PR gdb/12623: non-stop crashes inferior, PC adjustment and 1-byte insns
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
ecd75fc8 4 Copyright (C) 1986-2014 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
06600e06 41#include "observer.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
c906108c
SS
63
64/* Prototypes for local functions */
65
96baa820 66static void signals_info (char *, int);
c906108c 67
96baa820 68static void handle_command (char *, int);
c906108c 69
2ea28649 70static void sig_print_info (enum gdb_signal);
c906108c 71
96baa820 72static void sig_print_header (void);
c906108c 73
74b7792f 74static void resume_cleanups (void *);
c906108c 75
96baa820 76static int hook_stop_stub (void *);
c906108c 77
96baa820
JM
78static int restore_selected_frame (void *);
79
4ef3f3be 80static int follow_fork (void);
96baa820 81
d83ad864
DB
82static int follow_fork_inferior (int follow_child, int detach_fork);
83
84static void follow_inferior_reset_breakpoints (void);
85
96baa820 86static void set_schedlock_func (char *args, int from_tty,
488f131b 87 struct cmd_list_element *c);
96baa820 88
a289b8f6
JK
89static int currently_stepping (struct thread_info *tp);
90
96baa820
JM
91static void xdb_handle_command (char *args, int from_tty);
92
93void _initialize_infrun (void);
43ff13b4 94
e58b0e63
PA
95void nullify_last_target_wait_ptid (void);
96
2c03e5be 97static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
98
99static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
100
2484c66b
UW
101static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
102
5fbbeb29
CF
103/* When set, stop the 'step' command if we enter a function which has
104 no line number information. The normal behavior is that we step
105 over such function. */
106int step_stop_if_no_debug = 0;
920d2a44
AC
107static void
108show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
109 struct cmd_list_element *c, const char *value)
110{
111 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
112}
5fbbeb29 113
1777feb0 114/* In asynchronous mode, but simulating synchronous execution. */
96baa820 115
43ff13b4
JM
116int sync_execution = 0;
117
b9f437de
PA
118/* proceed and normal_stop use this to notify the user when the
119 inferior stopped in a different thread than it had been running
120 in. */
96baa820 121
39f77062 122static ptid_t previous_inferior_ptid;
7a292a7a 123
07107ca6
LM
124/* If set (default for legacy reasons), when following a fork, GDB
125 will detach from one of the fork branches, child or parent.
126 Exactly which branch is detached depends on 'set follow-fork-mode'
127 setting. */
128
129static int detach_fork = 1;
6c95b8df 130
237fc4c9
PA
131int debug_displaced = 0;
132static void
133show_debug_displaced (struct ui_file *file, int from_tty,
134 struct cmd_list_element *c, const char *value)
135{
136 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
137}
138
ccce17b0 139unsigned int debug_infrun = 0;
920d2a44
AC
140static void
141show_debug_infrun (struct ui_file *file, int from_tty,
142 struct cmd_list_element *c, const char *value)
143{
144 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
145}
527159b7 146
03583c20
UW
147
148/* Support for disabling address space randomization. */
149
150int disable_randomization = 1;
151
152static void
153show_disable_randomization (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155{
156 if (target_supports_disable_randomization ())
157 fprintf_filtered (file,
158 _("Disabling randomization of debuggee's "
159 "virtual address space is %s.\n"),
160 value);
161 else
162 fputs_filtered (_("Disabling randomization of debuggee's "
163 "virtual address space is unsupported on\n"
164 "this platform.\n"), file);
165}
166
167static void
168set_disable_randomization (char *args, int from_tty,
169 struct cmd_list_element *c)
170{
171 if (!target_supports_disable_randomization ())
172 error (_("Disabling randomization of debuggee's "
173 "virtual address space is unsupported on\n"
174 "this platform."));
175}
176
d32dc48e
PA
177/* User interface for non-stop mode. */
178
179int non_stop = 0;
180static int non_stop_1 = 0;
181
182static void
183set_non_stop (char *args, int from_tty,
184 struct cmd_list_element *c)
185{
186 if (target_has_execution)
187 {
188 non_stop_1 = non_stop;
189 error (_("Cannot change this setting while the inferior is running."));
190 }
191
192 non_stop = non_stop_1;
193}
194
195static void
196show_non_stop (struct ui_file *file, int from_tty,
197 struct cmd_list_element *c, const char *value)
198{
199 fprintf_filtered (file,
200 _("Controlling the inferior in non-stop mode is %s.\n"),
201 value);
202}
203
d914c394
SS
204/* "Observer mode" is somewhat like a more extreme version of
205 non-stop, in which all GDB operations that might affect the
206 target's execution have been disabled. */
207
d914c394
SS
208int observer_mode = 0;
209static int observer_mode_1 = 0;
210
211static void
212set_observer_mode (char *args, int from_tty,
213 struct cmd_list_element *c)
214{
d914c394
SS
215 if (target_has_execution)
216 {
217 observer_mode_1 = observer_mode;
218 error (_("Cannot change this setting while the inferior is running."));
219 }
220
221 observer_mode = observer_mode_1;
222
223 may_write_registers = !observer_mode;
224 may_write_memory = !observer_mode;
225 may_insert_breakpoints = !observer_mode;
226 may_insert_tracepoints = !observer_mode;
227 /* We can insert fast tracepoints in or out of observer mode,
228 but enable them if we're going into this mode. */
229 if (observer_mode)
230 may_insert_fast_tracepoints = 1;
231 may_stop = !observer_mode;
232 update_target_permissions ();
233
234 /* Going *into* observer mode we must force non-stop, then
235 going out we leave it that way. */
236 if (observer_mode)
237 {
d914c394
SS
238 pagination_enabled = 0;
239 non_stop = non_stop_1 = 1;
240 }
241
242 if (from_tty)
243 printf_filtered (_("Observer mode is now %s.\n"),
244 (observer_mode ? "on" : "off"));
245}
246
247static void
248show_observer_mode (struct ui_file *file, int from_tty,
249 struct cmd_list_element *c, const char *value)
250{
251 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
252}
253
254/* This updates the value of observer mode based on changes in
255 permissions. Note that we are deliberately ignoring the values of
256 may-write-registers and may-write-memory, since the user may have
257 reason to enable these during a session, for instance to turn on a
258 debugging-related global. */
259
260void
261update_observer_mode (void)
262{
263 int newval;
264
265 newval = (!may_insert_breakpoints
266 && !may_insert_tracepoints
267 && may_insert_fast_tracepoints
268 && !may_stop
269 && non_stop);
270
271 /* Let the user know if things change. */
272 if (newval != observer_mode)
273 printf_filtered (_("Observer mode is now %s.\n"),
274 (newval ? "on" : "off"));
275
276 observer_mode = observer_mode_1 = newval;
277}
c2c6d25f 278
c906108c
SS
279/* Tables of how to react to signals; the user sets them. */
280
281static unsigned char *signal_stop;
282static unsigned char *signal_print;
283static unsigned char *signal_program;
284
ab04a2af
TT
285/* Table of signals that are registered with "catch signal". A
286 non-zero entry indicates that the signal is caught by some "catch
287 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
288 signals. */
289static unsigned char *signal_catch;
290
2455069d
UW
291/* Table of signals that the target may silently handle.
292 This is automatically determined from the flags above,
293 and simply cached here. */
294static unsigned char *signal_pass;
295
c906108c
SS
296#define SET_SIGS(nsigs,sigs,flags) \
297 do { \
298 int signum = (nsigs); \
299 while (signum-- > 0) \
300 if ((sigs)[signum]) \
301 (flags)[signum] = 1; \
302 } while (0)
303
304#define UNSET_SIGS(nsigs,sigs,flags) \
305 do { \
306 int signum = (nsigs); \
307 while (signum-- > 0) \
308 if ((sigs)[signum]) \
309 (flags)[signum] = 0; \
310 } while (0)
311
9b224c5e
PA
312/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
313 this function is to avoid exporting `signal_program'. */
314
315void
316update_signals_program_target (void)
317{
a493e3e2 318 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
319}
320
1777feb0 321/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 322
edb3359d 323#define RESUME_ALL minus_one_ptid
c906108c
SS
324
325/* Command list pointer for the "stop" placeholder. */
326
327static struct cmd_list_element *stop_command;
328
c906108c
SS
329/* Function inferior was in as of last step command. */
330
331static struct symbol *step_start_function;
332
c906108c
SS
333/* Nonzero if we want to give control to the user when we're notified
334 of shared library events by the dynamic linker. */
628fe4e4 335int stop_on_solib_events;
f9e14852
GB
336
337/* Enable or disable optional shared library event breakpoints
338 as appropriate when the above flag is changed. */
339
340static void
341set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
342{
343 update_solib_breakpoints ();
344}
345
920d2a44
AC
346static void
347show_stop_on_solib_events (struct ui_file *file, int from_tty,
348 struct cmd_list_element *c, const char *value)
349{
350 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
351 value);
352}
c906108c 353
c906108c
SS
354/* Nonzero means expecting a trace trap
355 and should stop the inferior and return silently when it happens. */
356
357int stop_after_trap;
358
642fd101
DE
359/* Save register contents here when executing a "finish" command or are
360 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
361 Thus this contains the return value from the called function (assuming
362 values are returned in a register). */
363
72cec141 364struct regcache *stop_registers;
c906108c 365
c906108c
SS
366/* Nonzero after stop if current stack frame should be printed. */
367
368static int stop_print_frame;
369
e02bc4cc 370/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
371 returned by target_wait()/deprecated_target_wait_hook(). This
372 information is returned by get_last_target_status(). */
39f77062 373static ptid_t target_last_wait_ptid;
e02bc4cc
DS
374static struct target_waitstatus target_last_waitstatus;
375
0d1e5fa7
PA
376static void context_switch (ptid_t ptid);
377
4e1c45ea 378void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 379
53904c9e
AC
380static const char follow_fork_mode_child[] = "child";
381static const char follow_fork_mode_parent[] = "parent";
382
40478521 383static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
384 follow_fork_mode_child,
385 follow_fork_mode_parent,
386 NULL
ef346e04 387};
c906108c 388
53904c9e 389static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
390static void
391show_follow_fork_mode_string (struct ui_file *file, int from_tty,
392 struct cmd_list_element *c, const char *value)
393{
3e43a32a
MS
394 fprintf_filtered (file,
395 _("Debugger response to a program "
396 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
397 value);
398}
c906108c
SS
399\f
400
d83ad864
DB
401/* Handle changes to the inferior list based on the type of fork,
402 which process is being followed, and whether the other process
403 should be detached. On entry inferior_ptid must be the ptid of
404 the fork parent. At return inferior_ptid is the ptid of the
405 followed inferior. */
406
407static int
408follow_fork_inferior (int follow_child, int detach_fork)
409{
410 int has_vforked;
411 int parent_pid, child_pid;
412
413 has_vforked = (inferior_thread ()->pending_follow.kind
414 == TARGET_WAITKIND_VFORKED);
415 parent_pid = ptid_get_lwp (inferior_ptid);
416 if (parent_pid == 0)
417 parent_pid = ptid_get_pid (inferior_ptid);
418 child_pid
419 = ptid_get_pid (inferior_thread ()->pending_follow.value.related_pid);
420
421 if (has_vforked
422 && !non_stop /* Non-stop always resumes both branches. */
423 && (!target_is_async_p () || sync_execution)
424 && !(follow_child || detach_fork || sched_multi))
425 {
426 /* The parent stays blocked inside the vfork syscall until the
427 child execs or exits. If we don't let the child run, then
428 the parent stays blocked. If we're telling the parent to run
429 in the foreground, the user will not be able to ctrl-c to get
430 back the terminal, effectively hanging the debug session. */
431 fprintf_filtered (gdb_stderr, _("\
432Can not resume the parent process over vfork in the foreground while\n\
433holding the child stopped. Try \"set detach-on-fork\" or \
434\"set schedule-multiple\".\n"));
435 /* FIXME output string > 80 columns. */
436 return 1;
437 }
438
439 if (!follow_child)
440 {
441 /* Detach new forked process? */
442 if (detach_fork)
443 {
444 struct cleanup *old_chain;
445
446 /* Before detaching from the child, remove all breakpoints
447 from it. If we forked, then this has already been taken
448 care of by infrun.c. If we vforked however, any
449 breakpoint inserted in the parent is visible in the
450 child, even those added while stopped in a vfork
451 catchpoint. This will remove the breakpoints from the
452 parent also, but they'll be reinserted below. */
453 if (has_vforked)
454 {
455 /* Keep breakpoints list in sync. */
456 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
457 }
458
459 if (info_verbose || debug_infrun)
460 {
6f259a23 461 target_terminal_ours_for_output ();
d83ad864 462 fprintf_filtered (gdb_stdlog,
6f259a23
DB
463 _("Detaching after %s from "
464 "child process %d.\n"),
465 has_vforked ? "vfork" : "fork",
d83ad864
DB
466 child_pid);
467 }
468 }
469 else
470 {
471 struct inferior *parent_inf, *child_inf;
472 struct cleanup *old_chain;
473
474 /* Add process to GDB's tables. */
475 child_inf = add_inferior (child_pid);
476
477 parent_inf = current_inferior ();
478 child_inf->attach_flag = parent_inf->attach_flag;
479 copy_terminal_info (child_inf, parent_inf);
480 child_inf->gdbarch = parent_inf->gdbarch;
481 copy_inferior_target_desc_info (child_inf, parent_inf);
482
483 old_chain = save_inferior_ptid ();
484 save_current_program_space ();
485
486 inferior_ptid = ptid_build (child_pid, child_pid, 0);
487 add_thread (inferior_ptid);
488 child_inf->symfile_flags = SYMFILE_NO_READ;
489
490 /* If this is a vfork child, then the address-space is
491 shared with the parent. */
492 if (has_vforked)
493 {
494 child_inf->pspace = parent_inf->pspace;
495 child_inf->aspace = parent_inf->aspace;
496
497 /* The parent will be frozen until the child is done
498 with the shared region. Keep track of the
499 parent. */
500 child_inf->vfork_parent = parent_inf;
501 child_inf->pending_detach = 0;
502 parent_inf->vfork_child = child_inf;
503 parent_inf->pending_detach = 0;
504 }
505 else
506 {
507 child_inf->aspace = new_address_space ();
508 child_inf->pspace = add_program_space (child_inf->aspace);
509 child_inf->removable = 1;
510 set_current_program_space (child_inf->pspace);
511 clone_program_space (child_inf->pspace, parent_inf->pspace);
512
513 /* Let the shared library layer (e.g., solib-svr4) learn
514 about this new process, relocate the cloned exec, pull
515 in shared libraries, and install the solib event
516 breakpoint. If a "cloned-VM" event was propagated
517 better throughout the core, this wouldn't be
518 required. */
519 solib_create_inferior_hook (0);
520 }
521
522 do_cleanups (old_chain);
523 }
524
525 if (has_vforked)
526 {
527 struct inferior *parent_inf;
528
529 parent_inf = current_inferior ();
530
531 /* If we detached from the child, then we have to be careful
532 to not insert breakpoints in the parent until the child
533 is done with the shared memory region. However, if we're
534 staying attached to the child, then we can and should
535 insert breakpoints, so that we can debug it. A
536 subsequent child exec or exit is enough to know when does
537 the child stops using the parent's address space. */
538 parent_inf->waiting_for_vfork_done = detach_fork;
539 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
540 }
541 }
542 else
543 {
544 /* Follow the child. */
545 struct inferior *parent_inf, *child_inf;
546 struct program_space *parent_pspace;
547
548 if (info_verbose || debug_infrun)
549 {
6f259a23
DB
550 target_terminal_ours_for_output ();
551 fprintf_filtered (gdb_stdlog,
552 _("Attaching after process %d "
553 "%s to child process %d.\n"),
554 parent_pid,
555 has_vforked ? "vfork" : "fork",
556 child_pid);
d83ad864
DB
557 }
558
559 /* Add the new inferior first, so that the target_detach below
560 doesn't unpush the target. */
561
562 child_inf = add_inferior (child_pid);
563
564 parent_inf = current_inferior ();
565 child_inf->attach_flag = parent_inf->attach_flag;
566 copy_terminal_info (child_inf, parent_inf);
567 child_inf->gdbarch = parent_inf->gdbarch;
568 copy_inferior_target_desc_info (child_inf, parent_inf);
569
570 parent_pspace = parent_inf->pspace;
571
572 /* If we're vforking, we want to hold on to the parent until the
573 child exits or execs. At child exec or exit time we can
574 remove the old breakpoints from the parent and detach or
575 resume debugging it. Otherwise, detach the parent now; we'll
576 want to reuse it's program/address spaces, but we can't set
577 them to the child before removing breakpoints from the
578 parent, otherwise, the breakpoints module could decide to
579 remove breakpoints from the wrong process (since they'd be
580 assigned to the same address space). */
581
582 if (has_vforked)
583 {
584 gdb_assert (child_inf->vfork_parent == NULL);
585 gdb_assert (parent_inf->vfork_child == NULL);
586 child_inf->vfork_parent = parent_inf;
587 child_inf->pending_detach = 0;
588 parent_inf->vfork_child = child_inf;
589 parent_inf->pending_detach = detach_fork;
590 parent_inf->waiting_for_vfork_done = 0;
591 }
592 else if (detach_fork)
6f259a23
DB
593 {
594 if (info_verbose || debug_infrun)
595 {
596 target_terminal_ours_for_output ();
597 fprintf_filtered (gdb_stdlog,
598 _("Detaching after fork from "
599 "child process %d.\n"),
600 child_pid);
601 }
602
603 target_detach (NULL, 0);
604 }
d83ad864
DB
605
606 /* Note that the detach above makes PARENT_INF dangling. */
607
608 /* Add the child thread to the appropriate lists, and switch to
609 this new thread, before cloning the program space, and
610 informing the solib layer about this new process. */
611
612 inferior_ptid = ptid_build (child_pid, child_pid, 0);
613 add_thread (inferior_ptid);
614
615 /* If this is a vfork child, then the address-space is shared
616 with the parent. If we detached from the parent, then we can
617 reuse the parent's program/address spaces. */
618 if (has_vforked || detach_fork)
619 {
620 child_inf->pspace = parent_pspace;
621 child_inf->aspace = child_inf->pspace->aspace;
622 }
623 else
624 {
625 child_inf->aspace = new_address_space ();
626 child_inf->pspace = add_program_space (child_inf->aspace);
627 child_inf->removable = 1;
628 child_inf->symfile_flags = SYMFILE_NO_READ;
629 set_current_program_space (child_inf->pspace);
630 clone_program_space (child_inf->pspace, parent_pspace);
631
632 /* Let the shared library layer (e.g., solib-svr4) learn
633 about this new process, relocate the cloned exec, pull in
634 shared libraries, and install the solib event breakpoint.
635 If a "cloned-VM" event was propagated better throughout
636 the core, this wouldn't be required. */
637 solib_create_inferior_hook (0);
638 }
639 }
640
641 return target_follow_fork (follow_child, detach_fork);
642}
643
e58b0e63
PA
644/* Tell the target to follow the fork we're stopped at. Returns true
645 if the inferior should be resumed; false, if the target for some
646 reason decided it's best not to resume. */
647
6604731b 648static int
4ef3f3be 649follow_fork (void)
c906108c 650{
ea1dd7bc 651 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
652 int should_resume = 1;
653 struct thread_info *tp;
654
655 /* Copy user stepping state to the new inferior thread. FIXME: the
656 followed fork child thread should have a copy of most of the
4e3990f4
DE
657 parent thread structure's run control related fields, not just these.
658 Initialized to avoid "may be used uninitialized" warnings from gcc. */
659 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 660 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
661 CORE_ADDR step_range_start = 0;
662 CORE_ADDR step_range_end = 0;
663 struct frame_id step_frame_id = { 0 };
17b2616c 664 struct interp *command_interp = NULL;
e58b0e63
PA
665
666 if (!non_stop)
667 {
668 ptid_t wait_ptid;
669 struct target_waitstatus wait_status;
670
671 /* Get the last target status returned by target_wait(). */
672 get_last_target_status (&wait_ptid, &wait_status);
673
674 /* If not stopped at a fork event, then there's nothing else to
675 do. */
676 if (wait_status.kind != TARGET_WAITKIND_FORKED
677 && wait_status.kind != TARGET_WAITKIND_VFORKED)
678 return 1;
679
680 /* Check if we switched over from WAIT_PTID, since the event was
681 reported. */
682 if (!ptid_equal (wait_ptid, minus_one_ptid)
683 && !ptid_equal (inferior_ptid, wait_ptid))
684 {
685 /* We did. Switch back to WAIT_PTID thread, to tell the
686 target to follow it (in either direction). We'll
687 afterwards refuse to resume, and inform the user what
688 happened. */
689 switch_to_thread (wait_ptid);
690 should_resume = 0;
691 }
692 }
693
694 tp = inferior_thread ();
695
696 /* If there were any forks/vforks that were caught and are now to be
697 followed, then do so now. */
698 switch (tp->pending_follow.kind)
699 {
700 case TARGET_WAITKIND_FORKED:
701 case TARGET_WAITKIND_VFORKED:
702 {
703 ptid_t parent, child;
704
705 /* If the user did a next/step, etc, over a fork call,
706 preserve the stepping state in the fork child. */
707 if (follow_child && should_resume)
708 {
8358c15c
JK
709 step_resume_breakpoint = clone_momentary_breakpoint
710 (tp->control.step_resume_breakpoint);
16c381f0
JK
711 step_range_start = tp->control.step_range_start;
712 step_range_end = tp->control.step_range_end;
713 step_frame_id = tp->control.step_frame_id;
186c406b
TT
714 exception_resume_breakpoint
715 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
17b2616c 716 command_interp = tp->control.command_interp;
e58b0e63
PA
717
718 /* For now, delete the parent's sr breakpoint, otherwise,
719 parent/child sr breakpoints are considered duplicates,
720 and the child version will not be installed. Remove
721 this when the breakpoints module becomes aware of
722 inferiors and address spaces. */
723 delete_step_resume_breakpoint (tp);
16c381f0
JK
724 tp->control.step_range_start = 0;
725 tp->control.step_range_end = 0;
726 tp->control.step_frame_id = null_frame_id;
186c406b 727 delete_exception_resume_breakpoint (tp);
17b2616c 728 tp->control.command_interp = NULL;
e58b0e63
PA
729 }
730
731 parent = inferior_ptid;
732 child = tp->pending_follow.value.related_pid;
733
d83ad864
DB
734 /* Set up inferior(s) as specified by the caller, and tell the
735 target to do whatever is necessary to follow either parent
736 or child. */
737 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
738 {
739 /* Target refused to follow, or there's some other reason
740 we shouldn't resume. */
741 should_resume = 0;
742 }
743 else
744 {
745 /* This pending follow fork event is now handled, one way
746 or another. The previous selected thread may be gone
747 from the lists by now, but if it is still around, need
748 to clear the pending follow request. */
e09875d4 749 tp = find_thread_ptid (parent);
e58b0e63
PA
750 if (tp)
751 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
752
753 /* This makes sure we don't try to apply the "Switched
754 over from WAIT_PID" logic above. */
755 nullify_last_target_wait_ptid ();
756
1777feb0 757 /* If we followed the child, switch to it... */
e58b0e63
PA
758 if (follow_child)
759 {
760 switch_to_thread (child);
761
762 /* ... and preserve the stepping state, in case the
763 user was stepping over the fork call. */
764 if (should_resume)
765 {
766 tp = inferior_thread ();
8358c15c
JK
767 tp->control.step_resume_breakpoint
768 = step_resume_breakpoint;
16c381f0
JK
769 tp->control.step_range_start = step_range_start;
770 tp->control.step_range_end = step_range_end;
771 tp->control.step_frame_id = step_frame_id;
186c406b
TT
772 tp->control.exception_resume_breakpoint
773 = exception_resume_breakpoint;
17b2616c 774 tp->control.command_interp = command_interp;
e58b0e63
PA
775 }
776 else
777 {
778 /* If we get here, it was because we're trying to
779 resume from a fork catchpoint, but, the user
780 has switched threads away from the thread that
781 forked. In that case, the resume command
782 issued is most likely not applicable to the
783 child, so just warn, and refuse to resume. */
3e43a32a
MS
784 warning (_("Not resuming: switched threads "
785 "before following fork child.\n"));
e58b0e63
PA
786 }
787
788 /* Reset breakpoints in the child as appropriate. */
789 follow_inferior_reset_breakpoints ();
790 }
791 else
792 switch_to_thread (parent);
793 }
794 }
795 break;
796 case TARGET_WAITKIND_SPURIOUS:
797 /* Nothing to follow. */
798 break;
799 default:
800 internal_error (__FILE__, __LINE__,
801 "Unexpected pending_follow.kind %d\n",
802 tp->pending_follow.kind);
803 break;
804 }
c906108c 805
e58b0e63 806 return should_resume;
c906108c
SS
807}
808
d83ad864 809static void
6604731b 810follow_inferior_reset_breakpoints (void)
c906108c 811{
4e1c45ea
PA
812 struct thread_info *tp = inferior_thread ();
813
6604731b
DJ
814 /* Was there a step_resume breakpoint? (There was if the user
815 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
816 thread number. Cloned step_resume breakpoints are disabled on
817 creation, so enable it here now that it is associated with the
818 correct thread.
6604731b
DJ
819
820 step_resumes are a form of bp that are made to be per-thread.
