current;
30852783
UW
3112 }
3113
4d9d9d04
PA
3114 /* Enqueue the current thread last, so that we move all other
3115 threads over their breakpoints first. */
3116 if (tp->stepping_over_breakpoint)
3117 thread_step_over_chain_enqueue (tp);
30852783 3118
4d9d9d04
PA
3119 /* If the thread isn't started, we'll still need to set its prev_pc,
3120 so that switch_back_to_stepped_thread knows the thread hasn't
3121 advanced. Must do this before resuming any thread, as in
3122 all-stop/remote, once we resume we can't send any other packet
3123 until the target stops again. */
3124 tp->prev_pc = regcache_read_pc (regcache);
99619bea 3125
a9bc57b9
TT
3126 {
3127 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
85ad3aaf 3128
a9bc57b9 3129 started = start_step_over ();
c906108c 3130
a9bc57b9
TT
3131 if (step_over_info_valid_p ())
3132 {
3133 /* Either this thread started a new in-line step over, or some
3134 other thread was already doing one. In either case, don't
3135 resume anything else until the step-over is finished. */
3136 }
3137 else if (started && !target_is_non_stop_p ())
3138 {
3139 /* A new displaced stepping sequence was started. In all-stop,
3140 we can't talk to the target anymore until it next stops. */
3141 }
3142 else if (!non_stop && target_is_non_stop_p ())
3143 {
3144 /* In all-stop, but the target is always in non-stop mode.
3145 Start all other threads that are implicitly resumed too. */
3146 ALL_NON_EXITED_THREADS (tp)
fbea99ea
PA
3147 {
3148 /* Ignore threads of processes we're not resuming. */
3149 if (!ptid_match (tp->ptid, resume_ptid))
3150 continue;
3151
3152 if (tp->resumed)
3153 {
3154 if (debug_infrun)
3155 fprintf_unfiltered (gdb_stdlog,
3156 "infrun: proceed: [%s] resumed\n",
3157 target_pid_to_str (tp->ptid));
3158 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3159 continue;
3160 }
3161
3162 if (thread_is_in_step_over_chain (tp))
3163 {
3164 if (debug_infrun)
3165 fprintf_unfiltered (gdb_stdlog,
3166 "infrun: proceed: [%s] needs step-over\n",
3167 target_pid_to_str (tp->ptid));
3168 continue;
3169 }
3170
3171 if (debug_infrun)
3172 fprintf_unfiltered (gdb_stdlog,
3173 "infrun: proceed: resuming %s\n",
3174 target_pid_to_str (tp->ptid));
3175
3176 reset_ecs (ecs, tp);
3177 switch_to_thread (tp->ptid);
3178 keep_going_pass_signal (ecs);
3179 if (!ecs->wait_some_more)
fd7dcb94 3180 error (_("Command aborted."));
fbea99ea 3181 }
a9bc57b9
TT
3182 }
3183 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
3184 {
3185 /* The thread wasn't started, and isn't queued, run it now. */
3186 reset_ecs (ecs, tp);
3187 switch_to_thread (tp->ptid);
3188 keep_going_pass_signal (ecs);
3189 if (!ecs->wait_some_more)
3190 error (_("Command aborted."));
3191 }
3192 }
c906108c 3193
85ad3aaf
PA
3194 target_commit_resume ();
3195
4d9d9d04 3196 discard_cleanups (old_chain);
c906108c 3197
0b333c5e
PA
3198 /* Tell the event loop to wait for it to stop. If the target
3199 supports asynchronous execution, it'll do this from within
3200 target_resume. */
362646f5 3201 if (!target_can_async_p ())
0b333c5e 3202 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3203}
c906108c
SS
3204\f
3205
3206/* Start remote-debugging of a machine over a serial link. */
96baa820 3207
c906108c 3208void
8621d6a9 3209start_remote (int from_tty)
c906108c 3210{
d6b48e9c 3211 struct inferior *inferior;
d6b48e9c
PA
3212
3213 inferior = current_inferior ();
16c381f0 3214 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3215
1777feb0 3216 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3217 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3218 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3219 nothing is returned (instead of just blocking). Because of this,
3220 targets expecting an immediate response need to, internally, set
3221 things up so that the target_wait() is forced to eventually
1777feb0 3222 timeout. */
6426a772
JM
3223 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3224 differentiate to its caller what the state of the target is after
3225 the initial open has been performed. Here we're assuming that
3226 the target has stopped. It should be possible to eventually have
3227 target_open() return to the caller an indication that the target
3228 is currently running and GDB state should be set to the same as
1777feb0 3229 for an async run. */
e4c8541f 3230 wait_for_inferior ();
8621d6a9
DJ
3231
3232 /* Now that the inferior has stopped, do any bookkeeping like
3233 loading shared libraries. We want to do this before normal_stop,
3234 so that the displayed frame is up to date. */
3235 post_create_inferior (&current_target, from_tty);
3236
6426a772 3237 normal_stop ();
c906108c
SS
3238}
3239
3240/* Initialize static vars when a new inferior begins. */
3241
3242void
96baa820 3243init_wait_for_inferior (void)
c906108c
SS
3244{
3245 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3246
c906108c
SS
3247 breakpoint_init_inferior (inf_starting);
3248
70509625 3249 clear_proceed_status (0);
9f976b41 3250
ca005067 3251 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3252
842951eb 3253 previous_inferior_ptid = inferior_ptid;
0d1e5fa7 3254
edb3359d
DJ
3255 /* Discard any skipped inlined frames. */
3256 clear_inline_frame_state (minus_one_ptid);
c906108c 3257}
237fc4c9 3258
c906108c 3259\f
488f131b 3260
ec9499be 3261static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3262
568d6575
UW
3263static void handle_step_into_function (struct gdbarch *gdbarch,
3264 struct execution_control_state *ecs);
3265static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3266 struct execution_control_state *ecs);
4f5d7f63 3267static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3268static void check_exception_resume (struct execution_control_state *,
28106bc2 3269 struct frame_info *);
611c83ae 3270
bdc36728 3271static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3272static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3273static void keep_going (struct execution_control_state *ecs);
94c57d6a 3274static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3275static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3276
252fbfc8
PA
3277/* This function is attached as a "thread_stop_requested" observer.
3278 Cleanup local state that assumed the PTID was to be resumed, and
3279 report the stop to the frontend. */
3280
2c0b251b 3281static void
252fbfc8
PA
3282infrun_thread_stop_requested (ptid_t ptid)
3283{
c2829269 3284 struct thread_info *tp;
252fbfc8 3285
c65d6b55
PA
3286 /* PTID was requested to stop. If the thread was already stopped,
3287 but the user/frontend doesn't know about that yet (e.g., the
3288 thread had been temporarily paused for some step-over), set up
3289 for reporting the stop now. */
c2829269
PA
3290 ALL_NON_EXITED_THREADS (tp)
3291 if (ptid_match (tp->ptid, ptid))
3292 {
c65d6b55
PA
3293 if (tp->state != THREAD_RUNNING)
3294 continue;
3295 if (tp->executing)
3296 continue;
3297
3298 /* Remove matching threads from the step-over queue, so
3299 start_step_over doesn't try to resume them
3300 automatically. */
c2829269
PA
3301 if (thread_is_in_step_over_chain (tp))
3302 thread_step_over_chain_remove (tp);
252fbfc8 3303
c65d6b55
PA
3304 /* If the thread is stopped, but the user/frontend doesn't
3305 know about that yet, queue a pending event, as if the
3306 thread had just stopped now. Unless the thread already had
3307 a pending event. */
3308 if (!tp->suspend.waitstatus_pending_p)
3309 {
3310 tp->suspend.waitstatus_pending_p = 1;
3311 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3312 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3313 }
3314
3315 /* Clear the inline-frame state, since we're re-processing the
3316 stop. */
3317 clear_inline_frame_state (tp->ptid);
3318
3319 /* If this thread was paused because some other thread was
3320 doing an inline-step over, let that finish first. Once
3321 that happens, we'll restart all threads and consume pending
3322 stop events then. */
3323 if (step_over_info_valid_p ())
3324 continue;
3325
3326 /* Otherwise we can process the (new) pending event now. Set
3327 it so this pending event is considered by
3328 do_target_wait. */
3329 tp->resumed = 1;
3330 }
252fbfc8
PA
3331}
3332
a07daef3
PA
3333static void
3334infrun_thread_thread_exit (struct thread_info *tp, int silent)
3335{
3336 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3337 nullify_last_target_wait_ptid ();
3338}
3339
0cbcdb96
PA
3340/* Delete the step resume, single-step and longjmp/exception resume
3341 breakpoints of TP. */
4e1c45ea 3342
0cbcdb96
PA
3343static void
3344delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3345{
0cbcdb96
PA
3346 delete_step_resume_breakpoint (tp);
3347 delete_exception_resume_breakpoint (tp);
34b7e8a6 3348 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3349}
3350
0cbcdb96
PA
3351/* If the target still has execution, call FUNC for each thread that
3352 just stopped. In all-stop, that's all the non-exited threads; in
3353 non-stop, that's the current thread, only. */
3354
3355typedef void (*for_each_just_stopped_thread_callback_func)
3356 (struct thread_info *tp);
4e1c45ea
PA
3357
3358static void
0cbcdb96 3359for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3360{
0cbcdb96 3361 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
4e1c45ea
PA
3362 return;
3363
fbea99ea 3364 if (target_is_non_stop_p ())
4e1c45ea 3365 {
0cbcdb96
PA
3366 /* If in non-stop mode, only the current thread stopped. */
3367 func (inferior_thread ());
4e1c45ea
PA
3368 }
3369 else
0cbcdb96
PA
3370 {
3371 struct thread_info *tp;
3372
3373 /* In all-stop mode, all threads have stopped. */
3374 ALL_NON_EXITED_THREADS (tp)
3375 {
3376 func (tp);
3377 }
3378 }
3379}
3380
3381/* Delete the step resume and longjmp/exception resume breakpoints of
3382 the threads that just stopped. */
3383
3384static void
3385delete_just_stopped_threads_infrun_breakpoints (void)
3386{
3387 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3388}
3389
3390/* Delete the single-step breakpoints of the threads that just
3391 stopped. */
7c16b83e 3392
34b7e8a6
PA
3393static void
3394delete_just_stopped_threads_single_step_breakpoints (void)
3395{
3396 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3397}
3398
1777feb0 3399/* A cleanup wrapper. */
4e1c45ea
PA
3400
3401static void
0cbcdb96 3402delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
4e1c45ea 3403{
0cbcdb96 3404 delete_just_stopped_threads_infrun_breakpoints ();
4e1c45ea
PA
3405}
3406
221e1a37 3407/* See infrun.h. */
223698f8 3408
221e1a37 3409void
223698f8
DE
3410print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3411 const struct target_waitstatus *ws)
3412{
23fdd69e 3413 std::string status_string = target_waitstatus_to_string (ws);
d7e74731 3414 string_file stb;
223698f8
DE
3415
3416 /* The text is split over several lines because it was getting too long.
3417 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3418 output as a unit; we want only one timestamp printed if debug_timestamp
3419 is set. */
3420
d7e74731
PA
3421 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3422 ptid_get_pid (waiton_ptid),
3423 ptid_get_lwp (waiton_ptid),
3424 ptid_get_tid (waiton_ptid));
dfd4cc63 3425 if (ptid_get_pid (waiton_ptid) != -1)
d7e74731
PA
3426 stb.printf (" [%s]", target_pid_to_str (waiton_ptid));
3427 stb.printf (", status) =\n");
3428 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3429 ptid_get_pid (result_ptid),
3430 ptid_get_lwp (result_ptid),
3431 ptid_get_tid (result_ptid),
3432 target_pid_to_str (result_ptid));
23fdd69e 3433 stb.printf ("infrun: %s\n", status_string.c_str ());
223698f8
DE
3434
3435 /* This uses %s in part to handle %'s in the text, but also to avoid
3436 a gcc error: the format attribute requires a string literal. */
d7e74731 3437 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3438}
3439
372316f1
PA
3440/* Select a thread at random, out of those which are resumed and have
3441 had events. */
3442
3443static struct thread_info *
3444random_pending_event_thread (ptid_t waiton_ptid)
3445{
3446 struct thread_info *event_tp;
3447 int num_events = 0;
3448 int random_selector;
3449
3450 /* First see how many events we have. Count only resumed threads
3451 that have an event pending. */
3452 ALL_NON_EXITED_THREADS (event_tp)
3453 if (ptid_match (event_tp->ptid, waiton_ptid)
3454 && event_tp->resumed
3455 && event_tp->suspend.waitstatus_pending_p)
3456 num_events++;
3457
3458 if (num_events == 0)
3459 return NULL;
3460
3461 /* Now randomly pick a thread out of those that have had events. */
3462 random_selector = (int)
3463 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3464
3465 if (debug_infrun && num_events > 1)
3466 fprintf_unfiltered (gdb_stdlog,
3467 "infrun: Found %d events, selecting #%d\n",
3468 num_events, random_selector);
3469
3470 /* Select the Nth thread that has had an event. */
3471 ALL_NON_EXITED_THREADS (event_tp)
3472 if (ptid_match (event_tp->ptid, waiton_ptid)
3473 && event_tp->resumed
3474 && event_tp->suspend.waitstatus_pending_p)
3475 if (random_selector-- == 0)
3476 break;
3477
3478 return event_tp;
3479}
3480
3481/* Wrapper for target_wait that first checks whether threads have
3482 pending statuses to report before actually asking the target for
3483 more events. */
3484
3485static ptid_t
3486do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3487{
3488 ptid_t event_ptid;
3489 struct thread_info *tp;
3490
3491 /* First check if there is a resumed thread with a wait status
3492 pending. */
3493 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3494 {
3495 tp = random_pending_event_thread (ptid);
3496 }
3497 else
3498 {
3499 if (debug_infrun)
3500 fprintf_unfiltered (gdb_stdlog,
3501 "infrun: Waiting for specific thread %s.\n",
3502 target_pid_to_str (ptid));
3503
3504 /* We have a specific thread to check. */
3505 tp = find_thread_ptid (ptid);
3506 gdb_assert (tp != NULL);
3507 if (!tp->suspend.waitstatus_pending_p)
3508 tp = NULL;
3509 }
3510
3511 if (tp != NULL
3512 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3513 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3514 {
3515 struct regcache *regcache = get_thread_regcache (tp->ptid);
ac7936df 3516 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3517 CORE_ADDR pc;
3518 int discard = 0;
3519
3520 pc = regcache_read_pc (regcache);
3521
3522 if (pc != tp->suspend.stop_pc)
3523 {
3524 if (debug_infrun)
3525 fprintf_unfiltered (gdb_stdlog,
3526 "infrun: PC of %s changed. was=%s, now=%s\n",
3527 target_pid_to_str (tp->ptid),
3528 paddress (gdbarch, tp->prev_pc),
3529 paddress (gdbarch, pc));
3530 discard = 1;
3531 }
a01bda52 3532 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1
PA
3533 {
3534 if (debug_infrun)
3535 fprintf_unfiltered (gdb_stdlog,
3536 "infrun: previous breakpoint of %s, at %s gone\n",
3537 target_pid_to_str (tp->ptid),
3538 paddress (gdbarch, pc));
3539
3540 discard = 1;
3541 }
3542
3543 if (discard)
3544 {
3545 if (debug_infrun)
3546 fprintf_unfiltered (gdb_stdlog,
3547 "infrun: pending event of %s cancelled.\n",
3548 target_pid_to_str (tp->ptid));
3549
3550 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3551 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3552 }
3553 }
3554
3555 if (tp != NULL)
3556 {
3557 if (debug_infrun)
3558 {
23fdd69e
SM
3559 std::string statstr
3560 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 3561
372316f1
PA
3562 fprintf_unfiltered (gdb_stdlog,
3563 "infrun: Using pending wait status %s for %s.\n",
23fdd69e 3564 statstr.c_str (),
372316f1 3565 target_pid_to_str (tp->ptid));
372316f1
PA
3566 }
3567
3568 /* Now that we've selected our final event LWP, un-adjust its PC
3569 if it was a software breakpoint (and the target doesn't
3570 always adjust the PC itself). */
3571 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3572 && !target_supports_stopped_by_sw_breakpoint ())
3573 {
3574 struct regcache *regcache;
3575 struct gdbarch *gdbarch;
3576 int decr_pc;
3577
3578 regcache = get_thread_regcache (tp->ptid);
ac7936df 3579 gdbarch = regcache->arch ();
372316f1
PA
3580
3581 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3582 if (decr_pc != 0)
3583 {
3584 CORE_ADDR pc;
3585
3586 pc = regcache_read_pc (regcache);
3587 regcache_write_pc (regcache, pc + decr_pc);
3588 }
3589 }
3590
3591 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3592 *status = tp->suspend.waitstatus;
3593 tp->suspend.waitstatus_pending_p = 0;
3594
3595 /* Wake up the event loop again, until all pending events are
3596 processed. */
3597 if (target_is_async_p ())
3598 mark_async_event_handler (infrun_async_inferior_event_token);
3599 return tp->ptid;
3600 }
3601
3602 /* But if we don't find one, we'll have to wait. */
3603
3604 if (deprecated_target_wait_hook)
3605 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3606 else
3607 event_ptid = target_wait (ptid, status, options);
3608
3609 return event_ptid;
3610}
3611
24291992
PA
3612/* Prepare and stabilize the inferior for detaching it. E.g.,
3613 detaching while a thread is displaced stepping is a recipe for
3614 crashing it, as nothing would readjust the PC out of the scratch
3615 pad. */
3616
3617void
3618prepare_for_detach (void)
3619{
3620 struct inferior *inf = current_inferior ();
3621 ptid_t pid_ptid = pid_to_ptid (inf->pid);
24291992
PA
3622 struct displaced_step_inferior_state *displaced;
3623
3624 displaced = get_displaced_stepping_state (inf->pid);
3625
3626 /* Is any thread of this process displaced stepping? If not,
3627 there's nothing else to do. */
3628 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3629 return;
3630
3631 if (debug_infrun)
3632 fprintf_unfiltered (gdb_stdlog,
3633 "displaced-stepping in-process while detaching");
3634
9bcb1f16 3635 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992
PA
3636
3637 while (!ptid_equal (displaced->step_ptid, null_ptid))
3638 {
3639 struct cleanup *old_chain_2;
3640 struct execution_control_state ecss;
3641 struct execution_control_state *ecs;
3642
3643 ecs = &ecss;
3644 memset (ecs, 0, sizeof (*ecs));
3645
3646 overlay_cache_invalid = 1;
f15cb84a
YQ
3647 /* Flush target cache before starting to handle each event.
3648 Target was running and cache could be stale. This is just a
3649 heuristic. Running threads may modify target memory, but we
3650 don't get any event. */
3651 target_dcache_invalidate ();
24291992 3652
372316f1 3653 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3654
3655 if (debug_infrun)
3656 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3657
3658 /* If an error happens while handling the event, propagate GDB's
3659 knowledge of the executing state to the frontend/user running
3660 state. */
3e43a32a
MS
3661 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3662 &minus_one_ptid);
24291992
PA
3663
3664 /* Now figure out what to do with the result of the result. */
3665 handle_inferior_event (ecs);
3666
3667 /* No error, don't finish the state yet. */
3668 discard_cleanups (old_chain_2);
3669
3670 /* Breakpoints and watchpoints are not installed on the target
3671 at this point, and signals are passed directly to the
3672 inferior, so this must mean the process is gone. */
3673 if (!ecs->wait_some_more)
3674 {
9bcb1f16 3675 restore_detaching.release ();
24291992
PA
3676 error (_("Program exited while detaching"));
3677 }
3678 }
3679
9bcb1f16 3680 restore_detaching.release ();
24291992
PA
3681}
3682
cd0fc7c3 3683/* Wait for control to return from inferior to debugger.
ae123ec6 3684
cd0fc7c3
SS
3685 If inferior gets a signal, we may decide to start it up again
3686 instead of returning. That is why there is a loop in this function.
3687 When this function actually returns it means the inferior
3688 should be left stopped and GDB should read more commands. */
3689
3690void
e4c8541f 3691wait_for_inferior (void)
cd0fc7c3
SS
3692{
3693 struct cleanup *old_cleanups;
e6f5c25b 3694 struct cleanup *thread_state_chain;
c906108c 3695
527159b7 3696 if (debug_infrun)
ae123ec6 3697 fprintf_unfiltered
e4c8541f 3698 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3699
0cbcdb96
PA
3700 old_cleanups
3701 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3702 NULL);
cd0fc7c3 3703
e6f5c25b
PA
3704 /* If an error happens while handling the event, propagate GDB's
3705 knowledge of the executing state to the frontend/user running
3706 state. */
3707 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3708
c906108c
SS
3709 while (1)
3710 {
ae25568b
PA
3711 struct execution_control_state ecss;
3712 struct execution_control_state *ecs = &ecss;
963f9c80 3713 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3714
ae25568b
PA
3715 memset (ecs, 0, sizeof (*ecs));
3716
ec9499be 3717 overlay_cache_invalid = 1;
ec9499be 3718
f15cb84a
YQ
3719 /* Flush target cache before starting to handle each event.
3720 Target was running and cache could be stale. This is just a
3721 heuristic. Running threads may modify target memory, but we
3722 don't get any event. */
3723 target_dcache_invalidate ();
3724
372316f1 3725 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3726
f00150c9 3727 if (debug_infrun)
223698f8 3728 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3729
cd0fc7c3
SS
3730 /* Now figure out what to do with the result of the result. */
3731 handle_inferior_event (ecs);
c906108c 3732
cd0fc7c3
SS
3733 if (!ecs->wait_some_more)
3734 break;
3735 }
4e1c45ea 3736
e6f5c25b
PA
3737 /* No error, don't finish the state yet. */
3738 discard_cleanups (thread_state_chain);
3739
cd0fc7c3
SS
3740 do_cleanups (old_cleanups);
3741}
c906108c 3742
d3d4baed
PA
3743/* Cleanup that reinstalls the readline callback handler, if the
3744 target is running in the background. If while handling the target
3745 event something triggered a secondary prompt, like e.g., a
3746 pagination prompt, we'll have removed the callback handler (see
3747 gdb_readline_wrapper_line). Need to do this as we go back to the
3748 event loop, ready to process further input. Note this has no
3749 effect if the handler hasn't actually been removed, because calling
3750 rl_callback_handler_install resets the line buffer, thus losing
3751 input. */
3752
3753static void
3754reinstall_readline_callback_handler_cleanup (void *arg)
3755{
3b12939d
PA
3756 struct ui *ui = current_ui;
3757
3758 if (!ui->async)
6c400b59
PA
3759 {
3760 /* We're not going back to the top level event loop yet. Don't
3761 install the readline callback, as it'd prep the terminal,
3762 readline-style (raw, noecho) (e.g., --batch). We'll install
3763 it the next time the prompt is displayed, when we're ready
3764 for input. */
3765 return;
3766 }
3767
3b12939d 3768 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3769 gdb_rl_callback_handler_reinstall ();
3770}
3771
243a9253
PA
3772/* Clean up the FSMs of threads that are now stopped. In non-stop,
3773 that's just the event thread. In all-stop, that's all threads. */
3774
3775static void
3776clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3777{
3778 struct thread_info *thr = ecs->event_thread;
3779
3780 if (thr != NULL && thr->thread_fsm != NULL)
8980e177 3781 thread_fsm_clean_up (thr->thread_fsm, thr);
243a9253
PA
3782
3783 if (!non_stop)
3784 {
3785 ALL_NON_EXITED_THREADS (thr)
3786 {
3787 if (thr->thread_fsm == NULL)
3788 continue;
3789 if (thr == ecs->event_thread)
3790 continue;
3791
3792 switch_to_thread (thr->ptid);
8980e177 3793 thread_fsm_clean_up (thr->thread_fsm, thr);
243a9253
PA
3794 }
3795
3796 if (ecs->event_thread != NULL)
3797 switch_to_thread (ecs->event_thread->ptid);
3798 }
3799}
3800
3b12939d
PA
3801/* Helper for all_uis_check_sync_execution_done that works on the
3802 current UI. */
3803
3804static void
3805check_curr_ui_sync_execution_done (void)
3806{
3807 struct ui *ui = current_ui;
3808
3809 if (ui->prompt_state == PROMPT_NEEDED
3810 && ui->async
3811 && !gdb_in_secondary_prompt_p (ui))
3812 {
223ffa71 3813 target_terminal::ours ();
3b12939d 3814 observer_notify_sync_execution_done ();
3eb7562a 3815 ui_register_input_event_handler (ui);
3b12939d
PA
3816 }
3817}
3818
3819/* See infrun.h. */
3820
3821void
3822all_uis_check_sync_execution_done (void)
3823{
0e454242 3824 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3825 {
3826 check_curr_ui_sync_execution_done ();
3827 }
3828}
3829
a8836c93
PA
3830/* See infrun.h. */
3831
3832void
3833all_uis_on_sync_execution_starting (void)
3834{
0e454242 3835 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3836 {
3837 if (current_ui->prompt_state == PROMPT_NEEDED)
3838 async_disable_stdin ();
3839 }
3840}
3841
1777feb0 3842/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3843 event loop whenever a change of state is detected on the file
1777feb0
MS
3844 descriptor corresponding to the target. It can be called more than
3845 once to complete a single execution command. In such cases we need
3846 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3847 that this function is called for a single execution command, then
3848 report to the user that the inferior has stopped, and do the
1777feb0 3849 necessary cleanups. */
43ff13b4
JM
3850
3851void
fba45db2 3852fetch_inferior_event (void *client_data)
43ff13b4 3853{
0d1e5fa7 3854 struct execution_control_state ecss;
a474d7c2 3855 struct execution_control_state *ecs = &ecss;
4f8d22e3 3856 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 3857 struct cleanup *ts_old_chain;
0f641c01 3858 int cmd_done = 0;
963f9c80 3859 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3860
0d1e5fa7
PA
3861 memset (ecs, 0, sizeof (*ecs));
3862
c61db772
PA
3863 /* Events are always processed with the main UI as current UI. This
3864 way, warnings, debug output, etc. are always consistently sent to
3865 the main console. */
4b6749b9 3866 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3867
d3d4baed
PA
3868 /* End up with readline processing input, if necessary. */
3869 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3870
c5187ac6
PA
3871 /* We're handling a live event, so make sure we're doing live
3872 debugging. If we're looking at traceframes while the target is
3873 running, we're going to need to get back to that mode after
3874 handling the event. */
3875 if (non_stop)
3876 {
3877 make_cleanup_restore_current_traceframe ();
e6e4e701 3878 set_current_traceframe (-1);
c5187ac6
PA
3879 }
3880
5ed8105e
PA
3881 gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3882
4f8d22e3
PA
3883 if (non_stop)
3884 /* In non-stop mode, the user/frontend should not notice a thread
3885 switch due to internal events. Make sure we reverse to the
3886 user selected thread and frame after handling the event and
3887 running any breakpoint commands. */
5ed8105e 3888 maybe_restore_thread.emplace ();
4f8d22e3 3889
ec9499be 3890 overlay_cache_invalid = 1;
f15cb84a
YQ
3891 /* Flush target cache before starting to handle each event. Target
3892 was running and cache could be stale. This is just a heuristic.
