gdb: Move value_from_host_double into value.c and make more use of it
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
42a4f53d 4 Copyright (C) 1986-2019 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
0747795c 28#include "common/gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
76727919 41#include "observable.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
ff862be4 63#include "solist.h"
372316f1 64#include "event-loop.h"
243a9253 65#include "thread-fsm.h"
8d297bbf 66#include "common/enum-flags.h"
5ed8105e
PA
67#include "progspace-and-thread.h"
68#include "common/gdb_optional.h"
46a62268 69#include "arch-utils.h"
4c41382a 70#include "common/scope-exit.h"
9799571e 71#include "common/forward-scope-exit.h"
c906108c
SS
72
73/* Prototypes for local functions */
74
2ea28649 75static void sig_print_info (enum gdb_signal);
c906108c 76
96baa820 77static void sig_print_header (void);
c906108c 78
4ef3f3be 79static int follow_fork (void);
96baa820 80
d83ad864
DB
81static int follow_fork_inferior (int follow_child, int detach_fork);
82
83static void follow_inferior_reset_breakpoints (void);
84
a289b8f6
JK
85static int currently_stepping (struct thread_info *tp);
86
e58b0e63
PA
87void nullify_last_target_wait_ptid (void);
88
2c03e5be 89static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
90
91static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
92
2484c66b
UW
93static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
94
8550d3b3
YQ
95static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
96
aff4e175
AB
97static void resume (gdb_signal sig);
98
372316f1
PA
99/* Asynchronous signal handler registered as event loop source for
100 when we have pending events ready to be passed to the core. */
101static struct async_event_handler *infrun_async_inferior_event_token;
102
103/* Stores whether infrun_async was previously enabled or disabled.
104 Starts off as -1, indicating "never enabled/disabled". */
105static int infrun_is_async = -1;
106
107/* See infrun.h. */
108
109void
110infrun_async (int enable)
111{
112 if (infrun_is_async != enable)
113 {
114 infrun_is_async = enable;
115
116 if (debug_infrun)
117 fprintf_unfiltered (gdb_stdlog,
118 "infrun: infrun_async(%d)\n",
119 enable);
120
121 if (enable)
122 mark_async_event_handler (infrun_async_inferior_event_token);
123 else
124 clear_async_event_handler (infrun_async_inferior_event_token);
125 }
126}
127
0b333c5e
PA
128/* See infrun.h. */
129
130void
131mark_infrun_async_event_handler (void)
132{
133 mark_async_event_handler (infrun_async_inferior_event_token);
134}
135
5fbbeb29
CF
136/* When set, stop the 'step' command if we enter a function which has
137 no line number information. The normal behavior is that we step
138 over such function. */
139int step_stop_if_no_debug = 0;
920d2a44
AC
140static void
141show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
142 struct cmd_list_element *c, const char *value)
143{
144 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
145}
5fbbeb29 146
b9f437de
PA
147/* proceed and normal_stop use this to notify the user when the
148 inferior stopped in a different thread than it had been running
149 in. */
96baa820 150
39f77062 151static ptid_t previous_inferior_ptid;
7a292a7a 152
07107ca6
LM
153/* If set (default for legacy reasons), when following a fork, GDB
154 will detach from one of the fork branches, child or parent.
155 Exactly which branch is detached depends on 'set follow-fork-mode'
156 setting. */
157
158static int detach_fork = 1;
6c95b8df 159
237fc4c9
PA
160int debug_displaced = 0;
161static void
162show_debug_displaced (struct ui_file *file, int from_tty,
163 struct cmd_list_element *c, const char *value)
164{
165 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
166}
167
ccce17b0 168unsigned int debug_infrun = 0;
920d2a44
AC
169static void
170show_debug_infrun (struct ui_file *file, int from_tty,
171 struct cmd_list_element *c, const char *value)
172{
173 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
174}
527159b7 175
03583c20
UW
176
177/* Support for disabling address space randomization. */
178
179int disable_randomization = 1;
180
181static void
182show_disable_randomization (struct ui_file *file, int from_tty,
183 struct cmd_list_element *c, const char *value)
184{
185 if (target_supports_disable_randomization ())
186 fprintf_filtered (file,
187 _("Disabling randomization of debuggee's "
188 "virtual address space is %s.\n"),
189 value);
190 else
191 fputs_filtered (_("Disabling randomization of debuggee's "
192 "virtual address space is unsupported on\n"
193 "this platform.\n"), file);
194}
195
196static void
eb4c3f4a 197set_disable_randomization (const char *args, int from_tty,
03583c20
UW
198 struct cmd_list_element *c)
199{
200 if (!target_supports_disable_randomization ())
201 error (_("Disabling randomization of debuggee's "
202 "virtual address space is unsupported on\n"
203 "this platform."));
204}
205
d32dc48e
PA
206/* User interface for non-stop mode. */
207
208int non_stop = 0;
209static int non_stop_1 = 0;
210
211static void
eb4c3f4a 212set_non_stop (const char *args, int from_tty,
d32dc48e
PA
213 struct cmd_list_element *c)
214{
215 if (target_has_execution)
216 {
217 non_stop_1 = non_stop;
218 error (_("Cannot change this setting while the inferior is running."));
219 }
220
221 non_stop = non_stop_1;
222}
223
224static void
225show_non_stop (struct ui_file *file, int from_tty,
226 struct cmd_list_element *c, const char *value)
227{
228 fprintf_filtered (file,
229 _("Controlling the inferior in non-stop mode is %s.\n"),
230 value);
231}
232
d914c394
SS
233/* "Observer mode" is somewhat like a more extreme version of
234 non-stop, in which all GDB operations that might affect the
235 target's execution have been disabled. */
236
d914c394
SS
237int observer_mode = 0;
238static int observer_mode_1 = 0;
239
240static void
eb4c3f4a 241set_observer_mode (const char *args, int from_tty,
d914c394
SS
242 struct cmd_list_element *c)
243{
d914c394
SS
244 if (target_has_execution)
245 {
246 observer_mode_1 = observer_mode;
247 error (_("Cannot change this setting while the inferior is running."));
248 }
249
250 observer_mode = observer_mode_1;
251
252 may_write_registers = !observer_mode;
253 may_write_memory = !observer_mode;
254 may_insert_breakpoints = !observer_mode;
255 may_insert_tracepoints = !observer_mode;
256 /* We can insert fast tracepoints in or out of observer mode,
257 but enable them if we're going into this mode. */
258 if (observer_mode)
259 may_insert_fast_tracepoints = 1;
260 may_stop = !observer_mode;
261 update_target_permissions ();
262
263 /* Going *into* observer mode we must force non-stop, then
264 going out we leave it that way. */
265 if (observer_mode)
266 {
d914c394
SS
267 pagination_enabled = 0;
268 non_stop = non_stop_1 = 1;
269 }
270
271 if (from_tty)
272 printf_filtered (_("Observer mode is now %s.\n"),
273 (observer_mode ? "on" : "off"));
274}
275
276static void
277show_observer_mode (struct ui_file *file, int from_tty,
278 struct cmd_list_element *c, const char *value)
279{
280 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
281}
282
283/* This updates the value of observer mode based on changes in
284 permissions. Note that we are deliberately ignoring the values of
285 may-write-registers and may-write-memory, since the user may have
286 reason to enable these during a session, for instance to turn on a
287 debugging-related global. */
288
289void
290update_observer_mode (void)
291{
292 int newval;
293
294 newval = (!may_insert_breakpoints
295 && !may_insert_tracepoints
296 && may_insert_fast_tracepoints
297 && !may_stop
298 && non_stop);
299
300 /* Let the user know if things change. */
301 if (newval != observer_mode)
302 printf_filtered (_("Observer mode is now %s.\n"),
303 (newval ? "on" : "off"));
304
305 observer_mode = observer_mode_1 = newval;
306}
c2c6d25f 307
c906108c
SS
308/* Tables of how to react to signals; the user sets them. */
309
adc6a863
PA
310static unsigned char signal_stop[GDB_SIGNAL_LAST];
311static unsigned char signal_print[GDB_SIGNAL_LAST];
312static unsigned char signal_program[GDB_SIGNAL_LAST];
c906108c 313
ab04a2af
TT
314/* Table of signals that are registered with "catch signal". A
315 non-zero entry indicates that the signal is caught by some "catch
adc6a863
PA
316 signal" command. */
317static unsigned char signal_catch[GDB_SIGNAL_LAST];
ab04a2af 318
2455069d
UW
319/* Table of signals that the target may silently handle.
320 This is automatically determined from the flags above,
321 and simply cached here. */
adc6a863 322static unsigned char signal_pass[GDB_SIGNAL_LAST];
2455069d 323
c906108c
SS
324#define SET_SIGS(nsigs,sigs,flags) \
325 do { \
326 int signum = (nsigs); \
327 while (signum-- > 0) \
328 if ((sigs)[signum]) \
329 (flags)[signum] = 1; \
330 } while (0)
331
332#define UNSET_SIGS(nsigs,sigs,flags) \
333 do { \
334 int signum = (nsigs); \
335 while (signum-- > 0) \
336 if ((sigs)[signum]) \
337 (flags)[signum] = 0; \
338 } while (0)
339
9b224c5e
PA
340/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
341 this function is to avoid exporting `signal_program'. */
342
343void
344update_signals_program_target (void)
345{
adc6a863 346 target_program_signals (signal_program);
9b224c5e
PA
347}
348
1777feb0 349/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 350
edb3359d 351#define RESUME_ALL minus_one_ptid
c906108c
SS
352
353/* Command list pointer for the "stop" placeholder. */
354
355static struct cmd_list_element *stop_command;
356
c906108c
SS
357/* Nonzero if we want to give control to the user when we're notified
358 of shared library events by the dynamic linker. */
628fe4e4 359int stop_on_solib_events;
f9e14852
GB
360
361/* Enable or disable optional shared library event breakpoints
362 as appropriate when the above flag is changed. */
363
364static void
eb4c3f4a
TT
365set_stop_on_solib_events (const char *args,
366 int from_tty, struct cmd_list_element *c)
f9e14852
GB
367{
368 update_solib_breakpoints ();
369}
370
920d2a44
AC
371static void
372show_stop_on_solib_events (struct ui_file *file, int from_tty,
373 struct cmd_list_element *c, const char *value)
374{
375 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
376 value);
377}
c906108c 378
c906108c
SS
379/* Nonzero after stop if current stack frame should be printed. */
380
381static int stop_print_frame;
382
e02bc4cc 383/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
384 returned by target_wait()/deprecated_target_wait_hook(). This
385 information is returned by get_last_target_status(). */
39f77062 386static ptid_t target_last_wait_ptid;
e02bc4cc
DS
387static struct target_waitstatus target_last_waitstatus;
388
4e1c45ea 389void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 390
53904c9e
AC
391static const char follow_fork_mode_child[] = "child";
392static const char follow_fork_mode_parent[] = "parent";
393
40478521 394static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
395 follow_fork_mode_child,
396 follow_fork_mode_parent,
397 NULL
ef346e04 398};
c906108c 399
53904c9e 400static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
401static void
402show_follow_fork_mode_string (struct ui_file *file, int from_tty,
403 struct cmd_list_element *c, const char *value)
404{
3e43a32a
MS
405 fprintf_filtered (file,
406 _("Debugger response to a program "
407 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
408 value);
409}
c906108c
SS
410\f
411
d83ad864
DB
412/* Handle changes to the inferior list based on the type of fork,
413 which process is being followed, and whether the other process
414 should be detached. On entry inferior_ptid must be the ptid of
415 the fork parent. At return inferior_ptid is the ptid of the
416 followed inferior. */
417
418static int
419follow_fork_inferior (int follow_child, int detach_fork)
420{
421 int has_vforked;
79639e11 422 ptid_t parent_ptid, child_ptid;
d83ad864
DB
423
424 has_vforked = (inferior_thread ()->pending_follow.kind
425 == TARGET_WAITKIND_VFORKED);
79639e11
PA
426 parent_ptid = inferior_ptid;
427 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
428
429 if (has_vforked
430 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 431 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
432 && !(follow_child || detach_fork || sched_multi))
433 {
434 /* The parent stays blocked inside the vfork syscall until the
435 child execs or exits. If we don't let the child run, then
436 the parent stays blocked. If we're telling the parent to run
437 in the foreground, the user will not be able to ctrl-c to get
438 back the terminal, effectively hanging the debug session. */
439 fprintf_filtered (gdb_stderr, _("\
440Can not resume the parent process over vfork in the foreground while\n\
441holding the child stopped. Try \"set detach-on-fork\" or \
442\"set schedule-multiple\".\n"));
443 /* FIXME output string > 80 columns. */
444 return 1;
445 }
446
447 if (!follow_child)
448 {
449 /* Detach new forked process? */
450 if (detach_fork)
451 {
d83ad864
DB
452 /* Before detaching from the child, remove all breakpoints
453 from it. If we forked, then this has already been taken
454 care of by infrun.c. If we vforked however, any
455 breakpoint inserted in the parent is visible in the
456 child, even those added while stopped in a vfork
457 catchpoint. This will remove the breakpoints from the
458 parent also, but they'll be reinserted below. */
459 if (has_vforked)
460 {
461 /* Keep breakpoints list in sync. */
00431a78 462 remove_breakpoints_inf (current_inferior ());
d83ad864
DB
463 }
464
f67c0c91 465 if (print_inferior_events)
d83ad864 466 {
8dd06f7a 467 /* Ensure that we have a process ptid. */
e99b03dc 468 ptid_t process_ptid = ptid_t (child_ptid.pid ());
8dd06f7a 469
223ffa71 470 target_terminal::ours_for_output ();
d83ad864 471 fprintf_filtered (gdb_stdlog,
f67c0c91 472 _("[Detaching after %s from child %s]\n"),
6f259a23 473 has_vforked ? "vfork" : "fork",
8dd06f7a 474 target_pid_to_str (process_ptid));
d83ad864
DB
475 }
476 }
477 else
478 {
479 struct inferior *parent_inf, *child_inf;
d83ad864
DB
480
481 /* Add process to GDB's tables. */
e99b03dc 482 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
483
484 parent_inf = current_inferior ();
485 child_inf->attach_flag = parent_inf->attach_flag;
486 copy_terminal_info (child_inf, parent_inf);
487 child_inf->gdbarch = parent_inf->gdbarch;
488 copy_inferior_target_desc_info (child_inf, parent_inf);
489
5ed8105e 490 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 491
79639e11 492 inferior_ptid = child_ptid;
f67c0c91 493 add_thread_silent (inferior_ptid);
2a00d7ce 494 set_current_inferior (child_inf);
d83ad864
DB
495 child_inf->symfile_flags = SYMFILE_NO_READ;
496
497 /* If this is a vfork child, then the address-space is
498 shared with the parent. */
499 if (has_vforked)
500 {
501 child_inf->pspace = parent_inf->pspace;
502 child_inf->aspace = parent_inf->aspace;
503
504 /* The parent will be frozen until the child is done
505 with the shared region. Keep track of the
506 parent. */
507 child_inf->vfork_parent = parent_inf;
508 child_inf->pending_detach = 0;
509 parent_inf->vfork_child = child_inf;
510 parent_inf->pending_detach = 0;
511 }
512 else
513 {
514 child_inf->aspace = new_address_space ();
564b1e3f 515 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
516 child_inf->removable = 1;
517 set_current_program_space (child_inf->pspace);
518 clone_program_space (child_inf->pspace, parent_inf->pspace);
519
520 /* Let the shared library layer (e.g., solib-svr4) learn
521 about this new process, relocate the cloned exec, pull
522 in shared libraries, and install the solib event
523 breakpoint. If a "cloned-VM" event was propagated
524 better throughout the core, this wouldn't be
525 required. */
526 solib_create_inferior_hook (0);
527 }
d83ad864
DB
528 }
529
530 if (has_vforked)
531 {
532 struct inferior *parent_inf;
533
534 parent_inf = current_inferior ();
535
536 /* If we detached from the child, then we have to be careful
537 to not insert breakpoints in the parent until the child
538 is done with the shared memory region. However, if we're
539 staying attached to the child, then we can and should
540 insert breakpoints, so that we can debug it. A
541 subsequent child exec or exit is enough to know when does
542 the child stops using the parent's address space. */
543 parent_inf->waiting_for_vfork_done = detach_fork;
544 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
545 }
546 }
547 else
548 {
549 /* Follow the child. */
550 struct inferior *parent_inf, *child_inf;
551 struct program_space *parent_pspace;
552
f67c0c91 553 if (print_inferior_events)
d83ad864 554 {
f67c0c91
SDJ
555 std::string parent_pid = target_pid_to_str (parent_ptid);
556 std::string child_pid = target_pid_to_str (child_ptid);
557
223ffa71 558 target_terminal::ours_for_output ();
6f259a23 559 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
560 _("[Attaching after %s %s to child %s]\n"),
561 parent_pid.c_str (),
6f259a23 562 has_vforked ? "vfork" : "fork",
f67c0c91 563 child_pid.c_str ());
d83ad864
DB
564 }
565
566 /* Add the new inferior first, so that the target_detach below
567 doesn't unpush the target. */
568
e99b03dc 569 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
570
571 parent_inf = current_inferior ();
572 child_inf->attach_flag = parent_inf->attach_flag;
573 copy_terminal_info (child_inf, parent_inf);
574 child_inf->gdbarch = parent_inf->gdbarch;
575 copy_inferior_target_desc_info (child_inf, parent_inf);
576
577 parent_pspace = parent_inf->pspace;
578
579 /* If we're vforking, we want to hold on to the parent until the
580 child exits or execs. At child exec or exit time we can
581 remove the old breakpoints from the parent and detach or
582 resume debugging it. Otherwise, detach the parent now; we'll
583 want to reuse it's program/address spaces, but we can't set
584 them to the child before removing breakpoints from the
585 parent, otherwise, the breakpoints module could decide to
586 remove breakpoints from the wrong process (since they'd be
587 assigned to the same address space). */
588
589 if (has_vforked)
590 {
591 gdb_assert (child_inf->vfork_parent == NULL);
592 gdb_assert (parent_inf->vfork_child == NULL);
593 child_inf->vfork_parent = parent_inf;
594 child_inf->pending_detach = 0;
595 parent_inf->vfork_child = child_inf;
596 parent_inf->pending_detach = detach_fork;
597 parent_inf->waiting_for_vfork_done = 0;
598 }
599 else if (detach_fork)
6f259a23 600 {
f67c0c91 601 if (print_inferior_events)
6f259a23 602 {
8dd06f7a 603 /* Ensure that we have a process ptid. */
e99b03dc 604 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
8dd06f7a 605
223ffa71 606 target_terminal::ours_for_output ();
6f259a23 607 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
608 _("[Detaching after fork from "
609 "parent %s]\n"),
8dd06f7a 610 target_pid_to_str (process_ptid));
6f259a23
DB
611 }
612
6e1e1966 613 target_detach (parent_inf, 0);
6f259a23 614 }
d83ad864
DB
615
616 /* Note that the detach above makes PARENT_INF dangling. */
617
618 /* Add the child thread to the appropriate lists, and switch to
619 this new thread, before cloning the program space, and
620 informing the solib layer about this new process. */
621
79639e11 622 inferior_ptid = child_ptid;
f67c0c91 623 add_thread_silent (inferior_ptid);
2a00d7ce 624 set_current_inferior (child_inf);
d83ad864
DB
625
626 /* If this is a vfork child, then the address-space is shared
627 with the parent. If we detached from the parent, then we can
628 reuse the parent's program/address spaces. */
629 if (has_vforked || detach_fork)
630 {
631 child_inf->pspace = parent_pspace;
632 child_inf->aspace = child_inf->pspace->aspace;
633 }
634 else
635 {
636 child_inf->aspace = new_address_space ();
564b1e3f 637 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
638 child_inf->removable = 1;
639 child_inf->symfile_flags = SYMFILE_NO_READ;
640 set_current_program_space (child_inf->pspace);
641 clone_program_space (child_inf->pspace, parent_pspace);
642
643 /* Let the shared library layer (e.g., solib-svr4) learn
644 about this new process, relocate the cloned exec, pull in
645 shared libraries, and install the solib event breakpoint.
646 If a "cloned-VM" event was propagated better throughout
647 the core, this wouldn't be required. */
648 solib_create_inferior_hook (0);
649 }
650 }
651
652 return target_follow_fork (follow_child, detach_fork);
653}
654
e58b0e63
PA
655/* Tell the target to follow the fork we're stopped at. Returns true
656 if the inferior should be resumed; false, if the target for some
657 reason decided it's best not to resume. */
658
6604731b 659static int
4ef3f3be 660follow_fork (void)
c906108c 661{
ea1dd7bc 662 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
663 int should_resume = 1;
664 struct thread_info *tp;
665
666 /* Copy user stepping state to the new inferior thread. FIXME: the
667 followed fork child thread should have a copy of most of the
4e3990f4
DE
668 parent thread structure's run control related fields, not just these.
669 Initialized to avoid "may be used uninitialized" warnings from gcc. */
670 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 671 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
672 CORE_ADDR step_range_start = 0;
673 CORE_ADDR step_range_end = 0;
674 struct frame_id step_frame_id = { 0 };
8980e177 675 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
676
677 if (!non_stop)
678 {
679 ptid_t wait_ptid;
680 struct target_waitstatus wait_status;
681
682 /* Get the last target status returned by target_wait(). */
683 get_last_target_status (&wait_ptid, &wait_status);
684
685 /* If not stopped at a fork event, then there's nothing else to
686 do. */
687 if (wait_status.kind != TARGET_WAITKIND_FORKED
688 && wait_status.kind != TARGET_WAITKIND_VFORKED)
689 return 1;
690
691 /* Check if we switched over from WAIT_PTID, since the event was
692 reported. */
00431a78
PA
693 if (wait_ptid != minus_one_ptid
694 && inferior_ptid != wait_ptid)
e58b0e63
PA
695 {
696 /* We did. Switch back to WAIT_PTID thread, to tell the
697 target to follow it (in either direction). We'll
698 afterwards refuse to resume, and inform the user what
699 happened. */
00431a78
PA
700 thread_info *wait_thread
701 = find_thread_ptid (wait_ptid);
702 switch_to_thread (wait_thread);
e58b0e63
PA
703 should_resume = 0;
704 }
705 }
706
707 tp = inferior_thread ();
708
709 /* If there were any forks/vforks that were caught and are now to be
710 followed, then do so now. */
711 switch (tp->pending_follow.kind)
712 {
713 case TARGET_WAITKIND_FORKED:
714 case TARGET_WAITKIND_VFORKED:
715 {
716 ptid_t parent, child;
717
718 /* If the user did a next/step, etc, over a fork call,
719 preserve the stepping state in the fork child. */
720 if (follow_child && should_resume)
721 {
8358c15c
JK
722 step_resume_breakpoint = clone_momentary_breakpoint
723 (tp->control.step_resume_breakpoint);
16c381f0
JK
724 step_range_start = tp->control.step_range_start;
725 step_range_end = tp->control.step_range_end;
726 step_frame_id = tp->control.step_frame_id;
186c406b
TT
727 exception_resume_breakpoint
728 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 729 thread_fsm = tp->thread_fsm;
e58b0e63
PA
730
731 /* For now, delete the parent's sr breakpoint, otherwise,
732 parent/child sr breakpoints are considered duplicates,
733 and the child version will not be installed. Remove
734 this when the breakpoints module becomes aware of
735 inferiors and address spaces. */
736 delete_step_resume_breakpoint (tp);
16c381f0
JK
737 tp->control.step_range_start = 0;
738 tp->control.step_range_end = 0;
739 tp->control.step_frame_id = null_frame_id;
186c406b 740 delete_exception_resume_breakpoint (tp);
8980e177 741 tp->thread_fsm = NULL;
e58b0e63
PA
742 }
743
744 parent = inferior_ptid;
745 child = tp->pending_follow.value.related_pid;
746
d83ad864
DB
747 /* Set up inferior(s) as specified by the caller, and tell the
748 target to do whatever is necessary to follow either parent
749 or child. */
750 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
751 {
752 /* Target refused to follow, or there's some other reason
753 we shouldn't resume. */
754 should_resume = 0;
755 }
756 else
757 {
758 /* This pending follow fork event is now handled, one way
759 or another. The previous selected thread may be gone
760 from the lists by now, but if it is still around, need
761 to clear the pending follow request. */
e09875d4 762 tp = find_thread_ptid (parent);
e58b0e63
PA
763 if (tp)
764 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
765
766 /* This makes sure we don't try to apply the "Switched
767 over from WAIT_PID" logic above. */
768 nullify_last_target_wait_ptid ();
769
1777feb0 770 /* If we followed the child, switch to it... */
e58b0e63
PA
771 if (follow_child)
772 {
00431a78
PA
773 thread_info *child_thr = find_thread_ptid (child);
774 switch_to_thread (child_thr);
e58b0e63
PA
775
776 /* ... and preserve the stepping state, in case the
777 user was stepping over the fork call. */
778 if (should_resume)
779 {
780 tp = inferior_thread ();
8358c15c
JK
781 tp->control.step_resume_breakpoint
782 = step_resume_breakpoint;
16c381f0
JK
783 tp->control.step_range_start = step_range_start;
784 tp->control.step_range_end = step_range_end;
785 tp->control.step_frame_id = step_frame_id;
186c406b
TT
786 tp->control.exception_resume_breakpoint
787 = exception_resume_breakpoint;
8980e177 788 tp->thread_fsm = thread_fsm;
e58b0e63
PA
789 }
790 else
791 {
792 /* If we get here, it was because we're trying to
793 resume from a fork catchpoint, but, the user
794 has switched threads away from the thread that
795 forked. In that case, the resume command
796 issued is most likely not applicable to the
797 child, so just warn, and refuse to resume. */
3e43a32a 798 warning (_("Not resuming: switched threads "
fd7dcb94 799 "before following fork child."));
e58b0e63
PA
800 }
801
802 /* Reset breakpoints in the child as appropriate. */
803 follow_inferior_reset_breakpoints ();
804 }
e58b0e63
PA
805 }
806 }
807 break;
808 case TARGET_WAITKIND_SPURIOUS:
809 /* Nothing to follow. */
810 break;
811 default:
812 internal_error (__FILE__, __LINE__,
813 "Unexpected pending_follow.kind %d\n",
814 tp->pending_follow.kind);
815 break;
816 }
c906108c 817
e58b0e63 818 return should_resume;
c906108c
SS
819}
820
d83ad864 821static void
6604731b 822follow_inferior_reset_breakpoints (void)
c906108c 823{
4e1c45ea
PA
824 struct thread_info *tp = inferior_thread ();
825
6604731b
DJ
826 /* Was there a step_resume breakpoint? (There was if the user
827 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
828 thread number. Cloned step_resume breakpoints are disabled on
829 creation, so enable it here now that it is associated with the
830 correct thread.
6604731b
DJ
831
832 step_resumes are a form of bp that are made to be per-thread.
833 Since we created the step_resume bp when the parent process
834 was being debugged, and now are switching to the child process,
835 from the breakpoint package's viewpoint, that's a switch of
836 "threads". We must update the bp's notion of which thread
837 it is for, or it'll be ignored when it triggers. */
838
8358c15c 839 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
840 {
841 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
842 tp->control.step_resume_breakpoint->loc->enabled = 1;
843 }
6604731b 844
a1aa2221 845 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 846 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
847 {
848 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
849 tp->control.exception_resume_breakpoint->loc->enabled = 1;
850 }
186c406b 851
6604731b
DJ
852 /* Reinsert all breakpoints in the child. The user may have set
853 breakpoints after catching the fork, in which case those
854 were never set in the child, but only in the parent. This makes
855 sure the inserted breakpoints match the breakpoint list. */
856
857 breakpoint_re_set ();
858 insert_breakpoints ();
c906108c 859}
c906108c 860
6c95b8df
PA
861/* The child has exited or execed: resume threads of the parent the
862 user wanted to be executing. */
863
864static int
865proceed_after_vfork_done (struct thread_info *thread,
866 void *arg)
867{
868 int pid = * (int *) arg;
869
00431a78
PA
870 if (thread->ptid.pid () == pid
871 && thread->state == THREAD_RUNNING
872 && !thread->executing
6c95b8df 873 && !thread->stop_requested
a493e3e2 874 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
875 {
876 if (debug_infrun)
877 fprintf_unfiltered (gdb_stdlog,
878 "infrun: resuming vfork parent thread %s\n",
879 target_pid_to_str (thread->ptid));
880
00431a78 881 switch_to_thread (thread);
70509625 882 clear_proceed_status (0);
64ce06e4 883 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
884 }
885
886 return 0;
887}
888
5ed8105e
PA
889/* Save/restore inferior_ptid, current program space and current
890 inferior. Only use this if the current context points at an exited
891 inferior (and therefore there's no current thread to save). */
892class scoped_restore_exited_inferior
893{
894public:
895 scoped_restore_exited_inferior ()
896 : m_saved_ptid (&inferior_ptid)
897 {}
898
899private:
900 scoped_restore_tmpl<ptid_t> m_saved_ptid;
901 scoped_restore_current_program_space m_pspace;
902 scoped_restore_current_inferior m_inferior;
903};
904
6c95b8df
PA
905/* Called whenever we notice an exec or exit event, to handle
906 detaching or resuming a vfork parent. */
907
908static void
909handle_vfork_child_exec_or_exit (int exec)
910{
911 struct inferior *inf = current_inferior ();
912
913 if (inf->vfork_parent)
914 {
915 int resume_parent = -1;
916
917 /* This exec or exit marks the end of the shared memory region
918 between the parent and the child. If the user wanted to
919 detach from the parent, now is the time. */
920
921 if (inf->vfork_parent->pending_detach)
922 {
923 struct thread_info *tp;
6c95b8df
PA
924 struct program_space *pspace;
925 struct address_space *aspace;
926
1777feb0 927 /* follow-fork child, detach-on-fork on. */
6c95b8df 928
68c9da30
PA
929 inf->vfork_parent->pending_detach = 0;
930
5ed8105e
PA
931 gdb::optional<scoped_restore_exited_inferior>
932 maybe_restore_inferior;
933 gdb::optional<scoped_restore_current_pspace_and_thread>
934 maybe_restore_thread;
935
936 /* If we're handling a child exit, then inferior_ptid points
937 at the inferior's pid, not to a thread. */
f50f4e56 938 if (!exec)
5ed8105e 939 maybe_restore_inferior.emplace ();
f50f4e56 940 else
5ed8105e 941 maybe_restore_thread.emplace ();
6c95b8df
PA
942
943 /* We're letting loose of the parent. */
00431a78
PA
944 tp = any_live_thread_of_inferior (inf->vfork_parent);
945 switch_to_thread (tp);
6c95b8df
PA
946
947 /* We're about to detach from the parent, which implicitly
948 removes breakpoints from its address space. There's a
949 catch here: we want to reuse the spaces for the child,
950 but, parent/child are still sharing the pspace at this
951 point, although the exec in reality makes the kernel give
952 the child a fresh set of new pages. The problem here is
953 that the breakpoints module being unaware of this, would
954 likely chose the child process to write to the parent
955 address space. Swapping the child temporarily away from
956 the spaces has the desired effect. Yes, this is "sort
957 of" a hack. */
958
959 pspace = inf->pspace;
960 aspace = inf->aspace;
961 inf->aspace = NULL;
962 inf->pspace = NULL;
963
f67c0c91 964 if (print_inferior_events)
6c95b8df 965 {
f67c0c91 966 const char *pidstr
f2907e49 967 = target_pid_to_str (ptid_t (inf->vfork_parent->pid));
f67c0c91 968
223ffa71 969 target_terminal::ours_for_output ();
6c95b8df
PA
970
971 if (exec)
6f259a23
DB
972 {
973 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
974 _("[Detaching vfork parent %s "
975 "after child exec]\n"), pidstr);
6f259a23 976 }
6c95b8df 977 else
6f259a23
DB
978 {
979 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
980 _("[Detaching vfork parent %s "
981 "after child exit]\n"), pidstr);
6f259a23 982 }
6c95b8df
PA
983 }
984
6e1e1966 985 target_detach (inf->vfork_parent, 0);
6c95b8df
PA
986
987 /* Put it back. */
988 inf->pspace = pspace;
989 inf->aspace = aspace;
6c95b8df
PA
990 }
991 else if (exec)
992 {
993 /* We're staying attached to the parent, so, really give the
994 child a new address space. */
564b1e3f 995 inf->pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
996 inf->aspace = inf->pspace->aspace;
997 inf->removable = 1;
998 set_current_program_space (inf->pspace);
999
1000 resume_parent = inf->vfork_parent->pid;
1001
1002 /* Break the bonds. */
1003 inf->vfork_parent->vfork_child = NULL;
1004 }
1005 else
1006 {
6c95b8df
PA
1007 struct program_space *pspace;
1008
1009 /* If this is a vfork child exiting, then the pspace and
1010 aspaces were shared with the parent. Since we're
1011 reporting the process exit, we'll be mourning all that is
1012 found in the address space, and switching to null_ptid,
1013 preparing to start a new inferior. But, since we don't
1014 want to clobber the parent's address/program spaces, we
1015 go ahead and create a new one for this exiting
1016 inferior. */
1017
5ed8105e
PA
1018 /* Switch to null_ptid while running clone_program_space, so
1019 that clone_program_space doesn't want to read the
1020 selected frame of a dead process. */
1021 scoped_restore restore_ptid
1022 = make_scoped_restore (&inferior_ptid, null_ptid);
6c95b8df
PA
1023
1024 /* This inferior is dead, so avoid giving the breakpoints
1025 module the option to write through to it (cloning a
1026 program space resets breakpoints). */
1027 inf->aspace = NULL;
1028 inf->pspace = NULL;
564b1e3f 1029 pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
1030 set_current_program_space (pspace);
1031 inf->removable = 1;
7dcd53a0 1032 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1033 clone_program_space (pspace, inf->vfork_parent->pspace);
1034 inf->pspace = pspace;
1035 inf->aspace = pspace->aspace;
1036
6c95b8df
PA
1037 resume_parent = inf->vfork_parent->pid;
1038 /* Break the bonds. */
1039 inf->vfork_parent->vfork_child = NULL;
1040 }
1041
1042 inf->vfork_parent = NULL;
1043
1044 gdb_assert (current_program_space == inf->pspace);
1045
1046 if (non_stop && resume_parent != -1)
1047 {
1048 /* If the user wanted the parent to be running, let it go
1049 free now. */
5ed8105e 1050 scoped_restore_current_thread restore_thread;
6c95b8df
PA
1051
1052 if (debug_infrun)
3e43a32a
MS
1053 fprintf_unfiltered (gdb_stdlog,
1054 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1055 resume_parent);
1056
1057 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1058 }
1059 }
1060}
1061
eb6c553b 1062/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1063
1064static const char follow_exec_mode_new[] = "new";
1065static const char follow_exec_mode_same[] = "same";
40478521 1066static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1067{
1068 follow_exec_mode_new,
1069 follow_exec_mode_same,
1070 NULL,
1071};
1072
1073static const char *follow_exec_mode_string = follow_exec_mode_same;
1074static void
1075show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1076 struct cmd_list_element *c, const char *value)
1077{
1078 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1079}
1080
ecf45d2c 1081/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1082
c906108c 1083static void
ecf45d2c 1084follow_exec (ptid_t ptid, char *exec_file_target)
c906108c 1085{
6c95b8df 1086 struct inferior *inf = current_inferior ();
e99b03dc 1087 int pid = ptid.pid ();
94585166 1088 ptid_t process_ptid;
7a292a7a 1089
c906108c
SS
1090 /* This is an exec event that we actually wish to pay attention to.
1091 Refresh our symbol table to the newly exec'd program, remove any
1092 momentary bp's, etc.
1093
1094 If there are breakpoints, they aren't really inserted now,
1095 since the exec() transformed our inferior into a fresh set
1096 of instructions.
1097
1098 We want to preserve symbolic breakpoints on the list, since
1099 we have hopes that they can be reset after the new a.out's
1100 symbol table is read.
1101
1102 However, any "raw" breakpoints must be removed from the list
1103 (e.g., the solib bp's), since their address is probably invalid
1104 now.
1105
1106 And, we DON'T want to call delete_breakpoints() here, since
1107 that may write the bp's "shadow contents" (the instruction
1108 value that was overwritten witha TRAP instruction). Since
1777feb0 1109 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1110
1111 mark_breakpoints_out ();
1112
95e50b27
PA
1113 /* The target reports the exec event to the main thread, even if
1114 some other thread does the exec, and even if the main thread was
1115 stopped or already gone. We may still have non-leader threads of
1116 the process on our list. E.g., on targets that don't have thread
1117 exit events (like remote); or on native Linux in non-stop mode if
1118 there were only two threads in the inferior and the non-leader
1119 one is the one that execs (and nothing forces an update of the
1120 thread list up to here). When debugging remotely, it's best to
1121 avoid extra traffic, when possible, so avoid syncing the thread
1122 list with the target, and instead go ahead and delete all threads
1123 of the process but one that reported the event. Note this must
1124 be done before calling update_breakpoints_after_exec, as
1125 otherwise clearing the threads' resources would reference stale
1126 thread breakpoints -- it may have been one of these threads that
1127 stepped across the exec. We could just clear their stepping
1128 states, but as long as we're iterating, might as well delete
1129 them. Deleting them now rather than at the next user-visible
1130 stop provides a nicer sequence of events for user and MI
1131 notifications. */
08036331 1132 for (thread_info *th : all_threads_safe ())
d7e15655 1133 if (th->ptid.pid () == pid && th->ptid != ptid)
00431a78 1134 delete_thread (th);
95e50b27
PA
1135
1136 /* We also need to clear any left over stale state for the
1137 leader/event thread. E.g., if there was any step-resume
1138 breakpoint or similar, it's gone now. We cannot truly
1139 step-to-next statement through an exec(). */
08036331 1140 thread_info *th = inferior_thread ();
8358c15c 1141 th->control.step_resume_breakpoint = NULL;
186c406b 1142 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1143 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1144 th->control.step_range_start = 0;
1145 th->control.step_range_end = 0;
c906108c 1146
95e50b27
PA
1147 /* The user may have had the main thread held stopped in the
1148 previous image (e.g., schedlock on, or non-stop). Release
1149 it now. */
a75724bc
PA
1150 th->stop_requested = 0;
1151
95e50b27
PA
1152 update_breakpoints_after_exec ();
1153
1777feb0 1154 /* What is this a.out's name? */
f2907e49 1155 process_ptid = ptid_t (pid);
6c95b8df 1156 printf_unfiltered (_("%s is executing new program: %s\n"),
94585166 1157 target_pid_to_str (process_ptid),
ecf45d2c 1158 exec_file_target);
c906108c
SS
1159
1160 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1161 inferior has essentially been killed & reborn. */
7a292a7a 1162
6ca15a4b 1163 breakpoint_init_inferior (inf_execd);
e85a822c 1164
797bc1cb
TT
1165 gdb::unique_xmalloc_ptr<char> exec_file_host
1166 = exec_file_find (exec_file_target, NULL);
ff862be4 1167
ecf45d2c
SL
1168 /* If we were unable to map the executable target pathname onto a host
1169 pathname, tell the user that. Otherwise GDB's subsequent behavior
1170 is confusing. Maybe it would even be better to stop at this point
1171 so that the user can specify a file manually before continuing. */
1172 if (exec_file_host == NULL)
1173 warning (_("Could not load symbols for executable %s.\n"
1174 "Do you need \"set sysroot\"?"),
1175 exec_file_target);
c906108c 1176
cce9b6bf
PA
1177 /* Reset the shared library package. This ensures that we get a
1178 shlib event when the child reaches "_start", at which point the
1179 dld will have had a chance to initialize the child. */
1180 /* Also, loading a symbol file below may trigger symbol lookups, and
1181 we don't want those to be satisfied by the libraries of the
1182 previous incarnation of this process. */
1183 no_shared_libraries (NULL, 0);
1184
6c95b8df
PA
1185 if (follow_exec_mode_string == follow_exec_mode_new)
1186 {
6c95b8df
PA
1187 /* The user wants to keep the old inferior and program spaces
1188 around. Create a new fresh one, and switch to it. */
1189
35ed81d4
SM
1190 /* Do exit processing for the original inferior before setting the new
1191 inferior's pid. Having two inferiors with the same pid would confuse
1192 find_inferior_p(t)id. Transfer the terminal state and info from the
1193 old to the new inferior. */
1194 inf = add_inferior_with_spaces ();
1195 swap_terminal_info (inf, current_inferior ());
057302ce 1196 exit_inferior_silent (current_inferior ());
17d8546e 1197
94585166 1198 inf->pid = pid;
ecf45d2c 1199 target_follow_exec (inf, exec_file_target);
6c95b8df
PA
1200
1201 set_current_inferior (inf);
94585166 1202 set_current_program_space (inf->pspace);
c4c17fb0 1203 add_thread (ptid);
6c95b8df 1204 }
9107fc8d
PA
1205 else
1206 {
1207 /* The old description may no longer be fit for the new image.
