PR binutils/14444
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
0b302171 4 Copyright (C) 1986-2012 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
22#include "gdb_string.h"
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
60250e8b 27#include "exceptions.h"
c906108c 28#include "breakpoint.h"
03f2053f 29#include "gdb_wait.h"
c906108c
SS
30#include "gdbcore.h"
31#include "gdbcmd.h"
210661e7 32#include "cli/cli-script.h"
c906108c
SS
33#include "target.h"
34#include "gdbthread.h"
35#include "annotate.h"
1adeb98a 36#include "symfile.h"
7a292a7a 37#include "top.h"
c906108c 38#include <signal.h>
2acceee2 39#include "inf-loop.h"
4e052eda 40#include "regcache.h"
fd0407d6 41#include "value.h"
06600e06 42#include "observer.h"
f636b87d 43#include "language.h"
a77053c2 44#include "solib.h"
f17517ea 45#include "main.h"
186c406b
TT
46#include "dictionary.h"
47#include "block.h"
9f976b41 48#include "gdb_assert.h"
034dad6f 49#include "mi/mi-common.h"
4f8d22e3 50#include "event-top.h"
96429cc8 51#include "record.h"
edb3359d 52#include "inline-frame.h"
4efc6507 53#include "jit.h"
06cd862c 54#include "tracepoint.h"
be34f849 55#include "continuations.h"
b4a14fd0 56#include "interps.h"
1bfeeb0f 57#include "skip.h"
28106bc2
SDJ
58#include "probe.h"
59#include "objfiles.h"
c906108c
SS
60
61/* Prototypes for local functions */
62
96baa820 63static void signals_info (char *, int);
c906108c 64
96baa820 65static void handle_command (char *, int);
c906108c 66
2ea28649 67static void sig_print_info (enum gdb_signal);
c906108c 68
96baa820 69static void sig_print_header (void);
c906108c 70
74b7792f 71static void resume_cleanups (void *);
c906108c 72
96baa820 73static int hook_stop_stub (void *);
c906108c 74
96baa820
JM
75static int restore_selected_frame (void *);
76
4ef3f3be 77static int follow_fork (void);
96baa820
JM
78
79static void set_schedlock_func (char *args, int from_tty,
488f131b 80 struct cmd_list_element *c);
96baa820 81
a289b8f6
JK
82static int currently_stepping (struct thread_info *tp);
83
b3444185
PA
84static int currently_stepping_or_nexting_callback (struct thread_info *tp,
85 void *data);
a7212384 86
96baa820
JM
87static void xdb_handle_command (char *args, int from_tty);
88
6a6b96b9 89static int prepare_to_proceed (int);
ea67f13b 90
33d62d64
JK
91static void print_exited_reason (int exitstatus);
92
2ea28649 93static void print_signal_exited_reason (enum gdb_signal siggnal);
33d62d64
JK
94
95static void print_no_history_reason (void);
96
2ea28649 97static void print_signal_received_reason (enum gdb_signal siggnal);
33d62d64
JK
98
99static void print_end_stepping_range_reason (void);
100
96baa820 101void _initialize_infrun (void);
43ff13b4 102
e58b0e63
PA
103void nullify_last_target_wait_ptid (void);
104
2c03e5be 105static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
106
107static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
108
2484c66b
UW
109static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
110
5fbbeb29
CF
111/* When set, stop the 'step' command if we enter a function which has
112 no line number information. The normal behavior is that we step
113 over such function. */
114int step_stop_if_no_debug = 0;
920d2a44
AC
115static void
116show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
117 struct cmd_list_element *c, const char *value)
118{
119 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
120}
5fbbeb29 121
1777feb0 122/* In asynchronous mode, but simulating synchronous execution. */
96baa820 123
43ff13b4
JM
124int sync_execution = 0;
125
c906108c
SS
126/* wait_for_inferior and normal_stop use this to notify the user
127 when the inferior stopped in a different thread than it had been
96baa820
JM
128 running in. */
129
39f77062 130static ptid_t previous_inferior_ptid;
7a292a7a 131
6c95b8df
PA
132/* Default behavior is to detach newly forked processes (legacy). */
133int detach_fork = 1;
134
237fc4c9
PA
135int debug_displaced = 0;
136static void
137show_debug_displaced (struct ui_file *file, int from_tty,
138 struct cmd_list_element *c, const char *value)
139{
140 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
141}
142
ccce17b0 143unsigned int debug_infrun = 0;
920d2a44
AC
144static void
145show_debug_infrun (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147{
148 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
149}
527159b7 150
03583c20
UW
151
152/* Support for disabling address space randomization. */
153
154int disable_randomization = 1;
155
156static void
157show_disable_randomization (struct ui_file *file, int from_tty,
158 struct cmd_list_element *c, const char *value)
159{
160 if (target_supports_disable_randomization ())
161 fprintf_filtered (file,
162 _("Disabling randomization of debuggee's "
163 "virtual address space is %s.\n"),
164 value);
165 else
166 fputs_filtered (_("Disabling randomization of debuggee's "
167 "virtual address space is unsupported on\n"
168 "this platform.\n"), file);
169}
170
171static void
172set_disable_randomization (char *args, int from_tty,
173 struct cmd_list_element *c)
174{
175 if (!target_supports_disable_randomization ())
176 error (_("Disabling randomization of debuggee's "
177 "virtual address space is unsupported on\n"
178 "this platform."));
179}
180
181
d4f3574e
SS
182/* If the program uses ELF-style shared libraries, then calls to
183 functions in shared libraries go through stubs, which live in a
184 table called the PLT (Procedure Linkage Table). The first time the
185 function is called, the stub sends control to the dynamic linker,
186 which looks up the function's real address, patches the stub so
187 that future calls will go directly to the function, and then passes
188 control to the function.
189
190 If we are stepping at the source level, we don't want to see any of
191 this --- we just want to skip over the stub and the dynamic linker.
192 The simple approach is to single-step until control leaves the
193 dynamic linker.
194
ca557f44
AC
195 However, on some systems (e.g., Red Hat's 5.2 distribution) the
196 dynamic linker calls functions in the shared C library, so you
197 can't tell from the PC alone whether the dynamic linker is still
198 running. In this case, we use a step-resume breakpoint to get us
199 past the dynamic linker, as if we were using "next" to step over a
200 function call.
d4f3574e 201
cfd8ab24 202 in_solib_dynsym_resolve_code() says whether we're in the dynamic
d4f3574e
SS
203 linker code or not. Normally, this means we single-step. However,
204 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
205 address where we can place a step-resume breakpoint to get past the
206 linker's symbol resolution function.
207
cfd8ab24 208 in_solib_dynsym_resolve_code() can generally be implemented in a
d4f3574e
SS
209 pretty portable way, by comparing the PC against the address ranges
210 of the dynamic linker's sections.
211
212 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
213 it depends on internal details of the dynamic linker. It's usually
214 not too hard to figure out where to put a breakpoint, but it
215 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
216 sanity checking. If it can't figure things out, returning zero and
217 getting the (possibly confusing) stepping behavior is better than
218 signalling an error, which will obscure the change in the
219 inferior's state. */
c906108c 220
c906108c
SS
221/* This function returns TRUE if pc is the address of an instruction
222 that lies within the dynamic linker (such as the event hook, or the
223 dld itself).
224
225 This function must be used only when a dynamic linker event has
226 been caught, and the inferior is being stepped out of the hook, or
227 undefined results are guaranteed. */
228
229#ifndef SOLIB_IN_DYNAMIC_LINKER
230#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
231#endif
232
d914c394
SS
233/* "Observer mode" is somewhat like a more extreme version of
234 non-stop, in which all GDB operations that might affect the
235 target's execution have been disabled. */
236
237static int non_stop_1 = 0;
238
239int observer_mode = 0;
240static int observer_mode_1 = 0;
241
242static void
243set_observer_mode (char *args, int from_tty,
244 struct cmd_list_element *c)
245{
246 extern int pagination_enabled;
247
248 if (target_has_execution)
249 {
250 observer_mode_1 = observer_mode;
251 error (_("Cannot change this setting while the inferior is running."));
252 }
253
254 observer_mode = observer_mode_1;
255
256 may_write_registers = !observer_mode;
257 may_write_memory = !observer_mode;
258 may_insert_breakpoints = !observer_mode;
259 may_insert_tracepoints = !observer_mode;
260 /* We can insert fast tracepoints in or out of observer mode,
261 but enable them if we're going into this mode. */
262 if (observer_mode)
263 may_insert_fast_tracepoints = 1;
264 may_stop = !observer_mode;
265 update_target_permissions ();
266
267 /* Going *into* observer mode we must force non-stop, then
268 going out we leave it that way. */
269 if (observer_mode)
270 {
271 target_async_permitted = 1;
272 pagination_enabled = 0;
273 non_stop = non_stop_1 = 1;
274 }
275
276 if (from_tty)
277 printf_filtered (_("Observer mode is now %s.\n"),
278 (observer_mode ? "on" : "off"));
279}
280
281static void
282show_observer_mode (struct ui_file *file, int from_tty,
283 struct cmd_list_element *c, const char *value)
284{
285 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
286}
287
288/* This updates the value of observer mode based on changes in
289 permissions. Note that we are deliberately ignoring the values of
290 may-write-registers and may-write-memory, since the user may have
291 reason to enable these during a session, for instance to turn on a
292 debugging-related global. */
293
294void
295update_observer_mode (void)
296{
297 int newval;
298
299 newval = (!may_insert_breakpoints
300 && !may_insert_tracepoints
301 && may_insert_fast_tracepoints
302 && !may_stop
303 && non_stop);
304
305 /* Let the user know if things change. */
306 if (newval != observer_mode)
307 printf_filtered (_("Observer mode is now %s.\n"),
308 (newval ? "on" : "off"));
309
310 observer_mode = observer_mode_1 = newval;
311}
c2c6d25f 312
c906108c
SS
313/* Tables of how to react to signals; the user sets them. */
314
315static unsigned char *signal_stop;
316static unsigned char *signal_print;
317static unsigned char *signal_program;
318
2455069d
UW
319/* Table of signals that the target may silently handle.
320 This is automatically determined from the flags above,
321 and simply cached here. */
322static unsigned char *signal_pass;
323
c906108c
SS
324#define SET_SIGS(nsigs,sigs,flags) \
325 do { \
326 int signum = (nsigs); \
327 while (signum-- > 0) \
328 if ((sigs)[signum]) \
329 (flags)[signum] = 1; \
330 } while (0)
331
332#define UNSET_SIGS(nsigs,sigs,flags) \
333 do { \
334 int signum = (nsigs); \
335 while (signum-- > 0) \
336 if ((sigs)[signum]) \
337 (flags)[signum] = 0; \
338 } while (0)
339
9b224c5e
PA
340/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
341 this function is to avoid exporting `signal_program'. */
342
343void
344update_signals_program_target (void)
345{
a493e3e2 346 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
347}
348
1777feb0 349/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 350
edb3359d 351#define RESUME_ALL minus_one_ptid
c906108c
SS
352
353/* Command list pointer for the "stop" placeholder. */
354
355static struct cmd_list_element *stop_command;
356
c906108c
SS
357/* Function inferior was in as of last step command. */
358
359static struct symbol *step_start_function;
360
c906108c
SS
361/* Nonzero if we want to give control to the user when we're notified
362 of shared library events by the dynamic linker. */
628fe4e4 363int stop_on_solib_events;
920d2a44
AC
364static void
365show_stop_on_solib_events (struct ui_file *file, int from_tty,
366 struct cmd_list_element *c, const char *value)
367{
368 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
369 value);
370}
c906108c 371
c906108c
SS
372/* Nonzero means expecting a trace trap
373 and should stop the inferior and return silently when it happens. */
374
375int stop_after_trap;
376
642fd101
DE
377/* Save register contents here when executing a "finish" command or are
378 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
379 Thus this contains the return value from the called function (assuming
380 values are returned in a register). */
381
72cec141 382struct regcache *stop_registers;
c906108c 383
c906108c
SS
384/* Nonzero after stop if current stack frame should be printed. */
385
386static int stop_print_frame;
387
e02bc4cc 388/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
389 returned by target_wait()/deprecated_target_wait_hook(). This
390 information is returned by get_last_target_status(). */
39f77062 391static ptid_t target_last_wait_ptid;
e02bc4cc
DS
392static struct target_waitstatus target_last_waitstatus;
393
0d1e5fa7
PA
394static void context_switch (ptid_t ptid);
395
4e1c45ea 396void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7
PA
397
398void init_infwait_state (void);
a474d7c2 399
53904c9e
AC
400static const char follow_fork_mode_child[] = "child";
401static const char follow_fork_mode_parent[] = "parent";
402
40478521 403static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
404 follow_fork_mode_child,
405 follow_fork_mode_parent,
406 NULL
ef346e04 407};
c906108c 408
53904c9e 409static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
410static void
411show_follow_fork_mode_string (struct ui_file *file, int from_tty,
412 struct cmd_list_element *c, const char *value)
413{
3e43a32a
MS
414 fprintf_filtered (file,
415 _("Debugger response to a program "
416 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
417 value);
418}
c906108c
SS
419\f
420
e58b0e63
PA
421/* Tell the target to follow the fork we're stopped at. Returns true
422 if the inferior should be resumed; false, if the target for some
423 reason decided it's best not to resume. */
424
6604731b 425static int
4ef3f3be 426follow_fork (void)
c906108c 427{
ea1dd7bc 428 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
429 int should_resume = 1;
430 struct thread_info *tp;
431
432 /* Copy user stepping state to the new inferior thread. FIXME: the
433 followed fork child thread should have a copy of most of the
4e3990f4
DE
434 parent thread structure's run control related fields, not just these.
435 Initialized to avoid "may be used uninitialized" warnings from gcc. */
436 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 437 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
438 CORE_ADDR step_range_start = 0;
439 CORE_ADDR step_range_end = 0;
440 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
441
442 if (!non_stop)
443 {
444 ptid_t wait_ptid;
445 struct target_waitstatus wait_status;
446
447 /* Get the last target status returned by target_wait(). */
448 get_last_target_status (&wait_ptid, &wait_status);
449
450 /* If not stopped at a fork event, then there's nothing else to
451 do. */
452 if (wait_status.kind != TARGET_WAITKIND_FORKED
453 && wait_status.kind != TARGET_WAITKIND_VFORKED)
454 return 1;
455
456 /* Check if we switched over from WAIT_PTID, since the event was
457 reported. */
458 if (!ptid_equal (wait_ptid, minus_one_ptid)
459 && !ptid_equal (inferior_ptid, wait_ptid))
460 {
461 /* We did. Switch back to WAIT_PTID thread, to tell the
462 target to follow it (in either direction). We'll
463 afterwards refuse to resume, and inform the user what
464 happened. */
465 switch_to_thread (wait_ptid);
466 should_resume = 0;
467 }
468 }
469
470 tp = inferior_thread ();
471
472 /* If there were any forks/vforks that were caught and are now to be
473 followed, then do so now. */
474 switch (tp->pending_follow.kind)
475 {
476 case TARGET_WAITKIND_FORKED:
477 case TARGET_WAITKIND_VFORKED:
478 {
479 ptid_t parent, child;
480
481 /* If the user did a next/step, etc, over a fork call,
482 preserve the stepping state in the fork child. */
483 if (follow_child && should_resume)
484 {
8358c15c
JK
485 step_resume_breakpoint = clone_momentary_breakpoint
486 (tp->control.step_resume_breakpoint);
16c381f0
JK
487 step_range_start = tp->control.step_range_start;
488 step_range_end = tp->control.step_range_end;
489 step_frame_id = tp->control.step_frame_id;
186c406b
TT
490 exception_resume_breakpoint
491 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
e58b0e63
PA
492
493 /* For now, delete the parent's sr breakpoint, otherwise,
494 parent/child sr breakpoints are considered duplicates,
495 and the child version will not be installed. Remove
496 this when the breakpoints module becomes aware of
497 inferiors and address spaces. */
498 delete_step_resume_breakpoint (tp);
16c381f0
JK
499 tp->control.step_range_start = 0;
500 tp->control.step_range_end = 0;
501 tp->control.step_frame_id = null_frame_id;
186c406b 502 delete_exception_resume_breakpoint (tp);
e58b0e63
PA
503 }
504
505 parent = inferior_ptid;
506 child = tp->pending_follow.value.related_pid;
507
508 /* Tell the target to do whatever is necessary to follow
509 either parent or child. */
510 if (target_follow_fork (follow_child))
511 {
512 /* Target refused to follow, or there's some other reason
513 we shouldn't resume. */
514 should_resume = 0;
515 }
516 else
517 {
518 /* This pending follow fork event is now handled, one way
519 or another. The previous selected thread may be gone
520 from the lists by now, but if it is still around, need
521 to clear the pending follow request. */
e09875d4 522 tp = find_thread_ptid (parent);
e58b0e63
PA
523 if (tp)
524 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
525
526 /* This makes sure we don't try to apply the "Switched
527 over from WAIT_PID" logic above. */
528 nullify_last_target_wait_ptid ();
529
1777feb0 530 /* If we followed the child, switch to it... */
e58b0e63
PA
531 if (follow_child)
532 {
533 switch_to_thread (child);
534
535 /* ... and preserve the stepping state, in case the
536 user was stepping over the fork call. */
537 if (should_resume)
538 {
539 tp = inferior_thread ();
8358c15c
JK
540 tp->control.step_resume_breakpoint
541 = step_resume_breakpoint;
16c381f0
JK
542 tp->control.step_range_start = step_range_start;
543 tp->control.step_range_end = step_range_end;
544 tp->control.step_frame_id = step_frame_id;
186c406b
TT
545 tp->control.exception_resume_breakpoint
546 = exception_resume_breakpoint;
e58b0e63
PA
547 }
548 else
549 {
550 /* If we get here, it was because we're trying to
551 resume from a fork catchpoint, but, the user
552 has switched threads away from the thread that
553 forked. In that case, the resume command
554 issued is most likely not applicable to the
555 child, so just warn, and refuse to resume. */
3e43a32a
MS
556 warning (_("Not resuming: switched threads "
557 "before following fork child.\n"));
e58b0e63
PA
558 }
559
560 /* Reset breakpoints in the child as appropriate. */
561 follow_inferior_reset_breakpoints ();
562 }
563 else
564 switch_to_thread (parent);
565 }
566 }
567 break;
568 case TARGET_WAITKIND_SPURIOUS:
569 /* Nothing to follow. */
570 break;
571 default:
572 internal_error (__FILE__, __LINE__,
573 "Unexpected pending_follow.kind %d\n",
574 tp->pending_follow.kind);
575 break;
576 }
c906108c 577
e58b0e63 578 return should_resume;
c906108c
SS
579}
580
6604731b
DJ
581void
582follow_inferior_reset_breakpoints (void)
c906108c 583{
4e1c45ea
PA
584 struct thread_info *tp = inferior_thread ();
585
6604731b
DJ
586 /* Was there a step_resume breakpoint? (There was if the user
587 did a "next" at the fork() call.) If so, explicitly reset its
588 thread number.
589
590 step_resumes are a form of bp that are made to be per-thread.
591 Since we created the step_resume bp when the parent process
592 was being debugged, and now are switching to the child process,
593 from the breakpoint package's viewpoint, that's a switch of
594 "threads". We must update the bp's notion of which thread
595 it is for, or it'll be ignored when it triggers. */
596
8358c15c
JK
597 if (tp->control.step_resume_breakpoint)
598 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
6604731b 599
186c406b
TT
600 if (tp->control.exception_resume_breakpoint)
601 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
602
6604731b
DJ
603 /* Reinsert all breakpoints in the child. The user may have set
604 breakpoints after catching the fork, in which case those
605 were never set in the child, but only in the parent. This makes
606 sure the inserted breakpoints match the breakpoint list. */
607
608 breakpoint_re_set ();
609 insert_breakpoints ();
c906108c 610}
c906108c 611
6c95b8df
PA
612/* The child has exited or execed: resume threads of the parent the
613 user wanted to be executing. */
614
615static int
616proceed_after_vfork_done (struct thread_info *thread,
617 void *arg)
618{
619 int pid = * (int *) arg;
620
621 if (ptid_get_pid (thread->ptid) == pid
622 && is_running (thread->ptid)
623 && !is_executing (thread->ptid)
624 && !thread->stop_requested
a493e3e2 625 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
626 {
627 if (debug_infrun)
628 fprintf_unfiltered (gdb_stdlog,
629 "infrun: resuming vfork parent thread %s\n",
630 target_pid_to_str (thread->ptid));
631
632 switch_to_thread (thread->ptid);
633 clear_proceed_status ();
a493e3e2 634 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
6c95b8df
PA
635 }
636
637 return 0;
638}
639
640/* Called whenever we notice an exec or exit event, to handle
641 detaching or resuming a vfork parent. */
642
643static void
644handle_vfork_child_exec_or_exit (int exec)
645{
646 struct inferior *inf = current_inferior ();
647
648 if (inf->vfork_parent)
649 {
650 int resume_parent = -1;
651
652 /* This exec or exit marks the end of the shared memory region
653 between the parent and the child. If the user wanted to
654 detach from the parent, now is the time. */
655
656 if (inf->vfork_parent->pending_detach)
657 {
658 struct thread_info *tp;
659 struct cleanup *old_chain;
660 struct program_space *pspace;
661 struct address_space *aspace;
662
1777feb0 663 /* follow-fork child, detach-on-fork on. */
6c95b8df
PA
664
665 old_chain = make_cleanup_restore_current_thread ();
666
667 /* We're letting loose of the parent. */
668 tp = any_live_thread_of_process (inf->vfork_parent->pid);
669 switch_to_thread (tp->ptid);
670
671 /* We're about to detach from the parent, which implicitly
672 removes breakpoints from its address space. There's a
673 catch here: we want to reuse the spaces for the child,
674 but, parent/child are still sharing the pspace at this
675 point, although the exec in reality makes the kernel give
676 the child a fresh set of new pages. The problem here is
677 that the breakpoints module being unaware of this, would
678 likely chose the child process to write to the parent
679 address space. Swapping the child temporarily away from
680 the spaces has the desired effect. Yes, this is "sort
681 of" a hack. */
682
683 pspace = inf->pspace;
684 aspace = inf->aspace;
685 inf->aspace = NULL;
686 inf->pspace = NULL;
687
688 if (debug_infrun || info_verbose)
689 {
690 target_terminal_ours ();
691
692 if (exec)
693 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
694 "Detaching vfork parent process "
695 "%d after child exec.\n",
6c95b8df
PA
696 inf->vfork_parent->pid);
697 else
698 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
699 "Detaching vfork parent process "
700 "%d after child exit.\n",
6c95b8df
PA
701 inf->vfork_parent->pid);
702 }
703
704 target_detach (NULL, 0);
705
706 /* Put it back. */
707 inf->pspace = pspace;
708 inf->aspace = aspace;
709
710 do_cleanups (old_chain);
711 }
712 else if (exec)
713 {
714 /* We're staying attached to the parent, so, really give the
715 child a new address space. */
716 inf->pspace = add_program_space (maybe_new_address_space ());
717 inf->aspace = inf->pspace->aspace;
718 inf->removable = 1;
719 set_current_program_space (inf->pspace);
720
721 resume_parent = inf->vfork_parent->pid;
722
723 /* Break the bonds. */
724 inf->vfork_parent->vfork_child = NULL;
725 }
726 else
727 {
728 struct cleanup *old_chain;
729 struct program_space *pspace;
730
731 /* If this is a vfork child exiting, then the pspace and
732 aspaces were shared with the parent. Since we're
733 reporting the process exit, we'll be mourning all that is
734 found in the address space, and switching to null_ptid,
735 preparing to start a new inferior. But, since we don't
736 want to clobber the parent's address/program spaces, we
737 go ahead and create a new one for this exiting
738 inferior. */
739
740 /* Switch to null_ptid, so that clone_program_space doesn't want
741 to read the selected frame of a dead process. */
742 old_chain = save_inferior_ptid ();
743 inferior_ptid = null_ptid;
744
745 /* This inferior is dead, so avoid giving the breakpoints
746 module the option to write through to it (cloning a
747 program space resets breakpoints). */
748 inf->aspace = NULL;
749 inf->pspace = NULL;
750 pspace = add_program_space (maybe_new_address_space ());
751 set_current_program_space (pspace);
752 inf->removable = 1;
7dcd53a0 753 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
754 clone_program_space (pspace, inf->vfork_parent->pspace);
755 inf->pspace = pspace;
756 inf->aspace = pspace->aspace;
757
758 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 759 inferior. */
6c95b8df
PA
760 do_cleanups (old_chain);
761
762 resume_parent = inf->vfork_parent->pid;
763 /* Break the bonds. */
764 inf->vfork_parent->vfork_child = NULL;
765 }
766
767 inf->vfork_parent = NULL;
768
769 gdb_assert (current_program_space == inf->pspace);
770
771 if (non_stop && resume_parent != -1)
772 {
773 /* If the user wanted the parent to be running, let it go
774 free now. */
775 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
776
777 if (debug_infrun)
3e43a32a
MS
778 fprintf_unfiltered (gdb_stdlog,
779 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
780 resume_parent);
781
782 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
783
784 do_cleanups (old_chain);
785 }
786 }
787}
788
789/* Enum strings for "set|show displaced-stepping". */
790
791static const char follow_exec_mode_new[] = "new";
792static const char follow_exec_mode_same[] = "same";
40478521 793static const char *const follow_exec_mode_names[] =
6c95b8df
PA
794{
795 follow_exec_mode_new,
796 follow_exec_mode_same,
797 NULL,
798};
799
800static const char *follow_exec_mode_string = follow_exec_mode_same;
801static void
802show_follow_exec_mode_string (struct ui_file *file, int from_tty,
803 struct cmd_list_element *c, const char *value)
804{
805 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
806}
807
1777feb0 808/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 809
c906108c 810static void
3a3e9ee3 811follow_exec (ptid_t pid, char *execd_pathname)
c906108c 812{
4e1c45ea 813 struct thread_info *th = inferior_thread ();
6c95b8df 814 struct inferior *inf = current_inferior ();
7a292a7a 815
c906108c
SS
816 /* This is an exec event that we actually wish to pay attention to.
817 Refresh our symbol table to the newly exec'd program, remove any
818 momentary bp's, etc.
819
820 If there are breakpoints, they aren't really inserted now,
821 since the exec() transformed our inferior into a fresh set
822 of instructions.
823
824 We want to preserve symbolic breakpoints on the list, since
825 we have hopes that they can be reset after the new a.out's
826 symbol table is read.
827
828 However, any "raw" breakpoints must be removed from the list
829 (e.g., the solib bp's), since their address is probably invalid
830 now.
831
832 And, we DON'T want to call delete_breakpoints() here, since
833 that may write the bp's "shadow contents" (the instruction
834 value that was overwritten witha TRAP instruction). Since
1777feb0 835 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
836
837 mark_breakpoints_out ();
838
c906108c
SS
839 update_breakpoints_after_exec ();
840
841 /* If there was one, it's gone now. We cannot truly step-to-next
1777feb0 842 statement through an exec(). */
8358c15c 843 th->control.step_resume_breakpoint = NULL;
186c406b 844 th->control.exception_resume_breakpoint = NULL;
16c381f0
JK
845 th->control.step_range_start = 0;
846 th->control.step_range_end = 0;
c906108c 847
a75724bc
PA
848 /* The target reports the exec event to the main thread, even if
849 some other thread does the exec, and even if the main thread was
850 already stopped --- if debugging in non-stop mode, it's possible
851 the user had the main thread held stopped in the previous image
852 --- release it now. This is the same behavior as step-over-exec
853 with scheduler-locking on in all-stop mode. */
854 th->stop_requested = 0;
855
1777feb0 856 /* What is this a.out's name? */
6c95b8df
PA
857 printf_unfiltered (_("%s is executing new program: %s\n"),
858 target_pid_to_str (inferior_ptid),
859 execd_pathname);
c906108c
SS
860
861 /* We've followed the inferior through an exec. Therefore, the
1777feb0 862 inferior has essentially been killed & reborn. */
7a292a7a 863
c906108c 864 gdb_flush (gdb_stdout);
6ca15a4b
PA
865
866 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
867
868 if (gdb_sysroot && *gdb_sysroot)
869 {
870 char *name = alloca (strlen (gdb_sysroot)
871 + strlen (execd_pathname)
872 + 1);
abbb1732 873
e85a822c
DJ
874 strcpy (name, gdb_sysroot);
875 strcat (name, execd_pathname);
876 execd_pathname = name;
877 }
c906108c 878
cce9b6bf
PA
879 /* Reset the shared library package. This ensures that we get a
880 shlib event when the child reaches "_start", at which point the
881 dld will have had a chance to initialize the child. */
882 /* Also, loading a symbol file below may trigger symbol lookups, and
883 we don't want those to be satisfied by the libraries of the
884 previous incarnation of this process. */
885 no_shared_libraries (NULL, 0);
886
6c95b8df
PA
887 if (follow_exec_mode_string == follow_exec_mode_new)
888 {
889 struct program_space *pspace;
6c95b8df
PA
890
891 /* The user wants to keep the old inferior and program spaces
892 around. Create a new fresh one, and switch to it. */
893
894 inf = add_inferior (current_inferior ()->pid);
895 pspace = add_program_space (maybe_new_address_space ());
896 inf->pspace = pspace;
897 inf->aspace = pspace->aspace;
898
899 exit_inferior_num_silent (current_inferior ()->num);
900
901 set_current_inferior (inf);
902 set_current_program_space (pspace);
903 }
904
905 gdb_assert (current_program_space == inf->pspace);
906
1777feb0 907 /* That a.out is now the one to use. */
6c95b8df
PA
908 exec_file_attach (execd_pathname, 0);
909
c1e56572
JK
910 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
911 (Position Independent Executable) main symbol file will get applied by
912 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
913 the breakpoints with the zero displacement. */
914
7dcd53a0
TT
915 symbol_file_add (execd_pathname,
916 (inf->symfile_flags
917 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
918 NULL, 0);
919
7dcd53a0
TT
920 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
921 set_initial_language ();
c906108c 922
7a292a7a 923#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 924 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2 925#else
268a4a75 926 solib_create_inferior_hook (0);
7a292a7a 927#endif
c906108c 928
4efc6507
DE
929 jit_inferior_created_hook ();
930
c1e56572
JK
931 breakpoint_re_set ();
932
c906108c
SS
933 /* Reinsert all breakpoints. (Those which were symbolic have
934 been reset to the proper address in the new a.out, thanks
1777feb0 935 to symbol_file_command...). */
c906108c
SS
936 insert_breakpoints ();
937
938 /* The next resume of this inferior should bring it to the shlib
939 startup breakpoints. (If the user had also set bp's on
940 "main" from the old (parent) process, then they'll auto-
1777feb0 941 matically get reset there in the new process.). */
c906108c
SS
942}
943
944/* Non-zero if we just simulating a single-step. This is needed
945 because we cannot remove the breakpoints in the inferior process
946 until after the `wait' in `wait_for_inferior'. */
947static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
948
949/* The thread we inserted single-step breakpoints for. */
950static ptid_t singlestep_ptid;
951
fd48f117
DJ
952/* PC when we started this single-step. */
953static CORE_ADDR singlestep_pc;
954
9f976b41
DJ
955/* If another thread hit the singlestep breakpoint, we save the original
956 thread here so that we can resume single-stepping it later. */
957static ptid_t saved_singlestep_ptid;
958static int stepping_past_singlestep_breakpoint;
6a6b96b9 959
ca67fcb8
VP
960/* If not equal to null_ptid, this means that after stepping over breakpoint
961 is finished, we need to switch to deferred_step_ptid, and step it.
962
963 The use case is when one thread has hit a breakpoint, and then the user
1777feb0 964 has switched to another thread and issued 'step'. We need to step over
ca67fcb8
VP
965 breakpoint in the thread which hit the breakpoint, but then continue
966 stepping the thread user has selected. */
967static ptid_t deferred_step_ptid;
c906108c 968\f
237fc4c9
PA
969/* Displaced stepping. */
970
971/* In non-stop debugging mode, we must take special care to manage
972 breakpoints properly; in particular, the traditional strategy for
973 stepping a thread past a breakpoint it has hit is unsuitable.
974 'Displaced stepping' is a tactic for stepping one thread past a
975 breakpoint it has hit while ensuring that other threads running
976 concurrently will hit the breakpoint as they should.
977
978 The traditional way to step a thread T off a breakpoint in a
979 multi-threaded program in all-stop mode is as follows:
980
981 a0) Initially, all threads are stopped, and breakpoints are not
982 inserted.
983 a1) We single-step T, leaving breakpoints uninserted.
984 a2) We insert breakpoints, and resume all threads.
985
986 In non-stop debugging, however, this strategy is unsuitable: we
987 don't want to have to stop all threads in the system in order to
988 continue or step T past a breakpoint. Instead, we use displaced
989 stepping:
990
991 n0) Initially, T is stopped, other threads are running, and
992 breakpoints are inserted.
993 n1) We copy the instruction "under" the breakpoint to a separate
994 location, outside the main code stream, making any adjustments
995 to the instruction, register, and memory state as directed by
996 T's architecture.
997 n2) We single-step T over the instruction at its new location.
998 n3) We adjust the resulting register and memory state as directed
999 by T's architecture. This includes resetting T's PC to point
1000 back into the main instruction stream.
1001 n4) We resume T.
1002
1003 This approach depends on the following gdbarch methods:
1004
1005 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1006 indicate where to copy the instruction, and how much space must
1007 be reserved there. We use these in step n1.
