gnulib: import count-one-bits module and use it
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
b811d2c2 4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
c906108c
SS
28#include "gdbcore.h"
29#include "gdbcmd.h"
30#include "target.h"
2f4fcf00 31#include "target-connection.h"
c906108c
SS
32#include "gdbthread.h"
33#include "annotate.h"
1adeb98a 34#include "symfile.h"
7a292a7a 35#include "top.h"
2acceee2 36#include "inf-loop.h"
4e052eda 37#include "regcache.h"
fd0407d6 38#include "value.h"
76727919 39#include "observable.h"
f636b87d 40#include "language.h"
a77053c2 41#include "solib.h"
f17517ea 42#include "main.h"
186c406b 43#include "block.h"
034dad6f 44#include "mi/mi-common.h"
4f8d22e3 45#include "event-top.h"
96429cc8 46#include "record.h"
d02ed0bb 47#include "record-full.h"
edb3359d 48#include "inline-frame.h"
4efc6507 49#include "jit.h"
06cd862c 50#include "tracepoint.h"
1bfeeb0f 51#include "skip.h"
28106bc2
SDJ
52#include "probe.h"
53#include "objfiles.h"
de0bea00 54#include "completer.h"
9107fc8d 55#include "target-descriptions.h"
f15cb84a 56#include "target-dcache.h"
d83ad864 57#include "terminal.h"
ff862be4 58#include "solist.h"
372316f1 59#include "event-loop.h"
243a9253 60#include "thread-fsm.h"
268a13a5 61#include "gdbsupport/enum-flags.h"
5ed8105e 62#include "progspace-and-thread.h"
268a13a5 63#include "gdbsupport/gdb_optional.h"
46a62268 64#include "arch-utils.h"
268a13a5
TT
65#include "gdbsupport/scope-exit.h"
66#include "gdbsupport/forward-scope-exit.h"
5b6d1e4f
PA
67#include "gdb_select.h"
68#include <unordered_map>
c906108c
SS
69
70/* Prototypes for local functions */
71
2ea28649 72static void sig_print_info (enum gdb_signal);
c906108c 73
96baa820 74static void sig_print_header (void);
c906108c 75
4ef3f3be 76static int follow_fork (void);
96baa820 77
d83ad864
DB
78static int follow_fork_inferior (int follow_child, int detach_fork);
79
80static void follow_inferior_reset_breakpoints (void);
81
a289b8f6
JK
82static int currently_stepping (struct thread_info *tp);
83
2c03e5be 84static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
85
86static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
87
2484c66b
UW
88static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
89
8550d3b3
YQ
90static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
91
aff4e175
AB
92static void resume (gdb_signal sig);
93
5b6d1e4f
PA
94static void wait_for_inferior (inferior *inf);
95
372316f1
PA
96/* Asynchronous signal handler registered as event loop source for
97 when we have pending events ready to be passed to the core. */
98static struct async_event_handler *infrun_async_inferior_event_token;
99
100/* Stores whether infrun_async was previously enabled or disabled.
101 Starts off as -1, indicating "never enabled/disabled". */
102static int infrun_is_async = -1;
103
104/* See infrun.h. */
105
106void
107infrun_async (int enable)
108{
109 if (infrun_is_async != enable)
110 {
111 infrun_is_async = enable;
112
113 if (debug_infrun)
114 fprintf_unfiltered (gdb_stdlog,
115 "infrun: infrun_async(%d)\n",
116 enable);
117
118 if (enable)
119 mark_async_event_handler (infrun_async_inferior_event_token);
120 else
121 clear_async_event_handler (infrun_async_inferior_event_token);
122 }
123}
124
0b333c5e
PA
125/* See infrun.h. */
126
127void
128mark_infrun_async_event_handler (void)
129{
130 mark_async_event_handler (infrun_async_inferior_event_token);
131}
132
5fbbeb29
CF
133/* When set, stop the 'step' command if we enter a function which has
134 no line number information. The normal behavior is that we step
135 over such function. */
491144b5 136bool step_stop_if_no_debug = false;
920d2a44
AC
137static void
138show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
139 struct cmd_list_element *c, const char *value)
140{
141 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
142}
5fbbeb29 143
b9f437de
PA
144/* proceed and normal_stop use this to notify the user when the
145 inferior stopped in a different thread than it had been running
146 in. */
96baa820 147
39f77062 148static ptid_t previous_inferior_ptid;
7a292a7a 149
07107ca6
LM
150/* If set (default for legacy reasons), when following a fork, GDB
151 will detach from one of the fork branches, child or parent.
152 Exactly which branch is detached depends on 'set follow-fork-mode'
153 setting. */
154
491144b5 155static bool detach_fork = true;
6c95b8df 156
491144b5 157bool debug_displaced = false;
237fc4c9
PA
158static void
159show_debug_displaced (struct ui_file *file, int from_tty,
160 struct cmd_list_element *c, const char *value)
161{
162 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
163}
164
ccce17b0 165unsigned int debug_infrun = 0;
920d2a44
AC
166static void
167show_debug_infrun (struct ui_file *file, int from_tty,
168 struct cmd_list_element *c, const char *value)
169{
170 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
171}
527159b7 172
03583c20
UW
173
174/* Support for disabling address space randomization. */
175
491144b5 176bool disable_randomization = true;
03583c20
UW
177
178static void
179show_disable_randomization (struct ui_file *file, int from_tty,
180 struct cmd_list_element *c, const char *value)
181{
182 if (target_supports_disable_randomization ())
183 fprintf_filtered (file,
184 _("Disabling randomization of debuggee's "
185 "virtual address space is %s.\n"),
186 value);
187 else
188 fputs_filtered (_("Disabling randomization of debuggee's "
189 "virtual address space is unsupported on\n"
190 "this platform.\n"), file);
191}
192
193static void
eb4c3f4a 194set_disable_randomization (const char *args, int from_tty,
03583c20
UW
195 struct cmd_list_element *c)
196{
197 if (!target_supports_disable_randomization ())
198 error (_("Disabling randomization of debuggee's "
199 "virtual address space is unsupported on\n"
200 "this platform."));
201}
202
d32dc48e
PA
203/* User interface for non-stop mode. */
204
491144b5
CB
205bool non_stop = false;
206static bool non_stop_1 = false;
d32dc48e
PA
207
208static void
eb4c3f4a 209set_non_stop (const char *args, int from_tty,
d32dc48e
PA
210 struct cmd_list_element *c)
211{
212 if (target_has_execution)
213 {
214 non_stop_1 = non_stop;
215 error (_("Cannot change this setting while the inferior is running."));
216 }
217
218 non_stop = non_stop_1;
219}
220
221static void
222show_non_stop (struct ui_file *file, int from_tty,
223 struct cmd_list_element *c, const char *value)
224{
225 fprintf_filtered (file,
226 _("Controlling the inferior in non-stop mode is %s.\n"),
227 value);
228}
229
d914c394
SS
230/* "Observer mode" is somewhat like a more extreme version of
231 non-stop, in which all GDB operations that might affect the
232 target's execution have been disabled. */
233
491144b5
CB
234bool observer_mode = false;
235static bool observer_mode_1 = false;
d914c394
SS
236
237static void
eb4c3f4a 238set_observer_mode (const char *args, int from_tty,
d914c394
SS
239 struct cmd_list_element *c)
240{
d914c394
SS
241 if (target_has_execution)
242 {
243 observer_mode_1 = observer_mode;
244 error (_("Cannot change this setting while the inferior is running."));
245 }
246
247 observer_mode = observer_mode_1;
248
249 may_write_registers = !observer_mode;
250 may_write_memory = !observer_mode;
251 may_insert_breakpoints = !observer_mode;
252 may_insert_tracepoints = !observer_mode;
253 /* We can insert fast tracepoints in or out of observer mode,
254 but enable them if we're going into this mode. */
255 if (observer_mode)
491144b5 256 may_insert_fast_tracepoints = true;
d914c394
SS
257 may_stop = !observer_mode;
258 update_target_permissions ();
259
260 /* Going *into* observer mode we must force non-stop, then
261 going out we leave it that way. */
262 if (observer_mode)
263 {
d914c394 264 pagination_enabled = 0;
491144b5 265 non_stop = non_stop_1 = true;
d914c394
SS
266 }
267
268 if (from_tty)
269 printf_filtered (_("Observer mode is now %s.\n"),
270 (observer_mode ? "on" : "off"));
271}
272
273static void
274show_observer_mode (struct ui_file *file, int from_tty,
275 struct cmd_list_element *c, const char *value)
276{
277 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
278}
279
280/* This updates the value of observer mode based on changes in
281 permissions. Note that we are deliberately ignoring the values of
282 may-write-registers and may-write-memory, since the user may have
283 reason to enable these during a session, for instance to turn on a
284 debugging-related global. */
285
286void
287update_observer_mode (void)
288{
491144b5
CB
289 bool newval = (!may_insert_breakpoints
290 && !may_insert_tracepoints
291 && may_insert_fast_tracepoints
292 && !may_stop
293 && non_stop);
d914c394
SS
294
295 /* Let the user know if things change. */
296 if (newval != observer_mode)
297 printf_filtered (_("Observer mode is now %s.\n"),
298 (newval ? "on" : "off"));
299
300 observer_mode = observer_mode_1 = newval;
301}
c2c6d25f 302
c906108c
SS
303/* Tables of how to react to signals; the user sets them. */
304
adc6a863
PA
305static unsigned char signal_stop[GDB_SIGNAL_LAST];
306static unsigned char signal_print[GDB_SIGNAL_LAST];
307static unsigned char signal_program[GDB_SIGNAL_LAST];
c906108c 308
ab04a2af
TT
309/* Table of signals that are registered with "catch signal". A
310 non-zero entry indicates that the signal is caught by some "catch
adc6a863
PA
311 signal" command. */
312static unsigned char signal_catch[GDB_SIGNAL_LAST];
ab04a2af 313
2455069d
UW
314/* Table of signals that the target may silently handle.
315 This is automatically determined from the flags above,
316 and simply cached here. */
adc6a863 317static unsigned char signal_pass[GDB_SIGNAL_LAST];
2455069d 318
c906108c
SS
319#define SET_SIGS(nsigs,sigs,flags) \
320 do { \
321 int signum = (nsigs); \
322 while (signum-- > 0) \
323 if ((sigs)[signum]) \
324 (flags)[signum] = 1; \
325 } while (0)
326
327#define UNSET_SIGS(nsigs,sigs,flags) \
328 do { \
329 int signum = (nsigs); \
330 while (signum-- > 0) \
331 if ((sigs)[signum]) \
332 (flags)[signum] = 0; \
333 } while (0)
334
9b224c5e
PA
335/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
336 this function is to avoid exporting `signal_program'. */
337
338void
339update_signals_program_target (void)
340{
adc6a863 341 target_program_signals (signal_program);
9b224c5e
PA
342}
343
1777feb0 344/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 345
edb3359d 346#define RESUME_ALL minus_one_ptid
c906108c
SS
347
348/* Command list pointer for the "stop" placeholder. */
349
350static struct cmd_list_element *stop_command;
351
c906108c
SS
352/* Nonzero if we want to give control to the user when we're notified
353 of shared library events by the dynamic linker. */
628fe4e4 354int stop_on_solib_events;
f9e14852
GB
355
356/* Enable or disable optional shared library event breakpoints
357 as appropriate when the above flag is changed. */
358
359static void
eb4c3f4a
TT
360set_stop_on_solib_events (const char *args,
361 int from_tty, struct cmd_list_element *c)
f9e14852
GB
362{
363 update_solib_breakpoints ();
364}
365
920d2a44
AC
366static void
367show_stop_on_solib_events (struct ui_file *file, int from_tty,
368 struct cmd_list_element *c, const char *value)
369{
370 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
371 value);
372}
c906108c 373
c906108c
SS
374/* Nonzero after stop if current stack frame should be printed. */
375
376static int stop_print_frame;
377
5b6d1e4f
PA
378/* This is a cached copy of the target/ptid/waitstatus of the last
379 event returned by target_wait()/deprecated_target_wait_hook().
380 This information is returned by get_last_target_status(). */
381static process_stratum_target *target_last_proc_target;
39f77062 382static ptid_t target_last_wait_ptid;
e02bc4cc
DS
383static struct target_waitstatus target_last_waitstatus;
384
4e1c45ea 385void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 386
53904c9e
AC
387static const char follow_fork_mode_child[] = "child";
388static const char follow_fork_mode_parent[] = "parent";
389
40478521 390static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
391 follow_fork_mode_child,
392 follow_fork_mode_parent,
393 NULL
ef346e04 394};
c906108c 395
53904c9e 396static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
397static void
398show_follow_fork_mode_string (struct ui_file *file, int from_tty,
399 struct cmd_list_element *c, const char *value)
400{
3e43a32a
MS
401 fprintf_filtered (file,
402 _("Debugger response to a program "
403 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
404 value);
405}
c906108c
SS
406\f
407
d83ad864
DB
408/* Handle changes to the inferior list based on the type of fork,
409 which process is being followed, and whether the other process
410 should be detached. On entry inferior_ptid must be the ptid of
411 the fork parent. At return inferior_ptid is the ptid of the
412 followed inferior. */
413
414static int
415follow_fork_inferior (int follow_child, int detach_fork)
416{
417 int has_vforked;
79639e11 418 ptid_t parent_ptid, child_ptid;
d83ad864
DB
419
420 has_vforked = (inferior_thread ()->pending_follow.kind
421 == TARGET_WAITKIND_VFORKED);
79639e11
PA
422 parent_ptid = inferior_ptid;
423 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
424
425 if (has_vforked
426 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 427 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
428 && !(follow_child || detach_fork || sched_multi))
429 {
430 /* The parent stays blocked inside the vfork syscall until the
431 child execs or exits. If we don't let the child run, then
432 the parent stays blocked. If we're telling the parent to run
433 in the foreground, the user will not be able to ctrl-c to get
434 back the terminal, effectively hanging the debug session. */
435 fprintf_filtered (gdb_stderr, _("\
436Can not resume the parent process over vfork in the foreground while\n\
437holding the child stopped. Try \"set detach-on-fork\" or \
438\"set schedule-multiple\".\n"));
d83ad864
DB
439 return 1;
440 }
441
442 if (!follow_child)
443 {
444 /* Detach new forked process? */
445 if (detach_fork)
446 {
d83ad864
DB
447 /* Before detaching from the child, remove all breakpoints
448 from it. If we forked, then this has already been taken
449 care of by infrun.c. If we vforked however, any
450 breakpoint inserted in the parent is visible in the
451 child, even those added while stopped in a vfork
452 catchpoint. This will remove the breakpoints from the
453 parent also, but they'll be reinserted below. */
454 if (has_vforked)
455 {
456 /* Keep breakpoints list in sync. */
00431a78 457 remove_breakpoints_inf (current_inferior ());
d83ad864
DB
458 }
459
f67c0c91 460 if (print_inferior_events)
d83ad864 461 {
8dd06f7a 462 /* Ensure that we have a process ptid. */
e99b03dc 463 ptid_t process_ptid = ptid_t (child_ptid.pid ());
8dd06f7a 464
223ffa71 465 target_terminal::ours_for_output ();
d83ad864 466 fprintf_filtered (gdb_stdlog,
f67c0c91 467 _("[Detaching after %s from child %s]\n"),
6f259a23 468 has_vforked ? "vfork" : "fork",
a068643d 469 target_pid_to_str (process_ptid).c_str ());
d83ad864
DB
470 }
471 }
472 else
473 {
474 struct inferior *parent_inf, *child_inf;
d83ad864
DB
475
476 /* Add process to GDB's tables. */
e99b03dc 477 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
478
479 parent_inf = current_inferior ();
480 child_inf->attach_flag = parent_inf->attach_flag;
481 copy_terminal_info (child_inf, parent_inf);
482 child_inf->gdbarch = parent_inf->gdbarch;
483 copy_inferior_target_desc_info (child_inf, parent_inf);
484
5ed8105e 485 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 486
2a00d7ce 487 set_current_inferior (child_inf);
5b6d1e4f 488 switch_to_no_thread ();
d83ad864 489 child_inf->symfile_flags = SYMFILE_NO_READ;
5b6d1e4f
PA
490 push_target (parent_inf->process_target ());
491 add_thread_silent (child_inf->process_target (), child_ptid);
492 inferior_ptid = child_ptid;
d83ad864
DB
493
494 /* If this is a vfork child, then the address-space is
495 shared with the parent. */
496 if (has_vforked)
497 {
498 child_inf->pspace = parent_inf->pspace;
499 child_inf->aspace = parent_inf->aspace;
500
5b6d1e4f
PA
501 exec_on_vfork ();
502
d83ad864
DB
503 /* The parent will be frozen until the child is done
504 with the shared region. Keep track of the
505 parent. */
506 child_inf->vfork_parent = parent_inf;
507 child_inf->pending_detach = 0;
508 parent_inf->vfork_child = child_inf;
509 parent_inf->pending_detach = 0;
510 }
511 else
512 {
513 child_inf->aspace = new_address_space ();
564b1e3f 514 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
515 child_inf->removable = 1;
516 set_current_program_space (child_inf->pspace);
517 clone_program_space (child_inf->pspace, parent_inf->pspace);
518
519 /* Let the shared library layer (e.g., solib-svr4) learn
520 about this new process, relocate the cloned exec, pull
521 in shared libraries, and install the solib event
522 breakpoint. If a "cloned-VM" event was propagated
523 better throughout the core, this wouldn't be
524 required. */
525 solib_create_inferior_hook (0);
526 }
d83ad864
DB
527 }
528
529 if (has_vforked)
530 {
531 struct inferior *parent_inf;
532
533 parent_inf = current_inferior ();
534
535 /* If we detached from the child, then we have to be careful
536 to not insert breakpoints in the parent until the child
537 is done with the shared memory region. However, if we're
538 staying attached to the child, then we can and should
539 insert breakpoints, so that we can debug it. A
540 subsequent child exec or exit is enough to know when does
541 the child stops using the parent's address space. */
542 parent_inf->waiting_for_vfork_done = detach_fork;
543 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
544 }
545 }
546 else
547 {
548 /* Follow the child. */
549 struct inferior *parent_inf, *child_inf;
550 struct program_space *parent_pspace;
551
f67c0c91 552 if (print_inferior_events)
d83ad864 553 {
f67c0c91
SDJ
554 std::string parent_pid = target_pid_to_str (parent_ptid);
555 std::string child_pid = target_pid_to_str (child_ptid);
556
223ffa71 557 target_terminal::ours_for_output ();
6f259a23 558 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
559 _("[Attaching after %s %s to child %s]\n"),
560 parent_pid.c_str (),
6f259a23 561 has_vforked ? "vfork" : "fork",
f67c0c91 562 child_pid.c_str ());
d83ad864
DB
563 }
564
565 /* Add the new inferior first, so that the target_detach below
566 doesn't unpush the target. */
567
e99b03dc 568 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
569
570 parent_inf = current_inferior ();
571 child_inf->attach_flag = parent_inf->attach_flag;
572 copy_terminal_info (child_inf, parent_inf);
573 child_inf->gdbarch = parent_inf->gdbarch;
574 copy_inferior_target_desc_info (child_inf, parent_inf);
575
576 parent_pspace = parent_inf->pspace;
577
5b6d1e4f 578 process_stratum_target *target = parent_inf->process_target ();
d83ad864 579
5b6d1e4f
PA
580 {
581 /* Hold a strong reference to the target while (maybe)
582 detaching the parent. Otherwise detaching could close the
583 target. */
584 auto target_ref = target_ops_ref::new_reference (target);
585
586 /* If we're vforking, we want to hold on to the parent until
587 the child exits or execs. At child exec or exit time we
588 can remove the old breakpoints from the parent and detach
589 or resume debugging it. Otherwise, detach the parent now;
590 we'll want to reuse it's program/address spaces, but we
591 can't set them to the child before removing breakpoints
592 from the parent, otherwise, the breakpoints module could
593 decide to remove breakpoints from the wrong process (since
594 they'd be assigned to the same address space). */
595
596 if (has_vforked)
597 {
598 gdb_assert (child_inf->vfork_parent == NULL);
599 gdb_assert (parent_inf->vfork_child == NULL);
600 child_inf->vfork_parent = parent_inf;
601 child_inf->pending_detach = 0;
602 parent_inf->vfork_child = child_inf;
603 parent_inf->pending_detach = detach_fork;
604 parent_inf->waiting_for_vfork_done = 0;
605 }
606 else if (detach_fork)
607 {
608 if (print_inferior_events)
609 {
610 /* Ensure that we have a process ptid. */
611 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
612
613 target_terminal::ours_for_output ();
614 fprintf_filtered (gdb_stdlog,
615 _("[Detaching after fork from "
616 "parent %s]\n"),
617 target_pid_to_str (process_ptid).c_str ());
618 }
8dd06f7a 619
5b6d1e4f
PA
620 target_detach (parent_inf, 0);
621 parent_inf = NULL;
622 }
6f259a23 623
5b6d1e4f 624 /* Note that the detach above makes PARENT_INF dangling. */
d83ad864 625
5b6d1e4f
PA
626 /* Add the child thread to the appropriate lists, and switch
627 to this new thread, before cloning the program space, and
628 informing the solib layer about this new process. */
d83ad864 629
5b6d1e4f
PA
630 set_current_inferior (child_inf);
631 push_target (target);
632 }
d83ad864 633
5b6d1e4f 634 add_thread_silent (target, child_ptid);
79639e11 635 inferior_ptid = child_ptid;
d83ad864
DB
636
637 /* If this is a vfork child, then the address-space is shared
638 with the parent. If we detached from the parent, then we can
639 reuse the parent's program/address spaces. */
640 if (has_vforked || detach_fork)
641 {
642 child_inf->pspace = parent_pspace;
643 child_inf->aspace = child_inf->pspace->aspace;
5b6d1e4f
PA
644
645 exec_on_vfork ();
d83ad864
DB
646 }
647 else
648 {
649 child_inf->aspace = new_address_space ();
564b1e3f 650 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
651 child_inf->removable = 1;
652 child_inf->symfile_flags = SYMFILE_NO_READ;
653 set_current_program_space (child_inf->pspace);
654 clone_program_space (child_inf->pspace, parent_pspace);
655
656 /* Let the shared library layer (e.g., solib-svr4) learn
657 about this new process, relocate the cloned exec, pull in
658 shared libraries, and install the solib event breakpoint.
659 If a "cloned-VM" event was propagated better throughout
660 the core, this wouldn't be required. */
661 solib_create_inferior_hook (0);
662 }
663 }
664
665 return target_follow_fork (follow_child, detach_fork);
666}
667
e58b0e63
PA
668/* Tell the target to follow the fork we're stopped at. Returns true
669 if the inferior should be resumed; false, if the target for some
670 reason decided it's best not to resume. */
671
6604731b 672static int
4ef3f3be 673follow_fork (void)
c906108c 674{
ea1dd7bc 675 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
676 int should_resume = 1;
677 struct thread_info *tp;
678
679 /* Copy user stepping state to the new inferior thread. FIXME: the
680 followed fork child thread should have a copy of most of the
4e3990f4
DE
681 parent thread structure's run control related fields, not just these.
682 Initialized to avoid "may be used uninitialized" warnings from gcc. */
683 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 684 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
685 CORE_ADDR step_range_start = 0;
686 CORE_ADDR step_range_end = 0;
687 struct frame_id step_frame_id = { 0 };
8980e177 688 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
689
690 if (!non_stop)
691 {
5b6d1e4f 692 process_stratum_target *wait_target;
e58b0e63
PA
693 ptid_t wait_ptid;
694 struct target_waitstatus wait_status;
695
696 /* Get the last target status returned by target_wait(). */
5b6d1e4f 697 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
e58b0e63
PA
698
699 /* If not stopped at a fork event, then there's nothing else to
700 do. */
701 if (wait_status.kind != TARGET_WAITKIND_FORKED
702 && wait_status.kind != TARGET_WAITKIND_VFORKED)
703 return 1;
704
705 /* Check if we switched over from WAIT_PTID, since the event was
706 reported. */
00431a78 707 if (wait_ptid != minus_one_ptid
5b6d1e4f
PA
708 && (current_inferior ()->process_target () != wait_target
709 || inferior_ptid != wait_ptid))
e58b0e63
PA
710 {
711 /* We did. Switch back to WAIT_PTID thread, to tell the
712 target to follow it (in either direction). We'll
713 afterwards refuse to resume, and inform the user what
714 happened. */
5b6d1e4f 715 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
00431a78 716 switch_to_thread (wait_thread);
e58b0e63
PA
717 should_resume = 0;
718 }
719 }
720
721 tp = inferior_thread ();
722
723 /* If there were any forks/vforks that were caught and are now to be
724 followed, then do so now. */
725 switch (tp->pending_follow.kind)
726 {
727 case TARGET_WAITKIND_FORKED:
728 case TARGET_WAITKIND_VFORKED:
729 {
730 ptid_t parent, child;
731
732 /* If the user did a next/step, etc, over a fork call,
733 preserve the stepping state in the fork child. */
734 if (follow_child && should_resume)
735 {
8358c15c
JK
736 step_resume_breakpoint = clone_momentary_breakpoint
737 (tp->control.step_resume_breakpoint);
16c381f0
JK
738 step_range_start = tp->control.step_range_start;
739 step_range_end = tp->control.step_range_end;
740 step_frame_id = tp->control.step_frame_id;
186c406b
TT
741 exception_resume_breakpoint
742 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 743 thread_fsm = tp->thread_fsm;
e58b0e63
PA
744
745 /* For now, delete the parent's sr breakpoint, otherwise,
746 parent/child sr breakpoints are considered duplicates,
747 and the child version will not be installed. Remove
748 this when the breakpoints module becomes aware of
749 inferiors and address spaces. */
750 delete_step_resume_breakpoint (tp);
16c381f0
JK
751 tp->control.step_range_start = 0;
752 tp->control.step_range_end = 0;
753 tp->control.step_frame_id = null_frame_id;
186c406b 754 delete_exception_resume_breakpoint (tp);
8980e177 755 tp->thread_fsm = NULL;
e58b0e63
PA
756 }
757
758 parent = inferior_ptid;
759 child = tp->pending_follow.value.related_pid;
760
5b6d1e4f 761 process_stratum_target *parent_targ = tp->inf->process_target ();
d83ad864
DB
762 /* Set up inferior(s) as specified by the caller, and tell the
763 target to do whatever is necessary to follow either parent
764 or child. */
765 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
766 {
767 /* Target refused to follow, or there's some other reason
768 we shouldn't resume. */
769 should_resume = 0;
770 }
771 else
772 {
773 /* This pending follow fork event is now handled, one way
774 or another. The previous selected thread may be gone
775 from the lists by now, but if it is still around, need
776 to clear the pending follow request. */
5b6d1e4f 777 tp = find_thread_ptid (parent_targ, parent);
e58b0e63
PA
778 if (tp)
779 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
780
781 /* This makes sure we don't try to apply the "Switched
782 over from WAIT_PID" logic above. */
783 nullify_last_target_wait_ptid ();
784
1777feb0 785 /* If we followed the child, switch to it... */
e58b0e63
PA
786 if (follow_child)
787 {
5b6d1e4f 788 thread_info *child_thr = find_thread_ptid (parent_targ, child);
00431a78 789 switch_to_thread (child_thr);
e58b0e63
PA
790
791 /* ... and preserve the stepping state, in case the
792 user was stepping over the fork call. */
793 if (should_resume)
794 {
795 tp = inferior_thread ();
8358c15c
JK
796 tp->control.step_resume_breakpoint
797 = step_resume_breakpoint;
16c381f0
JK
798 tp->control.step_range_start = step_range_start;
799 tp->control.step_range_end = step_range_end;
800 tp->control.step_frame_id = step_frame_id;
186c406b
TT
801 tp->control.exception_resume_breakpoint
802 = exception_resume_breakpoint;
8980e177 803 tp->thread_fsm = thread_fsm;
e58b0e63
PA
804 }
805 else
806 {
807 /* If we get here, it was because we're trying to
808 resume from a fork catchpoint, but, the user
809 has switched threads away from the thread that
810 forked. In that case, the resume command
811 issued is most likely not applicable to the
812 child, so just warn, and refuse to resume. */
3e43a32a 813 warning (_("Not resuming: switched threads "
fd7dcb94 814 "before following fork child."));
e58b0e63
PA
815 }
816
817 /* Reset breakpoints in the child as appropriate. */
818 follow_inferior_reset_breakpoints ();
819 }
e58b0e63
PA
820 }
821 }
822 break;
823 case TARGET_WAITKIND_SPURIOUS:
824 /* Nothing to follow. */
825 break;
826 default:
827 internal_error (__FILE__, __LINE__,
828 "Unexpected pending_follow.kind %d\n",
829 tp->pending_follow.kind);
830 break;
831 }
c906108c 832
e58b0e63 833 return should_resume;
c906108c
SS
834}
835
d83ad864 836static void
6604731b 837follow_inferior_reset_breakpoints (void)
c906108c 838{
4e1c45ea
PA
839 struct thread_info *tp = inferior_thread ();
840
6604731b
DJ
841 /* Was there a step_resume breakpoint? (There was if the user
842 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
843 thread number. Cloned step_resume breakpoints are disabled on
844 creation, so enable it here now that it is associated with the
845 correct thread.
6604731b
DJ
846
847 step_resumes are a form of bp that are made to be per-thread.
848 Since we created the step_resume bp when the parent process
849 was being debugged, and now are switching to the child process,
850 from the breakpoint package's viewpoint, that's a switch of
851 "threads". We must update the bp's notion of which thread
852 it is for, or it'll be ignored when it triggers. */
853
8358c15c 854 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
855 {
856 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
857 tp->control.step_resume_breakpoint->loc->enabled = 1;
858 }
6604731b 859
a1aa2221 860 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 861 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
862 {
863 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
864 tp->control.exception_resume_breakpoint->loc->enabled = 1;
865 }
186c406b 866
6604731b
DJ
867 /* Reinsert all breakpoints in the child. The user may have set
868 breakpoints after catching the fork, in which case those
869 were never set in the child, but only in the parent. This makes
870 sure the inserted breakpoints match the breakpoint list. */
871
872 breakpoint_re_set ();
873 insert_breakpoints ();
c906108c 874}
c906108c 875
6c95b8df
PA
876/* The child has exited or execed: resume threads of the parent the
877 user wanted to be executing. */
878
879static int
880proceed_after_vfork_done (struct thread_info *thread,
881 void *arg)
882{
883 int pid = * (int *) arg;
884
00431a78
PA
885 if (thread->ptid.pid () == pid
886 && thread->state == THREAD_RUNNING
887 && !thread->executing
6c95b8df 888 && !thread->stop_requested
a493e3e2 889 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
890 {
891 if (debug_infrun)
892 fprintf_unfiltered (gdb_stdlog,
893 "infrun: resuming vfork parent thread %s\n",
a068643d 894 target_pid_to_str (thread->ptid).c_str ());
6c95b8df 895
00431a78 896 switch_to_thread (thread);
70509625 897 clear_proceed_status (0);
64ce06e4 898 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
899 }
900
901 return 0;
902}
903
5ed8105e
PA
904/* Save/restore inferior_ptid, current program space and current
905 inferior. Only use this if the current context points at an exited
906 inferior (and therefore there's no current thread to save). */
907class scoped_restore_exited_inferior
908{
909public:
910 scoped_restore_exited_inferior ()
911 : m_saved_ptid (&inferior_ptid)
912 {}
913
914private:
915 scoped_restore_tmpl<ptid_t> m_saved_ptid;
916 scoped_restore_current_program_space m_pspace;
917 scoped_restore_current_inferior m_inferior;
918};
919
6c95b8df
PA
920/* Called whenever we notice an exec or exit event, to handle
921 detaching or resuming a vfork parent. */
922
923static void
924handle_vfork_child_exec_or_exit (int exec)
925{
926 struct inferior *inf = current_inferior ();
927
928 if (inf->vfork_parent)
929 {
930 int resume_parent = -1;
931
932 /* This exec or exit marks the end of the shared memory region
b73715df
TV
933 between the parent and the child. Break the bonds. */
934 inferior *vfork_parent = inf->vfork_parent;
935 inf->vfork_parent->vfork_child = NULL;
936 inf->vfork_parent = NULL;
6c95b8df 937
b73715df
TV
938 /* If the user wanted to detach from the parent, now is the
939 time. */
940 if (vfork_parent->pending_detach)
6c95b8df
PA
941 {
942 struct thread_info *tp;
6c95b8df
PA
943 struct program_space *pspace;
944 struct address_space *aspace;
945
1777feb0 946 /* follow-fork child, detach-on-fork on. */
6c95b8df 947
b73715df 948 vfork_parent->pending_detach = 0;
68c9da30 949
5ed8105e
PA
950 gdb::optional<scoped_restore_exited_inferior>
951 maybe_restore_inferior;
952 gdb::optional<scoped_restore_current_pspace_and_thread>
953 maybe_restore_thread;
954
955 /* If we're handling a child exit, then inferior_ptid points
956 at the inferior's pid, not to a thread. */
f50f4e56 957 if (!exec)
5ed8105e 958 maybe_restore_inferior.emplace ();
f50f4e56 959 else
5ed8105e 960 maybe_restore_thread.emplace ();
6c95b8df
PA
961
962 /* We're letting loose of the parent. */
b73715df 963 tp = any_live_thread_of_inferior (vfork_parent);
00431a78 964 switch_to_thread (tp);
6c95b8df
PA
965
966 /* We're about to detach from the parent, which implicitly
967 removes breakpoints from its address space. There's a
968 catch here: we want to reuse the spaces for the child,
969 but, parent/child are still sharing the pspace at this
970 point, although the exec in reality makes the kernel give
971 the child a fresh set of new pages. The problem here is
972 that the breakpoints module being unaware of this, would
973 likely chose the child process to write to the parent
974 address space. Swapping the child temporarily away from
975 the spaces has the desired effect. Yes, this is "sort
976 of" a hack. */
977
978 pspace = inf->pspace;
979 aspace = inf->aspace;
980 inf->aspace = NULL;
981 inf->pspace = NULL;
982
f67c0c91 983 if (print_inferior_events)
6c95b8df 984 {
a068643d 985 std::string pidstr
b73715df 986 = target_pid_to_str (ptid_t (vfork_parent->pid));
f67c0c91 987
223ffa71 988 target_terminal::ours_for_output ();
6c95b8df
PA
989
990 if (exec)
6f259a23
DB
991 {
992 fprintf_filtered (gdb_stdlog,
f67c0c91 993 _("[Detaching vfork parent %s "
a068643d 994 "after child exec]\n"), pidstr.c_str ());
6f259a23 995 }
6c95b8df 996 else
6f259a23
DB
997 {
998 fprintf_filtered (gdb_stdlog,
f67c0c91 999 _("[Detaching vfork parent %s "
a068643d 1000 "after child exit]\n"), pidstr.c_str ());
6f259a23 1001 }
6c95b8df
PA
1002 }
1003
b73715df 1004 target_detach (vfork_parent, 0);
6c95b8df
PA
1005
1006 /* Put it back. */
1007 inf->pspace = pspace;
1008 inf->aspace = aspace;
6c95b8df
PA
1009 }
1010 else if (exec)
1011 {
1012 /* We're staying attached to the parent, so, really give the
1013 child a new address space. */
564b1e3f 1014 inf->pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
1015 inf->aspace = inf->pspace->aspace;
1016 inf->removable = 1;
1017 set_current_program_space (inf->pspace);
1018
b73715df 1019 resume_parent = vfork_parent->pid;
6c95b8df
PA
1020 }
1021 else
1022 {
6c95b8df
PA
1023 /* If this is a vfork child exiting, then the pspace and
1024 aspaces were shared with the parent. Since we're
1025 reporting the process exit, we'll be mourning all that is
1026 found in the address space, and switching to null_ptid,
1027 preparing to start a new inferior. But, since we don't
1028 want to clobber the parent's address/program spaces, we
1029 go ahead and create a new one for this exiting
1030 inferior. */
1031
5ed8105e
PA
1032 /* Switch to null_ptid while running clone_program_space, so
1033 that clone_program_space doesn't want to read the
1034 selected frame of a dead process. */
1035 scoped_restore restore_ptid
1036 = make_scoped_restore (&inferior_ptid, null_ptid);
6c95b8df 1037
53af73bf
PA
1038 inf->pspace = new program_space (maybe_new_address_space ());
1039 inf->aspace = inf->pspace->aspace;
1040 set_current_program_space (inf->pspace);
6c95b8df 1041 inf->removable = 1;
7dcd53a0 1042 inf->symfile_flags = SYMFILE_NO_READ;
53af73bf 1043 clone_program_space (inf->pspace, vfork_parent->pspace);
6c95b8df 1044
b73715df 1045 resume_parent = vfork_parent->pid;
6c95b8df
PA
1046 }
1047
6c95b8df
PA
1048 gdb_assert (current_program_space == inf->pspace);
1049
1050 if (non_stop && resume_parent != -1)
1051 {
1052 /* If the user wanted the parent to be running, let it go
1053 free now. */
5ed8105e 1054 scoped_restore_current_thread restore_thread;
6c95b8df
PA
1055
1056 if (debug_infrun)
3e43a32a
MS
1057 fprintf_unfiltered (gdb_stdlog,
1058 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1059 resume_parent);
1060
1061 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1062 }
1063 }
1064}
1065
eb6c553b 1066/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1067
1068static const char follow_exec_mode_new[] = "new";
1069static const char follow_exec_mode_same[] = "same";
40478521 1070static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1071{
1072 follow_exec_mode_new,
1073 follow_exec_mode_same,
1074 NULL,
1075};
1076
1077static const char *follow_exec_mode_string = follow_exec_mode_same;
1078static void
1079show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1080 struct cmd_list_element *c, const char *value)
1081{
1082 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1083}
1084
ecf45d2c 1085/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1086
c906108c 1087static void
4ca51187 1088follow_exec (ptid_t ptid, const char *exec_file_target)
c906108c 1089{
6c95b8df 1090 struct inferior *inf = current_inferior ();
e99b03dc 1091 int pid = ptid.pid ();
94585166 1092 ptid_t process_ptid;
7a292a7a 1093
65d2b333
PW
1094 /* Switch terminal for any messages produced e.g. by
1095 breakpoint_re_set. */
1096 target_terminal::ours_for_output ();
1097
c906108c
SS
1098 /* This is an exec event that we actually wish to pay attention to.
1099 Refresh our symbol table to the newly exec'd program, remove any
1100 momentary bp's, etc.
1101
1102 If there are breakpoints, they aren't really inserted now,
1103 since the exec() transformed our inferior into a fresh set
1104 of instructions.
1105
1106 We want to preserve symbolic breakpoints on the list, since
1107 we have hopes that they can be reset after the new a.out's
1108 symbol table is read.
1109
1110 However, any "raw" breakpoints must be removed from the list
1111 (e.g., the solib bp's), since their address is probably invalid
1112 now.
1113
1114 And, we DON'T want to call delete_breakpoints() here, since
1115 that may write the bp's "shadow contents" (the instruction
85102364 1116 value that was overwritten with a TRAP instruction). Since
1777feb0 1117 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1118
1119 mark_breakpoints_out ();
1120
95e50b27
PA
1121 /* The target reports the exec event to the main thread, even if
1122 some other thread does the exec, and even if the main thread was
1123 stopped or already gone. We may still have non-leader threads of
1124 the process on our list. E.g., on targets that don't have thread
1125 exit events (like remote); or on native Linux in non-stop mode if
1126 there were only two threads in the inferior and the non-leader
1127 one is the one that execs (and nothing forces an update of the
1128 thread list up to here). When debugging remotely, it's best to
1129 avoid extra traffic, when possible, so avoid syncing the thread
1130 list with the target, and instead go ahead and delete all threads
1131 of the process but one that reported the event. Note this must
1132 be done before calling update_breakpoints_after_exec, as
1133 otherwise clearing the threads' resources would reference stale
1134 thread breakpoints -- it may have been one of these threads that
1135 stepped across the exec. We could just clear their stepping
1136 states, but as long as we're iterating, might as well delete
1137 them. Deleting them now rather than at the next user-visible
1138 stop provides a nicer sequence of events for user and MI
1139 notifications. */
08036331 1140 for (thread_info *th : all_threads_safe ())
d7e15655 1141 if (th->ptid.pid () == pid && th->ptid != ptid)
00431a78 1142 delete_thread (th);
95e50b27
PA
1143
1144 /* We also need to clear any left over stale state for the
1145 leader/event thread. E.g., if there was any step-resume
1146 breakpoint or similar, it's gone now. We cannot truly
1147 step-to-next statement through an exec(). */
08036331 1148 thread_info *th = inferior_thread ();
8358c15c 1149 th->control.step_resume_breakpoint = NULL;
186c406b 1150 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1151 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1152 th->control.step_range_start = 0;
1153 th->control.step_range_end = 0;
c906108c 1154
95e50b27
PA
1155 /* The user may have had the main thread held stopped in the
1156 previous image (e.g., schedlock on, or non-stop). Release
1157 it now. */
a75724bc
PA
1158 th->stop_requested = 0;
1159
95e50b27
PA
1160 update_breakpoints_after_exec ();
1161
1777feb0 1162 /* What is this a.out's name? */
f2907e49 1163 process_ptid = ptid_t (pid);
6c95b8df 1164 printf_unfiltered (_("%s is executing new program: %s\n"),
a068643d 1165 target_pid_to_str (process_ptid).c_str (),
ecf45d2c 1166 exec_file_target);
c906108c
SS
1167
1168 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1169 inferior has essentially been killed & reborn. */
7a292a7a 1170
6ca15a4b 1171 breakpoint_init_inferior (inf_execd);
e85a822c 1172
797bc1cb
TT
1173 gdb::unique_xmalloc_ptr<char> exec_file_host
1174 = exec_file_find (exec_file_target, NULL);
ff862be4 1175
ecf45d2c
SL
1176 /* If we were unable to map the executable target pathname onto a host
1177 pathname, tell the user that. Otherwise GDB's subsequent behavior
1178 is confusing. Maybe it would even be better to stop at this point
1179 so that the user can specify a file manually before continuing. */
1180 if (exec_file_host == NULL)
1181 warning (_("Could not load symbols for executable %s.\n"
1182 "Do you need \"set sysroot\"?"),
1183 exec_file_target);
c906108c 1184
cce9b6bf
PA
1185 /* Reset the shared library package. This ensures that we get a
1186 shlib event when the child reaches "_start", at which point the
1187 dld will have had a chance to initialize the child. */
1188 /* Also, loading a symbol file below may trigger symbol lookups, and
1189 we don't want those to be satisfied by the libraries of the
1190 previous incarnation of this process. */
1191 no_shared_libraries (NULL, 0);
1192
6c95b8df
PA
1193 if (follow_exec_mode_string == follow_exec_mode_new)
1194 {
6c95b8df
PA
1195 /* The user wants to keep the old inferior and program spaces
1196 around. Create a new fresh one, and switch to it. */
1197
35ed81d4
SM
1198 /* Do exit processing for the original inferior before setting the new
1199 inferior's pid. Having two inferiors with the same pid would confuse
1200 find_inferior_p(t)id. Transfer the terminal state and info from the
1201 old to the new inferior. */
1202 inf = add_inferior_with_spaces ();
1203 swap_terminal_info (inf, current_inferior ());
057302ce 1204 exit_inferior_silent (current_inferior ());
17d8546e 1205
94585166 1206 inf->pid = pid;
ecf45d2c 1207 target_follow_exec (inf, exec_file_target);
6c95b8df 1208
5b6d1e4f
PA
1209 inferior *org_inferior = current_inferior ();
1210 switch_to_inferior_no_thread (inf);
1211 push_target (org_inferior->process_target ());
1212 thread_info *thr = add_thread (inf->process_target (), ptid);
1213 switch_to_thread (thr);
6c95b8df 1214 }
9107fc8d
PA
1215 else
1216 {
1217 /* The old description may no longer be fit for the new image.
