PR binutils/4356 binutils/591
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
6aba47ca
DJ
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
8621d6a9 6 Free Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b
JM
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
197e01b6
EZ
22 Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
c906108c
SS
24
25#include "defs.h"
26#include "gdb_string.h"
27#include <ctype.h>
28#include "symtab.h"
29#include "frame.h"
30#include "inferior.h"
60250e8b 31#include "exceptions.h"
c906108c 32#include "breakpoint.h"
03f2053f 33#include "gdb_wait.h"
c906108c
SS
34#include "gdbcore.h"
35#include "gdbcmd.h"
210661e7 36#include "cli/cli-script.h"
c906108c
SS
37#include "target.h"
38#include "gdbthread.h"
39#include "annotate.h"
1adeb98a 40#include "symfile.h"
7a292a7a 41#include "top.h"
c906108c 42#include <signal.h>
2acceee2 43#include "inf-loop.h"
4e052eda 44#include "regcache.h"
fd0407d6 45#include "value.h"
06600e06 46#include "observer.h"
f636b87d 47#include "language.h"
a77053c2 48#include "solib.h"
f17517ea 49#include "main.h"
a77053c2 50
9f976b41 51#include "gdb_assert.h"
034dad6f 52#include "mi/mi-common.h"
c906108c
SS
53
54/* Prototypes for local functions */
55
96baa820 56static void signals_info (char *, int);
c906108c 57
96baa820 58static void handle_command (char *, int);
c906108c 59
96baa820 60static void sig_print_info (enum target_signal);
c906108c 61
96baa820 62static void sig_print_header (void);
c906108c 63
74b7792f 64static void resume_cleanups (void *);
c906108c 65
96baa820 66static int hook_stop_stub (void *);
c906108c 67
96baa820
JM
68static int restore_selected_frame (void *);
69
70static void build_infrun (void);
71
4ef3f3be 72static int follow_fork (void);
96baa820
JM
73
74static void set_schedlock_func (char *args, int from_tty,
488f131b 75 struct cmd_list_element *c);
96baa820 76
96baa820
JM
77struct execution_control_state;
78
79static int currently_stepping (struct execution_control_state *ecs);
80
81static void xdb_handle_command (char *args, int from_tty);
82
ea67f13b
DJ
83static int prepare_to_proceed (void);
84
96baa820 85void _initialize_infrun (void);
43ff13b4 86
c906108c
SS
87int inferior_ignoring_startup_exec_events = 0;
88int inferior_ignoring_leading_exec_events = 0;
89
5fbbeb29
CF
90/* When set, stop the 'step' command if we enter a function which has
91 no line number information. The normal behavior is that we step
92 over such function. */
93int step_stop_if_no_debug = 0;
920d2a44
AC
94static void
95show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
96 struct cmd_list_element *c, const char *value)
97{
98 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
99}
5fbbeb29 100
43ff13b4 101/* In asynchronous mode, but simulating synchronous execution. */
96baa820 102
43ff13b4
JM
103int sync_execution = 0;
104
c906108c
SS
105/* wait_for_inferior and normal_stop use this to notify the user
106 when the inferior stopped in a different thread than it had been
96baa820
JM
107 running in. */
108
39f77062 109static ptid_t previous_inferior_ptid;
7a292a7a
SS
110
111/* This is true for configurations that may follow through execl() and
112 similar functions. At present this is only true for HP-UX native. */
113
114#ifndef MAY_FOLLOW_EXEC
115#define MAY_FOLLOW_EXEC (0)
c906108c
SS
116#endif
117
7a292a7a
SS
118static int may_follow_exec = MAY_FOLLOW_EXEC;
119
527159b7 120static int debug_infrun = 0;
920d2a44
AC
121static void
122show_debug_infrun (struct ui_file *file, int from_tty,
123 struct cmd_list_element *c, const char *value)
124{
125 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
126}
527159b7 127
d4f3574e
SS
128/* If the program uses ELF-style shared libraries, then calls to
129 functions in shared libraries go through stubs, which live in a
130 table called the PLT (Procedure Linkage Table). The first time the
131 function is called, the stub sends control to the dynamic linker,
132 which looks up the function's real address, patches the stub so
133 that future calls will go directly to the function, and then passes
134 control to the function.
135
136 If we are stepping at the source level, we don't want to see any of
137 this --- we just want to skip over the stub and the dynamic linker.
138 The simple approach is to single-step until control leaves the
139 dynamic linker.
140
ca557f44
AC
141 However, on some systems (e.g., Red Hat's 5.2 distribution) the
142 dynamic linker calls functions in the shared C library, so you
143 can't tell from the PC alone whether the dynamic linker is still
144 running. In this case, we use a step-resume breakpoint to get us
145 past the dynamic linker, as if we were using "next" to step over a
146 function call.
d4f3574e
SS
147
148 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
149 linker code or not. Normally, this means we single-step. However,
150 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
151 address where we can place a step-resume breakpoint to get past the
152 linker's symbol resolution function.
153
154 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
155 pretty portable way, by comparing the PC against the address ranges
156 of the dynamic linker's sections.
157
158 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
159 it depends on internal details of the dynamic linker. It's usually
160 not too hard to figure out where to put a breakpoint, but it
161 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
162 sanity checking. If it can't figure things out, returning zero and
163 getting the (possibly confusing) stepping behavior is better than
164 signalling an error, which will obscure the change in the
165 inferior's state. */
c906108c 166
c906108c
SS
167/* This function returns TRUE if pc is the address of an instruction
168 that lies within the dynamic linker (such as the event hook, or the
169 dld itself).
170
171 This function must be used only when a dynamic linker event has
172 been caught, and the inferior is being stepped out of the hook, or
173 undefined results are guaranteed. */
174
175#ifndef SOLIB_IN_DYNAMIC_LINKER
176#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
177#endif
178
c2c6d25f 179
7a292a7a
SS
180/* Convert the #defines into values. This is temporary until wfi control
181 flow is completely sorted out. */
182
692590c1
MS
183#ifndef CANNOT_STEP_HW_WATCHPOINTS
184#define CANNOT_STEP_HW_WATCHPOINTS 0
185#else
186#undef CANNOT_STEP_HW_WATCHPOINTS
187#define CANNOT_STEP_HW_WATCHPOINTS 1
188#endif
189
c906108c
SS
190/* Tables of how to react to signals; the user sets them. */
191
192static unsigned char *signal_stop;
193static unsigned char *signal_print;
194static unsigned char *signal_program;
195
196#define SET_SIGS(nsigs,sigs,flags) \
197 do { \
198 int signum = (nsigs); \
199 while (signum-- > 0) \
200 if ((sigs)[signum]) \
201 (flags)[signum] = 1; \
202 } while (0)
203
204#define UNSET_SIGS(nsigs,sigs,flags) \
205 do { \
206 int signum = (nsigs); \
207 while (signum-- > 0) \
208 if ((sigs)[signum]) \
209 (flags)[signum] = 0; \
210 } while (0)
211
39f77062
KB
212/* Value to pass to target_resume() to cause all threads to resume */
213
214#define RESUME_ALL (pid_to_ptid (-1))
c906108c
SS
215
216/* Command list pointer for the "stop" placeholder. */
217
218static struct cmd_list_element *stop_command;
219
220/* Nonzero if breakpoints are now inserted in the inferior. */
221
222static int breakpoints_inserted;
223
224/* Function inferior was in as of last step command. */
225
226static struct symbol *step_start_function;
227
228/* Nonzero if we are expecting a trace trap and should proceed from it. */
229
230static int trap_expected;
231
c906108c
SS
232/* Nonzero if we want to give control to the user when we're notified
233 of shared library events by the dynamic linker. */
234static int stop_on_solib_events;
920d2a44
AC
235static void
236show_stop_on_solib_events (struct ui_file *file, int from_tty,
237 struct cmd_list_element *c, const char *value)
238{
239 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
240 value);
241}
c906108c 242
c906108c
SS
243/* Nonzero means expecting a trace trap
244 and should stop the inferior and return silently when it happens. */
245
246int stop_after_trap;
247
248/* Nonzero means expecting a trap and caller will handle it themselves.
249 It is used after attach, due to attaching to a process;
250 when running in the shell before the child program has been exec'd;
251 and when running some kinds of remote stuff (FIXME?). */
252
c0236d92 253enum stop_kind stop_soon;
c906108c
SS
254
255/* Nonzero if proceed is being used for a "finish" command or a similar
256 situation when stop_registers should be saved. */
257
258int proceed_to_finish;
259
260/* Save register contents here when about to pop a stack dummy frame,
261 if-and-only-if proceed_to_finish is set.
262 Thus this contains the return value from the called function (assuming
263 values are returned in a register). */
264
72cec141 265struct regcache *stop_registers;
c906108c 266
c906108c
SS
267/* Nonzero after stop if current stack frame should be printed. */
268
269static int stop_print_frame;
270
271static struct breakpoint *step_resume_breakpoint = NULL;
c906108c 272
e02bc4cc 273/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
274 returned by target_wait()/deprecated_target_wait_hook(). This
275 information is returned by get_last_target_status(). */
39f77062 276static ptid_t target_last_wait_ptid;
e02bc4cc
DS
277static struct target_waitstatus target_last_waitstatus;
278
c906108c
SS
279/* This is used to remember when a fork, vfork or exec event
280 was caught by a catchpoint, and thus the event is to be
281 followed at the next resume of the inferior, and not
282 immediately. */
283static struct
488f131b
JB
284{
285 enum target_waitkind kind;
286 struct
c906108c 287 {
488f131b 288 int parent_pid;
488f131b 289 int child_pid;
c906108c 290 }
488f131b
JB
291 fork_event;
292 char *execd_pathname;
293}
c906108c
SS
294pending_follow;
295
53904c9e
AC
296static const char follow_fork_mode_child[] = "child";
297static const char follow_fork_mode_parent[] = "parent";
298
488f131b 299static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
300 follow_fork_mode_child,
301 follow_fork_mode_parent,
302 NULL
ef346e04 303};
c906108c 304
53904c9e 305static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
306static void
307show_follow_fork_mode_string (struct ui_file *file, int from_tty,
308 struct cmd_list_element *c, const char *value)
309{
310 fprintf_filtered (file, _("\
311Debugger response to a program call of fork or vfork is \"%s\".\n"),
312 value);
313}
c906108c
SS
314\f
315
6604731b 316static int
4ef3f3be 317follow_fork (void)
c906108c 318{
ea1dd7bc 319 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
c906108c 320
6604731b 321 return target_follow_fork (follow_child);
c906108c
SS
322}
323
6604731b
DJ
324void
325follow_inferior_reset_breakpoints (void)
c906108c 326{
6604731b
DJ
327 /* Was there a step_resume breakpoint? (There was if the user
328 did a "next" at the fork() call.) If so, explicitly reset its
329 thread number.
330
331 step_resumes are a form of bp that are made to be per-thread.
332 Since we created the step_resume bp when the parent process
333 was being debugged, and now are switching to the child process,
334 from the breakpoint package's viewpoint, that's a switch of
335 "threads". We must update the bp's notion of which thread
336 it is for, or it'll be ignored when it triggers. */
337
338 if (step_resume_breakpoint)
339 breakpoint_re_set_thread (step_resume_breakpoint);
340
341 /* Reinsert all breakpoints in the child. The user may have set
342 breakpoints after catching the fork, in which case those
343 were never set in the child, but only in the parent. This makes
344 sure the inserted breakpoints match the breakpoint list. */
345
346 breakpoint_re_set ();
347 insert_breakpoints ();
c906108c 348}
c906108c 349
1adeb98a
FN
350/* EXECD_PATHNAME is assumed to be non-NULL. */
351
c906108c 352static void
96baa820 353follow_exec (int pid, char *execd_pathname)
c906108c 354{
c906108c 355 int saved_pid = pid;
7a292a7a
SS
356 struct target_ops *tgt;
357
358 if (!may_follow_exec)
359 return;
c906108c 360
c906108c
SS
361 /* This is an exec event that we actually wish to pay attention to.
362 Refresh our symbol table to the newly exec'd program, remove any
363 momentary bp's, etc.
364
365 If there are breakpoints, they aren't really inserted now,
366 since the exec() transformed our inferior into a fresh set
367 of instructions.
368
369 We want to preserve symbolic breakpoints on the list, since
370 we have hopes that they can be reset after the new a.out's
371 symbol table is read.
372
373 However, any "raw" breakpoints must be removed from the list
374 (e.g., the solib bp's), since their address is probably invalid
375 now.
376
377 And, we DON'T want to call delete_breakpoints() here, since
378 that may write the bp's "shadow contents" (the instruction
379 value that was overwritten witha TRAP instruction). Since
380 we now have a new a.out, those shadow contents aren't valid. */
381 update_breakpoints_after_exec ();
382
383 /* If there was one, it's gone now. We cannot truly step-to-next
384 statement through an exec(). */
385 step_resume_breakpoint = NULL;
386 step_range_start = 0;
387 step_range_end = 0;
388
c906108c 389 /* What is this a.out's name? */
a3f17187 390 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
c906108c
SS
391
392 /* We've followed the inferior through an exec. Therefore, the
393 inferior has essentially been killed & reborn. */
7a292a7a
SS
394
395 /* First collect the run target in effect. */
396 tgt = find_run_target ();
397 /* If we can't find one, things are in a very strange state... */
398 if (tgt == NULL)
8a3fe4f8 399 error (_("Could find run target to save before following exec"));
7a292a7a 400
c906108c
SS
401 gdb_flush (gdb_stdout);
402 target_mourn_inferior ();
39f77062 403 inferior_ptid = pid_to_ptid (saved_pid);
488f131b 404 /* Because mourn_inferior resets inferior_ptid. */
7a292a7a 405 push_target (tgt);
c906108c
SS
406
407 /* That a.out is now the one to use. */
408 exec_file_attach (execd_pathname, 0);
409
410 /* And also is where symbols can be found. */
1adeb98a 411 symbol_file_add_main (execd_pathname, 0);
c906108c
SS
412
413 /* Reset the shared library package. This ensures that we get
414 a shlib event when the child reaches "_start", at which point
415 the dld will have had a chance to initialize the child. */
7a292a7a 416#if defined(SOLIB_RESTART)
c906108c 417 SOLIB_RESTART ();
7a292a7a
SS
418#endif
419#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 420 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2
MK
421#else
422 solib_create_inferior_hook ();
7a292a7a 423#endif
c906108c
SS
424
425 /* Reinsert all breakpoints. (Those which were symbolic have
426 been reset to the proper address in the new a.out, thanks
427 to symbol_file_command...) */
428 insert_breakpoints ();
429
430 /* The next resume of this inferior should bring it to the shlib
431 startup breakpoints. (If the user had also set bp's on
432 "main" from the old (parent) process, then they'll auto-
433 matically get reset there in the new process.) */
c906108c
SS
434}
435
436/* Non-zero if we just simulating a single-step. This is needed
437 because we cannot remove the breakpoints in the inferior process
438 until after the `wait' in `wait_for_inferior'. */
439static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
440
441/* The thread we inserted single-step breakpoints for. */
442static ptid_t singlestep_ptid;
443
fd48f117
DJ
444/* PC when we started this single-step. */
445static CORE_ADDR singlestep_pc;
446
9f976b41
DJ
447/* If another thread hit the singlestep breakpoint, we save the original
448 thread here so that we can resume single-stepping it later. */
449static ptid_t saved_singlestep_ptid;
450static int stepping_past_singlestep_breakpoint;
c906108c
SS
451\f
452
453/* Things to clean up if we QUIT out of resume (). */
c906108c 454static void
74b7792f 455resume_cleanups (void *ignore)
c906108c
SS
456{
457 normal_stop ();
458}
459
53904c9e
AC
460static const char schedlock_off[] = "off";
461static const char schedlock_on[] = "on";
462static const char schedlock_step[] = "step";
488f131b 463static const char *scheduler_enums[] = {
ef346e04
AC
464 schedlock_off,
465 schedlock_on,
466 schedlock_step,
467 NULL
468};
920d2a44
AC
469static const char *scheduler_mode = schedlock_off;
470static void
471show_scheduler_mode (struct ui_file *file, int from_tty,
472 struct cmd_list_element *c, const char *value)
473{
474 fprintf_filtered (file, _("\
475Mode for locking scheduler during execution is \"%s\".\n"),
476 value);
477}
c906108c
SS
478
479static void
96baa820 480set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 481{
eefe576e
AC
482 if (!target_can_lock_scheduler)
483 {
484 scheduler_mode = schedlock_off;
485 error (_("Target '%s' cannot support this command."), target_shortname);
486 }
c906108c
SS
487}
488
489
490/* Resume the inferior, but allow a QUIT. This is useful if the user
491 wants to interrupt some lengthy single-stepping operation
492 (for child processes, the SIGINT goes to the inferior, and so
493 we get a SIGINT random_signal, but for remote debugging and perhaps
494 other targets, that's not true).
495
496 STEP nonzero if we should step (zero to continue instead).
497 SIG is the signal to give the inferior (zero for none). */
498void
96baa820 499resume (int step, enum target_signal sig)
c906108c
SS
500{
501 int should_resume = 1;
74b7792f 502 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
c906108c
SS
503 QUIT;
504
527159b7 505 if (debug_infrun)
8a9de0e4
AC
506 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
507 step, sig);
527159b7 508
ef5cf84e
MS
509 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
510
c906108c 511
692590c1
MS
512 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
513 over an instruction that causes a page fault without triggering
514 a hardware watchpoint. The kernel properly notices that it shouldn't
515 stop, because the hardware watchpoint is not triggered, but it forgets
516 the step request and continues the program normally.
517 Work around the problem by removing hardware watchpoints if a step is
518 requested, GDB will check for a hardware watchpoint trigger after the
519 step anyway. */
520 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
521 remove_hw_watchpoints ();
488f131b 522
692590c1 523
c2c6d25f
JM
524 /* Normally, by the time we reach `resume', the breakpoints are either
525 removed or inserted, as appropriate. The exception is if we're sitting
526 at a permanent breakpoint; we need to step over it, but permanent
527 breakpoints can't be removed. So we have to test for it here. */
528 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
6d350bb5
UW
529 {
530 if (gdbarch_skip_permanent_breakpoint_p (current_gdbarch))
531 gdbarch_skip_permanent_breakpoint (current_gdbarch, current_regcache);
532 else
533 error (_("\
534The program is stopped at a permanent breakpoint, but GDB does not know\n\
535how to step past a permanent breakpoint on this architecture. Try using\n\
536a command like `return' or `jump' to continue execution."));
537 }
c2c6d25f 538
b0ed3589 539 if (SOFTWARE_SINGLE_STEP_P () && step)
c906108c
SS
540 {
541 /* Do it the hard way, w/temp breakpoints */
e0cd558a 542 if (SOFTWARE_SINGLE_STEP (current_regcache))
e6590a1b
UW
543 {
544 /* ...and don't ask hardware to do it. */
545 step = 0;
546 /* and do not pull these breakpoints until after a `wait' in
547 `wait_for_inferior' */
548 singlestep_breakpoints_inserted_p = 1;
549 singlestep_ptid = inferior_ptid;
550 singlestep_pc = read_pc ();
551 }
c906108c
SS
552 }
553
c906108c 554 /* If there were any forks/vforks/execs that were caught and are
6604731b 555 now to be followed, then do so. */
c906108c
SS
556 switch (pending_follow.kind)
557 {
6604731b
DJ
558 case TARGET_WAITKIND_FORKED:
559 case TARGET_WAITKIND_VFORKED:
c906108c 560 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
6604731b
DJ
561 if (follow_fork ())
562 should_resume = 0;
c906108c
SS
563 break;
564
6604731b 565 case TARGET_WAITKIND_EXECD:
c906108c 566 /* follow_exec is called as soon as the exec event is seen. */
6604731b 567 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
c906108c
SS
568 break;
569
570 default:
571 break;
572 }
c906108c
SS
573
574 /* Install inferior's terminal modes. */
575 target_terminal_inferior ();
576
577 if (should_resume)
578 {
39f77062 579 ptid_t resume_ptid;
dfcd3bfb 580
488f131b 581 resume_ptid = RESUME_ALL; /* Default */
ef5cf84e 582
8fb3e588
AC
583 if ((step || singlestep_breakpoints_inserted_p)
584 && (stepping_past_singlestep_breakpoint
585 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
c906108c 586 {
ef5cf84e
MS
587 /* Stepping past a breakpoint without inserting breakpoints.
