GDB copyright headers update after running GDB's copyright.py script.
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
618f726f 4 Copyright (C) 1986-2016 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
06600e06 41#include "observer.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
ff862be4 63#include "solist.h"
372316f1 64#include "event-loop.h"
243a9253 65#include "thread-fsm.h"
8d297bbf 66#include "common/enum-flags.h"
c906108c
SS
67
68/* Prototypes for local functions */
69
96baa820 70static void signals_info (char *, int);
c906108c 71
96baa820 72static void handle_command (char *, int);
c906108c 73
2ea28649 74static void sig_print_info (enum gdb_signal);
c906108c 75
96baa820 76static void sig_print_header (void);
c906108c 77
74b7792f 78static void resume_cleanups (void *);
c906108c 79
96baa820 80static int hook_stop_stub (void *);
c906108c 81
96baa820
JM
82static int restore_selected_frame (void *);
83
4ef3f3be 84static int follow_fork (void);
96baa820 85
d83ad864
DB
86static int follow_fork_inferior (int follow_child, int detach_fork);
87
88static void follow_inferior_reset_breakpoints (void);
89
96baa820 90static void set_schedlock_func (char *args, int from_tty,
488f131b 91 struct cmd_list_element *c);
96baa820 92
a289b8f6
JK
93static int currently_stepping (struct thread_info *tp);
94
96baa820 95void _initialize_infrun (void);
43ff13b4 96
e58b0e63
PA
97void nullify_last_target_wait_ptid (void);
98
2c03e5be 99static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
100
101static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
102
2484c66b
UW
103static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
104
8550d3b3
YQ
105static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
106
372316f1
PA
107/* Asynchronous signal handler registered as event loop source for
108 when we have pending events ready to be passed to the core. */
109static struct async_event_handler *infrun_async_inferior_event_token;
110
111/* Stores whether infrun_async was previously enabled or disabled.
112 Starts off as -1, indicating "never enabled/disabled". */
113static int infrun_is_async = -1;
114
115/* See infrun.h. */
116
117void
118infrun_async (int enable)
119{
120 if (infrun_is_async != enable)
121 {
122 infrun_is_async = enable;
123
124 if (debug_infrun)
125 fprintf_unfiltered (gdb_stdlog,
126 "infrun: infrun_async(%d)\n",
127 enable);
128
129 if (enable)
130 mark_async_event_handler (infrun_async_inferior_event_token);
131 else
132 clear_async_event_handler (infrun_async_inferior_event_token);
133 }
134}
135
0b333c5e
PA
136/* See infrun.h. */
137
138void
139mark_infrun_async_event_handler (void)
140{
141 mark_async_event_handler (infrun_async_inferior_event_token);
142}
143
5fbbeb29
CF
144/* When set, stop the 'step' command if we enter a function which has
145 no line number information. The normal behavior is that we step
146 over such function. */
147int step_stop_if_no_debug = 0;
920d2a44
AC
148static void
149show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151{
152 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
153}
5fbbeb29 154
1777feb0 155/* In asynchronous mode, but simulating synchronous execution. */
96baa820 156
43ff13b4
JM
157int sync_execution = 0;
158
b9f437de
PA
159/* proceed and normal_stop use this to notify the user when the
160 inferior stopped in a different thread than it had been running
161 in. */
96baa820 162
39f77062 163static ptid_t previous_inferior_ptid;
7a292a7a 164
07107ca6
LM
165/* If set (default for legacy reasons), when following a fork, GDB
166 will detach from one of the fork branches, child or parent.
167 Exactly which branch is detached depends on 'set follow-fork-mode'
168 setting. */
169
170static int detach_fork = 1;
6c95b8df 171
237fc4c9
PA
172int debug_displaced = 0;
173static void
174show_debug_displaced (struct ui_file *file, int from_tty,
175 struct cmd_list_element *c, const char *value)
176{
177 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
178}
179
ccce17b0 180unsigned int debug_infrun = 0;
920d2a44
AC
181static void
182show_debug_infrun (struct ui_file *file, int from_tty,
183 struct cmd_list_element *c, const char *value)
184{
185 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
186}
527159b7 187
03583c20
UW
188
189/* Support for disabling address space randomization. */
190
191int disable_randomization = 1;
192
193static void
194show_disable_randomization (struct ui_file *file, int from_tty,
195 struct cmd_list_element *c, const char *value)
196{
197 if (target_supports_disable_randomization ())
198 fprintf_filtered (file,
199 _("Disabling randomization of debuggee's "
200 "virtual address space is %s.\n"),
201 value);
202 else
203 fputs_filtered (_("Disabling randomization of debuggee's "
204 "virtual address space is unsupported on\n"
205 "this platform.\n"), file);
206}
207
208static void
209set_disable_randomization (char *args, int from_tty,
210 struct cmd_list_element *c)
211{
212 if (!target_supports_disable_randomization ())
213 error (_("Disabling randomization of debuggee's "
214 "virtual address space is unsupported on\n"
215 "this platform."));
216}
217
d32dc48e
PA
218/* User interface for non-stop mode. */
219
220int non_stop = 0;
221static int non_stop_1 = 0;
222
223static void
224set_non_stop (char *args, int from_tty,
225 struct cmd_list_element *c)
226{
227 if (target_has_execution)
228 {
229 non_stop_1 = non_stop;
230 error (_("Cannot change this setting while the inferior is running."));
231 }
232
233 non_stop = non_stop_1;
234}
235
236static void
237show_non_stop (struct ui_file *file, int from_tty,
238 struct cmd_list_element *c, const char *value)
239{
240 fprintf_filtered (file,
241 _("Controlling the inferior in non-stop mode is %s.\n"),
242 value);
243}
244
d914c394
SS
245/* "Observer mode" is somewhat like a more extreme version of
246 non-stop, in which all GDB operations that might affect the
247 target's execution have been disabled. */
248
d914c394
SS
249int observer_mode = 0;
250static int observer_mode_1 = 0;
251
252static void
253set_observer_mode (char *args, int from_tty,
254 struct cmd_list_element *c)
255{
d914c394
SS
256 if (target_has_execution)
257 {
258 observer_mode_1 = observer_mode;
259 error (_("Cannot change this setting while the inferior is running."));
260 }
261
262 observer_mode = observer_mode_1;
263
264 may_write_registers = !observer_mode;
265 may_write_memory = !observer_mode;
266 may_insert_breakpoints = !observer_mode;
267 may_insert_tracepoints = !observer_mode;
268 /* We can insert fast tracepoints in or out of observer mode,
269 but enable them if we're going into this mode. */
270 if (observer_mode)
271 may_insert_fast_tracepoints = 1;
272 may_stop = !observer_mode;
273 update_target_permissions ();
274
275 /* Going *into* observer mode we must force non-stop, then
276 going out we leave it that way. */
277 if (observer_mode)
278 {
d914c394
SS
279 pagination_enabled = 0;
280 non_stop = non_stop_1 = 1;
281 }
282
283 if (from_tty)
284 printf_filtered (_("Observer mode is now %s.\n"),
285 (observer_mode ? "on" : "off"));
286}
287
288static void
289show_observer_mode (struct ui_file *file, int from_tty,
290 struct cmd_list_element *c, const char *value)
291{
292 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
293}
294
295/* This updates the value of observer mode based on changes in
296 permissions. Note that we are deliberately ignoring the values of
297 may-write-registers and may-write-memory, since the user may have
298 reason to enable these during a session, for instance to turn on a
299 debugging-related global. */
300
301void
302update_observer_mode (void)
303{
304 int newval;
305
306 newval = (!may_insert_breakpoints
307 && !may_insert_tracepoints
308 && may_insert_fast_tracepoints
309 && !may_stop
310 && non_stop);
311
312 /* Let the user know if things change. */
313 if (newval != observer_mode)
314 printf_filtered (_("Observer mode is now %s.\n"),
315 (newval ? "on" : "off"));
316
317 observer_mode = observer_mode_1 = newval;
318}
c2c6d25f 319
c906108c
SS
320/* Tables of how to react to signals; the user sets them. */
321
322static unsigned char *signal_stop;
323static unsigned char *signal_print;
324static unsigned char *signal_program;
325
ab04a2af
TT
326/* Table of signals that are registered with "catch signal". A
327 non-zero entry indicates that the signal is caught by some "catch
328 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
329 signals. */
330static unsigned char *signal_catch;
331
2455069d
UW
332/* Table of signals that the target may silently handle.
333 This is automatically determined from the flags above,
334 and simply cached here. */
335static unsigned char *signal_pass;
336
c906108c
SS
337#define SET_SIGS(nsigs,sigs,flags) \
338 do { \
339 int signum = (nsigs); \
340 while (signum-- > 0) \
341 if ((sigs)[signum]) \
342 (flags)[signum] = 1; \
343 } while (0)
344
345#define UNSET_SIGS(nsigs,sigs,flags) \
346 do { \
347 int signum = (nsigs); \
348 while (signum-- > 0) \
349 if ((sigs)[signum]) \
350 (flags)[signum] = 0; \
351 } while (0)
352
9b224c5e
PA
353/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
354 this function is to avoid exporting `signal_program'. */
355
356void
357update_signals_program_target (void)
358{
a493e3e2 359 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
360}
361
1777feb0 362/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 363
edb3359d 364#define RESUME_ALL minus_one_ptid
c906108c
SS
365
366/* Command list pointer for the "stop" placeholder. */
367
368static struct cmd_list_element *stop_command;
369
c906108c
SS
370/* Nonzero if we want to give control to the user when we're notified
371 of shared library events by the dynamic linker. */
628fe4e4 372int stop_on_solib_events;
f9e14852
GB
373
374/* Enable or disable optional shared library event breakpoints
375 as appropriate when the above flag is changed. */
376
377static void
378set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
379{
380 update_solib_breakpoints ();
381}
382
920d2a44
AC
383static void
384show_stop_on_solib_events (struct ui_file *file, int from_tty,
385 struct cmd_list_element *c, const char *value)
386{
387 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
388 value);
389}
c906108c 390
c906108c
SS
391/* Nonzero after stop if current stack frame should be printed. */
392
393static int stop_print_frame;
394
e02bc4cc 395/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
396 returned by target_wait()/deprecated_target_wait_hook(). This
397 information is returned by get_last_target_status(). */
39f77062 398static ptid_t target_last_wait_ptid;
e02bc4cc
DS
399static struct target_waitstatus target_last_waitstatus;
400
0d1e5fa7
PA
401static void context_switch (ptid_t ptid);
402
4e1c45ea 403void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 404
53904c9e
AC
405static const char follow_fork_mode_child[] = "child";
406static const char follow_fork_mode_parent[] = "parent";
407
40478521 408static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
409 follow_fork_mode_child,
410 follow_fork_mode_parent,
411 NULL
ef346e04 412};
c906108c 413
53904c9e 414static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
415static void
416show_follow_fork_mode_string (struct ui_file *file, int from_tty,
417 struct cmd_list_element *c, const char *value)
418{
3e43a32a
MS
419 fprintf_filtered (file,
420 _("Debugger response to a program "
421 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
422 value);
423}
c906108c
SS
424\f
425
d83ad864
DB
426/* Handle changes to the inferior list based on the type of fork,
427 which process is being followed, and whether the other process
428 should be detached. On entry inferior_ptid must be the ptid of
429 the fork parent. At return inferior_ptid is the ptid of the
430 followed inferior. */
431
432static int
433follow_fork_inferior (int follow_child, int detach_fork)
434{
435 int has_vforked;
79639e11 436 ptid_t parent_ptid, child_ptid;
d83ad864
DB
437
438 has_vforked = (inferior_thread ()->pending_follow.kind
439 == TARGET_WAITKIND_VFORKED);
79639e11
PA
440 parent_ptid = inferior_ptid;
441 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
442
443 if (has_vforked
444 && !non_stop /* Non-stop always resumes both branches. */
445 && (!target_is_async_p () || sync_execution)
446 && !(follow_child || detach_fork || sched_multi))
447 {
448 /* The parent stays blocked inside the vfork syscall until the
449 child execs or exits. If we don't let the child run, then
450 the parent stays blocked. If we're telling the parent to run
451 in the foreground, the user will not be able to ctrl-c to get
452 back the terminal, effectively hanging the debug session. */
453 fprintf_filtered (gdb_stderr, _("\
454Can not resume the parent process over vfork in the foreground while\n\
455holding the child stopped. Try \"set detach-on-fork\" or \
456\"set schedule-multiple\".\n"));
457 /* FIXME output string > 80 columns. */
458 return 1;
459 }
460
461 if (!follow_child)
462 {
463 /* Detach new forked process? */
464 if (detach_fork)
465 {
466 struct cleanup *old_chain;
467
468 /* Before detaching from the child, remove all breakpoints
469 from it. If we forked, then this has already been taken
470 care of by infrun.c. If we vforked however, any
471 breakpoint inserted in the parent is visible in the
472 child, even those added while stopped in a vfork
473 catchpoint. This will remove the breakpoints from the
474 parent also, but they'll be reinserted below. */
475 if (has_vforked)
476 {
477 /* Keep breakpoints list in sync. */
478 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
479 }
480
481 if (info_verbose || debug_infrun)
482 {
8dd06f7a
DB
483 /* Ensure that we have a process ptid. */
484 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
485
6f259a23 486 target_terminal_ours_for_output ();
d83ad864 487 fprintf_filtered (gdb_stdlog,
79639e11 488 _("Detaching after %s from child %s.\n"),
6f259a23 489 has_vforked ? "vfork" : "fork",
8dd06f7a 490 target_pid_to_str (process_ptid));
d83ad864
DB
491 }
492 }
493 else
494 {
495 struct inferior *parent_inf, *child_inf;
496 struct cleanup *old_chain;
497
498 /* Add process to GDB's tables. */
79639e11 499 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
500
501 parent_inf = current_inferior ();
502 child_inf->attach_flag = parent_inf->attach_flag;
503 copy_terminal_info (child_inf, parent_inf);
504 child_inf->gdbarch = parent_inf->gdbarch;
505 copy_inferior_target_desc_info (child_inf, parent_inf);
506
507 old_chain = save_inferior_ptid ();
508 save_current_program_space ();
509
79639e11 510 inferior_ptid = child_ptid;
d83ad864
DB
511 add_thread (inferior_ptid);
512 child_inf->symfile_flags = SYMFILE_NO_READ;
513
514 /* If this is a vfork child, then the address-space is
515 shared with the parent. */
516 if (has_vforked)
517 {
518 child_inf->pspace = parent_inf->pspace;
519 child_inf->aspace = parent_inf->aspace;
520
521 /* The parent will be frozen until the child is done
522 with the shared region. Keep track of the
523 parent. */
524 child_inf->vfork_parent = parent_inf;
525 child_inf->pending_detach = 0;
526 parent_inf->vfork_child = child_inf;
527 parent_inf->pending_detach = 0;
528 }
529 else
530 {
531 child_inf->aspace = new_address_space ();
532 child_inf->pspace = add_program_space (child_inf->aspace);
533 child_inf->removable = 1;
534 set_current_program_space (child_inf->pspace);
535 clone_program_space (child_inf->pspace, parent_inf->pspace);
536
537 /* Let the shared library layer (e.g., solib-svr4) learn
538 about this new process, relocate the cloned exec, pull
539 in shared libraries, and install the solib event
540 breakpoint. If a "cloned-VM" event was propagated
541 better throughout the core, this wouldn't be
542 required. */
543 solib_create_inferior_hook (0);
544 }
545
546 do_cleanups (old_chain);
547 }
548
549 if (has_vforked)
550 {
551 struct inferior *parent_inf;
552
553 parent_inf = current_inferior ();
554
555 /* If we detached from the child, then we have to be careful
556 to not insert breakpoints in the parent until the child
557 is done with the shared memory region. However, if we're
558 staying attached to the child, then we can and should
559 insert breakpoints, so that we can debug it. A
560 subsequent child exec or exit is enough to know when does
561 the child stops using the parent's address space. */
562 parent_inf->waiting_for_vfork_done = detach_fork;
563 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
564 }
565 }
566 else
567 {
568 /* Follow the child. */
569 struct inferior *parent_inf, *child_inf;
570 struct program_space *parent_pspace;
571
572 if (info_verbose || debug_infrun)
573 {
6f259a23
DB
574 target_terminal_ours_for_output ();
575 fprintf_filtered (gdb_stdlog,
79639e11
PA
576 _("Attaching after %s %s to child %s.\n"),
577 target_pid_to_str (parent_ptid),
6f259a23 578 has_vforked ? "vfork" : "fork",
79639e11 579 target_pid_to_str (child_ptid));
d83ad864
DB
580 }
581
582 /* Add the new inferior first, so that the target_detach below
583 doesn't unpush the target. */
584
79639e11 585 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
586
587 parent_inf = current_inferior ();
588 child_inf->attach_flag = parent_inf->attach_flag;
589 copy_terminal_info (child_inf, parent_inf);
590 child_inf->gdbarch = parent_inf->gdbarch;
591 copy_inferior_target_desc_info (child_inf, parent_inf);
592
593 parent_pspace = parent_inf->pspace;
594
595 /* If we're vforking, we want to hold on to the parent until the
596 child exits or execs. At child exec or exit time we can
597 remove the old breakpoints from the parent and detach or
598 resume debugging it. Otherwise, detach the parent now; we'll
599 want to reuse it's program/address spaces, but we can't set
600 them to the child before removing breakpoints from the
601 parent, otherwise, the breakpoints module could decide to
602 remove breakpoints from the wrong process (since they'd be
603 assigned to the same address space). */
604
605 if (has_vforked)
606 {
607 gdb_assert (child_inf->vfork_parent == NULL);
608 gdb_assert (parent_inf->vfork_child == NULL);
609 child_inf->vfork_parent = parent_inf;
610 child_inf->pending_detach = 0;
611 parent_inf->vfork_child = child_inf;
612 parent_inf->pending_detach = detach_fork;
613 parent_inf->waiting_for_vfork_done = 0;
614 }
615 else if (detach_fork)
6f259a23
DB
616 {
617 if (info_verbose || debug_infrun)
618 {
8dd06f7a
DB
619 /* Ensure that we have a process ptid. */
620 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
621
6f259a23
DB
622 target_terminal_ours_for_output ();
623 fprintf_filtered (gdb_stdlog,
624 _("Detaching after fork from "
79639e11 625 "child %s.\n"),
8dd06f7a 626 target_pid_to_str (process_ptid));
6f259a23
DB
627 }
628
629 target_detach (NULL, 0);
630 }
d83ad864
DB
631
632 /* Note that the detach above makes PARENT_INF dangling. */
633
634 /* Add the child thread to the appropriate lists, and switch to
635 this new thread, before cloning the program space, and
636 informing the solib layer about this new process. */
637
79639e11 638 inferior_ptid = child_ptid;
d83ad864
DB
639 add_thread (inferior_ptid);
640
641 /* If this is a vfork child, then the address-space is shared
642 with the parent. If we detached from the parent, then we can
643 reuse the parent's program/address spaces. */
644 if (has_vforked || detach_fork)
645 {
646 child_inf->pspace = parent_pspace;
647 child_inf->aspace = child_inf->pspace->aspace;
648 }
649 else
650 {
651 child_inf->aspace = new_address_space ();
652 child_inf->pspace = add_program_space (child_inf->aspace);
653 child_inf->removable = 1;
654 child_inf->symfile_flags = SYMFILE_NO_READ;
655 set_current_program_space (child_inf->pspace);
656 clone_program_space (child_inf->pspace, parent_pspace);
657
658 /* Let the shared library layer (e.g., solib-svr4) learn
659 about this new process, relocate the cloned exec, pull in
660 shared libraries, and install the solib event breakpoint.
661 If a "cloned-VM" event was propagated better throughout
662 the core, this wouldn't be required. */
663 solib_create_inferior_hook (0);
664 }
665 }
666
667 return target_follow_fork (follow_child, detach_fork);
668}
669
e58b0e63
PA
670/* Tell the target to follow the fork we're stopped at. Returns true
671 if the inferior should be resumed; false, if the target for some
672 reason decided it's best not to resume. */
673
6604731b 674static int
4ef3f3be 675follow_fork (void)
c906108c 676{
ea1dd7bc 677 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
678 int should_resume = 1;
679 struct thread_info *tp;
680
681 /* Copy user stepping state to the new inferior thread. FIXME: the
682 followed fork child thread should have a copy of most of the
4e3990f4
DE
683 parent thread structure's run control related fields, not just these.
684 Initialized to avoid "may be used uninitialized" warnings from gcc. */
685 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 686 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
687 CORE_ADDR step_range_start = 0;
688 CORE_ADDR step_range_end = 0;
689 struct frame_id step_frame_id = { 0 };
17b2616c 690 struct interp *command_interp = NULL;
e58b0e63
PA
691
692 if (!non_stop)
693 {
694 ptid_t wait_ptid;
695 struct target_waitstatus wait_status;
696
697 /* Get the last target status returned by target_wait(). */
698 get_last_target_status (&wait_ptid, &wait_status);
699
700 /* If not stopped at a fork event, then there's nothing else to
701 do. */
702 if (wait_status.kind != TARGET_WAITKIND_FORKED
703 && wait_status.kind != TARGET_WAITKIND_VFORKED)
704 return 1;
705
706 /* Check if we switched over from WAIT_PTID, since the event was
707 reported. */
708 if (!ptid_equal (wait_ptid, minus_one_ptid)
709 && !ptid_equal (inferior_ptid, wait_ptid))
710 {
711 /* We did. Switch back to WAIT_PTID thread, to tell the
712 target to follow it (in either direction). We'll
713 afterwards refuse to resume, and inform the user what
714 happened. */
715 switch_to_thread (wait_ptid);
716 should_resume = 0;
717 }
718 }
719
720 tp = inferior_thread ();
721
722 /* If there were any forks/vforks that were caught and are now to be
723 followed, then do so now. */
724 switch (tp->pending_follow.kind)
725 {
726 case TARGET_WAITKIND_FORKED:
727 case TARGET_WAITKIND_VFORKED:
728 {
729 ptid_t parent, child;
730
731 /* If the user did a next/step, etc, over a fork call,
732 preserve the stepping state in the fork child. */
733 if (follow_child && should_resume)
734 {
8358c15c
JK
735 step_resume_breakpoint = clone_momentary_breakpoint
736 (tp->control.step_resume_breakpoint);
16c381f0
JK
737 step_range_start = tp->control.step_range_start;
738 step_range_end = tp->control.step_range_end;
739 step_frame_id = tp->control.step_frame_id;
186c406b
TT
740 exception_resume_breakpoint
741 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
17b2616c 742 command_interp = tp->control.command_interp;
e58b0e63
PA
743
744 /* For now, delete the parent's sr breakpoint, otherwise,
745 parent/child sr breakpoints are considered duplicates,
746 and the child version will not be installed. Remove
747 this when the breakpoints module becomes aware of
748 inferiors and address spaces. */
749 delete_step_resume_breakpoint (tp);
16c381f0
JK
750 tp->control.step_range_start = 0;
751 tp->control.step_range_end = 0;
752 tp->control.step_frame_id = null_frame_id;
186c406b 753 delete_exception_resume_breakpoint (tp);
17b2616c 754 tp->control.command_interp = NULL;
e58b0e63
PA
755 }
756
757 parent = inferior_ptid;
758 child = tp->pending_follow.value.related_pid;
759
d83ad864
DB
760 /* Set up inferior(s) as specified by the caller, and tell the
761 target to do whatever is necessary to follow either parent
762 or child. */
763 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
764 {
765 /* Target refused to follow, or there's some other reason
766 we shouldn't resume. */
767 should_resume = 0;
768 }
769 else
770 {
771 /* This pending follow fork event is now handled, one way
772 or another. The previous selected thread may be gone
773 from the lists by now, but if it is still around, need
774 to clear the pending follow request. */
e09875d4 775 tp = find_thread_ptid (parent);
e58b0e63
PA
776 if (tp)
777 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
778
779 /* This makes sure we don't try to apply the "Switched
780 over from WAIT_PID" logic above. */
781 nullify_last_target_wait_ptid ();
782
1777feb0 783 /* If we followed the child, switch to it... */
e58b0e63
PA
784 if (follow_child)
785 {
786 switch_to_thread (child);
787
788 /* ... and preserve the stepping state, in case the
789 user was stepping over the fork call. */
790 if (should_resume)
791 {
792 tp = inferior_thread ();
8358c15c
JK
793 tp->control.step_resume_breakpoint
794 = step_resume_breakpoint;
16c381f0
JK
795 tp->control.step_range_start = step_range_start;
796 tp->control.step_range_end = step_range_end;
797 tp->control.step_frame_id = step_frame_id;
186c406b
TT
798 tp->control.exception_resume_breakpoint
799 = exception_resume_breakpoint;
17b2616c 800 tp->control.command_interp = command_interp;
e58b0e63
PA
801 }
802 else
803 {
804 /* If we get here, it was because we're trying to
805 resume from a fork catchpoint, but, the user
806 has switched threads away from the thread that
807 forked. In that case, the resume command
808 issued is most likely not applicable to the
809 child, so just warn, and refuse to resume. */
3e43a32a 810 warning (_("Not resuming: switched threads "
fd7dcb94 811 "before following fork child."));
e58b0e63
PA
812 }
813
814 /* Reset breakpoints in the child as appropriate. */
815 follow_inferior_reset_breakpoints ();
816 }
817 else
818 switch_to_thread (parent);
819 }
820 }
821 break;
822 case TARGET_WAITKIND_SPURIOUS:
823 /* Nothing to follow. */
824 break;
825 default:
826 internal_error (__FILE__, __LINE__,
827 "Unexpected pending_follow.kind %d\n",
828 tp->pending_follow.kind);
829 break;
830 }
c906108c 831
e58b0e63 832 return should_resume;
c906108c
SS
833}
834
d83ad864 835static void
6604731b 836follow_inferior_reset_breakpoints (void)
c906108c 837{
4e1c45ea
PA
838 struct thread_info *tp = inferior_thread ();
839
6604731b
DJ
840 /* Was there a step_resume breakpoint? (There was if the user
841 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
842 thread number. Cloned step_resume breakpoints are disabled on
843 creation, so enable it here now that it is associated with the
844 correct thread.
6604731b
DJ
845
846 step_resumes are a form of bp that are made to be per-thread.
847 Since we created the step_resume bp when the parent process
848 was being debugged, and now are switching to the child process,
849 from the breakpoint package's viewpoint, that's a switch of
850 "threads". We must update the bp's notion of which thread
851 it is for, or it'll be ignored when it triggers. */
852
8358c15c 853 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
854 {
855 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
856 tp->control.step_resume_breakpoint->loc->enabled = 1;
857 }
6604731b 858
a1aa2221 859 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 860 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
861 {
862 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
863 tp->control.exception_resume_breakpoint->loc->enabled = 1;
864 }
186c406b 865
6604731b
DJ
866 /* Reinsert all breakpoints in the child. The user may have set
867 breakpoints after catching the fork, in which case those
868 were never set in the child, but only in the parent. This makes
869 sure the inserted breakpoints match the breakpoint list. */
870
871 breakpoint_re_set ();
872 insert_breakpoints ();
c906108c 873}
c906108c 874
6c95b8df
PA
875/* The child has exited or execed: resume threads of the parent the
876 user wanted to be executing. */
877
878static int
879proceed_after_vfork_done (struct thread_info *thread,
880 void *arg)
881{
882 int pid = * (int *) arg;
883
884 if (ptid_get_pid (thread->ptid) == pid
885 && is_running (thread->ptid)
886 && !is_executing (thread->ptid)
887 && !thread->stop_requested
a493e3e2 888 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
889 {
890 if (debug_infrun)
891 fprintf_unfiltered (gdb_stdlog,
892 "infrun: resuming vfork parent thread %s\n",
893 target_pid_to_str (thread->ptid));
894
895 switch_to_thread (thread->ptid);
70509625 896 clear_proceed_status (0);
64ce06e4 897 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
898 }
899
900 return 0;
901}
902
903/* Called whenever we notice an exec or exit event, to handle
904 detaching or resuming a vfork parent. */
905
906static void
907handle_vfork_child_exec_or_exit (int exec)
908{
909 struct inferior *inf = current_inferior ();
910
911 if (inf->vfork_parent)
912 {
913 int resume_parent = -1;
914
915 /* This exec or exit marks the end of the shared memory region
916 between the parent and the child. If the user wanted to
917 detach from the parent, now is the time. */
918
919 if (inf->vfork_parent->pending_detach)
920 {
921 struct thread_info *tp;
922 struct cleanup *old_chain;
923 struct program_space *pspace;
924 struct address_space *aspace;
925
1777feb0 926 /* follow-fork child, detach-on-fork on. */
6c95b8df 927
68c9da30
PA
928 inf->vfork_parent->pending_detach = 0;
929
f50f4e56
PA
930 if (!exec)
931 {
932 /* If we're handling a child exit, then inferior_ptid
933 points at the inferior's pid, not to a thread. */
934 old_chain = save_inferior_ptid ();
935 save_current_program_space ();
936 save_current_inferior ();
937 }
938 else
939 old_chain = save_current_space_and_thread ();
6c95b8df
PA
940
941 /* We're letting loose of the parent. */
942 tp = any_live_thread_of_process (inf->vfork_parent->pid);
943 switch_to_thread (tp->ptid);
944
945 /* We're about to detach from the parent, which implicitly
946 removes breakpoints from its address space. There's a
947 catch here: we want to reuse the spaces for the child,
948 but, parent/child are still sharing the pspace at this
949 point, although the exec in reality makes the kernel give
950 the child a fresh set of new pages. The problem here is
951 that the breakpoints module being unaware of this, would
952 likely chose the child process to write to the parent
953 address space. Swapping the child temporarily away from
954 the spaces has the desired effect. Yes, this is "sort
955 of" a hack. */
956
957 pspace = inf->pspace;
958 aspace = inf->aspace;
959 inf->aspace = NULL;
960 inf->pspace = NULL;
961
962 if (debug_infrun || info_verbose)
963 {
6f259a23 964 target_terminal_ours_for_output ();
6c95b8df
PA
965
966 if (exec)
6f259a23
DB
967 {
968 fprintf_filtered (gdb_stdlog,
969 _("Detaching vfork parent process "
970 "%d after child exec.\n"),
971 inf->vfork_parent->pid);
972 }
6c95b8df 973 else
6f259a23
DB
974 {
975 fprintf_filtered (gdb_stdlog,
976 _("Detaching vfork parent process "
977 "%d after child exit.\n"),
978 inf->vfork_parent->pid);
979 }
6c95b8df
PA
980 }
981
982 target_detach (NULL, 0);
983
984 /* Put it back. */
985 inf->pspace = pspace;
986 inf->aspace = aspace;
987
988 do_cleanups (old_chain);
989 }
990 else if (exec)
991 {
992 /* We're staying attached to the parent, so, really give the
993 child a new address space. */
994 inf->pspace = add_program_space (maybe_new_address_space ());
995 inf->aspace = inf->pspace->aspace;
996 inf->removable = 1;
997 set_current_program_space (inf->pspace);
998
999 resume_parent = inf->vfork_parent->pid;
1000
1001 /* Break the bonds. */
1002 inf->vfork_parent->vfork_child = NULL;
1003 }
1004 else
1005 {
1006 struct cleanup *old_chain;
1007 struct program_space *pspace;
1008
1009 /* If this is a vfork child exiting, then the pspace and
1010 aspaces were shared with the parent. Since we're
1011 reporting the process exit, we'll be mourning all that is
1012 found in the address space, and switching to null_ptid,
1013 preparing to start a new inferior. But, since we don't
1014 want to clobber the parent's address/program spaces, we
1015 go ahead and create a new one for this exiting
1016 inferior. */
1017
1018 /* Switch to null_ptid, so that clone_program_space doesn't want
1019 to read the selected frame of a dead process. */
1020 old_chain = save_inferior_ptid ();
1021 inferior_ptid = null_ptid;
1022
1023 /* This inferior is dead, so avoid giving the breakpoints
1024 module the option to write through to it (cloning a
1025 program space resets breakpoints). */
1026 inf->aspace = NULL;
1027 inf->pspace = NULL;
1028 pspace = add_program_space (maybe_new_address_space ());
1029 set_current_program_space (pspace);
1030 inf->removable = 1;
7dcd53a0 1031 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1032 clone_program_space (pspace, inf->vfork_parent->pspace);
1033 inf->pspace = pspace;
1034 inf->aspace = pspace->aspace;
1035
1036 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 1037 inferior. */
6c95b8df
PA
1038 do_cleanups (old_chain);
1039
1040 resume_parent = inf->vfork_parent->pid;
1041 /* Break the bonds. */
1042 inf->vfork_parent->vfork_child = NULL;
1043 }
1044
1045 inf->vfork_parent = NULL;
1046
1047 gdb_assert (current_program_space == inf->pspace);
1048
1049 if (non_stop && resume_parent != -1)
1050 {
1051 /* If the user wanted the parent to be running, let it go
1052 free now. */
1053 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1054
1055 if (debug_infrun)
3e43a32a
MS
1056 fprintf_unfiltered (gdb_stdlog,
1057 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1058 resume_parent);
1059
1060 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1061
1062 do_cleanups (old_chain);
1063 }
1064 }
1065}
1066
eb6c553b 1067/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1068
1069static const char follow_exec_mode_new[] = "new";
1070static const char follow_exec_mode_same[] = "same";
40478521 1071static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1072{
1073 follow_exec_mode_new,
1074 follow_exec_mode_same,
1075 NULL,
1076};
1077
1078static const char *follow_exec_mode_string = follow_exec_mode_same;
1079static void
1080show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1081 struct cmd_list_element *c, const char *value)
1082{
1083 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1084}
1085
1777feb0 1086/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 1087
c906108c 1088static void
95e50b27 1089follow_exec (ptid_t ptid, char *execd_pathname)
c906108c 1090{
95e50b27 1091 struct thread_info *th, *tmp;
6c95b8df 1092 struct inferior *inf = current_inferior ();
95e50b27 1093 int pid = ptid_get_pid (ptid);
94585166 1094 ptid_t process_ptid;
7a292a7a 1095
c906108c
SS
1096 /* This is an exec event that we actually wish to pay attention to.
1097 Refresh our symbol table to the newly exec'd program, remove any
1098 momentary bp's, etc.
1099
1100 If there are breakpoints, they aren't really inserted now,
1101 since the exec() transformed our inferior into a fresh set
1102 of instructions.
1103
1104 We want to preserve symbolic breakpoints on the list, since
1105 we have hopes that they can be reset after the new a.out's
1106 symbol table is read.
1107
1108 However, any "raw" breakpoints must be removed from the list
1109 (e.g., the solib bp's), since their address is probably invalid
1110 now.
1111
1112 And, we DON'T want to call delete_breakpoints() here, since
1113 that may write the bp's "shadow contents" (the instruction
1114 value that was overwritten witha TRAP instruction). Since
1777feb0 1115 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1116
1117 mark_breakpoints_out ();
1118
95e50b27
PA
1119 /* The target reports the exec event to the main thread, even if
1120 some other thread does the exec, and even if the main thread was
1121 stopped or already gone. We may still have non-leader threads of
1122 the process on our list. E.g., on targets that don't have thread
1123 exit events (like remote); or on native Linux in non-stop mode if
1124 there were only two threads in the inferior and the non-leader
1125 one is the one that execs (and nothing forces an update of the
1126 thread list up to here). When debugging remotely, it's best to
1127 avoid extra traffic, when possible, so avoid syncing the thread
1128 list with the target, and instead go ahead and delete all threads
1129 of the process but one that reported the event. Note this must
1130 be done before calling update_breakpoints_after_exec, as
1131 otherwise clearing the threads' resources would reference stale
1132 thread breakpoints -- it may have been one of these threads that
1133 stepped across the exec. We could just clear their stepping
1134 states, but as long as we're iterating, might as well delete
1135 them. Deleting them now rather than at the next user-visible
1136 stop provides a nicer sequence of events for user and MI
1137 notifications. */
8a06aea7 1138 ALL_THREADS_SAFE (th, tmp)
95e50b27
PA
1139 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1140 delete_thread (th->ptid);
1141
1142 /* We also need to clear any left over stale state for the
1143 leader/event thread. E.g., if there was any step-resume
1144 breakpoint or similar, it's gone now. We cannot truly
1145 step-to-next statement through an exec(). */
1146 th = inferior_thread ();
8358c15c 1147 th->control.step_resume_breakpoint = NULL;
186c406b 1148 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1149 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1150 th->control.step_range_start = 0;
1151 th->control.step_range_end = 0;
c906108c 1152
95e50b27
PA
1153 /* The user may have had the main thread held stopped in the
1154 previous image (e.g., schedlock on, or non-stop). Release
1155 it now. */
a75724bc
PA
1156 th->stop_requested = 0;
1157
95e50b27
PA
1158 update_breakpoints_after_exec ();
1159
1777feb0 1160 /* What is this a.out's name? */
94585166 1161 process_ptid = pid_to_ptid (pid);
6c95b8df 1162 printf_unfiltered (_("%s is executing new program: %s\n"),
94585166 1163 target_pid_to_str (process_ptid),
6c95b8df 1164 execd_pathname);
c906108c
SS
1165
1166 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1167 inferior has essentially been killed & reborn. */
7a292a7a 1168
c906108c 1169 gdb_flush (gdb_stdout);
6ca15a4b
PA
1170
1171 breakpoint_init_inferior (inf_execd);
e85a822c 1172
a3be80c3 1173 if (*gdb_sysroot != '\0')
e85a822c 1174 {
998d2a3e 1175 char *name = exec_file_find (execd_pathname, NULL);
ff862be4 1176
224c3ddb 1177 execd_pathname = (char *) alloca (strlen (name) + 1);
ff862be4
GB
1178 strcpy (execd_pathname, name);
1179 xfree (name);
e85a822c 1180 }
c906108c 1181
cce9b6bf
PA
1182 /* Reset the shared library package. This ensures that we get a
1183 shlib event when the child reaches "_start", at which point the
1184 dld will have had a chance to initialize the child. */
1185 /* Also, loading a symbol file below may trigger symbol lookups, and
1186 we don't want those to be satisfied by the libraries of the
1187 previous incarnation of this process. */
1188 no_shared_libraries (NULL, 0);
1189
6c95b8df
PA
1190 if (follow_exec_mode_string == follow_exec_mode_new)
1191 {
6c95b8df
PA
1192 /* The user wants to keep the old inferior and program spaces
1193 around. Create a new fresh one, and switch to it. */
1194
17d8546e
DB
1195 /* Do exit processing for the original inferior before adding
1196 the new inferior so we don't have two active inferiors with
1197 the same ptid, which can confuse find_inferior_ptid. */
1198 exit_inferior_num_silent (current_inferior ()->num);
1199
94585166
DB
1200 inf = add_inferior_with_spaces ();
1201 inf->pid = pid;
1202 target_follow_exec (inf, execd_pathname);
6c95b8df
PA
1203
1204 set_current_inferior (inf);
94585166
DB
1205 set_current_program_space (inf->pspace);
1206 add_thread (ptid);
6c95b8df 1207 }
9107fc8d
PA
1208 else
1209 {
1210 /* The old description may no longer be fit for the new image.
1211 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1212 old description; we'll read a new one below. No need to do
1213 this on "follow-exec-mode new", as the old inferior stays
1214 around (its description is later cleared/refetched on
1215 restart). */
1216 target_clear_description ();
1217 }
6c95b8df
PA
1218
1219 gdb_assert (current_program_space == inf->pspace);
1220
1777feb0 1221 /* That a.out is now the one to use. */
6c95b8df
PA
1222 exec_file_attach (execd_pathname, 0);
1223
c1e56572
JK
1224 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1225 (Position Independent Executable) main symbol file will get applied by
1226 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1227 the breakpoints with the zero displacement. */
1228
7dcd53a0
TT
1229 symbol_file_add (execd_pathname,
1230 (inf->symfile_flags
1231 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
1232 NULL, 0);
1233
7dcd53a0
TT
1234 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1235 set_initial_language ();
c906108c 1236
9107fc8d
PA
1237 /* If the target can specify a description, read it. Must do this
1238 after flipping to the new executable (because the target supplied
1239 description must be compatible with the executable's
1240 architecture, and the old executable may e.g., be 32-bit, while
1241 the new one 64-bit), and before anything involving memory or
1242 registers. */
1243 target_find_description ();
1244
268a4a75 1245 solib_create_inferior_hook (0);
c906108c 1246
4efc6507
DE
1247 jit_inferior_created_hook ();
1248
c1e56572
JK
1249 breakpoint_re_set ();
1250
c906108c
SS
1251 /* Reinsert all breakpoints. (Those which were symbolic have
1252 been reset to the proper address in the new a.out, thanks
1777feb0 1253 to symbol_file_command...). */
c906108c
SS
1254 insert_breakpoints ();
1255
1256 /* The next resume of this inferior should bring it to the shlib
1257 startup breakpoints. (If the user had also set bp's on
1258 "main" from the old (parent) process, then they'll auto-
1777feb0 1259 matically get reset there in the new process.). */
c906108c
SS
1260}
1261
c2829269
PA
1262/* The queue of threads that need to do a step-over operation to get
1263 past e.g., a breakpoint. What technique is used to step over the
1264 breakpoint/watchpoint does not matter -- all threads end up in the
1265 same queue, to maintain rough temporal order of execution, in order
1266 to avoid starvation, otherwise, we could e.g., find ourselves
1267 constantly stepping the same couple threads past their breakpoints
1268 over and over, if the single-step finish fast enough. */
1269struct thread_info *step_over_queue_head;
1270
6c4cfb24
PA
1271/* Bit flags indicating what the thread needs to step over. */
1272
8d297bbf 1273enum step_over_what_flag
6c4cfb24
PA
1274 {
1275 /* Step over a breakpoint. */
1276 STEP_OVER_BREAKPOINT = 1,
1277
1278 /* Step past a non-continuable watchpoint, in order to let the
1279 instruction execute so we can evaluate the watchpoint
1280 expression. */
1281 STEP_OVER_WATCHPOINT = 2
1282 };
8d297bbf 1283DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1284
963f9c80 1285/* Info about an instruction that is being stepped over. */
31e77af2
PA
1286
1287struct step_over_info
1288{
963f9c80
PA
1289 /* If we're stepping past a breakpoint, this is the address space
1290 and address of the instruction the breakpoint is set at. We'll
1291 skip inserting all breakpoints here. Valid iff ASPACE is
1292 non-NULL. */
31e77af2 1293 struct address_space *aspace;
31e77af2 1294 CORE_ADDR address;
963f9c80
PA
1295
1296 /* The instruction being stepped over triggers a nonsteppable
1297 watchpoint. If true, we'll skip inserting watchpoints. */
1298 int nonsteppable_watchpoint_p;
31e77af2
PA
1299};
1300
1301/* The step-over info of the location that is being stepped over.