1218 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1219 old description; we'll read a new one below. No need to do
1220 this on "follow-exec-mode new", as the old inferior stays
1221 around (its description is later cleared/refetched on
1222 restart). */
1223 target_clear_description ();
1224 }
6c95b8df
PA
1225
1226 gdb_assert (current_program_space == inf->pspace);
1227
ecf45d2c
SL
1228 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1229 because the proper displacement for a PIE (Position Independent
1230 Executable) main symbol file will only be computed by
1231 solib_create_inferior_hook below. breakpoint_re_set would fail
1232 to insert the breakpoints with the zero displacement. */
797bc1cb 1233 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
c906108c 1234
9107fc8d
PA
1235 /* If the target can specify a description, read it. Must do this
1236 after flipping to the new executable (because the target supplied
1237 description must be compatible with the executable's
1238 architecture, and the old executable may e.g., be 32-bit, while
1239 the new one 64-bit), and before anything involving memory or
1240 registers. */
1241 target_find_description ();
1242
268a4a75 1243 solib_create_inferior_hook (0);
c906108c 1244
4efc6507
DE
1245 jit_inferior_created_hook ();
1246
c1e56572
JK
1247 breakpoint_re_set ();
1248
c906108c
SS
1249 /* Reinsert all breakpoints. (Those which were symbolic have
1250 been reset to the proper address in the new a.out, thanks
1777feb0 1251 to symbol_file_command...). */
c906108c
SS
1252 insert_breakpoints ();
1253
1254 /* The next resume of this inferior should bring it to the shlib
1255 startup breakpoints. (If the user had also set bp's on
1256 "main" from the old (parent) process, then they'll auto-
1777feb0 1257 matically get reset there in the new process.). */
c906108c
SS
1258}
1259
c2829269
PA
1260/* The queue of threads that need to do a step-over operation to get
1261 past e.g., a breakpoint. What technique is used to step over the
1262 breakpoint/watchpoint does not matter -- all threads end up in the
1263 same queue, to maintain rough temporal order of execution, in order
1264 to avoid starvation, otherwise, we could e.g., find ourselves
1265 constantly stepping the same couple threads past their breakpoints
1266 over and over, if the single-step finish fast enough. */
1267struct thread_info *step_over_queue_head;
1268
6c4cfb24
PA
1269/* Bit flags indicating what the thread needs to step over. */
1270
8d297bbf 1271enum step_over_what_flag
6c4cfb24
PA
1272 {
1273 /* Step over a breakpoint. */
1274 STEP_OVER_BREAKPOINT = 1,
1275
1276 /* Step past a non-continuable watchpoint, in order to let the
1277 instruction execute so we can evaluate the watchpoint
1278 expression. */
1279 STEP_OVER_WATCHPOINT = 2
1280 };
8d297bbf 1281DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1282
963f9c80 1283/* Info about an instruction that is being stepped over. */
31e77af2
PA
1284
1285struct step_over_info
1286{
963f9c80
PA
1287 /* If we're stepping past a breakpoint, this is the address space
1288 and address of the instruction the breakpoint is set at. We'll
1289 skip inserting all breakpoints here. Valid iff ASPACE is
1290 non-NULL. */
8b86c959 1291 const address_space *aspace;
31e77af2 1292 CORE_ADDR address;
963f9c80
PA
1293
1294 /* The instruction being stepped over triggers a nonsteppable
1295 watchpoint. If true, we'll skip inserting watchpoints. */
1296 int nonsteppable_watchpoint_p;
21edc42f
YQ
1297
1298 /* The thread's global number. */
1299 int thread;
31e77af2
PA
1300};
1301
1302/* The step-over info of the location that is being stepped over.
1303
1304 Note that with async/breakpoint always-inserted mode, a user might
1305 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1306 being stepped over. As setting a new breakpoint inserts all
1307 breakpoints, we need to make sure the breakpoint being stepped over
1308 isn't inserted then. We do that by only clearing the step-over
1309 info when the step-over is actually finished (or aborted).
1310
1311 Presently GDB can only step over one breakpoint at any given time.
1312 Given threads that can't run code in the same address space as the
1313 breakpoint's can't really miss the breakpoint, GDB could be taught
1314 to step-over at most one breakpoint per address space (so this info
1315 could move to the address space object if/when GDB is extended).
1316 The set of breakpoints being stepped over will normally be much
1317 smaller than the set of all breakpoints, so a flag in the
1318 breakpoint location structure would be wasteful. A separate list
1319 also saves complexity and run-time, as otherwise we'd have to go
1320 through all breakpoint locations clearing their flag whenever we
1321 start a new sequence. Similar considerations weigh against storing
1322 this info in the thread object. Plus, not all step overs actually
1323 have breakpoint locations -- e.g., stepping past a single-step
1324 breakpoint, or stepping to complete a non-continuable
1325 watchpoint. */
1326static struct step_over_info step_over_info;
1327
1328/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1329 stepping over.
1330 N.B. We record the aspace and address now, instead of say just the thread,
1331 because when we need the info later the thread may be running. */
31e77af2
PA
1332
1333static void
8b86c959 1334set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1335 int nonsteppable_watchpoint_p,
1336 int thread)
31e77af2
PA
1337{
1338 step_over_info.aspace = aspace;
1339 step_over_info.address = address;
963f9c80 1340 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1341 step_over_info.thread = thread;
31e77af2
PA
1342}
1343
1344/* Called when we're not longer stepping over a breakpoint / an
1345 instruction, so all breakpoints are free to be (re)inserted. */
1346
1347static void
1348clear_step_over_info (void)
1349{
372316f1
PA
1350 if (debug_infrun)
1351 fprintf_unfiltered (gdb_stdlog,
1352 "infrun: clear_step_over_info\n");
31e77af2
PA
1353 step_over_info.aspace = NULL;
1354 step_over_info.address = 0;
963f9c80 1355 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1356 step_over_info.thread = -1;
31e77af2
PA
1357}
1358
7f89fd65 1359/* See infrun.h. */
31e77af2
PA
1360
1361int
1362stepping_past_instruction_at (struct address_space *aspace,
1363 CORE_ADDR address)
1364{
1365 return (step_over_info.aspace != NULL
1366 && breakpoint_address_match (aspace, address,
1367 step_over_info.aspace,
1368 step_over_info.address));
1369}
1370
963f9c80
PA
1371/* See infrun.h. */
1372
21edc42f
YQ
1373int
1374thread_is_stepping_over_breakpoint (int thread)
1375{
1376 return (step_over_info.thread != -1
1377 && thread == step_over_info.thread);
1378}
1379
1380/* See infrun.h. */
1381
963f9c80
PA
1382int
1383stepping_past_nonsteppable_watchpoint (void)
1384{
1385 return step_over_info.nonsteppable_watchpoint_p;
1386}
1387
6cc83d2a
PA
1388/* Returns true if step-over info is valid. */
1389
1390static int
1391step_over_info_valid_p (void)
1392{
963f9c80
PA
1393 return (step_over_info.aspace != NULL
1394 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1395}
1396
c906108c 1397\f
237fc4c9
PA
1398/* Displaced stepping. */
1399
1400/* In non-stop debugging mode, we must take special care to manage
1401 breakpoints properly; in particular, the traditional strategy for
1402 stepping a thread past a breakpoint it has hit is unsuitable.
1403 'Displaced stepping' is a tactic for stepping one thread past a
1404 breakpoint it has hit while ensuring that other threads running
1405 concurrently will hit the breakpoint as they should.
1406
1407 The traditional way to step a thread T off a breakpoint in a
1408 multi-threaded program in all-stop mode is as follows:
1409
1410 a0) Initially, all threads are stopped, and breakpoints are not
1411 inserted.
1412 a1) We single-step T, leaving breakpoints uninserted.
1413 a2) We insert breakpoints, and resume all threads.
1414
1415 In non-stop debugging, however, this strategy is unsuitable: we
1416 don't want to have to stop all threads in the system in order to
1417 continue or step T past a breakpoint. Instead, we use displaced
1418 stepping:
1419
1420 n0) Initially, T is stopped, other threads are running, and
1421 breakpoints are inserted.
1422 n1) We copy the instruction "under" the breakpoint to a separate
1423 location, outside the main code stream, making any adjustments
1424 to the instruction, register, and memory state as directed by
1425 T's architecture.
1426 n2) We single-step T over the instruction at its new location.
1427 n3) We adjust the resulting register and memory state as directed
1428 by T's architecture. This includes resetting T's PC to point
1429 back into the main instruction stream.
1430 n4) We resume T.
1431
1432 This approach depends on the following gdbarch methods:
1433
1434 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1435 indicate where to copy the instruction, and how much space must
1436 be reserved there. We use these in step n1.
1437
1438 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1439 address, and makes any necessary adjustments to the instruction,
1440 register contents, and memory. We use this in step n1.
1441
1442 - gdbarch_displaced_step_fixup adjusts registers and memory after
85102364 1443 we have successfully single-stepped the instruction, to yield the
237fc4c9
PA
1444 same effect the instruction would have had if we had executed it
1445 at its original address. We use this in step n3.
1446
237fc4c9
PA
1447 The gdbarch_displaced_step_copy_insn and
1448 gdbarch_displaced_step_fixup functions must be written so that
1449 copying an instruction with gdbarch_displaced_step_copy_insn,
1450 single-stepping across the copied instruction, and then applying
1451 gdbarch_displaced_insn_fixup should have the same effects on the
1452 thread's memory and registers as stepping the instruction in place
1453 would have. Exactly which responsibilities fall to the copy and
1454 which fall to the fixup is up to the author of those functions.
1455
1456 See the comments in gdbarch.sh for details.
1457
1458 Note that displaced stepping and software single-step cannot
1459 currently be used in combination, although with some care I think
1460 they could be made to. Software single-step works by placing
1461 breakpoints on all possible subsequent instructions; if the
1462 displaced instruction is a PC-relative jump, those breakpoints
1463 could fall in very strange places --- on pages that aren't
1464 executable, or at addresses that are not proper instruction
1465 boundaries. (We do generally let other threads run while we wait
1466 to hit the software single-step breakpoint, and they might
1467 encounter such a corrupted instruction.) One way to work around
1468 this would be to have gdbarch_displaced_step_copy_insn fully
1469 simulate the effect of PC-relative instructions (and return NULL)
1470 on architectures that use software single-stepping.
1471
1472 In non-stop mode, we can have independent and simultaneous step
1473 requests, so more than one thread may need to simultaneously step
1474 over a breakpoint. The current implementation assumes there is
1475 only one scratch space per process. In this case, we have to
1476 serialize access to the scratch space. If thread A wants to step
1477 over a breakpoint, but we are currently waiting for some other
1478 thread to complete a displaced step, we leave thread A stopped and
1479 place it in the displaced_step_request_queue. Whenever a displaced
1480 step finishes, we pick the next thread in the queue and start a new
1481 displaced step operation on it. See displaced_step_prepare and
1482 displaced_step_fixup for details. */
1483
cfba9872
SM
1484/* Default destructor for displaced_step_closure. */
1485
1486displaced_step_closure::~displaced_step_closure () = default;
1487
fc1cf338
PA
1488/* Get the displaced stepping state of process PID. */
1489
39a36629 1490static displaced_step_inferior_state *
00431a78 1491get_displaced_stepping_state (inferior *inf)
fc1cf338 1492{
d20172fc 1493 return &inf->displaced_step_state;
fc1cf338
PA
1494}
1495
372316f1
PA
1496/* Returns true if any inferior has a thread doing a displaced
1497 step. */
1498
39a36629
SM
1499static bool
1500displaced_step_in_progress_any_inferior ()
372316f1 1501{
d20172fc 1502 for (inferior *i : all_inferiors ())
39a36629 1503 {
d20172fc 1504 if (i->displaced_step_state.step_thread != nullptr)
39a36629
SM
1505 return true;
1506 }
372316f1 1507
39a36629 1508 return false;
372316f1
PA
1509}
1510
c0987663
YQ
1511/* Return true if thread represented by PTID is doing a displaced
1512 step. */
1513
1514static int
00431a78 1515displaced_step_in_progress_thread (thread_info *thread)
c0987663 1516{
00431a78 1517 gdb_assert (thread != NULL);
c0987663 1518
d20172fc 1519 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
c0987663
YQ
1520}
1521
8f572e5c
PA
1522/* Return true if process PID has a thread doing a displaced step. */
1523
1524static int
00431a78 1525displaced_step_in_progress (inferior *inf)
8f572e5c 1526{
d20172fc 1527 return get_displaced_stepping_state (inf)->step_thread != nullptr;
fc1cf338
PA
1528}
1529
a42244db
YQ
1530/* If inferior is in displaced stepping, and ADDR equals to starting address
1531 of copy area, return corresponding displaced_step_closure. Otherwise,
1532 return NULL. */
1533
1534struct displaced_step_closure*
1535get_displaced_step_closure_by_addr (CORE_ADDR addr)
1536{
d20172fc 1537 displaced_step_inferior_state *displaced
00431a78 1538 = get_displaced_stepping_state (current_inferior ());
a42244db
YQ
1539
1540 /* If checking the mode of displaced instruction in copy area. */
d20172fc 1541 if (displaced->step_thread != nullptr
00431a78 1542 && displaced->step_copy == addr)
a42244db
YQ
1543 return displaced->step_closure;
1544
1545 return NULL;
1546}
1547
fc1cf338
PA
1548static void
1549infrun_inferior_exit (struct inferior *inf)
1550{
d20172fc 1551 inf->displaced_step_state.reset ();
fc1cf338 1552}
237fc4c9 1553
fff08868
HZ
1554/* If ON, and the architecture supports it, GDB will use displaced
1555 stepping to step over breakpoints. If OFF, or if the architecture
1556 doesn't support it, GDB will instead use the traditional
1557 hold-and-step approach. If AUTO (which is the default), GDB will
1558 decide which technique to use to step over breakpoints depending on
1559 which of all-stop or non-stop mode is active --- displaced stepping
1560 in non-stop mode; hold-and-step in all-stop mode. */
1561
72d0e2c5 1562static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1563
237fc4c9
PA
1564static void
1565show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1566 struct cmd_list_element *c,
1567 const char *value)
1568{
72d0e2c5 1569 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1570 fprintf_filtered (file,
1571 _("Debugger's willingness to use displaced stepping "
1572 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1573 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1574 else
3e43a32a
MS
1575 fprintf_filtered (file,
1576 _("Debugger's willingness to use displaced stepping "
1577 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1578}
1579
fff08868 1580/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1581 over breakpoints of thread TP. */
fff08868 1582
237fc4c9 1583static int
3fc8eb30 1584use_displaced_stepping (struct thread_info *tp)
237fc4c9 1585{
00431a78 1586 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 1587 struct gdbarch *gdbarch = regcache->arch ();
d20172fc
SM
1588 displaced_step_inferior_state *displaced_state
1589 = get_displaced_stepping_state (tp->inf);
3fc8eb30 1590
fbea99ea
PA
1591 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1592 && target_is_non_stop_p ())
72d0e2c5 1593 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1594 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30 1595 && find_record_target () == NULL
d20172fc 1596 && !displaced_state->failed_before);
237fc4c9
PA
1597}
1598
1599/* Clean out any stray displaced stepping state. */
1600static void
fc1cf338 1601displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1602{
1603 /* Indicate that there is no cleanup pending. */
00431a78 1604 displaced->step_thread = nullptr;
237fc4c9 1605
cfba9872 1606 delete displaced->step_closure;
6d45d4b4 1607 displaced->step_closure = NULL;
237fc4c9
PA
1608}
1609
9799571e
TT
1610/* A cleanup that wraps displaced_step_clear. */
1611using displaced_step_clear_cleanup
1612 = FORWARD_SCOPE_EXIT (displaced_step_clear);
237fc4c9
PA
1613
1614/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1615void
1616displaced_step_dump_bytes (struct ui_file *file,
1617 const gdb_byte *buf,
1618 size_t len)
1619{
1620 int i;
1621
1622 for (i = 0; i < len; i++)
1623 fprintf_unfiltered (file, "%02x ", buf[i]);
1624 fputs_unfiltered ("\n", file);
1625}
1626
1627/* Prepare to single-step, using displaced stepping.
1628
1629 Note that we cannot use displaced stepping when we have a signal to
1630 deliver. If we have a signal to deliver and an instruction to step
1631 over, then after the step, there will be no indication from the
1632 target whether the thread entered a signal handler or ignored the
1633 signal and stepped over the instruction successfully --- both cases
1634 result in a simple SIGTRAP. In the first case we mustn't do a
1635 fixup, and in the second case we must --- but we can't tell which.
1636 Comments in the code for 'random signals' in handle_inferior_event
1637 explain how we handle this case instead.
1638
1639 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1640 stepped now; 0 if displaced stepping this thread got queued; or -1
1641 if this instruction can't be displaced stepped. */
1642
237fc4c9 1643static int
00431a78 1644displaced_step_prepare_throw (thread_info *tp)
237fc4c9 1645{
00431a78 1646 regcache *regcache = get_thread_regcache (tp);
ac7936df 1647 struct gdbarch *gdbarch = regcache->arch ();
8b86c959 1648 const address_space *aspace = regcache->aspace ();
237fc4c9
PA
1649 CORE_ADDR original, copy;
1650 ULONGEST len;
1651 struct displaced_step_closure *closure;
9e529e1d 1652 int status;
237fc4c9
PA
1653
1654 /* We should never reach this function if the architecture does not
1655 support displaced stepping. */
1656 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1657
c2829269
PA
1658 /* Nor if the thread isn't meant to step over a breakpoint. */
1659 gdb_assert (tp->control.trap_expected);
1660
c1e36e3e
PA
1661 /* Disable range stepping while executing in the scratch pad. We
1662 want a single-step even if executing the displaced instruction in
1663 the scratch buffer lands within the stepping range (e.g., a
1664 jump/branch). */
1665 tp->control.may_range_step = 0;
1666
fc1cf338
PA
1667 /* We have to displaced step one thread at a time, as we only have
1668 access to a single scratch space per inferior. */
237fc4c9 1669
d20172fc
SM
1670 displaced_step_inferior_state *displaced
1671 = get_displaced_stepping_state (tp->inf);
fc1cf338 1672
00431a78 1673 if (displaced->step_thread != nullptr)
237fc4c9
PA
1674 {
1675 /* Already waiting for a displaced step to finish. Defer this
1676 request and place in queue. */
237fc4c9
PA
1677
1678 if (debug_displaced)
1679 fprintf_unfiltered (gdb_stdlog,
c2829269 1680 "displaced: deferring step of %s\n",
a068643d 1681 target_pid_to_str (tp->ptid).c_str ());
237fc4c9 1682
c2829269 1683 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1684 return 0;
1685 }
1686 else
1687 {
1688 if (debug_displaced)
1689 fprintf_unfiltered (gdb_stdlog,
1690 "displaced: stepping %s now\n",
a068643d 1691 target_pid_to_str (tp->ptid).c_str ());
237fc4c9
PA
1692 }
1693
fc1cf338 1694 displaced_step_clear (displaced);
237fc4c9 1695
00431a78
PA
1696 scoped_restore_current_thread restore_thread;
1697
1698 switch_to_thread (tp);
ad53cd71 1699
515630c5 1700 original = regcache_read_pc (regcache);
237fc4c9
PA
1701
1702 copy = gdbarch_displaced_step_location (gdbarch);
1703 len = gdbarch_max_insn_length (gdbarch);
1704
d35ae833
PA
1705 if (breakpoint_in_range_p (aspace, copy, len))
1706 {
1707 /* There's a breakpoint set in the scratch pad location range
1708 (which is usually around the entry point). We'd either
1709 install it before resuming, which would overwrite/corrupt the
1710 scratch pad, or if it was already inserted, this displaced
1711 step would overwrite it. The latter is OK in the sense that
1712 we already assume that no thread is going to execute the code
1713 in the scratch pad range (after initial startup) anyway, but
1714 the former is unacceptable. Simply punt and fallback to
1715 stepping over this breakpoint in-line. */
1716 if (debug_displaced)
1717 {
1718 fprintf_unfiltered (gdb_stdlog,
1719 "displaced: breakpoint set in scratch pad. "
1720 "Stepping over breakpoint in-line instead.\n");
1721 }
1722
d35ae833
PA
1723 return -1;
1724 }
1725
237fc4c9 1726 /* Save the original contents of the copy area. */
d20172fc
SM
1727 displaced->step_saved_copy.resize (len);
1728 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
9e529e1d
JK
1729 if (status != 0)
1730 throw_error (MEMORY_ERROR,
1731 _("Error accessing memory address %s (%s) for "
1732 "displaced-stepping scratch space."),
1733 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1734 if (debug_displaced)
1735 {
5af949e3
UW
1736 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1737 paddress (gdbarch, copy));
fc1cf338 1738 displaced_step_dump_bytes (gdb_stdlog,
d20172fc 1739 displaced->step_saved_copy.data (),
fc1cf338 1740 len);
237fc4c9
PA
1741 };
1742
1743 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1744 original, copy, regcache);
7f03bd92
PA
1745 if (closure == NULL)
1746 {
1747 /* The architecture doesn't know how or want to displaced step
1748 this instruction or instruction sequence. Fallback to
1749 stepping over the breakpoint in-line. */
7f03bd92
PA
1750 return -1;
1751 }
237fc4c9 1752
9f5a595d
UW
1753 /* Save the information we need to fix things up if the step
1754 succeeds. */
00431a78 1755 displaced->step_thread = tp;
fc1cf338
PA
1756 displaced->step_gdbarch = gdbarch;
1757 displaced->step_closure = closure;
1758 displaced->step_original = original;
1759 displaced->step_copy = copy;
9f5a595d 1760
9799571e
TT
1761 {
1762 displaced_step_clear_cleanup cleanup (displaced);
237fc4c9 1763
9799571e
TT
1764 /* Resume execution at the copy. */
1765 regcache_write_pc (regcache, copy);
237fc4c9 1766
9799571e
TT
1767 cleanup.release ();
1768 }
ad53cd71 1769
237fc4c9 1770 if (debug_displaced)
5af949e3
UW
1771 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1772 paddress (gdbarch, copy));
237fc4c9 1773
237fc4c9
PA
1774 return 1;
1775}
1776
3fc8eb30
PA
1777/* Wrapper for displaced_step_prepare_throw that disabled further
1778 attempts at displaced stepping if we get a memory error. */
1779
1780static int
00431a78 1781displaced_step_prepare (thread_info *thread)
3fc8eb30
PA
1782{
1783 int prepared = -1;
1784
a70b8144 1785 try
3fc8eb30 1786 {
00431a78 1787 prepared = displaced_step_prepare_throw (thread);
3fc8eb30 1788 }
230d2906 1789 catch (const gdb_exception_error &ex)
3fc8eb30
PA
1790 {
1791 struct displaced_step_inferior_state *displaced_state;
1792
16b41842
PA
1793 if (ex.error != MEMORY_ERROR
1794 && ex.error != NOT_SUPPORTED_ERROR)
eedc3f4f 1795 throw;
3fc8eb30
PA
1796
1797 if (debug_infrun)
1798 {
1799 fprintf_unfiltered (gdb_stdlog,
1800 "infrun: disabling displaced stepping: %s\n",
3d6e9d23 1801 ex.what ());
3fc8eb30
PA
1802 }
1803
1804 /* Be verbose if "set displaced-stepping" is "on", silent if
1805 "auto". */
1806 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1807 {
fd7dcb94 1808 warning (_("disabling displaced stepping: %s"),
3d6e9d23 1809 ex.what ());
3fc8eb30
PA
1810 }
1811
1812 /* Disable further displaced stepping attempts. */
1813 displaced_state
00431a78 1814 = get_displaced_stepping_state (thread->inf);
3fc8eb30
PA
1815 displaced_state->failed_before = 1;
1816 }
3fc8eb30
PA
1817
1818 return prepared;
1819}
1820
237fc4c9 1821static void
3e43a32a
MS
1822write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1823 const gdb_byte *myaddr, int len)
237fc4c9 1824{
2989a365 1825 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
abbb1732 1826
237fc4c9
PA
1827 inferior_ptid = ptid;
1828 write_memory (memaddr, myaddr, len);
237fc4c9
PA
1829}
1830
e2d96639
YQ
1831/* Restore the contents of the copy area for thread PTID. */
1832
1833static void
1834displaced_step_restore (struct displaced_step_inferior_state *displaced,
1835 ptid_t ptid)
1836{
1837 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1838
1839 write_memory_ptid (ptid, displaced->step_copy,
d20172fc 1840 displaced->step_saved_copy.data (), len);
e2d96639
YQ
1841 if (debug_displaced)
1842 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
a068643d 1843 target_pid_to_str (ptid).c_str (),
e2d96639
YQ
1844 paddress (displaced->step_gdbarch,
1845 displaced->step_copy));
1846}
1847
372316f1
PA
1848/* If we displaced stepped an instruction successfully, adjust
1849 registers and memory to yield the same effect the instruction would
1850 have had if we had executed it at its original address, and return
1851 1. If the instruction didn't complete, relocate the PC and return
1852 -1. If the thread wasn't displaced stepping, return 0. */
1853
1854static int
00431a78 1855displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
237fc4c9 1856{
fc1cf338 1857 struct displaced_step_inferior_state *displaced
00431a78 1858 = get_displaced_stepping_state (event_thread->inf);
372316f1 1859 int ret;
fc1cf338 1860
00431a78
PA
1861 /* Was this event for the thread we displaced? */
1862 if (displaced->step_thread != event_thread)
372316f1 1863 return 0;
237fc4c9 1864
9799571e 1865 displaced_step_clear_cleanup cleanup (displaced);
237fc4c9 1866
00431a78 1867 displaced_step_restore (displaced, displaced->step_thread->ptid);
237fc4c9 1868
cb71640d
PA
1869 /* Fixup may need to read memory/registers. Switch to the thread
1870 that we're fixing up. Also, target_stopped_by_watchpoint checks
1871 the current thread. */
00431a78 1872 switch_to_thread (event_thread);
cb71640d 1873
237fc4c9 1874 /* Did the instruction complete successfully? */
cb71640d
PA
1875 if (signal == GDB_SIGNAL_TRAP
1876 && !(target_stopped_by_watchpoint ()
1877 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1878 || target_have_steppable_watchpoint)))
237fc4c9
PA
1879 {
1880 /* Fix up the resulting state. */
fc1cf338
PA
1881 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1882 displaced->step_closure,
1883 displaced->step_original,
1884 displaced->step_copy,
00431a78 1885 get_thread_regcache (displaced->step_thread));
372316f1 1886 ret = 1;
237fc4c9
PA
1887 }
1888 else
1889 {
1890 /* Since the instruction didn't complete, all we can do is
1891 relocate the PC. */
00431a78 1892 struct regcache *regcache = get_thread_regcache (event_thread);
515630c5 1893 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1894
fc1cf338 1895 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1896 regcache_write_pc (regcache, pc);
372316f1 1897 ret = -1;
237fc4c9
PA
1898 }
1899
372316f1 1900 return ret;
c2829269 1901}
1c5cfe86 1902
4d9d9d04
PA
1903/* Data to be passed around while handling an event. This data is
1904 discarded between events. */
1905struct execution_control_state
1906{
5b6d1e4f 1907 process_stratum_target *target;
4d9d9d04
PA
1908 ptid_t ptid;
1909 /* The thread that got the event, if this was a thread event; NULL
1910 otherwise. */
1911 struct thread_info *event_thread;
1912
1913 struct target_waitstatus ws;
1914 int stop_func_filled_in;
1915 CORE_ADDR stop_func_start;
1916 CORE_ADDR stop_func_end;
1917 const char *stop_func_name;
1918 int wait_some_more;
1919
1920 /* True if the event thread hit the single-step breakpoint of
1921 another thread. Thus the event doesn't cause a stop, the thread
1922 needs to be single-stepped past the single-step breakpoint before
1923 we can switch back to the original stepping thread. */
1924 int hit_singlestep_breakpoint;
1925};
1926
1927/* Clear ECS and set it to point at TP. */
c2829269
PA
1928
1929static void
4d9d9d04
PA
1930reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1931{
1932 memset (ecs, 0, sizeof (*ecs));
1933 ecs->event_thread = tp;
1934 ecs->ptid = tp->ptid;
1935}
1936
1937static void keep_going_pass_signal (struct execution_control_state *ecs);
1938static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 1939static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 1940static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
1941
1942/* Are there any pending step-over requests? If so, run all we can
1943 now and return true. Otherwise, return false. */
1944
1945static int
c2829269
PA
1946start_step_over (void)
1947{
1948 struct thread_info *tp, *next;
1949
372316f1
PA
1950 /* Don't start a new step-over if we already have an in-line
1951 step-over operation ongoing. */
1952 if (step_over_info_valid_p ())
1953 return 0;
1954
c2829269 1955 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 1956 {
4d9d9d04
PA
1957 struct execution_control_state ecss;
1958 struct execution_control_state *ecs = &ecss;
8d297bbf 1959 step_over_what step_what;
372316f1 1960 int must_be_in_line;
c2829269 1961
c65d6b55
PA
1962 gdb_assert (!tp->stop_requested);
1963
c2829269 1964 next = thread_step_over_chain_next (tp);
237fc4c9 1965
c2829269
PA
1966 /* If this inferior already has a displaced step in process,
1967 don't start a new one. */
00431a78 1968 if (displaced_step_in_progress (tp->inf))
c2829269
PA
1969 continue;
1970
372316f1
PA
1971 step_what = thread_still_needs_step_over (tp);
1972 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1973 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 1974 && !use_displaced_stepping (tp)));
372316f1
PA
1975
1976 /* We currently stop all threads of all processes to step-over
1977 in-line. If we need to start a new in-line step-over, let
1978 any pending displaced steps finish first. */
1979 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1980 return 0;
1981
c2829269
PA
1982 thread_step_over_chain_remove (tp);
1983
1984 if (step_over_queue_head == NULL)
1985 {
1986 if (debug_infrun)
1987 fprintf_unfiltered (gdb_stdlog,
1988 "infrun: step-over queue now empty\n");
1989 }
1990
372316f1
PA
1991 if (tp->control.trap_expected
1992 || tp->resumed
1993 || tp->executing)
ad53cd71 1994 {
4d9d9d04
PA
1995 internal_error (__FILE__, __LINE__,
1996 "[%s] has inconsistent state: "
372316f1 1997 "trap_expected=%d, resumed=%d, executing=%d\n",
a068643d 1998 target_pid_to_str (tp->ptid).c_str (),
4d9d9d04 1999 tp->control.trap_expected,
372316f1 2000 tp->resumed,
4d9d9d04 2001 tp->executing);
ad53cd71 2002 }
1c5cfe86 2003
4d9d9d04
PA
2004 if (debug_infrun)
2005 fprintf_unfiltered (gdb_stdlog,
2006 "infrun: resuming [%s] for step-over\n",
a068643d 2007 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04
PA
2008
2009 /* keep_going_pass_signal skips the step-over if the breakpoint
2010 is no longer inserted. In all-stop, we want to keep looking
2011 for a thread that needs a step-over instead of resuming TP,
2012 because we wouldn't be able to resume anything else until the
2013 target stops again. In non-stop, the resume always resumes
2014 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2015 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2016 continue;
8550d3b3 2017
00431a78 2018 switch_to_thread (tp);
4d9d9d04
PA
2019 reset_ecs (ecs, tp);
2020 keep_going_pass_signal (ecs);
1c5cfe86 2021
4d9d9d04
PA
2022 if (!ecs->wait_some_more)
2023 error (_("Command aborted."));
1c5cfe86 2024
372316f1
PA
2025 gdb_assert (tp->resumed);
2026
2027 /* If we started a new in-line step-over, we're done. */
2028 if (step_over_info_valid_p ())
2029 {
2030 gdb_assert (tp->control.trap_expected);
2031 return 1;
2032 }
2033
fbea99ea 2034 if (!target_is_non_stop_p ())
4d9d9d04
PA
2035 {
2036 /* On all-stop, shouldn't have resumed unless we needed a
2037 step over. */
2038 gdb_assert (tp->control.trap_expected
2039 || tp->step_after_step_resume_breakpoint);
2040
2041 /* With remote targets (at least), in all-stop, we can't
2042 issue any further remote commands until the program stops
2043 again. */
2044 return 1;
1c5cfe86 2045 }
c2829269 2046
4d9d9d04
PA
2047 /* Either the thread no longer needed a step-over, or a new
2048 displaced stepping sequence started. Even in the latter
2049 case, continue looking. Maybe we can also start another
2050 displaced step on a thread of other process. */
237fc4c9 2051 }
4d9d9d04
PA
2052
2053 return 0;
237fc4c9
PA
2054}
2055
5231c1fd
PA
2056/* Update global variables holding ptids to hold NEW_PTID if they were
2057 holding OLD_PTID. */
2058static void
2059infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2060{
d7e15655 2061 if (inferior_ptid == old_ptid)
5231c1fd 2062 inferior_ptid = new_ptid;
5231c1fd
PA
2063}
2064
237fc4c9 2065\f
c906108c 2066
53904c9e
AC
2067static const char schedlock_off[] = "off";
2068static const char schedlock_on[] = "on";
2069static const char schedlock_step[] = "step";
f2665db5 2070static const char schedlock_replay[] = "replay";
40478521 2071static const char *const scheduler_enums[] = {
ef346e04
AC
2072 schedlock_off,
2073 schedlock_on,
2074 schedlock_step,
f2665db5 2075 schedlock_replay,
ef346e04
AC
2076 NULL
2077};
f2665db5 2078static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2079static void
2080show_scheduler_mode (struct ui_file *file, int from_tty,
2081 struct cmd_list_element *c, const char *value)
2082{
3e43a32a
MS
2083 fprintf_filtered (file,
2084 _("Mode for locking scheduler "
2085 "during execution is \"%s\".\n"),
920d2a44
AC
2086 value);
2087}
c906108c
SS
2088
2089static void
eb4c3f4a 2090set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
c906108c 2091{
eefe576e
AC
2092 if (!target_can_lock_scheduler)
2093 {
2094 scheduler_mode = schedlock_off;
2095 error (_("Target '%s' cannot support this command."), target_shortname);
2096 }
c906108c
SS
2097}
2098
d4db2f36
PA
2099/* True if execution commands resume all threads of all processes by
2100 default; otherwise, resume only threads of the current inferior
2101 process. */
491144b5 2102bool sched_multi = false;
d4db2f36 2103
2facfe5c
DD
2104/* Try to setup for software single stepping over the specified location.
2105 Return 1 if target_resume() should use hardware single step.
2106
2107 GDBARCH the current gdbarch.
2108 PC the location to step over. */
2109
2110static int
2111maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2112{
2113 int hw_step = 1;
2114
f02253f1 2115 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2116 && gdbarch_software_single_step_p (gdbarch))
2117 hw_step = !insert_single_step_breakpoints (gdbarch);
2118
2facfe5c
DD
2119 return hw_step;
2120}
c906108c 2121
f3263aa4
PA
2122/* See infrun.h. */
2123
09cee04b
PA
2124ptid_t
2125user_visible_resume_ptid (int step)
2126{
f3263aa4 2127 ptid_t resume_ptid;
09cee04b 2128
09cee04b
PA
2129 if (non_stop)
2130 {
2131 /* With non-stop mode on, threads are always handled
2132 individually. */
2133 resume_ptid = inferior_ptid;
2134 }
2135 else if ((scheduler_mode == schedlock_on)
03d46957 2136 || (scheduler_mode == schedlock_step && step))
09cee04b 2137 {
f3263aa4
PA
2138 /* User-settable 'scheduler' mode requires solo thread
2139 resume. */
09cee04b
PA
2140 resume_ptid = inferior_ptid;
2141 }
f2665db5
MM
2142 else if ((scheduler_mode == schedlock_replay)
2143 && target_record_will_replay (minus_one_ptid, execution_direction))
2144 {
2145 /* User-settable 'scheduler' mode requires solo thread resume in replay
2146 mode. */
2147 resume_ptid = inferior_ptid;
2148 }
f3263aa4
PA
2149 else if (!sched_multi && target_supports_multi_process ())
2150 {
2151 /* Resume all threads of the current process (and none of other
2152 processes). */
e99b03dc 2153 resume_ptid = ptid_t (inferior_ptid.pid ());
f3263aa4
PA
2154 }
2155 else
2156 {
2157 /* Resume all threads of all processes. */
2158 resume_ptid = RESUME_ALL;
2159 }
09cee04b
PA
2160
2161 return resume_ptid;
2162}
2163
5b6d1e4f
PA
2164/* See infrun.h. */
2165
2166process_stratum_target *
2167user_visible_resume_target (ptid_t resume_ptid)
2168{
2169 return (resume_ptid == minus_one_ptid && sched_multi
2170 ? NULL
2171 : current_inferior ()->process_target ());
2172}
2173
fbea99ea
PA
2174/* Return a ptid representing the set of threads that we will resume,
2175 in the perspective of the target, assuming run control handling
2176 does not require leaving some threads stopped (e.g., stepping past
2177 breakpoint). USER_STEP indicates whether we're about to start the
2178 target for a stepping command. */
2179
2180static ptid_t
2181internal_resume_ptid (int user_step)
2182{
2183 /* In non-stop, we always control threads individually. Note that
2184 the target may always work in non-stop mode even with "set
2185 non-stop off", in which case user_visible_resume_ptid could
2186 return a wildcard ptid. */
2187 if (target_is_non_stop_p ())
2188 return inferior_ptid;
2189 else
2190 return user_visible_resume_ptid (user_step);
2191}
2192
64ce06e4
PA
2193/* Wrapper for target_resume, that handles infrun-specific
2194 bookkeeping. */
2195
2196static void
2197do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2198{
2199 struct thread_info *tp = inferior_thread ();
2200
c65d6b55
PA
2201 gdb_assert (!tp->stop_requested);
2202
64ce06e4 2203 /* Install inferior's terminal modes. */
223ffa71 2204 target_terminal::inferior ();
64ce06e4
PA
2205
2206 /* Avoid confusing the next resume, if the next stop/resume
2207 happens to apply to another thread. */
2208 tp->suspend.stop_signal = GDB_SIGNAL_0;
2209
8f572e5c
PA
2210 /* Advise target which signals may be handled silently.
2211
2212 If we have removed breakpoints because we are stepping over one
2213 in-line (in any thread), we need to receive all signals to avoid
2214 accidentally skipping a breakpoint during execution of a signal
2215 handler.
2216
2217 Likewise if we're displaced stepping, otherwise a trap for a
2218 breakpoint in a signal handler might be confused with the
2219 displaced step finishing. We don't make the displaced_step_fixup
2220 step distinguish the cases instead, because:
2221
2222 - a backtrace while stopped in the signal handler would show the
2223 scratch pad as frame older than the signal handler, instead of
2224 the real mainline code.
2225
2226 - when the thread is later resumed, the signal handler would
2227 return to the scratch pad area, which would no longer be
2228 valid. */
2229 if (step_over_info_valid_p ()
00431a78 2230 || displaced_step_in_progress (tp->inf))
adc6a863 2231 target_pass_signals ({});
64ce06e4 2232 else
adc6a863 2233 target_pass_signals (signal_pass);
64ce06e4
PA
2234
2235 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2236
2237 target_commit_resume ();
5b6d1e4f
PA
2238
2239 if (target_can_async_p ())
2240 target_async (1);
64ce06e4
PA
2241}
2242
d930703d 2243/* Resume the inferior. SIG is the signal to give the inferior
71d378ae
PA
2244 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2245 call 'resume', which handles exceptions. */
c906108c 2246
71d378ae
PA
2247static void
2248resume_1 (enum gdb_signal sig)
c906108c 2249{
515630c5 2250 struct regcache *regcache = get_current_regcache ();
ac7936df 2251 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2252 struct thread_info *tp = inferior_thread ();
515630c5 2253 CORE_ADDR pc = regcache_read_pc (regcache);
8b86c959 2254 const address_space *aspace = regcache->aspace ();
b0f16a3e 2255 ptid_t resume_ptid;
856e7dd6
PA
2256 /* This represents the user's step vs continue request. When
2257 deciding whether "set scheduler-locking step" applies, it's the
2258 user's intention that counts. */
2259 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2260 /* This represents what we'll actually request the target to do.
2261 This can decay from a step to a continue, if e.g., we need to
2262 implement single-stepping with breakpoints (software
2263 single-step). */
6b403daa 2264 int step;
c7e8a53c 2265
c65d6b55 2266 gdb_assert (!tp->stop_requested);
c2829269
PA
2267 gdb_assert (!thread_is_in_step_over_chain (tp));
2268
372316f1
PA
2269 if (tp->suspend.waitstatus_pending_p)
2270 {
2271 if (debug_infrun)
2272 {
23fdd69e
SM
2273 std::string statstr
2274 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2275
372316f1 2276 fprintf_unfiltered (gdb_stdlog,
23fdd69e
SM
2277 "infrun: resume: thread %s has pending wait "
2278 "status %s (currently_stepping=%d).\n",
a068643d
TT
2279 target_pid_to_str (tp->ptid).c_str (),
2280 statstr.c_str (),
372316f1 2281 currently_stepping (tp));
372316f1
PA
2282 }
2283
5b6d1e4f 2284 tp->inf->process_target ()->threads_executing = true;
719546c4 2285 tp->resumed = true;
372316f1
PA
2286
2287 /* FIXME: What should we do if we are supposed to resume this
2288 thread with a signal? Maybe we should maintain a queue of
2289 pending signals to deliver. */
2290 if (sig != GDB_SIGNAL_0)
2291 {
fd7dcb94 2292 warning (_("Couldn't deliver signal %s to %s."),
a068643d
TT
2293 gdb_signal_to_name (sig),
2294 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2295 }
2296
2297 tp->suspend.stop_signal = GDB_SIGNAL_0;
372316f1
PA
2298
2299 if (target_can_async_p ())
9516f85a
AB
2300 {
2301 target_async (1);
2302 /* Tell the event loop we have an event to process. */
2303 mark_async_event_handler (infrun_async_inferior_event_token);
2304 }
372316f1
PA
2305 return;
2306 }
2307
2308 tp->stepped_breakpoint = 0;
2309
6b403daa
PA
2310 /* Depends on stepped_breakpoint. */
2311 step = currently_stepping (tp);
2312
74609e71
YQ
2313 if (current_inferior ()->waiting_for_vfork_done)
2314 {
48f9886d
PA
2315 /* Don't try to single-step a vfork parent that is waiting for
2316 the child to get out of the shared memory region (by exec'ing
2317 or exiting). This is particularly important on software
2318 single-step archs, as the child process would trip on the
2319 software single step breakpoint inserted for the parent
2320 process. Since the parent will not actually execute any
2321 instruction until the child is out of the shared region (such
2322 are vfork's semantics), it is safe to simply continue it.
2323 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2324 the parent, and tell it to `keep_going', which automatically
2325 re-sets it stepping. */
74609e71
YQ
2326 if (debug_infrun)
2327 fprintf_unfiltered (gdb_stdlog,
2328 "infrun: resume : clear step\n");
a09dd441 2329 step = 0;
74609e71
YQ
2330 }
2331
527159b7 2332 if (debug_infrun)
237fc4c9 2333 fprintf_unfiltered (gdb_stdlog,
c9737c08 2334 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2335 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2336 step, gdb_signal_to_symbol_string (sig),
2337 tp->control.trap_expected,
a068643d 2338 target_pid_to_str (inferior_ptid).c_str (),
0d9a9a5f 2339 paddress (gdbarch, pc));
c906108c 2340
c2c6d25f
JM
2341 /* Normally, by the time we reach `resume', the breakpoints are either
2342 removed or inserted, as appropriate. The exception is if we're sitting
2343 at a permanent breakpoint; we need to step over it, but permanent
2344 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2345 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2346 {
af48d08f
PA
2347 if (sig != GDB_SIGNAL_0)
2348 {
2349 /* We have a signal to pass to the inferior. The resume
2350 may, or may not take us to the signal handler. If this
2351 is a step, we'll need to stop in the signal handler, if
2352 there's one, (if the target supports stepping into
2353 handlers), or in the next mainline instruction, if
2354 there's no handler. If this is a continue, we need to be
2355 sure to run the handler with all breakpoints inserted.
