* archive64.c (bfd_elf64_archive_write_armap): Fix buffer overrun
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
6aba47ca 4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
9b254dd1 5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
4c38e0a4 6 2008, 2009, 2010 Free Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include <ctype.h>
26#include "symtab.h"
27#include "frame.h"
28#include "inferior.h"
60250e8b 29#include "exceptions.h"
c906108c 30#include "breakpoint.h"
03f2053f 31#include "gdb_wait.h"
c906108c
SS
32#include "gdbcore.h"
33#include "gdbcmd.h"
210661e7 34#include "cli/cli-script.h"
c906108c
SS
35#include "target.h"
36#include "gdbthread.h"
37#include "annotate.h"
1adeb98a 38#include "symfile.h"
7a292a7a 39#include "top.h"
c906108c 40#include <signal.h>
2acceee2 41#include "inf-loop.h"
4e052eda 42#include "regcache.h"
fd0407d6 43#include "value.h"
06600e06 44#include "observer.h"
f636b87d 45#include "language.h"
a77053c2 46#include "solib.h"
f17517ea 47#include "main.h"
9f976b41 48#include "gdb_assert.h"
034dad6f 49#include "mi/mi-common.h"
4f8d22e3 50#include "event-top.h"
96429cc8 51#include "record.h"
edb3359d 52#include "inline-frame.h"
4efc6507 53#include "jit.h"
06cd862c 54#include "tracepoint.h"
c906108c
SS
55
56/* Prototypes for local functions */
57
96baa820 58static void signals_info (char *, int);
c906108c 59
96baa820 60static void handle_command (char *, int);
c906108c 61
96baa820 62static void sig_print_info (enum target_signal);
c906108c 63
96baa820 64static void sig_print_header (void);
c906108c 65
74b7792f 66static void resume_cleanups (void *);
c906108c 67
96baa820 68static int hook_stop_stub (void *);
c906108c 69
96baa820
JM
70static int restore_selected_frame (void *);
71
4ef3f3be 72static int follow_fork (void);
96baa820
JM
73
74static void set_schedlock_func (char *args, int from_tty,
488f131b 75 struct cmd_list_element *c);
96baa820 76
4e1c45ea 77static int currently_stepping (struct thread_info *tp);
96baa820 78
b3444185
PA
79static int currently_stepping_or_nexting_callback (struct thread_info *tp,
80 void *data);
a7212384 81
96baa820
JM
82static void xdb_handle_command (char *args, int from_tty);
83
6a6b96b9 84static int prepare_to_proceed (int);
ea67f13b 85
96baa820 86void _initialize_infrun (void);
43ff13b4 87
e58b0e63
PA
88void nullify_last_target_wait_ptid (void);
89
5fbbeb29
CF
90/* When set, stop the 'step' command if we enter a function which has
91 no line number information. The normal behavior is that we step
92 over such function. */
93int step_stop_if_no_debug = 0;
920d2a44
AC
94static void
95show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
96 struct cmd_list_element *c, const char *value)
97{
98 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
99}
5fbbeb29 100
43ff13b4 101/* In asynchronous mode, but simulating synchronous execution. */
96baa820 102
43ff13b4
JM
103int sync_execution = 0;
104
c906108c
SS
105/* wait_for_inferior and normal_stop use this to notify the user
106 when the inferior stopped in a different thread than it had been
96baa820
JM
107 running in. */
108
39f77062 109static ptid_t previous_inferior_ptid;
7a292a7a 110
6c95b8df
PA
111/* Default behavior is to detach newly forked processes (legacy). */
112int detach_fork = 1;
113
237fc4c9
PA
114int debug_displaced = 0;
115static void
116show_debug_displaced (struct ui_file *file, int from_tty,
117 struct cmd_list_element *c, const char *value)
118{
119 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
120}
121
527159b7 122static int debug_infrun = 0;
920d2a44
AC
123static void
124show_debug_infrun (struct ui_file *file, int from_tty,
125 struct cmd_list_element *c, const char *value)
126{
127 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
128}
527159b7 129
d4f3574e
SS
130/* If the program uses ELF-style shared libraries, then calls to
131 functions in shared libraries go through stubs, which live in a
132 table called the PLT (Procedure Linkage Table). The first time the
133 function is called, the stub sends control to the dynamic linker,
134 which looks up the function's real address, patches the stub so
135 that future calls will go directly to the function, and then passes
136 control to the function.
137
138 If we are stepping at the source level, we don't want to see any of
139 this --- we just want to skip over the stub and the dynamic linker.
140 The simple approach is to single-step until control leaves the
141 dynamic linker.
142
ca557f44
AC
143 However, on some systems (e.g., Red Hat's 5.2 distribution) the
144 dynamic linker calls functions in the shared C library, so you
145 can't tell from the PC alone whether the dynamic linker is still
146 running. In this case, we use a step-resume breakpoint to get us
147 past the dynamic linker, as if we were using "next" to step over a
148 function call.
d4f3574e 149
cfd8ab24 150 in_solib_dynsym_resolve_code() says whether we're in the dynamic
d4f3574e
SS
151 linker code or not. Normally, this means we single-step. However,
152 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
153 address where we can place a step-resume breakpoint to get past the
154 linker's symbol resolution function.
155
cfd8ab24 156 in_solib_dynsym_resolve_code() can generally be implemented in a
d4f3574e
SS
157 pretty portable way, by comparing the PC against the address ranges
158 of the dynamic linker's sections.
159
160 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
161 it depends on internal details of the dynamic linker. It's usually
162 not too hard to figure out where to put a breakpoint, but it
163 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
164 sanity checking. If it can't figure things out, returning zero and
165 getting the (possibly confusing) stepping behavior is better than
166 signalling an error, which will obscure the change in the
167 inferior's state. */
c906108c 168
c906108c
SS
169/* This function returns TRUE if pc is the address of an instruction
170 that lies within the dynamic linker (such as the event hook, or the
171 dld itself).
172
173 This function must be used only when a dynamic linker event has
174 been caught, and the inferior is being stepped out of the hook, or
175 undefined results are guaranteed. */
176
177#ifndef SOLIB_IN_DYNAMIC_LINKER
178#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
179#endif
180
d914c394
SS
181/* "Observer mode" is somewhat like a more extreme version of
182 non-stop, in which all GDB operations that might affect the
183 target's execution have been disabled. */
184
185static int non_stop_1 = 0;
186
187int observer_mode = 0;
188static int observer_mode_1 = 0;
189
190static void
191set_observer_mode (char *args, int from_tty,
192 struct cmd_list_element *c)
193{
194 extern int pagination_enabled;
195
196 if (target_has_execution)
197 {
198 observer_mode_1 = observer_mode;
199 error (_("Cannot change this setting while the inferior is running."));
200 }
201
202 observer_mode = observer_mode_1;
203
204 may_write_registers = !observer_mode;
205 may_write_memory = !observer_mode;
206 may_insert_breakpoints = !observer_mode;
207 may_insert_tracepoints = !observer_mode;
208 /* We can insert fast tracepoints in or out of observer mode,
209 but enable them if we're going into this mode. */
210 if (observer_mode)
211 may_insert_fast_tracepoints = 1;
212 may_stop = !observer_mode;
213 update_target_permissions ();
214
215 /* Going *into* observer mode we must force non-stop, then
216 going out we leave it that way. */
217 if (observer_mode)
218 {
219 target_async_permitted = 1;
220 pagination_enabled = 0;
221 non_stop = non_stop_1 = 1;
222 }
223
224 if (from_tty)
225 printf_filtered (_("Observer mode is now %s.\n"),
226 (observer_mode ? "on" : "off"));
227}
228
229static void
230show_observer_mode (struct ui_file *file, int from_tty,
231 struct cmd_list_element *c, const char *value)
232{
233 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
234}
235
236/* This updates the value of observer mode based on changes in
237 permissions. Note that we are deliberately ignoring the values of
238 may-write-registers and may-write-memory, since the user may have
239 reason to enable these during a session, for instance to turn on a
240 debugging-related global. */
241
242void
243update_observer_mode (void)
244{
245 int newval;
246
247 newval = (!may_insert_breakpoints
248 && !may_insert_tracepoints
249 && may_insert_fast_tracepoints
250 && !may_stop
251 && non_stop);
252
253 /* Let the user know if things change. */
254 if (newval != observer_mode)
255 printf_filtered (_("Observer mode is now %s.\n"),
256 (newval ? "on" : "off"));
257
258 observer_mode = observer_mode_1 = newval;
259}
c2c6d25f 260
c906108c
SS
261/* Tables of how to react to signals; the user sets them. */
262
263static unsigned char *signal_stop;
264static unsigned char *signal_print;
265static unsigned char *signal_program;
266
267#define SET_SIGS(nsigs,sigs,flags) \
268 do { \
269 int signum = (nsigs); \
270 while (signum-- > 0) \
271 if ((sigs)[signum]) \
272 (flags)[signum] = 1; \
273 } while (0)
274
275#define UNSET_SIGS(nsigs,sigs,flags) \
276 do { \
277 int signum = (nsigs); \
278 while (signum-- > 0) \
279 if ((sigs)[signum]) \
280 (flags)[signum] = 0; \
281 } while (0)
282
39f77062
KB
283/* Value to pass to target_resume() to cause all threads to resume */
284
edb3359d 285#define RESUME_ALL minus_one_ptid
c906108c
SS
286
287/* Command list pointer for the "stop" placeholder. */
288
289static struct cmd_list_element *stop_command;
290
c906108c
SS
291/* Function inferior was in as of last step command. */
292
293static struct symbol *step_start_function;
294
c906108c
SS
295/* Nonzero if we want to give control to the user when we're notified
296 of shared library events by the dynamic linker. */
297static int stop_on_solib_events;
920d2a44
AC
298static void
299show_stop_on_solib_events (struct ui_file *file, int from_tty,
300 struct cmd_list_element *c, const char *value)
301{
302 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
303 value);
304}
c906108c 305
c906108c
SS
306/* Nonzero means expecting a trace trap
307 and should stop the inferior and return silently when it happens. */
308
309int stop_after_trap;
310
642fd101
DE
311/* Save register contents here when executing a "finish" command or are
312 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
313 Thus this contains the return value from the called function (assuming
314 values are returned in a register). */
315
72cec141 316struct regcache *stop_registers;
c906108c 317
c906108c
SS
318/* Nonzero after stop if current stack frame should be printed. */
319
320static int stop_print_frame;
321
e02bc4cc 322/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
323 returned by target_wait()/deprecated_target_wait_hook(). This
324 information is returned by get_last_target_status(). */
39f77062 325static ptid_t target_last_wait_ptid;
e02bc4cc
DS
326static struct target_waitstatus target_last_waitstatus;
327
0d1e5fa7
PA
328static void context_switch (ptid_t ptid);
329
4e1c45ea 330void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7
PA
331
332void init_infwait_state (void);
a474d7c2 333
53904c9e
AC
334static const char follow_fork_mode_child[] = "child";
335static const char follow_fork_mode_parent[] = "parent";
336
488f131b 337static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
338 follow_fork_mode_child,
339 follow_fork_mode_parent,
340 NULL
ef346e04 341};
c906108c 342
53904c9e 343static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
344static void
345show_follow_fork_mode_string (struct ui_file *file, int from_tty,
346 struct cmd_list_element *c, const char *value)
347{
348 fprintf_filtered (file, _("\
349Debugger response to a program call of fork or vfork is \"%s\".\n"),
350 value);
351}
c906108c
SS
352\f
353
e58b0e63
PA
354/* Tell the target to follow the fork we're stopped at. Returns true
355 if the inferior should be resumed; false, if the target for some
356 reason decided it's best not to resume. */
357
6604731b 358static int
4ef3f3be 359follow_fork (void)
c906108c 360{
ea1dd7bc 361 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
362 int should_resume = 1;
363 struct thread_info *tp;
364
365 /* Copy user stepping state to the new inferior thread. FIXME: the
366 followed fork child thread should have a copy of most of the
4e3990f4
DE
367 parent thread structure's run control related fields, not just these.
368 Initialized to avoid "may be used uninitialized" warnings from gcc. */
369 struct breakpoint *step_resume_breakpoint = NULL;
370 CORE_ADDR step_range_start = 0;
371 CORE_ADDR step_range_end = 0;
372 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
373
374 if (!non_stop)
375 {
376 ptid_t wait_ptid;
377 struct target_waitstatus wait_status;
378
379 /* Get the last target status returned by target_wait(). */
380 get_last_target_status (&wait_ptid, &wait_status);
381
382 /* If not stopped at a fork event, then there's nothing else to
383 do. */
384 if (wait_status.kind != TARGET_WAITKIND_FORKED
385 && wait_status.kind != TARGET_WAITKIND_VFORKED)
386 return 1;
387
388 /* Check if we switched over from WAIT_PTID, since the event was
389 reported. */
390 if (!ptid_equal (wait_ptid, minus_one_ptid)
391 && !ptid_equal (inferior_ptid, wait_ptid))
392 {
393 /* We did. Switch back to WAIT_PTID thread, to tell the
394 target to follow it (in either direction). We'll
395 afterwards refuse to resume, and inform the user what
396 happened. */
397 switch_to_thread (wait_ptid);
398 should_resume = 0;
399 }
400 }
401
402 tp = inferior_thread ();
403
404 /* If there were any forks/vforks that were caught and are now to be
405 followed, then do so now. */
406 switch (tp->pending_follow.kind)
407 {
408 case TARGET_WAITKIND_FORKED:
409 case TARGET_WAITKIND_VFORKED:
410 {
411 ptid_t parent, child;
412
413 /* If the user did a next/step, etc, over a fork call,
414 preserve the stepping state in the fork child. */
415 if (follow_child && should_resume)
416 {
417 step_resume_breakpoint
418 = clone_momentary_breakpoint (tp->step_resume_breakpoint);
419 step_range_start = tp->step_range_start;
420 step_range_end = tp->step_range_end;
421 step_frame_id = tp->step_frame_id;
422
423 /* For now, delete the parent's sr breakpoint, otherwise,
424 parent/child sr breakpoints are considered duplicates,
425 and the child version will not be installed. Remove
426 this when the breakpoints module becomes aware of
427 inferiors and address spaces. */
428 delete_step_resume_breakpoint (tp);
429 tp->step_range_start = 0;
430 tp->step_range_end = 0;
431 tp->step_frame_id = null_frame_id;
432 }
433
434 parent = inferior_ptid;
435 child = tp->pending_follow.value.related_pid;
436
437 /* Tell the target to do whatever is necessary to follow
438 either parent or child. */
439 if (target_follow_fork (follow_child))
440 {
441 /* Target refused to follow, or there's some other reason
442 we shouldn't resume. */
443 should_resume = 0;
444 }
445 else
446 {
447 /* This pending follow fork event is now handled, one way
448 or another. The previous selected thread may be gone
449 from the lists by now, but if it is still around, need
450 to clear the pending follow request. */
e09875d4 451 tp = find_thread_ptid (parent);
e58b0e63
PA
452 if (tp)
453 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
454
455 /* This makes sure we don't try to apply the "Switched
456 over from WAIT_PID" logic above. */
457 nullify_last_target_wait_ptid ();
458
459 /* If we followed the child, switch to it... */
460 if (follow_child)
461 {
462 switch_to_thread (child);
463
464 /* ... and preserve the stepping state, in case the
465 user was stepping over the fork call. */
466 if (should_resume)
467 {
468 tp = inferior_thread ();
469 tp->step_resume_breakpoint = step_resume_breakpoint;
470 tp->step_range_start = step_range_start;
471 tp->step_range_end = step_range_end;
472 tp->step_frame_id = step_frame_id;
473 }
474 else
475 {
476 /* If we get here, it was because we're trying to
477 resume from a fork catchpoint, but, the user
478 has switched threads away from the thread that
479 forked. In that case, the resume command
480 issued is most likely not applicable to the
481 child, so just warn, and refuse to resume. */
482 warning (_("\
483Not resuming: switched threads before following fork child.\n"));
484 }
485
486 /* Reset breakpoints in the child as appropriate. */
487 follow_inferior_reset_breakpoints ();
488 }
489 else
490 switch_to_thread (parent);
491 }
492 }
493 break;
494 case TARGET_WAITKIND_SPURIOUS:
495 /* Nothing to follow. */
496 break;
497 default:
498 internal_error (__FILE__, __LINE__,
499 "Unexpected pending_follow.kind %d\n",
500 tp->pending_follow.kind);
501 break;
502 }
c906108c 503
e58b0e63 504 return should_resume;
c906108c
SS
505}
506
6604731b
DJ
507void
508follow_inferior_reset_breakpoints (void)
c906108c 509{
4e1c45ea
PA
510 struct thread_info *tp = inferior_thread ();
511
6604731b
DJ
512 /* Was there a step_resume breakpoint? (There was if the user
513 did a "next" at the fork() call.) If so, explicitly reset its
514 thread number.
515
516 step_resumes are a form of bp that are made to be per-thread.
517 Since we created the step_resume bp when the parent process
518 was being debugged, and now are switching to the child process,
519 from the breakpoint package's viewpoint, that's a switch of
520 "threads". We must update the bp's notion of which thread
521 it is for, or it'll be ignored when it triggers. */
522
4e1c45ea
PA
523 if (tp->step_resume_breakpoint)
524 breakpoint_re_set_thread (tp->step_resume_breakpoint);
6604731b
DJ
525
526 /* Reinsert all breakpoints in the child. The user may have set
527 breakpoints after catching the fork, in which case those
528 were never set in the child, but only in the parent. This makes
529 sure the inserted breakpoints match the breakpoint list. */
530
531 breakpoint_re_set ();
532 insert_breakpoints ();
c906108c 533}
c906108c 534
6c95b8df
PA
535/* The child has exited or execed: resume threads of the parent the
536 user wanted to be executing. */
537
538static int
539proceed_after_vfork_done (struct thread_info *thread,
540 void *arg)
541{
542 int pid = * (int *) arg;
543
544 if (ptid_get_pid (thread->ptid) == pid
545 && is_running (thread->ptid)
546 && !is_executing (thread->ptid)
547 && !thread->stop_requested
548 && thread->stop_signal == TARGET_SIGNAL_0)
549 {
550 if (debug_infrun)
551 fprintf_unfiltered (gdb_stdlog,
552 "infrun: resuming vfork parent thread %s\n",
553 target_pid_to_str (thread->ptid));
554
555 switch_to_thread (thread->ptid);
556 clear_proceed_status ();
557 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
558 }
559
560 return 0;
561}
562
563/* Called whenever we notice an exec or exit event, to handle
564 detaching or resuming a vfork parent. */
565
566static void
567handle_vfork_child_exec_or_exit (int exec)
568{
569 struct inferior *inf = current_inferior ();
570
571 if (inf->vfork_parent)
572 {
573 int resume_parent = -1;
574
575 /* This exec or exit marks the end of the shared memory region
576 between the parent and the child. If the user wanted to
577 detach from the parent, now is the time. */
578
579 if (inf->vfork_parent->pending_detach)
580 {
581 struct thread_info *tp;
582 struct cleanup *old_chain;
583 struct program_space *pspace;
584 struct address_space *aspace;
585
586 /* follow-fork child, detach-on-fork on */
587
588 old_chain = make_cleanup_restore_current_thread ();
589
590 /* We're letting loose of the parent. */
591 tp = any_live_thread_of_process (inf->vfork_parent->pid);
592 switch_to_thread (tp->ptid);
593
594 /* We're about to detach from the parent, which implicitly
595 removes breakpoints from its address space. There's a
596 catch here: we want to reuse the spaces for the child,
597 but, parent/child are still sharing the pspace at this
598 point, although the exec in reality makes the kernel give
599 the child a fresh set of new pages. The problem here is
600 that the breakpoints module being unaware of this, would
601 likely chose the child process to write to the parent
602 address space. Swapping the child temporarily away from
603 the spaces has the desired effect. Yes, this is "sort
604 of" a hack. */
605
606 pspace = inf->pspace;
607 aspace = inf->aspace;
608 inf->aspace = NULL;
609 inf->pspace = NULL;
610
611 if (debug_infrun || info_verbose)
612 {
613 target_terminal_ours ();
614
615 if (exec)
616 fprintf_filtered (gdb_stdlog,
617 "Detaching vfork parent process %d after child exec.\n",
618 inf->vfork_parent->pid);
619 else
620 fprintf_filtered (gdb_stdlog,
621 "Detaching vfork parent process %d after child exit.\n",
622 inf->vfork_parent->pid);
623 }
624
625 target_detach (NULL, 0);
626
627 /* Put it back. */
628 inf->pspace = pspace;
629 inf->aspace = aspace;
630
631 do_cleanups (old_chain);
632 }
633 else if (exec)
634 {
635 /* We're staying attached to the parent, so, really give the
636 child a new address space. */
637 inf->pspace = add_program_space (maybe_new_address_space ());
638 inf->aspace = inf->pspace->aspace;
639 inf->removable = 1;
640 set_current_program_space (inf->pspace);
641
642 resume_parent = inf->vfork_parent->pid;
643
644 /* Break the bonds. */
645 inf->vfork_parent->vfork_child = NULL;
646 }
647 else
648 {
649 struct cleanup *old_chain;
650 struct program_space *pspace;
651
652 /* If this is a vfork child exiting, then the pspace and
653 aspaces were shared with the parent. Since we're
654 reporting the process exit, we'll be mourning all that is
655 found in the address space, and switching to null_ptid,
656 preparing to start a new inferior. But, since we don't
657 want to clobber the parent's address/program spaces, we
658 go ahead and create a new one for this exiting
659 inferior. */
660
661 /* Switch to null_ptid, so that clone_program_space doesn't want
662 to read the selected frame of a dead process. */
663 old_chain = save_inferior_ptid ();
664 inferior_ptid = null_ptid;
665
666 /* This inferior is dead, so avoid giving the breakpoints
667 module the option to write through to it (cloning a
668 program space resets breakpoints). */
669 inf->aspace = NULL;
670 inf->pspace = NULL;
671 pspace = add_program_space (maybe_new_address_space ());
672 set_current_program_space (pspace);
673 inf->removable = 1;
674 clone_program_space (pspace, inf->vfork_parent->pspace);
675 inf->pspace = pspace;
676 inf->aspace = pspace->aspace;
677
678 /* Put back inferior_ptid. We'll continue mourning this
679 inferior. */
680 do_cleanups (old_chain);
681
682 resume_parent = inf->vfork_parent->pid;
683 /* Break the bonds. */
684 inf->vfork_parent->vfork_child = NULL;
685 }
686
687 inf->vfork_parent = NULL;
688
689 gdb_assert (current_program_space == inf->pspace);
690
691 if (non_stop && resume_parent != -1)
692 {
693 /* If the user wanted the parent to be running, let it go
694 free now. */
695 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
696
697 if (debug_infrun)
698 fprintf_unfiltered (gdb_stdlog, "infrun: resuming vfork parent process %d\n",
699 resume_parent);
700
701 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
702
703 do_cleanups (old_chain);
704 }
705 }
706}
707
708/* Enum strings for "set|show displaced-stepping". */
709
710static const char follow_exec_mode_new[] = "new";
711static const char follow_exec_mode_same[] = "same";
712static const char *follow_exec_mode_names[] =
713{
714 follow_exec_mode_new,
715 follow_exec_mode_same,
716 NULL,
717};
718
719static const char *follow_exec_mode_string = follow_exec_mode_same;
720static void
721show_follow_exec_mode_string (struct ui_file *file, int from_tty,
722 struct cmd_list_element *c, const char *value)
723{
724 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
725}
726
1adeb98a
FN
727/* EXECD_PATHNAME is assumed to be non-NULL. */
728
c906108c 729static void
3a3e9ee3 730follow_exec (ptid_t pid, char *execd_pathname)
c906108c 731{
4e1c45ea 732 struct thread_info *th = inferior_thread ();
6c95b8df 733 struct inferior *inf = current_inferior ();
7a292a7a 734
c906108c
SS
735 /* This is an exec event that we actually wish to pay attention to.
736 Refresh our symbol table to the newly exec'd program, remove any
737 momentary bp's, etc.
738
739 If there are breakpoints, they aren't really inserted now,
740 since the exec() transformed our inferior into a fresh set
741 of instructions.
742
743 We want to preserve symbolic breakpoints on the list, since
744 we have hopes that they can be reset after the new a.out's
745 symbol table is read.
746
747 However, any "raw" breakpoints must be removed from the list
748 (e.g., the solib bp's), since their address is probably invalid
749 now.
750
751 And, we DON'T want to call delete_breakpoints() here, since
752 that may write the bp's "shadow contents" (the instruction
753 value that was overwritten witha TRAP instruction). Since
754 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
755
756 mark_breakpoints_out ();
757
c906108c
SS
758 update_breakpoints_after_exec ();
759
760 /* If there was one, it's gone now. We cannot truly step-to-next
761 statement through an exec(). */
4e1c45ea
PA
762 th->step_resume_breakpoint = NULL;
763 th->step_range_start = 0;
764 th->step_range_end = 0;
c906108c 765
a75724bc
PA
766 /* The target reports the exec event to the main thread, even if
767 some other thread does the exec, and even if the main thread was
768 already stopped --- if debugging in non-stop mode, it's possible
769 the user had the main thread held stopped in the previous image
770 --- release it now. This is the same behavior as step-over-exec
771 with scheduler-locking on in all-stop mode. */
772 th->stop_requested = 0;
773
c906108c 774 /* What is this a.out's name? */
6c95b8df
PA
775 printf_unfiltered (_("%s is executing new program: %s\n"),
776 target_pid_to_str (inferior_ptid),
777 execd_pathname);
c906108c
SS
778
779 /* We've followed the inferior through an exec. Therefore, the
780 inferior has essentially been killed & reborn. */
7a292a7a 781
c906108c 782 gdb_flush (gdb_stdout);
6ca15a4b
PA
783
784 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
785
786 if (gdb_sysroot && *gdb_sysroot)
787 {
788 char *name = alloca (strlen (gdb_sysroot)
789 + strlen (execd_pathname)
790 + 1);
abbb1732 791
e85a822c
DJ
792 strcpy (name, gdb_sysroot);
793 strcat (name, execd_pathname);
794 execd_pathname = name;
795 }
c906108c 796
cce9b6bf
PA
797 /* Reset the shared library package. This ensures that we get a
798 shlib event when the child reaches "_start", at which point the
799 dld will have had a chance to initialize the child. */
800 /* Also, loading a symbol file below may trigger symbol lookups, and
801 we don't want those to be satisfied by the libraries of the
802 previous incarnation of this process. */
803 no_shared_libraries (NULL, 0);
804
6c95b8df
PA
805 if (follow_exec_mode_string == follow_exec_mode_new)
806 {
807 struct program_space *pspace;
6c95b8df
PA
808
809 /* The user wants to keep the old inferior and program spaces
810 around. Create a new fresh one, and switch to it. */
811
812 inf = add_inferior (current_inferior ()->pid);
813 pspace = add_program_space (maybe_new_address_space ());
814 inf->pspace = pspace;
815 inf->aspace = pspace->aspace;
816
817 exit_inferior_num_silent (current_inferior ()->num);
818
819 set_current_inferior (inf);
820 set_current_program_space (pspace);
821 }
822
823 gdb_assert (current_program_space == inf->pspace);
824
825 /* That a.out is now the one to use. */
826 exec_file_attach (execd_pathname, 0);
827
cce9b6bf 828 /* Load the main file's symbols. */
1adeb98a 829 symbol_file_add_main (execd_pathname, 0);
c906108c 830
7a292a7a 831#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 832 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2 833#else
268a4a75 834 solib_create_inferior_hook (0);
7a292a7a 835#endif
c906108c 836
4efc6507
DE
837 jit_inferior_created_hook ();
838
c906108c
SS
839 /* Reinsert all breakpoints. (Those which were symbolic have
840 been reset to the proper address in the new a.out, thanks
841 to symbol_file_command...) */
842 insert_breakpoints ();
843
844 /* The next resume of this inferior should bring it to the shlib
845 startup breakpoints. (If the user had also set bp's on
846 "main" from the old (parent) process, then they'll auto-
847 matically get reset there in the new process.) */
c906108c
SS
848}
849
850/* Non-zero if we just simulating a single-step. This is needed
851 because we cannot remove the breakpoints in the inferior process
852 until after the `wait' in `wait_for_inferior'. */
853static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
854
855/* The thread we inserted single-step breakpoints for. */
856static ptid_t singlestep_ptid;
857
fd48f117
DJ
858/* PC when we started this single-step. */
859static CORE_ADDR singlestep_pc;
860
9f976b41
DJ
861/* If another thread hit the singlestep breakpoint, we save the original
862 thread here so that we can resume single-stepping it later. */
863static ptid_t saved_singlestep_ptid;
864static int stepping_past_singlestep_breakpoint;
6a6b96b9 865
ca67fcb8
VP
866/* If not equal to null_ptid, this means that after stepping over breakpoint
867 is finished, we need to switch to deferred_step_ptid, and step it.
868
869 The use case is when one thread has hit a breakpoint, and then the user
870 has switched to another thread and issued 'step'. We need to step over
871 breakpoint in the thread which hit the breakpoint, but then continue
872 stepping the thread user has selected. */
873static ptid_t deferred_step_ptid;
c906108c 874\f
237fc4c9
PA
875/* Displaced stepping. */
876
877/* In non-stop debugging mode, we must take special care to manage
878 breakpoints properly; in particular, the traditional strategy for
879 stepping a thread past a breakpoint it has hit is unsuitable.
880 'Displaced stepping' is a tactic for stepping one thread past a
881 breakpoint it has hit while ensuring that other threads running
882 concurrently will hit the breakpoint as they should.
883
884 The traditional way to step a thread T off a breakpoint in a
885 multi-threaded program in all-stop mode is as follows:
886
887 a0) Initially, all threads are stopped, and breakpoints are not
888 inserted.
889 a1) We single-step T, leaving breakpoints uninserted.
890 a2) We insert breakpoints, and resume all threads.
891
892 In non-stop debugging, however, this strategy is unsuitable: we
893 don't want to have to stop all threads in the system in order to
894 continue or step T past a breakpoint. Instead, we use displaced
895 stepping:
896
897 n0) Initially, T is stopped, other threads are running, and
898 breakpoints are inserted.
899 n1) We copy the instruction "under" the breakpoint to a separate
900 location, outside the main code stream, making any adjustments
901 to the instruction, register, and memory state as directed by
902 T's architecture.
903 n2) We single-step T over the instruction at its new location.
904 n3) We adjust the resulting register and memory state as directed
905 by T's architecture. This includes resetting T's PC to point
906 back into the main instruction stream.
907 n4) We resume T.
908
909 This approach depends on the following gdbarch methods:
910
911 - gdbarch_max_insn_length and gdbarch_displaced_step_location
912 indicate where to copy the instruction, and how much space must
913 be reserved there. We use these in step n1.
914
915 - gdbarch_displaced_step_copy_insn copies a instruction to a new
916 address, and makes any necessary adjustments to the instruction,
917 register contents, and memory. We use this in step n1.
918
919 - gdbarch_displaced_step_fixup adjusts registers and memory after
920 we have successfuly single-stepped the instruction, to yield the
921 same effect the instruction would have had if we had executed it
922 at its original address. We use this in step n3.
923
924 - gdbarch_displaced_step_free_closure provides cleanup.
925
926 The gdbarch_displaced_step_copy_insn and
927 gdbarch_displaced_step_fixup functions must be written so that
928 copying an instruction with gdbarch_displaced_step_copy_insn,
929 single-stepping across the copied instruction, and then applying
930 gdbarch_displaced_insn_fixup should have the same effects on the
931 thread's memory and registers as stepping the instruction in place
932 would have. Exactly which responsibilities fall to the copy and
933 which fall to the fixup is up to the author of those functions.
