Replace the sync_execution global with a new enum prompt_state tristate
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
618f726f 4 Copyright (C) 1986-2016 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
06600e06 41#include "observer.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
ff862be4 63#include "solist.h"
372316f1 64#include "event-loop.h"
243a9253 65#include "thread-fsm.h"
8d297bbf 66#include "common/enum-flags.h"
c906108c
SS
67
68/* Prototypes for local functions */
69
96baa820 70static void signals_info (char *, int);
c906108c 71
96baa820 72static void handle_command (char *, int);
c906108c 73
2ea28649 74static void sig_print_info (enum gdb_signal);
c906108c 75
96baa820 76static void sig_print_header (void);
c906108c 77
74b7792f 78static void resume_cleanups (void *);
c906108c 79
96baa820 80static int hook_stop_stub (void *);
c906108c 81
96baa820
JM
82static int restore_selected_frame (void *);
83
4ef3f3be 84static int follow_fork (void);
96baa820 85
d83ad864
DB
86static int follow_fork_inferior (int follow_child, int detach_fork);
87
88static void follow_inferior_reset_breakpoints (void);
89
96baa820 90static void set_schedlock_func (char *args, int from_tty,
488f131b 91 struct cmd_list_element *c);
96baa820 92
a289b8f6
JK
93static int currently_stepping (struct thread_info *tp);
94
96baa820 95void _initialize_infrun (void);
43ff13b4 96
e58b0e63
PA
97void nullify_last_target_wait_ptid (void);
98
2c03e5be 99static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
100
101static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
102
2484c66b
UW
103static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
104
8550d3b3
YQ
105static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
106
372316f1
PA
107/* Asynchronous signal handler registered as event loop source for
108 when we have pending events ready to be passed to the core. */
109static struct async_event_handler *infrun_async_inferior_event_token;
110
111/* Stores whether infrun_async was previously enabled or disabled.
112 Starts off as -1, indicating "never enabled/disabled". */
113static int infrun_is_async = -1;
114
115/* See infrun.h. */
116
117void
118infrun_async (int enable)
119{
120 if (infrun_is_async != enable)
121 {
122 infrun_is_async = enable;
123
124 if (debug_infrun)
125 fprintf_unfiltered (gdb_stdlog,
126 "infrun: infrun_async(%d)\n",
127 enable);
128
129 if (enable)
130 mark_async_event_handler (infrun_async_inferior_event_token);
131 else
132 clear_async_event_handler (infrun_async_inferior_event_token);
133 }
134}
135
0b333c5e
PA
136/* See infrun.h. */
137
138void
139mark_infrun_async_event_handler (void)
140{
141 mark_async_event_handler (infrun_async_inferior_event_token);
142}
143
5fbbeb29
CF
144/* When set, stop the 'step' command if we enter a function which has
145 no line number information. The normal behavior is that we step
146 over such function. */
147int step_stop_if_no_debug = 0;
920d2a44
AC
148static void
149show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151{
152 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
153}
5fbbeb29 154
b9f437de
PA
155/* proceed and normal_stop use this to notify the user when the
156 inferior stopped in a different thread than it had been running
157 in. */
96baa820 158
39f77062 159static ptid_t previous_inferior_ptid;
7a292a7a 160
07107ca6
LM
161/* If set (default for legacy reasons), when following a fork, GDB
162 will detach from one of the fork branches, child or parent.
163 Exactly which branch is detached depends on 'set follow-fork-mode'
164 setting. */
165
166static int detach_fork = 1;
6c95b8df 167
237fc4c9
PA
168int debug_displaced = 0;
169static void
170show_debug_displaced (struct ui_file *file, int from_tty,
171 struct cmd_list_element *c, const char *value)
172{
173 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
174}
175
ccce17b0 176unsigned int debug_infrun = 0;
920d2a44
AC
177static void
178show_debug_infrun (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180{
181 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
182}
527159b7 183
03583c20
UW
184
185/* Support for disabling address space randomization. */
186
187int disable_randomization = 1;
188
189static void
190show_disable_randomization (struct ui_file *file, int from_tty,
191 struct cmd_list_element *c, const char *value)
192{
193 if (target_supports_disable_randomization ())
194 fprintf_filtered (file,
195 _("Disabling randomization of debuggee's "
196 "virtual address space is %s.\n"),
197 value);
198 else
199 fputs_filtered (_("Disabling randomization of debuggee's "
200 "virtual address space is unsupported on\n"
201 "this platform.\n"), file);
202}
203
204static void
205set_disable_randomization (char *args, int from_tty,
206 struct cmd_list_element *c)
207{
208 if (!target_supports_disable_randomization ())
209 error (_("Disabling randomization of debuggee's "
210 "virtual address space is unsupported on\n"
211 "this platform."));
212}
213
d32dc48e
PA
214/* User interface for non-stop mode. */
215
216int non_stop = 0;
217static int non_stop_1 = 0;
218
219static void
220set_non_stop (char *args, int from_tty,
221 struct cmd_list_element *c)
222{
223 if (target_has_execution)
224 {
225 non_stop_1 = non_stop;
226 error (_("Cannot change this setting while the inferior is running."));
227 }
228
229 non_stop = non_stop_1;
230}
231
232static void
233show_non_stop (struct ui_file *file, int from_tty,
234 struct cmd_list_element *c, const char *value)
235{
236 fprintf_filtered (file,
237 _("Controlling the inferior in non-stop mode is %s.\n"),
238 value);
239}
240
d914c394
SS
241/* "Observer mode" is somewhat like a more extreme version of
242 non-stop, in which all GDB operations that might affect the
243 target's execution have been disabled. */
244
d914c394
SS
245int observer_mode = 0;
246static int observer_mode_1 = 0;
247
248static void
249set_observer_mode (char *args, int from_tty,
250 struct cmd_list_element *c)
251{
d914c394
SS
252 if (target_has_execution)
253 {
254 observer_mode_1 = observer_mode;
255 error (_("Cannot change this setting while the inferior is running."));
256 }
257
258 observer_mode = observer_mode_1;
259
260 may_write_registers = !observer_mode;
261 may_write_memory = !observer_mode;
262 may_insert_breakpoints = !observer_mode;
263 may_insert_tracepoints = !observer_mode;
264 /* We can insert fast tracepoints in or out of observer mode,
265 but enable them if we're going into this mode. */
266 if (observer_mode)
267 may_insert_fast_tracepoints = 1;
268 may_stop = !observer_mode;
269 update_target_permissions ();
270
271 /* Going *into* observer mode we must force non-stop, then
272 going out we leave it that way. */
273 if (observer_mode)
274 {
d914c394
SS
275 pagination_enabled = 0;
276 non_stop = non_stop_1 = 1;
277 }
278
279 if (from_tty)
280 printf_filtered (_("Observer mode is now %s.\n"),
281 (observer_mode ? "on" : "off"));
282}
283
284static void
285show_observer_mode (struct ui_file *file, int from_tty,
286 struct cmd_list_element *c, const char *value)
287{
288 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
289}
290
291/* This updates the value of observer mode based on changes in
292 permissions. Note that we are deliberately ignoring the values of
293 may-write-registers and may-write-memory, since the user may have
294 reason to enable these during a session, for instance to turn on a
295 debugging-related global. */
296
297void
298update_observer_mode (void)
299{
300 int newval;
301
302 newval = (!may_insert_breakpoints
303 && !may_insert_tracepoints
304 && may_insert_fast_tracepoints
305 && !may_stop
306 && non_stop);
307
308 /* Let the user know if things change. */
309 if (newval != observer_mode)
310 printf_filtered (_("Observer mode is now %s.\n"),
311 (newval ? "on" : "off"));
312
313 observer_mode = observer_mode_1 = newval;
314}
c2c6d25f 315
c906108c
SS
316/* Tables of how to react to signals; the user sets them. */
317
318static unsigned char *signal_stop;
319static unsigned char *signal_print;
320static unsigned char *signal_program;
321
ab04a2af
TT
322/* Table of signals that are registered with "catch signal". A
323 non-zero entry indicates that the signal is caught by some "catch
324 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
325 signals. */
326static unsigned char *signal_catch;
327
2455069d
UW
328/* Table of signals that the target may silently handle.
329 This is automatically determined from the flags above,
330 and simply cached here. */
331static unsigned char *signal_pass;
332
c906108c
SS
333#define SET_SIGS(nsigs,sigs,flags) \
334 do { \
335 int signum = (nsigs); \
336 while (signum-- > 0) \
337 if ((sigs)[signum]) \
338 (flags)[signum] = 1; \
339 } while (0)
340
341#define UNSET_SIGS(nsigs,sigs,flags) \
342 do { \
343 int signum = (nsigs); \
344 while (signum-- > 0) \
345 if ((sigs)[signum]) \
346 (flags)[signum] = 0; \
347 } while (0)
348
9b224c5e
PA
349/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
350 this function is to avoid exporting `signal_program'. */
351
352void
353update_signals_program_target (void)
354{
a493e3e2 355 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
356}
357
1777feb0 358/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 359
edb3359d 360#define RESUME_ALL minus_one_ptid
c906108c
SS
361
362/* Command list pointer for the "stop" placeholder. */
363
364static struct cmd_list_element *stop_command;
365
c906108c
SS
366/* Nonzero if we want to give control to the user when we're notified
367 of shared library events by the dynamic linker. */
628fe4e4 368int stop_on_solib_events;
f9e14852
GB
369
370/* Enable or disable optional shared library event breakpoints
371 as appropriate when the above flag is changed. */
372
373static void
374set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
375{
376 update_solib_breakpoints ();
377}
378
920d2a44
AC
379static void
380show_stop_on_solib_events (struct ui_file *file, int from_tty,
381 struct cmd_list_element *c, const char *value)
382{
383 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
384 value);
385}
c906108c 386
c906108c
SS
387/* Nonzero after stop if current stack frame should be printed. */
388
389static int stop_print_frame;
390
e02bc4cc 391/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
392 returned by target_wait()/deprecated_target_wait_hook(). This
393 information is returned by get_last_target_status(). */
39f77062 394static ptid_t target_last_wait_ptid;
e02bc4cc
DS
395static struct target_waitstatus target_last_waitstatus;
396
0d1e5fa7
PA
397static void context_switch (ptid_t ptid);
398
4e1c45ea 399void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 400
53904c9e
AC
401static const char follow_fork_mode_child[] = "child";
402static const char follow_fork_mode_parent[] = "parent";
403
40478521 404static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
405 follow_fork_mode_child,
406 follow_fork_mode_parent,
407 NULL
ef346e04 408};
c906108c 409
53904c9e 410static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
411static void
412show_follow_fork_mode_string (struct ui_file *file, int from_tty,
413 struct cmd_list_element *c, const char *value)
414{
3e43a32a
MS
415 fprintf_filtered (file,
416 _("Debugger response to a program "
417 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
418 value);
419}
c906108c
SS
420\f
421
d83ad864
DB
422/* Handle changes to the inferior list based on the type of fork,
423 which process is being followed, and whether the other process
424 should be detached. On entry inferior_ptid must be the ptid of
425 the fork parent. At return inferior_ptid is the ptid of the
426 followed inferior. */
427
428static int
429follow_fork_inferior (int follow_child, int detach_fork)
430{
431 int has_vforked;
79639e11 432 ptid_t parent_ptid, child_ptid;
d83ad864
DB
433
434 has_vforked = (inferior_thread ()->pending_follow.kind
435 == TARGET_WAITKIND_VFORKED);
79639e11
PA
436 parent_ptid = inferior_ptid;
437 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
438
439 if (has_vforked
440 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 441 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
442 && !(follow_child || detach_fork || sched_multi))
443 {
444 /* The parent stays blocked inside the vfork syscall until the
445 child execs or exits. If we don't let the child run, then
446 the parent stays blocked. If we're telling the parent to run
447 in the foreground, the user will not be able to ctrl-c to get
448 back the terminal, effectively hanging the debug session. */
449 fprintf_filtered (gdb_stderr, _("\
450Can not resume the parent process over vfork in the foreground while\n\
451holding the child stopped. Try \"set detach-on-fork\" or \
452\"set schedule-multiple\".\n"));
453 /* FIXME output string > 80 columns. */
454 return 1;
455 }
456
457 if (!follow_child)
458 {
459 /* Detach new forked process? */
460 if (detach_fork)
461 {
d83ad864
DB
462 /* Before detaching from the child, remove all breakpoints
463 from it. If we forked, then this has already been taken
464 care of by infrun.c. If we vforked however, any
465 breakpoint inserted in the parent is visible in the
466 child, even those added while stopped in a vfork
467 catchpoint. This will remove the breakpoints from the
468 parent also, but they'll be reinserted below. */
469 if (has_vforked)
470 {
471 /* Keep breakpoints list in sync. */
472 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
473 }
474
475 if (info_verbose || debug_infrun)
476 {
8dd06f7a
DB
477 /* Ensure that we have a process ptid. */
478 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
479
6f259a23 480 target_terminal_ours_for_output ();
d83ad864 481 fprintf_filtered (gdb_stdlog,
79639e11 482 _("Detaching after %s from child %s.\n"),
6f259a23 483 has_vforked ? "vfork" : "fork",
8dd06f7a 484 target_pid_to_str (process_ptid));
d83ad864
DB
485 }
486 }
487 else
488 {
489 struct inferior *parent_inf, *child_inf;
490 struct cleanup *old_chain;
491
492 /* Add process to GDB's tables. */
79639e11 493 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
494
495 parent_inf = current_inferior ();
496 child_inf->attach_flag = parent_inf->attach_flag;
497 copy_terminal_info (child_inf, parent_inf);
498 child_inf->gdbarch = parent_inf->gdbarch;
499 copy_inferior_target_desc_info (child_inf, parent_inf);
500
501 old_chain = save_inferior_ptid ();
502 save_current_program_space ();
503
79639e11 504 inferior_ptid = child_ptid;
d83ad864
DB
505 add_thread (inferior_ptid);
506 child_inf->symfile_flags = SYMFILE_NO_READ;
507
508 /* If this is a vfork child, then the address-space is
509 shared with the parent. */
510 if (has_vforked)
511 {
512 child_inf->pspace = parent_inf->pspace;
513 child_inf->aspace = parent_inf->aspace;
514
515 /* The parent will be frozen until the child is done
516 with the shared region. Keep track of the
517 parent. */
518 child_inf->vfork_parent = parent_inf;
519 child_inf->pending_detach = 0;
520 parent_inf->vfork_child = child_inf;
521 parent_inf->pending_detach = 0;
522 }
523 else
524 {
525 child_inf->aspace = new_address_space ();
526 child_inf->pspace = add_program_space (child_inf->aspace);
527 child_inf->removable = 1;
528 set_current_program_space (child_inf->pspace);
529 clone_program_space (child_inf->pspace, parent_inf->pspace);
530
531 /* Let the shared library layer (e.g., solib-svr4) learn
532 about this new process, relocate the cloned exec, pull
533 in shared libraries, and install the solib event
534 breakpoint. If a "cloned-VM" event was propagated
535 better throughout the core, this wouldn't be
536 required. */
537 solib_create_inferior_hook (0);
538 }
539
540 do_cleanups (old_chain);
541 }
542
543 if (has_vforked)
544 {
545 struct inferior *parent_inf;
546
547 parent_inf = current_inferior ();
548
549 /* If we detached from the child, then we have to be careful
550 to not insert breakpoints in the parent until the child
551 is done with the shared memory region. However, if we're
552 staying attached to the child, then we can and should
553 insert breakpoints, so that we can debug it. A
554 subsequent child exec or exit is enough to know when does
555 the child stops using the parent's address space. */
556 parent_inf->waiting_for_vfork_done = detach_fork;
557 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
558 }
559 }
560 else
561 {
562 /* Follow the child. */
563 struct inferior *parent_inf, *child_inf;
564 struct program_space *parent_pspace;
565
566 if (info_verbose || debug_infrun)
567 {
6f259a23
DB
568 target_terminal_ours_for_output ();
569 fprintf_filtered (gdb_stdlog,
79639e11
PA
570 _("Attaching after %s %s to child %s.\n"),
571 target_pid_to_str (parent_ptid),
6f259a23 572 has_vforked ? "vfork" : "fork",
79639e11 573 target_pid_to_str (child_ptid));
d83ad864
DB
574 }
575
576 /* Add the new inferior first, so that the target_detach below
577 doesn't unpush the target. */
578
79639e11 579 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
580
581 parent_inf = current_inferior ();
582 child_inf->attach_flag = parent_inf->attach_flag;
583 copy_terminal_info (child_inf, parent_inf);
584 child_inf->gdbarch = parent_inf->gdbarch;
585 copy_inferior_target_desc_info (child_inf, parent_inf);
586
587 parent_pspace = parent_inf->pspace;
588
589 /* If we're vforking, we want to hold on to the parent until the
590 child exits or execs. At child exec or exit time we can
591 remove the old breakpoints from the parent and detach or
592 resume debugging it. Otherwise, detach the parent now; we'll
593 want to reuse it's program/address spaces, but we can't set
594 them to the child before removing breakpoints from the
595 parent, otherwise, the breakpoints module could decide to
596 remove breakpoints from the wrong process (since they'd be
597 assigned to the same address space). */
598
599 if (has_vforked)
600 {
601 gdb_assert (child_inf->vfork_parent == NULL);
602 gdb_assert (parent_inf->vfork_child == NULL);
603 child_inf->vfork_parent = parent_inf;
604 child_inf->pending_detach = 0;
605 parent_inf->vfork_child = child_inf;
606 parent_inf->pending_detach = detach_fork;
607 parent_inf->waiting_for_vfork_done = 0;
608 }
609 else if (detach_fork)
6f259a23
DB
610 {
611 if (info_verbose || debug_infrun)
612 {
8dd06f7a
DB
613 /* Ensure that we have a process ptid. */
614 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
615
6f259a23
DB
616 target_terminal_ours_for_output ();
617 fprintf_filtered (gdb_stdlog,
618 _("Detaching after fork from "
79639e11 619 "child %s.\n"),
8dd06f7a 620 target_pid_to_str (process_ptid));
6f259a23
DB
621 }
622
623 target_detach (NULL, 0);
624 }
d83ad864
DB
625
626 /* Note that the detach above makes PARENT_INF dangling. */
627
628 /* Add the child thread to the appropriate lists, and switch to
629 this new thread, before cloning the program space, and
630 informing the solib layer about this new process. */
631
79639e11 632 inferior_ptid = child_ptid;
d83ad864
DB
633 add_thread (inferior_ptid);
634
635 /* If this is a vfork child, then the address-space is shared
636 with the parent. If we detached from the parent, then we can
637 reuse the parent's program/address spaces. */
638 if (has_vforked || detach_fork)
639 {
640 child_inf->pspace = parent_pspace;
641 child_inf->aspace = child_inf->pspace->aspace;
642 }
643 else
644 {
645 child_inf->aspace = new_address_space ();
646 child_inf->pspace = add_program_space (child_inf->aspace);
647 child_inf->removable = 1;
648 child_inf->symfile_flags = SYMFILE_NO_READ;
649 set_current_program_space (child_inf->pspace);
650 clone_program_space (child_inf->pspace, parent_pspace);
651
652 /* Let the shared library layer (e.g., solib-svr4) learn
653 about this new process, relocate the cloned exec, pull in
654 shared libraries, and install the solib event breakpoint.
655 If a "cloned-VM" event was propagated better throughout
656 the core, this wouldn't be required. */
657 solib_create_inferior_hook (0);
658 }
659 }
660
661 return target_follow_fork (follow_child, detach_fork);
662}
663
e58b0e63
PA
664/* Tell the target to follow the fork we're stopped at. Returns true
665 if the inferior should be resumed; false, if the target for some
666 reason decided it's best not to resume. */
667
6604731b 668static int
4ef3f3be 669follow_fork (void)
c906108c 670{
ea1dd7bc 671 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
672 int should_resume = 1;
673 struct thread_info *tp;
674
675 /* Copy user stepping state to the new inferior thread. FIXME: the
676 followed fork child thread should have a copy of most of the
4e3990f4
DE
677 parent thread structure's run control related fields, not just these.
678 Initialized to avoid "may be used uninitialized" warnings from gcc. */
679 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 680 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
681 CORE_ADDR step_range_start = 0;
682 CORE_ADDR step_range_end = 0;
683 struct frame_id step_frame_id = { 0 };
17b2616c 684 struct interp *command_interp = NULL;
e58b0e63
PA
685
686 if (!non_stop)
687 {
688 ptid_t wait_ptid;
689 struct target_waitstatus wait_status;
690
691 /* Get the last target status returned by target_wait(). */
692 get_last_target_status (&wait_ptid, &wait_status);
693
694 /* If not stopped at a fork event, then there's nothing else to
695 do. */
696 if (wait_status.kind != TARGET_WAITKIND_FORKED
697 && wait_status.kind != TARGET_WAITKIND_VFORKED)
698 return 1;
699
700 /* Check if we switched over from WAIT_PTID, since the event was
701 reported. */
702 if (!ptid_equal (wait_ptid, minus_one_ptid)
703 && !ptid_equal (inferior_ptid, wait_ptid))
704 {
705 /* We did. Switch back to WAIT_PTID thread, to tell the
706 target to follow it (in either direction). We'll
707 afterwards refuse to resume, and inform the user what
708 happened. */
709 switch_to_thread (wait_ptid);
710 should_resume = 0;
711 }
712 }
713
714 tp = inferior_thread ();
715
716 /* If there were any forks/vforks that were caught and are now to be
717 followed, then do so now. */
718 switch (tp->pending_follow.kind)
719 {
720 case TARGET_WAITKIND_FORKED:
721 case TARGET_WAITKIND_VFORKED:
722 {
723 ptid_t parent, child;
724
725 /* If the user did a next/step, etc, over a fork call,
726 preserve the stepping state in the fork child. */
727 if (follow_child && should_resume)
728 {
8358c15c
JK
729 step_resume_breakpoint = clone_momentary_breakpoint
730 (tp->control.step_resume_breakpoint);
16c381f0
JK
731 step_range_start = tp->control.step_range_start;
732 step_range_end = tp->control.step_range_end;
733 step_frame_id = tp->control.step_frame_id;
186c406b
TT
734 exception_resume_breakpoint
735 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
17b2616c 736 command_interp = tp->control.command_interp;
e58b0e63
PA
737
738 /* For now, delete the parent's sr breakpoint, otherwise,
739 parent/child sr breakpoints are considered duplicates,
740 and the child version will not be installed. Remove
741 this when the breakpoints module becomes aware of
742 inferiors and address spaces. */
743 delete_step_resume_breakpoint (tp);
16c381f0
JK
744 tp->control.step_range_start = 0;
745 tp->control.step_range_end = 0;
746 tp->control.step_frame_id = null_frame_id;
186c406b 747 delete_exception_resume_breakpoint (tp);
17b2616c 748 tp->control.command_interp = NULL;
e58b0e63
PA
749 }
750
751 parent = inferior_ptid;
752 child = tp->pending_follow.value.related_pid;
753
d83ad864
DB
754 /* Set up inferior(s) as specified by the caller, and tell the
755 target to do whatever is necessary to follow either parent
756 or child. */
757 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
758 {
759 /* Target refused to follow, or there's some other reason
760 we shouldn't resume. */
761 should_resume = 0;
762 }
763 else
764 {
765 /* This pending follow fork event is now handled, one way
766 or another. The previous selected thread may be gone
767 from the lists by now, but if it is still around, need
768 to clear the pending follow request. */
e09875d4 769 tp = find_thread_ptid (parent);
e58b0e63
PA
770 if (tp)
771 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
772
773 /* This makes sure we don't try to apply the "Switched
774 over from WAIT_PID" logic above. */
775 nullify_last_target_wait_ptid ();
776
1777feb0 777 /* If we followed the child, switch to it... */
e58b0e63
PA
778 if (follow_child)
779 {
780 switch_to_thread (child);
781
782 /* ... and preserve the stepping state, in case the
783 user was stepping over the fork call. */
784 if (should_resume)
785 {
786 tp = inferior_thread ();
8358c15c
JK
787 tp->control.step_resume_breakpoint
788 = step_resume_breakpoint;
16c381f0
JK
789 tp->control.step_range_start = step_range_start;
790 tp->control.step_range_end = step_range_end;
791 tp->control.step_frame_id = step_frame_id;
186c406b
TT
792 tp->control.exception_resume_breakpoint
793 = exception_resume_breakpoint;
17b2616c 794 tp->control.command_interp = command_interp;
e58b0e63
PA
795 }
796 else
797 {
798 /* If we get here, it was because we're trying to
799 resume from a fork catchpoint, but, the user
800 has switched threads away from the thread that
801 forked. In that case, the resume command
802 issued is most likely not applicable to the
803 child, so just warn, and refuse to resume. */
3e43a32a 804 warning (_("Not resuming: switched threads "
fd7dcb94 805 "before following fork child."));
e58b0e63
PA
806 }
807
808 /* Reset breakpoints in the child as appropriate. */
809 follow_inferior_reset_breakpoints ();
810 }
811 else
812 switch_to_thread (parent);
813 }
814 }
815 break;
816 case TARGET_WAITKIND_SPURIOUS:
817 /* Nothing to follow. */
818 break;
819 default:
820 internal_error (__FILE__, __LINE__,
821 "Unexpected pending_follow.kind %d\n",
822 tp->pending_follow.kind);
823 break;
824 }
c906108c 825
e58b0e63 826 return should_resume;
c906108c
SS
827}
828
d83ad864 829static void
6604731b 830follow_inferior_reset_breakpoints (void)
c906108c 831{
4e1c45ea
PA
832 struct thread_info *tp = inferior_thread ();
833
6604731b
DJ
834 /* Was there a step_resume breakpoint? (There was if the user
835 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
836 thread number. Cloned step_resume breakpoints are disabled on
837 creation, so enable it here now that it is associated with the
838 correct thread.
6604731b
DJ
839
840 step_resumes are a form of bp that are made to be per-thread.
841 Since we created the step_resume bp when the parent process
842 was being debugged, and now are switching to the child process,
843 from the breakpoint package's viewpoint, that's a switch of
844 "threads". We must update the bp's notion of which thread
845 it is for, or it'll be ignored when it triggers. */
846
8358c15c 847 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
848 {
849 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
850 tp->control.step_resume_breakpoint->loc->enabled = 1;
851 }
6604731b 852
a1aa2221 853 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 854 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
855 {
856 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
857 tp->control.exception_resume_breakpoint->loc->enabled = 1;
858 }
186c406b 859
6604731b
DJ
860 /* Reinsert all breakpoints in the child. The user may have set
861 breakpoints after catching the fork, in which case those
862 were never set in the child, but only in the parent. This makes
863 sure the inserted breakpoints match the breakpoint list. */
864
865 breakpoint_re_set ();
866 insert_breakpoints ();
c906108c 867}
c906108c 868
6c95b8df
PA
869/* The child has exited or execed: resume threads of the parent the
870 user wanted to be executing. */
871
872static int
873proceed_after_vfork_done (struct thread_info *thread,
874 void *arg)
875{
876 int pid = * (int *) arg;
877
878 if (ptid_get_pid (thread->ptid) == pid
879 && is_running (thread->ptid)
880 && !is_executing (thread->ptid)
881 && !thread->stop_requested
a493e3e2 882 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
883 {
884 if (debug_infrun)
885 fprintf_unfiltered (gdb_stdlog,
886 "infrun: resuming vfork parent thread %s\n",
887 target_pid_to_str (thread->ptid));
888
889 switch_to_thread (thread->ptid);
70509625 890 clear_proceed_status (0);
64ce06e4 891 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
892 }
893
894 return 0;
895}
896
897/* Called whenever we notice an exec or exit event, to handle
898 detaching or resuming a vfork parent. */
899
900static void
901handle_vfork_child_exec_or_exit (int exec)
902{
903 struct inferior *inf = current_inferior ();
904
905 if (inf->vfork_parent)
906 {
907 int resume_parent = -1;
908
909 /* This exec or exit marks the end of the shared memory region
910 between the parent and the child. If the user wanted to
911 detach from the parent, now is the time. */
912
913 if (inf->vfork_parent->pending_detach)
914 {
915 struct thread_info *tp;
916 struct cleanup *old_chain;
917 struct program_space *pspace;
918 struct address_space *aspace;
919
1777feb0 920 /* follow-fork child, detach-on-fork on. */
6c95b8df 921
68c9da30
PA
922 inf->vfork_parent->pending_detach = 0;
923
f50f4e56
PA
924 if (!exec)
925 {
926 /* If we're handling a child exit, then inferior_ptid
927 points at the inferior's pid, not to a thread. */
928 old_chain = save_inferior_ptid ();
929 save_current_program_space ();
930 save_current_inferior ();
931 }
932 else
933 old_chain = save_current_space_and_thread ();
6c95b8df
PA
934
935 /* We're letting loose of the parent. */
936 tp = any_live_thread_of_process (inf->vfork_parent->pid);
937 switch_to_thread (tp->ptid);
938
939 /* We're about to detach from the parent, which implicitly
940 removes breakpoints from its address space. There's a
941 catch here: we want to reuse the spaces for the child,
942 but, parent/child are still sharing the pspace at this
943 point, although the exec in reality makes the kernel give
944 the child a fresh set of new pages. The problem here is
945 that the breakpoints module being unaware of this, would
946 likely chose the child process to write to the parent
947 address space. Swapping the child temporarily away from
948 the spaces has the desired effect. Yes, this is "sort
949 of" a hack. */
950
951 pspace = inf->pspace;
952 aspace = inf->aspace;
953 inf->aspace = NULL;
954 inf->pspace = NULL;
955
956 if (debug_infrun || info_verbose)
957 {
6f259a23 958 target_terminal_ours_for_output ();
6c95b8df
PA
959
960 if (exec)
6f259a23
DB
961 {
962 fprintf_filtered (gdb_stdlog,
963 _("Detaching vfork parent process "
964 "%d after child exec.\n"),
965 inf->vfork_parent->pid);
966 }
6c95b8df 967 else
6f259a23
DB
968 {
969 fprintf_filtered (gdb_stdlog,
970 _("Detaching vfork parent process "
971 "%d after child exit.\n"),
972 inf->vfork_parent->pid);
973 }
6c95b8df
PA
974 }
975
976 target_detach (NULL, 0);
977
978 /* Put it back. */
979 inf->pspace = pspace;
980 inf->aspace = aspace;
981
982 do_cleanups (old_chain);
983 }
984 else if (exec)
985 {
986 /* We're staying attached to the parent, so, really give the
987 child a new address space. */
988 inf->pspace = add_program_space (maybe_new_address_space ());
989 inf->aspace = inf->pspace->aspace;
990 inf->removable = 1;
991 set_current_program_space (inf->pspace);
992
993 resume_parent = inf->vfork_parent->pid;
994
995 /* Break the bonds. */
996 inf->vfork_parent->vfork_child = NULL;
997 }
998 else
999 {
1000 struct cleanup *old_chain;
1001 struct program_space *pspace;
1002
1003 /* If this is a vfork child exiting, then the pspace and
1004 aspaces were shared with the parent. Since we're
1005 reporting the process exit, we'll be mourning all that is
1006 found in the address space, and switching to null_ptid,
1007 preparing to start a new inferior. But, since we don't
1008 want to clobber the parent's address/program spaces, we
1009 go ahead and create a new one for this exiting
1010 inferior. */
1011
1012 /* Switch to null_ptid, so that clone_program_space doesn't want
1013 to read the selected frame of a dead process. */
1014 old_chain = save_inferior_ptid ();
1015 inferior_ptid = null_ptid;
1016
1017 /* This inferior is dead, so avoid giving the breakpoints
1018 module the option to write through to it (cloning a
1019 program space resets breakpoints). */
1020 inf->aspace = NULL;
1021 inf->pspace = NULL;
1022 pspace = add_program_space (maybe_new_address_space ());
1023 set_current_program_space (pspace);
1024 inf->removable = 1;
7dcd53a0 1025 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1026 clone_program_space (pspace, inf->vfork_parent->pspace);
1027 inf->pspace = pspace;
1028 inf->aspace = pspace->aspace;
1029
1030 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 1031 inferior. */
6c95b8df
PA
1032 do_cleanups (old_chain);
1033
1034 resume_parent = inf->vfork_parent->pid;
1035 /* Break the bonds. */
1036 inf->vfork_parent->vfork_child = NULL;
1037 }
1038
1039 inf->vfork_parent = NULL;
1040
1041 gdb_assert (current_program_space == inf->pspace);
1042
1043 if (non_stop && resume_parent != -1)
1044 {
1045 /* If the user wanted the parent to be running, let it go
1046 free now. */
1047 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1048
1049 if (debug_infrun)
3e43a32a
MS
1050 fprintf_unfiltered (gdb_stdlog,
1051 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1052 resume_parent);
1053
1054 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1055
1056 do_cleanups (old_chain);
1057 }
1058 }
1059}
1060
eb6c553b 1061/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1062
1063static const char follow_exec_mode_new[] = "new";
1064static const char follow_exec_mode_same[] = "same";
40478521 1065static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1066{
1067 follow_exec_mode_new,
1068 follow_exec_mode_same,
1069 NULL,
1070};
1071
1072static const char *follow_exec_mode_string = follow_exec_mode_same;
1073static void
1074show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1075 struct cmd_list_element *c, const char *value)
1076{
1077 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1078}
1079
1777feb0 1080/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 1081
c906108c 1082static void
95e50b27 1083follow_exec (ptid_t ptid, char *execd_pathname)
c906108c 1084{
95e50b27 1085 struct thread_info *th, *tmp;
6c95b8df 1086 struct inferior *inf = current_inferior ();
95e50b27 1087 int pid = ptid_get_pid (ptid);
94585166 1088 ptid_t process_ptid;
7a292a7a 1089
c906108c
SS
1090 /* This is an exec event that we actually wish to pay attention to.
1091 Refresh our symbol table to the newly exec'd program, remove any
1092 momentary bp's, etc.
1093
1094 If there are breakpoints, they aren't really inserted now,
1095 since the exec() transformed our inferior into a fresh set
1096 of instructions.
1097
1098 We want to preserve symbolic breakpoints on the list, since
1099 we have hopes that they can be reset after the new a.out's
1100 symbol table is read.
1101
1102 However, any "raw" breakpoints must be removed from the list
1103 (e.g., the solib bp's), since their address is probably invalid
1104 now.
1105
1106 And, we DON'T want to call delete_breakpoints() here, since
1107 that may write the bp's "shadow contents" (the instruction
1108 value that was overwritten witha TRAP instruction). Since
1777feb0 1109 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1110
1111 mark_breakpoints_out ();
1112
95e50b27
PA
1113 /* The target reports the exec event to the main thread, even if
1114 some other thread does the exec, and even if the main thread was
1115 stopped or already gone. We may still have non-leader threads of
1116 the process on our list. E.g., on targets that don't have thread
1117 exit events (like remote); or on native Linux in non-stop mode if
1118 there were only two threads in the inferior and the non-leader
1119 one is the one that execs (and nothing forces an update of the
1120 thread list up to here). When debugging remotely, it's best to
1121 avoid extra traffic, when possible, so avoid syncing the thread
1122 list with the target, and instead go ahead and delete all threads
1123 of the process but one that reported the event. Note this must
1124 be done before calling update_breakpoints_after_exec, as
1125 otherwise clearing the threads' resources would reference stale
1126 thread breakpoints -- it may have been one of these threads that
1127 stepped across the exec. We could just clear their stepping
1128 states, but as long as we're iterating, might as well delete
1129 them. Deleting them now rather than at the next user-visible
1130 stop provides a nicer sequence of events for user and MI
1131 notifications. */
8a06aea7 1132 ALL_THREADS_SAFE (th, tmp)
95e50b27
PA
1133 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1134 delete_thread (th->ptid);
1135
1136 /* We also need to clear any left over stale state for the
1137 leader/event thread. E.g., if there was any step-resume
1138 breakpoint or similar, it's gone now. We cannot truly
1139 step-to-next statement through an exec(). */
1140 th = inferior_thread ();
8358c15c 1141 th->control.step_resume_breakpoint = NULL;
186c406b 1142 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1143 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1144 th->control.step_range_start = 0;
1145 th->control.step_range_end = 0;
c906108c 1146
95e50b27
PA
1147 /* The user may have had the main thread held stopped in the
1148 previous image (e.g., schedlock on, or non-stop). Release
1149 it now. */
a75724bc
PA
1150 th->stop_requested = 0;
1151
95e50b27
PA
1152 update_breakpoints_after_exec ();
1153
1777feb0 1154 /* What is this a.out's name? */
94585166 1155 process_ptid = pid_to_ptid (pid);
6c95b8df 1156 printf_unfiltered (_("%s is executing new program: %s\n"),
94585166 1157 target_pid_to_str (process_ptid),
6c95b8df 1158 execd_pathname);
c906108c
SS
1159
1160 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1161 inferior has essentially been killed & reborn. */
7a292a7a 1162
c906108c 1163 gdb_flush (gdb_stdout);
6ca15a4b
PA
1164
1165 breakpoint_init_inferior (inf_execd);
e85a822c 1166
a3be80c3 1167 if (*gdb_sysroot != '\0')
e85a822c 1168 {
998d2a3e 1169 char *name = exec_file_find (execd_pathname, NULL);
ff862be4 1170
224c3ddb 1171 execd_pathname = (char *) alloca (strlen (name) + 1);
ff862be4
GB
1172 strcpy (execd_pathname, name);
1173 xfree (name);
e85a822c 1174 }
c906108c 1175
cce9b6bf
PA
1176 /* Reset the shared library package. This ensures that we get a
1177 shlib event when the child reaches "_start", at which point the
1178 dld will have had a chance to initialize the child. */
1179 /* Also, loading a symbol file below may trigger symbol lookups, and
1180 we don't want those to be satisfied by the libraries of the
1181 previous incarnation of this process. */
1182 no_shared_libraries (NULL, 0);
1183
6c95b8df
PA
1184 if (follow_exec_mode_string == follow_exec_mode_new)
1185 {
6c95b8df
PA
1186 /* The user wants to keep the old inferior and program spaces
1187 around. Create a new fresh one, and switch to it. */
1188
17d8546e
DB
1189 /* Do exit processing for the original inferior before adding
1190 the new inferior so we don't have two active inferiors with
1191 the same ptid, which can confuse find_inferior_ptid. */
1192 exit_inferior_num_silent (current_inferior ()->num);
1193
94585166
DB
1194 inf = add_inferior_with_spaces ();
1195 inf->pid = pid;
1196 target_follow_exec (inf, execd_pathname);
6c95b8df
PA
1197
1198 set_current_inferior (inf);
94585166
DB
1199 set_current_program_space (inf->pspace);
1200 add_thread (ptid);
6c95b8df 1201 }
9107fc8d
PA
1202 else
1203 {
1204 /* The old description may no longer be fit for the new image.
1205 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1206 old description; we'll read a new one below. No need to do
1207 this on "follow-exec-mode new", as the old inferior stays
1208 around (its description is later cleared/refetched on
1209 restart). */
1210 target_clear_description ();
1211 }
6c95b8df
PA
1212
1213 gdb_assert (current_program_space == inf->pspace);
1214
1777feb0 1215 /* That a.out is now the one to use. */
6c95b8df
PA
1216 exec_file_attach (execd_pathname, 0);
1217
c1e56572
JK
1218 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1219 (Position Independent Executable) main symbol file will get applied by
1220 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1221 the breakpoints with the zero displacement. */
1222
7dcd53a0
TT
1223 symbol_file_add (execd_pathname,
1224 (inf->symfile_flags
1225 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
1226 NULL, 0);
1227
7dcd53a0
TT
1228 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1229 set_initial_language ();
c906108c 1230
9107fc8d
PA
1231 /* If the target can specify a description, read it. Must do this
1232 after flipping to the new executable (because the target supplied
1233 description must be compatible with the executable's
1234 architecture, and the old executable may e.g., be 32-bit, while
1235 the new one 64-bit), and before anything involving memory or
1236 registers. */
1237 target_find_description ();
1238
268a4a75 1239 solib_create_inferior_hook (0);
c906108c 1240
4efc6507
DE
1241 jit_inferior_created_hook ();
1242
c1e56572
JK
1243 breakpoint_re_set ();
1244
c906108c
SS
1245 /* Reinsert all breakpoints. (Those which were symbolic have
1246 been reset to the proper address in the new a.out, thanks
1777feb0 1247 to symbol_file_command...). */
c906108c
SS
1248 insert_breakpoints ();
1249
1250 /* The next resume of this inferior should bring it to the shlib
1251 startup breakpoints. (If the user had also set bp's on
1252 "main" from the old (parent) process, then they'll auto-
1777feb0 1253 matically get reset there in the new process.). */
c906108c
SS
1254}
1255
c2829269
PA
1256/* The queue of threads that need to do a step-over operation to get
1257 past e.g., a breakpoint. What technique is used to step over the
1258 breakpoint/watchpoint does not matter -- all threads end up in the
1259 same queue, to maintain rough temporal order of execution, in order
1260 to avoid starvation, otherwise, we could e.g., find ourselves
1261 constantly stepping the same couple threads past their breakpoints
1262 over and over, if the single-step finish fast enough. */
1263struct thread_info *step_over_queue_head;
1264
6c4cfb24
PA
1265/* Bit flags indicating what the thread needs to step over. */
1266
8d297bbf 1267enum step_over_what_flag
6c4cfb24
PA
1268 {
1269 /* Step over a breakpoint. */
1270 STEP_OVER_BREAKPOINT = 1,
1271
1272 /* Step past a non-continuable watchpoint, in order to let the
1273 instruction execute so we can evaluate the watchpoint
1274 expression. */
1275 STEP_OVER_WATCHPOINT = 2
1276 };
8d297bbf 1277DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1278
963f9c80 1279/* Info about an instruction that is being stepped over. */
31e77af2
PA
1280
1281struct step_over_info
1282{
963f9c80
PA
1283 /* If we're stepping past a breakpoint, this is the address space
1284 and address of the instruction the breakpoint is set at. We'll
1285 skip inserting all breakpoints here. Valid iff ASPACE is
1286 non-NULL. */
31e77af2 1287 struct address_space *aspace;
31e77af2 1288 CORE_ADDR address;
963f9c80
PA
1289
1290 /* The instruction being stepped over triggers a nonsteppable
1291 watchpoint. If true, we'll skip inserting watchpoints. */
1292 int nonsteppable_watchpoint_p;
21edc42f
YQ
1293
1294 /* The thread's global number. */
1295 int thread;
31e77af2
PA
1296};
1297
1298/* The step-over info of the location that is being stepped over.