2356 In all cases, set a breakpoint at the current address
2357 (where the handler returns to), and once that breakpoint
2358 is hit, resume skipping the permanent breakpoint. If
2359 that breakpoint isn't hit, then we've stepped into the
2360 signal handler (or hit some other event). We'll delete
2361 the step-resume breakpoint then. */
2362
2363 if (debug_infrun)
2364 fprintf_unfiltered (gdb_stdlog,
2365 "infrun: resume: skipping permanent breakpoint, "
2366 "deliver signal first\n");
2367
2368 clear_step_over_info ();
2369 tp->control.trap_expected = 0;
2370
2371 if (tp->control.step_resume_breakpoint == NULL)
2372 {
2373 /* Set a "high-priority" step-resume, as we don't want
2374 user breakpoints at PC to trigger (again) when this
2375 hits. */
2376 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2377 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2378
2379 tp->step_after_step_resume_breakpoint = step;
2380 }
2381
2382 insert_breakpoints ();
2383 }
2384 else
2385 {
2386 /* There's no signal to pass, we can go ahead and skip the
2387 permanent breakpoint manually. */
2388 if (debug_infrun)
2389 fprintf_unfiltered (gdb_stdlog,
2390 "infrun: resume: skipping permanent breakpoint\n");
2391 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2392 /* Update pc to reflect the new address from which we will
2393 execute instructions. */
2394 pc = regcache_read_pc (regcache);
2395
2396 if (step)
2397 {
2398 /* We've already advanced the PC, so the stepping part
2399 is done. Now we need to arrange for a trap to be
2400 reported to handle_inferior_event. Set a breakpoint
2401 at the current PC, and run to it. Don't update
2402 prev_pc, because if we end in
44a1ee51
PA
2403 switch_back_to_stepped_thread, we want the "expected
2404 thread advanced also" branch to be taken. IOW, we
2405 don't want this thread to step further from PC
af48d08f 2406 (overstep). */
1ac806b8 2407 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2408 insert_single_step_breakpoint (gdbarch, aspace, pc);
2409 insert_breakpoints ();
2410
fbea99ea 2411 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2412 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
719546c4 2413 tp->resumed = true;
af48d08f
PA
2414 return;
2415 }
2416 }
6d350bb5 2417 }
c2c6d25f 2418
c1e36e3e
PA
2419 /* If we have a breakpoint to step over, make sure to do a single
2420 step only. Same if we have software watchpoints. */
2421 if (tp->control.trap_expected || bpstat_should_step ())
2422 tp->control.may_range_step = 0;
2423
7da6a5b9
LM
2424 /* If displaced stepping is enabled, step over breakpoints by executing a
2425 copy of the instruction at a different address.
237fc4c9
PA
2426
2427 We can't use displaced stepping when we have a signal to deliver;
2428 the comments for displaced_step_prepare explain why. The
2429 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2430 signals' explain what we do instead.
2431
2432 We can't use displaced stepping when we are waiting for vfork_done
2433 event, displaced stepping breaks the vfork child similarly as single
2434 step software breakpoint. */
3fc8eb30
PA
2435 if (tp->control.trap_expected
2436 && use_displaced_stepping (tp)
cb71640d 2437 && !step_over_info_valid_p ()
a493e3e2 2438 && sig == GDB_SIGNAL_0
74609e71 2439 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2440 {
00431a78 2441 int prepared = displaced_step_prepare (tp);
fc1cf338 2442
3fc8eb30 2443 if (prepared == 0)
d56b7306 2444 {
4d9d9d04
PA
2445 if (debug_infrun)
2446 fprintf_unfiltered (gdb_stdlog,
2447 "Got placed in step-over queue\n");
2448
2449 tp->control.trap_expected = 0;
d56b7306
VP
2450 return;
2451 }
3fc8eb30
PA
2452 else if (prepared < 0)
2453 {
2454 /* Fallback to stepping over the breakpoint in-line. */
2455
2456 if (target_is_non_stop_p ())
2457 stop_all_threads ();
2458
a01bda52 2459 set_step_over_info (regcache->aspace (),
21edc42f 2460 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2461
2462 step = maybe_software_singlestep (gdbarch, pc);
2463
2464 insert_breakpoints ();
2465 }
2466 else if (prepared > 0)
2467 {
2468 struct displaced_step_inferior_state *displaced;
99e40580 2469
3fc8eb30
PA
2470 /* Update pc to reflect the new address from which we will
2471 execute instructions due to displaced stepping. */
00431a78 2472 pc = regcache_read_pc (get_thread_regcache (tp));
ca7781d2 2473
00431a78 2474 displaced = get_displaced_stepping_state (tp->inf);
3fc8eb30
PA
2475 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2476 displaced->step_closure);
2477 }
237fc4c9
PA
2478 }
2479
2facfe5c 2480 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2481 else if (step)
2facfe5c 2482 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2483
30852783
UW
2484 /* Currently, our software single-step implementation leads to different
2485 results than hardware single-stepping in one situation: when stepping
2486 into delivering a signal which has an associated signal handler,
2487 hardware single-step will stop at the first instruction of the handler,
2488 while software single-step will simply skip execution of the handler.
2489
2490 For now, this difference in behavior is accepted since there is no
2491 easy way to actually implement single-stepping into a signal handler
2492 without kernel support.
2493
2494 However, there is one scenario where this difference leads to follow-on
2495 problems: if we're stepping off a breakpoint by removing all breakpoints
2496 and then single-stepping. In this case, the software single-step
2497 behavior means that even if there is a *breakpoint* in the signal
2498 handler, GDB still would not stop.
2499
2500 Fortunately, we can at least fix this particular issue. We detect
2501 here the case where we are about to deliver a signal while software
2502 single-stepping with breakpoints removed. In this situation, we
2503 revert the decisions to remove all breakpoints and insert single-
2504 step breakpoints, and instead we install a step-resume breakpoint
2505 at the current address, deliver the signal without stepping, and
2506 once we arrive back at the step-resume breakpoint, actually step
2507 over the breakpoint we originally wanted to step over. */
34b7e8a6 2508 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2509 && sig != GDB_SIGNAL_0
2510 && step_over_info_valid_p ())
30852783
UW
2511 {
2512 /* If we have nested signals or a pending signal is delivered
7da6a5b9 2513 immediately after a handler returns, might already have
30852783
UW
2514 a step-resume breakpoint set on the earlier handler. We cannot
2515 set another step-resume breakpoint; just continue on until the
2516 original breakpoint is hit. */
2517 if (tp->control.step_resume_breakpoint == NULL)
2518 {
2c03e5be 2519 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2520 tp->step_after_step_resume_breakpoint = 1;
2521 }
2522
34b7e8a6 2523 delete_single_step_breakpoints (tp);
30852783 2524
31e77af2 2525 clear_step_over_info ();
30852783 2526 tp->control.trap_expected = 0;
31e77af2
PA
2527
2528 insert_breakpoints ();
30852783
UW
2529 }
2530
b0f16a3e
SM
2531 /* If STEP is set, it's a request to use hardware stepping
2532 facilities. But in that case, we should never
2533 use singlestep breakpoint. */
34b7e8a6 2534 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2535
fbea99ea 2536 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2537 if (tp->control.trap_expected)
b0f16a3e
SM
2538 {
2539 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2540 hit, either by single-stepping the thread with the breakpoint
2541 removed, or by displaced stepping, with the breakpoint inserted.
2542 In the former case, we need to single-step only this thread,
2543 and keep others stopped, as they can miss this breakpoint if
2544 allowed to run. That's not really a problem for displaced
2545 stepping, but, we still keep other threads stopped, in case
2546 another thread is also stopped for a breakpoint waiting for
2547 its turn in the displaced stepping queue. */
b0f16a3e
SM
2548 resume_ptid = inferior_ptid;
2549 }
fbea99ea
PA
2550 else
2551 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2552
7f5ef605
PA
2553 if (execution_direction != EXEC_REVERSE
2554 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2555 {
372316f1
PA
2556 /* There are two cases where we currently need to step a
2557 breakpoint instruction when we have a signal to deliver:
2558
2559 - See handle_signal_stop where we handle random signals that
2560 could take out us out of the stepping range. Normally, in
2561 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2562 signal handler with a breakpoint at PC, but there are cases
2563 where we should _always_ single-step, even if we have a
2564 step-resume breakpoint, like when a software watchpoint is
2565 set. Assuming single-stepping and delivering a signal at the
2566 same time would takes us to the signal handler, then we could
2567 have removed the breakpoint at PC to step over it. However,
2568 some hardware step targets (like e.g., Mac OS) can't step
2569 into signal handlers, and for those, we need to leave the
2570 breakpoint at PC inserted, as otherwise if the handler
2571 recurses and executes PC again, it'll miss the breakpoint.
2572 So we leave the breakpoint inserted anyway, but we need to
2573 record that we tried to step a breakpoint instruction, so
372316f1
PA
2574 that adjust_pc_after_break doesn't end up confused.
2575
2576 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2577 in one thread after another thread that was stepping had been
2578 momentarily paused for a step-over. When we re-resume the
2579 stepping thread, it may be resumed from that address with a
2580 breakpoint that hasn't trapped yet. Seen with
2581 gdb.threads/non-stop-fair-events.exp, on targets that don't
2582 do displaced stepping. */
2583
2584 if (debug_infrun)
2585 fprintf_unfiltered (gdb_stdlog,
2586 "infrun: resume: [%s] stepped breakpoint\n",
a068643d 2587 target_pid_to_str (tp->ptid).c_str ());
7f5ef605
PA
2588
2589 tp->stepped_breakpoint = 1;
2590
b0f16a3e
SM
2591 /* Most targets can step a breakpoint instruction, thus
2592 executing it normally. But if this one cannot, just
2593 continue and we will hit it anyway. */
7f5ef605 2594 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2595 step = 0;
2596 }
ef5cf84e 2597
b0f16a3e 2598 if (debug_displaced
cb71640d 2599 && tp->control.trap_expected
3fc8eb30 2600 && use_displaced_stepping (tp)
cb71640d 2601 && !step_over_info_valid_p ())
b0f16a3e 2602 {
00431a78 2603 struct regcache *resume_regcache = get_thread_regcache (tp);
ac7936df 2604 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2605 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2606 gdb_byte buf[4];
2607
2608 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2609 paddress (resume_gdbarch, actual_pc));
2610 read_memory (actual_pc, buf, sizeof (buf));
2611 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2612 }
237fc4c9 2613
b0f16a3e
SM
2614 if (tp->control.may_range_step)
2615 {
2616 /* If we're resuming a thread with the PC out of the step
2617 range, then we're doing some nested/finer run control
2618 operation, like stepping the thread out of the dynamic
2619 linker or the displaced stepping scratch pad. We
2620 shouldn't have allowed a range step then. */
2621 gdb_assert (pc_in_thread_step_range (pc, tp));
2622 }
c1e36e3e 2623
64ce06e4 2624 do_target_resume (resume_ptid, step, sig);
719546c4 2625 tp->resumed = true;
c906108c 2626}
71d378ae
PA
2627
2628/* Resume the inferior. SIG is the signal to give the inferior
2629 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2630 rolls back state on error. */
2631
aff4e175 2632static void
71d378ae
PA
2633resume (gdb_signal sig)
2634{
a70b8144 2635 try
71d378ae
PA
2636 {
2637 resume_1 (sig);
2638 }
230d2906 2639 catch (const gdb_exception &ex)
71d378ae
PA
2640 {
2641 /* If resuming is being aborted for any reason, delete any
2642 single-step breakpoint resume_1 may have created, to avoid
2643 confusing the following resumption, and to avoid leaving
2644 single-step breakpoints perturbing other threads, in case
2645 we're running in non-stop mode. */
2646 if (inferior_ptid != null_ptid)
2647 delete_single_step_breakpoints (inferior_thread ());
eedc3f4f 2648 throw;
71d378ae 2649 }
71d378ae
PA
2650}
2651
c906108c 2652\f
237fc4c9 2653/* Proceeding. */
c906108c 2654
4c2f2a79
PA
2655/* See infrun.h. */
2656
2657/* Counter that tracks number of user visible stops. This can be used
2658 to tell whether a command has proceeded the inferior past the
2659 current location. This allows e.g., inferior function calls in
2660 breakpoint commands to not interrupt the command list. When the
2661 call finishes successfully, the inferior is standing at the same
2662 breakpoint as if nothing happened (and so we don't call
2663 normal_stop). */
2664static ULONGEST current_stop_id;
2665
2666/* See infrun.h. */
2667
2668ULONGEST
2669get_stop_id (void)
2670{
2671 return current_stop_id;
2672}
2673
2674/* Called when we report a user visible stop. */
2675
2676static void
2677new_stop_id (void)
2678{
2679 current_stop_id++;
2680}
2681
c906108c
SS
2682/* Clear out all variables saying what to do when inferior is continued.
2683 First do this, then set the ones you want, then call `proceed'. */
2684
a7212384
UW
2685static void
2686clear_proceed_status_thread (struct thread_info *tp)
c906108c 2687{
a7212384
UW
2688 if (debug_infrun)
2689 fprintf_unfiltered (gdb_stdlog,
2690 "infrun: clear_proceed_status_thread (%s)\n",
a068643d 2691 target_pid_to_str (tp->ptid).c_str ());
d6b48e9c 2692
372316f1
PA
2693 /* If we're starting a new sequence, then the previous finished
2694 single-step is no longer relevant. */
2695 if (tp->suspend.waitstatus_pending_p)
2696 {
2697 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2698 {
2699 if (debug_infrun)
2700 fprintf_unfiltered (gdb_stdlog,
2701 "infrun: clear_proceed_status: pending "
2702 "event of %s was a finished step. "
2703 "Discarding.\n",
a068643d 2704 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2705
2706 tp->suspend.waitstatus_pending_p = 0;
2707 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2708 }
2709 else if (debug_infrun)
2710 {
23fdd69e
SM
2711 std::string statstr
2712 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2713
372316f1
PA
2714 fprintf_unfiltered (gdb_stdlog,
2715 "infrun: clear_proceed_status_thread: thread %s "
2716 "has pending wait status %s "
2717 "(currently_stepping=%d).\n",
a068643d
TT
2718 target_pid_to_str (tp->ptid).c_str (),
2719 statstr.c_str (),
372316f1 2720 currently_stepping (tp));
372316f1
PA
2721 }
2722 }
2723
70509625
PA
2724 /* If this signal should not be seen by program, give it zero.
2725 Used for debugging signals. */
2726 if (!signal_pass_state (tp->suspend.stop_signal))
2727 tp->suspend.stop_signal = GDB_SIGNAL_0;
2728
46e3ed7f 2729 delete tp->thread_fsm;
243a9253
PA
2730 tp->thread_fsm = NULL;
2731
16c381f0
JK
2732 tp->control.trap_expected = 0;
2733 tp->control.step_range_start = 0;
2734 tp->control.step_range_end = 0;
c1e36e3e 2735 tp->control.may_range_step = 0;
16c381f0
JK
2736 tp->control.step_frame_id = null_frame_id;
2737 tp->control.step_stack_frame_id = null_frame_id;
2738 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2739 tp->control.step_start_function = NULL;
a7212384 2740 tp->stop_requested = 0;
4e1c45ea 2741
16c381f0 2742 tp->control.stop_step = 0;
32400beb 2743
16c381f0 2744 tp->control.proceed_to_finish = 0;
414c69f7 2745
856e7dd6 2746 tp->control.stepping_command = 0;
17b2616c 2747
a7212384 2748 /* Discard any remaining commands or status from previous stop. */
16c381f0 2749 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2750}
32400beb 2751
a7212384 2752void
70509625 2753clear_proceed_status (int step)
a7212384 2754{
f2665db5
MM
2755 /* With scheduler-locking replay, stop replaying other threads if we're
2756 not replaying the user-visible resume ptid.
2757
2758 This is a convenience feature to not require the user to explicitly
2759 stop replaying the other threads. We're assuming that the user's
2760 intent is to resume tracing the recorded process. */
2761 if (!non_stop && scheduler_mode == schedlock_replay
2762 && target_record_is_replaying (minus_one_ptid)
2763 && !target_record_will_replay (user_visible_resume_ptid (step),
2764 execution_direction))
2765 target_record_stop_replaying ();
2766
08036331 2767 if (!non_stop && inferior_ptid != null_ptid)
6c95b8df 2768 {
08036331 2769 ptid_t resume_ptid = user_visible_resume_ptid (step);
5b6d1e4f
PA
2770 process_stratum_target *resume_target
2771 = user_visible_resume_target (resume_ptid);
70509625
PA
2772
2773 /* In all-stop mode, delete the per-thread status of all threads
2774 we're about to resume, implicitly and explicitly. */
5b6d1e4f 2775 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
08036331 2776 clear_proceed_status_thread (tp);
6c95b8df
PA
2777 }
2778
d7e15655 2779 if (inferior_ptid != null_ptid)
a7212384
UW
2780 {
2781 struct inferior *inferior;
2782
2783 if (non_stop)
2784 {
6c95b8df
PA
2785 /* If in non-stop mode, only delete the per-thread status of
2786 the current thread. */
a7212384
UW
2787 clear_proceed_status_thread (inferior_thread ());
2788 }
6c95b8df 2789
d6b48e9c 2790 inferior = current_inferior ();
16c381f0 2791 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2792 }
2793
76727919 2794 gdb::observers::about_to_proceed.notify ();
c906108c
SS
2795}
2796
99619bea
PA
2797/* Returns true if TP is still stopped at a breakpoint that needs
2798 stepping-over in order to make progress. If the breakpoint is gone
2799 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2800
2801static int
6c4cfb24 2802thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2803{
2804 if (tp->stepping_over_breakpoint)
2805 {
00431a78 2806 struct regcache *regcache = get_thread_regcache (tp);
99619bea 2807
a01bda52 2808 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2809 regcache_read_pc (regcache))
2810 == ordinary_breakpoint_here)
99619bea
PA
2811 return 1;
2812
2813 tp->stepping_over_breakpoint = 0;
2814 }
2815
2816 return 0;
2817}
2818
6c4cfb24
PA
2819/* Check whether thread TP still needs to start a step-over in order
2820 to make progress when resumed. Returns an bitwise or of enum
2821 step_over_what bits, indicating what needs to be stepped over. */
2822
8d297bbf 2823static step_over_what
6c4cfb24
PA
2824thread_still_needs_step_over (struct thread_info *tp)
2825{
8d297bbf 2826 step_over_what what = 0;
6c4cfb24
PA
2827
2828 if (thread_still_needs_step_over_bp (tp))
2829 what |= STEP_OVER_BREAKPOINT;
2830
2831 if (tp->stepping_over_watchpoint
2832 && !target_have_steppable_watchpoint)
2833 what |= STEP_OVER_WATCHPOINT;
2834
2835 return what;
2836}
2837
483805cf
PA
2838/* Returns true if scheduler locking applies. STEP indicates whether
2839 we're about to do a step/next-like command to a thread. */
2840
2841static int
856e7dd6 2842schedlock_applies (struct thread_info *tp)
483805cf
PA
2843{
2844 return (scheduler_mode == schedlock_on
2845 || (scheduler_mode == schedlock_step
f2665db5
MM
2846 && tp->control.stepping_command)
2847 || (scheduler_mode == schedlock_replay
2848 && target_record_will_replay (minus_one_ptid,
2849 execution_direction)));
483805cf
PA
2850}
2851
5b6d1e4f
PA
2852/* Calls target_commit_resume on all targets. */
2853
2854static void
2855commit_resume_all_targets ()
2856{
2857 scoped_restore_current_thread restore_thread;
2858
2859 /* Map between process_target and a representative inferior. This
2860 is to avoid committing a resume in the same target more than
2861 once. Resumptions must be idempotent, so this is an
2862 optimization. */
2863 std::unordered_map<process_stratum_target *, inferior *> conn_inf;
2864
2865 for (inferior *inf : all_non_exited_inferiors ())
2866 if (inf->has_execution ())
2867 conn_inf[inf->process_target ()] = inf;
2868
2869 for (const auto &ci : conn_inf)
2870 {
2871 inferior *inf = ci.second;
2872 switch_to_inferior_no_thread (inf);
2873 target_commit_resume ();
2874 }
2875}
2876
2f4fcf00
PA
2877/* Check that all the targets we're about to resume are in non-stop
2878 mode. Ideally, we'd only care whether all targets support
2879 target-async, but we're not there yet. E.g., stop_all_threads
2880 doesn't know how to handle all-stop targets. Also, the remote
2881 protocol in all-stop mode is synchronous, irrespective of
2882 target-async, which means that things like a breakpoint re-set
2883 triggered by one target would try to read memory from all targets
2884 and fail. */
2885
2886static void
2887check_multi_target_resumption (process_stratum_target *resume_target)
2888{
2889 if (!non_stop && resume_target == nullptr)
2890 {
2891 scoped_restore_current_thread restore_thread;
2892
2893 /* This is used to track whether we're resuming more than one
2894 target. */
2895 process_stratum_target *first_connection = nullptr;
2896
2897 /* The first inferior we see with a target that does not work in
2898 always-non-stop mode. */
2899 inferior *first_not_non_stop = nullptr;
2900
2901 for (inferior *inf : all_non_exited_inferiors (resume_target))
2902 {
2903 switch_to_inferior_no_thread (inf);
2904
2905 if (!target_has_execution)
2906 continue;
2907
2908 process_stratum_target *proc_target
2909 = current_inferior ()->process_target();
2910
2911 if (!target_is_non_stop_p ())
2912 first_not_non_stop = inf;
2913
2914 if (first_connection == nullptr)
2915 first_connection = proc_target;
2916 else if (first_connection != proc_target
2917 && first_not_non_stop != nullptr)
2918 {
2919 switch_to_inferior_no_thread (first_not_non_stop);
2920
2921 proc_target = current_inferior ()->process_target();
2922
2923 error (_("Connection %d (%s) does not support "
2924 "multi-target resumption."),
2925 proc_target->connection_number,
2926 make_target_connection_string (proc_target).c_str ());
2927 }
2928 }
2929 }
2930}
2931
c906108c
SS
2932/* Basic routine for continuing the program in various fashions.
2933
2934 ADDR is the address to resume at, or -1 for resume where stopped.
aff4e175
AB
2935 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2936 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
c906108c
SS
2937
2938 You should call clear_proceed_status before calling proceed. */
2939
2940void
64ce06e4 2941proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2942{
e58b0e63
PA
2943 struct regcache *regcache;
2944 struct gdbarch *gdbarch;
e58b0e63 2945 CORE_ADDR pc;
4d9d9d04
PA
2946 struct execution_control_state ecss;
2947 struct execution_control_state *ecs = &ecss;
4d9d9d04 2948 int started;
c906108c 2949
e58b0e63
PA
2950 /* If we're stopped at a fork/vfork, follow the branch set by the
2951 "set follow-fork-mode" command; otherwise, we'll just proceed
2952 resuming the current thread. */
2953 if (!follow_fork ())
2954 {
2955 /* The target for some reason decided not to resume. */
2956 normal_stop ();
f148b27e
PA
2957 if (target_can_async_p ())
2958 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2959 return;
2960 }
2961
842951eb
PA
2962 /* We'll update this if & when we switch to a new thread. */
2963 previous_inferior_ptid = inferior_ptid;
2964
e58b0e63 2965 regcache = get_current_regcache ();
ac7936df 2966 gdbarch = regcache->arch ();
8b86c959
YQ
2967 const address_space *aspace = regcache->aspace ();
2968
e58b0e63 2969 pc = regcache_read_pc (regcache);
08036331 2970 thread_info *cur_thr = inferior_thread ();
e58b0e63 2971
99619bea 2972 /* Fill in with reasonable starting values. */
08036331 2973 init_thread_stepping_state (cur_thr);
99619bea 2974
08036331 2975 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
c2829269 2976
5b6d1e4f
PA
2977 ptid_t resume_ptid
2978 = user_visible_resume_ptid (cur_thr->control.stepping_command);
2979 process_stratum_target *resume_target
2980 = user_visible_resume_target (resume_ptid);
2981
2f4fcf00
PA
2982 check_multi_target_resumption (resume_target);
2983
2acceee2 2984 if (addr == (CORE_ADDR) -1)
c906108c 2985 {
08036331 2986 if (pc == cur_thr->suspend.stop_pc
af48d08f 2987 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 2988 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2989 /* There is a breakpoint at the address we will resume at,
2990 step one instruction before inserting breakpoints so that
2991 we do not stop right away (and report a second hit at this
b2175913
MS
2992 breakpoint).
2993
2994 Note, we don't do this in reverse, because we won't
2995 actually be executing the breakpoint insn anyway.
2996 We'll be (un-)executing the previous instruction. */
08036331 2997 cur_thr->stepping_over_breakpoint = 1;
515630c5
UW
2998 else if (gdbarch_single_step_through_delay_p (gdbarch)
2999 && gdbarch_single_step_through_delay (gdbarch,
3000 get_current_frame ()))
3352ef37
AC
3001 /* We stepped onto an instruction that needs to be stepped
3002 again before re-inserting the breakpoint, do so. */
08036331 3003 cur_thr->stepping_over_breakpoint = 1;
c906108c
SS
3004 }
3005 else
3006 {
515630c5 3007 regcache_write_pc (regcache, addr);
c906108c
SS
3008 }
3009
70509625 3010 if (siggnal != GDB_SIGNAL_DEFAULT)
08036331 3011 cur_thr->suspend.stop_signal = siggnal;
70509625 3012
4d9d9d04
PA
3013 /* If an exception is thrown from this point on, make sure to
3014 propagate GDB's knowledge of the executing state to the
3015 frontend/user running state. */
5b6d1e4f 3016 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
4d9d9d04
PA
3017
3018 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3019 threads (e.g., we might need to set threads stepping over
3020 breakpoints first), from the user/frontend's point of view, all
3021 threads in RESUME_PTID are now running. Unless we're calling an
3022 inferior function, as in that case we pretend the inferior
3023 doesn't run at all. */
08036331 3024 if (!cur_thr->control.in_infcall)
719546c4 3025 set_running (resume_target, resume_ptid, true);
17b2616c 3026
527159b7 3027 if (debug_infrun)
8a9de0e4 3028 fprintf_unfiltered (gdb_stdlog,
64ce06e4 3029 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 3030 paddress (gdbarch, addr),
64ce06e4 3031 gdb_signal_to_symbol_string (siggnal));
527159b7 3032
4d9d9d04
PA
3033 annotate_starting ();
3034
3035 /* Make sure that output from GDB appears before output from the
3036 inferior. */
3037 gdb_flush (gdb_stdout);
3038
d930703d
PA
3039 /* Since we've marked the inferior running, give it the terminal. A
3040 QUIT/Ctrl-C from here on is forwarded to the target (which can
3041 still detect attempts to unblock a stuck connection with repeated
3042 Ctrl-C from within target_pass_ctrlc). */
3043 target_terminal::inferior ();
3044
4d9d9d04
PA
3045 /* In a multi-threaded task we may select another thread and
3046 then continue or step.
3047
3048 But if a thread that we're resuming had stopped at a breakpoint,
3049 it will immediately cause another breakpoint stop without any
3050 execution (i.e. it will report a breakpoint hit incorrectly). So
3051 we must step over it first.
3052
3053 Look for threads other than the current (TP) that reported a
3054 breakpoint hit and haven't been resumed yet since. */
3055
3056 /* If scheduler locking applies, we can avoid iterating over all
3057 threads. */
08036331 3058 if (!non_stop && !schedlock_applies (cur_thr))
94cc34af 3059 {
5b6d1e4f
PA
3060 for (thread_info *tp : all_non_exited_threads (resume_target,
3061 resume_ptid))
08036331 3062 {
f3f8ece4
PA
3063 switch_to_thread_no_regs (tp);
3064
4d9d9d04
PA
3065 /* Ignore the current thread here. It's handled
3066 afterwards. */
08036331 3067 if (tp == cur_thr)
4d9d9d04 3068 continue;
c906108c 3069
4d9d9d04
PA
3070 if (!thread_still_needs_step_over (tp))
3071 continue;
3072
3073 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3074
99619bea
PA
3075 if (debug_infrun)
3076 fprintf_unfiltered (gdb_stdlog,
3077 "infrun: need to step-over [%s] first\n",
a068643d 3078 target_pid_to_str (tp->ptid).c_str ());
99619bea 3079
4d9d9d04 3080 thread_step_over_chain_enqueue (tp);
2adfaa28 3081 }
f3f8ece4
PA
3082
3083 switch_to_thread (cur_thr);
30852783
UW
3084 }
3085
4d9d9d04
PA
3086 /* Enqueue the current thread last, so that we move all other
3087 threads over their breakpoints first. */
08036331
PA
3088 if (cur_thr->stepping_over_breakpoint)
3089 thread_step_over_chain_enqueue (cur_thr);
30852783 3090
4d9d9d04
PA
3091 /* If the thread isn't started, we'll still need to set its prev_pc,
3092 so that switch_back_to_stepped_thread knows the thread hasn't
3093 advanced. Must do this before resuming any thread, as in
3094 all-stop/remote, once we resume we can't send any other packet
3095 until the target stops again. */
08036331 3096 cur_thr->prev_pc = regcache_read_pc (regcache);
99619bea 3097
a9bc57b9
TT
3098 {
3099 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
85ad3aaf 3100
a9bc57b9 3101 started = start_step_over ();
c906108c 3102
a9bc57b9
TT
3103 if (step_over_info_valid_p ())
3104 {
3105 /* Either this thread started a new in-line step over, or some
3106 other thread was already doing one. In either case, don't
3107 resume anything else until the step-over is finished. */
3108 }
3109 else if (started && !target_is_non_stop_p ())
3110 {
3111 /* A new displaced stepping sequence was started. In all-stop,
3112 we can't talk to the target anymore until it next stops. */
3113 }
3114 else if (!non_stop && target_is_non_stop_p ())
3115 {
3116 /* In all-stop, but the target is always in non-stop mode.
3117 Start all other threads that are implicitly resumed too. */
5b6d1e4f
PA
3118 for (thread_info *tp : all_non_exited_threads (resume_target,
3119 resume_ptid))
3120 {
3121 switch_to_thread_no_regs (tp);
3122
f9fac3c8
SM
3123 if (!tp->inf->has_execution ())
3124 {
3125 if (debug_infrun)
3126 fprintf_unfiltered (gdb_stdlog,
3127 "infrun: proceed: [%s] target has "
3128 "no execution\n",
3129 target_pid_to_str (tp->ptid).c_str ());
3130 continue;
3131 }
f3f8ece4 3132
f9fac3c8
SM
3133 if (tp->resumed)
3134 {
3135 if (debug_infrun)
3136 fprintf_unfiltered (gdb_stdlog,
3137 "infrun: proceed: [%s] resumed\n",
3138 target_pid_to_str (tp->ptid).c_str ());
3139 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3140 continue;
3141 }
fbea99ea 3142
f9fac3c8
SM
3143 if (thread_is_in_step_over_chain (tp))
3144 {
3145 if (debug_infrun)
3146 fprintf_unfiltered (gdb_stdlog,
3147 "infrun: proceed: [%s] needs step-over\n",
3148 target_pid_to_str (tp->ptid).c_str ());
3149 continue;
3150 }
fbea99ea 3151
f9fac3c8
SM
3152 if (debug_infrun)
3153 fprintf_unfiltered (gdb_stdlog,
3154 "infrun: proceed: resuming %s\n",
3155 target_pid_to_str (tp->ptid).c_str ());
fbea99ea 3156
f9fac3c8
SM
3157 reset_ecs (ecs, tp);
3158 switch_to_thread (tp);
3159 keep_going_pass_signal (ecs);
3160 if (!ecs->wait_some_more)
3161 error (_("Command aborted."));
3162 }
a9bc57b9 3163 }
08036331 3164 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
a9bc57b9
TT
3165 {
3166 /* The thread wasn't started, and isn't queued, run it now. */
08036331
PA
3167 reset_ecs (ecs, cur_thr);
3168 switch_to_thread (cur_thr);
a9bc57b9
TT
3169 keep_going_pass_signal (ecs);
3170 if (!ecs->wait_some_more)
3171 error (_("Command aborted."));
3172 }
3173 }
c906108c 3174
5b6d1e4f 3175 commit_resume_all_targets ();
85ad3aaf 3176
731f534f 3177 finish_state.release ();
c906108c 3178
873657b9
PA
3179 /* If we've switched threads above, switch back to the previously
3180 current thread. We don't want the user to see a different
3181 selected thread. */
3182 switch_to_thread (cur_thr);
3183
0b333c5e
PA
3184 /* Tell the event loop to wait for it to stop. If the target
3185 supports asynchronous execution, it'll do this from within
3186 target_resume. */
362646f5 3187 if (!target_can_async_p ())
0b333c5e 3188 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3189}
c906108c
SS
3190\f
3191
3192/* Start remote-debugging of a machine over a serial link. */
96baa820 3193
c906108c 3194void
8621d6a9 3195start_remote (int from_tty)
c906108c 3196{
5b6d1e4f
PA
3197 inferior *inf = current_inferior ();
3198 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3199
1777feb0 3200 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3201 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3202 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3203 nothing is returned (instead of just blocking). Because of this,
3204 targets expecting an immediate response need to, internally, set
3205 things up so that the target_wait() is forced to eventually
1777feb0 3206 timeout. */
6426a772
JM
3207 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3208 differentiate to its caller what the state of the target is after
3209 the initial open has been performed. Here we're assuming that
3210 the target has stopped. It should be possible to eventually have
3211 target_open() return to the caller an indication that the target
3212 is currently running and GDB state should be set to the same as
1777feb0 3213 for an async run. */
5b6d1e4f 3214 wait_for_inferior (inf);
8621d6a9
DJ
3215
3216 /* Now that the inferior has stopped, do any bookkeeping like
3217 loading shared libraries. We want to do this before normal_stop,
3218 so that the displayed frame is up to date. */
8b88a78e 3219 post_create_inferior (current_top_target (), from_tty);
8621d6a9 3220
6426a772 3221 normal_stop ();
c906108c
SS
3222}
3223
3224/* Initialize static vars when a new inferior begins. */
3225
3226void
96baa820 3227init_wait_for_inferior (void)
c906108c
SS
3228{
3229 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3230
c906108c
SS
3231 breakpoint_init_inferior (inf_starting);
3232
70509625 3233 clear_proceed_status (0);
9f976b41 3234
ab1ddbcf 3235 nullify_last_target_wait_ptid ();
237fc4c9 3236
842951eb 3237 previous_inferior_ptid = inferior_ptid;
c906108c 3238}
237fc4c9 3239
c906108c 3240\f
488f131b 3241
ec9499be 3242static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3243
568d6575
UW
3244static void handle_step_into_function (struct gdbarch *gdbarch,
3245 struct execution_control_state *ecs);
3246static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3247 struct execution_control_state *ecs);
4f5d7f63 3248static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3249static void check_exception_resume (struct execution_control_state *,
28106bc2 3250 struct frame_info *);
611c83ae 3251
bdc36728 3252static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3253static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3254static void keep_going (struct execution_control_state *ecs);
94c57d6a 3255static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3256static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3257
252fbfc8
PA
3258/* This function is attached as a "thread_stop_requested" observer.
3259 Cleanup local state that assumed the PTID was to be resumed, and
3260 report the stop to the frontend. */
3261
2c0b251b 3262static void
252fbfc8
PA
3263infrun_thread_stop_requested (ptid_t ptid)
3264{
5b6d1e4f
PA
3265 process_stratum_target *curr_target = current_inferior ()->process_target ();
3266
c65d6b55
PA
3267 /* PTID was requested to stop. If the thread was already stopped,
3268 but the user/frontend doesn't know about that yet (e.g., the
3269 thread had been temporarily paused for some step-over), set up
3270 for reporting the stop now. */
5b6d1e4f 3271 for (thread_info *tp : all_threads (curr_target, ptid))
08036331
PA
3272 {
3273 if (tp->state != THREAD_RUNNING)
3274 continue;
3275 if (tp->executing)
3276 continue;
c65d6b55 3277
08036331
PA
3278 /* Remove matching threads from the step-over queue, so
3279 start_step_over doesn't try to resume them
3280 automatically. */
3281 if (thread_is_in_step_over_chain (tp))
3282 thread_step_over_chain_remove (tp);
c65d6b55 3283
08036331
PA
3284 /* If the thread is stopped, but the user/frontend doesn't
3285 know about that yet, queue a pending event, as if the
3286 thread had just stopped now. Unless the thread already had
3287 a pending event. */
3288 if (!tp->suspend.waitstatus_pending_p)
3289 {
3290 tp->suspend.waitstatus_pending_p = 1;
3291 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3292 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3293 }
c65d6b55 3294
08036331
PA
3295 /* Clear the inline-frame state, since we're re-processing the
3296 stop. */
5b6d1e4f 3297 clear_inline_frame_state (tp);
c65d6b55 3298
08036331
PA
3299 /* If this thread was paused because some other thread was
3300 doing an inline-step over, let that finish first. Once
3301 that happens, we'll restart all threads and consume pending
3302 stop events then. */
3303 if (step_over_info_valid_p ())
3304 continue;
3305
3306 /* Otherwise we can process the (new) pending event now. Set
3307 it so this pending event is considered by
3308 do_target_wait. */
719546c4 3309 tp->resumed = true;
08036331 3310 }
252fbfc8
PA
3311}
3312
a07daef3
PA
3313static void
3314infrun_thread_thread_exit (struct thread_info *tp, int silent)
3315{
5b6d1e4f
PA
3316 if (target_last_proc_target == tp->inf->process_target ()
3317 && target_last_wait_ptid == tp->ptid)
a07daef3
PA
3318 nullify_last_target_wait_ptid ();
3319}
3320
0cbcdb96
PA
3321/* Delete the step resume, single-step and longjmp/exception resume
3322 breakpoints of TP. */
4e1c45ea 3323
0cbcdb96
PA
3324static void
3325delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3326{
0cbcdb96
PA
3327 delete_step_resume_breakpoint (tp);
3328 delete_exception_resume_breakpoint (tp);
34b7e8a6 3329 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3330}
3331
0cbcdb96
PA
3332/* If the target still has execution, call FUNC for each thread that
3333 just stopped. In all-stop, that's all the non-exited threads; in
3334 non-stop, that's the current thread, only. */
3335
3336typedef void (*for_each_just_stopped_thread_callback_func)
3337 (struct thread_info *tp);
4e1c45ea
PA
3338
3339static void
0cbcdb96 3340for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3341{
d7e15655 3342 if (!target_has_execution || inferior_ptid == null_ptid)
4e1c45ea
PA
3343 return;
3344
fbea99ea 3345 if (target_is_non_stop_p ())
4e1c45ea 3346 {
0cbcdb96
PA
3347 /* If in non-stop mode, only the current thread stopped. */
3348 func (inferior_thread ());
4e1c45ea
PA
3349 }
3350 else
0cbcdb96 3351 {
0cbcdb96 3352 /* In all-stop mode, all threads have stopped. */
08036331
PA
3353 for (thread_info *tp : all_non_exited_threads ())
3354 func (tp);
0cbcdb96
PA
3355 }
3356}
3357
3358/* Delete the step resume and longjmp/exception resume breakpoints of
3359 the threads that just stopped. */
3360
3361static void
3362delete_just_stopped_threads_infrun_breakpoints (void)
3363{
3364 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3365}
3366
3367/* Delete the single-step breakpoints of the threads that just
3368 stopped. */
7c16b83e 3369
34b7e8a6
PA
3370static void
3371delete_just_stopped_threads_single_step_breakpoints (void)
3372{
3373 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3374}
3375
221e1a37 3376/* See infrun.h. */
223698f8 3377
221e1a37 3378void
223698f8
DE
3379print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3380 const struct target_waitstatus *ws)
3381{
23fdd69e 3382 std::string status_string = target_waitstatus_to_string (ws);
d7e74731 3383 string_file stb;
223698f8
DE
3384
3385 /* The text is split over several lines because it was getting too long.