934
935 See the comments in gdbarch.sh for details.
936
937 Note that displaced stepping and software single-step cannot
938 currently be used in combination, although with some care I think
939 they could be made to. Software single-step works by placing
940 breakpoints on all possible subsequent instructions; if the
941 displaced instruction is a PC-relative jump, those breakpoints
942 could fall in very strange places --- on pages that aren't
943 executable, or at addresses that are not proper instruction
944 boundaries. (We do generally let other threads run while we wait
945 to hit the software single-step breakpoint, and they might
946 encounter such a corrupted instruction.) One way to work around
947 this would be to have gdbarch_displaced_step_copy_insn fully
948 simulate the effect of PC-relative instructions (and return NULL)
949 on architectures that use software single-stepping.
950
951 In non-stop mode, we can have independent and simultaneous step
952 requests, so more than one thread may need to simultaneously step
953 over a breakpoint. The current implementation assumes there is
954 only one scratch space per process. In this case, we have to
955 serialize access to the scratch space. If thread A wants to step
956 over a breakpoint, but we are currently waiting for some other
957 thread to complete a displaced step, we leave thread A stopped and
958 place it in the displaced_step_request_queue. Whenever a displaced
959 step finishes, we pick the next thread in the queue and start a new
960 displaced step operation on it. See displaced_step_prepare and
961 displaced_step_fixup for details. */
962
237fc4c9
PA
963struct displaced_step_request
964{
965 ptid_t ptid;
966 struct displaced_step_request *next;
967};
968
fc1cf338
PA
969/* Per-inferior displaced stepping state. */
970struct displaced_step_inferior_state
971{
972 /* Pointer to next in linked list. */
973 struct displaced_step_inferior_state *next;
974
975 /* The process this displaced step state refers to. */
976 int pid;
977
978 /* A queue of pending displaced stepping requests. One entry per
979 thread that needs to do a displaced step. */
980 struct displaced_step_request *step_request_queue;
981
982 /* If this is not null_ptid, this is the thread carrying out a
983 displaced single-step in process PID. This thread's state will
984 require fixing up once it has completed its step. */
985 ptid_t step_ptid;
986
987 /* The architecture the thread had when we stepped it. */
988 struct gdbarch *step_gdbarch;
989
990 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
991 for post-step cleanup. */
992 struct displaced_step_closure *step_closure;
993
994 /* The address of the original instruction, and the copy we
995 made. */
996 CORE_ADDR step_original, step_copy;
997
998 /* Saved contents of copy area. */
999 gdb_byte *step_saved_copy;
1000};
1001
1002/* The list of states of processes involved in displaced stepping
1003 presently. */
1004static struct displaced_step_inferior_state *displaced_step_inferior_states;
1005
1006/* Get the displaced stepping state of process PID. */
1007
1008static struct displaced_step_inferior_state *
1009get_displaced_stepping_state (int pid)
1010{
1011 struct displaced_step_inferior_state *state;
1012
1013 for (state = displaced_step_inferior_states;
1014 state != NULL;
1015 state = state->next)
1016 if (state->pid == pid)
1017 return state;
1018
1019 return NULL;
1020}
1021
1022/* Add a new displaced stepping state for process PID to the displaced
1023 stepping state list, or return a pointer to an already existing
1024 entry, if it already exists. Never returns NULL. */
1025
1026static struct displaced_step_inferior_state *
1027add_displaced_stepping_state (int pid)
1028{
1029 struct displaced_step_inferior_state *state;
1030
1031 for (state = displaced_step_inferior_states;
1032 state != NULL;
1033 state = state->next)
1034 if (state->pid == pid)
1035 return state;
237fc4c9 1036
fc1cf338
PA
1037 state = xcalloc (1, sizeof (*state));
1038 state->pid = pid;
1039 state->next = displaced_step_inferior_states;
1040 displaced_step_inferior_states = state;
237fc4c9 1041
fc1cf338
PA
1042 return state;
1043}
1044
1045/* Remove the displaced stepping state of process PID. */
237fc4c9 1046
fc1cf338
PA
1047static void
1048remove_displaced_stepping_state (int pid)
1049{
1050 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1051
fc1cf338
PA
1052 gdb_assert (pid != 0);
1053
1054 it = displaced_step_inferior_states;
1055 prev_next_p = &displaced_step_inferior_states;
1056 while (it)
1057 {
1058 if (it->pid == pid)
1059 {
1060 *prev_next_p = it->next;
1061 xfree (it);
1062 return;
1063 }
1064
1065 prev_next_p = &it->next;
1066 it = *prev_next_p;
1067 }
1068}
1069
1070static void
1071infrun_inferior_exit (struct inferior *inf)
1072{
1073 remove_displaced_stepping_state (inf->pid);
1074}
237fc4c9 1075
fff08868
HZ
1076/* Enum strings for "set|show displaced-stepping". */
1077
1078static const char can_use_displaced_stepping_auto[] = "auto";
1079static const char can_use_displaced_stepping_on[] = "on";
1080static const char can_use_displaced_stepping_off[] = "off";
1081static const char *can_use_displaced_stepping_enum[] =
1082{
1083 can_use_displaced_stepping_auto,
1084 can_use_displaced_stepping_on,
1085 can_use_displaced_stepping_off,
1086 NULL,
1087};
1088
1089/* If ON, and the architecture supports it, GDB will use displaced
1090 stepping to step over breakpoints. If OFF, or if the architecture
1091 doesn't support it, GDB will instead use the traditional
1092 hold-and-step approach. If AUTO (which is the default), GDB will
1093 decide which technique to use to step over breakpoints depending on
1094 which of all-stop or non-stop mode is active --- displaced stepping
1095 in non-stop mode; hold-and-step in all-stop mode. */
1096
1097static const char *can_use_displaced_stepping =
1098 can_use_displaced_stepping_auto;
1099
237fc4c9
PA
1100static void
1101show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1102 struct cmd_list_element *c,
1103 const char *value)
1104{
fff08868
HZ
1105 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
1106 fprintf_filtered (file, _("\
1107Debugger's willingness to use displaced stepping to step over \
1108breakpoints is %s (currently %s).\n"),
1109 value, non_stop ? "on" : "off");
1110 else
1111 fprintf_filtered (file, _("\
1112Debugger's willingness to use displaced stepping to step over \
1113breakpoints is %s.\n"), value);
237fc4c9
PA
1114}
1115
fff08868
HZ
1116/* Return non-zero if displaced stepping can/should be used to step
1117 over breakpoints. */
1118
237fc4c9
PA
1119static int
1120use_displaced_stepping (struct gdbarch *gdbarch)
1121{
fff08868
HZ
1122 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
1123 && non_stop)
1124 || can_use_displaced_stepping == can_use_displaced_stepping_on)
96429cc8
HZ
1125 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1126 && !RECORD_IS_USED);
237fc4c9
PA
1127}
1128
1129/* Clean out any stray displaced stepping state. */
1130static void
fc1cf338 1131displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1132{
1133 /* Indicate that there is no cleanup pending. */
fc1cf338 1134 displaced->step_ptid = null_ptid;
237fc4c9 1135
fc1cf338 1136 if (displaced->step_closure)
237fc4c9 1137 {
fc1cf338
PA
1138 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1139 displaced->step_closure);
1140 displaced->step_closure = NULL;
237fc4c9
PA
1141 }
1142}
1143
1144static void
fc1cf338 1145displaced_step_clear_cleanup (void *arg)
237fc4c9 1146{
fc1cf338
PA
1147 struct displaced_step_inferior_state *state = arg;
1148
1149 displaced_step_clear (state);
237fc4c9
PA
1150}
1151
1152/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1153void
1154displaced_step_dump_bytes (struct ui_file *file,
1155 const gdb_byte *buf,
1156 size_t len)
1157{
1158 int i;
1159
1160 for (i = 0; i < len; i++)
1161 fprintf_unfiltered (file, "%02x ", buf[i]);
1162 fputs_unfiltered ("\n", file);
1163}
1164
1165/* Prepare to single-step, using displaced stepping.
1166
1167 Note that we cannot use displaced stepping when we have a signal to
1168 deliver. If we have a signal to deliver and an instruction to step
1169 over, then after the step, there will be no indication from the
1170 target whether the thread entered a signal handler or ignored the
1171 signal and stepped over the instruction successfully --- both cases
1172 result in a simple SIGTRAP. In the first case we mustn't do a
1173 fixup, and in the second case we must --- but we can't tell which.
1174 Comments in the code for 'random signals' in handle_inferior_event
1175 explain how we handle this case instead.
1176
1177 Returns 1 if preparing was successful -- this thread is going to be
1178 stepped now; or 0 if displaced stepping this thread got queued. */
1179static int
1180displaced_step_prepare (ptid_t ptid)
1181{
ad53cd71 1182 struct cleanup *old_cleanups, *ignore_cleanups;
237fc4c9
PA
1183 struct regcache *regcache = get_thread_regcache (ptid);
1184 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1185 CORE_ADDR original, copy;
1186 ULONGEST len;
1187 struct displaced_step_closure *closure;
fc1cf338 1188 struct displaced_step_inferior_state *displaced;
237fc4c9
PA
1189
1190 /* We should never reach this function if the architecture does not
1191 support displaced stepping. */
1192 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1193
fc1cf338
PA
1194 /* We have to displaced step one thread at a time, as we only have
1195 access to a single scratch space per inferior. */
237fc4c9 1196
fc1cf338
PA
1197 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1198
1199 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1200 {
1201 /* Already waiting for a displaced step to finish. Defer this
1202 request and place in queue. */
1203 struct displaced_step_request *req, *new_req;
1204
1205 if (debug_displaced)
1206 fprintf_unfiltered (gdb_stdlog,
1207 "displaced: defering step of %s\n",
1208 target_pid_to_str (ptid));
1209
1210 new_req = xmalloc (sizeof (*new_req));
1211 new_req->ptid = ptid;
1212 new_req->next = NULL;
1213
fc1cf338 1214 if (displaced->step_request_queue)
237fc4c9 1215 {
fc1cf338 1216 for (req = displaced->step_request_queue;
237fc4c9
PA
1217 req && req->next;
1218 req = req->next)
1219 ;
1220 req->next = new_req;
1221 }
1222 else
fc1cf338 1223 displaced->step_request_queue = new_req;
237fc4c9
PA
1224
1225 return 0;
1226 }
1227 else
1228 {
1229 if (debug_displaced)
1230 fprintf_unfiltered (gdb_stdlog,
1231 "displaced: stepping %s now\n",
1232 target_pid_to_str (ptid));
1233 }
1234
fc1cf338 1235 displaced_step_clear (displaced);
237fc4c9 1236
ad53cd71
PA
1237 old_cleanups = save_inferior_ptid ();
1238 inferior_ptid = ptid;
1239
515630c5 1240 original = regcache_read_pc (regcache);
237fc4c9
PA
1241
1242 copy = gdbarch_displaced_step_location (gdbarch);
1243 len = gdbarch_max_insn_length (gdbarch);
1244
1245 /* Save the original contents of the copy area. */
fc1cf338 1246 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1247 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338
PA
1248 &displaced->step_saved_copy);
1249 read_memory (copy, displaced->step_saved_copy, len);
237fc4c9
PA
1250 if (debug_displaced)
1251 {
5af949e3
UW
1252 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1253 paddress (gdbarch, copy));
fc1cf338
PA
1254 displaced_step_dump_bytes (gdb_stdlog,
1255 displaced->step_saved_copy,
1256 len);
237fc4c9
PA
1257 };
1258
1259 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1260 original, copy, regcache);
237fc4c9
PA
1261
1262 /* We don't support the fully-simulated case at present. */
1263 gdb_assert (closure);
1264
9f5a595d
UW
1265 /* Save the information we need to fix things up if the step
1266 succeeds. */
fc1cf338
PA
1267 displaced->step_ptid = ptid;
1268 displaced->step_gdbarch = gdbarch;
1269 displaced->step_closure = closure;
1270 displaced->step_original = original;
1271 displaced->step_copy = copy;
9f5a595d 1272
fc1cf338 1273 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1274
1275 /* Resume execution at the copy. */
515630c5 1276 regcache_write_pc (regcache, copy);
237fc4c9 1277
ad53cd71
PA
1278 discard_cleanups (ignore_cleanups);
1279
1280 do_cleanups (old_cleanups);
237fc4c9
PA
1281
1282 if (debug_displaced)
5af949e3
UW
1283 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1284 paddress (gdbarch, copy));
237fc4c9 1285
237fc4c9
PA
1286 return 1;
1287}
1288
237fc4c9
PA
1289static void
1290write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1291{
1292 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1293
237fc4c9
PA
1294 inferior_ptid = ptid;
1295 write_memory (memaddr, myaddr, len);
1296 do_cleanups (ptid_cleanup);
1297}
1298
1299static void
1300displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
1301{
1302 struct cleanup *old_cleanups;
fc1cf338
PA
1303 struct displaced_step_inferior_state *displaced
1304 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1305
1306 /* Was any thread of this process doing a displaced step? */
1307 if (displaced == NULL)
1308 return;
237fc4c9
PA
1309
1310 /* Was this event for the pid we displaced? */
fc1cf338
PA
1311 if (ptid_equal (displaced->step_ptid, null_ptid)
1312 || ! ptid_equal (displaced->step_ptid, event_ptid))
237fc4c9
PA
1313 return;
1314
fc1cf338 1315 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1316
1317 /* Restore the contents of the copy area. */
1318 {
fc1cf338 1319 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
abbb1732 1320
fc1cf338
PA
1321 write_memory_ptid (displaced->step_ptid, displaced->step_copy,
1322 displaced->step_saved_copy, len);
237fc4c9 1323 if (debug_displaced)
5af949e3 1324 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s\n",
fc1cf338
PA
1325 paddress (displaced->step_gdbarch,
1326 displaced->step_copy));
237fc4c9
PA
1327 }
1328
1329 /* Did the instruction complete successfully? */
1330 if (signal == TARGET_SIGNAL_TRAP)
1331 {
1332 /* Fix up the resulting state. */
fc1cf338
PA
1333 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1334 displaced->step_closure,
1335 displaced->step_original,
1336 displaced->step_copy,
1337 get_thread_regcache (displaced->step_ptid));
237fc4c9
PA
1338 }
1339 else
1340 {
1341 /* Since the instruction didn't complete, all we can do is
1342 relocate the PC. */
515630c5
UW
1343 struct regcache *regcache = get_thread_regcache (event_ptid);
1344 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1345
fc1cf338 1346 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1347 regcache_write_pc (regcache, pc);
237fc4c9
PA
1348 }
1349
1350 do_cleanups (old_cleanups);
1351
fc1cf338 1352 displaced->step_ptid = null_ptid;
1c5cfe86 1353
237fc4c9 1354 /* Are there any pending displaced stepping requests? If so, run
fc1cf338
PA
1355 one now. Leave the state object around, since we're likely to
1356 need it again soon. */
1357 while (displaced->step_request_queue)
237fc4c9
PA
1358 {
1359 struct displaced_step_request *head;
1360 ptid_t ptid;
5af949e3 1361 struct regcache *regcache;
929dfd4f 1362 struct gdbarch *gdbarch;
1c5cfe86 1363 CORE_ADDR actual_pc;
6c95b8df 1364 struct address_space *aspace;
237fc4c9 1365
fc1cf338 1366 head = displaced->step_request_queue;
237fc4c9 1367 ptid = head->ptid;
fc1cf338 1368 displaced->step_request_queue = head->next;
237fc4c9
PA
1369 xfree (head);
1370
ad53cd71
PA
1371 context_switch (ptid);
1372
5af949e3
UW
1373 regcache = get_thread_regcache (ptid);
1374 actual_pc = regcache_read_pc (regcache);
6c95b8df 1375 aspace = get_regcache_aspace (regcache);
1c5cfe86 1376
6c95b8df 1377 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1378 {
1c5cfe86
PA
1379 if (debug_displaced)
1380 fprintf_unfiltered (gdb_stdlog,
1381 "displaced: stepping queued %s now\n",
1382 target_pid_to_str (ptid));
1383
1384 displaced_step_prepare (ptid);
1385
929dfd4f
JB
1386 gdbarch = get_regcache_arch (regcache);
1387
1c5cfe86
PA
1388 if (debug_displaced)
1389 {
929dfd4f 1390 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1391 gdb_byte buf[4];
1392
5af949e3
UW
1393 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1394 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1395 read_memory (actual_pc, buf, sizeof (buf));
1396 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1397 }
1398
fc1cf338
PA
1399 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1400 displaced->step_closure))
929dfd4f 1401 target_resume (ptid, 1, TARGET_SIGNAL_0);
99e40580
UW
1402 else
1403 target_resume (ptid, 0, TARGET_SIGNAL_0);
1c5cfe86
PA
1404
1405 /* Done, we're stepping a thread. */
1406 break;
ad53cd71 1407 }
1c5cfe86
PA
1408 else
1409 {
1410 int step;
1411 struct thread_info *tp = inferior_thread ();
1412
1413 /* The breakpoint we were sitting under has since been
1414 removed. */
1415 tp->trap_expected = 0;
1416
1417 /* Go back to what we were trying to do. */
1418 step = currently_stepping (tp);
ad53cd71 1419
1c5cfe86
PA
1420 if (debug_displaced)
1421 fprintf_unfiltered (gdb_stdlog, "breakpoint is gone %s: step(%d)\n",
1422 target_pid_to_str (tp->ptid), step);
1423
1424 target_resume (ptid, step, TARGET_SIGNAL_0);
1425 tp->stop_signal = TARGET_SIGNAL_0;
1426
1427 /* This request was discarded. See if there's any other
1428 thread waiting for its turn. */
1429 }
237fc4c9
PA
1430 }
1431}
1432
5231c1fd
PA
1433/* Update global variables holding ptids to hold NEW_PTID if they were
1434 holding OLD_PTID. */
1435static void
1436infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1437{
1438 struct displaced_step_request *it;
fc1cf338 1439 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
1440
1441 if (ptid_equal (inferior_ptid, old_ptid))
1442 inferior_ptid = new_ptid;
1443
1444 if (ptid_equal (singlestep_ptid, old_ptid))
1445 singlestep_ptid = new_ptid;
1446
5231c1fd
PA
1447 if (ptid_equal (deferred_step_ptid, old_ptid))
1448 deferred_step_ptid = new_ptid;
1449
fc1cf338
PA
1450 for (displaced = displaced_step_inferior_states;
1451 displaced;
1452 displaced = displaced->next)
1453 {
1454 if (ptid_equal (displaced->step_ptid, old_ptid))
1455 displaced->step_ptid = new_ptid;
1456
1457 for (it = displaced->step_request_queue; it; it = it->next)
1458 if (ptid_equal (it->ptid, old_ptid))
1459 it->ptid = new_ptid;
1460 }
5231c1fd
PA
1461}
1462
237fc4c9
PA
1463\f
1464/* Resuming. */
c906108c
SS
1465
1466/* Things to clean up if we QUIT out of resume (). */
c906108c 1467static void
74b7792f 1468resume_cleanups (void *ignore)
c906108c
SS
1469{
1470 normal_stop ();
1471}
1472
53904c9e
AC
1473static const char schedlock_off[] = "off";
1474static const char schedlock_on[] = "on";
1475static const char schedlock_step[] = "step";
488f131b 1476static const char *scheduler_enums[] = {
ef346e04
AC
1477 schedlock_off,
1478 schedlock_on,
1479 schedlock_step,
1480 NULL
1481};
920d2a44
AC
1482static const char *scheduler_mode = schedlock_off;
1483static void
1484show_scheduler_mode (struct ui_file *file, int from_tty,
1485 struct cmd_list_element *c, const char *value)
1486{
1487 fprintf_filtered (file, _("\
1488Mode for locking scheduler during execution is \"%s\".\n"),
1489 value);
1490}
c906108c
SS
1491
1492static void
96baa820 1493set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1494{
eefe576e
AC
1495 if (!target_can_lock_scheduler)
1496 {
1497 scheduler_mode = schedlock_off;
1498 error (_("Target '%s' cannot support this command."), target_shortname);
1499 }
c906108c
SS
1500}
1501
d4db2f36
PA
1502/* True if execution commands resume all threads of all processes by
1503 default; otherwise, resume only threads of the current inferior
1504 process. */
1505int sched_multi = 0;
1506
2facfe5c
DD
1507/* Try to setup for software single stepping over the specified location.
1508 Return 1 if target_resume() should use hardware single step.
1509
1510 GDBARCH the current gdbarch.
1511 PC the location to step over. */
1512
1513static int
1514maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1515{
1516 int hw_step = 1;
1517
99e40580
UW
1518 if (gdbarch_software_single_step_p (gdbarch)
1519 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 1520 {
99e40580
UW
1521 hw_step = 0;
1522 /* Do not pull these breakpoints until after a `wait' in
1523 `wait_for_inferior' */
1524 singlestep_breakpoints_inserted_p = 1;
1525 singlestep_ptid = inferior_ptid;
1526 singlestep_pc = pc;
2facfe5c
DD
1527 }
1528 return hw_step;
1529}
c906108c
SS
1530
1531/* Resume the inferior, but allow a QUIT. This is useful if the user
1532 wants to interrupt some lengthy single-stepping operation
1533 (for child processes, the SIGINT goes to the inferior, and so
1534 we get a SIGINT random_signal, but for remote debugging and perhaps
1535 other targets, that's not true).
1536
1537 STEP nonzero if we should step (zero to continue instead).
1538 SIG is the signal to give the inferior (zero for none). */
1539void
96baa820 1540resume (int step, enum target_signal sig)
c906108c
SS
1541{
1542 int should_resume = 1;
74b7792f 1543 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1544 struct regcache *regcache = get_current_regcache ();
1545 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1546 struct thread_info *tp = inferior_thread ();
515630c5 1547 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 1548 struct address_space *aspace = get_regcache_aspace (regcache);
c7e8a53c 1549
c906108c
SS
1550 QUIT;
1551
527159b7 1552 if (debug_infrun)
237fc4c9
PA
1553 fprintf_unfiltered (gdb_stdlog,
1554 "infrun: resume (step=%d, signal=%d), "
4e1c45ea
PA
1555 "trap_expected=%d\n",
1556 step, sig, tp->trap_expected);
c906108c 1557
c2c6d25f
JM
1558 /* Normally, by the time we reach `resume', the breakpoints are either
1559 removed or inserted, as appropriate. The exception is if we're sitting
1560 at a permanent breakpoint; we need to step over it, but permanent
1561 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 1562 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 1563 {
515630c5
UW
1564 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1565 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5
UW
1566 else
1567 error (_("\
1568The program is stopped at a permanent breakpoint, but GDB does not know\n\
1569how to step past a permanent breakpoint on this architecture. Try using\n\
1570a command like `return' or `jump' to continue execution."));
1571 }
c2c6d25f 1572
237fc4c9
PA
1573 /* If enabled, step over breakpoints by executing a copy of the
1574 instruction at a different address.
1575
1576 We can't use displaced stepping when we have a signal to deliver;
1577 the comments for displaced_step_prepare explain why. The
1578 comments in the handle_inferior event for dealing with 'random
1579 signals' explain what we do instead. */
515630c5 1580 if (use_displaced_stepping (gdbarch)
929dfd4f
JB
1581 && (tp->trap_expected
1582 || (step && gdbarch_software_single_step_p (gdbarch)))
237fc4c9
PA
1583 && sig == TARGET_SIGNAL_0)
1584 {
fc1cf338
PA
1585 struct displaced_step_inferior_state *displaced;
1586
237fc4c9 1587 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1588 {
1589 /* Got placed in displaced stepping queue. Will be resumed
1590 later when all the currently queued displaced stepping
7f7efbd9
VP
1591 requests finish. The thread is not executing at this point,
1592 and the call to set_executing will be made later. But we
1593 need to call set_running here, since from frontend point of view,
1594 the thread is running. */
1595 set_running (inferior_ptid, 1);
d56b7306
VP
1596 discard_cleanups (old_cleanups);
1597 return;
1598 }
99e40580 1599
fc1cf338
PA
1600 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1601 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1602 displaced->step_closure);
237fc4c9
PA
1603 }
1604
2facfe5c 1605 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 1606 else if (step)
2facfe5c 1607 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1608
c906108c
SS
1609 if (should_resume)
1610 {
39f77062 1611 ptid_t resume_ptid;
dfcd3bfb 1612
cd76b0b7
VP
1613 /* If STEP is set, it's a request to use hardware stepping
1614 facilities. But in that case, we should never
1615 use singlestep breakpoint. */
1616 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1617
d4db2f36
PA
1618 /* Decide the set of threads to ask the target to resume. Start
1619 by assuming everything will be resumed, than narrow the set
1620 by applying increasingly restricting conditions. */
1621
1622 /* By default, resume all threads of all processes. */
1623 resume_ptid = RESUME_ALL;
1624
1625 /* Maybe resume only all threads of the current process. */
1626 if (!sched_multi && target_supports_multi_process ())
1627 {
1628 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1629 }
1630
1631 /* Maybe resume a single thread after all. */
cd76b0b7
VP
1632 if (singlestep_breakpoints_inserted_p
1633 && stepping_past_singlestep_breakpoint)
c906108c 1634 {
cd76b0b7
VP
1635 /* The situation here is as follows. In thread T1 we wanted to
1636 single-step. Lacking hardware single-stepping we've
1637 set breakpoint at the PC of the next instruction -- call it
1638 P. After resuming, we've hit that breakpoint in thread T2.
1639 Now we've removed original breakpoint, inserted breakpoint
1640 at P+1, and try to step to advance T2 past breakpoint.
1641 We need to step only T2, as if T1 is allowed to freely run,
1642 it can run past P, and if other threads are allowed to run,
1643 they can hit breakpoint at P+1, and nested hits of single-step
1644 breakpoints is not something we'd want -- that's complicated
1645 to support, and has no value. */
1646 resume_ptid = inferior_ptid;
1647 }
d4db2f36
PA
1648 else if ((step || singlestep_breakpoints_inserted_p)
1649 && tp->trap_expected)
cd76b0b7 1650 {
74960c60
VP
1651 /* We're allowing a thread to run past a breakpoint it has
1652 hit, by single-stepping the thread with the breakpoint
1653 removed. In which case, we need to single-step only this
1654 thread, and keep others stopped, as they can miss this
1655 breakpoint if allowed to run.
1656
1657 The current code actually removes all breakpoints when
1658 doing this, not just the one being stepped over, so if we
1659 let other threads run, we can actually miss any
1660 breakpoint, not just the one at PC. */
ef5cf84e 1661 resume_ptid = inferior_ptid;
c906108c 1662 }
d4db2f36 1663 else if (non_stop)
94cc34af
PA
1664 {
1665 /* With non-stop mode on, threads are always handled
1666 individually. */
1667 resume_ptid = inferior_ptid;
1668 }
1669 else if ((scheduler_mode == schedlock_on)
1670 || (scheduler_mode == schedlock_step
1671 && (step || singlestep_breakpoints_inserted_p)))
c906108c 1672 {
ef5cf84e 1673 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 1674 resume_ptid = inferior_ptid;
c906108c 1675 }
ef5cf84e 1676
515630c5 1677 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1678 {
1679 /* Most targets can step a breakpoint instruction, thus
1680 executing it normally. But if this one cannot, just
1681 continue and we will hit it anyway. */
6c95b8df 1682 if (step && breakpoint_inserted_here_p (aspace, pc))
c4ed33b9
AC
1683 step = 0;
1684 }
237fc4c9
PA
1685
1686 if (debug_displaced
515630c5 1687 && use_displaced_stepping (gdbarch)
4e1c45ea 1688 && tp->trap_expected)
237fc4c9 1689 {
515630c5 1690 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
5af949e3 1691 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
515630c5 1692 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1693 gdb_byte buf[4];
1694
5af949e3
UW
1695 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1696 paddress (resume_gdbarch, actual_pc));
237fc4c9
PA
1697 read_memory (actual_pc, buf, sizeof (buf));
1698 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1699 }
1700
e58b0e63
PA
1701 /* Install inferior's terminal modes. */
1702 target_terminal_inferior ();
1703
2020b7ab
PA
1704 /* Avoid confusing the next resume, if the next stop/resume
1705 happens to apply to another thread. */
1706 tp->stop_signal = TARGET_SIGNAL_0;
607cecd2
PA
1707
1708 target_resume (resume_ptid, step, sig);
c906108c
SS
1709 }
1710
1711 discard_cleanups (old_cleanups);
1712}
1713\f
237fc4c9 1714/* Proceeding. */
c906108c
SS
1715
1716/* Clear out all variables saying what to do when inferior is continued.
1717 First do this, then set the ones you want, then call `proceed'. */
1718
a7212384
UW
1719static void
1720clear_proceed_status_thread (struct thread_info *tp)
c906108c 1721{
a7212384
UW
1722 if (debug_infrun)
1723 fprintf_unfiltered (gdb_stdlog,
1724 "infrun: clear_proceed_status_thread (%s)\n",
1725 target_pid_to_str (tp->ptid));
d6b48e9c 1726
a7212384
UW
1727 tp->trap_expected = 0;
1728 tp->step_range_start = 0;
1729 tp->step_range_end = 0;
1730 tp->step_frame_id = null_frame_id;
edb3359d 1731 tp->step_stack_frame_id = null_frame_id;
a7212384
UW
1732 tp->step_over_calls = STEP_OVER_UNDEBUGGABLE;
1733 tp->stop_requested = 0;
4e1c45ea 1734
a7212384 1735 tp->stop_step = 0;
32400beb 1736
a7212384 1737 tp->proceed_to_finish = 0;
414c69f7 1738
a7212384
UW
1739 /* Discard any remaining commands or status from previous stop. */
1740 bpstat_clear (&tp->stop_bpstat);
1741}
32400beb 1742
a7212384
UW
1743static int
1744clear_proceed_status_callback (struct thread_info *tp, void *data)
1745{
1746 if (is_exited (tp->ptid))
1747 return 0;
d6b48e9c 1748
a7212384
UW
1749 clear_proceed_status_thread (tp);
1750 return 0;
1751}
1752
1753void
1754clear_proceed_status (void)
1755{
6c95b8df
PA
1756 if (!non_stop)
1757 {
1758 /* In all-stop mode, delete the per-thread status of all
1759 threads, even if inferior_ptid is null_ptid, there may be
1760 threads on the list. E.g., we may be launching a new
1761 process, while selecting the executable. */
1762 iterate_over_threads (clear_proceed_status_callback, NULL);
1763 }
1764
a7212384
UW
1765 if (!ptid_equal (inferior_ptid, null_ptid))
1766 {
1767 struct inferior *inferior;
1768
1769 if (non_stop)
1770 {
6c95b8df
PA
1771 /* If in non-stop mode, only delete the per-thread status of
1772 the current thread. */
a7212384
UW
1773 clear_proceed_status_thread (inferior_thread ());
1774 }
6c95b8df 1775
d6b48e9c
PA
1776 inferior = current_inferior ();
1777 inferior->stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
1778 }
1779
c906108c 1780 stop_after_trap = 0;
f3b1572e
PA
1781
1782 observer_notify_about_to_proceed ();
c906108c 1783
d5c31457
UW
1784 if (stop_registers)
1785 {
1786 regcache_xfree (stop_registers);
1787 stop_registers = NULL;
1788 }
c906108c
SS
1789}
1790
5a437975
DE
1791/* Check the current thread against the thread that reported the most recent
1792 event. If a step-over is required return TRUE and set the current thread
1793 to the old thread. Otherwise return FALSE.