821 Since we created the step_resume bp when the parent process
822 was being debugged, and now are switching to the child process,
823 from the breakpoint package's viewpoint, that's a switch of
824 "threads". We must update the bp's notion of which thread
825 it is for, or it'll be ignored when it triggers. */
826
8358c15c 827 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
828 {
829 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
830 tp->control.step_resume_breakpoint->loc->enabled = 1;
831 }
6604731b 832
a1aa2221 833 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 834 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
835 {
836 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
837 tp->control.exception_resume_breakpoint->loc->enabled = 1;
838 }
186c406b 839
6604731b
DJ
840 /* Reinsert all breakpoints in the child. The user may have set
841 breakpoints after catching the fork, in which case those
842 were never set in the child, but only in the parent. This makes
843 sure the inserted breakpoints match the breakpoint list. */
844
845 breakpoint_re_set ();
846 insert_breakpoints ();
c906108c 847}
c906108c 848
6c95b8df
PA
849/* The child has exited or execed: resume threads of the parent the
850 user wanted to be executing. */
851
852static int
853proceed_after_vfork_done (struct thread_info *thread,
854 void *arg)
855{
856 int pid = * (int *) arg;
857
858 if (ptid_get_pid (thread->ptid) == pid
859 && is_running (thread->ptid)
860 && !is_executing (thread->ptid)
861 && !thread->stop_requested
a493e3e2 862 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
863 {
864 if (debug_infrun)
865 fprintf_unfiltered (gdb_stdlog,
866 "infrun: resuming vfork parent thread %s\n",
867 target_pid_to_str (thread->ptid));
868
869 switch_to_thread (thread->ptid);
70509625 870 clear_proceed_status (0);
a493e3e2 871 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
6c95b8df
PA
872 }
873
874 return 0;
875}
876
877/* Called whenever we notice an exec or exit event, to handle
878 detaching or resuming a vfork parent. */
879
880static void
881handle_vfork_child_exec_or_exit (int exec)
882{
883 struct inferior *inf = current_inferior ();
884
885 if (inf->vfork_parent)
886 {
887 int resume_parent = -1;
888
889 /* This exec or exit marks the end of the shared memory region
890 between the parent and the child. If the user wanted to
891 detach from the parent, now is the time. */
892
893 if (inf->vfork_parent->pending_detach)
894 {
895 struct thread_info *tp;
896 struct cleanup *old_chain;
897 struct program_space *pspace;
898 struct address_space *aspace;
899
1777feb0 900 /* follow-fork child, detach-on-fork on. */
6c95b8df 901
68c9da30
PA
902 inf->vfork_parent->pending_detach = 0;
903
f50f4e56
PA
904 if (!exec)
905 {
906 /* If we're handling a child exit, then inferior_ptid
907 points at the inferior's pid, not to a thread. */
908 old_chain = save_inferior_ptid ();
909 save_current_program_space ();
910 save_current_inferior ();
911 }
912 else
913 old_chain = save_current_space_and_thread ();
6c95b8df
PA
914
915 /* We're letting loose of the parent. */
916 tp = any_live_thread_of_process (inf->vfork_parent->pid);
917 switch_to_thread (tp->ptid);
918
919 /* We're about to detach from the parent, which implicitly
920 removes breakpoints from its address space. There's a
921 catch here: we want to reuse the spaces for the child,
922 but, parent/child are still sharing the pspace at this
923 point, although the exec in reality makes the kernel give
924 the child a fresh set of new pages. The problem here is
925 that the breakpoints module being unaware of this, would
926 likely chose the child process to write to the parent
927 address space. Swapping the child temporarily away from
928 the spaces has the desired effect. Yes, this is "sort
929 of" a hack. */
930
931 pspace = inf->pspace;
932 aspace = inf->aspace;
933 inf->aspace = NULL;
934 inf->pspace = NULL;
935
936 if (debug_infrun || info_verbose)
937 {
6f259a23 938 target_terminal_ours_for_output ();
6c95b8df
PA
939
940 if (exec)
6f259a23
DB
941 {
942 fprintf_filtered (gdb_stdlog,
943 _("Detaching vfork parent process "
944 "%d after child exec.\n"),
945 inf->vfork_parent->pid);
946 }
6c95b8df 947 else
6f259a23
DB
948 {
949 fprintf_filtered (gdb_stdlog,
950 _("Detaching vfork parent process "
951 "%d after child exit.\n"),
952 inf->vfork_parent->pid);
953 }
6c95b8df
PA
954 }
955
956 target_detach (NULL, 0);
957
958 /* Put it back. */
959 inf->pspace = pspace;
960 inf->aspace = aspace;
961
962 do_cleanups (old_chain);
963 }
964 else if (exec)
965 {
966 /* We're staying attached to the parent, so, really give the
967 child a new address space. */
968 inf->pspace = add_program_space (maybe_new_address_space ());
969 inf->aspace = inf->pspace->aspace;
970 inf->removable = 1;
971 set_current_program_space (inf->pspace);
972
973 resume_parent = inf->vfork_parent->pid;
974
975 /* Break the bonds. */
976 inf->vfork_parent->vfork_child = NULL;
977 }
978 else
979 {
980 struct cleanup *old_chain;
981 struct program_space *pspace;
982
983 /* If this is a vfork child exiting, then the pspace and
984 aspaces were shared with the parent. Since we're
985 reporting the process exit, we'll be mourning all that is
986 found in the address space, and switching to null_ptid,
987 preparing to start a new inferior. But, since we don't
988 want to clobber the parent's address/program spaces, we
989 go ahead and create a new one for this exiting
990 inferior. */
991
992 /* Switch to null_ptid, so that clone_program_space doesn't want
993 to read the selected frame of a dead process. */
994 old_chain = save_inferior_ptid ();
995 inferior_ptid = null_ptid;
996
997 /* This inferior is dead, so avoid giving the breakpoints
998 module the option to write through to it (cloning a
999 program space resets breakpoints). */
1000 inf->aspace = NULL;
1001 inf->pspace = NULL;
1002 pspace = add_program_space (maybe_new_address_space ());
1003 set_current_program_space (pspace);
1004 inf->removable = 1;
7dcd53a0 1005 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1006 clone_program_space (pspace, inf->vfork_parent->pspace);
1007 inf->pspace = pspace;
1008 inf->aspace = pspace->aspace;
1009
1010 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 1011 inferior. */
6c95b8df
PA
1012 do_cleanups (old_chain);
1013
1014 resume_parent = inf->vfork_parent->pid;
1015 /* Break the bonds. */
1016 inf->vfork_parent->vfork_child = NULL;
1017 }
1018
1019 inf->vfork_parent = NULL;
1020
1021 gdb_assert (current_program_space == inf->pspace);
1022
1023 if (non_stop && resume_parent != -1)
1024 {
1025 /* If the user wanted the parent to be running, let it go
1026 free now. */
1027 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1028
1029 if (debug_infrun)
3e43a32a
MS
1030 fprintf_unfiltered (gdb_stdlog,
1031 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1032 resume_parent);
1033
1034 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1035
1036 do_cleanups (old_chain);
1037 }
1038 }
1039}
1040
eb6c553b 1041/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1042
1043static const char follow_exec_mode_new[] = "new";
1044static const char follow_exec_mode_same[] = "same";
40478521 1045static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1046{
1047 follow_exec_mode_new,
1048 follow_exec_mode_same,
1049 NULL,
1050};
1051
1052static const char *follow_exec_mode_string = follow_exec_mode_same;
1053static void
1054show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1055 struct cmd_list_element *c, const char *value)
1056{
1057 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1058}
1059
1777feb0 1060/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 1061
c906108c 1062static void
3a3e9ee3 1063follow_exec (ptid_t pid, char *execd_pathname)
c906108c 1064{
4e1c45ea 1065 struct thread_info *th = inferior_thread ();
6c95b8df 1066 struct inferior *inf = current_inferior ();
7a292a7a 1067
c906108c
SS
1068 /* This is an exec event that we actually wish to pay attention to.
1069 Refresh our symbol table to the newly exec'd program, remove any
1070 momentary bp's, etc.
1071
1072 If there are breakpoints, they aren't really inserted now,
1073 since the exec() transformed our inferior into a fresh set
1074 of instructions.
1075
1076 We want to preserve symbolic breakpoints on the list, since
1077 we have hopes that they can be reset after the new a.out's
1078 symbol table is read.
1079
1080 However, any "raw" breakpoints must be removed from the list
1081 (e.g., the solib bp's), since their address is probably invalid
1082 now.
1083
1084 And, we DON'T want to call delete_breakpoints() here, since
1085 that may write the bp's "shadow contents" (the instruction
1086 value that was overwritten witha TRAP instruction). Since
1777feb0 1087 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1088
1089 mark_breakpoints_out ();
1090
c906108c
SS
1091 update_breakpoints_after_exec ();
1092
1093 /* If there was one, it's gone now. We cannot truly step-to-next
1777feb0 1094 statement through an exec(). */
8358c15c 1095 th->control.step_resume_breakpoint = NULL;
186c406b 1096 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1097 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1098 th->control.step_range_start = 0;
1099 th->control.step_range_end = 0;
c906108c 1100
a75724bc
PA
1101 /* The target reports the exec event to the main thread, even if
1102 some other thread does the exec, and even if the main thread was
1103 already stopped --- if debugging in non-stop mode, it's possible
1104 the user had the main thread held stopped in the previous image
1105 --- release it now. This is the same behavior as step-over-exec
1106 with scheduler-locking on in all-stop mode. */
1107 th->stop_requested = 0;
1108
1777feb0 1109 /* What is this a.out's name? */
6c95b8df
PA
1110 printf_unfiltered (_("%s is executing new program: %s\n"),
1111 target_pid_to_str (inferior_ptid),
1112 execd_pathname);
c906108c
SS
1113
1114 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1115 inferior has essentially been killed & reborn. */
7a292a7a 1116
c906108c 1117 gdb_flush (gdb_stdout);
6ca15a4b
PA
1118
1119 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
1120
1121 if (gdb_sysroot && *gdb_sysroot)
1122 {
1123 char *name = alloca (strlen (gdb_sysroot)
1124 + strlen (execd_pathname)
1125 + 1);
abbb1732 1126
e85a822c
DJ
1127 strcpy (name, gdb_sysroot);
1128 strcat (name, execd_pathname);
1129 execd_pathname = name;
1130 }
c906108c 1131
cce9b6bf
PA
1132 /* Reset the shared library package. This ensures that we get a
1133 shlib event when the child reaches "_start", at which point the
1134 dld will have had a chance to initialize the child. */
1135 /* Also, loading a symbol file below may trigger symbol lookups, and
1136 we don't want those to be satisfied by the libraries of the
1137 previous incarnation of this process. */
1138 no_shared_libraries (NULL, 0);
1139
6c95b8df
PA
1140 if (follow_exec_mode_string == follow_exec_mode_new)
1141 {
1142 struct program_space *pspace;
6c95b8df
PA
1143
1144 /* The user wants to keep the old inferior and program spaces
1145 around. Create a new fresh one, and switch to it. */
1146
1147 inf = add_inferior (current_inferior ()->pid);
1148 pspace = add_program_space (maybe_new_address_space ());
1149 inf->pspace = pspace;
1150 inf->aspace = pspace->aspace;
1151
1152 exit_inferior_num_silent (current_inferior ()->num);
1153
1154 set_current_inferior (inf);
1155 set_current_program_space (pspace);
1156 }
9107fc8d
PA
1157 else
1158 {
1159 /* The old description may no longer be fit for the new image.
1160 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1161 old description; we'll read a new one below. No need to do
1162 this on "follow-exec-mode new", as the old inferior stays
1163 around (its description is later cleared/refetched on
1164 restart). */
1165 target_clear_description ();
1166 }
6c95b8df
PA
1167
1168 gdb_assert (current_program_space == inf->pspace);
1169
1777feb0 1170 /* That a.out is now the one to use. */
6c95b8df
PA
1171 exec_file_attach (execd_pathname, 0);
1172
c1e56572
JK
1173 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1174 (Position Independent Executable) main symbol file will get applied by
1175 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1176 the breakpoints with the zero displacement. */
1177
7dcd53a0
TT
1178 symbol_file_add (execd_pathname,
1179 (inf->symfile_flags
1180 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
1181 NULL, 0);
1182
7dcd53a0
TT
1183 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1184 set_initial_language ();
c906108c 1185
9107fc8d
PA
1186 /* If the target can specify a description, read it. Must do this
1187 after flipping to the new executable (because the target supplied
1188 description must be compatible with the executable's
1189 architecture, and the old executable may e.g., be 32-bit, while
1190 the new one 64-bit), and before anything involving memory or
1191 registers. */
1192 target_find_description ();
1193
268a4a75 1194 solib_create_inferior_hook (0);
c906108c 1195
4efc6507
DE
1196 jit_inferior_created_hook ();
1197
c1e56572
JK
1198 breakpoint_re_set ();
1199
c906108c
SS
1200 /* Reinsert all breakpoints. (Those which were symbolic have
1201 been reset to the proper address in the new a.out, thanks
1777feb0 1202 to symbol_file_command...). */
c906108c
SS
1203 insert_breakpoints ();
1204
1205 /* The next resume of this inferior should bring it to the shlib
1206 startup breakpoints. (If the user had also set bp's on
1207 "main" from the old (parent) process, then they'll auto-
1777feb0 1208 matically get reset there in the new process.). */
c906108c
SS
1209}
1210
963f9c80 1211/* Info about an instruction that is being stepped over. */
31e77af2
PA
1212
1213struct step_over_info
1214{
963f9c80
PA
1215 /* If we're stepping past a breakpoint, this is the address space
1216 and address of the instruction the breakpoint is set at. We'll
1217 skip inserting all breakpoints here. Valid iff ASPACE is
1218 non-NULL. */
31e77af2 1219 struct address_space *aspace;
31e77af2 1220 CORE_ADDR address;
963f9c80
PA
1221
1222 /* The instruction being stepped over triggers a nonsteppable
1223 watchpoint. If true, we'll skip inserting watchpoints. */
1224 int nonsteppable_watchpoint_p;
31e77af2
PA
1225};
1226
1227/* The step-over info of the location that is being stepped over.
1228
1229 Note that with async/breakpoint always-inserted mode, a user might
1230 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1231 being stepped over. As setting a new breakpoint inserts all
1232 breakpoints, we need to make sure the breakpoint being stepped over
1233 isn't inserted then. We do that by only clearing the step-over
1234 info when the step-over is actually finished (or aborted).
1235
1236 Presently GDB can only step over one breakpoint at any given time.
1237 Given threads that can't run code in the same address space as the
1238 breakpoint's can't really miss the breakpoint, GDB could be taught
1239 to step-over at most one breakpoint per address space (so this info
1240 could move to the address space object if/when GDB is extended).
1241 The set of breakpoints being stepped over will normally be much
1242 smaller than the set of all breakpoints, so a flag in the
1243 breakpoint location structure would be wasteful. A separate list
1244 also saves complexity and run-time, as otherwise we'd have to go
1245 through all breakpoint locations clearing their flag whenever we
1246 start a new sequence. Similar considerations weigh against storing
1247 this info in the thread object. Plus, not all step overs actually
1248 have breakpoint locations -- e.g., stepping past a single-step
1249 breakpoint, or stepping to complete a non-continuable
1250 watchpoint. */
1251static struct step_over_info step_over_info;
1252
1253/* Record the address of the breakpoint/instruction we're currently
1254 stepping over. */
1255
1256static void
963f9c80
PA
1257set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1258 int nonsteppable_watchpoint_p)
31e77af2
PA
1259{
1260 step_over_info.aspace = aspace;
1261 step_over_info.address = address;
963f9c80 1262 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
31e77af2
PA
1263}
1264
1265/* Called when we're not longer stepping over a breakpoint / an
1266 instruction, so all breakpoints are free to be (re)inserted. */
1267
1268static void
1269clear_step_over_info (void)
1270{
1271 step_over_info.aspace = NULL;
1272 step_over_info.address = 0;
963f9c80 1273 step_over_info.nonsteppable_watchpoint_p = 0;
31e77af2
PA
1274}
1275
7f89fd65 1276/* See infrun.h. */
31e77af2
PA
1277
1278int
1279stepping_past_instruction_at (struct address_space *aspace,
1280 CORE_ADDR address)
1281{
1282 return (step_over_info.aspace != NULL
1283 && breakpoint_address_match (aspace, address,
1284 step_over_info.aspace,
1285 step_over_info.address));
1286}
1287
963f9c80
PA
1288/* See infrun.h. */
1289
1290int
1291stepping_past_nonsteppable_watchpoint (void)
1292{
1293 return step_over_info.nonsteppable_watchpoint_p;
1294}
1295
6cc83d2a
PA
1296/* Returns true if step-over info is valid. */
1297
1298static int
1299step_over_info_valid_p (void)
1300{
963f9c80
PA
1301 return (step_over_info.aspace != NULL
1302 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1303}
1304
c906108c 1305\f
237fc4c9
PA
1306/* Displaced stepping. */
1307
1308/* In non-stop debugging mode, we must take special care to manage
1309 breakpoints properly; in particular, the traditional strategy for
1310 stepping a thread past a breakpoint it has hit is unsuitable.
1311 'Displaced stepping' is a tactic for stepping one thread past a
1312 breakpoint it has hit while ensuring that other threads running
1313 concurrently will hit the breakpoint as they should.
1314
1315 The traditional way to step a thread T off a breakpoint in a
1316 multi-threaded program in all-stop mode is as follows:
1317
1318 a0) Initially, all threads are stopped, and breakpoints are not
1319 inserted.
1320 a1) We single-step T, leaving breakpoints uninserted.
1321 a2) We insert breakpoints, and resume all threads.
1322
1323 In non-stop debugging, however, this strategy is unsuitable: we
1324 don't want to have to stop all threads in the system in order to
1325 continue or step T past a breakpoint. Instead, we use displaced
1326 stepping:
1327
1328 n0) Initially, T is stopped, other threads are running, and
1329 breakpoints are inserted.
1330 n1) We copy the instruction "under" the breakpoint to a separate
1331 location, outside the main code stream, making any adjustments
1332 to the instruction, register, and memory state as directed by
1333 T's architecture.
1334 n2) We single-step T over the instruction at its new location.
1335 n3) We adjust the resulting register and memory state as directed
1336 by T's architecture. This includes resetting T's PC to point
1337 back into the main instruction stream.
1338 n4) We resume T.
1339
1340 This approach depends on the following gdbarch methods:
1341
1342 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1343 indicate where to copy the instruction, and how much space must
1344 be reserved there. We use these in step n1.
1345
1346 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1347 address, and makes any necessary adjustments to the instruction,
1348 register contents, and memory. We use this in step n1.
1349
1350 - gdbarch_displaced_step_fixup adjusts registers and memory after
1351 we have successfuly single-stepped the instruction, to yield the
1352 same effect the instruction would have had if we had executed it
1353 at its original address. We use this in step n3.
1354
1355 - gdbarch_displaced_step_free_closure provides cleanup.
1356
1357 The gdbarch_displaced_step_copy_insn and
1358 gdbarch_displaced_step_fixup functions must be written so that
1359 copying an instruction with gdbarch_displaced_step_copy_insn,
1360 single-stepping across the copied instruction, and then applying
1361 gdbarch_displaced_insn_fixup should have the same effects on the
1362 thread's memory and registers as stepping the instruction in place
1363 would have. Exactly which responsibilities fall to the copy and
1364 which fall to the fixup is up to the author of those functions.
1365
1366 See the comments in gdbarch.sh for details.
1367
1368 Note that displaced stepping and software single-step cannot
1369 currently be used in combination, although with some care I think
1370 they could be made to. Software single-step works by placing
1371 breakpoints on all possible subsequent instructions; if the
1372 displaced instruction is a PC-relative jump, those breakpoints
1373 could fall in very strange places --- on pages that aren't
1374 executable, or at addresses that are not proper instruction
1375 boundaries. (We do generally let other threads run while we wait
1376 to hit the software single-step breakpoint, and they might
1377 encounter such a corrupted instruction.) One way to work around
1378 this would be to have gdbarch_displaced_step_copy_insn fully
1379 simulate the effect of PC-relative instructions (and return NULL)
1380 on architectures that use software single-stepping.
1381
1382 In non-stop mode, we can have independent and simultaneous step
1383 requests, so more than one thread may need to simultaneously step
1384 over a breakpoint. The current implementation assumes there is
1385 only one scratch space per process. In this case, we have to
1386 serialize access to the scratch space. If thread A wants to step
1387 over a breakpoint, but we are currently waiting for some other
1388 thread to complete a displaced step, we leave thread A stopped and
1389 place it in the displaced_step_request_queue. Whenever a displaced
1390 step finishes, we pick the next thread in the queue and start a new
1391 displaced step operation on it. See displaced_step_prepare and
1392 displaced_step_fixup for details. */
1393
237fc4c9
PA
1394struct displaced_step_request
1395{
1396 ptid_t ptid;
1397 struct displaced_step_request *next;
1398};
1399
fc1cf338
PA
1400/* Per-inferior displaced stepping state. */
1401struct displaced_step_inferior_state
1402{
1403 /* Pointer to next in linked list. */
1404 struct displaced_step_inferior_state *next;
1405
1406 /* The process this displaced step state refers to. */
1407 int pid;
1408
1409 /* A queue of pending displaced stepping requests. One entry per
1410 thread that needs to do a displaced step. */
1411 struct displaced_step_request *step_request_queue;
1412
1413 /* If this is not null_ptid, this is the thread carrying out a
1414 displaced single-step in process PID. This thread's state will
1415 require fixing up once it has completed its step. */
1416 ptid_t step_ptid;
1417
1418 /* The architecture the thread had when we stepped it. */
1419 struct gdbarch *step_gdbarch;
1420
1421 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1422 for post-step cleanup. */
1423 struct displaced_step_closure *step_closure;
1424
1425 /* The address of the original instruction, and the copy we
1426 made. */
1427 CORE_ADDR step_original, step_copy;
1428
1429 /* Saved contents of copy area. */
1430 gdb_byte *step_saved_copy;
1431};
1432
1433/* The list of states of processes involved in displaced stepping
1434 presently. */
1435static struct displaced_step_inferior_state *displaced_step_inferior_states;
1436
1437/* Get the displaced stepping state of process PID. */
1438
1439static struct displaced_step_inferior_state *
1440get_displaced_stepping_state (int pid)
1441{
1442 struct displaced_step_inferior_state *state;
1443
1444 for (state = displaced_step_inferior_states;
1445 state != NULL;
1446 state = state->next)
1447 if (state->pid == pid)
1448 return state;
1449
1450 return NULL;
1451}
1452
1453/* Add a new displaced stepping state for process PID to the displaced
1454 stepping state list, or return a pointer to an already existing
1455 entry, if it already exists. Never returns NULL. */
1456
1457static struct displaced_step_inferior_state *
1458add_displaced_stepping_state (int pid)
1459{
1460 struct displaced_step_inferior_state *state;
1461
1462 for (state = displaced_step_inferior_states;
1463 state != NULL;
1464 state = state->next)
1465 if (state->pid == pid)
1466 return state;
237fc4c9 1467
fc1cf338
PA
1468 state = xcalloc (1, sizeof (*state));
1469 state->pid = pid;
1470 state->next = displaced_step_inferior_states;
1471 displaced_step_inferior_states = state;
237fc4c9 1472
fc1cf338
PA
1473 return state;
1474}
1475
a42244db
YQ
1476/* If inferior is in displaced stepping, and ADDR equals to starting address
1477 of copy area, return corresponding displaced_step_closure. Otherwise,
1478 return NULL. */
1479
1480struct displaced_step_closure*
1481get_displaced_step_closure_by_addr (CORE_ADDR addr)
1482{
1483 struct displaced_step_inferior_state *displaced
1484 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1485
1486 /* If checking the mode of displaced instruction in copy area. */
1487 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1488 && (displaced->step_copy == addr))
1489 return displaced->step_closure;
1490
1491 return NULL;
1492}
1493
fc1cf338 1494/* Remove the displaced stepping state of process PID. */
237fc4c9 1495
fc1cf338
PA
1496static void
1497remove_displaced_stepping_state (int pid)
1498{
1499 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1500
fc1cf338
PA
1501 gdb_assert (pid != 0);
1502
1503 it = displaced_step_inferior_states;
1504 prev_next_p = &displaced_step_inferior_states;
1505 while (it)
1506 {
1507 if (it->pid == pid)
1508 {
1509 *prev_next_p = it->next;
1510 xfree (it);
1511 return;
1512 }
1513
1514 prev_next_p = &it->next;
1515 it = *prev_next_p;
1516 }
1517}
1518
1519static void
1520infrun_inferior_exit (struct inferior *inf)
1521{
1522 remove_displaced_stepping_state (inf->pid);
1523}
237fc4c9 1524
fff08868
HZ
1525/* If ON, and the architecture supports it, GDB will use displaced
1526 stepping to step over breakpoints. If OFF, or if the architecture
1527 doesn't support it, GDB will instead use the traditional
1528 hold-and-step approach. If AUTO (which is the default), GDB will
1529 decide which technique to use to step over breakpoints depending on
1530 which of all-stop or non-stop mode is active --- displaced stepping
1531 in non-stop mode; hold-and-step in all-stop mode. */
1532
72d0e2c5 1533static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1534
237fc4c9
PA
1535static void
1536show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1537 struct cmd_list_element *c,
1538 const char *value)
1539{
72d0e2c5 1540 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1541 fprintf_filtered (file,
1542 _("Debugger's willingness to use displaced stepping "
1543 "to step over breakpoints is %s (currently %s).\n"),
fff08868
HZ
1544 value, non_stop ? "on" : "off");
1545 else
3e43a32a
MS
1546 fprintf_filtered (file,
1547 _("Debugger's willingness to use displaced stepping "
1548 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1549}
1550
fff08868
HZ
1551/* Return non-zero if displaced stepping can/should be used to step
1552 over breakpoints. */
1553
237fc4c9
PA
1554static int
1555use_displaced_stepping (struct gdbarch *gdbarch)
1556{
72d0e2c5
YQ
1557 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1558 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1559 && gdbarch_displaced_step_copy_insn_p (gdbarch)
8213266a 1560 && find_record_target () == NULL);
237fc4c9
PA
1561}
1562
1563/* Clean out any stray displaced stepping state. */
1564static void
fc1cf338 1565displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1566{
1567 /* Indicate that there is no cleanup pending. */
fc1cf338 1568 displaced->step_ptid = null_ptid;
237fc4c9 1569
fc1cf338 1570 if (displaced->step_closure)
237fc4c9 1571 {
fc1cf338
PA
1572 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1573 displaced->step_closure);
1574 displaced->step_closure = NULL;
237fc4c9
PA
1575 }
1576}
1577
1578static void
fc1cf338 1579displaced_step_clear_cleanup (void *arg)
237fc4c9 1580{
fc1cf338
PA
1581 struct displaced_step_inferior_state *state = arg;
1582
1583 displaced_step_clear (state);
237fc4c9
PA
1584}
1585
1586/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1587void
1588displaced_step_dump_bytes (struct ui_file *file,
1589 const gdb_byte *buf,
1590 size_t len)
1591{
1592 int i;
1593
1594 for (i = 0; i < len; i++)
1595 fprintf_unfiltered (file, "%02x ", buf[i]);
1596 fputs_unfiltered ("\n", file);
1597}
1598
1599/* Prepare to single-step, using displaced stepping.
1600
1601 Note that we cannot use displaced stepping when we have a signal to
1602 deliver. If we have a signal to deliver and an instruction to step
1603 over, then after the step, there will be no indication from the
1604 target whether the thread entered a signal handler or ignored the
1605 signal and stepped over the instruction successfully --- both cases
1606 result in a simple SIGTRAP. In the first case we mustn't do a
1607 fixup, and in the second case we must --- but we can't tell which.
1608 Comments in the code for 'random signals' in handle_inferior_event
1609 explain how we handle this case instead.