1302
1303 Note that with async/breakpoint always-inserted mode, a user might
1304 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1305 being stepped over. As setting a new breakpoint inserts all
1306 breakpoints, we need to make sure the breakpoint being stepped over
1307 isn't inserted then. We do that by only clearing the step-over
1308 info when the step-over is actually finished (or aborted).
1309
1310 Presently GDB can only step over one breakpoint at any given time.
1311 Given threads that can't run code in the same address space as the
1312 breakpoint's can't really miss the breakpoint, GDB could be taught
1313 to step-over at most one breakpoint per address space (so this info
1314 could move to the address space object if/when GDB is extended).
1315 The set of breakpoints being stepped over will normally be much
1316 smaller than the set of all breakpoints, so a flag in the
1317 breakpoint location structure would be wasteful. A separate list
1318 also saves complexity and run-time, as otherwise we'd have to go
1319 through all breakpoint locations clearing their flag whenever we
1320 start a new sequence. Similar considerations weigh against storing
1321 this info in the thread object. Plus, not all step overs actually
1322 have breakpoint locations -- e.g., stepping past a single-step
1323 breakpoint, or stepping to complete a non-continuable
1324 watchpoint. */
1325static struct step_over_info step_over_info;
1326
1327/* Record the address of the breakpoint/instruction we're currently
1328 stepping over. */
1329
1330static void
963f9c80
PA
1331set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1332 int nonsteppable_watchpoint_p)
31e77af2
PA
1333{
1334 step_over_info.aspace = aspace;
1335 step_over_info.address = address;
963f9c80 1336 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
31e77af2
PA
1337}
1338
1339/* Called when we're not longer stepping over a breakpoint / an
1340 instruction, so all breakpoints are free to be (re)inserted. */
1341
1342static void
1343clear_step_over_info (void)
1344{
372316f1
PA
1345 if (debug_infrun)
1346 fprintf_unfiltered (gdb_stdlog,
1347 "infrun: clear_step_over_info\n");
31e77af2
PA
1348 step_over_info.aspace = NULL;
1349 step_over_info.address = 0;
963f9c80 1350 step_over_info.nonsteppable_watchpoint_p = 0;
31e77af2
PA
1351}
1352
7f89fd65 1353/* See infrun.h. */
31e77af2
PA
1354
1355int
1356stepping_past_instruction_at (struct address_space *aspace,
1357 CORE_ADDR address)
1358{
1359 return (step_over_info.aspace != NULL
1360 && breakpoint_address_match (aspace, address,
1361 step_over_info.aspace,
1362 step_over_info.address));
1363}
1364
963f9c80
PA
1365/* See infrun.h. */
1366
1367int
1368stepping_past_nonsteppable_watchpoint (void)
1369{
1370 return step_over_info.nonsteppable_watchpoint_p;
1371}
1372
6cc83d2a
PA
1373/* Returns true if step-over info is valid. */
1374
1375static int
1376step_over_info_valid_p (void)
1377{
963f9c80
PA
1378 return (step_over_info.aspace != NULL
1379 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1380}
1381
c906108c 1382\f
237fc4c9
PA
1383/* Displaced stepping. */
1384
1385/* In non-stop debugging mode, we must take special care to manage
1386 breakpoints properly; in particular, the traditional strategy for
1387 stepping a thread past a breakpoint it has hit is unsuitable.
1388 'Displaced stepping' is a tactic for stepping one thread past a
1389 breakpoint it has hit while ensuring that other threads running
1390 concurrently will hit the breakpoint as they should.
1391
1392 The traditional way to step a thread T off a breakpoint in a
1393 multi-threaded program in all-stop mode is as follows:
1394
1395 a0) Initially, all threads are stopped, and breakpoints are not
1396 inserted.
1397 a1) We single-step T, leaving breakpoints uninserted.
1398 a2) We insert breakpoints, and resume all threads.
1399
1400 In non-stop debugging, however, this strategy is unsuitable: we
1401 don't want to have to stop all threads in the system in order to
1402 continue or step T past a breakpoint. Instead, we use displaced
1403 stepping:
1404
1405 n0) Initially, T is stopped, other threads are running, and
1406 breakpoints are inserted.
1407 n1) We copy the instruction "under" the breakpoint to a separate
1408 location, outside the main code stream, making any adjustments
1409 to the instruction, register, and memory state as directed by
1410 T's architecture.
1411 n2) We single-step T over the instruction at its new location.
1412 n3) We adjust the resulting register and memory state as directed
1413 by T's architecture. This includes resetting T's PC to point
1414 back into the main instruction stream.
1415 n4) We resume T.
1416
1417 This approach depends on the following gdbarch methods:
1418
1419 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1420 indicate where to copy the instruction, and how much space must
1421 be reserved there. We use these in step n1.
1422
1423 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1424 address, and makes any necessary adjustments to the instruction,
1425 register contents, and memory. We use this in step n1.
1426
1427 - gdbarch_displaced_step_fixup adjusts registers and memory after
1428 we have successfuly single-stepped the instruction, to yield the
1429 same effect the instruction would have had if we had executed it
1430 at its original address. We use this in step n3.
1431
1432 - gdbarch_displaced_step_free_closure provides cleanup.
1433
1434 The gdbarch_displaced_step_copy_insn and
1435 gdbarch_displaced_step_fixup functions must be written so that
1436 copying an instruction with gdbarch_displaced_step_copy_insn,
1437 single-stepping across the copied instruction, and then applying
1438 gdbarch_displaced_insn_fixup should have the same effects on the
1439 thread's memory and registers as stepping the instruction in place
1440 would have. Exactly which responsibilities fall to the copy and
1441 which fall to the fixup is up to the author of those functions.
1442
1443 See the comments in gdbarch.sh for details.
1444
1445 Note that displaced stepping and software single-step cannot
1446 currently be used in combination, although with some care I think
1447 they could be made to. Software single-step works by placing
1448 breakpoints on all possible subsequent instructions; if the
1449 displaced instruction is a PC-relative jump, those breakpoints
1450 could fall in very strange places --- on pages that aren't
1451 executable, or at addresses that are not proper instruction
1452 boundaries. (We do generally let other threads run while we wait
1453 to hit the software single-step breakpoint, and they might
1454 encounter such a corrupted instruction.) One way to work around
1455 this would be to have gdbarch_displaced_step_copy_insn fully
1456 simulate the effect of PC-relative instructions (and return NULL)
1457 on architectures that use software single-stepping.
1458
1459 In non-stop mode, we can have independent and simultaneous step
1460 requests, so more than one thread may need to simultaneously step
1461 over a breakpoint. The current implementation assumes there is
1462 only one scratch space per process. In this case, we have to
1463 serialize access to the scratch space. If thread A wants to step
1464 over a breakpoint, but we are currently waiting for some other
1465 thread to complete a displaced step, we leave thread A stopped and
1466 place it in the displaced_step_request_queue. Whenever a displaced
1467 step finishes, we pick the next thread in the queue and start a new
1468 displaced step operation on it. See displaced_step_prepare and
1469 displaced_step_fixup for details. */
1470
fc1cf338
PA
1471/* Per-inferior displaced stepping state. */
1472struct displaced_step_inferior_state
1473{
1474 /* Pointer to next in linked list. */
1475 struct displaced_step_inferior_state *next;
1476
1477 /* The process this displaced step state refers to. */
1478 int pid;
1479
3fc8eb30
PA
1480 /* True if preparing a displaced step ever failed. If so, we won't
1481 try displaced stepping for this inferior again. */
1482 int failed_before;
1483
fc1cf338
PA
1484 /* If this is not null_ptid, this is the thread carrying out a
1485 displaced single-step in process PID. This thread's state will
1486 require fixing up once it has completed its step. */
1487 ptid_t step_ptid;
1488
1489 /* The architecture the thread had when we stepped it. */
1490 struct gdbarch *step_gdbarch;
1491
1492 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1493 for post-step cleanup. */
1494 struct displaced_step_closure *step_closure;
1495
1496 /* The address of the original instruction, and the copy we
1497 made. */
1498 CORE_ADDR step_original, step_copy;
1499
1500 /* Saved contents of copy area. */
1501 gdb_byte *step_saved_copy;
1502};
1503
1504/* The list of states of processes involved in displaced stepping
1505 presently. */
1506static struct displaced_step_inferior_state *displaced_step_inferior_states;
1507
1508/* Get the displaced stepping state of process PID. */
1509
1510static struct displaced_step_inferior_state *
1511get_displaced_stepping_state (int pid)
1512{
1513 struct displaced_step_inferior_state *state;
1514
1515 for (state = displaced_step_inferior_states;
1516 state != NULL;
1517 state = state->next)
1518 if (state->pid == pid)
1519 return state;
1520
1521 return NULL;
1522}
1523
372316f1
PA
1524/* Returns true if any inferior has a thread doing a displaced
1525 step. */
1526
1527static int
1528displaced_step_in_progress_any_inferior (void)
1529{
1530 struct displaced_step_inferior_state *state;
1531
1532 for (state = displaced_step_inferior_states;
1533 state != NULL;
1534 state = state->next)
1535 if (!ptid_equal (state->step_ptid, null_ptid))
1536 return 1;
1537
1538 return 0;
1539}
1540
c0987663
YQ
1541/* Return true if thread represented by PTID is doing a displaced
1542 step. */
1543
1544static int
1545displaced_step_in_progress_thread (ptid_t ptid)
1546{
1547 struct displaced_step_inferior_state *displaced;
1548
1549 gdb_assert (!ptid_equal (ptid, null_ptid));
1550
1551 displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1552
1553 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1554}
1555
8f572e5c
PA
1556/* Return true if process PID has a thread doing a displaced step. */
1557
1558static int
1559displaced_step_in_progress (int pid)
1560{
1561 struct displaced_step_inferior_state *displaced;
1562
1563 displaced = get_displaced_stepping_state (pid);
1564 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1565 return 1;
1566
1567 return 0;
1568}
1569
fc1cf338
PA
1570/* Add a new displaced stepping state for process PID to the displaced
1571 stepping state list, or return a pointer to an already existing
1572 entry, if it already exists. Never returns NULL. */
1573
1574static struct displaced_step_inferior_state *
1575add_displaced_stepping_state (int pid)
1576{
1577 struct displaced_step_inferior_state *state;
1578
1579 for (state = displaced_step_inferior_states;
1580 state != NULL;
1581 state = state->next)
1582 if (state->pid == pid)
1583 return state;
237fc4c9 1584
8d749320 1585 state = XCNEW (struct displaced_step_inferior_state);
fc1cf338
PA
1586 state->pid = pid;
1587 state->next = displaced_step_inferior_states;
1588 displaced_step_inferior_states = state;
237fc4c9 1589
fc1cf338
PA
1590 return state;
1591}
1592
a42244db
YQ
1593/* If inferior is in displaced stepping, and ADDR equals to starting address
1594 of copy area, return corresponding displaced_step_closure. Otherwise,
1595 return NULL. */
1596
1597struct displaced_step_closure*
1598get_displaced_step_closure_by_addr (CORE_ADDR addr)
1599{
1600 struct displaced_step_inferior_state *displaced
1601 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1602
1603 /* If checking the mode of displaced instruction in copy area. */
1604 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1605 && (displaced->step_copy == addr))
1606 return displaced->step_closure;
1607
1608 return NULL;
1609}
1610
fc1cf338 1611/* Remove the displaced stepping state of process PID. */
237fc4c9 1612
fc1cf338
PA
1613static void
1614remove_displaced_stepping_state (int pid)
1615{
1616 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1617
fc1cf338
PA
1618 gdb_assert (pid != 0);
1619
1620 it = displaced_step_inferior_states;
1621 prev_next_p = &displaced_step_inferior_states;
1622 while (it)
1623 {
1624 if (it->pid == pid)
1625 {
1626 *prev_next_p = it->next;
1627 xfree (it);
1628 return;
1629 }
1630
1631 prev_next_p = &it->next;
1632 it = *prev_next_p;
1633 }
1634}
1635
1636static void
1637infrun_inferior_exit (struct inferior *inf)
1638{
1639 remove_displaced_stepping_state (inf->pid);
1640}
237fc4c9 1641
fff08868
HZ
1642/* If ON, and the architecture supports it, GDB will use displaced
1643 stepping to step over breakpoints. If OFF, or if the architecture
1644 doesn't support it, GDB will instead use the traditional
1645 hold-and-step approach. If AUTO (which is the default), GDB will
1646 decide which technique to use to step over breakpoints depending on
1647 which of all-stop or non-stop mode is active --- displaced stepping
1648 in non-stop mode; hold-and-step in all-stop mode. */
1649
72d0e2c5 1650static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1651
237fc4c9
PA
1652static void
1653show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1654 struct cmd_list_element *c,
1655 const char *value)
1656{
72d0e2c5 1657 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1658 fprintf_filtered (file,
1659 _("Debugger's willingness to use displaced stepping "
1660 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1661 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1662 else
3e43a32a
MS
1663 fprintf_filtered (file,
1664 _("Debugger's willingness to use displaced stepping "
1665 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1666}
1667
fff08868 1668/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1669 over breakpoints of thread TP. */
fff08868 1670
237fc4c9 1671static int
3fc8eb30 1672use_displaced_stepping (struct thread_info *tp)
237fc4c9 1673{
3fc8eb30
PA
1674 struct regcache *regcache = get_thread_regcache (tp->ptid);
1675 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1676 struct displaced_step_inferior_state *displaced_state;
1677
1678 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1679
fbea99ea
PA
1680 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1681 && target_is_non_stop_p ())
72d0e2c5 1682 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1683 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30
PA
1684 && find_record_target () == NULL
1685 && (displaced_state == NULL
1686 || !displaced_state->failed_before));
237fc4c9
PA
1687}
1688
1689/* Clean out any stray displaced stepping state. */
1690static void
fc1cf338 1691displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1692{
1693 /* Indicate that there is no cleanup pending. */
fc1cf338 1694 displaced->step_ptid = null_ptid;
237fc4c9 1695
fc1cf338 1696 if (displaced->step_closure)
237fc4c9 1697 {
fc1cf338
PA
1698 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1699 displaced->step_closure);
1700 displaced->step_closure = NULL;
237fc4c9
PA
1701 }
1702}
1703
1704static void
fc1cf338 1705displaced_step_clear_cleanup (void *arg)
237fc4c9 1706{
9a3c8263
SM
1707 struct displaced_step_inferior_state *state
1708 = (struct displaced_step_inferior_state *) arg;
fc1cf338
PA
1709
1710 displaced_step_clear (state);
237fc4c9
PA
1711}
1712
1713/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1714void
1715displaced_step_dump_bytes (struct ui_file *file,
1716 const gdb_byte *buf,
1717 size_t len)
1718{
1719 int i;
1720
1721 for (i = 0; i < len; i++)
1722 fprintf_unfiltered (file, "%02x ", buf[i]);
1723 fputs_unfiltered ("\n", file);
1724}
1725
1726/* Prepare to single-step, using displaced stepping.
1727
1728 Note that we cannot use displaced stepping when we have a signal to
1729 deliver. If we have a signal to deliver and an instruction to step
1730 over, then after the step, there will be no indication from the
1731 target whether the thread entered a signal handler or ignored the
1732 signal and stepped over the instruction successfully --- both cases
1733 result in a simple SIGTRAP. In the first case we mustn't do a
1734 fixup, and in the second case we must --- but we can't tell which.
1735 Comments in the code for 'random signals' in handle_inferior_event
1736 explain how we handle this case instead.
1737
1738 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1739 stepped now; 0 if displaced stepping this thread got queued; or -1
1740 if this instruction can't be displaced stepped. */
1741
237fc4c9 1742static int
3fc8eb30 1743displaced_step_prepare_throw (ptid_t ptid)
237fc4c9 1744{
ad53cd71 1745 struct cleanup *old_cleanups, *ignore_cleanups;
c1e36e3e 1746 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1747 struct regcache *regcache = get_thread_regcache (ptid);
1748 struct gdbarch *gdbarch = get_regcache_arch (regcache);
d35ae833 1749 struct address_space *aspace = get_regcache_aspace (regcache);
237fc4c9
PA
1750 CORE_ADDR original, copy;
1751 ULONGEST len;
1752 struct displaced_step_closure *closure;
fc1cf338 1753 struct displaced_step_inferior_state *displaced;
9e529e1d 1754 int status;
237fc4c9
PA
1755
1756 /* We should never reach this function if the architecture does not
1757 support displaced stepping. */
1758 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1759
c2829269
PA
1760 /* Nor if the thread isn't meant to step over a breakpoint. */
1761 gdb_assert (tp->control.trap_expected);
1762
c1e36e3e
PA
1763 /* Disable range stepping while executing in the scratch pad. We
1764 want a single-step even if executing the displaced instruction in
1765 the scratch buffer lands within the stepping range (e.g., a
1766 jump/branch). */
1767 tp->control.may_range_step = 0;
1768
fc1cf338
PA
1769 /* We have to displaced step one thread at a time, as we only have
1770 access to a single scratch space per inferior. */
237fc4c9 1771
fc1cf338
PA
1772 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1773
1774 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1775 {
1776 /* Already waiting for a displaced step to finish. Defer this
1777 request and place in queue. */
237fc4c9
PA
1778
1779 if (debug_displaced)
1780 fprintf_unfiltered (gdb_stdlog,
c2829269 1781 "displaced: deferring step of %s\n",
237fc4c9
PA
1782 target_pid_to_str (ptid));
1783
c2829269 1784 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1785 return 0;
1786 }
1787 else
1788 {
1789 if (debug_displaced)
1790 fprintf_unfiltered (gdb_stdlog,
1791 "displaced: stepping %s now\n",
1792 target_pid_to_str (ptid));
1793 }
1794
fc1cf338 1795 displaced_step_clear (displaced);
237fc4c9 1796
ad53cd71
PA
1797 old_cleanups = save_inferior_ptid ();
1798 inferior_ptid = ptid;
1799
515630c5 1800 original = regcache_read_pc (regcache);
237fc4c9
PA
1801
1802 copy = gdbarch_displaced_step_location (gdbarch);
1803 len = gdbarch_max_insn_length (gdbarch);
1804
d35ae833
PA
1805 if (breakpoint_in_range_p (aspace, copy, len))
1806 {
1807 /* There's a breakpoint set in the scratch pad location range
1808 (which is usually around the entry point). We'd either
1809 install it before resuming, which would overwrite/corrupt the
1810 scratch pad, or if it was already inserted, this displaced
1811 step would overwrite it. The latter is OK in the sense that
1812 we already assume that no thread is going to execute the code
1813 in the scratch pad range (after initial startup) anyway, but
1814 the former is unacceptable. Simply punt and fallback to
1815 stepping over this breakpoint in-line. */
1816 if (debug_displaced)
1817 {
1818 fprintf_unfiltered (gdb_stdlog,
1819 "displaced: breakpoint set in scratch pad. "
1820 "Stepping over breakpoint in-line instead.\n");
1821 }
1822
1823 do_cleanups (old_cleanups);
1824 return -1;
1825 }
1826
237fc4c9 1827 /* Save the original contents of the copy area. */
224c3ddb 1828 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
ad53cd71 1829 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1830 &displaced->step_saved_copy);
9e529e1d
JK
1831 status = target_read_memory (copy, displaced->step_saved_copy, len);
1832 if (status != 0)
1833 throw_error (MEMORY_ERROR,
1834 _("Error accessing memory address %s (%s) for "
1835 "displaced-stepping scratch space."),
1836 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1837 if (debug_displaced)
1838 {
5af949e3
UW
1839 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1840 paddress (gdbarch, copy));
fc1cf338
PA
1841 displaced_step_dump_bytes (gdb_stdlog,
1842 displaced->step_saved_copy,
1843 len);
237fc4c9
PA
1844 };
1845
1846 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1847 original, copy, regcache);
7f03bd92
PA
1848 if (closure == NULL)
1849 {
1850 /* The architecture doesn't know how or want to displaced step
1851 this instruction or instruction sequence. Fallback to
1852 stepping over the breakpoint in-line. */
1853 do_cleanups (old_cleanups);
1854 return -1;
1855 }
237fc4c9 1856
9f5a595d
UW
1857 /* Save the information we need to fix things up if the step
1858 succeeds. */
fc1cf338
PA
1859 displaced->step_ptid = ptid;
1860 displaced->step_gdbarch = gdbarch;
1861 displaced->step_closure = closure;
1862 displaced->step_original = original;
1863 displaced->step_copy = copy;
9f5a595d 1864
fc1cf338 1865 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1866
1867 /* Resume execution at the copy. */
515630c5 1868 regcache_write_pc (regcache, copy);
237fc4c9 1869
ad53cd71
PA
1870 discard_cleanups (ignore_cleanups);
1871
1872 do_cleanups (old_cleanups);
237fc4c9
PA
1873
1874 if (debug_displaced)
5af949e3
UW
1875 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1876 paddress (gdbarch, copy));
237fc4c9 1877
237fc4c9
PA
1878 return 1;
1879}
1880
3fc8eb30
PA
1881/* Wrapper for displaced_step_prepare_throw that disabled further
1882 attempts at displaced stepping if we get a memory error. */
1883
1884static int
1885displaced_step_prepare (ptid_t ptid)
1886{
1887 int prepared = -1;
1888
1889 TRY
1890 {
1891 prepared = displaced_step_prepare_throw (ptid);
1892 }
1893 CATCH (ex, RETURN_MASK_ERROR)
1894 {
1895 struct displaced_step_inferior_state *displaced_state;
1896
1897 if (ex.error != MEMORY_ERROR)
1898 throw_exception (ex);
1899
1900 if (debug_infrun)
1901 {
1902 fprintf_unfiltered (gdb_stdlog,
1903 "infrun: disabling displaced stepping: %s\n",
1904 ex.message);
1905 }
1906
1907 /* Be verbose if "set displaced-stepping" is "on", silent if
1908 "auto". */
1909 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1910 {
fd7dcb94 1911 warning (_("disabling displaced stepping: %s"),
3fc8eb30
PA
1912 ex.message);
1913 }
1914
1915 /* Disable further displaced stepping attempts. */
1916 displaced_state
1917 = get_displaced_stepping_state (ptid_get_pid (ptid));
1918 displaced_state->failed_before = 1;
1919 }
1920 END_CATCH
1921
1922 return prepared;
1923}
1924
237fc4c9 1925static void
3e43a32a
MS
1926write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1927 const gdb_byte *myaddr, int len)
237fc4c9
PA
1928{
1929 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1930
237fc4c9
PA
1931 inferior_ptid = ptid;
1932 write_memory (memaddr, myaddr, len);
1933 do_cleanups (ptid_cleanup);
1934}
1935
e2d96639
YQ
1936/* Restore the contents of the copy area for thread PTID. */
1937
1938static void
1939displaced_step_restore (struct displaced_step_inferior_state *displaced,
1940 ptid_t ptid)
1941{
1942 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1943
1944 write_memory_ptid (ptid, displaced->step_copy,
1945 displaced->step_saved_copy, len);
1946 if (debug_displaced)
1947 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1948 target_pid_to_str (ptid),
1949 paddress (displaced->step_gdbarch,
1950 displaced->step_copy));
1951}
1952
372316f1
PA
1953/* If we displaced stepped an instruction successfully, adjust
1954 registers and memory to yield the same effect the instruction would
1955 have had if we had executed it at its original address, and return
1956 1. If the instruction didn't complete, relocate the PC and return
1957 -1. If the thread wasn't displaced stepping, return 0. */
1958
1959static int
2ea28649 1960displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1961{
1962 struct cleanup *old_cleanups;
fc1cf338
PA
1963 struct displaced_step_inferior_state *displaced
1964 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
372316f1 1965 int ret;
fc1cf338
PA
1966
1967 /* Was any thread of this process doing a displaced step? */
1968 if (displaced == NULL)
372316f1 1969 return 0;
237fc4c9
PA
1970
1971 /* Was this event for the pid we displaced? */
fc1cf338
PA
1972 if (ptid_equal (displaced->step_ptid, null_ptid)
1973 || ! ptid_equal (displaced->step_ptid, event_ptid))
372316f1 1974 return 0;
237fc4c9 1975
fc1cf338 1976 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1977
e2d96639 1978 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9 1979
cb71640d
PA
1980 /* Fixup may need to read memory/registers. Switch to the thread
1981 that we're fixing up. Also, target_stopped_by_watchpoint checks
1982 the current thread. */
1983 switch_to_thread (event_ptid);
1984
237fc4c9 1985 /* Did the instruction complete successfully? */
cb71640d
PA
1986 if (signal == GDB_SIGNAL_TRAP
1987 && !(target_stopped_by_watchpoint ()
1988 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1989 || target_have_steppable_watchpoint)))
237fc4c9
PA
1990 {
1991 /* Fix up the resulting state. */
fc1cf338
PA
1992 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1993 displaced->step_closure,
1994 displaced->step_original,
1995 displaced->step_copy,
1996 get_thread_regcache (displaced->step_ptid));
372316f1 1997 ret = 1;
237fc4c9
PA
1998 }
1999 else
2000 {
2001 /* Since the instruction didn't complete, all we can do is
2002 relocate the PC. */
515630c5
UW
2003 struct regcache *regcache = get_thread_regcache (event_ptid);
2004 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 2005
fc1cf338 2006 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 2007 regcache_write_pc (regcache, pc);
372316f1 2008 ret = -1;
237fc4c9
PA
2009 }
2010
2011 do_cleanups (old_cleanups);
2012
fc1cf338 2013 displaced->step_ptid = null_ptid;
372316f1
PA
2014
2015 return ret;
c2829269 2016}
1c5cfe86 2017
4d9d9d04
PA
2018/* Data to be passed around while handling an event. This data is
2019 discarded between events. */
2020struct execution_control_state
2021{
2022 ptid_t ptid;
2023 /* The thread that got the event, if this was a thread event; NULL
2024 otherwise. */
2025 struct thread_info *event_thread;
2026
2027 struct target_waitstatus ws;
2028 int stop_func_filled_in;
2029 CORE_ADDR stop_func_start;
2030 CORE_ADDR stop_func_end;
2031 const char *stop_func_name;
2032 int wait_some_more;
2033
2034 /* True if the event thread hit the single-step breakpoint of
2035 another thread. Thus the event doesn't cause a stop, the thread
2036 needs to be single-stepped past the single-step breakpoint before
2037 we can switch back to the original stepping thread. */
2038 int hit_singlestep_breakpoint;
2039};
2040
2041/* Clear ECS and set it to point at TP. */
c2829269
PA
2042
2043static void
4d9d9d04
PA
2044reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2045{
2046 memset (ecs, 0, sizeof (*ecs));
2047 ecs->event_thread = tp;
2048 ecs->ptid = tp->ptid;
2049}
2050
2051static void keep_going_pass_signal (struct execution_control_state *ecs);
2052static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 2053static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 2054static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
2055
2056/* Are there any pending step-over requests? If so, run all we can
2057 now and return true. Otherwise, return false. */
2058
2059static int
c2829269
PA
2060start_step_over (void)
2061{
2062 struct thread_info *tp, *next;
2063
372316f1
PA
2064 /* Don't start a new step-over if we already have an in-line
2065 step-over operation ongoing. */
2066 if (step_over_info_valid_p ())
2067 return 0;
2068
c2829269 2069 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 2070 {
4d9d9d04
PA
2071 struct execution_control_state ecss;
2072 struct execution_control_state *ecs = &ecss;
8d297bbf 2073 step_over_what step_what;
372316f1 2074 int must_be_in_line;
c2829269
PA
2075
2076 next = thread_step_over_chain_next (tp);
237fc4c9 2077
c2829269
PA
2078 /* If this inferior already has a displaced step in process,
2079 don't start a new one. */
4d9d9d04 2080 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
c2829269
PA
2081 continue;
2082
372316f1
PA
2083 step_what = thread_still_needs_step_over (tp);
2084 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2085 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 2086 && !use_displaced_stepping (tp)));
372316f1
PA
2087
2088 /* We currently stop all threads of all processes to step-over
2089 in-line. If we need to start a new in-line step-over, let
2090 any pending displaced steps finish first. */
2091 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2092 return 0;
2093
c2829269
PA
2094 thread_step_over_chain_remove (tp);
2095
2096 if (step_over_queue_head == NULL)
2097 {
2098 if (debug_infrun)
2099 fprintf_unfiltered (gdb_stdlog,
2100 "infrun: step-over queue now empty\n");
2101 }
2102
372316f1
PA
2103 if (tp->control.trap_expected
2104 || tp->resumed
2105 || tp->executing)
ad53cd71 2106 {
4d9d9d04
PA
2107 internal_error (__FILE__, __LINE__,
2108 "[%s] has inconsistent state: "
372316f1 2109 "trap_expected=%d, resumed=%d, executing=%d\n",
4d9d9d04
PA
2110 target_pid_to_str (tp->ptid),
2111 tp->control.trap_expected,
372316f1 2112 tp->resumed,
4d9d9d04 2113 tp->executing);
ad53cd71 2114 }
1c5cfe86 2115
4d9d9d04
PA
2116 if (debug_infrun)
2117 fprintf_unfiltered (gdb_stdlog,
2118 "infrun: resuming [%s] for step-over\n",
2119 target_pid_to_str (tp->ptid));
2120
2121 /* keep_going_pass_signal skips the step-over if the breakpoint
2122 is no longer inserted. In all-stop, we want to keep looking
2123 for a thread that needs a step-over instead of resuming TP,
2124 because we wouldn't be able to resume anything else until the
2125 target stops again. In non-stop, the resume always resumes
2126 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2127 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2128 continue;
8550d3b3 2129
4d9d9d04
PA
2130 switch_to_thread (tp->ptid);
2131 reset_ecs (ecs, tp);
2132 keep_going_pass_signal (ecs);
1c5cfe86 2133
4d9d9d04
PA
2134 if (!ecs->wait_some_more)
2135 error (_("Command aborted."));
1c5cfe86 2136
372316f1
PA
2137 gdb_assert (tp->resumed);
2138
2139 /* If we started a new in-line step-over, we're done. */
2140 if (step_over_info_valid_p ())
2141 {
2142 gdb_assert (tp->control.trap_expected);
2143 return 1;
2144 }
2145
fbea99ea 2146 if (!target_is_non_stop_p ())
4d9d9d04
PA
2147 {
2148 /* On all-stop, shouldn't have resumed unless we needed a
2149 step over. */
2150 gdb_assert (tp->control.trap_expected
2151 || tp->step_after_step_resume_breakpoint);
2152
2153 /* With remote targets (at least), in all-stop, we can't
2154 issue any further remote commands until the program stops
2155 again. */
2156 return 1;
1c5cfe86 2157 }
c2829269 2158
4d9d9d04
PA
2159 /* Either the thread no longer needed a step-over, or a new
2160 displaced stepping sequence started. Even in the latter
2161 case, continue looking. Maybe we can also start another
2162 displaced step on a thread of other process. */
237fc4c9 2163 }
4d9d9d04
PA
2164
2165 return 0;
237fc4c9
PA
2166}
2167
5231c1fd
PA
2168/* Update global variables holding ptids to hold NEW_PTID if they were
2169 holding OLD_PTID. */
2170static void
2171infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2172{
2173 struct displaced_step_request *it;
fc1cf338 2174 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
2175
2176 if (ptid_equal (inferior_ptid, old_ptid))
2177 inferior_ptid = new_ptid;
2178
fc1cf338
PA
2179 for (displaced = displaced_step_inferior_states;
2180 displaced;
2181 displaced = displaced->next)
2182 {
2183 if (ptid_equal (displaced->step_ptid, old_ptid))
2184 displaced->step_ptid = new_ptid;
fc1cf338 2185 }
5231c1fd
PA
2186}
2187
237fc4c9
PA
2188\f
2189/* Resuming. */
c906108c
SS
2190
2191/* Things to clean up if we QUIT out of resume (). */
c906108c 2192static void
74b7792f 2193resume_cleanups (void *ignore)
c906108c 2194{
34b7e8a6
PA
2195 if (!ptid_equal (inferior_ptid, null_ptid))
2196 delete_single_step_breakpoints (inferior_thread ());
7c16b83e 2197
c906108c
SS
2198 normal_stop ();
2199}
2200
53904c9e
AC
2201static const char schedlock_off[] = "off";
2202static const char schedlock_on[] = "on";
2203static const char schedlock_step[] = "step";
f2665db5 2204static const char schedlock_replay[] = "replay";
40478521 2205static const char *const scheduler_enums[] = {
ef346e04
AC
2206 schedlock_off,
2207 schedlock_on,
2208 schedlock_step,
f2665db5 2209 schedlock_replay,
ef346e04
AC
2210 NULL
2211};
f2665db5 2212static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2213static void
2214show_scheduler_mode (struct ui_file *file, int from_tty,
2215 struct cmd_list_element *c, const char *value)
2216{
3e43a32a
MS
2217 fprintf_filtered (file,
2218 _("Mode for locking scheduler "
2219 "during execution is \"%s\".\n"),
920d2a44
AC
2220 value);
2221}
c906108c
SS
2222
2223static void
96baa820 2224set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 2225{
eefe576e
AC
2226 if (!target_can_lock_scheduler)
2227 {
2228 scheduler_mode = schedlock_off;
2229 error (_("Target '%s' cannot support this command."), target_shortname);
2230 }
c906108c
SS
2231}
2232
d4db2f36
PA
2233/* True if execution commands resume all threads of all processes by
2234 default; otherwise, resume only threads of the current inferior
2235 process. */
2236int sched_multi = 0;
2237
2facfe5c
DD
2238/* Try to setup for software single stepping over the specified location.
2239 Return 1 if target_resume() should use hardware single step.
2240
2241 GDBARCH the current gdbarch.
2242 PC the location to step over. */
2243
2244static int
2245maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2246{
2247 int hw_step = 1;
2248
f02253f1
HZ
2249 if (execution_direction == EXEC_FORWARD
2250 && gdbarch_software_single_step_p (gdbarch)
99e40580 2251 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 2252 {
99e40580 2253 hw_step = 0;
2facfe5c
DD
2254 }
2255 return hw_step;
2256}
c906108c 2257
f3263aa4
PA
2258/* See infrun.h. */
2259
09cee04b
PA
2260ptid_t
2261user_visible_resume_ptid (int step)
2262{
f3263aa4 2263 ptid_t resume_ptid;
09cee04b 2264
09cee04b
PA
2265 if (non_stop)
2266 {
2267 /* With non-stop mode on, threads are always handled
2268 individually. */
2269 resume_ptid = inferior_ptid;
2270 }
2271 else if ((scheduler_mode == schedlock_on)
03d46957 2272 || (scheduler_mode == schedlock_step && step))
09cee04b 2273 {
f3263aa4
PA
2274 /* User-settable 'scheduler' mode requires solo thread
2275 resume. */
09cee04b
PA
2276 resume_ptid = inferior_ptid;
2277 }
f2665db5
MM
2278 else if ((scheduler_mode == schedlock_replay)
2279 && target_record_will_replay (minus_one_ptid, execution_direction))
2280 {
2281 /* User-settable 'scheduler' mode requires solo thread resume in replay
2282 mode. */
2283 resume_ptid = inferior_ptid;
2284 }
f3263aa4
PA
2285 else if (!sched_multi && target_supports_multi_process ())
2286 {
2287 /* Resume all threads of the current process (and none of other
2288 processes). */
2289 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2290 }
2291 else
2292 {
2293 /* Resume all threads of all processes. */
2294 resume_ptid = RESUME_ALL;
2295 }
09cee04b
PA
2296
2297 return resume_ptid;
2298}
2299
fbea99ea
PA
2300/* Return a ptid representing the set of threads that we will resume,
2301 in the perspective of the target, assuming run control handling
2302 does not require leaving some threads stopped (e.g., stepping past
2303 breakpoint). USER_STEP indicates whether we're about to start the
2304 target for a stepping command. */
2305
2306static ptid_t
2307internal_resume_ptid (int user_step)
2308{
2309 /* In non-stop, we always control threads individually. Note that
2310 the target may always work in non-stop mode even with "set
2311 non-stop off", in which case user_visible_resume_ptid could
2312 return a wildcard ptid. */
2313 if (target_is_non_stop_p ())
2314 return inferior_ptid;
2315 else
2316 return user_visible_resume_ptid (user_step);
2317}
2318
64ce06e4
PA
2319/* Wrapper for target_resume, that handles infrun-specific
2320 bookkeeping. */
2321
2322static void
2323do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2324{
2325 struct thread_info *tp = inferior_thread ();
2326
2327 /* Install inferior's terminal modes. */
2328 target_terminal_inferior ();
2329
2330 /* Avoid confusing the next resume, if the next stop/resume
2331 happens to apply to another thread. */
2332 tp->suspend.stop_signal = GDB_SIGNAL_0;
2333
8f572e5c
PA
2334 /* Advise target which signals may be handled silently.
2335
2336 If we have removed breakpoints because we are stepping over one
2337 in-line (in any thread), we need to receive all signals to avoid
2338 accidentally skipping a breakpoint during execution of a signal
2339 handler.
2340
2341 Likewise if we're displaced stepping, otherwise a trap for a
2342 breakpoint in a signal handler might be confused with the
2343 displaced step finishing. We don't make the displaced_step_fixup
2344 step distinguish the cases instead, because:
2345
2346 - a backtrace while stopped in the signal handler would show the
2347 scratch pad as frame older than the signal handler, instead of
2348 the real mainline code.
2349
2350 - when the thread is later resumed, the signal handler would
2351 return to the scratch pad area, which would no longer be
2352 valid. */
2353 if (step_over_info_valid_p ()
2354 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
64ce06e4
PA
2355 target_pass_signals (0, NULL);
2356 else
2357 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2358
2359 target_resume (resume_ptid, step, sig);
2360}
2361
c906108c
SS
2362/* Resume the inferior, but allow a QUIT. This is useful if the user
2363 wants to interrupt some lengthy single-stepping operation
2364 (for child processes, the SIGINT goes to the inferior, and so
2365 we get a SIGINT random_signal, but for remote debugging and perhaps
2366 other targets, that's not true).
2367
c906108c
SS
2368 SIG is the signal to give the inferior (zero for none). */
2369void
64ce06e4 2370resume (enum gdb_signal sig)
c906108c 2371{
74b7792f 2372 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
2373 struct regcache *regcache = get_current_regcache ();
2374 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 2375 struct thread_info *tp = inferior_thread ();
515630c5 2376 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 2377 struct address_space *aspace = get_regcache_aspace (regcache);
b0f16a3e 2378 ptid_t resume_ptid;
856e7dd6
PA
2379 /* This represents the user's step vs continue request. When
2380 deciding whether "set scheduler-locking step" applies, it's the
2381 user's intention that counts. */
2382 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2383 /* This represents what we'll actually request the target to do.
2384 This can decay from a step to a continue, if e.g., we need to
2385 implement single-stepping with breakpoints (software
2386 single-step). */
6b403daa 2387 int step;
c7e8a53c 2388
c2829269
PA
2389 gdb_assert (!thread_is_in_step_over_chain (tp));
2390
c906108c
SS
2391 QUIT;
2392
372316f1
PA
2393 if (tp->suspend.waitstatus_pending_p)
2394 {
2395 if (debug_infrun)
2396 {
2397 char *statstr;
2398
2399 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2400 fprintf_unfiltered (gdb_stdlog,
2401 "infrun: resume: thread %s has pending wait status %s "
2402 "(currently_stepping=%d).\n",
2403 target_pid_to_str (tp->ptid), statstr,
2404 currently_stepping (tp));
2405 xfree (statstr);
2406 }
2407
2408 tp->resumed = 1;
2409
2410 /* FIXME: What should we do if we are supposed to resume this
2411 thread with a signal? Maybe we should maintain a queue of
2412 pending signals to deliver. */
2413 if (sig != GDB_SIGNAL_0)
2414 {
fd7dcb94 2415 warning (_("Couldn't deliver signal %s to %s."),
372316f1
PA
2416 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2417 }
2418
2419 tp->suspend.stop_signal = GDB_SIGNAL_0;
2420 discard_cleanups (old_cleanups);
2421
2422 if (target_can_async_p ())
2423 target_async (1);
2424 return;
2425 }
2426
2427 tp->stepped_breakpoint = 0;
2428
6b403daa
PA
2429 /* Depends on stepped_breakpoint. */
2430 step = currently_stepping (tp);
2431
74609e71
YQ
2432 if (current_inferior ()->waiting_for_vfork_done)
2433 {
48f9886d
PA
2434 /* Don't try to single-step a vfork parent that is waiting for
2435 the child to get out of the shared memory region (by exec'ing
2436 or exiting). This is particularly important on software
2437 single-step archs, as the child process would trip on the
2438 software single step breakpoint inserted for the parent
2439 process. Since the parent will not actually execute any
2440 instruction until the child is out of the shared region (such
2441 are vfork's semantics), it is safe to simply continue it.
