Remove args from target detach
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
e2882c85 4 Copyright (C) 1986-2018 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
06600e06 41#include "observer.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
ff862be4 63#include "solist.h"
372316f1 64#include "event-loop.h"
243a9253 65#include "thread-fsm.h"
8d297bbf 66#include "common/enum-flags.h"
5ed8105e
PA
67#include "progspace-and-thread.h"
68#include "common/gdb_optional.h"
46a62268 69#include "arch-utils.h"
c906108c
SS
70
71/* Prototypes for local functions */
72
2ea28649 73static void sig_print_info (enum gdb_signal);
c906108c 74
96baa820 75static void sig_print_header (void);
c906108c 76
4ef3f3be 77static int follow_fork (void);
96baa820 78
d83ad864
DB
79static int follow_fork_inferior (int follow_child, int detach_fork);
80
81static void follow_inferior_reset_breakpoints (void);
82
a289b8f6
JK
83static int currently_stepping (struct thread_info *tp);
84
e58b0e63
PA
85void nullify_last_target_wait_ptid (void);
86
2c03e5be 87static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
88
89static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
90
2484c66b
UW
91static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
92
8550d3b3
YQ
93static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
94
372316f1
PA
95/* Asynchronous signal handler registered as event loop source for
96 when we have pending events ready to be passed to the core. */
97static struct async_event_handler *infrun_async_inferior_event_token;
98
99/* Stores whether infrun_async was previously enabled or disabled.
100 Starts off as -1, indicating "never enabled/disabled". */
101static int infrun_is_async = -1;
102
103/* See infrun.h. */
104
105void
106infrun_async (int enable)
107{
108 if (infrun_is_async != enable)
109 {
110 infrun_is_async = enable;
111
112 if (debug_infrun)
113 fprintf_unfiltered (gdb_stdlog,
114 "infrun: infrun_async(%d)\n",
115 enable);
116
117 if (enable)
118 mark_async_event_handler (infrun_async_inferior_event_token);
119 else
120 clear_async_event_handler (infrun_async_inferior_event_token);
121 }
122}
123
0b333c5e
PA
124/* See infrun.h. */
125
126void
127mark_infrun_async_event_handler (void)
128{
129 mark_async_event_handler (infrun_async_inferior_event_token);
130}
131
5fbbeb29
CF
132/* When set, stop the 'step' command if we enter a function which has
133 no line number information. The normal behavior is that we step
134 over such function. */
135int step_stop_if_no_debug = 0;
920d2a44
AC
136static void
137show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
138 struct cmd_list_element *c, const char *value)
139{
140 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
141}
5fbbeb29 142
b9f437de
PA
143/* proceed and normal_stop use this to notify the user when the
144 inferior stopped in a different thread than it had been running
145 in. */
96baa820 146
39f77062 147static ptid_t previous_inferior_ptid;
7a292a7a 148
07107ca6
LM
149/* If set (default for legacy reasons), when following a fork, GDB
150 will detach from one of the fork branches, child or parent.
151 Exactly which branch is detached depends on 'set follow-fork-mode'
152 setting. */
153
154static int detach_fork = 1;
6c95b8df 155
237fc4c9
PA
156int debug_displaced = 0;
157static void
158show_debug_displaced (struct ui_file *file, int from_tty,
159 struct cmd_list_element *c, const char *value)
160{
161 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
162}
163
ccce17b0 164unsigned int debug_infrun = 0;
920d2a44
AC
165static void
166show_debug_infrun (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168{
169 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
170}
527159b7 171
03583c20
UW
172
173/* Support for disabling address space randomization. */
174
175int disable_randomization = 1;
176
177static void
178show_disable_randomization (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180{
181 if (target_supports_disable_randomization ())
182 fprintf_filtered (file,
183 _("Disabling randomization of debuggee's "
184 "virtual address space is %s.\n"),
185 value);
186 else
187 fputs_filtered (_("Disabling randomization of debuggee's "
188 "virtual address space is unsupported on\n"
189 "this platform.\n"), file);
190}
191
192static void
eb4c3f4a 193set_disable_randomization (const char *args, int from_tty,
03583c20
UW
194 struct cmd_list_element *c)
195{
196 if (!target_supports_disable_randomization ())
197 error (_("Disabling randomization of debuggee's "
198 "virtual address space is unsupported on\n"
199 "this platform."));
200}
201
d32dc48e
PA
202/* User interface for non-stop mode. */
203
204int non_stop = 0;
205static int non_stop_1 = 0;
206
207static void
eb4c3f4a 208set_non_stop (const char *args, int from_tty,
d32dc48e
PA
209 struct cmd_list_element *c)
210{
211 if (target_has_execution)
212 {
213 non_stop_1 = non_stop;
214 error (_("Cannot change this setting while the inferior is running."));
215 }
216
217 non_stop = non_stop_1;
218}
219
220static void
221show_non_stop (struct ui_file *file, int from_tty,
222 struct cmd_list_element *c, const char *value)
223{
224 fprintf_filtered (file,
225 _("Controlling the inferior in non-stop mode is %s.\n"),
226 value);
227}
228
d914c394
SS
229/* "Observer mode" is somewhat like a more extreme version of
230 non-stop, in which all GDB operations that might affect the
231 target's execution have been disabled. */
232
d914c394
SS
233int observer_mode = 0;
234static int observer_mode_1 = 0;
235
236static void
eb4c3f4a 237set_observer_mode (const char *args, int from_tty,
d914c394
SS
238 struct cmd_list_element *c)
239{
d914c394
SS
240 if (target_has_execution)
241 {
242 observer_mode_1 = observer_mode;
243 error (_("Cannot change this setting while the inferior is running."));
244 }
245
246 observer_mode = observer_mode_1;
247
248 may_write_registers = !observer_mode;
249 may_write_memory = !observer_mode;
250 may_insert_breakpoints = !observer_mode;
251 may_insert_tracepoints = !observer_mode;
252 /* We can insert fast tracepoints in or out of observer mode,
253 but enable them if we're going into this mode. */
254 if (observer_mode)
255 may_insert_fast_tracepoints = 1;
256 may_stop = !observer_mode;
257 update_target_permissions ();
258
259 /* Going *into* observer mode we must force non-stop, then
260 going out we leave it that way. */
261 if (observer_mode)
262 {
d914c394
SS
263 pagination_enabled = 0;
264 non_stop = non_stop_1 = 1;
265 }
266
267 if (from_tty)
268 printf_filtered (_("Observer mode is now %s.\n"),
269 (observer_mode ? "on" : "off"));
270}
271
272static void
273show_observer_mode (struct ui_file *file, int from_tty,
274 struct cmd_list_element *c, const char *value)
275{
276 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
277}
278
279/* This updates the value of observer mode based on changes in
280 permissions. Note that we are deliberately ignoring the values of
281 may-write-registers and may-write-memory, since the user may have
282 reason to enable these during a session, for instance to turn on a
283 debugging-related global. */
284
285void
286update_observer_mode (void)
287{
288 int newval;
289
290 newval = (!may_insert_breakpoints
291 && !may_insert_tracepoints
292 && may_insert_fast_tracepoints
293 && !may_stop
294 && non_stop);
295
296 /* Let the user know if things change. */
297 if (newval != observer_mode)
298 printf_filtered (_("Observer mode is now %s.\n"),
299 (newval ? "on" : "off"));
300
301 observer_mode = observer_mode_1 = newval;
302}
c2c6d25f 303
c906108c
SS
304/* Tables of how to react to signals; the user sets them. */
305
306static unsigned char *signal_stop;
307static unsigned char *signal_print;
308static unsigned char *signal_program;
309
ab04a2af
TT
310/* Table of signals that are registered with "catch signal". A
311 non-zero entry indicates that the signal is caught by some "catch
312 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
313 signals. */
314static unsigned char *signal_catch;
315
2455069d
UW
316/* Table of signals that the target may silently handle.
317 This is automatically determined from the flags above,
318 and simply cached here. */
319static unsigned char *signal_pass;
320
c906108c
SS
321#define SET_SIGS(nsigs,sigs,flags) \
322 do { \
323 int signum = (nsigs); \
324 while (signum-- > 0) \
325 if ((sigs)[signum]) \
326 (flags)[signum] = 1; \
327 } while (0)
328
329#define UNSET_SIGS(nsigs,sigs,flags) \
330 do { \
331 int signum = (nsigs); \
332 while (signum-- > 0) \
333 if ((sigs)[signum]) \
334 (flags)[signum] = 0; \
335 } while (0)
336
9b224c5e
PA
337/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
338 this function is to avoid exporting `signal_program'. */
339
340void
341update_signals_program_target (void)
342{
a493e3e2 343 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
344}
345
1777feb0 346/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 347
edb3359d 348#define RESUME_ALL minus_one_ptid
c906108c
SS
349
350/* Command list pointer for the "stop" placeholder. */
351
352static struct cmd_list_element *stop_command;
353
c906108c
SS
354/* Nonzero if we want to give control to the user when we're notified
355 of shared library events by the dynamic linker. */
628fe4e4 356int stop_on_solib_events;
f9e14852
GB
357
358/* Enable or disable optional shared library event breakpoints
359 as appropriate when the above flag is changed. */
360
361static void
eb4c3f4a
TT
362set_stop_on_solib_events (const char *args,
363 int from_tty, struct cmd_list_element *c)
f9e14852
GB
364{
365 update_solib_breakpoints ();
366}
367
920d2a44
AC
368static void
369show_stop_on_solib_events (struct ui_file *file, int from_tty,
370 struct cmd_list_element *c, const char *value)
371{
372 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
373 value);
374}
c906108c 375
c906108c
SS
376/* Nonzero after stop if current stack frame should be printed. */
377
378static int stop_print_frame;
379
e02bc4cc 380/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
381 returned by target_wait()/deprecated_target_wait_hook(). This
382 information is returned by get_last_target_status(). */
39f77062 383static ptid_t target_last_wait_ptid;
e02bc4cc
DS
384static struct target_waitstatus target_last_waitstatus;
385
0d1e5fa7
PA
386static void context_switch (ptid_t ptid);
387
4e1c45ea 388void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 389
53904c9e
AC
390static const char follow_fork_mode_child[] = "child";
391static const char follow_fork_mode_parent[] = "parent";
392
40478521 393static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
394 follow_fork_mode_child,
395 follow_fork_mode_parent,
396 NULL
ef346e04 397};
c906108c 398
53904c9e 399static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
400static void
401show_follow_fork_mode_string (struct ui_file *file, int from_tty,
402 struct cmd_list_element *c, const char *value)
403{
3e43a32a
MS
404 fprintf_filtered (file,
405 _("Debugger response to a program "
406 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
407 value);
408}
c906108c
SS
409\f
410
d83ad864
DB
411/* Handle changes to the inferior list based on the type of fork,
412 which process is being followed, and whether the other process
413 should be detached. On entry inferior_ptid must be the ptid of
414 the fork parent. At return inferior_ptid is the ptid of the
415 followed inferior. */
416
417static int
418follow_fork_inferior (int follow_child, int detach_fork)
419{
420 int has_vforked;
79639e11 421 ptid_t parent_ptid, child_ptid;
d83ad864
DB
422
423 has_vforked = (inferior_thread ()->pending_follow.kind
424 == TARGET_WAITKIND_VFORKED);
79639e11
PA
425 parent_ptid = inferior_ptid;
426 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
427
428 if (has_vforked
429 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 430 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
431 && !(follow_child || detach_fork || sched_multi))
432 {
433 /* The parent stays blocked inside the vfork syscall until the
434 child execs or exits. If we don't let the child run, then
435 the parent stays blocked. If we're telling the parent to run
436 in the foreground, the user will not be able to ctrl-c to get
437 back the terminal, effectively hanging the debug session. */
438 fprintf_filtered (gdb_stderr, _("\
439Can not resume the parent process over vfork in the foreground while\n\
440holding the child stopped. Try \"set detach-on-fork\" or \
441\"set schedule-multiple\".\n"));
442 /* FIXME output string > 80 columns. */
443 return 1;
444 }
445
446 if (!follow_child)
447 {
448 /* Detach new forked process? */
449 if (detach_fork)
450 {
d83ad864
DB
451 /* Before detaching from the child, remove all breakpoints
452 from it. If we forked, then this has already been taken
453 care of by infrun.c. If we vforked however, any
454 breakpoint inserted in the parent is visible in the
455 child, even those added while stopped in a vfork
456 catchpoint. This will remove the breakpoints from the
457 parent also, but they'll be reinserted below. */
458 if (has_vforked)
459 {
460 /* Keep breakpoints list in sync. */
461 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
462 }
463
464 if (info_verbose || debug_infrun)
465 {
8dd06f7a
DB
466 /* Ensure that we have a process ptid. */
467 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
468
223ffa71 469 target_terminal::ours_for_output ();
d83ad864 470 fprintf_filtered (gdb_stdlog,
79639e11 471 _("Detaching after %s from child %s.\n"),
6f259a23 472 has_vforked ? "vfork" : "fork",
8dd06f7a 473 target_pid_to_str (process_ptid));
d83ad864
DB
474 }
475 }
476 else
477 {
478 struct inferior *parent_inf, *child_inf;
d83ad864
DB
479
480 /* Add process to GDB's tables. */
79639e11 481 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
482
483 parent_inf = current_inferior ();
484 child_inf->attach_flag = parent_inf->attach_flag;
485 copy_terminal_info (child_inf, parent_inf);
486 child_inf->gdbarch = parent_inf->gdbarch;
487 copy_inferior_target_desc_info (child_inf, parent_inf);
488
5ed8105e 489 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 490
79639e11 491 inferior_ptid = child_ptid;
d83ad864 492 add_thread (inferior_ptid);
2a00d7ce 493 set_current_inferior (child_inf);
d83ad864
DB
494 child_inf->symfile_flags = SYMFILE_NO_READ;
495
496 /* If this is a vfork child, then the address-space is
497 shared with the parent. */
498 if (has_vforked)
499 {
500 child_inf->pspace = parent_inf->pspace;
501 child_inf->aspace = parent_inf->aspace;
502
503 /* The parent will be frozen until the child is done
504 with the shared region. Keep track of the
505 parent. */
506 child_inf->vfork_parent = parent_inf;
507 child_inf->pending_detach = 0;
508 parent_inf->vfork_child = child_inf;
509 parent_inf->pending_detach = 0;
510 }
511 else
512 {
513 child_inf->aspace = new_address_space ();
514 child_inf->pspace = add_program_space (child_inf->aspace);
515 child_inf->removable = 1;
516 set_current_program_space (child_inf->pspace);
517 clone_program_space (child_inf->pspace, parent_inf->pspace);
518
519 /* Let the shared library layer (e.g., solib-svr4) learn
520 about this new process, relocate the cloned exec, pull
521 in shared libraries, and install the solib event
522 breakpoint. If a "cloned-VM" event was propagated
523 better throughout the core, this wouldn't be
524 required. */
525 solib_create_inferior_hook (0);
526 }
d83ad864
DB
527 }
528
529 if (has_vforked)
530 {
531 struct inferior *parent_inf;
532
533 parent_inf = current_inferior ();
534
535 /* If we detached from the child, then we have to be careful
536 to not insert breakpoints in the parent until the child
537 is done with the shared memory region. However, if we're
538 staying attached to the child, then we can and should
539 insert breakpoints, so that we can debug it. A
540 subsequent child exec or exit is enough to know when does
541 the child stops using the parent's address space. */
542 parent_inf->waiting_for_vfork_done = detach_fork;
543 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
544 }
545 }
546 else
547 {
548 /* Follow the child. */
549 struct inferior *parent_inf, *child_inf;
550 struct program_space *parent_pspace;
551
552 if (info_verbose || debug_infrun)
553 {
223ffa71 554 target_terminal::ours_for_output ();
6f259a23 555 fprintf_filtered (gdb_stdlog,
79639e11
PA
556 _("Attaching after %s %s to child %s.\n"),
557 target_pid_to_str (parent_ptid),
6f259a23 558 has_vforked ? "vfork" : "fork",
79639e11 559 target_pid_to_str (child_ptid));
d83ad864
DB
560 }
561
562 /* Add the new inferior first, so that the target_detach below
563 doesn't unpush the target. */
564
79639e11 565 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
566
567 parent_inf = current_inferior ();
568 child_inf->attach_flag = parent_inf->attach_flag;
569 copy_terminal_info (child_inf, parent_inf);
570 child_inf->gdbarch = parent_inf->gdbarch;
571 copy_inferior_target_desc_info (child_inf, parent_inf);
572
573 parent_pspace = parent_inf->pspace;
574
575 /* If we're vforking, we want to hold on to the parent until the
576 child exits or execs. At child exec or exit time we can
577 remove the old breakpoints from the parent and detach or
578 resume debugging it. Otherwise, detach the parent now; we'll
579 want to reuse it's program/address spaces, but we can't set
580 them to the child before removing breakpoints from the
581 parent, otherwise, the breakpoints module could decide to
582 remove breakpoints from the wrong process (since they'd be
583 assigned to the same address space). */
584
585 if (has_vforked)
586 {
587 gdb_assert (child_inf->vfork_parent == NULL);
588 gdb_assert (parent_inf->vfork_child == NULL);
589 child_inf->vfork_parent = parent_inf;
590 child_inf->pending_detach = 0;
591 parent_inf->vfork_child = child_inf;
592 parent_inf->pending_detach = detach_fork;
593 parent_inf->waiting_for_vfork_done = 0;
594 }
595 else if (detach_fork)
6f259a23
DB
596 {
597 if (info_verbose || debug_infrun)
598 {
8dd06f7a
DB
599 /* Ensure that we have a process ptid. */
600 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
601
223ffa71 602 target_terminal::ours_for_output ();
6f259a23
DB
603 fprintf_filtered (gdb_stdlog,
604 _("Detaching after fork from "
79639e11 605 "child %s.\n"),
8dd06f7a 606 target_pid_to_str (process_ptid));
6f259a23
DB
607 }
608
6bd6f3b6 609 target_detach (0);
6f259a23 610 }
d83ad864
DB
611
612 /* Note that the detach above makes PARENT_INF dangling. */
613
614 /* Add the child thread to the appropriate lists, and switch to
615 this new thread, before cloning the program space, and
616 informing the solib layer about this new process. */
617
79639e11 618 inferior_ptid = child_ptid;
d83ad864 619 add_thread (inferior_ptid);
2a00d7ce 620 set_current_inferior (child_inf);
d83ad864
DB
621
622 /* If this is a vfork child, then the address-space is shared
623 with the parent. If we detached from the parent, then we can
624 reuse the parent's program/address spaces. */
625 if (has_vforked || detach_fork)
626 {
627 child_inf->pspace = parent_pspace;
628 child_inf->aspace = child_inf->pspace->aspace;
629 }
630 else
631 {
632 child_inf->aspace = new_address_space ();
633 child_inf->pspace = add_program_space (child_inf->aspace);
634 child_inf->removable = 1;
635 child_inf->symfile_flags = SYMFILE_NO_READ;
636 set_current_program_space (child_inf->pspace);
637 clone_program_space (child_inf->pspace, parent_pspace);
638
639 /* Let the shared library layer (e.g., solib-svr4) learn
640 about this new process, relocate the cloned exec, pull in
641 shared libraries, and install the solib event breakpoint.
642 If a "cloned-VM" event was propagated better throughout
643 the core, this wouldn't be required. */
644 solib_create_inferior_hook (0);
645 }
646 }
647
648 return target_follow_fork (follow_child, detach_fork);
649}
650
e58b0e63
PA
651/* Tell the target to follow the fork we're stopped at. Returns true
652 if the inferior should be resumed; false, if the target for some
653 reason decided it's best not to resume. */
654
6604731b 655static int
4ef3f3be 656follow_fork (void)
c906108c 657{
ea1dd7bc 658 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
659 int should_resume = 1;
660 struct thread_info *tp;
661
662 /* Copy user stepping state to the new inferior thread. FIXME: the
663 followed fork child thread should have a copy of most of the
4e3990f4
DE
664 parent thread structure's run control related fields, not just these.
665 Initialized to avoid "may be used uninitialized" warnings from gcc. */
666 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 667 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
668 CORE_ADDR step_range_start = 0;
669 CORE_ADDR step_range_end = 0;
670 struct frame_id step_frame_id = { 0 };
8980e177 671 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
672
673 if (!non_stop)
674 {
675 ptid_t wait_ptid;
676 struct target_waitstatus wait_status;
677
678 /* Get the last target status returned by target_wait(). */
679 get_last_target_status (&wait_ptid, &wait_status);
680
681 /* If not stopped at a fork event, then there's nothing else to
682 do. */
683 if (wait_status.kind != TARGET_WAITKIND_FORKED
684 && wait_status.kind != TARGET_WAITKIND_VFORKED)
685 return 1;
686
687 /* Check if we switched over from WAIT_PTID, since the event was
688 reported. */
689 if (!ptid_equal (wait_ptid, minus_one_ptid)
690 && !ptid_equal (inferior_ptid, wait_ptid))
691 {
692 /* We did. Switch back to WAIT_PTID thread, to tell the
693 target to follow it (in either direction). We'll
694 afterwards refuse to resume, and inform the user what
695 happened. */
696 switch_to_thread (wait_ptid);
697 should_resume = 0;
698 }
699 }
700
701 tp = inferior_thread ();
702
703 /* If there were any forks/vforks that were caught and are now to be
704 followed, then do so now. */
705 switch (tp->pending_follow.kind)
706 {
707 case TARGET_WAITKIND_FORKED:
708 case TARGET_WAITKIND_VFORKED:
709 {
710 ptid_t parent, child;
711
712 /* If the user did a next/step, etc, over a fork call,
713 preserve the stepping state in the fork child. */
714 if (follow_child && should_resume)
715 {
8358c15c
JK
716 step_resume_breakpoint = clone_momentary_breakpoint
717 (tp->control.step_resume_breakpoint);
16c381f0
JK
718 step_range_start = tp->control.step_range_start;
719 step_range_end = tp->control.step_range_end;
720 step_frame_id = tp->control.step_frame_id;
186c406b
TT
721 exception_resume_breakpoint
722 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 723 thread_fsm = tp->thread_fsm;
e58b0e63
PA
724
725 /* For now, delete the parent's sr breakpoint, otherwise,
726 parent/child sr breakpoints are considered duplicates,
727 and the child version will not be installed. Remove
728 this when the breakpoints module becomes aware of
729 inferiors and address spaces. */
730 delete_step_resume_breakpoint (tp);
16c381f0
JK
731 tp->control.step_range_start = 0;
732 tp->control.step_range_end = 0;
733 tp->control.step_frame_id = null_frame_id;
186c406b 734 delete_exception_resume_breakpoint (tp);
8980e177 735 tp->thread_fsm = NULL;
e58b0e63
PA
736 }
737
738 parent = inferior_ptid;
739 child = tp->pending_follow.value.related_pid;
740
d83ad864
DB
741 /* Set up inferior(s) as specified by the caller, and tell the
742 target to do whatever is necessary to follow either parent
743 or child. */
744 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
745 {
746 /* Target refused to follow, or there's some other reason
747 we shouldn't resume. */
748 should_resume = 0;
749 }
750 else
751 {
752 /* This pending follow fork event is now handled, one way
753 or another. The previous selected thread may be gone
754 from the lists by now, but if it is still around, need
755 to clear the pending follow request. */
e09875d4 756 tp = find_thread_ptid (parent);
e58b0e63
PA
757 if (tp)
758 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
759
760 /* This makes sure we don't try to apply the "Switched
761 over from WAIT_PID" logic above. */
762 nullify_last_target_wait_ptid ();
763
1777feb0 764 /* If we followed the child, switch to it... */
e58b0e63
PA
765 if (follow_child)
766 {
767 switch_to_thread (child);
768
769 /* ... and preserve the stepping state, in case the
770 user was stepping over the fork call. */
771 if (should_resume)
772 {
773 tp = inferior_thread ();
8358c15c
JK
774 tp->control.step_resume_breakpoint
775 = step_resume_breakpoint;
16c381f0
JK
776 tp->control.step_range_start = step_range_start;
777 tp->control.step_range_end = step_range_end;
778 tp->control.step_frame_id = step_frame_id;
186c406b
TT
779 tp->control.exception_resume_breakpoint
780 = exception_resume_breakpoint;
8980e177 781 tp->thread_fsm = thread_fsm;
e58b0e63
PA
782 }
783 else
784 {
785 /* If we get here, it was because we're trying to
786 resume from a fork catchpoint, but, the user
787 has switched threads away from the thread that
788 forked. In that case, the resume command
789 issued is most likely not applicable to the
790 child, so just warn, and refuse to resume. */
3e43a32a 791 warning (_("Not resuming: switched threads "
fd7dcb94 792 "before following fork child."));
e58b0e63
PA
793 }
794
795 /* Reset breakpoints in the child as appropriate. */
796 follow_inferior_reset_breakpoints ();
797 }
798 else
799 switch_to_thread (parent);
800 }
801 }
802 break;
803 case TARGET_WAITKIND_SPURIOUS:
804 /* Nothing to follow. */
805 break;
806 default:
807 internal_error (__FILE__, __LINE__,
808 "Unexpected pending_follow.kind %d\n",
809 tp->pending_follow.kind);
810 break;
811 }
c906108c 812
e58b0e63 813 return should_resume;
c906108c
SS
814}
815
d83ad864 816static void
6604731b 817follow_inferior_reset_breakpoints (void)
c906108c 818{
4e1c45ea
PA
819 struct thread_info *tp = inferior_thread ();
820
6604731b
DJ
821 /* Was there a step_resume breakpoint? (There was if the user
822 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
823 thread number. Cloned step_resume breakpoints are disabled on
824 creation, so enable it here now that it is associated with the
825 correct thread.
6604731b
DJ
826
827 step_resumes are a form of bp that are made to be per-thread.
828 Since we created the step_resume bp when the parent process
829 was being debugged, and now are switching to the child process,
830 from the breakpoint package's viewpoint, that's a switch of
831 "threads". We must update the bp's notion of which thread
832 it is for, or it'll be ignored when it triggers. */
833
8358c15c 834 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
835 {
836 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
837 tp->control.step_resume_breakpoint->loc->enabled = 1;
838 }
6604731b 839
a1aa2221 840 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 841 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
842 {
843 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
844 tp->control.exception_resume_breakpoint->loc->enabled = 1;
845 }
186c406b 846
6604731b
DJ
847 /* Reinsert all breakpoints in the child. The user may have set
848 breakpoints after catching the fork, in which case those
849 were never set in the child, but only in the parent. This makes
850 sure the inserted breakpoints match the breakpoint list. */
851
852 breakpoint_re_set ();
853 insert_breakpoints ();
c906108c 854}
c906108c 855
6c95b8df
PA
856/* The child has exited or execed: resume threads of the parent the
857 user wanted to be executing. */
858
859static int
860proceed_after_vfork_done (struct thread_info *thread,
861 void *arg)
862{
863 int pid = * (int *) arg;
864
865 if (ptid_get_pid (thread->ptid) == pid
866 && is_running (thread->ptid)
867 && !is_executing (thread->ptid)
868 && !thread->stop_requested
a493e3e2 869 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
870 {
871 if (debug_infrun)
872 fprintf_unfiltered (gdb_stdlog,
873 "infrun: resuming vfork parent thread %s\n",
874 target_pid_to_str (thread->ptid));
875
876 switch_to_thread (thread->ptid);
70509625 877 clear_proceed_status (0);
64ce06e4 878 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
879 }
880
881 return 0;
882}
883
5ed8105e
PA
884/* Save/restore inferior_ptid, current program space and current
885 inferior. Only use this if the current context points at an exited
886 inferior (and therefore there's no current thread to save). */
887class scoped_restore_exited_inferior
888{
889public:
890 scoped_restore_exited_inferior ()
891 : m_saved_ptid (&inferior_ptid)
892 {}
893
894private:
895 scoped_restore_tmpl<ptid_t> m_saved_ptid;
896 scoped_restore_current_program_space m_pspace;
897 scoped_restore_current_inferior m_inferior;
898};
899
6c95b8df
PA
900/* Called whenever we notice an exec or exit event, to handle
901 detaching or resuming a vfork parent. */
902
903static void
904handle_vfork_child_exec_or_exit (int exec)
905{
906 struct inferior *inf = current_inferior ();
907
908 if (inf->vfork_parent)
909 {
910 int resume_parent = -1;
911
912 /* This exec or exit marks the end of the shared memory region
913 between the parent and the child. If the user wanted to
914 detach from the parent, now is the time. */
915
916 if (inf->vfork_parent->pending_detach)
917 {
918 struct thread_info *tp;
6c95b8df
PA
919 struct program_space *pspace;
920 struct address_space *aspace;
921
1777feb0 922 /* follow-fork child, detach-on-fork on. */
6c95b8df 923
68c9da30
PA
924 inf->vfork_parent->pending_detach = 0;
925
5ed8105e
PA
926 gdb::optional<scoped_restore_exited_inferior>
927 maybe_restore_inferior;
928 gdb::optional<scoped_restore_current_pspace_and_thread>
929 maybe_restore_thread;
930
931 /* If we're handling a child exit, then inferior_ptid points
932 at the inferior's pid, not to a thread. */
f50f4e56 933 if (!exec)
5ed8105e 934 maybe_restore_inferior.emplace ();
f50f4e56 935 else
5ed8105e 936 maybe_restore_thread.emplace ();
6c95b8df
PA
937
938 /* We're letting loose of the parent. */
939 tp = any_live_thread_of_process (inf->vfork_parent->pid);
940 switch_to_thread (tp->ptid);
941
942 /* We're about to detach from the parent, which implicitly
943 removes breakpoints from its address space. There's a
944 catch here: we want to reuse the spaces for the child,
945 but, parent/child are still sharing the pspace at this
946 point, although the exec in reality makes the kernel give
947 the child a fresh set of new pages. The problem here is
948 that the breakpoints module being unaware of this, would
949 likely chose the child process to write to the parent
950 address space. Swapping the child temporarily away from
951 the spaces has the desired effect. Yes, this is "sort
952 of" a hack. */
953
954 pspace = inf->pspace;
955 aspace = inf->aspace;
956 inf->aspace = NULL;
957 inf->pspace = NULL;
958
959 if (debug_infrun || info_verbose)
960 {
223ffa71 961 target_terminal::ours_for_output ();
6c95b8df
PA
962
963 if (exec)
6f259a23
DB
964 {
965 fprintf_filtered (gdb_stdlog,
966 _("Detaching vfork parent process "
967 "%d after child exec.\n"),
968 inf->vfork_parent->pid);
969 }
6c95b8df 970 else
6f259a23
DB
971 {
972 fprintf_filtered (gdb_stdlog,
973 _("Detaching vfork parent process "
974 "%d after child exit.\n"),
975 inf->vfork_parent->pid);
976 }
6c95b8df
PA
977 }
978
6bd6f3b6 979 target_detach (0);
6c95b8df
PA
980
981 /* Put it back. */
982 inf->pspace = pspace;
983 inf->aspace = aspace;
6c95b8df
PA
984 }
985 else if (exec)
986 {
987 /* We're staying attached to the parent, so, really give the
988 child a new address space. */
989 inf->pspace = add_program_space (maybe_new_address_space ());
990 inf->aspace = inf->pspace->aspace;
991 inf->removable = 1;
992 set_current_program_space (inf->pspace);
993
994 resume_parent = inf->vfork_parent->pid;
995
996 /* Break the bonds. */
997 inf->vfork_parent->vfork_child = NULL;
998 }
999 else
1000 {
6c95b8df
PA
1001 struct program_space *pspace;
1002
1003 /* If this is a vfork child exiting, then the pspace and
1004 aspaces were shared with the parent. Since we're
1005 reporting the process exit, we'll be mourning all that is
1006 found in the address space, and switching to null_ptid,
1007 preparing to start a new inferior. But, since we don't
1008 want to clobber the parent's address/program spaces, we
1009 go ahead and create a new one for this exiting
1010 inferior. */
1011
5ed8105e
PA
1012 /* Switch to null_ptid while running clone_program_space, so
1013 that clone_program_space doesn't want to read the
1014 selected frame of a dead process. */
1015 scoped_restore restore_ptid
1016 = make_scoped_restore (&inferior_ptid, null_ptid);
6c95b8df
PA
1017
1018 /* This inferior is dead, so avoid giving the breakpoints
1019 module the option to write through to it (cloning a
1020 program space resets breakpoints). */
1021 inf->aspace = NULL;
1022 inf->pspace = NULL;
1023 pspace = add_program_space (maybe_new_address_space ());
1024 set_current_program_space (pspace);
1025 inf->removable = 1;
7dcd53a0 1026 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1027 clone_program_space (pspace, inf->vfork_parent->pspace);
1028 inf->pspace = pspace;
1029 inf->aspace = pspace->aspace;
1030
6c95b8df
PA
1031 resume_parent = inf->vfork_parent->pid;
1032 /* Break the bonds. */
1033 inf->vfork_parent->vfork_child = NULL;
1034 }
1035
1036 inf->vfork_parent = NULL;
1037
1038 gdb_assert (current_program_space == inf->pspace);
1039
1040 if (non_stop && resume_parent != -1)
1041 {
1042 /* If the user wanted the parent to be running, let it go
1043 free now. */
5ed8105e 1044 scoped_restore_current_thread restore_thread;
6c95b8df
PA
1045
1046 if (debug_infrun)
3e43a32a
MS
1047 fprintf_unfiltered (gdb_stdlog,
1048 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1049 resume_parent);
1050
1051 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1052 }
1053 }
1054}
1055
eb6c553b 1056/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1057
1058static const char follow_exec_mode_new[] = "new";
1059static const char follow_exec_mode_same[] = "same";
40478521 1060static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1061{
1062 follow_exec_mode_new,
1063 follow_exec_mode_same,
1064 NULL,
1065};
1066
1067static const char *follow_exec_mode_string = follow_exec_mode_same;
1068static void
1069show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1070 struct cmd_list_element *c, const char *value)
1071{
1072 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1073}
1074
ecf45d2c 1075/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1076
c906108c 1077static void
ecf45d2c 1078follow_exec (ptid_t ptid, char *exec_file_target)
c906108c 1079{
95e50b27 1080 struct thread_info *th, *tmp;
6c95b8df 1081 struct inferior *inf = current_inferior ();
95e50b27 1082 int pid = ptid_get_pid (ptid);
94585166 1083 ptid_t process_ptid;
ecf45d2c
SL
1084 char *exec_file_host;
1085 struct cleanup *old_chain;
7a292a7a 1086
c906108c
SS
1087 /* This is an exec event that we actually wish to pay attention to.
1088 Refresh our symbol table to the newly exec'd program, remove any
1089 momentary bp's, etc.
1090
1091 If there are breakpoints, they aren't really inserted now,
1092 since the exec() transformed our inferior into a fresh set
1093 of instructions.
1094
1095 We want to preserve symbolic breakpoints on the list, since
1096 we have hopes that they can be reset after the new a.out's
1097 symbol table is read.
1098
1099 However, any "raw" breakpoints must be removed from the list
1100 (e.g., the solib bp's), since their address is probably invalid
1101 now.
1102
1103 And, we DON'T want to call delete_breakpoints() here, since
1104 that may write the bp's "shadow contents" (the instruction
1105 value that was overwritten witha TRAP instruction). Since
1777feb0 1106 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1107
1108 mark_breakpoints_out ();
1109
95e50b27
PA
1110 /* The target reports the exec event to the main thread, even if
1111 some other thread does the exec, and even if the main thread was
1112 stopped or already gone. We may still have non-leader threads of
1113 the process on our list. E.g., on targets that don't have thread
1114 exit events (like remote); or on native Linux in non-stop mode if
1115 there were only two threads in the inferior and the non-leader
1116 one is the one that execs (and nothing forces an update of the
1117 thread list up to here). When debugging remotely, it's best to
1118 avoid extra traffic, when possible, so avoid syncing the thread
1119 list with the target, and instead go ahead and delete all threads
1120 of the process but one that reported the event. Note this must
1121 be done before calling update_breakpoints_after_exec, as
1122 otherwise clearing the threads' resources would reference stale
1123 thread breakpoints -- it may have been one of these threads that
1124 stepped across the exec. We could just clear their stepping
1125 states, but as long as we're iterating, might as well delete
1126 them. Deleting them now rather than at the next user-visible
1127 stop provides a nicer sequence of events for user and MI
1128 notifications. */
8a06aea7 1129 ALL_THREADS_SAFE (th, tmp)
95e50b27
PA
1130 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1131 delete_thread (th->ptid);
1132
1133 /* We also need to clear any left over stale state for the
1134 leader/event thread. E.g., if there was any step-resume
1135 breakpoint or similar, it's gone now. We cannot truly
1136 step-to-next statement through an exec(). */
1137 th = inferior_thread ();
8358c15c 1138 th->control.step_resume_breakpoint = NULL;
186c406b 1139 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1140 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1141 th->control.step_range_start = 0;
1142 th->control.step_range_end = 0;
c906108c 1143
95e50b27
PA
1144 /* The user may have had the main thread held stopped in the
1145 previous image (e.g., schedlock on, or non-stop). Release
1146 it now. */
a75724bc
PA
1147 th->stop_requested = 0;
1148
95e50b27
PA
1149 update_breakpoints_after_exec ();
1150
1777feb0 1151 /* What is this a.out's name? */
94585166 1152 process_ptid = pid_to_ptid (pid);
6c95b8df 1153 printf_unfiltered (_("%s is executing new program: %s\n"),
94585166 1154 target_pid_to_str (process_ptid),
ecf45d2c 1155 exec_file_target);
c906108c
SS
1156
1157 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1158 inferior has essentially been killed & reborn. */
7a292a7a 1159
c906108c 1160 gdb_flush (gdb_stdout);
6ca15a4b
PA
1161
1162 breakpoint_init_inferior (inf_execd);
e85a822c 1163
ecf45d2c
SL
1164 exec_file_host = exec_file_find (exec_file_target, NULL);
1165 old_chain = make_cleanup (xfree, exec_file_host);
ff862be4 1166
ecf45d2c
SL
1167 /* If we were unable to map the executable target pathname onto a host
1168 pathname, tell the user that. Otherwise GDB's subsequent behavior
1169 is confusing. Maybe it would even be better to stop at this point
1170 so that the user can specify a file manually before continuing. */
1171 if (exec_file_host == NULL)
1172 warning (_("Could not load symbols for executable %s.\n"
1173 "Do you need \"set sysroot\"?"),
1174 exec_file_target);
c906108c 1175
cce9b6bf
PA
1176 /* Reset the shared library package. This ensures that we get a
1177 shlib event when the child reaches "_start", at which point the
1178 dld will have had a chance to initialize the child. */
1179 /* Also, loading a symbol file below may trigger symbol lookups, and
1180 we don't want those to be satisfied by the libraries of the
1181 previous incarnation of this process. */
1182 no_shared_libraries (NULL, 0);
1183
6c95b8df
PA
1184 if (follow_exec_mode_string == follow_exec_mode_new)
1185 {
6c95b8df
PA
1186 /* The user wants to keep the old inferior and program spaces
1187 around. Create a new fresh one, and switch to it. */
1188
17d8546e
DB
1189 /* Do exit processing for the original inferior before adding
1190 the new inferior so we don't have two active inferiors with
1191 the same ptid, which can confuse find_inferior_ptid. */
1192 exit_inferior_num_silent (current_inferior ()->num);
1193
94585166
DB
1194 inf = add_inferior_with_spaces ();
1195 inf->pid = pid;
ecf45d2c 1196 target_follow_exec (inf, exec_file_target);
6c95b8df
PA
1197
1198 set_current_inferior (inf);
94585166 1199 set_current_program_space (inf->pspace);
6c95b8df 1200 }
9107fc8d
PA
1201 else
1202 {
1203 /* The old description may no longer be fit for the new image.
1204 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1205 old description; we'll read a new one below. No need to do
1206 this on "follow-exec-mode new", as the old inferior stays
1207 around (its description is later cleared/refetched on
1208 restart). */
1209 target_clear_description ();
1210 }
6c95b8df
PA
1211
1212 gdb_assert (current_program_space == inf->pspace);
1213
ecf45d2c
SL
1214 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1215 because the proper displacement for a PIE (Position Independent
1216 Executable) main symbol file will only be computed by
1217 solib_create_inferior_hook below. breakpoint_re_set would fail
1218 to insert the breakpoints with the zero displacement. */
1219 try_open_exec_file (exec_file_host, inf, SYMFILE_DEFER_BP_RESET);
c1e56572 1220
ecf45d2c 1221 do_cleanups (old_chain);
c906108c 1222
9107fc8d
PA
1223 /* If the target can specify a description, read it. Must do this
1224 after flipping to the new executable (because the target supplied
1225 description must be compatible with the executable's
1226 architecture, and the old executable may e.g., be 32-bit, while
1227 the new one 64-bit), and before anything involving memory or
1228 registers. */
1229 target_find_description ();
1230
bf93d7ba
SM
1231 /* The add_thread call ends up reading registers, so do it after updating the
1232 target description. */
1233 if (follow_exec_mode_string == follow_exec_mode_new)
1234 add_thread (ptid);
1235
268a4a75 1236 solib_create_inferior_hook (0);
c906108c 1237
4efc6507
DE
1238 jit_inferior_created_hook ();
1239
c1e56572
JK
1240 breakpoint_re_set ();
1241
c906108c
SS
1242 /* Reinsert all breakpoints. (Those which were symbolic have
1243 been reset to the proper address in the new a.out, thanks
1777feb0 1244 to symbol_file_command...). */
c906108c
SS
1245 insert_breakpoints ();
1246
1247 /* The next resume of this inferior should bring it to the shlib
1248 startup breakpoints. (If the user had also set bp's on
1249 "main" from the old (parent) process, then they'll auto-
1777feb0 1250 matically get reset there in the new process.). */
c906108c
SS
1251}
1252
c2829269
PA
1253/* The queue of threads that need to do a step-over operation to get
1254 past e.g., a breakpoint. What technique is used to step over the
1255 breakpoint/watchpoint does not matter -- all threads end up in the
1256 same queue, to maintain rough temporal order of execution, in order
1257 to avoid starvation, otherwise, we could e.g., find ourselves
1258 constantly stepping the same couple threads past their breakpoints
1259 over and over, if the single-step finish fast enough. */
1260struct thread_info *step_over_queue_head;
1261
6c4cfb24
PA
1262/* Bit flags indicating what the thread needs to step over. */
1263
8d297bbf 1264enum step_over_what_flag
6c4cfb24
PA
1265 {
1266 /* Step over a breakpoint. */
1267 STEP_OVER_BREAKPOINT = 1,
1268
1269 /* Step past a non-continuable watchpoint, in order to let the
1270 instruction execute so we can evaluate the watchpoint
1271 expression. */
1272 STEP_OVER_WATCHPOINT = 2
1273 };
8d297bbf 1274DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1275
963f9c80 1276/* Info about an instruction that is being stepped over. */
31e77af2
PA
1277
1278struct step_over_info
1279{
963f9c80
PA
1280 /* If we're stepping past a breakpoint, this is the address space
1281 and address of the instruction the breakpoint is set at. We'll
1282 skip inserting all breakpoints here. Valid iff ASPACE is
1283 non-NULL. */
8b86c959 1284 const address_space *aspace;
31e77af2 1285 CORE_ADDR address;
963f9c80
PA
1286
1287 /* The instruction being stepped over triggers a nonsteppable
1288 watchpoint. If true, we'll skip inserting watchpoints. */
1289 int nonsteppable_watchpoint_p;
21edc42f
YQ
1290
1291 /* The thread's global number. */
1292 int thread;
31e77af2
PA
1293};
1294
1295/* The step-over info of the location that is being stepped over.
