Remote all-stop-on-top-of-non-stop
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
32d0add0 4 Copyright (C) 1986-2015 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
06600e06 41#include "observer.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
ff862be4 63#include "solist.h"
372316f1 64#include "event-loop.h"
243a9253 65#include "thread-fsm.h"
8d297bbf 66#include "common/enum-flags.h"
c906108c
SS
67
68/* Prototypes for local functions */
69
96baa820 70static void signals_info (char *, int);
c906108c 71
96baa820 72static void handle_command (char *, int);
c906108c 73
2ea28649 74static void sig_print_info (enum gdb_signal);
c906108c 75
96baa820 76static void sig_print_header (void);
c906108c 77
74b7792f 78static void resume_cleanups (void *);
c906108c 79
96baa820 80static int hook_stop_stub (void *);
c906108c 81
96baa820
JM
82static int restore_selected_frame (void *);
83
4ef3f3be 84static int follow_fork (void);
96baa820 85
d83ad864
DB
86static int follow_fork_inferior (int follow_child, int detach_fork);
87
88static void follow_inferior_reset_breakpoints (void);
89
96baa820 90static void set_schedlock_func (char *args, int from_tty,
488f131b 91 struct cmd_list_element *c);
96baa820 92
a289b8f6
JK
93static int currently_stepping (struct thread_info *tp);
94
96baa820 95void _initialize_infrun (void);
43ff13b4 96
e58b0e63
PA
97void nullify_last_target_wait_ptid (void);
98
2c03e5be 99static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
100
101static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
102
2484c66b
UW
103static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
104
8550d3b3
YQ
105static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
106
372316f1
PA
107/* Asynchronous signal handler registered as event loop source for
108 when we have pending events ready to be passed to the core. */
109static struct async_event_handler *infrun_async_inferior_event_token;
110
111/* Stores whether infrun_async was previously enabled or disabled.
112 Starts off as -1, indicating "never enabled/disabled". */
113static int infrun_is_async = -1;
114
115/* See infrun.h. */
116
117void
118infrun_async (int enable)
119{
120 if (infrun_is_async != enable)
121 {
122 infrun_is_async = enable;
123
124 if (debug_infrun)
125 fprintf_unfiltered (gdb_stdlog,
126 "infrun: infrun_async(%d)\n",
127 enable);
128
129 if (enable)
130 mark_async_event_handler (infrun_async_inferior_event_token);
131 else
132 clear_async_event_handler (infrun_async_inferior_event_token);
133 }
134}
135
0b333c5e
PA
136/* See infrun.h. */
137
138void
139mark_infrun_async_event_handler (void)
140{
141 mark_async_event_handler (infrun_async_inferior_event_token);
142}
143
5fbbeb29
CF
144/* When set, stop the 'step' command if we enter a function which has
145 no line number information. The normal behavior is that we step
146 over such function. */
147int step_stop_if_no_debug = 0;
920d2a44
AC
148static void
149show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151{
152 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
153}
5fbbeb29 154
1777feb0 155/* In asynchronous mode, but simulating synchronous execution. */
96baa820 156
43ff13b4
JM
157int sync_execution = 0;
158
b9f437de
PA
159/* proceed and normal_stop use this to notify the user when the
160 inferior stopped in a different thread than it had been running
161 in. */
96baa820 162
39f77062 163static ptid_t previous_inferior_ptid;
7a292a7a 164
07107ca6
LM
165/* If set (default for legacy reasons), when following a fork, GDB
166 will detach from one of the fork branches, child or parent.
167 Exactly which branch is detached depends on 'set follow-fork-mode'
168 setting. */
169
170static int detach_fork = 1;
6c95b8df 171
237fc4c9
PA
172int debug_displaced = 0;
173static void
174show_debug_displaced (struct ui_file *file, int from_tty,
175 struct cmd_list_element *c, const char *value)
176{
177 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
178}
179
ccce17b0 180unsigned int debug_infrun = 0;
920d2a44
AC
181static void
182show_debug_infrun (struct ui_file *file, int from_tty,
183 struct cmd_list_element *c, const char *value)
184{
185 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
186}
527159b7 187
03583c20
UW
188
189/* Support for disabling address space randomization. */
190
191int disable_randomization = 1;
192
193static void
194show_disable_randomization (struct ui_file *file, int from_tty,
195 struct cmd_list_element *c, const char *value)
196{
197 if (target_supports_disable_randomization ())
198 fprintf_filtered (file,
199 _("Disabling randomization of debuggee's "
200 "virtual address space is %s.\n"),
201 value);
202 else
203 fputs_filtered (_("Disabling randomization of debuggee's "
204 "virtual address space is unsupported on\n"
205 "this platform.\n"), file);
206}
207
208static void
209set_disable_randomization (char *args, int from_tty,
210 struct cmd_list_element *c)
211{
212 if (!target_supports_disable_randomization ())
213 error (_("Disabling randomization of debuggee's "
214 "virtual address space is unsupported on\n"
215 "this platform."));
216}
217
d32dc48e
PA
218/* User interface for non-stop mode. */
219
220int non_stop = 0;
221static int non_stop_1 = 0;
222
223static void
224set_non_stop (char *args, int from_tty,
225 struct cmd_list_element *c)
226{
227 if (target_has_execution)
228 {
229 non_stop_1 = non_stop;
230 error (_("Cannot change this setting while the inferior is running."));
231 }
232
233 non_stop = non_stop_1;
234}
235
236static void
237show_non_stop (struct ui_file *file, int from_tty,
238 struct cmd_list_element *c, const char *value)
239{
240 fprintf_filtered (file,
241 _("Controlling the inferior in non-stop mode is %s.\n"),
242 value);
243}
244
d914c394
SS
245/* "Observer mode" is somewhat like a more extreme version of
246 non-stop, in which all GDB operations that might affect the
247 target's execution have been disabled. */
248
d914c394
SS
249int observer_mode = 0;
250static int observer_mode_1 = 0;
251
252static void
253set_observer_mode (char *args, int from_tty,
254 struct cmd_list_element *c)
255{
d914c394
SS
256 if (target_has_execution)
257 {
258 observer_mode_1 = observer_mode;
259 error (_("Cannot change this setting while the inferior is running."));
260 }
261
262 observer_mode = observer_mode_1;
263
264 may_write_registers = !observer_mode;
265 may_write_memory = !observer_mode;
266 may_insert_breakpoints = !observer_mode;
267 may_insert_tracepoints = !observer_mode;
268 /* We can insert fast tracepoints in or out of observer mode,
269 but enable them if we're going into this mode. */
270 if (observer_mode)
271 may_insert_fast_tracepoints = 1;
272 may_stop = !observer_mode;
273 update_target_permissions ();
274
275 /* Going *into* observer mode we must force non-stop, then
276 going out we leave it that way. */
277 if (observer_mode)
278 {
d914c394
SS
279 pagination_enabled = 0;
280 non_stop = non_stop_1 = 1;
281 }
282
283 if (from_tty)
284 printf_filtered (_("Observer mode is now %s.\n"),
285 (observer_mode ? "on" : "off"));
286}
287
288static void
289show_observer_mode (struct ui_file *file, int from_tty,
290 struct cmd_list_element *c, const char *value)
291{
292 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
293}
294
295/* This updates the value of observer mode based on changes in
296 permissions. Note that we are deliberately ignoring the values of
297 may-write-registers and may-write-memory, since the user may have
298 reason to enable these during a session, for instance to turn on a
299 debugging-related global. */
300
301void
302update_observer_mode (void)
303{
304 int newval;
305
306 newval = (!may_insert_breakpoints
307 && !may_insert_tracepoints
308 && may_insert_fast_tracepoints
309 && !may_stop
310 && non_stop);
311
312 /* Let the user know if things change. */
313 if (newval != observer_mode)
314 printf_filtered (_("Observer mode is now %s.\n"),
315 (newval ? "on" : "off"));
316
317 observer_mode = observer_mode_1 = newval;
318}
c2c6d25f 319
c906108c
SS
320/* Tables of how to react to signals; the user sets them. */
321
322static unsigned char *signal_stop;
323static unsigned char *signal_print;
324static unsigned char *signal_program;
325
ab04a2af
TT
326/* Table of signals that are registered with "catch signal". A
327 non-zero entry indicates that the signal is caught by some "catch
328 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
329 signals. */
330static unsigned char *signal_catch;
331
2455069d
UW
332/* Table of signals that the target may silently handle.
333 This is automatically determined from the flags above,
334 and simply cached here. */
335static unsigned char *signal_pass;
336
c906108c
SS
337#define SET_SIGS(nsigs,sigs,flags) \
338 do { \
339 int signum = (nsigs); \
340 while (signum-- > 0) \
341 if ((sigs)[signum]) \
342 (flags)[signum] = 1; \
343 } while (0)
344
345#define UNSET_SIGS(nsigs,sigs,flags) \
346 do { \
347 int signum = (nsigs); \
348 while (signum-- > 0) \
349 if ((sigs)[signum]) \
350 (flags)[signum] = 0; \
351 } while (0)
352
9b224c5e
PA
353/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
354 this function is to avoid exporting `signal_program'. */
355
356void
357update_signals_program_target (void)
358{
a493e3e2 359 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
360}
361
1777feb0 362/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 363
edb3359d 364#define RESUME_ALL minus_one_ptid
c906108c
SS
365
366/* Command list pointer for the "stop" placeholder. */
367
368static struct cmd_list_element *stop_command;
369
c906108c
SS
370/* Nonzero if we want to give control to the user when we're notified
371 of shared library events by the dynamic linker. */
628fe4e4 372int stop_on_solib_events;
f9e14852
GB
373
374/* Enable or disable optional shared library event breakpoints
375 as appropriate when the above flag is changed. */
376
377static void
378set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
379{
380 update_solib_breakpoints ();
381}
382
920d2a44
AC
383static void
384show_stop_on_solib_events (struct ui_file *file, int from_tty,
385 struct cmd_list_element *c, const char *value)
386{
387 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
388 value);
389}
c906108c 390
c906108c
SS
391/* Nonzero after stop if current stack frame should be printed. */
392
393static int stop_print_frame;
394
e02bc4cc 395/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
396 returned by target_wait()/deprecated_target_wait_hook(). This
397 information is returned by get_last_target_status(). */
39f77062 398static ptid_t target_last_wait_ptid;
e02bc4cc
DS
399static struct target_waitstatus target_last_waitstatus;
400
0d1e5fa7
PA
401static void context_switch (ptid_t ptid);
402
4e1c45ea 403void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 404
53904c9e
AC
405static const char follow_fork_mode_child[] = "child";
406static const char follow_fork_mode_parent[] = "parent";
407
40478521 408static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
409 follow_fork_mode_child,
410 follow_fork_mode_parent,
411 NULL
ef346e04 412};
c906108c 413
53904c9e 414static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
415static void
416show_follow_fork_mode_string (struct ui_file *file, int from_tty,
417 struct cmd_list_element *c, const char *value)
418{
3e43a32a
MS
419 fprintf_filtered (file,
420 _("Debugger response to a program "
421 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
422 value);
423}
c906108c
SS
424\f
425
d83ad864
DB
426/* Handle changes to the inferior list based on the type of fork,
427 which process is being followed, and whether the other process
428 should be detached. On entry inferior_ptid must be the ptid of
429 the fork parent. At return inferior_ptid is the ptid of the
430 followed inferior. */
431
432static int
433follow_fork_inferior (int follow_child, int detach_fork)
434{
435 int has_vforked;
79639e11 436 ptid_t parent_ptid, child_ptid;
d83ad864
DB
437
438 has_vforked = (inferior_thread ()->pending_follow.kind
439 == TARGET_WAITKIND_VFORKED);
79639e11
PA
440 parent_ptid = inferior_ptid;
441 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
442
443 if (has_vforked
444 && !non_stop /* Non-stop always resumes both branches. */
445 && (!target_is_async_p () || sync_execution)
446 && !(follow_child || detach_fork || sched_multi))
447 {
448 /* The parent stays blocked inside the vfork syscall until the
449 child execs or exits. If we don't let the child run, then
450 the parent stays blocked. If we're telling the parent to run
451 in the foreground, the user will not be able to ctrl-c to get
452 back the terminal, effectively hanging the debug session. */
453 fprintf_filtered (gdb_stderr, _("\
454Can not resume the parent process over vfork in the foreground while\n\
455holding the child stopped. Try \"set detach-on-fork\" or \
456\"set schedule-multiple\".\n"));
457 /* FIXME output string > 80 columns. */
458 return 1;
459 }
460
461 if (!follow_child)
462 {
463 /* Detach new forked process? */
464 if (detach_fork)
465 {
466 struct cleanup *old_chain;
467
468 /* Before detaching from the child, remove all breakpoints
469 from it. If we forked, then this has already been taken
470 care of by infrun.c. If we vforked however, any
471 breakpoint inserted in the parent is visible in the
472 child, even those added while stopped in a vfork
473 catchpoint. This will remove the breakpoints from the
474 parent also, but they'll be reinserted below. */
475 if (has_vforked)
476 {
477 /* Keep breakpoints list in sync. */
478 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
479 }
480
481 if (info_verbose || debug_infrun)
482 {
8dd06f7a
DB
483 /* Ensure that we have a process ptid. */
484 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
485
6f259a23 486 target_terminal_ours_for_output ();
d83ad864 487 fprintf_filtered (gdb_stdlog,
79639e11 488 _("Detaching after %s from child %s.\n"),
6f259a23 489 has_vforked ? "vfork" : "fork",
8dd06f7a 490 target_pid_to_str (process_ptid));
d83ad864
DB
491 }
492 }
493 else
494 {
495 struct inferior *parent_inf, *child_inf;
496 struct cleanup *old_chain;
497
498 /* Add process to GDB's tables. */
79639e11 499 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
500
501 parent_inf = current_inferior ();
502 child_inf->attach_flag = parent_inf->attach_flag;
503 copy_terminal_info (child_inf, parent_inf);
504 child_inf->gdbarch = parent_inf->gdbarch;
505 copy_inferior_target_desc_info (child_inf, parent_inf);
506
507 old_chain = save_inferior_ptid ();
508 save_current_program_space ();
509
79639e11 510 inferior_ptid = child_ptid;
d83ad864
DB
511 add_thread (inferior_ptid);
512 child_inf->symfile_flags = SYMFILE_NO_READ;
513
514 /* If this is a vfork child, then the address-space is
515 shared with the parent. */
516 if (has_vforked)
517 {
518 child_inf->pspace = parent_inf->pspace;
519 child_inf->aspace = parent_inf->aspace;
520
521 /* The parent will be frozen until the child is done
522 with the shared region. Keep track of the
523 parent. */
524 child_inf->vfork_parent = parent_inf;
525 child_inf->pending_detach = 0;
526 parent_inf->vfork_child = child_inf;
527 parent_inf->pending_detach = 0;
528 }
529 else
530 {
531 child_inf->aspace = new_address_space ();
532 child_inf->pspace = add_program_space (child_inf->aspace);
533 child_inf->removable = 1;
534 set_current_program_space (child_inf->pspace);
535 clone_program_space (child_inf->pspace, parent_inf->pspace);
536
537 /* Let the shared library layer (e.g., solib-svr4) learn
538 about this new process, relocate the cloned exec, pull
539 in shared libraries, and install the solib event
540 breakpoint. If a "cloned-VM" event was propagated
541 better throughout the core, this wouldn't be
542 required. */
543 solib_create_inferior_hook (0);
544 }
545
546 do_cleanups (old_chain);
547 }
548
549 if (has_vforked)
550 {
551 struct inferior *parent_inf;
552
553 parent_inf = current_inferior ();
554
555 /* If we detached from the child, then we have to be careful
556 to not insert breakpoints in the parent until the child
557 is done with the shared memory region. However, if we're
558 staying attached to the child, then we can and should
559 insert breakpoints, so that we can debug it. A
560 subsequent child exec or exit is enough to know when does
561 the child stops using the parent's address space. */
562 parent_inf->waiting_for_vfork_done = detach_fork;
563 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
564 }
565 }
566 else
567 {
568 /* Follow the child. */
569 struct inferior *parent_inf, *child_inf;
570 struct program_space *parent_pspace;
571
572 if (info_verbose || debug_infrun)
573 {
6f259a23
DB
574 target_terminal_ours_for_output ();
575 fprintf_filtered (gdb_stdlog,
79639e11
PA
576 _("Attaching after %s %s to child %s.\n"),
577 target_pid_to_str (parent_ptid),
6f259a23 578 has_vforked ? "vfork" : "fork",
79639e11 579 target_pid_to_str (child_ptid));
d83ad864
DB
580 }
581
582 /* Add the new inferior first, so that the target_detach below
583 doesn't unpush the target. */
584
79639e11 585 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
586
587 parent_inf = current_inferior ();
588 child_inf->attach_flag = parent_inf->attach_flag;
589 copy_terminal_info (child_inf, parent_inf);
590 child_inf->gdbarch = parent_inf->gdbarch;
591 copy_inferior_target_desc_info (child_inf, parent_inf);
592
593 parent_pspace = parent_inf->pspace;
594
595 /* If we're vforking, we want to hold on to the parent until the
596 child exits or execs. At child exec or exit time we can
597 remove the old breakpoints from the parent and detach or
598 resume debugging it. Otherwise, detach the parent now; we'll
599 want to reuse it's program/address spaces, but we can't set
600 them to the child before removing breakpoints from the
601 parent, otherwise, the breakpoints module could decide to
602 remove breakpoints from the wrong process (since they'd be
603 assigned to the same address space). */
604
605 if (has_vforked)
606 {
607 gdb_assert (child_inf->vfork_parent == NULL);
608 gdb_assert (parent_inf->vfork_child == NULL);
609 child_inf->vfork_parent = parent_inf;
610 child_inf->pending_detach = 0;
611 parent_inf->vfork_child = child_inf;
612 parent_inf->pending_detach = detach_fork;
613 parent_inf->waiting_for_vfork_done = 0;
614 }
615 else if (detach_fork)
6f259a23
DB
616 {
617 if (info_verbose || debug_infrun)
618 {
8dd06f7a
DB
619 /* Ensure that we have a process ptid. */
620 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
621
6f259a23
DB
622 target_terminal_ours_for_output ();
623 fprintf_filtered (gdb_stdlog,
624 _("Detaching after fork from "
79639e11 625 "child %s.\n"),
8dd06f7a 626 target_pid_to_str (process_ptid));
6f259a23
DB
627 }
628
629 target_detach (NULL, 0);
630 }
d83ad864
DB
631
632 /* Note that the detach above makes PARENT_INF dangling. */
633
634 /* Add the child thread to the appropriate lists, and switch to
635 this new thread, before cloning the program space, and
636 informing the solib layer about this new process. */
637
79639e11 638 inferior_ptid = child_ptid;
d83ad864
DB
639 add_thread (inferior_ptid);
640
641 /* If this is a vfork child, then the address-space is shared
642 with the parent. If we detached from the parent, then we can
643 reuse the parent's program/address spaces. */
644 if (has_vforked || detach_fork)
645 {
646 child_inf->pspace = parent_pspace;
647 child_inf->aspace = child_inf->pspace->aspace;
648 }
649 else
650 {
651 child_inf->aspace = new_address_space ();
652 child_inf->pspace = add_program_space (child_inf->aspace);
653 child_inf->removable = 1;
654 child_inf->symfile_flags = SYMFILE_NO_READ;
655 set_current_program_space (child_inf->pspace);
656 clone_program_space (child_inf->pspace, parent_pspace);
657
658 /* Let the shared library layer (e.g., solib-svr4) learn
659 about this new process, relocate the cloned exec, pull in
660 shared libraries, and install the solib event breakpoint.
661 If a "cloned-VM" event was propagated better throughout
662 the core, this wouldn't be required. */
663 solib_create_inferior_hook (0);
664 }
665 }
666
667 return target_follow_fork (follow_child, detach_fork);
668}
669
e58b0e63
PA
670/* Tell the target to follow the fork we're stopped at. Returns true
671 if the inferior should be resumed; false, if the target for some
672 reason decided it's best not to resume. */
673
6604731b 674static int
4ef3f3be 675follow_fork (void)
c906108c 676{
ea1dd7bc 677 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
678 int should_resume = 1;
679 struct thread_info *tp;
680
681 /* Copy user stepping state to the new inferior thread. FIXME: the
682 followed fork child thread should have a copy of most of the
4e3990f4
DE
683 parent thread structure's run control related fields, not just these.
684 Initialized to avoid "may be used uninitialized" warnings from gcc. */
685 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 686 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
687 CORE_ADDR step_range_start = 0;
688 CORE_ADDR step_range_end = 0;
689 struct frame_id step_frame_id = { 0 };
17b2616c 690 struct interp *command_interp = NULL;
e58b0e63
PA
691
692 if (!non_stop)
693 {
694 ptid_t wait_ptid;
695 struct target_waitstatus wait_status;
696
697 /* Get the last target status returned by target_wait(). */
698 get_last_target_status (&wait_ptid, &wait_status);
699
700 /* If not stopped at a fork event, then there's nothing else to
701 do. */
702 if (wait_status.kind != TARGET_WAITKIND_FORKED
703 && wait_status.kind != TARGET_WAITKIND_VFORKED)
704 return 1;
705
706 /* Check if we switched over from WAIT_PTID, since the event was
707 reported. */
708 if (!ptid_equal (wait_ptid, minus_one_ptid)
709 && !ptid_equal (inferior_ptid, wait_ptid))
710 {
711 /* We did. Switch back to WAIT_PTID thread, to tell the
712 target to follow it (in either direction). We'll
713 afterwards refuse to resume, and inform the user what
714 happened. */
715 switch_to_thread (wait_ptid);
716 should_resume = 0;
717 }
718 }
719
720 tp = inferior_thread ();
721
722 /* If there were any forks/vforks that were caught and are now to be
723 followed, then do so now. */
724 switch (tp->pending_follow.kind)
725 {
726 case TARGET_WAITKIND_FORKED:
727 case TARGET_WAITKIND_VFORKED:
728 {
729 ptid_t parent, child;
730
731 /* If the user did a next/step, etc, over a fork call,
732 preserve the stepping state in the fork child. */
733 if (follow_child && should_resume)
734 {
8358c15c
JK
735 step_resume_breakpoint = clone_momentary_breakpoint
736 (tp->control.step_resume_breakpoint);
16c381f0
JK
737 step_range_start = tp->control.step_range_start;
738 step_range_end = tp->control.step_range_end;
739 step_frame_id = tp->control.step_frame_id;
186c406b
TT
740 exception_resume_breakpoint
741 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
17b2616c 742 command_interp = tp->control.command_interp;
e58b0e63
PA
743
744 /* For now, delete the parent's sr breakpoint, otherwise,
745 parent/child sr breakpoints are considered duplicates,
746 and the child version will not be installed. Remove
747 this when the breakpoints module becomes aware of
748 inferiors and address spaces. */
749 delete_step_resume_breakpoint (tp);
16c381f0
JK
750 tp->control.step_range_start = 0;
751 tp->control.step_range_end = 0;
752 tp->control.step_frame_id = null_frame_id;
186c406b 753 delete_exception_resume_breakpoint (tp);
17b2616c 754 tp->control.command_interp = NULL;
e58b0e63
PA
755 }
756
757 parent = inferior_ptid;
758 child = tp->pending_follow.value.related_pid;
759
d83ad864
DB
760 /* Set up inferior(s) as specified by the caller, and tell the
761 target to do whatever is necessary to follow either parent
762 or child. */
763 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
764 {
765 /* Target refused to follow, or there's some other reason
766 we shouldn't resume. */
767 should_resume = 0;
768 }
769 else
770 {
771 /* This pending follow fork event is now handled, one way
772 or another. The previous selected thread may be gone
773 from the lists by now, but if it is still around, need
774 to clear the pending follow request. */
e09875d4 775 tp = find_thread_ptid (parent);
e58b0e63
PA
776 if (tp)
777 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
778
779 /* This makes sure we don't try to apply the "Switched
780 over from WAIT_PID" logic above. */
781 nullify_last_target_wait_ptid ();
782
1777feb0 783 /* If we followed the child, switch to it... */
e58b0e63
PA
784 if (follow_child)
785 {
786 switch_to_thread (child);
787
788 /* ... and preserve the stepping state, in case the
789 user was stepping over the fork call. */
790 if (should_resume)
791 {
792 tp = inferior_thread ();
8358c15c
JK
793 tp->control.step_resume_breakpoint
794 = step_resume_breakpoint;
16c381f0
JK
795 tp->control.step_range_start = step_range_start;
796 tp->control.step_range_end = step_range_end;
797 tp->control.step_frame_id = step_frame_id;
186c406b
TT
798 tp->control.exception_resume_breakpoint
799 = exception_resume_breakpoint;
17b2616c 800 tp->control.command_interp = command_interp;
e58b0e63
PA
801 }
802 else
803 {
804 /* If we get here, it was because we're trying to
805 resume from a fork catchpoint, but, the user
806 has switched threads away from the thread that
807 forked. In that case, the resume command
808 issued is most likely not applicable to the
809 child, so just warn, and refuse to resume. */
3e43a32a 810 warning (_("Not resuming: switched threads "
fd7dcb94 811 "before following fork child."));
e58b0e63
PA
812 }
813
814 /* Reset breakpoints in the child as appropriate. */
815 follow_inferior_reset_breakpoints ();
816 }
817 else
818 switch_to_thread (parent);
819 }
820 }
821 break;
822 case TARGET_WAITKIND_SPURIOUS:
823 /* Nothing to follow. */
824 break;
825 default:
826 internal_error (__FILE__, __LINE__,
827 "Unexpected pending_follow.kind %d\n",
828 tp->pending_follow.kind);
829 break;
830 }
c906108c 831
e58b0e63 832 return should_resume;
c906108c
SS
833}
834
d83ad864 835static void
6604731b 836follow_inferior_reset_breakpoints (void)
c906108c 837{
4e1c45ea
PA
838 struct thread_info *tp = inferior_thread ();
839
6604731b
DJ
840 /* Was there a step_resume breakpoint? (There was if the user
841 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
842 thread number. Cloned step_resume breakpoints are disabled on
843 creation, so enable it here now that it is associated with the
844 correct thread.
6604731b
DJ
845
846 step_resumes are a form of bp that are made to be per-thread.
847 Since we created the step_resume bp when the parent process
848 was being debugged, and now are switching to the child process,
849 from the breakpoint package's viewpoint, that's a switch of
850 "threads". We must update the bp's notion of which thread
851 it is for, or it'll be ignored when it triggers. */
852
8358c15c 853 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
854 {
855 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
856 tp->control.step_resume_breakpoint->loc->enabled = 1;
857 }
6604731b 858
a1aa2221 859 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 860 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
861 {
862 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
863 tp->control.exception_resume_breakpoint->loc->enabled = 1;
864 }
186c406b 865
6604731b
DJ
866 /* Reinsert all breakpoints in the child. The user may have set
867 breakpoints after catching the fork, in which case those
868 were never set in the child, but only in the parent. This makes
869 sure the inserted breakpoints match the breakpoint list. */
870
871 breakpoint_re_set ();
872 insert_breakpoints ();
c906108c 873}
c906108c 874
6c95b8df
PA
875/* The child has exited or execed: resume threads of the parent the
876 user wanted to be executing. */
877
878static int
879proceed_after_vfork_done (struct thread_info *thread,
880 void *arg)
881{
882 int pid = * (int *) arg;
883
884 if (ptid_get_pid (thread->ptid) == pid
885 && is_running (thread->ptid)
886 && !is_executing (thread->ptid)
887 && !thread->stop_requested
a493e3e2 888 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
889 {
890 if (debug_infrun)
891 fprintf_unfiltered (gdb_stdlog,
892 "infrun: resuming vfork parent thread %s\n",
893 target_pid_to_str (thread->ptid));
894
895 switch_to_thread (thread->ptid);
70509625 896 clear_proceed_status (0);
64ce06e4 897 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
898 }
899
900 return 0;
901}
902
903/* Called whenever we notice an exec or exit event, to handle
904 detaching or resuming a vfork parent. */
905
906static void
907handle_vfork_child_exec_or_exit (int exec)
908{
909 struct inferior *inf = current_inferior ();
910
911 if (inf->vfork_parent)
912 {
913 int resume_parent = -1;
914
915 /* This exec or exit marks the end of the shared memory region
916 between the parent and the child. If the user wanted to
917 detach from the parent, now is the time. */
918
919 if (inf->vfork_parent->pending_detach)
920 {
921 struct thread_info *tp;
922 struct cleanup *old_chain;
923 struct program_space *pspace;
924 struct address_space *aspace;
925
1777feb0 926 /* follow-fork child, detach-on-fork on. */
6c95b8df 927
68c9da30
PA
928 inf->vfork_parent->pending_detach = 0;
929
f50f4e56
PA
930 if (!exec)
931 {
932 /* If we're handling a child exit, then inferior_ptid
933 points at the inferior's pid, not to a thread. */
934 old_chain = save_inferior_ptid ();
935 save_current_program_space ();
936 save_current_inferior ();
937 }
938 else
939 old_chain = save_current_space_and_thread ();
6c95b8df
PA
940
941 /* We're letting loose of the parent. */
942 tp = any_live_thread_of_process (inf->vfork_parent->pid);
943 switch_to_thread (tp->ptid);
944
945 /* We're about to detach from the parent, which implicitly
946 removes breakpoints from its address space. There's a
947 catch here: we want to reuse the spaces for the child,
948 but, parent/child are still sharing the pspace at this
949 point, although the exec in reality makes the kernel give
950 the child a fresh set of new pages. The problem here is
951 that the breakpoints module being unaware of this, would
952 likely chose the child process to write to the parent
953 address space. Swapping the child temporarily away from
954 the spaces has the desired effect. Yes, this is "sort
955 of" a hack. */
956
957 pspace = inf->pspace;
958 aspace = inf->aspace;
959 inf->aspace = NULL;
960 inf->pspace = NULL;
961
962 if (debug_infrun || info_verbose)
963 {
6f259a23 964 target_terminal_ours_for_output ();
6c95b8df
PA
965
966 if (exec)
6f259a23
DB
967 {
968 fprintf_filtered (gdb_stdlog,
969 _("Detaching vfork parent process "
970 "%d after child exec.\n"),
971 inf->vfork_parent->pid);
972 }
6c95b8df 973 else
6f259a23
DB
974 {
975 fprintf_filtered (gdb_stdlog,
976 _("Detaching vfork parent process "
977 "%d after child exit.\n"),
978 inf->vfork_parent->pid);
979 }
6c95b8df
PA
980 }
981
982 target_detach (NULL, 0);
983
984 /* Put it back. */
985 inf->pspace = pspace;
986 inf->aspace = aspace;
987
988 do_cleanups (old_chain);
989 }
990 else if (exec)
991 {
992 /* We're staying attached to the parent, so, really give the
993 child a new address space. */
994 inf->pspace = add_program_space (maybe_new_address_space ());
995 inf->aspace = inf->pspace->aspace;
996 inf->removable = 1;
997 set_current_program_space (inf->pspace);
998
999 resume_parent = inf->vfork_parent->pid;
1000
1001 /* Break the bonds. */
1002 inf->vfork_parent->vfork_child = NULL;
1003 }
1004 else
1005 {
1006 struct cleanup *old_chain;
1007 struct program_space *pspace;
1008
1009 /* If this is a vfork child exiting, then the pspace and
1010 aspaces were shared with the parent. Since we're
1011 reporting the process exit, we'll be mourning all that is
1012 found in the address space, and switching to null_ptid,
1013 preparing to start a new inferior. But, since we don't
1014 want to clobber the parent's address/program spaces, we
1015 go ahead and create a new one for this exiting
1016 inferior. */
1017
1018 /* Switch to null_ptid, so that clone_program_space doesn't want
1019 to read the selected frame of a dead process. */
1020 old_chain = save_inferior_ptid ();
1021 inferior_ptid = null_ptid;
1022
1023 /* This inferior is dead, so avoid giving the breakpoints
1024 module the option to write through to it (cloning a
1025 program space resets breakpoints). */
1026 inf->aspace = NULL;
1027 inf->pspace = NULL;
1028 pspace = add_program_space (maybe_new_address_space ());
1029 set_current_program_space (pspace);
1030 inf->removable = 1;
7dcd53a0 1031 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1032 clone_program_space (pspace, inf->vfork_parent->pspace);
1033 inf->pspace = pspace;
1034 inf->aspace = pspace->aspace;
1035
1036 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 1037 inferior. */
6c95b8df
PA
1038 do_cleanups (old_chain);
1039
1040 resume_parent = inf->vfork_parent->pid;
1041 /* Break the bonds. */
1042 inf->vfork_parent->vfork_child = NULL;
1043 }
1044
1045 inf->vfork_parent = NULL;
1046
1047 gdb_assert (current_program_space == inf->pspace);
1048
1049 if (non_stop && resume_parent != -1)
1050 {
1051 /* If the user wanted the parent to be running, let it go
1052 free now. */
1053 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1054
1055 if (debug_infrun)
3e43a32a
MS
1056 fprintf_unfiltered (gdb_stdlog,
1057 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1058 resume_parent);
1059
1060 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1061
1062 do_cleanups (old_chain);
1063 }
1064 }
1065}
1066
eb6c553b 1067/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1068
1069static const char follow_exec_mode_new[] = "new";
1070static const char follow_exec_mode_same[] = "same";
40478521 1071static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1072{
1073 follow_exec_mode_new,
1074 follow_exec_mode_same,
1075 NULL,
1076};
1077
1078static const char *follow_exec_mode_string = follow_exec_mode_same;
1079static void
1080show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1081 struct cmd_list_element *c, const char *value)
1082{
1083 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1084}
1085
1777feb0 1086/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 1087
c906108c 1088static void
95e50b27 1089follow_exec (ptid_t ptid, char *execd_pathname)
c906108c 1090{
95e50b27 1091 struct thread_info *th, *tmp;
6c95b8df 1092 struct inferior *inf = current_inferior ();
95e50b27 1093 int pid = ptid_get_pid (ptid);
94585166 1094 ptid_t process_ptid;
7a292a7a 1095
c906108c
SS
1096 /* This is an exec event that we actually wish to pay attention to.
1097 Refresh our symbol table to the newly exec'd program, remove any
1098 momentary bp's, etc.
1099
1100 If there are breakpoints, they aren't really inserted now,
1101 since the exec() transformed our inferior into a fresh set
1102 of instructions.
1103
1104 We want to preserve symbolic breakpoints on the list, since
1105 we have hopes that they can be reset after the new a.out's
1106 symbol table is read.
1107
1108 However, any "raw" breakpoints must be removed from the list
1109 (e.g., the solib bp's), since their address is probably invalid
1110 now.
1111
1112 And, we DON'T want to call delete_breakpoints() here, since
1113 that may write the bp's "shadow contents" (the instruction
1114 value that was overwritten witha TRAP instruction). Since
1777feb0 1115 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1116
1117 mark_breakpoints_out ();
1118
95e50b27
PA
1119 /* The target reports the exec event to the main thread, even if
1120 some other thread does the exec, and even if the main thread was
1121 stopped or already gone. We may still have non-leader threads of
1122 the process on our list. E.g., on targets that don't have thread
1123 exit events (like remote); or on native Linux in non-stop mode if
1124 there were only two threads in the inferior and the non-leader
1125 one is the one that execs (and nothing forces an update of the
1126 thread list up to here). When debugging remotely, it's best to
1127 avoid extra traffic, when possible, so avoid syncing the thread
1128 list with the target, and instead go ahead and delete all threads
1129 of the process but one that reported the event. Note this must
1130 be done before calling update_breakpoints_after_exec, as
1131 otherwise clearing the threads' resources would reference stale
1132 thread breakpoints -- it may have been one of these threads that
1133 stepped across the exec. We could just clear their stepping
1134 states, but as long as we're iterating, might as well delete
1135 them. Deleting them now rather than at the next user-visible
1136 stop provides a nicer sequence of events for user and MI
1137 notifications. */
8a06aea7 1138 ALL_THREADS_SAFE (th, tmp)
95e50b27
PA
1139 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1140 delete_thread (th->ptid);
1141
1142 /* We also need to clear any left over stale state for the
1143 leader/event thread. E.g., if there was any step-resume
1144 breakpoint or similar, it's gone now. We cannot truly
1145 step-to-next statement through an exec(). */
1146 th = inferior_thread ();
8358c15c 1147 th->control.step_resume_breakpoint = NULL;
186c406b 1148 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1149 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1150 th->control.step_range_start = 0;
1151 th->control.step_range_end = 0;
c906108c 1152
95e50b27
PA
1153 /* The user may have had the main thread held stopped in the
1154 previous image (e.g., schedlock on, or non-stop). Release
1155 it now. */
a75724bc
PA
1156 th->stop_requested = 0;
1157
95e50b27
PA
1158 update_breakpoints_after_exec ();
1159
1777feb0 1160 /* What is this a.out's name? */
94585166 1161 process_ptid = pid_to_ptid (pid);
6c95b8df 1162 printf_unfiltered (_("%s is executing new program: %s\n"),
94585166 1163 target_pid_to_str (process_ptid),
6c95b8df 1164 execd_pathname);
c906108c
SS
1165
1166 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1167 inferior has essentially been killed & reborn. */
7a292a7a 1168
c906108c 1169 gdb_flush (gdb_stdout);
6ca15a4b
PA
1170
1171 breakpoint_init_inferior (inf_execd);
e85a822c 1172
a3be80c3 1173 if (*gdb_sysroot != '\0')
e85a822c 1174 {
998d2a3e 1175 char *name = exec_file_find (execd_pathname, NULL);
ff862be4 1176
224c3ddb 1177 execd_pathname = (char *) alloca (strlen (name) + 1);
ff862be4
GB
1178 strcpy (execd_pathname, name);
1179 xfree (name);
e85a822c 1180 }
c906108c 1181
cce9b6bf
PA
1182 /* Reset the shared library package. This ensures that we get a
1183 shlib event when the child reaches "_start", at which point the
1184 dld will have had a chance to initialize the child. */
1185 /* Also, loading a symbol file below may trigger symbol lookups, and
1186 we don't want those to be satisfied by the libraries of the
1187 previous incarnation of this process. */
1188 no_shared_libraries (NULL, 0);
1189
6c95b8df
PA
1190 if (follow_exec_mode_string == follow_exec_mode_new)
1191 {
6c95b8df
PA
1192 /* The user wants to keep the old inferior and program spaces
1193 around. Create a new fresh one, and switch to it. */
1194
17d8546e
DB
1195 /* Do exit processing for the original inferior before adding
1196 the new inferior so we don't have two active inferiors with
1197 the same ptid, which can confuse find_inferior_ptid. */
1198 exit_inferior_num_silent (current_inferior ()->num);
1199
94585166
DB
1200 inf = add_inferior_with_spaces ();
1201 inf->pid = pid;
1202 target_follow_exec (inf, execd_pathname);
6c95b8df
PA
1203
1204 set_current_inferior (inf);
94585166
DB
1205 set_current_program_space (inf->pspace);
1206 add_thread (ptid);
6c95b8df 1207 }
9107fc8d
PA
1208 else
1209 {
1210 /* The old description may no longer be fit for the new image.
1211 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1212 old description; we'll read a new one below. No need to do
1213 this on "follow-exec-mode new", as the old inferior stays
1214 around (its description is later cleared/refetched on
1215 restart). */
1216 target_clear_description ();
1217 }
6c95b8df
PA
1218
1219 gdb_assert (current_program_space == inf->pspace);
1220
1777feb0 1221 /* That a.out is now the one to use. */
6c95b8df
PA
1222 exec_file_attach (execd_pathname, 0);
1223
c1e56572
JK
1224 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1225 (Position Independent Executable) main symbol file will get applied by
1226 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1227 the breakpoints with the zero displacement. */
1228
7dcd53a0
TT
1229 symbol_file_add (execd_pathname,
1230 (inf->symfile_flags
1231 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
1232 NULL, 0);
1233
7dcd53a0
TT
1234 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1235 set_initial_language ();
c906108c 1236
9107fc8d
PA
1237 /* If the target can specify a description, read it. Must do this
1238 after flipping to the new executable (because the target supplied
1239 description must be compatible with the executable's
1240 architecture, and the old executable may e.g., be 32-bit, while
1241 the new one 64-bit), and before anything involving memory or
1242 registers. */
1243 target_find_description ();
1244
268a4a75 1245 solib_create_inferior_hook (0);
c906108c 1246
4efc6507
DE
1247 jit_inferior_created_hook ();
1248
c1e56572
JK
1249 breakpoint_re_set ();
1250
c906108c
SS
1251 /* Reinsert all breakpoints. (Those which were symbolic have
1252 been reset to the proper address in the new a.out, thanks
1777feb0 1253 to symbol_file_command...). */
c906108c
SS
1254 insert_breakpoints ();
1255
1256 /* The next resume of this inferior should bring it to the shlib
1257 startup breakpoints. (If the user had also set bp's on
1258 "main" from the old (parent) process, then they'll auto-
1777feb0 1259 matically get reset there in the new process.). */
c906108c
SS
1260}
1261
c2829269
PA
1262/* The queue of threads that need to do a step-over operation to get
1263 past e.g., a breakpoint. What technique is used to step over the
1264 breakpoint/watchpoint does not matter -- all threads end up in the
1265 same queue, to maintain rough temporal order of execution, in order
1266 to avoid starvation, otherwise, we could e.g., find ourselves
1267 constantly stepping the same couple threads past their breakpoints
1268 over and over, if the single-step finish fast enough. */
1269struct thread_info *step_over_queue_head;
1270
6c4cfb24
PA
1271/* Bit flags indicating what the thread needs to step over. */
1272
8d297bbf 1273enum step_over_what_flag
6c4cfb24
PA
1274 {
1275 /* Step over a breakpoint. */
1276 STEP_OVER_BREAKPOINT = 1,
1277
1278 /* Step past a non-continuable watchpoint, in order to let the
1279 instruction execute so we can evaluate the watchpoint
1280 expression. */
1281 STEP_OVER_WATCHPOINT = 2
1282 };
8d297bbf 1283DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1284
963f9c80 1285/* Info about an instruction that is being stepped over. */
31e77af2
PA
1286
1287struct step_over_info
1288{
963f9c80
PA
1289 /* If we're stepping past a breakpoint, this is the address space
1290 and address of the instruction the breakpoint is set at. We'll
1291 skip inserting all breakpoints here. Valid iff ASPACE is
1292 non-NULL. */
31e77af2 1293 struct address_space *aspace;
31e77af2 1294 CORE_ADDR address;
963f9c80
PA
1295
1296 /* The instruction being stepped over triggers a nonsteppable
1297 watchpoint. If true, we'll skip inserting watchpoints. */
1298 int nonsteppable_watchpoint_p;
31e77af2
PA
1299};
1300
1301/* The step-over info of the location that is being stepped over.