588 Make sure only the current thread gets to step, so that
589 other threads don't sneak past breakpoints while they are
590 not inserted. */
c906108c 591
ef5cf84e 592 resume_ptid = inferior_ptid;
c906108c 593 }
ef5cf84e 594
8fb3e588
AC
595 if ((scheduler_mode == schedlock_on)
596 || (scheduler_mode == schedlock_step
597 && (step || singlestep_breakpoints_inserted_p)))
c906108c 598 {
ef5cf84e 599 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 600 resume_ptid = inferior_ptid;
c906108c 601 }
ef5cf84e 602
c4ed33b9
AC
603 if (CANNOT_STEP_BREAKPOINT)
604 {
605 /* Most targets can step a breakpoint instruction, thus
606 executing it normally. But if this one cannot, just
607 continue and we will hit it anyway. */
608 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
609 step = 0;
610 }
39f77062 611 target_resume (resume_ptid, step, sig);
c906108c
SS
612 }
613
614 discard_cleanups (old_cleanups);
615}
616\f
617
618/* Clear out all variables saying what to do when inferior is continued.
619 First do this, then set the ones you want, then call `proceed'. */
620
621void
96baa820 622clear_proceed_status (void)
c906108c
SS
623{
624 trap_expected = 0;
625 step_range_start = 0;
626 step_range_end = 0;
aa0cd9c1 627 step_frame_id = null_frame_id;
5fbbeb29 628 step_over_calls = STEP_OVER_UNDEBUGGABLE;
c906108c 629 stop_after_trap = 0;
c0236d92 630 stop_soon = NO_STOP_QUIETLY;
c906108c
SS
631 proceed_to_finish = 0;
632 breakpoint_proceeded = 1; /* We're about to proceed... */
633
634 /* Discard any remaining commands or status from previous stop. */
635 bpstat_clear (&stop_bpstat);
636}
637
ea67f13b
DJ
638/* This should be suitable for any targets that support threads. */
639
640static int
641prepare_to_proceed (void)
642{
643 ptid_t wait_ptid;
644 struct target_waitstatus wait_status;
645
646 /* Get the last target status returned by target_wait(). */
647 get_last_target_status (&wait_ptid, &wait_status);
648
649 /* Make sure we were stopped either at a breakpoint, or because
650 of a Ctrl-C. */
651 if (wait_status.kind != TARGET_WAITKIND_STOPPED
8fb3e588
AC
652 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
653 && wait_status.value.sig != TARGET_SIGNAL_INT))
ea67f13b
DJ
654 {
655 return 0;
656 }
657
658 if (!ptid_equal (wait_ptid, minus_one_ptid)
659 && !ptid_equal (inferior_ptid, wait_ptid))
660 {
661 /* Switched over from WAIT_PID. */
662 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
663
664 if (wait_pc != read_pc ())
665 {
666 /* Switch back to WAIT_PID thread. */
667 inferior_ptid = wait_ptid;
668
669 /* FIXME: This stuff came from switch_to_thread() in
670 thread.c (which should probably be a public function). */
35f196d9 671 reinit_frame_cache ();
ea67f13b
DJ
672 registers_changed ();
673 stop_pc = wait_pc;
ea67f13b
DJ
674 }
675
8fb3e588
AC
676 /* We return 1 to indicate that there is a breakpoint here,
677 so we need to step over it before continuing to avoid
678 hitting it straight away. */
679 if (breakpoint_here_p (wait_pc))
680 return 1;
ea67f13b
DJ
681 }
682
683 return 0;
8fb3e588 684
ea67f13b 685}
e4846b08
JJ
686
687/* Record the pc of the program the last time it stopped. This is
688 just used internally by wait_for_inferior, but need to be preserved
689 over calls to it and cleared when the inferior is started. */
690static CORE_ADDR prev_pc;
691
c906108c
SS
692/* Basic routine for continuing the program in various fashions.
693
694 ADDR is the address to resume at, or -1 for resume where stopped.
695 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 696 or -1 for act according to how it stopped.
c906108c 697 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
698 -1 means return after that and print nothing.
699 You should probably set various step_... variables
700 before calling here, if you are stepping.
c906108c
SS
701
702 You should call clear_proceed_status before calling proceed. */
703
704void
96baa820 705proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c
SS
706{
707 int oneproc = 0;
708
709 if (step > 0)
710 step_start_function = find_pc_function (read_pc ());
711 if (step < 0)
712 stop_after_trap = 1;
713
2acceee2 714 if (addr == (CORE_ADDR) -1)
c906108c 715 {
c906108c 716 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
3352ef37
AC
717 /* There is a breakpoint at the address we will resume at,
718 step one instruction before inserting breakpoints so that
719 we do not stop right away (and report a second hit at this
720 breakpoint). */
c906108c 721 oneproc = 1;
3352ef37
AC
722 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
723 && gdbarch_single_step_through_delay (current_gdbarch,
724 get_current_frame ()))
725 /* We stepped onto an instruction that needs to be stepped
726 again before re-inserting the breakpoint, do so. */
c906108c
SS
727 oneproc = 1;
728 }
729 else
730 {
731 write_pc (addr);
c906108c
SS
732 }
733
527159b7 734 if (debug_infrun)
8a9de0e4
AC
735 fprintf_unfiltered (gdb_stdlog,
736 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
737 paddr_nz (addr), siggnal, step);
527159b7 738
c906108c
SS
739 /* In a multi-threaded task we may select another thread
740 and then continue or step.
741
742 But if the old thread was stopped at a breakpoint, it
743 will immediately cause another breakpoint stop without
744 any execution (i.e. it will report a breakpoint hit
745 incorrectly). So we must step over it first.
746
ea67f13b 747 prepare_to_proceed checks the current thread against the thread
c906108c
SS
748 that reported the most recent event. If a step-over is required
749 it returns TRUE and sets the current thread to the old thread. */
ea67f13b
DJ
750 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
751 oneproc = 1;
c906108c 752
c906108c
SS
753 if (oneproc)
754 /* We will get a trace trap after one instruction.
755 Continue it automatically and insert breakpoints then. */
756 trap_expected = 1;
757 else
758 {
81d0cc19
GS
759 insert_breakpoints ();
760 /* If we get here there was no call to error() in
8fb3e588 761 insert breakpoints -- so they were inserted. */
c906108c
SS
762 breakpoints_inserted = 1;
763 }
764
765 if (siggnal != TARGET_SIGNAL_DEFAULT)
766 stop_signal = siggnal;
767 /* If this signal should not be seen by program,
768 give it zero. Used for debugging signals. */
769 else if (!signal_program[stop_signal])
770 stop_signal = TARGET_SIGNAL_0;
771
772 annotate_starting ();
773
774 /* Make sure that output from GDB appears before output from the
775 inferior. */
776 gdb_flush (gdb_stdout);
777
e4846b08
JJ
778 /* Refresh prev_pc value just prior to resuming. This used to be
779 done in stop_stepping, however, setting prev_pc there did not handle
780 scenarios such as inferior function calls or returning from
781 a function via the return command. In those cases, the prev_pc
782 value was not set properly for subsequent commands. The prev_pc value
783 is used to initialize the starting line number in the ecs. With an
784 invalid value, the gdb next command ends up stopping at the position
785 represented by the next line table entry past our start position.
786 On platforms that generate one line table entry per line, this
787 is not a problem. However, on the ia64, the compiler generates
788 extraneous line table entries that do not increase the line number.
789 When we issue the gdb next command on the ia64 after an inferior call
790 or a return command, we often end up a few instructions forward, still
791 within the original line we started.
792
793 An attempt was made to have init_execution_control_state () refresh
794 the prev_pc value before calculating the line number. This approach
795 did not work because on platforms that use ptrace, the pc register
796 cannot be read unless the inferior is stopped. At that point, we
797 are not guaranteed the inferior is stopped and so the read_pc ()
798 call can fail. Setting the prev_pc value here ensures the value is
8fb3e588 799 updated correctly when the inferior is stopped. */
e4846b08
JJ
800 prev_pc = read_pc ();
801
c906108c
SS
802 /* Resume inferior. */
803 resume (oneproc || step || bpstat_should_step (), stop_signal);
804
805 /* Wait for it to stop (if not standalone)
806 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
807 /* Do this only if we are not using the event loop, or if the target
808 does not support asynchronous execution. */
362646f5 809 if (!target_can_async_p ())
43ff13b4
JM
810 {
811 wait_for_inferior ();
812 normal_stop ();
813 }
c906108c 814}
c906108c
SS
815\f
816
817/* Start remote-debugging of a machine over a serial link. */
96baa820 818
c906108c 819void
8621d6a9 820start_remote (int from_tty)
c906108c
SS
821{
822 init_thread_list ();
823 init_wait_for_inferior ();
c0236d92 824 stop_soon = STOP_QUIETLY;
c906108c 825 trap_expected = 0;
43ff13b4 826
6426a772
JM
827 /* Always go on waiting for the target, regardless of the mode. */
828 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 829 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
830 nothing is returned (instead of just blocking). Because of this,
831 targets expecting an immediate response need to, internally, set
832 things up so that the target_wait() is forced to eventually
833 timeout. */
834 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
835 differentiate to its caller what the state of the target is after
836 the initial open has been performed. Here we're assuming that
837 the target has stopped. It should be possible to eventually have
838 target_open() return to the caller an indication that the target
839 is currently running and GDB state should be set to the same as
840 for an async run. */
841 wait_for_inferior ();
8621d6a9
DJ
842
843 /* Now that the inferior has stopped, do any bookkeeping like
844 loading shared libraries. We want to do this before normal_stop,
845 so that the displayed frame is up to date. */
846 post_create_inferior (&current_target, from_tty);
847
6426a772 848 normal_stop ();
c906108c
SS
849}
850
851/* Initialize static vars when a new inferior begins. */
852
853void
96baa820 854init_wait_for_inferior (void)
c906108c
SS
855{
856 /* These are meaningless until the first time through wait_for_inferior. */
857 prev_pc = 0;
c906108c 858
c906108c
SS
859 breakpoints_inserted = 0;
860 breakpoint_init_inferior (inf_starting);
861
862 /* Don't confuse first call to proceed(). */
863 stop_signal = TARGET_SIGNAL_0;
864
865 /* The first resume is not following a fork/vfork/exec. */
866 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
c906108c 867
c906108c 868 clear_proceed_status ();
9f976b41
DJ
869
870 stepping_past_singlestep_breakpoint = 0;
c906108c 871}
c906108c 872\f
b83266a0
SS
873/* This enum encodes possible reasons for doing a target_wait, so that
874 wfi can call target_wait in one place. (Ultimately the call will be
875 moved out of the infinite loop entirely.) */
876
c5aa993b
JM
877enum infwait_states
878{
cd0fc7c3
SS
879 infwait_normal_state,
880 infwait_thread_hop_state,
cd0fc7c3 881 infwait_nonstep_watch_state
b83266a0
SS
882};
883
11cf8741
JM
884/* Why did the inferior stop? Used to print the appropriate messages
885 to the interface from within handle_inferior_event(). */
886enum inferior_stop_reason
887{
11cf8741
JM
888 /* Step, next, nexti, stepi finished. */
889 END_STEPPING_RANGE,
11cf8741
JM
890 /* Inferior terminated by signal. */
891 SIGNAL_EXITED,
892 /* Inferior exited. */
893 EXITED,
894 /* Inferior received signal, and user asked to be notified. */
895 SIGNAL_RECEIVED
896};
897
cd0fc7c3
SS
898/* This structure contains what used to be local variables in
899 wait_for_inferior. Probably many of them can return to being
900 locals in handle_inferior_event. */
901
c5aa993b 902struct execution_control_state
488f131b
JB
903{
904 struct target_waitstatus ws;
905 struct target_waitstatus *wp;
906 int another_trap;
907 int random_signal;
908 CORE_ADDR stop_func_start;
909 CORE_ADDR stop_func_end;
910 char *stop_func_name;
911 struct symtab_and_line sal;
488f131b
JB
912 int current_line;
913 struct symtab *current_symtab;
914 int handling_longjmp; /* FIXME */
915 ptid_t ptid;
916 ptid_t saved_inferior_ptid;
68f53502 917 int step_after_step_resume_breakpoint;
488f131b
JB
918 int stepping_through_solib_after_catch;
919 bpstat stepping_through_solib_catchpoints;
488f131b
JB
920 int new_thread_event;
921 struct target_waitstatus tmpstatus;
922 enum infwait_states infwait_state;
923 ptid_t waiton_ptid;
924 int wait_some_more;
925};
926
927void init_execution_control_state (struct execution_control_state *ecs);
928
929void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 930
c2c6d25f 931static void step_into_function (struct execution_control_state *ecs);
44cbf7b5 932static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
14e60db5 933static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
44cbf7b5
AC
934static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
935 struct frame_id sr_id);
104c1213
JM
936static void stop_stepping (struct execution_control_state *ecs);
937static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 938static void keep_going (struct execution_control_state *ecs);
488f131b
JB
939static void print_stop_reason (enum inferior_stop_reason stop_reason,
940 int stop_info);
104c1213 941
cd0fc7c3
SS
942/* Wait for control to return from inferior to debugger.
943 If inferior gets a signal, we may decide to start it up again
944 instead of returning. That is why there is a loop in this function.
945 When this function actually returns it means the inferior
946 should be left stopped and GDB should read more commands. */
947
948void
96baa820 949wait_for_inferior (void)
cd0fc7c3
SS
950{
951 struct cleanup *old_cleanups;
952 struct execution_control_state ecss;
953 struct execution_control_state *ecs;
c906108c 954
527159b7 955 if (debug_infrun)
8a9de0e4 956 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
527159b7 957
8601f500 958 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
c906108c 959 &step_resume_breakpoint);
cd0fc7c3
SS
960
961 /* wfi still stays in a loop, so it's OK just to take the address of
962 a local to get the ecs pointer. */
963 ecs = &ecss;
964
965 /* Fill in with reasonable starting values. */
966 init_execution_control_state (ecs);
967
c906108c 968 /* We'll update this if & when we switch to a new thread. */
39f77062 969 previous_inferior_ptid = inferior_ptid;
c906108c 970
cd0fc7c3
SS
971 overlay_cache_invalid = 1;
972
973 /* We have to invalidate the registers BEFORE calling target_wait
974 because they can be loaded from the target while in target_wait.
975 This makes remote debugging a bit more efficient for those
976 targets that provide critical registers as part of their normal
977 status mechanism. */
978
979 registers_changed ();
b83266a0 980
c906108c
SS
981 while (1)
982 {
9a4105ab
AC
983 if (deprecated_target_wait_hook)
984 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
cd0fc7c3 985 else
39f77062 986 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
c906108c 987
cd0fc7c3
SS
988 /* Now figure out what to do with the result of the result. */
989 handle_inferior_event (ecs);
c906108c 990
cd0fc7c3
SS
991 if (!ecs->wait_some_more)
992 break;
993 }
994 do_cleanups (old_cleanups);
995}
c906108c 996
43ff13b4
JM
997/* Asynchronous version of wait_for_inferior. It is called by the
998 event loop whenever a change of state is detected on the file
999 descriptor corresponding to the target. It can be called more than
1000 once to complete a single execution command. In such cases we need
1001 to keep the state in a global variable ASYNC_ECSS. If it is the
1002 last time that this function is called for a single execution
1003 command, then report to the user that the inferior has stopped, and
1004 do the necessary cleanups. */
1005
1006struct execution_control_state async_ecss;
1007struct execution_control_state *async_ecs;
1008
1009void
fba45db2 1010fetch_inferior_event (void *client_data)
43ff13b4
JM
1011{
1012 static struct cleanup *old_cleanups;
1013
c5aa993b 1014 async_ecs = &async_ecss;
43ff13b4
JM
1015
1016 if (!async_ecs->wait_some_more)
1017 {
488f131b 1018 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
c5aa993b 1019 &step_resume_breakpoint);
43ff13b4
JM
1020
1021 /* Fill in with reasonable starting values. */
1022 init_execution_control_state (async_ecs);
1023
43ff13b4 1024 /* We'll update this if & when we switch to a new thread. */
39f77062 1025 previous_inferior_ptid = inferior_ptid;
43ff13b4
JM
1026
1027 overlay_cache_invalid = 1;
1028
1029 /* We have to invalidate the registers BEFORE calling target_wait
c5aa993b
JM
1030 because they can be loaded from the target while in target_wait.