3386 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3387 output as a unit; we want only one timestamp printed if debug_timestamp
3388 is set. */
3389
d7e74731 3390 stb.printf ("infrun: target_wait (%d.%ld.%ld",
e99b03dc 3391 waiton_ptid.pid (),
e38504b3 3392 waiton_ptid.lwp (),
cc6bcb54 3393 waiton_ptid.tid ());
e99b03dc 3394 if (waiton_ptid.pid () != -1)
a068643d 3395 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
d7e74731
PA
3396 stb.printf (", status) =\n");
3397 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
e99b03dc 3398 result_ptid.pid (),
e38504b3 3399 result_ptid.lwp (),
cc6bcb54 3400 result_ptid.tid (),
a068643d 3401 target_pid_to_str (result_ptid).c_str ());
23fdd69e 3402 stb.printf ("infrun: %s\n", status_string.c_str ());
223698f8
DE
3403
3404 /* This uses %s in part to handle %'s in the text, but also to avoid
3405 a gcc error: the format attribute requires a string literal. */
d7e74731 3406 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3407}
3408
372316f1
PA
3409/* Select a thread at random, out of those which are resumed and have
3410 had events. */
3411
3412static struct thread_info *
5b6d1e4f 3413random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
372316f1 3414{
372316f1 3415 int num_events = 0;
08036331 3416
5b6d1e4f 3417 auto has_event = [&] (thread_info *tp)
08036331 3418 {
5b6d1e4f
PA
3419 return (tp->ptid.matches (waiton_ptid)
3420 && tp->resumed
08036331
PA
3421 && tp->suspend.waitstatus_pending_p);
3422 };
372316f1
PA
3423
3424 /* First see how many events we have. Count only resumed threads
3425 that have an event pending. */
5b6d1e4f 3426 for (thread_info *tp : inf->non_exited_threads ())
08036331 3427 if (has_event (tp))
372316f1
PA
3428 num_events++;
3429
3430 if (num_events == 0)
3431 return NULL;
3432
3433 /* Now randomly pick a thread out of those that have had events. */
08036331
PA
3434 int random_selector = (int) ((num_events * (double) rand ())
3435 / (RAND_MAX + 1.0));
372316f1
PA
3436
3437 if (debug_infrun && num_events > 1)
3438 fprintf_unfiltered (gdb_stdlog,
3439 "infrun: Found %d events, selecting #%d\n",
3440 num_events, random_selector);
3441
3442 /* Select the Nth thread that has had an event. */
5b6d1e4f 3443 for (thread_info *tp : inf->non_exited_threads ())
08036331 3444 if (has_event (tp))
372316f1 3445 if (random_selector-- == 0)
08036331 3446 return tp;
372316f1 3447
08036331 3448 gdb_assert_not_reached ("event thread not found");
372316f1
PA
3449}
3450
3451/* Wrapper for target_wait that first checks whether threads have
3452 pending statuses to report before actually asking the target for
5b6d1e4f
PA
3453 more events. INF is the inferior we're using to call target_wait
3454 on. */
372316f1
PA
3455
3456static ptid_t
5b6d1e4f
PA
3457do_target_wait_1 (inferior *inf, ptid_t ptid,
3458 target_waitstatus *status, int options)
372316f1
PA
3459{
3460 ptid_t event_ptid;
3461 struct thread_info *tp;
3462
3463 /* First check if there is a resumed thread with a wait status
3464 pending. */
d7e15655 3465 if (ptid == minus_one_ptid || ptid.is_pid ())
372316f1 3466 {
5b6d1e4f 3467 tp = random_pending_event_thread (inf, ptid);
372316f1
PA
3468 }
3469 else
3470 {
3471 if (debug_infrun)
3472 fprintf_unfiltered (gdb_stdlog,
3473 "infrun: Waiting for specific thread %s.\n",
a068643d 3474 target_pid_to_str (ptid).c_str ());
372316f1
PA
3475
3476 /* We have a specific thread to check. */
5b6d1e4f 3477 tp = find_thread_ptid (inf, ptid);
372316f1
PA
3478 gdb_assert (tp != NULL);
3479 if (!tp->suspend.waitstatus_pending_p)
3480 tp = NULL;
3481 }
3482
3483 if (tp != NULL
3484 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3485 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3486 {
00431a78 3487 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 3488 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3489 CORE_ADDR pc;
3490 int discard = 0;
3491
3492 pc = regcache_read_pc (regcache);
3493
3494 if (pc != tp->suspend.stop_pc)
3495 {
3496 if (debug_infrun)
3497 fprintf_unfiltered (gdb_stdlog,
3498 "infrun: PC of %s changed. was=%s, now=%s\n",
a068643d 3499 target_pid_to_str (tp->ptid).c_str (),
defd2172 3500 paddress (gdbarch, tp->suspend.stop_pc),
372316f1
PA
3501 paddress (gdbarch, pc));
3502 discard = 1;
3503 }
a01bda52 3504 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1
PA
3505 {
3506 if (debug_infrun)
3507 fprintf_unfiltered (gdb_stdlog,
3508 "infrun: previous breakpoint of %s, at %s gone\n",
a068643d 3509 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
3510 paddress (gdbarch, pc));
3511
3512 discard = 1;
3513 }
3514
3515 if (discard)
3516 {
3517 if (debug_infrun)
3518 fprintf_unfiltered (gdb_stdlog,
3519 "infrun: pending event of %s cancelled.\n",
a068643d 3520 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3521
3522 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3523 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3524 }
3525 }
3526
3527 if (tp != NULL)
3528 {
3529 if (debug_infrun)
3530 {
23fdd69e
SM
3531 std::string statstr
3532 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 3533
372316f1
PA
3534 fprintf_unfiltered (gdb_stdlog,
3535 "infrun: Using pending wait status %s for %s.\n",
23fdd69e 3536 statstr.c_str (),
a068643d 3537 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3538 }
3539
3540 /* Now that we've selected our final event LWP, un-adjust its PC
3541 if it was a software breakpoint (and the target doesn't
3542 always adjust the PC itself). */
3543 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3544 && !target_supports_stopped_by_sw_breakpoint ())
3545 {
3546 struct regcache *regcache;
3547 struct gdbarch *gdbarch;
3548 int decr_pc;
3549
00431a78 3550 regcache = get_thread_regcache (tp);
ac7936df 3551 gdbarch = regcache->arch ();
372316f1
PA
3552
3553 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3554 if (decr_pc != 0)
3555 {
3556 CORE_ADDR pc;
3557
3558 pc = regcache_read_pc (regcache);
3559 regcache_write_pc (regcache, pc + decr_pc);
3560 }
3561 }
3562
3563 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3564 *status = tp->suspend.waitstatus;
3565 tp->suspend.waitstatus_pending_p = 0;
3566
3567 /* Wake up the event loop again, until all pending events are
3568 processed. */
3569 if (target_is_async_p ())
3570 mark_async_event_handler (infrun_async_inferior_event_token);
3571 return tp->ptid;
3572 }
3573
3574 /* But if we don't find one, we'll have to wait. */
3575
3576 if (deprecated_target_wait_hook)
3577 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3578 else
3579 event_ptid = target_wait (ptid, status, options);
3580
3581 return event_ptid;
3582}
3583
5b6d1e4f
PA
3584/* Returns true if INF has any resumed thread with a status
3585 pending. */
3586
3587static bool
3588threads_are_resumed_pending_p (inferior *inf)
3589{
3590 for (thread_info *tp : inf->non_exited_threads ())
3591 if (tp->resumed
3592 && tp->suspend.waitstatus_pending_p)
3593 return true;
3594
3595 return false;
3596}
3597
3598/* Wrapper for target_wait that first checks whether threads have
3599 pending statuses to report before actually asking the target for
3600 more events. Polls for events from all inferiors/targets. */
3601
3602static bool
3603do_target_wait (ptid_t wait_ptid, execution_control_state *ecs, int options)
3604{
3605 int num_inferiors = 0;
3606 int random_selector;
3607
3608 /* For fairness, we pick the first inferior/target to poll at
3609 random, and then continue polling the rest of the inferior list
3610 starting from that one in a circular fashion until the whole list
3611 is polled once. */
3612
3613 auto inferior_matches = [&wait_ptid] (inferior *inf)
3614 {
3615 return (inf->process_target () != NULL
3616 && (threads_are_executing (inf->process_target ())
3617 || threads_are_resumed_pending_p (inf))
3618 && ptid_t (inf->pid).matches (wait_ptid));
3619 };
3620
3621 /* First see how many resumed inferiors we have. */
3622 for (inferior *inf : all_inferiors ())
3623 if (inferior_matches (inf))
3624 num_inferiors++;
3625
3626 if (num_inferiors == 0)
3627 {
3628 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3629 return false;
3630 }
3631
3632 /* Now randomly pick an inferior out of those that were resumed. */
3633 random_selector = (int)
3634 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3635
3636 if (debug_infrun && num_inferiors > 1)
3637 fprintf_unfiltered (gdb_stdlog,
3638 "infrun: Found %d inferiors, starting at #%d\n",
3639 num_inferiors, random_selector);
3640
3641 /* Select the Nth inferior that was resumed. */
3642
3643 inferior *selected = nullptr;
3644
3645 for (inferior *inf : all_inferiors ())
3646 if (inferior_matches (inf))
3647 if (random_selector-- == 0)
3648 {
3649 selected = inf;
3650 break;
3651 }
3652
3653 /* Now poll for events out of each of the resumed inferior's
3654 targets, starting from the selected one. */
3655
3656 auto do_wait = [&] (inferior *inf)
3657 {
3658 switch_to_inferior_no_thread (inf);
3659
3660 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3661 ecs->target = inf->process_target ();
3662 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3663 };
3664
3665 /* Needed in all-stop+target-non-stop mode, because we end up here
3666 spuriously after the target is all stopped and we've already
3667 reported the stop to the user, polling for events. */
3668 scoped_restore_current_thread restore_thread;
3669
3670 int inf_num = selected->num;
3671 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3672 if (inferior_matches (inf))
3673 if (do_wait (inf))
3674 return true;
3675
3676 for (inferior *inf = inferior_list;
3677 inf != NULL && inf->num < inf_num;
3678 inf = inf->next)
3679 if (inferior_matches (inf))
3680 if (do_wait (inf))
3681 return true;
3682
3683 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3684 return false;
3685}
3686
24291992
PA
3687/* Prepare and stabilize the inferior for detaching it. E.g.,
3688 detaching while a thread is displaced stepping is a recipe for
3689 crashing it, as nothing would readjust the PC out of the scratch
3690 pad. */
3691
3692void
3693prepare_for_detach (void)
3694{
3695 struct inferior *inf = current_inferior ();
f2907e49 3696 ptid_t pid_ptid = ptid_t (inf->pid);
24291992 3697
00431a78 3698 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
24291992
PA
3699
3700 /* Is any thread of this process displaced stepping? If not,
3701 there's nothing else to do. */
d20172fc 3702 if (displaced->step_thread == nullptr)
24291992
PA
3703 return;
3704
3705 if (debug_infrun)
3706 fprintf_unfiltered (gdb_stdlog,
3707 "displaced-stepping in-process while detaching");
3708
9bcb1f16 3709 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992 3710
00431a78 3711 while (displaced->step_thread != nullptr)
24291992 3712 {
24291992
PA
3713 struct execution_control_state ecss;
3714 struct execution_control_state *ecs;
3715
3716 ecs = &ecss;
3717 memset (ecs, 0, sizeof (*ecs));
3718
3719 overlay_cache_invalid = 1;
f15cb84a
YQ
3720 /* Flush target cache before starting to handle each event.
3721 Target was running and cache could be stale. This is just a
3722 heuristic. Running threads may modify target memory, but we
3723 don't get any event. */
3724 target_dcache_invalidate ();
24291992 3725
5b6d1e4f 3726 do_target_wait (pid_ptid, ecs, 0);
24291992
PA
3727
3728 if (debug_infrun)
3729 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3730
3731 /* If an error happens while handling the event, propagate GDB's
3732 knowledge of the executing state to the frontend/user running
3733 state. */
5b6d1e4f
PA
3734 scoped_finish_thread_state finish_state (inf->process_target (),
3735 minus_one_ptid);
24291992
PA
3736
3737 /* Now figure out what to do with the result of the result. */
3738 handle_inferior_event (ecs);
3739
3740 /* No error, don't finish the state yet. */
731f534f 3741 finish_state.release ();
24291992
PA
3742
3743 /* Breakpoints and watchpoints are not installed on the target
3744 at this point, and signals are passed directly to the
3745 inferior, so this must mean the process is gone. */
3746 if (!ecs->wait_some_more)
3747 {
9bcb1f16 3748 restore_detaching.release ();
24291992
PA
3749 error (_("Program exited while detaching"));
3750 }
3751 }
3752
9bcb1f16 3753 restore_detaching.release ();
24291992
PA
3754}
3755
cd0fc7c3 3756/* Wait for control to return from inferior to debugger.
ae123ec6 3757
cd0fc7c3
SS
3758 If inferior gets a signal, we may decide to start it up again
3759 instead of returning. That is why there is a loop in this function.
3760 When this function actually returns it means the inferior
3761 should be left stopped and GDB should read more commands. */
3762
5b6d1e4f
PA
3763static void
3764wait_for_inferior (inferior *inf)
cd0fc7c3 3765{
527159b7 3766 if (debug_infrun)
ae123ec6 3767 fprintf_unfiltered
e4c8541f 3768 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3769
4c41382a 3770 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
cd0fc7c3 3771
e6f5c25b
PA
3772 /* If an error happens while handling the event, propagate GDB's
3773 knowledge of the executing state to the frontend/user running
3774 state. */
5b6d1e4f
PA
3775 scoped_finish_thread_state finish_state
3776 (inf->process_target (), minus_one_ptid);
e6f5c25b 3777
c906108c
SS
3778 while (1)
3779 {
ae25568b
PA
3780 struct execution_control_state ecss;
3781 struct execution_control_state *ecs = &ecss;
29f49a6a 3782
ae25568b
PA
3783 memset (ecs, 0, sizeof (*ecs));
3784
ec9499be 3785 overlay_cache_invalid = 1;
ec9499be 3786
f15cb84a
YQ
3787 /* Flush target cache before starting to handle each event.
3788 Target was running and cache could be stale. This is just a
3789 heuristic. Running threads may modify target memory, but we
3790 don't get any event. */
3791 target_dcache_invalidate ();
3792
5b6d1e4f
PA
3793 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3794 ecs->target = inf->process_target ();
c906108c 3795
f00150c9 3796 if (debug_infrun)
5b6d1e4f 3797 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
f00150c9 3798
cd0fc7c3
SS
3799 /* Now figure out what to do with the result of the result. */
3800 handle_inferior_event (ecs);
c906108c 3801
cd0fc7c3
SS
3802 if (!ecs->wait_some_more)
3803 break;
3804 }
4e1c45ea 3805
e6f5c25b 3806 /* No error, don't finish the state yet. */
731f534f 3807 finish_state.release ();
cd0fc7c3 3808}
c906108c 3809
d3d4baed
PA
3810/* Cleanup that reinstalls the readline callback handler, if the
3811 target is running in the background. If while handling the target
3812 event something triggered a secondary prompt, like e.g., a
3813 pagination prompt, we'll have removed the callback handler (see
3814 gdb_readline_wrapper_line). Need to do this as we go back to the
3815 event loop, ready to process further input. Note this has no
3816 effect if the handler hasn't actually been removed, because calling
3817 rl_callback_handler_install resets the line buffer, thus losing
3818 input. */
3819
3820static void
d238133d 3821reinstall_readline_callback_handler_cleanup ()
d3d4baed 3822{
3b12939d
PA
3823 struct ui *ui = current_ui;
3824
3825 if (!ui->async)
6c400b59
PA
3826 {
3827 /* We're not going back to the top level event loop yet. Don't
3828 install the readline callback, as it'd prep the terminal,
3829 readline-style (raw, noecho) (e.g., --batch). We'll install
3830 it the next time the prompt is displayed, when we're ready
3831 for input. */
3832 return;
3833 }
3834
3b12939d 3835 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3836 gdb_rl_callback_handler_reinstall ();
3837}
3838
243a9253
PA
3839/* Clean up the FSMs of threads that are now stopped. In non-stop,
3840 that's just the event thread. In all-stop, that's all threads. */
3841
3842static void
3843clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3844{
08036331
PA
3845 if (ecs->event_thread != NULL
3846 && ecs->event_thread->thread_fsm != NULL)
46e3ed7f 3847 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
243a9253
PA
3848
3849 if (!non_stop)
3850 {
08036331 3851 for (thread_info *thr : all_non_exited_threads ())
243a9253
PA
3852 {
3853 if (thr->thread_fsm == NULL)
3854 continue;
3855 if (thr == ecs->event_thread)
3856 continue;
3857
00431a78 3858 switch_to_thread (thr);
46e3ed7f 3859 thr->thread_fsm->clean_up (thr);
243a9253
PA
3860 }
3861
3862 if (ecs->event_thread != NULL)
00431a78 3863 switch_to_thread (ecs->event_thread);
243a9253
PA
3864 }
3865}
3866
3b12939d
PA
3867/* Helper for all_uis_check_sync_execution_done that works on the
3868 current UI. */
3869
3870static void
3871check_curr_ui_sync_execution_done (void)
3872{
3873 struct ui *ui = current_ui;
3874
3875 if (ui->prompt_state == PROMPT_NEEDED
3876 && ui->async
3877 && !gdb_in_secondary_prompt_p (ui))
3878 {
223ffa71 3879 target_terminal::ours ();
76727919 3880 gdb::observers::sync_execution_done.notify ();
3eb7562a 3881 ui_register_input_event_handler (ui);
3b12939d
PA
3882 }
3883}
3884
3885/* See infrun.h. */
3886
3887void
3888all_uis_check_sync_execution_done (void)
3889{
0e454242 3890 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3891 {
3892 check_curr_ui_sync_execution_done ();
3893 }
3894}
3895
a8836c93
PA
3896/* See infrun.h. */
3897
3898void
3899all_uis_on_sync_execution_starting (void)
3900{
0e454242 3901 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3902 {
3903 if (current_ui->prompt_state == PROMPT_NEEDED)
3904 async_disable_stdin ();
3905 }
3906}
3907
1777feb0 3908/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3909 event loop whenever a change of state is detected on the file
1777feb0
MS
3910 descriptor corresponding to the target. It can be called more than
3911 once to complete a single execution command. In such cases we need
3912 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3913 that this function is called for a single execution command, then
3914 report to the user that the inferior has stopped, and do the
1777feb0 3915 necessary cleanups. */
43ff13b4
JM
3916
3917void
fba45db2 3918fetch_inferior_event (void *client_data)
43ff13b4 3919{
0d1e5fa7 3920 struct execution_control_state ecss;
a474d7c2 3921 struct execution_control_state *ecs = &ecss;
0f641c01 3922 int cmd_done = 0;
43ff13b4 3923
0d1e5fa7
PA
3924 memset (ecs, 0, sizeof (*ecs));
3925
c61db772
PA
3926 /* Events are always processed with the main UI as current UI. This
3927 way, warnings, debug output, etc. are always consistently sent to
3928 the main console. */
4b6749b9 3929 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3930
d3d4baed 3931 /* End up with readline processing input, if necessary. */
d238133d
TT
3932 {
3933 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3934
3935 /* We're handling a live event, so make sure we're doing live
3936 debugging. If we're looking at traceframes while the target is
3937 running, we're going to need to get back to that mode after
3938 handling the event. */
3939 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3940 if (non_stop)
3941 {
3942 maybe_restore_traceframe.emplace ();
3943 set_current_traceframe (-1);
3944 }
43ff13b4 3945
873657b9
PA
3946 /* The user/frontend should not notice a thread switch due to
3947 internal events. Make sure we revert to the user selected
3948 thread and frame after handling the event and running any
3949 breakpoint commands. */
3950 scoped_restore_current_thread restore_thread;
d238133d
TT
3951
3952 overlay_cache_invalid = 1;
3953 /* Flush target cache before starting to handle each event. Target
3954 was running and cache could be stale. This is just a heuristic.
3955 Running threads may modify target memory, but we don't get any
3956 event. */
3957 target_dcache_invalidate ();
3958
3959 scoped_restore save_exec_dir
3960 = make_scoped_restore (&execution_direction,
3961 target_execution_direction ());
3962
5b6d1e4f
PA
3963 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
3964 return;
3965
3966 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3967
3968 /* Switch to the target that generated the event, so we can do
3969 target calls. Any inferior bound to the target will do, so we
3970 just switch to the first we find. */
3971 for (inferior *inf : all_inferiors (ecs->target))
3972 {
3973 switch_to_inferior_no_thread (inf);
3974 break;
3975 }
d238133d
TT
3976
3977 if (debug_infrun)
5b6d1e4f 3978 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
d238133d
TT
3979
3980 /* If an error happens while handling the event, propagate GDB's
3981 knowledge of the executing state to the frontend/user running
3982 state. */
3983 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
5b6d1e4f 3984 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
d238133d 3985
979a0d13 3986 /* Get executed before scoped_restore_current_thread above to apply
d238133d
TT
3987 still for the thread which has thrown the exception. */
3988 auto defer_bpstat_clear
3989 = make_scope_exit (bpstat_clear_actions);
3990 auto defer_delete_threads
3991 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3992
3993 /* Now figure out what to do with the result of the result. */
3994 handle_inferior_event (ecs);
3995
3996 if (!ecs->wait_some_more)
3997 {
5b6d1e4f 3998 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
d238133d
TT
3999 int should_stop = 1;
4000 struct thread_info *thr = ecs->event_thread;
d6b48e9c 4001
d238133d 4002 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 4003
d238133d
TT
4004 if (thr != NULL)
4005 {
4006 struct thread_fsm *thread_fsm = thr->thread_fsm;
243a9253 4007
d238133d 4008 if (thread_fsm != NULL)
46e3ed7f 4009 should_stop = thread_fsm->should_stop (thr);
d238133d 4010 }
243a9253 4011
d238133d
TT
4012 if (!should_stop)
4013 {
4014 keep_going (ecs);
4015 }
4016 else
4017 {
46e3ed7f 4018 bool should_notify_stop = true;
d238133d 4019 int proceeded = 0;
1840d81a 4020
d238133d 4021 clean_up_just_stopped_threads_fsms (ecs);
243a9253 4022
d238133d 4023 if (thr != NULL && thr->thread_fsm != NULL)
46e3ed7f 4024 should_notify_stop = thr->thread_fsm->should_notify_stop ();
388a7084 4025
d238133d
TT
4026 if (should_notify_stop)
4027 {
4028 /* We may not find an inferior if this was a process exit. */
4029 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4030 proceeded = normal_stop ();
4031 }
243a9253 4032
d238133d
TT
4033 if (!proceeded)
4034 {
4035 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
4036 cmd_done = 1;
4037 }
873657b9
PA
4038
4039 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
4040 previously selected thread is gone. We have two
4041 choices - switch to no thread selected, or restore the
4042 previously selected thread (now exited). We chose the
4043 later, just because that's what GDB used to do. After
4044 this, "info threads" says "The current thread <Thread
4045 ID 2> has terminated." instead of "No thread
4046 selected.". */
4047 if (!non_stop
4048 && cmd_done
4049 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
4050 restore_thread.dont_restore ();
d238133d
TT
4051 }
4052 }
4f8d22e3 4053
d238133d
TT
4054 defer_delete_threads.release ();
4055 defer_bpstat_clear.release ();
29f49a6a 4056
d238133d
TT
4057 /* No error, don't finish the thread states yet. */
4058 finish_state.release ();
731f534f 4059
d238133d
TT
4060 /* This scope is used to ensure that readline callbacks are
4061 reinstalled here. */
4062 }
4f8d22e3 4063
3b12939d
PA
4064 /* If a UI was in sync execution mode, and now isn't, restore its
4065 prompt (a synchronous execution command has finished, and we're
4066 ready for input). */
4067 all_uis_check_sync_execution_done ();
0f641c01
PA
4068
4069 if (cmd_done
0f641c01 4070 && exec_done_display_p
00431a78
PA
4071 && (inferior_ptid == null_ptid
4072 || inferior_thread ()->state != THREAD_RUNNING))
0f641c01 4073 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
4074}
4075
edb3359d
DJ
4076/* Record the frame and location we're currently stepping through. */
4077void
4078set_step_info (struct frame_info *frame, struct symtab_and_line sal)
4079{
4080 struct thread_info *tp = inferior_thread ();
4081
16c381f0
JK
4082 tp->control.step_frame_id = get_frame_id (frame);
4083 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
4084
4085 tp->current_symtab = sal.symtab;
4086 tp->current_line = sal.line;
4087}
4088
0d1e5fa7
PA
4089/* Clear context switchable stepping state. */
4090
4091void
4e1c45ea 4092init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 4093{
7f5ef605 4094 tss->stepped_breakpoint = 0;
0d1e5fa7 4095 tss->stepping_over_breakpoint = 0;
963f9c80 4096 tss->stepping_over_watchpoint = 0;
0d1e5fa7 4097 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
4098}
4099
ab1ddbcf 4100/* See infrun.h. */
c32c64b7 4101
6efcd9a8 4102void
5b6d1e4f
PA
4103set_last_target_status (process_stratum_target *target, ptid_t ptid,
4104 target_waitstatus status)
c32c64b7 4105{
5b6d1e4f 4106 target_last_proc_target = target;
c32c64b7
DE
4107 target_last_wait_ptid = ptid;
4108 target_last_waitstatus = status;
4109}
4110
ab1ddbcf 4111/* See infrun.h. */
e02bc4cc
DS
4112
4113void
5b6d1e4f
PA
4114get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4115 target_waitstatus *status)
e02bc4cc 4116{
5b6d1e4f
PA
4117 if (target != nullptr)
4118 *target = target_last_proc_target;
ab1ddbcf
PA
4119 if (ptid != nullptr)
4120 *ptid = target_last_wait_ptid;
4121 if (status != nullptr)
4122 *status = target_last_waitstatus;
e02bc4cc
DS
4123}
4124
ab1ddbcf
PA
4125/* See infrun.h. */
4126
ac264b3b
MS
4127void
4128nullify_last_target_wait_ptid (void)
4129{
5b6d1e4f 4130 target_last_proc_target = nullptr;
ac264b3b 4131 target_last_wait_ptid = minus_one_ptid;
ab1ddbcf 4132 target_last_waitstatus = {};
ac264b3b
MS
4133}
4134
dcf4fbde 4135/* Switch thread contexts. */
dd80620e
MS
4136
4137static void
00431a78 4138context_switch (execution_control_state *ecs)
dd80620e 4139{
00431a78
PA
4140 if (debug_infrun
4141 && ecs->ptid != inferior_ptid
5b6d1e4f
PA
4142 && (inferior_ptid == null_ptid
4143 || ecs->event_thread != inferior_thread ()))
fd48f117
DJ
4144 {
4145 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
a068643d 4146 target_pid_to_str (inferior_ptid).c_str ());
fd48f117 4147 fprintf_unfiltered (gdb_stdlog, "to %s\n",
a068643d 4148 target_pid_to_str (ecs->ptid).c_str ());
fd48f117
DJ
4149 }
4150
00431a78 4151 switch_to_thread (ecs->event_thread);
dd80620e
MS
4152}
4153
d8dd4d5f
PA
4154/* If the target can't tell whether we've hit breakpoints
4155 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4156 check whether that could have been caused by a breakpoint. If so,
4157 adjust the PC, per gdbarch_decr_pc_after_break. */
4158
4fa8626c 4159static void
d8dd4d5f
PA
4160adjust_pc_after_break (struct thread_info *thread,
4161 struct target_waitstatus *ws)
4fa8626c 4162{
24a73cce
UW
4163 struct regcache *regcache;
4164 struct gdbarch *gdbarch;
118e6252 4165 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4166
4fa8626c
DJ
4167 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4168 we aren't, just return.
9709f61c
DJ
4169
4170 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4171 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4172 implemented by software breakpoints should be handled through the normal
4173 breakpoint layer.
8fb3e588 4174
4fa8626c
DJ
4175 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4176 different signals (SIGILL or SIGEMT for instance), but it is less
4177 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4178 gdbarch_decr_pc_after_break. I don't know any specific target that
4179 generates these signals at breakpoints (the code has been in GDB since at
4180 least 1992) so I can not guess how to handle them here.
8fb3e588 4181
e6cf7916
UW
4182 In earlier versions of GDB, a target with
4183 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4184 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4185 target with both of these set in GDB history, and it seems unlikely to be
4186 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4187
d8dd4d5f 4188 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4189 return;
4190
d8dd4d5f 4191 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4192 return;
4193
4058b839
PA
4194 /* In reverse execution, when a breakpoint is hit, the instruction
4195 under it has already been de-executed. The reported PC always
4196 points at the breakpoint address, so adjusting it further would
4197 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4198 architecture:
4199
4200 B1 0x08000000 : INSN1
4201 B2 0x08000001 : INSN2
4202 0x08000002 : INSN3
4203 PC -> 0x08000003 : INSN4
4204
4205 Say you're stopped at 0x08000003 as above. Reverse continuing
4206 from that point should hit B2 as below. Reading the PC when the
4207 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4208 been de-executed already.
4209
4210 B1 0x08000000 : INSN1
4211 B2 PC -> 0x08000001 : INSN2
4212 0x08000002 : INSN3
4213 0x08000003 : INSN4
4214
4215 We can't apply the same logic as for forward execution, because
4216 we would wrongly adjust the PC to 0x08000000, since there's a
4217 breakpoint at PC - 1. We'd then report a hit on B1, although
4218 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4219 behaviour. */
4220 if (execution_direction == EXEC_REVERSE)
4221 return;
4222
1cf4d951
PA
4223 /* If the target can tell whether the thread hit a SW breakpoint,
4224 trust it. Targets that can tell also adjust the PC
4225 themselves. */
4226 if (target_supports_stopped_by_sw_breakpoint ())
4227 return;
4228
4229 /* Note that relying on whether a breakpoint is planted in memory to
4230 determine this can fail. E.g,. the breakpoint could have been
4231 removed since. Or the thread could have been told to step an
4232 instruction the size of a breakpoint instruction, and only
4233 _after_ was a breakpoint inserted at its address. */
4234
24a73cce
UW
4235 /* If this target does not decrement the PC after breakpoints, then
4236 we have nothing to do. */
00431a78 4237 regcache = get_thread_regcache (thread);
ac7936df 4238 gdbarch = regcache->arch ();
118e6252 4239
527a273a 4240 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4241 if (decr_pc == 0)
24a73cce
UW
4242 return;
4243
8b86c959 4244 const address_space *aspace = regcache->aspace ();
6c95b8df 4245
8aad930b
AC
4246 /* Find the location where (if we've hit a breakpoint) the
4247 breakpoint would be. */
118e6252 4248 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4249
1cf4d951
PA
4250 /* If the target can't tell whether a software breakpoint triggered,
4251 fallback to figuring it out based on breakpoints we think were
4252 inserted in the target, and on whether the thread was stepped or
4253 continued. */
4254
1c5cfe86
PA
4255 /* Check whether there actually is a software breakpoint inserted at
4256 that location.
4257
4258 If in non-stop mode, a race condition is possible where we've
4259 removed a breakpoint, but stop events for that breakpoint were
4260 already queued and arrive later. To suppress those spurious
4261 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4262 and retire them after a number of stop events are reported. Note
4263 this is an heuristic and can thus get confused. The real fix is
4264 to get the "stopped by SW BP and needs adjustment" info out of
4265 the target/kernel (and thus never reach here; see above). */
6c95b8df 4266 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4267 || (target_is_non_stop_p ()
4268 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4269 {
07036511 4270 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 4271
8213266a 4272 if (record_full_is_used ())
07036511
TT
4273 restore_operation_disable.emplace
4274 (record_full_gdb_operation_disable_set ());
96429cc8 4275
1c0fdd0e
UW
4276 /* When using hardware single-step, a SIGTRAP is reported for both
4277 a completed single-step and a software breakpoint. Need to
4278 differentiate between the two, as the latter needs adjusting
4279 but the former does not.
4280
4281 The SIGTRAP can be due to a completed hardware single-step only if
4282 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4283 - this thread is currently being stepped
4284
4285 If any of these events did not occur, we must have stopped due
4286 to hitting a software breakpoint, and have to back up to the
4287 breakpoint address.
4288
4289 As a special case, we could have hardware single-stepped a
4290 software breakpoint. In this case (prev_pc == breakpoint_pc),
4291 we also need to back up to the breakpoint address. */
4292
d8dd4d5f
PA
4293 if (thread_has_single_step_breakpoints_set (thread)
4294 || !currently_stepping (thread)
4295 || (thread->stepped_breakpoint
4296 && thread->prev_pc == breakpoint_pc))
515630c5 4297 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4298 }
4fa8626c
DJ
4299}
4300
edb3359d
DJ
4301static int
4302stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4303{
4304 for (frame = get_prev_frame (frame);
4305 frame != NULL;
4306 frame = get_prev_frame (frame))
4307 {
4308 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4309 return 1;
4310 if (get_frame_type (frame) != INLINE_FRAME)
4311 break;
4312 }
4313
4314 return 0;
4315}
4316
4a4c04f1
BE
4317/* Look for an inline frame that is marked for skip.
4318 If PREV_FRAME is TRUE start at the previous frame,
4319 otherwise start at the current frame. Stop at the
4320 first non-inline frame, or at the frame where the
4321 step started. */
4322
4323static bool
4324inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4325{
4326 struct frame_info *frame = get_current_frame ();
4327
4328 if (prev_frame)
4329 frame = get_prev_frame (frame);
4330
4331 for (; frame != NULL; frame = get_prev_frame (frame))
4332 {
4333 const char *fn = NULL;
4334 symtab_and_line sal;
4335 struct symbol *sym;
4336
4337 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4338 break;
4339 if (get_frame_type (frame) != INLINE_FRAME)
4340 break;
4341
4342 sal = find_frame_sal (frame);
4343 sym = get_frame_function (frame);
4344
4345 if (sym != NULL)
4346 fn = sym->print_name ();
4347
4348 if (sal.line != 0
4349 && function_name_is_marked_for_skip (fn, sal))
4350 return true;
4351 }
4352
4353 return false;
4354}
4355
c65d6b55
PA
4356/* If the event thread has the stop requested flag set, pretend it
4357 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4358 target_stop). */
4359
4360static bool
4361handle_stop_requested (struct execution_control_state *ecs)
4362{
4363 if (ecs->event_thread->stop_requested)
4364 {
4365 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4366 ecs->ws.value.sig = GDB_SIGNAL_0;
4367 handle_signal_stop (ecs);
4368 return true;
4369 }
4370 return false;
4371}
4372
a96d9b2e
SDJ
4373/* Auxiliary function that handles syscall entry/return events.
4374 It returns 1 if the inferior should keep going (and GDB
4375 should ignore the event), or 0 if the event deserves to be
4376 processed. */
ca2163eb 4377
a96d9b2e 4378static int
ca2163eb 4379handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4380{
ca2163eb 4381 struct regcache *regcache;
ca2163eb
PA
4382 int syscall_number;
4383
00431a78 4384 context_switch (ecs);
ca2163eb 4385
00431a78 4386 regcache = get_thread_regcache (ecs->event_thread);
f90263c1 4387 syscall_number = ecs->ws.value.syscall_number;
f2ffa92b 4388 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
ca2163eb 4389
a96d9b2e
SDJ
4390 if (catch_syscall_enabled () > 0
4391 && catching_syscall_number (syscall_number) > 0)
4392 {
4393 if (debug_infrun)
4394 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4395 syscall_number);
a96d9b2e 4396
16c381f0 4397 ecs->event_thread->control.stop_bpstat
a01bda52 4398 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4399 ecs->event_thread->suspend.stop_pc,
4400 ecs->event_thread, &ecs->ws);
ab04a2af 4401
c65d6b55
PA
4402 if (handle_stop_requested (ecs))
4403 return 0;
4404
ce12b012 4405 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4406 {
4407 /* Catchpoint hit. */
ca2163eb
PA
4408 return 0;
4409 }
a96d9b2e 4410 }
ca2163eb 4411
c65d6b55
PA
4412 if (handle_stop_requested (ecs))
4413 return 0;
4414
ca2163eb 4415 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4416 keep_going (ecs);
4417 return 1;
a96d9b2e
SDJ
4418}
4419
7e324e48
GB
4420/* Lazily fill in the execution_control_state's stop_func_* fields. */
4421
4422static void
4423fill_in_stop_func (struct gdbarch *gdbarch,
4424 struct execution_control_state *ecs)
4425{
4426 if (!ecs->stop_func_filled_in)
4427 {
98a617f8
KB
4428 const block *block;
4429
7e324e48
GB
4430 /* Don't care about return value; stop_func_start and stop_func_name
4431 will both be 0 if it doesn't work. */
98a617f8
KB
4432 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4433 &ecs->stop_func_name,
4434 &ecs->stop_func_start,
4435 &ecs->stop_func_end,
4436 &block);
4437
4438 /* The call to find_pc_partial_function, above, will set
4439 stop_func_start and stop_func_end to the start and end
4440 of the range containing the stop pc. If this range
4441 contains the entry pc for the block (which is always the
4442 case for contiguous blocks), advance stop_func_start past
4443 the function's start offset and entrypoint. Note that
4444 stop_func_start is NOT advanced when in a range of a
4445 non-contiguous block that does not contain the entry pc. */
4446 if (block != nullptr
4447 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4448 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4449 {
4450 ecs->stop_func_start
4451 += gdbarch_deprecated_function_start_offset (gdbarch);
4452
4453 if (gdbarch_skip_entrypoint_p (gdbarch))
4454 ecs->stop_func_start
4455 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4456 }
591a12a1 4457
7e324e48
GB
4458 ecs->stop_func_filled_in = 1;
4459 }
4460}
4461
4f5d7f63 4462
00431a78 4463/* Return the STOP_SOON field of the inferior pointed at by ECS. */
4f5d7f63
PA
4464
4465static enum stop_kind
00431a78 4466get_inferior_stop_soon (execution_control_state *ecs)
4f5d7f63 4467{
5b6d1e4f 4468 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4f5d7f63
PA
4469
4470 gdb_assert (inf != NULL);
4471 return inf->control.stop_soon;
4472}
4473
5b6d1e4f
PA
4474/* Poll for one event out of the current target. Store the resulting
4475 waitstatus in WS, and return the event ptid. Does not block. */
372316f1
PA
4476
4477static ptid_t
5b6d1e4f 4478poll_one_curr_target (struct target_waitstatus *ws)
372316f1
PA
4479{
4480 ptid_t event_ptid;
372316f1
PA
4481
4482 overlay_cache_invalid = 1;
4483
4484 /* Flush target cache before starting to handle each event.
4485 Target was running and cache could be stale. This is just a
4486 heuristic. Running threads may modify target memory, but we
4487 don't get any event. */
4488 target_dcache_invalidate ();
4489
4490 if (deprecated_target_wait_hook)
5b6d1e4f 4491 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
372316f1 4492 else
5b6d1e4f 4493 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
372316f1
PA
4494
4495 if (debug_infrun)
5b6d1e4f 4496 print_target_wait_results (minus_one_ptid, event_ptid, ws);
372316f1
PA
4497
4498 return event_ptid;
4499}
4500
5b6d1e4f
PA
4501/* An event reported by wait_one. */
4502
4503struct wait_one_event
4504{
4505 /* The target the event came out of. */
4506 process_stratum_target *target;
4507
4508 /* The PTID the event was for. */
4509 ptid_t ptid;
4510
4511 /* The waitstatus. */
4512 target_waitstatus ws;
4513};
4514
4515/* Wait for one event out of any target. */
4516
4517static wait_one_event
4518wait_one ()
4519{
4520 while (1)
4521 {
4522 for (inferior *inf : all_inferiors ())
4523 {
4524 process_stratum_target *target = inf->process_target ();
4525 if (target == NULL
4526 || !target->is_async_p ()
4527 || !target->threads_executing)
4528 continue;
4529
4530 switch_to_inferior_no_thread (inf);
4531
4532 wait_one_event event;
4533 event.target = target;
4534 event.ptid = poll_one_curr_target (&event.ws);
4535
4536 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4537 {
4538 /* If nothing is resumed, remove the target from the
4539 event loop. */
4540 target_async (0);
4541 }
4542 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4543 return event;
4544 }
4545
4546 /* Block waiting for some event. */
4547
4548 fd_set readfds;
4549 int nfds = 0;
4550
4551 FD_ZERO (&readfds);
4552
4553 for (inferior *inf : all_inferiors ())
4554 {
4555 process_stratum_target *target = inf->process_target ();
4556 if (target == NULL
4557 || !target->is_async_p ()
4558 || !target->threads_executing)
4559 continue;
4560
4561 int fd = target->async_wait_fd ();
4562 FD_SET (fd, &readfds);
4563 if (nfds <= fd)
4564 nfds = fd + 1;
4565 }
4566
4567 if (nfds == 0)
4568 {
4569 /* No waitable targets left. All must be stopped. */
4570 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4571 }
4572
4573 QUIT;
4574
4575 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4576 if (numfds < 0)
4577 {
4578 if (errno == EINTR)
4579 continue;
4580 else
4581 perror_with_name ("interruptible_select");
4582 }
4583 }
4584}
4585
372316f1
PA
4586/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4587 instead of the current thread. */
4588#define THREAD_STOPPED_BY(REASON) \
4589static int \
4590thread_stopped_by_ ## REASON (ptid_t ptid) \
4591{ \
2989a365 4592 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
372316f1
PA
4593 inferior_ptid = ptid; \
4594 \
2989a365 4595 return target_stopped_by_ ## REASON (); \
372316f1
PA
4596}
4597
4598/* Generate thread_stopped_by_watchpoint. */
4599THREAD_STOPPED_BY (watchpoint)
4600/* Generate thread_stopped_by_sw_breakpoint. */
4601THREAD_STOPPED_BY (sw_breakpoint)
4602/* Generate thread_stopped_by_hw_breakpoint. */
4603THREAD_STOPPED_BY (hw_breakpoint)
4604
372316f1
PA
4605/* Save the thread's event and stop reason to process it later. */
4606
4607static void
5b6d1e4f 4608save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
372316f1 4609{
372316f1
PA
4610 if (debug_infrun)
4611 {
23fdd69e 4612 std::string statstr = target_waitstatus_to_string (ws);
372316f1 4613
372316f1
PA
4614 fprintf_unfiltered (gdb_stdlog,
4615 "infrun: saving status %s for %d.%ld.%ld\n",
23fdd69e 4616 statstr.c_str (),
e99b03dc 4617 tp->ptid.pid (),
e38504b3 4618 tp->ptid.lwp (),
cc6bcb54 4619 tp->ptid.tid ());
372316f1
PA
4620 }
4621
4622 /* Record for later. */
4623 tp->suspend.waitstatus = *ws;
4624 tp->suspend.waitstatus_pending_p = 1;
4625
00431a78 4626 struct regcache *regcache = get_thread_regcache (tp);
8b86c959 4627 const address_space *aspace = regcache->aspace ();
372316f1
PA
4628
4629 if (ws->kind == TARGET_WAITKIND_STOPPED
4630 && ws->value.sig == GDB_SIGNAL_TRAP)
4631 {
4632 CORE_ADDR pc = regcache_read_pc (regcache);
4633
4634 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4635
4636 if (thread_stopped_by_watchpoint (tp->ptid))
4637 {
4638 tp->suspend.stop_reason
4639 = TARGET_STOPPED_BY_WATCHPOINT;
4640 }
4641 else if (target_supports_stopped_by_sw_breakpoint ()
4642 && thread_stopped_by_sw_breakpoint (tp->ptid))
4643 {
4644 tp->suspend.stop_reason
4645 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4646 }
4647 else if (target_supports_stopped_by_hw_breakpoint ()
4648 && thread_stopped_by_hw_breakpoint (tp->ptid))
4649 {
4650 tp->suspend.stop_reason
4651 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4652 }
4653 else if (!target_supports_stopped_by_hw_breakpoint ()
4654 && hardware_breakpoint_inserted_here_p (aspace,
4655 pc))
4656 {
4657 tp->suspend.stop_reason
4658 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4659 }
4660 else if (!target_supports_stopped_by_sw_breakpoint ()
4661 && software_breakpoint_inserted_here_p (aspace,
4662 pc))
4663 {
4664 tp->suspend.stop_reason
4665 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4666 }
4667 else if (!thread_has_single_step_breakpoints_set (tp)
4668 && currently_stepping (tp))
4669 {
4670 tp->suspend.stop_reason
4671 = TARGET_STOPPED_BY_SINGLE_STEP;
4672 }
4673 }
4674}
4675
6efcd9a8 4676/* See infrun.h. */
372316f1 4677
6efcd9a8 4678void
372316f1
PA
4679stop_all_threads (void)
4680{
4681 /* We may need multiple passes to discover all threads. */
4682 int pass;
4683 int iterations = 0;
372316f1 4684
fbea99ea 4685 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4686
4687 if (debug_infrun)
4688 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4689
00431a78 4690 scoped_restore_current_thread restore_thread;
372316f1 4691
65706a29 4692 target_thread_events (1);
9885e6bb 4693 SCOPE_EXIT { target_thread_events (0); };
65706a29 4694
372316f1
PA
4695 /* Request threads to stop, and then wait for the stops. Because
4696 threads we already know about can spawn more threads while we're
4697 trying to stop them, and we only learn about new threads when we
4698 update the thread list, do this in a loop, and keep iterating
4699 until two passes find no threads that need to be stopped. */
4700 for (pass = 0; pass < 2; pass++, iterations++)
4701 {
4702 if (debug_infrun)
4703 fprintf_unfiltered (gdb_stdlog,
4704 "infrun: stop_all_threads, pass=%d, "
4705 "iterations=%d\n", pass, iterations);
4706 while (1)
4707 {
372316f1 4708 int need_wait = 0;
372316f1
PA
4709
4710 update_thread_list ();
4711
4712 /* Go through all threads looking for threads that we need
4713 to tell the target to stop. */
08036331 4714 for (thread_info *t : all_non_exited_threads ())
372316f1
PA
4715 {
4716 if (t->executing)
4717 {
4718 /* If already stopping, don't request a stop again.