1302
1303 Note that with async/breakpoint always-inserted mode, a user might
1304 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1305 being stepped over. As setting a new breakpoint inserts all
1306 breakpoints, we need to make sure the breakpoint being stepped over
1307 isn't inserted then. We do that by only clearing the step-over
1308 info when the step-over is actually finished (or aborted).
1309
1310 Presently GDB can only step over one breakpoint at any given time.
1311 Given threads that can't run code in the same address space as the
1312 breakpoint's can't really miss the breakpoint, GDB could be taught
1313 to step-over at most one breakpoint per address space (so this info
1314 could move to the address space object if/when GDB is extended).
1315 The set of breakpoints being stepped over will normally be much
1316 smaller than the set of all breakpoints, so a flag in the
1317 breakpoint location structure would be wasteful. A separate list
1318 also saves complexity and run-time, as otherwise we'd have to go
1319 through all breakpoint locations clearing their flag whenever we
1320 start a new sequence. Similar considerations weigh against storing
1321 this info in the thread object. Plus, not all step overs actually
1322 have breakpoint locations -- e.g., stepping past a single-step
1323 breakpoint, or stepping to complete a non-continuable
1324 watchpoint. */
1325static struct step_over_info step_over_info;
1326
1327/* Record the address of the breakpoint/instruction we're currently
1328 stepping over. */
1329
1330static void
963f9c80
PA
1331set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1332 int nonsteppable_watchpoint_p)
31e77af2
PA
1333{
1334 step_over_info.aspace = aspace;
1335 step_over_info.address = address;
963f9c80 1336 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
31e77af2
PA
1337}
1338
1339/* Called when we're not longer stepping over a breakpoint / an
1340 instruction, so all breakpoints are free to be (re)inserted. */
1341
1342static void
1343clear_step_over_info (void)
1344{
372316f1
PA
1345 if (debug_infrun)
1346 fprintf_unfiltered (gdb_stdlog,
1347 "infrun: clear_step_over_info\n");
31e77af2
PA
1348 step_over_info.aspace = NULL;
1349 step_over_info.address = 0;
963f9c80 1350 step_over_info.nonsteppable_watchpoint_p = 0;
31e77af2
PA
1351}
1352
7f89fd65 1353/* See infrun.h. */
31e77af2
PA
1354
1355int
1356stepping_past_instruction_at (struct address_space *aspace,
1357 CORE_ADDR address)
1358{
1359 return (step_over_info.aspace != NULL
1360 && breakpoint_address_match (aspace, address,
1361 step_over_info.aspace,
1362 step_over_info.address));
1363}
1364
963f9c80
PA
1365/* See infrun.h. */
1366
1367int
1368stepping_past_nonsteppable_watchpoint (void)
1369{
1370 return step_over_info.nonsteppable_watchpoint_p;
1371}
1372
6cc83d2a
PA
1373/* Returns true if step-over info is valid. */
1374
1375static int
1376step_over_info_valid_p (void)
1377{
963f9c80
PA
1378 return (step_over_info.aspace != NULL
1379 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1380}
1381
c906108c 1382\f
237fc4c9
PA
1383/* Displaced stepping. */
1384
1385/* In non-stop debugging mode, we must take special care to manage
1386 breakpoints properly; in particular, the traditional strategy for
1387 stepping a thread past a breakpoint it has hit is unsuitable.
1388 'Displaced stepping' is a tactic for stepping one thread past a
1389 breakpoint it has hit while ensuring that other threads running
1390 concurrently will hit the breakpoint as they should.
1391
1392 The traditional way to step a thread T off a breakpoint in a
1393 multi-threaded program in all-stop mode is as follows:
1394
1395 a0) Initially, all threads are stopped, and breakpoints are not
1396 inserted.
1397 a1) We single-step T, leaving breakpoints uninserted.
1398 a2) We insert breakpoints, and resume all threads.
1399
1400 In non-stop debugging, however, this strategy is unsuitable: we
1401 don't want to have to stop all threads in the system in order to
1402 continue or step T past a breakpoint. Instead, we use displaced
1403 stepping:
1404
1405 n0) Initially, T is stopped, other threads are running, and
1406 breakpoints are inserted.
1407 n1) We copy the instruction "under" the breakpoint to a separate
1408 location, outside the main code stream, making any adjustments
1409 to the instruction, register, and memory state as directed by
1410 T's architecture.
1411 n2) We single-step T over the instruction at its new location.
1412 n3) We adjust the resulting register and memory state as directed
1413 by T's architecture. This includes resetting T's PC to point
1414 back into the main instruction stream.
1415 n4) We resume T.
1416
1417 This approach depends on the following gdbarch methods:
1418
1419 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1420 indicate where to copy the instruction, and how much space must
1421 be reserved there. We use these in step n1.
1422
1423 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1424 address, and makes any necessary adjustments to the instruction,
1425 register contents, and memory. We use this in step n1.
1426
1427 - gdbarch_displaced_step_fixup adjusts registers and memory after
1428 we have successfuly single-stepped the instruction, to yield the
1429 same effect the instruction would have had if we had executed it
1430 at its original address. We use this in step n3.
1431
1432 - gdbarch_displaced_step_free_closure provides cleanup.
1433
1434 The gdbarch_displaced_step_copy_insn and
1435 gdbarch_displaced_step_fixup functions must be written so that
1436 copying an instruction with gdbarch_displaced_step_copy_insn,
1437 single-stepping across the copied instruction, and then applying
1438 gdbarch_displaced_insn_fixup should have the same effects on the
1439 thread's memory and registers as stepping the instruction in place
1440 would have. Exactly which responsibilities fall to the copy and
1441 which fall to the fixup is up to the author of those functions.
1442
1443 See the comments in gdbarch.sh for details.
1444
1445 Note that displaced stepping and software single-step cannot
1446 currently be used in combination, although with some care I think
1447 they could be made to. Software single-step works by placing
1448 breakpoints on all possible subsequent instructions; if the
1449 displaced instruction is a PC-relative jump, those breakpoints
1450 could fall in very strange places --- on pages that aren't
1451 executable, or at addresses that are not proper instruction
1452 boundaries. (We do generally let other threads run while we wait
1453 to hit the software single-step breakpoint, and they might
1454 encounter such a corrupted instruction.) One way to work around
1455 this would be to have gdbarch_displaced_step_copy_insn fully
1456 simulate the effect of PC-relative instructions (and return NULL)
1457 on architectures that use software single-stepping.
1458
1459 In non-stop mode, we can have independent and simultaneous step
1460 requests, so more than one thread may need to simultaneously step
1461 over a breakpoint. The current implementation assumes there is
1462 only one scratch space per process. In this case, we have to
1463 serialize access to the scratch space. If thread A wants to step
1464 over a breakpoint, but we are currently waiting for some other
1465 thread to complete a displaced step, we leave thread A stopped and
1466 place it in the displaced_step_request_queue. Whenever a displaced
1467 step finishes, we pick the next thread in the queue and start a new
1468 displaced step operation on it. See displaced_step_prepare and
1469 displaced_step_fixup for details. */
1470
fc1cf338
PA
1471/* Per-inferior displaced stepping state. */
1472struct displaced_step_inferior_state
1473{
1474 /* Pointer to next in linked list. */
1475 struct displaced_step_inferior_state *next;
1476
1477 /* The process this displaced step state refers to. */
1478 int pid;
1479
3fc8eb30
PA
1480 /* True if preparing a displaced step ever failed. If so, we won't
1481 try displaced stepping for this inferior again. */
1482 int failed_before;
1483
fc1cf338
PA
1484 /* If this is not null_ptid, this is the thread carrying out a
1485 displaced single-step in process PID. This thread's state will
1486 require fixing up once it has completed its step. */
1487 ptid_t step_ptid;
1488
1489 /* The architecture the thread had when we stepped it. */
1490 struct gdbarch *step_gdbarch;
1491
1492 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1493 for post-step cleanup. */
1494 struct displaced_step_closure *step_closure;
1495
1496 /* The address of the original instruction, and the copy we
1497 made. */
1498 CORE_ADDR step_original, step_copy;
1499
1500 /* Saved contents of copy area. */
1501 gdb_byte *step_saved_copy;
1502};
1503
1504/* The list of states of processes involved in displaced stepping
1505 presently. */
1506static struct displaced_step_inferior_state *displaced_step_inferior_states;
1507
1508/* Get the displaced stepping state of process PID. */
1509
1510static struct displaced_step_inferior_state *
1511get_displaced_stepping_state (int pid)
1512{
1513 struct displaced_step_inferior_state *state;
1514
1515 for (state = displaced_step_inferior_states;
1516 state != NULL;
1517 state = state->next)
1518 if (state->pid == pid)
1519 return state;
1520
1521 return NULL;
1522}
1523
372316f1
PA
1524/* Returns true if any inferior has a thread doing a displaced
1525 step. */
1526
1527static int
1528displaced_step_in_progress_any_inferior (void)
1529{
1530 struct displaced_step_inferior_state *state;
1531
1532 for (state = displaced_step_inferior_states;
1533 state != NULL;
1534 state = state->next)
1535 if (!ptid_equal (state->step_ptid, null_ptid))
1536 return 1;
1537
1538 return 0;
1539}
1540
c0987663
YQ
1541/* Return true if thread represented by PTID is doing a displaced
1542 step. */
1543
1544static int
1545displaced_step_in_progress_thread (ptid_t ptid)
1546{
1547 struct displaced_step_inferior_state *displaced;
1548
1549 gdb_assert (!ptid_equal (ptid, null_ptid));
1550
1551 displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1552
1553 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1554}
1555
8f572e5c
PA
1556/* Return true if process PID has a thread doing a displaced step. */
1557
1558static int
1559displaced_step_in_progress (int pid)
1560{
1561 struct displaced_step_inferior_state *displaced;
1562
1563 displaced = get_displaced_stepping_state (pid);
1564 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1565 return 1;
1566
1567 return 0;
1568}
1569
fc1cf338
PA
1570/* Add a new displaced stepping state for process PID to the displaced
1571 stepping state list, or return a pointer to an already existing
1572 entry, if it already exists. Never returns NULL. */
1573
1574static struct displaced_step_inferior_state *
1575add_displaced_stepping_state (int pid)
1576{
1577 struct displaced_step_inferior_state *state;
1578
1579 for (state = displaced_step_inferior_states;
1580 state != NULL;
1581 state = state->next)
1582 if (state->pid == pid)
1583 return state;
237fc4c9 1584
8d749320 1585 state = XCNEW (struct displaced_step_inferior_state);
fc1cf338
PA
1586 state->pid = pid;
1587 state->next = displaced_step_inferior_states;
1588 displaced_step_inferior_states = state;
237fc4c9 1589
fc1cf338
PA
1590 return state;
1591}
1592
a42244db
YQ
1593/* If inferior is in displaced stepping, and ADDR equals to starting address
1594 of copy area, return corresponding displaced_step_closure. Otherwise,
1595 return NULL. */
1596
1597struct displaced_step_closure*
1598get_displaced_step_closure_by_addr (CORE_ADDR addr)
1599{
1600 struct displaced_step_inferior_state *displaced
1601 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1602
1603 /* If checking the mode of displaced instruction in copy area. */
1604 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1605 && (displaced->step_copy == addr))
1606 return displaced->step_closure;
1607
1608 return NULL;
1609}
1610
fc1cf338 1611/* Remove the displaced stepping state of process PID. */
237fc4c9 1612
fc1cf338
PA
1613static void
1614remove_displaced_stepping_state (int pid)
1615{
1616 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1617
fc1cf338
PA
1618 gdb_assert (pid != 0);
1619
1620 it = displaced_step_inferior_states;
1621 prev_next_p = &displaced_step_inferior_states;
1622 while (it)
1623 {
1624 if (it->pid == pid)
1625 {
1626 *prev_next_p = it->next;
1627 xfree (it);
1628 return;
1629 }
1630
1631 prev_next_p = &it->next;
1632 it = *prev_next_p;
1633 }
1634}
1635
1636static void
1637infrun_inferior_exit (struct inferior *inf)
1638{
1639 remove_displaced_stepping_state (inf->pid);
1640}
237fc4c9 1641
fff08868
HZ
1642/* If ON, and the architecture supports it, GDB will use displaced
1643 stepping to step over breakpoints. If OFF, or if the architecture
1644 doesn't support it, GDB will instead use the traditional
1645 hold-and-step approach. If AUTO (which is the default), GDB will
1646 decide which technique to use to step over breakpoints depending on
1647 which of all-stop or non-stop mode is active --- displaced stepping
1648 in non-stop mode; hold-and-step in all-stop mode. */
1649
72d0e2c5 1650static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1651
237fc4c9
PA
1652static void
1653show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1654 struct cmd_list_element *c,
1655 const char *value)
1656{
72d0e2c5 1657 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1658 fprintf_filtered (file,
1659 _("Debugger's willingness to use displaced stepping "
1660 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1661 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1662 else
3e43a32a
MS
1663 fprintf_filtered (file,
1664 _("Debugger's willingness to use displaced stepping "
1665 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1666}
1667
fff08868 1668/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1669 over breakpoints of thread TP. */
fff08868 1670
237fc4c9 1671static int
3fc8eb30 1672use_displaced_stepping (struct thread_info *tp)
237fc4c9 1673{
3fc8eb30
PA
1674 struct regcache *regcache = get_thread_regcache (tp->ptid);
1675 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1676 struct displaced_step_inferior_state *displaced_state;
1677
1678 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1679
fbea99ea
PA
1680 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1681 && target_is_non_stop_p ())
72d0e2c5 1682 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1683 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30
PA
1684 && find_record_target () == NULL
1685 && (displaced_state == NULL
1686 || !displaced_state->failed_before));
237fc4c9
PA
1687}
1688
1689/* Clean out any stray displaced stepping state. */
1690static void
fc1cf338 1691displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1692{
1693 /* Indicate that there is no cleanup pending. */
fc1cf338 1694 displaced->step_ptid = null_ptid;
237fc4c9 1695
fc1cf338 1696 if (displaced->step_closure)
237fc4c9 1697 {
fc1cf338
PA
1698 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1699 displaced->step_closure);
1700 displaced->step_closure = NULL;
237fc4c9
PA
1701 }
1702}
1703
1704static void
fc1cf338 1705displaced_step_clear_cleanup (void *arg)
237fc4c9 1706{
9a3c8263
SM
1707 struct displaced_step_inferior_state *state
1708 = (struct displaced_step_inferior_state *) arg;
fc1cf338
PA
1709
1710 displaced_step_clear (state);
237fc4c9
PA
1711}
1712
1713/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1714void
1715displaced_step_dump_bytes (struct ui_file *file,
1716 const gdb_byte *buf,
1717 size_t len)
1718{
1719 int i;
1720
1721 for (i = 0; i < len; i++)
1722 fprintf_unfiltered (file, "%02x ", buf[i]);
1723 fputs_unfiltered ("\n", file);
1724}
1725
1726/* Prepare to single-step, using displaced stepping.
1727
1728 Note that we cannot use displaced stepping when we have a signal to
1729 deliver. If we have a signal to deliver and an instruction to step
1730 over, then after the step, there will be no indication from the
1731 target whether the thread entered a signal handler or ignored the
1732 signal and stepped over the instruction successfully --- both cases
1733 result in a simple SIGTRAP. In the first case we mustn't do a
1734 fixup, and in the second case we must --- but we can't tell which.
1735 Comments in the code for 'random signals' in handle_inferior_event
1736 explain how we handle this case instead.
1737
1738 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1739 stepped now; 0 if displaced stepping this thread got queued; or -1
1740 if this instruction can't be displaced stepped. */
1741
237fc4c9 1742static int
3fc8eb30 1743displaced_step_prepare_throw (ptid_t ptid)
237fc4c9 1744{
ad53cd71 1745 struct cleanup *old_cleanups, *ignore_cleanups;
c1e36e3e 1746 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1747 struct regcache *regcache = get_thread_regcache (ptid);
1748 struct gdbarch *gdbarch = get_regcache_arch (regcache);
d35ae833 1749 struct address_space *aspace = get_regcache_aspace (regcache);
237fc4c9
PA
1750 CORE_ADDR original, copy;
1751 ULONGEST len;
1752 struct displaced_step_closure *closure;
fc1cf338 1753 struct displaced_step_inferior_state *displaced;
9e529e1d 1754 int status;
237fc4c9
PA
1755
1756 /* We should never reach this function if the architecture does not
1757 support displaced stepping. */
1758 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1759
c2829269
PA
1760 /* Nor if the thread isn't meant to step over a breakpoint. */
1761 gdb_assert (tp->control.trap_expected);
1762
c1e36e3e
PA
1763 /* Disable range stepping while executing in the scratch pad. We
1764 want a single-step even if executing the displaced instruction in
1765 the scratch buffer lands within the stepping range (e.g., a
1766 jump/branch). */
1767 tp->control.may_range_step = 0;
1768
fc1cf338
PA
1769 /* We have to displaced step one thread at a time, as we only have
1770 access to a single scratch space per inferior. */
237fc4c9 1771
fc1cf338
PA
1772 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1773
1774 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1775 {
1776 /* Already waiting for a displaced step to finish. Defer this
1777 request and place in queue. */
237fc4c9
PA
1778
1779 if (debug_displaced)
1780 fprintf_unfiltered (gdb_stdlog,
c2829269 1781 "displaced: deferring step of %s\n",
237fc4c9
PA
1782 target_pid_to_str (ptid));
1783
c2829269 1784 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1785 return 0;
1786 }
1787 else
1788 {
1789 if (debug_displaced)
1790 fprintf_unfiltered (gdb_stdlog,
1791 "displaced: stepping %s now\n",
1792 target_pid_to_str (ptid));
1793 }
1794
fc1cf338 1795 displaced_step_clear (displaced);
237fc4c9 1796
ad53cd71
PA
1797 old_cleanups = save_inferior_ptid ();
1798 inferior_ptid = ptid;
1799
515630c5 1800 original = regcache_read_pc (regcache);
237fc4c9
PA
1801
1802 copy = gdbarch_displaced_step_location (gdbarch);
1803 len = gdbarch_max_insn_length (gdbarch);
1804
d35ae833
PA
1805 if (breakpoint_in_range_p (aspace, copy, len))
1806 {
1807 /* There's a breakpoint set in the scratch pad location range
1808 (which is usually around the entry point). We'd either
1809 install it before resuming, which would overwrite/corrupt the
1810 scratch pad, or if it was already inserted, this displaced
1811 step would overwrite it. The latter is OK in the sense that
1812 we already assume that no thread is going to execute the code
1813 in the scratch pad range (after initial startup) anyway, but
1814 the former is unacceptable. Simply punt and fallback to
1815 stepping over this breakpoint in-line. */
1816 if (debug_displaced)
1817 {
1818 fprintf_unfiltered (gdb_stdlog,
1819 "displaced: breakpoint set in scratch pad. "
1820 "Stepping over breakpoint in-line instead.\n");
1821 }
1822
1823 do_cleanups (old_cleanups);
1824 return -1;
1825 }
1826
237fc4c9 1827 /* Save the original contents of the copy area. */
224c3ddb 1828 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
ad53cd71 1829 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1830 &displaced->step_saved_copy);
9e529e1d
JK
1831 status = target_read_memory (copy, displaced->step_saved_copy, len);
1832 if (status != 0)
1833 throw_error (MEMORY_ERROR,
1834 _("Error accessing memory address %s (%s) for "
1835 "displaced-stepping scratch space."),
1836 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1837 if (debug_displaced)
1838 {
5af949e3
UW
1839 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1840 paddress (gdbarch, copy));
fc1cf338
PA
1841 displaced_step_dump_bytes (gdb_stdlog,
1842 displaced->step_saved_copy,
1843 len);
237fc4c9
PA
1844 };
1845
1846 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1847 original, copy, regcache);
7f03bd92
PA
1848 if (closure == NULL)
1849 {
1850 /* The architecture doesn't know how or want to displaced step
1851 this instruction or instruction sequence. Fallback to
1852 stepping over the breakpoint in-line. */
1853 do_cleanups (old_cleanups);
1854 return -1;
1855 }
237fc4c9 1856
9f5a595d
UW
1857 /* Save the information we need to fix things up if the step
1858 succeeds. */
fc1cf338
PA
1859 displaced->step_ptid = ptid;
1860 displaced->step_gdbarch = gdbarch;
1861 displaced->step_closure = closure;
1862 displaced->step_original = original;
1863 displaced->step_copy = copy;
9f5a595d 1864
fc1cf338 1865 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1866
1867 /* Resume execution at the copy. */
515630c5 1868 regcache_write_pc (regcache, copy);
237fc4c9 1869
ad53cd71
PA
1870 discard_cleanups (ignore_cleanups);
1871
1872 do_cleanups (old_cleanups);
237fc4c9
PA
1873
1874 if (debug_displaced)
5af949e3
UW
1875 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1876 paddress (gdbarch, copy));
237fc4c9 1877
237fc4c9
PA
1878 return 1;
1879}
1880
3fc8eb30
PA
1881/* Wrapper for displaced_step_prepare_throw that disabled further
1882 attempts at displaced stepping if we get a memory error. */
1883
1884static int
1885displaced_step_prepare (ptid_t ptid)
1886{
1887 int prepared = -1;
1888
1889 TRY
1890 {
1891 prepared = displaced_step_prepare_throw (ptid);
1892 }
1893 CATCH (ex, RETURN_MASK_ERROR)
1894 {
1895 struct displaced_step_inferior_state *displaced_state;
1896
1897 if (ex.error != MEMORY_ERROR)
1898 throw_exception (ex);
1899
1900 if (debug_infrun)
1901 {
1902 fprintf_unfiltered (gdb_stdlog,
1903 "infrun: disabling displaced stepping: %s\n",
1904 ex.message);
1905 }
1906
1907 /* Be verbose if "set displaced-stepping" is "on", silent if
1908 "auto". */
1909 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1910 {
fd7dcb94 1911 warning (_("disabling displaced stepping: %s"),
3fc8eb30
PA
1912 ex.message);
1913 }
1914
1915 /* Disable further displaced stepping attempts. */
1916 displaced_state
1917 = get_displaced_stepping_state (ptid_get_pid (ptid));
1918 displaced_state->failed_before = 1;
1919 }
1920 END_CATCH
1921
1922 return prepared;
1923}
1924
237fc4c9 1925static void
3e43a32a
MS
1926write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1927 const gdb_byte *myaddr, int len)
237fc4c9
PA
1928{
1929 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1930
237fc4c9
PA
1931 inferior_ptid = ptid;
1932 write_memory (memaddr, myaddr, len);
1933 do_cleanups (ptid_cleanup);
1934}
1935
e2d96639
YQ
1936/* Restore the contents of the copy area for thread PTID. */
1937
1938static void
1939displaced_step_restore (struct displaced_step_inferior_state *displaced,
1940 ptid_t ptid)
1941{
1942 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1943
1944 write_memory_ptid (ptid, displaced->step_copy,
1945 displaced->step_saved_copy, len);
1946 if (debug_displaced)
1947 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1948 target_pid_to_str (ptid),
1949 paddress (displaced->step_gdbarch,
1950 displaced->step_copy));
1951}
1952
372316f1
PA
1953/* If we displaced stepped an instruction successfully, adjust
1954 registers and memory to yield the same effect the instruction would
1955 have had if we had executed it at its original address, and return
1956 1. If the instruction didn't complete, relocate the PC and return
1957 -1. If the thread wasn't displaced stepping, return 0. */
1958
1959static int
2ea28649 1960displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1961{
1962 struct cleanup *old_cleanups;
fc1cf338
PA
1963 struct displaced_step_inferior_state *displaced
1964 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
372316f1 1965 int ret;
fc1cf338
PA
1966
1967 /* Was any thread of this process doing a displaced step? */
1968 if (displaced == NULL)
372316f1 1969 return 0;
237fc4c9
PA
1970
1971 /* Was this event for the pid we displaced? */
fc1cf338
PA
1972 if (ptid_equal (displaced->step_ptid, null_ptid)
1973 || ! ptid_equal (displaced->step_ptid, event_ptid))
372316f1 1974 return 0;
237fc4c9 1975
fc1cf338 1976 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1977
e2d96639 1978 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9 1979
cb71640d
PA
1980 /* Fixup may need to read memory/registers. Switch to the thread
1981 that we're fixing up. Also, target_stopped_by_watchpoint checks
1982 the current thread. */
1983 switch_to_thread (event_ptid);
1984
237fc4c9 1985 /* Did the instruction complete successfully? */
cb71640d
PA
1986 if (signal == GDB_SIGNAL_TRAP
1987 && !(target_stopped_by_watchpoint ()
1988 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1989 || target_have_steppable_watchpoint)))
237fc4c9
PA
1990 {
1991 /* Fix up the resulting state. */
fc1cf338
PA
1992 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1993 displaced->step_closure,
1994 displaced->step_original,
1995 displaced->step_copy,
1996 get_thread_regcache (displaced->step_ptid));
372316f1 1997 ret = 1;
237fc4c9
PA
1998 }
1999 else
2000 {
2001 /* Since the instruction didn't complete, all we can do is
2002 relocate the PC. */
515630c5
UW
2003 struct regcache *regcache = get_thread_regcache (event_ptid);
2004 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 2005
fc1cf338 2006 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 2007 regcache_write_pc (regcache, pc);
372316f1 2008 ret = -1;
237fc4c9
PA
2009 }
2010
2011 do_cleanups (old_cleanups);
2012
fc1cf338 2013 displaced->step_ptid = null_ptid;
372316f1
PA
2014
2015 return ret;
c2829269 2016}
1c5cfe86 2017
4d9d9d04
PA
2018/* Data to be passed around while handling an event. This data is
2019 discarded between events. */
2020struct execution_control_state
2021{
2022 ptid_t ptid;
2023 /* The thread that got the event, if this was a thread event; NULL
2024 otherwise. */
2025 struct thread_info *event_thread;
2026
2027 struct target_waitstatus ws;
2028 int stop_func_filled_in;
2029 CORE_ADDR stop_func_start;
2030 CORE_ADDR stop_func_end;
2031 const char *stop_func_name;
2032 int wait_some_more;
2033
2034 /* True if the event thread hit the single-step breakpoint of
2035 another thread. Thus the event doesn't cause a stop, the thread
2036 needs to be single-stepped past the single-step breakpoint before
2037 we can switch back to the original stepping thread. */
2038 int hit_singlestep_breakpoint;
2039};
2040
2041/* Clear ECS and set it to point at TP. */
c2829269
PA
2042
2043static void
4d9d9d04
PA
2044reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2045{
2046 memset (ecs, 0, sizeof (*ecs));
2047 ecs->event_thread = tp;
2048 ecs->ptid = tp->ptid;
2049}
2050
2051static void keep_going_pass_signal (struct execution_control_state *ecs);
2052static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 2053static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 2054static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
2055
2056/* Are there any pending step-over requests? If so, run all we can
2057 now and return true. Otherwise, return false. */
2058
2059static int
c2829269
PA
2060start_step_over (void)
2061{
2062 struct thread_info *tp, *next;
2063
372316f1
PA
2064 /* Don't start a new step-over if we already have an in-line
2065 step-over operation ongoing. */
2066 if (step_over_info_valid_p ())
2067 return 0;
2068
c2829269 2069 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 2070 {
4d9d9d04
PA
2071 struct execution_control_state ecss;
2072 struct execution_control_state *ecs = &ecss;
8d297bbf 2073 step_over_what step_what;
372316f1 2074 int must_be_in_line;
c2829269
PA
2075
2076 next = thread_step_over_chain_next (tp);
237fc4c9 2077
c2829269
PA
2078 /* If this inferior already has a displaced step in process,
2079 don't start a new one. */
4d9d9d04 2080 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
c2829269
PA
2081 continue;
2082
372316f1
PA
2083 step_what = thread_still_needs_step_over (tp);
2084 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2085 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 2086 && !use_displaced_stepping (tp)));
372316f1
PA
2087
2088 /* We currently stop all threads of all processes to step-over
2089 in-line. If we need to start a new in-line step-over, let
2090 any pending displaced steps finish first. */
2091 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2092 return 0;
2093
c2829269
PA
2094 thread_step_over_chain_remove (tp);
2095
2096 if (step_over_queue_head == NULL)
2097 {
2098 if (debug_infrun)
2099 fprintf_unfiltered (gdb_stdlog,
2100 "infrun: step-over queue now empty\n");
2101 }
2102
372316f1
PA
2103 if (tp->control.trap_expected
2104 || tp->resumed
2105 || tp->executing)
ad53cd71 2106 {
4d9d9d04
PA
2107 internal_error (__FILE__, __LINE__,
2108 "[%s] has inconsistent state: "
372316f1 2109 "trap_expected=%d, resumed=%d, executing=%d\n",
4d9d9d04
PA
2110 target_pid_to_str (tp->ptid),
2111 tp->control.trap_expected,
372316f1 2112 tp->resumed,
4d9d9d04 2113 tp->executing);
ad53cd71 2114 }
1c5cfe86 2115
4d9d9d04
PA
2116 if (debug_infrun)
2117 fprintf_unfiltered (gdb_stdlog,
2118 "infrun: resuming [%s] for step-over\n",
2119 target_pid_to_str (tp->ptid));
2120
2121 /* keep_going_pass_signal skips the step-over if the breakpoint
2122 is no longer inserted. In all-stop, we want to keep looking
2123 for a thread that needs a step-over instead of resuming TP,
2124 because we wouldn't be able to resume anything else until the
2125 target stops again. In non-stop, the resume always resumes
2126 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2127 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2128 continue;
8550d3b3 2129
4d9d9d04
PA
2130 switch_to_thread (tp->ptid);
2131 reset_ecs (ecs, tp);
2132 keep_going_pass_signal (ecs);
1c5cfe86 2133
4d9d9d04
PA
2134 if (!ecs->wait_some_more)
2135 error (_("Command aborted."));
1c5cfe86 2136
372316f1
PA
2137 gdb_assert (tp->resumed);
2138
2139 /* If we started a new in-line step-over, we're done. */
2140 if (step_over_info_valid_p ())
2141 {
2142 gdb_assert (tp->control.trap_expected);
2143 return 1;
2144 }
2145
fbea99ea 2146 if (!target_is_non_stop_p ())
4d9d9d04
PA
2147 {
2148 /* On all-stop, shouldn't have resumed unless we needed a
2149 step over. */
2150 gdb_assert (tp->control.trap_expected
2151 || tp->step_after_step_resume_breakpoint);
2152
2153 /* With remote targets (at least), in all-stop, we can't
2154 issue any further remote commands until the program stops
2155 again. */
2156 return 1;
1c5cfe86 2157 }
c2829269 2158
4d9d9d04
PA
2159 /* Either the thread no longer needed a step-over, or a new
2160 displaced stepping sequence started. Even in the latter
2161 case, continue looking. Maybe we can also start another
2162 displaced step on a thread of other process. */
237fc4c9 2163 }
4d9d9d04
PA
2164
2165 return 0;
237fc4c9
PA
2166}
2167
5231c1fd
PA
2168/* Update global variables holding ptids to hold NEW_PTID if they were
2169 holding OLD_PTID. */
2170static void
2171infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2172{
2173 struct displaced_step_request *it;
fc1cf338 2174 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
2175
2176 if (ptid_equal (inferior_ptid, old_ptid))
2177 inferior_ptid = new_ptid;
2178
fc1cf338
PA
2179 for (displaced = displaced_step_inferior_states;
2180 displaced;
2181 displaced = displaced->next)
2182 {
2183 if (ptid_equal (displaced->step_ptid, old_ptid))
2184 displaced->step_ptid = new_ptid;
fc1cf338 2185 }
5231c1fd
PA
2186}
2187
237fc4c9
PA
2188\f
2189/* Resuming. */
c906108c
SS
2190
2191/* Things to clean up if we QUIT out of resume (). */
c906108c 2192static void
74b7792f 2193resume_cleanups (void *ignore)
c906108c 2194{
34b7e8a6
PA
2195 if (!ptid_equal (inferior_ptid, null_ptid))
2196 delete_single_step_breakpoints (inferior_thread ());
7c16b83e 2197
c906108c
SS
2198 normal_stop ();
2199}
2200
53904c9e
AC
2201static const char schedlock_off[] = "off";
2202static const char schedlock_on[] = "on";
2203static const char schedlock_step[] = "step";
f2665db5 2204static const char schedlock_replay[] = "replay";
40478521 2205static const char *const scheduler_enums[] = {
ef346e04
AC
2206 schedlock_off,
2207 schedlock_on,
2208 schedlock_step,
f2665db5 2209 schedlock_replay,
ef346e04
AC
2210 NULL
2211};
f2665db5 2212static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2213static void
2214show_scheduler_mode (struct ui_file *file, int from_tty,
2215 struct cmd_list_element *c, const char *value)
2216{
3e43a32a
MS
2217 fprintf_filtered (file,
2218 _("Mode for locking scheduler "
2219 "during execution is \"%s\".\n"),
920d2a44
AC
2220 value);
2221}
c906108c
SS
2222
2223static void
96baa820 2224set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 2225{
eefe576e
AC
2226 if (!target_can_lock_scheduler)
2227 {
2228 scheduler_mode = schedlock_off;
2229 error (_("Target '%s' cannot support this command."), target_shortname);
2230 }
c906108c
SS
2231}
2232
d4db2f36
PA
2233/* True if execution commands resume all threads of all processes by
2234 default; otherwise, resume only threads of the current inferior
2235 process. */
2236int sched_multi = 0;
2237
2facfe5c
DD
2238/* Try to setup for software single stepping over the specified location.
2239 Return 1 if target_resume() should use hardware single step.
2240
2241 GDBARCH the current gdbarch.
2242 PC the location to step over. */
2243
2244static int
2245maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2246{
2247 int hw_step = 1;
2248
f02253f1
HZ
2249 if (execution_direction == EXEC_FORWARD
2250 && gdbarch_software_single_step_p (gdbarch)
99e40580 2251 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 2252 {
99e40580 2253 hw_step = 0;
2facfe5c
DD
2254 }
2255 return hw_step;
2256}
c906108c 2257
f3263aa4
PA
2258/* See infrun.h. */
2259
09cee04b
PA
2260ptid_t
2261user_visible_resume_ptid (int step)
2262{
f3263aa4 2263 ptid_t resume_ptid;
09cee04b 2264
09cee04b
PA
2265 if (non_stop)
2266 {
2267 /* With non-stop mode on, threads are always handled
2268 individually. */
2269 resume_ptid = inferior_ptid;
2270 }
2271 else if ((scheduler_mode == schedlock_on)
03d46957 2272 || (scheduler_mode == schedlock_step && step))
09cee04b 2273 {
f3263aa4
PA
2274 /* User-settable 'scheduler' mode requires solo thread
2275 resume. */
09cee04b
PA
2276 resume_ptid = inferior_ptid;
2277 }
f2665db5
MM
2278 else if ((scheduler_mode == schedlock_replay)
2279 && target_record_will_replay (minus_one_ptid, execution_direction))
2280 {
2281 /* User-settable 'scheduler' mode requires solo thread resume in replay
2282 mode. */
2283 resume_ptid = inferior_ptid;
2284 }
f3263aa4
PA
2285 else if (!sched_multi && target_supports_multi_process ())
2286 {
2287 /* Resume all threads of the current process (and none of other
2288 processes). */
2289 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2290 }
2291 else
2292 {
2293 /* Resume all threads of all processes. */
2294 resume_ptid = RESUME_ALL;
2295 }
09cee04b
PA
2296
2297 return resume_ptid;
2298}
2299
fbea99ea
PA
2300/* Return a ptid representing the set of threads that we will resume,
2301 in the perspective of the target, assuming run control handling
2302 does not require leaving some threads stopped (e.g., stepping past
2303 breakpoint). USER_STEP indicates whether we're about to start the
2304 target for a stepping command. */
2305
2306static ptid_t
2307internal_resume_ptid (int user_step)
2308{
2309 /* In non-stop, we always control threads individually. Note that
2310 the target may always work in non-stop mode even with "set
2311 non-stop off", in which case user_visible_resume_ptid could
2312 return a wildcard ptid. */
2313 if (target_is_non_stop_p ())
2314 return inferior_ptid;
2315 else
2316 return user_visible_resume_ptid (user_step);
2317}
2318
64ce06e4
PA
2319/* Wrapper for target_resume, that handles infrun-specific
2320 bookkeeping. */
2321
2322static void
2323do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2324{
2325 struct thread_info *tp = inferior_thread ();
2326
2327 /* Install inferior's terminal modes. */
2328 target_terminal_inferior ();
2329
2330 /* Avoid confusing the next resume, if the next stop/resume
2331 happens to apply to another thread. */
2332 tp->suspend.stop_signal = GDB_SIGNAL_0;
2333
8f572e5c
PA
2334 /* Advise target which signals may be handled silently.
2335
2336 If we have removed breakpoints because we are stepping over one
2337 in-line (in any thread), we need to receive all signals to avoid
2338 accidentally skipping a breakpoint during execution of a signal
2339 handler.
2340
2341 Likewise if we're displaced stepping, otherwise a trap for a
2342 breakpoint in a signal handler might be confused with the
2343 displaced step finishing. We don't make the displaced_step_fixup
2344 step distinguish the cases instead, because:
2345
2346 - a backtrace while stopped in the signal handler would show the
2347 scratch pad as frame older than the signal handler, instead of
2348 the real mainline code.
2349
2350 - when the thread is later resumed, the signal handler would
2351 return to the scratch pad area, which would no longer be
2352 valid. */
2353 if (step_over_info_valid_p ()
2354 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
64ce06e4
PA
2355 target_pass_signals (0, NULL);
2356 else
2357 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2358
2359 target_resume (resume_ptid, step, sig);
2360}
2361
c906108c
SS
2362/* Resume the inferior, but allow a QUIT. This is useful if the user
2363 wants to interrupt some lengthy single-stepping operation
2364 (for child processes, the SIGINT goes to the inferior, and so
2365 we get a SIGINT random_signal, but for remote debugging and perhaps
2366 other targets, that's not true).
2367
c906108c
SS
2368 SIG is the signal to give the inferior (zero for none). */
2369void
64ce06e4 2370resume (enum gdb_signal sig)
c906108c 2371{
74b7792f 2372 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
2373 struct regcache *regcache = get_current_regcache ();
2374 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 2375 struct thread_info *tp = inferior_thread ();
515630c5 2376 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 2377 struct address_space *aspace = get_regcache_aspace (regcache);
b0f16a3e 2378 ptid_t resume_ptid;
856e7dd6
PA
2379 /* This represents the user's step vs continue request. When
2380 deciding whether "set scheduler-locking step" applies, it's the
2381 user's intention that counts. */
2382 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2383 /* This represents what we'll actually request the target to do.
