Don't show "display"s twice in MI
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
42a4f53d 4 Copyright (C) 1986-2019 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
0747795c 28#include "common/gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
76727919 41#include "observable.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
ff862be4 63#include "solist.h"
372316f1 64#include "event-loop.h"
243a9253 65#include "thread-fsm.h"
8d297bbf 66#include "common/enum-flags.h"
5ed8105e
PA
67#include "progspace-and-thread.h"
68#include "common/gdb_optional.h"
46a62268 69#include "arch-utils.h"
4c41382a 70#include "common/scope-exit.h"
9799571e 71#include "common/forward-scope-exit.h"
c906108c
SS
72
73/* Prototypes for local functions */
74
2ea28649 75static void sig_print_info (enum gdb_signal);
c906108c 76
96baa820 77static void sig_print_header (void);
c906108c 78
4ef3f3be 79static int follow_fork (void);
96baa820 80
d83ad864
DB
81static int follow_fork_inferior (int follow_child, int detach_fork);
82
83static void follow_inferior_reset_breakpoints (void);
84
a289b8f6
JK
85static int currently_stepping (struct thread_info *tp);
86
e58b0e63
PA
87void nullify_last_target_wait_ptid (void);
88
2c03e5be 89static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
90
91static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
92
2484c66b
UW
93static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
94
8550d3b3
YQ
95static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
96
aff4e175
AB
97static void resume (gdb_signal sig);
98
372316f1
PA
99/* Asynchronous signal handler registered as event loop source for
100 when we have pending events ready to be passed to the core. */
101static struct async_event_handler *infrun_async_inferior_event_token;
102
103/* Stores whether infrun_async was previously enabled or disabled.
104 Starts off as -1, indicating "never enabled/disabled". */
105static int infrun_is_async = -1;
106
107/* See infrun.h. */
108
109void
110infrun_async (int enable)
111{
112 if (infrun_is_async != enable)
113 {
114 infrun_is_async = enable;
115
116 if (debug_infrun)
117 fprintf_unfiltered (gdb_stdlog,
118 "infrun: infrun_async(%d)\n",
119 enable);
120
121 if (enable)
122 mark_async_event_handler (infrun_async_inferior_event_token);
123 else
124 clear_async_event_handler (infrun_async_inferior_event_token);
125 }
126}
127
0b333c5e
PA
128/* See infrun.h. */
129
130void
131mark_infrun_async_event_handler (void)
132{
133 mark_async_event_handler (infrun_async_inferior_event_token);
134}
135
5fbbeb29
CF
136/* When set, stop the 'step' command if we enter a function which has
137 no line number information. The normal behavior is that we step
138 over such function. */
139int step_stop_if_no_debug = 0;
920d2a44
AC
140static void
141show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
142 struct cmd_list_element *c, const char *value)
143{
144 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
145}
5fbbeb29 146
b9f437de
PA
147/* proceed and normal_stop use this to notify the user when the
148 inferior stopped in a different thread than it had been running
149 in. */
96baa820 150
39f77062 151static ptid_t previous_inferior_ptid;
7a292a7a 152
07107ca6
LM
153/* If set (default for legacy reasons), when following a fork, GDB
154 will detach from one of the fork branches, child or parent.
155 Exactly which branch is detached depends on 'set follow-fork-mode'
156 setting. */
157
158static int detach_fork = 1;
6c95b8df 159
237fc4c9
PA
160int debug_displaced = 0;
161static void
162show_debug_displaced (struct ui_file *file, int from_tty,
163 struct cmd_list_element *c, const char *value)
164{
165 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
166}
167
ccce17b0 168unsigned int debug_infrun = 0;
920d2a44
AC
169static void
170show_debug_infrun (struct ui_file *file, int from_tty,
171 struct cmd_list_element *c, const char *value)
172{
173 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
174}
527159b7 175
03583c20
UW
176
177/* Support for disabling address space randomization. */
178
179int disable_randomization = 1;
180
181static void
182show_disable_randomization (struct ui_file *file, int from_tty,
183 struct cmd_list_element *c, const char *value)
184{
185 if (target_supports_disable_randomization ())
186 fprintf_filtered (file,
187 _("Disabling randomization of debuggee's "
188 "virtual address space is %s.\n"),
189 value);
190 else
191 fputs_filtered (_("Disabling randomization of debuggee's "
192 "virtual address space is unsupported on\n"
193 "this platform.\n"), file);
194}
195
196static void
eb4c3f4a 197set_disable_randomization (const char *args, int from_tty,
03583c20
UW
198 struct cmd_list_element *c)
199{
200 if (!target_supports_disable_randomization ())
201 error (_("Disabling randomization of debuggee's "
202 "virtual address space is unsupported on\n"
203 "this platform."));
204}
205
d32dc48e
PA
206/* User interface for non-stop mode. */
207
208int non_stop = 0;
209static int non_stop_1 = 0;
210
211static void
eb4c3f4a 212set_non_stop (const char *args, int from_tty,
d32dc48e
PA
213 struct cmd_list_element *c)
214{
215 if (target_has_execution)
216 {
217 non_stop_1 = non_stop;
218 error (_("Cannot change this setting while the inferior is running."));
219 }
220
221 non_stop = non_stop_1;
222}
223
224static void
225show_non_stop (struct ui_file *file, int from_tty,
226 struct cmd_list_element *c, const char *value)
227{
228 fprintf_filtered (file,
229 _("Controlling the inferior in non-stop mode is %s.\n"),
230 value);
231}
232
d914c394
SS
233/* "Observer mode" is somewhat like a more extreme version of
234 non-stop, in which all GDB operations that might affect the
235 target's execution have been disabled. */
236
d914c394
SS
237int observer_mode = 0;
238static int observer_mode_1 = 0;
239
240static void
eb4c3f4a 241set_observer_mode (const char *args, int from_tty,
d914c394
SS
242 struct cmd_list_element *c)
243{
d914c394
SS
244 if (target_has_execution)
245 {
246 observer_mode_1 = observer_mode;
247 error (_("Cannot change this setting while the inferior is running."));
248 }
249
250 observer_mode = observer_mode_1;
251
252 may_write_registers = !observer_mode;
253 may_write_memory = !observer_mode;
254 may_insert_breakpoints = !observer_mode;
255 may_insert_tracepoints = !observer_mode;
256 /* We can insert fast tracepoints in or out of observer mode,
257 but enable them if we're going into this mode. */
258 if (observer_mode)
259 may_insert_fast_tracepoints = 1;
260 may_stop = !observer_mode;
261 update_target_permissions ();
262
263 /* Going *into* observer mode we must force non-stop, then
264 going out we leave it that way. */
265 if (observer_mode)
266 {
d914c394
SS
267 pagination_enabled = 0;
268 non_stop = non_stop_1 = 1;
269 }
270
271 if (from_tty)
272 printf_filtered (_("Observer mode is now %s.\n"),
273 (observer_mode ? "on" : "off"));
274}
275
276static void
277show_observer_mode (struct ui_file *file, int from_tty,
278 struct cmd_list_element *c, const char *value)
279{
280 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
281}
282
283/* This updates the value of observer mode based on changes in
284 permissions. Note that we are deliberately ignoring the values of
285 may-write-registers and may-write-memory, since the user may have
286 reason to enable these during a session, for instance to turn on a
287 debugging-related global. */
288
289void
290update_observer_mode (void)
291{
292 int newval;
293
294 newval = (!may_insert_breakpoints
295 && !may_insert_tracepoints
296 && may_insert_fast_tracepoints
297 && !may_stop
298 && non_stop);
299
300 /* Let the user know if things change. */
301 if (newval != observer_mode)
302 printf_filtered (_("Observer mode is now %s.\n"),
303 (newval ? "on" : "off"));
304
305 observer_mode = observer_mode_1 = newval;
306}
c2c6d25f 307
c906108c
SS
308/* Tables of how to react to signals; the user sets them. */
309
adc6a863
PA
310static unsigned char signal_stop[GDB_SIGNAL_LAST];
311static unsigned char signal_print[GDB_SIGNAL_LAST];
312static unsigned char signal_program[GDB_SIGNAL_LAST];
c906108c 313
ab04a2af
TT
314/* Table of signals that are registered with "catch signal". A
315 non-zero entry indicates that the signal is caught by some "catch
adc6a863
PA
316 signal" command. */
317static unsigned char signal_catch[GDB_SIGNAL_LAST];
ab04a2af 318
2455069d
UW
319/* Table of signals that the target may silently handle.
320 This is automatically determined from the flags above,
321 and simply cached here. */
adc6a863 322static unsigned char signal_pass[GDB_SIGNAL_LAST];
2455069d 323
c906108c
SS
324#define SET_SIGS(nsigs,sigs,flags) \
325 do { \
326 int signum = (nsigs); \
327 while (signum-- > 0) \
328 if ((sigs)[signum]) \
329 (flags)[signum] = 1; \
330 } while (0)
331
332#define UNSET_SIGS(nsigs,sigs,flags) \
333 do { \
334 int signum = (nsigs); \
335 while (signum-- > 0) \
336 if ((sigs)[signum]) \
337 (flags)[signum] = 0; \
338 } while (0)
339
9b224c5e
PA
340/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
341 this function is to avoid exporting `signal_program'. */
342
343void
344update_signals_program_target (void)
345{
adc6a863 346 target_program_signals (signal_program);
9b224c5e
PA
347}
348
1777feb0 349/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 350
edb3359d 351#define RESUME_ALL minus_one_ptid
c906108c
SS
352
353/* Command list pointer for the "stop" placeholder. */
354
355static struct cmd_list_element *stop_command;
356
c906108c
SS
357/* Nonzero if we want to give control to the user when we're notified
358 of shared library events by the dynamic linker. */
628fe4e4 359int stop_on_solib_events;
f9e14852
GB
360
361/* Enable or disable optional shared library event breakpoints
362 as appropriate when the above flag is changed. */
363
364static void
eb4c3f4a
TT
365set_stop_on_solib_events (const char *args,
366 int from_tty, struct cmd_list_element *c)
f9e14852
GB
367{
368 update_solib_breakpoints ();
369}
370
920d2a44
AC
371static void
372show_stop_on_solib_events (struct ui_file *file, int from_tty,
373 struct cmd_list_element *c, const char *value)
374{
375 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
376 value);
377}
c906108c 378
c906108c
SS
379/* Nonzero after stop if current stack frame should be printed. */
380
381static int stop_print_frame;
382
e02bc4cc 383/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
384 returned by target_wait()/deprecated_target_wait_hook(). This
385 information is returned by get_last_target_status(). */
39f77062 386static ptid_t target_last_wait_ptid;
e02bc4cc
DS
387static struct target_waitstatus target_last_waitstatus;
388
4e1c45ea 389void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 390
53904c9e
AC
391static const char follow_fork_mode_child[] = "child";
392static const char follow_fork_mode_parent[] = "parent";
393
40478521 394static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
395 follow_fork_mode_child,
396 follow_fork_mode_parent,
397 NULL
ef346e04 398};
c906108c 399
53904c9e 400static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
401static void
402show_follow_fork_mode_string (struct ui_file *file, int from_tty,
403 struct cmd_list_element *c, const char *value)
404{
3e43a32a
MS
405 fprintf_filtered (file,
406 _("Debugger response to a program "
407 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
408 value);
409}
c906108c
SS
410\f
411
d83ad864
DB
412/* Handle changes to the inferior list based on the type of fork,
413 which process is being followed, and whether the other process
414 should be detached. On entry inferior_ptid must be the ptid of
415 the fork parent. At return inferior_ptid is the ptid of the
416 followed inferior. */
417
418static int
419follow_fork_inferior (int follow_child, int detach_fork)
420{
421 int has_vforked;
79639e11 422 ptid_t parent_ptid, child_ptid;
d83ad864
DB
423
424 has_vforked = (inferior_thread ()->pending_follow.kind
425 == TARGET_WAITKIND_VFORKED);
79639e11
PA
426 parent_ptid = inferior_ptid;
427 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
428
429 if (has_vforked
430 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 431 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
432 && !(follow_child || detach_fork || sched_multi))
433 {
434 /* The parent stays blocked inside the vfork syscall until the
435 child execs or exits. If we don't let the child run, then
436 the parent stays blocked. If we're telling the parent to run
437 in the foreground, the user will not be able to ctrl-c to get
438 back the terminal, effectively hanging the debug session. */
439 fprintf_filtered (gdb_stderr, _("\
440Can not resume the parent process over vfork in the foreground while\n\
441holding the child stopped. Try \"set detach-on-fork\" or \
442\"set schedule-multiple\".\n"));
443 /* FIXME output string > 80 columns. */
444 return 1;
445 }
446
447 if (!follow_child)
448 {
449 /* Detach new forked process? */
450 if (detach_fork)
451 {
d83ad864
DB
452 /* Before detaching from the child, remove all breakpoints
453 from it. If we forked, then this has already been taken
454 care of by infrun.c. If we vforked however, any
455 breakpoint inserted in the parent is visible in the
456 child, even those added while stopped in a vfork
457 catchpoint. This will remove the breakpoints from the
458 parent also, but they'll be reinserted below. */
459 if (has_vforked)
460 {
461 /* Keep breakpoints list in sync. */
00431a78 462 remove_breakpoints_inf (current_inferior ());
d83ad864
DB
463 }
464
f67c0c91 465 if (print_inferior_events)
d83ad864 466 {
8dd06f7a 467 /* Ensure that we have a process ptid. */
e99b03dc 468 ptid_t process_ptid = ptid_t (child_ptid.pid ());
8dd06f7a 469
223ffa71 470 target_terminal::ours_for_output ();
d83ad864 471 fprintf_filtered (gdb_stdlog,
f67c0c91 472 _("[Detaching after %s from child %s]\n"),
6f259a23 473 has_vforked ? "vfork" : "fork",
a068643d 474 target_pid_to_str (process_ptid).c_str ());
d83ad864
DB
475 }
476 }
477 else
478 {
479 struct inferior *parent_inf, *child_inf;
d83ad864
DB
480
481 /* Add process to GDB's tables. */
e99b03dc 482 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
483
484 parent_inf = current_inferior ();
485 child_inf->attach_flag = parent_inf->attach_flag;
486 copy_terminal_info (child_inf, parent_inf);
487 child_inf->gdbarch = parent_inf->gdbarch;
488 copy_inferior_target_desc_info (child_inf, parent_inf);
489
5ed8105e 490 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 491
79639e11 492 inferior_ptid = child_ptid;
f67c0c91 493 add_thread_silent (inferior_ptid);
2a00d7ce 494 set_current_inferior (child_inf);
d83ad864
DB
495 child_inf->symfile_flags = SYMFILE_NO_READ;
496
497 /* If this is a vfork child, then the address-space is
498 shared with the parent. */
499 if (has_vforked)
500 {
501 child_inf->pspace = parent_inf->pspace;
502 child_inf->aspace = parent_inf->aspace;
503
504 /* The parent will be frozen until the child is done
505 with the shared region. Keep track of the
506 parent. */
507 child_inf->vfork_parent = parent_inf;
508 child_inf->pending_detach = 0;
509 parent_inf->vfork_child = child_inf;
510 parent_inf->pending_detach = 0;
511 }
512 else
513 {
514 child_inf->aspace = new_address_space ();
564b1e3f 515 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
516 child_inf->removable = 1;
517 set_current_program_space (child_inf->pspace);
518 clone_program_space (child_inf->pspace, parent_inf->pspace);
519
520 /* Let the shared library layer (e.g., solib-svr4) learn
521 about this new process, relocate the cloned exec, pull
522 in shared libraries, and install the solib event
523 breakpoint. If a "cloned-VM" event was propagated
524 better throughout the core, this wouldn't be
525 required. */
526 solib_create_inferior_hook (0);
527 }
d83ad864
DB
528 }
529
530 if (has_vforked)
531 {
532 struct inferior *parent_inf;
533
534 parent_inf = current_inferior ();
535
536 /* If we detached from the child, then we have to be careful
537 to not insert breakpoints in the parent until the child
538 is done with the shared memory region. However, if we're
539 staying attached to the child, then we can and should
540 insert breakpoints, so that we can debug it. A
541 subsequent child exec or exit is enough to know when does
542 the child stops using the parent's address space. */
543 parent_inf->waiting_for_vfork_done = detach_fork;
544 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
545 }
546 }
547 else
548 {
549 /* Follow the child. */
550 struct inferior *parent_inf, *child_inf;
551 struct program_space *parent_pspace;
552
f67c0c91 553 if (print_inferior_events)
d83ad864 554 {
f67c0c91
SDJ
555 std::string parent_pid = target_pid_to_str (parent_ptid);
556 std::string child_pid = target_pid_to_str (child_ptid);
557
223ffa71 558 target_terminal::ours_for_output ();
6f259a23 559 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
560 _("[Attaching after %s %s to child %s]\n"),
561 parent_pid.c_str (),
6f259a23 562 has_vforked ? "vfork" : "fork",
f67c0c91 563 child_pid.c_str ());
d83ad864
DB
564 }
565
566 /* Add the new inferior first, so that the target_detach below
567 doesn't unpush the target. */
568
e99b03dc 569 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
570
571 parent_inf = current_inferior ();
572 child_inf->attach_flag = parent_inf->attach_flag;
573 copy_terminal_info (child_inf, parent_inf);
574 child_inf->gdbarch = parent_inf->gdbarch;
575 copy_inferior_target_desc_info (child_inf, parent_inf);
576
577 parent_pspace = parent_inf->pspace;
578
579 /* If we're vforking, we want to hold on to the parent until the
580 child exits or execs. At child exec or exit time we can
581 remove the old breakpoints from the parent and detach or
582 resume debugging it. Otherwise, detach the parent now; we'll
583 want to reuse it's program/address spaces, but we can't set
584 them to the child before removing breakpoints from the
585 parent, otherwise, the breakpoints module could decide to
586 remove breakpoints from the wrong process (since they'd be
587 assigned to the same address space). */
588
589 if (has_vforked)
590 {
591 gdb_assert (child_inf->vfork_parent == NULL);
592 gdb_assert (parent_inf->vfork_child == NULL);
593 child_inf->vfork_parent = parent_inf;
594 child_inf->pending_detach = 0;
595 parent_inf->vfork_child = child_inf;
596 parent_inf->pending_detach = detach_fork;
597 parent_inf->waiting_for_vfork_done = 0;
598 }
599 else if (detach_fork)
6f259a23 600 {
f67c0c91 601 if (print_inferior_events)
6f259a23 602 {
8dd06f7a 603 /* Ensure that we have a process ptid. */
e99b03dc 604 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
8dd06f7a 605
223ffa71 606 target_terminal::ours_for_output ();
6f259a23 607 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
608 _("[Detaching after fork from "
609 "parent %s]\n"),
a068643d 610 target_pid_to_str (process_ptid).c_str ());
6f259a23
DB
611 }
612
6e1e1966 613 target_detach (parent_inf, 0);
6f259a23 614 }
d83ad864
DB
615
616 /* Note that the detach above makes PARENT_INF dangling. */
617
618 /* Add the child thread to the appropriate lists, and switch to
619 this new thread, before cloning the program space, and
620 informing the solib layer about this new process. */
621
79639e11 622 inferior_ptid = child_ptid;
f67c0c91 623 add_thread_silent (inferior_ptid);
2a00d7ce 624 set_current_inferior (child_inf);
d83ad864
DB
625
626 /* If this is a vfork child, then the address-space is shared
627 with the parent. If we detached from the parent, then we can
628 reuse the parent's program/address spaces. */
629 if (has_vforked || detach_fork)
630 {
631 child_inf->pspace = parent_pspace;
632 child_inf->aspace = child_inf->pspace->aspace;
633 }
634 else
635 {
636 child_inf->aspace = new_address_space ();
564b1e3f 637 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
638 child_inf->removable = 1;
639 child_inf->symfile_flags = SYMFILE_NO_READ;
640 set_current_program_space (child_inf->pspace);
641 clone_program_space (child_inf->pspace, parent_pspace);
642
643 /* Let the shared library layer (e.g., solib-svr4) learn
644 about this new process, relocate the cloned exec, pull in
645 shared libraries, and install the solib event breakpoint.
646 If a "cloned-VM" event was propagated better throughout
647 the core, this wouldn't be required. */
648 solib_create_inferior_hook (0);
649 }
650 }
651
652 return target_follow_fork (follow_child, detach_fork);
653}
654
e58b0e63
PA
655/* Tell the target to follow the fork we're stopped at. Returns true
656 if the inferior should be resumed; false, if the target for some
657 reason decided it's best not to resume. */
658
6604731b 659static int
4ef3f3be 660follow_fork (void)
c906108c 661{
ea1dd7bc 662 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
663 int should_resume = 1;
664 struct thread_info *tp;
665
666 /* Copy user stepping state to the new inferior thread. FIXME: the
667 followed fork child thread should have a copy of most of the
4e3990f4
DE
668 parent thread structure's run control related fields, not just these.
669 Initialized to avoid "may be used uninitialized" warnings from gcc. */
670 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 671 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
672 CORE_ADDR step_range_start = 0;
673 CORE_ADDR step_range_end = 0;
674 struct frame_id step_frame_id = { 0 };
8980e177 675 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
676
677 if (!non_stop)
678 {
679 ptid_t wait_ptid;
680 struct target_waitstatus wait_status;
681
682 /* Get the last target status returned by target_wait(). */
683 get_last_target_status (&wait_ptid, &wait_status);
684
685 /* If not stopped at a fork event, then there's nothing else to
686 do. */
687 if (wait_status.kind != TARGET_WAITKIND_FORKED
688 && wait_status.kind != TARGET_WAITKIND_VFORKED)
689 return 1;
690
691 /* Check if we switched over from WAIT_PTID, since the event was
692 reported. */
00431a78
PA
693 if (wait_ptid != minus_one_ptid
694 && inferior_ptid != wait_ptid)
e58b0e63
PA
695 {
696 /* We did. Switch back to WAIT_PTID thread, to tell the
697 target to follow it (in either direction). We'll
698 afterwards refuse to resume, and inform the user what
699 happened. */
00431a78
PA
700 thread_info *wait_thread
701 = find_thread_ptid (wait_ptid);
702 switch_to_thread (wait_thread);
e58b0e63
PA
703 should_resume = 0;
704 }
705 }
706
707 tp = inferior_thread ();
708
709 /* If there were any forks/vforks that were caught and are now to be
710 followed, then do so now. */
711 switch (tp->pending_follow.kind)
712 {
713 case TARGET_WAITKIND_FORKED:
714 case TARGET_WAITKIND_VFORKED:
715 {
716 ptid_t parent, child;
717
718 /* If the user did a next/step, etc, over a fork call,
719 preserve the stepping state in the fork child. */
720 if (follow_child && should_resume)
721 {
8358c15c
JK
722 step_resume_breakpoint = clone_momentary_breakpoint
723 (tp->control.step_resume_breakpoint);
16c381f0
JK
724 step_range_start = tp->control.step_range_start;
725 step_range_end = tp->control.step_range_end;
726 step_frame_id = tp->control.step_frame_id;
186c406b
TT
727 exception_resume_breakpoint
728 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 729 thread_fsm = tp->thread_fsm;
e58b0e63
PA
730
731 /* For now, delete the parent's sr breakpoint, otherwise,
732 parent/child sr breakpoints are considered duplicates,
733 and the child version will not be installed. Remove
734 this when the breakpoints module becomes aware of
735 inferiors and address spaces. */
736 delete_step_resume_breakpoint (tp);
16c381f0
JK
737 tp->control.step_range_start = 0;
738 tp->control.step_range_end = 0;
739 tp->control.step_frame_id = null_frame_id;
186c406b 740 delete_exception_resume_breakpoint (tp);
8980e177 741 tp->thread_fsm = NULL;
e58b0e63
PA
742 }
743
744 parent = inferior_ptid;
745 child = tp->pending_follow.value.related_pid;
746
d83ad864
DB
747 /* Set up inferior(s) as specified by the caller, and tell the
748 target to do whatever is necessary to follow either parent
749 or child. */
750 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
751 {
752 /* Target refused to follow, or there's some other reason
753 we shouldn't resume. */
754 should_resume = 0;
755 }
756 else
757 {
758 /* This pending follow fork event is now handled, one way
759 or another. The previous selected thread may be gone
760 from the lists by now, but if it is still around, need
761 to clear the pending follow request. */
e09875d4 762 tp = find_thread_ptid (parent);
e58b0e63
PA
763 if (tp)
764 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
765
766 /* This makes sure we don't try to apply the "Switched
767 over from WAIT_PID" logic above. */
768 nullify_last_target_wait_ptid ();
769
1777feb0 770 /* If we followed the child, switch to it... */
e58b0e63
PA
771 if (follow_child)
772 {
00431a78
PA
773 thread_info *child_thr = find_thread_ptid (child);
774 switch_to_thread (child_thr);
e58b0e63
PA
775
776 /* ... and preserve the stepping state, in case the
777 user was stepping over the fork call. */
778 if (should_resume)
779 {
780 tp = inferior_thread ();
8358c15c
JK
781 tp->control.step_resume_breakpoint
782 = step_resume_breakpoint;
16c381f0
JK
783 tp->control.step_range_start = step_range_start;
784 tp->control.step_range_end = step_range_end;
785 tp->control.step_frame_id = step_frame_id;
186c406b
TT
786 tp->control.exception_resume_breakpoint
787 = exception_resume_breakpoint;
8980e177 788 tp->thread_fsm = thread_fsm;
e58b0e63
PA
789 }
790 else
791 {
792 /* If we get here, it was because we're trying to
793 resume from a fork catchpoint, but, the user
794 has switched threads away from the thread that
795 forked. In that case, the resume command
796 issued is most likely not applicable to the
797 child, so just warn, and refuse to resume. */
3e43a32a 798 warning (_("Not resuming: switched threads "
fd7dcb94 799 "before following fork child."));
e58b0e63
PA
800 }
801
802 /* Reset breakpoints in the child as appropriate. */
803 follow_inferior_reset_breakpoints ();
804 }
e58b0e63
PA
805 }
806 }
807 break;
808 case TARGET_WAITKIND_SPURIOUS:
809 /* Nothing to follow. */
810 break;
811 default:
812 internal_error (__FILE__, __LINE__,
813 "Unexpected pending_follow.kind %d\n",
814 tp->pending_follow.kind);
815 break;
816 }
c906108c 817
e58b0e63 818 return should_resume;
c906108c
SS
819}
820
d83ad864 821static void
6604731b 822follow_inferior_reset_breakpoints (void)
c906108c 823{
4e1c45ea
PA
824 struct thread_info *tp = inferior_thread ();
825
6604731b
DJ
826 /* Was there a step_resume breakpoint? (There was if the user
827 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
828 thread number. Cloned step_resume breakpoints are disabled on
829 creation, so enable it here now that it is associated with the
830 correct thread.
6604731b
DJ
831
832 step_resumes are a form of bp that are made to be per-thread.
833 Since we created the step_resume bp when the parent process
834 was being debugged, and now are switching to the child process,
835 from the breakpoint package's viewpoint, that's a switch of
836 "threads". We must update the bp's notion of which thread
837 it is for, or it'll be ignored when it triggers. */
838
8358c15c 839 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
840 {
841 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
842 tp->control.step_resume_breakpoint->loc->enabled = 1;
843 }
6604731b 844
a1aa2221 845 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 846 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
847 {
848 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
849 tp->control.exception_resume_breakpoint->loc->enabled = 1;
850 }
186c406b 851
6604731b
DJ
852 /* Reinsert all breakpoints in the child. The user may have set
853 breakpoints after catching the fork, in which case those
854 were never set in the child, but only in the parent. This makes
855 sure the inserted breakpoints match the breakpoint list. */
856
857 breakpoint_re_set ();
858 insert_breakpoints ();
c906108c 859}
c906108c 860
6c95b8df
PA
861/* The child has exited or execed: resume threads of the parent the
862 user wanted to be executing. */
863
864static int
865proceed_after_vfork_done (struct thread_info *thread,
866 void *arg)
867{
868 int pid = * (int *) arg;
869
00431a78
PA
870 if (thread->ptid.pid () == pid
871 && thread->state == THREAD_RUNNING
872 && !thread->executing
6c95b8df 873 && !thread->stop_requested
a493e3e2 874 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
875 {
876 if (debug_infrun)
877 fprintf_unfiltered (gdb_stdlog,
878 "infrun: resuming vfork parent thread %s\n",
a068643d 879 target_pid_to_str (thread->ptid).c_str ());
6c95b8df 880
00431a78 881 switch_to_thread (thread);
70509625 882 clear_proceed_status (0);
64ce06e4 883 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
884 }
885
886 return 0;
887}
888
5ed8105e
PA
889/* Save/restore inferior_ptid, current program space and current
890 inferior. Only use this if the current context points at an exited
891 inferior (and therefore there's no current thread to save). */
892class scoped_restore_exited_inferior
893{
894public:
895 scoped_restore_exited_inferior ()
896 : m_saved_ptid (&inferior_ptid)
897 {}
898
899private:
900 scoped_restore_tmpl<ptid_t> m_saved_ptid;
901 scoped_restore_current_program_space m_pspace;
902 scoped_restore_current_inferior m_inferior;
903};
904
6c95b8df
PA
905/* Called whenever we notice an exec or exit event, to handle
906 detaching or resuming a vfork parent. */
907
908static void
909handle_vfork_child_exec_or_exit (int exec)
910{
911 struct inferior *inf = current_inferior ();
912
913 if (inf->vfork_parent)
914 {
915 int resume_parent = -1;
916
917 /* This exec or exit marks the end of the shared memory region
918 between the parent and the child. If the user wanted to
919 detach from the parent, now is the time. */
920
921 if (inf->vfork_parent->pending_detach)
922 {
923 struct thread_info *tp;
6c95b8df
PA
924 struct program_space *pspace;
925 struct address_space *aspace;
926
1777feb0 927 /* follow-fork child, detach-on-fork on. */
6c95b8df 928
68c9da30
PA
929 inf->vfork_parent->pending_detach = 0;
930
5ed8105e
PA
931 gdb::optional<scoped_restore_exited_inferior>
932 maybe_restore_inferior;
933 gdb::optional<scoped_restore_current_pspace_and_thread>
934 maybe_restore_thread;
935
936 /* If we're handling a child exit, then inferior_ptid points
937 at the inferior's pid, not to a thread. */
f50f4e56 938 if (!exec)
5ed8105e 939 maybe_restore_inferior.emplace ();
f50f4e56 940 else
5ed8105e 941 maybe_restore_thread.emplace ();
6c95b8df
PA
942
943 /* We're letting loose of the parent. */
00431a78
PA
944 tp = any_live_thread_of_inferior (inf->vfork_parent);
945 switch_to_thread (tp);
6c95b8df
PA
946
947 /* We're about to detach from the parent, which implicitly
948 removes breakpoints from its address space. There's a
949 catch here: we want to reuse the spaces for the child,
950 but, parent/child are still sharing the pspace at this
951 point, although the exec in reality makes the kernel give
952 the child a fresh set of new pages. The problem here is
953 that the breakpoints module being unaware of this, would
954 likely chose the child process to write to the parent
955 address space. Swapping the child temporarily away from
956 the spaces has the desired effect. Yes, this is "sort
957 of" a hack. */
958
959 pspace = inf->pspace;
960 aspace = inf->aspace;
961 inf->aspace = NULL;
962 inf->pspace = NULL;
963
f67c0c91 964 if (print_inferior_events)
6c95b8df 965 {
a068643d 966 std::string pidstr
f2907e49 967 = target_pid_to_str (ptid_t (inf->vfork_parent->pid));
f67c0c91 968
223ffa71 969 target_terminal::ours_for_output ();
6c95b8df
PA
970
971 if (exec)
6f259a23
DB
972 {
973 fprintf_filtered (gdb_stdlog,
f67c0c91 974 _("[Detaching vfork parent %s "
a068643d 975 "after child exec]\n"), pidstr.c_str ());
6f259a23 976 }
6c95b8df 977 else
6f259a23
DB
978 {
979 fprintf_filtered (gdb_stdlog,
f67c0c91 980 _("[Detaching vfork parent %s "
a068643d 981 "after child exit]\n"), pidstr.c_str ());
6f259a23 982 }
6c95b8df
PA
983 }
984
6e1e1966 985 target_detach (inf->vfork_parent, 0);
6c95b8df
PA
986
987 /* Put it back. */
988 inf->pspace = pspace;
989 inf->aspace = aspace;
6c95b8df
PA
990 }
991 else if (exec)
992 {
993 /* We're staying attached to the parent, so, really give the
994 child a new address space. */
564b1e3f 995 inf->pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
996 inf->aspace = inf->pspace->aspace;
997 inf->removable = 1;
998 set_current_program_space (inf->pspace);
999
1000 resume_parent = inf->vfork_parent->pid;
1001
1002 /* Break the bonds. */
1003 inf->vfork_parent->vfork_child = NULL;
1004 }
1005 else
1006 {
6c95b8df
PA
1007 struct program_space *pspace;
1008
1009 /* If this is a vfork child exiting, then the pspace and
1010 aspaces were shared with the parent. Since we're
1011 reporting the process exit, we'll be mourning all that is
1012 found in the address space, and switching to null_ptid,
1013 preparing to start a new inferior. But, since we don't
1014 want to clobber the parent's address/program spaces, we
1015 go ahead and create a new one for this exiting
1016 inferior. */
1017
5ed8105e
PA
1018 /* Switch to null_ptid while running clone_program_space, so
1019 that clone_program_space doesn't want to read the
1020 selected frame of a dead process. */
1021 scoped_restore restore_ptid
1022 = make_scoped_restore (&inferior_ptid, null_ptid);
6c95b8df
PA
1023
1024 /* This inferior is dead, so avoid giving the breakpoints
1025 module the option to write through to it (cloning a
1026 program space resets breakpoints). */
1027 inf->aspace = NULL;
1028 inf->pspace = NULL;
564b1e3f 1029 pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
1030 set_current_program_space (pspace);
1031 inf->removable = 1;
7dcd53a0 1032 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1033 clone_program_space (pspace, inf->vfork_parent->pspace);
1034 inf->pspace = pspace;
1035 inf->aspace = pspace->aspace;
1036
6c95b8df
PA
1037 resume_parent = inf->vfork_parent->pid;
1038 /* Break the bonds. */
1039 inf->vfork_parent->vfork_child = NULL;
1040 }
1041
1042 inf->vfork_parent = NULL;
1043
1044 gdb_assert (current_program_space == inf->pspace);
1045
1046 if (non_stop && resume_parent != -1)
1047 {
1048 /* If the user wanted the parent to be running, let it go
1049 free now. */
5ed8105e 1050 scoped_restore_current_thread restore_thread;
6c95b8df
PA
1051
1052 if (debug_infrun)
3e43a32a
MS
1053 fprintf_unfiltered (gdb_stdlog,
1054 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1055 resume_parent);
1056
1057 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1058 }
1059 }
1060}
1061
eb6c553b 1062/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1063
1064static const char follow_exec_mode_new[] = "new";
1065static const char follow_exec_mode_same[] = "same";
40478521 1066static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1067{
1068 follow_exec_mode_new,
1069 follow_exec_mode_same,
1070 NULL,
1071};
1072
1073static const char *follow_exec_mode_string = follow_exec_mode_same;
1074static void
1075show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1076 struct cmd_list_element *c, const char *value)
1077{
1078 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1079}
1080
ecf45d2c 1081/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1082
c906108c 1083static void
ecf45d2c 1084follow_exec (ptid_t ptid, char *exec_file_target)
c906108c 1085{
6c95b8df 1086 struct inferior *inf = current_inferior ();
e99b03dc 1087 int pid = ptid.pid ();
94585166 1088 ptid_t process_ptid;
7a292a7a 1089
c906108c
SS
1090 /* This is an exec event that we actually wish to pay attention to.
1091 Refresh our symbol table to the newly exec'd program, remove any
1092 momentary bp's, etc.
1093
1094 If there are breakpoints, they aren't really inserted now,
1095 since the exec() transformed our inferior into a fresh set
1096 of instructions.
1097
1098 We want to preserve symbolic breakpoints on the list, since
1099 we have hopes that they can be reset after the new a.out's
1100 symbol table is read.
1101
1102 However, any "raw" breakpoints must be removed from the list
1103 (e.g., the solib bp's), since their address is probably invalid
1104 now.
1105
1106 And, we DON'T want to call delete_breakpoints() here, since
1107 that may write the bp's "shadow contents" (the instruction
1108 value that was overwritten witha TRAP instruction). Since
1777feb0 1109 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1110
1111 mark_breakpoints_out ();
1112
95e50b27
PA
1113 /* The target reports the exec event to the main thread, even if
1114 some other thread does the exec, and even if the main thread was
1115 stopped or already gone. We may still have non-leader threads of
1116 the process on our list. E.g., on targets that don't have thread
1117 exit events (like remote); or on native Linux in non-stop mode if
1118 there were only two threads in the inferior and the non-leader
1119 one is the one that execs (and nothing forces an update of the
1120 thread list up to here). When debugging remotely, it's best to
1121 avoid extra traffic, when possible, so avoid syncing the thread
1122 list with the target, and instead go ahead and delete all threads
1123 of the process but one that reported the event. Note this must
1124 be done before calling update_breakpoints_after_exec, as
1125 otherwise clearing the threads' resources would reference stale
1126 thread breakpoints -- it may have been one of these threads that
1127 stepped across the exec. We could just clear their stepping
1128 states, but as long as we're iterating, might as well delete
1129 them. Deleting them now rather than at the next user-visible
1130 stop provides a nicer sequence of events for user and MI
1131 notifications. */
08036331 1132 for (thread_info *th : all_threads_safe ())
d7e15655 1133 if (th->ptid.pid () == pid && th->ptid != ptid)
00431a78 1134 delete_thread (th);
95e50b27
PA
1135
1136 /* We also need to clear any left over stale state for the
1137 leader/event thread. E.g., if there was any step-resume
1138 breakpoint or similar, it's gone now. We cannot truly
1139 step-to-next statement through an exec(). */
08036331 1140 thread_info *th = inferior_thread ();
8358c15c 1141 th->control.step_resume_breakpoint = NULL;
186c406b 1142 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1143 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1144 th->control.step_range_start = 0;
1145 th->control.step_range_end = 0;
c906108c 1146
95e50b27
PA
1147 /* The user may have had the main thread held stopped in the
1148 previous image (e.g., schedlock on, or non-stop). Release
1149 it now. */
a75724bc
PA
1150 th->stop_requested = 0;
1151
95e50b27
PA
1152 update_breakpoints_after_exec ();
1153
1777feb0 1154 /* What is this a.out's name? */
f2907e49 1155 process_ptid = ptid_t (pid);
6c95b8df 1156 printf_unfiltered (_("%s is executing new program: %s\n"),
a068643d 1157 target_pid_to_str (process_ptid).c_str (),
ecf45d2c 1158 exec_file_target);
c906108c
SS
1159
1160 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1161 inferior has essentially been killed & reborn. */
7a292a7a 1162
6ca15a4b 1163 breakpoint_init_inferior (inf_execd);
e85a822c 1164
797bc1cb
TT
1165 gdb::unique_xmalloc_ptr<char> exec_file_host
1166 = exec_file_find (exec_file_target, NULL);
ff862be4 1167
ecf45d2c
SL
1168 /* If we were unable to map the executable target pathname onto a host
1169 pathname, tell the user that. Otherwise GDB's subsequent behavior
1170 is confusing. Maybe it would even be better to stop at this point
1171 so that the user can specify a file manually before continuing. */
1172 if (exec_file_host == NULL)
1173 warning (_("Could not load symbols for executable %s.\n"
1174 "Do you need \"set sysroot\"?"),
1175 exec_file_target);
c906108c 1176
cce9b6bf
PA
1177 /* Reset the shared library package. This ensures that we get a
1178 shlib event when the child reaches "_start", at which point the
1179 dld will have had a chance to initialize the child. */
1180 /* Also, loading a symbol file below may trigger symbol lookups, and
1181 we don't want those to be satisfied by the libraries of the
1182 previous incarnation of this process. */
1183 no_shared_libraries (NULL, 0);
1184
6c95b8df
PA
1185 if (follow_exec_mode_string == follow_exec_mode_new)
1186 {
6c95b8df
PA
1187 /* The user wants to keep the old inferior and program spaces
1188 around. Create a new fresh one, and switch to it. */
1189
35ed81d4
SM
1190 /* Do exit processing for the original inferior before setting the new
1191 inferior's pid. Having two inferiors with the same pid would confuse
1192 find_inferior_p(t)id. Transfer the terminal state and info from the
1193 old to the new inferior. */
1194 inf = add_inferior_with_spaces ();
1195 swap_terminal_info (inf, current_inferior ());
057302ce 1196 exit_inferior_silent (current_inferior ());
17d8546e 1197
94585166 1198 inf->pid = pid;
ecf45d2c 1199 target_follow_exec (inf, exec_file_target);
6c95b8df
PA
1200
1201 set_current_inferior (inf);
94585166 1202 set_current_program_space (inf->pspace);
c4c17fb0 1203 add_thread (ptid);
6c95b8df 1204 }
9107fc8d
PA
1205 else
1206 {
1207 /* The old description may no longer be fit for the new image.