2442 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2443 the parent, and tell it to `keep_going', which automatically
2444 re-sets it stepping. */
74609e71
YQ
2445 if (debug_infrun)
2446 fprintf_unfiltered (gdb_stdlog,
2447 "infrun: resume : clear step\n");
a09dd441 2448 step = 0;
74609e71
YQ
2449 }
2450
527159b7 2451 if (debug_infrun)
237fc4c9 2452 fprintf_unfiltered (gdb_stdlog,
c9737c08 2453 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2454 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2455 step, gdb_signal_to_symbol_string (sig),
2456 tp->control.trap_expected,
0d9a9a5f
PA
2457 target_pid_to_str (inferior_ptid),
2458 paddress (gdbarch, pc));
c906108c 2459
c2c6d25f
JM
2460 /* Normally, by the time we reach `resume', the breakpoints are either
2461 removed or inserted, as appropriate. The exception is if we're sitting
2462 at a permanent breakpoint; we need to step over it, but permanent
2463 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2464 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2465 {
af48d08f
PA
2466 if (sig != GDB_SIGNAL_0)
2467 {
2468 /* We have a signal to pass to the inferior. The resume
2469 may, or may not take us to the signal handler. If this
2470 is a step, we'll need to stop in the signal handler, if
2471 there's one, (if the target supports stepping into
2472 handlers), or in the next mainline instruction, if
2473 there's no handler. If this is a continue, we need to be
2474 sure to run the handler with all breakpoints inserted.
2475 In all cases, set a breakpoint at the current address
2476 (where the handler returns to), and once that breakpoint
2477 is hit, resume skipping the permanent breakpoint. If
2478 that breakpoint isn't hit, then we've stepped into the
2479 signal handler (or hit some other event). We'll delete
2480 the step-resume breakpoint then. */
2481
2482 if (debug_infrun)
2483 fprintf_unfiltered (gdb_stdlog,
2484 "infrun: resume: skipping permanent breakpoint, "
2485 "deliver signal first\n");
2486
2487 clear_step_over_info ();
2488 tp->control.trap_expected = 0;
2489
2490 if (tp->control.step_resume_breakpoint == NULL)
2491 {
2492 /* Set a "high-priority" step-resume, as we don't want
2493 user breakpoints at PC to trigger (again) when this
2494 hits. */
2495 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2496 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2497
2498 tp->step_after_step_resume_breakpoint = step;
2499 }
2500
2501 insert_breakpoints ();
2502 }
2503 else
2504 {
2505 /* There's no signal to pass, we can go ahead and skip the
2506 permanent breakpoint manually. */
2507 if (debug_infrun)
2508 fprintf_unfiltered (gdb_stdlog,
2509 "infrun: resume: skipping permanent breakpoint\n");
2510 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2511 /* Update pc to reflect the new address from which we will
2512 execute instructions. */
2513 pc = regcache_read_pc (regcache);
2514
2515 if (step)
2516 {
2517 /* We've already advanced the PC, so the stepping part
2518 is done. Now we need to arrange for a trap to be
2519 reported to handle_inferior_event. Set a breakpoint
2520 at the current PC, and run to it. Don't update
2521 prev_pc, because if we end in
44a1ee51
PA
2522 switch_back_to_stepped_thread, we want the "expected
2523 thread advanced also" branch to be taken. IOW, we
2524 don't want this thread to step further from PC
af48d08f 2525 (overstep). */
1ac806b8 2526 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2527 insert_single_step_breakpoint (gdbarch, aspace, pc);
2528 insert_breakpoints ();
2529
fbea99ea 2530 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2531 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
af48d08f 2532 discard_cleanups (old_cleanups);
372316f1 2533 tp->resumed = 1;
af48d08f
PA
2534 return;
2535 }
2536 }
6d350bb5 2537 }
c2c6d25f 2538
c1e36e3e
PA
2539 /* If we have a breakpoint to step over, make sure to do a single
2540 step only. Same if we have software watchpoints. */
2541 if (tp->control.trap_expected || bpstat_should_step ())
2542 tp->control.may_range_step = 0;
2543
237fc4c9
PA
2544 /* If enabled, step over breakpoints by executing a copy of the
2545 instruction at a different address.
2546
2547 We can't use displaced stepping when we have a signal to deliver;
2548 the comments for displaced_step_prepare explain why. The
2549 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2550 signals' explain what we do instead.
2551
2552 We can't use displaced stepping when we are waiting for vfork_done
2553 event, displaced stepping breaks the vfork child similarly as single
2554 step software breakpoint. */
3fc8eb30
PA
2555 if (tp->control.trap_expected
2556 && use_displaced_stepping (tp)
cb71640d 2557 && !step_over_info_valid_p ()
a493e3e2 2558 && sig == GDB_SIGNAL_0
74609e71 2559 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2560 {
3fc8eb30 2561 int prepared = displaced_step_prepare (inferior_ptid);
fc1cf338 2562
3fc8eb30 2563 if (prepared == 0)
d56b7306 2564 {
4d9d9d04
PA
2565 if (debug_infrun)
2566 fprintf_unfiltered (gdb_stdlog,
2567 "Got placed in step-over queue\n");
2568
2569 tp->control.trap_expected = 0;
d56b7306
VP
2570 discard_cleanups (old_cleanups);
2571 return;
2572 }
3fc8eb30
PA
2573 else if (prepared < 0)
2574 {
2575 /* Fallback to stepping over the breakpoint in-line. */
2576
2577 if (target_is_non_stop_p ())
2578 stop_all_threads ();
2579
2580 set_step_over_info (get_regcache_aspace (regcache),
2581 regcache_read_pc (regcache), 0);
2582
2583 step = maybe_software_singlestep (gdbarch, pc);
2584
2585 insert_breakpoints ();
2586 }
2587 else if (prepared > 0)
2588 {
2589 struct displaced_step_inferior_state *displaced;
99e40580 2590
3fc8eb30
PA
2591 /* Update pc to reflect the new address from which we will
2592 execute instructions due to displaced stepping. */
2593 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
ca7781d2 2594
3fc8eb30
PA
2595 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2596 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2597 displaced->step_closure);
2598 }
237fc4c9
PA
2599 }
2600
2facfe5c 2601 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2602 else if (step)
2facfe5c 2603 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2604
30852783
UW
2605 /* Currently, our software single-step implementation leads to different
2606 results than hardware single-stepping in one situation: when stepping
2607 into delivering a signal which has an associated signal handler,
2608 hardware single-step will stop at the first instruction of the handler,
2609 while software single-step will simply skip execution of the handler.
2610
2611 For now, this difference in behavior is accepted since there is no
2612 easy way to actually implement single-stepping into a signal handler
2613 without kernel support.
2614
2615 However, there is one scenario where this difference leads to follow-on
2616 problems: if we're stepping off a breakpoint by removing all breakpoints
2617 and then single-stepping. In this case, the software single-step
2618 behavior means that even if there is a *breakpoint* in the signal
2619 handler, GDB still would not stop.
2620
2621 Fortunately, we can at least fix this particular issue. We detect
2622 here the case where we are about to deliver a signal while software
2623 single-stepping with breakpoints removed. In this situation, we
2624 revert the decisions to remove all breakpoints and insert single-
2625 step breakpoints, and instead we install a step-resume breakpoint
2626 at the current address, deliver the signal without stepping, and
2627 once we arrive back at the step-resume breakpoint, actually step
2628 over the breakpoint we originally wanted to step over. */
34b7e8a6 2629 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2630 && sig != GDB_SIGNAL_0
2631 && step_over_info_valid_p ())
30852783
UW
2632 {
2633 /* If we have nested signals or a pending signal is delivered
2634 immediately after a handler returns, might might already have
2635 a step-resume breakpoint set on the earlier handler. We cannot
2636 set another step-resume breakpoint; just continue on until the
2637 original breakpoint is hit. */
2638 if (tp->control.step_resume_breakpoint == NULL)
2639 {
2c03e5be 2640 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2641 tp->step_after_step_resume_breakpoint = 1;
2642 }
2643
34b7e8a6 2644 delete_single_step_breakpoints (tp);
30852783 2645
31e77af2 2646 clear_step_over_info ();
30852783 2647 tp->control.trap_expected = 0;
31e77af2
PA
2648
2649 insert_breakpoints ();
30852783
UW
2650 }
2651
b0f16a3e
SM
2652 /* If STEP is set, it's a request to use hardware stepping
2653 facilities. But in that case, we should never
2654 use singlestep breakpoint. */
34b7e8a6 2655 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2656
fbea99ea 2657 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2658 if (tp->control.trap_expected)
b0f16a3e
SM
2659 {
2660 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2661 hit, either by single-stepping the thread with the breakpoint
2662 removed, or by displaced stepping, with the breakpoint inserted.
2663 In the former case, we need to single-step only this thread,
2664 and keep others stopped, as they can miss this breakpoint if
2665 allowed to run. That's not really a problem for displaced
2666 stepping, but, we still keep other threads stopped, in case
2667 another thread is also stopped for a breakpoint waiting for
2668 its turn in the displaced stepping queue. */
b0f16a3e
SM
2669 resume_ptid = inferior_ptid;
2670 }
fbea99ea
PA
2671 else
2672 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2673
7f5ef605
PA
2674 if (execution_direction != EXEC_REVERSE
2675 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2676 {
372316f1
PA
2677 /* There are two cases where we currently need to step a
2678 breakpoint instruction when we have a signal to deliver:
2679
2680 - See handle_signal_stop where we handle random signals that
2681 could take out us out of the stepping range. Normally, in
2682 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2683 signal handler with a breakpoint at PC, but there are cases
2684 where we should _always_ single-step, even if we have a
2685 step-resume breakpoint, like when a software watchpoint is
2686 set. Assuming single-stepping and delivering a signal at the
2687 same time would takes us to the signal handler, then we could
2688 have removed the breakpoint at PC to step over it. However,
2689 some hardware step targets (like e.g., Mac OS) can't step
2690 into signal handlers, and for those, we need to leave the
2691 breakpoint at PC inserted, as otherwise if the handler
2692 recurses and executes PC again, it'll miss the breakpoint.
2693 So we leave the breakpoint inserted anyway, but we need to
2694 record that we tried to step a breakpoint instruction, so
372316f1
PA
2695 that adjust_pc_after_break doesn't end up confused.
2696
2697 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2698 in one thread after another thread that was stepping had been
2699 momentarily paused for a step-over. When we re-resume the
2700 stepping thread, it may be resumed from that address with a
2701 breakpoint that hasn't trapped yet. Seen with
2702 gdb.threads/non-stop-fair-events.exp, on targets that don't
2703 do displaced stepping. */
2704
2705 if (debug_infrun)
2706 fprintf_unfiltered (gdb_stdlog,
2707 "infrun: resume: [%s] stepped breakpoint\n",
2708 target_pid_to_str (tp->ptid));
7f5ef605
PA
2709
2710 tp->stepped_breakpoint = 1;
2711
b0f16a3e
SM
2712 /* Most targets can step a breakpoint instruction, thus
2713 executing it normally. But if this one cannot, just
2714 continue and we will hit it anyway. */
7f5ef605 2715 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2716 step = 0;
2717 }
ef5cf84e 2718
b0f16a3e 2719 if (debug_displaced
cb71640d 2720 && tp->control.trap_expected
3fc8eb30 2721 && use_displaced_stepping (tp)
cb71640d 2722 && !step_over_info_valid_p ())
b0f16a3e 2723 {
d9b67d9f 2724 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
b0f16a3e
SM
2725 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2726 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2727 gdb_byte buf[4];
2728
2729 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2730 paddress (resume_gdbarch, actual_pc));
2731 read_memory (actual_pc, buf, sizeof (buf));
2732 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2733 }
237fc4c9 2734
b0f16a3e
SM
2735 if (tp->control.may_range_step)
2736 {
2737 /* If we're resuming a thread with the PC out of the step
2738 range, then we're doing some nested/finer run control
2739 operation, like stepping the thread out of the dynamic
2740 linker or the displaced stepping scratch pad. We
2741 shouldn't have allowed a range step then. */
2742 gdb_assert (pc_in_thread_step_range (pc, tp));
2743 }
c1e36e3e 2744
64ce06e4 2745 do_target_resume (resume_ptid, step, sig);
372316f1 2746 tp->resumed = 1;
c906108c
SS
2747 discard_cleanups (old_cleanups);
2748}
2749\f
237fc4c9 2750/* Proceeding. */
c906108c 2751
4c2f2a79
PA
2752/* See infrun.h. */
2753
2754/* Counter that tracks number of user visible stops. This can be used
2755 to tell whether a command has proceeded the inferior past the
2756 current location. This allows e.g., inferior function calls in
2757 breakpoint commands to not interrupt the command list. When the
2758 call finishes successfully, the inferior is standing at the same
2759 breakpoint as if nothing happened (and so we don't call
2760 normal_stop). */
2761static ULONGEST current_stop_id;
2762
2763/* See infrun.h. */
2764
2765ULONGEST
2766get_stop_id (void)
2767{
2768 return current_stop_id;
2769}
2770
2771/* Called when we report a user visible stop. */
2772
2773static void
2774new_stop_id (void)
2775{
2776 current_stop_id++;
2777}
2778
c906108c
SS
2779/* Clear out all variables saying what to do when inferior is continued.
2780 First do this, then set the ones you want, then call `proceed'. */
2781
a7212384
UW
2782static void
2783clear_proceed_status_thread (struct thread_info *tp)
c906108c 2784{
a7212384
UW
2785 if (debug_infrun)
2786 fprintf_unfiltered (gdb_stdlog,
2787 "infrun: clear_proceed_status_thread (%s)\n",
2788 target_pid_to_str (tp->ptid));
d6b48e9c 2789
372316f1
PA
2790 /* If we're starting a new sequence, then the previous finished
2791 single-step is no longer relevant. */
2792 if (tp->suspend.waitstatus_pending_p)
2793 {
2794 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2795 {
2796 if (debug_infrun)
2797 fprintf_unfiltered (gdb_stdlog,
2798 "infrun: clear_proceed_status: pending "
2799 "event of %s was a finished step. "
2800 "Discarding.\n",
2801 target_pid_to_str (tp->ptid));
2802
2803 tp->suspend.waitstatus_pending_p = 0;
2804 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2805 }
2806 else if (debug_infrun)
2807 {
2808 char *statstr;
2809
2810 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2811 fprintf_unfiltered (gdb_stdlog,
2812 "infrun: clear_proceed_status_thread: thread %s "
2813 "has pending wait status %s "
2814 "(currently_stepping=%d).\n",
2815 target_pid_to_str (tp->ptid), statstr,
2816 currently_stepping (tp));
2817 xfree (statstr);
2818 }
2819 }
2820
70509625
PA
2821 /* If this signal should not be seen by program, give it zero.
2822 Used for debugging signals. */
2823 if (!signal_pass_state (tp->suspend.stop_signal))
2824 tp->suspend.stop_signal = GDB_SIGNAL_0;
2825
243a9253
PA
2826 thread_fsm_delete (tp->thread_fsm);
2827 tp->thread_fsm = NULL;
2828
16c381f0
JK
2829 tp->control.trap_expected = 0;
2830 tp->control.step_range_start = 0;
2831 tp->control.step_range_end = 0;
c1e36e3e 2832 tp->control.may_range_step = 0;
16c381f0
JK
2833 tp->control.step_frame_id = null_frame_id;
2834 tp->control.step_stack_frame_id = null_frame_id;
2835 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2836 tp->control.step_start_function = NULL;
a7212384 2837 tp->stop_requested = 0;
4e1c45ea 2838
16c381f0 2839 tp->control.stop_step = 0;
32400beb 2840
16c381f0 2841 tp->control.proceed_to_finish = 0;
414c69f7 2842
17b2616c 2843 tp->control.command_interp = NULL;
856e7dd6 2844 tp->control.stepping_command = 0;
17b2616c 2845
a7212384 2846 /* Discard any remaining commands or status from previous stop. */
16c381f0 2847 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2848}
32400beb 2849
a7212384 2850void
70509625 2851clear_proceed_status (int step)
a7212384 2852{
f2665db5
MM
2853 /* With scheduler-locking replay, stop replaying other threads if we're
2854 not replaying the user-visible resume ptid.
2855
2856 This is a convenience feature to not require the user to explicitly
2857 stop replaying the other threads. We're assuming that the user's
2858 intent is to resume tracing the recorded process. */
2859 if (!non_stop && scheduler_mode == schedlock_replay
2860 && target_record_is_replaying (minus_one_ptid)
2861 && !target_record_will_replay (user_visible_resume_ptid (step),
2862 execution_direction))
2863 target_record_stop_replaying ();
2864
6c95b8df
PA
2865 if (!non_stop)
2866 {
70509625
PA
2867 struct thread_info *tp;
2868 ptid_t resume_ptid;
2869
2870 resume_ptid = user_visible_resume_ptid (step);
2871
2872 /* In all-stop mode, delete the per-thread status of all threads
2873 we're about to resume, implicitly and explicitly. */
2874 ALL_NON_EXITED_THREADS (tp)
2875 {
2876 if (!ptid_match (tp->ptid, resume_ptid))
2877 continue;
2878 clear_proceed_status_thread (tp);
2879 }
6c95b8df
PA
2880 }
2881
a7212384
UW
2882 if (!ptid_equal (inferior_ptid, null_ptid))
2883 {
2884 struct inferior *inferior;
2885
2886 if (non_stop)
2887 {
6c95b8df
PA
2888 /* If in non-stop mode, only delete the per-thread status of
2889 the current thread. */
a7212384
UW
2890 clear_proceed_status_thread (inferior_thread ());
2891 }
6c95b8df 2892
d6b48e9c 2893 inferior = current_inferior ();
16c381f0 2894 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2895 }
2896
f3b1572e 2897 observer_notify_about_to_proceed ();
c906108c
SS
2898}
2899
99619bea
PA
2900/* Returns true if TP is still stopped at a breakpoint that needs
2901 stepping-over in order to make progress. If the breakpoint is gone
2902 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2903
2904static int
6c4cfb24 2905thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2906{
2907 if (tp->stepping_over_breakpoint)
2908 {
2909 struct regcache *regcache = get_thread_regcache (tp->ptid);
2910
2911 if (breakpoint_here_p (get_regcache_aspace (regcache),
af48d08f
PA
2912 regcache_read_pc (regcache))
2913 == ordinary_breakpoint_here)
99619bea
PA
2914 return 1;
2915
2916 tp->stepping_over_breakpoint = 0;
2917 }
2918
2919 return 0;
2920}
2921
6c4cfb24
PA
2922/* Check whether thread TP still needs to start a step-over in order
2923 to make progress when resumed. Returns an bitwise or of enum
2924 step_over_what bits, indicating what needs to be stepped over. */
2925
8d297bbf 2926static step_over_what
6c4cfb24
PA
2927thread_still_needs_step_over (struct thread_info *tp)
2928{
2929 struct inferior *inf = find_inferior_ptid (tp->ptid);
8d297bbf 2930 step_over_what what = 0;
6c4cfb24
PA
2931
2932 if (thread_still_needs_step_over_bp (tp))
2933 what |= STEP_OVER_BREAKPOINT;
2934
2935 if (tp->stepping_over_watchpoint
2936 && !target_have_steppable_watchpoint)
2937 what |= STEP_OVER_WATCHPOINT;
2938
2939 return what;
2940}
2941
483805cf
PA
2942/* Returns true if scheduler locking applies. STEP indicates whether
2943 we're about to do a step/next-like command to a thread. */
2944
2945static int
856e7dd6 2946schedlock_applies (struct thread_info *tp)
483805cf
PA
2947{
2948 return (scheduler_mode == schedlock_on
2949 || (scheduler_mode == schedlock_step
f2665db5
MM
2950 && tp->control.stepping_command)
2951 || (scheduler_mode == schedlock_replay
2952 && target_record_will_replay (minus_one_ptid,
2953 execution_direction)));
483805cf
PA
2954}
2955
c906108c
SS
2956/* Basic routine for continuing the program in various fashions.
2957
2958 ADDR is the address to resume at, or -1 for resume where stopped.
2959 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2960 or -1 for act according to how it stopped.
c906108c 2961 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2962 -1 means return after that and print nothing.
2963 You should probably set various step_... variables
2964 before calling here, if you are stepping.
c906108c
SS
2965
2966 You should call clear_proceed_status before calling proceed. */
2967
2968void
64ce06e4 2969proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2970{
e58b0e63
PA
2971 struct regcache *regcache;
2972 struct gdbarch *gdbarch;
4e1c45ea 2973 struct thread_info *tp;
e58b0e63 2974 CORE_ADDR pc;
6c95b8df 2975 struct address_space *aspace;
4d9d9d04
PA
2976 ptid_t resume_ptid;
2977 struct execution_control_state ecss;
2978 struct execution_control_state *ecs = &ecss;
2979 struct cleanup *old_chain;
2980 int started;
c906108c 2981
e58b0e63
PA
2982 /* If we're stopped at a fork/vfork, follow the branch set by the
2983 "set follow-fork-mode" command; otherwise, we'll just proceed
2984 resuming the current thread. */
2985 if (!follow_fork ())
2986 {
2987 /* The target for some reason decided not to resume. */
2988 normal_stop ();
f148b27e
PA
2989 if (target_can_async_p ())
2990 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2991 return;
2992 }
2993
842951eb
PA
2994 /* We'll update this if & when we switch to a new thread. */
2995 previous_inferior_ptid = inferior_ptid;
2996
e58b0e63
PA
2997 regcache = get_current_regcache ();
2998 gdbarch = get_regcache_arch (regcache);
6c95b8df 2999 aspace = get_regcache_aspace (regcache);
e58b0e63 3000 pc = regcache_read_pc (regcache);
2adfaa28 3001 tp = inferior_thread ();
e58b0e63 3002
99619bea
PA
3003 /* Fill in with reasonable starting values. */
3004 init_thread_stepping_state (tp);
3005
c2829269
PA
3006 gdb_assert (!thread_is_in_step_over_chain (tp));
3007
2acceee2 3008 if (addr == (CORE_ADDR) -1)
c906108c 3009 {
af48d08f
PA
3010 if (pc == stop_pc
3011 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 3012 && execution_direction != EXEC_REVERSE)
3352ef37
AC
3013 /* There is a breakpoint at the address we will resume at,
3014 step one instruction before inserting breakpoints so that
3015 we do not stop right away (and report a second hit at this
b2175913
MS
3016 breakpoint).
3017
3018 Note, we don't do this in reverse, because we won't
3019 actually be executing the breakpoint insn anyway.
3020 We'll be (un-)executing the previous instruction. */
99619bea 3021 tp->stepping_over_breakpoint = 1;
515630c5
UW
3022 else if (gdbarch_single_step_through_delay_p (gdbarch)
3023 && gdbarch_single_step_through_delay (gdbarch,
3024 get_current_frame ()))
3352ef37
AC
3025 /* We stepped onto an instruction that needs to be stepped
3026 again before re-inserting the breakpoint, do so. */
99619bea 3027 tp->stepping_over_breakpoint = 1;
c906108c
SS
3028 }
3029 else
3030 {
515630c5 3031 regcache_write_pc (regcache, addr);
c906108c
SS
3032 }
3033
70509625
PA
3034 if (siggnal != GDB_SIGNAL_DEFAULT)
3035 tp->suspend.stop_signal = siggnal;
3036
17b2616c
PA
3037 /* Record the interpreter that issued the execution command that
3038 caused this thread to resume. If the top level interpreter is
3039 MI/async, and the execution command was a CLI command
3040 (next/step/etc.), we'll want to print stop event output to the MI
3041 console channel (the stepped-to line, etc.), as if the user
3042 entered the execution command on a real GDB console. */
4d9d9d04
PA
3043 tp->control.command_interp = command_interp ();
3044
3045 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3046
3047 /* If an exception is thrown from this point on, make sure to
3048 propagate GDB's knowledge of the executing state to the
3049 frontend/user running state. */
3050 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3051
3052 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3053 threads (e.g., we might need to set threads stepping over
3054 breakpoints first), from the user/frontend's point of view, all
3055 threads in RESUME_PTID are now running. Unless we're calling an
3056 inferior function, as in that case we pretend the inferior
3057 doesn't run at all. */
3058 if (!tp->control.in_infcall)
3059 set_running (resume_ptid, 1);
17b2616c 3060
527159b7 3061 if (debug_infrun)
8a9de0e4 3062 fprintf_unfiltered (gdb_stdlog,
64ce06e4 3063 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 3064 paddress (gdbarch, addr),
64ce06e4 3065 gdb_signal_to_symbol_string (siggnal));
527159b7 3066
4d9d9d04
PA
3067 annotate_starting ();
3068
3069 /* Make sure that output from GDB appears before output from the
3070 inferior. */
3071 gdb_flush (gdb_stdout);
3072
3073 /* In a multi-threaded task we may select another thread and
3074 then continue or step.
3075
3076 But if a thread that we're resuming had stopped at a breakpoint,
3077 it will immediately cause another breakpoint stop without any
3078 execution (i.e. it will report a breakpoint hit incorrectly). So
3079 we must step over it first.
3080
3081 Look for threads other than the current (TP) that reported a
3082 breakpoint hit and haven't been resumed yet since. */
3083
3084 /* If scheduler locking applies, we can avoid iterating over all
3085 threads. */
3086 if (!non_stop && !schedlock_applies (tp))
94cc34af 3087 {
4d9d9d04
PA
3088 struct thread_info *current = tp;
3089
3090 ALL_NON_EXITED_THREADS (tp)
3091 {
3092 /* Ignore the current thread here. It's handled
3093 afterwards. */
3094 if (tp == current)
3095 continue;
99619bea 3096
4d9d9d04
PA
3097 /* Ignore threads of processes we're not resuming. */
3098 if (!ptid_match (tp->ptid, resume_ptid))
3099 continue;
c906108c 3100
4d9d9d04
PA
3101 if (!thread_still_needs_step_over (tp))
3102 continue;
3103
3104 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3105
99619bea
PA
3106 if (debug_infrun)
3107 fprintf_unfiltered (gdb_stdlog,
3108 "infrun: need to step-over [%s] first\n",
4d9d9d04 3109 target_pid_to_str (tp->ptid));
99619bea 3110
4d9d9d04 3111 thread_step_over_chain_enqueue (tp);
2adfaa28 3112 }
31e77af2 3113
4d9d9d04 3114 tp = current;
30852783
UW
3115 }
3116
4d9d9d04
PA
3117 /* Enqueue the current thread last, so that we move all other
3118 threads over their breakpoints first. */
3119 if (tp->stepping_over_breakpoint)
3120 thread_step_over_chain_enqueue (tp);
30852783 3121
4d9d9d04
PA
3122 /* If the thread isn't started, we'll still need to set its prev_pc,
3123 so that switch_back_to_stepped_thread knows the thread hasn't
3124 advanced. Must do this before resuming any thread, as in
3125 all-stop/remote, once we resume we can't send any other packet
3126 until the target stops again. */
3127 tp->prev_pc = regcache_read_pc (regcache);
99619bea 3128
4d9d9d04 3129 started = start_step_over ();
c906108c 3130
4d9d9d04
PA
3131 if (step_over_info_valid_p ())
3132 {
3133 /* Either this thread started a new in-line step over, or some
3134 other thread was already doing one. In either case, don't
3135 resume anything else until the step-over is finished. */
3136 }
fbea99ea 3137 else if (started && !target_is_non_stop_p ())
4d9d9d04
PA
3138 {
3139 /* A new displaced stepping sequence was started. In all-stop,
3140 we can't talk to the target anymore until it next stops. */
3141 }
fbea99ea
PA
3142 else if (!non_stop && target_is_non_stop_p ())
3143 {
3144 /* In all-stop, but the target is always in non-stop mode.
3145 Start all other threads that are implicitly resumed too. */
3146 ALL_NON_EXITED_THREADS (tp)
3147 {
3148 /* Ignore threads of processes we're not resuming. */
3149 if (!ptid_match (tp->ptid, resume_ptid))
3150 continue;
3151
3152 if (tp->resumed)
3153 {
3154 if (debug_infrun)
3155 fprintf_unfiltered (gdb_stdlog,
3156 "infrun: proceed: [%s] resumed\n",
3157 target_pid_to_str (tp->ptid));
3158 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3159 continue;
3160 }
3161
3162 if (thread_is_in_step_over_chain (tp))
3163 {
3164 if (debug_infrun)
3165 fprintf_unfiltered (gdb_stdlog,
3166 "infrun: proceed: [%s] needs step-over\n",
3167 target_pid_to_str (tp->ptid));
3168 continue;
3169 }
3170
3171 if (debug_infrun)
3172 fprintf_unfiltered (gdb_stdlog,
3173 "infrun: proceed: resuming %s\n",
3174 target_pid_to_str (tp->ptid));
3175
3176 reset_ecs (ecs, tp);
3177 switch_to_thread (tp->ptid);
3178 keep_going_pass_signal (ecs);
3179 if (!ecs->wait_some_more)
fd7dcb94 3180 error (_("Command aborted."));
fbea99ea
PA
3181 }
3182 }
372316f1 3183 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
4d9d9d04
PA
3184 {
3185 /* The thread wasn't started, and isn't queued, run it now. */
3186 reset_ecs (ecs, tp);
3187 switch_to_thread (tp->ptid);
3188 keep_going_pass_signal (ecs);
3189 if (!ecs->wait_some_more)
fd7dcb94 3190 error (_("Command aborted."));
4d9d9d04 3191 }
c906108c 3192
4d9d9d04 3193 discard_cleanups (old_chain);
c906108c 3194
0b333c5e
PA
3195 /* Tell the event loop to wait for it to stop. If the target
3196 supports asynchronous execution, it'll do this from within
3197 target_resume. */
362646f5 3198 if (!target_can_async_p ())
0b333c5e 3199 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3200}
c906108c
SS
3201\f
3202
3203/* Start remote-debugging of a machine over a serial link. */
96baa820 3204
c906108c 3205void
8621d6a9 3206start_remote (int from_tty)
c906108c 3207{
d6b48e9c 3208 struct inferior *inferior;
d6b48e9c
PA
3209
3210 inferior = current_inferior ();
16c381f0 3211 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3212
1777feb0 3213 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3214 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3215 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3216 nothing is returned (instead of just blocking). Because of this,
3217 targets expecting an immediate response need to, internally, set
3218 things up so that the target_wait() is forced to eventually
1777feb0 3219 timeout. */
6426a772
JM
3220 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3221 differentiate to its caller what the state of the target is after
3222 the initial open has been performed. Here we're assuming that
3223 the target has stopped. It should be possible to eventually have
3224 target_open() return to the caller an indication that the target
3225 is currently running and GDB state should be set to the same as
1777feb0 3226 for an async run. */
e4c8541f 3227 wait_for_inferior ();
8621d6a9
DJ
3228
3229 /* Now that the inferior has stopped, do any bookkeeping like
3230 loading shared libraries. We want to do this before normal_stop,
3231 so that the displayed frame is up to date. */
3232 post_create_inferior (&current_target, from_tty);
3233
6426a772 3234 normal_stop ();
c906108c
SS
3235}
3236
3237/* Initialize static vars when a new inferior begins. */
3238
3239void
96baa820 3240init_wait_for_inferior (void)
c906108c
SS
3241{
3242 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3243
c906108c
SS
3244 breakpoint_init_inferior (inf_starting);
3245
70509625 3246 clear_proceed_status (0);
9f976b41 3247
ca005067 3248 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3249
842951eb 3250 previous_inferior_ptid = inferior_ptid;
0d1e5fa7 3251
edb3359d
DJ
3252 /* Discard any skipped inlined frames. */
3253 clear_inline_frame_state (minus_one_ptid);
c906108c 3254}
237fc4c9 3255
c906108c 3256\f
488f131b 3257
ec9499be 3258static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3259
568d6575
UW
3260static void handle_step_into_function (struct gdbarch *gdbarch,
3261 struct execution_control_state *ecs);
3262static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3263 struct execution_control_state *ecs);
4f5d7f63 3264static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3265static void check_exception_resume (struct execution_control_state *,
28106bc2 3266 struct frame_info *);
611c83ae 3267
bdc36728 3268static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3269static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3270static void keep_going (struct execution_control_state *ecs);
94c57d6a 3271static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3272static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3273
252fbfc8
PA
3274/* Callback for iterate over threads. If the thread is stopped, but
3275 the user/frontend doesn't know about that yet, go through
3276 normal_stop, as if the thread had just stopped now. ARG points at
3277 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
3278 ptid_is_pid(PTID) is true, applies to all threads of the process
3279 pointed at by PTID. Otherwise, apply only to the thread pointed by
3280 PTID. */
3281
3282static int
3283infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
3284{
3285 ptid_t ptid = * (ptid_t *) arg;
3286
3287 if ((ptid_equal (info->ptid, ptid)
3288 || ptid_equal (minus_one_ptid, ptid)
3289 || (ptid_is_pid (ptid)
3290 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
3291 && is_running (info->ptid)
3292 && !is_executing (info->ptid))
3293 {
3294 struct cleanup *old_chain;
3295 struct execution_control_state ecss;
3296 struct execution_control_state *ecs = &ecss;
3297
3298 memset (ecs, 0, sizeof (*ecs));
3299
3300 old_chain = make_cleanup_restore_current_thread ();
3301
f15cb84a
YQ
3302 overlay_cache_invalid = 1;
3303 /* Flush target cache before starting to handle each event.
3304 Target was running and cache could be stale. This is just a
3305 heuristic. Running threads may modify target memory, but we
3306 don't get any event. */
3307 target_dcache_invalidate ();
3308
252fbfc8
PA
3309 /* Go through handle_inferior_event/normal_stop, so we always
3310 have consistent output as if the stop event had been
3311 reported. */
3312 ecs->ptid = info->ptid;
243a9253 3313 ecs->event_thread = info;
252fbfc8 3314 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 3315 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
3316
3317 handle_inferior_event (ecs);
3318
3319 if (!ecs->wait_some_more)
3320 {
243a9253
PA
3321 /* Cancel any running execution command. */
3322 thread_cancel_execution_command (info);
3323
252fbfc8 3324 normal_stop ();
252fbfc8
PA
3325 }
3326
3327 do_cleanups (old_chain);
3328 }
3329
3330 return 0;
3331}
3332
3333/* This function is attached as a "thread_stop_requested" observer.
3334 Cleanup local state that assumed the PTID was to be resumed, and
3335 report the stop to the frontend. */
3336
2c0b251b 3337static void
252fbfc8
PA
3338infrun_thread_stop_requested (ptid_t ptid)
3339{
c2829269 3340 struct thread_info *tp;
252fbfc8 3341
c2829269
PA
3342 /* PTID was requested to stop. Remove matching threads from the
3343 step-over queue, so we don't try to resume them
3344 automatically. */
3345 ALL_NON_EXITED_THREADS (tp)
3346 if (ptid_match (tp->ptid, ptid))
3347 {
3348 if (thread_is_in_step_over_chain (tp))
3349 thread_step_over_chain_remove (tp);
3350 }
252fbfc8
PA
3351
3352 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
3353}
3354
a07daef3
PA
3355static void
3356infrun_thread_thread_exit (struct thread_info *tp, int silent)
3357{
3358 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3359 nullify_last_target_wait_ptid ();
3360}
3361
0cbcdb96
PA
3362/* Delete the step resume, single-step and longjmp/exception resume
3363 breakpoints of TP. */
4e1c45ea 3364
0cbcdb96
PA
3365static void
3366delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3367{
0cbcdb96
PA
3368 delete_step_resume_breakpoint (tp);
3369 delete_exception_resume_breakpoint (tp);
34b7e8a6 3370 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3371}
3372
0cbcdb96
PA
3373/* If the target still has execution, call FUNC for each thread that
3374 just stopped. In all-stop, that's all the non-exited threads; in
3375 non-stop, that's the current thread, only. */
3376
3377typedef void (*for_each_just_stopped_thread_callback_func)
3378 (struct thread_info *tp);
4e1c45ea
PA
3379
3380static void
0cbcdb96 3381for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3382{
0cbcdb96 3383 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
4e1c45ea
PA
3384 return;
3385
fbea99ea 3386 if (target_is_non_stop_p ())
4e1c45ea 3387 {
0cbcdb96
PA
3388 /* If in non-stop mode, only the current thread stopped. */
3389 func (inferior_thread ());
4e1c45ea
PA
3390 }
3391 else
0cbcdb96
PA
3392 {
3393 struct thread_info *tp;
3394
3395 /* In all-stop mode, all threads have stopped. */
3396 ALL_NON_EXITED_THREADS (tp)
3397 {
3398 func (tp);
3399 }
3400 }
3401}
3402
3403/* Delete the step resume and longjmp/exception resume breakpoints of
3404 the threads that just stopped. */
3405
3406static void
3407delete_just_stopped_threads_infrun_breakpoints (void)
3408{
3409 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3410}
3411
3412/* Delete the single-step breakpoints of the threads that just
3413 stopped. */
7c16b83e 3414
34b7e8a6
PA
3415static void
3416delete_just_stopped_threads_single_step_breakpoints (void)
3417{
3418 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3419}
3420
1777feb0 3421/* A cleanup wrapper. */
4e1c45ea
PA
3422
3423static void
0cbcdb96 3424delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
4e1c45ea 3425{
0cbcdb96 3426 delete_just_stopped_threads_infrun_breakpoints ();
4e1c45ea
PA
3427}
3428
221e1a37 3429/* See infrun.h. */
223698f8 3430
221e1a37 3431void
223698f8
DE
3432print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3433 const struct target_waitstatus *ws)
3434{
3435 char *status_string = target_waitstatus_to_string (ws);
3436 struct ui_file *tmp_stream = mem_fileopen ();
3437 char *text;
223698f8
DE
3438
3439 /* The text is split over several lines because it was getting too long.