1299
1300 Note that with async/breakpoint always-inserted mode, a user might
1301 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1302 being stepped over. As setting a new breakpoint inserts all
1303 breakpoints, we need to make sure the breakpoint being stepped over
1304 isn't inserted then. We do that by only clearing the step-over
1305 info when the step-over is actually finished (or aborted).
1306
1307 Presently GDB can only step over one breakpoint at any given time.
1308 Given threads that can't run code in the same address space as the
1309 breakpoint's can't really miss the breakpoint, GDB could be taught
1310 to step-over at most one breakpoint per address space (so this info
1311 could move to the address space object if/when GDB is extended).
1312 The set of breakpoints being stepped over will normally be much
1313 smaller than the set of all breakpoints, so a flag in the
1314 breakpoint location structure would be wasteful. A separate list
1315 also saves complexity and run-time, as otherwise we'd have to go
1316 through all breakpoint locations clearing their flag whenever we
1317 start a new sequence. Similar considerations weigh against storing
1318 this info in the thread object. Plus, not all step overs actually
1319 have breakpoint locations -- e.g., stepping past a single-step
1320 breakpoint, or stepping to complete a non-continuable
1321 watchpoint. */
1322static struct step_over_info step_over_info;
1323
1324/* Record the address of the breakpoint/instruction we're currently
1325 stepping over. */
1326
1327static void
963f9c80 1328set_step_over_info (struct address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1329 int nonsteppable_watchpoint_p,
1330 int thread)
31e77af2
PA
1331{
1332 step_over_info.aspace = aspace;
1333 step_over_info.address = address;
963f9c80 1334 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1335 step_over_info.thread = thread;
31e77af2
PA
1336}
1337
1338/* Called when we're not longer stepping over a breakpoint / an
1339 instruction, so all breakpoints are free to be (re)inserted. */
1340
1341static void
1342clear_step_over_info (void)
1343{
372316f1
PA
1344 if (debug_infrun)
1345 fprintf_unfiltered (gdb_stdlog,
1346 "infrun: clear_step_over_info\n");
31e77af2
PA
1347 step_over_info.aspace = NULL;
1348 step_over_info.address = 0;
963f9c80 1349 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1350 step_over_info.thread = -1;
31e77af2
PA
1351}
1352
7f89fd65 1353/* See infrun.h. */
31e77af2
PA
1354
1355int
1356stepping_past_instruction_at (struct address_space *aspace,
1357 CORE_ADDR address)
1358{
1359 return (step_over_info.aspace != NULL
1360 && breakpoint_address_match (aspace, address,
1361 step_over_info.aspace,
1362 step_over_info.address));
1363}
1364
963f9c80
PA
1365/* See infrun.h. */
1366
21edc42f
YQ
1367int
1368thread_is_stepping_over_breakpoint (int thread)
1369{
1370 return (step_over_info.thread != -1
1371 && thread == step_over_info.thread);
1372}
1373
1374/* See infrun.h. */
1375
963f9c80
PA
1376int
1377stepping_past_nonsteppable_watchpoint (void)
1378{
1379 return step_over_info.nonsteppable_watchpoint_p;
1380}
1381
6cc83d2a
PA
1382/* Returns true if step-over info is valid. */
1383
1384static int
1385step_over_info_valid_p (void)
1386{
963f9c80
PA
1387 return (step_over_info.aspace != NULL
1388 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1389}
1390
c906108c 1391\f
237fc4c9
PA
1392/* Displaced stepping. */
1393
1394/* In non-stop debugging mode, we must take special care to manage
1395 breakpoints properly; in particular, the traditional strategy for
1396 stepping a thread past a breakpoint it has hit is unsuitable.
1397 'Displaced stepping' is a tactic for stepping one thread past a
1398 breakpoint it has hit while ensuring that other threads running
1399 concurrently will hit the breakpoint as they should.
1400
1401 The traditional way to step a thread T off a breakpoint in a
1402 multi-threaded program in all-stop mode is as follows:
1403
1404 a0) Initially, all threads are stopped, and breakpoints are not
1405 inserted.
1406 a1) We single-step T, leaving breakpoints uninserted.
1407 a2) We insert breakpoints, and resume all threads.
1408
1409 In non-stop debugging, however, this strategy is unsuitable: we
1410 don't want to have to stop all threads in the system in order to
1411 continue or step T past a breakpoint. Instead, we use displaced
1412 stepping:
1413
1414 n0) Initially, T is stopped, other threads are running, and
1415 breakpoints are inserted.
1416 n1) We copy the instruction "under" the breakpoint to a separate
1417 location, outside the main code stream, making any adjustments
1418 to the instruction, register, and memory state as directed by
1419 T's architecture.
1420 n2) We single-step T over the instruction at its new location.
1421 n3) We adjust the resulting register and memory state as directed
1422 by T's architecture. This includes resetting T's PC to point
1423 back into the main instruction stream.
1424 n4) We resume T.
1425
1426 This approach depends on the following gdbarch methods:
1427
1428 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1429 indicate where to copy the instruction, and how much space must
1430 be reserved there. We use these in step n1.
1431
1432 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1433 address, and makes any necessary adjustments to the instruction,
1434 register contents, and memory. We use this in step n1.
1435
1436 - gdbarch_displaced_step_fixup adjusts registers and memory after
1437 we have successfuly single-stepped the instruction, to yield the
1438 same effect the instruction would have had if we had executed it
1439 at its original address. We use this in step n3.
1440
1441 - gdbarch_displaced_step_free_closure provides cleanup.
1442
1443 The gdbarch_displaced_step_copy_insn and
1444 gdbarch_displaced_step_fixup functions must be written so that
1445 copying an instruction with gdbarch_displaced_step_copy_insn,
1446 single-stepping across the copied instruction, and then applying
1447 gdbarch_displaced_insn_fixup should have the same effects on the
1448 thread's memory and registers as stepping the instruction in place
1449 would have. Exactly which responsibilities fall to the copy and
1450 which fall to the fixup is up to the author of those functions.
1451
1452 See the comments in gdbarch.sh for details.
1453
1454 Note that displaced stepping and software single-step cannot
1455 currently be used in combination, although with some care I think
1456 they could be made to. Software single-step works by placing
1457 breakpoints on all possible subsequent instructions; if the
1458 displaced instruction is a PC-relative jump, those breakpoints
1459 could fall in very strange places --- on pages that aren't
1460 executable, or at addresses that are not proper instruction
1461 boundaries. (We do generally let other threads run while we wait
1462 to hit the software single-step breakpoint, and they might
1463 encounter such a corrupted instruction.) One way to work around
1464 this would be to have gdbarch_displaced_step_copy_insn fully
1465 simulate the effect of PC-relative instructions (and return NULL)
1466 on architectures that use software single-stepping.
1467
1468 In non-stop mode, we can have independent and simultaneous step
1469 requests, so more than one thread may need to simultaneously step
1470 over a breakpoint. The current implementation assumes there is
1471 only one scratch space per process. In this case, we have to
1472 serialize access to the scratch space. If thread A wants to step
1473 over a breakpoint, but we are currently waiting for some other
1474 thread to complete a displaced step, we leave thread A stopped and
1475 place it in the displaced_step_request_queue. Whenever a displaced
1476 step finishes, we pick the next thread in the queue and start a new
1477 displaced step operation on it. See displaced_step_prepare and
1478 displaced_step_fixup for details. */
1479
fc1cf338
PA
1480/* Per-inferior displaced stepping state. */
1481struct displaced_step_inferior_state
1482{
1483 /* Pointer to next in linked list. */
1484 struct displaced_step_inferior_state *next;
1485
1486 /* The process this displaced step state refers to. */
1487 int pid;
1488
3fc8eb30
PA
1489 /* True if preparing a displaced step ever failed. If so, we won't
1490 try displaced stepping for this inferior again. */
1491 int failed_before;
1492
fc1cf338
PA
1493 /* If this is not null_ptid, this is the thread carrying out a
1494 displaced single-step in process PID. This thread's state will
1495 require fixing up once it has completed its step. */
1496 ptid_t step_ptid;
1497
1498 /* The architecture the thread had when we stepped it. */
1499 struct gdbarch *step_gdbarch;
1500
1501 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1502 for post-step cleanup. */
1503 struct displaced_step_closure *step_closure;
1504
1505 /* The address of the original instruction, and the copy we
1506 made. */
1507 CORE_ADDR step_original, step_copy;
1508
1509 /* Saved contents of copy area. */
1510 gdb_byte *step_saved_copy;
1511};
1512
1513/* The list of states of processes involved in displaced stepping
1514 presently. */
1515static struct displaced_step_inferior_state *displaced_step_inferior_states;
1516
1517/* Get the displaced stepping state of process PID. */
1518
1519static struct displaced_step_inferior_state *
1520get_displaced_stepping_state (int pid)
1521{
1522 struct displaced_step_inferior_state *state;
1523
1524 for (state = displaced_step_inferior_states;
1525 state != NULL;
1526 state = state->next)
1527 if (state->pid == pid)
1528 return state;
1529
1530 return NULL;
1531}
1532
372316f1
PA
1533/* Returns true if any inferior has a thread doing a displaced
1534 step. */
1535
1536static int
1537displaced_step_in_progress_any_inferior (void)
1538{
1539 struct displaced_step_inferior_state *state;
1540
1541 for (state = displaced_step_inferior_states;
1542 state != NULL;
1543 state = state->next)
1544 if (!ptid_equal (state->step_ptid, null_ptid))
1545 return 1;
1546
1547 return 0;
1548}
1549
c0987663
YQ
1550/* Return true if thread represented by PTID is doing a displaced
1551 step. */
1552
1553static int
1554displaced_step_in_progress_thread (ptid_t ptid)
1555{
1556 struct displaced_step_inferior_state *displaced;
1557
1558 gdb_assert (!ptid_equal (ptid, null_ptid));
1559
1560 displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1561
1562 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1563}
1564
8f572e5c
PA
1565/* Return true if process PID has a thread doing a displaced step. */
1566
1567static int
1568displaced_step_in_progress (int pid)
1569{
1570 struct displaced_step_inferior_state *displaced;
1571
1572 displaced = get_displaced_stepping_state (pid);
1573 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1574 return 1;
1575
1576 return 0;
1577}
1578
fc1cf338
PA
1579/* Add a new displaced stepping state for process PID to the displaced
1580 stepping state list, or return a pointer to an already existing
1581 entry, if it already exists. Never returns NULL. */
1582
1583static struct displaced_step_inferior_state *
1584add_displaced_stepping_state (int pid)
1585{
1586 struct displaced_step_inferior_state *state;
1587
1588 for (state = displaced_step_inferior_states;
1589 state != NULL;
1590 state = state->next)
1591 if (state->pid == pid)
1592 return state;
237fc4c9 1593
8d749320 1594 state = XCNEW (struct displaced_step_inferior_state);
fc1cf338
PA
1595 state->pid = pid;
1596 state->next = displaced_step_inferior_states;
1597 displaced_step_inferior_states = state;
237fc4c9 1598
fc1cf338
PA
1599 return state;
1600}
1601
a42244db
YQ
1602/* If inferior is in displaced stepping, and ADDR equals to starting address
1603 of copy area, return corresponding displaced_step_closure. Otherwise,
1604 return NULL. */
1605
1606struct displaced_step_closure*
1607get_displaced_step_closure_by_addr (CORE_ADDR addr)
1608{
1609 struct displaced_step_inferior_state *displaced
1610 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1611
1612 /* If checking the mode of displaced instruction in copy area. */
1613 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1614 && (displaced->step_copy == addr))
1615 return displaced->step_closure;
1616
1617 return NULL;
1618}
1619
fc1cf338 1620/* Remove the displaced stepping state of process PID. */
237fc4c9 1621
fc1cf338
PA
1622static void
1623remove_displaced_stepping_state (int pid)
1624{
1625 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1626
fc1cf338
PA
1627 gdb_assert (pid != 0);
1628
1629 it = displaced_step_inferior_states;
1630 prev_next_p = &displaced_step_inferior_states;
1631 while (it)
1632 {
1633 if (it->pid == pid)
1634 {
1635 *prev_next_p = it->next;
1636 xfree (it);
1637 return;
1638 }
1639
1640 prev_next_p = &it->next;
1641 it = *prev_next_p;
1642 }
1643}
1644
1645static void
1646infrun_inferior_exit (struct inferior *inf)
1647{
1648 remove_displaced_stepping_state (inf->pid);
1649}
237fc4c9 1650
fff08868
HZ
1651/* If ON, and the architecture supports it, GDB will use displaced
1652 stepping to step over breakpoints. If OFF, or if the architecture
1653 doesn't support it, GDB will instead use the traditional
1654 hold-and-step approach. If AUTO (which is the default), GDB will
1655 decide which technique to use to step over breakpoints depending on
1656 which of all-stop or non-stop mode is active --- displaced stepping
1657 in non-stop mode; hold-and-step in all-stop mode. */
1658
72d0e2c5 1659static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1660
237fc4c9
PA
1661static void
1662show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1663 struct cmd_list_element *c,
1664 const char *value)
1665{
72d0e2c5 1666 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1667 fprintf_filtered (file,
1668 _("Debugger's willingness to use displaced stepping "
1669 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1670 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1671 else
3e43a32a
MS
1672 fprintf_filtered (file,
1673 _("Debugger's willingness to use displaced stepping "
1674 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1675}
1676
fff08868 1677/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1678 over breakpoints of thread TP. */
fff08868 1679
237fc4c9 1680static int
3fc8eb30 1681use_displaced_stepping (struct thread_info *tp)
237fc4c9 1682{
3fc8eb30
PA
1683 struct regcache *regcache = get_thread_regcache (tp->ptid);
1684 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1685 struct displaced_step_inferior_state *displaced_state;
1686
1687 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1688
fbea99ea
PA
1689 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1690 && target_is_non_stop_p ())
72d0e2c5 1691 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1692 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30
PA
1693 && find_record_target () == NULL
1694 && (displaced_state == NULL
1695 || !displaced_state->failed_before));
237fc4c9
PA
1696}
1697
1698/* Clean out any stray displaced stepping state. */
1699static void
fc1cf338 1700displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1701{
1702 /* Indicate that there is no cleanup pending. */
fc1cf338 1703 displaced->step_ptid = null_ptid;
237fc4c9 1704
fc1cf338 1705 if (displaced->step_closure)
237fc4c9 1706 {
fc1cf338
PA
1707 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1708 displaced->step_closure);
1709 displaced->step_closure = NULL;
237fc4c9
PA
1710 }
1711}
1712
1713static void
fc1cf338 1714displaced_step_clear_cleanup (void *arg)
237fc4c9 1715{
9a3c8263
SM
1716 struct displaced_step_inferior_state *state
1717 = (struct displaced_step_inferior_state *) arg;
fc1cf338
PA
1718
1719 displaced_step_clear (state);
237fc4c9
PA
1720}
1721
1722/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1723void
1724displaced_step_dump_bytes (struct ui_file *file,
1725 const gdb_byte *buf,
1726 size_t len)
1727{
1728 int i;
1729
1730 for (i = 0; i < len; i++)
1731 fprintf_unfiltered (file, "%02x ", buf[i]);
1732 fputs_unfiltered ("\n", file);
1733}
1734
1735/* Prepare to single-step, using displaced stepping.
1736
1737 Note that we cannot use displaced stepping when we have a signal to
1738 deliver. If we have a signal to deliver and an instruction to step
1739 over, then after the step, there will be no indication from the
1740 target whether the thread entered a signal handler or ignored the
1741 signal and stepped over the instruction successfully --- both cases
1742 result in a simple SIGTRAP. In the first case we mustn't do a
1743 fixup, and in the second case we must --- but we can't tell which.
1744 Comments in the code for 'random signals' in handle_inferior_event
1745 explain how we handle this case instead.
1746
1747 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1748 stepped now; 0 if displaced stepping this thread got queued; or -1
1749 if this instruction can't be displaced stepped. */
1750
237fc4c9 1751static int
3fc8eb30 1752displaced_step_prepare_throw (ptid_t ptid)
237fc4c9 1753{
ad53cd71 1754 struct cleanup *old_cleanups, *ignore_cleanups;
c1e36e3e 1755 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1756 struct regcache *regcache = get_thread_regcache (ptid);
1757 struct gdbarch *gdbarch = get_regcache_arch (regcache);
d35ae833 1758 struct address_space *aspace = get_regcache_aspace (regcache);
237fc4c9
PA
1759 CORE_ADDR original, copy;
1760 ULONGEST len;
1761 struct displaced_step_closure *closure;
fc1cf338 1762 struct displaced_step_inferior_state *displaced;
9e529e1d 1763 int status;
237fc4c9
PA
1764
1765 /* We should never reach this function if the architecture does not
1766 support displaced stepping. */
1767 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1768
c2829269
PA
1769 /* Nor if the thread isn't meant to step over a breakpoint. */
1770 gdb_assert (tp->control.trap_expected);
1771
c1e36e3e
PA
1772 /* Disable range stepping while executing in the scratch pad. We
1773 want a single-step even if executing the displaced instruction in
1774 the scratch buffer lands within the stepping range (e.g., a
1775 jump/branch). */
1776 tp->control.may_range_step = 0;
1777
fc1cf338
PA
1778 /* We have to displaced step one thread at a time, as we only have
1779 access to a single scratch space per inferior. */
237fc4c9 1780
fc1cf338
PA
1781 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1782
1783 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1784 {
1785 /* Already waiting for a displaced step to finish. Defer this
1786 request and place in queue. */
237fc4c9
PA
1787
1788 if (debug_displaced)
1789 fprintf_unfiltered (gdb_stdlog,
c2829269 1790 "displaced: deferring step of %s\n",
237fc4c9
PA
1791 target_pid_to_str (ptid));
1792
c2829269 1793 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1794 return 0;
1795 }
1796 else
1797 {
1798 if (debug_displaced)
1799 fprintf_unfiltered (gdb_stdlog,
1800 "displaced: stepping %s now\n",
1801 target_pid_to_str (ptid));
1802 }
1803
fc1cf338 1804 displaced_step_clear (displaced);
237fc4c9 1805
ad53cd71
PA
1806 old_cleanups = save_inferior_ptid ();
1807 inferior_ptid = ptid;
1808
515630c5 1809 original = regcache_read_pc (regcache);
237fc4c9
PA
1810
1811 copy = gdbarch_displaced_step_location (gdbarch);
1812 len = gdbarch_max_insn_length (gdbarch);
1813
d35ae833
PA
1814 if (breakpoint_in_range_p (aspace, copy, len))
1815 {
1816 /* There's a breakpoint set in the scratch pad location range
1817 (which is usually around the entry point). We'd either
1818 install it before resuming, which would overwrite/corrupt the
1819 scratch pad, or if it was already inserted, this displaced
1820 step would overwrite it. The latter is OK in the sense that
1821 we already assume that no thread is going to execute the code
1822 in the scratch pad range (after initial startup) anyway, but
1823 the former is unacceptable. Simply punt and fallback to
1824 stepping over this breakpoint in-line. */
1825 if (debug_displaced)
1826 {
1827 fprintf_unfiltered (gdb_stdlog,
1828 "displaced: breakpoint set in scratch pad. "
1829 "Stepping over breakpoint in-line instead.\n");
1830 }
1831
1832 do_cleanups (old_cleanups);
1833 return -1;
1834 }
1835
237fc4c9 1836 /* Save the original contents of the copy area. */
224c3ddb 1837 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
ad53cd71 1838 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1839 &displaced->step_saved_copy);
9e529e1d
JK
1840 status = target_read_memory (copy, displaced->step_saved_copy, len);
1841 if (status != 0)
1842 throw_error (MEMORY_ERROR,
1843 _("Error accessing memory address %s (%s) for "
1844 "displaced-stepping scratch space."),
1845 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1846 if (debug_displaced)
1847 {
5af949e3
UW
1848 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1849 paddress (gdbarch, copy));
fc1cf338
PA
1850 displaced_step_dump_bytes (gdb_stdlog,
1851 displaced->step_saved_copy,
1852 len);
237fc4c9
PA
1853 };
1854
1855 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1856 original, copy, regcache);
7f03bd92
PA
1857 if (closure == NULL)
1858 {
1859 /* The architecture doesn't know how or want to displaced step
1860 this instruction or instruction sequence. Fallback to
1861 stepping over the breakpoint in-line. */
1862 do_cleanups (old_cleanups);
1863 return -1;
1864 }
237fc4c9 1865
9f5a595d
UW
1866 /* Save the information we need to fix things up if the step
1867 succeeds. */
fc1cf338
PA
1868 displaced->step_ptid = ptid;
1869 displaced->step_gdbarch = gdbarch;
1870 displaced->step_closure = closure;
1871 displaced->step_original = original;
1872 displaced->step_copy = copy;
9f5a595d 1873
fc1cf338 1874 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1875
1876 /* Resume execution at the copy. */
515630c5 1877 regcache_write_pc (regcache, copy);
237fc4c9 1878
ad53cd71
PA
1879 discard_cleanups (ignore_cleanups);
1880
1881 do_cleanups (old_cleanups);
237fc4c9
PA
1882
1883 if (debug_displaced)
5af949e3
UW
1884 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1885 paddress (gdbarch, copy));
237fc4c9 1886
237fc4c9
PA
1887 return 1;
1888}
1889
3fc8eb30
PA
1890/* Wrapper for displaced_step_prepare_throw that disabled further
1891 attempts at displaced stepping if we get a memory error. */
1892
1893static int
1894displaced_step_prepare (ptid_t ptid)
1895{
1896 int prepared = -1;
1897
1898 TRY
1899 {
1900 prepared = displaced_step_prepare_throw (ptid);
1901 }
1902 CATCH (ex, RETURN_MASK_ERROR)
1903 {
1904 struct displaced_step_inferior_state *displaced_state;
1905
16b41842
PA
1906 if (ex.error != MEMORY_ERROR
1907 && ex.error != NOT_SUPPORTED_ERROR)
3fc8eb30
PA
1908 throw_exception (ex);
1909
1910 if (debug_infrun)
1911 {
1912 fprintf_unfiltered (gdb_stdlog,
1913 "infrun: disabling displaced stepping: %s\n",
1914 ex.message);
1915 }
1916
1917 /* Be verbose if "set displaced-stepping" is "on", silent if
1918 "auto". */
1919 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1920 {
fd7dcb94 1921 warning (_("disabling displaced stepping: %s"),
3fc8eb30
PA
1922 ex.message);
1923 }
1924
1925 /* Disable further displaced stepping attempts. */
1926 displaced_state
1927 = get_displaced_stepping_state (ptid_get_pid (ptid));
1928 displaced_state->failed_before = 1;
1929 }
1930 END_CATCH
1931
1932 return prepared;
1933}
1934
237fc4c9 1935static void
3e43a32a
MS
1936write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1937 const gdb_byte *myaddr, int len)
237fc4c9
PA
1938{
1939 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1940
237fc4c9
PA
1941 inferior_ptid = ptid;
1942 write_memory (memaddr, myaddr, len);
1943 do_cleanups (ptid_cleanup);
1944}
1945
e2d96639
YQ
1946/* Restore the contents of the copy area for thread PTID. */
1947
1948static void
1949displaced_step_restore (struct displaced_step_inferior_state *displaced,
1950 ptid_t ptid)
1951{
1952 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1953
1954 write_memory_ptid (ptid, displaced->step_copy,
1955 displaced->step_saved_copy, len);
1956 if (debug_displaced)
1957 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1958 target_pid_to_str (ptid),
1959 paddress (displaced->step_gdbarch,
1960 displaced->step_copy));
1961}
1962
372316f1
PA
1963/* If we displaced stepped an instruction successfully, adjust
1964 registers and memory to yield the same effect the instruction would
1965 have had if we had executed it at its original address, and return
1966 1. If the instruction didn't complete, relocate the PC and return
1967 -1. If the thread wasn't displaced stepping, return 0. */
1968
1969static int
2ea28649 1970displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1971{
1972 struct cleanup *old_cleanups;
fc1cf338
PA
1973 struct displaced_step_inferior_state *displaced
1974 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
372316f1 1975 int ret;
fc1cf338
PA
1976
1977 /* Was any thread of this process doing a displaced step? */
1978 if (displaced == NULL)
372316f1 1979 return 0;
237fc4c9
PA
1980
1981 /* Was this event for the pid we displaced? */
fc1cf338
PA
1982 if (ptid_equal (displaced->step_ptid, null_ptid)
1983 || ! ptid_equal (displaced->step_ptid, event_ptid))
372316f1 1984 return 0;
237fc4c9 1985
fc1cf338 1986 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1987
e2d96639 1988 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9 1989
cb71640d
PA
1990 /* Fixup may need to read memory/registers. Switch to the thread
1991 that we're fixing up. Also, target_stopped_by_watchpoint checks
1992 the current thread. */
1993 switch_to_thread (event_ptid);
1994
237fc4c9 1995 /* Did the instruction complete successfully? */
cb71640d
PA
1996 if (signal == GDB_SIGNAL_TRAP
1997 && !(target_stopped_by_watchpoint ()
1998 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1999 || target_have_steppable_watchpoint)))
237fc4c9
PA
2000 {
2001 /* Fix up the resulting state. */
fc1cf338
PA
2002 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
2003 displaced->step_closure,
2004 displaced->step_original,
2005 displaced->step_copy,
2006 get_thread_regcache (displaced->step_ptid));
372316f1 2007 ret = 1;
237fc4c9
PA
2008 }
2009 else
2010 {
2011 /* Since the instruction didn't complete, all we can do is
2012 relocate the PC. */
515630c5
UW
2013 struct regcache *regcache = get_thread_regcache (event_ptid);
2014 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 2015
fc1cf338 2016 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 2017 regcache_write_pc (regcache, pc);
372316f1 2018 ret = -1;
237fc4c9
PA
2019 }
2020
2021 do_cleanups (old_cleanups);
2022
fc1cf338 2023 displaced->step_ptid = null_ptid;
372316f1
PA
2024
2025 return ret;
c2829269 2026}
1c5cfe86 2027
4d9d9d04
PA
2028/* Data to be passed around while handling an event. This data is
2029 discarded between events. */
2030struct execution_control_state
2031{
2032 ptid_t ptid;
2033 /* The thread that got the event, if this was a thread event; NULL
2034 otherwise. */
2035 struct thread_info *event_thread;
2036
2037 struct target_waitstatus ws;
2038 int stop_func_filled_in;
2039 CORE_ADDR stop_func_start;
2040 CORE_ADDR stop_func_end;
2041 const char *stop_func_name;
2042 int wait_some_more;
2043
2044 /* True if the event thread hit the single-step breakpoint of
2045 another thread. Thus the event doesn't cause a stop, the thread
2046 needs to be single-stepped past the single-step breakpoint before
2047 we can switch back to the original stepping thread. */
2048 int hit_singlestep_breakpoint;
2049};
2050
2051/* Clear ECS and set it to point at TP. */
c2829269
PA
2052
2053static void
4d9d9d04
PA
2054reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2055{
2056 memset (ecs, 0, sizeof (*ecs));
2057 ecs->event_thread = tp;
2058 ecs->ptid = tp->ptid;
2059}
2060
2061static void keep_going_pass_signal (struct execution_control_state *ecs);
2062static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 2063static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 2064static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
2065
2066/* Are there any pending step-over requests? If so, run all we can
2067 now and return true. Otherwise, return false. */
2068
2069static int
c2829269
PA
2070start_step_over (void)
2071{
2072 struct thread_info *tp, *next;
2073
372316f1
PA
2074 /* Don't start a new step-over if we already have an in-line
2075 step-over operation ongoing. */
2076 if (step_over_info_valid_p ())
2077 return 0;
2078
c2829269 2079 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 2080 {
4d9d9d04
PA
2081 struct execution_control_state ecss;
2082 struct execution_control_state *ecs = &ecss;
8d297bbf 2083 step_over_what step_what;
372316f1 2084 int must_be_in_line;
c2829269
PA
2085
2086 next = thread_step_over_chain_next (tp);
237fc4c9 2087
c2829269
PA
2088 /* If this inferior already has a displaced step in process,
2089 don't start a new one. */
4d9d9d04 2090 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
c2829269
PA
2091 continue;
2092
372316f1
PA
2093 step_what = thread_still_needs_step_over (tp);
2094 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2095 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 2096 && !use_displaced_stepping (tp)));
372316f1
PA
2097
2098 /* We currently stop all threads of all processes to step-over
2099 in-line. If we need to start a new in-line step-over, let
2100 any pending displaced steps finish first. */
2101 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2102 return 0;
2103
c2829269
PA
2104 thread_step_over_chain_remove (tp);
2105
2106 if (step_over_queue_head == NULL)
2107 {
2108 if (debug_infrun)
2109 fprintf_unfiltered (gdb_stdlog,
2110 "infrun: step-over queue now empty\n");
2111 }
2112
372316f1
PA
2113 if (tp->control.trap_expected
2114 || tp->resumed
2115 || tp->executing)
ad53cd71 2116 {
4d9d9d04
PA
2117 internal_error (__FILE__, __LINE__,
2118 "[%s] has inconsistent state: "
372316f1 2119 "trap_expected=%d, resumed=%d, executing=%d\n",
4d9d9d04
PA
2120 target_pid_to_str (tp->ptid),
2121 tp->control.trap_expected,
372316f1 2122 tp->resumed,
4d9d9d04 2123 tp->executing);
ad53cd71 2124 }
1c5cfe86 2125
4d9d9d04
PA
2126 if (debug_infrun)
2127 fprintf_unfiltered (gdb_stdlog,
2128 "infrun: resuming [%s] for step-over\n",
2129 target_pid_to_str (tp->ptid));
2130
2131 /* keep_going_pass_signal skips the step-over if the breakpoint
2132 is no longer inserted. In all-stop, we want to keep looking
2133 for a thread that needs a step-over instead of resuming TP,
2134 because we wouldn't be able to resume anything else until the
2135 target stops again. In non-stop, the resume always resumes
2136 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2137 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2138 continue;
8550d3b3 2139
4d9d9d04
PA
2140 switch_to_thread (tp->ptid);
2141 reset_ecs (ecs, tp);
2142 keep_going_pass_signal (ecs);
1c5cfe86 2143
4d9d9d04
PA
2144 if (!ecs->wait_some_more)
2145 error (_("Command aborted."));
1c5cfe86 2146
372316f1
PA
2147 gdb_assert (tp->resumed);
2148
2149 /* If we started a new in-line step-over, we're done. */
2150 if (step_over_info_valid_p ())
2151 {
2152 gdb_assert (tp->control.trap_expected);
2153 return 1;
2154 }
2155
fbea99ea 2156 if (!target_is_non_stop_p ())
4d9d9d04
PA
2157 {
2158 /* On all-stop, shouldn't have resumed unless we needed a
2159 step over. */
2160 gdb_assert (tp->control.trap_expected
2161 || tp->step_after_step_resume_breakpoint);
2162
2163 /* With remote targets (at least), in all-stop, we can't
2164 issue any further remote commands until the program stops
2165 again. */
2166 return 1;
1c5cfe86 2167 }
c2829269 2168
4d9d9d04
PA
2169 /* Either the thread no longer needed a step-over, or a new
2170 displaced stepping sequence started. Even in the latter
2171 case, continue looking. Maybe we can also start another
2172 displaced step on a thread of other process. */
237fc4c9 2173 }
4d9d9d04
PA
2174
2175 return 0;
237fc4c9
PA
2176}
2177
5231c1fd
PA
2178/* Update global variables holding ptids to hold NEW_PTID if they were
2179 holding OLD_PTID. */
2180static void
2181infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2182{
fc1cf338 2183 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
2184
2185 if (ptid_equal (inferior_ptid, old_ptid))
2186 inferior_ptid = new_ptid;
2187
fc1cf338
PA
2188 for (displaced = displaced_step_inferior_states;
2189 displaced;
2190 displaced = displaced->next)
2191 {
2192 if (ptid_equal (displaced->step_ptid, old_ptid))
2193 displaced->step_ptid = new_ptid;
fc1cf338 2194 }
5231c1fd
PA
2195}
2196
237fc4c9
PA
2197\f
2198/* Resuming. */
c906108c
SS
2199
2200/* Things to clean up if we QUIT out of resume (). */
c906108c 2201static void
74b7792f 2202resume_cleanups (void *ignore)
c906108c 2203{
34b7e8a6
PA
2204 if (!ptid_equal (inferior_ptid, null_ptid))
2205 delete_single_step_breakpoints (inferior_thread ());
7c16b83e 2206
c906108c
SS
2207 normal_stop ();
2208}
2209
53904c9e
AC
2210static const char schedlock_off[] = "off";
2211static const char schedlock_on[] = "on";
2212static const char schedlock_step[] = "step";
f2665db5 2213static const char schedlock_replay[] = "replay";
40478521 2214static const char *const scheduler_enums[] = {
ef346e04
AC
2215 schedlock_off,
2216 schedlock_on,
2217 schedlock_step,
f2665db5 2218 schedlock_replay,
ef346e04
AC
2219 NULL
2220};
f2665db5 2221static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2222static void
2223show_scheduler_mode (struct ui_file *file, int from_tty,
2224 struct cmd_list_element *c, const char *value)
2225{
3e43a32a
MS
2226 fprintf_filtered (file,
2227 _("Mode for locking scheduler "
2228 "during execution is \"%s\".\n"),
920d2a44
AC
2229 value);
2230}
c906108c
SS
2231
2232static void
96baa820 2233set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 2234{
eefe576e
AC
2235 if (!target_can_lock_scheduler)
2236 {
2237 scheduler_mode = schedlock_off;
2238 error (_("Target '%s' cannot support this command."), target_shortname);
2239 }
c906108c
SS
2240}
2241
d4db2f36
PA
2242/* True if execution commands resume all threads of all processes by
2243 default; otherwise, resume only threads of the current inferior
2244 process. */
2245int sched_multi = 0;
2246
2facfe5c
DD
2247/* Try to setup for software single stepping over the specified location.
2248 Return 1 if target_resume() should use hardware single step.
2249
2250 GDBARCH the current gdbarch.
2251 PC the location to step over. */
2252
2253static int
2254maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2255{
2256 int hw_step = 1;
2257
f02253f1
HZ
2258 if (execution_direction == EXEC_FORWARD
2259 && gdbarch_software_single_step_p (gdbarch)
99e40580 2260 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 2261 {
99e40580 2262 hw_step = 0;
2facfe5c
DD
2263 }
2264 return hw_step;
2265}
c906108c 2266
f3263aa4
PA
2267/* See infrun.h. */
2268
09cee04b
PA
2269ptid_t
2270user_visible_resume_ptid (int step)
2271{
f3263aa4 2272 ptid_t resume_ptid;
09cee04b 2273
09cee04b
PA
2274 if (non_stop)
2275 {
2276 /* With non-stop mode on, threads are always handled
2277 individually. */
2278 resume_ptid = inferior_ptid;
2279 }
2280 else if ((scheduler_mode == schedlock_on)
03d46957 2281 || (scheduler_mode == schedlock_step && step))
09cee04b 2282 {
f3263aa4
PA
2283 /* User-settable 'scheduler' mode requires solo thread
2284 resume. */
09cee04b
PA
2285 resume_ptid = inferior_ptid;
2286 }
f2665db5
MM
2287 else if ((scheduler_mode == schedlock_replay)
2288 && target_record_will_replay (minus_one_ptid, execution_direction))
2289 {
2290 /* User-settable 'scheduler' mode requires solo thread resume in replay
2291 mode. */
2292 resume_ptid = inferior_ptid;
2293 }
f3263aa4
PA
2294 else if (!sched_multi && target_supports_multi_process ())
2295 {
2296 /* Resume all threads of the current process (and none of other
2297 processes). */
2298 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2299 }
2300 else
2301 {
2302 /* Resume all threads of all processes. */
2303 resume_ptid = RESUME_ALL;
2304 }
09cee04b
PA
2305
2306 return resume_ptid;
2307}
2308
fbea99ea
PA
2309/* Return a ptid representing the set of threads that we will resume,
2310 in the perspective of the target, assuming run control handling
2311 does not require leaving some threads stopped (e.g., stepping past
2312 breakpoint). USER_STEP indicates whether we're about to start the
2313 target for a stepping command. */
2314
2315static ptid_t
2316internal_resume_ptid (int user_step)
2317{
2318 /* In non-stop, we always control threads individually. Note that
2319 the target may always work in non-stop mode even with "set
2320 non-stop off", in which case user_visible_resume_ptid could
2321 return a wildcard ptid. */
2322 if (target_is_non_stop_p ())
2323 return inferior_ptid;
2324 else
2325 return user_visible_resume_ptid (user_step);
2326}
2327
64ce06e4
PA
2328/* Wrapper for target_resume, that handles infrun-specific
2329 bookkeeping. */
2330
2331static void
2332do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2333{
2334 struct thread_info *tp = inferior_thread ();
2335
2336 /* Install inferior's terminal modes. */
2337 target_terminal_inferior ();
2338
2339 /* Avoid confusing the next resume, if the next stop/resume
2340 happens to apply to another thread. */
2341 tp->suspend.stop_signal = GDB_SIGNAL_0;
2342
8f572e5c
PA
2343 /* Advise target which signals may be handled silently.
2344
2345 If we have removed breakpoints because we are stepping over one
2346 in-line (in any thread), we need to receive all signals to avoid
2347 accidentally skipping a breakpoint during execution of a signal
2348 handler.
2349
2350 Likewise if we're displaced stepping, otherwise a trap for a
2351 breakpoint in a signal handler might be confused with the
2352 displaced step finishing. We don't make the displaced_step_fixup
2353 step distinguish the cases instead, because:
2354
2355 - a backtrace while stopped in the signal handler would show the
2356 scratch pad as frame older than the signal handler, instead of
2357 the real mainline code.
2358
2359 - when the thread is later resumed, the signal handler would
2360 return to the scratch pad area, which would no longer be
2361 valid. */
2362 if (step_over_info_valid_p ()
2363 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
64ce06e4
PA
2364 target_pass_signals (0, NULL);
2365 else
2366 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2367
2368 target_resume (resume_ptid, step, sig);
2369}
2370
c906108c
SS
2371/* Resume the inferior, but allow a QUIT. This is useful if the user
2372 wants to interrupt some lengthy single-stepping operation
2373 (for child processes, the SIGINT goes to the inferior, and so
2374 we get a SIGINT random_signal, but for remote debugging and perhaps
2375 other targets, that's not true).
2376
c906108c
SS
2377 SIG is the signal to give the inferior (zero for none). */
2378void
64ce06e4 2379resume (enum gdb_signal sig)
c906108c 2380{
74b7792f 2381 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
2382 struct regcache *regcache = get_current_regcache ();
2383 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 2384 struct thread_info *tp = inferior_thread ();
515630c5 2385 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 2386 struct address_space *aspace = get_regcache_aspace (regcache);
b0f16a3e 2387 ptid_t resume_ptid;
856e7dd6
PA
2388 /* This represents the user's step vs continue request. When
2389 deciding whether "set scheduler-locking step" applies, it's the
2390 user's intention that counts. */
2391 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2392 /* This represents what we'll actually request the target to do.
2393 This can decay from a step to a continue, if e.g., we need to
2394 implement single-stepping with breakpoints (software
2395 single-step). */
6b403daa 2396 int step;
c7e8a53c 2397
c2829269
PA
2398 gdb_assert (!thread_is_in_step_over_chain (tp));
2399
c906108c
SS
2400 QUIT;
2401
372316f1
PA
2402 if (tp->suspend.waitstatus_pending_p)
2403 {
2404 if (debug_infrun)
2405 {
2406 char *statstr;
2407
2408 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2409 fprintf_unfiltered (gdb_stdlog,
2410 "infrun: resume: thread %s has pending wait status %s "
2411 "(currently_stepping=%d).\n",
2412 target_pid_to_str (tp->ptid), statstr,
2413 currently_stepping (tp));
2414 xfree (statstr);
2415 }
2416
2417 tp->resumed = 1;
2418
2419 /* FIXME: What should we do if we are supposed to resume this
2420 thread with a signal? Maybe we should maintain a queue of
2421 pending signals to deliver. */
2422 if (sig != GDB_SIGNAL_0)
2423 {
fd7dcb94 2424 warning (_("Couldn't deliver signal %s to %s."),
372316f1
PA
2425 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2426 }
2427
2428 tp->suspend.stop_signal = GDB_SIGNAL_0;
2429 discard_cleanups (old_cleanups);
2430
2431 if (target_can_async_p ())
2432 target_async (1);
2433 return;
2434 }
2435
2436 tp->stepped_breakpoint = 0;
2437
6b403daa
PA
2438 /* Depends on stepped_breakpoint. */
2439 step = currently_stepping (tp);
2440
74609e71
YQ
2441 if (current_inferior ()->waiting_for_vfork_done)
2442 {
48f9886d
PA
2443 /* Don't try to single-step a vfork parent that is waiting for
2444 the child to get out of the shared memory region (by exec'ing
2445 or exiting). This is particularly important on software
2446 single-step archs, as the child process would trip on the
2447 software single step breakpoint inserted for the parent
2448 process. Since the parent will not actually execute any
2449 instruction until the child is out of the shared region (such
2450 are vfork's semantics), it is safe to simply continue it.