1208 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1209 old description; we'll read a new one below. No need to do
1210 this on "follow-exec-mode new", as the old inferior stays
1211 around (its description is later cleared/refetched on
1212 restart). */
1213 target_clear_description ();
1214 }
6c95b8df
PA
1215
1216 gdb_assert (current_program_space == inf->pspace);
1217
ecf45d2c
SL
1218 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1219 because the proper displacement for a PIE (Position Independent
1220 Executable) main symbol file will only be computed by
1221 solib_create_inferior_hook below. breakpoint_re_set would fail
1222 to insert the breakpoints with the zero displacement. */
797bc1cb 1223 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
c906108c 1224
9107fc8d
PA
1225 /* If the target can specify a description, read it. Must do this
1226 after flipping to the new executable (because the target supplied
1227 description must be compatible with the executable's
1228 architecture, and the old executable may e.g., be 32-bit, while
1229 the new one 64-bit), and before anything involving memory or
1230 registers. */
1231 target_find_description ();
1232
268a4a75 1233 solib_create_inferior_hook (0);
c906108c 1234
4efc6507
DE
1235 jit_inferior_created_hook ();
1236
c1e56572
JK
1237 breakpoint_re_set ();
1238
c906108c
SS
1239 /* Reinsert all breakpoints. (Those which were symbolic have
1240 been reset to the proper address in the new a.out, thanks
1777feb0 1241 to symbol_file_command...). */
c906108c
SS
1242 insert_breakpoints ();
1243
1244 /* The next resume of this inferior should bring it to the shlib
1245 startup breakpoints. (If the user had also set bp's on
1246 "main" from the old (parent) process, then they'll auto-
1777feb0 1247 matically get reset there in the new process.). */
c906108c
SS
1248}
1249
c2829269
PA
1250/* The queue of threads that need to do a step-over operation to get
1251 past e.g., a breakpoint. What technique is used to step over the
1252 breakpoint/watchpoint does not matter -- all threads end up in the
1253 same queue, to maintain rough temporal order of execution, in order
1254 to avoid starvation, otherwise, we could e.g., find ourselves
1255 constantly stepping the same couple threads past their breakpoints
1256 over and over, if the single-step finish fast enough. */
1257struct thread_info *step_over_queue_head;
1258
6c4cfb24
PA
1259/* Bit flags indicating what the thread needs to step over. */
1260
8d297bbf 1261enum step_over_what_flag
6c4cfb24
PA
1262 {
1263 /* Step over a breakpoint. */
1264 STEP_OVER_BREAKPOINT = 1,
1265
1266 /* Step past a non-continuable watchpoint, in order to let the
1267 instruction execute so we can evaluate the watchpoint
1268 expression. */
1269 STEP_OVER_WATCHPOINT = 2
1270 };
8d297bbf 1271DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1272
963f9c80 1273/* Info about an instruction that is being stepped over. */
31e77af2
PA
1274
1275struct step_over_info
1276{
963f9c80
PA
1277 /* If we're stepping past a breakpoint, this is the address space
1278 and address of the instruction the breakpoint is set at. We'll
1279 skip inserting all breakpoints here. Valid iff ASPACE is
1280 non-NULL. */
8b86c959 1281 const address_space *aspace;
31e77af2 1282 CORE_ADDR address;
963f9c80
PA
1283
1284 /* The instruction being stepped over triggers a nonsteppable
1285 watchpoint. If true, we'll skip inserting watchpoints. */
1286 int nonsteppable_watchpoint_p;
21edc42f
YQ
1287
1288 /* The thread's global number. */
1289 int thread;
31e77af2
PA
1290};
1291
1292/* The step-over info of the location that is being stepped over.
1293
1294 Note that with async/breakpoint always-inserted mode, a user might
1295 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1296 being stepped over. As setting a new breakpoint inserts all
1297 breakpoints, we need to make sure the breakpoint being stepped over
1298 isn't inserted then. We do that by only clearing the step-over
1299 info when the step-over is actually finished (or aborted).
1300
1301 Presently GDB can only step over one breakpoint at any given time.
1302 Given threads that can't run code in the same address space as the
1303 breakpoint's can't really miss the breakpoint, GDB could be taught
1304 to step-over at most one breakpoint per address space (so this info
1305 could move to the address space object if/when GDB is extended).
1306 The set of breakpoints being stepped over will normally be much
1307 smaller than the set of all breakpoints, so a flag in the
1308 breakpoint location structure would be wasteful. A separate list
1309 also saves complexity and run-time, as otherwise we'd have to go
1310 through all breakpoint locations clearing their flag whenever we
1311 start a new sequence. Similar considerations weigh against storing
1312 this info in the thread object. Plus, not all step overs actually
1313 have breakpoint locations -- e.g., stepping past a single-step
1314 breakpoint, or stepping to complete a non-continuable
1315 watchpoint. */
1316static struct step_over_info step_over_info;
1317
1318/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1319 stepping over.
1320 N.B. We record the aspace and address now, instead of say just the thread,
1321 because when we need the info later the thread may be running. */
31e77af2
PA
1322
1323static void
8b86c959 1324set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1325 int nonsteppable_watchpoint_p,
1326 int thread)
31e77af2
PA
1327{
1328 step_over_info.aspace = aspace;
1329 step_over_info.address = address;
963f9c80 1330 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1331 step_over_info.thread = thread;
31e77af2
PA
1332}
1333
1334/* Called when we're not longer stepping over a breakpoint / an
1335 instruction, so all breakpoints are free to be (re)inserted. */
1336
1337static void
1338clear_step_over_info (void)
1339{
372316f1
PA
1340 if (debug_infrun)
1341 fprintf_unfiltered (gdb_stdlog,
1342 "infrun: clear_step_over_info\n");
31e77af2
PA
1343 step_over_info.aspace = NULL;
1344 step_over_info.address = 0;
963f9c80 1345 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1346 step_over_info.thread = -1;
31e77af2
PA
1347}
1348
7f89fd65 1349/* See infrun.h. */
31e77af2
PA
1350
1351int
1352stepping_past_instruction_at (struct address_space *aspace,
1353 CORE_ADDR address)
1354{
1355 return (step_over_info.aspace != NULL
1356 && breakpoint_address_match (aspace, address,
1357 step_over_info.aspace,
1358 step_over_info.address));
1359}
1360
963f9c80
PA
1361/* See infrun.h. */
1362
21edc42f
YQ
1363int
1364thread_is_stepping_over_breakpoint (int thread)
1365{
1366 return (step_over_info.thread != -1
1367 && thread == step_over_info.thread);
1368}
1369
1370/* See infrun.h. */
1371
963f9c80
PA
1372int
1373stepping_past_nonsteppable_watchpoint (void)
1374{
1375 return step_over_info.nonsteppable_watchpoint_p;
1376}
1377
6cc83d2a
PA
1378/* Returns true if step-over info is valid. */
1379
1380static int
1381step_over_info_valid_p (void)
1382{
963f9c80
PA
1383 return (step_over_info.aspace != NULL
1384 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1385}
1386
c906108c 1387\f
237fc4c9
PA
1388/* Displaced stepping. */
1389
1390/* In non-stop debugging mode, we must take special care to manage
1391 breakpoints properly; in particular, the traditional strategy for
1392 stepping a thread past a breakpoint it has hit is unsuitable.
1393 'Displaced stepping' is a tactic for stepping one thread past a
1394 breakpoint it has hit while ensuring that other threads running
1395 concurrently will hit the breakpoint as they should.
1396
1397 The traditional way to step a thread T off a breakpoint in a
1398 multi-threaded program in all-stop mode is as follows:
1399
1400 a0) Initially, all threads are stopped, and breakpoints are not
1401 inserted.
1402 a1) We single-step T, leaving breakpoints uninserted.
1403 a2) We insert breakpoints, and resume all threads.
1404
1405 In non-stop debugging, however, this strategy is unsuitable: we
1406 don't want to have to stop all threads in the system in order to
1407 continue or step T past a breakpoint. Instead, we use displaced
1408 stepping:
1409
1410 n0) Initially, T is stopped, other threads are running, and
1411 breakpoints are inserted.
1412 n1) We copy the instruction "under" the breakpoint to a separate
1413 location, outside the main code stream, making any adjustments
1414 to the instruction, register, and memory state as directed by
1415 T's architecture.
1416 n2) We single-step T over the instruction at its new location.
1417 n3) We adjust the resulting register and memory state as directed
1418 by T's architecture. This includes resetting T's PC to point
1419 back into the main instruction stream.
1420 n4) We resume T.
1421
1422 This approach depends on the following gdbarch methods:
1423
1424 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1425 indicate where to copy the instruction, and how much space must
1426 be reserved there. We use these in step n1.
1427
1428 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1429 address, and makes any necessary adjustments to the instruction,
1430 register contents, and memory. We use this in step n1.
1431
1432 - gdbarch_displaced_step_fixup adjusts registers and memory after
1433 we have successfuly single-stepped the instruction, to yield the
1434 same effect the instruction would have had if we had executed it
1435 at its original address. We use this in step n3.
1436
237fc4c9
PA
1437 The gdbarch_displaced_step_copy_insn and
1438 gdbarch_displaced_step_fixup functions must be written so that
1439 copying an instruction with gdbarch_displaced_step_copy_insn,
1440 single-stepping across the copied instruction, and then applying
1441 gdbarch_displaced_insn_fixup should have the same effects on the
1442 thread's memory and registers as stepping the instruction in place
1443 would have. Exactly which responsibilities fall to the copy and
1444 which fall to the fixup is up to the author of those functions.
1445
1446 See the comments in gdbarch.sh for details.
1447
1448 Note that displaced stepping and software single-step cannot
1449 currently be used in combination, although with some care I think
1450 they could be made to. Software single-step works by placing
1451 breakpoints on all possible subsequent instructions; if the
1452 displaced instruction is a PC-relative jump, those breakpoints
1453 could fall in very strange places --- on pages that aren't
1454 executable, or at addresses that are not proper instruction
1455 boundaries. (We do generally let other threads run while we wait
1456 to hit the software single-step breakpoint, and they might
1457 encounter such a corrupted instruction.) One way to work around
1458 this would be to have gdbarch_displaced_step_copy_insn fully
1459 simulate the effect of PC-relative instructions (and return NULL)
1460 on architectures that use software single-stepping.
1461
1462 In non-stop mode, we can have independent and simultaneous step
1463 requests, so more than one thread may need to simultaneously step
1464 over a breakpoint. The current implementation assumes there is
1465 only one scratch space per process. In this case, we have to
1466 serialize access to the scratch space. If thread A wants to step
1467 over a breakpoint, but we are currently waiting for some other
1468 thread to complete a displaced step, we leave thread A stopped and
1469 place it in the displaced_step_request_queue. Whenever a displaced
1470 step finishes, we pick the next thread in the queue and start a new
1471 displaced step operation on it. See displaced_step_prepare and
1472 displaced_step_fixup for details. */
1473
cfba9872
SM
1474/* Default destructor for displaced_step_closure. */
1475
1476displaced_step_closure::~displaced_step_closure () = default;
1477
fc1cf338
PA
1478/* Get the displaced stepping state of process PID. */
1479
39a36629 1480static displaced_step_inferior_state *
00431a78 1481get_displaced_stepping_state (inferior *inf)
fc1cf338 1482{
d20172fc 1483 return &inf->displaced_step_state;
fc1cf338
PA
1484}
1485
372316f1
PA
1486/* Returns true if any inferior has a thread doing a displaced
1487 step. */
1488
39a36629
SM
1489static bool
1490displaced_step_in_progress_any_inferior ()
372316f1 1491{
d20172fc 1492 for (inferior *i : all_inferiors ())
39a36629 1493 {
d20172fc 1494 if (i->displaced_step_state.step_thread != nullptr)
39a36629
SM
1495 return true;
1496 }
372316f1 1497
39a36629 1498 return false;
372316f1
PA
1499}
1500
c0987663
YQ
1501/* Return true if thread represented by PTID is doing a displaced
1502 step. */
1503
1504static int
00431a78 1505displaced_step_in_progress_thread (thread_info *thread)
c0987663 1506{
00431a78 1507 gdb_assert (thread != NULL);
c0987663 1508
d20172fc 1509 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
c0987663
YQ
1510}
1511
8f572e5c
PA
1512/* Return true if process PID has a thread doing a displaced step. */
1513
1514static int
00431a78 1515displaced_step_in_progress (inferior *inf)
8f572e5c 1516{
d20172fc 1517 return get_displaced_stepping_state (inf)->step_thread != nullptr;
fc1cf338
PA
1518}
1519
a42244db
YQ
1520/* If inferior is in displaced stepping, and ADDR equals to starting address
1521 of copy area, return corresponding displaced_step_closure. Otherwise,
1522 return NULL. */
1523
1524struct displaced_step_closure*
1525get_displaced_step_closure_by_addr (CORE_ADDR addr)
1526{
d20172fc 1527 displaced_step_inferior_state *displaced
00431a78 1528 = get_displaced_stepping_state (current_inferior ());
a42244db
YQ
1529
1530 /* If checking the mode of displaced instruction in copy area. */
d20172fc 1531 if (displaced->step_thread != nullptr
00431a78 1532 && displaced->step_copy == addr)
a42244db
YQ
1533 return displaced->step_closure;
1534
1535 return NULL;
1536}
1537
fc1cf338
PA
1538static void
1539infrun_inferior_exit (struct inferior *inf)
1540{
d20172fc 1541 inf->displaced_step_state.reset ();
fc1cf338 1542}
237fc4c9 1543
fff08868
HZ
1544/* If ON, and the architecture supports it, GDB will use displaced
1545 stepping to step over breakpoints. If OFF, or if the architecture
1546 doesn't support it, GDB will instead use the traditional
1547 hold-and-step approach. If AUTO (which is the default), GDB will
1548 decide which technique to use to step over breakpoints depending on
1549 which of all-stop or non-stop mode is active --- displaced stepping
1550 in non-stop mode; hold-and-step in all-stop mode. */
1551
72d0e2c5 1552static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1553
237fc4c9
PA
1554static void
1555show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1556 struct cmd_list_element *c,
1557 const char *value)
1558{
72d0e2c5 1559 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1560 fprintf_filtered (file,
1561 _("Debugger's willingness to use displaced stepping "
1562 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1563 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1564 else
3e43a32a
MS
1565 fprintf_filtered (file,
1566 _("Debugger's willingness to use displaced stepping "
1567 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1568}
1569
fff08868 1570/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1571 over breakpoints of thread TP. */
fff08868 1572
237fc4c9 1573static int
3fc8eb30 1574use_displaced_stepping (struct thread_info *tp)
237fc4c9 1575{
00431a78 1576 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 1577 struct gdbarch *gdbarch = regcache->arch ();
d20172fc
SM
1578 displaced_step_inferior_state *displaced_state
1579 = get_displaced_stepping_state (tp->inf);
3fc8eb30 1580
fbea99ea
PA
1581 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1582 && target_is_non_stop_p ())
72d0e2c5 1583 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1584 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30 1585 && find_record_target () == NULL
d20172fc 1586 && !displaced_state->failed_before);
237fc4c9
PA
1587}
1588
1589/* Clean out any stray displaced stepping state. */
1590static void
fc1cf338 1591displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1592{
1593 /* Indicate that there is no cleanup pending. */
00431a78 1594 displaced->step_thread = nullptr;
237fc4c9 1595
cfba9872 1596 delete displaced->step_closure;
6d45d4b4 1597 displaced->step_closure = NULL;
237fc4c9
PA
1598}
1599
9799571e
TT
1600/* A cleanup that wraps displaced_step_clear. */
1601using displaced_step_clear_cleanup
1602 = FORWARD_SCOPE_EXIT (displaced_step_clear);
237fc4c9
PA
1603
1604/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1605void
1606displaced_step_dump_bytes (struct ui_file *file,
1607 const gdb_byte *buf,
1608 size_t len)
1609{
1610 int i;
1611
1612 for (i = 0; i < len; i++)
1613 fprintf_unfiltered (file, "%02x ", buf[i]);
1614 fputs_unfiltered ("\n", file);
1615}
1616
1617/* Prepare to single-step, using displaced stepping.
1618
1619 Note that we cannot use displaced stepping when we have a signal to
1620 deliver. If we have a signal to deliver and an instruction to step
1621 over, then after the step, there will be no indication from the
1622 target whether the thread entered a signal handler or ignored the
1623 signal and stepped over the instruction successfully --- both cases
1624 result in a simple SIGTRAP. In the first case we mustn't do a
1625 fixup, and in the second case we must --- but we can't tell which.
1626 Comments in the code for 'random signals' in handle_inferior_event
1627 explain how we handle this case instead.
1628
1629 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1630 stepped now; 0 if displaced stepping this thread got queued; or -1
1631 if this instruction can't be displaced stepped. */
1632
237fc4c9 1633static int
00431a78 1634displaced_step_prepare_throw (thread_info *tp)
237fc4c9 1635{
00431a78 1636 regcache *regcache = get_thread_regcache (tp);
ac7936df 1637 struct gdbarch *gdbarch = regcache->arch ();
8b86c959 1638 const address_space *aspace = regcache->aspace ();
237fc4c9
PA
1639 CORE_ADDR original, copy;
1640 ULONGEST len;
1641 struct displaced_step_closure *closure;
9e529e1d 1642 int status;
237fc4c9
PA
1643
1644 /* We should never reach this function if the architecture does not
1645 support displaced stepping. */
1646 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1647
c2829269
PA
1648 /* Nor if the thread isn't meant to step over a breakpoint. */
1649 gdb_assert (tp->control.trap_expected);
1650
c1e36e3e
PA
1651 /* Disable range stepping while executing in the scratch pad. We
1652 want a single-step even if executing the displaced instruction in
1653 the scratch buffer lands within the stepping range (e.g., a
1654 jump/branch). */
1655 tp->control.may_range_step = 0;
1656
fc1cf338
PA
1657 /* We have to displaced step one thread at a time, as we only have
1658 access to a single scratch space per inferior. */
237fc4c9 1659
d20172fc
SM
1660 displaced_step_inferior_state *displaced
1661 = get_displaced_stepping_state (tp->inf);
fc1cf338 1662
00431a78 1663 if (displaced->step_thread != nullptr)
237fc4c9
PA
1664 {
1665 /* Already waiting for a displaced step to finish. Defer this
1666 request and place in queue. */
237fc4c9
PA
1667
1668 if (debug_displaced)
1669 fprintf_unfiltered (gdb_stdlog,
c2829269 1670 "displaced: deferring step of %s\n",
a068643d 1671 target_pid_to_str (tp->ptid).c_str ());
237fc4c9 1672
c2829269 1673 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1674 return 0;
1675 }
1676 else
1677 {
1678 if (debug_displaced)
1679 fprintf_unfiltered (gdb_stdlog,
1680 "displaced: stepping %s now\n",
a068643d 1681 target_pid_to_str (tp->ptid).c_str ());
237fc4c9
PA
1682 }
1683
fc1cf338 1684 displaced_step_clear (displaced);
237fc4c9 1685
00431a78
PA
1686 scoped_restore_current_thread restore_thread;
1687
1688 switch_to_thread (tp);
ad53cd71 1689
515630c5 1690 original = regcache_read_pc (regcache);
237fc4c9
PA
1691
1692 copy = gdbarch_displaced_step_location (gdbarch);
1693 len = gdbarch_max_insn_length (gdbarch);
1694
d35ae833
PA
1695 if (breakpoint_in_range_p (aspace, copy, len))
1696 {
1697 /* There's a breakpoint set in the scratch pad location range
1698 (which is usually around the entry point). We'd either
1699 install it before resuming, which would overwrite/corrupt the
1700 scratch pad, or if it was already inserted, this displaced
1701 step would overwrite it. The latter is OK in the sense that
1702 we already assume that no thread is going to execute the code
1703 in the scratch pad range (after initial startup) anyway, but
1704 the former is unacceptable. Simply punt and fallback to
1705 stepping over this breakpoint in-line. */
1706 if (debug_displaced)
1707 {
1708 fprintf_unfiltered (gdb_stdlog,
1709 "displaced: breakpoint set in scratch pad. "
1710 "Stepping over breakpoint in-line instead.\n");
1711 }
1712
d35ae833
PA
1713 return -1;
1714 }
1715
237fc4c9 1716 /* Save the original contents of the copy area. */
d20172fc
SM
1717 displaced->step_saved_copy.resize (len);
1718 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
9e529e1d
JK
1719 if (status != 0)
1720 throw_error (MEMORY_ERROR,
1721 _("Error accessing memory address %s (%s) for "
1722 "displaced-stepping scratch space."),
1723 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1724 if (debug_displaced)
1725 {
5af949e3
UW
1726 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1727 paddress (gdbarch, copy));
fc1cf338 1728 displaced_step_dump_bytes (gdb_stdlog,
d20172fc 1729 displaced->step_saved_copy.data (),
fc1cf338 1730 len);
237fc4c9
PA
1731 };
1732
1733 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1734 original, copy, regcache);
7f03bd92
PA
1735 if (closure == NULL)
1736 {
1737 /* The architecture doesn't know how or want to displaced step
1738 this instruction or instruction sequence. Fallback to
1739 stepping over the breakpoint in-line. */
7f03bd92
PA
1740 return -1;
1741 }
237fc4c9 1742
9f5a595d
UW
1743 /* Save the information we need to fix things up if the step
1744 succeeds. */
00431a78 1745 displaced->step_thread = tp;
fc1cf338
PA
1746 displaced->step_gdbarch = gdbarch;
1747 displaced->step_closure = closure;
1748 displaced->step_original = original;
1749 displaced->step_copy = copy;
9f5a595d 1750
9799571e
TT
1751 {
1752 displaced_step_clear_cleanup cleanup (displaced);
237fc4c9 1753
9799571e
TT
1754 /* Resume execution at the copy. */
1755 regcache_write_pc (regcache, copy);
237fc4c9 1756
9799571e
TT
1757 cleanup.release ();
1758 }
ad53cd71 1759
237fc4c9 1760 if (debug_displaced)
5af949e3
UW
1761 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1762 paddress (gdbarch, copy));
237fc4c9 1763
237fc4c9
PA
1764 return 1;
1765}
1766
3fc8eb30
PA
1767/* Wrapper for displaced_step_prepare_throw that disabled further
1768 attempts at displaced stepping if we get a memory error. */
1769
1770static int
00431a78 1771displaced_step_prepare (thread_info *thread)
3fc8eb30
PA
1772{
1773 int prepared = -1;
1774
1775 TRY
1776 {
00431a78 1777 prepared = displaced_step_prepare_throw (thread);
3fc8eb30
PA
1778 }
1779 CATCH (ex, RETURN_MASK_ERROR)
1780 {
1781 struct displaced_step_inferior_state *displaced_state;
1782
16b41842
PA
1783 if (ex.error != MEMORY_ERROR
1784 && ex.error != NOT_SUPPORTED_ERROR)
3fc8eb30
PA
1785 throw_exception (ex);
1786
1787 if (debug_infrun)
1788 {
1789 fprintf_unfiltered (gdb_stdlog,
1790 "infrun: disabling displaced stepping: %s\n",
1791 ex.message);
1792 }
1793
1794 /* Be verbose if "set displaced-stepping" is "on", silent if
1795 "auto". */
1796 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1797 {
fd7dcb94 1798 warning (_("disabling displaced stepping: %s"),
3fc8eb30
PA
1799 ex.message);
1800 }
1801
1802 /* Disable further displaced stepping attempts. */
1803 displaced_state
00431a78 1804 = get_displaced_stepping_state (thread->inf);
3fc8eb30
PA
1805 displaced_state->failed_before = 1;
1806 }
1807 END_CATCH
1808
1809 return prepared;
1810}
1811
237fc4c9 1812static void
3e43a32a
MS
1813write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1814 const gdb_byte *myaddr, int len)
237fc4c9 1815{
2989a365 1816 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
abbb1732 1817
237fc4c9
PA
1818 inferior_ptid = ptid;
1819 write_memory (memaddr, myaddr, len);
237fc4c9
PA
1820}
1821
e2d96639
YQ
1822/* Restore the contents of the copy area for thread PTID. */
1823
1824static void
1825displaced_step_restore (struct displaced_step_inferior_state *displaced,
1826 ptid_t ptid)
1827{
1828 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1829
1830 write_memory_ptid (ptid, displaced->step_copy,
d20172fc 1831 displaced->step_saved_copy.data (), len);
e2d96639
YQ
1832 if (debug_displaced)
1833 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
a068643d 1834 target_pid_to_str (ptid).c_str (),
e2d96639
YQ
1835 paddress (displaced->step_gdbarch,
1836 displaced->step_copy));
1837}
1838
372316f1
PA
1839/* If we displaced stepped an instruction successfully, adjust
1840 registers and memory to yield the same effect the instruction would
1841 have had if we had executed it at its original address, and return
1842 1. If the instruction didn't complete, relocate the PC and return
1843 -1. If the thread wasn't displaced stepping, return 0. */
1844
1845static int
00431a78 1846displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
237fc4c9 1847{
fc1cf338 1848 struct displaced_step_inferior_state *displaced
00431a78 1849 = get_displaced_stepping_state (event_thread->inf);
372316f1 1850 int ret;
fc1cf338 1851
00431a78
PA
1852 /* Was this event for the thread we displaced? */
1853 if (displaced->step_thread != event_thread)
372316f1 1854 return 0;
237fc4c9 1855
9799571e 1856 displaced_step_clear_cleanup cleanup (displaced);
237fc4c9 1857
00431a78 1858 displaced_step_restore (displaced, displaced->step_thread->ptid);
237fc4c9 1859
cb71640d
PA
1860 /* Fixup may need to read memory/registers. Switch to the thread
1861 that we're fixing up. Also, target_stopped_by_watchpoint checks
1862 the current thread. */
00431a78 1863 switch_to_thread (event_thread);
cb71640d 1864
237fc4c9 1865 /* Did the instruction complete successfully? */
cb71640d
PA
1866 if (signal == GDB_SIGNAL_TRAP
1867 && !(target_stopped_by_watchpoint ()
1868 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1869 || target_have_steppable_watchpoint)))
237fc4c9
PA
1870 {
1871 /* Fix up the resulting state. */
fc1cf338
PA
1872 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1873 displaced->step_closure,
1874 displaced->step_original,
1875 displaced->step_copy,
00431a78 1876 get_thread_regcache (displaced->step_thread));
372316f1 1877 ret = 1;
237fc4c9
PA
1878 }
1879 else
1880 {
1881 /* Since the instruction didn't complete, all we can do is
1882 relocate the PC. */
00431a78 1883 struct regcache *regcache = get_thread_regcache (event_thread);
515630c5 1884 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1885
fc1cf338 1886 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1887 regcache_write_pc (regcache, pc);
372316f1 1888 ret = -1;
237fc4c9
PA
1889 }
1890
372316f1 1891 return ret;
c2829269 1892}
1c5cfe86 1893
4d9d9d04
PA
1894/* Data to be passed around while handling an event. This data is
1895 discarded between events. */
1896struct execution_control_state
1897{
1898 ptid_t ptid;
1899 /* The thread that got the event, if this was a thread event; NULL
1900 otherwise. */
1901 struct thread_info *event_thread;
1902
1903 struct target_waitstatus ws;
1904 int stop_func_filled_in;
1905 CORE_ADDR stop_func_start;
1906 CORE_ADDR stop_func_end;
1907 const char *stop_func_name;
1908 int wait_some_more;
1909
1910 /* True if the event thread hit the single-step breakpoint of
1911 another thread. Thus the event doesn't cause a stop, the thread
1912 needs to be single-stepped past the single-step breakpoint before
1913 we can switch back to the original stepping thread. */
1914 int hit_singlestep_breakpoint;
1915};
1916
1917/* Clear ECS and set it to point at TP. */
c2829269
PA
1918
1919static void
4d9d9d04
PA
1920reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1921{
1922 memset (ecs, 0, sizeof (*ecs));
1923 ecs->event_thread = tp;
1924 ecs->ptid = tp->ptid;
1925}
1926
1927static void keep_going_pass_signal (struct execution_control_state *ecs);
1928static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 1929static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 1930static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
1931
1932/* Are there any pending step-over requests? If so, run all we can
1933 now and return true. Otherwise, return false. */
1934
1935static int
c2829269
PA
1936start_step_over (void)
1937{
1938 struct thread_info *tp, *next;
1939
372316f1
PA
1940 /* Don't start a new step-over if we already have an in-line
1941 step-over operation ongoing. */
1942 if (step_over_info_valid_p ())
1943 return 0;
1944
c2829269 1945 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 1946 {
4d9d9d04
PA
1947 struct execution_control_state ecss;
1948 struct execution_control_state *ecs = &ecss;
8d297bbf 1949 step_over_what step_what;
372316f1 1950 int must_be_in_line;
c2829269 1951
c65d6b55
PA
1952 gdb_assert (!tp->stop_requested);
1953
c2829269 1954 next = thread_step_over_chain_next (tp);
237fc4c9 1955
c2829269
PA
1956 /* If this inferior already has a displaced step in process,
1957 don't start a new one. */
00431a78 1958 if (displaced_step_in_progress (tp->inf))
c2829269
PA
1959 continue;
1960
372316f1
PA
1961 step_what = thread_still_needs_step_over (tp);
1962 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1963 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 1964 && !use_displaced_stepping (tp)));
372316f1
PA
1965
1966 /* We currently stop all threads of all processes to step-over
1967 in-line. If we need to start a new in-line step-over, let
1968 any pending displaced steps finish first. */
1969 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1970 return 0;
1971
c2829269
PA
1972 thread_step_over_chain_remove (tp);
1973
1974 if (step_over_queue_head == NULL)
1975 {
1976 if (debug_infrun)
1977 fprintf_unfiltered (gdb_stdlog,
1978 "infrun: step-over queue now empty\n");
1979 }
1980
372316f1
PA
1981 if (tp->control.trap_expected
1982 || tp->resumed
1983 || tp->executing)
ad53cd71 1984 {
4d9d9d04
PA
1985 internal_error (__FILE__, __LINE__,
1986 "[%s] has inconsistent state: "
372316f1 1987 "trap_expected=%d, resumed=%d, executing=%d\n",
a068643d 1988 target_pid_to_str (tp->ptid).c_str (),
4d9d9d04 1989 tp->control.trap_expected,
372316f1 1990 tp->resumed,
4d9d9d04 1991 tp->executing);
ad53cd71 1992 }
1c5cfe86 1993
4d9d9d04
PA
1994 if (debug_infrun)
1995 fprintf_unfiltered (gdb_stdlog,
1996 "infrun: resuming [%s] for step-over\n",
a068643d 1997 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04
PA
1998
1999 /* keep_going_pass_signal skips the step-over if the breakpoint
2000 is no longer inserted. In all-stop, we want to keep looking
2001 for a thread that needs a step-over instead of resuming TP,
2002 because we wouldn't be able to resume anything else until the
2003 target stops again. In non-stop, the resume always resumes
2004 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2005 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2006 continue;
8550d3b3 2007
00431a78 2008 switch_to_thread (tp);
4d9d9d04
PA
2009 reset_ecs (ecs, tp);
2010 keep_going_pass_signal (ecs);
1c5cfe86 2011
4d9d9d04
PA
2012 if (!ecs->wait_some_more)
2013 error (_("Command aborted."));
1c5cfe86 2014
372316f1
PA
2015 gdb_assert (tp->resumed);
2016
2017 /* If we started a new in-line step-over, we're done. */
2018 if (step_over_info_valid_p ())
2019 {
2020 gdb_assert (tp->control.trap_expected);
2021 return 1;
2022 }
2023
fbea99ea 2024 if (!target_is_non_stop_p ())
4d9d9d04
PA
2025 {
2026 /* On all-stop, shouldn't have resumed unless we needed a
2027 step over. */
2028 gdb_assert (tp->control.trap_expected
2029 || tp->step_after_step_resume_breakpoint);
2030
2031 /* With remote targets (at least), in all-stop, we can't
2032 issue any further remote commands until the program stops
2033 again. */
2034 return 1;
1c5cfe86 2035 }
c2829269 2036
4d9d9d04
PA
2037 /* Either the thread no longer needed a step-over, or a new
2038 displaced stepping sequence started. Even in the latter
2039 case, continue looking. Maybe we can also start another
2040 displaced step on a thread of other process. */
237fc4c9 2041 }
4d9d9d04
PA
2042
2043 return 0;
237fc4c9
PA
2044}
2045
5231c1fd
PA
2046/* Update global variables holding ptids to hold NEW_PTID if they were
2047 holding OLD_PTID. */
2048static void
2049infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2050{
d7e15655 2051 if (inferior_ptid == old_ptid)
5231c1fd 2052 inferior_ptid = new_ptid;
5231c1fd
PA
2053}
2054
237fc4c9 2055\f
c906108c 2056
53904c9e
AC
2057static const char schedlock_off[] = "off";
2058static const char schedlock_on[] = "on";
2059static const char schedlock_step[] = "step";
f2665db5 2060static const char schedlock_replay[] = "replay";
40478521 2061static const char *const scheduler_enums[] = {
ef346e04
AC
2062 schedlock_off,
2063 schedlock_on,
2064 schedlock_step,
f2665db5 2065 schedlock_replay,
ef346e04
AC
2066 NULL
2067};
f2665db5 2068static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2069static void
2070show_scheduler_mode (struct ui_file *file, int from_tty,
2071 struct cmd_list_element *c, const char *value)
2072{
3e43a32a
MS
2073 fprintf_filtered (file,
2074 _("Mode for locking scheduler "
2075 "during execution is \"%s\".\n"),
920d2a44
AC
2076 value);
2077}
c906108c
SS
2078
2079static void
eb4c3f4a 2080set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
c906108c 2081{
eefe576e
AC
2082 if (!target_can_lock_scheduler)
2083 {
2084 scheduler_mode = schedlock_off;
2085 error (_("Target '%s' cannot support this command."), target_shortname);
2086 }
c906108c
SS
2087}
2088
d4db2f36
PA
2089/* True if execution commands resume all threads of all processes by
2090 default; otherwise, resume only threads of the current inferior
2091 process. */
2092int sched_multi = 0;
2093
2facfe5c
DD
2094/* Try to setup for software single stepping over the specified location.
2095 Return 1 if target_resume() should use hardware single step.
2096
2097 GDBARCH the current gdbarch.
2098 PC the location to step over. */
2099
2100static int
2101maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2102{
2103 int hw_step = 1;
2104
f02253f1 2105 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2106 && gdbarch_software_single_step_p (gdbarch))
2107 hw_step = !insert_single_step_breakpoints (gdbarch);
2108
2facfe5c
DD
2109 return hw_step;
2110}
c906108c 2111
f3263aa4
PA
2112/* See infrun.h. */
2113
09cee04b
PA
2114ptid_t
2115user_visible_resume_ptid (int step)
2116{
f3263aa4 2117 ptid_t resume_ptid;
09cee04b 2118
09cee04b
PA
2119 if (non_stop)
2120 {
2121 /* With non-stop mode on, threads are always handled
2122 individually. */
2123 resume_ptid = inferior_ptid;
2124 }
2125 else if ((scheduler_mode == schedlock_on)
03d46957 2126 || (scheduler_mode == schedlock_step && step))
09cee04b 2127 {
f3263aa4
PA
2128 /* User-settable 'scheduler' mode requires solo thread
2129 resume. */
09cee04b
PA
2130 resume_ptid = inferior_ptid;
2131 }
f2665db5
MM
2132 else if ((scheduler_mode == schedlock_replay)
2133 && target_record_will_replay (minus_one_ptid, execution_direction))
2134 {
2135 /* User-settable 'scheduler' mode requires solo thread resume in replay
2136 mode. */
2137 resume_ptid = inferior_ptid;
2138 }
f3263aa4
PA
2139 else if (!sched_multi && target_supports_multi_process ())
2140 {
2141 /* Resume all threads of the current process (and none of other
2142 processes). */
e99b03dc 2143 resume_ptid = ptid_t (inferior_ptid.pid ());
f3263aa4
PA
2144 }
2145 else
2146 {
2147 /* Resume all threads of all processes. */
2148 resume_ptid = RESUME_ALL;
2149 }
09cee04b
PA
2150
2151 return resume_ptid;
2152}
2153
fbea99ea
PA
2154/* Return a ptid representing the set of threads that we will resume,
2155 in the perspective of the target, assuming run control handling
2156 does not require leaving some threads stopped (e.g., stepping past
2157 breakpoint). USER_STEP indicates whether we're about to start the
2158 target for a stepping command. */
2159
2160static ptid_t
2161internal_resume_ptid (int user_step)
2162{
2163 /* In non-stop, we always control threads individually. Note that
2164 the target may always work in non-stop mode even with "set
2165 non-stop off", in which case user_visible_resume_ptid could
2166 return a wildcard ptid. */
2167 if (target_is_non_stop_p ())
2168 return inferior_ptid;
2169 else
2170 return user_visible_resume_ptid (user_step);
2171}
2172
64ce06e4
PA
2173/* Wrapper for target_resume, that handles infrun-specific
2174 bookkeeping. */
2175
2176static void
2177do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2178{
2179 struct thread_info *tp = inferior_thread ();
2180
c65d6b55
PA
2181 gdb_assert (!tp->stop_requested);
2182
64ce06e4 2183 /* Install inferior's terminal modes. */
223ffa71 2184 target_terminal::inferior ();
64ce06e4
PA
2185
2186 /* Avoid confusing the next resume, if the next stop/resume
2187 happens to apply to another thread. */
2188 tp->suspend.stop_signal = GDB_SIGNAL_0;
2189
8f572e5c
PA
2190 /* Advise target which signals may be handled silently.
2191
2192 If we have removed breakpoints because we are stepping over one
2193 in-line (in any thread), we need to receive all signals to avoid
2194 accidentally skipping a breakpoint during execution of a signal
2195 handler.
2196
2197 Likewise if we're displaced stepping, otherwise a trap for a
2198 breakpoint in a signal handler might be confused with the
2199 displaced step finishing. We don't make the displaced_step_fixup
2200 step distinguish the cases instead, because:
2201
2202 - a backtrace while stopped in the signal handler would show the
2203 scratch pad as frame older than the signal handler, instead of
2204 the real mainline code.
2205
2206 - when the thread is later resumed, the signal handler would
2207 return to the scratch pad area, which would no longer be
2208 valid. */
2209 if (step_over_info_valid_p ()
00431a78 2210 || displaced_step_in_progress (tp->inf))
adc6a863 2211 target_pass_signals ({});
64ce06e4 2212 else
adc6a863 2213 target_pass_signals (signal_pass);
64ce06e4
PA
2214
2215 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2216
2217 target_commit_resume ();
64ce06e4
PA
2218}
2219
d930703d 2220/* Resume the inferior. SIG is the signal to give the inferior
71d378ae
PA
2221 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2222 call 'resume', which handles exceptions. */
c906108c 2223
71d378ae
PA
2224static void
2225resume_1 (enum gdb_signal sig)
c906108c 2226{
515630c5 2227 struct regcache *regcache = get_current_regcache ();
ac7936df 2228 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2229 struct thread_info *tp = inferior_thread ();
515630c5 2230 CORE_ADDR pc = regcache_read_pc (regcache);
8b86c959 2231 const address_space *aspace = regcache->aspace ();
b0f16a3e 2232 ptid_t resume_ptid;
856e7dd6
PA
2233 /* This represents the user's step vs continue request. When
2234 deciding whether "set scheduler-locking step" applies, it's the
2235 user's intention that counts. */
2236 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2237 /* This represents what we'll actually request the target to do.
2238 This can decay from a step to a continue, if e.g., we need to
2239 implement single-stepping with breakpoints (software
2240 single-step). */
6b403daa 2241 int step;
c7e8a53c 2242
c65d6b55 2243 gdb_assert (!tp->stop_requested);
c2829269
PA
2244 gdb_assert (!thread_is_in_step_over_chain (tp));
2245
372316f1
PA
2246 if (tp->suspend.waitstatus_pending_p)
2247 {
2248 if (debug_infrun)
2249 {
23fdd69e
SM
2250 std::string statstr
2251 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2252
372316f1 2253 fprintf_unfiltered (gdb_stdlog,
23fdd69e
SM
2254 "infrun: resume: thread %s has pending wait "
2255 "status %s (currently_stepping=%d).\n",
a068643d
TT
2256 target_pid_to_str (tp->ptid).c_str (),
2257 statstr.c_str (),
372316f1 2258 currently_stepping (tp));
372316f1
PA
2259 }
2260
2261 tp->resumed = 1;
2262
2263 /* FIXME: What should we do if we are supposed to resume this
2264 thread with a signal? Maybe we should maintain a queue of
2265 pending signals to deliver. */
2266 if (sig != GDB_SIGNAL_0)
2267 {
fd7dcb94 2268 warning (_("Couldn't deliver signal %s to %s."),
a068643d
TT
2269 gdb_signal_to_name (sig),
2270 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2271 }
2272
2273 tp->suspend.stop_signal = GDB_SIGNAL_0;
372316f1
PA
2274
2275 if (target_can_async_p ())
9516f85a
AB
2276 {
2277 target_async (1);
2278 /* Tell the event loop we have an event to process. */
2279 mark_async_event_handler (infrun_async_inferior_event_token);
2280 }
372316f1
PA
2281 return;
2282 }
2283
2284 tp->stepped_breakpoint = 0;
2285
6b403daa
PA
2286 /* Depends on stepped_breakpoint. */
2287 step = currently_stepping (tp);
2288
74609e71
YQ
2289 if (current_inferior ()->waiting_for_vfork_done)
2290 {
48f9886d
PA
2291 /* Don't try to single-step a vfork parent that is waiting for
2292 the child to get out of the shared memory region (by exec'ing
2293 or exiting). This is particularly important on software
2294 single-step archs, as the child process would trip on the
2295 software single step breakpoint inserted for the parent
2296 process. Since the parent will not actually execute any
2297 instruction until the child is out of the shared region (such
2298 are vfork's semantics), it is safe to simply continue it.