1610
1611 Returns 1 if preparing was successful -- this thread is going to be
1612 stepped now; or 0 if displaced stepping this thread got queued. */
1613static int
1614displaced_step_prepare (ptid_t ptid)
1615{
ad53cd71 1616 struct cleanup *old_cleanups, *ignore_cleanups;
c1e36e3e 1617 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1618 struct regcache *regcache = get_thread_regcache (ptid);
1619 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1620 CORE_ADDR original, copy;
1621 ULONGEST len;
1622 struct displaced_step_closure *closure;
fc1cf338 1623 struct displaced_step_inferior_state *displaced;
9e529e1d 1624 int status;
237fc4c9
PA
1625
1626 /* We should never reach this function if the architecture does not
1627 support displaced stepping. */
1628 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1629
c1e36e3e
PA
1630 /* Disable range stepping while executing in the scratch pad. We
1631 want a single-step even if executing the displaced instruction in
1632 the scratch buffer lands within the stepping range (e.g., a
1633 jump/branch). */
1634 tp->control.may_range_step = 0;
1635
fc1cf338
PA
1636 /* We have to displaced step one thread at a time, as we only have
1637 access to a single scratch space per inferior. */
237fc4c9 1638
fc1cf338
PA
1639 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1640
1641 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1642 {
1643 /* Already waiting for a displaced step to finish. Defer this
1644 request and place in queue. */
1645 struct displaced_step_request *req, *new_req;
1646
1647 if (debug_displaced)
1648 fprintf_unfiltered (gdb_stdlog,
1649 "displaced: defering step of %s\n",
1650 target_pid_to_str (ptid));
1651
1652 new_req = xmalloc (sizeof (*new_req));
1653 new_req->ptid = ptid;
1654 new_req->next = NULL;
1655
fc1cf338 1656 if (displaced->step_request_queue)
237fc4c9 1657 {
fc1cf338 1658 for (req = displaced->step_request_queue;
237fc4c9
PA
1659 req && req->next;
1660 req = req->next)
1661 ;
1662 req->next = new_req;
1663 }
1664 else
fc1cf338 1665 displaced->step_request_queue = new_req;
237fc4c9
PA
1666
1667 return 0;
1668 }
1669 else
1670 {
1671 if (debug_displaced)
1672 fprintf_unfiltered (gdb_stdlog,
1673 "displaced: stepping %s now\n",
1674 target_pid_to_str (ptid));
1675 }
1676
fc1cf338 1677 displaced_step_clear (displaced);
237fc4c9 1678
ad53cd71
PA
1679 old_cleanups = save_inferior_ptid ();
1680 inferior_ptid = ptid;
1681
515630c5 1682 original = regcache_read_pc (regcache);
237fc4c9
PA
1683
1684 copy = gdbarch_displaced_step_location (gdbarch);
1685 len = gdbarch_max_insn_length (gdbarch);
1686
1687 /* Save the original contents of the copy area. */
fc1cf338 1688 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1689 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1690 &displaced->step_saved_copy);
9e529e1d
JK
1691 status = target_read_memory (copy, displaced->step_saved_copy, len);
1692 if (status != 0)
1693 throw_error (MEMORY_ERROR,
1694 _("Error accessing memory address %s (%s) for "
1695 "displaced-stepping scratch space."),
1696 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1697 if (debug_displaced)
1698 {
5af949e3
UW
1699 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1700 paddress (gdbarch, copy));
fc1cf338
PA
1701 displaced_step_dump_bytes (gdb_stdlog,
1702 displaced->step_saved_copy,
1703 len);
237fc4c9
PA
1704 };
1705
1706 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1707 original, copy, regcache);
237fc4c9
PA
1708
1709 /* We don't support the fully-simulated case at present. */
1710 gdb_assert (closure);
1711
9f5a595d
UW
1712 /* Save the information we need to fix things up if the step
1713 succeeds. */
fc1cf338
PA
1714 displaced->step_ptid = ptid;
1715 displaced->step_gdbarch = gdbarch;
1716 displaced->step_closure = closure;
1717 displaced->step_original = original;
1718 displaced->step_copy = copy;
9f5a595d 1719
fc1cf338 1720 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1721
1722 /* Resume execution at the copy. */
515630c5 1723 regcache_write_pc (regcache, copy);
237fc4c9 1724
ad53cd71
PA
1725 discard_cleanups (ignore_cleanups);
1726
1727 do_cleanups (old_cleanups);
237fc4c9
PA
1728
1729 if (debug_displaced)
5af949e3
UW
1730 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1731 paddress (gdbarch, copy));
237fc4c9 1732
237fc4c9
PA
1733 return 1;
1734}
1735
237fc4c9 1736static void
3e43a32a
MS
1737write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1738 const gdb_byte *myaddr, int len)
237fc4c9
PA
1739{
1740 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1741
237fc4c9
PA
1742 inferior_ptid = ptid;
1743 write_memory (memaddr, myaddr, len);
1744 do_cleanups (ptid_cleanup);
1745}
1746
e2d96639
YQ
1747/* Restore the contents of the copy area for thread PTID. */
1748
1749static void
1750displaced_step_restore (struct displaced_step_inferior_state *displaced,
1751 ptid_t ptid)
1752{
1753 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1754
1755 write_memory_ptid (ptid, displaced->step_copy,
1756 displaced->step_saved_copy, len);
1757 if (debug_displaced)
1758 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1759 target_pid_to_str (ptid),
1760 paddress (displaced->step_gdbarch,
1761 displaced->step_copy));
1762}
1763
237fc4c9 1764static void
2ea28649 1765displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1766{
1767 struct cleanup *old_cleanups;
fc1cf338
PA
1768 struct displaced_step_inferior_state *displaced
1769 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1770
1771 /* Was any thread of this process doing a displaced step? */
1772 if (displaced == NULL)
1773 return;
237fc4c9
PA
1774
1775 /* Was this event for the pid we displaced? */
fc1cf338
PA
1776 if (ptid_equal (displaced->step_ptid, null_ptid)
1777 || ! ptid_equal (displaced->step_ptid, event_ptid))
237fc4c9
PA
1778 return;
1779
fc1cf338 1780 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1781
e2d96639 1782 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9
PA
1783
1784 /* Did the instruction complete successfully? */
a493e3e2 1785 if (signal == GDB_SIGNAL_TRAP)
237fc4c9
PA
1786 {
1787 /* Fix up the resulting state. */
fc1cf338
PA
1788 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1789 displaced->step_closure,
1790 displaced->step_original,
1791 displaced->step_copy,
1792 get_thread_regcache (displaced->step_ptid));
237fc4c9
PA
1793 }
1794 else
1795 {
1796 /* Since the instruction didn't complete, all we can do is
1797 relocate the PC. */
515630c5
UW
1798 struct regcache *regcache = get_thread_regcache (event_ptid);
1799 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1800
fc1cf338 1801 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1802 regcache_write_pc (regcache, pc);
237fc4c9
PA
1803 }
1804
1805 do_cleanups (old_cleanups);
1806
fc1cf338 1807 displaced->step_ptid = null_ptid;
1c5cfe86 1808
237fc4c9 1809 /* Are there any pending displaced stepping requests? If so, run
fc1cf338
PA
1810 one now. Leave the state object around, since we're likely to
1811 need it again soon. */
1812 while (displaced->step_request_queue)
237fc4c9
PA
1813 {
1814 struct displaced_step_request *head;
1815 ptid_t ptid;
5af949e3 1816 struct regcache *regcache;
929dfd4f 1817 struct gdbarch *gdbarch;
1c5cfe86 1818 CORE_ADDR actual_pc;
6c95b8df 1819 struct address_space *aspace;
237fc4c9 1820
fc1cf338 1821 head = displaced->step_request_queue;
237fc4c9 1822 ptid = head->ptid;
fc1cf338 1823 displaced->step_request_queue = head->next;
237fc4c9
PA
1824 xfree (head);
1825
ad53cd71
PA
1826 context_switch (ptid);
1827
5af949e3
UW
1828 regcache = get_thread_regcache (ptid);
1829 actual_pc = regcache_read_pc (regcache);
6c95b8df 1830 aspace = get_regcache_aspace (regcache);
1c5cfe86 1831
6c95b8df 1832 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1833 {
1c5cfe86
PA
1834 if (debug_displaced)
1835 fprintf_unfiltered (gdb_stdlog,
1836 "displaced: stepping queued %s now\n",
1837 target_pid_to_str (ptid));
1838
1839 displaced_step_prepare (ptid);
1840
929dfd4f
JB
1841 gdbarch = get_regcache_arch (regcache);
1842
1c5cfe86
PA
1843 if (debug_displaced)
1844 {
929dfd4f 1845 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1846 gdb_byte buf[4];
1847
5af949e3
UW
1848 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1849 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1850 read_memory (actual_pc, buf, sizeof (buf));
1851 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1852 }
1853
fc1cf338
PA
1854 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1855 displaced->step_closure))
a493e3e2 1856 target_resume (ptid, 1, GDB_SIGNAL_0);
99e40580 1857 else
a493e3e2 1858 target_resume (ptid, 0, GDB_SIGNAL_0);
1c5cfe86
PA
1859
1860 /* Done, we're stepping a thread. */
1861 break;
ad53cd71 1862 }
1c5cfe86
PA
1863 else
1864 {
1865 int step;
1866 struct thread_info *tp = inferior_thread ();
1867
1868 /* The breakpoint we were sitting under has since been
1869 removed. */
16c381f0 1870 tp->control.trap_expected = 0;
1c5cfe86
PA
1871
1872 /* Go back to what we were trying to do. */
1873 step = currently_stepping (tp);
ad53cd71 1874
1c5cfe86 1875 if (debug_displaced)
3e43a32a 1876 fprintf_unfiltered (gdb_stdlog,
27d2932e 1877 "displaced: breakpoint is gone: %s, step(%d)\n",
1c5cfe86
PA
1878 target_pid_to_str (tp->ptid), step);
1879
a493e3e2
PA
1880 target_resume (ptid, step, GDB_SIGNAL_0);
1881 tp->suspend.stop_signal = GDB_SIGNAL_0;
1c5cfe86
PA
1882
1883 /* This request was discarded. See if there's any other
1884 thread waiting for its turn. */
1885 }
237fc4c9
PA
1886 }
1887}
1888
5231c1fd
PA
1889/* Update global variables holding ptids to hold NEW_PTID if they were
1890 holding OLD_PTID. */
1891static void
1892infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1893{
1894 struct displaced_step_request *it;
fc1cf338 1895 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
1896
1897 if (ptid_equal (inferior_ptid, old_ptid))
1898 inferior_ptid = new_ptid;
1899
fc1cf338
PA
1900 for (displaced = displaced_step_inferior_states;
1901 displaced;
1902 displaced = displaced->next)
1903 {
1904 if (ptid_equal (displaced->step_ptid, old_ptid))
1905 displaced->step_ptid = new_ptid;
1906
1907 for (it = displaced->step_request_queue; it; it = it->next)
1908 if (ptid_equal (it->ptid, old_ptid))
1909 it->ptid = new_ptid;
1910 }
5231c1fd
PA
1911}
1912
237fc4c9
PA
1913\f
1914/* Resuming. */
c906108c
SS
1915
1916/* Things to clean up if we QUIT out of resume (). */
c906108c 1917static void
74b7792f 1918resume_cleanups (void *ignore)
c906108c 1919{
34b7e8a6
PA
1920 if (!ptid_equal (inferior_ptid, null_ptid))
1921 delete_single_step_breakpoints (inferior_thread ());
7c16b83e 1922
c906108c
SS
1923 normal_stop ();
1924}
1925
53904c9e
AC
1926static const char schedlock_off[] = "off";
1927static const char schedlock_on[] = "on";
1928static const char schedlock_step[] = "step";
40478521 1929static const char *const scheduler_enums[] = {
ef346e04
AC
1930 schedlock_off,
1931 schedlock_on,
1932 schedlock_step,
1933 NULL
1934};
920d2a44
AC
1935static const char *scheduler_mode = schedlock_off;
1936static void
1937show_scheduler_mode (struct ui_file *file, int from_tty,
1938 struct cmd_list_element *c, const char *value)
1939{
3e43a32a
MS
1940 fprintf_filtered (file,
1941 _("Mode for locking scheduler "
1942 "during execution is \"%s\".\n"),
920d2a44
AC
1943 value);
1944}
c906108c
SS
1945
1946static void
96baa820 1947set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1948{
eefe576e
AC
1949 if (!target_can_lock_scheduler)
1950 {
1951 scheduler_mode = schedlock_off;
1952 error (_("Target '%s' cannot support this command."), target_shortname);
1953 }
c906108c
SS
1954}
1955
d4db2f36
PA
1956/* True if execution commands resume all threads of all processes by
1957 default; otherwise, resume only threads of the current inferior
1958 process. */
1959int sched_multi = 0;
1960
2facfe5c
DD
1961/* Try to setup for software single stepping over the specified location.
1962 Return 1 if target_resume() should use hardware single step.
1963
1964 GDBARCH the current gdbarch.
1965 PC the location to step over. */
1966
1967static int
1968maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1969{
1970 int hw_step = 1;
1971
f02253f1
HZ
1972 if (execution_direction == EXEC_FORWARD
1973 && gdbarch_software_single_step_p (gdbarch)
99e40580 1974 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 1975 {
99e40580 1976 hw_step = 0;
2facfe5c
DD
1977 }
1978 return hw_step;
1979}
c906108c 1980
09cee04b
PA
1981ptid_t
1982user_visible_resume_ptid (int step)
1983{
1984 /* By default, resume all threads of all processes. */
1985 ptid_t resume_ptid = RESUME_ALL;
1986
1987 /* Maybe resume only all threads of the current process. */
1988 if (!sched_multi && target_supports_multi_process ())
1989 {
1990 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1991 }
1992
1993 /* Maybe resume a single thread after all. */
1994 if (non_stop)
1995 {
1996 /* With non-stop mode on, threads are always handled
1997 individually. */
1998 resume_ptid = inferior_ptid;
1999 }
2000 else if ((scheduler_mode == schedlock_on)
03d46957 2001 || (scheduler_mode == schedlock_step && step))
09cee04b
PA
2002 {
2003 /* User-settable 'scheduler' mode requires solo thread resume. */
2004 resume_ptid = inferior_ptid;
2005 }
2006
70509625
PA
2007 /* We may actually resume fewer threads at first, e.g., if a thread
2008 is stopped at a breakpoint that needs stepping-off, but that
2009 should not be visible to the user/frontend, and neither should
2010 the frontend/user be allowed to proceed any of the threads that
2011 happen to be stopped for internal run control handling, if a
2012 previous command wanted them resumed. */
09cee04b
PA
2013 return resume_ptid;
2014}
2015
c906108c
SS
2016/* Resume the inferior, but allow a QUIT. This is useful if the user
2017 wants to interrupt some lengthy single-stepping operation
2018 (for child processes, the SIGINT goes to the inferior, and so
2019 we get a SIGINT random_signal, but for remote debugging and perhaps
2020 other targets, that's not true).
2021
2022 STEP nonzero if we should step (zero to continue instead).
2023 SIG is the signal to give the inferior (zero for none). */
2024void
2ea28649 2025resume (int step, enum gdb_signal sig)
c906108c 2026{
74b7792f 2027 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
2028 struct regcache *regcache = get_current_regcache ();
2029 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 2030 struct thread_info *tp = inferior_thread ();
515630c5 2031 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 2032 struct address_space *aspace = get_regcache_aspace (regcache);
b0f16a3e 2033 ptid_t resume_ptid;
a09dd441
PA
2034 /* From here on, this represents the caller's step vs continue
2035 request, while STEP represents what we'll actually request the
2036 target to do. STEP can decay from a step to a continue, if e.g.,
2037 we need to implement single-stepping with breakpoints (software
2038 single-step). When deciding whether "set scheduler-locking step"
2039 applies, it's the callers intention that counts. */
2040 const int entry_step = step;
c7e8a53c 2041
c906108c
SS
2042 QUIT;
2043
74609e71
YQ
2044 if (current_inferior ()->waiting_for_vfork_done)
2045 {
48f9886d
PA
2046 /* Don't try to single-step a vfork parent that is waiting for
2047 the child to get out of the shared memory region (by exec'ing
2048 or exiting). This is particularly important on software
2049 single-step archs, as the child process would trip on the
2050 software single step breakpoint inserted for the parent
2051 process. Since the parent will not actually execute any
2052 instruction until the child is out of the shared region (such
2053 are vfork's semantics), it is safe to simply continue it.
2054 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2055 the parent, and tell it to `keep_going', which automatically
2056 re-sets it stepping. */
74609e71
YQ
2057 if (debug_infrun)
2058 fprintf_unfiltered (gdb_stdlog,
2059 "infrun: resume : clear step\n");
a09dd441 2060 step = 0;
74609e71
YQ
2061 }
2062
527159b7 2063 if (debug_infrun)
237fc4c9 2064 fprintf_unfiltered (gdb_stdlog,
c9737c08 2065 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2066 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2067 step, gdb_signal_to_symbol_string (sig),
2068 tp->control.trap_expected,
0d9a9a5f
PA
2069 target_pid_to_str (inferior_ptid),
2070 paddress (gdbarch, pc));
c906108c 2071
c2c6d25f
JM
2072 /* Normally, by the time we reach `resume', the breakpoints are either
2073 removed or inserted, as appropriate. The exception is if we're sitting
2074 at a permanent breakpoint; we need to step over it, but permanent
2075 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2076 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2077 {
515630c5
UW
2078 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
2079 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5 2080 else
ac74f770
MS
2081 error (_("\
2082The program is stopped at a permanent breakpoint, but GDB does not know\n\
2083how to step past a permanent breakpoint on this architecture. Try using\n\
2084a command like `return' or `jump' to continue execution."));
6d350bb5 2085 }
c2c6d25f 2086
c1e36e3e
PA
2087 /* If we have a breakpoint to step over, make sure to do a single
2088 step only. Same if we have software watchpoints. */
2089 if (tp->control.trap_expected || bpstat_should_step ())
2090 tp->control.may_range_step = 0;
2091
237fc4c9
PA
2092 /* If enabled, step over breakpoints by executing a copy of the
2093 instruction at a different address.
2094
2095 We can't use displaced stepping when we have a signal to deliver;
2096 the comments for displaced_step_prepare explain why. The
2097 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2098 signals' explain what we do instead.
2099
2100 We can't use displaced stepping when we are waiting for vfork_done
2101 event, displaced stepping breaks the vfork child similarly as single
2102 step software breakpoint. */
515630c5 2103 if (use_displaced_stepping (gdbarch)
36728e82 2104 && tp->control.trap_expected
a493e3e2 2105 && sig == GDB_SIGNAL_0
74609e71 2106 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2107 {
fc1cf338
PA
2108 struct displaced_step_inferior_state *displaced;
2109
237fc4c9 2110 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
2111 {
2112 /* Got placed in displaced stepping queue. Will be resumed
2113 later when all the currently queued displaced stepping
251bde03
PA
2114 requests finish. The thread is not executing at this
2115 point, and the call to set_executing will be made later.
2116 But we need to call set_running here, since from the
2117 user/frontend's point of view, threads were set running.
2118 Unless we're calling an inferior function, as in that
2119 case we pretend the inferior doesn't run at all. */
2120 if (!tp->control.in_infcall)
a09dd441 2121 set_running (user_visible_resume_ptid (entry_step), 1);
d56b7306
VP
2122 discard_cleanups (old_cleanups);
2123 return;
2124 }
99e40580 2125
ca7781d2
LM
2126 /* Update pc to reflect the new address from which we will execute
2127 instructions due to displaced stepping. */
2128 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2129
fc1cf338 2130 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
a09dd441
PA
2131 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2132 displaced->step_closure);
237fc4c9
PA
2133 }
2134
2facfe5c 2135 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2136 else if (step)
2facfe5c 2137 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2138
30852783
UW
2139 /* Currently, our software single-step implementation leads to different
2140 results than hardware single-stepping in one situation: when stepping
2141 into delivering a signal which has an associated signal handler,
2142 hardware single-step will stop at the first instruction of the handler,
2143 while software single-step will simply skip execution of the handler.
2144
2145 For now, this difference in behavior is accepted since there is no
2146 easy way to actually implement single-stepping into a signal handler
2147 without kernel support.
2148
2149 However, there is one scenario where this difference leads to follow-on
2150 problems: if we're stepping off a breakpoint by removing all breakpoints
2151 and then single-stepping. In this case, the software single-step
2152 behavior means that even if there is a *breakpoint* in the signal
2153 handler, GDB still would not stop.
2154
2155 Fortunately, we can at least fix this particular issue. We detect
2156 here the case where we are about to deliver a signal while software
2157 single-stepping with breakpoints removed. In this situation, we
2158 revert the decisions to remove all breakpoints and insert single-
2159 step breakpoints, and instead we install a step-resume breakpoint
2160 at the current address, deliver the signal without stepping, and
2161 once we arrive back at the step-resume breakpoint, actually step
2162 over the breakpoint we originally wanted to step over. */
34b7e8a6 2163 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2164 && sig != GDB_SIGNAL_0
2165 && step_over_info_valid_p ())
30852783
UW
2166 {
2167 /* If we have nested signals or a pending signal is delivered
2168 immediately after a handler returns, might might already have
2169 a step-resume breakpoint set on the earlier handler. We cannot
2170 set another step-resume breakpoint; just continue on until the
2171 original breakpoint is hit. */
2172 if (tp->control.step_resume_breakpoint == NULL)
2173 {
2c03e5be 2174 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2175 tp->step_after_step_resume_breakpoint = 1;
2176 }
2177
34b7e8a6 2178 delete_single_step_breakpoints (tp);
30852783 2179
31e77af2 2180 clear_step_over_info ();
30852783 2181 tp->control.trap_expected = 0;
31e77af2
PA
2182
2183 insert_breakpoints ();
30852783
UW
2184 }
2185
b0f16a3e
SM
2186 /* If STEP is set, it's a request to use hardware stepping
2187 facilities. But in that case, we should never
2188 use singlestep breakpoint. */
34b7e8a6 2189 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2190
b0f16a3e
SM
2191 /* Decide the set of threads to ask the target to resume. Start
2192 by assuming everything will be resumed, than narrow the set
2193 by applying increasingly restricting conditions. */
a09dd441 2194 resume_ptid = user_visible_resume_ptid (entry_step);
cd76b0b7 2195
251bde03
PA
2196 /* Even if RESUME_PTID is a wildcard, and we end up resuming less
2197 (e.g., we might need to step over a breakpoint), from the
2198 user/frontend's point of view, all threads in RESUME_PTID are now
2199 running. Unless we're calling an inferior function, as in that
2200 case pretend we inferior doesn't run at all. */
2201 if (!tp->control.in_infcall)
2202 set_running (resume_ptid, 1);
2203
b0f16a3e 2204 /* Maybe resume a single thread after all. */
34b7e8a6 2205 if ((step || thread_has_single_step_breakpoints_set (tp))
b0f16a3e
SM
2206 && tp->control.trap_expected)
2207 {
2208 /* We're allowing a thread to run past a breakpoint it has
2209 hit, by single-stepping the thread with the breakpoint
2210 removed. In which case, we need to single-step only this
2211 thread, and keep others stopped, as they can miss this
2212 breakpoint if allowed to run. */
2213 resume_ptid = inferior_ptid;
2214 }
d4db2f36 2215
7f5ef605
PA
2216 if (execution_direction != EXEC_REVERSE
2217 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2218 {
7f5ef605
PA
2219 /* The only case we currently need to step a breakpoint
2220 instruction is when we have a signal to deliver. See
2221 handle_signal_stop where we handle random signals that could
2222 take out us out of the stepping range. Normally, in that
2223 case we end up continuing (instead of stepping) over the
2224 signal handler with a breakpoint at PC, but there are cases
2225 where we should _always_ single-step, even if we have a
2226 step-resume breakpoint, like when a software watchpoint is
2227 set. Assuming single-stepping and delivering a signal at the
2228 same time would takes us to the signal handler, then we could
2229 have removed the breakpoint at PC to step over it. However,
2230 some hardware step targets (like e.g., Mac OS) can't step
2231 into signal handlers, and for those, we need to leave the
2232 breakpoint at PC inserted, as otherwise if the handler
2233 recurses and executes PC again, it'll miss the breakpoint.
2234 So we leave the breakpoint inserted anyway, but we need to
2235 record that we tried to step a breakpoint instruction, so
2236 that adjust_pc_after_break doesn't end up confused. */
2237 gdb_assert (sig != GDB_SIGNAL_0);
2238
2239 tp->stepped_breakpoint = 1;
2240
b0f16a3e
SM
2241 /* Most targets can step a breakpoint instruction, thus
2242 executing it normally. But if this one cannot, just
2243 continue and we will hit it anyway. */
7f5ef605 2244 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2245 step = 0;
2246 }
ef5cf84e 2247
b0f16a3e
SM
2248 if (debug_displaced
2249 && use_displaced_stepping (gdbarch)
2250 && tp->control.trap_expected)
2251 {
2252 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
2253 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2254 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2255 gdb_byte buf[4];
2256
2257 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2258 paddress (resume_gdbarch, actual_pc));
2259 read_memory (actual_pc, buf, sizeof (buf));
2260 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2261 }
237fc4c9 2262
b0f16a3e
SM
2263 if (tp->control.may_range_step)
2264 {
2265 /* If we're resuming a thread with the PC out of the step
2266 range, then we're doing some nested/finer run control
2267 operation, like stepping the thread out of the dynamic
2268 linker or the displaced stepping scratch pad. We
2269 shouldn't have allowed a range step then. */
2270 gdb_assert (pc_in_thread_step_range (pc, tp));
2271 }
c1e36e3e 2272
b0f16a3e
SM
2273 /* Install inferior's terminal modes. */
2274 target_terminal_inferior ();
2275
2276 /* Avoid confusing the next resume, if the next stop/resume
2277 happens to apply to another thread. */
2278 tp->suspend.stop_signal = GDB_SIGNAL_0;
2279
2280 /* Advise target which signals may be handled silently. If we have
6cc83d2a
PA
2281 removed breakpoints because we are stepping over one (in any
2282 thread), we need to receive all signals to avoid accidentally
2283 skipping a breakpoint during execution of a signal handler. */
2284 if (step_over_info_valid_p ())
b0f16a3e
SM
2285 target_pass_signals (0, NULL);
2286 else
2287 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2455069d 2288
b0f16a3e 2289 target_resume (resume_ptid, step, sig);
c906108c
SS
2290
2291 discard_cleanups (old_cleanups);
2292}
2293\f
237fc4c9 2294/* Proceeding. */
c906108c
SS
2295
2296/* Clear out all variables saying what to do when inferior is continued.
2297 First do this, then set the ones you want, then call `proceed'. */
2298
a7212384
UW
2299static void
2300clear_proceed_status_thread (struct thread_info *tp)
c906108c 2301{
a7212384
UW
2302 if (debug_infrun)
2303 fprintf_unfiltered (gdb_stdlog,
2304 "infrun: clear_proceed_status_thread (%s)\n",
2305 target_pid_to_str (tp->ptid));
d6b48e9c 2306
70509625
PA
2307 /* If this signal should not be seen by program, give it zero.