2451 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2452 the parent, and tell it to `keep_going', which automatically
2453 re-sets it stepping. */
74609e71
YQ
2454 if (debug_infrun)
2455 fprintf_unfiltered (gdb_stdlog,
2456 "infrun: resume : clear step\n");
a09dd441 2457 step = 0;
74609e71
YQ
2458 }
2459
527159b7 2460 if (debug_infrun)
237fc4c9 2461 fprintf_unfiltered (gdb_stdlog,
c9737c08 2462 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2463 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2464 step, gdb_signal_to_symbol_string (sig),
2465 tp->control.trap_expected,
0d9a9a5f
PA
2466 target_pid_to_str (inferior_ptid),
2467 paddress (gdbarch, pc));
c906108c 2468
c2c6d25f
JM
2469 /* Normally, by the time we reach `resume', the breakpoints are either
2470 removed or inserted, as appropriate. The exception is if we're sitting
2471 at a permanent breakpoint; we need to step over it, but permanent
2472 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2473 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2474 {
af48d08f
PA
2475 if (sig != GDB_SIGNAL_0)
2476 {
2477 /* We have a signal to pass to the inferior. The resume
2478 may, or may not take us to the signal handler. If this
2479 is a step, we'll need to stop in the signal handler, if
2480 there's one, (if the target supports stepping into
2481 handlers), or in the next mainline instruction, if
2482 there's no handler. If this is a continue, we need to be
2483 sure to run the handler with all breakpoints inserted.
2484 In all cases, set a breakpoint at the current address
2485 (where the handler returns to), and once that breakpoint
2486 is hit, resume skipping the permanent breakpoint. If
2487 that breakpoint isn't hit, then we've stepped into the
2488 signal handler (or hit some other event). We'll delete
2489 the step-resume breakpoint then. */
2490
2491 if (debug_infrun)
2492 fprintf_unfiltered (gdb_stdlog,
2493 "infrun: resume: skipping permanent breakpoint, "
2494 "deliver signal first\n");
2495
2496 clear_step_over_info ();
2497 tp->control.trap_expected = 0;
2498
2499 if (tp->control.step_resume_breakpoint == NULL)
2500 {
2501 /* Set a "high-priority" step-resume, as we don't want
2502 user breakpoints at PC to trigger (again) when this
2503 hits. */
2504 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2505 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2506
2507 tp->step_after_step_resume_breakpoint = step;
2508 }
2509
2510 insert_breakpoints ();
2511 }
2512 else
2513 {
2514 /* There's no signal to pass, we can go ahead and skip the
2515 permanent breakpoint manually. */
2516 if (debug_infrun)
2517 fprintf_unfiltered (gdb_stdlog,
2518 "infrun: resume: skipping permanent breakpoint\n");
2519 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2520 /* Update pc to reflect the new address from which we will
2521 execute instructions. */
2522 pc = regcache_read_pc (regcache);
2523
2524 if (step)
2525 {
2526 /* We've already advanced the PC, so the stepping part
2527 is done. Now we need to arrange for a trap to be
2528 reported to handle_inferior_event. Set a breakpoint
2529 at the current PC, and run to it. Don't update
2530 prev_pc, because if we end in
44a1ee51
PA
2531 switch_back_to_stepped_thread, we want the "expected
2532 thread advanced also" branch to be taken. IOW, we
2533 don't want this thread to step further from PC
af48d08f 2534 (overstep). */
1ac806b8 2535 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2536 insert_single_step_breakpoint (gdbarch, aspace, pc);
2537 insert_breakpoints ();
2538
fbea99ea 2539 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2540 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
af48d08f 2541 discard_cleanups (old_cleanups);
372316f1 2542 tp->resumed = 1;
af48d08f
PA
2543 return;
2544 }
2545 }
6d350bb5 2546 }
c2c6d25f 2547
c1e36e3e
PA
2548 /* If we have a breakpoint to step over, make sure to do a single
2549 step only. Same if we have software watchpoints. */
2550 if (tp->control.trap_expected || bpstat_should_step ())
2551 tp->control.may_range_step = 0;
2552
237fc4c9
PA
2553 /* If enabled, step over breakpoints by executing a copy of the
2554 instruction at a different address.
2555
2556 We can't use displaced stepping when we have a signal to deliver;
2557 the comments for displaced_step_prepare explain why. The
2558 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2559 signals' explain what we do instead.
2560
2561 We can't use displaced stepping when we are waiting for vfork_done
2562 event, displaced stepping breaks the vfork child similarly as single
2563 step software breakpoint. */
3fc8eb30
PA
2564 if (tp->control.trap_expected
2565 && use_displaced_stepping (tp)
cb71640d 2566 && !step_over_info_valid_p ()
a493e3e2 2567 && sig == GDB_SIGNAL_0
74609e71 2568 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2569 {
3fc8eb30 2570 int prepared = displaced_step_prepare (inferior_ptid);
fc1cf338 2571
3fc8eb30 2572 if (prepared == 0)
d56b7306 2573 {
4d9d9d04
PA
2574 if (debug_infrun)
2575 fprintf_unfiltered (gdb_stdlog,
2576 "Got placed in step-over queue\n");
2577
2578 tp->control.trap_expected = 0;
d56b7306
VP
2579 discard_cleanups (old_cleanups);
2580 return;
2581 }
3fc8eb30
PA
2582 else if (prepared < 0)
2583 {
2584 /* Fallback to stepping over the breakpoint in-line. */
2585
2586 if (target_is_non_stop_p ())
2587 stop_all_threads ();
2588
2589 set_step_over_info (get_regcache_aspace (regcache),
21edc42f 2590 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2591
2592 step = maybe_software_singlestep (gdbarch, pc);
2593
2594 insert_breakpoints ();
2595 }
2596 else if (prepared > 0)
2597 {
2598 struct displaced_step_inferior_state *displaced;
99e40580 2599
3fc8eb30
PA
2600 /* Update pc to reflect the new address from which we will
2601 execute instructions due to displaced stepping. */
2602 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
ca7781d2 2603
3fc8eb30
PA
2604 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2605 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2606 displaced->step_closure);
2607 }
237fc4c9
PA
2608 }
2609
2facfe5c 2610 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2611 else if (step)
2facfe5c 2612 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2613
30852783
UW
2614 /* Currently, our software single-step implementation leads to different
2615 results than hardware single-stepping in one situation: when stepping
2616 into delivering a signal which has an associated signal handler,
2617 hardware single-step will stop at the first instruction of the handler,
2618 while software single-step will simply skip execution of the handler.
2619
2620 For now, this difference in behavior is accepted since there is no
2621 easy way to actually implement single-stepping into a signal handler
2622 without kernel support.
2623
2624 However, there is one scenario where this difference leads to follow-on
2625 problems: if we're stepping off a breakpoint by removing all breakpoints
2626 and then single-stepping. In this case, the software single-step
2627 behavior means that even if there is a *breakpoint* in the signal
2628 handler, GDB still would not stop.
2629
2630 Fortunately, we can at least fix this particular issue. We detect
2631 here the case where we are about to deliver a signal while software
2632 single-stepping with breakpoints removed. In this situation, we
2633 revert the decisions to remove all breakpoints and insert single-
2634 step breakpoints, and instead we install a step-resume breakpoint
2635 at the current address, deliver the signal without stepping, and
2636 once we arrive back at the step-resume breakpoint, actually step
2637 over the breakpoint we originally wanted to step over. */
34b7e8a6 2638 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2639 && sig != GDB_SIGNAL_0
2640 && step_over_info_valid_p ())
30852783
UW
2641 {
2642 /* If we have nested signals or a pending signal is delivered
2643 immediately after a handler returns, might might already have
2644 a step-resume breakpoint set on the earlier handler. We cannot
2645 set another step-resume breakpoint; just continue on until the
2646 original breakpoint is hit. */
2647 if (tp->control.step_resume_breakpoint == NULL)
2648 {
2c03e5be 2649 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2650 tp->step_after_step_resume_breakpoint = 1;
2651 }
2652
34b7e8a6 2653 delete_single_step_breakpoints (tp);
30852783 2654
31e77af2 2655 clear_step_over_info ();
30852783 2656 tp->control.trap_expected = 0;
31e77af2
PA
2657
2658 insert_breakpoints ();
30852783
UW
2659 }
2660
b0f16a3e
SM
2661 /* If STEP is set, it's a request to use hardware stepping
2662 facilities. But in that case, we should never
2663 use singlestep breakpoint. */
34b7e8a6 2664 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2665
fbea99ea 2666 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2667 if (tp->control.trap_expected)
b0f16a3e
SM
2668 {
2669 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2670 hit, either by single-stepping the thread with the breakpoint
2671 removed, or by displaced stepping, with the breakpoint inserted.
2672 In the former case, we need to single-step only this thread,
2673 and keep others stopped, as they can miss this breakpoint if
2674 allowed to run. That's not really a problem for displaced
2675 stepping, but, we still keep other threads stopped, in case
2676 another thread is also stopped for a breakpoint waiting for
2677 its turn in the displaced stepping queue. */
b0f16a3e
SM
2678 resume_ptid = inferior_ptid;
2679 }
fbea99ea
PA
2680 else
2681 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2682
7f5ef605
PA
2683 if (execution_direction != EXEC_REVERSE
2684 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2685 {
372316f1
PA
2686 /* There are two cases where we currently need to step a
2687 breakpoint instruction when we have a signal to deliver:
2688
2689 - See handle_signal_stop where we handle random signals that
2690 could take out us out of the stepping range. Normally, in
2691 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2692 signal handler with a breakpoint at PC, but there are cases
2693 where we should _always_ single-step, even if we have a
2694 step-resume breakpoint, like when a software watchpoint is
2695 set. Assuming single-stepping and delivering a signal at the
2696 same time would takes us to the signal handler, then we could
2697 have removed the breakpoint at PC to step over it. However,
2698 some hardware step targets (like e.g., Mac OS) can't step
2699 into signal handlers, and for those, we need to leave the
2700 breakpoint at PC inserted, as otherwise if the handler
2701 recurses and executes PC again, it'll miss the breakpoint.
2702 So we leave the breakpoint inserted anyway, but we need to
2703 record that we tried to step a breakpoint instruction, so
372316f1
PA
2704 that adjust_pc_after_break doesn't end up confused.
2705
2706 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2707 in one thread after another thread that was stepping had been
2708 momentarily paused for a step-over. When we re-resume the
2709 stepping thread, it may be resumed from that address with a
2710 breakpoint that hasn't trapped yet. Seen with
2711 gdb.threads/non-stop-fair-events.exp, on targets that don't
2712 do displaced stepping. */
2713
2714 if (debug_infrun)
2715 fprintf_unfiltered (gdb_stdlog,
2716 "infrun: resume: [%s] stepped breakpoint\n",
2717 target_pid_to_str (tp->ptid));
7f5ef605
PA
2718
2719 tp->stepped_breakpoint = 1;
2720
b0f16a3e
SM
2721 /* Most targets can step a breakpoint instruction, thus
2722 executing it normally. But if this one cannot, just
2723 continue and we will hit it anyway. */
7f5ef605 2724 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2725 step = 0;
2726 }
ef5cf84e 2727
b0f16a3e 2728 if (debug_displaced
cb71640d 2729 && tp->control.trap_expected
3fc8eb30 2730 && use_displaced_stepping (tp)
cb71640d 2731 && !step_over_info_valid_p ())
b0f16a3e 2732 {
d9b67d9f 2733 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
b0f16a3e
SM
2734 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2735 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2736 gdb_byte buf[4];
2737
2738 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2739 paddress (resume_gdbarch, actual_pc));
2740 read_memory (actual_pc, buf, sizeof (buf));
2741 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2742 }
237fc4c9 2743
b0f16a3e
SM
2744 if (tp->control.may_range_step)
2745 {
2746 /* If we're resuming a thread with the PC out of the step
2747 range, then we're doing some nested/finer run control
2748 operation, like stepping the thread out of the dynamic
2749 linker or the displaced stepping scratch pad. We
2750 shouldn't have allowed a range step then. */
2751 gdb_assert (pc_in_thread_step_range (pc, tp));
2752 }
c1e36e3e 2753
64ce06e4 2754 do_target_resume (resume_ptid, step, sig);
372316f1 2755 tp->resumed = 1;
c906108c
SS
2756 discard_cleanups (old_cleanups);
2757}
2758\f
237fc4c9 2759/* Proceeding. */
c906108c 2760
4c2f2a79
PA
2761/* See infrun.h. */
2762
2763/* Counter that tracks number of user visible stops. This can be used
2764 to tell whether a command has proceeded the inferior past the
2765 current location. This allows e.g., inferior function calls in
2766 breakpoint commands to not interrupt the command list. When the
2767 call finishes successfully, the inferior is standing at the same
2768 breakpoint as if nothing happened (and so we don't call
2769 normal_stop). */
2770static ULONGEST current_stop_id;
2771
2772/* See infrun.h. */
2773
2774ULONGEST
2775get_stop_id (void)
2776{
2777 return current_stop_id;
2778}
2779
2780/* Called when we report a user visible stop. */
2781
2782static void
2783new_stop_id (void)
2784{
2785 current_stop_id++;
2786}
2787
c906108c
SS
2788/* Clear out all variables saying what to do when inferior is continued.
2789 First do this, then set the ones you want, then call `proceed'. */
2790
a7212384
UW
2791static void
2792clear_proceed_status_thread (struct thread_info *tp)
c906108c 2793{
a7212384
UW
2794 if (debug_infrun)
2795 fprintf_unfiltered (gdb_stdlog,
2796 "infrun: clear_proceed_status_thread (%s)\n",
2797 target_pid_to_str (tp->ptid));
d6b48e9c 2798
372316f1
PA
2799 /* If we're starting a new sequence, then the previous finished
2800 single-step is no longer relevant. */
2801 if (tp->suspend.waitstatus_pending_p)
2802 {
2803 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2804 {
2805 if (debug_infrun)
2806 fprintf_unfiltered (gdb_stdlog,
2807 "infrun: clear_proceed_status: pending "
2808 "event of %s was a finished step. "
2809 "Discarding.\n",
2810 target_pid_to_str (tp->ptid));
2811
2812 tp->suspend.waitstatus_pending_p = 0;
2813 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2814 }
2815 else if (debug_infrun)
2816 {
2817 char *statstr;
2818
2819 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2820 fprintf_unfiltered (gdb_stdlog,
2821 "infrun: clear_proceed_status_thread: thread %s "
2822 "has pending wait status %s "
2823 "(currently_stepping=%d).\n",
2824 target_pid_to_str (tp->ptid), statstr,
2825 currently_stepping (tp));
2826 xfree (statstr);
2827 }
2828 }
2829
70509625
PA
2830 /* If this signal should not be seen by program, give it zero.
2831 Used for debugging signals. */
2832 if (!signal_pass_state (tp->suspend.stop_signal))
2833 tp->suspend.stop_signal = GDB_SIGNAL_0;
2834
243a9253
PA
2835 thread_fsm_delete (tp->thread_fsm);
2836 tp->thread_fsm = NULL;
2837
16c381f0
JK
2838 tp->control.trap_expected = 0;
2839 tp->control.step_range_start = 0;
2840 tp->control.step_range_end = 0;
c1e36e3e 2841 tp->control.may_range_step = 0;
16c381f0
JK
2842 tp->control.step_frame_id = null_frame_id;
2843 tp->control.step_stack_frame_id = null_frame_id;
2844 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2845 tp->control.step_start_function = NULL;
a7212384 2846 tp->stop_requested = 0;
4e1c45ea 2847
16c381f0 2848 tp->control.stop_step = 0;
32400beb 2849
16c381f0 2850 tp->control.proceed_to_finish = 0;
414c69f7 2851
17b2616c 2852 tp->control.command_interp = NULL;
856e7dd6 2853 tp->control.stepping_command = 0;
17b2616c 2854
a7212384 2855 /* Discard any remaining commands or status from previous stop. */
16c381f0 2856 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2857}
32400beb 2858
a7212384 2859void
70509625 2860clear_proceed_status (int step)
a7212384 2861{
f2665db5
MM
2862 /* With scheduler-locking replay, stop replaying other threads if we're
2863 not replaying the user-visible resume ptid.
2864
2865 This is a convenience feature to not require the user to explicitly
2866 stop replaying the other threads. We're assuming that the user's
2867 intent is to resume tracing the recorded process. */
2868 if (!non_stop && scheduler_mode == schedlock_replay
2869 && target_record_is_replaying (minus_one_ptid)
2870 && !target_record_will_replay (user_visible_resume_ptid (step),
2871 execution_direction))
2872 target_record_stop_replaying ();
2873
6c95b8df
PA
2874 if (!non_stop)
2875 {
70509625
PA
2876 struct thread_info *tp;
2877 ptid_t resume_ptid;
2878
2879 resume_ptid = user_visible_resume_ptid (step);
2880
2881 /* In all-stop mode, delete the per-thread status of all threads
2882 we're about to resume, implicitly and explicitly. */
2883 ALL_NON_EXITED_THREADS (tp)
2884 {
2885 if (!ptid_match (tp->ptid, resume_ptid))
2886 continue;
2887 clear_proceed_status_thread (tp);
2888 }
6c95b8df
PA
2889 }
2890
a7212384
UW
2891 if (!ptid_equal (inferior_ptid, null_ptid))
2892 {
2893 struct inferior *inferior;
2894
2895 if (non_stop)
2896 {
6c95b8df
PA
2897 /* If in non-stop mode, only delete the per-thread status of
2898 the current thread. */
a7212384
UW
2899 clear_proceed_status_thread (inferior_thread ());
2900 }
6c95b8df 2901
d6b48e9c 2902 inferior = current_inferior ();
16c381f0 2903 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2904 }
2905
f3b1572e 2906 observer_notify_about_to_proceed ();
c906108c
SS
2907}
2908
99619bea
PA
2909/* Returns true if TP is still stopped at a breakpoint that needs
2910 stepping-over in order to make progress. If the breakpoint is gone
2911 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2912
2913static int
6c4cfb24 2914thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2915{
2916 if (tp->stepping_over_breakpoint)
2917 {
2918 struct regcache *regcache = get_thread_regcache (tp->ptid);
2919
2920 if (breakpoint_here_p (get_regcache_aspace (regcache),
af48d08f
PA
2921 regcache_read_pc (regcache))
2922 == ordinary_breakpoint_here)
99619bea
PA
2923 return 1;
2924
2925 tp->stepping_over_breakpoint = 0;
2926 }
2927
2928 return 0;
2929}
2930
6c4cfb24
PA
2931/* Check whether thread TP still needs to start a step-over in order
2932 to make progress when resumed. Returns an bitwise or of enum
2933 step_over_what bits, indicating what needs to be stepped over. */
2934
8d297bbf 2935static step_over_what
6c4cfb24
PA
2936thread_still_needs_step_over (struct thread_info *tp)
2937{
8d297bbf 2938 step_over_what what = 0;
6c4cfb24
PA
2939
2940 if (thread_still_needs_step_over_bp (tp))
2941 what |= STEP_OVER_BREAKPOINT;
2942
2943 if (tp->stepping_over_watchpoint
2944 && !target_have_steppable_watchpoint)
2945 what |= STEP_OVER_WATCHPOINT;
2946
2947 return what;
2948}
2949
483805cf
PA
2950/* Returns true if scheduler locking applies. STEP indicates whether
2951 we're about to do a step/next-like command to a thread. */
2952
2953static int
856e7dd6 2954schedlock_applies (struct thread_info *tp)
483805cf
PA
2955{
2956 return (scheduler_mode == schedlock_on
2957 || (scheduler_mode == schedlock_step
f2665db5
MM
2958 && tp->control.stepping_command)
2959 || (scheduler_mode == schedlock_replay
2960 && target_record_will_replay (minus_one_ptid,
2961 execution_direction)));
483805cf
PA
2962}
2963
c906108c
SS
2964/* Basic routine for continuing the program in various fashions.
2965
2966 ADDR is the address to resume at, or -1 for resume where stopped.
2967 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2968 or -1 for act according to how it stopped.
c906108c 2969 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2970 -1 means return after that and print nothing.
2971 You should probably set various step_... variables
2972 before calling here, if you are stepping.
c906108c
SS
2973
2974 You should call clear_proceed_status before calling proceed. */
2975
2976void
64ce06e4 2977proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2978{
e58b0e63
PA
2979 struct regcache *regcache;
2980 struct gdbarch *gdbarch;
4e1c45ea 2981 struct thread_info *tp;
e58b0e63 2982 CORE_ADDR pc;
6c95b8df 2983 struct address_space *aspace;
4d9d9d04
PA
2984 ptid_t resume_ptid;
2985 struct execution_control_state ecss;
2986 struct execution_control_state *ecs = &ecss;
2987 struct cleanup *old_chain;
2988 int started;
c906108c 2989
e58b0e63
PA
2990 /* If we're stopped at a fork/vfork, follow the branch set by the
2991 "set follow-fork-mode" command; otherwise, we'll just proceed
2992 resuming the current thread. */
2993 if (!follow_fork ())
2994 {
2995 /* The target for some reason decided not to resume. */
2996 normal_stop ();
f148b27e
PA
2997 if (target_can_async_p ())
2998 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2999 return;
3000 }
3001
842951eb
PA
3002 /* We'll update this if & when we switch to a new thread. */
3003 previous_inferior_ptid = inferior_ptid;
3004
e58b0e63
PA
3005 regcache = get_current_regcache ();
3006 gdbarch = get_regcache_arch (regcache);
6c95b8df 3007 aspace = get_regcache_aspace (regcache);
e58b0e63 3008 pc = regcache_read_pc (regcache);
2adfaa28 3009 tp = inferior_thread ();
e58b0e63 3010
99619bea
PA
3011 /* Fill in with reasonable starting values. */
3012 init_thread_stepping_state (tp);
3013
c2829269
PA
3014 gdb_assert (!thread_is_in_step_over_chain (tp));
3015
2acceee2 3016 if (addr == (CORE_ADDR) -1)
c906108c 3017 {
af48d08f
PA
3018 if (pc == stop_pc
3019 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 3020 && execution_direction != EXEC_REVERSE)
3352ef37
AC
3021 /* There is a breakpoint at the address we will resume at,
3022 step one instruction before inserting breakpoints so that
3023 we do not stop right away (and report a second hit at this
b2175913
MS
3024 breakpoint).
3025
3026 Note, we don't do this in reverse, because we won't
3027 actually be executing the breakpoint insn anyway.
3028 We'll be (un-)executing the previous instruction. */
99619bea 3029 tp->stepping_over_breakpoint = 1;
515630c5
UW
3030 else if (gdbarch_single_step_through_delay_p (gdbarch)
3031 && gdbarch_single_step_through_delay (gdbarch,
3032 get_current_frame ()))
3352ef37
AC
3033 /* We stepped onto an instruction that needs to be stepped
3034 again before re-inserting the breakpoint, do so. */
99619bea 3035 tp->stepping_over_breakpoint = 1;
c906108c
SS
3036 }
3037 else
3038 {
515630c5 3039 regcache_write_pc (regcache, addr);
c906108c
SS
3040 }
3041
70509625
PA
3042 if (siggnal != GDB_SIGNAL_DEFAULT)
3043 tp->suspend.stop_signal = siggnal;
3044
17b2616c
PA
3045 /* Record the interpreter that issued the execution command that
3046 caused this thread to resume. If the top level interpreter is
3047 MI/async, and the execution command was a CLI command
3048 (next/step/etc.), we'll want to print stop event output to the MI
3049 console channel (the stepped-to line, etc.), as if the user
3050 entered the execution command on a real GDB console. */
4d9d9d04
PA
3051 tp->control.command_interp = command_interp ();
3052
3053 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3054
3055 /* If an exception is thrown from this point on, make sure to
3056 propagate GDB's knowledge of the executing state to the
3057 frontend/user running state. */
3058 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3059
3060 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3061 threads (e.g., we might need to set threads stepping over
3062 breakpoints first), from the user/frontend's point of view, all
3063 threads in RESUME_PTID are now running. Unless we're calling an
3064 inferior function, as in that case we pretend the inferior
3065 doesn't run at all. */
3066 if (!tp->control.in_infcall)
3067 set_running (resume_ptid, 1);
17b2616c 3068
527159b7 3069 if (debug_infrun)
8a9de0e4 3070 fprintf_unfiltered (gdb_stdlog,
64ce06e4 3071 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 3072 paddress (gdbarch, addr),
64ce06e4 3073 gdb_signal_to_symbol_string (siggnal));
527159b7 3074
4d9d9d04
PA
3075 annotate_starting ();
3076
3077 /* Make sure that output from GDB appears before output from the
3078 inferior. */
3079 gdb_flush (gdb_stdout);
3080
3081 /* In a multi-threaded task we may select another thread and
3082 then continue or step.
3083
3084 But if a thread that we're resuming had stopped at a breakpoint,
3085 it will immediately cause another breakpoint stop without any
3086 execution (i.e. it will report a breakpoint hit incorrectly). So
3087 we must step over it first.
3088
3089 Look for threads other than the current (TP) that reported a
3090 breakpoint hit and haven't been resumed yet since. */
3091
3092 /* If scheduler locking applies, we can avoid iterating over all
3093 threads. */
3094 if (!non_stop && !schedlock_applies (tp))
94cc34af 3095 {
4d9d9d04
PA
3096 struct thread_info *current = tp;
3097
3098 ALL_NON_EXITED_THREADS (tp)
3099 {
3100 /* Ignore the current thread here. It's handled
3101 afterwards. */
3102 if (tp == current)
3103 continue;
99619bea 3104
4d9d9d04
PA
3105 /* Ignore threads of processes we're not resuming. */
3106 if (!ptid_match (tp->ptid, resume_ptid))
3107 continue;
c906108c 3108
4d9d9d04
PA
3109 if (!thread_still_needs_step_over (tp))
3110 continue;
3111
3112 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3113
99619bea
PA
3114 if (debug_infrun)
3115 fprintf_unfiltered (gdb_stdlog,
3116 "infrun: need to step-over [%s] first\n",
4d9d9d04 3117 target_pid_to_str (tp->ptid));
99619bea 3118
4d9d9d04 3119 thread_step_over_chain_enqueue (tp);
2adfaa28 3120 }
31e77af2 3121
4d9d9d04 3122 tp = current;
30852783
UW
3123 }
3124
4d9d9d04
PA
3125 /* Enqueue the current thread last, so that we move all other
3126 threads over their breakpoints first. */
3127 if (tp->stepping_over_breakpoint)
3128 thread_step_over_chain_enqueue (tp);
30852783 3129
4d9d9d04
PA
3130 /* If the thread isn't started, we'll still need to set its prev_pc,
3131 so that switch_back_to_stepped_thread knows the thread hasn't
3132 advanced. Must do this before resuming any thread, as in
3133 all-stop/remote, once we resume we can't send any other packet
3134 until the target stops again. */
3135 tp->prev_pc = regcache_read_pc (regcache);
99619bea 3136
4d9d9d04 3137 started = start_step_over ();
c906108c 3138
4d9d9d04
PA
3139 if (step_over_info_valid_p ())
3140 {
3141 /* Either this thread started a new in-line step over, or some
3142 other thread was already doing one. In either case, don't
3143 resume anything else until the step-over is finished. */
3144 }
fbea99ea 3145 else if (started && !target_is_non_stop_p ())
4d9d9d04
PA
3146 {
3147 /* A new displaced stepping sequence was started. In all-stop,
3148 we can't talk to the target anymore until it next stops. */
3149 }
fbea99ea
PA
3150 else if (!non_stop && target_is_non_stop_p ())
3151 {
3152 /* In all-stop, but the target is always in non-stop mode.
3153 Start all other threads that are implicitly resumed too. */
3154 ALL_NON_EXITED_THREADS (tp)
3155 {
3156 /* Ignore threads of processes we're not resuming. */
3157 if (!ptid_match (tp->ptid, resume_ptid))
3158 continue;
3159
3160 if (tp->resumed)
3161 {
3162 if (debug_infrun)
3163 fprintf_unfiltered (gdb_stdlog,
3164 "infrun: proceed: [%s] resumed\n",
3165 target_pid_to_str (tp->ptid));
3166 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3167 continue;
3168 }
3169
3170 if (thread_is_in_step_over_chain (tp))
3171 {
3172 if (debug_infrun)
3173 fprintf_unfiltered (gdb_stdlog,
3174 "infrun: proceed: [%s] needs step-over\n",
3175 target_pid_to_str (tp->ptid));
3176 continue;
3177 }
3178
3179 if (debug_infrun)
3180 fprintf_unfiltered (gdb_stdlog,
3181 "infrun: proceed: resuming %s\n",
3182 target_pid_to_str (tp->ptid));
3183
3184 reset_ecs (ecs, tp);
3185 switch_to_thread (tp->ptid);
3186 keep_going_pass_signal (ecs);
3187 if (!ecs->wait_some_more)
fd7dcb94 3188 error (_("Command aborted."));
fbea99ea
PA
3189 }
3190 }
372316f1 3191 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
4d9d9d04
PA
3192 {
3193 /* The thread wasn't started, and isn't queued, run it now. */
3194 reset_ecs (ecs, tp);
3195 switch_to_thread (tp->ptid);
3196 keep_going_pass_signal (ecs);
3197 if (!ecs->wait_some_more)
fd7dcb94 3198 error (_("Command aborted."));
4d9d9d04 3199 }
c906108c 3200
4d9d9d04 3201 discard_cleanups (old_chain);
c906108c 3202
0b333c5e
PA
3203 /* Tell the event loop to wait for it to stop. If the target
3204 supports asynchronous execution, it'll do this from within
3205 target_resume. */
362646f5 3206 if (!target_can_async_p ())
0b333c5e 3207 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3208}
c906108c
SS
3209\f
3210
3211/* Start remote-debugging of a machine over a serial link. */
96baa820 3212
c906108c 3213void
8621d6a9 3214start_remote (int from_tty)
c906108c 3215{
d6b48e9c 3216 struct inferior *inferior;
d6b48e9c
PA
3217
3218 inferior = current_inferior ();
16c381f0 3219 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3220
1777feb0 3221 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3222 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3223 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3224 nothing is returned (instead of just blocking). Because of this,
3225 targets expecting an immediate response need to, internally, set
3226 things up so that the target_wait() is forced to eventually
1777feb0 3227 timeout. */
6426a772
JM
3228 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3229 differentiate to its caller what the state of the target is after
3230 the initial open has been performed. Here we're assuming that
3231 the target has stopped. It should be possible to eventually have
3232 target_open() return to the caller an indication that the target
3233 is currently running and GDB state should be set to the same as
1777feb0 3234 for an async run. */
e4c8541f 3235 wait_for_inferior ();
8621d6a9
DJ
3236
3237 /* Now that the inferior has stopped, do any bookkeeping like
3238 loading shared libraries. We want to do this before normal_stop,
3239 so that the displayed frame is up to date. */
3240 post_create_inferior (&current_target, from_tty);
3241
6426a772 3242 normal_stop ();
c906108c
SS
3243}
3244
3245/* Initialize static vars when a new inferior begins. */
3246
3247void
96baa820 3248init_wait_for_inferior (void)
c906108c
SS
3249{
3250 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3251
c906108c
SS
3252 breakpoint_init_inferior (inf_starting);
3253
70509625 3254 clear_proceed_status (0);
9f976b41 3255
ca005067 3256 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3257
842951eb 3258 previous_inferior_ptid = inferior_ptid;
0d1e5fa7 3259
edb3359d
DJ
3260 /* Discard any skipped inlined frames. */
3261 clear_inline_frame_state (minus_one_ptid);
c906108c 3262}
237fc4c9 3263
c906108c 3264\f
488f131b 3265
ec9499be 3266static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3267
568d6575
UW
3268static void handle_step_into_function (struct gdbarch *gdbarch,
3269 struct execution_control_state *ecs);
3270static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3271 struct execution_control_state *ecs);
4f5d7f63 3272static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3273static void check_exception_resume (struct execution_control_state *,
28106bc2 3274 struct frame_info *);
611c83ae 3275
bdc36728 3276static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3277static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3278static void keep_going (struct execution_control_state *ecs);
94c57d6a 3279static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3280static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3281
252fbfc8
PA
3282/* Callback for iterate over threads. If the thread is stopped, but
3283 the user/frontend doesn't know about that yet, go through
3284 normal_stop, as if the thread had just stopped now. ARG points at
3285 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
3286 ptid_is_pid(PTID) is true, applies to all threads of the process
3287 pointed at by PTID. Otherwise, apply only to the thread pointed by
3288 PTID. */
3289
3290static int
3291infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
3292{
3293 ptid_t ptid = * (ptid_t *) arg;
3294
3295 if ((ptid_equal (info->ptid, ptid)
3296 || ptid_equal (minus_one_ptid, ptid)
3297 || (ptid_is_pid (ptid)
3298 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
3299 && is_running (info->ptid)
3300 && !is_executing (info->ptid))
3301 {
3302 struct cleanup *old_chain;
3303 struct execution_control_state ecss;
3304 struct execution_control_state *ecs = &ecss;
3305
3306 memset (ecs, 0, sizeof (*ecs));
3307
3308 old_chain = make_cleanup_restore_current_thread ();
3309
f15cb84a
YQ
3310 overlay_cache_invalid = 1;
3311 /* Flush target cache before starting to handle each event.
3312 Target was running and cache could be stale. This is just a
3313 heuristic. Running threads may modify target memory, but we
3314 don't get any event. */
3315 target_dcache_invalidate ();
3316
252fbfc8
PA
3317 /* Go through handle_inferior_event/normal_stop, so we always
3318 have consistent output as if the stop event had been
3319 reported. */
3320 ecs->ptid = info->ptid;
243a9253 3321 ecs->event_thread = info;
252fbfc8 3322 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 3323 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
3324
3325 handle_inferior_event (ecs);
3326
3327 if (!ecs->wait_some_more)
3328 {
243a9253
PA
3329 /* Cancel any running execution command. */
3330 thread_cancel_execution_command (info);
3331
252fbfc8 3332 normal_stop ();
252fbfc8
PA
3333 }
3334
3335 do_cleanups (old_chain);
3336 }
3337
3338 return 0;
3339}
3340
3341/* This function is attached as a "thread_stop_requested" observer.
3342 Cleanup local state that assumed the PTID was to be resumed, and
3343 report the stop to the frontend. */
3344
2c0b251b 3345static void
252fbfc8
PA
3346infrun_thread_stop_requested (ptid_t ptid)
3347{
c2829269 3348 struct thread_info *tp;
252fbfc8 3349
c2829269
PA
3350 /* PTID was requested to stop. Remove matching threads from the
3351 step-over queue, so we don't try to resume them
3352 automatically. */
3353 ALL_NON_EXITED_THREADS (tp)
3354 if (ptid_match (tp->ptid, ptid))
3355 {
3356 if (thread_is_in_step_over_chain (tp))
3357 thread_step_over_chain_remove (tp);
3358 }
252fbfc8
PA
3359
3360 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
3361}
3362
a07daef3
PA
3363static void
3364infrun_thread_thread_exit (struct thread_info *tp, int silent)
3365{
3366 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3367 nullify_last_target_wait_ptid ();
3368}
3369
0cbcdb96
PA
3370/* Delete the step resume, single-step and longjmp/exception resume
3371 breakpoints of TP. */
4e1c45ea 3372
0cbcdb96
PA
3373static void
3374delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3375{
0cbcdb96
PA
3376 delete_step_resume_breakpoint (tp);
3377 delete_exception_resume_breakpoint (tp);
34b7e8a6 3378 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3379}
3380
0cbcdb96
PA
3381/* If the target still has execution, call FUNC for each thread that
3382 just stopped. In all-stop, that's all the non-exited threads; in
3383 non-stop, that's the current thread, only. */
3384
3385typedef void (*for_each_just_stopped_thread_callback_func)
3386 (struct thread_info *tp);
4e1c45ea
PA
3387
3388static void
0cbcdb96 3389for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3390{
0cbcdb96 3391 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
4e1c45ea
PA
3392 return;
3393
fbea99ea 3394 if (target_is_non_stop_p ())
4e1c45ea 3395 {
0cbcdb96
PA
3396 /* If in non-stop mode, only the current thread stopped. */
3397 func (inferior_thread ());
4e1c45ea
PA
3398 }
3399 else
0cbcdb96
PA
3400 {
3401 struct thread_info *tp;
3402
3403 /* In all-stop mode, all threads have stopped. */
3404 ALL_NON_EXITED_THREADS (tp)
3405 {
3406 func (tp);
3407 }
3408 }
3409}
3410
3411/* Delete the step resume and longjmp/exception resume breakpoints of
3412 the threads that just stopped. */
3413
3414static void
3415delete_just_stopped_threads_infrun_breakpoints (void)
3416{
3417 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3418}
3419
3420/* Delete the single-step breakpoints of the threads that just
3421 stopped. */
7c16b83e 3422
34b7e8a6
PA
3423static void
3424delete_just_stopped_threads_single_step_breakpoints (void)
3425{
3426 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3427}
3428
1777feb0 3429/* A cleanup wrapper. */
4e1c45ea
PA
3430
3431static void
0cbcdb96 3432delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
4e1c45ea 3433{
0cbcdb96 3434 delete_just_stopped_threads_infrun_breakpoints ();
4e1c45ea
PA
3435}
3436
221e1a37 3437/* See infrun.h. */
223698f8 3438
221e1a37 3439void
223698f8
DE
3440print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3441 const struct target_waitstatus *ws)
3442{
3443 char *status_string = target_waitstatus_to_string (ws);
3444 struct ui_file *tmp_stream = mem_fileopen ();
3445 char *text;
223698f8
DE
3446
3447 /* The text is split over several lines because it was getting too long.
3448 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3449 output as a unit; we want only one timestamp printed if debug_timestamp
3450 is set. */
3451
3452 fprintf_unfiltered (tmp_stream,
1176ecec
PA
3453 "infrun: target_wait (%d.%ld.%ld",
3454 ptid_get_pid (waiton_ptid),
3455 ptid_get_lwp (waiton_ptid),
3456 ptid_get_tid (waiton_ptid));
dfd4cc63 3457 if (ptid_get_pid (waiton_ptid) != -1)
223698f8
DE
3458 fprintf_unfiltered (tmp_stream,
3459 " [%s]", target_pid_to_str (waiton_ptid));
3460 fprintf_unfiltered (tmp_stream, ", status) =\n");
3461 fprintf_unfiltered (tmp_stream,
1176ecec 3462 "infrun: %d.%ld.%ld [%s],\n",
dfd4cc63 3463 ptid_get_pid (result_ptid),
1176ecec
PA
3464 ptid_get_lwp (result_ptid),
3465 ptid_get_tid (result_ptid),
dfd4cc63 3466 target_pid_to_str (result_ptid));
223698f8
DE
3467 fprintf_unfiltered (tmp_stream,
3468 "infrun: %s\n",
3469 status_string);
3470
759ef836 3471 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
3472
3473 /* This uses %s in part to handle %'s in the text, but also to avoid
3474 a gcc error: the format attribute requires a string literal. */
3475 fprintf_unfiltered (gdb_stdlog, "%s", text);
3476
3477 xfree (status_string);
3478 xfree (text);
3479 ui_file_delete (tmp_stream);
3480}
3481
372316f1
PA
3482/* Select a thread at random, out of those which are resumed and have
3483 had events. */
3484
3485static struct thread_info *
3486random_pending_event_thread (ptid_t waiton_ptid)
3487{
3488 struct thread_info *event_tp;
3489 int num_events = 0;
3490 int random_selector;
3491
3492 /* First see how many events we have. Count only resumed threads
3493 that have an event pending. */
3494 ALL_NON_EXITED_THREADS (event_tp)
3495 if (ptid_match (event_tp->ptid, waiton_ptid)
3496 && event_tp->resumed
3497 && event_tp->suspend.waitstatus_pending_p)
3498 num_events++;
3499
3500 if (num_events == 0)
3501 return NULL;
3502
3503 /* Now randomly pick a thread out of those that have had events. */
3504 random_selector = (int)
3505 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3506
3507 if (debug_infrun && num_events > 1)
3508 fprintf_unfiltered (gdb_stdlog,
3509 "infrun: Found %d events, selecting #%d\n",
3510 num_events, random_selector);
3511
3512 /* Select the Nth thread that has had an event. */
3513 ALL_NON_EXITED_THREADS (event_tp)
3514 if (ptid_match (event_tp->ptid, waiton_ptid)
3515 && event_tp->resumed
3516 && event_tp->suspend.waitstatus_pending_p)
3517 if (random_selector-- == 0)
3518 break;
3519
3520 return event_tp;
3521}
3522
3523/* Wrapper for target_wait that first checks whether threads have
3524 pending statuses to report before actually asking the target for
3525 more events. */
3526
3527static ptid_t
3528do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3529{
3530 ptid_t event_ptid;
3531 struct thread_info *tp;
3532
3533 /* First check if there is a resumed thread with a wait status
3534 pending. */
3535 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3536 {
3537 tp = random_pending_event_thread (ptid);
3538 }
3539 else
3540 {
3541 if (debug_infrun)
3542 fprintf_unfiltered (gdb_stdlog,
3543 "infrun: Waiting for specific thread %s.\n",
3544 target_pid_to_str (ptid));
3545
3546 /* We have a specific thread to check. */
3547 tp = find_thread_ptid (ptid);
3548 gdb_assert (tp != NULL);
3549 if (!tp->suspend.waitstatus_pending_p)
3550 tp = NULL;
3551 }
3552
3553 if (tp != NULL
3554 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3555 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3556 {
3557 struct regcache *regcache = get_thread_regcache (tp->ptid);
3558 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3559 CORE_ADDR pc;
3560 int discard = 0;
3561
3562 pc = regcache_read_pc (regcache);
3563
3564 if (pc != tp->suspend.stop_pc)
3565 {
3566 if (debug_infrun)
3567 fprintf_unfiltered (gdb_stdlog,
3568 "infrun: PC of %s changed. was=%s, now=%s\n",
3569 target_pid_to_str (tp->ptid),
3570 paddress (gdbarch, tp->prev_pc),
3571 paddress (gdbarch, pc));
3572 discard = 1;
3573 }
3574 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3575 {
3576 if (debug_infrun)
3577 fprintf_unfiltered (gdb_stdlog,
3578 "infrun: previous breakpoint of %s, at %s gone\n",
3579 target_pid_to_str (tp->ptid),
3580 paddress (gdbarch, pc));
3581
3582 discard = 1;
3583 }
3584
3585 if (discard)
3586 {
3587 if (debug_infrun)
3588 fprintf_unfiltered (gdb_stdlog,
3589 "infrun: pending event of %s cancelled.\n",
3590 target_pid_to_str (tp->ptid));
3591
3592 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3593 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3594 }
3595 }
3596
3597 if (tp != NULL)
3598 {
3599 if (debug_infrun)
3600 {
3601 char *statstr;
3602
3603 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3604 fprintf_unfiltered (gdb_stdlog,
3605 "infrun: Using pending wait status %s for %s.\n",
3606 statstr,
3607 target_pid_to_str (tp->ptid));
3608 xfree (statstr);
3609 }
3610
3611 /* Now that we've selected our final event LWP, un-adjust its PC
3612 if it was a software breakpoint (and the target doesn't
3613 always adjust the PC itself). */
3614 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3615 && !target_supports_stopped_by_sw_breakpoint ())
3616 {
3617 struct regcache *regcache;
3618 struct gdbarch *gdbarch;
3619 int decr_pc;
3620
3621 regcache = get_thread_regcache (tp->ptid);
3622 gdbarch = get_regcache_arch (regcache);
3623
3624 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3625 if (decr_pc != 0)
3626 {
3627 CORE_ADDR pc;
3628
3629 pc = regcache_read_pc (regcache);
3630 regcache_write_pc (regcache, pc + decr_pc);
3631 }
3632 }
3633
3634 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3635 *status = tp->suspend.waitstatus;
3636 tp->suspend.waitstatus_pending_p = 0;
3637
3638 /* Wake up the event loop again, until all pending events are
3639 processed. */
3640 if (target_is_async_p ())
3641 mark_async_event_handler (infrun_async_inferior_event_token);
3642 return tp->ptid;
3643 }
3644
3645 /* But if we don't find one, we'll have to wait. */
3646
3647 if (deprecated_target_wait_hook)
3648 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3649 else
3650 event_ptid = target_wait (ptid, status, options);
3651
3652 return event_ptid;
3653}
3654
24291992
PA
3655/* Prepare and stabilize the inferior for detaching it. E.g.,
3656 detaching while a thread is displaced stepping is a recipe for
3657 crashing it, as nothing would readjust the PC out of the scratch
3658 pad. */
3659
3660void
3661prepare_for_detach (void)
3662{
3663 struct inferior *inf = current_inferior ();
3664 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3665 struct cleanup *old_chain_1;
3666 struct displaced_step_inferior_state *displaced;
3667
3668 displaced = get_displaced_stepping_state (inf->pid);
3669
3670 /* Is any thread of this process displaced stepping? If not,
3671 there's nothing else to do. */
3672 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3673 return;
3674
3675 if (debug_infrun)
3676 fprintf_unfiltered (gdb_stdlog,
3677 "displaced-stepping in-process while detaching");
3678
3679 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3680 inf->detaching = 1;
3681
3682 while (!ptid_equal (displaced->step_ptid, null_ptid))
3683 {
3684 struct cleanup *old_chain_2;
3685 struct execution_control_state ecss;
3686 struct execution_control_state *ecs;
3687
3688 ecs = &ecss;
3689 memset (ecs, 0, sizeof (*ecs));
3690
3691 overlay_cache_invalid = 1;
f15cb84a
YQ
3692 /* Flush target cache before starting to handle each event.