1208 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1209 old description; we'll read a new one below. No need to do
1210 this on "follow-exec-mode new", as the old inferior stays
1211 around (its description is later cleared/refetched on
1212 restart). */
1213 target_clear_description ();
1214 }
6c95b8df
PA
1215
1216 gdb_assert (current_program_space == inf->pspace);
1217
ecf45d2c
SL
1218 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1219 because the proper displacement for a PIE (Position Independent
1220 Executable) main symbol file will only be computed by
1221 solib_create_inferior_hook below. breakpoint_re_set would fail
1222 to insert the breakpoints with the zero displacement. */
797bc1cb 1223 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
c906108c 1224
9107fc8d
PA
1225 /* If the target can specify a description, read it. Must do this
1226 after flipping to the new executable (because the target supplied
1227 description must be compatible with the executable's
1228 architecture, and the old executable may e.g., be 32-bit, while
1229 the new one 64-bit), and before anything involving memory or
1230 registers. */
1231 target_find_description ();
1232
268a4a75 1233 solib_create_inferior_hook (0);
c906108c 1234
4efc6507
DE
1235 jit_inferior_created_hook ();
1236
c1e56572
JK
1237 breakpoint_re_set ();
1238
c906108c
SS
1239 /* Reinsert all breakpoints. (Those which were symbolic have
1240 been reset to the proper address in the new a.out, thanks
1777feb0 1241 to symbol_file_command...). */
c906108c
SS
1242 insert_breakpoints ();
1243
1244 /* The next resume of this inferior should bring it to the shlib
1245 startup breakpoints. (If the user had also set bp's on
1246 "main" from the old (parent) process, then they'll auto-
1777feb0 1247 matically get reset there in the new process.). */
c906108c
SS
1248}
1249
c2829269
PA
1250/* The queue of threads that need to do a step-over operation to get
1251 past e.g., a breakpoint. What technique is used to step over the
1252 breakpoint/watchpoint does not matter -- all threads end up in the
1253 same queue, to maintain rough temporal order of execution, in order
1254 to avoid starvation, otherwise, we could e.g., find ourselves
1255 constantly stepping the same couple threads past their breakpoints
1256 over and over, if the single-step finish fast enough. */
1257struct thread_info *step_over_queue_head;
1258
6c4cfb24
PA
1259/* Bit flags indicating what the thread needs to step over. */
1260
8d297bbf 1261enum step_over_what_flag
6c4cfb24
PA
1262 {
1263 /* Step over a breakpoint. */
1264 STEP_OVER_BREAKPOINT = 1,
1265
1266 /* Step past a non-continuable watchpoint, in order to let the
1267 instruction execute so we can evaluate the watchpoint
1268 expression. */
1269 STEP_OVER_WATCHPOINT = 2
1270 };
8d297bbf 1271DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1272
963f9c80 1273/* Info about an instruction that is being stepped over. */
31e77af2
PA
1274
1275struct step_over_info
1276{
963f9c80
PA
1277 /* If we're stepping past a breakpoint, this is the address space
1278 and address of the instruction the breakpoint is set at. We'll
1279 skip inserting all breakpoints here. Valid iff ASPACE is
1280 non-NULL. */
8b86c959 1281 const address_space *aspace;
31e77af2 1282 CORE_ADDR address;
963f9c80
PA
1283
1284 /* The instruction being stepped over triggers a nonsteppable
1285 watchpoint. If true, we'll skip inserting watchpoints. */
1286 int nonsteppable_watchpoint_p;
21edc42f
YQ
1287
1288 /* The thread's global number. */
1289 int thread;
31e77af2
PA
1290};
1291
1292/* The step-over info of the location that is being stepped over.
1293
1294 Note that with async/breakpoint always-inserted mode, a user might
1295 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1296 being stepped over. As setting a new breakpoint inserts all
1297 breakpoints, we need to make sure the breakpoint being stepped over
1298 isn't inserted then. We do that by only clearing the step-over
1299 info when the step-over is actually finished (or aborted).
1300
1301 Presently GDB can only step over one breakpoint at any given time.
1302 Given threads that can't run code in the same address space as the
1303 breakpoint's can't really miss the breakpoint, GDB could be taught
1304 to step-over at most one breakpoint per address space (so this info
1305 could move to the address space object if/when GDB is extended).
1306 The set of breakpoints being stepped over will normally be much
1307 smaller than the set of all breakpoints, so a flag in the
1308 breakpoint location structure would be wasteful. A separate list
1309 also saves complexity and run-time, as otherwise we'd have to go
1310 through all breakpoint locations clearing their flag whenever we
1311 start a new sequence. Similar considerations weigh against storing
1312 this info in the thread object. Plus, not all step overs actually
1313 have breakpoint locations -- e.g., stepping past a single-step
1314 breakpoint, or stepping to complete a non-continuable
1315 watchpoint. */
1316static struct step_over_info step_over_info;
1317
1318/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1319 stepping over.
1320 N.B. We record the aspace and address now, instead of say just the thread,
1321 because when we need the info later the thread may be running. */
31e77af2
PA
1322
1323static void
8b86c959 1324set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1325 int nonsteppable_watchpoint_p,
1326 int thread)
31e77af2
PA
1327{
1328 step_over_info.aspace = aspace;
1329 step_over_info.address = address;
963f9c80 1330 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1331 step_over_info.thread = thread;
31e77af2
PA
1332}
1333
1334/* Called when we're not longer stepping over a breakpoint / an
1335 instruction, so all breakpoints are free to be (re)inserted. */
1336
1337static void
1338clear_step_over_info (void)
1339{
372316f1
PA
1340 if (debug_infrun)
1341 fprintf_unfiltered (gdb_stdlog,
1342 "infrun: clear_step_over_info\n");
31e77af2
PA
1343 step_over_info.aspace = NULL;
1344 step_over_info.address = 0;
963f9c80 1345 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1346 step_over_info.thread = -1;
31e77af2
PA
1347}
1348
7f89fd65 1349/* See infrun.h. */
31e77af2
PA
1350
1351int
1352stepping_past_instruction_at (struct address_space *aspace,
1353 CORE_ADDR address)
1354{
1355 return (step_over_info.aspace != NULL
1356 && breakpoint_address_match (aspace, address,
1357 step_over_info.aspace,
1358 step_over_info.address));
1359}
1360
963f9c80
PA
1361/* See infrun.h. */
1362
21edc42f
YQ
1363int
1364thread_is_stepping_over_breakpoint (int thread)
1365{
1366 return (step_over_info.thread != -1
1367 && thread == step_over_info.thread);
1368}
1369
1370/* See infrun.h. */
1371
963f9c80
PA
1372int
1373stepping_past_nonsteppable_watchpoint (void)
1374{
1375 return step_over_info.nonsteppable_watchpoint_p;
1376}
1377
6cc83d2a
PA
1378/* Returns true if step-over info is valid. */
1379
1380static int
1381step_over_info_valid_p (void)
1382{
963f9c80
PA
1383 return (step_over_info.aspace != NULL
1384 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1385}
1386
c906108c 1387\f
237fc4c9
PA
1388/* Displaced stepping. */
1389
1390/* In non-stop debugging mode, we must take special care to manage
1391 breakpoints properly; in particular, the traditional strategy for
1392 stepping a thread past a breakpoint it has hit is unsuitable.
1393 'Displaced stepping' is a tactic for stepping one thread past a
1394 breakpoint it has hit while ensuring that other threads running
1395 concurrently will hit the breakpoint as they should.
1396
1397 The traditional way to step a thread T off a breakpoint in a
1398 multi-threaded program in all-stop mode is as follows:
1399
1400 a0) Initially, all threads are stopped, and breakpoints are not
1401 inserted.
1402 a1) We single-step T, leaving breakpoints uninserted.
1403 a2) We insert breakpoints, and resume all threads.
1404
1405 In non-stop debugging, however, this strategy is unsuitable: we
1406 don't want to have to stop all threads in the system in order to
1407 continue or step T past a breakpoint. Instead, we use displaced
1408 stepping:
1409
1410 n0) Initially, T is stopped, other threads are running, and
1411 breakpoints are inserted.
1412 n1) We copy the instruction "under" the breakpoint to a separate
1413 location, outside the main code stream, making any adjustments
1414 to the instruction, register, and memory state as directed by
1415 T's architecture.
1416 n2) We single-step T over the instruction at its new location.
1417 n3) We adjust the resulting register and memory state as directed
1418 by T's architecture. This includes resetting T's PC to point
1419 back into the main instruction stream.
1420 n4) We resume T.
1421
1422 This approach depends on the following gdbarch methods:
1423
1424 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1425 indicate where to copy the instruction, and how much space must
1426 be reserved there. We use these in step n1.
1427
1428 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1429 address, and makes any necessary adjustments to the instruction,
1430 register contents, and memory. We use this in step n1.
1431
1432 - gdbarch_displaced_step_fixup adjusts registers and memory after
1433 we have successfuly single-stepped the instruction, to yield the
1434 same effect the instruction would have had if we had executed it
1435 at its original address. We use this in step n3.
1436
237fc4c9
PA
1437 The gdbarch_displaced_step_copy_insn and
1438 gdbarch_displaced_step_fixup functions must be written so that
1439 copying an instruction with gdbarch_displaced_step_copy_insn,
1440 single-stepping across the copied instruction, and then applying
1441 gdbarch_displaced_insn_fixup should have the same effects on the
1442 thread's memory and registers as stepping the instruction in place
1443 would have. Exactly which responsibilities fall to the copy and
1444 which fall to the fixup is up to the author of those functions.
1445
1446 See the comments in gdbarch.sh for details.
1447
1448 Note that displaced stepping and software single-step cannot
1449 currently be used in combination, although with some care I think
1450 they could be made to. Software single-step works by placing
1451 breakpoints on all possible subsequent instructions; if the
1452 displaced instruction is a PC-relative jump, those breakpoints
1453 could fall in very strange places --- on pages that aren't
1454 executable, or at addresses that are not proper instruction
1455 boundaries. (We do generally let other threads run while we wait
1456 to hit the software single-step breakpoint, and they might
1457 encounter such a corrupted instruction.) One way to work around
1458 this would be to have gdbarch_displaced_step_copy_insn fully
1459 simulate the effect of PC-relative instructions (and return NULL)
1460 on architectures that use software single-stepping.
1461
1462 In non-stop mode, we can have independent and simultaneous step
1463 requests, so more than one thread may need to simultaneously step
1464 over a breakpoint. The current implementation assumes there is
1465 only one scratch space per process. In this case, we have to
1466 serialize access to the scratch space. If thread A wants to step
1467 over a breakpoint, but we are currently waiting for some other
1468 thread to complete a displaced step, we leave thread A stopped and
1469 place it in the displaced_step_request_queue. Whenever a displaced
1470 step finishes, we pick the next thread in the queue and start a new
1471 displaced step operation on it. See displaced_step_prepare and
1472 displaced_step_fixup for details. */
1473
cfba9872
SM
1474/* Default destructor for displaced_step_closure. */
1475
1476displaced_step_closure::~displaced_step_closure () = default;
1477
fc1cf338
PA
1478/* Get the displaced stepping state of process PID. */
1479
39a36629 1480static displaced_step_inferior_state *
00431a78 1481get_displaced_stepping_state (inferior *inf)
fc1cf338 1482{
d20172fc 1483 return &inf->displaced_step_state;
fc1cf338
PA
1484}
1485
372316f1
PA
1486/* Returns true if any inferior has a thread doing a displaced
1487 step. */
1488
39a36629
SM
1489static bool
1490displaced_step_in_progress_any_inferior ()
372316f1 1491{
d20172fc 1492 for (inferior *i : all_inferiors ())
39a36629 1493 {
d20172fc 1494 if (i->displaced_step_state.step_thread != nullptr)
39a36629
SM
1495 return true;
1496 }
372316f1 1497
39a36629 1498 return false;
372316f1
PA
1499}
1500
c0987663
YQ
1501/* Return true if thread represented by PTID is doing a displaced
1502 step. */
1503
1504static int
00431a78 1505displaced_step_in_progress_thread (thread_info *thread)
c0987663 1506{
00431a78 1507 gdb_assert (thread != NULL);
c0987663 1508
d20172fc 1509 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
c0987663
YQ
1510}
1511
8f572e5c
PA
1512/* Return true if process PID has a thread doing a displaced step. */
1513
1514static int
00431a78 1515displaced_step_in_progress (inferior *inf)
8f572e5c 1516{
d20172fc 1517 return get_displaced_stepping_state (inf)->step_thread != nullptr;
fc1cf338
PA
1518}
1519
a42244db
YQ
1520/* If inferior is in displaced stepping, and ADDR equals to starting address
1521 of copy area, return corresponding displaced_step_closure. Otherwise,
1522 return NULL. */
1523
1524struct displaced_step_closure*
1525get_displaced_step_closure_by_addr (CORE_ADDR addr)
1526{
d20172fc 1527 displaced_step_inferior_state *displaced
00431a78 1528 = get_displaced_stepping_state (current_inferior ());
a42244db
YQ
1529
1530 /* If checking the mode of displaced instruction in copy area. */
d20172fc 1531 if (displaced->step_thread != nullptr
00431a78 1532 && displaced->step_copy == addr)
a42244db
YQ
1533 return displaced->step_closure;
1534
1535 return NULL;
1536}
1537
fc1cf338
PA
1538static void
1539infrun_inferior_exit (struct inferior *inf)
1540{
d20172fc 1541 inf->displaced_step_state.reset ();
fc1cf338 1542}
237fc4c9 1543
fff08868
HZ
1544/* If ON, and the architecture supports it, GDB will use displaced
1545 stepping to step over breakpoints. If OFF, or if the architecture
1546 doesn't support it, GDB will instead use the traditional
1547 hold-and-step approach. If AUTO (which is the default), GDB will
1548 decide which technique to use to step over breakpoints depending on
1549 which of all-stop or non-stop mode is active --- displaced stepping
1550 in non-stop mode; hold-and-step in all-stop mode. */
1551
72d0e2c5 1552static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1553
237fc4c9
PA
1554static void
1555show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1556 struct cmd_list_element *c,
1557 const char *value)
1558{
72d0e2c5 1559 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1560 fprintf_filtered (file,
1561 _("Debugger's willingness to use displaced stepping "
1562 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1563 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1564 else
3e43a32a
MS
1565 fprintf_filtered (file,
1566 _("Debugger's willingness to use displaced stepping "
1567 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1568}
1569
fff08868 1570/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1571 over breakpoints of thread TP. */
fff08868 1572
237fc4c9 1573static int
3fc8eb30 1574use_displaced_stepping (struct thread_info *tp)
237fc4c9 1575{
00431a78 1576 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 1577 struct gdbarch *gdbarch = regcache->arch ();
d20172fc
SM
1578 displaced_step_inferior_state *displaced_state
1579 = get_displaced_stepping_state (tp->inf);
3fc8eb30 1580
fbea99ea
PA
1581 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1582 && target_is_non_stop_p ())
72d0e2c5 1583 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1584 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30 1585 && find_record_target () == NULL
d20172fc 1586 && !displaced_state->failed_before);
237fc4c9
PA
1587}
1588
1589/* Clean out any stray displaced stepping state. */
1590static void
fc1cf338 1591displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1592{
1593 /* Indicate that there is no cleanup pending. */
00431a78 1594 displaced->step_thread = nullptr;
237fc4c9 1595
cfba9872 1596 delete displaced->step_closure;
6d45d4b4 1597 displaced->step_closure = NULL;
237fc4c9
PA
1598}
1599
9799571e
TT
1600/* A cleanup that wraps displaced_step_clear. */
1601using displaced_step_clear_cleanup
1602 = FORWARD_SCOPE_EXIT (displaced_step_clear);
237fc4c9
PA
1603
1604/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1605void
1606displaced_step_dump_bytes (struct ui_file *file,
1607 const gdb_byte *buf,
1608 size_t len)
1609{
1610 int i;
1611
1612 for (i = 0; i < len; i++)
1613 fprintf_unfiltered (file, "%02x ", buf[i]);
1614 fputs_unfiltered ("\n", file);
1615}
1616
1617/* Prepare to single-step, using displaced stepping.
1618
1619 Note that we cannot use displaced stepping when we have a signal to
1620 deliver. If we have a signal to deliver and an instruction to step
1621 over, then after the step, there will be no indication from the
1622 target whether the thread entered a signal handler or ignored the
1623 signal and stepped over the instruction successfully --- both cases
1624 result in a simple SIGTRAP. In the first case we mustn't do a
1625 fixup, and in the second case we must --- but we can't tell which.
1626 Comments in the code for 'random signals' in handle_inferior_event
1627 explain how we handle this case instead.
1628
1629 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1630 stepped now; 0 if displaced stepping this thread got queued; or -1
1631 if this instruction can't be displaced stepped. */
1632
237fc4c9 1633static int
00431a78 1634displaced_step_prepare_throw (thread_info *tp)
237fc4c9 1635{
00431a78 1636 regcache *regcache = get_thread_regcache (tp);
ac7936df 1637 struct gdbarch *gdbarch = regcache->arch ();
8b86c959 1638 const address_space *aspace = regcache->aspace ();
237fc4c9
PA
1639 CORE_ADDR original, copy;
1640 ULONGEST len;
1641 struct displaced_step_closure *closure;
9e529e1d 1642 int status;
237fc4c9
PA
1643
1644 /* We should never reach this function if the architecture does not
1645 support displaced stepping. */
1646 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1647
c2829269
PA
1648 /* Nor if the thread isn't meant to step over a breakpoint. */
1649 gdb_assert (tp->control.trap_expected);
1650
c1e36e3e
PA
1651 /* Disable range stepping while executing in the scratch pad. We
1652 want a single-step even if executing the displaced instruction in
1653 the scratch buffer lands within the stepping range (e.g., a
1654 jump/branch). */
1655 tp->control.may_range_step = 0;
1656
fc1cf338
PA
1657 /* We have to displaced step one thread at a time, as we only have
1658 access to a single scratch space per inferior. */
237fc4c9 1659
d20172fc
SM
1660 displaced_step_inferior_state *displaced
1661 = get_displaced_stepping_state (tp->inf);
fc1cf338 1662
00431a78 1663 if (displaced->step_thread != nullptr)
237fc4c9
PA
1664 {
1665 /* Already waiting for a displaced step to finish. Defer this
1666 request and place in queue. */
237fc4c9
PA
1667
1668 if (debug_displaced)
1669 fprintf_unfiltered (gdb_stdlog,
c2829269 1670 "displaced: deferring step of %s\n",
00431a78 1671 target_pid_to_str (tp->ptid));
237fc4c9 1672
c2829269 1673 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1674 return 0;
1675 }
1676 else
1677 {
1678 if (debug_displaced)
1679 fprintf_unfiltered (gdb_stdlog,
1680 "displaced: stepping %s now\n",
00431a78 1681 target_pid_to_str (tp->ptid));
237fc4c9
PA
1682 }
1683
fc1cf338 1684 displaced_step_clear (displaced);
237fc4c9 1685
00431a78
PA
1686 scoped_restore_current_thread restore_thread;
1687
1688 switch_to_thread (tp);
ad53cd71 1689
515630c5 1690 original = regcache_read_pc (regcache);
237fc4c9
PA
1691
1692 copy = gdbarch_displaced_step_location (gdbarch);
1693 len = gdbarch_max_insn_length (gdbarch);
1694
d35ae833
PA
1695 if (breakpoint_in_range_p (aspace, copy, len))
1696 {
1697 /* There's a breakpoint set in the scratch pad location range
1698 (which is usually around the entry point). We'd either
1699 install it before resuming, which would overwrite/corrupt the
1700 scratch pad, or if it was already inserted, this displaced
1701 step would overwrite it. The latter is OK in the sense that
1702 we already assume that no thread is going to execute the code
1703 in the scratch pad range (after initial startup) anyway, but
1704 the former is unacceptable. Simply punt and fallback to
1705 stepping over this breakpoint in-line. */
1706 if (debug_displaced)
1707 {
1708 fprintf_unfiltered (gdb_stdlog,
1709 "displaced: breakpoint set in scratch pad. "
1710 "Stepping over breakpoint in-line instead.\n");
1711 }
1712
d35ae833
PA
1713 return -1;
1714 }
1715
237fc4c9 1716 /* Save the original contents of the copy area. */
d20172fc
SM
1717 displaced->step_saved_copy.resize (len);
1718 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
9e529e1d
JK
1719 if (status != 0)
1720 throw_error (MEMORY_ERROR,
1721 _("Error accessing memory address %s (%s) for "
1722 "displaced-stepping scratch space."),
1723 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1724 if (debug_displaced)
1725 {
5af949e3
UW
1726 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1727 paddress (gdbarch, copy));
fc1cf338 1728 displaced_step_dump_bytes (gdb_stdlog,
d20172fc 1729 displaced->step_saved_copy.data (),
fc1cf338 1730 len);
237fc4c9
PA
1731 };
1732
1733 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1734 original, copy, regcache);
7f03bd92
PA
1735 if (closure == NULL)
1736 {
1737 /* The architecture doesn't know how or want to displaced step
1738 this instruction or instruction sequence. Fallback to
1739 stepping over the breakpoint in-line. */
7f03bd92
PA
1740 return -1;
1741 }
237fc4c9 1742
9f5a595d
UW
1743 /* Save the information we need to fix things up if the step
1744 succeeds. */
00431a78 1745 displaced->step_thread = tp;
fc1cf338
PA
1746 displaced->step_gdbarch = gdbarch;
1747 displaced->step_closure = closure;
1748 displaced->step_original = original;
1749 displaced->step_copy = copy;
9f5a595d 1750
9799571e
TT
1751 {
1752 displaced_step_clear_cleanup cleanup (displaced);
237fc4c9 1753
9799571e
TT
1754 /* Resume execution at the copy. */
1755 regcache_write_pc (regcache, copy);
237fc4c9 1756
9799571e
TT
1757 cleanup.release ();
1758 }
ad53cd71 1759
237fc4c9 1760 if (debug_displaced)
5af949e3
UW
1761 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1762 paddress (gdbarch, copy));
237fc4c9 1763
237fc4c9
PA
1764 return 1;
1765}
1766
3fc8eb30
PA
1767/* Wrapper for displaced_step_prepare_throw that disabled further
1768 attempts at displaced stepping if we get a memory error. */
1769
1770static int
00431a78 1771displaced_step_prepare (thread_info *thread)
3fc8eb30
PA
1772{
1773 int prepared = -1;
1774
1775 TRY
1776 {
00431a78 1777 prepared = displaced_step_prepare_throw (thread);
3fc8eb30
PA
1778 }
1779 CATCH (ex, RETURN_MASK_ERROR)
1780 {
1781 struct displaced_step_inferior_state *displaced_state;
1782
16b41842
PA
1783 if (ex.error != MEMORY_ERROR
1784 && ex.error != NOT_SUPPORTED_ERROR)
3fc8eb30
PA
1785 throw_exception (ex);
1786
1787 if (debug_infrun)
1788 {
1789 fprintf_unfiltered (gdb_stdlog,
1790 "infrun: disabling displaced stepping: %s\n",
1791 ex.message);
1792 }
1793
1794 /* Be verbose if "set displaced-stepping" is "on", silent if
1795 "auto". */
1796 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1797 {
fd7dcb94 1798 warning (_("disabling displaced stepping: %s"),
3fc8eb30
PA
1799 ex.message);
1800 }
1801
1802 /* Disable further displaced stepping attempts. */
1803 displaced_state
00431a78 1804 = get_displaced_stepping_state (thread->inf);
3fc8eb30
PA
1805 displaced_state->failed_before = 1;
1806 }
1807 END_CATCH
1808
1809 return prepared;
1810}
1811
237fc4c9 1812static void
3e43a32a
MS
1813write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1814 const gdb_byte *myaddr, int len)
237fc4c9 1815{
2989a365 1816 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
abbb1732 1817
237fc4c9
PA
1818 inferior_ptid = ptid;
1819 write_memory (memaddr, myaddr, len);
237fc4c9
PA
1820}
1821
e2d96639
YQ
1822/* Restore the contents of the copy area for thread PTID. */
1823
1824static void
1825displaced_step_restore (struct displaced_step_inferior_state *displaced,
1826 ptid_t ptid)
1827{
1828 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1829
1830 write_memory_ptid (ptid, displaced->step_copy,
d20172fc 1831 displaced->step_saved_copy.data (), len);
e2d96639
YQ
1832 if (debug_displaced)
1833 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1834 target_pid_to_str (ptid),
1835 paddress (displaced->step_gdbarch,
1836 displaced->step_copy));
1837}
1838
372316f1
PA
1839/* If we displaced stepped an instruction successfully, adjust
1840 registers and memory to yield the same effect the instruction would
1841 have had if we had executed it at its original address, and return
1842 1. If the instruction didn't complete, relocate the PC and return
1843 -1. If the thread wasn't displaced stepping, return 0. */
1844
1845static int
00431a78 1846displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
237fc4c9 1847{
fc1cf338 1848 struct displaced_step_inferior_state *displaced
00431a78 1849 = get_displaced_stepping_state (event_thread->inf);
372316f1 1850 int ret;
fc1cf338 1851
00431a78
PA
1852 /* Was this event for the thread we displaced? */
1853 if (displaced->step_thread != event_thread)
372316f1 1854 return 0;
237fc4c9 1855
9799571e 1856 displaced_step_clear_cleanup cleanup (displaced);
237fc4c9 1857
00431a78 1858 displaced_step_restore (displaced, displaced->step_thread->ptid);
237fc4c9 1859
cb71640d
PA
1860 /* Fixup may need to read memory/registers. Switch to the thread
1861 that we're fixing up. Also, target_stopped_by_watchpoint checks
1862 the current thread. */
00431a78 1863 switch_to_thread (event_thread);
cb71640d 1864
237fc4c9 1865 /* Did the instruction complete successfully? */
cb71640d
PA
1866 if (signal == GDB_SIGNAL_TRAP
1867 && !(target_stopped_by_watchpoint ()
1868 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1869 || target_have_steppable_watchpoint)))
237fc4c9
PA
1870 {
1871 /* Fix up the resulting state. */
fc1cf338
PA
1872 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1873 displaced->step_closure,
1874 displaced->step_original,
1875 displaced->step_copy,
00431a78 1876 get_thread_regcache (displaced->step_thread));
372316f1 1877 ret = 1;
237fc4c9
PA
1878 }
1879 else
1880 {
1881 /* Since the instruction didn't complete, all we can do is
1882 relocate the PC. */
00431a78 1883 struct regcache *regcache = get_thread_regcache (event_thread);
515630c5 1884 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1885
fc1cf338 1886 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1887 regcache_write_pc (regcache, pc);
372316f1 1888 ret = -1;
237fc4c9
PA
1889 }
1890
372316f1 1891 return ret;
c2829269 1892}
1c5cfe86 1893
4d9d9d04
PA
1894/* Data to be passed around while handling an event. This data is
1895 discarded between events. */
1896struct execution_control_state
1897{
1898 ptid_t ptid;
1899 /* The thread that got the event, if this was a thread event; NULL
1900 otherwise. */
1901 struct thread_info *event_thread;
1902
1903 struct target_waitstatus ws;
1904 int stop_func_filled_in;
1905 CORE_ADDR stop_func_start;
1906 CORE_ADDR stop_func_end;
1907 const char *stop_func_name;
1908 int wait_some_more;
1909
1910 /* True if the event thread hit the single-step breakpoint of
1911 another thread. Thus the event doesn't cause a stop, the thread
1912 needs to be single-stepped past the single-step breakpoint before
1913 we can switch back to the original stepping thread. */
1914 int hit_singlestep_breakpoint;
1915};
1916
1917/* Clear ECS and set it to point at TP. */
c2829269
PA
1918
1919static void
4d9d9d04
PA
1920reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1921{
1922 memset (ecs, 0, sizeof (*ecs));
1923 ecs->event_thread = tp;
1924 ecs->ptid = tp->ptid;
1925}
1926
1927static void keep_going_pass_signal (struct execution_control_state *ecs);
1928static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 1929static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 1930static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
1931
1932/* Are there any pending step-over requests? If so, run all we can
1933 now and return true. Otherwise, return false. */
1934
1935static int
c2829269
PA
1936start_step_over (void)
1937{
1938 struct thread_info *tp, *next;
1939
372316f1
PA
1940 /* Don't start a new step-over if we already have an in-line
1941 step-over operation ongoing. */
1942 if (step_over_info_valid_p ())
1943 return 0;
1944
c2829269 1945 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 1946 {
4d9d9d04
PA
1947 struct execution_control_state ecss;
1948 struct execution_control_state *ecs = &ecss;
8d297bbf 1949 step_over_what step_what;
372316f1 1950 int must_be_in_line;
c2829269 1951
c65d6b55
PA
1952 gdb_assert (!tp->stop_requested);
1953
c2829269 1954 next = thread_step_over_chain_next (tp);
237fc4c9 1955
c2829269
PA
1956 /* If this inferior already has a displaced step in process,
1957 don't start a new one. */
00431a78 1958 if (displaced_step_in_progress (tp->inf))
c2829269
PA
1959 continue;
1960
372316f1
PA
1961 step_what = thread_still_needs_step_over (tp);
1962 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1963 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 1964 && !use_displaced_stepping (tp)));
372316f1
PA
1965
1966 /* We currently stop all threads of all processes to step-over
1967 in-line. If we need to start a new in-line step-over, let
1968 any pending displaced steps finish first. */
1969 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1970 return 0;
1971
c2829269
PA
1972 thread_step_over_chain_remove (tp);
1973
1974 if (step_over_queue_head == NULL)
1975 {
1976 if (debug_infrun)
1977 fprintf_unfiltered (gdb_stdlog,
1978 "infrun: step-over queue now empty\n");
1979 }
1980
372316f1
PA
1981 if (tp->control.trap_expected
1982 || tp->resumed
1983 || tp->executing)
ad53cd71 1984 {
4d9d9d04
PA
1985 internal_error (__FILE__, __LINE__,
1986 "[%s] has inconsistent state: "
372316f1 1987 "trap_expected=%d, resumed=%d, executing=%d\n",
4d9d9d04
PA
1988 target_pid_to_str (tp->ptid),
1989 tp->control.trap_expected,
372316f1 1990 tp->resumed,
4d9d9d04 1991 tp->executing);
ad53cd71 1992 }
1c5cfe86 1993
4d9d9d04
PA
1994 if (debug_infrun)
1995 fprintf_unfiltered (gdb_stdlog,
1996 "infrun: resuming [%s] for step-over\n",
1997 target_pid_to_str (tp->ptid));
1998
1999 /* keep_going_pass_signal skips the step-over if the breakpoint
2000 is no longer inserted. In all-stop, we want to keep looking
2001 for a thread that needs a step-over instead of resuming TP,
2002 because we wouldn't be able to resume anything else until the
2003 target stops again. In non-stop, the resume always resumes
2004 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2005 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2006 continue;
8550d3b3 2007
00431a78 2008 switch_to_thread (tp);
4d9d9d04
PA
2009 reset_ecs (ecs, tp);
2010 keep_going_pass_signal (ecs);
1c5cfe86 2011
4d9d9d04
PA
2012 if (!ecs->wait_some_more)
2013 error (_("Command aborted."));
1c5cfe86 2014
372316f1
PA
2015 gdb_assert (tp->resumed);
2016
2017 /* If we started a new in-line step-over, we're done. */
2018 if (step_over_info_valid_p ())
2019 {
2020 gdb_assert (tp->control.trap_expected);
2021 return 1;
2022 }
2023
fbea99ea 2024 if (!target_is_non_stop_p ())
4d9d9d04
PA
2025 {
2026 /* On all-stop, shouldn't have resumed unless we needed a
2027 step over. */
2028 gdb_assert (tp->control.trap_expected
2029 || tp->step_after_step_resume_breakpoint);
2030
2031 /* With remote targets (at least), in all-stop, we can't
2032 issue any further remote commands until the program stops
2033 again. */
2034 return 1;
1c5cfe86 2035 }
c2829269 2036
4d9d9d04
PA
2037 /* Either the thread no longer needed a step-over, or a new
2038 displaced stepping sequence started. Even in the latter
2039 case, continue looking. Maybe we can also start another
2040 displaced step on a thread of other process. */
237fc4c9 2041 }
4d9d9d04
PA
2042
2043 return 0;
237fc4c9
PA
2044}
2045
5231c1fd
PA
2046/* Update global variables holding ptids to hold NEW_PTID if they were
2047 holding OLD_PTID. */
2048static void
2049infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2050{
d7e15655 2051 if (inferior_ptid == old_ptid)
5231c1fd 2052 inferior_ptid = new_ptid;
5231c1fd
PA
2053}
2054
237fc4c9 2055\f
c906108c 2056
53904c9e
AC
2057static const char schedlock_off[] = "off";
2058static const char schedlock_on[] = "on";
2059static const char schedlock_step[] = "step";
f2665db5 2060static const char schedlock_replay[] = "replay";
40478521 2061static const char *const scheduler_enums[] = {
ef346e04
AC
2062 schedlock_off,
2063 schedlock_on,
2064 schedlock_step,
f2665db5 2065 schedlock_replay,
ef346e04
AC
2066 NULL
2067};
f2665db5 2068static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2069static void
2070show_scheduler_mode (struct ui_file *file, int from_tty,
2071 struct cmd_list_element *c, const char *value)
2072{
3e43a32a
MS
2073 fprintf_filtered (file,
2074 _("Mode for locking scheduler "
2075 "during execution is \"%s\".\n"),
920d2a44
AC
2076 value);
2077}
c906108c
SS
2078
2079static void
eb4c3f4a 2080set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
c906108c 2081{
eefe576e
AC
2082 if (!target_can_lock_scheduler)
2083 {
2084 scheduler_mode = schedlock_off;
2085 error (_("Target '%s' cannot support this command."), target_shortname);
2086 }
c906108c
SS
2087}
2088
d4db2f36
PA
2089/* True if execution commands resume all threads of all processes by
2090 default; otherwise, resume only threads of the current inferior
2091 process. */
2092int sched_multi = 0;
2093
2facfe5c
DD
2094/* Try to setup for software single stepping over the specified location.
2095 Return 1 if target_resume() should use hardware single step.
2096
2097 GDBARCH the current gdbarch.
2098 PC the location to step over. */
2099
2100static int
2101maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2102{
2103 int hw_step = 1;
2104
f02253f1 2105 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2106 && gdbarch_software_single_step_p (gdbarch))
2107 hw_step = !insert_single_step_breakpoints (gdbarch);
2108
2facfe5c
DD
2109 return hw_step;
2110}
c906108c 2111
f3263aa4
PA
2112/* See infrun.h. */
2113
09cee04b
PA
2114ptid_t
2115user_visible_resume_ptid (int step)
2116{
f3263aa4 2117 ptid_t resume_ptid;
09cee04b 2118
09cee04b
PA
2119 if (non_stop)
2120 {
2121 /* With non-stop mode on, threads are always handled
2122 individually. */
2123 resume_ptid = inferior_ptid;
2124 }
2125 else if ((scheduler_mode == schedlock_on)
03d46957 2126 || (scheduler_mode == schedlock_step && step))
09cee04b 2127 {
f3263aa4
PA
2128 /* User-settable 'scheduler' mode requires solo thread
2129 resume. */
09cee04b
PA
2130 resume_ptid = inferior_ptid;
2131 }
f2665db5
MM
2132 else if ((scheduler_mode == schedlock_replay)
2133 && target_record_will_replay (minus_one_ptid, execution_direction))
2134 {
2135 /* User-settable 'scheduler' mode requires solo thread resume in replay
2136 mode. */
2137 resume_ptid = inferior_ptid;
2138 }
f3263aa4
PA
2139 else if (!sched_multi && target_supports_multi_process ())
2140 {
2141 /* Resume all threads of the current process (and none of other
2142 processes). */
e99b03dc 2143 resume_ptid = ptid_t (inferior_ptid.pid ());
f3263aa4
PA
2144 }
2145 else
2146 {
2147 /* Resume all threads of all processes. */
2148 resume_ptid = RESUME_ALL;
2149 }
09cee04b
PA
2150
2151 return resume_ptid;
2152}
2153
fbea99ea
PA
2154/* Return a ptid representing the set of threads that we will resume,
2155 in the perspective of the target, assuming run control handling
2156 does not require leaving some threads stopped (e.g., stepping past
2157 breakpoint). USER_STEP indicates whether we're about to start the
2158 target for a stepping command. */
2159
2160static ptid_t
2161internal_resume_ptid (int user_step)
2162{
2163 /* In non-stop, we always control threads individually. Note that
2164 the target may always work in non-stop mode even with "set
2165 non-stop off", in which case user_visible_resume_ptid could
2166 return a wildcard ptid. */
2167 if (target_is_non_stop_p ())
2168 return inferior_ptid;
2169 else
2170 return user_visible_resume_ptid (user_step);
2171}
2172
64ce06e4
PA
2173/* Wrapper for target_resume, that handles infrun-specific
2174 bookkeeping. */
2175
2176static void
2177do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2178{
2179 struct thread_info *tp = inferior_thread ();
2180
c65d6b55
PA
2181 gdb_assert (!tp->stop_requested);
2182
64ce06e4 2183 /* Install inferior's terminal modes. */
223ffa71 2184 target_terminal::inferior ();
64ce06e4
PA
2185
2186 /* Avoid confusing the next resume, if the next stop/resume
2187 happens to apply to another thread. */
2188 tp->suspend.stop_signal = GDB_SIGNAL_0;
2189
8f572e5c
PA
2190 /* Advise target which signals may be handled silently.
2191
2192 If we have removed breakpoints because we are stepping over one
2193 in-line (in any thread), we need to receive all signals to avoid
2194 accidentally skipping a breakpoint during execution of a signal
2195 handler.
2196
2197 Likewise if we're displaced stepping, otherwise a trap for a
2198 breakpoint in a signal handler might be confused with the
2199 displaced step finishing. We don't make the displaced_step_fixup
2200 step distinguish the cases instead, because:
2201
2202 - a backtrace while stopped in the signal handler would show the
2203 scratch pad as frame older than the signal handler, instead of
2204 the real mainline code.
2205
2206 - when the thread is later resumed, the signal handler would
2207 return to the scratch pad area, which would no longer be
2208 valid. */
2209 if (step_over_info_valid_p ()
00431a78 2210 || displaced_step_in_progress (tp->inf))
adc6a863 2211 target_pass_signals ({});
64ce06e4 2212 else
adc6a863 2213 target_pass_signals (signal_pass);
64ce06e4
PA
2214
2215 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2216
2217 target_commit_resume ();
64ce06e4
PA
2218}
2219
d930703d 2220/* Resume the inferior. SIG is the signal to give the inferior
71d378ae
PA
2221 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2222 call 'resume', which handles exceptions. */
c906108c 2223
71d378ae
PA
2224static void
2225resume_1 (enum gdb_signal sig)
c906108c 2226{
515630c5 2227 struct regcache *regcache = get_current_regcache ();
ac7936df 2228 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2229 struct thread_info *tp = inferior_thread ();
515630c5 2230 CORE_ADDR pc = regcache_read_pc (regcache);
8b86c959 2231 const address_space *aspace = regcache->aspace ();
b0f16a3e 2232 ptid_t resume_ptid;
856e7dd6
PA
2233 /* This represents the user's step vs continue request. When
2234 deciding whether "set scheduler-locking step" applies, it's the
2235 user's intention that counts. */
2236 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2237 /* This represents what we'll actually request the target to do.
2238 This can decay from a step to a continue, if e.g., we need to
2239 implement single-stepping with breakpoints (software
2240 single-step). */
6b403daa 2241 int step;
c7e8a53c 2242
c65d6b55 2243 gdb_assert (!tp->stop_requested);
c2829269
PA
2244 gdb_assert (!thread_is_in_step_over_chain (tp));
2245
372316f1
PA
2246 if (tp->suspend.waitstatus_pending_p)
2247 {
2248 if (debug_infrun)
2249 {
23fdd69e
SM
2250 std::string statstr
2251 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2252
372316f1 2253 fprintf_unfiltered (gdb_stdlog,
23fdd69e
SM
2254 "infrun: resume: thread %s has pending wait "
2255 "status %s (currently_stepping=%d).\n",
2256 target_pid_to_str (tp->ptid), statstr.c_str (),
372316f1 2257 currently_stepping (tp));
372316f1
PA
2258 }
2259
2260 tp->resumed = 1;
2261
2262 /* FIXME: What should we do if we are supposed to resume this
2263 thread with a signal? Maybe we should maintain a queue of
2264 pending signals to deliver. */
2265 if (sig != GDB_SIGNAL_0)
2266 {
fd7dcb94 2267 warning (_("Couldn't deliver signal %s to %s."),
372316f1
PA
2268 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2269 }
2270
2271 tp->suspend.stop_signal = GDB_SIGNAL_0;
372316f1
PA
2272
2273 if (target_can_async_p ())
9516f85a
AB
2274 {
2275 target_async (1);
2276 /* Tell the event loop we have an event to process. */
2277 mark_async_event_handler (infrun_async_inferior_event_token);
2278 }
372316f1
PA
2279 return;
2280 }
2281
2282 tp->stepped_breakpoint = 0;
2283
6b403daa
PA
2284 /* Depends on stepped_breakpoint. */
2285 step = currently_stepping (tp);
2286
74609e71
YQ
2287 if (current_inferior ()->waiting_for_vfork_done)
2288 {
48f9886d
PA
2289 /* Don't try to single-step a vfork parent that is waiting for
2290 the child to get out of the shared memory region (by exec'ing
2291 or exiting). This is particularly important on software
2292 single-step archs, as the child process would trip on the
2293 software single step breakpoint inserted for the parent
2294 process. Since the parent will not actually execute any
2295 instruction until the child is out of the shared region (such
2296 are vfork's semantics), it is safe to simply continue it.
2297 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2298 the parent, and tell it to `keep_going', which automatically
2299 re-sets it stepping. */
74609e71
YQ
2300 if (debug_infrun)
2301 fprintf_unfiltered (gdb_stdlog,
2302 "infrun: resume : clear step\n");
a09dd441 2303 step = 0;
74609e71
YQ
2304 }
2305
527159b7 2306 if (debug_infrun)
237fc4c9 2307 fprintf_unfiltered (gdb_stdlog,
c9737c08 2308 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2309 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2310 step, gdb_signal_to_symbol_string (sig),
2311 tp->control.trap_expected,
0d9a9a5f
PA
2312 target_pid_to_str (inferior_ptid),
2313 paddress (gdbarch, pc));
c906108c 2314
c2c6d25f
JM
2315 /* Normally, by the time we reach `resume', the breakpoints are either
2316 removed or inserted, as appropriate. The exception is if we're sitting
2317 at a permanent breakpoint; we need to step over it, but permanent
2318 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2319 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2320 {
af48d08f
PA
2321 if (sig != GDB_SIGNAL_0)
2322 {
2323 /* We have a signal to pass to the inferior. The resume
2324 may, or may not take us to the signal handler. If this
2325 is a step, we'll need to stop in the signal handler, if
2326 there's one, (if the target supports stepping into
2327 handlers), or in the next mainline instruction, if
2328 there's no handler. If this is a continue, we need to be
2329 sure to run the handler with all breakpoints inserted.