2299 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2300 the parent, and tell it to `keep_going', which automatically
2301 re-sets it stepping. */
74609e71
YQ
2302 if (debug_infrun)
2303 fprintf_unfiltered (gdb_stdlog,
2304 "infrun: resume : clear step\n");
a09dd441 2305 step = 0;
74609e71
YQ
2306 }
2307
527159b7 2308 if (debug_infrun)
237fc4c9 2309 fprintf_unfiltered (gdb_stdlog,
c9737c08 2310 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2311 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2312 step, gdb_signal_to_symbol_string (sig),
2313 tp->control.trap_expected,
a068643d 2314 target_pid_to_str (inferior_ptid).c_str (),
0d9a9a5f 2315 paddress (gdbarch, pc));
c906108c 2316
c2c6d25f
JM
2317 /* Normally, by the time we reach `resume', the breakpoints are either
2318 removed or inserted, as appropriate. The exception is if we're sitting
2319 at a permanent breakpoint; we need to step over it, but permanent
2320 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2321 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2322 {
af48d08f
PA
2323 if (sig != GDB_SIGNAL_0)
2324 {
2325 /* We have a signal to pass to the inferior. The resume
2326 may, or may not take us to the signal handler. If this
2327 is a step, we'll need to stop in the signal handler, if
2328 there's one, (if the target supports stepping into
2329 handlers), or in the next mainline instruction, if
2330 there's no handler. If this is a continue, we need to be
2331 sure to run the handler with all breakpoints inserted.
2332 In all cases, set a breakpoint at the current address
2333 (where the handler returns to), and once that breakpoint
2334 is hit, resume skipping the permanent breakpoint. If
2335 that breakpoint isn't hit, then we've stepped into the
2336 signal handler (or hit some other event). We'll delete
2337 the step-resume breakpoint then. */
2338
2339 if (debug_infrun)
2340 fprintf_unfiltered (gdb_stdlog,
2341 "infrun: resume: skipping permanent breakpoint, "
2342 "deliver signal first\n");
2343
2344 clear_step_over_info ();
2345 tp->control.trap_expected = 0;
2346
2347 if (tp->control.step_resume_breakpoint == NULL)
2348 {
2349 /* Set a "high-priority" step-resume, as we don't want
2350 user breakpoints at PC to trigger (again) when this
2351 hits. */
2352 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2353 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2354
2355 tp->step_after_step_resume_breakpoint = step;
2356 }
2357
2358 insert_breakpoints ();
2359 }
2360 else
2361 {
2362 /* There's no signal to pass, we can go ahead and skip the
2363 permanent breakpoint manually. */
2364 if (debug_infrun)
2365 fprintf_unfiltered (gdb_stdlog,
2366 "infrun: resume: skipping permanent breakpoint\n");
2367 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2368 /* Update pc to reflect the new address from which we will
2369 execute instructions. */
2370 pc = regcache_read_pc (regcache);
2371
2372 if (step)
2373 {
2374 /* We've already advanced the PC, so the stepping part
2375 is done. Now we need to arrange for a trap to be
2376 reported to handle_inferior_event. Set a breakpoint
2377 at the current PC, and run to it. Don't update
2378 prev_pc, because if we end in
44a1ee51
PA
2379 switch_back_to_stepped_thread, we want the "expected
2380 thread advanced also" branch to be taken. IOW, we
2381 don't want this thread to step further from PC
af48d08f 2382 (overstep). */
1ac806b8 2383 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2384 insert_single_step_breakpoint (gdbarch, aspace, pc);
2385 insert_breakpoints ();
2386
fbea99ea 2387 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2388 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
372316f1 2389 tp->resumed = 1;
af48d08f
PA
2390 return;
2391 }
2392 }
6d350bb5 2393 }
c2c6d25f 2394
c1e36e3e
PA
2395 /* If we have a breakpoint to step over, make sure to do a single
2396 step only. Same if we have software watchpoints. */
2397 if (tp->control.trap_expected || bpstat_should_step ())
2398 tp->control.may_range_step = 0;
2399
237fc4c9
PA
2400 /* If enabled, step over breakpoints by executing a copy of the
2401 instruction at a different address.
2402
2403 We can't use displaced stepping when we have a signal to deliver;
2404 the comments for displaced_step_prepare explain why. The
2405 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2406 signals' explain what we do instead.
2407
2408 We can't use displaced stepping when we are waiting for vfork_done
2409 event, displaced stepping breaks the vfork child similarly as single
2410 step software breakpoint. */
3fc8eb30
PA
2411 if (tp->control.trap_expected
2412 && use_displaced_stepping (tp)
cb71640d 2413 && !step_over_info_valid_p ()
a493e3e2 2414 && sig == GDB_SIGNAL_0
74609e71 2415 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2416 {
00431a78 2417 int prepared = displaced_step_prepare (tp);
fc1cf338 2418
3fc8eb30 2419 if (prepared == 0)
d56b7306 2420 {
4d9d9d04
PA
2421 if (debug_infrun)
2422 fprintf_unfiltered (gdb_stdlog,
2423 "Got placed in step-over queue\n");
2424
2425 tp->control.trap_expected = 0;
d56b7306
VP
2426 return;
2427 }
3fc8eb30
PA
2428 else if (prepared < 0)
2429 {
2430 /* Fallback to stepping over the breakpoint in-line. */
2431
2432 if (target_is_non_stop_p ())
2433 stop_all_threads ();
2434
a01bda52 2435 set_step_over_info (regcache->aspace (),
21edc42f 2436 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2437
2438 step = maybe_software_singlestep (gdbarch, pc);
2439
2440 insert_breakpoints ();
2441 }
2442 else if (prepared > 0)
2443 {
2444 struct displaced_step_inferior_state *displaced;
99e40580 2445
3fc8eb30
PA
2446 /* Update pc to reflect the new address from which we will
2447 execute instructions due to displaced stepping. */
00431a78 2448 pc = regcache_read_pc (get_thread_regcache (tp));
ca7781d2 2449
00431a78 2450 displaced = get_displaced_stepping_state (tp->inf);
3fc8eb30
PA
2451 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2452 displaced->step_closure);
2453 }
237fc4c9
PA
2454 }
2455
2facfe5c 2456 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2457 else if (step)
2facfe5c 2458 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2459
30852783
UW
2460 /* Currently, our software single-step implementation leads to different
2461 results than hardware single-stepping in one situation: when stepping
2462 into delivering a signal which has an associated signal handler,
2463 hardware single-step will stop at the first instruction of the handler,
2464 while software single-step will simply skip execution of the handler.
2465
2466 For now, this difference in behavior is accepted since there is no
2467 easy way to actually implement single-stepping into a signal handler
2468 without kernel support.
2469
2470 However, there is one scenario where this difference leads to follow-on
2471 problems: if we're stepping off a breakpoint by removing all breakpoints
2472 and then single-stepping. In this case, the software single-step
2473 behavior means that even if there is a *breakpoint* in the signal
2474 handler, GDB still would not stop.
2475
2476 Fortunately, we can at least fix this particular issue. We detect
2477 here the case where we are about to deliver a signal while software
2478 single-stepping with breakpoints removed. In this situation, we
2479 revert the decisions to remove all breakpoints and insert single-
2480 step breakpoints, and instead we install a step-resume breakpoint
2481 at the current address, deliver the signal without stepping, and
2482 once we arrive back at the step-resume breakpoint, actually step
2483 over the breakpoint we originally wanted to step over. */
34b7e8a6 2484 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2485 && sig != GDB_SIGNAL_0
2486 && step_over_info_valid_p ())
30852783
UW
2487 {
2488 /* If we have nested signals or a pending signal is delivered
2489 immediately after a handler returns, might might already have
2490 a step-resume breakpoint set on the earlier handler. We cannot
2491 set another step-resume breakpoint; just continue on until the
2492 original breakpoint is hit. */
2493 if (tp->control.step_resume_breakpoint == NULL)
2494 {
2c03e5be 2495 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2496 tp->step_after_step_resume_breakpoint = 1;
2497 }
2498
34b7e8a6 2499 delete_single_step_breakpoints (tp);
30852783 2500
31e77af2 2501 clear_step_over_info ();
30852783 2502 tp->control.trap_expected = 0;
31e77af2
PA
2503
2504 insert_breakpoints ();
30852783
UW
2505 }
2506
b0f16a3e
SM
2507 /* If STEP is set, it's a request to use hardware stepping
2508 facilities. But in that case, we should never
2509 use singlestep breakpoint. */
34b7e8a6 2510 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2511
fbea99ea 2512 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2513 if (tp->control.trap_expected)
b0f16a3e
SM
2514 {
2515 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2516 hit, either by single-stepping the thread with the breakpoint
2517 removed, or by displaced stepping, with the breakpoint inserted.
2518 In the former case, we need to single-step only this thread,
2519 and keep others stopped, as they can miss this breakpoint if
2520 allowed to run. That's not really a problem for displaced
2521 stepping, but, we still keep other threads stopped, in case
2522 another thread is also stopped for a breakpoint waiting for
2523 its turn in the displaced stepping queue. */
b0f16a3e
SM
2524 resume_ptid = inferior_ptid;
2525 }
fbea99ea
PA
2526 else
2527 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2528
7f5ef605
PA
2529 if (execution_direction != EXEC_REVERSE
2530 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2531 {
372316f1
PA
2532 /* There are two cases where we currently need to step a
2533 breakpoint instruction when we have a signal to deliver:
2534
2535 - See handle_signal_stop where we handle random signals that
2536 could take out us out of the stepping range. Normally, in
2537 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2538 signal handler with a breakpoint at PC, but there are cases
2539 where we should _always_ single-step, even if we have a
2540 step-resume breakpoint, like when a software watchpoint is
2541 set. Assuming single-stepping and delivering a signal at the
2542 same time would takes us to the signal handler, then we could
2543 have removed the breakpoint at PC to step over it. However,
2544 some hardware step targets (like e.g., Mac OS) can't step
2545 into signal handlers, and for those, we need to leave the
2546 breakpoint at PC inserted, as otherwise if the handler
2547 recurses and executes PC again, it'll miss the breakpoint.
2548 So we leave the breakpoint inserted anyway, but we need to
2549 record that we tried to step a breakpoint instruction, so
372316f1
PA
2550 that adjust_pc_after_break doesn't end up confused.
2551
2552 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2553 in one thread after another thread that was stepping had been
2554 momentarily paused for a step-over. When we re-resume the
2555 stepping thread, it may be resumed from that address with a
2556 breakpoint that hasn't trapped yet. Seen with
2557 gdb.threads/non-stop-fair-events.exp, on targets that don't
2558 do displaced stepping. */
2559
2560 if (debug_infrun)
2561 fprintf_unfiltered (gdb_stdlog,
2562 "infrun: resume: [%s] stepped breakpoint\n",
a068643d 2563 target_pid_to_str (tp->ptid).c_str ());
7f5ef605
PA
2564
2565 tp->stepped_breakpoint = 1;
2566
b0f16a3e
SM
2567 /* Most targets can step a breakpoint instruction, thus
2568 executing it normally. But if this one cannot, just
2569 continue and we will hit it anyway. */
7f5ef605 2570 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2571 step = 0;
2572 }
ef5cf84e 2573
b0f16a3e 2574 if (debug_displaced
cb71640d 2575 && tp->control.trap_expected
3fc8eb30 2576 && use_displaced_stepping (tp)
cb71640d 2577 && !step_over_info_valid_p ())
b0f16a3e 2578 {
00431a78 2579 struct regcache *resume_regcache = get_thread_regcache (tp);
ac7936df 2580 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2581 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2582 gdb_byte buf[4];
2583
2584 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2585 paddress (resume_gdbarch, actual_pc));
2586 read_memory (actual_pc, buf, sizeof (buf));
2587 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2588 }
237fc4c9 2589
b0f16a3e
SM
2590 if (tp->control.may_range_step)
2591 {
2592 /* If we're resuming a thread with the PC out of the step
2593 range, then we're doing some nested/finer run control
2594 operation, like stepping the thread out of the dynamic
2595 linker or the displaced stepping scratch pad. We
2596 shouldn't have allowed a range step then. */
2597 gdb_assert (pc_in_thread_step_range (pc, tp));
2598 }
c1e36e3e 2599
64ce06e4 2600 do_target_resume (resume_ptid, step, sig);
372316f1 2601 tp->resumed = 1;
c906108c 2602}
71d378ae
PA
2603
2604/* Resume the inferior. SIG is the signal to give the inferior
2605 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2606 rolls back state on error. */
2607
aff4e175 2608static void
71d378ae
PA
2609resume (gdb_signal sig)
2610{
2611 TRY
2612 {
2613 resume_1 (sig);
2614 }
2615 CATCH (ex, RETURN_MASK_ALL)
2616 {
2617 /* If resuming is being aborted for any reason, delete any
2618 single-step breakpoint resume_1 may have created, to avoid
2619 confusing the following resumption, and to avoid leaving
2620 single-step breakpoints perturbing other threads, in case
2621 we're running in non-stop mode. */
2622 if (inferior_ptid != null_ptid)
2623 delete_single_step_breakpoints (inferior_thread ());
2624 throw_exception (ex);
2625 }
2626 END_CATCH
2627}
2628
c906108c 2629\f
237fc4c9 2630/* Proceeding. */
c906108c 2631
4c2f2a79
PA
2632/* See infrun.h. */
2633
2634/* Counter that tracks number of user visible stops. This can be used
2635 to tell whether a command has proceeded the inferior past the
2636 current location. This allows e.g., inferior function calls in
2637 breakpoint commands to not interrupt the command list. When the
2638 call finishes successfully, the inferior is standing at the same
2639 breakpoint as if nothing happened (and so we don't call
2640 normal_stop). */
2641static ULONGEST current_stop_id;
2642
2643/* See infrun.h. */
2644
2645ULONGEST
2646get_stop_id (void)
2647{
2648 return current_stop_id;
2649}
2650
2651/* Called when we report a user visible stop. */
2652
2653static void
2654new_stop_id (void)
2655{
2656 current_stop_id++;
2657}
2658
c906108c
SS
2659/* Clear out all variables saying what to do when inferior is continued.
2660 First do this, then set the ones you want, then call `proceed'. */
2661
a7212384
UW
2662static void
2663clear_proceed_status_thread (struct thread_info *tp)
c906108c 2664{
a7212384
UW
2665 if (debug_infrun)
2666 fprintf_unfiltered (gdb_stdlog,
2667 "infrun: clear_proceed_status_thread (%s)\n",
a068643d 2668 target_pid_to_str (tp->ptid).c_str ());
d6b48e9c 2669
372316f1
PA
2670 /* If we're starting a new sequence, then the previous finished
2671 single-step is no longer relevant. */
2672 if (tp->suspend.waitstatus_pending_p)
2673 {
2674 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2675 {
2676 if (debug_infrun)
2677 fprintf_unfiltered (gdb_stdlog,
2678 "infrun: clear_proceed_status: pending "
2679 "event of %s was a finished step. "
2680 "Discarding.\n",
a068643d 2681 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2682
2683 tp->suspend.waitstatus_pending_p = 0;
2684 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2685 }
2686 else if (debug_infrun)
2687 {
23fdd69e
SM
2688 std::string statstr
2689 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2690
372316f1
PA
2691 fprintf_unfiltered (gdb_stdlog,
2692 "infrun: clear_proceed_status_thread: thread %s "
2693 "has pending wait status %s "
2694 "(currently_stepping=%d).\n",
a068643d
TT
2695 target_pid_to_str (tp->ptid).c_str (),
2696 statstr.c_str (),
372316f1 2697 currently_stepping (tp));
372316f1
PA
2698 }
2699 }
2700
70509625
PA
2701 /* If this signal should not be seen by program, give it zero.
2702 Used for debugging signals. */
2703 if (!signal_pass_state (tp->suspend.stop_signal))
2704 tp->suspend.stop_signal = GDB_SIGNAL_0;
2705
46e3ed7f 2706 delete tp->thread_fsm;
243a9253
PA
2707 tp->thread_fsm = NULL;
2708
16c381f0
JK
2709 tp->control.trap_expected = 0;
2710 tp->control.step_range_start = 0;
2711 tp->control.step_range_end = 0;
c1e36e3e 2712 tp->control.may_range_step = 0;
16c381f0
JK
2713 tp->control.step_frame_id = null_frame_id;
2714 tp->control.step_stack_frame_id = null_frame_id;
2715 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2716 tp->control.step_start_function = NULL;
a7212384 2717 tp->stop_requested = 0;
4e1c45ea 2718
16c381f0 2719 tp->control.stop_step = 0;
32400beb 2720
16c381f0 2721 tp->control.proceed_to_finish = 0;
414c69f7 2722
856e7dd6 2723 tp->control.stepping_command = 0;
17b2616c 2724
a7212384 2725 /* Discard any remaining commands or status from previous stop. */
16c381f0 2726 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2727}
32400beb 2728
a7212384 2729void
70509625 2730clear_proceed_status (int step)
a7212384 2731{
f2665db5
MM
2732 /* With scheduler-locking replay, stop replaying other threads if we're
2733 not replaying the user-visible resume ptid.
2734
2735 This is a convenience feature to not require the user to explicitly
2736 stop replaying the other threads. We're assuming that the user's
2737 intent is to resume tracing the recorded process. */
2738 if (!non_stop && scheduler_mode == schedlock_replay
2739 && target_record_is_replaying (minus_one_ptid)
2740 && !target_record_will_replay (user_visible_resume_ptid (step),
2741 execution_direction))
2742 target_record_stop_replaying ();
2743
08036331 2744 if (!non_stop && inferior_ptid != null_ptid)
6c95b8df 2745 {
08036331 2746 ptid_t resume_ptid = user_visible_resume_ptid (step);
70509625
PA
2747
2748 /* In all-stop mode, delete the per-thread status of all threads
2749 we're about to resume, implicitly and explicitly. */
08036331
PA
2750 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2751 clear_proceed_status_thread (tp);
6c95b8df
PA
2752 }
2753
d7e15655 2754 if (inferior_ptid != null_ptid)
a7212384
UW
2755 {
2756 struct inferior *inferior;
2757
2758 if (non_stop)
2759 {
6c95b8df
PA
2760 /* If in non-stop mode, only delete the per-thread status of
2761 the current thread. */
a7212384
UW
2762 clear_proceed_status_thread (inferior_thread ());
2763 }
6c95b8df 2764
d6b48e9c 2765 inferior = current_inferior ();
16c381f0 2766 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2767 }
2768
76727919 2769 gdb::observers::about_to_proceed.notify ();
c906108c
SS
2770}
2771
99619bea
PA
2772/* Returns true if TP is still stopped at a breakpoint that needs
2773 stepping-over in order to make progress. If the breakpoint is gone
2774 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2775
2776static int
6c4cfb24 2777thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2778{
2779 if (tp->stepping_over_breakpoint)
2780 {
00431a78 2781 struct regcache *regcache = get_thread_regcache (tp);
99619bea 2782
a01bda52 2783 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2784 regcache_read_pc (regcache))
2785 == ordinary_breakpoint_here)
99619bea
PA
2786 return 1;
2787
2788 tp->stepping_over_breakpoint = 0;
2789 }
2790
2791 return 0;
2792}
2793
6c4cfb24
PA
2794/* Check whether thread TP still needs to start a step-over in order
2795 to make progress when resumed. Returns an bitwise or of enum
2796 step_over_what bits, indicating what needs to be stepped over. */
2797
8d297bbf 2798static step_over_what
6c4cfb24
PA
2799thread_still_needs_step_over (struct thread_info *tp)
2800{
8d297bbf 2801 step_over_what what = 0;
6c4cfb24
PA
2802
2803 if (thread_still_needs_step_over_bp (tp))
2804 what |= STEP_OVER_BREAKPOINT;
2805
2806 if (tp->stepping_over_watchpoint
2807 && !target_have_steppable_watchpoint)
2808 what |= STEP_OVER_WATCHPOINT;
2809
2810 return what;
2811}
2812
483805cf
PA
2813/* Returns true if scheduler locking applies. STEP indicates whether
2814 we're about to do a step/next-like command to a thread. */
2815
2816static int
856e7dd6 2817schedlock_applies (struct thread_info *tp)
483805cf
PA
2818{
2819 return (scheduler_mode == schedlock_on
2820 || (scheduler_mode == schedlock_step
f2665db5
MM
2821 && tp->control.stepping_command)
2822 || (scheduler_mode == schedlock_replay
2823 && target_record_will_replay (minus_one_ptid,
2824 execution_direction)));
483805cf
PA
2825}
2826
c906108c
SS
2827/* Basic routine for continuing the program in various fashions.
2828
2829 ADDR is the address to resume at, or -1 for resume where stopped.
aff4e175
AB
2830 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2831 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
c906108c
SS
2832
2833 You should call clear_proceed_status before calling proceed. */
2834
2835void
64ce06e4 2836proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2837{
e58b0e63
PA
2838 struct regcache *regcache;
2839 struct gdbarch *gdbarch;
e58b0e63 2840 CORE_ADDR pc;
4d9d9d04
PA
2841 ptid_t resume_ptid;
2842 struct execution_control_state ecss;
2843 struct execution_control_state *ecs = &ecss;
4d9d9d04 2844 int started;
c906108c 2845
e58b0e63
PA
2846 /* If we're stopped at a fork/vfork, follow the branch set by the
2847 "set follow-fork-mode" command; otherwise, we'll just proceed
2848 resuming the current thread. */
2849 if (!follow_fork ())
2850 {
2851 /* The target for some reason decided not to resume. */
2852 normal_stop ();
f148b27e
PA
2853 if (target_can_async_p ())
2854 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2855 return;
2856 }
2857
842951eb
PA
2858 /* We'll update this if & when we switch to a new thread. */
2859 previous_inferior_ptid = inferior_ptid;
2860
e58b0e63 2861 regcache = get_current_regcache ();
ac7936df 2862 gdbarch = regcache->arch ();
8b86c959
YQ
2863 const address_space *aspace = regcache->aspace ();
2864
e58b0e63 2865 pc = regcache_read_pc (regcache);
08036331 2866 thread_info *cur_thr = inferior_thread ();
e58b0e63 2867
99619bea 2868 /* Fill in with reasonable starting values. */
08036331 2869 init_thread_stepping_state (cur_thr);
99619bea 2870
08036331 2871 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
c2829269 2872
2acceee2 2873 if (addr == (CORE_ADDR) -1)
c906108c 2874 {
08036331 2875 if (pc == cur_thr->suspend.stop_pc
af48d08f 2876 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 2877 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2878 /* There is a breakpoint at the address we will resume at,
2879 step one instruction before inserting breakpoints so that
2880 we do not stop right away (and report a second hit at this
b2175913
MS
2881 breakpoint).
2882
2883 Note, we don't do this in reverse, because we won't
2884 actually be executing the breakpoint insn anyway.
2885 We'll be (un-)executing the previous instruction. */
08036331 2886 cur_thr->stepping_over_breakpoint = 1;
515630c5
UW
2887 else if (gdbarch_single_step_through_delay_p (gdbarch)
2888 && gdbarch_single_step_through_delay (gdbarch,
2889 get_current_frame ()))
3352ef37
AC
2890 /* We stepped onto an instruction that needs to be stepped
2891 again before re-inserting the breakpoint, do so. */
08036331 2892 cur_thr->stepping_over_breakpoint = 1;
c906108c
SS
2893 }
2894 else
2895 {
515630c5 2896 regcache_write_pc (regcache, addr);
c906108c
SS
2897 }
2898
70509625 2899 if (siggnal != GDB_SIGNAL_DEFAULT)
08036331 2900 cur_thr->suspend.stop_signal = siggnal;
70509625 2901
08036331 2902 resume_ptid = user_visible_resume_ptid (cur_thr->control.stepping_command);
4d9d9d04
PA
2903
2904 /* If an exception is thrown from this point on, make sure to
2905 propagate GDB's knowledge of the executing state to the
2906 frontend/user running state. */
731f534f 2907 scoped_finish_thread_state finish_state (resume_ptid);
4d9d9d04
PA
2908
2909 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2910 threads (e.g., we might need to set threads stepping over
2911 breakpoints first), from the user/frontend's point of view, all
2912 threads in RESUME_PTID are now running. Unless we're calling an
2913 inferior function, as in that case we pretend the inferior
2914 doesn't run at all. */
08036331 2915 if (!cur_thr->control.in_infcall)
4d9d9d04 2916 set_running (resume_ptid, 1);
17b2616c 2917
527159b7 2918 if (debug_infrun)
8a9de0e4 2919 fprintf_unfiltered (gdb_stdlog,
64ce06e4 2920 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 2921 paddress (gdbarch, addr),
64ce06e4 2922 gdb_signal_to_symbol_string (siggnal));
527159b7 2923
4d9d9d04
PA
2924 annotate_starting ();
2925
2926 /* Make sure that output from GDB appears before output from the
2927 inferior. */
2928 gdb_flush (gdb_stdout);
2929
d930703d
PA
2930 /* Since we've marked the inferior running, give it the terminal. A
2931 QUIT/Ctrl-C from here on is forwarded to the target (which can
2932 still detect attempts to unblock a stuck connection with repeated
2933 Ctrl-C from within target_pass_ctrlc). */
2934 target_terminal::inferior ();
2935
4d9d9d04
PA
2936 /* In a multi-threaded task we may select another thread and
2937 then continue or step.
2938
2939 But if a thread that we're resuming had stopped at a breakpoint,
2940 it will immediately cause another breakpoint stop without any
2941 execution (i.e. it will report a breakpoint hit incorrectly). So
2942 we must step over it first.
2943
2944 Look for threads other than the current (TP) that reported a
2945 breakpoint hit and haven't been resumed yet since. */
2946
2947 /* If scheduler locking applies, we can avoid iterating over all
2948 threads. */
08036331 2949 if (!non_stop && !schedlock_applies (cur_thr))
94cc34af 2950 {
08036331
PA
2951 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2952 {
4d9d9d04
PA
2953 /* Ignore the current thread here. It's handled
2954 afterwards. */
08036331 2955 if (tp == cur_thr)
4d9d9d04 2956 continue;
c906108c 2957
4d9d9d04
PA
2958 if (!thread_still_needs_step_over (tp))
2959 continue;
2960
2961 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 2962
99619bea
PA
2963 if (debug_infrun)
2964 fprintf_unfiltered (gdb_stdlog,
2965 "infrun: need to step-over [%s] first\n",
a068643d 2966 target_pid_to_str (tp->ptid).c_str ());
99619bea 2967
4d9d9d04 2968 thread_step_over_chain_enqueue (tp);
2adfaa28 2969 }
30852783
UW
2970 }
2971
4d9d9d04
PA
2972 /* Enqueue the current thread last, so that we move all other
2973 threads over their breakpoints first. */
08036331
PA
2974 if (cur_thr->stepping_over_breakpoint)
2975 thread_step_over_chain_enqueue (cur_thr);
30852783 2976
4d9d9d04
PA
2977 /* If the thread isn't started, we'll still need to set its prev_pc,
2978 so that switch_back_to_stepped_thread knows the thread hasn't
2979 advanced. Must do this before resuming any thread, as in
2980 all-stop/remote, once we resume we can't send any other packet
2981 until the target stops again. */
08036331 2982 cur_thr->prev_pc = regcache_read_pc (regcache);
99619bea 2983
a9bc57b9
TT
2984 {
2985 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
85ad3aaf 2986
a9bc57b9 2987 started = start_step_over ();
c906108c 2988
a9bc57b9
TT
2989 if (step_over_info_valid_p ())
2990 {
2991 /* Either this thread started a new in-line step over, or some
2992 other thread was already doing one. In either case, don't
2993 resume anything else until the step-over is finished. */
2994 }
2995 else if (started && !target_is_non_stop_p ())
2996 {
2997 /* A new displaced stepping sequence was started. In all-stop,
2998 we can't talk to the target anymore until it next stops. */
2999 }
3000 else if (!non_stop && target_is_non_stop_p ())
3001 {
3002 /* In all-stop, but the target is always in non-stop mode.
3003 Start all other threads that are implicitly resumed too. */
08036331 3004 for (thread_info *tp : all_non_exited_threads (resume_ptid))
fbea99ea 3005 {
fbea99ea
PA
3006 if (tp->resumed)
3007 {
3008 if (debug_infrun)
3009 fprintf_unfiltered (gdb_stdlog,
3010 "infrun: proceed: [%s] resumed\n",
a068643d 3011 target_pid_to_str (tp->ptid).c_str ());
fbea99ea
PA
3012 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3013 continue;
3014 }
3015
3016 if (thread_is_in_step_over_chain (tp))
3017 {
3018 if (debug_infrun)
3019 fprintf_unfiltered (gdb_stdlog,
3020 "infrun: proceed: [%s] needs step-over\n",
a068643d 3021 target_pid_to_str (tp->ptid).c_str ());
fbea99ea
PA
3022 continue;
3023 }
3024
3025 if (debug_infrun)
3026 fprintf_unfiltered (gdb_stdlog,
3027 "infrun: proceed: resuming %s\n",
a068643d 3028 target_pid_to_str (tp->ptid).c_str ());
fbea99ea
PA
3029
3030 reset_ecs (ecs, tp);
00431a78 3031 switch_to_thread (tp);
fbea99ea
PA
3032 keep_going_pass_signal (ecs);
3033 if (!ecs->wait_some_more)
fd7dcb94 3034 error (_("Command aborted."));
fbea99ea 3035 }
a9bc57b9 3036 }
08036331 3037 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
a9bc57b9
TT
3038 {
3039 /* The thread wasn't started, and isn't queued, run it now. */
08036331
PA
3040 reset_ecs (ecs, cur_thr);
3041 switch_to_thread (cur_thr);
a9bc57b9
TT
3042 keep_going_pass_signal (ecs);
3043 if (!ecs->wait_some_more)
3044 error (_("Command aborted."));
3045 }
3046 }
c906108c 3047
85ad3aaf
PA
3048 target_commit_resume ();
3049
731f534f 3050 finish_state.release ();
c906108c 3051
0b333c5e
PA
3052 /* Tell the event loop to wait for it to stop. If the target
3053 supports asynchronous execution, it'll do this from within
3054 target_resume. */
362646f5 3055 if (!target_can_async_p ())
0b333c5e 3056 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3057}
c906108c
SS
3058\f
3059
3060/* Start remote-debugging of a machine over a serial link. */
96baa820 3061
c906108c 3062void
8621d6a9 3063start_remote (int from_tty)
c906108c 3064{
d6b48e9c 3065 struct inferior *inferior;
d6b48e9c
PA
3066
3067 inferior = current_inferior ();
16c381f0 3068 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3069
1777feb0 3070 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3071 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3072 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3073 nothing is returned (instead of just blocking). Because of this,
3074 targets expecting an immediate response need to, internally, set
3075 things up so that the target_wait() is forced to eventually
1777feb0 3076 timeout. */
6426a772
JM
3077 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3078 differentiate to its caller what the state of the target is after
3079 the initial open has been performed. Here we're assuming that
3080 the target has stopped. It should be possible to eventually have
3081 target_open() return to the caller an indication that the target
3082 is currently running and GDB state should be set to the same as
1777feb0 3083 for an async run. */
e4c8541f 3084 wait_for_inferior ();
8621d6a9
DJ
3085
3086 /* Now that the inferior has stopped, do any bookkeeping like
3087 loading shared libraries. We want to do this before normal_stop,
3088 so that the displayed frame is up to date. */
8b88a78e 3089 post_create_inferior (current_top_target (), from_tty);
8621d6a9 3090
6426a772 3091 normal_stop ();
c906108c
SS
3092}
3093
3094/* Initialize static vars when a new inferior begins. */
3095
3096void
96baa820 3097init_wait_for_inferior (void)
c906108c
SS
3098{
3099 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3100
c906108c
SS
3101 breakpoint_init_inferior (inf_starting);
3102
70509625 3103 clear_proceed_status (0);
9f976b41 3104
ca005067 3105 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3106
842951eb 3107 previous_inferior_ptid = inferior_ptid;
c906108c 3108}
237fc4c9 3109
c906108c 3110\f
488f131b 3111
ec9499be 3112static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3113
568d6575
UW
3114static void handle_step_into_function (struct gdbarch *gdbarch,
3115 struct execution_control_state *ecs);
3116static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3117 struct execution_control_state *ecs);
4f5d7f63 3118static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3119static void check_exception_resume (struct execution_control_state *,
28106bc2 3120 struct frame_info *);
611c83ae 3121
bdc36728 3122static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3123static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3124static void keep_going (struct execution_control_state *ecs);
94c57d6a 3125static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3126static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3127
252fbfc8
PA
3128/* This function is attached as a "thread_stop_requested" observer.
3129 Cleanup local state that assumed the PTID was to be resumed, and
3130 report the stop to the frontend. */
3131
2c0b251b 3132static void
252fbfc8
PA
3133infrun_thread_stop_requested (ptid_t ptid)
3134{
c65d6b55
PA
3135 /* PTID was requested to stop. If the thread was already stopped,
3136 but the user/frontend doesn't know about that yet (e.g., the
3137 thread had been temporarily paused for some step-over), set up
3138 for reporting the stop now. */
08036331
PA
3139 for (thread_info *tp : all_threads (ptid))
3140 {
3141 if (tp->state != THREAD_RUNNING)
3142 continue;
3143 if (tp->executing)
3144 continue;
c65d6b55 3145
08036331
PA
3146 /* Remove matching threads from the step-over queue, so
3147 start_step_over doesn't try to resume them
3148 automatically. */
3149 if (thread_is_in_step_over_chain (tp))
3150 thread_step_over_chain_remove (tp);
c65d6b55 3151
08036331
PA
3152 /* If the thread is stopped, but the user/frontend doesn't
3153 know about that yet, queue a pending event, as if the
3154 thread had just stopped now. Unless the thread already had
3155 a pending event. */
3156 if (!tp->suspend.waitstatus_pending_p)
3157 {
3158 tp->suspend.waitstatus_pending_p = 1;
3159 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3160 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3161 }
c65d6b55 3162
08036331
PA
3163 /* Clear the inline-frame state, since we're re-processing the
3164 stop. */
3165 clear_inline_frame_state (tp->ptid);
c65d6b55 3166
08036331
PA
3167 /* If this thread was paused because some other thread was
3168 doing an inline-step over, let that finish first. Once
3169 that happens, we'll restart all threads and consume pending
3170 stop events then. */
3171 if (step_over_info_valid_p ())
3172 continue;
3173
3174 /* Otherwise we can process the (new) pending event now. Set
3175 it so this pending event is considered by
3176 do_target_wait. */
3177 tp->resumed = 1;
3178 }
252fbfc8
PA
3179}
3180
a07daef3
PA
3181static void
3182infrun_thread_thread_exit (struct thread_info *tp, int silent)
3183{
d7e15655 3184 if (target_last_wait_ptid == tp->ptid)
a07daef3
PA
3185 nullify_last_target_wait_ptid ();
3186}
3187
0cbcdb96
PA
3188/* Delete the step resume, single-step and longjmp/exception resume
3189 breakpoints of TP. */
4e1c45ea 3190
0cbcdb96
PA
3191static void
3192delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3193{
0cbcdb96
PA
3194 delete_step_resume_breakpoint (tp);
3195 delete_exception_resume_breakpoint (tp);
34b7e8a6 3196 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3197}
3198
0cbcdb96
PA
3199/* If the target still has execution, call FUNC for each thread that
3200 just stopped. In all-stop, that's all the non-exited threads; in
3201 non-stop, that's the current thread, only. */
3202
3203typedef void (*for_each_just_stopped_thread_callback_func)
3204 (struct thread_info *tp);
4e1c45ea
PA
3205
3206static void
0cbcdb96 3207for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3208{
d7e15655 3209 if (!target_has_execution || inferior_ptid == null_ptid)
4e1c45ea
PA
3210 return;
3211
fbea99ea 3212 if (target_is_non_stop_p ())
4e1c45ea 3213 {
0cbcdb96
PA
3214 /* If in non-stop mode, only the current thread stopped. */
3215 func (inferior_thread ());
4e1c45ea
PA
3216 }
3217 else
0cbcdb96 3218 {
0cbcdb96 3219 /* In all-stop mode, all threads have stopped. */
08036331
PA
3220 for (thread_info *tp : all_non_exited_threads ())
3221 func (tp);
0cbcdb96
PA
3222 }
3223}
3224
3225/* Delete the step resume and longjmp/exception resume breakpoints of
3226 the threads that just stopped. */
3227
3228static void
3229delete_just_stopped_threads_infrun_breakpoints (void)
3230{
3231 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3232}
3233
3234/* Delete the single-step breakpoints of the threads that just
3235 stopped. */
7c16b83e 3236
34b7e8a6
PA
3237static void
3238delete_just_stopped_threads_single_step_breakpoints (void)
3239{
3240 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3241}
3242
221e1a37 3243/* See infrun.h. */
223698f8 3244
221e1a37 3245void
223698f8
DE
3246print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3247 const struct target_waitstatus *ws)
3248{
23fdd69e 3249 std::string status_string = target_waitstatus_to_string (ws);
d7e74731 3250 string_file stb;
223698f8
DE
3251
3252 /* The text is split over several lines because it was getting too long.
3253 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3254 output as a unit; we want only one timestamp printed if debug_timestamp
3255 is set. */
3256
d7e74731 3257 stb.printf ("infrun: target_wait (%d.%ld.%ld",
e99b03dc 3258 waiton_ptid.pid (),
e38504b3 3259 waiton_ptid.lwp (),
cc6bcb54 3260 waiton_ptid.tid ());
e99b03dc 3261 if (waiton_ptid.pid () != -1)
a068643d 3262 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
d7e74731
PA
3263 stb.printf (", status) =\n");
3264 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
e99b03dc 3265 result_ptid.pid (),
e38504b3 3266 result_ptid.lwp (),
cc6bcb54 3267 result_ptid.tid (),
a068643d 3268 target_pid_to_str (result_ptid).c_str ());
23fdd69e 3269 stb.printf ("infrun: %s\n", status_string.c_str ());
223698f8
DE
3270
3271 /* This uses %s in part to handle %'s in the text, but also to avoid
3272 a gcc error: the format attribute requires a string literal. */
d7e74731 3273 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3274}
3275
372316f1
PA
3276/* Select a thread at random, out of those which are resumed and have
3277 had events. */
3278
3279static struct thread_info *
3280random_pending_event_thread (ptid_t waiton_ptid)
3281{
372316f1 3282 int num_events = 0;
08036331
PA
3283
3284 auto has_event = [] (thread_info *tp)
3285 {
3286 return (tp->resumed
3287 && tp->suspend.waitstatus_pending_p);
3288 };
372316f1
PA
3289
3290 /* First see how many events we have. Count only resumed threads
3291 that have an event pending. */
08036331
PA
3292 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3293 if (has_event (tp))
372316f1
PA
3294 num_events++;
3295
3296 if (num_events == 0)
3297 return NULL;
3298
3299 /* Now randomly pick a thread out of those that have had events. */
08036331
PA
3300 int random_selector = (int) ((num_events * (double) rand ())
3301 / (RAND_MAX + 1.0));
372316f1
PA
3302
3303 if (debug_infrun && num_events > 1)
3304 fprintf_unfiltered (gdb_stdlog,
3305 "infrun: Found %d events, selecting #%d\n",
3306 num_events, random_selector);
3307
3308 /* Select the Nth thread that has had an event. */
08036331
PA
3309 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3310 if (has_event (tp))
372316f1 3311 if (random_selector-- == 0)
08036331 3312 return tp;
372316f1 3313
08036331 3314 gdb_assert_not_reached ("event thread not found");
372316f1
PA
3315}
3316
3317/* Wrapper for target_wait that first checks whether threads have
3318 pending statuses to report before actually asking the target for
3319 more events. */
3320
3321static ptid_t
3322do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3323{
3324 ptid_t event_ptid;
3325 struct thread_info *tp;
3326
3327 /* First check if there is a resumed thread with a wait status
3328 pending. */
d7e15655 3329 if (ptid == minus_one_ptid || ptid.is_pid ())
372316f1
PA
3330 {
3331 tp = random_pending_event_thread (ptid);
3332 }
3333 else
3334 {
3335 if (debug_infrun)
3336 fprintf_unfiltered (gdb_stdlog,
3337 "infrun: Waiting for specific thread %s.\n",
a068643d 3338 target_pid_to_str (ptid).c_str ());
372316f1
PA
3339
3340 /* We have a specific thread to check. */
3341 tp = find_thread_ptid (ptid);
3342 gdb_assert (tp != NULL);
3343 if (!tp->suspend.waitstatus_pending_p)
3344 tp = NULL;
3345 }
3346
3347 if (tp != NULL
3348 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3349 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3350 {
00431a78 3351 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 3352 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3353 CORE_ADDR pc;
3354 int discard = 0;
3355
3356 pc = regcache_read_pc (regcache);
3357
3358 if (pc != tp->suspend.stop_pc)
3359 {
3360 if (debug_infrun)
3361 fprintf_unfiltered (gdb_stdlog,
3362 "infrun: PC of %s changed. was=%s, now=%s\n",
a068643d 3363 target_pid_to_str (tp->ptid).c_str (),
defd2172 3364 paddress (gdbarch, tp->suspend.stop_pc),
372316f1
PA
3365 paddress (gdbarch, pc));
3366 discard = 1;
3367 }
a01bda52 3368 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1
PA
3369 {
3370 if (debug_infrun)
3371 fprintf_unfiltered (gdb_stdlog,
3372 "infrun: previous breakpoint of %s, at %s gone\n",
a068643d 3373 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
3374 paddress (gdbarch, pc));
3375
3376 discard = 1;
3377 }
3378
3379 if (discard)
3380 {
3381 if (debug_infrun)
3382 fprintf_unfiltered (gdb_stdlog,
3383 "infrun: pending event of %s cancelled.\n",
a068643d 3384 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3385
3386 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3387 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3388 }
3389 }
3390
3391 if (tp != NULL)
3392 {
3393 if (debug_infrun)
3394 {
23fdd69e
SM
3395 std::string statstr
3396 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 3397
372316f1
PA
3398 fprintf_unfiltered (gdb_stdlog,
3399 "infrun: Using pending wait status %s for %s.\n",
23fdd69e 3400 statstr.c_str (),
a068643d 3401 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3402 }
3403
3404 /* Now that we've selected our final event LWP, un-adjust its PC
3405 if it was a software breakpoint (and the target doesn't
3406 always adjust the PC itself). */
3407 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3408 && !target_supports_stopped_by_sw_breakpoint ())
3409 {
3410 struct regcache *regcache;
3411 struct gdbarch *gdbarch;
3412 int decr_pc;
3413
00431a78 3414 regcache = get_thread_regcache (tp);
ac7936df 3415 gdbarch = regcache->arch ();
372316f1
PA
3416
3417 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3418 if (decr_pc != 0)
3419 {
3420 CORE_ADDR pc;
3421
3422 pc = regcache_read_pc (regcache);
3423 regcache_write_pc (regcache, pc + decr_pc);
3424 }
3425 }
3426
3427 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3428 *status = tp->suspend.waitstatus;
3429 tp->suspend.waitstatus_pending_p = 0;
3430
3431 /* Wake up the event loop again, until all pending events are
3432 processed. */
3433 if (target_is_async_p ())
3434 mark_async_event_handler (infrun_async_inferior_event_token);
3435 return tp->ptid;
3436 }
3437
3438 /* But if we don't find one, we'll have to wait. */
3439
3440 if (deprecated_target_wait_hook)
3441 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3442 else
3443 event_ptid = target_wait (ptid, status, options);
3444
3445 return event_ptid;
3446}
3447
24291992
PA
3448/* Prepare and stabilize the inferior for detaching it. E.g.,
3449 detaching while a thread is displaced stepping is a recipe for
3450 crashing it, as nothing would readjust the PC out of the scratch
3451 pad. */
3452
3453void
3454prepare_for_detach (void)
3455{
3456 struct inferior *inf = current_inferior ();
f2907e49 3457 ptid_t pid_ptid = ptid_t (inf->pid);
24291992 3458
00431a78 3459 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
24291992
PA
3460
3461 /* Is any thread of this process displaced stepping? If not,
3462 there's nothing else to do. */
d20172fc 3463 if (displaced->step_thread == nullptr)
24291992
PA
3464 return;
3465
3466 if (debug_infrun)
3467 fprintf_unfiltered (gdb_stdlog,
3468 "displaced-stepping in-process while detaching");
3469
9bcb1f16 3470 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992 3471
00431a78 3472 while (displaced->step_thread != nullptr)
24291992 3473 {
24291992
PA
3474 struct execution_control_state ecss;
3475 struct execution_control_state *ecs;
3476
3477 ecs = &ecss;
3478 memset (ecs, 0, sizeof (*ecs));
3479
3480 overlay_cache_invalid = 1;
f15cb84a
YQ
3481 /* Flush target cache before starting to handle each event.