1031 This makes remote debugging a bit more efficient for those
1032 targets that provide critical registers as part of their normal
1033 status mechanism. */
43ff13b4
JM
1034
1035 registers_changed ();
1036 }
1037
9a4105ab 1038 if (deprecated_target_wait_hook)
488f131b 1039 async_ecs->ptid =
9a4105ab 1040 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4 1041 else
39f77062 1042 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4
JM
1043
1044 /* Now figure out what to do with the result of the result. */
1045 handle_inferior_event (async_ecs);
1046
1047 if (!async_ecs->wait_some_more)
1048 {
adf40b2e 1049 /* Do only the cleanups that have been added by this
488f131b
JB
1050 function. Let the continuations for the commands do the rest,
1051 if there are any. */
43ff13b4
JM
1052 do_exec_cleanups (old_cleanups);
1053 normal_stop ();
c2d11a7d
JM
1054 if (step_multi && stop_step)
1055 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1056 else
1057 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4
JM
1058 }
1059}
1060
cd0fc7c3
SS
1061/* Prepare an execution control state for looping through a
1062 wait_for_inferior-type loop. */
1063
1064void
96baa820 1065init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3 1066{
6ad80df0 1067 ecs->another_trap = 0;
cd0fc7c3 1068 ecs->random_signal = 0;
68f53502 1069 ecs->step_after_step_resume_breakpoint = 0;
cd0fc7c3 1070 ecs->handling_longjmp = 0; /* FIXME */
cd0fc7c3
SS
1071 ecs->stepping_through_solib_after_catch = 0;
1072 ecs->stepping_through_solib_catchpoints = NULL;
cd0fc7c3
SS
1073 ecs->sal = find_pc_line (prev_pc, 0);
1074 ecs->current_line = ecs->sal.line;
1075 ecs->current_symtab = ecs->sal.symtab;
1076 ecs->infwait_state = infwait_normal_state;
39f77062 1077 ecs->waiton_ptid = pid_to_ptid (-1);
cd0fc7c3
SS
1078 ecs->wp = &(ecs->ws);
1079}
1080
e02bc4cc 1081/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
1082 target_wait()/deprecated_target_wait_hook(). The data is actually
1083 cached by handle_inferior_event(), which gets called immediately
1084 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
1085
1086void
488f131b 1087get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 1088{
39f77062 1089 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
1090 *status = target_last_waitstatus;
1091}
1092
ac264b3b
MS
1093void
1094nullify_last_target_wait_ptid (void)
1095{
1096 target_last_wait_ptid = minus_one_ptid;
1097}
1098
dd80620e
MS
1099/* Switch thread contexts, maintaining "infrun state". */
1100
1101static void
1102context_switch (struct execution_control_state *ecs)
1103{
1104 /* Caution: it may happen that the new thread (or the old one!)
1105 is not in the thread list. In this case we must not attempt
1106 to "switch context", or we run the risk that our context may
1107 be lost. This may happen as a result of the target module
1108 mishandling thread creation. */
1109
fd48f117
DJ
1110 if (debug_infrun)
1111 {
1112 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1113 target_pid_to_str (inferior_ptid));
1114 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1115 target_pid_to_str (ecs->ptid));
1116 }
1117
dd80620e 1118 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
488f131b 1119 { /* Perform infrun state context switch: */
dd80620e 1120 /* Save infrun state for the old thread. */
0ce3d317 1121 save_infrun_state (inferior_ptid, prev_pc,
dd80620e 1122 trap_expected, step_resume_breakpoint,
15960608 1123 step_range_start,
aa0cd9c1 1124 step_range_end, &step_frame_id,
dd80620e
MS
1125 ecs->handling_longjmp, ecs->another_trap,
1126 ecs->stepping_through_solib_after_catch,
1127 ecs->stepping_through_solib_catchpoints,
f2c9ca08 1128 ecs->current_line, ecs->current_symtab);
dd80620e
MS
1129
1130 /* Load infrun state for the new thread. */
0ce3d317 1131 load_infrun_state (ecs->ptid, &prev_pc,
dd80620e 1132 &trap_expected, &step_resume_breakpoint,
15960608 1133 &step_range_start,
aa0cd9c1 1134 &step_range_end, &step_frame_id,
dd80620e
MS
1135 &ecs->handling_longjmp, &ecs->another_trap,
1136 &ecs->stepping_through_solib_after_catch,
1137 &ecs->stepping_through_solib_catchpoints,
f2c9ca08 1138 &ecs->current_line, &ecs->current_symtab);
dd80620e
MS
1139 }
1140 inferior_ptid = ecs->ptid;
35f196d9 1141 reinit_frame_cache ();
dd80620e
MS
1142}
1143
4fa8626c
DJ
1144static void
1145adjust_pc_after_break (struct execution_control_state *ecs)
1146{
8aad930b 1147 CORE_ADDR breakpoint_pc;
4fa8626c
DJ
1148
1149 /* If this target does not decrement the PC after breakpoints, then
1150 we have nothing to do. */
1151 if (DECR_PC_AFTER_BREAK == 0)
1152 return;
1153
1154 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1155 we aren't, just return.
9709f61c
DJ
1156
1157 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1158 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1159 by software breakpoints should be handled through the normal breakpoint
1160 layer.
8fb3e588 1161
4fa8626c
DJ
1162 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1163 different signals (SIGILL or SIGEMT for instance), but it is less
1164 clear where the PC is pointing afterwards. It may not match
1165 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1166 these signals at breakpoints (the code has been in GDB since at least
1167 1992) so I can not guess how to handle them here.
8fb3e588 1168
4fa8626c
DJ
1169 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1170 would have the PC after hitting a watchpoint affected by
1171 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set
1172 in GDB history, and it seems unlikely to be correct, so
1173 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */
1174
1175 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1176 return;
1177
1178 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1179 return;
1180
8aad930b
AC
1181 /* Find the location where (if we've hit a breakpoint) the
1182 breakpoint would be. */
1183 breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1184
1185 if (SOFTWARE_SINGLE_STEP_P ())
1186 {
1187 /* When using software single-step, a SIGTRAP can only indicate
8fb3e588
AC
1188 an inserted breakpoint. This actually makes things
1189 easier. */
8aad930b
AC
1190 if (singlestep_breakpoints_inserted_p)
1191 /* When software single stepping, the instruction at [prev_pc]
1192 is never a breakpoint, but the instruction following
1193 [prev_pc] (in program execution order) always is. Assume
1194 that following instruction was reached and hence a software
1195 breakpoint was hit. */
1196 write_pc_pid (breakpoint_pc, ecs->ptid);
1197 else if (software_breakpoint_inserted_here_p (breakpoint_pc))
1198 /* The inferior was free running (i.e., no single-step
1199 breakpoints inserted) and it hit a software breakpoint. */
1200 write_pc_pid (breakpoint_pc, ecs->ptid);
1201 }
1202 else
1203 {
1204 /* When using hardware single-step, a SIGTRAP is reported for
8fb3e588
AC
1205 both a completed single-step and a software breakpoint. Need
1206 to differentiate between the two as the latter needs
90225438
AS
1207 adjusting but the former does not.
1208
1209 When the thread to be examined does not match the current thread
1210 context we can't use currently_stepping, so assume no
1211 single-stepping in this case. */
1212 if (ptid_equal (ecs->ptid, inferior_ptid) && currently_stepping (ecs))
8aad930b
AC
1213 {
1214 if (prev_pc == breakpoint_pc
1215 && software_breakpoint_inserted_here_p (breakpoint_pc))
1216 /* Hardware single-stepped a software breakpoint (as
1217 occures when the inferior is resumed with PC pointing
1218 at not-yet-hit software breakpoint). Since the
1219 breakpoint really is executed, the inferior needs to be
1220 backed up to the breakpoint address. */
1221 write_pc_pid (breakpoint_pc, ecs->ptid);
1222 }
1223 else
1224 {
1225 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1226 /* The inferior was free running (i.e., no hardware
1227 single-step and no possibility of a false SIGTRAP) and
1228 hit a software breakpoint. */
1229 write_pc_pid (breakpoint_pc, ecs->ptid);
1230 }
1231 }
4fa8626c
DJ
1232}
1233
cd0fc7c3
SS
1234/* Given an execution control state that has been freshly filled in
1235 by an event from the inferior, figure out what it means and take
1236 appropriate action. */
c906108c 1237
7270d8f2
OF
1238int stepped_after_stopped_by_watchpoint;
1239
cd0fc7c3 1240void
96baa820 1241handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 1242{
8bbde302
BE
1243 /* NOTE: bje/2005-05-02: If you're looking at this code and thinking
1244 that the variable stepped_after_stopped_by_watchpoint isn't used,
1245 then you're wrong! See remote.c:remote_stopped_data_address. */
1246
c8edd8b4 1247 int sw_single_step_trap_p = 0;
8fb3e588 1248 int stopped_by_watchpoint = -1; /* Mark as unknown. */
cd0fc7c3 1249
e02bc4cc 1250 /* Cache the last pid/waitstatus. */
39f77062 1251 target_last_wait_ptid = ecs->ptid;
e02bc4cc
DS
1252 target_last_waitstatus = *ecs->wp;
1253
4fa8626c
DJ
1254 adjust_pc_after_break (ecs);
1255
488f131b
JB
1256 switch (ecs->infwait_state)
1257 {
1258 case infwait_thread_hop_state:
527159b7 1259 if (debug_infrun)
8a9de0e4 1260 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
488f131b
JB
1261 /* Cancel the waiton_ptid. */
1262 ecs->waiton_ptid = pid_to_ptid (-1);
65e82032 1263 break;
b83266a0 1264
488f131b 1265 case infwait_normal_state:
527159b7 1266 if (debug_infrun)
8a9de0e4 1267 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
488f131b
JB
1268 stepped_after_stopped_by_watchpoint = 0;
1269 break;
b83266a0 1270
488f131b 1271 case infwait_nonstep_watch_state:
527159b7 1272 if (debug_infrun)
8a9de0e4
AC
1273 fprintf_unfiltered (gdb_stdlog,
1274 "infrun: infwait_nonstep_watch_state\n");
488f131b 1275 insert_breakpoints ();
c906108c 1276
488f131b
JB
1277 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1278 handle things like signals arriving and other things happening
1279 in combination correctly? */
1280 stepped_after_stopped_by_watchpoint = 1;
1281 break;
65e82032
AC
1282
1283 default:
e2e0b3e5 1284 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b
JB
1285 }
1286 ecs->infwait_state = infwait_normal_state;
c906108c 1287
35f196d9 1288 reinit_frame_cache ();
c906108c 1289
488f131b 1290 /* If it's a new process, add it to the thread database */
c906108c 1291
488f131b 1292 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
b9b5d7ea 1293 && !ptid_equal (ecs->ptid, minus_one_ptid)
488f131b
JB
1294 && !in_thread_list (ecs->ptid));
1295
1296 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1297 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1298 {
1299 add_thread (ecs->ptid);
c906108c 1300
488f131b
JB
1301 ui_out_text (uiout, "[New ");
1302 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1303 ui_out_text (uiout, "]\n");
488f131b 1304 }
c906108c 1305
488f131b
JB
1306 switch (ecs->ws.kind)
1307 {
1308 case TARGET_WAITKIND_LOADED:
527159b7 1309 if (debug_infrun)
8a9de0e4 1310 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
488f131b
JB
1311 /* Ignore gracefully during startup of the inferior, as it
1312 might be the shell which has just loaded some objects,
1313 otherwise add the symbols for the newly loaded objects. */
c906108c 1314#ifdef SOLIB_ADD
c0236d92 1315 if (stop_soon == NO_STOP_QUIETLY)
488f131b
JB
1316 {
1317 /* Remove breakpoints, SOLIB_ADD might adjust
1318 breakpoint addresses via breakpoint_re_set. */
1319 if (breakpoints_inserted)
1320 remove_breakpoints ();
c906108c 1321
488f131b
JB
1322 /* Check for any newly added shared libraries if we're
1323 supposed to be adding them automatically. Switch
1324 terminal for any messages produced by
1325 breakpoint_re_set. */
1326 target_terminal_ours_for_output ();
aff6338a 1327 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
1328 stack's section table is kept up-to-date. Architectures,
1329 (e.g., PPC64), use the section table to perform
1330 operations such as address => section name and hence
1331 require the table to contain all sections (including
1332 those found in shared libraries). */
aff6338a 1333 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
1334 exec_ops to SOLIB_ADD. This is because current GDB is
1335 only tooled to propagate section_table changes out from
1336 the "current_target" (see target_resize_to_sections), and
1337 not up from the exec stratum. This, of course, isn't
1338 right. "infrun.c" should only interact with the
1339 exec/process stratum, instead relying on the target stack
1340 to propagate relevant changes (stop, section table
1341 changed, ...) up to other layers. */
aff6338a 1342 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
488f131b
JB
1343 target_terminal_inferior ();
1344
1345 /* Reinsert breakpoints and continue. */
1346 if (breakpoints_inserted)
1347 insert_breakpoints ();
1348 }
c906108c 1349#endif
488f131b
JB
1350 resume (0, TARGET_SIGNAL_0);
1351 prepare_to_wait (ecs);
1352 return;
c5aa993b 1353
488f131b 1354 case TARGET_WAITKIND_SPURIOUS:
527159b7 1355 if (debug_infrun)
8a9de0e4 1356 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
1357 resume (0, TARGET_SIGNAL_0);
1358 prepare_to_wait (ecs);
1359 return;
c5aa993b 1360
488f131b 1361 case TARGET_WAITKIND_EXITED:
527159b7 1362 if (debug_infrun)
8a9de0e4 1363 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
488f131b
JB
1364 target_terminal_ours (); /* Must do this before mourn anyway */
1365 print_stop_reason (EXITED, ecs->ws.value.integer);
1366
1367 /* Record the exit code in the convenience variable $_exitcode, so
1368 that the user can inspect this again later. */
1369 set_internalvar (lookup_internalvar ("_exitcode"),
1370 value_from_longest (builtin_type_int,
1371 (LONGEST) ecs->ws.value.integer));
1372 gdb_flush (gdb_stdout);
1373 target_mourn_inferior ();
e6590a1b 1374 singlestep_breakpoints_inserted_p = 0; /* SOFTWARE_SINGLE_STEP_P() */
488f131b
JB
1375 stop_print_frame = 0;
1376 stop_stepping (ecs);
1377 return;
c5aa993b 1378
488f131b 1379 case TARGET_WAITKIND_SIGNALLED:
527159b7 1380 if (debug_infrun)
8a9de0e4 1381 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
488f131b
JB
1382 stop_print_frame = 0;
1383 stop_signal = ecs->ws.value.sig;
1384 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 1385
488f131b
JB
1386 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1387 reach here unless the inferior is dead. However, for years
1388 target_kill() was called here, which hints that fatal signals aren't
1389 really fatal on some systems. If that's true, then some changes
1390 may be needed. */
1391 target_mourn_inferior ();
c906108c 1392
488f131b 1393 print_stop_reason (SIGNAL_EXITED, stop_signal);
e6590a1b 1394 singlestep_breakpoints_inserted_p = 0; /* SOFTWARE_SINGLE_STEP_P() */
488f131b
JB
1395 stop_stepping (ecs);
1396 return;
c906108c 1397
488f131b
JB
1398 /* The following are the only cases in which we keep going;
1399 the above cases end in a continue or goto. */
1400 case TARGET_WAITKIND_FORKED:
deb3b17b 1401 case TARGET_WAITKIND_VFORKED:
527159b7 1402 if (debug_infrun)
8a9de0e4 1403 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
488f131b
JB
1404 stop_signal = TARGET_SIGNAL_TRAP;
1405 pending_follow.kind = ecs->ws.kind;
1406
8e7d2c16
DJ
1407 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1408 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
c906108c 1409
5a2901d9
DJ
1410 if (!ptid_equal (ecs->ptid, inferior_ptid))
1411 {
1412 context_switch (ecs);
35f196d9 1413 reinit_frame_cache ();
5a2901d9
DJ
1414 }
1415
488f131b 1416 stop_pc = read_pc ();
675bf4cb 1417
00d4360e 1418 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
675bf4cb 1419
488f131b 1420 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
04e68871
DJ
1421
1422 /* If no catchpoint triggered for this, then keep going. */
1423 if (ecs->random_signal)
1424 {
1425 stop_signal = TARGET_SIGNAL_0;
1426 keep_going (ecs);
1427 return;
1428 }
488f131b
JB
1429 goto process_event_stop_test;
1430
1431 case TARGET_WAITKIND_EXECD:
527159b7 1432 if (debug_infrun)
fc5261f2 1433 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b
JB
1434 stop_signal = TARGET_SIGNAL_TRAP;
1435
7d2830a3 1436 /* NOTE drow/2002-12-05: This code should be pushed down into the
8fb3e588
AC
1437 target_wait function. Until then following vfork on HP/UX 10.20
1438 is probably broken by this. Of course, it's broken anyway. */
488f131b
JB
1439 /* Is this a target which reports multiple exec events per actual
1440 call to exec()? (HP-UX using ptrace does, for example.) If so,
1441 ignore all but the last one. Just resume the exec'r, and wait
1442 for the next exec event. */
1443 if (inferior_ignoring_leading_exec_events)
1444 {
1445 inferior_ignoring_leading_exec_events--;
488f131b
JB
1446 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1447 prepare_to_wait (ecs);
1448 return;
1449 }
1450 inferior_ignoring_leading_exec_events =
1451 target_reported_exec_events_per_exec_call () - 1;
1452
1453 pending_follow.execd_pathname =
1454 savestring (ecs->ws.value.execd_pathname,
1455 strlen (ecs->ws.value.execd_pathname));
1456
488f131b
JB
1457 /* This causes the eventpoints and symbol table to be reset. Must
1458 do this now, before trying to determine whether to stop. */
1459 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1460 xfree (pending_follow.execd_pathname);
c906108c 1461
488f131b
JB
1462 stop_pc = read_pc_pid (ecs->ptid);
1463 ecs->saved_inferior_ptid = inferior_ptid;
1464 inferior_ptid = ecs->ptid;
675bf4cb 1465
00d4360e 1466 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
675bf4cb 1467
488f131b
JB
1468 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1469 inferior_ptid = ecs->saved_inferior_ptid;
04e68871 1470
5a2901d9
DJ
1471 if (!ptid_equal (ecs->ptid, inferior_ptid))
1472 {
1473 context_switch (ecs);
35f196d9 1474 reinit_frame_cache ();
5a2901d9
DJ
1475 }
1476
04e68871
DJ
1477 /* If no catchpoint triggered for this, then keep going. */
1478 if (ecs->random_signal)
1479 {
1480 stop_signal = TARGET_SIGNAL_0;
1481 keep_going (ecs);
1482 return;
1483 }
488f131b
JB
1484 goto process_event_stop_test;
1485
b4dc5ffa
MK
1486 /* Be careful not to try to gather much state about a thread
1487 that's in a syscall. It's frequently a losing proposition. */
488f131b 1488 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 1489 if (debug_infrun)
8a9de0e4 1490 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
488f131b
JB
1491 resume (0, TARGET_SIGNAL_0);
1492 prepare_to_wait (ecs);
1493 return;
c906108c 1494
488f131b
JB
1495 /* Before examining the threads further, step this thread to
1496 get it entirely out of the syscall. (We get notice of the
1497 event when the thread is just on the verge of exiting a
1498 syscall. Stepping one instruction seems to get it back
b4dc5ffa 1499 into user code.) */
488f131b 1500 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 1501 if (debug_infrun)
8a9de0e4 1502 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
488f131b 1503 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
488f131b
JB
1504 prepare_to_wait (ecs);
1505 return;
c906108c 1506
488f131b 1507 case TARGET_WAITKIND_STOPPED:
527159b7 1508 if (debug_infrun)
8a9de0e4 1509 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
488f131b
JB
1510 stop_signal = ecs->ws.value.sig;
1511 break;
c906108c 1512
488f131b
JB
1513 /* We had an event in the inferior, but we are not interested
1514 in handling it at this level. The lower layers have already
8e7d2c16 1515 done what needs to be done, if anything.
