2011-05-20 Pedro Alves <pedro@codesourcery.com>
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
6aba47ca 4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
9b254dd1 5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
7b6bb8da 6 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include <ctype.h>
26#include "symtab.h"
27#include "frame.h"
28#include "inferior.h"
60250e8b 29#include "exceptions.h"
c906108c 30#include "breakpoint.h"
03f2053f 31#include "gdb_wait.h"
c906108c
SS
32#include "gdbcore.h"
33#include "gdbcmd.h"
210661e7 34#include "cli/cli-script.h"
c906108c
SS
35#include "target.h"
36#include "gdbthread.h"
37#include "annotate.h"
1adeb98a 38#include "symfile.h"
7a292a7a 39#include "top.h"
c906108c 40#include <signal.h>
2acceee2 41#include "inf-loop.h"
4e052eda 42#include "regcache.h"
fd0407d6 43#include "value.h"
06600e06 44#include "observer.h"
f636b87d 45#include "language.h"
a77053c2 46#include "solib.h"
f17517ea 47#include "main.h"
186c406b
TT
48#include "dictionary.h"
49#include "block.h"
9f976b41 50#include "gdb_assert.h"
034dad6f 51#include "mi/mi-common.h"
4f8d22e3 52#include "event-top.h"
96429cc8 53#include "record.h"
edb3359d 54#include "inline-frame.h"
4efc6507 55#include "jit.h"
06cd862c 56#include "tracepoint.h"
c906108c
SS
57
58/* Prototypes for local functions */
59
96baa820 60static void signals_info (char *, int);
c906108c 61
96baa820 62static void handle_command (char *, int);
c906108c 63
96baa820 64static void sig_print_info (enum target_signal);
c906108c 65
96baa820 66static void sig_print_header (void);
c906108c 67
74b7792f 68static void resume_cleanups (void *);
c906108c 69
96baa820 70static int hook_stop_stub (void *);
c906108c 71
96baa820
JM
72static int restore_selected_frame (void *);
73
4ef3f3be 74static int follow_fork (void);
96baa820
JM
75
76static void set_schedlock_func (char *args, int from_tty,
488f131b 77 struct cmd_list_element *c);
96baa820 78
a289b8f6
JK
79static int currently_stepping (struct thread_info *tp);
80
b3444185
PA
81static int currently_stepping_or_nexting_callback (struct thread_info *tp,
82 void *data);
a7212384 83
96baa820
JM
84static void xdb_handle_command (char *args, int from_tty);
85
6a6b96b9 86static int prepare_to_proceed (int);
ea67f13b 87
33d62d64
JK
88static void print_exited_reason (int exitstatus);
89
90static void print_signal_exited_reason (enum target_signal siggnal);
91
92static void print_no_history_reason (void);
93
94static void print_signal_received_reason (enum target_signal siggnal);
95
96static void print_end_stepping_range_reason (void);
97
96baa820 98void _initialize_infrun (void);
43ff13b4 99
e58b0e63
PA
100void nullify_last_target_wait_ptid (void);
101
2484c66b
UW
102static void insert_step_resume_breakpoint_at_frame (struct frame_info *);
103
104static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
105
106static void insert_step_resume_breakpoint_at_sal (struct gdbarch *,
107 struct symtab_and_line ,
108 struct frame_id);
109
110static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
111
5fbbeb29
CF
112/* When set, stop the 'step' command if we enter a function which has
113 no line number information. The normal behavior is that we step
114 over such function. */
115int step_stop_if_no_debug = 0;
920d2a44
AC
116static void
117show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
118 struct cmd_list_element *c, const char *value)
119{
120 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
121}
5fbbeb29 122
1777feb0 123/* In asynchronous mode, but simulating synchronous execution. */
96baa820 124
43ff13b4
JM
125int sync_execution = 0;
126
c906108c
SS
127/* wait_for_inferior and normal_stop use this to notify the user
128 when the inferior stopped in a different thread than it had been
96baa820
JM
129 running in. */
130
39f77062 131static ptid_t previous_inferior_ptid;
7a292a7a 132
6c95b8df
PA
133/* Default behavior is to detach newly forked processes (legacy). */
134int detach_fork = 1;
135
237fc4c9
PA
136int debug_displaced = 0;
137static void
138show_debug_displaced (struct ui_file *file, int from_tty,
139 struct cmd_list_element *c, const char *value)
140{
141 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
142}
143
628fe4e4 144int debug_infrun = 0;
920d2a44
AC
145static void
146show_debug_infrun (struct ui_file *file, int from_tty,
147 struct cmd_list_element *c, const char *value)
148{
149 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
150}
527159b7 151
d4f3574e
SS
152/* If the program uses ELF-style shared libraries, then calls to
153 functions in shared libraries go through stubs, which live in a
154 table called the PLT (Procedure Linkage Table). The first time the
155 function is called, the stub sends control to the dynamic linker,
156 which looks up the function's real address, patches the stub so
157 that future calls will go directly to the function, and then passes
158 control to the function.
159
160 If we are stepping at the source level, we don't want to see any of
161 this --- we just want to skip over the stub and the dynamic linker.
162 The simple approach is to single-step until control leaves the
163 dynamic linker.
164
ca557f44
AC
165 However, on some systems (e.g., Red Hat's 5.2 distribution) the
166 dynamic linker calls functions in the shared C library, so you
167 can't tell from the PC alone whether the dynamic linker is still
168 running. In this case, we use a step-resume breakpoint to get us
169 past the dynamic linker, as if we were using "next" to step over a
170 function call.
d4f3574e 171
cfd8ab24 172 in_solib_dynsym_resolve_code() says whether we're in the dynamic
d4f3574e
SS
173 linker code or not. Normally, this means we single-step. However,
174 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
175 address where we can place a step-resume breakpoint to get past the
176 linker's symbol resolution function.
177
cfd8ab24 178 in_solib_dynsym_resolve_code() can generally be implemented in a
d4f3574e
SS
179 pretty portable way, by comparing the PC against the address ranges
180 of the dynamic linker's sections.
181
182 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
183 it depends on internal details of the dynamic linker. It's usually
184 not too hard to figure out where to put a breakpoint, but it
185 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
186 sanity checking. If it can't figure things out, returning zero and
187 getting the (possibly confusing) stepping behavior is better than
188 signalling an error, which will obscure the change in the
189 inferior's state. */
c906108c 190
c906108c
SS
191/* This function returns TRUE if pc is the address of an instruction
192 that lies within the dynamic linker (such as the event hook, or the
193 dld itself).
194
195 This function must be used only when a dynamic linker event has
196 been caught, and the inferior is being stepped out of the hook, or
197 undefined results are guaranteed. */
198
199#ifndef SOLIB_IN_DYNAMIC_LINKER
200#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
201#endif
202
d914c394
SS
203/* "Observer mode" is somewhat like a more extreme version of
204 non-stop, in which all GDB operations that might affect the
205 target's execution have been disabled. */
206
207static int non_stop_1 = 0;
208
209int observer_mode = 0;
210static int observer_mode_1 = 0;
211
212static void
213set_observer_mode (char *args, int from_tty,
214 struct cmd_list_element *c)
215{
216 extern int pagination_enabled;
217
218 if (target_has_execution)
219 {
220 observer_mode_1 = observer_mode;
221 error (_("Cannot change this setting while the inferior is running."));
222 }
223
224 observer_mode = observer_mode_1;
225
226 may_write_registers = !observer_mode;
227 may_write_memory = !observer_mode;
228 may_insert_breakpoints = !observer_mode;
229 may_insert_tracepoints = !observer_mode;
230 /* We can insert fast tracepoints in or out of observer mode,
231 but enable them if we're going into this mode. */
232 if (observer_mode)
233 may_insert_fast_tracepoints = 1;
234 may_stop = !observer_mode;
235 update_target_permissions ();
236
237 /* Going *into* observer mode we must force non-stop, then
238 going out we leave it that way. */
239 if (observer_mode)
240 {
241 target_async_permitted = 1;
242 pagination_enabled = 0;
243 non_stop = non_stop_1 = 1;
244 }
245
246 if (from_tty)
247 printf_filtered (_("Observer mode is now %s.\n"),
248 (observer_mode ? "on" : "off"));
249}
250
251static void
252show_observer_mode (struct ui_file *file, int from_tty,
253 struct cmd_list_element *c, const char *value)
254{
255 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
256}
257
258/* This updates the value of observer mode based on changes in
259 permissions. Note that we are deliberately ignoring the values of
260 may-write-registers and may-write-memory, since the user may have
261 reason to enable these during a session, for instance to turn on a
262 debugging-related global. */
263
264void
265update_observer_mode (void)
266{
267 int newval;
268
269 newval = (!may_insert_breakpoints
270 && !may_insert_tracepoints
271 && may_insert_fast_tracepoints
272 && !may_stop
273 && non_stop);
274
275 /* Let the user know if things change. */
276 if (newval != observer_mode)
277 printf_filtered (_("Observer mode is now %s.\n"),
278 (newval ? "on" : "off"));
279
280 observer_mode = observer_mode_1 = newval;
281}
c2c6d25f 282
c906108c
SS
283/* Tables of how to react to signals; the user sets them. */
284
285static unsigned char *signal_stop;
286static unsigned char *signal_print;
287static unsigned char *signal_program;
288
2455069d
UW
289/* Table of signals that the target may silently handle.
290 This is automatically determined from the flags above,
291 and simply cached here. */
292static unsigned char *signal_pass;
293
c906108c
SS
294#define SET_SIGS(nsigs,sigs,flags) \
295 do { \
296 int signum = (nsigs); \
297 while (signum-- > 0) \
298 if ((sigs)[signum]) \
299 (flags)[signum] = 1; \
300 } while (0)
301
302#define UNSET_SIGS(nsigs,sigs,flags) \
303 do { \
304 int signum = (nsigs); \
305 while (signum-- > 0) \
306 if ((sigs)[signum]) \
307 (flags)[signum] = 0; \
308 } while (0)
309
1777feb0 310/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 311
edb3359d 312#define RESUME_ALL minus_one_ptid
c906108c
SS
313
314/* Command list pointer for the "stop" placeholder. */
315
316static struct cmd_list_element *stop_command;
317
c906108c
SS
318/* Function inferior was in as of last step command. */
319
320static struct symbol *step_start_function;
321
c906108c
SS
322/* Nonzero if we want to give control to the user when we're notified
323 of shared library events by the dynamic linker. */
628fe4e4 324int stop_on_solib_events;
920d2a44
AC
325static void
326show_stop_on_solib_events (struct ui_file *file, int from_tty,
327 struct cmd_list_element *c, const char *value)
328{
329 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
330 value);
331}
c906108c 332
c906108c
SS
333/* Nonzero means expecting a trace trap
334 and should stop the inferior and return silently when it happens. */
335
336int stop_after_trap;
337
642fd101
DE
338/* Save register contents here when executing a "finish" command or are
339 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
340 Thus this contains the return value from the called function (assuming
341 values are returned in a register). */
342
72cec141 343struct regcache *stop_registers;
c906108c 344
c906108c
SS
345/* Nonzero after stop if current stack frame should be printed. */
346
347static int stop_print_frame;
348
e02bc4cc 349/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
350 returned by target_wait()/deprecated_target_wait_hook(). This
351 information is returned by get_last_target_status(). */
39f77062 352static ptid_t target_last_wait_ptid;
e02bc4cc
DS
353static struct target_waitstatus target_last_waitstatus;
354
0d1e5fa7
PA
355static void context_switch (ptid_t ptid);
356
4e1c45ea 357void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7
PA
358
359void init_infwait_state (void);
a474d7c2 360
53904c9e
AC
361static const char follow_fork_mode_child[] = "child";
362static const char follow_fork_mode_parent[] = "parent";
363
488f131b 364static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
365 follow_fork_mode_child,
366 follow_fork_mode_parent,
367 NULL
ef346e04 368};
c906108c 369
53904c9e 370static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
371static void
372show_follow_fork_mode_string (struct ui_file *file, int from_tty,
373 struct cmd_list_element *c, const char *value)
374{
3e43a32a
MS
375 fprintf_filtered (file,
376 _("Debugger response to a program "
377 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
378 value);
379}
c906108c
SS
380\f
381
e58b0e63
PA
382/* Tell the target to follow the fork we're stopped at. Returns true
383 if the inferior should be resumed; false, if the target for some
384 reason decided it's best not to resume. */
385
6604731b 386static int
4ef3f3be 387follow_fork (void)
c906108c 388{
ea1dd7bc 389 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
390 int should_resume = 1;
391 struct thread_info *tp;
392
393 /* Copy user stepping state to the new inferior thread. FIXME: the
394 followed fork child thread should have a copy of most of the
4e3990f4
DE
395 parent thread structure's run control related fields, not just these.
396 Initialized to avoid "may be used uninitialized" warnings from gcc. */
397 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 398 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
399 CORE_ADDR step_range_start = 0;
400 CORE_ADDR step_range_end = 0;
401 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
402
403 if (!non_stop)
404 {
405 ptid_t wait_ptid;
406 struct target_waitstatus wait_status;
407
408 /* Get the last target status returned by target_wait(). */
409 get_last_target_status (&wait_ptid, &wait_status);
410
411 /* If not stopped at a fork event, then there's nothing else to
412 do. */
413 if (wait_status.kind != TARGET_WAITKIND_FORKED
414 && wait_status.kind != TARGET_WAITKIND_VFORKED)
415 return 1;
416
417 /* Check if we switched over from WAIT_PTID, since the event was
418 reported. */
419 if (!ptid_equal (wait_ptid, minus_one_ptid)
420 && !ptid_equal (inferior_ptid, wait_ptid))
421 {
422 /* We did. Switch back to WAIT_PTID thread, to tell the
423 target to follow it (in either direction). We'll
424 afterwards refuse to resume, and inform the user what
425 happened. */
426 switch_to_thread (wait_ptid);
427 should_resume = 0;
428 }
429 }
430
431 tp = inferior_thread ();
432
433 /* If there were any forks/vforks that were caught and are now to be
434 followed, then do so now. */
435 switch (tp->pending_follow.kind)
436 {
437 case TARGET_WAITKIND_FORKED:
438 case TARGET_WAITKIND_VFORKED:
439 {
440 ptid_t parent, child;
441
442 /* If the user did a next/step, etc, over a fork call,
443 preserve the stepping state in the fork child. */
444 if (follow_child && should_resume)
445 {
8358c15c
JK
446 step_resume_breakpoint = clone_momentary_breakpoint
447 (tp->control.step_resume_breakpoint);
16c381f0
JK
448 step_range_start = tp->control.step_range_start;
449 step_range_end = tp->control.step_range_end;
450 step_frame_id = tp->control.step_frame_id;
186c406b
TT
451 exception_resume_breakpoint
452 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
e58b0e63
PA
453
454 /* For now, delete the parent's sr breakpoint, otherwise,
455 parent/child sr breakpoints are considered duplicates,
456 and the child version will not be installed. Remove
457 this when the breakpoints module becomes aware of
458 inferiors and address spaces. */
459 delete_step_resume_breakpoint (tp);
16c381f0
JK
460 tp->control.step_range_start = 0;
461 tp->control.step_range_end = 0;
462 tp->control.step_frame_id = null_frame_id;
186c406b 463 delete_exception_resume_breakpoint (tp);
e58b0e63
PA
464 }
465
466 parent = inferior_ptid;
467 child = tp->pending_follow.value.related_pid;
468
469 /* Tell the target to do whatever is necessary to follow
470 either parent or child. */
471 if (target_follow_fork (follow_child))
472 {
473 /* Target refused to follow, or there's some other reason
474 we shouldn't resume. */
475 should_resume = 0;
476 }
477 else
478 {
479 /* This pending follow fork event is now handled, one way
480 or another. The previous selected thread may be gone
481 from the lists by now, but if it is still around, need
482 to clear the pending follow request. */
e09875d4 483 tp = find_thread_ptid (parent);
e58b0e63
PA
484 if (tp)
485 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
486
487 /* This makes sure we don't try to apply the "Switched
488 over from WAIT_PID" logic above. */
489 nullify_last_target_wait_ptid ();
490
1777feb0 491 /* If we followed the child, switch to it... */
e58b0e63
PA
492 if (follow_child)
493 {
494 switch_to_thread (child);
495
496 /* ... and preserve the stepping state, in case the
497 user was stepping over the fork call. */
498 if (should_resume)
499 {
500 tp = inferior_thread ();
8358c15c
JK
501 tp->control.step_resume_breakpoint
502 = step_resume_breakpoint;
16c381f0
JK
503 tp->control.step_range_start = step_range_start;
504 tp->control.step_range_end = step_range_end;
505 tp->control.step_frame_id = step_frame_id;
186c406b
TT
506 tp->control.exception_resume_breakpoint
507 = exception_resume_breakpoint;
e58b0e63
PA
508 }
509 else
510 {
511 /* If we get here, it was because we're trying to
512 resume from a fork catchpoint, but, the user
513 has switched threads away from the thread that
514 forked. In that case, the resume command
515 issued is most likely not applicable to the
516 child, so just warn, and refuse to resume. */
3e43a32a
MS
517 warning (_("Not resuming: switched threads "
518 "before following fork child.\n"));
e58b0e63
PA
519 }
520
521 /* Reset breakpoints in the child as appropriate. */
522 follow_inferior_reset_breakpoints ();
523 }
524 else
525 switch_to_thread (parent);
526 }
527 }
528 break;
529 case TARGET_WAITKIND_SPURIOUS:
530 /* Nothing to follow. */
531 break;
532 default:
533 internal_error (__FILE__, __LINE__,
534 "Unexpected pending_follow.kind %d\n",
535 tp->pending_follow.kind);
536 break;
537 }
c906108c 538
e58b0e63 539 return should_resume;
c906108c
SS
540}
541
6604731b
DJ
542void
543follow_inferior_reset_breakpoints (void)
c906108c 544{
4e1c45ea
PA
545 struct thread_info *tp = inferior_thread ();
546
6604731b
DJ
547 /* Was there a step_resume breakpoint? (There was if the user
548 did a "next" at the fork() call.) If so, explicitly reset its
549 thread number.
550
551 step_resumes are a form of bp that are made to be per-thread.
552 Since we created the step_resume bp when the parent process
553 was being debugged, and now are switching to the child process,
554 from the breakpoint package's viewpoint, that's a switch of
555 "threads". We must update the bp's notion of which thread
556 it is for, or it'll be ignored when it triggers. */
557
8358c15c
JK
558 if (tp->control.step_resume_breakpoint)
559 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
6604731b 560
186c406b
TT
561 if (tp->control.exception_resume_breakpoint)
562 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
563
6604731b
DJ
564 /* Reinsert all breakpoints in the child. The user may have set
565 breakpoints after catching the fork, in which case those
566 were never set in the child, but only in the parent. This makes
567 sure the inserted breakpoints match the breakpoint list. */
568
569 breakpoint_re_set ();
570 insert_breakpoints ();
c906108c 571}
c906108c 572
6c95b8df
PA
573/* The child has exited or execed: resume threads of the parent the
574 user wanted to be executing. */
575
576static int
577proceed_after_vfork_done (struct thread_info *thread,
578 void *arg)
579{
580 int pid = * (int *) arg;
581
582 if (ptid_get_pid (thread->ptid) == pid
583 && is_running (thread->ptid)
584 && !is_executing (thread->ptid)
585 && !thread->stop_requested
16c381f0 586 && thread->suspend.stop_signal == TARGET_SIGNAL_0)
6c95b8df
PA
587 {
588 if (debug_infrun)
589 fprintf_unfiltered (gdb_stdlog,
590 "infrun: resuming vfork parent thread %s\n",
591 target_pid_to_str (thread->ptid));
592
593 switch_to_thread (thread->ptid);
594 clear_proceed_status ();
595 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
596 }
597
598 return 0;
599}
600
601/* Called whenever we notice an exec or exit event, to handle
602 detaching or resuming a vfork parent. */
603
604static void
605handle_vfork_child_exec_or_exit (int exec)
606{
607 struct inferior *inf = current_inferior ();
608
609 if (inf->vfork_parent)
610 {
611 int resume_parent = -1;
612
613 /* This exec or exit marks the end of the shared memory region
614 between the parent and the child. If the user wanted to
615 detach from the parent, now is the time. */
616
617 if (inf->vfork_parent->pending_detach)
618 {
619 struct thread_info *tp;
620 struct cleanup *old_chain;
621 struct program_space *pspace;
622 struct address_space *aspace;
623
1777feb0 624 /* follow-fork child, detach-on-fork on. */
6c95b8df
PA
625
626 old_chain = make_cleanup_restore_current_thread ();
627
628 /* We're letting loose of the parent. */
629 tp = any_live_thread_of_process (inf->vfork_parent->pid);
630 switch_to_thread (tp->ptid);
631
632 /* We're about to detach from the parent, which implicitly
633 removes breakpoints from its address space. There's a
634 catch here: we want to reuse the spaces for the child,
635 but, parent/child are still sharing the pspace at this
636 point, although the exec in reality makes the kernel give
637 the child a fresh set of new pages. The problem here is
638 that the breakpoints module being unaware of this, would
639 likely chose the child process to write to the parent
640 address space. Swapping the child temporarily away from
641 the spaces has the desired effect. Yes, this is "sort
642 of" a hack. */
643
644 pspace = inf->pspace;
645 aspace = inf->aspace;
646 inf->aspace = NULL;
647 inf->pspace = NULL;
648
649 if (debug_infrun || info_verbose)
650 {
651 target_terminal_ours ();
652
653 if (exec)
654 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
655 "Detaching vfork parent process "
656 "%d after child exec.\n",
6c95b8df
PA
657 inf->vfork_parent->pid);
658 else
659 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
660 "Detaching vfork parent process "
661 "%d after child exit.\n",
6c95b8df
PA
662 inf->vfork_parent->pid);
663 }
664
665 target_detach (NULL, 0);
666
667 /* Put it back. */
668 inf->pspace = pspace;
669 inf->aspace = aspace;
670
671 do_cleanups (old_chain);
672 }
673 else if (exec)
674 {
675 /* We're staying attached to the parent, so, really give the
676 child a new address space. */
677 inf->pspace = add_program_space (maybe_new_address_space ());
678 inf->aspace = inf->pspace->aspace;
679 inf->removable = 1;
680 set_current_program_space (inf->pspace);
681
682 resume_parent = inf->vfork_parent->pid;
683
684 /* Break the bonds. */
685 inf->vfork_parent->vfork_child = NULL;
686 }
687 else
688 {
689 struct cleanup *old_chain;
690 struct program_space *pspace;
691
692 /* If this is a vfork child exiting, then the pspace and
693 aspaces were shared with the parent. Since we're
694 reporting the process exit, we'll be mourning all that is
695 found in the address space, and switching to null_ptid,
696 preparing to start a new inferior. But, since we don't
697 want to clobber the parent's address/program spaces, we
698 go ahead and create a new one for this exiting
699 inferior. */
700
701 /* Switch to null_ptid, so that clone_program_space doesn't want
702 to read the selected frame of a dead process. */
703 old_chain = save_inferior_ptid ();
704 inferior_ptid = null_ptid;
705
706 /* This inferior is dead, so avoid giving the breakpoints
707 module the option to write through to it (cloning a
708 program space resets breakpoints). */
709 inf->aspace = NULL;
710 inf->pspace = NULL;
711 pspace = add_program_space (maybe_new_address_space ());
712 set_current_program_space (pspace);
713 inf->removable = 1;
714 clone_program_space (pspace, inf->vfork_parent->pspace);
715 inf->pspace = pspace;
716 inf->aspace = pspace->aspace;
717
718 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 719 inferior. */
6c95b8df
PA
720 do_cleanups (old_chain);
721
722 resume_parent = inf->vfork_parent->pid;
723 /* Break the bonds. */
724 inf->vfork_parent->vfork_child = NULL;
725 }
726
727 inf->vfork_parent = NULL;
728
729 gdb_assert (current_program_space == inf->pspace);
730
731 if (non_stop && resume_parent != -1)
732 {
733 /* If the user wanted the parent to be running, let it go
734 free now. */
735 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
736
737 if (debug_infrun)
3e43a32a
MS
738 fprintf_unfiltered (gdb_stdlog,
739 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
740 resume_parent);
741
742 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
743
744 do_cleanups (old_chain);
745 }
746 }
747}
748
749/* Enum strings for "set|show displaced-stepping". */
750
751static const char follow_exec_mode_new[] = "new";
752static const char follow_exec_mode_same[] = "same";
753static const char *follow_exec_mode_names[] =
754{
755 follow_exec_mode_new,
756 follow_exec_mode_same,
757 NULL,
758};
759
760static const char *follow_exec_mode_string = follow_exec_mode_same;
761static void
762show_follow_exec_mode_string (struct ui_file *file, int from_tty,
763 struct cmd_list_element *c, const char *value)
764{
765 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
766}
767
1777feb0 768/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 769
c906108c 770static void
3a3e9ee3 771follow_exec (ptid_t pid, char *execd_pathname)
c906108c 772{
4e1c45ea 773 struct thread_info *th = inferior_thread ();
6c95b8df 774 struct inferior *inf = current_inferior ();
7a292a7a 775
c906108c
SS
776 /* This is an exec event that we actually wish to pay attention to.
777 Refresh our symbol table to the newly exec'd program, remove any
778 momentary bp's, etc.
779
780 If there are breakpoints, they aren't really inserted now,
781 since the exec() transformed our inferior into a fresh set
782 of instructions.
783
784 We want to preserve symbolic breakpoints on the list, since
785 we have hopes that they can be reset after the new a.out's
786 symbol table is read.
787
788 However, any "raw" breakpoints must be removed from the list
789 (e.g., the solib bp's), since their address is probably invalid
790 now.
791
792 And, we DON'T want to call delete_breakpoints() here, since
793 that may write the bp's "shadow contents" (the instruction
794 value that was overwritten witha TRAP instruction). Since
1777feb0 795 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
796
797 mark_breakpoints_out ();
798
c906108c
SS
799 update_breakpoints_after_exec ();
800
801 /* If there was one, it's gone now. We cannot truly step-to-next
1777feb0 802 statement through an exec(). */
8358c15c 803 th->control.step_resume_breakpoint = NULL;
186c406b 804 th->control.exception_resume_breakpoint = NULL;
16c381f0
JK
805 th->control.step_range_start = 0;
806 th->control.step_range_end = 0;
c906108c 807
a75724bc
PA
808 /* The target reports the exec event to the main thread, even if
809 some other thread does the exec, and even if the main thread was
810 already stopped --- if debugging in non-stop mode, it's possible
811 the user had the main thread held stopped in the previous image
812 --- release it now. This is the same behavior as step-over-exec
813 with scheduler-locking on in all-stop mode. */
814 th->stop_requested = 0;
815
1777feb0 816 /* What is this a.out's name? */
6c95b8df
PA
817 printf_unfiltered (_("%s is executing new program: %s\n"),
818 target_pid_to_str (inferior_ptid),
819 execd_pathname);
c906108c
SS
820
821 /* We've followed the inferior through an exec. Therefore, the
1777feb0 822 inferior has essentially been killed & reborn. */
7a292a7a 823
c906108c 824 gdb_flush (gdb_stdout);
6ca15a4b
PA
825
826 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
827
828 if (gdb_sysroot && *gdb_sysroot)
829 {
830 char *name = alloca (strlen (gdb_sysroot)
831 + strlen (execd_pathname)
832 + 1);
abbb1732 833
e85a822c
DJ
834 strcpy (name, gdb_sysroot);
835 strcat (name, execd_pathname);
836 execd_pathname = name;
837 }
c906108c 838
cce9b6bf
PA
839 /* Reset the shared library package. This ensures that we get a
840 shlib event when the child reaches "_start", at which point the
841 dld will have had a chance to initialize the child. */
842 /* Also, loading a symbol file below may trigger symbol lookups, and
843 we don't want those to be satisfied by the libraries of the
844 previous incarnation of this process. */
845 no_shared_libraries (NULL, 0);
846
6c95b8df
PA
847 if (follow_exec_mode_string == follow_exec_mode_new)
848 {
849 struct program_space *pspace;
6c95b8df
PA
850
851 /* The user wants to keep the old inferior and program spaces
852 around. Create a new fresh one, and switch to it. */
853
854 inf = add_inferior (current_inferior ()->pid);
855 pspace = add_program_space (maybe_new_address_space ());
856 inf->pspace = pspace;
857 inf->aspace = pspace->aspace;
858
859 exit_inferior_num_silent (current_inferior ()->num);
860
861 set_current_inferior (inf);
862 set_current_program_space (pspace);
863 }
864
865 gdb_assert (current_program_space == inf->pspace);
866
1777feb0 867 /* That a.out is now the one to use. */
6c95b8df
PA
868 exec_file_attach (execd_pathname, 0);
869
c1e56572
JK
870 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
871 (Position Independent Executable) main symbol file will get applied by
872 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
873 the breakpoints with the zero displacement. */
874
875 symbol_file_add (execd_pathname, SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET,
876 NULL, 0);
877
878 set_initial_language ();
c906108c 879
7a292a7a 880#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 881 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2 882#else
268a4a75 883 solib_create_inferior_hook (0);
7a292a7a 884#endif
c906108c 885
4efc6507
DE
886 jit_inferior_created_hook ();
887
c1e56572
JK
888 breakpoint_re_set ();
889
c906108c
SS
890 /* Reinsert all breakpoints. (Those which were symbolic have
891 been reset to the proper address in the new a.out, thanks
1777feb0 892 to symbol_file_command...). */
c906108c
SS
893 insert_breakpoints ();
894
895 /* The next resume of this inferior should bring it to the shlib
896 startup breakpoints. (If the user had also set bp's on
897 "main" from the old (parent) process, then they'll auto-
1777feb0 898 matically get reset there in the new process.). */
c906108c
SS
899}
900
901/* Non-zero if we just simulating a single-step. This is needed
902 because we cannot remove the breakpoints in the inferior process
903 until after the `wait' in `wait_for_inferior'. */
904static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
905
906/* The thread we inserted single-step breakpoints for. */
907static ptid_t singlestep_ptid;
908
fd48f117
DJ
909/* PC when we started this single-step. */
910static CORE_ADDR singlestep_pc;
911
9f976b41
DJ
912/* If another thread hit the singlestep breakpoint, we save the original
913 thread here so that we can resume single-stepping it later. */
914static ptid_t saved_singlestep_ptid;
915static int stepping_past_singlestep_breakpoint;
6a6b96b9 916
ca67fcb8
VP
917/* If not equal to null_ptid, this means that after stepping over breakpoint
918 is finished, we need to switch to deferred_step_ptid, and step it.
919
920 The use case is when one thread has hit a breakpoint, and then the user
1777feb0 921 has switched to another thread and issued 'step'. We need to step over
ca67fcb8
VP
922 breakpoint in the thread which hit the breakpoint, but then continue
923 stepping the thread user has selected. */
924static ptid_t deferred_step_ptid;
c906108c 925\f
237fc4c9
PA
926/* Displaced stepping. */
927
928/* In non-stop debugging mode, we must take special care to manage
929 breakpoints properly; in particular, the traditional strategy for
930 stepping a thread past a breakpoint it has hit is unsuitable.
931 'Displaced stepping' is a tactic for stepping one thread past a
932 breakpoint it has hit while ensuring that other threads running
933 concurrently will hit the breakpoint as they should.
934
935 The traditional way to step a thread T off a breakpoint in a
936 multi-threaded program in all-stop mode is as follows:
937
938 a0) Initially, all threads are stopped, and breakpoints are not
939 inserted.
940 a1) We single-step T, leaving breakpoints uninserted.
941 a2) We insert breakpoints, and resume all threads.
942
943 In non-stop debugging, however, this strategy is unsuitable: we
944 don't want to have to stop all threads in the system in order to
945 continue or step T past a breakpoint. Instead, we use displaced
946 stepping:
947
948 n0) Initially, T is stopped, other threads are running, and
949 breakpoints are inserted.
950 n1) We copy the instruction "under" the breakpoint to a separate
951 location, outside the main code stream, making any adjustments
952 to the instruction, register, and memory state as directed by
953 T's architecture.
954 n2) We single-step T over the instruction at its new location.
955 n3) We adjust the resulting register and memory state as directed
956 by T's architecture. This includes resetting T's PC to point
957 back into the main instruction stream.
958 n4) We resume T.
959
960 This approach depends on the following gdbarch methods:
961
962 - gdbarch_max_insn_length and gdbarch_displaced_step_location
963 indicate where to copy the instruction, and how much space must
964 be reserved there. We use these in step n1.
965
966 - gdbarch_displaced_step_copy_insn copies a instruction to a new
967 address, and makes any necessary adjustments to the instruction,
968 register contents, and memory. We use this in step n1.
969
970 - gdbarch_displaced_step_fixup adjusts registers and memory after
971 we have successfuly single-stepped the instruction, to yield the
972 same effect the instruction would have had if we had executed it
973 at its original address. We use this in step n3.
974
975 - gdbarch_displaced_step_free_closure provides cleanup.