4719 We just haven't seen the notification yet. */
4720 if (!t->stop_requested)
4721 {
4722 if (debug_infrun)
4723 fprintf_unfiltered (gdb_stdlog,
4724 "infrun: %s executing, "
4725 "need stop\n",
a068643d 4726 target_pid_to_str (t->ptid).c_str ());
f3f8ece4 4727 switch_to_thread_no_regs (t);
372316f1
PA
4728 target_stop (t->ptid);
4729 t->stop_requested = 1;
4730 }
4731 else
4732 {
4733 if (debug_infrun)
4734 fprintf_unfiltered (gdb_stdlog,
4735 "infrun: %s executing, "
4736 "already stopping\n",
a068643d 4737 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4738 }
4739
4740 if (t->stop_requested)
4741 need_wait = 1;
4742 }
4743 else
4744 {
4745 if (debug_infrun)
4746 fprintf_unfiltered (gdb_stdlog,
4747 "infrun: %s not executing\n",
a068643d 4748 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4749
4750 /* The thread may be not executing, but still be
4751 resumed with a pending status to process. */
719546c4 4752 t->resumed = false;
372316f1
PA
4753 }
4754 }
4755
4756 if (!need_wait)
4757 break;
4758
4759 /* If we find new threads on the second iteration, restart
4760 over. We want to see two iterations in a row with all
4761 threads stopped. */
4762 if (pass > 0)
4763 pass = -1;
4764
5b6d1e4f
PA
4765 wait_one_event event = wait_one ();
4766
c29705b7 4767 if (debug_infrun)
372316f1 4768 {
c29705b7
PW
4769 fprintf_unfiltered (gdb_stdlog,
4770 "infrun: stop_all_threads %s %s\n",
5b6d1e4f
PA
4771 target_waitstatus_to_string (&event.ws).c_str (),
4772 target_pid_to_str (event.ptid).c_str ());
372316f1 4773 }
372316f1 4774
5b6d1e4f
PA
4775 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED
4776 || event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4777 || event.ws.kind == TARGET_WAITKIND_EXITED
4778 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
c29705b7
PW
4779 {
4780 /* All resumed threads exited
4781 or one thread/process exited/signalled. */
372316f1
PA
4782 }
4783 else
4784 {
5b6d1e4f 4785 thread_info *t = find_thread_ptid (event.target, event.ptid);
372316f1 4786 if (t == NULL)
5b6d1e4f 4787 t = add_thread (event.target, event.ptid);
372316f1
PA
4788
4789 t->stop_requested = 0;
4790 t->executing = 0;
719546c4 4791 t->resumed = false;
372316f1
PA
4792 t->control.may_range_step = 0;
4793
6efcd9a8
PA
4794 /* This may be the first time we see the inferior report
4795 a stop. */
5b6d1e4f 4796 inferior *inf = find_inferior_ptid (event.target, event.ptid);
6efcd9a8
PA
4797 if (inf->needs_setup)
4798 {
4799 switch_to_thread_no_regs (t);
4800 setup_inferior (0);
4801 }
4802
5b6d1e4f
PA
4803 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4804 && event.ws.value.sig == GDB_SIGNAL_0)
372316f1
PA
4805 {
4806 /* We caught the event that we intended to catch, so
4807 there's no event pending. */
4808 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4809 t->suspend.waitstatus_pending_p = 0;
4810
00431a78 4811 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
372316f1
PA
4812 {
4813 /* Add it back to the step-over queue. */
4814 if (debug_infrun)
4815 {
4816 fprintf_unfiltered (gdb_stdlog,
4817 "infrun: displaced-step of %s "
4818 "canceled: adding back to the "
4819 "step-over queue\n",
a068643d 4820 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4821 }
4822 t->control.trap_expected = 0;
4823 thread_step_over_chain_enqueue (t);
4824 }
4825 }
4826 else
4827 {
4828 enum gdb_signal sig;
4829 struct regcache *regcache;
372316f1
PA
4830
4831 if (debug_infrun)
4832 {
5b6d1e4f 4833 std::string statstr = target_waitstatus_to_string (&event.ws);
372316f1 4834
372316f1
PA
4835 fprintf_unfiltered (gdb_stdlog,
4836 "infrun: target_wait %s, saving "
4837 "status for %d.%ld.%ld\n",
23fdd69e 4838 statstr.c_str (),
e99b03dc 4839 t->ptid.pid (),
e38504b3 4840 t->ptid.lwp (),
cc6bcb54 4841 t->ptid.tid ());
372316f1
PA
4842 }
4843
4844 /* Record for later. */
5b6d1e4f 4845 save_waitstatus (t, &event.ws);
372316f1 4846
5b6d1e4f
PA
4847 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4848 ? event.ws.value.sig : GDB_SIGNAL_0);
372316f1 4849
00431a78 4850 if (displaced_step_fixup (t, sig) < 0)
372316f1
PA
4851 {
4852 /* Add it back to the step-over queue. */
4853 t->control.trap_expected = 0;
4854 thread_step_over_chain_enqueue (t);
4855 }
4856
00431a78 4857 regcache = get_thread_regcache (t);
372316f1
PA
4858 t->suspend.stop_pc = regcache_read_pc (regcache);
4859
4860 if (debug_infrun)
4861 {
4862 fprintf_unfiltered (gdb_stdlog,
4863 "infrun: saved stop_pc=%s for %s "
4864 "(currently_stepping=%d)\n",
4865 paddress (target_gdbarch (),
4866 t->suspend.stop_pc),
a068643d 4867 target_pid_to_str (t->ptid).c_str (),
372316f1
PA
4868 currently_stepping (t));
4869 }
4870 }
4871 }
4872 }
4873 }
4874
372316f1
PA
4875 if (debug_infrun)
4876 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4877}
4878
f4836ba9
PA
4879/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4880
4881static int
4882handle_no_resumed (struct execution_control_state *ecs)
4883{
3b12939d 4884 if (target_can_async_p ())
f4836ba9 4885 {
3b12939d
PA
4886 struct ui *ui;
4887 int any_sync = 0;
f4836ba9 4888
3b12939d
PA
4889 ALL_UIS (ui)
4890 {
4891 if (ui->prompt_state == PROMPT_BLOCKED)
4892 {
4893 any_sync = 1;
4894 break;
4895 }
4896 }
4897 if (!any_sync)
4898 {
4899 /* There were no unwaited-for children left in the target, but,
4900 we're not synchronously waiting for events either. Just
4901 ignore. */
4902
4903 if (debug_infrun)
4904 fprintf_unfiltered (gdb_stdlog,
4905 "infrun: TARGET_WAITKIND_NO_RESUMED "
4906 "(ignoring: bg)\n");
4907 prepare_to_wait (ecs);
4908 return 1;
4909 }
f4836ba9
PA
4910 }
4911
4912 /* Otherwise, if we were running a synchronous execution command, we
4913 may need to cancel it and give the user back the terminal.
4914
4915 In non-stop mode, the target can't tell whether we've already
4916 consumed previous stop events, so it can end up sending us a
4917 no-resumed event like so:
4918
4919 #0 - thread 1 is left stopped
4920
4921 #1 - thread 2 is resumed and hits breakpoint
4922 -> TARGET_WAITKIND_STOPPED
4923
4924 #2 - thread 3 is resumed and exits
4925 this is the last resumed thread, so
4926 -> TARGET_WAITKIND_NO_RESUMED
4927
4928 #3 - gdb processes stop for thread 2 and decides to re-resume
4929 it.
4930
4931 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4932 thread 2 is now resumed, so the event should be ignored.
4933
4934 IOW, if the stop for thread 2 doesn't end a foreground command,
4935 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4936 event. But it could be that the event meant that thread 2 itself
4937 (or whatever other thread was the last resumed thread) exited.
4938
4939 To address this we refresh the thread list and check whether we
4940 have resumed threads _now_. In the example above, this removes
4941 thread 3 from the thread list. If thread 2 was re-resumed, we
4942 ignore this event. If we find no thread resumed, then we cancel
4943 the synchronous command show "no unwaited-for " to the user. */
4944 update_thread_list ();
4945
5b6d1e4f 4946 for (thread_info *thread : all_non_exited_threads (ecs->target))
f4836ba9
PA
4947 {
4948 if (thread->executing
4949 || thread->suspend.waitstatus_pending_p)
4950 {
4951 /* There were no unwaited-for children left in the target at
4952 some point, but there are now. Just ignore. */
4953 if (debug_infrun)
4954 fprintf_unfiltered (gdb_stdlog,
4955 "infrun: TARGET_WAITKIND_NO_RESUMED "
4956 "(ignoring: found resumed)\n");
4957 prepare_to_wait (ecs);
4958 return 1;
4959 }
4960 }
4961
4962 /* Note however that we may find no resumed thread because the whole
4963 process exited meanwhile (thus updating the thread list results
4964 in an empty thread list). In this case we know we'll be getting
4965 a process exit event shortly. */
5b6d1e4f 4966 for (inferior *inf : all_non_exited_inferiors (ecs->target))
f4836ba9 4967 {
08036331 4968 thread_info *thread = any_live_thread_of_inferior (inf);
f4836ba9
PA
4969 if (thread == NULL)
4970 {
4971 if (debug_infrun)
4972 fprintf_unfiltered (gdb_stdlog,
4973 "infrun: TARGET_WAITKIND_NO_RESUMED "
4974 "(expect process exit)\n");
4975 prepare_to_wait (ecs);
4976 return 1;
4977 }
4978 }
4979
4980 /* Go ahead and report the event. */
4981 return 0;
4982}
4983
05ba8510
PA
4984/* Given an execution control state that has been freshly filled in by
4985 an event from the inferior, figure out what it means and take
4986 appropriate action.
4987
4988 The alternatives are:
4989
22bcd14b 4990 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4991 debugger.
4992
4993 2) keep_going and return; to wait for the next event (set
4994 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4995 once). */
c906108c 4996
ec9499be 4997static void
595915c1 4998handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 4999{
595915c1
TT
5000 /* Make sure that all temporary struct value objects that were
5001 created during the handling of the event get deleted at the
5002 end. */
5003 scoped_value_mark free_values;
5004
d6b48e9c
PA
5005 enum stop_kind stop_soon;
5006
c29705b7
PW
5007 if (debug_infrun)
5008 fprintf_unfiltered (gdb_stdlog, "infrun: handle_inferior_event %s\n",
5009 target_waitstatus_to_string (&ecs->ws).c_str ());
5010
28736962
PA
5011 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5012 {
5013 /* We had an event in the inferior, but we are not interested in
5014 handling it at this level. The lower layers have already
5015 done what needs to be done, if anything.
5016
5017 One of the possible circumstances for this is when the
5018 inferior produces output for the console. The inferior has
5019 not stopped, and we are ignoring the event. Another possible
5020 circumstance is any event which the lower level knows will be
5021 reported multiple times without an intervening resume. */
28736962
PA
5022 prepare_to_wait (ecs);
5023 return;
5024 }
5025
65706a29
PA
5026 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5027 {
65706a29
PA
5028 prepare_to_wait (ecs);
5029 return;
5030 }
5031
0e5bf2a8 5032 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
5033 && handle_no_resumed (ecs))
5034 return;
0e5bf2a8 5035
5b6d1e4f
PA
5036 /* Cache the last target/ptid/waitstatus. */
5037 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
e02bc4cc 5038
ca005067 5039 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 5040 stop_stack_dummy = STOP_NONE;
ca005067 5041
0e5bf2a8
PA
5042 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5043 {
5044 /* No unwaited-for children left. IOW, all resumed children
5045 have exited. */
0e5bf2a8 5046 stop_print_frame = 0;
22bcd14b 5047 stop_waiting (ecs);
0e5bf2a8
PA
5048 return;
5049 }
5050
8c90c137 5051 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 5052 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6 5053 {
5b6d1e4f 5054 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
359f5fe6
PA
5055 /* If it's a new thread, add it to the thread database. */
5056 if (ecs->event_thread == NULL)
5b6d1e4f 5057 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
c1e36e3e
PA
5058
5059 /* Disable range stepping. If the next step request could use a
5060 range, this will be end up re-enabled then. */
5061 ecs->event_thread->control.may_range_step = 0;
359f5fe6 5062 }
88ed393a
JK
5063
5064 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 5065 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
5066
5067 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5068 reinit_frame_cache ();
5069
28736962
PA
5070 breakpoint_retire_moribund ();
5071
2b009048
DJ
5072 /* First, distinguish signals caused by the debugger from signals
5073 that have to do with the program's own actions. Note that
5074 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5075 on the operating system version. Here we detect when a SIGILL or
5076 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5077 something similar for SIGSEGV, since a SIGSEGV will be generated
5078 when we're trying to execute a breakpoint instruction on a
5079 non-executable stack. This happens for call dummy breakpoints
5080 for architectures like SPARC that place call dummies on the
5081 stack. */
2b009048 5082 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
5083 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5084 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5085 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 5086 {
00431a78 5087 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
de0a0249 5088
a01bda52 5089 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
5090 regcache_read_pc (regcache)))
5091 {
5092 if (debug_infrun)
5093 fprintf_unfiltered (gdb_stdlog,
5094 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 5095 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 5096 }
2b009048
DJ
5097 }
5098
28736962
PA
5099 /* Mark the non-executing threads accordingly. In all-stop, all
5100 threads of all processes are stopped when we get any event
e1316e60 5101 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
5102 {
5103 ptid_t mark_ptid;
5104
fbea99ea 5105 if (!target_is_non_stop_p ())
372316f1
PA
5106 mark_ptid = minus_one_ptid;
5107 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
5108 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
5109 {
5110 /* If we're handling a process exit in non-stop mode, even
5111 though threads haven't been deleted yet, one would think
5112 that there is nothing to do, as threads of the dead process
5113 will be soon deleted, and threads of any other process were
5114 left running. However, on some targets, threads survive a
5115 process exit event. E.g., for the "checkpoint" command,
5116 when the current checkpoint/fork exits, linux-fork.c
5117 automatically switches to another fork from within
5118 target_mourn_inferior, by associating the same
5119 inferior/thread to another fork. We haven't mourned yet at
5120 this point, but we must mark any threads left in the
5121 process as not-executing so that finish_thread_state marks
5122 them stopped (in the user's perspective) if/when we present
5123 the stop to the user. */
e99b03dc 5124 mark_ptid = ptid_t (ecs->ptid.pid ());
372316f1
PA
5125 }
5126 else
5127 mark_ptid = ecs->ptid;
5128
719546c4 5129 set_executing (ecs->target, mark_ptid, false);
372316f1
PA
5130
5131 /* Likewise the resumed flag. */
719546c4 5132 set_resumed (ecs->target, mark_ptid, false);
372316f1 5133 }
8c90c137 5134
488f131b
JB
5135 switch (ecs->ws.kind)
5136 {
5137 case TARGET_WAITKIND_LOADED:
00431a78 5138 context_switch (ecs);
b0f4b84b
DJ
5139 /* Ignore gracefully during startup of the inferior, as it might
5140 be the shell which has just loaded some objects, otherwise
5141 add the symbols for the newly loaded objects. Also ignore at
5142 the beginning of an attach or remote session; we will query
5143 the full list of libraries once the connection is
5144 established. */
4f5d7f63 5145
00431a78 5146 stop_soon = get_inferior_stop_soon (ecs);
c0236d92 5147 if (stop_soon == NO_STOP_QUIETLY)
488f131b 5148 {
edcc5120
TT
5149 struct regcache *regcache;
5150
00431a78 5151 regcache = get_thread_regcache (ecs->event_thread);
edcc5120
TT
5152
5153 handle_solib_event ();
5154
5155 ecs->event_thread->control.stop_bpstat
a01bda52 5156 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
5157 ecs->event_thread->suspend.stop_pc,
5158 ecs->event_thread, &ecs->ws);
ab04a2af 5159
c65d6b55
PA
5160 if (handle_stop_requested (ecs))
5161 return;
5162
ce12b012 5163 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
5164 {
5165 /* A catchpoint triggered. */
94c57d6a
PA
5166 process_event_stop_test (ecs);
5167 return;
edcc5120 5168 }
488f131b 5169
b0f4b84b
DJ
5170 /* If requested, stop when the dynamic linker notifies
5171 gdb of events. This allows the user to get control
5172 and place breakpoints in initializer routines for
5173 dynamically loaded objects (among other things). */
a493e3e2 5174 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
5175 if (stop_on_solib_events)
5176 {
55409f9d
DJ
5177 /* Make sure we print "Stopped due to solib-event" in
5178 normal_stop. */
5179 stop_print_frame = 1;
5180
22bcd14b 5181 stop_waiting (ecs);
b0f4b84b
DJ
5182 return;
5183 }
488f131b 5184 }
b0f4b84b
DJ
5185
5186 /* If we are skipping through a shell, or through shared library
5187 loading that we aren't interested in, resume the program. If
5c09a2c5 5188 we're running the program normally, also resume. */
b0f4b84b
DJ
5189 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5190 {
74960c60
VP
5191 /* Loading of shared libraries might have changed breakpoint
5192 addresses. Make sure new breakpoints are inserted. */
a25a5a45 5193 if (stop_soon == NO_STOP_QUIETLY)
74960c60 5194 insert_breakpoints ();
64ce06e4 5195 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
5196 prepare_to_wait (ecs);
5197 return;
5198 }
5199
5c09a2c5
PA
5200 /* But stop if we're attaching or setting up a remote
5201 connection. */
5202 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5203 || stop_soon == STOP_QUIETLY_REMOTE)
5204 {
5205 if (debug_infrun)
5206 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 5207 stop_waiting (ecs);
5c09a2c5
PA
5208 return;
5209 }
5210
5211 internal_error (__FILE__, __LINE__,
5212 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 5213
488f131b 5214 case TARGET_WAITKIND_SPURIOUS:
c65d6b55
PA
5215 if (handle_stop_requested (ecs))
5216 return;
00431a78 5217 context_switch (ecs);
64ce06e4 5218 resume (GDB_SIGNAL_0);
488f131b
JB
5219 prepare_to_wait (ecs);
5220 return;
c5aa993b 5221
65706a29 5222 case TARGET_WAITKIND_THREAD_CREATED:
c65d6b55
PA
5223 if (handle_stop_requested (ecs))
5224 return;
00431a78 5225 context_switch (ecs);
65706a29
PA
5226 if (!switch_back_to_stepped_thread (ecs))
5227 keep_going (ecs);
5228 return;
5229
488f131b 5230 case TARGET_WAITKIND_EXITED:
940c3c06 5231 case TARGET_WAITKIND_SIGNALLED:
fb66883a 5232 inferior_ptid = ecs->ptid;
5b6d1e4f 5233 set_current_inferior (find_inferior_ptid (ecs->target, ecs->ptid));
6c95b8df
PA
5234 set_current_program_space (current_inferior ()->pspace);
5235 handle_vfork_child_exec_or_exit (0);
223ffa71 5236 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 5237
0c557179
SDJ
5238 /* Clearing any previous state of convenience variables. */
5239 clear_exit_convenience_vars ();
5240
940c3c06
PA
5241 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5242 {
5243 /* Record the exit code in the convenience variable $_exitcode, so
5244 that the user can inspect this again later. */
5245 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5246 (LONGEST) ecs->ws.value.integer);
5247
5248 /* Also record this in the inferior itself. */
5249 current_inferior ()->has_exit_code = 1;
5250 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 5251
98eb56a4
PA
5252 /* Support the --return-child-result option. */
5253 return_child_result_value = ecs->ws.value.integer;
5254
76727919 5255 gdb::observers::exited.notify (ecs->ws.value.integer);
940c3c06
PA
5256 }
5257 else
0c557179 5258 {
00431a78 5259 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
0c557179
SDJ
5260
5261 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5262 {
5263 /* Set the value of the internal variable $_exitsignal,
5264 which holds the signal uncaught by the inferior. */
5265 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5266 gdbarch_gdb_signal_to_target (gdbarch,
5267 ecs->ws.value.sig));
5268 }
5269 else
5270 {
5271 /* We don't have access to the target's method used for
5272 converting between signal numbers (GDB's internal
5273 representation <-> target's representation).
5274 Therefore, we cannot do a good job at displaying this
5275 information to the user. It's better to just warn
5276 her about it (if infrun debugging is enabled), and
5277 give up. */
5278 if (debug_infrun)
5279 fprintf_filtered (gdb_stdlog, _("\
5280Cannot fill $_exitsignal with the correct signal number.\n"));
5281 }
5282
76727919 5283 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
0c557179 5284 }
8cf64490 5285
488f131b 5286 gdb_flush (gdb_stdout);
bc1e6c81 5287 target_mourn_inferior (inferior_ptid);
488f131b 5288 stop_print_frame = 0;
22bcd14b 5289 stop_waiting (ecs);
488f131b 5290 return;
c5aa993b 5291
488f131b 5292 case TARGET_WAITKIND_FORKED:
deb3b17b 5293 case TARGET_WAITKIND_VFORKED:
e2d96639
YQ
5294 /* Check whether the inferior is displaced stepping. */
5295 {
00431a78 5296 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
ac7936df 5297 struct gdbarch *gdbarch = regcache->arch ();
e2d96639
YQ
5298
5299 /* If checking displaced stepping is supported, and thread
5300 ecs->ptid is displaced stepping. */
00431a78 5301 if (displaced_step_in_progress_thread (ecs->event_thread))
e2d96639
YQ
5302 {
5303 struct inferior *parent_inf
5b6d1e4f 5304 = find_inferior_ptid (ecs->target, ecs->ptid);
e2d96639
YQ
5305 struct regcache *child_regcache;
5306 CORE_ADDR parent_pc;
5307
5308 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5309 indicating that the displaced stepping of syscall instruction
5310 has been done. Perform cleanup for parent process here. Note
5311 that this operation also cleans up the child process for vfork,
5312 because their pages are shared. */
00431a78 5313 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
c2829269
PA
5314 /* Start a new step-over in another thread if there's one
5315 that needs it. */
5316 start_step_over ();
e2d96639
YQ
5317
5318 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5319 {
c0987663 5320 struct displaced_step_inferior_state *displaced
00431a78 5321 = get_displaced_stepping_state (parent_inf);
c0987663 5322
e2d96639
YQ
5323 /* Restore scratch pad for child process. */
5324 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5325 }
5326
5327 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5328 the child's PC is also within the scratchpad. Set the child's PC
5329 to the parent's PC value, which has already been fixed up.
5330 FIXME: we use the parent's aspace here, although we're touching
5331 the child, because the child hasn't been added to the inferior
5332 list yet at this point. */
5333
5334 child_regcache
5b6d1e4f
PA
5335 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5336 ecs->ws.value.related_pid,
e2d96639
YQ
5337 gdbarch,
5338 parent_inf->aspace);
5339 /* Read PC value of parent process. */
5340 parent_pc = regcache_read_pc (regcache);
5341
5342 if (debug_displaced)
5343 fprintf_unfiltered (gdb_stdlog,
5344 "displaced: write child pc from %s to %s\n",
5345 paddress (gdbarch,
5346 regcache_read_pc (child_regcache)),
5347 paddress (gdbarch, parent_pc));
5348
5349 regcache_write_pc (child_regcache, parent_pc);
5350 }
5351 }
5352
00431a78 5353 context_switch (ecs);
5a2901d9 5354
b242c3c2
PA
5355 /* Immediately detach breakpoints from the child before there's
5356 any chance of letting the user delete breakpoints from the
5357 breakpoint lists. If we don't do this early, it's easy to
5358 leave left over traps in the child, vis: "break foo; catch
5359 fork; c; <fork>; del; c; <child calls foo>". We only follow
5360 the fork on the last `continue', and by that time the
5361 breakpoint at "foo" is long gone from the breakpoint table.
5362 If we vforked, then we don't need to unpatch here, since both
5363 parent and child are sharing the same memory pages; we'll
5364 need to unpatch at follow/detach time instead to be certain
5365 that new breakpoints added between catchpoint hit time and
5366 vfork follow are detached. */
5367 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5368 {
b242c3c2
PA
5369 /* This won't actually modify the breakpoint list, but will
5370 physically remove the breakpoints from the child. */
d80ee84f 5371 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5372 }
5373
34b7e8a6 5374 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5375
e58b0e63
PA
5376 /* In case the event is caught by a catchpoint, remember that
5377 the event is to be followed at the next resume of the thread,
5378 and not immediately. */
5379 ecs->event_thread->pending_follow = ecs->ws;
5380
f2ffa92b
PA
5381 ecs->event_thread->suspend.stop_pc
5382 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
675bf4cb 5383
16c381f0 5384 ecs->event_thread->control.stop_bpstat
a01bda52 5385 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5386 ecs->event_thread->suspend.stop_pc,
5387 ecs->event_thread, &ecs->ws);
675bf4cb 5388
c65d6b55
PA
5389 if (handle_stop_requested (ecs))
5390 return;
5391
ce12b012
PA
5392 /* If no catchpoint triggered for this, then keep going. Note
5393 that we're interested in knowing the bpstat actually causes a
5394 stop, not just if it may explain the signal. Software
5395 watchpoints, for example, always appear in the bpstat. */
5396 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5397 {
e58b0e63 5398 int should_resume;
3e43a32a
MS
5399 int follow_child
5400 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5401
a493e3e2 5402 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63 5403
5b6d1e4f
PA
5404 process_stratum_target *targ
5405 = ecs->event_thread->inf->process_target ();
5406
e58b0e63
PA
5407 should_resume = follow_fork ();
5408
5b6d1e4f
PA
5409 /* Note that one of these may be an invalid pointer,
5410 depending on detach_fork. */
00431a78 5411 thread_info *parent = ecs->event_thread;
5b6d1e4f
PA
5412 thread_info *child
5413 = find_thread_ptid (targ, ecs->ws.value.related_pid);
6c95b8df 5414
a2077e25
PA
5415 /* At this point, the parent is marked running, and the
5416 child is marked stopped. */
5417
5418 /* If not resuming the parent, mark it stopped. */
5419 if (follow_child && !detach_fork && !non_stop && !sched_multi)
00431a78 5420 parent->set_running (false);
a2077e25
PA
5421
5422 /* If resuming the child, mark it running. */
5423 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
00431a78 5424 child->set_running (true);
a2077e25 5425
6c95b8df 5426 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5427 if (!detach_fork && (non_stop
5428 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5429 {
5430 if (follow_child)
5431 switch_to_thread (parent);
5432 else
5433 switch_to_thread (child);
5434
5435 ecs->event_thread = inferior_thread ();
5436 ecs->ptid = inferior_ptid;
5437 keep_going (ecs);
5438 }
5439
5440 if (follow_child)
5441 switch_to_thread (child);
5442 else
5443 switch_to_thread (parent);
5444
e58b0e63
PA
5445 ecs->event_thread = inferior_thread ();
5446 ecs->ptid = inferior_ptid;
5447
5448 if (should_resume)
5449 keep_going (ecs);
5450 else
22bcd14b 5451 stop_waiting (ecs);
04e68871
DJ
5452 return;
5453 }
94c57d6a
PA
5454 process_event_stop_test (ecs);
5455 return;
488f131b 5456
6c95b8df
PA
5457 case TARGET_WAITKIND_VFORK_DONE:
5458 /* Done with the shared memory region. Re-insert breakpoints in
5459 the parent, and keep going. */
5460
00431a78 5461 context_switch (ecs);
6c95b8df
PA
5462
5463 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5464 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5465
5466 if (handle_stop_requested (ecs))
5467 return;
5468
6c95b8df
PA
5469 /* This also takes care of reinserting breakpoints in the
5470 previously locked inferior. */
5471 keep_going (ecs);
5472 return;
5473
488f131b 5474 case TARGET_WAITKIND_EXECD:
488f131b 5475
cbd2b4e3
PA
5476 /* Note we can't read registers yet (the stop_pc), because we
5477 don't yet know the inferior's post-exec architecture.
5478 'stop_pc' is explicitly read below instead. */
00431a78 5479 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5480
6c95b8df
PA
5481 /* Do whatever is necessary to the parent branch of the vfork. */
5482 handle_vfork_child_exec_or_exit (1);
5483
795e548f
PA
5484 /* This causes the eventpoints and symbol table to be reset.
5485 Must do this now, before trying to determine whether to
5486 stop. */
71b43ef8 5487 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5488
17d8546e
DB
5489 /* In follow_exec we may have deleted the original thread and
5490 created a new one. Make sure that the event thread is the
5491 execd thread for that case (this is a nop otherwise). */
5492 ecs->event_thread = inferior_thread ();
5493
f2ffa92b
PA
5494 ecs->event_thread->suspend.stop_pc
5495 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
ecdc3a72 5496
16c381f0 5497 ecs->event_thread->control.stop_bpstat
a01bda52 5498 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5499 ecs->event_thread->suspend.stop_pc,
5500 ecs->event_thread, &ecs->ws);
795e548f 5501
71b43ef8
PA
5502 /* Note that this may be referenced from inside
5503 bpstat_stop_status above, through inferior_has_execd. */
5504 xfree (ecs->ws.value.execd_pathname);
5505 ecs->ws.value.execd_pathname = NULL;
5506
c65d6b55
PA
5507 if (handle_stop_requested (ecs))
5508 return;
5509
04e68871 5510 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5511 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5512 {
a493e3e2 5513 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5514 keep_going (ecs);
5515 return;
5516 }
94c57d6a
PA
5517 process_event_stop_test (ecs);
5518 return;
488f131b 5519
b4dc5ffa
MK
5520 /* Be careful not to try to gather much state about a thread
5521 that's in a syscall. It's frequently a losing proposition. */
488f131b 5522 case TARGET_WAITKIND_SYSCALL_ENTRY:
1777feb0 5523 /* Getting the current syscall number. */
94c57d6a
PA
5524 if (handle_syscall_event (ecs) == 0)
5525 process_event_stop_test (ecs);
5526 return;
c906108c 5527
488f131b
JB
5528 /* Before examining the threads further, step this thread to
5529 get it entirely out of the syscall. (We get notice of the
5530 event when the thread is just on the verge of exiting a
5531 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5532 into user code.) */
488f131b 5533 case TARGET_WAITKIND_SYSCALL_RETURN:
94c57d6a
PA
5534 if (handle_syscall_event (ecs) == 0)
5535 process_event_stop_test (ecs);
5536 return;
c906108c 5537
488f131b 5538 case TARGET_WAITKIND_STOPPED:
4f5d7f63
PA
5539 handle_signal_stop (ecs);
5540 return;
c906108c 5541
b2175913
MS
5542 case TARGET_WAITKIND_NO_HISTORY:
5543 /* Reverse execution: target ran out of history info. */
eab402df 5544
d1988021 5545 /* Switch to the stopped thread. */
00431a78 5546 context_switch (ecs);
d1988021
MM
5547 if (debug_infrun)
5548 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5549
34b7e8a6 5550 delete_just_stopped_threads_single_step_breakpoints ();
f2ffa92b
PA
5551 ecs->event_thread->suspend.stop_pc
5552 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
c65d6b55
PA
5553
5554 if (handle_stop_requested (ecs))
5555 return;
5556
76727919 5557 gdb::observers::no_history.notify ();
22bcd14b 5558 stop_waiting (ecs);
b2175913 5559 return;
488f131b 5560 }
4f5d7f63
PA
5561}
5562
372316f1
PA
5563/* Restart threads back to what they were trying to do back when we
5564 paused them for an in-line step-over. The EVENT_THREAD thread is
5565 ignored. */
4d9d9d04
PA
5566
5567static void
372316f1
PA
5568restart_threads (struct thread_info *event_thread)
5569{
372316f1
PA
5570 /* In case the instruction just stepped spawned a new thread. */
5571 update_thread_list ();
5572
08036331 5573 for (thread_info *tp : all_non_exited_threads ())
372316f1 5574 {
f3f8ece4
PA
5575 switch_to_thread_no_regs (tp);
5576
372316f1
PA
5577 if (tp == event_thread)
5578 {
5579 if (debug_infrun)
5580 fprintf_unfiltered (gdb_stdlog,
5581 "infrun: restart threads: "
5582 "[%s] is event thread\n",
a068643d 5583 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5584 continue;
5585 }
5586
5587 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5588 {
5589 if (debug_infrun)
5590 fprintf_unfiltered (gdb_stdlog,
5591 "infrun: restart threads: "
5592 "[%s] not meant to be running\n",
a068643d 5593 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5594 continue;
5595 }
5596
5597 if (tp->resumed)
5598 {
5599 if (debug_infrun)
5600 fprintf_unfiltered (gdb_stdlog,
5601 "infrun: restart threads: [%s] resumed\n",
a068643d 5602 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5603 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5604 continue;
5605 }
5606
5607 if (thread_is_in_step_over_chain (tp))
5608 {
5609 if (debug_infrun)
5610 fprintf_unfiltered (gdb_stdlog,
5611 "infrun: restart threads: "
5612 "[%s] needs step-over\n",
a068643d 5613 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5614 gdb_assert (!tp->resumed);
5615 continue;
5616 }
5617
5618
5619 if (tp->suspend.waitstatus_pending_p)
5620 {
5621 if (debug_infrun)
5622 fprintf_unfiltered (gdb_stdlog,
5623 "infrun: restart threads: "
5624 "[%s] has pending status\n",
a068643d 5625 target_pid_to_str (tp->ptid).c_str ());
719546c4 5626 tp->resumed = true;
372316f1
PA
5627 continue;
5628 }
5629
c65d6b55
PA
5630 gdb_assert (!tp->stop_requested);
5631
372316f1
PA
5632 /* If some thread needs to start a step-over at this point, it
5633 should still be in the step-over queue, and thus skipped
5634 above. */
5635 if (thread_still_needs_step_over (tp))
5636 {
5637 internal_error (__FILE__, __LINE__,
5638 "thread [%s] needs a step-over, but not in "
5639 "step-over queue\n",
a068643d 5640 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5641 }
5642
5643 if (currently_stepping (tp))
5644 {
5645 if (debug_infrun)
5646 fprintf_unfiltered (gdb_stdlog,
5647 "infrun: restart threads: [%s] was stepping\n",
a068643d 5648 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5649 keep_going_stepped_thread (tp);
5650 }
5651 else
5652 {
5653 struct execution_control_state ecss;
5654 struct execution_control_state *ecs = &ecss;
5655
5656 if (debug_infrun)
5657 fprintf_unfiltered (gdb_stdlog,
5658 "infrun: restart threads: [%s] continuing\n",
a068643d 5659 target_pid_to_str (tp->ptid).c_str ());
372316f1 5660 reset_ecs (ecs, tp);
00431a78 5661 switch_to_thread (tp);
372316f1
PA
5662 keep_going_pass_signal (ecs);
5663 }
5664 }
5665}
5666
5667/* Callback for iterate_over_threads. Find a resumed thread that has
5668 a pending waitstatus. */
5669
5670static int
5671resumed_thread_with_pending_status (struct thread_info *tp,
5672 void *arg)
5673{
5674 return (tp->resumed
5675 && tp->suspend.waitstatus_pending_p);
5676}
5677
5678/* Called when we get an event that may finish an in-line or
5679 out-of-line (displaced stepping) step-over started previously.
5680 Return true if the event is processed and we should go back to the
5681 event loop; false if the caller should continue processing the
5682 event. */
5683
5684static int
4d9d9d04
PA
5685finish_step_over (struct execution_control_state *ecs)
5686{
372316f1
PA
5687 int had_step_over_info;
5688
00431a78 5689 displaced_step_fixup (ecs->event_thread,
4d9d9d04
PA
5690 ecs->event_thread->suspend.stop_signal);
5691
372316f1
PA
5692 had_step_over_info = step_over_info_valid_p ();
5693
5694 if (had_step_over_info)
4d9d9d04
PA
5695 {
5696 /* If we're stepping over a breakpoint with all threads locked,
5697 then only the thread that was stepped should be reporting
5698 back an event. */
5699 gdb_assert (ecs->event_thread->control.trap_expected);
5700
c65d6b55 5701 clear_step_over_info ();
4d9d9d04
PA
5702 }
5703
fbea99ea 5704 if (!target_is_non_stop_p ())
372316f1 5705 return 0;
4d9d9d04
PA
5706
5707 /* Start a new step-over in another thread if there's one that
5708 needs it. */
5709 start_step_over ();
372316f1
PA
5710
5711 /* If we were stepping over a breakpoint before, and haven't started
5712 a new in-line step-over sequence, then restart all other threads
5713 (except the event thread). We can't do this in all-stop, as then
5714 e.g., we wouldn't be able to issue any other remote packet until
5715 these other threads stop. */
5716 if (had_step_over_info && !step_over_info_valid_p ())
5717 {
5718 struct thread_info *pending;
5719
5720 /* If we only have threads with pending statuses, the restart
5721 below won't restart any thread and so nothing re-inserts the
5722 breakpoint we just stepped over. But we need it inserted
5723 when we later process the pending events, otherwise if
5724 another thread has a pending event for this breakpoint too,
5725 we'd discard its event (because the breakpoint that
5726 originally caused the event was no longer inserted). */
00431a78 5727 context_switch (ecs);
372316f1
PA
5728 insert_breakpoints ();
5729
5730 restart_threads (ecs->event_thread);
5731
5732 /* If we have events pending, go through handle_inferior_event
5733 again, picking up a pending event at random. This avoids
5734 thread starvation. */
5735
5736 /* But not if we just stepped over a watchpoint in order to let
5737 the instruction execute so we can evaluate its expression.
5738 The set of watchpoints that triggered is recorded in the
5739 breakpoint objects themselves (see bp->watchpoint_triggered).
5740 If we processed another event first, that other event could
5741 clobber this info. */
5742 if (ecs->event_thread->stepping_over_watchpoint)
5743 return 0;
5744
5745 pending = iterate_over_threads (resumed_thread_with_pending_status,
5746 NULL);
5747 if (pending != NULL)
5748 {
5749 struct thread_info *tp = ecs->event_thread;
5750 struct regcache *regcache;
5751
5752 if (debug_infrun)
5753 {
5754 fprintf_unfiltered (gdb_stdlog,
5755 "infrun: found resumed threads with "
5756 "pending events, saving status\n");
5757 }
5758
5759 gdb_assert (pending != tp);
5760
5761 /* Record the event thread's event for later. */
5762 save_waitstatus (tp, &ecs->ws);
5763 /* This was cleared early, by handle_inferior_event. Set it
5764 so this pending event is considered by
5765 do_target_wait. */
719546c4 5766 tp->resumed = true;
372316f1
PA
5767
5768 gdb_assert (!tp->executing);
5769
00431a78 5770 regcache = get_thread_regcache (tp);
372316f1
PA
5771 tp->suspend.stop_pc = regcache_read_pc (regcache);
5772
5773 if (debug_infrun)
5774 {
5775 fprintf_unfiltered (gdb_stdlog,
5776 "infrun: saved stop_pc=%s for %s "
5777 "(currently_stepping=%d)\n",
5778 paddress (target_gdbarch (),
5779 tp->suspend.stop_pc),
a068643d 5780 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
5781 currently_stepping (tp));
5782 }
5783
5784 /* This in-line step-over finished; clear this so we won't
5785 start a new one. This is what handle_signal_stop would
5786 do, if we returned false. */
5787 tp->stepping_over_breakpoint = 0;
5788
5789 /* Wake up the event loop again. */
5790 mark_async_event_handler (infrun_async_inferior_event_token);
5791
5792 prepare_to_wait (ecs);
5793 return 1;
5794 }
5795 }
5796
5797 return 0;
4d9d9d04
PA
5798}
5799
4f5d7f63
PA
5800/* Come here when the program has stopped with a signal. */
5801
5802static void
5803handle_signal_stop (struct execution_control_state *ecs)
5804{
5805 struct frame_info *frame;
5806 struct gdbarch *gdbarch;
5807 int stopped_by_watchpoint;
5808 enum stop_kind stop_soon;
5809 int random_signal;
c906108c 5810
f0407826
DE
5811 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5812
c65d6b55
PA
5813 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5814
f0407826
DE
5815 /* Do we need to clean up the state of a thread that has
5816 completed a displaced single-step? (Doing so usually affects
5817 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5818 if (finish_step_over (ecs))
5819 return;
f0407826
DE
5820
5821 /* If we either finished a single-step or hit a breakpoint, but
5822 the user wanted this thread to be stopped, pretend we got a
5823 SIG0 (generic unsignaled stop). */
5824 if (ecs->event_thread->stop_requested
5825 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5826 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5827
f2ffa92b
PA
5828 ecs->event_thread->suspend.stop_pc
5829 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
488f131b 5830
527159b7 5831 if (debug_infrun)
237fc4c9 5832 {
00431a78 5833 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
b926417a 5834 struct gdbarch *reg_gdbarch = regcache->arch ();
7f82dfc7 5835
f3f8ece4 5836 switch_to_thread (ecs->event_thread);
5af949e3
UW
5837
5838 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
b926417a 5839 paddress (reg_gdbarch,
f2ffa92b 5840 ecs->event_thread->suspend.stop_pc));
d92524f1 5841 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5842 {
5843 CORE_ADDR addr;
abbb1732 5844
237fc4c9
PA
5845 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5846
8b88a78e 5847 if (target_stopped_data_address (current_top_target (), &addr))
237fc4c9 5848 fprintf_unfiltered (gdb_stdlog,
5af949e3 5849 "infrun: stopped data address = %s\n",
b926417a 5850 paddress (reg_gdbarch, addr));
237fc4c9
PA
5851 else
5852 fprintf_unfiltered (gdb_stdlog,
5853 "infrun: (no data address available)\n");
5854 }
5855 }
527159b7 5856
36fa8042
PA
5857 /* This is originated from start_remote(), start_inferior() and
5858 shared libraries hook functions. */
00431a78 5859 stop_soon = get_inferior_stop_soon (ecs);
36fa8042
PA
5860 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5861 {
00431a78 5862 context_switch (ecs);
36fa8042
PA
5863 if (debug_infrun)
5864 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5865 stop_print_frame = 1;
22bcd14b 5866 stop_waiting (ecs);
36fa8042
PA
5867 return;
5868 }
5869
36fa8042
PA
5870 /* This originates from attach_command(). We need to overwrite
5871 the stop_signal here, because some kernels don't ignore a
5872 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5873 See more comments in inferior.h. On the other hand, if we
5874 get a non-SIGSTOP, report it to the user - assume the backend
5875 will handle the SIGSTOP if it should show up later.
5876
5877 Also consider that the attach is complete when we see a
5878 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5879 target extended-remote report it instead of a SIGSTOP
5880 (e.g. gdbserver). We already rely on SIGTRAP being our
5881 signal, so this is no exception.
5882
5883 Also consider that the attach is complete when we see a
5884 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5885 the target to stop all threads of the inferior, in case the
5886 low level attach operation doesn't stop them implicitly. If
5887 they weren't stopped implicitly, then the stub will report a
5888 GDB_SIGNAL_0, meaning: stopped for no particular reason
5889 other than GDB's request. */
5890 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5891 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5892 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5893 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5894 {
5895 stop_print_frame = 1;
22bcd14b 5896 stop_waiting (ecs);
36fa8042
PA
5897 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5898 return;
5899 }
5900
488f131b 5901 /* See if something interesting happened to the non-current thread. If
b40c7d58 5902 so, then switch to that thread. */
d7e15655 5903 if (ecs->ptid != inferior_ptid)
488f131b 5904 {
527159b7 5905 if (debug_infrun)
8a9de0e4 5906 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5907
00431a78 5908 context_switch (ecs);
c5aa993b 5909
9a4105ab 5910 if (deprecated_context_hook)
00431a78 5911 deprecated_context_hook (ecs->event_thread->global_num);
488f131b 5912 }
c906108c 5913
568d6575
UW
5914 /* At this point, get hold of the now-current thread's frame. */
5915 frame = get_current_frame ();
5916 gdbarch = get_frame_arch (frame);
5917
2adfaa28 5918 /* Pull the single step breakpoints out of the target. */
af48d08f 5919 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5920 {
af48d08f 5921 struct regcache *regcache;
af48d08f 5922 CORE_ADDR pc;
2adfaa28 5923
00431a78 5924 regcache = get_thread_regcache (ecs->event_thread);
8b86c959
YQ
5925 const address_space *aspace = regcache->aspace ();
5926
af48d08f 5927 pc = regcache_read_pc (regcache);
34b7e8a6 5928
af48d08f
PA
5929 /* However, before doing so, if this single-step breakpoint was
5930 actually for another thread, set this thread up for moving
5931 past it. */
5932 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5933 aspace, pc))
5934 {
5935 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5936 {
5937 if (debug_infrun)
5938 {
5939 fprintf_unfiltered (gdb_stdlog,
af48d08f 5940 "infrun: [%s] hit another thread's "
34b7e8a6 5941 "single-step breakpoint\n",
a068643d 5942 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28 5943 }
af48d08f
PA
5944 ecs->hit_singlestep_breakpoint = 1;
5945 }
5946 }
5947 else
5948 {
5949 if (debug_infrun)
5950 {
5951 fprintf_unfiltered (gdb_stdlog,
5952 "infrun: [%s] hit its "
5953 "single-step breakpoint\n",
a068643d 5954 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28
PA
5955 }
5956 }
488f131b 5957 }
af48d08f 5958 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5959
963f9c80
PA
5960 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5961 && ecs->event_thread->control.trap_expected
5962 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5963 stopped_by_watchpoint = 0;
5964 else
5965 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5966
5967 /* If necessary, step over this watchpoint. We'll be back to display
5968 it in a moment. */
5969 if (stopped_by_watchpoint
d92524f1 5970 && (target_have_steppable_watchpoint
568d6575 5971 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5972 {
488f131b
JB
5973 /* At this point, we are stopped at an instruction which has
5974 attempted to write to a piece of memory under control of
5975 a watchpoint. The instruction hasn't actually executed
5976 yet. If we were to evaluate the watchpoint expression
5977 now, we would get the old value, and therefore no change
5978 would seem to have occurred.
5979
5980 In order to make watchpoints work `right', we really need
5981 to complete the memory write, and then evaluate the
d983da9c
DJ
5982 watchpoint expression. We do this by single-stepping the
5983 target.