2384 This can decay from a step to a continue, if e.g., we need to
2385 implement single-stepping with breakpoints (software
2386 single-step). */
6b403daa 2387 int step;
c7e8a53c 2388
c2829269
PA
2389 gdb_assert (!thread_is_in_step_over_chain (tp));
2390
c906108c
SS
2391 QUIT;
2392
372316f1
PA
2393 if (tp->suspend.waitstatus_pending_p)
2394 {
2395 if (debug_infrun)
2396 {
2397 char *statstr;
2398
2399 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2400 fprintf_unfiltered (gdb_stdlog,
2401 "infrun: resume: thread %s has pending wait status %s "
2402 "(currently_stepping=%d).\n",
2403 target_pid_to_str (tp->ptid), statstr,
2404 currently_stepping (tp));
2405 xfree (statstr);
2406 }
2407
2408 tp->resumed = 1;
2409
2410 /* FIXME: What should we do if we are supposed to resume this
2411 thread with a signal? Maybe we should maintain a queue of
2412 pending signals to deliver. */
2413 if (sig != GDB_SIGNAL_0)
2414 {
fd7dcb94 2415 warning (_("Couldn't deliver signal %s to %s."),
372316f1
PA
2416 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2417 }
2418
2419 tp->suspend.stop_signal = GDB_SIGNAL_0;
2420 discard_cleanups (old_cleanups);
2421
2422 if (target_can_async_p ())
2423 target_async (1);
2424 return;
2425 }
2426
2427 tp->stepped_breakpoint = 0;
2428
6b403daa
PA
2429 /* Depends on stepped_breakpoint. */
2430 step = currently_stepping (tp);
2431
74609e71
YQ
2432 if (current_inferior ()->waiting_for_vfork_done)
2433 {
48f9886d
PA
2434 /* Don't try to single-step a vfork parent that is waiting for
2435 the child to get out of the shared memory region (by exec'ing
2436 or exiting). This is particularly important on software
2437 single-step archs, as the child process would trip on the
2438 software single step breakpoint inserted for the parent
2439 process. Since the parent will not actually execute any
2440 instruction until the child is out of the shared region (such
2441 are vfork's semantics), it is safe to simply continue it.
2442 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2443 the parent, and tell it to `keep_going', which automatically
2444 re-sets it stepping. */
74609e71
YQ
2445 if (debug_infrun)
2446 fprintf_unfiltered (gdb_stdlog,
2447 "infrun: resume : clear step\n");
a09dd441 2448 step = 0;
74609e71
YQ
2449 }
2450
527159b7 2451 if (debug_infrun)
237fc4c9 2452 fprintf_unfiltered (gdb_stdlog,
c9737c08 2453 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2454 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2455 step, gdb_signal_to_symbol_string (sig),
2456 tp->control.trap_expected,
0d9a9a5f
PA
2457 target_pid_to_str (inferior_ptid),
2458 paddress (gdbarch, pc));
c906108c 2459
c2c6d25f
JM
2460 /* Normally, by the time we reach `resume', the breakpoints are either
2461 removed or inserted, as appropriate. The exception is if we're sitting
2462 at a permanent breakpoint; we need to step over it, but permanent
2463 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2464 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2465 {
af48d08f
PA
2466 if (sig != GDB_SIGNAL_0)
2467 {
2468 /* We have a signal to pass to the inferior. The resume
2469 may, or may not take us to the signal handler. If this
2470 is a step, we'll need to stop in the signal handler, if
2471 there's one, (if the target supports stepping into
2472 handlers), or in the next mainline instruction, if
2473 there's no handler. If this is a continue, we need to be
2474 sure to run the handler with all breakpoints inserted.
2475 In all cases, set a breakpoint at the current address
2476 (where the handler returns to), and once that breakpoint
2477 is hit, resume skipping the permanent breakpoint. If
2478 that breakpoint isn't hit, then we've stepped into the
2479 signal handler (or hit some other event). We'll delete
2480 the step-resume breakpoint then. */
2481
2482 if (debug_infrun)
2483 fprintf_unfiltered (gdb_stdlog,
2484 "infrun: resume: skipping permanent breakpoint, "
2485 "deliver signal first\n");
2486
2487 clear_step_over_info ();
2488 tp->control.trap_expected = 0;
2489
2490 if (tp->control.step_resume_breakpoint == NULL)
2491 {
2492 /* Set a "high-priority" step-resume, as we don't want
2493 user breakpoints at PC to trigger (again) when this
2494 hits. */
2495 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2496 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2497
2498 tp->step_after_step_resume_breakpoint = step;
2499 }
2500
2501 insert_breakpoints ();
2502 }
2503 else
2504 {
2505 /* There's no signal to pass, we can go ahead and skip the
2506 permanent breakpoint manually. */
2507 if (debug_infrun)
2508 fprintf_unfiltered (gdb_stdlog,
2509 "infrun: resume: skipping permanent breakpoint\n");
2510 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2511 /* Update pc to reflect the new address from which we will
2512 execute instructions. */
2513 pc = regcache_read_pc (regcache);
2514
2515 if (step)
2516 {
2517 /* We've already advanced the PC, so the stepping part
2518 is done. Now we need to arrange for a trap to be
2519 reported to handle_inferior_event. Set a breakpoint
2520 at the current PC, and run to it. Don't update
2521 prev_pc, because if we end in
44a1ee51
PA
2522 switch_back_to_stepped_thread, we want the "expected
2523 thread advanced also" branch to be taken. IOW, we
2524 don't want this thread to step further from PC
af48d08f 2525 (overstep). */
1ac806b8 2526 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2527 insert_single_step_breakpoint (gdbarch, aspace, pc);
2528 insert_breakpoints ();
2529
fbea99ea 2530 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2531 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
af48d08f 2532 discard_cleanups (old_cleanups);
372316f1 2533 tp->resumed = 1;
af48d08f
PA
2534 return;
2535 }
2536 }
6d350bb5 2537 }
c2c6d25f 2538
c1e36e3e
PA
2539 /* If we have a breakpoint to step over, make sure to do a single
2540 step only. Same if we have software watchpoints. */
2541 if (tp->control.trap_expected || bpstat_should_step ())
2542 tp->control.may_range_step = 0;
2543
237fc4c9
PA
2544 /* If enabled, step over breakpoints by executing a copy of the
2545 instruction at a different address.
2546
2547 We can't use displaced stepping when we have a signal to deliver;
2548 the comments for displaced_step_prepare explain why. The
2549 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2550 signals' explain what we do instead.
2551
2552 We can't use displaced stepping when we are waiting for vfork_done
2553 event, displaced stepping breaks the vfork child similarly as single
2554 step software breakpoint. */
3fc8eb30
PA
2555 if (tp->control.trap_expected
2556 && use_displaced_stepping (tp)
cb71640d 2557 && !step_over_info_valid_p ()
a493e3e2 2558 && sig == GDB_SIGNAL_0
74609e71 2559 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2560 {
3fc8eb30 2561 int prepared = displaced_step_prepare (inferior_ptid);
fc1cf338 2562
3fc8eb30 2563 if (prepared == 0)
d56b7306 2564 {
4d9d9d04
PA
2565 if (debug_infrun)
2566 fprintf_unfiltered (gdb_stdlog,
2567 "Got placed in step-over queue\n");
2568
2569 tp->control.trap_expected = 0;
d56b7306
VP
2570 discard_cleanups (old_cleanups);
2571 return;
2572 }
3fc8eb30
PA
2573 else if (prepared < 0)
2574 {
2575 /* Fallback to stepping over the breakpoint in-line. */
2576
2577 if (target_is_non_stop_p ())
2578 stop_all_threads ();
2579
2580 set_step_over_info (get_regcache_aspace (regcache),
2581 regcache_read_pc (regcache), 0);
2582
2583 step = maybe_software_singlestep (gdbarch, pc);
2584
2585 insert_breakpoints ();
2586 }
2587 else if (prepared > 0)
2588 {
2589 struct displaced_step_inferior_state *displaced;
99e40580 2590
3fc8eb30
PA
2591 /* Update pc to reflect the new address from which we will
2592 execute instructions due to displaced stepping. */
2593 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
ca7781d2 2594
3fc8eb30
PA
2595 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2596 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2597 displaced->step_closure);
2598 }
237fc4c9
PA
2599 }
2600
2facfe5c 2601 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2602 else if (step)
2facfe5c 2603 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2604
30852783
UW
2605 /* Currently, our software single-step implementation leads to different
2606 results than hardware single-stepping in one situation: when stepping
2607 into delivering a signal which has an associated signal handler,
2608 hardware single-step will stop at the first instruction of the handler,
2609 while software single-step will simply skip execution of the handler.
2610
2611 For now, this difference in behavior is accepted since there is no
2612 easy way to actually implement single-stepping into a signal handler
2613 without kernel support.
2614
2615 However, there is one scenario where this difference leads to follow-on
2616 problems: if we're stepping off a breakpoint by removing all breakpoints
2617 and then single-stepping. In this case, the software single-step
2618 behavior means that even if there is a *breakpoint* in the signal
2619 handler, GDB still would not stop.
2620
2621 Fortunately, we can at least fix this particular issue. We detect
2622 here the case where we are about to deliver a signal while software
2623 single-stepping with breakpoints removed. In this situation, we
2624 revert the decisions to remove all breakpoints and insert single-
2625 step breakpoints, and instead we install a step-resume breakpoint
2626 at the current address, deliver the signal without stepping, and
2627 once we arrive back at the step-resume breakpoint, actually step
2628 over the breakpoint we originally wanted to step over. */
34b7e8a6 2629 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2630 && sig != GDB_SIGNAL_0
2631 && step_over_info_valid_p ())
30852783
UW
2632 {
2633 /* If we have nested signals or a pending signal is delivered
2634 immediately after a handler returns, might might already have
2635 a step-resume breakpoint set on the earlier handler. We cannot
2636 set another step-resume breakpoint; just continue on until the
2637 original breakpoint is hit. */
2638 if (tp->control.step_resume_breakpoint == NULL)
2639 {
2c03e5be 2640 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2641 tp->step_after_step_resume_breakpoint = 1;
2642 }
2643
34b7e8a6 2644 delete_single_step_breakpoints (tp);
30852783 2645
31e77af2 2646 clear_step_over_info ();
30852783 2647 tp->control.trap_expected = 0;
31e77af2
PA
2648
2649 insert_breakpoints ();
30852783
UW
2650 }
2651
b0f16a3e
SM
2652 /* If STEP is set, it's a request to use hardware stepping
2653 facilities. But in that case, we should never
2654 use singlestep breakpoint. */
34b7e8a6 2655 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2656
fbea99ea 2657 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2658 if (tp->control.trap_expected)
b0f16a3e
SM
2659 {
2660 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2661 hit, either by single-stepping the thread with the breakpoint
2662 removed, or by displaced stepping, with the breakpoint inserted.
2663 In the former case, we need to single-step only this thread,
2664 and keep others stopped, as they can miss this breakpoint if
2665 allowed to run. That's not really a problem for displaced
2666 stepping, but, we still keep other threads stopped, in case
2667 another thread is also stopped for a breakpoint waiting for
2668 its turn in the displaced stepping queue. */
b0f16a3e
SM
2669 resume_ptid = inferior_ptid;
2670 }
fbea99ea
PA
2671 else
2672 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2673
7f5ef605
PA
2674 if (execution_direction != EXEC_REVERSE
2675 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2676 {
372316f1
PA
2677 /* There are two cases where we currently need to step a
2678 breakpoint instruction when we have a signal to deliver:
2679
2680 - See handle_signal_stop where we handle random signals that
2681 could take out us out of the stepping range. Normally, in
2682 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2683 signal handler with a breakpoint at PC, but there are cases
2684 where we should _always_ single-step, even if we have a
2685 step-resume breakpoint, like when a software watchpoint is
2686 set. Assuming single-stepping and delivering a signal at the
2687 same time would takes us to the signal handler, then we could
2688 have removed the breakpoint at PC to step over it. However,
2689 some hardware step targets (like e.g., Mac OS) can't step
2690 into signal handlers, and for those, we need to leave the
2691 breakpoint at PC inserted, as otherwise if the handler
2692 recurses and executes PC again, it'll miss the breakpoint.
2693 So we leave the breakpoint inserted anyway, but we need to
2694 record that we tried to step a breakpoint instruction, so
372316f1
PA
2695 that adjust_pc_after_break doesn't end up confused.
2696
2697 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2698 in one thread after another thread that was stepping had been
2699 momentarily paused for a step-over. When we re-resume the
2700 stepping thread, it may be resumed from that address with a
2701 breakpoint that hasn't trapped yet. Seen with
2702 gdb.threads/non-stop-fair-events.exp, on targets that don't
2703 do displaced stepping. */
2704
2705 if (debug_infrun)
2706 fprintf_unfiltered (gdb_stdlog,
2707 "infrun: resume: [%s] stepped breakpoint\n",
2708 target_pid_to_str (tp->ptid));
7f5ef605
PA
2709
2710 tp->stepped_breakpoint = 1;
2711
b0f16a3e
SM
2712 /* Most targets can step a breakpoint instruction, thus
2713 executing it normally. But if this one cannot, just
2714 continue and we will hit it anyway. */
7f5ef605 2715 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2716 step = 0;
2717 }
ef5cf84e 2718
b0f16a3e 2719 if (debug_displaced
cb71640d 2720 && tp->control.trap_expected
3fc8eb30 2721 && use_displaced_stepping (tp)
cb71640d 2722 && !step_over_info_valid_p ())
b0f16a3e 2723 {
d9b67d9f 2724 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
b0f16a3e
SM
2725 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2726 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2727 gdb_byte buf[4];
2728
2729 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2730 paddress (resume_gdbarch, actual_pc));
2731 read_memory (actual_pc, buf, sizeof (buf));
2732 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2733 }
237fc4c9 2734
b0f16a3e
SM
2735 if (tp->control.may_range_step)
2736 {
2737 /* If we're resuming a thread with the PC out of the step
2738 range, then we're doing some nested/finer run control
2739 operation, like stepping the thread out of the dynamic
2740 linker or the displaced stepping scratch pad. We
2741 shouldn't have allowed a range step then. */
2742 gdb_assert (pc_in_thread_step_range (pc, tp));
2743 }
c1e36e3e 2744
64ce06e4 2745 do_target_resume (resume_ptid, step, sig);
372316f1 2746 tp->resumed = 1;
c906108c
SS
2747 discard_cleanups (old_cleanups);
2748}
2749\f
237fc4c9 2750/* Proceeding. */
c906108c 2751
4c2f2a79
PA
2752/* See infrun.h. */
2753
2754/* Counter that tracks number of user visible stops. This can be used
2755 to tell whether a command has proceeded the inferior past the
2756 current location. This allows e.g., inferior function calls in
2757 breakpoint commands to not interrupt the command list. When the
2758 call finishes successfully, the inferior is standing at the same
2759 breakpoint as if nothing happened (and so we don't call
2760 normal_stop). */
2761static ULONGEST current_stop_id;
2762
2763/* See infrun.h. */
2764
2765ULONGEST
2766get_stop_id (void)
2767{
2768 return current_stop_id;
2769}
2770
2771/* Called when we report a user visible stop. */
2772
2773static void
2774new_stop_id (void)
2775{
2776 current_stop_id++;
2777}
2778
c906108c
SS
2779/* Clear out all variables saying what to do when inferior is continued.
2780 First do this, then set the ones you want, then call `proceed'. */
2781
a7212384
UW
2782static void
2783clear_proceed_status_thread (struct thread_info *tp)
c906108c 2784{
a7212384
UW
2785 if (debug_infrun)
2786 fprintf_unfiltered (gdb_stdlog,
2787 "infrun: clear_proceed_status_thread (%s)\n",
2788 target_pid_to_str (tp->ptid));
d6b48e9c 2789
372316f1
PA
2790 /* If we're starting a new sequence, then the previous finished
2791 single-step is no longer relevant. */
2792 if (tp->suspend.waitstatus_pending_p)
2793 {
2794 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2795 {
2796 if (debug_infrun)
2797 fprintf_unfiltered (gdb_stdlog,
2798 "infrun: clear_proceed_status: pending "
2799 "event of %s was a finished step. "
2800 "Discarding.\n",
2801 target_pid_to_str (tp->ptid));
2802
2803 tp->suspend.waitstatus_pending_p = 0;
2804 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2805 }
2806 else if (debug_infrun)
2807 {
2808 char *statstr;
2809
2810 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2811 fprintf_unfiltered (gdb_stdlog,
2812 "infrun: clear_proceed_status_thread: thread %s "
2813 "has pending wait status %s "
2814 "(currently_stepping=%d).\n",
2815 target_pid_to_str (tp->ptid), statstr,
2816 currently_stepping (tp));
2817 xfree (statstr);
2818 }
2819 }
2820
70509625
PA
2821 /* If this signal should not be seen by program, give it zero.
2822 Used for debugging signals. */
2823 if (!signal_pass_state (tp->suspend.stop_signal))
2824 tp->suspend.stop_signal = GDB_SIGNAL_0;
2825
243a9253
PA
2826 thread_fsm_delete (tp->thread_fsm);
2827 tp->thread_fsm = NULL;
2828
16c381f0
JK
2829 tp->control.trap_expected = 0;
2830 tp->control.step_range_start = 0;
2831 tp->control.step_range_end = 0;
c1e36e3e 2832 tp->control.may_range_step = 0;
16c381f0
JK
2833 tp->control.step_frame_id = null_frame_id;
2834 tp->control.step_stack_frame_id = null_frame_id;
2835 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2836 tp->control.step_start_function = NULL;
a7212384 2837 tp->stop_requested = 0;
4e1c45ea 2838
16c381f0 2839 tp->control.stop_step = 0;
32400beb 2840
16c381f0 2841 tp->control.proceed_to_finish = 0;
414c69f7 2842
17b2616c 2843 tp->control.command_interp = NULL;
856e7dd6 2844 tp->control.stepping_command = 0;
17b2616c 2845
a7212384 2846 /* Discard any remaining commands or status from previous stop. */
16c381f0 2847 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2848}
32400beb 2849
a7212384 2850void
70509625 2851clear_proceed_status (int step)
a7212384 2852{
f2665db5
MM
2853 /* With scheduler-locking replay, stop replaying other threads if we're
2854 not replaying the user-visible resume ptid.
2855
2856 This is a convenience feature to not require the user to explicitly
2857 stop replaying the other threads. We're assuming that the user's
2858 intent is to resume tracing the recorded process. */
2859 if (!non_stop && scheduler_mode == schedlock_replay
2860 && target_record_is_replaying (minus_one_ptid)
2861 && !target_record_will_replay (user_visible_resume_ptid (step),
2862 execution_direction))
2863 target_record_stop_replaying ();
2864
6c95b8df
PA
2865 if (!non_stop)
2866 {
70509625
PA
2867 struct thread_info *tp;
2868 ptid_t resume_ptid;
2869
2870 resume_ptid = user_visible_resume_ptid (step);
2871
2872 /* In all-stop mode, delete the per-thread status of all threads
2873 we're about to resume, implicitly and explicitly. */
2874 ALL_NON_EXITED_THREADS (tp)
2875 {
2876 if (!ptid_match (tp->ptid, resume_ptid))
2877 continue;
2878 clear_proceed_status_thread (tp);
2879 }
6c95b8df
PA
2880 }
2881
a7212384
UW
2882 if (!ptid_equal (inferior_ptid, null_ptid))
2883 {
2884 struct inferior *inferior;
2885
2886 if (non_stop)
2887 {
6c95b8df
PA
2888 /* If in non-stop mode, only delete the per-thread status of
2889 the current thread. */
a7212384
UW
2890 clear_proceed_status_thread (inferior_thread ());
2891 }
6c95b8df 2892
d6b48e9c 2893 inferior = current_inferior ();
16c381f0 2894 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2895 }
2896
f3b1572e 2897 observer_notify_about_to_proceed ();
c906108c
SS
2898}
2899
99619bea
PA
2900/* Returns true if TP is still stopped at a breakpoint that needs
2901 stepping-over in order to make progress. If the breakpoint is gone
2902 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2903
2904static int
6c4cfb24 2905thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2906{
2907 if (tp->stepping_over_breakpoint)
2908 {
2909 struct regcache *regcache = get_thread_regcache (tp->ptid);
2910
2911 if (breakpoint_here_p (get_regcache_aspace (regcache),
af48d08f
PA
2912 regcache_read_pc (regcache))
2913 == ordinary_breakpoint_here)
99619bea
PA
2914 return 1;
2915
2916 tp->stepping_over_breakpoint = 0;
2917 }
2918
2919 return 0;
2920}
2921
6c4cfb24
PA
2922/* Check whether thread TP still needs to start a step-over in order
2923 to make progress when resumed. Returns an bitwise or of enum
2924 step_over_what bits, indicating what needs to be stepped over. */
2925
8d297bbf 2926static step_over_what
6c4cfb24
PA
2927thread_still_needs_step_over (struct thread_info *tp)
2928{
2929 struct inferior *inf = find_inferior_ptid (tp->ptid);
8d297bbf 2930 step_over_what what = 0;
6c4cfb24
PA
2931
2932 if (thread_still_needs_step_over_bp (tp))
2933 what |= STEP_OVER_BREAKPOINT;
2934
2935 if (tp->stepping_over_watchpoint
2936 && !target_have_steppable_watchpoint)
2937 what |= STEP_OVER_WATCHPOINT;
2938
2939 return what;
2940}
2941
483805cf
PA
2942/* Returns true if scheduler locking applies. STEP indicates whether
2943 we're about to do a step/next-like command to a thread. */
2944
2945static int
856e7dd6 2946schedlock_applies (struct thread_info *tp)
483805cf
PA
2947{
2948 return (scheduler_mode == schedlock_on
2949 || (scheduler_mode == schedlock_step
f2665db5
MM
2950 && tp->control.stepping_command)
2951 || (scheduler_mode == schedlock_replay
2952 && target_record_will_replay (minus_one_ptid,
2953 execution_direction)));
483805cf
PA
2954}
2955
c906108c
SS
2956/* Basic routine for continuing the program in various fashions.
2957
2958 ADDR is the address to resume at, or -1 for resume where stopped.
2959 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2960 or -1 for act according to how it stopped.
c906108c 2961 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2962 -1 means return after that and print nothing.
2963 You should probably set various step_... variables
2964 before calling here, if you are stepping.
c906108c
SS
2965
2966 You should call clear_proceed_status before calling proceed. */
2967
2968void
64ce06e4 2969proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2970{
e58b0e63
PA
2971 struct regcache *regcache;
2972 struct gdbarch *gdbarch;
4e1c45ea 2973 struct thread_info *tp;
e58b0e63 2974 CORE_ADDR pc;
6c95b8df 2975 struct address_space *aspace;
4d9d9d04
PA
2976 ptid_t resume_ptid;
2977 struct execution_control_state ecss;
2978 struct execution_control_state *ecs = &ecss;
2979 struct cleanup *old_chain;
2980 int started;
c906108c 2981
e58b0e63
PA
2982 /* If we're stopped at a fork/vfork, follow the branch set by the
2983 "set follow-fork-mode" command; otherwise, we'll just proceed
2984 resuming the current thread. */
2985 if (!follow_fork ())
2986 {
2987 /* The target for some reason decided not to resume. */
2988 normal_stop ();
f148b27e
PA
2989 if (target_can_async_p ())
2990 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2991 return;
2992 }
2993
842951eb
PA
2994 /* We'll update this if & when we switch to a new thread. */
2995 previous_inferior_ptid = inferior_ptid;
2996
e58b0e63
PA
2997 regcache = get_current_regcache ();
2998 gdbarch = get_regcache_arch (regcache);
6c95b8df 2999 aspace = get_regcache_aspace (regcache);
e58b0e63 3000 pc = regcache_read_pc (regcache);
2adfaa28 3001 tp = inferior_thread ();
e58b0e63 3002
99619bea
PA
3003 /* Fill in with reasonable starting values. */
3004 init_thread_stepping_state (tp);
3005
c2829269
PA
3006 gdb_assert (!thread_is_in_step_over_chain (tp));
3007
2acceee2 3008 if (addr == (CORE_ADDR) -1)
c906108c 3009 {
af48d08f
PA
3010 if (pc == stop_pc
3011 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 3012 && execution_direction != EXEC_REVERSE)
3352ef37
AC
3013 /* There is a breakpoint at the address we will resume at,
3014 step one instruction before inserting breakpoints so that
3015 we do not stop right away (and report a second hit at this
b2175913
MS
3016 breakpoint).
3017
3018 Note, we don't do this in reverse, because we won't
3019 actually be executing the breakpoint insn anyway.
3020 We'll be (un-)executing the previous instruction. */
99619bea 3021 tp->stepping_over_breakpoint = 1;
515630c5
UW
3022 else if (gdbarch_single_step_through_delay_p (gdbarch)
3023 && gdbarch_single_step_through_delay (gdbarch,
3024 get_current_frame ()))
3352ef37
AC
3025 /* We stepped onto an instruction that needs to be stepped
3026 again before re-inserting the breakpoint, do so. */
99619bea 3027 tp->stepping_over_breakpoint = 1;
c906108c
SS
3028 }
3029 else
3030 {
515630c5 3031 regcache_write_pc (regcache, addr);
c906108c
SS
3032 }
3033
70509625
PA
3034 if (siggnal != GDB_SIGNAL_DEFAULT)
3035 tp->suspend.stop_signal = siggnal;
3036
17b2616c
PA
3037 /* Record the interpreter that issued the execution command that
3038 caused this thread to resume. If the top level interpreter is
3039 MI/async, and the execution command was a CLI command
3040 (next/step/etc.), we'll want to print stop event output to the MI
3041 console channel (the stepped-to line, etc.), as if the user
3042 entered the execution command on a real GDB console. */
4d9d9d04
PA
3043 tp->control.command_interp = command_interp ();
3044
3045 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3046
3047 /* If an exception is thrown from this point on, make sure to
3048 propagate GDB's knowledge of the executing state to the
3049 frontend/user running state. */
3050 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3051
3052 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3053 threads (e.g., we might need to set threads stepping over
3054 breakpoints first), from the user/frontend's point of view, all
3055 threads in RESUME_PTID are now running. Unless we're calling an
3056 inferior function, as in that case we pretend the inferior
3057 doesn't run at all. */
3058 if (!tp->control.in_infcall)
3059 set_running (resume_ptid, 1);
17b2616c 3060
527159b7 3061 if (debug_infrun)
8a9de0e4 3062 fprintf_unfiltered (gdb_stdlog,
64ce06e4 3063 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 3064 paddress (gdbarch, addr),
64ce06e4 3065 gdb_signal_to_symbol_string (siggnal));
527159b7 3066
4d9d9d04
PA
3067 annotate_starting ();
3068
3069 /* Make sure that output from GDB appears before output from the
3070 inferior. */
3071 gdb_flush (gdb_stdout);
3072
3073 /* In a multi-threaded task we may select another thread and
3074 then continue or step.
3075
3076 But if a thread that we're resuming had stopped at a breakpoint,
3077 it will immediately cause another breakpoint stop without any
3078 execution (i.e. it will report a breakpoint hit incorrectly). So
3079 we must step over it first.
3080
3081 Look for threads other than the current (TP) that reported a
3082 breakpoint hit and haven't been resumed yet since. */
3083
3084 /* If scheduler locking applies, we can avoid iterating over all
3085 threads. */
3086 if (!non_stop && !schedlock_applies (tp))
94cc34af 3087 {
4d9d9d04
PA
3088 struct thread_info *current = tp;
3089
3090 ALL_NON_EXITED_THREADS (tp)
3091 {
3092 /* Ignore the current thread here. It's handled
3093 afterwards. */
3094 if (tp == current)
3095 continue;
99619bea 3096
4d9d9d04
PA
3097 /* Ignore threads of processes we're not resuming. */
3098 if (!ptid_match (tp->ptid, resume_ptid))
3099 continue;
c906108c 3100
4d9d9d04
PA
3101 if (!thread_still_needs_step_over (tp))
3102 continue;
3103
3104 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3105
99619bea
PA
3106 if (debug_infrun)
3107 fprintf_unfiltered (gdb_stdlog,
3108 "infrun: need to step-over [%s] first\n",
4d9d9d04 3109 target_pid_to_str (tp->ptid));
99619bea 3110
4d9d9d04 3111 thread_step_over_chain_enqueue (tp);
2adfaa28 3112 }
31e77af2 3113
4d9d9d04 3114 tp = current;
30852783
UW
3115 }
3116
4d9d9d04
PA
3117 /* Enqueue the current thread last, so that we move all other
3118 threads over their breakpoints first. */
3119 if (tp->stepping_over_breakpoint)
3120 thread_step_over_chain_enqueue (tp);
30852783 3121
4d9d9d04
PA
3122 /* If the thread isn't started, we'll still need to set its prev_pc,
3123 so that switch_back_to_stepped_thread knows the thread hasn't
3124 advanced. Must do this before resuming any thread, as in
3125 all-stop/remote, once we resume we can't send any other packet
3126 until the target stops again. */
3127 tp->prev_pc = regcache_read_pc (regcache);
99619bea 3128
4d9d9d04 3129 started = start_step_over ();
c906108c 3130
4d9d9d04
PA
3131 if (step_over_info_valid_p ())
3132 {
3133 /* Either this thread started a new in-line step over, or some
3134 other thread was already doing one. In either case, don't
3135 resume anything else until the step-over is finished. */
3136 }
fbea99ea 3137 else if (started && !target_is_non_stop_p ())
4d9d9d04
PA
3138 {
3139 /* A new displaced stepping sequence was started. In all-stop,
3140 we can't talk to the target anymore until it next stops. */
3141 }
fbea99ea
PA
3142 else if (!non_stop && target_is_non_stop_p ())
3143 {
3144 /* In all-stop, but the target is always in non-stop mode.
3145 Start all other threads that are implicitly resumed too. */
3146 ALL_NON_EXITED_THREADS (tp)
3147 {
3148 /* Ignore threads of processes we're not resuming. */
3149 if (!ptid_match (tp->ptid, resume_ptid))
3150 continue;
3151
3152 if (tp->resumed)
3153 {
3154 if (debug_infrun)
3155 fprintf_unfiltered (gdb_stdlog,
3156 "infrun: proceed: [%s] resumed\n",
3157 target_pid_to_str (tp->ptid));
3158 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3159 continue;
3160 }
3161
3162 if (thread_is_in_step_over_chain (tp))
3163 {
3164 if (debug_infrun)
3165 fprintf_unfiltered (gdb_stdlog,
3166 "infrun: proceed: [%s] needs step-over\n",
3167 target_pid_to_str (tp->ptid));
3168 continue;
3169 }
3170
3171 if (debug_infrun)
3172 fprintf_unfiltered (gdb_stdlog,
3173 "infrun: proceed: resuming %s\n",
3174 target_pid_to_str (tp->ptid));
3175
3176 reset_ecs (ecs, tp);
3177 switch_to_thread (tp->ptid);
3178 keep_going_pass_signal (ecs);
3179 if (!ecs->wait_some_more)
fd7dcb94 3180 error (_("Command aborted."));
fbea99ea
PA
3181 }
3182 }
372316f1 3183 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
4d9d9d04
PA
3184 {
3185 /* The thread wasn't started, and isn't queued, run it now. */
3186 reset_ecs (ecs, tp);
3187 switch_to_thread (tp->ptid);
3188 keep_going_pass_signal (ecs);
3189 if (!ecs->wait_some_more)
fd7dcb94 3190 error (_("Command aborted."));
4d9d9d04 3191 }
c906108c 3192
4d9d9d04 3193 discard_cleanups (old_chain);
c906108c 3194
0b333c5e
PA
3195 /* Tell the event loop to wait for it to stop. If the target
3196 supports asynchronous execution, it'll do this from within
3197 target_resume. */
362646f5 3198 if (!target_can_async_p ())
0b333c5e 3199 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3200}
c906108c
SS
3201\f
3202
3203/* Start remote-debugging of a machine over a serial link. */
96baa820 3204
c906108c 3205void
8621d6a9 3206start_remote (int from_tty)
c906108c 3207{
d6b48e9c 3208 struct inferior *inferior;
d6b48e9c
PA
3209
3210 inferior = current_inferior ();
16c381f0 3211 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3212
1777feb0 3213 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3214 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3215 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3216 nothing is returned (instead of just blocking). Because of this,
3217 targets expecting an immediate response need to, internally, set
3218 things up so that the target_wait() is forced to eventually
1777feb0 3219 timeout. */
6426a772
JM
3220 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3221 differentiate to its caller what the state of the target is after
3222 the initial open has been performed. Here we're assuming that
3223 the target has stopped. It should be possible to eventually have
3224 target_open() return to the caller an indication that the target
3225 is currently running and GDB state should be set to the same as
1777feb0 3226 for an async run. */
e4c8541f 3227 wait_for_inferior ();
8621d6a9
DJ
3228
3229 /* Now that the inferior has stopped, do any bookkeeping like
3230 loading shared libraries. We want to do this before normal_stop,
3231 so that the displayed frame is up to date. */
3232 post_create_inferior (&current_target, from_tty);
3233
6426a772 3234 normal_stop ();
c906108c
SS
3235}
3236
3237/* Initialize static vars when a new inferior begins. */
3238
3239void
96baa820 3240init_wait_for_inferior (void)
c906108c
SS
3241{
3242 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3243
c906108c
SS
3244 breakpoint_init_inferior (inf_starting);
3245
70509625 3246 clear_proceed_status (0);
9f976b41 3247
ca005067 3248 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3249
842951eb 3250 previous_inferior_ptid = inferior_ptid;
0d1e5fa7 3251
edb3359d
DJ
3252 /* Discard any skipped inlined frames. */
3253 clear_inline_frame_state (minus_one_ptid);
c906108c 3254}
237fc4c9 3255
c906108c 3256\f
488f131b 3257
ec9499be 3258static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3259
568d6575
UW
3260static void handle_step_into_function (struct gdbarch *gdbarch,
3261 struct execution_control_state *ecs);
3262static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3263 struct execution_control_state *ecs);
4f5d7f63 3264static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3265static void check_exception_resume (struct execution_control_state *,
28106bc2 3266 struct frame_info *);
611c83ae 3267
bdc36728 3268static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3269static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3270static void keep_going (struct execution_control_state *ecs);
94c57d6a 3271static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3272static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3273
252fbfc8
PA
3274/* Callback for iterate over threads. If the thread is stopped, but
3275 the user/frontend doesn't know about that yet, go through
3276 normal_stop, as if the thread had just stopped now. ARG points at
3277 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
3278 ptid_is_pid(PTID) is true, applies to all threads of the process
3279 pointed at by PTID. Otherwise, apply only to the thread pointed by
3280 PTID. */
3281
3282static int
3283infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
3284{
3285 ptid_t ptid = * (ptid_t *) arg;
3286
3287 if ((ptid_equal (info->ptid, ptid)
3288 || ptid_equal (minus_one_ptid, ptid)
3289 || (ptid_is_pid (ptid)
3290 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
3291 && is_running (info->ptid)
3292 && !is_executing (info->ptid))
3293 {
3294 struct cleanup *old_chain;
3295 struct execution_control_state ecss;
3296 struct execution_control_state *ecs = &ecss;
3297
3298 memset (ecs, 0, sizeof (*ecs));
3299
3300 old_chain = make_cleanup_restore_current_thread ();
3301
f15cb84a
YQ
3302 overlay_cache_invalid = 1;
3303 /* Flush target cache before starting to handle each event.
3304 Target was running and cache could be stale. This is just a
3305 heuristic. Running threads may modify target memory, but we
3306 don't get any event. */
3307 target_dcache_invalidate ();
3308
252fbfc8
PA
3309 /* Go through handle_inferior_event/normal_stop, so we always
3310 have consistent output as if the stop event had been
3311 reported. */
3312 ecs->ptid = info->ptid;
243a9253 3313 ecs->event_thread = info;
252fbfc8 3314 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 3315 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
3316
3317 handle_inferior_event (ecs);
3318
3319 if (!ecs->wait_some_more)
3320 {
243a9253
PA
3321 /* Cancel any running execution command. */
3322 thread_cancel_execution_command (info);
3323
252fbfc8 3324 normal_stop ();
252fbfc8
PA
3325 }
3326
3327 do_cleanups (old_chain);
3328 }
3329
3330 return 0;
3331}
3332
3333/* This function is attached as a "thread_stop_requested" observer.
3334 Cleanup local state that assumed the PTID was to be resumed, and
3335 report the stop to the frontend. */
3336
2c0b251b 3337static void
252fbfc8
PA
3338infrun_thread_stop_requested (ptid_t ptid)
3339{
c2829269 3340 struct thread_info *tp;
252fbfc8 3341
c2829269
PA
3342 /* PTID was requested to stop. Remove matching threads from the
3343 step-over queue, so we don't try to resume them
3344 automatically. */
3345 ALL_NON_EXITED_THREADS (tp)
3346 if (ptid_match (tp->ptid, ptid))
3347 {
3348 if (thread_is_in_step_over_chain (tp))
3349 thread_step_over_chain_remove (tp);
3350 }
252fbfc8
PA
3351
3352 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
3353}
3354
a07daef3
PA
3355static void
3356infrun_thread_thread_exit (struct thread_info *tp, int silent)
3357{
3358 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3359 nullify_last_target_wait_ptid ();
3360}
3361
0cbcdb96
PA
3362/* Delete the step resume, single-step and longjmp/exception resume
3363 breakpoints of TP. */
4e1c45ea 3364
0cbcdb96
PA
3365static void
3366delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3367{
0cbcdb96
PA
3368 delete_step_resume_breakpoint (tp);
3369 delete_exception_resume_breakpoint (tp);
34b7e8a6 3370 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3371}
3372
0cbcdb96
PA
3373/* If the target still has execution, call FUNC for each thread that
3374 just stopped. In all-stop, that's all the non-exited threads; in
3375 non-stop, that's the current thread, only. */
3376
3377typedef void (*for_each_just_stopped_thread_callback_func)
3378 (struct thread_info *tp);
4e1c45ea
PA
3379
3380static void
0cbcdb96 3381for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3382{
0cbcdb96 3383 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
4e1c45ea
PA
3384 return;
3385
fbea99ea 3386 if (target_is_non_stop_p ())
4e1c45ea 3387 {
0cbcdb96
PA
3388 /* If in non-stop mode, only the current thread stopped. */
3389 func (inferior_thread ());
4e1c45ea
PA
3390 }
3391 else
0cbcdb96
PA
3392 {
3393 struct thread_info *tp;
3394
3395 /* In all-stop mode, all threads have stopped. */
3396 ALL_NON_EXITED_THREADS (tp)
3397 {
3398 func (tp);
3399 }
3400 }
3401}
3402
3403/* Delete the step resume and longjmp/exception resume breakpoints of
3404 the threads that just stopped. */
3405
3406static void
3407delete_just_stopped_threads_infrun_breakpoints (void)
3408{
3409 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3410}
3411
3412/* Delete the single-step breakpoints of the threads that just
3413 stopped. */
7c16b83e 3414
34b7e8a6
PA
3415static void
3416delete_just_stopped_threads_single_step_breakpoints (void)
3417{
3418 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3419}
3420
1777feb0 3421/* A cleanup wrapper. */
4e1c45ea
PA
3422
3423static void
0cbcdb96 3424delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
4e1c45ea 3425{
0cbcdb96 3426 delete_just_stopped_threads_infrun_breakpoints ();
4e1c45ea
PA
3427}
3428
221e1a37 3429/* See infrun.h. */
223698f8 3430
221e1a37 3431void
223698f8
DE
3432print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3433 const struct target_waitstatus *ws)
3434{
3435 char *status_string = target_waitstatus_to_string (ws);
3436 struct ui_file *tmp_stream = mem_fileopen ();
3437 char *text;
223698f8
DE
3438
3439 /* The text is split over several lines because it was getting too long.