2330 In all cases, set a breakpoint at the current address
2331 (where the handler returns to), and once that breakpoint
2332 is hit, resume skipping the permanent breakpoint. If
2333 that breakpoint isn't hit, then we've stepped into the
2334 signal handler (or hit some other event). We'll delete
2335 the step-resume breakpoint then. */
2336
2337 if (debug_infrun)
2338 fprintf_unfiltered (gdb_stdlog,
2339 "infrun: resume: skipping permanent breakpoint, "
2340 "deliver signal first\n");
2341
2342 clear_step_over_info ();
2343 tp->control.trap_expected = 0;
2344
2345 if (tp->control.step_resume_breakpoint == NULL)
2346 {
2347 /* Set a "high-priority" step-resume, as we don't want
2348 user breakpoints at PC to trigger (again) when this
2349 hits. */
2350 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2351 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2352
2353 tp->step_after_step_resume_breakpoint = step;
2354 }
2355
2356 insert_breakpoints ();
2357 }
2358 else
2359 {
2360 /* There's no signal to pass, we can go ahead and skip the
2361 permanent breakpoint manually. */
2362 if (debug_infrun)
2363 fprintf_unfiltered (gdb_stdlog,
2364 "infrun: resume: skipping permanent breakpoint\n");
2365 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2366 /* Update pc to reflect the new address from which we will
2367 execute instructions. */
2368 pc = regcache_read_pc (regcache);
2369
2370 if (step)
2371 {
2372 /* We've already advanced the PC, so the stepping part
2373 is done. Now we need to arrange for a trap to be
2374 reported to handle_inferior_event. Set a breakpoint
2375 at the current PC, and run to it. Don't update
2376 prev_pc, because if we end in
44a1ee51
PA
2377 switch_back_to_stepped_thread, we want the "expected
2378 thread advanced also" branch to be taken. IOW, we
2379 don't want this thread to step further from PC
af48d08f 2380 (overstep). */
1ac806b8 2381 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2382 insert_single_step_breakpoint (gdbarch, aspace, pc);
2383 insert_breakpoints ();
2384
fbea99ea 2385 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2386 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
372316f1 2387 tp->resumed = 1;
af48d08f
PA
2388 return;
2389 }
2390 }
6d350bb5 2391 }
c2c6d25f 2392
c1e36e3e
PA
2393 /* If we have a breakpoint to step over, make sure to do a single
2394 step only. Same if we have software watchpoints. */
2395 if (tp->control.trap_expected || bpstat_should_step ())
2396 tp->control.may_range_step = 0;
2397
237fc4c9
PA
2398 /* If enabled, step over breakpoints by executing a copy of the
2399 instruction at a different address.
2400
2401 We can't use displaced stepping when we have a signal to deliver;
2402 the comments for displaced_step_prepare explain why. The
2403 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2404 signals' explain what we do instead.
2405
2406 We can't use displaced stepping when we are waiting for vfork_done
2407 event, displaced stepping breaks the vfork child similarly as single
2408 step software breakpoint. */
3fc8eb30
PA
2409 if (tp->control.trap_expected
2410 && use_displaced_stepping (tp)
cb71640d 2411 && !step_over_info_valid_p ()
a493e3e2 2412 && sig == GDB_SIGNAL_0
74609e71 2413 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2414 {
00431a78 2415 int prepared = displaced_step_prepare (tp);
fc1cf338 2416
3fc8eb30 2417 if (prepared == 0)
d56b7306 2418 {
4d9d9d04
PA
2419 if (debug_infrun)
2420 fprintf_unfiltered (gdb_stdlog,
2421 "Got placed in step-over queue\n");
2422
2423 tp->control.trap_expected = 0;
d56b7306
VP
2424 return;
2425 }
3fc8eb30
PA
2426 else if (prepared < 0)
2427 {
2428 /* Fallback to stepping over the breakpoint in-line. */
2429
2430 if (target_is_non_stop_p ())
2431 stop_all_threads ();
2432
a01bda52 2433 set_step_over_info (regcache->aspace (),
21edc42f 2434 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2435
2436 step = maybe_software_singlestep (gdbarch, pc);
2437
2438 insert_breakpoints ();
2439 }
2440 else if (prepared > 0)
2441 {
2442 struct displaced_step_inferior_state *displaced;
99e40580 2443
3fc8eb30
PA
2444 /* Update pc to reflect the new address from which we will
2445 execute instructions due to displaced stepping. */
00431a78 2446 pc = regcache_read_pc (get_thread_regcache (tp));
ca7781d2 2447
00431a78 2448 displaced = get_displaced_stepping_state (tp->inf);
3fc8eb30
PA
2449 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2450 displaced->step_closure);
2451 }
237fc4c9
PA
2452 }
2453
2facfe5c 2454 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2455 else if (step)
2facfe5c 2456 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2457
30852783
UW
2458 /* Currently, our software single-step implementation leads to different
2459 results than hardware single-stepping in one situation: when stepping
2460 into delivering a signal which has an associated signal handler,
2461 hardware single-step will stop at the first instruction of the handler,
2462 while software single-step will simply skip execution of the handler.
2463
2464 For now, this difference in behavior is accepted since there is no
2465 easy way to actually implement single-stepping into a signal handler
2466 without kernel support.
2467
2468 However, there is one scenario where this difference leads to follow-on
2469 problems: if we're stepping off a breakpoint by removing all breakpoints
2470 and then single-stepping. In this case, the software single-step
2471 behavior means that even if there is a *breakpoint* in the signal
2472 handler, GDB still would not stop.
2473
2474 Fortunately, we can at least fix this particular issue. We detect
2475 here the case where we are about to deliver a signal while software
2476 single-stepping with breakpoints removed. In this situation, we
2477 revert the decisions to remove all breakpoints and insert single-
2478 step breakpoints, and instead we install a step-resume breakpoint
2479 at the current address, deliver the signal without stepping, and
2480 once we arrive back at the step-resume breakpoint, actually step
2481 over the breakpoint we originally wanted to step over. */
34b7e8a6 2482 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2483 && sig != GDB_SIGNAL_0
2484 && step_over_info_valid_p ())
30852783
UW
2485 {
2486 /* If we have nested signals or a pending signal is delivered
2487 immediately after a handler returns, might might already have
2488 a step-resume breakpoint set on the earlier handler. We cannot
2489 set another step-resume breakpoint; just continue on until the
2490 original breakpoint is hit. */
2491 if (tp->control.step_resume_breakpoint == NULL)
2492 {
2c03e5be 2493 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2494 tp->step_after_step_resume_breakpoint = 1;
2495 }
2496
34b7e8a6 2497 delete_single_step_breakpoints (tp);
30852783 2498
31e77af2 2499 clear_step_over_info ();
30852783 2500 tp->control.trap_expected = 0;
31e77af2
PA
2501
2502 insert_breakpoints ();
30852783
UW
2503 }
2504
b0f16a3e
SM
2505 /* If STEP is set, it's a request to use hardware stepping
2506 facilities. But in that case, we should never
2507 use singlestep breakpoint. */
34b7e8a6 2508 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2509
fbea99ea 2510 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2511 if (tp->control.trap_expected)
b0f16a3e
SM
2512 {
2513 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2514 hit, either by single-stepping the thread with the breakpoint
2515 removed, or by displaced stepping, with the breakpoint inserted.
2516 In the former case, we need to single-step only this thread,
2517 and keep others stopped, as they can miss this breakpoint if
2518 allowed to run. That's not really a problem for displaced
2519 stepping, but, we still keep other threads stopped, in case
2520 another thread is also stopped for a breakpoint waiting for
2521 its turn in the displaced stepping queue. */
b0f16a3e
SM
2522 resume_ptid = inferior_ptid;
2523 }
fbea99ea
PA
2524 else
2525 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2526
7f5ef605
PA
2527 if (execution_direction != EXEC_REVERSE
2528 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2529 {
372316f1
PA
2530 /* There are two cases where we currently need to step a
2531 breakpoint instruction when we have a signal to deliver:
2532
2533 - See handle_signal_stop where we handle random signals that
2534 could take out us out of the stepping range. Normally, in
2535 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2536 signal handler with a breakpoint at PC, but there are cases
2537 where we should _always_ single-step, even if we have a
2538 step-resume breakpoint, like when a software watchpoint is
2539 set. Assuming single-stepping and delivering a signal at the
2540 same time would takes us to the signal handler, then we could
2541 have removed the breakpoint at PC to step over it. However,
2542 some hardware step targets (like e.g., Mac OS) can't step
2543 into signal handlers, and for those, we need to leave the
2544 breakpoint at PC inserted, as otherwise if the handler
2545 recurses and executes PC again, it'll miss the breakpoint.
2546 So we leave the breakpoint inserted anyway, but we need to
2547 record that we tried to step a breakpoint instruction, so
372316f1
PA
2548 that adjust_pc_after_break doesn't end up confused.
2549
2550 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2551 in one thread after another thread that was stepping had been
2552 momentarily paused for a step-over. When we re-resume the
2553 stepping thread, it may be resumed from that address with a
2554 breakpoint that hasn't trapped yet. Seen with
2555 gdb.threads/non-stop-fair-events.exp, on targets that don't
2556 do displaced stepping. */
2557
2558 if (debug_infrun)
2559 fprintf_unfiltered (gdb_stdlog,
2560 "infrun: resume: [%s] stepped breakpoint\n",
2561 target_pid_to_str (tp->ptid));
7f5ef605
PA
2562
2563 tp->stepped_breakpoint = 1;
2564
b0f16a3e
SM
2565 /* Most targets can step a breakpoint instruction, thus
2566 executing it normally. But if this one cannot, just
2567 continue and we will hit it anyway. */
7f5ef605 2568 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2569 step = 0;
2570 }
ef5cf84e 2571
b0f16a3e 2572 if (debug_displaced
cb71640d 2573 && tp->control.trap_expected
3fc8eb30 2574 && use_displaced_stepping (tp)
cb71640d 2575 && !step_over_info_valid_p ())
b0f16a3e 2576 {
00431a78 2577 struct regcache *resume_regcache = get_thread_regcache (tp);
ac7936df 2578 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2579 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2580 gdb_byte buf[4];
2581
2582 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2583 paddress (resume_gdbarch, actual_pc));
2584 read_memory (actual_pc, buf, sizeof (buf));
2585 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2586 }
237fc4c9 2587
b0f16a3e
SM
2588 if (tp->control.may_range_step)
2589 {
2590 /* If we're resuming a thread with the PC out of the step
2591 range, then we're doing some nested/finer run control
2592 operation, like stepping the thread out of the dynamic
2593 linker or the displaced stepping scratch pad. We
2594 shouldn't have allowed a range step then. */
2595 gdb_assert (pc_in_thread_step_range (pc, tp));
2596 }
c1e36e3e 2597
64ce06e4 2598 do_target_resume (resume_ptid, step, sig);
372316f1 2599 tp->resumed = 1;
c906108c 2600}
71d378ae
PA
2601
2602/* Resume the inferior. SIG is the signal to give the inferior
2603 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2604 rolls back state on error. */
2605
aff4e175 2606static void
71d378ae
PA
2607resume (gdb_signal sig)
2608{
2609 TRY
2610 {
2611 resume_1 (sig);
2612 }
2613 CATCH (ex, RETURN_MASK_ALL)
2614 {
2615 /* If resuming is being aborted for any reason, delete any
2616 single-step breakpoint resume_1 may have created, to avoid
2617 confusing the following resumption, and to avoid leaving
2618 single-step breakpoints perturbing other threads, in case
2619 we're running in non-stop mode. */
2620 if (inferior_ptid != null_ptid)
2621 delete_single_step_breakpoints (inferior_thread ());
2622 throw_exception (ex);
2623 }
2624 END_CATCH
2625}
2626
c906108c 2627\f
237fc4c9 2628/* Proceeding. */
c906108c 2629
4c2f2a79
PA
2630/* See infrun.h. */
2631
2632/* Counter that tracks number of user visible stops. This can be used
2633 to tell whether a command has proceeded the inferior past the
2634 current location. This allows e.g., inferior function calls in
2635 breakpoint commands to not interrupt the command list. When the
2636 call finishes successfully, the inferior is standing at the same
2637 breakpoint as if nothing happened (and so we don't call
2638 normal_stop). */
2639static ULONGEST current_stop_id;
2640
2641/* See infrun.h. */
2642
2643ULONGEST
2644get_stop_id (void)
2645{
2646 return current_stop_id;
2647}
2648
2649/* Called when we report a user visible stop. */
2650
2651static void
2652new_stop_id (void)
2653{
2654 current_stop_id++;
2655}
2656
c906108c
SS
2657/* Clear out all variables saying what to do when inferior is continued.
2658 First do this, then set the ones you want, then call `proceed'. */
2659
a7212384
UW
2660static void
2661clear_proceed_status_thread (struct thread_info *tp)
c906108c 2662{
a7212384
UW
2663 if (debug_infrun)
2664 fprintf_unfiltered (gdb_stdlog,
2665 "infrun: clear_proceed_status_thread (%s)\n",
2666 target_pid_to_str (tp->ptid));
d6b48e9c 2667
372316f1
PA
2668 /* If we're starting a new sequence, then the previous finished
2669 single-step is no longer relevant. */
2670 if (tp->suspend.waitstatus_pending_p)
2671 {
2672 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2673 {
2674 if (debug_infrun)
2675 fprintf_unfiltered (gdb_stdlog,
2676 "infrun: clear_proceed_status: pending "
2677 "event of %s was a finished step. "
2678 "Discarding.\n",
2679 target_pid_to_str (tp->ptid));
2680
2681 tp->suspend.waitstatus_pending_p = 0;
2682 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2683 }
2684 else if (debug_infrun)
2685 {
23fdd69e
SM
2686 std::string statstr
2687 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2688
372316f1
PA
2689 fprintf_unfiltered (gdb_stdlog,
2690 "infrun: clear_proceed_status_thread: thread %s "
2691 "has pending wait status %s "
2692 "(currently_stepping=%d).\n",
23fdd69e 2693 target_pid_to_str (tp->ptid), statstr.c_str (),
372316f1 2694 currently_stepping (tp));
372316f1
PA
2695 }
2696 }
2697
70509625
PA
2698 /* If this signal should not be seen by program, give it zero.
2699 Used for debugging signals. */
2700 if (!signal_pass_state (tp->suspend.stop_signal))
2701 tp->suspend.stop_signal = GDB_SIGNAL_0;
2702
46e3ed7f 2703 delete tp->thread_fsm;
243a9253
PA
2704 tp->thread_fsm = NULL;
2705
16c381f0
JK
2706 tp->control.trap_expected = 0;
2707 tp->control.step_range_start = 0;
2708 tp->control.step_range_end = 0;
c1e36e3e 2709 tp->control.may_range_step = 0;
16c381f0
JK
2710 tp->control.step_frame_id = null_frame_id;
2711 tp->control.step_stack_frame_id = null_frame_id;
2712 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2713 tp->control.step_start_function = NULL;
a7212384 2714 tp->stop_requested = 0;
4e1c45ea 2715
16c381f0 2716 tp->control.stop_step = 0;
32400beb 2717
16c381f0 2718 tp->control.proceed_to_finish = 0;
414c69f7 2719
856e7dd6 2720 tp->control.stepping_command = 0;
17b2616c 2721
a7212384 2722 /* Discard any remaining commands or status from previous stop. */
16c381f0 2723 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2724}
32400beb 2725
a7212384 2726void
70509625 2727clear_proceed_status (int step)
a7212384 2728{
f2665db5
MM
2729 /* With scheduler-locking replay, stop replaying other threads if we're
2730 not replaying the user-visible resume ptid.
2731
2732 This is a convenience feature to not require the user to explicitly
2733 stop replaying the other threads. We're assuming that the user's
2734 intent is to resume tracing the recorded process. */
2735 if (!non_stop && scheduler_mode == schedlock_replay
2736 && target_record_is_replaying (minus_one_ptid)
2737 && !target_record_will_replay (user_visible_resume_ptid (step),
2738 execution_direction))
2739 target_record_stop_replaying ();
2740
08036331 2741 if (!non_stop && inferior_ptid != null_ptid)
6c95b8df 2742 {
08036331 2743 ptid_t resume_ptid = user_visible_resume_ptid (step);
70509625
PA
2744
2745 /* In all-stop mode, delete the per-thread status of all threads
2746 we're about to resume, implicitly and explicitly. */
08036331
PA
2747 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2748 clear_proceed_status_thread (tp);
6c95b8df
PA
2749 }
2750
d7e15655 2751 if (inferior_ptid != null_ptid)
a7212384
UW
2752 {
2753 struct inferior *inferior;
2754
2755 if (non_stop)
2756 {
6c95b8df
PA
2757 /* If in non-stop mode, only delete the per-thread status of
2758 the current thread. */
a7212384
UW
2759 clear_proceed_status_thread (inferior_thread ());
2760 }
6c95b8df 2761
d6b48e9c 2762 inferior = current_inferior ();
16c381f0 2763 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2764 }
2765
76727919 2766 gdb::observers::about_to_proceed.notify ();
c906108c
SS
2767}
2768
99619bea
PA
2769/* Returns true if TP is still stopped at a breakpoint that needs
2770 stepping-over in order to make progress. If the breakpoint is gone
2771 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2772
2773static int
6c4cfb24 2774thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2775{
2776 if (tp->stepping_over_breakpoint)
2777 {
00431a78 2778 struct regcache *regcache = get_thread_regcache (tp);
99619bea 2779
a01bda52 2780 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2781 regcache_read_pc (regcache))
2782 == ordinary_breakpoint_here)
99619bea
PA
2783 return 1;
2784
2785 tp->stepping_over_breakpoint = 0;
2786 }
2787
2788 return 0;
2789}
2790
6c4cfb24
PA
2791/* Check whether thread TP still needs to start a step-over in order
2792 to make progress when resumed. Returns an bitwise or of enum
2793 step_over_what bits, indicating what needs to be stepped over. */
2794
8d297bbf 2795static step_over_what
6c4cfb24
PA
2796thread_still_needs_step_over (struct thread_info *tp)
2797{
8d297bbf 2798 step_over_what what = 0;
6c4cfb24
PA
2799
2800 if (thread_still_needs_step_over_bp (tp))
2801 what |= STEP_OVER_BREAKPOINT;
2802
2803 if (tp->stepping_over_watchpoint
2804 && !target_have_steppable_watchpoint)
2805 what |= STEP_OVER_WATCHPOINT;
2806
2807 return what;
2808}
2809
483805cf
PA
2810/* Returns true if scheduler locking applies. STEP indicates whether
2811 we're about to do a step/next-like command to a thread. */
2812
2813static int
856e7dd6 2814schedlock_applies (struct thread_info *tp)
483805cf
PA
2815{
2816 return (scheduler_mode == schedlock_on
2817 || (scheduler_mode == schedlock_step
f2665db5
MM
2818 && tp->control.stepping_command)
2819 || (scheduler_mode == schedlock_replay
2820 && target_record_will_replay (minus_one_ptid,
2821 execution_direction)));
483805cf
PA
2822}
2823
c906108c
SS
2824/* Basic routine for continuing the program in various fashions.
2825
2826 ADDR is the address to resume at, or -1 for resume where stopped.
aff4e175
AB
2827 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2828 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
c906108c
SS
2829
2830 You should call clear_proceed_status before calling proceed. */
2831
2832void
64ce06e4 2833proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2834{
e58b0e63
PA
2835 struct regcache *regcache;
2836 struct gdbarch *gdbarch;
e58b0e63 2837 CORE_ADDR pc;
4d9d9d04
PA
2838 ptid_t resume_ptid;
2839 struct execution_control_state ecss;
2840 struct execution_control_state *ecs = &ecss;
4d9d9d04 2841 int started;
c906108c 2842
e58b0e63
PA
2843 /* If we're stopped at a fork/vfork, follow the branch set by the
2844 "set follow-fork-mode" command; otherwise, we'll just proceed
2845 resuming the current thread. */
2846 if (!follow_fork ())
2847 {
2848 /* The target for some reason decided not to resume. */
2849 normal_stop ();
f148b27e
PA
2850 if (target_can_async_p ())
2851 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2852 return;
2853 }
2854
842951eb
PA
2855 /* We'll update this if & when we switch to a new thread. */
2856 previous_inferior_ptid = inferior_ptid;
2857
e58b0e63 2858 regcache = get_current_regcache ();
ac7936df 2859 gdbarch = regcache->arch ();
8b86c959
YQ
2860 const address_space *aspace = regcache->aspace ();
2861
e58b0e63 2862 pc = regcache_read_pc (regcache);
08036331 2863 thread_info *cur_thr = inferior_thread ();
e58b0e63 2864
99619bea 2865 /* Fill in with reasonable starting values. */
08036331 2866 init_thread_stepping_state (cur_thr);
99619bea 2867
08036331 2868 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
c2829269 2869
2acceee2 2870 if (addr == (CORE_ADDR) -1)
c906108c 2871 {
08036331 2872 if (pc == cur_thr->suspend.stop_pc
af48d08f 2873 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 2874 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2875 /* There is a breakpoint at the address we will resume at,
2876 step one instruction before inserting breakpoints so that
2877 we do not stop right away (and report a second hit at this
b2175913
MS
2878 breakpoint).
2879
2880 Note, we don't do this in reverse, because we won't
2881 actually be executing the breakpoint insn anyway.
2882 We'll be (un-)executing the previous instruction. */
08036331 2883 cur_thr->stepping_over_breakpoint = 1;
515630c5
UW
2884 else if (gdbarch_single_step_through_delay_p (gdbarch)
2885 && gdbarch_single_step_through_delay (gdbarch,
2886 get_current_frame ()))
3352ef37
AC
2887 /* We stepped onto an instruction that needs to be stepped
2888 again before re-inserting the breakpoint, do so. */
08036331 2889 cur_thr->stepping_over_breakpoint = 1;
c906108c
SS
2890 }
2891 else
2892 {
515630c5 2893 regcache_write_pc (regcache, addr);
c906108c
SS
2894 }
2895
70509625 2896 if (siggnal != GDB_SIGNAL_DEFAULT)
08036331 2897 cur_thr->suspend.stop_signal = siggnal;
70509625 2898
08036331 2899 resume_ptid = user_visible_resume_ptid (cur_thr->control.stepping_command);
4d9d9d04
PA
2900
2901 /* If an exception is thrown from this point on, make sure to
2902 propagate GDB's knowledge of the executing state to the
2903 frontend/user running state. */
731f534f 2904 scoped_finish_thread_state finish_state (resume_ptid);
4d9d9d04
PA
2905
2906 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2907 threads (e.g., we might need to set threads stepping over
2908 breakpoints first), from the user/frontend's point of view, all
2909 threads in RESUME_PTID are now running. Unless we're calling an
2910 inferior function, as in that case we pretend the inferior
2911 doesn't run at all. */
08036331 2912 if (!cur_thr->control.in_infcall)
4d9d9d04 2913 set_running (resume_ptid, 1);
17b2616c 2914
527159b7 2915 if (debug_infrun)
8a9de0e4 2916 fprintf_unfiltered (gdb_stdlog,
64ce06e4 2917 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 2918 paddress (gdbarch, addr),
64ce06e4 2919 gdb_signal_to_symbol_string (siggnal));
527159b7 2920
4d9d9d04
PA
2921 annotate_starting ();
2922
2923 /* Make sure that output from GDB appears before output from the
2924 inferior. */
2925 gdb_flush (gdb_stdout);
2926
d930703d
PA
2927 /* Since we've marked the inferior running, give it the terminal. A
2928 QUIT/Ctrl-C from here on is forwarded to the target (which can
2929 still detect attempts to unblock a stuck connection with repeated
2930 Ctrl-C from within target_pass_ctrlc). */
2931 target_terminal::inferior ();
2932
4d9d9d04
PA
2933 /* In a multi-threaded task we may select another thread and
2934 then continue or step.
2935
2936 But if a thread that we're resuming had stopped at a breakpoint,
2937 it will immediately cause another breakpoint stop without any
2938 execution (i.e. it will report a breakpoint hit incorrectly). So
2939 we must step over it first.
2940
2941 Look for threads other than the current (TP) that reported a
2942 breakpoint hit and haven't been resumed yet since. */
2943
2944 /* If scheduler locking applies, we can avoid iterating over all
2945 threads. */
08036331 2946 if (!non_stop && !schedlock_applies (cur_thr))
94cc34af 2947 {
08036331
PA
2948 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2949 {
4d9d9d04
PA
2950 /* Ignore the current thread here. It's handled
2951 afterwards. */
08036331 2952 if (tp == cur_thr)
4d9d9d04 2953 continue;
c906108c 2954
4d9d9d04
PA
2955 if (!thread_still_needs_step_over (tp))
2956 continue;
2957
2958 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 2959
99619bea
PA
2960 if (debug_infrun)
2961 fprintf_unfiltered (gdb_stdlog,
2962 "infrun: need to step-over [%s] first\n",
4d9d9d04 2963 target_pid_to_str (tp->ptid));
99619bea 2964
4d9d9d04 2965 thread_step_over_chain_enqueue (tp);
2adfaa28 2966 }
30852783
UW
2967 }
2968
4d9d9d04
PA
2969 /* Enqueue the current thread last, so that we move all other
2970 threads over their breakpoints first. */
08036331
PA
2971 if (cur_thr->stepping_over_breakpoint)
2972 thread_step_over_chain_enqueue (cur_thr);
30852783 2973
4d9d9d04
PA
2974 /* If the thread isn't started, we'll still need to set its prev_pc,
2975 so that switch_back_to_stepped_thread knows the thread hasn't
2976 advanced. Must do this before resuming any thread, as in
2977 all-stop/remote, once we resume we can't send any other packet
2978 until the target stops again. */
08036331 2979 cur_thr->prev_pc = regcache_read_pc (regcache);
99619bea 2980
a9bc57b9
TT
2981 {
2982 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
85ad3aaf 2983
a9bc57b9 2984 started = start_step_over ();
c906108c 2985
a9bc57b9
TT
2986 if (step_over_info_valid_p ())
2987 {
2988 /* Either this thread started a new in-line step over, or some
2989 other thread was already doing one. In either case, don't
2990 resume anything else until the step-over is finished. */
2991 }
2992 else if (started && !target_is_non_stop_p ())
2993 {
2994 /* A new displaced stepping sequence was started. In all-stop,
2995 we can't talk to the target anymore until it next stops. */
2996 }
2997 else if (!non_stop && target_is_non_stop_p ())
2998 {
2999 /* In all-stop, but the target is always in non-stop mode.
3000 Start all other threads that are implicitly resumed too. */
08036331 3001 for (thread_info *tp : all_non_exited_threads (resume_ptid))
fbea99ea 3002 {
fbea99ea
PA
3003 if (tp->resumed)
3004 {
3005 if (debug_infrun)
3006 fprintf_unfiltered (gdb_stdlog,
3007 "infrun: proceed: [%s] resumed\n",
3008 target_pid_to_str (tp->ptid));
3009 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3010 continue;
3011 }
3012
3013 if (thread_is_in_step_over_chain (tp))
3014 {
3015 if (debug_infrun)
3016 fprintf_unfiltered (gdb_stdlog,
3017 "infrun: proceed: [%s] needs step-over\n",
3018 target_pid_to_str (tp->ptid));
3019 continue;
3020 }
3021
3022 if (debug_infrun)
3023 fprintf_unfiltered (gdb_stdlog,
3024 "infrun: proceed: resuming %s\n",
3025 target_pid_to_str (tp->ptid));
3026
3027 reset_ecs (ecs, tp);
00431a78 3028 switch_to_thread (tp);
fbea99ea
PA
3029 keep_going_pass_signal (ecs);
3030 if (!ecs->wait_some_more)
fd7dcb94 3031 error (_("Command aborted."));
fbea99ea 3032 }
a9bc57b9 3033 }
08036331 3034 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
a9bc57b9
TT
3035 {
3036 /* The thread wasn't started, and isn't queued, run it now. */
08036331
PA
3037 reset_ecs (ecs, cur_thr);
3038 switch_to_thread (cur_thr);
a9bc57b9
TT
3039 keep_going_pass_signal (ecs);
3040 if (!ecs->wait_some_more)
3041 error (_("Command aborted."));
3042 }
3043 }
c906108c 3044
85ad3aaf
PA
3045 target_commit_resume ();
3046
731f534f 3047 finish_state.release ();
c906108c 3048
0b333c5e
PA
3049 /* Tell the event loop to wait for it to stop. If the target
3050 supports asynchronous execution, it'll do this from within
3051 target_resume. */
362646f5 3052 if (!target_can_async_p ())
0b333c5e 3053 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3054}
c906108c
SS
3055\f
3056
3057/* Start remote-debugging of a machine over a serial link. */
96baa820 3058
c906108c 3059void
8621d6a9 3060start_remote (int from_tty)
c906108c 3061{
d6b48e9c 3062 struct inferior *inferior;
d6b48e9c
PA
3063
3064 inferior = current_inferior ();
16c381f0 3065 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3066
1777feb0 3067 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3068 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3069 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3070 nothing is returned (instead of just blocking). Because of this,
3071 targets expecting an immediate response need to, internally, set
3072 things up so that the target_wait() is forced to eventually
1777feb0 3073 timeout. */
6426a772
JM
3074 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3075 differentiate to its caller what the state of the target is after
3076 the initial open has been performed. Here we're assuming that
3077 the target has stopped. It should be possible to eventually have
3078 target_open() return to the caller an indication that the target
3079 is currently running and GDB state should be set to the same as
1777feb0 3080 for an async run. */
e4c8541f 3081 wait_for_inferior ();
8621d6a9
DJ
3082
3083 /* Now that the inferior has stopped, do any bookkeeping like
3084 loading shared libraries. We want to do this before normal_stop,
3085 so that the displayed frame is up to date. */
8b88a78e 3086 post_create_inferior (current_top_target (), from_tty);
8621d6a9 3087
6426a772 3088 normal_stop ();
c906108c
SS
3089}
3090
3091/* Initialize static vars when a new inferior begins. */
3092
3093void
96baa820 3094init_wait_for_inferior (void)
c906108c
SS
3095{
3096 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3097
c906108c
SS
3098 breakpoint_init_inferior (inf_starting);
3099
70509625 3100 clear_proceed_status (0);
9f976b41 3101
ca005067 3102 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3103
842951eb 3104 previous_inferior_ptid = inferior_ptid;
c906108c 3105}
237fc4c9 3106
c906108c 3107\f
488f131b 3108
ec9499be 3109static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3110
568d6575
UW
3111static void handle_step_into_function (struct gdbarch *gdbarch,
3112 struct execution_control_state *ecs);
3113static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3114 struct execution_control_state *ecs);
4f5d7f63 3115static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3116static void check_exception_resume (struct execution_control_state *,
28106bc2 3117 struct frame_info *);
611c83ae 3118
bdc36728 3119static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3120static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3121static void keep_going (struct execution_control_state *ecs);
94c57d6a 3122static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3123static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3124
252fbfc8
PA
3125/* This function is attached as a "thread_stop_requested" observer.
3126 Cleanup local state that assumed the PTID was to be resumed, and
3127 report the stop to the frontend. */
3128
2c0b251b 3129static void
252fbfc8
PA
3130infrun_thread_stop_requested (ptid_t ptid)
3131{
c65d6b55
PA
3132 /* PTID was requested to stop. If the thread was already stopped,
3133 but the user/frontend doesn't know about that yet (e.g., the
3134 thread had been temporarily paused for some step-over), set up
3135 for reporting the stop now. */
08036331
PA
3136 for (thread_info *tp : all_threads (ptid))
3137 {
3138 if (tp->state != THREAD_RUNNING)
3139 continue;
3140 if (tp->executing)
3141 continue;
c65d6b55 3142
08036331
PA
3143 /* Remove matching threads from the step-over queue, so
3144 start_step_over doesn't try to resume them
3145 automatically. */
3146 if (thread_is_in_step_over_chain (tp))
3147 thread_step_over_chain_remove (tp);
c65d6b55 3148
08036331
PA
3149 /* If the thread is stopped, but the user/frontend doesn't
3150 know about that yet, queue a pending event, as if the
3151 thread had just stopped now. Unless the thread already had
3152 a pending event. */
3153 if (!tp->suspend.waitstatus_pending_p)
3154 {
3155 tp->suspend.waitstatus_pending_p = 1;
3156 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3157 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3158 }
c65d6b55 3159
08036331
PA
3160 /* Clear the inline-frame state, since we're re-processing the
3161 stop. */
3162 clear_inline_frame_state (tp->ptid);
c65d6b55 3163
08036331
PA
3164 /* If this thread was paused because some other thread was
3165 doing an inline-step over, let that finish first. Once
3166 that happens, we'll restart all threads and consume pending
3167 stop events then. */
3168 if (step_over_info_valid_p ())
3169 continue;
3170
3171 /* Otherwise we can process the (new) pending event now. Set
3172 it so this pending event is considered by
3173 do_target_wait. */
3174 tp->resumed = 1;
3175 }
252fbfc8
PA
3176}
3177
a07daef3
PA
3178static void
3179infrun_thread_thread_exit (struct thread_info *tp, int silent)
3180{
d7e15655 3181 if (target_last_wait_ptid == tp->ptid)
a07daef3
PA
3182 nullify_last_target_wait_ptid ();
3183}
3184
0cbcdb96
PA
3185/* Delete the step resume, single-step and longjmp/exception resume
3186 breakpoints of TP. */
4e1c45ea 3187
0cbcdb96
PA
3188static void
3189delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3190{
0cbcdb96
PA
3191 delete_step_resume_breakpoint (tp);
3192 delete_exception_resume_breakpoint (tp);
34b7e8a6 3193 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3194}
3195
0cbcdb96
PA
3196/* If the target still has execution, call FUNC for each thread that
3197 just stopped. In all-stop, that's all the non-exited threads; in
3198 non-stop, that's the current thread, only. */
3199
3200typedef void (*for_each_just_stopped_thread_callback_func)
3201 (struct thread_info *tp);
4e1c45ea
PA
3202
3203static void
0cbcdb96 3204for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3205{
d7e15655 3206 if (!target_has_execution || inferior_ptid == null_ptid)
4e1c45ea
PA
3207 return;
3208
fbea99ea 3209 if (target_is_non_stop_p ())
4e1c45ea 3210 {
0cbcdb96
PA
3211 /* If in non-stop mode, only the current thread stopped. */
3212 func (inferior_thread ());
4e1c45ea
PA
3213 }
3214 else
0cbcdb96 3215 {
0cbcdb96 3216 /* In all-stop mode, all threads have stopped. */
08036331
PA
3217 for (thread_info *tp : all_non_exited_threads ())
3218 func (tp);
0cbcdb96
PA
3219 }
3220}
3221
3222/* Delete the step resume and longjmp/exception resume breakpoints of
3223 the threads that just stopped. */
3224
3225static void
3226delete_just_stopped_threads_infrun_breakpoints (void)
3227{
3228 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3229}
3230
3231/* Delete the single-step breakpoints of the threads that just
3232 stopped. */
7c16b83e 3233
34b7e8a6
PA
3234static void
3235delete_just_stopped_threads_single_step_breakpoints (void)
3236{
3237 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3238}
3239
221e1a37 3240/* See infrun.h. */
223698f8 3241
221e1a37 3242void
223698f8
DE
3243print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3244 const struct target_waitstatus *ws)
3245{
23fdd69e 3246 std::string status_string = target_waitstatus_to_string (ws);
d7e74731 3247 string_file stb;
223698f8
DE
3248
3249 /* The text is split over several lines because it was getting too long.
3250 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3251 output as a unit; we want only one timestamp printed if debug_timestamp
3252 is set. */
3253
d7e74731 3254 stb.printf ("infrun: target_wait (%d.%ld.%ld",
e99b03dc 3255 waiton_ptid.pid (),
e38504b3 3256 waiton_ptid.lwp (),
cc6bcb54 3257 waiton_ptid.tid ());
e99b03dc 3258 if (waiton_ptid.pid () != -1)
d7e74731
PA
3259 stb.printf (" [%s]", target_pid_to_str (waiton_ptid));
3260 stb.printf (", status) =\n");
3261 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
e99b03dc 3262 result_ptid.pid (),
e38504b3 3263 result_ptid.lwp (),
cc6bcb54 3264 result_ptid.tid (),
d7e74731 3265 target_pid_to_str (result_ptid));
23fdd69e 3266 stb.printf ("infrun: %s\n", status_string.c_str ());
223698f8
DE
3267
3268 /* This uses %s in part to handle %'s in the text, but also to avoid
3269 a gcc error: the format attribute requires a string literal. */
d7e74731 3270 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3271}
3272
372316f1
PA
3273/* Select a thread at random, out of those which are resumed and have
3274 had events. */
3275
3276static struct thread_info *
3277random_pending_event_thread (ptid_t waiton_ptid)
3278{
372316f1 3279 int num_events = 0;
08036331
PA
3280
3281 auto has_event = [] (thread_info *tp)
3282 {
3283 return (tp->resumed
3284 && tp->suspend.waitstatus_pending_p);
3285 };
372316f1
PA
3286
3287 /* First see how many events we have. Count only resumed threads
3288 that have an event pending. */
08036331
PA
3289 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3290 if (has_event (tp))
372316f1
PA
3291 num_events++;
3292
3293 if (num_events == 0)
3294 return NULL;
3295
3296 /* Now randomly pick a thread out of those that have had events. */
08036331
PA
3297 int random_selector = (int) ((num_events * (double) rand ())
3298 / (RAND_MAX + 1.0));
372316f1
PA
3299
3300 if (debug_infrun && num_events > 1)
3301 fprintf_unfiltered (gdb_stdlog,
3302 "infrun: Found %d events, selecting #%d\n",
3303 num_events, random_selector);
3304
3305 /* Select the Nth thread that has had an event. */
08036331
PA
3306 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3307 if (has_event (tp))
372316f1 3308 if (random_selector-- == 0)
08036331 3309 return tp;
372316f1 3310
08036331 3311 gdb_assert_not_reached ("event thread not found");
372316f1
PA
3312}
3313
3314/* Wrapper for target_wait that first checks whether threads have
3315 pending statuses to report before actually asking the target for
3316 more events. */
3317
3318static ptid_t
3319do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3320{
3321 ptid_t event_ptid;
3322 struct thread_info *tp;
3323
3324 /* First check if there is a resumed thread with a wait status
3325 pending. */
d7e15655 3326 if (ptid == minus_one_ptid || ptid.is_pid ())
372316f1
PA
3327 {
3328 tp = random_pending_event_thread (ptid);
3329 }
3330 else
3331 {
3332 if (debug_infrun)
3333 fprintf_unfiltered (gdb_stdlog,
3334 "infrun: Waiting for specific thread %s.\n",
3335 target_pid_to_str (ptid));
3336
3337 /* We have a specific thread to check. */
3338 tp = find_thread_ptid (ptid);
3339 gdb_assert (tp != NULL);
3340 if (!tp->suspend.waitstatus_pending_p)
3341 tp = NULL;
3342 }
3343
3344 if (tp != NULL
3345 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3346 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3347 {
00431a78 3348 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 3349 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3350 CORE_ADDR pc;
3351 int discard = 0;
3352
3353 pc = regcache_read_pc (regcache);
3354
3355 if (pc != tp->suspend.stop_pc)
3356 {
3357 if (debug_infrun)
3358 fprintf_unfiltered (gdb_stdlog,
3359 "infrun: PC of %s changed. was=%s, now=%s\n",
3360 target_pid_to_str (tp->ptid),
defd2172 3361 paddress (gdbarch, tp->suspend.stop_pc),
372316f1
PA
3362 paddress (gdbarch, pc));
3363 discard = 1;
3364 }
a01bda52 3365 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1
PA
3366 {
3367 if (debug_infrun)
3368 fprintf_unfiltered (gdb_stdlog,
3369 "infrun: previous breakpoint of %s, at %s gone\n",
3370 target_pid_to_str (tp->ptid),
3371 paddress (gdbarch, pc));
3372
3373 discard = 1;
3374 }
3375
3376 if (discard)
3377 {
3378 if (debug_infrun)
3379 fprintf_unfiltered (gdb_stdlog,
3380 "infrun: pending event of %s cancelled.\n",
3381 target_pid_to_str (tp->ptid));
3382
3383 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3384 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3385 }
3386 }
3387
3388 if (tp != NULL)
3389 {
3390 if (debug_infrun)
3391 {
23fdd69e
SM
3392 std::string statstr
3393 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 3394
372316f1
PA
3395 fprintf_unfiltered (gdb_stdlog,
3396 "infrun: Using pending wait status %s for %s.\n",
23fdd69e 3397 statstr.c_str (),
372316f1 3398 target_pid_to_str (tp->ptid));
372316f1
PA
3399 }
3400
3401 /* Now that we've selected our final event LWP, un-adjust its PC
3402 if it was a software breakpoint (and the target doesn't
3403 always adjust the PC itself). */
3404 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3405 && !target_supports_stopped_by_sw_breakpoint ())
3406 {
3407 struct regcache *regcache;
3408 struct gdbarch *gdbarch;
3409 int decr_pc;
3410
00431a78 3411 regcache = get_thread_regcache (tp);
ac7936df 3412 gdbarch = regcache->arch ();
372316f1
PA
3413
3414 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3415 if (decr_pc != 0)
3416 {
3417 CORE_ADDR pc;
3418
3419 pc = regcache_read_pc (regcache);
3420 regcache_write_pc (regcache, pc + decr_pc);
3421 }
3422 }
3423
3424 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3425 *status = tp->suspend.waitstatus;
3426 tp->suspend.waitstatus_pending_p = 0;
3427
3428 /* Wake up the event loop again, until all pending events are
3429 processed. */
3430 if (target_is_async_p ())
3431 mark_async_event_handler (infrun_async_inferior_event_token);
3432 return tp->ptid;
3433 }
3434
3435 /* But if we don't find one, we'll have to wait. */
3436
3437 if (deprecated_target_wait_hook)
3438 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3439 else
3440 event_ptid = target_wait (ptid, status, options);
3441
3442 return event_ptid;
3443}
3444
24291992
PA
3445/* Prepare and stabilize the inferior for detaching it. E.g.,
3446 detaching while a thread is displaced stepping is a recipe for
3447 crashing it, as nothing would readjust the PC out of the scratch
3448 pad. */
3449
3450void
3451prepare_for_detach (void)
3452{
3453 struct inferior *inf = current_inferior ();
f2907e49 3454 ptid_t pid_ptid = ptid_t (inf->pid);
24291992 3455
00431a78 3456 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
24291992
PA
3457
3458 /* Is any thread of this process displaced stepping? If not,
3459 there's nothing else to do. */
d20172fc 3460 if (displaced->step_thread == nullptr)
24291992
PA
3461 return;
3462
3463 if (debug_infrun)
3464 fprintf_unfiltered (gdb_stdlog,
3465 "displaced-stepping in-process while detaching");
3466
9bcb1f16 3467 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992 3468
00431a78 3469 while (displaced->step_thread != nullptr)
24291992 3470 {
24291992
PA
3471 struct execution_control_state ecss;
3472 struct execution_control_state *ecs;
3473
3474 ecs = &ecss;
3475 memset (ecs, 0, sizeof (*ecs));
3476
3477 overlay_cache_invalid = 1;
f15cb84a
YQ
3478 /* Flush target cache before starting to handle each event.