976
977 The gdbarch_displaced_step_copy_insn and
978 gdbarch_displaced_step_fixup functions must be written so that
979 copying an instruction with gdbarch_displaced_step_copy_insn,
980 single-stepping across the copied instruction, and then applying
981 gdbarch_displaced_insn_fixup should have the same effects on the
982 thread's memory and registers as stepping the instruction in place
983 would have. Exactly which responsibilities fall to the copy and
984 which fall to the fixup is up to the author of those functions.
985
986 See the comments in gdbarch.sh for details.
987
988 Note that displaced stepping and software single-step cannot
989 currently be used in combination, although with some care I think
990 they could be made to. Software single-step works by placing
991 breakpoints on all possible subsequent instructions; if the
992 displaced instruction is a PC-relative jump, those breakpoints
993 could fall in very strange places --- on pages that aren't
994 executable, or at addresses that are not proper instruction
995 boundaries. (We do generally let other threads run while we wait
996 to hit the software single-step breakpoint, and they might
997 encounter such a corrupted instruction.) One way to work around
998 this would be to have gdbarch_displaced_step_copy_insn fully
999 simulate the effect of PC-relative instructions (and return NULL)
1000 on architectures that use software single-stepping.
1001
1002 In non-stop mode, we can have independent and simultaneous step
1003 requests, so more than one thread may need to simultaneously step
1004 over a breakpoint. The current implementation assumes there is
1005 only one scratch space per process. In this case, we have to
1006 serialize access to the scratch space. If thread A wants to step
1007 over a breakpoint, but we are currently waiting for some other
1008 thread to complete a displaced step, we leave thread A stopped and
1009 place it in the displaced_step_request_queue. Whenever a displaced
1010 step finishes, we pick the next thread in the queue and start a new
1011 displaced step operation on it. See displaced_step_prepare and
1012 displaced_step_fixup for details. */
1013
237fc4c9
PA
1014struct displaced_step_request
1015{
1016 ptid_t ptid;
1017 struct displaced_step_request *next;
1018};
1019
fc1cf338
PA
1020/* Per-inferior displaced stepping state. */
1021struct displaced_step_inferior_state
1022{
1023 /* Pointer to next in linked list. */
1024 struct displaced_step_inferior_state *next;
1025
1026 /* The process this displaced step state refers to. */
1027 int pid;
1028
1029 /* A queue of pending displaced stepping requests. One entry per
1030 thread that needs to do a displaced step. */
1031 struct displaced_step_request *step_request_queue;
1032
1033 /* If this is not null_ptid, this is the thread carrying out a
1034 displaced single-step in process PID. This thread's state will
1035 require fixing up once it has completed its step. */
1036 ptid_t step_ptid;
1037
1038 /* The architecture the thread had when we stepped it. */
1039 struct gdbarch *step_gdbarch;
1040
1041 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1042 for post-step cleanup. */
1043 struct displaced_step_closure *step_closure;
1044
1045 /* The address of the original instruction, and the copy we
1046 made. */
1047 CORE_ADDR step_original, step_copy;
1048
1049 /* Saved contents of copy area. */
1050 gdb_byte *step_saved_copy;
1051};
1052
1053/* The list of states of processes involved in displaced stepping
1054 presently. */
1055static struct displaced_step_inferior_state *displaced_step_inferior_states;
1056
1057/* Get the displaced stepping state of process PID. */
1058
1059static struct displaced_step_inferior_state *
1060get_displaced_stepping_state (int pid)
1061{
1062 struct displaced_step_inferior_state *state;
1063
1064 for (state = displaced_step_inferior_states;
1065 state != NULL;
1066 state = state->next)
1067 if (state->pid == pid)
1068 return state;
1069
1070 return NULL;
1071}
1072
1073/* Add a new displaced stepping state for process PID to the displaced
1074 stepping state list, or return a pointer to an already existing
1075 entry, if it already exists. Never returns NULL. */
1076
1077static struct displaced_step_inferior_state *
1078add_displaced_stepping_state (int pid)
1079{
1080 struct displaced_step_inferior_state *state;
1081
1082 for (state = displaced_step_inferior_states;
1083 state != NULL;
1084 state = state->next)
1085 if (state->pid == pid)
1086 return state;
237fc4c9 1087
fc1cf338
PA
1088 state = xcalloc (1, sizeof (*state));
1089 state->pid = pid;
1090 state->next = displaced_step_inferior_states;
1091 displaced_step_inferior_states = state;
237fc4c9 1092
fc1cf338
PA
1093 return state;
1094}
1095
a42244db
YQ
1096/* If inferior is in displaced stepping, and ADDR equals to starting address
1097 of copy area, return corresponding displaced_step_closure. Otherwise,
1098 return NULL. */
1099
1100struct displaced_step_closure*
1101get_displaced_step_closure_by_addr (CORE_ADDR addr)
1102{
1103 struct displaced_step_inferior_state *displaced
1104 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1105
1106 /* If checking the mode of displaced instruction in copy area. */
1107 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1108 && (displaced->step_copy == addr))
1109 return displaced->step_closure;
1110
1111 return NULL;
1112}
1113
fc1cf338 1114/* Remove the displaced stepping state of process PID. */
237fc4c9 1115
fc1cf338
PA
1116static void
1117remove_displaced_stepping_state (int pid)
1118{
1119 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1120
fc1cf338
PA
1121 gdb_assert (pid != 0);
1122
1123 it = displaced_step_inferior_states;
1124 prev_next_p = &displaced_step_inferior_states;
1125 while (it)
1126 {
1127 if (it->pid == pid)
1128 {
1129 *prev_next_p = it->next;
1130 xfree (it);
1131 return;
1132 }
1133
1134 prev_next_p = &it->next;
1135 it = *prev_next_p;
1136 }
1137}
1138
1139static void
1140infrun_inferior_exit (struct inferior *inf)
1141{
1142 remove_displaced_stepping_state (inf->pid);
1143}
237fc4c9 1144
fff08868
HZ
1145/* Enum strings for "set|show displaced-stepping". */
1146
1147static const char can_use_displaced_stepping_auto[] = "auto";
1148static const char can_use_displaced_stepping_on[] = "on";
1149static const char can_use_displaced_stepping_off[] = "off";
1150static const char *can_use_displaced_stepping_enum[] =
1151{
1152 can_use_displaced_stepping_auto,
1153 can_use_displaced_stepping_on,
1154 can_use_displaced_stepping_off,
1155 NULL,
1156};
1157
1158/* If ON, and the architecture supports it, GDB will use displaced
1159 stepping to step over breakpoints. If OFF, or if the architecture
1160 doesn't support it, GDB will instead use the traditional
1161 hold-and-step approach. If AUTO (which is the default), GDB will
1162 decide which technique to use to step over breakpoints depending on
1163 which of all-stop or non-stop mode is active --- displaced stepping
1164 in non-stop mode; hold-and-step in all-stop mode. */
1165
1166static const char *can_use_displaced_stepping =
1167 can_use_displaced_stepping_auto;
1168
237fc4c9
PA
1169static void
1170show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1171 struct cmd_list_element *c,
1172 const char *value)
1173{
fff08868 1174 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
3e43a32a
MS
1175 fprintf_filtered (file,
1176 _("Debugger's willingness to use displaced stepping "
1177 "to step over breakpoints is %s (currently %s).\n"),
fff08868
HZ
1178 value, non_stop ? "on" : "off");
1179 else
3e43a32a
MS
1180 fprintf_filtered (file,
1181 _("Debugger's willingness to use displaced stepping "
1182 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1183}
1184
fff08868
HZ
1185/* Return non-zero if displaced stepping can/should be used to step
1186 over breakpoints. */
1187
237fc4c9
PA
1188static int
1189use_displaced_stepping (struct gdbarch *gdbarch)
1190{
fff08868
HZ
1191 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
1192 && non_stop)
1193 || can_use_displaced_stepping == can_use_displaced_stepping_on)
96429cc8
HZ
1194 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1195 && !RECORD_IS_USED);
237fc4c9
PA
1196}
1197
1198/* Clean out any stray displaced stepping state. */
1199static void
fc1cf338 1200displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1201{
1202 /* Indicate that there is no cleanup pending. */
fc1cf338 1203 displaced->step_ptid = null_ptid;
237fc4c9 1204
fc1cf338 1205 if (displaced->step_closure)
237fc4c9 1206 {
fc1cf338
PA
1207 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1208 displaced->step_closure);
1209 displaced->step_closure = NULL;
237fc4c9
PA
1210 }
1211}
1212
1213static void
fc1cf338 1214displaced_step_clear_cleanup (void *arg)
237fc4c9 1215{
fc1cf338
PA
1216 struct displaced_step_inferior_state *state = arg;
1217
1218 displaced_step_clear (state);
237fc4c9
PA
1219}
1220
1221/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1222void
1223displaced_step_dump_bytes (struct ui_file *file,
1224 const gdb_byte *buf,
1225 size_t len)
1226{
1227 int i;
1228
1229 for (i = 0; i < len; i++)
1230 fprintf_unfiltered (file, "%02x ", buf[i]);
1231 fputs_unfiltered ("\n", file);
1232}
1233
1234/* Prepare to single-step, using displaced stepping.
1235
1236 Note that we cannot use displaced stepping when we have a signal to
1237 deliver. If we have a signal to deliver and an instruction to step
1238 over, then after the step, there will be no indication from the
1239 target whether the thread entered a signal handler or ignored the
1240 signal and stepped over the instruction successfully --- both cases
1241 result in a simple SIGTRAP. In the first case we mustn't do a
1242 fixup, and in the second case we must --- but we can't tell which.
1243 Comments in the code for 'random signals' in handle_inferior_event
1244 explain how we handle this case instead.
1245
1246 Returns 1 if preparing was successful -- this thread is going to be
1247 stepped now; or 0 if displaced stepping this thread got queued. */
1248static int
1249displaced_step_prepare (ptid_t ptid)
1250{
ad53cd71 1251 struct cleanup *old_cleanups, *ignore_cleanups;
237fc4c9
PA
1252 struct regcache *regcache = get_thread_regcache (ptid);
1253 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1254 CORE_ADDR original, copy;
1255 ULONGEST len;
1256 struct displaced_step_closure *closure;
fc1cf338 1257 struct displaced_step_inferior_state *displaced;
237fc4c9
PA
1258
1259 /* We should never reach this function if the architecture does not
1260 support displaced stepping. */
1261 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1262
fc1cf338
PA
1263 /* We have to displaced step one thread at a time, as we only have
1264 access to a single scratch space per inferior. */
237fc4c9 1265
fc1cf338
PA
1266 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1267
1268 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1269 {
1270 /* Already waiting for a displaced step to finish. Defer this
1271 request and place in queue. */
1272 struct displaced_step_request *req, *new_req;
1273
1274 if (debug_displaced)
1275 fprintf_unfiltered (gdb_stdlog,
1276 "displaced: defering step of %s\n",
1277 target_pid_to_str (ptid));
1278
1279 new_req = xmalloc (sizeof (*new_req));
1280 new_req->ptid = ptid;
1281 new_req->next = NULL;
1282
fc1cf338 1283 if (displaced->step_request_queue)
237fc4c9 1284 {
fc1cf338 1285 for (req = displaced->step_request_queue;
237fc4c9
PA
1286 req && req->next;
1287 req = req->next)
1288 ;
1289 req->next = new_req;
1290 }
1291 else
fc1cf338 1292 displaced->step_request_queue = new_req;
237fc4c9
PA
1293
1294 return 0;
1295 }
1296 else
1297 {
1298 if (debug_displaced)
1299 fprintf_unfiltered (gdb_stdlog,
1300 "displaced: stepping %s now\n",
1301 target_pid_to_str (ptid));
1302 }
1303
fc1cf338 1304 displaced_step_clear (displaced);
237fc4c9 1305
ad53cd71
PA
1306 old_cleanups = save_inferior_ptid ();
1307 inferior_ptid = ptid;
1308
515630c5 1309 original = regcache_read_pc (regcache);
237fc4c9
PA
1310
1311 copy = gdbarch_displaced_step_location (gdbarch);
1312 len = gdbarch_max_insn_length (gdbarch);
1313
1314 /* Save the original contents of the copy area. */
fc1cf338 1315 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1316 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338
PA
1317 &displaced->step_saved_copy);
1318 read_memory (copy, displaced->step_saved_copy, len);
237fc4c9
PA
1319 if (debug_displaced)
1320 {
5af949e3
UW
1321 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1322 paddress (gdbarch, copy));
fc1cf338
PA
1323 displaced_step_dump_bytes (gdb_stdlog,
1324 displaced->step_saved_copy,
1325 len);
237fc4c9
PA
1326 };
1327
1328 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1329 original, copy, regcache);
237fc4c9
PA
1330
1331 /* We don't support the fully-simulated case at present. */
1332 gdb_assert (closure);
1333
9f5a595d
UW
1334 /* Save the information we need to fix things up if the step
1335 succeeds. */
fc1cf338
PA
1336 displaced->step_ptid = ptid;
1337 displaced->step_gdbarch = gdbarch;
1338 displaced->step_closure = closure;
1339 displaced->step_original = original;
1340 displaced->step_copy = copy;
9f5a595d 1341
fc1cf338 1342 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1343
1344 /* Resume execution at the copy. */
515630c5 1345 regcache_write_pc (regcache, copy);
237fc4c9 1346
ad53cd71
PA
1347 discard_cleanups (ignore_cleanups);
1348
1349 do_cleanups (old_cleanups);
237fc4c9
PA
1350
1351 if (debug_displaced)
5af949e3
UW
1352 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1353 paddress (gdbarch, copy));
237fc4c9 1354
237fc4c9
PA
1355 return 1;
1356}
1357
237fc4c9 1358static void
3e43a32a
MS
1359write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1360 const gdb_byte *myaddr, int len)
237fc4c9
PA
1361{
1362 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1363
237fc4c9
PA
1364 inferior_ptid = ptid;
1365 write_memory (memaddr, myaddr, len);
1366 do_cleanups (ptid_cleanup);
1367}
1368
1369static void
1370displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
1371{
1372 struct cleanup *old_cleanups;
fc1cf338
PA
1373 struct displaced_step_inferior_state *displaced
1374 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1375
1376 /* Was any thread of this process doing a displaced step? */
1377 if (displaced == NULL)
1378 return;
237fc4c9
PA
1379
1380 /* Was this event for the pid we displaced? */
fc1cf338
PA
1381 if (ptid_equal (displaced->step_ptid, null_ptid)
1382 || ! ptid_equal (displaced->step_ptid, event_ptid))
237fc4c9
PA
1383 return;
1384
fc1cf338 1385 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1386
1387 /* Restore the contents of the copy area. */
1388 {
fc1cf338 1389 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
abbb1732 1390
fc1cf338
PA
1391 write_memory_ptid (displaced->step_ptid, displaced->step_copy,
1392 displaced->step_saved_copy, len);
237fc4c9 1393 if (debug_displaced)
5af949e3 1394 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s\n",
fc1cf338
PA
1395 paddress (displaced->step_gdbarch,
1396 displaced->step_copy));
237fc4c9
PA
1397 }
1398
1399 /* Did the instruction complete successfully? */
1400 if (signal == TARGET_SIGNAL_TRAP)
1401 {
1402 /* Fix up the resulting state. */
fc1cf338
PA
1403 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1404 displaced->step_closure,
1405 displaced->step_original,
1406 displaced->step_copy,
1407 get_thread_regcache (displaced->step_ptid));
237fc4c9
PA
1408 }
1409 else
1410 {
1411 /* Since the instruction didn't complete, all we can do is
1412 relocate the PC. */
515630c5
UW
1413 struct regcache *regcache = get_thread_regcache (event_ptid);
1414 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1415
fc1cf338 1416 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1417 regcache_write_pc (regcache, pc);
237fc4c9
PA
1418 }
1419
1420 do_cleanups (old_cleanups);
1421
fc1cf338 1422 displaced->step_ptid = null_ptid;
1c5cfe86 1423
237fc4c9 1424 /* Are there any pending displaced stepping requests? If so, run
fc1cf338
PA
1425 one now. Leave the state object around, since we're likely to
1426 need it again soon. */
1427 while (displaced->step_request_queue)
237fc4c9
PA
1428 {
1429 struct displaced_step_request *head;
1430 ptid_t ptid;
5af949e3 1431 struct regcache *regcache;
929dfd4f 1432 struct gdbarch *gdbarch;
1c5cfe86 1433 CORE_ADDR actual_pc;
6c95b8df 1434 struct address_space *aspace;
237fc4c9 1435
fc1cf338 1436 head = displaced->step_request_queue;
237fc4c9 1437 ptid = head->ptid;
fc1cf338 1438 displaced->step_request_queue = head->next;
237fc4c9
PA
1439 xfree (head);
1440
ad53cd71
PA
1441 context_switch (ptid);
1442
5af949e3
UW
1443 regcache = get_thread_regcache (ptid);
1444 actual_pc = regcache_read_pc (regcache);
6c95b8df 1445 aspace = get_regcache_aspace (regcache);
1c5cfe86 1446
6c95b8df 1447 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1448 {
1c5cfe86
PA
1449 if (debug_displaced)
1450 fprintf_unfiltered (gdb_stdlog,
1451 "displaced: stepping queued %s now\n",
1452 target_pid_to_str (ptid));
1453
1454 displaced_step_prepare (ptid);
1455
929dfd4f
JB
1456 gdbarch = get_regcache_arch (regcache);
1457
1c5cfe86
PA
1458 if (debug_displaced)
1459 {
929dfd4f 1460 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1461 gdb_byte buf[4];
1462
5af949e3
UW
1463 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1464 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1465 read_memory (actual_pc, buf, sizeof (buf));
1466 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1467 }
1468
fc1cf338
PA
1469 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1470 displaced->step_closure))
929dfd4f 1471 target_resume (ptid, 1, TARGET_SIGNAL_0);
99e40580
UW
1472 else
1473 target_resume (ptid, 0, TARGET_SIGNAL_0);
1c5cfe86
PA
1474
1475 /* Done, we're stepping a thread. */
1476 break;
ad53cd71 1477 }
1c5cfe86
PA
1478 else
1479 {
1480 int step;
1481 struct thread_info *tp = inferior_thread ();
1482
1483 /* The breakpoint we were sitting under has since been
1484 removed. */
16c381f0 1485 tp->control.trap_expected = 0;
1c5cfe86
PA
1486
1487 /* Go back to what we were trying to do. */
1488 step = currently_stepping (tp);
ad53cd71 1489
1c5cfe86 1490 if (debug_displaced)
3e43a32a
MS
1491 fprintf_unfiltered (gdb_stdlog,
1492 "breakpoint is gone %s: step(%d)\n",
1c5cfe86
PA
1493 target_pid_to_str (tp->ptid), step);
1494
1495 target_resume (ptid, step, TARGET_SIGNAL_0);
16c381f0 1496 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1c5cfe86
PA
1497
1498 /* This request was discarded. See if there's any other
1499 thread waiting for its turn. */
1500 }
237fc4c9
PA
1501 }
1502}
1503
5231c1fd
PA
1504/* Update global variables holding ptids to hold NEW_PTID if they were
1505 holding OLD_PTID. */
1506static void
1507infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1508{
1509 struct displaced_step_request *it;
fc1cf338 1510 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
1511
1512 if (ptid_equal (inferior_ptid, old_ptid))
1513 inferior_ptid = new_ptid;
1514
1515 if (ptid_equal (singlestep_ptid, old_ptid))
1516 singlestep_ptid = new_ptid;
1517
5231c1fd
PA
1518 if (ptid_equal (deferred_step_ptid, old_ptid))
1519 deferred_step_ptid = new_ptid;
1520
fc1cf338
PA
1521 for (displaced = displaced_step_inferior_states;
1522 displaced;
1523 displaced = displaced->next)
1524 {
1525 if (ptid_equal (displaced->step_ptid, old_ptid))
1526 displaced->step_ptid = new_ptid;
1527
1528 for (it = displaced->step_request_queue; it; it = it->next)
1529 if (ptid_equal (it->ptid, old_ptid))
1530 it->ptid = new_ptid;
1531 }
5231c1fd
PA
1532}
1533
237fc4c9
PA
1534\f
1535/* Resuming. */
c906108c
SS
1536
1537/* Things to clean up if we QUIT out of resume (). */
c906108c 1538static void
74b7792f 1539resume_cleanups (void *ignore)
c906108c
SS
1540{
1541 normal_stop ();
1542}
1543
53904c9e
AC
1544static const char schedlock_off[] = "off";
1545static const char schedlock_on[] = "on";
1546static const char schedlock_step[] = "step";
488f131b 1547static const char *scheduler_enums[] = {
ef346e04
AC
1548 schedlock_off,
1549 schedlock_on,
1550 schedlock_step,
1551 NULL
1552};
920d2a44
AC
1553static const char *scheduler_mode = schedlock_off;
1554static void
1555show_scheduler_mode (struct ui_file *file, int from_tty,
1556 struct cmd_list_element *c, const char *value)
1557{
3e43a32a
MS
1558 fprintf_filtered (file,
1559 _("Mode for locking scheduler "
1560 "during execution is \"%s\".\n"),
920d2a44
AC
1561 value);
1562}
c906108c
SS
1563
1564static void
96baa820 1565set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1566{
eefe576e
AC
1567 if (!target_can_lock_scheduler)
1568 {
1569 scheduler_mode = schedlock_off;
1570 error (_("Target '%s' cannot support this command."), target_shortname);
1571 }
c906108c
SS
1572}
1573
d4db2f36
PA
1574/* True if execution commands resume all threads of all processes by
1575 default; otherwise, resume only threads of the current inferior
1576 process. */
1577int sched_multi = 0;
1578
2facfe5c
DD
1579/* Try to setup for software single stepping over the specified location.
1580 Return 1 if target_resume() should use hardware single step.
1581
1582 GDBARCH the current gdbarch.
1583 PC the location to step over. */
1584
1585static int
1586maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1587{
1588 int hw_step = 1;
1589
f02253f1
HZ
1590 if (execution_direction == EXEC_FORWARD
1591 && gdbarch_software_single_step_p (gdbarch)
99e40580 1592 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 1593 {
99e40580
UW
1594 hw_step = 0;
1595 /* Do not pull these breakpoints until after a `wait' in
1777feb0 1596 `wait_for_inferior'. */
99e40580
UW
1597 singlestep_breakpoints_inserted_p = 1;
1598 singlestep_ptid = inferior_ptid;
1599 singlestep_pc = pc;
2facfe5c
DD
1600 }
1601 return hw_step;
1602}
c906108c
SS
1603
1604/* Resume the inferior, but allow a QUIT. This is useful if the user
1605 wants to interrupt some lengthy single-stepping operation
1606 (for child processes, the SIGINT goes to the inferior, and so
1607 we get a SIGINT random_signal, but for remote debugging and perhaps
1608 other targets, that's not true).
1609
1610 STEP nonzero if we should step (zero to continue instead).
1611 SIG is the signal to give the inferior (zero for none). */
1612void
96baa820 1613resume (int step, enum target_signal sig)
c906108c
SS
1614{
1615 int should_resume = 1;
74b7792f 1616 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1617 struct regcache *regcache = get_current_regcache ();
1618 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1619 struct thread_info *tp = inferior_thread ();
515630c5 1620 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 1621 struct address_space *aspace = get_regcache_aspace (regcache);
c7e8a53c 1622
c906108c
SS
1623 QUIT;
1624
74609e71
YQ
1625 if (current_inferior ()->waiting_for_vfork_done)
1626 {
48f9886d
PA
1627 /* Don't try to single-step a vfork parent that is waiting for
1628 the child to get out of the shared memory region (by exec'ing
1629 or exiting). This is particularly important on software
1630 single-step archs, as the child process would trip on the
1631 software single step breakpoint inserted for the parent
1632 process. Since the parent will not actually execute any
1633 instruction until the child is out of the shared region (such
1634 are vfork's semantics), it is safe to simply continue it.
1635 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1636 the parent, and tell it to `keep_going', which automatically
1637 re-sets it stepping. */
74609e71
YQ
1638 if (debug_infrun)
1639 fprintf_unfiltered (gdb_stdlog,
1640 "infrun: resume : clear step\n");
1641 step = 0;
1642 }
1643
527159b7 1644 if (debug_infrun)
237fc4c9
PA
1645 fprintf_unfiltered (gdb_stdlog,
1646 "infrun: resume (step=%d, signal=%d), "
0d9a9a5f
PA
1647 "trap_expected=%d, current thread [%s] at %s\n",
1648 step, sig, tp->control.trap_expected,
1649 target_pid_to_str (inferior_ptid),
1650 paddress (gdbarch, pc));
c906108c 1651
c2c6d25f
JM
1652 /* Normally, by the time we reach `resume', the breakpoints are either
1653 removed or inserted, as appropriate. The exception is if we're sitting
1654 at a permanent breakpoint; we need to step over it, but permanent
1655 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 1656 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 1657 {
515630c5
UW
1658 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1659 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5 1660 else
ac74f770
MS
1661 error (_("\
1662The program is stopped at a permanent breakpoint, but GDB does not know\n\
1663how to step past a permanent breakpoint on this architecture. Try using\n\
1664a command like `return' or `jump' to continue execution."));
6d350bb5 1665 }
c2c6d25f 1666
237fc4c9
PA
1667 /* If enabled, step over breakpoints by executing a copy of the
1668 instruction at a different address.
1669
1670 We can't use displaced stepping when we have a signal to deliver;
1671 the comments for displaced_step_prepare explain why. The
1672 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
1673 signals' explain what we do instead.
1674
1675 We can't use displaced stepping when we are waiting for vfork_done
1676 event, displaced stepping breaks the vfork child similarly as single
1677 step software breakpoint. */
515630c5 1678 if (use_displaced_stepping (gdbarch)
16c381f0 1679 && (tp->control.trap_expected
929dfd4f 1680 || (step && gdbarch_software_single_step_p (gdbarch)))
74609e71
YQ
1681 && sig == TARGET_SIGNAL_0
1682 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 1683 {
fc1cf338
PA
1684 struct displaced_step_inferior_state *displaced;
1685
237fc4c9 1686 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1687 {
1688 /* Got placed in displaced stepping queue. Will be resumed
1689 later when all the currently queued displaced stepping
7f7efbd9
VP
1690 requests finish. The thread is not executing at this point,
1691 and the call to set_executing will be made later. But we
1692 need to call set_running here, since from frontend point of view,
1693 the thread is running. */
1694 set_running (inferior_ptid, 1);
d56b7306
VP
1695 discard_cleanups (old_cleanups);
1696 return;
1697 }
99e40580 1698
fc1cf338
PA
1699 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1700 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1701 displaced->step_closure);
237fc4c9
PA
1702 }
1703
2facfe5c 1704 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 1705 else if (step)
2facfe5c 1706 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1707
30852783
UW
1708 /* Currently, our software single-step implementation leads to different
1709 results than hardware single-stepping in one situation: when stepping
1710 into delivering a signal which has an associated signal handler,
1711 hardware single-step will stop at the first instruction of the handler,
1712 while software single-step will simply skip execution of the handler.
1713
1714 For now, this difference in behavior is accepted since there is no
1715 easy way to actually implement single-stepping into a signal handler
1716 without kernel support.
1717
1718 However, there is one scenario where this difference leads to follow-on
1719 problems: if we're stepping off a breakpoint by removing all breakpoints
1720 and then single-stepping. In this case, the software single-step
1721 behavior means that even if there is a *breakpoint* in the signal
1722 handler, GDB still would not stop.
1723
1724 Fortunately, we can at least fix this particular issue. We detect
1725 here the case where we are about to deliver a signal while software
1726 single-stepping with breakpoints removed. In this situation, we
1727 revert the decisions to remove all breakpoints and insert single-
1728 step breakpoints, and instead we install a step-resume breakpoint
1729 at the current address, deliver the signal without stepping, and
1730 once we arrive back at the step-resume breakpoint, actually step
1731 over the breakpoint we originally wanted to step over. */
1732 if (singlestep_breakpoints_inserted_p
1733 && tp->control.trap_expected && sig != TARGET_SIGNAL_0)
1734 {
1735 /* If we have nested signals or a pending signal is delivered
1736 immediately after a handler returns, might might already have
1737 a step-resume breakpoint set on the earlier handler. We cannot
1738 set another step-resume breakpoint; just continue on until the
1739 original breakpoint is hit. */
1740 if (tp->control.step_resume_breakpoint == NULL)
1741 {
1742 insert_step_resume_breakpoint_at_frame (get_current_frame ());
1743 tp->step_after_step_resume_breakpoint = 1;
1744 }
1745
1746 remove_single_step_breakpoints ();
1747 singlestep_breakpoints_inserted_p = 0;
1748
1749 insert_breakpoints ();
1750 tp->control.trap_expected = 0;
1751 }
1752
c906108c
SS
1753 if (should_resume)
1754 {
39f77062 1755 ptid_t resume_ptid;
dfcd3bfb 1756
cd76b0b7
VP
1757 /* If STEP is set, it's a request to use hardware stepping
1758 facilities. But in that case, we should never
1759 use singlestep breakpoint. */
1760 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1761
d4db2f36
PA
1762 /* Decide the set of threads to ask the target to resume. Start
1763 by assuming everything will be resumed, than narrow the set
1764 by applying increasingly restricting conditions. */
1765
1766 /* By default, resume all threads of all processes. */
1767 resume_ptid = RESUME_ALL;
1768
1769 /* Maybe resume only all threads of the current process. */
1770 if (!sched_multi && target_supports_multi_process ())
1771 {
1772 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1773 }
1774
1775 /* Maybe resume a single thread after all. */
cd76b0b7
VP
1776 if (singlestep_breakpoints_inserted_p
1777 && stepping_past_singlestep_breakpoint)
c906108c 1778 {
cd76b0b7
VP
1779 /* The situation here is as follows. In thread T1 we wanted to
1780 single-step. Lacking hardware single-stepping we've
1781 set breakpoint at the PC of the next instruction -- call it
1782 P. After resuming, we've hit that breakpoint in thread T2.
1783 Now we've removed original breakpoint, inserted breakpoint
1784 at P+1, and try to step to advance T2 past breakpoint.
1785 We need to step only T2, as if T1 is allowed to freely run,
1786 it can run past P, and if other threads are allowed to run,
1787 they can hit breakpoint at P+1, and nested hits of single-step
1788 breakpoints is not something we'd want -- that's complicated
1789 to support, and has no value. */
1790 resume_ptid = inferior_ptid;
1791 }
d4db2f36 1792 else if ((step || singlestep_breakpoints_inserted_p)
16c381f0 1793 && tp->control.trap_expected)
cd76b0b7 1794 {
74960c60
VP
1795 /* We're allowing a thread to run past a breakpoint it has
1796 hit, by single-stepping the thread with the breakpoint
1797 removed. In which case, we need to single-step only this
1798 thread, and keep others stopped, as they can miss this
1799 breakpoint if allowed to run.
1800
1801 The current code actually removes all breakpoints when
1802 doing this, not just the one being stepped over, so if we
1803 let other threads run, we can actually miss any
1804 breakpoint, not just the one at PC. */
ef5cf84e 1805 resume_ptid = inferior_ptid;
c906108c 1806 }
d4db2f36 1807 else if (non_stop)
94cc34af
PA
1808 {
1809 /* With non-stop mode on, threads are always handled
1810 individually. */
1811 resume_ptid = inferior_ptid;
1812 }
1813 else if ((scheduler_mode == schedlock_on)
1814 || (scheduler_mode == schedlock_step
1815 && (step || singlestep_breakpoints_inserted_p)))
c906108c 1816 {
1777feb0 1817 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 1818 resume_ptid = inferior_ptid;
c906108c 1819 }
ef5cf84e 1820
515630c5 1821 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1822 {
1823 /* Most targets can step a breakpoint instruction, thus
1824 executing it normally. But if this one cannot, just
1825 continue and we will hit it anyway. */
6c95b8df 1826 if (step && breakpoint_inserted_here_p (aspace, pc))
c4ed33b9
AC
1827 step = 0;
1828 }
237fc4c9
PA
1829
1830 if (debug_displaced
515630c5 1831 && use_displaced_stepping (gdbarch)
16c381f0 1832 && tp->control.trap_expected)
237fc4c9 1833 {
515630c5 1834 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
5af949e3 1835 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
515630c5 1836 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1837 gdb_byte buf[4];
1838
5af949e3
UW
1839 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1840 paddress (resume_gdbarch, actual_pc));
237fc4c9
PA
1841 read_memory (actual_pc, buf, sizeof (buf));
1842 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1843 }
1844
e58b0e63
PA
1845 /* Install inferior's terminal modes. */
1846 target_terminal_inferior ();
1847
2020b7ab
PA
1848 /* Avoid confusing the next resume, if the next stop/resume
1849 happens to apply to another thread. */
16c381f0 1850 tp->suspend.stop_signal = TARGET_SIGNAL_0;
607cecd2 1851
2455069d
UW
1852 /* Advise target which signals may be handled silently. If we have
1853 removed breakpoints because we are stepping over one (which can
1854 happen only if we are not using displaced stepping), we need to
1855 receive all signals to avoid accidentally skipping a breakpoint
1856 during execution of a signal handler. */
1857 if ((step || singlestep_breakpoints_inserted_p)
1858 && tp->control.trap_expected
1859 && !use_displaced_stepping (gdbarch))
1860 target_pass_signals (0, NULL);
1861 else
1862 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
1863
607cecd2 1864 target_resume (resume_ptid, step, sig);
c906108c
SS
1865 }
1866
1867 discard_cleanups (old_cleanups);
1868}
1869\f
237fc4c9 1870/* Proceeding. */
c906108c
SS
1871
1872/* Clear out all variables saying what to do when inferior is continued.