8fb3e588
AC
1516
1517 One of the possible circumstances for this is when the
1518 inferior produces output for the console. The inferior has
1519 not stopped, and we are ignoring the event. Another possible
1520 circumstance is any event which the lower level knows will be
1521 reported multiple times without an intervening resume. */
488f131b 1522 case TARGET_WAITKIND_IGNORE:
527159b7 1523 if (debug_infrun)
8a9de0e4 1524 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
8e7d2c16 1525 prepare_to_wait (ecs);
488f131b
JB
1526 return;
1527 }
c906108c 1528
488f131b
JB
1529 /* We may want to consider not doing a resume here in order to give
1530 the user a chance to play with the new thread. It might be good
1531 to make that a user-settable option. */
c906108c 1532
488f131b
JB
1533 /* At this point, all threads are stopped (happens automatically in
1534 either the OS or the native code). Therefore we need to continue
1535 all threads in order to make progress. */
1536 if (ecs->new_thread_event)
1537 {
1538 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1539 prepare_to_wait (ecs);
1540 return;
1541 }
c906108c 1542
488f131b
JB
1543 stop_pc = read_pc_pid (ecs->ptid);
1544
527159b7 1545 if (debug_infrun)
8a9de0e4 1546 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
527159b7 1547
9f976b41
DJ
1548 if (stepping_past_singlestep_breakpoint)
1549 {
8fb3e588
AC
1550 gdb_assert (SOFTWARE_SINGLE_STEP_P ()
1551 && singlestep_breakpoints_inserted_p);
9f976b41
DJ
1552 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1553 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1554
1555 stepping_past_singlestep_breakpoint = 0;
1556
1557 /* We've either finished single-stepping past the single-step
8fb3e588
AC
1558 breakpoint, or stopped for some other reason. It would be nice if
1559 we could tell, but we can't reliably. */
9f976b41 1560 if (stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 1561 {
527159b7 1562 if (debug_infrun)
8a9de0e4 1563 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
9f976b41 1564 /* Pull the single step breakpoints out of the target. */
e0cd558a 1565 remove_single_step_breakpoints ();
9f976b41
DJ
1566 singlestep_breakpoints_inserted_p = 0;
1567
1568 ecs->random_signal = 0;
1569
1570 ecs->ptid = saved_singlestep_ptid;
1571 context_switch (ecs);
9a4105ab
AC
1572 if (deprecated_context_hook)
1573 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
1574
1575 resume (1, TARGET_SIGNAL_0);
1576 prepare_to_wait (ecs);
1577 return;
1578 }
1579 }
1580
1581 stepping_past_singlestep_breakpoint = 0;
1582
488f131b
JB
1583 /* See if a thread hit a thread-specific breakpoint that was meant for
1584 another thread. If so, then step that thread past the breakpoint,
1585 and continue it. */
1586
1587 if (stop_signal == TARGET_SIGNAL_TRAP)
1588 {
9f976b41
DJ
1589 int thread_hop_needed = 0;
1590
f8d40ec8
JB
1591 /* Check if a regular breakpoint has been hit before checking
1592 for a potential single step breakpoint. Otherwise, GDB will
1593 not see this breakpoint hit when stepping onto breakpoints. */
4fa8626c 1594 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
488f131b 1595 {
c5aa993b 1596 ecs->random_signal = 0;
4fa8626c 1597 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
9f976b41
DJ
1598 thread_hop_needed = 1;
1599 }
1600 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1601 {
fd48f117
DJ
1602 /* We have not context switched yet, so this should be true
1603 no matter which thread hit the singlestep breakpoint. */
1604 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
1605 if (debug_infrun)
1606 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
1607 "trap for %s\n",
1608 target_pid_to_str (ecs->ptid));
1609
9f976b41
DJ
1610 ecs->random_signal = 0;
1611 /* The call to in_thread_list is necessary because PTIDs sometimes
1612 change when we go from single-threaded to multi-threaded. If
1613 the singlestep_ptid is still in the list, assume that it is
1614 really different from ecs->ptid. */
1615 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1616 && in_thread_list (singlestep_ptid))
1617 {
fd48f117
DJ
1618 /* If the PC of the thread we were trying to single-step
1619 has changed, discard this event (which we were going
1620 to ignore anyway), and pretend we saw that thread
1621 trap. This prevents us continuously moving the
1622 single-step breakpoint forward, one instruction at a
1623 time. If the PC has changed, then the thread we were
1624 trying to single-step has trapped or been signalled,
1625 but the event has not been reported to GDB yet.
1626
1627 There might be some cases where this loses signal
1628 information, if a signal has arrived at exactly the
1629 same time that the PC changed, but this is the best
1630 we can do with the information available. Perhaps we
1631 should arrange to report all events for all threads
1632 when they stop, or to re-poll the remote looking for
1633 this particular thread (i.e. temporarily enable
1634 schedlock). */
1635 if (read_pc_pid (singlestep_ptid) != singlestep_pc)
1636 {
1637 if (debug_infrun)
1638 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
1639 " but expected thread advanced also\n");
1640
1641 /* The current context still belongs to
1642 singlestep_ptid. Don't swap here, since that's
1643 the context we want to use. Just fudge our
1644 state and continue. */
1645 ecs->ptid = singlestep_ptid;
1646 stop_pc = read_pc_pid (ecs->ptid);
1647 }
1648 else
1649 {
1650 if (debug_infrun)
1651 fprintf_unfiltered (gdb_stdlog,
1652 "infrun: unexpected thread\n");
1653
1654 thread_hop_needed = 1;
1655 stepping_past_singlestep_breakpoint = 1;
1656 saved_singlestep_ptid = singlestep_ptid;
1657 }
9f976b41
DJ
1658 }
1659 }
1660
1661 if (thread_hop_needed)
8fb3e588
AC
1662 {
1663 int remove_status;
1664
527159b7 1665 if (debug_infrun)
8a9de0e4 1666 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 1667
8fb3e588
AC
1668 /* Saw a breakpoint, but it was hit by the wrong thread.
1669 Just continue. */
1670
1671 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
488f131b 1672 {
8fb3e588 1673 /* Pull the single step breakpoints out of the target. */
e0cd558a 1674 remove_single_step_breakpoints ();
8fb3e588
AC
1675 singlestep_breakpoints_inserted_p = 0;
1676 }
1677
1678 remove_status = remove_breakpoints ();
1679 /* Did we fail to remove breakpoints? If so, try
1680 to set the PC past the bp. (There's at least
1681 one situation in which we can fail to remove
1682 the bp's: On HP-UX's that use ttrace, we can't
1683 change the address space of a vforking child
1684 process until the child exits (well, okay, not
1685 then either :-) or execs. */
1686 if (remove_status != 0)
1687 {
1688 /* FIXME! This is obviously non-portable! */
1689 write_pc_pid (stop_pc + 4, ecs->ptid);
1690 /* We need to restart all the threads now,
1691 * unles we're running in scheduler-locked mode.
1692 * Use currently_stepping to determine whether to
1693 * step or continue.
1694 */
1695 /* FIXME MVS: is there any reason not to call resume()? */
1696 if (scheduler_mode == schedlock_on)
1697 target_resume (ecs->ptid,
1698 currently_stepping (ecs), TARGET_SIGNAL_0);
488f131b 1699 else
8fb3e588
AC
1700 target_resume (RESUME_ALL,
1701 currently_stepping (ecs), TARGET_SIGNAL_0);
1702 prepare_to_wait (ecs);
1703 return;
1704 }
1705 else
1706 { /* Single step */
1707 breakpoints_inserted = 0;
1708 if (!ptid_equal (inferior_ptid, ecs->ptid))
1709 context_switch (ecs);
1710 ecs->waiton_ptid = ecs->ptid;
1711 ecs->wp = &(ecs->ws);
1712 ecs->another_trap = 1;
1713
1714 ecs->infwait_state = infwait_thread_hop_state;
1715 keep_going (ecs);
1716 registers_changed ();
1717 return;
1718 }
488f131b 1719 }
f8d40ec8 1720 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
8fb3e588
AC
1721 {
1722 sw_single_step_trap_p = 1;
1723 ecs->random_signal = 0;
1724 }
488f131b
JB
1725 }
1726 else
1727 ecs->random_signal = 1;
c906108c 1728
488f131b 1729 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
1730 so, then switch to that thread. */
1731 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 1732 {
527159b7 1733 if (debug_infrun)
8a9de0e4 1734 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 1735
488f131b 1736 context_switch (ecs);
c5aa993b 1737
9a4105ab
AC
1738 if (deprecated_context_hook)
1739 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 1740 }
c906108c 1741
488f131b
JB
1742 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1743 {
1744 /* Pull the single step breakpoints out of the target. */
e0cd558a 1745 remove_single_step_breakpoints ();
488f131b
JB
1746 singlestep_breakpoints_inserted_p = 0;
1747 }
c906108c 1748
488f131b
JB
1749 /* It may not be necessary to disable the watchpoint to stop over
1750 it. For example, the PA can (with some kernel cooperation)
1751 single step over a watchpoint without disabling the watchpoint. */
1752 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1753 {
527159b7 1754 if (debug_infrun)
8a9de0e4 1755 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
488f131b
JB
1756 resume (1, 0);
1757 prepare_to_wait (ecs);
1758 return;
1759 }
c906108c 1760
488f131b
JB
1761 /* It is far more common to need to disable a watchpoint to step
1762 the inferior over it. FIXME. What else might a debug
1763 register or page protection watchpoint scheme need here? */
1764 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1765 {
1766 /* At this point, we are stopped at an instruction which has
1767 attempted to write to a piece of memory under control of
1768 a watchpoint. The instruction hasn't actually executed
1769 yet. If we were to evaluate the watchpoint expression
1770 now, we would get the old value, and therefore no change
1771 would seem to have occurred.
1772
1773 In order to make watchpoints work `right', we really need
1774 to complete the memory write, and then evaluate the
1775 watchpoint expression. The following code does that by
1776 removing the watchpoint (actually, all watchpoints and
1777 breakpoints), single-stepping the target, re-inserting
1778 watchpoints, and then falling through to let normal
1779 single-step processing handle proceed. Since this
1780 includes evaluating watchpoints, things will come to a
1781 stop in the correct manner. */
1782
527159b7 1783 if (debug_infrun)
8a9de0e4 1784 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
488f131b
JB
1785 remove_breakpoints ();
1786 registers_changed ();
1787 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
c5aa993b 1788
488f131b
JB
1789 ecs->waiton_ptid = ecs->ptid;
1790 ecs->wp = &(ecs->ws);
1791 ecs->infwait_state = infwait_nonstep_watch_state;
1792 prepare_to_wait (ecs);
1793 return;
1794 }
1795
1796 /* It may be possible to simply continue after a watchpoint. */
1797 if (HAVE_CONTINUABLE_WATCHPOINT)
00d4360e 1798 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
488f131b
JB
1799
1800 ecs->stop_func_start = 0;
1801 ecs->stop_func_end = 0;
1802 ecs->stop_func_name = 0;
1803 /* Don't care about return value; stop_func_start and stop_func_name
1804 will both be 0 if it doesn't work. */
1805 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1806 &ecs->stop_func_start, &ecs->stop_func_end);
782263ab 1807 ecs->stop_func_start += DEPRECATED_FUNCTION_START_OFFSET;
488f131b
JB
1808 ecs->another_trap = 0;
1809 bpstat_clear (&stop_bpstat);
1810 stop_step = 0;
1811 stop_stack_dummy = 0;
1812 stop_print_frame = 1;
1813 ecs->random_signal = 0;
1814 stopped_by_random_signal = 0;
488f131b 1815
3352ef37
AC
1816 if (stop_signal == TARGET_SIGNAL_TRAP
1817 && trap_expected
1818 && gdbarch_single_step_through_delay_p (current_gdbarch)
1819 && currently_stepping (ecs))
1820 {
1821 /* We're trying to step of a breakpoint. Turns out that we're
1822 also on an instruction that needs to be stepped multiple
1823 times before it's been fully executing. E.g., architectures
1824 with a delay slot. It needs to be stepped twice, once for
1825 the instruction and once for the delay slot. */
1826 int step_through_delay
1827 = gdbarch_single_step_through_delay (current_gdbarch,
1828 get_current_frame ());
527159b7 1829 if (debug_infrun && step_through_delay)
8a9de0e4 1830 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
3352ef37
AC
1831 if (step_range_end == 0 && step_through_delay)
1832 {
1833 /* The user issued a continue when stopped at a breakpoint.
1834 Set up for another trap and get out of here. */
1835 ecs->another_trap = 1;
1836 keep_going (ecs);
1837 return;
1838 }
1839 else if (step_through_delay)
1840 {
1841 /* The user issued a step when stopped at a breakpoint.
1842 Maybe we should stop, maybe we should not - the delay
1843 slot *might* correspond to a line of source. In any
1844 case, don't decide that here, just set ecs->another_trap,
1845 making sure we single-step again before breakpoints are
1846 re-inserted. */
1847 ecs->another_trap = 1;
1848 }
1849 }
1850
488f131b
JB
1851 /* Look at the cause of the stop, and decide what to do.
1852 The alternatives are:
1853 1) break; to really stop and return to the debugger,
1854 2) drop through to start up again
1855 (set ecs->another_trap to 1 to single step once)
1856 3) set ecs->random_signal to 1, and the decision between 1 and 2
1857 will be made according to the signal handling tables. */
1858
1859 /* First, distinguish signals caused by the debugger from signals
03cebad2
MK
1860 that have to do with the program's own actions. Note that
1861 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1862 on the operating system version. Here we detect when a SIGILL or
1863 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1864 something similar for SIGSEGV, since a SIGSEGV will be generated
1865 when we're trying to execute a breakpoint instruction on a
1866 non-executable stack. This happens for call dummy breakpoints
1867 for architectures like SPARC that place call dummies on the
1868 stack. */
488f131b
JB
1869
1870 if (stop_signal == TARGET_SIGNAL_TRAP
8fb3e588
AC
1871 || (breakpoints_inserted
1872 && (stop_signal == TARGET_SIGNAL_ILL
1873 || stop_signal == TARGET_SIGNAL_SEGV
1874 || stop_signal == TARGET_SIGNAL_EMT))
1875 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
488f131b
JB
1876 {
1877 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1878 {
527159b7 1879 if (debug_infrun)
8a9de0e4 1880 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
1881 stop_print_frame = 0;
1882 stop_stepping (ecs);
1883 return;
1884 }
c54cfec8
EZ
1885
1886 /* This is originated from start_remote(), start_inferior() and
1887 shared libraries hook functions. */
c0236d92 1888 if (stop_soon == STOP_QUIETLY)
488f131b 1889 {
527159b7 1890 if (debug_infrun)
8a9de0e4 1891 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
1892 stop_stepping (ecs);
1893 return;
1894 }
1895
c54cfec8
EZ
1896 /* This originates from attach_command(). We need to overwrite
1897 the stop_signal here, because some kernels don't ignore a
1898 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1899 See more comments in inferior.h. */
c0236d92 1900 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
c54cfec8
EZ
1901 {
1902 stop_stepping (ecs);
1903 if (stop_signal == TARGET_SIGNAL_STOP)
1904 stop_signal = TARGET_SIGNAL_0;
1905 return;
1906 }
1907
d303a6c7
AC
1908 /* Don't even think about breakpoints if just proceeded over a
1909 breakpoint. */
1910 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
527159b7
RC
1911 {
1912 if (debug_infrun)
8a9de0e4 1913 fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n");
527159b7
RC
1914 bpstat_clear (&stop_bpstat);
1915 }
488f131b
JB
1916 else
1917 {
1918 /* See if there is a breakpoint at the current PC. */
8fb3e588 1919 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
00d4360e 1920 stopped_by_watchpoint);
488f131b 1921
488f131b
JB
1922 /* Following in case break condition called a
1923 function. */
1924 stop_print_frame = 1;
1925 }
1926
73dd234f 1927 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
1928 at one stage in the past included checks for an inferior
1929 function call's call dummy's return breakpoint. The original
1930 comment, that went with the test, read:
73dd234f 1931
8fb3e588
AC
1932 ``End of a stack dummy. Some systems (e.g. Sony news) give
1933 another signal besides SIGTRAP, so check here as well as
1934 above.''
73dd234f
AC
1935
1936 If someone ever tries to get get call dummys on a
1937 non-executable stack to work (where the target would stop
03cebad2
MK
1938 with something like a SIGSEGV), then those tests might need
1939 to be re-instated. Given, however, that the tests were only
73dd234f 1940 enabled when momentary breakpoints were not being used, I
03cebad2
MK
1941 suspect that it won't be the case.
1942
8fb3e588
AC
1943 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1944 be necessary for call dummies on a non-executable stack on
1945 SPARC. */
73dd234f 1946
488f131b
JB
1947 if (stop_signal == TARGET_SIGNAL_TRAP)
1948 ecs->random_signal
1949 = !(bpstat_explains_signal (stop_bpstat)
1950 || trap_expected
488f131b 1951 || (step_range_end && step_resume_breakpoint == NULL));
488f131b
JB
1952 else
1953 {
73dd234f 1954 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
488f131b
JB
1955 if (!ecs->random_signal)
1956 stop_signal = TARGET_SIGNAL_TRAP;
1957 }
1958 }
1959
1960 /* When we reach this point, we've pretty much decided
1961 that the reason for stopping must've been a random
1962 (unexpected) signal. */
1963
1964 else
1965 ecs->random_signal = 1;
488f131b 1966
04e68871 1967process_event_stop_test:
488f131b
JB
1968 /* For the program's own signals, act according to
1969 the signal handling tables. */
1970
1971 if (ecs->random_signal)
1972 {
1973 /* Signal not for debugging purposes. */
1974 int printed = 0;
1975
527159b7 1976 if (debug_infrun)
8a9de0e4 1977 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
527159b7 1978
488f131b
JB
1979 stopped_by_random_signal = 1;
1980
1981 if (signal_print[stop_signal])
1982 {
1983 printed = 1;
1984 target_terminal_ours_for_output ();
1985 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
1986 }
1987 if (signal_stop[stop_signal])
1988 {
1989 stop_stepping (ecs);
1990 return;
1991 }
1992 /* If not going to stop, give terminal back
1993 if we took it away. */
1994 else if (printed)
1995 target_terminal_inferior ();
1996
1997 /* Clear the signal if it should not be passed. */
1998 if (signal_program[stop_signal] == 0)
1999 stop_signal = TARGET_SIGNAL_0;
2000
68f53502
AC
2001 if (prev_pc == read_pc ()
2002 && !breakpoints_inserted
2003 && breakpoint_here_p (read_pc ())
2004 && step_resume_breakpoint == NULL)
2005 {
2006 /* We were just starting a new sequence, attempting to
2007 single-step off of a breakpoint and expecting a SIGTRAP.