3482 Target was running and cache could be stale. This is just a
3483 heuristic. Running threads may modify target memory, but we
3484 don't get any event. */
3485 target_dcache_invalidate ();
24291992 3486
372316f1 3487 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3488
3489 if (debug_infrun)
3490 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3491
3492 /* If an error happens while handling the event, propagate GDB's
3493 knowledge of the executing state to the frontend/user running
3494 state. */
731f534f 3495 scoped_finish_thread_state finish_state (minus_one_ptid);
24291992
PA
3496
3497 /* Now figure out what to do with the result of the result. */
3498 handle_inferior_event (ecs);
3499
3500 /* No error, don't finish the state yet. */
731f534f 3501 finish_state.release ();
24291992
PA
3502
3503 /* Breakpoints and watchpoints are not installed on the target
3504 at this point, and signals are passed directly to the
3505 inferior, so this must mean the process is gone. */
3506 if (!ecs->wait_some_more)
3507 {
9bcb1f16 3508 restore_detaching.release ();
24291992
PA
3509 error (_("Program exited while detaching"));
3510 }
3511 }
3512
9bcb1f16 3513 restore_detaching.release ();
24291992
PA
3514}
3515
cd0fc7c3 3516/* Wait for control to return from inferior to debugger.
ae123ec6 3517
cd0fc7c3
SS
3518 If inferior gets a signal, we may decide to start it up again
3519 instead of returning. That is why there is a loop in this function.
3520 When this function actually returns it means the inferior
3521 should be left stopped and GDB should read more commands. */
3522
3523void
e4c8541f 3524wait_for_inferior (void)
cd0fc7c3 3525{
527159b7 3526 if (debug_infrun)
ae123ec6 3527 fprintf_unfiltered
e4c8541f 3528 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3529
4c41382a 3530 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
cd0fc7c3 3531
e6f5c25b
PA
3532 /* If an error happens while handling the event, propagate GDB's
3533 knowledge of the executing state to the frontend/user running
3534 state. */
731f534f 3535 scoped_finish_thread_state finish_state (minus_one_ptid);
e6f5c25b 3536
c906108c
SS
3537 while (1)
3538 {
ae25568b
PA
3539 struct execution_control_state ecss;
3540 struct execution_control_state *ecs = &ecss;
963f9c80 3541 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3542
ae25568b
PA
3543 memset (ecs, 0, sizeof (*ecs));
3544
ec9499be 3545 overlay_cache_invalid = 1;
ec9499be 3546
f15cb84a
YQ
3547 /* Flush target cache before starting to handle each event.
3548 Target was running and cache could be stale. This is just a
3549 heuristic. Running threads may modify target memory, but we
3550 don't get any event. */
3551 target_dcache_invalidate ();
3552
372316f1 3553 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3554
f00150c9 3555 if (debug_infrun)
223698f8 3556 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3557
cd0fc7c3
SS
3558 /* Now figure out what to do with the result of the result. */
3559 handle_inferior_event (ecs);
c906108c 3560
cd0fc7c3
SS
3561 if (!ecs->wait_some_more)
3562 break;
3563 }
4e1c45ea 3564
e6f5c25b 3565 /* No error, don't finish the state yet. */
731f534f 3566 finish_state.release ();
cd0fc7c3 3567}
c906108c 3568
d3d4baed
PA
3569/* Cleanup that reinstalls the readline callback handler, if the
3570 target is running in the background. If while handling the target
3571 event something triggered a secondary prompt, like e.g., a
3572 pagination prompt, we'll have removed the callback handler (see
3573 gdb_readline_wrapper_line). Need to do this as we go back to the
3574 event loop, ready to process further input. Note this has no
3575 effect if the handler hasn't actually been removed, because calling
3576 rl_callback_handler_install resets the line buffer, thus losing
3577 input. */
3578
3579static void
d238133d 3580reinstall_readline_callback_handler_cleanup ()
d3d4baed 3581{
3b12939d
PA
3582 struct ui *ui = current_ui;
3583
3584 if (!ui->async)
6c400b59
PA
3585 {
3586 /* We're not going back to the top level event loop yet. Don't
3587 install the readline callback, as it'd prep the terminal,
3588 readline-style (raw, noecho) (e.g., --batch). We'll install
3589 it the next time the prompt is displayed, when we're ready
3590 for input. */
3591 return;
3592 }
3593
3b12939d 3594 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3595 gdb_rl_callback_handler_reinstall ();
3596}
3597
243a9253
PA
3598/* Clean up the FSMs of threads that are now stopped. In non-stop,
3599 that's just the event thread. In all-stop, that's all threads. */
3600
3601static void
3602clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3603{
08036331
PA
3604 if (ecs->event_thread != NULL
3605 && ecs->event_thread->thread_fsm != NULL)
46e3ed7f 3606 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
243a9253
PA
3607
3608 if (!non_stop)
3609 {
08036331 3610 for (thread_info *thr : all_non_exited_threads ())
243a9253
PA
3611 {
3612 if (thr->thread_fsm == NULL)
3613 continue;
3614 if (thr == ecs->event_thread)
3615 continue;
3616
00431a78 3617 switch_to_thread (thr);
46e3ed7f 3618 thr->thread_fsm->clean_up (thr);
243a9253
PA
3619 }
3620
3621 if (ecs->event_thread != NULL)
00431a78 3622 switch_to_thread (ecs->event_thread);
243a9253
PA
3623 }
3624}
3625
3b12939d
PA
3626/* Helper for all_uis_check_sync_execution_done that works on the
3627 current UI. */
3628
3629static void
3630check_curr_ui_sync_execution_done (void)
3631{
3632 struct ui *ui = current_ui;
3633
3634 if (ui->prompt_state == PROMPT_NEEDED
3635 && ui->async
3636 && !gdb_in_secondary_prompt_p (ui))
3637 {
223ffa71 3638 target_terminal::ours ();
76727919 3639 gdb::observers::sync_execution_done.notify ();
3eb7562a 3640 ui_register_input_event_handler (ui);
3b12939d
PA
3641 }
3642}
3643
3644/* See infrun.h. */
3645
3646void
3647all_uis_check_sync_execution_done (void)
3648{
0e454242 3649 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3650 {
3651 check_curr_ui_sync_execution_done ();
3652 }
3653}
3654
a8836c93
PA
3655/* See infrun.h. */
3656
3657void
3658all_uis_on_sync_execution_starting (void)
3659{
0e454242 3660 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3661 {
3662 if (current_ui->prompt_state == PROMPT_NEEDED)
3663 async_disable_stdin ();
3664 }
3665}
3666
1777feb0 3667/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3668 event loop whenever a change of state is detected on the file
1777feb0
MS
3669 descriptor corresponding to the target. It can be called more than
3670 once to complete a single execution command. In such cases we need
3671 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3672 that this function is called for a single execution command, then
3673 report to the user that the inferior has stopped, and do the
1777feb0 3674 necessary cleanups. */
43ff13b4
JM
3675
3676void
fba45db2 3677fetch_inferior_event (void *client_data)
43ff13b4 3678{
0d1e5fa7 3679 struct execution_control_state ecss;
a474d7c2 3680 struct execution_control_state *ecs = &ecss;
0f641c01 3681 int cmd_done = 0;
963f9c80 3682 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3683
0d1e5fa7
PA
3684 memset (ecs, 0, sizeof (*ecs));
3685
c61db772
PA
3686 /* Events are always processed with the main UI as current UI. This
3687 way, warnings, debug output, etc. are always consistently sent to
3688 the main console. */
4b6749b9 3689 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3690
d3d4baed 3691 /* End up with readline processing input, if necessary. */
d238133d
TT
3692 {
3693 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3694
3695 /* We're handling a live event, so make sure we're doing live
3696 debugging. If we're looking at traceframes while the target is
3697 running, we're going to need to get back to that mode after
3698 handling the event. */
3699 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3700 if (non_stop)
3701 {
3702 maybe_restore_traceframe.emplace ();
3703 set_current_traceframe (-1);
3704 }
43ff13b4 3705
d238133d
TT
3706 gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3707
3708 if (non_stop)
3709 /* In non-stop mode, the user/frontend should not notice a thread
3710 switch due to internal events. Make sure we reverse to the
3711 user selected thread and frame after handling the event and
3712 running any breakpoint commands. */
3713 maybe_restore_thread.emplace ();
3714
3715 overlay_cache_invalid = 1;
3716 /* Flush target cache before starting to handle each event. Target
3717 was running and cache could be stale. This is just a heuristic.
3718 Running threads may modify target memory, but we don't get any
3719 event. */
3720 target_dcache_invalidate ();
3721
3722 scoped_restore save_exec_dir
3723 = make_scoped_restore (&execution_direction,
3724 target_execution_direction ());
3725
3726 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3727 target_can_async_p () ? TARGET_WNOHANG : 0);
3728
3729 if (debug_infrun)
3730 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3731
3732 /* If an error happens while handling the event, propagate GDB's
3733 knowledge of the executing state to the frontend/user running
3734 state. */
3735 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3736 scoped_finish_thread_state finish_state (finish_ptid);
3737
979a0d13 3738 /* Get executed before scoped_restore_current_thread above to apply
d238133d
TT
3739 still for the thread which has thrown the exception. */
3740 auto defer_bpstat_clear
3741 = make_scope_exit (bpstat_clear_actions);
3742 auto defer_delete_threads
3743 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3744
3745 /* Now figure out what to do with the result of the result. */
3746 handle_inferior_event (ecs);
3747
3748 if (!ecs->wait_some_more)
3749 {
3750 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3751 int should_stop = 1;
3752 struct thread_info *thr = ecs->event_thread;
d6b48e9c 3753
d238133d 3754 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3755
d238133d
TT
3756 if (thr != NULL)
3757 {
3758 struct thread_fsm *thread_fsm = thr->thread_fsm;
243a9253 3759
d238133d 3760 if (thread_fsm != NULL)
46e3ed7f 3761 should_stop = thread_fsm->should_stop (thr);
d238133d 3762 }
243a9253 3763
d238133d
TT
3764 if (!should_stop)
3765 {
3766 keep_going (ecs);
3767 }
3768 else
3769 {
46e3ed7f 3770 bool should_notify_stop = true;
d238133d 3771 int proceeded = 0;
1840d81a 3772
d238133d 3773 clean_up_just_stopped_threads_fsms (ecs);
243a9253 3774
d238133d 3775 if (thr != NULL && thr->thread_fsm != NULL)
46e3ed7f 3776 should_notify_stop = thr->thread_fsm->should_notify_stop ();
388a7084 3777
d238133d
TT
3778 if (should_notify_stop)
3779 {
3780 /* We may not find an inferior if this was a process exit. */
3781 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3782 proceeded = normal_stop ();
3783 }
243a9253 3784
d238133d
TT
3785 if (!proceeded)
3786 {
3787 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3788 cmd_done = 1;
3789 }
3790 }
3791 }
4f8d22e3 3792
d238133d
TT
3793 defer_delete_threads.release ();
3794 defer_bpstat_clear.release ();
29f49a6a 3795
d238133d
TT
3796 /* No error, don't finish the thread states yet. */
3797 finish_state.release ();
731f534f 3798
d238133d
TT
3799 /* This scope is used to ensure that readline callbacks are
3800 reinstalled here. */
3801 }
4f8d22e3 3802
3b12939d
PA
3803 /* If a UI was in sync execution mode, and now isn't, restore its
3804 prompt (a synchronous execution command has finished, and we're
3805 ready for input). */
3806 all_uis_check_sync_execution_done ();
0f641c01
PA
3807
3808 if (cmd_done
0f641c01 3809 && exec_done_display_p
00431a78
PA
3810 && (inferior_ptid == null_ptid
3811 || inferior_thread ()->state != THREAD_RUNNING))
0f641c01 3812 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3813}
3814
edb3359d
DJ
3815/* Record the frame and location we're currently stepping through. */
3816void
3817set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3818{
3819 struct thread_info *tp = inferior_thread ();
3820
16c381f0
JK
3821 tp->control.step_frame_id = get_frame_id (frame);
3822 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
3823
3824 tp->current_symtab = sal.symtab;
3825 tp->current_line = sal.line;
3826}
3827
0d1e5fa7
PA
3828/* Clear context switchable stepping state. */
3829
3830void
4e1c45ea 3831init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 3832{
7f5ef605 3833 tss->stepped_breakpoint = 0;
0d1e5fa7 3834 tss->stepping_over_breakpoint = 0;
963f9c80 3835 tss->stepping_over_watchpoint = 0;
0d1e5fa7 3836 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
3837}
3838
c32c64b7
DE
3839/* Set the cached copy of the last ptid/waitstatus. */
3840
6efcd9a8 3841void
c32c64b7
DE
3842set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3843{
3844 target_last_wait_ptid = ptid;
3845 target_last_waitstatus = status;
3846}
3847
e02bc4cc 3848/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
3849 target_wait()/deprecated_target_wait_hook(). The data is actually
3850 cached by handle_inferior_event(), which gets called immediately
3851 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
3852
3853void
488f131b 3854get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 3855{
39f77062 3856 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
3857 *status = target_last_waitstatus;
3858}
3859
ac264b3b
MS
3860void
3861nullify_last_target_wait_ptid (void)
3862{
3863 target_last_wait_ptid = minus_one_ptid;
3864}
3865
dcf4fbde 3866/* Switch thread contexts. */
dd80620e
MS
3867
3868static void
00431a78 3869context_switch (execution_control_state *ecs)
dd80620e 3870{
00431a78
PA
3871 if (debug_infrun
3872 && ecs->ptid != inferior_ptid
3873 && ecs->event_thread != inferior_thread ())
fd48f117
DJ
3874 {
3875 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
a068643d 3876 target_pid_to_str (inferior_ptid).c_str ());
fd48f117 3877 fprintf_unfiltered (gdb_stdlog, "to %s\n",
a068643d 3878 target_pid_to_str (ecs->ptid).c_str ());
fd48f117
DJ
3879 }
3880
00431a78 3881 switch_to_thread (ecs->event_thread);
dd80620e
MS
3882}
3883
d8dd4d5f
PA
3884/* If the target can't tell whether we've hit breakpoints
3885 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
3886 check whether that could have been caused by a breakpoint. If so,
3887 adjust the PC, per gdbarch_decr_pc_after_break. */
3888
4fa8626c 3889static void
d8dd4d5f
PA
3890adjust_pc_after_break (struct thread_info *thread,
3891 struct target_waitstatus *ws)
4fa8626c 3892{
24a73cce
UW
3893 struct regcache *regcache;
3894 struct gdbarch *gdbarch;
118e6252 3895 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 3896
4fa8626c
DJ
3897 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3898 we aren't, just return.
9709f61c
DJ
3899
3900 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
3901 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3902 implemented by software breakpoints should be handled through the normal
3903 breakpoint layer.
8fb3e588 3904
4fa8626c
DJ
3905 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3906 different signals (SIGILL or SIGEMT for instance), but it is less
3907 clear where the PC is pointing afterwards. It may not match
b798847d
UW
3908 gdbarch_decr_pc_after_break. I don't know any specific target that
3909 generates these signals at breakpoints (the code has been in GDB since at
3910 least 1992) so I can not guess how to handle them here.
8fb3e588 3911
e6cf7916
UW
3912 In earlier versions of GDB, a target with
3913 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
3914 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3915 target with both of these set in GDB history, and it seems unlikely to be
3916 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 3917
d8dd4d5f 3918 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
3919 return;
3920
d8dd4d5f 3921 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
3922 return;
3923
4058b839
PA
3924 /* In reverse execution, when a breakpoint is hit, the instruction
3925 under it has already been de-executed. The reported PC always
3926 points at the breakpoint address, so adjusting it further would
3927 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3928 architecture:
3929
3930 B1 0x08000000 : INSN1
3931 B2 0x08000001 : INSN2
3932 0x08000002 : INSN3
3933 PC -> 0x08000003 : INSN4
3934
3935 Say you're stopped at 0x08000003 as above. Reverse continuing
3936 from that point should hit B2 as below. Reading the PC when the
3937 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3938 been de-executed already.
3939
3940 B1 0x08000000 : INSN1
3941 B2 PC -> 0x08000001 : INSN2
3942 0x08000002 : INSN3
3943 0x08000003 : INSN4
3944
3945 We can't apply the same logic as for forward execution, because
3946 we would wrongly adjust the PC to 0x08000000, since there's a
3947 breakpoint at PC - 1. We'd then report a hit on B1, although
3948 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3949 behaviour. */
3950 if (execution_direction == EXEC_REVERSE)
3951 return;
3952
1cf4d951
PA
3953 /* If the target can tell whether the thread hit a SW breakpoint,
3954 trust it. Targets that can tell also adjust the PC
3955 themselves. */
3956 if (target_supports_stopped_by_sw_breakpoint ())
3957 return;
3958
3959 /* Note that relying on whether a breakpoint is planted in memory to
3960 determine this can fail. E.g,. the breakpoint could have been
3961 removed since. Or the thread could have been told to step an
3962 instruction the size of a breakpoint instruction, and only
3963 _after_ was a breakpoint inserted at its address. */
3964
24a73cce
UW
3965 /* If this target does not decrement the PC after breakpoints, then
3966 we have nothing to do. */
00431a78 3967 regcache = get_thread_regcache (thread);
ac7936df 3968 gdbarch = regcache->arch ();
118e6252 3969
527a273a 3970 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 3971 if (decr_pc == 0)
24a73cce
UW
3972 return;
3973
8b86c959 3974 const address_space *aspace = regcache->aspace ();
6c95b8df 3975
8aad930b
AC
3976 /* Find the location where (if we've hit a breakpoint) the
3977 breakpoint would be. */
118e6252 3978 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 3979
1cf4d951
PA
3980 /* If the target can't tell whether a software breakpoint triggered,
3981 fallback to figuring it out based on breakpoints we think were
3982 inserted in the target, and on whether the thread was stepped or
3983 continued. */
3984
1c5cfe86
PA
3985 /* Check whether there actually is a software breakpoint inserted at
3986 that location.
3987
3988 If in non-stop mode, a race condition is possible where we've
3989 removed a breakpoint, but stop events for that breakpoint were
3990 already queued and arrive later. To suppress those spurious
3991 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
3992 and retire them after a number of stop events are reported. Note
3993 this is an heuristic and can thus get confused. The real fix is
3994 to get the "stopped by SW BP and needs adjustment" info out of
3995 the target/kernel (and thus never reach here; see above). */
6c95b8df 3996 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
3997 || (target_is_non_stop_p ()
3998 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 3999 {
07036511 4000 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 4001
8213266a 4002 if (record_full_is_used ())
07036511
TT
4003 restore_operation_disable.emplace
4004 (record_full_gdb_operation_disable_set ());
96429cc8 4005
1c0fdd0e
UW
4006 /* When using hardware single-step, a SIGTRAP is reported for both
4007 a completed single-step and a software breakpoint. Need to
4008 differentiate between the two, as the latter needs adjusting
4009 but the former does not.
4010
4011 The SIGTRAP can be due to a completed hardware single-step only if
4012 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4013 - this thread is currently being stepped
4014
4015 If any of these events did not occur, we must have stopped due
4016 to hitting a software breakpoint, and have to back up to the
4017 breakpoint address.
4018
4019 As a special case, we could have hardware single-stepped a
4020 software breakpoint. In this case (prev_pc == breakpoint_pc),
4021 we also need to back up to the breakpoint address. */
4022
d8dd4d5f
PA
4023 if (thread_has_single_step_breakpoints_set (thread)
4024 || !currently_stepping (thread)
4025 || (thread->stepped_breakpoint
4026 && thread->prev_pc == breakpoint_pc))
515630c5 4027 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4028 }
4fa8626c
DJ
4029}
4030
edb3359d
DJ
4031static int
4032stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4033{
4034 for (frame = get_prev_frame (frame);
4035 frame != NULL;
4036 frame = get_prev_frame (frame))
4037 {
4038 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4039 return 1;
4040 if (get_frame_type (frame) != INLINE_FRAME)
4041 break;
4042 }
4043
4044 return 0;
4045}
4046
c65d6b55
PA
4047/* If the event thread has the stop requested flag set, pretend it
4048 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4049 target_stop). */
4050
4051static bool
4052handle_stop_requested (struct execution_control_state *ecs)
4053{
4054 if (ecs->event_thread->stop_requested)
4055 {
4056 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4057 ecs->ws.value.sig = GDB_SIGNAL_0;
4058 handle_signal_stop (ecs);
4059 return true;
4060 }
4061 return false;
4062}
4063
a96d9b2e
SDJ
4064/* Auxiliary function that handles syscall entry/return events.
4065 It returns 1 if the inferior should keep going (and GDB
4066 should ignore the event), or 0 if the event deserves to be
4067 processed. */
ca2163eb 4068
a96d9b2e 4069static int
ca2163eb 4070handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4071{
ca2163eb 4072 struct regcache *regcache;
ca2163eb
PA
4073 int syscall_number;
4074
00431a78 4075 context_switch (ecs);
ca2163eb 4076
00431a78 4077 regcache = get_thread_regcache (ecs->event_thread);
f90263c1 4078 syscall_number = ecs->ws.value.syscall_number;
f2ffa92b 4079 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
ca2163eb 4080
a96d9b2e
SDJ
4081 if (catch_syscall_enabled () > 0
4082 && catching_syscall_number (syscall_number) > 0)
4083 {
4084 if (debug_infrun)
4085 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4086 syscall_number);
a96d9b2e 4087
16c381f0 4088 ecs->event_thread->control.stop_bpstat
a01bda52 4089 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4090 ecs->event_thread->suspend.stop_pc,
4091 ecs->event_thread, &ecs->ws);
ab04a2af 4092
c65d6b55
PA
4093 if (handle_stop_requested (ecs))
4094 return 0;
4095
ce12b012 4096 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4097 {
4098 /* Catchpoint hit. */
ca2163eb
PA
4099 return 0;
4100 }
a96d9b2e 4101 }
ca2163eb 4102
c65d6b55
PA
4103 if (handle_stop_requested (ecs))
4104 return 0;
4105
ca2163eb 4106 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4107 keep_going (ecs);
4108 return 1;
a96d9b2e
SDJ
4109}
4110
7e324e48
GB
4111/* Lazily fill in the execution_control_state's stop_func_* fields. */
4112
4113static void
4114fill_in_stop_func (struct gdbarch *gdbarch,
4115 struct execution_control_state *ecs)
4116{
4117 if (!ecs->stop_func_filled_in)
4118 {
4119 /* Don't care about return value; stop_func_start and stop_func_name
4120 will both be 0 if it doesn't work. */
59adbf5d
KB
4121 find_function_entry_range_from_pc (ecs->event_thread->suspend.stop_pc,
4122 &ecs->stop_func_name,
4123 &ecs->stop_func_start,
4124 &ecs->stop_func_end);
7e324e48
GB
4125 ecs->stop_func_start
4126 += gdbarch_deprecated_function_start_offset (gdbarch);
4127
591a12a1
UW
4128 if (gdbarch_skip_entrypoint_p (gdbarch))
4129 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4130 ecs->stop_func_start);
4131
7e324e48
GB
4132 ecs->stop_func_filled_in = 1;
4133 }
4134}
4135
4f5d7f63 4136
00431a78 4137/* Return the STOP_SOON field of the inferior pointed at by ECS. */
4f5d7f63
PA
4138
4139static enum stop_kind
00431a78 4140get_inferior_stop_soon (execution_control_state *ecs)
4f5d7f63 4141{
00431a78 4142 struct inferior *inf = find_inferior_ptid (ecs->ptid);
4f5d7f63
PA
4143
4144 gdb_assert (inf != NULL);
4145 return inf->control.stop_soon;
4146}
4147
372316f1
PA
4148/* Wait for one event. Store the resulting waitstatus in WS, and
4149 return the event ptid. */
4150
4151static ptid_t
4152wait_one (struct target_waitstatus *ws)
4153{
4154 ptid_t event_ptid;
4155 ptid_t wait_ptid = minus_one_ptid;
4156
4157 overlay_cache_invalid = 1;
4158
4159 /* Flush target cache before starting to handle each event.
4160 Target was running and cache could be stale. This is just a
4161 heuristic. Running threads may modify target memory, but we
4162 don't get any event. */
4163 target_dcache_invalidate ();
4164
4165 if (deprecated_target_wait_hook)
4166 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4167 else
4168 event_ptid = target_wait (wait_ptid, ws, 0);
4169
4170 if (debug_infrun)
4171 print_target_wait_results (wait_ptid, event_ptid, ws);
4172
4173 return event_ptid;
4174}
4175
4176/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4177 instead of the current thread. */
4178#define THREAD_STOPPED_BY(REASON) \
4179static int \
4180thread_stopped_by_ ## REASON (ptid_t ptid) \
4181{ \
2989a365 4182 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
372316f1
PA
4183 inferior_ptid = ptid; \
4184 \
2989a365 4185 return target_stopped_by_ ## REASON (); \
372316f1
PA
4186}
4187
4188/* Generate thread_stopped_by_watchpoint. */
4189THREAD_STOPPED_BY (watchpoint)
4190/* Generate thread_stopped_by_sw_breakpoint. */
4191THREAD_STOPPED_BY (sw_breakpoint)
4192/* Generate thread_stopped_by_hw_breakpoint. */
4193THREAD_STOPPED_BY (hw_breakpoint)
4194
372316f1
PA
4195/* Save the thread's event and stop reason to process it later. */
4196
4197static void
4198save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4199{
372316f1
PA
4200 if (debug_infrun)
4201 {
23fdd69e 4202 std::string statstr = target_waitstatus_to_string (ws);
372316f1 4203
372316f1
PA
4204 fprintf_unfiltered (gdb_stdlog,
4205 "infrun: saving status %s for %d.%ld.%ld\n",
23fdd69e 4206 statstr.c_str (),
e99b03dc 4207 tp->ptid.pid (),
e38504b3 4208 tp->ptid.lwp (),
cc6bcb54 4209 tp->ptid.tid ());
372316f1
PA
4210 }
4211
4212 /* Record for later. */
4213 tp->suspend.waitstatus = *ws;
4214 tp->suspend.waitstatus_pending_p = 1;
4215
00431a78 4216 struct regcache *regcache = get_thread_regcache (tp);
8b86c959 4217 const address_space *aspace = regcache->aspace ();
372316f1
PA
4218
4219 if (ws->kind == TARGET_WAITKIND_STOPPED
4220 && ws->value.sig == GDB_SIGNAL_TRAP)
4221 {
4222 CORE_ADDR pc = regcache_read_pc (regcache);
4223
4224 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4225
4226 if (thread_stopped_by_watchpoint (tp->ptid))
4227 {
4228 tp->suspend.stop_reason
4229 = TARGET_STOPPED_BY_WATCHPOINT;
4230 }
4231 else if (target_supports_stopped_by_sw_breakpoint ()
4232 && thread_stopped_by_sw_breakpoint (tp->ptid))
4233 {
4234 tp->suspend.stop_reason
4235 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4236 }
4237 else if (target_supports_stopped_by_hw_breakpoint ()
4238 && thread_stopped_by_hw_breakpoint (tp->ptid))
4239 {
4240 tp->suspend.stop_reason
4241 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4242 }
4243 else if (!target_supports_stopped_by_hw_breakpoint ()
4244 && hardware_breakpoint_inserted_here_p (aspace,
4245 pc))
4246 {
4247 tp->suspend.stop_reason
4248 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4249 }
4250 else if (!target_supports_stopped_by_sw_breakpoint ()
4251 && software_breakpoint_inserted_here_p (aspace,
4252 pc))
4253 {
4254 tp->suspend.stop_reason
4255 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4256 }
4257 else if (!thread_has_single_step_breakpoints_set (tp)
4258 && currently_stepping (tp))
4259 {
4260 tp->suspend.stop_reason
4261 = TARGET_STOPPED_BY_SINGLE_STEP;
4262 }
4263 }
4264}
4265
6efcd9a8 4266/* See infrun.h. */
372316f1 4267
6efcd9a8 4268void
372316f1
PA
4269stop_all_threads (void)
4270{
4271 /* We may need multiple passes to discover all threads. */
4272 int pass;
4273 int iterations = 0;
372316f1 4274
fbea99ea 4275 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4276
4277 if (debug_infrun)
4278 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4279
00431a78 4280 scoped_restore_current_thread restore_thread;
372316f1 4281
65706a29 4282 target_thread_events (1);
9885e6bb 4283 SCOPE_EXIT { target_thread_events (0); };
65706a29 4284
372316f1
PA
4285 /* Request threads to stop, and then wait for the stops. Because
4286 threads we already know about can spawn more threads while we're
4287 trying to stop them, and we only learn about new threads when we
4288 update the thread list, do this in a loop, and keep iterating
4289 until two passes find no threads that need to be stopped. */
4290 for (pass = 0; pass < 2; pass++, iterations++)
4291 {
4292 if (debug_infrun)
4293 fprintf_unfiltered (gdb_stdlog,
4294 "infrun: stop_all_threads, pass=%d, "
4295 "iterations=%d\n", pass, iterations);
4296 while (1)
4297 {
4298 ptid_t event_ptid;
4299 struct target_waitstatus ws;
4300 int need_wait = 0;
372316f1
PA
4301
4302 update_thread_list ();
4303
4304 /* Go through all threads looking for threads that we need
4305 to tell the target to stop. */
08036331 4306 for (thread_info *t : all_non_exited_threads ())
372316f1
PA
4307 {
4308 if (t->executing)
4309 {
4310 /* If already stopping, don't request a stop again.
4311 We just haven't seen the notification yet. */
4312 if (!t->stop_requested)
4313 {
4314 if (debug_infrun)
4315 fprintf_unfiltered (gdb_stdlog,
4316 "infrun: %s executing, "
4317 "need stop\n",
a068643d 4318 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4319 target_stop (t->ptid);
4320 t->stop_requested = 1;
4321 }
4322 else
4323 {
4324 if (debug_infrun)
4325 fprintf_unfiltered (gdb_stdlog,
4326 "infrun: %s executing, "
4327 "already stopping\n",
a068643d 4328 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4329 }
4330
4331 if (t->stop_requested)
4332 need_wait = 1;
4333 }
4334 else
4335 {
4336 if (debug_infrun)
4337 fprintf_unfiltered (gdb_stdlog,
4338 "infrun: %s not executing\n",
a068643d 4339 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4340
4341 /* The thread may be not executing, but still be
4342 resumed with a pending status to process. */
4343 t->resumed = 0;
4344 }
4345 }
4346
4347 if (!need_wait)
4348 break;
4349
4350 /* If we find new threads on the second iteration, restart
4351 over. We want to see two iterations in a row with all
4352 threads stopped. */
4353 if (pass > 0)
4354 pass = -1;
4355
4356 event_ptid = wait_one (&ws);
00431a78 4357
372316f1
PA
4358 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4359 {
4360 /* All resumed threads exited. */
4361 }
65706a29
PA
4362 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4363 || ws.kind == TARGET_WAITKIND_EXITED
372316f1
PA
4364 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4365 {
4366 if (debug_infrun)
4367 {
f2907e49 4368 ptid_t ptid = ptid_t (ws.value.integer);
372316f1
PA
4369
4370 fprintf_unfiltered (gdb_stdlog,
4371 "infrun: %s exited while "
4372 "stopping threads\n",
a068643d 4373 target_pid_to_str (ptid).c_str ());
372316f1
PA
4374 }
4375 }
4376 else
4377 {
08036331 4378 thread_info *t = find_thread_ptid (event_ptid);
372316f1
PA
4379 if (t == NULL)
4380 t = add_thread (event_ptid);
4381
4382 t->stop_requested = 0;
4383 t->executing = 0;
4384 t->resumed = 0;
4385 t->control.may_range_step = 0;
4386
6efcd9a8
PA
4387 /* This may be the first time we see the inferior report
4388 a stop. */
08036331 4389 inferior *inf = find_inferior_ptid (event_ptid);
6efcd9a8
PA
4390 if (inf->needs_setup)
4391 {
4392 switch_to_thread_no_regs (t);
4393 setup_inferior (0);
4394 }
4395
372316f1
PA
4396 if (ws.kind == TARGET_WAITKIND_STOPPED
4397 && ws.value.sig == GDB_SIGNAL_0)
4398 {
4399 /* We caught the event that we intended to catch, so
4400 there's no event pending. */
4401 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4402 t->suspend.waitstatus_pending_p = 0;
4403
00431a78 4404 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
372316f1
PA
4405 {
4406 /* Add it back to the step-over queue. */
4407 if (debug_infrun)
4408 {
4409 fprintf_unfiltered (gdb_stdlog,
4410 "infrun: displaced-step of %s "
4411 "canceled: adding back to the "
4412 "step-over queue\n",
a068643d 4413 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4414 }
4415 t->control.trap_expected = 0;
4416 thread_step_over_chain_enqueue (t);
4417 }
4418 }
4419 else
4420 {
4421 enum gdb_signal sig;
4422 struct regcache *regcache;
372316f1
PA
4423
4424 if (debug_infrun)
4425 {
23fdd69e 4426 std::string statstr = target_waitstatus_to_string (&ws);
372316f1 4427
372316f1
PA
4428 fprintf_unfiltered (gdb_stdlog,
4429 "infrun: target_wait %s, saving "
4430 "status for %d.%ld.%ld\n",
23fdd69e 4431 statstr.c_str (),
e99b03dc 4432 t->ptid.pid (),
e38504b3 4433 t->ptid.lwp (),
cc6bcb54 4434 t->ptid.tid ());
372316f1
PA
4435 }
4436
4437 /* Record for later. */
4438 save_waitstatus (t, &ws);
4439
4440 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4441 ? ws.value.sig : GDB_SIGNAL_0);
4442
00431a78 4443 if (displaced_step_fixup (t, sig) < 0)
372316f1
PA
4444 {
4445 /* Add it back to the step-over queue. */
4446 t->control.trap_expected = 0;
4447 thread_step_over_chain_enqueue (t);
4448 }
4449
00431a78 4450 regcache = get_thread_regcache (t);
372316f1
PA
4451 t->suspend.stop_pc = regcache_read_pc (regcache);
4452
4453 if (debug_infrun)
4454 {
4455 fprintf_unfiltered (gdb_stdlog,
4456 "infrun: saved stop_pc=%s for %s "
4457 "(currently_stepping=%d)\n",
4458 paddress (target_gdbarch (),
4459 t->suspend.stop_pc),
a068643d 4460 target_pid_to_str (t->ptid).c_str (),
372316f1
PA
4461 currently_stepping (t));
4462 }
4463 }
4464 }
4465 }
4466 }
4467
372316f1
PA
4468 if (debug_infrun)
4469 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4470}
4471
f4836ba9
PA
4472/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4473
4474static int
4475handle_no_resumed (struct execution_control_state *ecs)
4476{
3b12939d 4477 if (target_can_async_p ())
f4836ba9 4478 {
3b12939d
PA
4479 struct ui *ui;
4480 int any_sync = 0;
f4836ba9 4481
3b12939d
PA
4482 ALL_UIS (ui)
4483 {
4484 if (ui->prompt_state == PROMPT_BLOCKED)
4485 {
4486 any_sync = 1;
4487 break;
4488 }
4489 }
4490 if (!any_sync)
4491 {
4492 /* There were no unwaited-for children left in the target, but,
4493 we're not synchronously waiting for events either. Just
4494 ignore. */
4495
4496 if (debug_infrun)
4497 fprintf_unfiltered (gdb_stdlog,
4498 "infrun: TARGET_WAITKIND_NO_RESUMED "
4499 "(ignoring: bg)\n");
4500 prepare_to_wait (ecs);
4501 return 1;
4502 }
f4836ba9
PA
4503 }
4504
4505 /* Otherwise, if we were running a synchronous execution command, we
4506 may need to cancel it and give the user back the terminal.
4507
4508 In non-stop mode, the target can't tell whether we've already
4509 consumed previous stop events, so it can end up sending us a
4510 no-resumed event like so:
4511
4512 #0 - thread 1 is left stopped
4513
4514 #1 - thread 2 is resumed and hits breakpoint
4515 -> TARGET_WAITKIND_STOPPED
4516
4517 #2 - thread 3 is resumed and exits
4518 this is the last resumed thread, so
4519 -> TARGET_WAITKIND_NO_RESUMED
4520
4521 #3 - gdb processes stop for thread 2 and decides to re-resume
4522 it.
4523
4524 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4525 thread 2 is now resumed, so the event should be ignored.
4526
4527 IOW, if the stop for thread 2 doesn't end a foreground command,
4528 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4529 event. But it could be that the event meant that thread 2 itself
4530 (or whatever other thread was the last resumed thread) exited.
4531
4532 To address this we refresh the thread list and check whether we
4533 have resumed threads _now_. In the example above, this removes
4534 thread 3 from the thread list. If thread 2 was re-resumed, we
4535 ignore this event. If we find no thread resumed, then we cancel
4536 the synchronous command show "no unwaited-for " to the user. */
4537 update_thread_list ();
4538
08036331 4539 for (thread_info *thread : all_non_exited_threads ())
f4836ba9
PA
4540 {
4541 if (thread->executing
4542 || thread->suspend.waitstatus_pending_p)
4543 {
4544 /* There were no unwaited-for children left in the target at
4545 some point, but there are now. Just ignore. */
4546 if (debug_infrun)
4547 fprintf_unfiltered (gdb_stdlog,
4548 "infrun: TARGET_WAITKIND_NO_RESUMED "
4549 "(ignoring: found resumed)\n");
4550 prepare_to_wait (ecs);
4551 return 1;
4552 }
4553 }
4554
4555 /* Note however that we may find no resumed thread because the whole
4556 process exited meanwhile (thus updating the thread list results
4557 in an empty thread list). In this case we know we'll be getting
4558 a process exit event shortly. */
08036331 4559 for (inferior *inf : all_inferiors ())
f4836ba9
PA
4560 {
4561 if (inf->pid == 0)
4562 continue;
4563
08036331 4564 thread_info *thread = any_live_thread_of_inferior (inf);
f4836ba9
PA
4565 if (thread == NULL)
4566 {
4567 if (debug_infrun)
4568 fprintf_unfiltered (gdb_stdlog,
4569 "infrun: TARGET_WAITKIND_NO_RESUMED "
4570 "(expect process exit)\n");
4571 prepare_to_wait (ecs);
4572 return 1;
4573 }
4574 }
4575
4576 /* Go ahead and report the event. */
4577 return 0;
4578}
4579
05ba8510
PA
4580/* Given an execution control state that has been freshly filled in by
4581 an event from the inferior, figure out what it means and take
4582 appropriate action.
4583
4584 The alternatives are:
4585
22bcd14b 4586 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4587 debugger.
4588
4589 2) keep_going and return; to wait for the next event (set
4590 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4591 once). */
c906108c 4592
ec9499be 4593static void
0b6e5e10 4594handle_inferior_event_1 (struct execution_control_state *ecs)
cd0fc7c3 4595{
d6b48e9c
PA
4596 enum stop_kind stop_soon;
4597
28736962
PA
4598 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4599 {
4600 /* We had an event in the inferior, but we are not interested in
4601 handling it at this level. The lower layers have already
4602 done what needs to be done, if anything.