3440 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3441 output as a unit; we want only one timestamp printed if debug_timestamp
3442 is set. */
3443
3444 fprintf_unfiltered (tmp_stream,
1176ecec
PA
3445 "infrun: target_wait (%d.%ld.%ld",
3446 ptid_get_pid (waiton_ptid),
3447 ptid_get_lwp (waiton_ptid),
3448 ptid_get_tid (waiton_ptid));
dfd4cc63 3449 if (ptid_get_pid (waiton_ptid) != -1)
223698f8
DE
3450 fprintf_unfiltered (tmp_stream,
3451 " [%s]", target_pid_to_str (waiton_ptid));
3452 fprintf_unfiltered (tmp_stream, ", status) =\n");
3453 fprintf_unfiltered (tmp_stream,
1176ecec 3454 "infrun: %d.%ld.%ld [%s],\n",
dfd4cc63 3455 ptid_get_pid (result_ptid),
1176ecec
PA
3456 ptid_get_lwp (result_ptid),
3457 ptid_get_tid (result_ptid),
dfd4cc63 3458 target_pid_to_str (result_ptid));
223698f8
DE
3459 fprintf_unfiltered (tmp_stream,
3460 "infrun: %s\n",
3461 status_string);
3462
759ef836 3463 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
3464
3465 /* This uses %s in part to handle %'s in the text, but also to avoid
3466 a gcc error: the format attribute requires a string literal. */
3467 fprintf_unfiltered (gdb_stdlog, "%s", text);
3468
3469 xfree (status_string);
3470 xfree (text);
3471 ui_file_delete (tmp_stream);
3472}
3473
372316f1
PA
3474/* Select a thread at random, out of those which are resumed and have
3475 had events. */
3476
3477static struct thread_info *
3478random_pending_event_thread (ptid_t waiton_ptid)
3479{
3480 struct thread_info *event_tp;
3481 int num_events = 0;
3482 int random_selector;
3483
3484 /* First see how many events we have. Count only resumed threads
3485 that have an event pending. */
3486 ALL_NON_EXITED_THREADS (event_tp)
3487 if (ptid_match (event_tp->ptid, waiton_ptid)
3488 && event_tp->resumed
3489 && event_tp->suspend.waitstatus_pending_p)
3490 num_events++;
3491
3492 if (num_events == 0)
3493 return NULL;
3494
3495 /* Now randomly pick a thread out of those that have had events. */
3496 random_selector = (int)
3497 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3498
3499 if (debug_infrun && num_events > 1)
3500 fprintf_unfiltered (gdb_stdlog,
3501 "infrun: Found %d events, selecting #%d\n",
3502 num_events, random_selector);
3503
3504 /* Select the Nth thread that has had an event. */
3505 ALL_NON_EXITED_THREADS (event_tp)
3506 if (ptid_match (event_tp->ptid, waiton_ptid)
3507 && event_tp->resumed
3508 && event_tp->suspend.waitstatus_pending_p)
3509 if (random_selector-- == 0)
3510 break;
3511
3512 return event_tp;
3513}
3514
3515/* Wrapper for target_wait that first checks whether threads have
3516 pending statuses to report before actually asking the target for
3517 more events. */
3518
3519static ptid_t
3520do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3521{
3522 ptid_t event_ptid;
3523 struct thread_info *tp;
3524
3525 /* First check if there is a resumed thread with a wait status
3526 pending. */
3527 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3528 {
3529 tp = random_pending_event_thread (ptid);
3530 }
3531 else
3532 {
3533 if (debug_infrun)
3534 fprintf_unfiltered (gdb_stdlog,
3535 "infrun: Waiting for specific thread %s.\n",
3536 target_pid_to_str (ptid));
3537
3538 /* We have a specific thread to check. */
3539 tp = find_thread_ptid (ptid);
3540 gdb_assert (tp != NULL);
3541 if (!tp->suspend.waitstatus_pending_p)
3542 tp = NULL;
3543 }
3544
3545 if (tp != NULL
3546 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3547 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3548 {
3549 struct regcache *regcache = get_thread_regcache (tp->ptid);
3550 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3551 CORE_ADDR pc;
3552 int discard = 0;
3553
3554 pc = regcache_read_pc (regcache);
3555
3556 if (pc != tp->suspend.stop_pc)
3557 {
3558 if (debug_infrun)
3559 fprintf_unfiltered (gdb_stdlog,
3560 "infrun: PC of %s changed. was=%s, now=%s\n",
3561 target_pid_to_str (tp->ptid),
3562 paddress (gdbarch, tp->prev_pc),
3563 paddress (gdbarch, pc));
3564 discard = 1;
3565 }
3566 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3567 {
3568 if (debug_infrun)
3569 fprintf_unfiltered (gdb_stdlog,
3570 "infrun: previous breakpoint of %s, at %s gone\n",
3571 target_pid_to_str (tp->ptid),
3572 paddress (gdbarch, pc));
3573
3574 discard = 1;
3575 }
3576
3577 if (discard)
3578 {
3579 if (debug_infrun)
3580 fprintf_unfiltered (gdb_stdlog,
3581 "infrun: pending event of %s cancelled.\n",
3582 target_pid_to_str (tp->ptid));
3583
3584 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3585 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3586 }
3587 }
3588
3589 if (tp != NULL)
3590 {
3591 if (debug_infrun)
3592 {
3593 char *statstr;
3594
3595 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3596 fprintf_unfiltered (gdb_stdlog,
3597 "infrun: Using pending wait status %s for %s.\n",
3598 statstr,
3599 target_pid_to_str (tp->ptid));
3600 xfree (statstr);
3601 }
3602
3603 /* Now that we've selected our final event LWP, un-adjust its PC
3604 if it was a software breakpoint (and the target doesn't
3605 always adjust the PC itself). */
3606 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3607 && !target_supports_stopped_by_sw_breakpoint ())
3608 {
3609 struct regcache *regcache;
3610 struct gdbarch *gdbarch;
3611 int decr_pc;
3612
3613 regcache = get_thread_regcache (tp->ptid);
3614 gdbarch = get_regcache_arch (regcache);
3615
3616 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3617 if (decr_pc != 0)
3618 {
3619 CORE_ADDR pc;
3620
3621 pc = regcache_read_pc (regcache);
3622 regcache_write_pc (regcache, pc + decr_pc);
3623 }
3624 }
3625
3626 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3627 *status = tp->suspend.waitstatus;
3628 tp->suspend.waitstatus_pending_p = 0;
3629
3630 /* Wake up the event loop again, until all pending events are
3631 processed. */
3632 if (target_is_async_p ())
3633 mark_async_event_handler (infrun_async_inferior_event_token);
3634 return tp->ptid;
3635 }
3636
3637 /* But if we don't find one, we'll have to wait. */
3638
3639 if (deprecated_target_wait_hook)
3640 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3641 else
3642 event_ptid = target_wait (ptid, status, options);
3643
3644 return event_ptid;
3645}
3646
24291992
PA
3647/* Prepare and stabilize the inferior for detaching it. E.g.,
3648 detaching while a thread is displaced stepping is a recipe for
3649 crashing it, as nothing would readjust the PC out of the scratch
3650 pad. */
3651
3652void
3653prepare_for_detach (void)
3654{
3655 struct inferior *inf = current_inferior ();
3656 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3657 struct cleanup *old_chain_1;
3658 struct displaced_step_inferior_state *displaced;
3659
3660 displaced = get_displaced_stepping_state (inf->pid);
3661
3662 /* Is any thread of this process displaced stepping? If not,
3663 there's nothing else to do. */
3664 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3665 return;
3666
3667 if (debug_infrun)
3668 fprintf_unfiltered (gdb_stdlog,
3669 "displaced-stepping in-process while detaching");
3670
3671 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3672 inf->detaching = 1;
3673
3674 while (!ptid_equal (displaced->step_ptid, null_ptid))
3675 {
3676 struct cleanup *old_chain_2;
3677 struct execution_control_state ecss;
3678 struct execution_control_state *ecs;
3679
3680 ecs = &ecss;
3681 memset (ecs, 0, sizeof (*ecs));
3682
3683 overlay_cache_invalid = 1;
f15cb84a
YQ
3684 /* Flush target cache before starting to handle each event.
3685 Target was running and cache could be stale. This is just a
3686 heuristic. Running threads may modify target memory, but we
3687 don't get any event. */
3688 target_dcache_invalidate ();
24291992 3689
372316f1 3690 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3691
3692 if (debug_infrun)
3693 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3694
3695 /* If an error happens while handling the event, propagate GDB's
3696 knowledge of the executing state to the frontend/user running
3697 state. */
3e43a32a
MS
3698 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3699 &minus_one_ptid);
24291992
PA
3700
3701 /* Now figure out what to do with the result of the result. */
3702 handle_inferior_event (ecs);
3703
3704 /* No error, don't finish the state yet. */
3705 discard_cleanups (old_chain_2);
3706
3707 /* Breakpoints and watchpoints are not installed on the target
3708 at this point, and signals are passed directly to the
3709 inferior, so this must mean the process is gone. */
3710 if (!ecs->wait_some_more)
3711 {
3712 discard_cleanups (old_chain_1);
3713 error (_("Program exited while detaching"));
3714 }
3715 }
3716
3717 discard_cleanups (old_chain_1);
3718}
3719
cd0fc7c3 3720/* Wait for control to return from inferior to debugger.
ae123ec6 3721
cd0fc7c3
SS
3722 If inferior gets a signal, we may decide to start it up again
3723 instead of returning. That is why there is a loop in this function.
3724 When this function actually returns it means the inferior
3725 should be left stopped and GDB should read more commands. */
3726
3727void
e4c8541f 3728wait_for_inferior (void)
cd0fc7c3
SS
3729{
3730 struct cleanup *old_cleanups;
e6f5c25b 3731 struct cleanup *thread_state_chain;
c906108c 3732
527159b7 3733 if (debug_infrun)
ae123ec6 3734 fprintf_unfiltered
e4c8541f 3735 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3736
0cbcdb96
PA
3737 old_cleanups
3738 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3739 NULL);
cd0fc7c3 3740
e6f5c25b
PA
3741 /* If an error happens while handling the event, propagate GDB's
3742 knowledge of the executing state to the frontend/user running
3743 state. */
3744 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3745
c906108c
SS
3746 while (1)
3747 {
ae25568b
PA
3748 struct execution_control_state ecss;
3749 struct execution_control_state *ecs = &ecss;
963f9c80 3750 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3751
ae25568b
PA
3752 memset (ecs, 0, sizeof (*ecs));
3753
ec9499be 3754 overlay_cache_invalid = 1;
ec9499be 3755
f15cb84a
YQ
3756 /* Flush target cache before starting to handle each event.
3757 Target was running and cache could be stale. This is just a
3758 heuristic. Running threads may modify target memory, but we
3759 don't get any event. */
3760 target_dcache_invalidate ();
3761
372316f1 3762 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3763
f00150c9 3764 if (debug_infrun)
223698f8 3765 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3766
cd0fc7c3
SS
3767 /* Now figure out what to do with the result of the result. */
3768 handle_inferior_event (ecs);
c906108c 3769
cd0fc7c3
SS
3770 if (!ecs->wait_some_more)
3771 break;
3772 }
4e1c45ea 3773
e6f5c25b
PA
3774 /* No error, don't finish the state yet. */
3775 discard_cleanups (thread_state_chain);
3776
cd0fc7c3
SS
3777 do_cleanups (old_cleanups);
3778}
c906108c 3779
d3d4baed
PA
3780/* Cleanup that reinstalls the readline callback handler, if the
3781 target is running in the background. If while handling the target
3782 event something triggered a secondary prompt, like e.g., a
3783 pagination prompt, we'll have removed the callback handler (see
3784 gdb_readline_wrapper_line). Need to do this as we go back to the
3785 event loop, ready to process further input. Note this has no
3786 effect if the handler hasn't actually been removed, because calling
3787 rl_callback_handler_install resets the line buffer, thus losing
3788 input. */
3789
3790static void
3791reinstall_readline_callback_handler_cleanup (void *arg)
3792{
6c400b59
PA
3793 if (!interpreter_async)
3794 {
3795 /* We're not going back to the top level event loop yet. Don't
3796 install the readline callback, as it'd prep the terminal,
3797 readline-style (raw, noecho) (e.g., --batch). We'll install
3798 it the next time the prompt is displayed, when we're ready
3799 for input. */
3800 return;
3801 }
3802
d3d4baed
PA
3803 if (async_command_editing_p && !sync_execution)
3804 gdb_rl_callback_handler_reinstall ();
3805}
3806
243a9253
PA
3807/* Clean up the FSMs of threads that are now stopped. In non-stop,
3808 that's just the event thread. In all-stop, that's all threads. */
3809
3810static void
3811clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3812{
3813 struct thread_info *thr = ecs->event_thread;
3814
3815 if (thr != NULL && thr->thread_fsm != NULL)
3816 thread_fsm_clean_up (thr->thread_fsm);
3817
3818 if (!non_stop)
3819 {
3820 ALL_NON_EXITED_THREADS (thr)
3821 {
3822 if (thr->thread_fsm == NULL)
3823 continue;
3824 if (thr == ecs->event_thread)
3825 continue;
3826
3827 switch_to_thread (thr->ptid);
3828 thread_fsm_clean_up (thr->thread_fsm);
3829 }
3830
3831 if (ecs->event_thread != NULL)
3832 switch_to_thread (ecs->event_thread->ptid);
3833 }
3834}
3835
170742de
PA
3836/* A cleanup that restores the execution direction to the value saved
3837 in *ARG. */
3838
3839static void
3840restore_execution_direction (void *arg)
3841{
3842 enum exec_direction_kind *save_exec_dir = (enum exec_direction_kind *) arg;
3843
3844 execution_direction = *save_exec_dir;
3845}
3846
1777feb0 3847/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3848 event loop whenever a change of state is detected on the file
1777feb0
MS
3849 descriptor corresponding to the target. It can be called more than
3850 once to complete a single execution command. In such cases we need
3851 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3852 that this function is called for a single execution command, then
3853 report to the user that the inferior has stopped, and do the
1777feb0 3854 necessary cleanups. */
43ff13b4
JM
3855
3856void
fba45db2 3857fetch_inferior_event (void *client_data)
43ff13b4 3858{
0d1e5fa7 3859 struct execution_control_state ecss;
a474d7c2 3860 struct execution_control_state *ecs = &ecss;
4f8d22e3 3861 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 3862 struct cleanup *ts_old_chain;
4f8d22e3 3863 int was_sync = sync_execution;
170742de 3864 enum exec_direction_kind save_exec_dir = execution_direction;
0f641c01 3865 int cmd_done = 0;
963f9c80 3866 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3867
0d1e5fa7
PA
3868 memset (ecs, 0, sizeof (*ecs));
3869
d3d4baed
PA
3870 /* End up with readline processing input, if necessary. */
3871 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3872
c5187ac6
PA
3873 /* We're handling a live event, so make sure we're doing live
3874 debugging. If we're looking at traceframes while the target is
3875 running, we're going to need to get back to that mode after
3876 handling the event. */
3877 if (non_stop)
3878 {
3879 make_cleanup_restore_current_traceframe ();
e6e4e701 3880 set_current_traceframe (-1);
c5187ac6
PA
3881 }
3882
4f8d22e3
PA
3883 if (non_stop)
3884 /* In non-stop mode, the user/frontend should not notice a thread
3885 switch due to internal events. Make sure we reverse to the
3886 user selected thread and frame after handling the event and
3887 running any breakpoint commands. */
3888 make_cleanup_restore_current_thread ();
3889
ec9499be 3890 overlay_cache_invalid = 1;
f15cb84a
YQ
3891 /* Flush target cache before starting to handle each event. Target
3892 was running and cache could be stale. This is just a heuristic.
3893 Running threads may modify target memory, but we don't get any
3894 event. */
3895 target_dcache_invalidate ();
3dd5b83d 3896
170742de 3897 make_cleanup (restore_execution_direction, &save_exec_dir);
32231432
PA
3898 execution_direction = target_execution_direction ();
3899
0b333c5e
PA
3900 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3901 target_can_async_p () ? TARGET_WNOHANG : 0);
43ff13b4 3902
f00150c9 3903 if (debug_infrun)
223698f8 3904 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3905
29f49a6a
PA
3906 /* If an error happens while handling the event, propagate GDB's
3907 knowledge of the executing state to the frontend/user running
3908 state. */
fbea99ea 3909 if (!target_is_non_stop_p ())
29f49a6a
PA
3910 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3911 else
3912 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3913
353d1d73
JK
3914 /* Get executed before make_cleanup_restore_current_thread above to apply
3915 still for the thread which has thrown the exception. */
3916 make_bpstat_clear_actions_cleanup ();
3917
7c16b83e
PA
3918 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3919
43ff13b4 3920 /* Now figure out what to do with the result of the result. */
a474d7c2 3921 handle_inferior_event (ecs);
43ff13b4 3922
a474d7c2 3923 if (!ecs->wait_some_more)
43ff13b4 3924 {
c9657e70 3925 struct inferior *inf = find_inferior_ptid (ecs->ptid);
243a9253
PA
3926 int should_stop = 1;
3927 struct thread_info *thr = ecs->event_thread;
388a7084 3928 int should_notify_stop = 1;
d6b48e9c 3929
0cbcdb96 3930 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3931
243a9253
PA
3932 if (thr != NULL)
3933 {
3934 struct thread_fsm *thread_fsm = thr->thread_fsm;
3935
3936 if (thread_fsm != NULL)
3937 should_stop = thread_fsm_should_stop (thread_fsm);
3938 }
3939
3940 if (!should_stop)
3941 {
3942 keep_going (ecs);
3943 }
c2d11a7d 3944 else
0f641c01 3945 {
243a9253
PA
3946 clean_up_just_stopped_threads_fsms (ecs);
3947
388a7084
PA
3948 if (thr != NULL && thr->thread_fsm != NULL)
3949 {
3950 should_notify_stop
3951 = thread_fsm_should_notify_stop (thr->thread_fsm);
3952 }
3953
3954 if (should_notify_stop)
3955 {
4c2f2a79
PA
3956 int proceeded = 0;
3957
388a7084
PA
3958 /* We may not find an inferior if this was a process exit. */
3959 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4c2f2a79 3960 proceeded = normal_stop ();
243a9253 3961
4c2f2a79
PA
3962 if (!proceeded)
3963 {
3964 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3965 cmd_done = 1;
3966 }
388a7084 3967 }
0f641c01 3968 }
43ff13b4 3969 }
4f8d22e3 3970
29f49a6a
PA
3971 /* No error, don't finish the thread states yet. */
3972 discard_cleanups (ts_old_chain);
3973
4f8d22e3
PA
3974 /* Revert thread and frame. */
3975 do_cleanups (old_chain);
3976
3977 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
3978 restore the prompt (a synchronous execution command has finished,
3979 and we're ready for input). */
b4a14fd0 3980 if (interpreter_async && was_sync && !sync_execution)
92bcb5f9 3981 observer_notify_sync_execution_done ();
0f641c01
PA
3982
3983 if (cmd_done
3984 && !was_sync
3985 && exec_done_display_p
3986 && (ptid_equal (inferior_ptid, null_ptid)
3987 || !is_running (inferior_ptid)))
3988 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3989}
3990
edb3359d
DJ
3991/* Record the frame and location we're currently stepping through. */
3992void
3993set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3994{
3995 struct thread_info *tp = inferior_thread ();
3996
16c381f0
JK
3997 tp->control.step_frame_id = get_frame_id (frame);
3998 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
3999
4000 tp->current_symtab = sal.symtab;
4001 tp->current_line = sal.line;
4002}
4003
0d1e5fa7
PA
4004/* Clear context switchable stepping state. */
4005
4006void
4e1c45ea 4007init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 4008{
7f5ef605 4009 tss->stepped_breakpoint = 0;
0d1e5fa7 4010 tss->stepping_over_breakpoint = 0;
963f9c80 4011 tss->stepping_over_watchpoint = 0;
0d1e5fa7 4012 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
4013}
4014
c32c64b7
DE
4015/* Set the cached copy of the last ptid/waitstatus. */
4016
6efcd9a8 4017void
c32c64b7
DE
4018set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4019{
4020 target_last_wait_ptid = ptid;
4021 target_last_waitstatus = status;
4022}
4023
e02bc4cc 4024/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
4025 target_wait()/deprecated_target_wait_hook(). The data is actually
4026 cached by handle_inferior_event(), which gets called immediately
4027 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
4028
4029void
488f131b 4030get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 4031{
39f77062 4032 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
4033 *status = target_last_waitstatus;
4034}
4035
ac264b3b
MS
4036void
4037nullify_last_target_wait_ptid (void)
4038{
4039 target_last_wait_ptid = minus_one_ptid;
4040}
4041
dcf4fbde 4042/* Switch thread contexts. */
dd80620e
MS
4043
4044static void
0d1e5fa7 4045context_switch (ptid_t ptid)
dd80620e 4046{
4b51d87b 4047 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
4048 {
4049 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4050 target_pid_to_str (inferior_ptid));
4051 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 4052 target_pid_to_str (ptid));
fd48f117
DJ
4053 }
4054
0d1e5fa7 4055 switch_to_thread (ptid);
dd80620e
MS
4056}
4057
d8dd4d5f
PA
4058/* If the target can't tell whether we've hit breakpoints
4059 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4060 check whether that could have been caused by a breakpoint. If so,
4061 adjust the PC, per gdbarch_decr_pc_after_break. */
4062
4fa8626c 4063static void
d8dd4d5f
PA
4064adjust_pc_after_break (struct thread_info *thread,
4065 struct target_waitstatus *ws)
4fa8626c 4066{
24a73cce
UW
4067 struct regcache *regcache;
4068 struct gdbarch *gdbarch;
6c95b8df 4069 struct address_space *aspace;
118e6252 4070 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4071
4fa8626c
DJ
4072 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4073 we aren't, just return.
9709f61c
DJ
4074
4075 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4076 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4077 implemented by software breakpoints should be handled through the normal
4078 breakpoint layer.
8fb3e588 4079
4fa8626c
DJ
4080 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4081 different signals (SIGILL or SIGEMT for instance), but it is less
4082 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4083 gdbarch_decr_pc_after_break. I don't know any specific target that
4084 generates these signals at breakpoints (the code has been in GDB since at
4085 least 1992) so I can not guess how to handle them here.
8fb3e588 4086
e6cf7916
UW
4087 In earlier versions of GDB, a target with
4088 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4089 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4090 target with both of these set in GDB history, and it seems unlikely to be
4091 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4092
d8dd4d5f 4093 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4094 return;
4095
d8dd4d5f 4096 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4097 return;
4098
4058b839
PA
4099 /* In reverse execution, when a breakpoint is hit, the instruction
4100 under it has already been de-executed. The reported PC always
4101 points at the breakpoint address, so adjusting it further would
4102 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4103 architecture:
4104
4105 B1 0x08000000 : INSN1
4106 B2 0x08000001 : INSN2
4107 0x08000002 : INSN3
4108 PC -> 0x08000003 : INSN4
4109
4110 Say you're stopped at 0x08000003 as above. Reverse continuing
4111 from that point should hit B2 as below. Reading the PC when the
4112 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4113 been de-executed already.
4114
4115 B1 0x08000000 : INSN1
4116 B2 PC -> 0x08000001 : INSN2
4117 0x08000002 : INSN3
4118 0x08000003 : INSN4
4119
4120 We can't apply the same logic as for forward execution, because
4121 we would wrongly adjust the PC to 0x08000000, since there's a
4122 breakpoint at PC - 1. We'd then report a hit on B1, although
4123 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4124 behaviour. */
4125 if (execution_direction == EXEC_REVERSE)
4126 return;
4127
1cf4d951
PA
4128 /* If the target can tell whether the thread hit a SW breakpoint,
4129 trust it. Targets that can tell also adjust the PC
4130 themselves. */
4131 if (target_supports_stopped_by_sw_breakpoint ())
4132 return;
4133
4134 /* Note that relying on whether a breakpoint is planted in memory to
4135 determine this can fail. E.g,. the breakpoint could have been
4136 removed since. Or the thread could have been told to step an
4137 instruction the size of a breakpoint instruction, and only
4138 _after_ was a breakpoint inserted at its address. */
4139
24a73cce
UW
4140 /* If this target does not decrement the PC after breakpoints, then
4141 we have nothing to do. */
d8dd4d5f 4142 regcache = get_thread_regcache (thread->ptid);
24a73cce 4143 gdbarch = get_regcache_arch (regcache);
118e6252 4144
527a273a 4145 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4146 if (decr_pc == 0)
24a73cce
UW
4147 return;
4148
6c95b8df
PA
4149 aspace = get_regcache_aspace (regcache);
4150
8aad930b
AC
4151 /* Find the location where (if we've hit a breakpoint) the
4152 breakpoint would be. */
118e6252 4153 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4154
1cf4d951
PA
4155 /* If the target can't tell whether a software breakpoint triggered,
4156 fallback to figuring it out based on breakpoints we think were
4157 inserted in the target, and on whether the thread was stepped or
4158 continued. */
4159
1c5cfe86
PA
4160 /* Check whether there actually is a software breakpoint inserted at
4161 that location.
4162
4163 If in non-stop mode, a race condition is possible where we've
4164 removed a breakpoint, but stop events for that breakpoint were
4165 already queued and arrive later. To suppress those spurious
4166 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4167 and retire them after a number of stop events are reported. Note
4168 this is an heuristic and can thus get confused. The real fix is
4169 to get the "stopped by SW BP and needs adjustment" info out of
4170 the target/kernel (and thus never reach here; see above). */
6c95b8df 4171 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4172 || (target_is_non_stop_p ()
4173 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4174 {
77f9e713 4175 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
abbb1732 4176
8213266a 4177 if (record_full_is_used ())
77f9e713 4178 record_full_gdb_operation_disable_set ();
96429cc8 4179
1c0fdd0e
UW
4180 /* When using hardware single-step, a SIGTRAP is reported for both
4181 a completed single-step and a software breakpoint. Need to
4182 differentiate between the two, as the latter needs adjusting
4183 but the former does not.
4184
4185 The SIGTRAP can be due to a completed hardware single-step only if
4186 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4187 - this thread is currently being stepped
4188
4189 If any of these events did not occur, we must have stopped due
4190 to hitting a software breakpoint, and have to back up to the
4191 breakpoint address.
4192
4193 As a special case, we could have hardware single-stepped a
4194 software breakpoint. In this case (prev_pc == breakpoint_pc),
4195 we also need to back up to the breakpoint address. */
4196
d8dd4d5f
PA
4197 if (thread_has_single_step_breakpoints_set (thread)
4198 || !currently_stepping (thread)
4199 || (thread->stepped_breakpoint
4200 && thread->prev_pc == breakpoint_pc))
515630c5 4201 regcache_write_pc (regcache, breakpoint_pc);
96429cc8 4202
77f9e713 4203 do_cleanups (old_cleanups);
8aad930b 4204 }
4fa8626c
DJ
4205}
4206
edb3359d
DJ
4207static int
4208stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4209{
4210 for (frame = get_prev_frame (frame);
4211 frame != NULL;
4212 frame = get_prev_frame (frame))
4213 {
4214 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4215 return 1;
4216 if (get_frame_type (frame) != INLINE_FRAME)
4217 break;
4218 }
4219
4220 return 0;
4221}
4222
a96d9b2e
SDJ
4223/* Auxiliary function that handles syscall entry/return events.
4224 It returns 1 if the inferior should keep going (and GDB
4225 should ignore the event), or 0 if the event deserves to be
4226 processed. */
ca2163eb 4227
a96d9b2e 4228static int
ca2163eb 4229handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4230{
ca2163eb 4231 struct regcache *regcache;
ca2163eb
PA
4232 int syscall_number;
4233
4234 if (!ptid_equal (ecs->ptid, inferior_ptid))
4235 context_switch (ecs->ptid);
4236
4237 regcache = get_thread_regcache (ecs->ptid);
f90263c1 4238 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
4239 stop_pc = regcache_read_pc (regcache);
4240
a96d9b2e
SDJ
4241 if (catch_syscall_enabled () > 0
4242 && catching_syscall_number (syscall_number) > 0)
4243 {
4244 if (debug_infrun)
4245 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4246 syscall_number);
a96d9b2e 4247
16c381f0 4248 ecs->event_thread->control.stop_bpstat
6c95b8df 4249 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 4250 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4251
ce12b012 4252 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4253 {
4254 /* Catchpoint hit. */
ca2163eb
PA
4255 return 0;
4256 }
a96d9b2e 4257 }
ca2163eb
PA
4258
4259 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4260 keep_going (ecs);
4261 return 1;
a96d9b2e
SDJ
4262}
4263
7e324e48
GB
4264/* Lazily fill in the execution_control_state's stop_func_* fields. */
4265
4266static void
4267fill_in_stop_func (struct gdbarch *gdbarch,
4268 struct execution_control_state *ecs)
4269{
4270 if (!ecs->stop_func_filled_in)
4271 {
4272 /* Don't care about return value; stop_func_start and stop_func_name
4273 will both be 0 if it doesn't work. */
4274 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4275 &ecs->stop_func_start, &ecs->stop_func_end);
4276 ecs->stop_func_start
4277 += gdbarch_deprecated_function_start_offset (gdbarch);
4278
591a12a1
UW
4279 if (gdbarch_skip_entrypoint_p (gdbarch))
4280 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4281 ecs->stop_func_start);
4282
7e324e48
GB
4283 ecs->stop_func_filled_in = 1;
4284 }
4285}
4286
4f5d7f63
PA
4287
4288/* Return the STOP_SOON field of the inferior pointed at by PTID. */
4289
4290static enum stop_kind
4291get_inferior_stop_soon (ptid_t ptid)
4292{
c9657e70 4293 struct inferior *inf = find_inferior_ptid (ptid);
4f5d7f63
PA
4294
4295 gdb_assert (inf != NULL);
4296 return inf->control.stop_soon;
4297}
4298
372316f1
PA
4299/* Wait for one event. Store the resulting waitstatus in WS, and
4300 return the event ptid. */
4301
4302static ptid_t
4303wait_one (struct target_waitstatus *ws)
4304{
4305 ptid_t event_ptid;
4306 ptid_t wait_ptid = minus_one_ptid;
4307
4308 overlay_cache_invalid = 1;
4309
4310 /* Flush target cache before starting to handle each event.
4311 Target was running and cache could be stale. This is just a
4312 heuristic. Running threads may modify target memory, but we
4313 don't get any event. */
4314 target_dcache_invalidate ();
4315
4316 if (deprecated_target_wait_hook)
4317 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4318 else
4319 event_ptid = target_wait (wait_ptid, ws, 0);
4320
4321 if (debug_infrun)
4322 print_target_wait_results (wait_ptid, event_ptid, ws);
4323
4324 return event_ptid;
4325}
4326
4327/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4328 instead of the current thread. */
4329#define THREAD_STOPPED_BY(REASON) \
4330static int \
4331thread_stopped_by_ ## REASON (ptid_t ptid) \
4332{ \
4333 struct cleanup *old_chain; \
4334 int res; \
4335 \
4336 old_chain = save_inferior_ptid (); \
4337 inferior_ptid = ptid; \
4338 \
4339 res = target_stopped_by_ ## REASON (); \
4340 \
4341 do_cleanups (old_chain); \
4342 \
4343 return res; \
4344}
4345
4346/* Generate thread_stopped_by_watchpoint. */
4347THREAD_STOPPED_BY (watchpoint)
4348/* Generate thread_stopped_by_sw_breakpoint. */
4349THREAD_STOPPED_BY (sw_breakpoint)
4350/* Generate thread_stopped_by_hw_breakpoint. */
4351THREAD_STOPPED_BY (hw_breakpoint)
4352
4353/* Cleanups that switches to the PTID pointed at by PTID_P. */
4354
4355static void
4356switch_to_thread_cleanup (void *ptid_p)
4357{
4358 ptid_t ptid = *(ptid_t *) ptid_p;
4359
4360 switch_to_thread (ptid);
4361}
4362
4363/* Save the thread's event and stop reason to process it later. */
4364
4365static void
4366save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4367{
4368 struct regcache *regcache;
4369 struct address_space *aspace;
4370
4371 if (debug_infrun)
4372 {
4373 char *statstr;
4374
4375 statstr = target_waitstatus_to_string (ws);
4376 fprintf_unfiltered (gdb_stdlog,
4377 "infrun: saving status %s for %d.%ld.%ld\n",
4378 statstr,
4379 ptid_get_pid (tp->ptid),
4380 ptid_get_lwp (tp->ptid),
4381 ptid_get_tid (tp->ptid));
4382 xfree (statstr);
4383 }
4384
4385 /* Record for later. */
4386 tp->suspend.waitstatus = *ws;
4387 tp->suspend.waitstatus_pending_p = 1;
4388
4389 regcache = get_thread_regcache (tp->ptid);
4390 aspace = get_regcache_aspace (regcache);
4391
4392 if (ws->kind == TARGET_WAITKIND_STOPPED
4393 && ws->value.sig == GDB_SIGNAL_TRAP)
4394 {
4395 CORE_ADDR pc = regcache_read_pc (regcache);
4396
4397 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4398
4399 if (thread_stopped_by_watchpoint (tp->ptid))
4400 {
4401 tp->suspend.stop_reason
4402 = TARGET_STOPPED_BY_WATCHPOINT;
4403 }
4404 else if (target_supports_stopped_by_sw_breakpoint ()
4405 && thread_stopped_by_sw_breakpoint (tp->ptid))
4406 {
4407 tp->suspend.stop_reason
4408 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4409 }
4410 else if (target_supports_stopped_by_hw_breakpoint ()
4411 && thread_stopped_by_hw_breakpoint (tp->ptid))
4412 {
4413 tp->suspend.stop_reason
4414 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4415 }
4416 else if (!target_supports_stopped_by_hw_breakpoint ()
4417 && hardware_breakpoint_inserted_here_p (aspace,
4418 pc))
4419 {
4420 tp->suspend.stop_reason
4421 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4422 }
4423 else if (!target_supports_stopped_by_sw_breakpoint ()
4424 && software_breakpoint_inserted_here_p (aspace,
4425 pc))
4426 {
4427 tp->suspend.stop_reason
4428 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4429 }
4430 else if (!thread_has_single_step_breakpoints_set (tp)
4431 && currently_stepping (tp))
4432 {
4433 tp->suspend.stop_reason
4434 = TARGET_STOPPED_BY_SINGLE_STEP;
4435 }
4436 }
4437}
4438
65706a29
PA
4439/* A cleanup that disables thread create/exit events. */
4440
4441static void
4442disable_thread_events (void *arg)
4443{
4444 target_thread_events (0);
4445}
4446
6efcd9a8 4447/* See infrun.h. */
372316f1 4448
6efcd9a8 4449void
372316f1
PA
4450stop_all_threads (void)
4451{
4452 /* We may need multiple passes to discover all threads. */
4453 int pass;
4454 int iterations = 0;
4455 ptid_t entry_ptid;
4456 struct cleanup *old_chain;
4457
fbea99ea 4458 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4459
4460 if (debug_infrun)
4461 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4462
4463 entry_ptid = inferior_ptid;
4464 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4465
65706a29
PA
4466 target_thread_events (1);
4467 make_cleanup (disable_thread_events, NULL);
4468
372316f1
PA
4469 /* Request threads to stop, and then wait for the stops. Because
4470 threads we already know about can spawn more threads while we're
4471 trying to stop them, and we only learn about new threads when we
4472 update the thread list, do this in a loop, and keep iterating
4473 until two passes find no threads that need to be stopped. */
4474 for (pass = 0; pass < 2; pass++, iterations++)
4475 {
4476 if (debug_infrun)
4477 fprintf_unfiltered (gdb_stdlog,
4478 "infrun: stop_all_threads, pass=%d, "
4479 "iterations=%d\n", pass, iterations);
4480 while (1)
4481 {
4482 ptid_t event_ptid;
4483 struct target_waitstatus ws;
4484 int need_wait = 0;
4485 struct thread_info *t;
4486
4487 update_thread_list ();
4488
4489 /* Go through all threads looking for threads that we need
4490 to tell the target to stop. */
4491 ALL_NON_EXITED_THREADS (t)
4492 {
4493 if (t->executing)
4494 {
4495 /* If already stopping, don't request a stop again.
4496 We just haven't seen the notification yet. */
4497 if (!t->stop_requested)
4498 {
4499 if (debug_infrun)
4500 fprintf_unfiltered (gdb_stdlog,
4501 "infrun: %s executing, "
4502 "need stop\n",
4503 target_pid_to_str (t->ptid));
4504 target_stop (t->ptid);
4505 t->stop_requested = 1;
4506 }
4507 else
4508 {
4509 if (debug_infrun)
4510 fprintf_unfiltered (gdb_stdlog,
4511 "infrun: %s executing, "
4512 "already stopping\n",
4513 target_pid_to_str (t->ptid));
4514 }
4515
4516 if (t->stop_requested)
4517 need_wait = 1;
4518 }
4519 else
4520 {
4521 if (debug_infrun)
4522 fprintf_unfiltered (gdb_stdlog,
4523 "infrun: %s not executing\n",
4524 target_pid_to_str (t->ptid));
4525
4526 /* The thread may be not executing, but still be
4527 resumed with a pending status to process. */
4528 t->resumed = 0;
4529 }
4530 }
4531
4532 if (!need_wait)
4533 break;
4534
4535 /* If we find new threads on the second iteration, restart
4536 over. We want to see two iterations in a row with all
4537 threads stopped. */
4538 if (pass > 0)
4539 pass = -1;
4540
4541 event_ptid = wait_one (&ws);
4542 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4543 {
4544 /* All resumed threads exited. */
4545 }
65706a29
PA
4546 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4547 || ws.kind == TARGET_WAITKIND_EXITED
372316f1
PA
4548 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4549 {
4550 if (debug_infrun)
4551 {
4552 ptid_t ptid = pid_to_ptid (ws.value.integer);
4553
4554 fprintf_unfiltered (gdb_stdlog,
4555 "infrun: %s exited while "
4556 "stopping threads\n",
4557 target_pid_to_str (ptid));
4558 }
4559 }
4560 else
4561 {
6efcd9a8
PA
4562 struct inferior *inf;
4563
372316f1
PA
4564 t = find_thread_ptid (event_ptid);
4565 if (t == NULL)
4566 t = add_thread (event_ptid);
4567
4568 t->stop_requested = 0;
4569 t->executing = 0;
4570 t->resumed = 0;
4571 t->control.may_range_step = 0;
4572
6efcd9a8
PA
4573 /* This may be the first time we see the inferior report
4574 a stop. */
4575 inf = find_inferior_ptid (event_ptid);
4576 if (inf->needs_setup)
4577 {
4578 switch_to_thread_no_regs (t);
4579 setup_inferior (0);
4580 }
4581
372316f1
PA
4582 if (ws.kind == TARGET_WAITKIND_STOPPED
4583 && ws.value.sig == GDB_SIGNAL_0)
4584 {
4585 /* We caught the event that we intended to catch, so
4586 there's no event pending. */
4587 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4588 t->suspend.waitstatus_pending_p = 0;
4589
4590 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4591 {
4592 /* Add it back to the step-over queue. */
4593 if (debug_infrun)
4594 {
4595 fprintf_unfiltered (gdb_stdlog,
4596 "infrun: displaced-step of %s "
4597 "canceled: adding back to the "
4598 "step-over queue\n",
4599 target_pid_to_str (t->ptid));
4600 }
4601 t->control.trap_expected = 0;
4602 thread_step_over_chain_enqueue (t);
4603 }
4604 }
4605 else
4606 {
4607 enum gdb_signal sig;
4608 struct regcache *regcache;
4609 struct address_space *aspace;
4610
4611 if (debug_infrun)
4612 {
4613 char *statstr;
4614
4615 statstr = target_waitstatus_to_string (&ws);
4616 fprintf_unfiltered (gdb_stdlog,
4617 "infrun: target_wait %s, saving "
4618 "status for %d.%ld.%ld\n",
4619 statstr,
4620 ptid_get_pid (t->ptid),
4621 ptid_get_lwp (t->ptid),
4622 ptid_get_tid (t->ptid));
4623 xfree (statstr);
4624 }
4625
4626 /* Record for later. */
4627 save_waitstatus (t, &ws);
4628
4629 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4630 ? ws.value.sig : GDB_SIGNAL_0);
4631
4632 if (displaced_step_fixup (t->ptid, sig) < 0)
4633 {
4634 /* Add it back to the step-over queue. */
4635 t->control.trap_expected = 0;
4636 thread_step_over_chain_enqueue (t);
4637 }
4638
4639 regcache = get_thread_regcache (t->ptid);
4640 t->suspend.stop_pc = regcache_read_pc (regcache);
4641
4642 if (debug_infrun)
4643 {
4644 fprintf_unfiltered (gdb_stdlog,
4645 "infrun: saved stop_pc=%s for %s "
4646 "(currently_stepping=%d)\n",
4647 paddress (target_gdbarch (),
4648 t->suspend.stop_pc),
4649 target_pid_to_str (t->ptid),
4650 currently_stepping (t));
4651 }
4652 }
4653 }
4654 }
4655 }
4656
4657 do_cleanups (old_chain);
4658
4659 if (debug_infrun)
4660 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4661}
4662
f4836ba9
PA
4663/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4664
4665static int
4666handle_no_resumed (struct execution_control_state *ecs)
4667{
4668 struct inferior *inf;
4669 struct thread_info *thread;
4670
4671 if (target_can_async_p () && !sync_execution)
4672 {
4673 /* There were no unwaited-for children left in the target, but,
4674 we're not synchronously waiting for events either. Just
4675 ignore. */
4676
4677 if (debug_infrun)
4678 fprintf_unfiltered (gdb_stdlog,
4679 "infrun: TARGET_WAITKIND_NO_RESUMED " "(ignoring: bg)\n");
4680 prepare_to_wait (ecs);
4681 return 1;
4682 }
4683
4684 /* Otherwise, if we were running a synchronous execution command, we
4685 may need to cancel it and give the user back the terminal.
4686
4687 In non-stop mode, the target can't tell whether we've already
4688 consumed previous stop events, so it can end up sending us a
4689 no-resumed event like so:
4690
4691 #0 - thread 1 is left stopped
4692
4693 #1 - thread 2 is resumed and hits breakpoint
4694 -> TARGET_WAITKIND_STOPPED
4695
4696 #2 - thread 3 is resumed and exits
4697 this is the last resumed thread, so
4698 -> TARGET_WAITKIND_NO_RESUMED
4699
4700 #3 - gdb processes stop for thread 2 and decides to re-resume
4701 it.
4702
4703 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4704 thread 2 is now resumed, so the event should be ignored.
4705
4706 IOW, if the stop for thread 2 doesn't end a foreground command,
4707 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4708 event. But it could be that the event meant that thread 2 itself
4709 (or whatever other thread was the last resumed thread) exited.
4710
4711 To address this we refresh the thread list and check whether we
4712 have resumed threads _now_. In the example above, this removes
4713 thread 3 from the thread list. If thread 2 was re-resumed, we
4714 ignore this event. If we find no thread resumed, then we cancel
4715 the synchronous command show "no unwaited-for " to the user. */
4716 update_thread_list ();
4717
4718 ALL_NON_EXITED_THREADS (thread)
4719 {
4720 if (thread->executing
4721 || thread->suspend.waitstatus_pending_p)
4722 {
4723 /* There were no unwaited-for children left in the target at
4724 some point, but there are now. Just ignore. */
4725 if (debug_infrun)
4726 fprintf_unfiltered (gdb_stdlog,
4727 "infrun: TARGET_WAITKIND_NO_RESUMED "
4728 "(ignoring: found resumed)\n");
4729 prepare_to_wait (ecs);
4730 return 1;
4731 }
4732 }
4733
4734 /* Note however that we may find no resumed thread because the whole
4735 process exited meanwhile (thus updating the thread list results
4736 in an empty thread list). In this case we know we'll be getting
4737 a process exit event shortly. */
4738 ALL_INFERIORS (inf)
4739 {
4740 if (inf->pid == 0)
4741 continue;
4742
4743 thread = any_live_thread_of_process (inf->pid);
4744 if (thread == NULL)
4745 {
4746 if (debug_infrun)
4747 fprintf_unfiltered (gdb_stdlog,
4748 "infrun: TARGET_WAITKIND_NO_RESUMED "
4749 "(expect process exit)\n");
4750 prepare_to_wait (ecs);
4751 return 1;
4752 }
4753 }
4754
4755 /* Go ahead and report the event. */
4756 return 0;
4757}
4758
05ba8510
PA
4759/* Given an execution control state that has been freshly filled in by
4760 an event from the inferior, figure out what it means and take
4761 appropriate action.