1296
1297 Note that with async/breakpoint always-inserted mode, a user might
1298 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1299 being stepped over. As setting a new breakpoint inserts all
1300 breakpoints, we need to make sure the breakpoint being stepped over
1301 isn't inserted then. We do that by only clearing the step-over
1302 info when the step-over is actually finished (or aborted).
1303
1304 Presently GDB can only step over one breakpoint at any given time.
1305 Given threads that can't run code in the same address space as the
1306 breakpoint's can't really miss the breakpoint, GDB could be taught
1307 to step-over at most one breakpoint per address space (so this info
1308 could move to the address space object if/when GDB is extended).
1309 The set of breakpoints being stepped over will normally be much
1310 smaller than the set of all breakpoints, so a flag in the
1311 breakpoint location structure would be wasteful. A separate list
1312 also saves complexity and run-time, as otherwise we'd have to go
1313 through all breakpoint locations clearing their flag whenever we
1314 start a new sequence. Similar considerations weigh against storing
1315 this info in the thread object. Plus, not all step overs actually
1316 have breakpoint locations -- e.g., stepping past a single-step
1317 breakpoint, or stepping to complete a non-continuable
1318 watchpoint. */
1319static struct step_over_info step_over_info;
1320
1321/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1322 stepping over.
1323 N.B. We record the aspace and address now, instead of say just the thread,
1324 because when we need the info later the thread may be running. */
31e77af2
PA
1325
1326static void
8b86c959 1327set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1328 int nonsteppable_watchpoint_p,
1329 int thread)
31e77af2
PA
1330{
1331 step_over_info.aspace = aspace;
1332 step_over_info.address = address;
963f9c80 1333 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1334 step_over_info.thread = thread;
31e77af2
PA
1335}
1336
1337/* Called when we're not longer stepping over a breakpoint / an
1338 instruction, so all breakpoints are free to be (re)inserted. */
1339
1340static void
1341clear_step_over_info (void)
1342{
372316f1
PA
1343 if (debug_infrun)
1344 fprintf_unfiltered (gdb_stdlog,
1345 "infrun: clear_step_over_info\n");
31e77af2
PA
1346 step_over_info.aspace = NULL;
1347 step_over_info.address = 0;
963f9c80 1348 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1349 step_over_info.thread = -1;
31e77af2
PA
1350}
1351
7f89fd65 1352/* See infrun.h. */
31e77af2
PA
1353
1354int
1355stepping_past_instruction_at (struct address_space *aspace,
1356 CORE_ADDR address)
1357{
1358 return (step_over_info.aspace != NULL
1359 && breakpoint_address_match (aspace, address,
1360 step_over_info.aspace,
1361 step_over_info.address));
1362}
1363
963f9c80
PA
1364/* See infrun.h. */
1365
21edc42f
YQ
1366int
1367thread_is_stepping_over_breakpoint (int thread)
1368{
1369 return (step_over_info.thread != -1
1370 && thread == step_over_info.thread);
1371}
1372
1373/* See infrun.h. */
1374
963f9c80
PA
1375int
1376stepping_past_nonsteppable_watchpoint (void)
1377{
1378 return step_over_info.nonsteppable_watchpoint_p;
1379}
1380
6cc83d2a
PA
1381/* Returns true if step-over info is valid. */
1382
1383static int
1384step_over_info_valid_p (void)
1385{
963f9c80
PA
1386 return (step_over_info.aspace != NULL
1387 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1388}
1389
c906108c 1390\f
237fc4c9
PA
1391/* Displaced stepping. */
1392
1393/* In non-stop debugging mode, we must take special care to manage
1394 breakpoints properly; in particular, the traditional strategy for
1395 stepping a thread past a breakpoint it has hit is unsuitable.
1396 'Displaced stepping' is a tactic for stepping one thread past a
1397 breakpoint it has hit while ensuring that other threads running
1398 concurrently will hit the breakpoint as they should.
1399
1400 The traditional way to step a thread T off a breakpoint in a
1401 multi-threaded program in all-stop mode is as follows:
1402
1403 a0) Initially, all threads are stopped, and breakpoints are not
1404 inserted.
1405 a1) We single-step T, leaving breakpoints uninserted.
1406 a2) We insert breakpoints, and resume all threads.
1407
1408 In non-stop debugging, however, this strategy is unsuitable: we
1409 don't want to have to stop all threads in the system in order to
1410 continue or step T past a breakpoint. Instead, we use displaced
1411 stepping:
1412
1413 n0) Initially, T is stopped, other threads are running, and
1414 breakpoints are inserted.
1415 n1) We copy the instruction "under" the breakpoint to a separate
1416 location, outside the main code stream, making any adjustments
1417 to the instruction, register, and memory state as directed by
1418 T's architecture.
1419 n2) We single-step T over the instruction at its new location.
1420 n3) We adjust the resulting register and memory state as directed
1421 by T's architecture. This includes resetting T's PC to point
1422 back into the main instruction stream.
1423 n4) We resume T.
1424
1425 This approach depends on the following gdbarch methods:
1426
1427 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1428 indicate where to copy the instruction, and how much space must
1429 be reserved there. We use these in step n1.
1430
1431 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1432 address, and makes any necessary adjustments to the instruction,
1433 register contents, and memory. We use this in step n1.
1434
1435 - gdbarch_displaced_step_fixup adjusts registers and memory after
1436 we have successfuly single-stepped the instruction, to yield the
1437 same effect the instruction would have had if we had executed it
1438 at its original address. We use this in step n3.
1439
237fc4c9
PA
1440 The gdbarch_displaced_step_copy_insn and
1441 gdbarch_displaced_step_fixup functions must be written so that
1442 copying an instruction with gdbarch_displaced_step_copy_insn,
1443 single-stepping across the copied instruction, and then applying
1444 gdbarch_displaced_insn_fixup should have the same effects on the
1445 thread's memory and registers as stepping the instruction in place
1446 would have. Exactly which responsibilities fall to the copy and
1447 which fall to the fixup is up to the author of those functions.
1448
1449 See the comments in gdbarch.sh for details.
1450
1451 Note that displaced stepping and software single-step cannot
1452 currently be used in combination, although with some care I think
1453 they could be made to. Software single-step works by placing
1454 breakpoints on all possible subsequent instructions; if the
1455 displaced instruction is a PC-relative jump, those breakpoints
1456 could fall in very strange places --- on pages that aren't
1457 executable, or at addresses that are not proper instruction
1458 boundaries. (We do generally let other threads run while we wait
1459 to hit the software single-step breakpoint, and they might
1460 encounter such a corrupted instruction.) One way to work around
1461 this would be to have gdbarch_displaced_step_copy_insn fully
1462 simulate the effect of PC-relative instructions (and return NULL)
1463 on architectures that use software single-stepping.
1464
1465 In non-stop mode, we can have independent and simultaneous step
1466 requests, so more than one thread may need to simultaneously step
1467 over a breakpoint. The current implementation assumes there is
1468 only one scratch space per process. In this case, we have to
1469 serialize access to the scratch space. If thread A wants to step
1470 over a breakpoint, but we are currently waiting for some other
1471 thread to complete a displaced step, we leave thread A stopped and
1472 place it in the displaced_step_request_queue. Whenever a displaced
1473 step finishes, we pick the next thread in the queue and start a new
1474 displaced step operation on it. See displaced_step_prepare and
1475 displaced_step_fixup for details. */
1476
cfba9872
SM
1477/* Default destructor for displaced_step_closure. */
1478
1479displaced_step_closure::~displaced_step_closure () = default;
1480
fc1cf338
PA
1481/* Per-inferior displaced stepping state. */
1482struct displaced_step_inferior_state
1483{
1484 /* Pointer to next in linked list. */
1485 struct displaced_step_inferior_state *next;
1486
1487 /* The process this displaced step state refers to. */
1488 int pid;
1489
3fc8eb30
PA
1490 /* True if preparing a displaced step ever failed. If so, we won't
1491 try displaced stepping for this inferior again. */
1492 int failed_before;
1493
fc1cf338
PA
1494 /* If this is not null_ptid, this is the thread carrying out a
1495 displaced single-step in process PID. This thread's state will
1496 require fixing up once it has completed its step. */
1497 ptid_t step_ptid;
1498
1499 /* The architecture the thread had when we stepped it. */
1500 struct gdbarch *step_gdbarch;
1501
1502 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1503 for post-step cleanup. */
1504 struct displaced_step_closure *step_closure;
1505
1506 /* The address of the original instruction, and the copy we
1507 made. */
1508 CORE_ADDR step_original, step_copy;
1509
1510 /* Saved contents of copy area. */
1511 gdb_byte *step_saved_copy;
1512};
1513
1514/* The list of states of processes involved in displaced stepping
1515 presently. */
1516static struct displaced_step_inferior_state *displaced_step_inferior_states;
1517
1518/* Get the displaced stepping state of process PID. */
1519
1520static struct displaced_step_inferior_state *
1521get_displaced_stepping_state (int pid)
1522{
1523 struct displaced_step_inferior_state *state;
1524
1525 for (state = displaced_step_inferior_states;
1526 state != NULL;
1527 state = state->next)
1528 if (state->pid == pid)
1529 return state;
1530
1531 return NULL;
1532}
1533
372316f1
PA
1534/* Returns true if any inferior has a thread doing a displaced
1535 step. */
1536
1537static int
1538displaced_step_in_progress_any_inferior (void)
1539{
1540 struct displaced_step_inferior_state *state;
1541
1542 for (state = displaced_step_inferior_states;
1543 state != NULL;
1544 state = state->next)
1545 if (!ptid_equal (state->step_ptid, null_ptid))
1546 return 1;
1547
1548 return 0;
1549}
1550
c0987663
YQ
1551/* Return true if thread represented by PTID is doing a displaced
1552 step. */
1553
1554static int
1555displaced_step_in_progress_thread (ptid_t ptid)
1556{
1557 struct displaced_step_inferior_state *displaced;
1558
1559 gdb_assert (!ptid_equal (ptid, null_ptid));
1560
1561 displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1562
1563 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1564}
1565
8f572e5c
PA
1566/* Return true if process PID has a thread doing a displaced step. */
1567
1568static int
1569displaced_step_in_progress (int pid)
1570{
1571 struct displaced_step_inferior_state *displaced;
1572
1573 displaced = get_displaced_stepping_state (pid);
1574 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1575 return 1;
1576
1577 return 0;
1578}
1579
fc1cf338
PA
1580/* Add a new displaced stepping state for process PID to the displaced
1581 stepping state list, or return a pointer to an already existing
1582 entry, if it already exists. Never returns NULL. */
1583
1584static struct displaced_step_inferior_state *
1585add_displaced_stepping_state (int pid)
1586{
1587 struct displaced_step_inferior_state *state;
1588
1589 for (state = displaced_step_inferior_states;
1590 state != NULL;
1591 state = state->next)
1592 if (state->pid == pid)
1593 return state;
237fc4c9 1594
8d749320 1595 state = XCNEW (struct displaced_step_inferior_state);
fc1cf338
PA
1596 state->pid = pid;
1597 state->next = displaced_step_inferior_states;
1598 displaced_step_inferior_states = state;
237fc4c9 1599
fc1cf338
PA
1600 return state;
1601}
1602
a42244db
YQ
1603/* If inferior is in displaced stepping, and ADDR equals to starting address
1604 of copy area, return corresponding displaced_step_closure. Otherwise,
1605 return NULL. */
1606
1607struct displaced_step_closure*
1608get_displaced_step_closure_by_addr (CORE_ADDR addr)
1609{
1610 struct displaced_step_inferior_state *displaced
1611 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1612
1613 /* If checking the mode of displaced instruction in copy area. */
1614 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1615 && (displaced->step_copy == addr))
1616 return displaced->step_closure;
1617
1618 return NULL;
1619}
1620
fc1cf338 1621/* Remove the displaced stepping state of process PID. */
237fc4c9 1622
fc1cf338
PA
1623static void
1624remove_displaced_stepping_state (int pid)
1625{
1626 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1627
fc1cf338
PA
1628 gdb_assert (pid != 0);
1629
1630 it = displaced_step_inferior_states;
1631 prev_next_p = &displaced_step_inferior_states;
1632 while (it)
1633 {
1634 if (it->pid == pid)
1635 {
1636 *prev_next_p = it->next;
1637 xfree (it);
1638 return;
1639 }
1640
1641 prev_next_p = &it->next;
1642 it = *prev_next_p;
1643 }
1644}
1645
1646static void
1647infrun_inferior_exit (struct inferior *inf)
1648{
1649 remove_displaced_stepping_state (inf->pid);
1650}
237fc4c9 1651
fff08868
HZ
1652/* If ON, and the architecture supports it, GDB will use displaced
1653 stepping to step over breakpoints. If OFF, or if the architecture
1654 doesn't support it, GDB will instead use the traditional
1655 hold-and-step approach. If AUTO (which is the default), GDB will
1656 decide which technique to use to step over breakpoints depending on
1657 which of all-stop or non-stop mode is active --- displaced stepping
1658 in non-stop mode; hold-and-step in all-stop mode. */
1659
72d0e2c5 1660static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1661
237fc4c9
PA
1662static void
1663show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1664 struct cmd_list_element *c,
1665 const char *value)
1666{
72d0e2c5 1667 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1668 fprintf_filtered (file,
1669 _("Debugger's willingness to use displaced stepping "
1670 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1671 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1672 else
3e43a32a
MS
1673 fprintf_filtered (file,
1674 _("Debugger's willingness to use displaced stepping "
1675 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1676}
1677
fff08868 1678/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1679 over breakpoints of thread TP. */
fff08868 1680
237fc4c9 1681static int
3fc8eb30 1682use_displaced_stepping (struct thread_info *tp)
237fc4c9 1683{
3fc8eb30 1684 struct regcache *regcache = get_thread_regcache (tp->ptid);
ac7936df 1685 struct gdbarch *gdbarch = regcache->arch ();
3fc8eb30
PA
1686 struct displaced_step_inferior_state *displaced_state;
1687
1688 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1689
fbea99ea
PA
1690 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1691 && target_is_non_stop_p ())
72d0e2c5 1692 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1693 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30
PA
1694 && find_record_target () == NULL
1695 && (displaced_state == NULL
1696 || !displaced_state->failed_before));
237fc4c9
PA
1697}
1698
1699/* Clean out any stray displaced stepping state. */
1700static void
fc1cf338 1701displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1702{
1703 /* Indicate that there is no cleanup pending. */
fc1cf338 1704 displaced->step_ptid = null_ptid;
237fc4c9 1705
cfba9872 1706 delete displaced->step_closure;
6d45d4b4 1707 displaced->step_closure = NULL;
237fc4c9
PA
1708}
1709
1710static void
fc1cf338 1711displaced_step_clear_cleanup (void *arg)
237fc4c9 1712{
9a3c8263
SM
1713 struct displaced_step_inferior_state *state
1714 = (struct displaced_step_inferior_state *) arg;
fc1cf338
PA
1715
1716 displaced_step_clear (state);
237fc4c9
PA
1717}
1718
1719/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1720void
1721displaced_step_dump_bytes (struct ui_file *file,
1722 const gdb_byte *buf,
1723 size_t len)
1724{
1725 int i;
1726
1727 for (i = 0; i < len; i++)
1728 fprintf_unfiltered (file, "%02x ", buf[i]);
1729 fputs_unfiltered ("\n", file);
1730}
1731
1732/* Prepare to single-step, using displaced stepping.
1733
1734 Note that we cannot use displaced stepping when we have a signal to
1735 deliver. If we have a signal to deliver and an instruction to step
1736 over, then after the step, there will be no indication from the
1737 target whether the thread entered a signal handler or ignored the
1738 signal and stepped over the instruction successfully --- both cases
1739 result in a simple SIGTRAP. In the first case we mustn't do a
1740 fixup, and in the second case we must --- but we can't tell which.
1741 Comments in the code for 'random signals' in handle_inferior_event
1742 explain how we handle this case instead.
1743
1744 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1745 stepped now; 0 if displaced stepping this thread got queued; or -1
1746 if this instruction can't be displaced stepped. */
1747
237fc4c9 1748static int
3fc8eb30 1749displaced_step_prepare_throw (ptid_t ptid)
237fc4c9 1750{
2989a365 1751 struct cleanup *ignore_cleanups;
c1e36e3e 1752 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9 1753 struct regcache *regcache = get_thread_regcache (ptid);
ac7936df 1754 struct gdbarch *gdbarch = regcache->arch ();
8b86c959 1755 const address_space *aspace = regcache->aspace ();
237fc4c9
PA
1756 CORE_ADDR original, copy;
1757 ULONGEST len;
1758 struct displaced_step_closure *closure;
fc1cf338 1759 struct displaced_step_inferior_state *displaced;
9e529e1d 1760 int status;
237fc4c9
PA
1761
1762 /* We should never reach this function if the architecture does not
1763 support displaced stepping. */
1764 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1765
c2829269
PA
1766 /* Nor if the thread isn't meant to step over a breakpoint. */
1767 gdb_assert (tp->control.trap_expected);
1768
c1e36e3e
PA
1769 /* Disable range stepping while executing in the scratch pad. We
1770 want a single-step even if executing the displaced instruction in
1771 the scratch buffer lands within the stepping range (e.g., a
1772 jump/branch). */
1773 tp->control.may_range_step = 0;
1774
fc1cf338
PA
1775 /* We have to displaced step one thread at a time, as we only have
1776 access to a single scratch space per inferior. */
237fc4c9 1777
fc1cf338
PA
1778 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1779
1780 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1781 {
1782 /* Already waiting for a displaced step to finish. Defer this
1783 request and place in queue. */
237fc4c9
PA
1784
1785 if (debug_displaced)
1786 fprintf_unfiltered (gdb_stdlog,
c2829269 1787 "displaced: deferring step of %s\n",
237fc4c9
PA
1788 target_pid_to_str (ptid));
1789
c2829269 1790 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1791 return 0;
1792 }
1793 else
1794 {
1795 if (debug_displaced)
1796 fprintf_unfiltered (gdb_stdlog,
1797 "displaced: stepping %s now\n",
1798 target_pid_to_str (ptid));
1799 }
1800
fc1cf338 1801 displaced_step_clear (displaced);
237fc4c9 1802
2989a365 1803 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
ad53cd71
PA
1804 inferior_ptid = ptid;
1805
515630c5 1806 original = regcache_read_pc (regcache);
237fc4c9
PA
1807
1808 copy = gdbarch_displaced_step_location (gdbarch);
1809 len = gdbarch_max_insn_length (gdbarch);
1810
d35ae833
PA
1811 if (breakpoint_in_range_p (aspace, copy, len))
1812 {
1813 /* There's a breakpoint set in the scratch pad location range
1814 (which is usually around the entry point). We'd either
1815 install it before resuming, which would overwrite/corrupt the
1816 scratch pad, or if it was already inserted, this displaced
1817 step would overwrite it. The latter is OK in the sense that
1818 we already assume that no thread is going to execute the code
1819 in the scratch pad range (after initial startup) anyway, but
1820 the former is unacceptable. Simply punt and fallback to
1821 stepping over this breakpoint in-line. */
1822 if (debug_displaced)
1823 {
1824 fprintf_unfiltered (gdb_stdlog,
1825 "displaced: breakpoint set in scratch pad. "
1826 "Stepping over breakpoint in-line instead.\n");
1827 }
1828
d35ae833
PA
1829 return -1;
1830 }
1831
237fc4c9 1832 /* Save the original contents of the copy area. */
224c3ddb 1833 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
ad53cd71 1834 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1835 &displaced->step_saved_copy);
9e529e1d
JK
1836 status = target_read_memory (copy, displaced->step_saved_copy, len);
1837 if (status != 0)
1838 throw_error (MEMORY_ERROR,
1839 _("Error accessing memory address %s (%s) for "
1840 "displaced-stepping scratch space."),
1841 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1842 if (debug_displaced)
1843 {
5af949e3
UW
1844 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1845 paddress (gdbarch, copy));
fc1cf338
PA
1846 displaced_step_dump_bytes (gdb_stdlog,
1847 displaced->step_saved_copy,
1848 len);
237fc4c9
PA
1849 };
1850
1851 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1852 original, copy, regcache);
7f03bd92
PA
1853 if (closure == NULL)
1854 {
1855 /* The architecture doesn't know how or want to displaced step
1856 this instruction or instruction sequence. Fallback to
1857 stepping over the breakpoint in-line. */
2989a365 1858 do_cleanups (ignore_cleanups);
7f03bd92
PA
1859 return -1;
1860 }
237fc4c9 1861
9f5a595d
UW
1862 /* Save the information we need to fix things up if the step
1863 succeeds. */
fc1cf338
PA
1864 displaced->step_ptid = ptid;
1865 displaced->step_gdbarch = gdbarch;
1866 displaced->step_closure = closure;
1867 displaced->step_original = original;
1868 displaced->step_copy = copy;
9f5a595d 1869
fc1cf338 1870 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1871
1872 /* Resume execution at the copy. */
515630c5 1873 regcache_write_pc (regcache, copy);
237fc4c9 1874
ad53cd71
PA
1875 discard_cleanups (ignore_cleanups);
1876
237fc4c9 1877 if (debug_displaced)
5af949e3
UW
1878 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1879 paddress (gdbarch, copy));
237fc4c9 1880
237fc4c9
PA
1881 return 1;
1882}
1883
3fc8eb30
PA
1884/* Wrapper for displaced_step_prepare_throw that disabled further
1885 attempts at displaced stepping if we get a memory error. */
1886
1887static int
1888displaced_step_prepare (ptid_t ptid)
1889{
1890 int prepared = -1;
1891
1892 TRY
1893 {
1894 prepared = displaced_step_prepare_throw (ptid);
1895 }
1896 CATCH (ex, RETURN_MASK_ERROR)
1897 {
1898 struct displaced_step_inferior_state *displaced_state;
1899
16b41842
PA
1900 if (ex.error != MEMORY_ERROR
1901 && ex.error != NOT_SUPPORTED_ERROR)
3fc8eb30
PA
1902 throw_exception (ex);
1903
1904 if (debug_infrun)
1905 {
1906 fprintf_unfiltered (gdb_stdlog,
1907 "infrun: disabling displaced stepping: %s\n",
1908 ex.message);
1909 }
1910
1911 /* Be verbose if "set displaced-stepping" is "on", silent if
1912 "auto". */
1913 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1914 {
fd7dcb94 1915 warning (_("disabling displaced stepping: %s"),
3fc8eb30
PA
1916 ex.message);
1917 }
1918
1919 /* Disable further displaced stepping attempts. */
1920 displaced_state
1921 = get_displaced_stepping_state (ptid_get_pid (ptid));
1922 displaced_state->failed_before = 1;
1923 }
1924 END_CATCH
1925
1926 return prepared;
1927}
1928
237fc4c9 1929static void
3e43a32a
MS
1930write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1931 const gdb_byte *myaddr, int len)
237fc4c9 1932{
2989a365 1933 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
abbb1732 1934
237fc4c9
PA
1935 inferior_ptid = ptid;
1936 write_memory (memaddr, myaddr, len);
237fc4c9
PA
1937}
1938
e2d96639
YQ
1939/* Restore the contents of the copy area for thread PTID. */
1940
1941static void
1942displaced_step_restore (struct displaced_step_inferior_state *displaced,
1943 ptid_t ptid)
1944{
1945 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1946
1947 write_memory_ptid (ptid, displaced->step_copy,
1948 displaced->step_saved_copy, len);
1949 if (debug_displaced)
1950 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1951 target_pid_to_str (ptid),
1952 paddress (displaced->step_gdbarch,
1953 displaced->step_copy));
1954}
1955
372316f1
PA
1956/* If we displaced stepped an instruction successfully, adjust
1957 registers and memory to yield the same effect the instruction would
1958 have had if we had executed it at its original address, and return
1959 1. If the instruction didn't complete, relocate the PC and return
1960 -1. If the thread wasn't displaced stepping, return 0. */
1961
1962static int
2ea28649 1963displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1964{
1965 struct cleanup *old_cleanups;
fc1cf338
PA
1966 struct displaced_step_inferior_state *displaced
1967 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
372316f1 1968 int ret;
fc1cf338
PA
1969
1970 /* Was any thread of this process doing a displaced step? */
1971 if (displaced == NULL)
372316f1 1972 return 0;
237fc4c9
PA
1973
1974 /* Was this event for the pid we displaced? */
fc1cf338
PA
1975 if (ptid_equal (displaced->step_ptid, null_ptid)
1976 || ! ptid_equal (displaced->step_ptid, event_ptid))
372316f1 1977 return 0;
237fc4c9 1978
fc1cf338 1979 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1980
e2d96639 1981 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9 1982
cb71640d
PA
1983 /* Fixup may need to read memory/registers. Switch to the thread
1984 that we're fixing up. Also, target_stopped_by_watchpoint checks
1985 the current thread. */
1986 switch_to_thread (event_ptid);
1987
237fc4c9 1988 /* Did the instruction complete successfully? */
cb71640d
PA
1989 if (signal == GDB_SIGNAL_TRAP
1990 && !(target_stopped_by_watchpoint ()
1991 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1992 || target_have_steppable_watchpoint)))
237fc4c9
PA
1993 {
1994 /* Fix up the resulting state. */
fc1cf338
PA
1995 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1996 displaced->step_closure,
1997 displaced->step_original,
1998 displaced->step_copy,
1999 get_thread_regcache (displaced->step_ptid));
372316f1 2000 ret = 1;
237fc4c9
PA
2001 }
2002 else
2003 {
2004 /* Since the instruction didn't complete, all we can do is
2005 relocate the PC. */
515630c5
UW
2006 struct regcache *regcache = get_thread_regcache (event_ptid);
2007 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 2008
fc1cf338 2009 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 2010 regcache_write_pc (regcache, pc);
372316f1 2011 ret = -1;
237fc4c9
PA
2012 }
2013
2014 do_cleanups (old_cleanups);
2015
fc1cf338 2016 displaced->step_ptid = null_ptid;
372316f1
PA
2017
2018 return ret;
c2829269 2019}
1c5cfe86 2020
4d9d9d04
PA
2021/* Data to be passed around while handling an event. This data is
2022 discarded between events. */
2023struct execution_control_state
2024{
2025 ptid_t ptid;
2026 /* The thread that got the event, if this was a thread event; NULL
2027 otherwise. */
2028 struct thread_info *event_thread;
2029
2030 struct target_waitstatus ws;
2031 int stop_func_filled_in;
2032 CORE_ADDR stop_func_start;
2033 CORE_ADDR stop_func_end;
2034 const char *stop_func_name;
2035 int wait_some_more;
2036
2037 /* True if the event thread hit the single-step breakpoint of
2038 another thread. Thus the event doesn't cause a stop, the thread
2039 needs to be single-stepped past the single-step breakpoint before
2040 we can switch back to the original stepping thread. */
2041 int hit_singlestep_breakpoint;
2042};
2043
2044/* Clear ECS and set it to point at TP. */
c2829269
PA
2045
2046static void
4d9d9d04
PA
2047reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2048{
2049 memset (ecs, 0, sizeof (*ecs));
2050 ecs->event_thread = tp;
2051 ecs->ptid = tp->ptid;
2052}
2053
2054static void keep_going_pass_signal (struct execution_control_state *ecs);
2055static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 2056static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 2057static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
2058
2059/* Are there any pending step-over requests? If so, run all we can
2060 now and return true. Otherwise, return false. */
2061
2062static int
c2829269
PA
2063start_step_over (void)
2064{
2065 struct thread_info *tp, *next;
2066
372316f1
PA
2067 /* Don't start a new step-over if we already have an in-line
2068 step-over operation ongoing. */
2069 if (step_over_info_valid_p ())
2070 return 0;
2071
c2829269 2072 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 2073 {
4d9d9d04
PA
2074 struct execution_control_state ecss;
2075 struct execution_control_state *ecs = &ecss;
8d297bbf 2076 step_over_what step_what;
372316f1 2077 int must_be_in_line;
c2829269 2078
c65d6b55
PA
2079 gdb_assert (!tp->stop_requested);
2080
c2829269 2081 next = thread_step_over_chain_next (tp);
237fc4c9 2082
c2829269
PA
2083 /* If this inferior already has a displaced step in process,
2084 don't start a new one. */
4d9d9d04 2085 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
c2829269
PA
2086 continue;
2087
372316f1
PA
2088 step_what = thread_still_needs_step_over (tp);
2089 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2090 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 2091 && !use_displaced_stepping (tp)));
372316f1
PA
2092
2093 /* We currently stop all threads of all processes to step-over
2094 in-line. If we need to start a new in-line step-over, let
2095 any pending displaced steps finish first. */
2096 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2097 return 0;
2098
c2829269
PA
2099 thread_step_over_chain_remove (tp);
2100
2101 if (step_over_queue_head == NULL)
2102 {
2103 if (debug_infrun)
2104 fprintf_unfiltered (gdb_stdlog,
2105 "infrun: step-over queue now empty\n");
2106 }
2107
372316f1
PA
2108 if (tp->control.trap_expected
2109 || tp->resumed
2110 || tp->executing)
ad53cd71 2111 {
4d9d9d04
PA
2112 internal_error (__FILE__, __LINE__,
2113 "[%s] has inconsistent state: "
372316f1 2114 "trap_expected=%d, resumed=%d, executing=%d\n",
4d9d9d04
PA
2115 target_pid_to_str (tp->ptid),
2116 tp->control.trap_expected,
372316f1 2117 tp->resumed,
4d9d9d04 2118 tp->executing);
ad53cd71 2119 }
1c5cfe86 2120
4d9d9d04
PA
2121 if (debug_infrun)
2122 fprintf_unfiltered (gdb_stdlog,
2123 "infrun: resuming [%s] for step-over\n",
2124 target_pid_to_str (tp->ptid));
2125
2126 /* keep_going_pass_signal skips the step-over if the breakpoint
2127 is no longer inserted. In all-stop, we want to keep looking
2128 for a thread that needs a step-over instead of resuming TP,
2129 because we wouldn't be able to resume anything else until the
2130 target stops again. In non-stop, the resume always resumes
2131 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2132 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2133 continue;
8550d3b3 2134
4d9d9d04
PA
2135 switch_to_thread (tp->ptid);
2136 reset_ecs (ecs, tp);
2137 keep_going_pass_signal (ecs);
1c5cfe86 2138
4d9d9d04
PA
2139 if (!ecs->wait_some_more)
2140 error (_("Command aborted."));
1c5cfe86 2141
372316f1
PA
2142 gdb_assert (tp->resumed);
2143
2144 /* If we started a new in-line step-over, we're done. */
2145 if (step_over_info_valid_p ())
2146 {
2147 gdb_assert (tp->control.trap_expected);
2148 return 1;
2149 }
2150
fbea99ea 2151 if (!target_is_non_stop_p ())
4d9d9d04
PA
2152 {
2153 /* On all-stop, shouldn't have resumed unless we needed a
2154 step over. */
2155 gdb_assert (tp->control.trap_expected
2156 || tp->step_after_step_resume_breakpoint);
2157
2158 /* With remote targets (at least), in all-stop, we can't
2159 issue any further remote commands until the program stops
2160 again. */
2161 return 1;
1c5cfe86 2162 }
c2829269 2163
4d9d9d04
PA
2164 /* Either the thread no longer needed a step-over, or a new
2165 displaced stepping sequence started. Even in the latter
2166 case, continue looking. Maybe we can also start another
2167 displaced step on a thread of other process. */
237fc4c9 2168 }
4d9d9d04
PA
2169
2170 return 0;
237fc4c9
PA
2171}
2172
5231c1fd
PA
2173/* Update global variables holding ptids to hold NEW_PTID if they were
2174 holding OLD_PTID. */
2175static void
2176infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2177{
fc1cf338 2178 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
2179
2180 if (ptid_equal (inferior_ptid, old_ptid))
2181 inferior_ptid = new_ptid;
2182
fc1cf338
PA
2183 for (displaced = displaced_step_inferior_states;
2184 displaced;
2185 displaced = displaced->next)
2186 {
2187 if (ptid_equal (displaced->step_ptid, old_ptid))
2188 displaced->step_ptid = new_ptid;
fc1cf338 2189 }
5231c1fd
PA
2190}
2191
237fc4c9 2192\f
c906108c 2193
53904c9e
AC
2194static const char schedlock_off[] = "off";
2195static const char schedlock_on[] = "on";
2196static const char schedlock_step[] = "step";
f2665db5 2197static const char schedlock_replay[] = "replay";
40478521 2198static const char *const scheduler_enums[] = {
ef346e04
AC
2199 schedlock_off,
2200 schedlock_on,
2201 schedlock_step,
f2665db5 2202 schedlock_replay,
ef346e04
AC
2203 NULL
2204};
f2665db5 2205static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2206static void
2207show_scheduler_mode (struct ui_file *file, int from_tty,
2208 struct cmd_list_element *c, const char *value)
2209{
3e43a32a
MS
2210 fprintf_filtered (file,
2211 _("Mode for locking scheduler "
2212 "during execution is \"%s\".\n"),
920d2a44
AC
2213 value);
2214}
c906108c
SS
2215
2216static void
eb4c3f4a 2217set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
c906108c 2218{
eefe576e
AC
2219 if (!target_can_lock_scheduler)
2220 {
2221 scheduler_mode = schedlock_off;
2222 error (_("Target '%s' cannot support this command."), target_shortname);
2223 }
c906108c
SS
2224}
2225
d4db2f36
PA
2226/* True if execution commands resume all threads of all processes by
2227 default; otherwise, resume only threads of the current inferior
2228 process. */
2229int sched_multi = 0;
2230
2facfe5c
DD
2231/* Try to setup for software single stepping over the specified location.
2232 Return 1 if target_resume() should use hardware single step.
2233
2234 GDBARCH the current gdbarch.
2235 PC the location to step over. */
2236
2237static int
2238maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2239{
2240 int hw_step = 1;
2241
f02253f1 2242 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2243 && gdbarch_software_single_step_p (gdbarch))
2244 hw_step = !insert_single_step_breakpoints (gdbarch);
2245
2facfe5c
DD
2246 return hw_step;
2247}
c906108c 2248
f3263aa4
PA
2249/* See infrun.h. */
2250
09cee04b
PA
2251ptid_t
2252user_visible_resume_ptid (int step)
2253{
f3263aa4 2254 ptid_t resume_ptid;
09cee04b 2255
09cee04b
PA
2256 if (non_stop)
2257 {
2258 /* With non-stop mode on, threads are always handled
2259 individually. */
2260 resume_ptid = inferior_ptid;
2261 }
2262 else if ((scheduler_mode == schedlock_on)
03d46957 2263 || (scheduler_mode == schedlock_step && step))
09cee04b 2264 {
f3263aa4
PA
2265 /* User-settable 'scheduler' mode requires solo thread
2266 resume. */
09cee04b
PA
2267 resume_ptid = inferior_ptid;
2268 }
f2665db5
MM
2269 else if ((scheduler_mode == schedlock_replay)
2270 && target_record_will_replay (minus_one_ptid, execution_direction))
2271 {
2272 /* User-settable 'scheduler' mode requires solo thread resume in replay
2273 mode. */
2274 resume_ptid = inferior_ptid;
2275 }
f3263aa4
PA
2276 else if (!sched_multi && target_supports_multi_process ())
2277 {
2278 /* Resume all threads of the current process (and none of other
2279 processes). */
2280 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2281 }
2282 else
2283 {
2284 /* Resume all threads of all processes. */
2285 resume_ptid = RESUME_ALL;
2286 }
09cee04b
PA
2287
2288 return resume_ptid;
2289}
2290
fbea99ea
PA
2291/* Return a ptid representing the set of threads that we will resume,
2292 in the perspective of the target, assuming run control handling
2293 does not require leaving some threads stopped (e.g., stepping past
2294 breakpoint). USER_STEP indicates whether we're about to start the
2295 target for a stepping command. */
2296
2297static ptid_t
2298internal_resume_ptid (int user_step)
2299{
2300 /* In non-stop, we always control threads individually. Note that
2301 the target may always work in non-stop mode even with "set
2302 non-stop off", in which case user_visible_resume_ptid could
2303 return a wildcard ptid. */
2304 if (target_is_non_stop_p ())
2305 return inferior_ptid;
2306 else
2307 return user_visible_resume_ptid (user_step);
2308}
2309
64ce06e4
PA
2310/* Wrapper for target_resume, that handles infrun-specific
2311 bookkeeping. */
2312
2313static void
2314do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2315{
2316 struct thread_info *tp = inferior_thread ();
2317
c65d6b55
PA
2318 gdb_assert (!tp->stop_requested);
2319
64ce06e4 2320 /* Install inferior's terminal modes. */
223ffa71 2321 target_terminal::inferior ();
64ce06e4
PA
2322
2323 /* Avoid confusing the next resume, if the next stop/resume
2324 happens to apply to another thread. */
2325 tp->suspend.stop_signal = GDB_SIGNAL_0;
2326
8f572e5c
PA
2327 /* Advise target which signals may be handled silently.
2328
2329 If we have removed breakpoints because we are stepping over one
2330 in-line (in any thread), we need to receive all signals to avoid
2331 accidentally skipping a breakpoint during execution of a signal
2332 handler.
2333
2334 Likewise if we're displaced stepping, otherwise a trap for a
2335 breakpoint in a signal handler might be confused with the
2336 displaced step finishing. We don't make the displaced_step_fixup
2337 step distinguish the cases instead, because:
2338
2339 - a backtrace while stopped in the signal handler would show the
2340 scratch pad as frame older than the signal handler, instead of
2341 the real mainline code.
2342
2343 - when the thread is later resumed, the signal handler would
2344 return to the scratch pad area, which would no longer be
2345 valid. */
2346 if (step_over_info_valid_p ()
2347 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
64ce06e4
PA
2348 target_pass_signals (0, NULL);
2349 else
2350 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2351
2352 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2353
2354 target_commit_resume ();
64ce06e4
PA
2355}
2356
d930703d 2357/* Resume the inferior. SIG is the signal to give the inferior
71d378ae
PA
2358 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2359 call 'resume', which handles exceptions. */
c906108c 2360
71d378ae
PA
2361static void
2362resume_1 (enum gdb_signal sig)
c906108c 2363{
515630c5 2364 struct regcache *regcache = get_current_regcache ();
ac7936df 2365 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2366 struct thread_info *tp = inferior_thread ();
515630c5 2367 CORE_ADDR pc = regcache_read_pc (regcache);
8b86c959 2368 const address_space *aspace = regcache->aspace ();
b0f16a3e 2369 ptid_t resume_ptid;
856e7dd6
PA
2370 /* This represents the user's step vs continue request. When
2371 deciding whether "set scheduler-locking step" applies, it's the
2372 user's intention that counts. */
2373 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2374 /* This represents what we'll actually request the target to do.
2375 This can decay from a step to a continue, if e.g., we need to
2376 implement single-stepping with breakpoints (software
2377 single-step). */
6b403daa 2378 int step;
c7e8a53c 2379
c65d6b55 2380 gdb_assert (!tp->stop_requested);
c2829269
PA
2381 gdb_assert (!thread_is_in_step_over_chain (tp));
2382
372316f1
PA
2383 if (tp->suspend.waitstatus_pending_p)
2384 {
2385 if (debug_infrun)
2386 {
23fdd69e
SM
2387 std::string statstr
2388 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2389
372316f1 2390 fprintf_unfiltered (gdb_stdlog,
23fdd69e
SM
2391 "infrun: resume: thread %s has pending wait "
2392 "status %s (currently_stepping=%d).\n",
2393 target_pid_to_str (tp->ptid), statstr.c_str (),
372316f1 2394 currently_stepping (tp));
372316f1
PA
2395 }
2396
2397 tp->resumed = 1;
2398
2399 /* FIXME: What should we do if we are supposed to resume this
2400 thread with a signal? Maybe we should maintain a queue of
2401 pending signals to deliver. */
2402 if (sig != GDB_SIGNAL_0)
2403 {
fd7dcb94 2404 warning (_("Couldn't deliver signal %s to %s."),
372316f1
PA
2405 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2406 }
2407
2408 tp->suspend.stop_signal = GDB_SIGNAL_0;
372316f1
PA
2409
2410 if (target_can_async_p ())
2411 target_async (1);
2412 return;
2413 }
2414
2415 tp->stepped_breakpoint = 0;
2416
6b403daa
PA
2417 /* Depends on stepped_breakpoint. */
2418 step = currently_stepping (tp);
2419
74609e71
YQ
2420 if (current_inferior ()->waiting_for_vfork_done)
2421 {
48f9886d
PA
2422 /* Don't try to single-step a vfork parent that is waiting for
2423 the child to get out of the shared memory region (by exec'ing
2424 or exiting). This is particularly important on software
2425 single-step archs, as the child process would trip on the
2426 software single step breakpoint inserted for the parent
2427 process. Since the parent will not actually execute any
2428 instruction until the child is out of the shared region (such
2429 are vfork's semantics), it is safe to simply continue it.