3440 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3441 output as a unit; we want only one timestamp printed if debug_timestamp
3442 is set. */
3443
3444 fprintf_unfiltered (tmp_stream,
1176ecec
PA
3445 "infrun: target_wait (%d.%ld.%ld",
3446 ptid_get_pid (waiton_ptid),
3447 ptid_get_lwp (waiton_ptid),
3448 ptid_get_tid (waiton_ptid));
dfd4cc63 3449 if (ptid_get_pid (waiton_ptid) != -1)
223698f8
DE
3450 fprintf_unfiltered (tmp_stream,
3451 " [%s]", target_pid_to_str (waiton_ptid));
3452 fprintf_unfiltered (tmp_stream, ", status) =\n");
3453 fprintf_unfiltered (tmp_stream,
1176ecec 3454 "infrun: %d.%ld.%ld [%s],\n",
dfd4cc63 3455 ptid_get_pid (result_ptid),
1176ecec
PA
3456 ptid_get_lwp (result_ptid),
3457 ptid_get_tid (result_ptid),
dfd4cc63 3458 target_pid_to_str (result_ptid));
223698f8
DE
3459 fprintf_unfiltered (tmp_stream,
3460 "infrun: %s\n",
3461 status_string);
3462
759ef836 3463 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
3464
3465 /* This uses %s in part to handle %'s in the text, but also to avoid
3466 a gcc error: the format attribute requires a string literal. */
3467 fprintf_unfiltered (gdb_stdlog, "%s", text);
3468
3469 xfree (status_string);
3470 xfree (text);
3471 ui_file_delete (tmp_stream);
3472}
3473
372316f1
PA
3474/* Select a thread at random, out of those which are resumed and have
3475 had events. */
3476
3477static struct thread_info *
3478random_pending_event_thread (ptid_t waiton_ptid)
3479{
3480 struct thread_info *event_tp;
3481 int num_events = 0;
3482 int random_selector;
3483
3484 /* First see how many events we have. Count only resumed threads
3485 that have an event pending. */
3486 ALL_NON_EXITED_THREADS (event_tp)
3487 if (ptid_match (event_tp->ptid, waiton_ptid)
3488 && event_tp->resumed
3489 && event_tp->suspend.waitstatus_pending_p)
3490 num_events++;
3491
3492 if (num_events == 0)
3493 return NULL;
3494
3495 /* Now randomly pick a thread out of those that have had events. */
3496 random_selector = (int)
3497 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3498
3499 if (debug_infrun && num_events > 1)
3500 fprintf_unfiltered (gdb_stdlog,
3501 "infrun: Found %d events, selecting #%d\n",
3502 num_events, random_selector);
3503
3504 /* Select the Nth thread that has had an event. */
3505 ALL_NON_EXITED_THREADS (event_tp)
3506 if (ptid_match (event_tp->ptid, waiton_ptid)
3507 && event_tp->resumed
3508 && event_tp->suspend.waitstatus_pending_p)
3509 if (random_selector-- == 0)
3510 break;
3511
3512 return event_tp;
3513}
3514
3515/* Wrapper for target_wait that first checks whether threads have
3516 pending statuses to report before actually asking the target for
3517 more events. */
3518
3519static ptid_t
3520do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3521{
3522 ptid_t event_ptid;
3523 struct thread_info *tp;
3524
3525 /* First check if there is a resumed thread with a wait status
3526 pending. */
3527 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3528 {
3529 tp = random_pending_event_thread (ptid);
3530 }
3531 else
3532 {
3533 if (debug_infrun)
3534 fprintf_unfiltered (gdb_stdlog,
3535 "infrun: Waiting for specific thread %s.\n",
3536 target_pid_to_str (ptid));
3537
3538 /* We have a specific thread to check. */
3539 tp = find_thread_ptid (ptid);
3540 gdb_assert (tp != NULL);
3541 if (!tp->suspend.waitstatus_pending_p)
3542 tp = NULL;
3543 }
3544
3545 if (tp != NULL
3546 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3547 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3548 {
3549 struct regcache *regcache = get_thread_regcache (tp->ptid);
3550 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3551 CORE_ADDR pc;
3552 int discard = 0;
3553
3554 pc = regcache_read_pc (regcache);
3555
3556 if (pc != tp->suspend.stop_pc)
3557 {
3558 if (debug_infrun)
3559 fprintf_unfiltered (gdb_stdlog,
3560 "infrun: PC of %s changed. was=%s, now=%s\n",
3561 target_pid_to_str (tp->ptid),
3562 paddress (gdbarch, tp->prev_pc),
3563 paddress (gdbarch, pc));
3564 discard = 1;
3565 }
3566 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3567 {
3568 if (debug_infrun)
3569 fprintf_unfiltered (gdb_stdlog,
3570 "infrun: previous breakpoint of %s, at %s gone\n",
3571 target_pid_to_str (tp->ptid),
3572 paddress (gdbarch, pc));
3573
3574 discard = 1;
3575 }
3576
3577 if (discard)
3578 {
3579 if (debug_infrun)
3580 fprintf_unfiltered (gdb_stdlog,
3581 "infrun: pending event of %s cancelled.\n",
3582 target_pid_to_str (tp->ptid));
3583
3584 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3585 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3586 }
3587 }
3588
3589 if (tp != NULL)
3590 {
3591 if (debug_infrun)
3592 {
3593 char *statstr;
3594
3595 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3596 fprintf_unfiltered (gdb_stdlog,
3597 "infrun: Using pending wait status %s for %s.\n",
3598 statstr,
3599 target_pid_to_str (tp->ptid));
3600 xfree (statstr);
3601 }
3602
3603 /* Now that we've selected our final event LWP, un-adjust its PC
3604 if it was a software breakpoint (and the target doesn't
3605 always adjust the PC itself). */
3606 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3607 && !target_supports_stopped_by_sw_breakpoint ())
3608 {
3609 struct regcache *regcache;
3610 struct gdbarch *gdbarch;
3611 int decr_pc;
3612
3613 regcache = get_thread_regcache (tp->ptid);
3614 gdbarch = get_regcache_arch (regcache);
3615
3616 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3617 if (decr_pc != 0)
3618 {
3619 CORE_ADDR pc;
3620
3621 pc = regcache_read_pc (regcache);
3622 regcache_write_pc (regcache, pc + decr_pc);
3623 }
3624 }
3625
3626 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3627 *status = tp->suspend.waitstatus;
3628 tp->suspend.waitstatus_pending_p = 0;
3629
3630 /* Wake up the event loop again, until all pending events are
3631 processed. */
3632 if (target_is_async_p ())
3633 mark_async_event_handler (infrun_async_inferior_event_token);
3634 return tp->ptid;
3635 }
3636
3637 /* But if we don't find one, we'll have to wait. */
3638
3639 if (deprecated_target_wait_hook)
3640 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3641 else
3642 event_ptid = target_wait (ptid, status, options);
3643
3644 return event_ptid;
3645}
3646
24291992
PA
3647/* Prepare and stabilize the inferior for detaching it. E.g.,
3648 detaching while a thread is displaced stepping is a recipe for
3649 crashing it, as nothing would readjust the PC out of the scratch
3650 pad. */
3651
3652void
3653prepare_for_detach (void)
3654{
3655 struct inferior *inf = current_inferior ();
3656 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3657 struct cleanup *old_chain_1;
3658 struct displaced_step_inferior_state *displaced;
3659
3660 displaced = get_displaced_stepping_state (inf->pid);
3661
3662 /* Is any thread of this process displaced stepping? If not,
3663 there's nothing else to do. */
3664 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3665 return;
3666
3667 if (debug_infrun)
3668 fprintf_unfiltered (gdb_stdlog,
3669 "displaced-stepping in-process while detaching");
3670
3671 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3672 inf->detaching = 1;
3673
3674 while (!ptid_equal (displaced->step_ptid, null_ptid))
3675 {
3676 struct cleanup *old_chain_2;
3677 struct execution_control_state ecss;
3678 struct execution_control_state *ecs;
3679
3680 ecs = &ecss;
3681 memset (ecs, 0, sizeof (*ecs));
3682
3683 overlay_cache_invalid = 1;
f15cb84a
YQ
3684 /* Flush target cache before starting to handle each event.
3685 Target was running and cache could be stale. This is just a
3686 heuristic. Running threads may modify target memory, but we
3687 don't get any event. */
3688 target_dcache_invalidate ();
24291992 3689
372316f1 3690 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3691
3692 if (debug_infrun)
3693 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3694
3695 /* If an error happens while handling the event, propagate GDB's
3696 knowledge of the executing state to the frontend/user running
3697 state. */
3e43a32a
MS
3698 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3699 &minus_one_ptid);
24291992
PA
3700
3701 /* Now figure out what to do with the result of the result. */
3702 handle_inferior_event (ecs);
3703
3704 /* No error, don't finish the state yet. */
3705 discard_cleanups (old_chain_2);
3706
3707 /* Breakpoints and watchpoints are not installed on the target
3708 at this point, and signals are passed directly to the
3709 inferior, so this must mean the process is gone. */
3710 if (!ecs->wait_some_more)
3711 {
3712 discard_cleanups (old_chain_1);
3713 error (_("Program exited while detaching"));
3714 }
3715 }
3716
3717 discard_cleanups (old_chain_1);
3718}
3719
cd0fc7c3 3720/* Wait for control to return from inferior to debugger.
ae123ec6 3721
cd0fc7c3
SS
3722 If inferior gets a signal, we may decide to start it up again
3723 instead of returning. That is why there is a loop in this function.
3724 When this function actually returns it means the inferior
3725 should be left stopped and GDB should read more commands. */
3726
3727void
e4c8541f 3728wait_for_inferior (void)
cd0fc7c3
SS
3729{
3730 struct cleanup *old_cleanups;
e6f5c25b 3731 struct cleanup *thread_state_chain;
c906108c 3732
527159b7 3733 if (debug_infrun)
ae123ec6 3734 fprintf_unfiltered
e4c8541f 3735 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3736
0cbcdb96
PA
3737 old_cleanups
3738 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3739 NULL);
cd0fc7c3 3740
e6f5c25b
PA
3741 /* If an error happens while handling the event, propagate GDB's
3742 knowledge of the executing state to the frontend/user running
3743 state. */
3744 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3745
c906108c
SS
3746 while (1)
3747 {
ae25568b
PA
3748 struct execution_control_state ecss;
3749 struct execution_control_state *ecs = &ecss;
963f9c80 3750 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3751
ae25568b
PA
3752 memset (ecs, 0, sizeof (*ecs));
3753
ec9499be 3754 overlay_cache_invalid = 1;
ec9499be 3755
f15cb84a
YQ
3756 /* Flush target cache before starting to handle each event.
3757 Target was running and cache could be stale. This is just a
3758 heuristic. Running threads may modify target memory, but we
3759 don't get any event. */
3760 target_dcache_invalidate ();
3761
372316f1 3762 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3763
f00150c9 3764 if (debug_infrun)
223698f8 3765 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3766
cd0fc7c3
SS
3767 /* Now figure out what to do with the result of the result. */
3768 handle_inferior_event (ecs);
c906108c 3769
cd0fc7c3
SS
3770 if (!ecs->wait_some_more)
3771 break;
3772 }
4e1c45ea 3773
e6f5c25b
PA
3774 /* No error, don't finish the state yet. */
3775 discard_cleanups (thread_state_chain);
3776
cd0fc7c3
SS
3777 do_cleanups (old_cleanups);
3778}
c906108c 3779
d3d4baed
PA
3780/* Cleanup that reinstalls the readline callback handler, if the
3781 target is running in the background. If while handling the target
3782 event something triggered a secondary prompt, like e.g., a
3783 pagination prompt, we'll have removed the callback handler (see
3784 gdb_readline_wrapper_line). Need to do this as we go back to the
3785 event loop, ready to process further input. Note this has no
3786 effect if the handler hasn't actually been removed, because calling
3787 rl_callback_handler_install resets the line buffer, thus losing
3788 input. */
3789
3790static void
3791reinstall_readline_callback_handler_cleanup (void *arg)
3792{
6c400b59
PA
3793 if (!interpreter_async)
3794 {
3795 /* We're not going back to the top level event loop yet. Don't
3796 install the readline callback, as it'd prep the terminal,
3797 readline-style (raw, noecho) (e.g., --batch). We'll install
3798 it the next time the prompt is displayed, when we're ready
3799 for input. */
3800 return;
3801 }
3802
d3d4baed
PA
3803 if (async_command_editing_p && !sync_execution)
3804 gdb_rl_callback_handler_reinstall ();
3805}
3806
243a9253
PA
3807/* Clean up the FSMs of threads that are now stopped. In non-stop,
3808 that's just the event thread. In all-stop, that's all threads. */
3809
3810static void
3811clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3812{
3813 struct thread_info *thr = ecs->event_thread;
3814
3815 if (thr != NULL && thr->thread_fsm != NULL)
3816 thread_fsm_clean_up (thr->thread_fsm);
3817
3818 if (!non_stop)
3819 {
3820 ALL_NON_EXITED_THREADS (thr)
3821 {
3822 if (thr->thread_fsm == NULL)
3823 continue;
3824 if (thr == ecs->event_thread)
3825 continue;
3826
3827 switch_to_thread (thr->ptid);
3828 thread_fsm_clean_up (thr->thread_fsm);
3829 }
3830
3831 if (ecs->event_thread != NULL)
3832 switch_to_thread (ecs->event_thread->ptid);
3833 }
3834}
3835
170742de
PA
3836/* A cleanup that restores the execution direction to the value saved
3837 in *ARG. */
3838
3839static void
3840restore_execution_direction (void *arg)
3841{
3842 enum exec_direction_kind *save_exec_dir = (enum exec_direction_kind *) arg;
3843
3844 execution_direction = *save_exec_dir;
3845}
3846
1777feb0 3847/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3848 event loop whenever a change of state is detected on the file
1777feb0
MS
3849 descriptor corresponding to the target. It can be called more than
3850 once to complete a single execution command. In such cases we need
3851 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3852 that this function is called for a single execution command, then
3853 report to the user that the inferior has stopped, and do the
1777feb0 3854 necessary cleanups. */
43ff13b4
JM
3855
3856void
fba45db2 3857fetch_inferior_event (void *client_data)
43ff13b4 3858{
0d1e5fa7 3859 struct execution_control_state ecss;
a474d7c2 3860 struct execution_control_state *ecs = &ecss;
4f8d22e3 3861 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 3862 struct cleanup *ts_old_chain;
4f8d22e3 3863 int was_sync = sync_execution;
170742de 3864 enum exec_direction_kind save_exec_dir = execution_direction;
0f641c01 3865 int cmd_done = 0;
963f9c80 3866 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3867
0d1e5fa7
PA
3868 memset (ecs, 0, sizeof (*ecs));
3869
d3d4baed
PA
3870 /* End up with readline processing input, if necessary. */
3871 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3872
c5187ac6
PA
3873 /* We're handling a live event, so make sure we're doing live
3874 debugging. If we're looking at traceframes while the target is
3875 running, we're going to need to get back to that mode after
3876 handling the event. */
3877 if (non_stop)
3878 {
3879 make_cleanup_restore_current_traceframe ();
e6e4e701 3880 set_current_traceframe (-1);
c5187ac6
PA
3881 }
3882
4f8d22e3
PA
3883 if (non_stop)
3884 /* In non-stop mode, the user/frontend should not notice a thread
3885 switch due to internal events. Make sure we reverse to the
3886 user selected thread and frame after handling the event and
3887 running any breakpoint commands. */
3888 make_cleanup_restore_current_thread ();
3889
ec9499be 3890 overlay_cache_invalid = 1;
f15cb84a
YQ
3891 /* Flush target cache before starting to handle each event. Target
3892 was running and cache could be stale. This is just a heuristic.
3893 Running threads may modify target memory, but we don't get any
3894 event. */
3895 target_dcache_invalidate ();
3dd5b83d 3896
170742de 3897 make_cleanup (restore_execution_direction, &save_exec_dir);
32231432
PA
3898 execution_direction = target_execution_direction ();
3899
0b333c5e
PA
3900 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3901 target_can_async_p () ? TARGET_WNOHANG : 0);
43ff13b4 3902
f00150c9 3903 if (debug_infrun)
223698f8 3904 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3905
29f49a6a
PA
3906 /* If an error happens while handling the event, propagate GDB's
3907 knowledge of the executing state to the frontend/user running
3908 state. */
fbea99ea 3909 if (!target_is_non_stop_p ())
29f49a6a
PA
3910 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3911 else
3912 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3913
353d1d73
JK
3914 /* Get executed before make_cleanup_restore_current_thread above to apply
3915 still for the thread which has thrown the exception. */
3916 make_bpstat_clear_actions_cleanup ();
3917
7c16b83e
PA
3918 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3919
43ff13b4 3920 /* Now figure out what to do with the result of the result. */
a474d7c2 3921 handle_inferior_event (ecs);
43ff13b4 3922
a474d7c2 3923 if (!ecs->wait_some_more)
43ff13b4 3924 {
c9657e70 3925 struct inferior *inf = find_inferior_ptid (ecs->ptid);
243a9253
PA
3926 int should_stop = 1;
3927 struct thread_info *thr = ecs->event_thread;
388a7084 3928 int should_notify_stop = 1;
d6b48e9c 3929
0cbcdb96 3930 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3931
243a9253
PA
3932 if (thr != NULL)
3933 {
3934 struct thread_fsm *thread_fsm = thr->thread_fsm;
3935
3936 if (thread_fsm != NULL)
3937 should_stop = thread_fsm_should_stop (thread_fsm);
3938 }
3939
3940 if (!should_stop)
3941 {
3942 keep_going (ecs);
3943 }
c2d11a7d 3944 else
0f641c01 3945 {
243a9253
PA
3946 clean_up_just_stopped_threads_fsms (ecs);
3947
388a7084
PA
3948 if (thr != NULL && thr->thread_fsm != NULL)
3949 {
3950 should_notify_stop
3951 = thread_fsm_should_notify_stop (thr->thread_fsm);
3952 }
3953
3954 if (should_notify_stop)
3955 {
4c2f2a79
PA
3956 int proceeded = 0;
3957
388a7084
PA
3958 /* We may not find an inferior if this was a process exit. */
3959 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4c2f2a79 3960 proceeded = normal_stop ();
243a9253 3961
4c2f2a79
PA
3962 if (!proceeded)
3963 {
3964 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3965 cmd_done = 1;
3966 }
388a7084 3967 }
0f641c01 3968 }
43ff13b4 3969 }
4f8d22e3 3970
29f49a6a
PA
3971 /* No error, don't finish the thread states yet. */
3972 discard_cleanups (ts_old_chain);
3973
4f8d22e3
PA
3974 /* Revert thread and frame. */
3975 do_cleanups (old_chain);
3976
3977 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
3978 restore the prompt (a synchronous execution command has finished,
3979 and we're ready for input). */
b4a14fd0 3980 if (interpreter_async && was_sync && !sync_execution)
92bcb5f9 3981 observer_notify_sync_execution_done ();
0f641c01
PA
3982
3983 if (cmd_done
3984 && !was_sync
3985 && exec_done_display_p
3986 && (ptid_equal (inferior_ptid, null_ptid)
3987 || !is_running (inferior_ptid)))
3988 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3989}
3990
edb3359d
DJ
3991/* Record the frame and location we're currently stepping through. */
3992void
3993set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3994{
3995 struct thread_info *tp = inferior_thread ();
3996
16c381f0
JK
3997 tp->control.step_frame_id = get_frame_id (frame);
3998 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
3999
4000 tp->current_symtab = sal.symtab;
4001 tp->current_line = sal.line;
4002}
4003
0d1e5fa7
PA
4004/* Clear context switchable stepping state. */
4005
4006void
4e1c45ea 4007init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 4008{
7f5ef605 4009 tss->stepped_breakpoint = 0;
0d1e5fa7 4010 tss->stepping_over_breakpoint = 0;
963f9c80 4011 tss->stepping_over_watchpoint = 0;
0d1e5fa7 4012 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
4013}
4014
c32c64b7
DE
4015/* Set the cached copy of the last ptid/waitstatus. */
4016
6efcd9a8 4017void
c32c64b7
DE
4018set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4019{
4020 target_last_wait_ptid = ptid;
4021 target_last_waitstatus = status;
4022}
4023
e02bc4cc 4024/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
4025 target_wait()/deprecated_target_wait_hook(). The data is actually
4026 cached by handle_inferior_event(), which gets called immediately
4027 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
4028
4029void
488f131b 4030get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 4031{
39f77062 4032 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
4033 *status = target_last_waitstatus;
4034}
4035
ac264b3b
MS
4036void
4037nullify_last_target_wait_ptid (void)
4038{
4039 target_last_wait_ptid = minus_one_ptid;
4040}
4041
dcf4fbde 4042/* Switch thread contexts. */
dd80620e
MS
4043
4044static void
0d1e5fa7 4045context_switch (ptid_t ptid)
dd80620e 4046{
4b51d87b 4047 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
4048 {
4049 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4050 target_pid_to_str (inferior_ptid));
4051 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 4052 target_pid_to_str (ptid));
fd48f117
DJ
4053 }
4054
0d1e5fa7 4055 switch_to_thread (ptid);
dd80620e
MS
4056}
4057
d8dd4d5f
PA
4058/* If the target can't tell whether we've hit breakpoints
4059 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4060 check whether that could have been caused by a breakpoint. If so,
4061 adjust the PC, per gdbarch_decr_pc_after_break. */
4062
4fa8626c 4063static void
d8dd4d5f
PA
4064adjust_pc_after_break (struct thread_info *thread,
4065 struct target_waitstatus *ws)
4fa8626c 4066{
24a73cce
UW
4067 struct regcache *regcache;
4068 struct gdbarch *gdbarch;
6c95b8df 4069 struct address_space *aspace;
118e6252 4070 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4071
4fa8626c
DJ
4072 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4073 we aren't, just return.
9709f61c
DJ
4074
4075 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4076 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4077 implemented by software breakpoints should be handled through the normal
4078 breakpoint layer.
8fb3e588 4079
4fa8626c
DJ
4080 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4081 different signals (SIGILL or SIGEMT for instance), but it is less
4082 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4083 gdbarch_decr_pc_after_break. I don't know any specific target that
4084 generates these signals at breakpoints (the code has been in GDB since at
4085 least 1992) so I can not guess how to handle them here.
8fb3e588 4086
e6cf7916
UW
4087 In earlier versions of GDB, a target with
4088 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4089 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4090 target with both of these set in GDB history, and it seems unlikely to be
4091 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4092
d8dd4d5f 4093 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4094 return;
4095
d8dd4d5f 4096 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4097 return;
4098
4058b839
PA
4099 /* In reverse execution, when a breakpoint is hit, the instruction
4100 under it has already been de-executed. The reported PC always
4101 points at the breakpoint address, so adjusting it further would
4102 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4103 architecture:
4104
4105 B1 0x08000000 : INSN1
4106 B2 0x08000001 : INSN2
4107 0x08000002 : INSN3
4108 PC -> 0x08000003 : INSN4
4109
4110 Say you're stopped at 0x08000003 as above. Reverse continuing
4111 from that point should hit B2 as below. Reading the PC when the
4112 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4113 been de-executed already.
4114
4115 B1 0x08000000 : INSN1
4116 B2 PC -> 0x08000001 : INSN2
4117 0x08000002 : INSN3
4118 0x08000003 : INSN4
4119
4120 We can't apply the same logic as for forward execution, because
4121 we would wrongly adjust the PC to 0x08000000, since there's a
4122 breakpoint at PC - 1. We'd then report a hit on B1, although
4123 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4124 behaviour. */
4125 if (execution_direction == EXEC_REVERSE)
4126 return;
4127
1cf4d951
PA
4128 /* If the target can tell whether the thread hit a SW breakpoint,
4129 trust it. Targets that can tell also adjust the PC
4130 themselves. */
4131 if (target_supports_stopped_by_sw_breakpoint ())
4132 return;
4133
4134 /* Note that relying on whether a breakpoint is planted in memory to
4135 determine this can fail. E.g,. the breakpoint could have been
4136 removed since. Or the thread could have been told to step an
4137 instruction the size of a breakpoint instruction, and only
4138 _after_ was a breakpoint inserted at its address. */
4139
24a73cce
UW
4140 /* If this target does not decrement the PC after breakpoints, then
4141 we have nothing to do. */
d8dd4d5f 4142 regcache = get_thread_regcache (thread->ptid);
24a73cce 4143 gdbarch = get_regcache_arch (regcache);
118e6252 4144
527a273a 4145 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4146 if (decr_pc == 0)
24a73cce
UW
4147 return;
4148
6c95b8df
PA
4149 aspace = get_regcache_aspace (regcache);
4150
8aad930b
AC
4151 /* Find the location where (if we've hit a breakpoint) the
4152 breakpoint would be. */
118e6252 4153 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4154
1cf4d951
PA
4155 /* If the target can't tell whether a software breakpoint triggered,
4156 fallback to figuring it out based on breakpoints we think were
4157 inserted in the target, and on whether the thread was stepped or
4158 continued. */
4159
1c5cfe86
PA
4160 /* Check whether there actually is a software breakpoint inserted at
4161 that location.
4162
4163 If in non-stop mode, a race condition is possible where we've
4164 removed a breakpoint, but stop events for that breakpoint were
4165 already queued and arrive later. To suppress those spurious
4166 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4167 and retire them after a number of stop events are reported. Note
4168 this is an heuristic and can thus get confused. The real fix is
4169 to get the "stopped by SW BP and needs adjustment" info out of
4170 the target/kernel (and thus never reach here; see above). */
6c95b8df 4171 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4172 || (target_is_non_stop_p ()
4173 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4174 {
77f9e713 4175 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
abbb1732 4176
8213266a 4177 if (record_full_is_used ())
77f9e713 4178 record_full_gdb_operation_disable_set ();
96429cc8 4179
1c0fdd0e
UW
4180 /* When using hardware single-step, a SIGTRAP is reported for both
4181 a completed single-step and a software breakpoint. Need to
4182 differentiate between the two, as the latter needs adjusting
4183 but the former does not.
4184
4185 The SIGTRAP can be due to a completed hardware single-step only if
4186 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4187 - this thread is currently being stepped
4188
4189 If any of these events did not occur, we must have stopped due
4190 to hitting a software breakpoint, and have to back up to the
4191 breakpoint address.
4192
4193 As a special case, we could have hardware single-stepped a
4194 software breakpoint. In this case (prev_pc == breakpoint_pc),
4195 we also need to back up to the breakpoint address. */
4196
d8dd4d5f
PA
4197 if (thread_has_single_step_breakpoints_set (thread)
4198 || !currently_stepping (thread)
4199 || (thread->stepped_breakpoint
4200 && thread->prev_pc == breakpoint_pc))
515630c5 4201 regcache_write_pc (regcache, breakpoint_pc);
96429cc8 4202
77f9e713 4203 do_cleanups (old_cleanups);
8aad930b 4204 }
4fa8626c
DJ
4205}
4206
edb3359d
DJ
4207static int
4208stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4209{
4210 for (frame = get_prev_frame (frame);
4211 frame != NULL;
4212 frame = get_prev_frame (frame))
4213 {
4214 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4215 return 1;
4216 if (get_frame_type (frame) != INLINE_FRAME)
4217 break;
4218 }
4219
4220 return 0;
4221}
4222
a96d9b2e
SDJ
4223/* Auxiliary function that handles syscall entry/return events.
4224 It returns 1 if the inferior should keep going (and GDB
4225 should ignore the event), or 0 if the event deserves to be
4226 processed. */
ca2163eb 4227
a96d9b2e 4228static int
ca2163eb 4229handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4230{
ca2163eb 4231 struct regcache *regcache;
ca2163eb
PA
4232 int syscall_number;
4233
4234 if (!ptid_equal (ecs->ptid, inferior_ptid))
4235 context_switch (ecs->ptid);
4236
4237 regcache = get_thread_regcache (ecs->ptid);
f90263c1 4238 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
4239 stop_pc = regcache_read_pc (regcache);
4240
a96d9b2e
SDJ
4241 if (catch_syscall_enabled () > 0
4242 && catching_syscall_number (syscall_number) > 0)
4243 {
4244 if (debug_infrun)
4245 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4246 syscall_number);
a96d9b2e 4247
16c381f0 4248 ecs->event_thread->control.stop_bpstat
6c95b8df 4249 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 4250 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4251
ce12b012 4252 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4253 {
4254 /* Catchpoint hit. */
ca2163eb
PA
4255 return 0;
4256 }
a96d9b2e 4257 }
ca2163eb
PA
4258
4259 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4260 keep_going (ecs);
4261 return 1;
a96d9b2e
SDJ
4262}
4263
7e324e48
GB
4264/* Lazily fill in the execution_control_state's stop_func_* fields. */
4265
4266static void
4267fill_in_stop_func (struct gdbarch *gdbarch,
4268 struct execution_control_state *ecs)
4269{
4270 if (!ecs->stop_func_filled_in)
4271 {
4272 /* Don't care about return value; stop_func_start and stop_func_name
4273 will both be 0 if it doesn't work. */
4274 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4275 &ecs->stop_func_start, &ecs->stop_func_end);
4276 ecs->stop_func_start
4277 += gdbarch_deprecated_function_start_offset (gdbarch);
4278
591a12a1
UW
4279 if (gdbarch_skip_entrypoint_p (gdbarch))
4280 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4281 ecs->stop_func_start);
4282
7e324e48
GB
4283 ecs->stop_func_filled_in = 1;
4284 }
4285}
4286
4f5d7f63
PA
4287
4288/* Return the STOP_SOON field of the inferior pointed at by PTID. */
4289
4290static enum stop_kind
4291get_inferior_stop_soon (ptid_t ptid)
4292{
c9657e70 4293 struct inferior *inf = find_inferior_ptid (ptid);
4f5d7f63
PA
4294
4295 gdb_assert (inf != NULL);
4296 return inf->control.stop_soon;
4297}
4298
372316f1
PA
4299/* Wait for one event. Store the resulting waitstatus in WS, and
4300 return the event ptid. */
4301
4302static ptid_t
4303wait_one (struct target_waitstatus *ws)
4304{
4305 ptid_t event_ptid;
4306 ptid_t wait_ptid = minus_one_ptid;
4307
4308 overlay_cache_invalid = 1;
4309
4310 /* Flush target cache before starting to handle each event.
4311 Target was running and cache could be stale. This is just a
4312 heuristic. Running threads may modify target memory, but we
4313 don't get any event. */
4314 target_dcache_invalidate ();
4315
4316 if (deprecated_target_wait_hook)
4317 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4318 else
4319 event_ptid = target_wait (wait_ptid, ws, 0);
4320
4321 if (debug_infrun)
4322 print_target_wait_results (wait_ptid, event_ptid, ws);
4323
4324 return event_ptid;
4325}
4326
4327/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4328 instead of the current thread. */
4329#define THREAD_STOPPED_BY(REASON) \
4330static int \
4331thread_stopped_by_ ## REASON (ptid_t ptid) \
4332{ \
4333 struct cleanup *old_chain; \
4334 int res; \
4335 \
4336 old_chain = save_inferior_ptid (); \
4337 inferior_ptid = ptid; \
4338 \
4339 res = target_stopped_by_ ## REASON (); \
4340 \
4341 do_cleanups (old_chain); \
4342 \
4343 return res; \
4344}
4345
4346/* Generate thread_stopped_by_watchpoint. */
4347THREAD_STOPPED_BY (watchpoint)
4348/* Generate thread_stopped_by_sw_breakpoint. */
4349THREAD_STOPPED_BY (sw_breakpoint)
4350/* Generate thread_stopped_by_hw_breakpoint. */
4351THREAD_STOPPED_BY (hw_breakpoint)
4352
4353/* Cleanups that switches to the PTID pointed at by PTID_P. */
4354
4355static void
4356switch_to_thread_cleanup (void *ptid_p)
4357{
4358 ptid_t ptid = *(ptid_t *) ptid_p;
4359
4360 switch_to_thread (ptid);
4361}
4362
4363/* Save the thread's event and stop reason to process it later. */
4364
4365static void
4366save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4367{
4368 struct regcache *regcache;
4369 struct address_space *aspace;
4370
4371 if (debug_infrun)
4372 {
4373 char *statstr;
4374
4375 statstr = target_waitstatus_to_string (ws);
4376 fprintf_unfiltered (gdb_stdlog,
4377 "infrun: saving status %s for %d.%ld.%ld\n",
4378 statstr,
4379 ptid_get_pid (tp->ptid),
4380 ptid_get_lwp (tp->ptid),
4381 ptid_get_tid (tp->ptid));
4382 xfree (statstr);
4383 }
4384
4385 /* Record for later. */
4386 tp->suspend.waitstatus = *ws;
4387 tp->suspend.waitstatus_pending_p = 1;
4388
4389 regcache = get_thread_regcache (tp->ptid);
4390 aspace = get_regcache_aspace (regcache);
4391
4392 if (ws->kind == TARGET_WAITKIND_STOPPED
4393 && ws->value.sig == GDB_SIGNAL_TRAP)
4394 {
4395 CORE_ADDR pc = regcache_read_pc (regcache);
4396
4397 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4398
4399 if (thread_stopped_by_watchpoint (tp->ptid))
4400 {
4401 tp->suspend.stop_reason
4402 = TARGET_STOPPED_BY_WATCHPOINT;
4403 }
4404 else if (target_supports_stopped_by_sw_breakpoint ()
4405 && thread_stopped_by_sw_breakpoint (tp->ptid))
4406 {
4407 tp->suspend.stop_reason
4408 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4409 }
4410 else if (target_supports_stopped_by_hw_breakpoint ()
4411 && thread_stopped_by_hw_breakpoint (tp->ptid))
4412 {
4413 tp->suspend.stop_reason
4414 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4415 }
4416 else if (!target_supports_stopped_by_hw_breakpoint ()
4417 && hardware_breakpoint_inserted_here_p (aspace,
4418 pc))
4419 {
4420 tp->suspend.stop_reason
4421 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4422 }
4423 else if (!target_supports_stopped_by_sw_breakpoint ()
4424 && software_breakpoint_inserted_here_p (aspace,
4425 pc))
4426 {
4427 tp->suspend.stop_reason
4428 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4429 }
4430 else if (!thread_has_single_step_breakpoints_set (tp)
4431 && currently_stepping (tp))
4432 {
4433 tp->suspend.stop_reason
4434 = TARGET_STOPPED_BY_SINGLE_STEP;
4435 }
4436 }
4437}
4438
6efcd9a8 4439/* See infrun.h. */
372316f1 4440
6efcd9a8 4441void
372316f1
PA
4442stop_all_threads (void)
4443{
4444 /* We may need multiple passes to discover all threads. */
4445 int pass;
4446 int iterations = 0;
4447 ptid_t entry_ptid;
4448 struct cleanup *old_chain;
4449
fbea99ea 4450 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4451
4452 if (debug_infrun)
4453 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4454
4455 entry_ptid = inferior_ptid;
4456 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4457
4458 /* Request threads to stop, and then wait for the stops. Because
4459 threads we already know about can spawn more threads while we're
4460 trying to stop them, and we only learn about new threads when we
4461 update the thread list, do this in a loop, and keep iterating
4462 until two passes find no threads that need to be stopped. */
4463 for (pass = 0; pass < 2; pass++, iterations++)
4464 {
4465 if (debug_infrun)
4466 fprintf_unfiltered (gdb_stdlog,
4467 "infrun: stop_all_threads, pass=%d, "
4468 "iterations=%d\n", pass, iterations);
4469 while (1)
4470 {
4471 ptid_t event_ptid;
4472 struct target_waitstatus ws;
4473 int need_wait = 0;
4474 struct thread_info *t;
4475
4476 update_thread_list ();
4477
4478 /* Go through all threads looking for threads that we need
4479 to tell the target to stop. */
4480 ALL_NON_EXITED_THREADS (t)
4481 {
4482 if (t->executing)
4483 {
4484 /* If already stopping, don't request a stop again.
4485 We just haven't seen the notification yet. */
4486 if (!t->stop_requested)
4487 {
4488 if (debug_infrun)
4489 fprintf_unfiltered (gdb_stdlog,
4490 "infrun: %s executing, "
4491 "need stop\n",
4492 target_pid_to_str (t->ptid));
4493 target_stop (t->ptid);
4494 t->stop_requested = 1;
4495 }
4496 else
4497 {
4498 if (debug_infrun)
4499 fprintf_unfiltered (gdb_stdlog,
4500 "infrun: %s executing, "
4501 "already stopping\n",
4502 target_pid_to_str (t->ptid));
4503 }
4504
4505 if (t->stop_requested)
4506 need_wait = 1;
4507 }
4508 else
4509 {
4510 if (debug_infrun)
4511 fprintf_unfiltered (gdb_stdlog,
4512 "infrun: %s not executing\n",
4513 target_pid_to_str (t->ptid));
4514
4515 /* The thread may be not executing, but still be
4516 resumed with a pending status to process. */
4517 t->resumed = 0;
4518 }
4519 }
4520
4521 if (!need_wait)
4522 break;
4523
4524 /* If we find new threads on the second iteration, restart
4525 over. We want to see two iterations in a row with all
4526 threads stopped. */
4527 if (pass > 0)
4528 pass = -1;
4529
4530 event_ptid = wait_one (&ws);
4531 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4532 {
4533 /* All resumed threads exited. */
4534 }
4535 else if (ws.kind == TARGET_WAITKIND_EXITED
4536 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4537 {
4538 if (debug_infrun)
4539 {
4540 ptid_t ptid = pid_to_ptid (ws.value.integer);
4541
4542 fprintf_unfiltered (gdb_stdlog,
4543 "infrun: %s exited while "
4544 "stopping threads\n",
4545 target_pid_to_str (ptid));
4546 }
4547 }
4548 else
4549 {
6efcd9a8
PA
4550 struct inferior *inf;
4551
372316f1
PA
4552 t = find_thread_ptid (event_ptid);
4553 if (t == NULL)
4554 t = add_thread (event_ptid);
4555
4556 t->stop_requested = 0;
4557 t->executing = 0;
4558 t->resumed = 0;
4559 t->control.may_range_step = 0;
4560
6efcd9a8
PA
4561 /* This may be the first time we see the inferior report
4562 a stop. */
4563 inf = find_inferior_ptid (event_ptid);
4564 if (inf->needs_setup)
4565 {
4566 switch_to_thread_no_regs (t);
4567 setup_inferior (0);
4568 }
4569
372316f1
PA
4570 if (ws.kind == TARGET_WAITKIND_STOPPED
4571 && ws.value.sig == GDB_SIGNAL_0)
4572 {
4573 /* We caught the event that we intended to catch, so
4574 there's no event pending. */
4575 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4576 t->suspend.waitstatus_pending_p = 0;
4577
4578 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4579 {
4580 /* Add it back to the step-over queue. */
4581 if (debug_infrun)
4582 {
4583 fprintf_unfiltered (gdb_stdlog,
4584 "infrun: displaced-step of %s "
4585 "canceled: adding back to the "
4586 "step-over queue\n",
4587 target_pid_to_str (t->ptid));
4588 }
4589 t->control.trap_expected = 0;
4590 thread_step_over_chain_enqueue (t);
4591 }
4592 }
4593 else
4594 {
4595 enum gdb_signal sig;
4596 struct regcache *regcache;
4597 struct address_space *aspace;
4598
4599 if (debug_infrun)
4600 {
4601 char *statstr;
4602
4603 statstr = target_waitstatus_to_string (&ws);
4604 fprintf_unfiltered (gdb_stdlog,
4605 "infrun: target_wait %s, saving "
4606 "status for %d.%ld.%ld\n",
4607 statstr,
4608 ptid_get_pid (t->ptid),
4609 ptid_get_lwp (t->ptid),
4610 ptid_get_tid (t->ptid));
4611 xfree (statstr);
4612 }
4613
4614 /* Record for later. */
4615 save_waitstatus (t, &ws);
4616
4617 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4618 ? ws.value.sig : GDB_SIGNAL_0);
4619
4620 if (displaced_step_fixup (t->ptid, sig) < 0)
4621 {
4622 /* Add it back to the step-over queue. */
4623 t->control.trap_expected = 0;
4624 thread_step_over_chain_enqueue (t);
4625 }
4626
4627 regcache = get_thread_regcache (t->ptid);
4628 t->suspend.stop_pc = regcache_read_pc (regcache);
4629
4630 if (debug_infrun)
4631 {
4632 fprintf_unfiltered (gdb_stdlog,
4633 "infrun: saved stop_pc=%s for %s "
4634 "(currently_stepping=%d)\n",
4635 paddress (target_gdbarch (),
4636 t->suspend.stop_pc),
4637 target_pid_to_str (t->ptid),
4638 currently_stepping (t));
4639 }
4640 }
4641 }
4642 }
4643 }
4644
4645 do_cleanups (old_chain);
4646
4647 if (debug_infrun)
4648 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4649}
4650
05ba8510
PA
4651/* Given an execution control state that has been freshly filled in by
4652 an event from the inferior, figure out what it means and take
4653 appropriate action.
4654
4655 The alternatives are:
4656
22bcd14b 4657 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4658 debugger.
4659
4660 2) keep_going and return; to wait for the next event (set
4661 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4662 once). */
c906108c 4663
ec9499be 4664static void
0b6e5e10 4665handle_inferior_event_1 (struct execution_control_state *ecs)
cd0fc7c3 4666{
d6b48e9c
PA
4667 enum stop_kind stop_soon;
4668
28736962
PA
4669 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4670 {
4671 /* We had an event in the inferior, but we are not interested in
4672 handling it at this level. The lower layers have already
4673 done what needs to be done, if anything.