3693 Target was running and cache could be stale. This is just a
3694 heuristic. Running threads may modify target memory, but we
3695 don't get any event. */
3696 target_dcache_invalidate ();
24291992 3697
372316f1 3698 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3699
3700 if (debug_infrun)
3701 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3702
3703 /* If an error happens while handling the event, propagate GDB's
3704 knowledge of the executing state to the frontend/user running
3705 state. */
3e43a32a
MS
3706 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3707 &minus_one_ptid);
24291992
PA
3708
3709 /* Now figure out what to do with the result of the result. */
3710 handle_inferior_event (ecs);
3711
3712 /* No error, don't finish the state yet. */
3713 discard_cleanups (old_chain_2);
3714
3715 /* Breakpoints and watchpoints are not installed on the target
3716 at this point, and signals are passed directly to the
3717 inferior, so this must mean the process is gone. */
3718 if (!ecs->wait_some_more)
3719 {
3720 discard_cleanups (old_chain_1);
3721 error (_("Program exited while detaching"));
3722 }
3723 }
3724
3725 discard_cleanups (old_chain_1);
3726}
3727
cd0fc7c3 3728/* Wait for control to return from inferior to debugger.
ae123ec6 3729
cd0fc7c3
SS
3730 If inferior gets a signal, we may decide to start it up again
3731 instead of returning. That is why there is a loop in this function.
3732 When this function actually returns it means the inferior
3733 should be left stopped and GDB should read more commands. */
3734
3735void
e4c8541f 3736wait_for_inferior (void)
cd0fc7c3
SS
3737{
3738 struct cleanup *old_cleanups;
e6f5c25b 3739 struct cleanup *thread_state_chain;
c906108c 3740
527159b7 3741 if (debug_infrun)
ae123ec6 3742 fprintf_unfiltered
e4c8541f 3743 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3744
0cbcdb96
PA
3745 old_cleanups
3746 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3747 NULL);
cd0fc7c3 3748
e6f5c25b
PA
3749 /* If an error happens while handling the event, propagate GDB's
3750 knowledge of the executing state to the frontend/user running
3751 state. */
3752 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3753
c906108c
SS
3754 while (1)
3755 {
ae25568b
PA
3756 struct execution_control_state ecss;
3757 struct execution_control_state *ecs = &ecss;
963f9c80 3758 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3759
ae25568b
PA
3760 memset (ecs, 0, sizeof (*ecs));
3761
ec9499be 3762 overlay_cache_invalid = 1;
ec9499be 3763
f15cb84a
YQ
3764 /* Flush target cache before starting to handle each event.
3765 Target was running and cache could be stale. This is just a
3766 heuristic. Running threads may modify target memory, but we
3767 don't get any event. */
3768 target_dcache_invalidate ();
3769
372316f1 3770 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3771
f00150c9 3772 if (debug_infrun)
223698f8 3773 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3774
cd0fc7c3
SS
3775 /* Now figure out what to do with the result of the result. */
3776 handle_inferior_event (ecs);
c906108c 3777
cd0fc7c3
SS
3778 if (!ecs->wait_some_more)
3779 break;
3780 }
4e1c45ea 3781
e6f5c25b
PA
3782 /* No error, don't finish the state yet. */
3783 discard_cleanups (thread_state_chain);
3784
cd0fc7c3
SS
3785 do_cleanups (old_cleanups);
3786}
c906108c 3787
d3d4baed
PA
3788/* Cleanup that reinstalls the readline callback handler, if the
3789 target is running in the background. If while handling the target
3790 event something triggered a secondary prompt, like e.g., a
3791 pagination prompt, we'll have removed the callback handler (see
3792 gdb_readline_wrapper_line). Need to do this as we go back to the
3793 event loop, ready to process further input. Note this has no
3794 effect if the handler hasn't actually been removed, because calling
3795 rl_callback_handler_install resets the line buffer, thus losing
3796 input. */
3797
3798static void
3799reinstall_readline_callback_handler_cleanup (void *arg)
3800{
3b12939d
PA
3801 struct ui *ui = current_ui;
3802
3803 if (!ui->async)
6c400b59
PA
3804 {
3805 /* We're not going back to the top level event loop yet. Don't
3806 install the readline callback, as it'd prep the terminal,
3807 readline-style (raw, noecho) (e.g., --batch). We'll install
3808 it the next time the prompt is displayed, when we're ready
3809 for input. */
3810 return;
3811 }
3812
3b12939d 3813 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3814 gdb_rl_callback_handler_reinstall ();
3815}
3816
243a9253
PA
3817/* Clean up the FSMs of threads that are now stopped. In non-stop,
3818 that's just the event thread. In all-stop, that's all threads. */
3819
3820static void
3821clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3822{
3823 struct thread_info *thr = ecs->event_thread;
3824
3825 if (thr != NULL && thr->thread_fsm != NULL)
3826 thread_fsm_clean_up (thr->thread_fsm);
3827
3828 if (!non_stop)
3829 {
3830 ALL_NON_EXITED_THREADS (thr)
3831 {
3832 if (thr->thread_fsm == NULL)
3833 continue;
3834 if (thr == ecs->event_thread)
3835 continue;
3836
3837 switch_to_thread (thr->ptid);
3838 thread_fsm_clean_up (thr->thread_fsm);
3839 }
3840
3841 if (ecs->event_thread != NULL)
3842 switch_to_thread (ecs->event_thread->ptid);
3843 }
3844}
3845
3b12939d
PA
3846/* Helper for all_uis_check_sync_execution_done that works on the
3847 current UI. */
3848
3849static void
3850check_curr_ui_sync_execution_done (void)
3851{
3852 struct ui *ui = current_ui;
3853
3854 if (ui->prompt_state == PROMPT_NEEDED
3855 && ui->async
3856 && !gdb_in_secondary_prompt_p (ui))
3857 {
3858 target_terminal_ours ();
3859 observer_notify_sync_execution_done ();
3860 }
3861}
3862
3863/* See infrun.h. */
3864
3865void
3866all_uis_check_sync_execution_done (void)
3867{
3868 struct switch_thru_all_uis state;
3869
3870 SWITCH_THRU_ALL_UIS (state)
3871 {
3872 check_curr_ui_sync_execution_done ();
3873 }
3874}
3875
170742de
PA
3876/* A cleanup that restores the execution direction to the value saved
3877 in *ARG. */
3878
3879static void
3880restore_execution_direction (void *arg)
3881{
3882 enum exec_direction_kind *save_exec_dir = (enum exec_direction_kind *) arg;
3883
3884 execution_direction = *save_exec_dir;
3885}
3886
1777feb0 3887/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3888 event loop whenever a change of state is detected on the file
1777feb0
MS
3889 descriptor corresponding to the target. It can be called more than
3890 once to complete a single execution command. In such cases we need
3891 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3892 that this function is called for a single execution command, then
3893 report to the user that the inferior has stopped, and do the
1777feb0 3894 necessary cleanups. */
43ff13b4
JM
3895
3896void
fba45db2 3897fetch_inferior_event (void *client_data)
43ff13b4 3898{
0d1e5fa7 3899 struct execution_control_state ecss;
a474d7c2 3900 struct execution_control_state *ecs = &ecss;
4f8d22e3 3901 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 3902 struct cleanup *ts_old_chain;
170742de 3903 enum exec_direction_kind save_exec_dir = execution_direction;
0f641c01 3904 int cmd_done = 0;
963f9c80 3905 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3906
0d1e5fa7
PA
3907 memset (ecs, 0, sizeof (*ecs));
3908
c61db772
PA
3909 /* Events are always processed with the main UI as current UI. This
3910 way, warnings, debug output, etc. are always consistently sent to
3911 the main console. */
3912 make_cleanup (restore_ui_cleanup, current_ui);
3913 current_ui = main_ui;
3914
d3d4baed
PA
3915 /* End up with readline processing input, if necessary. */
3916 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3917
c5187ac6
PA
3918 /* We're handling a live event, so make sure we're doing live
3919 debugging. If we're looking at traceframes while the target is
3920 running, we're going to need to get back to that mode after
3921 handling the event. */
3922 if (non_stop)
3923 {
3924 make_cleanup_restore_current_traceframe ();
e6e4e701 3925 set_current_traceframe (-1);
c5187ac6
PA
3926 }
3927
4f8d22e3
PA
3928 if (non_stop)
3929 /* In non-stop mode, the user/frontend should not notice a thread
3930 switch due to internal events. Make sure we reverse to the
3931 user selected thread and frame after handling the event and
3932 running any breakpoint commands. */
3933 make_cleanup_restore_current_thread ();
3934
ec9499be 3935 overlay_cache_invalid = 1;
f15cb84a
YQ
3936 /* Flush target cache before starting to handle each event. Target
3937 was running and cache could be stale. This is just a heuristic.
3938 Running threads may modify target memory, but we don't get any
3939 event. */
3940 target_dcache_invalidate ();
3dd5b83d 3941
170742de 3942 make_cleanup (restore_execution_direction, &save_exec_dir);
32231432
PA
3943 execution_direction = target_execution_direction ();
3944
0b333c5e
PA
3945 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3946 target_can_async_p () ? TARGET_WNOHANG : 0);
43ff13b4 3947
f00150c9 3948 if (debug_infrun)
223698f8 3949 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3950
29f49a6a
PA
3951 /* If an error happens while handling the event, propagate GDB's
3952 knowledge of the executing state to the frontend/user running
3953 state. */
fbea99ea 3954 if (!target_is_non_stop_p ())
29f49a6a
PA
3955 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3956 else
3957 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3958
353d1d73
JK
3959 /* Get executed before make_cleanup_restore_current_thread above to apply
3960 still for the thread which has thrown the exception. */
3961 make_bpstat_clear_actions_cleanup ();
3962
7c16b83e
PA
3963 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3964
43ff13b4 3965 /* Now figure out what to do with the result of the result. */
a474d7c2 3966 handle_inferior_event (ecs);
43ff13b4 3967
a474d7c2 3968 if (!ecs->wait_some_more)
43ff13b4 3969 {
c9657e70 3970 struct inferior *inf = find_inferior_ptid (ecs->ptid);
243a9253
PA
3971 int should_stop = 1;
3972 struct thread_info *thr = ecs->event_thread;
388a7084 3973 int should_notify_stop = 1;
d6b48e9c 3974
0cbcdb96 3975 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3976
243a9253
PA
3977 if (thr != NULL)
3978 {
3979 struct thread_fsm *thread_fsm = thr->thread_fsm;
3980
3981 if (thread_fsm != NULL)
3982 should_stop = thread_fsm_should_stop (thread_fsm);
3983 }
3984
3985 if (!should_stop)
3986 {
3987 keep_going (ecs);
3988 }
c2d11a7d 3989 else
0f641c01 3990 {
243a9253
PA
3991 clean_up_just_stopped_threads_fsms (ecs);
3992
388a7084
PA
3993 if (thr != NULL && thr->thread_fsm != NULL)
3994 {
3995 should_notify_stop
3996 = thread_fsm_should_notify_stop (thr->thread_fsm);
3997 }
3998
3999 if (should_notify_stop)
4000 {
4c2f2a79
PA
4001 int proceeded = 0;
4002
388a7084
PA
4003 /* We may not find an inferior if this was a process exit. */
4004 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4c2f2a79 4005 proceeded = normal_stop ();
243a9253 4006
4c2f2a79
PA
4007 if (!proceeded)
4008 {
4009 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
4010 cmd_done = 1;
4011 }
388a7084 4012 }
0f641c01 4013 }
43ff13b4 4014 }
4f8d22e3 4015
29f49a6a
PA
4016 /* No error, don't finish the thread states yet. */
4017 discard_cleanups (ts_old_chain);
4018
4f8d22e3
PA
4019 /* Revert thread and frame. */
4020 do_cleanups (old_chain);
4021
3b12939d
PA
4022 /* If a UI was in sync execution mode, and now isn't, restore its
4023 prompt (a synchronous execution command has finished, and we're
4024 ready for input). */
4025 all_uis_check_sync_execution_done ();
0f641c01
PA
4026
4027 if (cmd_done
0f641c01
PA
4028 && exec_done_display_p
4029 && (ptid_equal (inferior_ptid, null_ptid)
4030 || !is_running (inferior_ptid)))
4031 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
4032}
4033
edb3359d
DJ
4034/* Record the frame and location we're currently stepping through. */
4035void
4036set_step_info (struct frame_info *frame, struct symtab_and_line sal)
4037{
4038 struct thread_info *tp = inferior_thread ();
4039
16c381f0
JK
4040 tp->control.step_frame_id = get_frame_id (frame);
4041 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
4042
4043 tp->current_symtab = sal.symtab;
4044 tp->current_line = sal.line;
4045}
4046
0d1e5fa7
PA
4047/* Clear context switchable stepping state. */
4048
4049void
4e1c45ea 4050init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 4051{
7f5ef605 4052 tss->stepped_breakpoint = 0;
0d1e5fa7 4053 tss->stepping_over_breakpoint = 0;
963f9c80 4054 tss->stepping_over_watchpoint = 0;
0d1e5fa7 4055 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
4056}
4057
c32c64b7
DE
4058/* Set the cached copy of the last ptid/waitstatus. */
4059
6efcd9a8 4060void
c32c64b7
DE
4061set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4062{
4063 target_last_wait_ptid = ptid;
4064 target_last_waitstatus = status;
4065}
4066
e02bc4cc 4067/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
4068 target_wait()/deprecated_target_wait_hook(). The data is actually
4069 cached by handle_inferior_event(), which gets called immediately
4070 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
4071
4072void
488f131b 4073get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 4074{
39f77062 4075 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
4076 *status = target_last_waitstatus;
4077}
4078
ac264b3b
MS
4079void
4080nullify_last_target_wait_ptid (void)
4081{
4082 target_last_wait_ptid = minus_one_ptid;
4083}
4084
dcf4fbde 4085/* Switch thread contexts. */
dd80620e
MS
4086
4087static void
0d1e5fa7 4088context_switch (ptid_t ptid)
dd80620e 4089{
4b51d87b 4090 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
4091 {
4092 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4093 target_pid_to_str (inferior_ptid));
4094 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 4095 target_pid_to_str (ptid));
fd48f117
DJ
4096 }
4097
0d1e5fa7 4098 switch_to_thread (ptid);
dd80620e
MS
4099}
4100
d8dd4d5f
PA
4101/* If the target can't tell whether we've hit breakpoints
4102 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4103 check whether that could have been caused by a breakpoint. If so,
4104 adjust the PC, per gdbarch_decr_pc_after_break. */
4105
4fa8626c 4106static void
d8dd4d5f
PA
4107adjust_pc_after_break (struct thread_info *thread,
4108 struct target_waitstatus *ws)
4fa8626c 4109{
24a73cce
UW
4110 struct regcache *regcache;
4111 struct gdbarch *gdbarch;
6c95b8df 4112 struct address_space *aspace;
118e6252 4113 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4114
4fa8626c
DJ
4115 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4116 we aren't, just return.
9709f61c
DJ
4117
4118 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4119 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4120 implemented by software breakpoints should be handled through the normal
4121 breakpoint layer.
8fb3e588 4122
4fa8626c
DJ
4123 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4124 different signals (SIGILL or SIGEMT for instance), but it is less
4125 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4126 gdbarch_decr_pc_after_break. I don't know any specific target that
4127 generates these signals at breakpoints (the code has been in GDB since at
4128 least 1992) so I can not guess how to handle them here.
8fb3e588 4129
e6cf7916
UW
4130 In earlier versions of GDB, a target with
4131 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4132 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4133 target with both of these set in GDB history, and it seems unlikely to be
4134 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4135
d8dd4d5f 4136 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4137 return;
4138
d8dd4d5f 4139 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4140 return;
4141
4058b839
PA
4142 /* In reverse execution, when a breakpoint is hit, the instruction
4143 under it has already been de-executed. The reported PC always
4144 points at the breakpoint address, so adjusting it further would
4145 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4146 architecture:
4147
4148 B1 0x08000000 : INSN1
4149 B2 0x08000001 : INSN2
4150 0x08000002 : INSN3
4151 PC -> 0x08000003 : INSN4
4152
4153 Say you're stopped at 0x08000003 as above. Reverse continuing
4154 from that point should hit B2 as below. Reading the PC when the
4155 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4156 been de-executed already.
4157
4158 B1 0x08000000 : INSN1
4159 B2 PC -> 0x08000001 : INSN2
4160 0x08000002 : INSN3
4161 0x08000003 : INSN4
4162
4163 We can't apply the same logic as for forward execution, because
4164 we would wrongly adjust the PC to 0x08000000, since there's a
4165 breakpoint at PC - 1. We'd then report a hit on B1, although
4166 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4167 behaviour. */
4168 if (execution_direction == EXEC_REVERSE)
4169 return;
4170
1cf4d951
PA
4171 /* If the target can tell whether the thread hit a SW breakpoint,
4172 trust it. Targets that can tell also adjust the PC
4173 themselves. */
4174 if (target_supports_stopped_by_sw_breakpoint ())
4175 return;
4176
4177 /* Note that relying on whether a breakpoint is planted in memory to
4178 determine this can fail. E.g,. the breakpoint could have been
4179 removed since. Or the thread could have been told to step an
4180 instruction the size of a breakpoint instruction, and only
4181 _after_ was a breakpoint inserted at its address. */
4182
24a73cce
UW
4183 /* If this target does not decrement the PC after breakpoints, then
4184 we have nothing to do. */
d8dd4d5f 4185 regcache = get_thread_regcache (thread->ptid);
24a73cce 4186 gdbarch = get_regcache_arch (regcache);
118e6252 4187
527a273a 4188 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4189 if (decr_pc == 0)
24a73cce
UW
4190 return;
4191
6c95b8df
PA
4192 aspace = get_regcache_aspace (regcache);
4193
8aad930b
AC
4194 /* Find the location where (if we've hit a breakpoint) the
4195 breakpoint would be. */
118e6252 4196 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4197
1cf4d951
PA
4198 /* If the target can't tell whether a software breakpoint triggered,
4199 fallback to figuring it out based on breakpoints we think were
4200 inserted in the target, and on whether the thread was stepped or
4201 continued. */
4202
1c5cfe86
PA
4203 /* Check whether there actually is a software breakpoint inserted at
4204 that location.
4205
4206 If in non-stop mode, a race condition is possible where we've
4207 removed a breakpoint, but stop events for that breakpoint were
4208 already queued and arrive later. To suppress those spurious
4209 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4210 and retire them after a number of stop events are reported. Note
4211 this is an heuristic and can thus get confused. The real fix is
4212 to get the "stopped by SW BP and needs adjustment" info out of
4213 the target/kernel (and thus never reach here; see above). */
6c95b8df 4214 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4215 || (target_is_non_stop_p ()
4216 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4217 {
77f9e713 4218 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
abbb1732 4219
8213266a 4220 if (record_full_is_used ())
77f9e713 4221 record_full_gdb_operation_disable_set ();
96429cc8 4222
1c0fdd0e
UW
4223 /* When using hardware single-step, a SIGTRAP is reported for both
4224 a completed single-step and a software breakpoint. Need to
4225 differentiate between the two, as the latter needs adjusting
4226 but the former does not.
4227
4228 The SIGTRAP can be due to a completed hardware single-step only if
4229 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4230 - this thread is currently being stepped
4231
4232 If any of these events did not occur, we must have stopped due
4233 to hitting a software breakpoint, and have to back up to the
4234 breakpoint address.
4235
4236 As a special case, we could have hardware single-stepped a
4237 software breakpoint. In this case (prev_pc == breakpoint_pc),
4238 we also need to back up to the breakpoint address. */
4239
d8dd4d5f
PA
4240 if (thread_has_single_step_breakpoints_set (thread)
4241 || !currently_stepping (thread)
4242 || (thread->stepped_breakpoint
4243 && thread->prev_pc == breakpoint_pc))
515630c5 4244 regcache_write_pc (regcache, breakpoint_pc);
96429cc8 4245
77f9e713 4246 do_cleanups (old_cleanups);
8aad930b 4247 }
4fa8626c
DJ
4248}
4249
edb3359d
DJ
4250static int
4251stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4252{
4253 for (frame = get_prev_frame (frame);
4254 frame != NULL;
4255 frame = get_prev_frame (frame))
4256 {
4257 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4258 return 1;
4259 if (get_frame_type (frame) != INLINE_FRAME)
4260 break;
4261 }
4262
4263 return 0;
4264}
4265
a96d9b2e
SDJ
4266/* Auxiliary function that handles syscall entry/return events.
4267 It returns 1 if the inferior should keep going (and GDB
4268 should ignore the event), or 0 if the event deserves to be
4269 processed. */
ca2163eb 4270
a96d9b2e 4271static int
ca2163eb 4272handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4273{
ca2163eb 4274 struct regcache *regcache;
ca2163eb
PA
4275 int syscall_number;
4276
4277 if (!ptid_equal (ecs->ptid, inferior_ptid))
4278 context_switch (ecs->ptid);
4279
4280 regcache = get_thread_regcache (ecs->ptid);
f90263c1 4281 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
4282 stop_pc = regcache_read_pc (regcache);
4283
a96d9b2e
SDJ
4284 if (catch_syscall_enabled () > 0
4285 && catching_syscall_number (syscall_number) > 0)
4286 {
4287 if (debug_infrun)
4288 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4289 syscall_number);
a96d9b2e 4290
16c381f0 4291 ecs->event_thread->control.stop_bpstat
6c95b8df 4292 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 4293 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4294
ce12b012 4295 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4296 {
4297 /* Catchpoint hit. */
ca2163eb
PA
4298 return 0;
4299 }
a96d9b2e 4300 }
ca2163eb
PA
4301
4302 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4303 keep_going (ecs);
4304 return 1;
a96d9b2e
SDJ
4305}
4306
7e324e48
GB
4307/* Lazily fill in the execution_control_state's stop_func_* fields. */
4308
4309static void
4310fill_in_stop_func (struct gdbarch *gdbarch,
4311 struct execution_control_state *ecs)
4312{
4313 if (!ecs->stop_func_filled_in)
4314 {
4315 /* Don't care about return value; stop_func_start and stop_func_name
4316 will both be 0 if it doesn't work. */
4317 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4318 &ecs->stop_func_start, &ecs->stop_func_end);
4319 ecs->stop_func_start
4320 += gdbarch_deprecated_function_start_offset (gdbarch);
4321
591a12a1
UW
4322 if (gdbarch_skip_entrypoint_p (gdbarch))
4323 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4324 ecs->stop_func_start);
4325
7e324e48
GB
4326 ecs->stop_func_filled_in = 1;
4327 }
4328}
4329
4f5d7f63
PA
4330
4331/* Return the STOP_SOON field of the inferior pointed at by PTID. */
4332
4333static enum stop_kind
4334get_inferior_stop_soon (ptid_t ptid)
4335{
c9657e70 4336 struct inferior *inf = find_inferior_ptid (ptid);
4f5d7f63
PA
4337
4338 gdb_assert (inf != NULL);
4339 return inf->control.stop_soon;
4340}
4341
372316f1
PA
4342/* Wait for one event. Store the resulting waitstatus in WS, and
4343 return the event ptid. */
4344
4345static ptid_t
4346wait_one (struct target_waitstatus *ws)
4347{
4348 ptid_t event_ptid;
4349 ptid_t wait_ptid = minus_one_ptid;
4350
4351 overlay_cache_invalid = 1;
4352
4353 /* Flush target cache before starting to handle each event.
4354 Target was running and cache could be stale. This is just a
4355 heuristic. Running threads may modify target memory, but we
4356 don't get any event. */
4357 target_dcache_invalidate ();
4358
4359 if (deprecated_target_wait_hook)
4360 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4361 else
4362 event_ptid = target_wait (wait_ptid, ws, 0);
4363
4364 if (debug_infrun)
4365 print_target_wait_results (wait_ptid, event_ptid, ws);
4366
4367 return event_ptid;
4368}
4369
4370/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4371 instead of the current thread. */
4372#define THREAD_STOPPED_BY(REASON) \
4373static int \
4374thread_stopped_by_ ## REASON (ptid_t ptid) \
4375{ \
4376 struct cleanup *old_chain; \
4377 int res; \
4378 \
4379 old_chain = save_inferior_ptid (); \
4380 inferior_ptid = ptid; \
4381 \
4382 res = target_stopped_by_ ## REASON (); \
4383 \
4384 do_cleanups (old_chain); \
4385 \
4386 return res; \
4387}
4388
4389/* Generate thread_stopped_by_watchpoint. */
4390THREAD_STOPPED_BY (watchpoint)
4391/* Generate thread_stopped_by_sw_breakpoint. */
4392THREAD_STOPPED_BY (sw_breakpoint)
4393/* Generate thread_stopped_by_hw_breakpoint. */
4394THREAD_STOPPED_BY (hw_breakpoint)
4395
4396/* Cleanups that switches to the PTID pointed at by PTID_P. */
4397
4398static void
4399switch_to_thread_cleanup (void *ptid_p)
4400{
4401 ptid_t ptid = *(ptid_t *) ptid_p;
4402
4403 switch_to_thread (ptid);
4404}
4405
4406/* Save the thread's event and stop reason to process it later. */
4407
4408static void
4409save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4410{
4411 struct regcache *regcache;
4412 struct address_space *aspace;
4413
4414 if (debug_infrun)
4415 {
4416 char *statstr;
4417
4418 statstr = target_waitstatus_to_string (ws);
4419 fprintf_unfiltered (gdb_stdlog,
4420 "infrun: saving status %s for %d.%ld.%ld\n",
4421 statstr,
4422 ptid_get_pid (tp->ptid),
4423 ptid_get_lwp (tp->ptid),
4424 ptid_get_tid (tp->ptid));
4425 xfree (statstr);
4426 }
4427
4428 /* Record for later. */
4429 tp->suspend.waitstatus = *ws;
4430 tp->suspend.waitstatus_pending_p = 1;
4431
4432 regcache = get_thread_regcache (tp->ptid);
4433 aspace = get_regcache_aspace (regcache);
4434
4435 if (ws->kind == TARGET_WAITKIND_STOPPED
4436 && ws->value.sig == GDB_SIGNAL_TRAP)
4437 {
4438 CORE_ADDR pc = regcache_read_pc (regcache);
4439
4440 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4441
4442 if (thread_stopped_by_watchpoint (tp->ptid))
4443 {
4444 tp->suspend.stop_reason
4445 = TARGET_STOPPED_BY_WATCHPOINT;
4446 }
4447 else if (target_supports_stopped_by_sw_breakpoint ()
4448 && thread_stopped_by_sw_breakpoint (tp->ptid))
4449 {
4450 tp->suspend.stop_reason
4451 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4452 }
4453 else if (target_supports_stopped_by_hw_breakpoint ()
4454 && thread_stopped_by_hw_breakpoint (tp->ptid))
4455 {
4456 tp->suspend.stop_reason
4457 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4458 }
4459 else if (!target_supports_stopped_by_hw_breakpoint ()
4460 && hardware_breakpoint_inserted_here_p (aspace,
4461 pc))
4462 {
4463 tp->suspend.stop_reason
4464 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4465 }
4466 else if (!target_supports_stopped_by_sw_breakpoint ()
4467 && software_breakpoint_inserted_here_p (aspace,
4468 pc))
4469 {
4470 tp->suspend.stop_reason
4471 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4472 }
4473 else if (!thread_has_single_step_breakpoints_set (tp)
4474 && currently_stepping (tp))
4475 {
4476 tp->suspend.stop_reason
4477 = TARGET_STOPPED_BY_SINGLE_STEP;
4478 }
4479 }
4480}
4481
65706a29
PA
4482/* A cleanup that disables thread create/exit events. */
4483
4484static void
4485disable_thread_events (void *arg)
4486{
4487 target_thread_events (0);
4488}
4489
6efcd9a8 4490/* See infrun.h. */
372316f1 4491
6efcd9a8 4492void
372316f1
PA
4493stop_all_threads (void)
4494{
4495 /* We may need multiple passes to discover all threads. */
4496 int pass;
4497 int iterations = 0;
4498 ptid_t entry_ptid;
4499 struct cleanup *old_chain;
4500
fbea99ea 4501 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4502
4503 if (debug_infrun)
4504 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4505
4506 entry_ptid = inferior_ptid;
4507 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4508
65706a29
PA
4509 target_thread_events (1);
4510 make_cleanup (disable_thread_events, NULL);
4511
372316f1
PA
4512 /* Request threads to stop, and then wait for the stops. Because
4513 threads we already know about can spawn more threads while we're
4514 trying to stop them, and we only learn about new threads when we
4515 update the thread list, do this in a loop, and keep iterating
4516 until two passes find no threads that need to be stopped. */
4517 for (pass = 0; pass < 2; pass++, iterations++)
4518 {
4519 if (debug_infrun)
4520 fprintf_unfiltered (gdb_stdlog,
4521 "infrun: stop_all_threads, pass=%d, "
4522 "iterations=%d\n", pass, iterations);
4523 while (1)
4524 {
4525 ptid_t event_ptid;
4526 struct target_waitstatus ws;
4527 int need_wait = 0;
4528 struct thread_info *t;
4529
4530 update_thread_list ();
4531
4532 /* Go through all threads looking for threads that we need
4533 to tell the target to stop. */
4534 ALL_NON_EXITED_THREADS (t)
4535 {
4536 if (t->executing)
4537 {
4538 /* If already stopping, don't request a stop again.
4539 We just haven't seen the notification yet. */
4540 if (!t->stop_requested)
4541 {
4542 if (debug_infrun)
4543 fprintf_unfiltered (gdb_stdlog,
4544 "infrun: %s executing, "
4545 "need stop\n",
4546 target_pid_to_str (t->ptid));
4547 target_stop (t->ptid);
4548 t->stop_requested = 1;
4549 }
4550 else
4551 {
4552 if (debug_infrun)
4553 fprintf_unfiltered (gdb_stdlog,
4554 "infrun: %s executing, "
4555 "already stopping\n",
4556 target_pid_to_str (t->ptid));
4557 }
4558
4559 if (t->stop_requested)
4560 need_wait = 1;
4561 }
4562 else
4563 {
4564 if (debug_infrun)
4565 fprintf_unfiltered (gdb_stdlog,
4566 "infrun: %s not executing\n",
4567 target_pid_to_str (t->ptid));
4568
4569 /* The thread may be not executing, but still be
4570 resumed with a pending status to process. */
4571 t->resumed = 0;
4572 }
4573 }
4574
4575 if (!need_wait)
4576 break;
4577
4578 /* If we find new threads on the second iteration, restart
4579 over. We want to see two iterations in a row with all
4580 threads stopped. */
4581 if (pass > 0)
4582 pass = -1;
4583
4584 event_ptid = wait_one (&ws);
4585 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4586 {
4587 /* All resumed threads exited. */
4588 }
65706a29
PA
4589 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4590 || ws.kind == TARGET_WAITKIND_EXITED
372316f1
PA
4591 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4592 {
4593 if (debug_infrun)
4594 {
4595 ptid_t ptid = pid_to_ptid (ws.value.integer);
4596
4597 fprintf_unfiltered (gdb_stdlog,
4598 "infrun: %s exited while "
4599 "stopping threads\n",
4600 target_pid_to_str (ptid));
4601 }
4602 }
4603 else
4604 {
6efcd9a8
PA
4605 struct inferior *inf;
4606
372316f1
PA
4607 t = find_thread_ptid (event_ptid);
4608 if (t == NULL)
4609 t = add_thread (event_ptid);
4610
4611 t->stop_requested = 0;
4612 t->executing = 0;
4613 t->resumed = 0;
4614 t->control.may_range_step = 0;
4615
6efcd9a8
PA
4616 /* This may be the first time we see the inferior report
4617 a stop. */
4618 inf = find_inferior_ptid (event_ptid);
4619 if (inf->needs_setup)
4620 {
4621 switch_to_thread_no_regs (t);
4622 setup_inferior (0);
4623 }
4624
372316f1
PA
4625 if (ws.kind == TARGET_WAITKIND_STOPPED
4626 && ws.value.sig == GDB_SIGNAL_0)
4627 {
4628 /* We caught the event that we intended to catch, so
4629 there's no event pending. */
4630 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4631 t->suspend.waitstatus_pending_p = 0;
4632
4633 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4634 {
4635 /* Add it back to the step-over queue. */
4636 if (debug_infrun)
4637 {
4638 fprintf_unfiltered (gdb_stdlog,
4639 "infrun: displaced-step of %s "
4640 "canceled: adding back to the "
4641 "step-over queue\n",
4642 target_pid_to_str (t->ptid));
4643 }
4644 t->control.trap_expected = 0;
4645 thread_step_over_chain_enqueue (t);
4646 }
4647 }
4648 else
4649 {
4650 enum gdb_signal sig;
4651 struct regcache *regcache;
372316f1
PA
4652
4653 if (debug_infrun)
4654 {
4655 char *statstr;
4656
4657 statstr = target_waitstatus_to_string (&ws);
4658 fprintf_unfiltered (gdb_stdlog,
4659 "infrun: target_wait %s, saving "
4660 "status for %d.%ld.%ld\n",
4661 statstr,
4662 ptid_get_pid (t->ptid),
4663 ptid_get_lwp (t->ptid),
4664 ptid_get_tid (t->ptid));
4665 xfree (statstr);
4666 }
4667
4668 /* Record for later. */
4669 save_waitstatus (t, &ws);
4670
4671 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4672 ? ws.value.sig : GDB_SIGNAL_0);
4673
4674 if (displaced_step_fixup (t->ptid, sig) < 0)
4675 {
4676 /* Add it back to the step-over queue. */
4677 t->control.trap_expected = 0;
4678 thread_step_over_chain_enqueue (t);
4679 }
4680
4681 regcache = get_thread_regcache (t->ptid);
4682 t->suspend.stop_pc = regcache_read_pc (regcache);
4683
4684 if (debug_infrun)
4685 {
4686 fprintf_unfiltered (gdb_stdlog,
4687 "infrun: saved stop_pc=%s for %s "
4688 "(currently_stepping=%d)\n",
4689 paddress (target_gdbarch (),
4690 t->suspend.stop_pc),
4691 target_pid_to_str (t->ptid),
4692 currently_stepping (t));
4693 }
4694 }
4695 }
4696 }
4697 }
4698
4699 do_cleanups (old_chain);
4700
4701 if (debug_infrun)
4702 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4703}
4704
f4836ba9
PA
4705/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4706
4707static int
4708handle_no_resumed (struct execution_control_state *ecs)
4709{
4710 struct inferior *inf;
4711 struct thread_info *thread;
4712
3b12939d 4713 if (target_can_async_p ())
f4836ba9 4714 {
3b12939d
PA
4715 struct ui *ui;
4716 int any_sync = 0;
f4836ba9 4717
3b12939d
PA
4718 ALL_UIS (ui)
4719 {
4720 if (ui->prompt_state == PROMPT_BLOCKED)
4721 {
4722 any_sync = 1;
4723 break;
4724 }
4725 }
4726 if (!any_sync)
4727 {
4728 /* There were no unwaited-for children left in the target, but,
4729 we're not synchronously waiting for events either. Just
4730 ignore. */
4731
4732 if (debug_infrun)
4733 fprintf_unfiltered (gdb_stdlog,
4734 "infrun: TARGET_WAITKIND_NO_RESUMED "
4735 "(ignoring: bg)\n");
4736 prepare_to_wait (ecs);
4737 return 1;
4738 }
f4836ba9
PA
4739 }
4740
4741 /* Otherwise, if we were running a synchronous execution command, we
4742 may need to cancel it and give the user back the terminal.
4743
4744 In non-stop mode, the target can't tell whether we've already
4745 consumed previous stop events, so it can end up sending us a
4746 no-resumed event like so:
4747
4748 #0 - thread 1 is left stopped
4749
4750 #1 - thread 2 is resumed and hits breakpoint
4751 -> TARGET_WAITKIND_STOPPED
4752
4753 #2 - thread 3 is resumed and exits
4754 this is the last resumed thread, so
4755 -> TARGET_WAITKIND_NO_RESUMED
4756
4757 #3 - gdb processes stop for thread 2 and decides to re-resume
4758 it.
4759
4760 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4761 thread 2 is now resumed, so the event should be ignored.
4762
4763 IOW, if the stop for thread 2 doesn't end a foreground command,
4764 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4765 event. But it could be that the event meant that thread 2 itself
4766 (or whatever other thread was the last resumed thread) exited.
4767
4768 To address this we refresh the thread list and check whether we
4769 have resumed threads _now_. In the example above, this removes
4770 thread 3 from the thread list. If thread 2 was re-resumed, we
4771 ignore this event. If we find no thread resumed, then we cancel
4772 the synchronous command show "no unwaited-for " to the user. */
4773 update_thread_list ();
4774
4775 ALL_NON_EXITED_THREADS (thread)
4776 {
4777 if (thread->executing
4778 || thread->suspend.waitstatus_pending_p)
4779 {
4780 /* There were no unwaited-for children left in the target at
4781 some point, but there are now. Just ignore. */
4782 if (debug_infrun)
4783 fprintf_unfiltered (gdb_stdlog,
4784 "infrun: TARGET_WAITKIND_NO_RESUMED "
4785 "(ignoring: found resumed)\n");
4786 prepare_to_wait (ecs);
4787 return 1;
4788 }
4789 }
4790
4791 /* Note however that we may find no resumed thread because the whole
4792 process exited meanwhile (thus updating the thread list results
4793 in an empty thread list). In this case we know we'll be getting
4794 a process exit event shortly. */
4795 ALL_INFERIORS (inf)
4796 {
4797 if (inf->pid == 0)
4798 continue;
4799
4800 thread = any_live_thread_of_process (inf->pid);
4801 if (thread == NULL)
4802 {
4803 if (debug_infrun)
4804 fprintf_unfiltered (gdb_stdlog,
4805 "infrun: TARGET_WAITKIND_NO_RESUMED "
4806 "(expect process exit)\n");
4807 prepare_to_wait (ecs);
4808 return 1;
4809 }
4810 }
4811
4812 /* Go ahead and report the event. */
4813 return 0;
4814}
4815
05ba8510
PA
4816/* Given an execution control state that has been freshly filled in by
4817 an event from the inferior, figure out what it means and take
4818 appropriate action.