1008
1009 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1010 address, and makes any necessary adjustments to the instruction,
1011 register contents, and memory. We use this in step n1.
1012
1013 - gdbarch_displaced_step_fixup adjusts registers and memory after
1014 we have successfuly single-stepped the instruction, to yield the
1015 same effect the instruction would have had if we had executed it
1016 at its original address. We use this in step n3.
1017
1018 - gdbarch_displaced_step_free_closure provides cleanup.
1019
1020 The gdbarch_displaced_step_copy_insn and
1021 gdbarch_displaced_step_fixup functions must be written so that
1022 copying an instruction with gdbarch_displaced_step_copy_insn,
1023 single-stepping across the copied instruction, and then applying
1024 gdbarch_displaced_insn_fixup should have the same effects on the
1025 thread's memory and registers as stepping the instruction in place
1026 would have. Exactly which responsibilities fall to the copy and
1027 which fall to the fixup is up to the author of those functions.
1028
1029 See the comments in gdbarch.sh for details.
1030
1031 Note that displaced stepping and software single-step cannot
1032 currently be used in combination, although with some care I think
1033 they could be made to. Software single-step works by placing
1034 breakpoints on all possible subsequent instructions; if the
1035 displaced instruction is a PC-relative jump, those breakpoints
1036 could fall in very strange places --- on pages that aren't
1037 executable, or at addresses that are not proper instruction
1038 boundaries. (We do generally let other threads run while we wait
1039 to hit the software single-step breakpoint, and they might
1040 encounter such a corrupted instruction.) One way to work around
1041 this would be to have gdbarch_displaced_step_copy_insn fully
1042 simulate the effect of PC-relative instructions (and return NULL)
1043 on architectures that use software single-stepping.
1044
1045 In non-stop mode, we can have independent and simultaneous step
1046 requests, so more than one thread may need to simultaneously step
1047 over a breakpoint. The current implementation assumes there is
1048 only one scratch space per process. In this case, we have to
1049 serialize access to the scratch space. If thread A wants to step
1050 over a breakpoint, but we are currently waiting for some other
1051 thread to complete a displaced step, we leave thread A stopped and
1052 place it in the displaced_step_request_queue. Whenever a displaced
1053 step finishes, we pick the next thread in the queue and start a new
1054 displaced step operation on it. See displaced_step_prepare and
1055 displaced_step_fixup for details. */
1056
237fc4c9
PA
1057struct displaced_step_request
1058{
1059 ptid_t ptid;
1060 struct displaced_step_request *next;
1061};
1062
fc1cf338
PA
1063/* Per-inferior displaced stepping state. */
1064struct displaced_step_inferior_state
1065{
1066 /* Pointer to next in linked list. */
1067 struct displaced_step_inferior_state *next;
1068
1069 /* The process this displaced step state refers to. */
1070 int pid;
1071
1072 /* A queue of pending displaced stepping requests. One entry per
1073 thread that needs to do a displaced step. */
1074 struct displaced_step_request *step_request_queue;
1075
1076 /* If this is not null_ptid, this is the thread carrying out a
1077 displaced single-step in process PID. This thread's state will
1078 require fixing up once it has completed its step. */
1079 ptid_t step_ptid;
1080
1081 /* The architecture the thread had when we stepped it. */
1082 struct gdbarch *step_gdbarch;
1083
1084 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1085 for post-step cleanup. */
1086 struct displaced_step_closure *step_closure;
1087
1088 /* The address of the original instruction, and the copy we
1089 made. */
1090 CORE_ADDR step_original, step_copy;
1091
1092 /* Saved contents of copy area. */
1093 gdb_byte *step_saved_copy;
1094};
1095
1096/* The list of states of processes involved in displaced stepping
1097 presently. */
1098static struct displaced_step_inferior_state *displaced_step_inferior_states;
1099
1100/* Get the displaced stepping state of process PID. */
1101
1102static struct displaced_step_inferior_state *
1103get_displaced_stepping_state (int pid)
1104{
1105 struct displaced_step_inferior_state *state;
1106
1107 for (state = displaced_step_inferior_states;
1108 state != NULL;
1109 state = state->next)
1110 if (state->pid == pid)
1111 return state;
1112
1113 return NULL;
1114}
1115
1116/* Add a new displaced stepping state for process PID to the displaced
1117 stepping state list, or return a pointer to an already existing
1118 entry, if it already exists. Never returns NULL. */
1119
1120static struct displaced_step_inferior_state *
1121add_displaced_stepping_state (int pid)
1122{
1123 struct displaced_step_inferior_state *state;
1124
1125 for (state = displaced_step_inferior_states;
1126 state != NULL;
1127 state = state->next)
1128 if (state->pid == pid)
1129 return state;
237fc4c9 1130
fc1cf338
PA
1131 state = xcalloc (1, sizeof (*state));
1132 state->pid = pid;
1133 state->next = displaced_step_inferior_states;
1134 displaced_step_inferior_states = state;
237fc4c9 1135
fc1cf338
PA
1136 return state;
1137}
1138
a42244db
YQ
1139/* If inferior is in displaced stepping, and ADDR equals to starting address
1140 of copy area, return corresponding displaced_step_closure. Otherwise,
1141 return NULL. */
1142
1143struct displaced_step_closure*
1144get_displaced_step_closure_by_addr (CORE_ADDR addr)
1145{
1146 struct displaced_step_inferior_state *displaced
1147 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1148
1149 /* If checking the mode of displaced instruction in copy area. */
1150 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1151 && (displaced->step_copy == addr))
1152 return displaced->step_closure;
1153
1154 return NULL;
1155}
1156
fc1cf338 1157/* Remove the displaced stepping state of process PID. */
237fc4c9 1158
fc1cf338
PA
1159static void
1160remove_displaced_stepping_state (int pid)
1161{
1162 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1163
fc1cf338
PA
1164 gdb_assert (pid != 0);
1165
1166 it = displaced_step_inferior_states;
1167 prev_next_p = &displaced_step_inferior_states;
1168 while (it)
1169 {
1170 if (it->pid == pid)
1171 {
1172 *prev_next_p = it->next;
1173 xfree (it);
1174 return;
1175 }
1176
1177 prev_next_p = &it->next;
1178 it = *prev_next_p;
1179 }
1180}
1181
1182static void
1183infrun_inferior_exit (struct inferior *inf)
1184{
1185 remove_displaced_stepping_state (inf->pid);
1186}
237fc4c9 1187
fff08868
HZ
1188/* If ON, and the architecture supports it, GDB will use displaced
1189 stepping to step over breakpoints. If OFF, or if the architecture
1190 doesn't support it, GDB will instead use the traditional
1191 hold-and-step approach. If AUTO (which is the default), GDB will
1192 decide which technique to use to step over breakpoints depending on
1193 which of all-stop or non-stop mode is active --- displaced stepping
1194 in non-stop mode; hold-and-step in all-stop mode. */
1195
72d0e2c5 1196static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1197
237fc4c9
PA
1198static void
1199show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1200 struct cmd_list_element *c,
1201 const char *value)
1202{
72d0e2c5 1203 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1204 fprintf_filtered (file,
1205 _("Debugger's willingness to use displaced stepping "
1206 "to step over breakpoints is %s (currently %s).\n"),
fff08868
HZ
1207 value, non_stop ? "on" : "off");
1208 else
3e43a32a
MS
1209 fprintf_filtered (file,
1210 _("Debugger's willingness to use displaced stepping "
1211 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1212}
1213
fff08868
HZ
1214/* Return non-zero if displaced stepping can/should be used to step
1215 over breakpoints. */
1216
237fc4c9
PA
1217static int
1218use_displaced_stepping (struct gdbarch *gdbarch)
1219{
72d0e2c5
YQ
1220 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1221 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8
HZ
1222 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1223 && !RECORD_IS_USED);
237fc4c9
PA
1224}
1225
1226/* Clean out any stray displaced stepping state. */
1227static void
fc1cf338 1228displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1229{
1230 /* Indicate that there is no cleanup pending. */
fc1cf338 1231 displaced->step_ptid = null_ptid;
237fc4c9 1232
fc1cf338 1233 if (displaced->step_closure)
237fc4c9 1234 {
fc1cf338
PA
1235 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1236 displaced->step_closure);
1237 displaced->step_closure = NULL;
237fc4c9
PA
1238 }
1239}
1240
1241static void
fc1cf338 1242displaced_step_clear_cleanup (void *arg)
237fc4c9 1243{
fc1cf338
PA
1244 struct displaced_step_inferior_state *state = arg;
1245
1246 displaced_step_clear (state);
237fc4c9
PA
1247}
1248
1249/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1250void
1251displaced_step_dump_bytes (struct ui_file *file,
1252 const gdb_byte *buf,
1253 size_t len)
1254{
1255 int i;
1256
1257 for (i = 0; i < len; i++)
1258 fprintf_unfiltered (file, "%02x ", buf[i]);
1259 fputs_unfiltered ("\n", file);
1260}
1261
1262/* Prepare to single-step, using displaced stepping.
1263
1264 Note that we cannot use displaced stepping when we have a signal to
1265 deliver. If we have a signal to deliver and an instruction to step
1266 over, then after the step, there will be no indication from the
1267 target whether the thread entered a signal handler or ignored the
1268 signal and stepped over the instruction successfully --- both cases
1269 result in a simple SIGTRAP. In the first case we mustn't do a
1270 fixup, and in the second case we must --- but we can't tell which.
1271 Comments in the code for 'random signals' in handle_inferior_event
1272 explain how we handle this case instead.
1273
1274 Returns 1 if preparing was successful -- this thread is going to be
1275 stepped now; or 0 if displaced stepping this thread got queued. */
1276static int
1277displaced_step_prepare (ptid_t ptid)
1278{
ad53cd71 1279 struct cleanup *old_cleanups, *ignore_cleanups;
237fc4c9
PA
1280 struct regcache *regcache = get_thread_regcache (ptid);
1281 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1282 CORE_ADDR original, copy;
1283 ULONGEST len;
1284 struct displaced_step_closure *closure;
fc1cf338 1285 struct displaced_step_inferior_state *displaced;
9e529e1d 1286 int status;
237fc4c9
PA
1287
1288 /* We should never reach this function if the architecture does not
1289 support displaced stepping. */
1290 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1291
fc1cf338
PA
1292 /* We have to displaced step one thread at a time, as we only have
1293 access to a single scratch space per inferior. */
237fc4c9 1294
fc1cf338
PA
1295 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1296
1297 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1298 {
1299 /* Already waiting for a displaced step to finish. Defer this
1300 request and place in queue. */
1301 struct displaced_step_request *req, *new_req;
1302
1303 if (debug_displaced)
1304 fprintf_unfiltered (gdb_stdlog,
1305 "displaced: defering step of %s\n",
1306 target_pid_to_str (ptid));
1307
1308 new_req = xmalloc (sizeof (*new_req));
1309 new_req->ptid = ptid;
1310 new_req->next = NULL;
1311
fc1cf338 1312 if (displaced->step_request_queue)
237fc4c9 1313 {
fc1cf338 1314 for (req = displaced->step_request_queue;
237fc4c9
PA
1315 req && req->next;
1316 req = req->next)
1317 ;
1318 req->next = new_req;
1319 }
1320 else
fc1cf338 1321 displaced->step_request_queue = new_req;
237fc4c9
PA
1322
1323 return 0;
1324 }
1325 else
1326 {
1327 if (debug_displaced)
1328 fprintf_unfiltered (gdb_stdlog,
1329 "displaced: stepping %s now\n",
1330 target_pid_to_str (ptid));
1331 }
1332
fc1cf338 1333 displaced_step_clear (displaced);
237fc4c9 1334
ad53cd71
PA
1335 old_cleanups = save_inferior_ptid ();
1336 inferior_ptid = ptid;
1337
515630c5 1338 original = regcache_read_pc (regcache);
237fc4c9
PA
1339
1340 copy = gdbarch_displaced_step_location (gdbarch);
1341 len = gdbarch_max_insn_length (gdbarch);
1342
1343 /* Save the original contents of the copy area. */
fc1cf338 1344 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1345 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1346 &displaced->step_saved_copy);
9e529e1d
JK
1347 status = target_read_memory (copy, displaced->step_saved_copy, len);
1348 if (status != 0)
1349 throw_error (MEMORY_ERROR,
1350 _("Error accessing memory address %s (%s) for "
1351 "displaced-stepping scratch space."),
1352 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1353 if (debug_displaced)
1354 {
5af949e3
UW
1355 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1356 paddress (gdbarch, copy));
fc1cf338
PA
1357 displaced_step_dump_bytes (gdb_stdlog,
1358 displaced->step_saved_copy,
1359 len);
237fc4c9
PA
1360 };
1361
1362 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1363 original, copy, regcache);
237fc4c9
PA
1364
1365 /* We don't support the fully-simulated case at present. */
1366 gdb_assert (closure);
1367
9f5a595d
UW
1368 /* Save the information we need to fix things up if the step
1369 succeeds. */
fc1cf338
PA
1370 displaced->step_ptid = ptid;
1371 displaced->step_gdbarch = gdbarch;
1372 displaced->step_closure = closure;
1373 displaced->step_original = original;
1374 displaced->step_copy = copy;
9f5a595d 1375
fc1cf338 1376 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1377
1378 /* Resume execution at the copy. */
515630c5 1379 regcache_write_pc (regcache, copy);
237fc4c9 1380
ad53cd71
PA
1381 discard_cleanups (ignore_cleanups);
1382
1383 do_cleanups (old_cleanups);
237fc4c9
PA
1384
1385 if (debug_displaced)
5af949e3
UW
1386 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1387 paddress (gdbarch, copy));
237fc4c9 1388
237fc4c9
PA
1389 return 1;
1390}
1391
237fc4c9 1392static void
3e43a32a
MS
1393write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1394 const gdb_byte *myaddr, int len)
237fc4c9
PA
1395{
1396 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1397
237fc4c9
PA
1398 inferior_ptid = ptid;
1399 write_memory (memaddr, myaddr, len);
1400 do_cleanups (ptid_cleanup);
1401}
1402
e2d96639
YQ
1403/* Restore the contents of the copy area for thread PTID. */
1404
1405static void
1406displaced_step_restore (struct displaced_step_inferior_state *displaced,
1407 ptid_t ptid)
1408{
1409 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1410
1411 write_memory_ptid (ptid, displaced->step_copy,
1412 displaced->step_saved_copy, len);
1413 if (debug_displaced)
1414 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1415 target_pid_to_str (ptid),
1416 paddress (displaced->step_gdbarch,
1417 displaced->step_copy));
1418}
1419
237fc4c9 1420static void
2ea28649 1421displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1422{
1423 struct cleanup *old_cleanups;
fc1cf338
PA
1424 struct displaced_step_inferior_state *displaced
1425 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1426
1427 /* Was any thread of this process doing a displaced step? */
1428 if (displaced == NULL)
1429 return;
237fc4c9
PA
1430
1431 /* Was this event for the pid we displaced? */
fc1cf338
PA
1432 if (ptid_equal (displaced->step_ptid, null_ptid)
1433 || ! ptid_equal (displaced->step_ptid, event_ptid))
237fc4c9
PA
1434 return;
1435
fc1cf338 1436 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1437
e2d96639 1438 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9
PA
1439
1440 /* Did the instruction complete successfully? */
a493e3e2 1441 if (signal == GDB_SIGNAL_TRAP)
237fc4c9
PA
1442 {
1443 /* Fix up the resulting state. */
fc1cf338
PA
1444 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1445 displaced->step_closure,
1446 displaced->step_original,
1447 displaced->step_copy,
1448 get_thread_regcache (displaced->step_ptid));
237fc4c9
PA
1449 }
1450 else
1451 {
1452 /* Since the instruction didn't complete, all we can do is
1453 relocate the PC. */
515630c5
UW
1454 struct regcache *regcache = get_thread_regcache (event_ptid);
1455 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1456
fc1cf338 1457 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1458 regcache_write_pc (regcache, pc);
237fc4c9
PA
1459 }
1460
1461 do_cleanups (old_cleanups);
1462
fc1cf338 1463 displaced->step_ptid = null_ptid;
1c5cfe86 1464
237fc4c9 1465 /* Are there any pending displaced stepping requests? If so, run
fc1cf338
PA
1466 one now. Leave the state object around, since we're likely to
1467 need it again soon. */
1468 while (displaced->step_request_queue)
237fc4c9
PA
1469 {
1470 struct displaced_step_request *head;
1471 ptid_t ptid;
5af949e3 1472 struct regcache *regcache;
929dfd4f 1473 struct gdbarch *gdbarch;
1c5cfe86 1474 CORE_ADDR actual_pc;
6c95b8df 1475 struct address_space *aspace;
237fc4c9 1476
fc1cf338 1477 head = displaced->step_request_queue;
237fc4c9 1478 ptid = head->ptid;
fc1cf338 1479 displaced->step_request_queue = head->next;
237fc4c9
PA
1480 xfree (head);
1481
ad53cd71
PA
1482 context_switch (ptid);
1483
5af949e3
UW
1484 regcache = get_thread_regcache (ptid);
1485 actual_pc = regcache_read_pc (regcache);
6c95b8df 1486 aspace = get_regcache_aspace (regcache);
1c5cfe86 1487
6c95b8df 1488 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1489 {
1c5cfe86
PA
1490 if (debug_displaced)
1491 fprintf_unfiltered (gdb_stdlog,
1492 "displaced: stepping queued %s now\n",
1493 target_pid_to_str (ptid));
1494
1495 displaced_step_prepare (ptid);
1496
929dfd4f
JB
1497 gdbarch = get_regcache_arch (regcache);
1498
1c5cfe86
PA
1499 if (debug_displaced)
1500 {
929dfd4f 1501 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1502 gdb_byte buf[4];
1503
5af949e3
UW
1504 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1505 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1506 read_memory (actual_pc, buf, sizeof (buf));
1507 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1508 }
1509
fc1cf338
PA
1510 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1511 displaced->step_closure))
a493e3e2 1512 target_resume (ptid, 1, GDB_SIGNAL_0);
99e40580 1513 else
a493e3e2 1514 target_resume (ptid, 0, GDB_SIGNAL_0);
1c5cfe86
PA
1515
1516 /* Done, we're stepping a thread. */
1517 break;
ad53cd71 1518 }
1c5cfe86
PA
1519 else
1520 {
1521 int step;
1522 struct thread_info *tp = inferior_thread ();
1523
1524 /* The breakpoint we were sitting under has since been
1525 removed. */
16c381f0 1526 tp->control.trap_expected = 0;
1c5cfe86
PA
1527
1528 /* Go back to what we were trying to do. */
1529 step = currently_stepping (tp);
ad53cd71 1530
1c5cfe86 1531 if (debug_displaced)
3e43a32a 1532 fprintf_unfiltered (gdb_stdlog,
27d2932e 1533 "displaced: breakpoint is gone: %s, step(%d)\n",
1c5cfe86
PA
1534 target_pid_to_str (tp->ptid), step);
1535
a493e3e2
PA
1536 target_resume (ptid, step, GDB_SIGNAL_0);
1537 tp->suspend.stop_signal = GDB_SIGNAL_0;
1c5cfe86
PA
1538
1539 /* This request was discarded. See if there's any other
1540 thread waiting for its turn. */
1541 }
237fc4c9
PA
1542 }
1543}
1544
5231c1fd
PA
1545/* Update global variables holding ptids to hold NEW_PTID if they were
1546 holding OLD_PTID. */
1547static void
1548infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1549{
1550 struct displaced_step_request *it;
fc1cf338 1551 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
1552
1553 if (ptid_equal (inferior_ptid, old_ptid))
1554 inferior_ptid = new_ptid;
1555
1556 if (ptid_equal (singlestep_ptid, old_ptid))
1557 singlestep_ptid = new_ptid;
1558
5231c1fd
PA
1559 if (ptid_equal (deferred_step_ptid, old_ptid))
1560 deferred_step_ptid = new_ptid;
1561
fc1cf338
PA
1562 for (displaced = displaced_step_inferior_states;
1563 displaced;
1564 displaced = displaced->next)
1565 {
1566 if (ptid_equal (displaced->step_ptid, old_ptid))
1567 displaced->step_ptid = new_ptid;
1568
1569 for (it = displaced->step_request_queue; it; it = it->next)
1570 if (ptid_equal (it->ptid, old_ptid))
1571 it->ptid = new_ptid;
1572 }
5231c1fd
PA
1573}
1574
237fc4c9
PA
1575\f
1576/* Resuming. */
c906108c
SS
1577
1578/* Things to clean up if we QUIT out of resume (). */
c906108c 1579static void
74b7792f 1580resume_cleanups (void *ignore)
c906108c
SS
1581{
1582 normal_stop ();
1583}
1584
53904c9e
AC
1585static const char schedlock_off[] = "off";
1586static const char schedlock_on[] = "on";
1587static const char schedlock_step[] = "step";
40478521 1588static const char *const scheduler_enums[] = {
ef346e04
AC
1589 schedlock_off,
1590 schedlock_on,
1591 schedlock_step,
1592 NULL
1593};
920d2a44
AC
1594static const char *scheduler_mode = schedlock_off;
1595static void
1596show_scheduler_mode (struct ui_file *file, int from_tty,
1597 struct cmd_list_element *c, const char *value)
1598{
3e43a32a
MS
1599 fprintf_filtered (file,
1600 _("Mode for locking scheduler "
1601 "during execution is \"%s\".\n"),
920d2a44
AC
1602 value);
1603}
c906108c
SS
1604
1605static void
96baa820 1606set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1607{
eefe576e
AC
1608 if (!target_can_lock_scheduler)
1609 {
1610 scheduler_mode = schedlock_off;
1611 error (_("Target '%s' cannot support this command."), target_shortname);
1612 }
c906108c
SS
1613}
1614
d4db2f36
PA
1615/* True if execution commands resume all threads of all processes by
1616 default; otherwise, resume only threads of the current inferior
1617 process. */
1618int sched_multi = 0;
1619
2facfe5c
DD
1620/* Try to setup for software single stepping over the specified location.
1621 Return 1 if target_resume() should use hardware single step.
1622
1623 GDBARCH the current gdbarch.
1624 PC the location to step over. */
1625
1626static int
1627maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1628{
1629 int hw_step = 1;
1630
f02253f1
HZ
1631 if (execution_direction == EXEC_FORWARD
1632 && gdbarch_software_single_step_p (gdbarch)
99e40580 1633 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 1634 {
99e40580
UW
1635 hw_step = 0;
1636 /* Do not pull these breakpoints until after a `wait' in
1777feb0 1637 `wait_for_inferior'. */
99e40580
UW
1638 singlestep_breakpoints_inserted_p = 1;
1639 singlestep_ptid = inferior_ptid;
1640 singlestep_pc = pc;
2facfe5c
DD
1641 }
1642 return hw_step;
1643}
c906108c 1644
09cee04b
PA
1645/* Return a ptid representing the set of threads that we will proceed,
1646 in the perspective of the user/frontend. We may actually resume
1647 fewer threads at first, e.g., if a thread is stopped at a
b136cd05
PA
1648 breakpoint that needs stepping-off, but that should not be visible
1649 to the user/frontend, and neither should the frontend/user be
1650 allowed to proceed any of the threads that happen to be stopped for
09cee04b
PA
1651 internal run control handling, if a previous command wanted them
1652 resumed. */
1653
1654ptid_t
1655user_visible_resume_ptid (int step)
1656{
1657 /* By default, resume all threads of all processes. */
1658 ptid_t resume_ptid = RESUME_ALL;
1659
1660 /* Maybe resume only all threads of the current process. */
1661 if (!sched_multi && target_supports_multi_process ())
1662 {
1663 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1664 }
1665
1666 /* Maybe resume a single thread after all. */
1667 if (non_stop)
1668 {
1669 /* With non-stop mode on, threads are always handled
1670 individually. */
1671 resume_ptid = inferior_ptid;
1672 }
1673 else if ((scheduler_mode == schedlock_on)
1674 || (scheduler_mode == schedlock_step
1675 && (step || singlestep_breakpoints_inserted_p)))
1676 {
1677 /* User-settable 'scheduler' mode requires solo thread resume. */
1678 resume_ptid = inferior_ptid;
1679 }
1680
1681 return resume_ptid;
1682}
1683
c906108c
SS
1684/* Resume the inferior, but allow a QUIT. This is useful if the user
1685 wants to interrupt some lengthy single-stepping operation
1686 (for child processes, the SIGINT goes to the inferior, and so
1687 we get a SIGINT random_signal, but for remote debugging and perhaps
1688 other targets, that's not true).
1689
1690 STEP nonzero if we should step (zero to continue instead).
1691 SIG is the signal to give the inferior (zero for none). */
1692void
2ea28649 1693resume (int step, enum gdb_signal sig)
c906108c
SS
1694{
1695 int should_resume = 1;
74b7792f 1696 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1697 struct regcache *regcache = get_current_regcache ();
1698 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1699 struct thread_info *tp = inferior_thread ();
515630c5 1700 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 1701 struct address_space *aspace = get_regcache_aspace (regcache);
c7e8a53c 1702
c906108c
SS
1703 QUIT;
1704
74609e71
YQ
1705 if (current_inferior ()->waiting_for_vfork_done)
1706 {
48f9886d
PA
1707 /* Don't try to single-step a vfork parent that is waiting for
1708 the child to get out of the shared memory region (by exec'ing
1709 or exiting). This is particularly important on software
1710 single-step archs, as the child process would trip on the
1711 software single step breakpoint inserted for the parent
1712 process. Since the parent will not actually execute any
1713 instruction until the child is out of the shared region (such
1714 are vfork's semantics), it is safe to simply continue it.
1715 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1716 the parent, and tell it to `keep_going', which automatically
1717 re-sets it stepping. */
74609e71
YQ
1718 if (debug_infrun)
1719 fprintf_unfiltered (gdb_stdlog,
1720 "infrun: resume : clear step\n");
1721 step = 0;
1722 }
1723
527159b7 1724 if (debug_infrun)
237fc4c9
PA
1725 fprintf_unfiltered (gdb_stdlog,
1726 "infrun: resume (step=%d, signal=%d), "
0d9a9a5f
PA
1727 "trap_expected=%d, current thread [%s] at %s\n",
1728 step, sig, tp->control.trap_expected,
1729 target_pid_to_str (inferior_ptid),
1730 paddress (gdbarch, pc));
c906108c 1731
c2c6d25f
JM
1732 /* Normally, by the time we reach `resume', the breakpoints are either
1733 removed or inserted, as appropriate. The exception is if we're sitting
1734 at a permanent breakpoint; we need to step over it, but permanent
1735 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 1736 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 1737 {
515630c5
UW
1738 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1739 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5 1740 else
ac74f770
MS
1741 error (_("\
1742The program is stopped at a permanent breakpoint, but GDB does not know\n\
1743how to step past a permanent breakpoint on this architecture. Try using\n\
1744a command like `return' or `jump' to continue execution."));
6d350bb5 1745 }
c2c6d25f 1746
237fc4c9
PA
1747 /* If enabled, step over breakpoints by executing a copy of the
1748 instruction at a different address.
1749
1750 We can't use displaced stepping when we have a signal to deliver;
1751 the comments for displaced_step_prepare explain why. The
1752 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
1753 signals' explain what we do instead.
1754
1755 We can't use displaced stepping when we are waiting for vfork_done
1756 event, displaced stepping breaks the vfork child similarly as single
1757 step software breakpoint. */
515630c5 1758 if (use_displaced_stepping (gdbarch)
16c381f0 1759 && (tp->control.trap_expected
929dfd4f 1760 || (step && gdbarch_software_single_step_p (gdbarch)))
a493e3e2 1761 && sig == GDB_SIGNAL_0
74609e71 1762 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 1763 {
fc1cf338
PA
1764 struct displaced_step_inferior_state *displaced;
1765
237fc4c9 1766 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1767 {
1768 /* Got placed in displaced stepping queue. Will be resumed
1769 later when all the currently queued displaced stepping
7f7efbd9
VP
1770 requests finish. The thread is not executing at this point,
1771 and the call to set_executing will be made later. But we
1772 need to call set_running here, since from frontend point of view,
1773 the thread is running. */
1774 set_running (inferior_ptid, 1);
d56b7306
VP
1775 discard_cleanups (old_cleanups);
1776 return;
1777 }
99e40580 1778
ca7781d2
LM
1779 /* Update pc to reflect the new address from which we will execute
1780 instructions due to displaced stepping. */
1781 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
1782
fc1cf338
PA
1783 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1784 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1785 displaced->step_closure);
237fc4c9
PA
1786 }
1787
2facfe5c 1788 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 1789 else if (step)
2facfe5c 1790 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1791
30852783
UW
1792 /* Currently, our software single-step implementation leads to different
1793 results than hardware single-stepping in one situation: when stepping
1794 into delivering a signal which has an associated signal handler,
1795 hardware single-step will stop at the first instruction of the handler,
1796 while software single-step will simply skip execution of the handler.
1797
1798 For now, this difference in behavior is accepted since there is no
1799 easy way to actually implement single-stepping into a signal handler
1800 without kernel support.
1801
1802 However, there is one scenario where this difference leads to follow-on
1803 problems: if we're stepping off a breakpoint by removing all breakpoints
1804 and then single-stepping. In this case, the software single-step
1805 behavior means that even if there is a *breakpoint* in the signal
1806 handler, GDB still would not stop.
1807
1808 Fortunately, we can at least fix this particular issue. We detect
1809 here the case where we are about to deliver a signal while software
1810 single-stepping with breakpoints removed. In this situation, we
1811 revert the decisions to remove all breakpoints and insert single-
1812 step breakpoints, and instead we install a step-resume breakpoint
1813 at the current address, deliver the signal without stepping, and
1814 once we arrive back at the step-resume breakpoint, actually step
1815 over the breakpoint we originally wanted to step over. */
1816 if (singlestep_breakpoints_inserted_p
a493e3e2 1817 && tp->control.trap_expected && sig != GDB_SIGNAL_0)
30852783
UW
1818 {
1819 /* If we have nested signals or a pending signal is delivered
1820 immediately after a handler returns, might might already have
1821 a step-resume breakpoint set on the earlier handler. We cannot
1822 set another step-resume breakpoint; just continue on until the
1823 original breakpoint is hit. */
1824 if (tp->control.step_resume_breakpoint == NULL)
1825 {
2c03e5be 1826 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
1827 tp->step_after_step_resume_breakpoint = 1;
1828 }
1829
1830 remove_single_step_breakpoints ();
1831 singlestep_breakpoints_inserted_p = 0;
1832
1833 insert_breakpoints ();
1834 tp->control.trap_expected = 0;
1835 }
1836
c906108c
SS
1837 if (should_resume)
1838 {
39f77062 1839 ptid_t resume_ptid;
dfcd3bfb 1840
cd76b0b7
VP
1841 /* If STEP is set, it's a request to use hardware stepping
1842 facilities. But in that case, we should never
1843 use singlestep breakpoint. */
1844 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1845
d4db2f36
PA
1846 /* Decide the set of threads to ask the target to resume. Start
1847 by assuming everything will be resumed, than narrow the set
1848 by applying increasingly restricting conditions. */
09cee04b 1849 resume_ptid = user_visible_resume_ptid (step);
d4db2f36
PA
1850
1851 /* Maybe resume a single thread after all. */
cd76b0b7
VP
1852 if (singlestep_breakpoints_inserted_p
1853 && stepping_past_singlestep_breakpoint)
c906108c 1854 {
cd76b0b7
VP
1855 /* The situation here is as follows. In thread T1 we wanted to
1856 single-step. Lacking hardware single-stepping we've
1857 set breakpoint at the PC of the next instruction -- call it
1858 P. After resuming, we've hit that breakpoint in thread T2.
1859 Now we've removed original breakpoint, inserted breakpoint
1860 at P+1, and try to step to advance T2 past breakpoint.
1861 We need to step only T2, as if T1 is allowed to freely run,
1862 it can run past P, and if other threads are allowed to run,
1863 they can hit breakpoint at P+1, and nested hits of single-step
1864 breakpoints is not something we'd want -- that's complicated
1865 to support, and has no value. */
1866 resume_ptid = inferior_ptid;
1867 }
d4db2f36 1868 else if ((step || singlestep_breakpoints_inserted_p)
16c381f0 1869 && tp->control.trap_expected)
cd76b0b7 1870 {
74960c60
VP
1871 /* We're allowing a thread to run past a breakpoint it has
1872 hit, by single-stepping the thread with the breakpoint
1873 removed. In which case, we need to single-step only this
1874 thread, and keep others stopped, as they can miss this
1875 breakpoint if allowed to run.