2430 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2431 the parent, and tell it to `keep_going', which automatically
2432 re-sets it stepping. */
74609e71
YQ
2433 if (debug_infrun)
2434 fprintf_unfiltered (gdb_stdlog,
2435 "infrun: resume : clear step\n");
a09dd441 2436 step = 0;
74609e71
YQ
2437 }
2438
527159b7 2439 if (debug_infrun)
237fc4c9 2440 fprintf_unfiltered (gdb_stdlog,
c9737c08 2441 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2442 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2443 step, gdb_signal_to_symbol_string (sig),
2444 tp->control.trap_expected,
0d9a9a5f
PA
2445 target_pid_to_str (inferior_ptid),
2446 paddress (gdbarch, pc));
c906108c 2447
c2c6d25f
JM
2448 /* Normally, by the time we reach `resume', the breakpoints are either
2449 removed or inserted, as appropriate. The exception is if we're sitting
2450 at a permanent breakpoint; we need to step over it, but permanent
2451 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2452 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2453 {
af48d08f
PA
2454 if (sig != GDB_SIGNAL_0)
2455 {
2456 /* We have a signal to pass to the inferior. The resume
2457 may, or may not take us to the signal handler. If this
2458 is a step, we'll need to stop in the signal handler, if
2459 there's one, (if the target supports stepping into
2460 handlers), or in the next mainline instruction, if
2461 there's no handler. If this is a continue, we need to be
2462 sure to run the handler with all breakpoints inserted.
2463 In all cases, set a breakpoint at the current address
2464 (where the handler returns to), and once that breakpoint
2465 is hit, resume skipping the permanent breakpoint. If
2466 that breakpoint isn't hit, then we've stepped into the
2467 signal handler (or hit some other event). We'll delete
2468 the step-resume breakpoint then. */
2469
2470 if (debug_infrun)
2471 fprintf_unfiltered (gdb_stdlog,
2472 "infrun: resume: skipping permanent breakpoint, "
2473 "deliver signal first\n");
2474
2475 clear_step_over_info ();
2476 tp->control.trap_expected = 0;
2477
2478 if (tp->control.step_resume_breakpoint == NULL)
2479 {
2480 /* Set a "high-priority" step-resume, as we don't want
2481 user breakpoints at PC to trigger (again) when this
2482 hits. */
2483 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2484 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2485
2486 tp->step_after_step_resume_breakpoint = step;
2487 }
2488
2489 insert_breakpoints ();
2490 }
2491 else
2492 {
2493 /* There's no signal to pass, we can go ahead and skip the
2494 permanent breakpoint manually. */
2495 if (debug_infrun)
2496 fprintf_unfiltered (gdb_stdlog,
2497 "infrun: resume: skipping permanent breakpoint\n");
2498 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2499 /* Update pc to reflect the new address from which we will
2500 execute instructions. */
2501 pc = regcache_read_pc (regcache);
2502
2503 if (step)
2504 {
2505 /* We've already advanced the PC, so the stepping part
2506 is done. Now we need to arrange for a trap to be
2507 reported to handle_inferior_event. Set a breakpoint
2508 at the current PC, and run to it. Don't update
2509 prev_pc, because if we end in
44a1ee51
PA
2510 switch_back_to_stepped_thread, we want the "expected
2511 thread advanced also" branch to be taken. IOW, we
2512 don't want this thread to step further from PC
af48d08f 2513 (overstep). */
1ac806b8 2514 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2515 insert_single_step_breakpoint (gdbarch, aspace, pc);
2516 insert_breakpoints ();
2517
fbea99ea 2518 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2519 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
372316f1 2520 tp->resumed = 1;
af48d08f
PA
2521 return;
2522 }
2523 }
6d350bb5 2524 }
c2c6d25f 2525
c1e36e3e
PA
2526 /* If we have a breakpoint to step over, make sure to do a single
2527 step only. Same if we have software watchpoints. */
2528 if (tp->control.trap_expected || bpstat_should_step ())
2529 tp->control.may_range_step = 0;
2530
237fc4c9
PA
2531 /* If enabled, step over breakpoints by executing a copy of the
2532 instruction at a different address.
2533
2534 We can't use displaced stepping when we have a signal to deliver;
2535 the comments for displaced_step_prepare explain why. The
2536 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2537 signals' explain what we do instead.
2538
2539 We can't use displaced stepping when we are waiting for vfork_done
2540 event, displaced stepping breaks the vfork child similarly as single
2541 step software breakpoint. */
3fc8eb30
PA
2542 if (tp->control.trap_expected
2543 && use_displaced_stepping (tp)
cb71640d 2544 && !step_over_info_valid_p ()
a493e3e2 2545 && sig == GDB_SIGNAL_0
74609e71 2546 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2547 {
3fc8eb30 2548 int prepared = displaced_step_prepare (inferior_ptid);
fc1cf338 2549
3fc8eb30 2550 if (prepared == 0)
d56b7306 2551 {
4d9d9d04
PA
2552 if (debug_infrun)
2553 fprintf_unfiltered (gdb_stdlog,
2554 "Got placed in step-over queue\n");
2555
2556 tp->control.trap_expected = 0;
d56b7306
VP
2557 return;
2558 }
3fc8eb30
PA
2559 else if (prepared < 0)
2560 {
2561 /* Fallback to stepping over the breakpoint in-line. */
2562
2563 if (target_is_non_stop_p ())
2564 stop_all_threads ();
2565
a01bda52 2566 set_step_over_info (regcache->aspace (),
21edc42f 2567 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2568
2569 step = maybe_software_singlestep (gdbarch, pc);
2570
2571 insert_breakpoints ();
2572 }
2573 else if (prepared > 0)
2574 {
2575 struct displaced_step_inferior_state *displaced;
99e40580 2576
3fc8eb30
PA
2577 /* Update pc to reflect the new address from which we will
2578 execute instructions due to displaced stepping. */
2579 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
ca7781d2 2580
3fc8eb30
PA
2581 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2582 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2583 displaced->step_closure);
2584 }
237fc4c9
PA
2585 }
2586
2facfe5c 2587 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2588 else if (step)
2facfe5c 2589 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2590
30852783
UW
2591 /* Currently, our software single-step implementation leads to different
2592 results than hardware single-stepping in one situation: when stepping
2593 into delivering a signal which has an associated signal handler,
2594 hardware single-step will stop at the first instruction of the handler,
2595 while software single-step will simply skip execution of the handler.
2596
2597 For now, this difference in behavior is accepted since there is no
2598 easy way to actually implement single-stepping into a signal handler
2599 without kernel support.
2600
2601 However, there is one scenario where this difference leads to follow-on
2602 problems: if we're stepping off a breakpoint by removing all breakpoints
2603 and then single-stepping. In this case, the software single-step
2604 behavior means that even if there is a *breakpoint* in the signal
2605 handler, GDB still would not stop.
2606
2607 Fortunately, we can at least fix this particular issue. We detect
2608 here the case where we are about to deliver a signal while software
2609 single-stepping with breakpoints removed. In this situation, we
2610 revert the decisions to remove all breakpoints and insert single-
2611 step breakpoints, and instead we install a step-resume breakpoint
2612 at the current address, deliver the signal without stepping, and
2613 once we arrive back at the step-resume breakpoint, actually step
2614 over the breakpoint we originally wanted to step over. */
34b7e8a6 2615 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2616 && sig != GDB_SIGNAL_0
2617 && step_over_info_valid_p ())
30852783
UW
2618 {
2619 /* If we have nested signals or a pending signal is delivered
2620 immediately after a handler returns, might might already have
2621 a step-resume breakpoint set on the earlier handler. We cannot
2622 set another step-resume breakpoint; just continue on until the
2623 original breakpoint is hit. */
2624 if (tp->control.step_resume_breakpoint == NULL)
2625 {
2c03e5be 2626 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2627 tp->step_after_step_resume_breakpoint = 1;
2628 }
2629
34b7e8a6 2630 delete_single_step_breakpoints (tp);
30852783 2631
31e77af2 2632 clear_step_over_info ();
30852783 2633 tp->control.trap_expected = 0;
31e77af2
PA
2634
2635 insert_breakpoints ();
30852783
UW
2636 }
2637
b0f16a3e
SM
2638 /* If STEP is set, it's a request to use hardware stepping
2639 facilities. But in that case, we should never
2640 use singlestep breakpoint. */
34b7e8a6 2641 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2642
fbea99ea 2643 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2644 if (tp->control.trap_expected)
b0f16a3e
SM
2645 {
2646 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2647 hit, either by single-stepping the thread with the breakpoint
2648 removed, or by displaced stepping, with the breakpoint inserted.
2649 In the former case, we need to single-step only this thread,
2650 and keep others stopped, as they can miss this breakpoint if
2651 allowed to run. That's not really a problem for displaced
2652 stepping, but, we still keep other threads stopped, in case
2653 another thread is also stopped for a breakpoint waiting for
2654 its turn in the displaced stepping queue. */
b0f16a3e
SM
2655 resume_ptid = inferior_ptid;
2656 }
fbea99ea
PA
2657 else
2658 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2659
7f5ef605
PA
2660 if (execution_direction != EXEC_REVERSE
2661 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2662 {
372316f1
PA
2663 /* There are two cases where we currently need to step a
2664 breakpoint instruction when we have a signal to deliver:
2665
2666 - See handle_signal_stop where we handle random signals that
2667 could take out us out of the stepping range. Normally, in
2668 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2669 signal handler with a breakpoint at PC, but there are cases
2670 where we should _always_ single-step, even if we have a
2671 step-resume breakpoint, like when a software watchpoint is
2672 set. Assuming single-stepping and delivering a signal at the
2673 same time would takes us to the signal handler, then we could
2674 have removed the breakpoint at PC to step over it. However,
2675 some hardware step targets (like e.g., Mac OS) can't step
2676 into signal handlers, and for those, we need to leave the
2677 breakpoint at PC inserted, as otherwise if the handler
2678 recurses and executes PC again, it'll miss the breakpoint.
2679 So we leave the breakpoint inserted anyway, but we need to
2680 record that we tried to step a breakpoint instruction, so
372316f1
PA
2681 that adjust_pc_after_break doesn't end up confused.
2682
2683 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2684 in one thread after another thread that was stepping had been
2685 momentarily paused for a step-over. When we re-resume the
2686 stepping thread, it may be resumed from that address with a
2687 breakpoint that hasn't trapped yet. Seen with
2688 gdb.threads/non-stop-fair-events.exp, on targets that don't
2689 do displaced stepping. */
2690
2691 if (debug_infrun)
2692 fprintf_unfiltered (gdb_stdlog,
2693 "infrun: resume: [%s] stepped breakpoint\n",
2694 target_pid_to_str (tp->ptid));
7f5ef605
PA
2695
2696 tp->stepped_breakpoint = 1;
2697
b0f16a3e
SM
2698 /* Most targets can step a breakpoint instruction, thus
2699 executing it normally. But if this one cannot, just
2700 continue and we will hit it anyway. */
7f5ef605 2701 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2702 step = 0;
2703 }
ef5cf84e 2704
b0f16a3e 2705 if (debug_displaced
cb71640d 2706 && tp->control.trap_expected
3fc8eb30 2707 && use_displaced_stepping (tp)
cb71640d 2708 && !step_over_info_valid_p ())
b0f16a3e 2709 {
d9b67d9f 2710 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
ac7936df 2711 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2712 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2713 gdb_byte buf[4];
2714
2715 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2716 paddress (resume_gdbarch, actual_pc));
2717 read_memory (actual_pc, buf, sizeof (buf));
2718 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2719 }
237fc4c9 2720
b0f16a3e
SM
2721 if (tp->control.may_range_step)
2722 {
2723 /* If we're resuming a thread with the PC out of the step
2724 range, then we're doing some nested/finer run control
2725 operation, like stepping the thread out of the dynamic
2726 linker or the displaced stepping scratch pad. We
2727 shouldn't have allowed a range step then. */
2728 gdb_assert (pc_in_thread_step_range (pc, tp));
2729 }
c1e36e3e 2730
64ce06e4 2731 do_target_resume (resume_ptid, step, sig);
372316f1 2732 tp->resumed = 1;
c906108c 2733}
71d378ae
PA
2734
2735/* Resume the inferior. SIG is the signal to give the inferior
2736 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2737 rolls back state on error. */
2738
2739void
2740resume (gdb_signal sig)
2741{
2742 TRY
2743 {
2744 resume_1 (sig);
2745 }
2746 CATCH (ex, RETURN_MASK_ALL)
2747 {
2748 /* If resuming is being aborted for any reason, delete any
2749 single-step breakpoint resume_1 may have created, to avoid
2750 confusing the following resumption, and to avoid leaving
2751 single-step breakpoints perturbing other threads, in case
2752 we're running in non-stop mode. */
2753 if (inferior_ptid != null_ptid)
2754 delete_single_step_breakpoints (inferior_thread ());
2755 throw_exception (ex);
2756 }
2757 END_CATCH
2758}
2759
c906108c 2760\f
237fc4c9 2761/* Proceeding. */
c906108c 2762
4c2f2a79
PA
2763/* See infrun.h. */
2764
2765/* Counter that tracks number of user visible stops. This can be used
2766 to tell whether a command has proceeded the inferior past the
2767 current location. This allows e.g., inferior function calls in
2768 breakpoint commands to not interrupt the command list. When the
2769 call finishes successfully, the inferior is standing at the same
2770 breakpoint as if nothing happened (and so we don't call
2771 normal_stop). */
2772static ULONGEST current_stop_id;
2773
2774/* See infrun.h. */
2775
2776ULONGEST
2777get_stop_id (void)
2778{
2779 return current_stop_id;
2780}
2781
2782/* Called when we report a user visible stop. */
2783
2784static void
2785new_stop_id (void)
2786{
2787 current_stop_id++;
2788}
2789
c906108c
SS
2790/* Clear out all variables saying what to do when inferior is continued.
2791 First do this, then set the ones you want, then call `proceed'. */
2792
a7212384
UW
2793static void
2794clear_proceed_status_thread (struct thread_info *tp)
c906108c 2795{
a7212384
UW
2796 if (debug_infrun)
2797 fprintf_unfiltered (gdb_stdlog,
2798 "infrun: clear_proceed_status_thread (%s)\n",
2799 target_pid_to_str (tp->ptid));
d6b48e9c 2800
372316f1
PA
2801 /* If we're starting a new sequence, then the previous finished
2802 single-step is no longer relevant. */
2803 if (tp->suspend.waitstatus_pending_p)
2804 {
2805 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2806 {
2807 if (debug_infrun)
2808 fprintf_unfiltered (gdb_stdlog,
2809 "infrun: clear_proceed_status: pending "
2810 "event of %s was a finished step. "
2811 "Discarding.\n",
2812 target_pid_to_str (tp->ptid));
2813
2814 tp->suspend.waitstatus_pending_p = 0;
2815 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2816 }
2817 else if (debug_infrun)
2818 {
23fdd69e
SM
2819 std::string statstr
2820 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2821
372316f1
PA
2822 fprintf_unfiltered (gdb_stdlog,
2823 "infrun: clear_proceed_status_thread: thread %s "
2824 "has pending wait status %s "
2825 "(currently_stepping=%d).\n",
23fdd69e 2826 target_pid_to_str (tp->ptid), statstr.c_str (),
372316f1 2827 currently_stepping (tp));
372316f1
PA
2828 }
2829 }
2830
70509625
PA
2831 /* If this signal should not be seen by program, give it zero.
2832 Used for debugging signals. */
2833 if (!signal_pass_state (tp->suspend.stop_signal))
2834 tp->suspend.stop_signal = GDB_SIGNAL_0;
2835
243a9253
PA
2836 thread_fsm_delete (tp->thread_fsm);
2837 tp->thread_fsm = NULL;
2838
16c381f0
JK
2839 tp->control.trap_expected = 0;
2840 tp->control.step_range_start = 0;
2841 tp->control.step_range_end = 0;
c1e36e3e 2842 tp->control.may_range_step = 0;
16c381f0
JK
2843 tp->control.step_frame_id = null_frame_id;
2844 tp->control.step_stack_frame_id = null_frame_id;
2845 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2846 tp->control.step_start_function = NULL;
a7212384 2847 tp->stop_requested = 0;
4e1c45ea 2848
16c381f0 2849 tp->control.stop_step = 0;
32400beb 2850
16c381f0 2851 tp->control.proceed_to_finish = 0;
414c69f7 2852
856e7dd6 2853 tp->control.stepping_command = 0;
17b2616c 2854
a7212384 2855 /* Discard any remaining commands or status from previous stop. */
16c381f0 2856 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2857}
32400beb 2858
a7212384 2859void
70509625 2860clear_proceed_status (int step)
a7212384 2861{
f2665db5
MM
2862 /* With scheduler-locking replay, stop replaying other threads if we're
2863 not replaying the user-visible resume ptid.
2864
2865 This is a convenience feature to not require the user to explicitly
2866 stop replaying the other threads. We're assuming that the user's
2867 intent is to resume tracing the recorded process. */
2868 if (!non_stop && scheduler_mode == schedlock_replay
2869 && target_record_is_replaying (minus_one_ptid)
2870 && !target_record_will_replay (user_visible_resume_ptid (step),
2871 execution_direction))
2872 target_record_stop_replaying ();
2873
6c95b8df
PA
2874 if (!non_stop)
2875 {
70509625
PA
2876 struct thread_info *tp;
2877 ptid_t resume_ptid;
2878
2879 resume_ptid = user_visible_resume_ptid (step);
2880
2881 /* In all-stop mode, delete the per-thread status of all threads
2882 we're about to resume, implicitly and explicitly. */
2883 ALL_NON_EXITED_THREADS (tp)
2884 {
2885 if (!ptid_match (tp->ptid, resume_ptid))
2886 continue;
2887 clear_proceed_status_thread (tp);
2888 }
6c95b8df
PA
2889 }
2890
a7212384
UW
2891 if (!ptid_equal (inferior_ptid, null_ptid))
2892 {
2893 struct inferior *inferior;
2894
2895 if (non_stop)
2896 {
6c95b8df
PA
2897 /* If in non-stop mode, only delete the per-thread status of
2898 the current thread. */
a7212384
UW
2899 clear_proceed_status_thread (inferior_thread ());
2900 }
6c95b8df 2901
d6b48e9c 2902 inferior = current_inferior ();
16c381f0 2903 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2904 }
2905
f3b1572e 2906 observer_notify_about_to_proceed ();
c906108c
SS
2907}
2908
99619bea
PA
2909/* Returns true if TP is still stopped at a breakpoint that needs
2910 stepping-over in order to make progress. If the breakpoint is gone
2911 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2912
2913static int
6c4cfb24 2914thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2915{
2916 if (tp->stepping_over_breakpoint)
2917 {
2918 struct regcache *regcache = get_thread_regcache (tp->ptid);
2919
a01bda52 2920 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2921 regcache_read_pc (regcache))
2922 == ordinary_breakpoint_here)
99619bea
PA
2923 return 1;
2924
2925 tp->stepping_over_breakpoint = 0;
2926 }
2927
2928 return 0;
2929}
2930
6c4cfb24
PA
2931/* Check whether thread TP still needs to start a step-over in order
2932 to make progress when resumed. Returns an bitwise or of enum
2933 step_over_what bits, indicating what needs to be stepped over. */
2934
8d297bbf 2935static step_over_what
6c4cfb24
PA
2936thread_still_needs_step_over (struct thread_info *tp)
2937{
8d297bbf 2938 step_over_what what = 0;
6c4cfb24
PA
2939
2940 if (thread_still_needs_step_over_bp (tp))
2941 what |= STEP_OVER_BREAKPOINT;
2942
2943 if (tp->stepping_over_watchpoint
2944 && !target_have_steppable_watchpoint)
2945 what |= STEP_OVER_WATCHPOINT;
2946
2947 return what;
2948}
2949
483805cf
PA
2950/* Returns true if scheduler locking applies. STEP indicates whether
2951 we're about to do a step/next-like command to a thread. */
2952
2953static int
856e7dd6 2954schedlock_applies (struct thread_info *tp)
483805cf
PA
2955{
2956 return (scheduler_mode == schedlock_on
2957 || (scheduler_mode == schedlock_step
f2665db5
MM
2958 && tp->control.stepping_command)
2959 || (scheduler_mode == schedlock_replay
2960 && target_record_will_replay (minus_one_ptid,
2961 execution_direction)));
483805cf
PA
2962}
2963
c906108c
SS
2964/* Basic routine for continuing the program in various fashions.
2965
2966 ADDR is the address to resume at, or -1 for resume where stopped.
2967 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2968 or -1 for act according to how it stopped.
c906108c 2969 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2970 -1 means return after that and print nothing.
2971 You should probably set various step_... variables
2972 before calling here, if you are stepping.
c906108c
SS
2973
2974 You should call clear_proceed_status before calling proceed. */
2975
2976void
64ce06e4 2977proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2978{
e58b0e63
PA
2979 struct regcache *regcache;
2980 struct gdbarch *gdbarch;
4e1c45ea 2981 struct thread_info *tp;
e58b0e63 2982 CORE_ADDR pc;
4d9d9d04
PA
2983 ptid_t resume_ptid;
2984 struct execution_control_state ecss;
2985 struct execution_control_state *ecs = &ecss;
2986 struct cleanup *old_chain;
2987 int started;
c906108c 2988
e58b0e63
PA
2989 /* If we're stopped at a fork/vfork, follow the branch set by the
2990 "set follow-fork-mode" command; otherwise, we'll just proceed
2991 resuming the current thread. */
2992 if (!follow_fork ())
2993 {
2994 /* The target for some reason decided not to resume. */
2995 normal_stop ();
f148b27e
PA
2996 if (target_can_async_p ())
2997 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2998 return;
2999 }
3000
842951eb
PA
3001 /* We'll update this if & when we switch to a new thread. */
3002 previous_inferior_ptid = inferior_ptid;
3003
e58b0e63 3004 regcache = get_current_regcache ();
ac7936df 3005 gdbarch = regcache->arch ();
8b86c959
YQ
3006 const address_space *aspace = regcache->aspace ();
3007
e58b0e63 3008 pc = regcache_read_pc (regcache);
2adfaa28 3009 tp = inferior_thread ();
e58b0e63 3010
99619bea
PA
3011 /* Fill in with reasonable starting values. */
3012 init_thread_stepping_state (tp);
3013
c2829269
PA
3014 gdb_assert (!thread_is_in_step_over_chain (tp));
3015
2acceee2 3016 if (addr == (CORE_ADDR) -1)
c906108c 3017 {
af48d08f
PA
3018 if (pc == stop_pc
3019 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 3020 && execution_direction != EXEC_REVERSE)
3352ef37
AC
3021 /* There is a breakpoint at the address we will resume at,
3022 step one instruction before inserting breakpoints so that
3023 we do not stop right away (and report a second hit at this
b2175913
MS
3024 breakpoint).
3025
3026 Note, we don't do this in reverse, because we won't
3027 actually be executing the breakpoint insn anyway.
3028 We'll be (un-)executing the previous instruction. */
99619bea 3029 tp->stepping_over_breakpoint = 1;
515630c5
UW
3030 else if (gdbarch_single_step_through_delay_p (gdbarch)
3031 && gdbarch_single_step_through_delay (gdbarch,
3032 get_current_frame ()))
3352ef37
AC
3033 /* We stepped onto an instruction that needs to be stepped
3034 again before re-inserting the breakpoint, do so. */
99619bea 3035 tp->stepping_over_breakpoint = 1;
c906108c
SS
3036 }
3037 else
3038 {
515630c5 3039 regcache_write_pc (regcache, addr);
c906108c
SS
3040 }
3041
70509625
PA
3042 if (siggnal != GDB_SIGNAL_DEFAULT)
3043 tp->suspend.stop_signal = siggnal;
3044
4d9d9d04
PA
3045 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3046
3047 /* If an exception is thrown from this point on, make sure to
3048 propagate GDB's knowledge of the executing state to the
3049 frontend/user running state. */
3050 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3051
3052 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3053 threads (e.g., we might need to set threads stepping over
3054 breakpoints first), from the user/frontend's point of view, all
3055 threads in RESUME_PTID are now running. Unless we're calling an
3056 inferior function, as in that case we pretend the inferior
3057 doesn't run at all. */
3058 if (!tp->control.in_infcall)
3059 set_running (resume_ptid, 1);
17b2616c 3060
527159b7 3061 if (debug_infrun)
8a9de0e4 3062 fprintf_unfiltered (gdb_stdlog,
64ce06e4 3063 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 3064 paddress (gdbarch, addr),
64ce06e4 3065 gdb_signal_to_symbol_string (siggnal));
527159b7 3066
4d9d9d04
PA
3067 annotate_starting ();
3068
3069 /* Make sure that output from GDB appears before output from the
3070 inferior. */
3071 gdb_flush (gdb_stdout);
3072
d930703d
PA
3073 /* Since we've marked the inferior running, give it the terminal. A
3074 QUIT/Ctrl-C from here on is forwarded to the target (which can
3075 still detect attempts to unblock a stuck connection with repeated
3076 Ctrl-C from within target_pass_ctrlc). */
3077 target_terminal::inferior ();
3078
4d9d9d04
PA
3079 /* In a multi-threaded task we may select another thread and
3080 then continue or step.
3081
3082 But if a thread that we're resuming had stopped at a breakpoint,
3083 it will immediately cause another breakpoint stop without any
3084 execution (i.e. it will report a breakpoint hit incorrectly). So
3085 we must step over it first.
3086
3087 Look for threads other than the current (TP) that reported a
3088 breakpoint hit and haven't been resumed yet since. */
3089
3090 /* If scheduler locking applies, we can avoid iterating over all
3091 threads. */
3092 if (!non_stop && !schedlock_applies (tp))
94cc34af 3093 {
4d9d9d04
PA
3094 struct thread_info *current = tp;
3095
3096 ALL_NON_EXITED_THREADS (tp)
3097 {
3098 /* Ignore the current thread here. It's handled
3099 afterwards. */
3100 if (tp == current)
3101 continue;
99619bea 3102
4d9d9d04
PA
3103 /* Ignore threads of processes we're not resuming. */
3104 if (!ptid_match (tp->ptid, resume_ptid))
3105 continue;
c906108c 3106
4d9d9d04
PA
3107 if (!thread_still_needs_step_over (tp))
3108 continue;
3109
3110 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3111
99619bea
PA
3112 if (debug_infrun)
3113 fprintf_unfiltered (gdb_stdlog,
3114 "infrun: need to step-over [%s] first\n",
4d9d9d04 3115 target_pid_to_str (tp->ptid));
99619bea 3116
4d9d9d04 3117 thread_step_over_chain_enqueue (tp);
2adfaa28 3118 }
31e77af2 3119
4d9d9d04 3120 tp = current;
30852783
UW
3121 }
3122
4d9d9d04
PA
3123 /* Enqueue the current thread last, so that we move all other
3124 threads over their breakpoints first. */
3125 if (tp->stepping_over_breakpoint)
3126 thread_step_over_chain_enqueue (tp);
30852783 3127
4d9d9d04
PA
3128 /* If the thread isn't started, we'll still need to set its prev_pc,
3129 so that switch_back_to_stepped_thread knows the thread hasn't
3130 advanced. Must do this before resuming any thread, as in
3131 all-stop/remote, once we resume we can't send any other packet
3132 until the target stops again. */
3133 tp->prev_pc = regcache_read_pc (regcache);
99619bea 3134
a9bc57b9
TT
3135 {
3136 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
85ad3aaf 3137
a9bc57b9 3138 started = start_step_over ();
c906108c 3139
a9bc57b9
TT
3140 if (step_over_info_valid_p ())
3141 {
3142 /* Either this thread started a new in-line step over, or some
3143 other thread was already doing one. In either case, don't
3144 resume anything else until the step-over is finished. */
3145 }
3146 else if (started && !target_is_non_stop_p ())
3147 {
3148 /* A new displaced stepping sequence was started. In all-stop,
3149 we can't talk to the target anymore until it next stops. */
3150 }
3151 else if (!non_stop && target_is_non_stop_p ())
3152 {
3153 /* In all-stop, but the target is always in non-stop mode.
3154 Start all other threads that are implicitly resumed too. */
3155 ALL_NON_EXITED_THREADS (tp)
fbea99ea
PA
3156 {
3157 /* Ignore threads of processes we're not resuming. */
3158 if (!ptid_match (tp->ptid, resume_ptid))
3159 continue;
3160
3161 if (tp->resumed)
3162 {
3163 if (debug_infrun)
3164 fprintf_unfiltered (gdb_stdlog,
3165 "infrun: proceed: [%s] resumed\n",
3166 target_pid_to_str (tp->ptid));
3167 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3168 continue;
3169 }
3170
3171 if (thread_is_in_step_over_chain (tp))
3172 {
3173 if (debug_infrun)
3174 fprintf_unfiltered (gdb_stdlog,
3175 "infrun: proceed: [%s] needs step-over\n",
3176 target_pid_to_str (tp->ptid));
3177 continue;
3178 }
3179
3180 if (debug_infrun)
3181 fprintf_unfiltered (gdb_stdlog,
3182 "infrun: proceed: resuming %s\n",
3183 target_pid_to_str (tp->ptid));
3184
3185 reset_ecs (ecs, tp);
3186 switch_to_thread (tp->ptid);
3187 keep_going_pass_signal (ecs);
3188 if (!ecs->wait_some_more)
fd7dcb94 3189 error (_("Command aborted."));
fbea99ea 3190 }
a9bc57b9
TT
3191 }
3192 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
3193 {
3194 /* The thread wasn't started, and isn't queued, run it now. */
3195 reset_ecs (ecs, tp);
3196 switch_to_thread (tp->ptid);
3197 keep_going_pass_signal (ecs);
3198 if (!ecs->wait_some_more)
3199 error (_("Command aborted."));
3200 }
3201 }
c906108c 3202
85ad3aaf
PA
3203 target_commit_resume ();
3204
4d9d9d04 3205 discard_cleanups (old_chain);
c906108c 3206
0b333c5e
PA
3207 /* Tell the event loop to wait for it to stop. If the target
3208 supports asynchronous execution, it'll do this from within
3209 target_resume. */
362646f5 3210 if (!target_can_async_p ())
0b333c5e 3211 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3212}
c906108c
SS
3213\f
3214
3215/* Start remote-debugging of a machine over a serial link. */
96baa820 3216
c906108c 3217void
8621d6a9 3218start_remote (int from_tty)
c906108c 3219{
d6b48e9c 3220 struct inferior *inferior;
d6b48e9c
PA
3221
3222 inferior = current_inferior ();
16c381f0 3223 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3224
1777feb0 3225 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3226 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3227 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3228 nothing is returned (instead of just blocking). Because of this,
3229 targets expecting an immediate response need to, internally, set
3230 things up so that the target_wait() is forced to eventually
1777feb0 3231 timeout. */
6426a772
JM
3232 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3233 differentiate to its caller what the state of the target is after
3234 the initial open has been performed. Here we're assuming that
3235 the target has stopped. It should be possible to eventually have
3236 target_open() return to the caller an indication that the target
3237 is currently running and GDB state should be set to the same as
1777feb0 3238 for an async run. */
e4c8541f 3239 wait_for_inferior ();
8621d6a9
DJ
3240
3241 /* Now that the inferior has stopped, do any bookkeeping like
3242 loading shared libraries. We want to do this before normal_stop,
3243 so that the displayed frame is up to date. */
3244 post_create_inferior (&current_target, from_tty);
3245
6426a772 3246 normal_stop ();
c906108c
SS
3247}
3248
3249/* Initialize static vars when a new inferior begins. */
3250
3251void
96baa820 3252init_wait_for_inferior (void)
c906108c
SS
3253{
3254 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3255
c906108c
SS
3256 breakpoint_init_inferior (inf_starting);
3257
70509625 3258 clear_proceed_status (0);
9f976b41 3259
ca005067 3260 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3261
842951eb 3262 previous_inferior_ptid = inferior_ptid;
0d1e5fa7 3263
edb3359d
DJ
3264 /* Discard any skipped inlined frames. */
3265 clear_inline_frame_state (minus_one_ptid);
c906108c 3266}
237fc4c9 3267
c906108c 3268\f
488f131b 3269
ec9499be 3270static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3271
568d6575
UW
3272static void handle_step_into_function (struct gdbarch *gdbarch,
3273 struct execution_control_state *ecs);
3274static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3275 struct execution_control_state *ecs);
4f5d7f63 3276static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3277static void check_exception_resume (struct execution_control_state *,
28106bc2 3278 struct frame_info *);
611c83ae 3279
bdc36728 3280static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3281static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3282static void keep_going (struct execution_control_state *ecs);
94c57d6a 3283static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3284static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3285
252fbfc8
PA
3286/* This function is attached as a "thread_stop_requested" observer.
3287 Cleanup local state that assumed the PTID was to be resumed, and
3288 report the stop to the frontend. */
3289
2c0b251b 3290static void
252fbfc8
PA
3291infrun_thread_stop_requested (ptid_t ptid)
3292{
c2829269 3293 struct thread_info *tp;
252fbfc8 3294
c65d6b55
PA
3295 /* PTID was requested to stop. If the thread was already stopped,
3296 but the user/frontend doesn't know about that yet (e.g., the
3297 thread had been temporarily paused for some step-over), set up
3298 for reporting the stop now. */
c2829269
PA
3299 ALL_NON_EXITED_THREADS (tp)
3300 if (ptid_match (tp->ptid, ptid))
3301 {
c65d6b55
PA
3302 if (tp->state != THREAD_RUNNING)
3303 continue;
3304 if (tp->executing)
3305 continue;
3306
3307 /* Remove matching threads from the step-over queue, so
3308 start_step_over doesn't try to resume them
3309 automatically. */
c2829269
PA
3310 if (thread_is_in_step_over_chain (tp))
3311 thread_step_over_chain_remove (tp);
252fbfc8 3312
c65d6b55
PA
3313 /* If the thread is stopped, but the user/frontend doesn't
3314 know about that yet, queue a pending event, as if the
3315 thread had just stopped now. Unless the thread already had
3316 a pending event. */
3317 if (!tp->suspend.waitstatus_pending_p)
3318 {
3319 tp->suspend.waitstatus_pending_p = 1;
3320 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3321 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3322 }
3323
3324 /* Clear the inline-frame state, since we're re-processing the
3325 stop. */
3326 clear_inline_frame_state (tp->ptid);
3327
3328 /* If this thread was paused because some other thread was
3329 doing an inline-step over, let that finish first. Once
3330 that happens, we'll restart all threads and consume pending
3331 stop events then. */
3332 if (step_over_info_valid_p ())
3333 continue;
3334
3335 /* Otherwise we can process the (new) pending event now. Set
3336 it so this pending event is considered by
3337 do_target_wait. */
3338 tp->resumed = 1;
3339 }
252fbfc8
PA
3340}
3341
a07daef3
PA
3342static void
3343infrun_thread_thread_exit (struct thread_info *tp, int silent)
3344{
3345 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3346 nullify_last_target_wait_ptid ();
3347}
3348
0cbcdb96
PA
3349/* Delete the step resume, single-step and longjmp/exception resume
3350 breakpoints of TP. */
4e1c45ea 3351
0cbcdb96
PA
3352static void
3353delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3354{
0cbcdb96
PA
3355 delete_step_resume_breakpoint (tp);
3356 delete_exception_resume_breakpoint (tp);
34b7e8a6 3357 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3358}
3359
0cbcdb96
PA
3360/* If the target still has execution, call FUNC for each thread that
3361 just stopped. In all-stop, that's all the non-exited threads; in
3362 non-stop, that's the current thread, only. */
3363
3364typedef void (*for_each_just_stopped_thread_callback_func)
3365 (struct thread_info *tp);
4e1c45ea
PA
3366
3367static void
0cbcdb96 3368for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3369{
0cbcdb96 3370 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
4e1c45ea
PA
3371 return;
3372
fbea99ea 3373 if (target_is_non_stop_p ())
4e1c45ea 3374 {
0cbcdb96
PA
3375 /* If in non-stop mode, only the current thread stopped. */
3376 func (inferior_thread ());
4e1c45ea
PA
3377 }
3378 else
0cbcdb96
PA
3379 {
3380 struct thread_info *tp;
3381
3382 /* In all-stop mode, all threads have stopped. */
3383 ALL_NON_EXITED_THREADS (tp)
3384 {
3385 func (tp);
3386 }
3387 }
3388}
3389
3390/* Delete the step resume and longjmp/exception resume breakpoints of
3391 the threads that just stopped. */
3392
3393static void
3394delete_just_stopped_threads_infrun_breakpoints (void)
3395{
3396 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3397}
3398
3399/* Delete the single-step breakpoints of the threads that just
3400 stopped. */
7c16b83e 3401
34b7e8a6
PA
3402static void
3403delete_just_stopped_threads_single_step_breakpoints (void)
3404{
3405 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3406}
3407
1777feb0 3408/* A cleanup wrapper. */
4e1c45ea
PA
3409
3410static void
0cbcdb96 3411delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
4e1c45ea 3412{
0cbcdb96 3413 delete_just_stopped_threads_infrun_breakpoints ();
4e1c45ea
PA
3414}
3415
221e1a37 3416/* See infrun.h. */
223698f8 3417
221e1a37 3418void
223698f8
DE
3419print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3420 const struct target_waitstatus *ws)
3421{
23fdd69e 3422 std::string status_string = target_waitstatus_to_string (ws);
d7e74731 3423 string_file stb;
223698f8
DE
3424
3425 /* The text is split over several lines because it was getting too long.