3893 Running threads may modify target memory, but we don't get any
3894 event. */
3895 target_dcache_invalidate ();
3dd5b83d 3896
b7b633e9
TT
3897 scoped_restore save_exec_dir
3898 = make_scoped_restore (&execution_direction, target_execution_direction ());
32231432 3899
0b333c5e
PA
3900 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3901 target_can_async_p () ? TARGET_WNOHANG : 0);
43ff13b4 3902
f00150c9 3903 if (debug_infrun)
223698f8 3904 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3905
29f49a6a
PA
3906 /* If an error happens while handling the event, propagate GDB's
3907 knowledge of the executing state to the frontend/user running
3908 state. */
fbea99ea 3909 if (!target_is_non_stop_p ())
29f49a6a
PA
3910 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3911 else
3912 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3913
353d1d73
JK
3914 /* Get executed before make_cleanup_restore_current_thread above to apply
3915 still for the thread which has thrown the exception. */
3916 make_bpstat_clear_actions_cleanup ();
3917
7c16b83e
PA
3918 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3919
43ff13b4 3920 /* Now figure out what to do with the result of the result. */
a474d7c2 3921 handle_inferior_event (ecs);
43ff13b4 3922
a474d7c2 3923 if (!ecs->wait_some_more)
43ff13b4 3924 {
c9657e70 3925 struct inferior *inf = find_inferior_ptid (ecs->ptid);
243a9253
PA
3926 int should_stop = 1;
3927 struct thread_info *thr = ecs->event_thread;
388a7084 3928 int should_notify_stop = 1;
d6b48e9c 3929
0cbcdb96 3930 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3931
243a9253
PA
3932 if (thr != NULL)
3933 {
3934 struct thread_fsm *thread_fsm = thr->thread_fsm;
3935
3936 if (thread_fsm != NULL)
8980e177 3937 should_stop = thread_fsm_should_stop (thread_fsm, thr);
243a9253
PA
3938 }
3939
3940 if (!should_stop)
3941 {
3942 keep_going (ecs);
3943 }
c2d11a7d 3944 else
0f641c01 3945 {
243a9253
PA
3946 clean_up_just_stopped_threads_fsms (ecs);
3947
388a7084
PA
3948 if (thr != NULL && thr->thread_fsm != NULL)
3949 {
3950 should_notify_stop
3951 = thread_fsm_should_notify_stop (thr->thread_fsm);
3952 }
3953
3954 if (should_notify_stop)
3955 {
4c2f2a79
PA
3956 int proceeded = 0;
3957
388a7084
PA
3958 /* We may not find an inferior if this was a process exit. */
3959 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4c2f2a79 3960 proceeded = normal_stop ();
243a9253 3961
4c2f2a79
PA
3962 if (!proceeded)
3963 {
3964 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3965 cmd_done = 1;
3966 }
388a7084 3967 }
0f641c01 3968 }
43ff13b4 3969 }
4f8d22e3 3970
29f49a6a
PA
3971 /* No error, don't finish the thread states yet. */
3972 discard_cleanups (ts_old_chain);
3973
4f8d22e3
PA
3974 /* Revert thread and frame. */
3975 do_cleanups (old_chain);
3976
3b12939d
PA
3977 /* If a UI was in sync execution mode, and now isn't, restore its
3978 prompt (a synchronous execution command has finished, and we're
3979 ready for input). */
3980 all_uis_check_sync_execution_done ();
0f641c01
PA
3981
3982 if (cmd_done
0f641c01
PA
3983 && exec_done_display_p
3984 && (ptid_equal (inferior_ptid, null_ptid)
3985 || !is_running (inferior_ptid)))
3986 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3987}
3988
edb3359d
DJ
3989/* Record the frame and location we're currently stepping through. */
3990void
3991set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3992{
3993 struct thread_info *tp = inferior_thread ();
3994
16c381f0
JK
3995 tp->control.step_frame_id = get_frame_id (frame);
3996 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
3997
3998 tp->current_symtab = sal.symtab;
3999 tp->current_line = sal.line;
4000}
4001
0d1e5fa7
PA
4002/* Clear context switchable stepping state. */
4003
4004void
4e1c45ea 4005init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 4006{
7f5ef605 4007 tss->stepped_breakpoint = 0;
0d1e5fa7 4008 tss->stepping_over_breakpoint = 0;
963f9c80 4009 tss->stepping_over_watchpoint = 0;
0d1e5fa7 4010 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
4011}
4012
c32c64b7
DE
4013/* Set the cached copy of the last ptid/waitstatus. */
4014
6efcd9a8 4015void
c32c64b7
DE
4016set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4017{
4018 target_last_wait_ptid = ptid;
4019 target_last_waitstatus = status;
4020}
4021
e02bc4cc 4022/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
4023 target_wait()/deprecated_target_wait_hook(). The data is actually
4024 cached by handle_inferior_event(), which gets called immediately
4025 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
4026
4027void
488f131b 4028get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 4029{
39f77062 4030 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
4031 *status = target_last_waitstatus;
4032}
4033
ac264b3b
MS
4034void
4035nullify_last_target_wait_ptid (void)
4036{
4037 target_last_wait_ptid = minus_one_ptid;
4038}
4039
dcf4fbde 4040/* Switch thread contexts. */
dd80620e
MS
4041
4042static void
0d1e5fa7 4043context_switch (ptid_t ptid)
dd80620e 4044{
4b51d87b 4045 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
4046 {
4047 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4048 target_pid_to_str (inferior_ptid));
4049 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 4050 target_pid_to_str (ptid));
fd48f117
DJ
4051 }
4052
0d1e5fa7 4053 switch_to_thread (ptid);
dd80620e
MS
4054}
4055
d8dd4d5f
PA
4056/* If the target can't tell whether we've hit breakpoints
4057 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4058 check whether that could have been caused by a breakpoint. If so,
4059 adjust the PC, per gdbarch_decr_pc_after_break. */
4060
4fa8626c 4061static void
d8dd4d5f
PA
4062adjust_pc_after_break (struct thread_info *thread,
4063 struct target_waitstatus *ws)
4fa8626c 4064{
24a73cce
UW
4065 struct regcache *regcache;
4066 struct gdbarch *gdbarch;
118e6252 4067 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4068
4fa8626c
DJ
4069 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4070 we aren't, just return.
9709f61c
DJ
4071
4072 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4073 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4074 implemented by software breakpoints should be handled through the normal
4075 breakpoint layer.
8fb3e588 4076
4fa8626c
DJ
4077 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4078 different signals (SIGILL or SIGEMT for instance), but it is less
4079 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4080 gdbarch_decr_pc_after_break. I don't know any specific target that
4081 generates these signals at breakpoints (the code has been in GDB since at
4082 least 1992) so I can not guess how to handle them here.
8fb3e588 4083
e6cf7916
UW
4084 In earlier versions of GDB, a target with
4085 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4086 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4087 target with both of these set in GDB history, and it seems unlikely to be
4088 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4089
d8dd4d5f 4090 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4091 return;
4092
d8dd4d5f 4093 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4094 return;
4095
4058b839
PA
4096 /* In reverse execution, when a breakpoint is hit, the instruction
4097 under it has already been de-executed. The reported PC always
4098 points at the breakpoint address, so adjusting it further would
4099 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4100 architecture:
4101
4102 B1 0x08000000 : INSN1
4103 B2 0x08000001 : INSN2
4104 0x08000002 : INSN3
4105 PC -> 0x08000003 : INSN4
4106
4107 Say you're stopped at 0x08000003 as above. Reverse continuing
4108 from that point should hit B2 as below. Reading the PC when the
4109 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4110 been de-executed already.
4111
4112 B1 0x08000000 : INSN1
4113 B2 PC -> 0x08000001 : INSN2
4114 0x08000002 : INSN3
4115 0x08000003 : INSN4
4116
4117 We can't apply the same logic as for forward execution, because
4118 we would wrongly adjust the PC to 0x08000000, since there's a
4119 breakpoint at PC - 1. We'd then report a hit on B1, although
4120 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4121 behaviour. */
4122 if (execution_direction == EXEC_REVERSE)
4123 return;
4124
1cf4d951
PA
4125 /* If the target can tell whether the thread hit a SW breakpoint,
4126 trust it. Targets that can tell also adjust the PC
4127 themselves. */
4128 if (target_supports_stopped_by_sw_breakpoint ())
4129 return;
4130
4131 /* Note that relying on whether a breakpoint is planted in memory to
4132 determine this can fail. E.g,. the breakpoint could have been
4133 removed since. Or the thread could have been told to step an
4134 instruction the size of a breakpoint instruction, and only
4135 _after_ was a breakpoint inserted at its address. */
4136
24a73cce
UW
4137 /* If this target does not decrement the PC after breakpoints, then
4138 we have nothing to do. */
d8dd4d5f 4139 regcache = get_thread_regcache (thread->ptid);
ac7936df 4140 gdbarch = regcache->arch ();
118e6252 4141
527a273a 4142 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4143 if (decr_pc == 0)
24a73cce
UW
4144 return;
4145
8b86c959 4146 const address_space *aspace = regcache->aspace ();
6c95b8df 4147
8aad930b
AC
4148 /* Find the location where (if we've hit a breakpoint) the
4149 breakpoint would be. */
118e6252 4150 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4151
1cf4d951
PA
4152 /* If the target can't tell whether a software breakpoint triggered,
4153 fallback to figuring it out based on breakpoints we think were
4154 inserted in the target, and on whether the thread was stepped or
4155 continued. */
4156
1c5cfe86
PA
4157 /* Check whether there actually is a software breakpoint inserted at
4158 that location.
4159
4160 If in non-stop mode, a race condition is possible where we've
4161 removed a breakpoint, but stop events for that breakpoint were
4162 already queued and arrive later. To suppress those spurious
4163 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4164 and retire them after a number of stop events are reported. Note
4165 this is an heuristic and can thus get confused. The real fix is
4166 to get the "stopped by SW BP and needs adjustment" info out of
4167 the target/kernel (and thus never reach here; see above). */
6c95b8df 4168 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4169 || (target_is_non_stop_p ()
4170 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4171 {
07036511 4172 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 4173
8213266a 4174 if (record_full_is_used ())
07036511
TT
4175 restore_operation_disable.emplace
4176 (record_full_gdb_operation_disable_set ());
96429cc8 4177
1c0fdd0e
UW
4178 /* When using hardware single-step, a SIGTRAP is reported for both
4179 a completed single-step and a software breakpoint. Need to
4180 differentiate between the two, as the latter needs adjusting
4181 but the former does not.
4182
4183 The SIGTRAP can be due to a completed hardware single-step only if
4184 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4185 - this thread is currently being stepped
4186
4187 If any of these events did not occur, we must have stopped due
4188 to hitting a software breakpoint, and have to back up to the
4189 breakpoint address.
4190
4191 As a special case, we could have hardware single-stepped a
4192 software breakpoint. In this case (prev_pc == breakpoint_pc),
4193 we also need to back up to the breakpoint address. */
4194
d8dd4d5f
PA
4195 if (thread_has_single_step_breakpoints_set (thread)
4196 || !currently_stepping (thread)
4197 || (thread->stepped_breakpoint
4198 && thread->prev_pc == breakpoint_pc))
515630c5 4199 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4200 }
4fa8626c
DJ
4201}
4202
edb3359d
DJ
4203static int
4204stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4205{
4206 for (frame = get_prev_frame (frame);
4207 frame != NULL;
4208 frame = get_prev_frame (frame))
4209 {
4210 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4211 return 1;
4212 if (get_frame_type (frame) != INLINE_FRAME)
4213 break;
4214 }
4215
4216 return 0;
4217}
4218
c65d6b55
PA
4219/* If the event thread has the stop requested flag set, pretend it
4220 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4221 target_stop). */
4222
4223static bool
4224handle_stop_requested (struct execution_control_state *ecs)
4225{
4226 if (ecs->event_thread->stop_requested)
4227 {
4228 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4229 ecs->ws.value.sig = GDB_SIGNAL_0;
4230 handle_signal_stop (ecs);
4231 return true;
4232 }
4233 return false;
4234}
4235
a96d9b2e
SDJ
4236/* Auxiliary function that handles syscall entry/return events.
4237 It returns 1 if the inferior should keep going (and GDB
4238 should ignore the event), or 0 if the event deserves to be
4239 processed. */
ca2163eb 4240
a96d9b2e 4241static int
ca2163eb 4242handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4243{
ca2163eb 4244 struct regcache *regcache;
ca2163eb
PA
4245 int syscall_number;
4246
4247 if (!ptid_equal (ecs->ptid, inferior_ptid))
4248 context_switch (ecs->ptid);
4249
4250 regcache = get_thread_regcache (ecs->ptid);
f90263c1 4251 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
4252 stop_pc = regcache_read_pc (regcache);
4253
a96d9b2e
SDJ
4254 if (catch_syscall_enabled () > 0
4255 && catching_syscall_number (syscall_number) > 0)
4256 {
4257 if (debug_infrun)
4258 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4259 syscall_number);
a96d9b2e 4260
16c381f0 4261 ecs->event_thread->control.stop_bpstat
a01bda52 4262 = bpstat_stop_status (regcache->aspace (),
09ac7c10 4263 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4264
c65d6b55
PA
4265 if (handle_stop_requested (ecs))
4266 return 0;
4267
ce12b012 4268 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4269 {
4270 /* Catchpoint hit. */
ca2163eb
PA
4271 return 0;
4272 }
a96d9b2e 4273 }
ca2163eb 4274
c65d6b55
PA
4275 if (handle_stop_requested (ecs))
4276 return 0;
4277
ca2163eb 4278 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4279 keep_going (ecs);
4280 return 1;
a96d9b2e
SDJ
4281}
4282
7e324e48
GB
4283/* Lazily fill in the execution_control_state's stop_func_* fields. */
4284
4285static void
4286fill_in_stop_func (struct gdbarch *gdbarch,
4287 struct execution_control_state *ecs)
4288{
4289 if (!ecs->stop_func_filled_in)
4290 {
4291 /* Don't care about return value; stop_func_start and stop_func_name
4292 will both be 0 if it doesn't work. */
4293 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4294 &ecs->stop_func_start, &ecs->stop_func_end);
4295 ecs->stop_func_start
4296 += gdbarch_deprecated_function_start_offset (gdbarch);
4297
591a12a1
UW
4298 if (gdbarch_skip_entrypoint_p (gdbarch))
4299 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4300 ecs->stop_func_start);
4301
7e324e48
GB
4302 ecs->stop_func_filled_in = 1;
4303 }
4304}
4305
4f5d7f63
PA
4306
4307/* Return the STOP_SOON field of the inferior pointed at by PTID. */
4308
4309static enum stop_kind
4310get_inferior_stop_soon (ptid_t ptid)
4311{
c9657e70 4312 struct inferior *inf = find_inferior_ptid (ptid);
4f5d7f63
PA
4313
4314 gdb_assert (inf != NULL);
4315 return inf->control.stop_soon;
4316}
4317
372316f1
PA
4318/* Wait for one event. Store the resulting waitstatus in WS, and
4319 return the event ptid. */
4320
4321static ptid_t
4322wait_one (struct target_waitstatus *ws)
4323{
4324 ptid_t event_ptid;
4325 ptid_t wait_ptid = minus_one_ptid;
4326
4327 overlay_cache_invalid = 1;
4328
4329 /* Flush target cache before starting to handle each event.
4330 Target was running and cache could be stale. This is just a
4331 heuristic. Running threads may modify target memory, but we
4332 don't get any event. */
4333 target_dcache_invalidate ();
4334
4335 if (deprecated_target_wait_hook)
4336 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4337 else
4338 event_ptid = target_wait (wait_ptid, ws, 0);
4339
4340 if (debug_infrun)
4341 print_target_wait_results (wait_ptid, event_ptid, ws);
4342
4343 return event_ptid;
4344}
4345
4346/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4347 instead of the current thread. */
4348#define THREAD_STOPPED_BY(REASON) \
4349static int \
4350thread_stopped_by_ ## REASON (ptid_t ptid) \
4351{ \
2989a365 4352 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
372316f1
PA
4353 inferior_ptid = ptid; \
4354 \
2989a365 4355 return target_stopped_by_ ## REASON (); \
372316f1
PA
4356}
4357
4358/* Generate thread_stopped_by_watchpoint. */
4359THREAD_STOPPED_BY (watchpoint)
4360/* Generate thread_stopped_by_sw_breakpoint. */
4361THREAD_STOPPED_BY (sw_breakpoint)
4362/* Generate thread_stopped_by_hw_breakpoint. */
4363THREAD_STOPPED_BY (hw_breakpoint)
4364
4365/* Cleanups that switches to the PTID pointed at by PTID_P. */
4366
4367static void
4368switch_to_thread_cleanup (void *ptid_p)
4369{
4370 ptid_t ptid = *(ptid_t *) ptid_p;
4371
4372 switch_to_thread (ptid);
4373}
4374
4375/* Save the thread's event and stop reason to process it later. */
4376
4377static void
4378save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4379{
4380 struct regcache *regcache;
372316f1
PA
4381
4382 if (debug_infrun)
4383 {
23fdd69e 4384 std::string statstr = target_waitstatus_to_string (ws);
372316f1 4385
372316f1
PA
4386 fprintf_unfiltered (gdb_stdlog,
4387 "infrun: saving status %s for %d.%ld.%ld\n",
23fdd69e 4388 statstr.c_str (),
372316f1
PA
4389 ptid_get_pid (tp->ptid),
4390 ptid_get_lwp (tp->ptid),
4391 ptid_get_tid (tp->ptid));
372316f1
PA
4392 }
4393
4394 /* Record for later. */
4395 tp->suspend.waitstatus = *ws;
4396 tp->suspend.waitstatus_pending_p = 1;
4397
4398 regcache = get_thread_regcache (tp->ptid);
8b86c959 4399 const address_space *aspace = regcache->aspace ();
372316f1
PA
4400
4401 if (ws->kind == TARGET_WAITKIND_STOPPED
4402 && ws->value.sig == GDB_SIGNAL_TRAP)
4403 {
4404 CORE_ADDR pc = regcache_read_pc (regcache);
4405
4406 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4407
4408 if (thread_stopped_by_watchpoint (tp->ptid))
4409 {
4410 tp->suspend.stop_reason
4411 = TARGET_STOPPED_BY_WATCHPOINT;
4412 }
4413 else if (target_supports_stopped_by_sw_breakpoint ()
4414 && thread_stopped_by_sw_breakpoint (tp->ptid))
4415 {
4416 tp->suspend.stop_reason
4417 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4418 }
4419 else if (target_supports_stopped_by_hw_breakpoint ()
4420 && thread_stopped_by_hw_breakpoint (tp->ptid))
4421 {
4422 tp->suspend.stop_reason
4423 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4424 }
4425 else if (!target_supports_stopped_by_hw_breakpoint ()
4426 && hardware_breakpoint_inserted_here_p (aspace,
4427 pc))
4428 {
4429 tp->suspend.stop_reason
4430 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4431 }
4432 else if (!target_supports_stopped_by_sw_breakpoint ()
4433 && software_breakpoint_inserted_here_p (aspace,
4434 pc))
4435 {
4436 tp->suspend.stop_reason
4437 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4438 }
4439 else if (!thread_has_single_step_breakpoints_set (tp)
4440 && currently_stepping (tp))
4441 {
4442 tp->suspend.stop_reason
4443 = TARGET_STOPPED_BY_SINGLE_STEP;
4444 }
4445 }
4446}
4447
65706a29
PA
4448/* A cleanup that disables thread create/exit events. */
4449
4450static void
4451disable_thread_events (void *arg)
4452{
4453 target_thread_events (0);
4454}
4455
6efcd9a8 4456/* See infrun.h. */
372316f1 4457
6efcd9a8 4458void
372316f1
PA
4459stop_all_threads (void)
4460{
4461 /* We may need multiple passes to discover all threads. */
4462 int pass;
4463 int iterations = 0;
4464 ptid_t entry_ptid;
4465 struct cleanup *old_chain;
4466
fbea99ea 4467 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4468
4469 if (debug_infrun)
4470 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4471
4472 entry_ptid = inferior_ptid;
4473 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4474
65706a29
PA
4475 target_thread_events (1);
4476 make_cleanup (disable_thread_events, NULL);
4477
372316f1
PA
4478 /* Request threads to stop, and then wait for the stops. Because
4479 threads we already know about can spawn more threads while we're
4480 trying to stop them, and we only learn about new threads when we
4481 update the thread list, do this in a loop, and keep iterating
4482 until two passes find no threads that need to be stopped. */
4483 for (pass = 0; pass < 2; pass++, iterations++)
4484 {
4485 if (debug_infrun)
4486 fprintf_unfiltered (gdb_stdlog,
4487 "infrun: stop_all_threads, pass=%d, "
4488 "iterations=%d\n", pass, iterations);
4489 while (1)
4490 {
4491 ptid_t event_ptid;
4492 struct target_waitstatus ws;
4493 int need_wait = 0;
4494 struct thread_info *t;
4495
4496 update_thread_list ();
4497
4498 /* Go through all threads looking for threads that we need
4499 to tell the target to stop. */
4500 ALL_NON_EXITED_THREADS (t)
4501 {
4502 if (t->executing)
4503 {
4504 /* If already stopping, don't request a stop again.
4505 We just haven't seen the notification yet. */
4506 if (!t->stop_requested)
4507 {
4508 if (debug_infrun)
4509 fprintf_unfiltered (gdb_stdlog,
4510 "infrun: %s executing, "
4511 "need stop\n",
4512 target_pid_to_str (t->ptid));
4513 target_stop (t->ptid);
4514 t->stop_requested = 1;
4515 }
4516 else
4517 {
4518 if (debug_infrun)
4519 fprintf_unfiltered (gdb_stdlog,
4520 "infrun: %s executing, "
4521 "already stopping\n",
4522 target_pid_to_str (t->ptid));
4523 }
4524
4525 if (t->stop_requested)
4526 need_wait = 1;
4527 }
4528 else
4529 {
4530 if (debug_infrun)
4531 fprintf_unfiltered (gdb_stdlog,
4532 "infrun: %s not executing\n",
4533 target_pid_to_str (t->ptid));
4534
4535 /* The thread may be not executing, but still be
4536 resumed with a pending status to process. */
4537 t->resumed = 0;
4538 }
4539 }
4540
4541 if (!need_wait)
4542 break;
4543
4544 /* If we find new threads on the second iteration, restart
4545 over. We want to see two iterations in a row with all
4546 threads stopped. */
4547 if (pass > 0)
4548 pass = -1;
4549
4550 event_ptid = wait_one (&ws);
4551 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4552 {
4553 /* All resumed threads exited. */
4554 }
65706a29
PA
4555 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4556 || ws.kind == TARGET_WAITKIND_EXITED
372316f1
PA
4557 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4558 {
4559 if (debug_infrun)
4560 {
4561 ptid_t ptid = pid_to_ptid (ws.value.integer);
4562
4563 fprintf_unfiltered (gdb_stdlog,
4564 "infrun: %s exited while "
4565 "stopping threads\n",
4566 target_pid_to_str (ptid));
4567 }
4568 }
4569 else
4570 {
6efcd9a8
PA
4571 struct inferior *inf;
4572
372316f1
PA
4573 t = find_thread_ptid (event_ptid);
4574 if (t == NULL)
4575 t = add_thread (event_ptid);
4576
4577 t->stop_requested = 0;
4578 t->executing = 0;
4579 t->resumed = 0;
4580 t->control.may_range_step = 0;
4581
6efcd9a8
PA
4582 /* This may be the first time we see the inferior report
4583 a stop. */
4584 inf = find_inferior_ptid (event_ptid);
4585 if (inf->needs_setup)
4586 {
4587 switch_to_thread_no_regs (t);
4588 setup_inferior (0);
4589 }
4590
372316f1
PA
4591 if (ws.kind == TARGET_WAITKIND_STOPPED
4592 && ws.value.sig == GDB_SIGNAL_0)
4593 {
4594 /* We caught the event that we intended to catch, so
4595 there's no event pending. */
4596 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4597 t->suspend.waitstatus_pending_p = 0;
4598
4599 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4600 {
4601 /* Add it back to the step-over queue. */
4602 if (debug_infrun)
4603 {
4604 fprintf_unfiltered (gdb_stdlog,
4605 "infrun: displaced-step of %s "
4606 "canceled: adding back to the "
4607 "step-over queue\n",
4608 target_pid_to_str (t->ptid));
4609 }
4610 t->control.trap_expected = 0;
4611 thread_step_over_chain_enqueue (t);
4612 }
4613 }
4614 else
4615 {
4616 enum gdb_signal sig;
4617 struct regcache *regcache;
372316f1
PA
4618
4619 if (debug_infrun)
4620 {
23fdd69e 4621 std::string statstr = target_waitstatus_to_string (&ws);
372316f1 4622
372316f1
PA
4623 fprintf_unfiltered (gdb_stdlog,
4624 "infrun: target_wait %s, saving "
4625 "status for %d.%ld.%ld\n",
23fdd69e 4626 statstr.c_str (),
372316f1
PA
4627 ptid_get_pid (t->ptid),
4628 ptid_get_lwp (t->ptid),
4629 ptid_get_tid (t->ptid));
372316f1
PA
4630 }
4631
4632 /* Record for later. */
4633 save_waitstatus (t, &ws);
4634
4635 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4636 ? ws.value.sig : GDB_SIGNAL_0);
4637
4638 if (displaced_step_fixup (t->ptid, sig) < 0)
4639 {
4640 /* Add it back to the step-over queue. */
4641 t->control.trap_expected = 0;
4642 thread_step_over_chain_enqueue (t);
4643 }
4644
4645 regcache = get_thread_regcache (t->ptid);
4646 t->suspend.stop_pc = regcache_read_pc (regcache);
4647
4648 if (debug_infrun)
4649 {
4650 fprintf_unfiltered (gdb_stdlog,
4651 "infrun: saved stop_pc=%s for %s "
4652 "(currently_stepping=%d)\n",
4653 paddress (target_gdbarch (),
4654 t->suspend.stop_pc),
4655 target_pid_to_str (t->ptid),
4656 currently_stepping (t));
4657 }
4658 }
4659 }
4660 }
4661 }
4662
4663 do_cleanups (old_chain);
4664
4665 if (debug_infrun)
4666 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4667}
4668
f4836ba9
PA
4669/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4670
4671static int
4672handle_no_resumed (struct execution_control_state *ecs)
4673{
4674 struct inferior *inf;
4675 struct thread_info *thread;
4676
3b12939d 4677 if (target_can_async_p ())
f4836ba9 4678 {
3b12939d
PA
4679 struct ui *ui;
4680 int any_sync = 0;
f4836ba9 4681
3b12939d
PA
4682 ALL_UIS (ui)
4683 {
4684 if (ui->prompt_state == PROMPT_BLOCKED)
4685 {
4686 any_sync = 1;
4687 break;
4688 }
4689 }
4690 if (!any_sync)
4691 {
4692 /* There were no unwaited-for children left in the target, but,
4693 we're not synchronously waiting for events either. Just
4694 ignore. */
4695
4696 if (debug_infrun)
4697 fprintf_unfiltered (gdb_stdlog,
4698 "infrun: TARGET_WAITKIND_NO_RESUMED "
4699 "(ignoring: bg)\n");
4700 prepare_to_wait (ecs);
4701 return 1;
4702 }
f4836ba9
PA
4703 }
4704
4705 /* Otherwise, if we were running a synchronous execution command, we
4706 may need to cancel it and give the user back the terminal.
4707
4708 In non-stop mode, the target can't tell whether we've already
4709 consumed previous stop events, so it can end up sending us a
4710 no-resumed event like so:
4711
4712 #0 - thread 1 is left stopped
4713
4714 #1 - thread 2 is resumed and hits breakpoint
4715 -> TARGET_WAITKIND_STOPPED
4716
4717 #2 - thread 3 is resumed and exits
4718 this is the last resumed thread, so
4719 -> TARGET_WAITKIND_NO_RESUMED
4720
4721 #3 - gdb processes stop for thread 2 and decides to re-resume
4722 it.
4723
4724 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4725 thread 2 is now resumed, so the event should be ignored.
4726
4727 IOW, if the stop for thread 2 doesn't end a foreground command,
4728 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4729 event. But it could be that the event meant that thread 2 itself
4730 (or whatever other thread was the last resumed thread) exited.