4762
4763 The alternatives are:
4764
22bcd14b 4765 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4766 debugger.
4767
4768 2) keep_going and return; to wait for the next event (set
4769 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4770 once). */
c906108c 4771
ec9499be 4772static void
0b6e5e10 4773handle_inferior_event_1 (struct execution_control_state *ecs)
cd0fc7c3 4774{
d6b48e9c
PA
4775 enum stop_kind stop_soon;
4776
28736962
PA
4777 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4778 {
4779 /* We had an event in the inferior, but we are not interested in
4780 handling it at this level. The lower layers have already
4781 done what needs to be done, if anything.
4782
4783 One of the possible circumstances for this is when the
4784 inferior produces output for the console. The inferior has
4785 not stopped, and we are ignoring the event. Another possible
4786 circumstance is any event which the lower level knows will be
4787 reported multiple times without an intervening resume. */
4788 if (debug_infrun)
4789 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4790 prepare_to_wait (ecs);
4791 return;
4792 }
4793
65706a29
PA
4794 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4795 {
4796 if (debug_infrun)
4797 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4798 prepare_to_wait (ecs);
4799 return;
4800 }
4801
0e5bf2a8 4802 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
4803 && handle_no_resumed (ecs))
4804 return;
0e5bf2a8 4805
1777feb0 4806 /* Cache the last pid/waitstatus. */
c32c64b7 4807 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4808
ca005067 4809 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4810 stop_stack_dummy = STOP_NONE;
ca005067 4811
0e5bf2a8
PA
4812 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4813 {
4814 /* No unwaited-for children left. IOW, all resumed children
4815 have exited. */
4816 if (debug_infrun)
4817 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4818
4819 stop_print_frame = 0;
22bcd14b 4820 stop_waiting (ecs);
0e5bf2a8
PA
4821 return;
4822 }
4823
8c90c137 4824 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4825 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4826 {
4827 ecs->event_thread = find_thread_ptid (ecs->ptid);
4828 /* If it's a new thread, add it to the thread database. */
4829 if (ecs->event_thread == NULL)
4830 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4831
4832 /* Disable range stepping. If the next step request could use a
4833 range, this will be end up re-enabled then. */
4834 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4835 }
88ed393a
JK
4836
4837 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4838 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4839
4840 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4841 reinit_frame_cache ();
4842
28736962
PA
4843 breakpoint_retire_moribund ();
4844
2b009048
DJ
4845 /* First, distinguish signals caused by the debugger from signals
4846 that have to do with the program's own actions. Note that
4847 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4848 on the operating system version. Here we detect when a SIGILL or
4849 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4850 something similar for SIGSEGV, since a SIGSEGV will be generated
4851 when we're trying to execute a breakpoint instruction on a
4852 non-executable stack. This happens for call dummy breakpoints
4853 for architectures like SPARC that place call dummies on the
4854 stack. */
2b009048 4855 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4856 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4857 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4858 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4859 {
de0a0249
UW
4860 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4861
4862 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4863 regcache_read_pc (regcache)))
4864 {
4865 if (debug_infrun)
4866 fprintf_unfiltered (gdb_stdlog,
4867 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4868 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4869 }
2b009048
DJ
4870 }
4871
28736962
PA
4872 /* Mark the non-executing threads accordingly. In all-stop, all
4873 threads of all processes are stopped when we get any event
e1316e60 4874 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4875 {
4876 ptid_t mark_ptid;
4877
fbea99ea 4878 if (!target_is_non_stop_p ())
372316f1
PA
4879 mark_ptid = minus_one_ptid;
4880 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4881 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4882 {
4883 /* If we're handling a process exit in non-stop mode, even
4884 though threads haven't been deleted yet, one would think
4885 that there is nothing to do, as threads of the dead process
4886 will be soon deleted, and threads of any other process were
4887 left running. However, on some targets, threads survive a
4888 process exit event. E.g., for the "checkpoint" command,
4889 when the current checkpoint/fork exits, linux-fork.c
4890 automatically switches to another fork from within
4891 target_mourn_inferior, by associating the same
4892 inferior/thread to another fork. We haven't mourned yet at
4893 this point, but we must mark any threads left in the
4894 process as not-executing so that finish_thread_state marks
4895 them stopped (in the user's perspective) if/when we present
4896 the stop to the user. */
4897 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4898 }
4899 else
4900 mark_ptid = ecs->ptid;
4901
4902 set_executing (mark_ptid, 0);
4903
4904 /* Likewise the resumed flag. */
4905 set_resumed (mark_ptid, 0);
4906 }
8c90c137 4907
488f131b
JB
4908 switch (ecs->ws.kind)
4909 {
4910 case TARGET_WAITKIND_LOADED:
527159b7 4911 if (debug_infrun)
8a9de0e4 4912 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
5c09a2c5
PA
4913 if (!ptid_equal (ecs->ptid, inferior_ptid))
4914 context_switch (ecs->ptid);
b0f4b84b
DJ
4915 /* Ignore gracefully during startup of the inferior, as it might
4916 be the shell which has just loaded some objects, otherwise
4917 add the symbols for the newly loaded objects. Also ignore at
4918 the beginning of an attach or remote session; we will query
4919 the full list of libraries once the connection is
4920 established. */
4f5d7f63
PA
4921
4922 stop_soon = get_inferior_stop_soon (ecs->ptid);
c0236d92 4923 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4924 {
edcc5120
TT
4925 struct regcache *regcache;
4926
edcc5120
TT
4927 regcache = get_thread_regcache (ecs->ptid);
4928
4929 handle_solib_event ();
4930
4931 ecs->event_thread->control.stop_bpstat
4932 = bpstat_stop_status (get_regcache_aspace (regcache),
4933 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4934
ce12b012 4935 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4936 {
4937 /* A catchpoint triggered. */
94c57d6a
PA
4938 process_event_stop_test (ecs);
4939 return;
edcc5120 4940 }
488f131b 4941
b0f4b84b
DJ
4942 /* If requested, stop when the dynamic linker notifies
4943 gdb of events. This allows the user to get control
4944 and place breakpoints in initializer routines for
4945 dynamically loaded objects (among other things). */
a493e3e2 4946 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4947 if (stop_on_solib_events)
4948 {
55409f9d
DJ
4949 /* Make sure we print "Stopped due to solib-event" in
4950 normal_stop. */
4951 stop_print_frame = 1;
4952
22bcd14b 4953 stop_waiting (ecs);
b0f4b84b
DJ
4954 return;
4955 }
488f131b 4956 }
b0f4b84b
DJ
4957
4958 /* If we are skipping through a shell, or through shared library
4959 loading that we aren't interested in, resume the program. If
5c09a2c5 4960 we're running the program normally, also resume. */
b0f4b84b
DJ
4961 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4962 {
74960c60
VP
4963 /* Loading of shared libraries might have changed breakpoint
4964 addresses. Make sure new breakpoints are inserted. */
a25a5a45 4965 if (stop_soon == NO_STOP_QUIETLY)
74960c60 4966 insert_breakpoints ();
64ce06e4 4967 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
4968 prepare_to_wait (ecs);
4969 return;
4970 }
4971
5c09a2c5
PA
4972 /* But stop if we're attaching or setting up a remote
4973 connection. */
4974 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4975 || stop_soon == STOP_QUIETLY_REMOTE)
4976 {
4977 if (debug_infrun)
4978 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 4979 stop_waiting (ecs);
5c09a2c5
PA
4980 return;
4981 }
4982
4983 internal_error (__FILE__, __LINE__,
4984 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 4985
488f131b 4986 case TARGET_WAITKIND_SPURIOUS:
527159b7 4987 if (debug_infrun)
8a9de0e4 4988 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 4989 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 4990 context_switch (ecs->ptid);
64ce06e4 4991 resume (GDB_SIGNAL_0);
488f131b
JB
4992 prepare_to_wait (ecs);
4993 return;
c5aa993b 4994
65706a29
PA
4995 case TARGET_WAITKIND_THREAD_CREATED:
4996 if (debug_infrun)
4997 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
4998 if (!ptid_equal (ecs->ptid, inferior_ptid))
4999 context_switch (ecs->ptid);
5000 if (!switch_back_to_stepped_thread (ecs))
5001 keep_going (ecs);
5002 return;
5003
488f131b 5004 case TARGET_WAITKIND_EXITED:
940c3c06 5005 case TARGET_WAITKIND_SIGNALLED:
527159b7 5006 if (debug_infrun)
940c3c06
PA
5007 {
5008 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5009 fprintf_unfiltered (gdb_stdlog,
5010 "infrun: TARGET_WAITKIND_EXITED\n");
5011 else
5012 fprintf_unfiltered (gdb_stdlog,
5013 "infrun: TARGET_WAITKIND_SIGNALLED\n");
5014 }
5015
fb66883a 5016 inferior_ptid = ecs->ptid;
c9657e70 5017 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
5018 set_current_program_space (current_inferior ()->pspace);
5019 handle_vfork_child_exec_or_exit (0);
1777feb0 5020 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 5021
0c557179
SDJ
5022 /* Clearing any previous state of convenience variables. */
5023 clear_exit_convenience_vars ();
5024
940c3c06
PA
5025 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5026 {
5027 /* Record the exit code in the convenience variable $_exitcode, so
5028 that the user can inspect this again later. */
5029 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5030 (LONGEST) ecs->ws.value.integer);
5031
5032 /* Also record this in the inferior itself. */
5033 current_inferior ()->has_exit_code = 1;
5034 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 5035
98eb56a4
PA
5036 /* Support the --return-child-result option. */
5037 return_child_result_value = ecs->ws.value.integer;
5038
fd664c91 5039 observer_notify_exited (ecs->ws.value.integer);
940c3c06
PA
5040 }
5041 else
0c557179
SDJ
5042 {
5043 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5044 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5045
5046 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5047 {
5048 /* Set the value of the internal variable $_exitsignal,
5049 which holds the signal uncaught by the inferior. */
5050 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5051 gdbarch_gdb_signal_to_target (gdbarch,
5052 ecs->ws.value.sig));
5053 }
5054 else
5055 {
5056 /* We don't have access to the target's method used for
5057 converting between signal numbers (GDB's internal
5058 representation <-> target's representation).
5059 Therefore, we cannot do a good job at displaying this
5060 information to the user. It's better to just warn
5061 her about it (if infrun debugging is enabled), and
5062 give up. */
5063 if (debug_infrun)
5064 fprintf_filtered (gdb_stdlog, _("\
5065Cannot fill $_exitsignal with the correct signal number.\n"));
5066 }
5067
fd664c91 5068 observer_notify_signal_exited (ecs->ws.value.sig);
0c557179 5069 }
8cf64490 5070
488f131b
JB
5071 gdb_flush (gdb_stdout);
5072 target_mourn_inferior ();
488f131b 5073 stop_print_frame = 0;
22bcd14b 5074 stop_waiting (ecs);
488f131b 5075 return;
c5aa993b 5076
488f131b 5077 /* The following are the only cases in which we keep going;
1777feb0 5078 the above cases end in a continue or goto. */
488f131b 5079 case TARGET_WAITKIND_FORKED:
deb3b17b 5080 case TARGET_WAITKIND_VFORKED:
527159b7 5081 if (debug_infrun)
fed708ed
PA
5082 {
5083 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5084 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5085 else
5086 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5087 }
c906108c 5088
e2d96639
YQ
5089 /* Check whether the inferior is displaced stepping. */
5090 {
5091 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5092 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e2d96639
YQ
5093
5094 /* If checking displaced stepping is supported, and thread
5095 ecs->ptid is displaced stepping. */
c0987663 5096 if (displaced_step_in_progress_thread (ecs->ptid))
e2d96639
YQ
5097 {
5098 struct inferior *parent_inf
c9657e70 5099 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
5100 struct regcache *child_regcache;
5101 CORE_ADDR parent_pc;
5102
5103 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5104 indicating that the displaced stepping of syscall instruction
5105 has been done. Perform cleanup for parent process here. Note
5106 that this operation also cleans up the child process for vfork,
5107 because their pages are shared. */
a493e3e2 5108 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
c2829269
PA
5109 /* Start a new step-over in another thread if there's one
5110 that needs it. */
5111 start_step_over ();
e2d96639
YQ
5112
5113 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5114 {
c0987663
YQ
5115 struct displaced_step_inferior_state *displaced
5116 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
5117
e2d96639
YQ
5118 /* Restore scratch pad for child process. */
5119 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5120 }
5121
5122 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5123 the child's PC is also within the scratchpad. Set the child's PC
5124 to the parent's PC value, which has already been fixed up.
5125 FIXME: we use the parent's aspace here, although we're touching
5126 the child, because the child hasn't been added to the inferior
5127 list yet at this point. */
5128
5129 child_regcache
5130 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5131 gdbarch,
5132 parent_inf->aspace);
5133 /* Read PC value of parent process. */
5134 parent_pc = regcache_read_pc (regcache);
5135
5136 if (debug_displaced)
5137 fprintf_unfiltered (gdb_stdlog,
5138 "displaced: write child pc from %s to %s\n",
5139 paddress (gdbarch,
5140 regcache_read_pc (child_regcache)),
5141 paddress (gdbarch, parent_pc));
5142
5143 regcache_write_pc (child_regcache, parent_pc);
5144 }
5145 }
5146
5a2901d9 5147 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 5148 context_switch (ecs->ptid);
5a2901d9 5149
b242c3c2
PA
5150 /* Immediately detach breakpoints from the child before there's
5151 any chance of letting the user delete breakpoints from the
5152 breakpoint lists. If we don't do this early, it's easy to
5153 leave left over traps in the child, vis: "break foo; catch
5154 fork; c; <fork>; del; c; <child calls foo>". We only follow
5155 the fork on the last `continue', and by that time the
5156 breakpoint at "foo" is long gone from the breakpoint table.
5157 If we vforked, then we don't need to unpatch here, since both
5158 parent and child are sharing the same memory pages; we'll
5159 need to unpatch at follow/detach time instead to be certain
5160 that new breakpoints added between catchpoint hit time and
5161 vfork follow are detached. */
5162 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5163 {
b242c3c2
PA
5164 /* This won't actually modify the breakpoint list, but will
5165 physically remove the breakpoints from the child. */
d80ee84f 5166 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5167 }
5168
34b7e8a6 5169 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5170
e58b0e63
PA
5171 /* In case the event is caught by a catchpoint, remember that
5172 the event is to be followed at the next resume of the thread,
5173 and not immediately. */
5174 ecs->event_thread->pending_follow = ecs->ws;
5175
fb14de7b 5176 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 5177
16c381f0 5178 ecs->event_thread->control.stop_bpstat
6c95b8df 5179 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 5180 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 5181
ce12b012
PA
5182 /* If no catchpoint triggered for this, then keep going. Note
5183 that we're interested in knowing the bpstat actually causes a
5184 stop, not just if it may explain the signal. Software
5185 watchpoints, for example, always appear in the bpstat. */
5186 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5187 {
6c95b8df
PA
5188 ptid_t parent;
5189 ptid_t child;
e58b0e63 5190 int should_resume;
3e43a32a
MS
5191 int follow_child
5192 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5193
a493e3e2 5194 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
5195
5196 should_resume = follow_fork ();
5197
6c95b8df
PA
5198 parent = ecs->ptid;
5199 child = ecs->ws.value.related_pid;
5200
5201 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5202 if (!detach_fork && (non_stop
5203 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5204 {
5205 if (follow_child)
5206 switch_to_thread (parent);
5207 else
5208 switch_to_thread (child);
5209
5210 ecs->event_thread = inferior_thread ();
5211 ecs->ptid = inferior_ptid;
5212 keep_going (ecs);
5213 }
5214
5215 if (follow_child)
5216 switch_to_thread (child);
5217 else
5218 switch_to_thread (parent);
5219
e58b0e63
PA
5220 ecs->event_thread = inferior_thread ();
5221 ecs->ptid = inferior_ptid;
5222
5223 if (should_resume)
5224 keep_going (ecs);
5225 else
22bcd14b 5226 stop_waiting (ecs);
04e68871
DJ
5227 return;
5228 }
94c57d6a
PA
5229 process_event_stop_test (ecs);
5230 return;
488f131b 5231
6c95b8df
PA
5232 case TARGET_WAITKIND_VFORK_DONE:
5233 /* Done with the shared memory region. Re-insert breakpoints in
5234 the parent, and keep going. */
5235
5236 if (debug_infrun)
3e43a32a
MS
5237 fprintf_unfiltered (gdb_stdlog,
5238 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
5239
5240 if (!ptid_equal (ecs->ptid, inferior_ptid))
5241 context_switch (ecs->ptid);
5242
5243 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5244 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
5245 /* This also takes care of reinserting breakpoints in the
5246 previously locked inferior. */
5247 keep_going (ecs);
5248 return;
5249
488f131b 5250 case TARGET_WAITKIND_EXECD:
527159b7 5251 if (debug_infrun)
fc5261f2 5252 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 5253
5a2901d9 5254 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 5255 context_switch (ecs->ptid);
5a2901d9 5256
fb14de7b 5257 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 5258
6c95b8df
PA
5259 /* Do whatever is necessary to the parent branch of the vfork. */
5260 handle_vfork_child_exec_or_exit (1);
5261
795e548f
PA
5262 /* This causes the eventpoints and symbol table to be reset.
5263 Must do this now, before trying to determine whether to
5264 stop. */
71b43ef8 5265 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5266
17d8546e
DB
5267 /* In follow_exec we may have deleted the original thread and
5268 created a new one. Make sure that the event thread is the
5269 execd thread for that case (this is a nop otherwise). */
5270 ecs->event_thread = inferior_thread ();
5271
16c381f0 5272 ecs->event_thread->control.stop_bpstat
6c95b8df 5273 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 5274 stop_pc, ecs->ptid, &ecs->ws);
795e548f 5275
71b43ef8
PA
5276 /* Note that this may be referenced from inside
5277 bpstat_stop_status above, through inferior_has_execd. */
5278 xfree (ecs->ws.value.execd_pathname);
5279 ecs->ws.value.execd_pathname = NULL;
5280
04e68871 5281 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5282 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5283 {
a493e3e2 5284 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5285 keep_going (ecs);
5286 return;
5287 }
94c57d6a
PA
5288 process_event_stop_test (ecs);
5289 return;
488f131b 5290
b4dc5ffa
MK
5291 /* Be careful not to try to gather much state about a thread
5292 that's in a syscall. It's frequently a losing proposition. */
488f131b 5293 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 5294 if (debug_infrun)
3e43a32a
MS
5295 fprintf_unfiltered (gdb_stdlog,
5296 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 5297 /* Getting the current syscall number. */
94c57d6a
PA
5298 if (handle_syscall_event (ecs) == 0)
5299 process_event_stop_test (ecs);
5300 return;
c906108c 5301
488f131b
JB
5302 /* Before examining the threads further, step this thread to
5303 get it entirely out of the syscall. (We get notice of the
5304 event when the thread is just on the verge of exiting a
5305 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5306 into user code.) */
488f131b 5307 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 5308 if (debug_infrun)
3e43a32a
MS
5309 fprintf_unfiltered (gdb_stdlog,
5310 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
5311 if (handle_syscall_event (ecs) == 0)
5312 process_event_stop_test (ecs);
5313 return;
c906108c 5314
488f131b 5315 case TARGET_WAITKIND_STOPPED:
527159b7 5316 if (debug_infrun)
8a9de0e4 5317 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 5318 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
4f5d7f63
PA
5319 handle_signal_stop (ecs);
5320 return;
c906108c 5321
b2175913 5322 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
5323 if (debug_infrun)
5324 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 5325 /* Reverse execution: target ran out of history info. */
eab402df 5326
d1988021
MM
5327 /* Switch to the stopped thread. */
5328 if (!ptid_equal (ecs->ptid, inferior_ptid))
5329 context_switch (ecs->ptid);
5330 if (debug_infrun)
5331 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5332
34b7e8a6 5333 delete_just_stopped_threads_single_step_breakpoints ();
d1988021 5334 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
fd664c91 5335 observer_notify_no_history ();
22bcd14b 5336 stop_waiting (ecs);
b2175913 5337 return;
488f131b 5338 }
4f5d7f63
PA
5339}
5340
0b6e5e10
JB
5341/* A wrapper around handle_inferior_event_1, which also makes sure
5342 that all temporary struct value objects that were created during
5343 the handling of the event get deleted at the end. */
5344
5345static void
5346handle_inferior_event (struct execution_control_state *ecs)
5347{
5348 struct value *mark = value_mark ();
5349
5350 handle_inferior_event_1 (ecs);
5351 /* Purge all temporary values created during the event handling,
5352 as it could be a long time before we return to the command level
5353 where such values would otherwise be purged. */
5354 value_free_to_mark (mark);
5355}
5356
372316f1
PA
5357/* Restart threads back to what they were trying to do back when we
5358 paused them for an in-line step-over. The EVENT_THREAD thread is
5359 ignored. */
4d9d9d04
PA
5360
5361static void
372316f1
PA
5362restart_threads (struct thread_info *event_thread)
5363{
5364 struct thread_info *tp;
5365 struct thread_info *step_over = NULL;
5366
5367 /* In case the instruction just stepped spawned a new thread. */
5368 update_thread_list ();
5369
5370 ALL_NON_EXITED_THREADS (tp)
5371 {
5372 if (tp == event_thread)
5373 {
5374 if (debug_infrun)
5375 fprintf_unfiltered (gdb_stdlog,
5376 "infrun: restart threads: "
5377 "[%s] is event thread\n",
5378 target_pid_to_str (tp->ptid));
5379 continue;
5380 }
5381
5382 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5383 {
5384 if (debug_infrun)
5385 fprintf_unfiltered (gdb_stdlog,
5386 "infrun: restart threads: "
5387 "[%s] not meant to be running\n",
5388 target_pid_to_str (tp->ptid));
5389 continue;
5390 }
5391
5392 if (tp->resumed)
5393 {
5394 if (debug_infrun)
5395 fprintf_unfiltered (gdb_stdlog,
5396 "infrun: restart threads: [%s] resumed\n",
5397 target_pid_to_str (tp->ptid));
5398 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5399 continue;
5400 }
5401
5402 if (thread_is_in_step_over_chain (tp))
5403 {
5404 if (debug_infrun)
5405 fprintf_unfiltered (gdb_stdlog,
5406 "infrun: restart threads: "
5407 "[%s] needs step-over\n",
5408 target_pid_to_str (tp->ptid));
5409 gdb_assert (!tp->resumed);
5410 continue;
5411 }
5412
5413
5414 if (tp->suspend.waitstatus_pending_p)
5415 {
5416 if (debug_infrun)
5417 fprintf_unfiltered (gdb_stdlog,
5418 "infrun: restart threads: "
5419 "[%s] has pending status\n",
5420 target_pid_to_str (tp->ptid));
5421 tp->resumed = 1;
5422 continue;
5423 }
5424
5425 /* If some thread needs to start a step-over at this point, it
5426 should still be in the step-over queue, and thus skipped
5427 above. */
5428 if (thread_still_needs_step_over (tp))
5429 {
5430 internal_error (__FILE__, __LINE__,
5431 "thread [%s] needs a step-over, but not in "
5432 "step-over queue\n",
5433 target_pid_to_str (tp->ptid));
5434 }
5435
5436 if (currently_stepping (tp))
5437 {
5438 if (debug_infrun)
5439 fprintf_unfiltered (gdb_stdlog,
5440 "infrun: restart threads: [%s] was stepping\n",
5441 target_pid_to_str (tp->ptid));
5442 keep_going_stepped_thread (tp);
5443 }
5444 else
5445 {
5446 struct execution_control_state ecss;
5447 struct execution_control_state *ecs = &ecss;
5448
5449 if (debug_infrun)
5450 fprintf_unfiltered (gdb_stdlog,
5451 "infrun: restart threads: [%s] continuing\n",
5452 target_pid_to_str (tp->ptid));
5453 reset_ecs (ecs, tp);
5454 switch_to_thread (tp->ptid);
5455 keep_going_pass_signal (ecs);
5456 }
5457 }
5458}
5459
5460/* Callback for iterate_over_threads. Find a resumed thread that has
5461 a pending waitstatus. */
5462
5463static int
5464resumed_thread_with_pending_status (struct thread_info *tp,
5465 void *arg)
5466{
5467 return (tp->resumed
5468 && tp->suspend.waitstatus_pending_p);
5469}
5470
5471/* Called when we get an event that may finish an in-line or
5472 out-of-line (displaced stepping) step-over started previously.
5473 Return true if the event is processed and we should go back to the
5474 event loop; false if the caller should continue processing the
5475 event. */
5476
5477static int
4d9d9d04
PA
5478finish_step_over (struct execution_control_state *ecs)
5479{
372316f1
PA
5480 int had_step_over_info;
5481
4d9d9d04
PA
5482 displaced_step_fixup (ecs->ptid,
5483 ecs->event_thread->suspend.stop_signal);
5484
372316f1
PA
5485 had_step_over_info = step_over_info_valid_p ();
5486
5487 if (had_step_over_info)
4d9d9d04
PA
5488 {
5489 /* If we're stepping over a breakpoint with all threads locked,
5490 then only the thread that was stepped should be reporting
5491 back an event. */
5492 gdb_assert (ecs->event_thread->control.trap_expected);
5493
5494 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5495 clear_step_over_info ();
5496 }
5497
fbea99ea 5498 if (!target_is_non_stop_p ())
372316f1 5499 return 0;
4d9d9d04
PA
5500
5501 /* Start a new step-over in another thread if there's one that
5502 needs it. */
5503 start_step_over ();
372316f1
PA
5504
5505 /* If we were stepping over a breakpoint before, and haven't started
5506 a new in-line step-over sequence, then restart all other threads
5507 (except the event thread). We can't do this in all-stop, as then
5508 e.g., we wouldn't be able to issue any other remote packet until
5509 these other threads stop. */
5510 if (had_step_over_info && !step_over_info_valid_p ())
5511 {
5512 struct thread_info *pending;
5513
5514 /* If we only have threads with pending statuses, the restart
5515 below won't restart any thread and so nothing re-inserts the
5516 breakpoint we just stepped over. But we need it inserted
5517 when we later process the pending events, otherwise if
5518 another thread has a pending event for this breakpoint too,
5519 we'd discard its event (because the breakpoint that
5520 originally caused the event was no longer inserted). */
5521 context_switch (ecs->ptid);
5522 insert_breakpoints ();
5523
5524 restart_threads (ecs->event_thread);
5525
5526 /* If we have events pending, go through handle_inferior_event
5527 again, picking up a pending event at random. This avoids
5528 thread starvation. */
5529
5530 /* But not if we just stepped over a watchpoint in order to let
5531 the instruction execute so we can evaluate its expression.
5532 The set of watchpoints that triggered is recorded in the
5533 breakpoint objects themselves (see bp->watchpoint_triggered).
5534 If we processed another event first, that other event could
5535 clobber this info. */
5536 if (ecs->event_thread->stepping_over_watchpoint)
5537 return 0;
5538
5539 pending = iterate_over_threads (resumed_thread_with_pending_status,
5540 NULL);
5541 if (pending != NULL)
5542 {
5543 struct thread_info *tp = ecs->event_thread;
5544 struct regcache *regcache;
5545
5546 if (debug_infrun)
5547 {
5548 fprintf_unfiltered (gdb_stdlog,
5549 "infrun: found resumed threads with "
5550 "pending events, saving status\n");
5551 }
5552
5553 gdb_assert (pending != tp);
5554
5555 /* Record the event thread's event for later. */
5556 save_waitstatus (tp, &ecs->ws);
5557 /* This was cleared early, by handle_inferior_event. Set it
5558 so this pending event is considered by
5559 do_target_wait. */
5560 tp->resumed = 1;
5561
5562 gdb_assert (!tp->executing);
5563
5564 regcache = get_thread_regcache (tp->ptid);
5565 tp->suspend.stop_pc = regcache_read_pc (regcache);
5566
5567 if (debug_infrun)
5568 {
5569 fprintf_unfiltered (gdb_stdlog,
5570 "infrun: saved stop_pc=%s for %s "
5571 "(currently_stepping=%d)\n",
5572 paddress (target_gdbarch (),
5573 tp->suspend.stop_pc),
5574 target_pid_to_str (tp->ptid),
5575 currently_stepping (tp));
5576 }
5577
5578 /* This in-line step-over finished; clear this so we won't
5579 start a new one. This is what handle_signal_stop would
5580 do, if we returned false. */
5581 tp->stepping_over_breakpoint = 0;
5582
5583 /* Wake up the event loop again. */
5584 mark_async_event_handler (infrun_async_inferior_event_token);
5585
5586 prepare_to_wait (ecs);
5587 return 1;
5588 }
5589 }
5590
5591 return 0;
4d9d9d04
PA
5592}
5593
4f5d7f63
PA
5594/* Come here when the program has stopped with a signal. */
5595
5596static void
5597handle_signal_stop (struct execution_control_state *ecs)
5598{
5599 struct frame_info *frame;
5600 struct gdbarch *gdbarch;
5601 int stopped_by_watchpoint;
5602 enum stop_kind stop_soon;
5603 int random_signal;
c906108c 5604
f0407826
DE
5605 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5606
5607 /* Do we need to clean up the state of a thread that has
5608 completed a displaced single-step? (Doing so usually affects
5609 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5610 if (finish_step_over (ecs))
5611 return;
f0407826
DE
5612
5613 /* If we either finished a single-step or hit a breakpoint, but
5614 the user wanted this thread to be stopped, pretend we got a
5615 SIG0 (generic unsignaled stop). */
5616 if (ecs->event_thread->stop_requested
5617 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5618 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5619
515630c5 5620 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 5621
527159b7 5622 if (debug_infrun)
237fc4c9 5623 {
5af949e3
UW
5624 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5625 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
5626 struct cleanup *old_chain = save_inferior_ptid ();
5627
5628 inferior_ptid = ecs->ptid;
5af949e3
UW
5629
5630 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5631 paddress (gdbarch, stop_pc));
d92524f1 5632 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5633 {
5634 CORE_ADDR addr;
abbb1732 5635
237fc4c9
PA
5636 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5637
5638 if (target_stopped_data_address (&current_target, &addr))
5639 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5640 "infrun: stopped data address = %s\n",
5641 paddress (gdbarch, addr));
237fc4c9
PA
5642 else
5643 fprintf_unfiltered (gdb_stdlog,
5644 "infrun: (no data address available)\n");
5645 }
7f82dfc7
JK
5646
5647 do_cleanups (old_chain);
237fc4c9 5648 }
527159b7 5649
36fa8042
PA
5650 /* This is originated from start_remote(), start_inferior() and
5651 shared libraries hook functions. */
5652 stop_soon = get_inferior_stop_soon (ecs->ptid);
5653 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5654 {
5655 if (!ptid_equal (ecs->ptid, inferior_ptid))
5656 context_switch (ecs->ptid);
5657 if (debug_infrun)
5658 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5659 stop_print_frame = 1;
22bcd14b 5660 stop_waiting (ecs);
36fa8042
PA
5661 return;
5662 }
5663
36fa8042
PA
5664 /* This originates from attach_command(). We need to overwrite
5665 the stop_signal here, because some kernels don't ignore a
5666 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5667 See more comments in inferior.h. On the other hand, if we
5668 get a non-SIGSTOP, report it to the user - assume the backend
5669 will handle the SIGSTOP if it should show up later.
5670
5671 Also consider that the attach is complete when we see a
5672 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5673 target extended-remote report it instead of a SIGSTOP
5674 (e.g. gdbserver). We already rely on SIGTRAP being our
5675 signal, so this is no exception.
5676
5677 Also consider that the attach is complete when we see a
5678 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5679 the target to stop all threads of the inferior, in case the
5680 low level attach operation doesn't stop them implicitly. If
5681 they weren't stopped implicitly, then the stub will report a
5682 GDB_SIGNAL_0, meaning: stopped for no particular reason
5683 other than GDB's request. */
5684 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5685 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5686 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5687 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5688 {
5689 stop_print_frame = 1;
22bcd14b 5690 stop_waiting (ecs);
36fa8042
PA
5691 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5692 return;
5693 }
5694
488f131b 5695 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
5696 so, then switch to that thread. */
5697 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 5698 {
527159b7 5699 if (debug_infrun)
8a9de0e4 5700 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5701
0d1e5fa7 5702 context_switch (ecs->ptid);
c5aa993b 5703
9a4105ab
AC
5704 if (deprecated_context_hook)
5705 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 5706 }
c906108c 5707
568d6575
UW
5708 /* At this point, get hold of the now-current thread's frame. */
5709 frame = get_current_frame ();
5710 gdbarch = get_frame_arch (frame);
5711
2adfaa28 5712 /* Pull the single step breakpoints out of the target. */
af48d08f 5713 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5714 {
af48d08f
PA
5715 struct regcache *regcache;
5716 struct address_space *aspace;
5717 CORE_ADDR pc;
2adfaa28 5718
af48d08f
PA
5719 regcache = get_thread_regcache (ecs->ptid);
5720 aspace = get_regcache_aspace (regcache);
5721 pc = regcache_read_pc (regcache);
34b7e8a6 5722
af48d08f
PA
5723 /* However, before doing so, if this single-step breakpoint was
5724 actually for another thread, set this thread up for moving
5725 past it. */
5726 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5727 aspace, pc))
5728 {
5729 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5730 {
5731 if (debug_infrun)
5732 {
5733 fprintf_unfiltered (gdb_stdlog,
af48d08f 5734 "infrun: [%s] hit another thread's "
34b7e8a6
PA
5735 "single-step breakpoint\n",
5736 target_pid_to_str (ecs->ptid));
2adfaa28 5737 }
af48d08f
PA
5738 ecs->hit_singlestep_breakpoint = 1;
5739 }
5740 }
5741 else
5742 {
5743 if (debug_infrun)
5744 {
5745 fprintf_unfiltered (gdb_stdlog,
5746 "infrun: [%s] hit its "
5747 "single-step breakpoint\n",
5748 target_pid_to_str (ecs->ptid));
2adfaa28
PA
5749 }
5750 }
488f131b 5751 }
af48d08f 5752 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5753
963f9c80
PA
5754 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5755 && ecs->event_thread->control.trap_expected
5756 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5757 stopped_by_watchpoint = 0;
5758 else
5759 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5760
5761 /* If necessary, step over this watchpoint. We'll be back to display
5762 it in a moment. */
5763 if (stopped_by_watchpoint
d92524f1 5764 && (target_have_steppable_watchpoint
568d6575 5765 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5766 {
488f131b
JB
5767 /* At this point, we are stopped at an instruction which has
5768 attempted to write to a piece of memory under control of
5769 a watchpoint. The instruction hasn't actually executed
5770 yet. If we were to evaluate the watchpoint expression
5771 now, we would get the old value, and therefore no change
5772 would seem to have occurred.
5773
5774 In order to make watchpoints work `right', we really need
5775 to complete the memory write, and then evaluate the
d983da9c
DJ
5776 watchpoint expression. We do this by single-stepping the
5777 target.
5778
7f89fd65 5779 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5780 it. For example, the PA can (with some kernel cooperation)
5781 single step over a watchpoint without disabling the watchpoint.
5782
5783 It is far more common to need to disable a watchpoint to step
5784 the inferior over it. If we have non-steppable watchpoints,
5785 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5786 disable all watchpoints.
5787
5788 Any breakpoint at PC must also be stepped over -- if there's
5789 one, it will have already triggered before the watchpoint
5790 triggered, and we either already reported it to the user, or
5791 it didn't cause a stop and we called keep_going. In either
5792 case, if there was a breakpoint at PC, we must be trying to
5793 step past it. */
5794 ecs->event_thread->stepping_over_watchpoint = 1;
5795 keep_going (ecs);
488f131b
JB
5796 return;
5797 }
5798
4e1c45ea 5799 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5800 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5801 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5802 ecs->event_thread->control.stop_step = 0;
488f131b 5803 stop_print_frame = 1;
488f131b 5804 stopped_by_random_signal = 0;
488f131b 5805
edb3359d
DJ
5806 /* Hide inlined functions starting here, unless we just performed stepi or
5807 nexti. After stepi and nexti, always show the innermost frame (not any
5808 inline function call sites). */
16c381f0 5809 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
5810 {
5811 struct address_space *aspace =
5812 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5813
5814 /* skip_inline_frames is expensive, so we avoid it if we can
5815 determine that the address is one where functions cannot have
5816 been inlined. This improves performance with inferiors that
5817 load a lot of shared libraries, because the solib event
5818 breakpoint is defined as the address of a function (i.e. not
5819 inline). Note that we have to check the previous PC as well
5820 as the current one to catch cases when we have just
5821 single-stepped off a breakpoint prior to reinstating it.
5822 Note that we're assuming that the code we single-step to is
5823 not inline, but that's not definitive: there's nothing
5824 preventing the event breakpoint function from containing
5825 inlined code, and the single-step ending up there. If the
5826 user had set a breakpoint on that inlined code, the missing
5827 skip_inline_frames call would break things. Fortunately
5828 that's an extremely unlikely scenario. */
09ac7c10 5829 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
5830 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5831 && ecs->event_thread->control.trap_expected
5832 && pc_at_non_inline_function (aspace,
5833 ecs->event_thread->prev_pc,
09ac7c10 5834 &ecs->ws)))
1c5a993e
MR
5835 {
5836 skip_inline_frames (ecs->ptid);
5837
5838 /* Re-fetch current thread's frame in case that invalidated
5839 the frame cache. */
5840 frame = get_current_frame ();
5841 gdbarch = get_frame_arch (frame);
5842 }
0574c78f 5843 }
edb3359d 5844
a493e3e2 5845 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5846 && ecs->event_thread->control.trap_expected
568d6575 5847 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5848 && currently_stepping (ecs->event_thread))
3352ef37 5849 {
b50d7442 5850 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5851 also on an instruction that needs to be stepped multiple
1777feb0 5852 times before it's been fully executing. E.g., architectures
3352ef37
AC
5853 with a delay slot. It needs to be stepped twice, once for
5854 the instruction and once for the delay slot. */
5855 int step_through_delay
568d6575 5856 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5857
527159b7 5858 if (debug_infrun && step_through_delay)
8a9de0e4 5859 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5860 if (ecs->event_thread->control.step_range_end == 0
5861 && step_through_delay)
3352ef37
AC
5862 {
5863 /* The user issued a continue when stopped at a breakpoint.
5864 Set up for another trap and get out of here. */
4e1c45ea 5865 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5866 keep_going (ecs);
5867 return;
5868 }
5869 else if (step_through_delay)
5870 {
5871 /* The user issued a step when stopped at a breakpoint.
5872 Maybe we should stop, maybe we should not - the delay
5873 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5874 case, don't decide that here, just set
5875 ecs->stepping_over_breakpoint, making sure we
5876 single-step again before breakpoints are re-inserted. */
4e1c45ea 5877 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5878 }
5879 }
5880
ab04a2af
TT
5881 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5882 handles this event. */
5883 ecs->event_thread->control.stop_bpstat
5884 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5885 stop_pc, ecs->ptid, &ecs->ws);
db82e815 5886
ab04a2af
TT
5887 /* Following in case break condition called a
5888 function. */
5889 stop_print_frame = 1;
73dd234f 5890
ab04a2af
TT
5891 /* This is where we handle "moribund" watchpoints. Unlike
5892 software breakpoints traps, hardware watchpoint traps are
5893 always distinguishable from random traps. If no high-level
5894 watchpoint is associated with the reported stop data address
5895 anymore, then the bpstat does not explain the signal ---
5896 simply make sure to ignore it if `stopped_by_watchpoint' is
5897 set. */
5898
5899 if (debug_infrun
5900 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5901 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5902 GDB_SIGNAL_TRAP)
ab04a2af
TT
5903 && stopped_by_watchpoint)
5904 fprintf_unfiltered (gdb_stdlog,
5905 "infrun: no user watchpoint explains "
5906 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5907
bac7d97b 5908 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5909 at one stage in the past included checks for an inferior
5910 function call's call dummy's return breakpoint. The original
5911 comment, that went with the test, read:
03cebad2 5912
ab04a2af
TT
5913 ``End of a stack dummy. Some systems (e.g. Sony news) give
5914 another signal besides SIGTRAP, so check here as well as
5915 above.''
73dd234f 5916
ab04a2af
TT
5917 If someone ever tries to get call dummys on a
5918 non-executable stack to work (where the target would stop
5919 with something like a SIGSEGV), then those tests might need
5920 to be re-instated. Given, however, that the tests were only
5921 enabled when momentary breakpoints were not being used, I
5922 suspect that it won't be the case.