5984
7f89fd65 5985 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5986 it. For example, the PA can (with some kernel cooperation)
5987 single step over a watchpoint without disabling the watchpoint.
5988
5989 It is far more common to need to disable a watchpoint to step
5990 the inferior over it. If we have non-steppable watchpoints,
5991 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5992 disable all watchpoints.
5993
5994 Any breakpoint at PC must also be stepped over -- if there's
5995 one, it will have already triggered before the watchpoint
5996 triggered, and we either already reported it to the user, or
5997 it didn't cause a stop and we called keep_going. In either
5998 case, if there was a breakpoint at PC, we must be trying to
5999 step past it. */
6000 ecs->event_thread->stepping_over_watchpoint = 1;
6001 keep_going (ecs);
488f131b
JB
6002 return;
6003 }
6004
4e1c45ea 6005 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 6006 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
6007 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
6008 ecs->event_thread->control.stop_step = 0;
488f131b 6009 stop_print_frame = 1;
488f131b 6010 stopped_by_random_signal = 0;
ddfe970e 6011 bpstat stop_chain = NULL;
488f131b 6012
edb3359d
DJ
6013 /* Hide inlined functions starting here, unless we just performed stepi or
6014 nexti. After stepi and nexti, always show the innermost frame (not any
6015 inline function call sites). */
16c381f0 6016 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 6017 {
00431a78
PA
6018 const address_space *aspace
6019 = get_thread_regcache (ecs->event_thread)->aspace ();
0574c78f
GB
6020
6021 /* skip_inline_frames is expensive, so we avoid it if we can
6022 determine that the address is one where functions cannot have
6023 been inlined. This improves performance with inferiors that
6024 load a lot of shared libraries, because the solib event
6025 breakpoint is defined as the address of a function (i.e. not
6026 inline). Note that we have to check the previous PC as well
6027 as the current one to catch cases when we have just
6028 single-stepped off a breakpoint prior to reinstating it.
6029 Note that we're assuming that the code we single-step to is
6030 not inline, but that's not definitive: there's nothing
6031 preventing the event breakpoint function from containing
6032 inlined code, and the single-step ending up there. If the
6033 user had set a breakpoint on that inlined code, the missing
6034 skip_inline_frames call would break things. Fortunately
6035 that's an extremely unlikely scenario. */
f2ffa92b
PA
6036 if (!pc_at_non_inline_function (aspace,
6037 ecs->event_thread->suspend.stop_pc,
6038 &ecs->ws)
a210c238
MR
6039 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6040 && ecs->event_thread->control.trap_expected
6041 && pc_at_non_inline_function (aspace,
6042 ecs->event_thread->prev_pc,
09ac7c10 6043 &ecs->ws)))
1c5a993e 6044 {
f2ffa92b
PA
6045 stop_chain = build_bpstat_chain (aspace,
6046 ecs->event_thread->suspend.stop_pc,
6047 &ecs->ws);
00431a78 6048 skip_inline_frames (ecs->event_thread, stop_chain);
1c5a993e
MR
6049
6050 /* Re-fetch current thread's frame in case that invalidated
6051 the frame cache. */
6052 frame = get_current_frame ();
6053 gdbarch = get_frame_arch (frame);
6054 }
0574c78f 6055 }
edb3359d 6056
a493e3e2 6057 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 6058 && ecs->event_thread->control.trap_expected
568d6575 6059 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 6060 && currently_stepping (ecs->event_thread))
3352ef37 6061 {
b50d7442 6062 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 6063 also on an instruction that needs to be stepped multiple
1777feb0 6064 times before it's been fully executing. E.g., architectures
3352ef37
AC
6065 with a delay slot. It needs to be stepped twice, once for
6066 the instruction and once for the delay slot. */
6067 int step_through_delay
568d6575 6068 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 6069
527159b7 6070 if (debug_infrun && step_through_delay)
8a9de0e4 6071 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
6072 if (ecs->event_thread->control.step_range_end == 0
6073 && step_through_delay)
3352ef37
AC
6074 {
6075 /* The user issued a continue when stopped at a breakpoint.
6076 Set up for another trap and get out of here. */
4e1c45ea 6077 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
6078 keep_going (ecs);
6079 return;
6080 }
6081 else if (step_through_delay)
6082 {
6083 /* The user issued a step when stopped at a breakpoint.
6084 Maybe we should stop, maybe we should not - the delay
6085 slot *might* correspond to a line of source. In any
ca67fcb8
VP
6086 case, don't decide that here, just set
6087 ecs->stepping_over_breakpoint, making sure we
6088 single-step again before breakpoints are re-inserted. */
4e1c45ea 6089 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
6090 }
6091 }
6092
ab04a2af
TT
6093 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6094 handles this event. */
6095 ecs->event_thread->control.stop_bpstat
a01bda52 6096 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
6097 ecs->event_thread->suspend.stop_pc,
6098 ecs->event_thread, &ecs->ws, stop_chain);
db82e815 6099
ab04a2af
TT
6100 /* Following in case break condition called a
6101 function. */
6102 stop_print_frame = 1;
73dd234f 6103
ab04a2af
TT
6104 /* This is where we handle "moribund" watchpoints. Unlike
6105 software breakpoints traps, hardware watchpoint traps are
6106 always distinguishable from random traps. If no high-level
6107 watchpoint is associated with the reported stop data address
6108 anymore, then the bpstat does not explain the signal ---
6109 simply make sure to ignore it if `stopped_by_watchpoint' is
6110 set. */
6111
6112 if (debug_infrun
6113 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 6114 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 6115 GDB_SIGNAL_TRAP)
ab04a2af
TT
6116 && stopped_by_watchpoint)
6117 fprintf_unfiltered (gdb_stdlog,
6118 "infrun: no user watchpoint explains "
6119 "watchpoint SIGTRAP, ignoring\n");
73dd234f 6120
bac7d97b 6121 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
6122 at one stage in the past included checks for an inferior
6123 function call's call dummy's return breakpoint. The original
6124 comment, that went with the test, read:
03cebad2 6125
ab04a2af
TT
6126 ``End of a stack dummy. Some systems (e.g. Sony news) give
6127 another signal besides SIGTRAP, so check here as well as
6128 above.''
73dd234f 6129
ab04a2af
TT
6130 If someone ever tries to get call dummys on a
6131 non-executable stack to work (where the target would stop
6132 with something like a SIGSEGV), then those tests might need
6133 to be re-instated. Given, however, that the tests were only
6134 enabled when momentary breakpoints were not being used, I
6135 suspect that it won't be the case.
488f131b 6136
ab04a2af
TT
6137 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6138 be necessary for call dummies on a non-executable stack on
6139 SPARC. */
488f131b 6140
bac7d97b 6141 /* See if the breakpoints module can explain the signal. */
47591c29
PA
6142 random_signal
6143 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6144 ecs->event_thread->suspend.stop_signal);
bac7d97b 6145
1cf4d951
PA
6146 /* Maybe this was a trap for a software breakpoint that has since
6147 been removed. */
6148 if (random_signal && target_stopped_by_sw_breakpoint ())
6149 {
5133a315
LM
6150 if (gdbarch_program_breakpoint_here_p (gdbarch,
6151 ecs->event_thread->suspend.stop_pc))
1cf4d951
PA
6152 {
6153 struct regcache *regcache;
6154 int decr_pc;
6155
6156 /* Re-adjust PC to what the program would see if GDB was not
6157 debugging it. */
00431a78 6158 regcache = get_thread_regcache (ecs->event_thread);
527a273a 6159 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
6160 if (decr_pc != 0)
6161 {
07036511
TT
6162 gdb::optional<scoped_restore_tmpl<int>>
6163 restore_operation_disable;
1cf4d951
PA
6164
6165 if (record_full_is_used ())
07036511
TT
6166 restore_operation_disable.emplace
6167 (record_full_gdb_operation_disable_set ());
1cf4d951 6168
f2ffa92b
PA
6169 regcache_write_pc (regcache,
6170 ecs->event_thread->suspend.stop_pc + decr_pc);
1cf4d951
PA
6171 }
6172 }
6173 else
6174 {
6175 /* A delayed software breakpoint event. Ignore the trap. */
6176 if (debug_infrun)
6177 fprintf_unfiltered (gdb_stdlog,
6178 "infrun: delayed software breakpoint "
6179 "trap, ignoring\n");
6180 random_signal = 0;
6181 }
6182 }
6183
6184 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6185 has since been removed. */
6186 if (random_signal && target_stopped_by_hw_breakpoint ())
6187 {
6188 /* A delayed hardware breakpoint event. Ignore the trap. */
6189 if (debug_infrun)
6190 fprintf_unfiltered (gdb_stdlog,
6191 "infrun: delayed hardware breakpoint/watchpoint "
6192 "trap, ignoring\n");
6193 random_signal = 0;
6194 }
6195
bac7d97b
PA
6196 /* If not, perhaps stepping/nexting can. */
6197 if (random_signal)
6198 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6199 && currently_stepping (ecs->event_thread));
ab04a2af 6200
2adfaa28
PA
6201 /* Perhaps the thread hit a single-step breakpoint of _another_
6202 thread. Single-step breakpoints are transparent to the
6203 breakpoints module. */
6204 if (random_signal)
6205 random_signal = !ecs->hit_singlestep_breakpoint;
6206
bac7d97b
PA
6207 /* No? Perhaps we got a moribund watchpoint. */
6208 if (random_signal)
6209 random_signal = !stopped_by_watchpoint;
ab04a2af 6210
c65d6b55
PA
6211 /* Always stop if the user explicitly requested this thread to
6212 remain stopped. */
6213 if (ecs->event_thread->stop_requested)
6214 {
6215 random_signal = 1;
6216 if (debug_infrun)
6217 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6218 }
6219
488f131b
JB
6220 /* For the program's own signals, act according to
6221 the signal handling tables. */
6222
ce12b012 6223 if (random_signal)
488f131b
JB
6224 {
6225 /* Signal not for debugging purposes. */
5b6d1e4f 6226 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
c9737c08 6227 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 6228
527159b7 6229 if (debug_infrun)
c9737c08
PA
6230 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6231 gdb_signal_to_symbol_string (stop_signal));
527159b7 6232
488f131b
JB
6233 stopped_by_random_signal = 1;
6234
252fbfc8
PA
6235 /* Always stop on signals if we're either just gaining control
6236 of the program, or the user explicitly requested this thread
6237 to remain stopped. */
d6b48e9c 6238 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 6239 || ecs->event_thread->stop_requested
24291992 6240 || (!inf->detaching
16c381f0 6241 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 6242 {
22bcd14b 6243 stop_waiting (ecs);
488f131b
JB
6244 return;
6245 }
b57bacec
PA
6246
6247 /* Notify observers the signal has "handle print" set. Note we
6248 returned early above if stopping; normal_stop handles the
6249 printing in that case. */
6250 if (signal_print[ecs->event_thread->suspend.stop_signal])
6251 {
6252 /* The signal table tells us to print about this signal. */
223ffa71 6253 target_terminal::ours_for_output ();
76727919 6254 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
223ffa71 6255 target_terminal::inferior ();
b57bacec 6256 }
488f131b
JB
6257
6258 /* Clear the signal if it should not be passed. */
16c381f0 6259 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 6260 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 6261
f2ffa92b 6262 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
16c381f0 6263 && ecs->event_thread->control.trap_expected
8358c15c 6264 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
6265 {
6266 /* We were just starting a new sequence, attempting to
6267 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 6268 Instead this signal arrives. This signal will take us out
68f53502
AC
6269 of the stepping range so GDB needs to remember to, when
6270 the signal handler returns, resume stepping off that
6271 breakpoint. */
6272 /* To simplify things, "continue" is forced to use the same
6273 code paths as single-step - set a breakpoint at the
6274 signal return address and then, once hit, step off that
6275 breakpoint. */
237fc4c9
PA
6276 if (debug_infrun)
6277 fprintf_unfiltered (gdb_stdlog,
6278 "infrun: signal arrived while stepping over "
6279 "breakpoint\n");
d3169d93 6280
2c03e5be 6281 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 6282 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6283 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6284 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
6285
6286 /* If we were nexting/stepping some other thread, switch to
6287 it, so that we don't continue it, losing control. */
6288 if (!switch_back_to_stepped_thread (ecs))
6289 keep_going (ecs);
9d799f85 6290 return;
68f53502 6291 }
9d799f85 6292
e5f8a7cc 6293 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
f2ffa92b
PA
6294 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6295 ecs->event_thread)
e5f8a7cc 6296 || ecs->event_thread->control.step_range_end == 1)
edb3359d 6297 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 6298 ecs->event_thread->control.step_stack_frame_id)
8358c15c 6299 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
6300 {
6301 /* The inferior is about to take a signal that will take it
6302 out of the single step range. Set a breakpoint at the
6303 current PC (which is presumably where the signal handler
6304 will eventually return) and then allow the inferior to
6305 run free.
6306
6307 Note that this is only needed for a signal delivered
6308 while in the single-step range. Nested signals aren't a
6309 problem as they eventually all return. */
237fc4c9
PA
6310 if (debug_infrun)
6311 fprintf_unfiltered (gdb_stdlog,
6312 "infrun: signal may take us out of "
6313 "single-step range\n");
6314
372316f1 6315 clear_step_over_info ();
2c03e5be 6316 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 6317 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6318 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6319 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
6320 keep_going (ecs);
6321 return;
d303a6c7 6322 }
9d799f85 6323
85102364 6324 /* Note: step_resume_breakpoint may be non-NULL. This occurs
9d799f85
AC
6325 when either there's a nested signal, or when there's a
6326 pending signal enabled just as the signal handler returns
6327 (leaving the inferior at the step-resume-breakpoint without
6328 actually executing it). Either way continue until the
6329 breakpoint is really hit. */
c447ac0b
PA
6330
6331 if (!switch_back_to_stepped_thread (ecs))
6332 {
6333 if (debug_infrun)
6334 fprintf_unfiltered (gdb_stdlog,
6335 "infrun: random signal, keep going\n");
6336
6337 keep_going (ecs);
6338 }
6339 return;
488f131b 6340 }
94c57d6a
PA
6341
6342 process_event_stop_test (ecs);
6343}
6344
6345/* Come here when we've got some debug event / signal we can explain
6346 (IOW, not a random signal), and test whether it should cause a
6347 stop, or whether we should resume the inferior (transparently).
6348 E.g., could be a breakpoint whose condition evaluates false; we
6349 could be still stepping within the line; etc. */
6350
6351static void
6352process_event_stop_test (struct execution_control_state *ecs)
6353{
6354 struct symtab_and_line stop_pc_sal;
6355 struct frame_info *frame;
6356 struct gdbarch *gdbarch;
cdaa5b73
PA
6357 CORE_ADDR jmp_buf_pc;
6358 struct bpstat_what what;
94c57d6a 6359
cdaa5b73 6360 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6361
cdaa5b73
PA
6362 frame = get_current_frame ();
6363 gdbarch = get_frame_arch (frame);
fcf3daef 6364
cdaa5b73 6365 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6366
cdaa5b73
PA
6367 if (what.call_dummy)
6368 {
6369 stop_stack_dummy = what.call_dummy;
6370 }
186c406b 6371
243a9253
PA
6372 /* A few breakpoint types have callbacks associated (e.g.,
6373 bp_jit_event). Run them now. */
6374 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6375
cdaa5b73
PA
6376 /* If we hit an internal event that triggers symbol changes, the
6377 current frame will be invalidated within bpstat_what (e.g., if we
6378 hit an internal solib event). Re-fetch it. */
6379 frame = get_current_frame ();
6380 gdbarch = get_frame_arch (frame);
e2e4d78b 6381
cdaa5b73
PA
6382 switch (what.main_action)
6383 {
6384 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6385 /* If we hit the breakpoint at longjmp while stepping, we
6386 install a momentary breakpoint at the target of the
6387 jmp_buf. */
186c406b 6388
cdaa5b73
PA
6389 if (debug_infrun)
6390 fprintf_unfiltered (gdb_stdlog,
6391 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6392
cdaa5b73 6393 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6394
cdaa5b73
PA
6395 if (what.is_longjmp)
6396 {
6397 struct value *arg_value;
6398
6399 /* If we set the longjmp breakpoint via a SystemTap probe,
6400 then use it to extract the arguments. The destination PC
6401 is the third argument to the probe. */
6402 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6403 if (arg_value)
8fa0c4f8
AA
6404 {
6405 jmp_buf_pc = value_as_address (arg_value);
6406 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6407 }
cdaa5b73
PA
6408 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6409 || !gdbarch_get_longjmp_target (gdbarch,
6410 frame, &jmp_buf_pc))
e2e4d78b 6411 {
cdaa5b73
PA
6412 if (debug_infrun)
6413 fprintf_unfiltered (gdb_stdlog,
6414 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6415 "(!gdbarch_get_longjmp_target)\n");
6416 keep_going (ecs);
6417 return;
e2e4d78b 6418 }
e2e4d78b 6419
cdaa5b73
PA
6420 /* Insert a breakpoint at resume address. */
6421 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6422 }
6423 else
6424 check_exception_resume (ecs, frame);
6425 keep_going (ecs);
6426 return;
e81a37f7 6427
cdaa5b73
PA
6428 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6429 {
6430 struct frame_info *init_frame;
e81a37f7 6431
cdaa5b73 6432 /* There are several cases to consider.
c906108c 6433
cdaa5b73
PA
6434 1. The initiating frame no longer exists. In this case we
6435 must stop, because the exception or longjmp has gone too
6436 far.
2c03e5be 6437
cdaa5b73
PA
6438 2. The initiating frame exists, and is the same as the
6439 current frame. We stop, because the exception or longjmp
6440 has been caught.
2c03e5be 6441
cdaa5b73
PA
6442 3. The initiating frame exists and is different from the
6443 current frame. This means the exception or longjmp has
6444 been caught beneath the initiating frame, so keep going.
c906108c 6445
cdaa5b73
PA
6446 4. longjmp breakpoint has been placed just to protect
6447 against stale dummy frames and user is not interested in
6448 stopping around longjmps. */
c5aa993b 6449
cdaa5b73
PA
6450 if (debug_infrun)
6451 fprintf_unfiltered (gdb_stdlog,
6452 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6453
cdaa5b73
PA
6454 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6455 != NULL);
6456 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6457
cdaa5b73
PA
6458 if (what.is_longjmp)
6459 {
b67a2c6f 6460 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6461
cdaa5b73 6462 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6463 {
cdaa5b73
PA
6464 /* Case 4. */
6465 keep_going (ecs);
6466 return;
e5ef252a 6467 }
cdaa5b73 6468 }
c5aa993b 6469
cdaa5b73 6470 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6471
cdaa5b73
PA
6472 if (init_frame)
6473 {
6474 struct frame_id current_id
6475 = get_frame_id (get_current_frame ());
6476 if (frame_id_eq (current_id,
6477 ecs->event_thread->initiating_frame))
6478 {
6479 /* Case 2. Fall through. */
6480 }
6481 else
6482 {
6483 /* Case 3. */
6484 keep_going (ecs);
6485 return;
6486 }
68f53502 6487 }
488f131b 6488
cdaa5b73
PA
6489 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6490 exists. */
6491 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6492
bdc36728 6493 end_stepping_range (ecs);
cdaa5b73
PA
6494 }
6495 return;
e5ef252a 6496
cdaa5b73
PA
6497 case BPSTAT_WHAT_SINGLE:
6498 if (debug_infrun)
6499 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6500 ecs->event_thread->stepping_over_breakpoint = 1;
6501 /* Still need to check other stuff, at least the case where we
6502 are stepping and step out of the right range. */
6503 break;
e5ef252a 6504
cdaa5b73
PA
6505 case BPSTAT_WHAT_STEP_RESUME:
6506 if (debug_infrun)
6507 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6508
cdaa5b73
PA
6509 delete_step_resume_breakpoint (ecs->event_thread);
6510 if (ecs->event_thread->control.proceed_to_finish
6511 && execution_direction == EXEC_REVERSE)
6512 {
6513 struct thread_info *tp = ecs->event_thread;
6514
6515 /* We are finishing a function in reverse, and just hit the
6516 step-resume breakpoint at the start address of the
6517 function, and we're almost there -- just need to back up
6518 by one more single-step, which should take us back to the
6519 function call. */
6520 tp->control.step_range_start = tp->control.step_range_end = 1;
6521 keep_going (ecs);
e5ef252a 6522 return;
cdaa5b73
PA
6523 }
6524 fill_in_stop_func (gdbarch, ecs);
f2ffa92b 6525 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
cdaa5b73
PA
6526 && execution_direction == EXEC_REVERSE)
6527 {
6528 /* We are stepping over a function call in reverse, and just
6529 hit the step-resume breakpoint at the start address of
6530 the function. Go back to single-stepping, which should
6531 take us back to the function call. */
6532 ecs->event_thread->stepping_over_breakpoint = 1;
6533 keep_going (ecs);
6534 return;
6535 }
6536 break;
e5ef252a 6537
cdaa5b73
PA
6538 case BPSTAT_WHAT_STOP_NOISY:
6539 if (debug_infrun)
6540 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6541 stop_print_frame = 1;
e5ef252a 6542
99619bea
PA
6543 /* Assume the thread stopped for a breapoint. We'll still check
6544 whether a/the breakpoint is there when the thread is next
6545 resumed. */
6546 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6547
22bcd14b 6548 stop_waiting (ecs);
cdaa5b73 6549 return;
e5ef252a 6550
cdaa5b73
PA
6551 case BPSTAT_WHAT_STOP_SILENT:
6552 if (debug_infrun)
6553 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6554 stop_print_frame = 0;
e5ef252a 6555
99619bea
PA
6556 /* Assume the thread stopped for a breapoint. We'll still check
6557 whether a/the breakpoint is there when the thread is next
6558 resumed. */
6559 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6560 stop_waiting (ecs);
cdaa5b73
PA
6561 return;
6562
6563 case BPSTAT_WHAT_HP_STEP_RESUME:
6564 if (debug_infrun)
6565 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6566
6567 delete_step_resume_breakpoint (ecs->event_thread);
6568 if (ecs->event_thread->step_after_step_resume_breakpoint)
6569 {
6570 /* Back when the step-resume breakpoint was inserted, we
6571 were trying to single-step off a breakpoint. Go back to
6572 doing that. */
6573 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6574 ecs->event_thread->stepping_over_breakpoint = 1;
6575 keep_going (ecs);
6576 return;
e5ef252a 6577 }
cdaa5b73
PA
6578 break;
6579
6580 case BPSTAT_WHAT_KEEP_CHECKING:
6581 break;
e5ef252a 6582 }
c906108c 6583
af48d08f
PA
6584 /* If we stepped a permanent breakpoint and we had a high priority
6585 step-resume breakpoint for the address we stepped, but we didn't
6586 hit it, then we must have stepped into the signal handler. The
6587 step-resume was only necessary to catch the case of _not_
6588 stepping into the handler, so delete it, and fall through to
6589 checking whether the step finished. */
6590 if (ecs->event_thread->stepped_breakpoint)
6591 {
6592 struct breakpoint *sr_bp
6593 = ecs->event_thread->control.step_resume_breakpoint;
6594
8d707a12
PA
6595 if (sr_bp != NULL
6596 && sr_bp->loc->permanent
af48d08f
PA
6597 && sr_bp->type == bp_hp_step_resume
6598 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6599 {
6600 if (debug_infrun)
6601 fprintf_unfiltered (gdb_stdlog,
6602 "infrun: stepped permanent breakpoint, stopped in "
6603 "handler\n");
6604 delete_step_resume_breakpoint (ecs->event_thread);
6605 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6606 }
6607 }
6608
cdaa5b73
PA
6609 /* We come here if we hit a breakpoint but should not stop for it.
6610 Possibly we also were stepping and should stop for that. So fall
6611 through and test for stepping. But, if not stepping, do not
6612 stop. */
c906108c 6613
a7212384
UW
6614 /* In all-stop mode, if we're currently stepping but have stopped in
6615 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6616 if (switch_back_to_stepped_thread (ecs))
6617 return;
776f04fa 6618
8358c15c 6619 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6620 {
527159b7 6621 if (debug_infrun)
d3169d93
DJ
6622 fprintf_unfiltered (gdb_stdlog,
6623 "infrun: step-resume breakpoint is inserted\n");
527159b7 6624
488f131b
JB
6625 /* Having a step-resume breakpoint overrides anything
6626 else having to do with stepping commands until
6627 that breakpoint is reached. */
488f131b
JB
6628 keep_going (ecs);
6629 return;
6630 }
c5aa993b 6631
16c381f0 6632 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6633 {
527159b7 6634 if (debug_infrun)
8a9de0e4 6635 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6636 /* Likewise if we aren't even stepping. */
488f131b
JB
6637 keep_going (ecs);
6638 return;
6639 }
c5aa993b 6640
4b7703ad
JB
6641 /* Re-fetch current thread's frame in case the code above caused
6642 the frame cache to be re-initialized, making our FRAME variable
6643 a dangling pointer. */
6644 frame = get_current_frame ();
628fe4e4 6645 gdbarch = get_frame_arch (frame);
7e324e48 6646 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6647
488f131b 6648 /* If stepping through a line, keep going if still within it.
c906108c 6649
488f131b
JB
6650 Note that step_range_end is the address of the first instruction
6651 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6652 within it!
6653
6654 Note also that during reverse execution, we may be stepping
6655 through a function epilogue and therefore must detect when
6656 the current-frame changes in the middle of a line. */
6657
f2ffa92b
PA
6658 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6659 ecs->event_thread)
31410e84 6660 && (execution_direction != EXEC_REVERSE
388a8562 6661 || frame_id_eq (get_frame_id (frame),
16c381f0 6662 ecs->event_thread->control.step_frame_id)))
488f131b 6663 {
527159b7 6664 if (debug_infrun)
5af949e3
UW
6665 fprintf_unfiltered
6666 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6667 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6668 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6669
c1e36e3e
PA
6670 /* Tentatively re-enable range stepping; `resume' disables it if
6671 necessary (e.g., if we're stepping over a breakpoint or we
6672 have software watchpoints). */
6673 ecs->event_thread->control.may_range_step = 1;
6674
b2175913
MS
6675 /* When stepping backward, stop at beginning of line range
6676 (unless it's the function entry point, in which case
6677 keep going back to the call point). */
f2ffa92b 6678 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
16c381f0 6679 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6680 && stop_pc != ecs->stop_func_start
6681 && execution_direction == EXEC_REVERSE)
bdc36728 6682 end_stepping_range (ecs);
b2175913
MS
6683 else
6684 keep_going (ecs);
6685
488f131b
JB
6686 return;
6687 }
c5aa993b 6688
488f131b 6689 /* We stepped out of the stepping range. */
c906108c 6690
488f131b 6691 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6692 loader dynamic symbol resolution code...
6693
6694 EXEC_FORWARD: we keep on single stepping until we exit the run
6695 time loader code and reach the callee's address.
6696
6697 EXEC_REVERSE: we've already executed the callee (backward), and
6698 the runtime loader code is handled just like any other
6699 undebuggable function call. Now we need only keep stepping
6700 backward through the trampoline code, and that's handled further
6701 down, so there is nothing for us to do here. */
6702
6703 if (execution_direction != EXEC_REVERSE
16c381f0 6704 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
f2ffa92b 6705 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
488f131b 6706 {
4c8c40e6 6707 CORE_ADDR pc_after_resolver =
f2ffa92b
PA
6708 gdbarch_skip_solib_resolver (gdbarch,
6709 ecs->event_thread->suspend.stop_pc);
c906108c 6710
527159b7 6711 if (debug_infrun)
3e43a32a
MS
6712 fprintf_unfiltered (gdb_stdlog,
6713 "infrun: stepped into dynsym resolve code\n");
527159b7 6714
488f131b
JB
6715 if (pc_after_resolver)
6716 {
6717 /* Set up a step-resume breakpoint at the address
6718 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6719 symtab_and_line sr_sal;
488f131b 6720 sr_sal.pc = pc_after_resolver;
6c95b8df 6721 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6722
a6d9a66e
UW
6723 insert_step_resume_breakpoint_at_sal (gdbarch,
6724 sr_sal, null_frame_id);
c5aa993b 6725 }
c906108c 6726
488f131b
JB
6727 keep_going (ecs);
6728 return;
6729 }
c906108c 6730
1d509aa6
MM
6731 /* Step through an indirect branch thunk. */
6732 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
f2ffa92b
PA
6733 && gdbarch_in_indirect_branch_thunk (gdbarch,
6734 ecs->event_thread->suspend.stop_pc))
1d509aa6
MM
6735 {
6736 if (debug_infrun)
6737 fprintf_unfiltered (gdb_stdlog,
6738 "infrun: stepped into indirect branch thunk\n");
6739 keep_going (ecs);
6740 return;
6741 }
6742
16c381f0
JK
6743 if (ecs->event_thread->control.step_range_end != 1
6744 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6745 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6746 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6747 {
527159b7 6748 if (debug_infrun)
3e43a32a
MS
6749 fprintf_unfiltered (gdb_stdlog,
6750 "infrun: stepped into signal trampoline\n");
42edda50 6751 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6752 a signal trampoline (either by a signal being delivered or by
6753 the signal handler returning). Just single-step until the
6754 inferior leaves the trampoline (either by calling the handler
6755 or returning). */
488f131b
JB
6756 keep_going (ecs);
6757 return;
6758 }
c906108c 6759
14132e89
MR
6760 /* If we're in the return path from a shared library trampoline,
6761 we want to proceed through the trampoline when stepping. */
6762 /* macro/2012-04-25: This needs to come before the subroutine
6763 call check below as on some targets return trampolines look
6764 like subroutine calls (MIPS16 return thunks). */
6765 if (gdbarch_in_solib_return_trampoline (gdbarch,
f2ffa92b
PA
6766 ecs->event_thread->suspend.stop_pc,
6767 ecs->stop_func_name)
14132e89
MR
6768 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6769 {
6770 /* Determine where this trampoline returns. */
f2ffa92b
PA
6771 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6772 CORE_ADDR real_stop_pc
6773 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
14132e89
MR
6774
6775 if (debug_infrun)
6776 fprintf_unfiltered (gdb_stdlog,
6777 "infrun: stepped into solib return tramp\n");
6778
6779 /* Only proceed through if we know where it's going. */
6780 if (real_stop_pc)
6781 {
6782 /* And put the step-breakpoint there and go until there. */
51abb421 6783 symtab_and_line sr_sal;
14132e89
MR
6784 sr_sal.pc = real_stop_pc;
6785 sr_sal.section = find_pc_overlay (sr_sal.pc);
6786 sr_sal.pspace = get_frame_program_space (frame);
6787
6788 /* Do not specify what the fp should be when we stop since
6789 on some machines the prologue is where the new fp value
6790 is established. */
6791 insert_step_resume_breakpoint_at_sal (gdbarch,
6792 sr_sal, null_frame_id);
6793
6794 /* Restart without fiddling with the step ranges or
6795 other state. */
6796 keep_going (ecs);
6797 return;
6798 }
6799 }
6800
c17eaafe
DJ
6801 /* Check for subroutine calls. The check for the current frame
6802 equalling the step ID is not necessary - the check of the
6803 previous frame's ID is sufficient - but it is a common case and
6804 cheaper than checking the previous frame's ID.
14e60db5
DJ
6805
6806 NOTE: frame_id_eq will never report two invalid frame IDs as
6807 being equal, so to get into this block, both the current and
6808 previous frame must have valid frame IDs. */
005ca36a
JB
6809 /* The outer_frame_id check is a heuristic to detect stepping
6810 through startup code. If we step over an instruction which
6811 sets the stack pointer from an invalid value to a valid value,
6812 we may detect that as a subroutine call from the mythical
6813 "outermost" function. This could be fixed by marking
6814 outermost frames as !stack_p,code_p,special_p. Then the
6815 initial outermost frame, before sp was valid, would
ce6cca6d 6816 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6817 for more. */
edb3359d 6818 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6819 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6820 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6821 ecs->event_thread->control.step_stack_frame_id)
6822 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6823 outer_frame_id)
885eeb5b 6824 || (ecs->event_thread->control.step_start_function
f2ffa92b 6825 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
488f131b 6826 {
f2ffa92b 6827 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
95918acb 6828 CORE_ADDR real_stop_pc;
8fb3e588 6829
527159b7 6830 if (debug_infrun)
8a9de0e4 6831 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6832
b7a084be 6833 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6834 {
6835 /* I presume that step_over_calls is only 0 when we're
6836 supposed to be stepping at the assembly language level
6837 ("stepi"). Just stop. */
388a8562 6838 /* And this works the same backward as frontward. MVS */
bdc36728 6839 end_stepping_range (ecs);
95918acb
AC
6840 return;
6841 }
8fb3e588 6842
388a8562
MS
6843 /* Reverse stepping through solib trampolines. */
6844
6845 if (execution_direction == EXEC_REVERSE
16c381f0 6846 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6847 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6848 || (ecs->stop_func_start == 0
6849 && in_solib_dynsym_resolve_code (stop_pc))))
6850 {
6851 /* Any solib trampoline code can be handled in reverse
6852 by simply continuing to single-step. We have already
6853 executed the solib function (backwards), and a few
6854 steps will take us back through the trampoline to the
6855 caller. */
6856 keep_going (ecs);
6857 return;
6858 }
6859
16c381f0 6860 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6861 {
b2175913
MS
6862 /* We're doing a "next".
6863
6864 Normal (forward) execution: set a breakpoint at the
6865 callee's return address (the address at which the caller
6866 will resume).
6867
6868 Reverse (backward) execution. set the step-resume
6869 breakpoint at the start of the function that we just
6870 stepped into (backwards), and continue to there. When we
6130d0b7 6871 get there, we'll need to single-step back to the caller. */
b2175913
MS
6872
6873 if (execution_direction == EXEC_REVERSE)
6874 {
acf9414f
JK
6875 /* If we're already at the start of the function, we've either
6876 just stepped backward into a single instruction function,
6877 or stepped back out of a signal handler to the first instruction
6878 of the function. Just keep going, which will single-step back
6879 to the caller. */
58c48e72 6880 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 6881 {
acf9414f 6882 /* Normal function call return (static or dynamic). */
51abb421 6883 symtab_and_line sr_sal;
acf9414f
JK
6884 sr_sal.pc = ecs->stop_func_start;
6885 sr_sal.pspace = get_frame_program_space (frame);
6886 insert_step_resume_breakpoint_at_sal (gdbarch,
6887 sr_sal, null_frame_id);
6888 }
b2175913
MS
6889 }
6890 else
568d6575 6891 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6892
8567c30f
AC
6893 keep_going (ecs);
6894 return;
6895 }
a53c66de 6896
95918acb 6897 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6898 calling routine and the real function), locate the real
6899 function. That's what tells us (a) whether we want to step
6900 into it at all, and (b) what prologue we want to run to the
6901 end of, if we do step into it. */
568d6575 6902 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6903 if (real_stop_pc == 0)
568d6575 6904 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6905 if (real_stop_pc != 0)
6906 ecs->stop_func_start = real_stop_pc;
8fb3e588 6907
db5f024e 6908 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 6909 {
51abb421 6910 symtab_and_line sr_sal;
1b2bfbb9 6911 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6912 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6913
a6d9a66e
UW
6914 insert_step_resume_breakpoint_at_sal (gdbarch,
6915 sr_sal, null_frame_id);
8fb3e588
AC
6916 keep_going (ecs);
6917 return;
1b2bfbb9
RC
6918 }
6919
95918acb 6920 /* If we have line number information for the function we are
1bfeeb0f
JL
6921 thinking of stepping into and the function isn't on the skip
6922 list, step into it.
95918acb 6923
8fb3e588
AC
6924 If there are several symtabs at that PC (e.g. with include
6925 files), just want to know whether *any* of them have line
6926 numbers. find_pc_line handles this. */
95918acb
AC
6927 {
6928 struct symtab_and_line tmp_sal;
8fb3e588 6929
95918acb 6930 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6931 if (tmp_sal.line != 0
85817405 6932 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4a4c04f1
BE
6933 tmp_sal)
6934 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
95918acb 6935 {
b2175913 6936 if (execution_direction == EXEC_REVERSE)
568d6575 6937 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6938 else
568d6575 6939 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6940 return;
6941 }
6942 }
6943
6944 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6945 set, we stop the step so that the user has a chance to switch
6946 in assembly mode. */
16c381f0 6947 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6948 && step_stop_if_no_debug)
95918acb 6949 {
bdc36728 6950 end_stepping_range (ecs);
95918acb
AC
6951 return;
6952 }
6953
b2175913
MS
6954 if (execution_direction == EXEC_REVERSE)
6955 {
acf9414f
JK
6956 /* If we're already at the start of the function, we've either just
6957 stepped backward into a single instruction function without line
6958 number info, or stepped back out of a signal handler to the first
6959 instruction of the function without line number info. Just keep
6960 going, which will single-step back to the caller. */
6961 if (ecs->stop_func_start != stop_pc)
6962 {
6963 /* Set a breakpoint at callee's start address.
6964 From there we can step once and be back in the caller. */
51abb421 6965 symtab_and_line sr_sal;
acf9414f
JK
6966 sr_sal.pc = ecs->stop_func_start;
6967 sr_sal.pspace = get_frame_program_space (frame);
6968 insert_step_resume_breakpoint_at_sal (gdbarch,
6969 sr_sal, null_frame_id);
6970 }
b2175913
MS
6971 }
6972 else
6973 /* Set a breakpoint at callee's return address (the address
6974 at which the caller will resume). */
568d6575 6975 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6976
95918acb 6977 keep_going (ecs);
488f131b 6978 return;
488f131b 6979 }
c906108c 6980
fdd654f3
MS
6981 /* Reverse stepping through solib trampolines. */
6982
6983 if (execution_direction == EXEC_REVERSE
16c381f0 6984 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3 6985 {
f2ffa92b
PA
6986 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6987
fdd654f3
MS
6988 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6989 || (ecs->stop_func_start == 0
6990 && in_solib_dynsym_resolve_code (stop_pc)))
6991 {
6992 /* Any solib trampoline code can be handled in reverse
6993 by simply continuing to single-step. We have already
6994 executed the solib function (backwards), and a few
6995 steps will take us back through the trampoline to the
6996 caller. */
6997 keep_going (ecs);
6998 return;
6999 }
7000 else if (in_solib_dynsym_resolve_code (stop_pc))
7001 {
7002 /* Stepped backward into the solib dynsym resolver.
7003 Set a breakpoint at its start and continue, then
7004 one more step will take us out. */
51abb421 7005 symtab_and_line sr_sal;
fdd654f3 7006 sr_sal.pc = ecs->stop_func_start;
9d1807c3 7007 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
7008 insert_step_resume_breakpoint_at_sal (gdbarch,
7009 sr_sal, null_frame_id);
7010 keep_going (ecs);
7011 return;
7012 }
7013 }
7014
f2ffa92b 7015 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7ed0fe66 7016
1b2bfbb9
RC
7017 /* NOTE: tausq/2004-05-24: This if block used to be done before all
7018 the trampoline processing logic, however, there are some trampolines
7019 that have no names, so we should do trampoline handling first. */
16c381f0 7020 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 7021 && ecs->stop_func_name == NULL
2afb61aa 7022 && stop_pc_sal.line == 0)
1b2bfbb9 7023 {
527159b7 7024 if (debug_infrun)
3e43a32a
MS
7025 fprintf_unfiltered (gdb_stdlog,
7026 "infrun: stepped into undebuggable function\n");
527159b7 7027
1b2bfbb9 7028 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
7029 undebuggable function (where there is no debugging information
7030 and no line number corresponding to the address where the
1b2bfbb9
RC
7031 inferior stopped). Since we want to skip this kind of code,
7032 we keep going until the inferior returns from this
14e60db5
DJ
7033 function - unless the user has asked us not to (via
7034 set step-mode) or we no longer know how to get back
7035 to the call site. */
7036 if (step_stop_if_no_debug
c7ce8faa 7037 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
7038 {
7039 /* If we have no line number and the step-stop-if-no-debug
7040 is set, we stop the step so that the user has a chance to
7041 switch in assembly mode. */
bdc36728 7042 end_stepping_range (ecs);
1b2bfbb9
RC
7043 return;
7044 }
7045 else
7046 {
7047 /* Set a breakpoint at callee's return address (the address
7048 at which the caller will resume). */
568d6575 7049 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
7050 keep_going (ecs);
7051 return;
7052 }
7053 }
7054
16c381f0 7055 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
7056 {
7057 /* It is stepi or nexti. We always want to stop stepping after
7058 one instruction. */
527159b7 7059 if (debug_infrun)
8a9de0e4 7060 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 7061 end_stepping_range (ecs);
1b2bfbb9
RC
7062 return;
7063 }
7064
2afb61aa 7065 if (stop_pc_sal.line == 0)
488f131b
JB
7066 {
7067 /* We have no line number information. That means to stop
7068 stepping (does this always happen right after one instruction,
7069 when we do "s" in a function with no line numbers,
7070 or can this happen as a result of a return or longjmp?). */
527159b7 7071 if (debug_infrun)
8a9de0e4 7072 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 7073 end_stepping_range (ecs);
488f131b
JB
7074 return;
7075 }
c906108c 7076
edb3359d
DJ
7077 /* Look for "calls" to inlined functions, part one. If the inline
7078 frame machinery detected some skipped call sites, we have entered
7079 a new inline function. */
7080
7081 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 7082 ecs->event_thread->control.step_frame_id)
00431a78 7083 && inline_skipped_frames (ecs->event_thread))
edb3359d 7084 {
edb3359d
DJ
7085 if (debug_infrun)
7086 fprintf_unfiltered (gdb_stdlog,
7087 "infrun: stepped into inlined function\n");
7088
51abb421 7089 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 7090
16c381f0 7091 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
7092 {
7093 /* For "step", we're going to stop. But if the call site
7094 for this inlined function is on the same source line as
7095 we were previously stepping, go down into the function
7096 first. Otherwise stop at the call site. */
7097
7098 if (call_sal.line == ecs->event_thread->current_line
7099 && call_sal.symtab == ecs->event_thread->current_symtab)
4a4c04f1
BE
7100 {
7101 step_into_inline_frame (ecs->event_thread);
7102 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7103 {
7104 keep_going (ecs);
7105 return;
7106 }
7107 }
edb3359d 7108
bdc36728 7109 end_stepping_range (ecs);
edb3359d
DJ
7110 return;
7111 }
7112 else
7113 {
7114 /* For "next", we should stop at the call site if it is on a
7115 different source line. Otherwise continue through the
7116 inlined function. */
7117 if (call_sal.line == ecs->event_thread->current_line
7118 && call_sal.symtab == ecs->event_thread->current_symtab)
7119 keep_going (ecs);
7120 else
bdc36728 7121 end_stepping_range (ecs);
edb3359d
DJ
7122 return;
7123 }
7124 }
7125
7126 /* Look for "calls" to inlined functions, part two. If we are still
7127 in the same real function we were stepping through, but we have
7128 to go further up to find the exact frame ID, we are stepping
7129 through a more inlined call beyond its call site. */
7130
7131 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7132 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 7133 ecs->event_thread->control.step_frame_id)
edb3359d 7134 && stepped_in_from (get_current_frame (),
16c381f0 7135 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
7136 {
7137 if (debug_infrun)
7138 fprintf_unfiltered (gdb_stdlog,
7139 "infrun: stepping through inlined function\n");
7140
4a4c04f1
BE
7141 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7142 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
edb3359d
DJ
7143 keep_going (ecs);
7144 else
bdc36728 7145 end_stepping_range (ecs);
edb3359d
DJ
7146 return;
7147 }
7148
f2ffa92b 7149 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
7150 && (ecs->event_thread->current_line != stop_pc_sal.line
7151 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
7152 {
7153 /* We are at the start of a different line. So stop. Note that
7154 we don't stop if we step into the middle of a different line.