4731
4732 To address this we refresh the thread list and check whether we
4733 have resumed threads _now_. In the example above, this removes
4734 thread 3 from the thread list. If thread 2 was re-resumed, we
4735 ignore this event. If we find no thread resumed, then we cancel
4736 the synchronous command show "no unwaited-for " to the user. */
4737 update_thread_list ();
4738
4739 ALL_NON_EXITED_THREADS (thread)
4740 {
4741 if (thread->executing
4742 || thread->suspend.waitstatus_pending_p)
4743 {
4744 /* There were no unwaited-for children left in the target at
4745 some point, but there are now. Just ignore. */
4746 if (debug_infrun)
4747 fprintf_unfiltered (gdb_stdlog,
4748 "infrun: TARGET_WAITKIND_NO_RESUMED "
4749 "(ignoring: found resumed)\n");
4750 prepare_to_wait (ecs);
4751 return 1;
4752 }
4753 }
4754
4755 /* Note however that we may find no resumed thread because the whole
4756 process exited meanwhile (thus updating the thread list results
4757 in an empty thread list). In this case we know we'll be getting
4758 a process exit event shortly. */
4759 ALL_INFERIORS (inf)
4760 {
4761 if (inf->pid == 0)
4762 continue;
4763
4764 thread = any_live_thread_of_process (inf->pid);
4765 if (thread == NULL)
4766 {
4767 if (debug_infrun)
4768 fprintf_unfiltered (gdb_stdlog,
4769 "infrun: TARGET_WAITKIND_NO_RESUMED "
4770 "(expect process exit)\n");
4771 prepare_to_wait (ecs);
4772 return 1;
4773 }
4774 }
4775
4776 /* Go ahead and report the event. */
4777 return 0;
4778}
4779
05ba8510
PA
4780/* Given an execution control state that has been freshly filled in by
4781 an event from the inferior, figure out what it means and take
4782 appropriate action.
4783
4784 The alternatives are:
4785
22bcd14b 4786 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4787 debugger.
4788
4789 2) keep_going and return; to wait for the next event (set
4790 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4791 once). */
c906108c 4792
ec9499be 4793static void
0b6e5e10 4794handle_inferior_event_1 (struct execution_control_state *ecs)
cd0fc7c3 4795{
d6b48e9c
PA
4796 enum stop_kind stop_soon;
4797
28736962
PA
4798 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4799 {
4800 /* We had an event in the inferior, but we are not interested in
4801 handling it at this level. The lower layers have already
4802 done what needs to be done, if anything.
4803
4804 One of the possible circumstances for this is when the
4805 inferior produces output for the console. The inferior has
4806 not stopped, and we are ignoring the event. Another possible
4807 circumstance is any event which the lower level knows will be
4808 reported multiple times without an intervening resume. */
4809 if (debug_infrun)
4810 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4811 prepare_to_wait (ecs);
4812 return;
4813 }
4814
65706a29
PA
4815 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4816 {
4817 if (debug_infrun)
4818 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4819 prepare_to_wait (ecs);
4820 return;
4821 }
4822
0e5bf2a8 4823 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
4824 && handle_no_resumed (ecs))
4825 return;
0e5bf2a8 4826
1777feb0 4827 /* Cache the last pid/waitstatus. */
c32c64b7 4828 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4829
ca005067 4830 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4831 stop_stack_dummy = STOP_NONE;
ca005067 4832
0e5bf2a8
PA
4833 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4834 {
4835 /* No unwaited-for children left. IOW, all resumed children
4836 have exited. */
4837 if (debug_infrun)
4838 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4839
4840 stop_print_frame = 0;
22bcd14b 4841 stop_waiting (ecs);
0e5bf2a8
PA
4842 return;
4843 }
4844
8c90c137 4845 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4846 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4847 {
4848 ecs->event_thread = find_thread_ptid (ecs->ptid);
4849 /* If it's a new thread, add it to the thread database. */
4850 if (ecs->event_thread == NULL)
4851 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4852
4853 /* Disable range stepping. If the next step request could use a
4854 range, this will be end up re-enabled then. */
4855 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4856 }
88ed393a
JK
4857
4858 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4859 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4860
4861 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4862 reinit_frame_cache ();
4863
28736962
PA
4864 breakpoint_retire_moribund ();
4865
2b009048
DJ
4866 /* First, distinguish signals caused by the debugger from signals
4867 that have to do with the program's own actions. Note that
4868 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4869 on the operating system version. Here we detect when a SIGILL or
4870 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4871 something similar for SIGSEGV, since a SIGSEGV will be generated
4872 when we're trying to execute a breakpoint instruction on a
4873 non-executable stack. This happens for call dummy breakpoints
4874 for architectures like SPARC that place call dummies on the
4875 stack. */
2b009048 4876 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4877 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4878 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4879 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4880 {
de0a0249
UW
4881 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4882
a01bda52 4883 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
4884 regcache_read_pc (regcache)))
4885 {
4886 if (debug_infrun)
4887 fprintf_unfiltered (gdb_stdlog,
4888 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4889 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4890 }
2b009048
DJ
4891 }
4892
28736962
PA
4893 /* Mark the non-executing threads accordingly. In all-stop, all
4894 threads of all processes are stopped when we get any event
e1316e60 4895 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4896 {
4897 ptid_t mark_ptid;
4898
fbea99ea 4899 if (!target_is_non_stop_p ())
372316f1
PA
4900 mark_ptid = minus_one_ptid;
4901 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4902 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4903 {
4904 /* If we're handling a process exit in non-stop mode, even
4905 though threads haven't been deleted yet, one would think
4906 that there is nothing to do, as threads of the dead process
4907 will be soon deleted, and threads of any other process were
4908 left running. However, on some targets, threads survive a
4909 process exit event. E.g., for the "checkpoint" command,
4910 when the current checkpoint/fork exits, linux-fork.c
4911 automatically switches to another fork from within
4912 target_mourn_inferior, by associating the same
4913 inferior/thread to another fork. We haven't mourned yet at
4914 this point, but we must mark any threads left in the
4915 process as not-executing so that finish_thread_state marks
4916 them stopped (in the user's perspective) if/when we present
4917 the stop to the user. */
4918 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4919 }
4920 else
4921 mark_ptid = ecs->ptid;
4922
4923 set_executing (mark_ptid, 0);
4924
4925 /* Likewise the resumed flag. */
4926 set_resumed (mark_ptid, 0);
4927 }
8c90c137 4928
488f131b
JB
4929 switch (ecs->ws.kind)
4930 {
4931 case TARGET_WAITKIND_LOADED:
527159b7 4932 if (debug_infrun)
8a9de0e4 4933 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
5c09a2c5
PA
4934 if (!ptid_equal (ecs->ptid, inferior_ptid))
4935 context_switch (ecs->ptid);
b0f4b84b
DJ
4936 /* Ignore gracefully during startup of the inferior, as it might
4937 be the shell which has just loaded some objects, otherwise
4938 add the symbols for the newly loaded objects. Also ignore at
4939 the beginning of an attach or remote session; we will query
4940 the full list of libraries once the connection is
4941 established. */
4f5d7f63
PA
4942
4943 stop_soon = get_inferior_stop_soon (ecs->ptid);
c0236d92 4944 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4945 {
edcc5120
TT
4946 struct regcache *regcache;
4947
edcc5120
TT
4948 regcache = get_thread_regcache (ecs->ptid);
4949
4950 handle_solib_event ();
4951
4952 ecs->event_thread->control.stop_bpstat
a01bda52 4953 = bpstat_stop_status (regcache->aspace (),
edcc5120 4954 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4955
c65d6b55
PA
4956 if (handle_stop_requested (ecs))
4957 return;
4958
ce12b012 4959 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4960 {
4961 /* A catchpoint triggered. */
94c57d6a
PA
4962 process_event_stop_test (ecs);
4963 return;
edcc5120 4964 }
488f131b 4965
b0f4b84b
DJ
4966 /* If requested, stop when the dynamic linker notifies
4967 gdb of events. This allows the user to get control
4968 and place breakpoints in initializer routines for
4969 dynamically loaded objects (among other things). */
a493e3e2 4970 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4971 if (stop_on_solib_events)
4972 {
55409f9d
DJ
4973 /* Make sure we print "Stopped due to solib-event" in
4974 normal_stop. */
4975 stop_print_frame = 1;
4976
22bcd14b 4977 stop_waiting (ecs);
b0f4b84b
DJ
4978 return;
4979 }
488f131b 4980 }
b0f4b84b
DJ
4981
4982 /* If we are skipping through a shell, or through shared library
4983 loading that we aren't interested in, resume the program. If
5c09a2c5 4984 we're running the program normally, also resume. */
b0f4b84b
DJ
4985 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4986 {
74960c60
VP
4987 /* Loading of shared libraries might have changed breakpoint
4988 addresses. Make sure new breakpoints are inserted. */
a25a5a45 4989 if (stop_soon == NO_STOP_QUIETLY)
74960c60 4990 insert_breakpoints ();
64ce06e4 4991 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
4992 prepare_to_wait (ecs);
4993 return;
4994 }
4995
5c09a2c5
PA
4996 /* But stop if we're attaching or setting up a remote
4997 connection. */
4998 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4999 || stop_soon == STOP_QUIETLY_REMOTE)
5000 {
5001 if (debug_infrun)
5002 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 5003 stop_waiting (ecs);
5c09a2c5
PA
5004 return;
5005 }
5006
5007 internal_error (__FILE__, __LINE__,
5008 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 5009
488f131b 5010 case TARGET_WAITKIND_SPURIOUS:
527159b7 5011 if (debug_infrun)
8a9de0e4 5012 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
c65d6b55
PA
5013 if (handle_stop_requested (ecs))
5014 return;
64776a0b 5015 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 5016 context_switch (ecs->ptid);
64ce06e4 5017 resume (GDB_SIGNAL_0);
488f131b
JB
5018 prepare_to_wait (ecs);
5019 return;
c5aa993b 5020
65706a29
PA
5021 case TARGET_WAITKIND_THREAD_CREATED:
5022 if (debug_infrun)
5023 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
c65d6b55
PA
5024 if (handle_stop_requested (ecs))
5025 return;
65706a29
PA
5026 if (!ptid_equal (ecs->ptid, inferior_ptid))
5027 context_switch (ecs->ptid);
5028 if (!switch_back_to_stepped_thread (ecs))
5029 keep_going (ecs);
5030 return;
5031
488f131b 5032 case TARGET_WAITKIND_EXITED:
940c3c06 5033 case TARGET_WAITKIND_SIGNALLED:
527159b7 5034 if (debug_infrun)
940c3c06
PA
5035 {
5036 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5037 fprintf_unfiltered (gdb_stdlog,
5038 "infrun: TARGET_WAITKIND_EXITED\n");
5039 else
5040 fprintf_unfiltered (gdb_stdlog,
5041 "infrun: TARGET_WAITKIND_SIGNALLED\n");
5042 }
5043
fb66883a 5044 inferior_ptid = ecs->ptid;
c9657e70 5045 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
5046 set_current_program_space (current_inferior ()->pspace);
5047 handle_vfork_child_exec_or_exit (0);
223ffa71 5048 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 5049
0c557179
SDJ
5050 /* Clearing any previous state of convenience variables. */
5051 clear_exit_convenience_vars ();
5052
940c3c06
PA
5053 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5054 {
5055 /* Record the exit code in the convenience variable $_exitcode, so
5056 that the user can inspect this again later. */
5057 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5058 (LONGEST) ecs->ws.value.integer);
5059
5060 /* Also record this in the inferior itself. */
5061 current_inferior ()->has_exit_code = 1;
5062 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 5063
98eb56a4
PA
5064 /* Support the --return-child-result option. */
5065 return_child_result_value = ecs->ws.value.integer;
5066
fd664c91 5067 observer_notify_exited (ecs->ws.value.integer);
940c3c06
PA
5068 }
5069 else
0c557179
SDJ
5070 {
5071 struct regcache *regcache = get_thread_regcache (ecs->ptid);
ac7936df 5072 struct gdbarch *gdbarch = regcache->arch ();
0c557179
SDJ
5073
5074 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5075 {
5076 /* Set the value of the internal variable $_exitsignal,
5077 which holds the signal uncaught by the inferior. */
5078 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5079 gdbarch_gdb_signal_to_target (gdbarch,
5080 ecs->ws.value.sig));
5081 }
5082 else
5083 {
5084 /* We don't have access to the target's method used for
5085 converting between signal numbers (GDB's internal
5086 representation <-> target's representation).
5087 Therefore, we cannot do a good job at displaying this
5088 information to the user. It's better to just warn
5089 her about it (if infrun debugging is enabled), and
5090 give up. */
5091 if (debug_infrun)
5092 fprintf_filtered (gdb_stdlog, _("\
5093Cannot fill $_exitsignal with the correct signal number.\n"));
5094 }
5095
fd664c91 5096 observer_notify_signal_exited (ecs->ws.value.sig);
0c557179 5097 }
8cf64490 5098
488f131b 5099 gdb_flush (gdb_stdout);
bc1e6c81 5100 target_mourn_inferior (inferior_ptid);
488f131b 5101 stop_print_frame = 0;
22bcd14b 5102 stop_waiting (ecs);
488f131b 5103 return;
c5aa993b 5104
488f131b 5105 /* The following are the only cases in which we keep going;
1777feb0 5106 the above cases end in a continue or goto. */
488f131b 5107 case TARGET_WAITKIND_FORKED:
deb3b17b 5108 case TARGET_WAITKIND_VFORKED:
527159b7 5109 if (debug_infrun)
fed708ed
PA
5110 {
5111 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5112 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5113 else
5114 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5115 }
c906108c 5116
e2d96639
YQ
5117 /* Check whether the inferior is displaced stepping. */
5118 {
5119 struct regcache *regcache = get_thread_regcache (ecs->ptid);
ac7936df 5120 struct gdbarch *gdbarch = regcache->arch ();
e2d96639
YQ
5121
5122 /* If checking displaced stepping is supported, and thread
5123 ecs->ptid is displaced stepping. */
c0987663 5124 if (displaced_step_in_progress_thread (ecs->ptid))
e2d96639
YQ
5125 {
5126 struct inferior *parent_inf
c9657e70 5127 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
5128 struct regcache *child_regcache;
5129 CORE_ADDR parent_pc;
5130
5131 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5132 indicating that the displaced stepping of syscall instruction
5133 has been done. Perform cleanup for parent process here. Note
5134 that this operation also cleans up the child process for vfork,
5135 because their pages are shared. */
a493e3e2 5136 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
c2829269
PA
5137 /* Start a new step-over in another thread if there's one
5138 that needs it. */
5139 start_step_over ();
e2d96639
YQ
5140
5141 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5142 {
c0987663
YQ
5143 struct displaced_step_inferior_state *displaced
5144 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
5145
e2d96639
YQ
5146 /* Restore scratch pad for child process. */
5147 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5148 }
5149
5150 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5151 the child's PC is also within the scratchpad. Set the child's PC
5152 to the parent's PC value, which has already been fixed up.
5153 FIXME: we use the parent's aspace here, although we're touching
5154 the child, because the child hasn't been added to the inferior
5155 list yet at this point. */
5156
5157 child_regcache
5158 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5159 gdbarch,
5160 parent_inf->aspace);
5161 /* Read PC value of parent process. */
5162 parent_pc = regcache_read_pc (regcache);
5163
5164 if (debug_displaced)
5165 fprintf_unfiltered (gdb_stdlog,
5166 "displaced: write child pc from %s to %s\n",
5167 paddress (gdbarch,
5168 regcache_read_pc (child_regcache)),
5169 paddress (gdbarch, parent_pc));
5170
5171 regcache_write_pc (child_regcache, parent_pc);
5172 }
5173 }
5174
5a2901d9 5175 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 5176 context_switch (ecs->ptid);
5a2901d9 5177
b242c3c2
PA
5178 /* Immediately detach breakpoints from the child before there's
5179 any chance of letting the user delete breakpoints from the
5180 breakpoint lists. If we don't do this early, it's easy to
5181 leave left over traps in the child, vis: "break foo; catch
5182 fork; c; <fork>; del; c; <child calls foo>". We only follow
5183 the fork on the last `continue', and by that time the
5184 breakpoint at "foo" is long gone from the breakpoint table.
5185 If we vforked, then we don't need to unpatch here, since both
5186 parent and child are sharing the same memory pages; we'll
5187 need to unpatch at follow/detach time instead to be certain
5188 that new breakpoints added between catchpoint hit time and
5189 vfork follow are detached. */
5190 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5191 {
b242c3c2
PA
5192 /* This won't actually modify the breakpoint list, but will
5193 physically remove the breakpoints from the child. */
d80ee84f 5194 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5195 }
5196
34b7e8a6 5197 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5198
e58b0e63
PA
5199 /* In case the event is caught by a catchpoint, remember that
5200 the event is to be followed at the next resume of the thread,
5201 and not immediately. */
5202 ecs->event_thread->pending_follow = ecs->ws;
5203
fb14de7b 5204 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 5205
16c381f0 5206 ecs->event_thread->control.stop_bpstat
a01bda52 5207 = bpstat_stop_status (get_current_regcache ()->aspace (),
09ac7c10 5208 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 5209
c65d6b55
PA
5210 if (handle_stop_requested (ecs))
5211 return;
5212
ce12b012
PA
5213 /* If no catchpoint triggered for this, then keep going. Note
5214 that we're interested in knowing the bpstat actually causes a
5215 stop, not just if it may explain the signal. Software
5216 watchpoints, for example, always appear in the bpstat. */
5217 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5218 {
6c95b8df
PA
5219 ptid_t parent;
5220 ptid_t child;
e58b0e63 5221 int should_resume;
3e43a32a
MS
5222 int follow_child
5223 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5224
a493e3e2 5225 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
5226
5227 should_resume = follow_fork ();
5228
6c95b8df
PA
5229 parent = ecs->ptid;
5230 child = ecs->ws.value.related_pid;
5231
a2077e25
PA
5232 /* At this point, the parent is marked running, and the
5233 child is marked stopped. */
5234
5235 /* If not resuming the parent, mark it stopped. */
5236 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5237 set_running (parent, 0);
5238
5239 /* If resuming the child, mark it running. */
5240 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5241 set_running (child, 1);
5242
6c95b8df 5243 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5244 if (!detach_fork && (non_stop
5245 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5246 {
5247 if (follow_child)
5248 switch_to_thread (parent);
5249 else
5250 switch_to_thread (child);
5251
5252 ecs->event_thread = inferior_thread ();
5253 ecs->ptid = inferior_ptid;
5254 keep_going (ecs);
5255 }
5256
5257 if (follow_child)
5258 switch_to_thread (child);
5259 else
5260 switch_to_thread (parent);
5261
e58b0e63
PA
5262 ecs->event_thread = inferior_thread ();
5263 ecs->ptid = inferior_ptid;
5264
5265 if (should_resume)
5266 keep_going (ecs);
5267 else
22bcd14b 5268 stop_waiting (ecs);
04e68871
DJ
5269 return;
5270 }
94c57d6a
PA
5271 process_event_stop_test (ecs);
5272 return;
488f131b 5273
6c95b8df
PA
5274 case TARGET_WAITKIND_VFORK_DONE:
5275 /* Done with the shared memory region. Re-insert breakpoints in
5276 the parent, and keep going. */
5277
5278 if (debug_infrun)
3e43a32a
MS
5279 fprintf_unfiltered (gdb_stdlog,
5280 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
5281
5282 if (!ptid_equal (ecs->ptid, inferior_ptid))
5283 context_switch (ecs->ptid);
5284
5285 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5286 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5287
5288 if (handle_stop_requested (ecs))
5289 return;
5290
6c95b8df
PA
5291 /* This also takes care of reinserting breakpoints in the
5292 previously locked inferior. */
5293 keep_going (ecs);
5294 return;
5295
488f131b 5296 case TARGET_WAITKIND_EXECD:
527159b7 5297 if (debug_infrun)
fc5261f2 5298 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 5299
cbd2b4e3
PA
5300 /* Note we can't read registers yet (the stop_pc), because we
5301 don't yet know the inferior's post-exec architecture.
5302 'stop_pc' is explicitly read below instead. */
5a2901d9 5303 if (!ptid_equal (ecs->ptid, inferior_ptid))
cbd2b4e3 5304 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5305
6c95b8df
PA
5306 /* Do whatever is necessary to the parent branch of the vfork. */
5307 handle_vfork_child_exec_or_exit (1);
5308
795e548f
PA
5309 /* This causes the eventpoints and symbol table to be reset.
5310 Must do this now, before trying to determine whether to
5311 stop. */
71b43ef8 5312 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5313
1bb7c059
SM
5314 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5315
17d8546e
DB
5316 /* In follow_exec we may have deleted the original thread and
5317 created a new one. Make sure that the event thread is the
5318 execd thread for that case (this is a nop otherwise). */
5319 ecs->event_thread = inferior_thread ();
5320
16c381f0 5321 ecs->event_thread->control.stop_bpstat
a01bda52 5322 = bpstat_stop_status (get_current_regcache ()->aspace (),
09ac7c10 5323 stop_pc, ecs->ptid, &ecs->ws);
795e548f 5324
71b43ef8
PA
5325 /* Note that this may be referenced from inside
5326 bpstat_stop_status above, through inferior_has_execd. */
5327 xfree (ecs->ws.value.execd_pathname);
5328 ecs->ws.value.execd_pathname = NULL;
5329
c65d6b55
PA
5330 if (handle_stop_requested (ecs))
5331 return;
5332
04e68871 5333 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5334 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5335 {
a493e3e2 5336 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5337 keep_going (ecs);
5338 return;
5339 }
94c57d6a
PA
5340 process_event_stop_test (ecs);
5341 return;
488f131b 5342
b4dc5ffa
MK
5343 /* Be careful not to try to gather much state about a thread
5344 that's in a syscall. It's frequently a losing proposition. */
488f131b 5345 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 5346 if (debug_infrun)
3e43a32a
MS
5347 fprintf_unfiltered (gdb_stdlog,
5348 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 5349 /* Getting the current syscall number. */
94c57d6a
PA
5350 if (handle_syscall_event (ecs) == 0)
5351 process_event_stop_test (ecs);
5352 return;
c906108c 5353
488f131b
JB
5354 /* Before examining the threads further, step this thread to
5355 get it entirely out of the syscall. (We get notice of the
5356 event when the thread is just on the verge of exiting a
5357 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5358 into user code.) */
488f131b 5359 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 5360 if (debug_infrun)
3e43a32a
MS
5361 fprintf_unfiltered (gdb_stdlog,
5362 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
5363 if (handle_syscall_event (ecs) == 0)
5364 process_event_stop_test (ecs);
5365 return;
c906108c 5366
488f131b 5367 case TARGET_WAITKIND_STOPPED:
527159b7 5368 if (debug_infrun)
8a9de0e4 5369 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
4f5d7f63
PA
5370 handle_signal_stop (ecs);
5371 return;
c906108c 5372
b2175913 5373 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
5374 if (debug_infrun)
5375 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 5376 /* Reverse execution: target ran out of history info. */
eab402df 5377
d1988021
MM
5378 /* Switch to the stopped thread. */
5379 if (!ptid_equal (ecs->ptid, inferior_ptid))
5380 context_switch (ecs->ptid);
5381 if (debug_infrun)
5382 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5383
34b7e8a6 5384 delete_just_stopped_threads_single_step_breakpoints ();
d1988021 5385 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
c65d6b55
PA
5386
5387 if (handle_stop_requested (ecs))
5388 return;
5389
fd664c91 5390 observer_notify_no_history ();
22bcd14b 5391 stop_waiting (ecs);
b2175913 5392 return;
488f131b 5393 }
4f5d7f63
PA
5394}
5395
0b6e5e10
JB
5396/* A wrapper around handle_inferior_event_1, which also makes sure
5397 that all temporary struct value objects that were created during
5398 the handling of the event get deleted at the end. */
5399
5400static void
5401handle_inferior_event (struct execution_control_state *ecs)
5402{
5403 struct value *mark = value_mark ();
5404
5405 handle_inferior_event_1 (ecs);
5406 /* Purge all temporary values created during the event handling,
5407 as it could be a long time before we return to the command level
5408 where such values would otherwise be purged. */
5409 value_free_to_mark (mark);
5410}
5411
372316f1
PA
5412/* Restart threads back to what they were trying to do back when we
5413 paused them for an in-line step-over. The EVENT_THREAD thread is
5414 ignored. */
4d9d9d04
PA
5415
5416static void
372316f1
PA
5417restart_threads (struct thread_info *event_thread)
5418{
5419 struct thread_info *tp;
372316f1
PA
5420
5421 /* In case the instruction just stepped spawned a new thread. */
5422 update_thread_list ();
5423
5424 ALL_NON_EXITED_THREADS (tp)
5425 {
5426 if (tp == event_thread)
5427 {
5428 if (debug_infrun)
5429 fprintf_unfiltered (gdb_stdlog,
5430 "infrun: restart threads: "
5431 "[%s] is event thread\n",
5432 target_pid_to_str (tp->ptid));
5433 continue;
5434 }
5435
5436 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5437 {
5438 if (debug_infrun)
5439 fprintf_unfiltered (gdb_stdlog,
5440 "infrun: restart threads: "
5441 "[%s] not meant to be running\n",
5442 target_pid_to_str (tp->ptid));
5443 continue;
5444 }
5445
5446 if (tp->resumed)
5447 {
5448 if (debug_infrun)
5449 fprintf_unfiltered (gdb_stdlog,
5450 "infrun: restart threads: [%s] resumed\n",
5451 target_pid_to_str (tp->ptid));
5452 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5453 continue;
5454 }
5455
5456 if (thread_is_in_step_over_chain (tp))
5457 {
5458 if (debug_infrun)
5459 fprintf_unfiltered (gdb_stdlog,
5460 "infrun: restart threads: "
5461 "[%s] needs step-over\n",
5462 target_pid_to_str (tp->ptid));
5463 gdb_assert (!tp->resumed);
5464 continue;
5465 }
5466
5467
5468 if (tp->suspend.waitstatus_pending_p)
5469 {
5470 if (debug_infrun)
5471 fprintf_unfiltered (gdb_stdlog,
5472 "infrun: restart threads: "
5473 "[%s] has pending status\n",
5474 target_pid_to_str (tp->ptid));
5475 tp->resumed = 1;
5476 continue;
5477 }
5478
c65d6b55
PA
5479 gdb_assert (!tp->stop_requested);
5480
372316f1
PA
5481 /* If some thread needs to start a step-over at this point, it
5482 should still be in the step-over queue, and thus skipped
5483 above. */
5484 if (thread_still_needs_step_over (tp))
5485 {
5486 internal_error (__FILE__, __LINE__,
5487 "thread [%s] needs a step-over, but not in "
5488 "step-over queue\n",
5489 target_pid_to_str (tp->ptid));
5490 }
5491
5492 if (currently_stepping (tp))
5493 {
5494 if (debug_infrun)
5495 fprintf_unfiltered (gdb_stdlog,
5496 "infrun: restart threads: [%s] was stepping\n",
5497 target_pid_to_str (tp->ptid));
5498 keep_going_stepped_thread (tp);
5499 }
5500 else
5501 {
5502 struct execution_control_state ecss;
5503 struct execution_control_state *ecs = &ecss;
5504
5505 if (debug_infrun)
5506 fprintf_unfiltered (gdb_stdlog,
5507 "infrun: restart threads: [%s] continuing\n",
5508 target_pid_to_str (tp->ptid));
5509 reset_ecs (ecs, tp);
5510 switch_to_thread (tp->ptid);
5511 keep_going_pass_signal (ecs);
5512 }
5513 }
5514}
5515
5516/* Callback for iterate_over_threads. Find a resumed thread that has
5517 a pending waitstatus. */
5518
5519static int
5520resumed_thread_with_pending_status (struct thread_info *tp,
5521 void *arg)
5522{
5523 return (tp->resumed
5524 && tp->suspend.waitstatus_pending_p);
5525}
5526
5527/* Called when we get an event that may finish an in-line or
5528 out-of-line (displaced stepping) step-over started previously.