4819
4820 The alternatives are:
4821
22bcd14b 4822 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4823 debugger.
4824
4825 2) keep_going and return; to wait for the next event (set
4826 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4827 once). */
c906108c 4828
ec9499be 4829static void
0b6e5e10 4830handle_inferior_event_1 (struct execution_control_state *ecs)
cd0fc7c3 4831{
d6b48e9c
PA
4832 enum stop_kind stop_soon;
4833
28736962
PA
4834 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4835 {
4836 /* We had an event in the inferior, but we are not interested in
4837 handling it at this level. The lower layers have already
4838 done what needs to be done, if anything.
4839
4840 One of the possible circumstances for this is when the
4841 inferior produces output for the console. The inferior has
4842 not stopped, and we are ignoring the event. Another possible
4843 circumstance is any event which the lower level knows will be
4844 reported multiple times without an intervening resume. */
4845 if (debug_infrun)
4846 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4847 prepare_to_wait (ecs);
4848 return;
4849 }
4850
65706a29
PA
4851 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4852 {
4853 if (debug_infrun)
4854 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4855 prepare_to_wait (ecs);
4856 return;
4857 }
4858
0e5bf2a8 4859 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
4860 && handle_no_resumed (ecs))
4861 return;
0e5bf2a8 4862
1777feb0 4863 /* Cache the last pid/waitstatus. */
c32c64b7 4864 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4865
ca005067 4866 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4867 stop_stack_dummy = STOP_NONE;
ca005067 4868
0e5bf2a8
PA
4869 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4870 {
4871 /* No unwaited-for children left. IOW, all resumed children
4872 have exited. */
4873 if (debug_infrun)
4874 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4875
4876 stop_print_frame = 0;
22bcd14b 4877 stop_waiting (ecs);
0e5bf2a8
PA
4878 return;
4879 }
4880
8c90c137 4881 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4882 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4883 {
4884 ecs->event_thread = find_thread_ptid (ecs->ptid);
4885 /* If it's a new thread, add it to the thread database. */
4886 if (ecs->event_thread == NULL)
4887 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4888
4889 /* Disable range stepping. If the next step request could use a
4890 range, this will be end up re-enabled then. */
4891 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4892 }
88ed393a
JK
4893
4894 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4895 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4896
4897 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4898 reinit_frame_cache ();
4899
28736962
PA
4900 breakpoint_retire_moribund ();
4901
2b009048
DJ
4902 /* First, distinguish signals caused by the debugger from signals
4903 that have to do with the program's own actions. Note that
4904 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4905 on the operating system version. Here we detect when a SIGILL or
4906 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4907 something similar for SIGSEGV, since a SIGSEGV will be generated
4908 when we're trying to execute a breakpoint instruction on a
4909 non-executable stack. This happens for call dummy breakpoints
4910 for architectures like SPARC that place call dummies on the
4911 stack. */
2b009048 4912 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4913 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4914 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4915 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4916 {
de0a0249
UW
4917 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4918
4919 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4920 regcache_read_pc (regcache)))
4921 {
4922 if (debug_infrun)
4923 fprintf_unfiltered (gdb_stdlog,
4924 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4925 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4926 }
2b009048
DJ
4927 }
4928
28736962
PA
4929 /* Mark the non-executing threads accordingly. In all-stop, all
4930 threads of all processes are stopped when we get any event
e1316e60 4931 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4932 {
4933 ptid_t mark_ptid;
4934
fbea99ea 4935 if (!target_is_non_stop_p ())
372316f1
PA
4936 mark_ptid = minus_one_ptid;
4937 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4938 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4939 {
4940 /* If we're handling a process exit in non-stop mode, even
4941 though threads haven't been deleted yet, one would think
4942 that there is nothing to do, as threads of the dead process
4943 will be soon deleted, and threads of any other process were
4944 left running. However, on some targets, threads survive a
4945 process exit event. E.g., for the "checkpoint" command,
4946 when the current checkpoint/fork exits, linux-fork.c
4947 automatically switches to another fork from within
4948 target_mourn_inferior, by associating the same
4949 inferior/thread to another fork. We haven't mourned yet at
4950 this point, but we must mark any threads left in the
4951 process as not-executing so that finish_thread_state marks
4952 them stopped (in the user's perspective) if/when we present
4953 the stop to the user. */
4954 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4955 }
4956 else
4957 mark_ptid = ecs->ptid;
4958
4959 set_executing (mark_ptid, 0);
4960
4961 /* Likewise the resumed flag. */
4962 set_resumed (mark_ptid, 0);
4963 }
8c90c137 4964
488f131b
JB
4965 switch (ecs->ws.kind)
4966 {
4967 case TARGET_WAITKIND_LOADED:
527159b7 4968 if (debug_infrun)
8a9de0e4 4969 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
5c09a2c5
PA
4970 if (!ptid_equal (ecs->ptid, inferior_ptid))
4971 context_switch (ecs->ptid);
b0f4b84b
DJ
4972 /* Ignore gracefully during startup of the inferior, as it might
4973 be the shell which has just loaded some objects, otherwise
4974 add the symbols for the newly loaded objects. Also ignore at
4975 the beginning of an attach or remote session; we will query
4976 the full list of libraries once the connection is
4977 established. */
4f5d7f63
PA
4978
4979 stop_soon = get_inferior_stop_soon (ecs->ptid);
c0236d92 4980 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4981 {
edcc5120
TT
4982 struct regcache *regcache;
4983
edcc5120
TT
4984 regcache = get_thread_regcache (ecs->ptid);
4985
4986 handle_solib_event ();
4987
4988 ecs->event_thread->control.stop_bpstat
4989 = bpstat_stop_status (get_regcache_aspace (regcache),
4990 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4991
ce12b012 4992 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4993 {
4994 /* A catchpoint triggered. */
94c57d6a
PA
4995 process_event_stop_test (ecs);
4996 return;
edcc5120 4997 }
488f131b 4998
b0f4b84b
DJ
4999 /* If requested, stop when the dynamic linker notifies
5000 gdb of events. This allows the user to get control
5001 and place breakpoints in initializer routines for
5002 dynamically loaded objects (among other things). */
a493e3e2 5003 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
5004 if (stop_on_solib_events)
5005 {
55409f9d
DJ
5006 /* Make sure we print "Stopped due to solib-event" in
5007 normal_stop. */
5008 stop_print_frame = 1;
5009
22bcd14b 5010 stop_waiting (ecs);
b0f4b84b
DJ
5011 return;
5012 }
488f131b 5013 }
b0f4b84b
DJ
5014
5015 /* If we are skipping through a shell, or through shared library
5016 loading that we aren't interested in, resume the program. If
5c09a2c5 5017 we're running the program normally, also resume. */
b0f4b84b
DJ
5018 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5019 {
74960c60
VP
5020 /* Loading of shared libraries might have changed breakpoint
5021 addresses. Make sure new breakpoints are inserted. */
a25a5a45 5022 if (stop_soon == NO_STOP_QUIETLY)
74960c60 5023 insert_breakpoints ();
64ce06e4 5024 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
5025 prepare_to_wait (ecs);
5026 return;
5027 }
5028
5c09a2c5
PA
5029 /* But stop if we're attaching or setting up a remote
5030 connection. */
5031 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5032 || stop_soon == STOP_QUIETLY_REMOTE)
5033 {
5034 if (debug_infrun)
5035 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 5036 stop_waiting (ecs);
5c09a2c5
PA
5037 return;
5038 }
5039
5040 internal_error (__FILE__, __LINE__,
5041 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 5042
488f131b 5043 case TARGET_WAITKIND_SPURIOUS:
527159b7 5044 if (debug_infrun)
8a9de0e4 5045 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 5046 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 5047 context_switch (ecs->ptid);
64ce06e4 5048 resume (GDB_SIGNAL_0);
488f131b
JB
5049 prepare_to_wait (ecs);
5050 return;
c5aa993b 5051
65706a29
PA
5052 case TARGET_WAITKIND_THREAD_CREATED:
5053 if (debug_infrun)
5054 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
5055 if (!ptid_equal (ecs->ptid, inferior_ptid))
5056 context_switch (ecs->ptid);
5057 if (!switch_back_to_stepped_thread (ecs))
5058 keep_going (ecs);
5059 return;
5060
488f131b 5061 case TARGET_WAITKIND_EXITED:
940c3c06 5062 case TARGET_WAITKIND_SIGNALLED:
527159b7 5063 if (debug_infrun)
940c3c06
PA
5064 {
5065 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5066 fprintf_unfiltered (gdb_stdlog,
5067 "infrun: TARGET_WAITKIND_EXITED\n");
5068 else
5069 fprintf_unfiltered (gdb_stdlog,
5070 "infrun: TARGET_WAITKIND_SIGNALLED\n");
5071 }
5072
fb66883a 5073 inferior_ptid = ecs->ptid;
c9657e70 5074 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
5075 set_current_program_space (current_inferior ()->pspace);
5076 handle_vfork_child_exec_or_exit (0);
1777feb0 5077 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 5078
0c557179
SDJ
5079 /* Clearing any previous state of convenience variables. */
5080 clear_exit_convenience_vars ();
5081
940c3c06
PA
5082 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5083 {
5084 /* Record the exit code in the convenience variable $_exitcode, so
5085 that the user can inspect this again later. */
5086 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5087 (LONGEST) ecs->ws.value.integer);
5088
5089 /* Also record this in the inferior itself. */
5090 current_inferior ()->has_exit_code = 1;
5091 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 5092
98eb56a4
PA
5093 /* Support the --return-child-result option. */
5094 return_child_result_value = ecs->ws.value.integer;
5095
fd664c91 5096 observer_notify_exited (ecs->ws.value.integer);
940c3c06
PA
5097 }
5098 else
0c557179
SDJ
5099 {
5100 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5101 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5102
5103 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5104 {
5105 /* Set the value of the internal variable $_exitsignal,
5106 which holds the signal uncaught by the inferior. */
5107 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5108 gdbarch_gdb_signal_to_target (gdbarch,
5109 ecs->ws.value.sig));
5110 }
5111 else
5112 {
5113 /* We don't have access to the target's method used for
5114 converting between signal numbers (GDB's internal
5115 representation <-> target's representation).
5116 Therefore, we cannot do a good job at displaying this
5117 information to the user. It's better to just warn
5118 her about it (if infrun debugging is enabled), and
5119 give up. */
5120 if (debug_infrun)
5121 fprintf_filtered (gdb_stdlog, _("\
5122Cannot fill $_exitsignal with the correct signal number.\n"));
5123 }
5124
fd664c91 5125 observer_notify_signal_exited (ecs->ws.value.sig);
0c557179 5126 }
8cf64490 5127
488f131b
JB
5128 gdb_flush (gdb_stdout);
5129 target_mourn_inferior ();
488f131b 5130 stop_print_frame = 0;
22bcd14b 5131 stop_waiting (ecs);
488f131b 5132 return;
c5aa993b 5133
488f131b 5134 /* The following are the only cases in which we keep going;
1777feb0 5135 the above cases end in a continue or goto. */
488f131b 5136 case TARGET_WAITKIND_FORKED:
deb3b17b 5137 case TARGET_WAITKIND_VFORKED:
527159b7 5138 if (debug_infrun)
fed708ed
PA
5139 {
5140 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5141 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5142 else
5143 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5144 }
c906108c 5145
e2d96639
YQ
5146 /* Check whether the inferior is displaced stepping. */
5147 {
5148 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5149 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e2d96639
YQ
5150
5151 /* If checking displaced stepping is supported, and thread
5152 ecs->ptid is displaced stepping. */
c0987663 5153 if (displaced_step_in_progress_thread (ecs->ptid))
e2d96639
YQ
5154 {
5155 struct inferior *parent_inf
c9657e70 5156 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
5157 struct regcache *child_regcache;
5158 CORE_ADDR parent_pc;
5159
5160 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5161 indicating that the displaced stepping of syscall instruction
5162 has been done. Perform cleanup for parent process here. Note
5163 that this operation also cleans up the child process for vfork,
5164 because their pages are shared. */
a493e3e2 5165 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
c2829269
PA
5166 /* Start a new step-over in another thread if there's one
5167 that needs it. */
5168 start_step_over ();
e2d96639
YQ
5169
5170 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5171 {
c0987663
YQ
5172 struct displaced_step_inferior_state *displaced
5173 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
5174
e2d96639
YQ
5175 /* Restore scratch pad for child process. */
5176 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5177 }
5178
5179 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5180 the child's PC is also within the scratchpad. Set the child's PC
5181 to the parent's PC value, which has already been fixed up.
5182 FIXME: we use the parent's aspace here, although we're touching
5183 the child, because the child hasn't been added to the inferior
5184 list yet at this point. */
5185
5186 child_regcache
5187 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5188 gdbarch,
5189 parent_inf->aspace);
5190 /* Read PC value of parent process. */
5191 parent_pc = regcache_read_pc (regcache);
5192
5193 if (debug_displaced)
5194 fprintf_unfiltered (gdb_stdlog,
5195 "displaced: write child pc from %s to %s\n",
5196 paddress (gdbarch,
5197 regcache_read_pc (child_regcache)),
5198 paddress (gdbarch, parent_pc));
5199
5200 regcache_write_pc (child_regcache, parent_pc);
5201 }
5202 }
5203
5a2901d9 5204 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 5205 context_switch (ecs->ptid);
5a2901d9 5206
b242c3c2
PA
5207 /* Immediately detach breakpoints from the child before there's
5208 any chance of letting the user delete breakpoints from the
5209 breakpoint lists. If we don't do this early, it's easy to
5210 leave left over traps in the child, vis: "break foo; catch
5211 fork; c; <fork>; del; c; <child calls foo>". We only follow
5212 the fork on the last `continue', and by that time the
5213 breakpoint at "foo" is long gone from the breakpoint table.
5214 If we vforked, then we don't need to unpatch here, since both
5215 parent and child are sharing the same memory pages; we'll
5216 need to unpatch at follow/detach time instead to be certain
5217 that new breakpoints added between catchpoint hit time and
5218 vfork follow are detached. */
5219 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5220 {
b242c3c2
PA
5221 /* This won't actually modify the breakpoint list, but will
5222 physically remove the breakpoints from the child. */
d80ee84f 5223 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5224 }
5225
34b7e8a6 5226 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5227
e58b0e63
PA
5228 /* In case the event is caught by a catchpoint, remember that
5229 the event is to be followed at the next resume of the thread,
5230 and not immediately. */
5231 ecs->event_thread->pending_follow = ecs->ws;
5232
fb14de7b 5233 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 5234
16c381f0 5235 ecs->event_thread->control.stop_bpstat
6c95b8df 5236 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 5237 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 5238
ce12b012
PA
5239 /* If no catchpoint triggered for this, then keep going. Note
5240 that we're interested in knowing the bpstat actually causes a
5241 stop, not just if it may explain the signal. Software
5242 watchpoints, for example, always appear in the bpstat. */
5243 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5244 {
6c95b8df
PA
5245 ptid_t parent;
5246 ptid_t child;
e58b0e63 5247 int should_resume;
3e43a32a
MS
5248 int follow_child
5249 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5250
a493e3e2 5251 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
5252
5253 should_resume = follow_fork ();
5254
6c95b8df
PA
5255 parent = ecs->ptid;
5256 child = ecs->ws.value.related_pid;
5257
a2077e25
PA
5258 /* At this point, the parent is marked running, and the
5259 child is marked stopped. */
5260
5261 /* If not resuming the parent, mark it stopped. */
5262 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5263 set_running (parent, 0);
5264
5265 /* If resuming the child, mark it running. */
5266 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5267 set_running (child, 1);
5268
6c95b8df 5269 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5270 if (!detach_fork && (non_stop
5271 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5272 {
5273 if (follow_child)
5274 switch_to_thread (parent);
5275 else
5276 switch_to_thread (child);
5277
5278 ecs->event_thread = inferior_thread ();
5279 ecs->ptid = inferior_ptid;
5280 keep_going (ecs);
5281 }
5282
5283 if (follow_child)
5284 switch_to_thread (child);
5285 else
5286 switch_to_thread (parent);
5287
e58b0e63
PA
5288 ecs->event_thread = inferior_thread ();
5289 ecs->ptid = inferior_ptid;
5290
5291 if (should_resume)
5292 keep_going (ecs);
5293 else
22bcd14b 5294 stop_waiting (ecs);
04e68871
DJ
5295 return;
5296 }
94c57d6a
PA
5297 process_event_stop_test (ecs);
5298 return;
488f131b 5299
6c95b8df
PA
5300 case TARGET_WAITKIND_VFORK_DONE:
5301 /* Done with the shared memory region. Re-insert breakpoints in
5302 the parent, and keep going. */
5303
5304 if (debug_infrun)
3e43a32a
MS
5305 fprintf_unfiltered (gdb_stdlog,
5306 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
5307
5308 if (!ptid_equal (ecs->ptid, inferior_ptid))
5309 context_switch (ecs->ptid);
5310
5311 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5312 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
5313 /* This also takes care of reinserting breakpoints in the
5314 previously locked inferior. */
5315 keep_going (ecs);
5316 return;
5317
488f131b 5318 case TARGET_WAITKIND_EXECD:
527159b7 5319 if (debug_infrun)
fc5261f2 5320 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 5321
5a2901d9 5322 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 5323 context_switch (ecs->ptid);
5a2901d9 5324
fb14de7b 5325 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 5326
6c95b8df
PA
5327 /* Do whatever is necessary to the parent branch of the vfork. */
5328 handle_vfork_child_exec_or_exit (1);
5329
795e548f
PA
5330 /* This causes the eventpoints and symbol table to be reset.
5331 Must do this now, before trying to determine whether to
5332 stop. */
71b43ef8 5333 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5334
17d8546e
DB
5335 /* In follow_exec we may have deleted the original thread and
5336 created a new one. Make sure that the event thread is the
5337 execd thread for that case (this is a nop otherwise). */
5338 ecs->event_thread = inferior_thread ();
5339
16c381f0 5340 ecs->event_thread->control.stop_bpstat
6c95b8df 5341 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 5342 stop_pc, ecs->ptid, &ecs->ws);
795e548f 5343
71b43ef8
PA
5344 /* Note that this may be referenced from inside
5345 bpstat_stop_status above, through inferior_has_execd. */
5346 xfree (ecs->ws.value.execd_pathname);
5347 ecs->ws.value.execd_pathname = NULL;
5348
04e68871 5349 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5350 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5351 {
a493e3e2 5352 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5353 keep_going (ecs);
5354 return;
5355 }
94c57d6a
PA
5356 process_event_stop_test (ecs);
5357 return;
488f131b 5358
b4dc5ffa
MK
5359 /* Be careful not to try to gather much state about a thread
5360 that's in a syscall. It's frequently a losing proposition. */
488f131b 5361 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 5362 if (debug_infrun)
3e43a32a
MS
5363 fprintf_unfiltered (gdb_stdlog,
5364 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 5365 /* Getting the current syscall number. */
94c57d6a
PA
5366 if (handle_syscall_event (ecs) == 0)
5367 process_event_stop_test (ecs);
5368 return;
c906108c 5369
488f131b
JB
5370 /* Before examining the threads further, step this thread to
5371 get it entirely out of the syscall. (We get notice of the
5372 event when the thread is just on the verge of exiting a
5373 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5374 into user code.) */
488f131b 5375 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 5376 if (debug_infrun)
3e43a32a
MS
5377 fprintf_unfiltered (gdb_stdlog,
5378 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
5379 if (handle_syscall_event (ecs) == 0)
5380 process_event_stop_test (ecs);
5381 return;
c906108c 5382
488f131b 5383 case TARGET_WAITKIND_STOPPED:
527159b7 5384 if (debug_infrun)
8a9de0e4 5385 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 5386 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
4f5d7f63
PA
5387 handle_signal_stop (ecs);
5388 return;
c906108c 5389
b2175913 5390 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
5391 if (debug_infrun)
5392 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 5393 /* Reverse execution: target ran out of history info. */
eab402df 5394
d1988021
MM
5395 /* Switch to the stopped thread. */
5396 if (!ptid_equal (ecs->ptid, inferior_ptid))
5397 context_switch (ecs->ptid);
5398 if (debug_infrun)
5399 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5400
34b7e8a6 5401 delete_just_stopped_threads_single_step_breakpoints ();
d1988021 5402 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
fd664c91 5403 observer_notify_no_history ();
22bcd14b 5404 stop_waiting (ecs);
b2175913 5405 return;
488f131b 5406 }
4f5d7f63
PA
5407}
5408
0b6e5e10
JB
5409/* A wrapper around handle_inferior_event_1, which also makes sure
5410 that all temporary struct value objects that were created during
5411 the handling of the event get deleted at the end. */
5412
5413static void
5414handle_inferior_event (struct execution_control_state *ecs)
5415{
5416 struct value *mark = value_mark ();
5417
5418 handle_inferior_event_1 (ecs);
5419 /* Purge all temporary values created during the event handling,
5420 as it could be a long time before we return to the command level
5421 where such values would otherwise be purged. */
5422 value_free_to_mark (mark);
5423}
5424
372316f1
PA
5425/* Restart threads back to what they were trying to do back when we
5426 paused them for an in-line step-over. The EVENT_THREAD thread is
5427 ignored. */
4d9d9d04
PA
5428
5429static void
372316f1
PA
5430restart_threads (struct thread_info *event_thread)
5431{
5432 struct thread_info *tp;
372316f1
PA
5433
5434 /* In case the instruction just stepped spawned a new thread. */
5435 update_thread_list ();
5436
5437 ALL_NON_EXITED_THREADS (tp)
5438 {
5439 if (tp == event_thread)
5440 {
5441 if (debug_infrun)
5442 fprintf_unfiltered (gdb_stdlog,
5443 "infrun: restart threads: "
5444 "[%s] is event thread\n",
5445 target_pid_to_str (tp->ptid));
5446 continue;
5447 }
5448
5449 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5450 {
5451 if (debug_infrun)
5452 fprintf_unfiltered (gdb_stdlog,
5453 "infrun: restart threads: "
5454 "[%s] not meant to be running\n",
5455 target_pid_to_str (tp->ptid));
5456 continue;
5457 }
5458
5459 if (tp->resumed)
5460 {
5461 if (debug_infrun)
5462 fprintf_unfiltered (gdb_stdlog,
5463 "infrun: restart threads: [%s] resumed\n",
5464 target_pid_to_str (tp->ptid));
5465 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5466 continue;
5467 }
5468
5469 if (thread_is_in_step_over_chain (tp))
5470 {
5471 if (debug_infrun)
5472 fprintf_unfiltered (gdb_stdlog,
5473 "infrun: restart threads: "
5474 "[%s] needs step-over\n",
5475 target_pid_to_str (tp->ptid));
5476 gdb_assert (!tp->resumed);
5477 continue;
5478 }
5479
5480
5481 if (tp->suspend.waitstatus_pending_p)
5482 {
5483 if (debug_infrun)
5484 fprintf_unfiltered (gdb_stdlog,
5485 "infrun: restart threads: "
5486 "[%s] has pending status\n",
5487 target_pid_to_str (tp->ptid));
5488 tp->resumed = 1;
5489 continue;
5490 }
5491
5492 /* If some thread needs to start a step-over at this point, it
5493 should still be in the step-over queue, and thus skipped
5494 above. */
5495 if (thread_still_needs_step_over (tp))
5496 {
5497 internal_error (__FILE__, __LINE__,
5498 "thread [%s] needs a step-over, but not in "
5499 "step-over queue\n",
5500 target_pid_to_str (tp->ptid));
5501 }
5502
5503 if (currently_stepping (tp))
5504 {
5505 if (debug_infrun)
5506 fprintf_unfiltered (gdb_stdlog,
5507 "infrun: restart threads: [%s] was stepping\n",
5508 target_pid_to_str (tp->ptid));
5509 keep_going_stepped_thread (tp);
5510 }
5511 else
5512 {
5513 struct execution_control_state ecss;
5514 struct execution_control_state *ecs = &ecss;
5515
5516 if (debug_infrun)
5517 fprintf_unfiltered (gdb_stdlog,
5518 "infrun: restart threads: [%s] continuing\n",
5519 target_pid_to_str (tp->ptid));
5520 reset_ecs (ecs, tp);
5521 switch_to_thread (tp->ptid);
5522 keep_going_pass_signal (ecs);
5523 }
5524 }
5525}
5526
5527/* Callback for iterate_over_threads. Find a resumed thread that has
5528 a pending waitstatus. */
5529
5530static int
5531resumed_thread_with_pending_status (struct thread_info *tp,
5532 void *arg)
5533{
5534 return (tp->resumed
5535 && tp->suspend.waitstatus_pending_p);
5536}
5537
5538/* Called when we get an event that may finish an in-line or
5539 out-of-line (displaced stepping) step-over started previously.
5540 Return true if the event is processed and we should go back to the
5541 event loop; false if the caller should continue processing the
5542 event. */
5543
5544static int
4d9d9d04
PA
5545finish_step_over (struct execution_control_state *ecs)
5546{
372316f1
PA
5547 int had_step_over_info;
5548
4d9d9d04
PA
5549 displaced_step_fixup (ecs->ptid,
5550 ecs->event_thread->suspend.stop_signal);
5551
372316f1
PA
5552 had_step_over_info = step_over_info_valid_p ();
5553
5554 if (had_step_over_info)
4d9d9d04
PA
5555 {
5556 /* If we're stepping over a breakpoint with all threads locked,
5557 then only the thread that was stepped should be reporting
5558 back an event. */
5559 gdb_assert (ecs->event_thread->control.trap_expected);
5560
5561 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5562 clear_step_over_info ();
5563 }
5564
fbea99ea 5565 if (!target_is_non_stop_p ())
372316f1 5566 return 0;
4d9d9d04
PA
5567
5568 /* Start a new step-over in another thread if there's one that
5569 needs it. */
5570 start_step_over ();
372316f1
PA
5571
5572 /* If we were stepping over a breakpoint before, and haven't started
5573 a new in-line step-over sequence, then restart all other threads
5574 (except the event thread). We can't do this in all-stop, as then
5575 e.g., we wouldn't be able to issue any other remote packet until
5576 these other threads stop. */
5577 if (had_step_over_info && !step_over_info_valid_p ())
5578 {
5579 struct thread_info *pending;
5580
5581 /* If we only have threads with pending statuses, the restart
5582 below won't restart any thread and so nothing re-inserts the
5583 breakpoint we just stepped over. But we need it inserted
5584 when we later process the pending events, otherwise if
5585 another thread has a pending event for this breakpoint too,
5586 we'd discard its event (because the breakpoint that
5587 originally caused the event was no longer inserted). */
5588 context_switch (ecs->ptid);
5589 insert_breakpoints ();
5590
5591 restart_threads (ecs->event_thread);
5592
5593 /* If we have events pending, go through handle_inferior_event
5594 again, picking up a pending event at random. This avoids
5595 thread starvation. */
5596
5597 /* But not if we just stepped over a watchpoint in order to let
5598 the instruction execute so we can evaluate its expression.
5599 The set of watchpoints that triggered is recorded in the
5600 breakpoint objects themselves (see bp->watchpoint_triggered).
5601 If we processed another event first, that other event could
5602 clobber this info. */
5603 if (ecs->event_thread->stepping_over_watchpoint)
5604 return 0;
5605
5606 pending = iterate_over_threads (resumed_thread_with_pending_status,
5607 NULL);
5608 if (pending != NULL)
5609 {
5610 struct thread_info *tp = ecs->event_thread;
5611 struct regcache *regcache;
5612
5613 if (debug_infrun)
5614 {
5615 fprintf_unfiltered (gdb_stdlog,
5616 "infrun: found resumed threads with "
5617 "pending events, saving status\n");
5618 }
5619
5620 gdb_assert (pending != tp);
5621
5622 /* Record the event thread's event for later. */
5623 save_waitstatus (tp, &ecs->ws);
5624 /* This was cleared early, by handle_inferior_event. Set it
5625 so this pending event is considered by
5626 do_target_wait. */
5627 tp->resumed = 1;
5628
5629 gdb_assert (!tp->executing);
5630
5631 regcache = get_thread_regcache (tp->ptid);
5632 tp->suspend.stop_pc = regcache_read_pc (regcache);
5633
5634 if (debug_infrun)
5635 {
5636 fprintf_unfiltered (gdb_stdlog,
5637 "infrun: saved stop_pc=%s for %s "
5638 "(currently_stepping=%d)\n",
5639 paddress (target_gdbarch (),
5640 tp->suspend.stop_pc),
5641 target_pid_to_str (tp->ptid),
5642 currently_stepping (tp));
5643 }
5644
5645 /* This in-line step-over finished; clear this so we won't
5646 start a new one. This is what handle_signal_stop would
5647 do, if we returned false. */
5648 tp->stepping_over_breakpoint = 0;
5649
5650 /* Wake up the event loop again. */
5651 mark_async_event_handler (infrun_async_inferior_event_token);
5652
5653 prepare_to_wait (ecs);
5654 return 1;
5655 }
5656 }
5657
5658 return 0;
4d9d9d04
PA
5659}
5660
4f5d7f63
PA
5661/* Come here when the program has stopped with a signal. */
5662
5663static void
5664handle_signal_stop (struct execution_control_state *ecs)
5665{
5666 struct frame_info *frame;
5667 struct gdbarch *gdbarch;
5668 int stopped_by_watchpoint;
5669 enum stop_kind stop_soon;
5670 int random_signal;
c906108c 5671
f0407826
DE
5672 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5673
5674 /* Do we need to clean up the state of a thread that has
5675 completed a displaced single-step? (Doing so usually affects
5676 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5677 if (finish_step_over (ecs))
5678 return;
f0407826
DE
5679
5680 /* If we either finished a single-step or hit a breakpoint, but
5681 the user wanted this thread to be stopped, pretend we got a
5682 SIG0 (generic unsignaled stop). */
5683 if (ecs->event_thread->stop_requested
5684 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5685 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5686
515630c5 5687 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 5688
527159b7 5689 if (debug_infrun)
237fc4c9 5690 {
5af949e3
UW
5691 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5692 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
5693 struct cleanup *old_chain = save_inferior_ptid ();
5694
5695 inferior_ptid = ecs->ptid;
5af949e3
UW
5696
5697 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5698 paddress (gdbarch, stop_pc));
d92524f1 5699 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5700 {
5701 CORE_ADDR addr;
abbb1732 5702
237fc4c9
PA
5703 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5704
5705 if (target_stopped_data_address (&current_target, &addr))
5706 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5707 "infrun: stopped data address = %s\n",
5708 paddress (gdbarch, addr));
237fc4c9
PA
5709 else
5710 fprintf_unfiltered (gdb_stdlog,
5711 "infrun: (no data address available)\n");
5712 }
7f82dfc7
JK
5713
5714 do_cleanups (old_chain);
237fc4c9 5715 }
527159b7 5716
36fa8042
PA
5717 /* This is originated from start_remote(), start_inferior() and
5718 shared libraries hook functions. */
5719 stop_soon = get_inferior_stop_soon (ecs->ptid);
5720 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5721 {
5722 if (!ptid_equal (ecs->ptid, inferior_ptid))
5723 context_switch (ecs->ptid);
5724 if (debug_infrun)
5725 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5726 stop_print_frame = 1;
22bcd14b 5727 stop_waiting (ecs);
36fa8042
PA
5728 return;
5729 }
5730
36fa8042
PA
5731 /* This originates from attach_command(). We need to overwrite
5732 the stop_signal here, because some kernels don't ignore a
5733 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5734 See more comments in inferior.h. On the other hand, if we
5735 get a non-SIGSTOP, report it to the user - assume the backend
5736 will handle the SIGSTOP if it should show up later.
5737
5738 Also consider that the attach is complete when we see a
5739 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5740 target extended-remote report it instead of a SIGSTOP
5741 (e.g. gdbserver). We already rely on SIGTRAP being our
5742 signal, so this is no exception.
5743
5744 Also consider that the attach is complete when we see a
5745 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5746 the target to stop all threads of the inferior, in case the
5747 low level attach operation doesn't stop them implicitly. If
5748 they weren't stopped implicitly, then the stub will report a
5749 GDB_SIGNAL_0, meaning: stopped for no particular reason
5750 other than GDB's request. */
5751 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5752 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5753 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5754 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5755 {
5756 stop_print_frame = 1;
22bcd14b 5757 stop_waiting (ecs);
36fa8042
PA
5758 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5759 return;
5760 }
5761
488f131b 5762 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
5763 so, then switch to that thread. */
5764 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 5765 {
527159b7 5766 if (debug_infrun)
8a9de0e4 5767 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5768
0d1e5fa7 5769 context_switch (ecs->ptid);
c5aa993b 5770
9a4105ab 5771 if (deprecated_context_hook)
5d5658a1 5772 deprecated_context_hook (ptid_to_global_thread_id (ecs->ptid));
488f131b 5773 }
c906108c 5774
568d6575
UW
5775 /* At this point, get hold of the now-current thread's frame. */
5776 frame = get_current_frame ();
5777 gdbarch = get_frame_arch (frame);
5778
2adfaa28 5779 /* Pull the single step breakpoints out of the target. */
af48d08f 5780 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5781 {
af48d08f
PA
5782 struct regcache *regcache;
5783 struct address_space *aspace;
5784 CORE_ADDR pc;
2adfaa28 5785
af48d08f
PA
5786 regcache = get_thread_regcache (ecs->ptid);
5787 aspace = get_regcache_aspace (regcache);
5788 pc = regcache_read_pc (regcache);
34b7e8a6 5789
af48d08f
PA
5790 /* However, before doing so, if this single-step breakpoint was
5791 actually for another thread, set this thread up for moving
5792 past it. */
5793 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5794 aspace, pc))
5795 {
5796 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5797 {
5798 if (debug_infrun)
5799 {
5800 fprintf_unfiltered (gdb_stdlog,
af48d08f 5801 "infrun: [%s] hit another thread's "
34b7e8a6
PA
5802 "single-step breakpoint\n",
5803 target_pid_to_str (ecs->ptid));
2adfaa28 5804 }
af48d08f
PA
5805 ecs->hit_singlestep_breakpoint = 1;
5806 }
5807 }
5808 else
5809 {
5810 if (debug_infrun)
5811 {
5812 fprintf_unfiltered (gdb_stdlog,
5813 "infrun: [%s] hit its "
5814 "single-step breakpoint\n",
5815 target_pid_to_str (ecs->ptid));
2adfaa28
PA
5816 }
5817 }
488f131b 5818 }
af48d08f 5819 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5820
963f9c80
PA
5821 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5822 && ecs->event_thread->control.trap_expected
5823 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5824 stopped_by_watchpoint = 0;
5825 else
5826 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5827
5828 /* If necessary, step over this watchpoint. We'll be back to display
5829 it in a moment. */
5830 if (stopped_by_watchpoint
d92524f1 5831 && (target_have_steppable_watchpoint
568d6575 5832 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5833 {
488f131b
JB
5834 /* At this point, we are stopped at an instruction which has
5835 attempted to write to a piece of memory under control of
5836 a watchpoint. The instruction hasn't actually executed
5837 yet. If we were to evaluate the watchpoint expression
5838 now, we would get the old value, and therefore no change
5839 would seem to have occurred.
5840
5841 In order to make watchpoints work `right', we really need
5842 to complete the memory write, and then evaluate the
d983da9c
DJ
5843 watchpoint expression. We do this by single-stepping the
5844 target.
5845
7f89fd65 5846 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5847 it. For example, the PA can (with some kernel cooperation)
5848 single step over a watchpoint without disabling the watchpoint.
5849
5850 It is far more common to need to disable a watchpoint to step
5851 the inferior over it. If we have non-steppable watchpoints,
5852 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5853 disable all watchpoints.
5854
5855 Any breakpoint at PC must also be stepped over -- if there's
5856 one, it will have already triggered before the watchpoint
5857 triggered, and we either already reported it to the user, or
5858 it didn't cause a stop and we called keep_going. In either
5859 case, if there was a breakpoint at PC, we must be trying to
5860 step past it. */
5861 ecs->event_thread->stepping_over_watchpoint = 1;
5862 keep_going (ecs);
488f131b
JB
5863 return;
5864 }
5865
4e1c45ea 5866 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5867 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5868 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5869 ecs->event_thread->control.stop_step = 0;
488f131b 5870 stop_print_frame = 1;
488f131b 5871 stopped_by_random_signal = 0;
488f131b 5872
edb3359d
DJ
5873 /* Hide inlined functions starting here, unless we just performed stepi or
5874 nexti. After stepi and nexti, always show the innermost frame (not any
5875 inline function call sites). */
16c381f0 5876 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
5877 {
5878 struct address_space *aspace =
5879 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5880
5881 /* skip_inline_frames is expensive, so we avoid it if we can
5882 determine that the address is one where functions cannot have
5883 been inlined. This improves performance with inferiors that
5884 load a lot of shared libraries, because the solib event
5885 breakpoint is defined as the address of a function (i.e. not
5886 inline). Note that we have to check the previous PC as well
5887 as the current one to catch cases when we have just
5888 single-stepped off a breakpoint prior to reinstating it.
5889 Note that we're assuming that the code we single-step to is
5890 not inline, but that's not definitive: there's nothing
5891 preventing the event breakpoint function from containing
5892 inlined code, and the single-step ending up there. If the
5893 user had set a breakpoint on that inlined code, the missing
5894 skip_inline_frames call would break things. Fortunately
5895 that's an extremely unlikely scenario. */
09ac7c10 5896 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
5897 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5898 && ecs->event_thread->control.trap_expected
5899 && pc_at_non_inline_function (aspace,
5900 ecs->event_thread->prev_pc,
09ac7c10 5901 &ecs->ws)))
1c5a993e
MR
5902 {
5903 skip_inline_frames (ecs->ptid);
5904
5905 /* Re-fetch current thread's frame in case that invalidated
5906 the frame cache. */
5907 frame = get_current_frame ();
5908 gdbarch = get_frame_arch (frame);
5909 }
0574c78f 5910 }
edb3359d 5911
a493e3e2 5912 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5913 && ecs->event_thread->control.trap_expected
568d6575 5914 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5915 && currently_stepping (ecs->event_thread))
3352ef37 5916 {
b50d7442 5917 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5918 also on an instruction that needs to be stepped multiple
1777feb0 5919 times before it's been fully executing. E.g., architectures
3352ef37
AC
5920 with a delay slot. It needs to be stepped twice, once for
5921 the instruction and once for the delay slot. */
5922 int step_through_delay
568d6575 5923 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5924
527159b7 5925 if (debug_infrun && step_through_delay)
8a9de0e4 5926 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5927 if (ecs->event_thread->control.step_range_end == 0
5928 && step_through_delay)
3352ef37
AC
5929 {
5930 /* The user issued a continue when stopped at a breakpoint.
5931 Set up for another trap and get out of here. */
4e1c45ea 5932 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5933 keep_going (ecs);
5934 return;
5935 }
5936 else if (step_through_delay)
5937 {
5938 /* The user issued a step when stopped at a breakpoint.
5939 Maybe we should stop, maybe we should not - the delay
5940 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5941 case, don't decide that here, just set
5942 ecs->stepping_over_breakpoint, making sure we
5943 single-step again before breakpoints are re-inserted. */
4e1c45ea 5944 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5945 }
5946 }
5947
ab04a2af
TT
5948 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5949 handles this event. */
5950 ecs->event_thread->control.stop_bpstat
5951 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5952 stop_pc, ecs->ptid, &ecs->ws);
db82e815 5953
ab04a2af
TT
5954 /* Following in case break condition called a
5955 function. */
5956 stop_print_frame = 1;
73dd234f 5957
ab04a2af
TT
5958 /* This is where we handle "moribund" watchpoints. Unlike
5959 software breakpoints traps, hardware watchpoint traps are
5960 always distinguishable from random traps. If no high-level
5961 watchpoint is associated with the reported stop data address
5962 anymore, then the bpstat does not explain the signal ---
5963 simply make sure to ignore it if `stopped_by_watchpoint' is
5964 set. */
5965
5966 if (debug_infrun
5967 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5968 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5969 GDB_SIGNAL_TRAP)
ab04a2af
TT
5970 && stopped_by_watchpoint)
5971 fprintf_unfiltered (gdb_stdlog,
5972 "infrun: no user watchpoint explains "
5973 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5974
bac7d97b 5975 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5976 at one stage in the past included checks for an inferior
5977 function call's call dummy's return breakpoint. The original
5978 comment, that went with the test, read:
03cebad2 5979
ab04a2af
TT
5980 ``End of a stack dummy. Some systems (e.g. Sony news) give
5981 another signal besides SIGTRAP, so check here as well as
5982 above.''
73dd234f 5983
ab04a2af
TT
5984 If someone ever tries to get call dummys on a
5985 non-executable stack to work (where the target would stop
5986 with something like a SIGSEGV), then those tests might need
5987 to be re-instated. Given, however, that the tests were only
5988 enabled when momentary breakpoints were not being used, I
5989 suspect that it won't be the case.