4674
4675 One of the possible circumstances for this is when the
4676 inferior produces output for the console. The inferior has
4677 not stopped, and we are ignoring the event. Another possible
4678 circumstance is any event which the lower level knows will be
4679 reported multiple times without an intervening resume. */
4680 if (debug_infrun)
4681 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4682 prepare_to_wait (ecs);
4683 return;
4684 }
4685
0e5bf2a8
PA
4686 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4687 && target_can_async_p () && !sync_execution)
4688 {
4689 /* There were no unwaited-for children left in the target, but,
4690 we're not synchronously waiting for events either. Just
4691 ignore. Otherwise, if we were running a synchronous
4692 execution command, we need to cancel it and give the user
4693 back the terminal. */
4694 if (debug_infrun)
4695 fprintf_unfiltered (gdb_stdlog,
4696 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
4697 prepare_to_wait (ecs);
4698 return;
4699 }
4700
1777feb0 4701 /* Cache the last pid/waitstatus. */
c32c64b7 4702 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4703
ca005067 4704 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4705 stop_stack_dummy = STOP_NONE;
ca005067 4706
0e5bf2a8
PA
4707 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4708 {
4709 /* No unwaited-for children left. IOW, all resumed children
4710 have exited. */
4711 if (debug_infrun)
4712 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4713
4714 stop_print_frame = 0;
22bcd14b 4715 stop_waiting (ecs);
0e5bf2a8
PA
4716 return;
4717 }
4718
8c90c137 4719 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4720 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4721 {
4722 ecs->event_thread = find_thread_ptid (ecs->ptid);
4723 /* If it's a new thread, add it to the thread database. */
4724 if (ecs->event_thread == NULL)
4725 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4726
4727 /* Disable range stepping. If the next step request could use a
4728 range, this will be end up re-enabled then. */
4729 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4730 }
88ed393a
JK
4731
4732 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4733 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4734
4735 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4736 reinit_frame_cache ();
4737
28736962
PA
4738 breakpoint_retire_moribund ();
4739
2b009048
DJ
4740 /* First, distinguish signals caused by the debugger from signals
4741 that have to do with the program's own actions. Note that
4742 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4743 on the operating system version. Here we detect when a SIGILL or
4744 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4745 something similar for SIGSEGV, since a SIGSEGV will be generated
4746 when we're trying to execute a breakpoint instruction on a
4747 non-executable stack. This happens for call dummy breakpoints
4748 for architectures like SPARC that place call dummies on the
4749 stack. */
2b009048 4750 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4751 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4752 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4753 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4754 {
de0a0249
UW
4755 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4756
4757 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4758 regcache_read_pc (regcache)))
4759 {
4760 if (debug_infrun)
4761 fprintf_unfiltered (gdb_stdlog,
4762 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4763 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4764 }
2b009048
DJ
4765 }
4766
28736962
PA
4767 /* Mark the non-executing threads accordingly. In all-stop, all
4768 threads of all processes are stopped when we get any event
e1316e60 4769 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4770 {
4771 ptid_t mark_ptid;
4772
fbea99ea 4773 if (!target_is_non_stop_p ())
372316f1
PA
4774 mark_ptid = minus_one_ptid;
4775 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4776 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4777 {
4778 /* If we're handling a process exit in non-stop mode, even
4779 though threads haven't been deleted yet, one would think
4780 that there is nothing to do, as threads of the dead process
4781 will be soon deleted, and threads of any other process were
4782 left running. However, on some targets, threads survive a
4783 process exit event. E.g., for the "checkpoint" command,
4784 when the current checkpoint/fork exits, linux-fork.c
4785 automatically switches to another fork from within
4786 target_mourn_inferior, by associating the same
4787 inferior/thread to another fork. We haven't mourned yet at
4788 this point, but we must mark any threads left in the
4789 process as not-executing so that finish_thread_state marks
4790 them stopped (in the user's perspective) if/when we present
4791 the stop to the user. */
4792 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4793 }
4794 else
4795 mark_ptid = ecs->ptid;
4796
4797 set_executing (mark_ptid, 0);
4798
4799 /* Likewise the resumed flag. */
4800 set_resumed (mark_ptid, 0);
4801 }
8c90c137 4802
488f131b
JB
4803 switch (ecs->ws.kind)
4804 {
4805 case TARGET_WAITKIND_LOADED:
527159b7 4806 if (debug_infrun)
8a9de0e4 4807 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
5c09a2c5
PA
4808 if (!ptid_equal (ecs->ptid, inferior_ptid))
4809 context_switch (ecs->ptid);
b0f4b84b
DJ
4810 /* Ignore gracefully during startup of the inferior, as it might
4811 be the shell which has just loaded some objects, otherwise
4812 add the symbols for the newly loaded objects. Also ignore at
4813 the beginning of an attach or remote session; we will query
4814 the full list of libraries once the connection is
4815 established. */
4f5d7f63
PA
4816
4817 stop_soon = get_inferior_stop_soon (ecs->ptid);
c0236d92 4818 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4819 {
edcc5120
TT
4820 struct regcache *regcache;
4821
edcc5120
TT
4822 regcache = get_thread_regcache (ecs->ptid);
4823
4824 handle_solib_event ();
4825
4826 ecs->event_thread->control.stop_bpstat
4827 = bpstat_stop_status (get_regcache_aspace (regcache),
4828 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4829
ce12b012 4830 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4831 {
4832 /* A catchpoint triggered. */
94c57d6a
PA
4833 process_event_stop_test (ecs);
4834 return;
edcc5120 4835 }
488f131b 4836
b0f4b84b
DJ
4837 /* If requested, stop when the dynamic linker notifies
4838 gdb of events. This allows the user to get control
4839 and place breakpoints in initializer routines for
4840 dynamically loaded objects (among other things). */
a493e3e2 4841 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4842 if (stop_on_solib_events)
4843 {
55409f9d
DJ
4844 /* Make sure we print "Stopped due to solib-event" in
4845 normal_stop. */
4846 stop_print_frame = 1;
4847
22bcd14b 4848 stop_waiting (ecs);
b0f4b84b
DJ
4849 return;
4850 }
488f131b 4851 }
b0f4b84b
DJ
4852
4853 /* If we are skipping through a shell, or through shared library
4854 loading that we aren't interested in, resume the program. If
5c09a2c5 4855 we're running the program normally, also resume. */
b0f4b84b
DJ
4856 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4857 {
74960c60
VP
4858 /* Loading of shared libraries might have changed breakpoint
4859 addresses. Make sure new breakpoints are inserted. */
a25a5a45 4860 if (stop_soon == NO_STOP_QUIETLY)
74960c60 4861 insert_breakpoints ();
64ce06e4 4862 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
4863 prepare_to_wait (ecs);
4864 return;
4865 }
4866
5c09a2c5
PA
4867 /* But stop if we're attaching or setting up a remote
4868 connection. */
4869 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4870 || stop_soon == STOP_QUIETLY_REMOTE)
4871 {
4872 if (debug_infrun)
4873 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 4874 stop_waiting (ecs);
5c09a2c5
PA
4875 return;
4876 }
4877
4878 internal_error (__FILE__, __LINE__,
4879 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 4880
488f131b 4881 case TARGET_WAITKIND_SPURIOUS:
527159b7 4882 if (debug_infrun)
8a9de0e4 4883 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 4884 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 4885 context_switch (ecs->ptid);
64ce06e4 4886 resume (GDB_SIGNAL_0);
488f131b
JB
4887 prepare_to_wait (ecs);
4888 return;
c5aa993b 4889
488f131b 4890 case TARGET_WAITKIND_EXITED:
940c3c06 4891 case TARGET_WAITKIND_SIGNALLED:
527159b7 4892 if (debug_infrun)
940c3c06
PA
4893 {
4894 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4895 fprintf_unfiltered (gdb_stdlog,
4896 "infrun: TARGET_WAITKIND_EXITED\n");
4897 else
4898 fprintf_unfiltered (gdb_stdlog,
4899 "infrun: TARGET_WAITKIND_SIGNALLED\n");
4900 }
4901
fb66883a 4902 inferior_ptid = ecs->ptid;
c9657e70 4903 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
4904 set_current_program_space (current_inferior ()->pspace);
4905 handle_vfork_child_exec_or_exit (0);
1777feb0 4906 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 4907
0c557179
SDJ
4908 /* Clearing any previous state of convenience variables. */
4909 clear_exit_convenience_vars ();
4910
940c3c06
PA
4911 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4912 {
4913 /* Record the exit code in the convenience variable $_exitcode, so
4914 that the user can inspect this again later. */
4915 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4916 (LONGEST) ecs->ws.value.integer);
4917
4918 /* Also record this in the inferior itself. */
4919 current_inferior ()->has_exit_code = 1;
4920 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 4921
98eb56a4
PA
4922 /* Support the --return-child-result option. */
4923 return_child_result_value = ecs->ws.value.integer;
4924
fd664c91 4925 observer_notify_exited (ecs->ws.value.integer);
940c3c06
PA
4926 }
4927 else
0c557179
SDJ
4928 {
4929 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4930 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4931
4932 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4933 {
4934 /* Set the value of the internal variable $_exitsignal,
4935 which holds the signal uncaught by the inferior. */
4936 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4937 gdbarch_gdb_signal_to_target (gdbarch,
4938 ecs->ws.value.sig));
4939 }
4940 else
4941 {
4942 /* We don't have access to the target's method used for
4943 converting between signal numbers (GDB's internal
4944 representation <-> target's representation).
4945 Therefore, we cannot do a good job at displaying this
4946 information to the user. It's better to just warn
4947 her about it (if infrun debugging is enabled), and
4948 give up. */
4949 if (debug_infrun)
4950 fprintf_filtered (gdb_stdlog, _("\
4951Cannot fill $_exitsignal with the correct signal number.\n"));
4952 }
4953
fd664c91 4954 observer_notify_signal_exited (ecs->ws.value.sig);
0c557179 4955 }
8cf64490 4956
488f131b
JB
4957 gdb_flush (gdb_stdout);
4958 target_mourn_inferior ();
488f131b 4959 stop_print_frame = 0;
22bcd14b 4960 stop_waiting (ecs);
488f131b 4961 return;
c5aa993b 4962
488f131b 4963 /* The following are the only cases in which we keep going;
1777feb0 4964 the above cases end in a continue or goto. */
488f131b 4965 case TARGET_WAITKIND_FORKED:
deb3b17b 4966 case TARGET_WAITKIND_VFORKED:
527159b7 4967 if (debug_infrun)
fed708ed
PA
4968 {
4969 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4970 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
4971 else
4972 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
4973 }
c906108c 4974
e2d96639
YQ
4975 /* Check whether the inferior is displaced stepping. */
4976 {
4977 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4978 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e2d96639
YQ
4979
4980 /* If checking displaced stepping is supported, and thread
4981 ecs->ptid is displaced stepping. */
c0987663 4982 if (displaced_step_in_progress_thread (ecs->ptid))
e2d96639
YQ
4983 {
4984 struct inferior *parent_inf
c9657e70 4985 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
4986 struct regcache *child_regcache;
4987 CORE_ADDR parent_pc;
4988
4989 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4990 indicating that the displaced stepping of syscall instruction
4991 has been done. Perform cleanup for parent process here. Note
4992 that this operation also cleans up the child process for vfork,
4993 because their pages are shared. */
a493e3e2 4994 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
c2829269
PA
4995 /* Start a new step-over in another thread if there's one
4996 that needs it. */
4997 start_step_over ();
e2d96639
YQ
4998
4999 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5000 {
c0987663
YQ
5001 struct displaced_step_inferior_state *displaced
5002 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
5003
e2d96639
YQ
5004 /* Restore scratch pad for child process. */
5005 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5006 }
5007
5008 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5009 the child's PC is also within the scratchpad. Set the child's PC
5010 to the parent's PC value, which has already been fixed up.
5011 FIXME: we use the parent's aspace here, although we're touching
5012 the child, because the child hasn't been added to the inferior
5013 list yet at this point. */
5014
5015 child_regcache
5016 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5017 gdbarch,
5018 parent_inf->aspace);
5019 /* Read PC value of parent process. */
5020 parent_pc = regcache_read_pc (regcache);
5021
5022 if (debug_displaced)
5023 fprintf_unfiltered (gdb_stdlog,
5024 "displaced: write child pc from %s to %s\n",
5025 paddress (gdbarch,
5026 regcache_read_pc (child_regcache)),
5027 paddress (gdbarch, parent_pc));
5028
5029 regcache_write_pc (child_regcache, parent_pc);
5030 }
5031 }
5032
5a2901d9 5033 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 5034 context_switch (ecs->ptid);
5a2901d9 5035
b242c3c2
PA
5036 /* Immediately detach breakpoints from the child before there's
5037 any chance of letting the user delete breakpoints from the
5038 breakpoint lists. If we don't do this early, it's easy to
5039 leave left over traps in the child, vis: "break foo; catch
5040 fork; c; <fork>; del; c; <child calls foo>". We only follow
5041 the fork on the last `continue', and by that time the
5042 breakpoint at "foo" is long gone from the breakpoint table.
5043 If we vforked, then we don't need to unpatch here, since both
5044 parent and child are sharing the same memory pages; we'll
5045 need to unpatch at follow/detach time instead to be certain
5046 that new breakpoints added between catchpoint hit time and
5047 vfork follow are detached. */
5048 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5049 {
b242c3c2
PA
5050 /* This won't actually modify the breakpoint list, but will
5051 physically remove the breakpoints from the child. */
d80ee84f 5052 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5053 }
5054
34b7e8a6 5055 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5056
e58b0e63
PA
5057 /* In case the event is caught by a catchpoint, remember that
5058 the event is to be followed at the next resume of the thread,
5059 and not immediately. */
5060 ecs->event_thread->pending_follow = ecs->ws;
5061
fb14de7b 5062 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 5063
16c381f0 5064 ecs->event_thread->control.stop_bpstat
6c95b8df 5065 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 5066 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 5067
ce12b012
PA
5068 /* If no catchpoint triggered for this, then keep going. Note
5069 that we're interested in knowing the bpstat actually causes a
5070 stop, not just if it may explain the signal. Software
5071 watchpoints, for example, always appear in the bpstat. */
5072 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5073 {
6c95b8df
PA
5074 ptid_t parent;
5075 ptid_t child;
e58b0e63 5076 int should_resume;
3e43a32a
MS
5077 int follow_child
5078 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5079
a493e3e2 5080 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
5081
5082 should_resume = follow_fork ();
5083
6c95b8df
PA
5084 parent = ecs->ptid;
5085 child = ecs->ws.value.related_pid;
5086
5087 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5088 if (!detach_fork && (non_stop
5089 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5090 {
5091 if (follow_child)
5092 switch_to_thread (parent);
5093 else
5094 switch_to_thread (child);
5095
5096 ecs->event_thread = inferior_thread ();
5097 ecs->ptid = inferior_ptid;
5098 keep_going (ecs);
5099 }
5100
5101 if (follow_child)
5102 switch_to_thread (child);
5103 else
5104 switch_to_thread (parent);
5105
e58b0e63
PA
5106 ecs->event_thread = inferior_thread ();
5107 ecs->ptid = inferior_ptid;
5108
5109 if (should_resume)
5110 keep_going (ecs);
5111 else
22bcd14b 5112 stop_waiting (ecs);
04e68871
DJ
5113 return;
5114 }
94c57d6a
PA
5115 process_event_stop_test (ecs);
5116 return;
488f131b 5117
6c95b8df
PA
5118 case TARGET_WAITKIND_VFORK_DONE:
5119 /* Done with the shared memory region. Re-insert breakpoints in
5120 the parent, and keep going. */
5121
5122 if (debug_infrun)
3e43a32a
MS
5123 fprintf_unfiltered (gdb_stdlog,
5124 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
5125
5126 if (!ptid_equal (ecs->ptid, inferior_ptid))
5127 context_switch (ecs->ptid);
5128
5129 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5130 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
5131 /* This also takes care of reinserting breakpoints in the
5132 previously locked inferior. */
5133 keep_going (ecs);
5134 return;
5135
488f131b 5136 case TARGET_WAITKIND_EXECD:
527159b7 5137 if (debug_infrun)
fc5261f2 5138 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 5139
5a2901d9 5140 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 5141 context_switch (ecs->ptid);
5a2901d9 5142
fb14de7b 5143 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 5144
6c95b8df
PA
5145 /* Do whatever is necessary to the parent branch of the vfork. */
5146 handle_vfork_child_exec_or_exit (1);
5147
795e548f
PA
5148 /* This causes the eventpoints and symbol table to be reset.
5149 Must do this now, before trying to determine whether to
5150 stop. */
71b43ef8 5151 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5152
17d8546e
DB
5153 /* In follow_exec we may have deleted the original thread and
5154 created a new one. Make sure that the event thread is the
5155 execd thread for that case (this is a nop otherwise). */
5156 ecs->event_thread = inferior_thread ();
5157
16c381f0 5158 ecs->event_thread->control.stop_bpstat
6c95b8df 5159 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 5160 stop_pc, ecs->ptid, &ecs->ws);
795e548f 5161
71b43ef8
PA
5162 /* Note that this may be referenced from inside
5163 bpstat_stop_status above, through inferior_has_execd. */
5164 xfree (ecs->ws.value.execd_pathname);
5165 ecs->ws.value.execd_pathname = NULL;
5166
04e68871 5167 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5168 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5169 {
a493e3e2 5170 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5171 keep_going (ecs);
5172 return;
5173 }
94c57d6a
PA
5174 process_event_stop_test (ecs);
5175 return;
488f131b 5176
b4dc5ffa
MK
5177 /* Be careful not to try to gather much state about a thread
5178 that's in a syscall. It's frequently a losing proposition. */
488f131b 5179 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 5180 if (debug_infrun)
3e43a32a
MS
5181 fprintf_unfiltered (gdb_stdlog,
5182 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 5183 /* Getting the current syscall number. */
94c57d6a
PA
5184 if (handle_syscall_event (ecs) == 0)
5185 process_event_stop_test (ecs);
5186 return;
c906108c 5187
488f131b
JB
5188 /* Before examining the threads further, step this thread to
5189 get it entirely out of the syscall. (We get notice of the
5190 event when the thread is just on the verge of exiting a
5191 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5192 into user code.) */
488f131b 5193 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 5194 if (debug_infrun)
3e43a32a
MS
5195 fprintf_unfiltered (gdb_stdlog,
5196 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
5197 if (handle_syscall_event (ecs) == 0)
5198 process_event_stop_test (ecs);
5199 return;
c906108c 5200
488f131b 5201 case TARGET_WAITKIND_STOPPED:
527159b7 5202 if (debug_infrun)
8a9de0e4 5203 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 5204 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
4f5d7f63
PA
5205 handle_signal_stop (ecs);
5206 return;
c906108c 5207
b2175913 5208 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
5209 if (debug_infrun)
5210 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 5211 /* Reverse execution: target ran out of history info. */
eab402df 5212
d1988021
MM
5213 /* Switch to the stopped thread. */
5214 if (!ptid_equal (ecs->ptid, inferior_ptid))
5215 context_switch (ecs->ptid);
5216 if (debug_infrun)
5217 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5218
34b7e8a6 5219 delete_just_stopped_threads_single_step_breakpoints ();
d1988021 5220 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
fd664c91 5221 observer_notify_no_history ();
22bcd14b 5222 stop_waiting (ecs);
b2175913 5223 return;
488f131b 5224 }
4f5d7f63
PA
5225}
5226
0b6e5e10
JB
5227/* A wrapper around handle_inferior_event_1, which also makes sure
5228 that all temporary struct value objects that were created during
5229 the handling of the event get deleted at the end. */
5230
5231static void
5232handle_inferior_event (struct execution_control_state *ecs)
5233{
5234 struct value *mark = value_mark ();
5235
5236 handle_inferior_event_1 (ecs);
5237 /* Purge all temporary values created during the event handling,
5238 as it could be a long time before we return to the command level
5239 where such values would otherwise be purged. */
5240 value_free_to_mark (mark);
5241}
5242
372316f1
PA
5243/* Restart threads back to what they were trying to do back when we
5244 paused them for an in-line step-over. The EVENT_THREAD thread is
5245 ignored. */
4d9d9d04
PA
5246
5247static void
372316f1
PA
5248restart_threads (struct thread_info *event_thread)
5249{
5250 struct thread_info *tp;
5251 struct thread_info *step_over = NULL;
5252
5253 /* In case the instruction just stepped spawned a new thread. */
5254 update_thread_list ();
5255
5256 ALL_NON_EXITED_THREADS (tp)
5257 {
5258 if (tp == event_thread)
5259 {
5260 if (debug_infrun)
5261 fprintf_unfiltered (gdb_stdlog,
5262 "infrun: restart threads: "
5263 "[%s] is event thread\n",
5264 target_pid_to_str (tp->ptid));
5265 continue;
5266 }
5267
5268 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5269 {
5270 if (debug_infrun)
5271 fprintf_unfiltered (gdb_stdlog,
5272 "infrun: restart threads: "
5273 "[%s] not meant to be running\n",
5274 target_pid_to_str (tp->ptid));
5275 continue;
5276 }
5277
5278 if (tp->resumed)
5279 {
5280 if (debug_infrun)
5281 fprintf_unfiltered (gdb_stdlog,
5282 "infrun: restart threads: [%s] resumed\n",
5283 target_pid_to_str (tp->ptid));
5284 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5285 continue;
5286 }
5287
5288 if (thread_is_in_step_over_chain (tp))
5289 {
5290 if (debug_infrun)
5291 fprintf_unfiltered (gdb_stdlog,
5292 "infrun: restart threads: "
5293 "[%s] needs step-over\n",
5294 target_pid_to_str (tp->ptid));
5295 gdb_assert (!tp->resumed);
5296 continue;
5297 }
5298
5299
5300 if (tp->suspend.waitstatus_pending_p)
5301 {
5302 if (debug_infrun)
5303 fprintf_unfiltered (gdb_stdlog,
5304 "infrun: restart threads: "
5305 "[%s] has pending status\n",
5306 target_pid_to_str (tp->ptid));
5307 tp->resumed = 1;
5308 continue;
5309 }
5310
5311 /* If some thread needs to start a step-over at this point, it
5312 should still be in the step-over queue, and thus skipped
5313 above. */
5314 if (thread_still_needs_step_over (tp))
5315 {
5316 internal_error (__FILE__, __LINE__,
5317 "thread [%s] needs a step-over, but not in "
5318 "step-over queue\n",
5319 target_pid_to_str (tp->ptid));
5320 }
5321
5322 if (currently_stepping (tp))
5323 {
5324 if (debug_infrun)
5325 fprintf_unfiltered (gdb_stdlog,
5326 "infrun: restart threads: [%s] was stepping\n",
5327 target_pid_to_str (tp->ptid));
5328 keep_going_stepped_thread (tp);
5329 }
5330 else
5331 {
5332 struct execution_control_state ecss;
5333 struct execution_control_state *ecs = &ecss;
5334
5335 if (debug_infrun)
5336 fprintf_unfiltered (gdb_stdlog,
5337 "infrun: restart threads: [%s] continuing\n",
5338 target_pid_to_str (tp->ptid));
5339 reset_ecs (ecs, tp);
5340 switch_to_thread (tp->ptid);
5341 keep_going_pass_signal (ecs);
5342 }
5343 }
5344}
5345
5346/* Callback for iterate_over_threads. Find a resumed thread that has
5347 a pending waitstatus. */
5348
5349static int
5350resumed_thread_with_pending_status (struct thread_info *tp,
5351 void *arg)
5352{
5353 return (tp->resumed
5354 && tp->suspend.waitstatus_pending_p);
5355}
5356
5357/* Called when we get an event that may finish an in-line or
5358 out-of-line (displaced stepping) step-over started previously.
5359 Return true if the event is processed and we should go back to the
5360 event loop; false if the caller should continue processing the
5361 event. */
5362
5363static int
4d9d9d04
PA
5364finish_step_over (struct execution_control_state *ecs)
5365{
372316f1
PA
5366 int had_step_over_info;
5367
4d9d9d04
PA
5368 displaced_step_fixup (ecs->ptid,
5369 ecs->event_thread->suspend.stop_signal);
5370
372316f1
PA
5371 had_step_over_info = step_over_info_valid_p ();
5372
5373 if (had_step_over_info)
4d9d9d04
PA
5374 {
5375 /* If we're stepping over a breakpoint with all threads locked,
5376 then only the thread that was stepped should be reporting
5377 back an event. */
5378 gdb_assert (ecs->event_thread->control.trap_expected);
5379
5380 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5381 clear_step_over_info ();
5382 }
5383
fbea99ea 5384 if (!target_is_non_stop_p ())
372316f1 5385 return 0;
4d9d9d04
PA
5386
5387 /* Start a new step-over in another thread if there's one that
5388 needs it. */
5389 start_step_over ();
372316f1
PA
5390
5391 /* If we were stepping over a breakpoint before, and haven't started
5392 a new in-line step-over sequence, then restart all other threads
5393 (except the event thread). We can't do this in all-stop, as then
5394 e.g., we wouldn't be able to issue any other remote packet until
5395 these other threads stop. */
5396 if (had_step_over_info && !step_over_info_valid_p ())
5397 {
5398 struct thread_info *pending;
5399
5400 /* If we only have threads with pending statuses, the restart
5401 below won't restart any thread and so nothing re-inserts the
5402 breakpoint we just stepped over. But we need it inserted
5403 when we later process the pending events, otherwise if
5404 another thread has a pending event for this breakpoint too,
5405 we'd discard its event (because the breakpoint that
5406 originally caused the event was no longer inserted). */
5407 context_switch (ecs->ptid);
5408 insert_breakpoints ();
5409
5410 restart_threads (ecs->event_thread);
5411
5412 /* If we have events pending, go through handle_inferior_event
5413 again, picking up a pending event at random. This avoids
5414 thread starvation. */
5415
5416 /* But not if we just stepped over a watchpoint in order to let
5417 the instruction execute so we can evaluate its expression.
5418 The set of watchpoints that triggered is recorded in the
5419 breakpoint objects themselves (see bp->watchpoint_triggered).
5420 If we processed another event first, that other event could
5421 clobber this info. */
5422 if (ecs->event_thread->stepping_over_watchpoint)
5423 return 0;
5424
5425 pending = iterate_over_threads (resumed_thread_with_pending_status,
5426 NULL);
5427 if (pending != NULL)
5428 {
5429 struct thread_info *tp = ecs->event_thread;
5430 struct regcache *regcache;
5431
5432 if (debug_infrun)
5433 {
5434 fprintf_unfiltered (gdb_stdlog,
5435 "infrun: found resumed threads with "
5436 "pending events, saving status\n");
5437 }
5438
5439 gdb_assert (pending != tp);
5440
5441 /* Record the event thread's event for later. */
5442 save_waitstatus (tp, &ecs->ws);
5443 /* This was cleared early, by handle_inferior_event. Set it
5444 so this pending event is considered by
5445 do_target_wait. */
5446 tp->resumed = 1;
5447
5448 gdb_assert (!tp->executing);
5449
5450 regcache = get_thread_regcache (tp->ptid);
5451 tp->suspend.stop_pc = regcache_read_pc (regcache);
5452
5453 if (debug_infrun)
5454 {
5455 fprintf_unfiltered (gdb_stdlog,
5456 "infrun: saved stop_pc=%s for %s "
5457 "(currently_stepping=%d)\n",
5458 paddress (target_gdbarch (),
5459 tp->suspend.stop_pc),
5460 target_pid_to_str (tp->ptid),
5461 currently_stepping (tp));
5462 }
5463
5464 /* This in-line step-over finished; clear this so we won't
5465 start a new one. This is what handle_signal_stop would
5466 do, if we returned false. */
5467 tp->stepping_over_breakpoint = 0;
5468
5469 /* Wake up the event loop again. */
5470 mark_async_event_handler (infrun_async_inferior_event_token);
5471
5472 prepare_to_wait (ecs);
5473 return 1;
5474 }
5475 }
5476
5477 return 0;
4d9d9d04
PA
5478}
5479
4f5d7f63
PA
5480/* Come here when the program has stopped with a signal. */
5481
5482static void
5483handle_signal_stop (struct execution_control_state *ecs)
5484{
5485 struct frame_info *frame;
5486 struct gdbarch *gdbarch;
5487 int stopped_by_watchpoint;
5488 enum stop_kind stop_soon;
5489 int random_signal;
c906108c 5490
f0407826
DE
5491 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5492
5493 /* Do we need to clean up the state of a thread that has
5494 completed a displaced single-step? (Doing so usually affects
5495 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5496 if (finish_step_over (ecs))
5497 return;
f0407826
DE
5498
5499 /* If we either finished a single-step or hit a breakpoint, but
5500 the user wanted this thread to be stopped, pretend we got a
5501 SIG0 (generic unsignaled stop). */
5502 if (ecs->event_thread->stop_requested
5503 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5504 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5505
515630c5 5506 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 5507
527159b7 5508 if (debug_infrun)
237fc4c9 5509 {
5af949e3
UW
5510 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5511 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
5512 struct cleanup *old_chain = save_inferior_ptid ();
5513
5514 inferior_ptid = ecs->ptid;
5af949e3
UW
5515
5516 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5517 paddress (gdbarch, stop_pc));
d92524f1 5518 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5519 {
5520 CORE_ADDR addr;
abbb1732 5521
237fc4c9
PA
5522 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5523
5524 if (target_stopped_data_address (&current_target, &addr))
5525 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5526 "infrun: stopped data address = %s\n",
5527 paddress (gdbarch, addr));
237fc4c9
PA
5528 else
5529 fprintf_unfiltered (gdb_stdlog,
5530 "infrun: (no data address available)\n");
5531 }
7f82dfc7
JK
5532
5533 do_cleanups (old_chain);
237fc4c9 5534 }
527159b7 5535
36fa8042
PA
5536 /* This is originated from start_remote(), start_inferior() and
5537 shared libraries hook functions. */
5538 stop_soon = get_inferior_stop_soon (ecs->ptid);
5539 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5540 {
5541 if (!ptid_equal (ecs->ptid, inferior_ptid))
5542 context_switch (ecs->ptid);
5543 if (debug_infrun)
5544 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5545 stop_print_frame = 1;
22bcd14b 5546 stop_waiting (ecs);
36fa8042
PA
5547 return;
5548 }
5549
36fa8042
PA
5550 /* This originates from attach_command(). We need to overwrite
5551 the stop_signal here, because some kernels don't ignore a
5552 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5553 See more comments in inferior.h. On the other hand, if we
5554 get a non-SIGSTOP, report it to the user - assume the backend
5555 will handle the SIGSTOP if it should show up later.
5556
5557 Also consider that the attach is complete when we see a
5558 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5559 target extended-remote report it instead of a SIGSTOP
5560 (e.g. gdbserver). We already rely on SIGTRAP being our
5561 signal, so this is no exception.
5562
5563 Also consider that the attach is complete when we see a
5564 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5565 the target to stop all threads of the inferior, in case the
5566 low level attach operation doesn't stop them implicitly. If
5567 they weren't stopped implicitly, then the stub will report a
5568 GDB_SIGNAL_0, meaning: stopped for no particular reason
5569 other than GDB's request. */
5570 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5571 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5572 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5573 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5574 {
5575 stop_print_frame = 1;
22bcd14b 5576 stop_waiting (ecs);
36fa8042
PA
5577 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5578 return;
5579 }
5580
488f131b 5581 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
5582 so, then switch to that thread. */
5583 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 5584 {
527159b7 5585 if (debug_infrun)
8a9de0e4 5586 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5587
0d1e5fa7 5588 context_switch (ecs->ptid);
c5aa993b 5589
9a4105ab
AC
5590 if (deprecated_context_hook)
5591 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 5592 }
c906108c 5593
568d6575
UW
5594 /* At this point, get hold of the now-current thread's frame. */
5595 frame = get_current_frame ();
5596 gdbarch = get_frame_arch (frame);
5597
2adfaa28 5598 /* Pull the single step breakpoints out of the target. */
af48d08f 5599 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5600 {
af48d08f
PA
5601 struct regcache *regcache;
5602 struct address_space *aspace;
5603 CORE_ADDR pc;
2adfaa28 5604
af48d08f
PA
5605 regcache = get_thread_regcache (ecs->ptid);
5606 aspace = get_regcache_aspace (regcache);
5607 pc = regcache_read_pc (regcache);
34b7e8a6 5608
af48d08f
PA
5609 /* However, before doing so, if this single-step breakpoint was
5610 actually for another thread, set this thread up for moving
5611 past it. */
5612 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5613 aspace, pc))
5614 {
5615 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5616 {
5617 if (debug_infrun)
5618 {
5619 fprintf_unfiltered (gdb_stdlog,
af48d08f 5620 "infrun: [%s] hit another thread's "
34b7e8a6
PA
5621 "single-step breakpoint\n",
5622 target_pid_to_str (ecs->ptid));
2adfaa28 5623 }
af48d08f
PA
5624 ecs->hit_singlestep_breakpoint = 1;
5625 }
5626 }
5627 else
5628 {
5629 if (debug_infrun)
5630 {
5631 fprintf_unfiltered (gdb_stdlog,
5632 "infrun: [%s] hit its "
5633 "single-step breakpoint\n",
5634 target_pid_to_str (ecs->ptid));
2adfaa28
PA
5635 }
5636 }
488f131b 5637 }
af48d08f 5638 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5639
963f9c80
PA
5640 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5641 && ecs->event_thread->control.trap_expected
5642 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5643 stopped_by_watchpoint = 0;
5644 else
5645 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5646
5647 /* If necessary, step over this watchpoint. We'll be back to display
5648 it in a moment. */
5649 if (stopped_by_watchpoint
d92524f1 5650 && (target_have_steppable_watchpoint
568d6575 5651 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5652 {
488f131b
JB
5653 /* At this point, we are stopped at an instruction which has
5654 attempted to write to a piece of memory under control of
5655 a watchpoint. The instruction hasn't actually executed
5656 yet. If we were to evaluate the watchpoint expression
5657 now, we would get the old value, and therefore no change
5658 would seem to have occurred.
5659
5660 In order to make watchpoints work `right', we really need
5661 to complete the memory write, and then evaluate the
d983da9c
DJ
5662 watchpoint expression. We do this by single-stepping the
5663 target.
5664
7f89fd65 5665 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5666 it. For example, the PA can (with some kernel cooperation)
5667 single step over a watchpoint without disabling the watchpoint.
5668
5669 It is far more common to need to disable a watchpoint to step
5670 the inferior over it. If we have non-steppable watchpoints,
5671 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5672 disable all watchpoints.
5673
5674 Any breakpoint at PC must also be stepped over -- if there's
5675 one, it will have already triggered before the watchpoint
5676 triggered, and we either already reported it to the user, or
5677 it didn't cause a stop and we called keep_going. In either
5678 case, if there was a breakpoint at PC, we must be trying to
5679 step past it. */
5680 ecs->event_thread->stepping_over_watchpoint = 1;
5681 keep_going (ecs);
488f131b
JB
5682 return;
5683 }
5684
4e1c45ea 5685 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5686 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5687 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5688 ecs->event_thread->control.stop_step = 0;
488f131b 5689 stop_print_frame = 1;
488f131b 5690 stopped_by_random_signal = 0;
488f131b 5691
edb3359d
DJ
5692 /* Hide inlined functions starting here, unless we just performed stepi or
5693 nexti. After stepi and nexti, always show the innermost frame (not any
5694 inline function call sites). */
16c381f0 5695 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
5696 {
5697 struct address_space *aspace =
5698 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5699
5700 /* skip_inline_frames is expensive, so we avoid it if we can
5701 determine that the address is one where functions cannot have
5702 been inlined. This improves performance with inferiors that
5703 load a lot of shared libraries, because the solib event
5704 breakpoint is defined as the address of a function (i.e. not
5705 inline). Note that we have to check the previous PC as well
5706 as the current one to catch cases when we have just
5707 single-stepped off a breakpoint prior to reinstating it.
5708 Note that we're assuming that the code we single-step to is
5709 not inline, but that's not definitive: there's nothing
5710 preventing the event breakpoint function from containing
5711 inlined code, and the single-step ending up there. If the
5712 user had set a breakpoint on that inlined code, the missing
5713 skip_inline_frames call would break things. Fortunately
5714 that's an extremely unlikely scenario. */
09ac7c10 5715 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
5716 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5717 && ecs->event_thread->control.trap_expected
5718 && pc_at_non_inline_function (aspace,
5719 ecs->event_thread->prev_pc,
09ac7c10 5720 &ecs->ws)))
1c5a993e
MR
5721 {
5722 skip_inline_frames (ecs->ptid);
5723
5724 /* Re-fetch current thread's frame in case that invalidated
5725 the frame cache. */
5726 frame = get_current_frame ();
5727 gdbarch = get_frame_arch (frame);
5728 }
0574c78f 5729 }
edb3359d 5730
a493e3e2 5731 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5732 && ecs->event_thread->control.trap_expected
568d6575 5733 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5734 && currently_stepping (ecs->event_thread))
3352ef37 5735 {
b50d7442 5736 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5737 also on an instruction that needs to be stepped multiple
1777feb0 5738 times before it's been fully executing. E.g., architectures
3352ef37
AC
5739 with a delay slot. It needs to be stepped twice, once for
5740 the instruction and once for the delay slot. */
5741 int step_through_delay
568d6575 5742 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5743
527159b7 5744 if (debug_infrun && step_through_delay)
8a9de0e4 5745 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5746 if (ecs->event_thread->control.step_range_end == 0
5747 && step_through_delay)
3352ef37
AC
5748 {
5749 /* The user issued a continue when stopped at a breakpoint.
5750 Set up for another trap and get out of here. */
4e1c45ea 5751 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5752 keep_going (ecs);
5753 return;
5754 }
5755 else if (step_through_delay)
5756 {
5757 /* The user issued a step when stopped at a breakpoint.
5758 Maybe we should stop, maybe we should not - the delay
5759 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5760 case, don't decide that here, just set
5761 ecs->stepping_over_breakpoint, making sure we
5762 single-step again before breakpoints are re-inserted. */
4e1c45ea 5763 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5764 }
5765 }
5766
ab04a2af
TT
5767 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5768 handles this event. */
5769 ecs->event_thread->control.stop_bpstat
5770 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5771 stop_pc, ecs->ptid, &ecs->ws);
db82e815 5772
ab04a2af
TT
5773 /* Following in case break condition called a
5774 function. */
5775 stop_print_frame = 1;
73dd234f 5776
ab04a2af
TT
5777 /* This is where we handle "moribund" watchpoints. Unlike
5778 software breakpoints traps, hardware watchpoint traps are
5779 always distinguishable from random traps. If no high-level
5780 watchpoint is associated with the reported stop data address
5781 anymore, then the bpstat does not explain the signal ---
5782 simply make sure to ignore it if `stopped_by_watchpoint' is
5783 set. */
5784
5785 if (debug_infrun
5786 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5787 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5788 GDB_SIGNAL_TRAP)
ab04a2af
TT
5789 && stopped_by_watchpoint)
5790 fprintf_unfiltered (gdb_stdlog,
5791 "infrun: no user watchpoint explains "
5792 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5793
bac7d97b 5794 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5795 at one stage in the past included checks for an inferior
5796 function call's call dummy's return breakpoint. The original
5797 comment, that went with the test, read:
03cebad2 5798
ab04a2af
TT
5799 ``End of a stack dummy. Some systems (e.g. Sony news) give
5800 another signal besides SIGTRAP, so check here as well as
5801 above.''
73dd234f 5802
ab04a2af
TT
5803 If someone ever tries to get call dummys on a
5804 non-executable stack to work (where the target would stop
5805 with something like a SIGSEGV), then those tests might need
5806 to be re-instated. Given, however, that the tests were only
5807 enabled when momentary breakpoints were not being used, I
5808 suspect that it won't be the case.