5529 Return true if the event is processed and we should go back to the
5530 event loop; false if the caller should continue processing the
5531 event. */
5532
5533static int
4d9d9d04
PA
5534finish_step_over (struct execution_control_state *ecs)
5535{
372316f1
PA
5536 int had_step_over_info;
5537
4d9d9d04
PA
5538 displaced_step_fixup (ecs->ptid,
5539 ecs->event_thread->suspend.stop_signal);
5540
372316f1
PA
5541 had_step_over_info = step_over_info_valid_p ();
5542
5543 if (had_step_over_info)
4d9d9d04
PA
5544 {
5545 /* If we're stepping over a breakpoint with all threads locked,
5546 then only the thread that was stepped should be reporting
5547 back an event. */
5548 gdb_assert (ecs->event_thread->control.trap_expected);
5549
c65d6b55 5550 clear_step_over_info ();
4d9d9d04
PA
5551 }
5552
fbea99ea 5553 if (!target_is_non_stop_p ())
372316f1 5554 return 0;
4d9d9d04
PA
5555
5556 /* Start a new step-over in another thread if there's one that
5557 needs it. */
5558 start_step_over ();
372316f1
PA
5559
5560 /* If we were stepping over a breakpoint before, and haven't started
5561 a new in-line step-over sequence, then restart all other threads
5562 (except the event thread). We can't do this in all-stop, as then
5563 e.g., we wouldn't be able to issue any other remote packet until
5564 these other threads stop. */
5565 if (had_step_over_info && !step_over_info_valid_p ())
5566 {
5567 struct thread_info *pending;
5568
5569 /* If we only have threads with pending statuses, the restart
5570 below won't restart any thread and so nothing re-inserts the
5571 breakpoint we just stepped over. But we need it inserted
5572 when we later process the pending events, otherwise if
5573 another thread has a pending event for this breakpoint too,
5574 we'd discard its event (because the breakpoint that
5575 originally caused the event was no longer inserted). */
5576 context_switch (ecs->ptid);
5577 insert_breakpoints ();
5578
5579 restart_threads (ecs->event_thread);
5580
5581 /* If we have events pending, go through handle_inferior_event
5582 again, picking up a pending event at random. This avoids
5583 thread starvation. */
5584
5585 /* But not if we just stepped over a watchpoint in order to let
5586 the instruction execute so we can evaluate its expression.
5587 The set of watchpoints that triggered is recorded in the
5588 breakpoint objects themselves (see bp->watchpoint_triggered).
5589 If we processed another event first, that other event could
5590 clobber this info. */
5591 if (ecs->event_thread->stepping_over_watchpoint)
5592 return 0;
5593
5594 pending = iterate_over_threads (resumed_thread_with_pending_status,
5595 NULL);
5596 if (pending != NULL)
5597 {
5598 struct thread_info *tp = ecs->event_thread;
5599 struct regcache *regcache;
5600
5601 if (debug_infrun)
5602 {
5603 fprintf_unfiltered (gdb_stdlog,
5604 "infrun: found resumed threads with "
5605 "pending events, saving status\n");
5606 }
5607
5608 gdb_assert (pending != tp);
5609
5610 /* Record the event thread's event for later. */
5611 save_waitstatus (tp, &ecs->ws);
5612 /* This was cleared early, by handle_inferior_event. Set it
5613 so this pending event is considered by
5614 do_target_wait. */
5615 tp->resumed = 1;
5616
5617 gdb_assert (!tp->executing);
5618
5619 regcache = get_thread_regcache (tp->ptid);
5620 tp->suspend.stop_pc = regcache_read_pc (regcache);
5621
5622 if (debug_infrun)
5623 {
5624 fprintf_unfiltered (gdb_stdlog,
5625 "infrun: saved stop_pc=%s for %s "
5626 "(currently_stepping=%d)\n",
5627 paddress (target_gdbarch (),
5628 tp->suspend.stop_pc),
5629 target_pid_to_str (tp->ptid),
5630 currently_stepping (tp));
5631 }
5632
5633 /* This in-line step-over finished; clear this so we won't
5634 start a new one. This is what handle_signal_stop would
5635 do, if we returned false. */
5636 tp->stepping_over_breakpoint = 0;
5637
5638 /* Wake up the event loop again. */
5639 mark_async_event_handler (infrun_async_inferior_event_token);
5640
5641 prepare_to_wait (ecs);
5642 return 1;
5643 }
5644 }
5645
5646 return 0;
4d9d9d04
PA
5647}
5648
4f5d7f63
PA
5649/* Come here when the program has stopped with a signal. */
5650
5651static void
5652handle_signal_stop (struct execution_control_state *ecs)
5653{
5654 struct frame_info *frame;
5655 struct gdbarch *gdbarch;
5656 int stopped_by_watchpoint;
5657 enum stop_kind stop_soon;
5658 int random_signal;
c906108c 5659
f0407826
DE
5660 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5661
c65d6b55
PA
5662 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5663
f0407826
DE
5664 /* Do we need to clean up the state of a thread that has
5665 completed a displaced single-step? (Doing so usually affects
5666 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5667 if (finish_step_over (ecs))
5668 return;
f0407826
DE
5669
5670 /* If we either finished a single-step or hit a breakpoint, but
5671 the user wanted this thread to be stopped, pretend we got a
5672 SIG0 (generic unsignaled stop). */
5673 if (ecs->event_thread->stop_requested
5674 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5675 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5676
515630c5 5677 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 5678
527159b7 5679 if (debug_infrun)
237fc4c9 5680 {
5af949e3 5681 struct regcache *regcache = get_thread_regcache (ecs->ptid);
ac7936df 5682 struct gdbarch *gdbarch = regcache->arch ();
2989a365 5683 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
7f82dfc7
JK
5684
5685 inferior_ptid = ecs->ptid;
5af949e3
UW
5686
5687 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5688 paddress (gdbarch, stop_pc));
d92524f1 5689 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5690 {
5691 CORE_ADDR addr;
abbb1732 5692
237fc4c9
PA
5693 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5694
5695 if (target_stopped_data_address (&current_target, &addr))
5696 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5697 "infrun: stopped data address = %s\n",
5698 paddress (gdbarch, addr));
237fc4c9
PA
5699 else
5700 fprintf_unfiltered (gdb_stdlog,
5701 "infrun: (no data address available)\n");
5702 }
5703 }
527159b7 5704
36fa8042
PA
5705 /* This is originated from start_remote(), start_inferior() and
5706 shared libraries hook functions. */
5707 stop_soon = get_inferior_stop_soon (ecs->ptid);
5708 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5709 {
5710 if (!ptid_equal (ecs->ptid, inferior_ptid))
5711 context_switch (ecs->ptid);
5712 if (debug_infrun)
5713 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5714 stop_print_frame = 1;
22bcd14b 5715 stop_waiting (ecs);
36fa8042
PA
5716 return;
5717 }
5718
36fa8042
PA
5719 /* This originates from attach_command(). We need to overwrite
5720 the stop_signal here, because some kernels don't ignore a
5721 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5722 See more comments in inferior.h. On the other hand, if we
5723 get a non-SIGSTOP, report it to the user - assume the backend
5724 will handle the SIGSTOP if it should show up later.
5725
5726 Also consider that the attach is complete when we see a
5727 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5728 target extended-remote report it instead of a SIGSTOP
5729 (e.g. gdbserver). We already rely on SIGTRAP being our
5730 signal, so this is no exception.
5731
5732 Also consider that the attach is complete when we see a
5733 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5734 the target to stop all threads of the inferior, in case the
5735 low level attach operation doesn't stop them implicitly. If
5736 they weren't stopped implicitly, then the stub will report a
5737 GDB_SIGNAL_0, meaning: stopped for no particular reason
5738 other than GDB's request. */
5739 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5740 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5741 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5742 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5743 {
5744 stop_print_frame = 1;
22bcd14b 5745 stop_waiting (ecs);
36fa8042
PA
5746 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5747 return;
5748 }
5749
488f131b 5750 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
5751 so, then switch to that thread. */
5752 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 5753 {
527159b7 5754 if (debug_infrun)
8a9de0e4 5755 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5756
0d1e5fa7 5757 context_switch (ecs->ptid);
c5aa993b 5758
9a4105ab 5759 if (deprecated_context_hook)
5d5658a1 5760 deprecated_context_hook (ptid_to_global_thread_id (ecs->ptid));
488f131b 5761 }
c906108c 5762
568d6575
UW
5763 /* At this point, get hold of the now-current thread's frame. */
5764 frame = get_current_frame ();
5765 gdbarch = get_frame_arch (frame);
5766
2adfaa28 5767 /* Pull the single step breakpoints out of the target. */
af48d08f 5768 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5769 {
af48d08f 5770 struct regcache *regcache;
af48d08f 5771 CORE_ADDR pc;
2adfaa28 5772
af48d08f 5773 regcache = get_thread_regcache (ecs->ptid);
8b86c959
YQ
5774 const address_space *aspace = regcache->aspace ();
5775
af48d08f 5776 pc = regcache_read_pc (regcache);
34b7e8a6 5777
af48d08f
PA
5778 /* However, before doing so, if this single-step breakpoint was
5779 actually for another thread, set this thread up for moving
5780 past it. */
5781 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5782 aspace, pc))
5783 {
5784 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5785 {
5786 if (debug_infrun)
5787 {
5788 fprintf_unfiltered (gdb_stdlog,
af48d08f 5789 "infrun: [%s] hit another thread's "
34b7e8a6
PA
5790 "single-step breakpoint\n",
5791 target_pid_to_str (ecs->ptid));
2adfaa28 5792 }
af48d08f
PA
5793 ecs->hit_singlestep_breakpoint = 1;
5794 }
5795 }
5796 else
5797 {
5798 if (debug_infrun)
5799 {
5800 fprintf_unfiltered (gdb_stdlog,
5801 "infrun: [%s] hit its "
5802 "single-step breakpoint\n",
5803 target_pid_to_str (ecs->ptid));
2adfaa28
PA
5804 }
5805 }
488f131b 5806 }
af48d08f 5807 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5808
963f9c80
PA
5809 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5810 && ecs->event_thread->control.trap_expected
5811 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5812 stopped_by_watchpoint = 0;
5813 else
5814 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5815
5816 /* If necessary, step over this watchpoint. We'll be back to display
5817 it in a moment. */
5818 if (stopped_by_watchpoint
d92524f1 5819 && (target_have_steppable_watchpoint
568d6575 5820 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5821 {
488f131b
JB
5822 /* At this point, we are stopped at an instruction which has
5823 attempted to write to a piece of memory under control of
5824 a watchpoint. The instruction hasn't actually executed
5825 yet. If we were to evaluate the watchpoint expression
5826 now, we would get the old value, and therefore no change
5827 would seem to have occurred.
5828
5829 In order to make watchpoints work `right', we really need
5830 to complete the memory write, and then evaluate the
d983da9c
DJ
5831 watchpoint expression. We do this by single-stepping the
5832 target.
5833
7f89fd65 5834 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5835 it. For example, the PA can (with some kernel cooperation)
5836 single step over a watchpoint without disabling the watchpoint.
5837
5838 It is far more common to need to disable a watchpoint to step
5839 the inferior over it. If we have non-steppable watchpoints,
5840 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5841 disable all watchpoints.
5842
5843 Any breakpoint at PC must also be stepped over -- if there's
5844 one, it will have already triggered before the watchpoint
5845 triggered, and we either already reported it to the user, or
5846 it didn't cause a stop and we called keep_going. In either
5847 case, if there was a breakpoint at PC, we must be trying to
5848 step past it. */
5849 ecs->event_thread->stepping_over_watchpoint = 1;
5850 keep_going (ecs);
488f131b
JB
5851 return;
5852 }
5853
4e1c45ea 5854 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5855 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5856 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5857 ecs->event_thread->control.stop_step = 0;
488f131b 5858 stop_print_frame = 1;
488f131b 5859 stopped_by_random_signal = 0;
488f131b 5860
edb3359d
DJ
5861 /* Hide inlined functions starting here, unless we just performed stepi or
5862 nexti. After stepi and nexti, always show the innermost frame (not any
5863 inline function call sites). */
16c381f0 5864 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 5865 {
8b86c959 5866 const address_space *aspace =
a01bda52 5867 get_thread_regcache (ecs->ptid)->aspace ();
0574c78f
GB
5868
5869 /* skip_inline_frames is expensive, so we avoid it if we can
5870 determine that the address is one where functions cannot have
5871 been inlined. This improves performance with inferiors that
5872 load a lot of shared libraries, because the solib event
5873 breakpoint is defined as the address of a function (i.e. not
5874 inline). Note that we have to check the previous PC as well
5875 as the current one to catch cases when we have just
5876 single-stepped off a breakpoint prior to reinstating it.
5877 Note that we're assuming that the code we single-step to is
5878 not inline, but that's not definitive: there's nothing
5879 preventing the event breakpoint function from containing
5880 inlined code, and the single-step ending up there. If the
5881 user had set a breakpoint on that inlined code, the missing
5882 skip_inline_frames call would break things. Fortunately
5883 that's an extremely unlikely scenario. */
09ac7c10 5884 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
5885 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5886 && ecs->event_thread->control.trap_expected
5887 && pc_at_non_inline_function (aspace,
5888 ecs->event_thread->prev_pc,
09ac7c10 5889 &ecs->ws)))
1c5a993e
MR
5890 {
5891 skip_inline_frames (ecs->ptid);
5892
5893 /* Re-fetch current thread's frame in case that invalidated
5894 the frame cache. */
5895 frame = get_current_frame ();
5896 gdbarch = get_frame_arch (frame);
5897 }
0574c78f 5898 }
edb3359d 5899
a493e3e2 5900 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5901 && ecs->event_thread->control.trap_expected
568d6575 5902 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5903 && currently_stepping (ecs->event_thread))
3352ef37 5904 {
b50d7442 5905 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5906 also on an instruction that needs to be stepped multiple
1777feb0 5907 times before it's been fully executing. E.g., architectures
3352ef37
AC
5908 with a delay slot. It needs to be stepped twice, once for
5909 the instruction and once for the delay slot. */
5910 int step_through_delay
568d6575 5911 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5912
527159b7 5913 if (debug_infrun && step_through_delay)
8a9de0e4 5914 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5915 if (ecs->event_thread->control.step_range_end == 0
5916 && step_through_delay)
3352ef37
AC
5917 {
5918 /* The user issued a continue when stopped at a breakpoint.
5919 Set up for another trap and get out of here. */
4e1c45ea 5920 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5921 keep_going (ecs);
5922 return;
5923 }
5924 else if (step_through_delay)
5925 {
5926 /* The user issued a step when stopped at a breakpoint.
5927 Maybe we should stop, maybe we should not - the delay
5928 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5929 case, don't decide that here, just set
5930 ecs->stepping_over_breakpoint, making sure we
5931 single-step again before breakpoints are re-inserted. */
4e1c45ea 5932 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5933 }
5934 }
5935
ab04a2af
TT
5936 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5937 handles this event. */
5938 ecs->event_thread->control.stop_bpstat
a01bda52 5939 = bpstat_stop_status (get_current_regcache ()->aspace (),
ab04a2af 5940 stop_pc, ecs->ptid, &ecs->ws);
db82e815 5941
ab04a2af
TT
5942 /* Following in case break condition called a
5943 function. */
5944 stop_print_frame = 1;
73dd234f 5945
ab04a2af
TT
5946 /* This is where we handle "moribund" watchpoints. Unlike
5947 software breakpoints traps, hardware watchpoint traps are
5948 always distinguishable from random traps. If no high-level
5949 watchpoint is associated with the reported stop data address
5950 anymore, then the bpstat does not explain the signal ---
5951 simply make sure to ignore it if `stopped_by_watchpoint' is
5952 set. */
5953
5954 if (debug_infrun
5955 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5956 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5957 GDB_SIGNAL_TRAP)
ab04a2af
TT
5958 && stopped_by_watchpoint)
5959 fprintf_unfiltered (gdb_stdlog,
5960 "infrun: no user watchpoint explains "
5961 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5962
bac7d97b 5963 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5964 at one stage in the past included checks for an inferior
5965 function call's call dummy's return breakpoint. The original
5966 comment, that went with the test, read:
03cebad2 5967
ab04a2af
TT
5968 ``End of a stack dummy. Some systems (e.g. Sony news) give
5969 another signal besides SIGTRAP, so check here as well as
5970 above.''
73dd234f 5971
ab04a2af
TT
5972 If someone ever tries to get call dummys on a
5973 non-executable stack to work (where the target would stop
5974 with something like a SIGSEGV), then those tests might need
5975 to be re-instated. Given, however, that the tests were only
5976 enabled when momentary breakpoints were not being used, I
5977 suspect that it won't be the case.
488f131b 5978
ab04a2af
TT
5979 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5980 be necessary for call dummies on a non-executable stack on
5981 SPARC. */
488f131b 5982
bac7d97b 5983 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5984 random_signal
5985 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5986 ecs->event_thread->suspend.stop_signal);
bac7d97b 5987
1cf4d951
PA
5988 /* Maybe this was a trap for a software breakpoint that has since
5989 been removed. */
5990 if (random_signal && target_stopped_by_sw_breakpoint ())
5991 {
5992 if (program_breakpoint_here_p (gdbarch, stop_pc))
5993 {
5994 struct regcache *regcache;
5995 int decr_pc;
5996
5997 /* Re-adjust PC to what the program would see if GDB was not
5998 debugging it. */
5999 regcache = get_thread_regcache (ecs->event_thread->ptid);
527a273a 6000 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
6001 if (decr_pc != 0)
6002 {
07036511
TT
6003 gdb::optional<scoped_restore_tmpl<int>>
6004 restore_operation_disable;
1cf4d951
PA
6005
6006 if (record_full_is_used ())
07036511
TT
6007 restore_operation_disable.emplace
6008 (record_full_gdb_operation_disable_set ());
1cf4d951
PA
6009
6010 regcache_write_pc (regcache, stop_pc + decr_pc);
1cf4d951
PA
6011 }
6012 }
6013 else
6014 {
6015 /* A delayed software breakpoint event. Ignore the trap. */
6016 if (debug_infrun)
6017 fprintf_unfiltered (gdb_stdlog,
6018 "infrun: delayed software breakpoint "
6019 "trap, ignoring\n");
6020 random_signal = 0;
6021 }
6022 }
6023
6024 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6025 has since been removed. */
6026 if (random_signal && target_stopped_by_hw_breakpoint ())
6027 {
6028 /* A delayed hardware breakpoint event. Ignore the trap. */
6029 if (debug_infrun)
6030 fprintf_unfiltered (gdb_stdlog,
6031 "infrun: delayed hardware breakpoint/watchpoint "
6032 "trap, ignoring\n");
6033 random_signal = 0;
6034 }
6035
bac7d97b
PA
6036 /* If not, perhaps stepping/nexting can. */
6037 if (random_signal)
6038 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6039 && currently_stepping (ecs->event_thread));
ab04a2af 6040
2adfaa28
PA
6041 /* Perhaps the thread hit a single-step breakpoint of _another_
6042 thread. Single-step breakpoints are transparent to the
6043 breakpoints module. */
6044 if (random_signal)
6045 random_signal = !ecs->hit_singlestep_breakpoint;
6046
bac7d97b
PA
6047 /* No? Perhaps we got a moribund watchpoint. */
6048 if (random_signal)
6049 random_signal = !stopped_by_watchpoint;
ab04a2af 6050
c65d6b55
PA
6051 /* Always stop if the user explicitly requested this thread to
6052 remain stopped. */
6053 if (ecs->event_thread->stop_requested)
6054 {
6055 random_signal = 1;
6056 if (debug_infrun)
6057 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6058 }
6059
488f131b
JB
6060 /* For the program's own signals, act according to
6061 the signal handling tables. */
6062
ce12b012 6063 if (random_signal)
488f131b
JB
6064 {
6065 /* Signal not for debugging purposes. */
c9657e70 6066 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 6067 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 6068
527159b7 6069 if (debug_infrun)
c9737c08
PA
6070 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6071 gdb_signal_to_symbol_string (stop_signal));
527159b7 6072
488f131b
JB
6073 stopped_by_random_signal = 1;
6074
252fbfc8
PA
6075 /* Always stop on signals if we're either just gaining control
6076 of the program, or the user explicitly requested this thread
6077 to remain stopped. */
d6b48e9c 6078 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 6079 || ecs->event_thread->stop_requested
24291992 6080 || (!inf->detaching
16c381f0 6081 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 6082 {
22bcd14b 6083 stop_waiting (ecs);
488f131b
JB
6084 return;
6085 }
b57bacec
PA
6086
6087 /* Notify observers the signal has "handle print" set. Note we
6088 returned early above if stopping; normal_stop handles the
6089 printing in that case. */
6090 if (signal_print[ecs->event_thread->suspend.stop_signal])
6091 {
6092 /* The signal table tells us to print about this signal. */
223ffa71 6093 target_terminal::ours_for_output ();
b57bacec 6094 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
223ffa71 6095 target_terminal::inferior ();
b57bacec 6096 }
488f131b
JB
6097
6098 /* Clear the signal if it should not be passed. */
16c381f0 6099 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 6100 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 6101
fb14de7b 6102 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 6103 && ecs->event_thread->control.trap_expected
8358c15c 6104 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
6105 {
6106 /* We were just starting a new sequence, attempting to
6107 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 6108 Instead this signal arrives. This signal will take us out
68f53502
AC
6109 of the stepping range so GDB needs to remember to, when
6110 the signal handler returns, resume stepping off that
6111 breakpoint. */
6112 /* To simplify things, "continue" is forced to use the same
6113 code paths as single-step - set a breakpoint at the
6114 signal return address and then, once hit, step off that
6115 breakpoint. */
237fc4c9
PA
6116 if (debug_infrun)
6117 fprintf_unfiltered (gdb_stdlog,
6118 "infrun: signal arrived while stepping over "
6119 "breakpoint\n");
d3169d93 6120
2c03e5be 6121 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 6122 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6123 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6124 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
6125
6126 /* If we were nexting/stepping some other thread, switch to
6127 it, so that we don't continue it, losing control. */
6128 if (!switch_back_to_stepped_thread (ecs))
6129 keep_going (ecs);
9d799f85 6130 return;
68f53502 6131 }
9d799f85 6132
e5f8a7cc
PA
6133 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6134 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6135 || ecs->event_thread->control.step_range_end == 1)
edb3359d 6136 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 6137 ecs->event_thread->control.step_stack_frame_id)
8358c15c 6138 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
6139 {
6140 /* The inferior is about to take a signal that will take it
6141 out of the single step range. Set a breakpoint at the
6142 current PC (which is presumably where the signal handler
6143 will eventually return) and then allow the inferior to
6144 run free.
6145
6146 Note that this is only needed for a signal delivered
6147 while in the single-step range. Nested signals aren't a
6148 problem as they eventually all return. */
237fc4c9
PA
6149 if (debug_infrun)
6150 fprintf_unfiltered (gdb_stdlog,
6151 "infrun: signal may take us out of "
6152 "single-step range\n");
6153
372316f1 6154 clear_step_over_info ();
2c03e5be 6155 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 6156 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6157 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6158 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
6159 keep_going (ecs);
6160 return;
d303a6c7 6161 }
9d799f85
AC
6162
6163 /* Note: step_resume_breakpoint may be non-NULL. This occures
6164 when either there's a nested signal, or when there's a
6165 pending signal enabled just as the signal handler returns
6166 (leaving the inferior at the step-resume-breakpoint without
6167 actually executing it). Either way continue until the
6168 breakpoint is really hit. */
c447ac0b
PA
6169
6170 if (!switch_back_to_stepped_thread (ecs))
6171 {
6172 if (debug_infrun)
6173 fprintf_unfiltered (gdb_stdlog,
6174 "infrun: random signal, keep going\n");
6175
6176 keep_going (ecs);
6177 }
6178 return;
488f131b 6179 }
94c57d6a
PA
6180
6181 process_event_stop_test (ecs);
6182}
6183
6184/* Come here when we've got some debug event / signal we can explain
6185 (IOW, not a random signal), and test whether it should cause a
6186 stop, or whether we should resume the inferior (transparently).
6187 E.g., could be a breakpoint whose condition evaluates false; we
6188 could be still stepping within the line; etc. */
6189
6190static void
6191process_event_stop_test (struct execution_control_state *ecs)
6192{
6193 struct symtab_and_line stop_pc_sal;
6194 struct frame_info *frame;
6195 struct gdbarch *gdbarch;
cdaa5b73
PA
6196 CORE_ADDR jmp_buf_pc;
6197 struct bpstat_what what;
94c57d6a 6198
cdaa5b73 6199 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6200
cdaa5b73
PA
6201 frame = get_current_frame ();
6202 gdbarch = get_frame_arch (frame);
fcf3daef 6203
cdaa5b73 6204 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6205
cdaa5b73
PA
6206 if (what.call_dummy)
6207 {
6208 stop_stack_dummy = what.call_dummy;
6209 }
186c406b 6210
243a9253
PA
6211 /* A few breakpoint types have callbacks associated (e.g.,
6212 bp_jit_event). Run them now. */
6213 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6214
cdaa5b73
PA
6215 /* If we hit an internal event that triggers symbol changes, the
6216 current frame will be invalidated within bpstat_what (e.g., if we
6217 hit an internal solib event). Re-fetch it. */
6218 frame = get_current_frame ();
6219 gdbarch = get_frame_arch (frame);
e2e4d78b 6220
cdaa5b73
PA
6221 switch (what.main_action)
6222 {
6223 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6224 /* If we hit the breakpoint at longjmp while stepping, we
6225 install a momentary breakpoint at the target of the
6226 jmp_buf. */
186c406b 6227
cdaa5b73
PA
6228 if (debug_infrun)
6229 fprintf_unfiltered (gdb_stdlog,
6230 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6231
cdaa5b73 6232 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6233
cdaa5b73
PA
6234 if (what.is_longjmp)
6235 {
6236 struct value *arg_value;
6237
6238 /* If we set the longjmp breakpoint via a SystemTap probe,
6239 then use it to extract the arguments. The destination PC
6240 is the third argument to the probe. */
6241 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6242 if (arg_value)
8fa0c4f8
AA
6243 {
6244 jmp_buf_pc = value_as_address (arg_value);
6245 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6246 }
cdaa5b73
PA
6247 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6248 || !gdbarch_get_longjmp_target (gdbarch,
6249 frame, &jmp_buf_pc))
e2e4d78b 6250 {
cdaa5b73
PA
6251 if (debug_infrun)
6252 fprintf_unfiltered (gdb_stdlog,
6253 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6254 "(!gdbarch_get_longjmp_target)\n");
6255 keep_going (ecs);
6256 return;
e2e4d78b 6257 }
e2e4d78b 6258
cdaa5b73
PA
6259 /* Insert a breakpoint at resume address. */
6260 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6261 }
6262 else
6263 check_exception_resume (ecs, frame);
6264 keep_going (ecs);
6265 return;
e81a37f7 6266
cdaa5b73
PA
6267 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6268 {
6269 struct frame_info *init_frame;
e81a37f7 6270
cdaa5b73 6271 /* There are several cases to consider.
c906108c 6272
cdaa5b73
PA
6273 1. The initiating frame no longer exists. In this case we
6274 must stop, because the exception or longjmp has gone too
6275 far.
2c03e5be 6276
cdaa5b73
PA
6277 2. The initiating frame exists, and is the same as the
6278 current frame. We stop, because the exception or longjmp
6279 has been caught.