1873 First do this, then set the ones you want, then call `proceed'. */
1874
a7212384
UW
1875static void
1876clear_proceed_status_thread (struct thread_info *tp)
c906108c 1877{
a7212384
UW
1878 if (debug_infrun)
1879 fprintf_unfiltered (gdb_stdlog,
1880 "infrun: clear_proceed_status_thread (%s)\n",
1881 target_pid_to_str (tp->ptid));
d6b48e9c 1882
16c381f0
JK
1883 tp->control.trap_expected = 0;
1884 tp->control.step_range_start = 0;
1885 tp->control.step_range_end = 0;
1886 tp->control.step_frame_id = null_frame_id;
1887 tp->control.step_stack_frame_id = null_frame_id;
1888 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
a7212384 1889 tp->stop_requested = 0;
4e1c45ea 1890
16c381f0 1891 tp->control.stop_step = 0;
32400beb 1892
16c381f0 1893 tp->control.proceed_to_finish = 0;
414c69f7 1894
a7212384 1895 /* Discard any remaining commands or status from previous stop. */
16c381f0 1896 bpstat_clear (&tp->control.stop_bpstat);
a7212384 1897}
32400beb 1898
a7212384
UW
1899static int
1900clear_proceed_status_callback (struct thread_info *tp, void *data)
1901{
1902 if (is_exited (tp->ptid))
1903 return 0;
d6b48e9c 1904
a7212384
UW
1905 clear_proceed_status_thread (tp);
1906 return 0;
1907}
1908
1909void
1910clear_proceed_status (void)
1911{
6c95b8df
PA
1912 if (!non_stop)
1913 {
1914 /* In all-stop mode, delete the per-thread status of all
1915 threads, even if inferior_ptid is null_ptid, there may be
1916 threads on the list. E.g., we may be launching a new
1917 process, while selecting the executable. */
1918 iterate_over_threads (clear_proceed_status_callback, NULL);
1919 }
1920
a7212384
UW
1921 if (!ptid_equal (inferior_ptid, null_ptid))
1922 {
1923 struct inferior *inferior;
1924
1925 if (non_stop)
1926 {
6c95b8df
PA
1927 /* If in non-stop mode, only delete the per-thread status of
1928 the current thread. */
a7212384
UW
1929 clear_proceed_status_thread (inferior_thread ());
1930 }
6c95b8df 1931
d6b48e9c 1932 inferior = current_inferior ();
16c381f0 1933 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
1934 }
1935
c906108c 1936 stop_after_trap = 0;
f3b1572e
PA
1937
1938 observer_notify_about_to_proceed ();
c906108c 1939
d5c31457
UW
1940 if (stop_registers)
1941 {
1942 regcache_xfree (stop_registers);
1943 stop_registers = NULL;
1944 }
c906108c
SS
1945}
1946
5a437975
DE
1947/* Check the current thread against the thread that reported the most recent
1948 event. If a step-over is required return TRUE and set the current thread
1949 to the old thread. Otherwise return FALSE.
1950
1777feb0 1951 This should be suitable for any targets that support threads. */
ea67f13b
DJ
1952
1953static int
6a6b96b9 1954prepare_to_proceed (int step)
ea67f13b
DJ
1955{
1956 ptid_t wait_ptid;
1957 struct target_waitstatus wait_status;
5a437975
DE
1958 int schedlock_enabled;
1959
1960 /* With non-stop mode on, threads are always handled individually. */
1961 gdb_assert (! non_stop);
ea67f13b
DJ
1962
1963 /* Get the last target status returned by target_wait(). */
1964 get_last_target_status (&wait_ptid, &wait_status);
1965
6a6b96b9 1966 /* Make sure we were stopped at a breakpoint. */
ea67f13b 1967 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2b009048
DJ
1968 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
1969 && wait_status.value.sig != TARGET_SIGNAL_ILL
1970 && wait_status.value.sig != TARGET_SIGNAL_SEGV
1971 && wait_status.value.sig != TARGET_SIGNAL_EMT))
ea67f13b
DJ
1972 {
1973 return 0;
1974 }
1975
5a437975
DE
1976 schedlock_enabled = (scheduler_mode == schedlock_on
1977 || (scheduler_mode == schedlock_step
1978 && step));
1979
d4db2f36
PA
1980 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
1981 if (schedlock_enabled)
1982 return 0;
1983
1984 /* Don't switch over if we're about to resume some other process
1985 other than WAIT_PTID's, and schedule-multiple is off. */
1986 if (!sched_multi
1987 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
1988 return 0;
1989
6a6b96b9 1990 /* Switched over from WAIT_PID. */
ea67f13b 1991 if (!ptid_equal (wait_ptid, minus_one_ptid)
d4db2f36 1992 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 1993 {
515630c5
UW
1994 struct regcache *regcache = get_thread_regcache (wait_ptid);
1995
6c95b8df
PA
1996 if (breakpoint_here_p (get_regcache_aspace (regcache),
1997 regcache_read_pc (regcache)))
ea67f13b 1998 {
515630c5
UW
1999 /* If stepping, remember current thread to switch back to. */
2000 if (step)
2001 deferred_step_ptid = inferior_ptid;
ea67f13b 2002
515630c5
UW
2003 /* Switch back to WAIT_PID thread. */
2004 switch_to_thread (wait_ptid);
6a6b96b9 2005
0d9a9a5f
PA
2006 if (debug_infrun)
2007 fprintf_unfiltered (gdb_stdlog,
2008 "infrun: prepare_to_proceed (step=%d), "
2009 "switched to [%s]\n",
2010 step, target_pid_to_str (inferior_ptid));
2011
515630c5
UW
2012 /* We return 1 to indicate that there is a breakpoint here,
2013 so we need to step over it before continuing to avoid
1777feb0 2014 hitting it straight away. */
515630c5
UW
2015 return 1;
2016 }
ea67f13b
DJ
2017 }
2018
2019 return 0;
ea67f13b 2020}
e4846b08 2021
c906108c
SS
2022/* Basic routine for continuing the program in various fashions.
2023
2024 ADDR is the address to resume at, or -1 for resume where stopped.
2025 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2026 or -1 for act according to how it stopped.
c906108c 2027 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2028 -1 means return after that and print nothing.
2029 You should probably set various step_... variables
2030 before calling here, if you are stepping.
c906108c
SS
2031
2032 You should call clear_proceed_status before calling proceed. */
2033
2034void
96baa820 2035proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c 2036{
e58b0e63
PA
2037 struct regcache *regcache;
2038 struct gdbarch *gdbarch;
4e1c45ea 2039 struct thread_info *tp;
e58b0e63 2040 CORE_ADDR pc;
6c95b8df 2041 struct address_space *aspace;
c906108c
SS
2042 int oneproc = 0;
2043
e58b0e63
PA
2044 /* If we're stopped at a fork/vfork, follow the branch set by the
2045 "set follow-fork-mode" command; otherwise, we'll just proceed
2046 resuming the current thread. */
2047 if (!follow_fork ())
2048 {
2049 /* The target for some reason decided not to resume. */
2050 normal_stop ();
2051 return;
2052 }
2053
2054 regcache = get_current_regcache ();
2055 gdbarch = get_regcache_arch (regcache);
6c95b8df 2056 aspace = get_regcache_aspace (regcache);
e58b0e63
PA
2057 pc = regcache_read_pc (regcache);
2058
c906108c 2059 if (step > 0)
515630c5 2060 step_start_function = find_pc_function (pc);
c906108c
SS
2061 if (step < 0)
2062 stop_after_trap = 1;
2063
2acceee2 2064 if (addr == (CORE_ADDR) -1)
c906108c 2065 {
6c95b8df 2066 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
b2175913 2067 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2068 /* There is a breakpoint at the address we will resume at,
2069 step one instruction before inserting breakpoints so that
2070 we do not stop right away (and report a second hit at this
b2175913
MS
2071 breakpoint).
2072
2073 Note, we don't do this in reverse, because we won't
2074 actually be executing the breakpoint insn anyway.
2075 We'll be (un-)executing the previous instruction. */
2076
c906108c 2077 oneproc = 1;
515630c5
UW
2078 else if (gdbarch_single_step_through_delay_p (gdbarch)
2079 && gdbarch_single_step_through_delay (gdbarch,
2080 get_current_frame ()))
3352ef37
AC
2081 /* We stepped onto an instruction that needs to be stepped
2082 again before re-inserting the breakpoint, do so. */
c906108c
SS
2083 oneproc = 1;
2084 }
2085 else
2086 {
515630c5 2087 regcache_write_pc (regcache, addr);
c906108c
SS
2088 }
2089
527159b7 2090 if (debug_infrun)
8a9de0e4 2091 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
2092 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2093 paddress (gdbarch, addr), siggnal, step);
527159b7 2094
94cc34af
PA
2095 if (non_stop)
2096 /* In non-stop, each thread is handled individually. The context
2097 must already be set to the right thread here. */
2098 ;
2099 else
2100 {
2101 /* In a multi-threaded task we may select another thread and
2102 then continue or step.
c906108c 2103
94cc34af
PA
2104 But if the old thread was stopped at a breakpoint, it will
2105 immediately cause another breakpoint stop without any
2106 execution (i.e. it will report a breakpoint hit incorrectly).
2107 So we must step over it first.
c906108c 2108
94cc34af
PA
2109 prepare_to_proceed checks the current thread against the
2110 thread that reported the most recent event. If a step-over
2111 is required it returns TRUE and sets the current thread to
1777feb0 2112 the old thread. */
94cc34af
PA
2113 if (prepare_to_proceed (step))
2114 oneproc = 1;
2115 }
c906108c 2116
4e1c45ea
PA
2117 /* prepare_to_proceed may change the current thread. */
2118 tp = inferior_thread ();
2119
30852783
UW
2120 if (oneproc)
2121 {
2122 tp->control.trap_expected = 1;
2123 /* If displaced stepping is enabled, we can step over the
2124 breakpoint without hitting it, so leave all breakpoints
2125 inserted. Otherwise we need to disable all breakpoints, step
2126 one instruction, and then re-add them when that step is
2127 finished. */
2128 if (!use_displaced_stepping (gdbarch))
2129 remove_breakpoints ();
2130 }
2131
2132 /* We can insert breakpoints if we're not trying to step over one,
2133 or if we are stepping over one but we're using displaced stepping
2134 to do so. */
2135 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2136 insert_breakpoints ();
2137
2020b7ab
PA
2138 if (!non_stop)
2139 {
2140 /* Pass the last stop signal to the thread we're resuming,
2141 irrespective of whether the current thread is the thread that
2142 got the last event or not. This was historically GDB's
2143 behaviour before keeping a stop_signal per thread. */
2144
2145 struct thread_info *last_thread;
2146 ptid_t last_ptid;
2147 struct target_waitstatus last_status;
2148
2149 get_last_target_status (&last_ptid, &last_status);
2150 if (!ptid_equal (inferior_ptid, last_ptid)
2151 && !ptid_equal (last_ptid, null_ptid)
2152 && !ptid_equal (last_ptid, minus_one_ptid))
2153 {
e09875d4 2154 last_thread = find_thread_ptid (last_ptid);
2020b7ab
PA
2155 if (last_thread)
2156 {
16c381f0
JK
2157 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2158 last_thread->suspend.stop_signal = TARGET_SIGNAL_0;
2020b7ab
PA
2159 }
2160 }
2161 }
2162
c906108c 2163 if (siggnal != TARGET_SIGNAL_DEFAULT)
16c381f0 2164 tp->suspend.stop_signal = siggnal;
c906108c
SS
2165 /* If this signal should not be seen by program,
2166 give it zero. Used for debugging signals. */
16c381f0
JK
2167 else if (!signal_program[tp->suspend.stop_signal])
2168 tp->suspend.stop_signal = TARGET_SIGNAL_0;
c906108c
SS
2169
2170 annotate_starting ();
2171
2172 /* Make sure that output from GDB appears before output from the
2173 inferior. */
2174 gdb_flush (gdb_stdout);
2175
e4846b08
JJ
2176 /* Refresh prev_pc value just prior to resuming. This used to be
2177 done in stop_stepping, however, setting prev_pc there did not handle
2178 scenarios such as inferior function calls or returning from
2179 a function via the return command. In those cases, the prev_pc
2180 value was not set properly for subsequent commands. The prev_pc value
2181 is used to initialize the starting line number in the ecs. With an
2182 invalid value, the gdb next command ends up stopping at the position
2183 represented by the next line table entry past our start position.
2184 On platforms that generate one line table entry per line, this
2185 is not a problem. However, on the ia64, the compiler generates
2186 extraneous line table entries that do not increase the line number.
2187 When we issue the gdb next command on the ia64 after an inferior call
2188 or a return command, we often end up a few instructions forward, still
2189 within the original line we started.
2190
d5cd6034
JB
2191 An attempt was made to refresh the prev_pc at the same time the
2192 execution_control_state is initialized (for instance, just before
2193 waiting for an inferior event). But this approach did not work
2194 because of platforms that use ptrace, where the pc register cannot
2195 be read unless the inferior is stopped. At that point, we are not
2196 guaranteed the inferior is stopped and so the regcache_read_pc() call
2197 can fail. Setting the prev_pc value here ensures the value is updated
2198 correctly when the inferior is stopped. */
4e1c45ea 2199 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 2200
59f0d5d9 2201 /* Fill in with reasonable starting values. */
4e1c45ea 2202 init_thread_stepping_state (tp);
59f0d5d9 2203
59f0d5d9
PA
2204 /* Reset to normal state. */
2205 init_infwait_state ();
2206
c906108c 2207 /* Resume inferior. */
16c381f0 2208 resume (oneproc || step || bpstat_should_step (), tp->suspend.stop_signal);
c906108c
SS
2209
2210 /* Wait for it to stop (if not standalone)
2211 and in any case decode why it stopped, and act accordingly. */
43ff13b4 2212 /* Do this only if we are not using the event loop, or if the target
1777feb0 2213 does not support asynchronous execution. */
362646f5 2214 if (!target_can_async_p ())
43ff13b4 2215 {
e4c8541f 2216 wait_for_inferior ();
43ff13b4
JM
2217 normal_stop ();
2218 }
c906108c 2219}
c906108c
SS
2220\f
2221
2222/* Start remote-debugging of a machine over a serial link. */
96baa820 2223
c906108c 2224void
8621d6a9 2225start_remote (int from_tty)
c906108c 2226{
d6b48e9c 2227 struct inferior *inferior;
d6b48e9c 2228
abbb1732 2229 init_wait_for_inferior ();
d6b48e9c 2230 inferior = current_inferior ();
16c381f0 2231 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 2232
1777feb0 2233 /* Always go on waiting for the target, regardless of the mode. */
6426a772 2234 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 2235 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
2236 nothing is returned (instead of just blocking). Because of this,
2237 targets expecting an immediate response need to, internally, set
2238 things up so that the target_wait() is forced to eventually
1777feb0 2239 timeout. */
6426a772
JM
2240 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2241 differentiate to its caller what the state of the target is after
2242 the initial open has been performed. Here we're assuming that
2243 the target has stopped. It should be possible to eventually have
2244 target_open() return to the caller an indication that the target
2245 is currently running and GDB state should be set to the same as
1777feb0 2246 for an async run. */
e4c8541f 2247 wait_for_inferior ();
8621d6a9
DJ
2248
2249 /* Now that the inferior has stopped, do any bookkeeping like
2250 loading shared libraries. We want to do this before normal_stop,
2251 so that the displayed frame is up to date. */
2252 post_create_inferior (&current_target, from_tty);
2253
6426a772 2254 normal_stop ();
c906108c
SS
2255}
2256
2257/* Initialize static vars when a new inferior begins. */
2258
2259void
96baa820 2260init_wait_for_inferior (void)
c906108c
SS
2261{
2262 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 2263
c906108c
SS
2264 breakpoint_init_inferior (inf_starting);
2265
c906108c 2266 clear_proceed_status ();
9f976b41
DJ
2267
2268 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 2269 deferred_step_ptid = null_ptid;
ca005067
DJ
2270
2271 target_last_wait_ptid = minus_one_ptid;
237fc4c9 2272
0d1e5fa7
PA
2273 previous_inferior_ptid = null_ptid;
2274 init_infwait_state ();
2275
edb3359d
DJ
2276 /* Discard any skipped inlined frames. */
2277 clear_inline_frame_state (minus_one_ptid);
c906108c 2278}
237fc4c9 2279
c906108c 2280\f
b83266a0
SS
2281/* This enum encodes possible reasons for doing a target_wait, so that
2282 wfi can call target_wait in one place. (Ultimately the call will be
2283 moved out of the infinite loop entirely.) */
2284
c5aa993b
JM
2285enum infwait_states
2286{
cd0fc7c3
SS
2287 infwait_normal_state,
2288 infwait_thread_hop_state,
d983da9c 2289 infwait_step_watch_state,
cd0fc7c3 2290 infwait_nonstep_watch_state
b83266a0
SS
2291};
2292
0d1e5fa7
PA
2293/* The PTID we'll do a target_wait on.*/
2294ptid_t waiton_ptid;
2295
2296/* Current inferior wait state. */
2297enum infwait_states infwait_state;
cd0fc7c3 2298
0d1e5fa7
PA
2299/* Data to be passed around while handling an event. This data is
2300 discarded between events. */
c5aa993b 2301struct execution_control_state
488f131b 2302{
0d1e5fa7 2303 ptid_t ptid;
4e1c45ea
PA
2304 /* The thread that got the event, if this was a thread event; NULL
2305 otherwise. */
2306 struct thread_info *event_thread;
2307
488f131b 2308 struct target_waitstatus ws;
488f131b
JB
2309 int random_signal;
2310 CORE_ADDR stop_func_start;
2311 CORE_ADDR stop_func_end;
2312 char *stop_func_name;
488f131b 2313 int new_thread_event;
488f131b
JB
2314 int wait_some_more;
2315};
2316
ec9499be 2317static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2318
568d6575
UW
2319static void handle_step_into_function (struct gdbarch *gdbarch,
2320 struct execution_control_state *ecs);
2321static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2322 struct execution_control_state *ecs);
186c406b
TT
2323static void check_exception_resume (struct execution_control_state *,
2324 struct frame_info *, struct symbol *);
611c83ae 2325
104c1213
JM
2326static void stop_stepping (struct execution_control_state *ecs);
2327static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2328static void keep_going (struct execution_control_state *ecs);
104c1213 2329
252fbfc8
PA
2330/* Callback for iterate over threads. If the thread is stopped, but
2331 the user/frontend doesn't know about that yet, go through
2332 normal_stop, as if the thread had just stopped now. ARG points at
2333 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2334 ptid_is_pid(PTID) is true, applies to all threads of the process
2335 pointed at by PTID. Otherwise, apply only to the thread pointed by
2336 PTID. */
2337
2338static int
2339infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2340{
2341 ptid_t ptid = * (ptid_t *) arg;
2342
2343 if ((ptid_equal (info->ptid, ptid)
2344 || ptid_equal (minus_one_ptid, ptid)
2345 || (ptid_is_pid (ptid)
2346 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2347 && is_running (info->ptid)
2348 && !is_executing (info->ptid))
2349 {
2350 struct cleanup *old_chain;
2351 struct execution_control_state ecss;
2352 struct execution_control_state *ecs = &ecss;
2353
2354 memset (ecs, 0, sizeof (*ecs));
2355
2356 old_chain = make_cleanup_restore_current_thread ();
2357
2358 switch_to_thread (info->ptid);
2359
2360 /* Go through handle_inferior_event/normal_stop, so we always
2361 have consistent output as if the stop event had been
2362 reported. */
2363 ecs->ptid = info->ptid;
e09875d4 2364 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8
PA
2365 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2366 ecs->ws.value.sig = TARGET_SIGNAL_0;
2367
2368 handle_inferior_event (ecs);
2369
2370 if (!ecs->wait_some_more)
2371 {
2372 struct thread_info *tp;
2373
2374 normal_stop ();
2375
2376 /* Finish off the continuations. The continations
2377 themselves are responsible for realising the thread
2378 didn't finish what it was supposed to do. */
2379 tp = inferior_thread ();
2380 do_all_intermediate_continuations_thread (tp);
2381 do_all_continuations_thread (tp);
2382 }
2383
2384 do_cleanups (old_chain);
2385 }
2386
2387 return 0;
2388}
2389
2390/* This function is attached as a "thread_stop_requested" observer.
2391 Cleanup local state that assumed the PTID was to be resumed, and
2392 report the stop to the frontend. */
2393
2c0b251b 2394static void
252fbfc8
PA
2395infrun_thread_stop_requested (ptid_t ptid)
2396{
fc1cf338 2397 struct displaced_step_inferior_state *displaced;
252fbfc8
PA
2398
2399 /* PTID was requested to stop. Remove it from the displaced
2400 stepping queue, so we don't try to resume it automatically. */
fc1cf338
PA
2401
2402 for (displaced = displaced_step_inferior_states;
2403 displaced;
2404 displaced = displaced->next)
252fbfc8 2405 {
fc1cf338 2406 struct displaced_step_request *it, **prev_next_p;
252fbfc8 2407
fc1cf338
PA
2408 it = displaced->step_request_queue;
2409 prev_next_p = &displaced->step_request_queue;
2410 while (it)
252fbfc8 2411 {
fc1cf338
PA
2412 if (ptid_match (it->ptid, ptid))
2413 {
2414 *prev_next_p = it->next;
2415 it->next = NULL;
2416 xfree (it);
2417 }
252fbfc8 2418 else
fc1cf338
PA
2419 {
2420 prev_next_p = &it->next;
2421 }
252fbfc8 2422
fc1cf338 2423 it = *prev_next_p;
252fbfc8 2424 }
252fbfc8
PA
2425 }
2426
2427 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2428}
2429
a07daef3
PA
2430static void
2431infrun_thread_thread_exit (struct thread_info *tp, int silent)
2432{
2433 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2434 nullify_last_target_wait_ptid ();
2435}
2436
4e1c45ea
PA
2437/* Callback for iterate_over_threads. */
2438
2439static int
2440delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2441{
2442 if (is_exited (info->ptid))
2443 return 0;
2444
2445 delete_step_resume_breakpoint (info);
186c406b 2446 delete_exception_resume_breakpoint (info);
4e1c45ea
PA
2447 return 0;
2448}
2449
2450/* In all-stop, delete the step resume breakpoint of any thread that
2451 had one. In non-stop, delete the step resume breakpoint of the
2452 thread that just stopped. */
2453
2454static void
2455delete_step_thread_step_resume_breakpoint (void)
2456{
2457 if (!target_has_execution
2458 || ptid_equal (inferior_ptid, null_ptid))
2459 /* If the inferior has exited, we have already deleted the step
2460 resume breakpoints out of GDB's lists. */
2461 return;
2462
2463 if (non_stop)
2464 {
2465 /* If in non-stop mode, only delete the step-resume or
2466 longjmp-resume breakpoint of the thread that just stopped
2467 stepping. */
2468 struct thread_info *tp = inferior_thread ();
abbb1732 2469
4e1c45ea 2470 delete_step_resume_breakpoint (tp);
186c406b 2471 delete_exception_resume_breakpoint (tp);
4e1c45ea
PA
2472 }
2473 else
2474 /* In all-stop mode, delete all step-resume and longjmp-resume
2475 breakpoints of any thread that had them. */
2476 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2477}
2478
1777feb0 2479/* A cleanup wrapper. */
4e1c45ea
PA
2480
2481static void
2482delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2483{
2484 delete_step_thread_step_resume_breakpoint ();
2485}
2486
223698f8
DE
2487/* Pretty print the results of target_wait, for debugging purposes. */
2488
2489static void
2490print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2491 const struct target_waitstatus *ws)
2492{
2493 char *status_string = target_waitstatus_to_string (ws);
2494 struct ui_file *tmp_stream = mem_fileopen ();
2495 char *text;
223698f8
DE
2496
2497 /* The text is split over several lines because it was getting too long.
2498 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2499 output as a unit; we want only one timestamp printed if debug_timestamp
2500 is set. */
2501
2502 fprintf_unfiltered (tmp_stream,
2503 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2504 if (PIDGET (waiton_ptid) != -1)
2505 fprintf_unfiltered (tmp_stream,
2506 " [%s]", target_pid_to_str (waiton_ptid));
2507 fprintf_unfiltered (tmp_stream, ", status) =\n");
2508 fprintf_unfiltered (tmp_stream,
2509 "infrun: %d [%s],\n",
2510 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2511 fprintf_unfiltered (tmp_stream,
2512 "infrun: %s\n",
2513 status_string);
2514
759ef836 2515 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
2516
2517 /* This uses %s in part to handle %'s in the text, but also to avoid
2518 a gcc error: the format attribute requires a string literal. */
2519 fprintf_unfiltered (gdb_stdlog, "%s", text);
2520
2521 xfree (status_string);
2522 xfree (text);
2523 ui_file_delete (tmp_stream);
2524}
2525
24291992
PA
2526/* Prepare and stabilize the inferior for detaching it. E.g.,
2527 detaching while a thread is displaced stepping is a recipe for
2528 crashing it, as nothing would readjust the PC out of the scratch
2529 pad. */
2530
2531void
2532prepare_for_detach (void)
2533{
2534 struct inferior *inf = current_inferior ();
2535 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2536 struct cleanup *old_chain_1;
2537 struct displaced_step_inferior_state *displaced;
2538
2539 displaced = get_displaced_stepping_state (inf->pid);
2540
2541 /* Is any thread of this process displaced stepping? If not,
2542 there's nothing else to do. */
2543 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2544 return;
2545
2546 if (debug_infrun)
2547 fprintf_unfiltered (gdb_stdlog,
2548 "displaced-stepping in-process while detaching");
2549
2550 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2551 inf->detaching = 1;
2552
2553 while (!ptid_equal (displaced->step_ptid, null_ptid))
2554 {
2555 struct cleanup *old_chain_2;
2556 struct execution_control_state ecss;
2557 struct execution_control_state *ecs;
2558
2559 ecs = &ecss;
2560 memset (ecs, 0, sizeof (*ecs));
2561
2562 overlay_cache_invalid = 1;
2563
2564 /* We have to invalidate the registers BEFORE calling
2565 target_wait because they can be loaded from the target while
2566 in target_wait. This makes remote debugging a bit more
2567 efficient for those targets that provide critical registers
1777feb0 2568 as part of their normal status mechanism. */
24291992
PA
2569
2570 registers_changed ();
2571
2572 if (deprecated_target_wait_hook)
2573 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2574 else
2575 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2576
2577 if (debug_infrun)
2578 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2579
2580 /* If an error happens while handling the event, propagate GDB's
2581 knowledge of the executing state to the frontend/user running
2582 state. */
3e43a32a
MS
2583 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2584 &minus_one_ptid);
24291992 2585
4d533103
PA
2586 /* In non-stop mode, each thread is handled individually.
2587 Switch early, so the global state is set correctly for this
2588 thread. */
2589 if (non_stop
2590 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2591 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2592 context_switch (ecs->ptid);
2593
24291992
PA
2594 /* Now figure out what to do with the result of the result. */
2595 handle_inferior_event (ecs);
2596
2597 /* No error, don't finish the state yet. */
2598 discard_cleanups (old_chain_2);
2599
2600 /* Breakpoints and watchpoints are not installed on the target
2601 at this point, and signals are passed directly to the
2602 inferior, so this must mean the process is gone. */
2603 if (!ecs->wait_some_more)
2604 {
2605 discard_cleanups (old_chain_1);
2606 error (_("Program exited while detaching"));
2607 }
2608 }
2609
2610 discard_cleanups (old_chain_1);
2611}
2612
cd0fc7c3 2613/* Wait for control to return from inferior to debugger.
ae123ec6 2614
cd0fc7c3
SS
2615 If inferior gets a signal, we may decide to start it up again
2616 instead of returning. That is why there is a loop in this function.
2617 When this function actually returns it means the inferior
2618 should be left stopped and GDB should read more commands. */
2619
2620void
e4c8541f 2621wait_for_inferior (void)
cd0fc7c3
SS
2622{
2623 struct cleanup *old_cleanups;
0d1e5fa7 2624 struct execution_control_state ecss;
cd0fc7c3 2625 struct execution_control_state *ecs;
c906108c 2626
527159b7 2627 if (debug_infrun)
ae123ec6 2628 fprintf_unfiltered
e4c8541f 2629 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 2630
4e1c45ea
PA
2631 old_cleanups =
2632 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 2633
cd0fc7c3 2634 ecs = &ecss;
0d1e5fa7
PA
2635 memset (ecs, 0, sizeof (*ecs));
2636
e0bb1c1c
PA
2637 /* We'll update this if & when we switch to a new thread. */
2638 previous_inferior_ptid = inferior_ptid;
2639
c906108c
SS
2640 while (1)
2641 {
29f49a6a
PA
2642 struct cleanup *old_chain;
2643
ec9499be
UW
2644 /* We have to invalidate the registers BEFORE calling target_wait
2645 because they can be loaded from the target while in target_wait.
2646 This makes remote debugging a bit more efficient for those
2647 targets that provide critical registers as part of their normal
1777feb0 2648 status mechanism. */
ec9499be
UW
2649
2650 overlay_cache_invalid = 1;
2651 registers_changed ();
2652
9a4105ab 2653 if (deprecated_target_wait_hook)
47608cb1 2654 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 2655 else
47608cb1 2656 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 2657
f00150c9 2658 if (debug_infrun)
223698f8 2659 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2660
29f49a6a
PA
2661 /* If an error happens while handling the event, propagate GDB's
2662 knowledge of the executing state to the frontend/user running
2663 state. */
2664 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2665
a96d9b2e
SDJ
2666 if (ecs->ws.kind == TARGET_WAITKIND_SYSCALL_ENTRY
2667 || ecs->ws.kind == TARGET_WAITKIND_SYSCALL_RETURN)
2668 ecs->ws.value.syscall_number = UNKNOWN_SYSCALL;
2669
cd0fc7c3
SS
2670 /* Now figure out what to do with the result of the result. */
2671 handle_inferior_event (ecs);
c906108c 2672
29f49a6a
PA
2673 /* No error, don't finish the state yet. */
2674 discard_cleanups (old_chain);
2675
cd0fc7c3
SS
2676 if (!ecs->wait_some_more)
2677 break;
2678 }
4e1c45ea 2679
cd0fc7c3
SS
2680 do_cleanups (old_cleanups);
2681}
c906108c 2682
1777feb0 2683/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 2684 event loop whenever a change of state is detected on the file
1777feb0
MS
2685 descriptor corresponding to the target. It can be called more than
2686 once to complete a single execution command. In such cases we need
2687 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
2688 that this function is called for a single execution command, then
2689 report to the user that the inferior has stopped, and do the
1777feb0 2690 necessary cleanups. */
43ff13b4
JM
2691
2692void
fba45db2 2693fetch_inferior_event (void *client_data)
43ff13b4 2694{
0d1e5fa7 2695 struct execution_control_state ecss;
a474d7c2 2696 struct execution_control_state *ecs = &ecss;
4f8d22e3 2697 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2698 struct cleanup *ts_old_chain;
4f8d22e3 2699 int was_sync = sync_execution;
43ff13b4 2700
0d1e5fa7
PA
2701 memset (ecs, 0, sizeof (*ecs));
2702
ec9499be
UW
2703 /* We'll update this if & when we switch to a new thread. */
2704 previous_inferior_ptid = inferior_ptid;
e0bb1c1c 2705
c5187ac6
PA
2706 /* We're handling a live event, so make sure we're doing live
2707 debugging. If we're looking at traceframes while the target is
2708 running, we're going to need to get back to that mode after
2709 handling the event. */
2710 if (non_stop)
2711 {
2712 make_cleanup_restore_current_traceframe ();
e6e4e701 2713 set_current_traceframe (-1);
c5187ac6
PA
2714 }
2715
4f8d22e3
PA
2716 if (non_stop)
2717 /* In non-stop mode, the user/frontend should not notice a thread
2718 switch due to internal events. Make sure we reverse to the
2719 user selected thread and frame after handling the event and
2720 running any breakpoint commands. */
2721 make_cleanup_restore_current_thread ();
2722
59f0d5d9
PA
2723 /* We have to invalidate the registers BEFORE calling target_wait
2724 because they can be loaded from the target while in target_wait.