1876
1877 The current code actually removes all breakpoints when
1878 doing this, not just the one being stepped over, so if we
1879 let other threads run, we can actually miss any
1880 breakpoint, not just the one at PC. */
ef5cf84e 1881 resume_ptid = inferior_ptid;
c906108c 1882 }
ef5cf84e 1883
515630c5 1884 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1885 {
1886 /* Most targets can step a breakpoint instruction, thus
1887 executing it normally. But if this one cannot, just
1888 continue and we will hit it anyway. */
6c95b8df 1889 if (step && breakpoint_inserted_here_p (aspace, pc))
c4ed33b9
AC
1890 step = 0;
1891 }
237fc4c9
PA
1892
1893 if (debug_displaced
515630c5 1894 && use_displaced_stepping (gdbarch)
16c381f0 1895 && tp->control.trap_expected)
237fc4c9 1896 {
515630c5 1897 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
5af949e3 1898 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
515630c5 1899 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1900 gdb_byte buf[4];
1901
5af949e3
UW
1902 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1903 paddress (resume_gdbarch, actual_pc));
237fc4c9
PA
1904 read_memory (actual_pc, buf, sizeof (buf));
1905 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1906 }
1907
e58b0e63
PA
1908 /* Install inferior's terminal modes. */
1909 target_terminal_inferior ();
1910
2020b7ab
PA
1911 /* Avoid confusing the next resume, if the next stop/resume
1912 happens to apply to another thread. */
a493e3e2 1913 tp->suspend.stop_signal = GDB_SIGNAL_0;
607cecd2 1914
2455069d
UW
1915 /* Advise target which signals may be handled silently. If we have
1916 removed breakpoints because we are stepping over one (which can
1917 happen only if we are not using displaced stepping), we need to
1918 receive all signals to avoid accidentally skipping a breakpoint
1919 during execution of a signal handler. */
1920 if ((step || singlestep_breakpoints_inserted_p)
1921 && tp->control.trap_expected
1922 && !use_displaced_stepping (gdbarch))
1923 target_pass_signals (0, NULL);
1924 else
a493e3e2 1925 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2455069d 1926
607cecd2 1927 target_resume (resume_ptid, step, sig);
c906108c
SS
1928 }
1929
1930 discard_cleanups (old_cleanups);
1931}
1932\f
237fc4c9 1933/* Proceeding. */
c906108c
SS
1934
1935/* Clear out all variables saying what to do when inferior is continued.
1936 First do this, then set the ones you want, then call `proceed'. */
1937
a7212384
UW
1938static void
1939clear_proceed_status_thread (struct thread_info *tp)
c906108c 1940{
a7212384
UW
1941 if (debug_infrun)
1942 fprintf_unfiltered (gdb_stdlog,
1943 "infrun: clear_proceed_status_thread (%s)\n",
1944 target_pid_to_str (tp->ptid));
d6b48e9c 1945
16c381f0
JK
1946 tp->control.trap_expected = 0;
1947 tp->control.step_range_start = 0;
1948 tp->control.step_range_end = 0;
1949 tp->control.step_frame_id = null_frame_id;
1950 tp->control.step_stack_frame_id = null_frame_id;
1951 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
a7212384 1952 tp->stop_requested = 0;
4e1c45ea 1953
16c381f0 1954 tp->control.stop_step = 0;
32400beb 1955
16c381f0 1956 tp->control.proceed_to_finish = 0;
414c69f7 1957
a7212384 1958 /* Discard any remaining commands or status from previous stop. */
16c381f0 1959 bpstat_clear (&tp->control.stop_bpstat);
a7212384 1960}
32400beb 1961
a7212384
UW
1962static int
1963clear_proceed_status_callback (struct thread_info *tp, void *data)
1964{
1965 if (is_exited (tp->ptid))
1966 return 0;
d6b48e9c 1967
a7212384
UW
1968 clear_proceed_status_thread (tp);
1969 return 0;
1970}
1971
1972void
1973clear_proceed_status (void)
1974{
6c95b8df
PA
1975 if (!non_stop)
1976 {
1977 /* In all-stop mode, delete the per-thread status of all
1978 threads, even if inferior_ptid is null_ptid, there may be
1979 threads on the list. E.g., we may be launching a new
1980 process, while selecting the executable. */
1981 iterate_over_threads (clear_proceed_status_callback, NULL);
1982 }
1983
a7212384
UW
1984 if (!ptid_equal (inferior_ptid, null_ptid))
1985 {
1986 struct inferior *inferior;
1987
1988 if (non_stop)
1989 {
6c95b8df
PA
1990 /* If in non-stop mode, only delete the per-thread status of
1991 the current thread. */
a7212384
UW
1992 clear_proceed_status_thread (inferior_thread ());
1993 }
6c95b8df 1994
d6b48e9c 1995 inferior = current_inferior ();
16c381f0 1996 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
1997 }
1998
c906108c 1999 stop_after_trap = 0;
f3b1572e
PA
2000
2001 observer_notify_about_to_proceed ();
c906108c 2002
d5c31457
UW
2003 if (stop_registers)
2004 {
2005 regcache_xfree (stop_registers);
2006 stop_registers = NULL;
2007 }
c906108c
SS
2008}
2009
5a437975
DE
2010/* Check the current thread against the thread that reported the most recent
2011 event. If a step-over is required return TRUE and set the current thread
2012 to the old thread. Otherwise return FALSE.
2013
1777feb0 2014 This should be suitable for any targets that support threads. */
ea67f13b
DJ
2015
2016static int
6a6b96b9 2017prepare_to_proceed (int step)
ea67f13b
DJ
2018{
2019 ptid_t wait_ptid;
2020 struct target_waitstatus wait_status;
5a437975
DE
2021 int schedlock_enabled;
2022
2023 /* With non-stop mode on, threads are always handled individually. */
2024 gdb_assert (! non_stop);
ea67f13b
DJ
2025
2026 /* Get the last target status returned by target_wait(). */
2027 get_last_target_status (&wait_ptid, &wait_status);
2028
6a6b96b9 2029 /* Make sure we were stopped at a breakpoint. */
ea67f13b 2030 if (wait_status.kind != TARGET_WAITKIND_STOPPED
a493e3e2
PA
2031 || (wait_status.value.sig != GDB_SIGNAL_TRAP
2032 && wait_status.value.sig != GDB_SIGNAL_ILL
2033 && wait_status.value.sig != GDB_SIGNAL_SEGV
2034 && wait_status.value.sig != GDB_SIGNAL_EMT))
ea67f13b
DJ
2035 {
2036 return 0;
2037 }
2038
5a437975
DE
2039 schedlock_enabled = (scheduler_mode == schedlock_on
2040 || (scheduler_mode == schedlock_step
2041 && step));
2042
d4db2f36
PA
2043 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2044 if (schedlock_enabled)
2045 return 0;
2046
2047 /* Don't switch over if we're about to resume some other process
2048 other than WAIT_PTID's, and schedule-multiple is off. */
2049 if (!sched_multi
2050 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2051 return 0;
2052
6a6b96b9 2053 /* Switched over from WAIT_PID. */
ea67f13b 2054 if (!ptid_equal (wait_ptid, minus_one_ptid)
d4db2f36 2055 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 2056 {
515630c5
UW
2057 struct regcache *regcache = get_thread_regcache (wait_ptid);
2058
6c95b8df
PA
2059 if (breakpoint_here_p (get_regcache_aspace (regcache),
2060 regcache_read_pc (regcache)))
ea67f13b 2061 {
515630c5
UW
2062 /* If stepping, remember current thread to switch back to. */
2063 if (step)
2064 deferred_step_ptid = inferior_ptid;
ea67f13b 2065
515630c5
UW
2066 /* Switch back to WAIT_PID thread. */
2067 switch_to_thread (wait_ptid);
6a6b96b9 2068
0d9a9a5f
PA
2069 if (debug_infrun)
2070 fprintf_unfiltered (gdb_stdlog,
2071 "infrun: prepare_to_proceed (step=%d), "
2072 "switched to [%s]\n",
2073 step, target_pid_to_str (inferior_ptid));
2074
515630c5
UW
2075 /* We return 1 to indicate that there is a breakpoint here,
2076 so we need to step over it before continuing to avoid
1777feb0 2077 hitting it straight away. */
515630c5
UW
2078 return 1;
2079 }
ea67f13b
DJ
2080 }
2081
2082 return 0;
ea67f13b 2083}
e4846b08 2084
c906108c
SS
2085/* Basic routine for continuing the program in various fashions.
2086
2087 ADDR is the address to resume at, or -1 for resume where stopped.
2088 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2089 or -1 for act according to how it stopped.
c906108c 2090 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2091 -1 means return after that and print nothing.
2092 You should probably set various step_... variables
2093 before calling here, if you are stepping.
c906108c
SS
2094
2095 You should call clear_proceed_status before calling proceed. */
2096
2097void
2ea28649 2098proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
c906108c 2099{
e58b0e63
PA
2100 struct regcache *regcache;
2101 struct gdbarch *gdbarch;
4e1c45ea 2102 struct thread_info *tp;
e58b0e63 2103 CORE_ADDR pc;
6c95b8df 2104 struct address_space *aspace;
c906108c
SS
2105 int oneproc = 0;
2106
e58b0e63
PA
2107 /* If we're stopped at a fork/vfork, follow the branch set by the
2108 "set follow-fork-mode" command; otherwise, we'll just proceed
2109 resuming the current thread. */
2110 if (!follow_fork ())
2111 {
2112 /* The target for some reason decided not to resume. */
2113 normal_stop ();
f148b27e
PA
2114 if (target_can_async_p ())
2115 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2116 return;
2117 }
2118
842951eb
PA
2119 /* We'll update this if & when we switch to a new thread. */
2120 previous_inferior_ptid = inferior_ptid;
2121
e58b0e63
PA
2122 regcache = get_current_regcache ();
2123 gdbarch = get_regcache_arch (regcache);
6c95b8df 2124 aspace = get_regcache_aspace (regcache);
e58b0e63
PA
2125 pc = regcache_read_pc (regcache);
2126
c906108c 2127 if (step > 0)
515630c5 2128 step_start_function = find_pc_function (pc);
c906108c
SS
2129 if (step < 0)
2130 stop_after_trap = 1;
2131
2acceee2 2132 if (addr == (CORE_ADDR) -1)
c906108c 2133 {
6c95b8df 2134 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
b2175913 2135 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2136 /* There is a breakpoint at the address we will resume at,
2137 step one instruction before inserting breakpoints so that
2138 we do not stop right away (and report a second hit at this
b2175913
MS
2139 breakpoint).
2140
2141 Note, we don't do this in reverse, because we won't
2142 actually be executing the breakpoint insn anyway.
2143 We'll be (un-)executing the previous instruction. */
2144
c906108c 2145 oneproc = 1;
515630c5
UW
2146 else if (gdbarch_single_step_through_delay_p (gdbarch)
2147 && gdbarch_single_step_through_delay (gdbarch,
2148 get_current_frame ()))
3352ef37
AC
2149 /* We stepped onto an instruction that needs to be stepped
2150 again before re-inserting the breakpoint, do so. */
c906108c
SS
2151 oneproc = 1;
2152 }
2153 else
2154 {
515630c5 2155 regcache_write_pc (regcache, addr);
c906108c
SS
2156 }
2157
527159b7 2158 if (debug_infrun)
8a9de0e4 2159 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
2160 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2161 paddress (gdbarch, addr), siggnal, step);
527159b7 2162
94cc34af
PA
2163 if (non_stop)
2164 /* In non-stop, each thread is handled individually. The context
2165 must already be set to the right thread here. */
2166 ;
2167 else
2168 {
2169 /* In a multi-threaded task we may select another thread and
2170 then continue or step.
c906108c 2171
94cc34af
PA
2172 But if the old thread was stopped at a breakpoint, it will
2173 immediately cause another breakpoint stop without any
2174 execution (i.e. it will report a breakpoint hit incorrectly).
2175 So we must step over it first.
c906108c 2176
94cc34af
PA
2177 prepare_to_proceed checks the current thread against the
2178 thread that reported the most recent event. If a step-over
2179 is required it returns TRUE and sets the current thread to
1777feb0 2180 the old thread. */
94cc34af
PA
2181 if (prepare_to_proceed (step))
2182 oneproc = 1;
2183 }
c906108c 2184
4e1c45ea
PA
2185 /* prepare_to_proceed may change the current thread. */
2186 tp = inferior_thread ();
2187
30852783
UW
2188 if (oneproc)
2189 {
2190 tp->control.trap_expected = 1;
2191 /* If displaced stepping is enabled, we can step over the
2192 breakpoint without hitting it, so leave all breakpoints
2193 inserted. Otherwise we need to disable all breakpoints, step
2194 one instruction, and then re-add them when that step is
2195 finished. */
2196 if (!use_displaced_stepping (gdbarch))
2197 remove_breakpoints ();
2198 }
2199
2200 /* We can insert breakpoints if we're not trying to step over one,
2201 or if we are stepping over one but we're using displaced stepping
2202 to do so. */
2203 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2204 insert_breakpoints ();
2205
2020b7ab
PA
2206 if (!non_stop)
2207 {
2208 /* Pass the last stop signal to the thread we're resuming,
2209 irrespective of whether the current thread is the thread that
2210 got the last event or not. This was historically GDB's
2211 behaviour before keeping a stop_signal per thread. */
2212
2213 struct thread_info *last_thread;
2214 ptid_t last_ptid;
2215 struct target_waitstatus last_status;
2216
2217 get_last_target_status (&last_ptid, &last_status);
2218 if (!ptid_equal (inferior_ptid, last_ptid)
2219 && !ptid_equal (last_ptid, null_ptid)
2220 && !ptid_equal (last_ptid, minus_one_ptid))
2221 {
e09875d4 2222 last_thread = find_thread_ptid (last_ptid);
2020b7ab
PA
2223 if (last_thread)
2224 {
16c381f0 2225 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
a493e3e2 2226 last_thread->suspend.stop_signal = GDB_SIGNAL_0;
2020b7ab
PA
2227 }
2228 }
2229 }
2230
a493e3e2 2231 if (siggnal != GDB_SIGNAL_DEFAULT)
16c381f0 2232 tp->suspend.stop_signal = siggnal;
c906108c
SS
2233 /* If this signal should not be seen by program,
2234 give it zero. Used for debugging signals. */
16c381f0 2235 else if (!signal_program[tp->suspend.stop_signal])
a493e3e2 2236 tp->suspend.stop_signal = GDB_SIGNAL_0;
c906108c
SS
2237
2238 annotate_starting ();
2239
2240 /* Make sure that output from GDB appears before output from the
2241 inferior. */
2242 gdb_flush (gdb_stdout);
2243
e4846b08
JJ
2244 /* Refresh prev_pc value just prior to resuming. This used to be
2245 done in stop_stepping, however, setting prev_pc there did not handle
2246 scenarios such as inferior function calls or returning from
2247 a function via the return command. In those cases, the prev_pc
2248 value was not set properly for subsequent commands. The prev_pc value
2249 is used to initialize the starting line number in the ecs. With an
2250 invalid value, the gdb next command ends up stopping at the position
2251 represented by the next line table entry past our start position.
2252 On platforms that generate one line table entry per line, this
2253 is not a problem. However, on the ia64, the compiler generates
2254 extraneous line table entries that do not increase the line number.
2255 When we issue the gdb next command on the ia64 after an inferior call
2256 or a return command, we often end up a few instructions forward, still
2257 within the original line we started.
2258
d5cd6034
JB
2259 An attempt was made to refresh the prev_pc at the same time the
2260 execution_control_state is initialized (for instance, just before
2261 waiting for an inferior event). But this approach did not work
2262 because of platforms that use ptrace, where the pc register cannot
2263 be read unless the inferior is stopped. At that point, we are not
2264 guaranteed the inferior is stopped and so the regcache_read_pc() call
2265 can fail. Setting the prev_pc value here ensures the value is updated
2266 correctly when the inferior is stopped. */
4e1c45ea 2267 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 2268
59f0d5d9 2269 /* Fill in with reasonable starting values. */
4e1c45ea 2270 init_thread_stepping_state (tp);
59f0d5d9 2271
59f0d5d9
PA
2272 /* Reset to normal state. */
2273 init_infwait_state ();
2274
c906108c 2275 /* Resume inferior. */
16c381f0 2276 resume (oneproc || step || bpstat_should_step (), tp->suspend.stop_signal);
c906108c
SS
2277
2278 /* Wait for it to stop (if not standalone)
2279 and in any case decode why it stopped, and act accordingly. */
43ff13b4 2280 /* Do this only if we are not using the event loop, or if the target
1777feb0 2281 does not support asynchronous execution. */
362646f5 2282 if (!target_can_async_p ())
43ff13b4 2283 {
e4c8541f 2284 wait_for_inferior ();
43ff13b4
JM
2285 normal_stop ();
2286 }
c906108c 2287}
c906108c
SS
2288\f
2289
2290/* Start remote-debugging of a machine over a serial link. */
96baa820 2291
c906108c 2292void
8621d6a9 2293start_remote (int from_tty)
c906108c 2294{
d6b48e9c 2295 struct inferior *inferior;
d6b48e9c
PA
2296
2297 inferior = current_inferior ();
16c381f0 2298 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 2299
1777feb0 2300 /* Always go on waiting for the target, regardless of the mode. */
6426a772 2301 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 2302 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
2303 nothing is returned (instead of just blocking). Because of this,
2304 targets expecting an immediate response need to, internally, set
2305 things up so that the target_wait() is forced to eventually
1777feb0 2306 timeout. */
6426a772
JM
2307 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2308 differentiate to its caller what the state of the target is after
2309 the initial open has been performed. Here we're assuming that
2310 the target has stopped. It should be possible to eventually have
2311 target_open() return to the caller an indication that the target
2312 is currently running and GDB state should be set to the same as
1777feb0 2313 for an async run. */
e4c8541f 2314 wait_for_inferior ();
8621d6a9
DJ
2315
2316 /* Now that the inferior has stopped, do any bookkeeping like
2317 loading shared libraries. We want to do this before normal_stop,
2318 so that the displayed frame is up to date. */
2319 post_create_inferior (&current_target, from_tty);
2320
6426a772 2321 normal_stop ();
c906108c
SS
2322}
2323
2324/* Initialize static vars when a new inferior begins. */
2325
2326void
96baa820 2327init_wait_for_inferior (void)
c906108c
SS
2328{
2329 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 2330
c906108c
SS
2331 breakpoint_init_inferior (inf_starting);
2332
c906108c 2333 clear_proceed_status ();
9f976b41
DJ
2334
2335 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 2336 deferred_step_ptid = null_ptid;
ca005067
DJ
2337
2338 target_last_wait_ptid = minus_one_ptid;
237fc4c9 2339
842951eb 2340 previous_inferior_ptid = inferior_ptid;
0d1e5fa7
PA
2341 init_infwait_state ();
2342
edb3359d
DJ
2343 /* Discard any skipped inlined frames. */
2344 clear_inline_frame_state (minus_one_ptid);
c906108c 2345}
237fc4c9 2346
c906108c 2347\f
b83266a0
SS
2348/* This enum encodes possible reasons for doing a target_wait, so that
2349 wfi can call target_wait in one place. (Ultimately the call will be
2350 moved out of the infinite loop entirely.) */
2351
c5aa993b
JM
2352enum infwait_states
2353{
cd0fc7c3
SS
2354 infwait_normal_state,
2355 infwait_thread_hop_state,
d983da9c 2356 infwait_step_watch_state,
cd0fc7c3 2357 infwait_nonstep_watch_state
b83266a0
SS
2358};
2359
0d1e5fa7
PA
2360/* The PTID we'll do a target_wait on.*/
2361ptid_t waiton_ptid;
2362
2363/* Current inferior wait state. */
2364enum infwait_states infwait_state;
cd0fc7c3 2365
0d1e5fa7
PA
2366/* Data to be passed around while handling an event. This data is
2367 discarded between events. */
c5aa993b 2368struct execution_control_state
488f131b 2369{
0d1e5fa7 2370 ptid_t ptid;
4e1c45ea
PA
2371 /* The thread that got the event, if this was a thread event; NULL
2372 otherwise. */
2373 struct thread_info *event_thread;
2374
488f131b 2375 struct target_waitstatus ws;
488f131b 2376 int random_signal;
7e324e48 2377 int stop_func_filled_in;
488f131b
JB
2378 CORE_ADDR stop_func_start;
2379 CORE_ADDR stop_func_end;
2c02bd72 2380 const char *stop_func_name;
488f131b
JB
2381 int wait_some_more;
2382};
2383
ec9499be 2384static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2385
568d6575
UW
2386static void handle_step_into_function (struct gdbarch *gdbarch,
2387 struct execution_control_state *ecs);
2388static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2389 struct execution_control_state *ecs);
186c406b 2390static void check_exception_resume (struct execution_control_state *,
28106bc2 2391 struct frame_info *);
611c83ae 2392
104c1213
JM
2393static void stop_stepping (struct execution_control_state *ecs);
2394static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2395static void keep_going (struct execution_control_state *ecs);
104c1213 2396
252fbfc8
PA
2397/* Callback for iterate over threads. If the thread is stopped, but
2398 the user/frontend doesn't know about that yet, go through
2399 normal_stop, as if the thread had just stopped now. ARG points at
2400 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2401 ptid_is_pid(PTID) is true, applies to all threads of the process
2402 pointed at by PTID. Otherwise, apply only to the thread pointed by
2403 PTID. */
2404
2405static int
2406infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2407{
2408 ptid_t ptid = * (ptid_t *) arg;
2409
2410 if ((ptid_equal (info->ptid, ptid)
2411 || ptid_equal (minus_one_ptid, ptid)
2412 || (ptid_is_pid (ptid)
2413 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2414 && is_running (info->ptid)
2415 && !is_executing (info->ptid))
2416 {
2417 struct cleanup *old_chain;
2418 struct execution_control_state ecss;
2419 struct execution_control_state *ecs = &ecss;
2420
2421 memset (ecs, 0, sizeof (*ecs));
2422
2423 old_chain = make_cleanup_restore_current_thread ();
2424
252fbfc8
PA
2425 /* Go through handle_inferior_event/normal_stop, so we always
2426 have consistent output as if the stop event had been
2427 reported. */
2428 ecs->ptid = info->ptid;
e09875d4 2429 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8 2430 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 2431 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
2432
2433 handle_inferior_event (ecs);
2434
2435 if (!ecs->wait_some_more)
2436 {
2437 struct thread_info *tp;
2438
2439 normal_stop ();
2440
fa4cd53f 2441 /* Finish off the continuations. */
252fbfc8 2442 tp = inferior_thread ();
fa4cd53f
PA
2443 do_all_intermediate_continuations_thread (tp, 1);
2444 do_all_continuations_thread (tp, 1);
252fbfc8
PA
2445 }
2446
2447 do_cleanups (old_chain);
2448 }
2449
2450 return 0;
2451}
2452
2453/* This function is attached as a "thread_stop_requested" observer.
2454 Cleanup local state that assumed the PTID was to be resumed, and
2455 report the stop to the frontend. */
2456
2c0b251b 2457static void
252fbfc8
PA
2458infrun_thread_stop_requested (ptid_t ptid)
2459{
fc1cf338 2460 struct displaced_step_inferior_state *displaced;
252fbfc8
PA
2461
2462 /* PTID was requested to stop. Remove it from the displaced
2463 stepping queue, so we don't try to resume it automatically. */
fc1cf338
PA
2464
2465 for (displaced = displaced_step_inferior_states;
2466 displaced;
2467 displaced = displaced->next)
252fbfc8 2468 {
fc1cf338 2469 struct displaced_step_request *it, **prev_next_p;
252fbfc8 2470
fc1cf338
PA
2471 it = displaced->step_request_queue;
2472 prev_next_p = &displaced->step_request_queue;
2473 while (it)
252fbfc8 2474 {
fc1cf338
PA
2475 if (ptid_match (it->ptid, ptid))
2476 {
2477 *prev_next_p = it->next;
2478 it->next = NULL;
2479 xfree (it);
2480 }
252fbfc8 2481 else
fc1cf338
PA
2482 {
2483 prev_next_p = &it->next;
2484 }
252fbfc8 2485
fc1cf338 2486 it = *prev_next_p;
252fbfc8 2487 }
252fbfc8
PA
2488 }
2489
2490 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2491}
2492
a07daef3
PA
2493static void
2494infrun_thread_thread_exit (struct thread_info *tp, int silent)
2495{
2496 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2497 nullify_last_target_wait_ptid ();
2498}
2499
4e1c45ea
PA
2500/* Callback for iterate_over_threads. */
2501
2502static int
2503delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2504{
2505 if (is_exited (info->ptid))
2506 return 0;
2507
2508 delete_step_resume_breakpoint (info);
186c406b 2509 delete_exception_resume_breakpoint (info);
4e1c45ea
PA
2510 return 0;
2511}
2512
2513/* In all-stop, delete the step resume breakpoint of any thread that
2514 had one. In non-stop, delete the step resume breakpoint of the
2515 thread that just stopped. */
2516
2517static void
2518delete_step_thread_step_resume_breakpoint (void)
2519{
2520 if (!target_has_execution
2521 || ptid_equal (inferior_ptid, null_ptid))
2522 /* If the inferior has exited, we have already deleted the step
2523 resume breakpoints out of GDB's lists. */
2524 return;
2525
2526 if (non_stop)
2527 {
2528 /* If in non-stop mode, only delete the step-resume or
2529 longjmp-resume breakpoint of the thread that just stopped
2530 stepping. */
2531 struct thread_info *tp = inferior_thread ();
abbb1732 2532
4e1c45ea 2533 delete_step_resume_breakpoint (tp);
186c406b 2534 delete_exception_resume_breakpoint (tp);
4e1c45ea
PA
2535 }
2536 else
2537 /* In all-stop mode, delete all step-resume and longjmp-resume
2538 breakpoints of any thread that had them. */
2539 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2540}
2541
1777feb0 2542/* A cleanup wrapper. */
4e1c45ea
PA
2543
2544static void
2545delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2546{
2547 delete_step_thread_step_resume_breakpoint ();
2548}
2549
223698f8
DE
2550/* Pretty print the results of target_wait, for debugging purposes. */
2551
2552static void
2553print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2554 const struct target_waitstatus *ws)
2555{
2556 char *status_string = target_waitstatus_to_string (ws);
2557 struct ui_file *tmp_stream = mem_fileopen ();
2558 char *text;
223698f8
DE
2559
2560 /* The text is split over several lines because it was getting too long.
2561 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2562 output as a unit; we want only one timestamp printed if debug_timestamp
2563 is set. */
2564
2565 fprintf_unfiltered (tmp_stream,
2566 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2567 if (PIDGET (waiton_ptid) != -1)
2568 fprintf_unfiltered (tmp_stream,
2569 " [%s]", target_pid_to_str (waiton_ptid));
2570 fprintf_unfiltered (tmp_stream, ", status) =\n");
2571 fprintf_unfiltered (tmp_stream,
2572 "infrun: %d [%s],\n",
2573 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2574 fprintf_unfiltered (tmp_stream,
2575 "infrun: %s\n",
2576 status_string);
2577
759ef836 2578 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
2579
2580 /* This uses %s in part to handle %'s in the text, but also to avoid
2581 a gcc error: the format attribute requires a string literal. */
2582 fprintf_unfiltered (gdb_stdlog, "%s", text);
2583
2584 xfree (status_string);
2585 xfree (text);
2586 ui_file_delete (tmp_stream);
2587}
2588
24291992
PA
2589/* Prepare and stabilize the inferior for detaching it. E.g.,
2590 detaching while a thread is displaced stepping is a recipe for
2591 crashing it, as nothing would readjust the PC out of the scratch
2592 pad. */
2593
2594void
2595prepare_for_detach (void)
2596{
2597 struct inferior *inf = current_inferior ();
2598 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2599 struct cleanup *old_chain_1;
2600 struct displaced_step_inferior_state *displaced;
2601
2602 displaced = get_displaced_stepping_state (inf->pid);
2603
2604 /* Is any thread of this process displaced stepping? If not,
2605 there's nothing else to do. */
2606 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2607 return;
2608
2609 if (debug_infrun)
2610 fprintf_unfiltered (gdb_stdlog,
2611 "displaced-stepping in-process while detaching");
2612
2613 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2614 inf->detaching = 1;
2615
2616 while (!ptid_equal (displaced->step_ptid, null_ptid))
2617 {
2618 struct cleanup *old_chain_2;
2619 struct execution_control_state ecss;
2620 struct execution_control_state *ecs;
2621
2622 ecs = &ecss;
2623 memset (ecs, 0, sizeof (*ecs));
2624
2625 overlay_cache_invalid = 1;
2626
24291992
PA
2627 if (deprecated_target_wait_hook)
2628 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2629 else
2630 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2631
2632 if (debug_infrun)
2633 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2634
2635 /* If an error happens while handling the event, propagate GDB's
2636 knowledge of the executing state to the frontend/user running
2637 state. */
3e43a32a
MS
2638 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2639 &minus_one_ptid);
24291992
PA
2640
2641 /* Now figure out what to do with the result of the result. */
2642 handle_inferior_event (ecs);
2643
2644 /* No error, don't finish the state yet. */
2645 discard_cleanups (old_chain_2);
2646
2647 /* Breakpoints and watchpoints are not installed on the target
2648 at this point, and signals are passed directly to the
2649 inferior, so this must mean the process is gone. */
2650 if (!ecs->wait_some_more)
2651 {
2652 discard_cleanups (old_chain_1);
2653 error (_("Program exited while detaching"));
2654 }
2655 }
2656
2657 discard_cleanups (old_chain_1);
2658}
2659
cd0fc7c3 2660/* Wait for control to return from inferior to debugger.
ae123ec6 2661
cd0fc7c3
SS
2662 If inferior gets a signal, we may decide to start it up again
2663 instead of returning. That is why there is a loop in this function.
2664 When this function actually returns it means the inferior
2665 should be left stopped and GDB should read more commands. */
2666
2667void
e4c8541f 2668wait_for_inferior (void)
cd0fc7c3
SS
2669{
2670 struct cleanup *old_cleanups;
c906108c 2671
527159b7 2672 if (debug_infrun)
ae123ec6 2673 fprintf_unfiltered
e4c8541f 2674 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 2675
4e1c45ea
PA
2676 old_cleanups =
2677 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 2678
c906108c
SS
2679 while (1)
2680 {
ae25568b
PA
2681 struct execution_control_state ecss;
2682 struct execution_control_state *ecs = &ecss;
29f49a6a
PA
2683 struct cleanup *old_chain;
2684
ae25568b
PA
2685 memset (ecs, 0, sizeof (*ecs));
2686
ec9499be 2687 overlay_cache_invalid = 1;
ec9499be 2688
9a4105ab 2689 if (deprecated_target_wait_hook)
47608cb1 2690 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 2691 else
47608cb1 2692 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 2693
f00150c9 2694 if (debug_infrun)
223698f8 2695 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2696
29f49a6a
PA
2697 /* If an error happens while handling the event, propagate GDB's
2698 knowledge of the executing state to the frontend/user running
2699 state. */
2700 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2701
cd0fc7c3
SS
2702 /* Now figure out what to do with the result of the result. */
2703 handle_inferior_event (ecs);
c906108c 2704
29f49a6a
PA
2705 /* No error, don't finish the state yet. */
2706 discard_cleanups (old_chain);
2707
cd0fc7c3
SS
2708 if (!ecs->wait_some_more)
2709 break;
2710 }
4e1c45ea 2711
cd0fc7c3
SS
2712 do_cleanups (old_cleanups);
2713}
c906108c 2714
1777feb0 2715/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 2716 event loop whenever a change of state is detected on the file
1777feb0
MS
2717 descriptor corresponding to the target. It can be called more than
2718 once to complete a single execution command. In such cases we need
2719 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
2720 that this function is called for a single execution command, then
2721 report to the user that the inferior has stopped, and do the
1777feb0 2722 necessary cleanups. */
43ff13b4
JM
2723
2724void
fba45db2 2725fetch_inferior_event (void *client_data)
43ff13b4 2726{
0d1e5fa7 2727 struct execution_control_state ecss;
a474d7c2 2728 struct execution_control_state *ecs = &ecss;
4f8d22e3 2729 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2730 struct cleanup *ts_old_chain;
4f8d22e3 2731 int was_sync = sync_execution;
0f641c01 2732 int cmd_done = 0;
43ff13b4 2733
0d1e5fa7
PA
2734 memset (ecs, 0, sizeof (*ecs));
2735
c5187ac6
PA
2736 /* We're handling a live event, so make sure we're doing live
2737 debugging. If we're looking at traceframes while the target is
2738 running, we're going to need to get back to that mode after
2739 handling the event. */
2740 if (non_stop)
2741 {
2742 make_cleanup_restore_current_traceframe ();
e6e4e701 2743 set_current_traceframe (-1);
c5187ac6
PA
2744 }
2745
4f8d22e3
PA
2746 if (non_stop)
2747 /* In non-stop mode, the user/frontend should not notice a thread
2748 switch due to internal events. Make sure we reverse to the
2749 user selected thread and frame after handling the event and
2750 running any breakpoint commands. */
2751 make_cleanup_restore_current_thread ();
2752
ec9499be 2753 overlay_cache_invalid = 1;
3dd5b83d 2754
32231432
PA
2755 make_cleanup_restore_integer (&execution_direction);
2756 execution_direction = target_execution_direction ();
2757
9a4105ab 2758 if (deprecated_target_wait_hook)
a474d7c2 2759 ecs->ptid =
47608cb1 2760 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2761 else
47608cb1 2762 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2763
f00150c9 2764 if (debug_infrun)
223698f8 2765 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2766
29f49a6a
PA
2767 /* If an error happens while handling the event, propagate GDB's
2768 knowledge of the executing state to the frontend/user running
2769 state. */
2770 if (!non_stop)
2771 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2772 else
2773 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2774
353d1d73
JK
2775 /* Get executed before make_cleanup_restore_current_thread above to apply
2776 still for the thread which has thrown the exception. */
2777 make_bpstat_clear_actions_cleanup ();
2778
43ff13b4 2779 /* Now figure out what to do with the result of the result. */
a474d7c2 2780 handle_inferior_event (ecs);
43ff13b4 2781
a474d7c2 2782 if (!ecs->wait_some_more)
43ff13b4 2783 {
d6b48e9c
PA
2784 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2785
4e1c45ea 2786 delete_step_thread_step_resume_breakpoint ();
f107f563 2787
d6b48e9c 2788 /* We may not find an inferior if this was a process exit. */
16c381f0 2789 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2790 normal_stop ();
2791
af679fd0 2792 if (target_has_execution
0e5bf2a8 2793 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
af679fd0
PA
2794 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2795 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2796 && ecs->event_thread->step_multi
16c381f0 2797 && ecs->event_thread->control.stop_step)
c2d11a7d
JM
2798 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2799 else
0f641c01
PA
2800 {
2801 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2802 cmd_done = 1;
2803 }
43ff13b4 2804 }
4f8d22e3 2805
29f49a6a
PA
2806 /* No error, don't finish the thread states yet. */
2807 discard_cleanups (ts_old_chain);
2808
4f8d22e3
PA
2809 /* Revert thread and frame. */
2810 do_cleanups (old_chain);
2811
2812 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
2813 restore the prompt (a synchronous execution command has finished,
2814 and we're ready for input). */
b4a14fd0 2815 if (interpreter_async && was_sync && !sync_execution)
4f8d22e3 2816 display_gdb_prompt (0);
0f641c01
PA
2817
2818 if (cmd_done
2819 && !was_sync
2820 && exec_done_display_p
2821 && (ptid_equal (inferior_ptid, null_ptid)
2822 || !is_running (inferior_ptid)))
2823 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
2824}
2825
edb3359d
DJ
2826/* Record the frame and location we're currently stepping through. */
2827void
2828set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2829{
2830 struct thread_info *tp = inferior_thread ();
2831
16c381f0
JK
2832 tp->control.step_frame_id = get_frame_id (frame);
2833 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
2834
2835 tp->current_symtab = sal.symtab;
2836 tp->current_line = sal.line;
2837}
2838
0d1e5fa7
PA
2839/* Clear context switchable stepping state. */
2840
2841void
4e1c45ea 2842init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7
PA
2843{
2844 tss->stepping_over_breakpoint = 0;
2845 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
2846}
2847
e02bc4cc 2848/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2849 target_wait()/deprecated_target_wait_hook(). The data is actually
2850 cached by handle_inferior_event(), which gets called immediately
2851 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2852
2853void
488f131b 2854get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2855{
39f77062 2856 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2857 *status = target_last_waitstatus;
2858}
2859
ac264b3b
MS
2860void
2861nullify_last_target_wait_ptid (void)
2862{
2863 target_last_wait_ptid = minus_one_ptid;
2864}
2865
dcf4fbde 2866/* Switch thread contexts. */
dd80620e
MS
2867
2868static void
0d1e5fa7 2869context_switch (ptid_t ptid)
dd80620e 2870{
4b51d87b 2871 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
2872 {
2873 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2874 target_pid_to_str (inferior_ptid));
2875 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2876 target_pid_to_str (ptid));
fd48f117
DJ
2877 }
2878
0d1e5fa7 2879 switch_to_thread (ptid);
dd80620e
MS
2880}
2881
4fa8626c
DJ
2882static void
2883adjust_pc_after_break (struct execution_control_state *ecs)
2884{
24a73cce
UW
2885 struct regcache *regcache;
2886 struct gdbarch *gdbarch;
6c95b8df 2887 struct address_space *aspace;
8aad930b 2888 CORE_ADDR breakpoint_pc;
4fa8626c 2889
4fa8626c
DJ
2890 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2891 we aren't, just return.