488f131b 5809
ab04a2af
TT
5810 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5811 be necessary for call dummies on a non-executable stack on
5812 SPARC. */
488f131b 5813
bac7d97b 5814 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5815 random_signal
5816 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5817 ecs->event_thread->suspend.stop_signal);
bac7d97b 5818
1cf4d951
PA
5819 /* Maybe this was a trap for a software breakpoint that has since
5820 been removed. */
5821 if (random_signal && target_stopped_by_sw_breakpoint ())
5822 {
5823 if (program_breakpoint_here_p (gdbarch, stop_pc))
5824 {
5825 struct regcache *regcache;
5826 int decr_pc;
5827
5828 /* Re-adjust PC to what the program would see if GDB was not
5829 debugging it. */
5830 regcache = get_thread_regcache (ecs->event_thread->ptid);
527a273a 5831 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
5832 if (decr_pc != 0)
5833 {
5834 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
5835
5836 if (record_full_is_used ())
5837 record_full_gdb_operation_disable_set ();
5838
5839 regcache_write_pc (regcache, stop_pc + decr_pc);
5840
5841 do_cleanups (old_cleanups);
5842 }
5843 }
5844 else
5845 {
5846 /* A delayed software breakpoint event. Ignore the trap. */
5847 if (debug_infrun)
5848 fprintf_unfiltered (gdb_stdlog,
5849 "infrun: delayed software breakpoint "
5850 "trap, ignoring\n");
5851 random_signal = 0;
5852 }
5853 }
5854
5855 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5856 has since been removed. */
5857 if (random_signal && target_stopped_by_hw_breakpoint ())
5858 {
5859 /* A delayed hardware breakpoint event. Ignore the trap. */
5860 if (debug_infrun)
5861 fprintf_unfiltered (gdb_stdlog,
5862 "infrun: delayed hardware breakpoint/watchpoint "
5863 "trap, ignoring\n");
5864 random_signal = 0;
5865 }
5866
bac7d97b
PA
5867 /* If not, perhaps stepping/nexting can. */
5868 if (random_signal)
5869 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5870 && currently_stepping (ecs->event_thread));
ab04a2af 5871
2adfaa28
PA
5872 /* Perhaps the thread hit a single-step breakpoint of _another_
5873 thread. Single-step breakpoints are transparent to the
5874 breakpoints module. */
5875 if (random_signal)
5876 random_signal = !ecs->hit_singlestep_breakpoint;
5877
bac7d97b
PA
5878 /* No? Perhaps we got a moribund watchpoint. */
5879 if (random_signal)
5880 random_signal = !stopped_by_watchpoint;
ab04a2af 5881
488f131b
JB
5882 /* For the program's own signals, act according to
5883 the signal handling tables. */
5884
ce12b012 5885 if (random_signal)
488f131b
JB
5886 {
5887 /* Signal not for debugging purposes. */
c9657e70 5888 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 5889 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 5890
527159b7 5891 if (debug_infrun)
c9737c08
PA
5892 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5893 gdb_signal_to_symbol_string (stop_signal));
527159b7 5894
488f131b
JB
5895 stopped_by_random_signal = 1;
5896
252fbfc8
PA
5897 /* Always stop on signals if we're either just gaining control
5898 of the program, or the user explicitly requested this thread
5899 to remain stopped. */
d6b48e9c 5900 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 5901 || ecs->event_thread->stop_requested
24291992 5902 || (!inf->detaching
16c381f0 5903 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 5904 {
22bcd14b 5905 stop_waiting (ecs);
488f131b
JB
5906 return;
5907 }
b57bacec
PA
5908
5909 /* Notify observers the signal has "handle print" set. Note we
5910 returned early above if stopping; normal_stop handles the
5911 printing in that case. */
5912 if (signal_print[ecs->event_thread->suspend.stop_signal])
5913 {
5914 /* The signal table tells us to print about this signal. */
5915 target_terminal_ours_for_output ();
5916 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
5917 target_terminal_inferior ();
5918 }
488f131b
JB
5919
5920 /* Clear the signal if it should not be passed. */
16c381f0 5921 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 5922 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 5923
fb14de7b 5924 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 5925 && ecs->event_thread->control.trap_expected
8358c15c 5926 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502 5927 {
372316f1
PA
5928 int was_in_line;
5929
68f53502
AC
5930 /* We were just starting a new sequence, attempting to
5931 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 5932 Instead this signal arrives. This signal will take us out
68f53502
AC
5933 of the stepping range so GDB needs to remember to, when
5934 the signal handler returns, resume stepping off that
5935 breakpoint. */
5936 /* To simplify things, "continue" is forced to use the same
5937 code paths as single-step - set a breakpoint at the
5938 signal return address and then, once hit, step off that
5939 breakpoint. */
237fc4c9
PA
5940 if (debug_infrun)
5941 fprintf_unfiltered (gdb_stdlog,
5942 "infrun: signal arrived while stepping over "
5943 "breakpoint\n");
d3169d93 5944
372316f1
PA
5945 was_in_line = step_over_info_valid_p ();
5946 clear_step_over_info ();
2c03e5be 5947 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 5948 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5949 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5950 ecs->event_thread->control.trap_expected = 0;
d137e6dc 5951
fbea99ea 5952 if (target_is_non_stop_p ())
372316f1 5953 {
fbea99ea
PA
5954 /* Either "set non-stop" is "on", or the target is
5955 always in non-stop mode. In this case, we have a bit
5956 more work to do. Resume the current thread, and if
5957 we had paused all threads, restart them while the
5958 signal handler runs. */
372316f1
PA
5959 keep_going (ecs);
5960
372316f1
PA
5961 if (was_in_line)
5962 {
372316f1
PA
5963 restart_threads (ecs->event_thread);
5964 }
5965 else if (debug_infrun)
5966 {
5967 fprintf_unfiltered (gdb_stdlog,
5968 "infrun: no need to restart threads\n");
5969 }
5970 return;
5971 }
5972
d137e6dc
PA
5973 /* If we were nexting/stepping some other thread, switch to
5974 it, so that we don't continue it, losing control. */
5975 if (!switch_back_to_stepped_thread (ecs))
5976 keep_going (ecs);
9d799f85 5977 return;
68f53502 5978 }
9d799f85 5979
e5f8a7cc
PA
5980 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
5981 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
5982 || ecs->event_thread->control.step_range_end == 1)
edb3359d 5983 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 5984 ecs->event_thread->control.step_stack_frame_id)
8358c15c 5985 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
5986 {
5987 /* The inferior is about to take a signal that will take it
5988 out of the single step range. Set a breakpoint at the
5989 current PC (which is presumably where the signal handler
5990 will eventually return) and then allow the inferior to
5991 run free.
5992
5993 Note that this is only needed for a signal delivered
5994 while in the single-step range. Nested signals aren't a
5995 problem as they eventually all return. */
237fc4c9
PA
5996 if (debug_infrun)
5997 fprintf_unfiltered (gdb_stdlog,
5998 "infrun: signal may take us out of "
5999 "single-step range\n");
6000
372316f1 6001 clear_step_over_info ();
2c03e5be 6002 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 6003 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6004 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6005 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
6006 keep_going (ecs);
6007 return;
d303a6c7 6008 }
9d799f85
AC
6009
6010 /* Note: step_resume_breakpoint may be non-NULL. This occures
6011 when either there's a nested signal, or when there's a
6012 pending signal enabled just as the signal handler returns
6013 (leaving the inferior at the step-resume-breakpoint without
6014 actually executing it). Either way continue until the
6015 breakpoint is really hit. */
c447ac0b
PA
6016
6017 if (!switch_back_to_stepped_thread (ecs))
6018 {
6019 if (debug_infrun)
6020 fprintf_unfiltered (gdb_stdlog,
6021 "infrun: random signal, keep going\n");
6022
6023 keep_going (ecs);
6024 }
6025 return;
488f131b 6026 }
94c57d6a
PA
6027
6028 process_event_stop_test (ecs);
6029}
6030
6031/* Come here when we've got some debug event / signal we can explain
6032 (IOW, not a random signal), and test whether it should cause a
6033 stop, or whether we should resume the inferior (transparently).
6034 E.g., could be a breakpoint whose condition evaluates false; we
6035 could be still stepping within the line; etc. */
6036
6037static void
6038process_event_stop_test (struct execution_control_state *ecs)
6039{
6040 struct symtab_and_line stop_pc_sal;
6041 struct frame_info *frame;
6042 struct gdbarch *gdbarch;
cdaa5b73
PA
6043 CORE_ADDR jmp_buf_pc;
6044 struct bpstat_what what;
94c57d6a 6045
cdaa5b73 6046 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6047
cdaa5b73
PA
6048 frame = get_current_frame ();
6049 gdbarch = get_frame_arch (frame);
fcf3daef 6050
cdaa5b73 6051 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6052
cdaa5b73
PA
6053 if (what.call_dummy)
6054 {
6055 stop_stack_dummy = what.call_dummy;
6056 }
186c406b 6057
243a9253
PA
6058 /* A few breakpoint types have callbacks associated (e.g.,
6059 bp_jit_event). Run them now. */
6060 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6061
cdaa5b73
PA
6062 /* If we hit an internal event that triggers symbol changes, the
6063 current frame will be invalidated within bpstat_what (e.g., if we
6064 hit an internal solib event). Re-fetch it. */
6065 frame = get_current_frame ();
6066 gdbarch = get_frame_arch (frame);
e2e4d78b 6067
cdaa5b73
PA
6068 switch (what.main_action)
6069 {
6070 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6071 /* If we hit the breakpoint at longjmp while stepping, we
6072 install a momentary breakpoint at the target of the
6073 jmp_buf. */
186c406b 6074
cdaa5b73
PA
6075 if (debug_infrun)
6076 fprintf_unfiltered (gdb_stdlog,
6077 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6078
cdaa5b73 6079 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6080
cdaa5b73
PA
6081 if (what.is_longjmp)
6082 {
6083 struct value *arg_value;
6084
6085 /* If we set the longjmp breakpoint via a SystemTap probe,
6086 then use it to extract the arguments. The destination PC
6087 is the third argument to the probe. */
6088 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6089 if (arg_value)
8fa0c4f8
AA
6090 {
6091 jmp_buf_pc = value_as_address (arg_value);
6092 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6093 }
cdaa5b73
PA
6094 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6095 || !gdbarch_get_longjmp_target (gdbarch,
6096 frame, &jmp_buf_pc))
e2e4d78b 6097 {
cdaa5b73
PA
6098 if (debug_infrun)
6099 fprintf_unfiltered (gdb_stdlog,
6100 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6101 "(!gdbarch_get_longjmp_target)\n");
6102 keep_going (ecs);
6103 return;
e2e4d78b 6104 }
e2e4d78b 6105
cdaa5b73
PA
6106 /* Insert a breakpoint at resume address. */
6107 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6108 }
6109 else
6110 check_exception_resume (ecs, frame);
6111 keep_going (ecs);
6112 return;
e81a37f7 6113
cdaa5b73
PA
6114 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6115 {
6116 struct frame_info *init_frame;
e81a37f7 6117
cdaa5b73 6118 /* There are several cases to consider.
c906108c 6119
cdaa5b73
PA
6120 1. The initiating frame no longer exists. In this case we
6121 must stop, because the exception or longjmp has gone too
6122 far.
2c03e5be 6123
cdaa5b73
PA
6124 2. The initiating frame exists, and is the same as the
6125 current frame. We stop, because the exception or longjmp
6126 has been caught.
2c03e5be 6127
cdaa5b73
PA
6128 3. The initiating frame exists and is different from the
6129 current frame. This means the exception or longjmp has
6130 been caught beneath the initiating frame, so keep going.
c906108c 6131
cdaa5b73
PA
6132 4. longjmp breakpoint has been placed just to protect
6133 against stale dummy frames and user is not interested in
6134 stopping around longjmps. */
c5aa993b 6135
cdaa5b73
PA
6136 if (debug_infrun)
6137 fprintf_unfiltered (gdb_stdlog,
6138 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6139
cdaa5b73
PA
6140 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6141 != NULL);
6142 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6143
cdaa5b73
PA
6144 if (what.is_longjmp)
6145 {
b67a2c6f 6146 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6147
cdaa5b73 6148 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6149 {
cdaa5b73
PA
6150 /* Case 4. */
6151 keep_going (ecs);
6152 return;
e5ef252a 6153 }
cdaa5b73 6154 }
c5aa993b 6155
cdaa5b73 6156 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6157
cdaa5b73
PA
6158 if (init_frame)
6159 {
6160 struct frame_id current_id
6161 = get_frame_id (get_current_frame ());
6162 if (frame_id_eq (current_id,
6163 ecs->event_thread->initiating_frame))
6164 {
6165 /* Case 2. Fall through. */
6166 }
6167 else
6168 {
6169 /* Case 3. */
6170 keep_going (ecs);
6171 return;
6172 }
68f53502 6173 }
488f131b 6174
cdaa5b73
PA
6175 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6176 exists. */
6177 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6178
bdc36728 6179 end_stepping_range (ecs);
cdaa5b73
PA
6180 }
6181 return;
e5ef252a 6182
cdaa5b73
PA
6183 case BPSTAT_WHAT_SINGLE:
6184 if (debug_infrun)
6185 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6186 ecs->event_thread->stepping_over_breakpoint = 1;
6187 /* Still need to check other stuff, at least the case where we
6188 are stepping and step out of the right range. */
6189 break;
e5ef252a 6190
cdaa5b73
PA
6191 case BPSTAT_WHAT_STEP_RESUME:
6192 if (debug_infrun)
6193 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6194
cdaa5b73
PA
6195 delete_step_resume_breakpoint (ecs->event_thread);
6196 if (ecs->event_thread->control.proceed_to_finish
6197 && execution_direction == EXEC_REVERSE)
6198 {
6199 struct thread_info *tp = ecs->event_thread;
6200
6201 /* We are finishing a function in reverse, and just hit the
6202 step-resume breakpoint at the start address of the
6203 function, and we're almost there -- just need to back up
6204 by one more single-step, which should take us back to the
6205 function call. */
6206 tp->control.step_range_start = tp->control.step_range_end = 1;
6207 keep_going (ecs);
e5ef252a 6208 return;
cdaa5b73
PA
6209 }
6210 fill_in_stop_func (gdbarch, ecs);
6211 if (stop_pc == ecs->stop_func_start
6212 && execution_direction == EXEC_REVERSE)
6213 {
6214 /* We are stepping over a function call in reverse, and just
6215 hit the step-resume breakpoint at the start address of
6216 the function. Go back to single-stepping, which should
6217 take us back to the function call. */
6218 ecs->event_thread->stepping_over_breakpoint = 1;
6219 keep_going (ecs);
6220 return;
6221 }
6222 break;
e5ef252a 6223
cdaa5b73
PA
6224 case BPSTAT_WHAT_STOP_NOISY:
6225 if (debug_infrun)
6226 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6227 stop_print_frame = 1;
e5ef252a 6228
99619bea
PA
6229 /* Assume the thread stopped for a breapoint. We'll still check
6230 whether a/the breakpoint is there when the thread is next
6231 resumed. */
6232 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6233
22bcd14b 6234 stop_waiting (ecs);
cdaa5b73 6235 return;
e5ef252a 6236
cdaa5b73
PA
6237 case BPSTAT_WHAT_STOP_SILENT:
6238 if (debug_infrun)
6239 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6240 stop_print_frame = 0;
e5ef252a 6241
99619bea
PA
6242 /* Assume the thread stopped for a breapoint. We'll still check
6243 whether a/the breakpoint is there when the thread is next
6244 resumed. */
6245 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6246 stop_waiting (ecs);
cdaa5b73
PA
6247 return;
6248
6249 case BPSTAT_WHAT_HP_STEP_RESUME:
6250 if (debug_infrun)
6251 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6252
6253 delete_step_resume_breakpoint (ecs->event_thread);
6254 if (ecs->event_thread->step_after_step_resume_breakpoint)
6255 {
6256 /* Back when the step-resume breakpoint was inserted, we
6257 were trying to single-step off a breakpoint. Go back to
6258 doing that. */
6259 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6260 ecs->event_thread->stepping_over_breakpoint = 1;
6261 keep_going (ecs);
6262 return;
e5ef252a 6263 }
cdaa5b73
PA
6264 break;
6265
6266 case BPSTAT_WHAT_KEEP_CHECKING:
6267 break;
e5ef252a 6268 }
c906108c 6269
af48d08f
PA
6270 /* If we stepped a permanent breakpoint and we had a high priority
6271 step-resume breakpoint for the address we stepped, but we didn't
6272 hit it, then we must have stepped into the signal handler. The
6273 step-resume was only necessary to catch the case of _not_
6274 stepping into the handler, so delete it, and fall through to
6275 checking whether the step finished. */
6276 if (ecs->event_thread->stepped_breakpoint)
6277 {
6278 struct breakpoint *sr_bp
6279 = ecs->event_thread->control.step_resume_breakpoint;
6280
8d707a12
PA
6281 if (sr_bp != NULL
6282 && sr_bp->loc->permanent
af48d08f
PA
6283 && sr_bp->type == bp_hp_step_resume
6284 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6285 {
6286 if (debug_infrun)
6287 fprintf_unfiltered (gdb_stdlog,
6288 "infrun: stepped permanent breakpoint, stopped in "
6289 "handler\n");
6290 delete_step_resume_breakpoint (ecs->event_thread);
6291 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6292 }
6293 }
6294
cdaa5b73
PA
6295 /* We come here if we hit a breakpoint but should not stop for it.
6296 Possibly we also were stepping and should stop for that. So fall
6297 through and test for stepping. But, if not stepping, do not
6298 stop. */
c906108c 6299
a7212384
UW
6300 /* In all-stop mode, if we're currently stepping but have stopped in
6301 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6302 if (switch_back_to_stepped_thread (ecs))
6303 return;
776f04fa 6304
8358c15c 6305 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6306 {
527159b7 6307 if (debug_infrun)
d3169d93
DJ
6308 fprintf_unfiltered (gdb_stdlog,
6309 "infrun: step-resume breakpoint is inserted\n");
527159b7 6310
488f131b
JB
6311 /* Having a step-resume breakpoint overrides anything
6312 else having to do with stepping commands until
6313 that breakpoint is reached. */
488f131b
JB
6314 keep_going (ecs);
6315 return;
6316 }
c5aa993b 6317
16c381f0 6318 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6319 {
527159b7 6320 if (debug_infrun)
8a9de0e4 6321 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6322 /* Likewise if we aren't even stepping. */
488f131b
JB
6323 keep_going (ecs);
6324 return;
6325 }
c5aa993b 6326
4b7703ad
JB
6327 /* Re-fetch current thread's frame in case the code above caused
6328 the frame cache to be re-initialized, making our FRAME variable
6329 a dangling pointer. */
6330 frame = get_current_frame ();
628fe4e4 6331 gdbarch = get_frame_arch (frame);
7e324e48 6332 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6333
488f131b 6334 /* If stepping through a line, keep going if still within it.
c906108c 6335
488f131b
JB
6336 Note that step_range_end is the address of the first instruction
6337 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6338 within it!
6339
6340 Note also that during reverse execution, we may be stepping
6341 through a function epilogue and therefore must detect when
6342 the current-frame changes in the middle of a line. */
6343
ce4c476a 6344 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 6345 && (execution_direction != EXEC_REVERSE
388a8562 6346 || frame_id_eq (get_frame_id (frame),
16c381f0 6347 ecs->event_thread->control.step_frame_id)))
488f131b 6348 {
527159b7 6349 if (debug_infrun)
5af949e3
UW
6350 fprintf_unfiltered
6351 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6352 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6353 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6354
c1e36e3e
PA
6355 /* Tentatively re-enable range stepping; `resume' disables it if
6356 necessary (e.g., if we're stepping over a breakpoint or we
6357 have software watchpoints). */
6358 ecs->event_thread->control.may_range_step = 1;
6359
b2175913
MS
6360 /* When stepping backward, stop at beginning of line range
6361 (unless it's the function entry point, in which case
6362 keep going back to the call point). */
16c381f0 6363 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6364 && stop_pc != ecs->stop_func_start
6365 && execution_direction == EXEC_REVERSE)
bdc36728 6366 end_stepping_range (ecs);
b2175913
MS
6367 else
6368 keep_going (ecs);
6369
488f131b
JB
6370 return;
6371 }
c5aa993b 6372
488f131b 6373 /* We stepped out of the stepping range. */
c906108c 6374
488f131b 6375 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6376 loader dynamic symbol resolution code...
6377
6378 EXEC_FORWARD: we keep on single stepping until we exit the run
6379 time loader code and reach the callee's address.
6380
6381 EXEC_REVERSE: we've already executed the callee (backward), and
6382 the runtime loader code is handled just like any other
6383 undebuggable function call. Now we need only keep stepping
6384 backward through the trampoline code, and that's handled further
6385 down, so there is nothing for us to do here. */
6386
6387 if (execution_direction != EXEC_REVERSE
16c381f0 6388 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 6389 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 6390 {
4c8c40e6 6391 CORE_ADDR pc_after_resolver =
568d6575 6392 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 6393
527159b7 6394 if (debug_infrun)
3e43a32a
MS
6395 fprintf_unfiltered (gdb_stdlog,
6396 "infrun: stepped into dynsym resolve code\n");
527159b7 6397
488f131b
JB
6398 if (pc_after_resolver)
6399 {
6400 /* Set up a step-resume breakpoint at the address
6401 indicated by SKIP_SOLIB_RESOLVER. */
6402 struct symtab_and_line sr_sal;
abbb1732 6403
fe39c653 6404 init_sal (&sr_sal);
488f131b 6405 sr_sal.pc = pc_after_resolver;
6c95b8df 6406 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6407
a6d9a66e
UW
6408 insert_step_resume_breakpoint_at_sal (gdbarch,
6409 sr_sal, null_frame_id);
c5aa993b 6410 }
c906108c 6411
488f131b
JB
6412 keep_going (ecs);
6413 return;
6414 }
c906108c 6415
16c381f0
JK
6416 if (ecs->event_thread->control.step_range_end != 1
6417 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6418 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6419 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6420 {
527159b7 6421 if (debug_infrun)
3e43a32a
MS
6422 fprintf_unfiltered (gdb_stdlog,
6423 "infrun: stepped into signal trampoline\n");
42edda50 6424 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6425 a signal trampoline (either by a signal being delivered or by
6426 the signal handler returning). Just single-step until the
6427 inferior leaves the trampoline (either by calling the handler
6428 or returning). */
488f131b
JB
6429 keep_going (ecs);
6430 return;
6431 }
c906108c 6432
14132e89
MR
6433 /* If we're in the return path from a shared library trampoline,
6434 we want to proceed through the trampoline when stepping. */
6435 /* macro/2012-04-25: This needs to come before the subroutine
6436 call check below as on some targets return trampolines look
6437 like subroutine calls (MIPS16 return thunks). */
6438 if (gdbarch_in_solib_return_trampoline (gdbarch,
6439 stop_pc, ecs->stop_func_name)
6440 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6441 {
6442 /* Determine where this trampoline returns. */
6443 CORE_ADDR real_stop_pc;
6444
6445 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6446
6447 if (debug_infrun)
6448 fprintf_unfiltered (gdb_stdlog,
6449 "infrun: stepped into solib return tramp\n");
6450
6451 /* Only proceed through if we know where it's going. */
6452 if (real_stop_pc)
6453 {
6454 /* And put the step-breakpoint there and go until there. */
6455 struct symtab_and_line sr_sal;
6456
6457 init_sal (&sr_sal); /* initialize to zeroes */
6458 sr_sal.pc = real_stop_pc;
6459 sr_sal.section = find_pc_overlay (sr_sal.pc);
6460 sr_sal.pspace = get_frame_program_space (frame);
6461
6462 /* Do not specify what the fp should be when we stop since
6463 on some machines the prologue is where the new fp value
6464 is established. */
6465 insert_step_resume_breakpoint_at_sal (gdbarch,
6466 sr_sal, null_frame_id);
6467
6468 /* Restart without fiddling with the step ranges or
6469 other state. */
6470 keep_going (ecs);
6471 return;
6472 }
6473 }
6474
c17eaafe
DJ
6475 /* Check for subroutine calls. The check for the current frame
6476 equalling the step ID is not necessary - the check of the
6477 previous frame's ID is sufficient - but it is a common case and
6478 cheaper than checking the previous frame's ID.
14e60db5
DJ
6479
6480 NOTE: frame_id_eq will never report two invalid frame IDs as
6481 being equal, so to get into this block, both the current and
6482 previous frame must have valid frame IDs. */
005ca36a
JB
6483 /* The outer_frame_id check is a heuristic to detect stepping
6484 through startup code. If we step over an instruction which
6485 sets the stack pointer from an invalid value to a valid value,
6486 we may detect that as a subroutine call from the mythical
6487 "outermost" function. This could be fixed by marking
6488 outermost frames as !stack_p,code_p,special_p. Then the
6489 initial outermost frame, before sp was valid, would
ce6cca6d 6490 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6491 for more. */
edb3359d 6492 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6493 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6494 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6495 ecs->event_thread->control.step_stack_frame_id)
6496 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6497 outer_frame_id)
885eeb5b
PA
6498 || (ecs->event_thread->control.step_start_function
6499 != find_pc_function (stop_pc)))))
488f131b 6500 {
95918acb 6501 CORE_ADDR real_stop_pc;
8fb3e588 6502
527159b7 6503 if (debug_infrun)
8a9de0e4 6504 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6505
b7a084be 6506 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6507 {
6508 /* I presume that step_over_calls is only 0 when we're
6509 supposed to be stepping at the assembly language level
6510 ("stepi"). Just stop. */
388a8562 6511 /* And this works the same backward as frontward. MVS */
bdc36728 6512 end_stepping_range (ecs);
95918acb
AC
6513 return;
6514 }
8fb3e588 6515
388a8562
MS
6516 /* Reverse stepping through solib trampolines. */
6517
6518 if (execution_direction == EXEC_REVERSE
16c381f0 6519 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6520 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6521 || (ecs->stop_func_start == 0
6522 && in_solib_dynsym_resolve_code (stop_pc))))
6523 {
6524 /* Any solib trampoline code can be handled in reverse
6525 by simply continuing to single-step. We have already
6526 executed the solib function (backwards), and a few
6527 steps will take us back through the trampoline to the
6528 caller. */
6529 keep_going (ecs);
6530 return;
6531 }
6532
16c381f0 6533 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6534 {
b2175913
MS
6535 /* We're doing a "next".
6536
6537 Normal (forward) execution: set a breakpoint at the
6538 callee's return address (the address at which the caller
6539 will resume).
6540
6541 Reverse (backward) execution. set the step-resume
6542 breakpoint at the start of the function that we just
6543 stepped into (backwards), and continue to there. When we
6130d0b7 6544 get there, we'll need to single-step back to the caller. */
b2175913
MS
6545
6546 if (execution_direction == EXEC_REVERSE)
6547 {
acf9414f
JK
6548 /* If we're already at the start of the function, we've either
6549 just stepped backward into a single instruction function,
6550 or stepped back out of a signal handler to the first instruction
6551 of the function. Just keep going, which will single-step back
6552 to the caller. */
58c48e72 6553 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f
JK
6554 {
6555 struct symtab_and_line sr_sal;
6556
6557 /* Normal function call return (static or dynamic). */
6558 init_sal (&sr_sal);
6559 sr_sal.pc = ecs->stop_func_start;
6560 sr_sal.pspace = get_frame_program_space (frame);
6561 insert_step_resume_breakpoint_at_sal (gdbarch,
6562 sr_sal, null_frame_id);
6563 }
b2175913
MS
6564 }
6565 else
568d6575 6566 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6567
8567c30f
AC
6568 keep_going (ecs);
6569 return;
6570 }
a53c66de 6571
95918acb 6572 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6573 calling routine and the real function), locate the real
6574 function. That's what tells us (a) whether we want to step
6575 into it at all, and (b) what prologue we want to run to the
6576 end of, if we do step into it. */
568d6575 6577 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6578 if (real_stop_pc == 0)
568d6575 6579 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6580 if (real_stop_pc != 0)
6581 ecs->stop_func_start = real_stop_pc;
8fb3e588 6582
db5f024e 6583 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
6584 {
6585 struct symtab_and_line sr_sal;
abbb1732 6586
1b2bfbb9
RC
6587 init_sal (&sr_sal);
6588 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6589 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6590
a6d9a66e
UW
6591 insert_step_resume_breakpoint_at_sal (gdbarch,
6592 sr_sal, null_frame_id);
8fb3e588
AC
6593 keep_going (ecs);
6594 return;
1b2bfbb9
RC
6595 }
6596
95918acb 6597 /* If we have line number information for the function we are
1bfeeb0f
JL
6598 thinking of stepping into and the function isn't on the skip
6599 list, step into it.
95918acb 6600
8fb3e588
AC
6601 If there are several symtabs at that PC (e.g. with include
6602 files), just want to know whether *any* of them have line
6603 numbers. find_pc_line handles this. */
95918acb
AC
6604 {
6605 struct symtab_and_line tmp_sal;
8fb3e588 6606
95918acb 6607 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6608 if (tmp_sal.line != 0
85817405
JK
6609 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6610 &tmp_sal))
95918acb 6611 {
b2175913 6612 if (execution_direction == EXEC_REVERSE)
568d6575 6613 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6614 else
568d6575 6615 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6616 return;
6617 }
6618 }
6619
6620 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6621 set, we stop the step so that the user has a chance to switch
6622 in assembly mode. */
16c381f0 6623 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6624 && step_stop_if_no_debug)
95918acb 6625 {
bdc36728 6626 end_stepping_range (ecs);
95918acb
AC
6627 return;
6628 }
6629
b2175913
MS
6630 if (execution_direction == EXEC_REVERSE)
6631 {
acf9414f
JK
6632 /* If we're already at the start of the function, we've either just
6633 stepped backward into a single instruction function without line
6634 number info, or stepped back out of a signal handler to the first
6635 instruction of the function without line number info. Just keep
6636 going, which will single-step back to the caller. */
6637 if (ecs->stop_func_start != stop_pc)
6638 {
6639 /* Set a breakpoint at callee's start address.
6640 From there we can step once and be back in the caller. */
6641 struct symtab_and_line sr_sal;
abbb1732 6642
acf9414f
JK
6643 init_sal (&sr_sal);
6644 sr_sal.pc = ecs->stop_func_start;
6645 sr_sal.pspace = get_frame_program_space (frame);
6646 insert_step_resume_breakpoint_at_sal (gdbarch,
6647 sr_sal, null_frame_id);
6648 }
b2175913
MS
6649 }
6650 else
6651 /* Set a breakpoint at callee's return address (the address
6652 at which the caller will resume). */
568d6575 6653 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6654
95918acb 6655 keep_going (ecs);
488f131b 6656 return;
488f131b 6657 }
c906108c 6658
fdd654f3
MS
6659 /* Reverse stepping through solib trampolines. */
6660
6661 if (execution_direction == EXEC_REVERSE
16c381f0 6662 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
6663 {
6664 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6665 || (ecs->stop_func_start == 0
6666 && in_solib_dynsym_resolve_code (stop_pc)))
6667 {
6668 /* Any solib trampoline code can be handled in reverse
6669 by simply continuing to single-step. We have already
6670 executed the solib function (backwards), and a few
6671 steps will take us back through the trampoline to the
6672 caller. */
6673 keep_going (ecs);
6674 return;
6675 }
6676 else if (in_solib_dynsym_resolve_code (stop_pc))
6677 {
6678 /* Stepped backward into the solib dynsym resolver.
6679 Set a breakpoint at its start and continue, then
6680 one more step will take us out. */
6681 struct symtab_and_line sr_sal;
abbb1732 6682
fdd654f3
MS
6683 init_sal (&sr_sal);
6684 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6685 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6686 insert_step_resume_breakpoint_at_sal (gdbarch,
6687 sr_sal, null_frame_id);
6688 keep_going (ecs);
6689 return;
6690 }
6691 }
6692
2afb61aa 6693 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 6694
1b2bfbb9
RC
6695 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6696 the trampoline processing logic, however, there are some trampolines
6697 that have no names, so we should do trampoline handling first. */
16c381f0 6698 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6699 && ecs->stop_func_name == NULL
2afb61aa 6700 && stop_pc_sal.line == 0)
1b2bfbb9 6701 {
527159b7 6702 if (debug_infrun)
3e43a32a
MS
6703 fprintf_unfiltered (gdb_stdlog,
6704 "infrun: stepped into undebuggable function\n");
527159b7 6705
1b2bfbb9 6706 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6707 undebuggable function (where there is no debugging information
6708 and no line number corresponding to the address where the
1b2bfbb9
RC
6709 inferior stopped). Since we want to skip this kind of code,
6710 we keep going until the inferior returns from this
14e60db5
DJ
6711 function - unless the user has asked us not to (via
6712 set step-mode) or we no longer know how to get back
6713 to the call site. */
6714 if (step_stop_if_no_debug
c7ce8faa 6715 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6716 {
6717 /* If we have no line number and the step-stop-if-no-debug
6718 is set, we stop the step so that the user has a chance to
6719 switch in assembly mode. */
bdc36728 6720 end_stepping_range (ecs);
1b2bfbb9
RC
6721 return;
6722 }
6723 else
6724 {
6725 /* Set a breakpoint at callee's return address (the address
6726 at which the caller will resume). */
568d6575 6727 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6728 keep_going (ecs);
6729 return;
6730 }
6731 }
6732
16c381f0 6733 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6734 {
6735 /* It is stepi or nexti. We always want to stop stepping after
6736 one instruction. */
527159b7 6737 if (debug_infrun)
8a9de0e4 6738 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6739 end_stepping_range (ecs);
1b2bfbb9
RC
6740 return;
6741 }
6742
2afb61aa 6743 if (stop_pc_sal.line == 0)
488f131b
JB
6744 {
6745 /* We have no line number information. That means to stop
6746 stepping (does this always happen right after one instruction,
6747 when we do "s" in a function with no line numbers,
6748 or can this happen as a result of a return or longjmp?). */
527159b7 6749 if (debug_infrun)
8a9de0e4 6750 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6751 end_stepping_range (ecs);
488f131b
JB
6752 return;
6753 }
c906108c 6754
edb3359d
DJ
6755 /* Look for "calls" to inlined functions, part one. If the inline
6756 frame machinery detected some skipped call sites, we have entered
6757 a new inline function. */
6758
6759 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6760 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
6761 && inline_skipped_frames (ecs->ptid))
6762 {
6763 struct symtab_and_line call_sal;
6764
6765 if (debug_infrun)
6766 fprintf_unfiltered (gdb_stdlog,
6767 "infrun: stepped into inlined function\n");
6768
6769 find_frame_sal (get_current_frame (), &call_sal);
6770
16c381f0 6771 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6772 {
6773 /* For "step", we're going to stop. But if the call site
6774 for this inlined function is on the same source line as
6775 we were previously stepping, go down into the function
6776 first. Otherwise stop at the call site. */
6777
6778 if (call_sal.line == ecs->event_thread->current_line
6779 && call_sal.symtab == ecs->event_thread->current_symtab)
6780 step_into_inline_frame (ecs->ptid);
6781
bdc36728 6782 end_stepping_range (ecs);
edb3359d
DJ
6783 return;
6784 }
6785 else
6786 {
6787 /* For "next", we should stop at the call site if it is on a
6788 different source line. Otherwise continue through the
6789 inlined function. */
6790 if (call_sal.line == ecs->event_thread->current_line
6791 && call_sal.symtab == ecs->event_thread->current_symtab)
6792 keep_going (ecs);
6793 else
bdc36728 6794 end_stepping_range (ecs);
edb3359d
DJ
6795 return;
6796 }
6797 }
6798
6799 /* Look for "calls" to inlined functions, part two. If we are still
6800 in the same real function we were stepping through, but we have
6801 to go further up to find the exact frame ID, we are stepping
6802 through a more inlined call beyond its call site. */
6803
6804 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6805 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6806 ecs->event_thread->control.step_frame_id)
edb3359d 6807 && stepped_in_from (get_current_frame (),
16c381f0 6808 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6809 {
6810 if (debug_infrun)
6811 fprintf_unfiltered (gdb_stdlog,
6812 "infrun: stepping through inlined function\n");
6813
16c381f0 6814 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
6815 keep_going (ecs);
6816 else
bdc36728 6817 end_stepping_range (ecs);
edb3359d
DJ
6818 return;
6819 }
6820
2afb61aa 6821 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6822 && (ecs->event_thread->current_line != stop_pc_sal.line
6823 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
6824 {
6825 /* We are at the start of a different line. So stop. Note that
6826 we don't stop if we step into the middle of a different line.
6827 That is said to make things like for (;;) statements work
6828 better. */
527159b7 6829 if (debug_infrun)
3e43a32a
MS
6830 fprintf_unfiltered (gdb_stdlog,
6831 "infrun: stepped to a different line\n");
bdc36728 6832 end_stepping_range (ecs);
488f131b
JB
6833 return;
6834 }
c906108c 6835
488f131b 6836 /* We aren't done stepping.
c906108c 6837
488f131b
JB
6838 Optimize by setting the stepping range to the line.
6839 (We might not be in the original line, but if we entered a
6840 new line in mid-statement, we continue stepping. This makes
6841 things like for(;;) statements work better.) */
c906108c 6842
16c381f0
JK
6843 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6844 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 6845 ecs->event_thread->control.may_range_step = 1;
edb3359d 6846 set_step_info (frame, stop_pc_sal);
488f131b 6847
527159b7 6848 if (debug_infrun)
8a9de0e4 6849 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 6850 keep_going (ecs);
104c1213
JM
6851}
6852
c447ac0b
PA
6853/* In all-stop mode, if we're currently stepping but have stopped in
6854 some other thread, we may need to switch back to the stepped
6855 thread. Returns true we set the inferior running, false if we left
6856 it stopped (and the event needs further processing). */
6857
6858static int
6859switch_back_to_stepped_thread (struct execution_control_state *ecs)
6860{
fbea99ea 6861 if (!target_is_non_stop_p ())
c447ac0b
PA
6862 {
6863 struct thread_info *tp;
99619bea
PA
6864 struct thread_info *stepping_thread;
6865
6866 /* If any thread is blocked on some internal breakpoint, and we
6867 simply need to step over that breakpoint to get it going
6868 again, do that first. */
6869
6870 /* However, if we see an event for the stepping thread, then we
6871 know all other threads have been moved past their breakpoints
6872 already. Let the caller check whether the step is finished,
6873 etc., before deciding to move it past a breakpoint. */
6874 if (ecs->event_thread->control.step_range_end != 0)
6875 return 0;
6876
6877 /* Check if the current thread is blocked on an incomplete
6878 step-over, interrupted by a random signal. */
6879 if (ecs->event_thread->control.trap_expected
6880 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 6881 {
99619bea
PA
6882 if (debug_infrun)
6883 {
6884 fprintf_unfiltered (gdb_stdlog,
6885 "infrun: need to finish step-over of [%s]\n",
6886 target_pid_to_str (ecs->event_thread->ptid));
6887 }
6888 keep_going (ecs);
6889 return 1;
6890 }
2adfaa28 6891
99619bea
PA
6892 /* Check if the current thread is blocked by a single-step
6893 breakpoint of another thread. */
6894 if (ecs->hit_singlestep_breakpoint)
6895 {
6896 if (debug_infrun)
6897 {
6898 fprintf_unfiltered (gdb_stdlog,
6899 "infrun: need to step [%s] over single-step "
6900 "breakpoint\n",
6901 target_pid_to_str (ecs->ptid));
6902 }
6903 keep_going (ecs);
6904 return 1;
6905 }
6906
4d9d9d04
PA
6907 /* If this thread needs yet another step-over (e.g., stepping
6908 through a delay slot), do it first before moving on to
6909 another thread. */
6910 if (thread_still_needs_step_over (ecs->event_thread))
6911 {
6912 if (debug_infrun)
6913 {
6914 fprintf_unfiltered (gdb_stdlog,
6915 "infrun: thread [%s] still needs step-over\n",
6916 target_pid_to_str (ecs->event_thread->ptid));
6917 }
6918 keep_going (ecs);
6919 return 1;
6920 }
70509625 6921
483805cf
PA
6922 /* If scheduler locking applies even if not stepping, there's no
6923 need to walk over threads. Above we've checked whether the
6924 current thread is stepping. If some other thread not the
6925 event thread is stepping, then it must be that scheduler
6926 locking is not in effect. */
856e7dd6 6927 if (schedlock_applies (ecs->event_thread))
483805cf
PA
6928 return 0;
6929
4d9d9d04
PA
6930 /* Otherwise, we no longer expect a trap in the current thread.
6931 Clear the trap_expected flag before switching back -- this is
6932 what keep_going does as well, if we call it. */
6933 ecs->event_thread->control.trap_expected = 0;
6934
6935 /* Likewise, clear the signal if it should not be passed. */
6936 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6937 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6938
6939 /* Do all pending step-overs before actually proceeding with
483805cf 6940 step/next/etc. */
4d9d9d04
PA
6941 if (start_step_over ())
6942 {
6943 prepare_to_wait (ecs);
6944 return 1;
6945 }
6946
6947 /* Look for the stepping/nexting thread. */
483805cf 6948 stepping_thread = NULL;
4d9d9d04 6949
034f788c 6950 ALL_NON_EXITED_THREADS (tp)
483805cf 6951 {
fbea99ea
PA
6952 /* Ignore threads of processes the caller is not
6953 resuming. */
483805cf 6954 if (!sched_multi
1afd5965 6955 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
483805cf
PA
6956 continue;
6957
6958 /* When stepping over a breakpoint, we lock all threads
6959 except the one that needs to move past the breakpoint.
6960 If a non-event thread has this set, the "incomplete
6961 step-over" check above should have caught it earlier. */
372316f1
PA
6962 if (tp->control.trap_expected)
6963 {
6964 internal_error (__FILE__, __LINE__,
6965 "[%s] has inconsistent state: "
6966 "trap_expected=%d\n",
6967 target_pid_to_str (tp->ptid),
6968 tp->control.trap_expected);
6969 }
483805cf
PA
6970
6971 /* Did we find the stepping thread? */
6972 if (tp->control.step_range_end)
6973 {
6974 /* Yep. There should only one though. */
6975 gdb_assert (stepping_thread == NULL);
6976
6977 /* The event thread is handled at the top, before we
6978 enter this loop. */
6979 gdb_assert (tp != ecs->event_thread);
6980
6981 /* If some thread other than the event thread is
6982 stepping, then scheduler locking can't be in effect,
6983 otherwise we wouldn't have resumed the current event
6984 thread in the first place. */
856e7dd6 6985 gdb_assert (!schedlock_applies (tp));
483805cf
PA
6986
6987 stepping_thread = tp;
6988 }
99619bea
PA
6989 }
6990
483805cf 6991 if (stepping_thread != NULL)
99619bea 6992 {
c447ac0b
PA
6993 if (debug_infrun)
6994 fprintf_unfiltered (gdb_stdlog,
6995 "infrun: switching back to stepped thread\n");
6996
2ac7589c
PA
6997 if (keep_going_stepped_thread (stepping_thread))
6998 {
6999 prepare_to_wait (ecs);
7000 return 1;
7001 }
7002 }
7003 }
2adfaa28 7004
2ac7589c
PA
7005 return 0;
7006}
2adfaa28 7007
2ac7589c
PA
7008/* Set a previously stepped thread back to stepping. Returns true on
7009 success, false if the resume is not possible (e.g., the thread
7010 vanished). */
7011
7012static int
7013keep_going_stepped_thread (struct thread_info *tp)
7014{
7015 struct frame_info *frame;
7016 struct gdbarch *gdbarch;
7017 struct execution_control_state ecss;
7018 struct execution_control_state *ecs = &ecss;
2adfaa28 7019
2ac7589c
PA
7020 /* If the stepping thread exited, then don't try to switch back and
7021 resume it, which could fail in several different ways depending
7022 on the target. Instead, just keep going.