1794
1795 This should be suitable for any targets that support threads. */
ea67f13b
DJ
1796
1797static int
6a6b96b9 1798prepare_to_proceed (int step)
ea67f13b
DJ
1799{
1800 ptid_t wait_ptid;
1801 struct target_waitstatus wait_status;
5a437975
DE
1802 int schedlock_enabled;
1803
1804 /* With non-stop mode on, threads are always handled individually. */
1805 gdb_assert (! non_stop);
ea67f13b
DJ
1806
1807 /* Get the last target status returned by target_wait(). */
1808 get_last_target_status (&wait_ptid, &wait_status);
1809
6a6b96b9 1810 /* Make sure we were stopped at a breakpoint. */
ea67f13b 1811 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2b009048
DJ
1812 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
1813 && wait_status.value.sig != TARGET_SIGNAL_ILL
1814 && wait_status.value.sig != TARGET_SIGNAL_SEGV
1815 && wait_status.value.sig != TARGET_SIGNAL_EMT))
ea67f13b
DJ
1816 {
1817 return 0;
1818 }
1819
5a437975
DE
1820 schedlock_enabled = (scheduler_mode == schedlock_on
1821 || (scheduler_mode == schedlock_step
1822 && step));
1823
d4db2f36
PA
1824 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
1825 if (schedlock_enabled)
1826 return 0;
1827
1828 /* Don't switch over if we're about to resume some other process
1829 other than WAIT_PTID's, and schedule-multiple is off. */
1830 if (!sched_multi
1831 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
1832 return 0;
1833
6a6b96b9 1834 /* Switched over from WAIT_PID. */
ea67f13b 1835 if (!ptid_equal (wait_ptid, minus_one_ptid)
d4db2f36 1836 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 1837 {
515630c5
UW
1838 struct regcache *regcache = get_thread_regcache (wait_ptid);
1839
6c95b8df
PA
1840 if (breakpoint_here_p (get_regcache_aspace (regcache),
1841 regcache_read_pc (regcache)))
ea67f13b 1842 {
515630c5
UW
1843 /* If stepping, remember current thread to switch back to. */
1844 if (step)
1845 deferred_step_ptid = inferior_ptid;
ea67f13b 1846
515630c5
UW
1847 /* Switch back to WAIT_PID thread. */
1848 switch_to_thread (wait_ptid);
6a6b96b9 1849
515630c5
UW
1850 /* We return 1 to indicate that there is a breakpoint here,
1851 so we need to step over it before continuing to avoid
1852 hitting it straight away. */
1853 return 1;
1854 }
ea67f13b
DJ
1855 }
1856
1857 return 0;
ea67f13b 1858}
e4846b08 1859
c906108c
SS
1860/* Basic routine for continuing the program in various fashions.
1861
1862 ADDR is the address to resume at, or -1 for resume where stopped.
1863 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 1864 or -1 for act according to how it stopped.
c906108c 1865 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
1866 -1 means return after that and print nothing.
1867 You should probably set various step_... variables
1868 before calling here, if you are stepping.
c906108c
SS
1869
1870 You should call clear_proceed_status before calling proceed. */
1871
1872void
96baa820 1873proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c 1874{
e58b0e63
PA
1875 struct regcache *regcache;
1876 struct gdbarch *gdbarch;
4e1c45ea 1877 struct thread_info *tp;
e58b0e63 1878 CORE_ADDR pc;
6c95b8df 1879 struct address_space *aspace;
c906108c
SS
1880 int oneproc = 0;
1881
e58b0e63
PA
1882 /* If we're stopped at a fork/vfork, follow the branch set by the
1883 "set follow-fork-mode" command; otherwise, we'll just proceed
1884 resuming the current thread. */
1885 if (!follow_fork ())
1886 {
1887 /* The target for some reason decided not to resume. */
1888 normal_stop ();
1889 return;
1890 }
1891
1892 regcache = get_current_regcache ();
1893 gdbarch = get_regcache_arch (regcache);
6c95b8df 1894 aspace = get_regcache_aspace (regcache);
e58b0e63
PA
1895 pc = regcache_read_pc (regcache);
1896
c906108c 1897 if (step > 0)
515630c5 1898 step_start_function = find_pc_function (pc);
c906108c
SS
1899 if (step < 0)
1900 stop_after_trap = 1;
1901
2acceee2 1902 if (addr == (CORE_ADDR) -1)
c906108c 1903 {
6c95b8df 1904 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
b2175913 1905 && execution_direction != EXEC_REVERSE)
3352ef37
AC
1906 /* There is a breakpoint at the address we will resume at,
1907 step one instruction before inserting breakpoints so that
1908 we do not stop right away (and report a second hit at this
b2175913
MS
1909 breakpoint).
1910
1911 Note, we don't do this in reverse, because we won't
1912 actually be executing the breakpoint insn anyway.
1913 We'll be (un-)executing the previous instruction. */
1914
c906108c 1915 oneproc = 1;
515630c5
UW
1916 else if (gdbarch_single_step_through_delay_p (gdbarch)
1917 && gdbarch_single_step_through_delay (gdbarch,
1918 get_current_frame ()))
3352ef37
AC
1919 /* We stepped onto an instruction that needs to be stepped
1920 again before re-inserting the breakpoint, do so. */
c906108c
SS
1921 oneproc = 1;
1922 }
1923 else
1924 {
515630c5 1925 regcache_write_pc (regcache, addr);
c906108c
SS
1926 }
1927
527159b7 1928 if (debug_infrun)
8a9de0e4 1929 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
1930 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
1931 paddress (gdbarch, addr), siggnal, step);
527159b7 1932
06cd862c
PA
1933 /* We're handling a live event, so make sure we're doing live
1934 debugging. If we're looking at traceframes while the target is
1935 running, we're going to need to get back to that mode after
1936 handling the event. */
1937 if (non_stop)
1938 {
1939 make_cleanup_restore_current_traceframe ();
1940 set_traceframe_number (-1);
1941 }
1942
94cc34af
PA
1943 if (non_stop)
1944 /* In non-stop, each thread is handled individually. The context
1945 must already be set to the right thread here. */
1946 ;
1947 else
1948 {
1949 /* In a multi-threaded task we may select another thread and
1950 then continue or step.
c906108c 1951
94cc34af
PA
1952 But if the old thread was stopped at a breakpoint, it will
1953 immediately cause another breakpoint stop without any
1954 execution (i.e. it will report a breakpoint hit incorrectly).
1955 So we must step over it first.
c906108c 1956
94cc34af
PA
1957 prepare_to_proceed checks the current thread against the
1958 thread that reported the most recent event. If a step-over
1959 is required it returns TRUE and sets the current thread to
1960 the old thread. */
1961 if (prepare_to_proceed (step))
1962 oneproc = 1;
1963 }
c906108c 1964
4e1c45ea
PA
1965 /* prepare_to_proceed may change the current thread. */
1966 tp = inferior_thread ();
1967
c906108c 1968 if (oneproc)
74960c60 1969 {
4e1c45ea 1970 tp->trap_expected = 1;
237fc4c9
PA
1971 /* If displaced stepping is enabled, we can step over the
1972 breakpoint without hitting it, so leave all breakpoints
1973 inserted. Otherwise we need to disable all breakpoints, step
1974 one instruction, and then re-add them when that step is
1975 finished. */
515630c5 1976 if (!use_displaced_stepping (gdbarch))
237fc4c9 1977 remove_breakpoints ();
74960c60 1978 }
237fc4c9
PA
1979
1980 /* We can insert breakpoints if we're not trying to step over one,
1981 or if we are stepping over one but we're using displaced stepping
1982 to do so. */
4e1c45ea 1983 if (! tp->trap_expected || use_displaced_stepping (gdbarch))
c36b740a 1984 insert_breakpoints ();
c906108c 1985
2020b7ab
PA
1986 if (!non_stop)
1987 {
1988 /* Pass the last stop signal to the thread we're resuming,
1989 irrespective of whether the current thread is the thread that
1990 got the last event or not. This was historically GDB's
1991 behaviour before keeping a stop_signal per thread. */
1992
1993 struct thread_info *last_thread;
1994 ptid_t last_ptid;
1995 struct target_waitstatus last_status;
1996
1997 get_last_target_status (&last_ptid, &last_status);
1998 if (!ptid_equal (inferior_ptid, last_ptid)
1999 && !ptid_equal (last_ptid, null_ptid)
2000 && !ptid_equal (last_ptid, minus_one_ptid))
2001 {
e09875d4 2002 last_thread = find_thread_ptid (last_ptid);
2020b7ab
PA
2003 if (last_thread)
2004 {
2005 tp->stop_signal = last_thread->stop_signal;
2006 last_thread->stop_signal = TARGET_SIGNAL_0;
2007 }
2008 }
2009 }
2010
c906108c 2011 if (siggnal != TARGET_SIGNAL_DEFAULT)
2020b7ab 2012 tp->stop_signal = siggnal;
c906108c
SS
2013 /* If this signal should not be seen by program,
2014 give it zero. Used for debugging signals. */
2020b7ab
PA
2015 else if (!signal_program[tp->stop_signal])
2016 tp->stop_signal = TARGET_SIGNAL_0;
c906108c
SS
2017
2018 annotate_starting ();
2019
2020 /* Make sure that output from GDB appears before output from the
2021 inferior. */
2022 gdb_flush (gdb_stdout);
2023
e4846b08
JJ
2024 /* Refresh prev_pc value just prior to resuming. This used to be
2025 done in stop_stepping, however, setting prev_pc there did not handle
2026 scenarios such as inferior function calls or returning from
2027 a function via the return command. In those cases, the prev_pc
2028 value was not set properly for subsequent commands. The prev_pc value
2029 is used to initialize the starting line number in the ecs. With an
2030 invalid value, the gdb next command ends up stopping at the position
2031 represented by the next line table entry past our start position.
2032 On platforms that generate one line table entry per line, this
2033 is not a problem. However, on the ia64, the compiler generates
2034 extraneous line table entries that do not increase the line number.
2035 When we issue the gdb next command on the ia64 after an inferior call
2036 or a return command, we often end up a few instructions forward, still
2037 within the original line we started.
2038
d5cd6034
JB
2039 An attempt was made to refresh the prev_pc at the same time the
2040 execution_control_state is initialized (for instance, just before
2041 waiting for an inferior event). But this approach did not work
2042 because of platforms that use ptrace, where the pc register cannot
2043 be read unless the inferior is stopped. At that point, we are not
2044 guaranteed the inferior is stopped and so the regcache_read_pc() call
2045 can fail. Setting the prev_pc value here ensures the value is updated
2046 correctly when the inferior is stopped. */
4e1c45ea 2047 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 2048
59f0d5d9 2049 /* Fill in with reasonable starting values. */
4e1c45ea 2050 init_thread_stepping_state (tp);
59f0d5d9 2051
59f0d5d9
PA
2052 /* Reset to normal state. */
2053 init_infwait_state ();
2054
c906108c 2055 /* Resume inferior. */
2020b7ab 2056 resume (oneproc || step || bpstat_should_step (), tp->stop_signal);
c906108c
SS
2057
2058 /* Wait for it to stop (if not standalone)
2059 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
2060 /* Do this only if we are not using the event loop, or if the target
2061 does not support asynchronous execution. */
362646f5 2062 if (!target_can_async_p ())
43ff13b4 2063 {
ae123ec6 2064 wait_for_inferior (0);
43ff13b4
JM
2065 normal_stop ();
2066 }
c906108c 2067}
c906108c
SS
2068\f
2069
2070/* Start remote-debugging of a machine over a serial link. */
96baa820 2071
c906108c 2072void
8621d6a9 2073start_remote (int from_tty)
c906108c 2074{
d6b48e9c 2075 struct inferior *inferior;
d6b48e9c 2076
abbb1732 2077 init_wait_for_inferior ();
d6b48e9c
PA
2078 inferior = current_inferior ();
2079 inferior->stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 2080
6426a772
JM
2081 /* Always go on waiting for the target, regardless of the mode. */
2082 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 2083 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
2084 nothing is returned (instead of just blocking). Because of this,
2085 targets expecting an immediate response need to, internally, set
2086 things up so that the target_wait() is forced to eventually
2087 timeout. */
2088 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2089 differentiate to its caller what the state of the target is after
2090 the initial open has been performed. Here we're assuming that
2091 the target has stopped. It should be possible to eventually have
2092 target_open() return to the caller an indication that the target
2093 is currently running and GDB state should be set to the same as
2094 for an async run. */
ae123ec6 2095 wait_for_inferior (0);
8621d6a9
DJ
2096
2097 /* Now that the inferior has stopped, do any bookkeeping like
2098 loading shared libraries. We want to do this before normal_stop,
2099 so that the displayed frame is up to date. */
2100 post_create_inferior (&current_target, from_tty);
2101
6426a772 2102 normal_stop ();
c906108c
SS
2103}
2104
2105/* Initialize static vars when a new inferior begins. */
2106
2107void
96baa820 2108init_wait_for_inferior (void)
c906108c
SS
2109{
2110 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 2111
c906108c
SS
2112 breakpoint_init_inferior (inf_starting);
2113
c906108c 2114 clear_proceed_status ();
9f976b41
DJ
2115
2116 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 2117 deferred_step_ptid = null_ptid;
ca005067
DJ
2118
2119 target_last_wait_ptid = minus_one_ptid;
237fc4c9 2120
0d1e5fa7
PA
2121 previous_inferior_ptid = null_ptid;
2122 init_infwait_state ();
2123
edb3359d
DJ
2124 /* Discard any skipped inlined frames. */
2125 clear_inline_frame_state (minus_one_ptid);
c906108c 2126}
237fc4c9 2127
c906108c 2128\f
b83266a0
SS
2129/* This enum encodes possible reasons for doing a target_wait, so that
2130 wfi can call target_wait in one place. (Ultimately the call will be
2131 moved out of the infinite loop entirely.) */
2132
c5aa993b
JM
2133enum infwait_states
2134{
cd0fc7c3
SS
2135 infwait_normal_state,
2136 infwait_thread_hop_state,
d983da9c 2137 infwait_step_watch_state,
cd0fc7c3 2138 infwait_nonstep_watch_state
b83266a0
SS
2139};
2140
11cf8741
JM
2141/* Why did the inferior stop? Used to print the appropriate messages
2142 to the interface from within handle_inferior_event(). */
2143enum inferior_stop_reason
2144{
11cf8741
JM
2145 /* Step, next, nexti, stepi finished. */
2146 END_STEPPING_RANGE,
11cf8741
JM
2147 /* Inferior terminated by signal. */
2148 SIGNAL_EXITED,
2149 /* Inferior exited. */
2150 EXITED,
2151 /* Inferior received signal, and user asked to be notified. */
b2175913
MS
2152 SIGNAL_RECEIVED,
2153 /* Reverse execution -- target ran out of history info. */
2154 NO_HISTORY
11cf8741
JM
2155};
2156
0d1e5fa7
PA
2157/* The PTID we'll do a target_wait on.*/
2158ptid_t waiton_ptid;
2159
2160/* Current inferior wait state. */
2161enum infwait_states infwait_state;
cd0fc7c3 2162
0d1e5fa7
PA
2163/* Data to be passed around while handling an event. This data is
2164 discarded between events. */
c5aa993b 2165struct execution_control_state
488f131b 2166{
0d1e5fa7 2167 ptid_t ptid;
4e1c45ea
PA
2168 /* The thread that got the event, if this was a thread event; NULL
2169 otherwise. */
2170 struct thread_info *event_thread;
2171
488f131b 2172 struct target_waitstatus ws;
488f131b
JB
2173 int random_signal;
2174 CORE_ADDR stop_func_start;
2175 CORE_ADDR stop_func_end;
2176 char *stop_func_name;
488f131b 2177 int new_thread_event;
488f131b
JB
2178 int wait_some_more;
2179};
2180
ec9499be 2181static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2182
568d6575
UW
2183static void handle_step_into_function (struct gdbarch *gdbarch,
2184 struct execution_control_state *ecs);
2185static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2186 struct execution_control_state *ecs);
44cbf7b5 2187static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
14e60db5 2188static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
a6d9a66e
UW
2189static void insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
2190 struct symtab_and_line sr_sal,
44cbf7b5 2191 struct frame_id sr_id);
a6d9a66e 2192static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
611c83ae 2193
104c1213
JM
2194static void stop_stepping (struct execution_control_state *ecs);
2195static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2196static void keep_going (struct execution_control_state *ecs);
488f131b
JB
2197static void print_stop_reason (enum inferior_stop_reason stop_reason,
2198 int stop_info);
104c1213 2199
252fbfc8
PA
2200/* Callback for iterate over threads. If the thread is stopped, but
2201 the user/frontend doesn't know about that yet, go through
2202 normal_stop, as if the thread had just stopped now. ARG points at
2203 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2204 ptid_is_pid(PTID) is true, applies to all threads of the process
2205 pointed at by PTID. Otherwise, apply only to the thread pointed by
2206 PTID. */
2207
2208static int
2209infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2210{
2211 ptid_t ptid = * (ptid_t *) arg;
2212
2213 if ((ptid_equal (info->ptid, ptid)
2214 || ptid_equal (minus_one_ptid, ptid)
2215 || (ptid_is_pid (ptid)
2216 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2217 && is_running (info->ptid)
2218 && !is_executing (info->ptid))
2219 {
2220 struct cleanup *old_chain;
2221 struct execution_control_state ecss;
2222 struct execution_control_state *ecs = &ecss;
2223
2224 memset (ecs, 0, sizeof (*ecs));
2225
2226 old_chain = make_cleanup_restore_current_thread ();
2227
2228 switch_to_thread (info->ptid);
2229
2230 /* Go through handle_inferior_event/normal_stop, so we always
2231 have consistent output as if the stop event had been
2232 reported. */
2233 ecs->ptid = info->ptid;
e09875d4 2234 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8
PA
2235 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2236 ecs->ws.value.sig = TARGET_SIGNAL_0;
2237
2238 handle_inferior_event (ecs);
2239
2240 if (!ecs->wait_some_more)
2241 {
2242 struct thread_info *tp;
2243
2244 normal_stop ();
2245
2246 /* Finish off the continuations. The continations
2247 themselves are responsible for realising the thread
2248 didn't finish what it was supposed to do. */
2249 tp = inferior_thread ();
2250 do_all_intermediate_continuations_thread (tp);
2251 do_all_continuations_thread (tp);
2252 }
2253
2254 do_cleanups (old_chain);
2255 }
2256
2257 return 0;
2258}
2259
2260/* This function is attached as a "thread_stop_requested" observer.
2261 Cleanup local state that assumed the PTID was to be resumed, and
2262 report the stop to the frontend. */
2263
2c0b251b 2264static void
252fbfc8
PA
2265infrun_thread_stop_requested (ptid_t ptid)
2266{
fc1cf338 2267 struct displaced_step_inferior_state *displaced;
252fbfc8
PA
2268
2269 /* PTID was requested to stop. Remove it from the displaced
2270 stepping queue, so we don't try to resume it automatically. */
fc1cf338
PA
2271
2272 for (displaced = displaced_step_inferior_states;
2273 displaced;
2274 displaced = displaced->next)
252fbfc8 2275 {
fc1cf338 2276 struct displaced_step_request *it, **prev_next_p;
252fbfc8 2277
fc1cf338
PA
2278 it = displaced->step_request_queue;
2279 prev_next_p = &displaced->step_request_queue;
2280 while (it)
252fbfc8 2281 {
fc1cf338
PA
2282 if (ptid_match (it->ptid, ptid))
2283 {
2284 *prev_next_p = it->next;
2285 it->next = NULL;
2286 xfree (it);
2287 }
252fbfc8 2288 else
fc1cf338
PA
2289 {
2290 prev_next_p = &it->next;
2291 }
252fbfc8 2292
fc1cf338 2293 it = *prev_next_p;
252fbfc8 2294 }
252fbfc8
PA
2295 }
2296
2297 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2298}
2299
a07daef3
PA
2300static void
2301infrun_thread_thread_exit (struct thread_info *tp, int silent)
2302{
2303 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2304 nullify_last_target_wait_ptid ();
2305}
2306
4e1c45ea
PA
2307/* Callback for iterate_over_threads. */
2308
2309static int
2310delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2311{
2312 if (is_exited (info->ptid))
2313 return 0;
2314
2315 delete_step_resume_breakpoint (info);
2316 return 0;
2317}
2318
2319/* In all-stop, delete the step resume breakpoint of any thread that
2320 had one. In non-stop, delete the step resume breakpoint of the
2321 thread that just stopped. */
2322
2323static void
2324delete_step_thread_step_resume_breakpoint (void)
2325{
2326 if (!target_has_execution
2327 || ptid_equal (inferior_ptid, null_ptid))
2328 /* If the inferior has exited, we have already deleted the step
2329 resume breakpoints out of GDB's lists. */
2330 return;
2331
2332 if (non_stop)
2333 {
2334 /* If in non-stop mode, only delete the step-resume or
2335 longjmp-resume breakpoint of the thread that just stopped
2336 stepping. */
2337 struct thread_info *tp = inferior_thread ();
abbb1732 2338
4e1c45ea
PA
2339 delete_step_resume_breakpoint (tp);
2340 }
2341 else
2342 /* In all-stop mode, delete all step-resume and longjmp-resume
2343 breakpoints of any thread that had them. */
2344 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2345}
2346
2347/* A cleanup wrapper. */
2348
2349static void
2350delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2351{
2352 delete_step_thread_step_resume_breakpoint ();
2353}
2354
223698f8
DE
2355/* Pretty print the results of target_wait, for debugging purposes. */
2356
2357static void
2358print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2359 const struct target_waitstatus *ws)
2360{
2361 char *status_string = target_waitstatus_to_string (ws);
2362 struct ui_file *tmp_stream = mem_fileopen ();
2363 char *text;
223698f8
DE
2364
2365 /* The text is split over several lines because it was getting too long.
2366 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2367 output as a unit; we want only one timestamp printed if debug_timestamp
2368 is set. */
2369
2370 fprintf_unfiltered (tmp_stream,
2371 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2372 if (PIDGET (waiton_ptid) != -1)
2373 fprintf_unfiltered (tmp_stream,
2374 " [%s]", target_pid_to_str (waiton_ptid));
2375 fprintf_unfiltered (tmp_stream, ", status) =\n");
2376 fprintf_unfiltered (tmp_stream,
2377 "infrun: %d [%s],\n",
2378 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2379 fprintf_unfiltered (tmp_stream,
2380 "infrun: %s\n",
2381 status_string);
2382
759ef836 2383 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
2384
2385 /* This uses %s in part to handle %'s in the text, but also to avoid
2386 a gcc error: the format attribute requires a string literal. */
2387 fprintf_unfiltered (gdb_stdlog, "%s", text);
2388
2389 xfree (status_string);
2390 xfree (text);
2391 ui_file_delete (tmp_stream);
2392}
2393
24291992
PA
2394/* Prepare and stabilize the inferior for detaching it. E.g.,
2395 detaching while a thread is displaced stepping is a recipe for
2396 crashing it, as nothing would readjust the PC out of the scratch
2397 pad. */
2398
2399void
2400prepare_for_detach (void)
2401{
2402 struct inferior *inf = current_inferior ();
2403 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2404 struct cleanup *old_chain_1;
2405 struct displaced_step_inferior_state *displaced;
2406
2407 displaced = get_displaced_stepping_state (inf->pid);
2408
2409 /* Is any thread of this process displaced stepping? If not,
2410 there's nothing else to do. */
2411 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2412 return;
2413
2414 if (debug_infrun)
2415 fprintf_unfiltered (gdb_stdlog,
2416 "displaced-stepping in-process while detaching");
2417
2418 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2419 inf->detaching = 1;
2420
2421 while (!ptid_equal (displaced->step_ptid, null_ptid))
2422 {
2423 struct cleanup *old_chain_2;
2424 struct execution_control_state ecss;
2425 struct execution_control_state *ecs;
2426
2427 ecs = &ecss;
2428 memset (ecs, 0, sizeof (*ecs));
2429
2430 overlay_cache_invalid = 1;
2431
2432 /* We have to invalidate the registers BEFORE calling
2433 target_wait because they can be loaded from the target while
2434 in target_wait. This makes remote debugging a bit more
2435 efficient for those targets that provide critical registers
2436 as part of their normal status mechanism. */
2437
2438 registers_changed ();
2439
2440 if (deprecated_target_wait_hook)
2441 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2442 else
2443 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2444
2445 if (debug_infrun)
2446 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2447
2448 /* If an error happens while handling the event, propagate GDB's
2449 knowledge of the executing state to the frontend/user running
2450 state. */
2451 old_chain_2 = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2452
4d533103
PA
2453 /* In non-stop mode, each thread is handled individually.
2454 Switch early, so the global state is set correctly for this
2455 thread. */
2456 if (non_stop
2457 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2458 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2459 context_switch (ecs->ptid);
2460
24291992
PA
2461 /* Now figure out what to do with the result of the result. */
2462 handle_inferior_event (ecs);
2463
2464 /* No error, don't finish the state yet. */
2465 discard_cleanups (old_chain_2);
2466
2467 /* Breakpoints and watchpoints are not installed on the target
2468 at this point, and signals are passed directly to the
2469 inferior, so this must mean the process is gone. */
2470 if (!ecs->wait_some_more)
2471 {
2472 discard_cleanups (old_chain_1);
2473 error (_("Program exited while detaching"));
2474 }
2475 }
2476
2477 discard_cleanups (old_chain_1);
2478}
2479
cd0fc7c3 2480/* Wait for control to return from inferior to debugger.
ae123ec6
JB
2481
2482 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
2483 as if they were SIGTRAP signals. This can be useful during
2484 the startup sequence on some targets such as HP/UX, where
2485 we receive an EXEC event instead of the expected SIGTRAP.
2486
cd0fc7c3
SS
2487 If inferior gets a signal, we may decide to start it up again
2488 instead of returning. That is why there is a loop in this function.
2489 When this function actually returns it means the inferior
2490 should be left stopped and GDB should read more commands. */
2491
2492void
ae123ec6 2493wait_for_inferior (int treat_exec_as_sigtrap)
cd0fc7c3
SS
2494{
2495 struct cleanup *old_cleanups;
0d1e5fa7 2496 struct execution_control_state ecss;
cd0fc7c3 2497 struct execution_control_state *ecs;
c906108c 2498
527159b7 2499 if (debug_infrun)
ae123ec6
JB
2500 fprintf_unfiltered
2501 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
2502 treat_exec_as_sigtrap);
527159b7 2503
4e1c45ea
PA
2504 old_cleanups =
2505 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 2506
cd0fc7c3 2507 ecs = &ecss;
0d1e5fa7
PA
2508 memset (ecs, 0, sizeof (*ecs));
2509
e0bb1c1c
PA
2510 /* We'll update this if & when we switch to a new thread. */
2511 previous_inferior_ptid = inferior_ptid;
2512
c906108c
SS
2513 while (1)
2514 {
29f49a6a
PA
2515 struct cleanup *old_chain;
2516
ec9499be
UW
2517 /* We have to invalidate the registers BEFORE calling target_wait
2518 because they can be loaded from the target while in target_wait.
2519 This makes remote debugging a bit more efficient for those
2520 targets that provide critical registers as part of their normal
2521 status mechanism. */
2522
2523 overlay_cache_invalid = 1;
2524 registers_changed ();
2525
9a4105ab 2526 if (deprecated_target_wait_hook)
47608cb1 2527 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 2528 else
47608cb1 2529 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 2530
f00150c9 2531 if (debug_infrun)
223698f8 2532 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2533
ae123ec6
JB
2534 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
2535 {
2536 xfree (ecs->ws.value.execd_pathname);
2537 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2538 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
2539 }
2540
29f49a6a
PA
2541 /* If an error happens while handling the event, propagate GDB's
2542 knowledge of the executing state to the frontend/user running
2543 state. */
2544 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2545
a96d9b2e
SDJ
2546 if (ecs->ws.kind == TARGET_WAITKIND_SYSCALL_ENTRY
2547 || ecs->ws.kind == TARGET_WAITKIND_SYSCALL_RETURN)
2548 ecs->ws.value.syscall_number = UNKNOWN_SYSCALL;
2549
cd0fc7c3
SS
2550 /* Now figure out what to do with the result of the result. */
2551 handle_inferior_event (ecs);
c906108c 2552
29f49a6a
PA
2553 /* No error, don't finish the state yet. */
2554 discard_cleanups (old_chain);
2555
cd0fc7c3
SS
2556 if (!ecs->wait_some_more)
2557 break;
2558 }
4e1c45ea 2559
cd0fc7c3
SS
2560 do_cleanups (old_cleanups);
2561}
c906108c 2562
43ff13b4
JM
2563/* Asynchronous version of wait_for_inferior. It is called by the
2564 event loop whenever a change of state is detected on the file
2565 descriptor corresponding to the target. It can be called more than
2566 once to complete a single execution command. In such cases we need
a474d7c2
PA
2567 to keep the state in a global variable ECSS. If it is the last time
2568 that this function is called for a single execution command, then
2569 report to the user that the inferior has stopped, and do the
2570 necessary cleanups. */
43ff13b4
JM
2571
2572void
fba45db2 2573fetch_inferior_event (void *client_data)
43ff13b4 2574{
0d1e5fa7 2575 struct execution_control_state ecss;
a474d7c2 2576 struct execution_control_state *ecs = &ecss;
4f8d22e3 2577 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2578 struct cleanup *ts_old_chain;
4f8d22e3 2579 int was_sync = sync_execution;
43ff13b4 2580
0d1e5fa7
PA
2581 memset (ecs, 0, sizeof (*ecs));
2582
ec9499be
UW
2583 /* We'll update this if & when we switch to a new thread. */
2584 previous_inferior_ptid = inferior_ptid;
e0bb1c1c 2585
4f8d22e3
PA
2586 if (non_stop)
2587 /* In non-stop mode, the user/frontend should not notice a thread
2588 switch due to internal events. Make sure we reverse to the
2589 user selected thread and frame after handling the event and
2590 running any breakpoint commands. */
2591 make_cleanup_restore_current_thread ();
2592
59f0d5d9
PA
2593 /* We have to invalidate the registers BEFORE calling target_wait
2594 because they can be loaded from the target while in target_wait.