4603
4604 One of the possible circumstances for this is when the
4605 inferior produces output for the console. The inferior has
4606 not stopped, and we are ignoring the event. Another possible
4607 circumstance is any event which the lower level knows will be
4608 reported multiple times without an intervening resume. */
4609 if (debug_infrun)
4610 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4611 prepare_to_wait (ecs);
4612 return;
4613 }
4614
65706a29
PA
4615 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4616 {
4617 if (debug_infrun)
4618 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4619 prepare_to_wait (ecs);
4620 return;
4621 }
4622
0e5bf2a8 4623 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
4624 && handle_no_resumed (ecs))
4625 return;
0e5bf2a8 4626
1777feb0 4627 /* Cache the last pid/waitstatus. */
c32c64b7 4628 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4629
ca005067 4630 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4631 stop_stack_dummy = STOP_NONE;
ca005067 4632
0e5bf2a8
PA
4633 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4634 {
4635 /* No unwaited-for children left. IOW, all resumed children
4636 have exited. */
4637 if (debug_infrun)
4638 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4639
4640 stop_print_frame = 0;
22bcd14b 4641 stop_waiting (ecs);
0e5bf2a8
PA
4642 return;
4643 }
4644
8c90c137 4645 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4646 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4647 {
4648 ecs->event_thread = find_thread_ptid (ecs->ptid);
4649 /* If it's a new thread, add it to the thread database. */
4650 if (ecs->event_thread == NULL)
4651 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4652
4653 /* Disable range stepping. If the next step request could use a
4654 range, this will be end up re-enabled then. */
4655 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4656 }
88ed393a
JK
4657
4658 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4659 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4660
4661 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4662 reinit_frame_cache ();
4663
28736962
PA
4664 breakpoint_retire_moribund ();
4665
2b009048
DJ
4666 /* First, distinguish signals caused by the debugger from signals
4667 that have to do with the program's own actions. Note that
4668 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4669 on the operating system version. Here we detect when a SIGILL or
4670 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4671 something similar for SIGSEGV, since a SIGSEGV will be generated
4672 when we're trying to execute a breakpoint instruction on a
4673 non-executable stack. This happens for call dummy breakpoints
4674 for architectures like SPARC that place call dummies on the
4675 stack. */
2b009048 4676 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4677 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4678 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4679 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4680 {
00431a78 4681 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
de0a0249 4682
a01bda52 4683 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
4684 regcache_read_pc (regcache)))
4685 {
4686 if (debug_infrun)
4687 fprintf_unfiltered (gdb_stdlog,
4688 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4689 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4690 }
2b009048
DJ
4691 }
4692
28736962
PA
4693 /* Mark the non-executing threads accordingly. In all-stop, all
4694 threads of all processes are stopped when we get any event
e1316e60 4695 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4696 {
4697 ptid_t mark_ptid;
4698
fbea99ea 4699 if (!target_is_non_stop_p ())
372316f1
PA
4700 mark_ptid = minus_one_ptid;
4701 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4702 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4703 {
4704 /* If we're handling a process exit in non-stop mode, even
4705 though threads haven't been deleted yet, one would think
4706 that there is nothing to do, as threads of the dead process
4707 will be soon deleted, and threads of any other process were
4708 left running. However, on some targets, threads survive a
4709 process exit event. E.g., for the "checkpoint" command,
4710 when the current checkpoint/fork exits, linux-fork.c
4711 automatically switches to another fork from within
4712 target_mourn_inferior, by associating the same
4713 inferior/thread to another fork. We haven't mourned yet at
4714 this point, but we must mark any threads left in the
4715 process as not-executing so that finish_thread_state marks
4716 them stopped (in the user's perspective) if/when we present
4717 the stop to the user. */
e99b03dc 4718 mark_ptid = ptid_t (ecs->ptid.pid ());
372316f1
PA
4719 }
4720 else
4721 mark_ptid = ecs->ptid;
4722
4723 set_executing (mark_ptid, 0);
4724
4725 /* Likewise the resumed flag. */
4726 set_resumed (mark_ptid, 0);
4727 }
8c90c137 4728
488f131b
JB
4729 switch (ecs->ws.kind)
4730 {
4731 case TARGET_WAITKIND_LOADED:
527159b7 4732 if (debug_infrun)
8a9de0e4 4733 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
00431a78 4734 context_switch (ecs);
b0f4b84b
DJ
4735 /* Ignore gracefully during startup of the inferior, as it might
4736 be the shell which has just loaded some objects, otherwise
4737 add the symbols for the newly loaded objects. Also ignore at
4738 the beginning of an attach or remote session; we will query
4739 the full list of libraries once the connection is
4740 established. */
4f5d7f63 4741
00431a78 4742 stop_soon = get_inferior_stop_soon (ecs);
c0236d92 4743 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4744 {
edcc5120
TT
4745 struct regcache *regcache;
4746
00431a78 4747 regcache = get_thread_regcache (ecs->event_thread);
edcc5120
TT
4748
4749 handle_solib_event ();
4750
4751 ecs->event_thread->control.stop_bpstat
a01bda52 4752 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4753 ecs->event_thread->suspend.stop_pc,
4754 ecs->event_thread, &ecs->ws);
ab04a2af 4755
c65d6b55
PA
4756 if (handle_stop_requested (ecs))
4757 return;
4758
ce12b012 4759 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4760 {
4761 /* A catchpoint triggered. */
94c57d6a
PA
4762 process_event_stop_test (ecs);
4763 return;
edcc5120 4764 }
488f131b 4765
b0f4b84b
DJ
4766 /* If requested, stop when the dynamic linker notifies
4767 gdb of events. This allows the user to get control
4768 and place breakpoints in initializer routines for
4769 dynamically loaded objects (among other things). */
a493e3e2 4770 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4771 if (stop_on_solib_events)
4772 {
55409f9d
DJ
4773 /* Make sure we print "Stopped due to solib-event" in
4774 normal_stop. */
4775 stop_print_frame = 1;
4776
22bcd14b 4777 stop_waiting (ecs);
b0f4b84b
DJ
4778 return;
4779 }
488f131b 4780 }
b0f4b84b
DJ
4781
4782 /* If we are skipping through a shell, or through shared library
4783 loading that we aren't interested in, resume the program. If
5c09a2c5 4784 we're running the program normally, also resume. */
b0f4b84b
DJ
4785 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4786 {
74960c60
VP
4787 /* Loading of shared libraries might have changed breakpoint
4788 addresses. Make sure new breakpoints are inserted. */
a25a5a45 4789 if (stop_soon == NO_STOP_QUIETLY)
74960c60 4790 insert_breakpoints ();
64ce06e4 4791 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
4792 prepare_to_wait (ecs);
4793 return;
4794 }
4795
5c09a2c5
PA
4796 /* But stop if we're attaching or setting up a remote
4797 connection. */
4798 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4799 || stop_soon == STOP_QUIETLY_REMOTE)
4800 {
4801 if (debug_infrun)
4802 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 4803 stop_waiting (ecs);
5c09a2c5
PA
4804 return;
4805 }
4806
4807 internal_error (__FILE__, __LINE__,
4808 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 4809
488f131b 4810 case TARGET_WAITKIND_SPURIOUS:
527159b7 4811 if (debug_infrun)
8a9de0e4 4812 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
c65d6b55
PA
4813 if (handle_stop_requested (ecs))
4814 return;
00431a78 4815 context_switch (ecs);
64ce06e4 4816 resume (GDB_SIGNAL_0);
488f131b
JB
4817 prepare_to_wait (ecs);
4818 return;
c5aa993b 4819
65706a29
PA
4820 case TARGET_WAITKIND_THREAD_CREATED:
4821 if (debug_infrun)
4822 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
c65d6b55
PA
4823 if (handle_stop_requested (ecs))
4824 return;
00431a78 4825 context_switch (ecs);
65706a29
PA
4826 if (!switch_back_to_stepped_thread (ecs))
4827 keep_going (ecs);
4828 return;
4829
488f131b 4830 case TARGET_WAITKIND_EXITED:
940c3c06 4831 case TARGET_WAITKIND_SIGNALLED:
527159b7 4832 if (debug_infrun)
940c3c06
PA
4833 {
4834 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4835 fprintf_unfiltered (gdb_stdlog,
4836 "infrun: TARGET_WAITKIND_EXITED\n");
4837 else
4838 fprintf_unfiltered (gdb_stdlog,
4839 "infrun: TARGET_WAITKIND_SIGNALLED\n");
4840 }
4841
fb66883a 4842 inferior_ptid = ecs->ptid;
c9657e70 4843 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
4844 set_current_program_space (current_inferior ()->pspace);
4845 handle_vfork_child_exec_or_exit (0);
223ffa71 4846 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 4847
0c557179
SDJ
4848 /* Clearing any previous state of convenience variables. */
4849 clear_exit_convenience_vars ();
4850
940c3c06
PA
4851 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4852 {
4853 /* Record the exit code in the convenience variable $_exitcode, so
4854 that the user can inspect this again later. */
4855 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4856 (LONGEST) ecs->ws.value.integer);
4857
4858 /* Also record this in the inferior itself. */
4859 current_inferior ()->has_exit_code = 1;
4860 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 4861
98eb56a4
PA
4862 /* Support the --return-child-result option. */
4863 return_child_result_value = ecs->ws.value.integer;
4864
76727919 4865 gdb::observers::exited.notify (ecs->ws.value.integer);
940c3c06
PA
4866 }
4867 else
0c557179 4868 {
00431a78 4869 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
0c557179
SDJ
4870
4871 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4872 {
4873 /* Set the value of the internal variable $_exitsignal,
4874 which holds the signal uncaught by the inferior. */
4875 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4876 gdbarch_gdb_signal_to_target (gdbarch,
4877 ecs->ws.value.sig));
4878 }
4879 else
4880 {
4881 /* We don't have access to the target's method used for
4882 converting between signal numbers (GDB's internal
4883 representation <-> target's representation).
4884 Therefore, we cannot do a good job at displaying this
4885 information to the user. It's better to just warn
4886 her about it (if infrun debugging is enabled), and
4887 give up. */
4888 if (debug_infrun)
4889 fprintf_filtered (gdb_stdlog, _("\
4890Cannot fill $_exitsignal with the correct signal number.\n"));
4891 }
4892
76727919 4893 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
0c557179 4894 }
8cf64490 4895
488f131b 4896 gdb_flush (gdb_stdout);
bc1e6c81 4897 target_mourn_inferior (inferior_ptid);
488f131b 4898 stop_print_frame = 0;
22bcd14b 4899 stop_waiting (ecs);
488f131b 4900 return;
c5aa993b 4901
488f131b 4902 /* The following are the only cases in which we keep going;
1777feb0 4903 the above cases end in a continue or goto. */
488f131b 4904 case TARGET_WAITKIND_FORKED:
deb3b17b 4905 case TARGET_WAITKIND_VFORKED:
527159b7 4906 if (debug_infrun)
fed708ed
PA
4907 {
4908 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4909 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
4910 else
4911 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
4912 }
c906108c 4913
e2d96639
YQ
4914 /* Check whether the inferior is displaced stepping. */
4915 {
00431a78 4916 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
ac7936df 4917 struct gdbarch *gdbarch = regcache->arch ();
e2d96639
YQ
4918
4919 /* If checking displaced stepping is supported, and thread
4920 ecs->ptid is displaced stepping. */
00431a78 4921 if (displaced_step_in_progress_thread (ecs->event_thread))
e2d96639
YQ
4922 {
4923 struct inferior *parent_inf
c9657e70 4924 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
4925 struct regcache *child_regcache;
4926 CORE_ADDR parent_pc;
4927
4928 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4929 indicating that the displaced stepping of syscall instruction
4930 has been done. Perform cleanup for parent process here. Note
4931 that this operation also cleans up the child process for vfork,
4932 because their pages are shared. */
00431a78 4933 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
c2829269
PA
4934 /* Start a new step-over in another thread if there's one
4935 that needs it. */
4936 start_step_over ();
e2d96639
YQ
4937
4938 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4939 {
c0987663 4940 struct displaced_step_inferior_state *displaced
00431a78 4941 = get_displaced_stepping_state (parent_inf);
c0987663 4942
e2d96639
YQ
4943 /* Restore scratch pad for child process. */
4944 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4945 }
4946
4947 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4948 the child's PC is also within the scratchpad. Set the child's PC
4949 to the parent's PC value, which has already been fixed up.
4950 FIXME: we use the parent's aspace here, although we're touching
4951 the child, because the child hasn't been added to the inferior
4952 list yet at this point. */
4953
4954 child_regcache
4955 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4956 gdbarch,
4957 parent_inf->aspace);
4958 /* Read PC value of parent process. */
4959 parent_pc = regcache_read_pc (regcache);
4960
4961 if (debug_displaced)
4962 fprintf_unfiltered (gdb_stdlog,
4963 "displaced: write child pc from %s to %s\n",
4964 paddress (gdbarch,
4965 regcache_read_pc (child_regcache)),
4966 paddress (gdbarch, parent_pc));
4967
4968 regcache_write_pc (child_regcache, parent_pc);
4969 }
4970 }
4971
00431a78 4972 context_switch (ecs);
5a2901d9 4973
b242c3c2
PA
4974 /* Immediately detach breakpoints from the child before there's
4975 any chance of letting the user delete breakpoints from the
4976 breakpoint lists. If we don't do this early, it's easy to
4977 leave left over traps in the child, vis: "break foo; catch
4978 fork; c; <fork>; del; c; <child calls foo>". We only follow
4979 the fork on the last `continue', and by that time the
4980 breakpoint at "foo" is long gone from the breakpoint table.
4981 If we vforked, then we don't need to unpatch here, since both
4982 parent and child are sharing the same memory pages; we'll
4983 need to unpatch at follow/detach time instead to be certain
4984 that new breakpoints added between catchpoint hit time and
4985 vfork follow are detached. */
4986 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
4987 {
b242c3c2
PA
4988 /* This won't actually modify the breakpoint list, but will
4989 physically remove the breakpoints from the child. */
d80ee84f 4990 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
4991 }
4992
34b7e8a6 4993 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 4994
e58b0e63
PA
4995 /* In case the event is caught by a catchpoint, remember that
4996 the event is to be followed at the next resume of the thread,
4997 and not immediately. */
4998 ecs->event_thread->pending_follow = ecs->ws;
4999
f2ffa92b
PA
5000 ecs->event_thread->suspend.stop_pc
5001 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
675bf4cb 5002
16c381f0 5003 ecs->event_thread->control.stop_bpstat
a01bda52 5004 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5005 ecs->event_thread->suspend.stop_pc,
5006 ecs->event_thread, &ecs->ws);
675bf4cb 5007
c65d6b55
PA
5008 if (handle_stop_requested (ecs))
5009 return;
5010
ce12b012
PA
5011 /* If no catchpoint triggered for this, then keep going. Note
5012 that we're interested in knowing the bpstat actually causes a
5013 stop, not just if it may explain the signal. Software
5014 watchpoints, for example, always appear in the bpstat. */
5015 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5016 {
e58b0e63 5017 int should_resume;
3e43a32a
MS
5018 int follow_child
5019 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5020
a493e3e2 5021 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
5022
5023 should_resume = follow_fork ();
5024
00431a78
PA
5025 thread_info *parent = ecs->event_thread;
5026 thread_info *child = find_thread_ptid (ecs->ws.value.related_pid);
6c95b8df 5027
a2077e25
PA
5028 /* At this point, the parent is marked running, and the
5029 child is marked stopped. */
5030
5031 /* If not resuming the parent, mark it stopped. */
5032 if (follow_child && !detach_fork && !non_stop && !sched_multi)
00431a78 5033 parent->set_running (false);
a2077e25
PA
5034
5035 /* If resuming the child, mark it running. */
5036 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
00431a78 5037 child->set_running (true);
a2077e25 5038
6c95b8df 5039 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5040 if (!detach_fork && (non_stop
5041 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5042 {
5043 if (follow_child)
5044 switch_to_thread (parent);
5045 else
5046 switch_to_thread (child);
5047
5048 ecs->event_thread = inferior_thread ();
5049 ecs->ptid = inferior_ptid;
5050 keep_going (ecs);
5051 }
5052
5053 if (follow_child)
5054 switch_to_thread (child);
5055 else
5056 switch_to_thread (parent);
5057
e58b0e63
PA
5058 ecs->event_thread = inferior_thread ();
5059 ecs->ptid = inferior_ptid;
5060
5061 if (should_resume)
5062 keep_going (ecs);
5063 else
22bcd14b 5064 stop_waiting (ecs);
04e68871
DJ
5065 return;
5066 }
94c57d6a
PA
5067 process_event_stop_test (ecs);
5068 return;
488f131b 5069
6c95b8df
PA
5070 case TARGET_WAITKIND_VFORK_DONE:
5071 /* Done with the shared memory region. Re-insert breakpoints in
5072 the parent, and keep going. */
5073
5074 if (debug_infrun)
3e43a32a
MS
5075 fprintf_unfiltered (gdb_stdlog,
5076 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df 5077
00431a78 5078 context_switch (ecs);
6c95b8df
PA
5079
5080 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5081 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5082
5083 if (handle_stop_requested (ecs))
5084 return;
5085
6c95b8df
PA
5086 /* This also takes care of reinserting breakpoints in the
5087 previously locked inferior. */
5088 keep_going (ecs);
5089 return;
5090
488f131b 5091 case TARGET_WAITKIND_EXECD:
527159b7 5092 if (debug_infrun)
fc5261f2 5093 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 5094
cbd2b4e3
PA
5095 /* Note we can't read registers yet (the stop_pc), because we
5096 don't yet know the inferior's post-exec architecture.
5097 'stop_pc' is explicitly read below instead. */
00431a78 5098 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5099
6c95b8df
PA
5100 /* Do whatever is necessary to the parent branch of the vfork. */
5101 handle_vfork_child_exec_or_exit (1);
5102
795e548f
PA
5103 /* This causes the eventpoints and symbol table to be reset.
5104 Must do this now, before trying to determine whether to
5105 stop. */
71b43ef8 5106 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5107
17d8546e
DB
5108 /* In follow_exec we may have deleted the original thread and
5109 created a new one. Make sure that the event thread is the
5110 execd thread for that case (this is a nop otherwise). */
5111 ecs->event_thread = inferior_thread ();
5112
f2ffa92b
PA
5113 ecs->event_thread->suspend.stop_pc
5114 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
ecdc3a72 5115
16c381f0 5116 ecs->event_thread->control.stop_bpstat
a01bda52 5117 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5118 ecs->event_thread->suspend.stop_pc,
5119 ecs->event_thread, &ecs->ws);
795e548f 5120
71b43ef8
PA
5121 /* Note that this may be referenced from inside
5122 bpstat_stop_status above, through inferior_has_execd. */
5123 xfree (ecs->ws.value.execd_pathname);
5124 ecs->ws.value.execd_pathname = NULL;
5125
c65d6b55
PA
5126 if (handle_stop_requested (ecs))
5127 return;
5128
04e68871 5129 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5130 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5131 {
a493e3e2 5132 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5133 keep_going (ecs);
5134 return;
5135 }
94c57d6a
PA
5136 process_event_stop_test (ecs);
5137 return;
488f131b 5138
b4dc5ffa
MK
5139 /* Be careful not to try to gather much state about a thread
5140 that's in a syscall. It's frequently a losing proposition. */
488f131b 5141 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 5142 if (debug_infrun)
3e43a32a
MS
5143 fprintf_unfiltered (gdb_stdlog,
5144 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 5145 /* Getting the current syscall number. */
94c57d6a
PA
5146 if (handle_syscall_event (ecs) == 0)
5147 process_event_stop_test (ecs);
5148 return;
c906108c 5149
488f131b
JB
5150 /* Before examining the threads further, step this thread to
5151 get it entirely out of the syscall. (We get notice of the
5152 event when the thread is just on the verge of exiting a
5153 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5154 into user code.) */
488f131b 5155 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 5156 if (debug_infrun)
3e43a32a
MS
5157 fprintf_unfiltered (gdb_stdlog,
5158 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
5159 if (handle_syscall_event (ecs) == 0)
5160 process_event_stop_test (ecs);
5161 return;
c906108c 5162
488f131b 5163 case TARGET_WAITKIND_STOPPED:
527159b7 5164 if (debug_infrun)
8a9de0e4 5165 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
4f5d7f63
PA
5166 handle_signal_stop (ecs);
5167 return;
c906108c 5168
b2175913 5169 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
5170 if (debug_infrun)
5171 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 5172 /* Reverse execution: target ran out of history info. */
eab402df 5173
d1988021 5174 /* Switch to the stopped thread. */
00431a78 5175 context_switch (ecs);
d1988021
MM
5176 if (debug_infrun)
5177 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5178
34b7e8a6 5179 delete_just_stopped_threads_single_step_breakpoints ();
f2ffa92b
PA
5180 ecs->event_thread->suspend.stop_pc
5181 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
c65d6b55
PA
5182
5183 if (handle_stop_requested (ecs))
5184 return;
5185
76727919 5186 gdb::observers::no_history.notify ();
22bcd14b 5187 stop_waiting (ecs);
b2175913 5188 return;
488f131b 5189 }
4f5d7f63
PA
5190}
5191
0b6e5e10
JB
5192/* A wrapper around handle_inferior_event_1, which also makes sure
5193 that all temporary struct value objects that were created during
5194 the handling of the event get deleted at the end. */
5195
5196static void
5197handle_inferior_event (struct execution_control_state *ecs)
5198{
5199 struct value *mark = value_mark ();
5200
5201 handle_inferior_event_1 (ecs);
5202 /* Purge all temporary values created during the event handling,
5203 as it could be a long time before we return to the command level
5204 where such values would otherwise be purged. */
5205 value_free_to_mark (mark);
5206}
5207
372316f1
PA
5208/* Restart threads back to what they were trying to do back when we
5209 paused them for an in-line step-over. The EVENT_THREAD thread is
5210 ignored. */
4d9d9d04
PA
5211
5212static void
372316f1
PA
5213restart_threads (struct thread_info *event_thread)
5214{
372316f1
PA
5215 /* In case the instruction just stepped spawned a new thread. */
5216 update_thread_list ();
5217
08036331 5218 for (thread_info *tp : all_non_exited_threads ())
372316f1
PA
5219 {
5220 if (tp == event_thread)
5221 {
5222 if (debug_infrun)
5223 fprintf_unfiltered (gdb_stdlog,
5224 "infrun: restart threads: "
5225 "[%s] is event thread\n",
a068643d 5226 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5227 continue;
5228 }
5229
5230 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5231 {
5232 if (debug_infrun)
5233 fprintf_unfiltered (gdb_stdlog,
5234 "infrun: restart threads: "
5235 "[%s] not meant to be running\n",
a068643d 5236 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5237 continue;
5238 }
5239
5240 if (tp->resumed)
5241 {
5242 if (debug_infrun)
5243 fprintf_unfiltered (gdb_stdlog,
5244 "infrun: restart threads: [%s] resumed\n",
a068643d 5245 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5246 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5247 continue;
5248 }
5249
5250 if (thread_is_in_step_over_chain (tp))
5251 {
5252 if (debug_infrun)
5253 fprintf_unfiltered (gdb_stdlog,
5254 "infrun: restart threads: "
5255 "[%s] needs step-over\n",
a068643d 5256 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5257 gdb_assert (!tp->resumed);
5258 continue;
5259 }
5260
5261
5262 if (tp->suspend.waitstatus_pending_p)
5263 {
5264 if (debug_infrun)
5265 fprintf_unfiltered (gdb_stdlog,
5266 "infrun: restart threads: "
5267 "[%s] has pending status\n",
a068643d 5268 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5269 tp->resumed = 1;
5270 continue;
5271 }
5272
c65d6b55
PA
5273 gdb_assert (!tp->stop_requested);
5274
372316f1
PA
5275 /* If some thread needs to start a step-over at this point, it
5276 should still be in the step-over queue, and thus skipped
5277 above. */
5278 if (thread_still_needs_step_over (tp))
5279 {
5280 internal_error (__FILE__, __LINE__,
5281 "thread [%s] needs a step-over, but not in "
5282 "step-over queue\n",
a068643d 5283 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5284 }
5285
5286 if (currently_stepping (tp))
5287 {
5288 if (debug_infrun)
5289 fprintf_unfiltered (gdb_stdlog,
5290 "infrun: restart threads: [%s] was stepping\n",
a068643d 5291 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5292 keep_going_stepped_thread (tp);
5293 }
5294 else
5295 {
5296 struct execution_control_state ecss;
5297 struct execution_control_state *ecs = &ecss;
5298
5299 if (debug_infrun)
5300 fprintf_unfiltered (gdb_stdlog,
5301 "infrun: restart threads: [%s] continuing\n",
a068643d 5302 target_pid_to_str (tp->ptid).c_str ());
372316f1 5303 reset_ecs (ecs, tp);
00431a78 5304 switch_to_thread (tp);
372316f1
PA
5305 keep_going_pass_signal (ecs);
5306 }
5307 }
5308}
5309
5310/* Callback for iterate_over_threads. Find a resumed thread that has
5311 a pending waitstatus. */
5312
5313static int
5314resumed_thread_with_pending_status (struct thread_info *tp,
5315 void *arg)
5316{
5317 return (tp->resumed
5318 && tp->suspend.waitstatus_pending_p);
5319}
5320
5321/* Called when we get an event that may finish an in-line or
5322 out-of-line (displaced stepping) step-over started previously.
5323 Return true if the event is processed and we should go back to the
5324 event loop; false if the caller should continue processing the
5325 event. */
5326
5327static int
4d9d9d04
PA
5328finish_step_over (struct execution_control_state *ecs)
5329{
372316f1
PA
5330 int had_step_over_info;
5331
00431a78 5332 displaced_step_fixup (ecs->event_thread,
4d9d9d04
PA
5333 ecs->event_thread->suspend.stop_signal);
5334
372316f1
PA
5335 had_step_over_info = step_over_info_valid_p ();
5336
5337 if (had_step_over_info)
4d9d9d04
PA
5338 {
5339 /* If we're stepping over a breakpoint with all threads locked,
5340 then only the thread that was stepped should be reporting
5341 back an event. */
5342 gdb_assert (ecs->event_thread->control.trap_expected);
5343
c65d6b55 5344 clear_step_over_info ();
4d9d9d04
PA
5345 }
5346
fbea99ea 5347 if (!target_is_non_stop_p ())
372316f1 5348 return 0;
4d9d9d04
PA
5349
5350 /* Start a new step-over in another thread if there's one that
5351 needs it. */
5352 start_step_over ();
372316f1
PA
5353
5354 /* If we were stepping over a breakpoint before, and haven't started
5355 a new in-line step-over sequence, then restart all other threads
5356 (except the event thread). We can't do this in all-stop, as then
5357 e.g., we wouldn't be able to issue any other remote packet until
5358 these other threads stop. */
5359 if (had_step_over_info && !step_over_info_valid_p ())
5360 {
5361 struct thread_info *pending;
5362
5363 /* If we only have threads with pending statuses, the restart
5364 below won't restart any thread and so nothing re-inserts the
5365 breakpoint we just stepped over. But we need it inserted
5366 when we later process the pending events, otherwise if
5367 another thread has a pending event for this breakpoint too,
5368 we'd discard its event (because the breakpoint that
5369 originally caused the event was no longer inserted). */
00431a78 5370 context_switch (ecs);
372316f1
PA
5371 insert_breakpoints ();
5372
5373 restart_threads (ecs->event_thread);
5374
5375 /* If we have events pending, go through handle_inferior_event
5376 again, picking up a pending event at random. This avoids
5377 thread starvation. */
5378
5379 /* But not if we just stepped over a watchpoint in order to let
5380 the instruction execute so we can evaluate its expression.
5381 The set of watchpoints that triggered is recorded in the
5382 breakpoint objects themselves (see bp->watchpoint_triggered).
5383 If we processed another event first, that other event could
5384 clobber this info. */
5385 if (ecs->event_thread->stepping_over_watchpoint)
5386 return 0;
5387
5388 pending = iterate_over_threads (resumed_thread_with_pending_status,
5389 NULL);
5390 if (pending != NULL)
5391 {
5392 struct thread_info *tp = ecs->event_thread;
5393 struct regcache *regcache;
5394
5395 if (debug_infrun)
5396 {
5397 fprintf_unfiltered (gdb_stdlog,
5398 "infrun: found resumed threads with "
5399 "pending events, saving status\n");
5400 }
5401
5402 gdb_assert (pending != tp);
5403
5404 /* Record the event thread's event for later. */
5405 save_waitstatus (tp, &ecs->ws);
5406 /* This was cleared early, by handle_inferior_event. Set it
5407 so this pending event is considered by
5408 do_target_wait. */
5409 tp->resumed = 1;
5410
5411 gdb_assert (!tp->executing);
5412
00431a78 5413 regcache = get_thread_regcache (tp);
372316f1
PA
5414 tp->suspend.stop_pc = regcache_read_pc (regcache);
5415
5416 if (debug_infrun)
5417 {
5418 fprintf_unfiltered (gdb_stdlog,
5419 "infrun: saved stop_pc=%s for %s "
5420 "(currently_stepping=%d)\n",
5421 paddress (target_gdbarch (),
5422 tp->suspend.stop_pc),
a068643d 5423 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
5424 currently_stepping (tp));
5425 }
5426
5427 /* This in-line step-over finished; clear this so we won't
5428 start a new one. This is what handle_signal_stop would
5429 do, if we returned false. */
5430 tp->stepping_over_breakpoint = 0;
5431
5432 /* Wake up the event loop again. */
5433 mark_async_event_handler (infrun_async_inferior_event_token);
5434
5435 prepare_to_wait (ecs);
5436 return 1;
5437 }
5438 }
5439
5440 return 0;
4d9d9d04
PA
5441}
5442
4f5d7f63
PA
5443/* Come here when the program has stopped with a signal. */
5444
5445static void
5446handle_signal_stop (struct execution_control_state *ecs)
5447{
5448 struct frame_info *frame;
5449 struct gdbarch *gdbarch;
5450 int stopped_by_watchpoint;
5451 enum stop_kind stop_soon;
5452 int random_signal;
c906108c 5453
f0407826
DE
5454 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5455
c65d6b55
PA
5456 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5457
f0407826
DE
5458 /* Do we need to clean up the state of a thread that has
5459 completed a displaced single-step? (Doing so usually affects
5460 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5461 if (finish_step_over (ecs))
5462 return;
f0407826
DE
5463
5464 /* If we either finished a single-step or hit a breakpoint, but
5465 the user wanted this thread to be stopped, pretend we got a
5466 SIG0 (generic unsignaled stop). */
5467 if (ecs->event_thread->stop_requested
5468 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5469 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5470
f2ffa92b
PA
5471 ecs->event_thread->suspend.stop_pc
5472 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
488f131b 5473
527159b7 5474 if (debug_infrun)
237fc4c9 5475 {
00431a78 5476 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
b926417a 5477 struct gdbarch *reg_gdbarch = regcache->arch ();
2989a365 5478 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
7f82dfc7
JK
5479
5480 inferior_ptid = ecs->ptid;
5af949e3
UW
5481
5482 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
b926417a 5483 paddress (reg_gdbarch,
f2ffa92b 5484 ecs->event_thread->suspend.stop_pc));
d92524f1 5485 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5486 {
5487 CORE_ADDR addr;
abbb1732 5488
237fc4c9
PA
5489 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5490
8b88a78e 5491 if (target_stopped_data_address (current_top_target (), &addr))
237fc4c9 5492 fprintf_unfiltered (gdb_stdlog,
5af949e3 5493 "infrun: stopped data address = %s\n",
b926417a 5494 paddress (reg_gdbarch, addr));
237fc4c9
PA
5495 else
5496 fprintf_unfiltered (gdb_stdlog,
5497 "infrun: (no data address available)\n");
5498 }
5499 }
527159b7 5500
36fa8042
PA
5501 /* This is originated from start_remote(), start_inferior() and
5502 shared libraries hook functions. */
00431a78 5503 stop_soon = get_inferior_stop_soon (ecs);
36fa8042
PA
5504 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5505 {
00431a78 5506 context_switch (ecs);
36fa8042
PA
5507 if (debug_infrun)
5508 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5509 stop_print_frame = 1;
22bcd14b 5510 stop_waiting (ecs);
36fa8042
PA
5511 return;
5512 }
5513
36fa8042
PA
5514 /* This originates from attach_command(). We need to overwrite
5515 the stop_signal here, because some kernels don't ignore a
5516 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5517 See more comments in inferior.h. On the other hand, if we
5518 get a non-SIGSTOP, report it to the user - assume the backend
5519 will handle the SIGSTOP if it should show up later.
5520
5521 Also consider that the attach is complete when we see a
5522 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5523 target extended-remote report it instead of a SIGSTOP
5524 (e.g. gdbserver). We already rely on SIGTRAP being our
5525 signal, so this is no exception.
5526
5527 Also consider that the attach is complete when we see a
5528 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5529 the target to stop all threads of the inferior, in case the
5530 low level attach operation doesn't stop them implicitly. If
5531 they weren't stopped implicitly, then the stub will report a
5532 GDB_SIGNAL_0, meaning: stopped for no particular reason
5533 other than GDB's request. */
5534 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5535 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5536 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5537 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5538 {
5539 stop_print_frame = 1;
22bcd14b 5540 stop_waiting (ecs);
36fa8042
PA
5541 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5542 return;
5543 }
5544
488f131b 5545 /* See if something interesting happened to the non-current thread. If
b40c7d58 5546 so, then switch to that thread. */
d7e15655 5547 if (ecs->ptid != inferior_ptid)
488f131b 5548 {
527159b7 5549 if (debug_infrun)
8a9de0e4 5550 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5551
00431a78 5552 context_switch (ecs);
c5aa993b 5553
9a4105ab 5554 if (deprecated_context_hook)
00431a78 5555 deprecated_context_hook (ecs->event_thread->global_num);
488f131b 5556 }
c906108c 5557
568d6575
UW
5558 /* At this point, get hold of the now-current thread's frame. */
5559 frame = get_current_frame ();
5560 gdbarch = get_frame_arch (frame);
5561
2adfaa28 5562 /* Pull the single step breakpoints out of the target. */
af48d08f 5563 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5564 {
af48d08f 5565 struct regcache *regcache;
af48d08f 5566 CORE_ADDR pc;
2adfaa28 5567
00431a78 5568 regcache = get_thread_regcache (ecs->event_thread);
8b86c959
YQ
5569 const address_space *aspace = regcache->aspace ();
5570
af48d08f 5571 pc = regcache_read_pc (regcache);
34b7e8a6 5572
af48d08f
PA
5573 /* However, before doing so, if this single-step breakpoint was
5574 actually for another thread, set this thread up for moving
5575 past it. */
5576 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5577 aspace, pc))
5578 {
5579 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5580 {
5581 if (debug_infrun)
5582 {
5583 fprintf_unfiltered (gdb_stdlog,
af48d08f 5584 "infrun: [%s] hit another thread's "
34b7e8a6 5585 "single-step breakpoint\n",
a068643d 5586 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28 5587 }
af48d08f
PA
5588 ecs->hit_singlestep_breakpoint = 1;
5589 }
5590 }
5591 else
5592 {
5593 if (debug_infrun)
5594 {
5595 fprintf_unfiltered (gdb_stdlog,
5596 "infrun: [%s] hit its "
5597 "single-step breakpoint\n",
a068643d 5598 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28
PA
5599 }
5600 }
488f131b 5601 }
af48d08f 5602 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5603
963f9c80
PA
5604 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5605 && ecs->event_thread->control.trap_expected
5606 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5607 stopped_by_watchpoint = 0;
5608 else
5609 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5610
5611 /* If necessary, step over this watchpoint. We'll be back to display
5612 it in a moment. */
5613 if (stopped_by_watchpoint
d92524f1 5614 && (target_have_steppable_watchpoint
568d6575 5615 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5616 {
488f131b
JB
5617 /* At this point, we are stopped at an instruction which has
5618 attempted to write to a piece of memory under control of
5619 a watchpoint. The instruction hasn't actually executed
5620 yet. If we were to evaluate the watchpoint expression
5621 now, we would get the old value, and therefore no change
5622 would seem to have occurred.
5623
5624 In order to make watchpoints work `right', we really need
5625 to complete the memory write, and then evaluate the
d983da9c
DJ
5626 watchpoint expression. We do this by single-stepping the
5627 target.
5628
7f89fd65 5629 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5630 it. For example, the PA can (with some kernel cooperation)
5631 single step over a watchpoint without disabling the watchpoint.
5632
5633 It is far more common to need to disable a watchpoint to step
5634 the inferior over it. If we have non-steppable watchpoints,
5635 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5636 disable all watchpoints.
5637
5638 Any breakpoint at PC must also be stepped over -- if there's
5639 one, it will have already triggered before the watchpoint
5640 triggered, and we either already reported it to the user, or
5641 it didn't cause a stop and we called keep_going. In either
5642 case, if there was a breakpoint at PC, we must be trying to
5643 step past it. */
5644 ecs->event_thread->stepping_over_watchpoint = 1;
5645 keep_going (ecs);
488f131b
JB
5646 return;
5647 }
5648
4e1c45ea 5649 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5650 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5651 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5652 ecs->event_thread->control.stop_step = 0;
488f131b 5653 stop_print_frame = 1;
488f131b 5654 stopped_by_random_signal = 0;
ddfe970e 5655 bpstat stop_chain = NULL;
488f131b 5656
edb3359d
DJ
5657 /* Hide inlined functions starting here, unless we just performed stepi or
5658 nexti. After stepi and nexti, always show the innermost frame (not any
5659 inline function call sites). */
16c381f0 5660 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 5661 {
00431a78
PA
5662 const address_space *aspace
5663 = get_thread_regcache (ecs->event_thread)->aspace ();
0574c78f
GB
5664
5665 /* skip_inline_frames is expensive, so we avoid it if we can
5666 determine that the address is one where functions cannot have
5667 been inlined. This improves performance with inferiors that
5668 load a lot of shared libraries, because the solib event
5669 breakpoint is defined as the address of a function (i.e. not
5670 inline). Note that we have to check the previous PC as well
5671 as the current one to catch cases when we have just
5672 single-stepped off a breakpoint prior to reinstating it.
5673 Note that we're assuming that the code we single-step to is
5674 not inline, but that's not definitive: there's nothing
5675 preventing the event breakpoint function from containing
5676 inlined code, and the single-step ending up there. If the
5677 user had set a breakpoint on that inlined code, the missing
5678 skip_inline_frames call would break things. Fortunately
5679 that's an extremely unlikely scenario. */
f2ffa92b
PA
5680 if (!pc_at_non_inline_function (aspace,
5681 ecs->event_thread->suspend.stop_pc,
5682 &ecs->ws)
a210c238
MR
5683 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5684 && ecs->event_thread->control.trap_expected
5685 && pc_at_non_inline_function (aspace,
5686 ecs->event_thread->prev_pc,
09ac7c10 5687 &ecs->ws)))
1c5a993e 5688 {
f2ffa92b
PA
5689 stop_chain = build_bpstat_chain (aspace,
5690 ecs->event_thread->suspend.stop_pc,
5691 &ecs->ws);
00431a78 5692 skip_inline_frames (ecs->event_thread, stop_chain);
1c5a993e
MR
5693
5694 /* Re-fetch current thread's frame in case that invalidated
5695 the frame cache. */
5696 frame = get_current_frame ();
5697 gdbarch = get_frame_arch (frame);
5698 }
0574c78f 5699 }
edb3359d 5700
a493e3e2 5701 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5702 && ecs->event_thread->control.trap_expected
568d6575 5703 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5704 && currently_stepping (ecs->event_thread))
3352ef37 5705 {
b50d7442 5706 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5707 also on an instruction that needs to be stepped multiple
1777feb0 5708 times before it's been fully executing. E.g., architectures
3352ef37
AC
5709 with a delay slot. It needs to be stepped twice, once for
5710 the instruction and once for the delay slot. */
5711 int step_through_delay
568d6575 5712 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5713
527159b7 5714 if (debug_infrun && step_through_delay)
8a9de0e4 5715 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5716 if (ecs->event_thread->control.step_range_end == 0
5717 && step_through_delay)
3352ef37
AC
5718 {
5719 /* The user issued a continue when stopped at a breakpoint.
5720 Set up for another trap and get out of here. */
4e1c45ea 5721 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5722 keep_going (ecs);
5723 return;
5724 }
5725 else if (step_through_delay)
5726 {
5727 /* The user issued a step when stopped at a breakpoint.
5728 Maybe we should stop, maybe we should not - the delay
5729 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5730 case, don't decide that here, just set
5731 ecs->stepping_over_breakpoint, making sure we
5732 single-step again before breakpoints are re-inserted. */
4e1c45ea 5733 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5734 }
5735 }
5736
ab04a2af
TT
5737 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5738 handles this event. */
5739 ecs->event_thread->control.stop_bpstat
a01bda52 5740 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5741 ecs->event_thread->suspend.stop_pc,
5742 ecs->event_thread, &ecs->ws, stop_chain);
db82e815 5743
ab04a2af
TT
5744 /* Following in case break condition called a
5745 function. */
5746 stop_print_frame = 1;
73dd234f 5747
ab04a2af
TT
5748 /* This is where we handle "moribund" watchpoints. Unlike
5749 software breakpoints traps, hardware watchpoint traps are
5750 always distinguishable from random traps. If no high-level
5751 watchpoint is associated with the reported stop data address
5752 anymore, then the bpstat does not explain the signal ---
5753 simply make sure to ignore it if `stopped_by_watchpoint' is
5754 set. */
5755
5756 if (debug_infrun
5757 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5758 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5759 GDB_SIGNAL_TRAP)
ab04a2af
TT
5760 && stopped_by_watchpoint)
5761 fprintf_unfiltered (gdb_stdlog,
5762 "infrun: no user watchpoint explains "
5763 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5764
bac7d97b 5765 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5766 at one stage in the past included checks for an inferior
5767 function call's call dummy's return breakpoint. The original
5768 comment, that went with the test, read:
03cebad2 5769
ab04a2af
TT
5770 ``End of a stack dummy. Some systems (e.g. Sony news) give
5771 another signal besides SIGTRAP, so check here as well as
5772 above.''