3426 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3427 output as a unit; we want only one timestamp printed if debug_timestamp
3428 is set. */
3429
d7e74731
PA
3430 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3431 ptid_get_pid (waiton_ptid),
3432 ptid_get_lwp (waiton_ptid),
3433 ptid_get_tid (waiton_ptid));
dfd4cc63 3434 if (ptid_get_pid (waiton_ptid) != -1)
d7e74731
PA
3435 stb.printf (" [%s]", target_pid_to_str (waiton_ptid));
3436 stb.printf (", status) =\n");
3437 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3438 ptid_get_pid (result_ptid),
3439 ptid_get_lwp (result_ptid),
3440 ptid_get_tid (result_ptid),
3441 target_pid_to_str (result_ptid));
23fdd69e 3442 stb.printf ("infrun: %s\n", status_string.c_str ());
223698f8
DE
3443
3444 /* This uses %s in part to handle %'s in the text, but also to avoid
3445 a gcc error: the format attribute requires a string literal. */
d7e74731 3446 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3447}
3448
372316f1
PA
3449/* Select a thread at random, out of those which are resumed and have
3450 had events. */
3451
3452static struct thread_info *
3453random_pending_event_thread (ptid_t waiton_ptid)
3454{
3455 struct thread_info *event_tp;
3456 int num_events = 0;
3457 int random_selector;
3458
3459 /* First see how many events we have. Count only resumed threads
3460 that have an event pending. */
3461 ALL_NON_EXITED_THREADS (event_tp)
3462 if (ptid_match (event_tp->ptid, waiton_ptid)
3463 && event_tp->resumed
3464 && event_tp->suspend.waitstatus_pending_p)
3465 num_events++;
3466
3467 if (num_events == 0)
3468 return NULL;
3469
3470 /* Now randomly pick a thread out of those that have had events. */
3471 random_selector = (int)
3472 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3473
3474 if (debug_infrun && num_events > 1)
3475 fprintf_unfiltered (gdb_stdlog,
3476 "infrun: Found %d events, selecting #%d\n",
3477 num_events, random_selector);
3478
3479 /* Select the Nth thread that has had an event. */
3480 ALL_NON_EXITED_THREADS (event_tp)
3481 if (ptid_match (event_tp->ptid, waiton_ptid)
3482 && event_tp->resumed
3483 && event_tp->suspend.waitstatus_pending_p)
3484 if (random_selector-- == 0)
3485 break;
3486
3487 return event_tp;
3488}
3489
3490/* Wrapper for target_wait that first checks whether threads have
3491 pending statuses to report before actually asking the target for
3492 more events. */
3493
3494static ptid_t
3495do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3496{
3497 ptid_t event_ptid;
3498 struct thread_info *tp;
3499
3500 /* First check if there is a resumed thread with a wait status
3501 pending. */
3502 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3503 {
3504 tp = random_pending_event_thread (ptid);
3505 }
3506 else
3507 {
3508 if (debug_infrun)
3509 fprintf_unfiltered (gdb_stdlog,
3510 "infrun: Waiting for specific thread %s.\n",
3511 target_pid_to_str (ptid));
3512
3513 /* We have a specific thread to check. */
3514 tp = find_thread_ptid (ptid);
3515 gdb_assert (tp != NULL);
3516 if (!tp->suspend.waitstatus_pending_p)
3517 tp = NULL;
3518 }
3519
3520 if (tp != NULL
3521 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3522 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3523 {
3524 struct regcache *regcache = get_thread_regcache (tp->ptid);
ac7936df 3525 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3526 CORE_ADDR pc;
3527 int discard = 0;
3528
3529 pc = regcache_read_pc (regcache);
3530
3531 if (pc != tp->suspend.stop_pc)
3532 {
3533 if (debug_infrun)
3534 fprintf_unfiltered (gdb_stdlog,
3535 "infrun: PC of %s changed. was=%s, now=%s\n",
3536 target_pid_to_str (tp->ptid),
3537 paddress (gdbarch, tp->prev_pc),
3538 paddress (gdbarch, pc));
3539 discard = 1;
3540 }
a01bda52 3541 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1
PA
3542 {
3543 if (debug_infrun)
3544 fprintf_unfiltered (gdb_stdlog,
3545 "infrun: previous breakpoint of %s, at %s gone\n",
3546 target_pid_to_str (tp->ptid),
3547 paddress (gdbarch, pc));
3548
3549 discard = 1;
3550 }
3551
3552 if (discard)
3553 {
3554 if (debug_infrun)
3555 fprintf_unfiltered (gdb_stdlog,
3556 "infrun: pending event of %s cancelled.\n",
3557 target_pid_to_str (tp->ptid));
3558
3559 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3560 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3561 }
3562 }
3563
3564 if (tp != NULL)
3565 {
3566 if (debug_infrun)
3567 {
23fdd69e
SM
3568 std::string statstr
3569 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 3570
372316f1
PA
3571 fprintf_unfiltered (gdb_stdlog,
3572 "infrun: Using pending wait status %s for %s.\n",
23fdd69e 3573 statstr.c_str (),
372316f1 3574 target_pid_to_str (tp->ptid));
372316f1
PA
3575 }
3576
3577 /* Now that we've selected our final event LWP, un-adjust its PC
3578 if it was a software breakpoint (and the target doesn't
3579 always adjust the PC itself). */
3580 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3581 && !target_supports_stopped_by_sw_breakpoint ())
3582 {
3583 struct regcache *regcache;
3584 struct gdbarch *gdbarch;
3585 int decr_pc;
3586
3587 regcache = get_thread_regcache (tp->ptid);
ac7936df 3588 gdbarch = regcache->arch ();
372316f1
PA
3589
3590 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3591 if (decr_pc != 0)
3592 {
3593 CORE_ADDR pc;
3594
3595 pc = regcache_read_pc (regcache);
3596 regcache_write_pc (regcache, pc + decr_pc);
3597 }
3598 }
3599
3600 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3601 *status = tp->suspend.waitstatus;
3602 tp->suspend.waitstatus_pending_p = 0;
3603
3604 /* Wake up the event loop again, until all pending events are
3605 processed. */
3606 if (target_is_async_p ())
3607 mark_async_event_handler (infrun_async_inferior_event_token);
3608 return tp->ptid;
3609 }
3610
3611 /* But if we don't find one, we'll have to wait. */
3612
3613 if (deprecated_target_wait_hook)
3614 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3615 else
3616 event_ptid = target_wait (ptid, status, options);
3617
3618 return event_ptid;
3619}
3620
24291992
PA
3621/* Prepare and stabilize the inferior for detaching it. E.g.,
3622 detaching while a thread is displaced stepping is a recipe for
3623 crashing it, as nothing would readjust the PC out of the scratch
3624 pad. */
3625
3626void
3627prepare_for_detach (void)
3628{
3629 struct inferior *inf = current_inferior ();
3630 ptid_t pid_ptid = pid_to_ptid (inf->pid);
24291992
PA
3631 struct displaced_step_inferior_state *displaced;
3632
3633 displaced = get_displaced_stepping_state (inf->pid);
3634
3635 /* Is any thread of this process displaced stepping? If not,
3636 there's nothing else to do. */
3637 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3638 return;
3639
3640 if (debug_infrun)
3641 fprintf_unfiltered (gdb_stdlog,
3642 "displaced-stepping in-process while detaching");
3643
9bcb1f16 3644 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992
PA
3645
3646 while (!ptid_equal (displaced->step_ptid, null_ptid))
3647 {
3648 struct cleanup *old_chain_2;
3649 struct execution_control_state ecss;
3650 struct execution_control_state *ecs;
3651
3652 ecs = &ecss;
3653 memset (ecs, 0, sizeof (*ecs));
3654
3655 overlay_cache_invalid = 1;
f15cb84a
YQ
3656 /* Flush target cache before starting to handle each event.
3657 Target was running and cache could be stale. This is just a
3658 heuristic. Running threads may modify target memory, but we
3659 don't get any event. */
3660 target_dcache_invalidate ();
24291992 3661
372316f1 3662 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3663
3664 if (debug_infrun)
3665 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3666
3667 /* If an error happens while handling the event, propagate GDB's
3668 knowledge of the executing state to the frontend/user running
3669 state. */
3e43a32a
MS
3670 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3671 &minus_one_ptid);
24291992
PA
3672
3673 /* Now figure out what to do with the result of the result. */
3674 handle_inferior_event (ecs);
3675
3676 /* No error, don't finish the state yet. */
3677 discard_cleanups (old_chain_2);
3678
3679 /* Breakpoints and watchpoints are not installed on the target
3680 at this point, and signals are passed directly to the
3681 inferior, so this must mean the process is gone. */
3682 if (!ecs->wait_some_more)
3683 {
9bcb1f16 3684 restore_detaching.release ();
24291992
PA
3685 error (_("Program exited while detaching"));
3686 }
3687 }
3688
9bcb1f16 3689 restore_detaching.release ();
24291992
PA
3690}
3691
cd0fc7c3 3692/* Wait for control to return from inferior to debugger.
ae123ec6 3693
cd0fc7c3
SS
3694 If inferior gets a signal, we may decide to start it up again
3695 instead of returning. That is why there is a loop in this function.
3696 When this function actually returns it means the inferior
3697 should be left stopped and GDB should read more commands. */
3698
3699void
e4c8541f 3700wait_for_inferior (void)
cd0fc7c3
SS
3701{
3702 struct cleanup *old_cleanups;
e6f5c25b 3703 struct cleanup *thread_state_chain;
c906108c 3704
527159b7 3705 if (debug_infrun)
ae123ec6 3706 fprintf_unfiltered
e4c8541f 3707 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3708
0cbcdb96
PA
3709 old_cleanups
3710 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3711 NULL);
cd0fc7c3 3712
e6f5c25b
PA
3713 /* If an error happens while handling the event, propagate GDB's
3714 knowledge of the executing state to the frontend/user running
3715 state. */
3716 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3717
c906108c
SS
3718 while (1)
3719 {
ae25568b
PA
3720 struct execution_control_state ecss;
3721 struct execution_control_state *ecs = &ecss;
963f9c80 3722 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3723
ae25568b
PA
3724 memset (ecs, 0, sizeof (*ecs));
3725
ec9499be 3726 overlay_cache_invalid = 1;
ec9499be 3727
f15cb84a
YQ
3728 /* Flush target cache before starting to handle each event.
3729 Target was running and cache could be stale. This is just a
3730 heuristic. Running threads may modify target memory, but we
3731 don't get any event. */
3732 target_dcache_invalidate ();
3733
372316f1 3734 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3735
f00150c9 3736 if (debug_infrun)
223698f8 3737 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3738
cd0fc7c3
SS
3739 /* Now figure out what to do with the result of the result. */
3740 handle_inferior_event (ecs);
c906108c 3741
cd0fc7c3
SS
3742 if (!ecs->wait_some_more)
3743 break;
3744 }
4e1c45ea 3745
e6f5c25b
PA
3746 /* No error, don't finish the state yet. */
3747 discard_cleanups (thread_state_chain);
3748
cd0fc7c3
SS
3749 do_cleanups (old_cleanups);
3750}
c906108c 3751
d3d4baed
PA
3752/* Cleanup that reinstalls the readline callback handler, if the
3753 target is running in the background. If while handling the target
3754 event something triggered a secondary prompt, like e.g., a
3755 pagination prompt, we'll have removed the callback handler (see
3756 gdb_readline_wrapper_line). Need to do this as we go back to the
3757 event loop, ready to process further input. Note this has no
3758 effect if the handler hasn't actually been removed, because calling
3759 rl_callback_handler_install resets the line buffer, thus losing
3760 input. */
3761
3762static void
3763reinstall_readline_callback_handler_cleanup (void *arg)
3764{
3b12939d
PA
3765 struct ui *ui = current_ui;
3766
3767 if (!ui->async)
6c400b59
PA
3768 {
3769 /* We're not going back to the top level event loop yet. Don't
3770 install the readline callback, as it'd prep the terminal,
3771 readline-style (raw, noecho) (e.g., --batch). We'll install
3772 it the next time the prompt is displayed, when we're ready
3773 for input. */
3774 return;
3775 }
3776
3b12939d 3777 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3778 gdb_rl_callback_handler_reinstall ();
3779}
3780
243a9253
PA
3781/* Clean up the FSMs of threads that are now stopped. In non-stop,
3782 that's just the event thread. In all-stop, that's all threads. */
3783
3784static void
3785clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3786{
3787 struct thread_info *thr = ecs->event_thread;
3788
3789 if (thr != NULL && thr->thread_fsm != NULL)
8980e177 3790 thread_fsm_clean_up (thr->thread_fsm, thr);
243a9253
PA
3791
3792 if (!non_stop)
3793 {
3794 ALL_NON_EXITED_THREADS (thr)
3795 {
3796 if (thr->thread_fsm == NULL)
3797 continue;
3798 if (thr == ecs->event_thread)
3799 continue;
3800
3801 switch_to_thread (thr->ptid);
8980e177 3802 thread_fsm_clean_up (thr->thread_fsm, thr);
243a9253
PA
3803 }
3804
3805 if (ecs->event_thread != NULL)
3806 switch_to_thread (ecs->event_thread->ptid);
3807 }
3808}
3809
3b12939d
PA
3810/* Helper for all_uis_check_sync_execution_done that works on the
3811 current UI. */
3812
3813static void
3814check_curr_ui_sync_execution_done (void)
3815{
3816 struct ui *ui = current_ui;
3817
3818 if (ui->prompt_state == PROMPT_NEEDED
3819 && ui->async
3820 && !gdb_in_secondary_prompt_p (ui))
3821 {
223ffa71 3822 target_terminal::ours ();
3b12939d 3823 observer_notify_sync_execution_done ();
3eb7562a 3824 ui_register_input_event_handler (ui);
3b12939d
PA
3825 }
3826}
3827
3828/* See infrun.h. */
3829
3830void
3831all_uis_check_sync_execution_done (void)
3832{
0e454242 3833 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3834 {
3835 check_curr_ui_sync_execution_done ();
3836 }
3837}
3838
a8836c93
PA
3839/* See infrun.h. */
3840
3841void
3842all_uis_on_sync_execution_starting (void)
3843{
0e454242 3844 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3845 {
3846 if (current_ui->prompt_state == PROMPT_NEEDED)
3847 async_disable_stdin ();
3848 }
3849}
3850
1777feb0 3851/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3852 event loop whenever a change of state is detected on the file
1777feb0
MS
3853 descriptor corresponding to the target. It can be called more than
3854 once to complete a single execution command. In such cases we need
3855 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3856 that this function is called for a single execution command, then
3857 report to the user that the inferior has stopped, and do the
1777feb0 3858 necessary cleanups. */
43ff13b4
JM
3859
3860void
fba45db2 3861fetch_inferior_event (void *client_data)
43ff13b4 3862{
0d1e5fa7 3863 struct execution_control_state ecss;
a474d7c2 3864 struct execution_control_state *ecs = &ecss;
4f8d22e3 3865 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 3866 struct cleanup *ts_old_chain;
0f641c01 3867 int cmd_done = 0;
963f9c80 3868 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3869
0d1e5fa7
PA
3870 memset (ecs, 0, sizeof (*ecs));
3871
c61db772
PA
3872 /* Events are always processed with the main UI as current UI. This
3873 way, warnings, debug output, etc. are always consistently sent to
3874 the main console. */
4b6749b9 3875 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3876
d3d4baed
PA
3877 /* End up with readline processing input, if necessary. */
3878 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3879
c5187ac6
PA
3880 /* We're handling a live event, so make sure we're doing live
3881 debugging. If we're looking at traceframes while the target is
3882 running, we're going to need to get back to that mode after
3883 handling the event. */
3884 if (non_stop)
3885 {
3886 make_cleanup_restore_current_traceframe ();
e6e4e701 3887 set_current_traceframe (-1);
c5187ac6
PA
3888 }
3889
5ed8105e
PA
3890 gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3891
4f8d22e3
PA
3892 if (non_stop)
3893 /* In non-stop mode, the user/frontend should not notice a thread
3894 switch due to internal events. Make sure we reverse to the
3895 user selected thread and frame after handling the event and
3896 running any breakpoint commands. */
5ed8105e 3897 maybe_restore_thread.emplace ();
4f8d22e3 3898
ec9499be 3899 overlay_cache_invalid = 1;
f15cb84a
YQ
3900 /* Flush target cache before starting to handle each event. Target
3901 was running and cache could be stale. This is just a heuristic.
3902 Running threads may modify target memory, but we don't get any
3903 event. */
3904 target_dcache_invalidate ();
3dd5b83d 3905
b7b633e9
TT
3906 scoped_restore save_exec_dir
3907 = make_scoped_restore (&execution_direction, target_execution_direction ());
32231432 3908
0b333c5e
PA
3909 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3910 target_can_async_p () ? TARGET_WNOHANG : 0);
43ff13b4 3911
f00150c9 3912 if (debug_infrun)
223698f8 3913 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3914
29f49a6a
PA
3915 /* If an error happens while handling the event, propagate GDB's
3916 knowledge of the executing state to the frontend/user running
3917 state. */
fbea99ea 3918 if (!target_is_non_stop_p ())
29f49a6a
PA
3919 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3920 else
3921 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3922
353d1d73
JK
3923 /* Get executed before make_cleanup_restore_current_thread above to apply
3924 still for the thread which has thrown the exception. */
3925 make_bpstat_clear_actions_cleanup ();
3926
7c16b83e
PA
3927 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3928
43ff13b4 3929 /* Now figure out what to do with the result of the result. */
a474d7c2 3930 handle_inferior_event (ecs);
43ff13b4 3931
a474d7c2 3932 if (!ecs->wait_some_more)
43ff13b4 3933 {
c9657e70 3934 struct inferior *inf = find_inferior_ptid (ecs->ptid);
243a9253
PA
3935 int should_stop = 1;
3936 struct thread_info *thr = ecs->event_thread;
388a7084 3937 int should_notify_stop = 1;
d6b48e9c 3938
0cbcdb96 3939 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3940
243a9253
PA
3941 if (thr != NULL)
3942 {
3943 struct thread_fsm *thread_fsm = thr->thread_fsm;
3944
3945 if (thread_fsm != NULL)
8980e177 3946 should_stop = thread_fsm_should_stop (thread_fsm, thr);
243a9253
PA
3947 }
3948
3949 if (!should_stop)
3950 {
3951 keep_going (ecs);
3952 }
c2d11a7d 3953 else
0f641c01 3954 {
243a9253
PA
3955 clean_up_just_stopped_threads_fsms (ecs);
3956
388a7084
PA
3957 if (thr != NULL && thr->thread_fsm != NULL)
3958 {
3959 should_notify_stop
3960 = thread_fsm_should_notify_stop (thr->thread_fsm);
3961 }
3962
3963 if (should_notify_stop)
3964 {
4c2f2a79
PA
3965 int proceeded = 0;
3966
388a7084
PA
3967 /* We may not find an inferior if this was a process exit. */
3968 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4c2f2a79 3969 proceeded = normal_stop ();
243a9253 3970
4c2f2a79
PA
3971 if (!proceeded)
3972 {
3973 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3974 cmd_done = 1;
3975 }
388a7084 3976 }
0f641c01 3977 }
43ff13b4 3978 }
4f8d22e3 3979
29f49a6a
PA
3980 /* No error, don't finish the thread states yet. */
3981 discard_cleanups (ts_old_chain);
3982
4f8d22e3
PA
3983 /* Revert thread and frame. */
3984 do_cleanups (old_chain);
3985
3b12939d
PA
3986 /* If a UI was in sync execution mode, and now isn't, restore its
3987 prompt (a synchronous execution command has finished, and we're
3988 ready for input). */
3989 all_uis_check_sync_execution_done ();
0f641c01
PA
3990
3991 if (cmd_done
0f641c01
PA
3992 && exec_done_display_p
3993 && (ptid_equal (inferior_ptid, null_ptid)
3994 || !is_running (inferior_ptid)))
3995 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3996}
3997
edb3359d
DJ
3998/* Record the frame and location we're currently stepping through. */
3999void
4000set_step_info (struct frame_info *frame, struct symtab_and_line sal)
4001{
4002 struct thread_info *tp = inferior_thread ();
4003
16c381f0
JK
4004 tp->control.step_frame_id = get_frame_id (frame);
4005 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
4006
4007 tp->current_symtab = sal.symtab;
4008 tp->current_line = sal.line;
4009}
4010
0d1e5fa7
PA
4011/* Clear context switchable stepping state. */
4012
4013void
4e1c45ea 4014init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 4015{
7f5ef605 4016 tss->stepped_breakpoint = 0;
0d1e5fa7 4017 tss->stepping_over_breakpoint = 0;
963f9c80 4018 tss->stepping_over_watchpoint = 0;
0d1e5fa7 4019 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
4020}
4021
c32c64b7
DE
4022/* Set the cached copy of the last ptid/waitstatus. */
4023
6efcd9a8 4024void
c32c64b7
DE
4025set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4026{
4027 target_last_wait_ptid = ptid;
4028 target_last_waitstatus = status;
4029}
4030
e02bc4cc 4031/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
4032 target_wait()/deprecated_target_wait_hook(). The data is actually
4033 cached by handle_inferior_event(), which gets called immediately
4034 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
4035
4036void
488f131b 4037get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 4038{
39f77062 4039 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
4040 *status = target_last_waitstatus;
4041}
4042
ac264b3b
MS
4043void
4044nullify_last_target_wait_ptid (void)
4045{
4046 target_last_wait_ptid = minus_one_ptid;
4047}
4048
dcf4fbde 4049/* Switch thread contexts. */
dd80620e
MS
4050
4051static void
0d1e5fa7 4052context_switch (ptid_t ptid)
dd80620e 4053{
4b51d87b 4054 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
4055 {
4056 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4057 target_pid_to_str (inferior_ptid));
4058 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 4059 target_pid_to_str (ptid));
fd48f117
DJ
4060 }
4061
0d1e5fa7 4062 switch_to_thread (ptid);
dd80620e
MS
4063}
4064
d8dd4d5f
PA
4065/* If the target can't tell whether we've hit breakpoints
4066 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4067 check whether that could have been caused by a breakpoint. If so,
4068 adjust the PC, per gdbarch_decr_pc_after_break. */
4069
4fa8626c 4070static void
d8dd4d5f
PA
4071adjust_pc_after_break (struct thread_info *thread,
4072 struct target_waitstatus *ws)
4fa8626c 4073{
24a73cce
UW
4074 struct regcache *regcache;
4075 struct gdbarch *gdbarch;
118e6252 4076 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4077
4fa8626c
DJ
4078 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4079 we aren't, just return.
9709f61c
DJ
4080
4081 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4082 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4083 implemented by software breakpoints should be handled through the normal
4084 breakpoint layer.
8fb3e588 4085
4fa8626c
DJ
4086 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4087 different signals (SIGILL or SIGEMT for instance), but it is less
4088 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4089 gdbarch_decr_pc_after_break. I don't know any specific target that
4090 generates these signals at breakpoints (the code has been in GDB since at
4091 least 1992) so I can not guess how to handle them here.
8fb3e588 4092
e6cf7916
UW
4093 In earlier versions of GDB, a target with
4094 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4095 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4096 target with both of these set in GDB history, and it seems unlikely to be
4097 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4098
d8dd4d5f 4099 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4100 return;
4101
d8dd4d5f 4102 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4103 return;
4104
4058b839
PA
4105 /* In reverse execution, when a breakpoint is hit, the instruction
4106 under it has already been de-executed. The reported PC always
4107 points at the breakpoint address, so adjusting it further would
4108 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4109 architecture:
4110
4111 B1 0x08000000 : INSN1
4112 B2 0x08000001 : INSN2
4113 0x08000002 : INSN3
4114 PC -> 0x08000003 : INSN4
4115
4116 Say you're stopped at 0x08000003 as above. Reverse continuing
4117 from that point should hit B2 as below. Reading the PC when the
4118 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4119 been de-executed already.
4120
4121 B1 0x08000000 : INSN1
4122 B2 PC -> 0x08000001 : INSN2
4123 0x08000002 : INSN3
4124 0x08000003 : INSN4
4125
4126 We can't apply the same logic as for forward execution, because
4127 we would wrongly adjust the PC to 0x08000000, since there's a
4128 breakpoint at PC - 1. We'd then report a hit on B1, although
4129 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4130 behaviour. */
4131 if (execution_direction == EXEC_REVERSE)
4132 return;
4133
1cf4d951
PA
4134 /* If the target can tell whether the thread hit a SW breakpoint,
4135 trust it. Targets that can tell also adjust the PC
4136 themselves. */
4137 if (target_supports_stopped_by_sw_breakpoint ())
4138 return;
4139
4140 /* Note that relying on whether a breakpoint is planted in memory to
4141 determine this can fail. E.g,. the breakpoint could have been
4142 removed since. Or the thread could have been told to step an
4143 instruction the size of a breakpoint instruction, and only
4144 _after_ was a breakpoint inserted at its address. */
4145
24a73cce
UW
4146 /* If this target does not decrement the PC after breakpoints, then
4147 we have nothing to do. */
d8dd4d5f 4148 regcache = get_thread_regcache (thread->ptid);
ac7936df 4149 gdbarch = regcache->arch ();
118e6252 4150
527a273a 4151 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4152 if (decr_pc == 0)
24a73cce
UW
4153 return;
4154
8b86c959 4155 const address_space *aspace = regcache->aspace ();
6c95b8df 4156
8aad930b
AC
4157 /* Find the location where (if we've hit a breakpoint) the
4158 breakpoint would be. */
118e6252 4159 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4160
1cf4d951
PA
4161 /* If the target can't tell whether a software breakpoint triggered,
4162 fallback to figuring it out based on breakpoints we think were
4163 inserted in the target, and on whether the thread was stepped or
4164 continued. */
4165
1c5cfe86
PA
4166 /* Check whether there actually is a software breakpoint inserted at
4167 that location.
4168
4169 If in non-stop mode, a race condition is possible where we've
4170 removed a breakpoint, but stop events for that breakpoint were
4171 already queued and arrive later. To suppress those spurious
4172 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4173 and retire them after a number of stop events are reported. Note
4174 this is an heuristic and can thus get confused. The real fix is
4175 to get the "stopped by SW BP and needs adjustment" info out of
4176 the target/kernel (and thus never reach here; see above). */
6c95b8df 4177 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4178 || (target_is_non_stop_p ()
4179 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4180 {
07036511 4181 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 4182
8213266a 4183 if (record_full_is_used ())
07036511
TT
4184 restore_operation_disable.emplace
4185 (record_full_gdb_operation_disable_set ());
96429cc8 4186
1c0fdd0e
UW
4187 /* When using hardware single-step, a SIGTRAP is reported for both
4188 a completed single-step and a software breakpoint. Need to
4189 differentiate between the two, as the latter needs adjusting
4190 but the former does not.
4191
4192 The SIGTRAP can be due to a completed hardware single-step only if
4193 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4194 - this thread is currently being stepped
4195
4196 If any of these events did not occur, we must have stopped due
4197 to hitting a software breakpoint, and have to back up to the
4198 breakpoint address.
4199
4200 As a special case, we could have hardware single-stepped a
4201 software breakpoint. In this case (prev_pc == breakpoint_pc),
4202 we also need to back up to the breakpoint address. */
4203
d8dd4d5f
PA
4204 if (thread_has_single_step_breakpoints_set (thread)
4205 || !currently_stepping (thread)
4206 || (thread->stepped_breakpoint
4207 && thread->prev_pc == breakpoint_pc))
515630c5 4208 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4209 }
4fa8626c
DJ
4210}
4211
edb3359d
DJ
4212static int
4213stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4214{
4215 for (frame = get_prev_frame (frame);
4216 frame != NULL;
4217 frame = get_prev_frame (frame))
4218 {
4219 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4220 return 1;
4221 if (get_frame_type (frame) != INLINE_FRAME)
4222 break;
4223 }
4224
4225 return 0;
4226}
4227
c65d6b55
PA
4228/* If the event thread has the stop requested flag set, pretend it
4229 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4230 target_stop). */
4231
4232static bool
4233handle_stop_requested (struct execution_control_state *ecs)
4234{
4235 if (ecs->event_thread->stop_requested)
4236 {
4237 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4238 ecs->ws.value.sig = GDB_SIGNAL_0;
4239 handle_signal_stop (ecs);
4240 return true;
4241 }
4242 return false;
4243}
4244
a96d9b2e
SDJ
4245/* Auxiliary function that handles syscall entry/return events.
4246 It returns 1 if the inferior should keep going (and GDB
4247 should ignore the event), or 0 if the event deserves to be
4248 processed. */
ca2163eb 4249
a96d9b2e 4250static int
ca2163eb 4251handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4252{
ca2163eb 4253 struct regcache *regcache;
ca2163eb
PA
4254 int syscall_number;
4255
4256 if (!ptid_equal (ecs->ptid, inferior_ptid))
4257 context_switch (ecs->ptid);
4258
4259 regcache = get_thread_regcache (ecs->ptid);
f90263c1 4260 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
4261 stop_pc = regcache_read_pc (regcache);
4262
a96d9b2e
SDJ
4263 if (catch_syscall_enabled () > 0
4264 && catching_syscall_number (syscall_number) > 0)
4265 {
4266 if (debug_infrun)
4267 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4268 syscall_number);
a96d9b2e 4269
16c381f0 4270 ecs->event_thread->control.stop_bpstat
a01bda52 4271 = bpstat_stop_status (regcache->aspace (),
09ac7c10 4272 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4273
c65d6b55
PA
4274 if (handle_stop_requested (ecs))
4275 return 0;
4276
ce12b012 4277 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4278 {
4279 /* Catchpoint hit. */
ca2163eb
PA
4280 return 0;
4281 }
a96d9b2e 4282 }
ca2163eb 4283
c65d6b55
PA
4284 if (handle_stop_requested (ecs))
4285 return 0;
4286
ca2163eb 4287 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4288 keep_going (ecs);
4289 return 1;
a96d9b2e
SDJ
4290}
4291
7e324e48
GB
4292/* Lazily fill in the execution_control_state's stop_func_* fields. */
4293
4294static void
4295fill_in_stop_func (struct gdbarch *gdbarch,
4296 struct execution_control_state *ecs)
4297{
4298 if (!ecs->stop_func_filled_in)
4299 {
4300 /* Don't care about return value; stop_func_start and stop_func_name
4301 will both be 0 if it doesn't work. */
4302 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4303 &ecs->stop_func_start, &ecs->stop_func_end);
4304 ecs->stop_func_start
4305 += gdbarch_deprecated_function_start_offset (gdbarch);
4306
591a12a1
UW
4307 if (gdbarch_skip_entrypoint_p (gdbarch))
4308 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4309 ecs->stop_func_start);
4310
7e324e48
GB
4311 ecs->stop_func_filled_in = 1;
4312 }
4313}
4314
4f5d7f63
PA
4315
4316/* Return the STOP_SOON field of the inferior pointed at by PTID. */
4317
4318static enum stop_kind
4319get_inferior_stop_soon (ptid_t ptid)
4320{
c9657e70 4321 struct inferior *inf = find_inferior_ptid (ptid);
4f5d7f63
PA
4322
4323 gdb_assert (inf != NULL);
4324 return inf->control.stop_soon;
4325}
4326
372316f1
PA
4327/* Wait for one event. Store the resulting waitstatus in WS, and
4328 return the event ptid. */
4329
4330static ptid_t
4331wait_one (struct target_waitstatus *ws)
4332{
4333 ptid_t event_ptid;
4334 ptid_t wait_ptid = minus_one_ptid;
4335
4336 overlay_cache_invalid = 1;
4337
4338 /* Flush target cache before starting to handle each event.
4339 Target was running and cache could be stale. This is just a
4340 heuristic. Running threads may modify target memory, but we
4341 don't get any event. */
4342 target_dcache_invalidate ();
4343
4344 if (deprecated_target_wait_hook)
4345 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4346 else
4347 event_ptid = target_wait (wait_ptid, ws, 0);
4348
4349 if (debug_infrun)
4350 print_target_wait_results (wait_ptid, event_ptid, ws);
4351
4352 return event_ptid;
4353}
4354
4355/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4356 instead of the current thread. */
4357#define THREAD_STOPPED_BY(REASON) \
4358static int \
4359thread_stopped_by_ ## REASON (ptid_t ptid) \
4360{ \
2989a365 4361 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
372316f1
PA
4362 inferior_ptid = ptid; \
4363 \
2989a365 4364 return target_stopped_by_ ## REASON (); \
372316f1
PA
4365}
4366
4367/* Generate thread_stopped_by_watchpoint. */
4368THREAD_STOPPED_BY (watchpoint)
4369/* Generate thread_stopped_by_sw_breakpoint. */
4370THREAD_STOPPED_BY (sw_breakpoint)
4371/* Generate thread_stopped_by_hw_breakpoint. */
4372THREAD_STOPPED_BY (hw_breakpoint)
4373
4374/* Cleanups that switches to the PTID pointed at by PTID_P. */
4375
4376static void
4377switch_to_thread_cleanup (void *ptid_p)
4378{
4379 ptid_t ptid = *(ptid_t *) ptid_p;
4380
4381 switch_to_thread (ptid);
4382}
4383
4384/* Save the thread's event and stop reason to process it later. */
4385
4386static void
4387save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4388{
4389 struct regcache *regcache;
372316f1
PA
4390
4391 if (debug_infrun)
4392 {
23fdd69e 4393 std::string statstr = target_waitstatus_to_string (ws);
372316f1 4394
372316f1
PA
4395 fprintf_unfiltered (gdb_stdlog,
4396 "infrun: saving status %s for %d.%ld.%ld\n",
23fdd69e 4397 statstr.c_str (),
372316f1
PA
4398 ptid_get_pid (tp->ptid),
4399 ptid_get_lwp (tp->ptid),
4400 ptid_get_tid (tp->ptid));
372316f1
PA
4401 }
4402
4403 /* Record for later. */
4404 tp->suspend.waitstatus = *ws;
4405 tp->suspend.waitstatus_pending_p = 1;
4406
4407 regcache = get_thread_regcache (tp->ptid);
8b86c959 4408 const address_space *aspace = regcache->aspace ();
372316f1
PA
4409
4410 if (ws->kind == TARGET_WAITKIND_STOPPED
4411 && ws->value.sig == GDB_SIGNAL_TRAP)
4412 {
4413 CORE_ADDR pc = regcache_read_pc (regcache);
4414
4415 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4416
4417 if (thread_stopped_by_watchpoint (tp->ptid))
4418 {
4419 tp->suspend.stop_reason
4420 = TARGET_STOPPED_BY_WATCHPOINT;
4421 }
4422 else if (target_supports_stopped_by_sw_breakpoint ()
4423 && thread_stopped_by_sw_breakpoint (tp->ptid))
4424 {
4425 tp->suspend.stop_reason
4426 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4427 }
4428 else if (target_supports_stopped_by_hw_breakpoint ()
4429 && thread_stopped_by_hw_breakpoint (tp->ptid))
4430 {
4431 tp->suspend.stop_reason
4432 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4433 }
4434 else if (!target_supports_stopped_by_hw_breakpoint ()
4435 && hardware_breakpoint_inserted_here_p (aspace,
4436 pc))
4437 {
4438 tp->suspend.stop_reason
4439 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4440 }
4441 else if (!target_supports_stopped_by_sw_breakpoint ()
4442 && software_breakpoint_inserted_here_p (aspace,
4443 pc))
4444 {
4445 tp->suspend.stop_reason
4446 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4447 }
4448 else if (!thread_has_single_step_breakpoints_set (tp)
4449 && currently_stepping (tp))
4450 {
4451 tp->suspend.stop_reason
4452 = TARGET_STOPPED_BY_SINGLE_STEP;
4453 }
4454 }
4455}
4456
65706a29
PA
4457/* A cleanup that disables thread create/exit events. */
4458
4459static void
4460disable_thread_events (void *arg)
4461{
4462 target_thread_events (0);
4463}
4464
6efcd9a8 4465/* See infrun.h. */
372316f1 4466
6efcd9a8 4467void
372316f1
PA
4468stop_all_threads (void)
4469{
4470 /* We may need multiple passes to discover all threads. */
4471 int pass;
4472 int iterations = 0;
4473 ptid_t entry_ptid;
4474 struct cleanup *old_chain;
4475
fbea99ea 4476 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4477
4478 if (debug_infrun)
4479 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4480
4481 entry_ptid = inferior_ptid;
4482 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4483
65706a29
PA
4484 target_thread_events (1);
4485 make_cleanup (disable_thread_events, NULL);
4486
372316f1
PA
4487 /* Request threads to stop, and then wait for the stops. Because
4488 threads we already know about can spawn more threads while we're
4489 trying to stop them, and we only learn about new threads when we
4490 update the thread list, do this in a loop, and keep iterating
4491 until two passes find no threads that need to be stopped. */
4492 for (pass = 0; pass < 2; pass++, iterations++)
4493 {
4494 if (debug_infrun)
4495 fprintf_unfiltered (gdb_stdlog,
4496 "infrun: stop_all_threads, pass=%d, "
4497 "iterations=%d\n", pass, iterations);
4498 while (1)
4499 {
4500 ptid_t event_ptid;
4501 struct target_waitstatus ws;
4502 int need_wait = 0;
4503 struct thread_info *t;
4504
4505 update_thread_list ();
4506
4507 /* Go through all threads looking for threads that we need
4508 to tell the target to stop. */
4509 ALL_NON_EXITED_THREADS (t)
4510 {
4511 if (t->executing)
4512 {
4513 /* If already stopping, don't request a stop again.
4514 We just haven't seen the notification yet. */
4515 if (!t->stop_requested)
4516 {
4517 if (debug_infrun)
4518 fprintf_unfiltered (gdb_stdlog,
4519 "infrun: %s executing, "
4520 "need stop\n",
4521 target_pid_to_str (t->ptid));
4522 target_stop (t->ptid);
4523 t->stop_requested = 1;
4524 }
4525 else
4526 {
4527 if (debug_infrun)
4528 fprintf_unfiltered (gdb_stdlog,
4529 "infrun: %s executing, "
4530 "already stopping\n",
4531 target_pid_to_str (t->ptid));
4532 }
4533
4534 if (t->stop_requested)
4535 need_wait = 1;
4536 }
4537 else
4538 {
4539 if (debug_infrun)
4540 fprintf_unfiltered (gdb_stdlog,
4541 "infrun: %s not executing\n",
4542 target_pid_to_str (t->ptid));
4543
4544 /* The thread may be not executing, but still be
4545 resumed with a pending status to process. */
4546 t->resumed = 0;
4547 }
4548 }
4549
4550 if (!need_wait)
4551 break;
4552
4553 /* If we find new threads on the second iteration, restart
4554 over. We want to see two iterations in a row with all
4555 threads stopped. */
4556 if (pass > 0)
4557 pass = -1;
4558
4559 event_ptid = wait_one (&ws);
4560 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4561 {
4562 /* All resumed threads exited. */
4563 }
65706a29
PA
4564 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4565 || ws.kind == TARGET_WAITKIND_EXITED
372316f1
PA
4566 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4567 {
4568 if (debug_infrun)
4569 {
4570 ptid_t ptid = pid_to_ptid (ws.value.integer);
4571
4572 fprintf_unfiltered (gdb_stdlog,
4573 "infrun: %s exited while "
4574 "stopping threads\n",
4575 target_pid_to_str (ptid));
4576 }
4577 }
4578 else
4579 {
6efcd9a8
PA
4580 struct inferior *inf;
4581
372316f1
PA
4582 t = find_thread_ptid (event_ptid);
4583 if (t == NULL)
4584 t = add_thread (event_ptid);
4585
4586 t->stop_requested = 0;
4587 t->executing = 0;
4588 t->resumed = 0;
4589 t->control.may_range_step = 0;
4590
6efcd9a8
PA
4591 /* This may be the first time we see the inferior report
4592 a stop. */
4593 inf = find_inferior_ptid (event_ptid);
4594 if (inf->needs_setup)
4595 {
4596 switch_to_thread_no_regs (t);
4597 setup_inferior (0);
4598 }
4599
372316f1
PA
4600 if (ws.kind == TARGET_WAITKIND_STOPPED
4601 && ws.value.sig == GDB_SIGNAL_0)
4602 {
4603 /* We caught the event that we intended to catch, so
4604 there's no event pending. */
4605 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4606 t->suspend.waitstatus_pending_p = 0;
4607
4608 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4609 {
4610 /* Add it back to the step-over queue. */
4611 if (debug_infrun)
4612 {
4613 fprintf_unfiltered (gdb_stdlog,
4614 "infrun: displaced-step of %s "
4615 "canceled: adding back to the "
4616 "step-over queue\n",
4617 target_pid_to_str (t->ptid));
4618 }
4619 t->control.trap_expected = 0;
4620 thread_step_over_chain_enqueue (t);
4621 }
4622 }
4623 else
4624 {
4625 enum gdb_signal sig;
4626 struct regcache *regcache;
372316f1
PA
4627
4628 if (debug_infrun)
4629 {
23fdd69e 4630 std::string statstr = target_waitstatus_to_string (&ws);
372316f1 4631
372316f1
PA
4632 fprintf_unfiltered (gdb_stdlog,
4633 "infrun: target_wait %s, saving "
4634 "status for %d.%ld.%ld\n",
23fdd69e 4635 statstr.c_str (),
372316f1
PA
4636 ptid_get_pid (t->ptid),
4637 ptid_get_lwp (t->ptid),
4638 ptid_get_tid (t->ptid));
372316f1
PA
4639 }
4640
4641 /* Record for later. */
4642 save_waitstatus (t, &ws);
4643
4644 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4645 ? ws.value.sig : GDB_SIGNAL_0);
4646
4647 if (displaced_step_fixup (t->ptid, sig) < 0)
4648 {
4649 /* Add it back to the step-over queue. */
4650 t->control.trap_expected = 0;
4651 thread_step_over_chain_enqueue (t);
4652 }
4653
4654 regcache = get_thread_regcache (t->ptid);
4655 t->suspend.stop_pc = regcache_read_pc (regcache);
4656
4657 if (debug_infrun)
4658 {
4659 fprintf_unfiltered (gdb_stdlog,
4660 "infrun: saved stop_pc=%s for %s "
4661 "(currently_stepping=%d)\n",
4662 paddress (target_gdbarch (),
4663 t->suspend.stop_pc),
4664 target_pid_to_str (t->ptid),
4665 currently_stepping (t));
4666 }
4667 }
4668 }
4669 }
4670 }
4671
4672 do_cleanups (old_chain);
4673
4674 if (debug_infrun)
4675 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4676}
4677
f4836ba9
PA
4678/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4679
4680static int
4681handle_no_resumed (struct execution_control_state *ecs)
4682{
4683 struct inferior *inf;
4684 struct thread_info *thread;
4685
3b12939d 4686 if (target_can_async_p ())
f4836ba9 4687 {
3b12939d
PA
4688 struct ui *ui;
4689 int any_sync = 0;
f4836ba9 4690
3b12939d
PA
4691 ALL_UIS (ui)
4692 {
4693 if (ui->prompt_state == PROMPT_BLOCKED)
4694 {
4695 any_sync = 1;
4696 break;
4697 }
4698 }
4699 if (!any_sync)
4700 {
4701 /* There were no unwaited-for children left in the target, but,
4702 we're not synchronously waiting for events either. Just
4703 ignore. */
4704
4705 if (debug_infrun)
4706 fprintf_unfiltered (gdb_stdlog,
4707 "infrun: TARGET_WAITKIND_NO_RESUMED "
4708 "(ignoring: bg)\n");
4709 prepare_to_wait (ecs);
4710 return 1;
4711 }
f4836ba9
PA
4712 }
4713
4714 /* Otherwise, if we were running a synchronous execution command, we
4715 may need to cancel it and give the user back the terminal.
4716
4717 In non-stop mode, the target can't tell whether we've already
4718 consumed previous stop events, so it can end up sending us a
4719 no-resumed event like so:
4720
4721 #0 - thread 1 is left stopped
4722
4723 #1 - thread 2 is resumed and hits breakpoint
4724 -> TARGET_WAITKIND_STOPPED
4725
4726 #2 - thread 3 is resumed and exits
4727 this is the last resumed thread, so
4728 -> TARGET_WAITKIND_NO_RESUMED
4729
4730 #3 - gdb processes stop for thread 2 and decides to re-resume
4731 it.
4732
4733 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4734 thread 2 is now resumed, so the event should be ignored.
4735
4736 IOW, if the stop for thread 2 doesn't end a foreground command,
4737 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4738 event. But it could be that the event meant that thread 2 itself
4739 (or whatever other thread was the last resumed thread) exited.