9709f61c
DJ
2892
2893 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2894 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2895 implemented by software breakpoints should be handled through the normal
2896 breakpoint layer.
8fb3e588 2897
4fa8626c
DJ
2898 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2899 different signals (SIGILL or SIGEMT for instance), but it is less
2900 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2901 gdbarch_decr_pc_after_break. I don't know any specific target that
2902 generates these signals at breakpoints (the code has been in GDB since at
2903 least 1992) so I can not guess how to handle them here.
8fb3e588 2904
e6cf7916
UW
2905 In earlier versions of GDB, a target with
2906 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2907 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2908 target with both of these set in GDB history, and it seems unlikely to be
2909 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2910
2911 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2912 return;
2913
a493e3e2 2914 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
2915 return;
2916
4058b839
PA
2917 /* In reverse execution, when a breakpoint is hit, the instruction
2918 under it has already been de-executed. The reported PC always
2919 points at the breakpoint address, so adjusting it further would
2920 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2921 architecture:
2922
2923 B1 0x08000000 : INSN1
2924 B2 0x08000001 : INSN2
2925 0x08000002 : INSN3
2926 PC -> 0x08000003 : INSN4
2927
2928 Say you're stopped at 0x08000003 as above. Reverse continuing
2929 from that point should hit B2 as below. Reading the PC when the
2930 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2931 been de-executed already.
2932
2933 B1 0x08000000 : INSN1
2934 B2 PC -> 0x08000001 : INSN2
2935 0x08000002 : INSN3
2936 0x08000003 : INSN4
2937
2938 We can't apply the same logic as for forward execution, because
2939 we would wrongly adjust the PC to 0x08000000, since there's a
2940 breakpoint at PC - 1. We'd then report a hit on B1, although
2941 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2942 behaviour. */
2943 if (execution_direction == EXEC_REVERSE)
2944 return;
2945
24a73cce
UW
2946 /* If this target does not decrement the PC after breakpoints, then
2947 we have nothing to do. */
2948 regcache = get_thread_regcache (ecs->ptid);
2949 gdbarch = get_regcache_arch (regcache);
2950 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2951 return;
2952
6c95b8df
PA
2953 aspace = get_regcache_aspace (regcache);
2954
8aad930b
AC
2955 /* Find the location where (if we've hit a breakpoint) the
2956 breakpoint would be. */
515630c5
UW
2957 breakpoint_pc = regcache_read_pc (regcache)
2958 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 2959
1c5cfe86
PA
2960 /* Check whether there actually is a software breakpoint inserted at
2961 that location.
2962
2963 If in non-stop mode, a race condition is possible where we've
2964 removed a breakpoint, but stop events for that breakpoint were
2965 already queued and arrive later. To suppress those spurious
2966 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2967 and retire them after a number of stop events are reported. */
6c95b8df
PA
2968 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2969 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 2970 {
96429cc8 2971 struct cleanup *old_cleanups = NULL;
abbb1732 2972
96429cc8
HZ
2973 if (RECORD_IS_USED)
2974 old_cleanups = record_gdb_operation_disable_set ();
2975
1c0fdd0e
UW
2976 /* When using hardware single-step, a SIGTRAP is reported for both
2977 a completed single-step and a software breakpoint. Need to
2978 differentiate between the two, as the latter needs adjusting
2979 but the former does not.
2980
2981 The SIGTRAP can be due to a completed hardware single-step only if
2982 - we didn't insert software single-step breakpoints
2983 - the thread to be examined is still the current thread
2984 - this thread is currently being stepped
2985
2986 If any of these events did not occur, we must have stopped due
2987 to hitting a software breakpoint, and have to back up to the
2988 breakpoint address.
2989
2990 As a special case, we could have hardware single-stepped a
2991 software breakpoint. In this case (prev_pc == breakpoint_pc),
2992 we also need to back up to the breakpoint address. */
2993
2994 if (singlestep_breakpoints_inserted_p
2995 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
2996 || !currently_stepping (ecs->event_thread)
2997 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 2998 regcache_write_pc (regcache, breakpoint_pc);
96429cc8
HZ
2999
3000 if (RECORD_IS_USED)
3001 do_cleanups (old_cleanups);
8aad930b 3002 }
4fa8626c
DJ
3003}
3004
0d1e5fa7
PA
3005void
3006init_infwait_state (void)
3007{
3008 waiton_ptid = pid_to_ptid (-1);
3009 infwait_state = infwait_normal_state;
3010}
3011
94cc34af
PA
3012void
3013error_is_running (void)
3014{
3e43a32a
MS
3015 error (_("Cannot execute this command while "
3016 "the selected thread is running."));
94cc34af
PA
3017}
3018
3019void
3020ensure_not_running (void)
3021{
3022 if (is_running (inferior_ptid))
3023 error_is_running ();
3024}
3025
edb3359d
DJ
3026static int
3027stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3028{
3029 for (frame = get_prev_frame (frame);
3030 frame != NULL;
3031 frame = get_prev_frame (frame))
3032 {
3033 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3034 return 1;
3035 if (get_frame_type (frame) != INLINE_FRAME)
3036 break;
3037 }
3038
3039 return 0;
3040}
3041
a96d9b2e
SDJ
3042/* Auxiliary function that handles syscall entry/return events.
3043 It returns 1 if the inferior should keep going (and GDB
3044 should ignore the event), or 0 if the event deserves to be
3045 processed. */
ca2163eb 3046
a96d9b2e 3047static int
ca2163eb 3048handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 3049{
ca2163eb
PA
3050 struct regcache *regcache;
3051 struct gdbarch *gdbarch;
3052 int syscall_number;
3053
3054 if (!ptid_equal (ecs->ptid, inferior_ptid))
3055 context_switch (ecs->ptid);
3056
3057 regcache = get_thread_regcache (ecs->ptid);
3058 gdbarch = get_regcache_arch (regcache);
f90263c1 3059 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
3060 stop_pc = regcache_read_pc (regcache);
3061
a96d9b2e
SDJ
3062 if (catch_syscall_enabled () > 0
3063 && catching_syscall_number (syscall_number) > 0)
3064 {
3065 if (debug_infrun)
3066 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3067 syscall_number);
a96d9b2e 3068
16c381f0 3069 ecs->event_thread->control.stop_bpstat
6c95b8df 3070 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 3071 stop_pc, ecs->ptid, &ecs->ws);
16c381f0
JK
3072 ecs->random_signal
3073 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
a96d9b2e 3074
ca2163eb
PA
3075 if (!ecs->random_signal)
3076 {
3077 /* Catchpoint hit. */
a493e3e2 3078 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
ca2163eb
PA
3079 return 0;
3080 }
a96d9b2e 3081 }
ca2163eb
PA
3082
3083 /* If no catchpoint triggered for this, then keep going. */
a493e3e2 3084 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
ca2163eb
PA
3085 keep_going (ecs);
3086 return 1;
a96d9b2e
SDJ
3087}
3088
7e324e48
GB
3089/* Clear the supplied execution_control_state's stop_func_* fields. */
3090
3091static void
3092clear_stop_func (struct execution_control_state *ecs)
3093{
3094 ecs->stop_func_filled_in = 0;
3095 ecs->stop_func_start = 0;
3096 ecs->stop_func_end = 0;
3097 ecs->stop_func_name = NULL;
3098}
3099
3100/* Lazily fill in the execution_control_state's stop_func_* fields. */
3101
3102static void
3103fill_in_stop_func (struct gdbarch *gdbarch,
3104 struct execution_control_state *ecs)
3105{
3106 if (!ecs->stop_func_filled_in)
3107 {
3108 /* Don't care about return value; stop_func_start and stop_func_name
3109 will both be 0 if it doesn't work. */
3110 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3111 &ecs->stop_func_start, &ecs->stop_func_end);
3112 ecs->stop_func_start
3113 += gdbarch_deprecated_function_start_offset (gdbarch);
3114
3115 ecs->stop_func_filled_in = 1;
3116 }
3117}
3118
cd0fc7c3
SS
3119/* Given an execution control state that has been freshly filled in
3120 by an event from the inferior, figure out what it means and take
3121 appropriate action. */
c906108c 3122
ec9499be 3123static void
96baa820 3124handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 3125{
568d6575
UW
3126 struct frame_info *frame;
3127 struct gdbarch *gdbarch;
d983da9c
DJ
3128 int stopped_by_watchpoint;
3129 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 3130 struct symtab_and_line stop_pc_sal;
d6b48e9c
PA
3131 enum stop_kind stop_soon;
3132
28736962
PA
3133 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3134 {
3135 /* We had an event in the inferior, but we are not interested in
3136 handling it at this level. The lower layers have already
3137 done what needs to be done, if anything.
3138
3139 One of the possible circumstances for this is when the
3140 inferior produces output for the console. The inferior has
3141 not stopped, and we are ignoring the event. Another possible
3142 circumstance is any event which the lower level knows will be
3143 reported multiple times without an intervening resume. */
3144 if (debug_infrun)
3145 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3146 prepare_to_wait (ecs);
3147 return;
3148 }
3149
0e5bf2a8
PA
3150 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3151 && target_can_async_p () && !sync_execution)
3152 {
3153 /* There were no unwaited-for children left in the target, but,
3154 we're not synchronously waiting for events either. Just
3155 ignore. Otherwise, if we were running a synchronous
3156 execution command, we need to cancel it and give the user
3157 back the terminal. */
3158 if (debug_infrun)
3159 fprintf_unfiltered (gdb_stdlog,
3160 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3161 prepare_to_wait (ecs);
3162 return;
3163 }
3164
d6b48e9c 3165 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
0e5bf2a8
PA
3166 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3167 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
d6b48e9c
PA
3168 {
3169 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
abbb1732 3170
d6b48e9c 3171 gdb_assert (inf);
16c381f0 3172 stop_soon = inf->control.stop_soon;
d6b48e9c
PA
3173 }
3174 else
3175 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 3176
1777feb0 3177 /* Cache the last pid/waitstatus. */
39f77062 3178 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 3179 target_last_waitstatus = ecs->ws;
e02bc4cc 3180
ca005067 3181 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 3182 stop_stack_dummy = STOP_NONE;
ca005067 3183
0e5bf2a8
PA
3184 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3185 {
3186 /* No unwaited-for children left. IOW, all resumed children
3187 have exited. */
3188 if (debug_infrun)
3189 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3190
3191 stop_print_frame = 0;
3192 stop_stepping (ecs);
3193 return;
3194 }
3195
8c90c137 3196 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 3197 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
3198 {
3199 ecs->event_thread = find_thread_ptid (ecs->ptid);
3200 /* If it's a new thread, add it to the thread database. */
3201 if (ecs->event_thread == NULL)
3202 ecs->event_thread = add_thread (ecs->ptid);
3203 }
88ed393a
JK
3204
3205 /* Dependent on valid ECS->EVENT_THREAD. */
3206 adjust_pc_after_break (ecs);
3207
3208 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3209 reinit_frame_cache ();
3210
28736962
PA
3211 breakpoint_retire_moribund ();
3212
2b009048
DJ
3213 /* First, distinguish signals caused by the debugger from signals
3214 that have to do with the program's own actions. Note that
3215 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3216 on the operating system version. Here we detect when a SIGILL or
3217 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3218 something similar for SIGSEGV, since a SIGSEGV will be generated
3219 when we're trying to execute a breakpoint instruction on a
3220 non-executable stack. This happens for call dummy breakpoints
3221 for architectures like SPARC that place call dummies on the
3222 stack. */
2b009048 3223 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
3224 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3225 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3226 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 3227 {
de0a0249
UW
3228 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3229
3230 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3231 regcache_read_pc (regcache)))
3232 {
3233 if (debug_infrun)
3234 fprintf_unfiltered (gdb_stdlog,
3235 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 3236 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 3237 }
2b009048
DJ
3238 }
3239
28736962
PA
3240 /* Mark the non-executing threads accordingly. In all-stop, all
3241 threads of all processes are stopped when we get any event
3242 reported. In non-stop mode, only the event thread stops. If
3243 we're handling a process exit in non-stop mode, there's nothing
3244 to do, as threads of the dead process are gone, and threads of
3245 any other process were left running. */
3246 if (!non_stop)
3247 set_executing (minus_one_ptid, 0);
3248 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3249 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
7aee8dc2 3250 set_executing (ecs->ptid, 0);
8c90c137 3251
0d1e5fa7 3252 switch (infwait_state)
488f131b
JB
3253 {
3254 case infwait_thread_hop_state:
527159b7 3255 if (debug_infrun)
8a9de0e4 3256 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
65e82032 3257 break;
b83266a0 3258
488f131b 3259 case infwait_normal_state:
527159b7 3260 if (debug_infrun)
8a9de0e4 3261 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
3262 break;
3263
3264 case infwait_step_watch_state:
3265 if (debug_infrun)
3266 fprintf_unfiltered (gdb_stdlog,
3267 "infrun: infwait_step_watch_state\n");
3268
3269 stepped_after_stopped_by_watchpoint = 1;
488f131b 3270 break;
b83266a0 3271
488f131b 3272 case infwait_nonstep_watch_state:
527159b7 3273 if (debug_infrun)
8a9de0e4
AC
3274 fprintf_unfiltered (gdb_stdlog,
3275 "infrun: infwait_nonstep_watch_state\n");
488f131b 3276 insert_breakpoints ();
c906108c 3277
488f131b
JB
3278 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3279 handle things like signals arriving and other things happening
3280 in combination correctly? */
3281 stepped_after_stopped_by_watchpoint = 1;
3282 break;
65e82032
AC
3283
3284 default:
e2e0b3e5 3285 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 3286 }
ec9499be 3287
0d1e5fa7 3288 infwait_state = infwait_normal_state;
ec9499be 3289 waiton_ptid = pid_to_ptid (-1);
c906108c 3290
488f131b
JB
3291 switch (ecs->ws.kind)
3292 {
3293 case TARGET_WAITKIND_LOADED:
527159b7 3294 if (debug_infrun)
8a9de0e4 3295 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
3296 /* Ignore gracefully during startup of the inferior, as it might
3297 be the shell which has just loaded some objects, otherwise
3298 add the symbols for the newly loaded objects. Also ignore at
3299 the beginning of an attach or remote session; we will query
3300 the full list of libraries once the connection is
3301 established. */
c0236d92 3302 if (stop_soon == NO_STOP_QUIETLY)
488f131b 3303 {
edcc5120
TT
3304 struct regcache *regcache;
3305
3306 if (!ptid_equal (ecs->ptid, inferior_ptid))
3307 context_switch (ecs->ptid);
3308 regcache = get_thread_regcache (ecs->ptid);
3309
3310 handle_solib_event ();
3311
3312 ecs->event_thread->control.stop_bpstat
3313 = bpstat_stop_status (get_regcache_aspace (regcache),
3314 stop_pc, ecs->ptid, &ecs->ws);
3315 ecs->random_signal
3316 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3317
3318 if (!ecs->random_signal)
3319 {
3320 /* A catchpoint triggered. */
a493e3e2 3321 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
edcc5120
TT
3322 goto process_event_stop_test;
3323 }
488f131b 3324
b0f4b84b
DJ
3325 /* If requested, stop when the dynamic linker notifies
3326 gdb of events. This allows the user to get control
3327 and place breakpoints in initializer routines for
3328 dynamically loaded objects (among other things). */
a493e3e2 3329 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
3330 if (stop_on_solib_events)
3331 {
55409f9d
DJ
3332 /* Make sure we print "Stopped due to solib-event" in
3333 normal_stop. */
3334 stop_print_frame = 1;
3335
b0f4b84b
DJ
3336 stop_stepping (ecs);
3337 return;
3338 }
488f131b 3339 }
b0f4b84b
DJ
3340
3341 /* If we are skipping through a shell, or through shared library
3342 loading that we aren't interested in, resume the program. If
3343 we're running the program normally, also resume. But stop if
3344 we're attaching or setting up a remote connection. */
3345 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3346 {
8b3ee56d
PA
3347 if (!ptid_equal (ecs->ptid, inferior_ptid))
3348 context_switch (ecs->ptid);
3349
74960c60
VP
3350 /* Loading of shared libraries might have changed breakpoint
3351 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
3352 if (stop_soon == NO_STOP_QUIETLY
3353 && !breakpoints_always_inserted_mode ())
74960c60 3354 insert_breakpoints ();
a493e3e2 3355 resume (0, GDB_SIGNAL_0);
b0f4b84b
DJ
3356 prepare_to_wait (ecs);
3357 return;
3358 }
3359
3360 break;
c5aa993b 3361
488f131b 3362 case TARGET_WAITKIND_SPURIOUS:
527159b7 3363 if (debug_infrun)
8a9de0e4 3364 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 3365 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 3366 context_switch (ecs->ptid);
a493e3e2 3367 resume (0, GDB_SIGNAL_0);
488f131b
JB
3368 prepare_to_wait (ecs);
3369 return;
c5aa993b 3370
488f131b 3371 case TARGET_WAITKIND_EXITED:
527159b7 3372 if (debug_infrun)
8a9de0e4 3373 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
fb66883a 3374 inferior_ptid = ecs->ptid;
6c95b8df
PA
3375 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3376 set_current_program_space (current_inferior ()->pspace);
3377 handle_vfork_child_exec_or_exit (0);
1777feb0 3378 target_terminal_ours (); /* Must do this before mourn anyway. */
33d62d64 3379 print_exited_reason (ecs->ws.value.integer);
488f131b
JB
3380
3381 /* Record the exit code in the convenience variable $_exitcode, so
3382 that the user can inspect this again later. */
4fa62494
UW
3383 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3384 (LONGEST) ecs->ws.value.integer);
8cf64490
TT
3385
3386 /* Also record this in the inferior itself. */
3387 current_inferior ()->has_exit_code = 1;
3388 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3389
488f131b
JB
3390 gdb_flush (gdb_stdout);
3391 target_mourn_inferior ();
1c0fdd0e 3392 singlestep_breakpoints_inserted_p = 0;
d03285ec 3393 cancel_single_step_breakpoints ();
488f131b
JB
3394 stop_print_frame = 0;
3395 stop_stepping (ecs);
3396 return;
c5aa993b 3397
488f131b 3398 case TARGET_WAITKIND_SIGNALLED:
527159b7 3399 if (debug_infrun)
8a9de0e4 3400 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
fb66883a 3401 inferior_ptid = ecs->ptid;
6c95b8df
PA
3402 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3403 set_current_program_space (current_inferior ()->pspace);
3404 handle_vfork_child_exec_or_exit (0);
488f131b 3405 stop_print_frame = 0;
1777feb0 3406 target_terminal_ours (); /* Must do this before mourn anyway. */
c5aa993b 3407
488f131b
JB
3408 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
3409 reach here unless the inferior is dead. However, for years
3410 target_kill() was called here, which hints that fatal signals aren't
3411 really fatal on some systems. If that's true, then some changes
1777feb0 3412 may be needed. */
488f131b 3413 target_mourn_inferior ();
c906108c 3414
33d62d64 3415 print_signal_exited_reason (ecs->ws.value.sig);
1c0fdd0e 3416 singlestep_breakpoints_inserted_p = 0;
d03285ec 3417 cancel_single_step_breakpoints ();
488f131b
JB
3418 stop_stepping (ecs);
3419 return;
c906108c 3420
488f131b 3421 /* The following are the only cases in which we keep going;
1777feb0 3422 the above cases end in a continue or goto. */
488f131b 3423 case TARGET_WAITKIND_FORKED:
deb3b17b 3424 case TARGET_WAITKIND_VFORKED:
527159b7 3425 if (debug_infrun)
8a9de0e4 3426 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
c906108c 3427
e2d96639
YQ
3428 /* Check whether the inferior is displaced stepping. */
3429 {
3430 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3431 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3432 struct displaced_step_inferior_state *displaced
3433 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3434
3435 /* If checking displaced stepping is supported, and thread
3436 ecs->ptid is displaced stepping. */
3437 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3438 {
3439 struct inferior *parent_inf
3440 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3441 struct regcache *child_regcache;
3442 CORE_ADDR parent_pc;
3443
3444 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3445 indicating that the displaced stepping of syscall instruction
3446 has been done. Perform cleanup for parent process here. Note
3447 that this operation also cleans up the child process for vfork,
3448 because their pages are shared. */
a493e3e2 3449 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
e2d96639
YQ
3450
3451 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3452 {
3453 /* Restore scratch pad for child process. */
3454 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3455 }
3456
3457 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3458 the child's PC is also within the scratchpad. Set the child's PC
3459 to the parent's PC value, which has already been fixed up.
3460 FIXME: we use the parent's aspace here, although we're touching
3461 the child, because the child hasn't been added to the inferior
3462 list yet at this point. */
3463
3464 child_regcache
3465 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3466 gdbarch,
3467 parent_inf->aspace);
3468 /* Read PC value of parent process. */
3469 parent_pc = regcache_read_pc (regcache);
3470
3471 if (debug_displaced)
3472 fprintf_unfiltered (gdb_stdlog,
3473 "displaced: write child pc from %s to %s\n",
3474 paddress (gdbarch,
3475 regcache_read_pc (child_regcache)),
3476 paddress (gdbarch, parent_pc));
3477
3478 regcache_write_pc (child_regcache, parent_pc);
3479 }
3480 }
3481
5a2901d9 3482 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 3483 context_switch (ecs->ptid);
5a2901d9 3484
b242c3c2
PA
3485 /* Immediately detach breakpoints from the child before there's
3486 any chance of letting the user delete breakpoints from the
3487 breakpoint lists. If we don't do this early, it's easy to
3488 leave left over traps in the child, vis: "break foo; catch
3489 fork; c; <fork>; del; c; <child calls foo>". We only follow
3490 the fork on the last `continue', and by that time the
3491 breakpoint at "foo" is long gone from the breakpoint table.
3492 If we vforked, then we don't need to unpatch here, since both
3493 parent and child are sharing the same memory pages; we'll
3494 need to unpatch at follow/detach time instead to be certain
3495 that new breakpoints added between catchpoint hit time and
3496 vfork follow are detached. */
3497 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3498 {
3499 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
3500
3501 /* This won't actually modify the breakpoint list, but will
3502 physically remove the breakpoints from the child. */
3503 detach_breakpoints (child_pid);
3504 }
3505
d03285ec
UW
3506 if (singlestep_breakpoints_inserted_p)
3507 {
1777feb0 3508 /* Pull the single step breakpoints out of the target. */
d03285ec
UW
3509 remove_single_step_breakpoints ();
3510 singlestep_breakpoints_inserted_p = 0;
3511 }
3512
e58b0e63
PA
3513 /* In case the event is caught by a catchpoint, remember that
3514 the event is to be followed at the next resume of the thread,
3515 and not immediately. */
3516 ecs->event_thread->pending_follow = ecs->ws;
3517
fb14de7b 3518 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 3519
16c381f0 3520 ecs->event_thread->control.stop_bpstat
6c95b8df 3521 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3522 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 3523
67822962
PA
3524 /* Note that we're interested in knowing the bpstat actually
3525 causes a stop, not just if it may explain the signal.
3526 Software watchpoints, for example, always appear in the
3527 bpstat. */
16c381f0
JK
3528 ecs->random_signal
3529 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
04e68871
DJ
3530
3531 /* If no catchpoint triggered for this, then keep going. */
3532 if (ecs->random_signal)
3533 {
6c95b8df
PA
3534 ptid_t parent;
3535 ptid_t child;
e58b0e63 3536 int should_resume;
3e43a32a
MS
3537 int follow_child
3538 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 3539
a493e3e2 3540 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
3541
3542 should_resume = follow_fork ();
3543
6c95b8df
PA
3544 parent = ecs->ptid;
3545 child = ecs->ws.value.related_pid;
3546
3547 /* In non-stop mode, also resume the other branch. */
3548 if (non_stop && !detach_fork)
3549 {
3550 if (follow_child)
3551 switch_to_thread (parent);
3552 else
3553 switch_to_thread (child);
3554
3555 ecs->event_thread = inferior_thread ();
3556 ecs->ptid = inferior_ptid;
3557 keep_going (ecs);
3558 }
3559
3560 if (follow_child)
3561 switch_to_thread (child);
3562 else
3563 switch_to_thread (parent);
3564
e58b0e63
PA
3565 ecs->event_thread = inferior_thread ();
3566 ecs->ptid = inferior_ptid;
3567
3568 if (should_resume)
3569 keep_going (ecs);
3570 else
3571 stop_stepping (ecs);
04e68871
DJ
3572 return;
3573 }
a493e3e2 3574 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
488f131b
JB
3575 goto process_event_stop_test;
3576
6c95b8df
PA
3577 case TARGET_WAITKIND_VFORK_DONE:
3578 /* Done with the shared memory region. Re-insert breakpoints in
3579 the parent, and keep going. */
3580
3581 if (debug_infrun)
3e43a32a
MS
3582 fprintf_unfiltered (gdb_stdlog,
3583 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
3584
3585 if (!ptid_equal (ecs->ptid, inferior_ptid))
3586 context_switch (ecs->ptid);
3587
3588 current_inferior ()->waiting_for_vfork_done = 0;
56710373 3589 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
3590 /* This also takes care of reinserting breakpoints in the
3591 previously locked inferior. */
3592 keep_going (ecs);
3593 return;
3594
488f131b 3595 case TARGET_WAITKIND_EXECD:
527159b7 3596 if (debug_infrun)
fc5261f2 3597 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 3598
5a2901d9 3599 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 3600 context_switch (ecs->ptid);
5a2901d9 3601
d03285ec
UW
3602 singlestep_breakpoints_inserted_p = 0;
3603 cancel_single_step_breakpoints ();
3604
fb14de7b 3605 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 3606
6c95b8df
PA
3607 /* Do whatever is necessary to the parent branch of the vfork. */
3608 handle_vfork_child_exec_or_exit (1);
3609
795e548f
PA
3610 /* This causes the eventpoints and symbol table to be reset.