7155 That is said to make things like for (;;) statements work
7156 better. */
527159b7 7157 if (debug_infrun)
3e43a32a
MS
7158 fprintf_unfiltered (gdb_stdlog,
7159 "infrun: stepped to a different line\n");
bdc36728 7160 end_stepping_range (ecs);
488f131b
JB
7161 return;
7162 }
c906108c 7163
488f131b 7164 /* We aren't done stepping.
c906108c 7165
488f131b
JB
7166 Optimize by setting the stepping range to the line.
7167 (We might not be in the original line, but if we entered a
7168 new line in mid-statement, we continue stepping. This makes
7169 things like for(;;) statements work better.) */
c906108c 7170
16c381f0
JK
7171 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7172 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 7173 ecs->event_thread->control.may_range_step = 1;
edb3359d 7174 set_step_info (frame, stop_pc_sal);
488f131b 7175
527159b7 7176 if (debug_infrun)
8a9de0e4 7177 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 7178 keep_going (ecs);
104c1213
JM
7179}
7180
c447ac0b
PA
7181/* In all-stop mode, if we're currently stepping but have stopped in
7182 some other thread, we may need to switch back to the stepped
7183 thread. Returns true we set the inferior running, false if we left
7184 it stopped (and the event needs further processing). */
7185
7186static int
7187switch_back_to_stepped_thread (struct execution_control_state *ecs)
7188{
fbea99ea 7189 if (!target_is_non_stop_p ())
c447ac0b 7190 {
99619bea
PA
7191 struct thread_info *stepping_thread;
7192
7193 /* If any thread is blocked on some internal breakpoint, and we
7194 simply need to step over that breakpoint to get it going
7195 again, do that first. */
7196
7197 /* However, if we see an event for the stepping thread, then we
7198 know all other threads have been moved past their breakpoints
7199 already. Let the caller check whether the step is finished,
7200 etc., before deciding to move it past a breakpoint. */
7201 if (ecs->event_thread->control.step_range_end != 0)
7202 return 0;
7203
7204 /* Check if the current thread is blocked on an incomplete
7205 step-over, interrupted by a random signal. */
7206 if (ecs->event_thread->control.trap_expected
7207 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 7208 {
99619bea
PA
7209 if (debug_infrun)
7210 {
7211 fprintf_unfiltered (gdb_stdlog,
7212 "infrun: need to finish step-over of [%s]\n",
a068643d 7213 target_pid_to_str (ecs->event_thread->ptid).c_str ());
99619bea
PA
7214 }
7215 keep_going (ecs);
7216 return 1;
7217 }
2adfaa28 7218
99619bea
PA
7219 /* Check if the current thread is blocked by a single-step
7220 breakpoint of another thread. */
7221 if (ecs->hit_singlestep_breakpoint)
7222 {
7223 if (debug_infrun)
7224 {
7225 fprintf_unfiltered (gdb_stdlog,
7226 "infrun: need to step [%s] over single-step "
7227 "breakpoint\n",
a068643d 7228 target_pid_to_str (ecs->ptid).c_str ());
99619bea
PA
7229 }
7230 keep_going (ecs);
7231 return 1;
7232 }
7233
4d9d9d04
PA
7234 /* If this thread needs yet another step-over (e.g., stepping
7235 through a delay slot), do it first before moving on to
7236 another thread. */
7237 if (thread_still_needs_step_over (ecs->event_thread))
7238 {
7239 if (debug_infrun)
7240 {
7241 fprintf_unfiltered (gdb_stdlog,
7242 "infrun: thread [%s] still needs step-over\n",
a068643d 7243 target_pid_to_str (ecs->event_thread->ptid).c_str ());
4d9d9d04
PA
7244 }
7245 keep_going (ecs);
7246 return 1;
7247 }
70509625 7248
483805cf
PA
7249 /* If scheduler locking applies even if not stepping, there's no
7250 need to walk over threads. Above we've checked whether the
7251 current thread is stepping. If some other thread not the
7252 event thread is stepping, then it must be that scheduler
7253 locking is not in effect. */
856e7dd6 7254 if (schedlock_applies (ecs->event_thread))
483805cf
PA
7255 return 0;
7256
4d9d9d04
PA
7257 /* Otherwise, we no longer expect a trap in the current thread.
7258 Clear the trap_expected flag before switching back -- this is
7259 what keep_going does as well, if we call it. */
7260 ecs->event_thread->control.trap_expected = 0;
7261
7262 /* Likewise, clear the signal if it should not be passed. */
7263 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7264 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7265
7266 /* Do all pending step-overs before actually proceeding with
483805cf 7267 step/next/etc. */
4d9d9d04
PA
7268 if (start_step_over ())
7269 {
7270 prepare_to_wait (ecs);
7271 return 1;
7272 }
7273
7274 /* Look for the stepping/nexting thread. */
483805cf 7275 stepping_thread = NULL;
4d9d9d04 7276
08036331 7277 for (thread_info *tp : all_non_exited_threads ())
483805cf 7278 {
f3f8ece4
PA
7279 switch_to_thread_no_regs (tp);
7280
fbea99ea
PA
7281 /* Ignore threads of processes the caller is not
7282 resuming. */
483805cf 7283 if (!sched_multi
5b6d1e4f
PA
7284 && (tp->inf->process_target () != ecs->target
7285 || tp->inf->pid != ecs->ptid.pid ()))
483805cf
PA
7286 continue;
7287
7288 /* When stepping over a breakpoint, we lock all threads
7289 except the one that needs to move past the breakpoint.
7290 If a non-event thread has this set, the "incomplete
7291 step-over" check above should have caught it earlier. */
372316f1
PA
7292 if (tp->control.trap_expected)
7293 {
7294 internal_error (__FILE__, __LINE__,
7295 "[%s] has inconsistent state: "
7296 "trap_expected=%d\n",
a068643d 7297 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
7298 tp->control.trap_expected);
7299 }
483805cf
PA
7300
7301 /* Did we find the stepping thread? */
7302 if (tp->control.step_range_end)
7303 {
7304 /* Yep. There should only one though. */
7305 gdb_assert (stepping_thread == NULL);
7306
7307 /* The event thread is handled at the top, before we
7308 enter this loop. */
7309 gdb_assert (tp != ecs->event_thread);
7310
7311 /* If some thread other than the event thread is
7312 stepping, then scheduler locking can't be in effect,
7313 otherwise we wouldn't have resumed the current event
7314 thread in the first place. */
856e7dd6 7315 gdb_assert (!schedlock_applies (tp));
483805cf
PA
7316
7317 stepping_thread = tp;
7318 }
99619bea
PA
7319 }
7320
483805cf 7321 if (stepping_thread != NULL)
99619bea 7322 {
c447ac0b
PA
7323 if (debug_infrun)
7324 fprintf_unfiltered (gdb_stdlog,
7325 "infrun: switching back to stepped thread\n");
7326
2ac7589c
PA
7327 if (keep_going_stepped_thread (stepping_thread))
7328 {
7329 prepare_to_wait (ecs);
7330 return 1;
7331 }
7332 }
f3f8ece4
PA
7333
7334 switch_to_thread (ecs->event_thread);
2ac7589c 7335 }
2adfaa28 7336
2ac7589c
PA
7337 return 0;
7338}
2adfaa28 7339
2ac7589c
PA
7340/* Set a previously stepped thread back to stepping. Returns true on
7341 success, false if the resume is not possible (e.g., the thread
7342 vanished). */
7343
7344static int
7345keep_going_stepped_thread (struct thread_info *tp)
7346{
7347 struct frame_info *frame;
2ac7589c
PA
7348 struct execution_control_state ecss;
7349 struct execution_control_state *ecs = &ecss;
2adfaa28 7350
2ac7589c
PA
7351 /* If the stepping thread exited, then don't try to switch back and
7352 resume it, which could fail in several different ways depending
7353 on the target. Instead, just keep going.
2adfaa28 7354
2ac7589c
PA
7355 We can find a stepping dead thread in the thread list in two
7356 cases:
2adfaa28 7357
2ac7589c
PA
7358 - The target supports thread exit events, and when the target
7359 tries to delete the thread from the thread list, inferior_ptid
7360 pointed at the exiting thread. In such case, calling
7361 delete_thread does not really remove the thread from the list;
7362 instead, the thread is left listed, with 'exited' state.
64ce06e4 7363
2ac7589c
PA
7364 - The target's debug interface does not support thread exit
7365 events, and so we have no idea whatsoever if the previously
7366 stepping thread is still alive. For that reason, we need to
7367 synchronously query the target now. */
2adfaa28 7368
00431a78 7369 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
2ac7589c
PA
7370 {
7371 if (debug_infrun)
7372 fprintf_unfiltered (gdb_stdlog,
7373 "infrun: not resuming previously "
7374 "stepped thread, it has vanished\n");
7375
00431a78 7376 delete_thread (tp);
2ac7589c 7377 return 0;
c447ac0b 7378 }
2ac7589c
PA
7379
7380 if (debug_infrun)
7381 fprintf_unfiltered (gdb_stdlog,
7382 "infrun: resuming previously stepped thread\n");
7383
7384 reset_ecs (ecs, tp);
00431a78 7385 switch_to_thread (tp);
2ac7589c 7386
f2ffa92b 7387 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
2ac7589c 7388 frame = get_current_frame ();
2ac7589c
PA
7389
7390 /* If the PC of the thread we were trying to single-step has
7391 changed, then that thread has trapped or been signaled, but the
7392 event has not been reported to GDB yet. Re-poll the target
7393 looking for this particular thread's event (i.e. temporarily
7394 enable schedlock) by:
7395
7396 - setting a break at the current PC
7397 - resuming that particular thread, only (by setting trap
7398 expected)
7399
7400 This prevents us continuously moving the single-step breakpoint
7401 forward, one instruction at a time, overstepping. */
7402
f2ffa92b 7403 if (tp->suspend.stop_pc != tp->prev_pc)
2ac7589c
PA
7404 {
7405 ptid_t resume_ptid;
7406
7407 if (debug_infrun)
7408 fprintf_unfiltered (gdb_stdlog,
7409 "infrun: expected thread advanced also (%s -> %s)\n",
7410 paddress (target_gdbarch (), tp->prev_pc),
f2ffa92b 7411 paddress (target_gdbarch (), tp->suspend.stop_pc));
2ac7589c
PA
7412
7413 /* Clear the info of the previous step-over, as it's no longer
7414 valid (if the thread was trying to step over a breakpoint, it
7415 has already succeeded). It's what keep_going would do too,
7416 if we called it. Do this before trying to insert the sss
7417 breakpoint, otherwise if we were previously trying to step
7418 over this exact address in another thread, the breakpoint is
7419 skipped. */
7420 clear_step_over_info ();
7421 tp->control.trap_expected = 0;
7422
7423 insert_single_step_breakpoint (get_frame_arch (frame),
7424 get_frame_address_space (frame),
f2ffa92b 7425 tp->suspend.stop_pc);
2ac7589c 7426
719546c4 7427 tp->resumed = true;
fbea99ea 7428 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7429 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7430 }
7431 else
7432 {
7433 if (debug_infrun)
7434 fprintf_unfiltered (gdb_stdlog,
7435 "infrun: expected thread still hasn't advanced\n");
7436
7437 keep_going_pass_signal (ecs);
7438 }
7439 return 1;
c447ac0b
PA
7440}
7441
8b061563
PA
7442/* Is thread TP in the middle of (software or hardware)
7443 single-stepping? (Note the result of this function must never be
7444 passed directly as target_resume's STEP parameter.) */
104c1213 7445
a289b8f6 7446static int
b3444185 7447currently_stepping (struct thread_info *tp)
a7212384 7448{
8358c15c
JK
7449 return ((tp->control.step_range_end
7450 && tp->control.step_resume_breakpoint == NULL)
7451 || tp->control.trap_expected
af48d08f 7452 || tp->stepped_breakpoint
8358c15c 7453 || bpstat_should_step ());
a7212384
UW
7454}
7455
b2175913
MS
7456/* Inferior has stepped into a subroutine call with source code that
7457 we should not step over. Do step to the first line of code in
7458 it. */
c2c6d25f
JM
7459
7460static void
568d6575
UW
7461handle_step_into_function (struct gdbarch *gdbarch,
7462 struct execution_control_state *ecs)
c2c6d25f 7463{
7e324e48
GB
7464 fill_in_stop_func (gdbarch, ecs);
7465
f2ffa92b
PA
7466 compunit_symtab *cust
7467 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7468 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7469 ecs->stop_func_start
7470 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7471
51abb421 7472 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7473 /* Use the step_resume_break to step until the end of the prologue,
7474 even if that involves jumps (as it seems to on the vax under
7475 4.2). */
7476 /* If the prologue ends in the middle of a source line, continue to
7477 the end of that source line (if it is still within the function).
7478 Otherwise, just go to end of prologue. */
2afb61aa
PA
7479 if (stop_func_sal.end
7480 && stop_func_sal.pc != ecs->stop_func_start
7481 && stop_func_sal.end < ecs->stop_func_end)
7482 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7483
2dbd5e30
KB
7484 /* Architectures which require breakpoint adjustment might not be able
7485 to place a breakpoint at the computed address. If so, the test
7486 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7487 ecs->stop_func_start to an address at which a breakpoint may be
7488 legitimately placed.
8fb3e588 7489
2dbd5e30
KB
7490 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7491 made, GDB will enter an infinite loop when stepping through
7492 optimized code consisting of VLIW instructions which contain
7493 subinstructions corresponding to different source lines. On
7494 FR-V, it's not permitted to place a breakpoint on any but the
7495 first subinstruction of a VLIW instruction. When a breakpoint is
7496 set, GDB will adjust the breakpoint address to the beginning of
7497 the VLIW instruction. Thus, we need to make the corresponding
7498 adjustment here when computing the stop address. */
8fb3e588 7499
568d6575 7500 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7501 {
7502 ecs->stop_func_start
568d6575 7503 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7504 ecs->stop_func_start);
2dbd5e30
KB
7505 }
7506
f2ffa92b 7507 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
c2c6d25f
JM
7508 {
7509 /* We are already there: stop now. */
bdc36728 7510 end_stepping_range (ecs);
c2c6d25f
JM
7511 return;
7512 }
7513 else
7514 {
7515 /* Put the step-breakpoint there and go until there. */
51abb421 7516 symtab_and_line sr_sal;
c2c6d25f
JM
7517 sr_sal.pc = ecs->stop_func_start;
7518 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7519 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7520
c2c6d25f 7521 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7522 some machines the prologue is where the new fp value is
7523 established. */
a6d9a66e 7524 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7525
7526 /* And make sure stepping stops right away then. */
16c381f0
JK
7527 ecs->event_thread->control.step_range_end
7528 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7529 }
7530 keep_going (ecs);
7531}
d4f3574e 7532
b2175913
MS
7533/* Inferior has stepped backward into a subroutine call with source
7534 code that we should not step over. Do step to the beginning of the
7535 last line of code in it. */
7536
7537static void
568d6575
UW
7538handle_step_into_function_backward (struct gdbarch *gdbarch,
7539 struct execution_control_state *ecs)
b2175913 7540{
43f3e411 7541 struct compunit_symtab *cust;
167e4384 7542 struct symtab_and_line stop_func_sal;
b2175913 7543
7e324e48
GB
7544 fill_in_stop_func (gdbarch, ecs);
7545
f2ffa92b 7546 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7547 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7548 ecs->stop_func_start
7549 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913 7550
f2ffa92b 7551 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
b2175913
MS
7552
7553 /* OK, we're just going to keep stepping here. */
f2ffa92b 7554 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
b2175913
MS
7555 {
7556 /* We're there already. Just stop stepping now. */
bdc36728 7557 end_stepping_range (ecs);
b2175913
MS
7558 }
7559 else
7560 {
7561 /* Else just reset the step range and keep going.
7562 No step-resume breakpoint, they don't work for
7563 epilogues, which can have multiple entry paths. */
16c381f0
JK
7564 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7565 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7566 keep_going (ecs);
7567 }
7568 return;
7569}
7570
d3169d93 7571/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7572 This is used to both functions and to skip over code. */
7573
7574static void
2c03e5be
PA
7575insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7576 struct symtab_and_line sr_sal,
7577 struct frame_id sr_id,
7578 enum bptype sr_type)
44cbf7b5 7579{
611c83ae
PA
7580 /* There should never be more than one step-resume or longjmp-resume
7581 breakpoint per thread, so we should never be setting a new
44cbf7b5 7582 step_resume_breakpoint when one is already active. */
8358c15c 7583 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7584 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7585
7586 if (debug_infrun)
7587 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7588 "infrun: inserting step-resume breakpoint at %s\n",
7589 paddress (gdbarch, sr_sal.pc));
d3169d93 7590
8358c15c 7591 inferior_thread ()->control.step_resume_breakpoint
454dafbd 7592 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
2c03e5be
PA
7593}
7594
9da8c2a0 7595void
2c03e5be
PA
7596insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7597 struct symtab_and_line sr_sal,
7598 struct frame_id sr_id)
7599{
7600 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7601 sr_sal, sr_id,
7602 bp_step_resume);
44cbf7b5 7603}
7ce450bd 7604
2c03e5be
PA
7605/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7606 This is used to skip a potential signal handler.
7ce450bd 7607
14e60db5
DJ
7608 This is called with the interrupted function's frame. The signal
7609 handler, when it returns, will resume the interrupted function at
7610 RETURN_FRAME.pc. */
d303a6c7
AC
7611
7612static void
2c03e5be 7613insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7614{
f4c1edd8 7615 gdb_assert (return_frame != NULL);
d303a6c7 7616
51abb421
PA
7617 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7618
7619 symtab_and_line sr_sal;
568d6575 7620 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7621 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7622 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7623
2c03e5be
PA
7624 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7625 get_stack_frame_id (return_frame),
7626 bp_hp_step_resume);
d303a6c7
AC
7627}
7628
2c03e5be
PA
7629/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7630 is used to skip a function after stepping into it (for "next" or if
7631 the called function has no debugging information).
14e60db5
DJ
7632
7633 The current function has almost always been reached by single
7634 stepping a call or return instruction. NEXT_FRAME belongs to the
7635 current function, and the breakpoint will be set at the caller's
7636 resume address.
7637
7638 This is a separate function rather than reusing
2c03e5be 7639 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7640 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7641 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7642
7643static void
7644insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7645{
14e60db5
DJ
7646 /* We shouldn't have gotten here if we don't know where the call site
7647 is. */
c7ce8faa 7648 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7649
51abb421 7650 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7651
51abb421 7652 symtab_and_line sr_sal;
c7ce8faa
DJ
7653 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7654 frame_unwind_caller_pc (next_frame));
14e60db5 7655 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7656 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7657
a6d9a66e 7658 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7659 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7660}
7661
611c83ae
PA
7662/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7663 new breakpoint at the target of a jmp_buf. The handling of
7664 longjmp-resume uses the same mechanisms used for handling
7665 "step-resume" breakpoints. */
7666
7667static void
a6d9a66e 7668insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7669{
e81a37f7
TT
7670 /* There should never be more than one longjmp-resume breakpoint per
7671 thread, so we should never be setting a new
611c83ae 7672 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7673 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7674
7675 if (debug_infrun)
7676 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7677 "infrun: inserting longjmp-resume breakpoint at %s\n",
7678 paddress (gdbarch, pc));
611c83ae 7679
e81a37f7 7680 inferior_thread ()->control.exception_resume_breakpoint =
454dafbd 7681 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
611c83ae
PA
7682}
7683
186c406b
TT
7684/* Insert an exception resume breakpoint. TP is the thread throwing
7685 the exception. The block B is the block of the unwinder debug hook
7686 function. FRAME is the frame corresponding to the call to this
7687 function. SYM is the symbol of the function argument holding the
7688 target PC of the exception. */
7689
7690static void
7691insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7692 const struct block *b,
186c406b
TT
7693 struct frame_info *frame,
7694 struct symbol *sym)
7695{
a70b8144 7696 try
186c406b 7697 {
63e43d3a 7698 struct block_symbol vsym;
186c406b
TT
7699 struct value *value;
7700 CORE_ADDR handler;
7701 struct breakpoint *bp;
7702
987012b8 7703 vsym = lookup_symbol_search_name (sym->search_name (),
de63c46b 7704 b, VAR_DOMAIN);
63e43d3a 7705 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7706 /* If the value was optimized out, revert to the old behavior. */
7707 if (! value_optimized_out (value))
7708 {
7709 handler = value_as_address (value);
7710
7711 if (debug_infrun)
7712 fprintf_unfiltered (gdb_stdlog,
7713 "infrun: exception resume at %lx\n",
7714 (unsigned long) handler);
7715
7716 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd
TT
7717 handler,
7718 bp_exception_resume).release ();
c70a6932
JK
7719
7720 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7721 frame = NULL;
7722
5d5658a1 7723 bp->thread = tp->global_num;
186c406b
TT
7724 inferior_thread ()->control.exception_resume_breakpoint = bp;
7725 }
7726 }
230d2906 7727 catch (const gdb_exception_error &e)
492d29ea
PA
7728 {
7729 /* We want to ignore errors here. */
7730 }
186c406b
TT
7731}
7732
28106bc2
SDJ
7733/* A helper for check_exception_resume that sets an
7734 exception-breakpoint based on a SystemTap probe. */
7735
7736static void
7737insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7738 const struct bound_probe *probe,
28106bc2
SDJ
7739 struct frame_info *frame)
7740{
7741 struct value *arg_value;
7742 CORE_ADDR handler;
7743 struct breakpoint *bp;
7744
7745 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7746 if (!arg_value)
7747 return;
7748
7749 handler = value_as_address (arg_value);
7750
7751 if (debug_infrun)
7752 fprintf_unfiltered (gdb_stdlog,
7753 "infrun: exception resume at %s\n",
6bac7473 7754 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7755 handler));
7756
7757 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd 7758 handler, bp_exception_resume).release ();
5d5658a1 7759 bp->thread = tp->global_num;
28106bc2
SDJ
7760 inferior_thread ()->control.exception_resume_breakpoint = bp;
7761}
7762
186c406b
TT
7763/* This is called when an exception has been intercepted. Check to
7764 see whether the exception's destination is of interest, and if so,
7765 set an exception resume breakpoint there. */
7766
7767static void
7768check_exception_resume (struct execution_control_state *ecs,
28106bc2 7769 struct frame_info *frame)
186c406b 7770{
729662a5 7771 struct bound_probe probe;
28106bc2
SDJ
7772 struct symbol *func;
7773
7774 /* First see if this exception unwinding breakpoint was set via a
7775 SystemTap probe point. If so, the probe has two arguments: the
7776 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7777 set a breakpoint there. */
6bac7473 7778 probe = find_probe_by_pc (get_frame_pc (frame));
935676c9 7779 if (probe.prob)
28106bc2 7780 {
729662a5 7781 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7782 return;
7783 }
7784
7785 func = get_frame_function (frame);
7786 if (!func)
7787 return;
186c406b 7788
a70b8144 7789 try
186c406b 7790 {
3977b71f 7791 const struct block *b;
8157b174 7792 struct block_iterator iter;
186c406b
TT
7793 struct symbol *sym;
7794 int argno = 0;
7795
7796 /* The exception breakpoint is a thread-specific breakpoint on
7797 the unwinder's debug hook, declared as:
7798
7799 void _Unwind_DebugHook (void *cfa, void *handler);
7800
7801 The CFA argument indicates the frame to which control is
7802 about to be transferred. HANDLER is the destination PC.
7803
7804 We ignore the CFA and set a temporary breakpoint at HANDLER.
7805 This is not extremely efficient but it avoids issues in gdb
7806 with computing the DWARF CFA, and it also works even in weird
7807 cases such as throwing an exception from inside a signal
7808 handler. */
7809
7810 b = SYMBOL_BLOCK_VALUE (func);
7811 ALL_BLOCK_SYMBOLS (b, iter, sym)
7812 {
7813 if (!SYMBOL_IS_ARGUMENT (sym))
7814 continue;
7815
7816 if (argno == 0)
7817 ++argno;
7818 else
7819 {
7820 insert_exception_resume_breakpoint (ecs->event_thread,
7821 b, frame, sym);
7822 break;
7823 }
7824 }
7825 }
230d2906 7826 catch (const gdb_exception_error &e)
492d29ea
PA
7827 {
7828 }
186c406b
TT
7829}
7830
104c1213 7831static void
22bcd14b 7832stop_waiting (struct execution_control_state *ecs)
104c1213 7833{
527159b7 7834 if (debug_infrun)
22bcd14b 7835 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7836
cd0fc7c3
SS
7837 /* Let callers know we don't want to wait for the inferior anymore. */
7838 ecs->wait_some_more = 0;
fbea99ea
PA
7839
7840 /* If all-stop, but the target is always in non-stop mode, stop all
7841 threads now that we're presenting the stop to the user. */
7842 if (!non_stop && target_is_non_stop_p ())
7843 stop_all_threads ();
cd0fc7c3
SS
7844}
7845
4d9d9d04
PA
7846/* Like keep_going, but passes the signal to the inferior, even if the
7847 signal is set to nopass. */
d4f3574e
SS
7848
7849static void
4d9d9d04 7850keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7851{
d7e15655 7852 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
372316f1 7853 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7854
d4f3574e 7855 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b 7856 ecs->event_thread->prev_pc
00431a78 7857 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
d4f3574e 7858
4d9d9d04 7859 if (ecs->event_thread->control.trap_expected)
d4f3574e 7860 {
4d9d9d04
PA
7861 struct thread_info *tp = ecs->event_thread;
7862
7863 if (debug_infrun)
7864 fprintf_unfiltered (gdb_stdlog,
7865 "infrun: %s has trap_expected set, "
7866 "resuming to collect trap\n",
a068643d 7867 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04 7868
a9ba6bae
PA
7869 /* We haven't yet gotten our trap, and either: intercepted a
7870 non-signal event (e.g., a fork); or took a signal which we
7871 are supposed to pass through to the inferior. Simply
7872 continue. */
64ce06e4 7873 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7874 }
372316f1
PA
7875 else if (step_over_info_valid_p ())
7876 {
7877 /* Another thread is stepping over a breakpoint in-line. If
7878 this thread needs a step-over too, queue the request. In
7879 either case, this resume must be deferred for later. */
7880 struct thread_info *tp = ecs->event_thread;
7881
7882 if (ecs->hit_singlestep_breakpoint
7883 || thread_still_needs_step_over (tp))
7884 {
7885 if (debug_infrun)
7886 fprintf_unfiltered (gdb_stdlog,
7887 "infrun: step-over already in progress: "
7888 "step-over for %s deferred\n",
a068643d 7889 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
7890 thread_step_over_chain_enqueue (tp);
7891 }
7892 else
7893 {
7894 if (debug_infrun)
7895 fprintf_unfiltered (gdb_stdlog,
7896 "infrun: step-over in progress: "
7897 "resume of %s deferred\n",
a068643d 7898 target_pid_to_str (tp->ptid).c_str ());
372316f1 7899 }
372316f1 7900 }
d4f3574e
SS
7901 else
7902 {
31e77af2 7903 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7904 int remove_bp;
7905 int remove_wps;
8d297bbf 7906 step_over_what step_what;
31e77af2 7907
d4f3574e 7908 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7909 anyway (if we got a signal, the user asked it be passed to
7910 the child)
7911 -- or --
7912 We got our expected trap, but decided we should resume from
7913 it.
d4f3574e 7914
a9ba6bae 7915 We're going to run this baby now!
d4f3574e 7916
c36b740a
VP
7917 Note that insert_breakpoints won't try to re-insert
7918 already inserted breakpoints. Therefore, we don't
7919 care if breakpoints were already inserted, or not. */
a9ba6bae 7920
31e77af2
PA
7921 /* If we need to step over a breakpoint, and we're not using
7922 displaced stepping to do so, insert all breakpoints
7923 (watchpoints, etc.) but the one we're stepping over, step one
7924 instruction, and then re-insert the breakpoint when that step
7925 is finished. */
963f9c80 7926
6c4cfb24
PA
7927 step_what = thread_still_needs_step_over (ecs->event_thread);
7928
963f9c80 7929 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7930 || (step_what & STEP_OVER_BREAKPOINT));
7931 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7932
cb71640d
PA
7933 /* We can't use displaced stepping if we need to step past a
7934 watchpoint. The instruction copied to the scratch pad would
7935 still trigger the watchpoint. */
7936 if (remove_bp
3fc8eb30 7937 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7938 {
a01bda52 7939 set_step_over_info (regcache->aspace (),
21edc42f
YQ
7940 regcache_read_pc (regcache), remove_wps,
7941 ecs->event_thread->global_num);
45e8c884 7942 }
963f9c80 7943 else if (remove_wps)
21edc42f 7944 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7945
7946 /* If we now need to do an in-line step-over, we need to stop
7947 all other threads. Note this must be done before
7948 insert_breakpoints below, because that removes the breakpoint
7949 we're about to step over, otherwise other threads could miss
7950 it. */
fbea99ea 7951 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7952 stop_all_threads ();
abbb1732 7953
31e77af2 7954 /* Stop stepping if inserting breakpoints fails. */
a70b8144 7955 try
31e77af2
PA
7956 {
7957 insert_breakpoints ();
7958 }
230d2906 7959 catch (const gdb_exception_error &e)
31e77af2
PA
7960 {
7961 exception_print (gdb_stderr, e);
22bcd14b 7962 stop_waiting (ecs);
bdf2a94a 7963 clear_step_over_info ();
31e77af2 7964 return;
d4f3574e
SS
7965 }
7966
963f9c80 7967 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7968
64ce06e4 7969 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7970 }
7971
488f131b 7972 prepare_to_wait (ecs);
d4f3574e
SS
7973}
7974
4d9d9d04
PA
7975/* Called when we should continue running the inferior, because the
7976 current event doesn't cause a user visible stop. This does the
7977 resuming part; waiting for the next event is done elsewhere. */
7978
7979static void
7980keep_going (struct execution_control_state *ecs)
7981{
7982 if (ecs->event_thread->control.trap_expected
7983 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7984 ecs->event_thread->control.trap_expected = 0;
7985
7986 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7987 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7988 keep_going_pass_signal (ecs);
7989}
7990
104c1213
JM
7991/* This function normally comes after a resume, before
7992 handle_inferior_event exits. It takes care of any last bits of
7993 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7994
104c1213
JM
7995static void
7996prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7997{
527159b7 7998 if (debug_infrun)
8a9de0e4 7999 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 8000
104c1213 8001 ecs->wait_some_more = 1;
0b333c5e
PA
8002
8003 if (!target_is_async_p ())
8004 mark_infrun_async_event_handler ();
c906108c 8005}
11cf8741 8006
fd664c91 8007/* We are done with the step range of a step/next/si/ni command.
b57bacec 8008 Called once for each n of a "step n" operation. */
fd664c91
PA
8009
8010static void
bdc36728 8011end_stepping_range (struct execution_control_state *ecs)
fd664c91 8012{
bdc36728 8013 ecs->event_thread->control.stop_step = 1;
bdc36728 8014 stop_waiting (ecs);
fd664c91
PA
8015}
8016
33d62d64
JK
8017/* Several print_*_reason functions to print why the inferior has stopped.
8018 We always print something when the inferior exits, or receives a signal.
8019 The rest of the cases are dealt with later on in normal_stop and
8020 print_it_typical. Ideally there should be a call to one of these
8021 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 8022 stop_waiting is called.
33d62d64 8023
fd664c91
PA
8024 Note that we don't call these directly, instead we delegate that to
8025 the interpreters, through observers. Interpreters then call these
8026 with whatever uiout is right. */
33d62d64 8027
fd664c91
PA
8028void
8029print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 8030{
fd664c91 8031 /* For CLI-like interpreters, print nothing. */
33d62d64 8032
112e8700 8033 if (uiout->is_mi_like_p ())
fd664c91 8034 {
112e8700 8035 uiout->field_string ("reason",
fd664c91
PA
8036 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
8037 }
8038}
33d62d64 8039
fd664c91
PA
8040void
8041print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 8042{
33d62d64 8043 annotate_signalled ();
112e8700
SM
8044 if (uiout->is_mi_like_p ())
8045 uiout->field_string
8046 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8047 uiout->text ("\nProgram terminated with signal ");
33d62d64 8048 annotate_signal_name ();
112e8700 8049 uiout->field_string ("signal-name",
2ea28649 8050 gdb_signal_to_name (siggnal));
33d62d64 8051 annotate_signal_name_end ();
112e8700 8052 uiout->text (", ");
33d62d64 8053 annotate_signal_string ();
112e8700 8054 uiout->field_string ("signal-meaning",
2ea28649 8055 gdb_signal_to_string (siggnal));
33d62d64 8056 annotate_signal_string_end ();
112e8700
SM
8057 uiout->text (".\n");
8058 uiout->text ("The program no longer exists.\n");
33d62d64
JK
8059}
8060
fd664c91
PA
8061void
8062print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 8063{
fda326dd 8064 struct inferior *inf = current_inferior ();
a068643d 8065 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
fda326dd 8066
33d62d64
JK
8067 annotate_exited (exitstatus);
8068 if (exitstatus)
8069 {
112e8700
SM
8070 if (uiout->is_mi_like_p ())
8071 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
6a831f06
PA
8072 std::string exit_code_str
8073 = string_printf ("0%o", (unsigned int) exitstatus);
8074 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
8075 plongest (inf->num), pidstr.c_str (),
8076 string_field ("exit-code", exit_code_str.c_str ()));
33d62d64
JK
8077 }
8078 else
11cf8741 8079 {
112e8700
SM
8080 if (uiout->is_mi_like_p ())
8081 uiout->field_string
8082 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
6a831f06
PA
8083 uiout->message ("[Inferior %s (%s) exited normally]\n",
8084 plongest (inf->num), pidstr.c_str ());
33d62d64 8085 }
33d62d64
JK
8086}
8087
012b3a21
WT
8088/* Some targets/architectures can do extra processing/display of
8089 segmentation faults. E.g., Intel MPX boundary faults.
8090 Call the architecture dependent function to handle the fault. */
8091
8092static void
8093handle_segmentation_fault (struct ui_out *uiout)
8094{
8095 struct regcache *regcache = get_current_regcache ();
ac7936df 8096 struct gdbarch *gdbarch = regcache->arch ();
012b3a21
WT
8097
8098 if (gdbarch_handle_segmentation_fault_p (gdbarch))
8099 gdbarch_handle_segmentation_fault (gdbarch, uiout);
8100}
8101
fd664c91
PA
8102void
8103print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 8104{
f303dbd6
PA
8105 struct thread_info *thr = inferior_thread ();
8106
33d62d64
JK
8107 annotate_signal ();
8108
112e8700 8109 if (uiout->is_mi_like_p ())
f303dbd6
PA
8110 ;
8111 else if (show_thread_that_caused_stop ())
33d62d64 8112 {
f303dbd6 8113 const char *name;
33d62d64 8114
112e8700 8115 uiout->text ("\nThread ");
33eca680 8116 uiout->field_string ("thread-id", print_thread_id (thr));
f303dbd6
PA
8117
8118 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8119 if (name != NULL)
8120 {
112e8700 8121 uiout->text (" \"");
33eca680 8122 uiout->field_string ("name", name);
112e8700 8123 uiout->text ("\"");
f303dbd6 8124 }
33d62d64 8125 }
f303dbd6 8126 else
112e8700 8127 uiout->text ("\nProgram");
f303dbd6 8128
112e8700
SM
8129 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8130 uiout->text (" stopped");
33d62d64
JK
8131 else
8132 {
112e8700 8133 uiout->text (" received signal ");
8b93c638 8134 annotate_signal_name ();
112e8700
SM
8135 if (uiout->is_mi_like_p ())
8136 uiout->field_string
8137 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8138 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 8139 annotate_signal_name_end ();
112e8700 8140 uiout->text (", ");
8b93c638 8141 annotate_signal_string ();
112e8700 8142 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
8143
8144 if (siggnal == GDB_SIGNAL_SEGV)
8145 handle_segmentation_fault (uiout);
8146
8b93c638 8147 annotate_signal_string_end ();
33d62d64 8148 }
112e8700 8149 uiout->text (".\n");
33d62d64 8150}
252fbfc8 8151
fd664c91
PA
8152void
8153print_no_history_reason (struct ui_out *uiout)
33d62d64 8154{
112e8700 8155 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 8156}
43ff13b4 8157
0c7e1a46
PA
8158/* Print current location without a level number, if we have changed
8159 functions or hit a breakpoint. Print source line if we have one.
8160 bpstat_print contains the logic deciding in detail what to print,
8161 based on the event(s) that just occurred. */
8162
243a9253
PA
8163static void
8164print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
8165{
8166 int bpstat_ret;
f486487f 8167 enum print_what source_flag;
0c7e1a46
PA
8168 int do_frame_printing = 1;
8169 struct thread_info *tp = inferior_thread ();
8170
8171 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8172 switch (bpstat_ret)
8173 {
8174 case PRINT_UNKNOWN:
8175 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8176 should) carry around the function and does (or should) use
8177 that when doing a frame comparison. */
8178 if (tp->control.stop_step
8179 && frame_id_eq (tp->control.step_frame_id,
8180 get_frame_id (get_current_frame ()))
f2ffa92b
PA
8181 && (tp->control.step_start_function
8182 == find_pc_function (tp->suspend.stop_pc)))
0c7e1a46
PA
8183 {
8184 /* Finished step, just print source line. */
8185 source_flag = SRC_LINE;
8186 }
8187 else
8188 {
8189 /* Print location and source line. */
8190 source_flag = SRC_AND_LOC;
8191 }
8192 break;
8193 case PRINT_SRC_AND_LOC:
8194 /* Print location and source line. */
8195 source_flag = SRC_AND_LOC;
8196 break;
8197 case PRINT_SRC_ONLY:
8198 source_flag = SRC_LINE;
8199 break;
8200 case PRINT_NOTHING:
8201 /* Something bogus. */
8202 source_flag = SRC_LINE;
8203 do_frame_printing = 0;
8204 break;
8205 default:
8206 internal_error (__FILE__, __LINE__, _("Unknown value."));
8207 }
8208
8209 /* The behavior of this routine with respect to the source
8210 flag is:
8211 SRC_LINE: Print only source line
8212 LOCATION: Print only location
8213 SRC_AND_LOC: Print location and source line. */
8214 if (do_frame_printing)
8215 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
8216}
8217
243a9253
PA
8218/* See infrun.h. */
8219
8220void
4c7d57e7 8221print_stop_event (struct ui_out *uiout, bool displays)
243a9253 8222{
243a9253 8223 struct target_waitstatus last;
243a9253
PA
8224 struct thread_info *tp;
8225
5b6d1e4f 8226 get_last_target_status (nullptr, nullptr, &last);
243a9253 8227
67ad9399
TT
8228 {
8229 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 8230
67ad9399 8231 print_stop_location (&last);
243a9253 8232
67ad9399 8233 /* Display the auto-display expressions. */
4c7d57e7
TT
8234 if (displays)
8235 do_displays ();
67ad9399 8236 }
243a9253
PA
8237
8238 tp = inferior_thread ();
8239 if (tp->thread_fsm != NULL
46e3ed7f 8240 && tp->thread_fsm->finished_p ())
243a9253
PA
8241 {
8242 struct return_value_info *rv;
8243
46e3ed7f 8244 rv = tp->thread_fsm->return_value ();
243a9253
PA
8245 if (rv != NULL)
8246 print_return_value (uiout, rv);
8247 }
0c7e1a46
PA
8248}
8249
388a7084
PA
8250/* See infrun.h. */
8251
8252void
8253maybe_remove_breakpoints (void)
8254{
8255 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8256 {
8257 if (remove_breakpoints ())
8258 {
223ffa71 8259 target_terminal::ours_for_output ();
388a7084
PA
8260 printf_filtered (_("Cannot remove breakpoints because "
8261 "program is no longer writable.\nFurther "
8262 "execution is probably impossible.\n"));
8263 }
8264 }
8265}
8266
4c2f2a79
PA
8267/* The execution context that just caused a normal stop. */
8268
8269struct stop_context
8270{
2d844eaf
TT
8271 stop_context ();
8272 ~stop_context ();
8273
8274 DISABLE_COPY_AND_ASSIGN (stop_context);
8275
8276 bool changed () const;
8277
4c2f2a79
PA
8278 /* The stop ID. */
8279 ULONGEST stop_id;
c906108c 8280
4c2f2a79 8281 /* The event PTID. */
c906108c 8282
4c2f2a79
PA
8283 ptid_t ptid;
8284
8285 /* If stopp for a thread event, this is the thread that caused the
8286 stop. */
8287 struct thread_info *thread;
8288
8289 /* The inferior that caused the stop. */
8290 int inf_num;
8291};
8292
2d844eaf 8293/* Initializes a new stop context. If stopped for a thread event, this
4c2f2a79
PA
8294 takes a strong reference to the thread. */
8295
2d844eaf 8296stop_context::stop_context ()
4c2f2a79 8297{
2d844eaf
TT
8298 stop_id = get_stop_id ();
8299 ptid = inferior_ptid;
8300 inf_num = current_inferior ()->num;
4c2f2a79 8301
d7e15655 8302 if (inferior_ptid != null_ptid)
4c2f2a79
PA
8303 {
8304 /* Take a strong reference so that the thread can't be deleted
8305 yet. */
2d844eaf
TT
8306 thread = inferior_thread ();
8307 thread->incref ();
4c2f2a79
PA
8308 }
8309 else
2d844eaf 8310 thread = NULL;
4c2f2a79
PA
8311}
8312
8313/* Release a stop context previously created with save_stop_context.
8314 Releases the strong reference to the thread as well. */
8315
2d844eaf 8316stop_context::~stop_context ()
4c2f2a79 8317{
2d844eaf
TT
8318 if (thread != NULL)
8319 thread->decref ();
4c2f2a79
PA
8320}
8321
8322/* Return true if the current context no longer matches the saved stop
8323 context. */
8324
2d844eaf
TT
8325bool
8326stop_context::changed () const
8327{
8328 if (ptid != inferior_ptid)
8329 return true;
8330 if (inf_num != current_inferior ()->num)
8331 return true;
8332 if (thread != NULL && thread->state != THREAD_STOPPED)
8333 return true;
8334 if (get_stop_id () != stop_id)
8335 return true;
8336 return false;
4c2f2a79
PA
8337}
8338
8339/* See infrun.h. */
8340
8341int
96baa820 8342normal_stop (void)
c906108c 8343{
73b65bb0 8344 struct target_waitstatus last;
73b65bb0 8345
5b6d1e4f 8346 get_last_target_status (nullptr, nullptr, &last);
73b65bb0 8347
4c2f2a79
PA
8348 new_stop_id ();
8349
29f49a6a
PA
8350 /* If an exception is thrown from this point on, make sure to
8351 propagate GDB's knowledge of the executing state to the
8352 frontend/user running state. A QUIT is an easy exception to see
8353 here, so do this before any filtered output. */
731f534f 8354
5b6d1e4f 8355 ptid_t finish_ptid = null_ptid;
731f534f 8356
c35b1492 8357 if (!non_stop)
5b6d1e4f 8358 finish_ptid = minus_one_ptid;
e1316e60
PA
8359 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8360 || last.kind == TARGET_WAITKIND_EXITED)
8361 {
8362 /* On some targets, we may still have live threads in the
8363 inferior when we get a process exit event. E.g., for
8364 "checkpoint", when the current checkpoint/fork exits,
8365 linux-fork.c automatically switches to another fork from
8366 within target_mourn_inferior. */
731f534f 8367 if (inferior_ptid != null_ptid)
5b6d1e4f 8368 finish_ptid = ptid_t (inferior_ptid.pid ());
e1316e60
PA
8369 }
8370 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
5b6d1e4f
PA
8371 finish_ptid = inferior_ptid;
8372
8373 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8374 if (finish_ptid != null_ptid)
8375 {
8376 maybe_finish_thread_state.emplace
8377 (user_visible_resume_target (finish_ptid), finish_ptid);
8378 }
29f49a6a 8379
b57bacec
PA
8380 /* As we're presenting a stop, and potentially removing breakpoints,
8381 update the thread list so we can tell whether there are threads
8382 running on the target. With target remote, for example, we can
8383 only learn about new threads when we explicitly update the thread
8384 list. Do this before notifying the interpreters about signal
8385 stops, end of stepping ranges, etc., so that the "new thread"
8386 output is emitted before e.g., "Program received signal FOO",
8387 instead of after. */
8388 update_thread_list ();
8389
8390 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
76727919 8391 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
b57bacec 8392
c906108c
SS
8393 /* As with the notification of thread events, we want to delay
8394 notifying the user that we've switched thread context until
8395 the inferior actually stops.