2c03e5be 6280
cdaa5b73
PA
6281 3. The initiating frame exists and is different from the
6282 current frame. This means the exception or longjmp has
6283 been caught beneath the initiating frame, so keep going.
c906108c 6284
cdaa5b73
PA
6285 4. longjmp breakpoint has been placed just to protect
6286 against stale dummy frames and user is not interested in
6287 stopping around longjmps. */
c5aa993b 6288
cdaa5b73
PA
6289 if (debug_infrun)
6290 fprintf_unfiltered (gdb_stdlog,
6291 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6292
cdaa5b73
PA
6293 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6294 != NULL);
6295 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6296
cdaa5b73
PA
6297 if (what.is_longjmp)
6298 {
b67a2c6f 6299 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6300
cdaa5b73 6301 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6302 {
cdaa5b73
PA
6303 /* Case 4. */
6304 keep_going (ecs);
6305 return;
e5ef252a 6306 }
cdaa5b73 6307 }
c5aa993b 6308
cdaa5b73 6309 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6310
cdaa5b73
PA
6311 if (init_frame)
6312 {
6313 struct frame_id current_id
6314 = get_frame_id (get_current_frame ());
6315 if (frame_id_eq (current_id,
6316 ecs->event_thread->initiating_frame))
6317 {
6318 /* Case 2. Fall through. */
6319 }
6320 else
6321 {
6322 /* Case 3. */
6323 keep_going (ecs);
6324 return;
6325 }
68f53502 6326 }
488f131b 6327
cdaa5b73
PA
6328 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6329 exists. */
6330 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6331
bdc36728 6332 end_stepping_range (ecs);
cdaa5b73
PA
6333 }
6334 return;
e5ef252a 6335
cdaa5b73
PA
6336 case BPSTAT_WHAT_SINGLE:
6337 if (debug_infrun)
6338 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6339 ecs->event_thread->stepping_over_breakpoint = 1;
6340 /* Still need to check other stuff, at least the case where we
6341 are stepping and step out of the right range. */
6342 break;
e5ef252a 6343
cdaa5b73
PA
6344 case BPSTAT_WHAT_STEP_RESUME:
6345 if (debug_infrun)
6346 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6347
cdaa5b73
PA
6348 delete_step_resume_breakpoint (ecs->event_thread);
6349 if (ecs->event_thread->control.proceed_to_finish
6350 && execution_direction == EXEC_REVERSE)
6351 {
6352 struct thread_info *tp = ecs->event_thread;
6353
6354 /* We are finishing a function in reverse, and just hit the
6355 step-resume breakpoint at the start address of the
6356 function, and we're almost there -- just need to back up
6357 by one more single-step, which should take us back to the
6358 function call. */
6359 tp->control.step_range_start = tp->control.step_range_end = 1;
6360 keep_going (ecs);
e5ef252a 6361 return;
cdaa5b73
PA
6362 }
6363 fill_in_stop_func (gdbarch, ecs);
6364 if (stop_pc == ecs->stop_func_start
6365 && execution_direction == EXEC_REVERSE)
6366 {
6367 /* We are stepping over a function call in reverse, and just
6368 hit the step-resume breakpoint at the start address of
6369 the function. Go back to single-stepping, which should
6370 take us back to the function call. */
6371 ecs->event_thread->stepping_over_breakpoint = 1;
6372 keep_going (ecs);
6373 return;
6374 }
6375 break;
e5ef252a 6376
cdaa5b73
PA
6377 case BPSTAT_WHAT_STOP_NOISY:
6378 if (debug_infrun)
6379 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6380 stop_print_frame = 1;
e5ef252a 6381
99619bea
PA
6382 /* Assume the thread stopped for a breapoint. We'll still check
6383 whether a/the breakpoint is there when the thread is next
6384 resumed. */
6385 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6386
22bcd14b 6387 stop_waiting (ecs);
cdaa5b73 6388 return;
e5ef252a 6389
cdaa5b73
PA
6390 case BPSTAT_WHAT_STOP_SILENT:
6391 if (debug_infrun)
6392 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6393 stop_print_frame = 0;
e5ef252a 6394
99619bea
PA
6395 /* Assume the thread stopped for a breapoint. We'll still check
6396 whether a/the breakpoint is there when the thread is next
6397 resumed. */
6398 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6399 stop_waiting (ecs);
cdaa5b73
PA
6400 return;
6401
6402 case BPSTAT_WHAT_HP_STEP_RESUME:
6403 if (debug_infrun)
6404 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6405
6406 delete_step_resume_breakpoint (ecs->event_thread);
6407 if (ecs->event_thread->step_after_step_resume_breakpoint)
6408 {
6409 /* Back when the step-resume breakpoint was inserted, we
6410 were trying to single-step off a breakpoint. Go back to
6411 doing that. */
6412 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6413 ecs->event_thread->stepping_over_breakpoint = 1;
6414 keep_going (ecs);
6415 return;
e5ef252a 6416 }
cdaa5b73
PA
6417 break;
6418
6419 case BPSTAT_WHAT_KEEP_CHECKING:
6420 break;
e5ef252a 6421 }
c906108c 6422
af48d08f
PA
6423 /* If we stepped a permanent breakpoint and we had a high priority
6424 step-resume breakpoint for the address we stepped, but we didn't
6425 hit it, then we must have stepped into the signal handler. The
6426 step-resume was only necessary to catch the case of _not_
6427 stepping into the handler, so delete it, and fall through to
6428 checking whether the step finished. */
6429 if (ecs->event_thread->stepped_breakpoint)
6430 {
6431 struct breakpoint *sr_bp
6432 = ecs->event_thread->control.step_resume_breakpoint;
6433
8d707a12
PA
6434 if (sr_bp != NULL
6435 && sr_bp->loc->permanent
af48d08f
PA
6436 && sr_bp->type == bp_hp_step_resume
6437 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6438 {
6439 if (debug_infrun)
6440 fprintf_unfiltered (gdb_stdlog,
6441 "infrun: stepped permanent breakpoint, stopped in "
6442 "handler\n");
6443 delete_step_resume_breakpoint (ecs->event_thread);
6444 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6445 }
6446 }
6447
cdaa5b73
PA
6448 /* We come here if we hit a breakpoint but should not stop for it.
6449 Possibly we also were stepping and should stop for that. So fall
6450 through and test for stepping. But, if not stepping, do not
6451 stop. */
c906108c 6452
a7212384
UW
6453 /* In all-stop mode, if we're currently stepping but have stopped in
6454 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6455 if (switch_back_to_stepped_thread (ecs))
6456 return;
776f04fa 6457
8358c15c 6458 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6459 {
527159b7 6460 if (debug_infrun)
d3169d93
DJ
6461 fprintf_unfiltered (gdb_stdlog,
6462 "infrun: step-resume breakpoint is inserted\n");
527159b7 6463
488f131b
JB
6464 /* Having a step-resume breakpoint overrides anything
6465 else having to do with stepping commands until
6466 that breakpoint is reached. */
488f131b
JB
6467 keep_going (ecs);
6468 return;
6469 }
c5aa993b 6470
16c381f0 6471 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6472 {
527159b7 6473 if (debug_infrun)
8a9de0e4 6474 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6475 /* Likewise if we aren't even stepping. */
488f131b
JB
6476 keep_going (ecs);
6477 return;
6478 }
c5aa993b 6479
4b7703ad
JB
6480 /* Re-fetch current thread's frame in case the code above caused
6481 the frame cache to be re-initialized, making our FRAME variable
6482 a dangling pointer. */
6483 frame = get_current_frame ();
628fe4e4 6484 gdbarch = get_frame_arch (frame);
7e324e48 6485 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6486
488f131b 6487 /* If stepping through a line, keep going if still within it.
c906108c 6488
488f131b
JB
6489 Note that step_range_end is the address of the first instruction
6490 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6491 within it!
6492
6493 Note also that during reverse execution, we may be stepping
6494 through a function epilogue and therefore must detect when
6495 the current-frame changes in the middle of a line. */
6496
ce4c476a 6497 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 6498 && (execution_direction != EXEC_REVERSE
388a8562 6499 || frame_id_eq (get_frame_id (frame),
16c381f0 6500 ecs->event_thread->control.step_frame_id)))
488f131b 6501 {
527159b7 6502 if (debug_infrun)
5af949e3
UW
6503 fprintf_unfiltered
6504 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6505 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6506 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6507
c1e36e3e
PA
6508 /* Tentatively re-enable range stepping; `resume' disables it if
6509 necessary (e.g., if we're stepping over a breakpoint or we
6510 have software watchpoints). */
6511 ecs->event_thread->control.may_range_step = 1;
6512
b2175913
MS
6513 /* When stepping backward, stop at beginning of line range
6514 (unless it's the function entry point, in which case
6515 keep going back to the call point). */
16c381f0 6516 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6517 && stop_pc != ecs->stop_func_start
6518 && execution_direction == EXEC_REVERSE)
bdc36728 6519 end_stepping_range (ecs);
b2175913
MS
6520 else
6521 keep_going (ecs);
6522
488f131b
JB
6523 return;
6524 }
c5aa993b 6525
488f131b 6526 /* We stepped out of the stepping range. */
c906108c 6527
488f131b 6528 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6529 loader dynamic symbol resolution code...
6530
6531 EXEC_FORWARD: we keep on single stepping until we exit the run
6532 time loader code and reach the callee's address.
6533
6534 EXEC_REVERSE: we've already executed the callee (backward), and
6535 the runtime loader code is handled just like any other
6536 undebuggable function call. Now we need only keep stepping
6537 backward through the trampoline code, and that's handled further
6538 down, so there is nothing for us to do here. */
6539
6540 if (execution_direction != EXEC_REVERSE
16c381f0 6541 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 6542 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 6543 {
4c8c40e6 6544 CORE_ADDR pc_after_resolver =
568d6575 6545 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 6546
527159b7 6547 if (debug_infrun)
3e43a32a
MS
6548 fprintf_unfiltered (gdb_stdlog,
6549 "infrun: stepped into dynsym resolve code\n");
527159b7 6550
488f131b
JB
6551 if (pc_after_resolver)
6552 {
6553 /* Set up a step-resume breakpoint at the address
6554 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6555 symtab_and_line sr_sal;
488f131b 6556 sr_sal.pc = pc_after_resolver;
6c95b8df 6557 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6558
a6d9a66e
UW
6559 insert_step_resume_breakpoint_at_sal (gdbarch,
6560 sr_sal, null_frame_id);
c5aa993b 6561 }
c906108c 6562
488f131b
JB
6563 keep_going (ecs);
6564 return;
6565 }
c906108c 6566
16c381f0
JK
6567 if (ecs->event_thread->control.step_range_end != 1
6568 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6569 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6570 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6571 {
527159b7 6572 if (debug_infrun)
3e43a32a
MS
6573 fprintf_unfiltered (gdb_stdlog,
6574 "infrun: stepped into signal trampoline\n");
42edda50 6575 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6576 a signal trampoline (either by a signal being delivered or by
6577 the signal handler returning). Just single-step until the
6578 inferior leaves the trampoline (either by calling the handler
6579 or returning). */
488f131b
JB
6580 keep_going (ecs);
6581 return;
6582 }
c906108c 6583
14132e89
MR
6584 /* If we're in the return path from a shared library trampoline,
6585 we want to proceed through the trampoline when stepping. */
6586 /* macro/2012-04-25: This needs to come before the subroutine
6587 call check below as on some targets return trampolines look
6588 like subroutine calls (MIPS16 return thunks). */
6589 if (gdbarch_in_solib_return_trampoline (gdbarch,
6590 stop_pc, ecs->stop_func_name)
6591 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6592 {
6593 /* Determine where this trampoline returns. */
6594 CORE_ADDR real_stop_pc;
6595
6596 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6597
6598 if (debug_infrun)
6599 fprintf_unfiltered (gdb_stdlog,
6600 "infrun: stepped into solib return tramp\n");
6601
6602 /* Only proceed through if we know where it's going. */
6603 if (real_stop_pc)
6604 {
6605 /* And put the step-breakpoint there and go until there. */
51abb421 6606 symtab_and_line sr_sal;
14132e89
MR
6607 sr_sal.pc = real_stop_pc;
6608 sr_sal.section = find_pc_overlay (sr_sal.pc);
6609 sr_sal.pspace = get_frame_program_space (frame);
6610
6611 /* Do not specify what the fp should be when we stop since
6612 on some machines the prologue is where the new fp value
6613 is established. */
6614 insert_step_resume_breakpoint_at_sal (gdbarch,
6615 sr_sal, null_frame_id);
6616
6617 /* Restart without fiddling with the step ranges or
6618 other state. */
6619 keep_going (ecs);
6620 return;
6621 }
6622 }
6623
c17eaafe
DJ
6624 /* Check for subroutine calls. The check for the current frame
6625 equalling the step ID is not necessary - the check of the
6626 previous frame's ID is sufficient - but it is a common case and
6627 cheaper than checking the previous frame's ID.
14e60db5
DJ
6628
6629 NOTE: frame_id_eq will never report two invalid frame IDs as
6630 being equal, so to get into this block, both the current and
6631 previous frame must have valid frame IDs. */
005ca36a
JB
6632 /* The outer_frame_id check is a heuristic to detect stepping
6633 through startup code. If we step over an instruction which
6634 sets the stack pointer from an invalid value to a valid value,
6635 we may detect that as a subroutine call from the mythical
6636 "outermost" function. This could be fixed by marking
6637 outermost frames as !stack_p,code_p,special_p. Then the
6638 initial outermost frame, before sp was valid, would
ce6cca6d 6639 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6640 for more. */
edb3359d 6641 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6642 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6643 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6644 ecs->event_thread->control.step_stack_frame_id)
6645 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6646 outer_frame_id)
885eeb5b
PA
6647 || (ecs->event_thread->control.step_start_function
6648 != find_pc_function (stop_pc)))))
488f131b 6649 {
95918acb 6650 CORE_ADDR real_stop_pc;
8fb3e588 6651
527159b7 6652 if (debug_infrun)
8a9de0e4 6653 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6654
b7a084be 6655 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6656 {
6657 /* I presume that step_over_calls is only 0 when we're
6658 supposed to be stepping at the assembly language level
6659 ("stepi"). Just stop. */
388a8562 6660 /* And this works the same backward as frontward. MVS */
bdc36728 6661 end_stepping_range (ecs);
95918acb
AC
6662 return;
6663 }
8fb3e588 6664
388a8562
MS
6665 /* Reverse stepping through solib trampolines. */
6666
6667 if (execution_direction == EXEC_REVERSE
16c381f0 6668 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6669 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6670 || (ecs->stop_func_start == 0
6671 && in_solib_dynsym_resolve_code (stop_pc))))
6672 {
6673 /* Any solib trampoline code can be handled in reverse
6674 by simply continuing to single-step. We have already
6675 executed the solib function (backwards), and a few
6676 steps will take us back through the trampoline to the
6677 caller. */
6678 keep_going (ecs);
6679 return;
6680 }
6681
16c381f0 6682 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6683 {
b2175913
MS
6684 /* We're doing a "next".
6685
6686 Normal (forward) execution: set a breakpoint at the
6687 callee's return address (the address at which the caller
6688 will resume).
6689
6690 Reverse (backward) execution. set the step-resume
6691 breakpoint at the start of the function that we just
6692 stepped into (backwards), and continue to there. When we
6130d0b7 6693 get there, we'll need to single-step back to the caller. */
b2175913
MS
6694
6695 if (execution_direction == EXEC_REVERSE)
6696 {
acf9414f
JK
6697 /* If we're already at the start of the function, we've either
6698 just stepped backward into a single instruction function,
6699 or stepped back out of a signal handler to the first instruction
6700 of the function. Just keep going, which will single-step back
6701 to the caller. */
58c48e72 6702 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 6703 {
acf9414f 6704 /* Normal function call return (static or dynamic). */
51abb421 6705 symtab_and_line sr_sal;
acf9414f
JK
6706 sr_sal.pc = ecs->stop_func_start;
6707 sr_sal.pspace = get_frame_program_space (frame);
6708 insert_step_resume_breakpoint_at_sal (gdbarch,
6709 sr_sal, null_frame_id);
6710 }
b2175913
MS
6711 }
6712 else
568d6575 6713 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6714
8567c30f
AC
6715 keep_going (ecs);
6716 return;
6717 }
a53c66de 6718
95918acb 6719 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6720 calling routine and the real function), locate the real
6721 function. That's what tells us (a) whether we want to step
6722 into it at all, and (b) what prologue we want to run to the
6723 end of, if we do step into it. */
568d6575 6724 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6725 if (real_stop_pc == 0)
568d6575 6726 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6727 if (real_stop_pc != 0)
6728 ecs->stop_func_start = real_stop_pc;
8fb3e588 6729
db5f024e 6730 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 6731 {
51abb421 6732 symtab_and_line sr_sal;
1b2bfbb9 6733 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6734 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6735
a6d9a66e
UW
6736 insert_step_resume_breakpoint_at_sal (gdbarch,
6737 sr_sal, null_frame_id);
8fb3e588
AC
6738 keep_going (ecs);
6739 return;
1b2bfbb9
RC
6740 }
6741
95918acb 6742 /* If we have line number information for the function we are
1bfeeb0f
JL
6743 thinking of stepping into and the function isn't on the skip
6744 list, step into it.
95918acb 6745
8fb3e588
AC
6746 If there are several symtabs at that PC (e.g. with include
6747 files), just want to know whether *any* of them have line
6748 numbers. find_pc_line handles this. */
95918acb
AC
6749 {
6750 struct symtab_and_line tmp_sal;
8fb3e588 6751
95918acb 6752 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6753 if (tmp_sal.line != 0
85817405 6754 && !function_name_is_marked_for_skip (ecs->stop_func_name,
de7985c3 6755 tmp_sal))
95918acb 6756 {
b2175913 6757 if (execution_direction == EXEC_REVERSE)
568d6575 6758 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6759 else
568d6575 6760 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6761 return;
6762 }
6763 }
6764
6765 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6766 set, we stop the step so that the user has a chance to switch
6767 in assembly mode. */
16c381f0 6768 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6769 && step_stop_if_no_debug)
95918acb 6770 {
bdc36728 6771 end_stepping_range (ecs);
95918acb
AC
6772 return;
6773 }
6774
b2175913
MS
6775 if (execution_direction == EXEC_REVERSE)
6776 {
acf9414f
JK
6777 /* If we're already at the start of the function, we've either just
6778 stepped backward into a single instruction function without line
6779 number info, or stepped back out of a signal handler to the first
6780 instruction of the function without line number info. Just keep
6781 going, which will single-step back to the caller. */
6782 if (ecs->stop_func_start != stop_pc)
6783 {
6784 /* Set a breakpoint at callee's start address.
6785 From there we can step once and be back in the caller. */
51abb421 6786 symtab_and_line sr_sal;
acf9414f
JK
6787 sr_sal.pc = ecs->stop_func_start;
6788 sr_sal.pspace = get_frame_program_space (frame);
6789 insert_step_resume_breakpoint_at_sal (gdbarch,
6790 sr_sal, null_frame_id);
6791 }
b2175913
MS
6792 }
6793 else
6794 /* Set a breakpoint at callee's return address (the address
6795 at which the caller will resume). */
568d6575 6796 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6797
95918acb 6798 keep_going (ecs);
488f131b 6799 return;
488f131b 6800 }
c906108c 6801
fdd654f3
MS
6802 /* Reverse stepping through solib trampolines. */
6803
6804 if (execution_direction == EXEC_REVERSE
16c381f0 6805 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
6806 {
6807 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6808 || (ecs->stop_func_start == 0
6809 && in_solib_dynsym_resolve_code (stop_pc)))
6810 {
6811 /* Any solib trampoline code can be handled in reverse
6812 by simply continuing to single-step. We have already
6813 executed the solib function (backwards), and a few
6814 steps will take us back through the trampoline to the
6815 caller. */
6816 keep_going (ecs);
6817 return;
6818 }
6819 else if (in_solib_dynsym_resolve_code (stop_pc))
6820 {
6821 /* Stepped backward into the solib dynsym resolver.
6822 Set a breakpoint at its start and continue, then
6823 one more step will take us out. */
51abb421 6824 symtab_and_line sr_sal;
fdd654f3 6825 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6826 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6827 insert_step_resume_breakpoint_at_sal (gdbarch,
6828 sr_sal, null_frame_id);
6829 keep_going (ecs);
6830 return;
6831 }
6832 }
6833
2afb61aa 6834 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 6835
1b2bfbb9
RC
6836 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6837 the trampoline processing logic, however, there are some trampolines
6838 that have no names, so we should do trampoline handling first. */
16c381f0 6839 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6840 && ecs->stop_func_name == NULL
2afb61aa 6841 && stop_pc_sal.line == 0)
1b2bfbb9 6842 {
527159b7 6843 if (debug_infrun)
3e43a32a
MS
6844 fprintf_unfiltered (gdb_stdlog,
6845 "infrun: stepped into undebuggable function\n");
527159b7 6846
1b2bfbb9 6847 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6848 undebuggable function (where there is no debugging information
6849 and no line number corresponding to the address where the
1b2bfbb9
RC
6850 inferior stopped). Since we want to skip this kind of code,
6851 we keep going until the inferior returns from this
14e60db5
DJ
6852 function - unless the user has asked us not to (via
6853 set step-mode) or we no longer know how to get back
6854 to the call site. */
6855 if (step_stop_if_no_debug
c7ce8faa 6856 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6857 {
6858 /* If we have no line number and the step-stop-if-no-debug
6859 is set, we stop the step so that the user has a chance to
6860 switch in assembly mode. */
bdc36728 6861 end_stepping_range (ecs);
1b2bfbb9
RC
6862 return;
6863 }
6864 else
6865 {
6866 /* Set a breakpoint at callee's return address (the address
6867 at which the caller will resume). */
568d6575 6868 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6869 keep_going (ecs);
6870 return;
6871 }
6872 }
6873
16c381f0 6874 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6875 {
6876 /* It is stepi or nexti. We always want to stop stepping after
6877 one instruction. */
527159b7 6878 if (debug_infrun)
8a9de0e4 6879 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6880 end_stepping_range (ecs);
1b2bfbb9
RC
6881 return;
6882 }
6883
2afb61aa 6884 if (stop_pc_sal.line == 0)
488f131b
JB
6885 {
6886 /* We have no line number information. That means to stop
6887 stepping (does this always happen right after one instruction,
6888 when we do "s" in a function with no line numbers,
6889 or can this happen as a result of a return or longjmp?). */
527159b7 6890 if (debug_infrun)
8a9de0e4 6891 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6892 end_stepping_range (ecs);
488f131b
JB
6893 return;
6894 }
c906108c 6895
edb3359d
DJ
6896 /* Look for "calls" to inlined functions, part one. If the inline
6897 frame machinery detected some skipped call sites, we have entered
6898 a new inline function. */
6899
6900 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6901 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
6902 && inline_skipped_frames (ecs->ptid))
6903 {
edb3359d
DJ
6904 if (debug_infrun)
6905 fprintf_unfiltered (gdb_stdlog,
6906 "infrun: stepped into inlined function\n");
6907
51abb421 6908 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 6909
16c381f0 6910 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6911 {
6912 /* For "step", we're going to stop. But if the call site
6913 for this inlined function is on the same source line as
6914 we were previously stepping, go down into the function
6915 first. Otherwise stop at the call site. */
6916
6917 if (call_sal.line == ecs->event_thread->current_line
6918 && call_sal.symtab == ecs->event_thread->current_symtab)
6919 step_into_inline_frame (ecs->ptid);
6920
bdc36728 6921 end_stepping_range (ecs);
edb3359d
DJ
6922 return;
6923 }
6924 else
6925 {
6926 /* For "next", we should stop at the call site if it is on a
6927 different source line. Otherwise continue through the
6928 inlined function. */
6929 if (call_sal.line == ecs->event_thread->current_line
6930 && call_sal.symtab == ecs->event_thread->current_symtab)
6931 keep_going (ecs);
6932 else
bdc36728 6933 end_stepping_range (ecs);
edb3359d
DJ
6934 return;
6935 }
6936 }
6937
6938 /* Look for "calls" to inlined functions, part two. If we are still
6939 in the same real function we were stepping through, but we have
6940 to go further up to find the exact frame ID, we are stepping
6941 through a more inlined call beyond its call site. */
6942
6943 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6944 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6945 ecs->event_thread->control.step_frame_id)
edb3359d 6946 && stepped_in_from (get_current_frame (),
16c381f0 6947 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6948 {
6949 if (debug_infrun)
6950 fprintf_unfiltered (gdb_stdlog,
6951 "infrun: stepping through inlined function\n");
6952
16c381f0 6953 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
6954 keep_going (ecs);
6955 else
bdc36728 6956 end_stepping_range (ecs);
edb3359d
DJ
6957 return;
6958 }
6959
2afb61aa 6960 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6961 && (ecs->event_thread->current_line != stop_pc_sal.line
6962 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
6963 {
6964 /* We are at the start of a different line. So stop. Note that
6965 we don't stop if we step into the middle of a different line.
6966 That is said to make things like for (;;) statements work
6967 better. */
527159b7 6968 if (debug_infrun)
3e43a32a
MS
6969 fprintf_unfiltered (gdb_stdlog,
6970 "infrun: stepped to a different line\n");
bdc36728 6971 end_stepping_range (ecs);
488f131b
JB
6972 return;
6973 }
c906108c 6974
488f131b 6975 /* We aren't done stepping.
c906108c 6976
488f131b
JB
6977 Optimize by setting the stepping range to the line.
6978 (We might not be in the original line, but if we entered a
6979 new line in mid-statement, we continue stepping. This makes
6980 things like for(;;) statements work better.) */
c906108c 6981
16c381f0
JK
6982 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6983 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 6984 ecs->event_thread->control.may_range_step = 1;
edb3359d 6985 set_step_info (frame, stop_pc_sal);
488f131b 6986
527159b7 6987 if (debug_infrun)
8a9de0e4 6988 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 6989 keep_going (ecs);
104c1213
JM
6990}
6991
c447ac0b
PA
6992/* In all-stop mode, if we're currently stepping but have stopped in
6993 some other thread, we may need to switch back to the stepped
6994 thread. Returns true we set the inferior running, false if we left
6995 it stopped (and the event needs further processing). */
6996
6997static int
6998switch_back_to_stepped_thread (struct execution_control_state *ecs)
6999{
fbea99ea 7000 if (!target_is_non_stop_p ())
c447ac0b
PA
7001 {
7002 struct thread_info *tp;
99619bea
PA
7003 struct thread_info *stepping_thread;
7004
7005 /* If any thread is blocked on some internal breakpoint, and we
7006 simply need to step over that breakpoint to get it going
7007 again, do that first. */
7008
7009 /* However, if we see an event for the stepping thread, then we
7010 know all other threads have been moved past their breakpoints
7011 already. Let the caller check whether the step is finished,
7012 etc., before deciding to move it past a breakpoint. */
7013 if (ecs->event_thread->control.step_range_end != 0)
7014 return 0;
7015
7016 /* Check if the current thread is blocked on an incomplete
7017 step-over, interrupted by a random signal. */
7018 if (ecs->event_thread->control.trap_expected
7019 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 7020 {
99619bea
PA
7021 if (debug_infrun)
7022 {
7023 fprintf_unfiltered (gdb_stdlog,
7024 "infrun: need to finish step-over of [%s]\n",
7025 target_pid_to_str (ecs->event_thread->ptid));
7026 }
7027 keep_going (ecs);
7028 return 1;
7029 }
2adfaa28 7030
99619bea
PA
7031 /* Check if the current thread is blocked by a single-step
7032 breakpoint of another thread. */
7033 if (ecs->hit_singlestep_breakpoint)
7034 {
7035 if (debug_infrun)
7036 {
7037 fprintf_unfiltered (gdb_stdlog,
7038 "infrun: need to step [%s] over single-step "
7039 "breakpoint\n",
7040 target_pid_to_str (ecs->ptid));
7041 }
7042 keep_going (ecs);
7043 return 1;
7044 }
7045
4d9d9d04
PA
7046 /* If this thread needs yet another step-over (e.g., stepping
7047 through a delay slot), do it first before moving on to
7048 another thread. */
7049 if (thread_still_needs_step_over (ecs->event_thread))
7050 {
7051 if (debug_infrun)
7052 {
7053 fprintf_unfiltered (gdb_stdlog,
7054 "infrun: thread [%s] still needs step-over\n",
7055 target_pid_to_str (ecs->event_thread->ptid));
7056 }
7057 keep_going (ecs);
7058 return 1;
7059 }
70509625 7060
483805cf
PA
7061 /* If scheduler locking applies even if not stepping, there's no
7062 need to walk over threads. Above we've checked whether the
7063 current thread is stepping. If some other thread not the
7064 event thread is stepping, then it must be that scheduler
7065 locking is not in effect. */
856e7dd6 7066 if (schedlock_applies (ecs->event_thread))
483805cf
PA
7067 return 0;
7068
4d9d9d04
PA
7069 /* Otherwise, we no longer expect a trap in the current thread.