4740
4741 To address this we refresh the thread list and check whether we
4742 have resumed threads _now_. In the example above, this removes
4743 thread 3 from the thread list. If thread 2 was re-resumed, we
4744 ignore this event. If we find no thread resumed, then we cancel
4745 the synchronous command show "no unwaited-for " to the user. */
4746 update_thread_list ();
4747
4748 ALL_NON_EXITED_THREADS (thread)
4749 {
4750 if (thread->executing
4751 || thread->suspend.waitstatus_pending_p)
4752 {
4753 /* There were no unwaited-for children left in the target at
4754 some point, but there are now. Just ignore. */
4755 if (debug_infrun)
4756 fprintf_unfiltered (gdb_stdlog,
4757 "infrun: TARGET_WAITKIND_NO_RESUMED "
4758 "(ignoring: found resumed)\n");
4759 prepare_to_wait (ecs);
4760 return 1;
4761 }
4762 }
4763
4764 /* Note however that we may find no resumed thread because the whole
4765 process exited meanwhile (thus updating the thread list results
4766 in an empty thread list). In this case we know we'll be getting
4767 a process exit event shortly. */
4768 ALL_INFERIORS (inf)
4769 {
4770 if (inf->pid == 0)
4771 continue;
4772
4773 thread = any_live_thread_of_process (inf->pid);
4774 if (thread == NULL)
4775 {
4776 if (debug_infrun)
4777 fprintf_unfiltered (gdb_stdlog,
4778 "infrun: TARGET_WAITKIND_NO_RESUMED "
4779 "(expect process exit)\n");
4780 prepare_to_wait (ecs);
4781 return 1;
4782 }
4783 }
4784
4785 /* Go ahead and report the event. */
4786 return 0;
4787}
4788
05ba8510
PA
4789/* Given an execution control state that has been freshly filled in by
4790 an event from the inferior, figure out what it means and take
4791 appropriate action.
4792
4793 The alternatives are:
4794
22bcd14b 4795 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4796 debugger.
4797
4798 2) keep_going and return; to wait for the next event (set
4799 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4800 once). */
c906108c 4801
ec9499be 4802static void
0b6e5e10 4803handle_inferior_event_1 (struct execution_control_state *ecs)
cd0fc7c3 4804{
d6b48e9c
PA
4805 enum stop_kind stop_soon;
4806
28736962
PA
4807 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4808 {
4809 /* We had an event in the inferior, but we are not interested in
4810 handling it at this level. The lower layers have already
4811 done what needs to be done, if anything.
4812
4813 One of the possible circumstances for this is when the
4814 inferior produces output for the console. The inferior has
4815 not stopped, and we are ignoring the event. Another possible
4816 circumstance is any event which the lower level knows will be
4817 reported multiple times without an intervening resume. */
4818 if (debug_infrun)
4819 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4820 prepare_to_wait (ecs);
4821 return;
4822 }
4823
65706a29
PA
4824 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4825 {
4826 if (debug_infrun)
4827 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4828 prepare_to_wait (ecs);
4829 return;
4830 }
4831
0e5bf2a8 4832 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
4833 && handle_no_resumed (ecs))
4834 return;
0e5bf2a8 4835
1777feb0 4836 /* Cache the last pid/waitstatus. */
c32c64b7 4837 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4838
ca005067 4839 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4840 stop_stack_dummy = STOP_NONE;
ca005067 4841
0e5bf2a8
PA
4842 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4843 {
4844 /* No unwaited-for children left. IOW, all resumed children
4845 have exited. */
4846 if (debug_infrun)
4847 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4848
4849 stop_print_frame = 0;
22bcd14b 4850 stop_waiting (ecs);
0e5bf2a8
PA
4851 return;
4852 }
4853
8c90c137 4854 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4855 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4856 {
4857 ecs->event_thread = find_thread_ptid (ecs->ptid);
4858 /* If it's a new thread, add it to the thread database. */
4859 if (ecs->event_thread == NULL)
4860 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4861
4862 /* Disable range stepping. If the next step request could use a
4863 range, this will be end up re-enabled then. */
4864 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4865 }
88ed393a
JK
4866
4867 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4868 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4869
4870 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4871 reinit_frame_cache ();
4872
28736962
PA
4873 breakpoint_retire_moribund ();
4874
2b009048
DJ
4875 /* First, distinguish signals caused by the debugger from signals
4876 that have to do with the program's own actions. Note that
4877 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4878 on the operating system version. Here we detect when a SIGILL or
4879 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4880 something similar for SIGSEGV, since a SIGSEGV will be generated
4881 when we're trying to execute a breakpoint instruction on a
4882 non-executable stack. This happens for call dummy breakpoints
4883 for architectures like SPARC that place call dummies on the
4884 stack. */
2b009048 4885 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4886 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4887 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4888 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4889 {
de0a0249
UW
4890 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4891
a01bda52 4892 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
4893 regcache_read_pc (regcache)))
4894 {
4895 if (debug_infrun)
4896 fprintf_unfiltered (gdb_stdlog,
4897 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4898 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4899 }
2b009048
DJ
4900 }
4901
28736962
PA
4902 /* Mark the non-executing threads accordingly. In all-stop, all
4903 threads of all processes are stopped when we get any event
e1316e60 4904 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4905 {
4906 ptid_t mark_ptid;
4907
fbea99ea 4908 if (!target_is_non_stop_p ())
372316f1
PA
4909 mark_ptid = minus_one_ptid;
4910 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4911 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4912 {
4913 /* If we're handling a process exit in non-stop mode, even
4914 though threads haven't been deleted yet, one would think
4915 that there is nothing to do, as threads of the dead process
4916 will be soon deleted, and threads of any other process were
4917 left running. However, on some targets, threads survive a
4918 process exit event. E.g., for the "checkpoint" command,
4919 when the current checkpoint/fork exits, linux-fork.c
4920 automatically switches to another fork from within
4921 target_mourn_inferior, by associating the same
4922 inferior/thread to another fork. We haven't mourned yet at
4923 this point, but we must mark any threads left in the
4924 process as not-executing so that finish_thread_state marks
4925 them stopped (in the user's perspective) if/when we present
4926 the stop to the user. */
4927 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4928 }
4929 else
4930 mark_ptid = ecs->ptid;
4931
4932 set_executing (mark_ptid, 0);
4933
4934 /* Likewise the resumed flag. */
4935 set_resumed (mark_ptid, 0);
4936 }
8c90c137 4937
488f131b
JB
4938 switch (ecs->ws.kind)
4939 {
4940 case TARGET_WAITKIND_LOADED:
527159b7 4941 if (debug_infrun)
8a9de0e4 4942 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
5c09a2c5
PA
4943 if (!ptid_equal (ecs->ptid, inferior_ptid))
4944 context_switch (ecs->ptid);
b0f4b84b
DJ
4945 /* Ignore gracefully during startup of the inferior, as it might
4946 be the shell which has just loaded some objects, otherwise
4947 add the symbols for the newly loaded objects. Also ignore at
4948 the beginning of an attach or remote session; we will query
4949 the full list of libraries once the connection is
4950 established. */
4f5d7f63
PA
4951
4952 stop_soon = get_inferior_stop_soon (ecs->ptid);
c0236d92 4953 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4954 {
edcc5120
TT
4955 struct regcache *regcache;
4956
edcc5120
TT
4957 regcache = get_thread_regcache (ecs->ptid);
4958
4959 handle_solib_event ();
4960
4961 ecs->event_thread->control.stop_bpstat
a01bda52 4962 = bpstat_stop_status (regcache->aspace (),
edcc5120 4963 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4964
c65d6b55
PA
4965 if (handle_stop_requested (ecs))
4966 return;
4967
ce12b012 4968 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4969 {
4970 /* A catchpoint triggered. */
94c57d6a
PA
4971 process_event_stop_test (ecs);
4972 return;
edcc5120 4973 }
488f131b 4974
b0f4b84b
DJ
4975 /* If requested, stop when the dynamic linker notifies
4976 gdb of events. This allows the user to get control
4977 and place breakpoints in initializer routines for
4978 dynamically loaded objects (among other things). */
a493e3e2 4979 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4980 if (stop_on_solib_events)
4981 {
55409f9d
DJ
4982 /* Make sure we print "Stopped due to solib-event" in
4983 normal_stop. */
4984 stop_print_frame = 1;
4985
22bcd14b 4986 stop_waiting (ecs);
b0f4b84b
DJ
4987 return;
4988 }
488f131b 4989 }
b0f4b84b
DJ
4990
4991 /* If we are skipping through a shell, or through shared library
4992 loading that we aren't interested in, resume the program. If
5c09a2c5 4993 we're running the program normally, also resume. */
b0f4b84b
DJ
4994 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4995 {
74960c60
VP
4996 /* Loading of shared libraries might have changed breakpoint
4997 addresses. Make sure new breakpoints are inserted. */
a25a5a45 4998 if (stop_soon == NO_STOP_QUIETLY)
74960c60 4999 insert_breakpoints ();
64ce06e4 5000 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
5001 prepare_to_wait (ecs);
5002 return;
5003 }
5004
5c09a2c5
PA
5005 /* But stop if we're attaching or setting up a remote
5006 connection. */
5007 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5008 || stop_soon == STOP_QUIETLY_REMOTE)
5009 {
5010 if (debug_infrun)
5011 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 5012 stop_waiting (ecs);
5c09a2c5
PA
5013 return;
5014 }
5015
5016 internal_error (__FILE__, __LINE__,
5017 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 5018
488f131b 5019 case TARGET_WAITKIND_SPURIOUS:
527159b7 5020 if (debug_infrun)
8a9de0e4 5021 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
c65d6b55
PA
5022 if (handle_stop_requested (ecs))
5023 return;
64776a0b 5024 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 5025 context_switch (ecs->ptid);
64ce06e4 5026 resume (GDB_SIGNAL_0);
488f131b
JB
5027 prepare_to_wait (ecs);
5028 return;
c5aa993b 5029
65706a29
PA
5030 case TARGET_WAITKIND_THREAD_CREATED:
5031 if (debug_infrun)
5032 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
c65d6b55
PA
5033 if (handle_stop_requested (ecs))
5034 return;
65706a29
PA
5035 if (!ptid_equal (ecs->ptid, inferior_ptid))
5036 context_switch (ecs->ptid);
5037 if (!switch_back_to_stepped_thread (ecs))
5038 keep_going (ecs);
5039 return;
5040
488f131b 5041 case TARGET_WAITKIND_EXITED:
940c3c06 5042 case TARGET_WAITKIND_SIGNALLED:
527159b7 5043 if (debug_infrun)
940c3c06
PA
5044 {
5045 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5046 fprintf_unfiltered (gdb_stdlog,
5047 "infrun: TARGET_WAITKIND_EXITED\n");
5048 else
5049 fprintf_unfiltered (gdb_stdlog,
5050 "infrun: TARGET_WAITKIND_SIGNALLED\n");
5051 }
5052
fb66883a 5053 inferior_ptid = ecs->ptid;
c9657e70 5054 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
5055 set_current_program_space (current_inferior ()->pspace);
5056 handle_vfork_child_exec_or_exit (0);
223ffa71 5057 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 5058
0c557179
SDJ
5059 /* Clearing any previous state of convenience variables. */
5060 clear_exit_convenience_vars ();
5061
940c3c06
PA
5062 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5063 {
5064 /* Record the exit code in the convenience variable $_exitcode, so
5065 that the user can inspect this again later. */
5066 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5067 (LONGEST) ecs->ws.value.integer);
5068
5069 /* Also record this in the inferior itself. */
5070 current_inferior ()->has_exit_code = 1;
5071 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 5072
98eb56a4
PA
5073 /* Support the --return-child-result option. */
5074 return_child_result_value = ecs->ws.value.integer;
5075
fd664c91 5076 observer_notify_exited (ecs->ws.value.integer);
940c3c06
PA
5077 }
5078 else
0c557179
SDJ
5079 {
5080 struct regcache *regcache = get_thread_regcache (ecs->ptid);
ac7936df 5081 struct gdbarch *gdbarch = regcache->arch ();
0c557179
SDJ
5082
5083 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5084 {
5085 /* Set the value of the internal variable $_exitsignal,
5086 which holds the signal uncaught by the inferior. */
5087 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5088 gdbarch_gdb_signal_to_target (gdbarch,
5089 ecs->ws.value.sig));
5090 }
5091 else
5092 {
5093 /* We don't have access to the target's method used for
5094 converting between signal numbers (GDB's internal
5095 representation <-> target's representation).
5096 Therefore, we cannot do a good job at displaying this
5097 information to the user. It's better to just warn
5098 her about it (if infrun debugging is enabled), and
5099 give up. */
5100 if (debug_infrun)
5101 fprintf_filtered (gdb_stdlog, _("\
5102Cannot fill $_exitsignal with the correct signal number.\n"));
5103 }
5104
fd664c91 5105 observer_notify_signal_exited (ecs->ws.value.sig);
0c557179 5106 }
8cf64490 5107
488f131b 5108 gdb_flush (gdb_stdout);
bc1e6c81 5109 target_mourn_inferior (inferior_ptid);
488f131b 5110 stop_print_frame = 0;
22bcd14b 5111 stop_waiting (ecs);
488f131b 5112 return;
c5aa993b 5113
488f131b 5114 /* The following are the only cases in which we keep going;
1777feb0 5115 the above cases end in a continue or goto. */
488f131b 5116 case TARGET_WAITKIND_FORKED:
deb3b17b 5117 case TARGET_WAITKIND_VFORKED:
527159b7 5118 if (debug_infrun)
fed708ed
PA
5119 {
5120 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5121 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5122 else
5123 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5124 }
c906108c 5125
e2d96639
YQ
5126 /* Check whether the inferior is displaced stepping. */
5127 {
5128 struct regcache *regcache = get_thread_regcache (ecs->ptid);
ac7936df 5129 struct gdbarch *gdbarch = regcache->arch ();
e2d96639
YQ
5130
5131 /* If checking displaced stepping is supported, and thread
5132 ecs->ptid is displaced stepping. */
c0987663 5133 if (displaced_step_in_progress_thread (ecs->ptid))
e2d96639
YQ
5134 {
5135 struct inferior *parent_inf
c9657e70 5136 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
5137 struct regcache *child_regcache;
5138 CORE_ADDR parent_pc;
5139
5140 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5141 indicating that the displaced stepping of syscall instruction
5142 has been done. Perform cleanup for parent process here. Note
5143 that this operation also cleans up the child process for vfork,
5144 because their pages are shared. */
a493e3e2 5145 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
c2829269
PA
5146 /* Start a new step-over in another thread if there's one
5147 that needs it. */
5148 start_step_over ();
e2d96639
YQ
5149
5150 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5151 {
c0987663
YQ
5152 struct displaced_step_inferior_state *displaced
5153 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
5154
e2d96639
YQ
5155 /* Restore scratch pad for child process. */
5156 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5157 }
5158
5159 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5160 the child's PC is also within the scratchpad. Set the child's PC
5161 to the parent's PC value, which has already been fixed up.
5162 FIXME: we use the parent's aspace here, although we're touching
5163 the child, because the child hasn't been added to the inferior
5164 list yet at this point. */
5165
5166 child_regcache
5167 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5168 gdbarch,
5169 parent_inf->aspace);
5170 /* Read PC value of parent process. */
5171 parent_pc = regcache_read_pc (regcache);
5172
5173 if (debug_displaced)
5174 fprintf_unfiltered (gdb_stdlog,
5175 "displaced: write child pc from %s to %s\n",
5176 paddress (gdbarch,
5177 regcache_read_pc (child_regcache)),
5178 paddress (gdbarch, parent_pc));
5179
5180 regcache_write_pc (child_regcache, parent_pc);
5181 }
5182 }
5183
5a2901d9 5184 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 5185 context_switch (ecs->ptid);
5a2901d9 5186
b242c3c2
PA
5187 /* Immediately detach breakpoints from the child before there's
5188 any chance of letting the user delete breakpoints from the
5189 breakpoint lists. If we don't do this early, it's easy to
5190 leave left over traps in the child, vis: "break foo; catch
5191 fork; c; <fork>; del; c; <child calls foo>". We only follow
5192 the fork on the last `continue', and by that time the
5193 breakpoint at "foo" is long gone from the breakpoint table.
5194 If we vforked, then we don't need to unpatch here, since both
5195 parent and child are sharing the same memory pages; we'll
5196 need to unpatch at follow/detach time instead to be certain
5197 that new breakpoints added between catchpoint hit time and
5198 vfork follow are detached. */
5199 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5200 {
b242c3c2
PA
5201 /* This won't actually modify the breakpoint list, but will
5202 physically remove the breakpoints from the child. */
d80ee84f 5203 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5204 }
5205
34b7e8a6 5206 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5207
e58b0e63
PA
5208 /* In case the event is caught by a catchpoint, remember that
5209 the event is to be followed at the next resume of the thread,
5210 and not immediately. */
5211 ecs->event_thread->pending_follow = ecs->ws;
5212
fb14de7b 5213 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 5214
16c381f0 5215 ecs->event_thread->control.stop_bpstat
a01bda52 5216 = bpstat_stop_status (get_current_regcache ()->aspace (),
09ac7c10 5217 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 5218
c65d6b55
PA
5219 if (handle_stop_requested (ecs))
5220 return;
5221
ce12b012
PA
5222 /* If no catchpoint triggered for this, then keep going. Note
5223 that we're interested in knowing the bpstat actually causes a
5224 stop, not just if it may explain the signal. Software
5225 watchpoints, for example, always appear in the bpstat. */
5226 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5227 {
6c95b8df
PA
5228 ptid_t parent;
5229 ptid_t child;
e58b0e63 5230 int should_resume;
3e43a32a
MS
5231 int follow_child
5232 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5233
a493e3e2 5234 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
5235
5236 should_resume = follow_fork ();
5237
6c95b8df
PA
5238 parent = ecs->ptid;
5239 child = ecs->ws.value.related_pid;
5240
a2077e25
PA
5241 /* At this point, the parent is marked running, and the
5242 child is marked stopped. */
5243
5244 /* If not resuming the parent, mark it stopped. */
5245 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5246 set_running (parent, 0);
5247
5248 /* If resuming the child, mark it running. */
5249 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5250 set_running (child, 1);
5251
6c95b8df 5252 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5253 if (!detach_fork && (non_stop
5254 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5255 {
5256 if (follow_child)
5257 switch_to_thread (parent);
5258 else
5259 switch_to_thread (child);
5260
5261 ecs->event_thread = inferior_thread ();
5262 ecs->ptid = inferior_ptid;
5263 keep_going (ecs);
5264 }
5265
5266 if (follow_child)
5267 switch_to_thread (child);
5268 else
5269 switch_to_thread (parent);
5270
e58b0e63
PA
5271 ecs->event_thread = inferior_thread ();
5272 ecs->ptid = inferior_ptid;
5273
5274 if (should_resume)
5275 keep_going (ecs);
5276 else
22bcd14b 5277 stop_waiting (ecs);
04e68871
DJ
5278 return;
5279 }
94c57d6a
PA
5280 process_event_stop_test (ecs);
5281 return;
488f131b 5282
6c95b8df
PA
5283 case TARGET_WAITKIND_VFORK_DONE:
5284 /* Done with the shared memory region. Re-insert breakpoints in
5285 the parent, and keep going. */
5286
5287 if (debug_infrun)
3e43a32a
MS
5288 fprintf_unfiltered (gdb_stdlog,
5289 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
5290
5291 if (!ptid_equal (ecs->ptid, inferior_ptid))
5292 context_switch (ecs->ptid);
5293
5294 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5295 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5296
5297 if (handle_stop_requested (ecs))
5298 return;
5299
6c95b8df
PA
5300 /* This also takes care of reinserting breakpoints in the
5301 previously locked inferior. */
5302 keep_going (ecs);
5303 return;
5304
488f131b 5305 case TARGET_WAITKIND_EXECD:
527159b7 5306 if (debug_infrun)
fc5261f2 5307 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 5308
cbd2b4e3
PA
5309 /* Note we can't read registers yet (the stop_pc), because we
5310 don't yet know the inferior's post-exec architecture.
5311 'stop_pc' is explicitly read below instead. */
5a2901d9 5312 if (!ptid_equal (ecs->ptid, inferior_ptid))
cbd2b4e3 5313 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5314
6c95b8df
PA
5315 /* Do whatever is necessary to the parent branch of the vfork. */
5316 handle_vfork_child_exec_or_exit (1);
5317
795e548f
PA
5318 /* This causes the eventpoints and symbol table to be reset.
5319 Must do this now, before trying to determine whether to
5320 stop. */
71b43ef8 5321 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5322
1bb7c059
SM
5323 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5324
17d8546e
DB
5325 /* In follow_exec we may have deleted the original thread and
5326 created a new one. Make sure that the event thread is the
5327 execd thread for that case (this is a nop otherwise). */
5328 ecs->event_thread = inferior_thread ();
5329
16c381f0 5330 ecs->event_thread->control.stop_bpstat
a01bda52 5331 = bpstat_stop_status (get_current_regcache ()->aspace (),
09ac7c10 5332 stop_pc, ecs->ptid, &ecs->ws);
795e548f 5333
71b43ef8
PA
5334 /* Note that this may be referenced from inside
5335 bpstat_stop_status above, through inferior_has_execd. */
5336 xfree (ecs->ws.value.execd_pathname);
5337 ecs->ws.value.execd_pathname = NULL;
5338
c65d6b55
PA
5339 if (handle_stop_requested (ecs))
5340 return;
5341
04e68871 5342 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5343 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5344 {
a493e3e2 5345 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5346 keep_going (ecs);
5347 return;
5348 }
94c57d6a
PA
5349 process_event_stop_test (ecs);
5350 return;
488f131b 5351
b4dc5ffa
MK
5352 /* Be careful not to try to gather much state about a thread
5353 that's in a syscall. It's frequently a losing proposition. */
488f131b 5354 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 5355 if (debug_infrun)
3e43a32a
MS
5356 fprintf_unfiltered (gdb_stdlog,
5357 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 5358 /* Getting the current syscall number. */
94c57d6a
PA
5359 if (handle_syscall_event (ecs) == 0)
5360 process_event_stop_test (ecs);
5361 return;
c906108c 5362
488f131b
JB
5363 /* Before examining the threads further, step this thread to
5364 get it entirely out of the syscall. (We get notice of the
5365 event when the thread is just on the verge of exiting a
5366 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5367 into user code.) */
488f131b 5368 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 5369 if (debug_infrun)
3e43a32a
MS
5370 fprintf_unfiltered (gdb_stdlog,
5371 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
5372 if (handle_syscall_event (ecs) == 0)
5373 process_event_stop_test (ecs);
5374 return;
c906108c 5375
488f131b 5376 case TARGET_WAITKIND_STOPPED:
527159b7 5377 if (debug_infrun)
8a9de0e4 5378 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
4f5d7f63
PA
5379 handle_signal_stop (ecs);
5380 return;
c906108c 5381
b2175913 5382 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
5383 if (debug_infrun)
5384 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 5385 /* Reverse execution: target ran out of history info. */
eab402df 5386
d1988021
MM
5387 /* Switch to the stopped thread. */
5388 if (!ptid_equal (ecs->ptid, inferior_ptid))
5389 context_switch (ecs->ptid);
5390 if (debug_infrun)
5391 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5392
34b7e8a6 5393 delete_just_stopped_threads_single_step_breakpoints ();
d1988021 5394 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
c65d6b55
PA
5395
5396 if (handle_stop_requested (ecs))
5397 return;
5398
fd664c91 5399 observer_notify_no_history ();
22bcd14b 5400 stop_waiting (ecs);
b2175913 5401 return;
488f131b 5402 }
4f5d7f63
PA
5403}
5404
0b6e5e10
JB
5405/* A wrapper around handle_inferior_event_1, which also makes sure
5406 that all temporary struct value objects that were created during
5407 the handling of the event get deleted at the end. */
5408
5409static void
5410handle_inferior_event (struct execution_control_state *ecs)
5411{
5412 struct value *mark = value_mark ();
5413
5414 handle_inferior_event_1 (ecs);
5415 /* Purge all temporary values created during the event handling,
5416 as it could be a long time before we return to the command level
5417 where such values would otherwise be purged. */
5418 value_free_to_mark (mark);
5419}
5420
372316f1
PA
5421/* Restart threads back to what they were trying to do back when we
5422 paused them for an in-line step-over. The EVENT_THREAD thread is
5423 ignored. */
4d9d9d04
PA
5424
5425static void
372316f1
PA
5426restart_threads (struct thread_info *event_thread)
5427{
5428 struct thread_info *tp;
372316f1
PA
5429
5430 /* In case the instruction just stepped spawned a new thread. */
5431 update_thread_list ();
5432
5433 ALL_NON_EXITED_THREADS (tp)
5434 {
5435 if (tp == event_thread)
5436 {
5437 if (debug_infrun)
5438 fprintf_unfiltered (gdb_stdlog,
5439 "infrun: restart threads: "
5440 "[%s] is event thread\n",
5441 target_pid_to_str (tp->ptid));
5442 continue;
5443 }
5444
5445 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5446 {
5447 if (debug_infrun)
5448 fprintf_unfiltered (gdb_stdlog,
5449 "infrun: restart threads: "
5450 "[%s] not meant to be running\n",
5451 target_pid_to_str (tp->ptid));
5452 continue;
5453 }
5454
5455 if (tp->resumed)
5456 {
5457 if (debug_infrun)
5458 fprintf_unfiltered (gdb_stdlog,
5459 "infrun: restart threads: [%s] resumed\n",
5460 target_pid_to_str (tp->ptid));
5461 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5462 continue;
5463 }
5464
5465 if (thread_is_in_step_over_chain (tp))
5466 {
5467 if (debug_infrun)
5468 fprintf_unfiltered (gdb_stdlog,
5469 "infrun: restart threads: "
5470 "[%s] needs step-over\n",
5471 target_pid_to_str (tp->ptid));
5472 gdb_assert (!tp->resumed);
5473 continue;
5474 }
5475
5476
5477 if (tp->suspend.waitstatus_pending_p)
5478 {
5479 if (debug_infrun)
5480 fprintf_unfiltered (gdb_stdlog,
5481 "infrun: restart threads: "
5482 "[%s] has pending status\n",
5483 target_pid_to_str (tp->ptid));
5484 tp->resumed = 1;
5485 continue;
5486 }
5487
c65d6b55
PA
5488 gdb_assert (!tp->stop_requested);
5489
372316f1
PA
5490 /* If some thread needs to start a step-over at this point, it
5491 should still be in the step-over queue, and thus skipped
5492 above. */
5493 if (thread_still_needs_step_over (tp))
5494 {
5495 internal_error (__FILE__, __LINE__,
5496 "thread [%s] needs a step-over, but not in "
5497 "step-over queue\n",
5498 target_pid_to_str (tp->ptid));
5499 }
5500
5501 if (currently_stepping (tp))
5502 {
5503 if (debug_infrun)
5504 fprintf_unfiltered (gdb_stdlog,
5505 "infrun: restart threads: [%s] was stepping\n",
5506 target_pid_to_str (tp->ptid));
5507 keep_going_stepped_thread (tp);
5508 }
5509 else
5510 {
5511 struct execution_control_state ecss;
5512 struct execution_control_state *ecs = &ecss;
5513
5514 if (debug_infrun)
5515 fprintf_unfiltered (gdb_stdlog,
5516 "infrun: restart threads: [%s] continuing\n",
5517 target_pid_to_str (tp->ptid));
5518 reset_ecs (ecs, tp);
5519 switch_to_thread (tp->ptid);
5520 keep_going_pass_signal (ecs);
5521 }
5522 }
5523}
5524
5525/* Callback for iterate_over_threads. Find a resumed thread that has
5526 a pending waitstatus. */
5527
5528static int
5529resumed_thread_with_pending_status (struct thread_info *tp,
5530 void *arg)
5531{
5532 return (tp->resumed
5533 && tp->suspend.waitstatus_pending_p);
5534}
5535
5536/* Called when we get an event that may finish an in-line or
5537 out-of-line (displaced stepping) step-over started previously.
5538 Return true if the event is processed and we should go back to the
5539 event loop; false if the caller should continue processing the
5540 event. */
5541
5542static int
4d9d9d04
PA
5543finish_step_over (struct execution_control_state *ecs)
5544{
372316f1
PA
5545 int had_step_over_info;
5546
4d9d9d04
PA
5547 displaced_step_fixup (ecs->ptid,
5548 ecs->event_thread->suspend.stop_signal);
5549
372316f1
PA
5550 had_step_over_info = step_over_info_valid_p ();
5551
5552 if (had_step_over_info)
4d9d9d04
PA
5553 {
5554 /* If we're stepping over a breakpoint with all threads locked,
5555 then only the thread that was stepped should be reporting
5556 back an event. */
5557 gdb_assert (ecs->event_thread->control.trap_expected);
5558
c65d6b55 5559 clear_step_over_info ();
4d9d9d04
PA
5560 }
5561
fbea99ea 5562 if (!target_is_non_stop_p ())
372316f1 5563 return 0;
4d9d9d04
PA
5564
5565 /* Start a new step-over in another thread if there's one that
5566 needs it. */
5567 start_step_over ();
372316f1
PA
5568
5569 /* If we were stepping over a breakpoint before, and haven't started
5570 a new in-line step-over sequence, then restart all other threads
5571 (except the event thread). We can't do this in all-stop, as then
5572 e.g., we wouldn't be able to issue any other remote packet until
5573 these other threads stop. */
5574 if (had_step_over_info && !step_over_info_valid_p ())
5575 {
5576 struct thread_info *pending;
5577
5578 /* If we only have threads with pending statuses, the restart
5579 below won't restart any thread and so nothing re-inserts the
5580 breakpoint we just stepped over. But we need it inserted
5581 when we later process the pending events, otherwise if
5582 another thread has a pending event for this breakpoint too,
5583 we'd discard its event (because the breakpoint that
5584 originally caused the event was no longer inserted). */
5585 context_switch (ecs->ptid);
5586 insert_breakpoints ();
5587
5588 restart_threads (ecs->event_thread);
5589
5590 /* If we have events pending, go through handle_inferior_event
5591 again, picking up a pending event at random. This avoids
5592 thread starvation. */
5593
5594 /* But not if we just stepped over a watchpoint in order to let
5595 the instruction execute so we can evaluate its expression.
5596 The set of watchpoints that triggered is recorded in the
5597 breakpoint objects themselves (see bp->watchpoint_triggered).
5598 If we processed another event first, that other event could
5599 clobber this info. */
5600 if (ecs->event_thread->stepping_over_watchpoint)
5601 return 0;
5602
5603 pending = iterate_over_threads (resumed_thread_with_pending_status,
5604 NULL);
5605 if (pending != NULL)
5606 {
5607 struct thread_info *tp = ecs->event_thread;
5608 struct regcache *regcache;
5609
5610 if (debug_infrun)
5611 {
5612 fprintf_unfiltered (gdb_stdlog,
5613 "infrun: found resumed threads with "
5614 "pending events, saving status\n");
5615 }
5616
5617 gdb_assert (pending != tp);
5618
5619 /* Record the event thread's event for later. */
5620 save_waitstatus (tp, &ecs->ws);
5621 /* This was cleared early, by handle_inferior_event. Set it
5622 so this pending event is considered by
5623 do_target_wait. */
5624 tp->resumed = 1;
5625
5626 gdb_assert (!tp->executing);
5627
5628 regcache = get_thread_regcache (tp->ptid);
5629 tp->suspend.stop_pc = regcache_read_pc (regcache);
5630
5631 if (debug_infrun)
5632 {
5633 fprintf_unfiltered (gdb_stdlog,
5634 "infrun: saved stop_pc=%s for %s "
5635 "(currently_stepping=%d)\n",
5636 paddress (target_gdbarch (),
5637 tp->suspend.stop_pc),
5638 target_pid_to_str (tp->ptid),
5639 currently_stepping (tp));
5640 }
5641
5642 /* This in-line step-over finished; clear this so we won't
5643 start a new one. This is what handle_signal_stop would
5644 do, if we returned false. */
5645 tp->stepping_over_breakpoint = 0;
5646
5647 /* Wake up the event loop again. */
5648 mark_async_event_handler (infrun_async_inferior_event_token);
5649
5650 prepare_to_wait (ecs);
5651 return 1;
5652 }
5653 }
5654
5655 return 0;
4d9d9d04
PA
5656}
5657
4f5d7f63
PA
5658/* Come here when the program has stopped with a signal. */
5659
5660static void
5661handle_signal_stop (struct execution_control_state *ecs)
5662{
5663 struct frame_info *frame;
5664 struct gdbarch *gdbarch;
5665 int stopped_by_watchpoint;
5666 enum stop_kind stop_soon;
5667 int random_signal;
c906108c 5668
f0407826
DE
5669 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5670
c65d6b55
PA
5671 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5672
f0407826
DE
5673 /* Do we need to clean up the state of a thread that has
5674 completed a displaced single-step? (Doing so usually affects
5675 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5676 if (finish_step_over (ecs))
5677 return;
f0407826
DE
5678
5679 /* If we either finished a single-step or hit a breakpoint, but
5680 the user wanted this thread to be stopped, pretend we got a
5681 SIG0 (generic unsignaled stop). */
5682 if (ecs->event_thread->stop_requested
5683 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5684 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5685
515630c5 5686 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 5687
527159b7 5688 if (debug_infrun)
237fc4c9 5689 {
5af949e3 5690 struct regcache *regcache = get_thread_regcache (ecs->ptid);
ac7936df 5691 struct gdbarch *gdbarch = regcache->arch ();
2989a365 5692 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
7f82dfc7
JK
5693
5694 inferior_ptid = ecs->ptid;
5af949e3
UW
5695
5696 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5697 paddress (gdbarch, stop_pc));
d92524f1 5698 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5699 {
5700 CORE_ADDR addr;
abbb1732 5701
237fc4c9
PA
5702 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5703
5704 if (target_stopped_data_address (&current_target, &addr))
5705 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5706 "infrun: stopped data address = %s\n",
5707 paddress (gdbarch, addr));
237fc4c9
PA
5708 else
5709 fprintf_unfiltered (gdb_stdlog,
5710 "infrun: (no data address available)\n");
5711 }
5712 }
527159b7 5713
36fa8042
PA
5714 /* This is originated from start_remote(), start_inferior() and
5715 shared libraries hook functions. */
5716 stop_soon = get_inferior_stop_soon (ecs->ptid);
5717 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5718 {
5719 if (!ptid_equal (ecs->ptid, inferior_ptid))
5720 context_switch (ecs->ptid);
5721 if (debug_infrun)
5722 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5723 stop_print_frame = 1;
22bcd14b 5724 stop_waiting (ecs);
36fa8042
PA
5725 return;
5726 }
5727
36fa8042
PA
5728 /* This originates from attach_command(). We need to overwrite
5729 the stop_signal here, because some kernels don't ignore a
5730 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5731 See more comments in inferior.h. On the other hand, if we
5732 get a non-SIGSTOP, report it to the user - assume the backend
5733 will handle the SIGSTOP if it should show up later.
5734
5735 Also consider that the attach is complete when we see a
5736 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5737 target extended-remote report it instead of a SIGSTOP
5738 (e.g. gdbserver). We already rely on SIGTRAP being our
5739 signal, so this is no exception.
5740
5741 Also consider that the attach is complete when we see a
5742 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5743 the target to stop all threads of the inferior, in case the
5744 low level attach operation doesn't stop them implicitly. If
5745 they weren't stopped implicitly, then the stub will report a
5746 GDB_SIGNAL_0, meaning: stopped for no particular reason
5747 other than GDB's request. */
5748 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5749 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5750 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5751 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5752 {
5753 stop_print_frame = 1;
22bcd14b 5754 stop_waiting (ecs);
36fa8042
PA
5755 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5756 return;
5757 }
5758
488f131b 5759 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
5760 so, then switch to that thread. */
5761 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 5762 {
527159b7 5763 if (debug_infrun)
8a9de0e4 5764 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5765
0d1e5fa7 5766 context_switch (ecs->ptid);
c5aa993b 5767
9a4105ab 5768 if (deprecated_context_hook)
5d5658a1 5769 deprecated_context_hook (ptid_to_global_thread_id (ecs->ptid));
488f131b 5770 }
c906108c 5771
568d6575
UW
5772 /* At this point, get hold of the now-current thread's frame. */
5773 frame = get_current_frame ();
5774 gdbarch = get_frame_arch (frame);
5775
2adfaa28 5776 /* Pull the single step breakpoints out of the target. */
af48d08f 5777 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5778 {
af48d08f 5779 struct regcache *regcache;
af48d08f 5780 CORE_ADDR pc;
2adfaa28 5781
af48d08f 5782 regcache = get_thread_regcache (ecs->ptid);
8b86c959
YQ
5783 const address_space *aspace = regcache->aspace ();
5784
af48d08f 5785 pc = regcache_read_pc (regcache);
34b7e8a6 5786
af48d08f
PA
5787 /* However, before doing so, if this single-step breakpoint was
5788 actually for another thread, set this thread up for moving
5789 past it. */
5790 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5791 aspace, pc))
5792 {
5793 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5794 {
5795 if (debug_infrun)
5796 {
5797 fprintf_unfiltered (gdb_stdlog,
af48d08f 5798 "infrun: [%s] hit another thread's "
34b7e8a6
PA
5799 "single-step breakpoint\n",
5800 target_pid_to_str (ecs->ptid));
2adfaa28 5801 }
af48d08f
PA
5802 ecs->hit_singlestep_breakpoint = 1;
5803 }
5804 }
5805 else
5806 {
5807 if (debug_infrun)
5808 {
5809 fprintf_unfiltered (gdb_stdlog,
5810 "infrun: [%s] hit its "
5811 "single-step breakpoint\n",
5812 target_pid_to_str (ecs->ptid));
2adfaa28
PA
5813 }
5814 }
488f131b 5815 }
af48d08f 5816 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5817
963f9c80
PA
5818 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5819 && ecs->event_thread->control.trap_expected
5820 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5821 stopped_by_watchpoint = 0;
5822 else
5823 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5824
5825 /* If necessary, step over this watchpoint. We'll be back to display
5826 it in a moment. */
5827 if (stopped_by_watchpoint
d92524f1 5828 && (target_have_steppable_watchpoint
568d6575 5829 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5830 {
488f131b
JB
5831 /* At this point, we are stopped at an instruction which has
5832 attempted to write to a piece of memory under control of
5833 a watchpoint. The instruction hasn't actually executed
5834 yet. If we were to evaluate the watchpoint expression
5835 now, we would get the old value, and therefore no change
5836 would seem to have occurred.
5837
5838 In order to make watchpoints work `right', we really need
5839 to complete the memory write, and then evaluate the
d983da9c
DJ
5840 watchpoint expression. We do this by single-stepping the
5841 target.
5842
7f89fd65 5843 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5844 it. For example, the PA can (with some kernel cooperation)
5845 single step over a watchpoint without disabling the watchpoint.
5846
5847 It is far more common to need to disable a watchpoint to step
5848 the inferior over it. If we have non-steppable watchpoints,
5849 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5850 disable all watchpoints.
5851
5852 Any breakpoint at PC must also be stepped over -- if there's
5853 one, it will have already triggered before the watchpoint
5854 triggered, and we either already reported it to the user, or
5855 it didn't cause a stop and we called keep_going. In either
5856 case, if there was a breakpoint at PC, we must be trying to
5857 step past it. */
5858 ecs->event_thread->stepping_over_watchpoint = 1;
5859 keep_going (ecs);
488f131b
JB
5860 return;
5861 }
5862
4e1c45ea 5863 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5864 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5865 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5866 ecs->event_thread->control.stop_step = 0;
488f131b 5867 stop_print_frame = 1;
488f131b 5868 stopped_by_random_signal = 0;
488f131b 5869
edb3359d
DJ
5870 /* Hide inlined functions starting here, unless we just performed stepi or
5871 nexti. After stepi and nexti, always show the innermost frame (not any
5872 inline function call sites). */
16c381f0 5873 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 5874 {
8b86c959 5875 const address_space *aspace =
a01bda52 5876 get_thread_regcache (ecs->ptid)->aspace ();
0574c78f
GB
5877
5878 /* skip_inline_frames is expensive, so we avoid it if we can
5879 determine that the address is one where functions cannot have
5880 been inlined. This improves performance with inferiors that
5881 load a lot of shared libraries, because the solib event
5882 breakpoint is defined as the address of a function (i.e. not
5883 inline). Note that we have to check the previous PC as well
5884 as the current one to catch cases when we have just
5885 single-stepped off a breakpoint prior to reinstating it.
5886 Note that we're assuming that the code we single-step to is
5887 not inline, but that's not definitive: there's nothing
5888 preventing the event breakpoint function from containing
5889 inlined code, and the single-step ending up there. If the
5890 user had set a breakpoint on that inlined code, the missing
5891 skip_inline_frames call would break things. Fortunately
5892 that's an extremely unlikely scenario. */
09ac7c10 5893 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
5894 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5895 && ecs->event_thread->control.trap_expected
5896 && pc_at_non_inline_function (aspace,
5897 ecs->event_thread->prev_pc,
09ac7c10 5898 &ecs->ws)))
1c5a993e
MR
5899 {
5900 skip_inline_frames (ecs->ptid);
5901
5902 /* Re-fetch current thread's frame in case that invalidated
5903 the frame cache. */
5904 frame = get_current_frame ();
5905 gdbarch = get_frame_arch (frame);
5906 }
0574c78f 5907 }
edb3359d 5908
a493e3e2 5909 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5910 && ecs->event_thread->control.trap_expected
568d6575 5911 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5912 && currently_stepping (ecs->event_thread))
3352ef37 5913 {
b50d7442 5914 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5915 also on an instruction that needs to be stepped multiple
1777feb0 5916 times before it's been fully executing. E.g., architectures
3352ef37
AC
5917 with a delay slot. It needs to be stepped twice, once for
5918 the instruction and once for the delay slot. */
5919 int step_through_delay
568d6575 5920 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5921
527159b7 5922 if (debug_infrun && step_through_delay)
8a9de0e4 5923 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5924 if (ecs->event_thread->control.step_range_end == 0
5925 && step_through_delay)
3352ef37
AC
5926 {
5927 /* The user issued a continue when stopped at a breakpoint.