2008 Intead this signal arrives. This signal will take us out
2009 of the stepping range so GDB needs to remember to, when
2010 the signal handler returns, resume stepping off that
2011 breakpoint. */
2012 /* To simplify things, "continue" is forced to use the same
2013 code paths as single-step - set a breakpoint at the
2014 signal return address and then, once hit, step off that
2015 breakpoint. */
d3169d93 2016
44cbf7b5 2017 insert_step_resume_breakpoint_at_frame (get_current_frame ());
68f53502 2018 ecs->step_after_step_resume_breakpoint = 1;
9d799f85
AC
2019 keep_going (ecs);
2020 return;
68f53502 2021 }
9d799f85
AC
2022
2023 if (step_range_end != 0
2024 && stop_signal != TARGET_SIGNAL_0
2025 && stop_pc >= step_range_start && stop_pc < step_range_end
2026 && frame_id_eq (get_frame_id (get_current_frame ()),
2027 step_frame_id)
2028 && step_resume_breakpoint == NULL)
d303a6c7
AC
2029 {
2030 /* The inferior is about to take a signal that will take it
2031 out of the single step range. Set a breakpoint at the
2032 current PC (which is presumably where the signal handler
2033 will eventually return) and then allow the inferior to
2034 run free.
2035
2036 Note that this is only needed for a signal delivered
2037 while in the single-step range. Nested signals aren't a
2038 problem as they eventually all return. */
44cbf7b5 2039 insert_step_resume_breakpoint_at_frame (get_current_frame ());
9d799f85
AC
2040 keep_going (ecs);
2041 return;
d303a6c7 2042 }
9d799f85
AC
2043
2044 /* Note: step_resume_breakpoint may be non-NULL. This occures
2045 when either there's a nested signal, or when there's a
2046 pending signal enabled just as the signal handler returns
2047 (leaving the inferior at the step-resume-breakpoint without
2048 actually executing it). Either way continue until the
2049 breakpoint is really hit. */
488f131b
JB
2050 keep_going (ecs);
2051 return;
2052 }
2053
2054 /* Handle cases caused by hitting a breakpoint. */
2055 {
2056 CORE_ADDR jmp_buf_pc;
2057 struct bpstat_what what;
2058
2059 what = bpstat_what (stop_bpstat);
2060
2061 if (what.call_dummy)
2062 {
2063 stop_stack_dummy = 1;
c5aa993b 2064 }
c906108c 2065
488f131b 2066 switch (what.main_action)
c5aa993b 2067 {
488f131b
JB
2068 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2069 /* If we hit the breakpoint at longjmp, disable it for the
2070 duration of this command. Then, install a temporary
2071 breakpoint at the target of the jmp_buf. */
527159b7 2072 if (debug_infrun)
8802d8ed 2073 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
488f131b
JB
2074 disable_longjmp_breakpoint ();
2075 remove_breakpoints ();
2076 breakpoints_inserted = 0;
2077 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
c5aa993b 2078 {
488f131b 2079 keep_going (ecs);
104c1213 2080 return;
c5aa993b 2081 }
488f131b
JB
2082
2083 /* Need to blow away step-resume breakpoint, as it
2084 interferes with us */
2085 if (step_resume_breakpoint != NULL)
104c1213 2086 {
488f131b 2087 delete_step_resume_breakpoint (&step_resume_breakpoint);
104c1213 2088 }
c906108c 2089
8fb3e588 2090 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
488f131b
JB
2091 ecs->handling_longjmp = 1; /* FIXME */
2092 keep_going (ecs);
2093 return;
c906108c 2094
488f131b
JB
2095 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2096 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
527159b7 2097 if (debug_infrun)
8802d8ed 2098 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
488f131b
JB
2099 remove_breakpoints ();
2100 breakpoints_inserted = 0;
488f131b
JB
2101 disable_longjmp_breakpoint ();
2102 ecs->handling_longjmp = 0; /* FIXME */
2103 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2104 break;
2105 /* else fallthrough */
2106
2107 case BPSTAT_WHAT_SINGLE:
527159b7 2108 if (debug_infrun)
8802d8ed 2109 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
488f131b 2110 if (breakpoints_inserted)
569631c6 2111 remove_breakpoints ();
488f131b
JB
2112 breakpoints_inserted = 0;
2113 ecs->another_trap = 1;
2114 /* Still need to check other stuff, at least the case
2115 where we are stepping and step out of the right range. */
2116 break;
c906108c 2117
488f131b 2118 case BPSTAT_WHAT_STOP_NOISY:
527159b7 2119 if (debug_infrun)
8802d8ed 2120 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 2121 stop_print_frame = 1;
c906108c 2122
d303a6c7
AC
2123 /* We are about to nuke the step_resume_breakpointt via the
2124 cleanup chain, so no need to worry about it here. */
c5aa993b 2125
488f131b
JB
2126 stop_stepping (ecs);
2127 return;
c5aa993b 2128
488f131b 2129 case BPSTAT_WHAT_STOP_SILENT:
527159b7 2130 if (debug_infrun)
8802d8ed 2131 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 2132 stop_print_frame = 0;
c5aa993b 2133
d303a6c7
AC
2134 /* We are about to nuke the step_resume_breakpoin via the
2135 cleanup chain, so no need to worry about it here. */
c5aa993b 2136
488f131b 2137 stop_stepping (ecs);
e441088d 2138 return;
c5aa993b 2139
488f131b
JB
2140 case BPSTAT_WHAT_STEP_RESUME:
2141 /* This proably demands a more elegant solution, but, yeah
2142 right...
c5aa993b 2143
488f131b
JB
2144 This function's use of the simple variable
2145 step_resume_breakpoint doesn't seem to accomodate
2146 simultaneously active step-resume bp's, although the
2147 breakpoint list certainly can.
c5aa993b 2148
488f131b
JB
2149 If we reach here and step_resume_breakpoint is already
2150 NULL, then apparently we have multiple active
2151 step-resume bp's. We'll just delete the breakpoint we
2152 stopped at, and carry on.
2153
2154 Correction: what the code currently does is delete a
2155 step-resume bp, but it makes no effort to ensure that
2156 the one deleted is the one currently stopped at. MVS */
c5aa993b 2157
527159b7 2158 if (debug_infrun)
8802d8ed 2159 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
527159b7 2160
488f131b
JB
2161 if (step_resume_breakpoint == NULL)
2162 {
2163 step_resume_breakpoint =
2164 bpstat_find_step_resume_breakpoint (stop_bpstat);
2165 }
2166 delete_step_resume_breakpoint (&step_resume_breakpoint);
68f53502
AC
2167 if (ecs->step_after_step_resume_breakpoint)
2168 {
2169 /* Back when the step-resume breakpoint was inserted, we
2170 were trying to single-step off a breakpoint. Go back
2171 to doing that. */
2172 ecs->step_after_step_resume_breakpoint = 0;
2173 remove_breakpoints ();
2174 breakpoints_inserted = 0;
2175 ecs->another_trap = 1;
2176 keep_going (ecs);
2177 return;
2178 }
488f131b
JB
2179 break;
2180
488f131b
JB
2181 case BPSTAT_WHAT_CHECK_SHLIBS:
2182 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
c906108c 2183 {
527159b7 2184 if (debug_infrun)
8802d8ed 2185 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
488f131b
JB
2186 /* Remove breakpoints, we eventually want to step over the
2187 shlib event breakpoint, and SOLIB_ADD might adjust
2188 breakpoint addresses via breakpoint_re_set. */
2189 if (breakpoints_inserted)
2190 remove_breakpoints ();
c5aa993b 2191 breakpoints_inserted = 0;
488f131b
JB
2192
2193 /* Check for any newly added shared libraries if we're
2194 supposed to be adding them automatically. Switch
2195 terminal for any messages produced by
2196 breakpoint_re_set. */
2197 target_terminal_ours_for_output ();
aff6338a 2198 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
2199 stack's section table is kept up-to-date. Architectures,
2200 (e.g., PPC64), use the section table to perform
2201 operations such as address => section name and hence
2202 require the table to contain all sections (including
2203 those found in shared libraries). */
aff6338a 2204 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
2205 exec_ops to SOLIB_ADD. This is because current GDB is
2206 only tooled to propagate section_table changes out from
2207 the "current_target" (see target_resize_to_sections), and
2208 not up from the exec stratum. This, of course, isn't
2209 right. "infrun.c" should only interact with the
2210 exec/process stratum, instead relying on the target stack
2211 to propagate relevant changes (stop, section table
2212 changed, ...) up to other layers. */
a77053c2 2213#ifdef SOLIB_ADD
aff6338a 2214 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
a77053c2
MK
2215#else
2216 solib_add (NULL, 0, &current_target, auto_solib_add);
2217#endif
488f131b
JB
2218 target_terminal_inferior ();
2219
2220 /* Try to reenable shared library breakpoints, additional
2221 code segments in shared libraries might be mapped in now. */
2222 re_enable_breakpoints_in_shlibs ();
2223
2224 /* If requested, stop when the dynamic linker notifies
2225 gdb of events. This allows the user to get control
2226 and place breakpoints in initializer routines for
2227 dynamically loaded objects (among other things). */
877522db 2228 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 2229 {
488f131b 2230 stop_stepping (ecs);
d4f3574e
SS
2231 return;
2232 }
c5aa993b 2233
488f131b
JB
2234 /* If we stopped due to an explicit catchpoint, then the
2235 (see above) call to SOLIB_ADD pulled in any symbols
2236 from a newly-loaded library, if appropriate.
2237
2238 We do want the inferior to stop, but not where it is
2239 now, which is in the dynamic linker callback. Rather,
2240 we would like it stop in the user's program, just after
2241 the call that caused this catchpoint to trigger. That
2242 gives the user a more useful vantage from which to
2243 examine their program's state. */
8fb3e588
AC
2244 else if (what.main_action
2245 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
c906108c 2246 {
488f131b
JB
2247 /* ??rehrauer: If I could figure out how to get the
2248 right return PC from here, we could just set a temp
2249 breakpoint and resume. I'm not sure we can without
2250 cracking open the dld's shared libraries and sniffing
2251 their unwind tables and text/data ranges, and that's
2252 not a terribly portable notion.
2253
2254 Until that time, we must step the inferior out of the
2255 dld callback, and also out of the dld itself (and any
2256 code or stubs in libdld.sl, such as "shl_load" and
2257 friends) until we reach non-dld code. At that point,
2258 we can stop stepping. */
2259 bpstat_get_triggered_catchpoints (stop_bpstat,
2260 &ecs->
2261 stepping_through_solib_catchpoints);
2262 ecs->stepping_through_solib_after_catch = 1;
2263
2264 /* Be sure to lift all breakpoints, so the inferior does
2265 actually step past this point... */
2266 ecs->another_trap = 1;
2267 break;
c906108c 2268 }
c5aa993b 2269 else
c5aa993b 2270 {
488f131b 2271 /* We want to step over this breakpoint, then keep going. */
c5aa993b 2272 ecs->another_trap = 1;
488f131b 2273 break;
c5aa993b 2274 }
488f131b 2275 }
488f131b 2276 break;
c906108c 2277
488f131b
JB
2278 case BPSTAT_WHAT_LAST:
2279 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 2280
488f131b
JB
2281 case BPSTAT_WHAT_KEEP_CHECKING:
2282 break;
2283 }
2284 }
c906108c 2285
488f131b
JB
2286 /* We come here if we hit a breakpoint but should not
2287 stop for it. Possibly we also were stepping
2288 and should stop for that. So fall through and
2289 test for stepping. But, if not stepping,
2290 do not stop. */
c906108c 2291
9d1ff73f
MS
2292 /* Are we stepping to get the inferior out of the dynamic linker's
2293 hook (and possibly the dld itself) after catching a shlib
2294 event? */
488f131b
JB
2295 if (ecs->stepping_through_solib_after_catch)
2296 {
2297#if defined(SOLIB_ADD)
2298 /* Have we reached our destination? If not, keep going. */
2299 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2300 {
527159b7 2301 if (debug_infrun)
8a9de0e4 2302 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
488f131b
JB
2303 ecs->another_trap = 1;
2304 keep_going (ecs);
104c1213 2305 return;
488f131b
JB
2306 }
2307#endif
527159b7 2308 if (debug_infrun)
8a9de0e4 2309 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
488f131b
JB
2310 /* Else, stop and report the catchpoint(s) whose triggering
2311 caused us to begin stepping. */
2312 ecs->stepping_through_solib_after_catch = 0;
2313 bpstat_clear (&stop_bpstat);
2314 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2315 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2316 stop_print_frame = 1;
2317 stop_stepping (ecs);
2318 return;
2319 }
c906108c 2320
488f131b
JB
2321 if (step_resume_breakpoint)
2322 {
527159b7 2323 if (debug_infrun)
d3169d93
DJ
2324 fprintf_unfiltered (gdb_stdlog,
2325 "infrun: step-resume breakpoint is inserted\n");
527159b7 2326
488f131b
JB
2327 /* Having a step-resume breakpoint overrides anything
2328 else having to do with stepping commands until
2329 that breakpoint is reached. */
488f131b
JB
2330 keep_going (ecs);
2331 return;
2332 }
c5aa993b 2333
488f131b
JB
2334 if (step_range_end == 0)
2335 {
527159b7 2336 if (debug_infrun)
8a9de0e4 2337 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 2338 /* Likewise if we aren't even stepping. */
488f131b
JB
2339 keep_going (ecs);
2340 return;
2341 }
c5aa993b 2342
488f131b 2343 /* If stepping through a line, keep going if still within it.
c906108c 2344
488f131b
JB
2345 Note that step_range_end is the address of the first instruction
2346 beyond the step range, and NOT the address of the last instruction
2347 within it! */
2348 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2349 {
527159b7 2350 if (debug_infrun)
8a9de0e4 2351 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
527159b7
RC
2352 paddr_nz (step_range_start),
2353 paddr_nz (step_range_end));
488f131b
JB
2354 keep_going (ecs);
2355 return;
2356 }
c5aa993b 2357
488f131b 2358 /* We stepped out of the stepping range. */
c906108c 2359
488f131b
JB
2360 /* If we are stepping at the source level and entered the runtime
2361 loader dynamic symbol resolution code, we keep on single stepping
2362 until we exit the run time loader code and reach the callee's
2363 address. */
2364 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
a77053c2
MK
2365#ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2366 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2367#else
2368 && in_solib_dynsym_resolve_code (stop_pc)
2369#endif
2370 )
488f131b 2371 {
4c8c40e6
MK
2372 CORE_ADDR pc_after_resolver =
2373 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
c906108c 2374
527159b7 2375 if (debug_infrun)
8a9de0e4 2376 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
527159b7 2377
488f131b
JB
2378 if (pc_after_resolver)
2379 {
2380 /* Set up a step-resume breakpoint at the address
2381 indicated by SKIP_SOLIB_RESOLVER. */
2382 struct symtab_and_line sr_sal;
fe39c653 2383 init_sal (&sr_sal);
488f131b
JB
2384 sr_sal.pc = pc_after_resolver;
2385
44cbf7b5 2386 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c5aa993b 2387 }
c906108c 2388
488f131b
JB
2389 keep_going (ecs);
2390 return;
2391 }
c906108c 2392
42edda50
AC
2393 if (step_range_end != 1
2394 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2395 || step_over_calls == STEP_OVER_ALL)
2396 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
488f131b 2397 {
527159b7 2398 if (debug_infrun)
8a9de0e4 2399 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
42edda50 2400 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
2401 a signal trampoline (either by a signal being delivered or by
2402 the signal handler returning). Just single-step until the
2403 inferior leaves the trampoline (either by calling the handler
2404 or returning). */
488f131b
JB
2405 keep_going (ecs);
2406 return;
2407 }
c906108c 2408
c17eaafe
DJ
2409 /* Check for subroutine calls. The check for the current frame
2410 equalling the step ID is not necessary - the check of the
2411 previous frame's ID is sufficient - but it is a common case and
2412 cheaper than checking the previous frame's ID.
14e60db5
DJ
2413
2414 NOTE: frame_id_eq will never report two invalid frame IDs as
2415 being equal, so to get into this block, both the current and
2416 previous frame must have valid frame IDs. */
c17eaafe
DJ
2417 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2418 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
488f131b 2419 {
95918acb 2420 CORE_ADDR real_stop_pc;
8fb3e588 2421
527159b7 2422 if (debug_infrun)
8a9de0e4 2423 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 2424
95918acb
AC
2425 if ((step_over_calls == STEP_OVER_NONE)
2426 || ((step_range_end == 1)
2427 && in_prologue (prev_pc, ecs->stop_func_start)))
2428 {
2429 /* I presume that step_over_calls is only 0 when we're
2430 supposed to be stepping at the assembly language level
2431 ("stepi"). Just stop. */
2432 /* Also, maybe we just did a "nexti" inside a prolog, so we
2433 thought it was a subroutine call but it was not. Stop as
2434 well. FENN */
2435 stop_step = 1;
2436 print_stop_reason (END_STEPPING_RANGE, 0);
2437 stop_stepping (ecs);
2438 return;
2439 }
8fb3e588 2440
8567c30f
AC
2441 if (step_over_calls == STEP_OVER_ALL)
2442 {
2443 /* We're doing a "next", set a breakpoint at callee's return
2444 address (the address at which the caller will
2445 resume). */
14e60db5 2446 insert_step_resume_breakpoint_at_caller (get_current_frame ());
8567c30f
AC
2447 keep_going (ecs);
2448 return;
2449 }
a53c66de 2450
95918acb 2451 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
2452 calling routine and the real function), locate the real
2453 function. That's what tells us (a) whether we want to step
2454 into it at all, and (b) what prologue we want to run to the
2455 end of, if we do step into it. */
95918acb
AC
2456 real_stop_pc = skip_language_trampoline (stop_pc);
2457 if (real_stop_pc == 0)
2458 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2459 if (real_stop_pc != 0)
2460 ecs->stop_func_start = real_stop_pc;
8fb3e588 2461
a77053c2
MK
2462 if (
2463#ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2464 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2465#else
2466 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2467#endif
2468)
1b2bfbb9
RC
2469 {
2470 struct symtab_and_line sr_sal;
2471 init_sal (&sr_sal);
2472 sr_sal.pc = ecs->stop_func_start;
2473
44cbf7b5 2474 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
8fb3e588
AC
2475 keep_going (ecs);
2476 return;
1b2bfbb9
RC
2477 }
2478
95918acb 2479 /* If we have line number information for the function we are
8fb3e588 2480 thinking of stepping into, step into it.