2595 This makes remote debugging a bit more efficient for those
2596 targets that provide critical registers as part of their normal
2597 status mechanism. */
43ff13b4 2598
ec9499be 2599 overlay_cache_invalid = 1;
59f0d5d9 2600 registers_changed ();
43ff13b4 2601
9a4105ab 2602 if (deprecated_target_wait_hook)
a474d7c2 2603 ecs->ptid =
47608cb1 2604 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2605 else
47608cb1 2606 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2607
f00150c9 2608 if (debug_infrun)
223698f8 2609 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2610
94cc34af
PA
2611 if (non_stop
2612 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2613 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2614 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2615 /* In non-stop mode, each thread is handled individually. Switch
2616 early, so the global state is set correctly for this
2617 thread. */
2618 context_switch (ecs->ptid);
2619
29f49a6a
PA
2620 /* If an error happens while handling the event, propagate GDB's
2621 knowledge of the executing state to the frontend/user running
2622 state. */
2623 if (!non_stop)
2624 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2625 else
2626 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2627
43ff13b4 2628 /* Now figure out what to do with the result of the result. */
a474d7c2 2629 handle_inferior_event (ecs);
43ff13b4 2630
a474d7c2 2631 if (!ecs->wait_some_more)
43ff13b4 2632 {
d6b48e9c
PA
2633 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2634
4e1c45ea 2635 delete_step_thread_step_resume_breakpoint ();
f107f563 2636
d6b48e9c
PA
2637 /* We may not find an inferior if this was a process exit. */
2638 if (inf == NULL || inf->stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2639 normal_stop ();
2640
af679fd0
PA
2641 if (target_has_execution
2642 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2643 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2644 && ecs->event_thread->step_multi
414c69f7 2645 && ecs->event_thread->stop_step)
c2d11a7d
JM
2646 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2647 else
2648 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4 2649 }
4f8d22e3 2650
29f49a6a
PA
2651 /* No error, don't finish the thread states yet. */
2652 discard_cleanups (ts_old_chain);
2653
4f8d22e3
PA
2654 /* Revert thread and frame. */
2655 do_cleanups (old_chain);
2656
2657 /* If the inferior was in sync execution mode, and now isn't,
2658 restore the prompt. */
2659 if (was_sync && !sync_execution)
2660 display_gdb_prompt (0);
43ff13b4
JM
2661}
2662
edb3359d
DJ
2663/* Record the frame and location we're currently stepping through. */
2664void
2665set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2666{
2667 struct thread_info *tp = inferior_thread ();
2668
2669 tp->step_frame_id = get_frame_id (frame);
2670 tp->step_stack_frame_id = get_stack_frame_id (frame);
2671
2672 tp->current_symtab = sal.symtab;
2673 tp->current_line = sal.line;
2674}
2675
0d1e5fa7
PA
2676/* Clear context switchable stepping state. */
2677
2678void
4e1c45ea 2679init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7
PA
2680{
2681 tss->stepping_over_breakpoint = 0;
2682 tss->step_after_step_resume_breakpoint = 0;
2683 tss->stepping_through_solib_after_catch = 0;
2684 tss->stepping_through_solib_catchpoints = NULL;
cd0fc7c3
SS
2685}
2686
e02bc4cc 2687/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2688 target_wait()/deprecated_target_wait_hook(). The data is actually
2689 cached by handle_inferior_event(), which gets called immediately
2690 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2691
2692void
488f131b 2693get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2694{
39f77062 2695 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2696 *status = target_last_waitstatus;
2697}
2698
ac264b3b
MS
2699void
2700nullify_last_target_wait_ptid (void)
2701{
2702 target_last_wait_ptid = minus_one_ptid;
2703}
2704
dcf4fbde 2705/* Switch thread contexts. */
dd80620e
MS
2706
2707static void
0d1e5fa7 2708context_switch (ptid_t ptid)
dd80620e 2709{
fd48f117
DJ
2710 if (debug_infrun)
2711 {
2712 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2713 target_pid_to_str (inferior_ptid));
2714 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2715 target_pid_to_str (ptid));
fd48f117
DJ
2716 }
2717
0d1e5fa7 2718 switch_to_thread (ptid);
dd80620e
MS
2719}
2720
4fa8626c
DJ
2721static void
2722adjust_pc_after_break (struct execution_control_state *ecs)
2723{
24a73cce
UW
2724 struct regcache *regcache;
2725 struct gdbarch *gdbarch;
6c95b8df 2726 struct address_space *aspace;
8aad930b 2727 CORE_ADDR breakpoint_pc;
4fa8626c 2728
4fa8626c
DJ
2729 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2730 we aren't, just return.
9709f61c
DJ
2731
2732 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2733 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2734 implemented by software breakpoints should be handled through the normal
2735 breakpoint layer.
8fb3e588 2736
4fa8626c
DJ
2737 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2738 different signals (SIGILL or SIGEMT for instance), but it is less
2739 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2740 gdbarch_decr_pc_after_break. I don't know any specific target that
2741 generates these signals at breakpoints (the code has been in GDB since at
2742 least 1992) so I can not guess how to handle them here.
8fb3e588 2743
e6cf7916
UW
2744 In earlier versions of GDB, a target with
2745 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2746 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2747 target with both of these set in GDB history, and it seems unlikely to be
2748 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2749
2750 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2751 return;
2752
2753 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2754 return;
2755
4058b839
PA
2756 /* In reverse execution, when a breakpoint is hit, the instruction
2757 under it has already been de-executed. The reported PC always
2758 points at the breakpoint address, so adjusting it further would
2759 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2760 architecture:
2761
2762 B1 0x08000000 : INSN1
2763 B2 0x08000001 : INSN2
2764 0x08000002 : INSN3
2765 PC -> 0x08000003 : INSN4
2766
2767 Say you're stopped at 0x08000003 as above. Reverse continuing
2768 from that point should hit B2 as below. Reading the PC when the
2769 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2770 been de-executed already.
2771
2772 B1 0x08000000 : INSN1
2773 B2 PC -> 0x08000001 : INSN2
2774 0x08000002 : INSN3
2775 0x08000003 : INSN4
2776
2777 We can't apply the same logic as for forward execution, because
2778 we would wrongly adjust the PC to 0x08000000, since there's a
2779 breakpoint at PC - 1. We'd then report a hit on B1, although
2780 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2781 behaviour. */
2782 if (execution_direction == EXEC_REVERSE)
2783 return;
2784
24a73cce
UW
2785 /* If this target does not decrement the PC after breakpoints, then
2786 we have nothing to do. */
2787 regcache = get_thread_regcache (ecs->ptid);
2788 gdbarch = get_regcache_arch (regcache);
2789 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2790 return;
2791
6c95b8df
PA
2792 aspace = get_regcache_aspace (regcache);
2793
8aad930b
AC
2794 /* Find the location where (if we've hit a breakpoint) the
2795 breakpoint would be. */
515630c5
UW
2796 breakpoint_pc = regcache_read_pc (regcache)
2797 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 2798
1c5cfe86
PA
2799 /* Check whether there actually is a software breakpoint inserted at
2800 that location.
2801
2802 If in non-stop mode, a race condition is possible where we've
2803 removed a breakpoint, but stop events for that breakpoint were
2804 already queued and arrive later. To suppress those spurious
2805 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2806 and retire them after a number of stop events are reported. */
6c95b8df
PA
2807 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2808 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 2809 {
96429cc8 2810 struct cleanup *old_cleanups = NULL;
abbb1732 2811
96429cc8
HZ
2812 if (RECORD_IS_USED)
2813 old_cleanups = record_gdb_operation_disable_set ();
2814
1c0fdd0e
UW
2815 /* When using hardware single-step, a SIGTRAP is reported for both
2816 a completed single-step and a software breakpoint. Need to
2817 differentiate between the two, as the latter needs adjusting
2818 but the former does not.
2819
2820 The SIGTRAP can be due to a completed hardware single-step only if
2821 - we didn't insert software single-step breakpoints
2822 - the thread to be examined is still the current thread
2823 - this thread is currently being stepped
2824
2825 If any of these events did not occur, we must have stopped due
2826 to hitting a software breakpoint, and have to back up to the
2827 breakpoint address.
2828
2829 As a special case, we could have hardware single-stepped a
2830 software breakpoint. In this case (prev_pc == breakpoint_pc),
2831 we also need to back up to the breakpoint address. */
2832
2833 if (singlestep_breakpoints_inserted_p
2834 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
2835 || !currently_stepping (ecs->event_thread)
2836 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 2837 regcache_write_pc (regcache, breakpoint_pc);
96429cc8
HZ
2838
2839 if (RECORD_IS_USED)
2840 do_cleanups (old_cleanups);
8aad930b 2841 }
4fa8626c
DJ
2842}
2843
0d1e5fa7
PA
2844void
2845init_infwait_state (void)
2846{
2847 waiton_ptid = pid_to_ptid (-1);
2848 infwait_state = infwait_normal_state;
2849}
2850
94cc34af
PA
2851void
2852error_is_running (void)
2853{
2854 error (_("\
2855Cannot execute this command while the selected thread is running."));
2856}
2857
2858void
2859ensure_not_running (void)
2860{
2861 if (is_running (inferior_ptid))
2862 error_is_running ();
2863}
2864
edb3359d
DJ
2865static int
2866stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
2867{
2868 for (frame = get_prev_frame (frame);
2869 frame != NULL;
2870 frame = get_prev_frame (frame))
2871 {
2872 if (frame_id_eq (get_frame_id (frame), step_frame_id))
2873 return 1;
2874 if (get_frame_type (frame) != INLINE_FRAME)
2875 break;
2876 }
2877
2878 return 0;
2879}
2880
a96d9b2e
SDJ
2881/* Auxiliary function that handles syscall entry/return events.
2882 It returns 1 if the inferior should keep going (and GDB
2883 should ignore the event), or 0 if the event deserves to be
2884 processed. */
ca2163eb 2885
a96d9b2e 2886static int
ca2163eb 2887handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 2888{
ca2163eb
PA
2889 struct regcache *regcache;
2890 struct gdbarch *gdbarch;
2891 int syscall_number;
2892
2893 if (!ptid_equal (ecs->ptid, inferior_ptid))
2894 context_switch (ecs->ptid);
2895
2896 regcache = get_thread_regcache (ecs->ptid);
2897 gdbarch = get_regcache_arch (regcache);
2898 syscall_number = gdbarch_get_syscall_number (gdbarch, ecs->ptid);
2899 stop_pc = regcache_read_pc (regcache);
2900
a96d9b2e
SDJ
2901 target_last_waitstatus.value.syscall_number = syscall_number;
2902
2903 if (catch_syscall_enabled () > 0
2904 && catching_syscall_number (syscall_number) > 0)
2905 {
2906 if (debug_infrun)
2907 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
2908 syscall_number);
a96d9b2e 2909
6c95b8df
PA
2910 ecs->event_thread->stop_bpstat
2911 = bpstat_stop_status (get_regcache_aspace (regcache),
2912 stop_pc, ecs->ptid);
a96d9b2e
SDJ
2913 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2914
ca2163eb
PA
2915 if (!ecs->random_signal)
2916 {
2917 /* Catchpoint hit. */
2918 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2919 return 0;
2920 }
a96d9b2e 2921 }
ca2163eb
PA
2922
2923 /* If no catchpoint triggered for this, then keep going. */
2924 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2925 keep_going (ecs);
2926 return 1;
a96d9b2e
SDJ
2927}
2928
cd0fc7c3
SS
2929/* Given an execution control state that has been freshly filled in
2930 by an event from the inferior, figure out what it means and take
2931 appropriate action. */
c906108c 2932
ec9499be 2933static void
96baa820 2934handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 2935{
568d6575
UW
2936 struct frame_info *frame;
2937 struct gdbarch *gdbarch;
c8edd8b4 2938 int sw_single_step_trap_p = 0;
d983da9c
DJ
2939 int stopped_by_watchpoint;
2940 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 2941 struct symtab_and_line stop_pc_sal;
d6b48e9c
PA
2942 enum stop_kind stop_soon;
2943
28736962
PA
2944 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
2945 {
2946 /* We had an event in the inferior, but we are not interested in
2947 handling it at this level. The lower layers have already
2948 done what needs to be done, if anything.
2949
2950 One of the possible circumstances for this is when the
2951 inferior produces output for the console. The inferior has
2952 not stopped, and we are ignoring the event. Another possible
2953 circumstance is any event which the lower level knows will be
2954 reported multiple times without an intervening resume. */
2955 if (debug_infrun)
2956 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
2957 prepare_to_wait (ecs);
2958 return;
2959 }
2960
d6b48e9c 2961 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
28736962 2962 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
d6b48e9c
PA
2963 {
2964 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
abbb1732 2965
d6b48e9c
PA
2966 gdb_assert (inf);
2967 stop_soon = inf->stop_soon;
2968 }
2969 else
2970 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 2971
e02bc4cc 2972 /* Cache the last pid/waitstatus. */
39f77062 2973 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 2974 target_last_waitstatus = ecs->ws;
e02bc4cc 2975
ca005067 2976 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 2977 stop_stack_dummy = STOP_NONE;
ca005067 2978
8c90c137
LM
2979 /* If it's a new process, add it to the thread database */
2980
2981 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
2982 && !ptid_equal (ecs->ptid, minus_one_ptid)
2983 && !in_thread_list (ecs->ptid));
2984
2985 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2986 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
2987 add_thread (ecs->ptid);
2988
e09875d4 2989 ecs->event_thread = find_thread_ptid (ecs->ptid);
88ed393a
JK
2990
2991 /* Dependent on valid ECS->EVENT_THREAD. */
2992 adjust_pc_after_break (ecs);
2993
2994 /* Dependent on the current PC value modified by adjust_pc_after_break. */
2995 reinit_frame_cache ();
2996
28736962
PA
2997 breakpoint_retire_moribund ();
2998
2b009048
DJ
2999 /* First, distinguish signals caused by the debugger from signals
3000 that have to do with the program's own actions. Note that
3001 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3002 on the operating system version. Here we detect when a SIGILL or
3003 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3004 something similar for SIGSEGV, since a SIGSEGV will be generated
3005 when we're trying to execute a breakpoint instruction on a
3006 non-executable stack. This happens for call dummy breakpoints
3007 for architectures like SPARC that place call dummies on the
3008 stack. */
2b009048
DJ
3009 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3010 && (ecs->ws.value.sig == TARGET_SIGNAL_ILL
3011 || ecs->ws.value.sig == TARGET_SIGNAL_SEGV
de0a0249 3012 || ecs->ws.value.sig == TARGET_SIGNAL_EMT))
2b009048 3013 {
de0a0249
UW
3014 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3015
3016 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3017 regcache_read_pc (regcache)))
3018 {
3019 if (debug_infrun)
3020 fprintf_unfiltered (gdb_stdlog,
3021 "infrun: Treating signal as SIGTRAP\n");
3022 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
3023 }
2b009048
DJ
3024 }
3025
28736962
PA
3026 /* Mark the non-executing threads accordingly. In all-stop, all
3027 threads of all processes are stopped when we get any event
3028 reported. In non-stop mode, only the event thread stops. If
3029 we're handling a process exit in non-stop mode, there's nothing
3030 to do, as threads of the dead process are gone, and threads of
3031 any other process were left running. */
3032 if (!non_stop)
3033 set_executing (minus_one_ptid, 0);
3034 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3035 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3036 set_executing (inferior_ptid, 0);
8c90c137 3037
0d1e5fa7 3038 switch (infwait_state)
488f131b
JB
3039 {
3040 case infwait_thread_hop_state:
527159b7 3041 if (debug_infrun)
8a9de0e4 3042 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
65e82032 3043 break;
b83266a0 3044
488f131b 3045 case infwait_normal_state:
527159b7 3046 if (debug_infrun)
8a9de0e4 3047 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
3048 break;
3049
3050 case infwait_step_watch_state:
3051 if (debug_infrun)
3052 fprintf_unfiltered (gdb_stdlog,
3053 "infrun: infwait_step_watch_state\n");
3054
3055 stepped_after_stopped_by_watchpoint = 1;
488f131b 3056 break;
b83266a0 3057
488f131b 3058 case infwait_nonstep_watch_state:
527159b7 3059 if (debug_infrun)
8a9de0e4
AC
3060 fprintf_unfiltered (gdb_stdlog,
3061 "infrun: infwait_nonstep_watch_state\n");
488f131b 3062 insert_breakpoints ();
c906108c 3063
488f131b
JB
3064 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3065 handle things like signals arriving and other things happening
3066 in combination correctly? */
3067 stepped_after_stopped_by_watchpoint = 1;
3068 break;
65e82032
AC
3069
3070 default:
e2e0b3e5 3071 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 3072 }
ec9499be 3073
0d1e5fa7 3074 infwait_state = infwait_normal_state;
ec9499be 3075 waiton_ptid = pid_to_ptid (-1);
c906108c 3076
488f131b
JB
3077 switch (ecs->ws.kind)
3078 {
3079 case TARGET_WAITKIND_LOADED:
527159b7 3080 if (debug_infrun)
8a9de0e4 3081 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
3082 /* Ignore gracefully during startup of the inferior, as it might
3083 be the shell which has just loaded some objects, otherwise
3084 add the symbols for the newly loaded objects. Also ignore at
3085 the beginning of an attach or remote session; we will query
3086 the full list of libraries once the connection is
3087 established. */
c0236d92 3088 if (stop_soon == NO_STOP_QUIETLY)
488f131b 3089 {
488f131b
JB
3090 /* Check for any newly added shared libraries if we're
3091 supposed to be adding them automatically. Switch
3092 terminal for any messages produced by
3093 breakpoint_re_set. */
3094 target_terminal_ours_for_output ();
aff6338a 3095 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
3096 stack's section table is kept up-to-date. Architectures,
3097 (e.g., PPC64), use the section table to perform
3098 operations such as address => section name and hence
3099 require the table to contain all sections (including
3100 those found in shared libraries). */
b0f4b84b 3101#ifdef SOLIB_ADD
aff6338a 3102 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
b0f4b84b
DJ
3103#else
3104 solib_add (NULL, 0, &current_target, auto_solib_add);
3105#endif
488f131b
JB
3106 target_terminal_inferior ();
3107
b0f4b84b
DJ
3108 /* If requested, stop when the dynamic linker notifies
3109 gdb of events. This allows the user to get control
3110 and place breakpoints in initializer routines for
3111 dynamically loaded objects (among other things). */
3112 if (stop_on_solib_events)
3113 {
55409f9d
DJ
3114 /* Make sure we print "Stopped due to solib-event" in
3115 normal_stop. */
3116 stop_print_frame = 1;
3117
b0f4b84b
DJ
3118 stop_stepping (ecs);
3119 return;
3120 }
3121
3122 /* NOTE drow/2007-05-11: This might be a good place to check
3123 for "catch load". */
488f131b 3124 }
b0f4b84b
DJ
3125
3126 /* If we are skipping through a shell, or through shared library
3127 loading that we aren't interested in, resume the program. If
3128 we're running the program normally, also resume. But stop if
3129 we're attaching or setting up a remote connection. */
3130 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3131 {
74960c60
VP
3132 /* Loading of shared libraries might have changed breakpoint
3133 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
3134 if (stop_soon == NO_STOP_QUIETLY
3135 && !breakpoints_always_inserted_mode ())
74960c60 3136 insert_breakpoints ();
b0f4b84b
DJ
3137 resume (0, TARGET_SIGNAL_0);
3138 prepare_to_wait (ecs);
3139 return;
3140 }
3141
3142 break;
c5aa993b 3143
488f131b 3144 case TARGET_WAITKIND_SPURIOUS:
527159b7 3145 if (debug_infrun)
8a9de0e4 3146 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
3147 resume (0, TARGET_SIGNAL_0);
3148 prepare_to_wait (ecs);
3149 return;
c5aa993b 3150
488f131b 3151 case TARGET_WAITKIND_EXITED:
527159b7 3152 if (debug_infrun)
8a9de0e4 3153 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
fb66883a 3154 inferior_ptid = ecs->ptid;
6c95b8df
PA
3155 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3156 set_current_program_space (current_inferior ()->pspace);
3157 handle_vfork_child_exec_or_exit (0);
488f131b
JB
3158 target_terminal_ours (); /* Must do this before mourn anyway */
3159 print_stop_reason (EXITED, ecs->ws.value.integer);
3160
3161 /* Record the exit code in the convenience variable $_exitcode, so
3162 that the user can inspect this again later. */
4fa62494
UW
3163 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3164 (LONGEST) ecs->ws.value.integer);
488f131b
JB
3165 gdb_flush (gdb_stdout);
3166 target_mourn_inferior ();
1c0fdd0e 3167 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
3168 stop_print_frame = 0;
3169 stop_stepping (ecs);
3170 return;
c5aa993b 3171
488f131b 3172 case TARGET_WAITKIND_SIGNALLED:
527159b7 3173 if (debug_infrun)
8a9de0e4 3174 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
fb66883a 3175 inferior_ptid = ecs->ptid;
6c95b8df
PA
3176 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3177 set_current_program_space (current_inferior ()->pspace);
3178 handle_vfork_child_exec_or_exit (0);
488f131b 3179 stop_print_frame = 0;
488f131b 3180 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 3181
488f131b
JB
3182 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
3183 reach here unless the inferior is dead. However, for years
3184 target_kill() was called here, which hints that fatal signals aren't
3185 really fatal on some systems. If that's true, then some changes
3186 may be needed. */
3187 target_mourn_inferior ();
c906108c 3188
2020b7ab 3189 print_stop_reason (SIGNAL_EXITED, ecs->ws.value.sig);
1c0fdd0e 3190 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
3191 stop_stepping (ecs);
3192 return;
c906108c 3193
488f131b
JB
3194 /* The following are the only cases in which we keep going;
3195 the above cases end in a continue or goto. */
3196 case TARGET_WAITKIND_FORKED:
deb3b17b 3197 case TARGET_WAITKIND_VFORKED:
527159b7 3198 if (debug_infrun)
8a9de0e4 3199 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
c906108c 3200
5a2901d9
DJ
3201 if (!ptid_equal (ecs->ptid, inferior_ptid))
3202 {
0d1e5fa7 3203 context_switch (ecs->ptid);
35f196d9 3204 reinit_frame_cache ();
5a2901d9
DJ
3205 }
3206
b242c3c2
PA
3207 /* Immediately detach breakpoints from the child before there's
3208 any chance of letting the user delete breakpoints from the
3209 breakpoint lists. If we don't do this early, it's easy to
3210 leave left over traps in the child, vis: "break foo; catch
3211 fork; c; <fork>; del; c; <child calls foo>". We only follow
3212 the fork on the last `continue', and by that time the
3213 breakpoint at "foo" is long gone from the breakpoint table.
3214 If we vforked, then we don't need to unpatch here, since both
3215 parent and child are sharing the same memory pages; we'll
3216 need to unpatch at follow/detach time instead to be certain
3217 that new breakpoints added between catchpoint hit time and
3218 vfork follow are detached. */
3219 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3220 {
3221 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
3222
3223 /* This won't actually modify the breakpoint list, but will
3224 physically remove the breakpoints from the child. */
3225 detach_breakpoints (child_pid);
3226 }
3227
e58b0e63
PA
3228 /* In case the event is caught by a catchpoint, remember that
3229 the event is to be followed at the next resume of the thread,
3230 and not immediately. */
3231 ecs->event_thread->pending_follow = ecs->ws;
3232
fb14de7b 3233 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 3234
6c95b8df
PA
3235 ecs->event_thread->stop_bpstat
3236 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3237 stop_pc, ecs->ptid);
675bf4cb 3238
67822962
PA
3239 /* Note that we're interested in knowing the bpstat actually
3240 causes a stop, not just if it may explain the signal.
3241 Software watchpoints, for example, always appear in the
3242 bpstat. */
3243 ecs->random_signal = !bpstat_causes_stop (ecs->event_thread->stop_bpstat);
04e68871
DJ
3244
3245 /* If no catchpoint triggered for this, then keep going. */
3246 if (ecs->random_signal)
3247 {
6c95b8df
PA
3248 ptid_t parent;
3249 ptid_t child;
e58b0e63 3250 int should_resume;
6c95b8df 3251 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 3252
2020b7ab 3253 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
e58b0e63
PA
3254
3255 should_resume = follow_fork ();
3256
6c95b8df
PA
3257 parent = ecs->ptid;
3258 child = ecs->ws.value.related_pid;
3259
3260 /* In non-stop mode, also resume the other branch. */
3261 if (non_stop && !detach_fork)
3262 {
3263 if (follow_child)
3264 switch_to_thread (parent);
3265 else
3266 switch_to_thread (child);
3267
3268 ecs->event_thread = inferior_thread ();
3269 ecs->ptid = inferior_ptid;
3270 keep_going (ecs);
3271 }
3272
3273 if (follow_child)
3274 switch_to_thread (child);
3275 else
3276 switch_to_thread (parent);
3277
e58b0e63
PA
3278 ecs->event_thread = inferior_thread ();
3279 ecs->ptid = inferior_ptid;
3280
3281 if (should_resume)
3282 keep_going (ecs);
3283 else
3284 stop_stepping (ecs);
04e68871
DJ
3285 return;
3286 }
2020b7ab 3287 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3288 goto process_event_stop_test;
3289
6c95b8df
PA
3290 case TARGET_WAITKIND_VFORK_DONE:
3291 /* Done with the shared memory region. Re-insert breakpoints in
3292 the parent, and keep going. */
3293
3294 if (debug_infrun)
3295 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3296
3297 if (!ptid_equal (ecs->ptid, inferior_ptid))
3298 context_switch (ecs->ptid);
3299
3300 current_inferior ()->waiting_for_vfork_done = 0;
56710373 3301 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
3302 /* This also takes care of reinserting breakpoints in the
3303 previously locked inferior. */
3304 keep_going (ecs);
3305 return;
3306
488f131b 3307 case TARGET_WAITKIND_EXECD:
527159b7 3308 if (debug_infrun)
fc5261f2 3309 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 3310
5a2901d9
DJ
3311 if (!ptid_equal (ecs->ptid, inferior_ptid))
3312 {
0d1e5fa7 3313 context_switch (ecs->ptid);
35f196d9 3314 reinit_frame_cache ();
5a2901d9
DJ
3315 }
3316
fb14de7b 3317 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 3318
6c95b8df
PA
3319 /* Do whatever is necessary to the parent branch of the vfork. */
3320 handle_vfork_child_exec_or_exit (1);
3321
795e548f
PA
3322 /* This causes the eventpoints and symbol table to be reset.
3323 Must do this now, before trying to determine whether to
3324 stop. */
71b43ef8 3325 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 3326
6c95b8df
PA
3327 ecs->event_thread->stop_bpstat
3328 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3329 stop_pc, ecs->ptid);
795e548f
PA
3330 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
3331
71b43ef8
PA
3332 /* Note that this may be referenced from inside
3333 bpstat_stop_status above, through inferior_has_execd. */
3334 xfree (ecs->ws.value.execd_pathname);
3335 ecs->ws.value.execd_pathname = NULL;
3336
04e68871
DJ
3337 /* If no catchpoint triggered for this, then keep going. */
3338 if (ecs->random_signal)
3339 {
2020b7ab 3340 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
04e68871
DJ
3341 keep_going (ecs);
3342 return;
3343 }
2020b7ab 3344 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3345 goto process_event_stop_test;
3346
b4dc5ffa
MK
3347 /* Be careful not to try to gather much state about a thread
3348 that's in a syscall. It's frequently a losing proposition. */
488f131b 3349 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 3350 if (debug_infrun)
8a9de0e4 3351 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
a96d9b2e 3352 /* Getting the current syscall number */
ca2163eb 3353 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3354 return;
3355 goto process_event_stop_test;
c906108c 3356
488f131b
JB
3357 /* Before examining the threads further, step this thread to
3358 get it entirely out of the syscall. (We get notice of the
3359 event when the thread is just on the verge of exiting a
3360 syscall. Stepping one instruction seems to get it back
b4dc5ffa 3361 into user code.) */
488f131b 3362 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 3363 if (debug_infrun)
8a9de0e4 3364 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
ca2163eb 3365 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3366 return;
3367 goto process_event_stop_test;
c906108c 3368
488f131b 3369 case TARGET_WAITKIND_STOPPED:
527159b7 3370 if (debug_infrun)
8a9de0e4 3371 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
2020b7ab 3372 ecs->event_thread->stop_signal = ecs->ws.value.sig;
488f131b 3373 break;
c906108c 3374
b2175913
MS
3375 case TARGET_WAITKIND_NO_HISTORY:
3376 /* Reverse execution: target ran out of history info. */
fb14de7b 3377 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
b2175913
MS
3378 print_stop_reason (NO_HISTORY, 0);
3379 stop_stepping (ecs);
3380 return;
488f131b 3381 }
c906108c 3382
488f131b
JB
3383 if (ecs->new_thread_event)
3384 {
94cc34af
PA
3385 if (non_stop)
3386 /* Non-stop assumes that the target handles adding new threads
3387 to the thread list. */
3388 internal_error (__FILE__, __LINE__, "\
3389targets should add new threads to the thread list themselves in non-stop mode.");
3390
3391 /* We may want to consider not doing a resume here in order to
3392 give the user a chance to play with the new thread. It might
3393 be good to make that a user-settable option. */
3394
3395 /* At this point, all threads are stopped (happens automatically
3396 in either the OS or the native code). Therefore we need to
3397 continue all threads in order to make progress. */
3398
173853dc
PA
3399 if (!ptid_equal (ecs->ptid, inferior_ptid))
3400 context_switch (ecs->ptid);
488f131b
JB
3401 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
3402 prepare_to_wait (ecs);
3403 return;
3404 }
c906108c 3405
2020b7ab 3406 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
3407 {
3408 /* Do we need to clean up the state of a thread that has
3409 completed a displaced single-step? (Doing so usually affects
3410 the PC, so do it here, before we set stop_pc.) */
3411 displaced_step_fixup (ecs->ptid, ecs->event_thread->stop_signal);
3412
3413 /* If we either finished a single-step or hit a breakpoint, but
3414 the user wanted this thread to be stopped, pretend we got a
3415 SIG0 (generic unsignaled stop). */
3416
3417 if (ecs->event_thread->stop_requested
3418 && ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
3419 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
3420 }
237fc4c9 3421
515630c5 3422 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 3423
527159b7 3424 if (debug_infrun)
237fc4c9 3425 {
5af949e3
UW
3426 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3427 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
3428 struct cleanup *old_chain = save_inferior_ptid ();
3429
3430 inferior_ptid = ecs->ptid;
5af949e3
UW
3431
3432 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3433 paddress (gdbarch, stop_pc));
d92524f1 3434 if (target_stopped_by_watchpoint ())
237fc4c9
PA
3435 {
3436 CORE_ADDR addr;
abbb1732 3437
237fc4c9
PA
3438 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3439
3440 if (target_stopped_data_address (&current_target, &addr))
3441 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
3442 "infrun: stopped data address = %s\n",
3443 paddress (gdbarch, addr));
237fc4c9
PA
3444 else
3445 fprintf_unfiltered (gdb_stdlog,
3446 "infrun: (no data address available)\n");
3447 }
7f82dfc7
JK
3448
3449 do_cleanups (old_chain);
237fc4c9 3450 }
527159b7 3451
9f976b41
DJ
3452 if (stepping_past_singlestep_breakpoint)
3453 {
1c0fdd0e 3454 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
3455 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3456 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3457
3458 stepping_past_singlestep_breakpoint = 0;
3459
3460 /* We've either finished single-stepping past the single-step
8fb3e588
AC
3461 breakpoint, or stopped for some other reason. It would be nice if
3462 we could tell, but we can't reliably. */
2020b7ab 3463 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 3464 {
527159b7 3465 if (debug_infrun)
8a9de0e4 3466 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
9f976b41 3467 /* Pull the single step breakpoints out of the target. */
e0cd558a 3468 remove_single_step_breakpoints ();
9f976b41
DJ
3469 singlestep_breakpoints_inserted_p = 0;
3470
3471 ecs->random_signal = 0;
79626f8a 3472 ecs->event_thread->trap_expected = 0;
9f976b41 3473
0d1e5fa7 3474 context_switch (saved_singlestep_ptid);
9a4105ab
AC
3475 if (deprecated_context_hook)
3476 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
3477
3478 resume (1, TARGET_SIGNAL_0);
3479 prepare_to_wait (ecs);
3480 return;
3481 }
3482 }
3483
ca67fcb8 3484 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 3485 {
94cc34af
PA
3486 /* In non-stop mode, there's never a deferred_step_ptid set. */
3487 gdb_assert (!non_stop);
3488
6a6b96b9
UW
3489 /* If we stopped for some other reason than single-stepping, ignore
3490 the fact that we were supposed to switch back. */
2020b7ab 3491 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
6a6b96b9
UW
3492 {
3493 if (debug_infrun)
3494 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 3495 "infrun: handling deferred step\n");
6a6b96b9
UW
3496
3497 /* Pull the single step breakpoints out of the target. */
3498 if (singlestep_breakpoints_inserted_p)
3499 {
3500 remove_single_step_breakpoints ();
3501 singlestep_breakpoints_inserted_p = 0;
3502 }
3503
3504 /* Note: We do not call context_switch at this point, as the
3505 context is already set up for stepping the original thread. */
ca67fcb8
VP
3506 switch_to_thread (deferred_step_ptid);
3507 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3508 /* Suppress spurious "Switching to ..." message. */
3509 previous_inferior_ptid = inferior_ptid;
3510
3511 resume (1, TARGET_SIGNAL_0);
3512 prepare_to_wait (ecs);
3513 return;
3514 }
ca67fcb8
VP
3515
3516 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3517 }
3518
488f131b
JB
3519 /* See if a thread hit a thread-specific breakpoint that was meant for
3520 another thread. If so, then step that thread past the breakpoint,
3521 and continue it. */
3522
2020b7ab 3523 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
488f131b 3524 {
9f976b41 3525 int thread_hop_needed = 0;
cf00dfa7
VP
3526 struct address_space *aspace =
3527 get_regcache_aspace (get_thread_regcache (ecs->ptid));
9f976b41 3528
f8d40ec8
JB
3529 /* Check if a regular breakpoint has been hit before checking
3530 for a potential single step breakpoint. Otherwise, GDB will
3531 not see this breakpoint hit when stepping onto breakpoints. */
6c95b8df 3532 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
488f131b 3533 {
c5aa993b 3534 ecs->random_signal = 0;
6c95b8df 3535 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
9f976b41
DJ
3536 thread_hop_needed = 1;
3537 }
1c0fdd0e 3538 else if (singlestep_breakpoints_inserted_p)
9f976b41 3539 {
fd48f117
DJ
3540 /* We have not context switched yet, so this should be true
3541 no matter which thread hit the singlestep breakpoint. */
3542 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3543 if (debug_infrun)
3544 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3545 "trap for %s\n",
3546 target_pid_to_str (ecs->ptid));
3547
9f976b41
DJ
3548 ecs->random_signal = 0;
3549 /* The call to in_thread_list is necessary because PTIDs sometimes
3550 change when we go from single-threaded to multi-threaded. If
3551 the singlestep_ptid is still in the list, assume that it is
3552 really different from ecs->ptid. */
3553 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3554 && in_thread_list (singlestep_ptid))
3555 {
fd48f117
DJ
3556 /* If the PC of the thread we were trying to single-step
3557 has changed, discard this event (which we were going
3558 to ignore anyway), and pretend we saw that thread
3559 trap. This prevents us continuously moving the
3560 single-step breakpoint forward, one instruction at a
3561 time. If the PC has changed, then the thread we were
3562 trying to single-step has trapped or been signalled,
3563 but the event has not been reported to GDB yet.