488f131b 5990
ab04a2af
TT
5991 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5992 be necessary for call dummies on a non-executable stack on
5993 SPARC. */
488f131b 5994
bac7d97b 5995 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5996 random_signal
5997 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5998 ecs->event_thread->suspend.stop_signal);
bac7d97b 5999
1cf4d951
PA
6000 /* Maybe this was a trap for a software breakpoint that has since
6001 been removed. */
6002 if (random_signal && target_stopped_by_sw_breakpoint ())
6003 {
6004 if (program_breakpoint_here_p (gdbarch, stop_pc))
6005 {
6006 struct regcache *regcache;
6007 int decr_pc;
6008
6009 /* Re-adjust PC to what the program would see if GDB was not
6010 debugging it. */
6011 regcache = get_thread_regcache (ecs->event_thread->ptid);
527a273a 6012 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
6013 if (decr_pc != 0)
6014 {
6015 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
6016
6017 if (record_full_is_used ())
6018 record_full_gdb_operation_disable_set ();
6019
6020 regcache_write_pc (regcache, stop_pc + decr_pc);
6021
6022 do_cleanups (old_cleanups);
6023 }
6024 }
6025 else
6026 {
6027 /* A delayed software breakpoint event. Ignore the trap. */
6028 if (debug_infrun)
6029 fprintf_unfiltered (gdb_stdlog,
6030 "infrun: delayed software breakpoint "
6031 "trap, ignoring\n");
6032 random_signal = 0;
6033 }
6034 }
6035
6036 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6037 has since been removed. */
6038 if (random_signal && target_stopped_by_hw_breakpoint ())
6039 {
6040 /* A delayed hardware breakpoint event. Ignore the trap. */
6041 if (debug_infrun)
6042 fprintf_unfiltered (gdb_stdlog,
6043 "infrun: delayed hardware breakpoint/watchpoint "
6044 "trap, ignoring\n");
6045 random_signal = 0;
6046 }
6047
bac7d97b
PA
6048 /* If not, perhaps stepping/nexting can. */
6049 if (random_signal)
6050 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6051 && currently_stepping (ecs->event_thread));
ab04a2af 6052
2adfaa28
PA
6053 /* Perhaps the thread hit a single-step breakpoint of _another_
6054 thread. Single-step breakpoints are transparent to the
6055 breakpoints module. */
6056 if (random_signal)
6057 random_signal = !ecs->hit_singlestep_breakpoint;
6058
bac7d97b
PA
6059 /* No? Perhaps we got a moribund watchpoint. */
6060 if (random_signal)
6061 random_signal = !stopped_by_watchpoint;
ab04a2af 6062
488f131b
JB
6063 /* For the program's own signals, act according to
6064 the signal handling tables. */
6065
ce12b012 6066 if (random_signal)
488f131b
JB
6067 {
6068 /* Signal not for debugging purposes. */
c9657e70 6069 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 6070 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 6071
527159b7 6072 if (debug_infrun)
c9737c08
PA
6073 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6074 gdb_signal_to_symbol_string (stop_signal));
527159b7 6075
488f131b
JB
6076 stopped_by_random_signal = 1;
6077
252fbfc8
PA
6078 /* Always stop on signals if we're either just gaining control
6079 of the program, or the user explicitly requested this thread
6080 to remain stopped. */
d6b48e9c 6081 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 6082 || ecs->event_thread->stop_requested
24291992 6083 || (!inf->detaching
16c381f0 6084 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 6085 {
22bcd14b 6086 stop_waiting (ecs);
488f131b
JB
6087 return;
6088 }
b57bacec
PA
6089
6090 /* Notify observers the signal has "handle print" set. Note we
6091 returned early above if stopping; normal_stop handles the
6092 printing in that case. */
6093 if (signal_print[ecs->event_thread->suspend.stop_signal])
6094 {
6095 /* The signal table tells us to print about this signal. */
6096 target_terminal_ours_for_output ();
6097 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
6098 target_terminal_inferior ();
6099 }
488f131b
JB
6100
6101 /* Clear the signal if it should not be passed. */
16c381f0 6102 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 6103 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 6104
fb14de7b 6105 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 6106 && ecs->event_thread->control.trap_expected
8358c15c 6107 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502 6108 {
372316f1
PA
6109 int was_in_line;
6110
68f53502
AC
6111 /* We were just starting a new sequence, attempting to
6112 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 6113 Instead this signal arrives. This signal will take us out
68f53502
AC
6114 of the stepping range so GDB needs to remember to, when
6115 the signal handler returns, resume stepping off that
6116 breakpoint. */
6117 /* To simplify things, "continue" is forced to use the same
6118 code paths as single-step - set a breakpoint at the
6119 signal return address and then, once hit, step off that
6120 breakpoint. */
237fc4c9
PA
6121 if (debug_infrun)
6122 fprintf_unfiltered (gdb_stdlog,
6123 "infrun: signal arrived while stepping over "
6124 "breakpoint\n");
d3169d93 6125
372316f1
PA
6126 was_in_line = step_over_info_valid_p ();
6127 clear_step_over_info ();
2c03e5be 6128 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 6129 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6130 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6131 ecs->event_thread->control.trap_expected = 0;
d137e6dc 6132
fbea99ea 6133 if (target_is_non_stop_p ())
372316f1 6134 {
fbea99ea
PA
6135 /* Either "set non-stop" is "on", or the target is
6136 always in non-stop mode. In this case, we have a bit
6137 more work to do. Resume the current thread, and if
6138 we had paused all threads, restart them while the
6139 signal handler runs. */
372316f1
PA
6140 keep_going (ecs);
6141
372316f1
PA
6142 if (was_in_line)
6143 {
372316f1
PA
6144 restart_threads (ecs->event_thread);
6145 }
6146 else if (debug_infrun)
6147 {
6148 fprintf_unfiltered (gdb_stdlog,
6149 "infrun: no need to restart threads\n");
6150 }
6151 return;
6152 }
6153
d137e6dc
PA
6154 /* If we were nexting/stepping some other thread, switch to
6155 it, so that we don't continue it, losing control. */
6156 if (!switch_back_to_stepped_thread (ecs))
6157 keep_going (ecs);
9d799f85 6158 return;
68f53502 6159 }
9d799f85 6160
e5f8a7cc
PA
6161 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6162 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6163 || ecs->event_thread->control.step_range_end == 1)
edb3359d 6164 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 6165 ecs->event_thread->control.step_stack_frame_id)
8358c15c 6166 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
6167 {
6168 /* The inferior is about to take a signal that will take it
6169 out of the single step range. Set a breakpoint at the
6170 current PC (which is presumably where the signal handler
6171 will eventually return) and then allow the inferior to
6172 run free.
6173
6174 Note that this is only needed for a signal delivered
6175 while in the single-step range. Nested signals aren't a
6176 problem as they eventually all return. */
237fc4c9
PA
6177 if (debug_infrun)
6178 fprintf_unfiltered (gdb_stdlog,
6179 "infrun: signal may take us out of "
6180 "single-step range\n");
6181
372316f1 6182 clear_step_over_info ();
2c03e5be 6183 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 6184 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6185 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6186 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
6187 keep_going (ecs);
6188 return;
d303a6c7 6189 }
9d799f85
AC
6190
6191 /* Note: step_resume_breakpoint may be non-NULL. This occures
6192 when either there's a nested signal, or when there's a
6193 pending signal enabled just as the signal handler returns
6194 (leaving the inferior at the step-resume-breakpoint without
6195 actually executing it). Either way continue until the
6196 breakpoint is really hit. */
c447ac0b
PA
6197
6198 if (!switch_back_to_stepped_thread (ecs))
6199 {
6200 if (debug_infrun)
6201 fprintf_unfiltered (gdb_stdlog,
6202 "infrun: random signal, keep going\n");
6203
6204 keep_going (ecs);
6205 }
6206 return;
488f131b 6207 }
94c57d6a
PA
6208
6209 process_event_stop_test (ecs);
6210}
6211
6212/* Come here when we've got some debug event / signal we can explain
6213 (IOW, not a random signal), and test whether it should cause a
6214 stop, or whether we should resume the inferior (transparently).
6215 E.g., could be a breakpoint whose condition evaluates false; we
6216 could be still stepping within the line; etc. */
6217
6218static void
6219process_event_stop_test (struct execution_control_state *ecs)
6220{
6221 struct symtab_and_line stop_pc_sal;
6222 struct frame_info *frame;
6223 struct gdbarch *gdbarch;
cdaa5b73
PA
6224 CORE_ADDR jmp_buf_pc;
6225 struct bpstat_what what;
94c57d6a 6226
cdaa5b73 6227 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6228
cdaa5b73
PA
6229 frame = get_current_frame ();
6230 gdbarch = get_frame_arch (frame);
fcf3daef 6231
cdaa5b73 6232 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6233
cdaa5b73
PA
6234 if (what.call_dummy)
6235 {
6236 stop_stack_dummy = what.call_dummy;
6237 }
186c406b 6238
243a9253
PA
6239 /* A few breakpoint types have callbacks associated (e.g.,
6240 bp_jit_event). Run them now. */
6241 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6242
cdaa5b73
PA
6243 /* If we hit an internal event that triggers symbol changes, the
6244 current frame will be invalidated within bpstat_what (e.g., if we
6245 hit an internal solib event). Re-fetch it. */
6246 frame = get_current_frame ();
6247 gdbarch = get_frame_arch (frame);
e2e4d78b 6248
cdaa5b73
PA
6249 switch (what.main_action)
6250 {
6251 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6252 /* If we hit the breakpoint at longjmp while stepping, we
6253 install a momentary breakpoint at the target of the
6254 jmp_buf. */
186c406b 6255
cdaa5b73
PA
6256 if (debug_infrun)
6257 fprintf_unfiltered (gdb_stdlog,
6258 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6259
cdaa5b73 6260 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6261
cdaa5b73
PA
6262 if (what.is_longjmp)
6263 {
6264 struct value *arg_value;
6265
6266 /* If we set the longjmp breakpoint via a SystemTap probe,
6267 then use it to extract the arguments. The destination PC
6268 is the third argument to the probe. */
6269 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6270 if (arg_value)
8fa0c4f8
AA
6271 {
6272 jmp_buf_pc = value_as_address (arg_value);
6273 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6274 }
cdaa5b73
PA
6275 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6276 || !gdbarch_get_longjmp_target (gdbarch,
6277 frame, &jmp_buf_pc))
e2e4d78b 6278 {
cdaa5b73
PA
6279 if (debug_infrun)
6280 fprintf_unfiltered (gdb_stdlog,
6281 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6282 "(!gdbarch_get_longjmp_target)\n");
6283 keep_going (ecs);
6284 return;
e2e4d78b 6285 }
e2e4d78b 6286
cdaa5b73
PA
6287 /* Insert a breakpoint at resume address. */
6288 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6289 }
6290 else
6291 check_exception_resume (ecs, frame);
6292 keep_going (ecs);
6293 return;
e81a37f7 6294
cdaa5b73
PA
6295 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6296 {
6297 struct frame_info *init_frame;
e81a37f7 6298
cdaa5b73 6299 /* There are several cases to consider.
c906108c 6300
cdaa5b73
PA
6301 1. The initiating frame no longer exists. In this case we
6302 must stop, because the exception or longjmp has gone too
6303 far.
2c03e5be 6304
cdaa5b73
PA
6305 2. The initiating frame exists, and is the same as the
6306 current frame. We stop, because the exception or longjmp
6307 has been caught.
2c03e5be 6308
cdaa5b73
PA
6309 3. The initiating frame exists and is different from the
6310 current frame. This means the exception or longjmp has
6311 been caught beneath the initiating frame, so keep going.
c906108c 6312
cdaa5b73
PA
6313 4. longjmp breakpoint has been placed just to protect
6314 against stale dummy frames and user is not interested in
6315 stopping around longjmps. */
c5aa993b 6316
cdaa5b73
PA
6317 if (debug_infrun)
6318 fprintf_unfiltered (gdb_stdlog,
6319 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6320
cdaa5b73
PA
6321 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6322 != NULL);
6323 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6324
cdaa5b73
PA
6325 if (what.is_longjmp)
6326 {
b67a2c6f 6327 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6328
cdaa5b73 6329 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6330 {
cdaa5b73
PA
6331 /* Case 4. */
6332 keep_going (ecs);
6333 return;
e5ef252a 6334 }
cdaa5b73 6335 }
c5aa993b 6336
cdaa5b73 6337 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6338
cdaa5b73
PA
6339 if (init_frame)
6340 {
6341 struct frame_id current_id
6342 = get_frame_id (get_current_frame ());
6343 if (frame_id_eq (current_id,
6344 ecs->event_thread->initiating_frame))
6345 {
6346 /* Case 2. Fall through. */
6347 }
6348 else
6349 {
6350 /* Case 3. */
6351 keep_going (ecs);
6352 return;
6353 }
68f53502 6354 }
488f131b 6355
cdaa5b73
PA
6356 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6357 exists. */
6358 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6359
bdc36728 6360 end_stepping_range (ecs);
cdaa5b73
PA
6361 }
6362 return;
e5ef252a 6363
cdaa5b73
PA
6364 case BPSTAT_WHAT_SINGLE:
6365 if (debug_infrun)
6366 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6367 ecs->event_thread->stepping_over_breakpoint = 1;
6368 /* Still need to check other stuff, at least the case where we
6369 are stepping and step out of the right range. */
6370 break;
e5ef252a 6371
cdaa5b73
PA
6372 case BPSTAT_WHAT_STEP_RESUME:
6373 if (debug_infrun)
6374 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6375
cdaa5b73
PA
6376 delete_step_resume_breakpoint (ecs->event_thread);
6377 if (ecs->event_thread->control.proceed_to_finish
6378 && execution_direction == EXEC_REVERSE)
6379 {
6380 struct thread_info *tp = ecs->event_thread;
6381
6382 /* We are finishing a function in reverse, and just hit the
6383 step-resume breakpoint at the start address of the
6384 function, and we're almost there -- just need to back up
6385 by one more single-step, which should take us back to the
6386 function call. */
6387 tp->control.step_range_start = tp->control.step_range_end = 1;
6388 keep_going (ecs);
e5ef252a 6389 return;
cdaa5b73
PA
6390 }
6391 fill_in_stop_func (gdbarch, ecs);
6392 if (stop_pc == ecs->stop_func_start
6393 && execution_direction == EXEC_REVERSE)
6394 {
6395 /* We are stepping over a function call in reverse, and just
6396 hit the step-resume breakpoint at the start address of
6397 the function. Go back to single-stepping, which should
6398 take us back to the function call. */
6399 ecs->event_thread->stepping_over_breakpoint = 1;
6400 keep_going (ecs);
6401 return;
6402 }
6403 break;
e5ef252a 6404
cdaa5b73
PA
6405 case BPSTAT_WHAT_STOP_NOISY:
6406 if (debug_infrun)
6407 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6408 stop_print_frame = 1;
e5ef252a 6409
99619bea
PA
6410 /* Assume the thread stopped for a breapoint. We'll still check
6411 whether a/the breakpoint is there when the thread is next
6412 resumed. */
6413 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6414
22bcd14b 6415 stop_waiting (ecs);
cdaa5b73 6416 return;
e5ef252a 6417
cdaa5b73
PA
6418 case BPSTAT_WHAT_STOP_SILENT:
6419 if (debug_infrun)
6420 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6421 stop_print_frame = 0;
e5ef252a 6422
99619bea
PA
6423 /* Assume the thread stopped for a breapoint. We'll still check
6424 whether a/the breakpoint is there when the thread is next
6425 resumed. */
6426 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6427 stop_waiting (ecs);
cdaa5b73
PA
6428 return;
6429
6430 case BPSTAT_WHAT_HP_STEP_RESUME:
6431 if (debug_infrun)
6432 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6433
6434 delete_step_resume_breakpoint (ecs->event_thread);
6435 if (ecs->event_thread->step_after_step_resume_breakpoint)
6436 {
6437 /* Back when the step-resume breakpoint was inserted, we
6438 were trying to single-step off a breakpoint. Go back to
6439 doing that. */
6440 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6441 ecs->event_thread->stepping_over_breakpoint = 1;
6442 keep_going (ecs);
6443 return;
e5ef252a 6444 }
cdaa5b73
PA
6445 break;
6446
6447 case BPSTAT_WHAT_KEEP_CHECKING:
6448 break;
e5ef252a 6449 }
c906108c 6450
af48d08f
PA
6451 /* If we stepped a permanent breakpoint and we had a high priority
6452 step-resume breakpoint for the address we stepped, but we didn't
6453 hit it, then we must have stepped into the signal handler. The
6454 step-resume was only necessary to catch the case of _not_
6455 stepping into the handler, so delete it, and fall through to
6456 checking whether the step finished. */
6457 if (ecs->event_thread->stepped_breakpoint)
6458 {
6459 struct breakpoint *sr_bp
6460 = ecs->event_thread->control.step_resume_breakpoint;
6461
8d707a12
PA
6462 if (sr_bp != NULL
6463 && sr_bp->loc->permanent
af48d08f
PA
6464 && sr_bp->type == bp_hp_step_resume
6465 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6466 {
6467 if (debug_infrun)
6468 fprintf_unfiltered (gdb_stdlog,
6469 "infrun: stepped permanent breakpoint, stopped in "
6470 "handler\n");
6471 delete_step_resume_breakpoint (ecs->event_thread);
6472 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6473 }
6474 }
6475
cdaa5b73
PA
6476 /* We come here if we hit a breakpoint but should not stop for it.
6477 Possibly we also were stepping and should stop for that. So fall
6478 through and test for stepping. But, if not stepping, do not
6479 stop. */
c906108c 6480
a7212384
UW
6481 /* In all-stop mode, if we're currently stepping but have stopped in
6482 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6483 if (switch_back_to_stepped_thread (ecs))
6484 return;
776f04fa 6485
8358c15c 6486 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6487 {
527159b7 6488 if (debug_infrun)
d3169d93
DJ
6489 fprintf_unfiltered (gdb_stdlog,
6490 "infrun: step-resume breakpoint is inserted\n");
527159b7 6491
488f131b
JB
6492 /* Having a step-resume breakpoint overrides anything
6493 else having to do with stepping commands until
6494 that breakpoint is reached. */
488f131b
JB
6495 keep_going (ecs);
6496 return;
6497 }
c5aa993b 6498
16c381f0 6499 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6500 {
527159b7 6501 if (debug_infrun)
8a9de0e4 6502 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6503 /* Likewise if we aren't even stepping. */
488f131b
JB
6504 keep_going (ecs);
6505 return;
6506 }
c5aa993b 6507
4b7703ad
JB
6508 /* Re-fetch current thread's frame in case the code above caused
6509 the frame cache to be re-initialized, making our FRAME variable
6510 a dangling pointer. */
6511 frame = get_current_frame ();
628fe4e4 6512 gdbarch = get_frame_arch (frame);
7e324e48 6513 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6514
488f131b 6515 /* If stepping through a line, keep going if still within it.
c906108c 6516
488f131b
JB
6517 Note that step_range_end is the address of the first instruction
6518 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6519 within it!
6520
6521 Note also that during reverse execution, we may be stepping
6522 through a function epilogue and therefore must detect when
6523 the current-frame changes in the middle of a line. */
6524
ce4c476a 6525 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 6526 && (execution_direction != EXEC_REVERSE
388a8562 6527 || frame_id_eq (get_frame_id (frame),
16c381f0 6528 ecs->event_thread->control.step_frame_id)))
488f131b 6529 {
527159b7 6530 if (debug_infrun)
5af949e3
UW
6531 fprintf_unfiltered
6532 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6533 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6534 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6535
c1e36e3e
PA
6536 /* Tentatively re-enable range stepping; `resume' disables it if
6537 necessary (e.g., if we're stepping over a breakpoint or we
6538 have software watchpoints). */
6539 ecs->event_thread->control.may_range_step = 1;
6540
b2175913
MS
6541 /* When stepping backward, stop at beginning of line range
6542 (unless it's the function entry point, in which case
6543 keep going back to the call point). */
16c381f0 6544 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6545 && stop_pc != ecs->stop_func_start
6546 && execution_direction == EXEC_REVERSE)
bdc36728 6547 end_stepping_range (ecs);
b2175913
MS
6548 else
6549 keep_going (ecs);
6550
488f131b
JB
6551 return;
6552 }
c5aa993b 6553
488f131b 6554 /* We stepped out of the stepping range. */
c906108c 6555
488f131b 6556 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6557 loader dynamic symbol resolution code...
6558
6559 EXEC_FORWARD: we keep on single stepping until we exit the run
6560 time loader code and reach the callee's address.
6561
6562 EXEC_REVERSE: we've already executed the callee (backward), and
6563 the runtime loader code is handled just like any other
6564 undebuggable function call. Now we need only keep stepping
6565 backward through the trampoline code, and that's handled further
6566 down, so there is nothing for us to do here. */
6567
6568 if (execution_direction != EXEC_REVERSE
16c381f0 6569 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 6570 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 6571 {
4c8c40e6 6572 CORE_ADDR pc_after_resolver =
568d6575 6573 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 6574
527159b7 6575 if (debug_infrun)
3e43a32a
MS
6576 fprintf_unfiltered (gdb_stdlog,
6577 "infrun: stepped into dynsym resolve code\n");
527159b7 6578
488f131b
JB
6579 if (pc_after_resolver)
6580 {
6581 /* Set up a step-resume breakpoint at the address
6582 indicated by SKIP_SOLIB_RESOLVER. */
6583 struct symtab_and_line sr_sal;
abbb1732 6584
fe39c653 6585 init_sal (&sr_sal);
488f131b 6586 sr_sal.pc = pc_after_resolver;
6c95b8df 6587 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6588
a6d9a66e
UW
6589 insert_step_resume_breakpoint_at_sal (gdbarch,
6590 sr_sal, null_frame_id);
c5aa993b 6591 }
c906108c 6592
488f131b
JB
6593 keep_going (ecs);
6594 return;
6595 }
c906108c 6596
16c381f0
JK
6597 if (ecs->event_thread->control.step_range_end != 1
6598 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6599 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6600 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6601 {
527159b7 6602 if (debug_infrun)
3e43a32a
MS
6603 fprintf_unfiltered (gdb_stdlog,
6604 "infrun: stepped into signal trampoline\n");
42edda50 6605 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6606 a signal trampoline (either by a signal being delivered or by
6607 the signal handler returning). Just single-step until the
6608 inferior leaves the trampoline (either by calling the handler
6609 or returning). */
488f131b
JB
6610 keep_going (ecs);
6611 return;
6612 }
c906108c 6613
14132e89
MR
6614 /* If we're in the return path from a shared library trampoline,
6615 we want to proceed through the trampoline when stepping. */
6616 /* macro/2012-04-25: This needs to come before the subroutine
6617 call check below as on some targets return trampolines look
6618 like subroutine calls (MIPS16 return thunks). */
6619 if (gdbarch_in_solib_return_trampoline (gdbarch,
6620 stop_pc, ecs->stop_func_name)
6621 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6622 {
6623 /* Determine where this trampoline returns. */
6624 CORE_ADDR real_stop_pc;
6625
6626 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6627
6628 if (debug_infrun)
6629 fprintf_unfiltered (gdb_stdlog,
6630 "infrun: stepped into solib return tramp\n");
6631
6632 /* Only proceed through if we know where it's going. */
6633 if (real_stop_pc)
6634 {
6635 /* And put the step-breakpoint there and go until there. */
6636 struct symtab_and_line sr_sal;
6637
6638 init_sal (&sr_sal); /* initialize to zeroes */
6639 sr_sal.pc = real_stop_pc;
6640 sr_sal.section = find_pc_overlay (sr_sal.pc);
6641 sr_sal.pspace = get_frame_program_space (frame);
6642
6643 /* Do not specify what the fp should be when we stop since
6644 on some machines the prologue is where the new fp value
6645 is established. */
6646 insert_step_resume_breakpoint_at_sal (gdbarch,
6647 sr_sal, null_frame_id);
6648
6649 /* Restart without fiddling with the step ranges or
6650 other state. */
6651 keep_going (ecs);
6652 return;
6653 }
6654 }
6655
c17eaafe
DJ
6656 /* Check for subroutine calls. The check for the current frame
6657 equalling the step ID is not necessary - the check of the
6658 previous frame's ID is sufficient - but it is a common case and
6659 cheaper than checking the previous frame's ID.
14e60db5
DJ
6660
6661 NOTE: frame_id_eq will never report two invalid frame IDs as
6662 being equal, so to get into this block, both the current and
6663 previous frame must have valid frame IDs. */
005ca36a
JB
6664 /* The outer_frame_id check is a heuristic to detect stepping
6665 through startup code. If we step over an instruction which
6666 sets the stack pointer from an invalid value to a valid value,
6667 we may detect that as a subroutine call from the mythical
6668 "outermost" function. This could be fixed by marking
6669 outermost frames as !stack_p,code_p,special_p. Then the
6670 initial outermost frame, before sp was valid, would
ce6cca6d 6671 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6672 for more. */
edb3359d 6673 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6674 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6675 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6676 ecs->event_thread->control.step_stack_frame_id)
6677 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6678 outer_frame_id)
885eeb5b
PA
6679 || (ecs->event_thread->control.step_start_function
6680 != find_pc_function (stop_pc)))))
488f131b 6681 {
95918acb 6682 CORE_ADDR real_stop_pc;
8fb3e588 6683
527159b7 6684 if (debug_infrun)
8a9de0e4 6685 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6686
b7a084be 6687 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6688 {
6689 /* I presume that step_over_calls is only 0 when we're
6690 supposed to be stepping at the assembly language level
6691 ("stepi"). Just stop. */
388a8562 6692 /* And this works the same backward as frontward. MVS */
bdc36728 6693 end_stepping_range (ecs);
95918acb
AC
6694 return;
6695 }
8fb3e588 6696
388a8562
MS
6697 /* Reverse stepping through solib trampolines. */
6698
6699 if (execution_direction == EXEC_REVERSE
16c381f0 6700 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6701 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6702 || (ecs->stop_func_start == 0
6703 && in_solib_dynsym_resolve_code (stop_pc))))
6704 {
6705 /* Any solib trampoline code can be handled in reverse
6706 by simply continuing to single-step. We have already
6707 executed the solib function (backwards), and a few
6708 steps will take us back through the trampoline to the
6709 caller. */
6710 keep_going (ecs);
6711 return;
6712 }
6713
16c381f0 6714 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6715 {
b2175913
MS
6716 /* We're doing a "next".
6717
6718 Normal (forward) execution: set a breakpoint at the
6719 callee's return address (the address at which the caller
6720 will resume).
6721
6722 Reverse (backward) execution. set the step-resume
6723 breakpoint at the start of the function that we just
6724 stepped into (backwards), and continue to there. When we
6130d0b7 6725 get there, we'll need to single-step back to the caller. */
b2175913
MS
6726
6727 if (execution_direction == EXEC_REVERSE)
6728 {
acf9414f
JK
6729 /* If we're already at the start of the function, we've either
6730 just stepped backward into a single instruction function,
6731 or stepped back out of a signal handler to the first instruction
6732 of the function. Just keep going, which will single-step back
6733 to the caller. */
58c48e72 6734 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f
JK
6735 {
6736 struct symtab_and_line sr_sal;
6737
6738 /* Normal function call return (static or dynamic). */
6739 init_sal (&sr_sal);
6740 sr_sal.pc = ecs->stop_func_start;
6741 sr_sal.pspace = get_frame_program_space (frame);
6742 insert_step_resume_breakpoint_at_sal (gdbarch,
6743 sr_sal, null_frame_id);
6744 }
b2175913
MS
6745 }
6746 else
568d6575 6747 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6748
8567c30f
AC
6749 keep_going (ecs);
6750 return;
6751 }
a53c66de 6752
95918acb 6753 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6754 calling routine and the real function), locate the real
6755 function. That's what tells us (a) whether we want to step
6756 into it at all, and (b) what prologue we want to run to the
6757 end of, if we do step into it. */
568d6575 6758 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6759 if (real_stop_pc == 0)
568d6575 6760 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6761 if (real_stop_pc != 0)
6762 ecs->stop_func_start = real_stop_pc;
8fb3e588 6763
db5f024e 6764 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
6765 {
6766 struct symtab_and_line sr_sal;
abbb1732 6767
1b2bfbb9
RC
6768 init_sal (&sr_sal);
6769 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6770 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6771
a6d9a66e
UW
6772 insert_step_resume_breakpoint_at_sal (gdbarch,
6773 sr_sal, null_frame_id);
8fb3e588
AC
6774 keep_going (ecs);
6775 return;
1b2bfbb9
RC
6776 }
6777
95918acb 6778 /* If we have line number information for the function we are
1bfeeb0f
JL
6779 thinking of stepping into and the function isn't on the skip
6780 list, step into it.
95918acb 6781
8fb3e588
AC
6782 If there are several symtabs at that PC (e.g. with include
6783 files), just want to know whether *any* of them have line
6784 numbers. find_pc_line handles this. */
95918acb
AC
6785 {
6786 struct symtab_and_line tmp_sal;
8fb3e588 6787
95918acb 6788 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6789 if (tmp_sal.line != 0
85817405
JK
6790 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6791 &tmp_sal))
95918acb 6792 {
b2175913 6793 if (execution_direction == EXEC_REVERSE)
568d6575 6794 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6795 else
568d6575 6796 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6797 return;
6798 }
6799 }
6800
6801 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6802 set, we stop the step so that the user has a chance to switch
6803 in assembly mode. */
16c381f0 6804 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6805 && step_stop_if_no_debug)
95918acb 6806 {
bdc36728 6807 end_stepping_range (ecs);
95918acb
AC
6808 return;
6809 }
6810
b2175913
MS
6811 if (execution_direction == EXEC_REVERSE)
6812 {
acf9414f
JK
6813 /* If we're already at the start of the function, we've either just
6814 stepped backward into a single instruction function without line
6815 number info, or stepped back out of a signal handler to the first
6816 instruction of the function without line number info. Just keep
6817 going, which will single-step back to the caller. */
6818 if (ecs->stop_func_start != stop_pc)
6819 {
6820 /* Set a breakpoint at callee's start address.
6821 From there we can step once and be back in the caller. */
6822 struct symtab_and_line sr_sal;
abbb1732 6823
acf9414f
JK
6824 init_sal (&sr_sal);
6825 sr_sal.pc = ecs->stop_func_start;
6826 sr_sal.pspace = get_frame_program_space (frame);
6827 insert_step_resume_breakpoint_at_sal (gdbarch,
6828 sr_sal, null_frame_id);
6829 }
b2175913
MS
6830 }
6831 else
6832 /* Set a breakpoint at callee's return address (the address
6833 at which the caller will resume). */
568d6575 6834 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6835
95918acb 6836 keep_going (ecs);
488f131b 6837 return;
488f131b 6838 }
c906108c 6839
fdd654f3
MS
6840 /* Reverse stepping through solib trampolines. */
6841
6842 if (execution_direction == EXEC_REVERSE
16c381f0 6843 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
6844 {
6845 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6846 || (ecs->stop_func_start == 0
6847 && in_solib_dynsym_resolve_code (stop_pc)))
6848 {
6849 /* Any solib trampoline code can be handled in reverse
6850 by simply continuing to single-step. We have already
6851 executed the solib function (backwards), and a few
6852 steps will take us back through the trampoline to the
6853 caller. */
6854 keep_going (ecs);
6855 return;
6856 }
6857 else if (in_solib_dynsym_resolve_code (stop_pc))
6858 {
6859 /* Stepped backward into the solib dynsym resolver.
6860 Set a breakpoint at its start and continue, then
6861 one more step will take us out. */
6862 struct symtab_and_line sr_sal;
abbb1732 6863
fdd654f3
MS
6864 init_sal (&sr_sal);
6865 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6866 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6867 insert_step_resume_breakpoint_at_sal (gdbarch,
6868 sr_sal, null_frame_id);
6869 keep_going (ecs);
6870 return;
6871 }
6872 }
6873
2afb61aa 6874 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 6875
1b2bfbb9
RC
6876 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6877 the trampoline processing logic, however, there are some trampolines
6878 that have no names, so we should do trampoline handling first. */
16c381f0 6879 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6880 && ecs->stop_func_name == NULL
2afb61aa 6881 && stop_pc_sal.line == 0)
1b2bfbb9 6882 {
527159b7 6883 if (debug_infrun)
3e43a32a
MS
6884 fprintf_unfiltered (gdb_stdlog,
6885 "infrun: stepped into undebuggable function\n");
527159b7 6886
1b2bfbb9 6887 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6888 undebuggable function (where there is no debugging information
6889 and no line number corresponding to the address where the
1b2bfbb9
RC
6890 inferior stopped). Since we want to skip this kind of code,
6891 we keep going until the inferior returns from this
14e60db5
DJ
6892 function - unless the user has asked us not to (via
6893 set step-mode) or we no longer know how to get back
6894 to the call site. */
6895 if (step_stop_if_no_debug
c7ce8faa 6896 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6897 {
6898 /* If we have no line number and the step-stop-if-no-debug
6899 is set, we stop the step so that the user has a chance to
6900 switch in assembly mode. */
bdc36728 6901 end_stepping_range (ecs);
1b2bfbb9
RC
6902 return;
6903 }
6904 else
6905 {
6906 /* Set a breakpoint at callee's return address (the address
6907 at which the caller will resume). */
568d6575 6908 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6909 keep_going (ecs);
6910 return;
6911 }
6912 }
6913
16c381f0 6914 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6915 {
6916 /* It is stepi or nexti. We always want to stop stepping after
6917 one instruction. */
527159b7 6918 if (debug_infrun)
8a9de0e4 6919 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6920 end_stepping_range (ecs);
1b2bfbb9
RC
6921 return;
6922 }
6923
2afb61aa 6924 if (stop_pc_sal.line == 0)
488f131b
JB
6925 {
6926 /* We have no line number information. That means to stop
6927 stepping (does this always happen right after one instruction,
6928 when we do "s" in a function with no line numbers,
6929 or can this happen as a result of a return or longjmp?). */
527159b7 6930 if (debug_infrun)
8a9de0e4 6931 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6932 end_stepping_range (ecs);
488f131b
JB
6933 return;
6934 }
c906108c 6935
edb3359d
DJ
6936 /* Look for "calls" to inlined functions, part one. If the inline
6937 frame machinery detected some skipped call sites, we have entered
6938 a new inline function. */
6939
6940 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6941 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
6942 && inline_skipped_frames (ecs->ptid))
6943 {
6944 struct symtab_and_line call_sal;
6945
6946 if (debug_infrun)
6947 fprintf_unfiltered (gdb_stdlog,
6948 "infrun: stepped into inlined function\n");
6949
6950 find_frame_sal (get_current_frame (), &call_sal);
6951
16c381f0 6952 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6953 {
6954 /* For "step", we're going to stop. But if the call site
6955 for this inlined function is on the same source line as
6956 we were previously stepping, go down into the function
6957 first. Otherwise stop at the call site. */
6958
6959 if (call_sal.line == ecs->event_thread->current_line
6960 && call_sal.symtab == ecs->event_thread->current_symtab)
6961 step_into_inline_frame (ecs->ptid);
6962
bdc36728 6963 end_stepping_range (ecs);
edb3359d
DJ
6964 return;
6965 }
6966 else
6967 {
6968 /* For "next", we should stop at the call site if it is on a
6969 different source line. Otherwise continue through the
6970 inlined function. */
6971 if (call_sal.line == ecs->event_thread->current_line
6972 && call_sal.symtab == ecs->event_thread->current_symtab)
6973 keep_going (ecs);
6974 else
bdc36728 6975 end_stepping_range (ecs);
edb3359d
DJ
6976 return;
6977 }
6978 }
6979
6980 /* Look for "calls" to inlined functions, part two. If we are still
6981 in the same real function we were stepping through, but we have
6982 to go further up to find the exact frame ID, we are stepping
6983 through a more inlined call beyond its call site. */
6984
6985 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6986 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6987 ecs->event_thread->control.step_frame_id)
edb3359d 6988 && stepped_in_from (get_current_frame (),
16c381f0 6989 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6990 {
6991 if (debug_infrun)
6992 fprintf_unfiltered (gdb_stdlog,
6993 "infrun: stepping through inlined function\n");
6994
16c381f0 6995 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
6996 keep_going (ecs);
6997 else
bdc36728 6998 end_stepping_range (ecs);
edb3359d
DJ
6999 return;
7000 }
7001
2afb61aa 7002 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
7003 && (ecs->event_thread->current_line != stop_pc_sal.line
7004 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
7005 {
7006 /* We are at the start of a different line. So stop. Note that
7007 we don't stop if we step into the middle of a different line.
7008 That is said to make things like for (;;) statements work
7009 better. */
527159b7 7010 if (debug_infrun)
3e43a32a
MS
7011 fprintf_unfiltered (gdb_stdlog,
7012 "infrun: stepped to a different line\n");
bdc36728 7013 end_stepping_range (ecs);
488f131b
JB
7014 return;
7015 }
c906108c 7016
488f131b 7017 /* We aren't done stepping.
c906108c 7018
488f131b
JB
7019 Optimize by setting the stepping range to the line.
7020 (We might not be in the original line, but if we entered a
7021 new line in mid-statement, we continue stepping. This makes
7022 things like for(;;) statements work better.) */
c906108c 7023
16c381f0
JK
7024 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7025 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 7026 ecs->event_thread->control.may_range_step = 1;
edb3359d 7027 set_step_info (frame, stop_pc_sal);
488f131b 7028
527159b7 7029 if (debug_infrun)
8a9de0e4 7030 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 7031 keep_going (ecs);
104c1213
JM
7032}
7033
c447ac0b
PA
7034/* In all-stop mode, if we're currently stepping but have stopped in
7035 some other thread, we may need to switch back to the stepped
7036 thread. Returns true we set the inferior running, false if we left
7037 it stopped (and the event needs further processing). */
7038
7039static int
7040switch_back_to_stepped_thread (struct execution_control_state *ecs)
7041{
fbea99ea 7042 if (!target_is_non_stop_p ())
c447ac0b
PA
7043 {
7044 struct thread_info *tp;
99619bea
PA
7045 struct thread_info *stepping_thread;
7046
7047 /* If any thread is blocked on some internal breakpoint, and we
7048 simply need to step over that breakpoint to get it going
7049 again, do that first. */
7050
7051 /* However, if we see an event for the stepping thread, then we
7052 know all other threads have been moved past their breakpoints
7053 already. Let the caller check whether the step is finished,
7054 etc., before deciding to move it past a breakpoint. */
7055 if (ecs->event_thread->control.step_range_end != 0)
7056 return 0;
7057
7058 /* Check if the current thread is blocked on an incomplete
7059 step-over, interrupted by a random signal. */
7060 if (ecs->event_thread->control.trap_expected
7061 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 7062 {
99619bea
PA
7063 if (debug_infrun)
7064 {
7065 fprintf_unfiltered (gdb_stdlog,
7066 "infrun: need to finish step-over of [%s]\n",
7067 target_pid_to_str (ecs->event_thread->ptid));
7068 }
7069 keep_going (ecs);
7070 return 1;
7071 }
2adfaa28 7072
99619bea
PA
7073 /* Check if the current thread is blocked by a single-step
7074 breakpoint of another thread. */
7075 if (ecs->hit_singlestep_breakpoint)
7076 {
7077 if (debug_infrun)
7078 {
7079 fprintf_unfiltered (gdb_stdlog,
7080 "infrun: need to step [%s] over single-step "
7081 "breakpoint\n",
7082 target_pid_to_str (ecs->ptid));
7083 }
7084 keep_going (ecs);
7085 return 1;
7086 }
7087
4d9d9d04
PA
7088 /* If this thread needs yet another step-over (e.g., stepping
7089 through a delay slot), do it first before moving on to
7090 another thread. */
7091 if (thread_still_needs_step_over (ecs->event_thread))
7092 {
7093 if (debug_infrun)
7094 {
7095 fprintf_unfiltered (gdb_stdlog,
7096 "infrun: thread [%s] still needs step-over\n",
7097 target_pid_to_str (ecs->event_thread->ptid));
7098 }
7099 keep_going (ecs);
7100 return 1;
7101 }
70509625 7102
483805cf
PA
7103 /* If scheduler locking applies even if not stepping, there's no
7104 need to walk over threads. Above we've checked whether the
7105 current thread is stepping. If some other thread not the
7106 event thread is stepping, then it must be that scheduler
7107 locking is not in effect. */
856e7dd6 7108 if (schedlock_applies (ecs->event_thread))
483805cf
PA
7109 return 0;
7110
4d9d9d04
PA
7111 /* Otherwise, we no longer expect a trap in the current thread.
7112 Clear the trap_expected flag before switching back -- this is
7113 what keep_going does as well, if we call it. */
7114 ecs->event_thread->control.trap_expected = 0;
7115
7116 /* Likewise, clear the signal if it should not be passed. */
7117 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7118 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7119
7120 /* Do all pending step-overs before actually proceeding with
483805cf 7121 step/next/etc. */
4d9d9d04
PA
7122 if (start_step_over ())
7123 {
7124 prepare_to_wait (ecs);
7125 return 1;
7126 }
7127
7128 /* Look for the stepping/nexting thread. */
483805cf 7129 stepping_thread = NULL;
4d9d9d04 7130
034f788c 7131 ALL_NON_EXITED_THREADS (tp)
483805cf 7132 {
fbea99ea
PA
7133 /* Ignore threads of processes the caller is not
7134 resuming. */
483805cf 7135 if (!sched_multi
1afd5965 7136 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
483805cf
PA
7137 continue;
7138
7139 /* When stepping over a breakpoint, we lock all threads
7140 except the one that needs to move past the breakpoint.