2308 Used for debugging signals. */
2309 if (!signal_pass_state (tp->suspend.stop_signal))
2310 tp->suspend.stop_signal = GDB_SIGNAL_0;
2311
16c381f0
JK
2312 tp->control.trap_expected = 0;
2313 tp->control.step_range_start = 0;
2314 tp->control.step_range_end = 0;
c1e36e3e 2315 tp->control.may_range_step = 0;
16c381f0
JK
2316 tp->control.step_frame_id = null_frame_id;
2317 tp->control.step_stack_frame_id = null_frame_id;
2318 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
a7212384 2319 tp->stop_requested = 0;
4e1c45ea 2320
16c381f0 2321 tp->control.stop_step = 0;
32400beb 2322
16c381f0 2323 tp->control.proceed_to_finish = 0;
414c69f7 2324
17b2616c
PA
2325 tp->control.command_interp = NULL;
2326
a7212384 2327 /* Discard any remaining commands or status from previous stop. */
16c381f0 2328 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2329}
32400beb 2330
a7212384 2331void
70509625 2332clear_proceed_status (int step)
a7212384 2333{
6c95b8df
PA
2334 if (!non_stop)
2335 {
70509625
PA
2336 struct thread_info *tp;
2337 ptid_t resume_ptid;
2338
2339 resume_ptid = user_visible_resume_ptid (step);
2340
2341 /* In all-stop mode, delete the per-thread status of all threads
2342 we're about to resume, implicitly and explicitly. */
2343 ALL_NON_EXITED_THREADS (tp)
2344 {
2345 if (!ptid_match (tp->ptid, resume_ptid))
2346 continue;
2347 clear_proceed_status_thread (tp);
2348 }
6c95b8df
PA
2349 }
2350
a7212384
UW
2351 if (!ptid_equal (inferior_ptid, null_ptid))
2352 {
2353 struct inferior *inferior;
2354
2355 if (non_stop)
2356 {
6c95b8df
PA
2357 /* If in non-stop mode, only delete the per-thread status of
2358 the current thread. */
a7212384
UW
2359 clear_proceed_status_thread (inferior_thread ());
2360 }
6c95b8df 2361
d6b48e9c 2362 inferior = current_inferior ();
16c381f0 2363 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2364 }
2365
c906108c 2366 stop_after_trap = 0;
f3b1572e 2367
31e77af2
PA
2368 clear_step_over_info ();
2369
f3b1572e 2370 observer_notify_about_to_proceed ();
c906108c 2371
d5c31457
UW
2372 if (stop_registers)
2373 {
2374 regcache_xfree (stop_registers);
2375 stop_registers = NULL;
2376 }
c906108c
SS
2377}
2378
99619bea
PA
2379/* Returns true if TP is still stopped at a breakpoint that needs
2380 stepping-over in order to make progress. If the breakpoint is gone
2381 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2382
2383static int
99619bea
PA
2384thread_still_needs_step_over (struct thread_info *tp)
2385{
2386 if (tp->stepping_over_breakpoint)
2387 {
2388 struct regcache *regcache = get_thread_regcache (tp->ptid);
2389
2390 if (breakpoint_here_p (get_regcache_aspace (regcache),
2391 regcache_read_pc (regcache)))
2392 return 1;
2393
2394 tp->stepping_over_breakpoint = 0;
2395 }
2396
2397 return 0;
2398}
2399
483805cf
PA
2400/* Returns true if scheduler locking applies. STEP indicates whether
2401 we're about to do a step/next-like command to a thread. */
2402
2403static int
2404schedlock_applies (int step)
2405{
2406 return (scheduler_mode == schedlock_on
2407 || (scheduler_mode == schedlock_step
2408 && step));
2409}
2410
99619bea
PA
2411/* Look a thread other than EXCEPT that has previously reported a
2412 breakpoint event, and thus needs a step-over in order to make
2413 progress. Returns NULL is none is found. STEP indicates whether
2414 we're about to step the current thread, in order to decide whether
2415 "set scheduler-locking step" applies. */
2416
2417static struct thread_info *
2418find_thread_needs_step_over (int step, struct thread_info *except)
ea67f13b 2419{
99619bea 2420 struct thread_info *tp, *current;
5a437975
DE
2421
2422 /* With non-stop mode on, threads are always handled individually. */
2423 gdb_assert (! non_stop);
ea67f13b 2424
99619bea 2425 current = inferior_thread ();
d4db2f36 2426
99619bea
PA
2427 /* If scheduler locking applies, we can avoid iterating over all
2428 threads. */
483805cf 2429 if (schedlock_applies (step))
ea67f13b 2430 {
99619bea
PA
2431 if (except != current
2432 && thread_still_needs_step_over (current))
2433 return current;
515630c5 2434
99619bea
PA
2435 return NULL;
2436 }
0d9a9a5f 2437
034f788c 2438 ALL_NON_EXITED_THREADS (tp)
99619bea
PA
2439 {
2440 /* Ignore the EXCEPT thread. */
2441 if (tp == except)
2442 continue;
2443 /* Ignore threads of processes we're not resuming. */
2444 if (!sched_multi
2445 && ptid_get_pid (tp->ptid) != ptid_get_pid (inferior_ptid))
2446 continue;
2447
2448 if (thread_still_needs_step_over (tp))
2449 return tp;
ea67f13b
DJ
2450 }
2451
99619bea 2452 return NULL;
ea67f13b 2453}
e4846b08 2454
c906108c
SS
2455/* Basic routine for continuing the program in various fashions.
2456
2457 ADDR is the address to resume at, or -1 for resume where stopped.
2458 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2459 or -1 for act according to how it stopped.
c906108c 2460 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2461 -1 means return after that and print nothing.
2462 You should probably set various step_... variables
2463 before calling here, if you are stepping.
c906108c
SS
2464
2465 You should call clear_proceed_status before calling proceed. */
2466
2467void
2ea28649 2468proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
c906108c 2469{
e58b0e63
PA
2470 struct regcache *regcache;
2471 struct gdbarch *gdbarch;
4e1c45ea 2472 struct thread_info *tp;
e58b0e63 2473 CORE_ADDR pc;
6c95b8df 2474 struct address_space *aspace;
c906108c 2475
e58b0e63
PA
2476 /* If we're stopped at a fork/vfork, follow the branch set by the
2477 "set follow-fork-mode" command; otherwise, we'll just proceed
2478 resuming the current thread. */
2479 if (!follow_fork ())
2480 {
2481 /* The target for some reason decided not to resume. */
2482 normal_stop ();
f148b27e
PA
2483 if (target_can_async_p ())
2484 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2485 return;
2486 }
2487
842951eb
PA
2488 /* We'll update this if & when we switch to a new thread. */
2489 previous_inferior_ptid = inferior_ptid;
2490
e58b0e63
PA
2491 regcache = get_current_regcache ();
2492 gdbarch = get_regcache_arch (regcache);
6c95b8df 2493 aspace = get_regcache_aspace (regcache);
e58b0e63 2494 pc = regcache_read_pc (regcache);
2adfaa28 2495 tp = inferior_thread ();
e58b0e63 2496
c906108c 2497 if (step > 0)
515630c5 2498 step_start_function = find_pc_function (pc);
c906108c
SS
2499 if (step < 0)
2500 stop_after_trap = 1;
2501
99619bea
PA
2502 /* Fill in with reasonable starting values. */
2503 init_thread_stepping_state (tp);
2504
2acceee2 2505 if (addr == (CORE_ADDR) -1)
c906108c 2506 {
6c95b8df 2507 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
b2175913 2508 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2509 /* There is a breakpoint at the address we will resume at,
2510 step one instruction before inserting breakpoints so that
2511 we do not stop right away (and report a second hit at this
b2175913
MS
2512 breakpoint).
2513
2514 Note, we don't do this in reverse, because we won't
2515 actually be executing the breakpoint insn anyway.
2516 We'll be (un-)executing the previous instruction. */
99619bea 2517 tp->stepping_over_breakpoint = 1;
515630c5
UW
2518 else if (gdbarch_single_step_through_delay_p (gdbarch)
2519 && gdbarch_single_step_through_delay (gdbarch,
2520 get_current_frame ()))
3352ef37
AC
2521 /* We stepped onto an instruction that needs to be stepped
2522 again before re-inserting the breakpoint, do so. */
99619bea 2523 tp->stepping_over_breakpoint = 1;
c906108c
SS
2524 }
2525 else
2526 {
515630c5 2527 regcache_write_pc (regcache, addr);
c906108c
SS
2528 }
2529
70509625
PA
2530 if (siggnal != GDB_SIGNAL_DEFAULT)
2531 tp->suspend.stop_signal = siggnal;
2532
17b2616c
PA
2533 /* Record the interpreter that issued the execution command that
2534 caused this thread to resume. If the top level interpreter is
2535 MI/async, and the execution command was a CLI command
2536 (next/step/etc.), we'll want to print stop event output to the MI
2537 console channel (the stepped-to line, etc.), as if the user
2538 entered the execution command on a real GDB console. */
2539 inferior_thread ()->control.command_interp = command_interp ();
2540
527159b7 2541 if (debug_infrun)
8a9de0e4 2542 fprintf_unfiltered (gdb_stdlog,
c9737c08
PA
2543 "infrun: proceed (addr=%s, signal=%s, step=%d)\n",
2544 paddress (gdbarch, addr),
2545 gdb_signal_to_symbol_string (siggnal), step);
527159b7 2546
94cc34af
PA
2547 if (non_stop)
2548 /* In non-stop, each thread is handled individually. The context
2549 must already be set to the right thread here. */
2550 ;
2551 else
2552 {
99619bea
PA
2553 struct thread_info *step_over;
2554
94cc34af
PA
2555 /* In a multi-threaded task we may select another thread and
2556 then continue or step.
c906108c 2557
94cc34af
PA
2558 But if the old thread was stopped at a breakpoint, it will
2559 immediately cause another breakpoint stop without any
2560 execution (i.e. it will report a breakpoint hit incorrectly).
2561 So we must step over it first.
c906108c 2562
99619bea
PA
2563 Look for a thread other than the current (TP) that reported a
2564 breakpoint hit and hasn't been resumed yet since. */
2565 step_over = find_thread_needs_step_over (step, tp);
2566 if (step_over != NULL)
2adfaa28 2567 {
99619bea
PA
2568 if (debug_infrun)
2569 fprintf_unfiltered (gdb_stdlog,
2570 "infrun: need to step-over [%s] first\n",
2571 target_pid_to_str (step_over->ptid));
2572
2573 /* Store the prev_pc for the stepping thread too, needed by
2574 switch_back_to_stepping thread. */
2575 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2576 switch_to_thread (step_over->ptid);
2577 tp = step_over;
2adfaa28 2578 }
94cc34af 2579 }
c906108c 2580
31e77af2
PA
2581 /* If we need to step over a breakpoint, and we're not using
2582 displaced stepping to do so, insert all breakpoints (watchpoints,
2583 etc.) but the one we're stepping over, step one instruction, and
2584 then re-insert the breakpoint when that step is finished. */
99619bea 2585 if (tp->stepping_over_breakpoint && !use_displaced_stepping (gdbarch))
30852783 2586 {
31e77af2
PA
2587 struct regcache *regcache = get_current_regcache ();
2588
2589 set_step_over_info (get_regcache_aspace (regcache),
963f9c80 2590 regcache_read_pc (regcache), 0);
30852783 2591 }
31e77af2
PA
2592 else
2593 clear_step_over_info ();
30852783 2594
31e77af2 2595 insert_breakpoints ();
30852783 2596
99619bea
PA
2597 tp->control.trap_expected = tp->stepping_over_breakpoint;
2598
c906108c
SS
2599 annotate_starting ();
2600
2601 /* Make sure that output from GDB appears before output from the
2602 inferior. */
2603 gdb_flush (gdb_stdout);
2604
e4846b08 2605 /* Refresh prev_pc value just prior to resuming. This used to be
22bcd14b 2606 done in stop_waiting, however, setting prev_pc there did not handle
e4846b08
JJ
2607 scenarios such as inferior function calls or returning from
2608 a function via the return command. In those cases, the prev_pc
2609 value was not set properly for subsequent commands. The prev_pc value
2610 is used to initialize the starting line number in the ecs. With an
2611 invalid value, the gdb next command ends up stopping at the position
2612 represented by the next line table entry past our start position.
2613 On platforms that generate one line table entry per line, this
2614 is not a problem. However, on the ia64, the compiler generates
2615 extraneous line table entries that do not increase the line number.
2616 When we issue the gdb next command on the ia64 after an inferior call
2617 or a return command, we often end up a few instructions forward, still
2618 within the original line we started.
2619
d5cd6034
JB
2620 An attempt was made to refresh the prev_pc at the same time the
2621 execution_control_state is initialized (for instance, just before
2622 waiting for an inferior event). But this approach did not work
2623 because of platforms that use ptrace, where the pc register cannot
2624 be read unless the inferior is stopped. At that point, we are not
2625 guaranteed the inferior is stopped and so the regcache_read_pc() call
2626 can fail. Setting the prev_pc value here ensures the value is updated
2627 correctly when the inferior is stopped. */
4e1c45ea 2628 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 2629
c906108c 2630 /* Resume inferior. */
99619bea 2631 resume (tp->control.trap_expected || step || bpstat_should_step (),
0de5618e 2632 tp->suspend.stop_signal);
c906108c
SS
2633
2634 /* Wait for it to stop (if not standalone)
2635 and in any case decode why it stopped, and act accordingly. */
43ff13b4 2636 /* Do this only if we are not using the event loop, or if the target
1777feb0 2637 does not support asynchronous execution. */
362646f5 2638 if (!target_can_async_p ())
43ff13b4 2639 {
e4c8541f 2640 wait_for_inferior ();
43ff13b4
JM
2641 normal_stop ();
2642 }
c906108c 2643}
c906108c
SS
2644\f
2645
2646/* Start remote-debugging of a machine over a serial link. */
96baa820 2647
c906108c 2648void
8621d6a9 2649start_remote (int from_tty)
c906108c 2650{
d6b48e9c 2651 struct inferior *inferior;
d6b48e9c
PA
2652
2653 inferior = current_inferior ();
16c381f0 2654 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 2655
1777feb0 2656 /* Always go on waiting for the target, regardless of the mode. */
6426a772 2657 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 2658 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
2659 nothing is returned (instead of just blocking). Because of this,
2660 targets expecting an immediate response need to, internally, set
2661 things up so that the target_wait() is forced to eventually
1777feb0 2662 timeout. */
6426a772
JM
2663 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2664 differentiate to its caller what the state of the target is after
2665 the initial open has been performed. Here we're assuming that
2666 the target has stopped. It should be possible to eventually have
2667 target_open() return to the caller an indication that the target
2668 is currently running and GDB state should be set to the same as
1777feb0 2669 for an async run. */
e4c8541f 2670 wait_for_inferior ();
8621d6a9
DJ
2671
2672 /* Now that the inferior has stopped, do any bookkeeping like
2673 loading shared libraries. We want to do this before normal_stop,
2674 so that the displayed frame is up to date. */
2675 post_create_inferior (&current_target, from_tty);
2676
6426a772 2677 normal_stop ();
c906108c
SS
2678}
2679
2680/* Initialize static vars when a new inferior begins. */
2681
2682void
96baa820 2683init_wait_for_inferior (void)
c906108c
SS
2684{
2685 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 2686
c906108c
SS
2687 breakpoint_init_inferior (inf_starting);
2688
70509625 2689 clear_proceed_status (0);
9f976b41 2690
ca005067 2691 target_last_wait_ptid = minus_one_ptid;
237fc4c9 2692
842951eb 2693 previous_inferior_ptid = inferior_ptid;
0d1e5fa7 2694
edb3359d
DJ
2695 /* Discard any skipped inlined frames. */
2696 clear_inline_frame_state (minus_one_ptid);
c906108c 2697}
237fc4c9 2698
c906108c 2699\f
b83266a0
SS
2700/* This enum encodes possible reasons for doing a target_wait, so that
2701 wfi can call target_wait in one place. (Ultimately the call will be
2702 moved out of the infinite loop entirely.) */
2703
c5aa993b
JM
2704enum infwait_states
2705{
cd0fc7c3 2706 infwait_normal_state,
d983da9c 2707 infwait_step_watch_state,
cd0fc7c3 2708 infwait_nonstep_watch_state
b83266a0
SS
2709};
2710
0d1e5fa7 2711/* Current inferior wait state. */
8870954f 2712static enum infwait_states infwait_state;
cd0fc7c3 2713
0d1e5fa7
PA
2714/* Data to be passed around while handling an event. This data is
2715 discarded between events. */
c5aa993b 2716struct execution_control_state
488f131b 2717{
0d1e5fa7 2718 ptid_t ptid;
4e1c45ea
PA
2719 /* The thread that got the event, if this was a thread event; NULL
2720 otherwise. */
2721 struct thread_info *event_thread;
2722
488f131b 2723 struct target_waitstatus ws;
7e324e48 2724 int stop_func_filled_in;
488f131b
JB
2725 CORE_ADDR stop_func_start;
2726 CORE_ADDR stop_func_end;
2c02bd72 2727 const char *stop_func_name;
488f131b 2728 int wait_some_more;
4f5d7f63 2729
2adfaa28
PA
2730 /* True if the event thread hit the single-step breakpoint of
2731 another thread. Thus the event doesn't cause a stop, the thread
2732 needs to be single-stepped past the single-step breakpoint before
2733 we can switch back to the original stepping thread. */
2734 int hit_singlestep_breakpoint;
488f131b
JB
2735};
2736
ec9499be 2737static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2738
568d6575
UW
2739static void handle_step_into_function (struct gdbarch *gdbarch,
2740 struct execution_control_state *ecs);
2741static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2742 struct execution_control_state *ecs);
4f5d7f63 2743static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 2744static void check_exception_resume (struct execution_control_state *,
28106bc2 2745 struct frame_info *);
611c83ae 2746
bdc36728 2747static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 2748static void stop_waiting (struct execution_control_state *ecs);
104c1213 2749static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2750static void keep_going (struct execution_control_state *ecs);
94c57d6a 2751static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 2752static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 2753
252fbfc8
PA
2754/* Callback for iterate over threads. If the thread is stopped, but
2755 the user/frontend doesn't know about that yet, go through
2756 normal_stop, as if the thread had just stopped now. ARG points at
2757 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2758 ptid_is_pid(PTID) is true, applies to all threads of the process
2759 pointed at by PTID. Otherwise, apply only to the thread pointed by
2760 PTID. */
2761
2762static int
2763infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2764{
2765 ptid_t ptid = * (ptid_t *) arg;
2766
2767 if ((ptid_equal (info->ptid, ptid)
2768 || ptid_equal (minus_one_ptid, ptid)
2769 || (ptid_is_pid (ptid)
2770 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2771 && is_running (info->ptid)
2772 && !is_executing (info->ptid))
2773 {
2774 struct cleanup *old_chain;
2775 struct execution_control_state ecss;
2776 struct execution_control_state *ecs = &ecss;
2777
2778 memset (ecs, 0, sizeof (*ecs));
2779
2780 old_chain = make_cleanup_restore_current_thread ();
2781
f15cb84a
YQ
2782 overlay_cache_invalid = 1;
2783 /* Flush target cache before starting to handle each event.
2784 Target was running and cache could be stale. This is just a
2785 heuristic. Running threads may modify target memory, but we
2786 don't get any event. */
2787 target_dcache_invalidate ();
2788
252fbfc8
PA
2789 /* Go through handle_inferior_event/normal_stop, so we always
2790 have consistent output as if the stop event had been
2791 reported. */
2792 ecs->ptid = info->ptid;
e09875d4 2793 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8 2794 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 2795 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
2796
2797 handle_inferior_event (ecs);
2798
2799 if (!ecs->wait_some_more)
2800 {
2801 struct thread_info *tp;
2802
2803 normal_stop ();
2804
fa4cd53f 2805 /* Finish off the continuations. */
252fbfc8 2806 tp = inferior_thread ();
fa4cd53f
PA
2807 do_all_intermediate_continuations_thread (tp, 1);
2808 do_all_continuations_thread (tp, 1);
252fbfc8
PA
2809 }
2810
2811 do_cleanups (old_chain);
2812 }
2813
2814 return 0;
2815}
2816
2817/* This function is attached as a "thread_stop_requested" observer.
2818 Cleanup local state that assumed the PTID was to be resumed, and
2819 report the stop to the frontend. */
2820
2c0b251b 2821static void
252fbfc8
PA
2822infrun_thread_stop_requested (ptid_t ptid)
2823{
fc1cf338 2824 struct displaced_step_inferior_state *displaced;
252fbfc8
PA
2825
2826 /* PTID was requested to stop. Remove it from the displaced
2827 stepping queue, so we don't try to resume it automatically. */
fc1cf338
PA
2828
2829 for (displaced = displaced_step_inferior_states;
2830 displaced;
2831 displaced = displaced->next)
252fbfc8 2832 {
fc1cf338 2833 struct displaced_step_request *it, **prev_next_p;
252fbfc8 2834
fc1cf338
PA
2835 it = displaced->step_request_queue;
2836 prev_next_p = &displaced->step_request_queue;
2837 while (it)
252fbfc8 2838 {
fc1cf338
PA
2839 if (ptid_match (it->ptid, ptid))
2840 {
2841 *prev_next_p = it->next;
2842 it->next = NULL;
2843 xfree (it);
2844 }
252fbfc8 2845 else
fc1cf338
PA
2846 {
2847 prev_next_p = &it->next;
2848 }
252fbfc8 2849
fc1cf338 2850 it = *prev_next_p;
252fbfc8 2851 }
252fbfc8
PA
2852 }
2853
2854 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2855}
2856
a07daef3
PA
2857static void
2858infrun_thread_thread_exit (struct thread_info *tp, int silent)
2859{
2860 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2861 nullify_last_target_wait_ptid ();
2862}
2863
0cbcdb96
PA
2864/* Delete the step resume, single-step and longjmp/exception resume
2865 breakpoints of TP. */
4e1c45ea 2866
0cbcdb96
PA
2867static void
2868delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 2869{
0cbcdb96
PA
2870 delete_step_resume_breakpoint (tp);
2871 delete_exception_resume_breakpoint (tp);
34b7e8a6 2872 delete_single_step_breakpoints (tp);
4e1c45ea
PA
2873}
2874
0cbcdb96
PA
2875/* If the target still has execution, call FUNC for each thread that
2876 just stopped. In all-stop, that's all the non-exited threads; in
2877 non-stop, that's the current thread, only. */
2878
2879typedef void (*for_each_just_stopped_thread_callback_func)
2880 (struct thread_info *tp);
4e1c45ea
PA
2881
2882static void
0cbcdb96 2883for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 2884{
0cbcdb96 2885 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
4e1c45ea
PA
2886 return;
2887
2888 if (non_stop)
2889 {
0cbcdb96
PA
2890 /* If in non-stop mode, only the current thread stopped. */
2891 func (inferior_thread ());
4e1c45ea
PA
2892 }
2893 else
0cbcdb96
PA
2894 {
2895 struct thread_info *tp;
2896
2897 /* In all-stop mode, all threads have stopped. */
2898 ALL_NON_EXITED_THREADS (tp)
2899 {
2900 func (tp);
2901 }
2902 }
2903}
2904
2905/* Delete the step resume and longjmp/exception resume breakpoints of
2906 the threads that just stopped. */
2907
2908static void
2909delete_just_stopped_threads_infrun_breakpoints (void)
2910{
2911 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
2912}
2913
2914/* Delete the single-step breakpoints of the threads that just
2915 stopped. */
7c16b83e 2916
34b7e8a6
PA
2917static void
2918delete_just_stopped_threads_single_step_breakpoints (void)
2919{
2920 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
2921}
2922
1777feb0 2923/* A cleanup wrapper. */
4e1c45ea
PA
2924
2925static void
0cbcdb96 2926delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
4e1c45ea 2927{
0cbcdb96 2928 delete_just_stopped_threads_infrun_breakpoints ();
4e1c45ea
PA
2929}
2930
223698f8
DE
2931/* Pretty print the results of target_wait, for debugging purposes. */
2932
2933static void
2934print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2935 const struct target_waitstatus *ws)
2936{
2937 char *status_string = target_waitstatus_to_string (ws);
2938 struct ui_file *tmp_stream = mem_fileopen ();
2939 char *text;
223698f8
DE
2940
2941 /* The text is split over several lines because it was getting too long.
2942 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2943 output as a unit; we want only one timestamp printed if debug_timestamp
2944 is set. */
2945
2946 fprintf_unfiltered (tmp_stream,
dfd4cc63
LM
2947 "infrun: target_wait (%d", ptid_get_pid (waiton_ptid));
2948 if (ptid_get_pid (waiton_ptid) != -1)
223698f8
DE
2949 fprintf_unfiltered (tmp_stream,
2950 " [%s]", target_pid_to_str (waiton_ptid));
2951 fprintf_unfiltered (tmp_stream, ", status) =\n");
2952 fprintf_unfiltered (tmp_stream,
2953 "infrun: %d [%s],\n",
dfd4cc63
LM
2954 ptid_get_pid (result_ptid),
2955 target_pid_to_str (result_ptid));
223698f8
DE
2956 fprintf_unfiltered (tmp_stream,
2957 "infrun: %s\n",
2958 status_string);
2959
759ef836 2960 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
2961
2962 /* This uses %s in part to handle %'s in the text, but also to avoid
2963 a gcc error: the format attribute requires a string literal. */
2964 fprintf_unfiltered (gdb_stdlog, "%s", text);
2965
2966 xfree (status_string);
2967 xfree (text);
2968 ui_file_delete (tmp_stream);
2969}
2970
24291992
PA
2971/* Prepare and stabilize the inferior for detaching it. E.g.,
2972 detaching while a thread is displaced stepping is a recipe for
2973 crashing it, as nothing would readjust the PC out of the scratch
2974 pad. */
2975
2976void
2977prepare_for_detach (void)
2978{
2979 struct inferior *inf = current_inferior ();
2980 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2981 struct cleanup *old_chain_1;
2982 struct displaced_step_inferior_state *displaced;
2983
2984 displaced = get_displaced_stepping_state (inf->pid);
2985
2986 /* Is any thread of this process displaced stepping? If not,
2987 there's nothing else to do. */
2988 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2989 return;
2990
2991 if (debug_infrun)
2992 fprintf_unfiltered (gdb_stdlog,
2993 "displaced-stepping in-process while detaching");
2994
2995 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2996 inf->detaching = 1;
2997
2998 while (!ptid_equal (displaced->step_ptid, null_ptid))
2999 {
3000 struct cleanup *old_chain_2;
3001 struct execution_control_state ecss;
3002 struct execution_control_state *ecs;
3003
3004 ecs = &ecss;
3005 memset (ecs, 0, sizeof (*ecs));
3006
3007 overlay_cache_invalid = 1;
f15cb84a
YQ
3008 /* Flush target cache before starting to handle each event.
3009 Target was running and cache could be stale. This is just a
3010 heuristic. Running threads may modify target memory, but we
3011 don't get any event. */
3012 target_dcache_invalidate ();
24291992 3013
24291992
PA
3014 if (deprecated_target_wait_hook)
3015 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
3016 else
3017 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
3018
3019 if (debug_infrun)
3020 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3021
3022 /* If an error happens while handling the event, propagate GDB's
3023 knowledge of the executing state to the frontend/user running
3024 state. */
3e43a32a
MS
3025 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3026 &minus_one_ptid);
24291992
PA
3027
3028 /* Now figure out what to do with the result of the result. */
3029 handle_inferior_event (ecs);
3030
3031 /* No error, don't finish the state yet. */
3032 discard_cleanups (old_chain_2);
3033
3034 /* Breakpoints and watchpoints are not installed on the target
3035 at this point, and signals are passed directly to the
3036 inferior, so this must mean the process is gone. */
3037 if (!ecs->wait_some_more)
3038 {
3039 discard_cleanups (old_chain_1);
3040 error (_("Program exited while detaching"));
3041 }
3042 }
3043
3044 discard_cleanups (old_chain_1);
3045}
3046
cd0fc7c3 3047/* Wait for control to return from inferior to debugger.
ae123ec6 3048
cd0fc7c3
SS
3049 If inferior gets a signal, we may decide to start it up again
3050 instead of returning. That is why there is a loop in this function.
3051 When this function actually returns it means the inferior
3052 should be left stopped and GDB should read more commands. */
3053
3054void
e4c8541f 3055wait_for_inferior (void)
cd0fc7c3
SS
3056{
3057 struct cleanup *old_cleanups;
c906108c 3058
527159b7 3059 if (debug_infrun)
ae123ec6 3060 fprintf_unfiltered
e4c8541f 3061 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3062
0cbcdb96
PA
3063 old_cleanups
3064 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3065 NULL);
cd0fc7c3 3066
c906108c
SS
3067 while (1)
3068 {
ae25568b
PA
3069 struct execution_control_state ecss;
3070 struct execution_control_state *ecs = &ecss;
29f49a6a 3071 struct cleanup *old_chain;
963f9c80 3072 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3073
ae25568b
PA
3074 memset (ecs, 0, sizeof (*ecs));
3075
ec9499be 3076 overlay_cache_invalid = 1;
ec9499be 3077
f15cb84a
YQ
3078 /* Flush target cache before starting to handle each event.