3564
3565 There might be some cases where this loses signal
3566 information, if a signal has arrived at exactly the
3567 same time that the PC changed, but this is the best
3568 we can do with the information available. Perhaps we
3569 should arrange to report all events for all threads
3570 when they stop, or to re-poll the remote looking for
3571 this particular thread (i.e. temporarily enable
3572 schedlock). */
515630c5
UW
3573
3574 CORE_ADDR new_singlestep_pc
3575 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3576
3577 if (new_singlestep_pc != singlestep_pc)
fd48f117 3578 {
2020b7ab
PA
3579 enum target_signal stop_signal;
3580
fd48f117
DJ
3581 if (debug_infrun)
3582 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3583 " but expected thread advanced also\n");
3584
3585 /* The current context still belongs to
3586 singlestep_ptid. Don't swap here, since that's
3587 the context we want to use. Just fudge our
3588 state and continue. */
2020b7ab
PA
3589 stop_signal = ecs->event_thread->stop_signal;
3590 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
fd48f117 3591 ecs->ptid = singlestep_ptid;
e09875d4 3592 ecs->event_thread = find_thread_ptid (ecs->ptid);
2020b7ab 3593 ecs->event_thread->stop_signal = stop_signal;
515630c5 3594 stop_pc = new_singlestep_pc;
fd48f117
DJ
3595 }
3596 else
3597 {
3598 if (debug_infrun)
3599 fprintf_unfiltered (gdb_stdlog,
3600 "infrun: unexpected thread\n");
3601
3602 thread_hop_needed = 1;
3603 stepping_past_singlestep_breakpoint = 1;
3604 saved_singlestep_ptid = singlestep_ptid;
3605 }
9f976b41
DJ
3606 }
3607 }
3608
3609 if (thread_hop_needed)
8fb3e588 3610 {
9f5a595d 3611 struct regcache *thread_regcache;
237fc4c9 3612 int remove_status = 0;
8fb3e588 3613
527159b7 3614 if (debug_infrun)
8a9de0e4 3615 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 3616
b3444185
PA
3617 /* Switch context before touching inferior memory, the
3618 previous thread may have exited. */
3619 if (!ptid_equal (inferior_ptid, ecs->ptid))
3620 context_switch (ecs->ptid);
3621
8fb3e588
AC
3622 /* Saw a breakpoint, but it was hit by the wrong thread.
3623 Just continue. */
3624
1c0fdd0e 3625 if (singlestep_breakpoints_inserted_p)
488f131b 3626 {
8fb3e588 3627 /* Pull the single step breakpoints out of the target. */
e0cd558a 3628 remove_single_step_breakpoints ();
8fb3e588
AC
3629 singlestep_breakpoints_inserted_p = 0;
3630 }
3631
237fc4c9
PA
3632 /* If the arch can displace step, don't remove the
3633 breakpoints. */
9f5a595d
UW
3634 thread_regcache = get_thread_regcache (ecs->ptid);
3635 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
3636 remove_status = remove_breakpoints ();
3637
8fb3e588
AC
3638 /* Did we fail to remove breakpoints? If so, try
3639 to set the PC past the bp. (There's at least
3640 one situation in which we can fail to remove
3641 the bp's: On HP-UX's that use ttrace, we can't
3642 change the address space of a vforking child
3643 process until the child exits (well, okay, not
3644 then either :-) or execs. */
3645 if (remove_status != 0)
9d9cd7ac 3646 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
3647 else
3648 { /* Single step */
94cc34af
PA
3649 if (!non_stop)
3650 {
3651 /* Only need to require the next event from this
3652 thread in all-stop mode. */
3653 waiton_ptid = ecs->ptid;
3654 infwait_state = infwait_thread_hop_state;
3655 }
8fb3e588 3656
4e1c45ea 3657 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588 3658 keep_going (ecs);
8fb3e588
AC
3659 return;
3660 }
488f131b 3661 }
1c0fdd0e 3662 else if (singlestep_breakpoints_inserted_p)
8fb3e588
AC
3663 {
3664 sw_single_step_trap_p = 1;
3665 ecs->random_signal = 0;
3666 }
488f131b
JB
3667 }
3668 else
3669 ecs->random_signal = 1;
c906108c 3670
488f131b 3671 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
3672 so, then switch to that thread. */
3673 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 3674 {
527159b7 3675 if (debug_infrun)
8a9de0e4 3676 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 3677
0d1e5fa7 3678 context_switch (ecs->ptid);
c5aa993b 3679
9a4105ab
AC
3680 if (deprecated_context_hook)
3681 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 3682 }
c906108c 3683
568d6575
UW
3684 /* At this point, get hold of the now-current thread's frame. */
3685 frame = get_current_frame ();
3686 gdbarch = get_frame_arch (frame);
3687
1c0fdd0e 3688 if (singlestep_breakpoints_inserted_p)
488f131b
JB
3689 {
3690 /* Pull the single step breakpoints out of the target. */
e0cd558a 3691 remove_single_step_breakpoints ();
488f131b
JB
3692 singlestep_breakpoints_inserted_p = 0;
3693 }
c906108c 3694
d983da9c
DJ
3695 if (stepped_after_stopped_by_watchpoint)
3696 stopped_by_watchpoint = 0;
3697 else
3698 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3699
3700 /* If necessary, step over this watchpoint. We'll be back to display
3701 it in a moment. */
3702 if (stopped_by_watchpoint
d92524f1 3703 && (target_have_steppable_watchpoint
568d6575 3704 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 3705 {
488f131b
JB
3706 /* At this point, we are stopped at an instruction which has
3707 attempted to write to a piece of memory under control of
3708 a watchpoint. The instruction hasn't actually executed
3709 yet. If we were to evaluate the watchpoint expression
3710 now, we would get the old value, and therefore no change
3711 would seem to have occurred.
3712
3713 In order to make watchpoints work `right', we really need
3714 to complete the memory write, and then evaluate the
d983da9c
DJ
3715 watchpoint expression. We do this by single-stepping the
3716 target.
3717
3718 It may not be necessary to disable the watchpoint to stop over
3719 it. For example, the PA can (with some kernel cooperation)
3720 single step over a watchpoint without disabling the watchpoint.
3721
3722 It is far more common to need to disable a watchpoint to step
3723 the inferior over it. If we have non-steppable watchpoints,
3724 we must disable the current watchpoint; it's simplest to
3725 disable all watchpoints and breakpoints. */
2facfe5c
DD
3726 int hw_step = 1;
3727
d92524f1 3728 if (!target_have_steppable_watchpoint)
d983da9c 3729 remove_breakpoints ();
2facfe5c 3730 /* Single step */
568d6575 3731 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
2facfe5c 3732 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
0d1e5fa7 3733 waiton_ptid = ecs->ptid;
d92524f1 3734 if (target_have_steppable_watchpoint)
0d1e5fa7 3735 infwait_state = infwait_step_watch_state;
d983da9c 3736 else
0d1e5fa7 3737 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
3738 prepare_to_wait (ecs);
3739 return;
3740 }
3741
488f131b
JB
3742 ecs->stop_func_start = 0;
3743 ecs->stop_func_end = 0;
3744 ecs->stop_func_name = 0;
3745 /* Don't care about return value; stop_func_start and stop_func_name
3746 will both be 0 if it doesn't work. */
3747 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3748 &ecs->stop_func_start, &ecs->stop_func_end);
cbf3b44a 3749 ecs->stop_func_start
568d6575 3750 += gdbarch_deprecated_function_start_offset (gdbarch);
4e1c45ea 3751 ecs->event_thread->stepping_over_breakpoint = 0;
347bddb7 3752 bpstat_clear (&ecs->event_thread->stop_bpstat);
414c69f7 3753 ecs->event_thread->stop_step = 0;
488f131b
JB
3754 stop_print_frame = 1;
3755 ecs->random_signal = 0;
3756 stopped_by_random_signal = 0;
488f131b 3757
edb3359d
DJ
3758 /* Hide inlined functions starting here, unless we just performed stepi or
3759 nexti. After stepi and nexti, always show the innermost frame (not any
3760 inline function call sites). */
3761 if (ecs->event_thread->step_range_end != 1)
3762 skip_inline_frames (ecs->ptid);
3763
2020b7ab 3764 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4e1c45ea 3765 && ecs->event_thread->trap_expected
568d6575 3766 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 3767 && currently_stepping (ecs->event_thread))
3352ef37 3768 {
b50d7442 3769 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37
AC
3770 also on an instruction that needs to be stepped multiple
3771 times before it's been fully executing. E.g., architectures
3772 with a delay slot. It needs to be stepped twice, once for
3773 the instruction and once for the delay slot. */
3774 int step_through_delay
568d6575 3775 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 3776
527159b7 3777 if (debug_infrun && step_through_delay)
8a9de0e4 3778 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4e1c45ea 3779 if (ecs->event_thread->step_range_end == 0 && step_through_delay)
3352ef37
AC
3780 {
3781 /* The user issued a continue when stopped at a breakpoint.
3782 Set up for another trap and get out of here. */
4e1c45ea 3783 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
3784 keep_going (ecs);
3785 return;
3786 }
3787 else if (step_through_delay)
3788 {
3789 /* The user issued a step when stopped at a breakpoint.
3790 Maybe we should stop, maybe we should not - the delay
3791 slot *might* correspond to a line of source. In any
ca67fcb8
VP
3792 case, don't decide that here, just set
3793 ecs->stepping_over_breakpoint, making sure we
3794 single-step again before breakpoints are re-inserted. */
4e1c45ea 3795 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
3796 }
3797 }
3798
488f131b
JB
3799 /* Look at the cause of the stop, and decide what to do.
3800 The alternatives are:
0d1e5fa7
PA
3801 1) stop_stepping and return; to really stop and return to the debugger,
3802 2) keep_going and return to start up again
4e1c45ea 3803 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
3804 3) set ecs->random_signal to 1, and the decision between 1 and 2
3805 will be made according to the signal handling tables. */
3806
2020b7ab 3807 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
b0f4b84b
DJ
3808 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
3809 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 3810 {
2020b7ab 3811 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
488f131b 3812 {
527159b7 3813 if (debug_infrun)
8a9de0e4 3814 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
3815 stop_print_frame = 0;
3816 stop_stepping (ecs);
3817 return;
3818 }
c54cfec8
EZ
3819
3820 /* This is originated from start_remote(), start_inferior() and
3821 shared libraries hook functions. */
b0f4b84b 3822 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 3823 {
527159b7 3824 if (debug_infrun)
8a9de0e4 3825 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
3826 stop_stepping (ecs);
3827 return;
3828 }
3829
c54cfec8 3830 /* This originates from attach_command(). We need to overwrite
a0d21d28
PA
3831 the stop_signal here, because some kernels don't ignore a
3832 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
3833 See more comments in inferior.h. On the other hand, if we
a0ef4274 3834 get a non-SIGSTOP, report it to the user - assume the backend
a0d21d28
PA
3835 will handle the SIGSTOP if it should show up later.
3836
3837 Also consider that the attach is complete when we see a
3838 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
3839 target extended-remote report it instead of a SIGSTOP
3840 (e.g. gdbserver). We already rely on SIGTRAP being our
e0ba6746
PA
3841 signal, so this is no exception.
3842
3843 Also consider that the attach is complete when we see a
3844 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
3845 the target to stop all threads of the inferior, in case the
3846 low level attach operation doesn't stop them implicitly. If
3847 they weren't stopped implicitly, then the stub will report a
3848 TARGET_SIGNAL_0, meaning: stopped for no particular reason
3849 other than GDB's request. */
a0ef4274 3850 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
2020b7ab 3851 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_STOP
e0ba6746
PA
3852 || ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3853 || ecs->event_thread->stop_signal == TARGET_SIGNAL_0))
c54cfec8
EZ
3854 {
3855 stop_stepping (ecs);
2020b7ab 3856 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
c54cfec8
EZ
3857 return;
3858 }
3859
fba57f8f 3860 /* See if there is a breakpoint at the current PC. */
6c95b8df
PA
3861 ecs->event_thread->stop_bpstat
3862 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3863 stop_pc, ecs->ptid);
3864
fba57f8f
VP
3865 /* Following in case break condition called a
3866 function. */
3867 stop_print_frame = 1;
488f131b 3868
db82e815
PA
3869 /* This is where we handle "moribund" watchpoints. Unlike
3870 software breakpoints traps, hardware watchpoint traps are
3871 always distinguishable from random traps. If no high-level
3872 watchpoint is associated with the reported stop data address
3873 anymore, then the bpstat does not explain the signal ---
3874 simply make sure to ignore it if `stopped_by_watchpoint' is
3875 set. */
3876
3877 if (debug_infrun
3878 && ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3879 && !bpstat_explains_signal (ecs->event_thread->stop_bpstat)
3880 && stopped_by_watchpoint)
3881 fprintf_unfiltered (gdb_stdlog, "\
3882infrun: no user watchpoint explains watchpoint SIGTRAP, ignoring\n");
3883
73dd234f 3884 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
3885 at one stage in the past included checks for an inferior
3886 function call's call dummy's return breakpoint. The original
3887 comment, that went with the test, read:
73dd234f 3888
8fb3e588
AC
3889 ``End of a stack dummy. Some systems (e.g. Sony news) give
3890 another signal besides SIGTRAP, so check here as well as
3891 above.''
73dd234f 3892
8002d778 3893 If someone ever tries to get call dummys on a
73dd234f 3894 non-executable stack to work (where the target would stop
03cebad2
MK
3895 with something like a SIGSEGV), then those tests might need
3896 to be re-instated. Given, however, that the tests were only
73dd234f 3897 enabled when momentary breakpoints were not being used, I
03cebad2
MK
3898 suspect that it won't be the case.
3899
8fb3e588
AC
3900 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
3901 be necessary for call dummies on a non-executable stack on
3902 SPARC. */
73dd234f 3903
2020b7ab 3904 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
488f131b 3905 ecs->random_signal
347bddb7 3906 = !(bpstat_explains_signal (ecs->event_thread->stop_bpstat)
db82e815 3907 || stopped_by_watchpoint
4e1c45ea
PA
3908 || ecs->event_thread->trap_expected
3909 || (ecs->event_thread->step_range_end
3910 && ecs->event_thread->step_resume_breakpoint == NULL));
488f131b
JB
3911 else
3912 {
347bddb7 3913 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
488f131b 3914 if (!ecs->random_signal)
2020b7ab 3915 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3916 }
3917 }
3918
3919 /* When we reach this point, we've pretty much decided
3920 that the reason for stopping must've been a random
3921 (unexpected) signal. */
3922
3923 else
3924 ecs->random_signal = 1;
488f131b 3925
04e68871 3926process_event_stop_test:
568d6575
UW
3927
3928 /* Re-fetch current thread's frame in case we did a
3929 "goto process_event_stop_test" above. */
3930 frame = get_current_frame ();
3931 gdbarch = get_frame_arch (frame);
3932
488f131b
JB
3933 /* For the program's own signals, act according to
3934 the signal handling tables. */
3935
3936 if (ecs->random_signal)
3937 {
3938 /* Signal not for debugging purposes. */
3939 int printed = 0;
24291992 3940 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
488f131b 3941
527159b7 3942 if (debug_infrun)
2020b7ab
PA
3943 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
3944 ecs->event_thread->stop_signal);
527159b7 3945
488f131b
JB
3946 stopped_by_random_signal = 1;
3947
2020b7ab 3948 if (signal_print[ecs->event_thread->stop_signal])
488f131b
JB
3949 {
3950 printed = 1;
3951 target_terminal_ours_for_output ();
2020b7ab 3952 print_stop_reason (SIGNAL_RECEIVED, ecs->event_thread->stop_signal);
488f131b 3953 }
252fbfc8
PA
3954 /* Always stop on signals if we're either just gaining control
3955 of the program, or the user explicitly requested this thread
3956 to remain stopped. */
d6b48e9c 3957 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 3958 || ecs->event_thread->stop_requested
24291992
PA
3959 || (!inf->detaching
3960 && signal_stop_state (ecs->event_thread->stop_signal)))
488f131b
JB
3961 {
3962 stop_stepping (ecs);
3963 return;
3964 }
3965 /* If not going to stop, give terminal back
3966 if we took it away. */
3967 else if (printed)
3968 target_terminal_inferior ();
3969
3970 /* Clear the signal if it should not be passed. */
2020b7ab
PA
3971 if (signal_program[ecs->event_thread->stop_signal] == 0)
3972 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
488f131b 3973
fb14de7b 3974 if (ecs->event_thread->prev_pc == stop_pc
4e1c45ea
PA
3975 && ecs->event_thread->trap_expected
3976 && ecs->event_thread->step_resume_breakpoint == NULL)
68f53502
AC
3977 {
3978 /* We were just starting a new sequence, attempting to
3979 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 3980 Instead this signal arrives. This signal will take us out
68f53502
AC
3981 of the stepping range so GDB needs to remember to, when
3982 the signal handler returns, resume stepping off that
3983 breakpoint. */
3984 /* To simplify things, "continue" is forced to use the same
3985 code paths as single-step - set a breakpoint at the
3986 signal return address and then, once hit, step off that
3987 breakpoint. */
237fc4c9
PA
3988 if (debug_infrun)
3989 fprintf_unfiltered (gdb_stdlog,
3990 "infrun: signal arrived while stepping over "
3991 "breakpoint\n");
d3169d93 3992
568d6575 3993 insert_step_resume_breakpoint_at_frame (frame);
4e1c45ea 3994 ecs->event_thread->step_after_step_resume_breakpoint = 1;
9d799f85
AC
3995 keep_going (ecs);
3996 return;
68f53502 3997 }
9d799f85 3998
4e1c45ea 3999 if (ecs->event_thread->step_range_end != 0
2020b7ab 4000 && ecs->event_thread->stop_signal != TARGET_SIGNAL_0
4e1c45ea
PA
4001 && (ecs->event_thread->step_range_start <= stop_pc
4002 && stop_pc < ecs->event_thread->step_range_end)
edb3359d
DJ
4003 && frame_id_eq (get_stack_frame_id (frame),
4004 ecs->event_thread->step_stack_frame_id)
4e1c45ea 4005 && ecs->event_thread->step_resume_breakpoint == NULL)
d303a6c7
AC
4006 {
4007 /* The inferior is about to take a signal that will take it
4008 out of the single step range. Set a breakpoint at the
4009 current PC (which is presumably where the signal handler
4010 will eventually return) and then allow the inferior to
4011 run free.
4012
4013 Note that this is only needed for a signal delivered
4014 while in the single-step range. Nested signals aren't a
4015 problem as they eventually all return. */
237fc4c9
PA
4016 if (debug_infrun)
4017 fprintf_unfiltered (gdb_stdlog,
4018 "infrun: signal may take us out of "
4019 "single-step range\n");
4020
568d6575 4021 insert_step_resume_breakpoint_at_frame (frame);
9d799f85
AC
4022 keep_going (ecs);
4023 return;
d303a6c7 4024 }
9d799f85
AC
4025
4026 /* Note: step_resume_breakpoint may be non-NULL. This occures
4027 when either there's a nested signal, or when there's a
4028 pending signal enabled just as the signal handler returns
4029 (leaving the inferior at the step-resume-breakpoint without
4030 actually executing it). Either way continue until the
4031 breakpoint is really hit. */
488f131b
JB
4032 keep_going (ecs);
4033 return;
4034 }
4035
4036 /* Handle cases caused by hitting a breakpoint. */
4037 {
4038 CORE_ADDR jmp_buf_pc;
4039 struct bpstat_what what;
4040
347bddb7 4041 what = bpstat_what (ecs->event_thread->stop_bpstat);
488f131b
JB
4042
4043 if (what.call_dummy)
4044 {
aa7d318d 4045 stop_stack_dummy = what.call_dummy;
c5aa993b 4046 }
c906108c 4047
488f131b 4048 switch (what.main_action)
c5aa993b 4049 {
488f131b 4050 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
611c83ae
PA
4051 /* If we hit the breakpoint at longjmp while stepping, we
4052 install a momentary breakpoint at the target of the
4053 jmp_buf. */
4054
4055 if (debug_infrun)
4056 fprintf_unfiltered (gdb_stdlog,
4057 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4058
4e1c45ea 4059 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 4060
568d6575
UW
4061 if (!gdbarch_get_longjmp_target_p (gdbarch)
4062 || !gdbarch_get_longjmp_target (gdbarch, frame, &jmp_buf_pc))
c5aa993b 4063 {
611c83ae
PA
4064 if (debug_infrun)
4065 fprintf_unfiltered (gdb_stdlog, "\
4066infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
488f131b 4067 keep_going (ecs);
104c1213 4068 return;
c5aa993b 4069 }
488f131b 4070
611c83ae
PA
4071 /* We're going to replace the current step-resume breakpoint
4072 with a longjmp-resume breakpoint. */
4e1c45ea 4073 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae
PA
4074
4075 /* Insert a breakpoint at resume address. */
a6d9a66e 4076 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
c906108c 4077
488f131b
JB
4078 keep_going (ecs);
4079 return;
c906108c 4080
488f131b 4081 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
527159b7 4082 if (debug_infrun)
611c83ae
PA
4083 fprintf_unfiltered (gdb_stdlog,
4084 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4085
4e1c45ea
PA
4086 gdb_assert (ecs->event_thread->step_resume_breakpoint != NULL);
4087 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae 4088
414c69f7 4089 ecs->event_thread->stop_step = 1;
611c83ae
PA
4090 print_stop_reason (END_STEPPING_RANGE, 0);
4091 stop_stepping (ecs);
4092 return;
488f131b
JB
4093
4094 case BPSTAT_WHAT_SINGLE:
527159b7 4095 if (debug_infrun)
8802d8ed 4096 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4e1c45ea 4097 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b
JB
4098 /* Still need to check other stuff, at least the case
4099 where we are stepping and step out of the right range. */
4100 break;
c906108c 4101
488f131b 4102 case BPSTAT_WHAT_STOP_NOISY:
527159b7 4103 if (debug_infrun)
8802d8ed 4104 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 4105 stop_print_frame = 1;
c906108c 4106
d303a6c7
AC
4107 /* We are about to nuke the step_resume_breakpointt via the
4108 cleanup chain, so no need to worry about it here. */
c5aa993b 4109
488f131b
JB
4110 stop_stepping (ecs);
4111 return;
c5aa993b 4112
488f131b 4113 case BPSTAT_WHAT_STOP_SILENT:
527159b7 4114 if (debug_infrun)
8802d8ed 4115 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 4116 stop_print_frame = 0;
c5aa993b 4117
d303a6c7
AC
4118 /* We are about to nuke the step_resume_breakpoin via the
4119 cleanup chain, so no need to worry about it here. */
c5aa993b 4120
488f131b 4121 stop_stepping (ecs);
e441088d 4122 return;
c5aa993b 4123
488f131b 4124 case BPSTAT_WHAT_STEP_RESUME:
527159b7 4125 if (debug_infrun)
8802d8ed 4126 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
527159b7 4127
4e1c45ea
PA
4128 delete_step_resume_breakpoint (ecs->event_thread);
4129 if (ecs->event_thread->step_after_step_resume_breakpoint)
68f53502
AC
4130 {
4131 /* Back when the step-resume breakpoint was inserted, we
4132 were trying to single-step off a breakpoint. Go back
4133 to doing that. */
4e1c45ea
PA
4134 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4135 ecs->event_thread->stepping_over_breakpoint = 1;
68f53502
AC
4136 keep_going (ecs);
4137 return;
4138 }
b2175913
MS
4139 if (stop_pc == ecs->stop_func_start
4140 && execution_direction == EXEC_REVERSE)
4141 {
4142 /* We are stepping over a function call in reverse, and
4143 just hit the step-resume breakpoint at the start
4144 address of the function. Go back to single-stepping,
4145 which should take us back to the function call. */
4146 ecs->event_thread->stepping_over_breakpoint = 1;
4147 keep_going (ecs);
4148 return;
4149 }
488f131b
JB
4150 break;
4151
488f131b 4152 case BPSTAT_WHAT_CHECK_SHLIBS:
c906108c 4153 {
527159b7 4154 if (debug_infrun)
8802d8ed 4155 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
488f131b
JB
4156
4157 /* Check for any newly added shared libraries if we're
4158 supposed to be adding them automatically. Switch
4159 terminal for any messages produced by
4160 breakpoint_re_set. */
4161 target_terminal_ours_for_output ();
aff6338a 4162 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
4163 stack's section table is kept up-to-date. Architectures,
4164 (e.g., PPC64), use the section table to perform
4165 operations such as address => section name and hence
4166 require the table to contain all sections (including
4167 those found in shared libraries). */
a77053c2 4168#ifdef SOLIB_ADD
aff6338a 4169 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
a77053c2
MK
4170#else
4171 solib_add (NULL, 0, &current_target, auto_solib_add);
4172#endif
488f131b
JB
4173 target_terminal_inferior ();
4174
488f131b
JB
4175 /* If requested, stop when the dynamic linker notifies
4176 gdb of events. This allows the user to get control
4177 and place breakpoints in initializer routines for
4178 dynamically loaded objects (among other things). */
877522db 4179 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 4180 {
488f131b 4181 stop_stepping (ecs);
d4f3574e
SS
4182 return;
4183 }
c5aa993b 4184 else
c5aa993b 4185 {
488f131b 4186 /* We want to step over this breakpoint, then keep going. */
4e1c45ea 4187 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 4188 break;
c5aa993b 4189 }
488f131b 4190 }
488f131b 4191 break;
4efc6507
DE
4192
4193 case BPSTAT_WHAT_CHECK_JIT:
4194 if (debug_infrun)
4195 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_JIT\n");
4196
4197 /* Switch terminal for any messages produced by breakpoint_re_set. */
4198 target_terminal_ours_for_output ();
4199
0756c555 4200 jit_event_handler (gdbarch);
4efc6507
DE
4201
4202 target_terminal_inferior ();
4203
4204 /* We want to step over this breakpoint, then keep going. */
4205 ecs->event_thread->stepping_over_breakpoint = 1;
4206
4207 break;
c906108c 4208
488f131b
JB
4209 case BPSTAT_WHAT_LAST:
4210 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 4211
488f131b
JB
4212 case BPSTAT_WHAT_KEEP_CHECKING:
4213 break;
4214 }
4215 }
c906108c 4216
488f131b
JB
4217 /* We come here if we hit a breakpoint but should not
4218 stop for it. Possibly we also were stepping
4219 and should stop for that. So fall through and
4220 test for stepping. But, if not stepping,
4221 do not stop. */
c906108c 4222
a7212384
UW
4223 /* In all-stop mode, if we're currently stepping but have stopped in
4224 some other thread, we need to switch back to the stepped thread. */
4225 if (!non_stop)
4226 {
4227 struct thread_info *tp;
abbb1732 4228
b3444185 4229 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
a7212384
UW
4230 ecs->event_thread);
4231 if (tp)
4232 {
4233 /* However, if the current thread is blocked on some internal
4234 breakpoint, and we simply need to step over that breakpoint
4235 to get it going again, do that first. */
4236 if ((ecs->event_thread->trap_expected
4237 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
4238 || ecs->event_thread->stepping_over_breakpoint)
4239 {
4240 keep_going (ecs);
4241 return;
4242 }
4243
66852e9c
PA
4244 /* If the stepping thread exited, then don't try to switch
4245 back and resume it, which could fail in several different
4246 ways depending on the target. Instead, just keep going.
4247
4248 We can find a stepping dead thread in the thread list in
4249 two cases:
4250
4251 - The target supports thread exit events, and when the
4252 target tries to delete the thread from the thread list,
4253 inferior_ptid pointed at the exiting thread. In such
4254 case, calling delete_thread does not really remove the
4255 thread from the list; instead, the thread is left listed,
4256 with 'exited' state.
4257
4258 - The target's debug interface does not support thread
4259 exit events, and so we have no idea whatsoever if the
4260 previously stepping thread is still alive. For that
4261 reason, we need to synchronously query the target
4262 now. */
b3444185
PA
4263 if (is_exited (tp->ptid)
4264 || !target_thread_alive (tp->ptid))
4265 {
4266 if (debug_infrun)
4267 fprintf_unfiltered (gdb_stdlog, "\
4268infrun: not switching back to stepped thread, it has vanished\n");
4269
4270 delete_thread (tp->ptid);
4271 keep_going (ecs);
4272 return;
4273 }
4274
a7212384
UW
4275 /* Otherwise, we no longer expect a trap in the current thread.