5928 Set up for another trap and get out of here. */
4e1c45ea 5929 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5930 keep_going (ecs);
5931 return;
5932 }
5933 else if (step_through_delay)
5934 {
5935 /* The user issued a step when stopped at a breakpoint.
5936 Maybe we should stop, maybe we should not - the delay
5937 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5938 case, don't decide that here, just set
5939 ecs->stepping_over_breakpoint, making sure we
5940 single-step again before breakpoints are re-inserted. */
4e1c45ea 5941 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5942 }
5943 }
5944
ab04a2af
TT
5945 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5946 handles this event. */
5947 ecs->event_thread->control.stop_bpstat
a01bda52 5948 = bpstat_stop_status (get_current_regcache ()->aspace (),
ab04a2af 5949 stop_pc, ecs->ptid, &ecs->ws);
db82e815 5950
ab04a2af
TT
5951 /* Following in case break condition called a
5952 function. */
5953 stop_print_frame = 1;
73dd234f 5954
ab04a2af
TT
5955 /* This is where we handle "moribund" watchpoints. Unlike
5956 software breakpoints traps, hardware watchpoint traps are
5957 always distinguishable from random traps. If no high-level
5958 watchpoint is associated with the reported stop data address
5959 anymore, then the bpstat does not explain the signal ---
5960 simply make sure to ignore it if `stopped_by_watchpoint' is
5961 set. */
5962
5963 if (debug_infrun
5964 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5965 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5966 GDB_SIGNAL_TRAP)
ab04a2af
TT
5967 && stopped_by_watchpoint)
5968 fprintf_unfiltered (gdb_stdlog,
5969 "infrun: no user watchpoint explains "
5970 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5971
bac7d97b 5972 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5973 at one stage in the past included checks for an inferior
5974 function call's call dummy's return breakpoint. The original
5975 comment, that went with the test, read:
03cebad2 5976
ab04a2af
TT
5977 ``End of a stack dummy. Some systems (e.g. Sony news) give
5978 another signal besides SIGTRAP, so check here as well as
5979 above.''
73dd234f 5980
ab04a2af
TT
5981 If someone ever tries to get call dummys on a
5982 non-executable stack to work (where the target would stop
5983 with something like a SIGSEGV), then those tests might need
5984 to be re-instated. Given, however, that the tests were only
5985 enabled when momentary breakpoints were not being used, I
5986 suspect that it won't be the case.
488f131b 5987
ab04a2af
TT
5988 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5989 be necessary for call dummies on a non-executable stack on
5990 SPARC. */
488f131b 5991
bac7d97b 5992 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5993 random_signal
5994 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5995 ecs->event_thread->suspend.stop_signal);
bac7d97b 5996
1cf4d951
PA
5997 /* Maybe this was a trap for a software breakpoint that has since
5998 been removed. */
5999 if (random_signal && target_stopped_by_sw_breakpoint ())
6000 {
6001 if (program_breakpoint_here_p (gdbarch, stop_pc))
6002 {
6003 struct regcache *regcache;
6004 int decr_pc;
6005
6006 /* Re-adjust PC to what the program would see if GDB was not
6007 debugging it. */
6008 regcache = get_thread_regcache (ecs->event_thread->ptid);
527a273a 6009 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
6010 if (decr_pc != 0)
6011 {
07036511
TT
6012 gdb::optional<scoped_restore_tmpl<int>>
6013 restore_operation_disable;
1cf4d951
PA
6014
6015 if (record_full_is_used ())
07036511
TT
6016 restore_operation_disable.emplace
6017 (record_full_gdb_operation_disable_set ());
1cf4d951
PA
6018
6019 regcache_write_pc (regcache, stop_pc + decr_pc);
1cf4d951
PA
6020 }
6021 }
6022 else
6023 {
6024 /* A delayed software breakpoint event. Ignore the trap. */
6025 if (debug_infrun)
6026 fprintf_unfiltered (gdb_stdlog,
6027 "infrun: delayed software breakpoint "
6028 "trap, ignoring\n");
6029 random_signal = 0;
6030 }
6031 }
6032
6033 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6034 has since been removed. */
6035 if (random_signal && target_stopped_by_hw_breakpoint ())
6036 {
6037 /* A delayed hardware breakpoint event. Ignore the trap. */
6038 if (debug_infrun)
6039 fprintf_unfiltered (gdb_stdlog,
6040 "infrun: delayed hardware breakpoint/watchpoint "
6041 "trap, ignoring\n");
6042 random_signal = 0;
6043 }
6044
bac7d97b
PA
6045 /* If not, perhaps stepping/nexting can. */
6046 if (random_signal)
6047 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6048 && currently_stepping (ecs->event_thread));
ab04a2af 6049
2adfaa28
PA
6050 /* Perhaps the thread hit a single-step breakpoint of _another_
6051 thread. Single-step breakpoints are transparent to the
6052 breakpoints module. */
6053 if (random_signal)
6054 random_signal = !ecs->hit_singlestep_breakpoint;
6055
bac7d97b
PA
6056 /* No? Perhaps we got a moribund watchpoint. */
6057 if (random_signal)
6058 random_signal = !stopped_by_watchpoint;
ab04a2af 6059
c65d6b55
PA
6060 /* Always stop if the user explicitly requested this thread to
6061 remain stopped. */
6062 if (ecs->event_thread->stop_requested)
6063 {
6064 random_signal = 1;
6065 if (debug_infrun)
6066 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6067 }
6068
488f131b
JB
6069 /* For the program's own signals, act according to
6070 the signal handling tables. */
6071
ce12b012 6072 if (random_signal)
488f131b
JB
6073 {
6074 /* Signal not for debugging purposes. */
c9657e70 6075 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 6076 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 6077
527159b7 6078 if (debug_infrun)
c9737c08
PA
6079 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6080 gdb_signal_to_symbol_string (stop_signal));
527159b7 6081
488f131b
JB
6082 stopped_by_random_signal = 1;
6083
252fbfc8
PA
6084 /* Always stop on signals if we're either just gaining control
6085 of the program, or the user explicitly requested this thread
6086 to remain stopped. */
d6b48e9c 6087 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 6088 || ecs->event_thread->stop_requested
24291992 6089 || (!inf->detaching
16c381f0 6090 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 6091 {
22bcd14b 6092 stop_waiting (ecs);
488f131b
JB
6093 return;
6094 }
b57bacec
PA
6095
6096 /* Notify observers the signal has "handle print" set. Note we
6097 returned early above if stopping; normal_stop handles the
6098 printing in that case. */
6099 if (signal_print[ecs->event_thread->suspend.stop_signal])
6100 {
6101 /* The signal table tells us to print about this signal. */
223ffa71 6102 target_terminal::ours_for_output ();
b57bacec 6103 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
223ffa71 6104 target_terminal::inferior ();
b57bacec 6105 }
488f131b
JB
6106
6107 /* Clear the signal if it should not be passed. */
16c381f0 6108 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 6109 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 6110
fb14de7b 6111 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 6112 && ecs->event_thread->control.trap_expected
8358c15c 6113 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
6114 {
6115 /* We were just starting a new sequence, attempting to
6116 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 6117 Instead this signal arrives. This signal will take us out
68f53502
AC
6118 of the stepping range so GDB needs to remember to, when
6119 the signal handler returns, resume stepping off that
6120 breakpoint. */
6121 /* To simplify things, "continue" is forced to use the same
6122 code paths as single-step - set a breakpoint at the
6123 signal return address and then, once hit, step off that
6124 breakpoint. */
237fc4c9
PA
6125 if (debug_infrun)
6126 fprintf_unfiltered (gdb_stdlog,
6127 "infrun: signal arrived while stepping over "
6128 "breakpoint\n");
d3169d93 6129
2c03e5be 6130 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 6131 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6132 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6133 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
6134
6135 /* If we were nexting/stepping some other thread, switch to
6136 it, so that we don't continue it, losing control. */
6137 if (!switch_back_to_stepped_thread (ecs))
6138 keep_going (ecs);
9d799f85 6139 return;
68f53502 6140 }
9d799f85 6141
e5f8a7cc
PA
6142 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6143 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6144 || ecs->event_thread->control.step_range_end == 1)
edb3359d 6145 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 6146 ecs->event_thread->control.step_stack_frame_id)
8358c15c 6147 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
6148 {
6149 /* The inferior is about to take a signal that will take it
6150 out of the single step range. Set a breakpoint at the
6151 current PC (which is presumably where the signal handler
6152 will eventually return) and then allow the inferior to
6153 run free.
6154
6155 Note that this is only needed for a signal delivered
6156 while in the single-step range. Nested signals aren't a
6157 problem as they eventually all return. */
237fc4c9
PA
6158 if (debug_infrun)
6159 fprintf_unfiltered (gdb_stdlog,
6160 "infrun: signal may take us out of "
6161 "single-step range\n");
6162
372316f1 6163 clear_step_over_info ();
2c03e5be 6164 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 6165 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6166 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6167 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
6168 keep_going (ecs);
6169 return;
d303a6c7 6170 }
9d799f85
AC
6171
6172 /* Note: step_resume_breakpoint may be non-NULL. This occures
6173 when either there's a nested signal, or when there's a
6174 pending signal enabled just as the signal handler returns
6175 (leaving the inferior at the step-resume-breakpoint without
6176 actually executing it). Either way continue until the
6177 breakpoint is really hit. */
c447ac0b
PA
6178
6179 if (!switch_back_to_stepped_thread (ecs))
6180 {
6181 if (debug_infrun)
6182 fprintf_unfiltered (gdb_stdlog,
6183 "infrun: random signal, keep going\n");
6184
6185 keep_going (ecs);
6186 }
6187 return;
488f131b 6188 }
94c57d6a
PA
6189
6190 process_event_stop_test (ecs);
6191}
6192
6193/* Come here when we've got some debug event / signal we can explain
6194 (IOW, not a random signal), and test whether it should cause a
6195 stop, or whether we should resume the inferior (transparently).
6196 E.g., could be a breakpoint whose condition evaluates false; we
6197 could be still stepping within the line; etc. */
6198
6199static void
6200process_event_stop_test (struct execution_control_state *ecs)
6201{
6202 struct symtab_and_line stop_pc_sal;
6203 struct frame_info *frame;
6204 struct gdbarch *gdbarch;
cdaa5b73
PA
6205 CORE_ADDR jmp_buf_pc;
6206 struct bpstat_what what;
94c57d6a 6207
cdaa5b73 6208 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6209
cdaa5b73
PA
6210 frame = get_current_frame ();
6211 gdbarch = get_frame_arch (frame);
fcf3daef 6212
cdaa5b73 6213 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6214
cdaa5b73
PA
6215 if (what.call_dummy)
6216 {
6217 stop_stack_dummy = what.call_dummy;
6218 }
186c406b 6219
243a9253
PA
6220 /* A few breakpoint types have callbacks associated (e.g.,
6221 bp_jit_event). Run them now. */
6222 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6223
cdaa5b73
PA
6224 /* If we hit an internal event that triggers symbol changes, the
6225 current frame will be invalidated within bpstat_what (e.g., if we
6226 hit an internal solib event). Re-fetch it. */
6227 frame = get_current_frame ();
6228 gdbarch = get_frame_arch (frame);
e2e4d78b 6229
cdaa5b73
PA
6230 switch (what.main_action)
6231 {
6232 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6233 /* If we hit the breakpoint at longjmp while stepping, we
6234 install a momentary breakpoint at the target of the
6235 jmp_buf. */
186c406b 6236
cdaa5b73
PA
6237 if (debug_infrun)
6238 fprintf_unfiltered (gdb_stdlog,
6239 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6240
cdaa5b73 6241 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6242
cdaa5b73
PA
6243 if (what.is_longjmp)
6244 {
6245 struct value *arg_value;
6246
6247 /* If we set the longjmp breakpoint via a SystemTap probe,
6248 then use it to extract the arguments. The destination PC
6249 is the third argument to the probe. */
6250 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6251 if (arg_value)
8fa0c4f8
AA
6252 {
6253 jmp_buf_pc = value_as_address (arg_value);
6254 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6255 }
cdaa5b73
PA
6256 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6257 || !gdbarch_get_longjmp_target (gdbarch,
6258 frame, &jmp_buf_pc))
e2e4d78b 6259 {
cdaa5b73
PA
6260 if (debug_infrun)
6261 fprintf_unfiltered (gdb_stdlog,
6262 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6263 "(!gdbarch_get_longjmp_target)\n");
6264 keep_going (ecs);
6265 return;
e2e4d78b 6266 }
e2e4d78b 6267
cdaa5b73
PA
6268 /* Insert a breakpoint at resume address. */
6269 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6270 }
6271 else
6272 check_exception_resume (ecs, frame);
6273 keep_going (ecs);
6274 return;
e81a37f7 6275
cdaa5b73
PA
6276 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6277 {
6278 struct frame_info *init_frame;
e81a37f7 6279
cdaa5b73 6280 /* There are several cases to consider.
c906108c 6281
cdaa5b73
PA
6282 1. The initiating frame no longer exists. In this case we
6283 must stop, because the exception or longjmp has gone too
6284 far.
2c03e5be 6285
cdaa5b73
PA
6286 2. The initiating frame exists, and is the same as the
6287 current frame. We stop, because the exception or longjmp
6288 has been caught.
2c03e5be 6289
cdaa5b73
PA
6290 3. The initiating frame exists and is different from the
6291 current frame. This means the exception or longjmp has
6292 been caught beneath the initiating frame, so keep going.
c906108c 6293
cdaa5b73
PA
6294 4. longjmp breakpoint has been placed just to protect
6295 against stale dummy frames and user is not interested in
6296 stopping around longjmps. */
c5aa993b 6297
cdaa5b73
PA
6298 if (debug_infrun)
6299 fprintf_unfiltered (gdb_stdlog,
6300 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6301
cdaa5b73
PA
6302 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6303 != NULL);
6304 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6305
cdaa5b73
PA
6306 if (what.is_longjmp)
6307 {
b67a2c6f 6308 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6309
cdaa5b73 6310 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6311 {
cdaa5b73
PA
6312 /* Case 4. */
6313 keep_going (ecs);
6314 return;
e5ef252a 6315 }
cdaa5b73 6316 }
c5aa993b 6317
cdaa5b73 6318 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6319
cdaa5b73
PA
6320 if (init_frame)
6321 {
6322 struct frame_id current_id
6323 = get_frame_id (get_current_frame ());
6324 if (frame_id_eq (current_id,
6325 ecs->event_thread->initiating_frame))
6326 {
6327 /* Case 2. Fall through. */
6328 }
6329 else
6330 {
6331 /* Case 3. */
6332 keep_going (ecs);
6333 return;
6334 }
68f53502 6335 }
488f131b 6336
cdaa5b73
PA
6337 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6338 exists. */
6339 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6340
bdc36728 6341 end_stepping_range (ecs);
cdaa5b73
PA
6342 }
6343 return;
e5ef252a 6344
cdaa5b73
PA
6345 case BPSTAT_WHAT_SINGLE:
6346 if (debug_infrun)
6347 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6348 ecs->event_thread->stepping_over_breakpoint = 1;
6349 /* Still need to check other stuff, at least the case where we
6350 are stepping and step out of the right range. */
6351 break;
e5ef252a 6352
cdaa5b73
PA
6353 case BPSTAT_WHAT_STEP_RESUME:
6354 if (debug_infrun)
6355 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6356
cdaa5b73
PA
6357 delete_step_resume_breakpoint (ecs->event_thread);
6358 if (ecs->event_thread->control.proceed_to_finish
6359 && execution_direction == EXEC_REVERSE)
6360 {
6361 struct thread_info *tp = ecs->event_thread;
6362
6363 /* We are finishing a function in reverse, and just hit the
6364 step-resume breakpoint at the start address of the
6365 function, and we're almost there -- just need to back up
6366 by one more single-step, which should take us back to the
6367 function call. */
6368 tp->control.step_range_start = tp->control.step_range_end = 1;
6369 keep_going (ecs);
e5ef252a 6370 return;
cdaa5b73
PA
6371 }
6372 fill_in_stop_func (gdbarch, ecs);
6373 if (stop_pc == ecs->stop_func_start
6374 && execution_direction == EXEC_REVERSE)
6375 {
6376 /* We are stepping over a function call in reverse, and just
6377 hit the step-resume breakpoint at the start address of
6378 the function. Go back to single-stepping, which should
6379 take us back to the function call. */
6380 ecs->event_thread->stepping_over_breakpoint = 1;
6381 keep_going (ecs);
6382 return;
6383 }
6384 break;
e5ef252a 6385
cdaa5b73
PA
6386 case BPSTAT_WHAT_STOP_NOISY:
6387 if (debug_infrun)
6388 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6389 stop_print_frame = 1;
e5ef252a 6390
99619bea
PA
6391 /* Assume the thread stopped for a breapoint. We'll still check
6392 whether a/the breakpoint is there when the thread is next
6393 resumed. */
6394 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6395
22bcd14b 6396 stop_waiting (ecs);
cdaa5b73 6397 return;
e5ef252a 6398
cdaa5b73
PA
6399 case BPSTAT_WHAT_STOP_SILENT:
6400 if (debug_infrun)
6401 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6402 stop_print_frame = 0;
e5ef252a 6403
99619bea
PA
6404 /* Assume the thread stopped for a breapoint. We'll still check
6405 whether a/the breakpoint is there when the thread is next
6406 resumed. */
6407 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6408 stop_waiting (ecs);
cdaa5b73
PA
6409 return;
6410
6411 case BPSTAT_WHAT_HP_STEP_RESUME:
6412 if (debug_infrun)
6413 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6414
6415 delete_step_resume_breakpoint (ecs->event_thread);
6416 if (ecs->event_thread->step_after_step_resume_breakpoint)
6417 {
6418 /* Back when the step-resume breakpoint was inserted, we
6419 were trying to single-step off a breakpoint. Go back to
6420 doing that. */
6421 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6422 ecs->event_thread->stepping_over_breakpoint = 1;
6423 keep_going (ecs);
6424 return;
e5ef252a 6425 }
cdaa5b73
PA
6426 break;
6427
6428 case BPSTAT_WHAT_KEEP_CHECKING:
6429 break;
e5ef252a 6430 }
c906108c 6431
af48d08f
PA
6432 /* If we stepped a permanent breakpoint and we had a high priority
6433 step-resume breakpoint for the address we stepped, but we didn't
6434 hit it, then we must have stepped into the signal handler. The
6435 step-resume was only necessary to catch the case of _not_
6436 stepping into the handler, so delete it, and fall through to
6437 checking whether the step finished. */
6438 if (ecs->event_thread->stepped_breakpoint)
6439 {
6440 struct breakpoint *sr_bp
6441 = ecs->event_thread->control.step_resume_breakpoint;
6442
8d707a12
PA
6443 if (sr_bp != NULL
6444 && sr_bp->loc->permanent
af48d08f
PA
6445 && sr_bp->type == bp_hp_step_resume
6446 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6447 {
6448 if (debug_infrun)
6449 fprintf_unfiltered (gdb_stdlog,
6450 "infrun: stepped permanent breakpoint, stopped in "
6451 "handler\n");
6452 delete_step_resume_breakpoint (ecs->event_thread);
6453 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6454 }
6455 }
6456
cdaa5b73
PA
6457 /* We come here if we hit a breakpoint but should not stop for it.
6458 Possibly we also were stepping and should stop for that. So fall
6459 through and test for stepping. But, if not stepping, do not
6460 stop. */
c906108c 6461
a7212384
UW
6462 /* In all-stop mode, if we're currently stepping but have stopped in
6463 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6464 if (switch_back_to_stepped_thread (ecs))
6465 return;
776f04fa 6466
8358c15c 6467 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6468 {
527159b7 6469 if (debug_infrun)
d3169d93
DJ
6470 fprintf_unfiltered (gdb_stdlog,
6471 "infrun: step-resume breakpoint is inserted\n");
527159b7 6472
488f131b
JB
6473 /* Having a step-resume breakpoint overrides anything
6474 else having to do with stepping commands until
6475 that breakpoint is reached. */
488f131b
JB
6476 keep_going (ecs);
6477 return;
6478 }
c5aa993b 6479
16c381f0 6480 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6481 {
527159b7 6482 if (debug_infrun)
8a9de0e4 6483 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6484 /* Likewise if we aren't even stepping. */
488f131b
JB
6485 keep_going (ecs);
6486 return;
6487 }
c5aa993b 6488
4b7703ad
JB
6489 /* Re-fetch current thread's frame in case the code above caused
6490 the frame cache to be re-initialized, making our FRAME variable
6491 a dangling pointer. */
6492 frame = get_current_frame ();
628fe4e4 6493 gdbarch = get_frame_arch (frame);
7e324e48 6494 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6495
488f131b 6496 /* If stepping through a line, keep going if still within it.
c906108c 6497
488f131b
JB
6498 Note that step_range_end is the address of the first instruction
6499 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6500 within it!
6501
6502 Note also that during reverse execution, we may be stepping
6503 through a function epilogue and therefore must detect when
6504 the current-frame changes in the middle of a line. */
6505
ce4c476a 6506 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 6507 && (execution_direction != EXEC_REVERSE
388a8562 6508 || frame_id_eq (get_frame_id (frame),
16c381f0 6509 ecs->event_thread->control.step_frame_id)))
488f131b 6510 {
527159b7 6511 if (debug_infrun)
5af949e3
UW
6512 fprintf_unfiltered
6513 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6514 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6515 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6516
c1e36e3e
PA
6517 /* Tentatively re-enable range stepping; `resume' disables it if
6518 necessary (e.g., if we're stepping over a breakpoint or we
6519 have software watchpoints). */
6520 ecs->event_thread->control.may_range_step = 1;
6521
b2175913
MS
6522 /* When stepping backward, stop at beginning of line range
6523 (unless it's the function entry point, in which case
6524 keep going back to the call point). */
16c381f0 6525 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6526 && stop_pc != ecs->stop_func_start
6527 && execution_direction == EXEC_REVERSE)
bdc36728 6528 end_stepping_range (ecs);
b2175913
MS
6529 else
6530 keep_going (ecs);
6531
488f131b
JB
6532 return;
6533 }
c5aa993b 6534
488f131b 6535 /* We stepped out of the stepping range. */
c906108c 6536
488f131b 6537 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6538 loader dynamic symbol resolution code...
6539
6540 EXEC_FORWARD: we keep on single stepping until we exit the run
6541 time loader code and reach the callee's address.
6542
6543 EXEC_REVERSE: we've already executed the callee (backward), and
6544 the runtime loader code is handled just like any other
6545 undebuggable function call. Now we need only keep stepping
6546 backward through the trampoline code, and that's handled further
6547 down, so there is nothing for us to do here. */
6548
6549 if (execution_direction != EXEC_REVERSE
16c381f0 6550 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 6551 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 6552 {
4c8c40e6 6553 CORE_ADDR pc_after_resolver =
568d6575 6554 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 6555
527159b7 6556 if (debug_infrun)
3e43a32a
MS
6557 fprintf_unfiltered (gdb_stdlog,
6558 "infrun: stepped into dynsym resolve code\n");
527159b7 6559
488f131b
JB
6560 if (pc_after_resolver)
6561 {
6562 /* Set up a step-resume breakpoint at the address
6563 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6564 symtab_and_line sr_sal;
488f131b 6565 sr_sal.pc = pc_after_resolver;
6c95b8df 6566 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6567
a6d9a66e
UW
6568 insert_step_resume_breakpoint_at_sal (gdbarch,
6569 sr_sal, null_frame_id);
c5aa993b 6570 }
c906108c 6571
488f131b
JB
6572 keep_going (ecs);
6573 return;
6574 }
c906108c 6575
16c381f0
JK
6576 if (ecs->event_thread->control.step_range_end != 1
6577 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6578 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6579 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6580 {
527159b7 6581 if (debug_infrun)
3e43a32a
MS
6582 fprintf_unfiltered (gdb_stdlog,
6583 "infrun: stepped into signal trampoline\n");
42edda50 6584 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6585 a signal trampoline (either by a signal being delivered or by
6586 the signal handler returning). Just single-step until the
6587 inferior leaves the trampoline (either by calling the handler
6588 or returning). */
488f131b
JB
6589 keep_going (ecs);
6590 return;
6591 }
c906108c 6592
14132e89
MR
6593 /* If we're in the return path from a shared library trampoline,
6594 we want to proceed through the trampoline when stepping. */
6595 /* macro/2012-04-25: This needs to come before the subroutine
6596 call check below as on some targets return trampolines look
6597 like subroutine calls (MIPS16 return thunks). */
6598 if (gdbarch_in_solib_return_trampoline (gdbarch,
6599 stop_pc, ecs->stop_func_name)
6600 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6601 {
6602 /* Determine where this trampoline returns. */
6603 CORE_ADDR real_stop_pc;
6604
6605 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6606
6607 if (debug_infrun)
6608 fprintf_unfiltered (gdb_stdlog,
6609 "infrun: stepped into solib return tramp\n");
6610
6611 /* Only proceed through if we know where it's going. */
6612 if (real_stop_pc)
6613 {
6614 /* And put the step-breakpoint there and go until there. */
51abb421 6615 symtab_and_line sr_sal;
14132e89
MR
6616 sr_sal.pc = real_stop_pc;
6617 sr_sal.section = find_pc_overlay (sr_sal.pc);
6618 sr_sal.pspace = get_frame_program_space (frame);
6619
6620 /* Do not specify what the fp should be when we stop since
6621 on some machines the prologue is where the new fp value
6622 is established. */
6623 insert_step_resume_breakpoint_at_sal (gdbarch,
6624 sr_sal, null_frame_id);
6625
6626 /* Restart without fiddling with the step ranges or
6627 other state. */
6628 keep_going (ecs);
6629 return;
6630 }
6631 }
6632
c17eaafe
DJ
6633 /* Check for subroutine calls. The check for the current frame
6634 equalling the step ID is not necessary - the check of the
6635 previous frame's ID is sufficient - but it is a common case and
6636 cheaper than checking the previous frame's ID.
14e60db5
DJ
6637
6638 NOTE: frame_id_eq will never report two invalid frame IDs as
6639 being equal, so to get into this block, both the current and
6640 previous frame must have valid frame IDs. */
005ca36a
JB
6641 /* The outer_frame_id check is a heuristic to detect stepping
6642 through startup code. If we step over an instruction which
6643 sets the stack pointer from an invalid value to a valid value,
6644 we may detect that as a subroutine call from the mythical
6645 "outermost" function. This could be fixed by marking
6646 outermost frames as !stack_p,code_p,special_p. Then the
6647 initial outermost frame, before sp was valid, would
ce6cca6d 6648 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6649 for more. */
edb3359d 6650 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6651 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6652 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6653 ecs->event_thread->control.step_stack_frame_id)
6654 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6655 outer_frame_id)
885eeb5b
PA
6656 || (ecs->event_thread->control.step_start_function
6657 != find_pc_function (stop_pc)))))
488f131b 6658 {
95918acb 6659 CORE_ADDR real_stop_pc;
8fb3e588 6660
527159b7 6661 if (debug_infrun)
8a9de0e4 6662 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6663
b7a084be 6664 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6665 {
6666 /* I presume that step_over_calls is only 0 when we're
6667 supposed to be stepping at the assembly language level
6668 ("stepi"). Just stop. */
388a8562 6669 /* And this works the same backward as frontward. MVS */
bdc36728 6670 end_stepping_range (ecs);
95918acb
AC
6671 return;
6672 }
8fb3e588 6673
388a8562
MS
6674 /* Reverse stepping through solib trampolines. */
6675
6676 if (execution_direction == EXEC_REVERSE
16c381f0 6677 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6678 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6679 || (ecs->stop_func_start == 0
6680 && in_solib_dynsym_resolve_code (stop_pc))))
6681 {
6682 /* Any solib trampoline code can be handled in reverse
6683 by simply continuing to single-step. We have already
6684 executed the solib function (backwards), and a few
6685 steps will take us back through the trampoline to the
6686 caller. */
6687 keep_going (ecs);
6688 return;
6689 }
6690
16c381f0 6691 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6692 {
b2175913
MS
6693 /* We're doing a "next".
6694
6695 Normal (forward) execution: set a breakpoint at the
6696 callee's return address (the address at which the caller
6697 will resume).
6698
6699 Reverse (backward) execution. set the step-resume
6700 breakpoint at the start of the function that we just
6701 stepped into (backwards), and continue to there. When we
6130d0b7 6702 get there, we'll need to single-step back to the caller. */
b2175913
MS
6703
6704 if (execution_direction == EXEC_REVERSE)
6705 {
acf9414f
JK
6706 /* If we're already at the start of the function, we've either
6707 just stepped backward into a single instruction function,
6708 or stepped back out of a signal handler to the first instruction
6709 of the function. Just keep going, which will single-step back
6710 to the caller. */
58c48e72 6711 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 6712 {
acf9414f 6713 /* Normal function call return (static or dynamic). */
51abb421 6714 symtab_and_line sr_sal;
acf9414f
JK
6715 sr_sal.pc = ecs->stop_func_start;
6716 sr_sal.pspace = get_frame_program_space (frame);
6717 insert_step_resume_breakpoint_at_sal (gdbarch,
6718 sr_sal, null_frame_id);
6719 }
b2175913
MS
6720 }
6721 else
568d6575 6722 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6723
8567c30f
AC
6724 keep_going (ecs);
6725 return;
6726 }
a53c66de 6727
95918acb 6728 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6729 calling routine and the real function), locate the real
6730 function. That's what tells us (a) whether we want to step
6731 into it at all, and (b) what prologue we want to run to the
6732 end of, if we do step into it. */
568d6575 6733 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6734 if (real_stop_pc == 0)
568d6575 6735 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6736 if (real_stop_pc != 0)
6737 ecs->stop_func_start = real_stop_pc;
8fb3e588 6738
db5f024e 6739 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 6740 {
51abb421 6741 symtab_and_line sr_sal;
1b2bfbb9 6742 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6743 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6744
a6d9a66e
UW
6745 insert_step_resume_breakpoint_at_sal (gdbarch,
6746 sr_sal, null_frame_id);
8fb3e588
AC
6747 keep_going (ecs);
6748 return;
1b2bfbb9
RC
6749 }
6750
95918acb 6751 /* If we have line number information for the function we are
1bfeeb0f
JL
6752 thinking of stepping into and the function isn't on the skip
6753 list, step into it.
95918acb 6754
8fb3e588
AC
6755 If there are several symtabs at that PC (e.g. with include
6756 files), just want to know whether *any* of them have line
6757 numbers. find_pc_line handles this. */
95918acb
AC
6758 {
6759 struct symtab_and_line tmp_sal;
8fb3e588 6760
95918acb 6761 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6762 if (tmp_sal.line != 0
85817405 6763 && !function_name_is_marked_for_skip (ecs->stop_func_name,
de7985c3 6764 tmp_sal))
95918acb 6765 {
b2175913 6766 if (execution_direction == EXEC_REVERSE)
568d6575 6767 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6768 else
568d6575 6769 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6770 return;
6771 }
6772 }
6773
6774 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6775 set, we stop the step so that the user has a chance to switch
6776 in assembly mode. */
16c381f0 6777 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6778 && step_stop_if_no_debug)
95918acb 6779 {
bdc36728 6780 end_stepping_range (ecs);
95918acb
AC
6781 return;
6782 }
6783
b2175913
MS
6784 if (execution_direction == EXEC_REVERSE)
6785 {
acf9414f
JK
6786 /* If we're already at the start of the function, we've either just
6787 stepped backward into a single instruction function without line
6788 number info, or stepped back out of a signal handler to the first
6789 instruction of the function without line number info. Just keep
6790 going, which will single-step back to the caller. */
6791 if (ecs->stop_func_start != stop_pc)
6792 {
6793 /* Set a breakpoint at callee's start address.
6794 From there we can step once and be back in the caller. */
51abb421 6795 symtab_and_line sr_sal;
acf9414f
JK
6796 sr_sal.pc = ecs->stop_func_start;
6797 sr_sal.pspace = get_frame_program_space (frame);
6798 insert_step_resume_breakpoint_at_sal (gdbarch,
6799 sr_sal, null_frame_id);
6800 }
b2175913
MS
6801 }
6802 else
6803 /* Set a breakpoint at callee's return address (the address
6804 at which the caller will resume). */
568d6575 6805 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6806
95918acb 6807 keep_going (ecs);
488f131b 6808 return;
488f131b 6809 }
c906108c 6810
fdd654f3
MS
6811 /* Reverse stepping through solib trampolines. */
6812
6813 if (execution_direction == EXEC_REVERSE
16c381f0 6814 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
6815 {
6816 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6817 || (ecs->stop_func_start == 0
6818 && in_solib_dynsym_resolve_code (stop_pc)))
6819 {
6820 /* Any solib trampoline code can be handled in reverse
6821 by simply continuing to single-step. We have already
6822 executed the solib function (backwards), and a few
6823 steps will take us back through the trampoline to the
6824 caller. */
6825 keep_going (ecs);
6826 return;
6827 }
6828 else if (in_solib_dynsym_resolve_code (stop_pc))
6829 {
6830 /* Stepped backward into the solib dynsym resolver.
6831 Set a breakpoint at its start and continue, then
6832 one more step will take us out. */
51abb421 6833 symtab_and_line sr_sal;
fdd654f3 6834 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6835 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6836 insert_step_resume_breakpoint_at_sal (gdbarch,
6837 sr_sal, null_frame_id);
6838 keep_going (ecs);
6839 return;
6840 }
6841 }
6842
2afb61aa 6843 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 6844
1b2bfbb9
RC
6845 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6846 the trampoline processing logic, however, there are some trampolines
6847 that have no names, so we should do trampoline handling first. */
16c381f0 6848 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6849 && ecs->stop_func_name == NULL
2afb61aa 6850 && stop_pc_sal.line == 0)
1b2bfbb9 6851 {
527159b7 6852 if (debug_infrun)
3e43a32a
MS
6853 fprintf_unfiltered (gdb_stdlog,
6854 "infrun: stepped into undebuggable function\n");
527159b7 6855
1b2bfbb9 6856 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6857 undebuggable function (where there is no debugging information
6858 and no line number corresponding to the address where the
1b2bfbb9
RC
6859 inferior stopped). Since we want to skip this kind of code,
6860 we keep going until the inferior returns from this
14e60db5
DJ
6861 function - unless the user has asked us not to (via
6862 set step-mode) or we no longer know how to get back
6863 to the call site. */
6864 if (step_stop_if_no_debug
c7ce8faa 6865 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6866 {
6867 /* If we have no line number and the step-stop-if-no-debug
6868 is set, we stop the step so that the user has a chance to
6869 switch in assembly mode. */
bdc36728 6870 end_stepping_range (ecs);
1b2bfbb9
RC
6871 return;
6872 }
6873 else
6874 {
6875 /* Set a breakpoint at callee's return address (the address
6876 at which the caller will resume). */
568d6575 6877 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6878 keep_going (ecs);
6879 return;
6880 }
6881 }
6882
16c381f0 6883 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6884 {
6885 /* It is stepi or nexti. We always want to stop stepping after
6886 one instruction. */
527159b7 6887 if (debug_infrun)
8a9de0e4 6888 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6889 end_stepping_range (ecs);
1b2bfbb9
RC
6890 return;
6891 }
6892
2afb61aa 6893 if (stop_pc_sal.line == 0)
488f131b
JB
6894 {
6895 /* We have no line number information. That means to stop
6896 stepping (does this always happen right after one instruction,
6897 when we do "s" in a function with no line numbers,
6898 or can this happen as a result of a return or longjmp?). */
527159b7 6899 if (debug_infrun)
8a9de0e4 6900 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6901 end_stepping_range (ecs);
488f131b
JB
6902 return;
6903 }
c906108c 6904
edb3359d
DJ
6905 /* Look for "calls" to inlined functions, part one. If the inline
6906 frame machinery detected some skipped call sites, we have entered
6907 a new inline function. */
6908
6909 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6910 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
6911 && inline_skipped_frames (ecs->ptid))
6912 {
edb3359d
DJ
6913 if (debug_infrun)
6914 fprintf_unfiltered (gdb_stdlog,
6915 "infrun: stepped into inlined function\n");
6916
51abb421 6917 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 6918
16c381f0 6919 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6920 {
6921 /* For "step", we're going to stop. But if the call site
6922 for this inlined function is on the same source line as
6923 we were previously stepping, go down into the function
6924 first. Otherwise stop at the call site. */
6925
6926 if (call_sal.line == ecs->event_thread->current_line
6927 && call_sal.symtab == ecs->event_thread->current_symtab)
6928 step_into_inline_frame (ecs->ptid);
6929
bdc36728 6930 end_stepping_range (ecs);
edb3359d
DJ
6931 return;
6932 }
6933 else
6934 {
6935 /* For "next", we should stop at the call site if it is on a
6936 different source line. Otherwise continue through the
6937 inlined function. */
6938 if (call_sal.line == ecs->event_thread->current_line
6939 && call_sal.symtab == ecs->event_thread->current_symtab)
6940 keep_going (ecs);
6941 else
bdc36728 6942 end_stepping_range (ecs);
edb3359d
DJ
6943 return;
6944 }
6945 }
6946
6947 /* Look for "calls" to inlined functions, part two. If we are still
6948 in the same real function we were stepping through, but we have
6949 to go further up to find the exact frame ID, we are stepping
6950 through a more inlined call beyond its call site. */
6951
6952 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6953 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6954 ecs->event_thread->control.step_frame_id)
edb3359d 6955 && stepped_in_from (get_current_frame (),
16c381f0 6956 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6957 {
6958 if (debug_infrun)
6959 fprintf_unfiltered (gdb_stdlog,
6960 "infrun: stepping through inlined function\n");
6961
16c381f0 6962 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
6963 keep_going (ecs);
6964 else
bdc36728 6965 end_stepping_range (ecs);
edb3359d
DJ
6966 return;
6967 }
6968
2afb61aa 6969 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6970 && (ecs->event_thread->current_line != stop_pc_sal.line
6971 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
6972 {
6973 /* We are at the start of a different line. So stop. Note that
6974 we don't stop if we step into the middle of a different line.
6975 That is said to make things like for (;;) statements work
6976 better. */
527159b7 6977 if (debug_infrun)
3e43a32a
MS
6978 fprintf_unfiltered (gdb_stdlog,
6979 "infrun: stepped to a different line\n");
bdc36728 6980 end_stepping_range (ecs);
488f131b
JB
6981 return;
6982 }
c906108c 6983
488f131b 6984 /* We aren't done stepping.
c906108c 6985
488f131b
JB
6986 Optimize by setting the stepping range to the line.
6987 (We might not be in the original line, but if we entered a
6988 new line in mid-statement, we continue stepping. This makes
6989 things like for(;;) statements work better.) */
c906108c 6990
16c381f0
JK
6991 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6992 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 6993 ecs->event_thread->control.may_range_step = 1;
edb3359d 6994 set_step_info (frame, stop_pc_sal);
488f131b 6995
527159b7 6996 if (debug_infrun)
8a9de0e4 6997 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 6998 keep_going (ecs);
104c1213
JM
6999}
7000
c447ac0b
PA
7001/* In all-stop mode, if we're currently stepping but have stopped in
7002 some other thread, we may need to switch back to the stepped
7003 thread. Returns true we set the inferior running, false if we left
7004 it stopped (and the event needs further processing). */
7005
7006static int
7007switch_back_to_stepped_thread (struct execution_control_state *ecs)
7008{
fbea99ea 7009 if (!target_is_non_stop_p ())
c447ac0b
PA
7010 {
7011 struct thread_info *tp;
99619bea
PA
7012 struct thread_info *stepping_thread;
7013
7014 /* If any thread is blocked on some internal breakpoint, and we
7015 simply need to step over that breakpoint to get it going
7016 again, do that first. */
7017
7018 /* However, if we see an event for the stepping thread, then we
7019 know all other threads have been moved past their breakpoints
7020 already. Let the caller check whether the step is finished,
7021 etc., before deciding to move it past a breakpoint. */
7022 if (ecs->event_thread->control.step_range_end != 0)
7023 return 0;
7024
7025 /* Check if the current thread is blocked on an incomplete
7026 step-over, interrupted by a random signal. */
7027 if (ecs->event_thread->control.trap_expected
7028 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 7029 {
99619bea
PA
7030 if (debug_infrun)
7031 {
7032 fprintf_unfiltered (gdb_stdlog,
7033 "infrun: need to finish step-over of [%s]\n",
7034 target_pid_to_str (ecs->event_thread->ptid));
7035 }
7036 keep_going (ecs);
7037 return 1;
7038 }
2adfaa28 7039
99619bea
PA
7040 /* Check if the current thread is blocked by a single-step
7041 breakpoint of another thread. */
7042 if (ecs->hit_singlestep_breakpoint)
7043 {
7044 if (debug_infrun)
7045 {
7046 fprintf_unfiltered (gdb_stdlog,
7047 "infrun: need to step [%s] over single-step "
7048 "breakpoint\n",
7049 target_pid_to_str (ecs->ptid));
7050 }
7051 keep_going (ecs);
7052 return 1;
7053 }
7054
4d9d9d04
PA
7055 /* If this thread needs yet another step-over (e.g., stepping
7056 through a delay slot), do it first before moving on to
7057 another thread. */
7058 if (thread_still_needs_step_over (ecs->event_thread))
7059 {
7060 if (debug_infrun)
7061 {
7062 fprintf_unfiltered (gdb_stdlog,
7063 "infrun: thread [%s] still needs step-over\n",
7064 target_pid_to_str (ecs->event_thread->ptid));
7065 }
7066 keep_going (ecs);
7067 return 1;
7068 }
70509625 7069
483805cf
PA
7070 /* If scheduler locking applies even if not stepping, there's no
7071 need to walk over threads. Above we've checked whether the
7072 current thread is stepping. If some other thread not the
7073 event thread is stepping, then it must be that scheduler
7074 locking is not in effect. */
856e7dd6 7075 if (schedlock_applies (ecs->event_thread))
483805cf
PA
7076 return 0;
7077
4d9d9d04
PA
7078 /* Otherwise, we no longer expect a trap in the current thread.