3611 Must do this now, before trying to determine whether to
3612 stop. */
71b43ef8 3613 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 3614
16c381f0 3615 ecs->event_thread->control.stop_bpstat
6c95b8df 3616 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3617 stop_pc, ecs->ptid, &ecs->ws);
16c381f0
JK
3618 ecs->random_signal
3619 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
795e548f 3620
71b43ef8
PA
3621 /* Note that this may be referenced from inside
3622 bpstat_stop_status above, through inferior_has_execd. */
3623 xfree (ecs->ws.value.execd_pathname);
3624 ecs->ws.value.execd_pathname = NULL;
3625
04e68871
DJ
3626 /* If no catchpoint triggered for this, then keep going. */
3627 if (ecs->random_signal)
3628 {
a493e3e2 3629 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
3630 keep_going (ecs);
3631 return;
3632 }
a493e3e2 3633 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
488f131b
JB
3634 goto process_event_stop_test;
3635
b4dc5ffa
MK
3636 /* Be careful not to try to gather much state about a thread
3637 that's in a syscall. It's frequently a losing proposition. */
488f131b 3638 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 3639 if (debug_infrun)
3e43a32a
MS
3640 fprintf_unfiltered (gdb_stdlog,
3641 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 3642 /* Getting the current syscall number. */
ca2163eb 3643 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3644 return;
3645 goto process_event_stop_test;
c906108c 3646
488f131b
JB
3647 /* Before examining the threads further, step this thread to
3648 get it entirely out of the syscall. (We get notice of the
3649 event when the thread is just on the verge of exiting a
3650 syscall. Stepping one instruction seems to get it back
b4dc5ffa 3651 into user code.) */
488f131b 3652 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 3653 if (debug_infrun)
3e43a32a
MS
3654 fprintf_unfiltered (gdb_stdlog,
3655 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
ca2163eb 3656 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3657 return;
3658 goto process_event_stop_test;
c906108c 3659
488f131b 3660 case TARGET_WAITKIND_STOPPED:
527159b7 3661 if (debug_infrun)
8a9de0e4 3662 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 3663 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
488f131b 3664 break;
c906108c 3665
b2175913 3666 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
3667 if (debug_infrun)
3668 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 3669 /* Reverse execution: target ran out of history info. */
eab402df
PA
3670
3671 /* Pull the single step breakpoints out of the target. */
3672 if (singlestep_breakpoints_inserted_p)
3673 {
3674 if (!ptid_equal (ecs->ptid, inferior_ptid))
3675 context_switch (ecs->ptid);
3676 remove_single_step_breakpoints ();
3677 singlestep_breakpoints_inserted_p = 0;
3678 }
fb14de7b 3679 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
33d62d64 3680 print_no_history_reason ();
b2175913
MS
3681 stop_stepping (ecs);
3682 return;
488f131b 3683 }
c906108c 3684
2020b7ab 3685 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
3686 {
3687 /* Do we need to clean up the state of a thread that has
3688 completed a displaced single-step? (Doing so usually affects
3689 the PC, so do it here, before we set stop_pc.) */
16c381f0
JK
3690 displaced_step_fixup (ecs->ptid,
3691 ecs->event_thread->suspend.stop_signal);
252fbfc8
PA
3692
3693 /* If we either finished a single-step or hit a breakpoint, but
3694 the user wanted this thread to be stopped, pretend we got a
3695 SIG0 (generic unsignaled stop). */
3696
3697 if (ecs->event_thread->stop_requested
a493e3e2
PA
3698 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3699 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
252fbfc8 3700 }
237fc4c9 3701
515630c5 3702 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 3703
527159b7 3704 if (debug_infrun)
237fc4c9 3705 {
5af949e3
UW
3706 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3707 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
3708 struct cleanup *old_chain = save_inferior_ptid ();
3709
3710 inferior_ptid = ecs->ptid;
5af949e3
UW
3711
3712 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3713 paddress (gdbarch, stop_pc));
d92524f1 3714 if (target_stopped_by_watchpoint ())
237fc4c9
PA
3715 {
3716 CORE_ADDR addr;
abbb1732 3717
237fc4c9
PA
3718 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3719
3720 if (target_stopped_data_address (&current_target, &addr))
3721 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
3722 "infrun: stopped data address = %s\n",
3723 paddress (gdbarch, addr));
237fc4c9
PA
3724 else
3725 fprintf_unfiltered (gdb_stdlog,
3726 "infrun: (no data address available)\n");
3727 }
7f82dfc7
JK
3728
3729 do_cleanups (old_chain);
237fc4c9 3730 }
527159b7 3731
9f976b41
DJ
3732 if (stepping_past_singlestep_breakpoint)
3733 {
1c0fdd0e 3734 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
3735 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3736 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3737
3738 stepping_past_singlestep_breakpoint = 0;
3739
3740 /* We've either finished single-stepping past the single-step
8fb3e588
AC
3741 breakpoint, or stopped for some other reason. It would be nice if
3742 we could tell, but we can't reliably. */
a493e3e2 3743 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
8fb3e588 3744 {
527159b7 3745 if (debug_infrun)
3e43a32a
MS
3746 fprintf_unfiltered (gdb_stdlog,
3747 "infrun: stepping_past_"
3748 "singlestep_breakpoint\n");
9f976b41 3749 /* Pull the single step breakpoints out of the target. */
8b3ee56d
PA
3750 if (!ptid_equal (ecs->ptid, inferior_ptid))
3751 context_switch (ecs->ptid);
e0cd558a 3752 remove_single_step_breakpoints ();
9f976b41
DJ
3753 singlestep_breakpoints_inserted_p = 0;
3754
3755 ecs->random_signal = 0;
16c381f0 3756 ecs->event_thread->control.trap_expected = 0;
9f976b41 3757
0d1e5fa7 3758 context_switch (saved_singlestep_ptid);
9a4105ab
AC
3759 if (deprecated_context_hook)
3760 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41 3761
a493e3e2 3762 resume (1, GDB_SIGNAL_0);
9f976b41
DJ
3763 prepare_to_wait (ecs);
3764 return;
3765 }
3766 }
3767
ca67fcb8 3768 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 3769 {
94cc34af
PA
3770 /* In non-stop mode, there's never a deferred_step_ptid set. */
3771 gdb_assert (!non_stop);
3772
6a6b96b9
UW
3773 /* If we stopped for some other reason than single-stepping, ignore
3774 the fact that we were supposed to switch back. */
a493e3e2 3775 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
6a6b96b9
UW
3776 {
3777 if (debug_infrun)
3778 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 3779 "infrun: handling deferred step\n");
6a6b96b9
UW
3780
3781 /* Pull the single step breakpoints out of the target. */
3782 if (singlestep_breakpoints_inserted_p)
3783 {
8b3ee56d
PA
3784 if (!ptid_equal (ecs->ptid, inferior_ptid))
3785 context_switch (ecs->ptid);
6a6b96b9
UW
3786 remove_single_step_breakpoints ();
3787 singlestep_breakpoints_inserted_p = 0;
3788 }
3789
cd3da28e
PA
3790 ecs->event_thread->control.trap_expected = 0;
3791
d25f45d9 3792 context_switch (deferred_step_ptid);
ca67fcb8 3793 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3794 /* Suppress spurious "Switching to ..." message. */
3795 previous_inferior_ptid = inferior_ptid;
3796
a493e3e2 3797 resume (1, GDB_SIGNAL_0);
6a6b96b9
UW
3798 prepare_to_wait (ecs);
3799 return;
3800 }
ca67fcb8
VP
3801
3802 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3803 }
3804
488f131b
JB
3805 /* See if a thread hit a thread-specific breakpoint that was meant for
3806 another thread. If so, then step that thread past the breakpoint,
3807 and continue it. */
3808
a493e3e2 3809 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 3810 {
9f976b41 3811 int thread_hop_needed = 0;
cf00dfa7
VP
3812 struct address_space *aspace =
3813 get_regcache_aspace (get_thread_regcache (ecs->ptid));
9f976b41 3814
f8d40ec8 3815 /* Check if a regular breakpoint has been hit before checking
1777feb0 3816 for a potential single step breakpoint. Otherwise, GDB will
f8d40ec8 3817 not see this breakpoint hit when stepping onto breakpoints. */
6c95b8df 3818 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
488f131b 3819 {
c5aa993b 3820 ecs->random_signal = 0;
6c95b8df 3821 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
9f976b41
DJ
3822 thread_hop_needed = 1;
3823 }
1c0fdd0e 3824 else if (singlestep_breakpoints_inserted_p)
9f976b41 3825 {
fd48f117
DJ
3826 /* We have not context switched yet, so this should be true
3827 no matter which thread hit the singlestep breakpoint. */
3828 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3829 if (debug_infrun)
3830 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3831 "trap for %s\n",
3832 target_pid_to_str (ecs->ptid));
3833
9f976b41
DJ
3834 ecs->random_signal = 0;
3835 /* The call to in_thread_list is necessary because PTIDs sometimes
3836 change when we go from single-threaded to multi-threaded. If
3837 the singlestep_ptid is still in the list, assume that it is
3838 really different from ecs->ptid. */
3839 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3840 && in_thread_list (singlestep_ptid))
3841 {
fd48f117
DJ
3842 /* If the PC of the thread we were trying to single-step
3843 has changed, discard this event (which we were going
3844 to ignore anyway), and pretend we saw that thread
3845 trap. This prevents us continuously moving the
3846 single-step breakpoint forward, one instruction at a
3847 time. If the PC has changed, then the thread we were
3848 trying to single-step has trapped or been signalled,
3849 but the event has not been reported to GDB yet.
3850
3851 There might be some cases where this loses signal
3852 information, if a signal has arrived at exactly the
3853 same time that the PC changed, but this is the best
3854 we can do with the information available. Perhaps we
3855 should arrange to report all events for all threads
3856 when they stop, or to re-poll the remote looking for
3857 this particular thread (i.e. temporarily enable
3858 schedlock). */
515630c5
UW
3859
3860 CORE_ADDR new_singlestep_pc
3861 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3862
3863 if (new_singlestep_pc != singlestep_pc)
fd48f117 3864 {
2ea28649 3865 enum gdb_signal stop_signal;
2020b7ab 3866
fd48f117
DJ
3867 if (debug_infrun)
3868 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3869 " but expected thread advanced also\n");
3870
3871 /* The current context still belongs to
3872 singlestep_ptid. Don't swap here, since that's
3873 the context we want to use. Just fudge our
3874 state and continue. */
16c381f0 3875 stop_signal = ecs->event_thread->suspend.stop_signal;
a493e3e2 3876 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
fd48f117 3877 ecs->ptid = singlestep_ptid;
e09875d4 3878 ecs->event_thread = find_thread_ptid (ecs->ptid);
16c381f0 3879 ecs->event_thread->suspend.stop_signal = stop_signal;
515630c5 3880 stop_pc = new_singlestep_pc;
fd48f117
DJ
3881 }
3882 else
3883 {
3884 if (debug_infrun)
3885 fprintf_unfiltered (gdb_stdlog,
3886 "infrun: unexpected thread\n");
3887
3888 thread_hop_needed = 1;
3889 stepping_past_singlestep_breakpoint = 1;
3890 saved_singlestep_ptid = singlestep_ptid;
3891 }
9f976b41
DJ
3892 }
3893 }
3894
3895 if (thread_hop_needed)
8fb3e588 3896 {
9f5a595d 3897 struct regcache *thread_regcache;
237fc4c9 3898 int remove_status = 0;
8fb3e588 3899
527159b7 3900 if (debug_infrun)
8a9de0e4 3901 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 3902
b3444185
PA
3903 /* Switch context before touching inferior memory, the
3904 previous thread may have exited. */
3905 if (!ptid_equal (inferior_ptid, ecs->ptid))
3906 context_switch (ecs->ptid);
3907
8fb3e588 3908 /* Saw a breakpoint, but it was hit by the wrong thread.
1777feb0 3909 Just continue. */
8fb3e588 3910
1c0fdd0e 3911 if (singlestep_breakpoints_inserted_p)
488f131b 3912 {
1777feb0 3913 /* Pull the single step breakpoints out of the target. */
e0cd558a 3914 remove_single_step_breakpoints ();
8fb3e588
AC
3915 singlestep_breakpoints_inserted_p = 0;
3916 }
3917
237fc4c9
PA
3918 /* If the arch can displace step, don't remove the
3919 breakpoints. */
9f5a595d
UW
3920 thread_regcache = get_thread_regcache (ecs->ptid);
3921 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
3922 remove_status = remove_breakpoints ();
3923
8fb3e588
AC
3924 /* Did we fail to remove breakpoints? If so, try
3925 to set the PC past the bp. (There's at least
3926 one situation in which we can fail to remove
3927 the bp's: On HP-UX's that use ttrace, we can't
3928 change the address space of a vforking child
3929 process until the child exits (well, okay, not
1777feb0 3930 then either :-) or execs. */
8fb3e588 3931 if (remove_status != 0)
9d9cd7ac 3932 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
3933 else
3934 { /* Single step */
94cc34af
PA
3935 if (!non_stop)
3936 {
3937 /* Only need to require the next event from this
3938 thread in all-stop mode. */
3939 waiton_ptid = ecs->ptid;
3940 infwait_state = infwait_thread_hop_state;
3941 }
8fb3e588 3942
4e1c45ea 3943 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588 3944 keep_going (ecs);
8fb3e588
AC
3945 return;
3946 }
488f131b 3947 }
1c0fdd0e 3948 else if (singlestep_breakpoints_inserted_p)
8fb3e588 3949 {
8fb3e588
AC
3950 ecs->random_signal = 0;
3951 }
488f131b
JB
3952 }
3953 else
3954 ecs->random_signal = 1;
c906108c 3955
488f131b 3956 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
3957 so, then switch to that thread. */
3958 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 3959 {
527159b7 3960 if (debug_infrun)
8a9de0e4 3961 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 3962
0d1e5fa7 3963 context_switch (ecs->ptid);
c5aa993b 3964
9a4105ab
AC
3965 if (deprecated_context_hook)
3966 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 3967 }
c906108c 3968
568d6575
UW
3969 /* At this point, get hold of the now-current thread's frame. */
3970 frame = get_current_frame ();
3971 gdbarch = get_frame_arch (frame);
3972
1c0fdd0e 3973 if (singlestep_breakpoints_inserted_p)
488f131b 3974 {
1777feb0 3975 /* Pull the single step breakpoints out of the target. */
e0cd558a 3976 remove_single_step_breakpoints ();
488f131b
JB
3977 singlestep_breakpoints_inserted_p = 0;
3978 }
c906108c 3979
d983da9c
DJ
3980 if (stepped_after_stopped_by_watchpoint)
3981 stopped_by_watchpoint = 0;
3982 else
3983 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3984
3985 /* If necessary, step over this watchpoint. We'll be back to display
3986 it in a moment. */
3987 if (stopped_by_watchpoint
d92524f1 3988 && (target_have_steppable_watchpoint
568d6575 3989 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 3990 {
488f131b
JB
3991 /* At this point, we are stopped at an instruction which has
3992 attempted to write to a piece of memory under control of
3993 a watchpoint. The instruction hasn't actually executed
3994 yet. If we were to evaluate the watchpoint expression
3995 now, we would get the old value, and therefore no change
3996 would seem to have occurred.
3997
3998 In order to make watchpoints work `right', we really need
3999 to complete the memory write, and then evaluate the
d983da9c
DJ
4000 watchpoint expression. We do this by single-stepping the
4001 target.
4002
4003 It may not be necessary to disable the watchpoint to stop over
4004 it. For example, the PA can (with some kernel cooperation)
4005 single step over a watchpoint without disabling the watchpoint.
4006
4007 It is far more common to need to disable a watchpoint to step
4008 the inferior over it. If we have non-steppable watchpoints,
4009 we must disable the current watchpoint; it's simplest to
4010 disable all watchpoints and breakpoints. */
2facfe5c
DD
4011 int hw_step = 1;
4012
d92524f1 4013 if (!target_have_steppable_watchpoint)
2455069d
UW
4014 {
4015 remove_breakpoints ();
4016 /* See comment in resume why we need to stop bypassing signals
4017 while breakpoints have been removed. */
4018 target_pass_signals (0, NULL);
4019 }
2facfe5c 4020 /* Single step */
568d6575 4021 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
a493e3e2 4022 target_resume (ecs->ptid, hw_step, GDB_SIGNAL_0);
0d1e5fa7 4023 waiton_ptid = ecs->ptid;
d92524f1 4024 if (target_have_steppable_watchpoint)
0d1e5fa7 4025 infwait_state = infwait_step_watch_state;
d983da9c 4026 else
0d1e5fa7 4027 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
4028 prepare_to_wait (ecs);
4029 return;
4030 }
4031
7e324e48 4032 clear_stop_func (ecs);
4e1c45ea 4033 ecs->event_thread->stepping_over_breakpoint = 0;
16c381f0
JK
4034 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4035 ecs->event_thread->control.stop_step = 0;
488f131b
JB
4036 stop_print_frame = 1;
4037 ecs->random_signal = 0;
4038 stopped_by_random_signal = 0;
488f131b 4039
edb3359d
DJ
4040 /* Hide inlined functions starting here, unless we just performed stepi or
4041 nexti. After stepi and nexti, always show the innermost frame (not any
4042 inline function call sites). */
16c381f0 4043 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
4044 {
4045 struct address_space *aspace =
4046 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4047
4048 /* skip_inline_frames is expensive, so we avoid it if we can
4049 determine that the address is one where functions cannot have
4050 been inlined. This improves performance with inferiors that
4051 load a lot of shared libraries, because the solib event
4052 breakpoint is defined as the address of a function (i.e. not
4053 inline). Note that we have to check the previous PC as well
4054 as the current one to catch cases when we have just
4055 single-stepped off a breakpoint prior to reinstating it.
4056 Note that we're assuming that the code we single-step to is
4057 not inline, but that's not definitive: there's nothing
4058 preventing the event breakpoint function from containing
4059 inlined code, and the single-step ending up there. If the
4060 user had set a breakpoint on that inlined code, the missing
4061 skip_inline_frames call would break things. Fortunately
4062 that's an extremely unlikely scenario. */
09ac7c10 4063 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
4064 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4065 && ecs->event_thread->control.trap_expected
4066 && pc_at_non_inline_function (aspace,
4067 ecs->event_thread->prev_pc,
09ac7c10 4068 &ecs->ws)))
1c5a993e
MR
4069 {
4070 skip_inline_frames (ecs->ptid);
4071
4072 /* Re-fetch current thread's frame in case that invalidated
4073 the frame cache. */
4074 frame = get_current_frame ();
4075 gdbarch = get_frame_arch (frame);
4076 }
0574c78f 4077 }
edb3359d 4078
a493e3e2 4079 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 4080 && ecs->event_thread->control.trap_expected
568d6575 4081 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 4082 && currently_stepping (ecs->event_thread))
3352ef37 4083 {
b50d7442 4084 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 4085 also on an instruction that needs to be stepped multiple
1777feb0 4086 times before it's been fully executing. E.g., architectures
3352ef37
AC
4087 with a delay slot. It needs to be stepped twice, once for
4088 the instruction and once for the delay slot. */
4089 int step_through_delay
568d6575 4090 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 4091
527159b7 4092 if (debug_infrun && step_through_delay)
8a9de0e4 4093 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
4094 if (ecs->event_thread->control.step_range_end == 0
4095 && step_through_delay)
3352ef37
AC
4096 {
4097 /* The user issued a continue when stopped at a breakpoint.
4098 Set up for another trap and get out of here. */
4e1c45ea 4099 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4100 keep_going (ecs);
4101 return;
4102 }
4103 else if (step_through_delay)
4104 {
4105 /* The user issued a step when stopped at a breakpoint.
4106 Maybe we should stop, maybe we should not - the delay
4107 slot *might* correspond to a line of source. In any
ca67fcb8
VP
4108 case, don't decide that here, just set
4109 ecs->stepping_over_breakpoint, making sure we
4110 single-step again before breakpoints are re-inserted. */
4e1c45ea 4111 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4112 }
4113 }
4114
488f131b
JB
4115 /* Look at the cause of the stop, and decide what to do.
4116 The alternatives are:
0d1e5fa7
PA
4117 1) stop_stepping and return; to really stop and return to the debugger,
4118 2) keep_going and return to start up again
4e1c45ea 4119 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
4120 3) set ecs->random_signal to 1, and the decision between 1 and 2
4121 will be made according to the signal handling tables. */
4122
a493e3e2 4123 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
b0f4b84b
DJ
4124 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
4125 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 4126 {
a493e3e2 4127 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 4128 && stop_after_trap)
488f131b 4129 {
527159b7 4130 if (debug_infrun)
8a9de0e4 4131 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
4132 stop_print_frame = 0;
4133 stop_stepping (ecs);
4134 return;
4135 }
c54cfec8
EZ
4136
4137 /* This is originated from start_remote(), start_inferior() and
4138 shared libraries hook functions. */
b0f4b84b 4139 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 4140 {
527159b7 4141 if (debug_infrun)
8a9de0e4 4142 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
4143 stop_stepping (ecs);
4144 return;
4145 }
4146
c54cfec8 4147 /* This originates from attach_command(). We need to overwrite
a0d21d28
PA
4148 the stop_signal here, because some kernels don't ignore a
4149 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4150 See more comments in inferior.h. On the other hand, if we
a0ef4274 4151 get a non-SIGSTOP, report it to the user - assume the backend
a0d21d28
PA
4152 will handle the SIGSTOP if it should show up later.
4153
4154 Also consider that the attach is complete when we see a
4155 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4156 target extended-remote report it instead of a SIGSTOP
4157 (e.g. gdbserver). We already rely on SIGTRAP being our
e0ba6746
PA
4158 signal, so this is no exception.
4159
4160 Also consider that the attach is complete when we see a
a493e3e2 4161 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
e0ba6746
PA
4162 the target to stop all threads of the inferior, in case the
4163 low level attach operation doesn't stop them implicitly. If
4164 they weren't stopped implicitly, then the stub will report a
a493e3e2 4165 GDB_SIGNAL_0, meaning: stopped for no particular reason
e0ba6746 4166 other than GDB's request. */
a0ef4274 4167 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
a493e3e2
PA
4168 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4169 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4170 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
c54cfec8
EZ
4171 {
4172 stop_stepping (ecs);
a493e3e2 4173 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
c54cfec8
EZ
4174 return;
4175 }
4176
09ac7c10
TT
4177 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4178 handles this event. */
16c381f0 4179 ecs->event_thread->control.stop_bpstat
6c95b8df 4180 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 4181 stop_pc, ecs->ptid, &ecs->ws);
6c95b8df 4182
fba57f8f
VP
4183 /* Following in case break condition called a
4184 function. */
4185 stop_print_frame = 1;
488f131b 4186
db82e815
PA
4187 /* This is where we handle "moribund" watchpoints. Unlike
4188 software breakpoints traps, hardware watchpoint traps are
4189 always distinguishable from random traps. If no high-level
4190 watchpoint is associated with the reported stop data address
4191 anymore, then the bpstat does not explain the signal ---
4192 simply make sure to ignore it if `stopped_by_watchpoint' is
4193 set. */
4194
4195 if (debug_infrun
a493e3e2 4196 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 4197 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
db82e815 4198 && stopped_by_watchpoint)
3e43a32a
MS
4199 fprintf_unfiltered (gdb_stdlog,
4200 "infrun: no user watchpoint explains "
4201 "watchpoint SIGTRAP, ignoring\n");
db82e815 4202
73dd234f 4203 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
4204 at one stage in the past included checks for an inferior
4205 function call's call dummy's return breakpoint. The original
4206 comment, that went with the test, read:
73dd234f 4207
8fb3e588
AC
4208 ``End of a stack dummy. Some systems (e.g. Sony news) give
4209 another signal besides SIGTRAP, so check here as well as
4210 above.''
73dd234f 4211
8002d778 4212 If someone ever tries to get call dummys on a
73dd234f 4213 non-executable stack to work (where the target would stop
03cebad2
MK
4214 with something like a SIGSEGV), then those tests might need
4215 to be re-instated. Given, however, that the tests were only
73dd234f 4216 enabled when momentary breakpoints were not being used, I
03cebad2
MK
4217 suspect that it won't be the case.
4218
8fb3e588
AC
4219 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4220 be necessary for call dummies on a non-executable stack on
4221 SPARC. */
73dd234f 4222
a493e3e2 4223 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 4224 ecs->random_signal
16c381f0 4225 = !(bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
db82e815 4226 || stopped_by_watchpoint
16c381f0
JK
4227 || ecs->event_thread->control.trap_expected
4228 || (ecs->event_thread->control.step_range_end
8358c15c
JK
4229 && (ecs->event_thread->control.step_resume_breakpoint
4230 == NULL)));
488f131b
JB
4231 else
4232 {
16c381f0
JK
4233 ecs->random_signal = !bpstat_explains_signal
4234 (ecs->event_thread->control.stop_bpstat);
488f131b 4235 if (!ecs->random_signal)
a493e3e2 4236 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
488f131b
JB
4237 }
4238 }
4239
4240 /* When we reach this point, we've pretty much decided
4241 that the reason for stopping must've been a random
1777feb0 4242 (unexpected) signal. */
488f131b
JB
4243
4244 else
4245 ecs->random_signal = 1;
488f131b 4246
04e68871 4247process_event_stop_test:
568d6575
UW
4248
4249 /* Re-fetch current thread's frame in case we did a
4250 "goto process_event_stop_test" above. */
4251 frame = get_current_frame ();
4252 gdbarch = get_frame_arch (frame);
4253
488f131b
JB
4254 /* For the program's own signals, act according to
4255 the signal handling tables. */
4256
4257 if (ecs->random_signal)
4258 {
4259 /* Signal not for debugging purposes. */
4260 int printed = 0;
24291992 4261 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
488f131b 4262
527159b7 4263 if (debug_infrun)
2020b7ab 4264 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
16c381f0 4265 ecs->event_thread->suspend.stop_signal);
527159b7 4266
488f131b
JB
4267 stopped_by_random_signal = 1;
4268
16c381f0 4269 if (signal_print[ecs->event_thread->suspend.stop_signal])
488f131b
JB
4270 {
4271 printed = 1;
4272 target_terminal_ours_for_output ();
16c381f0
JK
4273 print_signal_received_reason
4274 (ecs->event_thread->suspend.stop_signal);
488f131b 4275 }
252fbfc8
PA
4276 /* Always stop on signals if we're either just gaining control
4277 of the program, or the user explicitly requested this thread
4278 to remain stopped. */
d6b48e9c 4279 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 4280 || ecs->event_thread->stop_requested
24291992 4281 || (!inf->detaching
16c381f0 4282 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b
JB
4283 {
4284 stop_stepping (ecs);
4285 return;
4286 }
4287 /* If not going to stop, give terminal back
4288 if we took it away. */
4289 else if (printed)
4290 target_terminal_inferior ();
4291
4292 /* Clear the signal if it should not be passed. */
16c381f0 4293 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 4294 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 4295
fb14de7b 4296 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 4297 && ecs->event_thread->control.trap_expected
8358c15c 4298 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
4299 {
4300 /* We were just starting a new sequence, attempting to
4301 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 4302 Instead this signal arrives. This signal will take us out
68f53502
AC
4303 of the stepping range so GDB needs to remember to, when
4304 the signal handler returns, resume stepping off that
4305 breakpoint. */
4306 /* To simplify things, "continue" is forced to use the same
4307 code paths as single-step - set a breakpoint at the
4308 signal return address and then, once hit, step off that
4309 breakpoint. */
237fc4c9
PA
4310 if (debug_infrun)
4311 fprintf_unfiltered (gdb_stdlog,
4312 "infrun: signal arrived while stepping over "
4313 "breakpoint\n");
d3169d93 4314
2c03e5be 4315 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 4316 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4317 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4318 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4319 keep_going (ecs);
4320 return;
68f53502 4321 }
9d799f85 4322
16c381f0 4323 if (ecs->event_thread->control.step_range_end != 0
a493e3e2 4324 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
16c381f0
JK
4325 && (ecs->event_thread->control.step_range_start <= stop_pc
4326 && stop_pc < ecs->event_thread->control.step_range_end)
edb3359d 4327 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 4328 ecs->event_thread->control.step_stack_frame_id)
8358c15c 4329 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
4330 {
4331 /* The inferior is about to take a signal that will take it
4332 out of the single step range. Set a breakpoint at the
4333 current PC (which is presumably where the signal handler
4334 will eventually return) and then allow the inferior to
4335 run free.
4336
4337 Note that this is only needed for a signal delivered
4338 while in the single-step range. Nested signals aren't a
4339 problem as they eventually all return. */
237fc4c9
PA
4340 if (debug_infrun)
4341 fprintf_unfiltered (gdb_stdlog,
4342 "infrun: signal may take us out of "
4343 "single-step range\n");
4344
2c03e5be 4345 insert_hp_step_resume_breakpoint_at_frame (frame);
2455069d
UW
4346 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4347 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4348 keep_going (ecs);
4349 return;
d303a6c7 4350 }
9d799f85
AC
4351
4352 /* Note: step_resume_breakpoint may be non-NULL. This occures
4353 when either there's a nested signal, or when there's a
4354 pending signal enabled just as the signal handler returns
4355 (leaving the inferior at the step-resume-breakpoint without
4356 actually executing it). Either way continue until the
4357 breakpoint is really hit. */
488f131b 4358 }
e5ef252a
PA
4359 else
4360 {
4361 /* Handle cases caused by hitting a breakpoint. */
488f131b 4362
e5ef252a
PA
4363 CORE_ADDR jmp_buf_pc;
4364 struct bpstat_what what;
611c83ae 4365
e5ef252a 4366 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 4367
e5ef252a 4368 if (what.call_dummy)
e81a37f7 4369 {
e5ef252a
PA
4370 stop_stack_dummy = what.call_dummy;
4371 }
186c406b 4372
e5ef252a
PA
4373 /* If we hit an internal event that triggers symbol changes, the
4374 current frame will be invalidated within bpstat_what (e.g.,
4375 if we hit an internal solib event). Re-fetch it. */
4376 frame = get_current_frame ();
4377 gdbarch = get_frame_arch (frame);
e2e4d78b 4378
e5ef252a
PA
4379 switch (what.main_action)
4380 {
4381 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4382 /* If we hit the breakpoint at longjmp while stepping, we
4383 install a momentary breakpoint at the target of the
4384 jmp_buf. */
186c406b 4385
e81a37f7
TT
4386 if (debug_infrun)
4387 fprintf_unfiltered (gdb_stdlog,
e5ef252a 4388 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 4389
e5ef252a 4390 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 4391
e2e4d78b
JK
4392 if (what.is_longjmp)
4393 {
e5ef252a
PA
4394 struct value *arg_value;
4395
4396 /* If we set the longjmp breakpoint via a SystemTap
4397 probe, then use it to extract the arguments. The
4398 destination PC is the third argument to the
4399 probe. */
4400 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4401 if (arg_value)
4402 jmp_buf_pc = value_as_address (arg_value);
4403 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4404 || !gdbarch_get_longjmp_target (gdbarch,
4405 frame, &jmp_buf_pc))
e2e4d78b 4406 {
e5ef252a
PA
4407 if (debug_infrun)
4408 fprintf_unfiltered (gdb_stdlog,
4409 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4410 "(!gdbarch_get_longjmp_target)\n");
e2e4d78b
JK
4411 keep_going (ecs);
4412 return;
4413 }
e5ef252a
PA
4414
4415 /* Insert a breakpoint at resume address. */
4416 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
e2e4d78b 4417 }
e5ef252a
PA
4418 else
4419 check_exception_resume (ecs, frame);
4420 keep_going (ecs);
4421 return;
e2e4d78b 4422
e5ef252a
PA
4423 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4424 {
4425 struct frame_info *init_frame;
e2e4d78b 4426
e5ef252a 4427 /* There are several cases to consider.
e81a37f7 4428
e5ef252a
PA
4429 1. The initiating frame no longer exists. In this case
4430 we must stop, because the exception or longjmp has gone
4431 too far.
e81a37f7 4432
e5ef252a
PA
4433 2. The initiating frame exists, and is the same as the
4434 current frame. We stop, because the exception or
4435 longjmp has been caught.
c906108c 4436
e5ef252a
PA
4437 3. The initiating frame exists and is different from
4438 the current frame. This means the exception or longjmp
4439 has been caught beneath the initiating frame, so keep
4440 going.
2c03e5be 4441
e5ef252a
PA
4442 4. longjmp breakpoint has been placed just to protect
4443 against stale dummy frames and user is not interested
4444 in stopping around longjmps. */
2c03e5be 4445
e5ef252a
PA
4446 if (debug_infrun)
4447 fprintf_unfiltered (gdb_stdlog,
4448 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c906108c 4449
e5ef252a
PA
4450 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4451 != NULL);
4452 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 4453
e5ef252a
PA
4454 if (what.is_longjmp)
4455 {
4456 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread->num);
c5aa993b 4457
e5ef252a
PA
4458 if (!frame_id_p (ecs->event_thread->initiating_frame))
4459 {
4460 /* Case 4. */
4461 keep_going (ecs);
4462 return;
4463 }
4464 }
c5aa993b 4465
e5ef252a 4466 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
c5aa993b 4467
e5ef252a
PA
4468 if (init_frame)
4469 {
4470 struct frame_id current_id
4471 = get_frame_id (get_current_frame ());
4472 if (frame_id_eq (current_id,
4473 ecs->event_thread->initiating_frame))
4474 {
4475 /* Case 2. Fall through. */
4476 }
4477 else
4478 {
4479 /* Case 3. */
4480 keep_going (ecs);
4481 return;
4482 }
4483 }
c5aa993b 4484
e5ef252a
PA
4485 /* For Cases 1 and 2, remove the step-resume breakpoint,
4486 if it exists. */
4487 delete_step_resume_breakpoint (ecs->event_thread);
527159b7 4488
e5ef252a
PA
4489 ecs->event_thread->control.stop_step = 1;
4490 print_end_stepping_range_reason ();
4491 stop_stepping (ecs);
68f53502 4492 }
e5ef252a 4493 return;
488f131b 4494
e5ef252a
PA
4495 case BPSTAT_WHAT_SINGLE:
4496 if (debug_infrun)
4497 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4498 ecs->event_thread->stepping_over_breakpoint = 1;
4499 /* Still need to check other stuff, at least the case where
4500 we are stepping and step out of the right range. */
4501 break;
4502
4503 case BPSTAT_WHAT_STEP_RESUME:
4504 if (debug_infrun)
4505 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4506
4507 delete_step_resume_breakpoint (ecs->event_thread);
4508 if (ecs->event_thread->control.proceed_to_finish
4509 && execution_direction == EXEC_REVERSE)
4510 {
4511 struct thread_info *tp = ecs->event_thread;
4512
4513 /* We are finishing a function in reverse, and just hit
4514 the step-resume breakpoint at the start address of
4515 the function, and we're almost there -- just need to
4516 back up by one more single-step, which should take us
4517 back to the function call. */
4518 tp->control.step_range_start = tp->control.step_range_end = 1;
4519 keep_going (ecs);
4520 return;
4521 }
4522 fill_in_stop_func (gdbarch, ecs);
4523 if (stop_pc == ecs->stop_func_start
4524 && execution_direction == EXEC_REVERSE)
4525 {
4526 /* We are stepping over a function call in reverse, and
4527 just hit the step-resume breakpoint at the start
4528 address of the function. Go back to single-stepping,
4529 which should take us back to the function call. */
4530 ecs->event_thread->stepping_over_breakpoint = 1;
4531 keep_going (ecs);
4532 return;
4533 }
4534 break;
4535
4536 case BPSTAT_WHAT_STOP_NOISY:
4537 if (debug_infrun)
4538 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4539 stop_print_frame = 1;
4540
4541 /* We are about to nuke the step_resume_breakpointt via the
4542 cleanup chain, so no need to worry about it here. */
4543
4544 stop_stepping (ecs);
4545 return;
4546
4547 case BPSTAT_WHAT_STOP_SILENT:
4548 if (debug_infrun)
4549 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4550 stop_print_frame = 0;
4551
4552 /* We are about to nuke the step_resume_breakpoin via the
4553 cleanup chain, so no need to worry about it here. */
4554
4555 stop_stepping (ecs);
4556 return;
4557
4558 case BPSTAT_WHAT_HP_STEP_RESUME:
4559 if (debug_infrun)
4560 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4561
4562 delete_step_resume_breakpoint (ecs->event_thread);
4563 if (ecs->event_thread->step_after_step_resume_breakpoint)
4564 {
4565 /* Back when the step-resume breakpoint was inserted, we
4566 were trying to single-step off a breakpoint. Go back
4567 to doing that. */
4568 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4569 ecs->event_thread->stepping_over_breakpoint = 1;
4570 keep_going (ecs);
4571 return;
4572 }
4573 break;
4574
4575 case BPSTAT_WHAT_KEEP_CHECKING:
4576 break;
4577 }
4578 }
c906108c 4579
488f131b
JB
4580 /* We come here if we hit a breakpoint but should not
4581 stop for it. Possibly we also were stepping
4582 and should stop for that. So fall through and
4583 test for stepping. But, if not stepping,
4584 do not stop. */
c906108c 4585
a7212384
UW
4586 /* In all-stop mode, if we're currently stepping but have stopped in
4587 some other thread, we need to switch back to the stepped thread. */
4588 if (!non_stop)
4589 {
4590 struct thread_info *tp;
abbb1732 4591
b3444185 4592 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
a7212384
UW
4593 ecs->event_thread);
4594 if (tp)
4595 {
4596 /* However, if the current thread is blocked on some internal
4597 breakpoint, and we simply need to step over that breakpoint
4598 to get it going again, do that first. */
16c381f0 4599 if ((ecs->event_thread->control.trap_expected
a493e3e2 4600 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
a7212384
UW
4601 || ecs->event_thread->stepping_over_breakpoint)
4602 {
4603 keep_going (ecs);
4604 return;
4605 }
4606
66852e9c
PA
4607 /* If the stepping thread exited, then don't try to switch
4608 back and resume it, which could fail in several different
4609 ways depending on the target. Instead, just keep going.