73dd234f 5773
ab04a2af
TT
5774 If someone ever tries to get call dummys on a
5775 non-executable stack to work (where the target would stop
5776 with something like a SIGSEGV), then those tests might need
5777 to be re-instated. Given, however, that the tests were only
5778 enabled when momentary breakpoints were not being used, I
5779 suspect that it won't be the case.
488f131b 5780
ab04a2af
TT
5781 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5782 be necessary for call dummies on a non-executable stack on
5783 SPARC. */
488f131b 5784
bac7d97b 5785 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5786 random_signal
5787 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5788 ecs->event_thread->suspend.stop_signal);
bac7d97b 5789
1cf4d951
PA
5790 /* Maybe this was a trap for a software breakpoint that has since
5791 been removed. */
5792 if (random_signal && target_stopped_by_sw_breakpoint ())
5793 {
f2ffa92b
PA
5794 if (program_breakpoint_here_p (gdbarch,
5795 ecs->event_thread->suspend.stop_pc))
1cf4d951
PA
5796 {
5797 struct regcache *regcache;
5798 int decr_pc;
5799
5800 /* Re-adjust PC to what the program would see if GDB was not
5801 debugging it. */
00431a78 5802 regcache = get_thread_regcache (ecs->event_thread);
527a273a 5803 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
5804 if (decr_pc != 0)
5805 {
07036511
TT
5806 gdb::optional<scoped_restore_tmpl<int>>
5807 restore_operation_disable;
1cf4d951
PA
5808
5809 if (record_full_is_used ())
07036511
TT
5810 restore_operation_disable.emplace
5811 (record_full_gdb_operation_disable_set ());
1cf4d951 5812
f2ffa92b
PA
5813 regcache_write_pc (regcache,
5814 ecs->event_thread->suspend.stop_pc + decr_pc);
1cf4d951
PA
5815 }
5816 }
5817 else
5818 {
5819 /* A delayed software breakpoint event. Ignore the trap. */
5820 if (debug_infrun)
5821 fprintf_unfiltered (gdb_stdlog,
5822 "infrun: delayed software breakpoint "
5823 "trap, ignoring\n");
5824 random_signal = 0;
5825 }
5826 }
5827
5828 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5829 has since been removed. */
5830 if (random_signal && target_stopped_by_hw_breakpoint ())
5831 {
5832 /* A delayed hardware breakpoint event. Ignore the trap. */
5833 if (debug_infrun)
5834 fprintf_unfiltered (gdb_stdlog,
5835 "infrun: delayed hardware breakpoint/watchpoint "
5836 "trap, ignoring\n");
5837 random_signal = 0;
5838 }
5839
bac7d97b
PA
5840 /* If not, perhaps stepping/nexting can. */
5841 if (random_signal)
5842 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5843 && currently_stepping (ecs->event_thread));
ab04a2af 5844
2adfaa28
PA
5845 /* Perhaps the thread hit a single-step breakpoint of _another_
5846 thread. Single-step breakpoints are transparent to the
5847 breakpoints module. */
5848 if (random_signal)
5849 random_signal = !ecs->hit_singlestep_breakpoint;
5850
bac7d97b
PA
5851 /* No? Perhaps we got a moribund watchpoint. */
5852 if (random_signal)
5853 random_signal = !stopped_by_watchpoint;
ab04a2af 5854
c65d6b55
PA
5855 /* Always stop if the user explicitly requested this thread to
5856 remain stopped. */
5857 if (ecs->event_thread->stop_requested)
5858 {
5859 random_signal = 1;
5860 if (debug_infrun)
5861 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
5862 }
5863
488f131b
JB
5864 /* For the program's own signals, act according to
5865 the signal handling tables. */
5866
ce12b012 5867 if (random_signal)
488f131b
JB
5868 {
5869 /* Signal not for debugging purposes. */
c9657e70 5870 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 5871 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 5872
527159b7 5873 if (debug_infrun)
c9737c08
PA
5874 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5875 gdb_signal_to_symbol_string (stop_signal));
527159b7 5876
488f131b
JB
5877 stopped_by_random_signal = 1;
5878
252fbfc8
PA
5879 /* Always stop on signals if we're either just gaining control
5880 of the program, or the user explicitly requested this thread
5881 to remain stopped. */
d6b48e9c 5882 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 5883 || ecs->event_thread->stop_requested
24291992 5884 || (!inf->detaching
16c381f0 5885 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 5886 {
22bcd14b 5887 stop_waiting (ecs);
488f131b
JB
5888 return;
5889 }
b57bacec
PA
5890
5891 /* Notify observers the signal has "handle print" set. Note we
5892 returned early above if stopping; normal_stop handles the
5893 printing in that case. */
5894 if (signal_print[ecs->event_thread->suspend.stop_signal])
5895 {
5896 /* The signal table tells us to print about this signal. */
223ffa71 5897 target_terminal::ours_for_output ();
76727919 5898 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
223ffa71 5899 target_terminal::inferior ();
b57bacec 5900 }
488f131b
JB
5901
5902 /* Clear the signal if it should not be passed. */
16c381f0 5903 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 5904 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 5905
f2ffa92b 5906 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
16c381f0 5907 && ecs->event_thread->control.trap_expected
8358c15c 5908 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
5909 {
5910 /* We were just starting a new sequence, attempting to
5911 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 5912 Instead this signal arrives. This signal will take us out
68f53502
AC
5913 of the stepping range so GDB needs to remember to, when
5914 the signal handler returns, resume stepping off that
5915 breakpoint. */
5916 /* To simplify things, "continue" is forced to use the same
5917 code paths as single-step - set a breakpoint at the
5918 signal return address and then, once hit, step off that
5919 breakpoint. */
237fc4c9
PA
5920 if (debug_infrun)
5921 fprintf_unfiltered (gdb_stdlog,
5922 "infrun: signal arrived while stepping over "
5923 "breakpoint\n");
d3169d93 5924
2c03e5be 5925 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 5926 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5927 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5928 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
5929
5930 /* If we were nexting/stepping some other thread, switch to
5931 it, so that we don't continue it, losing control. */
5932 if (!switch_back_to_stepped_thread (ecs))
5933 keep_going (ecs);
9d799f85 5934 return;
68f53502 5935 }
9d799f85 5936
e5f8a7cc 5937 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
f2ffa92b
PA
5938 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
5939 ecs->event_thread)
e5f8a7cc 5940 || ecs->event_thread->control.step_range_end == 1)
edb3359d 5941 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 5942 ecs->event_thread->control.step_stack_frame_id)
8358c15c 5943 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
5944 {
5945 /* The inferior is about to take a signal that will take it
5946 out of the single step range. Set a breakpoint at the
5947 current PC (which is presumably where the signal handler
5948 will eventually return) and then allow the inferior to
5949 run free.
5950
5951 Note that this is only needed for a signal delivered
5952 while in the single-step range. Nested signals aren't a
5953 problem as they eventually all return. */
237fc4c9
PA
5954 if (debug_infrun)
5955 fprintf_unfiltered (gdb_stdlog,
5956 "infrun: signal may take us out of "
5957 "single-step range\n");
5958
372316f1 5959 clear_step_over_info ();
2c03e5be 5960 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 5961 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5962 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5963 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
5964 keep_going (ecs);
5965 return;
d303a6c7 5966 }
9d799f85
AC
5967
5968 /* Note: step_resume_breakpoint may be non-NULL. This occures
5969 when either there's a nested signal, or when there's a
5970 pending signal enabled just as the signal handler returns
5971 (leaving the inferior at the step-resume-breakpoint without
5972 actually executing it). Either way continue until the
5973 breakpoint is really hit. */
c447ac0b
PA
5974
5975 if (!switch_back_to_stepped_thread (ecs))
5976 {
5977 if (debug_infrun)
5978 fprintf_unfiltered (gdb_stdlog,
5979 "infrun: random signal, keep going\n");
5980
5981 keep_going (ecs);
5982 }
5983 return;
488f131b 5984 }
94c57d6a
PA
5985
5986 process_event_stop_test (ecs);
5987}
5988
5989/* Come here when we've got some debug event / signal we can explain
5990 (IOW, not a random signal), and test whether it should cause a
5991 stop, or whether we should resume the inferior (transparently).
5992 E.g., could be a breakpoint whose condition evaluates false; we
5993 could be still stepping within the line; etc. */
5994
5995static void
5996process_event_stop_test (struct execution_control_state *ecs)
5997{
5998 struct symtab_and_line stop_pc_sal;
5999 struct frame_info *frame;
6000 struct gdbarch *gdbarch;
cdaa5b73
PA
6001 CORE_ADDR jmp_buf_pc;
6002 struct bpstat_what what;
94c57d6a 6003
cdaa5b73 6004 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6005
cdaa5b73
PA
6006 frame = get_current_frame ();
6007 gdbarch = get_frame_arch (frame);
fcf3daef 6008
cdaa5b73 6009 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6010
cdaa5b73
PA
6011 if (what.call_dummy)
6012 {
6013 stop_stack_dummy = what.call_dummy;
6014 }
186c406b 6015
243a9253
PA
6016 /* A few breakpoint types have callbacks associated (e.g.,
6017 bp_jit_event). Run them now. */
6018 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6019
cdaa5b73
PA
6020 /* If we hit an internal event that triggers symbol changes, the
6021 current frame will be invalidated within bpstat_what (e.g., if we
6022 hit an internal solib event). Re-fetch it. */
6023 frame = get_current_frame ();
6024 gdbarch = get_frame_arch (frame);
e2e4d78b 6025
cdaa5b73
PA
6026 switch (what.main_action)
6027 {
6028 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6029 /* If we hit the breakpoint at longjmp while stepping, we
6030 install a momentary breakpoint at the target of the
6031 jmp_buf. */
186c406b 6032
cdaa5b73
PA
6033 if (debug_infrun)
6034 fprintf_unfiltered (gdb_stdlog,
6035 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6036
cdaa5b73 6037 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6038
cdaa5b73
PA
6039 if (what.is_longjmp)
6040 {
6041 struct value *arg_value;
6042
6043 /* If we set the longjmp breakpoint via a SystemTap probe,
6044 then use it to extract the arguments. The destination PC
6045 is the third argument to the probe. */
6046 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6047 if (arg_value)
8fa0c4f8
AA
6048 {
6049 jmp_buf_pc = value_as_address (arg_value);
6050 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6051 }
cdaa5b73
PA
6052 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6053 || !gdbarch_get_longjmp_target (gdbarch,
6054 frame, &jmp_buf_pc))
e2e4d78b 6055 {
cdaa5b73
PA
6056 if (debug_infrun)
6057 fprintf_unfiltered (gdb_stdlog,
6058 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6059 "(!gdbarch_get_longjmp_target)\n");
6060 keep_going (ecs);
6061 return;
e2e4d78b 6062 }
e2e4d78b 6063
cdaa5b73
PA
6064 /* Insert a breakpoint at resume address. */
6065 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6066 }
6067 else
6068 check_exception_resume (ecs, frame);
6069 keep_going (ecs);
6070 return;
e81a37f7 6071
cdaa5b73
PA
6072 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6073 {
6074 struct frame_info *init_frame;
e81a37f7 6075
cdaa5b73 6076 /* There are several cases to consider.
c906108c 6077
cdaa5b73
PA
6078 1. The initiating frame no longer exists. In this case we
6079 must stop, because the exception or longjmp has gone too
6080 far.
2c03e5be 6081
cdaa5b73
PA
6082 2. The initiating frame exists, and is the same as the
6083 current frame. We stop, because the exception or longjmp
6084 has been caught.
2c03e5be 6085
cdaa5b73
PA
6086 3. The initiating frame exists and is different from the
6087 current frame. This means the exception or longjmp has
6088 been caught beneath the initiating frame, so keep going.
c906108c 6089
cdaa5b73
PA
6090 4. longjmp breakpoint has been placed just to protect
6091 against stale dummy frames and user is not interested in
6092 stopping around longjmps. */
c5aa993b 6093
cdaa5b73
PA
6094 if (debug_infrun)
6095 fprintf_unfiltered (gdb_stdlog,
6096 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6097
cdaa5b73
PA
6098 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6099 != NULL);
6100 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6101
cdaa5b73
PA
6102 if (what.is_longjmp)
6103 {
b67a2c6f 6104 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6105
cdaa5b73 6106 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6107 {
cdaa5b73
PA
6108 /* Case 4. */
6109 keep_going (ecs);
6110 return;
e5ef252a 6111 }
cdaa5b73 6112 }
c5aa993b 6113
cdaa5b73 6114 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6115
cdaa5b73
PA
6116 if (init_frame)
6117 {
6118 struct frame_id current_id
6119 = get_frame_id (get_current_frame ());
6120 if (frame_id_eq (current_id,
6121 ecs->event_thread->initiating_frame))
6122 {
6123 /* Case 2. Fall through. */
6124 }
6125 else
6126 {
6127 /* Case 3. */
6128 keep_going (ecs);
6129 return;
6130 }
68f53502 6131 }
488f131b 6132
cdaa5b73
PA
6133 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6134 exists. */
6135 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6136
bdc36728 6137 end_stepping_range (ecs);
cdaa5b73
PA
6138 }
6139 return;
e5ef252a 6140
cdaa5b73
PA
6141 case BPSTAT_WHAT_SINGLE:
6142 if (debug_infrun)
6143 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6144 ecs->event_thread->stepping_over_breakpoint = 1;
6145 /* Still need to check other stuff, at least the case where we
6146 are stepping and step out of the right range. */
6147 break;
e5ef252a 6148
cdaa5b73
PA
6149 case BPSTAT_WHAT_STEP_RESUME:
6150 if (debug_infrun)
6151 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6152
cdaa5b73
PA
6153 delete_step_resume_breakpoint (ecs->event_thread);
6154 if (ecs->event_thread->control.proceed_to_finish
6155 && execution_direction == EXEC_REVERSE)
6156 {
6157 struct thread_info *tp = ecs->event_thread;
6158
6159 /* We are finishing a function in reverse, and just hit the
6160 step-resume breakpoint at the start address of the
6161 function, and we're almost there -- just need to back up
6162 by one more single-step, which should take us back to the
6163 function call. */
6164 tp->control.step_range_start = tp->control.step_range_end = 1;
6165 keep_going (ecs);
e5ef252a 6166 return;
cdaa5b73
PA
6167 }
6168 fill_in_stop_func (gdbarch, ecs);
f2ffa92b 6169 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
cdaa5b73
PA
6170 && execution_direction == EXEC_REVERSE)
6171 {
6172 /* We are stepping over a function call in reverse, and just
6173 hit the step-resume breakpoint at the start address of
6174 the function. Go back to single-stepping, which should
6175 take us back to the function call. */
6176 ecs->event_thread->stepping_over_breakpoint = 1;
6177 keep_going (ecs);
6178 return;
6179 }
6180 break;
e5ef252a 6181
cdaa5b73
PA
6182 case BPSTAT_WHAT_STOP_NOISY:
6183 if (debug_infrun)
6184 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6185 stop_print_frame = 1;
e5ef252a 6186
99619bea
PA
6187 /* Assume the thread stopped for a breapoint. We'll still check
6188 whether a/the breakpoint is there when the thread is next
6189 resumed. */
6190 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6191
22bcd14b 6192 stop_waiting (ecs);
cdaa5b73 6193 return;
e5ef252a 6194
cdaa5b73
PA
6195 case BPSTAT_WHAT_STOP_SILENT:
6196 if (debug_infrun)
6197 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6198 stop_print_frame = 0;
e5ef252a 6199
99619bea
PA
6200 /* Assume the thread stopped for a breapoint. We'll still check
6201 whether a/the breakpoint is there when the thread is next
6202 resumed. */
6203 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6204 stop_waiting (ecs);
cdaa5b73
PA
6205 return;
6206
6207 case BPSTAT_WHAT_HP_STEP_RESUME:
6208 if (debug_infrun)
6209 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6210
6211 delete_step_resume_breakpoint (ecs->event_thread);
6212 if (ecs->event_thread->step_after_step_resume_breakpoint)
6213 {
6214 /* Back when the step-resume breakpoint was inserted, we
6215 were trying to single-step off a breakpoint. Go back to
6216 doing that. */
6217 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6218 ecs->event_thread->stepping_over_breakpoint = 1;
6219 keep_going (ecs);
6220 return;
e5ef252a 6221 }
cdaa5b73
PA
6222 break;
6223
6224 case BPSTAT_WHAT_KEEP_CHECKING:
6225 break;
e5ef252a 6226 }
c906108c 6227
af48d08f
PA
6228 /* If we stepped a permanent breakpoint and we had a high priority
6229 step-resume breakpoint for the address we stepped, but we didn't
6230 hit it, then we must have stepped into the signal handler. The
6231 step-resume was only necessary to catch the case of _not_
6232 stepping into the handler, so delete it, and fall through to
6233 checking whether the step finished. */
6234 if (ecs->event_thread->stepped_breakpoint)
6235 {
6236 struct breakpoint *sr_bp
6237 = ecs->event_thread->control.step_resume_breakpoint;
6238
8d707a12
PA
6239 if (sr_bp != NULL
6240 && sr_bp->loc->permanent
af48d08f
PA
6241 && sr_bp->type == bp_hp_step_resume
6242 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6243 {
6244 if (debug_infrun)
6245 fprintf_unfiltered (gdb_stdlog,
6246 "infrun: stepped permanent breakpoint, stopped in "
6247 "handler\n");
6248 delete_step_resume_breakpoint (ecs->event_thread);
6249 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6250 }
6251 }
6252
cdaa5b73
PA
6253 /* We come here if we hit a breakpoint but should not stop for it.
6254 Possibly we also were stepping and should stop for that. So fall
6255 through and test for stepping. But, if not stepping, do not
6256 stop. */
c906108c 6257
a7212384
UW
6258 /* In all-stop mode, if we're currently stepping but have stopped in
6259 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6260 if (switch_back_to_stepped_thread (ecs))
6261 return;
776f04fa 6262
8358c15c 6263 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6264 {
527159b7 6265 if (debug_infrun)
d3169d93
DJ
6266 fprintf_unfiltered (gdb_stdlog,
6267 "infrun: step-resume breakpoint is inserted\n");
527159b7 6268
488f131b
JB
6269 /* Having a step-resume breakpoint overrides anything
6270 else having to do with stepping commands until
6271 that breakpoint is reached. */
488f131b
JB
6272 keep_going (ecs);
6273 return;
6274 }
c5aa993b 6275
16c381f0 6276 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6277 {
527159b7 6278 if (debug_infrun)
8a9de0e4 6279 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6280 /* Likewise if we aren't even stepping. */
488f131b
JB
6281 keep_going (ecs);
6282 return;
6283 }
c5aa993b 6284
4b7703ad
JB
6285 /* Re-fetch current thread's frame in case the code above caused
6286 the frame cache to be re-initialized, making our FRAME variable
6287 a dangling pointer. */
6288 frame = get_current_frame ();
628fe4e4 6289 gdbarch = get_frame_arch (frame);
7e324e48 6290 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6291
488f131b 6292 /* If stepping through a line, keep going if still within it.
c906108c 6293
488f131b
JB
6294 Note that step_range_end is the address of the first instruction
6295 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6296 within it!
6297
6298 Note also that during reverse execution, we may be stepping
6299 through a function epilogue and therefore must detect when
6300 the current-frame changes in the middle of a line. */
6301
f2ffa92b
PA
6302 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6303 ecs->event_thread)
31410e84 6304 && (execution_direction != EXEC_REVERSE
388a8562 6305 || frame_id_eq (get_frame_id (frame),
16c381f0 6306 ecs->event_thread->control.step_frame_id)))
488f131b 6307 {
527159b7 6308 if (debug_infrun)
5af949e3
UW
6309 fprintf_unfiltered
6310 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6311 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6312 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6313
c1e36e3e
PA
6314 /* Tentatively re-enable range stepping; `resume' disables it if
6315 necessary (e.g., if we're stepping over a breakpoint or we
6316 have software watchpoints). */
6317 ecs->event_thread->control.may_range_step = 1;
6318
b2175913
MS
6319 /* When stepping backward, stop at beginning of line range
6320 (unless it's the function entry point, in which case
6321 keep going back to the call point). */
f2ffa92b 6322 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
16c381f0 6323 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6324 && stop_pc != ecs->stop_func_start
6325 && execution_direction == EXEC_REVERSE)
bdc36728 6326 end_stepping_range (ecs);
b2175913
MS
6327 else
6328 keep_going (ecs);
6329
488f131b
JB
6330 return;
6331 }
c5aa993b 6332
488f131b 6333 /* We stepped out of the stepping range. */
c906108c 6334
488f131b 6335 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6336 loader dynamic symbol resolution code...
6337
6338 EXEC_FORWARD: we keep on single stepping until we exit the run
6339 time loader code and reach the callee's address.
6340
6341 EXEC_REVERSE: we've already executed the callee (backward), and
6342 the runtime loader code is handled just like any other
6343 undebuggable function call. Now we need only keep stepping
6344 backward through the trampoline code, and that's handled further
6345 down, so there is nothing for us to do here. */
6346
6347 if (execution_direction != EXEC_REVERSE
16c381f0 6348 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
f2ffa92b 6349 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
488f131b 6350 {
4c8c40e6 6351 CORE_ADDR pc_after_resolver =
f2ffa92b
PA
6352 gdbarch_skip_solib_resolver (gdbarch,
6353 ecs->event_thread->suspend.stop_pc);
c906108c 6354
527159b7 6355 if (debug_infrun)
3e43a32a
MS
6356 fprintf_unfiltered (gdb_stdlog,
6357 "infrun: stepped into dynsym resolve code\n");
527159b7 6358
488f131b
JB
6359 if (pc_after_resolver)
6360 {
6361 /* Set up a step-resume breakpoint at the address
6362 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6363 symtab_and_line sr_sal;
488f131b 6364 sr_sal.pc = pc_after_resolver;
6c95b8df 6365 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6366
a6d9a66e
UW
6367 insert_step_resume_breakpoint_at_sal (gdbarch,
6368 sr_sal, null_frame_id);
c5aa993b 6369 }
c906108c 6370
488f131b
JB
6371 keep_going (ecs);
6372 return;
6373 }
c906108c 6374
1d509aa6
MM
6375 /* Step through an indirect branch thunk. */
6376 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
f2ffa92b
PA
6377 && gdbarch_in_indirect_branch_thunk (gdbarch,
6378 ecs->event_thread->suspend.stop_pc))
1d509aa6
MM
6379 {
6380 if (debug_infrun)
6381 fprintf_unfiltered (gdb_stdlog,
6382 "infrun: stepped into indirect branch thunk\n");
6383 keep_going (ecs);
6384 return;
6385 }
6386
16c381f0
JK
6387 if (ecs->event_thread->control.step_range_end != 1
6388 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6389 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6390 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6391 {
527159b7 6392 if (debug_infrun)
3e43a32a
MS
6393 fprintf_unfiltered (gdb_stdlog,
6394 "infrun: stepped into signal trampoline\n");
42edda50 6395 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6396 a signal trampoline (either by a signal being delivered or by
6397 the signal handler returning). Just single-step until the
6398 inferior leaves the trampoline (either by calling the handler
6399 or returning). */
488f131b
JB
6400 keep_going (ecs);
6401 return;
6402 }
c906108c 6403
14132e89
MR
6404 /* If we're in the return path from a shared library trampoline,
6405 we want to proceed through the trampoline when stepping. */
6406 /* macro/2012-04-25: This needs to come before the subroutine
6407 call check below as on some targets return trampolines look
6408 like subroutine calls (MIPS16 return thunks). */
6409 if (gdbarch_in_solib_return_trampoline (gdbarch,
f2ffa92b
PA
6410 ecs->event_thread->suspend.stop_pc,
6411 ecs->stop_func_name)
14132e89
MR
6412 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6413 {
6414 /* Determine where this trampoline returns. */
f2ffa92b
PA
6415 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6416 CORE_ADDR real_stop_pc
6417 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
14132e89
MR
6418
6419 if (debug_infrun)
6420 fprintf_unfiltered (gdb_stdlog,
6421 "infrun: stepped into solib return tramp\n");
6422
6423 /* Only proceed through if we know where it's going. */
6424 if (real_stop_pc)
6425 {
6426 /* And put the step-breakpoint there and go until there. */
51abb421 6427 symtab_and_line sr_sal;
14132e89
MR
6428 sr_sal.pc = real_stop_pc;
6429 sr_sal.section = find_pc_overlay (sr_sal.pc);
6430 sr_sal.pspace = get_frame_program_space (frame);
6431
6432 /* Do not specify what the fp should be when we stop since
6433 on some machines the prologue is where the new fp value
6434 is established. */
6435 insert_step_resume_breakpoint_at_sal (gdbarch,
6436 sr_sal, null_frame_id);
6437
6438 /* Restart without fiddling with the step ranges or
6439 other state. */
6440 keep_going (ecs);
6441 return;
6442 }
6443 }
6444
c17eaafe
DJ
6445 /* Check for subroutine calls. The check for the current frame
6446 equalling the step ID is not necessary - the check of the
6447 previous frame's ID is sufficient - but it is a common case and
6448 cheaper than checking the previous frame's ID.
14e60db5
DJ
6449
6450 NOTE: frame_id_eq will never report two invalid frame IDs as
6451 being equal, so to get into this block, both the current and
6452 previous frame must have valid frame IDs. */
005ca36a
JB
6453 /* The outer_frame_id check is a heuristic to detect stepping
6454 through startup code. If we step over an instruction which
6455 sets the stack pointer from an invalid value to a valid value,
6456 we may detect that as a subroutine call from the mythical
6457 "outermost" function. This could be fixed by marking
6458 outermost frames as !stack_p,code_p,special_p. Then the
6459 initial outermost frame, before sp was valid, would
ce6cca6d 6460 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6461 for more. */
edb3359d 6462 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6463 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6464 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6465 ecs->event_thread->control.step_stack_frame_id)
6466 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6467 outer_frame_id)
885eeb5b 6468 || (ecs->event_thread->control.step_start_function
f2ffa92b 6469 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
488f131b 6470 {
f2ffa92b 6471 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
95918acb 6472 CORE_ADDR real_stop_pc;
8fb3e588 6473
527159b7 6474 if (debug_infrun)
8a9de0e4 6475 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6476
b7a084be 6477 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6478 {
6479 /* I presume that step_over_calls is only 0 when we're
6480 supposed to be stepping at the assembly language level
6481 ("stepi"). Just stop. */
388a8562 6482 /* And this works the same backward as frontward. MVS */
bdc36728 6483 end_stepping_range (ecs);
95918acb
AC
6484 return;
6485 }
8fb3e588 6486
388a8562
MS
6487 /* Reverse stepping through solib trampolines. */
6488
6489 if (execution_direction == EXEC_REVERSE
16c381f0 6490 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6491 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6492 || (ecs->stop_func_start == 0
6493 && in_solib_dynsym_resolve_code (stop_pc))))
6494 {
6495 /* Any solib trampoline code can be handled in reverse
6496 by simply continuing to single-step. We have already
6497 executed the solib function (backwards), and a few
6498 steps will take us back through the trampoline to the
6499 caller. */
6500 keep_going (ecs);
6501 return;
6502 }
6503
16c381f0 6504 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6505 {
b2175913
MS
6506 /* We're doing a "next".
6507
6508 Normal (forward) execution: set a breakpoint at the
6509 callee's return address (the address at which the caller
6510 will resume).
6511
6512 Reverse (backward) execution. set the step-resume
6513 breakpoint at the start of the function that we just
6514 stepped into (backwards), and continue to there. When we
6130d0b7 6515 get there, we'll need to single-step back to the caller. */
b2175913
MS
6516
6517 if (execution_direction == EXEC_REVERSE)
6518 {
acf9414f
JK
6519 /* If we're already at the start of the function, we've either
6520 just stepped backward into a single instruction function,
6521 or stepped back out of a signal handler to the first instruction
6522 of the function. Just keep going, which will single-step back
6523 to the caller. */
58c48e72 6524 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 6525 {
acf9414f 6526 /* Normal function call return (static or dynamic). */
51abb421 6527 symtab_and_line sr_sal;
acf9414f
JK
6528 sr_sal.pc = ecs->stop_func_start;
6529 sr_sal.pspace = get_frame_program_space (frame);
6530 insert_step_resume_breakpoint_at_sal (gdbarch,
6531 sr_sal, null_frame_id);
6532 }
b2175913
MS
6533 }
6534 else
568d6575 6535 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6536
8567c30f
AC
6537 keep_going (ecs);
6538 return;
6539 }
a53c66de 6540
95918acb 6541 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6542 calling routine and the real function), locate the real
6543 function. That's what tells us (a) whether we want to step
6544 into it at all, and (b) what prologue we want to run to the
6545 end of, if we do step into it. */
568d6575 6546 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6547 if (real_stop_pc == 0)
568d6575 6548 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6549 if (real_stop_pc != 0)
6550 ecs->stop_func_start = real_stop_pc;
8fb3e588 6551
db5f024e 6552 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 6553 {
51abb421 6554 symtab_and_line sr_sal;
1b2bfbb9 6555 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6556 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6557
a6d9a66e
UW
6558 insert_step_resume_breakpoint_at_sal (gdbarch,
6559 sr_sal, null_frame_id);
8fb3e588
AC
6560 keep_going (ecs);
6561 return;
1b2bfbb9
RC
6562 }
6563
95918acb 6564 /* If we have line number information for the function we are
1bfeeb0f
JL
6565 thinking of stepping into and the function isn't on the skip
6566 list, step into it.
95918acb 6567
8fb3e588
AC
6568 If there are several symtabs at that PC (e.g. with include
6569 files), just want to know whether *any* of them have line
6570 numbers. find_pc_line handles this. */
95918acb
AC
6571 {
6572 struct symtab_and_line tmp_sal;
8fb3e588 6573
95918acb 6574 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6575 if (tmp_sal.line != 0
85817405 6576 && !function_name_is_marked_for_skip (ecs->stop_func_name,
de7985c3 6577 tmp_sal))
95918acb 6578 {
b2175913 6579 if (execution_direction == EXEC_REVERSE)
568d6575 6580 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6581 else
568d6575 6582 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6583 return;
6584 }
6585 }
6586
6587 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6588 set, we stop the step so that the user has a chance to switch
6589 in assembly mode. */
16c381f0 6590 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6591 && step_stop_if_no_debug)
95918acb 6592 {
bdc36728 6593 end_stepping_range (ecs);
95918acb
AC
6594 return;
6595 }
6596
b2175913
MS
6597 if (execution_direction == EXEC_REVERSE)
6598 {
acf9414f
JK
6599 /* If we're already at the start of the function, we've either just
6600 stepped backward into a single instruction function without line
6601 number info, or stepped back out of a signal handler to the first
6602 instruction of the function without line number info. Just keep
6603 going, which will single-step back to the caller. */
6604 if (ecs->stop_func_start != stop_pc)
6605 {
6606 /* Set a breakpoint at callee's start address.
6607 From there we can step once and be back in the caller. */
51abb421 6608 symtab_and_line sr_sal;
acf9414f
JK
6609 sr_sal.pc = ecs->stop_func_start;
6610 sr_sal.pspace = get_frame_program_space (frame);
6611 insert_step_resume_breakpoint_at_sal (gdbarch,
6612 sr_sal, null_frame_id);
6613 }
b2175913
MS
6614 }
6615 else
6616 /* Set a breakpoint at callee's return address (the address
6617 at which the caller will resume). */
568d6575 6618 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6619
95918acb 6620 keep_going (ecs);
488f131b 6621 return;
488f131b 6622 }
c906108c 6623
fdd654f3
MS
6624 /* Reverse stepping through solib trampolines. */
6625
6626 if (execution_direction == EXEC_REVERSE
16c381f0 6627 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3 6628 {
f2ffa92b
PA
6629 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6630
fdd654f3
MS
6631 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6632 || (ecs->stop_func_start == 0
6633 && in_solib_dynsym_resolve_code (stop_pc)))
6634 {
6635 /* Any solib trampoline code can be handled in reverse
6636 by simply continuing to single-step. We have already
6637 executed the solib function (backwards), and a few
6638 steps will take us back through the trampoline to the
6639 caller. */
6640 keep_going (ecs);
6641 return;
6642 }
6643 else if (in_solib_dynsym_resolve_code (stop_pc))
6644 {
6645 /* Stepped backward into the solib dynsym resolver.
6646 Set a breakpoint at its start and continue, then
6647 one more step will take us out. */
51abb421 6648 symtab_and_line sr_sal;
fdd654f3 6649 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6650 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6651 insert_step_resume_breakpoint_at_sal (gdbarch,
6652 sr_sal, null_frame_id);
6653 keep_going (ecs);
6654 return;
6655 }
6656 }
6657
f2ffa92b 6658 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7ed0fe66 6659
1b2bfbb9
RC
6660 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6661 the trampoline processing logic, however, there are some trampolines
6662 that have no names, so we should do trampoline handling first. */
16c381f0 6663 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6664 && ecs->stop_func_name == NULL
2afb61aa 6665 && stop_pc_sal.line == 0)
1b2bfbb9 6666 {
527159b7 6667 if (debug_infrun)
3e43a32a
MS
6668 fprintf_unfiltered (gdb_stdlog,
6669 "infrun: stepped into undebuggable function\n");
527159b7 6670
1b2bfbb9 6671 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6672 undebuggable function (where there is no debugging information
6673 and no line number corresponding to the address where the
1b2bfbb9
RC
6674 inferior stopped). Since we want to skip this kind of code,
6675 we keep going until the inferior returns from this
14e60db5
DJ
6676 function - unless the user has asked us not to (via
6677 set step-mode) or we no longer know how to get back
6678 to the call site. */
6679 if (step_stop_if_no_debug
c7ce8faa 6680 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6681 {
6682 /* If we have no line number and the step-stop-if-no-debug
6683 is set, we stop the step so that the user has a chance to
6684 switch in assembly mode. */
bdc36728 6685 end_stepping_range (ecs);
1b2bfbb9
RC
6686 return;
6687 }
6688 else
6689 {
6690 /* Set a breakpoint at callee's return address (the address
6691 at which the caller will resume). */
568d6575 6692 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6693 keep_going (ecs);
6694 return;
6695 }
6696 }
6697
16c381f0 6698 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6699 {
6700 /* It is stepi or nexti. We always want to stop stepping after
6701 one instruction. */
527159b7 6702 if (debug_infrun)
8a9de0e4 6703 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6704 end_stepping_range (ecs);
1b2bfbb9
RC
6705 return;
6706 }
6707
2afb61aa 6708 if (stop_pc_sal.line == 0)
488f131b
JB
6709 {
6710 /* We have no line number information. That means to stop
6711 stepping (does this always happen right after one instruction,
6712 when we do "s" in a function with no line numbers,
6713 or can this happen as a result of a return or longjmp?). */
527159b7 6714 if (debug_infrun)
8a9de0e4 6715 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6716 end_stepping_range (ecs);
488f131b
JB
6717 return;
6718 }
c906108c 6719
edb3359d
DJ
6720 /* Look for "calls" to inlined functions, part one. If the inline
6721 frame machinery detected some skipped call sites, we have entered
6722 a new inline function. */
6723
6724 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6725 ecs->event_thread->control.step_frame_id)
00431a78 6726 && inline_skipped_frames (ecs->event_thread))
edb3359d 6727 {
edb3359d
DJ
6728 if (debug_infrun)
6729 fprintf_unfiltered (gdb_stdlog,
6730 "infrun: stepped into inlined function\n");
6731
51abb421 6732 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 6733
16c381f0 6734 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6735 {
6736 /* For "step", we're going to stop. But if the call site
6737 for this inlined function is on the same source line as
6738 we were previously stepping, go down into the function
6739 first. Otherwise stop at the call site. */
6740
6741 if (call_sal.line == ecs->event_thread->current_line
6742 && call_sal.symtab == ecs->event_thread->current_symtab)
00431a78 6743 step_into_inline_frame (ecs->event_thread);
edb3359d 6744
bdc36728 6745 end_stepping_range (ecs);
edb3359d
DJ
6746 return;
6747 }
6748 else
6749 {
6750 /* For "next", we should stop at the call site if it is on a
6751 different source line. Otherwise continue through the
6752 inlined function. */
6753 if (call_sal.line == ecs->event_thread->current_line
6754 && call_sal.symtab == ecs->event_thread->current_symtab)
6755 keep_going (ecs);
6756 else
bdc36728 6757 end_stepping_range (ecs);
edb3359d
DJ
6758 return;
6759 }
6760 }
6761
6762 /* Look for "calls" to inlined functions, part two. If we are still
6763 in the same real function we were stepping through, but we have
6764 to go further up to find the exact frame ID, we are stepping
6765 through a more inlined call beyond its call site. */
6766
6767 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6768 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6769 ecs->event_thread->control.step_frame_id)
edb3359d 6770 && stepped_in_from (get_current_frame (),
16c381f0 6771 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6772 {
6773 if (debug_infrun)
6774 fprintf_unfiltered (gdb_stdlog,
6775 "infrun: stepping through inlined function\n");
6776
16c381f0 6777 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
6778 keep_going (ecs);
6779 else
bdc36728 6780 end_stepping_range (ecs);
edb3359d
DJ
6781 return;
6782 }
6783
f2ffa92b 6784 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6785 && (ecs->event_thread->current_line != stop_pc_sal.line
6786 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
6787 {
6788 /* We are at the start of a different line. So stop. Note that
6789 we don't stop if we step into the middle of a different line.
6790 That is said to make things like for (;;) statements work
6791 better. */
527159b7 6792 if (debug_infrun)
3e43a32a
MS
6793 fprintf_unfiltered (gdb_stdlog,
6794 "infrun: stepped to a different line\n");
bdc36728 6795 end_stepping_range (ecs);
488f131b
JB
6796 return;
6797 }
c906108c 6798
488f131b 6799 /* We aren't done stepping.
c906108c 6800
488f131b
JB
6801 Optimize by setting the stepping range to the line.
6802 (We might not be in the original line, but if we entered a
6803 new line in mid-statement, we continue stepping. This makes
6804 things like for(;;) statements work better.) */
c906108c 6805
16c381f0
JK
6806 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6807 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 6808 ecs->event_thread->control.may_range_step = 1;
edb3359d 6809 set_step_info (frame, stop_pc_sal);
488f131b 6810
527159b7 6811 if (debug_infrun)
8a9de0e4 6812 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 6813 keep_going (ecs);
104c1213
JM
6814}
6815
c447ac0b
PA
6816/* In all-stop mode, if we're currently stepping but have stopped in
6817 some other thread, we may need to switch back to the stepped
6818 thread. Returns true we set the inferior running, false if we left
6819 it stopped (and the event needs further processing). */
6820
6821static int
6822switch_back_to_stepped_thread (struct execution_control_state *ecs)
6823{
fbea99ea 6824 if (!target_is_non_stop_p ())
c447ac0b 6825 {
99619bea
PA
6826 struct thread_info *stepping_thread;
6827
6828 /* If any thread is blocked on some internal breakpoint, and we
6829 simply need to step over that breakpoint to get it going
6830 again, do that first. */
6831
6832 /* However, if we see an event for the stepping thread, then we
6833 know all other threads have been moved past their breakpoints
6834 already. Let the caller check whether the step is finished,
6835 etc., before deciding to move it past a breakpoint. */
6836 if (ecs->event_thread->control.step_range_end != 0)
6837 return 0;
6838
6839 /* Check if the current thread is blocked on an incomplete
6840 step-over, interrupted by a random signal. */
6841 if (ecs->event_thread->control.trap_expected
6842 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 6843 {
99619bea
PA
6844 if (debug_infrun)
6845 {
6846 fprintf_unfiltered (gdb_stdlog,
6847 "infrun: need to finish step-over of [%s]\n",
a068643d 6848 target_pid_to_str (ecs->event_thread->ptid).c_str ());
99619bea
PA
6849 }
6850 keep_going (ecs);
6851 return 1;
6852 }
2adfaa28 6853
99619bea
PA
6854 /* Check if the current thread is blocked by a single-step
6855 breakpoint of another thread. */
6856 if (ecs->hit_singlestep_breakpoint)
6857 {
6858 if (debug_infrun)
6859 {
6860 fprintf_unfiltered (gdb_stdlog,
6861 "infrun: need to step [%s] over single-step "
6862 "breakpoint\n",
a068643d 6863 target_pid_to_str (ecs->ptid).c_str ());
99619bea
PA
6864 }
6865 keep_going (ecs);
6866 return 1;
6867 }
6868
4d9d9d04
PA
6869 /* If this thread needs yet another step-over (e.g., stepping
6870 through a delay slot), do it first before moving on to
6871 another thread. */
6872 if (thread_still_needs_step_over (ecs->event_thread))
6873 {
6874 if (debug_infrun)
6875 {
6876 fprintf_unfiltered (gdb_stdlog,
6877 "infrun: thread [%s] still needs step-over\n",
a068643d 6878 target_pid_to_str (ecs->event_thread->ptid).c_str ());
4d9d9d04
PA
6879 }
6880 keep_going (ecs);
6881 return 1;
6882 }
70509625 6883
483805cf
PA
6884 /* If scheduler locking applies even if not stepping, there's no
6885 need to walk over threads. Above we've checked whether the
6886 current thread is stepping. If some other thread not the
6887 event thread is stepping, then it must be that scheduler
6888 locking is not in effect. */
856e7dd6 6889 if (schedlock_applies (ecs->event_thread))
483805cf
PA
6890 return 0;
6891
4d9d9d04
PA
6892 /* Otherwise, we no longer expect a trap in the current thread.