7079 Clear the trap_expected flag before switching back -- this is
7080 what keep_going does as well, if we call it. */
7081 ecs->event_thread->control.trap_expected = 0;
7082
7083 /* Likewise, clear the signal if it should not be passed. */
7084 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7085 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7086
7087 /* Do all pending step-overs before actually proceeding with
483805cf 7088 step/next/etc. */
4d9d9d04
PA
7089 if (start_step_over ())
7090 {
7091 prepare_to_wait (ecs);
7092 return 1;
7093 }
7094
7095 /* Look for the stepping/nexting thread. */
483805cf 7096 stepping_thread = NULL;
4d9d9d04 7097
034f788c 7098 ALL_NON_EXITED_THREADS (tp)
483805cf 7099 {
fbea99ea
PA
7100 /* Ignore threads of processes the caller is not
7101 resuming. */
483805cf 7102 if (!sched_multi
1afd5965 7103 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
483805cf
PA
7104 continue;
7105
7106 /* When stepping over a breakpoint, we lock all threads
7107 except the one that needs to move past the breakpoint.
7108 If a non-event thread has this set, the "incomplete
7109 step-over" check above should have caught it earlier. */
372316f1
PA
7110 if (tp->control.trap_expected)
7111 {
7112 internal_error (__FILE__, __LINE__,
7113 "[%s] has inconsistent state: "
7114 "trap_expected=%d\n",
7115 target_pid_to_str (tp->ptid),
7116 tp->control.trap_expected);
7117 }
483805cf
PA
7118
7119 /* Did we find the stepping thread? */
7120 if (tp->control.step_range_end)
7121 {
7122 /* Yep. There should only one though. */
7123 gdb_assert (stepping_thread == NULL);
7124
7125 /* The event thread is handled at the top, before we
7126 enter this loop. */
7127 gdb_assert (tp != ecs->event_thread);
7128
7129 /* If some thread other than the event thread is
7130 stepping, then scheduler locking can't be in effect,
7131 otherwise we wouldn't have resumed the current event
7132 thread in the first place. */
856e7dd6 7133 gdb_assert (!schedlock_applies (tp));
483805cf
PA
7134
7135 stepping_thread = tp;
7136 }
99619bea
PA
7137 }
7138
483805cf 7139 if (stepping_thread != NULL)
99619bea 7140 {
c447ac0b
PA
7141 if (debug_infrun)
7142 fprintf_unfiltered (gdb_stdlog,
7143 "infrun: switching back to stepped thread\n");
7144
2ac7589c
PA
7145 if (keep_going_stepped_thread (stepping_thread))
7146 {
7147 prepare_to_wait (ecs);
7148 return 1;
7149 }
7150 }
7151 }
2adfaa28 7152
2ac7589c
PA
7153 return 0;
7154}
2adfaa28 7155
2ac7589c
PA
7156/* Set a previously stepped thread back to stepping. Returns true on
7157 success, false if the resume is not possible (e.g., the thread
7158 vanished). */
7159
7160static int
7161keep_going_stepped_thread (struct thread_info *tp)
7162{
7163 struct frame_info *frame;
2ac7589c
PA
7164 struct execution_control_state ecss;
7165 struct execution_control_state *ecs = &ecss;
2adfaa28 7166
2ac7589c
PA
7167 /* If the stepping thread exited, then don't try to switch back and
7168 resume it, which could fail in several different ways depending
7169 on the target. Instead, just keep going.
2adfaa28 7170
2ac7589c
PA
7171 We can find a stepping dead thread in the thread list in two
7172 cases:
2adfaa28 7173
2ac7589c
PA
7174 - The target supports thread exit events, and when the target
7175 tries to delete the thread from the thread list, inferior_ptid
7176 pointed at the exiting thread. In such case, calling
7177 delete_thread does not really remove the thread from the list;
7178 instead, the thread is left listed, with 'exited' state.
64ce06e4 7179
2ac7589c
PA
7180 - The target's debug interface does not support thread exit
7181 events, and so we have no idea whatsoever if the previously
7182 stepping thread is still alive. For that reason, we need to
7183 synchronously query the target now. */
2adfaa28 7184
2ac7589c
PA
7185 if (is_exited (tp->ptid)
7186 || !target_thread_alive (tp->ptid))
7187 {
7188 if (debug_infrun)
7189 fprintf_unfiltered (gdb_stdlog,
7190 "infrun: not resuming previously "
7191 "stepped thread, it has vanished\n");
7192
7193 delete_thread (tp->ptid);
7194 return 0;
c447ac0b 7195 }
2ac7589c
PA
7196
7197 if (debug_infrun)
7198 fprintf_unfiltered (gdb_stdlog,
7199 "infrun: resuming previously stepped thread\n");
7200
7201 reset_ecs (ecs, tp);
7202 switch_to_thread (tp->ptid);
7203
7204 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7205 frame = get_current_frame ();
2ac7589c
PA
7206
7207 /* If the PC of the thread we were trying to single-step has
7208 changed, then that thread has trapped or been signaled, but the
7209 event has not been reported to GDB yet. Re-poll the target
7210 looking for this particular thread's event (i.e. temporarily
7211 enable schedlock) by:
7212
7213 - setting a break at the current PC
7214 - resuming that particular thread, only (by setting trap
7215 expected)
7216
7217 This prevents us continuously moving the single-step breakpoint
7218 forward, one instruction at a time, overstepping. */
7219
7220 if (stop_pc != tp->prev_pc)
7221 {
7222 ptid_t resume_ptid;
7223
7224 if (debug_infrun)
7225 fprintf_unfiltered (gdb_stdlog,
7226 "infrun: expected thread advanced also (%s -> %s)\n",
7227 paddress (target_gdbarch (), tp->prev_pc),
7228 paddress (target_gdbarch (), stop_pc));
7229
7230 /* Clear the info of the previous step-over, as it's no longer
7231 valid (if the thread was trying to step over a breakpoint, it
7232 has already succeeded). It's what keep_going would do too,
7233 if we called it. Do this before trying to insert the sss
7234 breakpoint, otherwise if we were previously trying to step
7235 over this exact address in another thread, the breakpoint is
7236 skipped. */
7237 clear_step_over_info ();
7238 tp->control.trap_expected = 0;
7239
7240 insert_single_step_breakpoint (get_frame_arch (frame),
7241 get_frame_address_space (frame),
7242 stop_pc);
7243
372316f1 7244 tp->resumed = 1;
fbea99ea 7245 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7246 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7247 }
7248 else
7249 {
7250 if (debug_infrun)
7251 fprintf_unfiltered (gdb_stdlog,
7252 "infrun: expected thread still hasn't advanced\n");
7253
7254 keep_going_pass_signal (ecs);
7255 }
7256 return 1;
c447ac0b
PA
7257}
7258
8b061563
PA
7259/* Is thread TP in the middle of (software or hardware)
7260 single-stepping? (Note the result of this function must never be
7261 passed directly as target_resume's STEP parameter.) */
104c1213 7262
a289b8f6 7263static int
b3444185 7264currently_stepping (struct thread_info *tp)
a7212384 7265{
8358c15c
JK
7266 return ((tp->control.step_range_end
7267 && tp->control.step_resume_breakpoint == NULL)
7268 || tp->control.trap_expected
af48d08f 7269 || tp->stepped_breakpoint
8358c15c 7270 || bpstat_should_step ());
a7212384
UW
7271}
7272
b2175913
MS
7273/* Inferior has stepped into a subroutine call with source code that
7274 we should not step over. Do step to the first line of code in
7275 it. */
c2c6d25f
JM
7276
7277static void
568d6575
UW
7278handle_step_into_function (struct gdbarch *gdbarch,
7279 struct execution_control_state *ecs)
c2c6d25f 7280{
7e324e48
GB
7281 fill_in_stop_func (gdbarch, ecs);
7282
51abb421 7283 compunit_symtab *cust = find_pc_compunit_symtab (stop_pc);
43f3e411 7284 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7285 ecs->stop_func_start
7286 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7287
51abb421 7288 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7289 /* Use the step_resume_break to step until the end of the prologue,
7290 even if that involves jumps (as it seems to on the vax under
7291 4.2). */
7292 /* If the prologue ends in the middle of a source line, continue to
7293 the end of that source line (if it is still within the function).
7294 Otherwise, just go to end of prologue. */
2afb61aa
PA
7295 if (stop_func_sal.end
7296 && stop_func_sal.pc != ecs->stop_func_start
7297 && stop_func_sal.end < ecs->stop_func_end)
7298 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7299
2dbd5e30
KB
7300 /* Architectures which require breakpoint adjustment might not be able
7301 to place a breakpoint at the computed address. If so, the test
7302 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7303 ecs->stop_func_start to an address at which a breakpoint may be
7304 legitimately placed.
8fb3e588 7305
2dbd5e30
KB
7306 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7307 made, GDB will enter an infinite loop when stepping through
7308 optimized code consisting of VLIW instructions which contain
7309 subinstructions corresponding to different source lines. On
7310 FR-V, it's not permitted to place a breakpoint on any but the
7311 first subinstruction of a VLIW instruction. When a breakpoint is
7312 set, GDB will adjust the breakpoint address to the beginning of
7313 the VLIW instruction. Thus, we need to make the corresponding
7314 adjustment here when computing the stop address. */
8fb3e588 7315
568d6575 7316 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7317 {
7318 ecs->stop_func_start
568d6575 7319 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7320 ecs->stop_func_start);
2dbd5e30
KB
7321 }
7322
c2c6d25f
JM
7323 if (ecs->stop_func_start == stop_pc)
7324 {
7325 /* We are already there: stop now. */
bdc36728 7326 end_stepping_range (ecs);
c2c6d25f
JM
7327 return;
7328 }
7329 else
7330 {
7331 /* Put the step-breakpoint there and go until there. */
51abb421 7332 symtab_and_line sr_sal;
c2c6d25f
JM
7333 sr_sal.pc = ecs->stop_func_start;
7334 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7335 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7336
c2c6d25f 7337 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7338 some machines the prologue is where the new fp value is
7339 established. */
a6d9a66e 7340 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7341
7342 /* And make sure stepping stops right away then. */
16c381f0
JK
7343 ecs->event_thread->control.step_range_end
7344 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7345 }
7346 keep_going (ecs);
7347}
d4f3574e 7348
b2175913
MS
7349/* Inferior has stepped backward into a subroutine call with source
7350 code that we should not step over. Do step to the beginning of the
7351 last line of code in it. */
7352
7353static void
568d6575
UW
7354handle_step_into_function_backward (struct gdbarch *gdbarch,
7355 struct execution_control_state *ecs)
b2175913 7356{
43f3e411 7357 struct compunit_symtab *cust;
167e4384 7358 struct symtab_and_line stop_func_sal;
b2175913 7359
7e324e48
GB
7360 fill_in_stop_func (gdbarch, ecs);
7361
43f3e411
DE
7362 cust = find_pc_compunit_symtab (stop_pc);
7363 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7364 ecs->stop_func_start
7365 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913
MS
7366
7367 stop_func_sal = find_pc_line (stop_pc, 0);
7368
7369 /* OK, we're just going to keep stepping here. */
7370 if (stop_func_sal.pc == stop_pc)
7371 {
7372 /* We're there already. Just stop stepping now. */
bdc36728 7373 end_stepping_range (ecs);
b2175913
MS
7374 }
7375 else
7376 {
7377 /* Else just reset the step range and keep going.
7378 No step-resume breakpoint, they don't work for
7379 epilogues, which can have multiple entry paths. */
16c381f0
JK
7380 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7381 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7382 keep_going (ecs);
7383 }
7384 return;
7385}
7386
d3169d93 7387/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7388 This is used to both functions and to skip over code. */
7389
7390static void
2c03e5be
PA
7391insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7392 struct symtab_and_line sr_sal,
7393 struct frame_id sr_id,
7394 enum bptype sr_type)
44cbf7b5 7395{
611c83ae
PA
7396 /* There should never be more than one step-resume or longjmp-resume
7397 breakpoint per thread, so we should never be setting a new
44cbf7b5 7398 step_resume_breakpoint when one is already active. */
8358c15c 7399 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7400 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7401
7402 if (debug_infrun)
7403 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7404 "infrun: inserting step-resume breakpoint at %s\n",
7405 paddress (gdbarch, sr_sal.pc));
d3169d93 7406
8358c15c 7407 inferior_thread ()->control.step_resume_breakpoint
454dafbd 7408 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
2c03e5be
PA
7409}
7410
9da8c2a0 7411void
2c03e5be
PA
7412insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7413 struct symtab_and_line sr_sal,
7414 struct frame_id sr_id)
7415{
7416 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7417 sr_sal, sr_id,
7418 bp_step_resume);
44cbf7b5 7419}
7ce450bd 7420
2c03e5be
PA
7421/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7422 This is used to skip a potential signal handler.
7ce450bd 7423
14e60db5
DJ
7424 This is called with the interrupted function's frame. The signal
7425 handler, when it returns, will resume the interrupted function at
7426 RETURN_FRAME.pc. */
d303a6c7
AC
7427
7428static void
2c03e5be 7429insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7430{
f4c1edd8 7431 gdb_assert (return_frame != NULL);
d303a6c7 7432
51abb421
PA
7433 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7434
7435 symtab_and_line sr_sal;
568d6575 7436 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7437 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7438 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7439
2c03e5be
PA
7440 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7441 get_stack_frame_id (return_frame),
7442 bp_hp_step_resume);
d303a6c7
AC
7443}
7444
2c03e5be
PA
7445/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7446 is used to skip a function after stepping into it (for "next" or if
7447 the called function has no debugging information).
14e60db5
DJ
7448
7449 The current function has almost always been reached by single
7450 stepping a call or return instruction. NEXT_FRAME belongs to the
7451 current function, and the breakpoint will be set at the caller's
7452 resume address.
7453
7454 This is a separate function rather than reusing
2c03e5be 7455 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7456 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7457 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7458
7459static void
7460insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7461{
14e60db5
DJ
7462 /* We shouldn't have gotten here if we don't know where the call site
7463 is. */
c7ce8faa 7464 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7465
51abb421 7466 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7467
51abb421 7468 symtab_and_line sr_sal;
c7ce8faa
DJ
7469 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7470 frame_unwind_caller_pc (next_frame));
14e60db5 7471 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7472 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7473
a6d9a66e 7474 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7475 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7476}
7477
611c83ae
PA
7478/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7479 new breakpoint at the target of a jmp_buf. The handling of
7480 longjmp-resume uses the same mechanisms used for handling
7481 "step-resume" breakpoints. */
7482
7483static void
a6d9a66e 7484insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7485{
e81a37f7
TT
7486 /* There should never be more than one longjmp-resume breakpoint per
7487 thread, so we should never be setting a new
611c83ae 7488 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7489 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7490
7491 if (debug_infrun)
7492 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7493 "infrun: inserting longjmp-resume breakpoint at %s\n",
7494 paddress (gdbarch, pc));
611c83ae 7495
e81a37f7 7496 inferior_thread ()->control.exception_resume_breakpoint =
454dafbd 7497 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
611c83ae
PA
7498}
7499
186c406b
TT
7500/* Insert an exception resume breakpoint. TP is the thread throwing
7501 the exception. The block B is the block of the unwinder debug hook
7502 function. FRAME is the frame corresponding to the call to this
7503 function. SYM is the symbol of the function argument holding the
7504 target PC of the exception. */
7505
7506static void
7507insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7508 const struct block *b,
186c406b
TT
7509 struct frame_info *frame,
7510 struct symbol *sym)
7511{
492d29ea 7512 TRY
186c406b 7513 {
63e43d3a 7514 struct block_symbol vsym;
186c406b
TT
7515 struct value *value;
7516 CORE_ADDR handler;
7517 struct breakpoint *bp;
7518
de63c46b
PA
7519 vsym = lookup_symbol_search_name (SYMBOL_SEARCH_NAME (sym),
7520 b, VAR_DOMAIN);
63e43d3a 7521 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7522 /* If the value was optimized out, revert to the old behavior. */
7523 if (! value_optimized_out (value))
7524 {
7525 handler = value_as_address (value);
7526
7527 if (debug_infrun)
7528 fprintf_unfiltered (gdb_stdlog,
7529 "infrun: exception resume at %lx\n",
7530 (unsigned long) handler);
7531
7532 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd
TT
7533 handler,
7534 bp_exception_resume).release ();
c70a6932
JK
7535
7536 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7537 frame = NULL;
7538
5d5658a1 7539 bp->thread = tp->global_num;
186c406b
TT
7540 inferior_thread ()->control.exception_resume_breakpoint = bp;
7541 }
7542 }
492d29ea
PA
7543 CATCH (e, RETURN_MASK_ERROR)
7544 {
7545 /* We want to ignore errors here. */
7546 }
7547 END_CATCH
186c406b
TT
7548}
7549
28106bc2
SDJ
7550/* A helper for check_exception_resume that sets an
7551 exception-breakpoint based on a SystemTap probe. */
7552
7553static void
7554insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7555 const struct bound_probe *probe,
28106bc2
SDJ
7556 struct frame_info *frame)
7557{
7558 struct value *arg_value;
7559 CORE_ADDR handler;
7560 struct breakpoint *bp;
7561
7562 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7563 if (!arg_value)
7564 return;
7565
7566 handler = value_as_address (arg_value);
7567
7568 if (debug_infrun)
7569 fprintf_unfiltered (gdb_stdlog,
7570 "infrun: exception resume at %s\n",
6bac7473 7571 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7572 handler));
7573
7574 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd 7575 handler, bp_exception_resume).release ();
5d5658a1 7576 bp->thread = tp->global_num;
28106bc2
SDJ
7577 inferior_thread ()->control.exception_resume_breakpoint = bp;
7578}
7579
186c406b
TT
7580/* This is called when an exception has been intercepted. Check to
7581 see whether the exception's destination is of interest, and if so,
7582 set an exception resume breakpoint there. */
7583
7584static void
7585check_exception_resume (struct execution_control_state *ecs,
28106bc2 7586 struct frame_info *frame)
186c406b 7587{
729662a5 7588 struct bound_probe probe;
28106bc2
SDJ
7589 struct symbol *func;
7590
7591 /* First see if this exception unwinding breakpoint was set via a
7592 SystemTap probe point. If so, the probe has two arguments: the
7593 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7594 set a breakpoint there. */
6bac7473 7595 probe = find_probe_by_pc (get_frame_pc (frame));
935676c9 7596 if (probe.prob)
28106bc2 7597 {
729662a5 7598 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7599 return;
7600 }
7601
7602 func = get_frame_function (frame);
7603 if (!func)
7604 return;
186c406b 7605
492d29ea 7606 TRY
186c406b 7607 {
3977b71f 7608 const struct block *b;
8157b174 7609 struct block_iterator iter;
186c406b
TT
7610 struct symbol *sym;
7611 int argno = 0;
7612
7613 /* The exception breakpoint is a thread-specific breakpoint on
7614 the unwinder's debug hook, declared as:
7615
7616 void _Unwind_DebugHook (void *cfa, void *handler);
7617
7618 The CFA argument indicates the frame to which control is
7619 about to be transferred. HANDLER is the destination PC.
7620
7621 We ignore the CFA and set a temporary breakpoint at HANDLER.
7622 This is not extremely efficient but it avoids issues in gdb
7623 with computing the DWARF CFA, and it also works even in weird
7624 cases such as throwing an exception from inside a signal
7625 handler. */
7626
7627 b = SYMBOL_BLOCK_VALUE (func);
7628 ALL_BLOCK_SYMBOLS (b, iter, sym)
7629 {
7630 if (!SYMBOL_IS_ARGUMENT (sym))
7631 continue;
7632
7633 if (argno == 0)
7634 ++argno;
7635 else
7636 {
7637 insert_exception_resume_breakpoint (ecs->event_thread,
7638 b, frame, sym);
7639 break;
7640 }
7641 }
7642 }
492d29ea
PA
7643 CATCH (e, RETURN_MASK_ERROR)
7644 {
7645 }
7646 END_CATCH
186c406b
TT
7647}
7648
104c1213 7649static void
22bcd14b 7650stop_waiting (struct execution_control_state *ecs)
104c1213 7651{
527159b7 7652 if (debug_infrun)
22bcd14b 7653 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7654
cd0fc7c3
SS
7655 /* Let callers know we don't want to wait for the inferior anymore. */
7656 ecs->wait_some_more = 0;
fbea99ea
PA
7657
7658 /* If all-stop, but the target is always in non-stop mode, stop all
7659 threads now that we're presenting the stop to the user. */
7660 if (!non_stop && target_is_non_stop_p ())
7661 stop_all_threads ();
cd0fc7c3
SS
7662}
7663
4d9d9d04
PA
7664/* Like keep_going, but passes the signal to the inferior, even if the
7665 signal is set to nopass. */
d4f3574e
SS
7666
7667static void
4d9d9d04 7668keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7669{
4d9d9d04 7670 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
372316f1 7671 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7672
d4f3574e 7673 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
7674 ecs->event_thread->prev_pc
7675 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 7676
4d9d9d04 7677 if (ecs->event_thread->control.trap_expected)
d4f3574e 7678 {
4d9d9d04
PA
7679 struct thread_info *tp = ecs->event_thread;
7680
7681 if (debug_infrun)
7682 fprintf_unfiltered (gdb_stdlog,
7683 "infrun: %s has trap_expected set, "
7684 "resuming to collect trap\n",
7685 target_pid_to_str (tp->ptid));
7686
a9ba6bae
PA
7687 /* We haven't yet gotten our trap, and either: intercepted a
7688 non-signal event (e.g., a fork); or took a signal which we
7689 are supposed to pass through to the inferior. Simply
7690 continue. */
64ce06e4 7691 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7692 }
372316f1
PA
7693 else if (step_over_info_valid_p ())
7694 {
7695 /* Another thread is stepping over a breakpoint in-line. If
7696 this thread needs a step-over too, queue the request. In
7697 either case, this resume must be deferred for later. */
7698 struct thread_info *tp = ecs->event_thread;
7699
7700 if (ecs->hit_singlestep_breakpoint
7701 || thread_still_needs_step_over (tp))
7702 {
7703 if (debug_infrun)
7704 fprintf_unfiltered (gdb_stdlog,
7705 "infrun: step-over already in progress: "
7706 "step-over for %s deferred\n",
7707 target_pid_to_str (tp->ptid));
7708 thread_step_over_chain_enqueue (tp);
7709 }
7710 else
7711 {
7712 if (debug_infrun)
7713 fprintf_unfiltered (gdb_stdlog,
7714 "infrun: step-over in progress: "
7715 "resume of %s deferred\n",
7716 target_pid_to_str (tp->ptid));
7717 }
372316f1 7718 }
d4f3574e
SS
7719 else
7720 {
31e77af2 7721 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7722 int remove_bp;
7723 int remove_wps;
8d297bbf 7724 step_over_what step_what;
31e77af2 7725
d4f3574e 7726 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7727 anyway (if we got a signal, the user asked it be passed to
7728 the child)
7729 -- or --
7730 We got our expected trap, but decided we should resume from
7731 it.
d4f3574e 7732
a9ba6bae 7733 We're going to run this baby now!
d4f3574e 7734
c36b740a
VP
7735 Note that insert_breakpoints won't try to re-insert
7736 already inserted breakpoints. Therefore, we don't
7737 care if breakpoints were already inserted, or not. */
a9ba6bae 7738
31e77af2
PA
7739 /* If we need to step over a breakpoint, and we're not using
7740 displaced stepping to do so, insert all breakpoints
7741 (watchpoints, etc.) but the one we're stepping over, step one
7742 instruction, and then re-insert the breakpoint when that step
7743 is finished. */
963f9c80 7744
6c4cfb24
PA
7745 step_what = thread_still_needs_step_over (ecs->event_thread);
7746
963f9c80 7747 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7748 || (step_what & STEP_OVER_BREAKPOINT));
7749 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7750
cb71640d
PA
7751 /* We can't use displaced stepping if we need to step past a
7752 watchpoint. The instruction copied to the scratch pad would
7753 still trigger the watchpoint. */
7754 if (remove_bp
3fc8eb30 7755 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7756 {
a01bda52 7757 set_step_over_info (regcache->aspace (),
21edc42f
YQ
7758 regcache_read_pc (regcache), remove_wps,
7759 ecs->event_thread->global_num);
45e8c884 7760 }
963f9c80 7761 else if (remove_wps)
21edc42f 7762 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7763
7764 /* If we now need to do an in-line step-over, we need to stop
7765 all other threads. Note this must be done before
7766 insert_breakpoints below, because that removes the breakpoint
7767 we're about to step over, otherwise other threads could miss
7768 it. */
fbea99ea 7769 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7770 stop_all_threads ();
abbb1732 7771
31e77af2 7772 /* Stop stepping if inserting breakpoints fails. */
492d29ea 7773 TRY
31e77af2
PA
7774 {
7775 insert_breakpoints ();
7776 }
492d29ea 7777 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
7778 {
7779 exception_print (gdb_stderr, e);
22bcd14b 7780 stop_waiting (ecs);
bdf2a94a 7781 clear_step_over_info ();
31e77af2 7782 return;
d4f3574e 7783 }
492d29ea 7784 END_CATCH
d4f3574e 7785
963f9c80 7786 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7787
64ce06e4 7788 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7789 }
7790
488f131b 7791 prepare_to_wait (ecs);
d4f3574e
SS
7792}
7793
4d9d9d04
PA
7794/* Called when we should continue running the inferior, because the
7795 current event doesn't cause a user visible stop. This does the
7796 resuming part; waiting for the next event is done elsewhere. */
7797
7798static void
7799keep_going (struct execution_control_state *ecs)
7800{
7801 if (ecs->event_thread->control.trap_expected
7802 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7803 ecs->event_thread->control.trap_expected = 0;
7804
7805 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7806 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7807 keep_going_pass_signal (ecs);
7808}
7809
104c1213
JM
7810/* This function normally comes after a resume, before
7811 handle_inferior_event exits. It takes care of any last bits of
7812 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7813
104c1213
JM
7814static void
7815prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7816{
527159b7 7817 if (debug_infrun)
8a9de0e4 7818 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7819
104c1213 7820 ecs->wait_some_more = 1;
0b333c5e
PA
7821
7822 if (!target_is_async_p ())
7823 mark_infrun_async_event_handler ();
c906108c 7824}
11cf8741 7825
fd664c91 7826/* We are done with the step range of a step/next/si/ni command.
b57bacec 7827 Called once for each n of a "step n" operation. */
fd664c91
PA
7828
7829static void
bdc36728 7830end_stepping_range (struct execution_control_state *ecs)
fd664c91 7831{
bdc36728 7832 ecs->event_thread->control.stop_step = 1;
bdc36728 7833 stop_waiting (ecs);
fd664c91
PA
7834}
7835
33d62d64
JK
7836/* Several print_*_reason functions to print why the inferior has stopped.
7837 We always print something when the inferior exits, or receives a signal.
7838 The rest of the cases are dealt with later on in normal_stop and
7839 print_it_typical. Ideally there should be a call to one of these
7840 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7841 stop_waiting is called.
33d62d64 7842
fd664c91
PA
7843 Note that we don't call these directly, instead we delegate that to
7844 the interpreters, through observers. Interpreters then call these
7845 with whatever uiout is right. */
33d62d64 7846
fd664c91
PA
7847void
7848print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7849{
fd664c91 7850 /* For CLI-like interpreters, print nothing. */
33d62d64 7851
112e8700 7852 if (uiout->is_mi_like_p ())
fd664c91 7853 {
112e8700 7854 uiout->field_string ("reason",
fd664c91
PA
7855 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7856 }
7857}
33d62d64 7858
fd664c91
PA
7859void
7860print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7861{
33d62d64 7862 annotate_signalled ();
112e8700
SM
7863 if (uiout->is_mi_like_p ())
7864 uiout->field_string
7865 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7866 uiout->text ("\nProgram terminated with signal ");
33d62d64 7867 annotate_signal_name ();
112e8700 7868 uiout->field_string ("signal-name",
2ea28649 7869 gdb_signal_to_name (siggnal));
33d62d64 7870 annotate_signal_name_end ();
112e8700 7871 uiout->text (", ");
33d62d64 7872 annotate_signal_string ();
112e8700 7873 uiout->field_string ("signal-meaning",
2ea28649 7874 gdb_signal_to_string (siggnal));
33d62d64 7875 annotate_signal_string_end ();
112e8700
SM
7876 uiout->text (".\n");
7877 uiout->text ("The program no longer exists.\n");
33d62d64
JK
7878}
7879
fd664c91
PA
7880void
7881print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7882{
fda326dd
TT
7883 struct inferior *inf = current_inferior ();
7884 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7885
33d62d64
JK
7886 annotate_exited (exitstatus);
7887 if (exitstatus)
7888 {
112e8700
SM
7889 if (uiout->is_mi_like_p ())
7890 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7891 uiout->text ("[Inferior ");
7892 uiout->text (plongest (inf->num));
7893 uiout->text (" (");
7894 uiout->text (pidstr);
7895 uiout->text (") exited with code ");
7896 uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus);
7897 uiout->text ("]\n");
33d62d64
JK
7898 }
7899 else
11cf8741 7900 {
112e8700
SM
7901 if (uiout->is_mi_like_p ())
7902 uiout->field_string
7903 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7904 uiout->text ("[Inferior ");
7905 uiout->text (plongest (inf->num));
7906 uiout->text (" (");
7907 uiout->text (pidstr);
7908 uiout->text (") exited normally]\n");
33d62d64 7909 }
33d62d64
JK
7910}
7911
012b3a21
WT
7912/* Some targets/architectures can do extra processing/display of
7913 segmentation faults. E.g., Intel MPX boundary faults.
7914 Call the architecture dependent function to handle the fault. */
7915
7916static void
7917handle_segmentation_fault (struct ui_out *uiout)
7918{
7919 struct regcache *regcache = get_current_regcache ();
ac7936df 7920 struct gdbarch *gdbarch = regcache->arch ();
012b3a21
WT
7921
7922 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7923 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7924}
7925
fd664c91
PA
7926void
7927print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 7928{
f303dbd6
PA
7929 struct thread_info *thr = inferior_thread ();
7930
33d62d64
JK
7931 annotate_signal ();
7932
112e8700 7933 if (uiout->is_mi_like_p ())
f303dbd6
PA
7934 ;
7935 else if (show_thread_that_caused_stop ())
33d62d64 7936 {
f303dbd6 7937 const char *name;
33d62d64 7938
112e8700
SM
7939 uiout->text ("\nThread ");
7940 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
f303dbd6
PA
7941
7942 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7943 if (name != NULL)
7944 {
112e8700
SM
7945 uiout->text (" \"");
7946 uiout->field_fmt ("name", "%s", name);
7947 uiout->text ("\"");
f303dbd6 7948 }
33d62d64 7949 }
f303dbd6 7950 else
112e8700 7951 uiout->text ("\nProgram");
f303dbd6 7952
112e8700
SM
7953 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7954 uiout->text (" stopped");
33d62d64
JK
7955 else
7956 {
112e8700 7957 uiout->text (" received signal ");
8b93c638 7958 annotate_signal_name ();
112e8700
SM
7959 if (uiout->is_mi_like_p ())
7960 uiout->field_string
7961 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7962 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 7963 annotate_signal_name_end ();
112e8700 7964 uiout->text (", ");
8b93c638 7965 annotate_signal_string ();
112e8700 7966 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
7967
7968 if (siggnal == GDB_SIGNAL_SEGV)
7969 handle_segmentation_fault (uiout);
7970
8b93c638 7971 annotate_signal_string_end ();
33d62d64 7972 }
112e8700 7973 uiout->text (".\n");
33d62d64 7974}
252fbfc8 7975
fd664c91
PA
7976void
7977print_no_history_reason (struct ui_out *uiout)
33d62d64 7978{
112e8700 7979 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 7980}
43ff13b4 7981
0c7e1a46
PA
7982/* Print current location without a level number, if we have changed
7983 functions or hit a breakpoint. Print source line if we have one.
7984 bpstat_print contains the logic deciding in detail what to print,
7985 based on the event(s) that just occurred. */
7986
243a9253
PA
7987static void
7988print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
7989{
7990 int bpstat_ret;
f486487f 7991 enum print_what source_flag;
0c7e1a46
PA
7992 int do_frame_printing = 1;
7993 struct thread_info *tp = inferior_thread ();
7994
7995 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7996 switch (bpstat_ret)
7997 {
7998 case PRINT_UNKNOWN:
7999 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8000 should) carry around the function and does (or should) use
8001 that when doing a frame comparison. */
8002 if (tp->control.stop_step
8003 && frame_id_eq (tp->control.step_frame_id,
8004 get_frame_id (get_current_frame ()))
885eeb5b 8005 && tp->control.step_start_function == find_pc_function (stop_pc))
0c7e1a46
PA
8006 {
8007 /* Finished step, just print source line. */
8008 source_flag = SRC_LINE;
8009 }
8010 else
8011 {
8012 /* Print location and source line. */
8013 source_flag = SRC_AND_LOC;
8014 }
8015 break;
8016 case PRINT_SRC_AND_LOC:
8017 /* Print location and source line. */
8018 source_flag = SRC_AND_LOC;
8019 break;
8020 case PRINT_SRC_ONLY:
8021 source_flag = SRC_LINE;
8022 break;
8023 case PRINT_NOTHING:
8024 /* Something bogus. */
8025 source_flag = SRC_LINE;
8026 do_frame_printing = 0;
8027 break;
8028 default:
8029 internal_error (__FILE__, __LINE__, _("Unknown value."));
8030 }
8031
8032 /* The behavior of this routine with respect to the source
8033 flag is:
8034 SRC_LINE: Print only source line
8035 LOCATION: Print only location
8036 SRC_AND_LOC: Print location and source line. */
8037 if (do_frame_printing)
8038 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
8039}
8040
243a9253
PA
8041/* See infrun.h. */
8042
8043void
8044print_stop_event (struct ui_out *uiout)
8045{
243a9253
PA
8046 struct target_waitstatus last;
8047 ptid_t last_ptid;
8048 struct thread_info *tp;
8049
8050 get_last_target_status (&last_ptid, &last);
8051
67ad9399
TT
8052 {
8053 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 8054
67ad9399 8055 print_stop_location (&last);
243a9253 8056
67ad9399
TT
8057 /* Display the auto-display expressions. */
8058 do_displays ();
8059 }
243a9253
PA
8060
8061 tp = inferior_thread ();
8062 if (tp->thread_fsm != NULL
8063 && thread_fsm_finished_p (tp->thread_fsm))
8064 {
8065 struct return_value_info *rv;
8066
8067 rv = thread_fsm_return_value (tp->thread_fsm);
8068 if (rv != NULL)
8069 print_return_value (uiout, rv);
8070 }
0c7e1a46
PA
8071}
8072
388a7084
PA
8073/* See infrun.h. */
8074
8075void
8076maybe_remove_breakpoints (void)
8077{
8078 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8079 {
8080 if (remove_breakpoints ())
8081 {
223ffa71 8082 target_terminal::ours_for_output ();
388a7084
PA
8083 printf_filtered (_("Cannot remove breakpoints because "
8084 "program is no longer writable.\nFurther "
8085 "execution is probably impossible.\n"));
8086 }
8087 }
8088}
8089
4c2f2a79
PA
8090/* The execution context that just caused a normal stop. */
8091
8092struct stop_context
8093{
8094 /* The stop ID. */
8095 ULONGEST stop_id;
c906108c 8096
4c2f2a79 8097 /* The event PTID. */
c906108c 8098
4c2f2a79
PA
8099 ptid_t ptid;
8100
8101 /* If stopp for a thread event, this is the thread that caused the
8102 stop. */
8103 struct thread_info *thread;
8104
8105 /* The inferior that caused the stop. */
8106 int inf_num;
8107};
8108
8109/* Returns a new stop context. If stopped for a thread event, this
8110 takes a strong reference to the thread. */
8111
8112static struct stop_context *
8113save_stop_context (void)
8114{
224c3ddb 8115 struct stop_context *sc = XNEW (struct stop_context);
4c2f2a79
PA
8116
8117 sc->stop_id = get_stop_id ();
8118 sc->ptid = inferior_ptid;
8119 sc->inf_num = current_inferior ()->num;
8120
8121 if (!ptid_equal (inferior_ptid, null_ptid))
8122 {
8123 /* Take a strong reference so that the thread can't be deleted
8124 yet. */
8125 sc->thread = inferior_thread ();
803bdfe4 8126 sc->thread->incref ();
4c2f2a79
PA
8127 }
8128 else
8129 sc->thread = NULL;
8130
8131 return sc;
8132}
8133
8134/* Release a stop context previously created with save_stop_context.
8135 Releases the strong reference to the thread as well. */
8136
8137static void
8138release_stop_context_cleanup (void *arg)
8139{
9a3c8263 8140 struct stop_context *sc = (struct stop_context *) arg;
4c2f2a79
PA
8141
8142 if (sc->thread != NULL)
803bdfe4 8143 sc->thread->decref ();
4c2f2a79
PA
8144 xfree (sc);
8145}
8146
8147/* Return true if the current context no longer matches the saved stop
8148 context. */
8149
8150static int
8151stop_context_changed (struct stop_context *prev)
8152{
8153 if (!ptid_equal (prev->ptid, inferior_ptid))
8154 return 1;
8155 if (prev->inf_num != current_inferior ()->num)
8156 return 1;
8157 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8158 return 1;
8159 if (get_stop_id () != prev->stop_id)
8160 return 1;
8161 return 0;
8162}
8163
8164/* See infrun.h. */
8165
8166int
96baa820 8167normal_stop (void)
c906108c 8168{
73b65bb0
DJ
8169 struct target_waitstatus last;
8170 ptid_t last_ptid;
29f49a6a 8171 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
e1316e60 8172 ptid_t pid_ptid;
73b65bb0
DJ
8173
8174 get_last_target_status (&last_ptid, &last);
8175
4c2f2a79
PA
8176 new_stop_id ();
8177
29f49a6a
PA
8178 /* If an exception is thrown from this point on, make sure to
8179 propagate GDB's knowledge of the executing state to the
8180 frontend/user running state. A QUIT is an easy exception to see
8181 here, so do this before any filtered output. */
c35b1492
PA
8182 if (!non_stop)
8183 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
e1316e60
PA
8184 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8185 || last.kind == TARGET_WAITKIND_EXITED)
8186 {
8187 /* On some targets, we may still have live threads in the
8188 inferior when we get a process exit event. E.g., for
8189 "checkpoint", when the current checkpoint/fork exits,
8190 linux-fork.c automatically switches to another fork from
8191 within target_mourn_inferior. */
8192 if (!ptid_equal (inferior_ptid, null_ptid))
8193 {
8194 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8195 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8196 }
8197 }
8198 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 8199 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 8200
b57bacec
PA
8201 /* As we're presenting a stop, and potentially removing breakpoints,
8202 update the thread list so we can tell whether there are threads
8203 running on the target. With target remote, for example, we can
8204 only learn about new threads when we explicitly update the thread
8205 list. Do this before notifying the interpreters about signal
8206 stops, end of stepping ranges, etc., so that the "new thread"
8207 output is emitted before e.g., "Program received signal FOO",
8208 instead of after. */
8209 update_thread_list ();
8210
8211 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8212 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8213
c906108c
SS
8214 /* As with the notification of thread events, we want to delay
8215 notifying the user that we've switched thread context until
8216 the inferior actually stops.
8217
73b65bb0
DJ
8218 There's no point in saying anything if the inferior has exited.
8219 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8220 "received a signal".