3079 Target was running and cache could be stale. This is just a
3080 heuristic. Running threads may modify target memory, but we
3081 don't get any event. */
3082 target_dcache_invalidate ();
3083
9a4105ab 3084 if (deprecated_target_wait_hook)
47608cb1 3085 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 3086 else
47608cb1 3087 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3088
f00150c9 3089 if (debug_infrun)
223698f8 3090 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3091
29f49a6a
PA
3092 /* If an error happens while handling the event, propagate GDB's
3093 knowledge of the executing state to the frontend/user running
3094 state. */
3095 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3096
cd0fc7c3
SS
3097 /* Now figure out what to do with the result of the result. */
3098 handle_inferior_event (ecs);
c906108c 3099
29f49a6a
PA
3100 /* No error, don't finish the state yet. */
3101 discard_cleanups (old_chain);
3102
cd0fc7c3
SS
3103 if (!ecs->wait_some_more)
3104 break;
3105 }
4e1c45ea 3106
cd0fc7c3
SS
3107 do_cleanups (old_cleanups);
3108}
c906108c 3109
1777feb0 3110/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3111 event loop whenever a change of state is detected on the file
1777feb0
MS
3112 descriptor corresponding to the target. It can be called more than
3113 once to complete a single execution command. In such cases we need
3114 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3115 that this function is called for a single execution command, then
3116 report to the user that the inferior has stopped, and do the
1777feb0 3117 necessary cleanups. */
43ff13b4
JM
3118
3119void
fba45db2 3120fetch_inferior_event (void *client_data)
43ff13b4 3121{
0d1e5fa7 3122 struct execution_control_state ecss;
a474d7c2 3123 struct execution_control_state *ecs = &ecss;
4f8d22e3 3124 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 3125 struct cleanup *ts_old_chain;
4f8d22e3 3126 int was_sync = sync_execution;
0f641c01 3127 int cmd_done = 0;
963f9c80 3128 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3129
0d1e5fa7
PA
3130 memset (ecs, 0, sizeof (*ecs));
3131
c5187ac6
PA
3132 /* We're handling a live event, so make sure we're doing live
3133 debugging. If we're looking at traceframes while the target is
3134 running, we're going to need to get back to that mode after
3135 handling the event. */
3136 if (non_stop)
3137 {
3138 make_cleanup_restore_current_traceframe ();
e6e4e701 3139 set_current_traceframe (-1);
c5187ac6
PA
3140 }
3141
4f8d22e3
PA
3142 if (non_stop)
3143 /* In non-stop mode, the user/frontend should not notice a thread
3144 switch due to internal events. Make sure we reverse to the
3145 user selected thread and frame after handling the event and
3146 running any breakpoint commands. */
3147 make_cleanup_restore_current_thread ();
3148
ec9499be 3149 overlay_cache_invalid = 1;
f15cb84a
YQ
3150 /* Flush target cache before starting to handle each event. Target
3151 was running and cache could be stale. This is just a heuristic.
3152 Running threads may modify target memory, but we don't get any
3153 event. */
3154 target_dcache_invalidate ();
3dd5b83d 3155
32231432
PA
3156 make_cleanup_restore_integer (&execution_direction);
3157 execution_direction = target_execution_direction ();
3158
9a4105ab 3159 if (deprecated_target_wait_hook)
a474d7c2 3160 ecs->ptid =
47608cb1 3161 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 3162 else
47608cb1 3163 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 3164
f00150c9 3165 if (debug_infrun)
223698f8 3166 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3167
29f49a6a
PA
3168 /* If an error happens while handling the event, propagate GDB's
3169 knowledge of the executing state to the frontend/user running
3170 state. */
3171 if (!non_stop)
3172 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3173 else
3174 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3175
353d1d73
JK
3176 /* Get executed before make_cleanup_restore_current_thread above to apply
3177 still for the thread which has thrown the exception. */
3178 make_bpstat_clear_actions_cleanup ();
3179
7c16b83e
PA
3180 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3181
43ff13b4 3182 /* Now figure out what to do with the result of the result. */
a474d7c2 3183 handle_inferior_event (ecs);
43ff13b4 3184
a474d7c2 3185 if (!ecs->wait_some_more)
43ff13b4 3186 {
d6b48e9c
PA
3187 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
3188
0cbcdb96 3189 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3190
d6b48e9c 3191 /* We may not find an inferior if this was a process exit. */
16c381f0 3192 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
3193 normal_stop ();
3194
af679fd0 3195 if (target_has_execution
0e5bf2a8 3196 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
af679fd0
PA
3197 && ecs->ws.kind != TARGET_WAITKIND_EXITED
3198 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3199 && ecs->event_thread->step_multi
16c381f0 3200 && ecs->event_thread->control.stop_step)
c2d11a7d
JM
3201 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
3202 else
0f641c01
PA
3203 {
3204 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3205 cmd_done = 1;
3206 }
43ff13b4 3207 }
4f8d22e3 3208
29f49a6a
PA
3209 /* No error, don't finish the thread states yet. */
3210 discard_cleanups (ts_old_chain);
3211
4f8d22e3
PA
3212 /* Revert thread and frame. */
3213 do_cleanups (old_chain);
3214
3215 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
3216 restore the prompt (a synchronous execution command has finished,
3217 and we're ready for input). */
b4a14fd0 3218 if (interpreter_async && was_sync && !sync_execution)
92bcb5f9 3219 observer_notify_sync_execution_done ();
0f641c01
PA
3220
3221 if (cmd_done
3222 && !was_sync
3223 && exec_done_display_p
3224 && (ptid_equal (inferior_ptid, null_ptid)
3225 || !is_running (inferior_ptid)))
3226 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3227}
3228
edb3359d
DJ
3229/* Record the frame and location we're currently stepping through. */
3230void
3231set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3232{
3233 struct thread_info *tp = inferior_thread ();
3234
16c381f0
JK
3235 tp->control.step_frame_id = get_frame_id (frame);
3236 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
3237
3238 tp->current_symtab = sal.symtab;
3239 tp->current_line = sal.line;
3240}
3241
0d1e5fa7
PA
3242/* Clear context switchable stepping state. */
3243
3244void
4e1c45ea 3245init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 3246{
7f5ef605 3247 tss->stepped_breakpoint = 0;
0d1e5fa7 3248 tss->stepping_over_breakpoint = 0;
963f9c80 3249 tss->stepping_over_watchpoint = 0;
0d1e5fa7 3250 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
3251}
3252
c32c64b7
DE
3253/* Set the cached copy of the last ptid/waitstatus. */
3254
3255static void
3256set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3257{
3258 target_last_wait_ptid = ptid;
3259 target_last_waitstatus = status;
3260}
3261
e02bc4cc 3262/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
3263 target_wait()/deprecated_target_wait_hook(). The data is actually
3264 cached by handle_inferior_event(), which gets called immediately
3265 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
3266
3267void
488f131b 3268get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 3269{
39f77062 3270 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
3271 *status = target_last_waitstatus;
3272}
3273
ac264b3b
MS
3274void
3275nullify_last_target_wait_ptid (void)
3276{
3277 target_last_wait_ptid = minus_one_ptid;
3278}
3279
dcf4fbde 3280/* Switch thread contexts. */
dd80620e
MS
3281
3282static void
0d1e5fa7 3283context_switch (ptid_t ptid)
dd80620e 3284{
4b51d87b 3285 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
3286 {
3287 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3288 target_pid_to_str (inferior_ptid));
3289 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 3290 target_pid_to_str (ptid));
fd48f117
DJ
3291 }
3292
0d1e5fa7 3293 switch_to_thread (ptid);
dd80620e
MS
3294}
3295
4fa8626c
DJ
3296static void
3297adjust_pc_after_break (struct execution_control_state *ecs)
3298{
24a73cce
UW
3299 struct regcache *regcache;
3300 struct gdbarch *gdbarch;
6c95b8df 3301 struct address_space *aspace;
118e6252 3302 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 3303
4fa8626c
DJ
3304 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3305 we aren't, just return.
9709f61c
DJ
3306
3307 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
3308 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3309 implemented by software breakpoints should be handled through the normal
3310 breakpoint layer.
8fb3e588 3311
4fa8626c
DJ
3312 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3313 different signals (SIGILL or SIGEMT for instance), but it is less
3314 clear where the PC is pointing afterwards. It may not match
b798847d
UW
3315 gdbarch_decr_pc_after_break. I don't know any specific target that
3316 generates these signals at breakpoints (the code has been in GDB since at
3317 least 1992) so I can not guess how to handle them here.
8fb3e588 3318
e6cf7916
UW
3319 In earlier versions of GDB, a target with
3320 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
3321 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3322 target with both of these set in GDB history, and it seems unlikely to be
3323 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
3324
3325 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
3326 return;
3327
a493e3e2 3328 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
3329 return;
3330
4058b839
PA
3331 /* In reverse execution, when a breakpoint is hit, the instruction
3332 under it has already been de-executed. The reported PC always
3333 points at the breakpoint address, so adjusting it further would
3334 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3335 architecture:
3336
3337 B1 0x08000000 : INSN1
3338 B2 0x08000001 : INSN2
3339 0x08000002 : INSN3
3340 PC -> 0x08000003 : INSN4
3341
3342 Say you're stopped at 0x08000003 as above. Reverse continuing
3343 from that point should hit B2 as below. Reading the PC when the
3344 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3345 been de-executed already.
3346
3347 B1 0x08000000 : INSN1
3348 B2 PC -> 0x08000001 : INSN2
3349 0x08000002 : INSN3
3350 0x08000003 : INSN4
3351
3352 We can't apply the same logic as for forward execution, because
3353 we would wrongly adjust the PC to 0x08000000, since there's a
3354 breakpoint at PC - 1. We'd then report a hit on B1, although
3355 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3356 behaviour. */
3357 if (execution_direction == EXEC_REVERSE)
3358 return;
3359
24a73cce
UW
3360 /* If this target does not decrement the PC after breakpoints, then
3361 we have nothing to do. */
3362 regcache = get_thread_regcache (ecs->ptid);
3363 gdbarch = get_regcache_arch (regcache);
118e6252
MM
3364
3365 decr_pc = target_decr_pc_after_break (gdbarch);
3366 if (decr_pc == 0)
24a73cce
UW
3367 return;
3368
6c95b8df
PA
3369 aspace = get_regcache_aspace (regcache);
3370
8aad930b
AC
3371 /* Find the location where (if we've hit a breakpoint) the
3372 breakpoint would be. */
118e6252 3373 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 3374
1c5cfe86
PA
3375 /* Check whether there actually is a software breakpoint inserted at
3376 that location.
3377
3378 If in non-stop mode, a race condition is possible where we've
3379 removed a breakpoint, but stop events for that breakpoint were
3380 already queued and arrive later. To suppress those spurious
3381 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3382 and retire them after a number of stop events are reported. */
6c95b8df
PA
3383 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3384 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 3385 {
77f9e713 3386 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
abbb1732 3387
8213266a 3388 if (record_full_is_used ())
77f9e713 3389 record_full_gdb_operation_disable_set ();
96429cc8 3390
1c0fdd0e
UW
3391 /* When using hardware single-step, a SIGTRAP is reported for both
3392 a completed single-step and a software breakpoint. Need to
3393 differentiate between the two, as the latter needs adjusting
3394 but the former does not.
3395
3396 The SIGTRAP can be due to a completed hardware single-step only if
3397 - we didn't insert software single-step breakpoints
3398 - the thread to be examined is still the current thread
3399 - this thread is currently being stepped
3400
3401 If any of these events did not occur, we must have stopped due
3402 to hitting a software breakpoint, and have to back up to the
3403 breakpoint address.
3404
3405 As a special case, we could have hardware single-stepped a
3406 software breakpoint. In this case (prev_pc == breakpoint_pc),
3407 we also need to back up to the breakpoint address. */
3408
34b7e8a6 3409 if (thread_has_single_step_breakpoints_set (ecs->event_thread)
1c0fdd0e 3410 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea 3411 || !currently_stepping (ecs->event_thread)
7f5ef605
PA
3412 || (ecs->event_thread->stepped_breakpoint
3413 && ecs->event_thread->prev_pc == breakpoint_pc))
515630c5 3414 regcache_write_pc (regcache, breakpoint_pc);
96429cc8 3415
77f9e713 3416 do_cleanups (old_cleanups);
8aad930b 3417 }
4fa8626c
DJ
3418}
3419
edb3359d
DJ
3420static int
3421stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3422{
3423 for (frame = get_prev_frame (frame);
3424 frame != NULL;
3425 frame = get_prev_frame (frame))
3426 {
3427 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3428 return 1;
3429 if (get_frame_type (frame) != INLINE_FRAME)
3430 break;
3431 }
3432
3433 return 0;
3434}
3435
a96d9b2e
SDJ
3436/* Auxiliary function that handles syscall entry/return events.
3437 It returns 1 if the inferior should keep going (and GDB
3438 should ignore the event), or 0 if the event deserves to be
3439 processed. */
ca2163eb 3440
a96d9b2e 3441static int
ca2163eb 3442handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 3443{
ca2163eb 3444 struct regcache *regcache;
ca2163eb
PA
3445 int syscall_number;
3446
3447 if (!ptid_equal (ecs->ptid, inferior_ptid))
3448 context_switch (ecs->ptid);
3449
3450 regcache = get_thread_regcache (ecs->ptid);
f90263c1 3451 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
3452 stop_pc = regcache_read_pc (regcache);
3453
a96d9b2e
SDJ
3454 if (catch_syscall_enabled () > 0
3455 && catching_syscall_number (syscall_number) > 0)
3456 {
3457 if (debug_infrun)
3458 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3459 syscall_number);
a96d9b2e 3460
16c381f0 3461 ecs->event_thread->control.stop_bpstat
6c95b8df 3462 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 3463 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 3464
ce12b012 3465 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
3466 {
3467 /* Catchpoint hit. */
ca2163eb
PA
3468 return 0;
3469 }
a96d9b2e 3470 }
ca2163eb
PA
3471
3472 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
3473 keep_going (ecs);
3474 return 1;
a96d9b2e
SDJ
3475}
3476
7e324e48
GB
3477/* Lazily fill in the execution_control_state's stop_func_* fields. */
3478
3479static void
3480fill_in_stop_func (struct gdbarch *gdbarch,
3481 struct execution_control_state *ecs)
3482{
3483 if (!ecs->stop_func_filled_in)
3484 {
3485 /* Don't care about return value; stop_func_start and stop_func_name
3486 will both be 0 if it doesn't work. */
3487 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3488 &ecs->stop_func_start, &ecs->stop_func_end);
3489 ecs->stop_func_start
3490 += gdbarch_deprecated_function_start_offset (gdbarch);
3491
591a12a1
UW
3492 if (gdbarch_skip_entrypoint_p (gdbarch))
3493 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
3494 ecs->stop_func_start);
3495
7e324e48
GB
3496 ecs->stop_func_filled_in = 1;
3497 }
3498}
3499
4f5d7f63
PA
3500
3501/* Return the STOP_SOON field of the inferior pointed at by PTID. */
3502
3503static enum stop_kind
3504get_inferior_stop_soon (ptid_t ptid)
3505{
3506 struct inferior *inf = find_inferior_pid (ptid_get_pid (ptid));
3507
3508 gdb_assert (inf != NULL);
3509 return inf->control.stop_soon;
3510}
3511
05ba8510
PA
3512/* Given an execution control state that has been freshly filled in by
3513 an event from the inferior, figure out what it means and take
3514 appropriate action.
3515
3516 The alternatives are:
3517
22bcd14b 3518 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
3519 debugger.
3520
3521 2) keep_going and return; to wait for the next event (set
3522 ecs->event_thread->stepping_over_breakpoint to 1 to single step
3523 once). */
c906108c 3524
ec9499be 3525static void
96baa820 3526handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 3527{
d6b48e9c
PA
3528 enum stop_kind stop_soon;
3529
28736962
PA
3530 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3531 {
3532 /* We had an event in the inferior, but we are not interested in
3533 handling it at this level. The lower layers have already
3534 done what needs to be done, if anything.
3535
3536 One of the possible circumstances for this is when the
3537 inferior produces output for the console. The inferior has
3538 not stopped, and we are ignoring the event. Another possible
3539 circumstance is any event which the lower level knows will be
3540 reported multiple times without an intervening resume. */
3541 if (debug_infrun)
3542 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3543 prepare_to_wait (ecs);
3544 return;
3545 }
3546
0e5bf2a8
PA
3547 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3548 && target_can_async_p () && !sync_execution)
3549 {
3550 /* There were no unwaited-for children left in the target, but,
3551 we're not synchronously waiting for events either. Just
3552 ignore. Otherwise, if we were running a synchronous
3553 execution command, we need to cancel it and give the user
3554 back the terminal. */
3555 if (debug_infrun)
3556 fprintf_unfiltered (gdb_stdlog,
3557 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3558 prepare_to_wait (ecs);
3559 return;
3560 }
3561
1777feb0 3562 /* Cache the last pid/waitstatus. */
c32c64b7 3563 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 3564
ca005067 3565 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 3566 stop_stack_dummy = STOP_NONE;
ca005067 3567
0e5bf2a8
PA
3568 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3569 {
3570 /* No unwaited-for children left. IOW, all resumed children
3571 have exited. */
3572 if (debug_infrun)
3573 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3574
3575 stop_print_frame = 0;
22bcd14b 3576 stop_waiting (ecs);
0e5bf2a8
PA
3577 return;
3578 }
3579
8c90c137 3580 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 3581 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
3582 {
3583 ecs->event_thread = find_thread_ptid (ecs->ptid);
3584 /* If it's a new thread, add it to the thread database. */
3585 if (ecs->event_thread == NULL)
3586 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
3587
3588 /* Disable range stepping. If the next step request could use a
3589 range, this will be end up re-enabled then. */
3590 ecs->event_thread->control.may_range_step = 0;
359f5fe6 3591 }
88ed393a
JK
3592
3593 /* Dependent on valid ECS->EVENT_THREAD. */
3594 adjust_pc_after_break (ecs);
3595
3596 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3597 reinit_frame_cache ();
3598
28736962
PA
3599 breakpoint_retire_moribund ();
3600
2b009048
DJ
3601 /* First, distinguish signals caused by the debugger from signals
3602 that have to do with the program's own actions. Note that
3603 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3604 on the operating system version. Here we detect when a SIGILL or
3605 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3606 something similar for SIGSEGV, since a SIGSEGV will be generated
3607 when we're trying to execute a breakpoint instruction on a
3608 non-executable stack. This happens for call dummy breakpoints
3609 for architectures like SPARC that place call dummies on the
3610 stack. */
2b009048 3611 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
3612 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3613 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3614 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 3615 {
de0a0249
UW
3616 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3617
3618 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3619 regcache_read_pc (regcache)))
3620 {
3621 if (debug_infrun)
3622 fprintf_unfiltered (gdb_stdlog,
3623 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 3624 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 3625 }
2b009048
DJ
3626 }
3627
28736962
PA
3628 /* Mark the non-executing threads accordingly. In all-stop, all
3629 threads of all processes are stopped when we get any event
3630 reported. In non-stop mode, only the event thread stops. If
3631 we're handling a process exit in non-stop mode, there's nothing
3632 to do, as threads of the dead process are gone, and threads of
3633 any other process were left running. */
3634 if (!non_stop)
3635 set_executing (minus_one_ptid, 0);
3636 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3637 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
7aee8dc2 3638 set_executing (ecs->ptid, 0);
8c90c137 3639
488f131b
JB
3640 switch (ecs->ws.kind)
3641 {
3642 case TARGET_WAITKIND_LOADED:
527159b7 3643 if (debug_infrun)
8a9de0e4 3644 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
5c09a2c5
PA
3645 if (!ptid_equal (ecs->ptid, inferior_ptid))
3646 context_switch (ecs->ptid);
b0f4b84b
DJ
3647 /* Ignore gracefully during startup of the inferior, as it might
3648 be the shell which has just loaded some objects, otherwise
3649 add the symbols for the newly loaded objects. Also ignore at
3650 the beginning of an attach or remote session; we will query
3651 the full list of libraries once the connection is
3652 established. */
4f5d7f63
PA
3653
3654 stop_soon = get_inferior_stop_soon (ecs->ptid);
c0236d92 3655 if (stop_soon == NO_STOP_QUIETLY)
488f131b 3656 {
edcc5120
TT
3657 struct regcache *regcache;
3658
edcc5120
TT
3659 regcache = get_thread_regcache (ecs->ptid);
3660
3661 handle_solib_event ();
3662
3663 ecs->event_thread->control.stop_bpstat
3664 = bpstat_stop_status (get_regcache_aspace (regcache),
3665 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 3666
ce12b012 3667 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
3668 {
3669 /* A catchpoint triggered. */
94c57d6a
PA
3670 process_event_stop_test (ecs);
3671 return;
edcc5120 3672 }
488f131b 3673
b0f4b84b
DJ
3674 /* If requested, stop when the dynamic linker notifies
3675 gdb of events. This allows the user to get control
3676 and place breakpoints in initializer routines for
3677 dynamically loaded objects (among other things). */
a493e3e2 3678 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
3679 if (stop_on_solib_events)
3680 {
55409f9d
DJ
3681 /* Make sure we print "Stopped due to solib-event" in
3682 normal_stop. */
3683 stop_print_frame = 1;
3684
22bcd14b 3685 stop_waiting (ecs);
b0f4b84b
DJ
3686 return;
3687 }
488f131b 3688 }
b0f4b84b
DJ
3689
3690 /* If we are skipping through a shell, or through shared library
3691 loading that we aren't interested in, resume the program. If
5c09a2c5 3692 we're running the program normally, also resume. */
b0f4b84b
DJ
3693 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3694 {
74960c60
VP
3695 /* Loading of shared libraries might have changed breakpoint
3696 addresses. Make sure new breakpoints are inserted. */
a25a5a45 3697 if (stop_soon == NO_STOP_QUIETLY)
74960c60 3698 insert_breakpoints ();
a493e3e2 3699 resume (0, GDB_SIGNAL_0);
b0f4b84b
DJ
3700 prepare_to_wait (ecs);
3701 return;
3702 }
3703
5c09a2c5
PA
3704 /* But stop if we're attaching or setting up a remote
3705 connection. */
3706 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3707 || stop_soon == STOP_QUIETLY_REMOTE)
3708 {
3709 if (debug_infrun)
3710 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 3711 stop_waiting (ecs);
5c09a2c5
PA
3712 return;
3713 }
3714
3715 internal_error (__FILE__, __LINE__,
3716 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 3717
488f131b 3718 case TARGET_WAITKIND_SPURIOUS:
527159b7 3719 if (debug_infrun)
8a9de0e4 3720 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 3721 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 3722 context_switch (ecs->ptid);
a493e3e2 3723 resume (0, GDB_SIGNAL_0);
488f131b
JB
3724 prepare_to_wait (ecs);
3725 return;
c5aa993b 3726
488f131b 3727 case TARGET_WAITKIND_EXITED:
940c3c06 3728 case TARGET_WAITKIND_SIGNALLED:
527159b7 3729 if (debug_infrun)
940c3c06
PA
3730 {
3731 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3732 fprintf_unfiltered (gdb_stdlog,
3733 "infrun: TARGET_WAITKIND_EXITED\n");
3734 else
3735 fprintf_unfiltered (gdb_stdlog,
3736 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3737 }
3738
fb66883a 3739 inferior_ptid = ecs->ptid;
6c95b8df
PA
3740 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3741 set_current_program_space (current_inferior ()->pspace);
3742 handle_vfork_child_exec_or_exit (0);
1777feb0 3743 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 3744
0c557179
SDJ
3745 /* Clearing any previous state of convenience variables. */
3746 clear_exit_convenience_vars ();
3747
940c3c06
PA
3748 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3749 {
3750 /* Record the exit code in the convenience variable $_exitcode, so
3751 that the user can inspect this again later. */
3752 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3753 (LONGEST) ecs->ws.value.integer);
3754
3755 /* Also record this in the inferior itself. */
3756 current_inferior ()->has_exit_code = 1;
3757 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 3758
98eb56a4
PA
3759 /* Support the --return-child-result option. */
3760 return_child_result_value = ecs->ws.value.integer;
3761
fd664c91 3762 observer_notify_exited (ecs->ws.value.integer);
940c3c06
PA
3763 }
3764 else
0c557179
SDJ
3765 {
3766 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3767 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3768
3769 if (gdbarch_gdb_signal_to_target_p (gdbarch))
3770 {
3771 /* Set the value of the internal variable $_exitsignal,
3772 which holds the signal uncaught by the inferior. */
3773 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
3774 gdbarch_gdb_signal_to_target (gdbarch,
3775 ecs->ws.value.sig));
3776 }
3777 else
3778 {
3779 /* We don't have access to the target's method used for
3780 converting between signal numbers (GDB's internal
3781 representation <-> target's representation).
3782 Therefore, we cannot do a good job at displaying this
3783 information to the user. It's better to just warn
3784 her about it (if infrun debugging is enabled), and
3785 give up. */
3786 if (debug_infrun)
3787 fprintf_filtered (gdb_stdlog, _("\
3788Cannot fill $_exitsignal with the correct signal number.\n"));
3789 }
3790
fd664c91 3791 observer_notify_signal_exited (ecs->ws.value.sig);
0c557179 3792 }
8cf64490 3793
488f131b
JB
3794 gdb_flush (gdb_stdout);
3795 target_mourn_inferior ();
488f131b 3796 stop_print_frame = 0;
22bcd14b 3797 stop_waiting (ecs);
488f131b 3798 return;
c5aa993b 3799
488f131b 3800 /* The following are the only cases in which we keep going;
1777feb0 3801 the above cases end in a continue or goto. */
488f131b 3802 case TARGET_WAITKIND_FORKED:
deb3b17b 3803 case TARGET_WAITKIND_VFORKED:
527159b7 3804 if (debug_infrun)
fed708ed
PA
3805 {
3806 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3807 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3808 else
3809 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3810 }
c906108c 3811
e2d96639
YQ
3812 /* Check whether the inferior is displaced stepping. */
3813 {
3814 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3815 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3816 struct displaced_step_inferior_state *displaced
3817 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3818
3819 /* If checking displaced stepping is supported, and thread
3820 ecs->ptid is displaced stepping. */
3821 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3822 {
3823 struct inferior *parent_inf
3824 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3825 struct regcache *child_regcache;
3826 CORE_ADDR parent_pc;
3827
3828 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3829 indicating that the displaced stepping of syscall instruction
3830 has been done. Perform cleanup for parent process here. Note
3831 that this operation also cleans up the child process for vfork,
3832 because their pages are shared. */
a493e3e2 3833 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
e2d96639
YQ
3834
3835 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3836 {
3837 /* Restore scratch pad for child process. */
3838 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3839 }
3840
3841 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3842 the child's PC is also within the scratchpad. Set the child's PC
3843 to the parent's PC value, which has already been fixed up.
3844 FIXME: we use the parent's aspace here, although we're touching
3845 the child, because the child hasn't been added to the inferior
3846 list yet at this point. */
3847
3848 child_regcache
3849 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3850 gdbarch,
3851 parent_inf->aspace);
3852 /* Read PC value of parent process. */
3853 parent_pc = regcache_read_pc (regcache);
3854
3855 if (debug_displaced)
3856 fprintf_unfiltered (gdb_stdlog,
3857 "displaced: write child pc from %s to %s\n",
3858 paddress (gdbarch,
3859 regcache_read_pc (child_regcache)),
3860 paddress (gdbarch, parent_pc));
3861
3862 regcache_write_pc (child_regcache, parent_pc);
3863 }
3864 }
3865
5a2901d9 3866 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 3867 context_switch (ecs->ptid);
5a2901d9 3868
b242c3c2
PA
3869 /* Immediately detach breakpoints from the child before there's
3870 any chance of letting the user delete breakpoints from the
3871 breakpoint lists. If we don't do this early, it's easy to
3872 leave left over traps in the child, vis: "break foo; catch
3873 fork; c; <fork>; del; c; <child calls foo>". We only follow
3874 the fork on the last `continue', and by that time the
3875 breakpoint at "foo" is long gone from the breakpoint table.