2adfaa28 7023
2ac7589c
PA
7024 We can find a stepping dead thread in the thread list in two
7025 cases:
2adfaa28 7026
2ac7589c
PA
7027 - The target supports thread exit events, and when the target
7028 tries to delete the thread from the thread list, inferior_ptid
7029 pointed at the exiting thread. In such case, calling
7030 delete_thread does not really remove the thread from the list;
7031 instead, the thread is left listed, with 'exited' state.
64ce06e4 7032
2ac7589c
PA
7033 - The target's debug interface does not support thread exit
7034 events, and so we have no idea whatsoever if the previously
7035 stepping thread is still alive. For that reason, we need to
7036 synchronously query the target now. */
2adfaa28 7037
2ac7589c
PA
7038 if (is_exited (tp->ptid)
7039 || !target_thread_alive (tp->ptid))
7040 {
7041 if (debug_infrun)
7042 fprintf_unfiltered (gdb_stdlog,
7043 "infrun: not resuming previously "
7044 "stepped thread, it has vanished\n");
7045
7046 delete_thread (tp->ptid);
7047 return 0;
c447ac0b 7048 }
2ac7589c
PA
7049
7050 if (debug_infrun)
7051 fprintf_unfiltered (gdb_stdlog,
7052 "infrun: resuming previously stepped thread\n");
7053
7054 reset_ecs (ecs, tp);
7055 switch_to_thread (tp->ptid);
7056
7057 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7058 frame = get_current_frame ();
7059 gdbarch = get_frame_arch (frame);
7060
7061 /* If the PC of the thread we were trying to single-step has
7062 changed, then that thread has trapped or been signaled, but the
7063 event has not been reported to GDB yet. Re-poll the target
7064 looking for this particular thread's event (i.e. temporarily
7065 enable schedlock) by:
7066
7067 - setting a break at the current PC
7068 - resuming that particular thread, only (by setting trap
7069 expected)
7070
7071 This prevents us continuously moving the single-step breakpoint
7072 forward, one instruction at a time, overstepping. */
7073
7074 if (stop_pc != tp->prev_pc)
7075 {
7076 ptid_t resume_ptid;
7077
7078 if (debug_infrun)
7079 fprintf_unfiltered (gdb_stdlog,
7080 "infrun: expected thread advanced also (%s -> %s)\n",
7081 paddress (target_gdbarch (), tp->prev_pc),
7082 paddress (target_gdbarch (), stop_pc));
7083
7084 /* Clear the info of the previous step-over, as it's no longer
7085 valid (if the thread was trying to step over a breakpoint, it
7086 has already succeeded). It's what keep_going would do too,
7087 if we called it. Do this before trying to insert the sss
7088 breakpoint, otherwise if we were previously trying to step
7089 over this exact address in another thread, the breakpoint is
7090 skipped. */
7091 clear_step_over_info ();
7092 tp->control.trap_expected = 0;
7093
7094 insert_single_step_breakpoint (get_frame_arch (frame),
7095 get_frame_address_space (frame),
7096 stop_pc);
7097
372316f1 7098 tp->resumed = 1;
fbea99ea 7099 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7100 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7101 }
7102 else
7103 {
7104 if (debug_infrun)
7105 fprintf_unfiltered (gdb_stdlog,
7106 "infrun: expected thread still hasn't advanced\n");
7107
7108 keep_going_pass_signal (ecs);
7109 }
7110 return 1;
c447ac0b
PA
7111}
7112
8b061563
PA
7113/* Is thread TP in the middle of (software or hardware)
7114 single-stepping? (Note the result of this function must never be
7115 passed directly as target_resume's STEP parameter.) */
104c1213 7116
a289b8f6 7117static int
b3444185 7118currently_stepping (struct thread_info *tp)
a7212384 7119{
8358c15c
JK
7120 return ((tp->control.step_range_end
7121 && tp->control.step_resume_breakpoint == NULL)
7122 || tp->control.trap_expected
af48d08f 7123 || tp->stepped_breakpoint
8358c15c 7124 || bpstat_should_step ());
a7212384
UW
7125}
7126
b2175913
MS
7127/* Inferior has stepped into a subroutine call with source code that
7128 we should not step over. Do step to the first line of code in
7129 it. */
c2c6d25f
JM
7130
7131static void
568d6575
UW
7132handle_step_into_function (struct gdbarch *gdbarch,
7133 struct execution_control_state *ecs)
c2c6d25f 7134{
43f3e411 7135 struct compunit_symtab *cust;
2afb61aa 7136 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 7137
7e324e48
GB
7138 fill_in_stop_func (gdbarch, ecs);
7139
43f3e411
DE
7140 cust = find_pc_compunit_symtab (stop_pc);
7141 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 7142 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 7143 ecs->stop_func_start);
c2c6d25f 7144
2afb61aa 7145 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7146 /* Use the step_resume_break to step until the end of the prologue,
7147 even if that involves jumps (as it seems to on the vax under
7148 4.2). */
7149 /* If the prologue ends in the middle of a source line, continue to
7150 the end of that source line (if it is still within the function).
7151 Otherwise, just go to end of prologue. */
2afb61aa
PA
7152 if (stop_func_sal.end
7153 && stop_func_sal.pc != ecs->stop_func_start
7154 && stop_func_sal.end < ecs->stop_func_end)
7155 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7156
2dbd5e30
KB
7157 /* Architectures which require breakpoint adjustment might not be able
7158 to place a breakpoint at the computed address. If so, the test
7159 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7160 ecs->stop_func_start to an address at which a breakpoint may be
7161 legitimately placed.
8fb3e588 7162
2dbd5e30
KB
7163 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7164 made, GDB will enter an infinite loop when stepping through
7165 optimized code consisting of VLIW instructions which contain
7166 subinstructions corresponding to different source lines. On
7167 FR-V, it's not permitted to place a breakpoint on any but the
7168 first subinstruction of a VLIW instruction. When a breakpoint is
7169 set, GDB will adjust the breakpoint address to the beginning of
7170 the VLIW instruction. Thus, we need to make the corresponding
7171 adjustment here when computing the stop address. */
8fb3e588 7172
568d6575 7173 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7174 {
7175 ecs->stop_func_start
568d6575 7176 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7177 ecs->stop_func_start);
2dbd5e30
KB
7178 }
7179
c2c6d25f
JM
7180 if (ecs->stop_func_start == stop_pc)
7181 {
7182 /* We are already there: stop now. */
bdc36728 7183 end_stepping_range (ecs);
c2c6d25f
JM
7184 return;
7185 }
7186 else
7187 {
7188 /* Put the step-breakpoint there and go until there. */
fe39c653 7189 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
7190 sr_sal.pc = ecs->stop_func_start;
7191 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7192 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7193
c2c6d25f 7194 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7195 some machines the prologue is where the new fp value is
7196 established. */
a6d9a66e 7197 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7198
7199 /* And make sure stepping stops right away then. */
16c381f0
JK
7200 ecs->event_thread->control.step_range_end
7201 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7202 }
7203 keep_going (ecs);
7204}
d4f3574e 7205
b2175913
MS
7206/* Inferior has stepped backward into a subroutine call with source
7207 code that we should not step over. Do step to the beginning of the
7208 last line of code in it. */
7209
7210static void
568d6575
UW
7211handle_step_into_function_backward (struct gdbarch *gdbarch,
7212 struct execution_control_state *ecs)
b2175913 7213{
43f3e411 7214 struct compunit_symtab *cust;
167e4384 7215 struct symtab_and_line stop_func_sal;
b2175913 7216
7e324e48
GB
7217 fill_in_stop_func (gdbarch, ecs);
7218
43f3e411
DE
7219 cust = find_pc_compunit_symtab (stop_pc);
7220 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 7221 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
7222 ecs->stop_func_start);
7223
7224 stop_func_sal = find_pc_line (stop_pc, 0);
7225
7226 /* OK, we're just going to keep stepping here. */
7227 if (stop_func_sal.pc == stop_pc)
7228 {
7229 /* We're there already. Just stop stepping now. */
bdc36728 7230 end_stepping_range (ecs);
b2175913
MS
7231 }
7232 else
7233 {
7234 /* Else just reset the step range and keep going.
7235 No step-resume breakpoint, they don't work for
7236 epilogues, which can have multiple entry paths. */
16c381f0
JK
7237 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7238 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7239 keep_going (ecs);
7240 }
7241 return;
7242}
7243
d3169d93 7244/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7245 This is used to both functions and to skip over code. */
7246
7247static void
2c03e5be
PA
7248insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7249 struct symtab_and_line sr_sal,
7250 struct frame_id sr_id,
7251 enum bptype sr_type)
44cbf7b5 7252{
611c83ae
PA
7253 /* There should never be more than one step-resume or longjmp-resume
7254 breakpoint per thread, so we should never be setting a new
44cbf7b5 7255 step_resume_breakpoint when one is already active. */
8358c15c 7256 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7257 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7258
7259 if (debug_infrun)
7260 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7261 "infrun: inserting step-resume breakpoint at %s\n",
7262 paddress (gdbarch, sr_sal.pc));
d3169d93 7263
8358c15c 7264 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
7265 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7266}
7267
9da8c2a0 7268void
2c03e5be
PA
7269insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7270 struct symtab_and_line sr_sal,
7271 struct frame_id sr_id)
7272{
7273 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7274 sr_sal, sr_id,
7275 bp_step_resume);
44cbf7b5 7276}
7ce450bd 7277
2c03e5be
PA
7278/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7279 This is used to skip a potential signal handler.
7ce450bd 7280
14e60db5
DJ
7281 This is called with the interrupted function's frame. The signal
7282 handler, when it returns, will resume the interrupted function at
7283 RETURN_FRAME.pc. */
d303a6c7
AC
7284
7285static void
2c03e5be 7286insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
7287{
7288 struct symtab_and_line sr_sal;
a6d9a66e 7289 struct gdbarch *gdbarch;
d303a6c7 7290
f4c1edd8 7291 gdb_assert (return_frame != NULL);
d303a6c7
AC
7292 init_sal (&sr_sal); /* initialize to zeros */
7293
a6d9a66e 7294 gdbarch = get_frame_arch (return_frame);
568d6575 7295 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7296 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7297 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7298
2c03e5be
PA
7299 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7300 get_stack_frame_id (return_frame),
7301 bp_hp_step_resume);
d303a6c7
AC
7302}
7303
2c03e5be
PA
7304/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7305 is used to skip a function after stepping into it (for "next" or if
7306 the called function has no debugging information).
14e60db5
DJ
7307
7308 The current function has almost always been reached by single
7309 stepping a call or return instruction. NEXT_FRAME belongs to the
7310 current function, and the breakpoint will be set at the caller's
7311 resume address.
7312
7313 This is a separate function rather than reusing
2c03e5be 7314 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7315 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7316 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7317
7318static void
7319insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7320{
7321 struct symtab_and_line sr_sal;
a6d9a66e 7322 struct gdbarch *gdbarch;
14e60db5
DJ
7323
7324 /* We shouldn't have gotten here if we don't know where the call site
7325 is. */
c7ce8faa 7326 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
7327
7328 init_sal (&sr_sal); /* initialize to zeros */
7329
a6d9a66e 7330 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
7331 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7332 frame_unwind_caller_pc (next_frame));
14e60db5 7333 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7334 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7335
a6d9a66e 7336 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7337 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7338}
7339
611c83ae
PA
7340/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7341 new breakpoint at the target of a jmp_buf. The handling of
7342 longjmp-resume uses the same mechanisms used for handling
7343 "step-resume" breakpoints. */
7344
7345static void
a6d9a66e 7346insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7347{
e81a37f7
TT
7348 /* There should never be more than one longjmp-resume breakpoint per
7349 thread, so we should never be setting a new
611c83ae 7350 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7351 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7352
7353 if (debug_infrun)
7354 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7355 "infrun: inserting longjmp-resume breakpoint at %s\n",
7356 paddress (gdbarch, pc));
611c83ae 7357
e81a37f7 7358 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 7359 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
7360}
7361
186c406b
TT
7362/* Insert an exception resume breakpoint. TP is the thread throwing
7363 the exception. The block B is the block of the unwinder debug hook
7364 function. FRAME is the frame corresponding to the call to this
7365 function. SYM is the symbol of the function argument holding the
7366 target PC of the exception. */
7367
7368static void
7369insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7370 const struct block *b,
186c406b
TT
7371 struct frame_info *frame,
7372 struct symbol *sym)
7373{
492d29ea 7374 TRY
186c406b 7375 {
63e43d3a 7376 struct block_symbol vsym;
186c406b
TT
7377 struct value *value;
7378 CORE_ADDR handler;
7379 struct breakpoint *bp;
7380
63e43d3a
PMR
7381 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7382 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7383 /* If the value was optimized out, revert to the old behavior. */
7384 if (! value_optimized_out (value))
7385 {
7386 handler = value_as_address (value);
7387
7388 if (debug_infrun)
7389 fprintf_unfiltered (gdb_stdlog,
7390 "infrun: exception resume at %lx\n",
7391 (unsigned long) handler);
7392
7393 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7394 handler, bp_exception_resume);
c70a6932
JK
7395
7396 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7397 frame = NULL;
7398
186c406b
TT
7399 bp->thread = tp->num;
7400 inferior_thread ()->control.exception_resume_breakpoint = bp;
7401 }
7402 }
492d29ea
PA
7403 CATCH (e, RETURN_MASK_ERROR)
7404 {
7405 /* We want to ignore errors here. */
7406 }
7407 END_CATCH
186c406b
TT
7408}
7409
28106bc2
SDJ
7410/* A helper for check_exception_resume that sets an
7411 exception-breakpoint based on a SystemTap probe. */
7412
7413static void
7414insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7415 const struct bound_probe *probe,
28106bc2
SDJ
7416 struct frame_info *frame)
7417{
7418 struct value *arg_value;
7419 CORE_ADDR handler;
7420 struct breakpoint *bp;
7421
7422 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7423 if (!arg_value)
7424 return;
7425
7426 handler = value_as_address (arg_value);
7427
7428 if (debug_infrun)
7429 fprintf_unfiltered (gdb_stdlog,
7430 "infrun: exception resume at %s\n",
6bac7473 7431 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7432 handler));
7433
7434 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7435 handler, bp_exception_resume);
7436 bp->thread = tp->num;
7437 inferior_thread ()->control.exception_resume_breakpoint = bp;
7438}
7439
186c406b
TT
7440/* This is called when an exception has been intercepted. Check to
7441 see whether the exception's destination is of interest, and if so,
7442 set an exception resume breakpoint there. */
7443
7444static void
7445check_exception_resume (struct execution_control_state *ecs,
28106bc2 7446 struct frame_info *frame)
186c406b 7447{
729662a5 7448 struct bound_probe probe;
28106bc2
SDJ
7449 struct symbol *func;
7450
7451 /* First see if this exception unwinding breakpoint was set via a
7452 SystemTap probe point. If so, the probe has two arguments: the
7453 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7454 set a breakpoint there. */
6bac7473 7455 probe = find_probe_by_pc (get_frame_pc (frame));
729662a5 7456 if (probe.probe)
28106bc2 7457 {
729662a5 7458 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7459 return;
7460 }
7461
7462 func = get_frame_function (frame);
7463 if (!func)
7464 return;
186c406b 7465
492d29ea 7466 TRY
186c406b 7467 {
3977b71f 7468 const struct block *b;
8157b174 7469 struct block_iterator iter;
186c406b
TT
7470 struct symbol *sym;
7471 int argno = 0;
7472
7473 /* The exception breakpoint is a thread-specific breakpoint on
7474 the unwinder's debug hook, declared as:
7475
7476 void _Unwind_DebugHook (void *cfa, void *handler);
7477
7478 The CFA argument indicates the frame to which control is
7479 about to be transferred. HANDLER is the destination PC.
7480
7481 We ignore the CFA and set a temporary breakpoint at HANDLER.
7482 This is not extremely efficient but it avoids issues in gdb
7483 with computing the DWARF CFA, and it also works even in weird
7484 cases such as throwing an exception from inside a signal
7485 handler. */
7486
7487 b = SYMBOL_BLOCK_VALUE (func);
7488 ALL_BLOCK_SYMBOLS (b, iter, sym)
7489 {
7490 if (!SYMBOL_IS_ARGUMENT (sym))
7491 continue;
7492
7493 if (argno == 0)
7494 ++argno;
7495 else
7496 {
7497 insert_exception_resume_breakpoint (ecs->event_thread,
7498 b, frame, sym);
7499 break;
7500 }
7501 }
7502 }
492d29ea
PA
7503 CATCH (e, RETURN_MASK_ERROR)
7504 {
7505 }
7506 END_CATCH
186c406b
TT
7507}
7508
104c1213 7509static void
22bcd14b 7510stop_waiting (struct execution_control_state *ecs)
104c1213 7511{
527159b7 7512 if (debug_infrun)
22bcd14b 7513 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7514
31e77af2
PA
7515 clear_step_over_info ();
7516
cd0fc7c3
SS
7517 /* Let callers know we don't want to wait for the inferior anymore. */
7518 ecs->wait_some_more = 0;
fbea99ea
PA
7519
7520 /* If all-stop, but the target is always in non-stop mode, stop all
7521 threads now that we're presenting the stop to the user. */
7522 if (!non_stop && target_is_non_stop_p ())
7523 stop_all_threads ();
cd0fc7c3
SS
7524}
7525
4d9d9d04
PA
7526/* Like keep_going, but passes the signal to the inferior, even if the
7527 signal is set to nopass. */
d4f3574e
SS
7528
7529static void
4d9d9d04 7530keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7531{
c4dbc9af
PA
7532 /* Make sure normal_stop is called if we get a QUIT handled before
7533 reaching resume. */
7534 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7535
4d9d9d04 7536 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
372316f1 7537 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7538
d4f3574e 7539 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
7540 ecs->event_thread->prev_pc
7541 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 7542
4d9d9d04 7543 if (ecs->event_thread->control.trap_expected)
d4f3574e 7544 {
4d9d9d04
PA
7545 struct thread_info *tp = ecs->event_thread;
7546
7547 if (debug_infrun)
7548 fprintf_unfiltered (gdb_stdlog,
7549 "infrun: %s has trap_expected set, "
7550 "resuming to collect trap\n",
7551 target_pid_to_str (tp->ptid));
7552
a9ba6bae
PA
7553 /* We haven't yet gotten our trap, and either: intercepted a
7554 non-signal event (e.g., a fork); or took a signal which we
7555 are supposed to pass through to the inferior. Simply
7556 continue. */
c4dbc9af 7557 discard_cleanups (old_cleanups);
64ce06e4 7558 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7559 }
372316f1
PA
7560 else if (step_over_info_valid_p ())
7561 {
7562 /* Another thread is stepping over a breakpoint in-line. If
7563 this thread needs a step-over too, queue the request. In
7564 either case, this resume must be deferred for later. */
7565 struct thread_info *tp = ecs->event_thread;
7566
7567 if (ecs->hit_singlestep_breakpoint
7568 || thread_still_needs_step_over (tp))
7569 {
7570 if (debug_infrun)
7571 fprintf_unfiltered (gdb_stdlog,
7572 "infrun: step-over already in progress: "
7573 "step-over for %s deferred\n",
7574 target_pid_to_str (tp->ptid));
7575 thread_step_over_chain_enqueue (tp);
7576 }
7577 else
7578 {
7579 if (debug_infrun)
7580 fprintf_unfiltered (gdb_stdlog,
7581 "infrun: step-over in progress: "
7582 "resume of %s deferred\n",
7583 target_pid_to_str (tp->ptid));
7584 }
7585
7586 discard_cleanups (old_cleanups);
7587 }
d4f3574e
SS
7588 else
7589 {
31e77af2 7590 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7591 int remove_bp;
7592 int remove_wps;
8d297bbf 7593 step_over_what step_what;
31e77af2 7594
d4f3574e 7595 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7596 anyway (if we got a signal, the user asked it be passed to
7597 the child)
7598 -- or --
7599 We got our expected trap, but decided we should resume from
7600 it.
d4f3574e 7601
a9ba6bae 7602 We're going to run this baby now!
d4f3574e 7603
c36b740a
VP
7604 Note that insert_breakpoints won't try to re-insert
7605 already inserted breakpoints. Therefore, we don't
7606 care if breakpoints were already inserted, or not. */
a9ba6bae 7607
31e77af2
PA
7608 /* If we need to step over a breakpoint, and we're not using
7609 displaced stepping to do so, insert all breakpoints
7610 (watchpoints, etc.) but the one we're stepping over, step one
7611 instruction, and then re-insert the breakpoint when that step
7612 is finished. */
963f9c80 7613
6c4cfb24
PA
7614 step_what = thread_still_needs_step_over (ecs->event_thread);
7615
963f9c80 7616 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7617 || (step_what & STEP_OVER_BREAKPOINT));
7618 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7619
cb71640d
PA
7620 /* We can't use displaced stepping if we need to step past a
7621 watchpoint. The instruction copied to the scratch pad would
7622 still trigger the watchpoint. */
7623 if (remove_bp
3fc8eb30 7624 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7625 {
31e77af2 7626 set_step_over_info (get_regcache_aspace (regcache),
963f9c80 7627 regcache_read_pc (regcache), remove_wps);
45e8c884 7628 }
963f9c80
PA
7629 else if (remove_wps)
7630 set_step_over_info (NULL, 0, remove_wps);
372316f1
PA
7631
7632 /* If we now need to do an in-line step-over, we need to stop
7633 all other threads. Note this must be done before
7634 insert_breakpoints below, because that removes the breakpoint
7635 we're about to step over, otherwise other threads could miss
7636 it. */
fbea99ea 7637 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7638 stop_all_threads ();
abbb1732 7639
31e77af2 7640 /* Stop stepping if inserting breakpoints fails. */
492d29ea 7641 TRY
31e77af2
PA
7642 {
7643 insert_breakpoints ();
7644 }
492d29ea 7645 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
7646 {
7647 exception_print (gdb_stderr, e);
22bcd14b 7648 stop_waiting (ecs);
de1fe8c8 7649 discard_cleanups (old_cleanups);
31e77af2 7650 return;
d4f3574e 7651 }
492d29ea 7652 END_CATCH
d4f3574e 7653
963f9c80 7654 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7655
c4dbc9af 7656 discard_cleanups (old_cleanups);
64ce06e4 7657 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7658 }
7659
488f131b 7660 prepare_to_wait (ecs);
d4f3574e
SS
7661}
7662
4d9d9d04
PA
7663/* Called when we should continue running the inferior, because the
7664 current event doesn't cause a user visible stop. This does the
7665 resuming part; waiting for the next event is done elsewhere. */
7666
7667static void
7668keep_going (struct execution_control_state *ecs)
7669{
7670 if (ecs->event_thread->control.trap_expected
7671 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7672 ecs->event_thread->control.trap_expected = 0;
7673
7674 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7675 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7676 keep_going_pass_signal (ecs);
7677}
7678
104c1213
JM
7679/* This function normally comes after a resume, before
7680 handle_inferior_event exits. It takes care of any last bits of
7681 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7682
104c1213
JM
7683static void
7684prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7685{
527159b7 7686 if (debug_infrun)
8a9de0e4 7687 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7688
104c1213 7689 ecs->wait_some_more = 1;
0b333c5e
PA
7690
7691 if (!target_is_async_p ())
7692 mark_infrun_async_event_handler ();
c906108c 7693}
11cf8741 7694
fd664c91 7695/* We are done with the step range of a step/next/si/ni command.
b57bacec 7696 Called once for each n of a "step n" operation. */
fd664c91
PA
7697
7698static void
bdc36728 7699end_stepping_range (struct execution_control_state *ecs)
fd664c91 7700{
bdc36728 7701 ecs->event_thread->control.stop_step = 1;
bdc36728 7702 stop_waiting (ecs);
fd664c91
PA
7703}
7704
33d62d64
JK
7705/* Several print_*_reason functions to print why the inferior has stopped.
7706 We always print something when the inferior exits, or receives a signal.
7707 The rest of the cases are dealt with later on in normal_stop and
7708 print_it_typical. Ideally there should be a call to one of these
7709 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7710 stop_waiting is called.
33d62d64 7711
fd664c91
PA
7712 Note that we don't call these directly, instead we delegate that to
7713 the interpreters, through observers. Interpreters then call these
7714 with whatever uiout is right. */
33d62d64 7715
fd664c91
PA
7716void
7717print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7718{
fd664c91 7719 /* For CLI-like interpreters, print nothing. */
33d62d64 7720
fd664c91
PA
7721 if (ui_out_is_mi_like_p (uiout))
7722 {
7723 ui_out_field_string (uiout, "reason",
7724 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7725 }
7726}
33d62d64 7727
fd664c91
PA
7728void
7729print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7730{
33d62d64
JK
7731 annotate_signalled ();
7732 if (ui_out_is_mi_like_p (uiout))
7733 ui_out_field_string
7734 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7735 ui_out_text (uiout, "\nProgram terminated with signal ");
7736 annotate_signal_name ();
7737 ui_out_field_string (uiout, "signal-name",
2ea28649 7738 gdb_signal_to_name (siggnal));
33d62d64
JK
7739 annotate_signal_name_end ();
7740 ui_out_text (uiout, ", ");
7741 annotate_signal_string ();
7742 ui_out_field_string (uiout, "signal-meaning",
2ea28649 7743 gdb_signal_to_string (siggnal));
33d62d64
JK
7744 annotate_signal_string_end ();
7745 ui_out_text (uiout, ".\n");
7746 ui_out_text (uiout, "The program no longer exists.\n");
7747}
7748
fd664c91
PA
7749void
7750print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7751{
fda326dd
TT
7752 struct inferior *inf = current_inferior ();
7753 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7754
33d62d64
JK
7755 annotate_exited (exitstatus);
7756 if (exitstatus)
7757 {
7758 if (ui_out_is_mi_like_p (uiout))
7759 ui_out_field_string (uiout, "reason",
7760 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
7761 ui_out_text (uiout, "[Inferior ");
7762 ui_out_text (uiout, plongest (inf->num));
7763 ui_out_text (uiout, " (");
7764 ui_out_text (uiout, pidstr);
7765 ui_out_text (uiout, ") exited with code ");
33d62d64 7766 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 7767 ui_out_text (uiout, "]\n");
33d62d64
JK
7768 }
7769 else
11cf8741 7770 {
9dc5e2a9 7771 if (ui_out_is_mi_like_p (uiout))
034dad6f 7772 ui_out_field_string
33d62d64 7773 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
7774 ui_out_text (uiout, "[Inferior ");
7775 ui_out_text (uiout, plongest (inf->num));
7776 ui_out_text (uiout, " (");
7777 ui_out_text (uiout, pidstr);
7778 ui_out_text (uiout, ") exited normally]\n");
33d62d64 7779 }
33d62d64
JK
7780}
7781
fd664c91
PA
7782void
7783print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64
JK
7784{
7785 annotate_signal ();
7786
a493e3e2 7787 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
33d62d64
JK
7788 {
7789 struct thread_info *t = inferior_thread ();
7790
7791 ui_out_text (uiout, "\n[");
7792 ui_out_field_string (uiout, "thread-name",
7793 target_pid_to_str (t->ptid));
7794 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
7795 ui_out_text (uiout, " stopped");
7796 }
7797 else
7798 {
7799 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 7800 annotate_signal_name ();
33d62d64
JK
7801 if (ui_out_is_mi_like_p (uiout))
7802 ui_out_field_string
7803 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 7804 ui_out_field_string (uiout, "signal-name",
2ea28649 7805 gdb_signal_to_name (siggnal));
8b93c638
JM
7806 annotate_signal_name_end ();
7807 ui_out_text (uiout, ", ");
7808 annotate_signal_string ();
488f131b 7809 ui_out_field_string (uiout, "signal-meaning",
2ea28649 7810 gdb_signal_to_string (siggnal));
8b93c638 7811 annotate_signal_string_end ();
33d62d64
JK
7812 }
7813 ui_out_text (uiout, ".\n");
7814}
252fbfc8 7815
fd664c91
PA
7816void
7817print_no_history_reason (struct ui_out *uiout)
33d62d64 7818{
fd664c91 7819 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
11cf8741 7820}
43ff13b4 7821
0c7e1a46
PA
7822/* Print current location without a level number, if we have changed
7823 functions or hit a breakpoint. Print source line if we have one.
7824 bpstat_print contains the logic deciding in detail what to print,
7825 based on the event(s) that just occurred. */
7826
243a9253
PA
7827static void
7828print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
7829{
7830 int bpstat_ret;
f486487f 7831 enum print_what source_flag;
0c7e1a46
PA
7832 int do_frame_printing = 1;
7833 struct thread_info *tp = inferior_thread ();
7834
7835 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7836 switch (bpstat_ret)
7837 {
7838 case PRINT_UNKNOWN:
7839 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7840 should) carry around the function and does (or should) use
7841 that when doing a frame comparison. */
7842 if (tp->control.stop_step
7843 && frame_id_eq (tp->control.step_frame_id,
7844 get_frame_id (get_current_frame ()))
885eeb5b 7845 && tp->control.step_start_function == find_pc_function (stop_pc))
0c7e1a46
PA
7846 {
7847 /* Finished step, just print source line. */
7848 source_flag = SRC_LINE;
7849 }
7850 else
7851 {
7852 /* Print location and source line. */
7853 source_flag = SRC_AND_LOC;
7854 }
7855 break;
7856 case PRINT_SRC_AND_LOC:
7857 /* Print location and source line. */
7858 source_flag = SRC_AND_LOC;
7859 break;
7860 case PRINT_SRC_ONLY:
7861 source_flag = SRC_LINE;
7862 break;
7863 case PRINT_NOTHING:
7864 /* Something bogus. */
7865 source_flag = SRC_LINE;
7866 do_frame_printing = 0;
7867 break;
7868 default:
7869 internal_error (__FILE__, __LINE__, _("Unknown value."));
7870 }
7871
7872 /* The behavior of this routine with respect to the source
7873 flag is:
7874 SRC_LINE: Print only source line
7875 LOCATION: Print only location
7876 SRC_AND_LOC: Print location and source line. */
7877 if (do_frame_printing)
7878 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
7879}
7880
7881/* Cleanup that restores a previous current uiout. */
7882
7883static void
7884restore_current_uiout_cleanup (void *arg)
7885{
9a3c8263 7886 struct ui_out *saved_uiout = (struct ui_out *) arg;
243a9253
PA
7887
7888 current_uiout = saved_uiout;
7889}
7890
7891/* See infrun.h. */
7892
7893void
7894print_stop_event (struct ui_out *uiout)
7895{
7896 struct cleanup *old_chain;
7897 struct target_waitstatus last;
7898 ptid_t last_ptid;
7899 struct thread_info *tp;
7900
7901 get_last_target_status (&last_ptid, &last);
7902
7903 old_chain = make_cleanup (restore_current_uiout_cleanup, current_uiout);
7904 current_uiout = uiout;
7905
7906 print_stop_location (&last);
0c7e1a46
PA
7907
7908 /* Display the auto-display expressions. */
7909 do_displays ();
243a9253
PA
7910
7911 do_cleanups (old_chain);
7912
7913 tp = inferior_thread ();
7914 if (tp->thread_fsm != NULL
7915 && thread_fsm_finished_p (tp->thread_fsm))
7916 {
7917 struct return_value_info *rv;
7918
7919 rv = thread_fsm_return_value (tp->thread_fsm);
7920 if (rv != NULL)
7921 print_return_value (uiout, rv);
7922 }
0c7e1a46
PA
7923}
7924
388a7084
PA
7925/* See infrun.h. */
7926
7927void
7928maybe_remove_breakpoints (void)
7929{
7930 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7931 {
7932 if (remove_breakpoints ())
7933 {
7934 target_terminal_ours_for_output ();
7935 printf_filtered (_("Cannot remove breakpoints because "
7936 "program is no longer writable.\nFurther "
7937 "execution is probably impossible.\n"));
7938 }
7939 }
7940}
7941
4c2f2a79
PA
7942/* The execution context that just caused a normal stop. */
7943
7944struct stop_context
7945{
7946 /* The stop ID. */
7947 ULONGEST stop_id;
c906108c 7948
4c2f2a79 7949 /* The event PTID. */
c906108c 7950
4c2f2a79
PA
7951 ptid_t ptid;
7952
7953 /* If stopp for a thread event, this is the thread that caused the
7954 stop. */
7955 struct thread_info *thread;
7956
7957 /* The inferior that caused the stop. */
7958 int inf_num;
7959};
7960
7961/* Returns a new stop context. If stopped for a thread event, this
7962 takes a strong reference to the thread. */
7963
7964static struct stop_context *
7965save_stop_context (void)
7966{
224c3ddb 7967 struct stop_context *sc = XNEW (struct stop_context);
4c2f2a79
PA
7968
7969 sc->stop_id = get_stop_id ();
7970 sc->ptid = inferior_ptid;
7971 sc->inf_num = current_inferior ()->num;
7972
7973 if (!ptid_equal (inferior_ptid, null_ptid))
7974 {
7975 /* Take a strong reference so that the thread can't be deleted
7976 yet. */
7977 sc->thread = inferior_thread ();
7978 sc->thread->refcount++;
7979 }
7980 else
7981 sc->thread = NULL;
7982
7983 return sc;
7984}
7985
7986/* Release a stop context previously created with save_stop_context.
7987 Releases the strong reference to the thread as well. */
7988
7989static void
7990release_stop_context_cleanup (void *arg)
7991{
9a3c8263 7992 struct stop_context *sc = (struct stop_context *) arg;
4c2f2a79
PA
7993
7994 if (sc->thread != NULL)
7995 sc->thread->refcount--;
7996 xfree (sc);
7997}
7998
7999/* Return true if the current context no longer matches the saved stop
8000 context. */
8001
8002static int
8003stop_context_changed (struct stop_context *prev)
8004{
8005 if (!ptid_equal (prev->ptid, inferior_ptid))
8006 return 1;
8007 if (prev->inf_num != current_inferior ()->num)
8008 return 1;
8009 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8010 return 1;
8011 if (get_stop_id () != prev->stop_id)
8012 return 1;
8013 return 0;
8014}
8015
8016/* See infrun.h. */
8017
8018int
96baa820 8019normal_stop (void)
c906108c 8020{
73b65bb0
DJ
8021 struct target_waitstatus last;
8022 ptid_t last_ptid;
29f49a6a 8023 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
e1316e60 8024 ptid_t pid_ptid;
73b65bb0
DJ
8025
8026 get_last_target_status (&last_ptid, &last);
8027
4c2f2a79
PA
8028 new_stop_id ();
8029
29f49a6a
PA
8030 /* If an exception is thrown from this point on, make sure to
8031 propagate GDB's knowledge of the executing state to the
8032 frontend/user running state. A QUIT is an easy exception to see
8033 here, so do this before any filtered output. */
c35b1492
PA
8034 if (!non_stop)
8035 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
e1316e60
PA
8036 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8037 || last.kind == TARGET_WAITKIND_EXITED)
8038 {
8039 /* On some targets, we may still have live threads in the
8040 inferior when we get a process exit event. E.g., for
8041 "checkpoint", when the current checkpoint/fork exits,
8042 linux-fork.c automatically switches to another fork from
8043 within target_mourn_inferior. */
8044 if (!ptid_equal (inferior_ptid, null_ptid))
8045 {
8046 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8047 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8048 }
8049 }
8050 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 8051 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 8052
b57bacec
PA
8053 /* As we're presenting a stop, and potentially removing breakpoints,
8054 update the thread list so we can tell whether there are threads
8055 running on the target. With target remote, for example, we can
8056 only learn about new threads when we explicitly update the thread
8057 list. Do this before notifying the interpreters about signal
8058 stops, end of stepping ranges, etc., so that the "new thread"
8059 output is emitted before e.g., "Program received signal FOO",
8060 instead of after. */
8061 update_thread_list ();
8062
8063 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8064 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8065
c906108c
SS
8066 /* As with the notification of thread events, we want to delay
8067 notifying the user that we've switched thread context until
8068 the inferior actually stops.
8069
73b65bb0
DJ
8070 There's no point in saying anything if the inferior has exited.
8071 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8072 "received a signal".
8073
8074 Also skip saying anything in non-stop mode. In that mode, as we
8075 don't want GDB to switch threads behind the user's back, to avoid
8076 races where the user is typing a command to apply to thread x,
8077 but GDB switches to thread y before the user finishes entering
8078 the command, fetch_inferior_event installs a cleanup to restore
8079 the current thread back to the thread the user had selected right
8080 after this event is handled, so we're not really switching, only
8081 informing of a stop. */
4f8d22e3
PA
8082 if (!non_stop
8083 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
8084 && target_has_execution
8085 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8086 && last.kind != TARGET_WAITKIND_EXITED
8087 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
8088 {
8089 target_terminal_ours_for_output ();
a3f17187 8090 printf_filtered (_("[Switching to %s]\n"),
c95310c6 8091 target_pid_to_str (inferior_ptid));
b8fa951a 8092 annotate_thread_changed ();
39f77062 8093 previous_inferior_ptid = inferior_ptid;
c906108c 8094 }
c906108c 8095
0e5bf2a8
PA
8096 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8097 {
8098 gdb_assert (sync_execution || !target_can_async_p ());
8099
8100 target_terminal_ours_for_output ();
8101 printf_filtered (_("No unwaited-for children left.\n"));
8102 }
8103
b57bacec 8104 /* Note: this depends on the update_thread_list call above. */
388a7084 8105 maybe_remove_breakpoints ();
c906108c 8106
c906108c
SS
8107 /* If an auto-display called a function and that got a signal,
8108 delete that auto-display to avoid an infinite recursion. */
8109
8110 if (stopped_by_random_signal)
8111 disable_current_display ();
8112
c906108c 8113 target_terminal_ours ();
0f641c01 8114 async_enable_stdin ();
c906108c 8115
388a7084
PA
8116 /* Let the user/frontend see the threads as stopped. */
8117 do_cleanups (old_chain);
8118
8119 /* Select innermost stack frame - i.e., current frame is frame 0,
8120 and current location is based on that. Handle the case where the
8121 dummy call is returning after being stopped. E.g. the dummy call
8122 previously hit a breakpoint. (If the dummy call returns
8123 normally, we won't reach here.) Do this before the stop hook is
8124 run, so that it doesn't get to see the temporary dummy frame,
8125 which is not where we'll present the stop. */
8126 if (has_stack_frames ())
8127 {
8128 if (stop_stack_dummy == STOP_STACK_DUMMY)
8129 {
8130 /* Pop the empty frame that contains the stack dummy. This
8131 also restores inferior state prior to the call (struct
8132 infcall_suspend_state). */
8133 struct frame_info *frame = get_current_frame ();
8134
8135 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8136 frame_pop (frame);
8137 /* frame_pop calls reinit_frame_cache as the last thing it
8138 does which means there's now no selected frame. */
8139 }
8140
8141 select_frame (get_current_frame ());
8142
8143 /* Set the current source location. */
8144 set_current_sal_from_frame (get_current_frame ());
8145 }
dd7e2d2b
PA
8146
8147 /* Look up the hook_stop and run it (CLI internally handles problem
8148 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8149 if (stop_command != NULL)
8150 {
8151 struct stop_context *saved_context = save_stop_context ();
8152 struct cleanup *old_chain
8153 = make_cleanup (release_stop_context_cleanup, saved_context);
8154
8155 catch_errors (hook_stop_stub, stop_command,
8156 "Error while running hook_stop:\n", RETURN_MASK_ALL);
8157
8158 /* If the stop hook resumes the target, then there's no point in
8159 trying to notify about the previous stop; its context is
8160 gone. Likewise if the command switches thread or inferior --
8161 the observers would print a stop for the wrong
8162 thread/inferior. */
8163 if (stop_context_changed (saved_context))
8164 {
8165 do_cleanups (old_chain);
8166 return 1;
8167 }
8168 do_cleanups (old_chain);
8169 }
dd7e2d2b 8170
388a7084
PA
8171 /* Notify observers about the stop. This is where the interpreters
8172 print the stop event. */
8173 if (!ptid_equal (inferior_ptid, null_ptid))
8174 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8175 stop_print_frame);
8176 else
8177 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 8178
243a9253
PA
8179 annotate_stopped ();
8180
48844aa6
PA
8181 if (target_has_execution)
8182 {
8183 if (last.kind != TARGET_WAITKIND_SIGNALLED
8184 && last.kind != TARGET_WAITKIND_EXITED)
8185 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8186 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8187 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8188 }
6c95b8df
PA
8189
8190 /* Try to get rid of automatically added inferiors that are no
8191 longer needed. Keeping those around slows down things linearly.