4610
4611 We can find a stepping dead thread in the thread list in
4612 two cases:
4613
4614 - The target supports thread exit events, and when the
4615 target tries to delete the thread from the thread list,
4616 inferior_ptid pointed at the exiting thread. In such
4617 case, calling delete_thread does not really remove the
4618 thread from the list; instead, the thread is left listed,
4619 with 'exited' state.
4620
4621 - The target's debug interface does not support thread
4622 exit events, and so we have no idea whatsoever if the
4623 previously stepping thread is still alive. For that
4624 reason, we need to synchronously query the target
4625 now. */
b3444185
PA
4626 if (is_exited (tp->ptid)
4627 || !target_thread_alive (tp->ptid))
4628 {
4629 if (debug_infrun)
3e43a32a
MS
4630 fprintf_unfiltered (gdb_stdlog,
4631 "infrun: not switching back to "
4632 "stepped thread, it has vanished\n");
b3444185
PA
4633
4634 delete_thread (tp->ptid);
4635 keep_going (ecs);
4636 return;
4637 }
4638
a7212384
UW
4639 /* Otherwise, we no longer expect a trap in the current thread.
4640 Clear the trap_expected flag before switching back -- this is
4641 what keep_going would do as well, if we called it. */
16c381f0 4642 ecs->event_thread->control.trap_expected = 0;
a7212384
UW
4643
4644 if (debug_infrun)
4645 fprintf_unfiltered (gdb_stdlog,
4646 "infrun: switching back to stepped thread\n");
4647
4648 ecs->event_thread = tp;
4649 ecs->ptid = tp->ptid;
4650 context_switch (ecs->ptid);
4651 keep_going (ecs);
4652 return;
4653 }
4654 }
4655
8358c15c 4656 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 4657 {
527159b7 4658 if (debug_infrun)
d3169d93
DJ
4659 fprintf_unfiltered (gdb_stdlog,
4660 "infrun: step-resume breakpoint is inserted\n");
527159b7 4661
488f131b
JB
4662 /* Having a step-resume breakpoint overrides anything
4663 else having to do with stepping commands until
4664 that breakpoint is reached. */
488f131b
JB
4665 keep_going (ecs);
4666 return;
4667 }
c5aa993b 4668
16c381f0 4669 if (ecs->event_thread->control.step_range_end == 0)
488f131b 4670 {
527159b7 4671 if (debug_infrun)
8a9de0e4 4672 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 4673 /* Likewise if we aren't even stepping. */
488f131b
JB
4674 keep_going (ecs);
4675 return;
4676 }
c5aa993b 4677
4b7703ad
JB
4678 /* Re-fetch current thread's frame in case the code above caused
4679 the frame cache to be re-initialized, making our FRAME variable
4680 a dangling pointer. */
4681 frame = get_current_frame ();
628fe4e4 4682 gdbarch = get_frame_arch (frame);
7e324e48 4683 fill_in_stop_func (gdbarch, ecs);
4b7703ad 4684
488f131b 4685 /* If stepping through a line, keep going if still within it.
c906108c 4686
488f131b
JB
4687 Note that step_range_end is the address of the first instruction
4688 beyond the step range, and NOT the address of the last instruction
31410e84
MS
4689 within it!
4690
4691 Note also that during reverse execution, we may be stepping
4692 through a function epilogue and therefore must detect when
4693 the current-frame changes in the middle of a line. */
4694
16c381f0
JK
4695 if (stop_pc >= ecs->event_thread->control.step_range_start
4696 && stop_pc < ecs->event_thread->control.step_range_end
31410e84 4697 && (execution_direction != EXEC_REVERSE
388a8562 4698 || frame_id_eq (get_frame_id (frame),
16c381f0 4699 ecs->event_thread->control.step_frame_id)))
488f131b 4700 {
527159b7 4701 if (debug_infrun)
5af949e3
UW
4702 fprintf_unfiltered
4703 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
4704 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4705 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913
MS
4706
4707 /* When stepping backward, stop at beginning of line range
4708 (unless it's the function entry point, in which case
4709 keep going back to the call point). */
16c381f0 4710 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
4711 && stop_pc != ecs->stop_func_start
4712 && execution_direction == EXEC_REVERSE)
4713 {
16c381f0 4714 ecs->event_thread->control.stop_step = 1;
33d62d64 4715 print_end_stepping_range_reason ();
b2175913
MS
4716 stop_stepping (ecs);
4717 }
4718 else
4719 keep_going (ecs);
4720
488f131b
JB
4721 return;
4722 }
c5aa993b 4723
488f131b 4724 /* We stepped out of the stepping range. */
c906108c 4725
488f131b 4726 /* If we are stepping at the source level and entered the runtime
388a8562
MS
4727 loader dynamic symbol resolution code...
4728
4729 EXEC_FORWARD: we keep on single stepping until we exit the run
4730 time loader code and reach the callee's address.
4731
4732 EXEC_REVERSE: we've already executed the callee (backward), and
4733 the runtime loader code is handled just like any other
4734 undebuggable function call. Now we need only keep stepping
4735 backward through the trampoline code, and that's handled further
4736 down, so there is nothing for us to do here. */
4737
4738 if (execution_direction != EXEC_REVERSE
16c381f0 4739 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 4740 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 4741 {
4c8c40e6 4742 CORE_ADDR pc_after_resolver =
568d6575 4743 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 4744
527159b7 4745 if (debug_infrun)
3e43a32a
MS
4746 fprintf_unfiltered (gdb_stdlog,
4747 "infrun: stepped into dynsym resolve code\n");
527159b7 4748
488f131b
JB
4749 if (pc_after_resolver)
4750 {
4751 /* Set up a step-resume breakpoint at the address
4752 indicated by SKIP_SOLIB_RESOLVER. */
4753 struct symtab_and_line sr_sal;
abbb1732 4754
fe39c653 4755 init_sal (&sr_sal);
488f131b 4756 sr_sal.pc = pc_after_resolver;
6c95b8df 4757 sr_sal.pspace = get_frame_program_space (frame);
488f131b 4758
a6d9a66e
UW
4759 insert_step_resume_breakpoint_at_sal (gdbarch,
4760 sr_sal, null_frame_id);
c5aa993b 4761 }
c906108c 4762
488f131b
JB
4763 keep_going (ecs);
4764 return;
4765 }
c906108c 4766
16c381f0
JK
4767 if (ecs->event_thread->control.step_range_end != 1
4768 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4769 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 4770 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 4771 {
527159b7 4772 if (debug_infrun)
3e43a32a
MS
4773 fprintf_unfiltered (gdb_stdlog,
4774 "infrun: stepped into signal trampoline\n");
42edda50 4775 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
4776 a signal trampoline (either by a signal being delivered or by
4777 the signal handler returning). Just single-step until the
4778 inferior leaves the trampoline (either by calling the handler
4779 or returning). */
488f131b
JB
4780 keep_going (ecs);
4781 return;
4782 }
c906108c 4783
14132e89
MR
4784 /* If we're in the return path from a shared library trampoline,
4785 we want to proceed through the trampoline when stepping. */
4786 /* macro/2012-04-25: This needs to come before the subroutine
4787 call check below as on some targets return trampolines look
4788 like subroutine calls (MIPS16 return thunks). */
4789 if (gdbarch_in_solib_return_trampoline (gdbarch,
4790 stop_pc, ecs->stop_func_name)
4791 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4792 {
4793 /* Determine where this trampoline returns. */
4794 CORE_ADDR real_stop_pc;
4795
4796 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4797
4798 if (debug_infrun)
4799 fprintf_unfiltered (gdb_stdlog,
4800 "infrun: stepped into solib return tramp\n");
4801
4802 /* Only proceed through if we know where it's going. */
4803 if (real_stop_pc)
4804 {
4805 /* And put the step-breakpoint there and go until there. */
4806 struct symtab_and_line sr_sal;
4807
4808 init_sal (&sr_sal); /* initialize to zeroes */
4809 sr_sal.pc = real_stop_pc;
4810 sr_sal.section = find_pc_overlay (sr_sal.pc);
4811 sr_sal.pspace = get_frame_program_space (frame);
4812
4813 /* Do not specify what the fp should be when we stop since
4814 on some machines the prologue is where the new fp value
4815 is established. */
4816 insert_step_resume_breakpoint_at_sal (gdbarch,
4817 sr_sal, null_frame_id);
4818
4819 /* Restart without fiddling with the step ranges or
4820 other state. */
4821 keep_going (ecs);
4822 return;
4823 }
4824 }
4825
c17eaafe
DJ
4826 /* Check for subroutine calls. The check for the current frame
4827 equalling the step ID is not necessary - the check of the
4828 previous frame's ID is sufficient - but it is a common case and
4829 cheaper than checking the previous frame's ID.
14e60db5
DJ
4830
4831 NOTE: frame_id_eq will never report two invalid frame IDs as
4832 being equal, so to get into this block, both the current and
4833 previous frame must have valid frame IDs. */
005ca36a
JB
4834 /* The outer_frame_id check is a heuristic to detect stepping
4835 through startup code. If we step over an instruction which
4836 sets the stack pointer from an invalid value to a valid value,
4837 we may detect that as a subroutine call from the mythical
4838 "outermost" function. This could be fixed by marking
4839 outermost frames as !stack_p,code_p,special_p. Then the
4840 initial outermost frame, before sp was valid, would
ce6cca6d 4841 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 4842 for more. */
edb3359d 4843 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 4844 ecs->event_thread->control.step_stack_frame_id)
005ca36a 4845 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
4846 ecs->event_thread->control.step_stack_frame_id)
4847 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a
JB
4848 outer_frame_id)
4849 || step_start_function != find_pc_function (stop_pc))))
488f131b 4850 {
95918acb 4851 CORE_ADDR real_stop_pc;
8fb3e588 4852
527159b7 4853 if (debug_infrun)
8a9de0e4 4854 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 4855
16c381f0
JK
4856 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4857 || ((ecs->event_thread->control.step_range_end == 1)
d80b854b 4858 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 4859 ecs->stop_func_start)))
95918acb
AC
4860 {
4861 /* I presume that step_over_calls is only 0 when we're
4862 supposed to be stepping at the assembly language level
4863 ("stepi"). Just stop. */
4864 /* Also, maybe we just did a "nexti" inside a prolog, so we
4865 thought it was a subroutine call but it was not. Stop as
4866 well. FENN */
388a8562 4867 /* And this works the same backward as frontward. MVS */
16c381f0 4868 ecs->event_thread->control.stop_step = 1;
33d62d64 4869 print_end_stepping_range_reason ();
95918acb
AC
4870 stop_stepping (ecs);
4871 return;
4872 }
8fb3e588 4873
388a8562
MS
4874 /* Reverse stepping through solib trampolines. */
4875
4876 if (execution_direction == EXEC_REVERSE
16c381f0 4877 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
4878 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4879 || (ecs->stop_func_start == 0
4880 && in_solib_dynsym_resolve_code (stop_pc))))
4881 {
4882 /* Any solib trampoline code can be handled in reverse
4883 by simply continuing to single-step. We have already
4884 executed the solib function (backwards), and a few
4885 steps will take us back through the trampoline to the
4886 caller. */
4887 keep_going (ecs);
4888 return;
4889 }
4890
16c381f0 4891 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 4892 {
b2175913
MS
4893 /* We're doing a "next".
4894
4895 Normal (forward) execution: set a breakpoint at the
4896 callee's return address (the address at which the caller
4897 will resume).
4898
4899 Reverse (backward) execution. set the step-resume
4900 breakpoint at the start of the function that we just
4901 stepped into (backwards), and continue to there. When we
6130d0b7 4902 get there, we'll need to single-step back to the caller. */
b2175913
MS
4903
4904 if (execution_direction == EXEC_REVERSE)
4905 {
4906 struct symtab_and_line sr_sal;
3067f6e5 4907
388a8562
MS
4908 /* Normal function call return (static or dynamic). */
4909 init_sal (&sr_sal);
4910 sr_sal.pc = ecs->stop_func_start;
6c95b8df
PA
4911 sr_sal.pspace = get_frame_program_space (frame);
4912 insert_step_resume_breakpoint_at_sal (gdbarch,
4913 sr_sal, null_frame_id);
b2175913
MS
4914 }
4915 else
568d6575 4916 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4917
8567c30f
AC
4918 keep_going (ecs);
4919 return;
4920 }
a53c66de 4921
95918acb 4922 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
4923 calling routine and the real function), locate the real
4924 function. That's what tells us (a) whether we want to step
4925 into it at all, and (b) what prologue we want to run to the
4926 end of, if we do step into it. */
568d6575 4927 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 4928 if (real_stop_pc == 0)
568d6575 4929 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
4930 if (real_stop_pc != 0)
4931 ecs->stop_func_start = real_stop_pc;
8fb3e588 4932
db5f024e 4933 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
4934 {
4935 struct symtab_and_line sr_sal;
abbb1732 4936
1b2bfbb9
RC
4937 init_sal (&sr_sal);
4938 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4939 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 4940
a6d9a66e
UW
4941 insert_step_resume_breakpoint_at_sal (gdbarch,
4942 sr_sal, null_frame_id);
8fb3e588
AC
4943 keep_going (ecs);
4944 return;
1b2bfbb9
RC
4945 }
4946
95918acb 4947 /* If we have line number information for the function we are
1bfeeb0f
JL
4948 thinking of stepping into and the function isn't on the skip
4949 list, step into it.
95918acb 4950
8fb3e588
AC
4951 If there are several symtabs at that PC (e.g. with include
4952 files), just want to know whether *any* of them have line
4953 numbers. find_pc_line handles this. */
95918acb
AC
4954 {
4955 struct symtab_and_line tmp_sal;
8fb3e588 4956
95918acb 4957 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52
JB
4958 if (tmp_sal.line != 0
4959 && !function_pc_is_marked_for_skip (ecs->stop_func_start))
95918acb 4960 {
b2175913 4961 if (execution_direction == EXEC_REVERSE)
568d6575 4962 handle_step_into_function_backward (gdbarch, ecs);
b2175913 4963 else
568d6575 4964 handle_step_into_function (gdbarch, ecs);
95918acb
AC
4965 return;
4966 }
4967 }
4968
4969 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
4970 set, we stop the step so that the user has a chance to switch
4971 in assembly mode. */
16c381f0 4972 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 4973 && step_stop_if_no_debug)
95918acb 4974 {
16c381f0 4975 ecs->event_thread->control.stop_step = 1;
33d62d64 4976 print_end_stepping_range_reason ();
95918acb
AC
4977 stop_stepping (ecs);
4978 return;
4979 }
4980
b2175913
MS
4981 if (execution_direction == EXEC_REVERSE)
4982 {
4983 /* Set a breakpoint at callee's start address.
4984 From there we can step once and be back in the caller. */
4985 struct symtab_and_line sr_sal;
abbb1732 4986
b2175913
MS
4987 init_sal (&sr_sal);
4988 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4989 sr_sal.pspace = get_frame_program_space (frame);
a6d9a66e
UW
4990 insert_step_resume_breakpoint_at_sal (gdbarch,
4991 sr_sal, null_frame_id);
b2175913
MS
4992 }
4993 else
4994 /* Set a breakpoint at callee's return address (the address
4995 at which the caller will resume). */
568d6575 4996 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4997
95918acb 4998 keep_going (ecs);
488f131b 4999 return;
488f131b 5000 }
c906108c 5001
fdd654f3
MS
5002 /* Reverse stepping through solib trampolines. */
5003
5004 if (execution_direction == EXEC_REVERSE
16c381f0 5005 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
5006 {
5007 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5008 || (ecs->stop_func_start == 0
5009 && in_solib_dynsym_resolve_code (stop_pc)))
5010 {
5011 /* Any solib trampoline code can be handled in reverse
5012 by simply continuing to single-step. We have already
5013 executed the solib function (backwards), and a few
5014 steps will take us back through the trampoline to the
5015 caller. */
5016 keep_going (ecs);
5017 return;
5018 }
5019 else if (in_solib_dynsym_resolve_code (stop_pc))
5020 {
5021 /* Stepped backward into the solib dynsym resolver.
5022 Set a breakpoint at its start and continue, then
5023 one more step will take us out. */
5024 struct symtab_and_line sr_sal;
abbb1732 5025
fdd654f3
MS
5026 init_sal (&sr_sal);
5027 sr_sal.pc = ecs->stop_func_start;
9d1807c3 5028 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
5029 insert_step_resume_breakpoint_at_sal (gdbarch,
5030 sr_sal, null_frame_id);
5031 keep_going (ecs);
5032 return;
5033 }
5034 }
5035
2afb61aa 5036 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 5037
1b2bfbb9
RC
5038 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5039 the trampoline processing logic, however, there are some trampolines
5040 that have no names, so we should do trampoline handling first. */
16c381f0 5041 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 5042 && ecs->stop_func_name == NULL
2afb61aa 5043 && stop_pc_sal.line == 0)
1b2bfbb9 5044 {
527159b7 5045 if (debug_infrun)
3e43a32a
MS
5046 fprintf_unfiltered (gdb_stdlog,
5047 "infrun: stepped into undebuggable function\n");
527159b7 5048
1b2bfbb9 5049 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
5050 undebuggable function (where there is no debugging information
5051 and no line number corresponding to the address where the
1b2bfbb9
RC
5052 inferior stopped). Since we want to skip this kind of code,
5053 we keep going until the inferior returns from this
14e60db5
DJ
5054 function - unless the user has asked us not to (via
5055 set step-mode) or we no longer know how to get back
5056 to the call site. */
5057 if (step_stop_if_no_debug
c7ce8faa 5058 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
5059 {
5060 /* If we have no line number and the step-stop-if-no-debug
5061 is set, we stop the step so that the user has a chance to
5062 switch in assembly mode. */
16c381f0 5063 ecs->event_thread->control.stop_step = 1;
33d62d64 5064 print_end_stepping_range_reason ();
1b2bfbb9
RC
5065 stop_stepping (ecs);
5066 return;
5067 }
5068 else
5069 {
5070 /* Set a breakpoint at callee's return address (the address
5071 at which the caller will resume). */
568d6575 5072 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
5073 keep_going (ecs);
5074 return;
5075 }
5076 }
5077
16c381f0 5078 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
5079 {
5080 /* It is stepi or nexti. We always want to stop stepping after
5081 one instruction. */
527159b7 5082 if (debug_infrun)
8a9de0e4 5083 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
16c381f0 5084 ecs->event_thread->control.stop_step = 1;
33d62d64 5085 print_end_stepping_range_reason ();
1b2bfbb9
RC
5086 stop_stepping (ecs);
5087 return;
5088 }
5089
2afb61aa 5090 if (stop_pc_sal.line == 0)
488f131b
JB
5091 {
5092 /* We have no line number information. That means to stop
5093 stepping (does this always happen right after one instruction,
5094 when we do "s" in a function with no line numbers,
5095 or can this happen as a result of a return or longjmp?). */
527159b7 5096 if (debug_infrun)
8a9de0e4 5097 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
16c381f0 5098 ecs->event_thread->control.stop_step = 1;
33d62d64 5099 print_end_stepping_range_reason ();
488f131b
JB
5100 stop_stepping (ecs);
5101 return;
5102 }
c906108c 5103
edb3359d
DJ
5104 /* Look for "calls" to inlined functions, part one. If the inline
5105 frame machinery detected some skipped call sites, we have entered
5106 a new inline function. */
5107
5108 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5109 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
5110 && inline_skipped_frames (ecs->ptid))
5111 {
5112 struct symtab_and_line call_sal;
5113
5114 if (debug_infrun)
5115 fprintf_unfiltered (gdb_stdlog,
5116 "infrun: stepped into inlined function\n");
5117
5118 find_frame_sal (get_current_frame (), &call_sal);
5119
16c381f0 5120 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
5121 {
5122 /* For "step", we're going to stop. But if the call site
5123 for this inlined function is on the same source line as
5124 we were previously stepping, go down into the function
5125 first. Otherwise stop at the call site. */
5126
5127 if (call_sal.line == ecs->event_thread->current_line
5128 && call_sal.symtab == ecs->event_thread->current_symtab)
5129 step_into_inline_frame (ecs->ptid);
5130
16c381f0 5131 ecs->event_thread->control.stop_step = 1;
33d62d64 5132 print_end_stepping_range_reason ();
edb3359d
DJ
5133 stop_stepping (ecs);
5134 return;
5135 }
5136 else
5137 {
5138 /* For "next", we should stop at the call site if it is on a
5139 different source line. Otherwise continue through the
5140 inlined function. */
5141 if (call_sal.line == ecs->event_thread->current_line
5142 && call_sal.symtab == ecs->event_thread->current_symtab)
5143 keep_going (ecs);
5144 else
5145 {
16c381f0 5146 ecs->event_thread->control.stop_step = 1;
33d62d64 5147 print_end_stepping_range_reason ();
edb3359d
DJ
5148 stop_stepping (ecs);
5149 }
5150 return;
5151 }
5152 }
5153
5154 /* Look for "calls" to inlined functions, part two. If we are still
5155 in the same real function we were stepping through, but we have
5156 to go further up to find the exact frame ID, we are stepping
5157 through a more inlined call beyond its call site. */
5158
5159 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5160 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5161 ecs->event_thread->control.step_frame_id)
edb3359d 5162 && stepped_in_from (get_current_frame (),
16c381f0 5163 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
5164 {
5165 if (debug_infrun)
5166 fprintf_unfiltered (gdb_stdlog,
5167 "infrun: stepping through inlined function\n");
5168
16c381f0 5169 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
5170 keep_going (ecs);
5171 else
5172 {
16c381f0 5173 ecs->event_thread->control.stop_step = 1;
33d62d64 5174 print_end_stepping_range_reason ();
edb3359d
DJ
5175 stop_stepping (ecs);
5176 }
5177 return;
5178 }
5179
2afb61aa 5180 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
5181 && (ecs->event_thread->current_line != stop_pc_sal.line
5182 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
5183 {
5184 /* We are at the start of a different line. So stop. Note that
5185 we don't stop if we step into the middle of a different line.
5186 That is said to make things like for (;;) statements work
5187 better. */
527159b7 5188 if (debug_infrun)
3e43a32a
MS
5189 fprintf_unfiltered (gdb_stdlog,
5190 "infrun: stepped to a different line\n");
16c381f0 5191 ecs->event_thread->control.stop_step = 1;
33d62d64 5192 print_end_stepping_range_reason ();
488f131b
JB
5193 stop_stepping (ecs);
5194 return;
5195 }
c906108c 5196
488f131b 5197 /* We aren't done stepping.
c906108c 5198
488f131b
JB
5199 Optimize by setting the stepping range to the line.
5200 (We might not be in the original line, but if we entered a
5201 new line in mid-statement, we continue stepping. This makes
5202 things like for(;;) statements work better.) */
c906108c 5203
16c381f0
JK
5204 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5205 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
edb3359d 5206 set_step_info (frame, stop_pc_sal);
488f131b 5207
527159b7 5208 if (debug_infrun)
8a9de0e4 5209 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 5210 keep_going (ecs);
104c1213
JM
5211}
5212
b3444185 5213/* Is thread TP in the middle of single-stepping? */
104c1213 5214
a289b8f6 5215static int
b3444185 5216currently_stepping (struct thread_info *tp)
a7212384 5217{
8358c15c
JK
5218 return ((tp->control.step_range_end
5219 && tp->control.step_resume_breakpoint == NULL)
5220 || tp->control.trap_expected
8358c15c 5221 || bpstat_should_step ());
a7212384
UW
5222}
5223
b3444185
PA
5224/* Returns true if any thread *but* the one passed in "data" is in the
5225 middle of stepping or of handling a "next". */
a7212384 5226
104c1213 5227static int
b3444185 5228currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
104c1213 5229{
b3444185
PA
5230 if (tp == data)
5231 return 0;
5232
16c381f0 5233 return (tp->control.step_range_end
ede1849f 5234 || tp->control.trap_expected);
104c1213 5235}
c906108c 5236
b2175913
MS
5237/* Inferior has stepped into a subroutine call with source code that
5238 we should not step over. Do step to the first line of code in
5239 it. */
c2c6d25f
JM
5240
5241static void
568d6575
UW
5242handle_step_into_function (struct gdbarch *gdbarch,
5243 struct execution_control_state *ecs)
c2c6d25f
JM
5244{
5245 struct symtab *s;
2afb61aa 5246 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 5247
7e324e48
GB
5248 fill_in_stop_func (gdbarch, ecs);
5249
c2c6d25f
JM
5250 s = find_pc_symtab (stop_pc);
5251 if (s && s->language != language_asm)
568d6575 5252 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 5253 ecs->stop_func_start);
c2c6d25f 5254
2afb61aa 5255 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
5256 /* Use the step_resume_break to step until the end of the prologue,
5257 even if that involves jumps (as it seems to on the vax under
5258 4.2). */
5259 /* If the prologue ends in the middle of a source line, continue to
5260 the end of that source line (if it is still within the function).
5261 Otherwise, just go to end of prologue. */
2afb61aa
PA
5262 if (stop_func_sal.end
5263 && stop_func_sal.pc != ecs->stop_func_start
5264 && stop_func_sal.end < ecs->stop_func_end)
5265 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 5266
2dbd5e30
KB
5267 /* Architectures which require breakpoint adjustment might not be able
5268 to place a breakpoint at the computed address. If so, the test
5269 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5270 ecs->stop_func_start to an address at which a breakpoint may be
5271 legitimately placed.
8fb3e588 5272
2dbd5e30
KB
5273 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5274 made, GDB will enter an infinite loop when stepping through
5275 optimized code consisting of VLIW instructions which contain
5276 subinstructions corresponding to different source lines. On
5277 FR-V, it's not permitted to place a breakpoint on any but the
5278 first subinstruction of a VLIW instruction. When a breakpoint is
5279 set, GDB will adjust the breakpoint address to the beginning of
5280 the VLIW instruction. Thus, we need to make the corresponding
5281 adjustment here when computing the stop address. */
8fb3e588 5282
568d6575 5283 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
5284 {
5285 ecs->stop_func_start
568d6575 5286 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 5287 ecs->stop_func_start);
2dbd5e30
KB
5288 }
5289
c2c6d25f
JM
5290 if (ecs->stop_func_start == stop_pc)
5291 {
5292 /* We are already there: stop now. */
16c381f0 5293 ecs->event_thread->control.stop_step = 1;
33d62d64 5294 print_end_stepping_range_reason ();
c2c6d25f
JM
5295 stop_stepping (ecs);
5296 return;
5297 }
5298 else
5299 {
5300 /* Put the step-breakpoint there and go until there. */
fe39c653 5301 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
5302 sr_sal.pc = ecs->stop_func_start;
5303 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 5304 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 5305
c2c6d25f 5306 /* Do not specify what the fp should be when we stop since on
488f131b
JB
5307 some machines the prologue is where the new fp value is
5308 established. */
a6d9a66e 5309 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
5310
5311 /* And make sure stepping stops right away then. */
16c381f0
JK
5312 ecs->event_thread->control.step_range_end
5313 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
5314 }
5315 keep_going (ecs);
5316}
d4f3574e 5317
b2175913
MS
5318/* Inferior has stepped backward into a subroutine call with source
5319 code that we should not step over. Do step to the beginning of the
5320 last line of code in it. */
5321
5322static void
568d6575
UW
5323handle_step_into_function_backward (struct gdbarch *gdbarch,
5324 struct execution_control_state *ecs)
b2175913
MS
5325{
5326 struct symtab *s;
167e4384 5327 struct symtab_and_line stop_func_sal;
b2175913 5328
7e324e48
GB
5329 fill_in_stop_func (gdbarch, ecs);
5330
b2175913
MS
5331 s = find_pc_symtab (stop_pc);
5332 if (s && s->language != language_asm)
568d6575 5333 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
5334 ecs->stop_func_start);
5335
5336 stop_func_sal = find_pc_line (stop_pc, 0);
5337
5338 /* OK, we're just going to keep stepping here. */
5339 if (stop_func_sal.pc == stop_pc)
5340 {
5341 /* We're there already. Just stop stepping now. */
16c381f0 5342 ecs->event_thread->control.stop_step = 1;
33d62d64 5343 print_end_stepping_range_reason ();
b2175913
MS
5344 stop_stepping (ecs);
5345 }
5346 else
5347 {
5348 /* Else just reset the step range and keep going.
5349 No step-resume breakpoint, they don't work for
5350 epilogues, which can have multiple entry paths. */
16c381f0
JK
5351 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5352 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
5353 keep_going (ecs);
5354 }
5355 return;
5356}
5357
d3169d93 5358/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
5359 This is used to both functions and to skip over code. */
5360
5361static void
2c03e5be
PA
5362insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5363 struct symtab_and_line sr_sal,
5364 struct frame_id sr_id,
5365 enum bptype sr_type)
44cbf7b5 5366{
611c83ae
PA
5367 /* There should never be more than one step-resume or longjmp-resume
5368 breakpoint per thread, so we should never be setting a new
44cbf7b5 5369 step_resume_breakpoint when one is already active. */
8358c15c 5370 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 5371 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
5372
5373 if (debug_infrun)
5374 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5375 "infrun: inserting step-resume breakpoint at %s\n",
5376 paddress (gdbarch, sr_sal.pc));
d3169d93 5377
8358c15c 5378 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
5379 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5380}
5381
9da8c2a0 5382void
2c03e5be
PA
5383insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5384 struct symtab_and_line sr_sal,
5385 struct frame_id sr_id)
5386{
5387 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5388 sr_sal, sr_id,
5389 bp_step_resume);
44cbf7b5 5390}
7ce450bd 5391
2c03e5be
PA
5392/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5393 This is used to skip a potential signal handler.
7ce450bd 5394
14e60db5
DJ
5395 This is called with the interrupted function's frame. The signal
5396 handler, when it returns, will resume the interrupted function at
5397 RETURN_FRAME.pc. */
d303a6c7
AC
5398
5399static void
2c03e5be 5400insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
5401{
5402 struct symtab_and_line sr_sal;
a6d9a66e 5403 struct gdbarch *gdbarch;
d303a6c7 5404
f4c1edd8 5405 gdb_assert (return_frame != NULL);
d303a6c7
AC
5406 init_sal (&sr_sal); /* initialize to zeros */
5407
a6d9a66e 5408 gdbarch = get_frame_arch (return_frame);
568d6575 5409 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 5410 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5411 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 5412
2c03e5be
PA
5413 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5414 get_stack_frame_id (return_frame),
5415 bp_hp_step_resume);
d303a6c7
AC
5416}
5417
2c03e5be
PA
5418/* Insert a "step-resume breakpoint" at the previous frame's PC. This
5419 is used to skip a function after stepping into it (for "next" or if
5420 the called function has no debugging information).
14e60db5
DJ
5421
5422 The current function has almost always been reached by single
5423 stepping a call or return instruction. NEXT_FRAME belongs to the
5424 current function, and the breakpoint will be set at the caller's
5425 resume address.