488f131b 5923
ab04a2af
TT
5924 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5925 be necessary for call dummies on a non-executable stack on
5926 SPARC. */
488f131b 5927
bac7d97b 5928 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5929 random_signal
5930 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5931 ecs->event_thread->suspend.stop_signal);
bac7d97b 5932
1cf4d951
PA
5933 /* Maybe this was a trap for a software breakpoint that has since
5934 been removed. */
5935 if (random_signal && target_stopped_by_sw_breakpoint ())
5936 {
5937 if (program_breakpoint_here_p (gdbarch, stop_pc))
5938 {
5939 struct regcache *regcache;
5940 int decr_pc;
5941
5942 /* Re-adjust PC to what the program would see if GDB was not
5943 debugging it. */
5944 regcache = get_thread_regcache (ecs->event_thread->ptid);
527a273a 5945 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
5946 if (decr_pc != 0)
5947 {
5948 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
5949
5950 if (record_full_is_used ())
5951 record_full_gdb_operation_disable_set ();
5952
5953 regcache_write_pc (regcache, stop_pc + decr_pc);
5954
5955 do_cleanups (old_cleanups);
5956 }
5957 }
5958 else
5959 {
5960 /* A delayed software breakpoint event. Ignore the trap. */
5961 if (debug_infrun)
5962 fprintf_unfiltered (gdb_stdlog,
5963 "infrun: delayed software breakpoint "
5964 "trap, ignoring\n");
5965 random_signal = 0;
5966 }
5967 }
5968
5969 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5970 has since been removed. */
5971 if (random_signal && target_stopped_by_hw_breakpoint ())
5972 {
5973 /* A delayed hardware breakpoint event. Ignore the trap. */
5974 if (debug_infrun)
5975 fprintf_unfiltered (gdb_stdlog,
5976 "infrun: delayed hardware breakpoint/watchpoint "
5977 "trap, ignoring\n");
5978 random_signal = 0;
5979 }
5980
bac7d97b
PA
5981 /* If not, perhaps stepping/nexting can. */
5982 if (random_signal)
5983 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5984 && currently_stepping (ecs->event_thread));
ab04a2af 5985
2adfaa28
PA
5986 /* Perhaps the thread hit a single-step breakpoint of _another_
5987 thread. Single-step breakpoints are transparent to the
5988 breakpoints module. */
5989 if (random_signal)
5990 random_signal = !ecs->hit_singlestep_breakpoint;
5991
bac7d97b
PA
5992 /* No? Perhaps we got a moribund watchpoint. */
5993 if (random_signal)
5994 random_signal = !stopped_by_watchpoint;
ab04a2af 5995
488f131b
JB
5996 /* For the program's own signals, act according to
5997 the signal handling tables. */
5998
ce12b012 5999 if (random_signal)
488f131b
JB
6000 {
6001 /* Signal not for debugging purposes. */
c9657e70 6002 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 6003 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 6004
527159b7 6005 if (debug_infrun)
c9737c08
PA
6006 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6007 gdb_signal_to_symbol_string (stop_signal));
527159b7 6008
488f131b
JB
6009 stopped_by_random_signal = 1;
6010
252fbfc8
PA
6011 /* Always stop on signals if we're either just gaining control
6012 of the program, or the user explicitly requested this thread
6013 to remain stopped. */
d6b48e9c 6014 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 6015 || ecs->event_thread->stop_requested
24291992 6016 || (!inf->detaching
16c381f0 6017 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 6018 {
22bcd14b 6019 stop_waiting (ecs);
488f131b
JB
6020 return;
6021 }
b57bacec
PA
6022
6023 /* Notify observers the signal has "handle print" set. Note we
6024 returned early above if stopping; normal_stop handles the
6025 printing in that case. */
6026 if (signal_print[ecs->event_thread->suspend.stop_signal])
6027 {
6028 /* The signal table tells us to print about this signal. */
6029 target_terminal_ours_for_output ();
6030 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
6031 target_terminal_inferior ();
6032 }
488f131b
JB
6033
6034 /* Clear the signal if it should not be passed. */
16c381f0 6035 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 6036 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 6037
fb14de7b 6038 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 6039 && ecs->event_thread->control.trap_expected
8358c15c 6040 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502 6041 {
372316f1
PA
6042 int was_in_line;
6043
68f53502
AC
6044 /* We were just starting a new sequence, attempting to
6045 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 6046 Instead this signal arrives. This signal will take us out
68f53502
AC
6047 of the stepping range so GDB needs to remember to, when
6048 the signal handler returns, resume stepping off that
6049 breakpoint. */
6050 /* To simplify things, "continue" is forced to use the same
6051 code paths as single-step - set a breakpoint at the
6052 signal return address and then, once hit, step off that
6053 breakpoint. */
237fc4c9
PA
6054 if (debug_infrun)
6055 fprintf_unfiltered (gdb_stdlog,
6056 "infrun: signal arrived while stepping over "
6057 "breakpoint\n");
d3169d93 6058
372316f1
PA
6059 was_in_line = step_over_info_valid_p ();
6060 clear_step_over_info ();
2c03e5be 6061 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 6062 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6063 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6064 ecs->event_thread->control.trap_expected = 0;
d137e6dc 6065
fbea99ea 6066 if (target_is_non_stop_p ())
372316f1 6067 {
fbea99ea
PA
6068 /* Either "set non-stop" is "on", or the target is
6069 always in non-stop mode. In this case, we have a bit
6070 more work to do. Resume the current thread, and if
6071 we had paused all threads, restart them while the
6072 signal handler runs. */
372316f1
PA
6073 keep_going (ecs);
6074
372316f1
PA
6075 if (was_in_line)
6076 {
372316f1
PA
6077 restart_threads (ecs->event_thread);
6078 }
6079 else if (debug_infrun)
6080 {
6081 fprintf_unfiltered (gdb_stdlog,
6082 "infrun: no need to restart threads\n");
6083 }
6084 return;
6085 }
6086
d137e6dc
PA
6087 /* If we were nexting/stepping some other thread, switch to
6088 it, so that we don't continue it, losing control. */
6089 if (!switch_back_to_stepped_thread (ecs))
6090 keep_going (ecs);
9d799f85 6091 return;
68f53502 6092 }
9d799f85 6093
e5f8a7cc
PA
6094 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6095 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6096 || ecs->event_thread->control.step_range_end == 1)
edb3359d 6097 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 6098 ecs->event_thread->control.step_stack_frame_id)
8358c15c 6099 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
6100 {
6101 /* The inferior is about to take a signal that will take it
6102 out of the single step range. Set a breakpoint at the
6103 current PC (which is presumably where the signal handler
6104 will eventually return) and then allow the inferior to
6105 run free.
6106
6107 Note that this is only needed for a signal delivered
6108 while in the single-step range. Nested signals aren't a
6109 problem as they eventually all return. */
237fc4c9
PA
6110 if (debug_infrun)
6111 fprintf_unfiltered (gdb_stdlog,
6112 "infrun: signal may take us out of "
6113 "single-step range\n");
6114
372316f1 6115 clear_step_over_info ();
2c03e5be 6116 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 6117 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6118 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6119 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
6120 keep_going (ecs);
6121 return;
d303a6c7 6122 }
9d799f85
AC
6123
6124 /* Note: step_resume_breakpoint may be non-NULL. This occures
6125 when either there's a nested signal, or when there's a
6126 pending signal enabled just as the signal handler returns
6127 (leaving the inferior at the step-resume-breakpoint without
6128 actually executing it). Either way continue until the
6129 breakpoint is really hit. */
c447ac0b
PA
6130
6131 if (!switch_back_to_stepped_thread (ecs))
6132 {
6133 if (debug_infrun)
6134 fprintf_unfiltered (gdb_stdlog,
6135 "infrun: random signal, keep going\n");
6136
6137 keep_going (ecs);
6138 }
6139 return;
488f131b 6140 }
94c57d6a
PA
6141
6142 process_event_stop_test (ecs);
6143}
6144
6145/* Come here when we've got some debug event / signal we can explain
6146 (IOW, not a random signal), and test whether it should cause a
6147 stop, or whether we should resume the inferior (transparently).
6148 E.g., could be a breakpoint whose condition evaluates false; we
6149 could be still stepping within the line; etc. */
6150
6151static void
6152process_event_stop_test (struct execution_control_state *ecs)
6153{
6154 struct symtab_and_line stop_pc_sal;
6155 struct frame_info *frame;
6156 struct gdbarch *gdbarch;
cdaa5b73
PA
6157 CORE_ADDR jmp_buf_pc;
6158 struct bpstat_what what;
94c57d6a 6159
cdaa5b73 6160 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6161
cdaa5b73
PA
6162 frame = get_current_frame ();
6163 gdbarch = get_frame_arch (frame);
fcf3daef 6164
cdaa5b73 6165 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6166
cdaa5b73
PA
6167 if (what.call_dummy)
6168 {
6169 stop_stack_dummy = what.call_dummy;
6170 }
186c406b 6171
243a9253
PA
6172 /* A few breakpoint types have callbacks associated (e.g.,
6173 bp_jit_event). Run them now. */
6174 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6175
cdaa5b73
PA
6176 /* If we hit an internal event that triggers symbol changes, the
6177 current frame will be invalidated within bpstat_what (e.g., if we
6178 hit an internal solib event). Re-fetch it. */
6179 frame = get_current_frame ();
6180 gdbarch = get_frame_arch (frame);
e2e4d78b 6181
cdaa5b73
PA
6182 switch (what.main_action)
6183 {
6184 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6185 /* If we hit the breakpoint at longjmp while stepping, we
6186 install a momentary breakpoint at the target of the
6187 jmp_buf. */
186c406b 6188
cdaa5b73
PA
6189 if (debug_infrun)
6190 fprintf_unfiltered (gdb_stdlog,
6191 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6192
cdaa5b73 6193 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6194
cdaa5b73
PA
6195 if (what.is_longjmp)
6196 {
6197 struct value *arg_value;
6198
6199 /* If we set the longjmp breakpoint via a SystemTap probe,
6200 then use it to extract the arguments. The destination PC
6201 is the third argument to the probe. */
6202 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6203 if (arg_value)
8fa0c4f8
AA
6204 {
6205 jmp_buf_pc = value_as_address (arg_value);
6206 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6207 }
cdaa5b73
PA
6208 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6209 || !gdbarch_get_longjmp_target (gdbarch,
6210 frame, &jmp_buf_pc))
e2e4d78b 6211 {
cdaa5b73
PA
6212 if (debug_infrun)
6213 fprintf_unfiltered (gdb_stdlog,
6214 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6215 "(!gdbarch_get_longjmp_target)\n");
6216 keep_going (ecs);
6217 return;
e2e4d78b 6218 }
e2e4d78b 6219
cdaa5b73
PA
6220 /* Insert a breakpoint at resume address. */
6221 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6222 }
6223 else
6224 check_exception_resume (ecs, frame);
6225 keep_going (ecs);
6226 return;
e81a37f7 6227
cdaa5b73
PA
6228 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6229 {
6230 struct frame_info *init_frame;
e81a37f7 6231
cdaa5b73 6232 /* There are several cases to consider.
c906108c 6233
cdaa5b73
PA
6234 1. The initiating frame no longer exists. In this case we
6235 must stop, because the exception or longjmp has gone too
6236 far.
2c03e5be 6237
cdaa5b73
PA
6238 2. The initiating frame exists, and is the same as the
6239 current frame. We stop, because the exception or longjmp
6240 has been caught.
2c03e5be 6241
cdaa5b73
PA
6242 3. The initiating frame exists and is different from the
6243 current frame. This means the exception or longjmp has
6244 been caught beneath the initiating frame, so keep going.
c906108c 6245
cdaa5b73
PA
6246 4. longjmp breakpoint has been placed just to protect
6247 against stale dummy frames and user is not interested in
6248 stopping around longjmps. */
c5aa993b 6249
cdaa5b73
PA
6250 if (debug_infrun)
6251 fprintf_unfiltered (gdb_stdlog,
6252 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6253
cdaa5b73
PA
6254 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6255 != NULL);
6256 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6257
cdaa5b73
PA
6258 if (what.is_longjmp)
6259 {
b67a2c6f 6260 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6261
cdaa5b73 6262 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6263 {
cdaa5b73
PA
6264 /* Case 4. */
6265 keep_going (ecs);
6266 return;
e5ef252a 6267 }
cdaa5b73 6268 }
c5aa993b 6269
cdaa5b73 6270 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6271
cdaa5b73
PA
6272 if (init_frame)
6273 {
6274 struct frame_id current_id
6275 = get_frame_id (get_current_frame ());
6276 if (frame_id_eq (current_id,
6277 ecs->event_thread->initiating_frame))
6278 {
6279 /* Case 2. Fall through. */
6280 }
6281 else
6282 {
6283 /* Case 3. */
6284 keep_going (ecs);
6285 return;
6286 }
68f53502 6287 }
488f131b 6288
cdaa5b73
PA
6289 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6290 exists. */
6291 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6292
bdc36728 6293 end_stepping_range (ecs);
cdaa5b73
PA
6294 }
6295 return;
e5ef252a 6296
cdaa5b73
PA
6297 case BPSTAT_WHAT_SINGLE:
6298 if (debug_infrun)
6299 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6300 ecs->event_thread->stepping_over_breakpoint = 1;
6301 /* Still need to check other stuff, at least the case where we
6302 are stepping and step out of the right range. */
6303 break;
e5ef252a 6304
cdaa5b73
PA
6305 case BPSTAT_WHAT_STEP_RESUME:
6306 if (debug_infrun)
6307 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6308
cdaa5b73
PA
6309 delete_step_resume_breakpoint (ecs->event_thread);
6310 if (ecs->event_thread->control.proceed_to_finish
6311 && execution_direction == EXEC_REVERSE)
6312 {
6313 struct thread_info *tp = ecs->event_thread;
6314
6315 /* We are finishing a function in reverse, and just hit the
6316 step-resume breakpoint at the start address of the
6317 function, and we're almost there -- just need to back up
6318 by one more single-step, which should take us back to the
6319 function call. */
6320 tp->control.step_range_start = tp->control.step_range_end = 1;
6321 keep_going (ecs);
e5ef252a 6322 return;
cdaa5b73
PA
6323 }
6324 fill_in_stop_func (gdbarch, ecs);
6325 if (stop_pc == ecs->stop_func_start
6326 && execution_direction == EXEC_REVERSE)
6327 {
6328 /* We are stepping over a function call in reverse, and just
6329 hit the step-resume breakpoint at the start address of
6330 the function. Go back to single-stepping, which should
6331 take us back to the function call. */
6332 ecs->event_thread->stepping_over_breakpoint = 1;
6333 keep_going (ecs);
6334 return;
6335 }
6336 break;
e5ef252a 6337
cdaa5b73
PA
6338 case BPSTAT_WHAT_STOP_NOISY:
6339 if (debug_infrun)
6340 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6341 stop_print_frame = 1;
e5ef252a 6342
99619bea
PA
6343 /* Assume the thread stopped for a breapoint. We'll still check
6344 whether a/the breakpoint is there when the thread is next
6345 resumed. */
6346 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6347
22bcd14b 6348 stop_waiting (ecs);
cdaa5b73 6349 return;
e5ef252a 6350
cdaa5b73
PA
6351 case BPSTAT_WHAT_STOP_SILENT:
6352 if (debug_infrun)
6353 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6354 stop_print_frame = 0;
e5ef252a 6355
99619bea
PA
6356 /* Assume the thread stopped for a breapoint. We'll still check
6357 whether a/the breakpoint is there when the thread is next
6358 resumed. */
6359 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6360 stop_waiting (ecs);
cdaa5b73
PA
6361 return;
6362
6363 case BPSTAT_WHAT_HP_STEP_RESUME:
6364 if (debug_infrun)
6365 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6366
6367 delete_step_resume_breakpoint (ecs->event_thread);
6368 if (ecs->event_thread->step_after_step_resume_breakpoint)
6369 {
6370 /* Back when the step-resume breakpoint was inserted, we
6371 were trying to single-step off a breakpoint. Go back to
6372 doing that. */
6373 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6374 ecs->event_thread->stepping_over_breakpoint = 1;
6375 keep_going (ecs);
6376 return;
e5ef252a 6377 }
cdaa5b73
PA
6378 break;
6379
6380 case BPSTAT_WHAT_KEEP_CHECKING:
6381 break;
e5ef252a 6382 }
c906108c 6383
af48d08f
PA
6384 /* If we stepped a permanent breakpoint and we had a high priority
6385 step-resume breakpoint for the address we stepped, but we didn't
6386 hit it, then we must have stepped into the signal handler. The
6387 step-resume was only necessary to catch the case of _not_
6388 stepping into the handler, so delete it, and fall through to
6389 checking whether the step finished. */
6390 if (ecs->event_thread->stepped_breakpoint)
6391 {
6392 struct breakpoint *sr_bp
6393 = ecs->event_thread->control.step_resume_breakpoint;
6394
8d707a12
PA
6395 if (sr_bp != NULL
6396 && sr_bp->loc->permanent
af48d08f
PA
6397 && sr_bp->type == bp_hp_step_resume
6398 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6399 {
6400 if (debug_infrun)
6401 fprintf_unfiltered (gdb_stdlog,
6402 "infrun: stepped permanent breakpoint, stopped in "
6403 "handler\n");
6404 delete_step_resume_breakpoint (ecs->event_thread);
6405 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6406 }
6407 }
6408
cdaa5b73
PA
6409 /* We come here if we hit a breakpoint but should not stop for it.
6410 Possibly we also were stepping and should stop for that. So fall
6411 through and test for stepping. But, if not stepping, do not
6412 stop. */
c906108c 6413
a7212384
UW
6414 /* In all-stop mode, if we're currently stepping but have stopped in
6415 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6416 if (switch_back_to_stepped_thread (ecs))
6417 return;
776f04fa 6418
8358c15c 6419 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6420 {
527159b7 6421 if (debug_infrun)
d3169d93
DJ
6422 fprintf_unfiltered (gdb_stdlog,
6423 "infrun: step-resume breakpoint is inserted\n");
527159b7 6424
488f131b
JB
6425 /* Having a step-resume breakpoint overrides anything
6426 else having to do with stepping commands until
6427 that breakpoint is reached. */
488f131b
JB
6428 keep_going (ecs);
6429 return;
6430 }
c5aa993b 6431
16c381f0 6432 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6433 {
527159b7 6434 if (debug_infrun)
8a9de0e4 6435 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6436 /* Likewise if we aren't even stepping. */
488f131b
JB
6437 keep_going (ecs);
6438 return;
6439 }
c5aa993b 6440
4b7703ad
JB
6441 /* Re-fetch current thread's frame in case the code above caused
6442 the frame cache to be re-initialized, making our FRAME variable
6443 a dangling pointer. */
6444 frame = get_current_frame ();
628fe4e4 6445 gdbarch = get_frame_arch (frame);
7e324e48 6446 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6447
488f131b 6448 /* If stepping through a line, keep going if still within it.
c906108c 6449
488f131b
JB
6450 Note that step_range_end is the address of the first instruction
6451 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6452 within it!
6453
6454 Note also that during reverse execution, we may be stepping
6455 through a function epilogue and therefore must detect when
6456 the current-frame changes in the middle of a line. */
6457
ce4c476a 6458 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 6459 && (execution_direction != EXEC_REVERSE
388a8562 6460 || frame_id_eq (get_frame_id (frame),
16c381f0 6461 ecs->event_thread->control.step_frame_id)))
488f131b 6462 {
527159b7 6463 if (debug_infrun)
5af949e3
UW
6464 fprintf_unfiltered
6465 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6466 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6467 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6468
c1e36e3e
PA
6469 /* Tentatively re-enable range stepping; `resume' disables it if
6470 necessary (e.g., if we're stepping over a breakpoint or we
6471 have software watchpoints). */
6472 ecs->event_thread->control.may_range_step = 1;
6473
b2175913
MS
6474 /* When stepping backward, stop at beginning of line range
6475 (unless it's the function entry point, in which case
6476 keep going back to the call point). */
16c381f0 6477 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6478 && stop_pc != ecs->stop_func_start
6479 && execution_direction == EXEC_REVERSE)
bdc36728 6480 end_stepping_range (ecs);
b2175913
MS
6481 else
6482 keep_going (ecs);
6483
488f131b
JB
6484 return;
6485 }
c5aa993b 6486
488f131b 6487 /* We stepped out of the stepping range. */
c906108c 6488
488f131b 6489 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6490 loader dynamic symbol resolution code...
6491
6492 EXEC_FORWARD: we keep on single stepping until we exit the run
6493 time loader code and reach the callee's address.
6494
6495 EXEC_REVERSE: we've already executed the callee (backward), and
6496 the runtime loader code is handled just like any other
6497 undebuggable function call. Now we need only keep stepping
6498 backward through the trampoline code, and that's handled further
6499 down, so there is nothing for us to do here. */
6500
6501 if (execution_direction != EXEC_REVERSE
16c381f0 6502 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 6503 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 6504 {
4c8c40e6 6505 CORE_ADDR pc_after_resolver =
568d6575 6506 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 6507
527159b7 6508 if (debug_infrun)
3e43a32a
MS
6509 fprintf_unfiltered (gdb_stdlog,
6510 "infrun: stepped into dynsym resolve code\n");
527159b7 6511
488f131b
JB
6512 if (pc_after_resolver)
6513 {
6514 /* Set up a step-resume breakpoint at the address
6515 indicated by SKIP_SOLIB_RESOLVER. */
6516 struct symtab_and_line sr_sal;
abbb1732 6517
fe39c653 6518 init_sal (&sr_sal);
488f131b 6519 sr_sal.pc = pc_after_resolver;
6c95b8df 6520 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6521
a6d9a66e
UW
6522 insert_step_resume_breakpoint_at_sal (gdbarch,
6523 sr_sal, null_frame_id);
c5aa993b 6524 }
c906108c 6525
488f131b
JB
6526 keep_going (ecs);
6527 return;
6528 }
c906108c 6529
16c381f0
JK
6530 if (ecs->event_thread->control.step_range_end != 1
6531 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6532 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6533 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6534 {
527159b7 6535 if (debug_infrun)
3e43a32a
MS
6536 fprintf_unfiltered (gdb_stdlog,
6537 "infrun: stepped into signal trampoline\n");
42edda50 6538 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6539 a signal trampoline (either by a signal being delivered or by
6540 the signal handler returning). Just single-step until the
6541 inferior leaves the trampoline (either by calling the handler
6542 or returning). */
488f131b
JB
6543 keep_going (ecs);
6544 return;
6545 }
c906108c 6546
14132e89
MR
6547 /* If we're in the return path from a shared library trampoline,
6548 we want to proceed through the trampoline when stepping. */
6549 /* macro/2012-04-25: This needs to come before the subroutine
6550 call check below as on some targets return trampolines look
6551 like subroutine calls (MIPS16 return thunks). */
6552 if (gdbarch_in_solib_return_trampoline (gdbarch,
6553 stop_pc, ecs->stop_func_name)
6554 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6555 {
6556 /* Determine where this trampoline returns. */
6557 CORE_ADDR real_stop_pc;
6558
6559 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6560
6561 if (debug_infrun)
6562 fprintf_unfiltered (gdb_stdlog,
6563 "infrun: stepped into solib return tramp\n");
6564
6565 /* Only proceed through if we know where it's going. */
6566 if (real_stop_pc)
6567 {
6568 /* And put the step-breakpoint there and go until there. */
6569 struct symtab_and_line sr_sal;
6570
6571 init_sal (&sr_sal); /* initialize to zeroes */
6572 sr_sal.pc = real_stop_pc;
6573 sr_sal.section = find_pc_overlay (sr_sal.pc);
6574 sr_sal.pspace = get_frame_program_space (frame);
6575
6576 /* Do not specify what the fp should be when we stop since
6577 on some machines the prologue is where the new fp value
6578 is established. */
6579 insert_step_resume_breakpoint_at_sal (gdbarch,
6580 sr_sal, null_frame_id);
6581
6582 /* Restart without fiddling with the step ranges or
6583 other state. */
6584 keep_going (ecs);
6585 return;
6586 }
6587 }
6588
c17eaafe
DJ
6589 /* Check for subroutine calls. The check for the current frame
6590 equalling the step ID is not necessary - the check of the
6591 previous frame's ID is sufficient - but it is a common case and
6592 cheaper than checking the previous frame's ID.
14e60db5
DJ
6593
6594 NOTE: frame_id_eq will never report two invalid frame IDs as
6595 being equal, so to get into this block, both the current and
6596 previous frame must have valid frame IDs. */
005ca36a
JB
6597 /* The outer_frame_id check is a heuristic to detect stepping
6598 through startup code. If we step over an instruction which
6599 sets the stack pointer from an invalid value to a valid value,
6600 we may detect that as a subroutine call from the mythical
6601 "outermost" function. This could be fixed by marking
6602 outermost frames as !stack_p,code_p,special_p. Then the
6603 initial outermost frame, before sp was valid, would
ce6cca6d 6604 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6605 for more. */
edb3359d 6606 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6607 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6608 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6609 ecs->event_thread->control.step_stack_frame_id)
6610 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6611 outer_frame_id)
885eeb5b
PA
6612 || (ecs->event_thread->control.step_start_function
6613 != find_pc_function (stop_pc)))))
488f131b 6614 {
95918acb 6615 CORE_ADDR real_stop_pc;
8fb3e588 6616
527159b7 6617 if (debug_infrun)
8a9de0e4 6618 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6619
b7a084be 6620 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6621 {
6622 /* I presume that step_over_calls is only 0 when we're
6623 supposed to be stepping at the assembly language level
6624 ("stepi"). Just stop. */
388a8562 6625 /* And this works the same backward as frontward. MVS */
bdc36728 6626 end_stepping_range (ecs);
95918acb
AC
6627 return;
6628 }
8fb3e588 6629
388a8562
MS
6630 /* Reverse stepping through solib trampolines. */
6631
6632 if (execution_direction == EXEC_REVERSE
16c381f0 6633 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6634 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6635 || (ecs->stop_func_start == 0
6636 && in_solib_dynsym_resolve_code (stop_pc))))
6637 {
6638 /* Any solib trampoline code can be handled in reverse
6639 by simply continuing to single-step. We have already
6640 executed the solib function (backwards), and a few
6641 steps will take us back through the trampoline to the
6642 caller. */
6643 keep_going (ecs);
6644 return;
6645 }
6646
16c381f0 6647 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6648 {
b2175913
MS
6649 /* We're doing a "next".
6650
6651 Normal (forward) execution: set a breakpoint at the
6652 callee's return address (the address at which the caller
6653 will resume).
6654
6655 Reverse (backward) execution. set the step-resume
6656 breakpoint at the start of the function that we just
6657 stepped into (backwards), and continue to there. When we
6130d0b7 6658 get there, we'll need to single-step back to the caller. */
b2175913
MS
6659
6660 if (execution_direction == EXEC_REVERSE)
6661 {
acf9414f
JK
6662 /* If we're already at the start of the function, we've either
6663 just stepped backward into a single instruction function,
6664 or stepped back out of a signal handler to the first instruction
6665 of the function. Just keep going, which will single-step back
6666 to the caller. */
58c48e72 6667 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f
JK
6668 {
6669 struct symtab_and_line sr_sal;
6670
6671 /* Normal function call return (static or dynamic). */
6672 init_sal (&sr_sal);
6673 sr_sal.pc = ecs->stop_func_start;
6674 sr_sal.pspace = get_frame_program_space (frame);
6675 insert_step_resume_breakpoint_at_sal (gdbarch,
6676 sr_sal, null_frame_id);
6677 }
b2175913
MS
6678 }
6679 else
568d6575 6680 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6681
8567c30f
AC
6682 keep_going (ecs);
6683 return;
6684 }
a53c66de 6685
95918acb 6686 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6687 calling routine and the real function), locate the real
6688 function. That's what tells us (a) whether we want to step
6689 into it at all, and (b) what prologue we want to run to the
6690 end of, if we do step into it. */
568d6575 6691 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6692 if (real_stop_pc == 0)
568d6575 6693 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6694 if (real_stop_pc != 0)
6695 ecs->stop_func_start = real_stop_pc;
8fb3e588 6696
db5f024e 6697 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
6698 {
6699 struct symtab_and_line sr_sal;
abbb1732 6700
1b2bfbb9
RC
6701 init_sal (&sr_sal);
6702 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6703 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6704
a6d9a66e
UW
6705 insert_step_resume_breakpoint_at_sal (gdbarch,
6706 sr_sal, null_frame_id);
8fb3e588
AC
6707 keep_going (ecs);
6708 return;
1b2bfbb9
RC
6709 }
6710
95918acb 6711 /* If we have line number information for the function we are
1bfeeb0f
JL
6712 thinking of stepping into and the function isn't on the skip
6713 list, step into it.
95918acb 6714
8fb3e588
AC
6715 If there are several symtabs at that PC (e.g. with include
6716 files), just want to know whether *any* of them have line
6717 numbers. find_pc_line handles this. */
95918acb
AC
6718 {
6719 struct symtab_and_line tmp_sal;
8fb3e588 6720
95918acb 6721 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6722 if (tmp_sal.line != 0
85817405
JK
6723 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6724 &tmp_sal))
95918acb 6725 {
b2175913 6726 if (execution_direction == EXEC_REVERSE)
568d6575 6727 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6728 else
568d6575 6729 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6730 return;
6731 }
6732 }
6733
6734 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6735 set, we stop the step so that the user has a chance to switch
6736 in assembly mode. */
16c381f0 6737 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6738 && step_stop_if_no_debug)
95918acb 6739 {
bdc36728 6740 end_stepping_range (ecs);
95918acb
AC
6741 return;
6742 }
6743
b2175913
MS
6744 if (execution_direction == EXEC_REVERSE)
6745 {
acf9414f
JK
6746 /* If we're already at the start of the function, we've either just
6747 stepped backward into a single instruction function without line
6748 number info, or stepped back out of a signal handler to the first
6749 instruction of the function without line number info. Just keep
6750 going, which will single-step back to the caller. */
6751 if (ecs->stop_func_start != stop_pc)
6752 {
6753 /* Set a breakpoint at callee's start address.
6754 From there we can step once and be back in the caller. */
6755 struct symtab_and_line sr_sal;
abbb1732 6756
acf9414f
JK
6757 init_sal (&sr_sal);
6758 sr_sal.pc = ecs->stop_func_start;
6759 sr_sal.pspace = get_frame_program_space (frame);
6760 insert_step_resume_breakpoint_at_sal (gdbarch,
6761 sr_sal, null_frame_id);
6762 }
b2175913
MS
6763 }
6764 else
6765 /* Set a breakpoint at callee's return address (the address
6766 at which the caller will resume). */
568d6575 6767 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6768
95918acb 6769 keep_going (ecs);
488f131b 6770 return;
488f131b 6771 }
c906108c 6772
fdd654f3
MS
6773 /* Reverse stepping through solib trampolines. */
6774
6775 if (execution_direction == EXEC_REVERSE
16c381f0 6776 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
6777 {
6778 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6779 || (ecs->stop_func_start == 0
6780 && in_solib_dynsym_resolve_code (stop_pc)))
6781 {
6782 /* Any solib trampoline code can be handled in reverse
6783 by simply continuing to single-step. We have already
6784 executed the solib function (backwards), and a few
6785 steps will take us back through the trampoline to the
6786 caller. */
6787 keep_going (ecs);
6788 return;
6789 }
6790 else if (in_solib_dynsym_resolve_code (stop_pc))
6791 {
6792 /* Stepped backward into the solib dynsym resolver.
6793 Set a breakpoint at its start and continue, then
6794 one more step will take us out. */
6795 struct symtab_and_line sr_sal;
abbb1732 6796
fdd654f3
MS
6797 init_sal (&sr_sal);
6798 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6799 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6800 insert_step_resume_breakpoint_at_sal (gdbarch,
6801 sr_sal, null_frame_id);
6802 keep_going (ecs);
6803 return;
6804 }
6805 }
6806
2afb61aa 6807 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 6808
1b2bfbb9
RC
6809 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6810 the trampoline processing logic, however, there are some trampolines
6811 that have no names, so we should do trampoline handling first. */
16c381f0 6812 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6813 && ecs->stop_func_name == NULL
2afb61aa 6814 && stop_pc_sal.line == 0)
1b2bfbb9 6815 {
527159b7 6816 if (debug_infrun)
3e43a32a
MS
6817 fprintf_unfiltered (gdb_stdlog,
6818 "infrun: stepped into undebuggable function\n");
527159b7 6819
1b2bfbb9 6820 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6821 undebuggable function (where there is no debugging information
6822 and no line number corresponding to the address where the
1b2bfbb9
RC
6823 inferior stopped). Since we want to skip this kind of code,
6824 we keep going until the inferior returns from this
14e60db5
DJ
6825 function - unless the user has asked us not to (via
6826 set step-mode) or we no longer know how to get back
6827 to the call site. */
6828 if (step_stop_if_no_debug
c7ce8faa 6829 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6830 {
6831 /* If we have no line number and the step-stop-if-no-debug
6832 is set, we stop the step so that the user has a chance to
6833 switch in assembly mode. */
bdc36728 6834 end_stepping_range (ecs);
1b2bfbb9
RC
6835 return;
6836 }
6837 else
6838 {
6839 /* Set a breakpoint at callee's return address (the address
6840 at which the caller will resume). */
568d6575 6841 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6842 keep_going (ecs);
6843 return;
6844 }
6845 }
6846
16c381f0 6847 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6848 {
6849 /* It is stepi or nexti. We always want to stop stepping after
6850 one instruction. */
527159b7 6851 if (debug_infrun)
8a9de0e4 6852 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6853 end_stepping_range (ecs);
1b2bfbb9
RC
6854 return;
6855 }
6856
2afb61aa 6857 if (stop_pc_sal.line == 0)
488f131b
JB
6858 {
6859 /* We have no line number information. That means to stop
6860 stepping (does this always happen right after one instruction,
6861 when we do "s" in a function with no line numbers,
6862 or can this happen as a result of a return or longjmp?). */
527159b7 6863 if (debug_infrun)
8a9de0e4 6864 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6865 end_stepping_range (ecs);
488f131b
JB
6866 return;
6867 }
c906108c 6868
edb3359d
DJ
6869 /* Look for "calls" to inlined functions, part one. If the inline
6870 frame machinery detected some skipped call sites, we have entered
6871 a new inline function. */
6872
6873 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6874 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
6875 && inline_skipped_frames (ecs->ptid))
6876 {
6877 struct symtab_and_line call_sal;
6878
6879 if (debug_infrun)
6880 fprintf_unfiltered (gdb_stdlog,
6881 "infrun: stepped into inlined function\n");
6882
6883 find_frame_sal (get_current_frame (), &call_sal);
6884
16c381f0 6885 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6886 {
6887 /* For "step", we're going to stop. But if the call site
6888 for this inlined function is on the same source line as
6889 we were previously stepping, go down into the function
6890 first. Otherwise stop at the call site. */
6891
6892 if (call_sal.line == ecs->event_thread->current_line
6893 && call_sal.symtab == ecs->event_thread->current_symtab)
6894 step_into_inline_frame (ecs->ptid);
6895
bdc36728 6896 end_stepping_range (ecs);
edb3359d
DJ
6897 return;
6898 }
6899 else
6900 {
6901 /* For "next", we should stop at the call site if it is on a
6902 different source line. Otherwise continue through the
6903 inlined function. */
6904 if (call_sal.line == ecs->event_thread->current_line
6905 && call_sal.symtab == ecs->event_thread->current_symtab)
6906 keep_going (ecs);
6907 else
bdc36728 6908 end_stepping_range (ecs);
edb3359d
DJ
6909 return;
6910 }
6911 }
6912
6913 /* Look for "calls" to inlined functions, part two. If we are still
6914 in the same real function we were stepping through, but we have
6915 to go further up to find the exact frame ID, we are stepping
6916 through a more inlined call beyond its call site. */
6917
6918 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6919 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6920 ecs->event_thread->control.step_frame_id)
edb3359d 6921 && stepped_in_from (get_current_frame (),
16c381f0 6922 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6923 {
6924 if (debug_infrun)
6925 fprintf_unfiltered (gdb_stdlog,
6926 "infrun: stepping through inlined function\n");
6927
16c381f0 6928 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
6929 keep_going (ecs);
6930 else
bdc36728 6931 end_stepping_range (ecs);
edb3359d
DJ
6932 return;
6933 }
6934
2afb61aa 6935 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6936 && (ecs->event_thread->current_line != stop_pc_sal.line
6937 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
6938 {
6939 /* We are at the start of a different line. So stop. Note that
6940 we don't stop if we step into the middle of a different line.
6941 That is said to make things like for (;;) statements work
6942 better. */
527159b7 6943 if (debug_infrun)
3e43a32a
MS
6944 fprintf_unfiltered (gdb_stdlog,
6945 "infrun: stepped to a different line\n");
bdc36728 6946 end_stepping_range (ecs);
488f131b
JB
6947 return;
6948 }
c906108c 6949
488f131b 6950 /* We aren't done stepping.
c906108c 6951
488f131b
JB
6952 Optimize by setting the stepping range to the line.
6953 (We might not be in the original line, but if we entered a
6954 new line in mid-statement, we continue stepping. This makes
6955 things like for(;;) statements work better.) */
c906108c 6956
16c381f0
JK
6957 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6958 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 6959 ecs->event_thread->control.may_range_step = 1;
edb3359d 6960 set_step_info (frame, stop_pc_sal);
488f131b 6961
527159b7 6962 if (debug_infrun)
8a9de0e4 6963 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 6964 keep_going (ecs);
104c1213
JM
6965}
6966
c447ac0b
PA
6967/* In all-stop mode, if we're currently stepping but have stopped in
6968 some other thread, we may need to switch back to the stepped
6969 thread. Returns true we set the inferior running, false if we left
6970 it stopped (and the event needs further processing). */
6971
6972static int
6973switch_back_to_stepped_thread (struct execution_control_state *ecs)
6974{
fbea99ea 6975 if (!target_is_non_stop_p ())
c447ac0b
PA
6976 {
6977 struct thread_info *tp;
99619bea
PA
6978 struct thread_info *stepping_thread;
6979
6980 /* If any thread is blocked on some internal breakpoint, and we
6981 simply need to step over that breakpoint to get it going
6982 again, do that first. */
6983
6984 /* However, if we see an event for the stepping thread, then we
6985 know all other threads have been moved past their breakpoints
6986 already. Let the caller check whether the step is finished,
6987 etc., before deciding to move it past a breakpoint. */
6988 if (ecs->event_thread->control.step_range_end != 0)
6989 return 0;
6990
6991 /* Check if the current thread is blocked on an incomplete
6992 step-over, interrupted by a random signal. */
6993 if (ecs->event_thread->control.trap_expected
6994 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 6995 {
99619bea
PA
6996 if (debug_infrun)
6997 {
6998 fprintf_unfiltered (gdb_stdlog,
6999 "infrun: need to finish step-over of [%s]\n",
7000 target_pid_to_str (ecs->event_thread->ptid));
7001 }
7002 keep_going (ecs);
7003 return 1;
7004 }
2adfaa28 7005
99619bea
PA
7006 /* Check if the current thread is blocked by a single-step
7007 breakpoint of another thread. */
7008 if (ecs->hit_singlestep_breakpoint)
7009 {
7010 if (debug_infrun)
7011 {
7012 fprintf_unfiltered (gdb_stdlog,
7013 "infrun: need to step [%s] over single-step "
7014 "breakpoint\n",
7015 target_pid_to_str (ecs->ptid));
7016 }
7017 keep_going (ecs);
7018 return 1;
7019 }
7020
4d9d9d04
PA
7021 /* If this thread needs yet another step-over (e.g., stepping
7022 through a delay slot), do it first before moving on to
7023 another thread. */
7024 if (thread_still_needs_step_over (ecs->event_thread))
7025 {
7026 if (debug_infrun)
7027 {
7028 fprintf_unfiltered (gdb_stdlog,
7029 "infrun: thread [%s] still needs step-over\n",
7030 target_pid_to_str (ecs->event_thread->ptid));
7031 }
7032 keep_going (ecs);
7033 return 1;
7034 }
70509625 7035
483805cf
PA
7036 /* If scheduler locking applies even if not stepping, there's no
7037 need to walk over threads. Above we've checked whether the
7038 current thread is stepping. If some other thread not the
7039 event thread is stepping, then it must be that scheduler
7040 locking is not in effect. */
856e7dd6 7041 if (schedlock_applies (ecs->event_thread))
483805cf
PA
7042 return 0;
7043
4d9d9d04
PA
7044 /* Otherwise, we no longer expect a trap in the current thread.
7045 Clear the trap_expected flag before switching back -- this is
7046 what keep_going does as well, if we call it. */
7047 ecs->event_thread->control.trap_expected = 0;
7048
7049 /* Likewise, clear the signal if it should not be passed. */
7050 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7051 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7052
7053 /* Do all pending step-overs before actually proceeding with
483805cf 7054 step/next/etc. */
4d9d9d04
PA
7055 if (start_step_over ())
7056 {
7057 prepare_to_wait (ecs);
7058 return 1;
7059 }
7060
7061 /* Look for the stepping/nexting thread. */
483805cf 7062 stepping_thread = NULL;
4d9d9d04 7063
034f788c 7064 ALL_NON_EXITED_THREADS (tp)
483805cf 7065 {
fbea99ea
PA
7066 /* Ignore threads of processes the caller is not
7067 resuming. */
483805cf 7068 if (!sched_multi
1afd5965 7069 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
483805cf
PA
7070 continue;
7071
7072 /* When stepping over a breakpoint, we lock all threads
7073 except the one that needs to move past the breakpoint.