8221
8222 Also skip saying anything in non-stop mode. In that mode, as we
8223 don't want GDB to switch threads behind the user's back, to avoid
8224 races where the user is typing a command to apply to thread x,
8225 but GDB switches to thread y before the user finishes entering
8226 the command, fetch_inferior_event installs a cleanup to restore
8227 the current thread back to the thread the user had selected right
8228 after this event is handled, so we're not really switching, only
8229 informing of a stop. */
4f8d22e3
PA
8230 if (!non_stop
8231 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
8232 && target_has_execution
8233 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8234 && last.kind != TARGET_WAITKIND_EXITED
8235 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8236 {
0e454242 8237 SWITCH_THRU_ALL_UIS ()
3b12939d 8238 {
223ffa71 8239 target_terminal::ours_for_output ();
3b12939d
PA
8240 printf_filtered (_("[Switching to %s]\n"),
8241 target_pid_to_str (inferior_ptid));
8242 annotate_thread_changed ();
8243 }
39f77062 8244 previous_inferior_ptid = inferior_ptid;
c906108c 8245 }
c906108c 8246
0e5bf2a8
PA
8247 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8248 {
0e454242 8249 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8250 if (current_ui->prompt_state == PROMPT_BLOCKED)
8251 {
223ffa71 8252 target_terminal::ours_for_output ();
3b12939d
PA
8253 printf_filtered (_("No unwaited-for children left.\n"));
8254 }
0e5bf2a8
PA
8255 }
8256
b57bacec 8257 /* Note: this depends on the update_thread_list call above. */
388a7084 8258 maybe_remove_breakpoints ();
c906108c 8259
c906108c
SS
8260 /* If an auto-display called a function and that got a signal,
8261 delete that auto-display to avoid an infinite recursion. */
8262
8263 if (stopped_by_random_signal)
8264 disable_current_display ();
8265
0e454242 8266 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8267 {
8268 async_enable_stdin ();
8269 }
c906108c 8270
388a7084
PA
8271 /* Let the user/frontend see the threads as stopped. */
8272 do_cleanups (old_chain);
8273
8274 /* Select innermost stack frame - i.e., current frame is frame 0,
8275 and current location is based on that. Handle the case where the
8276 dummy call is returning after being stopped. E.g. the dummy call
8277 previously hit a breakpoint. (If the dummy call returns
8278 normally, we won't reach here.) Do this before the stop hook is
8279 run, so that it doesn't get to see the temporary dummy frame,
8280 which is not where we'll present the stop. */
8281 if (has_stack_frames ())
8282 {
8283 if (stop_stack_dummy == STOP_STACK_DUMMY)
8284 {
8285 /* Pop the empty frame that contains the stack dummy. This
8286 also restores inferior state prior to the call (struct
8287 infcall_suspend_state). */
8288 struct frame_info *frame = get_current_frame ();
8289
8290 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8291 frame_pop (frame);
8292 /* frame_pop calls reinit_frame_cache as the last thing it
8293 does which means there's now no selected frame. */
8294 }
8295
8296 select_frame (get_current_frame ());
8297
8298 /* Set the current source location. */
8299 set_current_sal_from_frame (get_current_frame ());
8300 }
dd7e2d2b
PA
8301
8302 /* Look up the hook_stop and run it (CLI internally handles problem
8303 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8304 if (stop_command != NULL)
8305 {
8306 struct stop_context *saved_context = save_stop_context ();
8307 struct cleanup *old_chain
8308 = make_cleanup (release_stop_context_cleanup, saved_context);
8309
bf469271
PA
8310 TRY
8311 {
8312 execute_cmd_pre_hook (stop_command);
8313 }
8314 CATCH (ex, RETURN_MASK_ALL)
8315 {
8316 exception_fprintf (gdb_stderr, ex,
8317 "Error while running hook_stop:\n");
8318 }
8319 END_CATCH
4c2f2a79
PA
8320
8321 /* If the stop hook resumes the target, then there's no point in
8322 trying to notify about the previous stop; its context is
8323 gone. Likewise if the command switches thread or inferior --
8324 the observers would print a stop for the wrong
8325 thread/inferior. */
8326 if (stop_context_changed (saved_context))
8327 {
8328 do_cleanups (old_chain);
8329 return 1;
8330 }
8331 do_cleanups (old_chain);
8332 }
dd7e2d2b 8333
388a7084
PA
8334 /* Notify observers about the stop. This is where the interpreters
8335 print the stop event. */
8336 if (!ptid_equal (inferior_ptid, null_ptid))
8337 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8338 stop_print_frame);
8339 else
8340 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 8341
243a9253
PA
8342 annotate_stopped ();
8343
48844aa6
PA
8344 if (target_has_execution)
8345 {
8346 if (last.kind != TARGET_WAITKIND_SIGNALLED
8347 && last.kind != TARGET_WAITKIND_EXITED)
8348 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8349 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8350 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8351 }
6c95b8df
PA
8352
8353 /* Try to get rid of automatically added inferiors that are no
8354 longer needed. Keeping those around slows down things linearly.
8355 Note that this never removes the current inferior. */
8356 prune_inferiors ();
4c2f2a79
PA
8357
8358 return 0;
c906108c 8359}
c906108c 8360\f
c5aa993b 8361int
96baa820 8362signal_stop_state (int signo)
c906108c 8363{
d6b48e9c 8364 return signal_stop[signo];
c906108c
SS
8365}
8366
c5aa993b 8367int
96baa820 8368signal_print_state (int signo)
c906108c
SS
8369{
8370 return signal_print[signo];
8371}
8372
c5aa993b 8373int
96baa820 8374signal_pass_state (int signo)
c906108c
SS
8375{
8376 return signal_program[signo];
8377}
8378
2455069d
UW
8379static void
8380signal_cache_update (int signo)
8381{
8382 if (signo == -1)
8383 {
a493e3e2 8384 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8385 signal_cache_update (signo);
8386
8387 return;
8388 }
8389
8390 signal_pass[signo] = (signal_stop[signo] == 0
8391 && signal_print[signo] == 0
ab04a2af
TT
8392 && signal_program[signo] == 1
8393 && signal_catch[signo] == 0);
2455069d
UW
8394}
8395
488f131b 8396int
7bda5e4a 8397signal_stop_update (int signo, int state)
d4f3574e
SS
8398{
8399 int ret = signal_stop[signo];
abbb1732 8400
d4f3574e 8401 signal_stop[signo] = state;
2455069d 8402 signal_cache_update (signo);
d4f3574e
SS
8403 return ret;
8404}
8405
488f131b 8406int
7bda5e4a 8407signal_print_update (int signo, int state)
d4f3574e
SS
8408{
8409 int ret = signal_print[signo];
abbb1732 8410
d4f3574e 8411 signal_print[signo] = state;
2455069d 8412 signal_cache_update (signo);
d4f3574e
SS
8413 return ret;
8414}
8415
488f131b 8416int
7bda5e4a 8417signal_pass_update (int signo, int state)
d4f3574e
SS
8418{
8419 int ret = signal_program[signo];
abbb1732 8420
d4f3574e 8421 signal_program[signo] = state;
2455069d 8422 signal_cache_update (signo);
d4f3574e
SS
8423 return ret;
8424}
8425
ab04a2af
TT
8426/* Update the global 'signal_catch' from INFO and notify the
8427 target. */
8428
8429void
8430signal_catch_update (const unsigned int *info)
8431{
8432 int i;
8433
8434 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8435 signal_catch[i] = info[i] > 0;
8436 signal_cache_update (-1);
8437 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8438}
8439
c906108c 8440static void
96baa820 8441sig_print_header (void)
c906108c 8442{
3e43a32a
MS
8443 printf_filtered (_("Signal Stop\tPrint\tPass "
8444 "to program\tDescription\n"));
c906108c
SS
8445}
8446
8447static void
2ea28649 8448sig_print_info (enum gdb_signal oursig)
c906108c 8449{
2ea28649 8450 const char *name = gdb_signal_to_name (oursig);
c906108c 8451 int name_padding = 13 - strlen (name);
96baa820 8452
c906108c
SS
8453 if (name_padding <= 0)
8454 name_padding = 0;
8455
8456 printf_filtered ("%s", name);
488f131b 8457 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8458 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8459 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8460 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8461 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8462}
8463
8464/* Specify how various signals in the inferior should be handled. */
8465
8466static void
0b39b52e 8467handle_command (const char *args, int from_tty)
c906108c 8468{
c906108c
SS
8469 int digits, wordlen;
8470 int sigfirst, signum, siglast;
2ea28649 8471 enum gdb_signal oursig;
c906108c
SS
8472 int allsigs;
8473 int nsigs;
8474 unsigned char *sigs;
c906108c
SS
8475
8476 if (args == NULL)
8477 {
e2e0b3e5 8478 error_no_arg (_("signal to handle"));
c906108c
SS
8479 }
8480
1777feb0 8481 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8482
a493e3e2 8483 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
8484 sigs = (unsigned char *) alloca (nsigs);
8485 memset (sigs, 0, nsigs);
8486
1777feb0 8487 /* Break the command line up into args. */
c906108c 8488
773a1edc 8489 gdb_argv built_argv (args);
c906108c
SS
8490
8491 /* Walk through the args, looking for signal oursigs, signal names, and
8492 actions. Signal numbers and signal names may be interspersed with
8493 actions, with the actions being performed for all signals cumulatively
1777feb0 8494 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8495
773a1edc 8496 for (char *arg : built_argv)
c906108c 8497 {
773a1edc
TT
8498 wordlen = strlen (arg);
8499 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8500 {;
8501 }
8502 allsigs = 0;
8503 sigfirst = siglast = -1;
8504
773a1edc 8505 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8506 {
8507 /* Apply action to all signals except those used by the
1777feb0 8508 debugger. Silently skip those. */
c906108c
SS
8509 allsigs = 1;
8510 sigfirst = 0;
8511 siglast = nsigs - 1;
8512 }
773a1edc 8513 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8514 {
8515 SET_SIGS (nsigs, sigs, signal_stop);
8516 SET_SIGS (nsigs, sigs, signal_print);
8517 }
773a1edc 8518 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8519 {
8520 UNSET_SIGS (nsigs, sigs, signal_program);
8521 }
773a1edc 8522 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8523 {
8524 SET_SIGS (nsigs, sigs, signal_print);
8525 }
773a1edc 8526 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8527 {
8528 SET_SIGS (nsigs, sigs, signal_program);
8529 }
773a1edc 8530 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8531 {
8532 UNSET_SIGS (nsigs, sigs, signal_stop);
8533 }
773a1edc 8534 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8535 {
8536 SET_SIGS (nsigs, sigs, signal_program);
8537 }
773a1edc 8538 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8539 {
8540 UNSET_SIGS (nsigs, sigs, signal_print);
8541 UNSET_SIGS (nsigs, sigs, signal_stop);
8542 }
773a1edc 8543 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8544 {
8545 UNSET_SIGS (nsigs, sigs, signal_program);
8546 }
8547 else if (digits > 0)
8548 {
8549 /* It is numeric. The numeric signal refers to our own
8550 internal signal numbering from target.h, not to host/target
8551 signal number. This is a feature; users really should be
8552 using symbolic names anyway, and the common ones like
8553 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8554
8555 sigfirst = siglast = (int)
773a1edc
TT
8556 gdb_signal_from_command (atoi (arg));
8557 if (arg[digits] == '-')
c906108c
SS
8558 {
8559 siglast = (int)
773a1edc 8560 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8561 }
8562 if (sigfirst > siglast)
8563 {
1777feb0 8564 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
8565 signum = sigfirst;
8566 sigfirst = siglast;
8567 siglast = signum;
8568 }
8569 }
8570 else
8571 {
773a1edc 8572 oursig = gdb_signal_from_name (arg);
a493e3e2 8573 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8574 {
8575 sigfirst = siglast = (int) oursig;
8576 }
8577 else
8578 {
8579 /* Not a number and not a recognized flag word => complain. */
773a1edc 8580 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8581 }
8582 }
8583
8584 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8585 which signals to apply actions to. */
c906108c
SS
8586
8587 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8588 {
2ea28649 8589 switch ((enum gdb_signal) signum)
c906108c 8590 {
a493e3e2
PA
8591 case GDB_SIGNAL_TRAP:
8592 case GDB_SIGNAL_INT:
c906108c
SS
8593 if (!allsigs && !sigs[signum])
8594 {
9e2f0ad4 8595 if (query (_("%s is used by the debugger.\n\
3e43a32a 8596Are you sure you want to change it? "),
2ea28649 8597 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8598 {
8599 sigs[signum] = 1;
8600 }
8601 else
8602 {
a3f17187 8603 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8604 gdb_flush (gdb_stdout);
8605 }
8606 }
8607 break;
a493e3e2
PA
8608 case GDB_SIGNAL_0:
8609 case GDB_SIGNAL_DEFAULT:
8610 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8611 /* Make sure that "all" doesn't print these. */
8612 break;
8613 default:
8614 sigs[signum] = 1;
8615 break;
8616 }
8617 }
c906108c
SS
8618 }
8619
3a031f65
PA
8620 for (signum = 0; signum < nsigs; signum++)
8621 if (sigs[signum])
8622 {
2455069d 8623 signal_cache_update (-1);
a493e3e2
PA
8624 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8625 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 8626
3a031f65
PA
8627 if (from_tty)
8628 {
8629 /* Show the results. */
8630 sig_print_header ();
8631 for (; signum < nsigs; signum++)
8632 if (sigs[signum])
aead7601 8633 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8634 }
8635
8636 break;
8637 }
c906108c
SS
8638}
8639
de0bea00
MF
8640/* Complete the "handle" command. */
8641
eb3ff9a5 8642static void
de0bea00 8643handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8644 completion_tracker &tracker,
6f937416 8645 const char *text, const char *word)
de0bea00 8646{
de0bea00
MF
8647 static const char * const keywords[] =
8648 {
8649 "all",
8650 "stop",
8651 "ignore",
8652 "print",
8653 "pass",
8654 "nostop",
8655 "noignore",
8656 "noprint",
8657 "nopass",
8658 NULL,
8659 };
8660
eb3ff9a5
PA
8661 signal_completer (ignore, tracker, text, word);
8662 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8663}
8664
2ea28649
PA
8665enum gdb_signal
8666gdb_signal_from_command (int num)
ed01b82c
PA
8667{
8668 if (num >= 1 && num <= 15)
2ea28649 8669 return (enum gdb_signal) num;
ed01b82c
PA
8670 error (_("Only signals 1-15 are valid as numeric signals.\n\
8671Use \"info signals\" for a list of symbolic signals."));
8672}
8673
c906108c
SS
8674/* Print current contents of the tables set by the handle command.
8675 It is possible we should just be printing signals actually used
8676 by the current target (but for things to work right when switching
8677 targets, all signals should be in the signal tables). */
8678
8679static void
1d12d88f 8680info_signals_command (const char *signum_exp, int from_tty)
c906108c 8681{
2ea28649 8682 enum gdb_signal oursig;
abbb1732 8683
c906108c
SS
8684 sig_print_header ();
8685
8686 if (signum_exp)
8687 {
8688 /* First see if this is a symbol name. */
2ea28649 8689 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8690 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8691 {
8692 /* No, try numeric. */
8693 oursig =
2ea28649 8694 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8695 }
8696 sig_print_info (oursig);
8697 return;
8698 }
8699
8700 printf_filtered ("\n");
8701 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8702 for (oursig = GDB_SIGNAL_FIRST;
8703 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8704 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8705 {
8706 QUIT;
8707
a493e3e2
PA
8708 if (oursig != GDB_SIGNAL_UNKNOWN
8709 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8710 sig_print_info (oursig);
8711 }
8712
3e43a32a
MS
8713 printf_filtered (_("\nUse the \"handle\" command "
8714 "to change these tables.\n"));
c906108c 8715}
4aa995e1
PA
8716
8717/* The $_siginfo convenience variable is a bit special. We don't know
8718 for sure the type of the value until we actually have a chance to
7a9dd1b2 8719 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8720 also dependent on which thread you have selected.
8721
8722 1. making $_siginfo be an internalvar that creates a new value on
8723 access.
8724
8725 2. making the value of $_siginfo be an lval_computed value. */
8726
8727/* This function implements the lval_computed support for reading a
8728 $_siginfo value. */
8729
8730static void
8731siginfo_value_read (struct value *v)
8732{
8733 LONGEST transferred;
8734
a911d87a
PA
8735 /* If we can access registers, so can we access $_siginfo. Likewise
8736 vice versa. */
8737 validate_registers_access ();
c709acd1 8738
4aa995e1
PA
8739 transferred =
8740 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8741 NULL,
8742 value_contents_all_raw (v),
8743 value_offset (v),
8744 TYPE_LENGTH (value_type (v)));
8745
8746 if (transferred != TYPE_LENGTH (value_type (v)))
8747 error (_("Unable to read siginfo"));
8748}
8749
8750/* This function implements the lval_computed support for writing a
8751 $_siginfo value. */
8752
8753static void
8754siginfo_value_write (struct value *v, struct value *fromval)
8755{
8756 LONGEST transferred;
8757
a911d87a
PA
8758 /* If we can access registers, so can we access $_siginfo. Likewise
8759 vice versa. */
8760 validate_registers_access ();
c709acd1 8761
4aa995e1
PA
8762 transferred = target_write (&current_target,
8763 TARGET_OBJECT_SIGNAL_INFO,
8764 NULL,
8765 value_contents_all_raw (fromval),
8766 value_offset (v),
8767 TYPE_LENGTH (value_type (fromval)));
8768
8769 if (transferred != TYPE_LENGTH (value_type (fromval)))
8770 error (_("Unable to write siginfo"));
8771}
8772
c8f2448a 8773static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8774 {
8775 siginfo_value_read,
8776 siginfo_value_write
8777 };
8778
8779/* Return a new value with the correct type for the siginfo object of
78267919
UW
8780 the current thread using architecture GDBARCH. Return a void value
8781 if there's no object available. */
4aa995e1 8782
2c0b251b 8783static struct value *
22d2b532
SDJ
8784siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8785 void *ignore)
4aa995e1 8786{
4aa995e1 8787 if (target_has_stack
78267919
UW
8788 && !ptid_equal (inferior_ptid, null_ptid)
8789 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8790 {
78267919 8791 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8792
78267919 8793 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8794 }
8795
78267919 8796 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8797}
8798
c906108c 8799\f
16c381f0
JK
8800/* infcall_suspend_state contains state about the program itself like its
8801 registers and any signal it received when it last stopped.
8802 This state must be restored regardless of how the inferior function call
8803 ends (either successfully, or after it hits a breakpoint or signal)
8804 if the program is to properly continue where it left off. */
8805
8806struct infcall_suspend_state
7a292a7a 8807{
16c381f0 8808 struct thread_suspend_state thread_suspend;
16c381f0
JK
8809
8810 /* Other fields: */
7a292a7a 8811 CORE_ADDR stop_pc;
b89667eb 8812 struct regcache *registers;
1736ad11 8813
35515841 8814 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
8815 struct gdbarch *siginfo_gdbarch;
8816
8817 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8818 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8819 content would be invalid. */
8820 gdb_byte *siginfo_data;
b89667eb
DE
8821};
8822
16c381f0
JK
8823struct infcall_suspend_state *
8824save_infcall_suspend_state (void)
b89667eb 8825{
16c381f0 8826 struct infcall_suspend_state *inf_state;
b89667eb 8827 struct thread_info *tp = inferior_thread ();
1736ad11 8828 struct regcache *regcache = get_current_regcache ();
ac7936df 8829 struct gdbarch *gdbarch = regcache->arch ();
1736ad11
JK
8830 gdb_byte *siginfo_data = NULL;
8831
8832 if (gdbarch_get_siginfo_type_p (gdbarch))
8833 {
8834 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8835 size_t len = TYPE_LENGTH (type);
8836 struct cleanup *back_to;
8837
224c3ddb 8838 siginfo_data = (gdb_byte *) xmalloc (len);
1736ad11
JK
8839 back_to = make_cleanup (xfree, siginfo_data);
8840
8841 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8842 siginfo_data, 0, len) == len)
8843 discard_cleanups (back_to);
8844 else
8845 {
8846 /* Errors ignored. */
8847 do_cleanups (back_to);
8848 siginfo_data = NULL;
8849 }
8850 }
8851
41bf6aca 8852 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
8853
8854 if (siginfo_data)
8855 {
8856 inf_state->siginfo_gdbarch = gdbarch;
8857 inf_state->siginfo_data = siginfo_data;
8858 }
b89667eb 8859
16c381f0 8860 inf_state->thread_suspend = tp->suspend;
16c381f0 8861
35515841 8862 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
8863 GDB_SIGNAL_0 anyway. */
8864 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8865
b89667eb
DE
8866 inf_state->stop_pc = stop_pc;
8867
1736ad11 8868 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
8869
8870 return inf_state;
8871}
8872
8873/* Restore inferior session state to INF_STATE. */
8874
8875void
16c381f0 8876restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8877{
8878 struct thread_info *tp = inferior_thread ();
1736ad11 8879 struct regcache *regcache = get_current_regcache ();
ac7936df 8880 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 8881
16c381f0 8882 tp->suspend = inf_state->thread_suspend;
16c381f0 8883
b89667eb
DE
8884 stop_pc = inf_state->stop_pc;
8885
1736ad11
JK
8886 if (inf_state->siginfo_gdbarch == gdbarch)
8887 {
8888 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
8889
8890 /* Errors ignored. */
8891 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 8892 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
8893 }
8894
b89667eb
DE
8895 /* The inferior can be gone if the user types "print exit(0)"
8896 (and perhaps other times). */
8897 if (target_has_execution)
8898 /* NB: The register write goes through to the target. */
1736ad11 8899 regcache_cpy (regcache, inf_state->registers);
803b5f95 8900
16c381f0 8901 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8902}
8903
8904static void
16c381f0 8905do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 8906{
9a3c8263 8907 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
b89667eb
DE
8908}
8909
8910struct cleanup *
16c381f0
JK
8911make_cleanup_restore_infcall_suspend_state
8912 (struct infcall_suspend_state *inf_state)
b89667eb 8913{
16c381f0 8914 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
8915}
8916
8917void
16c381f0 8918discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 8919{
c0e383c6 8920 delete inf_state->registers;
803b5f95 8921 xfree (inf_state->siginfo_data);
b89667eb
DE
8922 xfree (inf_state);
8923}
8924
8925struct regcache *
16c381f0 8926get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
8927{
8928 return inf_state->registers;
8929}
8930
16c381f0
JK
8931/* infcall_control_state contains state regarding gdb's control of the
8932 inferior itself like stepping control. It also contains session state like
8933 the user's currently selected frame. */
b89667eb 8934
16c381f0 8935struct infcall_control_state
b89667eb 8936{
16c381f0
JK
8937 struct thread_control_state thread_control;
8938 struct inferior_control_state inferior_control;
d82142e2
JK
8939
8940 /* Other fields: */
8941 enum stop_stack_kind stop_stack_dummy;
8942 int stopped_by_random_signal;
7a292a7a 8943
b89667eb 8944 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 8945 struct frame_id selected_frame_id;
7a292a7a
SS
8946};
8947
c906108c 8948/* Save all of the information associated with the inferior<==>gdb
b89667eb 8949 connection. */
c906108c 8950
16c381f0
JK
8951struct infcall_control_state *
8952save_infcall_control_state (void)
c906108c 8953{
8d749320
SM
8954 struct infcall_control_state *inf_status =
8955 XNEW (struct infcall_control_state);
4e1c45ea 8956 struct thread_info *tp = inferior_thread ();
d6b48e9c 8957 struct inferior *inf = current_inferior ();
7a292a7a 8958
16c381f0
JK
8959 inf_status->thread_control = tp->control;
8960 inf_status->inferior_control = inf->control;
d82142e2 8961
8358c15c 8962 tp->control.step_resume_breakpoint = NULL;
5b79abe7 8963 tp->control.exception_resume_breakpoint = NULL;
8358c15c 8964
16c381f0
JK
8965 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8966 chain. If caller's caller is walking the chain, they'll be happier if we
8967 hand them back the original chain when restore_infcall_control_state is
8968 called. */
8969 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
8970
8971 /* Other fields: */
8972 inf_status->stop_stack_dummy = stop_stack_dummy;
8973 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 8974
206415a3 8975 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 8976
7a292a7a 8977 return inf_status;
c906108c
SS
8978}
8979
bf469271
PA
8980static void
8981restore_selected_frame (const frame_id &fid)
c906108c 8982{
bf469271 8983 frame_info *frame = frame_find_by_id (fid);
c906108c 8984
aa0cd9c1
AC
8985 /* If inf_status->selected_frame_id is NULL, there was no previously
8986 selected frame. */
101dcfbe 8987 if (frame == NULL)
c906108c 8988 {
8a3fe4f8 8989 warning (_("Unable to restore previously selected frame."));
bf469271 8990 return;
c906108c
SS
8991 }
8992
0f7d239c 8993 select_frame (frame);
c906108c
SS
8994}
8995
b89667eb
DE
8996/* Restore inferior session state to INF_STATUS. */
8997
c906108c 8998void
16c381f0 8999restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 9000{
4e1c45ea 9001 struct thread_info *tp = inferior_thread ();
d6b48e9c 9002 struct inferior *inf = current_inferior ();
4e1c45ea 9003
8358c15c
JK
9004 if (tp->control.step_resume_breakpoint)
9005 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9006
5b79abe7
TT
9007 if (tp->control.exception_resume_breakpoint)
9008 tp->control.exception_resume_breakpoint->disposition
9009 = disp_del_at_next_stop;
9010
d82142e2 9011 /* Handle the bpstat_copy of the chain. */
16c381f0 9012 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 9013
16c381f0
JK
9014 tp->control = inf_status->thread_control;
9015 inf->control = inf_status->inferior_control;
d82142e2
JK
9016
9017 /* Other fields: */
9018 stop_stack_dummy = inf_status->stop_stack_dummy;
9019 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 9020
b89667eb 9021 if (target_has_stack)
c906108c 9022 {
bf469271 9023 /* The point of the try/catch is that if the stack is clobbered,
101dcfbe
AC
9024 walking the stack might encounter a garbage pointer and
9025 error() trying to dereference it. */
bf469271
PA
9026 TRY
9027 {
9028 restore_selected_frame (inf_status->selected_frame_id);
9029 }
9030 CATCH (ex, RETURN_MASK_ERROR)
9031 {
9032 exception_fprintf (gdb_stderr, ex,
9033 "Unable to restore previously selected frame:\n");
9034 /* Error in restoring the selected frame. Select the
9035 innermost frame. */
9036 select_frame (get_current_frame ());
9037 }
9038 END_CATCH
c906108c 9039 }
c906108c 9040
72cec141 9041 xfree (inf_status);
7a292a7a 9042}
c906108c 9043
74b7792f 9044static void
16c381f0 9045do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 9046{
9a3c8263 9047 restore_infcall_control_state ((struct infcall_control_state *) sts);
74b7792f
AC
9048}
9049
9050struct cleanup *
16c381f0
JK
9051make_cleanup_restore_infcall_control_state
9052 (struct infcall_control_state *inf_status)
74b7792f 9053{
16c381f0 9054 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
9055}
9056
c906108c 9057void
16c381f0 9058discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 9059{
8358c15c
JK
9060 if (inf_status->thread_control.step_resume_breakpoint)
9061 inf_status->thread_control.step_resume_breakpoint->disposition
9062 = disp_del_at_next_stop;
9063
5b79abe7
TT
9064 if (inf_status->thread_control.exception_resume_breakpoint)
9065 inf_status->thread_control.exception_resume_breakpoint->disposition
9066 = disp_del_at_next_stop;
9067
1777feb0 9068 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 9069 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 9070
72cec141 9071 xfree (inf_status);
7a292a7a 9072}
b89667eb 9073\f
7f89fd65 9074/* See infrun.h. */
0c557179
SDJ
9075
9076void
9077clear_exit_convenience_vars (void)
9078{
9079 clear_internalvar (lookup_internalvar ("_exitsignal"));
9080 clear_internalvar (lookup_internalvar ("_exitcode"));
9081}
c5aa993b 9082\f
488f131b 9083
b2175913
MS
9084/* User interface for reverse debugging:
9085 Set exec-direction / show exec-direction commands
9086 (returns error unless target implements to_set_exec_direction method). */
9087
170742de 9088enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
9089static const char exec_forward[] = "forward";
9090static const char exec_reverse[] = "reverse";
9091static const char *exec_direction = exec_forward;
40478521 9092static const char *const exec_direction_names[] = {
b2175913
MS
9093 exec_forward,
9094 exec_reverse,
9095 NULL
9096};
9097
9098static void
eb4c3f4a 9099set_exec_direction_func (const char *args, int from_tty,
b2175913
MS
9100 struct cmd_list_element *cmd)
9101{
9102 if (target_can_execute_reverse)
9103 {
9104 if (!strcmp (exec_direction, exec_forward))
9105 execution_direction = EXEC_FORWARD;
9106 else if (!strcmp (exec_direction, exec_reverse))
9107 execution_direction = EXEC_REVERSE;
9108 }
8bbed405
MS
9109 else
9110 {
9111 exec_direction = exec_forward;
9112 error (_("Target does not support this operation."));
9113 }
b2175913
MS
9114}
9115
9116static void
9117show_exec_direction_func (struct ui_file *out, int from_tty,
9118 struct cmd_list_element *cmd, const char *value)
9119{
9120 switch (execution_direction) {
9121 case EXEC_FORWARD:
9122 fprintf_filtered (out, _("Forward.\n"));
9123 break;
9124 case EXEC_REVERSE:
9125 fprintf_filtered (out, _("Reverse.\n"));
9126 break;
b2175913 9127 default:
d8b34453
PA
9128 internal_error (__FILE__, __LINE__,
9129 _("bogus execution_direction value: %d"),
9130 (int) execution_direction);
b2175913
MS
9131 }
9132}
9133
d4db2f36
PA
9134static void
9135show_schedule_multiple (struct ui_file *file, int from_tty,
9136 struct cmd_list_element *c, const char *value)
9137{
3e43a32a
MS
9138 fprintf_filtered (file, _("Resuming the execution of threads "
9139 "of all processes is %s.\n"), value);
d4db2f36 9140}
ad52ddc6 9141
22d2b532
SDJ
9142/* Implementation of `siginfo' variable. */
9143
9144static const struct internalvar_funcs siginfo_funcs =
9145{
9146 siginfo_make_value,
9147 NULL,
9148 NULL
9149};
9150
372316f1
PA
9151/* Callback for infrun's target events source. This is marked when a
9152 thread has a pending status to process. */
9153
9154static void
9155infrun_async_inferior_event_handler (gdb_client_data data)
9156{
372316f1
PA
9157 inferior_event_handler (INF_REG_EVENT, NULL);
9158}
9159
c906108c 9160void
96baa820 9161_initialize_infrun (void)
c906108c 9162{
52f0bd74
AC
9163 int i;
9164 int numsigs;
de0bea00 9165 struct cmd_list_element *c;
c906108c 9166
372316f1
PA
9167 /* Register extra event sources in the event loop. */
9168 infrun_async_inferior_event_token
9169 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9170
11db9430 9171 add_info ("signals", info_signals_command, _("\
1bedd215
AC
9172What debugger does when program gets various signals.\n\
9173Specify a signal as argument to print info on that signal only."));
c906108c
SS
9174 add_info_alias ("handle", "signals", 0);
9175
de0bea00 9176 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9177Specify how to handle signals.\n\
486c7739 9178Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9179Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9180If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9181will be displayed instead.\n\
9182\n\
c906108c
SS
9183Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9184from 1-15 are allowed for compatibility with old versions of GDB.\n\
9185Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9186The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9187used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9188\n\
1bedd215 9189Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9190\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9191Stop means reenter debugger if this signal happens (implies print).\n\
9192Print means print a message if this signal happens.\n\
9193Pass means let program see this signal; otherwise program doesn't know.\n\
9194Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9195Pass and Stop may be combined.\n\
9196\n\
9197Multiple signals may be specified. Signal numbers and signal names\n\
9198may be interspersed with actions, with the actions being performed for\n\
9199all signals cumulatively specified."));
de0bea00 9200 set_cmd_completer (c, handle_completer);
486c7739 9201
c906108c 9202 if (!dbx_commands)
1a966eab
AC
9203 stop_command = add_cmd ("stop", class_obscure,
9204 not_just_help_class_command, _("\
9205There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9206This allows you to set a list of commands to be run each time execution\n\
1a966eab 9207of the program stops."), &cmdlist);
c906108c 9208
ccce17b0 9209 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9210Set inferior debugging."), _("\
9211Show inferior debugging."), _("\
9212When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9213 NULL,
9214 show_debug_infrun,
9215 &setdebuglist, &showdebuglist);
527159b7 9216
3e43a32a
MS
9217 add_setshow_boolean_cmd ("displaced", class_maintenance,
9218 &debug_displaced, _("\
237fc4c9
PA
9219Set displaced stepping debugging."), _("\
9220Show displaced stepping debugging."), _("\
9221When non-zero, displaced stepping specific debugging is enabled."),
9222 NULL,
9223 show_debug_displaced,
9224 &setdebuglist, &showdebuglist);
9225
ad52ddc6
PA
9226 add_setshow_boolean_cmd ("non-stop", no_class,
9227 &non_stop_1, _("\
9228Set whether gdb controls the inferior in non-stop mode."), _("\
9229Show whether gdb controls the inferior in non-stop mode."), _("\
9230When debugging a multi-threaded program and this setting is\n\
9231off (the default, also called all-stop mode), when one thread stops\n\
9232(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9233all other threads in the program while you interact with the thread of\n\
9234interest. When you continue or step a thread, you can allow the other\n\
9235threads to run, or have them remain stopped, but while you inspect any\n\
9236thread's state, all threads stop.\n\
9237\n\
9238In non-stop mode, when one thread stops, other threads can continue\n\
9239to run freely. You'll be able to step each thread independently,\n\
9240leave it stopped or free to run as needed."),
9241 set_non_stop,
9242 show_non_stop,
9243 &setlist,
9244 &showlist);
9245
a493e3e2 9246 numsigs = (int) GDB_SIGNAL_LAST;
8d749320
SM
9247 signal_stop = XNEWVEC (unsigned char, numsigs);
9248 signal_print = XNEWVEC (unsigned char, numsigs);
9249 signal_program = XNEWVEC (unsigned char, numsigs);
9250 signal_catch = XNEWVEC (unsigned char, numsigs);
9251 signal_pass = XNEWVEC (unsigned char, numsigs);
c906108c
SS
9252 for (i = 0; i < numsigs; i++)
9253 {
9254 signal_stop[i] = 1;
9255 signal_print[i] = 1;
9256 signal_program[i] = 1;
ab04a2af 9257 signal_catch[i] = 0;
c906108c
SS
9258 }
9259
4d9d9d04
PA
9260 /* Signals caused by debugger's own actions should not be given to
9261 the program afterwards.
9262
9263 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9264 explicitly specifies that it should be delivered to the target
9265 program. Typically, that would occur when a user is debugging a
9266 target monitor on a simulator: the target monitor sets a
9267 breakpoint; the simulator encounters this breakpoint and halts
9268 the simulation handing control to GDB; GDB, noting that the stop
9269 address doesn't map to any known breakpoint, returns control back
9270 to the simulator; the simulator then delivers the hardware
9271 equivalent of a GDB_SIGNAL_TRAP to the program being
9272 debugged. */
a493e3e2
PA
9273 signal_program[GDB_SIGNAL_TRAP] = 0;
9274 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9275
9276 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9277 signal_stop[GDB_SIGNAL_ALRM] = 0;
9278 signal_print[GDB_SIGNAL_ALRM] = 0;
9279 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9280 signal_print[GDB_SIGNAL_VTALRM] = 0;
9281 signal_stop[GDB_SIGNAL_PROF] = 0;
9282 signal_print[GDB_SIGNAL_PROF] = 0;
9283 signal_stop[GDB_SIGNAL_CHLD] = 0;
9284 signal_print[GDB_SIGNAL_CHLD] = 0;
9285 signal_stop[GDB_SIGNAL_IO] = 0;
9286 signal_print[GDB_SIGNAL_IO] = 0;
9287 signal_stop[GDB_SIGNAL_POLL] = 0;
9288 signal_print[GDB_SIGNAL_POLL] = 0;
9289 signal_stop[GDB_SIGNAL_URG] = 0;
9290 signal_print[GDB_SIGNAL_URG] = 0;
9291 signal_stop[GDB_SIGNAL_WINCH] = 0;
9292 signal_print[GDB_SIGNAL_WINCH] = 0;
9293 signal_stop[GDB_SIGNAL_PRIO] = 0;
9294 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9295
cd0fc7c3
SS
9296 /* These signals are used internally by user-level thread
9297 implementations. (See signal(5) on Solaris.) Like the above
9298 signals, a healthy program receives and handles them as part of
9299 its normal operation. */
a493e3e2
PA
9300 signal_stop[GDB_SIGNAL_LWP] = 0;
9301 signal_print[GDB_SIGNAL_LWP] = 0;
9302 signal_stop[GDB_SIGNAL_WAITING] = 0;
9303 signal_print[GDB_SIGNAL_WAITING] = 0;
9304 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9305 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9306 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9307 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9308
2455069d
UW
9309 /* Update cached state. */
9310 signal_cache_update (-1);
9311
85c07804
AC
9312 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9313 &stop_on_solib_events, _("\
9314Set stopping for shared library events."), _("\
9315Show stopping for shared library events."), _("\
c906108c
SS
9316If nonzero, gdb will give control to the user when the dynamic linker\n\
9317notifies gdb of shared library events. The most common event of interest\n\
85c07804 9318to the user would be loading/unloading of a new library."),
f9e14852 9319 set_stop_on_solib_events,
920d2a44 9320 show_stop_on_solib_events,
85c07804 9321 &setlist, &showlist);
c906108c 9322
7ab04401
AC
9323 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9324 follow_fork_mode_kind_names,
9325 &follow_fork_mode_string, _("\
9326Set debugger response to a program call of fork or vfork."), _("\
9327Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9328A fork or vfork creates a new process. follow-fork-mode can be:\n\
9329 parent - the original process is debugged after a fork\n\
9330 child - the new process is debugged after a fork\n\
ea1dd7bc 9331The unfollowed process will continue to run.\n\
7ab04401
AC
9332By default, the debugger will follow the parent process."),
9333 NULL,
920d2a44 9334 show_follow_fork_mode_string,
7ab04401
AC
9335 &setlist, &showlist);
9336
6c95b8df
PA
9337 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9338 follow_exec_mode_names,
9339 &follow_exec_mode_string, _("\
9340Set debugger response to a program call of exec."), _("\
9341Show debugger response to a program call of exec."), _("\
9342An exec call replaces the program image of a process.\n\
9343\n\
9344follow-exec-mode can be:\n\
9345\n\
cce7e648 9346 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9347to this new inferior. The program the process was running before\n\
9348the exec call can be restarted afterwards by restarting the original\n\
9349inferior.\n\
9350\n\
9351 same - the debugger keeps the process bound to the same inferior.\n\
9352The new executable image replaces the previous executable loaded in\n\
9353the inferior. Restarting the inferior after the exec call restarts\n\
9354the executable the process was running after the exec call.\n\
9355\n\
9356By default, the debugger will use the same inferior."),
9357 NULL,
9358 show_follow_exec_mode_string,
9359 &setlist, &showlist);
9360
7ab04401
AC
9361 add_setshow_enum_cmd ("scheduler-locking", class_run,
9362 scheduler_enums, &scheduler_mode, _("\
9363Set mode for locking scheduler during execution."), _("\
9364Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9365off == no locking (threads may preempt at any time)\n\
9366on == full locking (no thread except the current thread may run)\n\
9367 This applies to both normal execution and replay mode.\n\
9368step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9369 In this mode, other threads may run during other commands.\n\
9370 This applies to both normal execution and replay mode.\n\
9371replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9372 set_schedlock_func, /* traps on target vector */
920d2a44 9373 show_scheduler_mode,
7ab04401 9374 &setlist, &showlist);
5fbbeb29 9375
d4db2f36
PA
9376 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9377Set mode for resuming threads of all processes."), _("\
9378Show mode for resuming threads of all processes."), _("\
9379When on, execution commands (such as 'continue' or 'next') resume all\n\
9380threads of all processes. When off (which is the default), execution\n\
9381commands only resume the threads of the current process. The set of\n\
9382threads that are resumed is further refined by the scheduler-locking\n\
9383mode (see help set scheduler-locking)."),
9384 NULL,
9385 show_schedule_multiple,
9386 &setlist, &showlist);
9387
5bf193a2
AC
9388 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9389Set mode of the step operation."), _("\
9390Show mode of the step operation."), _("\
9391When set, doing a step over a function without debug line information\n\
9392will stop at the first instruction of that function. Otherwise, the\n\
9393function is skipped and the step command stops at a different source line."),
9394 NULL,
920d2a44 9395 show_step_stop_if_no_debug,
5bf193a2 9396 &setlist, &showlist);
ca6724c1 9397
72d0e2c5
YQ
9398 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9399 &can_use_displaced_stepping, _("\
237fc4c9
PA
9400Set debugger's willingness to use displaced stepping."), _("\
9401Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9402If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9403supported by the target architecture. If off, gdb will not use displaced\n\
9404stepping to step over breakpoints, even if such is supported by the target\n\
9405architecture. If auto (which is the default), gdb will use displaced stepping\n\
9406if the target architecture supports it and non-stop mode is active, but will not\n\
9407use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9408 NULL,
9409 show_can_use_displaced_stepping,
9410 &setlist, &showlist);
237fc4c9 9411
b2175913
MS
9412 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9413 &exec_direction, _("Set direction of execution.\n\
9414Options are 'forward' or 'reverse'."),
9415 _("Show direction of execution (forward/reverse)."),
9416 _("Tells gdb whether to execute forward or backward."),
9417 set_exec_direction_func, show_exec_direction_func,
9418 &setlist, &showlist);
9419
6c95b8df
PA
9420 /* Set/show detach-on-fork: user-settable mode. */
9421
9422 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9423Set whether gdb will detach the child of a fork."), _("\
9424Show whether gdb will detach the child of a fork."), _("\
9425Tells gdb whether to detach the child of a fork."),
9426 NULL, NULL, &setlist, &showlist);
9427
03583c20
UW
9428 /* Set/show disable address space randomization mode. */
9429
9430 add_setshow_boolean_cmd ("disable-randomization", class_support,
9431 &disable_randomization, _("\
9432Set disabling of debuggee's virtual address space randomization."), _("\
9433Show disabling of debuggee's virtual address space randomization."), _("\
9434When this mode is on (which is the default), randomization of the virtual\n\
9435address space is disabled. Standalone programs run with the randomization\n\
9436enabled by default on some platforms."),
9437 &set_disable_randomization,
9438 &show_disable_randomization,
9439 &setlist, &showlist);
9440
ca6724c1 9441 /* ptid initializations */
ca6724c1
KB
9442 inferior_ptid = null_ptid;
9443 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
9444
9445 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 9446 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 9447 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 9448 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
9449
9450 /* Explicitly create without lookup, since that tries to create a
9451 value with a void typed value, and when we get here, gdbarch
9452 isn't initialized yet. At this point, we're quite sure there
9453 isn't another convenience variable of the same name. */
22d2b532 9454 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9455
9456 add_setshow_boolean_cmd ("observer", no_class,
9457 &observer_mode_1, _("\
9458Set whether gdb controls the inferior in observer mode."), _("\
9459Show whether gdb controls the inferior in observer mode."), _("\
9460In observer mode, GDB can get data from the inferior, but not\n\
9461affect its execution. Registers and memory may not be changed,\n\
9462breakpoints may not be set, and the program cannot be interrupted\n\
9463or signalled."),
9464 set_observer_mode,
9465 show_observer_mode,
9466 &setlist,
9467 &showlist);
c906108c 9468}
This page took 3.302578 seconds and 4 git commands to generate.