4276 Clear the trap_expected flag before switching back -- this is
4277 what keep_going would do as well, if we called it. */
4278 ecs->event_thread->trap_expected = 0;
4279
4280 if (debug_infrun)
4281 fprintf_unfiltered (gdb_stdlog,
4282 "infrun: switching back to stepped thread\n");
4283
4284 ecs->event_thread = tp;
4285 ecs->ptid = tp->ptid;
4286 context_switch (ecs->ptid);
4287 keep_going (ecs);
4288 return;
4289 }
4290 }
4291
9d1ff73f
MS
4292 /* Are we stepping to get the inferior out of the dynamic linker's
4293 hook (and possibly the dld itself) after catching a shlib
4294 event? */
4e1c45ea 4295 if (ecs->event_thread->stepping_through_solib_after_catch)
488f131b
JB
4296 {
4297#if defined(SOLIB_ADD)
4298 /* Have we reached our destination? If not, keep going. */
4299 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
4300 {
527159b7 4301 if (debug_infrun)
8a9de0e4 4302 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
4e1c45ea 4303 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 4304 keep_going (ecs);
104c1213 4305 return;
488f131b
JB
4306 }
4307#endif
527159b7 4308 if (debug_infrun)
8a9de0e4 4309 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
488f131b
JB
4310 /* Else, stop and report the catchpoint(s) whose triggering
4311 caused us to begin stepping. */
4e1c45ea 4312 ecs->event_thread->stepping_through_solib_after_catch = 0;
347bddb7
PA
4313 bpstat_clear (&ecs->event_thread->stop_bpstat);
4314 ecs->event_thread->stop_bpstat
4315 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
4e1c45ea 4316 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
488f131b
JB
4317 stop_print_frame = 1;
4318 stop_stepping (ecs);
4319 return;
4320 }
c906108c 4321
4e1c45ea 4322 if (ecs->event_thread->step_resume_breakpoint)
488f131b 4323 {
527159b7 4324 if (debug_infrun)
d3169d93
DJ
4325 fprintf_unfiltered (gdb_stdlog,
4326 "infrun: step-resume breakpoint is inserted\n");
527159b7 4327
488f131b
JB
4328 /* Having a step-resume breakpoint overrides anything
4329 else having to do with stepping commands until
4330 that breakpoint is reached. */
488f131b
JB
4331 keep_going (ecs);
4332 return;
4333 }
c5aa993b 4334
4e1c45ea 4335 if (ecs->event_thread->step_range_end == 0)
488f131b 4336 {
527159b7 4337 if (debug_infrun)
8a9de0e4 4338 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 4339 /* Likewise if we aren't even stepping. */
488f131b
JB
4340 keep_going (ecs);
4341 return;
4342 }
c5aa993b 4343
4b7703ad
JB
4344 /* Re-fetch current thread's frame in case the code above caused
4345 the frame cache to be re-initialized, making our FRAME variable
4346 a dangling pointer. */
4347 frame = get_current_frame ();
4348
488f131b 4349 /* If stepping through a line, keep going if still within it.
c906108c 4350
488f131b
JB
4351 Note that step_range_end is the address of the first instruction
4352 beyond the step range, and NOT the address of the last instruction
31410e84
MS
4353 within it!
4354
4355 Note also that during reverse execution, we may be stepping
4356 through a function epilogue and therefore must detect when
4357 the current-frame changes in the middle of a line. */
4358
4e1c45ea 4359 if (stop_pc >= ecs->event_thread->step_range_start
31410e84
MS
4360 && stop_pc < ecs->event_thread->step_range_end
4361 && (execution_direction != EXEC_REVERSE
388a8562 4362 || frame_id_eq (get_frame_id (frame),
31410e84 4363 ecs->event_thread->step_frame_id)))
488f131b 4364 {
527159b7 4365 if (debug_infrun)
5af949e3
UW
4366 fprintf_unfiltered
4367 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4368 paddress (gdbarch, ecs->event_thread->step_range_start),
4369 paddress (gdbarch, ecs->event_thread->step_range_end));
b2175913
MS
4370
4371 /* When stepping backward, stop at beginning of line range
4372 (unless it's the function entry point, in which case
4373 keep going back to the call point). */
4374 if (stop_pc == ecs->event_thread->step_range_start
4375 && stop_pc != ecs->stop_func_start
4376 && execution_direction == EXEC_REVERSE)
4377 {
4378 ecs->event_thread->stop_step = 1;
4379 print_stop_reason (END_STEPPING_RANGE, 0);
4380 stop_stepping (ecs);
4381 }
4382 else
4383 keep_going (ecs);
4384
488f131b
JB
4385 return;
4386 }
c5aa993b 4387
488f131b 4388 /* We stepped out of the stepping range. */
c906108c 4389
488f131b 4390 /* If we are stepping at the source level and entered the runtime
388a8562
MS
4391 loader dynamic symbol resolution code...
4392
4393 EXEC_FORWARD: we keep on single stepping until we exit the run
4394 time loader code and reach the callee's address.
4395
4396 EXEC_REVERSE: we've already executed the callee (backward), and
4397 the runtime loader code is handled just like any other
4398 undebuggable function call. Now we need only keep stepping
4399 backward through the trampoline code, and that's handled further
4400 down, so there is nothing for us to do here. */
4401
4402 if (execution_direction != EXEC_REVERSE
4403 && ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 4404 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 4405 {
4c8c40e6 4406 CORE_ADDR pc_after_resolver =
568d6575 4407 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 4408
527159b7 4409 if (debug_infrun)
8a9de0e4 4410 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
527159b7 4411
488f131b
JB
4412 if (pc_after_resolver)
4413 {
4414 /* Set up a step-resume breakpoint at the address
4415 indicated by SKIP_SOLIB_RESOLVER. */
4416 struct symtab_and_line sr_sal;
abbb1732 4417
fe39c653 4418 init_sal (&sr_sal);
488f131b 4419 sr_sal.pc = pc_after_resolver;
6c95b8df 4420 sr_sal.pspace = get_frame_program_space (frame);
488f131b 4421
a6d9a66e
UW
4422 insert_step_resume_breakpoint_at_sal (gdbarch,
4423 sr_sal, null_frame_id);
c5aa993b 4424 }
c906108c 4425
488f131b
JB
4426 keep_going (ecs);
4427 return;
4428 }
c906108c 4429
4e1c45ea 4430 if (ecs->event_thread->step_range_end != 1
078130d0
PA
4431 && (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
4432 || ecs->event_thread->step_over_calls == STEP_OVER_ALL)
568d6575 4433 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 4434 {
527159b7 4435 if (debug_infrun)
8a9de0e4 4436 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
42edda50 4437 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
4438 a signal trampoline (either by a signal being delivered or by
4439 the signal handler returning). Just single-step until the
4440 inferior leaves the trampoline (either by calling the handler
4441 or returning). */
488f131b
JB
4442 keep_going (ecs);
4443 return;
4444 }
c906108c 4445
c17eaafe
DJ
4446 /* Check for subroutine calls. The check for the current frame
4447 equalling the step ID is not necessary - the check of the
4448 previous frame's ID is sufficient - but it is a common case and
4449 cheaper than checking the previous frame's ID.
14e60db5
DJ
4450
4451 NOTE: frame_id_eq will never report two invalid frame IDs as
4452 being equal, so to get into this block, both the current and
4453 previous frame must have valid frame IDs. */
005ca36a
JB
4454 /* The outer_frame_id check is a heuristic to detect stepping
4455 through startup code. If we step over an instruction which
4456 sets the stack pointer from an invalid value to a valid value,
4457 we may detect that as a subroutine call from the mythical
4458 "outermost" function. This could be fixed by marking
4459 outermost frames as !stack_p,code_p,special_p. Then the
4460 initial outermost frame, before sp was valid, would
ce6cca6d 4461 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 4462 for more. */
edb3359d
DJ
4463 if (!frame_id_eq (get_stack_frame_id (frame),
4464 ecs->event_thread->step_stack_frame_id)
005ca36a
JB
4465 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4466 ecs->event_thread->step_stack_frame_id)
4467 && (!frame_id_eq (ecs->event_thread->step_stack_frame_id,
4468 outer_frame_id)
4469 || step_start_function != find_pc_function (stop_pc))))
488f131b 4470 {
95918acb 4471 CORE_ADDR real_stop_pc;
8fb3e588 4472
527159b7 4473 if (debug_infrun)
8a9de0e4 4474 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 4475
078130d0 4476 if ((ecs->event_thread->step_over_calls == STEP_OVER_NONE)
4e1c45ea 4477 || ((ecs->event_thread->step_range_end == 1)
d80b854b 4478 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 4479 ecs->stop_func_start)))
95918acb
AC
4480 {
4481 /* I presume that step_over_calls is only 0 when we're
4482 supposed to be stepping at the assembly language level
4483 ("stepi"). Just stop. */
4484 /* Also, maybe we just did a "nexti" inside a prolog, so we
4485 thought it was a subroutine call but it was not. Stop as
4486 well. FENN */
388a8562 4487 /* And this works the same backward as frontward. MVS */
414c69f7 4488 ecs->event_thread->stop_step = 1;
95918acb
AC
4489 print_stop_reason (END_STEPPING_RANGE, 0);
4490 stop_stepping (ecs);
4491 return;
4492 }
8fb3e588 4493
388a8562
MS
4494 /* Reverse stepping through solib trampolines. */
4495
4496 if (execution_direction == EXEC_REVERSE
fdd654f3 4497 && ecs->event_thread->step_over_calls != STEP_OVER_NONE
388a8562
MS
4498 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4499 || (ecs->stop_func_start == 0
4500 && in_solib_dynsym_resolve_code (stop_pc))))
4501 {
4502 /* Any solib trampoline code can be handled in reverse
4503 by simply continuing to single-step. We have already
4504 executed the solib function (backwards), and a few
4505 steps will take us back through the trampoline to the
4506 caller. */
4507 keep_going (ecs);
4508 return;
4509 }
4510
078130d0 4511 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
8567c30f 4512 {
b2175913
MS
4513 /* We're doing a "next".
4514
4515 Normal (forward) execution: set a breakpoint at the
4516 callee's return address (the address at which the caller
4517 will resume).
4518
4519 Reverse (backward) execution. set the step-resume
4520 breakpoint at the start of the function that we just
4521 stepped into (backwards), and continue to there. When we
6130d0b7 4522 get there, we'll need to single-step back to the caller. */
b2175913
MS
4523
4524 if (execution_direction == EXEC_REVERSE)
4525 {
4526 struct symtab_and_line sr_sal;
3067f6e5 4527
388a8562
MS
4528 /* Normal function call return (static or dynamic). */
4529 init_sal (&sr_sal);
4530 sr_sal.pc = ecs->stop_func_start;
6c95b8df
PA
4531 sr_sal.pspace = get_frame_program_space (frame);
4532 insert_step_resume_breakpoint_at_sal (gdbarch,
4533 sr_sal, null_frame_id);
b2175913
MS
4534 }
4535 else
568d6575 4536 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4537
8567c30f
AC
4538 keep_going (ecs);
4539 return;
4540 }
a53c66de 4541
95918acb 4542 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
4543 calling routine and the real function), locate the real
4544 function. That's what tells us (a) whether we want to step
4545 into it at all, and (b) what prologue we want to run to the
4546 end of, if we do step into it. */
568d6575 4547 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 4548 if (real_stop_pc == 0)
568d6575 4549 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
4550 if (real_stop_pc != 0)
4551 ecs->stop_func_start = real_stop_pc;
8fb3e588 4552
db5f024e 4553 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
4554 {
4555 struct symtab_and_line sr_sal;
abbb1732 4556
1b2bfbb9
RC
4557 init_sal (&sr_sal);
4558 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4559 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 4560
a6d9a66e
UW
4561 insert_step_resume_breakpoint_at_sal (gdbarch,
4562 sr_sal, null_frame_id);
8fb3e588
AC
4563 keep_going (ecs);
4564 return;
1b2bfbb9
RC
4565 }
4566
95918acb 4567 /* If we have line number information for the function we are
8fb3e588 4568 thinking of stepping into, step into it.
95918acb 4569
8fb3e588
AC
4570 If there are several symtabs at that PC (e.g. with include
4571 files), just want to know whether *any* of them have line
4572 numbers. find_pc_line handles this. */
95918acb
AC
4573 {
4574 struct symtab_and_line tmp_sal;
8fb3e588 4575
95918acb 4576 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
9d1807c3 4577 tmp_sal.pspace = get_frame_program_space (frame);
95918acb
AC
4578 if (tmp_sal.line != 0)
4579 {
b2175913 4580 if (execution_direction == EXEC_REVERSE)
568d6575 4581 handle_step_into_function_backward (gdbarch, ecs);
b2175913 4582 else
568d6575 4583 handle_step_into_function (gdbarch, ecs);
95918acb
AC
4584 return;
4585 }
4586 }
4587
4588 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
4589 set, we stop the step so that the user has a chance to switch
4590 in assembly mode. */
078130d0
PA
4591 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
4592 && step_stop_if_no_debug)
95918acb 4593 {
414c69f7 4594 ecs->event_thread->stop_step = 1;
95918acb
AC
4595 print_stop_reason (END_STEPPING_RANGE, 0);
4596 stop_stepping (ecs);
4597 return;
4598 }
4599
b2175913
MS
4600 if (execution_direction == EXEC_REVERSE)
4601 {
4602 /* Set a breakpoint at callee's start address.
4603 From there we can step once and be back in the caller. */
4604 struct symtab_and_line sr_sal;
abbb1732 4605
b2175913
MS
4606 init_sal (&sr_sal);
4607 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4608 sr_sal.pspace = get_frame_program_space (frame);
a6d9a66e
UW
4609 insert_step_resume_breakpoint_at_sal (gdbarch,
4610 sr_sal, null_frame_id);
b2175913
MS
4611 }
4612 else
4613 /* Set a breakpoint at callee's return address (the address
4614 at which the caller will resume). */
568d6575 4615 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4616
95918acb 4617 keep_going (ecs);
488f131b 4618 return;
488f131b 4619 }
c906108c 4620
fdd654f3
MS
4621 /* Reverse stepping through solib trampolines. */
4622
4623 if (execution_direction == EXEC_REVERSE
4624 && ecs->event_thread->step_over_calls != STEP_OVER_NONE)
4625 {
4626 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4627 || (ecs->stop_func_start == 0
4628 && in_solib_dynsym_resolve_code (stop_pc)))
4629 {
4630 /* Any solib trampoline code can be handled in reverse
4631 by simply continuing to single-step. We have already
4632 executed the solib function (backwards), and a few
4633 steps will take us back through the trampoline to the
4634 caller. */
4635 keep_going (ecs);
4636 return;
4637 }
4638 else if (in_solib_dynsym_resolve_code (stop_pc))
4639 {
4640 /* Stepped backward into the solib dynsym resolver.
4641 Set a breakpoint at its start and continue, then
4642 one more step will take us out. */
4643 struct symtab_and_line sr_sal;
abbb1732 4644
fdd654f3
MS
4645 init_sal (&sr_sal);
4646 sr_sal.pc = ecs->stop_func_start;
9d1807c3 4647 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
4648 insert_step_resume_breakpoint_at_sal (gdbarch,
4649 sr_sal, null_frame_id);
4650 keep_going (ecs);
4651 return;
4652 }
4653 }
4654
488f131b
JB
4655 /* If we're in the return path from a shared library trampoline,
4656 we want to proceed through the trampoline when stepping. */
568d6575 4657 if (gdbarch_in_solib_return_trampoline (gdbarch,
e76f05fa 4658 stop_pc, ecs->stop_func_name))
488f131b 4659 {
488f131b 4660 /* Determine where this trampoline returns. */
52f729a7 4661 CORE_ADDR real_stop_pc;
abbb1732 4662
568d6575 4663 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
c906108c 4664
527159b7 4665 if (debug_infrun)
8a9de0e4 4666 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
527159b7 4667
488f131b 4668 /* Only proceed through if we know where it's going. */
d764a824 4669 if (real_stop_pc)
488f131b
JB
4670 {
4671 /* And put the step-breakpoint there and go until there. */
4672 struct symtab_and_line sr_sal;
4673
fe39c653 4674 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 4675 sr_sal.pc = real_stop_pc;
488f131b 4676 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 4677 sr_sal.pspace = get_frame_program_space (frame);
44cbf7b5
AC
4678
4679 /* Do not specify what the fp should be when we stop since
4680 on some machines the prologue is where the new fp value
4681 is established. */
a6d9a66e
UW
4682 insert_step_resume_breakpoint_at_sal (gdbarch,
4683 sr_sal, null_frame_id);
c906108c 4684
488f131b
JB
4685 /* Restart without fiddling with the step ranges or
4686 other state. */
4687 keep_going (ecs);
4688 return;
4689 }
4690 }
c906108c 4691
2afb61aa 4692 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 4693
1b2bfbb9
RC
4694 /* NOTE: tausq/2004-05-24: This if block used to be done before all
4695 the trampoline processing logic, however, there are some trampolines
4696 that have no names, so we should do trampoline handling first. */
078130d0 4697 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 4698 && ecs->stop_func_name == NULL
2afb61aa 4699 && stop_pc_sal.line == 0)
1b2bfbb9 4700 {
527159b7 4701 if (debug_infrun)
8a9de0e4 4702 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
527159b7 4703
1b2bfbb9 4704 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
4705 undebuggable function (where there is no debugging information
4706 and no line number corresponding to the address where the
1b2bfbb9
RC
4707 inferior stopped). Since we want to skip this kind of code,
4708 we keep going until the inferior returns from this
14e60db5
DJ
4709 function - unless the user has asked us not to (via
4710 set step-mode) or we no longer know how to get back
4711 to the call site. */
4712 if (step_stop_if_no_debug
c7ce8faa 4713 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
4714 {
4715 /* If we have no line number and the step-stop-if-no-debug
4716 is set, we stop the step so that the user has a chance to
4717 switch in assembly mode. */
414c69f7 4718 ecs->event_thread->stop_step = 1;
1b2bfbb9
RC
4719 print_stop_reason (END_STEPPING_RANGE, 0);
4720 stop_stepping (ecs);
4721 return;
4722 }
4723 else
4724 {
4725 /* Set a breakpoint at callee's return address (the address
4726 at which the caller will resume). */
568d6575 4727 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
4728 keep_going (ecs);
4729 return;
4730 }
4731 }
4732
4e1c45ea 4733 if (ecs->event_thread->step_range_end == 1)
1b2bfbb9
RC
4734 {
4735 /* It is stepi or nexti. We always want to stop stepping after
4736 one instruction. */
527159b7 4737 if (debug_infrun)
8a9de0e4 4738 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
414c69f7 4739 ecs->event_thread->stop_step = 1;
1b2bfbb9
RC
4740 print_stop_reason (END_STEPPING_RANGE, 0);
4741 stop_stepping (ecs);
4742 return;
4743 }
4744
2afb61aa 4745 if (stop_pc_sal.line == 0)
488f131b
JB
4746 {
4747 /* We have no line number information. That means to stop
4748 stepping (does this always happen right after one instruction,
4749 when we do "s" in a function with no line numbers,
4750 or can this happen as a result of a return or longjmp?). */
527159b7 4751 if (debug_infrun)
8a9de0e4 4752 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
414c69f7 4753 ecs->event_thread->stop_step = 1;
488f131b
JB
4754 print_stop_reason (END_STEPPING_RANGE, 0);
4755 stop_stepping (ecs);
4756 return;
4757 }
c906108c 4758
edb3359d
DJ
4759 /* Look for "calls" to inlined functions, part one. If the inline
4760 frame machinery detected some skipped call sites, we have entered
4761 a new inline function. */
4762
4763 if (frame_id_eq (get_frame_id (get_current_frame ()),
4764 ecs->event_thread->step_frame_id)
4765 && inline_skipped_frames (ecs->ptid))
4766 {
4767 struct symtab_and_line call_sal;
4768
4769 if (debug_infrun)
4770 fprintf_unfiltered (gdb_stdlog,
4771 "infrun: stepped into inlined function\n");
4772
4773 find_frame_sal (get_current_frame (), &call_sal);
4774
4775 if (ecs->event_thread->step_over_calls != STEP_OVER_ALL)
4776 {
4777 /* For "step", we're going to stop. But if the call site
4778 for this inlined function is on the same source line as
4779 we were previously stepping, go down into the function
4780 first. Otherwise stop at the call site. */
4781
4782 if (call_sal.line == ecs->event_thread->current_line
4783 && call_sal.symtab == ecs->event_thread->current_symtab)
4784 step_into_inline_frame (ecs->ptid);
4785
4786 ecs->event_thread->stop_step = 1;
4787 print_stop_reason (END_STEPPING_RANGE, 0);
4788 stop_stepping (ecs);
4789 return;
4790 }
4791 else
4792 {
4793 /* For "next", we should stop at the call site if it is on a
4794 different source line. Otherwise continue through the
4795 inlined function. */
4796 if (call_sal.line == ecs->event_thread->current_line
4797 && call_sal.symtab == ecs->event_thread->current_symtab)
4798 keep_going (ecs);
4799 else
4800 {
4801 ecs->event_thread->stop_step = 1;
4802 print_stop_reason (END_STEPPING_RANGE, 0);
4803 stop_stepping (ecs);
4804 }
4805 return;
4806 }
4807 }
4808
4809 /* Look for "calls" to inlined functions, part two. If we are still
4810 in the same real function we were stepping through, but we have
4811 to go further up to find the exact frame ID, we are stepping
4812 through a more inlined call beyond its call site. */
4813
4814 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
4815 && !frame_id_eq (get_frame_id (get_current_frame ()),
4816 ecs->event_thread->step_frame_id)
4817 && stepped_in_from (get_current_frame (),
4818 ecs->event_thread->step_frame_id))
4819 {
4820 if (debug_infrun)
4821 fprintf_unfiltered (gdb_stdlog,
4822 "infrun: stepping through inlined function\n");
4823
4824 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
4825 keep_going (ecs);
4826 else
4827 {
4828 ecs->event_thread->stop_step = 1;
4829 print_stop_reason (END_STEPPING_RANGE, 0);
4830 stop_stepping (ecs);
4831 }
4832 return;
4833 }
4834
2afb61aa 4835 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
4836 && (ecs->event_thread->current_line != stop_pc_sal.line
4837 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
4838 {
4839 /* We are at the start of a different line. So stop. Note that
4840 we don't stop if we step into the middle of a different line.
4841 That is said to make things like for (;;) statements work
4842 better. */
527159b7 4843 if (debug_infrun)
8a9de0e4 4844 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
414c69f7 4845 ecs->event_thread->stop_step = 1;
488f131b
JB
4846 print_stop_reason (END_STEPPING_RANGE, 0);
4847 stop_stepping (ecs);
4848 return;
4849 }
c906108c 4850
488f131b 4851 /* We aren't done stepping.
c906108c 4852
488f131b
JB
4853 Optimize by setting the stepping range to the line.
4854 (We might not be in the original line, but if we entered a
4855 new line in mid-statement, we continue stepping. This makes
4856 things like for(;;) statements work better.) */
c906108c 4857
4e1c45ea
PA
4858 ecs->event_thread->step_range_start = stop_pc_sal.pc;
4859 ecs->event_thread->step_range_end = stop_pc_sal.end;
edb3359d 4860 set_step_info (frame, stop_pc_sal);
488f131b 4861
527159b7 4862 if (debug_infrun)
8a9de0e4 4863 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 4864 keep_going (ecs);
104c1213
JM
4865}
4866
b3444185 4867/* Is thread TP in the middle of single-stepping? */
104c1213 4868
a7212384 4869static int
b3444185 4870currently_stepping (struct thread_info *tp)
a7212384 4871{
b3444185
PA
4872 return ((tp->step_range_end && tp->step_resume_breakpoint == NULL)
4873 || tp->trap_expected
4874 || tp->stepping_through_solib_after_catch
4875 || bpstat_should_step ());
a7212384
UW
4876}
4877
b3444185
PA
4878/* Returns true if any thread *but* the one passed in "data" is in the
4879 middle of stepping or of handling a "next". */
a7212384 4880
104c1213 4881static int
b3444185 4882currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
104c1213 4883{
b3444185
PA
4884 if (tp == data)
4885 return 0;
4886
4887 return (tp->step_range_end
4888 || tp->trap_expected
4889 || tp->stepping_through_solib_after_catch);
104c1213 4890}
c906108c 4891
b2175913
MS
4892/* Inferior has stepped into a subroutine call with source code that
4893 we should not step over. Do step to the first line of code in
4894 it. */
c2c6d25f
JM
4895
4896static void
568d6575
UW
4897handle_step_into_function (struct gdbarch *gdbarch,
4898 struct execution_control_state *ecs)
c2c6d25f
JM
4899{
4900 struct symtab *s;
2afb61aa 4901 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f
JM
4902
4903 s = find_pc_symtab (stop_pc);
4904 if (s && s->language != language_asm)
568d6575 4905 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 4906 ecs->stop_func_start);
c2c6d25f 4907
2afb61aa 4908 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
4909 /* Use the step_resume_break to step until the end of the prologue,
4910 even if that involves jumps (as it seems to on the vax under
4911 4.2). */
4912 /* If the prologue ends in the middle of a source line, continue to
4913 the end of that source line (if it is still within the function).
4914 Otherwise, just go to end of prologue. */
2afb61aa
PA
4915 if (stop_func_sal.end
4916 && stop_func_sal.pc != ecs->stop_func_start
4917 && stop_func_sal.end < ecs->stop_func_end)
4918 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 4919
2dbd5e30
KB
4920 /* Architectures which require breakpoint adjustment might not be able
4921 to place a breakpoint at the computed address. If so, the test
4922 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
4923 ecs->stop_func_start to an address at which a breakpoint may be
4924 legitimately placed.
8fb3e588 4925
2dbd5e30
KB
4926 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
4927 made, GDB will enter an infinite loop when stepping through
4928 optimized code consisting of VLIW instructions which contain
4929 subinstructions corresponding to different source lines. On
4930 FR-V, it's not permitted to place a breakpoint on any but the
4931 first subinstruction of a VLIW instruction. When a breakpoint is
4932 set, GDB will adjust the breakpoint address to the beginning of
4933 the VLIW instruction. Thus, we need to make the corresponding
4934 adjustment here when computing the stop address. */
8fb3e588 4935
568d6575 4936 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
4937 {
4938 ecs->stop_func_start
568d6575 4939 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 4940 ecs->stop_func_start);
2dbd5e30
KB
4941 }
4942
c2c6d25f
JM
4943 if (ecs->stop_func_start == stop_pc)
4944 {
4945 /* We are already there: stop now. */
414c69f7 4946 ecs->event_thread->stop_step = 1;
488f131b 4947 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
4948 stop_stepping (ecs);
4949 return;
4950 }
4951 else
4952 {
4953 /* Put the step-breakpoint there and go until there. */
fe39c653 4954 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
4955 sr_sal.pc = ecs->stop_func_start;
4956 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 4957 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 4958
c2c6d25f 4959 /* Do not specify what the fp should be when we stop since on
488f131b
JB
4960 some machines the prologue is where the new fp value is
4961 established. */
a6d9a66e 4962 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
4963
4964 /* And make sure stepping stops right away then. */
4e1c45ea 4965 ecs->event_thread->step_range_end = ecs->event_thread->step_range_start;
c2c6d25f
JM
4966 }
4967 keep_going (ecs);
4968}
d4f3574e 4969
b2175913
MS
4970/* Inferior has stepped backward into a subroutine call with source
4971 code that we should not step over. Do step to the beginning of the
4972 last line of code in it. */
4973
4974static void
568d6575
UW
4975handle_step_into_function_backward (struct gdbarch *gdbarch,
4976 struct execution_control_state *ecs)
b2175913
MS
4977{
4978 struct symtab *s;
167e4384 4979 struct symtab_and_line stop_func_sal;
b2175913
MS
4980
4981 s = find_pc_symtab (stop_pc);
4982 if (s && s->language != language_asm)
568d6575 4983 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
4984 ecs->stop_func_start);
4985
4986 stop_func_sal = find_pc_line (stop_pc, 0);
4987
4988 /* OK, we're just going to keep stepping here. */
4989 if (stop_func_sal.pc == stop_pc)
4990 {
4991 /* We're there already. Just stop stepping now. */
4992 ecs->event_thread->stop_step = 1;
4993 print_stop_reason (END_STEPPING_RANGE, 0);
4994 stop_stepping (ecs);
4995 }
4996 else
4997 {
4998 /* Else just reset the step range and keep going.
4999 No step-resume breakpoint, they don't work for
5000 epilogues, which can have multiple entry paths. */
5001 ecs->event_thread->step_range_start = stop_func_sal.pc;
5002 ecs->event_thread->step_range_end = stop_func_sal.end;
5003 keep_going (ecs);
5004 }
5005 return;
5006}
5007
d3169d93 5008/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
5009 This is used to both functions and to skip over code. */
5010
5011static void
a6d9a66e
UW
5012insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5013 struct symtab_and_line sr_sal,
44cbf7b5
AC
5014 struct frame_id sr_id)
5015{
611c83ae
PA
5016 /* There should never be more than one step-resume or longjmp-resume
5017 breakpoint per thread, so we should never be setting a new
44cbf7b5 5018 step_resume_breakpoint when one is already active. */
4e1c45ea 5019 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
d3169d93
DJ
5020
5021 if (debug_infrun)
5022 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5023 "infrun: inserting step-resume breakpoint at %s\n",
5024 paddress (gdbarch, sr_sal.pc));
d3169d93 5025
4e1c45ea 5026 inferior_thread ()->step_resume_breakpoint
a6d9a66e 5027 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, bp_step_resume);
44cbf7b5 5028}
7ce450bd 5029
d3169d93 5030/* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
14e60db5 5031 to skip a potential signal handler.
7ce450bd 5032
14e60db5
DJ
5033 This is called with the interrupted function's frame. The signal
5034 handler, when it returns, will resume the interrupted function at
5035 RETURN_FRAME.pc. */
d303a6c7
AC
5036
5037static void
44cbf7b5 5038insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
5039{
5040 struct symtab_and_line sr_sal;
a6d9a66e 5041 struct gdbarch *gdbarch;
d303a6c7 5042
f4c1edd8 5043 gdb_assert (return_frame != NULL);
d303a6c7
AC
5044 init_sal (&sr_sal); /* initialize to zeros */
5045
a6d9a66e 5046 gdbarch = get_frame_arch (return_frame);
568d6575 5047 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 5048 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5049 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 5050
a6d9a66e
UW
5051 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5052 get_stack_frame_id (return_frame));
d303a6c7
AC
5053}
5054
14e60db5
DJ
5055/* Similar to insert_step_resume_breakpoint_at_frame, except
5056 but a breakpoint at the previous frame's PC. This is used to
5057 skip a function after stepping into it (for "next" or if the called
5058 function has no debugging information).
5059
5060 The current function has almost always been reached by single
5061 stepping a call or return instruction. NEXT_FRAME belongs to the
5062 current function, and the breakpoint will be set at the caller's
5063 resume address.