3479 Target was running and cache could be stale. This is just a
3480 heuristic. Running threads may modify target memory, but we
3481 don't get any event. */
3482 target_dcache_invalidate ();
24291992 3483
372316f1 3484 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3485
3486 if (debug_infrun)
3487 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3488
3489 /* If an error happens while handling the event, propagate GDB's
3490 knowledge of the executing state to the frontend/user running
3491 state. */
731f534f 3492 scoped_finish_thread_state finish_state (minus_one_ptid);
24291992
PA
3493
3494 /* Now figure out what to do with the result of the result. */
3495 handle_inferior_event (ecs);
3496
3497 /* No error, don't finish the state yet. */
731f534f 3498 finish_state.release ();
24291992
PA
3499
3500 /* Breakpoints and watchpoints are not installed on the target
3501 at this point, and signals are passed directly to the
3502 inferior, so this must mean the process is gone. */
3503 if (!ecs->wait_some_more)
3504 {
9bcb1f16 3505 restore_detaching.release ();
24291992
PA
3506 error (_("Program exited while detaching"));
3507 }
3508 }
3509
9bcb1f16 3510 restore_detaching.release ();
24291992
PA
3511}
3512
cd0fc7c3 3513/* Wait for control to return from inferior to debugger.
ae123ec6 3514
cd0fc7c3
SS
3515 If inferior gets a signal, we may decide to start it up again
3516 instead of returning. That is why there is a loop in this function.
3517 When this function actually returns it means the inferior
3518 should be left stopped and GDB should read more commands. */
3519
3520void
e4c8541f 3521wait_for_inferior (void)
cd0fc7c3 3522{
527159b7 3523 if (debug_infrun)
ae123ec6 3524 fprintf_unfiltered
e4c8541f 3525 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3526
4c41382a 3527 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
cd0fc7c3 3528
e6f5c25b
PA
3529 /* If an error happens while handling the event, propagate GDB's
3530 knowledge of the executing state to the frontend/user running
3531 state. */
731f534f 3532 scoped_finish_thread_state finish_state (minus_one_ptid);
e6f5c25b 3533
c906108c
SS
3534 while (1)
3535 {
ae25568b
PA
3536 struct execution_control_state ecss;
3537 struct execution_control_state *ecs = &ecss;
963f9c80 3538 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3539
ae25568b
PA
3540 memset (ecs, 0, sizeof (*ecs));
3541
ec9499be 3542 overlay_cache_invalid = 1;
ec9499be 3543
f15cb84a
YQ
3544 /* Flush target cache before starting to handle each event.
3545 Target was running and cache could be stale. This is just a
3546 heuristic. Running threads may modify target memory, but we
3547 don't get any event. */
3548 target_dcache_invalidate ();
3549
372316f1 3550 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3551
f00150c9 3552 if (debug_infrun)
223698f8 3553 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3554
cd0fc7c3
SS
3555 /* Now figure out what to do with the result of the result. */
3556 handle_inferior_event (ecs);
c906108c 3557
cd0fc7c3
SS
3558 if (!ecs->wait_some_more)
3559 break;
3560 }
4e1c45ea 3561
e6f5c25b 3562 /* No error, don't finish the state yet. */
731f534f 3563 finish_state.release ();
cd0fc7c3 3564}
c906108c 3565
d3d4baed
PA
3566/* Cleanup that reinstalls the readline callback handler, if the
3567 target is running in the background. If while handling the target
3568 event something triggered a secondary prompt, like e.g., a
3569 pagination prompt, we'll have removed the callback handler (see
3570 gdb_readline_wrapper_line). Need to do this as we go back to the
3571 event loop, ready to process further input. Note this has no
3572 effect if the handler hasn't actually been removed, because calling
3573 rl_callback_handler_install resets the line buffer, thus losing
3574 input. */
3575
3576static void
d238133d 3577reinstall_readline_callback_handler_cleanup ()
d3d4baed 3578{
3b12939d
PA
3579 struct ui *ui = current_ui;
3580
3581 if (!ui->async)
6c400b59
PA
3582 {
3583 /* We're not going back to the top level event loop yet. Don't
3584 install the readline callback, as it'd prep the terminal,
3585 readline-style (raw, noecho) (e.g., --batch). We'll install
3586 it the next time the prompt is displayed, when we're ready
3587 for input. */
3588 return;
3589 }
3590
3b12939d 3591 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3592 gdb_rl_callback_handler_reinstall ();
3593}
3594
243a9253
PA
3595/* Clean up the FSMs of threads that are now stopped. In non-stop,
3596 that's just the event thread. In all-stop, that's all threads. */
3597
3598static void
3599clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3600{
08036331
PA
3601 if (ecs->event_thread != NULL
3602 && ecs->event_thread->thread_fsm != NULL)
46e3ed7f 3603 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
243a9253
PA
3604
3605 if (!non_stop)
3606 {
08036331 3607 for (thread_info *thr : all_non_exited_threads ())
243a9253
PA
3608 {
3609 if (thr->thread_fsm == NULL)
3610 continue;
3611 if (thr == ecs->event_thread)
3612 continue;
3613
00431a78 3614 switch_to_thread (thr);
46e3ed7f 3615 thr->thread_fsm->clean_up (thr);
243a9253
PA
3616 }
3617
3618 if (ecs->event_thread != NULL)
00431a78 3619 switch_to_thread (ecs->event_thread);
243a9253
PA
3620 }
3621}
3622
3b12939d
PA
3623/* Helper for all_uis_check_sync_execution_done that works on the
3624 current UI. */
3625
3626static void
3627check_curr_ui_sync_execution_done (void)
3628{
3629 struct ui *ui = current_ui;
3630
3631 if (ui->prompt_state == PROMPT_NEEDED
3632 && ui->async
3633 && !gdb_in_secondary_prompt_p (ui))
3634 {
223ffa71 3635 target_terminal::ours ();
76727919 3636 gdb::observers::sync_execution_done.notify ();
3eb7562a 3637 ui_register_input_event_handler (ui);
3b12939d
PA
3638 }
3639}
3640
3641/* See infrun.h. */
3642
3643void
3644all_uis_check_sync_execution_done (void)
3645{
0e454242 3646 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3647 {
3648 check_curr_ui_sync_execution_done ();
3649 }
3650}
3651
a8836c93
PA
3652/* See infrun.h. */
3653
3654void
3655all_uis_on_sync_execution_starting (void)
3656{
0e454242 3657 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3658 {
3659 if (current_ui->prompt_state == PROMPT_NEEDED)
3660 async_disable_stdin ();
3661 }
3662}
3663
1777feb0 3664/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3665 event loop whenever a change of state is detected on the file
1777feb0
MS
3666 descriptor corresponding to the target. It can be called more than
3667 once to complete a single execution command. In such cases we need
3668 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3669 that this function is called for a single execution command, then
3670 report to the user that the inferior has stopped, and do the
1777feb0 3671 necessary cleanups. */
43ff13b4
JM
3672
3673void
fba45db2 3674fetch_inferior_event (void *client_data)
43ff13b4 3675{
0d1e5fa7 3676 struct execution_control_state ecss;
a474d7c2 3677 struct execution_control_state *ecs = &ecss;
0f641c01 3678 int cmd_done = 0;
963f9c80 3679 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3680
0d1e5fa7
PA
3681 memset (ecs, 0, sizeof (*ecs));
3682
c61db772
PA
3683 /* Events are always processed with the main UI as current UI. This
3684 way, warnings, debug output, etc. are always consistently sent to
3685 the main console. */
4b6749b9 3686 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3687
d3d4baed 3688 /* End up with readline processing input, if necessary. */
d238133d
TT
3689 {
3690 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3691
3692 /* We're handling a live event, so make sure we're doing live
3693 debugging. If we're looking at traceframes while the target is
3694 running, we're going to need to get back to that mode after
3695 handling the event. */
3696 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3697 if (non_stop)
3698 {
3699 maybe_restore_traceframe.emplace ();
3700 set_current_traceframe (-1);
3701 }
43ff13b4 3702
d238133d
TT
3703 gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3704
3705 if (non_stop)
3706 /* In non-stop mode, the user/frontend should not notice a thread
3707 switch due to internal events. Make sure we reverse to the
3708 user selected thread and frame after handling the event and
3709 running any breakpoint commands. */
3710 maybe_restore_thread.emplace ();
3711
3712 overlay_cache_invalid = 1;
3713 /* Flush target cache before starting to handle each event. Target
3714 was running and cache could be stale. This is just a heuristic.
3715 Running threads may modify target memory, but we don't get any
3716 event. */
3717 target_dcache_invalidate ();
3718
3719 scoped_restore save_exec_dir
3720 = make_scoped_restore (&execution_direction,
3721 target_execution_direction ());
3722
3723 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3724 target_can_async_p () ? TARGET_WNOHANG : 0);
3725
3726 if (debug_infrun)
3727 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3728
3729 /* If an error happens while handling the event, propagate GDB's
3730 knowledge of the executing state to the frontend/user running
3731 state. */
3732 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3733 scoped_finish_thread_state finish_state (finish_ptid);
3734
979a0d13 3735 /* Get executed before scoped_restore_current_thread above to apply
d238133d
TT
3736 still for the thread which has thrown the exception. */
3737 auto defer_bpstat_clear
3738 = make_scope_exit (bpstat_clear_actions);
3739 auto defer_delete_threads
3740 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3741
3742 /* Now figure out what to do with the result of the result. */
3743 handle_inferior_event (ecs);
3744
3745 if (!ecs->wait_some_more)
3746 {
3747 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3748 int should_stop = 1;
3749 struct thread_info *thr = ecs->event_thread;
d6b48e9c 3750
d238133d 3751 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3752
d238133d
TT
3753 if (thr != NULL)
3754 {
3755 struct thread_fsm *thread_fsm = thr->thread_fsm;
243a9253 3756
d238133d 3757 if (thread_fsm != NULL)
46e3ed7f 3758 should_stop = thread_fsm->should_stop (thr);
d238133d 3759 }
243a9253 3760
d238133d
TT
3761 if (!should_stop)
3762 {
3763 keep_going (ecs);
3764 }
3765 else
3766 {
46e3ed7f 3767 bool should_notify_stop = true;
d238133d 3768 int proceeded = 0;
1840d81a 3769
d238133d 3770 clean_up_just_stopped_threads_fsms (ecs);
243a9253 3771
d238133d 3772 if (thr != NULL && thr->thread_fsm != NULL)
46e3ed7f 3773 should_notify_stop = thr->thread_fsm->should_notify_stop ();
388a7084 3774
d238133d
TT
3775 if (should_notify_stop)
3776 {
3777 /* We may not find an inferior if this was a process exit. */
3778 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3779 proceeded = normal_stop ();
3780 }
243a9253 3781
d238133d
TT
3782 if (!proceeded)
3783 {
3784 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3785 cmd_done = 1;
3786 }
3787 }
3788 }
4f8d22e3 3789
d238133d
TT
3790 defer_delete_threads.release ();
3791 defer_bpstat_clear.release ();
29f49a6a 3792
d238133d
TT
3793 /* No error, don't finish the thread states yet. */
3794 finish_state.release ();
731f534f 3795
d238133d
TT
3796 /* This scope is used to ensure that readline callbacks are
3797 reinstalled here. */
3798 }
4f8d22e3 3799
3b12939d
PA
3800 /* If a UI was in sync execution mode, and now isn't, restore its
3801 prompt (a synchronous execution command has finished, and we're
3802 ready for input). */
3803 all_uis_check_sync_execution_done ();
0f641c01
PA
3804
3805 if (cmd_done
0f641c01 3806 && exec_done_display_p
00431a78
PA
3807 && (inferior_ptid == null_ptid
3808 || inferior_thread ()->state != THREAD_RUNNING))
0f641c01 3809 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3810}
3811
edb3359d
DJ
3812/* Record the frame and location we're currently stepping through. */
3813void
3814set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3815{
3816 struct thread_info *tp = inferior_thread ();
3817
16c381f0
JK
3818 tp->control.step_frame_id = get_frame_id (frame);
3819 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
3820
3821 tp->current_symtab = sal.symtab;
3822 tp->current_line = sal.line;
3823}
3824
0d1e5fa7
PA
3825/* Clear context switchable stepping state. */
3826
3827void
4e1c45ea 3828init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 3829{
7f5ef605 3830 tss->stepped_breakpoint = 0;
0d1e5fa7 3831 tss->stepping_over_breakpoint = 0;
963f9c80 3832 tss->stepping_over_watchpoint = 0;
0d1e5fa7 3833 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
3834}
3835
c32c64b7
DE
3836/* Set the cached copy of the last ptid/waitstatus. */
3837
6efcd9a8 3838void
c32c64b7
DE
3839set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3840{
3841 target_last_wait_ptid = ptid;
3842 target_last_waitstatus = status;
3843}
3844
e02bc4cc 3845/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
3846 target_wait()/deprecated_target_wait_hook(). The data is actually
3847 cached by handle_inferior_event(), which gets called immediately
3848 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
3849
3850void
488f131b 3851get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 3852{
39f77062 3853 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
3854 *status = target_last_waitstatus;
3855}
3856
ac264b3b
MS
3857void
3858nullify_last_target_wait_ptid (void)
3859{
3860 target_last_wait_ptid = minus_one_ptid;
3861}
3862
dcf4fbde 3863/* Switch thread contexts. */
dd80620e
MS
3864
3865static void
00431a78 3866context_switch (execution_control_state *ecs)
dd80620e 3867{
00431a78
PA
3868 if (debug_infrun
3869 && ecs->ptid != inferior_ptid
3870 && ecs->event_thread != inferior_thread ())
fd48f117
DJ
3871 {
3872 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3873 target_pid_to_str (inferior_ptid));
3874 fprintf_unfiltered (gdb_stdlog, "to %s\n",
00431a78 3875 target_pid_to_str (ecs->ptid));
fd48f117
DJ
3876 }
3877
00431a78 3878 switch_to_thread (ecs->event_thread);
dd80620e
MS
3879}
3880
d8dd4d5f
PA
3881/* If the target can't tell whether we've hit breakpoints
3882 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
3883 check whether that could have been caused by a breakpoint. If so,
3884 adjust the PC, per gdbarch_decr_pc_after_break. */
3885
4fa8626c 3886static void
d8dd4d5f
PA
3887adjust_pc_after_break (struct thread_info *thread,
3888 struct target_waitstatus *ws)
4fa8626c 3889{
24a73cce
UW
3890 struct regcache *regcache;
3891 struct gdbarch *gdbarch;
118e6252 3892 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 3893
4fa8626c
DJ
3894 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3895 we aren't, just return.
9709f61c
DJ
3896
3897 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
3898 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3899 implemented by software breakpoints should be handled through the normal
3900 breakpoint layer.
8fb3e588 3901
4fa8626c
DJ
3902 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3903 different signals (SIGILL or SIGEMT for instance), but it is less
3904 clear where the PC is pointing afterwards. It may not match
b798847d
UW
3905 gdbarch_decr_pc_after_break. I don't know any specific target that
3906 generates these signals at breakpoints (the code has been in GDB since at
3907 least 1992) so I can not guess how to handle them here.
8fb3e588 3908
e6cf7916
UW
3909 In earlier versions of GDB, a target with
3910 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
3911 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3912 target with both of these set in GDB history, and it seems unlikely to be
3913 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 3914
d8dd4d5f 3915 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
3916 return;
3917
d8dd4d5f 3918 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
3919 return;
3920
4058b839
PA
3921 /* In reverse execution, when a breakpoint is hit, the instruction
3922 under it has already been de-executed. The reported PC always
3923 points at the breakpoint address, so adjusting it further would
3924 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3925 architecture:
3926
3927 B1 0x08000000 : INSN1
3928 B2 0x08000001 : INSN2
3929 0x08000002 : INSN3
3930 PC -> 0x08000003 : INSN4
3931
3932 Say you're stopped at 0x08000003 as above. Reverse continuing
3933 from that point should hit B2 as below. Reading the PC when the
3934 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3935 been de-executed already.
3936
3937 B1 0x08000000 : INSN1
3938 B2 PC -> 0x08000001 : INSN2
3939 0x08000002 : INSN3
3940 0x08000003 : INSN4
3941
3942 We can't apply the same logic as for forward execution, because
3943 we would wrongly adjust the PC to 0x08000000, since there's a
3944 breakpoint at PC - 1. We'd then report a hit on B1, although
3945 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3946 behaviour. */
3947 if (execution_direction == EXEC_REVERSE)
3948 return;
3949
1cf4d951
PA
3950 /* If the target can tell whether the thread hit a SW breakpoint,
3951 trust it. Targets that can tell also adjust the PC
3952 themselves. */
3953 if (target_supports_stopped_by_sw_breakpoint ())
3954 return;
3955
3956 /* Note that relying on whether a breakpoint is planted in memory to
3957 determine this can fail. E.g,. the breakpoint could have been
3958 removed since. Or the thread could have been told to step an
3959 instruction the size of a breakpoint instruction, and only
3960 _after_ was a breakpoint inserted at its address. */
3961
24a73cce
UW
3962 /* If this target does not decrement the PC after breakpoints, then
3963 we have nothing to do. */
00431a78 3964 regcache = get_thread_regcache (thread);
ac7936df 3965 gdbarch = regcache->arch ();
118e6252 3966
527a273a 3967 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 3968 if (decr_pc == 0)
24a73cce
UW
3969 return;
3970
8b86c959 3971 const address_space *aspace = regcache->aspace ();
6c95b8df 3972
8aad930b
AC
3973 /* Find the location where (if we've hit a breakpoint) the
3974 breakpoint would be. */
118e6252 3975 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 3976
1cf4d951
PA
3977 /* If the target can't tell whether a software breakpoint triggered,
3978 fallback to figuring it out based on breakpoints we think were
3979 inserted in the target, and on whether the thread was stepped or
3980 continued. */
3981
1c5cfe86
PA
3982 /* Check whether there actually is a software breakpoint inserted at
3983 that location.
3984
3985 If in non-stop mode, a race condition is possible where we've
3986 removed a breakpoint, but stop events for that breakpoint were
3987 already queued and arrive later. To suppress those spurious
3988 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
3989 and retire them after a number of stop events are reported. Note
3990 this is an heuristic and can thus get confused. The real fix is
3991 to get the "stopped by SW BP and needs adjustment" info out of
3992 the target/kernel (and thus never reach here; see above). */
6c95b8df 3993 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
3994 || (target_is_non_stop_p ()
3995 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 3996 {
07036511 3997 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 3998
8213266a 3999 if (record_full_is_used ())
07036511
TT
4000 restore_operation_disable.emplace
4001 (record_full_gdb_operation_disable_set ());
96429cc8 4002
1c0fdd0e
UW
4003 /* When using hardware single-step, a SIGTRAP is reported for both
4004 a completed single-step and a software breakpoint. Need to
4005 differentiate between the two, as the latter needs adjusting
4006 but the former does not.
4007
4008 The SIGTRAP can be due to a completed hardware single-step only if
4009 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4010 - this thread is currently being stepped
4011
4012 If any of these events did not occur, we must have stopped due
4013 to hitting a software breakpoint, and have to back up to the
4014 breakpoint address.
4015
4016 As a special case, we could have hardware single-stepped a
4017 software breakpoint. In this case (prev_pc == breakpoint_pc),
4018 we also need to back up to the breakpoint address. */
4019
d8dd4d5f
PA
4020 if (thread_has_single_step_breakpoints_set (thread)
4021 || !currently_stepping (thread)
4022 || (thread->stepped_breakpoint
4023 && thread->prev_pc == breakpoint_pc))
515630c5 4024 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4025 }
4fa8626c
DJ
4026}
4027
edb3359d
DJ
4028static int
4029stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4030{
4031 for (frame = get_prev_frame (frame);
4032 frame != NULL;
4033 frame = get_prev_frame (frame))
4034 {
4035 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4036 return 1;
4037 if (get_frame_type (frame) != INLINE_FRAME)
4038 break;
4039 }
4040
4041 return 0;
4042}
4043
c65d6b55
PA
4044/* If the event thread has the stop requested flag set, pretend it
4045 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4046 target_stop). */
4047
4048static bool
4049handle_stop_requested (struct execution_control_state *ecs)
4050{
4051 if (ecs->event_thread->stop_requested)
4052 {
4053 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4054 ecs->ws.value.sig = GDB_SIGNAL_0;
4055 handle_signal_stop (ecs);
4056 return true;
4057 }
4058 return false;
4059}
4060
a96d9b2e
SDJ
4061/* Auxiliary function that handles syscall entry/return events.
4062 It returns 1 if the inferior should keep going (and GDB
4063 should ignore the event), or 0 if the event deserves to be
4064 processed. */
ca2163eb 4065
a96d9b2e 4066static int
ca2163eb 4067handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4068{
ca2163eb 4069 struct regcache *regcache;
ca2163eb
PA
4070 int syscall_number;
4071
00431a78 4072 context_switch (ecs);
ca2163eb 4073
00431a78 4074 regcache = get_thread_regcache (ecs->event_thread);
f90263c1 4075 syscall_number = ecs->ws.value.syscall_number;
f2ffa92b 4076 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
ca2163eb 4077
a96d9b2e
SDJ
4078 if (catch_syscall_enabled () > 0
4079 && catching_syscall_number (syscall_number) > 0)
4080 {
4081 if (debug_infrun)
4082 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4083 syscall_number);
a96d9b2e 4084
16c381f0 4085 ecs->event_thread->control.stop_bpstat
a01bda52 4086 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4087 ecs->event_thread->suspend.stop_pc,
4088 ecs->event_thread, &ecs->ws);
ab04a2af 4089
c65d6b55
PA
4090 if (handle_stop_requested (ecs))
4091 return 0;
4092
ce12b012 4093 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4094 {
4095 /* Catchpoint hit. */
ca2163eb
PA
4096 return 0;
4097 }
a96d9b2e 4098 }
ca2163eb 4099
c65d6b55
PA
4100 if (handle_stop_requested (ecs))
4101 return 0;
4102
ca2163eb 4103 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4104 keep_going (ecs);
4105 return 1;
a96d9b2e
SDJ
4106}
4107
7e324e48
GB
4108/* Lazily fill in the execution_control_state's stop_func_* fields. */
4109
4110static void
4111fill_in_stop_func (struct gdbarch *gdbarch,
4112 struct execution_control_state *ecs)
4113{
4114 if (!ecs->stop_func_filled_in)
4115 {
4116 /* Don't care about return value; stop_func_start and stop_func_name
4117 will both be 0 if it doesn't work. */
59adbf5d
KB
4118 find_function_entry_range_from_pc (ecs->event_thread->suspend.stop_pc,
4119 &ecs->stop_func_name,
4120 &ecs->stop_func_start,
4121 &ecs->stop_func_end);
7e324e48
GB
4122 ecs->stop_func_start
4123 += gdbarch_deprecated_function_start_offset (gdbarch);
4124
591a12a1
UW
4125 if (gdbarch_skip_entrypoint_p (gdbarch))
4126 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4127 ecs->stop_func_start);
4128
7e324e48
GB
4129 ecs->stop_func_filled_in = 1;
4130 }
4131}
4132
4f5d7f63 4133
00431a78 4134/* Return the STOP_SOON field of the inferior pointed at by ECS. */
4f5d7f63
PA
4135
4136static enum stop_kind
00431a78 4137get_inferior_stop_soon (execution_control_state *ecs)
4f5d7f63 4138{
00431a78 4139 struct inferior *inf = find_inferior_ptid (ecs->ptid);
4f5d7f63
PA
4140
4141 gdb_assert (inf != NULL);
4142 return inf->control.stop_soon;
4143}
4144
372316f1
PA
4145/* Wait for one event. Store the resulting waitstatus in WS, and
4146 return the event ptid. */
4147
4148static ptid_t
4149wait_one (struct target_waitstatus *ws)
4150{
4151 ptid_t event_ptid;
4152 ptid_t wait_ptid = minus_one_ptid;
4153
4154 overlay_cache_invalid = 1;
4155
4156 /* Flush target cache before starting to handle each event.
4157 Target was running and cache could be stale. This is just a
4158 heuristic. Running threads may modify target memory, but we
4159 don't get any event. */
4160 target_dcache_invalidate ();
4161
4162 if (deprecated_target_wait_hook)
4163 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4164 else
4165 event_ptid = target_wait (wait_ptid, ws, 0);
4166
4167 if (debug_infrun)
4168 print_target_wait_results (wait_ptid, event_ptid, ws);
4169
4170 return event_ptid;
4171}
4172
4173/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4174 instead of the current thread. */
4175#define THREAD_STOPPED_BY(REASON) \
4176static int \
4177thread_stopped_by_ ## REASON (ptid_t ptid) \
4178{ \
2989a365 4179 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
372316f1
PA
4180 inferior_ptid = ptid; \
4181 \
2989a365 4182 return target_stopped_by_ ## REASON (); \
372316f1
PA
4183}
4184
4185/* Generate thread_stopped_by_watchpoint. */
4186THREAD_STOPPED_BY (watchpoint)
4187/* Generate thread_stopped_by_sw_breakpoint. */
4188THREAD_STOPPED_BY (sw_breakpoint)
4189/* Generate thread_stopped_by_hw_breakpoint. */
4190THREAD_STOPPED_BY (hw_breakpoint)
4191
372316f1
PA
4192/* Save the thread's event and stop reason to process it later. */
4193
4194static void
4195save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4196{
372316f1
PA
4197 if (debug_infrun)
4198 {
23fdd69e 4199 std::string statstr = target_waitstatus_to_string (ws);
372316f1 4200
372316f1
PA
4201 fprintf_unfiltered (gdb_stdlog,
4202 "infrun: saving status %s for %d.%ld.%ld\n",
23fdd69e 4203 statstr.c_str (),
e99b03dc 4204 tp->ptid.pid (),
e38504b3 4205 tp->ptid.lwp (),
cc6bcb54 4206 tp->ptid.tid ());
372316f1
PA
4207 }
4208
4209 /* Record for later. */
4210 tp->suspend.waitstatus = *ws;
4211 tp->suspend.waitstatus_pending_p = 1;
4212
00431a78 4213 struct regcache *regcache = get_thread_regcache (tp);
8b86c959 4214 const address_space *aspace = regcache->aspace ();
372316f1
PA
4215
4216 if (ws->kind == TARGET_WAITKIND_STOPPED
4217 && ws->value.sig == GDB_SIGNAL_TRAP)
4218 {
4219 CORE_ADDR pc = regcache_read_pc (regcache);
4220
4221 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4222
4223 if (thread_stopped_by_watchpoint (tp->ptid))
4224 {
4225 tp->suspend.stop_reason
4226 = TARGET_STOPPED_BY_WATCHPOINT;
4227 }
4228 else if (target_supports_stopped_by_sw_breakpoint ()
4229 && thread_stopped_by_sw_breakpoint (tp->ptid))
4230 {
4231 tp->suspend.stop_reason
4232 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4233 }
4234 else if (target_supports_stopped_by_hw_breakpoint ()
4235 && thread_stopped_by_hw_breakpoint (tp->ptid))
4236 {
4237 tp->suspend.stop_reason
4238 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4239 }
4240 else if (!target_supports_stopped_by_hw_breakpoint ()
4241 && hardware_breakpoint_inserted_here_p (aspace,
4242 pc))
4243 {
4244 tp->suspend.stop_reason
4245 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4246 }
4247 else if (!target_supports_stopped_by_sw_breakpoint ()
4248 && software_breakpoint_inserted_here_p (aspace,
4249 pc))
4250 {
4251 tp->suspend.stop_reason
4252 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4253 }
4254 else if (!thread_has_single_step_breakpoints_set (tp)
4255 && currently_stepping (tp))
4256 {
4257 tp->suspend.stop_reason
4258 = TARGET_STOPPED_BY_SINGLE_STEP;
4259 }
4260 }
4261}
4262
6efcd9a8 4263/* See infrun.h. */
372316f1 4264
6efcd9a8 4265void
372316f1
PA
4266stop_all_threads (void)
4267{
4268 /* We may need multiple passes to discover all threads. */
4269 int pass;
4270 int iterations = 0;
372316f1 4271
fbea99ea 4272 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4273
4274 if (debug_infrun)
4275 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4276
00431a78 4277 scoped_restore_current_thread restore_thread;
372316f1 4278
65706a29 4279 target_thread_events (1);
9885e6bb 4280 SCOPE_EXIT { target_thread_events (0); };
65706a29 4281
372316f1
PA
4282 /* Request threads to stop, and then wait for the stops. Because
4283 threads we already know about can spawn more threads while we're
4284 trying to stop them, and we only learn about new threads when we
4285 update the thread list, do this in a loop, and keep iterating
4286 until two passes find no threads that need to be stopped. */
4287 for (pass = 0; pass < 2; pass++, iterations++)
4288 {
4289 if (debug_infrun)
4290 fprintf_unfiltered (gdb_stdlog,
4291 "infrun: stop_all_threads, pass=%d, "
4292 "iterations=%d\n", pass, iterations);
4293 while (1)
4294 {
4295 ptid_t event_ptid;
4296 struct target_waitstatus ws;
4297 int need_wait = 0;
372316f1
PA
4298
4299 update_thread_list ();
4300
4301 /* Go through all threads looking for threads that we need
4302 to tell the target to stop. */
08036331 4303 for (thread_info *t : all_non_exited_threads ())
372316f1
PA
4304 {
4305 if (t->executing)
4306 {
4307 /* If already stopping, don't request a stop again.
4308 We just haven't seen the notification yet. */
4309 if (!t->stop_requested)
4310 {
4311 if (debug_infrun)
4312 fprintf_unfiltered (gdb_stdlog,
4313 "infrun: %s executing, "
4314 "need stop\n",
4315 target_pid_to_str (t->ptid));
4316 target_stop (t->ptid);
4317 t->stop_requested = 1;
4318 }
4319 else
4320 {
4321 if (debug_infrun)
4322 fprintf_unfiltered (gdb_stdlog,
4323 "infrun: %s executing, "
4324 "already stopping\n",
4325 target_pid_to_str (t->ptid));
4326 }
4327
4328 if (t->stop_requested)
4329 need_wait = 1;
4330 }
4331 else
4332 {
4333 if (debug_infrun)
4334 fprintf_unfiltered (gdb_stdlog,
4335 "infrun: %s not executing\n",
4336 target_pid_to_str (t->ptid));
4337
4338 /* The thread may be not executing, but still be
4339 resumed with a pending status to process. */
4340 t->resumed = 0;
4341 }
4342 }
4343
4344 if (!need_wait)
4345 break;
4346
4347 /* If we find new threads on the second iteration, restart
4348 over. We want to see two iterations in a row with all
4349 threads stopped. */
4350 if (pass > 0)
4351 pass = -1;
4352
4353 event_ptid = wait_one (&ws);
00431a78 4354
372316f1
PA
4355 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4356 {
4357 /* All resumed threads exited. */
4358 }
65706a29
PA
4359 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4360 || ws.kind == TARGET_WAITKIND_EXITED
372316f1
PA
4361 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4362 {
4363 if (debug_infrun)
4364 {
f2907e49 4365 ptid_t ptid = ptid_t (ws.value.integer);
372316f1
PA
4366
4367 fprintf_unfiltered (gdb_stdlog,
4368 "infrun: %s exited while "
4369 "stopping threads\n",
4370 target_pid_to_str (ptid));
4371 }
4372 }
4373 else
4374 {
08036331 4375 thread_info *t = find_thread_ptid (event_ptid);
372316f1
PA
4376 if (t == NULL)
4377 t = add_thread (event_ptid);
4378
4379 t->stop_requested = 0;
4380 t->executing = 0;
4381 t->resumed = 0;
4382 t->control.may_range_step = 0;
4383
6efcd9a8
PA
4384 /* This may be the first time we see the inferior report
4385 a stop. */
08036331 4386 inferior *inf = find_inferior_ptid (event_ptid);
6efcd9a8
PA
4387 if (inf->needs_setup)
4388 {
4389 switch_to_thread_no_regs (t);
4390 setup_inferior (0);
4391 }
4392
372316f1
PA
4393 if (ws.kind == TARGET_WAITKIND_STOPPED
4394 && ws.value.sig == GDB_SIGNAL_0)
4395 {
4396 /* We caught the event that we intended to catch, so
4397 there's no event pending. */
4398 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4399 t->suspend.waitstatus_pending_p = 0;
4400
00431a78 4401 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
372316f1
PA
4402 {
4403 /* Add it back to the step-over queue. */
4404 if (debug_infrun)
4405 {
4406 fprintf_unfiltered (gdb_stdlog,
4407 "infrun: displaced-step of %s "
4408 "canceled: adding back to the "
4409 "step-over queue\n",
4410 target_pid_to_str (t->ptid));
4411 }
4412 t->control.trap_expected = 0;
4413 thread_step_over_chain_enqueue (t);
4414 }
4415 }
4416 else
4417 {
4418 enum gdb_signal sig;
4419 struct regcache *regcache;
372316f1
PA
4420
4421 if (debug_infrun)
4422 {
23fdd69e 4423 std::string statstr = target_waitstatus_to_string (&ws);
372316f1 4424
372316f1
PA
4425 fprintf_unfiltered (gdb_stdlog,
4426 "infrun: target_wait %s, saving "
4427 "status for %d.%ld.%ld\n",
23fdd69e 4428 statstr.c_str (),
e99b03dc 4429 t->ptid.pid (),
e38504b3 4430 t->ptid.lwp (),
cc6bcb54 4431 t->ptid.tid ());
372316f1
PA
4432 }
4433
4434 /* Record for later. */
4435 save_waitstatus (t, &ws);
4436
4437 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4438 ? ws.value.sig : GDB_SIGNAL_0);
4439
00431a78 4440 if (displaced_step_fixup (t, sig) < 0)
372316f1
PA
4441 {
4442 /* Add it back to the step-over queue. */
4443 t->control.trap_expected = 0;
4444 thread_step_over_chain_enqueue (t);
4445 }
4446
00431a78 4447 regcache = get_thread_regcache (t);
372316f1
PA
4448 t->suspend.stop_pc = regcache_read_pc (regcache);
4449
4450 if (debug_infrun)
4451 {
4452 fprintf_unfiltered (gdb_stdlog,
4453 "infrun: saved stop_pc=%s for %s "
4454 "(currently_stepping=%d)\n",
4455 paddress (target_gdbarch (),
4456 t->suspend.stop_pc),
4457 target_pid_to_str (t->ptid),
4458 currently_stepping (t));
4459 }
4460 }
4461 }
4462 }
4463 }
4464
372316f1
PA
4465 if (debug_infrun)
4466 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4467}
4468
f4836ba9
PA
4469/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4470
4471static int
4472handle_no_resumed (struct execution_control_state *ecs)
4473{
3b12939d 4474 if (target_can_async_p ())
f4836ba9 4475 {
3b12939d
PA
4476 struct ui *ui;
4477 int any_sync = 0;
f4836ba9 4478
3b12939d
PA
4479 ALL_UIS (ui)
4480 {
4481 if (ui->prompt_state == PROMPT_BLOCKED)
4482 {
4483 any_sync = 1;
4484 break;
4485 }
4486 }
4487 if (!any_sync)
4488 {
4489 /* There were no unwaited-for children left in the target, but,
4490 we're not synchronously waiting for events either. Just
4491 ignore. */
4492
4493 if (debug_infrun)
4494 fprintf_unfiltered (gdb_stdlog,
4495 "infrun: TARGET_WAITKIND_NO_RESUMED "
4496 "(ignoring: bg)\n");
4497 prepare_to_wait (ecs);
4498 return 1;
4499 }
f4836ba9
PA
4500 }
4501
4502 /* Otherwise, if we were running a synchronous execution command, we
4503 may need to cancel it and give the user back the terminal.
4504
4505 In non-stop mode, the target can't tell whether we've already
4506 consumed previous stop events, so it can end up sending us a
4507 no-resumed event like so:
4508
4509 #0 - thread 1 is left stopped
4510
4511 #1 - thread 2 is resumed and hits breakpoint
4512 -> TARGET_WAITKIND_STOPPED
4513
4514 #2 - thread 3 is resumed and exits
4515 this is the last resumed thread, so
4516 -> TARGET_WAITKIND_NO_RESUMED
4517
4518 #3 - gdb processes stop for thread 2 and decides to re-resume
4519 it.
4520
4521 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4522 thread 2 is now resumed, so the event should be ignored.
4523
4524 IOW, if the stop for thread 2 doesn't end a foreground command,
4525 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4526 event. But it could be that the event meant that thread 2 itself
4527 (or whatever other thread was the last resumed thread) exited.
4528
4529 To address this we refresh the thread list and check whether we
4530 have resumed threads _now_. In the example above, this removes
4531 thread 3 from the thread list. If thread 2 was re-resumed, we
4532 ignore this event. If we find no thread resumed, then we cancel
4533 the synchronous command show "no unwaited-for " to the user. */
4534 update_thread_list ();
4535
08036331 4536 for (thread_info *thread : all_non_exited_threads ())
f4836ba9
PA
4537 {
4538 if (thread->executing
4539 || thread->suspend.waitstatus_pending_p)
4540 {
4541 /* There were no unwaited-for children left in the target at
4542 some point, but there are now. Just ignore. */
4543 if (debug_infrun)
4544 fprintf_unfiltered (gdb_stdlog,
4545 "infrun: TARGET_WAITKIND_NO_RESUMED "
4546 "(ignoring: found resumed)\n");
4547 prepare_to_wait (ecs);
4548 return 1;
4549 }
4550 }
4551
4552 /* Note however that we may find no resumed thread because the whole
4553 process exited meanwhile (thus updating the thread list results
4554 in an empty thread list). In this case we know we'll be getting
4555 a process exit event shortly. */
08036331 4556 for (inferior *inf : all_inferiors ())
f4836ba9
PA
4557 {
4558 if (inf->pid == 0)
4559 continue;
4560
08036331 4561 thread_info *thread = any_live_thread_of_inferior (inf);
f4836ba9
PA
4562 if (thread == NULL)
4563 {
4564 if (debug_infrun)
4565 fprintf_unfiltered (gdb_stdlog,
4566 "infrun: TARGET_WAITKIND_NO_RESUMED "
4567 "(expect process exit)\n");
4568 prepare_to_wait (ecs);
4569 return 1;
4570 }
4571 }
4572
4573 /* Go ahead and report the event. */
4574 return 0;
4575}
4576
05ba8510
PA
4577/* Given an execution control state that has been freshly filled in by
4578 an event from the inferior, figure out what it means and take
4579 appropriate action.
4580
4581 The alternatives are:
4582
22bcd14b 4583 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4584 debugger.
4585
4586 2) keep_going and return; to wait for the next event (set
4587 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4588 once). */
c906108c 4589
ec9499be 4590static void
0b6e5e10 4591handle_inferior_event_1 (struct execution_control_state *ecs)
cd0fc7c3 4592{
d6b48e9c
PA
4593 enum stop_kind stop_soon;
4594
28736962
PA
4595 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4596 {
4597 /* We had an event in the inferior, but we are not interested in
4598 handling it at this level. The lower layers have already
4599 done what needs to be done, if anything.