3876 If we vforked, then we don't need to unpatch here, since both
3877 parent and child are sharing the same memory pages; we'll
3878 need to unpatch at follow/detach time instead to be certain
3879 that new breakpoints added between catchpoint hit time and
3880 vfork follow are detached. */
3881 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3882 {
b242c3c2
PA
3883 /* This won't actually modify the breakpoint list, but will
3884 physically remove the breakpoints from the child. */
d80ee84f 3885 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
3886 }
3887
34b7e8a6 3888 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 3889
e58b0e63
PA
3890 /* In case the event is caught by a catchpoint, remember that
3891 the event is to be followed at the next resume of the thread,
3892 and not immediately. */
3893 ecs->event_thread->pending_follow = ecs->ws;
3894
fb14de7b 3895 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 3896
16c381f0 3897 ecs->event_thread->control.stop_bpstat
6c95b8df 3898 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3899 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 3900
ce12b012
PA
3901 /* If no catchpoint triggered for this, then keep going. Note
3902 that we're interested in knowing the bpstat actually causes a
3903 stop, not just if it may explain the signal. Software
3904 watchpoints, for example, always appear in the bpstat. */
3905 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 3906 {
6c95b8df
PA
3907 ptid_t parent;
3908 ptid_t child;
e58b0e63 3909 int should_resume;
3e43a32a
MS
3910 int follow_child
3911 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 3912
a493e3e2 3913 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
3914
3915 should_resume = follow_fork ();
3916
6c95b8df
PA
3917 parent = ecs->ptid;
3918 child = ecs->ws.value.related_pid;
3919
3920 /* In non-stop mode, also resume the other branch. */
3921 if (non_stop && !detach_fork)
3922 {
3923 if (follow_child)
3924 switch_to_thread (parent);
3925 else
3926 switch_to_thread (child);
3927
3928 ecs->event_thread = inferior_thread ();
3929 ecs->ptid = inferior_ptid;
3930 keep_going (ecs);
3931 }
3932
3933 if (follow_child)
3934 switch_to_thread (child);
3935 else
3936 switch_to_thread (parent);
3937
e58b0e63
PA
3938 ecs->event_thread = inferior_thread ();
3939 ecs->ptid = inferior_ptid;
3940
3941 if (should_resume)
3942 keep_going (ecs);
3943 else
22bcd14b 3944 stop_waiting (ecs);
04e68871
DJ
3945 return;
3946 }
94c57d6a
PA
3947 process_event_stop_test (ecs);
3948 return;
488f131b 3949
6c95b8df
PA
3950 case TARGET_WAITKIND_VFORK_DONE:
3951 /* Done with the shared memory region. Re-insert breakpoints in
3952 the parent, and keep going. */
3953
3954 if (debug_infrun)
3e43a32a
MS
3955 fprintf_unfiltered (gdb_stdlog,
3956 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
3957
3958 if (!ptid_equal (ecs->ptid, inferior_ptid))
3959 context_switch (ecs->ptid);
3960
3961 current_inferior ()->waiting_for_vfork_done = 0;
56710373 3962 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
3963 /* This also takes care of reinserting breakpoints in the
3964 previously locked inferior. */
3965 keep_going (ecs);
3966 return;
3967
488f131b 3968 case TARGET_WAITKIND_EXECD:
527159b7 3969 if (debug_infrun)
fc5261f2 3970 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 3971
5a2901d9 3972 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 3973 context_switch (ecs->ptid);
5a2901d9 3974
fb14de7b 3975 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 3976
6c95b8df
PA
3977 /* Do whatever is necessary to the parent branch of the vfork. */
3978 handle_vfork_child_exec_or_exit (1);
3979
795e548f
PA
3980 /* This causes the eventpoints and symbol table to be reset.
3981 Must do this now, before trying to determine whether to
3982 stop. */
71b43ef8 3983 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 3984
16c381f0 3985 ecs->event_thread->control.stop_bpstat
6c95b8df 3986 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3987 stop_pc, ecs->ptid, &ecs->ws);
795e548f 3988
71b43ef8
PA
3989 /* Note that this may be referenced from inside
3990 bpstat_stop_status above, through inferior_has_execd. */
3991 xfree (ecs->ws.value.execd_pathname);
3992 ecs->ws.value.execd_pathname = NULL;
3993
04e68871 3994 /* If no catchpoint triggered for this, then keep going. */
ce12b012 3995 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 3996 {
a493e3e2 3997 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
3998 keep_going (ecs);
3999 return;
4000 }
94c57d6a
PA
4001 process_event_stop_test (ecs);
4002 return;
488f131b 4003
b4dc5ffa
MK
4004 /* Be careful not to try to gather much state about a thread
4005 that's in a syscall. It's frequently a losing proposition. */
488f131b 4006 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 4007 if (debug_infrun)
3e43a32a
MS
4008 fprintf_unfiltered (gdb_stdlog,
4009 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 4010 /* Getting the current syscall number. */
94c57d6a
PA
4011 if (handle_syscall_event (ecs) == 0)
4012 process_event_stop_test (ecs);
4013 return;
c906108c 4014
488f131b
JB
4015 /* Before examining the threads further, step this thread to
4016 get it entirely out of the syscall. (We get notice of the
4017 event when the thread is just on the verge of exiting a
4018 syscall. Stepping one instruction seems to get it back
b4dc5ffa 4019 into user code.) */
488f131b 4020 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 4021 if (debug_infrun)
3e43a32a
MS
4022 fprintf_unfiltered (gdb_stdlog,
4023 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
4024 if (handle_syscall_event (ecs) == 0)
4025 process_event_stop_test (ecs);
4026 return;
c906108c 4027
488f131b 4028 case TARGET_WAITKIND_STOPPED:
527159b7 4029 if (debug_infrun)
8a9de0e4 4030 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 4031 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
4f5d7f63
PA
4032 handle_signal_stop (ecs);
4033 return;
c906108c 4034
b2175913 4035 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
4036 if (debug_infrun)
4037 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 4038 /* Reverse execution: target ran out of history info. */
eab402df 4039
34b7e8a6 4040 delete_just_stopped_threads_single_step_breakpoints ();
fb14de7b 4041 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
fd664c91 4042 observer_notify_no_history ();
22bcd14b 4043 stop_waiting (ecs);
b2175913 4044 return;
488f131b 4045 }
4f5d7f63
PA
4046}
4047
4048/* Come here when the program has stopped with a signal. */
4049
4050static void
4051handle_signal_stop (struct execution_control_state *ecs)
4052{
4053 struct frame_info *frame;
4054 struct gdbarch *gdbarch;
4055 int stopped_by_watchpoint;
4056 enum stop_kind stop_soon;
4057 int random_signal;
c906108c 4058
f0407826
DE
4059 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
4060
4061 /* Do we need to clean up the state of a thread that has
4062 completed a displaced single-step? (Doing so usually affects
4063 the PC, so do it here, before we set stop_pc.) */
4064 displaced_step_fixup (ecs->ptid,
4065 ecs->event_thread->suspend.stop_signal);
4066
4067 /* If we either finished a single-step or hit a breakpoint, but
4068 the user wanted this thread to be stopped, pretend we got a
4069 SIG0 (generic unsignaled stop). */
4070 if (ecs->event_thread->stop_requested
4071 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4072 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 4073
515630c5 4074 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 4075
527159b7 4076 if (debug_infrun)
237fc4c9 4077 {
5af949e3
UW
4078 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4079 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
4080 struct cleanup *old_chain = save_inferior_ptid ();
4081
4082 inferior_ptid = ecs->ptid;
5af949e3
UW
4083
4084 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
4085 paddress (gdbarch, stop_pc));
d92524f1 4086 if (target_stopped_by_watchpoint ())
237fc4c9
PA
4087 {
4088 CORE_ADDR addr;
abbb1732 4089
237fc4c9
PA
4090 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
4091
4092 if (target_stopped_data_address (&current_target, &addr))
4093 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
4094 "infrun: stopped data address = %s\n",
4095 paddress (gdbarch, addr));
237fc4c9
PA
4096 else
4097 fprintf_unfiltered (gdb_stdlog,
4098 "infrun: (no data address available)\n");
4099 }
7f82dfc7
JK
4100
4101 do_cleanups (old_chain);
237fc4c9 4102 }
527159b7 4103
36fa8042
PA
4104 /* This is originated from start_remote(), start_inferior() and
4105 shared libraries hook functions. */
4106 stop_soon = get_inferior_stop_soon (ecs->ptid);
4107 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4108 {
4109 if (!ptid_equal (ecs->ptid, inferior_ptid))
4110 context_switch (ecs->ptid);
4111 if (debug_infrun)
4112 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4113 stop_print_frame = 1;
22bcd14b 4114 stop_waiting (ecs);
36fa8042
PA
4115 return;
4116 }
4117
4118 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4119 && stop_after_trap)
4120 {
4121 if (!ptid_equal (ecs->ptid, inferior_ptid))
4122 context_switch (ecs->ptid);
4123 if (debug_infrun)
4124 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4125 stop_print_frame = 0;
22bcd14b 4126 stop_waiting (ecs);
36fa8042
PA
4127 return;
4128 }
4129
4130 /* This originates from attach_command(). We need to overwrite
4131 the stop_signal here, because some kernels don't ignore a
4132 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4133 See more comments in inferior.h. On the other hand, if we
4134 get a non-SIGSTOP, report it to the user - assume the backend
4135 will handle the SIGSTOP if it should show up later.
4136
4137 Also consider that the attach is complete when we see a
4138 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4139 target extended-remote report it instead of a SIGSTOP
4140 (e.g. gdbserver). We already rely on SIGTRAP being our
4141 signal, so this is no exception.
4142
4143 Also consider that the attach is complete when we see a
4144 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4145 the target to stop all threads of the inferior, in case the
4146 low level attach operation doesn't stop them implicitly. If
4147 they weren't stopped implicitly, then the stub will report a
4148 GDB_SIGNAL_0, meaning: stopped for no particular reason
4149 other than GDB's request. */
4150 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4151 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4152 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4153 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4154 {
4155 stop_print_frame = 1;
22bcd14b 4156 stop_waiting (ecs);
36fa8042
PA
4157 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4158 return;
4159 }
4160
488f131b 4161 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
4162 so, then switch to that thread. */
4163 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 4164 {
527159b7 4165 if (debug_infrun)
8a9de0e4 4166 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 4167
0d1e5fa7 4168 context_switch (ecs->ptid);
c5aa993b 4169
9a4105ab
AC
4170 if (deprecated_context_hook)
4171 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 4172 }
c906108c 4173
568d6575
UW
4174 /* At this point, get hold of the now-current thread's frame. */
4175 frame = get_current_frame ();
4176 gdbarch = get_frame_arch (frame);
4177
2adfaa28 4178 /* Pull the single step breakpoints out of the target. */
34b7e8a6 4179 if (gdbarch_software_single_step_p (gdbarch))
488f131b 4180 {
34b7e8a6 4181 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
2adfaa28
PA
4182 {
4183 struct regcache *regcache;
4184 struct address_space *aspace;
4185 CORE_ADDR pc;
4186
4187 regcache = get_thread_regcache (ecs->ptid);
4188 aspace = get_regcache_aspace (regcache);
4189 pc = regcache_read_pc (regcache);
34b7e8a6
PA
4190
4191 /* However, before doing so, if this single-step breakpoint was
4192 actually for another thread, set this thread up for moving
4193 past it. */
4194 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
4195 aspace, pc))
4196 {
4197 if (single_step_breakpoint_inserted_here_p (aspace, pc))
4198 {
4199 if (debug_infrun)
4200 {
4201 fprintf_unfiltered (gdb_stdlog,
4202 "infrun: [%s] hit another thread's "
4203 "single-step breakpoint\n",
4204 target_pid_to_str (ecs->ptid));
4205 }
4206 ecs->hit_singlestep_breakpoint = 1;
4207 }
4208 }
4209 else
2adfaa28
PA
4210 {
4211 if (debug_infrun)
4212 {
4213 fprintf_unfiltered (gdb_stdlog,
34b7e8a6
PA
4214 "infrun: [%s] hit its "
4215 "single-step breakpoint\n",
4216 target_pid_to_str (ecs->ptid));
2adfaa28 4217 }
2adfaa28
PA
4218 }
4219 }
4220
34b7e8a6 4221 delete_just_stopped_threads_single_step_breakpoints ();
488f131b 4222 }
c906108c 4223
963f9c80
PA
4224 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4225 && ecs->event_thread->control.trap_expected
4226 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
4227 stopped_by_watchpoint = 0;
4228 else
4229 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4230
4231 /* If necessary, step over this watchpoint. We'll be back to display
4232 it in a moment. */
4233 if (stopped_by_watchpoint
d92524f1 4234 && (target_have_steppable_watchpoint
568d6575 4235 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 4236 {
488f131b
JB
4237 /* At this point, we are stopped at an instruction which has
4238 attempted to write to a piece of memory under control of
4239 a watchpoint. The instruction hasn't actually executed
4240 yet. If we were to evaluate the watchpoint expression
4241 now, we would get the old value, and therefore no change
4242 would seem to have occurred.
4243
4244 In order to make watchpoints work `right', we really need
4245 to complete the memory write, and then evaluate the
d983da9c
DJ
4246 watchpoint expression. We do this by single-stepping the
4247 target.
4248
7f89fd65 4249 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
4250 it. For example, the PA can (with some kernel cooperation)
4251 single step over a watchpoint without disabling the watchpoint.
4252
4253 It is far more common to need to disable a watchpoint to step
4254 the inferior over it. If we have non-steppable watchpoints,
4255 we must disable the current watchpoint; it's simplest to
963f9c80
PA
4256 disable all watchpoints.
4257
4258 Any breakpoint at PC must also be stepped over -- if there's
4259 one, it will have already triggered before the watchpoint
4260 triggered, and we either already reported it to the user, or
4261 it didn't cause a stop and we called keep_going. In either
4262 case, if there was a breakpoint at PC, we must be trying to
4263 step past it. */
4264 ecs->event_thread->stepping_over_watchpoint = 1;
4265 keep_going (ecs);
488f131b
JB
4266 return;
4267 }
4268
7f5ef605 4269 ecs->event_thread->stepped_breakpoint = 0;
4e1c45ea 4270 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 4271 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
4272 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4273 ecs->event_thread->control.stop_step = 0;
488f131b 4274 stop_print_frame = 1;
488f131b 4275 stopped_by_random_signal = 0;
488f131b 4276
edb3359d
DJ
4277 /* Hide inlined functions starting here, unless we just performed stepi or
4278 nexti. After stepi and nexti, always show the innermost frame (not any
4279 inline function call sites). */
16c381f0 4280 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
4281 {
4282 struct address_space *aspace =
4283 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4284
4285 /* skip_inline_frames is expensive, so we avoid it if we can
4286 determine that the address is one where functions cannot have
4287 been inlined. This improves performance with inferiors that
4288 load a lot of shared libraries, because the solib event
4289 breakpoint is defined as the address of a function (i.e. not
4290 inline). Note that we have to check the previous PC as well
4291 as the current one to catch cases when we have just
4292 single-stepped off a breakpoint prior to reinstating it.
4293 Note that we're assuming that the code we single-step to is
4294 not inline, but that's not definitive: there's nothing
4295 preventing the event breakpoint function from containing
4296 inlined code, and the single-step ending up there. If the
4297 user had set a breakpoint on that inlined code, the missing
4298 skip_inline_frames call would break things. Fortunately
4299 that's an extremely unlikely scenario. */
09ac7c10 4300 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
4301 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4302 && ecs->event_thread->control.trap_expected
4303 && pc_at_non_inline_function (aspace,
4304 ecs->event_thread->prev_pc,
09ac7c10 4305 &ecs->ws)))
1c5a993e
MR
4306 {
4307 skip_inline_frames (ecs->ptid);
4308
4309 /* Re-fetch current thread's frame in case that invalidated
4310 the frame cache. */
4311 frame = get_current_frame ();
4312 gdbarch = get_frame_arch (frame);
4313 }
0574c78f 4314 }
edb3359d 4315
a493e3e2 4316 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 4317 && ecs->event_thread->control.trap_expected
568d6575 4318 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 4319 && currently_stepping (ecs->event_thread))
3352ef37 4320 {
b50d7442 4321 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 4322 also on an instruction that needs to be stepped multiple
1777feb0 4323 times before it's been fully executing. E.g., architectures
3352ef37
AC
4324 with a delay slot. It needs to be stepped twice, once for
4325 the instruction and once for the delay slot. */
4326 int step_through_delay
568d6575 4327 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 4328
527159b7 4329 if (debug_infrun && step_through_delay)
8a9de0e4 4330 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
4331 if (ecs->event_thread->control.step_range_end == 0
4332 && step_through_delay)
3352ef37
AC
4333 {
4334 /* The user issued a continue when stopped at a breakpoint.
4335 Set up for another trap and get out of here. */
4e1c45ea 4336 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4337 keep_going (ecs);
4338 return;
4339 }
4340 else if (step_through_delay)
4341 {
4342 /* The user issued a step when stopped at a breakpoint.
4343 Maybe we should stop, maybe we should not - the delay
4344 slot *might* correspond to a line of source. In any
ca67fcb8
VP
4345 case, don't decide that here, just set
4346 ecs->stepping_over_breakpoint, making sure we
4347 single-step again before breakpoints are re-inserted. */
4e1c45ea 4348 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4349 }
4350 }
4351
ab04a2af
TT
4352 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4353 handles this event. */
4354 ecs->event_thread->control.stop_bpstat
4355 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4356 stop_pc, ecs->ptid, &ecs->ws);
db82e815 4357
ab04a2af
TT
4358 /* Following in case break condition called a
4359 function. */
4360 stop_print_frame = 1;
73dd234f 4361
ab04a2af
TT
4362 /* This is where we handle "moribund" watchpoints. Unlike
4363 software breakpoints traps, hardware watchpoint traps are
4364 always distinguishable from random traps. If no high-level
4365 watchpoint is associated with the reported stop data address
4366 anymore, then the bpstat does not explain the signal ---
4367 simply make sure to ignore it if `stopped_by_watchpoint' is
4368 set. */
4369
4370 if (debug_infrun
4371 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 4372 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 4373 GDB_SIGNAL_TRAP)
ab04a2af
TT
4374 && stopped_by_watchpoint)
4375 fprintf_unfiltered (gdb_stdlog,
4376 "infrun: no user watchpoint explains "
4377 "watchpoint SIGTRAP, ignoring\n");
73dd234f 4378
bac7d97b 4379 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
4380 at one stage in the past included checks for an inferior
4381 function call's call dummy's return breakpoint. The original
4382 comment, that went with the test, read:
03cebad2 4383
ab04a2af
TT
4384 ``End of a stack dummy. Some systems (e.g. Sony news) give
4385 another signal besides SIGTRAP, so check here as well as
4386 above.''
73dd234f 4387
ab04a2af
TT
4388 If someone ever tries to get call dummys on a
4389 non-executable stack to work (where the target would stop
4390 with something like a SIGSEGV), then those tests might need
4391 to be re-instated. Given, however, that the tests were only
4392 enabled when momentary breakpoints were not being used, I
4393 suspect that it won't be the case.
488f131b 4394
ab04a2af
TT
4395 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4396 be necessary for call dummies on a non-executable stack on
4397 SPARC. */
488f131b 4398
bac7d97b 4399 /* See if the breakpoints module can explain the signal. */
47591c29
PA
4400 random_signal
4401 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4402 ecs->event_thread->suspend.stop_signal);
bac7d97b
PA
4403
4404 /* If not, perhaps stepping/nexting can. */
4405 if (random_signal)
4406 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4407 && currently_stepping (ecs->event_thread));
ab04a2af 4408
2adfaa28
PA
4409 /* Perhaps the thread hit a single-step breakpoint of _another_
4410 thread. Single-step breakpoints are transparent to the
4411 breakpoints module. */
4412 if (random_signal)
4413 random_signal = !ecs->hit_singlestep_breakpoint;
4414
bac7d97b
PA
4415 /* No? Perhaps we got a moribund watchpoint. */
4416 if (random_signal)
4417 random_signal = !stopped_by_watchpoint;
ab04a2af 4418
488f131b
JB
4419 /* For the program's own signals, act according to
4420 the signal handling tables. */
4421
ce12b012 4422 if (random_signal)
488f131b
JB
4423 {
4424 /* Signal not for debugging purposes. */
24291992 4425 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
c9737c08 4426 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 4427
527159b7 4428 if (debug_infrun)
c9737c08
PA
4429 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
4430 gdb_signal_to_symbol_string (stop_signal));
527159b7 4431
488f131b
JB
4432 stopped_by_random_signal = 1;
4433
252fbfc8
PA
4434 /* Always stop on signals if we're either just gaining control
4435 of the program, or the user explicitly requested this thread
4436 to remain stopped. */
d6b48e9c 4437 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 4438 || ecs->event_thread->stop_requested
24291992 4439 || (!inf->detaching
16c381f0 4440 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 4441 {
22bcd14b 4442 stop_waiting (ecs);
488f131b
JB
4443 return;
4444 }
b57bacec
PA
4445
4446 /* Notify observers the signal has "handle print" set. Note we
4447 returned early above if stopping; normal_stop handles the
4448 printing in that case. */
4449 if (signal_print[ecs->event_thread->suspend.stop_signal])
4450 {
4451 /* The signal table tells us to print about this signal. */
4452 target_terminal_ours_for_output ();
4453 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
4454 target_terminal_inferior ();
4455 }
488f131b
JB
4456
4457 /* Clear the signal if it should not be passed. */
16c381f0 4458 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 4459 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 4460
fb14de7b 4461 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 4462 && ecs->event_thread->control.trap_expected
8358c15c 4463 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
4464 {
4465 /* We were just starting a new sequence, attempting to
4466 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 4467 Instead this signal arrives. This signal will take us out
68f53502
AC
4468 of the stepping range so GDB needs to remember to, when
4469 the signal handler returns, resume stepping off that
4470 breakpoint. */
4471 /* To simplify things, "continue" is forced to use the same
4472 code paths as single-step - set a breakpoint at the
4473 signal return address and then, once hit, step off that
4474 breakpoint. */
237fc4c9
PA
4475 if (debug_infrun)
4476 fprintf_unfiltered (gdb_stdlog,
4477 "infrun: signal arrived while stepping over "
4478 "breakpoint\n");
d3169d93 4479
2c03e5be 4480 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 4481 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4482 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4483 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
4484
4485 /* If we were nexting/stepping some other thread, switch to
4486 it, so that we don't continue it, losing control. */
4487 if (!switch_back_to_stepped_thread (ecs))
4488 keep_going (ecs);
9d799f85 4489 return;
68f53502 4490 }
9d799f85 4491
e5f8a7cc
PA
4492 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
4493 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
4494 || ecs->event_thread->control.step_range_end == 1)
edb3359d 4495 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 4496 ecs->event_thread->control.step_stack_frame_id)
8358c15c 4497 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
4498 {
4499 /* The inferior is about to take a signal that will take it
4500 out of the single step range. Set a breakpoint at the
4501 current PC (which is presumably where the signal handler
4502 will eventually return) and then allow the inferior to
4503 run free.
4504
4505 Note that this is only needed for a signal delivered
4506 while in the single-step range. Nested signals aren't a
4507 problem as they eventually all return. */
237fc4c9
PA
4508 if (debug_infrun)
4509 fprintf_unfiltered (gdb_stdlog,
4510 "infrun: signal may take us out of "
4511 "single-step range\n");
4512
2c03e5be 4513 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 4514 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4515 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4516 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4517 keep_going (ecs);
4518 return;
d303a6c7 4519 }
9d799f85
AC
4520
4521 /* Note: step_resume_breakpoint may be non-NULL. This occures
4522 when either there's a nested signal, or when there's a
4523 pending signal enabled just as the signal handler returns
4524 (leaving the inferior at the step-resume-breakpoint without
4525 actually executing it). Either way continue until the
4526 breakpoint is really hit. */
c447ac0b
PA
4527
4528 if (!switch_back_to_stepped_thread (ecs))
4529 {
4530 if (debug_infrun)
4531 fprintf_unfiltered (gdb_stdlog,
4532 "infrun: random signal, keep going\n");
4533
4534 keep_going (ecs);
4535 }
4536 return;
488f131b 4537 }
94c57d6a
PA
4538
4539 process_event_stop_test (ecs);
4540}
4541
4542/* Come here when we've got some debug event / signal we can explain
4543 (IOW, not a random signal), and test whether it should cause a
4544 stop, or whether we should resume the inferior (transparently).
4545 E.g., could be a breakpoint whose condition evaluates false; we
4546 could be still stepping within the line; etc. */
4547
4548static void
4549process_event_stop_test (struct execution_control_state *ecs)
4550{
4551 struct symtab_and_line stop_pc_sal;
4552 struct frame_info *frame;
4553 struct gdbarch *gdbarch;
cdaa5b73
PA
4554 CORE_ADDR jmp_buf_pc;
4555 struct bpstat_what what;
94c57d6a 4556
cdaa5b73 4557 /* Handle cases caused by hitting a breakpoint. */
611c83ae 4558
cdaa5b73
PA
4559 frame = get_current_frame ();
4560 gdbarch = get_frame_arch (frame);
fcf3daef 4561
cdaa5b73 4562 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 4563
cdaa5b73
PA
4564 if (what.call_dummy)
4565 {
4566 stop_stack_dummy = what.call_dummy;
4567 }
186c406b 4568
cdaa5b73
PA
4569 /* If we hit an internal event that triggers symbol changes, the
4570 current frame will be invalidated within bpstat_what (e.g., if we
4571 hit an internal solib event). Re-fetch it. */
4572 frame = get_current_frame ();
4573 gdbarch = get_frame_arch (frame);
e2e4d78b 4574
cdaa5b73
PA
4575 switch (what.main_action)
4576 {
4577 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4578 /* If we hit the breakpoint at longjmp while stepping, we
4579 install a momentary breakpoint at the target of the
4580 jmp_buf. */
186c406b 4581
cdaa5b73
PA
4582 if (debug_infrun)
4583 fprintf_unfiltered (gdb_stdlog,
4584 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 4585
cdaa5b73 4586 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 4587
cdaa5b73
PA
4588 if (what.is_longjmp)
4589 {
4590 struct value *arg_value;
4591
4592 /* If we set the longjmp breakpoint via a SystemTap probe,
4593 then use it to extract the arguments. The destination PC
4594 is the third argument to the probe. */
4595 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4596 if (arg_value)
8fa0c4f8
AA
4597 {
4598 jmp_buf_pc = value_as_address (arg_value);
4599 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
4600 }
cdaa5b73
PA
4601 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4602 || !gdbarch_get_longjmp_target (gdbarch,
4603 frame, &jmp_buf_pc))
e2e4d78b 4604 {
cdaa5b73
PA
4605 if (debug_infrun)
4606 fprintf_unfiltered (gdb_stdlog,
4607 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4608 "(!gdbarch_get_longjmp_target)\n");
4609 keep_going (ecs);
4610 return;
e2e4d78b 4611 }
e2e4d78b 4612
cdaa5b73
PA
4613 /* Insert a breakpoint at resume address. */
4614 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4615 }
4616 else
4617 check_exception_resume (ecs, frame);
4618 keep_going (ecs);
4619 return;
e81a37f7 4620
cdaa5b73
PA
4621 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4622 {
4623 struct frame_info *init_frame;
e81a37f7 4624
cdaa5b73 4625 /* There are several cases to consider.
c906108c 4626
cdaa5b73
PA
4627 1. The initiating frame no longer exists. In this case we
4628 must stop, because the exception or longjmp has gone too
4629 far.