2725 This makes remote debugging a bit more efficient for those
2726 targets that provide critical registers as part of their normal
1777feb0 2727 status mechanism. */
43ff13b4 2728
ec9499be 2729 overlay_cache_invalid = 1;
59f0d5d9 2730 registers_changed ();
43ff13b4 2731
9a4105ab 2732 if (deprecated_target_wait_hook)
a474d7c2 2733 ecs->ptid =
47608cb1 2734 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2735 else
47608cb1 2736 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2737
f00150c9 2738 if (debug_infrun)
223698f8 2739 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2740
94cc34af
PA
2741 if (non_stop
2742 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2743 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2744 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2745 /* In non-stop mode, each thread is handled individually. Switch
2746 early, so the global state is set correctly for this
2747 thread. */
2748 context_switch (ecs->ptid);
2749
29f49a6a
PA
2750 /* If an error happens while handling the event, propagate GDB's
2751 knowledge of the executing state to the frontend/user running
2752 state. */
2753 if (!non_stop)
2754 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2755 else
2756 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2757
43ff13b4 2758 /* Now figure out what to do with the result of the result. */
a474d7c2 2759 handle_inferior_event (ecs);
43ff13b4 2760
a474d7c2 2761 if (!ecs->wait_some_more)
43ff13b4 2762 {
d6b48e9c
PA
2763 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2764
4e1c45ea 2765 delete_step_thread_step_resume_breakpoint ();
f107f563 2766
d6b48e9c 2767 /* We may not find an inferior if this was a process exit. */
16c381f0 2768 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2769 normal_stop ();
2770
af679fd0
PA
2771 if (target_has_execution
2772 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2773 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2774 && ecs->event_thread->step_multi
16c381f0 2775 && ecs->event_thread->control.stop_step)
c2d11a7d
JM
2776 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2777 else
2778 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4 2779 }
4f8d22e3 2780
29f49a6a
PA
2781 /* No error, don't finish the thread states yet. */
2782 discard_cleanups (ts_old_chain);
2783
4f8d22e3
PA
2784 /* Revert thread and frame. */
2785 do_cleanups (old_chain);
2786
2787 /* If the inferior was in sync execution mode, and now isn't,
2788 restore the prompt. */
2789 if (was_sync && !sync_execution)
2790 display_gdb_prompt (0);
43ff13b4
JM
2791}
2792
edb3359d
DJ
2793/* Record the frame and location we're currently stepping through. */
2794void
2795set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2796{
2797 struct thread_info *tp = inferior_thread ();
2798
16c381f0
JK
2799 tp->control.step_frame_id = get_frame_id (frame);
2800 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
2801
2802 tp->current_symtab = sal.symtab;
2803 tp->current_line = sal.line;
2804}
2805
0d1e5fa7
PA
2806/* Clear context switchable stepping state. */
2807
2808void
4e1c45ea 2809init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7
PA
2810{
2811 tss->stepping_over_breakpoint = 0;
2812 tss->step_after_step_resume_breakpoint = 0;
2813 tss->stepping_through_solib_after_catch = 0;
2814 tss->stepping_through_solib_catchpoints = NULL;
cd0fc7c3
SS
2815}
2816
e02bc4cc 2817/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2818 target_wait()/deprecated_target_wait_hook(). The data is actually
2819 cached by handle_inferior_event(), which gets called immediately
2820 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2821
2822void
488f131b 2823get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2824{
39f77062 2825 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2826 *status = target_last_waitstatus;
2827}
2828
ac264b3b
MS
2829void
2830nullify_last_target_wait_ptid (void)
2831{
2832 target_last_wait_ptid = minus_one_ptid;
2833}
2834
dcf4fbde 2835/* Switch thread contexts. */
dd80620e
MS
2836
2837static void
0d1e5fa7 2838context_switch (ptid_t ptid)
dd80620e 2839{
fd48f117
DJ
2840 if (debug_infrun)
2841 {
2842 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2843 target_pid_to_str (inferior_ptid));
2844 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2845 target_pid_to_str (ptid));
fd48f117
DJ
2846 }
2847
0d1e5fa7 2848 switch_to_thread (ptid);
dd80620e
MS
2849}
2850
4fa8626c
DJ
2851static void
2852adjust_pc_after_break (struct execution_control_state *ecs)
2853{
24a73cce
UW
2854 struct regcache *regcache;
2855 struct gdbarch *gdbarch;
6c95b8df 2856 struct address_space *aspace;
8aad930b 2857 CORE_ADDR breakpoint_pc;
4fa8626c 2858
4fa8626c
DJ
2859 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2860 we aren't, just return.
9709f61c
DJ
2861
2862 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2863 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2864 implemented by software breakpoints should be handled through the normal
2865 breakpoint layer.
8fb3e588 2866
4fa8626c
DJ
2867 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2868 different signals (SIGILL or SIGEMT for instance), but it is less
2869 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2870 gdbarch_decr_pc_after_break. I don't know any specific target that
2871 generates these signals at breakpoints (the code has been in GDB since at
2872 least 1992) so I can not guess how to handle them here.
8fb3e588 2873
e6cf7916
UW
2874 In earlier versions of GDB, a target with
2875 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2876 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2877 target with both of these set in GDB history, and it seems unlikely to be
2878 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2879
2880 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2881 return;
2882
2883 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2884 return;
2885
4058b839
PA
2886 /* In reverse execution, when a breakpoint is hit, the instruction
2887 under it has already been de-executed. The reported PC always
2888 points at the breakpoint address, so adjusting it further would
2889 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2890 architecture:
2891
2892 B1 0x08000000 : INSN1
2893 B2 0x08000001 : INSN2
2894 0x08000002 : INSN3
2895 PC -> 0x08000003 : INSN4
2896
2897 Say you're stopped at 0x08000003 as above. Reverse continuing
2898 from that point should hit B2 as below. Reading the PC when the
2899 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2900 been de-executed already.
2901
2902 B1 0x08000000 : INSN1
2903 B2 PC -> 0x08000001 : INSN2
2904 0x08000002 : INSN3
2905 0x08000003 : INSN4
2906
2907 We can't apply the same logic as for forward execution, because
2908 we would wrongly adjust the PC to 0x08000000, since there's a
2909 breakpoint at PC - 1. We'd then report a hit on B1, although
2910 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2911 behaviour. */
2912 if (execution_direction == EXEC_REVERSE)
2913 return;
2914
24a73cce
UW
2915 /* If this target does not decrement the PC after breakpoints, then
2916 we have nothing to do. */
2917 regcache = get_thread_regcache (ecs->ptid);
2918 gdbarch = get_regcache_arch (regcache);
2919 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2920 return;
2921
6c95b8df
PA
2922 aspace = get_regcache_aspace (regcache);
2923
8aad930b
AC
2924 /* Find the location where (if we've hit a breakpoint) the
2925 breakpoint would be. */
515630c5
UW
2926 breakpoint_pc = regcache_read_pc (regcache)
2927 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 2928
1c5cfe86
PA
2929 /* Check whether there actually is a software breakpoint inserted at
2930 that location.
2931
2932 If in non-stop mode, a race condition is possible where we've
2933 removed a breakpoint, but stop events for that breakpoint were
2934 already queued and arrive later. To suppress those spurious
2935 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2936 and retire them after a number of stop events are reported. */
6c95b8df
PA
2937 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2938 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 2939 {
96429cc8 2940 struct cleanup *old_cleanups = NULL;
abbb1732 2941
96429cc8
HZ
2942 if (RECORD_IS_USED)
2943 old_cleanups = record_gdb_operation_disable_set ();
2944
1c0fdd0e
UW
2945 /* When using hardware single-step, a SIGTRAP is reported for both
2946 a completed single-step and a software breakpoint. Need to
2947 differentiate between the two, as the latter needs adjusting
2948 but the former does not.
2949
2950 The SIGTRAP can be due to a completed hardware single-step only if
2951 - we didn't insert software single-step breakpoints
2952 - the thread to be examined is still the current thread
2953 - this thread is currently being stepped
2954
2955 If any of these events did not occur, we must have stopped due
2956 to hitting a software breakpoint, and have to back up to the
2957 breakpoint address.
2958
2959 As a special case, we could have hardware single-stepped a
2960 software breakpoint. In this case (prev_pc == breakpoint_pc),
2961 we also need to back up to the breakpoint address. */
2962
2963 if (singlestep_breakpoints_inserted_p
2964 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
2965 || !currently_stepping (ecs->event_thread)
2966 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 2967 regcache_write_pc (regcache, breakpoint_pc);
96429cc8
HZ
2968
2969 if (RECORD_IS_USED)
2970 do_cleanups (old_cleanups);
8aad930b 2971 }
4fa8626c
DJ
2972}
2973
0d1e5fa7
PA
2974void
2975init_infwait_state (void)
2976{
2977 waiton_ptid = pid_to_ptid (-1);
2978 infwait_state = infwait_normal_state;
2979}
2980
94cc34af
PA
2981void
2982error_is_running (void)
2983{
3e43a32a
MS
2984 error (_("Cannot execute this command while "
2985 "the selected thread is running."));
94cc34af
PA
2986}
2987
2988void
2989ensure_not_running (void)
2990{
2991 if (is_running (inferior_ptid))
2992 error_is_running ();
2993}
2994
edb3359d
DJ
2995static int
2996stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
2997{
2998 for (frame = get_prev_frame (frame);
2999 frame != NULL;
3000 frame = get_prev_frame (frame))
3001 {
3002 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3003 return 1;
3004 if (get_frame_type (frame) != INLINE_FRAME)
3005 break;
3006 }
3007
3008 return 0;
3009}
3010
a96d9b2e
SDJ
3011/* Auxiliary function that handles syscall entry/return events.
3012 It returns 1 if the inferior should keep going (and GDB
3013 should ignore the event), or 0 if the event deserves to be
3014 processed. */
ca2163eb 3015
a96d9b2e 3016static int
ca2163eb 3017handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 3018{
ca2163eb
PA
3019 struct regcache *regcache;
3020 struct gdbarch *gdbarch;
3021 int syscall_number;
3022
3023 if (!ptid_equal (ecs->ptid, inferior_ptid))
3024 context_switch (ecs->ptid);
3025
3026 regcache = get_thread_regcache (ecs->ptid);
3027 gdbarch = get_regcache_arch (regcache);
3028 syscall_number = gdbarch_get_syscall_number (gdbarch, ecs->ptid);
3029 stop_pc = regcache_read_pc (regcache);
3030
a96d9b2e
SDJ
3031 target_last_waitstatus.value.syscall_number = syscall_number;
3032
3033 if (catch_syscall_enabled () > 0
3034 && catching_syscall_number (syscall_number) > 0)
3035 {
3036 if (debug_infrun)
3037 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3038 syscall_number);
a96d9b2e 3039
16c381f0 3040 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
3041 = bpstat_stop_status (get_regcache_aspace (regcache),
3042 stop_pc, ecs->ptid);
16c381f0
JK
3043 ecs->random_signal
3044 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
a96d9b2e 3045
ca2163eb
PA
3046 if (!ecs->random_signal)
3047 {
3048 /* Catchpoint hit. */
16c381f0 3049 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
ca2163eb
PA
3050 return 0;
3051 }
a96d9b2e 3052 }
ca2163eb
PA
3053
3054 /* If no catchpoint triggered for this, then keep going. */
16c381f0 3055 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
ca2163eb
PA
3056 keep_going (ecs);
3057 return 1;
a96d9b2e
SDJ
3058}
3059
cd0fc7c3
SS
3060/* Given an execution control state that has been freshly filled in
3061 by an event from the inferior, figure out what it means and take
3062 appropriate action. */
c906108c 3063
ec9499be 3064static void
96baa820 3065handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 3066{
568d6575
UW
3067 struct frame_info *frame;
3068 struct gdbarch *gdbarch;
c8edd8b4 3069 int sw_single_step_trap_p = 0;
d983da9c
DJ
3070 int stopped_by_watchpoint;
3071 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 3072 struct symtab_and_line stop_pc_sal;
d6b48e9c
PA
3073 enum stop_kind stop_soon;
3074
28736962
PA
3075 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3076 {
3077 /* We had an event in the inferior, but we are not interested in
3078 handling it at this level. The lower layers have already
3079 done what needs to be done, if anything.
3080
3081 One of the possible circumstances for this is when the
3082 inferior produces output for the console. The inferior has
3083 not stopped, and we are ignoring the event. Another possible
3084 circumstance is any event which the lower level knows will be
3085 reported multiple times without an intervening resume. */
3086 if (debug_infrun)
3087 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3088 prepare_to_wait (ecs);
3089 return;
3090 }
3091
d6b48e9c 3092 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
28736962 3093 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
d6b48e9c
PA
3094 {
3095 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
abbb1732 3096
d6b48e9c 3097 gdb_assert (inf);
16c381f0 3098 stop_soon = inf->control.stop_soon;
d6b48e9c
PA
3099 }
3100 else
3101 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 3102
1777feb0 3103 /* Cache the last pid/waitstatus. */
39f77062 3104 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 3105 target_last_waitstatus = ecs->ws;
e02bc4cc 3106
ca005067 3107 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 3108 stop_stack_dummy = STOP_NONE;
ca005067 3109
1777feb0 3110 /* If it's a new process, add it to the thread database. */
8c90c137
LM
3111
3112 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
3113 && !ptid_equal (ecs->ptid, minus_one_ptid)
3114 && !in_thread_list (ecs->ptid));
3115
3116 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3117 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
3118 add_thread (ecs->ptid);
3119
e09875d4 3120 ecs->event_thread = find_thread_ptid (ecs->ptid);
88ed393a
JK
3121
3122 /* Dependent on valid ECS->EVENT_THREAD. */
3123 adjust_pc_after_break (ecs);
3124
3125 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3126 reinit_frame_cache ();
3127
28736962
PA
3128 breakpoint_retire_moribund ();
3129
2b009048
DJ
3130 /* First, distinguish signals caused by the debugger from signals
3131 that have to do with the program's own actions. Note that
3132 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3133 on the operating system version. Here we detect when a SIGILL or
3134 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3135 something similar for SIGSEGV, since a SIGSEGV will be generated
3136 when we're trying to execute a breakpoint instruction on a
3137 non-executable stack. This happens for call dummy breakpoints
3138 for architectures like SPARC that place call dummies on the
3139 stack. */
2b009048
DJ
3140 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3141 && (ecs->ws.value.sig == TARGET_SIGNAL_ILL
3142 || ecs->ws.value.sig == TARGET_SIGNAL_SEGV
de0a0249 3143 || ecs->ws.value.sig == TARGET_SIGNAL_EMT))
2b009048 3144 {
de0a0249
UW
3145 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3146
3147 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3148 regcache_read_pc (regcache)))
3149 {
3150 if (debug_infrun)
3151 fprintf_unfiltered (gdb_stdlog,
3152 "infrun: Treating signal as SIGTRAP\n");
3153 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
3154 }
2b009048
DJ
3155 }
3156
28736962
PA
3157 /* Mark the non-executing threads accordingly. In all-stop, all
3158 threads of all processes are stopped when we get any event
3159 reported. In non-stop mode, only the event thread stops. If
3160 we're handling a process exit in non-stop mode, there's nothing
3161 to do, as threads of the dead process are gone, and threads of
3162 any other process were left running. */
3163 if (!non_stop)
3164 set_executing (minus_one_ptid, 0);
3165 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3166 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3167 set_executing (inferior_ptid, 0);
8c90c137 3168
0d1e5fa7 3169 switch (infwait_state)
488f131b
JB
3170 {
3171 case infwait_thread_hop_state:
527159b7 3172 if (debug_infrun)
8a9de0e4 3173 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
65e82032 3174 break;
b83266a0 3175
488f131b 3176 case infwait_normal_state:
527159b7 3177 if (debug_infrun)
8a9de0e4 3178 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
3179 break;
3180
3181 case infwait_step_watch_state:
3182 if (debug_infrun)
3183 fprintf_unfiltered (gdb_stdlog,
3184 "infrun: infwait_step_watch_state\n");
3185
3186 stepped_after_stopped_by_watchpoint = 1;
488f131b 3187 break;
b83266a0 3188
488f131b 3189 case infwait_nonstep_watch_state:
527159b7 3190 if (debug_infrun)
8a9de0e4
AC
3191 fprintf_unfiltered (gdb_stdlog,
3192 "infrun: infwait_nonstep_watch_state\n");
488f131b 3193 insert_breakpoints ();
c906108c 3194
488f131b
JB
3195 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3196 handle things like signals arriving and other things happening
3197 in combination correctly? */
3198 stepped_after_stopped_by_watchpoint = 1;
3199 break;
65e82032
AC
3200
3201 default:
e2e0b3e5 3202 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 3203 }
ec9499be 3204
0d1e5fa7 3205 infwait_state = infwait_normal_state;
ec9499be 3206 waiton_ptid = pid_to_ptid (-1);
c906108c 3207
488f131b
JB
3208 switch (ecs->ws.kind)
3209 {
3210 case TARGET_WAITKIND_LOADED:
527159b7 3211 if (debug_infrun)
8a9de0e4 3212 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
3213 /* Ignore gracefully during startup of the inferior, as it might
3214 be the shell which has just loaded some objects, otherwise
3215 add the symbols for the newly loaded objects. Also ignore at
3216 the beginning of an attach or remote session; we will query
3217 the full list of libraries once the connection is
3218 established. */
c0236d92 3219 if (stop_soon == NO_STOP_QUIETLY)
488f131b 3220 {
488f131b
JB
3221 /* Check for any newly added shared libraries if we're
3222 supposed to be adding them automatically. Switch
3223 terminal for any messages produced by
3224 breakpoint_re_set. */
3225 target_terminal_ours_for_output ();
aff6338a 3226 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
3227 stack's section table is kept up-to-date. Architectures,
3228 (e.g., PPC64), use the section table to perform
3229 operations such as address => section name and hence
3230 require the table to contain all sections (including
3231 those found in shared libraries). */
b0f4b84b 3232#ifdef SOLIB_ADD
aff6338a 3233 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
b0f4b84b
DJ
3234#else
3235 solib_add (NULL, 0, &current_target, auto_solib_add);
3236#endif
488f131b
JB
3237 target_terminal_inferior ();
3238
b0f4b84b
DJ
3239 /* If requested, stop when the dynamic linker notifies
3240 gdb of events. This allows the user to get control
3241 and place breakpoints in initializer routines for
3242 dynamically loaded objects (among other things). */
3243 if (stop_on_solib_events)
3244 {
55409f9d
DJ
3245 /* Make sure we print "Stopped due to solib-event" in
3246 normal_stop. */
3247 stop_print_frame = 1;
3248
b0f4b84b
DJ
3249 stop_stepping (ecs);
3250 return;
3251 }
3252
3253 /* NOTE drow/2007-05-11: This might be a good place to check
3254 for "catch load". */
488f131b 3255 }
b0f4b84b
DJ
3256
3257 /* If we are skipping through a shell, or through shared library
3258 loading that we aren't interested in, resume the program. If
3259 we're running the program normally, also resume. But stop if
3260 we're attaching or setting up a remote connection. */
3261 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3262 {
74960c60
VP
3263 /* Loading of shared libraries might have changed breakpoint
3264 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
3265 if (stop_soon == NO_STOP_QUIETLY
3266 && !breakpoints_always_inserted_mode ())
74960c60 3267 insert_breakpoints ();
b0f4b84b
DJ
3268 resume (0, TARGET_SIGNAL_0);
3269 prepare_to_wait (ecs);
3270 return;
3271 }
3272
3273 break;
c5aa993b 3274
488f131b 3275 case TARGET_WAITKIND_SPURIOUS:
527159b7 3276 if (debug_infrun)
8a9de0e4 3277 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
3278 resume (0, TARGET_SIGNAL_0);
3279 prepare_to_wait (ecs);
3280 return;
c5aa993b 3281
488f131b 3282 case TARGET_WAITKIND_EXITED:
527159b7 3283 if (debug_infrun)
8a9de0e4 3284 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
fb66883a 3285 inferior_ptid = ecs->ptid;
6c95b8df
PA
3286 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3287 set_current_program_space (current_inferior ()->pspace);
3288 handle_vfork_child_exec_or_exit (0);
1777feb0 3289 target_terminal_ours (); /* Must do this before mourn anyway. */
33d62d64 3290 print_exited_reason (ecs->ws.value.integer);
488f131b
JB
3291
3292 /* Record the exit code in the convenience variable $_exitcode, so
3293 that the user can inspect this again later. */
4fa62494
UW
3294 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3295 (LONGEST) ecs->ws.value.integer);
488f131b
JB
3296 gdb_flush (gdb_stdout);
3297 target_mourn_inferior ();
1c0fdd0e 3298 singlestep_breakpoints_inserted_p = 0;
d03285ec 3299 cancel_single_step_breakpoints ();
488f131b
JB
3300 stop_print_frame = 0;
3301 stop_stepping (ecs);
3302 return;
c5aa993b 3303
488f131b 3304 case TARGET_WAITKIND_SIGNALLED:
527159b7 3305 if (debug_infrun)
8a9de0e4 3306 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
fb66883a 3307 inferior_ptid = ecs->ptid;
6c95b8df
PA
3308 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3309 set_current_program_space (current_inferior ()->pspace);
3310 handle_vfork_child_exec_or_exit (0);
488f131b 3311 stop_print_frame = 0;
1777feb0 3312 target_terminal_ours (); /* Must do this before mourn anyway. */
c5aa993b 3313
488f131b
JB
3314 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
3315 reach here unless the inferior is dead. However, for years
3316 target_kill() was called here, which hints that fatal signals aren't
3317 really fatal on some systems. If that's true, then some changes
1777feb0 3318 may be needed. */
488f131b 3319 target_mourn_inferior ();
c906108c 3320
33d62d64 3321 print_signal_exited_reason (ecs->ws.value.sig);
1c0fdd0e 3322 singlestep_breakpoints_inserted_p = 0;
d03285ec 3323 cancel_single_step_breakpoints ();
488f131b
JB
3324 stop_stepping (ecs);
3325 return;
c906108c 3326
488f131b 3327 /* The following are the only cases in which we keep going;
1777feb0 3328 the above cases end in a continue or goto. */
488f131b 3329 case TARGET_WAITKIND_FORKED:
deb3b17b 3330 case TARGET_WAITKIND_VFORKED:
527159b7 3331 if (debug_infrun)
8a9de0e4 3332 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
c906108c 3333
5a2901d9
DJ
3334 if (!ptid_equal (ecs->ptid, inferior_ptid))
3335 {
0d1e5fa7 3336 context_switch (ecs->ptid);
35f196d9 3337 reinit_frame_cache ();
5a2901d9
DJ
3338 }
3339
b242c3c2
PA
3340 /* Immediately detach breakpoints from the child before there's
3341 any chance of letting the user delete breakpoints from the
3342 breakpoint lists. If we don't do this early, it's easy to
3343 leave left over traps in the child, vis: "break foo; catch
3344 fork; c; <fork>; del; c; <child calls foo>". We only follow
3345 the fork on the last `continue', and by that time the
3346 breakpoint at "foo" is long gone from the breakpoint table.
3347 If we vforked, then we don't need to unpatch here, since both
3348 parent and child are sharing the same memory pages; we'll
3349 need to unpatch at follow/detach time instead to be certain
3350 that new breakpoints added between catchpoint hit time and
3351 vfork follow are detached. */
3352 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3353 {
3354 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
3355
3356 /* This won't actually modify the breakpoint list, but will
3357 physically remove the breakpoints from the child. */
3358 detach_breakpoints (child_pid);
3359 }
3360
d03285ec
UW
3361 if (singlestep_breakpoints_inserted_p)
3362 {
1777feb0 3363 /* Pull the single step breakpoints out of the target. */
d03285ec
UW
3364 remove_single_step_breakpoints ();
3365 singlestep_breakpoints_inserted_p = 0;
3366 }
3367
e58b0e63
PA
3368 /* In case the event is caught by a catchpoint, remember that
3369 the event is to be followed at the next resume of the thread,
3370 and not immediately. */
3371 ecs->event_thread->pending_follow = ecs->ws;
3372
fb14de7b 3373 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 3374
16c381f0 3375 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
3376 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3377 stop_pc, ecs->ptid);
675bf4cb 3378
67822962
PA
3379 /* Note that we're interested in knowing the bpstat actually
3380 causes a stop, not just if it may explain the signal.
3381 Software watchpoints, for example, always appear in the
3382 bpstat. */
16c381f0
JK
3383 ecs->random_signal
3384 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
04e68871
DJ
3385
3386 /* If no catchpoint triggered for this, then keep going. */
3387 if (ecs->random_signal)
3388 {
6c95b8df
PA
3389 ptid_t parent;
3390 ptid_t child;
e58b0e63 3391 int should_resume;
3e43a32a
MS
3392 int follow_child
3393 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 3394
16c381f0 3395 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
e58b0e63
PA
3396
3397 should_resume = follow_fork ();
3398
6c95b8df
PA
3399 parent = ecs->ptid;
3400 child = ecs->ws.value.related_pid;
3401
3402 /* In non-stop mode, also resume the other branch. */
3403 if (non_stop && !detach_fork)
3404 {
3405 if (follow_child)
3406 switch_to_thread (parent);
3407 else
3408 switch_to_thread (child);
3409
3410 ecs->event_thread = inferior_thread ();
3411 ecs->ptid = inferior_ptid;
3412 keep_going (ecs);
3413 }
3414
3415 if (follow_child)
3416 switch_to_thread (child);
3417 else
3418 switch_to_thread (parent);
3419
e58b0e63
PA
3420 ecs->event_thread = inferior_thread ();
3421 ecs->ptid = inferior_ptid;
3422
3423 if (should_resume)
3424 keep_going (ecs);
3425 else
3426 stop_stepping (ecs);
04e68871
DJ
3427 return;
3428 }
16c381f0 3429 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3430 goto process_event_stop_test;
3431
6c95b8df
PA
3432 case TARGET_WAITKIND_VFORK_DONE:
3433 /* Done with the shared memory region. Re-insert breakpoints in
3434 the parent, and keep going. */
3435
3436 if (debug_infrun)
3e43a32a
MS
3437 fprintf_unfiltered (gdb_stdlog,
3438 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
3439
3440 if (!ptid_equal (ecs->ptid, inferior_ptid))
3441 context_switch (ecs->ptid);
3442
3443 current_inferior ()->waiting_for_vfork_done = 0;
56710373 3444 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
3445 /* This also takes care of reinserting breakpoints in the
3446 previously locked inferior. */
3447 keep_going (ecs);
3448 return;
3449
488f131b 3450 case TARGET_WAITKIND_EXECD:
527159b7 3451 if (debug_infrun)
fc5261f2 3452 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 3453
5a2901d9
DJ
3454 if (!ptid_equal (ecs->ptid, inferior_ptid))
3455 {
0d1e5fa7 3456 context_switch (ecs->ptid);
35f196d9 3457 reinit_frame_cache ();
5a2901d9
DJ
3458 }
3459
d03285ec
UW
3460 singlestep_breakpoints_inserted_p = 0;
3461 cancel_single_step_breakpoints ();
3462
fb14de7b 3463 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 3464
6c95b8df
PA
3465 /* Do whatever is necessary to the parent branch of the vfork. */
3466 handle_vfork_child_exec_or_exit (1);
3467
795e548f
PA
3468 /* This causes the eventpoints and symbol table to be reset.
3469 Must do this now, before trying to determine whether to
3470 stop. */
71b43ef8 3471 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 3472
16c381f0 3473 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
3474 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3475 stop_pc, ecs->ptid);
16c381f0
JK
3476 ecs->random_signal
3477 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
795e548f 3478
71b43ef8
PA
3479 /* Note that this may be referenced from inside
3480 bpstat_stop_status above, through inferior_has_execd. */
3481 xfree (ecs->ws.value.execd_pathname);
3482 ecs->ws.value.execd_pathname = NULL;
3483
04e68871
DJ
3484 /* If no catchpoint triggered for this, then keep going. */
3485 if (ecs->random_signal)
3486 {
16c381f0 3487 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
04e68871
DJ
3488 keep_going (ecs);
3489 return;
3490 }
16c381f0 3491 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3492 goto process_event_stop_test;
3493
b4dc5ffa
MK
3494 /* Be careful not to try to gather much state about a thread
3495 that's in a syscall. It's frequently a losing proposition. */
488f131b 3496 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 3497 if (debug_infrun)
3e43a32a
MS
3498 fprintf_unfiltered (gdb_stdlog,
3499 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 3500 /* Getting the current syscall number. */
ca2163eb 3501 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3502 return;
3503 goto process_event_stop_test;
c906108c 3504
488f131b
JB
3505 /* Before examining the threads further, step this thread to
3506 get it entirely out of the syscall. (We get notice of the
3507 event when the thread is just on the verge of exiting a
3508 syscall. Stepping one instruction seems to get it back
b4dc5ffa 3509 into user code.) */
488f131b 3510 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 3511 if (debug_infrun)
3e43a32a
MS
3512 fprintf_unfiltered (gdb_stdlog,
3513 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
ca2163eb 3514 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3515 return;
3516 goto process_event_stop_test;
c906108c 3517
488f131b 3518 case TARGET_WAITKIND_STOPPED:
527159b7 3519 if (debug_infrun)
8a9de0e4 3520 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 3521 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
488f131b 3522 break;
c906108c 3523
b2175913
MS
3524 case TARGET_WAITKIND_NO_HISTORY:
3525 /* Reverse execution: target ran out of history info. */
fb14de7b 3526 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
33d62d64 3527 print_no_history_reason ();
b2175913
MS
3528 stop_stepping (ecs);
3529 return;
488f131b 3530 }
c906108c 3531
488f131b
JB
3532 if (ecs->new_thread_event)
3533 {
94cc34af
PA
3534 if (non_stop)
3535 /* Non-stop assumes that the target handles adding new threads
3536 to the thread list. */
3e43a32a
MS
3537 internal_error (__FILE__, __LINE__,
3538 "targets should add new threads to the thread "
3539 "list themselves in non-stop mode.");
94cc34af
PA
3540
3541 /* We may want to consider not doing a resume here in order to
3542 give the user a chance to play with the new thread. It might
3543 be good to make that a user-settable option. */
3544
3545 /* At this point, all threads are stopped (happens automatically
3546 in either the OS or the native code). Therefore we need to
3547 continue all threads in order to make progress. */
3548
173853dc
PA
3549 if (!ptid_equal (ecs->ptid, inferior_ptid))
3550 context_switch (ecs->ptid);
488f131b
JB
3551 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
3552 prepare_to_wait (ecs);
3553 return;
3554 }
c906108c 3555
2020b7ab 3556 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
3557 {
3558 /* Do we need to clean up the state of a thread that has
3559 completed a displaced single-step? (Doing so usually affects
3560 the PC, so do it here, before we set stop_pc.) */
16c381f0
JK
3561 displaced_step_fixup (ecs->ptid,
3562 ecs->event_thread->suspend.stop_signal);
252fbfc8
PA
3563
3564 /* If we either finished a single-step or hit a breakpoint, but
3565 the user wanted this thread to be stopped, pretend we got a
3566 SIG0 (generic unsignaled stop). */
3567
3568 if (ecs->event_thread->stop_requested
16c381f0
JK
3569 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3570 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
252fbfc8 3571 }
237fc4c9 3572
515630c5 3573 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 3574
527159b7 3575 if (debug_infrun)
237fc4c9 3576 {
5af949e3
UW
3577 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3578 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
3579 struct cleanup *old_chain = save_inferior_ptid ();
3580
3581 inferior_ptid = ecs->ptid;
5af949e3
UW
3582
3583 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3584 paddress (gdbarch, stop_pc));
d92524f1 3585 if (target_stopped_by_watchpoint ())
237fc4c9
PA
3586 {
3587 CORE_ADDR addr;
abbb1732 3588
237fc4c9
PA
3589 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3590
3591 if (target_stopped_data_address (&current_target, &addr))
3592 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
3593 "infrun: stopped data address = %s\n",
3594 paddress (gdbarch, addr));
237fc4c9
PA
3595 else
3596 fprintf_unfiltered (gdb_stdlog,
3597 "infrun: (no data address available)\n");
3598 }
7f82dfc7
JK
3599
3600 do_cleanups (old_chain);
237fc4c9 3601 }
527159b7 3602
9f976b41
DJ
3603 if (stepping_past_singlestep_breakpoint)
3604 {
1c0fdd0e 3605 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
3606 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3607 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3608
3609 stepping_past_singlestep_breakpoint = 0;
3610
3611 /* We've either finished single-stepping past the single-step
8fb3e588
AC
3612 breakpoint, or stopped for some other reason. It would be nice if
3613 we could tell, but we can't reliably. */
16c381f0 3614 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 3615 {
527159b7 3616 if (debug_infrun)
3e43a32a
MS
3617 fprintf_unfiltered (gdb_stdlog,
3618 "infrun: stepping_past_"
3619 "singlestep_breakpoint\n");
9f976b41 3620 /* Pull the single step breakpoints out of the target. */
e0cd558a 3621 remove_single_step_breakpoints ();
9f976b41
DJ
3622 singlestep_breakpoints_inserted_p = 0;
3623
3624 ecs->random_signal = 0;
16c381f0 3625 ecs->event_thread->control.trap_expected = 0;
9f976b41 3626
0d1e5fa7 3627 context_switch (saved_singlestep_ptid);
9a4105ab
AC
3628 if (deprecated_context_hook)
3629 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
3630
3631 resume (1, TARGET_SIGNAL_0);
3632 prepare_to_wait (ecs);
3633 return;
3634 }
3635 }
3636
ca67fcb8 3637 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 3638 {
94cc34af
PA
3639 /* In non-stop mode, there's never a deferred_step_ptid set. */
3640 gdb_assert (!non_stop);
3641
6a6b96b9
UW
3642 /* If we stopped for some other reason than single-stepping, ignore
3643 the fact that we were supposed to switch back. */
16c381f0 3644 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
6a6b96b9
UW
3645 {
3646 if (debug_infrun)
3647 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 3648 "infrun: handling deferred step\n");
6a6b96b9
UW
3649
3650 /* Pull the single step breakpoints out of the target. */
3651 if (singlestep_breakpoints_inserted_p)
3652 {
3653 remove_single_step_breakpoints ();
3654 singlestep_breakpoints_inserted_p = 0;
3655 }
3656
cd3da28e
PA
3657 ecs->event_thread->control.trap_expected = 0;
3658
6a6b96b9
UW
3659 /* Note: We do not call context_switch at this point, as the
3660 context is already set up for stepping the original thread. */
ca67fcb8
VP
3661 switch_to_thread (deferred_step_ptid);
3662 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3663 /* Suppress spurious "Switching to ..." message. */
3664 previous_inferior_ptid = inferior_ptid;
3665
3666 resume (1, TARGET_SIGNAL_0);
3667 prepare_to_wait (ecs);
3668 return;
3669 }
ca67fcb8
VP
3670
3671 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3672 }
3673
488f131b
JB
3674 /* See if a thread hit a thread-specific breakpoint that was meant for
3675 another thread. If so, then step that thread past the breakpoint,
3676 and continue it. */
3677
16c381f0 3678 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
488f131b 3679 {
9f976b41 3680 int thread_hop_needed = 0;
cf00dfa7
VP
3681 struct address_space *aspace =
3682 get_regcache_aspace (get_thread_regcache (ecs->ptid));
9f976b41 3683
f8d40ec8 3684 /* Check if a regular breakpoint has been hit before checking
1777feb0 3685 for a potential single step breakpoint. Otherwise, GDB will
f8d40ec8 3686 not see this breakpoint hit when stepping onto breakpoints. */
6c95b8df 3687 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
488f131b 3688 {
c5aa993b 3689 ecs->random_signal = 0;
6c95b8df 3690 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
9f976b41
DJ
3691 thread_hop_needed = 1;
3692 }
1c0fdd0e 3693 else if (singlestep_breakpoints_inserted_p)
9f976b41 3694 {
fd48f117
DJ
3695 /* We have not context switched yet, so this should be true
3696 no matter which thread hit the singlestep breakpoint. */
3697 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3698 if (debug_infrun)
3699 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3700 "trap for %s\n",
3701 target_pid_to_str (ecs->ptid));
3702
9f976b41
DJ
3703 ecs->random_signal = 0;
3704 /* The call to in_thread_list is necessary because PTIDs sometimes
3705 change when we go from single-threaded to multi-threaded. If
3706 the singlestep_ptid is still in the list, assume that it is
3707 really different from ecs->ptid. */
3708 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3709 && in_thread_list (singlestep_ptid))
3710 {
fd48f117
DJ
3711 /* If the PC of the thread we were trying to single-step
3712 has changed, discard this event (which we were going
3713 to ignore anyway), and pretend we saw that thread
3714 trap. This prevents us continuously moving the
3715 single-step breakpoint forward, one instruction at a
3716 time. If the PC has changed, then the thread we were
3717 trying to single-step has trapped or been signalled,
3718 but the event has not been reported to GDB yet.