7141 If a non-event thread has this set, the "incomplete
7142 step-over" check above should have caught it earlier. */
372316f1
PA
7143 if (tp->control.trap_expected)
7144 {
7145 internal_error (__FILE__, __LINE__,
7146 "[%s] has inconsistent state: "
7147 "trap_expected=%d\n",
7148 target_pid_to_str (tp->ptid),
7149 tp->control.trap_expected);
7150 }
483805cf
PA
7151
7152 /* Did we find the stepping thread? */
7153 if (tp->control.step_range_end)
7154 {
7155 /* Yep. There should only one though. */
7156 gdb_assert (stepping_thread == NULL);
7157
7158 /* The event thread is handled at the top, before we
7159 enter this loop. */
7160 gdb_assert (tp != ecs->event_thread);
7161
7162 /* If some thread other than the event thread is
7163 stepping, then scheduler locking can't be in effect,
7164 otherwise we wouldn't have resumed the current event
7165 thread in the first place. */
856e7dd6 7166 gdb_assert (!schedlock_applies (tp));
483805cf
PA
7167
7168 stepping_thread = tp;
7169 }
99619bea
PA
7170 }
7171
483805cf 7172 if (stepping_thread != NULL)
99619bea 7173 {
c447ac0b
PA
7174 if (debug_infrun)
7175 fprintf_unfiltered (gdb_stdlog,
7176 "infrun: switching back to stepped thread\n");
7177
2ac7589c
PA
7178 if (keep_going_stepped_thread (stepping_thread))
7179 {
7180 prepare_to_wait (ecs);
7181 return 1;
7182 }
7183 }
7184 }
2adfaa28 7185
2ac7589c
PA
7186 return 0;
7187}
2adfaa28 7188
2ac7589c
PA
7189/* Set a previously stepped thread back to stepping. Returns true on
7190 success, false if the resume is not possible (e.g., the thread
7191 vanished). */
7192
7193static int
7194keep_going_stepped_thread (struct thread_info *tp)
7195{
7196 struct frame_info *frame;
2ac7589c
PA
7197 struct execution_control_state ecss;
7198 struct execution_control_state *ecs = &ecss;
2adfaa28 7199
2ac7589c
PA
7200 /* If the stepping thread exited, then don't try to switch back and
7201 resume it, which could fail in several different ways depending
7202 on the target. Instead, just keep going.
2adfaa28 7203
2ac7589c
PA
7204 We can find a stepping dead thread in the thread list in two
7205 cases:
2adfaa28 7206
2ac7589c
PA
7207 - The target supports thread exit events, and when the target
7208 tries to delete the thread from the thread list, inferior_ptid
7209 pointed at the exiting thread. In such case, calling
7210 delete_thread does not really remove the thread from the list;
7211 instead, the thread is left listed, with 'exited' state.
64ce06e4 7212
2ac7589c
PA
7213 - The target's debug interface does not support thread exit
7214 events, and so we have no idea whatsoever if the previously
7215 stepping thread is still alive. For that reason, we need to
7216 synchronously query the target now. */
2adfaa28 7217
2ac7589c
PA
7218 if (is_exited (tp->ptid)
7219 || !target_thread_alive (tp->ptid))
7220 {
7221 if (debug_infrun)
7222 fprintf_unfiltered (gdb_stdlog,
7223 "infrun: not resuming previously "
7224 "stepped thread, it has vanished\n");
7225
7226 delete_thread (tp->ptid);
7227 return 0;
c447ac0b 7228 }
2ac7589c
PA
7229
7230 if (debug_infrun)
7231 fprintf_unfiltered (gdb_stdlog,
7232 "infrun: resuming previously stepped thread\n");
7233
7234 reset_ecs (ecs, tp);
7235 switch_to_thread (tp->ptid);
7236
7237 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7238 frame = get_current_frame ();
2ac7589c
PA
7239
7240 /* If the PC of the thread we were trying to single-step has
7241 changed, then that thread has trapped or been signaled, but the
7242 event has not been reported to GDB yet. Re-poll the target
7243 looking for this particular thread's event (i.e. temporarily
7244 enable schedlock) by:
7245
7246 - setting a break at the current PC
7247 - resuming that particular thread, only (by setting trap
7248 expected)
7249
7250 This prevents us continuously moving the single-step breakpoint
7251 forward, one instruction at a time, overstepping. */
7252
7253 if (stop_pc != tp->prev_pc)
7254 {
7255 ptid_t resume_ptid;
7256
7257 if (debug_infrun)
7258 fprintf_unfiltered (gdb_stdlog,
7259 "infrun: expected thread advanced also (%s -> %s)\n",
7260 paddress (target_gdbarch (), tp->prev_pc),
7261 paddress (target_gdbarch (), stop_pc));
7262
7263 /* Clear the info of the previous step-over, as it's no longer
7264 valid (if the thread was trying to step over a breakpoint, it
7265 has already succeeded). It's what keep_going would do too,
7266 if we called it. Do this before trying to insert the sss
7267 breakpoint, otherwise if we were previously trying to step
7268 over this exact address in another thread, the breakpoint is
7269 skipped. */
7270 clear_step_over_info ();
7271 tp->control.trap_expected = 0;
7272
7273 insert_single_step_breakpoint (get_frame_arch (frame),
7274 get_frame_address_space (frame),
7275 stop_pc);
7276
372316f1 7277 tp->resumed = 1;
fbea99ea 7278 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7279 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7280 }
7281 else
7282 {
7283 if (debug_infrun)
7284 fprintf_unfiltered (gdb_stdlog,
7285 "infrun: expected thread still hasn't advanced\n");
7286
7287 keep_going_pass_signal (ecs);
7288 }
7289 return 1;
c447ac0b
PA
7290}
7291
8b061563
PA
7292/* Is thread TP in the middle of (software or hardware)
7293 single-stepping? (Note the result of this function must never be
7294 passed directly as target_resume's STEP parameter.) */
104c1213 7295
a289b8f6 7296static int
b3444185 7297currently_stepping (struct thread_info *tp)
a7212384 7298{
8358c15c
JK
7299 return ((tp->control.step_range_end
7300 && tp->control.step_resume_breakpoint == NULL)
7301 || tp->control.trap_expected
af48d08f 7302 || tp->stepped_breakpoint
8358c15c 7303 || bpstat_should_step ());
a7212384
UW
7304}
7305
b2175913
MS
7306/* Inferior has stepped into a subroutine call with source code that
7307 we should not step over. Do step to the first line of code in
7308 it. */
c2c6d25f
JM
7309
7310static void
568d6575
UW
7311handle_step_into_function (struct gdbarch *gdbarch,
7312 struct execution_control_state *ecs)
c2c6d25f 7313{
43f3e411 7314 struct compunit_symtab *cust;
2afb61aa 7315 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 7316
7e324e48
GB
7317 fill_in_stop_func (gdbarch, ecs);
7318
43f3e411
DE
7319 cust = find_pc_compunit_symtab (stop_pc);
7320 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 7321 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 7322 ecs->stop_func_start);
c2c6d25f 7323
2afb61aa 7324 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7325 /* Use the step_resume_break to step until the end of the prologue,
7326 even if that involves jumps (as it seems to on the vax under
7327 4.2). */
7328 /* If the prologue ends in the middle of a source line, continue to
7329 the end of that source line (if it is still within the function).
7330 Otherwise, just go to end of prologue. */
2afb61aa
PA
7331 if (stop_func_sal.end
7332 && stop_func_sal.pc != ecs->stop_func_start
7333 && stop_func_sal.end < ecs->stop_func_end)
7334 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7335
2dbd5e30
KB
7336 /* Architectures which require breakpoint adjustment might not be able
7337 to place a breakpoint at the computed address. If so, the test
7338 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7339 ecs->stop_func_start to an address at which a breakpoint may be
7340 legitimately placed.
8fb3e588 7341
2dbd5e30
KB
7342 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7343 made, GDB will enter an infinite loop when stepping through
7344 optimized code consisting of VLIW instructions which contain
7345 subinstructions corresponding to different source lines. On
7346 FR-V, it's not permitted to place a breakpoint on any but the
7347 first subinstruction of a VLIW instruction. When a breakpoint is
7348 set, GDB will adjust the breakpoint address to the beginning of
7349 the VLIW instruction. Thus, we need to make the corresponding
7350 adjustment here when computing the stop address. */
8fb3e588 7351
568d6575 7352 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7353 {
7354 ecs->stop_func_start
568d6575 7355 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7356 ecs->stop_func_start);
2dbd5e30
KB
7357 }
7358
c2c6d25f
JM
7359 if (ecs->stop_func_start == stop_pc)
7360 {
7361 /* We are already there: stop now. */
bdc36728 7362 end_stepping_range (ecs);
c2c6d25f
JM
7363 return;
7364 }
7365 else
7366 {
7367 /* Put the step-breakpoint there and go until there. */
fe39c653 7368 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
7369 sr_sal.pc = ecs->stop_func_start;
7370 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7371 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7372
c2c6d25f 7373 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7374 some machines the prologue is where the new fp value is
7375 established. */
a6d9a66e 7376 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7377
7378 /* And make sure stepping stops right away then. */
16c381f0
JK
7379 ecs->event_thread->control.step_range_end
7380 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7381 }
7382 keep_going (ecs);
7383}
d4f3574e 7384
b2175913
MS
7385/* Inferior has stepped backward into a subroutine call with source
7386 code that we should not step over. Do step to the beginning of the
7387 last line of code in it. */
7388
7389static void
568d6575
UW
7390handle_step_into_function_backward (struct gdbarch *gdbarch,
7391 struct execution_control_state *ecs)
b2175913 7392{
43f3e411 7393 struct compunit_symtab *cust;
167e4384 7394 struct symtab_and_line stop_func_sal;
b2175913 7395
7e324e48
GB
7396 fill_in_stop_func (gdbarch, ecs);
7397
43f3e411
DE
7398 cust = find_pc_compunit_symtab (stop_pc);
7399 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 7400 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
7401 ecs->stop_func_start);
7402
7403 stop_func_sal = find_pc_line (stop_pc, 0);
7404
7405 /* OK, we're just going to keep stepping here. */
7406 if (stop_func_sal.pc == stop_pc)
7407 {
7408 /* We're there already. Just stop stepping now. */
bdc36728 7409 end_stepping_range (ecs);
b2175913
MS
7410 }
7411 else
7412 {
7413 /* Else just reset the step range and keep going.
7414 No step-resume breakpoint, they don't work for
7415 epilogues, which can have multiple entry paths. */
16c381f0
JK
7416 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7417 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7418 keep_going (ecs);
7419 }
7420 return;
7421}
7422
d3169d93 7423/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7424 This is used to both functions and to skip over code. */
7425
7426static void
2c03e5be
PA
7427insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7428 struct symtab_and_line sr_sal,
7429 struct frame_id sr_id,
7430 enum bptype sr_type)
44cbf7b5 7431{
611c83ae
PA
7432 /* There should never be more than one step-resume or longjmp-resume
7433 breakpoint per thread, so we should never be setting a new
44cbf7b5 7434 step_resume_breakpoint when one is already active. */
8358c15c 7435 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7436 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7437
7438 if (debug_infrun)
7439 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7440 "infrun: inserting step-resume breakpoint at %s\n",
7441 paddress (gdbarch, sr_sal.pc));
d3169d93 7442
8358c15c 7443 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
7444 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7445}
7446
9da8c2a0 7447void
2c03e5be
PA
7448insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7449 struct symtab_and_line sr_sal,
7450 struct frame_id sr_id)
7451{
7452 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7453 sr_sal, sr_id,
7454 bp_step_resume);
44cbf7b5 7455}
7ce450bd 7456
2c03e5be
PA
7457/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7458 This is used to skip a potential signal handler.
7ce450bd 7459
14e60db5
DJ
7460 This is called with the interrupted function's frame. The signal
7461 handler, when it returns, will resume the interrupted function at
7462 RETURN_FRAME.pc. */
d303a6c7
AC
7463
7464static void
2c03e5be 7465insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
7466{
7467 struct symtab_and_line sr_sal;
a6d9a66e 7468 struct gdbarch *gdbarch;
d303a6c7 7469
f4c1edd8 7470 gdb_assert (return_frame != NULL);
d303a6c7
AC
7471 init_sal (&sr_sal); /* initialize to zeros */
7472
a6d9a66e 7473 gdbarch = get_frame_arch (return_frame);
568d6575 7474 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7475 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7476 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7477
2c03e5be
PA
7478 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7479 get_stack_frame_id (return_frame),
7480 bp_hp_step_resume);
d303a6c7
AC
7481}
7482
2c03e5be
PA
7483/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7484 is used to skip a function after stepping into it (for "next" or if
7485 the called function has no debugging information).
14e60db5
DJ
7486
7487 The current function has almost always been reached by single
7488 stepping a call or return instruction. NEXT_FRAME belongs to the
7489 current function, and the breakpoint will be set at the caller's
7490 resume address.
7491
7492 This is a separate function rather than reusing
2c03e5be 7493 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7494 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7495 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7496
7497static void
7498insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7499{
7500 struct symtab_and_line sr_sal;
a6d9a66e 7501 struct gdbarch *gdbarch;
14e60db5
DJ
7502
7503 /* We shouldn't have gotten here if we don't know where the call site
7504 is. */
c7ce8faa 7505 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
7506
7507 init_sal (&sr_sal); /* initialize to zeros */
7508
a6d9a66e 7509 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
7510 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7511 frame_unwind_caller_pc (next_frame));
14e60db5 7512 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7513 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7514
a6d9a66e 7515 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7516 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7517}
7518
611c83ae
PA
7519/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7520 new breakpoint at the target of a jmp_buf. The handling of
7521 longjmp-resume uses the same mechanisms used for handling
7522 "step-resume" breakpoints. */
7523
7524static void
a6d9a66e 7525insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7526{
e81a37f7
TT
7527 /* There should never be more than one longjmp-resume breakpoint per
7528 thread, so we should never be setting a new
611c83ae 7529 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7530 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7531
7532 if (debug_infrun)
7533 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7534 "infrun: inserting longjmp-resume breakpoint at %s\n",
7535 paddress (gdbarch, pc));
611c83ae 7536
e81a37f7 7537 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 7538 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
7539}
7540
186c406b
TT
7541/* Insert an exception resume breakpoint. TP is the thread throwing
7542 the exception. The block B is the block of the unwinder debug hook
7543 function. FRAME is the frame corresponding to the call to this
7544 function. SYM is the symbol of the function argument holding the
7545 target PC of the exception. */
7546
7547static void
7548insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7549 const struct block *b,
186c406b
TT
7550 struct frame_info *frame,
7551 struct symbol *sym)
7552{
492d29ea 7553 TRY
186c406b 7554 {
63e43d3a 7555 struct block_symbol vsym;
186c406b
TT
7556 struct value *value;
7557 CORE_ADDR handler;
7558 struct breakpoint *bp;
7559
63e43d3a
PMR
7560 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7561 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7562 /* If the value was optimized out, revert to the old behavior. */
7563 if (! value_optimized_out (value))
7564 {
7565 handler = value_as_address (value);
7566
7567 if (debug_infrun)
7568 fprintf_unfiltered (gdb_stdlog,
7569 "infrun: exception resume at %lx\n",
7570 (unsigned long) handler);
7571
7572 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7573 handler, bp_exception_resume);
c70a6932
JK
7574
7575 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7576 frame = NULL;
7577
5d5658a1 7578 bp->thread = tp->global_num;
186c406b
TT
7579 inferior_thread ()->control.exception_resume_breakpoint = bp;
7580 }
7581 }
492d29ea
PA
7582 CATCH (e, RETURN_MASK_ERROR)
7583 {
7584 /* We want to ignore errors here. */
7585 }
7586 END_CATCH
186c406b
TT
7587}
7588
28106bc2
SDJ
7589/* A helper for check_exception_resume that sets an
7590 exception-breakpoint based on a SystemTap probe. */
7591
7592static void
7593insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7594 const struct bound_probe *probe,
28106bc2
SDJ
7595 struct frame_info *frame)
7596{
7597 struct value *arg_value;
7598 CORE_ADDR handler;
7599 struct breakpoint *bp;
7600
7601 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7602 if (!arg_value)
7603 return;
7604
7605 handler = value_as_address (arg_value);
7606
7607 if (debug_infrun)
7608 fprintf_unfiltered (gdb_stdlog,
7609 "infrun: exception resume at %s\n",
6bac7473 7610 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7611 handler));
7612
7613 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7614 handler, bp_exception_resume);
5d5658a1 7615 bp->thread = tp->global_num;
28106bc2
SDJ
7616 inferior_thread ()->control.exception_resume_breakpoint = bp;
7617}
7618
186c406b
TT
7619/* This is called when an exception has been intercepted. Check to
7620 see whether the exception's destination is of interest, and if so,
7621 set an exception resume breakpoint there. */
7622
7623static void
7624check_exception_resume (struct execution_control_state *ecs,
28106bc2 7625 struct frame_info *frame)
186c406b 7626{
729662a5 7627 struct bound_probe probe;
28106bc2
SDJ
7628 struct symbol *func;
7629
7630 /* First see if this exception unwinding breakpoint was set via a
7631 SystemTap probe point. If so, the probe has two arguments: the
7632 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7633 set a breakpoint there. */
6bac7473 7634 probe = find_probe_by_pc (get_frame_pc (frame));
729662a5 7635 if (probe.probe)
28106bc2 7636 {
729662a5 7637 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7638 return;
7639 }
7640
7641 func = get_frame_function (frame);
7642 if (!func)
7643 return;
186c406b 7644
492d29ea 7645 TRY
186c406b 7646 {
3977b71f 7647 const struct block *b;
8157b174 7648 struct block_iterator iter;
186c406b
TT
7649 struct symbol *sym;
7650 int argno = 0;
7651
7652 /* The exception breakpoint is a thread-specific breakpoint on
7653 the unwinder's debug hook, declared as:
7654
7655 void _Unwind_DebugHook (void *cfa, void *handler);
7656
7657 The CFA argument indicates the frame to which control is
7658 about to be transferred. HANDLER is the destination PC.
7659
7660 We ignore the CFA and set a temporary breakpoint at HANDLER.
7661 This is not extremely efficient but it avoids issues in gdb
7662 with computing the DWARF CFA, and it also works even in weird
7663 cases such as throwing an exception from inside a signal
7664 handler. */
7665
7666 b = SYMBOL_BLOCK_VALUE (func);
7667 ALL_BLOCK_SYMBOLS (b, iter, sym)
7668 {
7669 if (!SYMBOL_IS_ARGUMENT (sym))
7670 continue;
7671
7672 if (argno == 0)
7673 ++argno;
7674 else
7675 {
7676 insert_exception_resume_breakpoint (ecs->event_thread,
7677 b, frame, sym);
7678 break;
7679 }
7680 }
7681 }
492d29ea
PA
7682 CATCH (e, RETURN_MASK_ERROR)
7683 {
7684 }
7685 END_CATCH
186c406b
TT
7686}
7687
104c1213 7688static void
22bcd14b 7689stop_waiting (struct execution_control_state *ecs)
104c1213 7690{
527159b7 7691 if (debug_infrun)
22bcd14b 7692 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7693
31e77af2
PA
7694 clear_step_over_info ();
7695
cd0fc7c3
SS
7696 /* Let callers know we don't want to wait for the inferior anymore. */
7697 ecs->wait_some_more = 0;
fbea99ea
PA
7698
7699 /* If all-stop, but the target is always in non-stop mode, stop all
7700 threads now that we're presenting the stop to the user. */
7701 if (!non_stop && target_is_non_stop_p ())
7702 stop_all_threads ();
cd0fc7c3
SS
7703}
7704
4d9d9d04
PA
7705/* Like keep_going, but passes the signal to the inferior, even if the
7706 signal is set to nopass. */
d4f3574e
SS
7707
7708static void
4d9d9d04 7709keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7710{
c4dbc9af
PA
7711 /* Make sure normal_stop is called if we get a QUIT handled before
7712 reaching resume. */
7713 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7714
4d9d9d04 7715 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
372316f1 7716 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7717
d4f3574e 7718 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
7719 ecs->event_thread->prev_pc
7720 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 7721
4d9d9d04 7722 if (ecs->event_thread->control.trap_expected)
d4f3574e 7723 {
4d9d9d04
PA
7724 struct thread_info *tp = ecs->event_thread;
7725
7726 if (debug_infrun)
7727 fprintf_unfiltered (gdb_stdlog,
7728 "infrun: %s has trap_expected set, "
7729 "resuming to collect trap\n",
7730 target_pid_to_str (tp->ptid));
7731
a9ba6bae
PA
7732 /* We haven't yet gotten our trap, and either: intercepted a
7733 non-signal event (e.g., a fork); or took a signal which we
7734 are supposed to pass through to the inferior. Simply
7735 continue. */
c4dbc9af 7736 discard_cleanups (old_cleanups);
64ce06e4 7737 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7738 }
372316f1
PA
7739 else if (step_over_info_valid_p ())
7740 {
7741 /* Another thread is stepping over a breakpoint in-line. If
7742 this thread needs a step-over too, queue the request. In
7743 either case, this resume must be deferred for later. */
7744 struct thread_info *tp = ecs->event_thread;
7745
7746 if (ecs->hit_singlestep_breakpoint
7747 || thread_still_needs_step_over (tp))
7748 {
7749 if (debug_infrun)
7750 fprintf_unfiltered (gdb_stdlog,
7751 "infrun: step-over already in progress: "
7752 "step-over for %s deferred\n",
7753 target_pid_to_str (tp->ptid));
7754 thread_step_over_chain_enqueue (tp);
7755 }
7756 else
7757 {
7758 if (debug_infrun)
7759 fprintf_unfiltered (gdb_stdlog,
7760 "infrun: step-over in progress: "
7761 "resume of %s deferred\n",
7762 target_pid_to_str (tp->ptid));
7763 }
7764
7765 discard_cleanups (old_cleanups);
7766 }
d4f3574e
SS
7767 else
7768 {
31e77af2 7769 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7770 int remove_bp;
7771 int remove_wps;
8d297bbf 7772 step_over_what step_what;
31e77af2 7773
d4f3574e 7774 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7775 anyway (if we got a signal, the user asked it be passed to
7776 the child)
7777 -- or --
7778 We got our expected trap, but decided we should resume from
7779 it.
d4f3574e 7780
a9ba6bae 7781 We're going to run this baby now!
d4f3574e 7782
c36b740a
VP
7783 Note that insert_breakpoints won't try to re-insert
7784 already inserted breakpoints. Therefore, we don't
7785 care if breakpoints were already inserted, or not. */
a9ba6bae 7786
31e77af2
PA
7787 /* If we need to step over a breakpoint, and we're not using
7788 displaced stepping to do so, insert all breakpoints
7789 (watchpoints, etc.) but the one we're stepping over, step one
7790 instruction, and then re-insert the breakpoint when that step
7791 is finished. */
963f9c80 7792
6c4cfb24
PA
7793 step_what = thread_still_needs_step_over (ecs->event_thread);
7794
963f9c80 7795 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7796 || (step_what & STEP_OVER_BREAKPOINT));
7797 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7798
cb71640d
PA
7799 /* We can't use displaced stepping if we need to step past a
7800 watchpoint. The instruction copied to the scratch pad would
7801 still trigger the watchpoint. */
7802 if (remove_bp
3fc8eb30 7803 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7804 {
31e77af2 7805 set_step_over_info (get_regcache_aspace (regcache),
21edc42f
YQ
7806 regcache_read_pc (regcache), remove_wps,
7807 ecs->event_thread->global_num);
45e8c884 7808 }
963f9c80 7809 else if (remove_wps)
21edc42f 7810 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7811
7812 /* If we now need to do an in-line step-over, we need to stop
7813 all other threads. Note this must be done before
7814 insert_breakpoints below, because that removes the breakpoint
7815 we're about to step over, otherwise other threads could miss
7816 it. */
fbea99ea 7817 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7818 stop_all_threads ();
abbb1732 7819
31e77af2 7820 /* Stop stepping if inserting breakpoints fails. */
492d29ea 7821 TRY
31e77af2
PA
7822 {
7823 insert_breakpoints ();
7824 }
492d29ea 7825 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
7826 {
7827 exception_print (gdb_stderr, e);
22bcd14b 7828 stop_waiting (ecs);
de1fe8c8 7829 discard_cleanups (old_cleanups);
31e77af2 7830 return;
d4f3574e 7831 }
492d29ea 7832 END_CATCH
d4f3574e 7833
963f9c80 7834 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7835
c4dbc9af 7836 discard_cleanups (old_cleanups);
64ce06e4 7837 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7838 }
7839
488f131b 7840 prepare_to_wait (ecs);
d4f3574e
SS
7841}
7842
4d9d9d04
PA
7843/* Called when we should continue running the inferior, because the
7844 current event doesn't cause a user visible stop. This does the
7845 resuming part; waiting for the next event is done elsewhere. */
7846
7847static void
7848keep_going (struct execution_control_state *ecs)
7849{
7850 if (ecs->event_thread->control.trap_expected
7851 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7852 ecs->event_thread->control.trap_expected = 0;
7853
7854 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7855 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7856 keep_going_pass_signal (ecs);
7857}
7858
104c1213
JM
7859/* This function normally comes after a resume, before
7860 handle_inferior_event exits. It takes care of any last bits of
7861 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7862
104c1213
JM
7863static void
7864prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7865{
527159b7 7866 if (debug_infrun)
8a9de0e4 7867 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7868
104c1213 7869 ecs->wait_some_more = 1;
0b333c5e
PA
7870
7871 if (!target_is_async_p ())
7872 mark_infrun_async_event_handler ();
c906108c 7873}
11cf8741 7874
fd664c91 7875/* We are done with the step range of a step/next/si/ni command.
b57bacec 7876 Called once for each n of a "step n" operation. */
fd664c91
PA
7877
7878static void
bdc36728 7879end_stepping_range (struct execution_control_state *ecs)
fd664c91 7880{
bdc36728 7881 ecs->event_thread->control.stop_step = 1;
bdc36728 7882 stop_waiting (ecs);
fd664c91
PA
7883}
7884
33d62d64
JK
7885/* Several print_*_reason functions to print why the inferior has stopped.
7886 We always print something when the inferior exits, or receives a signal.
7887 The rest of the cases are dealt with later on in normal_stop and
7888 print_it_typical. Ideally there should be a call to one of these
7889 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7890 stop_waiting is called.
33d62d64 7891
fd664c91
PA
7892 Note that we don't call these directly, instead we delegate that to
7893 the interpreters, through observers. Interpreters then call these
7894 with whatever uiout is right. */
33d62d64 7895
fd664c91
PA
7896void
7897print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7898{
fd664c91 7899 /* For CLI-like interpreters, print nothing. */
33d62d64 7900
fd664c91
PA
7901 if (ui_out_is_mi_like_p (uiout))
7902 {
7903 ui_out_field_string (uiout, "reason",
7904 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7905 }
7906}
33d62d64 7907
fd664c91
PA
7908void
7909print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7910{
33d62d64
JK
7911 annotate_signalled ();
7912 if (ui_out_is_mi_like_p (uiout))
7913 ui_out_field_string
7914 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7915 ui_out_text (uiout, "\nProgram terminated with signal ");
7916 annotate_signal_name ();
7917 ui_out_field_string (uiout, "signal-name",
2ea28649 7918 gdb_signal_to_name (siggnal));
33d62d64
JK
7919 annotate_signal_name_end ();
7920 ui_out_text (uiout, ", ");
7921 annotate_signal_string ();
7922 ui_out_field_string (uiout, "signal-meaning",
2ea28649 7923 gdb_signal_to_string (siggnal));
33d62d64
JK
7924 annotate_signal_string_end ();
7925 ui_out_text (uiout, ".\n");
7926 ui_out_text (uiout, "The program no longer exists.\n");
7927}
7928
fd664c91
PA
7929void
7930print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7931{
fda326dd
TT
7932 struct inferior *inf = current_inferior ();
7933 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7934
33d62d64
JK
7935 annotate_exited (exitstatus);
7936 if (exitstatus)
7937 {
7938 if (ui_out_is_mi_like_p (uiout))
7939 ui_out_field_string (uiout, "reason",
7940 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
7941 ui_out_text (uiout, "[Inferior ");
7942 ui_out_text (uiout, plongest (inf->num));
7943 ui_out_text (uiout, " (");
7944 ui_out_text (uiout, pidstr);
7945 ui_out_text (uiout, ") exited with code ");
33d62d64 7946 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 7947 ui_out_text (uiout, "]\n");
33d62d64
JK
7948 }
7949 else
11cf8741 7950 {
9dc5e2a9 7951 if (ui_out_is_mi_like_p (uiout))
034dad6f 7952 ui_out_field_string
33d62d64 7953 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
7954 ui_out_text (uiout, "[Inferior ");
7955 ui_out_text (uiout, plongest (inf->num));
7956 ui_out_text (uiout, " (");
7957 ui_out_text (uiout, pidstr);
7958 ui_out_text (uiout, ") exited normally]\n");
33d62d64 7959 }
33d62d64
JK
7960}
7961
012b3a21
WT
7962/* Some targets/architectures can do extra processing/display of
7963 segmentation faults. E.g., Intel MPX boundary faults.
7964 Call the architecture dependent function to handle the fault. */
7965
7966static void
7967handle_segmentation_fault (struct ui_out *uiout)
7968{
7969 struct regcache *regcache = get_current_regcache ();
7970 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7971
7972 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7973 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7974}
7975
fd664c91
PA
7976void
7977print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 7978{
f303dbd6
PA
7979 struct thread_info *thr = inferior_thread ();
7980
33d62d64
JK
7981 annotate_signal ();
7982
f303dbd6
PA
7983 if (ui_out_is_mi_like_p (uiout))
7984 ;
7985 else if (show_thread_that_caused_stop ())
33d62d64 7986 {
f303dbd6 7987 const char *name;
33d62d64 7988
f303dbd6
PA
7989 ui_out_text (uiout, "\nThread ");
7990 ui_out_field_fmt (uiout, "thread-id", "%s", print_thread_id (thr));
7991
7992 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7993 if (name != NULL)
7994 {
7995 ui_out_text (uiout, " \"");
7996 ui_out_field_fmt (uiout, "name", "%s", name);
7997 ui_out_text (uiout, "\"");
7998 }
33d62d64 7999 }
f303dbd6
PA
8000 else
8001 ui_out_text (uiout, "\nProgram");
8002
8003 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
8004 ui_out_text (uiout, " stopped");
33d62d64
JK
8005 else
8006 {
f303dbd6 8007 ui_out_text (uiout, " received signal ");
8b93c638 8008 annotate_signal_name ();
33d62d64
JK
8009 if (ui_out_is_mi_like_p (uiout))
8010 ui_out_field_string
8011 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 8012 ui_out_field_string (uiout, "signal-name",
2ea28649 8013 gdb_signal_to_name (siggnal));
8b93c638
JM
8014 annotate_signal_name_end ();
8015 ui_out_text (uiout, ", ");
8016 annotate_signal_string ();
488f131b 8017 ui_out_field_string (uiout, "signal-meaning",
2ea28649 8018 gdb_signal_to_string (siggnal));
012b3a21
WT
8019
8020 if (siggnal == GDB_SIGNAL_SEGV)
8021 handle_segmentation_fault (uiout);
8022
8b93c638 8023 annotate_signal_string_end ();
33d62d64
JK
8024 }
8025 ui_out_text (uiout, ".\n");
8026}
252fbfc8 8027
fd664c91
PA
8028void
8029print_no_history_reason (struct ui_out *uiout)
33d62d64 8030{
fd664c91 8031 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
11cf8741 8032}
43ff13b4 8033
0c7e1a46
PA
8034/* Print current location without a level number, if we have changed
8035 functions or hit a breakpoint. Print source line if we have one.
8036 bpstat_print contains the logic deciding in detail what to print,
8037 based on the event(s) that just occurred. */
8038
243a9253
PA
8039static void
8040print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
8041{
8042 int bpstat_ret;
f486487f 8043 enum print_what source_flag;
0c7e1a46
PA
8044 int do_frame_printing = 1;
8045 struct thread_info *tp = inferior_thread ();
8046
8047 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8048 switch (bpstat_ret)
8049 {
8050 case PRINT_UNKNOWN:
8051 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8052 should) carry around the function and does (or should) use
8053 that when doing a frame comparison. */
8054 if (tp->control.stop_step
8055 && frame_id_eq (tp->control.step_frame_id,
8056 get_frame_id (get_current_frame ()))
885eeb5b 8057 && tp->control.step_start_function == find_pc_function (stop_pc))
0c7e1a46
PA
8058 {
8059 /* Finished step, just print source line. */
8060 source_flag = SRC_LINE;
8061 }
8062 else
8063 {
8064 /* Print location and source line. */
8065 source_flag = SRC_AND_LOC;
8066 }
8067 break;
8068 case PRINT_SRC_AND_LOC:
8069 /* Print location and source line. */
8070 source_flag = SRC_AND_LOC;
8071 break;
8072 case PRINT_SRC_ONLY:
8073 source_flag = SRC_LINE;
8074 break;
8075 case PRINT_NOTHING:
8076 /* Something bogus. */
8077 source_flag = SRC_LINE;
8078 do_frame_printing = 0;
8079 break;
8080 default:
8081 internal_error (__FILE__, __LINE__, _("Unknown value."));
8082 }
8083
8084 /* The behavior of this routine with respect to the source
8085 flag is:
8086 SRC_LINE: Print only source line
8087 LOCATION: Print only location
8088 SRC_AND_LOC: Print location and source line. */
8089 if (do_frame_printing)
8090 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
8091}
8092
8093/* Cleanup that restores a previous current uiout. */
8094
8095static void
8096restore_current_uiout_cleanup (void *arg)
8097{
9a3c8263 8098 struct ui_out *saved_uiout = (struct ui_out *) arg;
243a9253
PA
8099
8100 current_uiout = saved_uiout;
8101}
8102
8103/* See infrun.h. */
8104
8105void
8106print_stop_event (struct ui_out *uiout)
8107{
8108 struct cleanup *old_chain;
8109 struct target_waitstatus last;
8110 ptid_t last_ptid;
8111 struct thread_info *tp;
8112
8113 get_last_target_status (&last_ptid, &last);
8114
8115 old_chain = make_cleanup (restore_current_uiout_cleanup, current_uiout);
8116 current_uiout = uiout;
8117
8118 print_stop_location (&last);
0c7e1a46
PA
8119
8120 /* Display the auto-display expressions. */
8121 do_displays ();
243a9253
PA
8122
8123 do_cleanups (old_chain);
8124
8125 tp = inferior_thread ();
8126 if (tp->thread_fsm != NULL
8127 && thread_fsm_finished_p (tp->thread_fsm))
8128 {
8129 struct return_value_info *rv;
8130
8131 rv = thread_fsm_return_value (tp->thread_fsm);
8132 if (rv != NULL)
8133 print_return_value (uiout, rv);
8134 }
0c7e1a46
PA
8135}
8136
388a7084
PA
8137/* See infrun.h. */
8138
8139void
8140maybe_remove_breakpoints (void)
8141{
8142 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8143 {
8144 if (remove_breakpoints ())
8145 {
8146 target_terminal_ours_for_output ();
8147 printf_filtered (_("Cannot remove breakpoints because "
8148 "program is no longer writable.\nFurther "
8149 "execution is probably impossible.\n"));
8150 }
8151 }
8152}
8153
4c2f2a79
PA
8154/* The execution context that just caused a normal stop. */
8155
8156struct stop_context
8157{
8158 /* The stop ID. */
8159 ULONGEST stop_id;
c906108c 8160
4c2f2a79 8161 /* The event PTID. */
c906108c 8162
4c2f2a79
PA
8163 ptid_t ptid;
8164
8165 /* If stopp for a thread event, this is the thread that caused the
8166 stop. */
8167 struct thread_info *thread;
8168
8169 /* The inferior that caused the stop. */
8170 int inf_num;
8171};
8172
8173/* Returns a new stop context. If stopped for a thread event, this
8174 takes a strong reference to the thread. */
8175
8176static struct stop_context *
8177save_stop_context (void)
8178{
224c3ddb 8179 struct stop_context *sc = XNEW (struct stop_context);
4c2f2a79
PA
8180
8181 sc->stop_id = get_stop_id ();
8182 sc->ptid = inferior_ptid;
8183 sc->inf_num = current_inferior ()->num;
8184
8185 if (!ptid_equal (inferior_ptid, null_ptid))
8186 {
8187 /* Take a strong reference so that the thread can't be deleted
8188 yet. */
8189 sc->thread = inferior_thread ();
8190 sc->thread->refcount++;
8191 }
8192 else
8193 sc->thread = NULL;
8194
8195 return sc;
8196}
8197
8198/* Release a stop context previously created with save_stop_context.
8199 Releases the strong reference to the thread as well. */
8200
8201static void
8202release_stop_context_cleanup (void *arg)
8203{
9a3c8263 8204 struct stop_context *sc = (struct stop_context *) arg;
4c2f2a79
PA
8205
8206 if (sc->thread != NULL)
8207 sc->thread->refcount--;
8208 xfree (sc);
8209}
8210
8211/* Return true if the current context no longer matches the saved stop
8212 context. */
8213
8214static int
8215stop_context_changed (struct stop_context *prev)
8216{
8217 if (!ptid_equal (prev->ptid, inferior_ptid))
8218 return 1;
8219 if (prev->inf_num != current_inferior ()->num)
8220 return 1;
8221 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8222 return 1;
8223 if (get_stop_id () != prev->stop_id)
8224 return 1;
8225 return 0;
8226}
8227
8228/* See infrun.h. */
8229
8230int
96baa820 8231normal_stop (void)
c906108c 8232{
73b65bb0
DJ
8233 struct target_waitstatus last;
8234 ptid_t last_ptid;
29f49a6a 8235 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
e1316e60 8236 ptid_t pid_ptid;
3b12939d 8237 struct switch_thru_all_uis state;
73b65bb0
DJ
8238
8239 get_last_target_status (&last_ptid, &last);
8240
4c2f2a79
PA
8241 new_stop_id ();
8242
29f49a6a
PA
8243 /* If an exception is thrown from this point on, make sure to
8244 propagate GDB's knowledge of the executing state to the
8245 frontend/user running state. A QUIT is an easy exception to see
8246 here, so do this before any filtered output. */
c35b1492
PA
8247 if (!non_stop)
8248 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
e1316e60
PA
8249 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8250 || last.kind == TARGET_WAITKIND_EXITED)
8251 {
8252 /* On some targets, we may still have live threads in the
8253 inferior when we get a process exit event. E.g., for
8254 "checkpoint", when the current checkpoint/fork exits,
8255 linux-fork.c automatically switches to another fork from
8256 within target_mourn_inferior. */
8257 if (!ptid_equal (inferior_ptid, null_ptid))
8258 {
8259 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8260 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8261 }
8262 }
8263 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 8264 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 8265
b57bacec
PA
8266 /* As we're presenting a stop, and potentially removing breakpoints,
8267 update the thread list so we can tell whether there are threads
8268 running on the target. With target remote, for example, we can
8269 only learn about new threads when we explicitly update the thread
8270 list. Do this before notifying the interpreters about signal
8271 stops, end of stepping ranges, etc., so that the "new thread"
8272 output is emitted before e.g., "Program received signal FOO",
8273 instead of after. */
8274 update_thread_list ();
8275
8276 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8277 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8278
c906108c
SS
8279 /* As with the notification of thread events, we want to delay
8280 notifying the user that we've switched thread context until
8281 the inferior actually stops.
8282
73b65bb0
DJ
8283 There's no point in saying anything if the inferior has exited.
8284 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8285 "received a signal".
8286
8287 Also skip saying anything in non-stop mode. In that mode, as we
8288 don't want GDB to switch threads behind the user's back, to avoid
8289 races where the user is typing a command to apply to thread x,
8290 but GDB switches to thread y before the user finishes entering
8291 the command, fetch_inferior_event installs a cleanup to restore
8292 the current thread back to the thread the user had selected right
8293 after this event is handled, so we're not really switching, only
8294 informing of a stop. */
4f8d22e3
PA
8295 if (!non_stop
8296 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
8297 && target_has_execution
8298 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8299 && last.kind != TARGET_WAITKIND_EXITED
8300 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8301 {
3b12939d
PA
8302 SWITCH_THRU_ALL_UIS (state)
8303 {
8304 target_terminal_ours_for_output ();
8305 printf_filtered (_("[Switching to %s]\n"),
8306 target_pid_to_str (inferior_ptid));
8307 annotate_thread_changed ();
8308 }
39f77062 8309 previous_inferior_ptid = inferior_ptid;
c906108c 8310 }
c906108c 8311
0e5bf2a8
PA
8312 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8313 {
3b12939d
PA
8314 SWITCH_THRU_ALL_UIS (state)
8315 if (current_ui->prompt_state == PROMPT_BLOCKED)
8316 {
8317 target_terminal_ours_for_output ();
8318 printf_filtered (_("No unwaited-for children left.\n"));
8319 }
0e5bf2a8
PA
8320 }
8321
b57bacec 8322 /* Note: this depends on the update_thread_list call above. */
388a7084 8323 maybe_remove_breakpoints ();
c906108c 8324
c906108c
SS
8325 /* If an auto-display called a function and that got a signal,
8326 delete that auto-display to avoid an infinite recursion. */
8327
8328 if (stopped_by_random_signal)
8329 disable_current_display ();
8330
3b12939d
PA
8331 SWITCH_THRU_ALL_UIS (state)
8332 {
8333 async_enable_stdin ();
8334 }
c906108c 8335
388a7084
PA
8336 /* Let the user/frontend see the threads as stopped. */
8337 do_cleanups (old_chain);
8338
8339 /* Select innermost stack frame - i.e., current frame is frame 0,
8340 and current location is based on that. Handle the case where the
8341 dummy call is returning after being stopped. E.g. the dummy call
8342 previously hit a breakpoint. (If the dummy call returns
8343 normally, we won't reach here.) Do this before the stop hook is
8344 run, so that it doesn't get to see the temporary dummy frame,
8345 which is not where we'll present the stop. */
8346 if (has_stack_frames ())
8347 {
8348 if (stop_stack_dummy == STOP_STACK_DUMMY)
8349 {
8350 /* Pop the empty frame that contains the stack dummy. This
8351 also restores inferior state prior to the call (struct
8352 infcall_suspend_state). */
8353 struct frame_info *frame = get_current_frame ();
8354
8355 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8356 frame_pop (frame);
8357 /* frame_pop calls reinit_frame_cache as the last thing it
8358 does which means there's now no selected frame. */
8359 }
8360
8361 select_frame (get_current_frame ());
8362
8363 /* Set the current source location. */
8364 set_current_sal_from_frame (get_current_frame ());
8365 }
dd7e2d2b
PA
8366
8367 /* Look up the hook_stop and run it (CLI internally handles problem
8368 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8369 if (stop_command != NULL)
8370 {
8371 struct stop_context *saved_context = save_stop_context ();
8372 struct cleanup *old_chain
8373 = make_cleanup (release_stop_context_cleanup, saved_context);
8374
8375 catch_errors (hook_stop_stub, stop_command,
8376 "Error while running hook_stop:\n", RETURN_MASK_ALL);
8377
8378 /* If the stop hook resumes the target, then there's no point in
8379 trying to notify about the previous stop; its context is
8380 gone. Likewise if the command switches thread or inferior --
8381 the observers would print a stop for the wrong
8382 thread/inferior. */
8383 if (stop_context_changed (saved_context))
8384 {
8385 do_cleanups (old_chain);
8386 return 1;
8387 }
8388 do_cleanups (old_chain);
8389 }
dd7e2d2b 8390
388a7084
PA
8391 /* Notify observers about the stop. This is where the interpreters
8392 print the stop event. */
8393 if (!ptid_equal (inferior_ptid, null_ptid))
8394 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8395 stop_print_frame);
8396 else
8397 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 8398
243a9253
PA
8399 annotate_stopped ();
8400
48844aa6
PA
8401 if (target_has_execution)
8402 {
8403 if (last.kind != TARGET_WAITKIND_SIGNALLED
8404 && last.kind != TARGET_WAITKIND_EXITED)
8405 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8406 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8407 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8408 }
6c95b8df
PA
8409
8410 /* Try to get rid of automatically added inferiors that are no
8411 longer needed. Keeping those around slows down things linearly.