2c03e5be 4630
cdaa5b73
PA
4631 2. The initiating frame exists, and is the same as the
4632 current frame. We stop, because the exception or longjmp
4633 has been caught.
2c03e5be 4634
cdaa5b73
PA
4635 3. The initiating frame exists and is different from the
4636 current frame. This means the exception or longjmp has
4637 been caught beneath the initiating frame, so keep going.
c906108c 4638
cdaa5b73
PA
4639 4. longjmp breakpoint has been placed just to protect
4640 against stale dummy frames and user is not interested in
4641 stopping around longjmps. */
c5aa993b 4642
cdaa5b73
PA
4643 if (debug_infrun)
4644 fprintf_unfiltered (gdb_stdlog,
4645 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 4646
cdaa5b73
PA
4647 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4648 != NULL);
4649 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 4650
cdaa5b73
PA
4651 if (what.is_longjmp)
4652 {
b67a2c6f 4653 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 4654
cdaa5b73 4655 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 4656 {
cdaa5b73
PA
4657 /* Case 4. */
4658 keep_going (ecs);
4659 return;
e5ef252a 4660 }
cdaa5b73 4661 }
c5aa993b 4662
cdaa5b73 4663 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 4664
cdaa5b73
PA
4665 if (init_frame)
4666 {
4667 struct frame_id current_id
4668 = get_frame_id (get_current_frame ());
4669 if (frame_id_eq (current_id,
4670 ecs->event_thread->initiating_frame))
4671 {
4672 /* Case 2. Fall through. */
4673 }
4674 else
4675 {
4676 /* Case 3. */
4677 keep_going (ecs);
4678 return;
4679 }
68f53502 4680 }
488f131b 4681
cdaa5b73
PA
4682 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
4683 exists. */
4684 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 4685
bdc36728 4686 end_stepping_range (ecs);
cdaa5b73
PA
4687 }
4688 return;
e5ef252a 4689
cdaa5b73
PA
4690 case BPSTAT_WHAT_SINGLE:
4691 if (debug_infrun)
4692 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4693 ecs->event_thread->stepping_over_breakpoint = 1;
4694 /* Still need to check other stuff, at least the case where we
4695 are stepping and step out of the right range. */
4696 break;
e5ef252a 4697
cdaa5b73
PA
4698 case BPSTAT_WHAT_STEP_RESUME:
4699 if (debug_infrun)
4700 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 4701
cdaa5b73
PA
4702 delete_step_resume_breakpoint (ecs->event_thread);
4703 if (ecs->event_thread->control.proceed_to_finish
4704 && execution_direction == EXEC_REVERSE)
4705 {
4706 struct thread_info *tp = ecs->event_thread;
4707
4708 /* We are finishing a function in reverse, and just hit the
4709 step-resume breakpoint at the start address of the
4710 function, and we're almost there -- just need to back up
4711 by one more single-step, which should take us back to the
4712 function call. */
4713 tp->control.step_range_start = tp->control.step_range_end = 1;
4714 keep_going (ecs);
e5ef252a 4715 return;
cdaa5b73
PA
4716 }
4717 fill_in_stop_func (gdbarch, ecs);
4718 if (stop_pc == ecs->stop_func_start
4719 && execution_direction == EXEC_REVERSE)
4720 {
4721 /* We are stepping over a function call in reverse, and just
4722 hit the step-resume breakpoint at the start address of
4723 the function. Go back to single-stepping, which should
4724 take us back to the function call. */
4725 ecs->event_thread->stepping_over_breakpoint = 1;
4726 keep_going (ecs);
4727 return;
4728 }
4729 break;
e5ef252a 4730
cdaa5b73
PA
4731 case BPSTAT_WHAT_STOP_NOISY:
4732 if (debug_infrun)
4733 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4734 stop_print_frame = 1;
e5ef252a 4735
99619bea
PA
4736 /* Assume the thread stopped for a breapoint. We'll still check
4737 whether a/the breakpoint is there when the thread is next
4738 resumed. */
4739 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 4740
22bcd14b 4741 stop_waiting (ecs);
cdaa5b73 4742 return;
e5ef252a 4743
cdaa5b73
PA
4744 case BPSTAT_WHAT_STOP_SILENT:
4745 if (debug_infrun)
4746 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4747 stop_print_frame = 0;
e5ef252a 4748
99619bea
PA
4749 /* Assume the thread stopped for a breapoint. We'll still check
4750 whether a/the breakpoint is there when the thread is next
4751 resumed. */
4752 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 4753 stop_waiting (ecs);
cdaa5b73
PA
4754 return;
4755
4756 case BPSTAT_WHAT_HP_STEP_RESUME:
4757 if (debug_infrun)
4758 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4759
4760 delete_step_resume_breakpoint (ecs->event_thread);
4761 if (ecs->event_thread->step_after_step_resume_breakpoint)
4762 {
4763 /* Back when the step-resume breakpoint was inserted, we
4764 were trying to single-step off a breakpoint. Go back to
4765 doing that. */
4766 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4767 ecs->event_thread->stepping_over_breakpoint = 1;
4768 keep_going (ecs);
4769 return;
e5ef252a 4770 }
cdaa5b73
PA
4771 break;
4772
4773 case BPSTAT_WHAT_KEEP_CHECKING:
4774 break;
e5ef252a 4775 }
c906108c 4776
cdaa5b73
PA
4777 /* We come here if we hit a breakpoint but should not stop for it.
4778 Possibly we also were stepping and should stop for that. So fall
4779 through and test for stepping. But, if not stepping, do not
4780 stop. */
c906108c 4781
a7212384
UW
4782 /* In all-stop mode, if we're currently stepping but have stopped in
4783 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
4784 if (switch_back_to_stepped_thread (ecs))
4785 return;
776f04fa 4786
8358c15c 4787 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 4788 {
527159b7 4789 if (debug_infrun)
d3169d93
DJ
4790 fprintf_unfiltered (gdb_stdlog,
4791 "infrun: step-resume breakpoint is inserted\n");
527159b7 4792
488f131b
JB
4793 /* Having a step-resume breakpoint overrides anything
4794 else having to do with stepping commands until
4795 that breakpoint is reached. */
488f131b
JB
4796 keep_going (ecs);
4797 return;
4798 }
c5aa993b 4799
16c381f0 4800 if (ecs->event_thread->control.step_range_end == 0)
488f131b 4801 {
527159b7 4802 if (debug_infrun)
8a9de0e4 4803 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 4804 /* Likewise if we aren't even stepping. */
488f131b
JB
4805 keep_going (ecs);
4806 return;
4807 }
c5aa993b 4808
4b7703ad
JB
4809 /* Re-fetch current thread's frame in case the code above caused
4810 the frame cache to be re-initialized, making our FRAME variable
4811 a dangling pointer. */
4812 frame = get_current_frame ();
628fe4e4 4813 gdbarch = get_frame_arch (frame);
7e324e48 4814 fill_in_stop_func (gdbarch, ecs);
4b7703ad 4815
488f131b 4816 /* If stepping through a line, keep going if still within it.
c906108c 4817
488f131b
JB
4818 Note that step_range_end is the address of the first instruction
4819 beyond the step range, and NOT the address of the last instruction
31410e84
MS
4820 within it!
4821
4822 Note also that during reverse execution, we may be stepping
4823 through a function epilogue and therefore must detect when
4824 the current-frame changes in the middle of a line. */
4825
ce4c476a 4826 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 4827 && (execution_direction != EXEC_REVERSE
388a8562 4828 || frame_id_eq (get_frame_id (frame),
16c381f0 4829 ecs->event_thread->control.step_frame_id)))
488f131b 4830 {
527159b7 4831 if (debug_infrun)
5af949e3
UW
4832 fprintf_unfiltered
4833 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
4834 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4835 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 4836
c1e36e3e
PA
4837 /* Tentatively re-enable range stepping; `resume' disables it if
4838 necessary (e.g., if we're stepping over a breakpoint or we
4839 have software watchpoints). */
4840 ecs->event_thread->control.may_range_step = 1;
4841
b2175913
MS
4842 /* When stepping backward, stop at beginning of line range
4843 (unless it's the function entry point, in which case
4844 keep going back to the call point). */
16c381f0 4845 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
4846 && stop_pc != ecs->stop_func_start
4847 && execution_direction == EXEC_REVERSE)
bdc36728 4848 end_stepping_range (ecs);
b2175913
MS
4849 else
4850 keep_going (ecs);
4851
488f131b
JB
4852 return;
4853 }
c5aa993b 4854
488f131b 4855 /* We stepped out of the stepping range. */
c906108c 4856
488f131b 4857 /* If we are stepping at the source level and entered the runtime
388a8562
MS
4858 loader dynamic symbol resolution code...
4859
4860 EXEC_FORWARD: we keep on single stepping until we exit the run
4861 time loader code and reach the callee's address.
4862
4863 EXEC_REVERSE: we've already executed the callee (backward), and
4864 the runtime loader code is handled just like any other
4865 undebuggable function call. Now we need only keep stepping
4866 backward through the trampoline code, and that's handled further
4867 down, so there is nothing for us to do here. */
4868
4869 if (execution_direction != EXEC_REVERSE
16c381f0 4870 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 4871 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 4872 {
4c8c40e6 4873 CORE_ADDR pc_after_resolver =
568d6575 4874 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 4875
527159b7 4876 if (debug_infrun)
3e43a32a
MS
4877 fprintf_unfiltered (gdb_stdlog,
4878 "infrun: stepped into dynsym resolve code\n");
527159b7 4879
488f131b
JB
4880 if (pc_after_resolver)
4881 {
4882 /* Set up a step-resume breakpoint at the address
4883 indicated by SKIP_SOLIB_RESOLVER. */
4884 struct symtab_and_line sr_sal;
abbb1732 4885
fe39c653 4886 init_sal (&sr_sal);
488f131b 4887 sr_sal.pc = pc_after_resolver;
6c95b8df 4888 sr_sal.pspace = get_frame_program_space (frame);
488f131b 4889
a6d9a66e
UW
4890 insert_step_resume_breakpoint_at_sal (gdbarch,
4891 sr_sal, null_frame_id);
c5aa993b 4892 }
c906108c 4893
488f131b
JB
4894 keep_going (ecs);
4895 return;
4896 }
c906108c 4897
16c381f0
JK
4898 if (ecs->event_thread->control.step_range_end != 1
4899 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4900 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 4901 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 4902 {
527159b7 4903 if (debug_infrun)
3e43a32a
MS
4904 fprintf_unfiltered (gdb_stdlog,
4905 "infrun: stepped into signal trampoline\n");
42edda50 4906 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
4907 a signal trampoline (either by a signal being delivered or by
4908 the signal handler returning). Just single-step until the
4909 inferior leaves the trampoline (either by calling the handler
4910 or returning). */
488f131b
JB
4911 keep_going (ecs);
4912 return;
4913 }
c906108c 4914
14132e89
MR
4915 /* If we're in the return path from a shared library trampoline,
4916 we want to proceed through the trampoline when stepping. */
4917 /* macro/2012-04-25: This needs to come before the subroutine
4918 call check below as on some targets return trampolines look
4919 like subroutine calls (MIPS16 return thunks). */
4920 if (gdbarch_in_solib_return_trampoline (gdbarch,
4921 stop_pc, ecs->stop_func_name)
4922 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4923 {
4924 /* Determine where this trampoline returns. */
4925 CORE_ADDR real_stop_pc;
4926
4927 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4928
4929 if (debug_infrun)
4930 fprintf_unfiltered (gdb_stdlog,
4931 "infrun: stepped into solib return tramp\n");
4932
4933 /* Only proceed through if we know where it's going. */
4934 if (real_stop_pc)
4935 {
4936 /* And put the step-breakpoint there and go until there. */
4937 struct symtab_and_line sr_sal;
4938
4939 init_sal (&sr_sal); /* initialize to zeroes */
4940 sr_sal.pc = real_stop_pc;
4941 sr_sal.section = find_pc_overlay (sr_sal.pc);
4942 sr_sal.pspace = get_frame_program_space (frame);
4943
4944 /* Do not specify what the fp should be when we stop since
4945 on some machines the prologue is where the new fp value
4946 is established. */
4947 insert_step_resume_breakpoint_at_sal (gdbarch,
4948 sr_sal, null_frame_id);
4949
4950 /* Restart without fiddling with the step ranges or
4951 other state. */
4952 keep_going (ecs);
4953 return;
4954 }
4955 }
4956
c17eaafe
DJ
4957 /* Check for subroutine calls. The check for the current frame
4958 equalling the step ID is not necessary - the check of the
4959 previous frame's ID is sufficient - but it is a common case and
4960 cheaper than checking the previous frame's ID.
14e60db5
DJ
4961
4962 NOTE: frame_id_eq will never report two invalid frame IDs as
4963 being equal, so to get into this block, both the current and
4964 previous frame must have valid frame IDs. */
005ca36a
JB
4965 /* The outer_frame_id check is a heuristic to detect stepping
4966 through startup code. If we step over an instruction which
4967 sets the stack pointer from an invalid value to a valid value,
4968 we may detect that as a subroutine call from the mythical
4969 "outermost" function. This could be fixed by marking
4970 outermost frames as !stack_p,code_p,special_p. Then the
4971 initial outermost frame, before sp was valid, would
ce6cca6d 4972 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 4973 for more. */
edb3359d 4974 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 4975 ecs->event_thread->control.step_stack_frame_id)
005ca36a 4976 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
4977 ecs->event_thread->control.step_stack_frame_id)
4978 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a
JB
4979 outer_frame_id)
4980 || step_start_function != find_pc_function (stop_pc))))
488f131b 4981 {
95918acb 4982 CORE_ADDR real_stop_pc;
8fb3e588 4983
527159b7 4984 if (debug_infrun)
8a9de0e4 4985 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 4986
16c381f0
JK
4987 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4988 || ((ecs->event_thread->control.step_range_end == 1)
d80b854b 4989 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 4990 ecs->stop_func_start)))
95918acb
AC
4991 {
4992 /* I presume that step_over_calls is only 0 when we're
4993 supposed to be stepping at the assembly language level
4994 ("stepi"). Just stop. */
4995 /* Also, maybe we just did a "nexti" inside a prolog, so we
4996 thought it was a subroutine call but it was not. Stop as
4997 well. FENN */
388a8562 4998 /* And this works the same backward as frontward. MVS */
bdc36728 4999 end_stepping_range (ecs);
95918acb
AC
5000 return;
5001 }
8fb3e588 5002
388a8562
MS
5003 /* Reverse stepping through solib trampolines. */
5004
5005 if (execution_direction == EXEC_REVERSE
16c381f0 5006 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
5007 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5008 || (ecs->stop_func_start == 0
5009 && in_solib_dynsym_resolve_code (stop_pc))))
5010 {
5011 /* Any solib trampoline code can be handled in reverse
5012 by simply continuing to single-step. We have already
5013 executed the solib function (backwards), and a few
5014 steps will take us back through the trampoline to the
5015 caller. */
5016 keep_going (ecs);
5017 return;
5018 }
5019
16c381f0 5020 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 5021 {
b2175913
MS
5022 /* We're doing a "next".
5023
5024 Normal (forward) execution: set a breakpoint at the
5025 callee's return address (the address at which the caller
5026 will resume).
5027
5028 Reverse (backward) execution. set the step-resume
5029 breakpoint at the start of the function that we just
5030 stepped into (backwards), and continue to there. When we
6130d0b7 5031 get there, we'll need to single-step back to the caller. */
b2175913
MS
5032
5033 if (execution_direction == EXEC_REVERSE)
5034 {
acf9414f
JK
5035 /* If we're already at the start of the function, we've either
5036 just stepped backward into a single instruction function,
5037 or stepped back out of a signal handler to the first instruction
5038 of the function. Just keep going, which will single-step back
5039 to the caller. */
58c48e72 5040 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f
JK
5041 {
5042 struct symtab_and_line sr_sal;
5043
5044 /* Normal function call return (static or dynamic). */
5045 init_sal (&sr_sal);
5046 sr_sal.pc = ecs->stop_func_start;
5047 sr_sal.pspace = get_frame_program_space (frame);
5048 insert_step_resume_breakpoint_at_sal (gdbarch,
5049 sr_sal, null_frame_id);
5050 }
b2175913
MS
5051 }
5052 else
568d6575 5053 insert_step_resume_breakpoint_at_caller (frame);
b2175913 5054
8567c30f
AC
5055 keep_going (ecs);
5056 return;
5057 }
a53c66de 5058
95918acb 5059 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
5060 calling routine and the real function), locate the real
5061 function. That's what tells us (a) whether we want to step
5062 into it at all, and (b) what prologue we want to run to the
5063 end of, if we do step into it. */
568d6575 5064 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 5065 if (real_stop_pc == 0)
568d6575 5066 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
5067 if (real_stop_pc != 0)
5068 ecs->stop_func_start = real_stop_pc;
8fb3e588 5069
db5f024e 5070 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
5071 {
5072 struct symtab_and_line sr_sal;
abbb1732 5073
1b2bfbb9
RC
5074 init_sal (&sr_sal);
5075 sr_sal.pc = ecs->stop_func_start;
6c95b8df 5076 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 5077
a6d9a66e
UW
5078 insert_step_resume_breakpoint_at_sal (gdbarch,
5079 sr_sal, null_frame_id);
8fb3e588
AC
5080 keep_going (ecs);
5081 return;
1b2bfbb9
RC
5082 }
5083
95918acb 5084 /* If we have line number information for the function we are
1bfeeb0f
JL
5085 thinking of stepping into and the function isn't on the skip
5086 list, step into it.
95918acb 5087
8fb3e588
AC
5088 If there are several symtabs at that PC (e.g. with include
5089 files), just want to know whether *any* of them have line
5090 numbers. find_pc_line handles this. */
95918acb
AC
5091 {
5092 struct symtab_and_line tmp_sal;
8fb3e588 5093
95918acb 5094 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 5095 if (tmp_sal.line != 0
85817405
JK
5096 && !function_name_is_marked_for_skip (ecs->stop_func_name,
5097 &tmp_sal))
95918acb 5098 {
b2175913 5099 if (execution_direction == EXEC_REVERSE)
568d6575 5100 handle_step_into_function_backward (gdbarch, ecs);
b2175913 5101 else
568d6575 5102 handle_step_into_function (gdbarch, ecs);
95918acb
AC
5103 return;
5104 }
5105 }
5106
5107 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
5108 set, we stop the step so that the user has a chance to switch
5109 in assembly mode. */
16c381f0 5110 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 5111 && step_stop_if_no_debug)
95918acb 5112 {
bdc36728 5113 end_stepping_range (ecs);
95918acb
AC
5114 return;
5115 }
5116
b2175913
MS
5117 if (execution_direction == EXEC_REVERSE)
5118 {
acf9414f
JK
5119 /* If we're already at the start of the function, we've either just
5120 stepped backward into a single instruction function without line
5121 number info, or stepped back out of a signal handler to the first
5122 instruction of the function without line number info. Just keep
5123 going, which will single-step back to the caller. */
5124 if (ecs->stop_func_start != stop_pc)
5125 {
5126 /* Set a breakpoint at callee's start address.
5127 From there we can step once and be back in the caller. */
5128 struct symtab_and_line sr_sal;
abbb1732 5129
acf9414f
JK
5130 init_sal (&sr_sal);
5131 sr_sal.pc = ecs->stop_func_start;
5132 sr_sal.pspace = get_frame_program_space (frame);
5133 insert_step_resume_breakpoint_at_sal (gdbarch,
5134 sr_sal, null_frame_id);
5135 }
b2175913
MS
5136 }
5137 else
5138 /* Set a breakpoint at callee's return address (the address
5139 at which the caller will resume). */
568d6575 5140 insert_step_resume_breakpoint_at_caller (frame);
b2175913 5141
95918acb 5142 keep_going (ecs);
488f131b 5143 return;
488f131b 5144 }
c906108c 5145
fdd654f3
MS
5146 /* Reverse stepping through solib trampolines. */
5147
5148 if (execution_direction == EXEC_REVERSE
16c381f0 5149 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
5150 {
5151 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5152 || (ecs->stop_func_start == 0
5153 && in_solib_dynsym_resolve_code (stop_pc)))
5154 {
5155 /* Any solib trampoline code can be handled in reverse
5156 by simply continuing to single-step. We have already
5157 executed the solib function (backwards), and a few
5158 steps will take us back through the trampoline to the
5159 caller. */
5160 keep_going (ecs);
5161 return;
5162 }
5163 else if (in_solib_dynsym_resolve_code (stop_pc))
5164 {
5165 /* Stepped backward into the solib dynsym resolver.
5166 Set a breakpoint at its start and continue, then
5167 one more step will take us out. */
5168 struct symtab_and_line sr_sal;
abbb1732 5169
fdd654f3
MS
5170 init_sal (&sr_sal);
5171 sr_sal.pc = ecs->stop_func_start;
9d1807c3 5172 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
5173 insert_step_resume_breakpoint_at_sal (gdbarch,
5174 sr_sal, null_frame_id);
5175 keep_going (ecs);
5176 return;
5177 }
5178 }
5179
2afb61aa 5180 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 5181
1b2bfbb9
RC
5182 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5183 the trampoline processing logic, however, there are some trampolines
5184 that have no names, so we should do trampoline handling first. */
16c381f0 5185 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 5186 && ecs->stop_func_name == NULL
2afb61aa 5187 && stop_pc_sal.line == 0)
1b2bfbb9 5188 {
527159b7 5189 if (debug_infrun)
3e43a32a
MS
5190 fprintf_unfiltered (gdb_stdlog,
5191 "infrun: stepped into undebuggable function\n");
527159b7 5192
1b2bfbb9 5193 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
5194 undebuggable function (where there is no debugging information
5195 and no line number corresponding to the address where the
1b2bfbb9
RC
5196 inferior stopped). Since we want to skip this kind of code,
5197 we keep going until the inferior returns from this
14e60db5
DJ
5198 function - unless the user has asked us not to (via
5199 set step-mode) or we no longer know how to get back
5200 to the call site. */
5201 if (step_stop_if_no_debug
c7ce8faa 5202 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
5203 {
5204 /* If we have no line number and the step-stop-if-no-debug
5205 is set, we stop the step so that the user has a chance to
5206 switch in assembly mode. */
bdc36728 5207 end_stepping_range (ecs);
1b2bfbb9
RC
5208 return;
5209 }
5210 else
5211 {
5212 /* Set a breakpoint at callee's return address (the address
5213 at which the caller will resume). */
568d6575 5214 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
5215 keep_going (ecs);
5216 return;
5217 }
5218 }
5219
16c381f0 5220 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
5221 {
5222 /* It is stepi or nexti. We always want to stop stepping after
5223 one instruction. */
527159b7 5224 if (debug_infrun)
8a9de0e4 5225 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 5226 end_stepping_range (ecs);
1b2bfbb9
RC
5227 return;
5228 }
5229
2afb61aa 5230 if (stop_pc_sal.line == 0)
488f131b
JB
5231 {
5232 /* We have no line number information. That means to stop
5233 stepping (does this always happen right after one instruction,
5234 when we do "s" in a function with no line numbers,
5235 or can this happen as a result of a return or longjmp?). */
527159b7 5236 if (debug_infrun)
8a9de0e4 5237 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 5238 end_stepping_range (ecs);
488f131b
JB
5239 return;
5240 }
c906108c 5241
edb3359d
DJ
5242 /* Look for "calls" to inlined functions, part one. If the inline
5243 frame machinery detected some skipped call sites, we have entered
5244 a new inline function. */
5245
5246 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5247 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
5248 && inline_skipped_frames (ecs->ptid))
5249 {
5250 struct symtab_and_line call_sal;
5251
5252 if (debug_infrun)
5253 fprintf_unfiltered (gdb_stdlog,
5254 "infrun: stepped into inlined function\n");
5255
5256 find_frame_sal (get_current_frame (), &call_sal);
5257
16c381f0 5258 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
5259 {
5260 /* For "step", we're going to stop. But if the call site
5261 for this inlined function is on the same source line as
5262 we were previously stepping, go down into the function
5263 first. Otherwise stop at the call site. */
5264
5265 if (call_sal.line == ecs->event_thread->current_line
5266 && call_sal.symtab == ecs->event_thread->current_symtab)
5267 step_into_inline_frame (ecs->ptid);
5268
bdc36728 5269 end_stepping_range (ecs);
edb3359d
DJ
5270 return;
5271 }
5272 else
5273 {
5274 /* For "next", we should stop at the call site if it is on a
5275 different source line. Otherwise continue through the
5276 inlined function. */
5277 if (call_sal.line == ecs->event_thread->current_line
5278 && call_sal.symtab == ecs->event_thread->current_symtab)
5279 keep_going (ecs);
5280 else
bdc36728 5281 end_stepping_range (ecs);
edb3359d
DJ
5282 return;
5283 }
5284 }
5285
5286 /* Look for "calls" to inlined functions, part two. If we are still
5287 in the same real function we were stepping through, but we have
5288 to go further up to find the exact frame ID, we are stepping
5289 through a more inlined call beyond its call site. */
5290
5291 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5292 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5293 ecs->event_thread->control.step_frame_id)
edb3359d 5294 && stepped_in_from (get_current_frame (),
16c381f0 5295 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
5296 {
5297 if (debug_infrun)
5298 fprintf_unfiltered (gdb_stdlog,
5299 "infrun: stepping through inlined function\n");
5300
16c381f0 5301 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
5302 keep_going (ecs);
5303 else
bdc36728 5304 end_stepping_range (ecs);
edb3359d
DJ
5305 return;
5306 }
5307
2afb61aa 5308 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
5309 && (ecs->event_thread->current_line != stop_pc_sal.line
5310 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
5311 {
5312 /* We are at the start of a different line. So stop. Note that
5313 we don't stop if we step into the middle of a different line.
5314 That is said to make things like for (;;) statements work
5315 better. */
527159b7 5316 if (debug_infrun)
3e43a32a
MS
5317 fprintf_unfiltered (gdb_stdlog,
5318 "infrun: stepped to a different line\n");
bdc36728 5319 end_stepping_range (ecs);
488f131b
JB
5320 return;
5321 }
c906108c 5322
488f131b 5323 /* We aren't done stepping.
c906108c 5324
488f131b
JB
5325 Optimize by setting the stepping range to the line.
5326 (We might not be in the original line, but if we entered a
5327 new line in mid-statement, we continue stepping. This makes
5328 things like for(;;) statements work better.) */
c906108c 5329
16c381f0
JK
5330 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5331 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 5332 ecs->event_thread->control.may_range_step = 1;
edb3359d 5333 set_step_info (frame, stop_pc_sal);
488f131b 5334
527159b7 5335 if (debug_infrun)
8a9de0e4 5336 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 5337 keep_going (ecs);
104c1213
JM
5338}
5339
c447ac0b
PA
5340/* In all-stop mode, if we're currently stepping but have stopped in
5341 some other thread, we may need to switch back to the stepped
5342 thread. Returns true we set the inferior running, false if we left
5343 it stopped (and the event needs further processing). */
5344
5345static int
5346switch_back_to_stepped_thread (struct execution_control_state *ecs)
5347{
5348 if (!non_stop)
5349 {
5350 struct thread_info *tp;
99619bea 5351 struct thread_info *stepping_thread;
483805cf 5352 struct thread_info *step_over;
99619bea
PA
5353
5354 /* If any thread is blocked on some internal breakpoint, and we
5355 simply need to step over that breakpoint to get it going
5356 again, do that first. */
5357
5358 /* However, if we see an event for the stepping thread, then we
5359 know all other threads have been moved past their breakpoints
5360 already. Let the caller check whether the step is finished,
5361 etc., before deciding to move it past a breakpoint. */
5362 if (ecs->event_thread->control.step_range_end != 0)
5363 return 0;
5364
5365 /* Check if the current thread is blocked on an incomplete
5366 step-over, interrupted by a random signal. */
5367 if (ecs->event_thread->control.trap_expected
5368 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 5369 {
99619bea
PA
5370 if (debug_infrun)
5371 {
5372 fprintf_unfiltered (gdb_stdlog,
5373 "infrun: need to finish step-over of [%s]\n",
5374 target_pid_to_str (ecs->event_thread->ptid));
5375 }
5376 keep_going (ecs);
5377 return 1;
5378 }
2adfaa28 5379
99619bea
PA
5380 /* Check if the current thread is blocked by a single-step
5381 breakpoint of another thread. */
5382 if (ecs->hit_singlestep_breakpoint)
5383 {
5384 if (debug_infrun)
5385 {
5386 fprintf_unfiltered (gdb_stdlog,
5387 "infrun: need to step [%s] over single-step "
5388 "breakpoint\n",
5389 target_pid_to_str (ecs->ptid));
5390 }
5391 keep_going (ecs);
5392 return 1;
5393 }
5394
483805cf
PA
5395 /* Otherwise, we no longer expect a trap in the current thread.