7070 Clear the trap_expected flag before switching back -- this is
7071 what keep_going does as well, if we call it. */
7072 ecs->event_thread->control.trap_expected = 0;
7073
7074 /* Likewise, clear the signal if it should not be passed. */
7075 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7076 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7077
7078 /* Do all pending step-overs before actually proceeding with
483805cf 7079 step/next/etc. */
4d9d9d04
PA
7080 if (start_step_over ())
7081 {
7082 prepare_to_wait (ecs);
7083 return 1;
7084 }
7085
7086 /* Look for the stepping/nexting thread. */
483805cf 7087 stepping_thread = NULL;
4d9d9d04 7088
034f788c 7089 ALL_NON_EXITED_THREADS (tp)
483805cf 7090 {
fbea99ea
PA
7091 /* Ignore threads of processes the caller is not
7092 resuming. */
483805cf 7093 if (!sched_multi
1afd5965 7094 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
483805cf
PA
7095 continue;
7096
7097 /* When stepping over a breakpoint, we lock all threads
7098 except the one that needs to move past the breakpoint.
7099 If a non-event thread has this set, the "incomplete
7100 step-over" check above should have caught it earlier. */
372316f1
PA
7101 if (tp->control.trap_expected)
7102 {
7103 internal_error (__FILE__, __LINE__,
7104 "[%s] has inconsistent state: "
7105 "trap_expected=%d\n",
7106 target_pid_to_str (tp->ptid),
7107 tp->control.trap_expected);
7108 }
483805cf
PA
7109
7110 /* Did we find the stepping thread? */
7111 if (tp->control.step_range_end)
7112 {
7113 /* Yep. There should only one though. */
7114 gdb_assert (stepping_thread == NULL);
7115
7116 /* The event thread is handled at the top, before we
7117 enter this loop. */
7118 gdb_assert (tp != ecs->event_thread);
7119
7120 /* If some thread other than the event thread is
7121 stepping, then scheduler locking can't be in effect,
7122 otherwise we wouldn't have resumed the current event
7123 thread in the first place. */
856e7dd6 7124 gdb_assert (!schedlock_applies (tp));
483805cf
PA
7125
7126 stepping_thread = tp;
7127 }
99619bea
PA
7128 }
7129
483805cf 7130 if (stepping_thread != NULL)
99619bea 7131 {
c447ac0b
PA
7132 if (debug_infrun)
7133 fprintf_unfiltered (gdb_stdlog,
7134 "infrun: switching back to stepped thread\n");
7135
2ac7589c
PA
7136 if (keep_going_stepped_thread (stepping_thread))
7137 {
7138 prepare_to_wait (ecs);
7139 return 1;
7140 }
7141 }
7142 }
2adfaa28 7143
2ac7589c
PA
7144 return 0;
7145}
2adfaa28 7146
2ac7589c
PA
7147/* Set a previously stepped thread back to stepping. Returns true on
7148 success, false if the resume is not possible (e.g., the thread
7149 vanished). */
7150
7151static int
7152keep_going_stepped_thread (struct thread_info *tp)
7153{
7154 struct frame_info *frame;
2ac7589c
PA
7155 struct execution_control_state ecss;
7156 struct execution_control_state *ecs = &ecss;
2adfaa28 7157
2ac7589c
PA
7158 /* If the stepping thread exited, then don't try to switch back and
7159 resume it, which could fail in several different ways depending
7160 on the target. Instead, just keep going.
2adfaa28 7161
2ac7589c
PA
7162 We can find a stepping dead thread in the thread list in two
7163 cases:
2adfaa28 7164
2ac7589c
PA
7165 - The target supports thread exit events, and when the target
7166 tries to delete the thread from the thread list, inferior_ptid
7167 pointed at the exiting thread. In such case, calling
7168 delete_thread does not really remove the thread from the list;
7169 instead, the thread is left listed, with 'exited' state.
64ce06e4 7170
2ac7589c
PA
7171 - The target's debug interface does not support thread exit
7172 events, and so we have no idea whatsoever if the previously
7173 stepping thread is still alive. For that reason, we need to
7174 synchronously query the target now. */
2adfaa28 7175
2ac7589c
PA
7176 if (is_exited (tp->ptid)
7177 || !target_thread_alive (tp->ptid))
7178 {
7179 if (debug_infrun)
7180 fprintf_unfiltered (gdb_stdlog,
7181 "infrun: not resuming previously "
7182 "stepped thread, it has vanished\n");
7183
7184 delete_thread (tp->ptid);
7185 return 0;
c447ac0b 7186 }
2ac7589c
PA
7187
7188 if (debug_infrun)
7189 fprintf_unfiltered (gdb_stdlog,
7190 "infrun: resuming previously stepped thread\n");
7191
7192 reset_ecs (ecs, tp);
7193 switch_to_thread (tp->ptid);
7194
7195 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7196 frame = get_current_frame ();
2ac7589c
PA
7197
7198 /* If the PC of the thread we were trying to single-step has
7199 changed, then that thread has trapped or been signaled, but the
7200 event has not been reported to GDB yet. Re-poll the target
7201 looking for this particular thread's event (i.e. temporarily
7202 enable schedlock) by:
7203
7204 - setting a break at the current PC
7205 - resuming that particular thread, only (by setting trap
7206 expected)
7207
7208 This prevents us continuously moving the single-step breakpoint
7209 forward, one instruction at a time, overstepping. */
7210
7211 if (stop_pc != tp->prev_pc)
7212 {
7213 ptid_t resume_ptid;
7214
7215 if (debug_infrun)
7216 fprintf_unfiltered (gdb_stdlog,
7217 "infrun: expected thread advanced also (%s -> %s)\n",
7218 paddress (target_gdbarch (), tp->prev_pc),
7219 paddress (target_gdbarch (), stop_pc));
7220
7221 /* Clear the info of the previous step-over, as it's no longer
7222 valid (if the thread was trying to step over a breakpoint, it
7223 has already succeeded). It's what keep_going would do too,
7224 if we called it. Do this before trying to insert the sss
7225 breakpoint, otherwise if we were previously trying to step
7226 over this exact address in another thread, the breakpoint is
7227 skipped. */
7228 clear_step_over_info ();
7229 tp->control.trap_expected = 0;
7230
7231 insert_single_step_breakpoint (get_frame_arch (frame),
7232 get_frame_address_space (frame),
7233 stop_pc);
7234
372316f1 7235 tp->resumed = 1;
fbea99ea 7236 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7237 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7238 }
7239 else
7240 {
7241 if (debug_infrun)
7242 fprintf_unfiltered (gdb_stdlog,
7243 "infrun: expected thread still hasn't advanced\n");
7244
7245 keep_going_pass_signal (ecs);
7246 }
7247 return 1;
c447ac0b
PA
7248}
7249
8b061563
PA
7250/* Is thread TP in the middle of (software or hardware)
7251 single-stepping? (Note the result of this function must never be
7252 passed directly as target_resume's STEP parameter.) */
104c1213 7253
a289b8f6 7254static int
b3444185 7255currently_stepping (struct thread_info *tp)
a7212384 7256{
8358c15c
JK
7257 return ((tp->control.step_range_end
7258 && tp->control.step_resume_breakpoint == NULL)
7259 || tp->control.trap_expected
af48d08f 7260 || tp->stepped_breakpoint
8358c15c 7261 || bpstat_should_step ());
a7212384
UW
7262}
7263
b2175913
MS
7264/* Inferior has stepped into a subroutine call with source code that
7265 we should not step over. Do step to the first line of code in
7266 it. */
c2c6d25f
JM
7267
7268static void
568d6575
UW
7269handle_step_into_function (struct gdbarch *gdbarch,
7270 struct execution_control_state *ecs)
c2c6d25f 7271{
7e324e48
GB
7272 fill_in_stop_func (gdbarch, ecs);
7273
51abb421 7274 compunit_symtab *cust = find_pc_compunit_symtab (stop_pc);
43f3e411 7275 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7276 ecs->stop_func_start
7277 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7278
51abb421 7279 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7280 /* Use the step_resume_break to step until the end of the prologue,
7281 even if that involves jumps (as it seems to on the vax under
7282 4.2). */
7283 /* If the prologue ends in the middle of a source line, continue to
7284 the end of that source line (if it is still within the function).
7285 Otherwise, just go to end of prologue. */
2afb61aa
PA
7286 if (stop_func_sal.end
7287 && stop_func_sal.pc != ecs->stop_func_start
7288 && stop_func_sal.end < ecs->stop_func_end)
7289 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7290
2dbd5e30
KB
7291 /* Architectures which require breakpoint adjustment might not be able
7292 to place a breakpoint at the computed address. If so, the test
7293 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7294 ecs->stop_func_start to an address at which a breakpoint may be
7295 legitimately placed.
8fb3e588 7296
2dbd5e30
KB
7297 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7298 made, GDB will enter an infinite loop when stepping through
7299 optimized code consisting of VLIW instructions which contain
7300 subinstructions corresponding to different source lines. On
7301 FR-V, it's not permitted to place a breakpoint on any but the
7302 first subinstruction of a VLIW instruction. When a breakpoint is
7303 set, GDB will adjust the breakpoint address to the beginning of
7304 the VLIW instruction. Thus, we need to make the corresponding
7305 adjustment here when computing the stop address. */
8fb3e588 7306
568d6575 7307 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7308 {
7309 ecs->stop_func_start
568d6575 7310 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7311 ecs->stop_func_start);
2dbd5e30
KB
7312 }
7313
c2c6d25f
JM
7314 if (ecs->stop_func_start == stop_pc)
7315 {
7316 /* We are already there: stop now. */
bdc36728 7317 end_stepping_range (ecs);
c2c6d25f
JM
7318 return;
7319 }
7320 else
7321 {
7322 /* Put the step-breakpoint there and go until there. */
51abb421 7323 symtab_and_line sr_sal;
c2c6d25f
JM
7324 sr_sal.pc = ecs->stop_func_start;
7325 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7326 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7327
c2c6d25f 7328 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7329 some machines the prologue is where the new fp value is
7330 established. */
a6d9a66e 7331 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7332
7333 /* And make sure stepping stops right away then. */
16c381f0
JK
7334 ecs->event_thread->control.step_range_end
7335 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7336 }
7337 keep_going (ecs);
7338}
d4f3574e 7339
b2175913
MS
7340/* Inferior has stepped backward into a subroutine call with source
7341 code that we should not step over. Do step to the beginning of the
7342 last line of code in it. */
7343
7344static void
568d6575
UW
7345handle_step_into_function_backward (struct gdbarch *gdbarch,
7346 struct execution_control_state *ecs)
b2175913 7347{
43f3e411 7348 struct compunit_symtab *cust;
167e4384 7349 struct symtab_and_line stop_func_sal;
b2175913 7350
7e324e48
GB
7351 fill_in_stop_func (gdbarch, ecs);
7352
43f3e411
DE
7353 cust = find_pc_compunit_symtab (stop_pc);
7354 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7355 ecs->stop_func_start
7356 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913
MS
7357
7358 stop_func_sal = find_pc_line (stop_pc, 0);
7359
7360 /* OK, we're just going to keep stepping here. */
7361 if (stop_func_sal.pc == stop_pc)
7362 {
7363 /* We're there already. Just stop stepping now. */
bdc36728 7364 end_stepping_range (ecs);
b2175913
MS
7365 }
7366 else
7367 {
7368 /* Else just reset the step range and keep going.
7369 No step-resume breakpoint, they don't work for
7370 epilogues, which can have multiple entry paths. */
16c381f0
JK
7371 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7372 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7373 keep_going (ecs);
7374 }
7375 return;
7376}
7377
d3169d93 7378/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7379 This is used to both functions and to skip over code. */
7380
7381static void
2c03e5be
PA
7382insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7383 struct symtab_and_line sr_sal,
7384 struct frame_id sr_id,
7385 enum bptype sr_type)
44cbf7b5 7386{
611c83ae
PA
7387 /* There should never be more than one step-resume or longjmp-resume
7388 breakpoint per thread, so we should never be setting a new
44cbf7b5 7389 step_resume_breakpoint when one is already active. */
8358c15c 7390 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7391 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7392
7393 if (debug_infrun)
7394 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7395 "infrun: inserting step-resume breakpoint at %s\n",
7396 paddress (gdbarch, sr_sal.pc));
d3169d93 7397
8358c15c 7398 inferior_thread ()->control.step_resume_breakpoint
454dafbd 7399 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
2c03e5be
PA
7400}
7401
9da8c2a0 7402void
2c03e5be
PA
7403insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7404 struct symtab_and_line sr_sal,
7405 struct frame_id sr_id)
7406{
7407 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7408 sr_sal, sr_id,
7409 bp_step_resume);
44cbf7b5 7410}
7ce450bd 7411
2c03e5be
PA
7412/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7413 This is used to skip a potential signal handler.
7ce450bd 7414
14e60db5
DJ
7415 This is called with the interrupted function's frame. The signal
7416 handler, when it returns, will resume the interrupted function at
7417 RETURN_FRAME.pc. */
d303a6c7
AC
7418
7419static void
2c03e5be 7420insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7421{
f4c1edd8 7422 gdb_assert (return_frame != NULL);
d303a6c7 7423
51abb421
PA
7424 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7425
7426 symtab_and_line sr_sal;
568d6575 7427 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7428 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7429 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7430
2c03e5be
PA
7431 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7432 get_stack_frame_id (return_frame),
7433 bp_hp_step_resume);
d303a6c7
AC
7434}
7435
2c03e5be
PA
7436/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7437 is used to skip a function after stepping into it (for "next" or if
7438 the called function has no debugging information).
14e60db5
DJ
7439
7440 The current function has almost always been reached by single
7441 stepping a call or return instruction. NEXT_FRAME belongs to the
7442 current function, and the breakpoint will be set at the caller's
7443 resume address.
7444
7445 This is a separate function rather than reusing
2c03e5be 7446 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7447 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7448 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7449
7450static void
7451insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7452{
14e60db5
DJ
7453 /* We shouldn't have gotten here if we don't know where the call site
7454 is. */
c7ce8faa 7455 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7456
51abb421 7457 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7458
51abb421 7459 symtab_and_line sr_sal;
c7ce8faa
DJ
7460 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7461 frame_unwind_caller_pc (next_frame));
14e60db5 7462 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7463 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7464
a6d9a66e 7465 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7466 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7467}
7468
611c83ae
PA
7469/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7470 new breakpoint at the target of a jmp_buf. The handling of
7471 longjmp-resume uses the same mechanisms used for handling
7472 "step-resume" breakpoints. */
7473
7474static void
a6d9a66e 7475insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7476{
e81a37f7
TT
7477 /* There should never be more than one longjmp-resume breakpoint per
7478 thread, so we should never be setting a new
611c83ae 7479 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7480 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7481
7482 if (debug_infrun)
7483 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7484 "infrun: inserting longjmp-resume breakpoint at %s\n",
7485 paddress (gdbarch, pc));
611c83ae 7486
e81a37f7 7487 inferior_thread ()->control.exception_resume_breakpoint =
454dafbd 7488 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
611c83ae
PA
7489}
7490
186c406b
TT
7491/* Insert an exception resume breakpoint. TP is the thread throwing
7492 the exception. The block B is the block of the unwinder debug hook
7493 function. FRAME is the frame corresponding to the call to this
7494 function. SYM is the symbol of the function argument holding the
7495 target PC of the exception. */
7496
7497static void
7498insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7499 const struct block *b,
186c406b
TT
7500 struct frame_info *frame,
7501 struct symbol *sym)
7502{
492d29ea 7503 TRY
186c406b 7504 {
63e43d3a 7505 struct block_symbol vsym;
186c406b
TT
7506 struct value *value;
7507 CORE_ADDR handler;
7508 struct breakpoint *bp;
7509
63e43d3a
PMR
7510 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7511 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7512 /* If the value was optimized out, revert to the old behavior. */
7513 if (! value_optimized_out (value))
7514 {
7515 handler = value_as_address (value);
7516
7517 if (debug_infrun)
7518 fprintf_unfiltered (gdb_stdlog,
7519 "infrun: exception resume at %lx\n",
7520 (unsigned long) handler);
7521
7522 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd
TT
7523 handler,
7524 bp_exception_resume).release ();
c70a6932
JK
7525
7526 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7527 frame = NULL;
7528
5d5658a1 7529 bp->thread = tp->global_num;
186c406b
TT
7530 inferior_thread ()->control.exception_resume_breakpoint = bp;
7531 }
7532 }
492d29ea
PA
7533 CATCH (e, RETURN_MASK_ERROR)
7534 {
7535 /* We want to ignore errors here. */
7536 }
7537 END_CATCH
186c406b
TT
7538}
7539
28106bc2
SDJ
7540/* A helper for check_exception_resume that sets an
7541 exception-breakpoint based on a SystemTap probe. */
7542
7543static void
7544insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7545 const struct bound_probe *probe,
28106bc2
SDJ
7546 struct frame_info *frame)
7547{
7548 struct value *arg_value;
7549 CORE_ADDR handler;
7550 struct breakpoint *bp;
7551
7552 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7553 if (!arg_value)
7554 return;
7555
7556 handler = value_as_address (arg_value);
7557
7558 if (debug_infrun)
7559 fprintf_unfiltered (gdb_stdlog,
7560 "infrun: exception resume at %s\n",
6bac7473 7561 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7562 handler));
7563
7564 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd 7565 handler, bp_exception_resume).release ();
5d5658a1 7566 bp->thread = tp->global_num;
28106bc2
SDJ
7567 inferior_thread ()->control.exception_resume_breakpoint = bp;
7568}
7569
186c406b
TT
7570/* This is called when an exception has been intercepted. Check to
7571 see whether the exception's destination is of interest, and if so,
7572 set an exception resume breakpoint there. */
7573
7574static void
7575check_exception_resume (struct execution_control_state *ecs,
28106bc2 7576 struct frame_info *frame)
186c406b 7577{
729662a5 7578 struct bound_probe probe;
28106bc2
SDJ
7579 struct symbol *func;
7580
7581 /* First see if this exception unwinding breakpoint was set via a
7582 SystemTap probe point. If so, the probe has two arguments: the
7583 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7584 set a breakpoint there. */
6bac7473 7585 probe = find_probe_by_pc (get_frame_pc (frame));
729662a5 7586 if (probe.probe)
28106bc2 7587 {
729662a5 7588 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7589 return;
7590 }
7591
7592 func = get_frame_function (frame);
7593 if (!func)
7594 return;
186c406b 7595
492d29ea 7596 TRY
186c406b 7597 {
3977b71f 7598 const struct block *b;
8157b174 7599 struct block_iterator iter;
186c406b
TT
7600 struct symbol *sym;
7601 int argno = 0;
7602
7603 /* The exception breakpoint is a thread-specific breakpoint on
7604 the unwinder's debug hook, declared as:
7605
7606 void _Unwind_DebugHook (void *cfa, void *handler);
7607
7608 The CFA argument indicates the frame to which control is
7609 about to be transferred. HANDLER is the destination PC.
7610
7611 We ignore the CFA and set a temporary breakpoint at HANDLER.
7612 This is not extremely efficient but it avoids issues in gdb
7613 with computing the DWARF CFA, and it also works even in weird
7614 cases such as throwing an exception from inside a signal
7615 handler. */
7616
7617 b = SYMBOL_BLOCK_VALUE (func);
7618 ALL_BLOCK_SYMBOLS (b, iter, sym)
7619 {
7620 if (!SYMBOL_IS_ARGUMENT (sym))
7621 continue;
7622
7623 if (argno == 0)
7624 ++argno;
7625 else
7626 {
7627 insert_exception_resume_breakpoint (ecs->event_thread,
7628 b, frame, sym);
7629 break;
7630 }
7631 }
7632 }
492d29ea
PA
7633 CATCH (e, RETURN_MASK_ERROR)
7634 {
7635 }
7636 END_CATCH
186c406b
TT
7637}
7638
104c1213 7639static void
22bcd14b 7640stop_waiting (struct execution_control_state *ecs)
104c1213 7641{
527159b7 7642 if (debug_infrun)
22bcd14b 7643 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7644
cd0fc7c3
SS
7645 /* Let callers know we don't want to wait for the inferior anymore. */
7646 ecs->wait_some_more = 0;
fbea99ea
PA
7647
7648 /* If all-stop, but the target is always in non-stop mode, stop all
7649 threads now that we're presenting the stop to the user. */
7650 if (!non_stop && target_is_non_stop_p ())
7651 stop_all_threads ();
cd0fc7c3
SS
7652}
7653
4d9d9d04
PA
7654/* Like keep_going, but passes the signal to the inferior, even if the
7655 signal is set to nopass. */
d4f3574e
SS
7656
7657static void
4d9d9d04 7658keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7659{
c4dbc9af
PA
7660 /* Make sure normal_stop is called if we get a QUIT handled before
7661 reaching resume. */
7662 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7663
4d9d9d04 7664 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
372316f1 7665 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7666
d4f3574e 7667 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
7668 ecs->event_thread->prev_pc
7669 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 7670
4d9d9d04 7671 if (ecs->event_thread->control.trap_expected)
d4f3574e 7672 {
4d9d9d04
PA
7673 struct thread_info *tp = ecs->event_thread;
7674
7675 if (debug_infrun)
7676 fprintf_unfiltered (gdb_stdlog,
7677 "infrun: %s has trap_expected set, "
7678 "resuming to collect trap\n",
7679 target_pid_to_str (tp->ptid));
7680
a9ba6bae
PA
7681 /* We haven't yet gotten our trap, and either: intercepted a
7682 non-signal event (e.g., a fork); or took a signal which we
7683 are supposed to pass through to the inferior. Simply
7684 continue. */
c4dbc9af 7685 discard_cleanups (old_cleanups);
64ce06e4 7686 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7687 }
372316f1
PA
7688 else if (step_over_info_valid_p ())
7689 {
7690 /* Another thread is stepping over a breakpoint in-line. If
7691 this thread needs a step-over too, queue the request. In
7692 either case, this resume must be deferred for later. */
7693 struct thread_info *tp = ecs->event_thread;
7694
7695 if (ecs->hit_singlestep_breakpoint
7696 || thread_still_needs_step_over (tp))
7697 {
7698 if (debug_infrun)
7699 fprintf_unfiltered (gdb_stdlog,
7700 "infrun: step-over already in progress: "
7701 "step-over for %s deferred\n",
7702 target_pid_to_str (tp->ptid));
7703 thread_step_over_chain_enqueue (tp);
7704 }
7705 else
7706 {
7707 if (debug_infrun)
7708 fprintf_unfiltered (gdb_stdlog,
7709 "infrun: step-over in progress: "
7710 "resume of %s deferred\n",
7711 target_pid_to_str (tp->ptid));
7712 }
7713
7714 discard_cleanups (old_cleanups);
7715 }
d4f3574e
SS
7716 else
7717 {
31e77af2 7718 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7719 int remove_bp;
7720 int remove_wps;
8d297bbf 7721 step_over_what step_what;
31e77af2 7722
d4f3574e 7723 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7724 anyway (if we got a signal, the user asked it be passed to
7725 the child)
7726 -- or --
7727 We got our expected trap, but decided we should resume from
7728 it.
d4f3574e 7729
a9ba6bae 7730 We're going to run this baby now!
d4f3574e 7731
c36b740a
VP
7732 Note that insert_breakpoints won't try to re-insert
7733 already inserted breakpoints. Therefore, we don't
7734 care if breakpoints were already inserted, or not. */
a9ba6bae 7735
31e77af2
PA
7736 /* If we need to step over a breakpoint, and we're not using
7737 displaced stepping to do so, insert all breakpoints
7738 (watchpoints, etc.) but the one we're stepping over, step one
7739 instruction, and then re-insert the breakpoint when that step
7740 is finished. */
963f9c80 7741
6c4cfb24
PA
7742 step_what = thread_still_needs_step_over (ecs->event_thread);
7743
963f9c80 7744 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7745 || (step_what & STEP_OVER_BREAKPOINT));
7746 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7747
cb71640d
PA
7748 /* We can't use displaced stepping if we need to step past a
7749 watchpoint. The instruction copied to the scratch pad would
7750 still trigger the watchpoint. */
7751 if (remove_bp
3fc8eb30 7752 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7753 {
a01bda52 7754 set_step_over_info (regcache->aspace (),
21edc42f
YQ
7755 regcache_read_pc (regcache), remove_wps,
7756 ecs->event_thread->global_num);
45e8c884 7757 }
963f9c80 7758 else if (remove_wps)
21edc42f 7759 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7760
7761 /* If we now need to do an in-line step-over, we need to stop
7762 all other threads. Note this must be done before
7763 insert_breakpoints below, because that removes the breakpoint
7764 we're about to step over, otherwise other threads could miss
7765 it. */
fbea99ea 7766 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7767 stop_all_threads ();
abbb1732 7768
31e77af2 7769 /* Stop stepping if inserting breakpoints fails. */
492d29ea 7770 TRY
31e77af2
PA
7771 {
7772 insert_breakpoints ();
7773 }
492d29ea 7774 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
7775 {
7776 exception_print (gdb_stderr, e);
22bcd14b 7777 stop_waiting (ecs);
de1fe8c8 7778 discard_cleanups (old_cleanups);
31e77af2 7779 return;
d4f3574e 7780 }
492d29ea 7781 END_CATCH
d4f3574e 7782
963f9c80 7783 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7784
c4dbc9af 7785 discard_cleanups (old_cleanups);
64ce06e4 7786 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7787 }
7788
488f131b 7789 prepare_to_wait (ecs);
d4f3574e
SS
7790}
7791
4d9d9d04
PA
7792/* Called when we should continue running the inferior, because the
7793 current event doesn't cause a user visible stop. This does the
7794 resuming part; waiting for the next event is done elsewhere. */
7795
7796static void
7797keep_going (struct execution_control_state *ecs)
7798{
7799 if (ecs->event_thread->control.trap_expected
7800 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7801 ecs->event_thread->control.trap_expected = 0;
7802
7803 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7804 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7805 keep_going_pass_signal (ecs);
7806}
7807
104c1213
JM
7808/* This function normally comes after a resume, before
7809 handle_inferior_event exits. It takes care of any last bits of
7810 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7811
104c1213
JM
7812static void
7813prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7814{
527159b7 7815 if (debug_infrun)
8a9de0e4 7816 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7817
104c1213 7818 ecs->wait_some_more = 1;
0b333c5e
PA
7819
7820 if (!target_is_async_p ())
7821 mark_infrun_async_event_handler ();
c906108c 7822}
11cf8741 7823
fd664c91 7824/* We are done with the step range of a step/next/si/ni command.
b57bacec 7825 Called once for each n of a "step n" operation. */
fd664c91
PA
7826
7827static void
bdc36728 7828end_stepping_range (struct execution_control_state *ecs)
fd664c91 7829{
bdc36728 7830 ecs->event_thread->control.stop_step = 1;
bdc36728 7831 stop_waiting (ecs);
fd664c91
PA
7832}
7833
33d62d64
JK
7834/* Several print_*_reason functions to print why the inferior has stopped.
7835 We always print something when the inferior exits, or receives a signal.
7836 The rest of the cases are dealt with later on in normal_stop and
7837 print_it_typical. Ideally there should be a call to one of these
7838 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7839 stop_waiting is called.