7074 If a non-event thread has this set, the "incomplete
7075 step-over" check above should have caught it earlier. */
372316f1
PA
7076 if (tp->control.trap_expected)
7077 {
7078 internal_error (__FILE__, __LINE__,
7079 "[%s] has inconsistent state: "
7080 "trap_expected=%d\n",
7081 target_pid_to_str (tp->ptid),
7082 tp->control.trap_expected);
7083 }
483805cf
PA
7084
7085 /* Did we find the stepping thread? */
7086 if (tp->control.step_range_end)
7087 {
7088 /* Yep. There should only one though. */
7089 gdb_assert (stepping_thread == NULL);
7090
7091 /* The event thread is handled at the top, before we
7092 enter this loop. */
7093 gdb_assert (tp != ecs->event_thread);
7094
7095 /* If some thread other than the event thread is
7096 stepping, then scheduler locking can't be in effect,
7097 otherwise we wouldn't have resumed the current event
7098 thread in the first place. */
856e7dd6 7099 gdb_assert (!schedlock_applies (tp));
483805cf
PA
7100
7101 stepping_thread = tp;
7102 }
99619bea
PA
7103 }
7104
483805cf 7105 if (stepping_thread != NULL)
99619bea 7106 {
c447ac0b
PA
7107 if (debug_infrun)
7108 fprintf_unfiltered (gdb_stdlog,
7109 "infrun: switching back to stepped thread\n");
7110
2ac7589c
PA
7111 if (keep_going_stepped_thread (stepping_thread))
7112 {
7113 prepare_to_wait (ecs);
7114 return 1;
7115 }
7116 }
7117 }
2adfaa28 7118
2ac7589c
PA
7119 return 0;
7120}
2adfaa28 7121
2ac7589c
PA
7122/* Set a previously stepped thread back to stepping. Returns true on
7123 success, false if the resume is not possible (e.g., the thread
7124 vanished). */
7125
7126static int
7127keep_going_stepped_thread (struct thread_info *tp)
7128{
7129 struct frame_info *frame;
7130 struct gdbarch *gdbarch;
7131 struct execution_control_state ecss;
7132 struct execution_control_state *ecs = &ecss;
2adfaa28 7133
2ac7589c
PA
7134 /* If the stepping thread exited, then don't try to switch back and
7135 resume it, which could fail in several different ways depending
7136 on the target. Instead, just keep going.
2adfaa28 7137
2ac7589c
PA
7138 We can find a stepping dead thread in the thread list in two
7139 cases:
2adfaa28 7140
2ac7589c
PA
7141 - The target supports thread exit events, and when the target
7142 tries to delete the thread from the thread list, inferior_ptid
7143 pointed at the exiting thread. In such case, calling
7144 delete_thread does not really remove the thread from the list;
7145 instead, the thread is left listed, with 'exited' state.
64ce06e4 7146
2ac7589c
PA
7147 - The target's debug interface does not support thread exit
7148 events, and so we have no idea whatsoever if the previously
7149 stepping thread is still alive. For that reason, we need to
7150 synchronously query the target now. */
2adfaa28 7151
2ac7589c
PA
7152 if (is_exited (tp->ptid)
7153 || !target_thread_alive (tp->ptid))
7154 {
7155 if (debug_infrun)
7156 fprintf_unfiltered (gdb_stdlog,
7157 "infrun: not resuming previously "
7158 "stepped thread, it has vanished\n");
7159
7160 delete_thread (tp->ptid);
7161 return 0;
c447ac0b 7162 }
2ac7589c
PA
7163
7164 if (debug_infrun)
7165 fprintf_unfiltered (gdb_stdlog,
7166 "infrun: resuming previously stepped thread\n");
7167
7168 reset_ecs (ecs, tp);
7169 switch_to_thread (tp->ptid);
7170
7171 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7172 frame = get_current_frame ();
7173 gdbarch = get_frame_arch (frame);
7174
7175 /* If the PC of the thread we were trying to single-step has
7176 changed, then that thread has trapped or been signaled, but the
7177 event has not been reported to GDB yet. Re-poll the target
7178 looking for this particular thread's event (i.e. temporarily
7179 enable schedlock) by:
7180
7181 - setting a break at the current PC
7182 - resuming that particular thread, only (by setting trap
7183 expected)
7184
7185 This prevents us continuously moving the single-step breakpoint
7186 forward, one instruction at a time, overstepping. */
7187
7188 if (stop_pc != tp->prev_pc)
7189 {
7190 ptid_t resume_ptid;
7191
7192 if (debug_infrun)
7193 fprintf_unfiltered (gdb_stdlog,
7194 "infrun: expected thread advanced also (%s -> %s)\n",
7195 paddress (target_gdbarch (), tp->prev_pc),
7196 paddress (target_gdbarch (), stop_pc));
7197
7198 /* Clear the info of the previous step-over, as it's no longer
7199 valid (if the thread was trying to step over a breakpoint, it
7200 has already succeeded). It's what keep_going would do too,
7201 if we called it. Do this before trying to insert the sss
7202 breakpoint, otherwise if we were previously trying to step
7203 over this exact address in another thread, the breakpoint is
7204 skipped. */
7205 clear_step_over_info ();
7206 tp->control.trap_expected = 0;
7207
7208 insert_single_step_breakpoint (get_frame_arch (frame),
7209 get_frame_address_space (frame),
7210 stop_pc);
7211
372316f1 7212 tp->resumed = 1;
fbea99ea 7213 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7214 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7215 }
7216 else
7217 {
7218 if (debug_infrun)
7219 fprintf_unfiltered (gdb_stdlog,
7220 "infrun: expected thread still hasn't advanced\n");
7221
7222 keep_going_pass_signal (ecs);
7223 }
7224 return 1;
c447ac0b
PA
7225}
7226
8b061563
PA
7227/* Is thread TP in the middle of (software or hardware)
7228 single-stepping? (Note the result of this function must never be
7229 passed directly as target_resume's STEP parameter.) */
104c1213 7230
a289b8f6 7231static int
b3444185 7232currently_stepping (struct thread_info *tp)
a7212384 7233{
8358c15c
JK
7234 return ((tp->control.step_range_end
7235 && tp->control.step_resume_breakpoint == NULL)
7236 || tp->control.trap_expected
af48d08f 7237 || tp->stepped_breakpoint
8358c15c 7238 || bpstat_should_step ());
a7212384
UW
7239}
7240
b2175913
MS
7241/* Inferior has stepped into a subroutine call with source code that
7242 we should not step over. Do step to the first line of code in
7243 it. */
c2c6d25f
JM
7244
7245static void
568d6575
UW
7246handle_step_into_function (struct gdbarch *gdbarch,
7247 struct execution_control_state *ecs)
c2c6d25f 7248{
43f3e411 7249 struct compunit_symtab *cust;
2afb61aa 7250 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 7251
7e324e48
GB
7252 fill_in_stop_func (gdbarch, ecs);
7253
43f3e411
DE
7254 cust = find_pc_compunit_symtab (stop_pc);
7255 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 7256 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 7257 ecs->stop_func_start);
c2c6d25f 7258
2afb61aa 7259 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7260 /* Use the step_resume_break to step until the end of the prologue,
7261 even if that involves jumps (as it seems to on the vax under
7262 4.2). */
7263 /* If the prologue ends in the middle of a source line, continue to
7264 the end of that source line (if it is still within the function).
7265 Otherwise, just go to end of prologue. */
2afb61aa
PA
7266 if (stop_func_sal.end
7267 && stop_func_sal.pc != ecs->stop_func_start
7268 && stop_func_sal.end < ecs->stop_func_end)
7269 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7270
2dbd5e30
KB
7271 /* Architectures which require breakpoint adjustment might not be able
7272 to place a breakpoint at the computed address. If so, the test
7273 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7274 ecs->stop_func_start to an address at which a breakpoint may be
7275 legitimately placed.
8fb3e588 7276
2dbd5e30
KB
7277 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7278 made, GDB will enter an infinite loop when stepping through
7279 optimized code consisting of VLIW instructions which contain
7280 subinstructions corresponding to different source lines. On
7281 FR-V, it's not permitted to place a breakpoint on any but the
7282 first subinstruction of a VLIW instruction. When a breakpoint is
7283 set, GDB will adjust the breakpoint address to the beginning of
7284 the VLIW instruction. Thus, we need to make the corresponding
7285 adjustment here when computing the stop address. */
8fb3e588 7286
568d6575 7287 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7288 {
7289 ecs->stop_func_start
568d6575 7290 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7291 ecs->stop_func_start);
2dbd5e30
KB
7292 }
7293
c2c6d25f
JM
7294 if (ecs->stop_func_start == stop_pc)
7295 {
7296 /* We are already there: stop now. */
bdc36728 7297 end_stepping_range (ecs);
c2c6d25f
JM
7298 return;
7299 }
7300 else
7301 {
7302 /* Put the step-breakpoint there and go until there. */
fe39c653 7303 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
7304 sr_sal.pc = ecs->stop_func_start;
7305 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7306 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7307
c2c6d25f 7308 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7309 some machines the prologue is where the new fp value is
7310 established. */
a6d9a66e 7311 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7312
7313 /* And make sure stepping stops right away then. */
16c381f0
JK
7314 ecs->event_thread->control.step_range_end
7315 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7316 }
7317 keep_going (ecs);
7318}
d4f3574e 7319
b2175913
MS
7320/* Inferior has stepped backward into a subroutine call with source
7321 code that we should not step over. Do step to the beginning of the
7322 last line of code in it. */
7323
7324static void
568d6575
UW
7325handle_step_into_function_backward (struct gdbarch *gdbarch,
7326 struct execution_control_state *ecs)
b2175913 7327{
43f3e411 7328 struct compunit_symtab *cust;
167e4384 7329 struct symtab_and_line stop_func_sal;
b2175913 7330
7e324e48
GB
7331 fill_in_stop_func (gdbarch, ecs);
7332
43f3e411
DE
7333 cust = find_pc_compunit_symtab (stop_pc);
7334 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 7335 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
7336 ecs->stop_func_start);
7337
7338 stop_func_sal = find_pc_line (stop_pc, 0);
7339
7340 /* OK, we're just going to keep stepping here. */
7341 if (stop_func_sal.pc == stop_pc)
7342 {
7343 /* We're there already. Just stop stepping now. */
bdc36728 7344 end_stepping_range (ecs);
b2175913
MS
7345 }
7346 else
7347 {
7348 /* Else just reset the step range and keep going.
7349 No step-resume breakpoint, they don't work for
7350 epilogues, which can have multiple entry paths. */
16c381f0
JK
7351 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7352 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7353 keep_going (ecs);
7354 }
7355 return;
7356}
7357
d3169d93 7358/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7359 This is used to both functions and to skip over code. */
7360
7361static void
2c03e5be
PA
7362insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7363 struct symtab_and_line sr_sal,
7364 struct frame_id sr_id,
7365 enum bptype sr_type)
44cbf7b5 7366{
611c83ae
PA
7367 /* There should never be more than one step-resume or longjmp-resume
7368 breakpoint per thread, so we should never be setting a new
44cbf7b5 7369 step_resume_breakpoint when one is already active. */
8358c15c 7370 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7371 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7372
7373 if (debug_infrun)
7374 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7375 "infrun: inserting step-resume breakpoint at %s\n",
7376 paddress (gdbarch, sr_sal.pc));
d3169d93 7377
8358c15c 7378 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
7379 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7380}
7381
9da8c2a0 7382void
2c03e5be
PA
7383insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7384 struct symtab_and_line sr_sal,
7385 struct frame_id sr_id)
7386{
7387 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7388 sr_sal, sr_id,
7389 bp_step_resume);
44cbf7b5 7390}
7ce450bd 7391
2c03e5be
PA
7392/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7393 This is used to skip a potential signal handler.
7ce450bd 7394
14e60db5
DJ
7395 This is called with the interrupted function's frame. The signal
7396 handler, when it returns, will resume the interrupted function at
7397 RETURN_FRAME.pc. */
d303a6c7
AC
7398
7399static void
2c03e5be 7400insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
7401{
7402 struct symtab_and_line sr_sal;
a6d9a66e 7403 struct gdbarch *gdbarch;
d303a6c7 7404
f4c1edd8 7405 gdb_assert (return_frame != NULL);
d303a6c7
AC
7406 init_sal (&sr_sal); /* initialize to zeros */
7407
a6d9a66e 7408 gdbarch = get_frame_arch (return_frame);
568d6575 7409 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7410 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7411 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7412
2c03e5be
PA
7413 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7414 get_stack_frame_id (return_frame),
7415 bp_hp_step_resume);
d303a6c7
AC
7416}
7417
2c03e5be
PA
7418/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7419 is used to skip a function after stepping into it (for "next" or if
7420 the called function has no debugging information).
14e60db5
DJ
7421
7422 The current function has almost always been reached by single
7423 stepping a call or return instruction. NEXT_FRAME belongs to the
7424 current function, and the breakpoint will be set at the caller's
7425 resume address.
7426
7427 This is a separate function rather than reusing
2c03e5be 7428 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7429 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7430 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7431
7432static void
7433insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7434{
7435 struct symtab_and_line sr_sal;
a6d9a66e 7436 struct gdbarch *gdbarch;
14e60db5
DJ
7437
7438 /* We shouldn't have gotten here if we don't know where the call site
7439 is. */
c7ce8faa 7440 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
7441
7442 init_sal (&sr_sal); /* initialize to zeros */
7443
a6d9a66e 7444 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
7445 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7446 frame_unwind_caller_pc (next_frame));
14e60db5 7447 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7448 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7449
a6d9a66e 7450 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7451 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7452}
7453
611c83ae
PA
7454/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7455 new breakpoint at the target of a jmp_buf. The handling of
7456 longjmp-resume uses the same mechanisms used for handling
7457 "step-resume" breakpoints. */
7458
7459static void
a6d9a66e 7460insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7461{
e81a37f7
TT
7462 /* There should never be more than one longjmp-resume breakpoint per
7463 thread, so we should never be setting a new
611c83ae 7464 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7465 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7466
7467 if (debug_infrun)
7468 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7469 "infrun: inserting longjmp-resume breakpoint at %s\n",
7470 paddress (gdbarch, pc));
611c83ae 7471
e81a37f7 7472 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 7473 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
7474}
7475
186c406b
TT
7476/* Insert an exception resume breakpoint. TP is the thread throwing
7477 the exception. The block B is the block of the unwinder debug hook
7478 function. FRAME is the frame corresponding to the call to this
7479 function. SYM is the symbol of the function argument holding the
7480 target PC of the exception. */
7481
7482static void
7483insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7484 const struct block *b,
186c406b
TT
7485 struct frame_info *frame,
7486 struct symbol *sym)
7487{
492d29ea 7488 TRY
186c406b 7489 {
63e43d3a 7490 struct block_symbol vsym;
186c406b
TT
7491 struct value *value;
7492 CORE_ADDR handler;
7493 struct breakpoint *bp;
7494
63e43d3a
PMR
7495 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7496 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7497 /* If the value was optimized out, revert to the old behavior. */
7498 if (! value_optimized_out (value))
7499 {
7500 handler = value_as_address (value);
7501
7502 if (debug_infrun)
7503 fprintf_unfiltered (gdb_stdlog,
7504 "infrun: exception resume at %lx\n",
7505 (unsigned long) handler);
7506
7507 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7508 handler, bp_exception_resume);
c70a6932
JK
7509
7510 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7511 frame = NULL;
7512
186c406b
TT
7513 bp->thread = tp->num;
7514 inferior_thread ()->control.exception_resume_breakpoint = bp;
7515 }
7516 }
492d29ea
PA
7517 CATCH (e, RETURN_MASK_ERROR)
7518 {
7519 /* We want to ignore errors here. */
7520 }
7521 END_CATCH
186c406b
TT
7522}
7523
28106bc2
SDJ
7524/* A helper for check_exception_resume that sets an
7525 exception-breakpoint based on a SystemTap probe. */
7526
7527static void
7528insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7529 const struct bound_probe *probe,
28106bc2
SDJ
7530 struct frame_info *frame)
7531{
7532 struct value *arg_value;
7533 CORE_ADDR handler;
7534 struct breakpoint *bp;
7535
7536 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7537 if (!arg_value)
7538 return;
7539
7540 handler = value_as_address (arg_value);
7541
7542 if (debug_infrun)
7543 fprintf_unfiltered (gdb_stdlog,
7544 "infrun: exception resume at %s\n",
6bac7473 7545 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7546 handler));
7547
7548 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7549 handler, bp_exception_resume);
7550 bp->thread = tp->num;
7551 inferior_thread ()->control.exception_resume_breakpoint = bp;
7552}
7553
186c406b
TT
7554/* This is called when an exception has been intercepted. Check to
7555 see whether the exception's destination is of interest, and if so,
7556 set an exception resume breakpoint there. */
7557
7558static void
7559check_exception_resume (struct execution_control_state *ecs,
28106bc2 7560 struct frame_info *frame)
186c406b 7561{
729662a5 7562 struct bound_probe probe;
28106bc2
SDJ
7563 struct symbol *func;
7564
7565 /* First see if this exception unwinding breakpoint was set via a
7566 SystemTap probe point. If so, the probe has two arguments: the
7567 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7568 set a breakpoint there. */
6bac7473 7569 probe = find_probe_by_pc (get_frame_pc (frame));
729662a5 7570 if (probe.probe)
28106bc2 7571 {
729662a5 7572 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7573 return;
7574 }
7575
7576 func = get_frame_function (frame);
7577 if (!func)
7578 return;
186c406b 7579
492d29ea 7580 TRY
186c406b 7581 {
3977b71f 7582 const struct block *b;
8157b174 7583 struct block_iterator iter;
186c406b
TT
7584 struct symbol *sym;
7585 int argno = 0;
7586
7587 /* The exception breakpoint is a thread-specific breakpoint on
7588 the unwinder's debug hook, declared as:
7589
7590 void _Unwind_DebugHook (void *cfa, void *handler);
7591
7592 The CFA argument indicates the frame to which control is
7593 about to be transferred. HANDLER is the destination PC.
7594
7595 We ignore the CFA and set a temporary breakpoint at HANDLER.
7596 This is not extremely efficient but it avoids issues in gdb
7597 with computing the DWARF CFA, and it also works even in weird
7598 cases such as throwing an exception from inside a signal
7599 handler. */
7600
7601 b = SYMBOL_BLOCK_VALUE (func);
7602 ALL_BLOCK_SYMBOLS (b, iter, sym)
7603 {
7604 if (!SYMBOL_IS_ARGUMENT (sym))
7605 continue;
7606
7607 if (argno == 0)
7608 ++argno;
7609 else
7610 {
7611 insert_exception_resume_breakpoint (ecs->event_thread,
7612 b, frame, sym);
7613 break;
7614 }
7615 }
7616 }
492d29ea
PA
7617 CATCH (e, RETURN_MASK_ERROR)
7618 {
7619 }
7620 END_CATCH
186c406b
TT
7621}
7622
104c1213 7623static void
22bcd14b 7624stop_waiting (struct execution_control_state *ecs)
104c1213 7625{
527159b7 7626 if (debug_infrun)
22bcd14b 7627 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7628
31e77af2
PA
7629 clear_step_over_info ();
7630
cd0fc7c3
SS
7631 /* Let callers know we don't want to wait for the inferior anymore. */
7632 ecs->wait_some_more = 0;
fbea99ea
PA
7633
7634 /* If all-stop, but the target is always in non-stop mode, stop all
7635 threads now that we're presenting the stop to the user. */
7636 if (!non_stop && target_is_non_stop_p ())
7637 stop_all_threads ();
cd0fc7c3
SS
7638}
7639
4d9d9d04
PA
7640/* Like keep_going, but passes the signal to the inferior, even if the
7641 signal is set to nopass. */
d4f3574e
SS
7642
7643static void
4d9d9d04 7644keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7645{
c4dbc9af
PA
7646 /* Make sure normal_stop is called if we get a QUIT handled before
7647 reaching resume. */
7648 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7649
4d9d9d04 7650 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
372316f1 7651 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7652
d4f3574e 7653 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
7654 ecs->event_thread->prev_pc
7655 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 7656
4d9d9d04 7657 if (ecs->event_thread->control.trap_expected)
d4f3574e 7658 {
4d9d9d04
PA
7659 struct thread_info *tp = ecs->event_thread;
7660
7661 if (debug_infrun)
7662 fprintf_unfiltered (gdb_stdlog,
7663 "infrun: %s has trap_expected set, "
7664 "resuming to collect trap\n",
7665 target_pid_to_str (tp->ptid));
7666
a9ba6bae
PA
7667 /* We haven't yet gotten our trap, and either: intercepted a
7668 non-signal event (e.g., a fork); or took a signal which we
7669 are supposed to pass through to the inferior. Simply
7670 continue. */
c4dbc9af 7671 discard_cleanups (old_cleanups);
64ce06e4 7672 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7673 }
372316f1
PA
7674 else if (step_over_info_valid_p ())
7675 {
7676 /* Another thread is stepping over a breakpoint in-line. If
7677 this thread needs a step-over too, queue the request. In
7678 either case, this resume must be deferred for later. */
7679 struct thread_info *tp = ecs->event_thread;
7680
7681 if (ecs->hit_singlestep_breakpoint
7682 || thread_still_needs_step_over (tp))
7683 {
7684 if (debug_infrun)
7685 fprintf_unfiltered (gdb_stdlog,
7686 "infrun: step-over already in progress: "
7687 "step-over for %s deferred\n",
7688 target_pid_to_str (tp->ptid));
7689 thread_step_over_chain_enqueue (tp);
7690 }
7691 else
7692 {
7693 if (debug_infrun)
7694 fprintf_unfiltered (gdb_stdlog,
7695 "infrun: step-over in progress: "
7696 "resume of %s deferred\n",
7697 target_pid_to_str (tp->ptid));
7698 }
7699
7700 discard_cleanups (old_cleanups);
7701 }
d4f3574e
SS
7702 else
7703 {
31e77af2 7704 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7705 int remove_bp;
7706 int remove_wps;
8d297bbf 7707 step_over_what step_what;
31e77af2 7708
d4f3574e 7709 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7710 anyway (if we got a signal, the user asked it be passed to
7711 the child)
7712 -- or --
7713 We got our expected trap, but decided we should resume from
7714 it.
d4f3574e 7715
a9ba6bae 7716 We're going to run this baby now!
d4f3574e 7717
c36b740a
VP
7718 Note that insert_breakpoints won't try to re-insert
7719 already inserted breakpoints. Therefore, we don't
7720 care if breakpoints were already inserted, or not. */
a9ba6bae 7721
31e77af2
PA
7722 /* If we need to step over a breakpoint, and we're not using
7723 displaced stepping to do so, insert all breakpoints
7724 (watchpoints, etc.) but the one we're stepping over, step one
7725 instruction, and then re-insert the breakpoint when that step
7726 is finished. */
963f9c80 7727
6c4cfb24
PA
7728 step_what = thread_still_needs_step_over (ecs->event_thread);
7729
963f9c80 7730 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7731 || (step_what & STEP_OVER_BREAKPOINT));
7732 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7733
cb71640d
PA
7734 /* We can't use displaced stepping if we need to step past a
7735 watchpoint. The instruction copied to the scratch pad would
7736 still trigger the watchpoint. */
7737 if (remove_bp
3fc8eb30 7738 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7739 {
31e77af2 7740 set_step_over_info (get_regcache_aspace (regcache),
963f9c80 7741 regcache_read_pc (regcache), remove_wps);
45e8c884 7742 }
963f9c80
PA
7743 else if (remove_wps)
7744 set_step_over_info (NULL, 0, remove_wps);
372316f1
PA
7745
7746 /* If we now need to do an in-line step-over, we need to stop
7747 all other threads. Note this must be done before
7748 insert_breakpoints below, because that removes the breakpoint
7749 we're about to step over, otherwise other threads could miss
7750 it. */
fbea99ea 7751 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7752 stop_all_threads ();
abbb1732 7753
31e77af2 7754 /* Stop stepping if inserting breakpoints fails. */
492d29ea 7755 TRY
31e77af2
PA
7756 {
7757 insert_breakpoints ();
7758 }
492d29ea 7759 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
7760 {
7761 exception_print (gdb_stderr, e);
22bcd14b 7762 stop_waiting (ecs);
de1fe8c8 7763 discard_cleanups (old_cleanups);
31e77af2 7764 return;
d4f3574e 7765 }
492d29ea 7766 END_CATCH
d4f3574e 7767
963f9c80 7768 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7769
c4dbc9af 7770 discard_cleanups (old_cleanups);
64ce06e4 7771 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7772 }
7773
488f131b 7774 prepare_to_wait (ecs);
d4f3574e
SS
7775}
7776
4d9d9d04
PA
7777/* Called when we should continue running the inferior, because the
7778 current event doesn't cause a user visible stop. This does the
7779 resuming part; waiting for the next event is done elsewhere. */
7780
7781static void
7782keep_going (struct execution_control_state *ecs)
7783{
7784 if (ecs->event_thread->control.trap_expected
7785 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7786 ecs->event_thread->control.trap_expected = 0;
7787
7788 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7789 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7790 keep_going_pass_signal (ecs);
7791}
7792
104c1213
JM
7793/* This function normally comes after a resume, before
7794 handle_inferior_event exits. It takes care of any last bits of
7795 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7796
104c1213
JM
7797static void
7798prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7799{
527159b7 7800 if (debug_infrun)
8a9de0e4 7801 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7802
104c1213 7803 ecs->wait_some_more = 1;
0b333c5e
PA
7804
7805 if (!target_is_async_p ())
7806 mark_infrun_async_event_handler ();
c906108c 7807}
11cf8741 7808
fd664c91 7809/* We are done with the step range of a step/next/si/ni command.
b57bacec 7810 Called once for each n of a "step n" operation. */
fd664c91
PA
7811
7812static void
bdc36728 7813end_stepping_range (struct execution_control_state *ecs)
fd664c91 7814{
bdc36728 7815 ecs->event_thread->control.stop_step = 1;
bdc36728 7816 stop_waiting (ecs);
fd664c91
PA
7817}
7818
33d62d64
JK
7819/* Several print_*_reason functions to print why the inferior has stopped.
7820 We always print something when the inferior exits, or receives a signal.
7821 The rest of the cases are dealt with later on in normal_stop and
7822 print_it_typical. Ideally there should be a call to one of these
7823 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7824 stop_waiting is called.
33d62d64 7825
fd664c91
PA
7826 Note that we don't call these directly, instead we delegate that to
7827 the interpreters, through observers. Interpreters then call these
7828 with whatever uiout is right. */
33d62d64 7829
fd664c91
PA
7830void
7831print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7832{
fd664c91 7833 /* For CLI-like interpreters, print nothing. */
33d62d64 7834
fd664c91
PA
7835 if (ui_out_is_mi_like_p (uiout))
7836 {
7837 ui_out_field_string (uiout, "reason",
7838 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7839 }
7840}
33d62d64 7841
fd664c91
PA
7842void
7843print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7844{
33d62d64
JK
7845 annotate_signalled ();
7846 if (ui_out_is_mi_like_p (uiout))
7847 ui_out_field_string
7848 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7849 ui_out_text (uiout, "\nProgram terminated with signal ");
7850 annotate_signal_name ();
7851 ui_out_field_string (uiout, "signal-name",
2ea28649 7852 gdb_signal_to_name (siggnal));
33d62d64
JK
7853 annotate_signal_name_end ();
7854 ui_out_text (uiout, ", ");
7855 annotate_signal_string ();
7856 ui_out_field_string (uiout, "signal-meaning",
2ea28649 7857 gdb_signal_to_string (siggnal));
33d62d64
JK
7858 annotate_signal_string_end ();
7859 ui_out_text (uiout, ".\n");
7860 ui_out_text (uiout, "The program no longer exists.\n");
7861}
7862
fd664c91
PA
7863void
7864print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7865{
fda326dd
TT
7866 struct inferior *inf = current_inferior ();
7867 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7868
33d62d64
JK
7869 annotate_exited (exitstatus);
7870 if (exitstatus)
7871 {
7872 if (ui_out_is_mi_like_p (uiout))
7873 ui_out_field_string (uiout, "reason",
7874 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
7875 ui_out_text (uiout, "[Inferior ");
7876 ui_out_text (uiout, plongest (inf->num));
7877 ui_out_text (uiout, " (");
7878 ui_out_text (uiout, pidstr);
7879 ui_out_text (uiout, ") exited with code ");
33d62d64 7880 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 7881 ui_out_text (uiout, "]\n");
33d62d64
JK
7882 }
7883 else
11cf8741 7884 {
9dc5e2a9 7885 if (ui_out_is_mi_like_p (uiout))
034dad6f 7886 ui_out_field_string
33d62d64 7887 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
7888 ui_out_text (uiout, "[Inferior ");
7889 ui_out_text (uiout, plongest (inf->num));
7890 ui_out_text (uiout, " (");
7891 ui_out_text (uiout, pidstr);
7892 ui_out_text (uiout, ") exited normally]\n");
33d62d64 7893 }
33d62d64
JK
7894}
7895
fd664c91
PA
7896void
7897print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64
JK
7898{
7899 annotate_signal ();
7900
a493e3e2 7901 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
33d62d64
JK
7902 {
7903 struct thread_info *t = inferior_thread ();
7904
7905 ui_out_text (uiout, "\n[");
7906 ui_out_field_string (uiout, "thread-name",
7907 target_pid_to_str (t->ptid));
7908 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
7909 ui_out_text (uiout, " stopped");
7910 }
7911 else
7912 {
7913 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 7914 annotate_signal_name ();
33d62d64
JK
7915 if (ui_out_is_mi_like_p (uiout))
7916 ui_out_field_string
7917 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 7918 ui_out_field_string (uiout, "signal-name",
2ea28649 7919 gdb_signal_to_name (siggnal));
8b93c638
JM
7920 annotate_signal_name_end ();
7921 ui_out_text (uiout, ", ");
7922 annotate_signal_string ();
488f131b 7923 ui_out_field_string (uiout, "signal-meaning",
2ea28649 7924 gdb_signal_to_string (siggnal));
8b93c638 7925 annotate_signal_string_end ();
33d62d64
JK
7926 }
7927 ui_out_text (uiout, ".\n");
7928}
252fbfc8 7929
fd664c91
PA
7930void
7931print_no_history_reason (struct ui_out *uiout)
33d62d64 7932{
fd664c91 7933 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
11cf8741 7934}
43ff13b4 7935
0c7e1a46
PA
7936/* Print current location without a level number, if we have changed
7937 functions or hit a breakpoint. Print source line if we have one.
7938 bpstat_print contains the logic deciding in detail what to print,
7939 based on the event(s) that just occurred. */
7940
243a9253
PA
7941static void
7942print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
7943{
7944 int bpstat_ret;
f486487f 7945 enum print_what source_flag;
0c7e1a46
PA
7946 int do_frame_printing = 1;
7947 struct thread_info *tp = inferior_thread ();
7948
7949 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7950 switch (bpstat_ret)
7951 {
7952 case PRINT_UNKNOWN:
7953 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7954 should) carry around the function and does (or should) use
7955 that when doing a frame comparison. */
7956 if (tp->control.stop_step
7957 && frame_id_eq (tp->control.step_frame_id,
7958 get_frame_id (get_current_frame ()))
885eeb5b 7959 && tp->control.step_start_function == find_pc_function (stop_pc))
0c7e1a46
PA
7960 {
7961 /* Finished step, just print source line. */
7962 source_flag = SRC_LINE;
7963 }
7964 else
7965 {
7966 /* Print location and source line. */
7967 source_flag = SRC_AND_LOC;
7968 }
7969 break;
7970 case PRINT_SRC_AND_LOC:
7971 /* Print location and source line. */
7972 source_flag = SRC_AND_LOC;
7973 break;
7974 case PRINT_SRC_ONLY:
7975 source_flag = SRC_LINE;
7976 break;
7977 case PRINT_NOTHING:
7978 /* Something bogus. */
7979 source_flag = SRC_LINE;
7980 do_frame_printing = 0;
7981 break;
7982 default:
7983 internal_error (__FILE__, __LINE__, _("Unknown value."));
7984 }
7985
7986 /* The behavior of this routine with respect to the source
7987 flag is:
7988 SRC_LINE: Print only source line
7989 LOCATION: Print only location
7990 SRC_AND_LOC: Print location and source line. */
7991 if (do_frame_printing)
7992 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
7993}
7994
7995/* Cleanup that restores a previous current uiout. */
7996
7997static void
7998restore_current_uiout_cleanup (void *arg)
7999{
9a3c8263 8000 struct ui_out *saved_uiout = (struct ui_out *) arg;
243a9253
PA
8001
8002 current_uiout = saved_uiout;
8003}
8004
8005/* See infrun.h. */
8006
8007void
8008print_stop_event (struct ui_out *uiout)
8009{
8010 struct cleanup *old_chain;
8011 struct target_waitstatus last;
8012 ptid_t last_ptid;
8013 struct thread_info *tp;
8014
8015 get_last_target_status (&last_ptid, &last);
8016
8017 old_chain = make_cleanup (restore_current_uiout_cleanup, current_uiout);
8018 current_uiout = uiout;
8019
8020 print_stop_location (&last);
0c7e1a46
PA
8021
8022 /* Display the auto-display expressions. */
8023 do_displays ();
243a9253
PA
8024
8025 do_cleanups (old_chain);
8026
8027 tp = inferior_thread ();
8028 if (tp->thread_fsm != NULL
8029 && thread_fsm_finished_p (tp->thread_fsm))
8030 {
8031 struct return_value_info *rv;
8032
8033 rv = thread_fsm_return_value (tp->thread_fsm);
8034 if (rv != NULL)
8035 print_return_value (uiout, rv);
8036 }
0c7e1a46
PA
8037}
8038
388a7084
PA
8039/* See infrun.h. */
8040
8041void
8042maybe_remove_breakpoints (void)
8043{
8044 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8045 {
8046 if (remove_breakpoints ())
8047 {
8048 target_terminal_ours_for_output ();
8049 printf_filtered (_("Cannot remove breakpoints because "
8050 "program is no longer writable.\nFurther "
8051 "execution is probably impossible.\n"));
8052 }
8053 }
8054}
8055
4c2f2a79
PA
8056/* The execution context that just caused a normal stop. */
8057
8058struct stop_context
8059{
8060 /* The stop ID. */
8061 ULONGEST stop_id;
c906108c 8062
4c2f2a79 8063 /* The event PTID. */
c906108c 8064
4c2f2a79
PA
8065 ptid_t ptid;
8066
8067 /* If stopp for a thread event, this is the thread that caused the
8068 stop. */
8069 struct thread_info *thread;
8070
8071 /* The inferior that caused the stop. */
8072 int inf_num;
8073};
8074
8075/* Returns a new stop context. If stopped for a thread event, this
8076 takes a strong reference to the thread. */
8077
8078static struct stop_context *
8079save_stop_context (void)
8080{
224c3ddb 8081 struct stop_context *sc = XNEW (struct stop_context);
4c2f2a79
PA
8082
8083 sc->stop_id = get_stop_id ();
8084 sc->ptid = inferior_ptid;
8085 sc->inf_num = current_inferior ()->num;
8086
8087 if (!ptid_equal (inferior_ptid, null_ptid))
8088 {
8089 /* Take a strong reference so that the thread can't be deleted
8090 yet. */
8091 sc->thread = inferior_thread ();
8092 sc->thread->refcount++;
8093 }
8094 else
8095 sc->thread = NULL;
8096
8097 return sc;
8098}
8099
8100/* Release a stop context previously created with save_stop_context.
8101 Releases the strong reference to the thread as well. */
8102
8103static void
8104release_stop_context_cleanup (void *arg)
8105{
9a3c8263 8106 struct stop_context *sc = (struct stop_context *) arg;
4c2f2a79
PA
8107
8108 if (sc->thread != NULL)
8109 sc->thread->refcount--;
8110 xfree (sc);
8111}
8112
8113/* Return true if the current context no longer matches the saved stop
8114 context. */
8115
8116static int
8117stop_context_changed (struct stop_context *prev)
8118{
8119 if (!ptid_equal (prev->ptid, inferior_ptid))
8120 return 1;
8121 if (prev->inf_num != current_inferior ()->num)
8122 return 1;
8123 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8124 return 1;
8125 if (get_stop_id () != prev->stop_id)
8126 return 1;
8127 return 0;
8128}
8129
8130/* See infrun.h. */
8131
8132int
96baa820 8133normal_stop (void)
c906108c 8134{
73b65bb0
DJ
8135 struct target_waitstatus last;
8136 ptid_t last_ptid;
29f49a6a 8137 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
e1316e60 8138 ptid_t pid_ptid;
73b65bb0
DJ
8139
8140 get_last_target_status (&last_ptid, &last);
8141
4c2f2a79
PA
8142 new_stop_id ();
8143
29f49a6a
PA
8144 /* If an exception is thrown from this point on, make sure to
8145 propagate GDB's knowledge of the executing state to the
8146 frontend/user running state. A QUIT is an easy exception to see
8147 here, so do this before any filtered output. */
c35b1492
PA
8148 if (!non_stop)
8149 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
e1316e60
PA
8150 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8151 || last.kind == TARGET_WAITKIND_EXITED)
8152 {
8153 /* On some targets, we may still have live threads in the
8154 inferior when we get a process exit event. E.g., for
8155 "checkpoint", when the current checkpoint/fork exits,
8156 linux-fork.c automatically switches to another fork from
8157 within target_mourn_inferior. */
8158 if (!ptid_equal (inferior_ptid, null_ptid))
8159 {
8160 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8161 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8162 }
8163 }
8164 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 8165 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 8166
b57bacec
PA
8167 /* As we're presenting a stop, and potentially removing breakpoints,
8168 update the thread list so we can tell whether there are threads
8169 running on the target. With target remote, for example, we can
8170 only learn about new threads when we explicitly update the thread
8171 list. Do this before notifying the interpreters about signal
8172 stops, end of stepping ranges, etc., so that the "new thread"
8173 output is emitted before e.g., "Program received signal FOO",
8174 instead of after. */
8175 update_thread_list ();
8176
8177 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8178 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8179
c906108c
SS
8180 /* As with the notification of thread events, we want to delay
8181 notifying the user that we've switched thread context until
8182 the inferior actually stops.
8183
73b65bb0
DJ
8184 There's no point in saying anything if the inferior has exited.
8185 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8186 "received a signal".
8187
8188 Also skip saying anything in non-stop mode. In that mode, as we
8189 don't want GDB to switch threads behind the user's back, to avoid
8190 races where the user is typing a command to apply to thread x,
8191 but GDB switches to thread y before the user finishes entering
8192 the command, fetch_inferior_event installs a cleanup to restore
8193 the current thread back to the thread the user had selected right
8194 after this event is handled, so we're not really switching, only
8195 informing of a stop. */
4f8d22e3
PA
8196 if (!non_stop
8197 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
8198 && target_has_execution
8199 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8200 && last.kind != TARGET_WAITKIND_EXITED
8201 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
8202 {
8203 target_terminal_ours_for_output ();
a3f17187 8204 printf_filtered (_("[Switching to %s]\n"),
c95310c6 8205 target_pid_to_str (inferior_ptid));
b8fa951a 8206 annotate_thread_changed ();
39f77062 8207 previous_inferior_ptid = inferior_ptid;
c906108c 8208 }
c906108c 8209
0e5bf2a8
PA
8210 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8211 {
8212 gdb_assert (sync_execution || !target_can_async_p ());
8213
8214 target_terminal_ours_for_output ();
8215 printf_filtered (_("No unwaited-for children left.\n"));
8216 }
8217
b57bacec 8218 /* Note: this depends on the update_thread_list call above. */
388a7084 8219 maybe_remove_breakpoints ();
c906108c 8220
c906108c
SS
8221 /* If an auto-display called a function and that got a signal,
8222 delete that auto-display to avoid an infinite recursion. */
8223
8224 if (stopped_by_random_signal)
8225 disable_current_display ();
8226
c906108c 8227 target_terminal_ours ();
0f641c01 8228 async_enable_stdin ();
c906108c 8229
388a7084
PA
8230 /* Let the user/frontend see the threads as stopped. */
8231 do_cleanups (old_chain);
8232
8233 /* Select innermost stack frame - i.e., current frame is frame 0,
8234 and current location is based on that. Handle the case where the
8235 dummy call is returning after being stopped. E.g. the dummy call
8236 previously hit a breakpoint. (If the dummy call returns
8237 normally, we won't reach here.) Do this before the stop hook is
8238 run, so that it doesn't get to see the temporary dummy frame,
8239 which is not where we'll present the stop. */
8240 if (has_stack_frames ())
8241 {
8242 if (stop_stack_dummy == STOP_STACK_DUMMY)
8243 {
8244 /* Pop the empty frame that contains the stack dummy. This
8245 also restores inferior state prior to the call (struct
8246 infcall_suspend_state). */
8247 struct frame_info *frame = get_current_frame ();
8248
8249 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8250 frame_pop (frame);
8251 /* frame_pop calls reinit_frame_cache as the last thing it
8252 does which means there's now no selected frame. */
8253 }
8254
8255 select_frame (get_current_frame ());
8256
8257 /* Set the current source location. */
8258 set_current_sal_from_frame (get_current_frame ());
8259 }
dd7e2d2b
PA
8260
8261 /* Look up the hook_stop and run it (CLI internally handles problem
8262 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8263 if (stop_command != NULL)
8264 {
8265 struct stop_context *saved_context = save_stop_context ();
8266 struct cleanup *old_chain
8267 = make_cleanup (release_stop_context_cleanup, saved_context);
8268
8269 catch_errors (hook_stop_stub, stop_command,
8270 "Error while running hook_stop:\n", RETURN_MASK_ALL);
8271
8272 /* If the stop hook resumes the target, then there's no point in
8273 trying to notify about the previous stop; its context is
8274 gone. Likewise if the command switches thread or inferior --
8275 the observers would print a stop for the wrong
8276 thread/inferior. */
8277 if (stop_context_changed (saved_context))
8278 {
8279 do_cleanups (old_chain);
8280 return 1;
8281 }
8282 do_cleanups (old_chain);
8283 }
dd7e2d2b 8284
388a7084
PA
8285 /* Notify observers about the stop. This is where the interpreters
8286 print the stop event. */
8287 if (!ptid_equal (inferior_ptid, null_ptid))
8288 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8289 stop_print_frame);
8290 else
8291 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 8292
243a9253
PA
8293 annotate_stopped ();
8294
48844aa6
PA
8295 if (target_has_execution)
8296 {
8297 if (last.kind != TARGET_WAITKIND_SIGNALLED
8298 && last.kind != TARGET_WAITKIND_EXITED)
8299 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8300 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8301 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8302 }
6c95b8df
PA
8303
8304 /* Try to get rid of automatically added inferiors that are no
8305 longer needed. Keeping those around slows down things linearly.