3719
3720 There might be some cases where this loses signal
3721 information, if a signal has arrived at exactly the
3722 same time that the PC changed, but this is the best
3723 we can do with the information available. Perhaps we
3724 should arrange to report all events for all threads
3725 when they stop, or to re-poll the remote looking for
3726 this particular thread (i.e. temporarily enable
3727 schedlock). */
515630c5
UW
3728
3729 CORE_ADDR new_singlestep_pc
3730 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3731
3732 if (new_singlestep_pc != singlestep_pc)
fd48f117 3733 {
2020b7ab
PA
3734 enum target_signal stop_signal;
3735
fd48f117
DJ
3736 if (debug_infrun)
3737 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3738 " but expected thread advanced also\n");
3739
3740 /* The current context still belongs to
3741 singlestep_ptid. Don't swap here, since that's
3742 the context we want to use. Just fudge our
3743 state and continue. */
16c381f0
JK
3744 stop_signal = ecs->event_thread->suspend.stop_signal;
3745 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
fd48f117 3746 ecs->ptid = singlestep_ptid;
e09875d4 3747 ecs->event_thread = find_thread_ptid (ecs->ptid);
16c381f0 3748 ecs->event_thread->suspend.stop_signal = stop_signal;
515630c5 3749 stop_pc = new_singlestep_pc;
fd48f117
DJ
3750 }
3751 else
3752 {
3753 if (debug_infrun)
3754 fprintf_unfiltered (gdb_stdlog,
3755 "infrun: unexpected thread\n");
3756
3757 thread_hop_needed = 1;
3758 stepping_past_singlestep_breakpoint = 1;
3759 saved_singlestep_ptid = singlestep_ptid;
3760 }
9f976b41
DJ
3761 }
3762 }
3763
3764 if (thread_hop_needed)
8fb3e588 3765 {
9f5a595d 3766 struct regcache *thread_regcache;
237fc4c9 3767 int remove_status = 0;
8fb3e588 3768
527159b7 3769 if (debug_infrun)
8a9de0e4 3770 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 3771
b3444185
PA
3772 /* Switch context before touching inferior memory, the
3773 previous thread may have exited. */
3774 if (!ptid_equal (inferior_ptid, ecs->ptid))
3775 context_switch (ecs->ptid);
3776
8fb3e588 3777 /* Saw a breakpoint, but it was hit by the wrong thread.
1777feb0 3778 Just continue. */
8fb3e588 3779
1c0fdd0e 3780 if (singlestep_breakpoints_inserted_p)
488f131b 3781 {
1777feb0 3782 /* Pull the single step breakpoints out of the target. */
e0cd558a 3783 remove_single_step_breakpoints ();
8fb3e588
AC
3784 singlestep_breakpoints_inserted_p = 0;
3785 }
3786
237fc4c9
PA
3787 /* If the arch can displace step, don't remove the
3788 breakpoints. */
9f5a595d
UW
3789 thread_regcache = get_thread_regcache (ecs->ptid);
3790 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
3791 remove_status = remove_breakpoints ();
3792
8fb3e588
AC
3793 /* Did we fail to remove breakpoints? If so, try
3794 to set the PC past the bp. (There's at least
3795 one situation in which we can fail to remove
3796 the bp's: On HP-UX's that use ttrace, we can't
3797 change the address space of a vforking child
3798 process until the child exits (well, okay, not
1777feb0 3799 then either :-) or execs. */
8fb3e588 3800 if (remove_status != 0)
9d9cd7ac 3801 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
3802 else
3803 { /* Single step */
94cc34af
PA
3804 if (!non_stop)
3805 {
3806 /* Only need to require the next event from this
3807 thread in all-stop mode. */
3808 waiton_ptid = ecs->ptid;
3809 infwait_state = infwait_thread_hop_state;
3810 }
8fb3e588 3811
4e1c45ea 3812 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588 3813 keep_going (ecs);
8fb3e588
AC
3814 return;
3815 }
488f131b 3816 }
1c0fdd0e 3817 else if (singlestep_breakpoints_inserted_p)
8fb3e588
AC
3818 {
3819 sw_single_step_trap_p = 1;
3820 ecs->random_signal = 0;
3821 }
488f131b
JB
3822 }
3823 else
3824 ecs->random_signal = 1;
c906108c 3825
488f131b 3826 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
3827 so, then switch to that thread. */
3828 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 3829 {
527159b7 3830 if (debug_infrun)
8a9de0e4 3831 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 3832
0d1e5fa7 3833 context_switch (ecs->ptid);
c5aa993b 3834
9a4105ab
AC
3835 if (deprecated_context_hook)
3836 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 3837 }
c906108c 3838
568d6575
UW
3839 /* At this point, get hold of the now-current thread's frame. */
3840 frame = get_current_frame ();
3841 gdbarch = get_frame_arch (frame);
3842
1c0fdd0e 3843 if (singlestep_breakpoints_inserted_p)
488f131b 3844 {
1777feb0 3845 /* Pull the single step breakpoints out of the target. */
e0cd558a 3846 remove_single_step_breakpoints ();
488f131b
JB
3847 singlestep_breakpoints_inserted_p = 0;
3848 }
c906108c 3849
d983da9c
DJ
3850 if (stepped_after_stopped_by_watchpoint)
3851 stopped_by_watchpoint = 0;
3852 else
3853 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3854
3855 /* If necessary, step over this watchpoint. We'll be back to display
3856 it in a moment. */
3857 if (stopped_by_watchpoint
d92524f1 3858 && (target_have_steppable_watchpoint
568d6575 3859 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 3860 {
488f131b
JB
3861 /* At this point, we are stopped at an instruction which has
3862 attempted to write to a piece of memory under control of
3863 a watchpoint. The instruction hasn't actually executed
3864 yet. If we were to evaluate the watchpoint expression
3865 now, we would get the old value, and therefore no change
3866 would seem to have occurred.
3867
3868 In order to make watchpoints work `right', we really need
3869 to complete the memory write, and then evaluate the
d983da9c
DJ
3870 watchpoint expression. We do this by single-stepping the
3871 target.
3872
3873 It may not be necessary to disable the watchpoint to stop over
3874 it. For example, the PA can (with some kernel cooperation)
3875 single step over a watchpoint without disabling the watchpoint.
3876
3877 It is far more common to need to disable a watchpoint to step
3878 the inferior over it. If we have non-steppable watchpoints,
3879 we must disable the current watchpoint; it's simplest to
3880 disable all watchpoints and breakpoints. */
2facfe5c
DD
3881 int hw_step = 1;
3882
d92524f1 3883 if (!target_have_steppable_watchpoint)
2455069d
UW
3884 {
3885 remove_breakpoints ();
3886 /* See comment in resume why we need to stop bypassing signals
3887 while breakpoints have been removed. */
3888 target_pass_signals (0, NULL);
3889 }
2facfe5c 3890 /* Single step */
568d6575 3891 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
2facfe5c 3892 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
0d1e5fa7 3893 waiton_ptid = ecs->ptid;
d92524f1 3894 if (target_have_steppable_watchpoint)
0d1e5fa7 3895 infwait_state = infwait_step_watch_state;
d983da9c 3896 else
0d1e5fa7 3897 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
3898 prepare_to_wait (ecs);
3899 return;
3900 }
3901
488f131b
JB
3902 ecs->stop_func_start = 0;
3903 ecs->stop_func_end = 0;
3904 ecs->stop_func_name = 0;
3905 /* Don't care about return value; stop_func_start and stop_func_name
3906 will both be 0 if it doesn't work. */
3907 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3908 &ecs->stop_func_start, &ecs->stop_func_end);
cbf3b44a 3909 ecs->stop_func_start
568d6575 3910 += gdbarch_deprecated_function_start_offset (gdbarch);
4e1c45ea 3911 ecs->event_thread->stepping_over_breakpoint = 0;
16c381f0
JK
3912 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
3913 ecs->event_thread->control.stop_step = 0;
488f131b
JB
3914 stop_print_frame = 1;
3915 ecs->random_signal = 0;
3916 stopped_by_random_signal = 0;
488f131b 3917
edb3359d
DJ
3918 /* Hide inlined functions starting here, unless we just performed stepi or
3919 nexti. After stepi and nexti, always show the innermost frame (not any
3920 inline function call sites). */
16c381f0 3921 if (ecs->event_thread->control.step_range_end != 1)
edb3359d
DJ
3922 skip_inline_frames (ecs->ptid);
3923
16c381f0
JK
3924 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
3925 && ecs->event_thread->control.trap_expected
568d6575 3926 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 3927 && currently_stepping (ecs->event_thread))
3352ef37 3928 {
b50d7442 3929 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 3930 also on an instruction that needs to be stepped multiple
1777feb0 3931 times before it's been fully executing. E.g., architectures
3352ef37
AC
3932 with a delay slot. It needs to be stepped twice, once for
3933 the instruction and once for the delay slot. */
3934 int step_through_delay
568d6575 3935 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 3936
527159b7 3937 if (debug_infrun && step_through_delay)
8a9de0e4 3938 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
3939 if (ecs->event_thread->control.step_range_end == 0
3940 && step_through_delay)
3352ef37
AC
3941 {
3942 /* The user issued a continue when stopped at a breakpoint.
3943 Set up for another trap and get out of here. */
4e1c45ea 3944 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
3945 keep_going (ecs);
3946 return;
3947 }
3948 else if (step_through_delay)
3949 {
3950 /* The user issued a step when stopped at a breakpoint.
3951 Maybe we should stop, maybe we should not - the delay
3952 slot *might* correspond to a line of source. In any
ca67fcb8
VP
3953 case, don't decide that here, just set
3954 ecs->stepping_over_breakpoint, making sure we
3955 single-step again before breakpoints are re-inserted. */
4e1c45ea 3956 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
3957 }
3958 }
3959
488f131b
JB
3960 /* Look at the cause of the stop, and decide what to do.
3961 The alternatives are:
0d1e5fa7
PA
3962 1) stop_stepping and return; to really stop and return to the debugger,
3963 2) keep_going and return to start up again
4e1c45ea 3964 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
3965 3) set ecs->random_signal to 1, and the decision between 1 and 2
3966 will be made according to the signal handling tables. */
3967
16c381f0 3968 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
b0f4b84b
DJ
3969 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
3970 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 3971 {
16c381f0
JK
3972 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
3973 && stop_after_trap)
488f131b 3974 {
527159b7 3975 if (debug_infrun)
8a9de0e4 3976 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
3977 stop_print_frame = 0;
3978 stop_stepping (ecs);
3979 return;
3980 }
c54cfec8
EZ
3981
3982 /* This is originated from start_remote(), start_inferior() and
3983 shared libraries hook functions. */
b0f4b84b 3984 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 3985 {
527159b7 3986 if (debug_infrun)
8a9de0e4 3987 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
3988 stop_stepping (ecs);
3989 return;
3990 }
3991
c54cfec8 3992 /* This originates from attach_command(). We need to overwrite
a0d21d28
PA
3993 the stop_signal here, because some kernels don't ignore a
3994 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
3995 See more comments in inferior.h. On the other hand, if we
a0ef4274 3996 get a non-SIGSTOP, report it to the user - assume the backend
a0d21d28
PA
3997 will handle the SIGSTOP if it should show up later.
3998
3999 Also consider that the attach is complete when we see a
4000 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4001 target extended-remote report it instead of a SIGSTOP
4002 (e.g. gdbserver). We already rely on SIGTRAP being our
e0ba6746
PA
4003 signal, so this is no exception.
4004
4005 Also consider that the attach is complete when we see a
4006 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4007 the target to stop all threads of the inferior, in case the
4008 low level attach operation doesn't stop them implicitly. If
4009 they weren't stopped implicitly, then the stub will report a
4010 TARGET_SIGNAL_0, meaning: stopped for no particular reason
4011 other than GDB's request. */
a0ef4274 4012 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
16c381f0
JK
4013 && (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_STOP
4014 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4015 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_0))
c54cfec8
EZ
4016 {
4017 stop_stepping (ecs);
16c381f0 4018 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
c54cfec8
EZ
4019 return;
4020 }
4021
fba57f8f 4022 /* See if there is a breakpoint at the current PC. */
16c381f0 4023 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
4024 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4025 stop_pc, ecs->ptid);
4026
fba57f8f
VP
4027 /* Following in case break condition called a
4028 function. */
4029 stop_print_frame = 1;
488f131b 4030
db82e815
PA
4031 /* This is where we handle "moribund" watchpoints. Unlike
4032 software breakpoints traps, hardware watchpoint traps are
4033 always distinguishable from random traps. If no high-level
4034 watchpoint is associated with the reported stop data address
4035 anymore, then the bpstat does not explain the signal ---
4036 simply make sure to ignore it if `stopped_by_watchpoint' is
4037 set. */
4038
4039 if (debug_infrun
16c381f0
JK
4040 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4041 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
db82e815 4042 && stopped_by_watchpoint)
3e43a32a
MS
4043 fprintf_unfiltered (gdb_stdlog,
4044 "infrun: no user watchpoint explains "
4045 "watchpoint SIGTRAP, ignoring\n");
db82e815 4046
73dd234f 4047 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
4048 at one stage in the past included checks for an inferior
4049 function call's call dummy's return breakpoint. The original
4050 comment, that went with the test, read:
73dd234f 4051
8fb3e588
AC
4052 ``End of a stack dummy. Some systems (e.g. Sony news) give
4053 another signal besides SIGTRAP, so check here as well as
4054 above.''
73dd234f 4055
8002d778 4056 If someone ever tries to get call dummys on a
73dd234f 4057 non-executable stack to work (where the target would stop
03cebad2
MK
4058 with something like a SIGSEGV), then those tests might need
4059 to be re-instated. Given, however, that the tests were only
73dd234f 4060 enabled when momentary breakpoints were not being used, I
03cebad2
MK
4061 suspect that it won't be the case.
4062
8fb3e588
AC
4063 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4064 be necessary for call dummies on a non-executable stack on
4065 SPARC. */
73dd234f 4066
16c381f0 4067 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
488f131b 4068 ecs->random_signal
16c381f0 4069 = !(bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
db82e815 4070 || stopped_by_watchpoint
16c381f0
JK
4071 || ecs->event_thread->control.trap_expected
4072 || (ecs->event_thread->control.step_range_end
8358c15c
JK
4073 && (ecs->event_thread->control.step_resume_breakpoint
4074 == NULL)));
488f131b
JB
4075 else
4076 {
16c381f0
JK
4077 ecs->random_signal = !bpstat_explains_signal
4078 (ecs->event_thread->control.stop_bpstat);
488f131b 4079 if (!ecs->random_signal)
16c381f0 4080 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
4081 }
4082 }
4083
4084 /* When we reach this point, we've pretty much decided
4085 that the reason for stopping must've been a random
1777feb0 4086 (unexpected) signal. */
488f131b
JB
4087
4088 else
4089 ecs->random_signal = 1;
488f131b 4090
04e68871 4091process_event_stop_test:
568d6575
UW
4092
4093 /* Re-fetch current thread's frame in case we did a
4094 "goto process_event_stop_test" above. */
4095 frame = get_current_frame ();
4096 gdbarch = get_frame_arch (frame);
4097
488f131b
JB
4098 /* For the program's own signals, act according to
4099 the signal handling tables. */
4100
4101 if (ecs->random_signal)
4102 {
4103 /* Signal not for debugging purposes. */
4104 int printed = 0;
24291992 4105 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
488f131b 4106
527159b7 4107 if (debug_infrun)
2020b7ab 4108 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
16c381f0 4109 ecs->event_thread->suspend.stop_signal);
527159b7 4110
488f131b
JB
4111 stopped_by_random_signal = 1;
4112
16c381f0 4113 if (signal_print[ecs->event_thread->suspend.stop_signal])
488f131b
JB
4114 {
4115 printed = 1;
4116 target_terminal_ours_for_output ();
16c381f0
JK
4117 print_signal_received_reason
4118 (ecs->event_thread->suspend.stop_signal);
488f131b 4119 }
252fbfc8
PA
4120 /* Always stop on signals if we're either just gaining control
4121 of the program, or the user explicitly requested this thread
4122 to remain stopped. */
d6b48e9c 4123 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 4124 || ecs->event_thread->stop_requested
24291992 4125 || (!inf->detaching
16c381f0 4126 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b
JB
4127 {
4128 stop_stepping (ecs);
4129 return;
4130 }
4131 /* If not going to stop, give terminal back
4132 if we took it away. */
4133 else if (printed)
4134 target_terminal_inferior ();
4135
4136 /* Clear the signal if it should not be passed. */
16c381f0
JK
4137 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4138 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
488f131b 4139
fb14de7b 4140 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 4141 && ecs->event_thread->control.trap_expected
8358c15c 4142 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
4143 {
4144 /* We were just starting a new sequence, attempting to
4145 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 4146 Instead this signal arrives. This signal will take us out
68f53502
AC
4147 of the stepping range so GDB needs to remember to, when
4148 the signal handler returns, resume stepping off that
4149 breakpoint. */
4150 /* To simplify things, "continue" is forced to use the same
4151 code paths as single-step - set a breakpoint at the
4152 signal return address and then, once hit, step off that
4153 breakpoint. */
237fc4c9
PA
4154 if (debug_infrun)
4155 fprintf_unfiltered (gdb_stdlog,
4156 "infrun: signal arrived while stepping over "
4157 "breakpoint\n");
d3169d93 4158
568d6575 4159 insert_step_resume_breakpoint_at_frame (frame);
4e1c45ea 4160 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4161 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4162 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4163 keep_going (ecs);
4164 return;
68f53502 4165 }
9d799f85 4166
16c381f0
JK
4167 if (ecs->event_thread->control.step_range_end != 0
4168 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_0
4169 && (ecs->event_thread->control.step_range_start <= stop_pc
4170 && stop_pc < ecs->event_thread->control.step_range_end)
edb3359d 4171 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 4172 ecs->event_thread->control.step_stack_frame_id)
8358c15c 4173 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
4174 {
4175 /* The inferior is about to take a signal that will take it
4176 out of the single step range. Set a breakpoint at the
4177 current PC (which is presumably where the signal handler
4178 will eventually return) and then allow the inferior to
4179 run free.
4180
4181 Note that this is only needed for a signal delivered
4182 while in the single-step range. Nested signals aren't a
4183 problem as they eventually all return. */
237fc4c9
PA
4184 if (debug_infrun)
4185 fprintf_unfiltered (gdb_stdlog,
4186 "infrun: signal may take us out of "
4187 "single-step range\n");
4188
568d6575 4189 insert_step_resume_breakpoint_at_frame (frame);
2455069d
UW
4190 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4191 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4192 keep_going (ecs);
4193 return;
d303a6c7 4194 }
9d799f85
AC
4195
4196 /* Note: step_resume_breakpoint may be non-NULL. This occures
4197 when either there's a nested signal, or when there's a
4198 pending signal enabled just as the signal handler returns
4199 (leaving the inferior at the step-resume-breakpoint without
4200 actually executing it). Either way continue until the
4201 breakpoint is really hit. */
488f131b
JB
4202 keep_going (ecs);
4203 return;
4204 }
4205
4206 /* Handle cases caused by hitting a breakpoint. */
4207 {
4208 CORE_ADDR jmp_buf_pc;
4209 struct bpstat_what what;
4210
16c381f0 4211 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
488f131b
JB
4212
4213 if (what.call_dummy)
4214 {
aa7d318d 4215 stop_stack_dummy = what.call_dummy;
c5aa993b 4216 }
c906108c 4217
628fe4e4
JK
4218 /* If we hit an internal event that triggers symbol changes, the
4219 current frame will be invalidated within bpstat_what (e.g., if
4220 we hit an internal solib event). Re-fetch it. */
4221 frame = get_current_frame ();
4222 gdbarch = get_frame_arch (frame);
4223
488f131b 4224 switch (what.main_action)
c5aa993b 4225 {
488f131b 4226 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
611c83ae
PA
4227 /* If we hit the breakpoint at longjmp while stepping, we
4228 install a momentary breakpoint at the target of the
4229 jmp_buf. */
4230
4231 if (debug_infrun)
4232 fprintf_unfiltered (gdb_stdlog,
4233 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4234
4e1c45ea 4235 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 4236
186c406b 4237 if (what.is_longjmp)
c5aa993b 4238 {
186c406b
TT
4239 if (!gdbarch_get_longjmp_target_p (gdbarch)
4240 || !gdbarch_get_longjmp_target (gdbarch,
4241 frame, &jmp_buf_pc))
4242 {
4243 if (debug_infrun)
3e43a32a
MS
4244 fprintf_unfiltered (gdb_stdlog,
4245 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4246 "(!gdbarch_get_longjmp_target)\n");
186c406b
TT
4247 keep_going (ecs);
4248 return;
4249 }
488f131b 4250
186c406b
TT
4251 /* We're going to replace the current step-resume breakpoint
4252 with a longjmp-resume breakpoint. */
4253 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae 4254
186c406b
TT
4255 /* Insert a breakpoint at resume address. */
4256 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4257 }
4258 else
4259 {
4260 struct symbol *func = get_frame_function (frame);
c906108c 4261
186c406b
TT
4262 if (func)
4263 check_exception_resume (ecs, frame, func);
4264 }
488f131b
JB
4265 keep_going (ecs);
4266 return;
c906108c 4267
488f131b 4268 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
527159b7 4269 if (debug_infrun)
611c83ae
PA
4270 fprintf_unfiltered (gdb_stdlog,
4271 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4272
186c406b
TT
4273 if (what.is_longjmp)
4274 {
4275 gdb_assert (ecs->event_thread->control.step_resume_breakpoint
4276 != NULL);
4277 delete_step_resume_breakpoint (ecs->event_thread);
4278 }
4279 else
4280 {
4281 /* There are several cases to consider.
4282
4283 1. The initiating frame no longer exists. In this case
4284 we must stop, because the exception has gone too far.
4285
4286 2. The initiating frame exists, and is the same as the
4287 current frame. We stop, because the exception has been
4288 caught.
4289
4290 3. The initiating frame exists and is different from
4291 the current frame. This means the exception has been
4292 caught beneath the initiating frame, so keep going. */
4293 struct frame_info *init_frame
4294 = frame_find_by_id (ecs->event_thread->initiating_frame);
4295
4296 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4297 != NULL);
4298 delete_exception_resume_breakpoint (ecs->event_thread);
4299
4300 if (init_frame)
4301 {
4302 struct frame_id current_id
4303 = get_frame_id (get_current_frame ());
4304 if (frame_id_eq (current_id,
4305 ecs->event_thread->initiating_frame))
4306 {
4307 /* Case 2. Fall through. */
4308 }
4309 else
4310 {
4311 /* Case 3. */
4312 keep_going (ecs);
4313 return;
4314 }
4315 }
4316
4317 /* For Cases 1 and 2, remove the step-resume breakpoint,
4318 if it exists. */
4319 delete_step_resume_breakpoint (ecs->event_thread);
4320 }
611c83ae 4321
16c381f0 4322 ecs->event_thread->control.stop_step = 1;
33d62d64 4323 print_end_stepping_range_reason ();
611c83ae
PA
4324 stop_stepping (ecs);
4325 return;
488f131b
JB
4326
4327 case BPSTAT_WHAT_SINGLE:
527159b7 4328 if (debug_infrun)
8802d8ed 4329 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4e1c45ea 4330 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b
JB
4331 /* Still need to check other stuff, at least the case
4332 where we are stepping and step out of the right range. */
4333 break;
c906108c 4334
488f131b 4335 case BPSTAT_WHAT_STOP_NOISY:
527159b7 4336 if (debug_infrun)
8802d8ed 4337 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 4338 stop_print_frame = 1;
c906108c 4339
d303a6c7
AC
4340 /* We are about to nuke the step_resume_breakpointt via the
4341 cleanup chain, so no need to worry about it here. */
c5aa993b 4342
488f131b
JB
4343 stop_stepping (ecs);
4344 return;
c5aa993b 4345
488f131b 4346 case BPSTAT_WHAT_STOP_SILENT:
527159b7 4347 if (debug_infrun)
8802d8ed 4348 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 4349 stop_print_frame = 0;
c5aa993b 4350
d303a6c7
AC
4351 /* We are about to nuke the step_resume_breakpoin via the
4352 cleanup chain, so no need to worry about it here. */
c5aa993b 4353
488f131b 4354 stop_stepping (ecs);
e441088d 4355 return;
c5aa993b 4356
488f131b 4357 case BPSTAT_WHAT_STEP_RESUME:
527159b7 4358 if (debug_infrun)
8802d8ed 4359 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
527159b7 4360
4e1c45ea
PA
4361 delete_step_resume_breakpoint (ecs->event_thread);
4362 if (ecs->event_thread->step_after_step_resume_breakpoint)
68f53502
AC
4363 {
4364 /* Back when the step-resume breakpoint was inserted, we
4365 were trying to single-step off a breakpoint. Go back
4366 to doing that. */
4e1c45ea
PA
4367 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4368 ecs->event_thread->stepping_over_breakpoint = 1;
68f53502
AC
4369 keep_going (ecs);
4370 return;
4371 }
b2175913
MS
4372 if (stop_pc == ecs->stop_func_start
4373 && execution_direction == EXEC_REVERSE)
4374 {
4375 /* We are stepping over a function call in reverse, and
4376 just hit the step-resume breakpoint at the start
4377 address of the function. Go back to single-stepping,
4378 which should take us back to the function call. */
4379 ecs->event_thread->stepping_over_breakpoint = 1;
4380 keep_going (ecs);
4381 return;
4382 }
488f131b
JB
4383 break;
4384
488f131b
JB
4385 case BPSTAT_WHAT_KEEP_CHECKING:
4386 break;
4387 }
4388 }
c906108c 4389
488f131b
JB
4390 /* We come here if we hit a breakpoint but should not
4391 stop for it. Possibly we also were stepping
4392 and should stop for that. So fall through and
4393 test for stepping. But, if not stepping,
4394 do not stop. */
c906108c 4395
a7212384
UW
4396 /* In all-stop mode, if we're currently stepping but have stopped in
4397 some other thread, we need to switch back to the stepped thread. */
4398 if (!non_stop)
4399 {
4400 struct thread_info *tp;
abbb1732 4401
b3444185 4402 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
a7212384
UW
4403 ecs->event_thread);
4404 if (tp)
4405 {
4406 /* However, if the current thread is blocked on some internal
4407 breakpoint, and we simply need to step over that breakpoint
4408 to get it going again, do that first. */
16c381f0
JK
4409 if ((ecs->event_thread->control.trap_expected
4410 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
a7212384
UW
4411 || ecs->event_thread->stepping_over_breakpoint)
4412 {
4413 keep_going (ecs);
4414 return;
4415 }
4416
66852e9c
PA
4417 /* If the stepping thread exited, then don't try to switch
4418 back and resume it, which could fail in several different
4419 ways depending on the target. Instead, just keep going.
4420
4421 We can find a stepping dead thread in the thread list in
4422 two cases:
4423
4424 - The target supports thread exit events, and when the
4425 target tries to delete the thread from the thread list,
4426 inferior_ptid pointed at the exiting thread. In such
4427 case, calling delete_thread does not really remove the
4428 thread from the list; instead, the thread is left listed,
4429 with 'exited' state.
4430
4431 - The target's debug interface does not support thread
4432 exit events, and so we have no idea whatsoever if the
4433 previously stepping thread is still alive. For that
4434 reason, we need to synchronously query the target
4435 now. */
b3444185
PA
4436 if (is_exited (tp->ptid)
4437 || !target_thread_alive (tp->ptid))
4438 {
4439 if (debug_infrun)
3e43a32a
MS
4440 fprintf_unfiltered (gdb_stdlog,
4441 "infrun: not switching back to "
4442 "stepped thread, it has vanished\n");
b3444185
PA
4443
4444 delete_thread (tp->ptid);
4445 keep_going (ecs);
4446 return;
4447 }
4448
a7212384
UW
4449 /* Otherwise, we no longer expect a trap in the current thread.