4600
4601 One of the possible circumstances for this is when the
4602 inferior produces output for the console. The inferior has
4603 not stopped, and we are ignoring the event. Another possible
4604 circumstance is any event which the lower level knows will be
4605 reported multiple times without an intervening resume. */
4606 if (debug_infrun)
4607 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4608 prepare_to_wait (ecs);
4609 return;
4610 }
4611
65706a29
PA
4612 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4613 {
4614 if (debug_infrun)
4615 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4616 prepare_to_wait (ecs);
4617 return;
4618 }
4619
0e5bf2a8 4620 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
4621 && handle_no_resumed (ecs))
4622 return;
0e5bf2a8 4623
1777feb0 4624 /* Cache the last pid/waitstatus. */
c32c64b7 4625 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4626
ca005067 4627 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4628 stop_stack_dummy = STOP_NONE;
ca005067 4629
0e5bf2a8
PA
4630 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4631 {
4632 /* No unwaited-for children left. IOW, all resumed children
4633 have exited. */
4634 if (debug_infrun)
4635 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4636
4637 stop_print_frame = 0;
22bcd14b 4638 stop_waiting (ecs);
0e5bf2a8
PA
4639 return;
4640 }
4641
8c90c137 4642 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4643 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4644 {
4645 ecs->event_thread = find_thread_ptid (ecs->ptid);
4646 /* If it's a new thread, add it to the thread database. */
4647 if (ecs->event_thread == NULL)
4648 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4649
4650 /* Disable range stepping. If the next step request could use a
4651 range, this will be end up re-enabled then. */
4652 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4653 }
88ed393a
JK
4654
4655 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4656 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4657
4658 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4659 reinit_frame_cache ();
4660
28736962
PA
4661 breakpoint_retire_moribund ();
4662
2b009048
DJ
4663 /* First, distinguish signals caused by the debugger from signals
4664 that have to do with the program's own actions. Note that
4665 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4666 on the operating system version. Here we detect when a SIGILL or
4667 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4668 something similar for SIGSEGV, since a SIGSEGV will be generated
4669 when we're trying to execute a breakpoint instruction on a
4670 non-executable stack. This happens for call dummy breakpoints
4671 for architectures like SPARC that place call dummies on the
4672 stack. */
2b009048 4673 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4674 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4675 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4676 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4677 {
00431a78 4678 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
de0a0249 4679
a01bda52 4680 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
4681 regcache_read_pc (regcache)))
4682 {
4683 if (debug_infrun)
4684 fprintf_unfiltered (gdb_stdlog,
4685 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4686 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4687 }
2b009048
DJ
4688 }
4689
28736962
PA
4690 /* Mark the non-executing threads accordingly. In all-stop, all
4691 threads of all processes are stopped when we get any event
e1316e60 4692 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4693 {
4694 ptid_t mark_ptid;
4695
fbea99ea 4696 if (!target_is_non_stop_p ())
372316f1
PA
4697 mark_ptid = minus_one_ptid;
4698 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4699 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4700 {
4701 /* If we're handling a process exit in non-stop mode, even
4702 though threads haven't been deleted yet, one would think
4703 that there is nothing to do, as threads of the dead process
4704 will be soon deleted, and threads of any other process were
4705 left running. However, on some targets, threads survive a
4706 process exit event. E.g., for the "checkpoint" command,
4707 when the current checkpoint/fork exits, linux-fork.c
4708 automatically switches to another fork from within
4709 target_mourn_inferior, by associating the same
4710 inferior/thread to another fork. We haven't mourned yet at
4711 this point, but we must mark any threads left in the
4712 process as not-executing so that finish_thread_state marks
4713 them stopped (in the user's perspective) if/when we present
4714 the stop to the user. */
e99b03dc 4715 mark_ptid = ptid_t (ecs->ptid.pid ());
372316f1
PA
4716 }
4717 else
4718 mark_ptid = ecs->ptid;
4719
4720 set_executing (mark_ptid, 0);
4721
4722 /* Likewise the resumed flag. */
4723 set_resumed (mark_ptid, 0);
4724 }
8c90c137 4725
488f131b
JB
4726 switch (ecs->ws.kind)
4727 {
4728 case TARGET_WAITKIND_LOADED:
527159b7 4729 if (debug_infrun)
8a9de0e4 4730 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
00431a78 4731 context_switch (ecs);
b0f4b84b
DJ
4732 /* Ignore gracefully during startup of the inferior, as it might
4733 be the shell which has just loaded some objects, otherwise
4734 add the symbols for the newly loaded objects. Also ignore at
4735 the beginning of an attach or remote session; we will query
4736 the full list of libraries once the connection is
4737 established. */
4f5d7f63 4738
00431a78 4739 stop_soon = get_inferior_stop_soon (ecs);
c0236d92 4740 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4741 {
edcc5120
TT
4742 struct regcache *regcache;
4743
00431a78 4744 regcache = get_thread_regcache (ecs->event_thread);
edcc5120
TT
4745
4746 handle_solib_event ();
4747
4748 ecs->event_thread->control.stop_bpstat
a01bda52 4749 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4750 ecs->event_thread->suspend.stop_pc,
4751 ecs->event_thread, &ecs->ws);
ab04a2af 4752
c65d6b55
PA
4753 if (handle_stop_requested (ecs))
4754 return;
4755
ce12b012 4756 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4757 {
4758 /* A catchpoint triggered. */
94c57d6a
PA
4759 process_event_stop_test (ecs);
4760 return;
edcc5120 4761 }
488f131b 4762
b0f4b84b
DJ
4763 /* If requested, stop when the dynamic linker notifies
4764 gdb of events. This allows the user to get control
4765 and place breakpoints in initializer routines for
4766 dynamically loaded objects (among other things). */
a493e3e2 4767 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4768 if (stop_on_solib_events)
4769 {
55409f9d
DJ
4770 /* Make sure we print "Stopped due to solib-event" in
4771 normal_stop. */
4772 stop_print_frame = 1;
4773
22bcd14b 4774 stop_waiting (ecs);
b0f4b84b
DJ
4775 return;
4776 }
488f131b 4777 }
b0f4b84b
DJ
4778
4779 /* If we are skipping through a shell, or through shared library
4780 loading that we aren't interested in, resume the program. If
5c09a2c5 4781 we're running the program normally, also resume. */
b0f4b84b
DJ
4782 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4783 {
74960c60
VP
4784 /* Loading of shared libraries might have changed breakpoint
4785 addresses. Make sure new breakpoints are inserted. */
a25a5a45 4786 if (stop_soon == NO_STOP_QUIETLY)
74960c60 4787 insert_breakpoints ();
64ce06e4 4788 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
4789 prepare_to_wait (ecs);
4790 return;
4791 }
4792
5c09a2c5
PA
4793 /* But stop if we're attaching or setting up a remote
4794 connection. */
4795 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4796 || stop_soon == STOP_QUIETLY_REMOTE)
4797 {
4798 if (debug_infrun)
4799 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 4800 stop_waiting (ecs);
5c09a2c5
PA
4801 return;
4802 }
4803
4804 internal_error (__FILE__, __LINE__,
4805 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 4806
488f131b 4807 case TARGET_WAITKIND_SPURIOUS:
527159b7 4808 if (debug_infrun)
8a9de0e4 4809 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
c65d6b55
PA
4810 if (handle_stop_requested (ecs))
4811 return;
00431a78 4812 context_switch (ecs);
64ce06e4 4813 resume (GDB_SIGNAL_0);
488f131b
JB
4814 prepare_to_wait (ecs);
4815 return;
c5aa993b 4816
65706a29
PA
4817 case TARGET_WAITKIND_THREAD_CREATED:
4818 if (debug_infrun)
4819 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
c65d6b55
PA
4820 if (handle_stop_requested (ecs))
4821 return;
00431a78 4822 context_switch (ecs);
65706a29
PA
4823 if (!switch_back_to_stepped_thread (ecs))
4824 keep_going (ecs);
4825 return;
4826
488f131b 4827 case TARGET_WAITKIND_EXITED:
940c3c06 4828 case TARGET_WAITKIND_SIGNALLED:
527159b7 4829 if (debug_infrun)
940c3c06
PA
4830 {
4831 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4832 fprintf_unfiltered (gdb_stdlog,
4833 "infrun: TARGET_WAITKIND_EXITED\n");
4834 else
4835 fprintf_unfiltered (gdb_stdlog,
4836 "infrun: TARGET_WAITKIND_SIGNALLED\n");
4837 }
4838
fb66883a 4839 inferior_ptid = ecs->ptid;
c9657e70 4840 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
4841 set_current_program_space (current_inferior ()->pspace);
4842 handle_vfork_child_exec_or_exit (0);
223ffa71 4843 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 4844
0c557179
SDJ
4845 /* Clearing any previous state of convenience variables. */
4846 clear_exit_convenience_vars ();
4847
940c3c06
PA
4848 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4849 {
4850 /* Record the exit code in the convenience variable $_exitcode, so
4851 that the user can inspect this again later. */
4852 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4853 (LONGEST) ecs->ws.value.integer);
4854
4855 /* Also record this in the inferior itself. */
4856 current_inferior ()->has_exit_code = 1;
4857 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 4858
98eb56a4
PA
4859 /* Support the --return-child-result option. */
4860 return_child_result_value = ecs->ws.value.integer;
4861
76727919 4862 gdb::observers::exited.notify (ecs->ws.value.integer);
940c3c06
PA
4863 }
4864 else
0c557179 4865 {
00431a78 4866 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
0c557179
SDJ
4867
4868 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4869 {
4870 /* Set the value of the internal variable $_exitsignal,
4871 which holds the signal uncaught by the inferior. */
4872 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4873 gdbarch_gdb_signal_to_target (gdbarch,
4874 ecs->ws.value.sig));
4875 }
4876 else
4877 {
4878 /* We don't have access to the target's method used for
4879 converting between signal numbers (GDB's internal
4880 representation <-> target's representation).
4881 Therefore, we cannot do a good job at displaying this
4882 information to the user. It's better to just warn
4883 her about it (if infrun debugging is enabled), and
4884 give up. */
4885 if (debug_infrun)
4886 fprintf_filtered (gdb_stdlog, _("\
4887Cannot fill $_exitsignal with the correct signal number.\n"));
4888 }
4889
76727919 4890 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
0c557179 4891 }
8cf64490 4892
488f131b 4893 gdb_flush (gdb_stdout);
bc1e6c81 4894 target_mourn_inferior (inferior_ptid);
488f131b 4895 stop_print_frame = 0;
22bcd14b 4896 stop_waiting (ecs);
488f131b 4897 return;
c5aa993b 4898
488f131b 4899 /* The following are the only cases in which we keep going;
1777feb0 4900 the above cases end in a continue or goto. */
488f131b 4901 case TARGET_WAITKIND_FORKED:
deb3b17b 4902 case TARGET_WAITKIND_VFORKED:
527159b7 4903 if (debug_infrun)
fed708ed
PA
4904 {
4905 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4906 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
4907 else
4908 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
4909 }
c906108c 4910
e2d96639
YQ
4911 /* Check whether the inferior is displaced stepping. */
4912 {
00431a78 4913 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
ac7936df 4914 struct gdbarch *gdbarch = regcache->arch ();
e2d96639
YQ
4915
4916 /* If checking displaced stepping is supported, and thread
4917 ecs->ptid is displaced stepping. */
00431a78 4918 if (displaced_step_in_progress_thread (ecs->event_thread))
e2d96639
YQ
4919 {
4920 struct inferior *parent_inf
c9657e70 4921 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
4922 struct regcache *child_regcache;
4923 CORE_ADDR parent_pc;
4924
4925 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4926 indicating that the displaced stepping of syscall instruction
4927 has been done. Perform cleanup for parent process here. Note
4928 that this operation also cleans up the child process for vfork,
4929 because their pages are shared. */
00431a78 4930 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
c2829269
PA
4931 /* Start a new step-over in another thread if there's one
4932 that needs it. */
4933 start_step_over ();
e2d96639
YQ
4934
4935 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4936 {
c0987663 4937 struct displaced_step_inferior_state *displaced
00431a78 4938 = get_displaced_stepping_state (parent_inf);
c0987663 4939
e2d96639
YQ
4940 /* Restore scratch pad for child process. */
4941 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4942 }
4943
4944 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4945 the child's PC is also within the scratchpad. Set the child's PC
4946 to the parent's PC value, which has already been fixed up.
4947 FIXME: we use the parent's aspace here, although we're touching
4948 the child, because the child hasn't been added to the inferior
4949 list yet at this point. */
4950
4951 child_regcache
4952 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4953 gdbarch,
4954 parent_inf->aspace);
4955 /* Read PC value of parent process. */
4956 parent_pc = regcache_read_pc (regcache);
4957
4958 if (debug_displaced)
4959 fprintf_unfiltered (gdb_stdlog,
4960 "displaced: write child pc from %s to %s\n",
4961 paddress (gdbarch,
4962 regcache_read_pc (child_regcache)),
4963 paddress (gdbarch, parent_pc));
4964
4965 regcache_write_pc (child_regcache, parent_pc);
4966 }
4967 }
4968
00431a78 4969 context_switch (ecs);
5a2901d9 4970
b242c3c2
PA
4971 /* Immediately detach breakpoints from the child before there's
4972 any chance of letting the user delete breakpoints from the
4973 breakpoint lists. If we don't do this early, it's easy to
4974 leave left over traps in the child, vis: "break foo; catch
4975 fork; c; <fork>; del; c; <child calls foo>". We only follow
4976 the fork on the last `continue', and by that time the
4977 breakpoint at "foo" is long gone from the breakpoint table.
4978 If we vforked, then we don't need to unpatch here, since both
4979 parent and child are sharing the same memory pages; we'll
4980 need to unpatch at follow/detach time instead to be certain
4981 that new breakpoints added between catchpoint hit time and
4982 vfork follow are detached. */
4983 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
4984 {
b242c3c2
PA
4985 /* This won't actually modify the breakpoint list, but will
4986 physically remove the breakpoints from the child. */
d80ee84f 4987 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
4988 }
4989
34b7e8a6 4990 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 4991
e58b0e63
PA
4992 /* In case the event is caught by a catchpoint, remember that
4993 the event is to be followed at the next resume of the thread,
4994 and not immediately. */
4995 ecs->event_thread->pending_follow = ecs->ws;
4996
f2ffa92b
PA
4997 ecs->event_thread->suspend.stop_pc
4998 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
675bf4cb 4999
16c381f0 5000 ecs->event_thread->control.stop_bpstat
a01bda52 5001 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5002 ecs->event_thread->suspend.stop_pc,
5003 ecs->event_thread, &ecs->ws);
675bf4cb 5004
c65d6b55
PA
5005 if (handle_stop_requested (ecs))
5006 return;
5007
ce12b012
PA
5008 /* If no catchpoint triggered for this, then keep going. Note
5009 that we're interested in knowing the bpstat actually causes a
5010 stop, not just if it may explain the signal. Software
5011 watchpoints, for example, always appear in the bpstat. */
5012 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5013 {
e58b0e63 5014 int should_resume;
3e43a32a
MS
5015 int follow_child
5016 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5017
a493e3e2 5018 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
5019
5020 should_resume = follow_fork ();
5021
00431a78
PA
5022 thread_info *parent = ecs->event_thread;
5023 thread_info *child = find_thread_ptid (ecs->ws.value.related_pid);
6c95b8df 5024
a2077e25
PA
5025 /* At this point, the parent is marked running, and the
5026 child is marked stopped. */
5027
5028 /* If not resuming the parent, mark it stopped. */
5029 if (follow_child && !detach_fork && !non_stop && !sched_multi)
00431a78 5030 parent->set_running (false);
a2077e25
PA
5031
5032 /* If resuming the child, mark it running. */
5033 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
00431a78 5034 child->set_running (true);
a2077e25 5035
6c95b8df 5036 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5037 if (!detach_fork && (non_stop
5038 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5039 {
5040 if (follow_child)
5041 switch_to_thread (parent);
5042 else
5043 switch_to_thread (child);
5044
5045 ecs->event_thread = inferior_thread ();
5046 ecs->ptid = inferior_ptid;
5047 keep_going (ecs);
5048 }
5049
5050 if (follow_child)
5051 switch_to_thread (child);
5052 else
5053 switch_to_thread (parent);
5054
e58b0e63
PA
5055 ecs->event_thread = inferior_thread ();
5056 ecs->ptid = inferior_ptid;
5057
5058 if (should_resume)
5059 keep_going (ecs);
5060 else
22bcd14b 5061 stop_waiting (ecs);
04e68871
DJ
5062 return;
5063 }
94c57d6a
PA
5064 process_event_stop_test (ecs);
5065 return;
488f131b 5066
6c95b8df
PA
5067 case TARGET_WAITKIND_VFORK_DONE:
5068 /* Done with the shared memory region. Re-insert breakpoints in
5069 the parent, and keep going. */
5070
5071 if (debug_infrun)
3e43a32a
MS
5072 fprintf_unfiltered (gdb_stdlog,
5073 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df 5074
00431a78 5075 context_switch (ecs);
6c95b8df
PA
5076
5077 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5078 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5079
5080 if (handle_stop_requested (ecs))
5081 return;
5082
6c95b8df
PA
5083 /* This also takes care of reinserting breakpoints in the
5084 previously locked inferior. */
5085 keep_going (ecs);
5086 return;
5087
488f131b 5088 case TARGET_WAITKIND_EXECD:
527159b7 5089 if (debug_infrun)
fc5261f2 5090 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 5091
cbd2b4e3
PA
5092 /* Note we can't read registers yet (the stop_pc), because we
5093 don't yet know the inferior's post-exec architecture.
5094 'stop_pc' is explicitly read below instead. */
00431a78 5095 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5096
6c95b8df
PA
5097 /* Do whatever is necessary to the parent branch of the vfork. */
5098 handle_vfork_child_exec_or_exit (1);
5099
795e548f
PA
5100 /* This causes the eventpoints and symbol table to be reset.
5101 Must do this now, before trying to determine whether to
5102 stop. */
71b43ef8 5103 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5104
17d8546e
DB
5105 /* In follow_exec we may have deleted the original thread and
5106 created a new one. Make sure that the event thread is the
5107 execd thread for that case (this is a nop otherwise). */
5108 ecs->event_thread = inferior_thread ();
5109
f2ffa92b
PA
5110 ecs->event_thread->suspend.stop_pc
5111 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
ecdc3a72 5112
16c381f0 5113 ecs->event_thread->control.stop_bpstat
a01bda52 5114 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5115 ecs->event_thread->suspend.stop_pc,
5116 ecs->event_thread, &ecs->ws);
795e548f 5117
71b43ef8
PA
5118 /* Note that this may be referenced from inside
5119 bpstat_stop_status above, through inferior_has_execd. */
5120 xfree (ecs->ws.value.execd_pathname);
5121 ecs->ws.value.execd_pathname = NULL;
5122
c65d6b55
PA
5123 if (handle_stop_requested (ecs))
5124 return;
5125
04e68871 5126 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5127 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5128 {
a493e3e2 5129 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5130 keep_going (ecs);
5131 return;
5132 }
94c57d6a
PA
5133 process_event_stop_test (ecs);
5134 return;
488f131b 5135
b4dc5ffa
MK
5136 /* Be careful not to try to gather much state about a thread
5137 that's in a syscall. It's frequently a losing proposition. */
488f131b 5138 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 5139 if (debug_infrun)
3e43a32a
MS
5140 fprintf_unfiltered (gdb_stdlog,
5141 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 5142 /* Getting the current syscall number. */
94c57d6a
PA
5143 if (handle_syscall_event (ecs) == 0)
5144 process_event_stop_test (ecs);
5145 return;
c906108c 5146
488f131b
JB
5147 /* Before examining the threads further, step this thread to
5148 get it entirely out of the syscall. (We get notice of the
5149 event when the thread is just on the verge of exiting a
5150 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5151 into user code.) */
488f131b 5152 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 5153 if (debug_infrun)
3e43a32a
MS
5154 fprintf_unfiltered (gdb_stdlog,
5155 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
5156 if (handle_syscall_event (ecs) == 0)
5157 process_event_stop_test (ecs);
5158 return;
c906108c 5159
488f131b 5160 case TARGET_WAITKIND_STOPPED:
527159b7 5161 if (debug_infrun)
8a9de0e4 5162 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
4f5d7f63
PA
5163 handle_signal_stop (ecs);
5164 return;
c906108c 5165
b2175913 5166 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
5167 if (debug_infrun)
5168 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 5169 /* Reverse execution: target ran out of history info. */
eab402df 5170
d1988021 5171 /* Switch to the stopped thread. */
00431a78 5172 context_switch (ecs);
d1988021
MM
5173 if (debug_infrun)
5174 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5175
34b7e8a6 5176 delete_just_stopped_threads_single_step_breakpoints ();
f2ffa92b
PA
5177 ecs->event_thread->suspend.stop_pc
5178 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
c65d6b55
PA
5179
5180 if (handle_stop_requested (ecs))
5181 return;
5182
76727919 5183 gdb::observers::no_history.notify ();
22bcd14b 5184 stop_waiting (ecs);
b2175913 5185 return;
488f131b 5186 }
4f5d7f63
PA
5187}
5188
0b6e5e10
JB
5189/* A wrapper around handle_inferior_event_1, which also makes sure
5190 that all temporary struct value objects that were created during
5191 the handling of the event get deleted at the end. */
5192
5193static void
5194handle_inferior_event (struct execution_control_state *ecs)
5195{
5196 struct value *mark = value_mark ();
5197
5198 handle_inferior_event_1 (ecs);
5199 /* Purge all temporary values created during the event handling,
5200 as it could be a long time before we return to the command level
5201 where such values would otherwise be purged. */
5202 value_free_to_mark (mark);
5203}
5204
372316f1
PA
5205/* Restart threads back to what they were trying to do back when we
5206 paused them for an in-line step-over. The EVENT_THREAD thread is
5207 ignored. */
4d9d9d04
PA
5208
5209static void
372316f1
PA
5210restart_threads (struct thread_info *event_thread)
5211{
372316f1
PA
5212 /* In case the instruction just stepped spawned a new thread. */
5213 update_thread_list ();
5214
08036331 5215 for (thread_info *tp : all_non_exited_threads ())
372316f1
PA
5216 {
5217 if (tp == event_thread)
5218 {
5219 if (debug_infrun)
5220 fprintf_unfiltered (gdb_stdlog,
5221 "infrun: restart threads: "
5222 "[%s] is event thread\n",
5223 target_pid_to_str (tp->ptid));
5224 continue;
5225 }
5226
5227 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5228 {
5229 if (debug_infrun)
5230 fprintf_unfiltered (gdb_stdlog,
5231 "infrun: restart threads: "
5232 "[%s] not meant to be running\n",
5233 target_pid_to_str (tp->ptid));
5234 continue;
5235 }
5236
5237 if (tp->resumed)
5238 {
5239 if (debug_infrun)
5240 fprintf_unfiltered (gdb_stdlog,
5241 "infrun: restart threads: [%s] resumed\n",
5242 target_pid_to_str (tp->ptid));
5243 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5244 continue;
5245 }
5246
5247 if (thread_is_in_step_over_chain (tp))
5248 {
5249 if (debug_infrun)
5250 fprintf_unfiltered (gdb_stdlog,
5251 "infrun: restart threads: "
5252 "[%s] needs step-over\n",
5253 target_pid_to_str (tp->ptid));
5254 gdb_assert (!tp->resumed);
5255 continue;
5256 }
5257
5258
5259 if (tp->suspend.waitstatus_pending_p)
5260 {
5261 if (debug_infrun)
5262 fprintf_unfiltered (gdb_stdlog,
5263 "infrun: restart threads: "
5264 "[%s] has pending status\n",
5265 target_pid_to_str (tp->ptid));
5266 tp->resumed = 1;
5267 continue;
5268 }
5269
c65d6b55
PA
5270 gdb_assert (!tp->stop_requested);
5271
372316f1
PA
5272 /* If some thread needs to start a step-over at this point, it
5273 should still be in the step-over queue, and thus skipped
5274 above. */
5275 if (thread_still_needs_step_over (tp))
5276 {
5277 internal_error (__FILE__, __LINE__,
5278 "thread [%s] needs a step-over, but not in "
5279 "step-over queue\n",
5280 target_pid_to_str (tp->ptid));
5281 }
5282
5283 if (currently_stepping (tp))
5284 {
5285 if (debug_infrun)
5286 fprintf_unfiltered (gdb_stdlog,
5287 "infrun: restart threads: [%s] was stepping\n",
5288 target_pid_to_str (tp->ptid));
5289 keep_going_stepped_thread (tp);
5290 }
5291 else
5292 {
5293 struct execution_control_state ecss;
5294 struct execution_control_state *ecs = &ecss;
5295
5296 if (debug_infrun)
5297 fprintf_unfiltered (gdb_stdlog,
5298 "infrun: restart threads: [%s] continuing\n",
5299 target_pid_to_str (tp->ptid));
5300 reset_ecs (ecs, tp);
00431a78 5301 switch_to_thread (tp);
372316f1
PA
5302 keep_going_pass_signal (ecs);
5303 }
5304 }
5305}
5306
5307/* Callback for iterate_over_threads. Find a resumed thread that has
5308 a pending waitstatus. */
5309
5310static int
5311resumed_thread_with_pending_status (struct thread_info *tp,
5312 void *arg)
5313{
5314 return (tp->resumed
5315 && tp->suspend.waitstatus_pending_p);
5316}
5317
5318/* Called when we get an event that may finish an in-line or
5319 out-of-line (displaced stepping) step-over started previously.
5320 Return true if the event is processed and we should go back to the
5321 event loop; false if the caller should continue processing the
5322 event. */
5323
5324static int
4d9d9d04
PA
5325finish_step_over (struct execution_control_state *ecs)
5326{
372316f1
PA
5327 int had_step_over_info;
5328
00431a78 5329 displaced_step_fixup (ecs->event_thread,
4d9d9d04
PA
5330 ecs->event_thread->suspend.stop_signal);
5331
372316f1
PA
5332 had_step_over_info = step_over_info_valid_p ();
5333
5334 if (had_step_over_info)
4d9d9d04
PA
5335 {
5336 /* If we're stepping over a breakpoint with all threads locked,
5337 then only the thread that was stepped should be reporting
5338 back an event. */
5339 gdb_assert (ecs->event_thread->control.trap_expected);
5340
c65d6b55 5341 clear_step_over_info ();
4d9d9d04
PA
5342 }
5343
fbea99ea 5344 if (!target_is_non_stop_p ())
372316f1 5345 return 0;
4d9d9d04
PA
5346
5347 /* Start a new step-over in another thread if there's one that
5348 needs it. */
5349 start_step_over ();
372316f1
PA
5350
5351 /* If we were stepping over a breakpoint before, and haven't started
5352 a new in-line step-over sequence, then restart all other threads
5353 (except the event thread). We can't do this in all-stop, as then
5354 e.g., we wouldn't be able to issue any other remote packet until
5355 these other threads stop. */
5356 if (had_step_over_info && !step_over_info_valid_p ())
5357 {
5358 struct thread_info *pending;
5359
5360 /* If we only have threads with pending statuses, the restart
5361 below won't restart any thread and so nothing re-inserts the
5362 breakpoint we just stepped over. But we need it inserted
5363 when we later process the pending events, otherwise if
5364 another thread has a pending event for this breakpoint too,
5365 we'd discard its event (because the breakpoint that
5366 originally caused the event was no longer inserted). */
00431a78 5367 context_switch (ecs);
372316f1
PA
5368 insert_breakpoints ();
5369
5370 restart_threads (ecs->event_thread);
5371
5372 /* If we have events pending, go through handle_inferior_event
5373 again, picking up a pending event at random. This avoids
5374 thread starvation. */
5375
5376 /* But not if we just stepped over a watchpoint in order to let
5377 the instruction execute so we can evaluate its expression.
5378 The set of watchpoints that triggered is recorded in the
5379 breakpoint objects themselves (see bp->watchpoint_triggered).
5380 If we processed another event first, that other event could
5381 clobber this info. */
5382 if (ecs->event_thread->stepping_over_watchpoint)
5383 return 0;
5384
5385 pending = iterate_over_threads (resumed_thread_with_pending_status,
5386 NULL);
5387 if (pending != NULL)
5388 {
5389 struct thread_info *tp = ecs->event_thread;
5390 struct regcache *regcache;
5391
5392 if (debug_infrun)
5393 {
5394 fprintf_unfiltered (gdb_stdlog,
5395 "infrun: found resumed threads with "
5396 "pending events, saving status\n");
5397 }
5398
5399 gdb_assert (pending != tp);
5400
5401 /* Record the event thread's event for later. */
5402 save_waitstatus (tp, &ecs->ws);
5403 /* This was cleared early, by handle_inferior_event. Set it
5404 so this pending event is considered by
5405 do_target_wait. */
5406 tp->resumed = 1;
5407
5408 gdb_assert (!tp->executing);
5409
00431a78 5410 regcache = get_thread_regcache (tp);
372316f1
PA
5411 tp->suspend.stop_pc = regcache_read_pc (regcache);
5412
5413 if (debug_infrun)
5414 {
5415 fprintf_unfiltered (gdb_stdlog,
5416 "infrun: saved stop_pc=%s for %s "
5417 "(currently_stepping=%d)\n",
5418 paddress (target_gdbarch (),
5419 tp->suspend.stop_pc),
5420 target_pid_to_str (tp->ptid),
5421 currently_stepping (tp));
5422 }
5423
5424 /* This in-line step-over finished; clear this so we won't
5425 start a new one. This is what handle_signal_stop would
5426 do, if we returned false. */
5427 tp->stepping_over_breakpoint = 0;
5428
5429 /* Wake up the event loop again. */
5430 mark_async_event_handler (infrun_async_inferior_event_token);
5431
5432 prepare_to_wait (ecs);
5433 return 1;
5434 }
5435 }
5436
5437 return 0;
4d9d9d04
PA
5438}
5439
4f5d7f63
PA
5440/* Come here when the program has stopped with a signal. */
5441
5442static void
5443handle_signal_stop (struct execution_control_state *ecs)
5444{
5445 struct frame_info *frame;
5446 struct gdbarch *gdbarch;
5447 int stopped_by_watchpoint;
5448 enum stop_kind stop_soon;
5449 int random_signal;
c906108c 5450
f0407826
DE
5451 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5452
c65d6b55
PA
5453 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5454
f0407826
DE
5455 /* Do we need to clean up the state of a thread that has
5456 completed a displaced single-step? (Doing so usually affects
5457 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5458 if (finish_step_over (ecs))
5459 return;
f0407826
DE
5460
5461 /* If we either finished a single-step or hit a breakpoint, but
5462 the user wanted this thread to be stopped, pretend we got a
5463 SIG0 (generic unsignaled stop). */
5464 if (ecs->event_thread->stop_requested
5465 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5466 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5467
f2ffa92b
PA
5468 ecs->event_thread->suspend.stop_pc
5469 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
488f131b 5470
527159b7 5471 if (debug_infrun)
237fc4c9 5472 {
00431a78 5473 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
b926417a 5474 struct gdbarch *reg_gdbarch = regcache->arch ();
2989a365 5475 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
7f82dfc7
JK
5476
5477 inferior_ptid = ecs->ptid;
5af949e3
UW
5478
5479 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
b926417a 5480 paddress (reg_gdbarch,
f2ffa92b 5481 ecs->event_thread->suspend.stop_pc));
d92524f1 5482 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5483 {
5484 CORE_ADDR addr;
abbb1732 5485
237fc4c9
PA
5486 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5487
8b88a78e 5488 if (target_stopped_data_address (current_top_target (), &addr))
237fc4c9 5489 fprintf_unfiltered (gdb_stdlog,
5af949e3 5490 "infrun: stopped data address = %s\n",
b926417a 5491 paddress (reg_gdbarch, addr));
237fc4c9
PA
5492 else
5493 fprintf_unfiltered (gdb_stdlog,
5494 "infrun: (no data address available)\n");
5495 }
5496 }
527159b7 5497
36fa8042
PA
5498 /* This is originated from start_remote(), start_inferior() and
5499 shared libraries hook functions. */
00431a78 5500 stop_soon = get_inferior_stop_soon (ecs);
36fa8042
PA
5501 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5502 {
00431a78 5503 context_switch (ecs);
36fa8042
PA
5504 if (debug_infrun)
5505 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5506 stop_print_frame = 1;
22bcd14b 5507 stop_waiting (ecs);
36fa8042
PA
5508 return;
5509 }
5510
36fa8042
PA
5511 /* This originates from attach_command(). We need to overwrite
5512 the stop_signal here, because some kernels don't ignore a
5513 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5514 See more comments in inferior.h. On the other hand, if we
5515 get a non-SIGSTOP, report it to the user - assume the backend
5516 will handle the SIGSTOP if it should show up later.
5517
5518 Also consider that the attach is complete when we see a
5519 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5520 target extended-remote report it instead of a SIGSTOP
5521 (e.g. gdbserver). We already rely on SIGTRAP being our
5522 signal, so this is no exception.
5523
5524 Also consider that the attach is complete when we see a
5525 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5526 the target to stop all threads of the inferior, in case the
5527 low level attach operation doesn't stop them implicitly. If
5528 they weren't stopped implicitly, then the stub will report a
5529 GDB_SIGNAL_0, meaning: stopped for no particular reason
5530 other than GDB's request. */
5531 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5532 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5533 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5534 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5535 {
5536 stop_print_frame = 1;
22bcd14b 5537 stop_waiting (ecs);
36fa8042
PA
5538 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5539 return;
5540 }
5541
488f131b 5542 /* See if something interesting happened to the non-current thread. If
b40c7d58 5543 so, then switch to that thread. */
d7e15655 5544 if (ecs->ptid != inferior_ptid)
488f131b 5545 {
527159b7 5546 if (debug_infrun)
8a9de0e4 5547 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5548
00431a78 5549 context_switch (ecs);
c5aa993b 5550
9a4105ab 5551 if (deprecated_context_hook)
00431a78 5552 deprecated_context_hook (ecs->event_thread->global_num);
488f131b 5553 }
c906108c 5554
568d6575
UW
5555 /* At this point, get hold of the now-current thread's frame. */
5556 frame = get_current_frame ();
5557 gdbarch = get_frame_arch (frame);
5558
2adfaa28 5559 /* Pull the single step breakpoints out of the target. */
af48d08f 5560 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5561 {
af48d08f 5562 struct regcache *regcache;
af48d08f 5563 CORE_ADDR pc;
2adfaa28 5564
00431a78 5565 regcache = get_thread_regcache (ecs->event_thread);
8b86c959
YQ
5566 const address_space *aspace = regcache->aspace ();
5567
af48d08f 5568 pc = regcache_read_pc (regcache);
34b7e8a6 5569
af48d08f
PA
5570 /* However, before doing so, if this single-step breakpoint was
5571 actually for another thread, set this thread up for moving
5572 past it. */
5573 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5574 aspace, pc))
5575 {
5576 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5577 {
5578 if (debug_infrun)
5579 {
5580 fprintf_unfiltered (gdb_stdlog,
af48d08f 5581 "infrun: [%s] hit another thread's "
34b7e8a6
PA
5582 "single-step breakpoint\n",
5583 target_pid_to_str (ecs->ptid));
2adfaa28 5584 }
af48d08f
PA
5585 ecs->hit_singlestep_breakpoint = 1;
5586 }
5587 }
5588 else
5589 {
5590 if (debug_infrun)
5591 {
5592 fprintf_unfiltered (gdb_stdlog,
5593 "infrun: [%s] hit its "
5594 "single-step breakpoint\n",
5595 target_pid_to_str (ecs->ptid));
2adfaa28
PA
5596 }
5597 }
488f131b 5598 }
af48d08f 5599 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5600
963f9c80
PA
5601 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5602 && ecs->event_thread->control.trap_expected
5603 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5604 stopped_by_watchpoint = 0;
5605 else
5606 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5607
5608 /* If necessary, step over this watchpoint. We'll be back to display
5609 it in a moment. */
5610 if (stopped_by_watchpoint
d92524f1 5611 && (target_have_steppable_watchpoint
568d6575 5612 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5613 {
488f131b
JB
5614 /* At this point, we are stopped at an instruction which has
5615 attempted to write to a piece of memory under control of
5616 a watchpoint. The instruction hasn't actually executed
5617 yet. If we were to evaluate the watchpoint expression
5618 now, we would get the old value, and therefore no change
5619 would seem to have occurred.
5620
5621 In order to make watchpoints work `right', we really need
5622 to complete the memory write, and then evaluate the
d983da9c
DJ
5623 watchpoint expression. We do this by single-stepping the
5624 target.
5625
7f89fd65 5626 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5627 it. For example, the PA can (with some kernel cooperation)
5628 single step over a watchpoint without disabling the watchpoint.
5629
5630 It is far more common to need to disable a watchpoint to step
5631 the inferior over it. If we have non-steppable watchpoints,
5632 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5633 disable all watchpoints.
5634
5635 Any breakpoint at PC must also be stepped over -- if there's
5636 one, it will have already triggered before the watchpoint
5637 triggered, and we either already reported it to the user, or
5638 it didn't cause a stop and we called keep_going. In either
5639 case, if there was a breakpoint at PC, we must be trying to
5640 step past it. */
5641 ecs->event_thread->stepping_over_watchpoint = 1;
5642 keep_going (ecs);
488f131b
JB
5643 return;
5644 }
5645
4e1c45ea 5646 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5647 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5648 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5649 ecs->event_thread->control.stop_step = 0;
488f131b 5650 stop_print_frame = 1;
488f131b 5651 stopped_by_random_signal = 0;
ddfe970e 5652 bpstat stop_chain = NULL;
488f131b 5653
edb3359d
DJ
5654 /* Hide inlined functions starting here, unless we just performed stepi or
5655 nexti. After stepi and nexti, always show the innermost frame (not any
5656 inline function call sites). */
16c381f0 5657 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 5658 {
00431a78
PA
5659 const address_space *aspace
5660 = get_thread_regcache (ecs->event_thread)->aspace ();
0574c78f
GB
5661
5662 /* skip_inline_frames is expensive, so we avoid it if we can
5663 determine that the address is one where functions cannot have
5664 been inlined. This improves performance with inferiors that
5665 load a lot of shared libraries, because the solib event
5666 breakpoint is defined as the address of a function (i.e. not
5667 inline). Note that we have to check the previous PC as well
5668 as the current one to catch cases when we have just
5669 single-stepped off a breakpoint prior to reinstating it.
5670 Note that we're assuming that the code we single-step to is
5671 not inline, but that's not definitive: there's nothing
5672 preventing the event breakpoint function from containing
5673 inlined code, and the single-step ending up there. If the
5674 user had set a breakpoint on that inlined code, the missing
5675 skip_inline_frames call would break things. Fortunately
5676 that's an extremely unlikely scenario. */
f2ffa92b
PA
5677 if (!pc_at_non_inline_function (aspace,
5678 ecs->event_thread->suspend.stop_pc,
5679 &ecs->ws)
a210c238
MR
5680 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5681 && ecs->event_thread->control.trap_expected
5682 && pc_at_non_inline_function (aspace,
5683 ecs->event_thread->prev_pc,
09ac7c10 5684 &ecs->ws)))
1c5a993e 5685 {
f2ffa92b
PA
5686 stop_chain = build_bpstat_chain (aspace,
5687 ecs->event_thread->suspend.stop_pc,
5688 &ecs->ws);
00431a78 5689 skip_inline_frames (ecs->event_thread, stop_chain);
1c5a993e
MR
5690
5691 /* Re-fetch current thread's frame in case that invalidated
5692 the frame cache. */
5693 frame = get_current_frame ();
5694 gdbarch = get_frame_arch (frame);
5695 }
0574c78f 5696 }
edb3359d 5697
a493e3e2 5698 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5699 && ecs->event_thread->control.trap_expected
568d6575 5700 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5701 && currently_stepping (ecs->event_thread))
3352ef37 5702 {
b50d7442 5703 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5704 also on an instruction that needs to be stepped multiple
1777feb0 5705 times before it's been fully executing. E.g., architectures
3352ef37
AC
5706 with a delay slot. It needs to be stepped twice, once for
5707 the instruction and once for the delay slot. */
5708 int step_through_delay
568d6575 5709 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5710
527159b7 5711 if (debug_infrun && step_through_delay)
8a9de0e4 5712 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5713 if (ecs->event_thread->control.step_range_end == 0
5714 && step_through_delay)
3352ef37
AC
5715 {
5716 /* The user issued a continue when stopped at a breakpoint.
5717 Set up for another trap and get out of here. */
4e1c45ea 5718 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5719 keep_going (ecs);
5720 return;
5721 }
5722 else if (step_through_delay)
5723 {
5724 /* The user issued a step when stopped at a breakpoint.
5725 Maybe we should stop, maybe we should not - the delay
5726 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5727 case, don't decide that here, just set
5728 ecs->stepping_over_breakpoint, making sure we
5729 single-step again before breakpoints are re-inserted. */
4e1c45ea 5730 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5731 }
5732 }
5733
ab04a2af
TT
5734 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5735 handles this event. */
5736 ecs->event_thread->control.stop_bpstat
a01bda52 5737 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5738 ecs->event_thread->suspend.stop_pc,
5739 ecs->event_thread, &ecs->ws, stop_chain);
db82e815 5740
ab04a2af
TT
5741 /* Following in case break condition called a
5742 function. */
5743 stop_print_frame = 1;
73dd234f 5744
ab04a2af
TT
5745 /* This is where we handle "moribund" watchpoints. Unlike
5746 software breakpoints traps, hardware watchpoint traps are
5747 always distinguishable from random traps. If no high-level
5748 watchpoint is associated with the reported stop data address
5749 anymore, then the bpstat does not explain the signal ---
5750 simply make sure to ignore it if `stopped_by_watchpoint' is
5751 set. */
5752
5753 if (debug_infrun
5754 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5755 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5756 GDB_SIGNAL_TRAP)
ab04a2af
TT
5757 && stopped_by_watchpoint)
5758 fprintf_unfiltered (gdb_stdlog,
5759 "infrun: no user watchpoint explains "
5760 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5761
bac7d97b 5762 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5763 at one stage in the past included checks for an inferior
5764 function call's call dummy's return breakpoint. The original
5765 comment, that went with the test, read:
03cebad2 5766
ab04a2af
TT
5767 ``End of a stack dummy. Some systems (e.g. Sony news) give
5768 another signal besides SIGTRAP, so check here as well as
5769 above.''