5064
5065 This is a separate function rather than reusing
5066 insert_step_resume_breakpoint_at_frame in order to avoid
5067 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 5068 of frame_unwind_caller_id for an example). */
14e60db5
DJ
5069
5070static void
5071insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5072{
5073 struct symtab_and_line sr_sal;
a6d9a66e 5074 struct gdbarch *gdbarch;
14e60db5
DJ
5075
5076 /* We shouldn't have gotten here if we don't know where the call site
5077 is. */
c7ce8faa 5078 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
5079
5080 init_sal (&sr_sal); /* initialize to zeros */
5081
a6d9a66e 5082 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
5083 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5084 frame_unwind_caller_pc (next_frame));
14e60db5 5085 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5086 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 5087
a6d9a66e 5088 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 5089 frame_unwind_caller_id (next_frame));
14e60db5
DJ
5090}
5091
611c83ae
PA
5092/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5093 new breakpoint at the target of a jmp_buf. The handling of
5094 longjmp-resume uses the same mechanisms used for handling
5095 "step-resume" breakpoints. */
5096
5097static void
a6d9a66e 5098insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae
PA
5099{
5100 /* There should never be more than one step-resume or longjmp-resume
5101 breakpoint per thread, so we should never be setting a new
5102 longjmp_resume_breakpoint when one is already active. */
4e1c45ea 5103 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
611c83ae
PA
5104
5105 if (debug_infrun)
5106 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5107 "infrun: inserting longjmp-resume breakpoint at %s\n",
5108 paddress (gdbarch, pc));
611c83ae 5109
4e1c45ea 5110 inferior_thread ()->step_resume_breakpoint =
a6d9a66e 5111 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
5112}
5113
104c1213
JM
5114static void
5115stop_stepping (struct execution_control_state *ecs)
5116{
527159b7 5117 if (debug_infrun)
8a9de0e4 5118 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 5119
cd0fc7c3
SS
5120 /* Let callers know we don't want to wait for the inferior anymore. */
5121 ecs->wait_some_more = 0;
5122}
5123
d4f3574e
SS
5124/* This function handles various cases where we need to continue
5125 waiting for the inferior. */
5126/* (Used to be the keep_going: label in the old wait_for_inferior) */
5127
5128static void
5129keep_going (struct execution_control_state *ecs)
5130{
c4dbc9af
PA
5131 /* Make sure normal_stop is called if we get a QUIT handled before
5132 reaching resume. */
5133 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5134
d4f3574e 5135 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
5136 ecs->event_thread->prev_pc
5137 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 5138
d4f3574e
SS
5139 /* If we did not do break;, it means we should keep running the
5140 inferior and not return to debugger. */
5141
2020b7ab
PA
5142 if (ecs->event_thread->trap_expected
5143 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
d4f3574e
SS
5144 {
5145 /* We took a signal (which we are supposed to pass through to
4e1c45ea
PA
5146 the inferior, else we'd not get here) and we haven't yet
5147 gotten our trap. Simply continue. */
c4dbc9af
PA
5148
5149 discard_cleanups (old_cleanups);
2020b7ab
PA
5150 resume (currently_stepping (ecs->event_thread),
5151 ecs->event_thread->stop_signal);
d4f3574e
SS
5152 }
5153 else
5154 {
5155 /* Either the trap was not expected, but we are continuing
488f131b
JB
5156 anyway (the user asked that this signal be passed to the
5157 child)
5158 -- or --
5159 The signal was SIGTRAP, e.g. it was our signal, but we
5160 decided we should resume from it.
d4f3574e 5161
c36b740a 5162 We're going to run this baby now!
d4f3574e 5163
c36b740a
VP
5164 Note that insert_breakpoints won't try to re-insert
5165 already inserted breakpoints. Therefore, we don't
5166 care if breakpoints were already inserted, or not. */
5167
4e1c45ea 5168 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 5169 {
9f5a595d 5170 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
abbb1732 5171
9f5a595d 5172 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
5173 /* Since we can't do a displaced step, we have to remove
5174 the breakpoint while we step it. To keep things
5175 simple, we remove them all. */
5176 remove_breakpoints ();
45e8c884
VP
5177 }
5178 else
d4f3574e 5179 {
e236ba44 5180 struct gdb_exception e;
abbb1732 5181
569631c6
UW
5182 /* Stop stepping when inserting breakpoints
5183 has failed. */
e236ba44
VP
5184 TRY_CATCH (e, RETURN_MASK_ERROR)
5185 {
5186 insert_breakpoints ();
5187 }
5188 if (e.reason < 0)
d4f3574e 5189 {
97bd5475 5190 exception_print (gdb_stderr, e);
d4f3574e
SS
5191 stop_stepping (ecs);
5192 return;
5193 }
d4f3574e
SS
5194 }
5195
4e1c45ea 5196 ecs->event_thread->trap_expected = ecs->event_thread->stepping_over_breakpoint;
d4f3574e
SS
5197
5198 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
5199 specifies that such a signal should be delivered to the
5200 target program).
5201
5202 Typically, this would occure when a user is debugging a
5203 target monitor on a simulator: the target monitor sets a
5204 breakpoint; the simulator encounters this break-point and
5205 halts the simulation handing control to GDB; GDB, noteing
5206 that the break-point isn't valid, returns control back to the
5207 simulator; the simulator then delivers the hardware
5208 equivalent of a SIGNAL_TRAP to the program being debugged. */
5209
2020b7ab
PA
5210 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
5211 && !signal_program[ecs->event_thread->stop_signal])
5212 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
d4f3574e 5213
c4dbc9af 5214 discard_cleanups (old_cleanups);
2020b7ab
PA
5215 resume (currently_stepping (ecs->event_thread),
5216 ecs->event_thread->stop_signal);
d4f3574e
SS
5217 }
5218
488f131b 5219 prepare_to_wait (ecs);
d4f3574e
SS
5220}
5221
104c1213
JM
5222/* This function normally comes after a resume, before
5223 handle_inferior_event exits. It takes care of any last bits of
5224 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 5225
104c1213
JM
5226static void
5227prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 5228{
527159b7 5229 if (debug_infrun)
8a9de0e4 5230 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 5231
104c1213
JM
5232 /* This is the old end of the while loop. Let everybody know we
5233 want to wait for the inferior some more and get called again
5234 soon. */
5235 ecs->wait_some_more = 1;
c906108c 5236}
11cf8741
JM
5237
5238/* Print why the inferior has stopped. We always print something when
5239 the inferior exits, or receives a signal. The rest of the cases are
5240 dealt with later on in normal_stop() and print_it_typical(). Ideally
5241 there should be a call to this function from handle_inferior_event()
5242 each time stop_stepping() is called.*/
5243static void
5244print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
5245{
5246 switch (stop_reason)
5247 {
11cf8741
JM
5248 case END_STEPPING_RANGE:
5249 /* We are done with a step/next/si/ni command. */
5250 /* For now print nothing. */
fb40c209 5251 /* Print a message only if not in the middle of doing a "step n"
488f131b 5252 operation for n > 1 */
414c69f7
PA
5253 if (!inferior_thread ()->step_multi
5254 || !inferior_thread ()->stop_step)
9dc5e2a9 5255 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
5256 ui_out_field_string
5257 (uiout, "reason",
5258 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
11cf8741 5259 break;
11cf8741
JM
5260 case SIGNAL_EXITED:
5261 /* The inferior was terminated by a signal. */
8b93c638 5262 annotate_signalled ();
9dc5e2a9 5263 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
5264 ui_out_field_string
5265 (uiout, "reason",
5266 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8b93c638
JM
5267 ui_out_text (uiout, "\nProgram terminated with signal ");
5268 annotate_signal_name ();
488f131b
JB
5269 ui_out_field_string (uiout, "signal-name",
5270 target_signal_to_name (stop_info));
8b93c638
JM
5271 annotate_signal_name_end ();
5272 ui_out_text (uiout, ", ");
5273 annotate_signal_string ();
488f131b
JB
5274 ui_out_field_string (uiout, "signal-meaning",
5275 target_signal_to_string (stop_info));
8b93c638
JM
5276 annotate_signal_string_end ();
5277 ui_out_text (uiout, ".\n");
5278 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
5279 break;
5280 case EXITED:
5281 /* The inferior program is finished. */
8b93c638
JM
5282 annotate_exited (stop_info);
5283 if (stop_info)
5284 {
9dc5e2a9 5285 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
5286 ui_out_field_string (uiout, "reason",
5287 async_reason_lookup (EXEC_ASYNC_EXITED));
8b93c638 5288 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
5289 ui_out_field_fmt (uiout, "exit-code", "0%o",
5290 (unsigned int) stop_info);
8b93c638
JM
5291 ui_out_text (uiout, ".\n");
5292 }
5293 else
5294 {
9dc5e2a9 5295 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
5296 ui_out_field_string
5297 (uiout, "reason",
5298 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8b93c638
JM
5299 ui_out_text (uiout, "\nProgram exited normally.\n");
5300 }
f17517ea
AS
5301 /* Support the --return-child-result option. */
5302 return_child_result_value = stop_info;
11cf8741
JM
5303 break;
5304 case SIGNAL_RECEIVED:
252fbfc8
PA
5305 /* Signal received. The signal table tells us to print about
5306 it. */
8b93c638 5307 annotate_signal ();
252fbfc8
PA
5308
5309 if (stop_info == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5310 {
5311 struct thread_info *t = inferior_thread ();
5312
5313 ui_out_text (uiout, "\n[");
5314 ui_out_field_string (uiout, "thread-name",
5315 target_pid_to_str (t->ptid));
5316 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5317 ui_out_text (uiout, " stopped");
5318 }
5319 else
5320 {
5321 ui_out_text (uiout, "\nProgram received signal ");
5322 annotate_signal_name ();
5323 if (ui_out_is_mi_like_p (uiout))
5324 ui_out_field_string
5325 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5326 ui_out_field_string (uiout, "signal-name",
5327 target_signal_to_name (stop_info));
5328 annotate_signal_name_end ();
5329 ui_out_text (uiout, ", ");
5330 annotate_signal_string ();
5331 ui_out_field_string (uiout, "signal-meaning",
5332 target_signal_to_string (stop_info));
5333 annotate_signal_string_end ();
5334 }
8b93c638 5335 ui_out_text (uiout, ".\n");
11cf8741 5336 break;
b2175913
MS
5337 case NO_HISTORY:
5338 /* Reverse execution: target ran out of history info. */
5339 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
5340 break;
11cf8741 5341 default:
8e65ff28 5342 internal_error (__FILE__, __LINE__,
e2e0b3e5 5343 _("print_stop_reason: unrecognized enum value"));
11cf8741
JM
5344 break;
5345 }
5346}
c906108c 5347\f
43ff13b4 5348
c906108c
SS
5349/* Here to return control to GDB when the inferior stops for real.
5350 Print appropriate messages, remove breakpoints, give terminal our modes.
5351
5352 STOP_PRINT_FRAME nonzero means print the executing frame
5353 (pc, function, args, file, line number and line text).
5354 BREAKPOINTS_FAILED nonzero means stop was due to error
5355 attempting to insert breakpoints. */
5356
5357void
96baa820 5358normal_stop (void)
c906108c 5359{
73b65bb0
DJ
5360 struct target_waitstatus last;
5361 ptid_t last_ptid;
29f49a6a 5362 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
5363
5364 get_last_target_status (&last_ptid, &last);
5365
29f49a6a
PA
5366 /* If an exception is thrown from this point on, make sure to
5367 propagate GDB's knowledge of the executing state to the
5368 frontend/user running state. A QUIT is an easy exception to see
5369 here, so do this before any filtered output. */
c35b1492
PA
5370 if (!non_stop)
5371 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5372 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5373 && last.kind != TARGET_WAITKIND_EXITED)
5374 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 5375
4f8d22e3
PA
5376 /* In non-stop mode, we don't want GDB to switch threads behind the
5377 user's back, to avoid races where the user is typing a command to
5378 apply to thread x, but GDB switches to thread y before the user
5379 finishes entering the command. */
5380
c906108c
SS
5381 /* As with the notification of thread events, we want to delay
5382 notifying the user that we've switched thread context until
5383 the inferior actually stops.
5384
73b65bb0
DJ
5385 There's no point in saying anything if the inferior has exited.
5386 Note that SIGNALLED here means "exited with a signal", not
5387 "received a signal". */
4f8d22e3
PA
5388 if (!non_stop
5389 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
5390 && target_has_execution
5391 && last.kind != TARGET_WAITKIND_SIGNALLED
5392 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
5393 {
5394 target_terminal_ours_for_output ();
a3f17187 5395 printf_filtered (_("[Switching to %s]\n"),
c95310c6 5396 target_pid_to_str (inferior_ptid));
b8fa951a 5397 annotate_thread_changed ();
39f77062 5398 previous_inferior_ptid = inferior_ptid;
c906108c 5399 }
c906108c 5400
74960c60 5401 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
5402 {
5403 if (remove_breakpoints ())
5404 {
5405 target_terminal_ours_for_output ();
a3f17187
AC
5406 printf_filtered (_("\
5407Cannot remove breakpoints because program is no longer writable.\n\
a3f17187 5408Further execution is probably impossible.\n"));
c906108c
SS
5409 }
5410 }
c906108c 5411
c906108c
SS
5412 /* If an auto-display called a function and that got a signal,
5413 delete that auto-display to avoid an infinite recursion. */
5414
5415 if (stopped_by_random_signal)
5416 disable_current_display ();
5417
5418 /* Don't print a message if in the middle of doing a "step n"
5419 operation for n > 1 */
af679fd0
PA
5420 if (target_has_execution
5421 && last.kind != TARGET_WAITKIND_SIGNALLED
5422 && last.kind != TARGET_WAITKIND_EXITED
5423 && inferior_thread ()->step_multi
414c69f7 5424 && inferior_thread ()->stop_step)
c906108c
SS
5425 goto done;
5426
5427 target_terminal_ours ();
5428
7abfe014
DJ
5429 /* Set the current source location. This will also happen if we
5430 display the frame below, but the current SAL will be incorrect
5431 during a user hook-stop function. */
d729566a 5432 if (has_stack_frames () && !stop_stack_dummy)
7abfe014
DJ
5433 set_current_sal_from_frame (get_current_frame (), 1);
5434
dd7e2d2b
PA
5435 /* Let the user/frontend see the threads as stopped. */
5436 do_cleanups (old_chain);
5437
5438 /* Look up the hook_stop and run it (CLI internally handles problem
5439 of stop_command's pre-hook not existing). */
5440 if (stop_command)
5441 catch_errors (hook_stop_stub, stop_command,
5442 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5443
d729566a 5444 if (!has_stack_frames ())
d51fd4c8 5445 goto done;
c906108c 5446
32400beb
PA
5447 if (last.kind == TARGET_WAITKIND_SIGNALLED
5448 || last.kind == TARGET_WAITKIND_EXITED)
5449 goto done;
5450
c906108c
SS
5451 /* Select innermost stack frame - i.e., current frame is frame 0,
5452 and current location is based on that.
5453 Don't do this on return from a stack dummy routine,
5454 or if the program has exited. */
5455
5456 if (!stop_stack_dummy)
5457 {
0f7d239c 5458 select_frame (get_current_frame ());
c906108c
SS
5459
5460 /* Print current location without a level number, if
c5aa993b
JM
5461 we have changed functions or hit a breakpoint.
5462 Print source line if we have one.
5463 bpstat_print() contains the logic deciding in detail
5464 what to print, based on the event(s) that just occurred. */
c906108c 5465
d01a8610
AS
5466 /* If --batch-silent is enabled then there's no need to print the current
5467 source location, and to try risks causing an error message about
5468 missing source files. */
5469 if (stop_print_frame && !batch_silent)
c906108c
SS
5470 {
5471 int bpstat_ret;
5472 int source_flag;
917317f4 5473 int do_frame_printing = 1;
347bddb7 5474 struct thread_info *tp = inferior_thread ();
c906108c 5475
347bddb7 5476 bpstat_ret = bpstat_print (tp->stop_bpstat);
917317f4
JM
5477 switch (bpstat_ret)
5478 {
5479 case PRINT_UNKNOWN:
b0f4b84b
DJ
5480 /* If we had hit a shared library event breakpoint,
5481 bpstat_print would print out this message. If we hit
5482 an OS-level shared library event, do the same
5483 thing. */
5484 if (last.kind == TARGET_WAITKIND_LOADED)
5485 {
5486 printf_filtered (_("Stopped due to shared library event\n"));
5487 source_flag = SRC_LINE; /* something bogus */
5488 do_frame_printing = 0;
5489 break;
5490 }
5491
aa0cd9c1 5492 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
5493 (or should) carry around the function and does (or
5494 should) use that when doing a frame comparison. */
414c69f7 5495 if (tp->stop_step
347bddb7 5496 && frame_id_eq (tp->step_frame_id,
aa0cd9c1 5497 get_frame_id (get_current_frame ()))
917317f4 5498 && step_start_function == find_pc_function (stop_pc))
488f131b 5499 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 5500 else
488f131b 5501 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
5502 break;
5503 case PRINT_SRC_AND_LOC:
488f131b 5504 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
5505 break;
5506 case PRINT_SRC_ONLY:
c5394b80 5507 source_flag = SRC_LINE;
917317f4
JM
5508 break;
5509 case PRINT_NOTHING:
488f131b 5510 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
5511 do_frame_printing = 0;
5512 break;
5513 default:
e2e0b3e5 5514 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 5515 }
c906108c
SS
5516
5517 /* The behavior of this routine with respect to the source
5518 flag is:
c5394b80
JM
5519 SRC_LINE: Print only source line
5520 LOCATION: Print only location
5521 SRC_AND_LOC: Print location and source line */
917317f4 5522 if (do_frame_printing)
b04f3ab4 5523 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
5524
5525 /* Display the auto-display expressions. */
5526 do_displays ();
5527 }
5528 }
5529
5530 /* Save the function value return registers, if we care.
5531 We might be about to restore their previous contents. */
32400beb 5532 if (inferior_thread ()->proceed_to_finish)
d5c31457
UW
5533 {
5534 /* This should not be necessary. */
5535 if (stop_registers)
5536 regcache_xfree (stop_registers);
5537
5538 /* NB: The copy goes through to the target picking up the value of
5539 all the registers. */
5540 stop_registers = regcache_dup (get_current_regcache ());
5541 }
c906108c 5542
aa7d318d 5543 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 5544 {
b89667eb
DE
5545 /* Pop the empty frame that contains the stack dummy.
5546 This also restores inferior state prior to the call
5547 (struct inferior_thread_state). */
5548 struct frame_info *frame = get_current_frame ();
abbb1732 5549
b89667eb
DE
5550 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
5551 frame_pop (frame);
5552 /* frame_pop() calls reinit_frame_cache as the last thing it does
5553 which means there's currently no selected frame. We don't need
5554 to re-establish a selected frame if the dummy call returns normally,
5555 that will be done by restore_inferior_status. However, we do have
5556 to handle the case where the dummy call is returning after being
5557 stopped (e.g. the dummy call previously hit a breakpoint). We
5558 can't know which case we have so just always re-establish a
5559 selected frame here. */
0f7d239c 5560 select_frame (get_current_frame ());
c906108c
SS
5561 }
5562
c906108c
SS
5563done:
5564 annotate_stopped ();
41d2bdb4
PA
5565
5566 /* Suppress the stop observer if we're in the middle of:
5567
5568 - a step n (n > 1), as there still more steps to be done.
5569
5570 - a "finish" command, as the observer will be called in
5571 finish_command_continuation, so it can include the inferior
5572 function's return value.
5573
5574 - calling an inferior function, as we pretend we inferior didn't
5575 run at all. The return value of the call is handled by the
5576 expression evaluator, through call_function_by_hand. */
5577
5578 if (!target_has_execution
5579 || last.kind == TARGET_WAITKIND_SIGNALLED
5580 || last.kind == TARGET_WAITKIND_EXITED
5581 || (!inferior_thread ()->step_multi
5582 && !(inferior_thread ()->stop_bpstat
c5a4d20b
PA
5583 && inferior_thread ()->proceed_to_finish)
5584 && !inferior_thread ()->in_infcall))
347bddb7
PA
5585 {
5586 if (!ptid_equal (inferior_ptid, null_ptid))
1d33d6ba
VP
5587 observer_notify_normal_stop (inferior_thread ()->stop_bpstat,
5588 stop_print_frame);
347bddb7 5589 else
1d33d6ba 5590 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 5591 }
347bddb7 5592
48844aa6
PA
5593 if (target_has_execution)
5594 {
5595 if (last.kind != TARGET_WAITKIND_SIGNALLED
5596 && last.kind != TARGET_WAITKIND_EXITED)
5597 /* Delete the breakpoint we stopped at, if it wants to be deleted.
5598 Delete any breakpoint that is to be deleted at the next stop. */
5599 breakpoint_auto_delete (inferior_thread ()->stop_bpstat);
94cc34af 5600 }
6c95b8df
PA
5601
5602 /* Try to get rid of automatically added inferiors that are no
5603 longer needed. Keeping those around slows down things linearly.
5604 Note that this never removes the current inferior. */
5605 prune_inferiors ();
c906108c
SS
5606}
5607
5608static int
96baa820 5609hook_stop_stub (void *cmd)
c906108c 5610{
5913bcb0 5611 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
5612 return (0);
5613}
5614\f
c5aa993b 5615int
96baa820 5616signal_stop_state (int signo)
c906108c 5617{
d6b48e9c 5618 return signal_stop[signo];
c906108c
SS
5619}
5620
c5aa993b 5621int
96baa820 5622signal_print_state (int signo)
c906108c
SS
5623{
5624 return signal_print[signo];
5625}
5626
c5aa993b 5627int
96baa820 5628signal_pass_state (int signo)
c906108c
SS
5629{
5630 return signal_program[signo];
5631}
5632
488f131b 5633int
7bda5e4a 5634signal_stop_update (int signo, int state)
d4f3574e
SS
5635{
5636 int ret = signal_stop[signo];
abbb1732 5637
d4f3574e
SS
5638 signal_stop[signo] = state;
5639 return ret;
5640}
5641
488f131b 5642int
7bda5e4a 5643signal_print_update (int signo, int state)
d4f3574e
SS
5644{
5645 int ret = signal_print[signo];
abbb1732 5646
d4f3574e
SS
5647 signal_print[signo] = state;
5648 return ret;
5649}
5650
488f131b 5651int
7bda5e4a 5652signal_pass_update (int signo, int state)
d4f3574e
SS
5653{
5654 int ret = signal_program[signo];
abbb1732 5655
d4f3574e
SS
5656 signal_program[signo] = state;
5657 return ret;
5658}
5659
c906108c 5660static void
96baa820 5661sig_print_header (void)
c906108c 5662{
a3f17187
AC
5663 printf_filtered (_("\
5664Signal Stop\tPrint\tPass to program\tDescription\n"));
c906108c
SS
5665}
5666
5667static void
96baa820 5668sig_print_info (enum target_signal oursig)
c906108c 5669{
54363045 5670 const char *name = target_signal_to_name (oursig);
c906108c 5671 int name_padding = 13 - strlen (name);
96baa820 5672
c906108c
SS
5673 if (name_padding <= 0)
5674 name_padding = 0;
5675
5676 printf_filtered ("%s", name);
488f131b 5677 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
5678 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
5679 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
5680 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
5681 printf_filtered ("%s\n", target_signal_to_string (oursig));
5682}
5683
5684/* Specify how various signals in the inferior should be handled. */
5685
5686static void
96baa820 5687handle_command (char *args, int from_tty)
c906108c
SS
5688{
5689 char **argv;
5690 int digits, wordlen;
5691 int sigfirst, signum, siglast;
5692 enum target_signal oursig;
5693 int allsigs;
5694 int nsigs;
5695 unsigned char *sigs;
5696 struct cleanup *old_chain;
5697
5698 if (args == NULL)
5699 {
e2e0b3e5 5700 error_no_arg (_("signal to handle"));
c906108c
SS
5701 }
5702
5703 /* Allocate and zero an array of flags for which signals to handle. */
5704
5705 nsigs = (int) TARGET_SIGNAL_LAST;
5706 sigs = (unsigned char *) alloca (nsigs);
5707 memset (sigs, 0, nsigs);
5708
5709 /* Break the command line up into args. */
5710
d1a41061 5711 argv = gdb_buildargv (args);
7a292a7a 5712 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
5713
5714 /* Walk through the args, looking for signal oursigs, signal names, and
5715 actions. Signal numbers and signal names may be interspersed with
5716 actions, with the actions being performed for all signals cumulatively
5717 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
5718
5719 while (*argv != NULL)
5720 {
5721 wordlen = strlen (*argv);
5722 for (digits = 0; isdigit ((*argv)[digits]); digits++)
5723 {;
5724 }
5725 allsigs = 0;
5726 sigfirst = siglast = -1;
5727
5728 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
5729 {
5730 /* Apply action to all signals except those used by the
5731 debugger. Silently skip those. */
5732 allsigs = 1;
5733 sigfirst = 0;
5734 siglast = nsigs - 1;
5735 }
5736 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
5737 {
5738 SET_SIGS (nsigs, sigs, signal_stop);
5739 SET_SIGS (nsigs, sigs, signal_print);
5740 }
5741 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
5742 {
5743 UNSET_SIGS (nsigs, sigs, signal_program);
5744 }
5745 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
5746 {
5747 SET_SIGS (nsigs, sigs, signal_print);
5748 }
5749 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
5750 {
5751 SET_SIGS (nsigs, sigs, signal_program);
5752 }
5753 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
5754 {
5755 UNSET_SIGS (nsigs, sigs, signal_stop);
5756 }
5757 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
5758 {
5759 SET_SIGS (nsigs, sigs, signal_program);
5760 }
5761 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
5762 {
5763 UNSET_SIGS (nsigs, sigs, signal_print);
5764 UNSET_SIGS (nsigs, sigs, signal_stop);
5765 }
5766 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
5767 {
5768 UNSET_SIGS (nsigs, sigs, signal_program);
5769 }
5770 else if (digits > 0)
5771 {
5772 /* It is numeric. The numeric signal refers to our own
5773 internal signal numbering from target.h, not to host/target
5774 signal number. This is a feature; users really should be
5775 using symbolic names anyway, and the common ones like
5776 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
5777
5778 sigfirst = siglast = (int)
5779 target_signal_from_command (atoi (*argv));
5780 if ((*argv)[digits] == '-')
5781 {
5782 siglast = (int)
5783 target_signal_from_command (atoi ((*argv) + digits + 1));
5784 }
5785 if (sigfirst > siglast)
5786 {
5787 /* Bet he didn't figure we'd think of this case... */
5788 signum = sigfirst;
5789 sigfirst = siglast;
5790 siglast = signum;
5791 }
5792 }
5793 else
5794 {
5795 oursig = target_signal_from_name (*argv);
5796 if (oursig != TARGET_SIGNAL_UNKNOWN)
5797 {
5798 sigfirst = siglast = (int) oursig;
5799 }
5800 else
5801 {
5802 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 5803 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
5804 }
5805 }
5806
5807 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 5808 which signals to apply actions to. */
c906108c
SS
5809
5810 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
5811 {
5812 switch ((enum target_signal) signum)
5813 {
5814 case TARGET_SIGNAL_TRAP:
5815 case TARGET_SIGNAL_INT:
5816 if (!allsigs && !sigs[signum])
5817 {
9e2f0ad4
HZ
5818 if (query (_("%s is used by the debugger.\n\
5819Are you sure you want to change it? "), target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
5820 {
5821 sigs[signum] = 1;
5822 }
5823 else
5824 {
a3f17187 5825 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
5826 gdb_flush (gdb_stdout);
5827 }
5828 }
5829 break;
5830 case TARGET_SIGNAL_0:
5831 case TARGET_SIGNAL_DEFAULT:
5832 case TARGET_SIGNAL_UNKNOWN:
5833 /* Make sure that "all" doesn't print these. */
5834 break;
5835 default:
5836 sigs[signum] = 1;
5837 break;
5838 }
5839 }
5840
5841 argv++;
5842 }
5843
3a031f65
PA
5844 for (signum = 0; signum < nsigs; signum++)
5845 if (sigs[signum])
5846 {
5847 target_notice_signals (inferior_ptid);
c906108c 5848
3a031f65
PA
5849 if (from_tty)
5850 {
5851 /* Show the results. */
5852 sig_print_header ();
5853 for (; signum < nsigs; signum++)
5854 if (sigs[signum])
5855 sig_print_info (signum);
5856 }
5857
5858 break;
5859 }
c906108c
SS
5860
5861 do_cleanups (old_chain);
5862}
5863
5864static void
96baa820 5865xdb_handle_command (char *args, int from_tty)
c906108c
SS
5866{
5867 char **argv;
5868 struct cleanup *old_chain;
5869
d1a41061
PP
5870 if (args == NULL)
5871 error_no_arg (_("xdb command"));
5872
c906108c
SS
5873 /* Break the command line up into args. */
5874
d1a41061 5875 argv = gdb_buildargv (args);
7a292a7a 5876 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
5877 if (argv[1] != (char *) NULL)
5878 {
5879 char *argBuf;
5880 int bufLen;
5881
5882 bufLen = strlen (argv[0]) + 20;
5883 argBuf = (char *) xmalloc (bufLen);
5884 if (argBuf)
5885 {
5886 int validFlag = 1;
5887 enum target_signal oursig;
5888
5889 oursig = target_signal_from_name (argv[0]);
5890 memset (argBuf, 0, bufLen);
5891 if (strcmp (argv[1], "Q") == 0)
5892 sprintf (argBuf, "%s %s", argv[0], "noprint");
5893 else
5894 {
5895 if (strcmp (argv[1], "s") == 0)
5896 {
5897 if (!signal_stop[oursig])
5898 sprintf (argBuf, "%s %s", argv[0], "stop");
5899 else
5900 sprintf (argBuf, "%s %s", argv[0], "nostop");
5901 }
5902 else if (strcmp (argv[1], "i") == 0)
5903 {
5904 if (!signal_program[oursig])
5905 sprintf (argBuf, "%s %s", argv[0], "pass");
5906 else
5907 sprintf (argBuf, "%s %s", argv[0], "nopass");
5908 }
5909 else if (strcmp (argv[1], "r") == 0)
5910 {
5911 if (!signal_print[oursig])
5912 sprintf (argBuf, "%s %s", argv[0], "print");
5913 else
5914 sprintf (argBuf, "%s %s", argv[0], "noprint");
5915 }
5916 else
5917 validFlag = 0;
5918 }
5919 if (validFlag)
5920 handle_command (argBuf, from_tty);
5921 else
a3f17187 5922 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 5923 if (argBuf)
b8c9b27d 5924 xfree (argBuf);
c906108c
SS
5925 }
5926 }
5927 do_cleanups (old_chain);
5928}
5929
5930/* Print current contents of the tables set by the handle command.
5931 It is possible we should just be printing signals actually used
5932 by the current target (but for things to work right when switching
5933 targets, all signals should be in the signal tables). */
5934
5935static void
96baa820 5936signals_info (char *signum_exp, int from_tty)
c906108c
SS
5937{
5938 enum target_signal oursig;
abbb1732 5939
c906108c
SS
5940 sig_print_header ();
5941
5942 if (signum_exp)
5943 {
5944 /* First see if this is a symbol name. */
5945 oursig = target_signal_from_name (signum_exp);
5946 if (oursig == TARGET_SIGNAL_UNKNOWN)
5947 {
5948 /* No, try numeric. */
5949 oursig =
bb518678 5950 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
5951 }
5952 sig_print_info (oursig);
5953 return;
5954 }
5955
5956 printf_filtered ("\n");
5957 /* These ugly casts brought to you by the native VAX compiler. */
5958 for (oursig = TARGET_SIGNAL_FIRST;
5959 (int) oursig < (int) TARGET_SIGNAL_LAST;
5960 oursig = (enum target_signal) ((int) oursig + 1))
5961 {
5962 QUIT;
5963
5964 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 5965 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
5966 sig_print_info (oursig);
5967 }
5968
a3f17187 5969 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
c906108c 5970}
4aa995e1
PA
5971
5972/* The $_siginfo convenience variable is a bit special. We don't know
5973 for sure the type of the value until we actually have a chance to
5974 fetch the data. The type can change depending on gdbarch, so it it
5975 also dependent on which thread you have selected.
5976
5977 1. making $_siginfo be an internalvar that creates a new value on
5978 access.