8306 Note that this never removes the current inferior. */
8307 prune_inferiors ();
4c2f2a79
PA
8308
8309 return 0;
c906108c
SS
8310}
8311
8312static int
96baa820 8313hook_stop_stub (void *cmd)
c906108c 8314{
5913bcb0 8315 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
8316 return (0);
8317}
8318\f
c5aa993b 8319int
96baa820 8320signal_stop_state (int signo)
c906108c 8321{
d6b48e9c 8322 return signal_stop[signo];
c906108c
SS
8323}
8324
c5aa993b 8325int
96baa820 8326signal_print_state (int signo)
c906108c
SS
8327{
8328 return signal_print[signo];
8329}
8330
c5aa993b 8331int
96baa820 8332signal_pass_state (int signo)
c906108c
SS
8333{
8334 return signal_program[signo];
8335}
8336
2455069d
UW
8337static void
8338signal_cache_update (int signo)
8339{
8340 if (signo == -1)
8341 {
a493e3e2 8342 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8343 signal_cache_update (signo);
8344
8345 return;
8346 }
8347
8348 signal_pass[signo] = (signal_stop[signo] == 0
8349 && signal_print[signo] == 0
ab04a2af
TT
8350 && signal_program[signo] == 1
8351 && signal_catch[signo] == 0);
2455069d
UW
8352}
8353
488f131b 8354int
7bda5e4a 8355signal_stop_update (int signo, int state)
d4f3574e
SS
8356{
8357 int ret = signal_stop[signo];
abbb1732 8358
d4f3574e 8359 signal_stop[signo] = state;
2455069d 8360 signal_cache_update (signo);
d4f3574e
SS
8361 return ret;
8362}
8363
488f131b 8364int
7bda5e4a 8365signal_print_update (int signo, int state)
d4f3574e
SS
8366{
8367 int ret = signal_print[signo];
abbb1732 8368
d4f3574e 8369 signal_print[signo] = state;
2455069d 8370 signal_cache_update (signo);
d4f3574e
SS
8371 return ret;
8372}
8373
488f131b 8374int
7bda5e4a 8375signal_pass_update (int signo, int state)
d4f3574e
SS
8376{
8377 int ret = signal_program[signo];
abbb1732 8378
d4f3574e 8379 signal_program[signo] = state;
2455069d 8380 signal_cache_update (signo);
d4f3574e
SS
8381 return ret;
8382}
8383
ab04a2af
TT
8384/* Update the global 'signal_catch' from INFO and notify the
8385 target. */
8386
8387void
8388signal_catch_update (const unsigned int *info)
8389{
8390 int i;
8391
8392 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8393 signal_catch[i] = info[i] > 0;
8394 signal_cache_update (-1);
8395 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8396}
8397
c906108c 8398static void
96baa820 8399sig_print_header (void)
c906108c 8400{
3e43a32a
MS
8401 printf_filtered (_("Signal Stop\tPrint\tPass "
8402 "to program\tDescription\n"));
c906108c
SS
8403}
8404
8405static void
2ea28649 8406sig_print_info (enum gdb_signal oursig)
c906108c 8407{
2ea28649 8408 const char *name = gdb_signal_to_name (oursig);
c906108c 8409 int name_padding = 13 - strlen (name);
96baa820 8410
c906108c
SS
8411 if (name_padding <= 0)
8412 name_padding = 0;
8413
8414 printf_filtered ("%s", name);
488f131b 8415 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8416 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8417 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8418 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8419 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8420}
8421
8422/* Specify how various signals in the inferior should be handled. */
8423
8424static void
96baa820 8425handle_command (char *args, int from_tty)
c906108c
SS
8426{
8427 char **argv;
8428 int digits, wordlen;
8429 int sigfirst, signum, siglast;
2ea28649 8430 enum gdb_signal oursig;
c906108c
SS
8431 int allsigs;
8432 int nsigs;
8433 unsigned char *sigs;
8434 struct cleanup *old_chain;
8435
8436 if (args == NULL)
8437 {
e2e0b3e5 8438 error_no_arg (_("signal to handle"));
c906108c
SS
8439 }
8440
1777feb0 8441 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8442
a493e3e2 8443 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
8444 sigs = (unsigned char *) alloca (nsigs);
8445 memset (sigs, 0, nsigs);
8446
1777feb0 8447 /* Break the command line up into args. */
c906108c 8448
d1a41061 8449 argv = gdb_buildargv (args);
7a292a7a 8450 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
8451
8452 /* Walk through the args, looking for signal oursigs, signal names, and
8453 actions. Signal numbers and signal names may be interspersed with
8454 actions, with the actions being performed for all signals cumulatively
1777feb0 8455 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
8456
8457 while (*argv != NULL)
8458 {
8459 wordlen = strlen (*argv);
8460 for (digits = 0; isdigit ((*argv)[digits]); digits++)
8461 {;
8462 }
8463 allsigs = 0;
8464 sigfirst = siglast = -1;
8465
8466 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
8467 {
8468 /* Apply action to all signals except those used by the
1777feb0 8469 debugger. Silently skip those. */
c906108c
SS
8470 allsigs = 1;
8471 sigfirst = 0;
8472 siglast = nsigs - 1;
8473 }
8474 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
8475 {
8476 SET_SIGS (nsigs, sigs, signal_stop);
8477 SET_SIGS (nsigs, sigs, signal_print);
8478 }
8479 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
8480 {
8481 UNSET_SIGS (nsigs, sigs, signal_program);
8482 }
8483 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
8484 {
8485 SET_SIGS (nsigs, sigs, signal_print);
8486 }
8487 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
8488 {
8489 SET_SIGS (nsigs, sigs, signal_program);
8490 }
8491 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
8492 {
8493 UNSET_SIGS (nsigs, sigs, signal_stop);
8494 }
8495 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
8496 {
8497 SET_SIGS (nsigs, sigs, signal_program);
8498 }
8499 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
8500 {
8501 UNSET_SIGS (nsigs, sigs, signal_print);
8502 UNSET_SIGS (nsigs, sigs, signal_stop);
8503 }
8504 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
8505 {
8506 UNSET_SIGS (nsigs, sigs, signal_program);
8507 }
8508 else if (digits > 0)
8509 {
8510 /* It is numeric. The numeric signal refers to our own
8511 internal signal numbering from target.h, not to host/target
8512 signal number. This is a feature; users really should be
8513 using symbolic names anyway, and the common ones like
8514 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8515
8516 sigfirst = siglast = (int)
2ea28649 8517 gdb_signal_from_command (atoi (*argv));
c906108c
SS
8518 if ((*argv)[digits] == '-')
8519 {
8520 siglast = (int)
2ea28649 8521 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
8522 }
8523 if (sigfirst > siglast)
8524 {
1777feb0 8525 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
8526 signum = sigfirst;
8527 sigfirst = siglast;
8528 siglast = signum;
8529 }
8530 }
8531 else
8532 {
2ea28649 8533 oursig = gdb_signal_from_name (*argv);
a493e3e2 8534 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8535 {
8536 sigfirst = siglast = (int) oursig;
8537 }
8538 else
8539 {
8540 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 8541 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
8542 }
8543 }
8544
8545 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8546 which signals to apply actions to. */
c906108c
SS
8547
8548 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8549 {
2ea28649 8550 switch ((enum gdb_signal) signum)
c906108c 8551 {
a493e3e2
PA
8552 case GDB_SIGNAL_TRAP:
8553 case GDB_SIGNAL_INT:
c906108c
SS
8554 if (!allsigs && !sigs[signum])
8555 {
9e2f0ad4 8556 if (query (_("%s is used by the debugger.\n\
3e43a32a 8557Are you sure you want to change it? "),
2ea28649 8558 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8559 {
8560 sigs[signum] = 1;
8561 }
8562 else
8563 {
a3f17187 8564 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8565 gdb_flush (gdb_stdout);
8566 }
8567 }
8568 break;
a493e3e2
PA
8569 case GDB_SIGNAL_0:
8570 case GDB_SIGNAL_DEFAULT:
8571 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8572 /* Make sure that "all" doesn't print these. */
8573 break;
8574 default:
8575 sigs[signum] = 1;
8576 break;
8577 }
8578 }
8579
8580 argv++;
8581 }
8582
3a031f65
PA
8583 for (signum = 0; signum < nsigs; signum++)
8584 if (sigs[signum])
8585 {
2455069d 8586 signal_cache_update (-1);
a493e3e2
PA
8587 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8588 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 8589
3a031f65
PA
8590 if (from_tty)
8591 {
8592 /* Show the results. */
8593 sig_print_header ();
8594 for (; signum < nsigs; signum++)
8595 if (sigs[signum])
aead7601 8596 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8597 }
8598
8599 break;
8600 }
c906108c
SS
8601
8602 do_cleanups (old_chain);
8603}
8604
de0bea00
MF
8605/* Complete the "handle" command. */
8606
8607static VEC (char_ptr) *
8608handle_completer (struct cmd_list_element *ignore,
6f937416 8609 const char *text, const char *word)
de0bea00
MF
8610{
8611 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
8612 static const char * const keywords[] =
8613 {
8614 "all",
8615 "stop",
8616 "ignore",
8617 "print",
8618 "pass",
8619 "nostop",
8620 "noignore",
8621 "noprint",
8622 "nopass",
8623 NULL,
8624 };
8625
8626 vec_signals = signal_completer (ignore, text, word);
8627 vec_keywords = complete_on_enum (keywords, word, word);
8628
8629 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
8630 VEC_free (char_ptr, vec_signals);
8631 VEC_free (char_ptr, vec_keywords);
8632 return return_val;
8633}
8634
2ea28649
PA
8635enum gdb_signal
8636gdb_signal_from_command (int num)
ed01b82c
PA
8637{
8638 if (num >= 1 && num <= 15)
2ea28649 8639 return (enum gdb_signal) num;
ed01b82c
PA
8640 error (_("Only signals 1-15 are valid as numeric signals.\n\
8641Use \"info signals\" for a list of symbolic signals."));
8642}
8643
c906108c
SS
8644/* Print current contents of the tables set by the handle command.
8645 It is possible we should just be printing signals actually used
8646 by the current target (but for things to work right when switching
8647 targets, all signals should be in the signal tables). */
8648
8649static void
96baa820 8650signals_info (char *signum_exp, int from_tty)
c906108c 8651{
2ea28649 8652 enum gdb_signal oursig;
abbb1732 8653
c906108c
SS
8654 sig_print_header ();
8655
8656 if (signum_exp)
8657 {
8658 /* First see if this is a symbol name. */
2ea28649 8659 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8660 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8661 {
8662 /* No, try numeric. */
8663 oursig =
2ea28649 8664 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8665 }
8666 sig_print_info (oursig);
8667 return;
8668 }
8669
8670 printf_filtered ("\n");
8671 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8672 for (oursig = GDB_SIGNAL_FIRST;
8673 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8674 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8675 {
8676 QUIT;
8677
a493e3e2
PA
8678 if (oursig != GDB_SIGNAL_UNKNOWN
8679 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8680 sig_print_info (oursig);
8681 }
8682
3e43a32a
MS
8683 printf_filtered (_("\nUse the \"handle\" command "
8684 "to change these tables.\n"));
c906108c 8685}
4aa995e1 8686
c709acd1
PA
8687/* Check if it makes sense to read $_siginfo from the current thread
8688 at this point. If not, throw an error. */
8689
8690static void
8691validate_siginfo_access (void)
8692{
8693 /* No current inferior, no siginfo. */
8694 if (ptid_equal (inferior_ptid, null_ptid))
8695 error (_("No thread selected."));
8696
8697 /* Don't try to read from a dead thread. */
8698 if (is_exited (inferior_ptid))
8699 error (_("The current thread has terminated"));
8700
8701 /* ... or from a spinning thread. */
8702 if (is_running (inferior_ptid))
8703 error (_("Selected thread is running."));
8704}
8705
4aa995e1
PA
8706/* The $_siginfo convenience variable is a bit special. We don't know
8707 for sure the type of the value until we actually have a chance to
7a9dd1b2 8708 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8709 also dependent on which thread you have selected.
8710
8711 1. making $_siginfo be an internalvar that creates a new value on
8712 access.
8713
8714 2. making the value of $_siginfo be an lval_computed value. */
8715
8716/* This function implements the lval_computed support for reading a
8717 $_siginfo value. */
8718
8719static void
8720siginfo_value_read (struct value *v)
8721{
8722 LONGEST transferred;
8723
c709acd1
PA
8724 validate_siginfo_access ();
8725
4aa995e1
PA
8726 transferred =
8727 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8728 NULL,
8729 value_contents_all_raw (v),
8730 value_offset (v),
8731 TYPE_LENGTH (value_type (v)));
8732
8733 if (transferred != TYPE_LENGTH (value_type (v)))
8734 error (_("Unable to read siginfo"));
8735}
8736
8737/* This function implements the lval_computed support for writing a
8738 $_siginfo value. */
8739
8740static void
8741siginfo_value_write (struct value *v, struct value *fromval)
8742{
8743 LONGEST transferred;
8744
c709acd1
PA
8745 validate_siginfo_access ();
8746
4aa995e1
PA
8747 transferred = target_write (&current_target,
8748 TARGET_OBJECT_SIGNAL_INFO,
8749 NULL,
8750 value_contents_all_raw (fromval),
8751 value_offset (v),
8752 TYPE_LENGTH (value_type (fromval)));
8753
8754 if (transferred != TYPE_LENGTH (value_type (fromval)))
8755 error (_("Unable to write siginfo"));
8756}
8757
c8f2448a 8758static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8759 {
8760 siginfo_value_read,
8761 siginfo_value_write
8762 };
8763
8764/* Return a new value with the correct type for the siginfo object of
78267919
UW
8765 the current thread using architecture GDBARCH. Return a void value
8766 if there's no object available. */
4aa995e1 8767
2c0b251b 8768static struct value *
22d2b532
SDJ
8769siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8770 void *ignore)
4aa995e1 8771{
4aa995e1 8772 if (target_has_stack
78267919
UW
8773 && !ptid_equal (inferior_ptid, null_ptid)
8774 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8775 {
78267919 8776 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8777
78267919 8778 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8779 }
8780
78267919 8781 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8782}
8783
c906108c 8784\f
16c381f0
JK
8785/* infcall_suspend_state contains state about the program itself like its
8786 registers and any signal it received when it last stopped.
8787 This state must be restored regardless of how the inferior function call
8788 ends (either successfully, or after it hits a breakpoint or signal)
8789 if the program is to properly continue where it left off. */
8790
8791struct infcall_suspend_state
7a292a7a 8792{
16c381f0 8793 struct thread_suspend_state thread_suspend;
16c381f0
JK
8794
8795 /* Other fields: */
7a292a7a 8796 CORE_ADDR stop_pc;
b89667eb 8797 struct regcache *registers;
1736ad11 8798
35515841 8799 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
8800 struct gdbarch *siginfo_gdbarch;
8801
8802 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8803 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8804 content would be invalid. */
8805 gdb_byte *siginfo_data;
b89667eb
DE
8806};
8807
16c381f0
JK
8808struct infcall_suspend_state *
8809save_infcall_suspend_state (void)
b89667eb 8810{
16c381f0 8811 struct infcall_suspend_state *inf_state;
b89667eb 8812 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8813 struct regcache *regcache = get_current_regcache ();
8814 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8815 gdb_byte *siginfo_data = NULL;
8816
8817 if (gdbarch_get_siginfo_type_p (gdbarch))
8818 {
8819 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8820 size_t len = TYPE_LENGTH (type);
8821 struct cleanup *back_to;
8822
224c3ddb 8823 siginfo_data = (gdb_byte *) xmalloc (len);
1736ad11
JK
8824 back_to = make_cleanup (xfree, siginfo_data);
8825
8826 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8827 siginfo_data, 0, len) == len)
8828 discard_cleanups (back_to);
8829 else
8830 {
8831 /* Errors ignored. */
8832 do_cleanups (back_to);
8833 siginfo_data = NULL;
8834 }
8835 }
8836
41bf6aca 8837 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
8838
8839 if (siginfo_data)
8840 {
8841 inf_state->siginfo_gdbarch = gdbarch;
8842 inf_state->siginfo_data = siginfo_data;
8843 }
b89667eb 8844
16c381f0 8845 inf_state->thread_suspend = tp->suspend;
16c381f0 8846
35515841 8847 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
8848 GDB_SIGNAL_0 anyway. */
8849 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8850
b89667eb
DE
8851 inf_state->stop_pc = stop_pc;
8852
1736ad11 8853 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
8854
8855 return inf_state;
8856}
8857
8858/* Restore inferior session state to INF_STATE. */
8859
8860void
16c381f0 8861restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8862{
8863 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8864 struct regcache *regcache = get_current_regcache ();
8865 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 8866
16c381f0 8867 tp->suspend = inf_state->thread_suspend;
16c381f0 8868
b89667eb
DE
8869 stop_pc = inf_state->stop_pc;
8870
1736ad11
JK
8871 if (inf_state->siginfo_gdbarch == gdbarch)
8872 {
8873 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
8874
8875 /* Errors ignored. */
8876 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 8877 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
8878 }
8879
b89667eb
DE
8880 /* The inferior can be gone if the user types "print exit(0)"
8881 (and perhaps other times). */
8882 if (target_has_execution)
8883 /* NB: The register write goes through to the target. */
1736ad11 8884 regcache_cpy (regcache, inf_state->registers);
803b5f95 8885
16c381f0 8886 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8887}
8888
8889static void
16c381f0 8890do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 8891{
9a3c8263 8892 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
b89667eb
DE
8893}
8894
8895struct cleanup *
16c381f0
JK
8896make_cleanup_restore_infcall_suspend_state
8897 (struct infcall_suspend_state *inf_state)
b89667eb 8898{
16c381f0 8899 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
8900}
8901
8902void
16c381f0 8903discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8904{
8905 regcache_xfree (inf_state->registers);
803b5f95 8906 xfree (inf_state->siginfo_data);
b89667eb
DE
8907 xfree (inf_state);
8908}
8909
8910struct regcache *
16c381f0 8911get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
8912{
8913 return inf_state->registers;
8914}
8915
16c381f0
JK
8916/* infcall_control_state contains state regarding gdb's control of the
8917 inferior itself like stepping control. It also contains session state like
8918 the user's currently selected frame. */
b89667eb 8919
16c381f0 8920struct infcall_control_state
b89667eb 8921{
16c381f0
JK
8922 struct thread_control_state thread_control;
8923 struct inferior_control_state inferior_control;
d82142e2
JK
8924
8925 /* Other fields: */
8926 enum stop_stack_kind stop_stack_dummy;
8927 int stopped_by_random_signal;
7a292a7a 8928
b89667eb 8929 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 8930 struct frame_id selected_frame_id;
7a292a7a
SS
8931};
8932
c906108c 8933/* Save all of the information associated with the inferior<==>gdb
b89667eb 8934 connection. */
c906108c 8935
16c381f0
JK
8936struct infcall_control_state *
8937save_infcall_control_state (void)
c906108c 8938{
8d749320
SM
8939 struct infcall_control_state *inf_status =
8940 XNEW (struct infcall_control_state);
4e1c45ea 8941 struct thread_info *tp = inferior_thread ();
d6b48e9c 8942 struct inferior *inf = current_inferior ();
7a292a7a 8943
16c381f0
JK
8944 inf_status->thread_control = tp->control;
8945 inf_status->inferior_control = inf->control;
d82142e2 8946
8358c15c 8947 tp->control.step_resume_breakpoint = NULL;
5b79abe7 8948 tp->control.exception_resume_breakpoint = NULL;
8358c15c 8949
16c381f0
JK
8950 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8951 chain. If caller's caller is walking the chain, they'll be happier if we
8952 hand them back the original chain when restore_infcall_control_state is
8953 called. */
8954 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
8955
8956 /* Other fields: */
8957 inf_status->stop_stack_dummy = stop_stack_dummy;
8958 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 8959
206415a3 8960 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 8961
7a292a7a 8962 return inf_status;
c906108c
SS
8963}
8964
c906108c 8965static int
96baa820 8966restore_selected_frame (void *args)
c906108c 8967{
488f131b 8968 struct frame_id *fid = (struct frame_id *) args;
c906108c 8969 struct frame_info *frame;
c906108c 8970
101dcfbe 8971 frame = frame_find_by_id (*fid);
c906108c 8972
aa0cd9c1
AC
8973 /* If inf_status->selected_frame_id is NULL, there was no previously
8974 selected frame. */
101dcfbe 8975 if (frame == NULL)
c906108c 8976 {
8a3fe4f8 8977 warning (_("Unable to restore previously selected frame."));
c906108c
SS
8978 return 0;
8979 }
8980
0f7d239c 8981 select_frame (frame);
c906108c
SS
8982
8983 return (1);
8984}
8985
b89667eb
DE
8986/* Restore inferior session state to INF_STATUS. */
8987
c906108c 8988void
16c381f0 8989restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 8990{
4e1c45ea 8991 struct thread_info *tp = inferior_thread ();
d6b48e9c 8992 struct inferior *inf = current_inferior ();
4e1c45ea 8993
8358c15c
JK
8994 if (tp->control.step_resume_breakpoint)
8995 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8996
5b79abe7
TT
8997 if (tp->control.exception_resume_breakpoint)
8998 tp->control.exception_resume_breakpoint->disposition
8999 = disp_del_at_next_stop;
9000
d82142e2 9001 /* Handle the bpstat_copy of the chain. */
16c381f0 9002 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 9003
16c381f0
JK
9004 tp->control = inf_status->thread_control;
9005 inf->control = inf_status->inferior_control;
d82142e2
JK
9006
9007 /* Other fields: */
9008 stop_stack_dummy = inf_status->stop_stack_dummy;
9009 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 9010
b89667eb 9011 if (target_has_stack)
c906108c 9012 {
c906108c 9013 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
9014 walking the stack might encounter a garbage pointer and
9015 error() trying to dereference it. */
488f131b
JB
9016 if (catch_errors
9017 (restore_selected_frame, &inf_status->selected_frame_id,
9018 "Unable to restore previously selected frame:\n",
9019 RETURN_MASK_ERROR) == 0)
c906108c
SS
9020 /* Error in restoring the selected frame. Select the innermost
9021 frame. */
0f7d239c 9022 select_frame (get_current_frame ());
c906108c 9023 }
c906108c 9024
72cec141 9025 xfree (inf_status);
7a292a7a 9026}
c906108c 9027
74b7792f 9028static void
16c381f0 9029do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 9030{
9a3c8263 9031 restore_infcall_control_state ((struct infcall_control_state *) sts);
74b7792f
AC
9032}
9033
9034struct cleanup *
16c381f0
JK
9035make_cleanup_restore_infcall_control_state
9036 (struct infcall_control_state *inf_status)
74b7792f 9037{
16c381f0 9038 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
9039}
9040
c906108c 9041void
16c381f0 9042discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 9043{
8358c15c
JK
9044 if (inf_status->thread_control.step_resume_breakpoint)
9045 inf_status->thread_control.step_resume_breakpoint->disposition
9046 = disp_del_at_next_stop;
9047
5b79abe7
TT
9048 if (inf_status->thread_control.exception_resume_breakpoint)
9049 inf_status->thread_control.exception_resume_breakpoint->disposition
9050 = disp_del_at_next_stop;
9051
1777feb0 9052 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 9053 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 9054
72cec141 9055 xfree (inf_status);
7a292a7a 9056}
b89667eb 9057\f
ca6724c1
KB
9058/* restore_inferior_ptid() will be used by the cleanup machinery
9059 to restore the inferior_ptid value saved in a call to
9060 save_inferior_ptid(). */
ce696e05
KB
9061
9062static void
9063restore_inferior_ptid (void *arg)
9064{
9a3c8263 9065 ptid_t *saved_ptid_ptr = (ptid_t *) arg;
abbb1732 9066
ce696e05
KB
9067 inferior_ptid = *saved_ptid_ptr;
9068 xfree (arg);
9069}
9070
9071/* Save the value of inferior_ptid so that it may be restored by a
9072 later call to do_cleanups(). Returns the struct cleanup pointer
9073 needed for later doing the cleanup. */
9074
9075struct cleanup *
9076save_inferior_ptid (void)
9077{
8d749320 9078 ptid_t *saved_ptid_ptr = XNEW (ptid_t);
ce696e05 9079
ce696e05
KB
9080 *saved_ptid_ptr = inferior_ptid;
9081 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
9082}
0c557179 9083
7f89fd65 9084/* See infrun.h. */
0c557179
SDJ
9085
9086void
9087clear_exit_convenience_vars (void)
9088{
9089 clear_internalvar (lookup_internalvar ("_exitsignal"));
9090 clear_internalvar (lookup_internalvar ("_exitcode"));
9091}
c5aa993b 9092\f
488f131b 9093
b2175913
MS
9094/* User interface for reverse debugging:
9095 Set exec-direction / show exec-direction commands
9096 (returns error unless target implements to_set_exec_direction method). */
9097
170742de 9098enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
9099static const char exec_forward[] = "forward";
9100static const char exec_reverse[] = "reverse";
9101static const char *exec_direction = exec_forward;
40478521 9102static const char *const exec_direction_names[] = {
b2175913
MS
9103 exec_forward,
9104 exec_reverse,
9105 NULL
9106};
9107
9108static void
9109set_exec_direction_func (char *args, int from_tty,
9110 struct cmd_list_element *cmd)
9111{
9112 if (target_can_execute_reverse)
9113 {
9114 if (!strcmp (exec_direction, exec_forward))
9115 execution_direction = EXEC_FORWARD;
9116 else if (!strcmp (exec_direction, exec_reverse))
9117 execution_direction = EXEC_REVERSE;
9118 }
8bbed405
MS
9119 else
9120 {
9121 exec_direction = exec_forward;
9122 error (_("Target does not support this operation."));
9123 }
b2175913
MS
9124}
9125
9126static void
9127show_exec_direction_func (struct ui_file *out, int from_tty,
9128 struct cmd_list_element *cmd, const char *value)
9129{
9130 switch (execution_direction) {
9131 case EXEC_FORWARD:
9132 fprintf_filtered (out, _("Forward.\n"));
9133 break;
9134 case EXEC_REVERSE:
9135 fprintf_filtered (out, _("Reverse.\n"));
9136 break;
b2175913 9137 default:
d8b34453
PA
9138 internal_error (__FILE__, __LINE__,
9139 _("bogus execution_direction value: %d"),
9140 (int) execution_direction);
b2175913
MS
9141 }
9142}
9143
d4db2f36
PA
9144static void
9145show_schedule_multiple (struct ui_file *file, int from_tty,
9146 struct cmd_list_element *c, const char *value)
9147{
3e43a32a
MS
9148 fprintf_filtered (file, _("Resuming the execution of threads "
9149 "of all processes is %s.\n"), value);
d4db2f36 9150}
ad52ddc6 9151
22d2b532
SDJ
9152/* Implementation of `siginfo' variable. */
9153
9154static const struct internalvar_funcs siginfo_funcs =
9155{
9156 siginfo_make_value,
9157 NULL,
9158 NULL
9159};
9160
372316f1
PA
9161/* Callback for infrun's target events source. This is marked when a
9162 thread has a pending status to process. */
9163
9164static void
9165infrun_async_inferior_event_handler (gdb_client_data data)
9166{
372316f1
PA
9167 inferior_event_handler (INF_REG_EVENT, NULL);
9168}
9169
c906108c 9170void
96baa820 9171_initialize_infrun (void)
c906108c 9172{
52f0bd74
AC
9173 int i;
9174 int numsigs;
de0bea00 9175 struct cmd_list_element *c;
c906108c 9176
372316f1
PA
9177 /* Register extra event sources in the event loop. */
9178 infrun_async_inferior_event_token
9179 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9180
1bedd215
AC
9181 add_info ("signals", signals_info, _("\
9182What debugger does when program gets various signals.\n\
9183Specify a signal as argument to print info on that signal only."));
c906108c
SS
9184 add_info_alias ("handle", "signals", 0);
9185
de0bea00 9186 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9187Specify how to handle signals.\n\
486c7739 9188Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9189Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9190If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9191will be displayed instead.\n\
9192\n\
c906108c
SS
9193Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9194from 1-15 are allowed for compatibility with old versions of GDB.\n\
9195Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9196The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9197used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9198\n\
1bedd215 9199Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9200\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9201Stop means reenter debugger if this signal happens (implies print).\n\
9202Print means print a message if this signal happens.\n\
9203Pass means let program see this signal; otherwise program doesn't know.\n\
9204Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9205Pass and Stop may be combined.\n\
9206\n\
9207Multiple signals may be specified. Signal numbers and signal names\n\
9208may be interspersed with actions, with the actions being performed for\n\
9209all signals cumulatively specified."));
de0bea00 9210 set_cmd_completer (c, handle_completer);
486c7739 9211
c906108c 9212 if (!dbx_commands)
1a966eab
AC
9213 stop_command = add_cmd ("stop", class_obscure,
9214 not_just_help_class_command, _("\
9215There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9216This allows you to set a list of commands to be run each time execution\n\
1a966eab 9217of the program stops."), &cmdlist);
c906108c 9218
ccce17b0 9219 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9220Set inferior debugging."), _("\
9221Show inferior debugging."), _("\
9222When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9223 NULL,
9224 show_debug_infrun,
9225 &setdebuglist, &showdebuglist);
527159b7 9226
3e43a32a
MS
9227 add_setshow_boolean_cmd ("displaced", class_maintenance,
9228 &debug_displaced, _("\
237fc4c9
PA
9229Set displaced stepping debugging."), _("\
9230Show displaced stepping debugging."), _("\
9231When non-zero, displaced stepping specific debugging is enabled."),
9232 NULL,
9233 show_debug_displaced,
9234 &setdebuglist, &showdebuglist);
9235
ad52ddc6
PA
9236 add_setshow_boolean_cmd ("non-stop", no_class,
9237 &non_stop_1, _("\
9238Set whether gdb controls the inferior in non-stop mode."), _("\
9239Show whether gdb controls the inferior in non-stop mode."), _("\
9240When debugging a multi-threaded program and this setting is\n\
9241off (the default, also called all-stop mode), when one thread stops\n\
9242(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9243all other threads in the program while you interact with the thread of\n\
9244interest. When you continue or step a thread, you can allow the other\n\
9245threads to run, or have them remain stopped, but while you inspect any\n\
9246thread's state, all threads stop.\n\
9247\n\
9248In non-stop mode, when one thread stops, other threads can continue\n\
9249to run freely. You'll be able to step each thread independently,\n\
9250leave it stopped or free to run as needed."),
9251 set_non_stop,
9252 show_non_stop,
9253 &setlist,
9254 &showlist);
9255
a493e3e2 9256 numsigs = (int) GDB_SIGNAL_LAST;
8d749320
SM
9257 signal_stop = XNEWVEC (unsigned char, numsigs);
9258 signal_print = XNEWVEC (unsigned char, numsigs);
9259 signal_program = XNEWVEC (unsigned char, numsigs);
9260 signal_catch = XNEWVEC (unsigned char, numsigs);
9261 signal_pass = XNEWVEC (unsigned char, numsigs);
c906108c
SS
9262 for (i = 0; i < numsigs; i++)
9263 {
9264 signal_stop[i] = 1;
9265 signal_print[i] = 1;
9266 signal_program[i] = 1;
ab04a2af 9267 signal_catch[i] = 0;
c906108c
SS
9268 }
9269
4d9d9d04
PA
9270 /* Signals caused by debugger's own actions should not be given to
9271 the program afterwards.
9272
9273 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9274 explicitly specifies that it should be delivered to the target
9275 program. Typically, that would occur when a user is debugging a
9276 target monitor on a simulator: the target monitor sets a
9277 breakpoint; the simulator encounters this breakpoint and halts
9278 the simulation handing control to GDB; GDB, noting that the stop
9279 address doesn't map to any known breakpoint, returns control back
9280 to the simulator; the simulator then delivers the hardware
9281 equivalent of a GDB_SIGNAL_TRAP to the program being
9282 debugged. */
a493e3e2
PA
9283 signal_program[GDB_SIGNAL_TRAP] = 0;
9284 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9285
9286 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9287 signal_stop[GDB_SIGNAL_ALRM] = 0;
9288 signal_print[GDB_SIGNAL_ALRM] = 0;
9289 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9290 signal_print[GDB_SIGNAL_VTALRM] = 0;
9291 signal_stop[GDB_SIGNAL_PROF] = 0;
9292 signal_print[GDB_SIGNAL_PROF] = 0;
9293 signal_stop[GDB_SIGNAL_CHLD] = 0;
9294 signal_print[GDB_SIGNAL_CHLD] = 0;
9295 signal_stop[GDB_SIGNAL_IO] = 0;
9296 signal_print[GDB_SIGNAL_IO] = 0;
9297 signal_stop[GDB_SIGNAL_POLL] = 0;
9298 signal_print[GDB_SIGNAL_POLL] = 0;
9299 signal_stop[GDB_SIGNAL_URG] = 0;
9300 signal_print[GDB_SIGNAL_URG] = 0;
9301 signal_stop[GDB_SIGNAL_WINCH] = 0;
9302 signal_print[GDB_SIGNAL_WINCH] = 0;
9303 signal_stop[GDB_SIGNAL_PRIO] = 0;
9304 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9305
cd0fc7c3
SS
9306 /* These signals are used internally by user-level thread
9307 implementations. (See signal(5) on Solaris.) Like the above
9308 signals, a healthy program receives and handles them as part of
9309 its normal operation. */
a493e3e2
PA
9310 signal_stop[GDB_SIGNAL_LWP] = 0;
9311 signal_print[GDB_SIGNAL_LWP] = 0;
9312 signal_stop[GDB_SIGNAL_WAITING] = 0;
9313 signal_print[GDB_SIGNAL_WAITING] = 0;
9314 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9315 signal_print[GDB_SIGNAL_CANCEL] = 0;
cd0fc7c3 9316
2455069d
UW
9317 /* Update cached state. */
9318 signal_cache_update (-1);
9319
85c07804
AC
9320 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9321 &stop_on_solib_events, _("\
9322Set stopping for shared library events."), _("\
9323Show stopping for shared library events."), _("\
c906108c
SS
9324If nonzero, gdb will give control to the user when the dynamic linker\n\
9325notifies gdb of shared library events. The most common event of interest\n\
85c07804 9326to the user would be loading/unloading of a new library."),
f9e14852 9327 set_stop_on_solib_events,
920d2a44 9328 show_stop_on_solib_events,
85c07804 9329 &setlist, &showlist);
c906108c 9330
7ab04401
AC
9331 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9332 follow_fork_mode_kind_names,
9333 &follow_fork_mode_string, _("\
9334Set debugger response to a program call of fork or vfork."), _("\
9335Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9336A fork or vfork creates a new process. follow-fork-mode can be:\n\
9337 parent - the original process is debugged after a fork\n\
9338 child - the new process is debugged after a fork\n\
ea1dd7bc 9339The unfollowed process will continue to run.\n\
7ab04401
AC
9340By default, the debugger will follow the parent process."),
9341 NULL,
920d2a44 9342 show_follow_fork_mode_string,
7ab04401
AC
9343 &setlist, &showlist);
9344
6c95b8df
PA
9345 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9346 follow_exec_mode_names,
9347 &follow_exec_mode_string, _("\
9348Set debugger response to a program call of exec."), _("\
9349Show debugger response to a program call of exec."), _("\
9350An exec call replaces the program image of a process.\n\
9351\n\
9352follow-exec-mode can be:\n\
9353\n\
cce7e648 9354 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9355to this new inferior. The program the process was running before\n\
9356the exec call can be restarted afterwards by restarting the original\n\
9357inferior.\n\
9358\n\
9359 same - the debugger keeps the process bound to the same inferior.\n\
9360The new executable image replaces the previous executable loaded in\n\
9361the inferior. Restarting the inferior after the exec call restarts\n\
9362the executable the process was running after the exec call.\n\
9363\n\
9364By default, the debugger will use the same inferior."),
9365 NULL,
9366 show_follow_exec_mode_string,
9367 &setlist, &showlist);
9368
7ab04401
AC
9369 add_setshow_enum_cmd ("scheduler-locking", class_run,
9370 scheduler_enums, &scheduler_mode, _("\
9371Set mode for locking scheduler during execution."), _("\
9372Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9373off == no locking (threads may preempt at any time)\n\
9374on == full locking (no thread except the current thread may run)\n\
9375 This applies to both normal execution and replay mode.\n\
9376step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9377 In this mode, other threads may run during other commands.\n\
9378 This applies to both normal execution and replay mode.\n\
9379replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9380 set_schedlock_func, /* traps on target vector */
920d2a44 9381 show_scheduler_mode,
7ab04401 9382 &setlist, &showlist);
5fbbeb29 9383
d4db2f36
PA
9384 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9385Set mode for resuming threads of all processes."), _("\
9386Show mode for resuming threads of all processes."), _("\
9387When on, execution commands (such as 'continue' or 'next') resume all\n\
9388threads of all processes. When off (which is the default), execution\n\
9389commands only resume the threads of the current process. The set of\n\
9390threads that are resumed is further refined by the scheduler-locking\n\
9391mode (see help set scheduler-locking)."),
9392 NULL,
9393 show_schedule_multiple,
9394 &setlist, &showlist);
9395
5bf193a2
AC
9396 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9397Set mode of the step operation."), _("\
9398Show mode of the step operation."), _("\
9399When set, doing a step over a function without debug line information\n\
9400will stop at the first instruction of that function. Otherwise, the\n\
9401function is skipped and the step command stops at a different source line."),
9402 NULL,
920d2a44 9403 show_step_stop_if_no_debug,
5bf193a2 9404 &setlist, &showlist);
ca6724c1 9405
72d0e2c5
YQ
9406 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9407 &can_use_displaced_stepping, _("\
237fc4c9
PA
9408Set debugger's willingness to use displaced stepping."), _("\
9409Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9410If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9411supported by the target architecture. If off, gdb will not use displaced\n\
9412stepping to step over breakpoints, even if such is supported by the target\n\
9413architecture. If auto (which is the default), gdb will use displaced stepping\n\
9414if the target architecture supports it and non-stop mode is active, but will not\n\
9415use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9416 NULL,
9417 show_can_use_displaced_stepping,
9418 &setlist, &showlist);
237fc4c9 9419
b2175913
MS
9420 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9421 &exec_direction, _("Set direction of execution.\n\
9422Options are 'forward' or 'reverse'."),
9423 _("Show direction of execution (forward/reverse)."),
9424 _("Tells gdb whether to execute forward or backward."),
9425 set_exec_direction_func, show_exec_direction_func,
9426 &setlist, &showlist);
9427
6c95b8df
PA
9428 /* Set/show detach-on-fork: user-settable mode. */
9429
9430 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9431Set whether gdb will detach the child of a fork."), _("\
9432Show whether gdb will detach the child of a fork."), _("\
9433Tells gdb whether to detach the child of a fork."),
9434 NULL, NULL, &setlist, &showlist);
9435
03583c20
UW
9436 /* Set/show disable address space randomization mode. */
9437
9438 add_setshow_boolean_cmd ("disable-randomization", class_support,
9439 &disable_randomization, _("\
9440Set disabling of debuggee's virtual address space randomization."), _("\
9441Show disabling of debuggee's virtual address space randomization."), _("\
9442When this mode is on (which is the default), randomization of the virtual\n\
9443address space is disabled. Standalone programs run with the randomization\n\
9444enabled by default on some platforms."),
9445 &set_disable_randomization,
9446 &show_disable_randomization,
9447 &setlist, &showlist);
9448
ca6724c1 9449 /* ptid initializations */
ca6724c1
KB
9450 inferior_ptid = null_ptid;
9451 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
9452
9453 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 9454 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 9455 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 9456 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
9457
9458 /* Explicitly create without lookup, since that tries to create a
9459 value with a void typed value, and when we get here, gdbarch
9460 isn't initialized yet. At this point, we're quite sure there
9461 isn't another convenience variable of the same name. */
22d2b532 9462 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9463
9464 add_setshow_boolean_cmd ("observer", no_class,
9465 &observer_mode_1, _("\
9466Set whether gdb controls the inferior in observer mode."), _("\
9467Show whether gdb controls the inferior in observer mode."), _("\
9468In observer mode, GDB can get data from the inferior, but not\n\
9469affect its execution. Registers and memory may not be changed,\n\
9470breakpoints may not be set, and the program cannot be interrupted\n\
9471or signalled."),
9472 set_observer_mode,
9473 show_observer_mode,
9474 &setlist,
9475 &showlist);
c906108c 9476}
This page took 2.136029 seconds and 4 git commands to generate.