95918acb 2481
8fb3e588
AC
2482 If there are several symtabs at that PC (e.g. with include
2483 files), just want to know whether *any* of them have line
2484 numbers. find_pc_line handles this. */
95918acb
AC
2485 {
2486 struct symtab_and_line tmp_sal;
8fb3e588 2487
95918acb
AC
2488 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2489 if (tmp_sal.line != 0)
2490 {
2491 step_into_function (ecs);
2492 return;
2493 }
2494 }
2495
2496 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
2497 set, we stop the step so that the user has a chance to switch
2498 in assembly mode. */
95918acb
AC
2499 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2500 {
2501 stop_step = 1;
2502 print_stop_reason (END_STEPPING_RANGE, 0);
2503 stop_stepping (ecs);
2504 return;
2505 }
2506
2507 /* Set a breakpoint at callee's return address (the address at
8fb3e588 2508 which the caller will resume). */
14e60db5 2509 insert_step_resume_breakpoint_at_caller (get_current_frame ());
95918acb 2510 keep_going (ecs);
488f131b 2511 return;
488f131b 2512 }
c906108c 2513
488f131b
JB
2514 /* If we're in the return path from a shared library trampoline,
2515 we want to proceed through the trampoline when stepping. */
2516 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2517 {
488f131b 2518 /* Determine where this trampoline returns. */
5cf4d23a 2519 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
c906108c 2520
527159b7 2521 if (debug_infrun)
8a9de0e4 2522 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
527159b7 2523
488f131b 2524 /* Only proceed through if we know where it's going. */
d764a824 2525 if (real_stop_pc)
488f131b
JB
2526 {
2527 /* And put the step-breakpoint there and go until there. */
2528 struct symtab_and_line sr_sal;
2529
fe39c653 2530 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 2531 sr_sal.pc = real_stop_pc;
488f131b 2532 sr_sal.section = find_pc_overlay (sr_sal.pc);
44cbf7b5
AC
2533
2534 /* Do not specify what the fp should be when we stop since
2535 on some machines the prologue is where the new fp value
2536 is established. */
2537 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c906108c 2538
488f131b
JB
2539 /* Restart without fiddling with the step ranges or
2540 other state. */
2541 keep_going (ecs);
2542 return;
2543 }
2544 }
c906108c 2545
7ed0fe66
DJ
2546 ecs->sal = find_pc_line (stop_pc, 0);
2547
1b2bfbb9
RC
2548 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2549 the trampoline processing logic, however, there are some trampolines
2550 that have no names, so we should do trampoline handling first. */
2551 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66
DJ
2552 && ecs->stop_func_name == NULL
2553 && ecs->sal.line == 0)
1b2bfbb9 2554 {
527159b7 2555 if (debug_infrun)
8a9de0e4 2556 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
527159b7 2557
1b2bfbb9 2558 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
2559 undebuggable function (where there is no debugging information
2560 and no line number corresponding to the address where the
1b2bfbb9
RC
2561 inferior stopped). Since we want to skip this kind of code,
2562 we keep going until the inferior returns from this
14e60db5
DJ
2563 function - unless the user has asked us not to (via
2564 set step-mode) or we no longer know how to get back
2565 to the call site. */
2566 if (step_stop_if_no_debug
2567 || !frame_id_p (frame_unwind_id (get_current_frame ())))
1b2bfbb9
RC
2568 {
2569 /* If we have no line number and the step-stop-if-no-debug
2570 is set, we stop the step so that the user has a chance to
2571 switch in assembly mode. */
2572 stop_step = 1;
2573 print_stop_reason (END_STEPPING_RANGE, 0);
2574 stop_stepping (ecs);
2575 return;
2576 }
2577 else
2578 {
2579 /* Set a breakpoint at callee's return address (the address
2580 at which the caller will resume). */
14e60db5 2581 insert_step_resume_breakpoint_at_caller (get_current_frame ());
1b2bfbb9
RC
2582 keep_going (ecs);
2583 return;
2584 }
2585 }
2586
2587 if (step_range_end == 1)
2588 {
2589 /* It is stepi or nexti. We always want to stop stepping after
2590 one instruction. */
527159b7 2591 if (debug_infrun)
8a9de0e4 2592 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
1b2bfbb9
RC
2593 stop_step = 1;
2594 print_stop_reason (END_STEPPING_RANGE, 0);
2595 stop_stepping (ecs);
2596 return;
2597 }
2598
488f131b
JB
2599 if (ecs->sal.line == 0)
2600 {
2601 /* We have no line number information. That means to stop
2602 stepping (does this always happen right after one instruction,
2603 when we do "s" in a function with no line numbers,
2604 or can this happen as a result of a return or longjmp?). */
527159b7 2605 if (debug_infrun)
8a9de0e4 2606 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
488f131b
JB
2607 stop_step = 1;
2608 print_stop_reason (END_STEPPING_RANGE, 0);
2609 stop_stepping (ecs);
2610 return;
2611 }
c906108c 2612
488f131b
JB
2613 if ((stop_pc == ecs->sal.pc)
2614 && (ecs->current_line != ecs->sal.line
2615 || ecs->current_symtab != ecs->sal.symtab))
2616 {
2617 /* We are at the start of a different line. So stop. Note that
2618 we don't stop if we step into the middle of a different line.
2619 That is said to make things like for (;;) statements work
2620 better. */
527159b7 2621 if (debug_infrun)
8a9de0e4 2622 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
488f131b
JB
2623 stop_step = 1;
2624 print_stop_reason (END_STEPPING_RANGE, 0);
2625 stop_stepping (ecs);
2626 return;
2627 }
c906108c 2628
488f131b 2629 /* We aren't done stepping.
c906108c 2630
488f131b
JB
2631 Optimize by setting the stepping range to the line.
2632 (We might not be in the original line, but if we entered a
2633 new line in mid-statement, we continue stepping. This makes
2634 things like for(;;) statements work better.) */
c906108c 2635
488f131b 2636 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
c5aa993b 2637 {
488f131b
JB
2638 /* If this is the last line of the function, don't keep stepping
2639 (it would probably step us out of the function).
2640 This is particularly necessary for a one-line function,
2641 in which after skipping the prologue we better stop even though
2642 we will be in mid-line. */
527159b7 2643 if (debug_infrun)
8a9de0e4 2644 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n");
488f131b
JB
2645 stop_step = 1;
2646 print_stop_reason (END_STEPPING_RANGE, 0);
2647 stop_stepping (ecs);
2648 return;
c5aa993b 2649 }
488f131b
JB
2650 step_range_start = ecs->sal.pc;
2651 step_range_end = ecs->sal.end;
aa0cd9c1 2652 step_frame_id = get_frame_id (get_current_frame ());
488f131b
JB
2653 ecs->current_line = ecs->sal.line;
2654 ecs->current_symtab = ecs->sal.symtab;
2655
aa0cd9c1
AC
2656 /* In the case where we just stepped out of a function into the
2657 middle of a line of the caller, continue stepping, but
2658 step_frame_id must be modified to current frame */
65815ea1
AC
2659#if 0
2660 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2661 generous. It will trigger on things like a step into a frameless
2662 stackless leaf function. I think the logic should instead look
2663 at the unwound frame ID has that should give a more robust
2664 indication of what happened. */
8fb3e588
AC
2665 if (step - ID == current - ID)
2666 still stepping in same function;
2667 else if (step - ID == unwind (current - ID))
2668 stepped into a function;
2669 else
2670 stepped out of a function;
2671 /* Of course this assumes that the frame ID unwind code is robust
2672 and we're willing to introduce frame unwind logic into this
2673 function. Fortunately, those days are nearly upon us. */
65815ea1 2674#endif
488f131b 2675 {
aa0cd9c1
AC
2676 struct frame_id current_frame = get_frame_id (get_current_frame ());
2677 if (!(frame_id_inner (current_frame, step_frame_id)))
2678 step_frame_id = current_frame;
488f131b 2679 }
c906108c 2680
527159b7 2681 if (debug_infrun)
8a9de0e4 2682 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 2683 keep_going (ecs);
104c1213
JM
2684}
2685
2686/* Are we in the middle of stepping? */
2687
2688static int
2689currently_stepping (struct execution_control_state *ecs)
2690{
d303a6c7 2691 return ((!ecs->handling_longjmp
104c1213
JM
2692 && ((step_range_end && step_resume_breakpoint == NULL)
2693 || trap_expected))
2694 || ecs->stepping_through_solib_after_catch
2695 || bpstat_should_step ());
2696}
c906108c 2697
c2c6d25f
JM
2698/* Subroutine call with source code we should not step over. Do step
2699 to the first line of code in it. */
2700
2701static void
2702step_into_function (struct execution_control_state *ecs)
2703{
2704 struct symtab *s;
2705 struct symtab_and_line sr_sal;
2706
2707 s = find_pc_symtab (stop_pc);
2708 if (s && s->language != language_asm)
2709 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2710
2711 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2712 /* Use the step_resume_break to step until the end of the prologue,
2713 even if that involves jumps (as it seems to on the vax under
2714 4.2). */
2715 /* If the prologue ends in the middle of a source line, continue to
2716 the end of that source line (if it is still within the function).
2717 Otherwise, just go to end of prologue. */
c2c6d25f
JM
2718 if (ecs->sal.end
2719 && ecs->sal.pc != ecs->stop_func_start
2720 && ecs->sal.end < ecs->stop_func_end)
2721 ecs->stop_func_start = ecs->sal.end;
c2c6d25f 2722
2dbd5e30
KB
2723 /* Architectures which require breakpoint adjustment might not be able
2724 to place a breakpoint at the computed address. If so, the test
2725 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2726 ecs->stop_func_start to an address at which a breakpoint may be
2727 legitimately placed.
8fb3e588 2728
2dbd5e30
KB
2729 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2730 made, GDB will enter an infinite loop when stepping through
2731 optimized code consisting of VLIW instructions which contain
2732 subinstructions corresponding to different source lines. On
2733 FR-V, it's not permitted to place a breakpoint on any but the
2734 first subinstruction of a VLIW instruction. When a breakpoint is
2735 set, GDB will adjust the breakpoint address to the beginning of
2736 the VLIW instruction. Thus, we need to make the corresponding
2737 adjustment here when computing the stop address. */
8fb3e588 2738
2dbd5e30
KB
2739 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2740 {
2741 ecs->stop_func_start
2742 = gdbarch_adjust_breakpoint_address (current_gdbarch,
8fb3e588 2743 ecs->stop_func_start);
2dbd5e30
KB
2744 }
2745
c2c6d25f
JM
2746 if (ecs->stop_func_start == stop_pc)
2747 {
2748 /* We are already there: stop now. */
2749 stop_step = 1;
488f131b 2750 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
2751 stop_stepping (ecs);
2752 return;
2753 }
2754 else
2755 {
2756 /* Put the step-breakpoint there and go until there. */
fe39c653 2757 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
2758 sr_sal.pc = ecs->stop_func_start;
2759 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
44cbf7b5 2760
c2c6d25f 2761 /* Do not specify what the fp should be when we stop since on
488f131b
JB
2762 some machines the prologue is where the new fp value is
2763 established. */
44cbf7b5 2764 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c2c6d25f
JM
2765
2766 /* And make sure stepping stops right away then. */
2767 step_range_end = step_range_start;
2768 }
2769 keep_going (ecs);
2770}
d4f3574e 2771
d3169d93 2772/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
2773 This is used to both functions and to skip over code. */
2774
2775static void
2776insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2777 struct frame_id sr_id)
2778{
2779 /* There should never be more than one step-resume breakpoint per
2780 thread, so we should never be setting a new
2781 step_resume_breakpoint when one is already active. */
2782 gdb_assert (step_resume_breakpoint == NULL);
d3169d93
DJ
2783
2784 if (debug_infrun)
2785 fprintf_unfiltered (gdb_stdlog,
2786 "infrun: inserting step-resume breakpoint at 0x%s\n",
2787 paddr_nz (sr_sal.pc));
2788
44cbf7b5
AC
2789 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2790 bp_step_resume);
2791 if (breakpoints_inserted)
2792 insert_breakpoints ();
2793}
7ce450bd 2794
d3169d93 2795/* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
14e60db5 2796 to skip a potential signal handler.
7ce450bd 2797
14e60db5
DJ
2798 This is called with the interrupted function's frame. The signal
2799 handler, when it returns, will resume the interrupted function at
2800 RETURN_FRAME.pc. */
d303a6c7
AC
2801
2802static void
44cbf7b5 2803insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
2804{
2805 struct symtab_and_line sr_sal;
2806
d303a6c7
AC
2807 init_sal (&sr_sal); /* initialize to zeros */
2808
7ce450bd 2809 sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (return_frame));
d303a6c7
AC
2810 sr_sal.section = find_pc_overlay (sr_sal.pc);
2811
44cbf7b5 2812 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
d303a6c7
AC
2813}
2814
14e60db5
DJ
2815/* Similar to insert_step_resume_breakpoint_at_frame, except
2816 but a breakpoint at the previous frame's PC. This is used to
2817 skip a function after stepping into it (for "next" or if the called
2818 function has no debugging information).
2819
2820 The current function has almost always been reached by single
2821 stepping a call or return instruction. NEXT_FRAME belongs to the
2822 current function, and the breakpoint will be set at the caller's
2823 resume address.
2824
2825 This is a separate function rather than reusing
2826 insert_step_resume_breakpoint_at_frame in order to avoid
2827 get_prev_frame, which may stop prematurely (see the implementation
2828 of frame_unwind_id for an example). */
2829
2830static void
2831insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
2832{
2833 struct symtab_and_line sr_sal;
2834
2835 /* We shouldn't have gotten here if we don't know where the call site
2836 is. */
2837 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
2838
2839 init_sal (&sr_sal); /* initialize to zeros */
2840
2841 sr_sal.pc = ADDR_BITS_REMOVE (frame_pc_unwind (next_frame));
2842 sr_sal.section = find_pc_overlay (sr_sal.pc);
2843
2844 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
2845}
2846
104c1213
JM
2847static void
2848stop_stepping (struct execution_control_state *ecs)
2849{
527159b7 2850 if (debug_infrun)
8a9de0e4 2851 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 2852
cd0fc7c3
SS
2853 /* Let callers know we don't want to wait for the inferior anymore. */
2854 ecs->wait_some_more = 0;
2855}
2856
d4f3574e
SS
2857/* This function handles various cases where we need to continue
2858 waiting for the inferior. */
2859/* (Used to be the keep_going: label in the old wait_for_inferior) */
2860
2861static void
2862keep_going (struct execution_control_state *ecs)
2863{
d4f3574e 2864 /* Save the pc before execution, to compare with pc after stop. */
488f131b 2865 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
d4f3574e 2866
d4f3574e
SS
2867 /* If we did not do break;, it means we should keep running the
2868 inferior and not return to debugger. */
2869
2870 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2871 {
2872 /* We took a signal (which we are supposed to pass through to
488f131b
JB
2873 the inferior, else we'd have done a break above) and we
2874 haven't yet gotten our trap. Simply continue. */
d4f3574e
SS
2875 resume (currently_stepping (ecs), stop_signal);
2876 }
2877 else
2878 {
2879 /* Either the trap was not expected, but we are continuing
488f131b
JB
2880 anyway (the user asked that this signal be passed to the
2881 child)
2882 -- or --
2883 The signal was SIGTRAP, e.g. it was our signal, but we
2884 decided we should resume from it.
d4f3574e 2885
68f53502 2886 We're going to run this baby now! */
d4f3574e 2887
68f53502 2888 if (!breakpoints_inserted && !ecs->another_trap)
d4f3574e 2889 {
569631c6
UW
2890 /* Stop stepping when inserting breakpoints
2891 has failed. */
2892 if (insert_breakpoints () != 0)
d4f3574e
SS
2893 {
2894 stop_stepping (ecs);
2895 return;
2896 }
2897 breakpoints_inserted = 1;
2898 }
2899
2900 trap_expected = ecs->another_trap;
2901
2902 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
2903 specifies that such a signal should be delivered to the
2904 target program).
2905
2906 Typically, this would occure when a user is debugging a
2907 target monitor on a simulator: the target monitor sets a
2908 breakpoint; the simulator encounters this break-point and
2909 halts the simulation handing control to GDB; GDB, noteing
2910 that the break-point isn't valid, returns control back to the
2911 simulator; the simulator then delivers the hardware
2912 equivalent of a SIGNAL_TRAP to the program being debugged. */
2913
2914 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
d4f3574e
SS
2915 stop_signal = TARGET_SIGNAL_0;
2916
d4f3574e
SS
2917
2918 resume (currently_stepping (ecs), stop_signal);
2919 }
2920
488f131b 2921 prepare_to_wait (ecs);
d4f3574e
SS
2922}
2923
104c1213
JM
2924/* This function normally comes after a resume, before
2925 handle_inferior_event exits. It takes care of any last bits of
2926 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 2927
104c1213
JM
2928static void
2929prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 2930{
527159b7 2931 if (debug_infrun)
8a9de0e4 2932 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213
JM
2933 if (ecs->infwait_state == infwait_normal_state)
2934 {
2935 overlay_cache_invalid = 1;
2936
2937 /* We have to invalidate the registers BEFORE calling
488f131b
JB
2938 target_wait because they can be loaded from the target while
2939 in target_wait. This makes remote debugging a bit more
2940 efficient for those targets that provide critical registers
2941 as part of their normal status mechanism. */
104c1213
JM
2942
2943 registers_changed ();
39f77062 2944 ecs->waiton_ptid = pid_to_ptid (-1);
104c1213
JM
2945 ecs->wp = &(ecs->ws);
2946 }
2947 /* This is the old end of the while loop. Let everybody know we
2948 want to wait for the inferior some more and get called again
2949 soon. */
2950 ecs->wait_some_more = 1;
c906108c 2951}
11cf8741
JM
2952
2953/* Print why the inferior has stopped. We always print something when
2954 the inferior exits, or receives a signal. The rest of the cases are
2955 dealt with later on in normal_stop() and print_it_typical(). Ideally
2956 there should be a call to this function from handle_inferior_event()
2957 each time stop_stepping() is called.*/
2958static void
2959print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2960{
2961 switch (stop_reason)
2962 {
11cf8741
JM
2963 case END_STEPPING_RANGE:
2964 /* We are done with a step/next/si/ni command. */
2965 /* For now print nothing. */
fb40c209 2966 /* Print a message only if not in the middle of doing a "step n"
488f131b 2967 operation for n > 1 */
fb40c209 2968 if (!step_multi || !stop_step)
9dc5e2a9 2969 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
2970 ui_out_field_string
2971 (uiout, "reason",
2972 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
11cf8741 2973 break;
11cf8741
JM
2974 case SIGNAL_EXITED:
2975 /* The inferior was terminated by a signal. */
8b93c638 2976 annotate_signalled ();
9dc5e2a9 2977 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
2978 ui_out_field_string
2979 (uiout, "reason",
2980 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8b93c638
JM
2981 ui_out_text (uiout, "\nProgram terminated with signal ");
2982 annotate_signal_name ();
488f131b
JB
2983 ui_out_field_string (uiout, "signal-name",
2984 target_signal_to_name (stop_info));
8b93c638
JM
2985 annotate_signal_name_end ();
2986 ui_out_text (uiout, ", ");
2987 annotate_signal_string ();
488f131b
JB
2988 ui_out_field_string (uiout, "signal-meaning",
2989 target_signal_to_string (stop_info));
8b93c638
JM
2990 annotate_signal_string_end ();
2991 ui_out_text (uiout, ".\n");
2992 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
2993 break;
2994 case EXITED:
2995 /* The inferior program is finished. */
8b93c638
JM
2996 annotate_exited (stop_info);
2997 if (stop_info)
2998 {
9dc5e2a9 2999 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3000 ui_out_field_string (uiout, "reason",
3001 async_reason_lookup (EXEC_ASYNC_EXITED));
8b93c638 3002 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
3003 ui_out_field_fmt (uiout, "exit-code", "0%o",
3004 (unsigned int) stop_info);
8b93c638
JM
3005 ui_out_text (uiout, ".\n");
3006 }
3007 else
3008 {
9dc5e2a9 3009 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3010 ui_out_field_string
3011 (uiout, "reason",
3012 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8b93c638
JM
3013 ui_out_text (uiout, "\nProgram exited normally.\n");
3014 }
f17517ea
AS
3015 /* Support the --return-child-result option. */
3016 return_child_result_value = stop_info;
11cf8741
JM
3017 break;
3018 case SIGNAL_RECEIVED:
3019 /* Signal received. The signal table tells us to print about
3020 it. */
8b93c638
JM
3021 annotate_signal ();
3022 ui_out_text (uiout, "\nProgram received signal ");
3023 annotate_signal_name ();
84c6c83c 3024 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3025 ui_out_field_string
3026 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b
JB
3027 ui_out_field_string (uiout, "signal-name",
3028 target_signal_to_name (stop_info));
8b93c638
JM
3029 annotate_signal_name_end ();
3030 ui_out_text (uiout, ", ");
3031 annotate_signal_string ();
488f131b
JB
3032 ui_out_field_string (uiout, "signal-meaning",
3033 target_signal_to_string (stop_info));
8b93c638
JM
3034 annotate_signal_string_end ();
3035 ui_out_text (uiout, ".\n");
11cf8741
JM
3036 break;
3037 default:
8e65ff28 3038 internal_error (__FILE__, __LINE__,
e2e0b3e5 3039 _("print_stop_reason: unrecognized enum value"));
11cf8741
JM
3040 break;
3041 }
3042}
c906108c 3043\f
43ff13b4 3044
c906108c
SS
3045/* Here to return control to GDB when the inferior stops for real.