8192 Note that this never removes the current inferior. */
8193 prune_inferiors ();
4c2f2a79
PA
8194
8195 return 0;
c906108c
SS
8196}
8197
8198static int
96baa820 8199hook_stop_stub (void *cmd)
c906108c 8200{
5913bcb0 8201 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
8202 return (0);
8203}
8204\f
c5aa993b 8205int
96baa820 8206signal_stop_state (int signo)
c906108c 8207{
d6b48e9c 8208 return signal_stop[signo];
c906108c
SS
8209}
8210
c5aa993b 8211int
96baa820 8212signal_print_state (int signo)
c906108c
SS
8213{
8214 return signal_print[signo];
8215}
8216
c5aa993b 8217int
96baa820 8218signal_pass_state (int signo)
c906108c
SS
8219{
8220 return signal_program[signo];
8221}
8222
2455069d
UW
8223static void
8224signal_cache_update (int signo)
8225{
8226 if (signo == -1)
8227 {
a493e3e2 8228 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8229 signal_cache_update (signo);
8230
8231 return;
8232 }
8233
8234 signal_pass[signo] = (signal_stop[signo] == 0
8235 && signal_print[signo] == 0
ab04a2af
TT
8236 && signal_program[signo] == 1
8237 && signal_catch[signo] == 0);
2455069d
UW
8238}
8239
488f131b 8240int
7bda5e4a 8241signal_stop_update (int signo, int state)
d4f3574e
SS
8242{
8243 int ret = signal_stop[signo];
abbb1732 8244
d4f3574e 8245 signal_stop[signo] = state;
2455069d 8246 signal_cache_update (signo);
d4f3574e
SS
8247 return ret;
8248}
8249
488f131b 8250int
7bda5e4a 8251signal_print_update (int signo, int state)
d4f3574e
SS
8252{
8253 int ret = signal_print[signo];
abbb1732 8254
d4f3574e 8255 signal_print[signo] = state;
2455069d 8256 signal_cache_update (signo);
d4f3574e
SS
8257 return ret;
8258}
8259
488f131b 8260int
7bda5e4a 8261signal_pass_update (int signo, int state)
d4f3574e
SS
8262{
8263 int ret = signal_program[signo];
abbb1732 8264
d4f3574e 8265 signal_program[signo] = state;
2455069d 8266 signal_cache_update (signo);
d4f3574e
SS
8267 return ret;
8268}
8269
ab04a2af
TT
8270/* Update the global 'signal_catch' from INFO and notify the
8271 target. */
8272
8273void
8274signal_catch_update (const unsigned int *info)
8275{
8276 int i;
8277
8278 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8279 signal_catch[i] = info[i] > 0;
8280 signal_cache_update (-1);
8281 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8282}
8283
c906108c 8284static void
96baa820 8285sig_print_header (void)
c906108c 8286{
3e43a32a
MS
8287 printf_filtered (_("Signal Stop\tPrint\tPass "
8288 "to program\tDescription\n"));
c906108c
SS
8289}
8290
8291static void
2ea28649 8292sig_print_info (enum gdb_signal oursig)
c906108c 8293{
2ea28649 8294 const char *name = gdb_signal_to_name (oursig);
c906108c 8295 int name_padding = 13 - strlen (name);
96baa820 8296
c906108c
SS
8297 if (name_padding <= 0)
8298 name_padding = 0;
8299
8300 printf_filtered ("%s", name);
488f131b 8301 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8302 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8303 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8304 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8305 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8306}
8307
8308/* Specify how various signals in the inferior should be handled. */
8309
8310static void
96baa820 8311handle_command (char *args, int from_tty)
c906108c
SS
8312{
8313 char **argv;
8314 int digits, wordlen;
8315 int sigfirst, signum, siglast;
2ea28649 8316 enum gdb_signal oursig;
c906108c
SS
8317 int allsigs;
8318 int nsigs;
8319 unsigned char *sigs;
8320 struct cleanup *old_chain;
8321
8322 if (args == NULL)
8323 {
e2e0b3e5 8324 error_no_arg (_("signal to handle"));
c906108c
SS
8325 }
8326
1777feb0 8327 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8328
a493e3e2 8329 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
8330 sigs = (unsigned char *) alloca (nsigs);
8331 memset (sigs, 0, nsigs);
8332
1777feb0 8333 /* Break the command line up into args. */
c906108c 8334
d1a41061 8335 argv = gdb_buildargv (args);
7a292a7a 8336 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
8337
8338 /* Walk through the args, looking for signal oursigs, signal names, and
8339 actions. Signal numbers and signal names may be interspersed with
8340 actions, with the actions being performed for all signals cumulatively
1777feb0 8341 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
8342
8343 while (*argv != NULL)
8344 {
8345 wordlen = strlen (*argv);
8346 for (digits = 0; isdigit ((*argv)[digits]); digits++)
8347 {;
8348 }
8349 allsigs = 0;
8350 sigfirst = siglast = -1;
8351
8352 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
8353 {
8354 /* Apply action to all signals except those used by the
1777feb0 8355 debugger. Silently skip those. */
c906108c
SS
8356 allsigs = 1;
8357 sigfirst = 0;
8358 siglast = nsigs - 1;
8359 }
8360 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
8361 {
8362 SET_SIGS (nsigs, sigs, signal_stop);
8363 SET_SIGS (nsigs, sigs, signal_print);
8364 }
8365 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
8366 {
8367 UNSET_SIGS (nsigs, sigs, signal_program);
8368 }
8369 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
8370 {
8371 SET_SIGS (nsigs, sigs, signal_print);
8372 }
8373 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
8374 {
8375 SET_SIGS (nsigs, sigs, signal_program);
8376 }
8377 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
8378 {
8379 UNSET_SIGS (nsigs, sigs, signal_stop);
8380 }
8381 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
8382 {
8383 SET_SIGS (nsigs, sigs, signal_program);
8384 }
8385 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
8386 {
8387 UNSET_SIGS (nsigs, sigs, signal_print);
8388 UNSET_SIGS (nsigs, sigs, signal_stop);
8389 }
8390 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
8391 {
8392 UNSET_SIGS (nsigs, sigs, signal_program);
8393 }
8394 else if (digits > 0)
8395 {
8396 /* It is numeric. The numeric signal refers to our own
8397 internal signal numbering from target.h, not to host/target
8398 signal number. This is a feature; users really should be
8399 using symbolic names anyway, and the common ones like
8400 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8401
8402 sigfirst = siglast = (int)
2ea28649 8403 gdb_signal_from_command (atoi (*argv));
c906108c
SS
8404 if ((*argv)[digits] == '-')
8405 {
8406 siglast = (int)
2ea28649 8407 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
8408 }
8409 if (sigfirst > siglast)
8410 {
1777feb0 8411 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
8412 signum = sigfirst;
8413 sigfirst = siglast;
8414 siglast = signum;
8415 }
8416 }
8417 else
8418 {
2ea28649 8419 oursig = gdb_signal_from_name (*argv);
a493e3e2 8420 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8421 {
8422 sigfirst = siglast = (int) oursig;
8423 }
8424 else
8425 {
8426 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 8427 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
8428 }
8429 }
8430
8431 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8432 which signals to apply actions to. */
c906108c
SS
8433
8434 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8435 {
2ea28649 8436 switch ((enum gdb_signal) signum)
c906108c 8437 {
a493e3e2
PA
8438 case GDB_SIGNAL_TRAP:
8439 case GDB_SIGNAL_INT:
c906108c
SS
8440 if (!allsigs && !sigs[signum])
8441 {
9e2f0ad4 8442 if (query (_("%s is used by the debugger.\n\
3e43a32a 8443Are you sure you want to change it? "),
2ea28649 8444 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8445 {
8446 sigs[signum] = 1;
8447 }
8448 else
8449 {
a3f17187 8450 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8451 gdb_flush (gdb_stdout);
8452 }
8453 }
8454 break;
a493e3e2
PA
8455 case GDB_SIGNAL_0:
8456 case GDB_SIGNAL_DEFAULT:
8457 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8458 /* Make sure that "all" doesn't print these. */
8459 break;
8460 default:
8461 sigs[signum] = 1;
8462 break;
8463 }
8464 }
8465
8466 argv++;
8467 }
8468
3a031f65
PA
8469 for (signum = 0; signum < nsigs; signum++)
8470 if (sigs[signum])
8471 {
2455069d 8472 signal_cache_update (-1);
a493e3e2
PA
8473 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8474 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 8475
3a031f65
PA
8476 if (from_tty)
8477 {
8478 /* Show the results. */
8479 sig_print_header ();
8480 for (; signum < nsigs; signum++)
8481 if (sigs[signum])
aead7601 8482 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8483 }
8484
8485 break;
8486 }
c906108c
SS
8487
8488 do_cleanups (old_chain);
8489}
8490
de0bea00
MF
8491/* Complete the "handle" command. */
8492
8493static VEC (char_ptr) *
8494handle_completer (struct cmd_list_element *ignore,
6f937416 8495 const char *text, const char *word)
de0bea00
MF
8496{
8497 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
8498 static const char * const keywords[] =
8499 {
8500 "all",
8501 "stop",
8502 "ignore",
8503 "print",
8504 "pass",
8505 "nostop",
8506 "noignore",
8507 "noprint",
8508 "nopass",
8509 NULL,
8510 };
8511
8512 vec_signals = signal_completer (ignore, text, word);
8513 vec_keywords = complete_on_enum (keywords, word, word);
8514
8515 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
8516 VEC_free (char_ptr, vec_signals);
8517 VEC_free (char_ptr, vec_keywords);
8518 return return_val;
8519}
8520
2ea28649
PA
8521enum gdb_signal
8522gdb_signal_from_command (int num)
ed01b82c
PA
8523{
8524 if (num >= 1 && num <= 15)
2ea28649 8525 return (enum gdb_signal) num;
ed01b82c
PA
8526 error (_("Only signals 1-15 are valid as numeric signals.\n\
8527Use \"info signals\" for a list of symbolic signals."));
8528}
8529
c906108c
SS
8530/* Print current contents of the tables set by the handle command.
8531 It is possible we should just be printing signals actually used
8532 by the current target (but for things to work right when switching
8533 targets, all signals should be in the signal tables). */
8534
8535static void
96baa820 8536signals_info (char *signum_exp, int from_tty)
c906108c 8537{
2ea28649 8538 enum gdb_signal oursig;
abbb1732 8539
c906108c
SS
8540 sig_print_header ();
8541
8542 if (signum_exp)
8543 {
8544 /* First see if this is a symbol name. */
2ea28649 8545 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8546 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8547 {
8548 /* No, try numeric. */
8549 oursig =
2ea28649 8550 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8551 }
8552 sig_print_info (oursig);
8553 return;
8554 }
8555
8556 printf_filtered ("\n");
8557 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8558 for (oursig = GDB_SIGNAL_FIRST;
8559 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8560 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8561 {
8562 QUIT;
8563
a493e3e2
PA
8564 if (oursig != GDB_SIGNAL_UNKNOWN
8565 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8566 sig_print_info (oursig);
8567 }
8568
3e43a32a
MS
8569 printf_filtered (_("\nUse the \"handle\" command "
8570 "to change these tables.\n"));
c906108c 8571}
4aa995e1 8572
c709acd1
PA
8573/* Check if it makes sense to read $_siginfo from the current thread
8574 at this point. If not, throw an error. */
8575
8576static void
8577validate_siginfo_access (void)
8578{
8579 /* No current inferior, no siginfo. */
8580 if (ptid_equal (inferior_ptid, null_ptid))
8581 error (_("No thread selected."));
8582
8583 /* Don't try to read from a dead thread. */
8584 if (is_exited (inferior_ptid))
8585 error (_("The current thread has terminated"));
8586
8587 /* ... or from a spinning thread. */
8588 if (is_running (inferior_ptid))
8589 error (_("Selected thread is running."));
8590}
8591
4aa995e1
PA
8592/* The $_siginfo convenience variable is a bit special. We don't know
8593 for sure the type of the value until we actually have a chance to
7a9dd1b2 8594 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8595 also dependent on which thread you have selected.
8596
8597 1. making $_siginfo be an internalvar that creates a new value on
8598 access.
8599
8600 2. making the value of $_siginfo be an lval_computed value. */
8601
8602/* This function implements the lval_computed support for reading a
8603 $_siginfo value. */
8604
8605static void
8606siginfo_value_read (struct value *v)
8607{
8608 LONGEST transferred;
8609
c709acd1
PA
8610 validate_siginfo_access ();
8611
4aa995e1
PA
8612 transferred =
8613 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8614 NULL,
8615 value_contents_all_raw (v),
8616 value_offset (v),
8617 TYPE_LENGTH (value_type (v)));
8618
8619 if (transferred != TYPE_LENGTH (value_type (v)))
8620 error (_("Unable to read siginfo"));
8621}
8622
8623/* This function implements the lval_computed support for writing a
8624 $_siginfo value. */
8625
8626static void
8627siginfo_value_write (struct value *v, struct value *fromval)
8628{
8629 LONGEST transferred;
8630
c709acd1
PA
8631 validate_siginfo_access ();
8632
4aa995e1
PA
8633 transferred = target_write (&current_target,
8634 TARGET_OBJECT_SIGNAL_INFO,
8635 NULL,
8636 value_contents_all_raw (fromval),
8637 value_offset (v),
8638 TYPE_LENGTH (value_type (fromval)));
8639
8640 if (transferred != TYPE_LENGTH (value_type (fromval)))
8641 error (_("Unable to write siginfo"));
8642}
8643
c8f2448a 8644static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8645 {
8646 siginfo_value_read,
8647 siginfo_value_write
8648 };
8649
8650/* Return a new value with the correct type for the siginfo object of
78267919
UW
8651 the current thread using architecture GDBARCH. Return a void value
8652 if there's no object available. */
4aa995e1 8653
2c0b251b 8654static struct value *
22d2b532
SDJ
8655siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8656 void *ignore)
4aa995e1 8657{
4aa995e1 8658 if (target_has_stack
78267919
UW
8659 && !ptid_equal (inferior_ptid, null_ptid)
8660 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8661 {
78267919 8662 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8663
78267919 8664 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8665 }
8666
78267919 8667 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8668}
8669
c906108c 8670\f
16c381f0
JK
8671/* infcall_suspend_state contains state about the program itself like its
8672 registers and any signal it received when it last stopped.
8673 This state must be restored regardless of how the inferior function call
8674 ends (either successfully, or after it hits a breakpoint or signal)
8675 if the program is to properly continue where it left off. */
8676
8677struct infcall_suspend_state
7a292a7a 8678{
16c381f0 8679 struct thread_suspend_state thread_suspend;
16c381f0
JK
8680
8681 /* Other fields: */
7a292a7a 8682 CORE_ADDR stop_pc;
b89667eb 8683 struct regcache *registers;
1736ad11 8684
35515841 8685 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
8686 struct gdbarch *siginfo_gdbarch;
8687
8688 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8689 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8690 content would be invalid. */
8691 gdb_byte *siginfo_data;
b89667eb
DE
8692};
8693
16c381f0
JK
8694struct infcall_suspend_state *
8695save_infcall_suspend_state (void)
b89667eb 8696{
16c381f0 8697 struct infcall_suspend_state *inf_state;
b89667eb 8698 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8699 struct regcache *regcache = get_current_regcache ();
8700 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8701 gdb_byte *siginfo_data = NULL;
8702
8703 if (gdbarch_get_siginfo_type_p (gdbarch))
8704 {
8705 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8706 size_t len = TYPE_LENGTH (type);
8707 struct cleanup *back_to;
8708
224c3ddb 8709 siginfo_data = (gdb_byte *) xmalloc (len);
1736ad11
JK
8710 back_to = make_cleanup (xfree, siginfo_data);
8711
8712 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8713 siginfo_data, 0, len) == len)
8714 discard_cleanups (back_to);
8715 else
8716 {
8717 /* Errors ignored. */
8718 do_cleanups (back_to);
8719 siginfo_data = NULL;
8720 }
8721 }
8722
41bf6aca 8723 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
8724
8725 if (siginfo_data)
8726 {
8727 inf_state->siginfo_gdbarch = gdbarch;
8728 inf_state->siginfo_data = siginfo_data;
8729 }
b89667eb 8730
16c381f0 8731 inf_state->thread_suspend = tp->suspend;
16c381f0 8732
35515841 8733 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
8734 GDB_SIGNAL_0 anyway. */
8735 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8736
b89667eb
DE
8737 inf_state->stop_pc = stop_pc;
8738
1736ad11 8739 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
8740
8741 return inf_state;
8742}
8743
8744/* Restore inferior session state to INF_STATE. */
8745
8746void
16c381f0 8747restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8748{
8749 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8750 struct regcache *regcache = get_current_regcache ();
8751 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 8752
16c381f0 8753 tp->suspend = inf_state->thread_suspend;
16c381f0 8754
b89667eb
DE
8755 stop_pc = inf_state->stop_pc;
8756
1736ad11
JK
8757 if (inf_state->siginfo_gdbarch == gdbarch)
8758 {
8759 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
8760
8761 /* Errors ignored. */
8762 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 8763 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
8764 }
8765
b89667eb
DE
8766 /* The inferior can be gone if the user types "print exit(0)"
8767 (and perhaps other times). */
8768 if (target_has_execution)
8769 /* NB: The register write goes through to the target. */
1736ad11 8770 regcache_cpy (regcache, inf_state->registers);
803b5f95 8771
16c381f0 8772 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8773}
8774
8775static void
16c381f0 8776do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 8777{
9a3c8263 8778 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
b89667eb
DE
8779}
8780
8781struct cleanup *
16c381f0
JK
8782make_cleanup_restore_infcall_suspend_state
8783 (struct infcall_suspend_state *inf_state)
b89667eb 8784{
16c381f0 8785 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
8786}
8787
8788void
16c381f0 8789discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8790{
8791 regcache_xfree (inf_state->registers);
803b5f95 8792 xfree (inf_state->siginfo_data);
b89667eb
DE
8793 xfree (inf_state);
8794}
8795
8796struct regcache *
16c381f0 8797get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
8798{
8799 return inf_state->registers;
8800}
8801
16c381f0
JK
8802/* infcall_control_state contains state regarding gdb's control of the
8803 inferior itself like stepping control. It also contains session state like
8804 the user's currently selected frame. */
b89667eb 8805
16c381f0 8806struct infcall_control_state
b89667eb 8807{
16c381f0
JK
8808 struct thread_control_state thread_control;
8809 struct inferior_control_state inferior_control;
d82142e2
JK
8810
8811 /* Other fields: */
8812 enum stop_stack_kind stop_stack_dummy;
8813 int stopped_by_random_signal;
7a292a7a 8814
b89667eb 8815 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 8816 struct frame_id selected_frame_id;
7a292a7a
SS
8817};
8818
c906108c 8819/* Save all of the information associated with the inferior<==>gdb
b89667eb 8820 connection. */
c906108c 8821
16c381f0
JK
8822struct infcall_control_state *
8823save_infcall_control_state (void)
c906108c 8824{
8d749320
SM
8825 struct infcall_control_state *inf_status =
8826 XNEW (struct infcall_control_state);
4e1c45ea 8827 struct thread_info *tp = inferior_thread ();
d6b48e9c 8828 struct inferior *inf = current_inferior ();
7a292a7a 8829
16c381f0
JK
8830 inf_status->thread_control = tp->control;
8831 inf_status->inferior_control = inf->control;
d82142e2 8832
8358c15c 8833 tp->control.step_resume_breakpoint = NULL;
5b79abe7 8834 tp->control.exception_resume_breakpoint = NULL;
8358c15c 8835
16c381f0
JK
8836 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8837 chain. If caller's caller is walking the chain, they'll be happier if we
8838 hand them back the original chain when restore_infcall_control_state is
8839 called. */
8840 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
8841
8842 /* Other fields: */
8843 inf_status->stop_stack_dummy = stop_stack_dummy;
8844 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 8845
206415a3 8846 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 8847
7a292a7a 8848 return inf_status;
c906108c
SS
8849}
8850
c906108c 8851static int
96baa820 8852restore_selected_frame (void *args)
c906108c 8853{
488f131b 8854 struct frame_id *fid = (struct frame_id *) args;
c906108c 8855 struct frame_info *frame;
c906108c 8856
101dcfbe 8857 frame = frame_find_by_id (*fid);
c906108c 8858
aa0cd9c1
AC
8859 /* If inf_status->selected_frame_id is NULL, there was no previously
8860 selected frame. */
101dcfbe 8861 if (frame == NULL)
c906108c 8862 {
8a3fe4f8 8863 warning (_("Unable to restore previously selected frame."));
c906108c
SS
8864 return 0;
8865 }
8866
0f7d239c 8867 select_frame (frame);
c906108c
SS
8868
8869 return (1);
8870}
8871
b89667eb
DE
8872/* Restore inferior session state to INF_STATUS. */
8873
c906108c 8874void
16c381f0 8875restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 8876{
4e1c45ea 8877 struct thread_info *tp = inferior_thread ();
d6b48e9c 8878 struct inferior *inf = current_inferior ();
4e1c45ea 8879
8358c15c
JK
8880 if (tp->control.step_resume_breakpoint)
8881 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8882
5b79abe7
TT
8883 if (tp->control.exception_resume_breakpoint)
8884 tp->control.exception_resume_breakpoint->disposition
8885 = disp_del_at_next_stop;
8886
d82142e2 8887 /* Handle the bpstat_copy of the chain. */
16c381f0 8888 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 8889
16c381f0
JK
8890 tp->control = inf_status->thread_control;
8891 inf->control = inf_status->inferior_control;
d82142e2
JK
8892
8893 /* Other fields: */
8894 stop_stack_dummy = inf_status->stop_stack_dummy;
8895 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 8896
b89667eb 8897 if (target_has_stack)
c906108c 8898 {
c906108c 8899 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
8900 walking the stack might encounter a garbage pointer and
8901 error() trying to dereference it. */
488f131b
JB
8902 if (catch_errors
8903 (restore_selected_frame, &inf_status->selected_frame_id,
8904 "Unable to restore previously selected frame:\n",
8905 RETURN_MASK_ERROR) == 0)
c906108c
SS
8906 /* Error in restoring the selected frame. Select the innermost
8907 frame. */
0f7d239c 8908 select_frame (get_current_frame ());
c906108c 8909 }
c906108c 8910
72cec141 8911 xfree (inf_status);
7a292a7a 8912}
c906108c 8913
74b7792f 8914static void
16c381f0 8915do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 8916{
9a3c8263 8917 restore_infcall_control_state ((struct infcall_control_state *) sts);
74b7792f
AC
8918}
8919
8920struct cleanup *
16c381f0
JK
8921make_cleanup_restore_infcall_control_state
8922 (struct infcall_control_state *inf_status)
74b7792f 8923{
16c381f0 8924 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
8925}
8926
c906108c 8927void
16c381f0 8928discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 8929{
8358c15c
JK
8930 if (inf_status->thread_control.step_resume_breakpoint)
8931 inf_status->thread_control.step_resume_breakpoint->disposition
8932 = disp_del_at_next_stop;
8933
5b79abe7
TT
8934 if (inf_status->thread_control.exception_resume_breakpoint)
8935 inf_status->thread_control.exception_resume_breakpoint->disposition
8936 = disp_del_at_next_stop;
8937
1777feb0 8938 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 8939 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 8940
72cec141 8941 xfree (inf_status);
7a292a7a 8942}
b89667eb 8943\f
ca6724c1
KB
8944/* restore_inferior_ptid() will be used by the cleanup machinery
8945 to restore the inferior_ptid value saved in a call to
8946 save_inferior_ptid(). */
ce696e05
KB
8947
8948static void
8949restore_inferior_ptid (void *arg)
8950{
9a3c8263 8951 ptid_t *saved_ptid_ptr = (ptid_t *) arg;
abbb1732 8952
ce696e05
KB
8953 inferior_ptid = *saved_ptid_ptr;
8954 xfree (arg);
8955}
8956
8957/* Save the value of inferior_ptid so that it may be restored by a
8958 later call to do_cleanups(). Returns the struct cleanup pointer
8959 needed for later doing the cleanup. */
8960
8961struct cleanup *
8962save_inferior_ptid (void)
8963{
8d749320 8964 ptid_t *saved_ptid_ptr = XNEW (ptid_t);
ce696e05 8965
ce696e05
KB
8966 *saved_ptid_ptr = inferior_ptid;
8967 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
8968}
0c557179 8969
7f89fd65 8970/* See infrun.h. */
0c557179
SDJ
8971
8972void
8973clear_exit_convenience_vars (void)
8974{
8975 clear_internalvar (lookup_internalvar ("_exitsignal"));
8976 clear_internalvar (lookup_internalvar ("_exitcode"));
8977}
c5aa993b 8978\f
488f131b 8979
b2175913
MS
8980/* User interface for reverse debugging:
8981 Set exec-direction / show exec-direction commands
8982 (returns error unless target implements to_set_exec_direction method). */
8983
170742de 8984enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
8985static const char exec_forward[] = "forward";
8986static const char exec_reverse[] = "reverse";
8987static const char *exec_direction = exec_forward;
40478521 8988static const char *const exec_direction_names[] = {
b2175913
MS
8989 exec_forward,
8990 exec_reverse,
8991 NULL
8992};
8993
8994static void
8995set_exec_direction_func (char *args, int from_tty,
8996 struct cmd_list_element *cmd)
8997{
8998 if (target_can_execute_reverse)
8999 {
9000 if (!strcmp (exec_direction, exec_forward))
9001 execution_direction = EXEC_FORWARD;
9002 else if (!strcmp (exec_direction, exec_reverse))
9003 execution_direction = EXEC_REVERSE;
9004 }
8bbed405
MS
9005 else
9006 {
9007 exec_direction = exec_forward;
9008 error (_("Target does not support this operation."));
9009 }
b2175913
MS
9010}
9011
9012static void
9013show_exec_direction_func (struct ui_file *out, int from_tty,
9014 struct cmd_list_element *cmd, const char *value)
9015{
9016 switch (execution_direction) {
9017 case EXEC_FORWARD:
9018 fprintf_filtered (out, _("Forward.\n"));
9019 break;
9020 case EXEC_REVERSE:
9021 fprintf_filtered (out, _("Reverse.\n"));
9022 break;
b2175913 9023 default:
d8b34453
PA
9024 internal_error (__FILE__, __LINE__,
9025 _("bogus execution_direction value: %d"),
9026 (int) execution_direction);
b2175913
MS
9027 }
9028}
9029
d4db2f36
PA
9030static void
9031show_schedule_multiple (struct ui_file *file, int from_tty,
9032 struct cmd_list_element *c, const char *value)
9033{
3e43a32a
MS
9034 fprintf_filtered (file, _("Resuming the execution of threads "
9035 "of all processes is %s.\n"), value);
d4db2f36 9036}
ad52ddc6 9037
22d2b532
SDJ
9038/* Implementation of `siginfo' variable. */
9039
9040static const struct internalvar_funcs siginfo_funcs =
9041{
9042 siginfo_make_value,
9043 NULL,
9044 NULL
9045};
9046
372316f1
PA
9047/* Callback for infrun's target events source. This is marked when a
9048 thread has a pending status to process. */
9049
9050static void
9051infrun_async_inferior_event_handler (gdb_client_data data)
9052{
372316f1
PA
9053 inferior_event_handler (INF_REG_EVENT, NULL);
9054}
9055
c906108c 9056void
96baa820 9057_initialize_infrun (void)
c906108c 9058{
52f0bd74
AC
9059 int i;
9060 int numsigs;
de0bea00 9061 struct cmd_list_element *c;
c906108c 9062
372316f1
PA
9063 /* Register extra event sources in the event loop. */
9064 infrun_async_inferior_event_token
9065 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9066
1bedd215
AC
9067 add_info ("signals", signals_info, _("\
9068What debugger does when program gets various signals.\n\
9069Specify a signal as argument to print info on that signal only."));
c906108c
SS
9070 add_info_alias ("handle", "signals", 0);
9071
de0bea00 9072 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9073Specify how to handle signals.\n\
486c7739 9074Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9075Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9076If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9077will be displayed instead.\n\
9078\n\
c906108c
SS
9079Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9080from 1-15 are allowed for compatibility with old versions of GDB.\n\
9081Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9082The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9083used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9084\n\
1bedd215 9085Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9086\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9087Stop means reenter debugger if this signal happens (implies print).\n\
9088Print means print a message if this signal happens.\n\
9089Pass means let program see this signal; otherwise program doesn't know.\n\
9090Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9091Pass and Stop may be combined.\n\
9092\n\
9093Multiple signals may be specified. Signal numbers and signal names\n\
9094may be interspersed with actions, with the actions being performed for\n\
9095all signals cumulatively specified."));
de0bea00 9096 set_cmd_completer (c, handle_completer);
486c7739 9097
c906108c 9098 if (!dbx_commands)
1a966eab
AC
9099 stop_command = add_cmd ("stop", class_obscure,
9100 not_just_help_class_command, _("\
9101There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9102This allows you to set a list of commands to be run each time execution\n\
1a966eab 9103of the program stops."), &cmdlist);
c906108c 9104
ccce17b0 9105 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9106Set inferior debugging."), _("\
9107Show inferior debugging."), _("\
9108When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9109 NULL,
9110 show_debug_infrun,
9111 &setdebuglist, &showdebuglist);
527159b7 9112
3e43a32a
MS
9113 add_setshow_boolean_cmd ("displaced", class_maintenance,
9114 &debug_displaced, _("\
237fc4c9
PA
9115Set displaced stepping debugging."), _("\
9116Show displaced stepping debugging."), _("\
9117When non-zero, displaced stepping specific debugging is enabled."),
9118 NULL,
9119 show_debug_displaced,
9120 &setdebuglist, &showdebuglist);
9121
ad52ddc6
PA
9122 add_setshow_boolean_cmd ("non-stop", no_class,
9123 &non_stop_1, _("\
9124Set whether gdb controls the inferior in non-stop mode."), _("\
9125Show whether gdb controls the inferior in non-stop mode."), _("\
9126When debugging a multi-threaded program and this setting is\n\
9127off (the default, also called all-stop mode), when one thread stops\n\
9128(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9129all other threads in the program while you interact with the thread of\n\
9130interest. When you continue or step a thread, you can allow the other\n\
9131threads to run, or have them remain stopped, but while you inspect any\n\
9132thread's state, all threads stop.\n\
9133\n\
9134In non-stop mode, when one thread stops, other threads can continue\n\
9135to run freely. You'll be able to step each thread independently,\n\
9136leave it stopped or free to run as needed."),
9137 set_non_stop,
9138 show_non_stop,
9139 &setlist,
9140 &showlist);
9141
a493e3e2 9142 numsigs = (int) GDB_SIGNAL_LAST;
8d749320
SM
9143 signal_stop = XNEWVEC (unsigned char, numsigs);
9144 signal_print = XNEWVEC (unsigned char, numsigs);
9145 signal_program = XNEWVEC (unsigned char, numsigs);
9146 signal_catch = XNEWVEC (unsigned char, numsigs);
9147 signal_pass = XNEWVEC (unsigned char, numsigs);
c906108c
SS
9148 for (i = 0; i < numsigs; i++)
9149 {
9150 signal_stop[i] = 1;
9151 signal_print[i] = 1;
9152 signal_program[i] = 1;
ab04a2af 9153 signal_catch[i] = 0;
c906108c
SS
9154 }
9155
4d9d9d04
PA
9156 /* Signals caused by debugger's own actions should not be given to
9157 the program afterwards.
9158
9159 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9160 explicitly specifies that it should be delivered to the target
9161 program. Typically, that would occur when a user is debugging a
9162 target monitor on a simulator: the target monitor sets a
9163 breakpoint; the simulator encounters this breakpoint and halts
9164 the simulation handing control to GDB; GDB, noting that the stop
9165 address doesn't map to any known breakpoint, returns control back
9166 to the simulator; the simulator then delivers the hardware
9167 equivalent of a GDB_SIGNAL_TRAP to the program being
9168 debugged. */
a493e3e2
PA
9169 signal_program[GDB_SIGNAL_TRAP] = 0;
9170 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9171
9172 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9173 signal_stop[GDB_SIGNAL_ALRM] = 0;
9174 signal_print[GDB_SIGNAL_ALRM] = 0;
9175 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9176 signal_print[GDB_SIGNAL_VTALRM] = 0;
9177 signal_stop[GDB_SIGNAL_PROF] = 0;
9178 signal_print[GDB_SIGNAL_PROF] = 0;
9179 signal_stop[GDB_SIGNAL_CHLD] = 0;
9180 signal_print[GDB_SIGNAL_CHLD] = 0;
9181 signal_stop[GDB_SIGNAL_IO] = 0;
9182 signal_print[GDB_SIGNAL_IO] = 0;
9183 signal_stop[GDB_SIGNAL_POLL] = 0;
9184 signal_print[GDB_SIGNAL_POLL] = 0;
9185 signal_stop[GDB_SIGNAL_URG] = 0;
9186 signal_print[GDB_SIGNAL_URG] = 0;
9187 signal_stop[GDB_SIGNAL_WINCH] = 0;
9188 signal_print[GDB_SIGNAL_WINCH] = 0;
9189 signal_stop[GDB_SIGNAL_PRIO] = 0;
9190 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9191
cd0fc7c3
SS
9192 /* These signals are used internally by user-level thread
9193 implementations. (See signal(5) on Solaris.) Like the above
9194 signals, a healthy program receives and handles them as part of
9195 its normal operation. */
a493e3e2
PA
9196 signal_stop[GDB_SIGNAL_LWP] = 0;
9197 signal_print[GDB_SIGNAL_LWP] = 0;
9198 signal_stop[GDB_SIGNAL_WAITING] = 0;
9199 signal_print[GDB_SIGNAL_WAITING] = 0;
9200 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9201 signal_print[GDB_SIGNAL_CANCEL] = 0;
cd0fc7c3 9202
2455069d
UW
9203 /* Update cached state. */
9204 signal_cache_update (-1);
9205
85c07804
AC
9206 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9207 &stop_on_solib_events, _("\
9208Set stopping for shared library events."), _("\
9209Show stopping for shared library events."), _("\
c906108c
SS
9210If nonzero, gdb will give control to the user when the dynamic linker\n\
9211notifies gdb of shared library events. The most common event of interest\n\
85c07804 9212to the user would be loading/unloading of a new library."),
f9e14852 9213 set_stop_on_solib_events,
920d2a44 9214 show_stop_on_solib_events,
85c07804 9215 &setlist, &showlist);
c906108c 9216
7ab04401
AC
9217 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9218 follow_fork_mode_kind_names,
9219 &follow_fork_mode_string, _("\
9220Set debugger response to a program call of fork or vfork."), _("\
9221Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9222A fork or vfork creates a new process. follow-fork-mode can be:\n\
9223 parent - the original process is debugged after a fork\n\
9224 child - the new process is debugged after a fork\n\
ea1dd7bc 9225The unfollowed process will continue to run.\n\
7ab04401
AC
9226By default, the debugger will follow the parent process."),
9227 NULL,
920d2a44 9228 show_follow_fork_mode_string,
7ab04401
AC
9229 &setlist, &showlist);
9230
6c95b8df
PA
9231 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9232 follow_exec_mode_names,
9233 &follow_exec_mode_string, _("\
9234Set debugger response to a program call of exec."), _("\
9235Show debugger response to a program call of exec."), _("\
9236An exec call replaces the program image of a process.\n\
9237\n\
9238follow-exec-mode can be:\n\
9239\n\
cce7e648 9240 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9241to this new inferior. The program the process was running before\n\
9242the exec call can be restarted afterwards by restarting the original\n\
9243inferior.\n\
9244\n\
9245 same - the debugger keeps the process bound to the same inferior.\n\
9246The new executable image replaces the previous executable loaded in\n\
9247the inferior. Restarting the inferior after the exec call restarts\n\
9248the executable the process was running after the exec call.\n\
9249\n\
9250By default, the debugger will use the same inferior."),
9251 NULL,
9252 show_follow_exec_mode_string,
9253 &setlist, &showlist);
9254
7ab04401
AC
9255 add_setshow_enum_cmd ("scheduler-locking", class_run,
9256 scheduler_enums, &scheduler_mode, _("\
9257Set mode for locking scheduler during execution."), _("\
9258Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9259off == no locking (threads may preempt at any time)\n\
9260on == full locking (no thread except the current thread may run)\n\
9261 This applies to both normal execution and replay mode.\n\
9262step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9263 In this mode, other threads may run during other commands.\n\
9264 This applies to both normal execution and replay mode.\n\
9265replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9266 set_schedlock_func, /* traps on target vector */
920d2a44 9267 show_scheduler_mode,
7ab04401 9268 &setlist, &showlist);
5fbbeb29 9269
d4db2f36
PA
9270 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9271Set mode for resuming threads of all processes."), _("\
9272Show mode for resuming threads of all processes."), _("\
9273When on, execution commands (such as 'continue' or 'next') resume all\n\
9274threads of all processes. When off (which is the default), execution\n\
9275commands only resume the threads of the current process. The set of\n\
9276threads that are resumed is further refined by the scheduler-locking\n\
9277mode (see help set scheduler-locking)."),
9278 NULL,
9279 show_schedule_multiple,
9280 &setlist, &showlist);
9281
5bf193a2
AC
9282 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9283Set mode of the step operation."), _("\
9284Show mode of the step operation."), _("\
9285When set, doing a step over a function without debug line information\n\
9286will stop at the first instruction of that function. Otherwise, the\n\
9287function is skipped and the step command stops at a different source line."),
9288 NULL,
920d2a44 9289 show_step_stop_if_no_debug,
5bf193a2 9290 &setlist, &showlist);
ca6724c1 9291
72d0e2c5
YQ
9292 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9293 &can_use_displaced_stepping, _("\
237fc4c9
PA
9294Set debugger's willingness to use displaced stepping."), _("\
9295Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9296If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9297supported by the target architecture. If off, gdb will not use displaced\n\
9298stepping to step over breakpoints, even if such is supported by the target\n\
9299architecture. If auto (which is the default), gdb will use displaced stepping\n\
9300if the target architecture supports it and non-stop mode is active, but will not\n\
9301use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9302 NULL,
9303 show_can_use_displaced_stepping,
9304 &setlist, &showlist);
237fc4c9 9305
b2175913
MS
9306 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9307 &exec_direction, _("Set direction of execution.\n\
9308Options are 'forward' or 'reverse'."),
9309 _("Show direction of execution (forward/reverse)."),
9310 _("Tells gdb whether to execute forward or backward."),
9311 set_exec_direction_func, show_exec_direction_func,
9312 &setlist, &showlist);
9313
6c95b8df
PA
9314 /* Set/show detach-on-fork: user-settable mode. */
9315
9316 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9317Set whether gdb will detach the child of a fork."), _("\
9318Show whether gdb will detach the child of a fork."), _("\
9319Tells gdb whether to detach the child of a fork."),
9320 NULL, NULL, &setlist, &showlist);
9321
03583c20
UW
9322 /* Set/show disable address space randomization mode. */
9323
9324 add_setshow_boolean_cmd ("disable-randomization", class_support,
9325 &disable_randomization, _("\
9326Set disabling of debuggee's virtual address space randomization."), _("\
9327Show disabling of debuggee's virtual address space randomization."), _("\
9328When this mode is on (which is the default), randomization of the virtual\n\
9329address space is disabled. Standalone programs run with the randomization\n\
9330enabled by default on some platforms."),
9331 &set_disable_randomization,
9332 &show_disable_randomization,
9333 &setlist, &showlist);
9334
ca6724c1 9335 /* ptid initializations */
ca6724c1
KB
9336 inferior_ptid = null_ptid;
9337 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
9338
9339 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 9340 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 9341 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 9342 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
9343
9344 /* Explicitly create without lookup, since that tries to create a
9345 value with a void typed value, and when we get here, gdbarch
9346 isn't initialized yet. At this point, we're quite sure there
9347 isn't another convenience variable of the same name. */
22d2b532 9348 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9349
9350 add_setshow_boolean_cmd ("observer", no_class,
9351 &observer_mode_1, _("\
9352Set whether gdb controls the inferior in observer mode."), _("\
9353Show whether gdb controls the inferior in observer mode."), _("\
9354In observer mode, GDB can get data from the inferior, but not\n\
9355affect its execution. Registers and memory may not be changed,\n\
9356breakpoints may not be set, and the program cannot be interrupted\n\
9357or signalled."),
9358 set_observer_mode,
9359 show_observer_mode,
9360 &setlist,
9361 &showlist);
c906108c 9362}
This page took 2.255661 seconds and 4 git commands to generate.