33d62d64 7840
fd664c91
PA
7841 Note that we don't call these directly, instead we delegate that to
7842 the interpreters, through observers. Interpreters then call these
7843 with whatever uiout is right. */
33d62d64 7844
fd664c91
PA
7845void
7846print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7847{
fd664c91 7848 /* For CLI-like interpreters, print nothing. */
33d62d64 7849
112e8700 7850 if (uiout->is_mi_like_p ())
fd664c91 7851 {
112e8700 7852 uiout->field_string ("reason",
fd664c91
PA
7853 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7854 }
7855}
33d62d64 7856
fd664c91
PA
7857void
7858print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7859{
33d62d64 7860 annotate_signalled ();
112e8700
SM
7861 if (uiout->is_mi_like_p ())
7862 uiout->field_string
7863 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7864 uiout->text ("\nProgram terminated with signal ");
33d62d64 7865 annotate_signal_name ();
112e8700 7866 uiout->field_string ("signal-name",
2ea28649 7867 gdb_signal_to_name (siggnal));
33d62d64 7868 annotate_signal_name_end ();
112e8700 7869 uiout->text (", ");
33d62d64 7870 annotate_signal_string ();
112e8700 7871 uiout->field_string ("signal-meaning",
2ea28649 7872 gdb_signal_to_string (siggnal));
33d62d64 7873 annotate_signal_string_end ();
112e8700
SM
7874 uiout->text (".\n");
7875 uiout->text ("The program no longer exists.\n");
33d62d64
JK
7876}
7877
fd664c91
PA
7878void
7879print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7880{
fda326dd
TT
7881 struct inferior *inf = current_inferior ();
7882 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7883
33d62d64
JK
7884 annotate_exited (exitstatus);
7885 if (exitstatus)
7886 {
112e8700
SM
7887 if (uiout->is_mi_like_p ())
7888 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7889 uiout->text ("[Inferior ");
7890 uiout->text (plongest (inf->num));
7891 uiout->text (" (");
7892 uiout->text (pidstr);
7893 uiout->text (") exited with code ");
7894 uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus);
7895 uiout->text ("]\n");
33d62d64
JK
7896 }
7897 else
11cf8741 7898 {
112e8700
SM
7899 if (uiout->is_mi_like_p ())
7900 uiout->field_string
7901 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7902 uiout->text ("[Inferior ");
7903 uiout->text (plongest (inf->num));
7904 uiout->text (" (");
7905 uiout->text (pidstr);
7906 uiout->text (") exited normally]\n");
33d62d64 7907 }
33d62d64
JK
7908}
7909
012b3a21
WT
7910/* Some targets/architectures can do extra processing/display of
7911 segmentation faults. E.g., Intel MPX boundary faults.
7912 Call the architecture dependent function to handle the fault. */
7913
7914static void
7915handle_segmentation_fault (struct ui_out *uiout)
7916{
7917 struct regcache *regcache = get_current_regcache ();
ac7936df 7918 struct gdbarch *gdbarch = regcache->arch ();
012b3a21
WT
7919
7920 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7921 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7922}
7923
fd664c91
PA
7924void
7925print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 7926{
f303dbd6
PA
7927 struct thread_info *thr = inferior_thread ();
7928
33d62d64
JK
7929 annotate_signal ();
7930
112e8700 7931 if (uiout->is_mi_like_p ())
f303dbd6
PA
7932 ;
7933 else if (show_thread_that_caused_stop ())
33d62d64 7934 {
f303dbd6 7935 const char *name;
33d62d64 7936
112e8700
SM
7937 uiout->text ("\nThread ");
7938 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
f303dbd6
PA
7939
7940 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7941 if (name != NULL)
7942 {
112e8700
SM
7943 uiout->text (" \"");
7944 uiout->field_fmt ("name", "%s", name);
7945 uiout->text ("\"");
f303dbd6 7946 }
33d62d64 7947 }
f303dbd6 7948 else
112e8700 7949 uiout->text ("\nProgram");
f303dbd6 7950
112e8700
SM
7951 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7952 uiout->text (" stopped");
33d62d64
JK
7953 else
7954 {
112e8700 7955 uiout->text (" received signal ");
8b93c638 7956 annotate_signal_name ();
112e8700
SM
7957 if (uiout->is_mi_like_p ())
7958 uiout->field_string
7959 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7960 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 7961 annotate_signal_name_end ();
112e8700 7962 uiout->text (", ");
8b93c638 7963 annotate_signal_string ();
112e8700 7964 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
7965
7966 if (siggnal == GDB_SIGNAL_SEGV)
7967 handle_segmentation_fault (uiout);
7968
8b93c638 7969 annotate_signal_string_end ();
33d62d64 7970 }
112e8700 7971 uiout->text (".\n");
33d62d64 7972}
252fbfc8 7973
fd664c91
PA
7974void
7975print_no_history_reason (struct ui_out *uiout)
33d62d64 7976{
112e8700 7977 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 7978}
43ff13b4 7979
0c7e1a46
PA
7980/* Print current location without a level number, if we have changed
7981 functions or hit a breakpoint. Print source line if we have one.
7982 bpstat_print contains the logic deciding in detail what to print,
7983 based on the event(s) that just occurred. */
7984
243a9253
PA
7985static void
7986print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
7987{
7988 int bpstat_ret;
f486487f 7989 enum print_what source_flag;
0c7e1a46
PA
7990 int do_frame_printing = 1;
7991 struct thread_info *tp = inferior_thread ();
7992
7993 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7994 switch (bpstat_ret)
7995 {
7996 case PRINT_UNKNOWN:
7997 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7998 should) carry around the function and does (or should) use
7999 that when doing a frame comparison. */
8000 if (tp->control.stop_step
8001 && frame_id_eq (tp->control.step_frame_id,
8002 get_frame_id (get_current_frame ()))
885eeb5b 8003 && tp->control.step_start_function == find_pc_function (stop_pc))
0c7e1a46
PA
8004 {
8005 /* Finished step, just print source line. */
8006 source_flag = SRC_LINE;
8007 }
8008 else
8009 {
8010 /* Print location and source line. */
8011 source_flag = SRC_AND_LOC;
8012 }
8013 break;
8014 case PRINT_SRC_AND_LOC:
8015 /* Print location and source line. */
8016 source_flag = SRC_AND_LOC;
8017 break;
8018 case PRINT_SRC_ONLY:
8019 source_flag = SRC_LINE;
8020 break;
8021 case PRINT_NOTHING:
8022 /* Something bogus. */
8023 source_flag = SRC_LINE;
8024 do_frame_printing = 0;
8025 break;
8026 default:
8027 internal_error (__FILE__, __LINE__, _("Unknown value."));
8028 }
8029
8030 /* The behavior of this routine with respect to the source
8031 flag is:
8032 SRC_LINE: Print only source line
8033 LOCATION: Print only location
8034 SRC_AND_LOC: Print location and source line. */
8035 if (do_frame_printing)
8036 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
8037}
8038
243a9253
PA
8039/* See infrun.h. */
8040
8041void
8042print_stop_event (struct ui_out *uiout)
8043{
243a9253
PA
8044 struct target_waitstatus last;
8045 ptid_t last_ptid;
8046 struct thread_info *tp;
8047
8048 get_last_target_status (&last_ptid, &last);
8049
67ad9399
TT
8050 {
8051 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 8052
67ad9399 8053 print_stop_location (&last);
243a9253 8054
67ad9399
TT
8055 /* Display the auto-display expressions. */
8056 do_displays ();
8057 }
243a9253
PA
8058
8059 tp = inferior_thread ();
8060 if (tp->thread_fsm != NULL
8061 && thread_fsm_finished_p (tp->thread_fsm))
8062 {
8063 struct return_value_info *rv;
8064
8065 rv = thread_fsm_return_value (tp->thread_fsm);
8066 if (rv != NULL)
8067 print_return_value (uiout, rv);
8068 }
0c7e1a46
PA
8069}
8070
388a7084
PA
8071/* See infrun.h. */
8072
8073void
8074maybe_remove_breakpoints (void)
8075{
8076 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8077 {
8078 if (remove_breakpoints ())
8079 {
223ffa71 8080 target_terminal::ours_for_output ();
388a7084
PA
8081 printf_filtered (_("Cannot remove breakpoints because "
8082 "program is no longer writable.\nFurther "
8083 "execution is probably impossible.\n"));
8084 }
8085 }
8086}
8087
4c2f2a79
PA
8088/* The execution context that just caused a normal stop. */
8089
8090struct stop_context
8091{
8092 /* The stop ID. */
8093 ULONGEST stop_id;
c906108c 8094
4c2f2a79 8095 /* The event PTID. */
c906108c 8096
4c2f2a79
PA
8097 ptid_t ptid;
8098
8099 /* If stopp for a thread event, this is the thread that caused the
8100 stop. */
8101 struct thread_info *thread;
8102
8103 /* The inferior that caused the stop. */
8104 int inf_num;
8105};
8106
8107/* Returns a new stop context. If stopped for a thread event, this
8108 takes a strong reference to the thread. */
8109
8110static struct stop_context *
8111save_stop_context (void)
8112{
224c3ddb 8113 struct stop_context *sc = XNEW (struct stop_context);
4c2f2a79
PA
8114
8115 sc->stop_id = get_stop_id ();
8116 sc->ptid = inferior_ptid;
8117 sc->inf_num = current_inferior ()->num;
8118
8119 if (!ptid_equal (inferior_ptid, null_ptid))
8120 {
8121 /* Take a strong reference so that the thread can't be deleted
8122 yet. */
8123 sc->thread = inferior_thread ();
803bdfe4 8124 sc->thread->incref ();
4c2f2a79
PA
8125 }
8126 else
8127 sc->thread = NULL;
8128
8129 return sc;
8130}
8131
8132/* Release a stop context previously created with save_stop_context.
8133 Releases the strong reference to the thread as well. */
8134
8135static void
8136release_stop_context_cleanup (void *arg)
8137{
9a3c8263 8138 struct stop_context *sc = (struct stop_context *) arg;
4c2f2a79
PA
8139
8140 if (sc->thread != NULL)
803bdfe4 8141 sc->thread->decref ();
4c2f2a79
PA
8142 xfree (sc);
8143}
8144
8145/* Return true if the current context no longer matches the saved stop
8146 context. */
8147
8148static int
8149stop_context_changed (struct stop_context *prev)
8150{
8151 if (!ptid_equal (prev->ptid, inferior_ptid))
8152 return 1;
8153 if (prev->inf_num != current_inferior ()->num)
8154 return 1;
8155 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8156 return 1;
8157 if (get_stop_id () != prev->stop_id)
8158 return 1;
8159 return 0;
8160}
8161
8162/* See infrun.h. */
8163
8164int
96baa820 8165normal_stop (void)
c906108c 8166{
73b65bb0
DJ
8167 struct target_waitstatus last;
8168 ptid_t last_ptid;
29f49a6a 8169 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
e1316e60 8170 ptid_t pid_ptid;
73b65bb0
DJ
8171
8172 get_last_target_status (&last_ptid, &last);
8173
4c2f2a79
PA
8174 new_stop_id ();
8175
29f49a6a
PA
8176 /* If an exception is thrown from this point on, make sure to
8177 propagate GDB's knowledge of the executing state to the
8178 frontend/user running state. A QUIT is an easy exception to see
8179 here, so do this before any filtered output. */
c35b1492
PA
8180 if (!non_stop)
8181 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
e1316e60
PA
8182 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8183 || last.kind == TARGET_WAITKIND_EXITED)
8184 {
8185 /* On some targets, we may still have live threads in the
8186 inferior when we get a process exit event. E.g., for
8187 "checkpoint", when the current checkpoint/fork exits,
8188 linux-fork.c automatically switches to another fork from
8189 within target_mourn_inferior. */
8190 if (!ptid_equal (inferior_ptid, null_ptid))
8191 {
8192 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8193 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8194 }
8195 }
8196 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 8197 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 8198
b57bacec
PA
8199 /* As we're presenting a stop, and potentially removing breakpoints,
8200 update the thread list so we can tell whether there are threads
8201 running on the target. With target remote, for example, we can
8202 only learn about new threads when we explicitly update the thread
8203 list. Do this before notifying the interpreters about signal
8204 stops, end of stepping ranges, etc., so that the "new thread"
8205 output is emitted before e.g., "Program received signal FOO",
8206 instead of after. */
8207 update_thread_list ();
8208
8209 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8210 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8211
c906108c
SS
8212 /* As with the notification of thread events, we want to delay
8213 notifying the user that we've switched thread context until
8214 the inferior actually stops.
8215
73b65bb0
DJ
8216 There's no point in saying anything if the inferior has exited.
8217 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8218 "received a signal".
8219
8220 Also skip saying anything in non-stop mode. In that mode, as we
8221 don't want GDB to switch threads behind the user's back, to avoid
8222 races where the user is typing a command to apply to thread x,
8223 but GDB switches to thread y before the user finishes entering
8224 the command, fetch_inferior_event installs a cleanup to restore
8225 the current thread back to the thread the user had selected right
8226 after this event is handled, so we're not really switching, only
8227 informing of a stop. */
4f8d22e3
PA
8228 if (!non_stop
8229 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
8230 && target_has_execution
8231 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8232 && last.kind != TARGET_WAITKIND_EXITED
8233 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8234 {
0e454242 8235 SWITCH_THRU_ALL_UIS ()
3b12939d 8236 {
223ffa71 8237 target_terminal::ours_for_output ();
3b12939d
PA
8238 printf_filtered (_("[Switching to %s]\n"),
8239 target_pid_to_str (inferior_ptid));
8240 annotate_thread_changed ();
8241 }
39f77062 8242 previous_inferior_ptid = inferior_ptid;
c906108c 8243 }
c906108c 8244
0e5bf2a8
PA
8245 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8246 {
0e454242 8247 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8248 if (current_ui->prompt_state == PROMPT_BLOCKED)
8249 {
223ffa71 8250 target_terminal::ours_for_output ();
3b12939d
PA
8251 printf_filtered (_("No unwaited-for children left.\n"));
8252 }
0e5bf2a8
PA
8253 }
8254
b57bacec 8255 /* Note: this depends on the update_thread_list call above. */
388a7084 8256 maybe_remove_breakpoints ();
c906108c 8257
c906108c
SS
8258 /* If an auto-display called a function and that got a signal,
8259 delete that auto-display to avoid an infinite recursion. */
8260
8261 if (stopped_by_random_signal)
8262 disable_current_display ();
8263
0e454242 8264 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8265 {
8266 async_enable_stdin ();
8267 }
c906108c 8268
388a7084
PA
8269 /* Let the user/frontend see the threads as stopped. */
8270 do_cleanups (old_chain);
8271
8272 /* Select innermost stack frame - i.e., current frame is frame 0,
8273 and current location is based on that. Handle the case where the
8274 dummy call is returning after being stopped. E.g. the dummy call
8275 previously hit a breakpoint. (If the dummy call returns
8276 normally, we won't reach here.) Do this before the stop hook is
8277 run, so that it doesn't get to see the temporary dummy frame,
8278 which is not where we'll present the stop. */
8279 if (has_stack_frames ())
8280 {
8281 if (stop_stack_dummy == STOP_STACK_DUMMY)
8282 {
8283 /* Pop the empty frame that contains the stack dummy. This
8284 also restores inferior state prior to the call (struct
8285 infcall_suspend_state). */
8286 struct frame_info *frame = get_current_frame ();
8287
8288 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8289 frame_pop (frame);
8290 /* frame_pop calls reinit_frame_cache as the last thing it
8291 does which means there's now no selected frame. */
8292 }
8293
8294 select_frame (get_current_frame ());
8295
8296 /* Set the current source location. */
8297 set_current_sal_from_frame (get_current_frame ());
8298 }
dd7e2d2b
PA
8299
8300 /* Look up the hook_stop and run it (CLI internally handles problem
8301 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8302 if (stop_command != NULL)
8303 {
8304 struct stop_context *saved_context = save_stop_context ();
8305 struct cleanup *old_chain
8306 = make_cleanup (release_stop_context_cleanup, saved_context);
8307
bf469271
PA
8308 TRY
8309 {
8310 execute_cmd_pre_hook (stop_command);
8311 }
8312 CATCH (ex, RETURN_MASK_ALL)
8313 {
8314 exception_fprintf (gdb_stderr, ex,
8315 "Error while running hook_stop:\n");
8316 }
8317 END_CATCH
4c2f2a79
PA
8318
8319 /* If the stop hook resumes the target, then there's no point in
8320 trying to notify about the previous stop; its context is
8321 gone. Likewise if the command switches thread or inferior --
8322 the observers would print a stop for the wrong
8323 thread/inferior. */
8324 if (stop_context_changed (saved_context))
8325 {
8326 do_cleanups (old_chain);
8327 return 1;
8328 }
8329 do_cleanups (old_chain);
8330 }
dd7e2d2b 8331
388a7084
PA
8332 /* Notify observers about the stop. This is where the interpreters
8333 print the stop event. */
8334 if (!ptid_equal (inferior_ptid, null_ptid))
8335 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8336 stop_print_frame);
8337 else
8338 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 8339
243a9253
PA
8340 annotate_stopped ();
8341
48844aa6
PA
8342 if (target_has_execution)
8343 {
8344 if (last.kind != TARGET_WAITKIND_SIGNALLED
8345 && last.kind != TARGET_WAITKIND_EXITED)
8346 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8347 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8348 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8349 }
6c95b8df
PA
8350
8351 /* Try to get rid of automatically added inferiors that are no
8352 longer needed. Keeping those around slows down things linearly.
8353 Note that this never removes the current inferior. */
8354 prune_inferiors ();
4c2f2a79
PA
8355
8356 return 0;
c906108c 8357}
c906108c 8358\f
c5aa993b 8359int
96baa820 8360signal_stop_state (int signo)
c906108c 8361{
d6b48e9c 8362 return signal_stop[signo];
c906108c
SS
8363}
8364
c5aa993b 8365int
96baa820 8366signal_print_state (int signo)
c906108c
SS
8367{
8368 return signal_print[signo];
8369}
8370
c5aa993b 8371int
96baa820 8372signal_pass_state (int signo)
c906108c
SS
8373{
8374 return signal_program[signo];
8375}
8376
2455069d
UW
8377static void
8378signal_cache_update (int signo)
8379{
8380 if (signo == -1)
8381 {
a493e3e2 8382 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8383 signal_cache_update (signo);
8384
8385 return;
8386 }
8387
8388 signal_pass[signo] = (signal_stop[signo] == 0
8389 && signal_print[signo] == 0
ab04a2af
TT
8390 && signal_program[signo] == 1
8391 && signal_catch[signo] == 0);
2455069d
UW
8392}
8393
488f131b 8394int
7bda5e4a 8395signal_stop_update (int signo, int state)
d4f3574e
SS
8396{
8397 int ret = signal_stop[signo];
abbb1732 8398
d4f3574e 8399 signal_stop[signo] = state;
2455069d 8400 signal_cache_update (signo);
d4f3574e
SS
8401 return ret;
8402}
8403
488f131b 8404int
7bda5e4a 8405signal_print_update (int signo, int state)
d4f3574e
SS
8406{
8407 int ret = signal_print[signo];
abbb1732 8408
d4f3574e 8409 signal_print[signo] = state;
2455069d 8410 signal_cache_update (signo);
d4f3574e
SS
8411 return ret;
8412}
8413
488f131b 8414int
7bda5e4a 8415signal_pass_update (int signo, int state)
d4f3574e
SS
8416{
8417 int ret = signal_program[signo];
abbb1732 8418
d4f3574e 8419 signal_program[signo] = state;
2455069d 8420 signal_cache_update (signo);
d4f3574e
SS
8421 return ret;
8422}
8423
ab04a2af
TT
8424/* Update the global 'signal_catch' from INFO and notify the
8425 target. */
8426
8427void
8428signal_catch_update (const unsigned int *info)
8429{
8430 int i;
8431
8432 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8433 signal_catch[i] = info[i] > 0;
8434 signal_cache_update (-1);
8435 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8436}
8437
c906108c 8438static void
96baa820 8439sig_print_header (void)
c906108c 8440{
3e43a32a
MS
8441 printf_filtered (_("Signal Stop\tPrint\tPass "
8442 "to program\tDescription\n"));
c906108c
SS
8443}
8444
8445static void
2ea28649 8446sig_print_info (enum gdb_signal oursig)
c906108c 8447{
2ea28649 8448 const char *name = gdb_signal_to_name (oursig);
c906108c 8449 int name_padding = 13 - strlen (name);
96baa820 8450
c906108c
SS
8451 if (name_padding <= 0)
8452 name_padding = 0;
8453
8454 printf_filtered ("%s", name);
488f131b 8455 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8456 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8457 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8458 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8459 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8460}
8461
8462/* Specify how various signals in the inferior should be handled. */
8463
8464static void
0b39b52e 8465handle_command (const char *args, int from_tty)
c906108c 8466{
c906108c
SS
8467 int digits, wordlen;
8468 int sigfirst, signum, siglast;
2ea28649 8469 enum gdb_signal oursig;
c906108c
SS
8470 int allsigs;
8471 int nsigs;
8472 unsigned char *sigs;
c906108c
SS
8473
8474 if (args == NULL)
8475 {
e2e0b3e5 8476 error_no_arg (_("signal to handle"));
c906108c
SS
8477 }
8478
1777feb0 8479 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8480
a493e3e2 8481 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
8482 sigs = (unsigned char *) alloca (nsigs);
8483 memset (sigs, 0, nsigs);
8484
1777feb0 8485 /* Break the command line up into args. */
c906108c 8486
773a1edc 8487 gdb_argv built_argv (args);
c906108c
SS
8488
8489 /* Walk through the args, looking for signal oursigs, signal names, and
8490 actions. Signal numbers and signal names may be interspersed with
8491 actions, with the actions being performed for all signals cumulatively
1777feb0 8492 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8493
773a1edc 8494 for (char *arg : built_argv)
c906108c 8495 {
773a1edc
TT
8496 wordlen = strlen (arg);
8497 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8498 {;
8499 }
8500 allsigs = 0;
8501 sigfirst = siglast = -1;
8502
773a1edc 8503 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8504 {
8505 /* Apply action to all signals except those used by the
1777feb0 8506 debugger. Silently skip those. */
c906108c
SS
8507 allsigs = 1;
8508 sigfirst = 0;
8509 siglast = nsigs - 1;
8510 }
773a1edc 8511 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8512 {
8513 SET_SIGS (nsigs, sigs, signal_stop);
8514 SET_SIGS (nsigs, sigs, signal_print);
8515 }
773a1edc 8516 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8517 {
8518 UNSET_SIGS (nsigs, sigs, signal_program);
8519 }
773a1edc 8520 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8521 {
8522 SET_SIGS (nsigs, sigs, signal_print);
8523 }
773a1edc 8524 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8525 {
8526 SET_SIGS (nsigs, sigs, signal_program);
8527 }
773a1edc 8528 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8529 {
8530 UNSET_SIGS (nsigs, sigs, signal_stop);
8531 }
773a1edc 8532 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8533 {
8534 SET_SIGS (nsigs, sigs, signal_program);
8535 }
773a1edc 8536 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8537 {
8538 UNSET_SIGS (nsigs, sigs, signal_print);
8539 UNSET_SIGS (nsigs, sigs, signal_stop);
8540 }
773a1edc 8541 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8542 {
8543 UNSET_SIGS (nsigs, sigs, signal_program);
8544 }
8545 else if (digits > 0)
8546 {
8547 /* It is numeric. The numeric signal refers to our own
8548 internal signal numbering from target.h, not to host/target
8549 signal number. This is a feature; users really should be
8550 using symbolic names anyway, and the common ones like
8551 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8552
8553 sigfirst = siglast = (int)
773a1edc
TT
8554 gdb_signal_from_command (atoi (arg));
8555 if (arg[digits] == '-')
c906108c
SS
8556 {
8557 siglast = (int)
773a1edc 8558 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8559 }
8560 if (sigfirst > siglast)
8561 {
1777feb0 8562 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
8563 signum = sigfirst;
8564 sigfirst = siglast;
8565 siglast = signum;
8566 }
8567 }
8568 else
8569 {
773a1edc 8570 oursig = gdb_signal_from_name (arg);
a493e3e2 8571 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8572 {
8573 sigfirst = siglast = (int) oursig;
8574 }
8575 else
8576 {
8577 /* Not a number and not a recognized flag word => complain. */
773a1edc 8578 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8579 }
8580 }
8581
8582 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8583 which signals to apply actions to. */
c906108c
SS
8584
8585 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8586 {
2ea28649 8587 switch ((enum gdb_signal) signum)
c906108c 8588 {
a493e3e2
PA
8589 case GDB_SIGNAL_TRAP:
8590 case GDB_SIGNAL_INT:
c906108c
SS
8591 if (!allsigs && !sigs[signum])
8592 {
9e2f0ad4 8593 if (query (_("%s is used by the debugger.\n\
3e43a32a 8594Are you sure you want to change it? "),
2ea28649 8595 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8596 {
8597 sigs[signum] = 1;
8598 }
8599 else
8600 {
a3f17187 8601 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8602 gdb_flush (gdb_stdout);
8603 }
8604 }
8605 break;
a493e3e2
PA
8606 case GDB_SIGNAL_0:
8607 case GDB_SIGNAL_DEFAULT:
8608 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8609 /* Make sure that "all" doesn't print these. */
8610 break;
8611 default:
8612 sigs[signum] = 1;
8613 break;
8614 }
8615 }
c906108c
SS
8616 }
8617
3a031f65
PA
8618 for (signum = 0; signum < nsigs; signum++)
8619 if (sigs[signum])
8620 {
2455069d 8621 signal_cache_update (-1);
a493e3e2
PA
8622 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8623 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 8624
3a031f65
PA
8625 if (from_tty)
8626 {
8627 /* Show the results. */
8628 sig_print_header ();
8629 for (; signum < nsigs; signum++)
8630 if (sigs[signum])
aead7601 8631 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8632 }
8633
8634 break;
8635 }
c906108c
SS
8636}
8637
de0bea00
MF
8638/* Complete the "handle" command. */
8639
eb3ff9a5 8640static void
de0bea00 8641handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8642 completion_tracker &tracker,
6f937416 8643 const char *text, const char *word)
de0bea00 8644{
de0bea00
MF
8645 static const char * const keywords[] =
8646 {
8647 "all",
8648 "stop",
8649 "ignore",
8650 "print",
8651 "pass",
8652 "nostop",
8653 "noignore",
8654 "noprint",
8655 "nopass",
8656 NULL,
8657 };
8658
eb3ff9a5
PA
8659 signal_completer (ignore, tracker, text, word);
8660 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8661}
8662
2ea28649
PA
8663enum gdb_signal
8664gdb_signal_from_command (int num)
ed01b82c
PA
8665{
8666 if (num >= 1 && num <= 15)
2ea28649 8667 return (enum gdb_signal) num;
ed01b82c
PA
8668 error (_("Only signals 1-15 are valid as numeric signals.\n\
8669Use \"info signals\" for a list of symbolic signals."));
8670}
8671
c906108c
SS
8672/* Print current contents of the tables set by the handle command.
8673 It is possible we should just be printing signals actually used
8674 by the current target (but for things to work right when switching
8675 targets, all signals should be in the signal tables). */
8676
8677static void
1d12d88f 8678info_signals_command (const char *signum_exp, int from_tty)
c906108c 8679{
2ea28649 8680 enum gdb_signal oursig;
abbb1732 8681
c906108c
SS
8682 sig_print_header ();
8683
8684 if (signum_exp)
8685 {
8686 /* First see if this is a symbol name. */
2ea28649 8687 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8688 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8689 {
8690 /* No, try numeric. */
8691 oursig =
2ea28649 8692 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8693 }
8694 sig_print_info (oursig);
8695 return;
8696 }
8697
8698 printf_filtered ("\n");
8699 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8700 for (oursig = GDB_SIGNAL_FIRST;
8701 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8702 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8703 {
8704 QUIT;
8705
a493e3e2
PA
8706 if (oursig != GDB_SIGNAL_UNKNOWN
8707 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8708 sig_print_info (oursig);
8709 }
8710
3e43a32a
MS
8711 printf_filtered (_("\nUse the \"handle\" command "
8712 "to change these tables.\n"));
c906108c 8713}
4aa995e1
PA
8714
8715/* The $_siginfo convenience variable is a bit special. We don't know
8716 for sure the type of the value until we actually have a chance to
7a9dd1b2 8717 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8718 also dependent on which thread you have selected.
8719
8720 1. making $_siginfo be an internalvar that creates a new value on
8721 access.