3046 Print appropriate messages, remove breakpoints, give terminal our modes.
3047
3048 STOP_PRINT_FRAME nonzero means print the executing frame
3049 (pc, function, args, file, line number and line text).
3050 BREAKPOINTS_FAILED nonzero means stop was due to error
3051 attempting to insert breakpoints. */
3052
3053void
96baa820 3054normal_stop (void)
c906108c 3055{
73b65bb0
DJ
3056 struct target_waitstatus last;
3057 ptid_t last_ptid;
3058
3059 get_last_target_status (&last_ptid, &last);
3060
c906108c
SS
3061 /* As with the notification of thread events, we want to delay
3062 notifying the user that we've switched thread context until
3063 the inferior actually stops.
3064
73b65bb0
DJ
3065 There's no point in saying anything if the inferior has exited.
3066 Note that SIGNALLED here means "exited with a signal", not
3067 "received a signal". */
488f131b 3068 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
3069 && target_has_execution
3070 && last.kind != TARGET_WAITKIND_SIGNALLED
3071 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
3072 {
3073 target_terminal_ours_for_output ();
a3f17187 3074 printf_filtered (_("[Switching to %s]\n"),
39f77062
KB
3075 target_pid_or_tid_to_str (inferior_ptid));
3076 previous_inferior_ptid = inferior_ptid;
c906108c 3077 }
c906108c 3078
4fa8626c 3079 /* NOTE drow/2004-01-17: Is this still necessary? */
c906108c
SS
3080 /* Make sure that the current_frame's pc is correct. This
3081 is a correction for setting up the frame info before doing
3082 DECR_PC_AFTER_BREAK */
b87efeee
AC
3083 if (target_has_execution)
3084 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3085 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
3086 frame code to check for this and sort out any resultant mess.
3087 DECR_PC_AFTER_BREAK needs to just go away. */
2f107107 3088 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
c906108c 3089
c906108c
SS
3090 if (target_has_execution && breakpoints_inserted)
3091 {
3092 if (remove_breakpoints ())
3093 {
3094 target_terminal_ours_for_output ();
a3f17187
AC
3095 printf_filtered (_("\
3096Cannot remove breakpoints because program is no longer writable.\n\
3097It might be running in another process.\n\
3098Further execution is probably impossible.\n"));
c906108c
SS
3099 }
3100 }
3101 breakpoints_inserted = 0;
3102
3103 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3104 Delete any breakpoint that is to be deleted at the next stop. */
3105
3106 breakpoint_auto_delete (stop_bpstat);
3107
3108 /* If an auto-display called a function and that got a signal,
3109 delete that auto-display to avoid an infinite recursion. */
3110
3111 if (stopped_by_random_signal)
3112 disable_current_display ();
3113
3114 /* Don't print a message if in the middle of doing a "step n"
3115 operation for n > 1 */
3116 if (step_multi && stop_step)
3117 goto done;
3118
3119 target_terminal_ours ();
3120
7abfe014
DJ
3121 /* Set the current source location. This will also happen if we
3122 display the frame below, but the current SAL will be incorrect
3123 during a user hook-stop function. */
3124 if (target_has_stack && !stop_stack_dummy)
3125 set_current_sal_from_frame (get_current_frame (), 1);
3126
5913bcb0
AC
3127 /* Look up the hook_stop and run it (CLI internally handles problem
3128 of stop_command's pre-hook not existing). */
3129 if (stop_command)
3130 catch_errors (hook_stop_stub, stop_command,
3131 "Error while running hook_stop:\n", RETURN_MASK_ALL);
c906108c
SS
3132
3133 if (!target_has_stack)
3134 {
3135
3136 goto done;
3137 }
3138
3139 /* Select innermost stack frame - i.e., current frame is frame 0,
3140 and current location is based on that.
3141 Don't do this on return from a stack dummy routine,
3142 or if the program has exited. */
3143
3144 if (!stop_stack_dummy)
3145 {
0f7d239c 3146 select_frame (get_current_frame ());
c906108c
SS
3147
3148 /* Print current location without a level number, if
c5aa993b
JM
3149 we have changed functions or hit a breakpoint.
3150 Print source line if we have one.
3151 bpstat_print() contains the logic deciding in detail
3152 what to print, based on the event(s) that just occurred. */
c906108c 3153
206415a3 3154 if (stop_print_frame)
c906108c
SS
3155 {
3156 int bpstat_ret;
3157 int source_flag;
917317f4 3158 int do_frame_printing = 1;
c906108c
SS
3159
3160 bpstat_ret = bpstat_print (stop_bpstat);
917317f4
JM
3161 switch (bpstat_ret)
3162 {
3163 case PRINT_UNKNOWN:
aa0cd9c1 3164 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
3165 (or should) carry around the function and does (or
3166 should) use that when doing a frame comparison. */
917317f4 3167 if (stop_step
aa0cd9c1
AC
3168 && frame_id_eq (step_frame_id,
3169 get_frame_id (get_current_frame ()))
917317f4 3170 && step_start_function == find_pc_function (stop_pc))
488f131b 3171 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 3172 else
488f131b 3173 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3174 break;
3175 case PRINT_SRC_AND_LOC:
488f131b 3176 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3177 break;
3178 case PRINT_SRC_ONLY:
c5394b80 3179 source_flag = SRC_LINE;
917317f4
JM
3180 break;
3181 case PRINT_NOTHING:
488f131b 3182 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
3183 do_frame_printing = 0;
3184 break;
3185 default:
e2e0b3e5 3186 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 3187 }
c906108c 3188
9dc5e2a9 3189 if (ui_out_is_mi_like_p (uiout))
39f77062 3190 ui_out_field_int (uiout, "thread-id",
488f131b 3191 pid_to_thread_id (inferior_ptid));
c906108c
SS
3192 /* The behavior of this routine with respect to the source
3193 flag is:
c5394b80
JM
3194 SRC_LINE: Print only source line
3195 LOCATION: Print only location
3196 SRC_AND_LOC: Print location and source line */
917317f4 3197 if (do_frame_printing)
b04f3ab4 3198 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
3199
3200 /* Display the auto-display expressions. */
3201 do_displays ();
3202 }
3203 }
3204
3205 /* Save the function value return registers, if we care.
3206 We might be about to restore their previous contents. */
3207 if (proceed_to_finish)
72cec141
AC
3208 /* NB: The copy goes through to the target picking up the value of
3209 all the registers. */
3210 regcache_cpy (stop_registers, current_regcache);
c906108c
SS
3211
3212 if (stop_stack_dummy)
3213 {
dbe9fe58
AC
3214 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3215 ends with a setting of the current frame, so we can use that
3216 next. */
3217 frame_pop (get_current_frame ());
c906108c 3218 /* Set stop_pc to what it was before we called the function.
c5aa993b
JM
3219 Can't rely on restore_inferior_status because that only gets
3220 called if we don't stop in the called function. */
c906108c 3221 stop_pc = read_pc ();
0f7d239c 3222 select_frame (get_current_frame ());
c906108c
SS
3223 }
3224
c906108c
SS
3225done:
3226 annotate_stopped ();
7a464420 3227 observer_notify_normal_stop (stop_bpstat);
c906108c
SS
3228}
3229
3230static int
96baa820 3231hook_stop_stub (void *cmd)
c906108c 3232{
5913bcb0 3233 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
3234 return (0);
3235}
3236\f
c5aa993b 3237int
96baa820 3238signal_stop_state (int signo)
c906108c
SS
3239{
3240 return signal_stop[signo];
3241}
3242
c5aa993b 3243int
96baa820 3244signal_print_state (int signo)
c906108c
SS
3245{
3246 return signal_print[signo];
3247}
3248
c5aa993b 3249int
96baa820 3250signal_pass_state (int signo)
c906108c
SS
3251{
3252 return signal_program[signo];
3253}
3254
488f131b 3255int
7bda5e4a 3256signal_stop_update (int signo, int state)
d4f3574e
SS
3257{
3258 int ret = signal_stop[signo];
3259 signal_stop[signo] = state;
3260 return ret;
3261}
3262
488f131b 3263int
7bda5e4a 3264signal_print_update (int signo, int state)
d4f3574e
SS
3265{
3266 int ret = signal_print[signo];
3267 signal_print[signo] = state;
3268 return ret;
3269}
3270
488f131b 3271int
7bda5e4a 3272signal_pass_update (int signo, int state)
d4f3574e
SS
3273{
3274 int ret = signal_program[signo];
3275 signal_program[signo] = state;
3276 return ret;
3277}
3278
c906108c 3279static void
96baa820 3280sig_print_header (void)
c906108c 3281{
a3f17187
AC
3282 printf_filtered (_("\
3283Signal Stop\tPrint\tPass to program\tDescription\n"));
c906108c
SS
3284}
3285
3286static void
96baa820 3287sig_print_info (enum target_signal oursig)
c906108c
SS
3288{
3289 char *name = target_signal_to_name (oursig);
3290 int name_padding = 13 - strlen (name);
96baa820 3291
c906108c
SS
3292 if (name_padding <= 0)
3293 name_padding = 0;
3294
3295 printf_filtered ("%s", name);
488f131b 3296 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
3297 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3298 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3299 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3300 printf_filtered ("%s\n", target_signal_to_string (oursig));
3301}
3302
3303/* Specify how various signals in the inferior should be handled. */
3304
3305static void
96baa820 3306handle_command (char *args, int from_tty)
c906108c
SS
3307{
3308 char **argv;
3309 int digits, wordlen;
3310 int sigfirst, signum, siglast;
3311 enum target_signal oursig;
3312 int allsigs;
3313 int nsigs;
3314 unsigned char *sigs;
3315 struct cleanup *old_chain;
3316
3317 if (args == NULL)
3318 {
e2e0b3e5 3319 error_no_arg (_("signal to handle"));
c906108c
SS
3320 }
3321
3322 /* Allocate and zero an array of flags for which signals to handle. */
3323
3324 nsigs = (int) TARGET_SIGNAL_LAST;
3325 sigs = (unsigned char *) alloca (nsigs);
3326 memset (sigs, 0, nsigs);
3327
3328 /* Break the command line up into args. */
3329
3330 argv = buildargv (args);
3331 if (argv == NULL)
3332 {
3333 nomem (0);
3334 }
7a292a7a 3335 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3336
3337 /* Walk through the args, looking for signal oursigs, signal names, and
3338 actions. Signal numbers and signal names may be interspersed with
3339 actions, with the actions being performed for all signals cumulatively
3340 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3341
3342 while (*argv != NULL)
3343 {
3344 wordlen = strlen (*argv);
3345 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3346 {;
3347 }
3348 allsigs = 0;
3349 sigfirst = siglast = -1;
3350
3351 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3352 {
3353 /* Apply action to all signals except those used by the
3354 debugger. Silently skip those. */
3355 allsigs = 1;
3356 sigfirst = 0;
3357 siglast = nsigs - 1;
3358 }
3359 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3360 {
3361 SET_SIGS (nsigs, sigs, signal_stop);
3362 SET_SIGS (nsigs, sigs, signal_print);
3363 }
3364 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3365 {
3366 UNSET_SIGS (nsigs, sigs, signal_program);
3367 }
3368 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3369 {
3370 SET_SIGS (nsigs, sigs, signal_print);
3371 }
3372 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3373 {
3374 SET_SIGS (nsigs, sigs, signal_program);
3375 }
3376 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3377 {
3378 UNSET_SIGS (nsigs, sigs, signal_stop);
3379 }
3380 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3381 {
3382 SET_SIGS (nsigs, sigs, signal_program);
3383 }
3384 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3385 {
3386 UNSET_SIGS (nsigs, sigs, signal_print);
3387 UNSET_SIGS (nsigs, sigs, signal_stop);
3388 }
3389 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3390 {
3391 UNSET_SIGS (nsigs, sigs, signal_program);
3392 }
3393 else if (digits > 0)
3394 {
3395 /* It is numeric. The numeric signal refers to our own
3396 internal signal numbering from target.h, not to host/target
3397 signal number. This is a feature; users really should be
3398 using symbolic names anyway, and the common ones like
3399 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3400
3401 sigfirst = siglast = (int)
3402 target_signal_from_command (atoi (*argv));
3403 if ((*argv)[digits] == '-')
3404 {
3405 siglast = (int)
3406 target_signal_from_command (atoi ((*argv) + digits + 1));
3407 }
3408 if (sigfirst > siglast)
3409 {
3410 /* Bet he didn't figure we'd think of this case... */
3411 signum = sigfirst;
3412 sigfirst = siglast;
3413 siglast = signum;
3414 }
3415 }
3416 else
3417 {
3418 oursig = target_signal_from_name (*argv);
3419 if (oursig != TARGET_SIGNAL_UNKNOWN)
3420 {
3421 sigfirst = siglast = (int) oursig;
3422 }
3423 else
3424 {
3425 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 3426 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
3427 }
3428 }
3429
3430 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 3431 which signals to apply actions to. */
c906108c
SS
3432
3433 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3434 {
3435 switch ((enum target_signal) signum)
3436 {
3437 case TARGET_SIGNAL_TRAP:
3438 case TARGET_SIGNAL_INT:
3439 if (!allsigs && !sigs[signum])
3440 {
3441 if (query ("%s is used by the debugger.\n\
488f131b 3442Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
3443 {
3444 sigs[signum] = 1;
3445 }
3446 else
3447 {
a3f17187 3448 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
3449 gdb_flush (gdb_stdout);
3450 }
3451 }
3452 break;
3453 case TARGET_SIGNAL_0:
3454 case TARGET_SIGNAL_DEFAULT:
3455 case TARGET_SIGNAL_UNKNOWN:
3456 /* Make sure that "all" doesn't print these. */
3457 break;
3458 default:
3459 sigs[signum] = 1;
3460 break;
3461 }
3462 }
3463
3464 argv++;
3465 }
3466
39f77062 3467 target_notice_signals (inferior_ptid);
c906108c
SS
3468
3469 if (from_tty)
3470 {
3471 /* Show the results. */
3472 sig_print_header ();
3473 for (signum = 0; signum < nsigs; signum++)
3474 {
3475 if (sigs[signum])
3476 {
3477 sig_print_info (signum);
3478 }
3479 }
3480 }
3481
3482 do_cleanups (old_chain);
3483}
3484
3485static void
96baa820 3486xdb_handle_command (char *args, int from_tty)
c906108c
SS
3487{
3488 char **argv;
3489 struct cleanup *old_chain;
3490
3491 /* Break the command line up into args. */
3492
3493 argv = buildargv (args);
3494 if (argv == NULL)
3495 {
3496 nomem (0);
3497 }
7a292a7a 3498 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3499 if (argv[1] != (char *) NULL)
3500 {
3501 char *argBuf;
3502 int bufLen;
3503
3504 bufLen = strlen (argv[0]) + 20;
3505 argBuf = (char *) xmalloc (bufLen);
3506 if (argBuf)
3507 {
3508 int validFlag = 1;
3509 enum target_signal oursig;
3510
3511 oursig = target_signal_from_name (argv[0]);
3512 memset (argBuf, 0, bufLen);
3513 if (strcmp (argv[1], "Q") == 0)
3514 sprintf (argBuf, "%s %s", argv[0], "noprint");
3515 else
3516 {
3517 if (strcmp (argv[1], "s") == 0)
3518 {
3519 if (!signal_stop[oursig])
3520 sprintf (argBuf, "%s %s", argv[0], "stop");
3521 else
3522 sprintf (argBuf, "%s %s", argv[0], "nostop");
3523 }
3524 else if (strcmp (argv[1], "i") == 0)
3525 {
3526 if (!signal_program[oursig])
3527 sprintf (argBuf, "%s %s", argv[0], "pass");
3528 else
3529 sprintf (argBuf, "%s %s", argv[0], "nopass");
3530 }
3531 else if (strcmp (argv[1], "r") == 0)
3532 {
3533 if (!signal_print[oursig])
3534 sprintf (argBuf, "%s %s", argv[0], "print");
3535 else
3536 sprintf (argBuf, "%s %s", argv[0], "noprint");
3537 }
3538 else
3539 validFlag = 0;
3540 }
3541 if (validFlag)
3542 handle_command (argBuf, from_tty);
3543 else
a3f17187 3544 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 3545 if (argBuf)
b8c9b27d 3546 xfree (argBuf);
c906108c
SS
3547 }
3548 }
3549 do_cleanups (old_chain);
3550}
3551
3552/* Print current contents of the tables set by the handle command.