4450 Clear the trap_expected flag before switching back -- this is
4451 what keep_going would do as well, if we called it. */
16c381f0 4452 ecs->event_thread->control.trap_expected = 0;
a7212384
UW
4453
4454 if (debug_infrun)
4455 fprintf_unfiltered (gdb_stdlog,
4456 "infrun: switching back to stepped thread\n");
4457
4458 ecs->event_thread = tp;
4459 ecs->ptid = tp->ptid;
4460 context_switch (ecs->ptid);
4461 keep_going (ecs);
4462 return;
4463 }
4464 }
4465
9d1ff73f
MS
4466 /* Are we stepping to get the inferior out of the dynamic linker's
4467 hook (and possibly the dld itself) after catching a shlib
4468 event? */
4e1c45ea 4469 if (ecs->event_thread->stepping_through_solib_after_catch)
488f131b
JB
4470 {
4471#if defined(SOLIB_ADD)
1777feb0 4472 /* Have we reached our destination? If not, keep going. */
488f131b
JB
4473 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
4474 {
527159b7 4475 if (debug_infrun)
3e43a32a
MS
4476 fprintf_unfiltered (gdb_stdlog,
4477 "infrun: stepping in dynamic linker\n");
4e1c45ea 4478 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 4479 keep_going (ecs);
104c1213 4480 return;
488f131b
JB
4481 }
4482#endif
527159b7 4483 if (debug_infrun)
8a9de0e4 4484 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
488f131b 4485 /* Else, stop and report the catchpoint(s) whose triggering
1777feb0 4486 caused us to begin stepping. */
4e1c45ea 4487 ecs->event_thread->stepping_through_solib_after_catch = 0;
16c381f0
JK
4488 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4489 ecs->event_thread->control.stop_bpstat
347bddb7 4490 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
4e1c45ea 4491 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
488f131b
JB
4492 stop_print_frame = 1;
4493 stop_stepping (ecs);
4494 return;
4495 }
c906108c 4496
8358c15c 4497 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 4498 {
527159b7 4499 if (debug_infrun)
d3169d93
DJ
4500 fprintf_unfiltered (gdb_stdlog,
4501 "infrun: step-resume breakpoint is inserted\n");
527159b7 4502
488f131b
JB
4503 /* Having a step-resume breakpoint overrides anything
4504 else having to do with stepping commands until
4505 that breakpoint is reached. */
488f131b
JB
4506 keep_going (ecs);
4507 return;
4508 }
c5aa993b 4509
16c381f0 4510 if (ecs->event_thread->control.step_range_end == 0)
488f131b 4511 {
527159b7 4512 if (debug_infrun)
8a9de0e4 4513 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 4514 /* Likewise if we aren't even stepping. */
488f131b
JB
4515 keep_going (ecs);
4516 return;
4517 }
c5aa993b 4518
4b7703ad
JB
4519 /* Re-fetch current thread's frame in case the code above caused
4520 the frame cache to be re-initialized, making our FRAME variable
4521 a dangling pointer. */
4522 frame = get_current_frame ();
628fe4e4 4523 gdbarch = get_frame_arch (frame);
4b7703ad 4524
488f131b 4525 /* If stepping through a line, keep going if still within it.
c906108c 4526
488f131b
JB
4527 Note that step_range_end is the address of the first instruction
4528 beyond the step range, and NOT the address of the last instruction
31410e84
MS
4529 within it!
4530
4531 Note also that during reverse execution, we may be stepping
4532 through a function epilogue and therefore must detect when
4533 the current-frame changes in the middle of a line. */
4534
16c381f0
JK
4535 if (stop_pc >= ecs->event_thread->control.step_range_start
4536 && stop_pc < ecs->event_thread->control.step_range_end
31410e84 4537 && (execution_direction != EXEC_REVERSE
388a8562 4538 || frame_id_eq (get_frame_id (frame),
16c381f0 4539 ecs->event_thread->control.step_frame_id)))
488f131b 4540 {
527159b7 4541 if (debug_infrun)
5af949e3
UW
4542 fprintf_unfiltered
4543 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
4544 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4545 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913
MS
4546
4547 /* When stepping backward, stop at beginning of line range
4548 (unless it's the function entry point, in which case
4549 keep going back to the call point). */
16c381f0 4550 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
4551 && stop_pc != ecs->stop_func_start
4552 && execution_direction == EXEC_REVERSE)
4553 {
16c381f0 4554 ecs->event_thread->control.stop_step = 1;
33d62d64 4555 print_end_stepping_range_reason ();
b2175913
MS
4556 stop_stepping (ecs);
4557 }
4558 else
4559 keep_going (ecs);
4560
488f131b
JB
4561 return;
4562 }
c5aa993b 4563
488f131b 4564 /* We stepped out of the stepping range. */
c906108c 4565
488f131b 4566 /* If we are stepping at the source level and entered the runtime
388a8562
MS
4567 loader dynamic symbol resolution code...
4568
4569 EXEC_FORWARD: we keep on single stepping until we exit the run
4570 time loader code and reach the callee's address.
4571
4572 EXEC_REVERSE: we've already executed the callee (backward), and
4573 the runtime loader code is handled just like any other
4574 undebuggable function call. Now we need only keep stepping
4575 backward through the trampoline code, and that's handled further
4576 down, so there is nothing for us to do here. */
4577
4578 if (execution_direction != EXEC_REVERSE
16c381f0 4579 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 4580 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 4581 {
4c8c40e6 4582 CORE_ADDR pc_after_resolver =
568d6575 4583 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 4584
527159b7 4585 if (debug_infrun)
3e43a32a
MS
4586 fprintf_unfiltered (gdb_stdlog,
4587 "infrun: stepped into dynsym resolve code\n");
527159b7 4588
488f131b
JB
4589 if (pc_after_resolver)
4590 {
4591 /* Set up a step-resume breakpoint at the address
4592 indicated by SKIP_SOLIB_RESOLVER. */
4593 struct symtab_and_line sr_sal;
abbb1732 4594
fe39c653 4595 init_sal (&sr_sal);
488f131b 4596 sr_sal.pc = pc_after_resolver;
6c95b8df 4597 sr_sal.pspace = get_frame_program_space (frame);
488f131b 4598
a6d9a66e
UW
4599 insert_step_resume_breakpoint_at_sal (gdbarch,
4600 sr_sal, null_frame_id);
c5aa993b 4601 }
c906108c 4602
488f131b
JB
4603 keep_going (ecs);
4604 return;
4605 }
c906108c 4606
16c381f0
JK
4607 if (ecs->event_thread->control.step_range_end != 1
4608 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4609 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 4610 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 4611 {
527159b7 4612 if (debug_infrun)
3e43a32a
MS
4613 fprintf_unfiltered (gdb_stdlog,
4614 "infrun: stepped into signal trampoline\n");
42edda50 4615 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
4616 a signal trampoline (either by a signal being delivered or by
4617 the signal handler returning). Just single-step until the
4618 inferior leaves the trampoline (either by calling the handler
4619 or returning). */
488f131b
JB
4620 keep_going (ecs);
4621 return;
4622 }
c906108c 4623
c17eaafe
DJ
4624 /* Check for subroutine calls. The check for the current frame
4625 equalling the step ID is not necessary - the check of the
4626 previous frame's ID is sufficient - but it is a common case and
4627 cheaper than checking the previous frame's ID.
14e60db5
DJ
4628
4629 NOTE: frame_id_eq will never report two invalid frame IDs as
4630 being equal, so to get into this block, both the current and
4631 previous frame must have valid frame IDs. */
005ca36a
JB
4632 /* The outer_frame_id check is a heuristic to detect stepping
4633 through startup code. If we step over an instruction which
4634 sets the stack pointer from an invalid value to a valid value,
4635 we may detect that as a subroutine call from the mythical
4636 "outermost" function. This could be fixed by marking
4637 outermost frames as !stack_p,code_p,special_p. Then the
4638 initial outermost frame, before sp was valid, would
ce6cca6d 4639 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 4640 for more. */
edb3359d 4641 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 4642 ecs->event_thread->control.step_stack_frame_id)
005ca36a 4643 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
4644 ecs->event_thread->control.step_stack_frame_id)
4645 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a
JB
4646 outer_frame_id)
4647 || step_start_function != find_pc_function (stop_pc))))
488f131b 4648 {
95918acb 4649 CORE_ADDR real_stop_pc;
8fb3e588 4650
527159b7 4651 if (debug_infrun)
8a9de0e4 4652 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 4653
16c381f0
JK
4654 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4655 || ((ecs->event_thread->control.step_range_end == 1)
d80b854b 4656 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 4657 ecs->stop_func_start)))
95918acb
AC
4658 {
4659 /* I presume that step_over_calls is only 0 when we're
4660 supposed to be stepping at the assembly language level
4661 ("stepi"). Just stop. */
4662 /* Also, maybe we just did a "nexti" inside a prolog, so we
4663 thought it was a subroutine call but it was not. Stop as
4664 well. FENN */
388a8562 4665 /* And this works the same backward as frontward. MVS */
16c381f0 4666 ecs->event_thread->control.stop_step = 1;
33d62d64 4667 print_end_stepping_range_reason ();
95918acb
AC
4668 stop_stepping (ecs);
4669 return;
4670 }
8fb3e588 4671
388a8562
MS
4672 /* Reverse stepping through solib trampolines. */
4673
4674 if (execution_direction == EXEC_REVERSE
16c381f0 4675 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
4676 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4677 || (ecs->stop_func_start == 0
4678 && in_solib_dynsym_resolve_code (stop_pc))))
4679 {
4680 /* Any solib trampoline code can be handled in reverse
4681 by simply continuing to single-step. We have already
4682 executed the solib function (backwards), and a few
4683 steps will take us back through the trampoline to the
4684 caller. */
4685 keep_going (ecs);
4686 return;
4687 }
4688
16c381f0 4689 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 4690 {
b2175913
MS
4691 /* We're doing a "next".
4692
4693 Normal (forward) execution: set a breakpoint at the
4694 callee's return address (the address at which the caller
4695 will resume).
4696
4697 Reverse (backward) execution. set the step-resume
4698 breakpoint at the start of the function that we just
4699 stepped into (backwards), and continue to there. When we
6130d0b7 4700 get there, we'll need to single-step back to the caller. */
b2175913
MS
4701
4702 if (execution_direction == EXEC_REVERSE)
4703 {
4704 struct symtab_and_line sr_sal;
3067f6e5 4705
388a8562
MS
4706 /* Normal function call return (static or dynamic). */
4707 init_sal (&sr_sal);
4708 sr_sal.pc = ecs->stop_func_start;
6c95b8df
PA
4709 sr_sal.pspace = get_frame_program_space (frame);
4710 insert_step_resume_breakpoint_at_sal (gdbarch,
4711 sr_sal, null_frame_id);
b2175913
MS
4712 }
4713 else
568d6575 4714 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4715
8567c30f
AC
4716 keep_going (ecs);
4717 return;
4718 }
a53c66de 4719
95918acb 4720 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
4721 calling routine and the real function), locate the real
4722 function. That's what tells us (a) whether we want to step
4723 into it at all, and (b) what prologue we want to run to the
4724 end of, if we do step into it. */
568d6575 4725 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 4726 if (real_stop_pc == 0)
568d6575 4727 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
4728 if (real_stop_pc != 0)
4729 ecs->stop_func_start = real_stop_pc;
8fb3e588 4730
db5f024e 4731 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
4732 {
4733 struct symtab_and_line sr_sal;
abbb1732 4734
1b2bfbb9
RC
4735 init_sal (&sr_sal);
4736 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4737 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 4738
a6d9a66e
UW
4739 insert_step_resume_breakpoint_at_sal (gdbarch,
4740 sr_sal, null_frame_id);
8fb3e588
AC
4741 keep_going (ecs);
4742 return;
1b2bfbb9
RC
4743 }
4744
95918acb 4745 /* If we have line number information for the function we are
8fb3e588 4746 thinking of stepping into, step into it.
95918acb 4747
8fb3e588
AC
4748 If there are several symtabs at that PC (e.g. with include
4749 files), just want to know whether *any* of them have line
4750 numbers. find_pc_line handles this. */
95918acb
AC
4751 {
4752 struct symtab_and_line tmp_sal;
8fb3e588 4753
95918acb
AC
4754 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4755 if (tmp_sal.line != 0)
4756 {
b2175913 4757 if (execution_direction == EXEC_REVERSE)
568d6575 4758 handle_step_into_function_backward (gdbarch, ecs);
b2175913 4759 else
568d6575 4760 handle_step_into_function (gdbarch, ecs);
95918acb
AC
4761 return;
4762 }
4763 }
4764
4765 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
4766 set, we stop the step so that the user has a chance to switch
4767 in assembly mode. */
16c381f0 4768 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 4769 && step_stop_if_no_debug)
95918acb 4770 {
16c381f0 4771 ecs->event_thread->control.stop_step = 1;
33d62d64 4772 print_end_stepping_range_reason ();
95918acb
AC
4773 stop_stepping (ecs);
4774 return;
4775 }
4776
b2175913
MS
4777 if (execution_direction == EXEC_REVERSE)
4778 {
4779 /* Set a breakpoint at callee's start address.
4780 From there we can step once and be back in the caller. */
4781 struct symtab_and_line sr_sal;
abbb1732 4782
b2175913
MS
4783 init_sal (&sr_sal);
4784 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4785 sr_sal.pspace = get_frame_program_space (frame);
a6d9a66e
UW
4786 insert_step_resume_breakpoint_at_sal (gdbarch,
4787 sr_sal, null_frame_id);
b2175913
MS
4788 }
4789 else
4790 /* Set a breakpoint at callee's return address (the address
4791 at which the caller will resume). */
568d6575 4792 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4793
95918acb 4794 keep_going (ecs);
488f131b 4795 return;
488f131b 4796 }
c906108c 4797
fdd654f3
MS
4798 /* Reverse stepping through solib trampolines. */
4799
4800 if (execution_direction == EXEC_REVERSE
16c381f0 4801 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
4802 {
4803 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4804 || (ecs->stop_func_start == 0
4805 && in_solib_dynsym_resolve_code (stop_pc)))
4806 {
4807 /* Any solib trampoline code can be handled in reverse
4808 by simply continuing to single-step. We have already
4809 executed the solib function (backwards), and a few
4810 steps will take us back through the trampoline to the
4811 caller. */
4812 keep_going (ecs);
4813 return;
4814 }
4815 else if (in_solib_dynsym_resolve_code (stop_pc))
4816 {
4817 /* Stepped backward into the solib dynsym resolver.
4818 Set a breakpoint at its start and continue, then
4819 one more step will take us out. */
4820 struct symtab_and_line sr_sal;
abbb1732 4821
fdd654f3
MS
4822 init_sal (&sr_sal);
4823 sr_sal.pc = ecs->stop_func_start;
9d1807c3 4824 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
4825 insert_step_resume_breakpoint_at_sal (gdbarch,
4826 sr_sal, null_frame_id);
4827 keep_going (ecs);
4828 return;
4829 }
4830 }
4831
488f131b
JB
4832 /* If we're in the return path from a shared library trampoline,
4833 we want to proceed through the trampoline when stepping. */
568d6575 4834 if (gdbarch_in_solib_return_trampoline (gdbarch,
e76f05fa 4835 stop_pc, ecs->stop_func_name))
488f131b 4836 {
488f131b 4837 /* Determine where this trampoline returns. */
52f729a7 4838 CORE_ADDR real_stop_pc;
abbb1732 4839
568d6575 4840 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
c906108c 4841
527159b7 4842 if (debug_infrun)
3e43a32a
MS
4843 fprintf_unfiltered (gdb_stdlog,
4844 "infrun: stepped into solib return tramp\n");
527159b7 4845
488f131b 4846 /* Only proceed through if we know where it's going. */
d764a824 4847 if (real_stop_pc)
488f131b 4848 {
1777feb0 4849 /* And put the step-breakpoint there and go until there. */
488f131b
JB
4850 struct symtab_and_line sr_sal;
4851
fe39c653 4852 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 4853 sr_sal.pc = real_stop_pc;
488f131b 4854 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 4855 sr_sal.pspace = get_frame_program_space (frame);
44cbf7b5
AC
4856
4857 /* Do not specify what the fp should be when we stop since
4858 on some machines the prologue is where the new fp value
4859 is established. */
a6d9a66e
UW
4860 insert_step_resume_breakpoint_at_sal (gdbarch,
4861 sr_sal, null_frame_id);
c906108c 4862
488f131b
JB
4863 /* Restart without fiddling with the step ranges or
4864 other state. */
4865 keep_going (ecs);
4866 return;
4867 }
4868 }
c906108c 4869
2afb61aa 4870 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 4871
1b2bfbb9
RC
4872 /* NOTE: tausq/2004-05-24: This if block used to be done before all
4873 the trampoline processing logic, however, there are some trampolines
4874 that have no names, so we should do trampoline handling first. */
16c381f0 4875 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 4876 && ecs->stop_func_name == NULL
2afb61aa 4877 && stop_pc_sal.line == 0)
1b2bfbb9 4878 {
527159b7 4879 if (debug_infrun)
3e43a32a
MS
4880 fprintf_unfiltered (gdb_stdlog,
4881 "infrun: stepped into undebuggable function\n");
527159b7 4882
1b2bfbb9 4883 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
4884 undebuggable function (where there is no debugging information
4885 and no line number corresponding to the address where the
1b2bfbb9
RC
4886 inferior stopped). Since we want to skip this kind of code,
4887 we keep going until the inferior returns from this
14e60db5
DJ
4888 function - unless the user has asked us not to (via
4889 set step-mode) or we no longer know how to get back
4890 to the call site. */
4891 if (step_stop_if_no_debug
c7ce8faa 4892 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
4893 {
4894 /* If we have no line number and the step-stop-if-no-debug
4895 is set, we stop the step so that the user has a chance to
4896 switch in assembly mode. */
16c381f0 4897 ecs->event_thread->control.stop_step = 1;
33d62d64 4898 print_end_stepping_range_reason ();
1b2bfbb9
RC
4899 stop_stepping (ecs);
4900 return;
4901 }
4902 else
4903 {
4904 /* Set a breakpoint at callee's return address (the address
4905 at which the caller will resume). */
568d6575 4906 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
4907 keep_going (ecs);
4908 return;
4909 }
4910 }
4911
16c381f0 4912 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
4913 {
4914 /* It is stepi or nexti. We always want to stop stepping after
4915 one instruction. */
527159b7 4916 if (debug_infrun)
8a9de0e4 4917 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
16c381f0 4918 ecs->event_thread->control.stop_step = 1;
33d62d64 4919 print_end_stepping_range_reason ();
1b2bfbb9
RC
4920 stop_stepping (ecs);
4921 return;
4922 }
4923
2afb61aa 4924 if (stop_pc_sal.line == 0)
488f131b
JB
4925 {
4926 /* We have no line number information. That means to stop
4927 stepping (does this always happen right after one instruction,
4928 when we do "s" in a function with no line numbers,
4929 or can this happen as a result of a return or longjmp?). */
527159b7 4930 if (debug_infrun)
8a9de0e4 4931 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
16c381f0 4932 ecs->event_thread->control.stop_step = 1;
33d62d64 4933 print_end_stepping_range_reason ();
488f131b
JB
4934 stop_stepping (ecs);
4935 return;
4936 }
c906108c 4937
edb3359d
DJ
4938 /* Look for "calls" to inlined functions, part one. If the inline
4939 frame machinery detected some skipped call sites, we have entered
4940 a new inline function. */
4941
4942 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 4943 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
4944 && inline_skipped_frames (ecs->ptid))
4945 {
4946 struct symtab_and_line call_sal;
4947
4948 if (debug_infrun)
4949 fprintf_unfiltered (gdb_stdlog,
4950 "infrun: stepped into inlined function\n");
4951
4952 find_frame_sal (get_current_frame (), &call_sal);
4953
16c381f0 4954 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
4955 {
4956 /* For "step", we're going to stop. But if the call site
4957 for this inlined function is on the same source line as
4958 we were previously stepping, go down into the function
4959 first. Otherwise stop at the call site. */
4960
4961 if (call_sal.line == ecs->event_thread->current_line
4962 && call_sal.symtab == ecs->event_thread->current_symtab)
4963 step_into_inline_frame (ecs->ptid);
4964
16c381f0 4965 ecs->event_thread->control.stop_step = 1;
33d62d64 4966 print_end_stepping_range_reason ();
edb3359d
DJ
4967 stop_stepping (ecs);
4968 return;
4969 }
4970 else
4971 {
4972 /* For "next", we should stop at the call site if it is on a
4973 different source line. Otherwise continue through the
4974 inlined function. */
4975 if (call_sal.line == ecs->event_thread->current_line
4976 && call_sal.symtab == ecs->event_thread->current_symtab)
4977 keep_going (ecs);
4978 else
4979 {
16c381f0 4980 ecs->event_thread->control.stop_step = 1;
33d62d64 4981 print_end_stepping_range_reason ();
edb3359d
DJ
4982 stop_stepping (ecs);
4983 }
4984 return;
4985 }
4986 }
4987
4988 /* Look for "calls" to inlined functions, part two. If we are still
4989 in the same real function we were stepping through, but we have
4990 to go further up to find the exact frame ID, we are stepping
4991 through a more inlined call beyond its call site. */
4992
4993 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
4994 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 4995 ecs->event_thread->control.step_frame_id)
edb3359d 4996 && stepped_in_from (get_current_frame (),
16c381f0 4997 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
4998 {
4999 if (debug_infrun)
5000 fprintf_unfiltered (gdb_stdlog,
5001 "infrun: stepping through inlined function\n");
5002
16c381f0 5003 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
5004 keep_going (ecs);
5005 else
5006 {
16c381f0 5007 ecs->event_thread->control.stop_step = 1;
33d62d64 5008 print_end_stepping_range_reason ();
edb3359d
DJ
5009 stop_stepping (ecs);
5010 }
5011 return;
5012 }
5013
2afb61aa 5014 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
5015 && (ecs->event_thread->current_line != stop_pc_sal.line
5016 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
5017 {
5018 /* We are at the start of a different line. So stop. Note that
5019 we don't stop if we step into the middle of a different line.
5020 That is said to make things like for (;;) statements work
5021 better. */
527159b7 5022 if (debug_infrun)
3e43a32a
MS
5023 fprintf_unfiltered (gdb_stdlog,
5024 "infrun: stepped to a different line\n");
16c381f0 5025 ecs->event_thread->control.stop_step = 1;
33d62d64 5026 print_end_stepping_range_reason ();
488f131b
JB
5027 stop_stepping (ecs);
5028 return;
5029 }
c906108c 5030
488f131b 5031 /* We aren't done stepping.
c906108c 5032
488f131b
JB
5033 Optimize by setting the stepping range to the line.
5034 (We might not be in the original line, but if we entered a
5035 new line in mid-statement, we continue stepping. This makes
5036 things like for(;;) statements work better.) */
c906108c 5037
16c381f0
JK
5038 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5039 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
edb3359d 5040 set_step_info (frame, stop_pc_sal);
488f131b 5041
527159b7 5042 if (debug_infrun)
8a9de0e4 5043 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 5044 keep_going (ecs);
104c1213
JM
5045}
5046
b3444185 5047/* Is thread TP in the middle of single-stepping? */
104c1213 5048
a289b8f6 5049static int
b3444185 5050currently_stepping (struct thread_info *tp)
a7212384 5051{
8358c15c
JK
5052 return ((tp->control.step_range_end
5053 && tp->control.step_resume_breakpoint == NULL)
5054 || tp->control.trap_expected
5055 || tp->stepping_through_solib_after_catch
5056 || bpstat_should_step ());
a7212384
UW
5057}
5058
b3444185
PA
5059/* Returns true if any thread *but* the one passed in "data" is in the
5060 middle of stepping or of handling a "next". */
a7212384 5061
104c1213 5062static int
b3444185 5063currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
104c1213 5064{
b3444185
PA
5065 if (tp == data)
5066 return 0;
5067
16c381f0
JK
5068 return (tp->control.step_range_end
5069 || tp->control.trap_expected
b3444185 5070 || tp->stepping_through_solib_after_catch);
104c1213 5071}
c906108c 5072
b2175913
MS
5073/* Inferior has stepped into a subroutine call with source code that
5074 we should not step over. Do step to the first line of code in
5075 it. */
c2c6d25f
JM
5076
5077static void
568d6575
UW
5078handle_step_into_function (struct gdbarch *gdbarch,
5079 struct execution_control_state *ecs)
c2c6d25f
JM
5080{
5081 struct symtab *s;
2afb61aa 5082 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f
JM
5083
5084 s = find_pc_symtab (stop_pc);
5085 if (s && s->language != language_asm)
568d6575 5086 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 5087 ecs->stop_func_start);
c2c6d25f 5088
2afb61aa 5089 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
5090 /* Use the step_resume_break to step until the end of the prologue,
5091 even if that involves jumps (as it seems to on the vax under
5092 4.2). */
5093 /* If the prologue ends in the middle of a source line, continue to
5094 the end of that source line (if it is still within the function).
5095 Otherwise, just go to end of prologue. */
2afb61aa
PA
5096 if (stop_func_sal.end
5097 && stop_func_sal.pc != ecs->stop_func_start
5098 && stop_func_sal.end < ecs->stop_func_end)
5099 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 5100
2dbd5e30
KB
5101 /* Architectures which require breakpoint adjustment might not be able
5102 to place a breakpoint at the computed address. If so, the test
5103 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5104 ecs->stop_func_start to an address at which a breakpoint may be
5105 legitimately placed.
8fb3e588 5106
2dbd5e30
KB
5107 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5108 made, GDB will enter an infinite loop when stepping through
5109 optimized code consisting of VLIW instructions which contain
5110 subinstructions corresponding to different source lines. On
5111 FR-V, it's not permitted to place a breakpoint on any but the
5112 first subinstruction of a VLIW instruction. When a breakpoint is
5113 set, GDB will adjust the breakpoint address to the beginning of
5114 the VLIW instruction. Thus, we need to make the corresponding
5115 adjustment here when computing the stop address. */
8fb3e588 5116
568d6575 5117 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
5118 {
5119 ecs->stop_func_start
568d6575 5120 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 5121 ecs->stop_func_start);
2dbd5e30
KB
5122 }
5123
c2c6d25f
JM
5124 if (ecs->stop_func_start == stop_pc)
5125 {
5126 /* We are already there: stop now. */
16c381f0 5127 ecs->event_thread->control.stop_step = 1;
33d62d64 5128 print_end_stepping_range_reason ();
c2c6d25f
JM
5129 stop_stepping (ecs);
5130 return;
5131 }
5132 else
5133 {
5134 /* Put the step-breakpoint there and go until there. */
fe39c653 5135 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
5136 sr_sal.pc = ecs->stop_func_start;
5137 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 5138 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 5139
c2c6d25f 5140 /* Do not specify what the fp should be when we stop since on
488f131b
JB
5141 some machines the prologue is where the new fp value is
5142 established. */
a6d9a66e 5143 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
5144
5145 /* And make sure stepping stops right away then. */
16c381f0
JK
5146 ecs->event_thread->control.step_range_end
5147 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
5148 }
5149 keep_going (ecs);
5150}
d4f3574e 5151
b2175913
MS
5152/* Inferior has stepped backward into a subroutine call with source
5153 code that we should not step over. Do step to the beginning of the
5154 last line of code in it. */
5155
5156static void
568d6575
UW
5157handle_step_into_function_backward (struct gdbarch *gdbarch,
5158 struct execution_control_state *ecs)
b2175913
MS
5159{
5160 struct symtab *s;
167e4384 5161 struct symtab_and_line stop_func_sal;
b2175913
MS
5162
5163 s = find_pc_symtab (stop_pc);
5164 if (s && s->language != language_asm)
568d6575 5165 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
5166 ecs->stop_func_start);
5167
5168 stop_func_sal = find_pc_line (stop_pc, 0);
5169
5170 /* OK, we're just going to keep stepping here. */
5171 if (stop_func_sal.pc == stop_pc)
5172 {
5173 /* We're there already. Just stop stepping now. */
16c381f0 5174 ecs->event_thread->control.stop_step = 1;
33d62d64 5175 print_end_stepping_range_reason ();
b2175913
MS
5176 stop_stepping (ecs);
5177 }
5178 else
5179 {
5180 /* Else just reset the step range and keep going.
5181 No step-resume breakpoint, they don't work for
5182 epilogues, which can have multiple entry paths. */
16c381f0
JK
5183 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5184 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
5185 keep_going (ecs);
5186 }
5187 return;
5188}
5189
d3169d93 5190/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
5191 This is used to both functions and to skip over code. */
5192
5193static void
a6d9a66e
UW
5194insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5195 struct symtab_and_line sr_sal,
44cbf7b5
AC
5196 struct frame_id sr_id)
5197{
611c83ae
PA
5198 /* There should never be more than one step-resume or longjmp-resume
5199 breakpoint per thread, so we should never be setting a new
44cbf7b5 5200 step_resume_breakpoint when one is already active. */
8358c15c 5201 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
d3169d93
DJ
5202
5203 if (debug_infrun)
5204 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5205 "infrun: inserting step-resume breakpoint at %s\n",
5206 paddress (gdbarch, sr_sal.pc));
d3169d93 5207
8358c15c 5208 inferior_thread ()->control.step_resume_breakpoint
a6d9a66e 5209 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, bp_step_resume);
44cbf7b5 5210}
7ce450bd 5211
d3169d93 5212/* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
14e60db5 5213 to skip a potential signal handler.
7ce450bd 5214
14e60db5
DJ
5215 This is called with the interrupted function's frame. The signal
5216 handler, when it returns, will resume the interrupted function at
5217 RETURN_FRAME.pc. */
d303a6c7
AC
5218
5219static void
44cbf7b5 5220insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
5221{
5222 struct symtab_and_line sr_sal;
a6d9a66e 5223 struct gdbarch *gdbarch;
d303a6c7 5224
f4c1edd8 5225 gdb_assert (return_frame != NULL);
d303a6c7
AC
5226 init_sal (&sr_sal); /* initialize to zeros */
5227
a6d9a66e 5228 gdbarch = get_frame_arch (return_frame);
568d6575 5229 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 5230 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5231 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 5232
a6d9a66e
UW
5233 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5234 get_stack_frame_id (return_frame));
d303a6c7
AC
5235}
5236
14e60db5
DJ
5237/* Similar to insert_step_resume_breakpoint_at_frame, except
5238 but a breakpoint at the previous frame's PC. This is used to
5239 skip a function after stepping into it (for "next" or if the called
5240 function has no debugging information).
5241
5242 The current function has almost always been reached by single
5243 stepping a call or return instruction. NEXT_FRAME belongs to the
5244 current function, and the breakpoint will be set at the caller's
5245 resume address.
5246
5247 This is a separate function rather than reusing
5248 insert_step_resume_breakpoint_at_frame in order to avoid
5249 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 5250 of frame_unwind_caller_id for an example). */
14e60db5
DJ
5251
5252static void
5253insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5254{
5255 struct symtab_and_line sr_sal;
a6d9a66e 5256 struct gdbarch *gdbarch;
14e60db5
DJ
5257
5258 /* We shouldn't have gotten here if we don't know where the call site
5259 is. */
c7ce8faa 5260 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
5261
5262 init_sal (&sr_sal); /* initialize to zeros */
5263
a6d9a66e 5264 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
5265 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5266 frame_unwind_caller_pc (next_frame));
14e60db5 5267 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5268 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 5269
a6d9a66e 5270 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 5271 frame_unwind_caller_id (next_frame));
14e60db5
DJ
5272}
5273
611c83ae
PA
5274/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5275 new breakpoint at the target of a jmp_buf. The handling of
5276 longjmp-resume uses the same mechanisms used for handling
5277 "step-resume" breakpoints. */
5278
5279static void
a6d9a66e 5280insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae
PA
5281{
5282 /* There should never be more than one step-resume or longjmp-resume
5283 breakpoint per thread, so we should never be setting a new
5284 longjmp_resume_breakpoint when one is already active. */
8358c15c 5285 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
611c83ae
PA
5286
5287 if (debug_infrun)
5288 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5289 "infrun: inserting longjmp-resume breakpoint at %s\n",
5290 paddress (gdbarch, pc));
611c83ae 5291
8358c15c 5292 inferior_thread ()->control.step_resume_breakpoint =
a6d9a66e 5293 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
5294}
5295
186c406b
TT
5296/* Insert an exception resume breakpoint. TP is the thread throwing
5297 the exception. The block B is the block of the unwinder debug hook
5298 function. FRAME is the frame corresponding to the call to this
5299 function. SYM is the symbol of the function argument holding the
5300 target PC of the exception. */
5301
5302static void
5303insert_exception_resume_breakpoint (struct thread_info *tp,
5304 struct block *b,
5305 struct frame_info *frame,
5306 struct symbol *sym)
5307{
5308 struct gdb_exception e;
5309
5310 /* We want to ignore errors here. */
5311 TRY_CATCH (e, RETURN_MASK_ERROR)
5312 {
5313 struct symbol *vsym;
5314 struct value *value;
5315 CORE_ADDR handler;
5316 struct breakpoint *bp;
5317
5318 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5319 value = read_var_value (vsym, frame);
5320 /* If the value was optimized out, revert to the old behavior. */
5321 if (! value_optimized_out (value))
5322 {
5323 handler = value_as_address (value);
5324
5325 if (debug_infrun)
5326 fprintf_unfiltered (gdb_stdlog,
5327 "infrun: exception resume at %lx\n",
5328 (unsigned long) handler);
5329
5330 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5331 handler, bp_exception_resume);
5332 bp->thread = tp->num;
5333 inferior_thread ()->control.exception_resume_breakpoint = bp;
5334 }
5335 }
5336}
5337
5338/* This is called when an exception has been intercepted. Check to
5339 see whether the exception's destination is of interest, and if so,
5340 set an exception resume breakpoint there. */
5341
5342static void
5343check_exception_resume (struct execution_control_state *ecs,
5344 struct frame_info *frame, struct symbol *func)
5345{
5346 struct gdb_exception e;
5347
5348 TRY_CATCH (e, RETURN_MASK_ERROR)
5349 {
5350 struct block *b;
5351 struct dict_iterator iter;
5352 struct symbol *sym;
5353 int argno = 0;
5354
5355 /* The exception breakpoint is a thread-specific breakpoint on
5356 the unwinder's debug hook, declared as:
5357
5358 void _Unwind_DebugHook (void *cfa, void *handler);
5359
5360 The CFA argument indicates the frame to which control is
5361 about to be transferred. HANDLER is the destination PC.