73dd234f 5770
ab04a2af
TT
5771 If someone ever tries to get call dummys on a
5772 non-executable stack to work (where the target would stop
5773 with something like a SIGSEGV), then those tests might need
5774 to be re-instated. Given, however, that the tests were only
5775 enabled when momentary breakpoints were not being used, I
5776 suspect that it won't be the case.
488f131b 5777
ab04a2af
TT
5778 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5779 be necessary for call dummies on a non-executable stack on
5780 SPARC. */
488f131b 5781
bac7d97b 5782 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5783 random_signal
5784 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5785 ecs->event_thread->suspend.stop_signal);
bac7d97b 5786
1cf4d951
PA
5787 /* Maybe this was a trap for a software breakpoint that has since
5788 been removed. */
5789 if (random_signal && target_stopped_by_sw_breakpoint ())
5790 {
f2ffa92b
PA
5791 if (program_breakpoint_here_p (gdbarch,
5792 ecs->event_thread->suspend.stop_pc))
1cf4d951
PA
5793 {
5794 struct regcache *regcache;
5795 int decr_pc;
5796
5797 /* Re-adjust PC to what the program would see if GDB was not
5798 debugging it. */
00431a78 5799 regcache = get_thread_regcache (ecs->event_thread);
527a273a 5800 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
5801 if (decr_pc != 0)
5802 {
07036511
TT
5803 gdb::optional<scoped_restore_tmpl<int>>
5804 restore_operation_disable;
1cf4d951
PA
5805
5806 if (record_full_is_used ())
07036511
TT
5807 restore_operation_disable.emplace
5808 (record_full_gdb_operation_disable_set ());
1cf4d951 5809
f2ffa92b
PA
5810 regcache_write_pc (regcache,
5811 ecs->event_thread->suspend.stop_pc + decr_pc);
1cf4d951
PA
5812 }
5813 }
5814 else
5815 {
5816 /* A delayed software breakpoint event. Ignore the trap. */
5817 if (debug_infrun)
5818 fprintf_unfiltered (gdb_stdlog,
5819 "infrun: delayed software breakpoint "
5820 "trap, ignoring\n");
5821 random_signal = 0;
5822 }
5823 }
5824
5825 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5826 has since been removed. */
5827 if (random_signal && target_stopped_by_hw_breakpoint ())
5828 {
5829 /* A delayed hardware breakpoint event. Ignore the trap. */
5830 if (debug_infrun)
5831 fprintf_unfiltered (gdb_stdlog,
5832 "infrun: delayed hardware breakpoint/watchpoint "
5833 "trap, ignoring\n");
5834 random_signal = 0;
5835 }
5836
bac7d97b
PA
5837 /* If not, perhaps stepping/nexting can. */
5838 if (random_signal)
5839 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5840 && currently_stepping (ecs->event_thread));
ab04a2af 5841
2adfaa28
PA
5842 /* Perhaps the thread hit a single-step breakpoint of _another_
5843 thread. Single-step breakpoints are transparent to the
5844 breakpoints module. */
5845 if (random_signal)
5846 random_signal = !ecs->hit_singlestep_breakpoint;
5847
bac7d97b
PA
5848 /* No? Perhaps we got a moribund watchpoint. */
5849 if (random_signal)
5850 random_signal = !stopped_by_watchpoint;
ab04a2af 5851
c65d6b55
PA
5852 /* Always stop if the user explicitly requested this thread to
5853 remain stopped. */
5854 if (ecs->event_thread->stop_requested)
5855 {
5856 random_signal = 1;
5857 if (debug_infrun)
5858 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
5859 }
5860
488f131b
JB
5861 /* For the program's own signals, act according to
5862 the signal handling tables. */
5863
ce12b012 5864 if (random_signal)
488f131b
JB
5865 {
5866 /* Signal not for debugging purposes. */
c9657e70 5867 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 5868 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 5869
527159b7 5870 if (debug_infrun)
c9737c08
PA
5871 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5872 gdb_signal_to_symbol_string (stop_signal));
527159b7 5873
488f131b
JB
5874 stopped_by_random_signal = 1;
5875
252fbfc8
PA
5876 /* Always stop on signals if we're either just gaining control
5877 of the program, or the user explicitly requested this thread
5878 to remain stopped. */
d6b48e9c 5879 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 5880 || ecs->event_thread->stop_requested
24291992 5881 || (!inf->detaching
16c381f0 5882 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 5883 {
22bcd14b 5884 stop_waiting (ecs);
488f131b
JB
5885 return;
5886 }
b57bacec
PA
5887
5888 /* Notify observers the signal has "handle print" set. Note we
5889 returned early above if stopping; normal_stop handles the
5890 printing in that case. */
5891 if (signal_print[ecs->event_thread->suspend.stop_signal])
5892 {
5893 /* The signal table tells us to print about this signal. */
223ffa71 5894 target_terminal::ours_for_output ();
76727919 5895 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
223ffa71 5896 target_terminal::inferior ();
b57bacec 5897 }
488f131b
JB
5898
5899 /* Clear the signal if it should not be passed. */
16c381f0 5900 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 5901 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 5902
f2ffa92b 5903 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
16c381f0 5904 && ecs->event_thread->control.trap_expected
8358c15c 5905 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
5906 {
5907 /* We were just starting a new sequence, attempting to
5908 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 5909 Instead this signal arrives. This signal will take us out
68f53502
AC
5910 of the stepping range so GDB needs to remember to, when
5911 the signal handler returns, resume stepping off that
5912 breakpoint. */
5913 /* To simplify things, "continue" is forced to use the same
5914 code paths as single-step - set a breakpoint at the
5915 signal return address and then, once hit, step off that
5916 breakpoint. */
237fc4c9
PA
5917 if (debug_infrun)
5918 fprintf_unfiltered (gdb_stdlog,
5919 "infrun: signal arrived while stepping over "
5920 "breakpoint\n");
d3169d93 5921
2c03e5be 5922 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 5923 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5924 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5925 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
5926
5927 /* If we were nexting/stepping some other thread, switch to
5928 it, so that we don't continue it, losing control. */
5929 if (!switch_back_to_stepped_thread (ecs))
5930 keep_going (ecs);
9d799f85 5931 return;
68f53502 5932 }
9d799f85 5933
e5f8a7cc 5934 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
f2ffa92b
PA
5935 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
5936 ecs->event_thread)
e5f8a7cc 5937 || ecs->event_thread->control.step_range_end == 1)
edb3359d 5938 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 5939 ecs->event_thread->control.step_stack_frame_id)
8358c15c 5940 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
5941 {
5942 /* The inferior is about to take a signal that will take it
5943 out of the single step range. Set a breakpoint at the
5944 current PC (which is presumably where the signal handler
5945 will eventually return) and then allow the inferior to
5946 run free.
5947
5948 Note that this is only needed for a signal delivered
5949 while in the single-step range. Nested signals aren't a
5950 problem as they eventually all return. */
237fc4c9
PA
5951 if (debug_infrun)
5952 fprintf_unfiltered (gdb_stdlog,
5953 "infrun: signal may take us out of "
5954 "single-step range\n");
5955
372316f1 5956 clear_step_over_info ();
2c03e5be 5957 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 5958 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5959 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5960 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
5961 keep_going (ecs);
5962 return;
d303a6c7 5963 }
9d799f85
AC
5964
5965 /* Note: step_resume_breakpoint may be non-NULL. This occures
5966 when either there's a nested signal, or when there's a
5967 pending signal enabled just as the signal handler returns
5968 (leaving the inferior at the step-resume-breakpoint without
5969 actually executing it). Either way continue until the
5970 breakpoint is really hit. */
c447ac0b
PA
5971
5972 if (!switch_back_to_stepped_thread (ecs))
5973 {
5974 if (debug_infrun)
5975 fprintf_unfiltered (gdb_stdlog,
5976 "infrun: random signal, keep going\n");
5977
5978 keep_going (ecs);
5979 }
5980 return;
488f131b 5981 }
94c57d6a
PA
5982
5983 process_event_stop_test (ecs);
5984}
5985
5986/* Come here when we've got some debug event / signal we can explain
5987 (IOW, not a random signal), and test whether it should cause a
5988 stop, or whether we should resume the inferior (transparently).
5989 E.g., could be a breakpoint whose condition evaluates false; we
5990 could be still stepping within the line; etc. */
5991
5992static void
5993process_event_stop_test (struct execution_control_state *ecs)
5994{
5995 struct symtab_and_line stop_pc_sal;
5996 struct frame_info *frame;
5997 struct gdbarch *gdbarch;
cdaa5b73
PA
5998 CORE_ADDR jmp_buf_pc;
5999 struct bpstat_what what;
94c57d6a 6000
cdaa5b73 6001 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6002
cdaa5b73
PA
6003 frame = get_current_frame ();
6004 gdbarch = get_frame_arch (frame);
fcf3daef 6005
cdaa5b73 6006 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6007
cdaa5b73
PA
6008 if (what.call_dummy)
6009 {
6010 stop_stack_dummy = what.call_dummy;
6011 }
186c406b 6012
243a9253
PA
6013 /* A few breakpoint types have callbacks associated (e.g.,
6014 bp_jit_event). Run them now. */
6015 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6016
cdaa5b73
PA
6017 /* If we hit an internal event that triggers symbol changes, the
6018 current frame will be invalidated within bpstat_what (e.g., if we
6019 hit an internal solib event). Re-fetch it. */
6020 frame = get_current_frame ();
6021 gdbarch = get_frame_arch (frame);
e2e4d78b 6022
cdaa5b73
PA
6023 switch (what.main_action)
6024 {
6025 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6026 /* If we hit the breakpoint at longjmp while stepping, we
6027 install a momentary breakpoint at the target of the
6028 jmp_buf. */
186c406b 6029
cdaa5b73
PA
6030 if (debug_infrun)
6031 fprintf_unfiltered (gdb_stdlog,
6032 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6033
cdaa5b73 6034 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6035
cdaa5b73
PA
6036 if (what.is_longjmp)
6037 {
6038 struct value *arg_value;
6039
6040 /* If we set the longjmp breakpoint via a SystemTap probe,
6041 then use it to extract the arguments. The destination PC
6042 is the third argument to the probe. */
6043 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6044 if (arg_value)
8fa0c4f8
AA
6045 {
6046 jmp_buf_pc = value_as_address (arg_value);
6047 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6048 }
cdaa5b73
PA
6049 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6050 || !gdbarch_get_longjmp_target (gdbarch,
6051 frame, &jmp_buf_pc))
e2e4d78b 6052 {
cdaa5b73
PA
6053 if (debug_infrun)
6054 fprintf_unfiltered (gdb_stdlog,
6055 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6056 "(!gdbarch_get_longjmp_target)\n");
6057 keep_going (ecs);
6058 return;
e2e4d78b 6059 }
e2e4d78b 6060
cdaa5b73
PA
6061 /* Insert a breakpoint at resume address. */
6062 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6063 }
6064 else
6065 check_exception_resume (ecs, frame);
6066 keep_going (ecs);
6067 return;
e81a37f7 6068
cdaa5b73
PA
6069 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6070 {
6071 struct frame_info *init_frame;
e81a37f7 6072
cdaa5b73 6073 /* There are several cases to consider.
c906108c 6074
cdaa5b73
PA
6075 1. The initiating frame no longer exists. In this case we
6076 must stop, because the exception or longjmp has gone too
6077 far.
2c03e5be 6078
cdaa5b73
PA
6079 2. The initiating frame exists, and is the same as the
6080 current frame. We stop, because the exception or longjmp
6081 has been caught.
2c03e5be 6082
cdaa5b73
PA
6083 3. The initiating frame exists and is different from the
6084 current frame. This means the exception or longjmp has
6085 been caught beneath the initiating frame, so keep going.
c906108c 6086
cdaa5b73
PA
6087 4. longjmp breakpoint has been placed just to protect
6088 against stale dummy frames and user is not interested in
6089 stopping around longjmps. */
c5aa993b 6090
cdaa5b73
PA
6091 if (debug_infrun)
6092 fprintf_unfiltered (gdb_stdlog,
6093 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6094
cdaa5b73
PA
6095 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6096 != NULL);
6097 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6098
cdaa5b73
PA
6099 if (what.is_longjmp)
6100 {
b67a2c6f 6101 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6102
cdaa5b73 6103 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6104 {
cdaa5b73
PA
6105 /* Case 4. */
6106 keep_going (ecs);
6107 return;
e5ef252a 6108 }
cdaa5b73 6109 }
c5aa993b 6110
cdaa5b73 6111 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6112
cdaa5b73
PA
6113 if (init_frame)
6114 {
6115 struct frame_id current_id
6116 = get_frame_id (get_current_frame ());
6117 if (frame_id_eq (current_id,
6118 ecs->event_thread->initiating_frame))
6119 {
6120 /* Case 2. Fall through. */
6121 }
6122 else
6123 {
6124 /* Case 3. */
6125 keep_going (ecs);
6126 return;
6127 }
68f53502 6128 }
488f131b 6129
cdaa5b73
PA
6130 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6131 exists. */
6132 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6133
bdc36728 6134 end_stepping_range (ecs);
cdaa5b73
PA
6135 }
6136 return;
e5ef252a 6137
cdaa5b73
PA
6138 case BPSTAT_WHAT_SINGLE:
6139 if (debug_infrun)
6140 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6141 ecs->event_thread->stepping_over_breakpoint = 1;
6142 /* Still need to check other stuff, at least the case where we
6143 are stepping and step out of the right range. */
6144 break;
e5ef252a 6145
cdaa5b73
PA
6146 case BPSTAT_WHAT_STEP_RESUME:
6147 if (debug_infrun)
6148 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6149
cdaa5b73
PA
6150 delete_step_resume_breakpoint (ecs->event_thread);
6151 if (ecs->event_thread->control.proceed_to_finish
6152 && execution_direction == EXEC_REVERSE)
6153 {
6154 struct thread_info *tp = ecs->event_thread;
6155
6156 /* We are finishing a function in reverse, and just hit the
6157 step-resume breakpoint at the start address of the
6158 function, and we're almost there -- just need to back up
6159 by one more single-step, which should take us back to the
6160 function call. */
6161 tp->control.step_range_start = tp->control.step_range_end = 1;
6162 keep_going (ecs);
e5ef252a 6163 return;
cdaa5b73
PA
6164 }
6165 fill_in_stop_func (gdbarch, ecs);
f2ffa92b 6166 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
cdaa5b73
PA
6167 && execution_direction == EXEC_REVERSE)
6168 {
6169 /* We are stepping over a function call in reverse, and just
6170 hit the step-resume breakpoint at the start address of
6171 the function. Go back to single-stepping, which should
6172 take us back to the function call. */
6173 ecs->event_thread->stepping_over_breakpoint = 1;
6174 keep_going (ecs);
6175 return;
6176 }
6177 break;
e5ef252a 6178
cdaa5b73
PA
6179 case BPSTAT_WHAT_STOP_NOISY:
6180 if (debug_infrun)
6181 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6182 stop_print_frame = 1;
e5ef252a 6183
99619bea
PA
6184 /* Assume the thread stopped for a breapoint. We'll still check
6185 whether a/the breakpoint is there when the thread is next
6186 resumed. */
6187 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6188
22bcd14b 6189 stop_waiting (ecs);
cdaa5b73 6190 return;
e5ef252a 6191
cdaa5b73
PA
6192 case BPSTAT_WHAT_STOP_SILENT:
6193 if (debug_infrun)
6194 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6195 stop_print_frame = 0;
e5ef252a 6196
99619bea
PA
6197 /* Assume the thread stopped for a breapoint. We'll still check
6198 whether a/the breakpoint is there when the thread is next
6199 resumed. */
6200 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6201 stop_waiting (ecs);
cdaa5b73
PA
6202 return;
6203
6204 case BPSTAT_WHAT_HP_STEP_RESUME:
6205 if (debug_infrun)
6206 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6207
6208 delete_step_resume_breakpoint (ecs->event_thread);
6209 if (ecs->event_thread->step_after_step_resume_breakpoint)
6210 {
6211 /* Back when the step-resume breakpoint was inserted, we
6212 were trying to single-step off a breakpoint. Go back to
6213 doing that. */
6214 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6215 ecs->event_thread->stepping_over_breakpoint = 1;
6216 keep_going (ecs);
6217 return;
e5ef252a 6218 }
cdaa5b73
PA
6219 break;
6220
6221 case BPSTAT_WHAT_KEEP_CHECKING:
6222 break;
e5ef252a 6223 }
c906108c 6224
af48d08f
PA
6225 /* If we stepped a permanent breakpoint and we had a high priority
6226 step-resume breakpoint for the address we stepped, but we didn't
6227 hit it, then we must have stepped into the signal handler. The
6228 step-resume was only necessary to catch the case of _not_
6229 stepping into the handler, so delete it, and fall through to
6230 checking whether the step finished. */
6231 if (ecs->event_thread->stepped_breakpoint)
6232 {
6233 struct breakpoint *sr_bp
6234 = ecs->event_thread->control.step_resume_breakpoint;
6235
8d707a12
PA
6236 if (sr_bp != NULL
6237 && sr_bp->loc->permanent
af48d08f
PA
6238 && sr_bp->type == bp_hp_step_resume
6239 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6240 {
6241 if (debug_infrun)
6242 fprintf_unfiltered (gdb_stdlog,
6243 "infrun: stepped permanent breakpoint, stopped in "
6244 "handler\n");
6245 delete_step_resume_breakpoint (ecs->event_thread);
6246 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6247 }
6248 }
6249
cdaa5b73
PA
6250 /* We come here if we hit a breakpoint but should not stop for it.
6251 Possibly we also were stepping and should stop for that. So fall
6252 through and test for stepping. But, if not stepping, do not
6253 stop. */
c906108c 6254
a7212384
UW
6255 /* In all-stop mode, if we're currently stepping but have stopped in
6256 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6257 if (switch_back_to_stepped_thread (ecs))
6258 return;
776f04fa 6259
8358c15c 6260 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6261 {
527159b7 6262 if (debug_infrun)
d3169d93
DJ
6263 fprintf_unfiltered (gdb_stdlog,
6264 "infrun: step-resume breakpoint is inserted\n");
527159b7 6265
488f131b
JB
6266 /* Having a step-resume breakpoint overrides anything
6267 else having to do with stepping commands until
6268 that breakpoint is reached. */
488f131b
JB
6269 keep_going (ecs);
6270 return;
6271 }
c5aa993b 6272
16c381f0 6273 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6274 {
527159b7 6275 if (debug_infrun)
8a9de0e4 6276 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6277 /* Likewise if we aren't even stepping. */
488f131b
JB
6278 keep_going (ecs);
6279 return;
6280 }
c5aa993b 6281
4b7703ad
JB
6282 /* Re-fetch current thread's frame in case the code above caused
6283 the frame cache to be re-initialized, making our FRAME variable
6284 a dangling pointer. */
6285 frame = get_current_frame ();
628fe4e4 6286 gdbarch = get_frame_arch (frame);
7e324e48 6287 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6288
488f131b 6289 /* If stepping through a line, keep going if still within it.
c906108c 6290
488f131b
JB
6291 Note that step_range_end is the address of the first instruction
6292 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6293 within it!
6294
6295 Note also that during reverse execution, we may be stepping
6296 through a function epilogue and therefore must detect when
6297 the current-frame changes in the middle of a line. */
6298
f2ffa92b
PA
6299 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6300 ecs->event_thread)
31410e84 6301 && (execution_direction != EXEC_REVERSE
388a8562 6302 || frame_id_eq (get_frame_id (frame),
16c381f0 6303 ecs->event_thread->control.step_frame_id)))
488f131b 6304 {
527159b7 6305 if (debug_infrun)
5af949e3
UW
6306 fprintf_unfiltered
6307 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6308 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6309 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6310
c1e36e3e
PA
6311 /* Tentatively re-enable range stepping; `resume' disables it if
6312 necessary (e.g., if we're stepping over a breakpoint or we
6313 have software watchpoints). */
6314 ecs->event_thread->control.may_range_step = 1;
6315
b2175913
MS
6316 /* When stepping backward, stop at beginning of line range
6317 (unless it's the function entry point, in which case
6318 keep going back to the call point). */
f2ffa92b 6319 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
16c381f0 6320 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6321 && stop_pc != ecs->stop_func_start
6322 && execution_direction == EXEC_REVERSE)
bdc36728 6323 end_stepping_range (ecs);
b2175913
MS
6324 else
6325 keep_going (ecs);
6326
488f131b
JB
6327 return;
6328 }
c5aa993b 6329
488f131b 6330 /* We stepped out of the stepping range. */
c906108c 6331
488f131b 6332 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6333 loader dynamic symbol resolution code...
6334
6335 EXEC_FORWARD: we keep on single stepping until we exit the run
6336 time loader code and reach the callee's address.
6337
6338 EXEC_REVERSE: we've already executed the callee (backward), and
6339 the runtime loader code is handled just like any other
6340 undebuggable function call. Now we need only keep stepping
6341 backward through the trampoline code, and that's handled further
6342 down, so there is nothing for us to do here. */
6343
6344 if (execution_direction != EXEC_REVERSE
16c381f0 6345 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
f2ffa92b 6346 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
488f131b 6347 {
4c8c40e6 6348 CORE_ADDR pc_after_resolver =
f2ffa92b
PA
6349 gdbarch_skip_solib_resolver (gdbarch,
6350 ecs->event_thread->suspend.stop_pc);
c906108c 6351
527159b7 6352 if (debug_infrun)
3e43a32a
MS
6353 fprintf_unfiltered (gdb_stdlog,
6354 "infrun: stepped into dynsym resolve code\n");
527159b7 6355
488f131b
JB
6356 if (pc_after_resolver)
6357 {
6358 /* Set up a step-resume breakpoint at the address
6359 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6360 symtab_and_line sr_sal;
488f131b 6361 sr_sal.pc = pc_after_resolver;
6c95b8df 6362 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6363
a6d9a66e
UW
6364 insert_step_resume_breakpoint_at_sal (gdbarch,
6365 sr_sal, null_frame_id);
c5aa993b 6366 }
c906108c 6367
488f131b
JB
6368 keep_going (ecs);
6369 return;
6370 }
c906108c 6371
1d509aa6
MM
6372 /* Step through an indirect branch thunk. */
6373 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
f2ffa92b
PA
6374 && gdbarch_in_indirect_branch_thunk (gdbarch,
6375 ecs->event_thread->suspend.stop_pc))
1d509aa6
MM
6376 {
6377 if (debug_infrun)
6378 fprintf_unfiltered (gdb_stdlog,
6379 "infrun: stepped into indirect branch thunk\n");
6380 keep_going (ecs);
6381 return;
6382 }
6383
16c381f0
JK
6384 if (ecs->event_thread->control.step_range_end != 1
6385 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6386 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6387 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6388 {
527159b7 6389 if (debug_infrun)
3e43a32a
MS
6390 fprintf_unfiltered (gdb_stdlog,
6391 "infrun: stepped into signal trampoline\n");
42edda50 6392 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6393 a signal trampoline (either by a signal being delivered or by
6394 the signal handler returning). Just single-step until the
6395 inferior leaves the trampoline (either by calling the handler
6396 or returning). */
488f131b
JB
6397 keep_going (ecs);
6398 return;
6399 }
c906108c 6400
14132e89
MR
6401 /* If we're in the return path from a shared library trampoline,
6402 we want to proceed through the trampoline when stepping. */
6403 /* macro/2012-04-25: This needs to come before the subroutine
6404 call check below as on some targets return trampolines look
6405 like subroutine calls (MIPS16 return thunks). */
6406 if (gdbarch_in_solib_return_trampoline (gdbarch,
f2ffa92b
PA
6407 ecs->event_thread->suspend.stop_pc,
6408 ecs->stop_func_name)
14132e89
MR
6409 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6410 {
6411 /* Determine where this trampoline returns. */
f2ffa92b
PA
6412 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6413 CORE_ADDR real_stop_pc
6414 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
14132e89
MR
6415
6416 if (debug_infrun)
6417 fprintf_unfiltered (gdb_stdlog,
6418 "infrun: stepped into solib return tramp\n");
6419
6420 /* Only proceed through if we know where it's going. */
6421 if (real_stop_pc)
6422 {
6423 /* And put the step-breakpoint there and go until there. */
51abb421 6424 symtab_and_line sr_sal;
14132e89
MR
6425 sr_sal.pc = real_stop_pc;
6426 sr_sal.section = find_pc_overlay (sr_sal.pc);
6427 sr_sal.pspace = get_frame_program_space (frame);
6428
6429 /* Do not specify what the fp should be when we stop since
6430 on some machines the prologue is where the new fp value
6431 is established. */
6432 insert_step_resume_breakpoint_at_sal (gdbarch,
6433 sr_sal, null_frame_id);
6434
6435 /* Restart without fiddling with the step ranges or
6436 other state. */
6437 keep_going (ecs);
6438 return;
6439 }
6440 }
6441
c17eaafe
DJ
6442 /* Check for subroutine calls. The check for the current frame
6443 equalling the step ID is not necessary - the check of the
6444 previous frame's ID is sufficient - but it is a common case and
6445 cheaper than checking the previous frame's ID.
14e60db5
DJ
6446
6447 NOTE: frame_id_eq will never report two invalid frame IDs as
6448 being equal, so to get into this block, both the current and
6449 previous frame must have valid frame IDs. */
005ca36a
JB
6450 /* The outer_frame_id check is a heuristic to detect stepping
6451 through startup code. If we step over an instruction which
6452 sets the stack pointer from an invalid value to a valid value,
6453 we may detect that as a subroutine call from the mythical
6454 "outermost" function. This could be fixed by marking
6455 outermost frames as !stack_p,code_p,special_p. Then the
6456 initial outermost frame, before sp was valid, would
ce6cca6d 6457 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6458 for more. */
edb3359d 6459 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6460 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6461 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6462 ecs->event_thread->control.step_stack_frame_id)
6463 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6464 outer_frame_id)
885eeb5b 6465 || (ecs->event_thread->control.step_start_function
f2ffa92b 6466 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
488f131b 6467 {
f2ffa92b 6468 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
95918acb 6469 CORE_ADDR real_stop_pc;
8fb3e588 6470
527159b7 6471 if (debug_infrun)
8a9de0e4 6472 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6473
b7a084be 6474 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6475 {
6476 /* I presume that step_over_calls is only 0 when we're
6477 supposed to be stepping at the assembly language level
6478 ("stepi"). Just stop. */
388a8562 6479 /* And this works the same backward as frontward. MVS */
bdc36728 6480 end_stepping_range (ecs);
95918acb
AC
6481 return;
6482 }
8fb3e588 6483
388a8562
MS
6484 /* Reverse stepping through solib trampolines. */
6485
6486 if (execution_direction == EXEC_REVERSE
16c381f0 6487 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6488 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6489 || (ecs->stop_func_start == 0
6490 && in_solib_dynsym_resolve_code (stop_pc))))
6491 {
6492 /* Any solib trampoline code can be handled in reverse
6493 by simply continuing to single-step. We have already
6494 executed the solib function (backwards), and a few
6495 steps will take us back through the trampoline to the
6496 caller. */
6497 keep_going (ecs);
6498 return;
6499 }
6500
16c381f0 6501 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6502 {
b2175913
MS
6503 /* We're doing a "next".
6504
6505 Normal (forward) execution: set a breakpoint at the
6506 callee's return address (the address at which the caller
6507 will resume).
6508
6509 Reverse (backward) execution. set the step-resume
6510 breakpoint at the start of the function that we just
6511 stepped into (backwards), and continue to there. When we
6130d0b7 6512 get there, we'll need to single-step back to the caller. */
b2175913
MS
6513
6514 if (execution_direction == EXEC_REVERSE)
6515 {
acf9414f
JK
6516 /* If we're already at the start of the function, we've either
6517 just stepped backward into a single instruction function,
6518 or stepped back out of a signal handler to the first instruction
6519 of the function. Just keep going, which will single-step back
6520 to the caller. */
58c48e72 6521 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 6522 {
acf9414f 6523 /* Normal function call return (static or dynamic). */
51abb421 6524 symtab_and_line sr_sal;
acf9414f
JK
6525 sr_sal.pc = ecs->stop_func_start;
6526 sr_sal.pspace = get_frame_program_space (frame);
6527 insert_step_resume_breakpoint_at_sal (gdbarch,
6528 sr_sal, null_frame_id);
6529 }
b2175913
MS
6530 }
6531 else
568d6575 6532 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6533
8567c30f
AC
6534 keep_going (ecs);
6535 return;
6536 }
a53c66de 6537
95918acb 6538 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6539 calling routine and the real function), locate the real
6540 function. That's what tells us (a) whether we want to step
6541 into it at all, and (b) what prologue we want to run to the
6542 end of, if we do step into it. */
568d6575 6543 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6544 if (real_stop_pc == 0)
568d6575 6545 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6546 if (real_stop_pc != 0)
6547 ecs->stop_func_start = real_stop_pc;
8fb3e588 6548
db5f024e 6549 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 6550 {
51abb421 6551 symtab_and_line sr_sal;
1b2bfbb9 6552 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6553 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6554
a6d9a66e
UW
6555 insert_step_resume_breakpoint_at_sal (gdbarch,
6556 sr_sal, null_frame_id);
8fb3e588
AC
6557 keep_going (ecs);
6558 return;
1b2bfbb9
RC
6559 }
6560
95918acb 6561 /* If we have line number information for the function we are
1bfeeb0f
JL
6562 thinking of stepping into and the function isn't on the skip
6563 list, step into it.
95918acb 6564
8fb3e588
AC
6565 If there are several symtabs at that PC (e.g. with include
6566 files), just want to know whether *any* of them have line
6567 numbers. find_pc_line handles this. */
95918acb
AC
6568 {
6569 struct symtab_and_line tmp_sal;
8fb3e588 6570
95918acb 6571 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6572 if (tmp_sal.line != 0
85817405 6573 && !function_name_is_marked_for_skip (ecs->stop_func_name,
de7985c3 6574 tmp_sal))
95918acb 6575 {
b2175913 6576 if (execution_direction == EXEC_REVERSE)
568d6575 6577 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6578 else
568d6575 6579 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6580 return;
6581 }
6582 }
6583
6584 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6585 set, we stop the step so that the user has a chance to switch
6586 in assembly mode. */
16c381f0 6587 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6588 && step_stop_if_no_debug)
95918acb 6589 {
bdc36728 6590 end_stepping_range (ecs);
95918acb
AC
6591 return;
6592 }
6593
b2175913
MS
6594 if (execution_direction == EXEC_REVERSE)
6595 {
acf9414f
JK
6596 /* If we're already at the start of the function, we've either just
6597 stepped backward into a single instruction function without line
6598 number info, or stepped back out of a signal handler to the first
6599 instruction of the function without line number info. Just keep
6600 going, which will single-step back to the caller. */
6601 if (ecs->stop_func_start != stop_pc)
6602 {
6603 /* Set a breakpoint at callee's start address.
6604 From there we can step once and be back in the caller. */
51abb421 6605 symtab_and_line sr_sal;
acf9414f
JK
6606 sr_sal.pc = ecs->stop_func_start;
6607 sr_sal.pspace = get_frame_program_space (frame);
6608 insert_step_resume_breakpoint_at_sal (gdbarch,
6609 sr_sal, null_frame_id);
6610 }
b2175913
MS
6611 }
6612 else
6613 /* Set a breakpoint at callee's return address (the address
6614 at which the caller will resume). */
568d6575 6615 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6616
95918acb 6617 keep_going (ecs);
488f131b 6618 return;
488f131b 6619 }
c906108c 6620
fdd654f3
MS
6621 /* Reverse stepping through solib trampolines. */
6622
6623 if (execution_direction == EXEC_REVERSE
16c381f0 6624 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3 6625 {
f2ffa92b
PA
6626 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6627
fdd654f3
MS
6628 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6629 || (ecs->stop_func_start == 0
6630 && in_solib_dynsym_resolve_code (stop_pc)))
6631 {
6632 /* Any solib trampoline code can be handled in reverse
6633 by simply continuing to single-step. We have already
6634 executed the solib function (backwards), and a few
6635 steps will take us back through the trampoline to the
6636 caller. */
6637 keep_going (ecs);
6638 return;
6639 }
6640 else if (in_solib_dynsym_resolve_code (stop_pc))
6641 {
6642 /* Stepped backward into the solib dynsym resolver.
6643 Set a breakpoint at its start and continue, then
6644 one more step will take us out. */
51abb421 6645 symtab_and_line sr_sal;
fdd654f3 6646 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6647 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6648 insert_step_resume_breakpoint_at_sal (gdbarch,
6649 sr_sal, null_frame_id);
6650 keep_going (ecs);
6651 return;
6652 }
6653 }
6654
f2ffa92b 6655 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7ed0fe66 6656
1b2bfbb9
RC
6657 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6658 the trampoline processing logic, however, there are some trampolines
6659 that have no names, so we should do trampoline handling first. */
16c381f0 6660 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6661 && ecs->stop_func_name == NULL
2afb61aa 6662 && stop_pc_sal.line == 0)
1b2bfbb9 6663 {
527159b7 6664 if (debug_infrun)
3e43a32a
MS
6665 fprintf_unfiltered (gdb_stdlog,
6666 "infrun: stepped into undebuggable function\n");
527159b7 6667
1b2bfbb9 6668 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6669 undebuggable function (where there is no debugging information
6670 and no line number corresponding to the address where the
1b2bfbb9
RC
6671 inferior stopped). Since we want to skip this kind of code,
6672 we keep going until the inferior returns from this
14e60db5
DJ
6673 function - unless the user has asked us not to (via
6674 set step-mode) or we no longer know how to get back
6675 to the call site. */
6676 if (step_stop_if_no_debug
c7ce8faa 6677 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6678 {
6679 /* If we have no line number and the step-stop-if-no-debug
6680 is set, we stop the step so that the user has a chance to
6681 switch in assembly mode. */
bdc36728 6682 end_stepping_range (ecs);
1b2bfbb9
RC
6683 return;
6684 }
6685 else
6686 {
6687 /* Set a breakpoint at callee's return address (the address
6688 at which the caller will resume). */
568d6575 6689 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6690 keep_going (ecs);
6691 return;
6692 }
6693 }
6694
16c381f0 6695 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6696 {
6697 /* It is stepi or nexti. We always want to stop stepping after
6698 one instruction. */
527159b7 6699 if (debug_infrun)
8a9de0e4 6700 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6701 end_stepping_range (ecs);
1b2bfbb9
RC
6702 return;
6703 }
6704
2afb61aa 6705 if (stop_pc_sal.line == 0)
488f131b
JB
6706 {
6707 /* We have no line number information. That means to stop
6708 stepping (does this always happen right after one instruction,
6709 when we do "s" in a function with no line numbers,
6710 or can this happen as a result of a return or longjmp?). */
527159b7 6711 if (debug_infrun)
8a9de0e4 6712 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6713 end_stepping_range (ecs);
488f131b
JB
6714 return;
6715 }
c906108c 6716
edb3359d
DJ
6717 /* Look for "calls" to inlined functions, part one. If the inline
6718 frame machinery detected some skipped call sites, we have entered
6719 a new inline function. */
6720
6721 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6722 ecs->event_thread->control.step_frame_id)
00431a78 6723 && inline_skipped_frames (ecs->event_thread))
edb3359d 6724 {
edb3359d
DJ
6725 if (debug_infrun)
6726 fprintf_unfiltered (gdb_stdlog,
6727 "infrun: stepped into inlined function\n");
6728
51abb421 6729 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 6730
16c381f0 6731 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6732 {
6733 /* For "step", we're going to stop. But if the call site
6734 for this inlined function is on the same source line as
6735 we were previously stepping, go down into the function
6736 first. Otherwise stop at the call site. */
6737
6738 if (call_sal.line == ecs->event_thread->current_line
6739 && call_sal.symtab == ecs->event_thread->current_symtab)
00431a78 6740 step_into_inline_frame (ecs->event_thread);
edb3359d 6741
bdc36728 6742 end_stepping_range (ecs);
edb3359d
DJ
6743 return;
6744 }
6745 else
6746 {
6747 /* For "next", we should stop at the call site if it is on a
6748 different source line. Otherwise continue through the
6749 inlined function. */
6750 if (call_sal.line == ecs->event_thread->current_line
6751 && call_sal.symtab == ecs->event_thread->current_symtab)
6752 keep_going (ecs);
6753 else
bdc36728 6754 end_stepping_range (ecs);
edb3359d
DJ
6755 return;
6756 }
6757 }
6758
6759 /* Look for "calls" to inlined functions, part two. If we are still
6760 in the same real function we were stepping through, but we have
6761 to go further up to find the exact frame ID, we are stepping
6762 through a more inlined call beyond its call site. */
6763
6764 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6765 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6766 ecs->event_thread->control.step_frame_id)
edb3359d 6767 && stepped_in_from (get_current_frame (),
16c381f0 6768 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6769 {
6770 if (debug_infrun)
6771 fprintf_unfiltered (gdb_stdlog,
6772 "infrun: stepping through inlined function\n");
6773
16c381f0 6774 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
6775 keep_going (ecs);
6776 else
bdc36728 6777 end_stepping_range (ecs);
edb3359d
DJ
6778 return;
6779 }
6780
f2ffa92b 6781 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6782 && (ecs->event_thread->current_line != stop_pc_sal.line
6783 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
6784 {
6785 /* We are at the start of a different line. So stop. Note that
6786 we don't stop if we step into the middle of a different line.
6787 That is said to make things like for (;;) statements work
6788 better. */
527159b7 6789 if (debug_infrun)
3e43a32a
MS
6790 fprintf_unfiltered (gdb_stdlog,
6791 "infrun: stepped to a different line\n");
bdc36728 6792 end_stepping_range (ecs);
488f131b
JB
6793 return;
6794 }
c906108c 6795
488f131b 6796 /* We aren't done stepping.
c906108c 6797
488f131b
JB
6798 Optimize by setting the stepping range to the line.
6799 (We might not be in the original line, but if we entered a
6800 new line in mid-statement, we continue stepping. This makes
6801 things like for(;;) statements work better.) */
c906108c 6802
16c381f0
JK
6803 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6804 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 6805 ecs->event_thread->control.may_range_step = 1;
edb3359d 6806 set_step_info (frame, stop_pc_sal);
488f131b 6807
527159b7 6808 if (debug_infrun)
8a9de0e4 6809 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 6810 keep_going (ecs);
104c1213
JM
6811}
6812
c447ac0b
PA
6813/* In all-stop mode, if we're currently stepping but have stopped in
6814 some other thread, we may need to switch back to the stepped
6815 thread. Returns true we set the inferior running, false if we left
6816 it stopped (and the event needs further processing). */
6817
6818static int
6819switch_back_to_stepped_thread (struct execution_control_state *ecs)
6820{
fbea99ea 6821 if (!target_is_non_stop_p ())
c447ac0b 6822 {
99619bea
PA
6823 struct thread_info *stepping_thread;
6824
6825 /* If any thread is blocked on some internal breakpoint, and we
6826 simply need to step over that breakpoint to get it going
6827 again, do that first. */
6828
6829 /* However, if we see an event for the stepping thread, then we
6830 know all other threads have been moved past their breakpoints
6831 already. Let the caller check whether the step is finished,
6832 etc., before deciding to move it past a breakpoint. */
6833 if (ecs->event_thread->control.step_range_end != 0)
6834 return 0;
6835
6836 /* Check if the current thread is blocked on an incomplete
6837 step-over, interrupted by a random signal. */
6838 if (ecs->event_thread->control.trap_expected
6839 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 6840 {
99619bea
PA
6841 if (debug_infrun)
6842 {
6843 fprintf_unfiltered (gdb_stdlog,
6844 "infrun: need to finish step-over of [%s]\n",
6845 target_pid_to_str (ecs->event_thread->ptid));
6846 }
6847 keep_going (ecs);
6848 return 1;
6849 }
2adfaa28 6850
99619bea
PA
6851 /* Check if the current thread is blocked by a single-step
6852 breakpoint of another thread. */
6853 if (ecs->hit_singlestep_breakpoint)
6854 {
6855 if (debug_infrun)
6856 {
6857 fprintf_unfiltered (gdb_stdlog,
6858 "infrun: need to step [%s] over single-step "
6859 "breakpoint\n",
6860 target_pid_to_str (ecs->ptid));
6861 }
6862 keep_going (ecs);
6863 return 1;
6864 }
6865
4d9d9d04
PA
6866 /* If this thread needs yet another step-over (e.g., stepping
6867 through a delay slot), do it first before moving on to
6868 another thread. */
6869 if (thread_still_needs_step_over (ecs->event_thread))
6870 {
6871 if (debug_infrun)
6872 {
6873 fprintf_unfiltered (gdb_stdlog,
6874 "infrun: thread [%s] still needs step-over\n",
6875 target_pid_to_str (ecs->event_thread->ptid));
6876 }
6877 keep_going (ecs);
6878 return 1;
6879 }
70509625 6880
483805cf
PA
6881 /* If scheduler locking applies even if not stepping, there's no
6882 need to walk over threads. Above we've checked whether the
6883 current thread is stepping. If some other thread not the
6884 event thread is stepping, then it must be that scheduler
6885 locking is not in effect. */
856e7dd6 6886 if (schedlock_applies (ecs->event_thread))
483805cf
PA
6887 return 0;
6888
4d9d9d04
PA
6889 /* Otherwise, we no longer expect a trap in the current thread.