8412 Note that this never removes the current inferior. */
8413 prune_inferiors ();
4c2f2a79
PA
8414
8415 return 0;
c906108c
SS
8416}
8417
8418static int
96baa820 8419hook_stop_stub (void *cmd)
c906108c 8420{
5913bcb0 8421 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
8422 return (0);
8423}
8424\f
c5aa993b 8425int
96baa820 8426signal_stop_state (int signo)
c906108c 8427{
d6b48e9c 8428 return signal_stop[signo];
c906108c
SS
8429}
8430
c5aa993b 8431int
96baa820 8432signal_print_state (int signo)
c906108c
SS
8433{
8434 return signal_print[signo];
8435}
8436
c5aa993b 8437int
96baa820 8438signal_pass_state (int signo)
c906108c
SS
8439{
8440 return signal_program[signo];
8441}
8442
2455069d
UW
8443static void
8444signal_cache_update (int signo)
8445{
8446 if (signo == -1)
8447 {
a493e3e2 8448 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8449 signal_cache_update (signo);
8450
8451 return;
8452 }
8453
8454 signal_pass[signo] = (signal_stop[signo] == 0
8455 && signal_print[signo] == 0
ab04a2af
TT
8456 && signal_program[signo] == 1
8457 && signal_catch[signo] == 0);
2455069d
UW
8458}
8459
488f131b 8460int
7bda5e4a 8461signal_stop_update (int signo, int state)
d4f3574e
SS
8462{
8463 int ret = signal_stop[signo];
abbb1732 8464
d4f3574e 8465 signal_stop[signo] = state;
2455069d 8466 signal_cache_update (signo);
d4f3574e
SS
8467 return ret;
8468}
8469
488f131b 8470int
7bda5e4a 8471signal_print_update (int signo, int state)
d4f3574e
SS
8472{
8473 int ret = signal_print[signo];
abbb1732 8474
d4f3574e 8475 signal_print[signo] = state;
2455069d 8476 signal_cache_update (signo);
d4f3574e
SS
8477 return ret;
8478}
8479
488f131b 8480int
7bda5e4a 8481signal_pass_update (int signo, int state)
d4f3574e
SS
8482{
8483 int ret = signal_program[signo];
abbb1732 8484
d4f3574e 8485 signal_program[signo] = state;
2455069d 8486 signal_cache_update (signo);
d4f3574e
SS
8487 return ret;
8488}
8489
ab04a2af
TT
8490/* Update the global 'signal_catch' from INFO and notify the
8491 target. */
8492
8493void
8494signal_catch_update (const unsigned int *info)
8495{
8496 int i;
8497
8498 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8499 signal_catch[i] = info[i] > 0;
8500 signal_cache_update (-1);
8501 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8502}
8503
c906108c 8504static void
96baa820 8505sig_print_header (void)
c906108c 8506{
3e43a32a
MS
8507 printf_filtered (_("Signal Stop\tPrint\tPass "
8508 "to program\tDescription\n"));
c906108c
SS
8509}
8510
8511static void
2ea28649 8512sig_print_info (enum gdb_signal oursig)
c906108c 8513{
2ea28649 8514 const char *name = gdb_signal_to_name (oursig);
c906108c 8515 int name_padding = 13 - strlen (name);
96baa820 8516
c906108c
SS
8517 if (name_padding <= 0)
8518 name_padding = 0;
8519
8520 printf_filtered ("%s", name);
488f131b 8521 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8522 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8523 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8524 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8525 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8526}
8527
8528/* Specify how various signals in the inferior should be handled. */
8529
8530static void
96baa820 8531handle_command (char *args, int from_tty)
c906108c
SS
8532{
8533 char **argv;
8534 int digits, wordlen;
8535 int sigfirst, signum, siglast;
2ea28649 8536 enum gdb_signal oursig;
c906108c
SS
8537 int allsigs;
8538 int nsigs;
8539 unsigned char *sigs;
8540 struct cleanup *old_chain;
8541
8542 if (args == NULL)
8543 {
e2e0b3e5 8544 error_no_arg (_("signal to handle"));
c906108c
SS
8545 }
8546
1777feb0 8547 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8548
a493e3e2 8549 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
8550 sigs = (unsigned char *) alloca (nsigs);
8551 memset (sigs, 0, nsigs);
8552
1777feb0 8553 /* Break the command line up into args. */
c906108c 8554
d1a41061 8555 argv = gdb_buildargv (args);
7a292a7a 8556 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
8557
8558 /* Walk through the args, looking for signal oursigs, signal names, and
8559 actions. Signal numbers and signal names may be interspersed with
8560 actions, with the actions being performed for all signals cumulatively
1777feb0 8561 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
8562
8563 while (*argv != NULL)
8564 {
8565 wordlen = strlen (*argv);
8566 for (digits = 0; isdigit ((*argv)[digits]); digits++)
8567 {;
8568 }
8569 allsigs = 0;
8570 sigfirst = siglast = -1;
8571
8572 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
8573 {
8574 /* Apply action to all signals except those used by the
1777feb0 8575 debugger. Silently skip those. */
c906108c
SS
8576 allsigs = 1;
8577 sigfirst = 0;
8578 siglast = nsigs - 1;
8579 }
8580 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
8581 {
8582 SET_SIGS (nsigs, sigs, signal_stop);
8583 SET_SIGS (nsigs, sigs, signal_print);
8584 }
8585 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
8586 {
8587 UNSET_SIGS (nsigs, sigs, signal_program);
8588 }
8589 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
8590 {
8591 SET_SIGS (nsigs, sigs, signal_print);
8592 }
8593 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
8594 {
8595 SET_SIGS (nsigs, sigs, signal_program);
8596 }
8597 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
8598 {
8599 UNSET_SIGS (nsigs, sigs, signal_stop);
8600 }
8601 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
8602 {
8603 SET_SIGS (nsigs, sigs, signal_program);
8604 }
8605 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
8606 {
8607 UNSET_SIGS (nsigs, sigs, signal_print);
8608 UNSET_SIGS (nsigs, sigs, signal_stop);
8609 }
8610 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
8611 {
8612 UNSET_SIGS (nsigs, sigs, signal_program);
8613 }
8614 else if (digits > 0)
8615 {
8616 /* It is numeric. The numeric signal refers to our own
8617 internal signal numbering from target.h, not to host/target
8618 signal number. This is a feature; users really should be
8619 using symbolic names anyway, and the common ones like
8620 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8621
8622 sigfirst = siglast = (int)
2ea28649 8623 gdb_signal_from_command (atoi (*argv));
c906108c
SS
8624 if ((*argv)[digits] == '-')
8625 {
8626 siglast = (int)
2ea28649 8627 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
8628 }
8629 if (sigfirst > siglast)
8630 {
1777feb0 8631 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
8632 signum = sigfirst;
8633 sigfirst = siglast;
8634 siglast = signum;
8635 }
8636 }
8637 else
8638 {
2ea28649 8639 oursig = gdb_signal_from_name (*argv);
a493e3e2 8640 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8641 {
8642 sigfirst = siglast = (int) oursig;
8643 }
8644 else
8645 {
8646 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 8647 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
8648 }
8649 }
8650
8651 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8652 which signals to apply actions to. */
c906108c
SS
8653
8654 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8655 {
2ea28649 8656 switch ((enum gdb_signal) signum)
c906108c 8657 {
a493e3e2
PA
8658 case GDB_SIGNAL_TRAP:
8659 case GDB_SIGNAL_INT:
c906108c
SS
8660 if (!allsigs && !sigs[signum])
8661 {
9e2f0ad4 8662 if (query (_("%s is used by the debugger.\n\
3e43a32a 8663Are you sure you want to change it? "),
2ea28649 8664 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8665 {
8666 sigs[signum] = 1;
8667 }
8668 else
8669 {
a3f17187 8670 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8671 gdb_flush (gdb_stdout);
8672 }
8673 }
8674 break;
a493e3e2
PA
8675 case GDB_SIGNAL_0:
8676 case GDB_SIGNAL_DEFAULT:
8677 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8678 /* Make sure that "all" doesn't print these. */
8679 break;
8680 default:
8681 sigs[signum] = 1;
8682 break;
8683 }
8684 }
8685
8686 argv++;
8687 }
8688
3a031f65
PA
8689 for (signum = 0; signum < nsigs; signum++)
8690 if (sigs[signum])
8691 {
2455069d 8692 signal_cache_update (-1);
a493e3e2
PA
8693 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8694 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 8695
3a031f65
PA
8696 if (from_tty)
8697 {
8698 /* Show the results. */
8699 sig_print_header ();
8700 for (; signum < nsigs; signum++)
8701 if (sigs[signum])
aead7601 8702 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8703 }
8704
8705 break;
8706 }
c906108c
SS
8707
8708 do_cleanups (old_chain);
8709}
8710
de0bea00
MF
8711/* Complete the "handle" command. */
8712
8713static VEC (char_ptr) *
8714handle_completer (struct cmd_list_element *ignore,
6f937416 8715 const char *text, const char *word)
de0bea00
MF
8716{
8717 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
8718 static const char * const keywords[] =
8719 {
8720 "all",
8721 "stop",
8722 "ignore",
8723 "print",
8724 "pass",
8725 "nostop",
8726 "noignore",
8727 "noprint",
8728 "nopass",
8729 NULL,
8730 };
8731
8732 vec_signals = signal_completer (ignore, text, word);
8733 vec_keywords = complete_on_enum (keywords, word, word);
8734
8735 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
8736 VEC_free (char_ptr, vec_signals);
8737 VEC_free (char_ptr, vec_keywords);
8738 return return_val;
8739}
8740
2ea28649
PA
8741enum gdb_signal
8742gdb_signal_from_command (int num)
ed01b82c
PA
8743{
8744 if (num >= 1 && num <= 15)
2ea28649 8745 return (enum gdb_signal) num;
ed01b82c
PA
8746 error (_("Only signals 1-15 are valid as numeric signals.\n\
8747Use \"info signals\" for a list of symbolic signals."));
8748}
8749
c906108c
SS
8750/* Print current contents of the tables set by the handle command.
8751 It is possible we should just be printing signals actually used
8752 by the current target (but for things to work right when switching
8753 targets, all signals should be in the signal tables). */
8754
8755static void
96baa820 8756signals_info (char *signum_exp, int from_tty)
c906108c 8757{
2ea28649 8758 enum gdb_signal oursig;
abbb1732 8759
c906108c
SS
8760 sig_print_header ();
8761
8762 if (signum_exp)
8763 {
8764 /* First see if this is a symbol name. */
2ea28649 8765 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8766 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8767 {
8768 /* No, try numeric. */
8769 oursig =
2ea28649 8770 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8771 }
8772 sig_print_info (oursig);
8773 return;
8774 }
8775
8776 printf_filtered ("\n");
8777 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8778 for (oursig = GDB_SIGNAL_FIRST;
8779 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8780 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8781 {
8782 QUIT;
8783
a493e3e2
PA
8784 if (oursig != GDB_SIGNAL_UNKNOWN
8785 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8786 sig_print_info (oursig);
8787 }
8788
3e43a32a
MS
8789 printf_filtered (_("\nUse the \"handle\" command "
8790 "to change these tables.\n"));
c906108c 8791}
4aa995e1
PA
8792
8793/* The $_siginfo convenience variable is a bit special. We don't know
8794 for sure the type of the value until we actually have a chance to
7a9dd1b2 8795 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8796 also dependent on which thread you have selected.
8797
8798 1. making $_siginfo be an internalvar that creates a new value on
8799 access.
8800
8801 2. making the value of $_siginfo be an lval_computed value. */
8802
8803/* This function implements the lval_computed support for reading a
8804 $_siginfo value. */
8805
8806static void
8807siginfo_value_read (struct value *v)
8808{
8809 LONGEST transferred;
8810
a911d87a
PA
8811 /* If we can access registers, so can we access $_siginfo. Likewise
8812 vice versa. */
8813 validate_registers_access ();
c709acd1 8814
4aa995e1
PA
8815 transferred =
8816 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8817 NULL,
8818 value_contents_all_raw (v),
8819 value_offset (v),
8820 TYPE_LENGTH (value_type (v)));
8821
8822 if (transferred != TYPE_LENGTH (value_type (v)))
8823 error (_("Unable to read siginfo"));
8824}
8825
8826/* This function implements the lval_computed support for writing a
8827 $_siginfo value. */
8828
8829static void
8830siginfo_value_write (struct value *v, struct value *fromval)
8831{
8832 LONGEST transferred;
8833
a911d87a
PA
8834 /* If we can access registers, so can we access $_siginfo. Likewise
8835 vice versa. */
8836 validate_registers_access ();
c709acd1 8837
4aa995e1
PA
8838 transferred = target_write (&current_target,
8839 TARGET_OBJECT_SIGNAL_INFO,
8840 NULL,
8841 value_contents_all_raw (fromval),
8842 value_offset (v),
8843 TYPE_LENGTH (value_type (fromval)));
8844
8845 if (transferred != TYPE_LENGTH (value_type (fromval)))
8846 error (_("Unable to write siginfo"));
8847}
8848
c8f2448a 8849static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8850 {
8851 siginfo_value_read,
8852 siginfo_value_write
8853 };
8854
8855/* Return a new value with the correct type for the siginfo object of
78267919
UW
8856 the current thread using architecture GDBARCH. Return a void value
8857 if there's no object available. */
4aa995e1 8858
2c0b251b 8859static struct value *
22d2b532
SDJ
8860siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8861 void *ignore)
4aa995e1 8862{
4aa995e1 8863 if (target_has_stack
78267919
UW
8864 && !ptid_equal (inferior_ptid, null_ptid)
8865 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8866 {
78267919 8867 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8868
78267919 8869 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8870 }
8871
78267919 8872 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8873}
8874
c906108c 8875\f
16c381f0
JK
8876/* infcall_suspend_state contains state about the program itself like its
8877 registers and any signal it received when it last stopped.
8878 This state must be restored regardless of how the inferior function call
8879 ends (either successfully, or after it hits a breakpoint or signal)
8880 if the program is to properly continue where it left off. */
8881
8882struct infcall_suspend_state
7a292a7a 8883{
16c381f0 8884 struct thread_suspend_state thread_suspend;
16c381f0
JK
8885
8886 /* Other fields: */
7a292a7a 8887 CORE_ADDR stop_pc;
b89667eb 8888 struct regcache *registers;
1736ad11 8889
35515841 8890 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
8891 struct gdbarch *siginfo_gdbarch;
8892
8893 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8894 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8895 content would be invalid. */
8896 gdb_byte *siginfo_data;
b89667eb
DE
8897};
8898
16c381f0
JK
8899struct infcall_suspend_state *
8900save_infcall_suspend_state (void)
b89667eb 8901{
16c381f0 8902 struct infcall_suspend_state *inf_state;
b89667eb 8903 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8904 struct regcache *regcache = get_current_regcache ();
8905 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8906 gdb_byte *siginfo_data = NULL;
8907
8908 if (gdbarch_get_siginfo_type_p (gdbarch))
8909 {
8910 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8911 size_t len = TYPE_LENGTH (type);
8912 struct cleanup *back_to;
8913
224c3ddb 8914 siginfo_data = (gdb_byte *) xmalloc (len);
1736ad11
JK
8915 back_to = make_cleanup (xfree, siginfo_data);
8916
8917 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8918 siginfo_data, 0, len) == len)
8919 discard_cleanups (back_to);
8920 else
8921 {
8922 /* Errors ignored. */
8923 do_cleanups (back_to);
8924 siginfo_data = NULL;
8925 }
8926 }
8927
41bf6aca 8928 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
8929
8930 if (siginfo_data)
8931 {
8932 inf_state->siginfo_gdbarch = gdbarch;
8933 inf_state->siginfo_data = siginfo_data;
8934 }
b89667eb 8935
16c381f0 8936 inf_state->thread_suspend = tp->suspend;
16c381f0 8937
35515841 8938 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
8939 GDB_SIGNAL_0 anyway. */
8940 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8941
b89667eb
DE
8942 inf_state->stop_pc = stop_pc;
8943
1736ad11 8944 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
8945
8946 return inf_state;
8947}
8948
8949/* Restore inferior session state to INF_STATE. */
8950
8951void
16c381f0 8952restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8953{
8954 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8955 struct regcache *regcache = get_current_regcache ();
8956 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 8957
16c381f0 8958 tp->suspend = inf_state->thread_suspend;
16c381f0 8959
b89667eb
DE
8960 stop_pc = inf_state->stop_pc;
8961
1736ad11
JK
8962 if (inf_state->siginfo_gdbarch == gdbarch)
8963 {
8964 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
8965
8966 /* Errors ignored. */
8967 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 8968 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
8969 }
8970
b89667eb
DE
8971 /* The inferior can be gone if the user types "print exit(0)"
8972 (and perhaps other times). */
8973 if (target_has_execution)
8974 /* NB: The register write goes through to the target. */
1736ad11 8975 regcache_cpy (regcache, inf_state->registers);
803b5f95 8976
16c381f0 8977 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8978}
8979
8980static void
16c381f0 8981do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 8982{
9a3c8263 8983 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
b89667eb
DE
8984}
8985
8986struct cleanup *
16c381f0
JK
8987make_cleanup_restore_infcall_suspend_state
8988 (struct infcall_suspend_state *inf_state)
b89667eb 8989{
16c381f0 8990 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
8991}
8992
8993void
16c381f0 8994discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8995{
8996 regcache_xfree (inf_state->registers);
803b5f95 8997 xfree (inf_state->siginfo_data);
b89667eb
DE
8998 xfree (inf_state);
8999}
9000
9001struct regcache *
16c381f0 9002get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
9003{
9004 return inf_state->registers;
9005}
9006
16c381f0
JK
9007/* infcall_control_state contains state regarding gdb's control of the
9008 inferior itself like stepping control. It also contains session state like
9009 the user's currently selected frame. */
b89667eb 9010
16c381f0 9011struct infcall_control_state
b89667eb 9012{
16c381f0
JK
9013 struct thread_control_state thread_control;
9014 struct inferior_control_state inferior_control;
d82142e2
JK
9015
9016 /* Other fields: */
9017 enum stop_stack_kind stop_stack_dummy;
9018 int stopped_by_random_signal;
7a292a7a 9019
b89667eb 9020 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 9021 struct frame_id selected_frame_id;
7a292a7a
SS
9022};
9023
c906108c 9024/* Save all of the information associated with the inferior<==>gdb
b89667eb 9025 connection. */
c906108c 9026
16c381f0
JK
9027struct infcall_control_state *
9028save_infcall_control_state (void)
c906108c 9029{
8d749320
SM
9030 struct infcall_control_state *inf_status =
9031 XNEW (struct infcall_control_state);
4e1c45ea 9032 struct thread_info *tp = inferior_thread ();
d6b48e9c 9033 struct inferior *inf = current_inferior ();
7a292a7a 9034
16c381f0
JK
9035 inf_status->thread_control = tp->control;
9036 inf_status->inferior_control = inf->control;
d82142e2 9037
8358c15c 9038 tp->control.step_resume_breakpoint = NULL;
5b79abe7 9039 tp->control.exception_resume_breakpoint = NULL;
8358c15c 9040
16c381f0
JK
9041 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9042 chain. If caller's caller is walking the chain, they'll be happier if we
9043 hand them back the original chain when restore_infcall_control_state is
9044 called. */
9045 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
9046
9047 /* Other fields: */
9048 inf_status->stop_stack_dummy = stop_stack_dummy;
9049 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 9050
206415a3 9051 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 9052
7a292a7a 9053 return inf_status;
c906108c
SS
9054}
9055
c906108c 9056static int
96baa820 9057restore_selected_frame (void *args)
c906108c 9058{
488f131b 9059 struct frame_id *fid = (struct frame_id *) args;
c906108c 9060 struct frame_info *frame;
c906108c 9061
101dcfbe 9062 frame = frame_find_by_id (*fid);
c906108c 9063
aa0cd9c1
AC
9064 /* If inf_status->selected_frame_id is NULL, there was no previously
9065 selected frame. */
101dcfbe 9066 if (frame == NULL)
c906108c 9067 {
8a3fe4f8 9068 warning (_("Unable to restore previously selected frame."));
c906108c
SS
9069 return 0;
9070 }
9071
0f7d239c 9072 select_frame (frame);
c906108c
SS
9073
9074 return (1);
9075}
9076
b89667eb
DE
9077/* Restore inferior session state to INF_STATUS. */
9078
c906108c 9079void
16c381f0 9080restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 9081{
4e1c45ea 9082 struct thread_info *tp = inferior_thread ();
d6b48e9c 9083 struct inferior *inf = current_inferior ();
4e1c45ea 9084
8358c15c
JK
9085 if (tp->control.step_resume_breakpoint)
9086 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9087
5b79abe7
TT
9088 if (tp->control.exception_resume_breakpoint)
9089 tp->control.exception_resume_breakpoint->disposition
9090 = disp_del_at_next_stop;
9091
d82142e2 9092 /* Handle the bpstat_copy of the chain. */
16c381f0 9093 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 9094
16c381f0
JK
9095 tp->control = inf_status->thread_control;
9096 inf->control = inf_status->inferior_control;
d82142e2
JK
9097
9098 /* Other fields: */
9099 stop_stack_dummy = inf_status->stop_stack_dummy;
9100 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 9101
b89667eb 9102 if (target_has_stack)
c906108c 9103 {
c906108c 9104 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
9105 walking the stack might encounter a garbage pointer and
9106 error() trying to dereference it. */
488f131b
JB
9107 if (catch_errors
9108 (restore_selected_frame, &inf_status->selected_frame_id,
9109 "Unable to restore previously selected frame:\n",
9110 RETURN_MASK_ERROR) == 0)
c906108c
SS
9111 /* Error in restoring the selected frame. Select the innermost
9112 frame. */
0f7d239c 9113 select_frame (get_current_frame ());
c906108c 9114 }
c906108c 9115
72cec141 9116 xfree (inf_status);
7a292a7a 9117}
c906108c 9118
74b7792f 9119static void
16c381f0 9120do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 9121{
9a3c8263 9122 restore_infcall_control_state ((struct infcall_control_state *) sts);
74b7792f
AC
9123}
9124
9125struct cleanup *
16c381f0
JK
9126make_cleanup_restore_infcall_control_state
9127 (struct infcall_control_state *inf_status)
74b7792f 9128{
16c381f0 9129 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
9130}
9131
c906108c 9132void
16c381f0 9133discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 9134{
8358c15c
JK
9135 if (inf_status->thread_control.step_resume_breakpoint)
9136 inf_status->thread_control.step_resume_breakpoint->disposition
9137 = disp_del_at_next_stop;
9138
5b79abe7
TT
9139 if (inf_status->thread_control.exception_resume_breakpoint)
9140 inf_status->thread_control.exception_resume_breakpoint->disposition
9141 = disp_del_at_next_stop;
9142
1777feb0 9143 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 9144 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 9145
72cec141 9146 xfree (inf_status);
7a292a7a 9147}
b89667eb 9148\f
ca6724c1
KB
9149/* restore_inferior_ptid() will be used by the cleanup machinery
9150 to restore the inferior_ptid value saved in a call to
9151 save_inferior_ptid(). */
ce696e05
KB
9152
9153static void
9154restore_inferior_ptid (void *arg)
9155{
9a3c8263 9156 ptid_t *saved_ptid_ptr = (ptid_t *) arg;
abbb1732 9157
ce696e05
KB
9158 inferior_ptid = *saved_ptid_ptr;
9159 xfree (arg);
9160}
9161
9162/* Save the value of inferior_ptid so that it may be restored by a
9163 later call to do_cleanups(). Returns the struct cleanup pointer
9164 needed for later doing the cleanup. */
9165
9166struct cleanup *
9167save_inferior_ptid (void)
9168{
8d749320 9169 ptid_t *saved_ptid_ptr = XNEW (ptid_t);
ce696e05 9170
ce696e05
KB
9171 *saved_ptid_ptr = inferior_ptid;
9172 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
9173}
0c557179 9174
7f89fd65 9175/* See infrun.h. */
0c557179
SDJ
9176
9177void
9178clear_exit_convenience_vars (void)
9179{
9180 clear_internalvar (lookup_internalvar ("_exitsignal"));
9181 clear_internalvar (lookup_internalvar ("_exitcode"));
9182}
c5aa993b 9183\f
488f131b 9184
b2175913
MS
9185/* User interface for reverse debugging:
9186 Set exec-direction / show exec-direction commands
9187 (returns error unless target implements to_set_exec_direction method). */
9188
170742de 9189enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
9190static const char exec_forward[] = "forward";
9191static const char exec_reverse[] = "reverse";
9192static const char *exec_direction = exec_forward;
40478521 9193static const char *const exec_direction_names[] = {
b2175913
MS
9194 exec_forward,
9195 exec_reverse,
9196 NULL
9197};
9198
9199static void
9200set_exec_direction_func (char *args, int from_tty,
9201 struct cmd_list_element *cmd)
9202{
9203 if (target_can_execute_reverse)
9204 {
9205 if (!strcmp (exec_direction, exec_forward))
9206 execution_direction = EXEC_FORWARD;
9207 else if (!strcmp (exec_direction, exec_reverse))
9208 execution_direction = EXEC_REVERSE;
9209 }
8bbed405
MS
9210 else
9211 {
9212 exec_direction = exec_forward;
9213 error (_("Target does not support this operation."));
9214 }
b2175913
MS
9215}
9216
9217static void
9218show_exec_direction_func (struct ui_file *out, int from_tty,
9219 struct cmd_list_element *cmd, const char *value)
9220{
9221 switch (execution_direction) {
9222 case EXEC_FORWARD:
9223 fprintf_filtered (out, _("Forward.\n"));
9224 break;
9225 case EXEC_REVERSE:
9226 fprintf_filtered (out, _("Reverse.\n"));
9227 break;
b2175913 9228 default:
d8b34453
PA
9229 internal_error (__FILE__, __LINE__,
9230 _("bogus execution_direction value: %d"),
9231 (int) execution_direction);
b2175913
MS
9232 }
9233}
9234
d4db2f36
PA
9235static void
9236show_schedule_multiple (struct ui_file *file, int from_tty,
9237 struct cmd_list_element *c, const char *value)
9238{
3e43a32a
MS
9239 fprintf_filtered (file, _("Resuming the execution of threads "
9240 "of all processes is %s.\n"), value);
d4db2f36 9241}
ad52ddc6 9242
22d2b532
SDJ
9243/* Implementation of `siginfo' variable. */
9244
9245static const struct internalvar_funcs siginfo_funcs =
9246{
9247 siginfo_make_value,
9248 NULL,
9249 NULL
9250};
9251
372316f1
PA
9252/* Callback for infrun's target events source. This is marked when a
9253 thread has a pending status to process. */
9254
9255static void
9256infrun_async_inferior_event_handler (gdb_client_data data)
9257{
372316f1
PA
9258 inferior_event_handler (INF_REG_EVENT, NULL);
9259}
9260
c906108c 9261void
96baa820 9262_initialize_infrun (void)
c906108c 9263{
52f0bd74
AC
9264 int i;
9265 int numsigs;
de0bea00 9266 struct cmd_list_element *c;
c906108c 9267
372316f1
PA
9268 /* Register extra event sources in the event loop. */
9269 infrun_async_inferior_event_token
9270 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9271
1bedd215
AC
9272 add_info ("signals", signals_info, _("\
9273What debugger does when program gets various signals.\n\
9274Specify a signal as argument to print info on that signal only."));
c906108c
SS
9275 add_info_alias ("handle", "signals", 0);
9276
de0bea00 9277 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9278Specify how to handle signals.\n\
486c7739 9279Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9280Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9281If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9282will be displayed instead.\n\
9283\n\
c906108c
SS
9284Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9285from 1-15 are allowed for compatibility with old versions of GDB.\n\
9286Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9287The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9288used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9289\n\
1bedd215 9290Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9291\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9292Stop means reenter debugger if this signal happens (implies print).\n\
9293Print means print a message if this signal happens.\n\
9294Pass means let program see this signal; otherwise program doesn't know.\n\
9295Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9296Pass and Stop may be combined.\n\
9297\n\
9298Multiple signals may be specified. Signal numbers and signal names\n\
9299may be interspersed with actions, with the actions being performed for\n\
9300all signals cumulatively specified."));
de0bea00 9301 set_cmd_completer (c, handle_completer);
486c7739 9302
c906108c 9303 if (!dbx_commands)
1a966eab
AC
9304 stop_command = add_cmd ("stop", class_obscure,
9305 not_just_help_class_command, _("\
9306There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9307This allows you to set a list of commands to be run each time execution\n\
1a966eab 9308of the program stops."), &cmdlist);
c906108c 9309
ccce17b0 9310 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9311Set inferior debugging."), _("\
9312Show inferior debugging."), _("\
9313When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9314 NULL,
9315 show_debug_infrun,
9316 &setdebuglist, &showdebuglist);
527159b7 9317
3e43a32a
MS
9318 add_setshow_boolean_cmd ("displaced", class_maintenance,
9319 &debug_displaced, _("\
237fc4c9
PA
9320Set displaced stepping debugging."), _("\
9321Show displaced stepping debugging."), _("\
9322When non-zero, displaced stepping specific debugging is enabled."),
9323 NULL,
9324 show_debug_displaced,
9325 &setdebuglist, &showdebuglist);
9326
ad52ddc6
PA
9327 add_setshow_boolean_cmd ("non-stop", no_class,
9328 &non_stop_1, _("\
9329Set whether gdb controls the inferior in non-stop mode."), _("\
9330Show whether gdb controls the inferior in non-stop mode."), _("\
9331When debugging a multi-threaded program and this setting is\n\
9332off (the default, also called all-stop mode), when one thread stops\n\
9333(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9334all other threads in the program while you interact with the thread of\n\
9335interest. When you continue or step a thread, you can allow the other\n\
9336threads to run, or have them remain stopped, but while you inspect any\n\
9337thread's state, all threads stop.\n\
9338\n\
9339In non-stop mode, when one thread stops, other threads can continue\n\
9340to run freely. You'll be able to step each thread independently,\n\
9341leave it stopped or free to run as needed."),
9342 set_non_stop,
9343 show_non_stop,
9344 &setlist,
9345 &showlist);
9346
a493e3e2 9347 numsigs = (int) GDB_SIGNAL_LAST;
8d749320
SM
9348 signal_stop = XNEWVEC (unsigned char, numsigs);
9349 signal_print = XNEWVEC (unsigned char, numsigs);
9350 signal_program = XNEWVEC (unsigned char, numsigs);
9351 signal_catch = XNEWVEC (unsigned char, numsigs);
9352 signal_pass = XNEWVEC (unsigned char, numsigs);
c906108c
SS
9353 for (i = 0; i < numsigs; i++)
9354 {
9355 signal_stop[i] = 1;
9356 signal_print[i] = 1;
9357 signal_program[i] = 1;
ab04a2af 9358 signal_catch[i] = 0;
c906108c
SS
9359 }
9360
4d9d9d04
PA
9361 /* Signals caused by debugger's own actions should not be given to
9362 the program afterwards.
9363
9364 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9365 explicitly specifies that it should be delivered to the target
9366 program. Typically, that would occur when a user is debugging a
9367 target monitor on a simulator: the target monitor sets a
9368 breakpoint; the simulator encounters this breakpoint and halts
9369 the simulation handing control to GDB; GDB, noting that the stop
9370 address doesn't map to any known breakpoint, returns control back
9371 to the simulator; the simulator then delivers the hardware
9372 equivalent of a GDB_SIGNAL_TRAP to the program being
9373 debugged. */
a493e3e2
PA
9374 signal_program[GDB_SIGNAL_TRAP] = 0;
9375 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9376
9377 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9378 signal_stop[GDB_SIGNAL_ALRM] = 0;
9379 signal_print[GDB_SIGNAL_ALRM] = 0;
9380 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9381 signal_print[GDB_SIGNAL_VTALRM] = 0;
9382 signal_stop[GDB_SIGNAL_PROF] = 0;
9383 signal_print[GDB_SIGNAL_PROF] = 0;
9384 signal_stop[GDB_SIGNAL_CHLD] = 0;
9385 signal_print[GDB_SIGNAL_CHLD] = 0;
9386 signal_stop[GDB_SIGNAL_IO] = 0;
9387 signal_print[GDB_SIGNAL_IO] = 0;
9388 signal_stop[GDB_SIGNAL_POLL] = 0;
9389 signal_print[GDB_SIGNAL_POLL] = 0;
9390 signal_stop[GDB_SIGNAL_URG] = 0;
9391 signal_print[GDB_SIGNAL_URG] = 0;
9392 signal_stop[GDB_SIGNAL_WINCH] = 0;
9393 signal_print[GDB_SIGNAL_WINCH] = 0;
9394 signal_stop[GDB_SIGNAL_PRIO] = 0;
9395 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9396
cd0fc7c3
SS
9397 /* These signals are used internally by user-level thread
9398 implementations. (See signal(5) on Solaris.) Like the above
9399 signals, a healthy program receives and handles them as part of
9400 its normal operation. */
a493e3e2
PA
9401 signal_stop[GDB_SIGNAL_LWP] = 0;
9402 signal_print[GDB_SIGNAL_LWP] = 0;
9403 signal_stop[GDB_SIGNAL_WAITING] = 0;
9404 signal_print[GDB_SIGNAL_WAITING] = 0;
9405 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9406 signal_print[GDB_SIGNAL_CANCEL] = 0;
cd0fc7c3 9407
2455069d
UW
9408 /* Update cached state. */
9409 signal_cache_update (-1);
9410
85c07804
AC
9411 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9412 &stop_on_solib_events, _("\
9413Set stopping for shared library events."), _("\
9414Show stopping for shared library events."), _("\
c906108c
SS
9415If nonzero, gdb will give control to the user when the dynamic linker\n\
9416notifies gdb of shared library events. The most common event of interest\n\
85c07804 9417to the user would be loading/unloading of a new library."),
f9e14852 9418 set_stop_on_solib_events,
920d2a44 9419 show_stop_on_solib_events,
85c07804 9420 &setlist, &showlist);
c906108c 9421
7ab04401
AC
9422 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9423 follow_fork_mode_kind_names,
9424 &follow_fork_mode_string, _("\
9425Set debugger response to a program call of fork or vfork."), _("\
9426Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9427A fork or vfork creates a new process. follow-fork-mode can be:\n\
9428 parent - the original process is debugged after a fork\n\
9429 child - the new process is debugged after a fork\n\
ea1dd7bc 9430The unfollowed process will continue to run.\n\
7ab04401
AC
9431By default, the debugger will follow the parent process."),
9432 NULL,
920d2a44 9433 show_follow_fork_mode_string,
7ab04401
AC
9434 &setlist, &showlist);
9435
6c95b8df
PA
9436 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9437 follow_exec_mode_names,
9438 &follow_exec_mode_string, _("\
9439Set debugger response to a program call of exec."), _("\
9440Show debugger response to a program call of exec."), _("\
9441An exec call replaces the program image of a process.\n\
9442\n\
9443follow-exec-mode can be:\n\
9444\n\
cce7e648 9445 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9446to this new inferior. The program the process was running before\n\
9447the exec call can be restarted afterwards by restarting the original\n\
9448inferior.\n\
9449\n\
9450 same - the debugger keeps the process bound to the same inferior.\n\
9451The new executable image replaces the previous executable loaded in\n\
9452the inferior. Restarting the inferior after the exec call restarts\n\
9453the executable the process was running after the exec call.\n\
9454\n\
9455By default, the debugger will use the same inferior."),
9456 NULL,
9457 show_follow_exec_mode_string,
9458 &setlist, &showlist);
9459
7ab04401
AC
9460 add_setshow_enum_cmd ("scheduler-locking", class_run,
9461 scheduler_enums, &scheduler_mode, _("\
9462Set mode for locking scheduler during execution."), _("\
9463Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9464off == no locking (threads may preempt at any time)\n\
9465on == full locking (no thread except the current thread may run)\n\
9466 This applies to both normal execution and replay mode.\n\
9467step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9468 In this mode, other threads may run during other commands.\n\
9469 This applies to both normal execution and replay mode.\n\
9470replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9471 set_schedlock_func, /* traps on target vector */
920d2a44 9472 show_scheduler_mode,
7ab04401 9473 &setlist, &showlist);
5fbbeb29 9474
d4db2f36
PA
9475 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9476Set mode for resuming threads of all processes."), _("\
9477Show mode for resuming threads of all processes."), _("\
9478When on, execution commands (such as 'continue' or 'next') resume all\n\
9479threads of all processes. When off (which is the default), execution\n\
9480commands only resume the threads of the current process. The set of\n\
9481threads that are resumed is further refined by the scheduler-locking\n\
9482mode (see help set scheduler-locking)."),
9483 NULL,
9484 show_schedule_multiple,
9485 &setlist, &showlist);
9486
5bf193a2
AC
9487 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9488Set mode of the step operation."), _("\
9489Show mode of the step operation."), _("\
9490When set, doing a step over a function without debug line information\n\
9491will stop at the first instruction of that function. Otherwise, the\n\
9492function is skipped and the step command stops at a different source line."),
9493 NULL,
920d2a44 9494 show_step_stop_if_no_debug,
5bf193a2 9495 &setlist, &showlist);
ca6724c1 9496
72d0e2c5
YQ
9497 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9498 &can_use_displaced_stepping, _("\
237fc4c9
PA
9499Set debugger's willingness to use displaced stepping."), _("\
9500Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9501If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9502supported by the target architecture. If off, gdb will not use displaced\n\
9503stepping to step over breakpoints, even if such is supported by the target\n\
9504architecture. If auto (which is the default), gdb will use displaced stepping\n\
9505if the target architecture supports it and non-stop mode is active, but will not\n\
9506use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9507 NULL,
9508 show_can_use_displaced_stepping,
9509 &setlist, &showlist);
237fc4c9 9510
b2175913
MS
9511 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9512 &exec_direction, _("Set direction of execution.\n\
9513Options are 'forward' or 'reverse'."),
9514 _("Show direction of execution (forward/reverse)."),
9515 _("Tells gdb whether to execute forward or backward."),
9516 set_exec_direction_func, show_exec_direction_func,
9517 &setlist, &showlist);
9518
6c95b8df
PA
9519 /* Set/show detach-on-fork: user-settable mode. */
9520
9521 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9522Set whether gdb will detach the child of a fork."), _("\
9523Show whether gdb will detach the child of a fork."), _("\
9524Tells gdb whether to detach the child of a fork."),
9525 NULL, NULL, &setlist, &showlist);
9526
03583c20
UW
9527 /* Set/show disable address space randomization mode. */
9528
9529 add_setshow_boolean_cmd ("disable-randomization", class_support,
9530 &disable_randomization, _("\
9531Set disabling of debuggee's virtual address space randomization."), _("\
9532Show disabling of debuggee's virtual address space randomization."), _("\
9533When this mode is on (which is the default), randomization of the virtual\n\
9534address space is disabled. Standalone programs run with the randomization\n\
9535enabled by default on some platforms."),
9536 &set_disable_randomization,
9537 &show_disable_randomization,
9538 &setlist, &showlist);
9539
ca6724c1 9540 /* ptid initializations */
ca6724c1
KB
9541 inferior_ptid = null_ptid;
9542 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
9543
9544 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 9545 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 9546 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 9547 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
9548
9549 /* Explicitly create without lookup, since that tries to create a
9550 value with a void typed value, and when we get here, gdbarch
9551 isn't initialized yet. At this point, we're quite sure there
9552 isn't another convenience variable of the same name. */
22d2b532 9553 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9554
9555 add_setshow_boolean_cmd ("observer", no_class,
9556 &observer_mode_1, _("\
9557Set whether gdb controls the inferior in observer mode."), _("\
9558Show whether gdb controls the inferior in observer mode."), _("\
9559In observer mode, GDB can get data from the inferior, but not\n\
9560affect its execution. Registers and memory may not be changed,\n\
9561breakpoints may not be set, and the program cannot be interrupted\n\
9562or signalled."),
9563 set_observer_mode,
9564 show_observer_mode,
9565 &setlist,
9566 &showlist);
c906108c 9567}
This page took 2.974812 seconds and 4 git commands to generate.