8396
73b65bb0
DJ
8397 There's no point in saying anything if the inferior has exited.
8398 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8399 "received a signal".
8400
8401 Also skip saying anything in non-stop mode. In that mode, as we
8402 don't want GDB to switch threads behind the user's back, to avoid
8403 races where the user is typing a command to apply to thread x,
8404 but GDB switches to thread y before the user finishes entering
8405 the command, fetch_inferior_event installs a cleanup to restore
8406 the current thread back to the thread the user had selected right
8407 after this event is handled, so we're not really switching, only
8408 informing of a stop. */
4f8d22e3 8409 if (!non_stop
731f534f 8410 && previous_inferior_ptid != inferior_ptid
73b65bb0
DJ
8411 && target_has_execution
8412 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8413 && last.kind != TARGET_WAITKIND_EXITED
8414 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8415 {
0e454242 8416 SWITCH_THRU_ALL_UIS ()
3b12939d 8417 {
223ffa71 8418 target_terminal::ours_for_output ();
3b12939d 8419 printf_filtered (_("[Switching to %s]\n"),
a068643d 8420 target_pid_to_str (inferior_ptid).c_str ());
3b12939d
PA
8421 annotate_thread_changed ();
8422 }
39f77062 8423 previous_inferior_ptid = inferior_ptid;
c906108c 8424 }
c906108c 8425
0e5bf2a8
PA
8426 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8427 {
0e454242 8428 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8429 if (current_ui->prompt_state == PROMPT_BLOCKED)
8430 {
223ffa71 8431 target_terminal::ours_for_output ();
3b12939d
PA
8432 printf_filtered (_("No unwaited-for children left.\n"));
8433 }
0e5bf2a8
PA
8434 }
8435
b57bacec 8436 /* Note: this depends on the update_thread_list call above. */
388a7084 8437 maybe_remove_breakpoints ();
c906108c 8438
c906108c
SS
8439 /* If an auto-display called a function and that got a signal,
8440 delete that auto-display to avoid an infinite recursion. */
8441
8442 if (stopped_by_random_signal)
8443 disable_current_display ();
8444
0e454242 8445 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8446 {
8447 async_enable_stdin ();
8448 }
c906108c 8449
388a7084 8450 /* Let the user/frontend see the threads as stopped. */
731f534f 8451 maybe_finish_thread_state.reset ();
388a7084
PA
8452
8453 /* Select innermost stack frame - i.e., current frame is frame 0,
8454 and current location is based on that. Handle the case where the
8455 dummy call is returning after being stopped. E.g. the dummy call
8456 previously hit a breakpoint. (If the dummy call returns
8457 normally, we won't reach here.) Do this before the stop hook is
8458 run, so that it doesn't get to see the temporary dummy frame,
8459 which is not where we'll present the stop. */
8460 if (has_stack_frames ())
8461 {
8462 if (stop_stack_dummy == STOP_STACK_DUMMY)
8463 {
8464 /* Pop the empty frame that contains the stack dummy. This
8465 also restores inferior state prior to the call (struct
8466 infcall_suspend_state). */
8467 struct frame_info *frame = get_current_frame ();
8468
8469 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8470 frame_pop (frame);
8471 /* frame_pop calls reinit_frame_cache as the last thing it
8472 does which means there's now no selected frame. */
8473 }
8474
8475 select_frame (get_current_frame ());
8476
8477 /* Set the current source location. */
8478 set_current_sal_from_frame (get_current_frame ());
8479 }
dd7e2d2b
PA
8480
8481 /* Look up the hook_stop and run it (CLI internally handles problem
8482 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8483 if (stop_command != NULL)
8484 {
2d844eaf 8485 stop_context saved_context;
4c2f2a79 8486
a70b8144 8487 try
bf469271
PA
8488 {
8489 execute_cmd_pre_hook (stop_command);
8490 }
230d2906 8491 catch (const gdb_exception &ex)
bf469271
PA
8492 {
8493 exception_fprintf (gdb_stderr, ex,
8494 "Error while running hook_stop:\n");
8495 }
4c2f2a79
PA
8496
8497 /* If the stop hook resumes the target, then there's no point in
8498 trying to notify about the previous stop; its context is
8499 gone. Likewise if the command switches thread or inferior --
8500 the observers would print a stop for the wrong
8501 thread/inferior. */
2d844eaf
TT
8502 if (saved_context.changed ())
8503 return 1;
4c2f2a79 8504 }
dd7e2d2b 8505
388a7084
PA
8506 /* Notify observers about the stop. This is where the interpreters
8507 print the stop event. */
d7e15655 8508 if (inferior_ptid != null_ptid)
76727919 8509 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
388a7084
PA
8510 stop_print_frame);
8511 else
76727919 8512 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
347bddb7 8513
243a9253
PA
8514 annotate_stopped ();
8515
48844aa6
PA
8516 if (target_has_execution)
8517 {
8518 if (last.kind != TARGET_WAITKIND_SIGNALLED
fe726667
PA
8519 && last.kind != TARGET_WAITKIND_EXITED
8520 && last.kind != TARGET_WAITKIND_NO_RESUMED)
48844aa6
PA
8521 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8522 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8523 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8524 }
6c95b8df
PA
8525
8526 /* Try to get rid of automatically added inferiors that are no
8527 longer needed. Keeping those around slows down things linearly.
8528 Note that this never removes the current inferior. */
8529 prune_inferiors ();
4c2f2a79
PA
8530
8531 return 0;
c906108c 8532}
c906108c 8533\f
c5aa993b 8534int
96baa820 8535signal_stop_state (int signo)
c906108c 8536{
d6b48e9c 8537 return signal_stop[signo];
c906108c
SS
8538}
8539
c5aa993b 8540int
96baa820 8541signal_print_state (int signo)
c906108c
SS
8542{
8543 return signal_print[signo];
8544}
8545
c5aa993b 8546int
96baa820 8547signal_pass_state (int signo)
c906108c
SS
8548{
8549 return signal_program[signo];
8550}
8551
2455069d
UW
8552static void
8553signal_cache_update (int signo)
8554{
8555 if (signo == -1)
8556 {
a493e3e2 8557 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8558 signal_cache_update (signo);
8559
8560 return;
8561 }
8562
8563 signal_pass[signo] = (signal_stop[signo] == 0
8564 && signal_print[signo] == 0
ab04a2af
TT
8565 && signal_program[signo] == 1
8566 && signal_catch[signo] == 0);
2455069d
UW
8567}
8568
488f131b 8569int
7bda5e4a 8570signal_stop_update (int signo, int state)
d4f3574e
SS
8571{
8572 int ret = signal_stop[signo];
abbb1732 8573
d4f3574e 8574 signal_stop[signo] = state;
2455069d 8575 signal_cache_update (signo);
d4f3574e
SS
8576 return ret;
8577}
8578
488f131b 8579int
7bda5e4a 8580signal_print_update (int signo, int state)
d4f3574e
SS
8581{
8582 int ret = signal_print[signo];
abbb1732 8583
d4f3574e 8584 signal_print[signo] = state;
2455069d 8585 signal_cache_update (signo);
d4f3574e
SS
8586 return ret;
8587}
8588
488f131b 8589int
7bda5e4a 8590signal_pass_update (int signo, int state)
d4f3574e
SS
8591{
8592 int ret = signal_program[signo];
abbb1732 8593
d4f3574e 8594 signal_program[signo] = state;
2455069d 8595 signal_cache_update (signo);
d4f3574e
SS
8596 return ret;
8597}
8598
ab04a2af
TT
8599/* Update the global 'signal_catch' from INFO and notify the
8600 target. */
8601
8602void
8603signal_catch_update (const unsigned int *info)
8604{
8605 int i;
8606
8607 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8608 signal_catch[i] = info[i] > 0;
8609 signal_cache_update (-1);
adc6a863 8610 target_pass_signals (signal_pass);
ab04a2af
TT
8611}
8612
c906108c 8613static void
96baa820 8614sig_print_header (void)
c906108c 8615{
3e43a32a
MS
8616 printf_filtered (_("Signal Stop\tPrint\tPass "
8617 "to program\tDescription\n"));
c906108c
SS
8618}
8619
8620static void
2ea28649 8621sig_print_info (enum gdb_signal oursig)
c906108c 8622{
2ea28649 8623 const char *name = gdb_signal_to_name (oursig);
c906108c 8624 int name_padding = 13 - strlen (name);
96baa820 8625
c906108c
SS
8626 if (name_padding <= 0)
8627 name_padding = 0;
8628
8629 printf_filtered ("%s", name);
488f131b 8630 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8631 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8632 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8633 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8634 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8635}
8636
8637/* Specify how various signals in the inferior should be handled. */
8638
8639static void
0b39b52e 8640handle_command (const char *args, int from_tty)
c906108c 8641{
c906108c 8642 int digits, wordlen;
b926417a 8643 int sigfirst, siglast;
2ea28649 8644 enum gdb_signal oursig;
c906108c 8645 int allsigs;
c906108c
SS
8646
8647 if (args == NULL)
8648 {
e2e0b3e5 8649 error_no_arg (_("signal to handle"));
c906108c
SS
8650 }
8651
1777feb0 8652 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8653
adc6a863
PA
8654 const size_t nsigs = GDB_SIGNAL_LAST;
8655 unsigned char sigs[nsigs] {};
c906108c 8656
1777feb0 8657 /* Break the command line up into args. */
c906108c 8658
773a1edc 8659 gdb_argv built_argv (args);
c906108c
SS
8660
8661 /* Walk through the args, looking for signal oursigs, signal names, and
8662 actions. Signal numbers and signal names may be interspersed with
8663 actions, with the actions being performed for all signals cumulatively
1777feb0 8664 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8665
773a1edc 8666 for (char *arg : built_argv)
c906108c 8667 {
773a1edc
TT
8668 wordlen = strlen (arg);
8669 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8670 {;
8671 }
8672 allsigs = 0;
8673 sigfirst = siglast = -1;
8674
773a1edc 8675 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8676 {
8677 /* Apply action to all signals except those used by the
1777feb0 8678 debugger. Silently skip those. */
c906108c
SS
8679 allsigs = 1;
8680 sigfirst = 0;
8681 siglast = nsigs - 1;
8682 }
773a1edc 8683 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8684 {
8685 SET_SIGS (nsigs, sigs, signal_stop);
8686 SET_SIGS (nsigs, sigs, signal_print);
8687 }
773a1edc 8688 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8689 {
8690 UNSET_SIGS (nsigs, sigs, signal_program);
8691 }
773a1edc 8692 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8693 {
8694 SET_SIGS (nsigs, sigs, signal_print);
8695 }
773a1edc 8696 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8697 {
8698 SET_SIGS (nsigs, sigs, signal_program);
8699 }
773a1edc 8700 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8701 {
8702 UNSET_SIGS (nsigs, sigs, signal_stop);
8703 }
773a1edc 8704 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8705 {
8706 SET_SIGS (nsigs, sigs, signal_program);
8707 }
773a1edc 8708 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8709 {
8710 UNSET_SIGS (nsigs, sigs, signal_print);
8711 UNSET_SIGS (nsigs, sigs, signal_stop);
8712 }
773a1edc 8713 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8714 {
8715 UNSET_SIGS (nsigs, sigs, signal_program);
8716 }
8717 else if (digits > 0)
8718 {
8719 /* It is numeric. The numeric signal refers to our own
8720 internal signal numbering from target.h, not to host/target
8721 signal number. This is a feature; users really should be
8722 using symbolic names anyway, and the common ones like
8723 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8724
8725 sigfirst = siglast = (int)
773a1edc
TT
8726 gdb_signal_from_command (atoi (arg));
8727 if (arg[digits] == '-')
c906108c
SS
8728 {
8729 siglast = (int)
773a1edc 8730 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8731 }
8732 if (sigfirst > siglast)
8733 {
1777feb0 8734 /* Bet he didn't figure we'd think of this case... */
b926417a 8735 std::swap (sigfirst, siglast);
c906108c
SS
8736 }
8737 }
8738 else
8739 {
773a1edc 8740 oursig = gdb_signal_from_name (arg);
a493e3e2 8741 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8742 {
8743 sigfirst = siglast = (int) oursig;
8744 }
8745 else
8746 {
8747 /* Not a number and not a recognized flag word => complain. */
773a1edc 8748 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8749 }
8750 }
8751
8752 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8753 which signals to apply actions to. */
c906108c 8754
b926417a 8755 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
c906108c 8756 {
2ea28649 8757 switch ((enum gdb_signal) signum)
c906108c 8758 {
a493e3e2
PA
8759 case GDB_SIGNAL_TRAP:
8760 case GDB_SIGNAL_INT:
c906108c
SS
8761 if (!allsigs && !sigs[signum])
8762 {
9e2f0ad4 8763 if (query (_("%s is used by the debugger.\n\
3e43a32a 8764Are you sure you want to change it? "),
2ea28649 8765 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8766 {
8767 sigs[signum] = 1;
8768 }
8769 else
c119e040 8770 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8771 }
8772 break;
a493e3e2
PA
8773 case GDB_SIGNAL_0:
8774 case GDB_SIGNAL_DEFAULT:
8775 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8776 /* Make sure that "all" doesn't print these. */
8777 break;
8778 default:
8779 sigs[signum] = 1;
8780 break;
8781 }
8782 }
c906108c
SS
8783 }
8784
b926417a 8785 for (int signum = 0; signum < nsigs; signum++)
3a031f65
PA
8786 if (sigs[signum])
8787 {
2455069d 8788 signal_cache_update (-1);
adc6a863
PA
8789 target_pass_signals (signal_pass);
8790 target_program_signals (signal_program);
c906108c 8791
3a031f65
PA
8792 if (from_tty)
8793 {
8794 /* Show the results. */
8795 sig_print_header ();
8796 for (; signum < nsigs; signum++)
8797 if (sigs[signum])
aead7601 8798 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8799 }
8800
8801 break;
8802 }
c906108c
SS
8803}
8804
de0bea00
MF
8805/* Complete the "handle" command. */
8806
eb3ff9a5 8807static void
de0bea00 8808handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8809 completion_tracker &tracker,
6f937416 8810 const char *text, const char *word)
de0bea00 8811{
de0bea00
MF
8812 static const char * const keywords[] =
8813 {
8814 "all",
8815 "stop",
8816 "ignore",
8817 "print",
8818 "pass",
8819 "nostop",
8820 "noignore",
8821 "noprint",
8822 "nopass",
8823 NULL,
8824 };
8825
eb3ff9a5
PA
8826 signal_completer (ignore, tracker, text, word);
8827 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8828}
8829
2ea28649
PA
8830enum gdb_signal
8831gdb_signal_from_command (int num)
ed01b82c
PA
8832{
8833 if (num >= 1 && num <= 15)
2ea28649 8834 return (enum gdb_signal) num;
ed01b82c
PA
8835 error (_("Only signals 1-15 are valid as numeric signals.\n\
8836Use \"info signals\" for a list of symbolic signals."));
8837}
8838
c906108c
SS
8839/* Print current contents of the tables set by the handle command.
8840 It is possible we should just be printing signals actually used
8841 by the current target (but for things to work right when switching
8842 targets, all signals should be in the signal tables). */
8843
8844static void
1d12d88f 8845info_signals_command (const char *signum_exp, int from_tty)
c906108c 8846{
2ea28649 8847 enum gdb_signal oursig;
abbb1732 8848
c906108c
SS
8849 sig_print_header ();
8850
8851 if (signum_exp)
8852 {
8853 /* First see if this is a symbol name. */
2ea28649 8854 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8855 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8856 {
8857 /* No, try numeric. */
8858 oursig =
2ea28649 8859 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8860 }
8861 sig_print_info (oursig);
8862 return;
8863 }
8864
8865 printf_filtered ("\n");
8866 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8867 for (oursig = GDB_SIGNAL_FIRST;
8868 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8869 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8870 {
8871 QUIT;
8872
a493e3e2
PA
8873 if (oursig != GDB_SIGNAL_UNKNOWN
8874 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8875 sig_print_info (oursig);
8876 }
8877
3e43a32a
MS
8878 printf_filtered (_("\nUse the \"handle\" command "
8879 "to change these tables.\n"));
c906108c 8880}
4aa995e1
PA
8881
8882/* The $_siginfo convenience variable is a bit special. We don't know
8883 for sure the type of the value until we actually have a chance to
7a9dd1b2 8884 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8885 also dependent on which thread you have selected.
8886
8887 1. making $_siginfo be an internalvar that creates a new value on
8888 access.
8889
8890 2. making the value of $_siginfo be an lval_computed value. */
8891
8892/* This function implements the lval_computed support for reading a
8893 $_siginfo value. */
8894
8895static void
8896siginfo_value_read (struct value *v)
8897{
8898 LONGEST transferred;
8899
a911d87a
PA
8900 /* If we can access registers, so can we access $_siginfo. Likewise
8901 vice versa. */
8902 validate_registers_access ();
c709acd1 8903
4aa995e1 8904 transferred =
8b88a78e 8905 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
4aa995e1
PA
8906 NULL,
8907 value_contents_all_raw (v),
8908 value_offset (v),
8909 TYPE_LENGTH (value_type (v)));
8910
8911 if (transferred != TYPE_LENGTH (value_type (v)))
8912 error (_("Unable to read siginfo"));
8913}
8914
8915/* This function implements the lval_computed support for writing a
8916 $_siginfo value. */
8917
8918static void
8919siginfo_value_write (struct value *v, struct value *fromval)
8920{
8921 LONGEST transferred;
8922
a911d87a
PA
8923 /* If we can access registers, so can we access $_siginfo. Likewise
8924 vice versa. */
8925 validate_registers_access ();
c709acd1 8926
8b88a78e 8927 transferred = target_write (current_top_target (),
4aa995e1
PA
8928 TARGET_OBJECT_SIGNAL_INFO,
8929 NULL,
8930 value_contents_all_raw (fromval),
8931 value_offset (v),
8932 TYPE_LENGTH (value_type (fromval)));
8933
8934 if (transferred != TYPE_LENGTH (value_type (fromval)))
8935 error (_("Unable to write siginfo"));
8936}
8937
c8f2448a 8938static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8939 {
8940 siginfo_value_read,
8941 siginfo_value_write
8942 };
8943
8944/* Return a new value with the correct type for the siginfo object of
78267919
UW
8945 the current thread using architecture GDBARCH. Return a void value
8946 if there's no object available. */
4aa995e1 8947
2c0b251b 8948static struct value *
22d2b532
SDJ
8949siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8950 void *ignore)
4aa995e1 8951{
4aa995e1 8952 if (target_has_stack
d7e15655 8953 && inferior_ptid != null_ptid
78267919 8954 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8955 {
78267919 8956 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8957
78267919 8958 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8959 }
8960
78267919 8961 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8962}
8963
c906108c 8964\f
16c381f0
JK
8965/* infcall_suspend_state contains state about the program itself like its
8966 registers and any signal it received when it last stopped.
8967 This state must be restored regardless of how the inferior function call
8968 ends (either successfully, or after it hits a breakpoint or signal)
8969 if the program is to properly continue where it left off. */
8970
6bf78e29 8971class infcall_suspend_state
7a292a7a 8972{
6bf78e29
AB
8973public:
8974 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8975 once the inferior function call has finished. */
8976 infcall_suspend_state (struct gdbarch *gdbarch,
8977 const struct thread_info *tp,
8978 struct regcache *regcache)
8979 : m_thread_suspend (tp->suspend),
8980 m_registers (new readonly_detached_regcache (*regcache))
8981 {
8982 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8983
8984 if (gdbarch_get_siginfo_type_p (gdbarch))
8985 {
8986 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8987 size_t len = TYPE_LENGTH (type);
8988
8989 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8990
8991 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8992 siginfo_data.get (), 0, len) != len)
8993 {
8994 /* Errors ignored. */
8995 siginfo_data.reset (nullptr);
8996 }
8997 }
8998
8999 if (siginfo_data)
9000 {
9001 m_siginfo_gdbarch = gdbarch;
9002 m_siginfo_data = std::move (siginfo_data);
9003 }
9004 }
9005
9006 /* Return a pointer to the stored register state. */
16c381f0 9007
6bf78e29
AB
9008 readonly_detached_regcache *registers () const
9009 {
9010 return m_registers.get ();
9011 }
9012
9013 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
9014
9015 void restore (struct gdbarch *gdbarch,
9016 struct thread_info *tp,
9017 struct regcache *regcache) const
9018 {
9019 tp->suspend = m_thread_suspend;
9020
9021 if (m_siginfo_gdbarch == gdbarch)
9022 {
9023 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9024
9025 /* Errors ignored. */
9026 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9027 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
9028 }
9029
9030 /* The inferior can be gone if the user types "print exit(0)"
9031 (and perhaps other times). */
9032 if (target_has_execution)
9033 /* NB: The register write goes through to the target. */
9034 regcache->restore (registers ());
9035 }
9036
9037private:
9038 /* How the current thread stopped before the inferior function call was
9039 executed. */
9040 struct thread_suspend_state m_thread_suspend;
9041
9042 /* The registers before the inferior function call was executed. */
9043 std::unique_ptr<readonly_detached_regcache> m_registers;
1736ad11 9044
35515841 9045 /* Format of SIGINFO_DATA or NULL if it is not present. */
6bf78e29 9046 struct gdbarch *m_siginfo_gdbarch = nullptr;
1736ad11
JK
9047
9048 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
9049 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
9050 content would be invalid. */
6bf78e29 9051 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
b89667eb
DE
9052};
9053
cb524840
TT
9054infcall_suspend_state_up
9055save_infcall_suspend_state ()
b89667eb 9056{
b89667eb 9057 struct thread_info *tp = inferior_thread ();
1736ad11 9058 struct regcache *regcache = get_current_regcache ();
ac7936df 9059 struct gdbarch *gdbarch = regcache->arch ();
1736ad11 9060
6bf78e29
AB
9061 infcall_suspend_state_up inf_state
9062 (new struct infcall_suspend_state (gdbarch, tp, regcache));
1736ad11 9063
6bf78e29
AB
9064 /* Having saved the current state, adjust the thread state, discarding
9065 any stop signal information. The stop signal is not useful when
9066 starting an inferior function call, and run_inferior_call will not use
9067 the signal due to its `proceed' call with GDB_SIGNAL_0. */
a493e3e2 9068 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 9069
b89667eb
DE
9070 return inf_state;
9071}
9072
9073/* Restore inferior session state to INF_STATE. */
9074
9075void
16c381f0 9076restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
9077{
9078 struct thread_info *tp = inferior_thread ();
1736ad11 9079 struct regcache *regcache = get_current_regcache ();
ac7936df 9080 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 9081
6bf78e29 9082 inf_state->restore (gdbarch, tp, regcache);
16c381f0 9083 discard_infcall_suspend_state (inf_state);
b89667eb
DE
9084}
9085
b89667eb 9086void
16c381f0 9087discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 9088{
dd848631 9089 delete inf_state;
b89667eb
DE
9090}
9091
daf6667d 9092readonly_detached_regcache *
16c381f0 9093get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb 9094{
6bf78e29 9095 return inf_state->registers ();
b89667eb
DE
9096}
9097
16c381f0
JK
9098/* infcall_control_state contains state regarding gdb's control of the
9099 inferior itself like stepping control. It also contains session state like
9100 the user's currently selected frame. */
b89667eb 9101
16c381f0 9102struct infcall_control_state
b89667eb 9103{
16c381f0
JK
9104 struct thread_control_state thread_control;
9105 struct inferior_control_state inferior_control;
d82142e2
JK
9106
9107 /* Other fields: */
ee841dd8
TT
9108 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9109 int stopped_by_random_signal = 0;
7a292a7a 9110
b89667eb 9111 /* ID if the selected frame when the inferior function call was made. */
ee841dd8 9112 struct frame_id selected_frame_id {};
7a292a7a
SS
9113};
9114
c906108c 9115/* Save all of the information associated with the inferior<==>gdb
b89667eb 9116 connection. */
c906108c 9117
cb524840
TT
9118infcall_control_state_up
9119save_infcall_control_state ()
c906108c 9120{
cb524840 9121 infcall_control_state_up inf_status (new struct infcall_control_state);
4e1c45ea 9122 struct thread_info *tp = inferior_thread ();
d6b48e9c 9123 struct inferior *inf = current_inferior ();
7a292a7a 9124
16c381f0
JK
9125 inf_status->thread_control = tp->control;
9126 inf_status->inferior_control = inf->control;
d82142e2 9127
8358c15c 9128 tp->control.step_resume_breakpoint = NULL;
5b79abe7 9129 tp->control.exception_resume_breakpoint = NULL;
8358c15c 9130
16c381f0
JK
9131 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9132 chain. If caller's caller is walking the chain, they'll be happier if we
9133 hand them back the original chain when restore_infcall_control_state is
9134 called. */
9135 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
9136
9137 /* Other fields: */
9138 inf_status->stop_stack_dummy = stop_stack_dummy;
9139 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 9140
206415a3 9141 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 9142
7a292a7a 9143 return inf_status;
c906108c
SS
9144}
9145
bf469271
PA
9146static void
9147restore_selected_frame (const frame_id &fid)
c906108c 9148{
bf469271 9149 frame_info *frame = frame_find_by_id (fid);
c906108c 9150
aa0cd9c1
AC
9151 /* If inf_status->selected_frame_id is NULL, there was no previously
9152 selected frame. */
101dcfbe 9153 if (frame == NULL)
c906108c 9154 {
8a3fe4f8 9155 warning (_("Unable to restore previously selected frame."));
bf469271 9156 return;
c906108c
SS
9157 }
9158
0f7d239c 9159 select_frame (frame);
c906108c
SS
9160}
9161
b89667eb
DE
9162/* Restore inferior session state to INF_STATUS. */
9163
c906108c 9164void
16c381f0 9165restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 9166{
4e1c45ea 9167 struct thread_info *tp = inferior_thread ();
d6b48e9c 9168 struct inferior *inf = current_inferior ();
4e1c45ea 9169
8358c15c
JK
9170 if (tp->control.step_resume_breakpoint)
9171 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9172
5b79abe7
TT
9173 if (tp->control.exception_resume_breakpoint)
9174 tp->control.exception_resume_breakpoint->disposition
9175 = disp_del_at_next_stop;
9176
d82142e2 9177 /* Handle the bpstat_copy of the chain. */
16c381f0 9178 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 9179
16c381f0
JK
9180 tp->control = inf_status->thread_control;
9181 inf->control = inf_status->inferior_control;
d82142e2
JK
9182
9183 /* Other fields: */
9184 stop_stack_dummy = inf_status->stop_stack_dummy;
9185 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 9186
b89667eb 9187 if (target_has_stack)
c906108c 9188 {
bf469271 9189 /* The point of the try/catch is that if the stack is clobbered,
101dcfbe
AC
9190 walking the stack might encounter a garbage pointer and
9191 error() trying to dereference it. */
a70b8144 9192 try
bf469271
PA
9193 {
9194 restore_selected_frame (inf_status->selected_frame_id);
9195 }
230d2906 9196 catch (const gdb_exception_error &ex)
bf469271
PA
9197 {
9198 exception_fprintf (gdb_stderr, ex,
9199 "Unable to restore previously selected frame:\n");
9200 /* Error in restoring the selected frame. Select the
9201 innermost frame. */
9202 select_frame (get_current_frame ());
9203 }
c906108c 9204 }
c906108c 9205
ee841dd8 9206 delete inf_status;
7a292a7a 9207}
c906108c
SS
9208
9209void
16c381f0 9210discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 9211{
8358c15c
JK
9212 if (inf_status->thread_control.step_resume_breakpoint)
9213 inf_status->thread_control.step_resume_breakpoint->disposition
9214 = disp_del_at_next_stop;
9215
5b79abe7
TT
9216 if (inf_status->thread_control.exception_resume_breakpoint)
9217 inf_status->thread_control.exception_resume_breakpoint->disposition
9218 = disp_del_at_next_stop;
9219
1777feb0 9220 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 9221 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 9222
ee841dd8 9223 delete inf_status;
7a292a7a 9224}
b89667eb 9225\f
7f89fd65 9226/* See infrun.h. */
0c557179
SDJ
9227
9228void
9229clear_exit_convenience_vars (void)
9230{
9231 clear_internalvar (lookup_internalvar ("_exitsignal"));
9232 clear_internalvar (lookup_internalvar ("_exitcode"));
9233}
c5aa993b 9234\f
488f131b 9235
b2175913
MS
9236/* User interface for reverse debugging:
9237 Set exec-direction / show exec-direction commands
9238 (returns error unless target implements to_set_exec_direction method). */
9239
170742de 9240enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
9241static const char exec_forward[] = "forward";
9242static const char exec_reverse[] = "reverse";
9243static const char *exec_direction = exec_forward;
40478521 9244static const char *const exec_direction_names[] = {
b2175913
MS
9245 exec_forward,
9246 exec_reverse,
9247 NULL
9248};
9249
9250static void
eb4c3f4a 9251set_exec_direction_func (const char *args, int from_tty,
b2175913
MS
9252 struct cmd_list_element *cmd)
9253{
9254 if (target_can_execute_reverse)
9255 {
9256 if (!strcmp (exec_direction, exec_forward))
9257 execution_direction = EXEC_FORWARD;
9258 else if (!strcmp (exec_direction, exec_reverse))
9259 execution_direction = EXEC_REVERSE;
9260 }
8bbed405
MS
9261 else
9262 {
9263 exec_direction = exec_forward;
9264 error (_("Target does not support this operation."));
9265 }
b2175913
MS
9266}
9267
9268static void
9269show_exec_direction_func (struct ui_file *out, int from_tty,
9270 struct cmd_list_element *cmd, const char *value)
9271{
9272 switch (execution_direction) {
9273 case EXEC_FORWARD:
9274 fprintf_filtered (out, _("Forward.\n"));
9275 break;
9276 case EXEC_REVERSE:
9277 fprintf_filtered (out, _("Reverse.\n"));
9278 break;
b2175913 9279 default:
d8b34453
PA
9280 internal_error (__FILE__, __LINE__,
9281 _("bogus execution_direction value: %d"),
9282 (int) execution_direction);
b2175913
MS
9283 }
9284}
9285
d4db2f36
PA
9286static void
9287show_schedule_multiple (struct ui_file *file, int from_tty,
9288 struct cmd_list_element *c, const char *value)
9289{
3e43a32a
MS
9290 fprintf_filtered (file, _("Resuming the execution of threads "
9291 "of all processes is %s.\n"), value);
d4db2f36 9292}
ad52ddc6 9293
22d2b532
SDJ
9294/* Implementation of `siginfo' variable. */
9295
9296static const struct internalvar_funcs siginfo_funcs =
9297{
9298 siginfo_make_value,
9299 NULL,
9300 NULL
9301};
9302
372316f1
PA
9303/* Callback for infrun's target events source. This is marked when a
9304 thread has a pending status to process. */
9305
9306static void
9307infrun_async_inferior_event_handler (gdb_client_data data)
9308{
372316f1
PA
9309 inferior_event_handler (INF_REG_EVENT, NULL);
9310}
9311
6c265988 9312void _initialize_infrun ();
c906108c 9313void
6c265988 9314_initialize_infrun ()
c906108c 9315{
de0bea00 9316 struct cmd_list_element *c;
c906108c 9317
372316f1
PA
9318 /* Register extra event sources in the event loop. */
9319 infrun_async_inferior_event_token
9320 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9321
11db9430 9322 add_info ("signals", info_signals_command, _("\
1bedd215
AC
9323What debugger does when program gets various signals.\n\
9324Specify a signal as argument to print info on that signal only."));
c906108c
SS
9325 add_info_alias ("handle", "signals", 0);
9326
de0bea00 9327 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9328Specify how to handle signals.\n\
486c7739 9329Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9330Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9331If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9332will be displayed instead.\n\
9333\n\
c906108c
SS
9334Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9335from 1-15 are allowed for compatibility with old versions of GDB.\n\
9336Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9337The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9338used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9339\n\
1bedd215 9340Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9341\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9342Stop means reenter debugger if this signal happens (implies print).\n\
9343Print means print a message if this signal happens.\n\
9344Pass means let program see this signal; otherwise program doesn't know.\n\
9345Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9346Pass and Stop may be combined.\n\
9347\n\
9348Multiple signals may be specified. Signal numbers and signal names\n\
9349may be interspersed with actions, with the actions being performed for\n\
9350all signals cumulatively specified."));
de0bea00 9351 set_cmd_completer (c, handle_completer);
486c7739 9352
c906108c 9353 if (!dbx_commands)
1a966eab
AC
9354 stop_command = add_cmd ("stop", class_obscure,
9355 not_just_help_class_command, _("\
9356There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9357This allows you to set a list of commands to be run each time execution\n\
1a966eab 9358of the program stops."), &cmdlist);
c906108c 9359
ccce17b0 9360 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9361Set inferior debugging."), _("\
9362Show inferior debugging."), _("\
9363When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9364 NULL,
9365 show_debug_infrun,
9366 &setdebuglist, &showdebuglist);
527159b7 9367
3e43a32a
MS
9368 add_setshow_boolean_cmd ("displaced", class_maintenance,
9369 &debug_displaced, _("\
237fc4c9
PA
9370Set displaced stepping debugging."), _("\
9371Show displaced stepping debugging."), _("\
9372When non-zero, displaced stepping specific debugging is enabled."),
9373 NULL,
9374 show_debug_displaced,
9375 &setdebuglist, &showdebuglist);
9376
ad52ddc6
PA
9377 add_setshow_boolean_cmd ("non-stop", no_class,
9378 &non_stop_1, _("\
9379Set whether gdb controls the inferior in non-stop mode."), _("\
9380Show whether gdb controls the inferior in non-stop mode."), _("\
9381When debugging a multi-threaded program and this setting is\n\
9382off (the default, also called all-stop mode), when one thread stops\n\
9383(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9384all other threads in the program while you interact with the thread of\n\
9385interest. When you continue or step a thread, you can allow the other\n\
9386threads to run, or have them remain stopped, but while you inspect any\n\
9387thread's state, all threads stop.\n\
9388\n\
9389In non-stop mode, when one thread stops, other threads can continue\n\
9390to run freely. You'll be able to step each thread independently,\n\
9391leave it stopped or free to run as needed."),
9392 set_non_stop,
9393 show_non_stop,
9394 &setlist,
9395 &showlist);
9396
adc6a863 9397 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
c906108c
SS
9398 {
9399 signal_stop[i] = 1;
9400 signal_print[i] = 1;
9401 signal_program[i] = 1;
ab04a2af 9402 signal_catch[i] = 0;
c906108c
SS
9403 }
9404
4d9d9d04
PA
9405 /* Signals caused by debugger's own actions should not be given to
9406 the program afterwards.
9407
9408 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9409 explicitly specifies that it should be delivered to the target
9410 program. Typically, that would occur when a user is debugging a
9411 target monitor on a simulator: the target monitor sets a
9412 breakpoint; the simulator encounters this breakpoint and halts
9413 the simulation handing control to GDB; GDB, noting that the stop
9414 address doesn't map to any known breakpoint, returns control back
9415 to the simulator; the simulator then delivers the hardware
9416 equivalent of a GDB_SIGNAL_TRAP to the program being
9417 debugged. */
a493e3e2
PA
9418 signal_program[GDB_SIGNAL_TRAP] = 0;
9419 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9420
9421 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9422 signal_stop[GDB_SIGNAL_ALRM] = 0;
9423 signal_print[GDB_SIGNAL_ALRM] = 0;
9424 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9425 signal_print[GDB_SIGNAL_VTALRM] = 0;
9426 signal_stop[GDB_SIGNAL_PROF] = 0;
9427 signal_print[GDB_SIGNAL_PROF] = 0;
9428 signal_stop[GDB_SIGNAL_CHLD] = 0;
9429 signal_print[GDB_SIGNAL_CHLD] = 0;
9430 signal_stop[GDB_SIGNAL_IO] = 0;
9431 signal_print[GDB_SIGNAL_IO] = 0;
9432 signal_stop[GDB_SIGNAL_POLL] = 0;
9433 signal_print[GDB_SIGNAL_POLL] = 0;
9434 signal_stop[GDB_SIGNAL_URG] = 0;
9435 signal_print[GDB_SIGNAL_URG] = 0;
9436 signal_stop[GDB_SIGNAL_WINCH] = 0;
9437 signal_print[GDB_SIGNAL_WINCH] = 0;
9438 signal_stop[GDB_SIGNAL_PRIO] = 0;
9439 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9440
cd0fc7c3
SS
9441 /* These signals are used internally by user-level thread
9442 implementations. (See signal(5) on Solaris.) Like the above
9443 signals, a healthy program receives and handles them as part of
9444 its normal operation. */
a493e3e2
PA
9445 signal_stop[GDB_SIGNAL_LWP] = 0;
9446 signal_print[GDB_SIGNAL_LWP] = 0;
9447 signal_stop[GDB_SIGNAL_WAITING] = 0;
9448 signal_print[GDB_SIGNAL_WAITING] = 0;
9449 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9450 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9451 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9452 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9453
2455069d
UW
9454 /* Update cached state. */
9455 signal_cache_update (-1);
9456
85c07804
AC
9457 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9458 &stop_on_solib_events, _("\
9459Set stopping for shared library events."), _("\
9460Show stopping for shared library events."), _("\
c906108c
SS
9461If nonzero, gdb will give control to the user when the dynamic linker\n\
9462notifies gdb of shared library events. The most common event of interest\n\
85c07804 9463to the user would be loading/unloading of a new library."),
f9e14852 9464 set_stop_on_solib_events,
920d2a44 9465 show_stop_on_solib_events,
85c07804 9466 &setlist, &showlist);
c906108c 9467
7ab04401
AC
9468 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9469 follow_fork_mode_kind_names,
9470 &follow_fork_mode_string, _("\
9471Set debugger response to a program call of fork or vfork."), _("\
9472Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9473A fork or vfork creates a new process. follow-fork-mode can be:\n\
9474 parent - the original process is debugged after a fork\n\
9475 child - the new process is debugged after a fork\n\
ea1dd7bc 9476The unfollowed process will continue to run.\n\
7ab04401
AC
9477By default, the debugger will follow the parent process."),
9478 NULL,
920d2a44 9479 show_follow_fork_mode_string,
7ab04401
AC
9480 &setlist, &showlist);
9481
6c95b8df
PA
9482 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9483 follow_exec_mode_names,
9484 &follow_exec_mode_string, _("\
9485Set debugger response to a program call of exec."), _("\
9486Show debugger response to a program call of exec."), _("\
9487An exec call replaces the program image of a process.\n\
9488\n\
9489follow-exec-mode can be:\n\
9490\n\
cce7e648 9491 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9492to this new inferior. The program the process was running before\n\
9493the exec call can be restarted afterwards by restarting the original\n\
9494inferior.\n\
9495\n\
9496 same - the debugger keeps the process bound to the same inferior.\n\
9497The new executable image replaces the previous executable loaded in\n\
9498the inferior. Restarting the inferior after the exec call restarts\n\
9499the executable the process was running after the exec call.\n\
9500\n\
9501By default, the debugger will use the same inferior."),
9502 NULL,
9503 show_follow_exec_mode_string,
9504 &setlist, &showlist);
9505
7ab04401
AC
9506 add_setshow_enum_cmd ("scheduler-locking", class_run,
9507 scheduler_enums, &scheduler_mode, _("\
9508Set mode for locking scheduler during execution."), _("\
9509Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9510off == no locking (threads may preempt at any time)\n\
9511on == full locking (no thread except the current thread may run)\n\
9512 This applies to both normal execution and replay mode.\n\
9513step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9514 In this mode, other threads may run during other commands.\n\
9515 This applies to both normal execution and replay mode.\n\
9516replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9517 set_schedlock_func, /* traps on target vector */
920d2a44 9518 show_scheduler_mode,
7ab04401 9519 &setlist, &showlist);
5fbbeb29 9520
d4db2f36
PA
9521 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9522Set mode for resuming threads of all processes."), _("\
9523Show mode for resuming threads of all processes."), _("\
9524When on, execution commands (such as 'continue' or 'next') resume all\n\
9525threads of all processes. When off (which is the default), execution\n\
9526commands only resume the threads of the current process. The set of\n\
9527threads that are resumed is further refined by the scheduler-locking\n\
9528mode (see help set scheduler-locking)."),
9529 NULL,
9530 show_schedule_multiple,
9531 &setlist, &showlist);
9532
5bf193a2
AC
9533 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9534Set mode of the step operation."), _("\
9535Show mode of the step operation."), _("\
9536When set, doing a step over a function without debug line information\n\
9537will stop at the first instruction of that function. Otherwise, the\n\
9538function is skipped and the step command stops at a different source line."),
9539 NULL,
920d2a44 9540 show_step_stop_if_no_debug,
5bf193a2 9541 &setlist, &showlist);
ca6724c1 9542
72d0e2c5
YQ
9543 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9544 &can_use_displaced_stepping, _("\
237fc4c9
PA
9545Set debugger's willingness to use displaced stepping."), _("\
9546Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9547If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9548supported by the target architecture. If off, gdb will not use displaced\n\
9549stepping to step over breakpoints, even if such is supported by the target\n\
9550architecture. If auto (which is the default), gdb will use displaced stepping\n\
9551if the target architecture supports it and non-stop mode is active, but will not\n\
9552use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9553 NULL,
9554 show_can_use_displaced_stepping,
9555 &setlist, &showlist);
237fc4c9 9556
b2175913
MS
9557 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9558 &exec_direction, _("Set direction of execution.\n\
9559Options are 'forward' or 'reverse'."),
9560 _("Show direction of execution (forward/reverse)."),
9561 _("Tells gdb whether to execute forward or backward."),
9562 set_exec_direction_func, show_exec_direction_func,
9563 &setlist, &showlist);
9564
6c95b8df
PA
9565 /* Set/show detach-on-fork: user-settable mode. */
9566
9567 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9568Set whether gdb will detach the child of a fork."), _("\
9569Show whether gdb will detach the child of a fork."), _("\
9570Tells gdb whether to detach the child of a fork."),
9571 NULL, NULL, &setlist, &showlist);
9572
03583c20
UW
9573 /* Set/show disable address space randomization mode. */
9574
9575 add_setshow_boolean_cmd ("disable-randomization", class_support,
9576 &disable_randomization, _("\
9577Set disabling of debuggee's virtual address space randomization."), _("\
9578Show disabling of debuggee's virtual address space randomization."), _("\
9579When this mode is on (which is the default), randomization of the virtual\n\
9580address space is disabled. Standalone programs run with the randomization\n\
9581enabled by default on some platforms."),
9582 &set_disable_randomization,
9583 &show_disable_randomization,
9584 &setlist, &showlist);
9585
ca6724c1 9586 /* ptid initializations */
ca6724c1
KB
9587 inferior_ptid = null_ptid;
9588 target_last_wait_ptid = minus_one_ptid;
5231c1fd 9589
76727919
TT
9590 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9591 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9592 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9593 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
4aa995e1
PA
9594
9595 /* Explicitly create without lookup, since that tries to create a
9596 value with a void typed value, and when we get here, gdbarch
9597 isn't initialized yet. At this point, we're quite sure there
9598 isn't another convenience variable of the same name. */
22d2b532 9599 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9600
9601 add_setshow_boolean_cmd ("observer", no_class,
9602 &observer_mode_1, _("\
9603Set whether gdb controls the inferior in observer mode."), _("\
9604Show whether gdb controls the inferior in observer mode."), _("\
9605In observer mode, GDB can get data from the inferior, but not\n\
9606affect its execution. Registers and memory may not be changed,\n\
9607breakpoints may not be set, and the program cannot be interrupted\n\
9608or signalled."),
9609 set_observer_mode,
9610 show_observer_mode,
9611 &setlist,
9612 &showlist);
c906108c 9613}
This page took 3.353532 seconds and 4 git commands to generate.