5426
5427 This is a separate function rather than reusing
2c03e5be 5428 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 5429 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 5430 of frame_unwind_caller_id for an example). */
14e60db5
DJ
5431
5432static void
5433insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5434{
5435 struct symtab_and_line sr_sal;
a6d9a66e 5436 struct gdbarch *gdbarch;
14e60db5
DJ
5437
5438 /* We shouldn't have gotten here if we don't know where the call site
5439 is. */
c7ce8faa 5440 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
5441
5442 init_sal (&sr_sal); /* initialize to zeros */
5443
a6d9a66e 5444 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
5445 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5446 frame_unwind_caller_pc (next_frame));
14e60db5 5447 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5448 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 5449
a6d9a66e 5450 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 5451 frame_unwind_caller_id (next_frame));
14e60db5
DJ
5452}
5453
611c83ae
PA
5454/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5455 new breakpoint at the target of a jmp_buf. The handling of
5456 longjmp-resume uses the same mechanisms used for handling
5457 "step-resume" breakpoints. */
5458
5459static void
a6d9a66e 5460insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 5461{
e81a37f7
TT
5462 /* There should never be more than one longjmp-resume breakpoint per
5463 thread, so we should never be setting a new
611c83ae 5464 longjmp_resume_breakpoint when one is already active. */
e81a37f7 5465 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
5466
5467 if (debug_infrun)
5468 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5469 "infrun: inserting longjmp-resume breakpoint at %s\n",
5470 paddress (gdbarch, pc));
611c83ae 5471
e81a37f7 5472 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 5473 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
5474}
5475
186c406b
TT
5476/* Insert an exception resume breakpoint. TP is the thread throwing
5477 the exception. The block B is the block of the unwinder debug hook
5478 function. FRAME is the frame corresponding to the call to this
5479 function. SYM is the symbol of the function argument holding the
5480 target PC of the exception. */
5481
5482static void
5483insert_exception_resume_breakpoint (struct thread_info *tp,
5484 struct block *b,
5485 struct frame_info *frame,
5486 struct symbol *sym)
5487{
bfd189b1 5488 volatile struct gdb_exception e;
186c406b
TT
5489
5490 /* We want to ignore errors here. */
5491 TRY_CATCH (e, RETURN_MASK_ERROR)
5492 {
5493 struct symbol *vsym;
5494 struct value *value;
5495 CORE_ADDR handler;
5496 struct breakpoint *bp;
5497
5498 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5499 value = read_var_value (vsym, frame);
5500 /* If the value was optimized out, revert to the old behavior. */
5501 if (! value_optimized_out (value))
5502 {
5503 handler = value_as_address (value);
5504
5505 if (debug_infrun)
5506 fprintf_unfiltered (gdb_stdlog,
5507 "infrun: exception resume at %lx\n",
5508 (unsigned long) handler);
5509
5510 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5511 handler, bp_exception_resume);
c70a6932
JK
5512
5513 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5514 frame = NULL;
5515
186c406b
TT
5516 bp->thread = tp->num;
5517 inferior_thread ()->control.exception_resume_breakpoint = bp;
5518 }
5519 }
5520}
5521
28106bc2
SDJ
5522/* A helper for check_exception_resume that sets an
5523 exception-breakpoint based on a SystemTap probe. */
5524
5525static void
5526insert_exception_resume_from_probe (struct thread_info *tp,
5527 const struct probe *probe,
28106bc2
SDJ
5528 struct frame_info *frame)
5529{
5530 struct value *arg_value;
5531 CORE_ADDR handler;
5532 struct breakpoint *bp;
5533
5534 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5535 if (!arg_value)
5536 return;
5537
5538 handler = value_as_address (arg_value);
5539
5540 if (debug_infrun)
5541 fprintf_unfiltered (gdb_stdlog,
5542 "infrun: exception resume at %s\n",
6bac7473 5543 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
5544 handler));
5545
5546 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5547 handler, bp_exception_resume);
5548 bp->thread = tp->num;
5549 inferior_thread ()->control.exception_resume_breakpoint = bp;
5550}
5551
186c406b
TT
5552/* This is called when an exception has been intercepted. Check to
5553 see whether the exception's destination is of interest, and if so,
5554 set an exception resume breakpoint there. */
5555
5556static void
5557check_exception_resume (struct execution_control_state *ecs,
28106bc2 5558 struct frame_info *frame)
186c406b 5559{
bfd189b1 5560 volatile struct gdb_exception e;
28106bc2
SDJ
5561 const struct probe *probe;
5562 struct symbol *func;
5563
5564 /* First see if this exception unwinding breakpoint was set via a
5565 SystemTap probe point. If so, the probe has two arguments: the
5566 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5567 set a breakpoint there. */
6bac7473 5568 probe = find_probe_by_pc (get_frame_pc (frame));
28106bc2
SDJ
5569 if (probe)
5570 {
6bac7473 5571 insert_exception_resume_from_probe (ecs->event_thread, probe, frame);
28106bc2
SDJ
5572 return;
5573 }
5574
5575 func = get_frame_function (frame);
5576 if (!func)
5577 return;
186c406b
TT
5578
5579 TRY_CATCH (e, RETURN_MASK_ERROR)
5580 {
5581 struct block *b;
8157b174 5582 struct block_iterator iter;
186c406b
TT
5583 struct symbol *sym;
5584 int argno = 0;
5585
5586 /* The exception breakpoint is a thread-specific breakpoint on
5587 the unwinder's debug hook, declared as:
5588
5589 void _Unwind_DebugHook (void *cfa, void *handler);
5590
5591 The CFA argument indicates the frame to which control is
5592 about to be transferred. HANDLER is the destination PC.
5593
5594 We ignore the CFA and set a temporary breakpoint at HANDLER.
5595 This is not extremely efficient but it avoids issues in gdb
5596 with computing the DWARF CFA, and it also works even in weird
5597 cases such as throwing an exception from inside a signal
5598 handler. */
5599
5600 b = SYMBOL_BLOCK_VALUE (func);
5601 ALL_BLOCK_SYMBOLS (b, iter, sym)
5602 {
5603 if (!SYMBOL_IS_ARGUMENT (sym))
5604 continue;
5605
5606 if (argno == 0)
5607 ++argno;
5608 else
5609 {
5610 insert_exception_resume_breakpoint (ecs->event_thread,
5611 b, frame, sym);
5612 break;
5613 }
5614 }
5615 }
5616}
5617
104c1213
JM
5618static void
5619stop_stepping (struct execution_control_state *ecs)
5620{
527159b7 5621 if (debug_infrun)
8a9de0e4 5622 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 5623
cd0fc7c3
SS
5624 /* Let callers know we don't want to wait for the inferior anymore. */
5625 ecs->wait_some_more = 0;
5626}
5627
d4f3574e
SS
5628/* This function handles various cases where we need to continue
5629 waiting for the inferior. */
1777feb0 5630/* (Used to be the keep_going: label in the old wait_for_inferior). */
d4f3574e
SS
5631
5632static void
5633keep_going (struct execution_control_state *ecs)
5634{
c4dbc9af
PA
5635 /* Make sure normal_stop is called if we get a QUIT handled before
5636 reaching resume. */
5637 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5638
d4f3574e 5639 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
5640 ecs->event_thread->prev_pc
5641 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 5642
d4f3574e
SS
5643 /* If we did not do break;, it means we should keep running the
5644 inferior and not return to debugger. */
5645
16c381f0 5646 if (ecs->event_thread->control.trap_expected
a493e3e2 5647 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
d4f3574e
SS
5648 {
5649 /* We took a signal (which we are supposed to pass through to
4e1c45ea
PA
5650 the inferior, else we'd not get here) and we haven't yet
5651 gotten our trap. Simply continue. */
c4dbc9af
PA
5652
5653 discard_cleanups (old_cleanups);
2020b7ab 5654 resume (currently_stepping (ecs->event_thread),
16c381f0 5655 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5656 }
5657 else
5658 {
5659 /* Either the trap was not expected, but we are continuing
488f131b
JB
5660 anyway (the user asked that this signal be passed to the
5661 child)
5662 -- or --
5663 The signal was SIGTRAP, e.g. it was our signal, but we
5664 decided we should resume from it.
d4f3574e 5665
c36b740a 5666 We're going to run this baby now!
d4f3574e 5667
c36b740a
VP
5668 Note that insert_breakpoints won't try to re-insert
5669 already inserted breakpoints. Therefore, we don't
5670 care if breakpoints were already inserted, or not. */
5671
4e1c45ea 5672 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 5673 {
9f5a595d 5674 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
abbb1732 5675
9f5a595d 5676 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
5677 /* Since we can't do a displaced step, we have to remove
5678 the breakpoint while we step it. To keep things
5679 simple, we remove them all. */
5680 remove_breakpoints ();
45e8c884
VP
5681 }
5682 else
d4f3574e 5683 {
bfd189b1 5684 volatile struct gdb_exception e;
abbb1732 5685
569631c6
UW
5686 /* Stop stepping when inserting breakpoints
5687 has failed. */
e236ba44
VP
5688 TRY_CATCH (e, RETURN_MASK_ERROR)
5689 {
5690 insert_breakpoints ();
5691 }
5692 if (e.reason < 0)
d4f3574e 5693 {
97bd5475 5694 exception_print (gdb_stderr, e);
d4f3574e
SS
5695 stop_stepping (ecs);
5696 return;
5697 }
d4f3574e
SS
5698 }
5699
16c381f0
JK
5700 ecs->event_thread->control.trap_expected
5701 = ecs->event_thread->stepping_over_breakpoint;
d4f3574e
SS
5702
5703 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
5704 specifies that such a signal should be delivered to the
5705 target program).
5706
5707 Typically, this would occure when a user is debugging a
5708 target monitor on a simulator: the target monitor sets a
5709 breakpoint; the simulator encounters this break-point and
5710 halts the simulation handing control to GDB; GDB, noteing
5711 that the break-point isn't valid, returns control back to the
5712 simulator; the simulator then delivers the hardware
1777feb0 5713 equivalent of a SIGNAL_TRAP to the program being debugged. */
488f131b 5714
a493e3e2 5715 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5716 && !signal_program[ecs->event_thread->suspend.stop_signal])
a493e3e2 5717 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
d4f3574e 5718
c4dbc9af 5719 discard_cleanups (old_cleanups);
2020b7ab 5720 resume (currently_stepping (ecs->event_thread),
16c381f0 5721 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5722 }
5723
488f131b 5724 prepare_to_wait (ecs);
d4f3574e
SS
5725}
5726
104c1213
JM
5727/* This function normally comes after a resume, before
5728 handle_inferior_event exits. It takes care of any last bits of
5729 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 5730
104c1213
JM
5731static void
5732prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 5733{
527159b7 5734 if (debug_infrun)
8a9de0e4 5735 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 5736
104c1213
JM
5737 /* This is the old end of the while loop. Let everybody know we
5738 want to wait for the inferior some more and get called again
5739 soon. */
5740 ecs->wait_some_more = 1;
c906108c 5741}
11cf8741 5742
33d62d64
JK
5743/* Several print_*_reason functions to print why the inferior has stopped.
5744 We always print something when the inferior exits, or receives a signal.
5745 The rest of the cases are dealt with later on in normal_stop and
5746 print_it_typical. Ideally there should be a call to one of these
5747 print_*_reason functions functions from handle_inferior_event each time
5748 stop_stepping is called. */
5749
5750/* Print why the inferior has stopped.
5751 We are done with a step/next/si/ni command, print why the inferior has
5752 stopped. For now print nothing. Print a message only if not in the middle
5753 of doing a "step n" operation for n > 1. */
5754
5755static void
5756print_end_stepping_range_reason (void)
5757{
16c381f0
JK
5758 if ((!inferior_thread ()->step_multi
5759 || !inferior_thread ()->control.stop_step)
79a45e25
PA
5760 && ui_out_is_mi_like_p (current_uiout))
5761 ui_out_field_string (current_uiout, "reason",
33d62d64
JK
5762 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5763}
5764
5765/* The inferior was terminated by a signal, print why it stopped. */
5766
11cf8741 5767static void
2ea28649 5768print_signal_exited_reason (enum gdb_signal siggnal)
11cf8741 5769{
79a45e25
PA
5770 struct ui_out *uiout = current_uiout;
5771
33d62d64
JK
5772 annotate_signalled ();
5773 if (ui_out_is_mi_like_p (uiout))
5774 ui_out_field_string
5775 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5776 ui_out_text (uiout, "\nProgram terminated with signal ");
5777 annotate_signal_name ();
5778 ui_out_field_string (uiout, "signal-name",
2ea28649 5779 gdb_signal_to_name (siggnal));
33d62d64
JK
5780 annotate_signal_name_end ();
5781 ui_out_text (uiout, ", ");
5782 annotate_signal_string ();
5783 ui_out_field_string (uiout, "signal-meaning",
2ea28649 5784 gdb_signal_to_string (siggnal));
33d62d64
JK
5785 annotate_signal_string_end ();
5786 ui_out_text (uiout, ".\n");
5787 ui_out_text (uiout, "The program no longer exists.\n");
5788}
5789
5790/* The inferior program is finished, print why it stopped. */
5791
5792static void
5793print_exited_reason (int exitstatus)
5794{
fda326dd
TT
5795 struct inferior *inf = current_inferior ();
5796 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
79a45e25 5797 struct ui_out *uiout = current_uiout;
fda326dd 5798
33d62d64
JK
5799 annotate_exited (exitstatus);
5800 if (exitstatus)
5801 {
5802 if (ui_out_is_mi_like_p (uiout))
5803 ui_out_field_string (uiout, "reason",
5804 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
5805 ui_out_text (uiout, "[Inferior ");
5806 ui_out_text (uiout, plongest (inf->num));
5807 ui_out_text (uiout, " (");
5808 ui_out_text (uiout, pidstr);
5809 ui_out_text (uiout, ") exited with code ");
33d62d64 5810 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 5811 ui_out_text (uiout, "]\n");
33d62d64
JK
5812 }
5813 else
11cf8741 5814 {
9dc5e2a9 5815 if (ui_out_is_mi_like_p (uiout))
034dad6f 5816 ui_out_field_string
33d62d64 5817 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
5818 ui_out_text (uiout, "[Inferior ");
5819 ui_out_text (uiout, plongest (inf->num));
5820 ui_out_text (uiout, " (");
5821 ui_out_text (uiout, pidstr);
5822 ui_out_text (uiout, ") exited normally]\n");
33d62d64
JK
5823 }
5824 /* Support the --return-child-result option. */
5825 return_child_result_value = exitstatus;
5826}
5827
5828/* Signal received, print why the inferior has stopped. The signal table
1777feb0 5829 tells us to print about it. */
33d62d64
JK
5830
5831static void
2ea28649 5832print_signal_received_reason (enum gdb_signal siggnal)
33d62d64 5833{
79a45e25
PA
5834 struct ui_out *uiout = current_uiout;
5835
33d62d64
JK
5836 annotate_signal ();
5837
a493e3e2 5838 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
33d62d64
JK
5839 {
5840 struct thread_info *t = inferior_thread ();
5841
5842 ui_out_text (uiout, "\n[");
5843 ui_out_field_string (uiout, "thread-name",
5844 target_pid_to_str (t->ptid));
5845 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5846 ui_out_text (uiout, " stopped");
5847 }
5848 else
5849 {
5850 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 5851 annotate_signal_name ();
33d62d64
JK
5852 if (ui_out_is_mi_like_p (uiout))
5853 ui_out_field_string
5854 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 5855 ui_out_field_string (uiout, "signal-name",
2ea28649 5856 gdb_signal_to_name (siggnal));
8b93c638
JM
5857 annotate_signal_name_end ();
5858 ui_out_text (uiout, ", ");
5859 annotate_signal_string ();
488f131b 5860 ui_out_field_string (uiout, "signal-meaning",
2ea28649 5861 gdb_signal_to_string (siggnal));
8b93c638 5862 annotate_signal_string_end ();
33d62d64
JK
5863 }
5864 ui_out_text (uiout, ".\n");
5865}
252fbfc8 5866
33d62d64
JK
5867/* Reverse execution: target ran out of history info, print why the inferior
5868 has stopped. */
252fbfc8 5869
33d62d64
JK
5870static void
5871print_no_history_reason (void)
5872{
79a45e25 5873 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
11cf8741 5874}
43ff13b4 5875
c906108c
SS
5876/* Here to return control to GDB when the inferior stops for real.
5877 Print appropriate messages, remove breakpoints, give terminal our modes.
5878
5879 STOP_PRINT_FRAME nonzero means print the executing frame
5880 (pc, function, args, file, line number and line text).
5881 BREAKPOINTS_FAILED nonzero means stop was due to error
5882 attempting to insert breakpoints. */
5883
5884void
96baa820 5885normal_stop (void)
c906108c 5886{
73b65bb0
DJ
5887 struct target_waitstatus last;
5888 ptid_t last_ptid;
29f49a6a 5889 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
5890
5891 get_last_target_status (&last_ptid, &last);
5892
29f49a6a
PA
5893 /* If an exception is thrown from this point on, make sure to
5894 propagate GDB's knowledge of the executing state to the
5895 frontend/user running state. A QUIT is an easy exception to see
5896 here, so do this before any filtered output. */
c35b1492
PA
5897 if (!non_stop)
5898 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5899 else if (last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
5900 && last.kind != TARGET_WAITKIND_EXITED
5901 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 5902 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 5903
4f8d22e3
PA
5904 /* In non-stop mode, we don't want GDB to switch threads behind the
5905 user's back, to avoid races where the user is typing a command to
5906 apply to thread x, but GDB switches to thread y before the user
5907 finishes entering the command. */
5908
c906108c
SS
5909 /* As with the notification of thread events, we want to delay
5910 notifying the user that we've switched thread context until
5911 the inferior actually stops.
5912
73b65bb0
DJ
5913 There's no point in saying anything if the inferior has exited.
5914 Note that SIGNALLED here means "exited with a signal", not
5915 "received a signal". */
4f8d22e3
PA
5916 if (!non_stop
5917 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
5918 && target_has_execution
5919 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
5920 && last.kind != TARGET_WAITKIND_EXITED
5921 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
5922 {
5923 target_terminal_ours_for_output ();
a3f17187 5924 printf_filtered (_("[Switching to %s]\n"),
c95310c6 5925 target_pid_to_str (inferior_ptid));
b8fa951a 5926 annotate_thread_changed ();
39f77062 5927 previous_inferior_ptid = inferior_ptid;
c906108c 5928 }
c906108c 5929
0e5bf2a8
PA
5930 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
5931 {
5932 gdb_assert (sync_execution || !target_can_async_p ());
5933
5934 target_terminal_ours_for_output ();
5935 printf_filtered (_("No unwaited-for children left.\n"));
5936 }
5937
74960c60 5938 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
5939 {
5940 if (remove_breakpoints ())
5941 {
5942 target_terminal_ours_for_output ();
3e43a32a
MS
5943 printf_filtered (_("Cannot remove breakpoints because "
5944 "program is no longer writable.\nFurther "
5945 "execution is probably impossible.\n"));
c906108c
SS
5946 }
5947 }
c906108c 5948
c906108c
SS
5949 /* If an auto-display called a function and that got a signal,
5950 delete that auto-display to avoid an infinite recursion. */
5951
5952 if (stopped_by_random_signal)
5953 disable_current_display ();
5954
5955 /* Don't print a message if in the middle of doing a "step n"
5956 operation for n > 1 */
af679fd0
PA
5957 if (target_has_execution
5958 && last.kind != TARGET_WAITKIND_SIGNALLED
5959 && last.kind != TARGET_WAITKIND_EXITED
5960 && inferior_thread ()->step_multi
16c381f0 5961 && inferior_thread ()->control.stop_step)
c906108c
SS
5962 goto done;
5963
5964 target_terminal_ours ();
0f641c01 5965 async_enable_stdin ();
c906108c 5966
7abfe014
DJ
5967 /* Set the current source location. This will also happen if we
5968 display the frame below, but the current SAL will be incorrect
5969 during a user hook-stop function. */
d729566a 5970 if (has_stack_frames () && !stop_stack_dummy)
7abfe014
DJ
5971 set_current_sal_from_frame (get_current_frame (), 1);
5972
dd7e2d2b
PA
5973 /* Let the user/frontend see the threads as stopped. */
5974 do_cleanups (old_chain);
5975
5976 /* Look up the hook_stop and run it (CLI internally handles problem
5977 of stop_command's pre-hook not existing). */
5978 if (stop_command)
5979 catch_errors (hook_stop_stub, stop_command,
5980 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5981
d729566a 5982 if (!has_stack_frames ())
d51fd4c8 5983 goto done;
c906108c 5984
32400beb
PA
5985 if (last.kind == TARGET_WAITKIND_SIGNALLED
5986 || last.kind == TARGET_WAITKIND_EXITED)
5987 goto done;
5988
c906108c
SS
5989 /* Select innermost stack frame - i.e., current frame is frame 0,
5990 and current location is based on that.
5991 Don't do this on return from a stack dummy routine,
1777feb0 5992 or if the program has exited. */
c906108c
SS
5993
5994 if (!stop_stack_dummy)
5995 {
0f7d239c 5996 select_frame (get_current_frame ());
c906108c
SS
5997
5998 /* Print current location without a level number, if
c5aa993b
JM
5999 we have changed functions or hit a breakpoint.
6000 Print source line if we have one.
6001 bpstat_print() contains the logic deciding in detail
1777feb0 6002 what to print, based on the event(s) that just occurred. */
c906108c 6003
d01a8610
AS
6004 /* If --batch-silent is enabled then there's no need to print the current
6005 source location, and to try risks causing an error message about
6006 missing source files. */
6007 if (stop_print_frame && !batch_silent)
c906108c
SS
6008 {
6009 int bpstat_ret;
6010 int source_flag;
917317f4 6011 int do_frame_printing = 1;
347bddb7 6012 struct thread_info *tp = inferior_thread ();
c906108c 6013
36dfb11c 6014 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
917317f4
JM
6015 switch (bpstat_ret)
6016 {
6017 case PRINT_UNKNOWN:
aa0cd9c1 6018 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
6019 (or should) carry around the function and does (or
6020 should) use that when doing a frame comparison. */
16c381f0
JK
6021 if (tp->control.stop_step
6022 && frame_id_eq (tp->control.step_frame_id,
aa0cd9c1 6023 get_frame_id (get_current_frame ()))
917317f4 6024 && step_start_function == find_pc_function (stop_pc))
1777feb0
MS
6025 source_flag = SRC_LINE; /* Finished step, just
6026 print source line. */
917317f4 6027 else
1777feb0
MS
6028 source_flag = SRC_AND_LOC; /* Print location and
6029 source line. */
917317f4
JM
6030 break;
6031 case PRINT_SRC_AND_LOC:
1777feb0
MS
6032 source_flag = SRC_AND_LOC; /* Print location and
6033 source line. */
917317f4
JM
6034 break;
6035 case PRINT_SRC_ONLY:
c5394b80 6036 source_flag = SRC_LINE;
917317f4
JM
6037 break;
6038 case PRINT_NOTHING:
488f131b 6039 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
6040 do_frame_printing = 0;
6041 break;
6042 default:
e2e0b3e5 6043 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 6044 }
c906108c
SS
6045
6046 /* The behavior of this routine with respect to the source
6047 flag is:
c5394b80
JM
6048 SRC_LINE: Print only source line
6049 LOCATION: Print only location
1777feb0 6050 SRC_AND_LOC: Print location and source line. */
917317f4 6051 if (do_frame_printing)
b04f3ab4 6052 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
6053
6054 /* Display the auto-display expressions. */
6055 do_displays ();
6056 }
6057 }
6058
6059 /* Save the function value return registers, if we care.
6060 We might be about to restore their previous contents. */
9da8c2a0
PA
6061 if (inferior_thread ()->control.proceed_to_finish
6062 && execution_direction != EXEC_REVERSE)
d5c31457
UW
6063 {
6064 /* This should not be necessary. */
6065 if (stop_registers)
6066 regcache_xfree (stop_registers);
6067
6068 /* NB: The copy goes through to the target picking up the value of
6069 all the registers. */
6070 stop_registers = regcache_dup (get_current_regcache ());
6071 }
c906108c 6072
aa7d318d 6073 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 6074 {
b89667eb
DE
6075 /* Pop the empty frame that contains the stack dummy.
6076 This also restores inferior state prior to the call
16c381f0 6077 (struct infcall_suspend_state). */
b89667eb 6078 struct frame_info *frame = get_current_frame ();
abbb1732 6079
b89667eb
DE
6080 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6081 frame_pop (frame);
3e43a32a
MS
6082 /* frame_pop() calls reinit_frame_cache as the last thing it
6083 does which means there's currently no selected frame. We
6084 don't need to re-establish a selected frame if the dummy call
6085 returns normally, that will be done by
6086 restore_infcall_control_state. However, we do have to handle
6087 the case where the dummy call is returning after being
6088 stopped (e.g. the dummy call previously hit a breakpoint).
6089 We can't know which case we have so just always re-establish
6090 a selected frame here. */
0f7d239c 6091 select_frame (get_current_frame ());
c906108c
SS
6092 }
6093
c906108c
SS
6094done:
6095 annotate_stopped ();
41d2bdb4
PA
6096
6097 /* Suppress the stop observer if we're in the middle of:
6098
6099 - a step n (n > 1), as there still more steps to be done.
6100
6101 - a "finish" command, as the observer will be called in
6102 finish_command_continuation, so it can include the inferior
6103 function's return value.
6104
6105 - calling an inferior function, as we pretend we inferior didn't
6106 run at all. The return value of the call is handled by the
6107 expression evaluator, through call_function_by_hand. */
6108
6109 if (!target_has_execution
6110 || last.kind == TARGET_WAITKIND_SIGNALLED
6111 || last.kind == TARGET_WAITKIND_EXITED
0e5bf2a8 6112 || last.kind == TARGET_WAITKIND_NO_RESUMED
2ca0b532
PA
6113 || (!(inferior_thread ()->step_multi
6114 && inferior_thread ()->control.stop_step)
16c381f0
JK
6115 && !(inferior_thread ()->control.stop_bpstat
6116 && inferior_thread ()->control.proceed_to_finish)
6117 && !inferior_thread ()->control.in_infcall))
347bddb7
PA
6118 {
6119 if (!ptid_equal (inferior_ptid, null_ptid))
16c381f0 6120 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
1d33d6ba 6121 stop_print_frame);
347bddb7 6122 else
1d33d6ba 6123 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 6124 }
347bddb7 6125
48844aa6
PA
6126 if (target_has_execution)
6127 {
6128 if (last.kind != TARGET_WAITKIND_SIGNALLED
6129 && last.kind != TARGET_WAITKIND_EXITED)
6130 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6131 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 6132 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 6133 }
6c95b8df
PA
6134
6135 /* Try to get rid of automatically added inferiors that are no
6136 longer needed. Keeping those around slows down things linearly.
6137 Note that this never removes the current inferior. */
6138 prune_inferiors ();
c906108c
SS
6139}
6140
6141static int
96baa820 6142hook_stop_stub (void *cmd)
c906108c 6143{
5913bcb0 6144 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
6145 return (0);
6146}
6147\f
c5aa993b 6148int
96baa820 6149signal_stop_state (int signo)
c906108c 6150{
d6b48e9c 6151 return signal_stop[signo];
c906108c
SS
6152}
6153
c5aa993b 6154int
96baa820 6155signal_print_state (int signo)
c906108c
SS
6156{
6157 return signal_print[signo];
6158}
6159
c5aa993b 6160int
96baa820 6161signal_pass_state (int signo)
c906108c
SS
6162{
6163 return signal_program[signo];
6164}
6165
2455069d
UW
6166static void
6167signal_cache_update (int signo)
6168{
6169 if (signo == -1)
6170 {
a493e3e2 6171 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
6172 signal_cache_update (signo);
6173
6174 return;
6175 }
6176
6177 signal_pass[signo] = (signal_stop[signo] == 0
6178 && signal_print[signo] == 0
6179 && signal_program[signo] == 1);
6180}
6181
488f131b 6182int
7bda5e4a 6183signal_stop_update (int signo, int state)
d4f3574e
SS
6184{
6185 int ret = signal_stop[signo];
abbb1732 6186
d4f3574e 6187 signal_stop[signo] = state;
2455069d 6188 signal_cache_update (signo);
d4f3574e
SS
6189 return ret;
6190}
6191
488f131b 6192int
7bda5e4a 6193signal_print_update (int signo, int state)
d4f3574e
SS
6194{
6195 int ret = signal_print[signo];
abbb1732 6196
d4f3574e 6197 signal_print[signo] = state;
2455069d 6198 signal_cache_update (signo);
d4f3574e
SS
6199 return ret;
6200}
6201
488f131b 6202int
7bda5e4a 6203signal_pass_update (int signo, int state)
d4f3574e
SS
6204{
6205 int ret = signal_program[signo];
abbb1732 6206
d4f3574e 6207 signal_program[signo] = state;
2455069d 6208 signal_cache_update (signo);
d4f3574e
SS
6209 return ret;
6210}
6211
c906108c 6212static void
96baa820 6213sig_print_header (void)
c906108c 6214{
3e43a32a
MS
6215 printf_filtered (_("Signal Stop\tPrint\tPass "
6216 "to program\tDescription\n"));
c906108c
SS
6217}
6218
6219static void
2ea28649 6220sig_print_info (enum gdb_signal oursig)
c906108c 6221{
2ea28649 6222 const char *name = gdb_signal_to_name (oursig);
c906108c 6223 int name_padding = 13 - strlen (name);
96baa820 6224
c906108c
SS
6225 if (name_padding <= 0)
6226 name_padding = 0;
6227
6228 printf_filtered ("%s", name);
488f131b 6229 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
6230 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6231 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6232 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 6233 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
6234}
6235
6236/* Specify how various signals in the inferior should be handled. */
6237
6238static void
96baa820 6239handle_command (char *args, int from_tty)
c906108c
SS
6240{
6241 char **argv;
6242 int digits, wordlen;
6243 int sigfirst, signum, siglast;
2ea28649 6244 enum gdb_signal oursig;
c906108c
SS
6245 int allsigs;
6246 int nsigs;
6247 unsigned char *sigs;
6248 struct cleanup *old_chain;
6249
6250 if (args == NULL)
6251 {
e2e0b3e5 6252 error_no_arg (_("signal to handle"));
c906108c
SS
6253 }
6254
1777feb0 6255 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 6256
a493e3e2 6257 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
6258 sigs = (unsigned char *) alloca (nsigs);
6259 memset (sigs, 0, nsigs);
6260
1777feb0 6261 /* Break the command line up into args. */
c906108c 6262
d1a41061 6263 argv = gdb_buildargv (args);
7a292a7a 6264 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6265
6266 /* Walk through the args, looking for signal oursigs, signal names, and
6267 actions. Signal numbers and signal names may be interspersed with
6268 actions, with the actions being performed for all signals cumulatively
1777feb0 6269 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
6270
6271 while (*argv != NULL)
6272 {
6273 wordlen = strlen (*argv);
6274 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6275 {;
6276 }
6277 allsigs = 0;
6278 sigfirst = siglast = -1;
6279
6280 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6281 {
6282 /* Apply action to all signals except those used by the
1777feb0 6283 debugger. Silently skip those. */
c906108c
SS
6284 allsigs = 1;
6285 sigfirst = 0;
6286 siglast = nsigs - 1;
6287 }
6288 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6289 {
6290 SET_SIGS (nsigs, sigs, signal_stop);
6291 SET_SIGS (nsigs, sigs, signal_print);
6292 }
6293 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6294 {
6295 UNSET_SIGS (nsigs, sigs, signal_program);
6296 }
6297 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6298 {
6299 SET_SIGS (nsigs, sigs, signal_print);
6300 }
6301 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6302 {
6303 SET_SIGS (nsigs, sigs, signal_program);
6304 }
6305 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6306 {
6307 UNSET_SIGS (nsigs, sigs, signal_stop);
6308 }
6309 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6310 {
6311 SET_SIGS (nsigs, sigs, signal_program);
6312 }
6313 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6314 {
6315 UNSET_SIGS (nsigs, sigs, signal_print);
6316 UNSET_SIGS (nsigs, sigs, signal_stop);
6317 }
6318 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6319 {
6320 UNSET_SIGS (nsigs, sigs, signal_program);
6321 }
6322 else if (digits > 0)
6323 {
6324 /* It is numeric. The numeric signal refers to our own
6325 internal signal numbering from target.h, not to host/target
6326 signal number. This is a feature; users really should be
6327 using symbolic names anyway, and the common ones like
6328 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6329
6330 sigfirst = siglast = (int)
2ea28649 6331 gdb_signal_from_command (atoi (*argv));
c906108c
SS
6332 if ((*argv)[digits] == '-')
6333 {
6334 siglast = (int)
2ea28649 6335 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
6336 }
6337 if (sigfirst > siglast)
6338 {
1777feb0 6339 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
6340 signum = sigfirst;
6341 sigfirst = siglast;
6342 siglast = signum;
6343 }
6344 }
6345 else
6346 {
2ea28649 6347 oursig = gdb_signal_from_name (*argv);
a493e3e2 6348 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
6349 {
6350 sigfirst = siglast = (int) oursig;
6351 }
6352 else
6353 {
6354 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 6355 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
6356 }
6357 }
6358
6359 /* If any signal numbers or symbol names were found, set flags for
1777feb0 6360 which signals to apply actions to. */
c906108c
SS
6361
6362 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6363 {
2ea28649 6364 switch ((enum gdb_signal) signum)
c906108c 6365 {
a493e3e2
PA
6366 case GDB_SIGNAL_TRAP:
6367 case GDB_SIGNAL_INT:
c906108c
SS
6368 if (!allsigs && !sigs[signum])
6369 {
9e2f0ad4 6370 if (query (_("%s is used by the debugger.\n\
3e43a32a 6371Are you sure you want to change it? "),
2ea28649 6372 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
6373 {
6374 sigs[signum] = 1;
6375 }
6376 else
6377 {
a3f17187 6378 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
6379 gdb_flush (gdb_stdout);
6380 }
6381 }
6382 break;
a493e3e2
PA
6383 case GDB_SIGNAL_0:
6384 case GDB_SIGNAL_DEFAULT:
6385 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
6386 /* Make sure that "all" doesn't print these. */
6387 break;
6388 default:
6389 sigs[signum] = 1;
6390 break;
6391 }
6392 }
6393
6394 argv++;
6395 }
6396
3a031f65
PA
6397 for (signum = 0; signum < nsigs; signum++)
6398 if (sigs[signum])
6399 {
2455069d 6400 signal_cache_update (-1);
a493e3e2
PA
6401 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6402 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 6403
3a031f65
PA
6404 if (from_tty)
6405 {
6406 /* Show the results. */
6407 sig_print_header ();
6408 for (; signum < nsigs; signum++)
6409 if (sigs[signum])
6410 sig_print_info (signum);
6411 }
6412
6413 break;
6414 }
c906108c
SS
6415
6416 do_cleanups (old_chain);
6417}
6418
6419static void
96baa820 6420xdb_handle_command (char *args, int from_tty)
c906108c
SS
6421{
6422 char **argv;
6423 struct cleanup *old_chain;
6424
d1a41061
PP
6425 if (args == NULL)
6426 error_no_arg (_("xdb command"));
6427
1777feb0 6428 /* Break the command line up into args. */
c906108c 6429
d1a41061 6430 argv = gdb_buildargv (args);
7a292a7a 6431 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6432 if (argv[1] != (char *) NULL)
6433 {
6434 char *argBuf;
6435 int bufLen;
6436
6437 bufLen = strlen (argv[0]) + 20;
6438 argBuf = (char *) xmalloc (bufLen);
6439 if (argBuf)
6440 {
6441 int validFlag = 1;
2ea28649 6442 enum gdb_signal oursig;
c906108c 6443
2ea28649 6444 oursig = gdb_signal_from_name (argv[0]);
c906108c
SS
6445 memset (argBuf, 0, bufLen);
6446 if (strcmp (argv[1], "Q") == 0)
6447 sprintf (argBuf, "%s %s", argv[0], "noprint");
6448 else
6449 {
6450 if (strcmp (argv[1], "s") == 0)
6451 {
6452 if (!signal_stop[oursig])
6453 sprintf (argBuf, "%s %s", argv[0], "stop");
6454 else
6455 sprintf (argBuf, "%s %s", argv[0], "nostop");
6456 }
6457 else if (strcmp (argv[1], "i") == 0)
6458 {
6459 if (!signal_program[oursig])
6460 sprintf (argBuf, "%s %s", argv[0], "pass");
6461 else
6462 sprintf (argBuf, "%s %s", argv[0], "nopass");
6463 }
6464 else if (strcmp (argv[1], "r") == 0)
6465 {
6466 if (!signal_print[oursig])
6467 sprintf (argBuf, "%s %s", argv[0], "print");
6468 else
6469 sprintf (argBuf, "%s %s", argv[0], "noprint");
6470 }
6471 else
6472 validFlag = 0;
6473 }
6474 if (validFlag)
6475 handle_command (argBuf, from_tty);
6476 else
a3f17187 6477 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 6478 if (argBuf)
b8c9b27d 6479 xfree (argBuf);
c906108c
SS
6480 }
6481 }
6482 do_cleanups (old_chain);
6483}
6484
2ea28649
PA
6485enum gdb_signal
6486gdb_signal_from_command (int num)
ed01b82c
PA
6487{
6488 if (num >= 1 && num <= 15)
2ea28649 6489 return (enum gdb_signal) num;
ed01b82c
PA
6490 error (_("Only signals 1-15 are valid as numeric signals.\n\
6491Use \"info signals\" for a list of symbolic signals."));
6492}
6493
c906108c
SS
6494/* Print current contents of the tables set by the handle command.