6893 Clear the trap_expected flag before switching back -- this is
6894 what keep_going does as well, if we call it. */
6895 ecs->event_thread->control.trap_expected = 0;
6896
6897 /* Likewise, clear the signal if it should not be passed. */
6898 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6899 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6900
6901 /* Do all pending step-overs before actually proceeding with
483805cf 6902 step/next/etc. */
4d9d9d04
PA
6903 if (start_step_over ())
6904 {
6905 prepare_to_wait (ecs);
6906 return 1;
6907 }
6908
6909 /* Look for the stepping/nexting thread. */
483805cf 6910 stepping_thread = NULL;
4d9d9d04 6911
08036331 6912 for (thread_info *tp : all_non_exited_threads ())
483805cf 6913 {
fbea99ea
PA
6914 /* Ignore threads of processes the caller is not
6915 resuming. */
483805cf 6916 if (!sched_multi
e99b03dc 6917 && tp->ptid.pid () != ecs->ptid.pid ())
483805cf
PA
6918 continue;
6919
6920 /* When stepping over a breakpoint, we lock all threads
6921 except the one that needs to move past the breakpoint.
6922 If a non-event thread has this set, the "incomplete
6923 step-over" check above should have caught it earlier. */
372316f1
PA
6924 if (tp->control.trap_expected)
6925 {
6926 internal_error (__FILE__, __LINE__,
6927 "[%s] has inconsistent state: "
6928 "trap_expected=%d\n",
a068643d 6929 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
6930 tp->control.trap_expected);
6931 }
483805cf
PA
6932
6933 /* Did we find the stepping thread? */
6934 if (tp->control.step_range_end)
6935 {
6936 /* Yep. There should only one though. */
6937 gdb_assert (stepping_thread == NULL);
6938
6939 /* The event thread is handled at the top, before we
6940 enter this loop. */
6941 gdb_assert (tp != ecs->event_thread);
6942
6943 /* If some thread other than the event thread is
6944 stepping, then scheduler locking can't be in effect,
6945 otherwise we wouldn't have resumed the current event
6946 thread in the first place. */
856e7dd6 6947 gdb_assert (!schedlock_applies (tp));
483805cf
PA
6948
6949 stepping_thread = tp;
6950 }
99619bea
PA
6951 }
6952
483805cf 6953 if (stepping_thread != NULL)
99619bea 6954 {
c447ac0b
PA
6955 if (debug_infrun)
6956 fprintf_unfiltered (gdb_stdlog,
6957 "infrun: switching back to stepped thread\n");
6958
2ac7589c
PA
6959 if (keep_going_stepped_thread (stepping_thread))
6960 {
6961 prepare_to_wait (ecs);
6962 return 1;
6963 }
6964 }
6965 }
2adfaa28 6966
2ac7589c
PA
6967 return 0;
6968}
2adfaa28 6969
2ac7589c
PA
6970/* Set a previously stepped thread back to stepping. Returns true on
6971 success, false if the resume is not possible (e.g., the thread
6972 vanished). */
6973
6974static int
6975keep_going_stepped_thread (struct thread_info *tp)
6976{
6977 struct frame_info *frame;
2ac7589c
PA
6978 struct execution_control_state ecss;
6979 struct execution_control_state *ecs = &ecss;
2adfaa28 6980
2ac7589c
PA
6981 /* If the stepping thread exited, then don't try to switch back and
6982 resume it, which could fail in several different ways depending
6983 on the target. Instead, just keep going.
2adfaa28 6984
2ac7589c
PA
6985 We can find a stepping dead thread in the thread list in two
6986 cases:
2adfaa28 6987
2ac7589c
PA
6988 - The target supports thread exit events, and when the target
6989 tries to delete the thread from the thread list, inferior_ptid
6990 pointed at the exiting thread. In such case, calling
6991 delete_thread does not really remove the thread from the list;
6992 instead, the thread is left listed, with 'exited' state.
64ce06e4 6993
2ac7589c
PA
6994 - The target's debug interface does not support thread exit
6995 events, and so we have no idea whatsoever if the previously
6996 stepping thread is still alive. For that reason, we need to
6997 synchronously query the target now. */
2adfaa28 6998
00431a78 6999 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
2ac7589c
PA
7000 {
7001 if (debug_infrun)
7002 fprintf_unfiltered (gdb_stdlog,
7003 "infrun: not resuming previously "
7004 "stepped thread, it has vanished\n");
7005
00431a78 7006 delete_thread (tp);
2ac7589c 7007 return 0;
c447ac0b 7008 }
2ac7589c
PA
7009
7010 if (debug_infrun)
7011 fprintf_unfiltered (gdb_stdlog,
7012 "infrun: resuming previously stepped thread\n");
7013
7014 reset_ecs (ecs, tp);
00431a78 7015 switch_to_thread (tp);
2ac7589c 7016
f2ffa92b 7017 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
2ac7589c 7018 frame = get_current_frame ();
2ac7589c
PA
7019
7020 /* If the PC of the thread we were trying to single-step has
7021 changed, then that thread has trapped or been signaled, but the
7022 event has not been reported to GDB yet. Re-poll the target
7023 looking for this particular thread's event (i.e. temporarily
7024 enable schedlock) by:
7025
7026 - setting a break at the current PC
7027 - resuming that particular thread, only (by setting trap
7028 expected)
7029
7030 This prevents us continuously moving the single-step breakpoint
7031 forward, one instruction at a time, overstepping. */
7032
f2ffa92b 7033 if (tp->suspend.stop_pc != tp->prev_pc)
2ac7589c
PA
7034 {
7035 ptid_t resume_ptid;
7036
7037 if (debug_infrun)
7038 fprintf_unfiltered (gdb_stdlog,
7039 "infrun: expected thread advanced also (%s -> %s)\n",
7040 paddress (target_gdbarch (), tp->prev_pc),
f2ffa92b 7041 paddress (target_gdbarch (), tp->suspend.stop_pc));
2ac7589c
PA
7042
7043 /* Clear the info of the previous step-over, as it's no longer
7044 valid (if the thread was trying to step over a breakpoint, it
7045 has already succeeded). It's what keep_going would do too,
7046 if we called it. Do this before trying to insert the sss
7047 breakpoint, otherwise if we were previously trying to step
7048 over this exact address in another thread, the breakpoint is
7049 skipped. */
7050 clear_step_over_info ();
7051 tp->control.trap_expected = 0;
7052
7053 insert_single_step_breakpoint (get_frame_arch (frame),
7054 get_frame_address_space (frame),
f2ffa92b 7055 tp->suspend.stop_pc);
2ac7589c 7056
372316f1 7057 tp->resumed = 1;
fbea99ea 7058 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7059 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7060 }
7061 else
7062 {
7063 if (debug_infrun)
7064 fprintf_unfiltered (gdb_stdlog,
7065 "infrun: expected thread still hasn't advanced\n");
7066
7067 keep_going_pass_signal (ecs);
7068 }
7069 return 1;
c447ac0b
PA
7070}
7071
8b061563
PA
7072/* Is thread TP in the middle of (software or hardware)
7073 single-stepping? (Note the result of this function must never be
7074 passed directly as target_resume's STEP parameter.) */
104c1213 7075
a289b8f6 7076static int
b3444185 7077currently_stepping (struct thread_info *tp)
a7212384 7078{
8358c15c
JK
7079 return ((tp->control.step_range_end
7080 && tp->control.step_resume_breakpoint == NULL)
7081 || tp->control.trap_expected
af48d08f 7082 || tp->stepped_breakpoint
8358c15c 7083 || bpstat_should_step ());
a7212384
UW
7084}
7085
b2175913
MS
7086/* Inferior has stepped into a subroutine call with source code that
7087 we should not step over. Do step to the first line of code in
7088 it. */
c2c6d25f
JM
7089
7090static void
568d6575
UW
7091handle_step_into_function (struct gdbarch *gdbarch,
7092 struct execution_control_state *ecs)
c2c6d25f 7093{
7e324e48
GB
7094 fill_in_stop_func (gdbarch, ecs);
7095
f2ffa92b
PA
7096 compunit_symtab *cust
7097 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7098 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7099 ecs->stop_func_start
7100 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7101
51abb421 7102 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7103 /* Use the step_resume_break to step until the end of the prologue,
7104 even if that involves jumps (as it seems to on the vax under
7105 4.2). */
7106 /* If the prologue ends in the middle of a source line, continue to
7107 the end of that source line (if it is still within the function).
7108 Otherwise, just go to end of prologue. */
2afb61aa
PA
7109 if (stop_func_sal.end
7110 && stop_func_sal.pc != ecs->stop_func_start
7111 && stop_func_sal.end < ecs->stop_func_end)
7112 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7113
2dbd5e30
KB
7114 /* Architectures which require breakpoint adjustment might not be able
7115 to place a breakpoint at the computed address. If so, the test
7116 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7117 ecs->stop_func_start to an address at which a breakpoint may be
7118 legitimately placed.
8fb3e588 7119
2dbd5e30
KB
7120 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7121 made, GDB will enter an infinite loop when stepping through
7122 optimized code consisting of VLIW instructions which contain
7123 subinstructions corresponding to different source lines. On
7124 FR-V, it's not permitted to place a breakpoint on any but the
7125 first subinstruction of a VLIW instruction. When a breakpoint is
7126 set, GDB will adjust the breakpoint address to the beginning of
7127 the VLIW instruction. Thus, we need to make the corresponding
7128 adjustment here when computing the stop address. */
8fb3e588 7129
568d6575 7130 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7131 {
7132 ecs->stop_func_start
568d6575 7133 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7134 ecs->stop_func_start);
2dbd5e30
KB
7135 }
7136
f2ffa92b 7137 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
c2c6d25f
JM
7138 {
7139 /* We are already there: stop now. */
bdc36728 7140 end_stepping_range (ecs);
c2c6d25f
JM
7141 return;
7142 }
7143 else
7144 {
7145 /* Put the step-breakpoint there and go until there. */
51abb421 7146 symtab_and_line sr_sal;
c2c6d25f
JM
7147 sr_sal.pc = ecs->stop_func_start;
7148 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7149 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7150
c2c6d25f 7151 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7152 some machines the prologue is where the new fp value is
7153 established. */
a6d9a66e 7154 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7155
7156 /* And make sure stepping stops right away then. */
16c381f0
JK
7157 ecs->event_thread->control.step_range_end
7158 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7159 }
7160 keep_going (ecs);
7161}
d4f3574e 7162
b2175913
MS
7163/* Inferior has stepped backward into a subroutine call with source
7164 code that we should not step over. Do step to the beginning of the
7165 last line of code in it. */
7166
7167static void
568d6575
UW
7168handle_step_into_function_backward (struct gdbarch *gdbarch,
7169 struct execution_control_state *ecs)
b2175913 7170{
43f3e411 7171 struct compunit_symtab *cust;
167e4384 7172 struct symtab_and_line stop_func_sal;
b2175913 7173
7e324e48
GB
7174 fill_in_stop_func (gdbarch, ecs);
7175
f2ffa92b 7176 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7177 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7178 ecs->stop_func_start
7179 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913 7180
f2ffa92b 7181 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
b2175913
MS
7182
7183 /* OK, we're just going to keep stepping here. */
f2ffa92b 7184 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
b2175913
MS
7185 {
7186 /* We're there already. Just stop stepping now. */
bdc36728 7187 end_stepping_range (ecs);
b2175913
MS
7188 }
7189 else
7190 {
7191 /* Else just reset the step range and keep going.
7192 No step-resume breakpoint, they don't work for
7193 epilogues, which can have multiple entry paths. */
16c381f0
JK
7194 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7195 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7196 keep_going (ecs);
7197 }
7198 return;
7199}
7200
d3169d93 7201/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7202 This is used to both functions and to skip over code. */
7203
7204static void
2c03e5be
PA
7205insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7206 struct symtab_and_line sr_sal,
7207 struct frame_id sr_id,
7208 enum bptype sr_type)
44cbf7b5 7209{
611c83ae
PA
7210 /* There should never be more than one step-resume or longjmp-resume
7211 breakpoint per thread, so we should never be setting a new
44cbf7b5 7212 step_resume_breakpoint when one is already active. */
8358c15c 7213 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7214 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7215
7216 if (debug_infrun)
7217 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7218 "infrun: inserting step-resume breakpoint at %s\n",
7219 paddress (gdbarch, sr_sal.pc));
d3169d93 7220
8358c15c 7221 inferior_thread ()->control.step_resume_breakpoint
454dafbd 7222 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
2c03e5be
PA
7223}
7224
9da8c2a0 7225void
2c03e5be
PA
7226insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7227 struct symtab_and_line sr_sal,
7228 struct frame_id sr_id)
7229{
7230 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7231 sr_sal, sr_id,
7232 bp_step_resume);
44cbf7b5 7233}
7ce450bd 7234
2c03e5be
PA
7235/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7236 This is used to skip a potential signal handler.
7ce450bd 7237
14e60db5
DJ
7238 This is called with the interrupted function's frame. The signal
7239 handler, when it returns, will resume the interrupted function at
7240 RETURN_FRAME.pc. */
d303a6c7
AC
7241
7242static void
2c03e5be 7243insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7244{
f4c1edd8 7245 gdb_assert (return_frame != NULL);
d303a6c7 7246
51abb421
PA
7247 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7248
7249 symtab_and_line sr_sal;
568d6575 7250 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7251 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7252 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7253
2c03e5be
PA
7254 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7255 get_stack_frame_id (return_frame),
7256 bp_hp_step_resume);
d303a6c7
AC
7257}
7258
2c03e5be
PA
7259/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7260 is used to skip a function after stepping into it (for "next" or if
7261 the called function has no debugging information).
14e60db5
DJ
7262
7263 The current function has almost always been reached by single
7264 stepping a call or return instruction. NEXT_FRAME belongs to the
7265 current function, and the breakpoint will be set at the caller's
7266 resume address.
7267
7268 This is a separate function rather than reusing
2c03e5be 7269 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7270 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7271 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7272
7273static void
7274insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7275{
14e60db5
DJ
7276 /* We shouldn't have gotten here if we don't know where the call site
7277 is. */
c7ce8faa 7278 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7279
51abb421 7280 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7281
51abb421 7282 symtab_and_line sr_sal;
c7ce8faa
DJ
7283 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7284 frame_unwind_caller_pc (next_frame));
14e60db5 7285 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7286 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7287
a6d9a66e 7288 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7289 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7290}
7291
611c83ae
PA
7292/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7293 new breakpoint at the target of a jmp_buf. The handling of
7294 longjmp-resume uses the same mechanisms used for handling
7295 "step-resume" breakpoints. */
7296
7297static void
a6d9a66e 7298insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7299{
e81a37f7
TT
7300 /* There should never be more than one longjmp-resume breakpoint per
7301 thread, so we should never be setting a new
611c83ae 7302 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7303 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7304
7305 if (debug_infrun)
7306 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7307 "infrun: inserting longjmp-resume breakpoint at %s\n",
7308 paddress (gdbarch, pc));
611c83ae 7309
e81a37f7 7310 inferior_thread ()->control.exception_resume_breakpoint =
454dafbd 7311 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
611c83ae
PA
7312}
7313
186c406b
TT
7314/* Insert an exception resume breakpoint. TP is the thread throwing
7315 the exception. The block B is the block of the unwinder debug hook
7316 function. FRAME is the frame corresponding to the call to this
7317 function. SYM is the symbol of the function argument holding the
7318 target PC of the exception. */
7319
7320static void
7321insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7322 const struct block *b,
186c406b
TT
7323 struct frame_info *frame,
7324 struct symbol *sym)
7325{
492d29ea 7326 TRY
186c406b 7327 {
63e43d3a 7328 struct block_symbol vsym;
186c406b
TT
7329 struct value *value;
7330 CORE_ADDR handler;
7331 struct breakpoint *bp;
7332
de63c46b
PA
7333 vsym = lookup_symbol_search_name (SYMBOL_SEARCH_NAME (sym),
7334 b, VAR_DOMAIN);
63e43d3a 7335 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7336 /* If the value was optimized out, revert to the old behavior. */
7337 if (! value_optimized_out (value))
7338 {
7339 handler = value_as_address (value);
7340
7341 if (debug_infrun)
7342 fprintf_unfiltered (gdb_stdlog,
7343 "infrun: exception resume at %lx\n",
7344 (unsigned long) handler);
7345
7346 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd
TT
7347 handler,
7348 bp_exception_resume).release ();
c70a6932
JK
7349
7350 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7351 frame = NULL;
7352
5d5658a1 7353 bp->thread = tp->global_num;
186c406b
TT
7354 inferior_thread ()->control.exception_resume_breakpoint = bp;
7355 }
7356 }
492d29ea
PA
7357 CATCH (e, RETURN_MASK_ERROR)
7358 {
7359 /* We want to ignore errors here. */
7360 }
7361 END_CATCH
186c406b
TT
7362}
7363
28106bc2
SDJ
7364/* A helper for check_exception_resume that sets an
7365 exception-breakpoint based on a SystemTap probe. */
7366
7367static void
7368insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7369 const struct bound_probe *probe,
28106bc2
SDJ
7370 struct frame_info *frame)
7371{
7372 struct value *arg_value;
7373 CORE_ADDR handler;
7374 struct breakpoint *bp;
7375
7376 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7377 if (!arg_value)
7378 return;
7379
7380 handler = value_as_address (arg_value);
7381
7382 if (debug_infrun)
7383 fprintf_unfiltered (gdb_stdlog,
7384 "infrun: exception resume at %s\n",
6bac7473 7385 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7386 handler));
7387
7388 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd 7389 handler, bp_exception_resume).release ();
5d5658a1 7390 bp->thread = tp->global_num;
28106bc2
SDJ
7391 inferior_thread ()->control.exception_resume_breakpoint = bp;
7392}
7393
186c406b
TT
7394/* This is called when an exception has been intercepted. Check to
7395 see whether the exception's destination is of interest, and if so,
7396 set an exception resume breakpoint there. */
7397
7398static void
7399check_exception_resume (struct execution_control_state *ecs,
28106bc2 7400 struct frame_info *frame)
186c406b 7401{
729662a5 7402 struct bound_probe probe;
28106bc2
SDJ
7403 struct symbol *func;
7404
7405 /* First see if this exception unwinding breakpoint was set via a
7406 SystemTap probe point. If so, the probe has two arguments: the
7407 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7408 set a breakpoint there. */
6bac7473 7409 probe = find_probe_by_pc (get_frame_pc (frame));
935676c9 7410 if (probe.prob)
28106bc2 7411 {
729662a5 7412 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7413 return;
7414 }
7415
7416 func = get_frame_function (frame);
7417 if (!func)
7418 return;
186c406b 7419
492d29ea 7420 TRY
186c406b 7421 {
3977b71f 7422 const struct block *b;
8157b174 7423 struct block_iterator iter;
186c406b
TT
7424 struct symbol *sym;
7425 int argno = 0;
7426
7427 /* The exception breakpoint is a thread-specific breakpoint on
7428 the unwinder's debug hook, declared as:
7429
7430 void _Unwind_DebugHook (void *cfa, void *handler);
7431
7432 The CFA argument indicates the frame to which control is
7433 about to be transferred. HANDLER is the destination PC.
7434
7435 We ignore the CFA and set a temporary breakpoint at HANDLER.
7436 This is not extremely efficient but it avoids issues in gdb
7437 with computing the DWARF CFA, and it also works even in weird
7438 cases such as throwing an exception from inside a signal
7439 handler. */
7440
7441 b = SYMBOL_BLOCK_VALUE (func);
7442 ALL_BLOCK_SYMBOLS (b, iter, sym)
7443 {
7444 if (!SYMBOL_IS_ARGUMENT (sym))
7445 continue;
7446
7447 if (argno == 0)
7448 ++argno;
7449 else
7450 {
7451 insert_exception_resume_breakpoint (ecs->event_thread,
7452 b, frame, sym);
7453 break;
7454 }
7455 }
7456 }
492d29ea
PA
7457 CATCH (e, RETURN_MASK_ERROR)
7458 {
7459 }
7460 END_CATCH
186c406b
TT
7461}
7462
104c1213 7463static void
22bcd14b 7464stop_waiting (struct execution_control_state *ecs)
104c1213 7465{
527159b7 7466 if (debug_infrun)
22bcd14b 7467 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7468
cd0fc7c3
SS
7469 /* Let callers know we don't want to wait for the inferior anymore. */
7470 ecs->wait_some_more = 0;
fbea99ea
PA
7471
7472 /* If all-stop, but the target is always in non-stop mode, stop all
7473 threads now that we're presenting the stop to the user. */
7474 if (!non_stop && target_is_non_stop_p ())
7475 stop_all_threads ();
cd0fc7c3
SS
7476}
7477
4d9d9d04
PA
7478/* Like keep_going, but passes the signal to the inferior, even if the
7479 signal is set to nopass. */
d4f3574e
SS
7480
7481static void
4d9d9d04 7482keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7483{
d7e15655 7484 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
372316f1 7485 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7486
d4f3574e 7487 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b 7488 ecs->event_thread->prev_pc
00431a78 7489 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
d4f3574e 7490
4d9d9d04 7491 if (ecs->event_thread->control.trap_expected)
d4f3574e 7492 {
4d9d9d04
PA
7493 struct thread_info *tp = ecs->event_thread;
7494
7495 if (debug_infrun)
7496 fprintf_unfiltered (gdb_stdlog,
7497 "infrun: %s has trap_expected set, "
7498 "resuming to collect trap\n",
a068643d 7499 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04 7500
a9ba6bae
PA
7501 /* We haven't yet gotten our trap, and either: intercepted a
7502 non-signal event (e.g., a fork); or took a signal which we
7503 are supposed to pass through to the inferior. Simply
7504 continue. */
64ce06e4 7505 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7506 }
372316f1
PA
7507 else if (step_over_info_valid_p ())
7508 {
7509 /* Another thread is stepping over a breakpoint in-line. If
7510 this thread needs a step-over too, queue the request. In
7511 either case, this resume must be deferred for later. */
7512 struct thread_info *tp = ecs->event_thread;
7513
7514 if (ecs->hit_singlestep_breakpoint
7515 || thread_still_needs_step_over (tp))
7516 {
7517 if (debug_infrun)
7518 fprintf_unfiltered (gdb_stdlog,
7519 "infrun: step-over already in progress: "
7520 "step-over for %s deferred\n",
a068643d 7521 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
7522 thread_step_over_chain_enqueue (tp);
7523 }
7524 else
7525 {
7526 if (debug_infrun)
7527 fprintf_unfiltered (gdb_stdlog,
7528 "infrun: step-over in progress: "
7529 "resume of %s deferred\n",
a068643d 7530 target_pid_to_str (tp->ptid).c_str ());
372316f1 7531 }
372316f1 7532 }
d4f3574e
SS
7533 else
7534 {
31e77af2 7535 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7536 int remove_bp;
7537 int remove_wps;
8d297bbf 7538 step_over_what step_what;
31e77af2 7539
d4f3574e 7540 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7541 anyway (if we got a signal, the user asked it be passed to
7542 the child)
7543 -- or --
7544 We got our expected trap, but decided we should resume from
7545 it.
d4f3574e 7546
a9ba6bae 7547 We're going to run this baby now!
d4f3574e 7548
c36b740a
VP
7549 Note that insert_breakpoints won't try to re-insert
7550 already inserted breakpoints. Therefore, we don't
7551 care if breakpoints were already inserted, or not. */
a9ba6bae 7552
31e77af2
PA
7553 /* If we need to step over a breakpoint, and we're not using
7554 displaced stepping to do so, insert all breakpoints
7555 (watchpoints, etc.) but the one we're stepping over, step one
7556 instruction, and then re-insert the breakpoint when that step
7557 is finished. */
963f9c80 7558
6c4cfb24
PA
7559 step_what = thread_still_needs_step_over (ecs->event_thread);
7560
963f9c80 7561 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7562 || (step_what & STEP_OVER_BREAKPOINT));
7563 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7564
cb71640d
PA
7565 /* We can't use displaced stepping if we need to step past a
7566 watchpoint. The instruction copied to the scratch pad would
7567 still trigger the watchpoint. */
7568 if (remove_bp
3fc8eb30 7569 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7570 {
a01bda52 7571 set_step_over_info (regcache->aspace (),
21edc42f
YQ
7572 regcache_read_pc (regcache), remove_wps,
7573 ecs->event_thread->global_num);
45e8c884 7574 }
963f9c80 7575 else if (remove_wps)
21edc42f 7576 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7577
7578 /* If we now need to do an in-line step-over, we need to stop
7579 all other threads. Note this must be done before
7580 insert_breakpoints below, because that removes the breakpoint
7581 we're about to step over, otherwise other threads could miss
7582 it. */
fbea99ea 7583 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7584 stop_all_threads ();
abbb1732 7585
31e77af2 7586 /* Stop stepping if inserting breakpoints fails. */
492d29ea 7587 TRY
31e77af2
PA
7588 {
7589 insert_breakpoints ();
7590 }
492d29ea 7591 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
7592 {
7593 exception_print (gdb_stderr, e);
22bcd14b 7594 stop_waiting (ecs);
bdf2a94a 7595 clear_step_over_info ();
31e77af2 7596 return;
d4f3574e 7597 }
492d29ea 7598 END_CATCH
d4f3574e 7599
963f9c80 7600 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7601
64ce06e4 7602 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7603 }
7604
488f131b 7605 prepare_to_wait (ecs);
d4f3574e
SS
7606}
7607
4d9d9d04
PA
7608/* Called when we should continue running the inferior, because the
7609 current event doesn't cause a user visible stop. This does the
7610 resuming part; waiting for the next event is done elsewhere. */
7611
7612static void
7613keep_going (struct execution_control_state *ecs)
7614{
7615 if (ecs->event_thread->control.trap_expected
7616 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7617 ecs->event_thread->control.trap_expected = 0;
7618
7619 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7620 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7621 keep_going_pass_signal (ecs);
7622}
7623
104c1213
JM
7624/* This function normally comes after a resume, before
7625 handle_inferior_event exits. It takes care of any last bits of
7626 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7627
104c1213
JM
7628static void
7629prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7630{
527159b7 7631 if (debug_infrun)
8a9de0e4 7632 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7633
104c1213 7634 ecs->wait_some_more = 1;
0b333c5e
PA
7635
7636 if (!target_is_async_p ())
7637 mark_infrun_async_event_handler ();
c906108c 7638}
11cf8741 7639
fd664c91 7640/* We are done with the step range of a step/next/si/ni command.
b57bacec 7641 Called once for each n of a "step n" operation. */
fd664c91
PA
7642
7643static void
bdc36728 7644end_stepping_range (struct execution_control_state *ecs)
fd664c91 7645{
bdc36728 7646 ecs->event_thread->control.stop_step = 1;
bdc36728 7647 stop_waiting (ecs);
fd664c91
PA
7648}
7649
33d62d64
JK
7650/* Several print_*_reason functions to print why the inferior has stopped.
7651 We always print something when the inferior exits, or receives a signal.
7652 The rest of the cases are dealt with later on in normal_stop and
7653 print_it_typical. Ideally there should be a call to one of these
7654 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7655 stop_waiting is called.
33d62d64 7656
fd664c91
PA
7657 Note that we don't call these directly, instead we delegate that to
7658 the interpreters, through observers. Interpreters then call these
7659 with whatever uiout is right. */
33d62d64 7660
fd664c91
PA
7661void
7662print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7663{
fd664c91 7664 /* For CLI-like interpreters, print nothing. */
33d62d64 7665
112e8700 7666 if (uiout->is_mi_like_p ())
fd664c91 7667 {
112e8700 7668 uiout->field_string ("reason",
fd664c91
PA
7669 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7670 }
7671}
33d62d64 7672
fd664c91
PA
7673void
7674print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7675{
33d62d64 7676 annotate_signalled ();
112e8700
SM
7677 if (uiout->is_mi_like_p ())
7678 uiout->field_string
7679 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7680 uiout->text ("\nProgram terminated with signal ");
33d62d64 7681 annotate_signal_name ();
112e8700 7682 uiout->field_string ("signal-name",
2ea28649 7683 gdb_signal_to_name (siggnal));
33d62d64 7684 annotate_signal_name_end ();
112e8700 7685 uiout->text (", ");
33d62d64 7686 annotate_signal_string ();
112e8700 7687 uiout->field_string ("signal-meaning",
2ea28649 7688 gdb_signal_to_string (siggnal));
33d62d64 7689 annotate_signal_string_end ();
112e8700
SM
7690 uiout->text (".\n");
7691 uiout->text ("The program no longer exists.\n");
33d62d64
JK
7692}
7693
fd664c91
PA
7694void
7695print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7696{
fda326dd 7697 struct inferior *inf = current_inferior ();
a068643d 7698 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
fda326dd 7699
33d62d64
JK
7700 annotate_exited (exitstatus);
7701 if (exitstatus)
7702 {
112e8700
SM
7703 if (uiout->is_mi_like_p ())
7704 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7705 uiout->text ("[Inferior ");
7706 uiout->text (plongest (inf->num));
7707 uiout->text (" (");
a068643d 7708 uiout->text (pidstr.c_str ());
112e8700
SM
7709 uiout->text (") exited with code ");
7710 uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus);
7711 uiout->text ("]\n");
33d62d64
JK
7712 }
7713 else
11cf8741 7714 {
112e8700
SM
7715 if (uiout->is_mi_like_p ())
7716 uiout->field_string
7717 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7718 uiout->text ("[Inferior ");
7719 uiout->text (plongest (inf->num));
7720 uiout->text (" (");
a068643d 7721 uiout->text (pidstr.c_str ());
112e8700 7722 uiout->text (") exited normally]\n");
33d62d64 7723 }
33d62d64
JK
7724}
7725
012b3a21
WT
7726/* Some targets/architectures can do extra processing/display of
7727 segmentation faults. E.g., Intel MPX boundary faults.
7728 Call the architecture dependent function to handle the fault. */
7729
7730static void
7731handle_segmentation_fault (struct ui_out *uiout)
7732{
7733 struct regcache *regcache = get_current_regcache ();
ac7936df 7734 struct gdbarch *gdbarch = regcache->arch ();
012b3a21
WT
7735
7736 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7737 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7738}
7739
fd664c91
PA
7740void
7741print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 7742{
f303dbd6
PA
7743 struct thread_info *thr = inferior_thread ();
7744
33d62d64
JK
7745 annotate_signal ();
7746
112e8700 7747 if (uiout->is_mi_like_p ())
f303dbd6
PA
7748 ;
7749 else if (show_thread_that_caused_stop ())
33d62d64 7750 {
f303dbd6 7751 const char *name;
33d62d64 7752
112e8700
SM
7753 uiout->text ("\nThread ");
7754 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
f303dbd6
PA
7755
7756 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7757 if (name != NULL)
7758 {
112e8700
SM
7759 uiout->text (" \"");
7760 uiout->field_fmt ("name", "%s", name);
7761 uiout->text ("\"");
f303dbd6 7762 }
33d62d64 7763 }
f303dbd6 7764 else
112e8700 7765 uiout->text ("\nProgram");
f303dbd6 7766
112e8700
SM
7767 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7768 uiout->text (" stopped");
33d62d64
JK
7769 else
7770 {
112e8700 7771 uiout->text (" received signal ");
8b93c638 7772 annotate_signal_name ();
112e8700
SM
7773 if (uiout->is_mi_like_p ())
7774 uiout->field_string
7775 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7776 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 7777 annotate_signal_name_end ();
112e8700 7778 uiout->text (", ");
8b93c638 7779 annotate_signal_string ();
112e8700 7780 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
7781
7782 if (siggnal == GDB_SIGNAL_SEGV)
7783 handle_segmentation_fault (uiout);
7784
8b93c638 7785 annotate_signal_string_end ();
33d62d64 7786 }
112e8700 7787 uiout->text (".\n");
33d62d64 7788}
252fbfc8 7789
fd664c91
PA
7790void
7791print_no_history_reason (struct ui_out *uiout)
33d62d64 7792{
112e8700 7793 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 7794}
43ff13b4 7795
0c7e1a46
PA
7796/* Print current location without a level number, if we have changed
7797 functions or hit a breakpoint. Print source line if we have one.
7798 bpstat_print contains the logic deciding in detail what to print,
7799 based on the event(s) that just occurred. */
7800
243a9253
PA
7801static void
7802print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
7803{
7804 int bpstat_ret;
f486487f 7805 enum print_what source_flag;
0c7e1a46
PA
7806 int do_frame_printing = 1;
7807 struct thread_info *tp = inferior_thread ();
7808
7809 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7810 switch (bpstat_ret)
7811 {
7812 case PRINT_UNKNOWN:
7813 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7814 should) carry around the function and does (or should) use
7815 that when doing a frame comparison. */
7816 if (tp->control.stop_step
7817 && frame_id_eq (tp->control.step_frame_id,
7818 get_frame_id (get_current_frame ()))
f2ffa92b
PA
7819 && (tp->control.step_start_function
7820 == find_pc_function (tp->suspend.stop_pc)))
0c7e1a46
PA
7821 {
7822 /* Finished step, just print source line. */
7823 source_flag = SRC_LINE;
7824 }
7825 else
7826 {
7827 /* Print location and source line. */
7828 source_flag = SRC_AND_LOC;
7829 }
7830 break;
7831 case PRINT_SRC_AND_LOC:
7832 /* Print location and source line. */
7833 source_flag = SRC_AND_LOC;
7834 break;
7835 case PRINT_SRC_ONLY:
7836 source_flag = SRC_LINE;
7837 break;
7838 case PRINT_NOTHING:
7839 /* Something bogus. */
7840 source_flag = SRC_LINE;
7841 do_frame_printing = 0;
7842 break;
7843 default:
7844 internal_error (__FILE__, __LINE__, _("Unknown value."));
7845 }
7846
7847 /* The behavior of this routine with respect to the source
7848 flag is:
7849 SRC_LINE: Print only source line
7850 LOCATION: Print only location
7851 SRC_AND_LOC: Print location and source line. */
7852 if (do_frame_printing)
7853 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
7854}
7855
243a9253
PA
7856/* See infrun.h. */
7857
7858void
4c7d57e7 7859print_stop_event (struct ui_out *uiout, bool displays)
243a9253 7860{
243a9253
PA
7861 struct target_waitstatus last;
7862 ptid_t last_ptid;
7863 struct thread_info *tp;
7864
7865 get_last_target_status (&last_ptid, &last);
7866
67ad9399
TT
7867 {
7868 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 7869
67ad9399 7870 print_stop_location (&last);
243a9253 7871
67ad9399 7872 /* Display the auto-display expressions. */
4c7d57e7
TT
7873 if (displays)
7874 do_displays ();
67ad9399 7875 }
243a9253
PA
7876
7877 tp = inferior_thread ();
7878 if (tp->thread_fsm != NULL
46e3ed7f 7879 && tp->thread_fsm->finished_p ())
243a9253
PA
7880 {
7881 struct return_value_info *rv;
7882
46e3ed7f 7883 rv = tp->thread_fsm->return_value ();
243a9253
PA
7884 if (rv != NULL)
7885 print_return_value (uiout, rv);
7886 }
0c7e1a46
PA
7887}
7888
388a7084
PA
7889/* See infrun.h. */
7890
7891void
7892maybe_remove_breakpoints (void)
7893{
7894 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7895 {
7896 if (remove_breakpoints ())
7897 {
223ffa71 7898 target_terminal::ours_for_output ();
388a7084
PA
7899 printf_filtered (_("Cannot remove breakpoints because "
7900 "program is no longer writable.\nFurther "
7901 "execution is probably impossible.\n"));
7902 }
7903 }
7904}
7905
4c2f2a79
PA
7906/* The execution context that just caused a normal stop. */
7907
7908struct stop_context
7909{
2d844eaf
TT
7910 stop_context ();
7911 ~stop_context ();
7912
7913 DISABLE_COPY_AND_ASSIGN (stop_context);
7914
7915 bool changed () const;
7916
4c2f2a79
PA
7917 /* The stop ID. */
7918 ULONGEST stop_id;
c906108c 7919
4c2f2a79 7920 /* The event PTID. */
c906108c 7921
4c2f2a79
PA
7922 ptid_t ptid;
7923
7924 /* If stopp for a thread event, this is the thread that caused the
7925 stop. */
7926 struct thread_info *thread;
7927
7928 /* The inferior that caused the stop. */
7929 int inf_num;
7930};
7931
2d844eaf 7932/* Initializes a new stop context. If stopped for a thread event, this
4c2f2a79
PA
7933 takes a strong reference to the thread. */
7934
2d844eaf 7935stop_context::stop_context ()
4c2f2a79 7936{
2d844eaf
TT
7937 stop_id = get_stop_id ();
7938 ptid = inferior_ptid;
7939 inf_num = current_inferior ()->num;
4c2f2a79 7940
d7e15655 7941 if (inferior_ptid != null_ptid)
4c2f2a79
PA
7942 {
7943 /* Take a strong reference so that the thread can't be deleted
7944 yet. */
2d844eaf
TT
7945 thread = inferior_thread ();
7946 thread->incref ();
4c2f2a79
PA
7947 }
7948 else
2d844eaf 7949 thread = NULL;
4c2f2a79
PA
7950}
7951
7952/* Release a stop context previously created with save_stop_context.
7953 Releases the strong reference to the thread as well. */
7954
2d844eaf 7955stop_context::~stop_context ()
4c2f2a79 7956{
2d844eaf
TT
7957 if (thread != NULL)
7958 thread->decref ();
4c2f2a79
PA
7959}
7960
7961/* Return true if the current context no longer matches the saved stop
7962 context. */
7963
2d844eaf
TT
7964bool
7965stop_context::changed () const
7966{
7967 if (ptid != inferior_ptid)
7968 return true;
7969 if (inf_num != current_inferior ()->num)
7970 return true;
7971 if (thread != NULL && thread->state != THREAD_STOPPED)
7972 return true;
7973 if (get_stop_id () != stop_id)
7974 return true;
7975 return false;
4c2f2a79
PA
7976}
7977
7978/* See infrun.h. */
7979
7980int
96baa820 7981normal_stop (void)
c906108c 7982{
73b65bb0
DJ
7983 struct target_waitstatus last;
7984 ptid_t last_ptid;
7985
7986 get_last_target_status (&last_ptid, &last);
7987
4c2f2a79
PA
7988 new_stop_id ();
7989
29f49a6a
PA
7990 /* If an exception is thrown from this point on, make sure to
7991 propagate GDB's knowledge of the executing state to the
7992 frontend/user running state. A QUIT is an easy exception to see
7993 here, so do this before any filtered output. */
731f534f
PA
7994
7995 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
7996
c35b1492 7997 if (!non_stop)
731f534f 7998 maybe_finish_thread_state.emplace (minus_one_ptid);
e1316e60
PA
7999 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8000 || last.kind == TARGET_WAITKIND_EXITED)
8001 {
8002 /* On some targets, we may still have live threads in the
8003 inferior when we get a process exit event. E.g., for
8004 "checkpoint", when the current checkpoint/fork exits,
8005 linux-fork.c automatically switches to another fork from
8006 within target_mourn_inferior. */
731f534f
PA
8007 if (inferior_ptid != null_ptid)
8008 maybe_finish_thread_state.emplace (ptid_t (inferior_ptid.pid ()));
e1316e60
PA
8009 }
8010 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
731f534f 8011 maybe_finish_thread_state.emplace (inferior_ptid);
29f49a6a 8012
b57bacec
PA
8013 /* As we're presenting a stop, and potentially removing breakpoints,
8014 update the thread list so we can tell whether there are threads
8015 running on the target. With target remote, for example, we can
8016 only learn about new threads when we explicitly update the thread
8017 list. Do this before notifying the interpreters about signal
8018 stops, end of stepping ranges, etc., so that the "new thread"
8019 output is emitted before e.g., "Program received signal FOO",
8020 instead of after. */
8021 update_thread_list ();
8022
8023 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
76727919 8024 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
b57bacec 8025
c906108c
SS
8026 /* As with the notification of thread events, we want to delay
8027 notifying the user that we've switched thread context until
8028 the inferior actually stops.
8029
73b65bb0
DJ
8030 There's no point in saying anything if the inferior has exited.
8031 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8032 "received a signal".