5362
5363 We ignore the CFA and set a temporary breakpoint at HANDLER.
5364 This is not extremely efficient but it avoids issues in gdb
5365 with computing the DWARF CFA, and it also works even in weird
5366 cases such as throwing an exception from inside a signal
5367 handler. */
5368
5369 b = SYMBOL_BLOCK_VALUE (func);
5370 ALL_BLOCK_SYMBOLS (b, iter, sym)
5371 {
5372 if (!SYMBOL_IS_ARGUMENT (sym))
5373 continue;
5374
5375 if (argno == 0)
5376 ++argno;
5377 else
5378 {
5379 insert_exception_resume_breakpoint (ecs->event_thread,
5380 b, frame, sym);
5381 break;
5382 }
5383 }
5384 }
5385}
5386
104c1213
JM
5387static void
5388stop_stepping (struct execution_control_state *ecs)
5389{
527159b7 5390 if (debug_infrun)
8a9de0e4 5391 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 5392
cd0fc7c3
SS
5393 /* Let callers know we don't want to wait for the inferior anymore. */
5394 ecs->wait_some_more = 0;
5395}
5396
d4f3574e
SS
5397/* This function handles various cases where we need to continue
5398 waiting for the inferior. */
1777feb0 5399/* (Used to be the keep_going: label in the old wait_for_inferior). */
d4f3574e
SS
5400
5401static void
5402keep_going (struct execution_control_state *ecs)
5403{
c4dbc9af
PA
5404 /* Make sure normal_stop is called if we get a QUIT handled before
5405 reaching resume. */
5406 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5407
d4f3574e 5408 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
5409 ecs->event_thread->prev_pc
5410 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 5411
d4f3574e
SS
5412 /* If we did not do break;, it means we should keep running the
5413 inferior and not return to debugger. */
5414
16c381f0
JK
5415 if (ecs->event_thread->control.trap_expected
5416 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
d4f3574e
SS
5417 {
5418 /* We took a signal (which we are supposed to pass through to
4e1c45ea
PA
5419 the inferior, else we'd not get here) and we haven't yet
5420 gotten our trap. Simply continue. */
c4dbc9af
PA
5421
5422 discard_cleanups (old_cleanups);
2020b7ab 5423 resume (currently_stepping (ecs->event_thread),
16c381f0 5424 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5425 }
5426 else
5427 {
5428 /* Either the trap was not expected, but we are continuing
488f131b
JB
5429 anyway (the user asked that this signal be passed to the
5430 child)
5431 -- or --
5432 The signal was SIGTRAP, e.g. it was our signal, but we
5433 decided we should resume from it.
d4f3574e 5434
c36b740a 5435 We're going to run this baby now!
d4f3574e 5436
c36b740a
VP
5437 Note that insert_breakpoints won't try to re-insert
5438 already inserted breakpoints. Therefore, we don't
5439 care if breakpoints were already inserted, or not. */
5440
4e1c45ea 5441 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 5442 {
9f5a595d 5443 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
abbb1732 5444
9f5a595d 5445 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
5446 /* Since we can't do a displaced step, we have to remove
5447 the breakpoint while we step it. To keep things
5448 simple, we remove them all. */
5449 remove_breakpoints ();
45e8c884
VP
5450 }
5451 else
d4f3574e 5452 {
e236ba44 5453 struct gdb_exception e;
abbb1732 5454
569631c6
UW
5455 /* Stop stepping when inserting breakpoints
5456 has failed. */
e236ba44
VP
5457 TRY_CATCH (e, RETURN_MASK_ERROR)
5458 {
5459 insert_breakpoints ();
5460 }
5461 if (e.reason < 0)
d4f3574e 5462 {
97bd5475 5463 exception_print (gdb_stderr, e);
d4f3574e
SS
5464 stop_stepping (ecs);
5465 return;
5466 }
d4f3574e
SS
5467 }
5468
16c381f0
JK
5469 ecs->event_thread->control.trap_expected
5470 = ecs->event_thread->stepping_over_breakpoint;
d4f3574e
SS
5471
5472 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
5473 specifies that such a signal should be delivered to the
5474 target program).
5475
5476 Typically, this would occure when a user is debugging a
5477 target monitor on a simulator: the target monitor sets a
5478 breakpoint; the simulator encounters this break-point and
5479 halts the simulation handing control to GDB; GDB, noteing
5480 that the break-point isn't valid, returns control back to the
5481 simulator; the simulator then delivers the hardware
1777feb0 5482 equivalent of a SIGNAL_TRAP to the program being debugged. */
488f131b 5483
16c381f0
JK
5484 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
5485 && !signal_program[ecs->event_thread->suspend.stop_signal])
5486 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
d4f3574e 5487
c4dbc9af 5488 discard_cleanups (old_cleanups);
2020b7ab 5489 resume (currently_stepping (ecs->event_thread),
16c381f0 5490 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5491 }
5492
488f131b 5493 prepare_to_wait (ecs);
d4f3574e
SS
5494}
5495
104c1213
JM
5496/* This function normally comes after a resume, before
5497 handle_inferior_event exits. It takes care of any last bits of
5498 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 5499
104c1213
JM
5500static void
5501prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 5502{
527159b7 5503 if (debug_infrun)
8a9de0e4 5504 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 5505
104c1213
JM
5506 /* This is the old end of the while loop. Let everybody know we
5507 want to wait for the inferior some more and get called again
5508 soon. */
5509 ecs->wait_some_more = 1;
c906108c 5510}
11cf8741 5511
33d62d64
JK
5512/* Several print_*_reason functions to print why the inferior has stopped.
5513 We always print something when the inferior exits, or receives a signal.
5514 The rest of the cases are dealt with later on in normal_stop and
5515 print_it_typical. Ideally there should be a call to one of these
5516 print_*_reason functions functions from handle_inferior_event each time
5517 stop_stepping is called. */
5518
5519/* Print why the inferior has stopped.
5520 We are done with a step/next/si/ni command, print why the inferior has
5521 stopped. For now print nothing. Print a message only if not in the middle
5522 of doing a "step n" operation for n > 1. */
5523
5524static void
5525print_end_stepping_range_reason (void)
5526{
16c381f0
JK
5527 if ((!inferior_thread ()->step_multi
5528 || !inferior_thread ()->control.stop_step)
33d62d64
JK
5529 && ui_out_is_mi_like_p (uiout))
5530 ui_out_field_string (uiout, "reason",
5531 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5532}
5533
5534/* The inferior was terminated by a signal, print why it stopped. */
5535
11cf8741 5536static void
33d62d64 5537print_signal_exited_reason (enum target_signal siggnal)
11cf8741 5538{
33d62d64
JK
5539 annotate_signalled ();
5540 if (ui_out_is_mi_like_p (uiout))
5541 ui_out_field_string
5542 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5543 ui_out_text (uiout, "\nProgram terminated with signal ");
5544 annotate_signal_name ();
5545 ui_out_field_string (uiout, "signal-name",
5546 target_signal_to_name (siggnal));
5547 annotate_signal_name_end ();
5548 ui_out_text (uiout, ", ");
5549 annotate_signal_string ();
5550 ui_out_field_string (uiout, "signal-meaning",
5551 target_signal_to_string (siggnal));
5552 annotate_signal_string_end ();
5553 ui_out_text (uiout, ".\n");
5554 ui_out_text (uiout, "The program no longer exists.\n");
5555}
5556
5557/* The inferior program is finished, print why it stopped. */
5558
5559static void
5560print_exited_reason (int exitstatus)
5561{
fda326dd
TT
5562 struct inferior *inf = current_inferior ();
5563 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
5564
33d62d64
JK
5565 annotate_exited (exitstatus);
5566 if (exitstatus)
5567 {
5568 if (ui_out_is_mi_like_p (uiout))
5569 ui_out_field_string (uiout, "reason",
5570 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
5571 ui_out_text (uiout, "[Inferior ");
5572 ui_out_text (uiout, plongest (inf->num));
5573 ui_out_text (uiout, " (");
5574 ui_out_text (uiout, pidstr);
5575 ui_out_text (uiout, ") exited with code ");
33d62d64 5576 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 5577 ui_out_text (uiout, "]\n");
33d62d64
JK
5578 }
5579 else
11cf8741 5580 {
9dc5e2a9 5581 if (ui_out_is_mi_like_p (uiout))
034dad6f 5582 ui_out_field_string
33d62d64 5583 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
5584 ui_out_text (uiout, "[Inferior ");
5585 ui_out_text (uiout, plongest (inf->num));
5586 ui_out_text (uiout, " (");
5587 ui_out_text (uiout, pidstr);
5588 ui_out_text (uiout, ") exited normally]\n");
33d62d64
JK
5589 }
5590 /* Support the --return-child-result option. */
5591 return_child_result_value = exitstatus;
5592}
5593
5594/* Signal received, print why the inferior has stopped. The signal table
1777feb0 5595 tells us to print about it. */
33d62d64
JK
5596
5597static void
5598print_signal_received_reason (enum target_signal siggnal)
5599{
5600 annotate_signal ();
5601
5602 if (siggnal == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5603 {
5604 struct thread_info *t = inferior_thread ();
5605
5606 ui_out_text (uiout, "\n[");
5607 ui_out_field_string (uiout, "thread-name",
5608 target_pid_to_str (t->ptid));
5609 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5610 ui_out_text (uiout, " stopped");
5611 }
5612 else
5613 {
5614 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 5615 annotate_signal_name ();
33d62d64
JK
5616 if (ui_out_is_mi_like_p (uiout))
5617 ui_out_field_string
5618 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 5619 ui_out_field_string (uiout, "signal-name",
33d62d64 5620 target_signal_to_name (siggnal));
8b93c638
JM
5621 annotate_signal_name_end ();
5622 ui_out_text (uiout, ", ");
5623 annotate_signal_string ();
488f131b 5624 ui_out_field_string (uiout, "signal-meaning",
33d62d64 5625 target_signal_to_string (siggnal));
8b93c638 5626 annotate_signal_string_end ();
33d62d64
JK
5627 }
5628 ui_out_text (uiout, ".\n");
5629}
252fbfc8 5630
33d62d64
JK
5631/* Reverse execution: target ran out of history info, print why the inferior
5632 has stopped. */
252fbfc8 5633
33d62d64
JK
5634static void
5635print_no_history_reason (void)
5636{
5637 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
11cf8741 5638}
43ff13b4 5639
c906108c
SS
5640/* Here to return control to GDB when the inferior stops for real.
5641 Print appropriate messages, remove breakpoints, give terminal our modes.
5642
5643 STOP_PRINT_FRAME nonzero means print the executing frame
5644 (pc, function, args, file, line number and line text).
5645 BREAKPOINTS_FAILED nonzero means stop was due to error
5646 attempting to insert breakpoints. */
5647
5648void
96baa820 5649normal_stop (void)
c906108c 5650{
73b65bb0
DJ
5651 struct target_waitstatus last;
5652 ptid_t last_ptid;
29f49a6a 5653 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
5654
5655 get_last_target_status (&last_ptid, &last);
5656
29f49a6a
PA
5657 /* If an exception is thrown from this point on, make sure to
5658 propagate GDB's knowledge of the executing state to the
5659 frontend/user running state. A QUIT is an easy exception to see
5660 here, so do this before any filtered output. */
c35b1492
PA
5661 if (!non_stop)
5662 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5663 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5664 && last.kind != TARGET_WAITKIND_EXITED)
5665 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 5666
4f8d22e3
PA
5667 /* In non-stop mode, we don't want GDB to switch threads behind the
5668 user's back, to avoid races where the user is typing a command to
5669 apply to thread x, but GDB switches to thread y before the user
5670 finishes entering the command. */
5671
c906108c
SS
5672 /* As with the notification of thread events, we want to delay
5673 notifying the user that we've switched thread context until
5674 the inferior actually stops.
5675
73b65bb0
DJ
5676 There's no point in saying anything if the inferior has exited.
5677 Note that SIGNALLED here means "exited with a signal", not
5678 "received a signal". */
4f8d22e3
PA
5679 if (!non_stop
5680 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
5681 && target_has_execution
5682 && last.kind != TARGET_WAITKIND_SIGNALLED
5683 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
5684 {
5685 target_terminal_ours_for_output ();
a3f17187 5686 printf_filtered (_("[Switching to %s]\n"),
c95310c6 5687 target_pid_to_str (inferior_ptid));
b8fa951a 5688 annotate_thread_changed ();
39f77062 5689 previous_inferior_ptid = inferior_ptid;
c906108c 5690 }
c906108c 5691
74960c60 5692 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
5693 {
5694 if (remove_breakpoints ())
5695 {
5696 target_terminal_ours_for_output ();
3e43a32a
MS
5697 printf_filtered (_("Cannot remove breakpoints because "
5698 "program is no longer writable.\nFurther "
5699 "execution is probably impossible.\n"));
c906108c
SS
5700 }
5701 }
c906108c 5702
c906108c
SS
5703 /* If an auto-display called a function and that got a signal,
5704 delete that auto-display to avoid an infinite recursion. */
5705
5706 if (stopped_by_random_signal)
5707 disable_current_display ();
5708
5709 /* Don't print a message if in the middle of doing a "step n"
5710 operation for n > 1 */
af679fd0
PA
5711 if (target_has_execution
5712 && last.kind != TARGET_WAITKIND_SIGNALLED
5713 && last.kind != TARGET_WAITKIND_EXITED
5714 && inferior_thread ()->step_multi
16c381f0 5715 && inferior_thread ()->control.stop_step)
c906108c
SS
5716 goto done;
5717
5718 target_terminal_ours ();
5719
7abfe014
DJ
5720 /* Set the current source location. This will also happen if we
5721 display the frame below, but the current SAL will be incorrect
5722 during a user hook-stop function. */
d729566a 5723 if (has_stack_frames () && !stop_stack_dummy)
7abfe014
DJ
5724 set_current_sal_from_frame (get_current_frame (), 1);
5725
dd7e2d2b
PA
5726 /* Let the user/frontend see the threads as stopped. */
5727 do_cleanups (old_chain);
5728
5729 /* Look up the hook_stop and run it (CLI internally handles problem
5730 of stop_command's pre-hook not existing). */
5731 if (stop_command)
5732 catch_errors (hook_stop_stub, stop_command,
5733 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5734
d729566a 5735 if (!has_stack_frames ())
d51fd4c8 5736 goto done;
c906108c 5737
32400beb
PA
5738 if (last.kind == TARGET_WAITKIND_SIGNALLED
5739 || last.kind == TARGET_WAITKIND_EXITED)
5740 goto done;
5741
c906108c
SS
5742 /* Select innermost stack frame - i.e., current frame is frame 0,
5743 and current location is based on that.
5744 Don't do this on return from a stack dummy routine,
1777feb0 5745 or if the program has exited. */
c906108c
SS
5746
5747 if (!stop_stack_dummy)
5748 {
0f7d239c 5749 select_frame (get_current_frame ());
c906108c
SS
5750
5751 /* Print current location without a level number, if
c5aa993b
JM
5752 we have changed functions or hit a breakpoint.
5753 Print source line if we have one.
5754 bpstat_print() contains the logic deciding in detail
1777feb0 5755 what to print, based on the event(s) that just occurred. */
c906108c 5756
d01a8610
AS
5757 /* If --batch-silent is enabled then there's no need to print the current
5758 source location, and to try risks causing an error message about
5759 missing source files. */
5760 if (stop_print_frame && !batch_silent)
c906108c
SS
5761 {
5762 int bpstat_ret;
5763 int source_flag;
917317f4 5764 int do_frame_printing = 1;
347bddb7 5765 struct thread_info *tp = inferior_thread ();
c906108c 5766
16c381f0 5767 bpstat_ret = bpstat_print (tp->control.stop_bpstat);
917317f4
JM
5768 switch (bpstat_ret)
5769 {
5770 case PRINT_UNKNOWN:
b0f4b84b
DJ
5771 /* If we had hit a shared library event breakpoint,
5772 bpstat_print would print out this message. If we hit
5773 an OS-level shared library event, do the same
5774 thing. */
5775 if (last.kind == TARGET_WAITKIND_LOADED)
5776 {
5777 printf_filtered (_("Stopped due to shared library event\n"));
5778 source_flag = SRC_LINE; /* something bogus */
5779 do_frame_printing = 0;
5780 break;
5781 }
5782
aa0cd9c1 5783 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
5784 (or should) carry around the function and does (or
5785 should) use that when doing a frame comparison. */
16c381f0
JK
5786 if (tp->control.stop_step
5787 && frame_id_eq (tp->control.step_frame_id,
aa0cd9c1 5788 get_frame_id (get_current_frame ()))
917317f4 5789 && step_start_function == find_pc_function (stop_pc))
1777feb0
MS
5790 source_flag = SRC_LINE; /* Finished step, just
5791 print source line. */
917317f4 5792 else
1777feb0
MS
5793 source_flag = SRC_AND_LOC; /* Print location and
5794 source line. */
917317f4
JM
5795 break;
5796 case PRINT_SRC_AND_LOC:
1777feb0
MS
5797 source_flag = SRC_AND_LOC; /* Print location and
5798 source line. */
917317f4
JM
5799 break;
5800 case PRINT_SRC_ONLY:
c5394b80 5801 source_flag = SRC_LINE;
917317f4
JM
5802 break;
5803 case PRINT_NOTHING:
488f131b 5804 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
5805 do_frame_printing = 0;
5806 break;
5807 default:
e2e0b3e5 5808 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 5809 }
c906108c
SS
5810
5811 /* The behavior of this routine with respect to the source
5812 flag is:
c5394b80
JM
5813 SRC_LINE: Print only source line
5814 LOCATION: Print only location
1777feb0 5815 SRC_AND_LOC: Print location and source line. */
917317f4 5816 if (do_frame_printing)
b04f3ab4 5817 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
5818
5819 /* Display the auto-display expressions. */
5820 do_displays ();
5821 }
5822 }
5823
5824 /* Save the function value return registers, if we care.
5825 We might be about to restore their previous contents. */
16c381f0 5826 if (inferior_thread ()->control.proceed_to_finish)
d5c31457
UW
5827 {
5828 /* This should not be necessary. */
5829 if (stop_registers)
5830 regcache_xfree (stop_registers);
5831
5832 /* NB: The copy goes through to the target picking up the value of
5833 all the registers. */
5834 stop_registers = regcache_dup (get_current_regcache ());
5835 }
c906108c 5836
aa7d318d 5837 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 5838 {
b89667eb
DE
5839 /* Pop the empty frame that contains the stack dummy.
5840 This also restores inferior state prior to the call
16c381f0 5841 (struct infcall_suspend_state). */
b89667eb 5842 struct frame_info *frame = get_current_frame ();
abbb1732 5843
b89667eb
DE
5844 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
5845 frame_pop (frame);
3e43a32a
MS
5846 /* frame_pop() calls reinit_frame_cache as the last thing it
5847 does which means there's currently no selected frame. We
5848 don't need to re-establish a selected frame if the dummy call
5849 returns normally, that will be done by
5850 restore_infcall_control_state. However, we do have to handle
5851 the case where the dummy call is returning after being
5852 stopped (e.g. the dummy call previously hit a breakpoint).
5853 We can't know which case we have so just always re-establish
5854 a selected frame here. */
0f7d239c 5855 select_frame (get_current_frame ());
c906108c
SS
5856 }
5857
c906108c
SS
5858done:
5859 annotate_stopped ();
41d2bdb4
PA
5860
5861 /* Suppress the stop observer if we're in the middle of:
5862
5863 - a step n (n > 1), as there still more steps to be done.
5864
5865 - a "finish" command, as the observer will be called in
5866 finish_command_continuation, so it can include the inferior
5867 function's return value.
5868
5869 - calling an inferior function, as we pretend we inferior didn't
5870 run at all. The return value of the call is handled by the
5871 expression evaluator, through call_function_by_hand. */
5872
5873 if (!target_has_execution
5874 || last.kind == TARGET_WAITKIND_SIGNALLED
5875 || last.kind == TARGET_WAITKIND_EXITED
5876 || (!inferior_thread ()->step_multi
16c381f0
JK
5877 && !(inferior_thread ()->control.stop_bpstat
5878 && inferior_thread ()->control.proceed_to_finish)
5879 && !inferior_thread ()->control.in_infcall))
347bddb7
PA
5880 {
5881 if (!ptid_equal (inferior_ptid, null_ptid))
16c381f0 5882 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
1d33d6ba 5883 stop_print_frame);
347bddb7 5884 else
1d33d6ba 5885 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 5886 }
347bddb7 5887
48844aa6
PA
5888 if (target_has_execution)
5889 {
5890 if (last.kind != TARGET_WAITKIND_SIGNALLED
5891 && last.kind != TARGET_WAITKIND_EXITED)
5892 /* Delete the breakpoint we stopped at, if it wants to be deleted.
5893 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 5894 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 5895 }
6c95b8df
PA
5896
5897 /* Try to get rid of automatically added inferiors that are no
5898 longer needed. Keeping those around slows down things linearly.
5899 Note that this never removes the current inferior. */
5900 prune_inferiors ();
c906108c
SS
5901}
5902
5903static int
96baa820 5904hook_stop_stub (void *cmd)
c906108c 5905{
5913bcb0 5906 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
5907 return (0);
5908}
5909\f
c5aa993b 5910int
96baa820 5911signal_stop_state (int signo)
c906108c 5912{
d6b48e9c 5913 return signal_stop[signo];
c906108c
SS
5914}
5915
c5aa993b 5916int
96baa820 5917signal_print_state (int signo)
c906108c
SS
5918{
5919 return signal_print[signo];
5920}
5921
c5aa993b 5922int
96baa820 5923signal_pass_state (int signo)
c906108c
SS
5924{
5925 return signal_program[signo];
5926}
5927
2455069d
UW
5928static void
5929signal_cache_update (int signo)
5930{
5931 if (signo == -1)
5932 {
5933 for (signo = 0; signo < (int) TARGET_SIGNAL_LAST; signo++)
5934 signal_cache_update (signo);
5935
5936 return;
5937 }
5938
5939 signal_pass[signo] = (signal_stop[signo] == 0
5940 && signal_print[signo] == 0
5941 && signal_program[signo] == 1);
5942}
5943
488f131b 5944int
7bda5e4a 5945signal_stop_update (int signo, int state)
d4f3574e
SS
5946{
5947 int ret = signal_stop[signo];
abbb1732 5948
d4f3574e 5949 signal_stop[signo] = state;
2455069d 5950 signal_cache_update (signo);
d4f3574e
SS
5951 return ret;
5952}
5953
488f131b 5954int
7bda5e4a 5955signal_print_update (int signo, int state)
d4f3574e
SS
5956{
5957 int ret = signal_print[signo];
abbb1732 5958
d4f3574e 5959 signal_print[signo] = state;
2455069d 5960 signal_cache_update (signo);
d4f3574e
SS
5961 return ret;
5962}
5963
488f131b 5964int
7bda5e4a 5965signal_pass_update (int signo, int state)
d4f3574e
SS
5966{
5967 int ret = signal_program[signo];
abbb1732 5968
d4f3574e 5969 signal_program[signo] = state;
2455069d 5970 signal_cache_update (signo);
d4f3574e
SS
5971 return ret;
5972}
5973
c906108c 5974static void
96baa820 5975sig_print_header (void)
c906108c 5976{
3e43a32a
MS
5977 printf_filtered (_("Signal Stop\tPrint\tPass "
5978 "to program\tDescription\n"));
c906108c
SS
5979}
5980
5981static void
96baa820 5982sig_print_info (enum target_signal oursig)
c906108c 5983{
54363045 5984 const char *name = target_signal_to_name (oursig);
c906108c 5985 int name_padding = 13 - strlen (name);
96baa820 5986
c906108c
SS
5987 if (name_padding <= 0)
5988 name_padding = 0;
5989
5990 printf_filtered ("%s", name);
488f131b 5991 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
5992 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
5993 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
5994 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
5995 printf_filtered ("%s\n", target_signal_to_string (oursig));
5996}
5997
5998/* Specify how various signals in the inferior should be handled. */
5999
6000static void
96baa820 6001handle_command (char *args, int from_tty)
c906108c
SS
6002{
6003 char **argv;
6004 int digits, wordlen;
6005 int sigfirst, signum, siglast;
6006 enum target_signal oursig;
6007 int allsigs;
6008 int nsigs;
6009 unsigned char *sigs;
6010 struct cleanup *old_chain;
6011
6012 if (args == NULL)
6013 {
e2e0b3e5 6014 error_no_arg (_("signal to handle"));
c906108c
SS
6015 }
6016
1777feb0 6017 /* Allocate and zero an array of flags for which signals to handle. */
c906108c
SS
6018
6019 nsigs = (int) TARGET_SIGNAL_LAST;
6020 sigs = (unsigned char *) alloca (nsigs);
6021 memset (sigs, 0, nsigs);
6022
1777feb0 6023 /* Break the command line up into args. */
c906108c 6024
d1a41061 6025 argv = gdb_buildargv (args);
7a292a7a 6026 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6027
6028 /* Walk through the args, looking for signal oursigs, signal names, and
6029 actions. Signal numbers and signal names may be interspersed with
6030 actions, with the actions being performed for all signals cumulatively
1777feb0 6031 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
6032
6033 while (*argv != NULL)
6034 {
6035 wordlen = strlen (*argv);
6036 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6037 {;
6038 }
6039 allsigs = 0;
6040 sigfirst = siglast = -1;
6041
6042 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6043 {
6044 /* Apply action to all signals except those used by the
1777feb0 6045 debugger. Silently skip those. */
c906108c
SS
6046 allsigs = 1;
6047 sigfirst = 0;
6048 siglast = nsigs - 1;
6049 }
6050 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6051 {
6052 SET_SIGS (nsigs, sigs, signal_stop);
6053 SET_SIGS (nsigs, sigs, signal_print);
6054 }
6055 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6056 {
6057 UNSET_SIGS (nsigs, sigs, signal_program);
6058 }
6059 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6060 {
6061 SET_SIGS (nsigs, sigs, signal_print);
6062 }
6063 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6064 {
6065 SET_SIGS (nsigs, sigs, signal_program);
6066 }
6067 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6068 {
6069 UNSET_SIGS (nsigs, sigs, signal_stop);
6070 }
6071 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6072 {
6073 SET_SIGS (nsigs, sigs, signal_program);
6074 }
6075 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6076 {
6077 UNSET_SIGS (nsigs, sigs, signal_print);
6078 UNSET_SIGS (nsigs, sigs, signal_stop);
6079 }
6080 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6081 {
6082 UNSET_SIGS (nsigs, sigs, signal_program);
6083 }
6084 else if (digits > 0)
6085 {
6086 /* It is numeric. The numeric signal refers to our own
6087 internal signal numbering from target.h, not to host/target
6088 signal number. This is a feature; users really should be
6089 using symbolic names anyway, and the common ones like
6090 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6091
6092 sigfirst = siglast = (int)
6093 target_signal_from_command (atoi (*argv));
6094 if ((*argv)[digits] == '-')
6095 {
6096 siglast = (int)
6097 target_signal_from_command (atoi ((*argv) + digits + 1));
6098 }
6099 if (sigfirst > siglast)
6100 {
1777feb0 6101 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
6102 signum = sigfirst;
6103 sigfirst = siglast;
6104 siglast = signum;
6105 }
6106 }
6107 else
6108 {
6109 oursig = target_signal_from_name (*argv);
6110 if (oursig != TARGET_SIGNAL_UNKNOWN)
6111 {
6112 sigfirst = siglast = (int) oursig;
6113 }
6114 else
6115 {
6116 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 6117 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
6118 }
6119 }
6120
6121 /* If any signal numbers or symbol names were found, set flags for
1777feb0 6122 which signals to apply actions to. */
c906108c
SS
6123
6124 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6125 {
6126 switch ((enum target_signal) signum)
6127 {
6128 case TARGET_SIGNAL_TRAP:
6129 case TARGET_SIGNAL_INT:
6130 if (!allsigs && !sigs[signum])
6131 {
9e2f0ad4 6132 if (query (_("%s is used by the debugger.\n\
3e43a32a
MS
6133Are you sure you want to change it? "),
6134 target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
6135 {
6136 sigs[signum] = 1;
6137 }
6138 else
6139 {
a3f17187 6140 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
6141 gdb_flush (gdb_stdout);
6142 }
6143 }
6144 break;
6145 case TARGET_SIGNAL_0:
6146 case TARGET_SIGNAL_DEFAULT:
6147 case TARGET_SIGNAL_UNKNOWN:
6148 /* Make sure that "all" doesn't print these. */
6149 break;
6150 default:
6151 sigs[signum] = 1;
6152 break;
6153 }
6154 }
6155
6156 argv++;
6157 }
6158
3a031f65
PA
6159 for (signum = 0; signum < nsigs; signum++)
6160 if (sigs[signum])
6161 {
2455069d
UW
6162 signal_cache_update (-1);
6163 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
c906108c 6164
3a031f65
PA
6165 if (from_tty)
6166 {
6167 /* Show the results. */
6168 sig_print_header ();
6169 for (; signum < nsigs; signum++)
6170 if (sigs[signum])
6171 sig_print_info (signum);
6172 }
6173
6174 break;
6175 }
c906108c
SS
6176
6177 do_cleanups (old_chain);
6178}
6179
6180static void
96baa820 6181xdb_handle_command (char *args, int from_tty)
c906108c
SS
6182{
6183 char **argv;
6184 struct cleanup *old_chain;
6185
d1a41061
PP
6186 if (args == NULL)
6187 error_no_arg (_("xdb command"));
6188
1777feb0 6189 /* Break the command line up into args. */
c906108c 6190
d1a41061 6191 argv = gdb_buildargv (args);
7a292a7a 6192 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6193 if (argv[1] != (char *) NULL)
6194 {
6195 char *argBuf;
6196 int bufLen;
6197
6198 bufLen = strlen (argv[0]) + 20;
6199 argBuf = (char *) xmalloc (bufLen);
6200 if (argBuf)
6201 {
6202 int validFlag = 1;
6203 enum target_signal oursig;
6204
6205 oursig = target_signal_from_name (argv[0]);
6206 memset (argBuf, 0, bufLen);
6207 if (strcmp (argv[1], "Q") == 0)
6208 sprintf (argBuf, "%s %s", argv[0], "noprint");
6209 else
6210 {
6211 if (strcmp (argv[1], "s") == 0)
6212 {
6213 if (!signal_stop[oursig])
6214 sprintf (argBuf, "%s %s", argv[0], "stop");
6215 else
6216 sprintf (argBuf, "%s %s", argv[0], "nostop");
6217 }
6218 else if (strcmp (argv[1], "i") == 0)
6219 {
6220 if (!signal_program[oursig])
6221 sprintf (argBuf, "%s %s", argv[0], "pass");
6222 else
6223 sprintf (argBuf, "%s %s", argv[0], "nopass");
6224 }
6225 else if (strcmp (argv[1], "r") == 0)
6226 {
6227 if (!signal_print[oursig])
6228 sprintf (argBuf, "%s %s", argv[0], "print");
6229 else
6230 sprintf (argBuf, "%s %s", argv[0], "noprint");
6231 }
6232 else
6233 validFlag = 0;
6234 }
6235 if (validFlag)
6236 handle_command (argBuf, from_tty);
6237 else
a3f17187 6238 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 6239 if (argBuf)
b8c9b27d 6240 xfree (argBuf);
c906108c
SS
6241 }
6242 }
6243 do_cleanups (old_chain);
6244}
6245
6246/* Print current contents of the tables set by the handle command.
6247 It is possible we should just be printing signals actually used
6248 by the current target (but for things to work right when switching
6249 targets, all signals should be in the signal tables). */
6250
6251static void
96baa820 6252signals_info (char *signum_exp, int from_tty)
c906108c
SS
6253{
6254 enum target_signal oursig;
abbb1732 6255
c906108c
SS
6256 sig_print_header ();
6257
6258 if (signum_exp)
6259 {
6260 /* First see if this is a symbol name. */
6261 oursig = target_signal_from_name (signum_exp);
6262 if (oursig == TARGET_SIGNAL_UNKNOWN)
6263 {
6264 /* No, try numeric. */
6265 oursig =
bb518678 6266 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
6267 }
6268 sig_print_info (oursig);
6269 return;
6270 }
6271
6272 printf_filtered ("\n");
6273 /* These ugly casts brought to you by the native VAX compiler. */
6274 for (oursig = TARGET_SIGNAL_FIRST;
6275 (int) oursig < (int) TARGET_SIGNAL_LAST;
6276 oursig = (enum target_signal) ((int) oursig + 1))
6277 {
6278 QUIT;
6279
6280 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 6281 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
6282 sig_print_info (oursig);
6283 }
6284
3e43a32a
MS
6285 printf_filtered (_("\nUse the \"handle\" command "
6286 "to change these tables.\n"));
c906108c 6287}
4aa995e1
PA
6288
6289/* The $_siginfo convenience variable is a bit special. We don't know
6290 for sure the type of the value until we actually have a chance to
7a9dd1b2 6291 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
6292 also dependent on which thread you have selected.
6293
6294 1. making $_siginfo be an internalvar that creates a new value on
6295 access.