6890 Clear the trap_expected flag before switching back -- this is
6891 what keep_going does as well, if we call it. */
6892 ecs->event_thread->control.trap_expected = 0;
6893
6894 /* Likewise, clear the signal if it should not be passed. */
6895 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6896 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6897
6898 /* Do all pending step-overs before actually proceeding with
483805cf 6899 step/next/etc. */
4d9d9d04
PA
6900 if (start_step_over ())
6901 {
6902 prepare_to_wait (ecs);
6903 return 1;
6904 }
6905
6906 /* Look for the stepping/nexting thread. */
483805cf 6907 stepping_thread = NULL;
4d9d9d04 6908
08036331 6909 for (thread_info *tp : all_non_exited_threads ())
483805cf 6910 {
fbea99ea
PA
6911 /* Ignore threads of processes the caller is not
6912 resuming. */
483805cf 6913 if (!sched_multi
e99b03dc 6914 && tp->ptid.pid () != ecs->ptid.pid ())
483805cf
PA
6915 continue;
6916
6917 /* When stepping over a breakpoint, we lock all threads
6918 except the one that needs to move past the breakpoint.
6919 If a non-event thread has this set, the "incomplete
6920 step-over" check above should have caught it earlier. */
372316f1
PA
6921 if (tp->control.trap_expected)
6922 {
6923 internal_error (__FILE__, __LINE__,
6924 "[%s] has inconsistent state: "
6925 "trap_expected=%d\n",
6926 target_pid_to_str (tp->ptid),
6927 tp->control.trap_expected);
6928 }
483805cf
PA
6929
6930 /* Did we find the stepping thread? */
6931 if (tp->control.step_range_end)
6932 {
6933 /* Yep. There should only one though. */
6934 gdb_assert (stepping_thread == NULL);
6935
6936 /* The event thread is handled at the top, before we
6937 enter this loop. */
6938 gdb_assert (tp != ecs->event_thread);
6939
6940 /* If some thread other than the event thread is
6941 stepping, then scheduler locking can't be in effect,
6942 otherwise we wouldn't have resumed the current event
6943 thread in the first place. */
856e7dd6 6944 gdb_assert (!schedlock_applies (tp));
483805cf
PA
6945
6946 stepping_thread = tp;
6947 }
99619bea
PA
6948 }
6949
483805cf 6950 if (stepping_thread != NULL)
99619bea 6951 {
c447ac0b
PA
6952 if (debug_infrun)
6953 fprintf_unfiltered (gdb_stdlog,
6954 "infrun: switching back to stepped thread\n");
6955
2ac7589c
PA
6956 if (keep_going_stepped_thread (stepping_thread))
6957 {
6958 prepare_to_wait (ecs);
6959 return 1;
6960 }
6961 }
6962 }
2adfaa28 6963
2ac7589c
PA
6964 return 0;
6965}
2adfaa28 6966
2ac7589c
PA
6967/* Set a previously stepped thread back to stepping. Returns true on
6968 success, false if the resume is not possible (e.g., the thread
6969 vanished). */
6970
6971static int
6972keep_going_stepped_thread (struct thread_info *tp)
6973{
6974 struct frame_info *frame;
2ac7589c
PA
6975 struct execution_control_state ecss;
6976 struct execution_control_state *ecs = &ecss;
2adfaa28 6977
2ac7589c
PA
6978 /* If the stepping thread exited, then don't try to switch back and
6979 resume it, which could fail in several different ways depending
6980 on the target. Instead, just keep going.
2adfaa28 6981
2ac7589c
PA
6982 We can find a stepping dead thread in the thread list in two
6983 cases:
2adfaa28 6984
2ac7589c
PA
6985 - The target supports thread exit events, and when the target
6986 tries to delete the thread from the thread list, inferior_ptid
6987 pointed at the exiting thread. In such case, calling
6988 delete_thread does not really remove the thread from the list;
6989 instead, the thread is left listed, with 'exited' state.
64ce06e4 6990
2ac7589c
PA
6991 - The target's debug interface does not support thread exit
6992 events, and so we have no idea whatsoever if the previously
6993 stepping thread is still alive. For that reason, we need to
6994 synchronously query the target now. */
2adfaa28 6995
00431a78 6996 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
2ac7589c
PA
6997 {
6998 if (debug_infrun)
6999 fprintf_unfiltered (gdb_stdlog,
7000 "infrun: not resuming previously "
7001 "stepped thread, it has vanished\n");
7002
00431a78 7003 delete_thread (tp);
2ac7589c 7004 return 0;
c447ac0b 7005 }
2ac7589c
PA
7006
7007 if (debug_infrun)
7008 fprintf_unfiltered (gdb_stdlog,
7009 "infrun: resuming previously stepped thread\n");
7010
7011 reset_ecs (ecs, tp);
00431a78 7012 switch_to_thread (tp);
2ac7589c 7013
f2ffa92b 7014 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
2ac7589c 7015 frame = get_current_frame ();
2ac7589c
PA
7016
7017 /* If the PC of the thread we were trying to single-step has
7018 changed, then that thread has trapped or been signaled, but the
7019 event has not been reported to GDB yet. Re-poll the target
7020 looking for this particular thread's event (i.e. temporarily
7021 enable schedlock) by:
7022
7023 - setting a break at the current PC
7024 - resuming that particular thread, only (by setting trap
7025 expected)
7026
7027 This prevents us continuously moving the single-step breakpoint
7028 forward, one instruction at a time, overstepping. */
7029
f2ffa92b 7030 if (tp->suspend.stop_pc != tp->prev_pc)
2ac7589c
PA
7031 {
7032 ptid_t resume_ptid;
7033
7034 if (debug_infrun)
7035 fprintf_unfiltered (gdb_stdlog,
7036 "infrun: expected thread advanced also (%s -> %s)\n",
7037 paddress (target_gdbarch (), tp->prev_pc),
f2ffa92b 7038 paddress (target_gdbarch (), tp->suspend.stop_pc));
2ac7589c
PA
7039
7040 /* Clear the info of the previous step-over, as it's no longer
7041 valid (if the thread was trying to step over a breakpoint, it
7042 has already succeeded). It's what keep_going would do too,
7043 if we called it. Do this before trying to insert the sss
7044 breakpoint, otherwise if we were previously trying to step
7045 over this exact address in another thread, the breakpoint is
7046 skipped. */
7047 clear_step_over_info ();
7048 tp->control.trap_expected = 0;
7049
7050 insert_single_step_breakpoint (get_frame_arch (frame),
7051 get_frame_address_space (frame),
f2ffa92b 7052 tp->suspend.stop_pc);
2ac7589c 7053
372316f1 7054 tp->resumed = 1;
fbea99ea 7055 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7056 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7057 }
7058 else
7059 {
7060 if (debug_infrun)
7061 fprintf_unfiltered (gdb_stdlog,
7062 "infrun: expected thread still hasn't advanced\n");
7063
7064 keep_going_pass_signal (ecs);
7065 }
7066 return 1;
c447ac0b
PA
7067}
7068
8b061563
PA
7069/* Is thread TP in the middle of (software or hardware)
7070 single-stepping? (Note the result of this function must never be
7071 passed directly as target_resume's STEP parameter.) */
104c1213 7072
a289b8f6 7073static int
b3444185 7074currently_stepping (struct thread_info *tp)
a7212384 7075{
8358c15c
JK
7076 return ((tp->control.step_range_end
7077 && tp->control.step_resume_breakpoint == NULL)
7078 || tp->control.trap_expected
af48d08f 7079 || tp->stepped_breakpoint
8358c15c 7080 || bpstat_should_step ());
a7212384
UW
7081}
7082
b2175913
MS
7083/* Inferior has stepped into a subroutine call with source code that
7084 we should not step over. Do step to the first line of code in
7085 it. */
c2c6d25f
JM
7086
7087static void
568d6575
UW
7088handle_step_into_function (struct gdbarch *gdbarch,
7089 struct execution_control_state *ecs)
c2c6d25f 7090{
7e324e48
GB
7091 fill_in_stop_func (gdbarch, ecs);
7092
f2ffa92b
PA
7093 compunit_symtab *cust
7094 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7095 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7096 ecs->stop_func_start
7097 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7098
51abb421 7099 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7100 /* Use the step_resume_break to step until the end of the prologue,
7101 even if that involves jumps (as it seems to on the vax under
7102 4.2). */
7103 /* If the prologue ends in the middle of a source line, continue to
7104 the end of that source line (if it is still within the function).
7105 Otherwise, just go to end of prologue. */
2afb61aa
PA
7106 if (stop_func_sal.end
7107 && stop_func_sal.pc != ecs->stop_func_start
7108 && stop_func_sal.end < ecs->stop_func_end)
7109 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7110
2dbd5e30
KB
7111 /* Architectures which require breakpoint adjustment might not be able
7112 to place a breakpoint at the computed address. If so, the test
7113 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7114 ecs->stop_func_start to an address at which a breakpoint may be
7115 legitimately placed.
8fb3e588 7116
2dbd5e30
KB
7117 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7118 made, GDB will enter an infinite loop when stepping through
7119 optimized code consisting of VLIW instructions which contain
7120 subinstructions corresponding to different source lines. On
7121 FR-V, it's not permitted to place a breakpoint on any but the
7122 first subinstruction of a VLIW instruction. When a breakpoint is
7123 set, GDB will adjust the breakpoint address to the beginning of
7124 the VLIW instruction. Thus, we need to make the corresponding
7125 adjustment here when computing the stop address. */
8fb3e588 7126
568d6575 7127 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7128 {
7129 ecs->stop_func_start
568d6575 7130 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7131 ecs->stop_func_start);
2dbd5e30
KB
7132 }
7133
f2ffa92b 7134 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
c2c6d25f
JM
7135 {
7136 /* We are already there: stop now. */
bdc36728 7137 end_stepping_range (ecs);
c2c6d25f
JM
7138 return;
7139 }
7140 else
7141 {
7142 /* Put the step-breakpoint there and go until there. */
51abb421 7143 symtab_and_line sr_sal;
c2c6d25f
JM
7144 sr_sal.pc = ecs->stop_func_start;
7145 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7146 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7147
c2c6d25f 7148 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7149 some machines the prologue is where the new fp value is
7150 established. */
a6d9a66e 7151 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7152
7153 /* And make sure stepping stops right away then. */
16c381f0
JK
7154 ecs->event_thread->control.step_range_end
7155 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7156 }
7157 keep_going (ecs);
7158}
d4f3574e 7159
b2175913
MS
7160/* Inferior has stepped backward into a subroutine call with source
7161 code that we should not step over. Do step to the beginning of the
7162 last line of code in it. */
7163
7164static void
568d6575
UW
7165handle_step_into_function_backward (struct gdbarch *gdbarch,
7166 struct execution_control_state *ecs)
b2175913 7167{
43f3e411 7168 struct compunit_symtab *cust;
167e4384 7169 struct symtab_and_line stop_func_sal;
b2175913 7170
7e324e48
GB
7171 fill_in_stop_func (gdbarch, ecs);
7172
f2ffa92b 7173 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7174 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7175 ecs->stop_func_start
7176 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913 7177
f2ffa92b 7178 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
b2175913
MS
7179
7180 /* OK, we're just going to keep stepping here. */
f2ffa92b 7181 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
b2175913
MS
7182 {
7183 /* We're there already. Just stop stepping now. */
bdc36728 7184 end_stepping_range (ecs);
b2175913
MS
7185 }
7186 else
7187 {
7188 /* Else just reset the step range and keep going.
7189 No step-resume breakpoint, they don't work for
7190 epilogues, which can have multiple entry paths. */
16c381f0
JK
7191 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7192 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7193 keep_going (ecs);
7194 }
7195 return;
7196}
7197
d3169d93 7198/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7199 This is used to both functions and to skip over code. */
7200
7201static void
2c03e5be
PA
7202insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7203 struct symtab_and_line sr_sal,
7204 struct frame_id sr_id,
7205 enum bptype sr_type)
44cbf7b5 7206{
611c83ae
PA
7207 /* There should never be more than one step-resume or longjmp-resume
7208 breakpoint per thread, so we should never be setting a new
44cbf7b5 7209 step_resume_breakpoint when one is already active. */
8358c15c 7210 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7211 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7212
7213 if (debug_infrun)
7214 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7215 "infrun: inserting step-resume breakpoint at %s\n",
7216 paddress (gdbarch, sr_sal.pc));
d3169d93 7217
8358c15c 7218 inferior_thread ()->control.step_resume_breakpoint
454dafbd 7219 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
2c03e5be
PA
7220}
7221
9da8c2a0 7222void
2c03e5be
PA
7223insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7224 struct symtab_and_line sr_sal,
7225 struct frame_id sr_id)
7226{
7227 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7228 sr_sal, sr_id,
7229 bp_step_resume);
44cbf7b5 7230}
7ce450bd 7231
2c03e5be
PA
7232/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7233 This is used to skip a potential signal handler.
7ce450bd 7234
14e60db5
DJ
7235 This is called with the interrupted function's frame. The signal
7236 handler, when it returns, will resume the interrupted function at
7237 RETURN_FRAME.pc. */
d303a6c7
AC
7238
7239static void
2c03e5be 7240insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7241{
f4c1edd8 7242 gdb_assert (return_frame != NULL);
d303a6c7 7243
51abb421
PA
7244 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7245
7246 symtab_and_line sr_sal;
568d6575 7247 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7248 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7249 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7250
2c03e5be
PA
7251 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7252 get_stack_frame_id (return_frame),
7253 bp_hp_step_resume);
d303a6c7
AC
7254}
7255
2c03e5be
PA
7256/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7257 is used to skip a function after stepping into it (for "next" or if
7258 the called function has no debugging information).
14e60db5
DJ
7259
7260 The current function has almost always been reached by single
7261 stepping a call or return instruction. NEXT_FRAME belongs to the
7262 current function, and the breakpoint will be set at the caller's
7263 resume address.
7264
7265 This is a separate function rather than reusing
2c03e5be 7266 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7267 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7268 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7269
7270static void
7271insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7272{
14e60db5
DJ
7273 /* We shouldn't have gotten here if we don't know where the call site
7274 is. */
c7ce8faa 7275 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7276
51abb421 7277 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7278
51abb421 7279 symtab_and_line sr_sal;
c7ce8faa
DJ
7280 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7281 frame_unwind_caller_pc (next_frame));
14e60db5 7282 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7283 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7284
a6d9a66e 7285 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7286 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7287}
7288
611c83ae
PA
7289/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7290 new breakpoint at the target of a jmp_buf. The handling of
7291 longjmp-resume uses the same mechanisms used for handling
7292 "step-resume" breakpoints. */
7293
7294static void
a6d9a66e 7295insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7296{
e81a37f7
TT
7297 /* There should never be more than one longjmp-resume breakpoint per
7298 thread, so we should never be setting a new
611c83ae 7299 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7300 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7301
7302 if (debug_infrun)
7303 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7304 "infrun: inserting longjmp-resume breakpoint at %s\n",
7305 paddress (gdbarch, pc));
611c83ae 7306
e81a37f7 7307 inferior_thread ()->control.exception_resume_breakpoint =
454dafbd 7308 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
611c83ae
PA
7309}
7310
186c406b
TT
7311/* Insert an exception resume breakpoint. TP is the thread throwing
7312 the exception. The block B is the block of the unwinder debug hook
7313 function. FRAME is the frame corresponding to the call to this
7314 function. SYM is the symbol of the function argument holding the
7315 target PC of the exception. */
7316
7317static void
7318insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7319 const struct block *b,
186c406b
TT
7320 struct frame_info *frame,
7321 struct symbol *sym)
7322{
492d29ea 7323 TRY
186c406b 7324 {
63e43d3a 7325 struct block_symbol vsym;
186c406b
TT
7326 struct value *value;
7327 CORE_ADDR handler;
7328 struct breakpoint *bp;
7329
de63c46b
PA
7330 vsym = lookup_symbol_search_name (SYMBOL_SEARCH_NAME (sym),
7331 b, VAR_DOMAIN);
63e43d3a 7332 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7333 /* If the value was optimized out, revert to the old behavior. */
7334 if (! value_optimized_out (value))
7335 {
7336 handler = value_as_address (value);
7337
7338 if (debug_infrun)
7339 fprintf_unfiltered (gdb_stdlog,
7340 "infrun: exception resume at %lx\n",
7341 (unsigned long) handler);
7342
7343 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd
TT
7344 handler,
7345 bp_exception_resume).release ();
c70a6932
JK
7346
7347 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7348 frame = NULL;
7349
5d5658a1 7350 bp->thread = tp->global_num;
186c406b
TT
7351 inferior_thread ()->control.exception_resume_breakpoint = bp;
7352 }
7353 }
492d29ea
PA
7354 CATCH (e, RETURN_MASK_ERROR)
7355 {
7356 /* We want to ignore errors here. */
7357 }
7358 END_CATCH
186c406b
TT
7359}
7360
28106bc2
SDJ
7361/* A helper for check_exception_resume that sets an
7362 exception-breakpoint based on a SystemTap probe. */
7363
7364static void
7365insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7366 const struct bound_probe *probe,
28106bc2
SDJ
7367 struct frame_info *frame)
7368{
7369 struct value *arg_value;
7370 CORE_ADDR handler;
7371 struct breakpoint *bp;
7372
7373 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7374 if (!arg_value)
7375 return;
7376
7377 handler = value_as_address (arg_value);
7378
7379 if (debug_infrun)
7380 fprintf_unfiltered (gdb_stdlog,
7381 "infrun: exception resume at %s\n",
6bac7473 7382 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7383 handler));
7384
7385 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd 7386 handler, bp_exception_resume).release ();
5d5658a1 7387 bp->thread = tp->global_num;
28106bc2
SDJ
7388 inferior_thread ()->control.exception_resume_breakpoint = bp;
7389}
7390
186c406b
TT
7391/* This is called when an exception has been intercepted. Check to
7392 see whether the exception's destination is of interest, and if so,
7393 set an exception resume breakpoint there. */
7394
7395static void
7396check_exception_resume (struct execution_control_state *ecs,
28106bc2 7397 struct frame_info *frame)
186c406b 7398{
729662a5 7399 struct bound_probe probe;
28106bc2
SDJ
7400 struct symbol *func;
7401
7402 /* First see if this exception unwinding breakpoint was set via a
7403 SystemTap probe point. If so, the probe has two arguments: the
7404 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7405 set a breakpoint there. */
6bac7473 7406 probe = find_probe_by_pc (get_frame_pc (frame));
935676c9 7407 if (probe.prob)
28106bc2 7408 {
729662a5 7409 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7410 return;
7411 }
7412
7413 func = get_frame_function (frame);
7414 if (!func)
7415 return;
186c406b 7416
492d29ea 7417 TRY
186c406b 7418 {
3977b71f 7419 const struct block *b;
8157b174 7420 struct block_iterator iter;
186c406b
TT
7421 struct symbol *sym;
7422 int argno = 0;
7423
7424 /* The exception breakpoint is a thread-specific breakpoint on
7425 the unwinder's debug hook, declared as:
7426
7427 void _Unwind_DebugHook (void *cfa, void *handler);
7428
7429 The CFA argument indicates the frame to which control is
7430 about to be transferred. HANDLER is the destination PC.
7431
7432 We ignore the CFA and set a temporary breakpoint at HANDLER.
7433 This is not extremely efficient but it avoids issues in gdb
7434 with computing the DWARF CFA, and it also works even in weird
7435 cases such as throwing an exception from inside a signal
7436 handler. */
7437
7438 b = SYMBOL_BLOCK_VALUE (func);
7439 ALL_BLOCK_SYMBOLS (b, iter, sym)
7440 {
7441 if (!SYMBOL_IS_ARGUMENT (sym))
7442 continue;
7443
7444 if (argno == 0)
7445 ++argno;
7446 else
7447 {
7448 insert_exception_resume_breakpoint (ecs->event_thread,
7449 b, frame, sym);
7450 break;
7451 }
7452 }
7453 }
492d29ea
PA
7454 CATCH (e, RETURN_MASK_ERROR)
7455 {
7456 }
7457 END_CATCH
186c406b
TT
7458}
7459
104c1213 7460static void
22bcd14b 7461stop_waiting (struct execution_control_state *ecs)
104c1213 7462{
527159b7 7463 if (debug_infrun)
22bcd14b 7464 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7465
cd0fc7c3
SS
7466 /* Let callers know we don't want to wait for the inferior anymore. */
7467 ecs->wait_some_more = 0;
fbea99ea
PA
7468
7469 /* If all-stop, but the target is always in non-stop mode, stop all
7470 threads now that we're presenting the stop to the user. */
7471 if (!non_stop && target_is_non_stop_p ())
7472 stop_all_threads ();
cd0fc7c3
SS
7473}
7474
4d9d9d04
PA
7475/* Like keep_going, but passes the signal to the inferior, even if the
7476 signal is set to nopass. */
d4f3574e
SS
7477
7478static void
4d9d9d04 7479keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7480{
d7e15655 7481 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
372316f1 7482 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7483
d4f3574e 7484 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b 7485 ecs->event_thread->prev_pc
00431a78 7486 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
d4f3574e 7487
4d9d9d04 7488 if (ecs->event_thread->control.trap_expected)
d4f3574e 7489 {
4d9d9d04
PA
7490 struct thread_info *tp = ecs->event_thread;
7491
7492 if (debug_infrun)
7493 fprintf_unfiltered (gdb_stdlog,
7494 "infrun: %s has trap_expected set, "
7495 "resuming to collect trap\n",
7496 target_pid_to_str (tp->ptid));
7497
a9ba6bae
PA
7498 /* We haven't yet gotten our trap, and either: intercepted a
7499 non-signal event (e.g., a fork); or took a signal which we
7500 are supposed to pass through to the inferior. Simply
7501 continue. */
64ce06e4 7502 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7503 }
372316f1
PA
7504 else if (step_over_info_valid_p ())
7505 {
7506 /* Another thread is stepping over a breakpoint in-line. If
7507 this thread needs a step-over too, queue the request. In
7508 either case, this resume must be deferred for later. */
7509 struct thread_info *tp = ecs->event_thread;
7510
7511 if (ecs->hit_singlestep_breakpoint
7512 || thread_still_needs_step_over (tp))
7513 {
7514 if (debug_infrun)
7515 fprintf_unfiltered (gdb_stdlog,
7516 "infrun: step-over already in progress: "
7517 "step-over for %s deferred\n",
7518 target_pid_to_str (tp->ptid));
7519 thread_step_over_chain_enqueue (tp);
7520 }
7521 else
7522 {
7523 if (debug_infrun)
7524 fprintf_unfiltered (gdb_stdlog,
7525 "infrun: step-over in progress: "
7526 "resume of %s deferred\n",
7527 target_pid_to_str (tp->ptid));
7528 }
372316f1 7529 }
d4f3574e
SS
7530 else
7531 {
31e77af2 7532 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7533 int remove_bp;
7534 int remove_wps;
8d297bbf 7535 step_over_what step_what;
31e77af2 7536
d4f3574e 7537 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7538 anyway (if we got a signal, the user asked it be passed to
7539 the child)
7540 -- or --
7541 We got our expected trap, but decided we should resume from
7542 it.
d4f3574e 7543
a9ba6bae 7544 We're going to run this baby now!
d4f3574e 7545
c36b740a
VP
7546 Note that insert_breakpoints won't try to re-insert
7547 already inserted breakpoints. Therefore, we don't
7548 care if breakpoints were already inserted, or not. */
a9ba6bae 7549
31e77af2
PA
7550 /* If we need to step over a breakpoint, and we're not using
7551 displaced stepping to do so, insert all breakpoints
7552 (watchpoints, etc.) but the one we're stepping over, step one
7553 instruction, and then re-insert the breakpoint when that step
7554 is finished. */
963f9c80 7555
6c4cfb24
PA
7556 step_what = thread_still_needs_step_over (ecs->event_thread);
7557
963f9c80 7558 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7559 || (step_what & STEP_OVER_BREAKPOINT));
7560 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7561
cb71640d
PA
7562 /* We can't use displaced stepping if we need to step past a
7563 watchpoint. The instruction copied to the scratch pad would
7564 still trigger the watchpoint. */
7565 if (remove_bp
3fc8eb30 7566 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7567 {
a01bda52 7568 set_step_over_info (regcache->aspace (),
21edc42f
YQ
7569 regcache_read_pc (regcache), remove_wps,
7570 ecs->event_thread->global_num);
45e8c884 7571 }
963f9c80 7572 else if (remove_wps)
21edc42f 7573 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7574
7575 /* If we now need to do an in-line step-over, we need to stop
7576 all other threads. Note this must be done before
7577 insert_breakpoints below, because that removes the breakpoint
7578 we're about to step over, otherwise other threads could miss
7579 it. */
fbea99ea 7580 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7581 stop_all_threads ();
abbb1732 7582
31e77af2 7583 /* Stop stepping if inserting breakpoints fails. */
492d29ea 7584 TRY
31e77af2
PA
7585 {
7586 insert_breakpoints ();
7587 }
492d29ea 7588 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
7589 {
7590 exception_print (gdb_stderr, e);
22bcd14b 7591 stop_waiting (ecs);
bdf2a94a 7592 clear_step_over_info ();
31e77af2 7593 return;
d4f3574e 7594 }
492d29ea 7595 END_CATCH
d4f3574e 7596
963f9c80 7597 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7598
64ce06e4 7599 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7600 }
7601
488f131b 7602 prepare_to_wait (ecs);
d4f3574e
SS
7603}
7604
4d9d9d04
PA
7605/* Called when we should continue running the inferior, because the
7606 current event doesn't cause a user visible stop. This does the
7607 resuming part; waiting for the next event is done elsewhere. */
7608
7609static void
7610keep_going (struct execution_control_state *ecs)
7611{
7612 if (ecs->event_thread->control.trap_expected
7613 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7614 ecs->event_thread->control.trap_expected = 0;
7615
7616 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7617 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7618 keep_going_pass_signal (ecs);
7619}
7620
104c1213
JM
7621/* This function normally comes after a resume, before
7622 handle_inferior_event exits. It takes care of any last bits of
7623 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7624
104c1213
JM
7625static void
7626prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7627{
527159b7 7628 if (debug_infrun)
8a9de0e4 7629 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7630
104c1213 7631 ecs->wait_some_more = 1;
0b333c5e
PA
7632
7633 if (!target_is_async_p ())
7634 mark_infrun_async_event_handler ();
c906108c 7635}
11cf8741 7636
fd664c91 7637/* We are done with the step range of a step/next/si/ni command.
b57bacec 7638 Called once for each n of a "step n" operation. */
fd664c91
PA
7639
7640static void
bdc36728 7641end_stepping_range (struct execution_control_state *ecs)
fd664c91 7642{
bdc36728 7643 ecs->event_thread->control.stop_step = 1;
bdc36728 7644 stop_waiting (ecs);
fd664c91
PA
7645}
7646
33d62d64
JK
7647/* Several print_*_reason functions to print why the inferior has stopped.
7648 We always print something when the inferior exits, or receives a signal.
7649 The rest of the cases are dealt with later on in normal_stop and
7650 print_it_typical. Ideally there should be a call to one of these
7651 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7652 stop_waiting is called.
33d62d64 7653
fd664c91
PA
7654 Note that we don't call these directly, instead we delegate that to
7655 the interpreters, through observers. Interpreters then call these
7656 with whatever uiout is right. */
33d62d64 7657
fd664c91
PA
7658void
7659print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7660{
fd664c91 7661 /* For CLI-like interpreters, print nothing. */
33d62d64 7662
112e8700 7663 if (uiout->is_mi_like_p ())
fd664c91 7664 {
112e8700 7665 uiout->field_string ("reason",
fd664c91
PA
7666 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7667 }
7668}
33d62d64 7669
fd664c91
PA
7670void
7671print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7672{
33d62d64 7673 annotate_signalled ();
112e8700
SM
7674 if (uiout->is_mi_like_p ())
7675 uiout->field_string
7676 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7677 uiout->text ("\nProgram terminated with signal ");
33d62d64 7678 annotate_signal_name ();
112e8700 7679 uiout->field_string ("signal-name",
2ea28649 7680 gdb_signal_to_name (siggnal));
33d62d64 7681 annotate_signal_name_end ();
112e8700 7682 uiout->text (", ");
33d62d64 7683 annotate_signal_string ();
112e8700 7684 uiout->field_string ("signal-meaning",
2ea28649 7685 gdb_signal_to_string (siggnal));
33d62d64 7686 annotate_signal_string_end ();
112e8700
SM
7687 uiout->text (".\n");
7688 uiout->text ("The program no longer exists.\n");
33d62d64
JK
7689}
7690
fd664c91
PA
7691void
7692print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7693{
fda326dd 7694 struct inferior *inf = current_inferior ();
f2907e49 7695 const char *pidstr = target_pid_to_str (ptid_t (inf->pid));
fda326dd 7696
33d62d64
JK
7697 annotate_exited (exitstatus);
7698 if (exitstatus)
7699 {
112e8700
SM
7700 if (uiout->is_mi_like_p ())
7701 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7702 uiout->text ("[Inferior ");
7703 uiout->text (plongest (inf->num));
7704 uiout->text (" (");
7705 uiout->text (pidstr);
7706 uiout->text (") exited with code ");
7707 uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus);
7708 uiout->text ("]\n");
33d62d64
JK
7709 }
7710 else
11cf8741 7711 {
112e8700
SM
7712 if (uiout->is_mi_like_p ())
7713 uiout->field_string
7714 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7715 uiout->text ("[Inferior ");
7716 uiout->text (plongest (inf->num));
7717 uiout->text (" (");
7718 uiout->text (pidstr);
7719 uiout->text (") exited normally]\n");
33d62d64 7720 }
33d62d64
JK
7721}
7722
012b3a21
WT
7723/* Some targets/architectures can do extra processing/display of
7724 segmentation faults. E.g., Intel MPX boundary faults.
7725 Call the architecture dependent function to handle the fault. */
7726
7727static void
7728handle_segmentation_fault (struct ui_out *uiout)
7729{
7730 struct regcache *regcache = get_current_regcache ();
ac7936df 7731 struct gdbarch *gdbarch = regcache->arch ();
012b3a21
WT
7732
7733 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7734 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7735}
7736
fd664c91
PA
7737void
7738print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 7739{
f303dbd6
PA
7740 struct thread_info *thr = inferior_thread ();
7741
33d62d64
JK
7742 annotate_signal ();
7743
112e8700 7744 if (uiout->is_mi_like_p ())
f303dbd6
PA
7745 ;
7746 else if (show_thread_that_caused_stop ())
33d62d64 7747 {
f303dbd6 7748 const char *name;
33d62d64 7749
112e8700
SM
7750 uiout->text ("\nThread ");
7751 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
f303dbd6
PA
7752
7753 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7754 if (name != NULL)
7755 {
112e8700
SM
7756 uiout->text (" \"");
7757 uiout->field_fmt ("name", "%s", name);
7758 uiout->text ("\"");
f303dbd6 7759 }
33d62d64 7760 }
f303dbd6 7761 else
112e8700 7762 uiout->text ("\nProgram");
f303dbd6 7763
112e8700
SM
7764 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7765 uiout->text (" stopped");
33d62d64
JK
7766 else
7767 {
112e8700 7768 uiout->text (" received signal ");
8b93c638 7769 annotate_signal_name ();
112e8700
SM
7770 if (uiout->is_mi_like_p ())
7771 uiout->field_string
7772 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7773 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 7774 annotate_signal_name_end ();
112e8700 7775 uiout->text (", ");
8b93c638 7776 annotate_signal_string ();
112e8700 7777 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
7778
7779 if (siggnal == GDB_SIGNAL_SEGV)
7780 handle_segmentation_fault (uiout);
7781
8b93c638 7782 annotate_signal_string_end ();
33d62d64 7783 }
112e8700 7784 uiout->text (".\n");
33d62d64 7785}
252fbfc8 7786
fd664c91
PA
7787void
7788print_no_history_reason (struct ui_out *uiout)
33d62d64 7789{
112e8700 7790 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 7791}
43ff13b4 7792
0c7e1a46
PA
7793/* Print current location without a level number, if we have changed
7794 functions or hit a breakpoint. Print source line if we have one.
7795 bpstat_print contains the logic deciding in detail what to print,
7796 based on the event(s) that just occurred. */
7797
243a9253
PA
7798static void
7799print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
7800{
7801 int bpstat_ret;
f486487f 7802 enum print_what source_flag;
0c7e1a46
PA
7803 int do_frame_printing = 1;
7804 struct thread_info *tp = inferior_thread ();
7805
7806 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7807 switch (bpstat_ret)
7808 {
7809 case PRINT_UNKNOWN:
7810 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7811 should) carry around the function and does (or should) use
7812 that when doing a frame comparison. */
7813 if (tp->control.stop_step
7814 && frame_id_eq (tp->control.step_frame_id,
7815 get_frame_id (get_current_frame ()))
f2ffa92b
PA
7816 && (tp->control.step_start_function
7817 == find_pc_function (tp->suspend.stop_pc)))
0c7e1a46
PA
7818 {
7819 /* Finished step, just print source line. */
7820 source_flag = SRC_LINE;
7821 }
7822 else
7823 {
7824 /* Print location and source line. */
7825 source_flag = SRC_AND_LOC;
7826 }
7827 break;
7828 case PRINT_SRC_AND_LOC:
7829 /* Print location and source line. */
7830 source_flag = SRC_AND_LOC;
7831 break;
7832 case PRINT_SRC_ONLY:
7833 source_flag = SRC_LINE;
7834 break;
7835 case PRINT_NOTHING:
7836 /* Something bogus. */
7837 source_flag = SRC_LINE;
7838 do_frame_printing = 0;
7839 break;
7840 default:
7841 internal_error (__FILE__, __LINE__, _("Unknown value."));
7842 }
7843
7844 /* The behavior of this routine with respect to the source
7845 flag is:
7846 SRC_LINE: Print only source line
7847 LOCATION: Print only location
7848 SRC_AND_LOC: Print location and source line. */
7849 if (do_frame_printing)
7850 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
7851}
7852
243a9253
PA
7853/* See infrun.h. */
7854
7855void
7856print_stop_event (struct ui_out *uiout)
7857{
243a9253
PA
7858 struct target_waitstatus last;
7859 ptid_t last_ptid;
7860 struct thread_info *tp;
7861
7862 get_last_target_status (&last_ptid, &last);
7863
67ad9399
TT
7864 {
7865 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 7866
67ad9399 7867 print_stop_location (&last);
243a9253 7868
67ad9399
TT
7869 /* Display the auto-display expressions. */
7870 do_displays ();
7871 }
243a9253
PA
7872
7873 tp = inferior_thread ();
7874 if (tp->thread_fsm != NULL
46e3ed7f 7875 && tp->thread_fsm->finished_p ())
243a9253
PA
7876 {
7877 struct return_value_info *rv;
7878
46e3ed7f 7879 rv = tp->thread_fsm->return_value ();
243a9253
PA
7880 if (rv != NULL)
7881 print_return_value (uiout, rv);
7882 }
0c7e1a46
PA
7883}
7884
388a7084
PA
7885/* See infrun.h. */
7886
7887void
7888maybe_remove_breakpoints (void)
7889{
7890 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7891 {
7892 if (remove_breakpoints ())
7893 {
223ffa71 7894 target_terminal::ours_for_output ();
388a7084
PA
7895 printf_filtered (_("Cannot remove breakpoints because "
7896 "program is no longer writable.\nFurther "
7897 "execution is probably impossible.\n"));
7898 }
7899 }
7900}
7901
4c2f2a79
PA
7902/* The execution context that just caused a normal stop. */
7903
7904struct stop_context
7905{
2d844eaf
TT
7906 stop_context ();
7907 ~stop_context ();
7908
7909 DISABLE_COPY_AND_ASSIGN (stop_context);
7910
7911 bool changed () const;
7912
4c2f2a79
PA
7913 /* The stop ID. */
7914 ULONGEST stop_id;
c906108c 7915
4c2f2a79 7916 /* The event PTID. */
c906108c 7917
4c2f2a79
PA
7918 ptid_t ptid;
7919
7920 /* If stopp for a thread event, this is the thread that caused the
7921 stop. */
7922 struct thread_info *thread;
7923
7924 /* The inferior that caused the stop. */
7925 int inf_num;
7926};
7927
2d844eaf 7928/* Initializes a new stop context. If stopped for a thread event, this
4c2f2a79
PA
7929 takes a strong reference to the thread. */
7930
2d844eaf 7931stop_context::stop_context ()
4c2f2a79 7932{
2d844eaf
TT
7933 stop_id = get_stop_id ();
7934 ptid = inferior_ptid;
7935 inf_num = current_inferior ()->num;
4c2f2a79 7936
d7e15655 7937 if (inferior_ptid != null_ptid)
4c2f2a79
PA
7938 {
7939 /* Take a strong reference so that the thread can't be deleted
7940 yet. */
2d844eaf
TT
7941 thread = inferior_thread ();
7942 thread->incref ();
4c2f2a79
PA
7943 }
7944 else
2d844eaf 7945 thread = NULL;
4c2f2a79
PA
7946}
7947
7948/* Release a stop context previously created with save_stop_context.
7949 Releases the strong reference to the thread as well. */
7950
2d844eaf 7951stop_context::~stop_context ()
4c2f2a79 7952{
2d844eaf
TT
7953 if (thread != NULL)
7954 thread->decref ();
4c2f2a79
PA
7955}
7956
7957/* Return true if the current context no longer matches the saved stop
7958 context. */
7959
2d844eaf
TT
7960bool
7961stop_context::changed () const
7962{
7963 if (ptid != inferior_ptid)
7964 return true;
7965 if (inf_num != current_inferior ()->num)
7966 return true;
7967 if (thread != NULL && thread->state != THREAD_STOPPED)
7968 return true;
7969 if (get_stop_id () != stop_id)
7970 return true;
7971 return false;
4c2f2a79
PA
7972}
7973
7974/* See infrun.h. */
7975
7976int
96baa820 7977normal_stop (void)
c906108c 7978{
73b65bb0
DJ
7979 struct target_waitstatus last;
7980 ptid_t last_ptid;
7981
7982 get_last_target_status (&last_ptid, &last);
7983
4c2f2a79
PA
7984 new_stop_id ();
7985
29f49a6a
PA
7986 /* If an exception is thrown from this point on, make sure to
7987 propagate GDB's knowledge of the executing state to the
7988 frontend/user running state. A QUIT is an easy exception to see
7989 here, so do this before any filtered output. */
731f534f
PA
7990
7991 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
7992
c35b1492 7993 if (!non_stop)
731f534f 7994 maybe_finish_thread_state.emplace (minus_one_ptid);
e1316e60
PA
7995 else if (last.kind == TARGET_WAITKIND_SIGNALLED
7996 || last.kind == TARGET_WAITKIND_EXITED)
7997 {
7998 /* On some targets, we may still have live threads in the
7999 inferior when we get a process exit event. E.g., for
8000 "checkpoint", when the current checkpoint/fork exits,
8001 linux-fork.c automatically switches to another fork from
8002 within target_mourn_inferior. */
731f534f
PA
8003 if (inferior_ptid != null_ptid)
8004 maybe_finish_thread_state.emplace (ptid_t (inferior_ptid.pid ()));
e1316e60
PA
8005 }
8006 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
731f534f 8007 maybe_finish_thread_state.emplace (inferior_ptid);
29f49a6a 8008
b57bacec
PA
8009 /* As we're presenting a stop, and potentially removing breakpoints,
8010 update the thread list so we can tell whether there are threads
8011 running on the target. With target remote, for example, we can
8012 only learn about new threads when we explicitly update the thread
8013 list. Do this before notifying the interpreters about signal
8014 stops, end of stepping ranges, etc., so that the "new thread"
8015 output is emitted before e.g., "Program received signal FOO",
8016 instead of after. */
8017 update_thread_list ();
8018
8019 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
76727919 8020 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
b57bacec 8021
c906108c
SS
8022 /* As with the notification of thread events, we want to delay
8023 notifying the user that we've switched thread context until
8024 the inferior actually stops.
8025
73b65bb0
DJ
8026 There's no point in saying anything if the inferior has exited.
8027 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8028 "received a signal".