8722
8723 2. making the value of $_siginfo be an lval_computed value. */
8724
8725/* This function implements the lval_computed support for reading a
8726 $_siginfo value. */
8727
8728static void
8729siginfo_value_read (struct value *v)
8730{
8731 LONGEST transferred;
8732
a911d87a
PA
8733 /* If we can access registers, so can we access $_siginfo. Likewise
8734 vice versa. */
8735 validate_registers_access ();
c709acd1 8736
4aa995e1
PA
8737 transferred =
8738 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8739 NULL,
8740 value_contents_all_raw (v),
8741 value_offset (v),
8742 TYPE_LENGTH (value_type (v)));
8743
8744 if (transferred != TYPE_LENGTH (value_type (v)))
8745 error (_("Unable to read siginfo"));
8746}
8747
8748/* This function implements the lval_computed support for writing a
8749 $_siginfo value. */
8750
8751static void
8752siginfo_value_write (struct value *v, struct value *fromval)
8753{
8754 LONGEST transferred;
8755
a911d87a
PA
8756 /* If we can access registers, so can we access $_siginfo. Likewise
8757 vice versa. */
8758 validate_registers_access ();
c709acd1 8759
4aa995e1
PA
8760 transferred = target_write (&current_target,
8761 TARGET_OBJECT_SIGNAL_INFO,
8762 NULL,
8763 value_contents_all_raw (fromval),
8764 value_offset (v),
8765 TYPE_LENGTH (value_type (fromval)));
8766
8767 if (transferred != TYPE_LENGTH (value_type (fromval)))
8768 error (_("Unable to write siginfo"));
8769}
8770
c8f2448a 8771static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8772 {
8773 siginfo_value_read,
8774 siginfo_value_write
8775 };
8776
8777/* Return a new value with the correct type for the siginfo object of
78267919
UW
8778 the current thread using architecture GDBARCH. Return a void value
8779 if there's no object available. */
4aa995e1 8780
2c0b251b 8781static struct value *
22d2b532
SDJ
8782siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8783 void *ignore)
4aa995e1 8784{
4aa995e1 8785 if (target_has_stack
78267919
UW
8786 && !ptid_equal (inferior_ptid, null_ptid)
8787 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8788 {
78267919 8789 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8790
78267919 8791 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8792 }
8793
78267919 8794 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8795}
8796
c906108c 8797\f
16c381f0
JK
8798/* infcall_suspend_state contains state about the program itself like its
8799 registers and any signal it received when it last stopped.
8800 This state must be restored regardless of how the inferior function call
8801 ends (either successfully, or after it hits a breakpoint or signal)
8802 if the program is to properly continue where it left off. */
8803
8804struct infcall_suspend_state
7a292a7a 8805{
16c381f0 8806 struct thread_suspend_state thread_suspend;
16c381f0
JK
8807
8808 /* Other fields: */
7a292a7a 8809 CORE_ADDR stop_pc;
b89667eb 8810 struct regcache *registers;
1736ad11 8811
35515841 8812 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
8813 struct gdbarch *siginfo_gdbarch;
8814
8815 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8816 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8817 content would be invalid. */
8818 gdb_byte *siginfo_data;
b89667eb
DE
8819};
8820
16c381f0
JK
8821struct infcall_suspend_state *
8822save_infcall_suspend_state (void)
b89667eb 8823{
16c381f0 8824 struct infcall_suspend_state *inf_state;
b89667eb 8825 struct thread_info *tp = inferior_thread ();
1736ad11 8826 struct regcache *regcache = get_current_regcache ();
ac7936df 8827 struct gdbarch *gdbarch = regcache->arch ();
1736ad11
JK
8828 gdb_byte *siginfo_data = NULL;
8829
8830 if (gdbarch_get_siginfo_type_p (gdbarch))
8831 {
8832 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8833 size_t len = TYPE_LENGTH (type);
8834 struct cleanup *back_to;
8835
224c3ddb 8836 siginfo_data = (gdb_byte *) xmalloc (len);
1736ad11
JK
8837 back_to = make_cleanup (xfree, siginfo_data);
8838
8839 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8840 siginfo_data, 0, len) == len)
8841 discard_cleanups (back_to);
8842 else
8843 {
8844 /* Errors ignored. */
8845 do_cleanups (back_to);
8846 siginfo_data = NULL;
8847 }
8848 }
8849
41bf6aca 8850 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
8851
8852 if (siginfo_data)
8853 {
8854 inf_state->siginfo_gdbarch = gdbarch;
8855 inf_state->siginfo_data = siginfo_data;
8856 }
b89667eb 8857
16c381f0 8858 inf_state->thread_suspend = tp->suspend;
16c381f0 8859
35515841 8860 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
8861 GDB_SIGNAL_0 anyway. */
8862 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8863
b89667eb
DE
8864 inf_state->stop_pc = stop_pc;
8865
1736ad11 8866 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
8867
8868 return inf_state;
8869}
8870
8871/* Restore inferior session state to INF_STATE. */
8872
8873void
16c381f0 8874restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8875{
8876 struct thread_info *tp = inferior_thread ();
1736ad11 8877 struct regcache *regcache = get_current_regcache ();
ac7936df 8878 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 8879
16c381f0 8880 tp->suspend = inf_state->thread_suspend;
16c381f0 8881
b89667eb
DE
8882 stop_pc = inf_state->stop_pc;
8883
1736ad11
JK
8884 if (inf_state->siginfo_gdbarch == gdbarch)
8885 {
8886 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
8887
8888 /* Errors ignored. */
8889 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 8890 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
8891 }
8892
b89667eb
DE
8893 /* The inferior can be gone if the user types "print exit(0)"
8894 (and perhaps other times). */
8895 if (target_has_execution)
8896 /* NB: The register write goes through to the target. */
1736ad11 8897 regcache_cpy (regcache, inf_state->registers);
803b5f95 8898
16c381f0 8899 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8900}
8901
8902static void
16c381f0 8903do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 8904{
9a3c8263 8905 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
b89667eb
DE
8906}
8907
8908struct cleanup *
16c381f0
JK
8909make_cleanup_restore_infcall_suspend_state
8910 (struct infcall_suspend_state *inf_state)
b89667eb 8911{
16c381f0 8912 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
8913}
8914
8915void
16c381f0 8916discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 8917{
c0e383c6 8918 delete inf_state->registers;
803b5f95 8919 xfree (inf_state->siginfo_data);
b89667eb
DE
8920 xfree (inf_state);
8921}
8922
8923struct regcache *
16c381f0 8924get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
8925{
8926 return inf_state->registers;
8927}
8928
16c381f0
JK
8929/* infcall_control_state contains state regarding gdb's control of the
8930 inferior itself like stepping control. It also contains session state like
8931 the user's currently selected frame. */
b89667eb 8932
16c381f0 8933struct infcall_control_state
b89667eb 8934{
16c381f0
JK
8935 struct thread_control_state thread_control;
8936 struct inferior_control_state inferior_control;
d82142e2
JK
8937
8938 /* Other fields: */
8939 enum stop_stack_kind stop_stack_dummy;
8940 int stopped_by_random_signal;
7a292a7a 8941
b89667eb 8942 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 8943 struct frame_id selected_frame_id;
7a292a7a
SS
8944};
8945
c906108c 8946/* Save all of the information associated with the inferior<==>gdb
b89667eb 8947 connection. */
c906108c 8948
16c381f0
JK
8949struct infcall_control_state *
8950save_infcall_control_state (void)
c906108c 8951{
8d749320
SM
8952 struct infcall_control_state *inf_status =
8953 XNEW (struct infcall_control_state);
4e1c45ea 8954 struct thread_info *tp = inferior_thread ();
d6b48e9c 8955 struct inferior *inf = current_inferior ();
7a292a7a 8956
16c381f0
JK
8957 inf_status->thread_control = tp->control;
8958 inf_status->inferior_control = inf->control;
d82142e2 8959
8358c15c 8960 tp->control.step_resume_breakpoint = NULL;
5b79abe7 8961 tp->control.exception_resume_breakpoint = NULL;
8358c15c 8962
16c381f0
JK
8963 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8964 chain. If caller's caller is walking the chain, they'll be happier if we
8965 hand them back the original chain when restore_infcall_control_state is
8966 called. */
8967 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
8968
8969 /* Other fields: */
8970 inf_status->stop_stack_dummy = stop_stack_dummy;
8971 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 8972
206415a3 8973 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 8974
7a292a7a 8975 return inf_status;
c906108c
SS
8976}
8977
bf469271
PA
8978static void
8979restore_selected_frame (const frame_id &fid)
c906108c 8980{
bf469271 8981 frame_info *frame = frame_find_by_id (fid);
c906108c 8982
aa0cd9c1
AC
8983 /* If inf_status->selected_frame_id is NULL, there was no previously
8984 selected frame. */
101dcfbe 8985 if (frame == NULL)
c906108c 8986 {
8a3fe4f8 8987 warning (_("Unable to restore previously selected frame."));
bf469271 8988 return;
c906108c
SS
8989 }
8990
0f7d239c 8991 select_frame (frame);
c906108c
SS
8992}
8993
b89667eb
DE
8994/* Restore inferior session state to INF_STATUS. */
8995
c906108c 8996void
16c381f0 8997restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 8998{
4e1c45ea 8999 struct thread_info *tp = inferior_thread ();
d6b48e9c 9000 struct inferior *inf = current_inferior ();
4e1c45ea 9001
8358c15c
JK
9002 if (tp->control.step_resume_breakpoint)
9003 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9004
5b79abe7
TT
9005 if (tp->control.exception_resume_breakpoint)
9006 tp->control.exception_resume_breakpoint->disposition
9007 = disp_del_at_next_stop;
9008
d82142e2 9009 /* Handle the bpstat_copy of the chain. */
16c381f0 9010 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 9011
16c381f0
JK
9012 tp->control = inf_status->thread_control;
9013 inf->control = inf_status->inferior_control;
d82142e2
JK
9014
9015 /* Other fields: */
9016 stop_stack_dummy = inf_status->stop_stack_dummy;
9017 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 9018
b89667eb 9019 if (target_has_stack)
c906108c 9020 {
bf469271 9021 /* The point of the try/catch is that if the stack is clobbered,
101dcfbe
AC
9022 walking the stack might encounter a garbage pointer and
9023 error() trying to dereference it. */
bf469271
PA
9024 TRY
9025 {
9026 restore_selected_frame (inf_status->selected_frame_id);
9027 }
9028 CATCH (ex, RETURN_MASK_ERROR)
9029 {
9030 exception_fprintf (gdb_stderr, ex,
9031 "Unable to restore previously selected frame:\n");
9032 /* Error in restoring the selected frame. Select the
9033 innermost frame. */
9034 select_frame (get_current_frame ());
9035 }
9036 END_CATCH
c906108c 9037 }
c906108c 9038
72cec141 9039 xfree (inf_status);
7a292a7a 9040}
c906108c 9041
74b7792f 9042static void
16c381f0 9043do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 9044{
9a3c8263 9045 restore_infcall_control_state ((struct infcall_control_state *) sts);
74b7792f
AC
9046}
9047
9048struct cleanup *
16c381f0
JK
9049make_cleanup_restore_infcall_control_state
9050 (struct infcall_control_state *inf_status)
74b7792f 9051{
16c381f0 9052 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
9053}
9054
c906108c 9055void
16c381f0 9056discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 9057{
8358c15c
JK
9058 if (inf_status->thread_control.step_resume_breakpoint)
9059 inf_status->thread_control.step_resume_breakpoint->disposition
9060 = disp_del_at_next_stop;
9061
5b79abe7
TT
9062 if (inf_status->thread_control.exception_resume_breakpoint)
9063 inf_status->thread_control.exception_resume_breakpoint->disposition
9064 = disp_del_at_next_stop;
9065
1777feb0 9066 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 9067 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 9068
72cec141 9069 xfree (inf_status);
7a292a7a 9070}
b89667eb 9071\f
7f89fd65 9072/* See infrun.h. */
0c557179
SDJ
9073
9074void
9075clear_exit_convenience_vars (void)
9076{
9077 clear_internalvar (lookup_internalvar ("_exitsignal"));
9078 clear_internalvar (lookup_internalvar ("_exitcode"));
9079}
c5aa993b 9080\f
488f131b 9081
b2175913
MS
9082/* User interface for reverse debugging:
9083 Set exec-direction / show exec-direction commands
9084 (returns error unless target implements to_set_exec_direction method). */
9085
170742de 9086enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
9087static const char exec_forward[] = "forward";
9088static const char exec_reverse[] = "reverse";
9089static const char *exec_direction = exec_forward;
40478521 9090static const char *const exec_direction_names[] = {
b2175913
MS
9091 exec_forward,
9092 exec_reverse,
9093 NULL
9094};
9095
9096static void
eb4c3f4a 9097set_exec_direction_func (const char *args, int from_tty,
b2175913
MS
9098 struct cmd_list_element *cmd)
9099{
9100 if (target_can_execute_reverse)
9101 {
9102 if (!strcmp (exec_direction, exec_forward))
9103 execution_direction = EXEC_FORWARD;
9104 else if (!strcmp (exec_direction, exec_reverse))
9105 execution_direction = EXEC_REVERSE;
9106 }
8bbed405
MS
9107 else
9108 {
9109 exec_direction = exec_forward;
9110 error (_("Target does not support this operation."));
9111 }
b2175913
MS
9112}
9113
9114static void
9115show_exec_direction_func (struct ui_file *out, int from_tty,
9116 struct cmd_list_element *cmd, const char *value)
9117{
9118 switch (execution_direction) {
9119 case EXEC_FORWARD:
9120 fprintf_filtered (out, _("Forward.\n"));
9121 break;
9122 case EXEC_REVERSE:
9123 fprintf_filtered (out, _("Reverse.\n"));
9124 break;
b2175913 9125 default:
d8b34453
PA
9126 internal_error (__FILE__, __LINE__,
9127 _("bogus execution_direction value: %d"),
9128 (int) execution_direction);
b2175913
MS
9129 }
9130}
9131
d4db2f36
PA
9132static void
9133show_schedule_multiple (struct ui_file *file, int from_tty,
9134 struct cmd_list_element *c, const char *value)
9135{
3e43a32a
MS
9136 fprintf_filtered (file, _("Resuming the execution of threads "
9137 "of all processes is %s.\n"), value);
d4db2f36 9138}
ad52ddc6 9139
22d2b532
SDJ
9140/* Implementation of `siginfo' variable. */
9141
9142static const struct internalvar_funcs siginfo_funcs =
9143{
9144 siginfo_make_value,
9145 NULL,
9146 NULL
9147};
9148
372316f1
PA
9149/* Callback for infrun's target events source. This is marked when a
9150 thread has a pending status to process. */
9151
9152static void
9153infrun_async_inferior_event_handler (gdb_client_data data)
9154{
372316f1
PA
9155 inferior_event_handler (INF_REG_EVENT, NULL);
9156}
9157
c906108c 9158void
96baa820 9159_initialize_infrun (void)
c906108c 9160{
52f0bd74
AC
9161 int i;
9162 int numsigs;
de0bea00 9163 struct cmd_list_element *c;
c906108c 9164
372316f1
PA
9165 /* Register extra event sources in the event loop. */
9166 infrun_async_inferior_event_token
9167 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9168
11db9430 9169 add_info ("signals", info_signals_command, _("\
1bedd215
AC
9170What debugger does when program gets various signals.\n\
9171Specify a signal as argument to print info on that signal only."));
c906108c
SS
9172 add_info_alias ("handle", "signals", 0);
9173
de0bea00 9174 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9175Specify how to handle signals.\n\
486c7739 9176Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9177Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9178If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9179will be displayed instead.\n\
9180\n\
c906108c
SS
9181Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9182from 1-15 are allowed for compatibility with old versions of GDB.\n\
9183Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9184The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9185used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9186\n\
1bedd215 9187Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9188\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9189Stop means reenter debugger if this signal happens (implies print).\n\
9190Print means print a message if this signal happens.\n\
9191Pass means let program see this signal; otherwise program doesn't know.\n\
9192Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9193Pass and Stop may be combined.\n\
9194\n\
9195Multiple signals may be specified. Signal numbers and signal names\n\
9196may be interspersed with actions, with the actions being performed for\n\
9197all signals cumulatively specified."));
de0bea00 9198 set_cmd_completer (c, handle_completer);
486c7739 9199
c906108c 9200 if (!dbx_commands)
1a966eab
AC
9201 stop_command = add_cmd ("stop", class_obscure,
9202 not_just_help_class_command, _("\
9203There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9204This allows you to set a list of commands to be run each time execution\n\
1a966eab 9205of the program stops."), &cmdlist);
c906108c 9206
ccce17b0 9207 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9208Set inferior debugging."), _("\
9209Show inferior debugging."), _("\
9210When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9211 NULL,
9212 show_debug_infrun,
9213 &setdebuglist, &showdebuglist);
527159b7 9214
3e43a32a
MS
9215 add_setshow_boolean_cmd ("displaced", class_maintenance,
9216 &debug_displaced, _("\
237fc4c9
PA
9217Set displaced stepping debugging."), _("\
9218Show displaced stepping debugging."), _("\
9219When non-zero, displaced stepping specific debugging is enabled."),
9220 NULL,
9221 show_debug_displaced,
9222 &setdebuglist, &showdebuglist);
9223
ad52ddc6
PA
9224 add_setshow_boolean_cmd ("non-stop", no_class,
9225 &non_stop_1, _("\
9226Set whether gdb controls the inferior in non-stop mode."), _("\
9227Show whether gdb controls the inferior in non-stop mode."), _("\
9228When debugging a multi-threaded program and this setting is\n\
9229off (the default, also called all-stop mode), when one thread stops\n\
9230(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9231all other threads in the program while you interact with the thread of\n\
9232interest. When you continue or step a thread, you can allow the other\n\
9233threads to run, or have them remain stopped, but while you inspect any\n\
9234thread's state, all threads stop.\n\
9235\n\
9236In non-stop mode, when one thread stops, other threads can continue\n\
9237to run freely. You'll be able to step each thread independently,\n\
9238leave it stopped or free to run as needed."),
9239 set_non_stop,
9240 show_non_stop,
9241 &setlist,
9242 &showlist);
9243
a493e3e2 9244 numsigs = (int) GDB_SIGNAL_LAST;
8d749320
SM
9245 signal_stop = XNEWVEC (unsigned char, numsigs);
9246 signal_print = XNEWVEC (unsigned char, numsigs);
9247 signal_program = XNEWVEC (unsigned char, numsigs);
9248 signal_catch = XNEWVEC (unsigned char, numsigs);
9249 signal_pass = XNEWVEC (unsigned char, numsigs);
c906108c
SS
9250 for (i = 0; i < numsigs; i++)
9251 {
9252 signal_stop[i] = 1;
9253 signal_print[i] = 1;
9254 signal_program[i] = 1;
ab04a2af 9255 signal_catch[i] = 0;
c906108c
SS
9256 }
9257
4d9d9d04
PA
9258 /* Signals caused by debugger's own actions should not be given to
9259 the program afterwards.
9260
9261 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9262 explicitly specifies that it should be delivered to the target
9263 program. Typically, that would occur when a user is debugging a
9264 target monitor on a simulator: the target monitor sets a
9265 breakpoint; the simulator encounters this breakpoint and halts
9266 the simulation handing control to GDB; GDB, noting that the stop
9267 address doesn't map to any known breakpoint, returns control back
9268 to the simulator; the simulator then delivers the hardware
9269 equivalent of a GDB_SIGNAL_TRAP to the program being
9270 debugged. */
a493e3e2
PA
9271 signal_program[GDB_SIGNAL_TRAP] = 0;
9272 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9273
9274 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9275 signal_stop[GDB_SIGNAL_ALRM] = 0;
9276 signal_print[GDB_SIGNAL_ALRM] = 0;
9277 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9278 signal_print[GDB_SIGNAL_VTALRM] = 0;
9279 signal_stop[GDB_SIGNAL_PROF] = 0;
9280 signal_print[GDB_SIGNAL_PROF] = 0;
9281 signal_stop[GDB_SIGNAL_CHLD] = 0;
9282 signal_print[GDB_SIGNAL_CHLD] = 0;
9283 signal_stop[GDB_SIGNAL_IO] = 0;
9284 signal_print[GDB_SIGNAL_IO] = 0;
9285 signal_stop[GDB_SIGNAL_POLL] = 0;
9286 signal_print[GDB_SIGNAL_POLL] = 0;
9287 signal_stop[GDB_SIGNAL_URG] = 0;
9288 signal_print[GDB_SIGNAL_URG] = 0;
9289 signal_stop[GDB_SIGNAL_WINCH] = 0;
9290 signal_print[GDB_SIGNAL_WINCH] = 0;
9291 signal_stop[GDB_SIGNAL_PRIO] = 0;
9292 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9293
cd0fc7c3
SS
9294 /* These signals are used internally by user-level thread
9295 implementations. (See signal(5) on Solaris.) Like the above
9296 signals, a healthy program receives and handles them as part of
9297 its normal operation. */
a493e3e2
PA
9298 signal_stop[GDB_SIGNAL_LWP] = 0;
9299 signal_print[GDB_SIGNAL_LWP] = 0;
9300 signal_stop[GDB_SIGNAL_WAITING] = 0;
9301 signal_print[GDB_SIGNAL_WAITING] = 0;
9302 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9303 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9304 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9305 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9306
2455069d
UW
9307 /* Update cached state. */
9308 signal_cache_update (-1);
9309
85c07804
AC
9310 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9311 &stop_on_solib_events, _("\
9312Set stopping for shared library events."), _("\
9313Show stopping for shared library events."), _("\
c906108c
SS
9314If nonzero, gdb will give control to the user when the dynamic linker\n\
9315notifies gdb of shared library events. The most common event of interest\n\
85c07804 9316to the user would be loading/unloading of a new library."),
f9e14852 9317 set_stop_on_solib_events,
920d2a44 9318 show_stop_on_solib_events,
85c07804 9319 &setlist, &showlist);
c906108c 9320
7ab04401
AC
9321 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9322 follow_fork_mode_kind_names,
9323 &follow_fork_mode_string, _("\
9324Set debugger response to a program call of fork or vfork."), _("\
9325Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9326A fork or vfork creates a new process. follow-fork-mode can be:\n\
9327 parent - the original process is debugged after a fork\n\
9328 child - the new process is debugged after a fork\n\
ea1dd7bc 9329The unfollowed process will continue to run.\n\
7ab04401
AC
9330By default, the debugger will follow the parent process."),
9331 NULL,
920d2a44 9332 show_follow_fork_mode_string,
7ab04401
AC
9333 &setlist, &showlist);
9334
6c95b8df
PA
9335 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9336 follow_exec_mode_names,
9337 &follow_exec_mode_string, _("\
9338Set debugger response to a program call of exec."), _("\
9339Show debugger response to a program call of exec."), _("\
9340An exec call replaces the program image of a process.\n\
9341\n\
9342follow-exec-mode can be:\n\
9343\n\
cce7e648 9344 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9345to this new inferior. The program the process was running before\n\
9346the exec call can be restarted afterwards by restarting the original\n\
9347inferior.\n\
9348\n\
9349 same - the debugger keeps the process bound to the same inferior.\n\
9350The new executable image replaces the previous executable loaded in\n\
9351the inferior. Restarting the inferior after the exec call restarts\n\
9352the executable the process was running after the exec call.\n\
9353\n\
9354By default, the debugger will use the same inferior."),
9355 NULL,
9356 show_follow_exec_mode_string,
9357 &setlist, &showlist);
9358
7ab04401
AC
9359 add_setshow_enum_cmd ("scheduler-locking", class_run,
9360 scheduler_enums, &scheduler_mode, _("\
9361Set mode for locking scheduler during execution."), _("\
9362Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9363off == no locking (threads may preempt at any time)\n\
9364on == full locking (no thread except the current thread may run)\n\
9365 This applies to both normal execution and replay mode.\n\
9366step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9367 In this mode, other threads may run during other commands.\n\
9368 This applies to both normal execution and replay mode.\n\
9369replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9370 set_schedlock_func, /* traps on target vector */
920d2a44 9371 show_scheduler_mode,
7ab04401 9372 &setlist, &showlist);
5fbbeb29 9373
d4db2f36
PA
9374 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9375Set mode for resuming threads of all processes."), _("\
9376Show mode for resuming threads of all processes."), _("\
9377When on, execution commands (such as 'continue' or 'next') resume all\n\
9378threads of all processes. When off (which is the default), execution\n\
9379commands only resume the threads of the current process. The set of\n\
9380threads that are resumed is further refined by the scheduler-locking\n\
9381mode (see help set scheduler-locking)."),
9382 NULL,
9383 show_schedule_multiple,
9384 &setlist, &showlist);
9385
5bf193a2
AC
9386 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9387Set mode of the step operation."), _("\
9388Show mode of the step operation."), _("\
9389When set, doing a step over a function without debug line information\n\
9390will stop at the first instruction of that function. Otherwise, the\n\
9391function is skipped and the step command stops at a different source line."),
9392 NULL,
920d2a44 9393 show_step_stop_if_no_debug,
5bf193a2 9394 &setlist, &showlist);
ca6724c1 9395
72d0e2c5
YQ
9396 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9397 &can_use_displaced_stepping, _("\
237fc4c9
PA
9398Set debugger's willingness to use displaced stepping."), _("\
9399Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9400If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9401supported by the target architecture. If off, gdb will not use displaced\n\
9402stepping to step over breakpoints, even if such is supported by the target\n\
9403architecture. If auto (which is the default), gdb will use displaced stepping\n\
9404if the target architecture supports it and non-stop mode is active, but will not\n\
9405use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9406 NULL,
9407 show_can_use_displaced_stepping,
9408 &setlist, &showlist);
237fc4c9 9409
b2175913
MS
9410 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9411 &exec_direction, _("Set direction of execution.\n\
9412Options are 'forward' or 'reverse'."),
9413 _("Show direction of execution (forward/reverse)."),
9414 _("Tells gdb whether to execute forward or backward."),
9415 set_exec_direction_func, show_exec_direction_func,
9416 &setlist, &showlist);
9417
6c95b8df
PA
9418 /* Set/show detach-on-fork: user-settable mode. */
9419
9420 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9421Set whether gdb will detach the child of a fork."), _("\
9422Show whether gdb will detach the child of a fork."), _("\
9423Tells gdb whether to detach the child of a fork."),
9424 NULL, NULL, &setlist, &showlist);
9425
03583c20
UW
9426 /* Set/show disable address space randomization mode. */
9427
9428 add_setshow_boolean_cmd ("disable-randomization", class_support,
9429 &disable_randomization, _("\
9430Set disabling of debuggee's virtual address space randomization."), _("\
9431Show disabling of debuggee's virtual address space randomization."), _("\
9432When this mode is on (which is the default), randomization of the virtual\n\
9433address space is disabled. Standalone programs run with the randomization\n\
9434enabled by default on some platforms."),
9435 &set_disable_randomization,
9436 &show_disable_randomization,
9437 &setlist, &showlist);
9438
ca6724c1 9439 /* ptid initializations */
ca6724c1
KB
9440 inferior_ptid = null_ptid;
9441 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
9442
9443 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 9444 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 9445 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 9446 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
9447
9448 /* Explicitly create without lookup, since that tries to create a
9449 value with a void typed value, and when we get here, gdbarch
9450 isn't initialized yet. At this point, we're quite sure there
9451 isn't another convenience variable of the same name. */
22d2b532 9452 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9453
9454 add_setshow_boolean_cmd ("observer", no_class,
9455 &observer_mode_1, _("\
9456Set whether gdb controls the inferior in observer mode."), _("\
9457Show whether gdb controls the inferior in observer mode."), _("\
9458In observer mode, GDB can get data from the inferior, but not\n\
9459affect its execution. Registers and memory may not be changed,\n\
9460breakpoints may not be set, and the program cannot be interrupted\n\
9461or signalled."),
9462 set_observer_mode,
9463 show_observer_mode,
9464 &setlist,
9465 &showlist);
c906108c 9466}
This page took 2.42972 seconds and 4 git commands to generate.