6495 It is possible we should just be printing signals actually used
6496 by the current target (but for things to work right when switching
6497 targets, all signals should be in the signal tables). */
6498
6499static void
96baa820 6500signals_info (char *signum_exp, int from_tty)
c906108c 6501{
2ea28649 6502 enum gdb_signal oursig;
abbb1732 6503
c906108c
SS
6504 sig_print_header ();
6505
6506 if (signum_exp)
6507 {
6508 /* First see if this is a symbol name. */
2ea28649 6509 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 6510 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
6511 {
6512 /* No, try numeric. */
6513 oursig =
2ea28649 6514 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
6515 }
6516 sig_print_info (oursig);
6517 return;
6518 }
6519
6520 printf_filtered ("\n");
6521 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
6522 for (oursig = GDB_SIGNAL_FIRST;
6523 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 6524 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
6525 {
6526 QUIT;
6527
a493e3e2
PA
6528 if (oursig != GDB_SIGNAL_UNKNOWN
6529 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
6530 sig_print_info (oursig);
6531 }
6532
3e43a32a
MS
6533 printf_filtered (_("\nUse the \"handle\" command "
6534 "to change these tables.\n"));
c906108c 6535}
4aa995e1 6536
c709acd1
PA
6537/* Check if it makes sense to read $_siginfo from the current thread
6538 at this point. If not, throw an error. */
6539
6540static void
6541validate_siginfo_access (void)
6542{
6543 /* No current inferior, no siginfo. */
6544 if (ptid_equal (inferior_ptid, null_ptid))
6545 error (_("No thread selected."));
6546
6547 /* Don't try to read from a dead thread. */
6548 if (is_exited (inferior_ptid))
6549 error (_("The current thread has terminated"));
6550
6551 /* ... or from a spinning thread. */
6552 if (is_running (inferior_ptid))
6553 error (_("Selected thread is running."));
6554}
6555
4aa995e1
PA
6556/* The $_siginfo convenience variable is a bit special. We don't know
6557 for sure the type of the value until we actually have a chance to
7a9dd1b2 6558 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
6559 also dependent on which thread you have selected.
6560
6561 1. making $_siginfo be an internalvar that creates a new value on
6562 access.
6563
6564 2. making the value of $_siginfo be an lval_computed value. */
6565
6566/* This function implements the lval_computed support for reading a
6567 $_siginfo value. */
6568
6569static void
6570siginfo_value_read (struct value *v)
6571{
6572 LONGEST transferred;
6573
c709acd1
PA
6574 validate_siginfo_access ();
6575
4aa995e1
PA
6576 transferred =
6577 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6578 NULL,
6579 value_contents_all_raw (v),
6580 value_offset (v),
6581 TYPE_LENGTH (value_type (v)));
6582
6583 if (transferred != TYPE_LENGTH (value_type (v)))
6584 error (_("Unable to read siginfo"));
6585}
6586
6587/* This function implements the lval_computed support for writing a
6588 $_siginfo value. */
6589
6590static void
6591siginfo_value_write (struct value *v, struct value *fromval)
6592{
6593 LONGEST transferred;
6594
c709acd1
PA
6595 validate_siginfo_access ();
6596
4aa995e1
PA
6597 transferred = target_write (&current_target,
6598 TARGET_OBJECT_SIGNAL_INFO,
6599 NULL,
6600 value_contents_all_raw (fromval),
6601 value_offset (v),
6602 TYPE_LENGTH (value_type (fromval)));
6603
6604 if (transferred != TYPE_LENGTH (value_type (fromval)))
6605 error (_("Unable to write siginfo"));
6606}
6607
c8f2448a 6608static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
6609 {
6610 siginfo_value_read,
6611 siginfo_value_write
6612 };
6613
6614/* Return a new value with the correct type for the siginfo object of
78267919
UW
6615 the current thread using architecture GDBARCH. Return a void value
6616 if there's no object available. */
4aa995e1 6617
2c0b251b 6618static struct value *
22d2b532
SDJ
6619siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
6620 void *ignore)
4aa995e1 6621{
4aa995e1 6622 if (target_has_stack
78267919
UW
6623 && !ptid_equal (inferior_ptid, null_ptid)
6624 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 6625 {
78267919 6626 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 6627
78267919 6628 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
6629 }
6630
78267919 6631 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
6632}
6633
c906108c 6634\f
16c381f0
JK
6635/* infcall_suspend_state contains state about the program itself like its
6636 registers and any signal it received when it last stopped.
6637 This state must be restored regardless of how the inferior function call
6638 ends (either successfully, or after it hits a breakpoint or signal)
6639 if the program is to properly continue where it left off. */
6640
6641struct infcall_suspend_state
7a292a7a 6642{
16c381f0 6643 struct thread_suspend_state thread_suspend;
dd80ea3c 6644#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6645 struct inferior_suspend_state inferior_suspend;
dd80ea3c 6646#endif
16c381f0
JK
6647
6648 /* Other fields: */
7a292a7a 6649 CORE_ADDR stop_pc;
b89667eb 6650 struct regcache *registers;
1736ad11 6651
35515841 6652 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
6653 struct gdbarch *siginfo_gdbarch;
6654
6655 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6656 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6657 content would be invalid. */
6658 gdb_byte *siginfo_data;
b89667eb
DE
6659};
6660
16c381f0
JK
6661struct infcall_suspend_state *
6662save_infcall_suspend_state (void)
b89667eb 6663{
16c381f0 6664 struct infcall_suspend_state *inf_state;
b89667eb 6665 struct thread_info *tp = inferior_thread ();
16c381f0 6666 struct inferior *inf = current_inferior ();
1736ad11
JK
6667 struct regcache *regcache = get_current_regcache ();
6668 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6669 gdb_byte *siginfo_data = NULL;
6670
6671 if (gdbarch_get_siginfo_type_p (gdbarch))
6672 {
6673 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6674 size_t len = TYPE_LENGTH (type);
6675 struct cleanup *back_to;
6676
6677 siginfo_data = xmalloc (len);
6678 back_to = make_cleanup (xfree, siginfo_data);
6679
6680 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6681 siginfo_data, 0, len) == len)
6682 discard_cleanups (back_to);
6683 else
6684 {
6685 /* Errors ignored. */
6686 do_cleanups (back_to);
6687 siginfo_data = NULL;
6688 }
6689 }
6690
16c381f0 6691 inf_state = XZALLOC (struct infcall_suspend_state);
1736ad11
JK
6692
6693 if (siginfo_data)
6694 {
6695 inf_state->siginfo_gdbarch = gdbarch;
6696 inf_state->siginfo_data = siginfo_data;
6697 }
b89667eb 6698
16c381f0 6699 inf_state->thread_suspend = tp->suspend;
dd80ea3c 6700#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6701 inf_state->inferior_suspend = inf->suspend;
dd80ea3c 6702#endif
16c381f0 6703
35515841 6704 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
6705 GDB_SIGNAL_0 anyway. */
6706 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 6707
b89667eb
DE
6708 inf_state->stop_pc = stop_pc;
6709
1736ad11 6710 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
6711
6712 return inf_state;
6713}
6714
6715/* Restore inferior session state to INF_STATE. */
6716
6717void
16c381f0 6718restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6719{
6720 struct thread_info *tp = inferior_thread ();
16c381f0 6721 struct inferior *inf = current_inferior ();
1736ad11
JK
6722 struct regcache *regcache = get_current_regcache ();
6723 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 6724
16c381f0 6725 tp->suspend = inf_state->thread_suspend;
dd80ea3c 6726#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6727 inf->suspend = inf_state->inferior_suspend;
dd80ea3c 6728#endif
16c381f0 6729
b89667eb
DE
6730 stop_pc = inf_state->stop_pc;
6731
1736ad11
JK
6732 if (inf_state->siginfo_gdbarch == gdbarch)
6733 {
6734 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6735 size_t len = TYPE_LENGTH (type);
6736
6737 /* Errors ignored. */
6738 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6739 inf_state->siginfo_data, 0, len);
6740 }
6741
b89667eb
DE
6742 /* The inferior can be gone if the user types "print exit(0)"
6743 (and perhaps other times). */
6744 if (target_has_execution)
6745 /* NB: The register write goes through to the target. */
1736ad11 6746 regcache_cpy (regcache, inf_state->registers);
803b5f95 6747
16c381f0 6748 discard_infcall_suspend_state (inf_state);
b89667eb
DE
6749}
6750
6751static void
16c381f0 6752do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 6753{
16c381f0 6754 restore_infcall_suspend_state (state);
b89667eb
DE
6755}
6756
6757struct cleanup *
16c381f0
JK
6758make_cleanup_restore_infcall_suspend_state
6759 (struct infcall_suspend_state *inf_state)
b89667eb 6760{
16c381f0 6761 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
6762}
6763
6764void
16c381f0 6765discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6766{
6767 regcache_xfree (inf_state->registers);
803b5f95 6768 xfree (inf_state->siginfo_data);
b89667eb
DE
6769 xfree (inf_state);
6770}
6771
6772struct regcache *
16c381f0 6773get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
6774{
6775 return inf_state->registers;
6776}
6777
16c381f0
JK
6778/* infcall_control_state contains state regarding gdb's control of the
6779 inferior itself like stepping control. It also contains session state like
6780 the user's currently selected frame. */
b89667eb 6781
16c381f0 6782struct infcall_control_state
b89667eb 6783{
16c381f0
JK
6784 struct thread_control_state thread_control;
6785 struct inferior_control_state inferior_control;
d82142e2
JK
6786
6787 /* Other fields: */
6788 enum stop_stack_kind stop_stack_dummy;
6789 int stopped_by_random_signal;
7a292a7a 6790 int stop_after_trap;
7a292a7a 6791
b89667eb 6792 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 6793 struct frame_id selected_frame_id;
7a292a7a
SS
6794};
6795
c906108c 6796/* Save all of the information associated with the inferior<==>gdb
b89667eb 6797 connection. */
c906108c 6798
16c381f0
JK
6799struct infcall_control_state *
6800save_infcall_control_state (void)
c906108c 6801{
16c381f0 6802 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
4e1c45ea 6803 struct thread_info *tp = inferior_thread ();
d6b48e9c 6804 struct inferior *inf = current_inferior ();
7a292a7a 6805
16c381f0
JK
6806 inf_status->thread_control = tp->control;
6807 inf_status->inferior_control = inf->control;
d82142e2 6808
8358c15c 6809 tp->control.step_resume_breakpoint = NULL;
5b79abe7 6810 tp->control.exception_resume_breakpoint = NULL;
8358c15c 6811
16c381f0
JK
6812 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6813 chain. If caller's caller is walking the chain, they'll be happier if we
6814 hand them back the original chain when restore_infcall_control_state is
6815 called. */
6816 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
6817
6818 /* Other fields: */
6819 inf_status->stop_stack_dummy = stop_stack_dummy;
6820 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6821 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 6822
206415a3 6823 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 6824
7a292a7a 6825 return inf_status;
c906108c
SS
6826}
6827
c906108c 6828static int
96baa820 6829restore_selected_frame (void *args)
c906108c 6830{
488f131b 6831 struct frame_id *fid = (struct frame_id *) args;
c906108c 6832 struct frame_info *frame;
c906108c 6833
101dcfbe 6834 frame = frame_find_by_id (*fid);
c906108c 6835
aa0cd9c1
AC
6836 /* If inf_status->selected_frame_id is NULL, there was no previously
6837 selected frame. */
101dcfbe 6838 if (frame == NULL)
c906108c 6839 {
8a3fe4f8 6840 warning (_("Unable to restore previously selected frame."));
c906108c
SS
6841 return 0;
6842 }
6843
0f7d239c 6844 select_frame (frame);
c906108c
SS
6845
6846 return (1);
6847}
6848
b89667eb
DE
6849/* Restore inferior session state to INF_STATUS. */
6850
c906108c 6851void
16c381f0 6852restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 6853{
4e1c45ea 6854 struct thread_info *tp = inferior_thread ();
d6b48e9c 6855 struct inferior *inf = current_inferior ();
4e1c45ea 6856
8358c15c
JK
6857 if (tp->control.step_resume_breakpoint)
6858 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6859
5b79abe7
TT
6860 if (tp->control.exception_resume_breakpoint)
6861 tp->control.exception_resume_breakpoint->disposition
6862 = disp_del_at_next_stop;
6863
d82142e2 6864 /* Handle the bpstat_copy of the chain. */
16c381f0 6865 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 6866
16c381f0
JK
6867 tp->control = inf_status->thread_control;
6868 inf->control = inf_status->inferior_control;
d82142e2
JK
6869
6870 /* Other fields: */
6871 stop_stack_dummy = inf_status->stop_stack_dummy;
6872 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6873 stop_after_trap = inf_status->stop_after_trap;
c906108c 6874
b89667eb 6875 if (target_has_stack)
c906108c 6876 {
c906108c 6877 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
6878 walking the stack might encounter a garbage pointer and
6879 error() trying to dereference it. */
488f131b
JB
6880 if (catch_errors
6881 (restore_selected_frame, &inf_status->selected_frame_id,
6882 "Unable to restore previously selected frame:\n",
6883 RETURN_MASK_ERROR) == 0)
c906108c
SS
6884 /* Error in restoring the selected frame. Select the innermost
6885 frame. */
0f7d239c 6886 select_frame (get_current_frame ());
c906108c 6887 }
c906108c 6888
72cec141 6889 xfree (inf_status);
7a292a7a 6890}
c906108c 6891
74b7792f 6892static void
16c381f0 6893do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 6894{
16c381f0 6895 restore_infcall_control_state (sts);
74b7792f
AC
6896}
6897
6898struct cleanup *
16c381f0
JK
6899make_cleanup_restore_infcall_control_state
6900 (struct infcall_control_state *inf_status)
74b7792f 6901{
16c381f0 6902 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
6903}
6904
c906108c 6905void
16c381f0 6906discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 6907{
8358c15c
JK
6908 if (inf_status->thread_control.step_resume_breakpoint)
6909 inf_status->thread_control.step_resume_breakpoint->disposition
6910 = disp_del_at_next_stop;
6911
5b79abe7
TT
6912 if (inf_status->thread_control.exception_resume_breakpoint)
6913 inf_status->thread_control.exception_resume_breakpoint->disposition
6914 = disp_del_at_next_stop;
6915
1777feb0 6916 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 6917 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 6918
72cec141 6919 xfree (inf_status);
7a292a7a 6920}
b89667eb 6921\f
0723dbf5
PA
6922int
6923ptid_match (ptid_t ptid, ptid_t filter)
6924{
0723dbf5
PA
6925 if (ptid_equal (filter, minus_one_ptid))
6926 return 1;
6927 if (ptid_is_pid (filter)
6928 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6929 return 1;
6930 else if (ptid_equal (ptid, filter))
6931 return 1;
6932
6933 return 0;
6934}
6935
ca6724c1
KB
6936/* restore_inferior_ptid() will be used by the cleanup machinery
6937 to restore the inferior_ptid value saved in a call to
6938 save_inferior_ptid(). */
ce696e05
KB
6939
6940static void
6941restore_inferior_ptid (void *arg)
6942{
6943 ptid_t *saved_ptid_ptr = arg;
abbb1732 6944
ce696e05
KB
6945 inferior_ptid = *saved_ptid_ptr;
6946 xfree (arg);
6947}
6948
6949/* Save the value of inferior_ptid so that it may be restored by a
6950 later call to do_cleanups(). Returns the struct cleanup pointer
6951 needed for later doing the cleanup. */
6952
6953struct cleanup *
6954save_inferior_ptid (void)
6955{
6956 ptid_t *saved_ptid_ptr;
6957
6958 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6959 *saved_ptid_ptr = inferior_ptid;
6960 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6961}
c5aa993b 6962\f
488f131b 6963
b2175913
MS
6964/* User interface for reverse debugging:
6965 Set exec-direction / show exec-direction commands
6966 (returns error unless target implements to_set_exec_direction method). */
6967
32231432 6968int execution_direction = EXEC_FORWARD;
b2175913
MS
6969static const char exec_forward[] = "forward";
6970static const char exec_reverse[] = "reverse";
6971static const char *exec_direction = exec_forward;
40478521 6972static const char *const exec_direction_names[] = {
b2175913
MS
6973 exec_forward,
6974 exec_reverse,
6975 NULL
6976};
6977
6978static void
6979set_exec_direction_func (char *args, int from_tty,
6980 struct cmd_list_element *cmd)
6981{
6982 if (target_can_execute_reverse)
6983 {
6984 if (!strcmp (exec_direction, exec_forward))
6985 execution_direction = EXEC_FORWARD;
6986 else if (!strcmp (exec_direction, exec_reverse))
6987 execution_direction = EXEC_REVERSE;
6988 }
8bbed405
MS
6989 else
6990 {
6991 exec_direction = exec_forward;
6992 error (_("Target does not support this operation."));
6993 }
b2175913
MS
6994}
6995
6996static void
6997show_exec_direction_func (struct ui_file *out, int from_tty,
6998 struct cmd_list_element *cmd, const char *value)
6999{
7000 switch (execution_direction) {
7001 case EXEC_FORWARD:
7002 fprintf_filtered (out, _("Forward.\n"));
7003 break;
7004 case EXEC_REVERSE:
7005 fprintf_filtered (out, _("Reverse.\n"));
7006 break;
b2175913 7007 default:
d8b34453
PA
7008 internal_error (__FILE__, __LINE__,
7009 _("bogus execution_direction value: %d"),
7010 (int) execution_direction);
b2175913
MS
7011 }
7012}
7013
7014/* User interface for non-stop mode. */
7015
ad52ddc6 7016int non_stop = 0;
ad52ddc6
PA
7017
7018static void
7019set_non_stop (char *args, int from_tty,
7020 struct cmd_list_element *c)
7021{
7022 if (target_has_execution)
7023 {
7024 non_stop_1 = non_stop;
7025 error (_("Cannot change this setting while the inferior is running."));
7026 }
7027
7028 non_stop = non_stop_1;
7029}
7030
7031static void
7032show_non_stop (struct ui_file *file, int from_tty,
7033 struct cmd_list_element *c, const char *value)
7034{
7035 fprintf_filtered (file,
7036 _("Controlling the inferior in non-stop mode is %s.\n"),
7037 value);
7038}
7039
d4db2f36
PA
7040static void
7041show_schedule_multiple (struct ui_file *file, int from_tty,
7042 struct cmd_list_element *c, const char *value)
7043{
3e43a32a
MS
7044 fprintf_filtered (file, _("Resuming the execution of threads "
7045 "of all processes is %s.\n"), value);
d4db2f36 7046}
ad52ddc6 7047
22d2b532
SDJ
7048/* Implementation of `siginfo' variable. */
7049
7050static const struct internalvar_funcs siginfo_funcs =
7051{
7052 siginfo_make_value,
7053 NULL,
7054 NULL
7055};
7056
c906108c 7057void
96baa820 7058_initialize_infrun (void)
c906108c 7059{
52f0bd74
AC
7060 int i;
7061 int numsigs;
c906108c 7062
1bedd215
AC
7063 add_info ("signals", signals_info, _("\
7064What debugger does when program gets various signals.\n\
7065Specify a signal as argument to print info on that signal only."));
c906108c
SS
7066 add_info_alias ("handle", "signals", 0);
7067
1bedd215
AC
7068 add_com ("handle", class_run, handle_command, _("\
7069Specify how to handle a signal.\n\
c906108c
SS
7070Args are signals and actions to apply to those signals.\n\
7071Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7072from 1-15 are allowed for compatibility with old versions of GDB.\n\
7073Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7074The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
7075used by the debugger, typically SIGTRAP and SIGINT.\n\
7076Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
7077\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7078Stop means reenter debugger if this signal happens (implies print).\n\
7079Print means print a message if this signal happens.\n\
7080Pass means let program see this signal; otherwise program doesn't know.\n\
7081Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 7082Pass and Stop may be combined."));
c906108c
SS
7083 if (xdb_commands)
7084 {
1bedd215
AC
7085 add_com ("lz", class_info, signals_info, _("\
7086What debugger does when program gets various signals.\n\
7087Specify a signal as argument to print info on that signal only."));
7088 add_com ("z", class_run, xdb_handle_command, _("\
7089Specify how to handle a signal.\n\
c906108c
SS
7090Args are signals and actions to apply to those signals.\n\
7091Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7092from 1-15 are allowed for compatibility with old versions of GDB.\n\
7093Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7094The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7095used by the debugger, typically SIGTRAP and SIGINT.\n\
cce7e648 7096Recognized actions include \"s\" (toggles between stop and nostop),\n\
c906108c
SS
7097\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7098nopass), \"Q\" (noprint)\n\
7099Stop means reenter debugger if this signal happens (implies print).\n\
7100Print means print a message if this signal happens.\n\
7101Pass means let program see this signal; otherwise program doesn't know.\n\
7102Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 7103Pass and Stop may be combined."));
c906108c
SS
7104 }
7105
7106 if (!dbx_commands)
1a966eab
AC
7107 stop_command = add_cmd ("stop", class_obscure,
7108 not_just_help_class_command, _("\
7109There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 7110This allows you to set a list of commands to be run each time execution\n\
1a966eab 7111of the program stops."), &cmdlist);
c906108c 7112
ccce17b0 7113 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
7114Set inferior debugging."), _("\
7115Show inferior debugging."), _("\
7116When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
7117 NULL,
7118 show_debug_infrun,
7119 &setdebuglist, &showdebuglist);
527159b7 7120
3e43a32a
MS
7121 add_setshow_boolean_cmd ("displaced", class_maintenance,
7122 &debug_displaced, _("\
237fc4c9
PA
7123Set displaced stepping debugging."), _("\
7124Show displaced stepping debugging."), _("\
7125When non-zero, displaced stepping specific debugging is enabled."),
7126 NULL,
7127 show_debug_displaced,
7128 &setdebuglist, &showdebuglist);
7129
ad52ddc6
PA
7130 add_setshow_boolean_cmd ("non-stop", no_class,
7131 &non_stop_1, _("\
7132Set whether gdb controls the inferior in non-stop mode."), _("\
7133Show whether gdb controls the inferior in non-stop mode."), _("\
7134When debugging a multi-threaded program and this setting is\n\
7135off (the default, also called all-stop mode), when one thread stops\n\
7136(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7137all other threads in the program while you interact with the thread of\n\
7138interest. When you continue or step a thread, you can allow the other\n\
7139threads to run, or have them remain stopped, but while you inspect any\n\
7140thread's state, all threads stop.\n\
7141\n\
7142In non-stop mode, when one thread stops, other threads can continue\n\
7143to run freely. You'll be able to step each thread independently,\n\
7144leave it stopped or free to run as needed."),
7145 set_non_stop,
7146 show_non_stop,
7147 &setlist,
7148 &showlist);
7149
a493e3e2 7150 numsigs = (int) GDB_SIGNAL_LAST;
488f131b 7151 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
7152 signal_print = (unsigned char *)
7153 xmalloc (sizeof (signal_print[0]) * numsigs);
7154 signal_program = (unsigned char *)
7155 xmalloc (sizeof (signal_program[0]) * numsigs);
2455069d
UW
7156 signal_pass = (unsigned char *)
7157 xmalloc (sizeof (signal_program[0]) * numsigs);
c906108c
SS
7158 for (i = 0; i < numsigs; i++)
7159 {
7160 signal_stop[i] = 1;
7161 signal_print[i] = 1;
7162 signal_program[i] = 1;
7163 }
7164
7165 /* Signals caused by debugger's own actions
7166 should not be given to the program afterwards. */
a493e3e2
PA
7167 signal_program[GDB_SIGNAL_TRAP] = 0;
7168 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
7169
7170 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
7171 signal_stop[GDB_SIGNAL_ALRM] = 0;
7172 signal_print[GDB_SIGNAL_ALRM] = 0;
7173 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7174 signal_print[GDB_SIGNAL_VTALRM] = 0;
7175 signal_stop[GDB_SIGNAL_PROF] = 0;
7176 signal_print[GDB_SIGNAL_PROF] = 0;
7177 signal_stop[GDB_SIGNAL_CHLD] = 0;
7178 signal_print[GDB_SIGNAL_CHLD] = 0;
7179 signal_stop[GDB_SIGNAL_IO] = 0;
7180 signal_print[GDB_SIGNAL_IO] = 0;
7181 signal_stop[GDB_SIGNAL_POLL] = 0;
7182 signal_print[GDB_SIGNAL_POLL] = 0;
7183 signal_stop[GDB_SIGNAL_URG] = 0;
7184 signal_print[GDB_SIGNAL_URG] = 0;
7185 signal_stop[GDB_SIGNAL_WINCH] = 0;
7186 signal_print[GDB_SIGNAL_WINCH] = 0;
7187 signal_stop[GDB_SIGNAL_PRIO] = 0;
7188 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 7189
cd0fc7c3
SS
7190 /* These signals are used internally by user-level thread
7191 implementations. (See signal(5) on Solaris.) Like the above
7192 signals, a healthy program receives and handles them as part of
7193 its normal operation. */
a493e3e2
PA
7194 signal_stop[GDB_SIGNAL_LWP] = 0;
7195 signal_print[GDB_SIGNAL_LWP] = 0;
7196 signal_stop[GDB_SIGNAL_WAITING] = 0;
7197 signal_print[GDB_SIGNAL_WAITING] = 0;
7198 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7199 signal_print[GDB_SIGNAL_CANCEL] = 0;
cd0fc7c3 7200
2455069d
UW
7201 /* Update cached state. */
7202 signal_cache_update (-1);
7203
85c07804
AC
7204 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7205 &stop_on_solib_events, _("\
7206Set stopping for shared library events."), _("\
7207Show stopping for shared library events."), _("\
c906108c
SS
7208If nonzero, gdb will give control to the user when the dynamic linker\n\
7209notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
7210to the user would be loading/unloading of a new library."),
7211 NULL,
920d2a44 7212 show_stop_on_solib_events,
85c07804 7213 &setlist, &showlist);
c906108c 7214
7ab04401
AC
7215 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7216 follow_fork_mode_kind_names,
7217 &follow_fork_mode_string, _("\
7218Set debugger response to a program call of fork or vfork."), _("\
7219Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
7220A fork or vfork creates a new process. follow-fork-mode can be:\n\
7221 parent - the original process is debugged after a fork\n\
7222 child - the new process is debugged after a fork\n\
ea1dd7bc 7223The unfollowed process will continue to run.\n\
7ab04401
AC
7224By default, the debugger will follow the parent process."),
7225 NULL,
920d2a44 7226 show_follow_fork_mode_string,
7ab04401
AC
7227 &setlist, &showlist);
7228
6c95b8df
PA
7229 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7230 follow_exec_mode_names,
7231 &follow_exec_mode_string, _("\
7232Set debugger response to a program call of exec."), _("\
7233Show debugger response to a program call of exec."), _("\
7234An exec call replaces the program image of a process.\n\
7235\n\
7236follow-exec-mode can be:\n\
7237\n\
cce7e648 7238 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
7239to this new inferior. The program the process was running before\n\
7240the exec call can be restarted afterwards by restarting the original\n\
7241inferior.\n\
7242\n\
7243 same - the debugger keeps the process bound to the same inferior.\n\
7244The new executable image replaces the previous executable loaded in\n\
7245the inferior. Restarting the inferior after the exec call restarts\n\
7246the executable the process was running after the exec call.\n\
7247\n\
7248By default, the debugger will use the same inferior."),
7249 NULL,
7250 show_follow_exec_mode_string,
7251 &setlist, &showlist);
7252
7ab04401
AC
7253 add_setshow_enum_cmd ("scheduler-locking", class_run,
7254 scheduler_enums, &scheduler_mode, _("\
7255Set mode for locking scheduler during execution."), _("\
7256Show mode for locking scheduler during execution."), _("\
c906108c
SS
7257off == no locking (threads may preempt at any time)\n\
7258on == full locking (no thread except the current thread may run)\n\
7259step == scheduler locked during every single-step operation.\n\
7260 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
7261 Other threads may run while stepping over a function call ('next')."),
7262 set_schedlock_func, /* traps on target vector */
920d2a44 7263 show_scheduler_mode,
7ab04401 7264 &setlist, &showlist);
5fbbeb29 7265
d4db2f36
PA
7266 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7267Set mode for resuming threads of all processes."), _("\
7268Show mode for resuming threads of all processes."), _("\
7269When on, execution commands (such as 'continue' or 'next') resume all\n\
7270threads of all processes. When off (which is the default), execution\n\
7271commands only resume the threads of the current process. The set of\n\
7272threads that are resumed is further refined by the scheduler-locking\n\
7273mode (see help set scheduler-locking)."),
7274 NULL,
7275 show_schedule_multiple,
7276 &setlist, &showlist);
7277
5bf193a2
AC
7278 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7279Set mode of the step operation."), _("\
7280Show mode of the step operation."), _("\
7281When set, doing a step over a function without debug line information\n\
7282will stop at the first instruction of that function. Otherwise, the\n\
7283function is skipped and the step command stops at a different source line."),
7284 NULL,
920d2a44 7285 show_step_stop_if_no_debug,
5bf193a2 7286 &setlist, &showlist);
ca6724c1 7287
72d0e2c5
YQ
7288 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7289 &can_use_displaced_stepping, _("\
237fc4c9
PA
7290Set debugger's willingness to use displaced stepping."), _("\
7291Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
7292If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7293supported by the target architecture. If off, gdb will not use displaced\n\
7294stepping to step over breakpoints, even if such is supported by the target\n\
7295architecture. If auto (which is the default), gdb will use displaced stepping\n\
7296if the target architecture supports it and non-stop mode is active, but will not\n\
7297use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
7298 NULL,
7299 show_can_use_displaced_stepping,
7300 &setlist, &showlist);
237fc4c9 7301
b2175913
MS
7302 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7303 &exec_direction, _("Set direction of execution.\n\
7304Options are 'forward' or 'reverse'."),
7305 _("Show direction of execution (forward/reverse)."),
7306 _("Tells gdb whether to execute forward or backward."),
7307 set_exec_direction_func, show_exec_direction_func,
7308 &setlist, &showlist);
7309
6c95b8df
PA
7310 /* Set/show detach-on-fork: user-settable mode. */
7311
7312 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7313Set whether gdb will detach the child of a fork."), _("\
7314Show whether gdb will detach the child of a fork."), _("\
7315Tells gdb whether to detach the child of a fork."),
7316 NULL, NULL, &setlist, &showlist);
7317
03583c20
UW
7318 /* Set/show disable address space randomization mode. */
7319
7320 add_setshow_boolean_cmd ("disable-randomization", class_support,
7321 &disable_randomization, _("\
7322Set disabling of debuggee's virtual address space randomization."), _("\
7323Show disabling of debuggee's virtual address space randomization."), _("\
7324When this mode is on (which is the default), randomization of the virtual\n\
7325address space is disabled. Standalone programs run with the randomization\n\
7326enabled by default on some platforms."),
7327 &set_disable_randomization,
7328 &show_disable_randomization,
7329 &setlist, &showlist);
7330
ca6724c1 7331 /* ptid initializations */
ca6724c1
KB
7332 inferior_ptid = null_ptid;
7333 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
7334
7335 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 7336 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 7337 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 7338 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
7339
7340 /* Explicitly create without lookup, since that tries to create a
7341 value with a void typed value, and when we get here, gdbarch
7342 isn't initialized yet. At this point, we're quite sure there
7343 isn't another convenience variable of the same name. */
22d2b532 7344 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
7345
7346 add_setshow_boolean_cmd ("observer", no_class,
7347 &observer_mode_1, _("\
7348Set whether gdb controls the inferior in observer mode."), _("\
7349Show whether gdb controls the inferior in observer mode."), _("\
7350In observer mode, GDB can get data from the inferior, but not\n\
7351affect its execution. Registers and memory may not be changed,\n\
7352breakpoints may not be set, and the program cannot be interrupted\n\
7353or signalled."),
7354 set_observer_mode,
7355 show_observer_mode,
7356 &setlist,
7357 &showlist);
c906108c 7358}
This page took 1.717292 seconds and 4 git commands to generate.