8029
8030 Also skip saying anything in non-stop mode. In that mode, as we
8031 don't want GDB to switch threads behind the user's back, to avoid
8032 races where the user is typing a command to apply to thread x,
8033 but GDB switches to thread y before the user finishes entering
8034 the command, fetch_inferior_event installs a cleanup to restore
8035 the current thread back to the thread the user had selected right
8036 after this event is handled, so we're not really switching, only
8037 informing of a stop. */
4f8d22e3 8038 if (!non_stop
731f534f 8039 && previous_inferior_ptid != inferior_ptid
73b65bb0
DJ
8040 && target_has_execution
8041 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8042 && last.kind != TARGET_WAITKIND_EXITED
8043 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8044 {
0e454242 8045 SWITCH_THRU_ALL_UIS ()
3b12939d 8046 {
223ffa71 8047 target_terminal::ours_for_output ();
3b12939d
PA
8048 printf_filtered (_("[Switching to %s]\n"),
8049 target_pid_to_str (inferior_ptid));
8050 annotate_thread_changed ();
8051 }
39f77062 8052 previous_inferior_ptid = inferior_ptid;
c906108c 8053 }
c906108c 8054
0e5bf2a8
PA
8055 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8056 {
0e454242 8057 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8058 if (current_ui->prompt_state == PROMPT_BLOCKED)
8059 {
223ffa71 8060 target_terminal::ours_for_output ();
3b12939d
PA
8061 printf_filtered (_("No unwaited-for children left.\n"));
8062 }
0e5bf2a8
PA
8063 }
8064
b57bacec 8065 /* Note: this depends on the update_thread_list call above. */
388a7084 8066 maybe_remove_breakpoints ();
c906108c 8067
c906108c
SS
8068 /* If an auto-display called a function and that got a signal,
8069 delete that auto-display to avoid an infinite recursion. */
8070
8071 if (stopped_by_random_signal)
8072 disable_current_display ();
8073
0e454242 8074 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8075 {
8076 async_enable_stdin ();
8077 }
c906108c 8078
388a7084 8079 /* Let the user/frontend see the threads as stopped. */
731f534f 8080 maybe_finish_thread_state.reset ();
388a7084
PA
8081
8082 /* Select innermost stack frame - i.e., current frame is frame 0,
8083 and current location is based on that. Handle the case where the
8084 dummy call is returning after being stopped. E.g. the dummy call
8085 previously hit a breakpoint. (If the dummy call returns
8086 normally, we won't reach here.) Do this before the stop hook is
8087 run, so that it doesn't get to see the temporary dummy frame,
8088 which is not where we'll present the stop. */
8089 if (has_stack_frames ())
8090 {
8091 if (stop_stack_dummy == STOP_STACK_DUMMY)
8092 {
8093 /* Pop the empty frame that contains the stack dummy. This
8094 also restores inferior state prior to the call (struct
8095 infcall_suspend_state). */
8096 struct frame_info *frame = get_current_frame ();
8097
8098 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8099 frame_pop (frame);
8100 /* frame_pop calls reinit_frame_cache as the last thing it
8101 does which means there's now no selected frame. */
8102 }
8103
8104 select_frame (get_current_frame ());
8105
8106 /* Set the current source location. */
8107 set_current_sal_from_frame (get_current_frame ());
8108 }
dd7e2d2b
PA
8109
8110 /* Look up the hook_stop and run it (CLI internally handles problem
8111 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8112 if (stop_command != NULL)
8113 {
2d844eaf 8114 stop_context saved_context;
4c2f2a79 8115
bf469271
PA
8116 TRY
8117 {
8118 execute_cmd_pre_hook (stop_command);
8119 }
8120 CATCH (ex, RETURN_MASK_ALL)
8121 {
8122 exception_fprintf (gdb_stderr, ex,
8123 "Error while running hook_stop:\n");
8124 }
8125 END_CATCH
4c2f2a79
PA
8126
8127 /* If the stop hook resumes the target, then there's no point in
8128 trying to notify about the previous stop; its context is
8129 gone. Likewise if the command switches thread or inferior --
8130 the observers would print a stop for the wrong
8131 thread/inferior. */
2d844eaf
TT
8132 if (saved_context.changed ())
8133 return 1;
4c2f2a79 8134 }
dd7e2d2b 8135
388a7084
PA
8136 /* Notify observers about the stop. This is where the interpreters
8137 print the stop event. */
d7e15655 8138 if (inferior_ptid != null_ptid)
76727919 8139 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
388a7084
PA
8140 stop_print_frame);
8141 else
76727919 8142 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
347bddb7 8143
243a9253
PA
8144 annotate_stopped ();
8145
48844aa6
PA
8146 if (target_has_execution)
8147 {
8148 if (last.kind != TARGET_WAITKIND_SIGNALLED
8149 && last.kind != TARGET_WAITKIND_EXITED)
8150 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8151 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8152 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8153 }
6c95b8df
PA
8154
8155 /* Try to get rid of automatically added inferiors that are no
8156 longer needed. Keeping those around slows down things linearly.
8157 Note that this never removes the current inferior. */
8158 prune_inferiors ();
4c2f2a79
PA
8159
8160 return 0;
c906108c 8161}
c906108c 8162\f
c5aa993b 8163int
96baa820 8164signal_stop_state (int signo)
c906108c 8165{
d6b48e9c 8166 return signal_stop[signo];
c906108c
SS
8167}
8168
c5aa993b 8169int
96baa820 8170signal_print_state (int signo)
c906108c
SS
8171{
8172 return signal_print[signo];
8173}
8174
c5aa993b 8175int
96baa820 8176signal_pass_state (int signo)
c906108c
SS
8177{
8178 return signal_program[signo];
8179}
8180
2455069d
UW
8181static void
8182signal_cache_update (int signo)
8183{
8184 if (signo == -1)
8185 {
a493e3e2 8186 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8187 signal_cache_update (signo);
8188
8189 return;
8190 }
8191
8192 signal_pass[signo] = (signal_stop[signo] == 0
8193 && signal_print[signo] == 0
ab04a2af
TT
8194 && signal_program[signo] == 1
8195 && signal_catch[signo] == 0);
2455069d
UW
8196}
8197
488f131b 8198int
7bda5e4a 8199signal_stop_update (int signo, int state)
d4f3574e
SS
8200{
8201 int ret = signal_stop[signo];
abbb1732 8202
d4f3574e 8203 signal_stop[signo] = state;
2455069d 8204 signal_cache_update (signo);
d4f3574e
SS
8205 return ret;
8206}
8207
488f131b 8208int
7bda5e4a 8209signal_print_update (int signo, int state)
d4f3574e
SS
8210{
8211 int ret = signal_print[signo];
abbb1732 8212
d4f3574e 8213 signal_print[signo] = state;
2455069d 8214 signal_cache_update (signo);
d4f3574e
SS
8215 return ret;
8216}
8217
488f131b 8218int
7bda5e4a 8219signal_pass_update (int signo, int state)
d4f3574e
SS
8220{
8221 int ret = signal_program[signo];
abbb1732 8222
d4f3574e 8223 signal_program[signo] = state;
2455069d 8224 signal_cache_update (signo);
d4f3574e
SS
8225 return ret;
8226}
8227
ab04a2af
TT
8228/* Update the global 'signal_catch' from INFO and notify the
8229 target. */
8230
8231void
8232signal_catch_update (const unsigned int *info)
8233{
8234 int i;
8235
8236 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8237 signal_catch[i] = info[i] > 0;
8238 signal_cache_update (-1);
adc6a863 8239 target_pass_signals (signal_pass);
ab04a2af
TT
8240}
8241
c906108c 8242static void
96baa820 8243sig_print_header (void)
c906108c 8244{
3e43a32a
MS
8245 printf_filtered (_("Signal Stop\tPrint\tPass "
8246 "to program\tDescription\n"));
c906108c
SS
8247}
8248
8249static void
2ea28649 8250sig_print_info (enum gdb_signal oursig)
c906108c 8251{
2ea28649 8252 const char *name = gdb_signal_to_name (oursig);
c906108c 8253 int name_padding = 13 - strlen (name);
96baa820 8254
c906108c
SS
8255 if (name_padding <= 0)
8256 name_padding = 0;
8257
8258 printf_filtered ("%s", name);
488f131b 8259 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8260 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8261 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8262 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8263 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8264}
8265
8266/* Specify how various signals in the inferior should be handled. */
8267
8268static void
0b39b52e 8269handle_command (const char *args, int from_tty)
c906108c 8270{
c906108c 8271 int digits, wordlen;
b926417a 8272 int sigfirst, siglast;
2ea28649 8273 enum gdb_signal oursig;
c906108c 8274 int allsigs;
c906108c
SS
8275
8276 if (args == NULL)
8277 {
e2e0b3e5 8278 error_no_arg (_("signal to handle"));
c906108c
SS
8279 }
8280
1777feb0 8281 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8282
adc6a863
PA
8283 const size_t nsigs = GDB_SIGNAL_LAST;
8284 unsigned char sigs[nsigs] {};
c906108c 8285
1777feb0 8286 /* Break the command line up into args. */
c906108c 8287
773a1edc 8288 gdb_argv built_argv (args);
c906108c
SS
8289
8290 /* Walk through the args, looking for signal oursigs, signal names, and
8291 actions. Signal numbers and signal names may be interspersed with
8292 actions, with the actions being performed for all signals cumulatively
1777feb0 8293 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8294
773a1edc 8295 for (char *arg : built_argv)
c906108c 8296 {
773a1edc
TT
8297 wordlen = strlen (arg);
8298 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8299 {;
8300 }
8301 allsigs = 0;
8302 sigfirst = siglast = -1;
8303
773a1edc 8304 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8305 {
8306 /* Apply action to all signals except those used by the
1777feb0 8307 debugger. Silently skip those. */
c906108c
SS
8308 allsigs = 1;
8309 sigfirst = 0;
8310 siglast = nsigs - 1;
8311 }
773a1edc 8312 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8313 {
8314 SET_SIGS (nsigs, sigs, signal_stop);
8315 SET_SIGS (nsigs, sigs, signal_print);
8316 }
773a1edc 8317 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8318 {
8319 UNSET_SIGS (nsigs, sigs, signal_program);
8320 }
773a1edc 8321 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8322 {
8323 SET_SIGS (nsigs, sigs, signal_print);
8324 }
773a1edc 8325 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8326 {
8327 SET_SIGS (nsigs, sigs, signal_program);
8328 }
773a1edc 8329 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8330 {
8331 UNSET_SIGS (nsigs, sigs, signal_stop);
8332 }
773a1edc 8333 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8334 {
8335 SET_SIGS (nsigs, sigs, signal_program);
8336 }
773a1edc 8337 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8338 {
8339 UNSET_SIGS (nsigs, sigs, signal_print);
8340 UNSET_SIGS (nsigs, sigs, signal_stop);
8341 }
773a1edc 8342 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8343 {
8344 UNSET_SIGS (nsigs, sigs, signal_program);
8345 }
8346 else if (digits > 0)
8347 {
8348 /* It is numeric. The numeric signal refers to our own
8349 internal signal numbering from target.h, not to host/target
8350 signal number. This is a feature; users really should be
8351 using symbolic names anyway, and the common ones like
8352 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8353
8354 sigfirst = siglast = (int)
773a1edc
TT
8355 gdb_signal_from_command (atoi (arg));
8356 if (arg[digits] == '-')
c906108c
SS
8357 {
8358 siglast = (int)
773a1edc 8359 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8360 }
8361 if (sigfirst > siglast)
8362 {
1777feb0 8363 /* Bet he didn't figure we'd think of this case... */
b926417a 8364 std::swap (sigfirst, siglast);
c906108c
SS
8365 }
8366 }
8367 else
8368 {
773a1edc 8369 oursig = gdb_signal_from_name (arg);
a493e3e2 8370 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8371 {
8372 sigfirst = siglast = (int) oursig;
8373 }
8374 else
8375 {
8376 /* Not a number and not a recognized flag word => complain. */
773a1edc 8377 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8378 }
8379 }
8380
8381 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8382 which signals to apply actions to. */
c906108c 8383
b926417a 8384 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
c906108c 8385 {
2ea28649 8386 switch ((enum gdb_signal) signum)
c906108c 8387 {
a493e3e2
PA
8388 case GDB_SIGNAL_TRAP:
8389 case GDB_SIGNAL_INT:
c906108c
SS
8390 if (!allsigs && !sigs[signum])
8391 {
9e2f0ad4 8392 if (query (_("%s is used by the debugger.\n\
3e43a32a 8393Are you sure you want to change it? "),
2ea28649 8394 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8395 {
8396 sigs[signum] = 1;
8397 }
8398 else
c119e040 8399 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8400 }
8401 break;
a493e3e2
PA
8402 case GDB_SIGNAL_0:
8403 case GDB_SIGNAL_DEFAULT:
8404 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8405 /* Make sure that "all" doesn't print these. */
8406 break;
8407 default:
8408 sigs[signum] = 1;
8409 break;
8410 }
8411 }
c906108c
SS
8412 }
8413
b926417a 8414 for (int signum = 0; signum < nsigs; signum++)
3a031f65
PA
8415 if (sigs[signum])
8416 {
2455069d 8417 signal_cache_update (-1);
adc6a863
PA
8418 target_pass_signals (signal_pass);
8419 target_program_signals (signal_program);
c906108c 8420
3a031f65
PA
8421 if (from_tty)
8422 {
8423 /* Show the results. */
8424 sig_print_header ();
8425 for (; signum < nsigs; signum++)
8426 if (sigs[signum])
aead7601 8427 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8428 }
8429
8430 break;
8431 }
c906108c
SS
8432}
8433
de0bea00
MF
8434/* Complete the "handle" command. */
8435
eb3ff9a5 8436static void
de0bea00 8437handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8438 completion_tracker &tracker,
6f937416 8439 const char *text, const char *word)
de0bea00 8440{
de0bea00
MF
8441 static const char * const keywords[] =
8442 {
8443 "all",
8444 "stop",
8445 "ignore",
8446 "print",
8447 "pass",
8448 "nostop",
8449 "noignore",
8450 "noprint",
8451 "nopass",
8452 NULL,
8453 };
8454
eb3ff9a5
PA
8455 signal_completer (ignore, tracker, text, word);
8456 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8457}
8458
2ea28649
PA
8459enum gdb_signal
8460gdb_signal_from_command (int num)
ed01b82c
PA
8461{
8462 if (num >= 1 && num <= 15)
2ea28649 8463 return (enum gdb_signal) num;
ed01b82c
PA
8464 error (_("Only signals 1-15 are valid as numeric signals.\n\
8465Use \"info signals\" for a list of symbolic signals."));
8466}
8467
c906108c
SS
8468/* Print current contents of the tables set by the handle command.
8469 It is possible we should just be printing signals actually used
8470 by the current target (but for things to work right when switching
8471 targets, all signals should be in the signal tables). */
8472
8473static void
1d12d88f 8474info_signals_command (const char *signum_exp, int from_tty)
c906108c 8475{
2ea28649 8476 enum gdb_signal oursig;
abbb1732 8477
c906108c
SS
8478 sig_print_header ();
8479
8480 if (signum_exp)
8481 {
8482 /* First see if this is a symbol name. */
2ea28649 8483 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8484 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8485 {
8486 /* No, try numeric. */
8487 oursig =
2ea28649 8488 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8489 }
8490 sig_print_info (oursig);
8491 return;
8492 }
8493
8494 printf_filtered ("\n");
8495 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8496 for (oursig = GDB_SIGNAL_FIRST;
8497 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8498 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8499 {
8500 QUIT;
8501
a493e3e2
PA
8502 if (oursig != GDB_SIGNAL_UNKNOWN
8503 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8504 sig_print_info (oursig);
8505 }
8506
3e43a32a
MS
8507 printf_filtered (_("\nUse the \"handle\" command "
8508 "to change these tables.\n"));
c906108c 8509}
4aa995e1
PA
8510
8511/* The $_siginfo convenience variable is a bit special. We don't know
8512 for sure the type of the value until we actually have a chance to
7a9dd1b2 8513 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8514 also dependent on which thread you have selected.
8515
8516 1. making $_siginfo be an internalvar that creates a new value on
8517 access.
8518
8519 2. making the value of $_siginfo be an lval_computed value. */
8520
8521/* This function implements the lval_computed support for reading a
8522 $_siginfo value. */
8523
8524static void
8525siginfo_value_read (struct value *v)
8526{
8527 LONGEST transferred;
8528
a911d87a
PA
8529 /* If we can access registers, so can we access $_siginfo. Likewise
8530 vice versa. */
8531 validate_registers_access ();
c709acd1 8532
4aa995e1 8533 transferred =
8b88a78e 8534 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
4aa995e1
PA
8535 NULL,
8536 value_contents_all_raw (v),
8537 value_offset (v),
8538 TYPE_LENGTH (value_type (v)));
8539
8540 if (transferred != TYPE_LENGTH (value_type (v)))
8541 error (_("Unable to read siginfo"));
8542}
8543
8544/* This function implements the lval_computed support for writing a
8545 $_siginfo value. */
8546
8547static void
8548siginfo_value_write (struct value *v, struct value *fromval)
8549{
8550 LONGEST transferred;
8551
a911d87a
PA
8552 /* If we can access registers, so can we access $_siginfo. Likewise
8553 vice versa. */
8554 validate_registers_access ();
c709acd1 8555
8b88a78e 8556 transferred = target_write (current_top_target (),
4aa995e1
PA
8557 TARGET_OBJECT_SIGNAL_INFO,
8558 NULL,
8559 value_contents_all_raw (fromval),
8560 value_offset (v),
8561 TYPE_LENGTH (value_type (fromval)));
8562
8563 if (transferred != TYPE_LENGTH (value_type (fromval)))
8564 error (_("Unable to write siginfo"));
8565}
8566
c8f2448a 8567static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8568 {
8569 siginfo_value_read,
8570 siginfo_value_write
8571 };
8572
8573/* Return a new value with the correct type for the siginfo object of
78267919
UW
8574 the current thread using architecture GDBARCH. Return a void value
8575 if there's no object available. */
4aa995e1 8576
2c0b251b 8577static struct value *
22d2b532
SDJ
8578siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8579 void *ignore)
4aa995e1 8580{
4aa995e1 8581 if (target_has_stack
d7e15655 8582 && inferior_ptid != null_ptid
78267919 8583 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8584 {
78267919 8585 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8586
78267919 8587 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8588 }
8589
78267919 8590 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8591}
8592
c906108c 8593\f
16c381f0
JK
8594/* infcall_suspend_state contains state about the program itself like its
8595 registers and any signal it received when it last stopped.
8596 This state must be restored regardless of how the inferior function call
8597 ends (either successfully, or after it hits a breakpoint or signal)
8598 if the program is to properly continue where it left off. */
8599
6bf78e29 8600class infcall_suspend_state
7a292a7a 8601{
6bf78e29
AB
8602public:
8603 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8604 once the inferior function call has finished. */
8605 infcall_suspend_state (struct gdbarch *gdbarch,
8606 const struct thread_info *tp,
8607 struct regcache *regcache)
8608 : m_thread_suspend (tp->suspend),
8609 m_registers (new readonly_detached_regcache (*regcache))
8610 {
8611 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8612
8613 if (gdbarch_get_siginfo_type_p (gdbarch))
8614 {
8615 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8616 size_t len = TYPE_LENGTH (type);
8617
8618 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8619
8620 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8621 siginfo_data.get (), 0, len) != len)
8622 {
8623 /* Errors ignored. */
8624 siginfo_data.reset (nullptr);
8625 }
8626 }
8627
8628 if (siginfo_data)
8629 {
8630 m_siginfo_gdbarch = gdbarch;
8631 m_siginfo_data = std::move (siginfo_data);
8632 }
8633 }
8634
8635 /* Return a pointer to the stored register state. */
16c381f0 8636
6bf78e29
AB
8637 readonly_detached_regcache *registers () const
8638 {
8639 return m_registers.get ();
8640 }
8641
8642 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8643
8644 void restore (struct gdbarch *gdbarch,
8645 struct thread_info *tp,
8646 struct regcache *regcache) const
8647 {
8648 tp->suspend = m_thread_suspend;
8649
8650 if (m_siginfo_gdbarch == gdbarch)
8651 {
8652 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8653
8654 /* Errors ignored. */
8655 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8656 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8657 }
8658
8659 /* The inferior can be gone if the user types "print exit(0)"
8660 (and perhaps other times). */
8661 if (target_has_execution)
8662 /* NB: The register write goes through to the target. */
8663 regcache->restore (registers ());
8664 }
8665
8666private:
8667 /* How the current thread stopped before the inferior function call was
8668 executed. */
8669 struct thread_suspend_state m_thread_suspend;
8670
8671 /* The registers before the inferior function call was executed. */
8672 std::unique_ptr<readonly_detached_regcache> m_registers;
1736ad11 8673
35515841 8674 /* Format of SIGINFO_DATA or NULL if it is not present. */
6bf78e29 8675 struct gdbarch *m_siginfo_gdbarch = nullptr;
1736ad11
JK
8676
8677 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8678 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8679 content would be invalid. */
6bf78e29 8680 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
b89667eb
DE
8681};
8682
cb524840
TT
8683infcall_suspend_state_up
8684save_infcall_suspend_state ()
b89667eb 8685{
b89667eb 8686 struct thread_info *tp = inferior_thread ();
1736ad11 8687 struct regcache *regcache = get_current_regcache ();
ac7936df 8688 struct gdbarch *gdbarch = regcache->arch ();
1736ad11 8689
6bf78e29
AB
8690 infcall_suspend_state_up inf_state
8691 (new struct infcall_suspend_state (gdbarch, tp, regcache));
1736ad11 8692
6bf78e29
AB
8693 /* Having saved the current state, adjust the thread state, discarding
8694 any stop signal information. The stop signal is not useful when
8695 starting an inferior function call, and run_inferior_call will not use
8696 the signal due to its `proceed' call with GDB_SIGNAL_0. */
a493e3e2 8697 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8698
b89667eb
DE
8699 return inf_state;
8700}
8701
8702/* Restore inferior session state to INF_STATE. */
8703
8704void
16c381f0 8705restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8706{
8707 struct thread_info *tp = inferior_thread ();
1736ad11 8708 struct regcache *regcache = get_current_regcache ();
ac7936df 8709 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 8710
6bf78e29 8711 inf_state->restore (gdbarch, tp, regcache);
16c381f0 8712 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8713}
8714
b89667eb 8715void
16c381f0 8716discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 8717{
dd848631 8718 delete inf_state;
b89667eb
DE
8719}
8720
daf6667d 8721readonly_detached_regcache *
16c381f0 8722get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb 8723{
6bf78e29 8724 return inf_state->registers ();
b89667eb
DE
8725}
8726
16c381f0
JK
8727/* infcall_control_state contains state regarding gdb's control of the
8728 inferior itself like stepping control. It also contains session state like
8729 the user's currently selected frame. */
b89667eb 8730
16c381f0 8731struct infcall_control_state
b89667eb 8732{
16c381f0
JK
8733 struct thread_control_state thread_control;
8734 struct inferior_control_state inferior_control;
d82142e2
JK
8735
8736 /* Other fields: */
ee841dd8
TT
8737 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
8738 int stopped_by_random_signal = 0;
7a292a7a 8739
b89667eb 8740 /* ID if the selected frame when the inferior function call was made. */
ee841dd8 8741 struct frame_id selected_frame_id {};
7a292a7a
SS
8742};
8743
c906108c 8744/* Save all of the information associated with the inferior<==>gdb
b89667eb 8745 connection. */
c906108c 8746
cb524840
TT
8747infcall_control_state_up
8748save_infcall_control_state ()
c906108c 8749{
cb524840 8750 infcall_control_state_up inf_status (new struct infcall_control_state);
4e1c45ea 8751 struct thread_info *tp = inferior_thread ();
d6b48e9c 8752 struct inferior *inf = current_inferior ();
7a292a7a 8753
16c381f0
JK
8754 inf_status->thread_control = tp->control;
8755 inf_status->inferior_control = inf->control;
d82142e2 8756
8358c15c 8757 tp->control.step_resume_breakpoint = NULL;
5b79abe7 8758 tp->control.exception_resume_breakpoint = NULL;
8358c15c 8759
16c381f0
JK
8760 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8761 chain. If caller's caller is walking the chain, they'll be happier if we
8762 hand them back the original chain when restore_infcall_control_state is
8763 called. */
8764 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
8765
8766 /* Other fields: */
8767 inf_status->stop_stack_dummy = stop_stack_dummy;
8768 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 8769
206415a3 8770 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 8771
7a292a7a 8772 return inf_status;
c906108c
SS
8773}
8774
bf469271
PA
8775static void
8776restore_selected_frame (const frame_id &fid)
c906108c 8777{
bf469271 8778 frame_info *frame = frame_find_by_id (fid);
c906108c 8779
aa0cd9c1
AC
8780 /* If inf_status->selected_frame_id is NULL, there was no previously
8781 selected frame. */
101dcfbe 8782 if (frame == NULL)
c906108c 8783 {
8a3fe4f8 8784 warning (_("Unable to restore previously selected frame."));
bf469271 8785 return;
c906108c
SS
8786 }
8787
0f7d239c 8788 select_frame (frame);
c906108c
SS
8789}
8790
b89667eb
DE
8791/* Restore inferior session state to INF_STATUS. */
8792
c906108c 8793void
16c381f0 8794restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 8795{
4e1c45ea 8796 struct thread_info *tp = inferior_thread ();
d6b48e9c 8797 struct inferior *inf = current_inferior ();
4e1c45ea 8798
8358c15c
JK
8799 if (tp->control.step_resume_breakpoint)
8800 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8801
5b79abe7
TT
8802 if (tp->control.exception_resume_breakpoint)
8803 tp->control.exception_resume_breakpoint->disposition
8804 = disp_del_at_next_stop;
8805
d82142e2 8806 /* Handle the bpstat_copy of the chain. */
16c381f0 8807 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 8808
16c381f0
JK
8809 tp->control = inf_status->thread_control;
8810 inf->control = inf_status->inferior_control;
d82142e2
JK
8811
8812 /* Other fields: */
8813 stop_stack_dummy = inf_status->stop_stack_dummy;
8814 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 8815
b89667eb 8816 if (target_has_stack)
c906108c 8817 {
bf469271 8818 /* The point of the try/catch is that if the stack is clobbered,
101dcfbe
AC
8819 walking the stack might encounter a garbage pointer and
8820 error() trying to dereference it. */
bf469271
PA
8821 TRY
8822 {
8823 restore_selected_frame (inf_status->selected_frame_id);
8824 }
8825 CATCH (ex, RETURN_MASK_ERROR)
8826 {
8827 exception_fprintf (gdb_stderr, ex,
8828 "Unable to restore previously selected frame:\n");
8829 /* Error in restoring the selected frame. Select the
8830 innermost frame. */
8831 select_frame (get_current_frame ());
8832 }
8833 END_CATCH
c906108c 8834 }
c906108c 8835
ee841dd8 8836 delete inf_status;
7a292a7a 8837}
c906108c
SS
8838
8839void
16c381f0 8840discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 8841{
8358c15c
JK
8842 if (inf_status->thread_control.step_resume_breakpoint)
8843 inf_status->thread_control.step_resume_breakpoint->disposition
8844 = disp_del_at_next_stop;
8845
5b79abe7
TT
8846 if (inf_status->thread_control.exception_resume_breakpoint)
8847 inf_status->thread_control.exception_resume_breakpoint->disposition
8848 = disp_del_at_next_stop;
8849
1777feb0 8850 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 8851 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 8852
ee841dd8 8853 delete inf_status;
7a292a7a 8854}
b89667eb 8855\f
7f89fd65 8856/* See infrun.h. */
0c557179
SDJ
8857
8858void
8859clear_exit_convenience_vars (void)
8860{
8861 clear_internalvar (lookup_internalvar ("_exitsignal"));
8862 clear_internalvar (lookup_internalvar ("_exitcode"));
8863}
c5aa993b 8864\f
488f131b 8865
b2175913
MS
8866/* User interface for reverse debugging:
8867 Set exec-direction / show exec-direction commands
8868 (returns error unless target implements to_set_exec_direction method). */
8869
170742de 8870enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
8871static const char exec_forward[] = "forward";
8872static const char exec_reverse[] = "reverse";
8873static const char *exec_direction = exec_forward;
40478521 8874static const char *const exec_direction_names[] = {
b2175913
MS
8875 exec_forward,
8876 exec_reverse,
8877 NULL
8878};
8879
8880static void
eb4c3f4a 8881set_exec_direction_func (const char *args, int from_tty,
b2175913
MS
8882 struct cmd_list_element *cmd)
8883{
8884 if (target_can_execute_reverse)
8885 {
8886 if (!strcmp (exec_direction, exec_forward))
8887 execution_direction = EXEC_FORWARD;
8888 else if (!strcmp (exec_direction, exec_reverse))
8889 execution_direction = EXEC_REVERSE;
8890 }
8bbed405
MS
8891 else
8892 {
8893 exec_direction = exec_forward;
8894 error (_("Target does not support this operation."));
8895 }
b2175913
MS
8896}
8897
8898static void
8899show_exec_direction_func (struct ui_file *out, int from_tty,
8900 struct cmd_list_element *cmd, const char *value)
8901{
8902 switch (execution_direction) {
8903 case EXEC_FORWARD:
8904 fprintf_filtered (out, _("Forward.\n"));
8905 break;
8906 case EXEC_REVERSE:
8907 fprintf_filtered (out, _("Reverse.\n"));
8908 break;
b2175913 8909 default:
d8b34453
PA
8910 internal_error (__FILE__, __LINE__,
8911 _("bogus execution_direction value: %d"),
8912 (int) execution_direction);
b2175913
MS
8913 }
8914}
8915
d4db2f36
PA
8916static void
8917show_schedule_multiple (struct ui_file *file, int from_tty,
8918 struct cmd_list_element *c, const char *value)
8919{
3e43a32a
MS
8920 fprintf_filtered (file, _("Resuming the execution of threads "
8921 "of all processes is %s.\n"), value);
d4db2f36 8922}
ad52ddc6 8923
22d2b532
SDJ
8924/* Implementation of `siginfo' variable. */
8925
8926static const struct internalvar_funcs siginfo_funcs =
8927{
8928 siginfo_make_value,
8929 NULL,
8930 NULL
8931};
8932
372316f1
PA
8933/* Callback for infrun's target events source. This is marked when a
8934 thread has a pending status to process. */
8935
8936static void
8937infrun_async_inferior_event_handler (gdb_client_data data)
8938{
372316f1
PA
8939 inferior_event_handler (INF_REG_EVENT, NULL);
8940}
8941
c906108c 8942void
96baa820 8943_initialize_infrun (void)
c906108c 8944{
de0bea00 8945 struct cmd_list_element *c;
c906108c 8946
372316f1
PA
8947 /* Register extra event sources in the event loop. */
8948 infrun_async_inferior_event_token
8949 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
8950
11db9430 8951 add_info ("signals", info_signals_command, _("\
1bedd215
AC
8952What debugger does when program gets various signals.\n\
8953Specify a signal as argument to print info on that signal only."));
c906108c
SS
8954 add_info_alias ("handle", "signals", 0);
8955
de0bea00 8956 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 8957Specify how to handle signals.\n\
486c7739 8958Usage: handle SIGNAL [ACTIONS]\n\
c906108c 8959Args are signals and actions to apply to those signals.\n\
dfbd5e7b 8960If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
8961will be displayed instead.\n\
8962\n\
c906108c
SS
8963Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
8964from 1-15 are allowed for compatibility with old versions of GDB.\n\
8965Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
8966The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 8967used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 8968\n\
1bedd215 8969Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
8970\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
8971Stop means reenter debugger if this signal happens (implies print).\n\
8972Print means print a message if this signal happens.\n\
8973Pass means let program see this signal; otherwise program doesn't know.\n\
8974Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
8975Pass and Stop may be combined.\n\
8976\n\
8977Multiple signals may be specified. Signal numbers and signal names\n\
8978may be interspersed with actions, with the actions being performed for\n\
8979all signals cumulatively specified."));
de0bea00 8980 set_cmd_completer (c, handle_completer);
486c7739 8981
c906108c 8982 if (!dbx_commands)
1a966eab
AC
8983 stop_command = add_cmd ("stop", class_obscure,
8984 not_just_help_class_command, _("\
8985There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 8986This allows you to set a list of commands to be run each time execution\n\
1a966eab 8987of the program stops."), &cmdlist);
c906108c 8988
ccce17b0 8989 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
8990Set inferior debugging."), _("\
8991Show inferior debugging."), _("\
8992When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
8993 NULL,
8994 show_debug_infrun,
8995 &setdebuglist, &showdebuglist);
527159b7 8996
3e43a32a
MS
8997 add_setshow_boolean_cmd ("displaced", class_maintenance,
8998 &debug_displaced, _("\
237fc4c9
PA
8999Set displaced stepping debugging."), _("\
9000Show displaced stepping debugging."), _("\
9001When non-zero, displaced stepping specific debugging is enabled."),
9002 NULL,
9003 show_debug_displaced,
9004 &setdebuglist, &showdebuglist);
9005
ad52ddc6
PA
9006 add_setshow_boolean_cmd ("non-stop", no_class,
9007 &non_stop_1, _("\
9008Set whether gdb controls the inferior in non-stop mode."), _("\
9009Show whether gdb controls the inferior in non-stop mode."), _("\
9010When debugging a multi-threaded program and this setting is\n\
9011off (the default, also called all-stop mode), when one thread stops\n\
9012(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9013all other threads in the program while you interact with the thread of\n\
9014interest. When you continue or step a thread, you can allow the other\n\
9015threads to run, or have them remain stopped, but while you inspect any\n\
9016thread's state, all threads stop.\n\
9017\n\
9018In non-stop mode, when one thread stops, other threads can continue\n\
9019to run freely. You'll be able to step each thread independently,\n\
9020leave it stopped or free to run as needed."),
9021 set_non_stop,
9022 show_non_stop,
9023 &setlist,
9024 &showlist);
9025
adc6a863 9026 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
c906108c
SS
9027 {
9028 signal_stop[i] = 1;
9029 signal_print[i] = 1;
9030 signal_program[i] = 1;
ab04a2af 9031 signal_catch[i] = 0;
c906108c
SS
9032 }
9033
4d9d9d04
PA
9034 /* Signals caused by debugger's own actions should not be given to
9035 the program afterwards.
9036
9037 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9038 explicitly specifies that it should be delivered to the target
9039 program. Typically, that would occur when a user is debugging a
9040 target monitor on a simulator: the target monitor sets a
9041 breakpoint; the simulator encounters this breakpoint and halts
9042 the simulation handing control to GDB; GDB, noting that the stop
9043 address doesn't map to any known breakpoint, returns control back
9044 to the simulator; the simulator then delivers the hardware
9045 equivalent of a GDB_SIGNAL_TRAP to the program being
9046 debugged. */
a493e3e2
PA
9047 signal_program[GDB_SIGNAL_TRAP] = 0;
9048 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9049
9050 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9051 signal_stop[GDB_SIGNAL_ALRM] = 0;
9052 signal_print[GDB_SIGNAL_ALRM] = 0;
9053 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9054 signal_print[GDB_SIGNAL_VTALRM] = 0;
9055 signal_stop[GDB_SIGNAL_PROF] = 0;
9056 signal_print[GDB_SIGNAL_PROF] = 0;
9057 signal_stop[GDB_SIGNAL_CHLD] = 0;
9058 signal_print[GDB_SIGNAL_CHLD] = 0;
9059 signal_stop[GDB_SIGNAL_IO] = 0;
9060 signal_print[GDB_SIGNAL_IO] = 0;
9061 signal_stop[GDB_SIGNAL_POLL] = 0;
9062 signal_print[GDB_SIGNAL_POLL] = 0;
9063 signal_stop[GDB_SIGNAL_URG] = 0;
9064 signal_print[GDB_SIGNAL_URG] = 0;
9065 signal_stop[GDB_SIGNAL_WINCH] = 0;
9066 signal_print[GDB_SIGNAL_WINCH] = 0;
9067 signal_stop[GDB_SIGNAL_PRIO] = 0;
9068 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9069
cd0fc7c3
SS
9070 /* These signals are used internally by user-level thread
9071 implementations. (See signal(5) on Solaris.) Like the above
9072 signals, a healthy program receives and handles them as part of
9073 its normal operation. */
a493e3e2
PA
9074 signal_stop[GDB_SIGNAL_LWP] = 0;
9075 signal_print[GDB_SIGNAL_LWP] = 0;
9076 signal_stop[GDB_SIGNAL_WAITING] = 0;
9077 signal_print[GDB_SIGNAL_WAITING] = 0;
9078 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9079 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9080 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9081 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9082
2455069d
UW
9083 /* Update cached state. */
9084 signal_cache_update (-1);
9085
85c07804
AC
9086 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9087 &stop_on_solib_events, _("\
9088Set stopping for shared library events."), _("\
9089Show stopping for shared library events."), _("\
c906108c
SS
9090If nonzero, gdb will give control to the user when the dynamic linker\n\
9091notifies gdb of shared library events. The most common event of interest\n\
85c07804 9092to the user would be loading/unloading of a new library."),
f9e14852 9093 set_stop_on_solib_events,
920d2a44 9094 show_stop_on_solib_events,
85c07804 9095 &setlist, &showlist);
c906108c 9096
7ab04401
AC
9097 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9098 follow_fork_mode_kind_names,
9099 &follow_fork_mode_string, _("\
9100Set debugger response to a program call of fork or vfork."), _("\
9101Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9102A fork or vfork creates a new process. follow-fork-mode can be:\n\
9103 parent - the original process is debugged after a fork\n\
9104 child - the new process is debugged after a fork\n\
ea1dd7bc 9105The unfollowed process will continue to run.\n\
7ab04401
AC
9106By default, the debugger will follow the parent process."),
9107 NULL,
920d2a44 9108 show_follow_fork_mode_string,
7ab04401
AC
9109 &setlist, &showlist);
9110
6c95b8df
PA
9111 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9112 follow_exec_mode_names,
9113 &follow_exec_mode_string, _("\
9114Set debugger response to a program call of exec."), _("\
9115Show debugger response to a program call of exec."), _("\
9116An exec call replaces the program image of a process.\n\
9117\n\
9118follow-exec-mode can be:\n\
9119\n\
cce7e648 9120 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9121to this new inferior. The program the process was running before\n\
9122the exec call can be restarted afterwards by restarting the original\n\
9123inferior.\n\
9124\n\
9125 same - the debugger keeps the process bound to the same inferior.\n\
9126The new executable image replaces the previous executable loaded in\n\
9127the inferior. Restarting the inferior after the exec call restarts\n\
9128the executable the process was running after the exec call.\n\
9129\n\
9130By default, the debugger will use the same inferior."),
9131 NULL,
9132 show_follow_exec_mode_string,
9133 &setlist, &showlist);
9134
7ab04401
AC
9135 add_setshow_enum_cmd ("scheduler-locking", class_run,
9136 scheduler_enums, &scheduler_mode, _("\
9137Set mode for locking scheduler during execution."), _("\
9138Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9139off == no locking (threads may preempt at any time)\n\
9140on == full locking (no thread except the current thread may run)\n\
9141 This applies to both normal execution and replay mode.\n\
9142step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9143 In this mode, other threads may run during other commands.\n\
9144 This applies to both normal execution and replay mode.\n\
9145replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9146 set_schedlock_func, /* traps on target vector */
920d2a44 9147 show_scheduler_mode,
7ab04401 9148 &setlist, &showlist);
5fbbeb29 9149
d4db2f36
PA
9150 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9151Set mode for resuming threads of all processes."), _("\
9152Show mode for resuming threads of all processes."), _("\
9153When on, execution commands (such as 'continue' or 'next') resume all\n\
9154threads of all processes. When off (which is the default), execution\n\
9155commands only resume the threads of the current process. The set of\n\
9156threads that are resumed is further refined by the scheduler-locking\n\
9157mode (see help set scheduler-locking)."),
9158 NULL,
9159 show_schedule_multiple,
9160 &setlist, &showlist);
9161
5bf193a2
AC
9162 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9163Set mode of the step operation."), _("\
9164Show mode of the step operation."), _("\
9165When set, doing a step over a function without debug line information\n\
9166will stop at the first instruction of that function. Otherwise, the\n\
9167function is skipped and the step command stops at a different source line."),
9168 NULL,
920d2a44 9169 show_step_stop_if_no_debug,
5bf193a2 9170 &setlist, &showlist);
ca6724c1 9171
72d0e2c5
YQ
9172 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9173 &can_use_displaced_stepping, _("\
237fc4c9
PA
9174Set debugger's willingness to use displaced stepping."), _("\
9175Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9176If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9177supported by the target architecture. If off, gdb will not use displaced\n\
9178stepping to step over breakpoints, even if such is supported by the target\n\
9179architecture. If auto (which is the default), gdb will use displaced stepping\n\
9180if the target architecture supports it and non-stop mode is active, but will not\n\
9181use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9182 NULL,
9183 show_can_use_displaced_stepping,
9184 &setlist, &showlist);
237fc4c9 9185
b2175913
MS
9186 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9187 &exec_direction, _("Set direction of execution.\n\
9188Options are 'forward' or 'reverse'."),
9189 _("Show direction of execution (forward/reverse)."),
9190 _("Tells gdb whether to execute forward or backward."),
9191 set_exec_direction_func, show_exec_direction_func,
9192 &setlist, &showlist);
9193
6c95b8df
PA
9194 /* Set/show detach-on-fork: user-settable mode. */
9195
9196 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9197Set whether gdb will detach the child of a fork."), _("\
9198Show whether gdb will detach the child of a fork."), _("\
9199Tells gdb whether to detach the child of a fork."),
9200 NULL, NULL, &setlist, &showlist);
9201
03583c20
UW
9202 /* Set/show disable address space randomization mode. */
9203
9204 add_setshow_boolean_cmd ("disable-randomization", class_support,
9205 &disable_randomization, _("\
9206Set disabling of debuggee's virtual address space randomization."), _("\
9207Show disabling of debuggee's virtual address space randomization."), _("\
9208When this mode is on (which is the default), randomization of the virtual\n\
9209address space is disabled. Standalone programs run with the randomization\n\
9210enabled by default on some platforms."),
9211 &set_disable_randomization,
9212 &show_disable_randomization,
9213 &setlist, &showlist);
9214
ca6724c1 9215 /* ptid initializations */
ca6724c1
KB
9216 inferior_ptid = null_ptid;
9217 target_last_wait_ptid = minus_one_ptid;
5231c1fd 9218
76727919
TT
9219 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9220 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9221 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9222 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
4aa995e1
PA
9223
9224 /* Explicitly create without lookup, since that tries to create a
9225 value with a void typed value, and when we get here, gdbarch
9226 isn't initialized yet. At this point, we're quite sure there
9227 isn't another convenience variable of the same name. */
22d2b532 9228 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9229
9230 add_setshow_boolean_cmd ("observer", no_class,
9231 &observer_mode_1, _("\
9232Set whether gdb controls the inferior in observer mode."), _("\
9233Show whether gdb controls the inferior in observer mode."), _("\
9234In observer mode, GDB can get data from the inferior, but not\n\
9235affect its execution. Registers and memory may not be changed,\n\
9236breakpoints may not be set, and the program cannot be interrupted\n\
9237or signalled."),
9238 set_observer_mode,
9239 show_observer_mode,
9240 &setlist,
9241 &showlist);
c906108c 9242}
This page took 2.635957 seconds and 4 git commands to generate.