6296
6297 2. making the value of $_siginfo be an lval_computed value. */
6298
6299/* This function implements the lval_computed support for reading a
6300 $_siginfo value. */
6301
6302static void
6303siginfo_value_read (struct value *v)
6304{
6305 LONGEST transferred;
6306
6307 transferred =
6308 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6309 NULL,
6310 value_contents_all_raw (v),
6311 value_offset (v),
6312 TYPE_LENGTH (value_type (v)));
6313
6314 if (transferred != TYPE_LENGTH (value_type (v)))
6315 error (_("Unable to read siginfo"));
6316}
6317
6318/* This function implements the lval_computed support for writing a
6319 $_siginfo value. */
6320
6321static void
6322siginfo_value_write (struct value *v, struct value *fromval)
6323{
6324 LONGEST transferred;
6325
6326 transferred = target_write (&current_target,
6327 TARGET_OBJECT_SIGNAL_INFO,
6328 NULL,
6329 value_contents_all_raw (fromval),
6330 value_offset (v),
6331 TYPE_LENGTH (value_type (fromval)));
6332
6333 if (transferred != TYPE_LENGTH (value_type (fromval)))
6334 error (_("Unable to write siginfo"));
6335}
6336
6337static struct lval_funcs siginfo_value_funcs =
6338 {
6339 siginfo_value_read,
6340 siginfo_value_write
6341 };
6342
6343/* Return a new value with the correct type for the siginfo object of
78267919
UW
6344 the current thread using architecture GDBARCH. Return a void value
6345 if there's no object available. */
4aa995e1 6346
2c0b251b 6347static struct value *
78267919 6348siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
4aa995e1 6349{
4aa995e1 6350 if (target_has_stack
78267919
UW
6351 && !ptid_equal (inferior_ptid, null_ptid)
6352 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 6353 {
78267919 6354 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 6355
78267919 6356 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
6357 }
6358
78267919 6359 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
6360}
6361
c906108c 6362\f
16c381f0
JK
6363/* infcall_suspend_state contains state about the program itself like its
6364 registers and any signal it received when it last stopped.
6365 This state must be restored regardless of how the inferior function call
6366 ends (either successfully, or after it hits a breakpoint or signal)
6367 if the program is to properly continue where it left off. */
6368
6369struct infcall_suspend_state
7a292a7a 6370{
16c381f0
JK
6371 struct thread_suspend_state thread_suspend;
6372 struct inferior_suspend_state inferior_suspend;
6373
6374 /* Other fields: */
7a292a7a 6375 CORE_ADDR stop_pc;
b89667eb 6376 struct regcache *registers;
1736ad11 6377
35515841 6378 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
6379 struct gdbarch *siginfo_gdbarch;
6380
6381 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6382 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6383 content would be invalid. */
6384 gdb_byte *siginfo_data;
b89667eb
DE
6385};
6386
16c381f0
JK
6387struct infcall_suspend_state *
6388save_infcall_suspend_state (void)
b89667eb 6389{
16c381f0 6390 struct infcall_suspend_state *inf_state;
b89667eb 6391 struct thread_info *tp = inferior_thread ();
16c381f0 6392 struct inferior *inf = current_inferior ();
1736ad11
JK
6393 struct regcache *regcache = get_current_regcache ();
6394 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6395 gdb_byte *siginfo_data = NULL;
6396
6397 if (gdbarch_get_siginfo_type_p (gdbarch))
6398 {
6399 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6400 size_t len = TYPE_LENGTH (type);
6401 struct cleanup *back_to;
6402
6403 siginfo_data = xmalloc (len);
6404 back_to = make_cleanup (xfree, siginfo_data);
6405
6406 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6407 siginfo_data, 0, len) == len)
6408 discard_cleanups (back_to);
6409 else
6410 {
6411 /* Errors ignored. */
6412 do_cleanups (back_to);
6413 siginfo_data = NULL;
6414 }
6415 }
6416
16c381f0 6417 inf_state = XZALLOC (struct infcall_suspend_state);
1736ad11
JK
6418
6419 if (siginfo_data)
6420 {
6421 inf_state->siginfo_gdbarch = gdbarch;
6422 inf_state->siginfo_data = siginfo_data;
6423 }
b89667eb 6424
16c381f0
JK
6425 inf_state->thread_suspend = tp->suspend;
6426 inf_state->inferior_suspend = inf->suspend;
6427
35515841
JK
6428 /* run_inferior_call will not use the signal due to its `proceed' call with
6429 TARGET_SIGNAL_0 anyway. */
16c381f0 6430 tp->suspend.stop_signal = TARGET_SIGNAL_0;
35515841 6431
b89667eb
DE
6432 inf_state->stop_pc = stop_pc;
6433
1736ad11 6434 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
6435
6436 return inf_state;
6437}
6438
6439/* Restore inferior session state to INF_STATE. */
6440
6441void
16c381f0 6442restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6443{
6444 struct thread_info *tp = inferior_thread ();
16c381f0 6445 struct inferior *inf = current_inferior ();
1736ad11
JK
6446 struct regcache *regcache = get_current_regcache ();
6447 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 6448
16c381f0
JK
6449 tp->suspend = inf_state->thread_suspend;
6450 inf->suspend = inf_state->inferior_suspend;
6451
b89667eb
DE
6452 stop_pc = inf_state->stop_pc;
6453
1736ad11
JK
6454 if (inf_state->siginfo_gdbarch == gdbarch)
6455 {
6456 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6457 size_t len = TYPE_LENGTH (type);
6458
6459 /* Errors ignored. */
6460 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6461 inf_state->siginfo_data, 0, len);
6462 }
6463
b89667eb
DE
6464 /* The inferior can be gone if the user types "print exit(0)"
6465 (and perhaps other times). */
6466 if (target_has_execution)
6467 /* NB: The register write goes through to the target. */
1736ad11 6468 regcache_cpy (regcache, inf_state->registers);
803b5f95 6469
16c381f0 6470 discard_infcall_suspend_state (inf_state);
b89667eb
DE
6471}
6472
6473static void
16c381f0 6474do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 6475{
16c381f0 6476 restore_infcall_suspend_state (state);
b89667eb
DE
6477}
6478
6479struct cleanup *
16c381f0
JK
6480make_cleanup_restore_infcall_suspend_state
6481 (struct infcall_suspend_state *inf_state)
b89667eb 6482{
16c381f0 6483 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
6484}
6485
6486void
16c381f0 6487discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6488{
6489 regcache_xfree (inf_state->registers);
803b5f95 6490 xfree (inf_state->siginfo_data);
b89667eb
DE
6491 xfree (inf_state);
6492}
6493
6494struct regcache *
16c381f0 6495get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
6496{
6497 return inf_state->registers;
6498}
6499
16c381f0
JK
6500/* infcall_control_state contains state regarding gdb's control of the
6501 inferior itself like stepping control. It also contains session state like
6502 the user's currently selected frame. */
b89667eb 6503
16c381f0 6504struct infcall_control_state
b89667eb 6505{
16c381f0
JK
6506 struct thread_control_state thread_control;
6507 struct inferior_control_state inferior_control;
d82142e2
JK
6508
6509 /* Other fields: */
6510 enum stop_stack_kind stop_stack_dummy;
6511 int stopped_by_random_signal;
7a292a7a 6512 int stop_after_trap;
7a292a7a 6513
b89667eb 6514 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 6515 struct frame_id selected_frame_id;
7a292a7a
SS
6516};
6517
c906108c 6518/* Save all of the information associated with the inferior<==>gdb
b89667eb 6519 connection. */
c906108c 6520
16c381f0
JK
6521struct infcall_control_state *
6522save_infcall_control_state (void)
c906108c 6523{
16c381f0 6524 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
4e1c45ea 6525 struct thread_info *tp = inferior_thread ();
d6b48e9c 6526 struct inferior *inf = current_inferior ();
7a292a7a 6527
16c381f0
JK
6528 inf_status->thread_control = tp->control;
6529 inf_status->inferior_control = inf->control;
d82142e2 6530
8358c15c 6531 tp->control.step_resume_breakpoint = NULL;
5b79abe7 6532 tp->control.exception_resume_breakpoint = NULL;
8358c15c 6533
16c381f0
JK
6534 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6535 chain. If caller's caller is walking the chain, they'll be happier if we
6536 hand them back the original chain when restore_infcall_control_state is
6537 called. */
6538 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
6539
6540 /* Other fields: */
6541 inf_status->stop_stack_dummy = stop_stack_dummy;
6542 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6543 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 6544
206415a3 6545 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 6546
7a292a7a 6547 return inf_status;
c906108c
SS
6548}
6549
c906108c 6550static int
96baa820 6551restore_selected_frame (void *args)
c906108c 6552{
488f131b 6553 struct frame_id *fid = (struct frame_id *) args;
c906108c 6554 struct frame_info *frame;
c906108c 6555
101dcfbe 6556 frame = frame_find_by_id (*fid);
c906108c 6557
aa0cd9c1
AC
6558 /* If inf_status->selected_frame_id is NULL, there was no previously
6559 selected frame. */
101dcfbe 6560 if (frame == NULL)
c906108c 6561 {
8a3fe4f8 6562 warning (_("Unable to restore previously selected frame."));
c906108c
SS
6563 return 0;
6564 }
6565
0f7d239c 6566 select_frame (frame);
c906108c
SS
6567
6568 return (1);
6569}
6570
b89667eb
DE
6571/* Restore inferior session state to INF_STATUS. */
6572
c906108c 6573void
16c381f0 6574restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 6575{
4e1c45ea 6576 struct thread_info *tp = inferior_thread ();
d6b48e9c 6577 struct inferior *inf = current_inferior ();
4e1c45ea 6578
8358c15c
JK
6579 if (tp->control.step_resume_breakpoint)
6580 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6581
5b79abe7
TT
6582 if (tp->control.exception_resume_breakpoint)
6583 tp->control.exception_resume_breakpoint->disposition
6584 = disp_del_at_next_stop;
6585
d82142e2 6586 /* Handle the bpstat_copy of the chain. */
16c381f0 6587 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 6588
16c381f0
JK
6589 tp->control = inf_status->thread_control;
6590 inf->control = inf_status->inferior_control;
d82142e2
JK
6591
6592 /* Other fields: */
6593 stop_stack_dummy = inf_status->stop_stack_dummy;
6594 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6595 stop_after_trap = inf_status->stop_after_trap;
c906108c 6596
b89667eb 6597 if (target_has_stack)
c906108c 6598 {
c906108c 6599 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
6600 walking the stack might encounter a garbage pointer and
6601 error() trying to dereference it. */
488f131b
JB
6602 if (catch_errors
6603 (restore_selected_frame, &inf_status->selected_frame_id,
6604 "Unable to restore previously selected frame:\n",
6605 RETURN_MASK_ERROR) == 0)
c906108c
SS
6606 /* Error in restoring the selected frame. Select the innermost
6607 frame. */
0f7d239c 6608 select_frame (get_current_frame ());
c906108c 6609 }
c906108c 6610
72cec141 6611 xfree (inf_status);
7a292a7a 6612}
c906108c 6613
74b7792f 6614static void
16c381f0 6615do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 6616{
16c381f0 6617 restore_infcall_control_state (sts);
74b7792f
AC
6618}
6619
6620struct cleanup *
16c381f0
JK
6621make_cleanup_restore_infcall_control_state
6622 (struct infcall_control_state *inf_status)
74b7792f 6623{
16c381f0 6624 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
6625}
6626
c906108c 6627void
16c381f0 6628discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 6629{
8358c15c
JK
6630 if (inf_status->thread_control.step_resume_breakpoint)
6631 inf_status->thread_control.step_resume_breakpoint->disposition
6632 = disp_del_at_next_stop;
6633
5b79abe7
TT
6634 if (inf_status->thread_control.exception_resume_breakpoint)
6635 inf_status->thread_control.exception_resume_breakpoint->disposition
6636 = disp_del_at_next_stop;
6637
1777feb0 6638 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 6639 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 6640
72cec141 6641 xfree (inf_status);
7a292a7a 6642}
b89667eb 6643\f
47932f85 6644int
3a3e9ee3 6645inferior_has_forked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
6646{
6647 struct target_waitstatus last;
6648 ptid_t last_ptid;
6649
6650 get_last_target_status (&last_ptid, &last);
6651
6652 if (last.kind != TARGET_WAITKIND_FORKED)
6653 return 0;
6654
3a3e9ee3 6655 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
6656 return 0;
6657
6658 *child_pid = last.value.related_pid;
6659 return 1;
6660}
6661
6662int
3a3e9ee3 6663inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
6664{
6665 struct target_waitstatus last;
6666 ptid_t last_ptid;
6667
6668 get_last_target_status (&last_ptid, &last);
6669
6670 if (last.kind != TARGET_WAITKIND_VFORKED)
6671 return 0;
6672
3a3e9ee3 6673 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
6674 return 0;
6675
6676 *child_pid = last.value.related_pid;
6677 return 1;
6678}
6679
6680int
3a3e9ee3 6681inferior_has_execd (ptid_t pid, char **execd_pathname)
47932f85
DJ
6682{
6683 struct target_waitstatus last;
6684 ptid_t last_ptid;
6685
6686 get_last_target_status (&last_ptid, &last);
6687
6688 if (last.kind != TARGET_WAITKIND_EXECD)
6689 return 0;
6690
3a3e9ee3 6691 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
6692 return 0;
6693
6694 *execd_pathname = xstrdup (last.value.execd_pathname);
6695 return 1;
6696}
6697
a96d9b2e
SDJ
6698int
6699inferior_has_called_syscall (ptid_t pid, int *syscall_number)
6700{
6701 struct target_waitstatus last;
6702 ptid_t last_ptid;
6703
6704 get_last_target_status (&last_ptid, &last);
6705
6706 if (last.kind != TARGET_WAITKIND_SYSCALL_ENTRY &&
6707 last.kind != TARGET_WAITKIND_SYSCALL_RETURN)
6708 return 0;
6709
6710 if (!ptid_equal (last_ptid, pid))
6711 return 0;
6712
6713 *syscall_number = last.value.syscall_number;
6714 return 1;
6715}
6716
ca6724c1
KB
6717/* Oft used ptids */
6718ptid_t null_ptid;
6719ptid_t minus_one_ptid;
6720
6721/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 6722
ca6724c1
KB
6723ptid_t
6724ptid_build (int pid, long lwp, long tid)
6725{
6726 ptid_t ptid;
6727
6728 ptid.pid = pid;
6729 ptid.lwp = lwp;
6730 ptid.tid = tid;
6731 return ptid;
6732}
6733
6734/* Create a ptid from just a pid. */
6735
6736ptid_t
6737pid_to_ptid (int pid)
6738{
6739 return ptid_build (pid, 0, 0);
6740}
6741
6742/* Fetch the pid (process id) component from a ptid. */
6743
6744int
6745ptid_get_pid (ptid_t ptid)
6746{
6747 return ptid.pid;
6748}
6749
6750/* Fetch the lwp (lightweight process) component from a ptid. */
6751
6752long
6753ptid_get_lwp (ptid_t ptid)
6754{
6755 return ptid.lwp;
6756}
6757
6758/* Fetch the tid (thread id) component from a ptid. */
6759
6760long
6761ptid_get_tid (ptid_t ptid)
6762{
6763 return ptid.tid;
6764}
6765
6766/* ptid_equal() is used to test equality of two ptids. */
6767
6768int
6769ptid_equal (ptid_t ptid1, ptid_t ptid2)
6770{
6771 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 6772 && ptid1.tid == ptid2.tid);
ca6724c1
KB
6773}
6774
252fbfc8
PA
6775/* Returns true if PTID represents a process. */
6776
6777int
6778ptid_is_pid (ptid_t ptid)
6779{
6780 if (ptid_equal (minus_one_ptid, ptid))
6781 return 0;
6782 if (ptid_equal (null_ptid, ptid))
6783 return 0;
6784
6785 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
6786}
6787
0723dbf5
PA
6788int
6789ptid_match (ptid_t ptid, ptid_t filter)
6790{
0723dbf5
PA
6791 if (ptid_equal (filter, minus_one_ptid))
6792 return 1;
6793 if (ptid_is_pid (filter)
6794 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6795 return 1;
6796 else if (ptid_equal (ptid, filter))
6797 return 1;
6798
6799 return 0;
6800}
6801
ca6724c1
KB
6802/* restore_inferior_ptid() will be used by the cleanup machinery
6803 to restore the inferior_ptid value saved in a call to
6804 save_inferior_ptid(). */
ce696e05
KB
6805
6806static void
6807restore_inferior_ptid (void *arg)
6808{
6809 ptid_t *saved_ptid_ptr = arg;
abbb1732 6810
ce696e05
KB
6811 inferior_ptid = *saved_ptid_ptr;
6812 xfree (arg);
6813}
6814
6815/* Save the value of inferior_ptid so that it may be restored by a
6816 later call to do_cleanups(). Returns the struct cleanup pointer
6817 needed for later doing the cleanup. */
6818
6819struct cleanup *
6820save_inferior_ptid (void)
6821{
6822 ptid_t *saved_ptid_ptr;
6823
6824 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6825 *saved_ptid_ptr = inferior_ptid;
6826 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6827}
c5aa993b 6828\f
488f131b 6829
b2175913
MS
6830/* User interface for reverse debugging:
6831 Set exec-direction / show exec-direction commands
6832 (returns error unless target implements to_set_exec_direction method). */
6833
6834enum exec_direction_kind execution_direction = EXEC_FORWARD;
6835static const char exec_forward[] = "forward";
6836static const char exec_reverse[] = "reverse";
6837static const char *exec_direction = exec_forward;
6838static const char *exec_direction_names[] = {
6839 exec_forward,
6840 exec_reverse,
6841 NULL
6842};
6843
6844static void
6845set_exec_direction_func (char *args, int from_tty,
6846 struct cmd_list_element *cmd)
6847{
6848 if (target_can_execute_reverse)
6849 {
6850 if (!strcmp (exec_direction, exec_forward))
6851 execution_direction = EXEC_FORWARD;
6852 else if (!strcmp (exec_direction, exec_reverse))
6853 execution_direction = EXEC_REVERSE;
6854 }
8bbed405
MS
6855 else
6856 {
6857 exec_direction = exec_forward;
6858 error (_("Target does not support this operation."));
6859 }
b2175913
MS
6860}
6861
6862static void
6863show_exec_direction_func (struct ui_file *out, int from_tty,
6864 struct cmd_list_element *cmd, const char *value)
6865{
6866 switch (execution_direction) {
6867 case EXEC_FORWARD:
6868 fprintf_filtered (out, _("Forward.\n"));
6869 break;
6870 case EXEC_REVERSE:
6871 fprintf_filtered (out, _("Reverse.\n"));
6872 break;
6873 case EXEC_ERROR:
6874 default:
3e43a32a
MS
6875 fprintf_filtered (out, _("Forward (target `%s' does not "
6876 "support exec-direction).\n"),
b2175913
MS
6877 target_shortname);
6878 break;
6879 }
6880}
6881
6882/* User interface for non-stop mode. */
6883
ad52ddc6 6884int non_stop = 0;
ad52ddc6
PA
6885
6886static void
6887set_non_stop (char *args, int from_tty,
6888 struct cmd_list_element *c)
6889{
6890 if (target_has_execution)
6891 {
6892 non_stop_1 = non_stop;
6893 error (_("Cannot change this setting while the inferior is running."));
6894 }
6895
6896 non_stop = non_stop_1;
6897}
6898
6899static void
6900show_non_stop (struct ui_file *file, int from_tty,
6901 struct cmd_list_element *c, const char *value)
6902{
6903 fprintf_filtered (file,
6904 _("Controlling the inferior in non-stop mode is %s.\n"),
6905 value);
6906}
6907
d4db2f36
PA
6908static void
6909show_schedule_multiple (struct ui_file *file, int from_tty,
6910 struct cmd_list_element *c, const char *value)
6911{
3e43a32a
MS
6912 fprintf_filtered (file, _("Resuming the execution of threads "
6913 "of all processes is %s.\n"), value);
d4db2f36 6914}
ad52ddc6 6915
c906108c 6916void
96baa820 6917_initialize_infrun (void)
c906108c 6918{
52f0bd74
AC
6919 int i;
6920 int numsigs;
c906108c 6921
1bedd215
AC
6922 add_info ("signals", signals_info, _("\
6923What debugger does when program gets various signals.\n\
6924Specify a signal as argument to print info on that signal only."));
c906108c
SS
6925 add_info_alias ("handle", "signals", 0);
6926
1bedd215
AC
6927 add_com ("handle", class_run, handle_command, _("\
6928Specify how to handle a signal.\n\
c906108c
SS
6929Args are signals and actions to apply to those signals.\n\
6930Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6931from 1-15 are allowed for compatibility with old versions of GDB.\n\
6932Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6933The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
6934used by the debugger, typically SIGTRAP and SIGINT.\n\
6935Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
6936\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
6937Stop means reenter debugger if this signal happens (implies print).\n\
6938Print means print a message if this signal happens.\n\
6939Pass means let program see this signal; otherwise program doesn't know.\n\
6940Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 6941Pass and Stop may be combined."));
c906108c
SS
6942 if (xdb_commands)
6943 {
1bedd215
AC
6944 add_com ("lz", class_info, signals_info, _("\
6945What debugger does when program gets various signals.\n\
6946Specify a signal as argument to print info on that signal only."));
6947 add_com ("z", class_run, xdb_handle_command, _("\
6948Specify how to handle a signal.\n\
c906108c
SS
6949Args are signals and actions to apply to those signals.\n\
6950Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6951from 1-15 are allowed for compatibility with old versions of GDB.\n\
6952Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6953The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 6954used by the debugger, typically SIGTRAP and SIGINT.\n\
cce7e648 6955Recognized actions include \"s\" (toggles between stop and nostop),\n\
c906108c
SS
6956\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
6957nopass), \"Q\" (noprint)\n\
6958Stop means reenter debugger if this signal happens (implies print).\n\
6959Print means print a message if this signal happens.\n\
6960Pass means let program see this signal; otherwise program doesn't know.\n\
6961Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 6962Pass and Stop may be combined."));
c906108c
SS
6963 }
6964
6965 if (!dbx_commands)
1a966eab
AC
6966 stop_command = add_cmd ("stop", class_obscure,
6967 not_just_help_class_command, _("\
6968There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 6969This allows you to set a list of commands to be run each time execution\n\
1a966eab 6970of the program stops."), &cmdlist);
c906108c 6971
85c07804
AC
6972 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
6973Set inferior debugging."), _("\
6974Show inferior debugging."), _("\
6975When non-zero, inferior specific debugging is enabled."),
6976 NULL,
920d2a44 6977 show_debug_infrun,
85c07804 6978 &setdebuglist, &showdebuglist);
527159b7 6979
3e43a32a
MS
6980 add_setshow_boolean_cmd ("displaced", class_maintenance,
6981 &debug_displaced, _("\
237fc4c9
PA
6982Set displaced stepping debugging."), _("\
6983Show displaced stepping debugging."), _("\
6984When non-zero, displaced stepping specific debugging is enabled."),
6985 NULL,
6986 show_debug_displaced,
6987 &setdebuglist, &showdebuglist);
6988
ad52ddc6
PA
6989 add_setshow_boolean_cmd ("non-stop", no_class,
6990 &non_stop_1, _("\
6991Set whether gdb controls the inferior in non-stop mode."), _("\
6992Show whether gdb controls the inferior in non-stop mode."), _("\
6993When debugging a multi-threaded program and this setting is\n\
6994off (the default, also called all-stop mode), when one thread stops\n\
6995(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
6996all other threads in the program while you interact with the thread of\n\
6997interest. When you continue or step a thread, you can allow the other\n\
6998threads to run, or have them remain stopped, but while you inspect any\n\
6999thread's state, all threads stop.\n\
7000\n\
7001In non-stop mode, when one thread stops, other threads can continue\n\
7002to run freely. You'll be able to step each thread independently,\n\
7003leave it stopped or free to run as needed."),
7004 set_non_stop,
7005 show_non_stop,
7006 &setlist,
7007 &showlist);
7008
c906108c 7009 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 7010 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
7011 signal_print = (unsigned char *)
7012 xmalloc (sizeof (signal_print[0]) * numsigs);
7013 signal_program = (unsigned char *)
7014 xmalloc (sizeof (signal_program[0]) * numsigs);
2455069d
UW
7015 signal_pass = (unsigned char *)
7016 xmalloc (sizeof (signal_program[0]) * numsigs);
c906108c
SS
7017 for (i = 0; i < numsigs; i++)
7018 {
7019 signal_stop[i] = 1;
7020 signal_print[i] = 1;
7021 signal_program[i] = 1;
7022 }
7023
7024 /* Signals caused by debugger's own actions
7025 should not be given to the program afterwards. */
7026 signal_program[TARGET_SIGNAL_TRAP] = 0;
7027 signal_program[TARGET_SIGNAL_INT] = 0;
7028
7029 /* Signals that are not errors should not normally enter the debugger. */
7030 signal_stop[TARGET_SIGNAL_ALRM] = 0;
7031 signal_print[TARGET_SIGNAL_ALRM] = 0;
7032 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
7033 signal_print[TARGET_SIGNAL_VTALRM] = 0;
7034 signal_stop[TARGET_SIGNAL_PROF] = 0;
7035 signal_print[TARGET_SIGNAL_PROF] = 0;
7036 signal_stop[TARGET_SIGNAL_CHLD] = 0;
7037 signal_print[TARGET_SIGNAL_CHLD] = 0;
7038 signal_stop[TARGET_SIGNAL_IO] = 0;
7039 signal_print[TARGET_SIGNAL_IO] = 0;
7040 signal_stop[TARGET_SIGNAL_POLL] = 0;
7041 signal_print[TARGET_SIGNAL_POLL] = 0;
7042 signal_stop[TARGET_SIGNAL_URG] = 0;
7043 signal_print[TARGET_SIGNAL_URG] = 0;
7044 signal_stop[TARGET_SIGNAL_WINCH] = 0;
7045 signal_print[TARGET_SIGNAL_WINCH] = 0;
16dfc9ce
JB
7046 signal_stop[TARGET_SIGNAL_PRIO] = 0;
7047 signal_print[TARGET_SIGNAL_PRIO] = 0;
c906108c 7048
cd0fc7c3
SS
7049 /* These signals are used internally by user-level thread
7050 implementations. (See signal(5) on Solaris.) Like the above
7051 signals, a healthy program receives and handles them as part of
7052 its normal operation. */
7053 signal_stop[TARGET_SIGNAL_LWP] = 0;
7054 signal_print[TARGET_SIGNAL_LWP] = 0;
7055 signal_stop[TARGET_SIGNAL_WAITING] = 0;
7056 signal_print[TARGET_SIGNAL_WAITING] = 0;
7057 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
7058 signal_print[TARGET_SIGNAL_CANCEL] = 0;
7059
2455069d
UW
7060 /* Update cached state. */
7061 signal_cache_update (-1);
7062
85c07804
AC
7063 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7064 &stop_on_solib_events, _("\
7065Set stopping for shared library events."), _("\
7066Show stopping for shared library events."), _("\
c906108c
SS
7067If nonzero, gdb will give control to the user when the dynamic linker\n\
7068notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
7069to the user would be loading/unloading of a new library."),
7070 NULL,
920d2a44 7071 show_stop_on_solib_events,
85c07804 7072 &setlist, &showlist);
c906108c 7073
7ab04401
AC
7074 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7075 follow_fork_mode_kind_names,
7076 &follow_fork_mode_string, _("\
7077Set debugger response to a program call of fork or vfork."), _("\
7078Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
7079A fork or vfork creates a new process. follow-fork-mode can be:\n\
7080 parent - the original process is debugged after a fork\n\
7081 child - the new process is debugged after a fork\n\
ea1dd7bc 7082The unfollowed process will continue to run.\n\
7ab04401
AC
7083By default, the debugger will follow the parent process."),
7084 NULL,
920d2a44 7085 show_follow_fork_mode_string,
7ab04401
AC
7086 &setlist, &showlist);
7087
6c95b8df
PA
7088 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7089 follow_exec_mode_names,
7090 &follow_exec_mode_string, _("\
7091Set debugger response to a program call of exec."), _("\
7092Show debugger response to a program call of exec."), _("\
7093An exec call replaces the program image of a process.\n\
7094\n\
7095follow-exec-mode can be:\n\
7096\n\
cce7e648 7097 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
7098to this new inferior. The program the process was running before\n\
7099the exec call can be restarted afterwards by restarting the original\n\
7100inferior.\n\
7101\n\
7102 same - the debugger keeps the process bound to the same inferior.\n\
7103The new executable image replaces the previous executable loaded in\n\
7104the inferior. Restarting the inferior after the exec call restarts\n\
7105the executable the process was running after the exec call.\n\
7106\n\
7107By default, the debugger will use the same inferior."),
7108 NULL,
7109 show_follow_exec_mode_string,
7110 &setlist, &showlist);
7111
7ab04401
AC
7112 add_setshow_enum_cmd ("scheduler-locking", class_run,
7113 scheduler_enums, &scheduler_mode, _("\
7114Set mode for locking scheduler during execution."), _("\
7115Show mode for locking scheduler during execution."), _("\
c906108c
SS
7116off == no locking (threads may preempt at any time)\n\
7117on == full locking (no thread except the current thread may run)\n\
7118step == scheduler locked during every single-step operation.\n\
7119 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
7120 Other threads may run while stepping over a function call ('next')."),
7121 set_schedlock_func, /* traps on target vector */
920d2a44 7122 show_scheduler_mode,
7ab04401 7123 &setlist, &showlist);
5fbbeb29 7124
d4db2f36
PA
7125 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7126Set mode for resuming threads of all processes."), _("\
7127Show mode for resuming threads of all processes."), _("\
7128When on, execution commands (such as 'continue' or 'next') resume all\n\
7129threads of all processes. When off (which is the default), execution\n\
7130commands only resume the threads of the current process. The set of\n\
7131threads that are resumed is further refined by the scheduler-locking\n\
7132mode (see help set scheduler-locking)."),
7133 NULL,
7134 show_schedule_multiple,
7135 &setlist, &showlist);
7136
5bf193a2
AC
7137 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7138Set mode of the step operation."), _("\
7139Show mode of the step operation."), _("\
7140When set, doing a step over a function without debug line information\n\
7141will stop at the first instruction of that function. Otherwise, the\n\
7142function is skipped and the step command stops at a different source line."),
7143 NULL,
920d2a44 7144 show_step_stop_if_no_debug,
5bf193a2 7145 &setlist, &showlist);
ca6724c1 7146
fff08868
HZ
7147 add_setshow_enum_cmd ("displaced-stepping", class_run,
7148 can_use_displaced_stepping_enum,
7149 &can_use_displaced_stepping, _("\
237fc4c9
PA
7150Set debugger's willingness to use displaced stepping."), _("\
7151Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
7152If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7153supported by the target architecture. If off, gdb will not use displaced\n\
7154stepping to step over breakpoints, even if such is supported by the target\n\
7155architecture. If auto (which is the default), gdb will use displaced stepping\n\
7156if the target architecture supports it and non-stop mode is active, but will not\n\
7157use it in all-stop mode (see help set non-stop)."),
7158 NULL,
7159 show_can_use_displaced_stepping,
7160 &setlist, &showlist);
237fc4c9 7161
b2175913
MS
7162 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7163 &exec_direction, _("Set direction of execution.\n\
7164Options are 'forward' or 'reverse'."),
7165 _("Show direction of execution (forward/reverse)."),
7166 _("Tells gdb whether to execute forward or backward."),
7167 set_exec_direction_func, show_exec_direction_func,
7168 &setlist, &showlist);
7169
6c95b8df
PA
7170 /* Set/show detach-on-fork: user-settable mode. */
7171
7172 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7173Set whether gdb will detach the child of a fork."), _("\
7174Show whether gdb will detach the child of a fork."), _("\
7175Tells gdb whether to detach the child of a fork."),
7176 NULL, NULL, &setlist, &showlist);
7177
ca6724c1
KB
7178 /* ptid initializations */
7179 null_ptid = ptid_build (0, 0, 0);
7180 minus_one_ptid = ptid_build (-1, 0, 0);
7181 inferior_ptid = null_ptid;
7182 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
7183
7184 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 7185 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 7186 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 7187 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
7188
7189 /* Explicitly create without lookup, since that tries to create a
7190 value with a void typed value, and when we get here, gdbarch
7191 isn't initialized yet. At this point, we're quite sure there
7192 isn't another convenience variable of the same name. */
7193 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
d914c394
SS
7194
7195 add_setshow_boolean_cmd ("observer", no_class,
7196 &observer_mode_1, _("\
7197Set whether gdb controls the inferior in observer mode."), _("\
7198Show whether gdb controls the inferior in observer mode."), _("\
7199In observer mode, GDB can get data from the inferior, but not\n\
7200affect its execution. Registers and memory may not be changed,\n\
7201breakpoints may not be set, and the program cannot be interrupted\n\
7202or signalled."),
7203 set_observer_mode,
7204 show_observer_mode,
7205 &setlist,
7206 &showlist);
c906108c 7207}
This page took 1.729799 seconds and 4 git commands to generate.