8033
8034 Also skip saying anything in non-stop mode. In that mode, as we
8035 don't want GDB to switch threads behind the user's back, to avoid
8036 races where the user is typing a command to apply to thread x,
8037 but GDB switches to thread y before the user finishes entering
8038 the command, fetch_inferior_event installs a cleanup to restore
8039 the current thread back to the thread the user had selected right
8040 after this event is handled, so we're not really switching, only
8041 informing of a stop. */
4f8d22e3 8042 if (!non_stop
731f534f 8043 && previous_inferior_ptid != inferior_ptid
73b65bb0
DJ
8044 && target_has_execution
8045 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8046 && last.kind != TARGET_WAITKIND_EXITED
8047 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8048 {
0e454242 8049 SWITCH_THRU_ALL_UIS ()
3b12939d 8050 {
223ffa71 8051 target_terminal::ours_for_output ();
3b12939d 8052 printf_filtered (_("[Switching to %s]\n"),
a068643d 8053 target_pid_to_str (inferior_ptid).c_str ());
3b12939d
PA
8054 annotate_thread_changed ();
8055 }
39f77062 8056 previous_inferior_ptid = inferior_ptid;
c906108c 8057 }
c906108c 8058
0e5bf2a8
PA
8059 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8060 {
0e454242 8061 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8062 if (current_ui->prompt_state == PROMPT_BLOCKED)
8063 {
223ffa71 8064 target_terminal::ours_for_output ();
3b12939d
PA
8065 printf_filtered (_("No unwaited-for children left.\n"));
8066 }
0e5bf2a8
PA
8067 }
8068
b57bacec 8069 /* Note: this depends on the update_thread_list call above. */
388a7084 8070 maybe_remove_breakpoints ();
c906108c 8071
c906108c
SS
8072 /* If an auto-display called a function and that got a signal,
8073 delete that auto-display to avoid an infinite recursion. */
8074
8075 if (stopped_by_random_signal)
8076 disable_current_display ();
8077
0e454242 8078 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8079 {
8080 async_enable_stdin ();
8081 }
c906108c 8082
388a7084 8083 /* Let the user/frontend see the threads as stopped. */
731f534f 8084 maybe_finish_thread_state.reset ();
388a7084
PA
8085
8086 /* Select innermost stack frame - i.e., current frame is frame 0,
8087 and current location is based on that. Handle the case where the
8088 dummy call is returning after being stopped. E.g. the dummy call
8089 previously hit a breakpoint. (If the dummy call returns
8090 normally, we won't reach here.) Do this before the stop hook is
8091 run, so that it doesn't get to see the temporary dummy frame,
8092 which is not where we'll present the stop. */
8093 if (has_stack_frames ())
8094 {
8095 if (stop_stack_dummy == STOP_STACK_DUMMY)
8096 {
8097 /* Pop the empty frame that contains the stack dummy. This
8098 also restores inferior state prior to the call (struct
8099 infcall_suspend_state). */
8100 struct frame_info *frame = get_current_frame ();
8101
8102 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8103 frame_pop (frame);
8104 /* frame_pop calls reinit_frame_cache as the last thing it
8105 does which means there's now no selected frame. */
8106 }
8107
8108 select_frame (get_current_frame ());
8109
8110 /* Set the current source location. */
8111 set_current_sal_from_frame (get_current_frame ());
8112 }
dd7e2d2b
PA
8113
8114 /* Look up the hook_stop and run it (CLI internally handles problem
8115 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8116 if (stop_command != NULL)
8117 {
2d844eaf 8118 stop_context saved_context;
4c2f2a79 8119
bf469271
PA
8120 TRY
8121 {
8122 execute_cmd_pre_hook (stop_command);
8123 }
8124 CATCH (ex, RETURN_MASK_ALL)
8125 {
8126 exception_fprintf (gdb_stderr, ex,
8127 "Error while running hook_stop:\n");
8128 }
8129 END_CATCH
4c2f2a79
PA
8130
8131 /* If the stop hook resumes the target, then there's no point in
8132 trying to notify about the previous stop; its context is
8133 gone. Likewise if the command switches thread or inferior --
8134 the observers would print a stop for the wrong
8135 thread/inferior. */
2d844eaf
TT
8136 if (saved_context.changed ())
8137 return 1;
4c2f2a79 8138 }
dd7e2d2b 8139
388a7084
PA
8140 /* Notify observers about the stop. This is where the interpreters
8141 print the stop event. */
d7e15655 8142 if (inferior_ptid != null_ptid)
76727919 8143 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
388a7084
PA
8144 stop_print_frame);
8145 else
76727919 8146 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
347bddb7 8147
243a9253
PA
8148 annotate_stopped ();
8149
48844aa6
PA
8150 if (target_has_execution)
8151 {
8152 if (last.kind != TARGET_WAITKIND_SIGNALLED
fe726667
PA
8153 && last.kind != TARGET_WAITKIND_EXITED
8154 && last.kind != TARGET_WAITKIND_NO_RESUMED)
48844aa6
PA
8155 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8156 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8157 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8158 }
6c95b8df
PA
8159
8160 /* Try to get rid of automatically added inferiors that are no
8161 longer needed. Keeping those around slows down things linearly.
8162 Note that this never removes the current inferior. */
8163 prune_inferiors ();
4c2f2a79
PA
8164
8165 return 0;
c906108c 8166}
c906108c 8167\f
c5aa993b 8168int
96baa820 8169signal_stop_state (int signo)
c906108c 8170{
d6b48e9c 8171 return signal_stop[signo];
c906108c
SS
8172}
8173
c5aa993b 8174int
96baa820 8175signal_print_state (int signo)
c906108c
SS
8176{
8177 return signal_print[signo];
8178}
8179
c5aa993b 8180int
96baa820 8181signal_pass_state (int signo)
c906108c
SS
8182{
8183 return signal_program[signo];
8184}
8185
2455069d
UW
8186static void
8187signal_cache_update (int signo)
8188{
8189 if (signo == -1)
8190 {
a493e3e2 8191 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8192 signal_cache_update (signo);
8193
8194 return;
8195 }
8196
8197 signal_pass[signo] = (signal_stop[signo] == 0
8198 && signal_print[signo] == 0
ab04a2af
TT
8199 && signal_program[signo] == 1
8200 && signal_catch[signo] == 0);
2455069d
UW
8201}
8202
488f131b 8203int
7bda5e4a 8204signal_stop_update (int signo, int state)
d4f3574e
SS
8205{
8206 int ret = signal_stop[signo];
abbb1732 8207
d4f3574e 8208 signal_stop[signo] = state;
2455069d 8209 signal_cache_update (signo);
d4f3574e
SS
8210 return ret;
8211}
8212
488f131b 8213int
7bda5e4a 8214signal_print_update (int signo, int state)
d4f3574e
SS
8215{
8216 int ret = signal_print[signo];
abbb1732 8217
d4f3574e 8218 signal_print[signo] = state;
2455069d 8219 signal_cache_update (signo);
d4f3574e
SS
8220 return ret;
8221}
8222
488f131b 8223int
7bda5e4a 8224signal_pass_update (int signo, int state)
d4f3574e
SS
8225{
8226 int ret = signal_program[signo];
abbb1732 8227
d4f3574e 8228 signal_program[signo] = state;
2455069d 8229 signal_cache_update (signo);
d4f3574e
SS
8230 return ret;
8231}
8232
ab04a2af
TT
8233/* Update the global 'signal_catch' from INFO and notify the
8234 target. */
8235
8236void
8237signal_catch_update (const unsigned int *info)
8238{
8239 int i;
8240
8241 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8242 signal_catch[i] = info[i] > 0;
8243 signal_cache_update (-1);
adc6a863 8244 target_pass_signals (signal_pass);
ab04a2af
TT
8245}
8246
c906108c 8247static void
96baa820 8248sig_print_header (void)
c906108c 8249{
3e43a32a
MS
8250 printf_filtered (_("Signal Stop\tPrint\tPass "
8251 "to program\tDescription\n"));
c906108c
SS
8252}
8253
8254static void
2ea28649 8255sig_print_info (enum gdb_signal oursig)
c906108c 8256{
2ea28649 8257 const char *name = gdb_signal_to_name (oursig);
c906108c 8258 int name_padding = 13 - strlen (name);
96baa820 8259
c906108c
SS
8260 if (name_padding <= 0)
8261 name_padding = 0;
8262
8263 printf_filtered ("%s", name);
488f131b 8264 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8265 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8266 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8267 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8268 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8269}
8270
8271/* Specify how various signals in the inferior should be handled. */
8272
8273static void
0b39b52e 8274handle_command (const char *args, int from_tty)
c906108c 8275{
c906108c 8276 int digits, wordlen;
b926417a 8277 int sigfirst, siglast;
2ea28649 8278 enum gdb_signal oursig;
c906108c 8279 int allsigs;
c906108c
SS
8280
8281 if (args == NULL)
8282 {
e2e0b3e5 8283 error_no_arg (_("signal to handle"));
c906108c
SS
8284 }
8285
1777feb0 8286 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8287
adc6a863
PA
8288 const size_t nsigs = GDB_SIGNAL_LAST;
8289 unsigned char sigs[nsigs] {};
c906108c 8290
1777feb0 8291 /* Break the command line up into args. */
c906108c 8292
773a1edc 8293 gdb_argv built_argv (args);
c906108c
SS
8294
8295 /* Walk through the args, looking for signal oursigs, signal names, and
8296 actions. Signal numbers and signal names may be interspersed with
8297 actions, with the actions being performed for all signals cumulatively
1777feb0 8298 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8299
773a1edc 8300 for (char *arg : built_argv)
c906108c 8301 {
773a1edc
TT
8302 wordlen = strlen (arg);
8303 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8304 {;
8305 }
8306 allsigs = 0;
8307 sigfirst = siglast = -1;
8308
773a1edc 8309 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8310 {
8311 /* Apply action to all signals except those used by the
1777feb0 8312 debugger. Silently skip those. */
c906108c
SS
8313 allsigs = 1;
8314 sigfirst = 0;
8315 siglast = nsigs - 1;
8316 }
773a1edc 8317 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8318 {
8319 SET_SIGS (nsigs, sigs, signal_stop);
8320 SET_SIGS (nsigs, sigs, signal_print);
8321 }
773a1edc 8322 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8323 {
8324 UNSET_SIGS (nsigs, sigs, signal_program);
8325 }
773a1edc 8326 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8327 {
8328 SET_SIGS (nsigs, sigs, signal_print);
8329 }
773a1edc 8330 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8331 {
8332 SET_SIGS (nsigs, sigs, signal_program);
8333 }
773a1edc 8334 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8335 {
8336 UNSET_SIGS (nsigs, sigs, signal_stop);
8337 }
773a1edc 8338 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8339 {
8340 SET_SIGS (nsigs, sigs, signal_program);
8341 }
773a1edc 8342 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8343 {
8344 UNSET_SIGS (nsigs, sigs, signal_print);
8345 UNSET_SIGS (nsigs, sigs, signal_stop);
8346 }
773a1edc 8347 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8348 {
8349 UNSET_SIGS (nsigs, sigs, signal_program);
8350 }
8351 else if (digits > 0)
8352 {
8353 /* It is numeric. The numeric signal refers to our own
8354 internal signal numbering from target.h, not to host/target
8355 signal number. This is a feature; users really should be
8356 using symbolic names anyway, and the common ones like
8357 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8358
8359 sigfirst = siglast = (int)
773a1edc
TT
8360 gdb_signal_from_command (atoi (arg));
8361 if (arg[digits] == '-')
c906108c
SS
8362 {
8363 siglast = (int)
773a1edc 8364 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8365 }
8366 if (sigfirst > siglast)
8367 {
1777feb0 8368 /* Bet he didn't figure we'd think of this case... */
b926417a 8369 std::swap (sigfirst, siglast);
c906108c
SS
8370 }
8371 }
8372 else
8373 {
773a1edc 8374 oursig = gdb_signal_from_name (arg);
a493e3e2 8375 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8376 {
8377 sigfirst = siglast = (int) oursig;
8378 }
8379 else
8380 {
8381 /* Not a number and not a recognized flag word => complain. */
773a1edc 8382 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8383 }
8384 }
8385
8386 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8387 which signals to apply actions to. */
c906108c 8388
b926417a 8389 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
c906108c 8390 {
2ea28649 8391 switch ((enum gdb_signal) signum)
c906108c 8392 {
a493e3e2
PA
8393 case GDB_SIGNAL_TRAP:
8394 case GDB_SIGNAL_INT:
c906108c
SS
8395 if (!allsigs && !sigs[signum])
8396 {
9e2f0ad4 8397 if (query (_("%s is used by the debugger.\n\
3e43a32a 8398Are you sure you want to change it? "),
2ea28649 8399 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8400 {
8401 sigs[signum] = 1;
8402 }
8403 else
c119e040 8404 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8405 }
8406 break;
a493e3e2
PA
8407 case GDB_SIGNAL_0:
8408 case GDB_SIGNAL_DEFAULT:
8409 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8410 /* Make sure that "all" doesn't print these. */
8411 break;
8412 default:
8413 sigs[signum] = 1;
8414 break;
8415 }
8416 }
c906108c
SS
8417 }
8418
b926417a 8419 for (int signum = 0; signum < nsigs; signum++)
3a031f65
PA
8420 if (sigs[signum])
8421 {
2455069d 8422 signal_cache_update (-1);
adc6a863
PA
8423 target_pass_signals (signal_pass);
8424 target_program_signals (signal_program);
c906108c 8425
3a031f65
PA
8426 if (from_tty)
8427 {
8428 /* Show the results. */
8429 sig_print_header ();
8430 for (; signum < nsigs; signum++)
8431 if (sigs[signum])
aead7601 8432 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8433 }
8434
8435 break;
8436 }
c906108c
SS
8437}
8438
de0bea00
MF
8439/* Complete the "handle" command. */
8440
eb3ff9a5 8441static void
de0bea00 8442handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8443 completion_tracker &tracker,
6f937416 8444 const char *text, const char *word)
de0bea00 8445{
de0bea00
MF
8446 static const char * const keywords[] =
8447 {
8448 "all",
8449 "stop",
8450 "ignore",
8451 "print",
8452 "pass",
8453 "nostop",
8454 "noignore",
8455 "noprint",
8456 "nopass",
8457 NULL,
8458 };
8459
eb3ff9a5
PA
8460 signal_completer (ignore, tracker, text, word);
8461 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8462}
8463
2ea28649
PA
8464enum gdb_signal
8465gdb_signal_from_command (int num)
ed01b82c
PA
8466{
8467 if (num >= 1 && num <= 15)
2ea28649 8468 return (enum gdb_signal) num;
ed01b82c
PA
8469 error (_("Only signals 1-15 are valid as numeric signals.\n\
8470Use \"info signals\" for a list of symbolic signals."));
8471}
8472
c906108c
SS
8473/* Print current contents of the tables set by the handle command.
8474 It is possible we should just be printing signals actually used
8475 by the current target (but for things to work right when switching
8476 targets, all signals should be in the signal tables). */
8477
8478static void
1d12d88f 8479info_signals_command (const char *signum_exp, int from_tty)
c906108c 8480{
2ea28649 8481 enum gdb_signal oursig;
abbb1732 8482
c906108c
SS
8483 sig_print_header ();
8484
8485 if (signum_exp)
8486 {
8487 /* First see if this is a symbol name. */
2ea28649 8488 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8489 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8490 {
8491 /* No, try numeric. */
8492 oursig =
2ea28649 8493 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8494 }
8495 sig_print_info (oursig);
8496 return;
8497 }
8498
8499 printf_filtered ("\n");
8500 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8501 for (oursig = GDB_SIGNAL_FIRST;
8502 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8503 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8504 {
8505 QUIT;
8506
a493e3e2
PA
8507 if (oursig != GDB_SIGNAL_UNKNOWN
8508 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8509 sig_print_info (oursig);
8510 }
8511
3e43a32a
MS
8512 printf_filtered (_("\nUse the \"handle\" command "
8513 "to change these tables.\n"));
c906108c 8514}
4aa995e1
PA
8515
8516/* The $_siginfo convenience variable is a bit special. We don't know
8517 for sure the type of the value until we actually have a chance to
7a9dd1b2 8518 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8519 also dependent on which thread you have selected.
8520
8521 1. making $_siginfo be an internalvar that creates a new value on
8522 access.
8523
8524 2. making the value of $_siginfo be an lval_computed value. */
8525
8526/* This function implements the lval_computed support for reading a
8527 $_siginfo value. */
8528
8529static void
8530siginfo_value_read (struct value *v)
8531{
8532 LONGEST transferred;
8533
a911d87a
PA
8534 /* If we can access registers, so can we access $_siginfo. Likewise
8535 vice versa. */
8536 validate_registers_access ();
c709acd1 8537
4aa995e1 8538 transferred =
8b88a78e 8539 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
4aa995e1
PA
8540 NULL,
8541 value_contents_all_raw (v),
8542 value_offset (v),
8543 TYPE_LENGTH (value_type (v)));
8544
8545 if (transferred != TYPE_LENGTH (value_type (v)))
8546 error (_("Unable to read siginfo"));
8547}
8548
8549/* This function implements the lval_computed support for writing a
8550 $_siginfo value. */
8551
8552static void
8553siginfo_value_write (struct value *v, struct value *fromval)
8554{
8555 LONGEST transferred;
8556
a911d87a
PA
8557 /* If we can access registers, so can we access $_siginfo. Likewise
8558 vice versa. */
8559 validate_registers_access ();
c709acd1 8560
8b88a78e 8561 transferred = target_write (current_top_target (),
4aa995e1
PA
8562 TARGET_OBJECT_SIGNAL_INFO,
8563 NULL,
8564 value_contents_all_raw (fromval),
8565 value_offset (v),
8566 TYPE_LENGTH (value_type (fromval)));
8567
8568 if (transferred != TYPE_LENGTH (value_type (fromval)))
8569 error (_("Unable to write siginfo"));
8570}
8571
c8f2448a 8572static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8573 {
8574 siginfo_value_read,
8575 siginfo_value_write
8576 };
8577
8578/* Return a new value with the correct type for the siginfo object of
78267919
UW
8579 the current thread using architecture GDBARCH. Return a void value
8580 if there's no object available. */
4aa995e1 8581
2c0b251b 8582static struct value *
22d2b532
SDJ
8583siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8584 void *ignore)
4aa995e1 8585{
4aa995e1 8586 if (target_has_stack
d7e15655 8587 && inferior_ptid != null_ptid
78267919 8588 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8589 {
78267919 8590 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8591
78267919 8592 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8593 }
8594
78267919 8595 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8596}
8597
c906108c 8598\f
16c381f0
JK
8599/* infcall_suspend_state contains state about the program itself like its
8600 registers and any signal it received when it last stopped.
8601 This state must be restored regardless of how the inferior function call
8602 ends (either successfully, or after it hits a breakpoint or signal)
8603 if the program is to properly continue where it left off. */
8604
6bf78e29 8605class infcall_suspend_state
7a292a7a 8606{
6bf78e29
AB
8607public:
8608 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8609 once the inferior function call has finished. */
8610 infcall_suspend_state (struct gdbarch *gdbarch,
8611 const struct thread_info *tp,
8612 struct regcache *regcache)
8613 : m_thread_suspend (tp->suspend),
8614 m_registers (new readonly_detached_regcache (*regcache))
8615 {
8616 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8617
8618 if (gdbarch_get_siginfo_type_p (gdbarch))
8619 {
8620 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8621 size_t len = TYPE_LENGTH (type);
8622
8623 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8624
8625 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8626 siginfo_data.get (), 0, len) != len)
8627 {
8628 /* Errors ignored. */
8629 siginfo_data.reset (nullptr);
8630 }
8631 }
8632
8633 if (siginfo_data)
8634 {
8635 m_siginfo_gdbarch = gdbarch;
8636 m_siginfo_data = std::move (siginfo_data);
8637 }
8638 }
8639
8640 /* Return a pointer to the stored register state. */
16c381f0 8641
6bf78e29
AB
8642 readonly_detached_regcache *registers () const
8643 {
8644 return m_registers.get ();
8645 }
8646
8647 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8648
8649 void restore (struct gdbarch *gdbarch,
8650 struct thread_info *tp,
8651 struct regcache *regcache) const
8652 {
8653 tp->suspend = m_thread_suspend;
8654
8655 if (m_siginfo_gdbarch == gdbarch)
8656 {
8657 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8658
8659 /* Errors ignored. */
8660 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8661 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8662 }
8663
8664 /* The inferior can be gone if the user types "print exit(0)"
8665 (and perhaps other times). */
8666 if (target_has_execution)
8667 /* NB: The register write goes through to the target. */
8668 regcache->restore (registers ());
8669 }
8670
8671private:
8672 /* How the current thread stopped before the inferior function call was
8673 executed. */
8674 struct thread_suspend_state m_thread_suspend;
8675
8676 /* The registers before the inferior function call was executed. */
8677 std::unique_ptr<readonly_detached_regcache> m_registers;
1736ad11 8678
35515841 8679 /* Format of SIGINFO_DATA or NULL if it is not present. */
6bf78e29 8680 struct gdbarch *m_siginfo_gdbarch = nullptr;
1736ad11
JK
8681
8682 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8683 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8684 content would be invalid. */
6bf78e29 8685 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
b89667eb
DE
8686};
8687
cb524840
TT
8688infcall_suspend_state_up
8689save_infcall_suspend_state ()
b89667eb 8690{
b89667eb 8691 struct thread_info *tp = inferior_thread ();
1736ad11 8692 struct regcache *regcache = get_current_regcache ();
ac7936df 8693 struct gdbarch *gdbarch = regcache->arch ();
1736ad11 8694
6bf78e29
AB
8695 infcall_suspend_state_up inf_state
8696 (new struct infcall_suspend_state (gdbarch, tp, regcache));
1736ad11 8697
6bf78e29
AB
8698 /* Having saved the current state, adjust the thread state, discarding
8699 any stop signal information. The stop signal is not useful when
8700 starting an inferior function call, and run_inferior_call will not use
8701 the signal due to its `proceed' call with GDB_SIGNAL_0. */
a493e3e2 8702 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8703
b89667eb
DE
8704 return inf_state;
8705}
8706
8707/* Restore inferior session state to INF_STATE. */
8708
8709void
16c381f0 8710restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8711{
8712 struct thread_info *tp = inferior_thread ();
1736ad11 8713 struct regcache *regcache = get_current_regcache ();
ac7936df 8714 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 8715
6bf78e29 8716 inf_state->restore (gdbarch, tp, regcache);
16c381f0 8717 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8718}
8719
b89667eb 8720void
16c381f0 8721discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 8722{
dd848631 8723 delete inf_state;
b89667eb
DE
8724}
8725
daf6667d 8726readonly_detached_regcache *
16c381f0 8727get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb 8728{
6bf78e29 8729 return inf_state->registers ();
b89667eb
DE
8730}
8731
16c381f0
JK
8732/* infcall_control_state contains state regarding gdb's control of the
8733 inferior itself like stepping control. It also contains session state like
8734 the user's currently selected frame. */
b89667eb 8735
16c381f0 8736struct infcall_control_state
b89667eb 8737{
16c381f0
JK
8738 struct thread_control_state thread_control;
8739 struct inferior_control_state inferior_control;
d82142e2
JK
8740
8741 /* Other fields: */
ee841dd8
TT
8742 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
8743 int stopped_by_random_signal = 0;
7a292a7a 8744
b89667eb 8745 /* ID if the selected frame when the inferior function call was made. */
ee841dd8 8746 struct frame_id selected_frame_id {};
7a292a7a
SS
8747};
8748
c906108c 8749/* Save all of the information associated with the inferior<==>gdb
b89667eb 8750 connection. */
c906108c 8751
cb524840
TT
8752infcall_control_state_up
8753save_infcall_control_state ()
c906108c 8754{
cb524840 8755 infcall_control_state_up inf_status (new struct infcall_control_state);
4e1c45ea 8756 struct thread_info *tp = inferior_thread ();
d6b48e9c 8757 struct inferior *inf = current_inferior ();
7a292a7a 8758
16c381f0
JK
8759 inf_status->thread_control = tp->control;
8760 inf_status->inferior_control = inf->control;
d82142e2 8761
8358c15c 8762 tp->control.step_resume_breakpoint = NULL;
5b79abe7 8763 tp->control.exception_resume_breakpoint = NULL;
8358c15c 8764
16c381f0
JK
8765 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8766 chain. If caller's caller is walking the chain, they'll be happier if we
8767 hand them back the original chain when restore_infcall_control_state is
8768 called. */
8769 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
8770
8771 /* Other fields: */
8772 inf_status->stop_stack_dummy = stop_stack_dummy;
8773 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 8774
206415a3 8775 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 8776
7a292a7a 8777 return inf_status;
c906108c
SS
8778}
8779
bf469271
PA
8780static void
8781restore_selected_frame (const frame_id &fid)
c906108c 8782{
bf469271 8783 frame_info *frame = frame_find_by_id (fid);
c906108c 8784
aa0cd9c1
AC
8785 /* If inf_status->selected_frame_id is NULL, there was no previously
8786 selected frame. */
101dcfbe 8787 if (frame == NULL)
c906108c 8788 {
8a3fe4f8 8789 warning (_("Unable to restore previously selected frame."));
bf469271 8790 return;
c906108c
SS
8791 }
8792
0f7d239c 8793 select_frame (frame);
c906108c
SS
8794}
8795
b89667eb
DE
8796/* Restore inferior session state to INF_STATUS. */
8797
c906108c 8798void
16c381f0 8799restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 8800{
4e1c45ea 8801 struct thread_info *tp = inferior_thread ();
d6b48e9c 8802 struct inferior *inf = current_inferior ();
4e1c45ea 8803
8358c15c
JK
8804 if (tp->control.step_resume_breakpoint)
8805 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8806
5b79abe7
TT
8807 if (tp->control.exception_resume_breakpoint)
8808 tp->control.exception_resume_breakpoint->disposition
8809 = disp_del_at_next_stop;
8810
d82142e2 8811 /* Handle the bpstat_copy of the chain. */
16c381f0 8812 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 8813
16c381f0
JK
8814 tp->control = inf_status->thread_control;
8815 inf->control = inf_status->inferior_control;
d82142e2
JK
8816
8817 /* Other fields: */
8818 stop_stack_dummy = inf_status->stop_stack_dummy;
8819 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 8820
b89667eb 8821 if (target_has_stack)
c906108c 8822 {
bf469271 8823 /* The point of the try/catch is that if the stack is clobbered,
101dcfbe
AC
8824 walking the stack might encounter a garbage pointer and
8825 error() trying to dereference it. */
bf469271
PA
8826 TRY
8827 {
8828 restore_selected_frame (inf_status->selected_frame_id);
8829 }
8830 CATCH (ex, RETURN_MASK_ERROR)
8831 {
8832 exception_fprintf (gdb_stderr, ex,
8833 "Unable to restore previously selected frame:\n");
8834 /* Error in restoring the selected frame. Select the
8835 innermost frame. */
8836 select_frame (get_current_frame ());
8837 }
8838 END_CATCH
c906108c 8839 }
c906108c 8840
ee841dd8 8841 delete inf_status;
7a292a7a 8842}
c906108c
SS
8843
8844void
16c381f0 8845discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 8846{
8358c15c
JK
8847 if (inf_status->thread_control.step_resume_breakpoint)
8848 inf_status->thread_control.step_resume_breakpoint->disposition
8849 = disp_del_at_next_stop;
8850
5b79abe7
TT
8851 if (inf_status->thread_control.exception_resume_breakpoint)
8852 inf_status->thread_control.exception_resume_breakpoint->disposition
8853 = disp_del_at_next_stop;
8854
1777feb0 8855 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 8856 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 8857
ee841dd8 8858 delete inf_status;
7a292a7a 8859}
b89667eb 8860\f
7f89fd65 8861/* See infrun.h. */
0c557179
SDJ
8862
8863void
8864clear_exit_convenience_vars (void)
8865{
8866 clear_internalvar (lookup_internalvar ("_exitsignal"));
8867 clear_internalvar (lookup_internalvar ("_exitcode"));
8868}
c5aa993b 8869\f
488f131b 8870
b2175913
MS
8871/* User interface for reverse debugging:
8872 Set exec-direction / show exec-direction commands
8873 (returns error unless target implements to_set_exec_direction method). */
8874
170742de 8875enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
8876static const char exec_forward[] = "forward";
8877static const char exec_reverse[] = "reverse";
8878static const char *exec_direction = exec_forward;
40478521 8879static const char *const exec_direction_names[] = {
b2175913
MS
8880 exec_forward,
8881 exec_reverse,
8882 NULL
8883};
8884
8885static void
eb4c3f4a 8886set_exec_direction_func (const char *args, int from_tty,
b2175913
MS
8887 struct cmd_list_element *cmd)
8888{
8889 if (target_can_execute_reverse)
8890 {
8891 if (!strcmp (exec_direction, exec_forward))
8892 execution_direction = EXEC_FORWARD;
8893 else if (!strcmp (exec_direction, exec_reverse))
8894 execution_direction = EXEC_REVERSE;
8895 }
8bbed405
MS
8896 else
8897 {
8898 exec_direction = exec_forward;
8899 error (_("Target does not support this operation."));
8900 }
b2175913
MS
8901}
8902
8903static void
8904show_exec_direction_func (struct ui_file *out, int from_tty,
8905 struct cmd_list_element *cmd, const char *value)
8906{
8907 switch (execution_direction) {
8908 case EXEC_FORWARD:
8909 fprintf_filtered (out, _("Forward.\n"));
8910 break;
8911 case EXEC_REVERSE:
8912 fprintf_filtered (out, _("Reverse.\n"));
8913 break;
b2175913 8914 default:
d8b34453
PA
8915 internal_error (__FILE__, __LINE__,
8916 _("bogus execution_direction value: %d"),
8917 (int) execution_direction);
b2175913
MS
8918 }
8919}
8920
d4db2f36
PA
8921static void
8922show_schedule_multiple (struct ui_file *file, int from_tty,
8923 struct cmd_list_element *c, const char *value)
8924{
3e43a32a
MS
8925 fprintf_filtered (file, _("Resuming the execution of threads "
8926 "of all processes is %s.\n"), value);
d4db2f36 8927}
ad52ddc6 8928
22d2b532
SDJ
8929/* Implementation of `siginfo' variable. */
8930
8931static const struct internalvar_funcs siginfo_funcs =
8932{
8933 siginfo_make_value,
8934 NULL,
8935 NULL
8936};
8937
372316f1
PA
8938/* Callback for infrun's target events source. This is marked when a
8939 thread has a pending status to process. */
8940
8941static void
8942infrun_async_inferior_event_handler (gdb_client_data data)
8943{
372316f1
PA
8944 inferior_event_handler (INF_REG_EVENT, NULL);
8945}
8946
c906108c 8947void
96baa820 8948_initialize_infrun (void)
c906108c 8949{
de0bea00 8950 struct cmd_list_element *c;
c906108c 8951
372316f1
PA
8952 /* Register extra event sources in the event loop. */
8953 infrun_async_inferior_event_token
8954 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
8955
11db9430 8956 add_info ("signals", info_signals_command, _("\
1bedd215
AC
8957What debugger does when program gets various signals.\n\
8958Specify a signal as argument to print info on that signal only."));
c906108c
SS
8959 add_info_alias ("handle", "signals", 0);
8960
de0bea00 8961 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 8962Specify how to handle signals.\n\
486c7739 8963Usage: handle SIGNAL [ACTIONS]\n\
c906108c 8964Args are signals and actions to apply to those signals.\n\
dfbd5e7b 8965If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
8966will be displayed instead.\n\
8967\n\
c906108c
SS
8968Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
8969from 1-15 are allowed for compatibility with old versions of GDB.\n\
8970Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
8971The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 8972used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 8973\n\
1bedd215 8974Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
8975\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
8976Stop means reenter debugger if this signal happens (implies print).\n\
8977Print means print a message if this signal happens.\n\
8978Pass means let program see this signal; otherwise program doesn't know.\n\
8979Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
8980Pass and Stop may be combined.\n\
8981\n\
8982Multiple signals may be specified. Signal numbers and signal names\n\
8983may be interspersed with actions, with the actions being performed for\n\
8984all signals cumulatively specified."));
de0bea00 8985 set_cmd_completer (c, handle_completer);
486c7739 8986
c906108c 8987 if (!dbx_commands)
1a966eab
AC
8988 stop_command = add_cmd ("stop", class_obscure,
8989 not_just_help_class_command, _("\
8990There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 8991This allows you to set a list of commands to be run each time execution\n\
1a966eab 8992of the program stops."), &cmdlist);
c906108c 8993
ccce17b0 8994 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
8995Set inferior debugging."), _("\
8996Show inferior debugging."), _("\
8997When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
8998 NULL,
8999 show_debug_infrun,
9000 &setdebuglist, &showdebuglist);
527159b7 9001
3e43a32a
MS
9002 add_setshow_boolean_cmd ("displaced", class_maintenance,
9003 &debug_displaced, _("\
237fc4c9
PA
9004Set displaced stepping debugging."), _("\
9005Show displaced stepping debugging."), _("\
9006When non-zero, displaced stepping specific debugging is enabled."),
9007 NULL,
9008 show_debug_displaced,
9009 &setdebuglist, &showdebuglist);
9010
ad52ddc6
PA
9011 add_setshow_boolean_cmd ("non-stop", no_class,
9012 &non_stop_1, _("\
9013Set whether gdb controls the inferior in non-stop mode."), _("\
9014Show whether gdb controls the inferior in non-stop mode."), _("\
9015When debugging a multi-threaded program and this setting is\n\
9016off (the default, also called all-stop mode), when one thread stops\n\
9017(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9018all other threads in the program while you interact with the thread of\n\
9019interest. When you continue or step a thread, you can allow the other\n\
9020threads to run, or have them remain stopped, but while you inspect any\n\
9021thread's state, all threads stop.\n\
9022\n\
9023In non-stop mode, when one thread stops, other threads can continue\n\
9024to run freely. You'll be able to step each thread independently,\n\
9025leave it stopped or free to run as needed."),
9026 set_non_stop,
9027 show_non_stop,
9028 &setlist,
9029 &showlist);
9030
adc6a863 9031 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
c906108c
SS
9032 {
9033 signal_stop[i] = 1;
9034 signal_print[i] = 1;
9035 signal_program[i] = 1;
ab04a2af 9036 signal_catch[i] = 0;
c906108c
SS
9037 }
9038
4d9d9d04
PA
9039 /* Signals caused by debugger's own actions should not be given to
9040 the program afterwards.
9041
9042 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9043 explicitly specifies that it should be delivered to the target
9044 program. Typically, that would occur when a user is debugging a
9045 target monitor on a simulator: the target monitor sets a
9046 breakpoint; the simulator encounters this breakpoint and halts
9047 the simulation handing control to GDB; GDB, noting that the stop
9048 address doesn't map to any known breakpoint, returns control back
9049 to the simulator; the simulator then delivers the hardware
9050 equivalent of a GDB_SIGNAL_TRAP to the program being
9051 debugged. */
a493e3e2
PA
9052 signal_program[GDB_SIGNAL_TRAP] = 0;
9053 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9054
9055 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9056 signal_stop[GDB_SIGNAL_ALRM] = 0;
9057 signal_print[GDB_SIGNAL_ALRM] = 0;
9058 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9059 signal_print[GDB_SIGNAL_VTALRM] = 0;
9060 signal_stop[GDB_SIGNAL_PROF] = 0;
9061 signal_print[GDB_SIGNAL_PROF] = 0;
9062 signal_stop[GDB_SIGNAL_CHLD] = 0;
9063 signal_print[GDB_SIGNAL_CHLD] = 0;
9064 signal_stop[GDB_SIGNAL_IO] = 0;
9065 signal_print[GDB_SIGNAL_IO] = 0;
9066 signal_stop[GDB_SIGNAL_POLL] = 0;
9067 signal_print[GDB_SIGNAL_POLL] = 0;
9068 signal_stop[GDB_SIGNAL_URG] = 0;
9069 signal_print[GDB_SIGNAL_URG] = 0;
9070 signal_stop[GDB_SIGNAL_WINCH] = 0;
9071 signal_print[GDB_SIGNAL_WINCH] = 0;
9072 signal_stop[GDB_SIGNAL_PRIO] = 0;
9073 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9074
cd0fc7c3
SS
9075 /* These signals are used internally by user-level thread
9076 implementations. (See signal(5) on Solaris.) Like the above
9077 signals, a healthy program receives and handles them as part of
9078 its normal operation. */
a493e3e2
PA
9079 signal_stop[GDB_SIGNAL_LWP] = 0;
9080 signal_print[GDB_SIGNAL_LWP] = 0;
9081 signal_stop[GDB_SIGNAL_WAITING] = 0;
9082 signal_print[GDB_SIGNAL_WAITING] = 0;
9083 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9084 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9085 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9086 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9087
2455069d
UW
9088 /* Update cached state. */
9089 signal_cache_update (-1);
9090
85c07804
AC
9091 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9092 &stop_on_solib_events, _("\
9093Set stopping for shared library events."), _("\
9094Show stopping for shared library events."), _("\
c906108c
SS
9095If nonzero, gdb will give control to the user when the dynamic linker\n\
9096notifies gdb of shared library events. The most common event of interest\n\
85c07804 9097to the user would be loading/unloading of a new library."),
f9e14852 9098 set_stop_on_solib_events,
920d2a44 9099 show_stop_on_solib_events,
85c07804 9100 &setlist, &showlist);
c906108c 9101
7ab04401
AC
9102 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9103 follow_fork_mode_kind_names,
9104 &follow_fork_mode_string, _("\
9105Set debugger response to a program call of fork or vfork."), _("\
9106Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9107A fork or vfork creates a new process. follow-fork-mode can be:\n\
9108 parent - the original process is debugged after a fork\n\
9109 child - the new process is debugged after a fork\n\
ea1dd7bc 9110The unfollowed process will continue to run.\n\
7ab04401
AC
9111By default, the debugger will follow the parent process."),
9112 NULL,
920d2a44 9113 show_follow_fork_mode_string,
7ab04401
AC
9114 &setlist, &showlist);
9115
6c95b8df
PA
9116 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9117 follow_exec_mode_names,
9118 &follow_exec_mode_string, _("\
9119Set debugger response to a program call of exec."), _("\
9120Show debugger response to a program call of exec."), _("\
9121An exec call replaces the program image of a process.\n\
9122\n\
9123follow-exec-mode can be:\n\
9124\n\
cce7e648 9125 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9126to this new inferior. The program the process was running before\n\
9127the exec call can be restarted afterwards by restarting the original\n\
9128inferior.\n\
9129\n\
9130 same - the debugger keeps the process bound to the same inferior.\n\
9131The new executable image replaces the previous executable loaded in\n\
9132the inferior. Restarting the inferior after the exec call restarts\n\
9133the executable the process was running after the exec call.\n\
9134\n\
9135By default, the debugger will use the same inferior."),
9136 NULL,
9137 show_follow_exec_mode_string,
9138 &setlist, &showlist);
9139
7ab04401
AC
9140 add_setshow_enum_cmd ("scheduler-locking", class_run,
9141 scheduler_enums, &scheduler_mode, _("\
9142Set mode for locking scheduler during execution."), _("\
9143Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9144off == no locking (threads may preempt at any time)\n\
9145on == full locking (no thread except the current thread may run)\n\
9146 This applies to both normal execution and replay mode.\n\
9147step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9148 In this mode, other threads may run during other commands.\n\
9149 This applies to both normal execution and replay mode.\n\
9150replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9151 set_schedlock_func, /* traps on target vector */
920d2a44 9152 show_scheduler_mode,
7ab04401 9153 &setlist, &showlist);
5fbbeb29 9154
d4db2f36
PA
9155 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9156Set mode for resuming threads of all processes."), _("\
9157Show mode for resuming threads of all processes."), _("\
9158When on, execution commands (such as 'continue' or 'next') resume all\n\
9159threads of all processes. When off (which is the default), execution\n\
9160commands only resume the threads of the current process. The set of\n\
9161threads that are resumed is further refined by the scheduler-locking\n\
9162mode (see help set scheduler-locking)."),
9163 NULL,
9164 show_schedule_multiple,
9165 &setlist, &showlist);
9166
5bf193a2
AC
9167 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9168Set mode of the step operation."), _("\
9169Show mode of the step operation."), _("\
9170When set, doing a step over a function without debug line information\n\
9171will stop at the first instruction of that function. Otherwise, the\n\
9172function is skipped and the step command stops at a different source line."),
9173 NULL,
920d2a44 9174 show_step_stop_if_no_debug,
5bf193a2 9175 &setlist, &showlist);
ca6724c1 9176
72d0e2c5
YQ
9177 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9178 &can_use_displaced_stepping, _("\
237fc4c9
PA
9179Set debugger's willingness to use displaced stepping."), _("\
9180Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9181If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9182supported by the target architecture. If off, gdb will not use displaced\n\
9183stepping to step over breakpoints, even if such is supported by the target\n\
9184architecture. If auto (which is the default), gdb will use displaced stepping\n\
9185if the target architecture supports it and non-stop mode is active, but will not\n\
9186use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9187 NULL,
9188 show_can_use_displaced_stepping,
9189 &setlist, &showlist);
237fc4c9 9190
b2175913
MS
9191 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9192 &exec_direction, _("Set direction of execution.\n\
9193Options are 'forward' or 'reverse'."),
9194 _("Show direction of execution (forward/reverse)."),
9195 _("Tells gdb whether to execute forward or backward."),
9196 set_exec_direction_func, show_exec_direction_func,
9197 &setlist, &showlist);
9198
6c95b8df
PA
9199 /* Set/show detach-on-fork: user-settable mode. */
9200
9201 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9202Set whether gdb will detach the child of a fork."), _("\
9203Show whether gdb will detach the child of a fork."), _("\
9204Tells gdb whether to detach the child of a fork."),
9205 NULL, NULL, &setlist, &showlist);
9206
03583c20
UW
9207 /* Set/show disable address space randomization mode. */
9208
9209 add_setshow_boolean_cmd ("disable-randomization", class_support,
9210 &disable_randomization, _("\
9211Set disabling of debuggee's virtual address space randomization."), _("\
9212Show disabling of debuggee's virtual address space randomization."), _("\
9213When this mode is on (which is the default), randomization of the virtual\n\
9214address space is disabled. Standalone programs run with the randomization\n\
9215enabled by default on some platforms."),
9216 &set_disable_randomization,
9217 &show_disable_randomization,
9218 &setlist, &showlist);
9219
ca6724c1 9220 /* ptid initializations */
ca6724c1
KB
9221 inferior_ptid = null_ptid;
9222 target_last_wait_ptid = minus_one_ptid;
5231c1fd 9223
76727919
TT
9224 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9225 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9226 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9227 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
4aa995e1
PA
9228
9229 /* Explicitly create without lookup, since that tries to create a
9230 value with a void typed value, and when we get here, gdbarch
9231 isn't initialized yet. At this point, we're quite sure there
9232 isn't another convenience variable of the same name. */
22d2b532 9233 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9234
9235 add_setshow_boolean_cmd ("observer", no_class,
9236 &observer_mode_1, _("\
9237Set whether gdb controls the inferior in observer mode."), _("\
9238Show whether gdb controls the inferior in observer mode."), _("\
9239In observer mode, GDB can get data from the inferior, but not\n\
9240affect its execution. Registers and memory may not be changed,\n\
9241breakpoints may not be set, and the program cannot be interrupted\n\
9242or signalled."),
9243 set_observer_mode,
9244 show_observer_mode,
9245 &setlist,
9246 &showlist);
c906108c 9247}
This page took 2.539298 seconds and 4 git commands to generate.