5979
5980 2. making the value of $_siginfo be an lval_computed value. */
5981
5982/* This function implements the lval_computed support for reading a
5983 $_siginfo value. */
5984
5985static void
5986siginfo_value_read (struct value *v)
5987{
5988 LONGEST transferred;
5989
5990 transferred =
5991 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
5992 NULL,
5993 value_contents_all_raw (v),
5994 value_offset (v),
5995 TYPE_LENGTH (value_type (v)));
5996
5997 if (transferred != TYPE_LENGTH (value_type (v)))
5998 error (_("Unable to read siginfo"));
5999}
6000
6001/* This function implements the lval_computed support for writing a
6002 $_siginfo value. */
6003
6004static void
6005siginfo_value_write (struct value *v, struct value *fromval)
6006{
6007 LONGEST transferred;
6008
6009 transferred = target_write (&current_target,
6010 TARGET_OBJECT_SIGNAL_INFO,
6011 NULL,
6012 value_contents_all_raw (fromval),
6013 value_offset (v),
6014 TYPE_LENGTH (value_type (fromval)));
6015
6016 if (transferred != TYPE_LENGTH (value_type (fromval)))
6017 error (_("Unable to write siginfo"));
6018}
6019
6020static struct lval_funcs siginfo_value_funcs =
6021 {
6022 siginfo_value_read,
6023 siginfo_value_write
6024 };
6025
6026/* Return a new value with the correct type for the siginfo object of
78267919
UW
6027 the current thread using architecture GDBARCH. Return a void value
6028 if there's no object available. */
4aa995e1 6029
2c0b251b 6030static struct value *
78267919 6031siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
4aa995e1 6032{
4aa995e1 6033 if (target_has_stack
78267919
UW
6034 && !ptid_equal (inferior_ptid, null_ptid)
6035 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 6036 {
78267919 6037 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 6038
78267919 6039 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
6040 }
6041
78267919 6042 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
6043}
6044
c906108c 6045\f
b89667eb
DE
6046/* Inferior thread state.
6047 These are details related to the inferior itself, and don't include
6048 things like what frame the user had selected or what gdb was doing
6049 with the target at the time.
6050 For inferior function calls these are things we want to restore
6051 regardless of whether the function call successfully completes
6052 or the dummy frame has to be manually popped. */
6053
6054struct inferior_thread_state
7a292a7a
SS
6055{
6056 enum target_signal stop_signal;
6057 CORE_ADDR stop_pc;
b89667eb
DE
6058 struct regcache *registers;
6059};
6060
6061struct inferior_thread_state *
6062save_inferior_thread_state (void)
6063{
6064 struct inferior_thread_state *inf_state = XMALLOC (struct inferior_thread_state);
6065 struct thread_info *tp = inferior_thread ();
6066
6067 inf_state->stop_signal = tp->stop_signal;
6068 inf_state->stop_pc = stop_pc;
6069
6070 inf_state->registers = regcache_dup (get_current_regcache ());
6071
6072 return inf_state;
6073}
6074
6075/* Restore inferior session state to INF_STATE. */
6076
6077void
6078restore_inferior_thread_state (struct inferior_thread_state *inf_state)
6079{
6080 struct thread_info *tp = inferior_thread ();
6081
6082 tp->stop_signal = inf_state->stop_signal;
6083 stop_pc = inf_state->stop_pc;
6084
6085 /* The inferior can be gone if the user types "print exit(0)"
6086 (and perhaps other times). */
6087 if (target_has_execution)
6088 /* NB: The register write goes through to the target. */
6089 regcache_cpy (get_current_regcache (), inf_state->registers);
6090 regcache_xfree (inf_state->registers);
6091 xfree (inf_state);
6092}
6093
6094static void
6095do_restore_inferior_thread_state_cleanup (void *state)
6096{
6097 restore_inferior_thread_state (state);
6098}
6099
6100struct cleanup *
6101make_cleanup_restore_inferior_thread_state (struct inferior_thread_state *inf_state)
6102{
6103 return make_cleanup (do_restore_inferior_thread_state_cleanup, inf_state);
6104}
6105
6106void
6107discard_inferior_thread_state (struct inferior_thread_state *inf_state)
6108{
6109 regcache_xfree (inf_state->registers);
6110 xfree (inf_state);
6111}
6112
6113struct regcache *
6114get_inferior_thread_state_regcache (struct inferior_thread_state *inf_state)
6115{
6116 return inf_state->registers;
6117}
6118
6119/* Session related state for inferior function calls.
6120 These are the additional bits of state that need to be restored
6121 when an inferior function call successfully completes. */
6122
6123struct inferior_status
6124{
7a292a7a
SS
6125 bpstat stop_bpstat;
6126 int stop_step;
aa7d318d 6127 enum stop_stack_kind stop_stack_dummy;
7a292a7a 6128 int stopped_by_random_signal;
ca67fcb8 6129 int stepping_over_breakpoint;
7a292a7a
SS
6130 CORE_ADDR step_range_start;
6131 CORE_ADDR step_range_end;
aa0cd9c1 6132 struct frame_id step_frame_id;
edb3359d 6133 struct frame_id step_stack_frame_id;
5fbbeb29 6134 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
6135 CORE_ADDR step_resume_break_address;
6136 int stop_after_trap;
c0236d92 6137 int stop_soon;
7a292a7a 6138
b89667eb 6139 /* ID if the selected frame when the inferior function call was made. */
101dcfbe
AC
6140 struct frame_id selected_frame_id;
6141
7a292a7a 6142 int proceed_to_finish;
c5a4d20b 6143 int in_infcall;
7a292a7a
SS
6144};
6145
c906108c 6146/* Save all of the information associated with the inferior<==>gdb
b89667eb 6147 connection. */
c906108c 6148
7a292a7a 6149struct inferior_status *
b89667eb 6150save_inferior_status (void)
c906108c 6151{
72cec141 6152 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
4e1c45ea 6153 struct thread_info *tp = inferior_thread ();
d6b48e9c 6154 struct inferior *inf = current_inferior ();
7a292a7a 6155
414c69f7 6156 inf_status->stop_step = tp->stop_step;
c906108c
SS
6157 inf_status->stop_stack_dummy = stop_stack_dummy;
6158 inf_status->stopped_by_random_signal = stopped_by_random_signal;
4e1c45ea
PA
6159 inf_status->stepping_over_breakpoint = tp->trap_expected;
6160 inf_status->step_range_start = tp->step_range_start;
6161 inf_status->step_range_end = tp->step_range_end;
6162 inf_status->step_frame_id = tp->step_frame_id;
edb3359d 6163 inf_status->step_stack_frame_id = tp->step_stack_frame_id;
078130d0 6164 inf_status->step_over_calls = tp->step_over_calls;
c906108c 6165 inf_status->stop_after_trap = stop_after_trap;
d6b48e9c 6166 inf_status->stop_soon = inf->stop_soon;
c906108c
SS
6167 /* Save original bpstat chain here; replace it with copy of chain.
6168 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
6169 hand them back the original chain when restore_inferior_status is
6170 called. */
347bddb7
PA
6171 inf_status->stop_bpstat = tp->stop_bpstat;
6172 tp->stop_bpstat = bpstat_copy (tp->stop_bpstat);
32400beb 6173 inf_status->proceed_to_finish = tp->proceed_to_finish;
c5a4d20b 6174 inf_status->in_infcall = tp->in_infcall;
c5aa993b 6175
206415a3 6176 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 6177
7a292a7a 6178 return inf_status;
c906108c
SS
6179}
6180
c906108c 6181static int
96baa820 6182restore_selected_frame (void *args)
c906108c 6183{
488f131b 6184 struct frame_id *fid = (struct frame_id *) args;
c906108c 6185 struct frame_info *frame;
c906108c 6186
101dcfbe 6187 frame = frame_find_by_id (*fid);
c906108c 6188
aa0cd9c1
AC
6189 /* If inf_status->selected_frame_id is NULL, there was no previously
6190 selected frame. */
101dcfbe 6191 if (frame == NULL)
c906108c 6192 {
8a3fe4f8 6193 warning (_("Unable to restore previously selected frame."));
c906108c
SS
6194 return 0;
6195 }
6196
0f7d239c 6197 select_frame (frame);
c906108c
SS
6198
6199 return (1);
6200}
6201
b89667eb
DE
6202/* Restore inferior session state to INF_STATUS. */
6203
c906108c 6204void
96baa820 6205restore_inferior_status (struct inferior_status *inf_status)
c906108c 6206{
4e1c45ea 6207 struct thread_info *tp = inferior_thread ();
d6b48e9c 6208 struct inferior *inf = current_inferior ();
4e1c45ea 6209
414c69f7 6210 tp->stop_step = inf_status->stop_step;
c906108c
SS
6211 stop_stack_dummy = inf_status->stop_stack_dummy;
6212 stopped_by_random_signal = inf_status->stopped_by_random_signal;
4e1c45ea
PA
6213 tp->trap_expected = inf_status->stepping_over_breakpoint;
6214 tp->step_range_start = inf_status->step_range_start;
6215 tp->step_range_end = inf_status->step_range_end;
6216 tp->step_frame_id = inf_status->step_frame_id;
edb3359d 6217 tp->step_stack_frame_id = inf_status->step_stack_frame_id;
078130d0 6218 tp->step_over_calls = inf_status->step_over_calls;
c906108c 6219 stop_after_trap = inf_status->stop_after_trap;
d6b48e9c 6220 inf->stop_soon = inf_status->stop_soon;
347bddb7
PA
6221 bpstat_clear (&tp->stop_bpstat);
6222 tp->stop_bpstat = inf_status->stop_bpstat;
b89667eb 6223 inf_status->stop_bpstat = NULL;
32400beb 6224 tp->proceed_to_finish = inf_status->proceed_to_finish;
c5a4d20b 6225 tp->in_infcall = inf_status->in_infcall;
c906108c 6226
b89667eb 6227 if (target_has_stack)
c906108c 6228 {
c906108c 6229 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
6230 walking the stack might encounter a garbage pointer and
6231 error() trying to dereference it. */
488f131b
JB
6232 if (catch_errors
6233 (restore_selected_frame, &inf_status->selected_frame_id,
6234 "Unable to restore previously selected frame:\n",
6235 RETURN_MASK_ERROR) == 0)
c906108c
SS
6236 /* Error in restoring the selected frame. Select the innermost
6237 frame. */
0f7d239c 6238 select_frame (get_current_frame ());
c906108c 6239 }
c906108c 6240
72cec141 6241 xfree (inf_status);
7a292a7a 6242}
c906108c 6243
74b7792f
AC
6244static void
6245do_restore_inferior_status_cleanup (void *sts)
6246{
6247 restore_inferior_status (sts);
6248}
6249
6250struct cleanup *
6251make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
6252{
6253 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
6254}
6255
c906108c 6256void
96baa820 6257discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
6258{
6259 /* See save_inferior_status for info on stop_bpstat. */
6260 bpstat_clear (&inf_status->stop_bpstat);
72cec141 6261 xfree (inf_status);
7a292a7a 6262}
b89667eb 6263\f
47932f85 6264int
3a3e9ee3 6265inferior_has_forked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
6266{
6267 struct target_waitstatus last;
6268 ptid_t last_ptid;
6269
6270 get_last_target_status (&last_ptid, &last);
6271
6272 if (last.kind != TARGET_WAITKIND_FORKED)
6273 return 0;
6274
3a3e9ee3 6275 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
6276 return 0;
6277
6278 *child_pid = last.value.related_pid;
6279 return 1;
6280}
6281
6282int
3a3e9ee3 6283inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
6284{
6285 struct target_waitstatus last;
6286 ptid_t last_ptid;
6287
6288 get_last_target_status (&last_ptid, &last);
6289
6290 if (last.kind != TARGET_WAITKIND_VFORKED)
6291 return 0;
6292
3a3e9ee3 6293 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
6294 return 0;
6295
6296 *child_pid = last.value.related_pid;
6297 return 1;
6298}
6299
6300int
3a3e9ee3 6301inferior_has_execd (ptid_t pid, char **execd_pathname)
47932f85
DJ
6302{
6303 struct target_waitstatus last;
6304 ptid_t last_ptid;
6305
6306 get_last_target_status (&last_ptid, &last);
6307
6308 if (last.kind != TARGET_WAITKIND_EXECD)
6309 return 0;
6310
3a3e9ee3 6311 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
6312 return 0;
6313
6314 *execd_pathname = xstrdup (last.value.execd_pathname);
6315 return 1;
6316}
6317
a96d9b2e
SDJ
6318int
6319inferior_has_called_syscall (ptid_t pid, int *syscall_number)
6320{
6321 struct target_waitstatus last;
6322 ptid_t last_ptid;
6323
6324 get_last_target_status (&last_ptid, &last);
6325
6326 if (last.kind != TARGET_WAITKIND_SYSCALL_ENTRY &&
6327 last.kind != TARGET_WAITKIND_SYSCALL_RETURN)
6328 return 0;
6329
6330 if (!ptid_equal (last_ptid, pid))
6331 return 0;
6332
6333 *syscall_number = last.value.syscall_number;
6334 return 1;
6335}
6336
ca6724c1
KB
6337/* Oft used ptids */
6338ptid_t null_ptid;
6339ptid_t minus_one_ptid;
6340
6341/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 6342
ca6724c1
KB
6343ptid_t
6344ptid_build (int pid, long lwp, long tid)
6345{
6346 ptid_t ptid;
6347
6348 ptid.pid = pid;
6349 ptid.lwp = lwp;
6350 ptid.tid = tid;
6351 return ptid;
6352}
6353
6354/* Create a ptid from just a pid. */
6355
6356ptid_t
6357pid_to_ptid (int pid)
6358{
6359 return ptid_build (pid, 0, 0);
6360}
6361
6362/* Fetch the pid (process id) component from a ptid. */
6363
6364int
6365ptid_get_pid (ptid_t ptid)
6366{
6367 return ptid.pid;
6368}
6369
6370/* Fetch the lwp (lightweight process) component from a ptid. */
6371
6372long
6373ptid_get_lwp (ptid_t ptid)
6374{
6375 return ptid.lwp;
6376}
6377
6378/* Fetch the tid (thread id) component from a ptid. */
6379
6380long
6381ptid_get_tid (ptid_t ptid)
6382{
6383 return ptid.tid;
6384}
6385
6386/* ptid_equal() is used to test equality of two ptids. */
6387
6388int
6389ptid_equal (ptid_t ptid1, ptid_t ptid2)
6390{
6391 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 6392 && ptid1.tid == ptid2.tid);
ca6724c1
KB
6393}
6394
252fbfc8
PA
6395/* Returns true if PTID represents a process. */
6396
6397int
6398ptid_is_pid (ptid_t ptid)
6399{
6400 if (ptid_equal (minus_one_ptid, ptid))
6401 return 0;
6402 if (ptid_equal (null_ptid, ptid))
6403 return 0;
6404
6405 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
6406}
6407
0723dbf5
PA
6408int
6409ptid_match (ptid_t ptid, ptid_t filter)
6410{
6411 /* Since both parameters have the same type, prevent easy mistakes
6412 from happening. */
6413 gdb_assert (!ptid_equal (ptid, minus_one_ptid)
5f25d77d 6414 && !ptid_equal (ptid, null_ptid));
0723dbf5
PA
6415
6416 if (ptid_equal (filter, minus_one_ptid))
6417 return 1;
6418 if (ptid_is_pid (filter)
6419 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6420 return 1;
6421 else if (ptid_equal (ptid, filter))
6422 return 1;
6423
6424 return 0;
6425}
6426
ca6724c1
KB
6427/* restore_inferior_ptid() will be used by the cleanup machinery
6428 to restore the inferior_ptid value saved in a call to
6429 save_inferior_ptid(). */
ce696e05
KB
6430
6431static void
6432restore_inferior_ptid (void *arg)
6433{
6434 ptid_t *saved_ptid_ptr = arg;
abbb1732 6435
ce696e05
KB
6436 inferior_ptid = *saved_ptid_ptr;
6437 xfree (arg);
6438}
6439
6440/* Save the value of inferior_ptid so that it may be restored by a
6441 later call to do_cleanups(). Returns the struct cleanup pointer
6442 needed for later doing the cleanup. */
6443
6444struct cleanup *
6445save_inferior_ptid (void)
6446{
6447 ptid_t *saved_ptid_ptr;
6448
6449 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6450 *saved_ptid_ptr = inferior_ptid;
6451 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6452}
c5aa993b 6453\f
488f131b 6454
b2175913
MS
6455/* User interface for reverse debugging:
6456 Set exec-direction / show exec-direction commands
6457 (returns error unless target implements to_set_exec_direction method). */
6458
6459enum exec_direction_kind execution_direction = EXEC_FORWARD;
6460static const char exec_forward[] = "forward";
6461static const char exec_reverse[] = "reverse";
6462static const char *exec_direction = exec_forward;
6463static const char *exec_direction_names[] = {
6464 exec_forward,
6465 exec_reverse,
6466 NULL
6467};
6468
6469static void
6470set_exec_direction_func (char *args, int from_tty,
6471 struct cmd_list_element *cmd)
6472{
6473 if (target_can_execute_reverse)
6474 {
6475 if (!strcmp (exec_direction, exec_forward))
6476 execution_direction = EXEC_FORWARD;
6477 else if (!strcmp (exec_direction, exec_reverse))
6478 execution_direction = EXEC_REVERSE;
6479 }
6480}
6481
6482static void
6483show_exec_direction_func (struct ui_file *out, int from_tty,
6484 struct cmd_list_element *cmd, const char *value)
6485{
6486 switch (execution_direction) {
6487 case EXEC_FORWARD:
6488 fprintf_filtered (out, _("Forward.\n"));
6489 break;
6490 case EXEC_REVERSE:
6491 fprintf_filtered (out, _("Reverse.\n"));
6492 break;
6493 case EXEC_ERROR:
6494 default:
6495 fprintf_filtered (out,
6496 _("Forward (target `%s' does not support exec-direction).\n"),
6497 target_shortname);
6498 break;
6499 }
6500}
6501
6502/* User interface for non-stop mode. */
6503
ad52ddc6 6504int non_stop = 0;
ad52ddc6
PA
6505
6506static void
6507set_non_stop (char *args, int from_tty,
6508 struct cmd_list_element *c)
6509{
6510 if (target_has_execution)
6511 {
6512 non_stop_1 = non_stop;
6513 error (_("Cannot change this setting while the inferior is running."));
6514 }
6515
6516 non_stop = non_stop_1;
6517}
6518
6519static void
6520show_non_stop (struct ui_file *file, int from_tty,
6521 struct cmd_list_element *c, const char *value)
6522{
6523 fprintf_filtered (file,
6524 _("Controlling the inferior in non-stop mode is %s.\n"),
6525 value);
6526}
6527
d4db2f36
PA
6528static void
6529show_schedule_multiple (struct ui_file *file, int from_tty,
6530 struct cmd_list_element *c, const char *value)
6531{
6532 fprintf_filtered (file, _("\
6533Resuming the execution of threads of all processes is %s.\n"), value);
6534}
ad52ddc6 6535
c906108c 6536void
96baa820 6537_initialize_infrun (void)
c906108c 6538{
52f0bd74
AC
6539 int i;
6540 int numsigs;
c906108c 6541
1bedd215
AC
6542 add_info ("signals", signals_info, _("\
6543What debugger does when program gets various signals.\n\
6544Specify a signal as argument to print info on that signal only."));
c906108c
SS
6545 add_info_alias ("handle", "signals", 0);
6546
1bedd215
AC
6547 add_com ("handle", class_run, handle_command, _("\
6548Specify how to handle a signal.\n\
c906108c
SS
6549Args are signals and actions to apply to those signals.\n\
6550Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6551from 1-15 are allowed for compatibility with old versions of GDB.\n\
6552Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6553The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
6554used by the debugger, typically SIGTRAP and SIGINT.\n\
6555Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
6556\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
6557Stop means reenter debugger if this signal happens (implies print).\n\
6558Print means print a message if this signal happens.\n\
6559Pass means let program see this signal; otherwise program doesn't know.\n\
6560Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 6561Pass and Stop may be combined."));
c906108c
SS
6562 if (xdb_commands)
6563 {
1bedd215
AC
6564 add_com ("lz", class_info, signals_info, _("\
6565What debugger does when program gets various signals.\n\
6566Specify a signal as argument to print info on that signal only."));
6567 add_com ("z", class_run, xdb_handle_command, _("\
6568Specify how to handle a signal.\n\
c906108c
SS
6569Args are signals and actions to apply to those signals.\n\
6570Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6571from 1-15 are allowed for compatibility with old versions of GDB.\n\
6572Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6573The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
6574used by the debugger, typically SIGTRAP and SIGINT.\n\
6575Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
6576\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
6577nopass), \"Q\" (noprint)\n\
6578Stop means reenter debugger if this signal happens (implies print).\n\
6579Print means print a message if this signal happens.\n\
6580Pass means let program see this signal; otherwise program doesn't know.\n\
6581Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 6582Pass and Stop may be combined."));
c906108c
SS
6583 }
6584
6585 if (!dbx_commands)
1a966eab
AC
6586 stop_command = add_cmd ("stop", class_obscure,
6587 not_just_help_class_command, _("\
6588There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 6589This allows you to set a list of commands to be run each time execution\n\
1a966eab 6590of the program stops."), &cmdlist);
c906108c 6591
85c07804
AC
6592 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
6593Set inferior debugging."), _("\
6594Show inferior debugging."), _("\
6595When non-zero, inferior specific debugging is enabled."),
6596 NULL,
920d2a44 6597 show_debug_infrun,
85c07804 6598 &setdebuglist, &showdebuglist);
527159b7 6599
237fc4c9
PA
6600 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
6601Set displaced stepping debugging."), _("\
6602Show displaced stepping debugging."), _("\
6603When non-zero, displaced stepping specific debugging is enabled."),
6604 NULL,
6605 show_debug_displaced,
6606 &setdebuglist, &showdebuglist);
6607
ad52ddc6
PA
6608 add_setshow_boolean_cmd ("non-stop", no_class,
6609 &non_stop_1, _("\
6610Set whether gdb controls the inferior in non-stop mode."), _("\
6611Show whether gdb controls the inferior in non-stop mode."), _("\
6612When debugging a multi-threaded program and this setting is\n\
6613off (the default, also called all-stop mode), when one thread stops\n\
6614(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
6615all other threads in the program while you interact with the thread of\n\
6616interest. When you continue or step a thread, you can allow the other\n\
6617threads to run, or have them remain stopped, but while you inspect any\n\
6618thread's state, all threads stop.\n\
6619\n\
6620In non-stop mode, when one thread stops, other threads can continue\n\
6621to run freely. You'll be able to step each thread independently,\n\
6622leave it stopped or free to run as needed."),
6623 set_non_stop,
6624 show_non_stop,
6625 &setlist,
6626 &showlist);
6627
c906108c 6628 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 6629 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
6630 signal_print = (unsigned char *)
6631 xmalloc (sizeof (signal_print[0]) * numsigs);
6632 signal_program = (unsigned char *)
6633 xmalloc (sizeof (signal_program[0]) * numsigs);
6634 for (i = 0; i < numsigs; i++)
6635 {
6636 signal_stop[i] = 1;
6637 signal_print[i] = 1;
6638 signal_program[i] = 1;
6639 }
6640
6641 /* Signals caused by debugger's own actions
6642 should not be given to the program afterwards. */
6643 signal_program[TARGET_SIGNAL_TRAP] = 0;
6644 signal_program[TARGET_SIGNAL_INT] = 0;
6645
6646 /* Signals that are not errors should not normally enter the debugger. */
6647 signal_stop[TARGET_SIGNAL_ALRM] = 0;
6648 signal_print[TARGET_SIGNAL_ALRM] = 0;
6649 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
6650 signal_print[TARGET_SIGNAL_VTALRM] = 0;
6651 signal_stop[TARGET_SIGNAL_PROF] = 0;
6652 signal_print[TARGET_SIGNAL_PROF] = 0;
6653 signal_stop[TARGET_SIGNAL_CHLD] = 0;
6654 signal_print[TARGET_SIGNAL_CHLD] = 0;
6655 signal_stop[TARGET_SIGNAL_IO] = 0;
6656 signal_print[TARGET_SIGNAL_IO] = 0;
6657 signal_stop[TARGET_SIGNAL_POLL] = 0;
6658 signal_print[TARGET_SIGNAL_POLL] = 0;
6659 signal_stop[TARGET_SIGNAL_URG] = 0;
6660 signal_print[TARGET_SIGNAL_URG] = 0;
6661 signal_stop[TARGET_SIGNAL_WINCH] = 0;
6662 signal_print[TARGET_SIGNAL_WINCH] = 0;
6663
cd0fc7c3
SS
6664 /* These signals are used internally by user-level thread
6665 implementations. (See signal(5) on Solaris.) Like the above
6666 signals, a healthy program receives and handles them as part of
6667 its normal operation. */
6668 signal_stop[TARGET_SIGNAL_LWP] = 0;
6669 signal_print[TARGET_SIGNAL_LWP] = 0;
6670 signal_stop[TARGET_SIGNAL_WAITING] = 0;
6671 signal_print[TARGET_SIGNAL_WAITING] = 0;
6672 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
6673 signal_print[TARGET_SIGNAL_CANCEL] = 0;
6674
85c07804
AC
6675 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
6676 &stop_on_solib_events, _("\
6677Set stopping for shared library events."), _("\
6678Show stopping for shared library events."), _("\
c906108c
SS
6679If nonzero, gdb will give control to the user when the dynamic linker\n\
6680notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
6681to the user would be loading/unloading of a new library."),
6682 NULL,
920d2a44 6683 show_stop_on_solib_events,
85c07804 6684 &setlist, &showlist);
c906108c 6685
7ab04401
AC
6686 add_setshow_enum_cmd ("follow-fork-mode", class_run,
6687 follow_fork_mode_kind_names,
6688 &follow_fork_mode_string, _("\
6689Set debugger response to a program call of fork or vfork."), _("\
6690Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
6691A fork or vfork creates a new process. follow-fork-mode can be:\n\
6692 parent - the original process is debugged after a fork\n\
6693 child - the new process is debugged after a fork\n\
ea1dd7bc 6694The unfollowed process will continue to run.\n\
7ab04401
AC
6695By default, the debugger will follow the parent process."),
6696 NULL,
920d2a44 6697 show_follow_fork_mode_string,
7ab04401
AC
6698 &setlist, &showlist);
6699
6c95b8df
PA
6700 add_setshow_enum_cmd ("follow-exec-mode", class_run,
6701 follow_exec_mode_names,
6702 &follow_exec_mode_string, _("\
6703Set debugger response to a program call of exec."), _("\
6704Show debugger response to a program call of exec."), _("\
6705An exec call replaces the program image of a process.\n\
6706\n\
6707follow-exec-mode can be:\n\
6708\n\
6709 new - the debugger creates a new inferior and rebinds the process \n\
6710to this new inferior. The program the process was running before\n\
6711the exec call can be restarted afterwards by restarting the original\n\
6712inferior.\n\
6713\n\
6714 same - the debugger keeps the process bound to the same inferior.\n\
6715The new executable image replaces the previous executable loaded in\n\
6716the inferior. Restarting the inferior after the exec call restarts\n\
6717the executable the process was running after the exec call.\n\
6718\n\
6719By default, the debugger will use the same inferior."),
6720 NULL,
6721 show_follow_exec_mode_string,
6722 &setlist, &showlist);
6723
7ab04401
AC
6724 add_setshow_enum_cmd ("scheduler-locking", class_run,
6725 scheduler_enums, &scheduler_mode, _("\
6726Set mode for locking scheduler during execution."), _("\
6727Show mode for locking scheduler during execution."), _("\
c906108c
SS
6728off == no locking (threads may preempt at any time)\n\
6729on == full locking (no thread except the current thread may run)\n\
6730step == scheduler locked during every single-step operation.\n\
6731 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
6732 Other threads may run while stepping over a function call ('next')."),
6733 set_schedlock_func, /* traps on target vector */
920d2a44 6734 show_scheduler_mode,
7ab04401 6735 &setlist, &showlist);
5fbbeb29 6736
d4db2f36
PA
6737 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
6738Set mode for resuming threads of all processes."), _("\
6739Show mode for resuming threads of all processes."), _("\
6740When on, execution commands (such as 'continue' or 'next') resume all\n\
6741threads of all processes. When off (which is the default), execution\n\
6742commands only resume the threads of the current process. The set of\n\
6743threads that are resumed is further refined by the scheduler-locking\n\
6744mode (see help set scheduler-locking)."),
6745 NULL,
6746 show_schedule_multiple,
6747 &setlist, &showlist);
6748
5bf193a2
AC
6749 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
6750Set mode of the step operation."), _("\
6751Show mode of the step operation."), _("\
6752When set, doing a step over a function without debug line information\n\
6753will stop at the first instruction of that function. Otherwise, the\n\
6754function is skipped and the step command stops at a different source line."),
6755 NULL,
920d2a44 6756 show_step_stop_if_no_debug,
5bf193a2 6757 &setlist, &showlist);
ca6724c1 6758
fff08868
HZ
6759 add_setshow_enum_cmd ("displaced-stepping", class_run,
6760 can_use_displaced_stepping_enum,
6761 &can_use_displaced_stepping, _("\
237fc4c9
PA
6762Set debugger's willingness to use displaced stepping."), _("\
6763Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
6764If on, gdb will use displaced stepping to step over breakpoints if it is\n\
6765supported by the target architecture. If off, gdb will not use displaced\n\
6766stepping to step over breakpoints, even if such is supported by the target\n\
6767architecture. If auto (which is the default), gdb will use displaced stepping\n\
6768if the target architecture supports it and non-stop mode is active, but will not\n\
6769use it in all-stop mode (see help set non-stop)."),
6770 NULL,
6771 show_can_use_displaced_stepping,
6772 &setlist, &showlist);
237fc4c9 6773
b2175913
MS
6774 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
6775 &exec_direction, _("Set direction of execution.\n\
6776Options are 'forward' or 'reverse'."),
6777 _("Show direction of execution (forward/reverse)."),
6778 _("Tells gdb whether to execute forward or backward."),
6779 set_exec_direction_func, show_exec_direction_func,
6780 &setlist, &showlist);
6781
6c95b8df
PA
6782 /* Set/show detach-on-fork: user-settable mode. */
6783
6784 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
6785Set whether gdb will detach the child of a fork."), _("\
6786Show whether gdb will detach the child of a fork."), _("\
6787Tells gdb whether to detach the child of a fork."),
6788 NULL, NULL, &setlist, &showlist);
6789
ca6724c1
KB
6790 /* ptid initializations */
6791 null_ptid = ptid_build (0, 0, 0);
6792 minus_one_ptid = ptid_build (-1, 0, 0);
6793 inferior_ptid = null_ptid;
6794 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
6795
6796 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 6797 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 6798 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 6799 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
6800
6801 /* Explicitly create without lookup, since that tries to create a
6802 value with a void typed value, and when we get here, gdbarch
6803 isn't initialized yet. At this point, we're quite sure there
6804 isn't another convenience variable of the same name. */
6805 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
d914c394
SS
6806
6807 add_setshow_boolean_cmd ("observer", no_class,
6808 &observer_mode_1, _("\
6809Set whether gdb controls the inferior in observer mode."), _("\
6810Show whether gdb controls the inferior in observer mode."), _("\
6811In observer mode, GDB can get data from the inferior, but not\n\
6812affect its execution. Registers and memory may not be changed,\n\
6813breakpoints may not be set, and the program cannot be interrupted\n\
6814or signalled."),
6815 set_observer_mode,
6816 show_observer_mode,
6817 &setlist,
6818 &showlist);
c906108c 6819}
This page took 1.490036 seconds and 4 git commands to generate.