3553 It is possible we should just be printing signals actually used
3554 by the current target (but for things to work right when switching
3555 targets, all signals should be in the signal tables). */
3556
3557static void
96baa820 3558signals_info (char *signum_exp, int from_tty)
c906108c
SS
3559{
3560 enum target_signal oursig;
3561 sig_print_header ();
3562
3563 if (signum_exp)
3564 {
3565 /* First see if this is a symbol name. */
3566 oursig = target_signal_from_name (signum_exp);
3567 if (oursig == TARGET_SIGNAL_UNKNOWN)
3568 {
3569 /* No, try numeric. */
3570 oursig =
bb518678 3571 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
3572 }
3573 sig_print_info (oursig);
3574 return;
3575 }
3576
3577 printf_filtered ("\n");
3578 /* These ugly casts brought to you by the native VAX compiler. */
3579 for (oursig = TARGET_SIGNAL_FIRST;
3580 (int) oursig < (int) TARGET_SIGNAL_LAST;
3581 oursig = (enum target_signal) ((int) oursig + 1))
3582 {
3583 QUIT;
3584
3585 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 3586 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
3587 sig_print_info (oursig);
3588 }
3589
a3f17187 3590 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
c906108c
SS
3591}
3592\f
7a292a7a
SS
3593struct inferior_status
3594{
3595 enum target_signal stop_signal;
3596 CORE_ADDR stop_pc;
3597 bpstat stop_bpstat;
3598 int stop_step;
3599 int stop_stack_dummy;
3600 int stopped_by_random_signal;
3601 int trap_expected;
3602 CORE_ADDR step_range_start;
3603 CORE_ADDR step_range_end;
aa0cd9c1 3604 struct frame_id step_frame_id;
5fbbeb29 3605 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
3606 CORE_ADDR step_resume_break_address;
3607 int stop_after_trap;
c0236d92 3608 int stop_soon;
72cec141 3609 struct regcache *stop_registers;
7a292a7a
SS
3610
3611 /* These are here because if call_function_by_hand has written some
3612 registers and then decides to call error(), we better not have changed
3613 any registers. */
72cec141 3614 struct regcache *registers;
7a292a7a 3615
101dcfbe
AC
3616 /* A frame unique identifier. */
3617 struct frame_id selected_frame_id;
3618
7a292a7a
SS
3619 int breakpoint_proceeded;
3620 int restore_stack_info;
3621 int proceed_to_finish;
3622};
3623
7a292a7a 3624void
96baa820
JM
3625write_inferior_status_register (struct inferior_status *inf_status, int regno,
3626 LONGEST val)
7a292a7a 3627{
3acba339 3628 int size = register_size (current_gdbarch, regno);
7a292a7a
SS
3629 void *buf = alloca (size);
3630 store_signed_integer (buf, size, val);
0818c12a 3631 regcache_raw_write (inf_status->registers, regno, buf);
7a292a7a
SS
3632}
3633
c906108c
SS
3634/* Save all of the information associated with the inferior<==>gdb
3635 connection. INF_STATUS is a pointer to a "struct inferior_status"
3636 (defined in inferior.h). */
3637
7a292a7a 3638struct inferior_status *
96baa820 3639save_inferior_status (int restore_stack_info)
c906108c 3640{
72cec141 3641 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
7a292a7a 3642
c906108c
SS
3643 inf_status->stop_signal = stop_signal;
3644 inf_status->stop_pc = stop_pc;
3645 inf_status->stop_step = stop_step;
3646 inf_status->stop_stack_dummy = stop_stack_dummy;
3647 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3648 inf_status->trap_expected = trap_expected;
3649 inf_status->step_range_start = step_range_start;
3650 inf_status->step_range_end = step_range_end;
aa0cd9c1 3651 inf_status->step_frame_id = step_frame_id;
c906108c
SS
3652 inf_status->step_over_calls = step_over_calls;
3653 inf_status->stop_after_trap = stop_after_trap;
c0236d92 3654 inf_status->stop_soon = stop_soon;
c906108c
SS
3655 /* Save original bpstat chain here; replace it with copy of chain.
3656 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
3657 hand them back the original chain when restore_inferior_status is
3658 called. */
c906108c
SS
3659 inf_status->stop_bpstat = stop_bpstat;
3660 stop_bpstat = bpstat_copy (stop_bpstat);
3661 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3662 inf_status->restore_stack_info = restore_stack_info;
3663 inf_status->proceed_to_finish = proceed_to_finish;
c5aa993b 3664
72cec141 3665 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
c906108c 3666
72cec141 3667 inf_status->registers = regcache_dup (current_regcache);
c906108c 3668
206415a3 3669 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
7a292a7a 3670 return inf_status;
c906108c
SS
3671}
3672
c906108c 3673static int
96baa820 3674restore_selected_frame (void *args)
c906108c 3675{
488f131b 3676 struct frame_id *fid = (struct frame_id *) args;
c906108c 3677 struct frame_info *frame;
c906108c 3678
101dcfbe 3679 frame = frame_find_by_id (*fid);
c906108c 3680
aa0cd9c1
AC
3681 /* If inf_status->selected_frame_id is NULL, there was no previously
3682 selected frame. */
101dcfbe 3683 if (frame == NULL)
c906108c 3684 {
8a3fe4f8 3685 warning (_("Unable to restore previously selected frame."));
c906108c
SS
3686 return 0;
3687 }
3688
0f7d239c 3689 select_frame (frame);
c906108c
SS
3690
3691 return (1);
3692}
3693
3694void
96baa820 3695restore_inferior_status (struct inferior_status *inf_status)
c906108c
SS
3696{
3697 stop_signal = inf_status->stop_signal;
3698 stop_pc = inf_status->stop_pc;
3699 stop_step = inf_status->stop_step;
3700 stop_stack_dummy = inf_status->stop_stack_dummy;
3701 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3702 trap_expected = inf_status->trap_expected;
3703 step_range_start = inf_status->step_range_start;
3704 step_range_end = inf_status->step_range_end;
aa0cd9c1 3705 step_frame_id = inf_status->step_frame_id;
c906108c
SS
3706 step_over_calls = inf_status->step_over_calls;
3707 stop_after_trap = inf_status->stop_after_trap;
c0236d92 3708 stop_soon = inf_status->stop_soon;
c906108c
SS
3709 bpstat_clear (&stop_bpstat);
3710 stop_bpstat = inf_status->stop_bpstat;
3711 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3712 proceed_to_finish = inf_status->proceed_to_finish;
3713
72cec141
AC
3714 /* FIXME: Is the restore of stop_registers always needed. */
3715 regcache_xfree (stop_registers);
3716 stop_registers = inf_status->stop_registers;
c906108c
SS
3717
3718 /* The inferior can be gone if the user types "print exit(0)"
3719 (and perhaps other times). */
3720 if (target_has_execution)
72cec141
AC
3721 /* NB: The register write goes through to the target. */
3722 regcache_cpy (current_regcache, inf_status->registers);
3723 regcache_xfree (inf_status->registers);
c906108c 3724
c906108c
SS
3725 /* FIXME: If we are being called after stopping in a function which
3726 is called from gdb, we should not be trying to restore the
3727 selected frame; it just prints a spurious error message (The
3728 message is useful, however, in detecting bugs in gdb (like if gdb
3729 clobbers the stack)). In fact, should we be restoring the
3730 inferior status at all in that case? . */
3731
3732 if (target_has_stack && inf_status->restore_stack_info)
3733 {
c906108c 3734 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
3735 walking the stack might encounter a garbage pointer and
3736 error() trying to dereference it. */
488f131b
JB
3737 if (catch_errors
3738 (restore_selected_frame, &inf_status->selected_frame_id,
3739 "Unable to restore previously selected frame:\n",
3740 RETURN_MASK_ERROR) == 0)
c906108c
SS
3741 /* Error in restoring the selected frame. Select the innermost
3742 frame. */
0f7d239c 3743 select_frame (get_current_frame ());
c906108c
SS
3744
3745 }
c906108c 3746
72cec141 3747 xfree (inf_status);
7a292a7a 3748}
c906108c 3749
74b7792f
AC
3750static void
3751do_restore_inferior_status_cleanup (void *sts)
3752{
3753 restore_inferior_status (sts);
3754}
3755
3756struct cleanup *
3757make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3758{
3759 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3760}
3761
c906108c 3762void
96baa820 3763discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
3764{
3765 /* See save_inferior_status for info on stop_bpstat. */
3766 bpstat_clear (&inf_status->stop_bpstat);
72cec141
AC
3767 regcache_xfree (inf_status->registers);
3768 regcache_xfree (inf_status->stop_registers);
3769 xfree (inf_status);
7a292a7a
SS
3770}
3771
47932f85
DJ
3772int
3773inferior_has_forked (int pid, int *child_pid)
3774{
3775 struct target_waitstatus last;
3776 ptid_t last_ptid;
3777
3778 get_last_target_status (&last_ptid, &last);
3779
3780 if (last.kind != TARGET_WAITKIND_FORKED)
3781 return 0;
3782
3783 if (ptid_get_pid (last_ptid) != pid)
3784 return 0;
3785
3786 *child_pid = last.value.related_pid;
3787 return 1;
3788}
3789
3790int
3791inferior_has_vforked (int pid, int *child_pid)
3792{
3793 struct target_waitstatus last;
3794 ptid_t last_ptid;
3795
3796 get_last_target_status (&last_ptid, &last);
3797
3798 if (last.kind != TARGET_WAITKIND_VFORKED)
3799 return 0;
3800
3801 if (ptid_get_pid (last_ptid) != pid)
3802 return 0;
3803
3804 *child_pid = last.value.related_pid;
3805 return 1;
3806}
3807
3808int
3809inferior_has_execd (int pid, char **execd_pathname)
3810{
3811 struct target_waitstatus last;
3812 ptid_t last_ptid;
3813
3814 get_last_target_status (&last_ptid, &last);
3815
3816 if (last.kind != TARGET_WAITKIND_EXECD)
3817 return 0;
3818
3819 if (ptid_get_pid (last_ptid) != pid)
3820 return 0;
3821
3822 *execd_pathname = xstrdup (last.value.execd_pathname);
3823 return 1;
3824}
3825
ca6724c1
KB
3826/* Oft used ptids */
3827ptid_t null_ptid;
3828ptid_t minus_one_ptid;
3829
3830/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 3831
ca6724c1
KB
3832ptid_t
3833ptid_build (int pid, long lwp, long tid)
3834{
3835 ptid_t ptid;
3836
3837 ptid.pid = pid;
3838 ptid.lwp = lwp;
3839 ptid.tid = tid;
3840 return ptid;
3841}
3842
3843/* Create a ptid from just a pid. */
3844
3845ptid_t
3846pid_to_ptid (int pid)
3847{
3848 return ptid_build (pid, 0, 0);
3849}
3850
3851/* Fetch the pid (process id) component from a ptid. */
3852
3853int
3854ptid_get_pid (ptid_t ptid)
3855{
3856 return ptid.pid;
3857}
3858
3859/* Fetch the lwp (lightweight process) component from a ptid. */
3860
3861long
3862ptid_get_lwp (ptid_t ptid)
3863{
3864 return ptid.lwp;
3865}
3866
3867/* Fetch the tid (thread id) component from a ptid. */
3868
3869long
3870ptid_get_tid (ptid_t ptid)
3871{
3872 return ptid.tid;
3873}
3874
3875/* ptid_equal() is used to test equality of two ptids. */
3876
3877int
3878ptid_equal (ptid_t ptid1, ptid_t ptid2)
3879{
3880 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 3881 && ptid1.tid == ptid2.tid);
ca6724c1
KB
3882}
3883
3884/* restore_inferior_ptid() will be used by the cleanup machinery
3885 to restore the inferior_ptid value saved in a call to
3886 save_inferior_ptid(). */
ce696e05
KB
3887
3888static void
3889restore_inferior_ptid (void *arg)
3890{
3891 ptid_t *saved_ptid_ptr = arg;
3892 inferior_ptid = *saved_ptid_ptr;
3893 xfree (arg);
3894}
3895
3896/* Save the value of inferior_ptid so that it may be restored by a
3897 later call to do_cleanups(). Returns the struct cleanup pointer
3898 needed for later doing the cleanup. */
3899
3900struct cleanup *
3901save_inferior_ptid (void)
3902{
3903 ptid_t *saved_ptid_ptr;
3904
3905 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3906 *saved_ptid_ptr = inferior_ptid;
3907 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3908}
c5aa993b 3909\f
488f131b 3910
7a292a7a 3911static void
96baa820 3912build_infrun (void)
7a292a7a 3913{
72cec141 3914 stop_registers = regcache_xmalloc (current_gdbarch);
7a292a7a 3915}
c906108c 3916
c906108c 3917void
96baa820 3918_initialize_infrun (void)
c906108c 3919{
52f0bd74
AC
3920 int i;
3921 int numsigs;
c906108c
SS
3922 struct cmd_list_element *c;
3923
046a4708
AC
3924 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3925 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
0f71a2f6 3926
1bedd215
AC
3927 add_info ("signals", signals_info, _("\
3928What debugger does when program gets various signals.\n\
3929Specify a signal as argument to print info on that signal only."));
c906108c
SS
3930 add_info_alias ("handle", "signals", 0);
3931
1bedd215
AC
3932 add_com ("handle", class_run, handle_command, _("\
3933Specify how to handle a signal.\n\
c906108c
SS
3934Args are signals and actions to apply to those signals.\n\
3935Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3936from 1-15 are allowed for compatibility with old versions of GDB.\n\
3937Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3938The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
3939used by the debugger, typically SIGTRAP and SIGINT.\n\
3940Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
3941\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3942Stop means reenter debugger if this signal happens (implies print).\n\
3943Print means print a message if this signal happens.\n\
3944Pass means let program see this signal; otherwise program doesn't know.\n\
3945Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 3946Pass and Stop may be combined."));
c906108c
SS
3947 if (xdb_commands)
3948 {
1bedd215
AC
3949 add_com ("lz", class_info, signals_info, _("\
3950What debugger does when program gets various signals.\n\
3951Specify a signal as argument to print info on that signal only."));
3952 add_com ("z", class_run, xdb_handle_command, _("\
3953Specify how to handle a signal.\n\
c906108c
SS
3954Args are signals and actions to apply to those signals.\n\
3955Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3956from 1-15 are allowed for compatibility with old versions of GDB.\n\
3957Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3958The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
3959used by the debugger, typically SIGTRAP and SIGINT.\n\
3960Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
3961\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3962nopass), \"Q\" (noprint)\n\
3963Stop means reenter debugger if this signal happens (implies print).\n\
3964Print means print a message if this signal happens.\n\
3965Pass means let program see this signal; otherwise program doesn't know.\n\
3966Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 3967Pass and Stop may be combined."));
c906108c
SS
3968 }
3969
3970 if (!dbx_commands)
1a966eab
AC
3971 stop_command = add_cmd ("stop", class_obscure,
3972 not_just_help_class_command, _("\
3973There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 3974This allows you to set a list of commands to be run each time execution\n\
1a966eab 3975of the program stops."), &cmdlist);
c906108c 3976
85c07804
AC
3977 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
3978Set inferior debugging."), _("\
3979Show inferior debugging."), _("\
3980When non-zero, inferior specific debugging is enabled."),
3981 NULL,
920d2a44 3982 show_debug_infrun,
85c07804 3983 &setdebuglist, &showdebuglist);
527159b7 3984
c906108c 3985 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 3986 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
3987 signal_print = (unsigned char *)
3988 xmalloc (sizeof (signal_print[0]) * numsigs);
3989 signal_program = (unsigned char *)
3990 xmalloc (sizeof (signal_program[0]) * numsigs);
3991 for (i = 0; i < numsigs; i++)
3992 {
3993 signal_stop[i] = 1;
3994 signal_print[i] = 1;
3995 signal_program[i] = 1;
3996 }
3997
3998 /* Signals caused by debugger's own actions
3999 should not be given to the program afterwards. */
4000 signal_program[TARGET_SIGNAL_TRAP] = 0;
4001 signal_program[TARGET_SIGNAL_INT] = 0;
4002
4003 /* Signals that are not errors should not normally enter the debugger. */
4004 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4005 signal_print[TARGET_SIGNAL_ALRM] = 0;
4006 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4007 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4008 signal_stop[TARGET_SIGNAL_PROF] = 0;
4009 signal_print[TARGET_SIGNAL_PROF] = 0;
4010 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4011 signal_print[TARGET_SIGNAL_CHLD] = 0;
4012 signal_stop[TARGET_SIGNAL_IO] = 0;
4013 signal_print[TARGET_SIGNAL_IO] = 0;
4014 signal_stop[TARGET_SIGNAL_POLL] = 0;
4015 signal_print[TARGET_SIGNAL_POLL] = 0;
4016 signal_stop[TARGET_SIGNAL_URG] = 0;
4017 signal_print[TARGET_SIGNAL_URG] = 0;
4018 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4019 signal_print[TARGET_SIGNAL_WINCH] = 0;
4020
cd0fc7c3
SS
4021 /* These signals are used internally by user-level thread
4022 implementations. (See signal(5) on Solaris.) Like the above
4023 signals, a healthy program receives and handles them as part of
4024 its normal operation. */
4025 signal_stop[TARGET_SIGNAL_LWP] = 0;
4026 signal_print[TARGET_SIGNAL_LWP] = 0;
4027 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4028 signal_print[TARGET_SIGNAL_WAITING] = 0;
4029 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4030 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4031
85c07804
AC
4032 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4033 &stop_on_solib_events, _("\
4034Set stopping for shared library events."), _("\
4035Show stopping for shared library events."), _("\
c906108c
SS
4036If nonzero, gdb will give control to the user when the dynamic linker\n\
4037notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
4038to the user would be loading/unloading of a new library."),
4039 NULL,
920d2a44 4040 show_stop_on_solib_events,
85c07804 4041 &setlist, &showlist);
c906108c 4042
7ab04401
AC
4043 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4044 follow_fork_mode_kind_names,
4045 &follow_fork_mode_string, _("\
4046Set debugger response to a program call of fork or vfork."), _("\
4047Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
4048A fork or vfork creates a new process. follow-fork-mode can be:\n\
4049 parent - the original process is debugged after a fork\n\
4050 child - the new process is debugged after a fork\n\
ea1dd7bc 4051The unfollowed process will continue to run.\n\
7ab04401
AC
4052By default, the debugger will follow the parent process."),
4053 NULL,
920d2a44 4054 show_follow_fork_mode_string,
7ab04401
AC
4055 &setlist, &showlist);
4056
4057 add_setshow_enum_cmd ("scheduler-locking", class_run,
4058 scheduler_enums, &scheduler_mode, _("\
4059Set mode for locking scheduler during execution."), _("\
4060Show mode for locking scheduler during execution."), _("\
c906108c
SS
4061off == no locking (threads may preempt at any time)\n\
4062on == full locking (no thread except the current thread may run)\n\
4063step == scheduler locked during every single-step operation.\n\
4064 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
4065 Other threads may run while stepping over a function call ('next')."),
4066 set_schedlock_func, /* traps on target vector */
920d2a44 4067 show_scheduler_mode,
7ab04401 4068 &setlist, &showlist);
5fbbeb29 4069
5bf193a2
AC
4070 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4071Set mode of the step operation."), _("\
4072Show mode of the step operation."), _("\
4073When set, doing a step over a function without debug line information\n\
4074will stop at the first instruction of that function. Otherwise, the\n\
4075function is skipped and the step command stops at a different source line."),
4076 NULL,
920d2a44 4077 show_step_stop_if_no_debug,
5bf193a2 4078 &setlist, &showlist);
ca6724c1
KB
4079
4080 /* ptid initializations */
4081 null_ptid = ptid_build (0, 0, 0);
4082 minus_one_ptid = ptid_build (-1, 0, 0);
4083 inferior_ptid = null_ptid;
4084 target_last_wait_ptid = minus_one_ptid;
c906108c 4085}
This page took 0.856796 seconds and 4 git commands to generate.