5396 Clear the trap_expected flag before switching back -- this is
5397 what keep_going does as well, if we call it. */
5398 ecs->event_thread->control.trap_expected = 0;
5399
70509625
PA
5400 /* Likewise, clear the signal if it should not be passed. */
5401 if (!signal_program[ecs->event_thread->suspend.stop_signal])
5402 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5403
483805cf
PA
5404 /* If scheduler locking applies even if not stepping, there's no
5405 need to walk over threads. Above we've checked whether the
5406 current thread is stepping. If some other thread not the
5407 event thread is stepping, then it must be that scheduler
5408 locking is not in effect. */
5409 if (schedlock_applies (0))
5410 return 0;
5411
5412 /* Look for the stepping/nexting thread, and check if any other
5413 thread other than the stepping thread needs to start a
5414 step-over. Do all step-overs before actually proceeding with
5415 step/next/etc. */
5416 stepping_thread = NULL;
5417 step_over = NULL;
034f788c 5418 ALL_NON_EXITED_THREADS (tp)
483805cf
PA
5419 {
5420 /* Ignore threads of processes we're not resuming. */
5421 if (!sched_multi
5422 && ptid_get_pid (tp->ptid) != ptid_get_pid (inferior_ptid))
5423 continue;
5424
5425 /* When stepping over a breakpoint, we lock all threads
5426 except the one that needs to move past the breakpoint.
5427 If a non-event thread has this set, the "incomplete
5428 step-over" check above should have caught it earlier. */
5429 gdb_assert (!tp->control.trap_expected);
5430
5431 /* Did we find the stepping thread? */
5432 if (tp->control.step_range_end)
5433 {
5434 /* Yep. There should only one though. */
5435 gdb_assert (stepping_thread == NULL);
5436
5437 /* The event thread is handled at the top, before we
5438 enter this loop. */
5439 gdb_assert (tp != ecs->event_thread);
5440
5441 /* If some thread other than the event thread is
5442 stepping, then scheduler locking can't be in effect,
5443 otherwise we wouldn't have resumed the current event
5444 thread in the first place. */
5445 gdb_assert (!schedlock_applies (1));
5446
5447 stepping_thread = tp;
5448 }
5449 else if (thread_still_needs_step_over (tp))
5450 {
5451 step_over = tp;
5452
5453 /* At the top we've returned early if the event thread
5454 is stepping. If some other thread not the event
5455 thread is stepping, then scheduler locking can't be
5456 in effect, and we can resume this thread. No need to
5457 keep looking for the stepping thread then. */
5458 break;
5459 }
5460 }
99619bea 5461
483805cf 5462 if (step_over != NULL)
99619bea 5463 {
483805cf 5464 tp = step_over;
99619bea 5465 if (debug_infrun)
c447ac0b 5466 {
99619bea
PA
5467 fprintf_unfiltered (gdb_stdlog,
5468 "infrun: need to step-over [%s]\n",
5469 target_pid_to_str (tp->ptid));
c447ac0b
PA
5470 }
5471
483805cf 5472 /* Only the stepping thread should have this set. */
99619bea
PA
5473 gdb_assert (tp->control.step_range_end == 0);
5474
99619bea
PA
5475 ecs->ptid = tp->ptid;
5476 ecs->event_thread = tp;
5477 switch_to_thread (ecs->ptid);
5478 keep_going (ecs);
5479 return 1;
5480 }
5481
483805cf 5482 if (stepping_thread != NULL)
99619bea
PA
5483 {
5484 struct frame_info *frame;
5485 struct gdbarch *gdbarch;
5486
483805cf
PA
5487 tp = stepping_thread;
5488
c447ac0b
PA
5489 /* If the stepping thread exited, then don't try to switch
5490 back and resume it, which could fail in several different
5491 ways depending on the target. Instead, just keep going.
5492
5493 We can find a stepping dead thread in the thread list in
5494 two cases:
5495
5496 - The target supports thread exit events, and when the
5497 target tries to delete the thread from the thread list,
5498 inferior_ptid pointed at the exiting thread. In such
5499 case, calling delete_thread does not really remove the
5500 thread from the list; instead, the thread is left listed,
5501 with 'exited' state.
5502
5503 - The target's debug interface does not support thread
5504 exit events, and so we have no idea whatsoever if the
5505 previously stepping thread is still alive. For that
5506 reason, we need to synchronously query the target
5507 now. */
5508 if (is_exited (tp->ptid)
5509 || !target_thread_alive (tp->ptid))
5510 {
5511 if (debug_infrun)
5512 fprintf_unfiltered (gdb_stdlog,
5513 "infrun: not switching back to "
5514 "stepped thread, it has vanished\n");
5515
5516 delete_thread (tp->ptid);
5517 keep_going (ecs);
5518 return 1;
5519 }
5520
c447ac0b
PA
5521 if (debug_infrun)
5522 fprintf_unfiltered (gdb_stdlog,
5523 "infrun: switching back to stepped thread\n");
5524
5525 ecs->event_thread = tp;
5526 ecs->ptid = tp->ptid;
5527 context_switch (ecs->ptid);
2adfaa28
PA
5528
5529 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5530 frame = get_current_frame ();
5531 gdbarch = get_frame_arch (frame);
5532
5533 /* If the PC of the thread we were trying to single-step has
99619bea
PA
5534 changed, then that thread has trapped or been signaled,
5535 but the event has not been reported to GDB yet. Re-poll
5536 the target looking for this particular thread's event
5537 (i.e. temporarily enable schedlock) by:
2adfaa28
PA
5538
5539 - setting a break at the current PC
5540 - resuming that particular thread, only (by setting
5541 trap expected)
5542
5543 This prevents us continuously moving the single-step
5544 breakpoint forward, one instruction at a time,
5545 overstepping. */
5546
5547 if (gdbarch_software_single_step_p (gdbarch)
5548 && stop_pc != tp->prev_pc)
5549 {
5550 if (debug_infrun)
5551 fprintf_unfiltered (gdb_stdlog,
5552 "infrun: expected thread advanced also\n");
5553
7c16b83e
PA
5554 /* Clear the info of the previous step-over, as it's no
5555 longer valid. It's what keep_going would do too, if
5556 we called it. Must do this before trying to insert
5557 the sss breakpoint, otherwise if we were previously
5558 trying to step over this exact address in another
5559 thread, the breakpoint ends up not installed. */
5560 clear_step_over_info ();
5561
2adfaa28
PA
5562 insert_single_step_breakpoint (get_frame_arch (frame),
5563 get_frame_address_space (frame),
5564 stop_pc);
2adfaa28 5565 ecs->event_thread->control.trap_expected = 1;
2adfaa28
PA
5566
5567 resume (0, GDB_SIGNAL_0);
5568 prepare_to_wait (ecs);
5569 }
5570 else
5571 {
5572 if (debug_infrun)
5573 fprintf_unfiltered (gdb_stdlog,
5574 "infrun: expected thread still "
5575 "hasn't advanced\n");
5576 keep_going (ecs);
5577 }
5578
c447ac0b
PA
5579 return 1;
5580 }
5581 }
5582 return 0;
5583}
5584
b3444185 5585/* Is thread TP in the middle of single-stepping? */
104c1213 5586
a289b8f6 5587static int
b3444185 5588currently_stepping (struct thread_info *tp)
a7212384 5589{
8358c15c
JK
5590 return ((tp->control.step_range_end
5591 && tp->control.step_resume_breakpoint == NULL)
5592 || tp->control.trap_expected
8358c15c 5593 || bpstat_should_step ());
a7212384
UW
5594}
5595
b2175913
MS
5596/* Inferior has stepped into a subroutine call with source code that
5597 we should not step over. Do step to the first line of code in
5598 it. */
c2c6d25f
JM
5599
5600static void
568d6575
UW
5601handle_step_into_function (struct gdbarch *gdbarch,
5602 struct execution_control_state *ecs)
c2c6d25f
JM
5603{
5604 struct symtab *s;
2afb61aa 5605 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 5606
7e324e48
GB
5607 fill_in_stop_func (gdbarch, ecs);
5608
c2c6d25f
JM
5609 s = find_pc_symtab (stop_pc);
5610 if (s && s->language != language_asm)
568d6575 5611 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 5612 ecs->stop_func_start);
c2c6d25f 5613
2afb61aa 5614 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
5615 /* Use the step_resume_break to step until the end of the prologue,
5616 even if that involves jumps (as it seems to on the vax under
5617 4.2). */
5618 /* If the prologue ends in the middle of a source line, continue to
5619 the end of that source line (if it is still within the function).
5620 Otherwise, just go to end of prologue. */
2afb61aa
PA
5621 if (stop_func_sal.end
5622 && stop_func_sal.pc != ecs->stop_func_start
5623 && stop_func_sal.end < ecs->stop_func_end)
5624 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 5625
2dbd5e30
KB
5626 /* Architectures which require breakpoint adjustment might not be able
5627 to place a breakpoint at the computed address. If so, the test
5628 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5629 ecs->stop_func_start to an address at which a breakpoint may be
5630 legitimately placed.
8fb3e588 5631
2dbd5e30
KB
5632 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5633 made, GDB will enter an infinite loop when stepping through
5634 optimized code consisting of VLIW instructions which contain
5635 subinstructions corresponding to different source lines. On
5636 FR-V, it's not permitted to place a breakpoint on any but the
5637 first subinstruction of a VLIW instruction. When a breakpoint is
5638 set, GDB will adjust the breakpoint address to the beginning of
5639 the VLIW instruction. Thus, we need to make the corresponding
5640 adjustment here when computing the stop address. */
8fb3e588 5641
568d6575 5642 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
5643 {
5644 ecs->stop_func_start
568d6575 5645 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 5646 ecs->stop_func_start);
2dbd5e30
KB
5647 }
5648
c2c6d25f
JM
5649 if (ecs->stop_func_start == stop_pc)
5650 {
5651 /* We are already there: stop now. */
bdc36728 5652 end_stepping_range (ecs);
c2c6d25f
JM
5653 return;
5654 }
5655 else
5656 {
5657 /* Put the step-breakpoint there and go until there. */
fe39c653 5658 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
5659 sr_sal.pc = ecs->stop_func_start;
5660 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 5661 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 5662
c2c6d25f 5663 /* Do not specify what the fp should be when we stop since on
488f131b
JB
5664 some machines the prologue is where the new fp value is
5665 established. */
a6d9a66e 5666 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
5667
5668 /* And make sure stepping stops right away then. */
16c381f0
JK
5669 ecs->event_thread->control.step_range_end
5670 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
5671 }
5672 keep_going (ecs);
5673}
d4f3574e 5674
b2175913
MS
5675/* Inferior has stepped backward into a subroutine call with source
5676 code that we should not step over. Do step to the beginning of the
5677 last line of code in it. */
5678
5679static void
568d6575
UW
5680handle_step_into_function_backward (struct gdbarch *gdbarch,
5681 struct execution_control_state *ecs)
b2175913
MS
5682{
5683 struct symtab *s;
167e4384 5684 struct symtab_and_line stop_func_sal;
b2175913 5685
7e324e48
GB
5686 fill_in_stop_func (gdbarch, ecs);
5687
b2175913
MS
5688 s = find_pc_symtab (stop_pc);
5689 if (s && s->language != language_asm)
568d6575 5690 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
5691 ecs->stop_func_start);
5692
5693 stop_func_sal = find_pc_line (stop_pc, 0);
5694
5695 /* OK, we're just going to keep stepping here. */
5696 if (stop_func_sal.pc == stop_pc)
5697 {
5698 /* We're there already. Just stop stepping now. */
bdc36728 5699 end_stepping_range (ecs);
b2175913
MS
5700 }
5701 else
5702 {
5703 /* Else just reset the step range and keep going.
5704 No step-resume breakpoint, they don't work for
5705 epilogues, which can have multiple entry paths. */
16c381f0
JK
5706 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5707 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
5708 keep_going (ecs);
5709 }
5710 return;
5711}
5712
d3169d93 5713/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
5714 This is used to both functions and to skip over code. */
5715
5716static void
2c03e5be
PA
5717insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5718 struct symtab_and_line sr_sal,
5719 struct frame_id sr_id,
5720 enum bptype sr_type)
44cbf7b5 5721{
611c83ae
PA
5722 /* There should never be more than one step-resume or longjmp-resume
5723 breakpoint per thread, so we should never be setting a new
44cbf7b5 5724 step_resume_breakpoint when one is already active. */
8358c15c 5725 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 5726 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
5727
5728 if (debug_infrun)
5729 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5730 "infrun: inserting step-resume breakpoint at %s\n",
5731 paddress (gdbarch, sr_sal.pc));
d3169d93 5732
8358c15c 5733 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
5734 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5735}
5736
9da8c2a0 5737void
2c03e5be
PA
5738insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5739 struct symtab_and_line sr_sal,
5740 struct frame_id sr_id)
5741{
5742 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5743 sr_sal, sr_id,
5744 bp_step_resume);
44cbf7b5 5745}
7ce450bd 5746
2c03e5be
PA
5747/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5748 This is used to skip a potential signal handler.
7ce450bd 5749
14e60db5
DJ
5750 This is called with the interrupted function's frame. The signal
5751 handler, when it returns, will resume the interrupted function at
5752 RETURN_FRAME.pc. */
d303a6c7
AC
5753
5754static void
2c03e5be 5755insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
5756{
5757 struct symtab_and_line sr_sal;
a6d9a66e 5758 struct gdbarch *gdbarch;
d303a6c7 5759
f4c1edd8 5760 gdb_assert (return_frame != NULL);
d303a6c7
AC
5761 init_sal (&sr_sal); /* initialize to zeros */
5762
a6d9a66e 5763 gdbarch = get_frame_arch (return_frame);
568d6575 5764 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 5765 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5766 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 5767
2c03e5be
PA
5768 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5769 get_stack_frame_id (return_frame),
5770 bp_hp_step_resume);
d303a6c7
AC
5771}
5772
2c03e5be
PA
5773/* Insert a "step-resume breakpoint" at the previous frame's PC. This
5774 is used to skip a function after stepping into it (for "next" or if
5775 the called function has no debugging information).
14e60db5
DJ
5776
5777 The current function has almost always been reached by single
5778 stepping a call or return instruction. NEXT_FRAME belongs to the
5779 current function, and the breakpoint will be set at the caller's
5780 resume address.
5781
5782 This is a separate function rather than reusing
2c03e5be 5783 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 5784 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 5785 of frame_unwind_caller_id for an example). */
14e60db5
DJ
5786
5787static void
5788insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5789{
5790 struct symtab_and_line sr_sal;
a6d9a66e 5791 struct gdbarch *gdbarch;
14e60db5
DJ
5792
5793 /* We shouldn't have gotten here if we don't know where the call site
5794 is. */
c7ce8faa 5795 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
5796
5797 init_sal (&sr_sal); /* initialize to zeros */
5798
a6d9a66e 5799 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
5800 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5801 frame_unwind_caller_pc (next_frame));
14e60db5 5802 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5803 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 5804
a6d9a66e 5805 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 5806 frame_unwind_caller_id (next_frame));
14e60db5
DJ
5807}
5808
611c83ae
PA
5809/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5810 new breakpoint at the target of a jmp_buf. The handling of
5811 longjmp-resume uses the same mechanisms used for handling
5812 "step-resume" breakpoints. */
5813
5814static void
a6d9a66e 5815insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 5816{
e81a37f7
TT
5817 /* There should never be more than one longjmp-resume breakpoint per
5818 thread, so we should never be setting a new
611c83ae 5819 longjmp_resume_breakpoint when one is already active. */
e81a37f7 5820 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
5821
5822 if (debug_infrun)
5823 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5824 "infrun: inserting longjmp-resume breakpoint at %s\n",
5825 paddress (gdbarch, pc));
611c83ae 5826
e81a37f7 5827 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 5828 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
5829}
5830
186c406b
TT
5831/* Insert an exception resume breakpoint. TP is the thread throwing
5832 the exception. The block B is the block of the unwinder debug hook
5833 function. FRAME is the frame corresponding to the call to this
5834 function. SYM is the symbol of the function argument holding the
5835 target PC of the exception. */
5836
5837static void
5838insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 5839 const struct block *b,
186c406b
TT
5840 struct frame_info *frame,
5841 struct symbol *sym)
5842{
bfd189b1 5843 volatile struct gdb_exception e;
186c406b
TT
5844
5845 /* We want to ignore errors here. */
5846 TRY_CATCH (e, RETURN_MASK_ERROR)
5847 {
5848 struct symbol *vsym;
5849 struct value *value;
5850 CORE_ADDR handler;
5851 struct breakpoint *bp;
5852
5853 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5854 value = read_var_value (vsym, frame);
5855 /* If the value was optimized out, revert to the old behavior. */
5856 if (! value_optimized_out (value))
5857 {
5858 handler = value_as_address (value);
5859
5860 if (debug_infrun)
5861 fprintf_unfiltered (gdb_stdlog,
5862 "infrun: exception resume at %lx\n",
5863 (unsigned long) handler);
5864
5865 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5866 handler, bp_exception_resume);
c70a6932
JK
5867
5868 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5869 frame = NULL;
5870
186c406b
TT
5871 bp->thread = tp->num;
5872 inferior_thread ()->control.exception_resume_breakpoint = bp;
5873 }
5874 }
5875}
5876
28106bc2
SDJ
5877/* A helper for check_exception_resume that sets an
5878 exception-breakpoint based on a SystemTap probe. */
5879
5880static void
5881insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 5882 const struct bound_probe *probe,
28106bc2
SDJ
5883 struct frame_info *frame)
5884{
5885 struct value *arg_value;
5886 CORE_ADDR handler;
5887 struct breakpoint *bp;
5888
5889 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5890 if (!arg_value)
5891 return;
5892
5893 handler = value_as_address (arg_value);
5894
5895 if (debug_infrun)
5896 fprintf_unfiltered (gdb_stdlog,
5897 "infrun: exception resume at %s\n",
6bac7473 5898 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
5899 handler));
5900
5901 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5902 handler, bp_exception_resume);
5903 bp->thread = tp->num;
5904 inferior_thread ()->control.exception_resume_breakpoint = bp;
5905}
5906
186c406b
TT
5907/* This is called when an exception has been intercepted. Check to
5908 see whether the exception's destination is of interest, and if so,
5909 set an exception resume breakpoint there. */
5910
5911static void
5912check_exception_resume (struct execution_control_state *ecs,
28106bc2 5913 struct frame_info *frame)
186c406b 5914{
bfd189b1 5915 volatile struct gdb_exception e;
729662a5 5916 struct bound_probe probe;
28106bc2
SDJ
5917 struct symbol *func;
5918
5919 /* First see if this exception unwinding breakpoint was set via a
5920 SystemTap probe point. If so, the probe has two arguments: the
5921 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5922 set a breakpoint there. */
6bac7473 5923 probe = find_probe_by_pc (get_frame_pc (frame));
729662a5 5924 if (probe.probe)
28106bc2 5925 {
729662a5 5926 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
5927 return;
5928 }
5929
5930 func = get_frame_function (frame);
5931 if (!func)
5932 return;
186c406b
TT
5933
5934 TRY_CATCH (e, RETURN_MASK_ERROR)
5935 {
3977b71f 5936 const struct block *b;
8157b174 5937 struct block_iterator iter;
186c406b
TT
5938 struct symbol *sym;
5939 int argno = 0;
5940
5941 /* The exception breakpoint is a thread-specific breakpoint on
5942 the unwinder's debug hook, declared as:
5943
5944 void _Unwind_DebugHook (void *cfa, void *handler);
5945
5946 The CFA argument indicates the frame to which control is
5947 about to be transferred. HANDLER is the destination PC.
5948
5949 We ignore the CFA and set a temporary breakpoint at HANDLER.
5950 This is not extremely efficient but it avoids issues in gdb
5951 with computing the DWARF CFA, and it also works even in weird
5952 cases such as throwing an exception from inside a signal
5953 handler. */
5954
5955 b = SYMBOL_BLOCK_VALUE (func);
5956 ALL_BLOCK_SYMBOLS (b, iter, sym)
5957 {
5958 if (!SYMBOL_IS_ARGUMENT (sym))
5959 continue;
5960
5961 if (argno == 0)
5962 ++argno;
5963 else
5964 {
5965 insert_exception_resume_breakpoint (ecs->event_thread,
5966 b, frame, sym);
5967 break;
5968 }
5969 }
5970 }
5971}
5972
104c1213 5973static void
22bcd14b 5974stop_waiting (struct execution_control_state *ecs)
104c1213 5975{
527159b7 5976 if (debug_infrun)
22bcd14b 5977 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 5978
31e77af2
PA
5979 clear_step_over_info ();
5980
cd0fc7c3
SS
5981 /* Let callers know we don't want to wait for the inferior anymore. */
5982 ecs->wait_some_more = 0;
5983}
5984
a9ba6bae
PA
5985/* Called when we should continue running the inferior, because the
5986 current event doesn't cause a user visible stop. This does the
5987 resuming part; waiting for the next event is done elsewhere. */
d4f3574e
SS
5988
5989static void
5990keep_going (struct execution_control_state *ecs)
5991{
c4dbc9af
PA
5992 /* Make sure normal_stop is called if we get a QUIT handled before
5993 reaching resume. */
5994 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5995
d4f3574e 5996 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
5997 ecs->event_thread->prev_pc
5998 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 5999
16c381f0 6000 if (ecs->event_thread->control.trap_expected
a493e3e2 6001 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
d4f3574e 6002 {
a9ba6bae
PA
6003 /* We haven't yet gotten our trap, and either: intercepted a
6004 non-signal event (e.g., a fork); or took a signal which we
6005 are supposed to pass through to the inferior. Simply
6006 continue. */
c4dbc9af 6007 discard_cleanups (old_cleanups);
2020b7ab 6008 resume (currently_stepping (ecs->event_thread),
16c381f0 6009 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
6010 }
6011 else
6012 {
31e77af2
PA
6013 volatile struct gdb_exception e;
6014 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
6015 int remove_bp;
6016 int remove_wps;
31e77af2 6017
d4f3574e 6018 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
6019 anyway (if we got a signal, the user asked it be passed to
6020 the child)
6021 -- or --
6022 We got our expected trap, but decided we should resume from
6023 it.
d4f3574e 6024
a9ba6bae 6025 We're going to run this baby now!
d4f3574e 6026
c36b740a
VP
6027 Note that insert_breakpoints won't try to re-insert
6028 already inserted breakpoints. Therefore, we don't
6029 care if breakpoints were already inserted, or not. */
a9ba6bae 6030
31e77af2
PA
6031 /* If we need to step over a breakpoint, and we're not using
6032 displaced stepping to do so, insert all breakpoints
6033 (watchpoints, etc.) but the one we're stepping over, step one
6034 instruction, and then re-insert the breakpoint when that step
6035 is finished. */
963f9c80
PA
6036
6037 remove_bp = (ecs->hit_singlestep_breakpoint
6038 || thread_still_needs_step_over (ecs->event_thread));
6039 remove_wps = (ecs->event_thread->stepping_over_watchpoint
6040 && !target_have_steppable_watchpoint);
6041
6042 if (remove_bp && !use_displaced_stepping (get_regcache_arch (regcache)))
45e8c884 6043 {
31e77af2 6044 set_step_over_info (get_regcache_aspace (regcache),
963f9c80 6045 regcache_read_pc (regcache), remove_wps);
45e8c884 6046 }
963f9c80
PA
6047 else if (remove_wps)
6048 set_step_over_info (NULL, 0, remove_wps);
45e8c884 6049 else
31e77af2 6050 clear_step_over_info ();
abbb1732 6051
31e77af2
PA
6052 /* Stop stepping if inserting breakpoints fails. */
6053 TRY_CATCH (e, RETURN_MASK_ERROR)
6054 {
6055 insert_breakpoints ();
6056 }
6057 if (e.reason < 0)
6058 {
6059 exception_print (gdb_stderr, e);
22bcd14b 6060 stop_waiting (ecs);
31e77af2 6061 return;
d4f3574e
SS
6062 }
6063
963f9c80 6064 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 6065
a9ba6bae
PA
6066 /* Do not deliver GDB_SIGNAL_TRAP (except when the user
6067 explicitly specifies that such a signal should be delivered
6068 to the target program). Typically, that would occur when a
6069 user is debugging a target monitor on a simulator: the target
6070 monitor sets a breakpoint; the simulator encounters this
6071 breakpoint and halts the simulation handing control to GDB;
6072 GDB, noting that the stop address doesn't map to any known
6073 breakpoint, returns control back to the simulator; the
6074 simulator then delivers the hardware equivalent of a
6075 GDB_SIGNAL_TRAP to the program being debugged. */
a493e3e2 6076 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 6077 && !signal_program[ecs->event_thread->suspend.stop_signal])
a493e3e2 6078 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
d4f3574e 6079
c4dbc9af 6080 discard_cleanups (old_cleanups);
2020b7ab 6081 resume (currently_stepping (ecs->event_thread),
16c381f0 6082 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
6083 }
6084
488f131b 6085 prepare_to_wait (ecs);
d4f3574e
SS
6086}
6087
104c1213
JM
6088/* This function normally comes after a resume, before
6089 handle_inferior_event exits. It takes care of any last bits of
6090 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 6091
104c1213
JM
6092static void
6093prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 6094{
527159b7 6095 if (debug_infrun)
8a9de0e4 6096 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 6097
104c1213
JM
6098 /* This is the old end of the while loop. Let everybody know we
6099 want to wait for the inferior some more and get called again
6100 soon. */
6101 ecs->wait_some_more = 1;
c906108c 6102}
11cf8741 6103
fd664c91 6104/* We are done with the step range of a step/next/si/ni command.
b57bacec 6105 Called once for each n of a "step n" operation. */
fd664c91
PA
6106
6107static void
bdc36728 6108end_stepping_range (struct execution_control_state *ecs)
fd664c91 6109{
bdc36728 6110 ecs->event_thread->control.stop_step = 1;
bdc36728 6111 stop_waiting (ecs);
fd664c91
PA
6112}
6113
33d62d64
JK
6114/* Several print_*_reason functions to print why the inferior has stopped.
6115 We always print something when the inferior exits, or receives a signal.
6116 The rest of the cases are dealt with later on in normal_stop and
6117 print_it_typical. Ideally there should be a call to one of these
6118 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 6119 stop_waiting is called.
33d62d64 6120
fd664c91
PA
6121 Note that we don't call these directly, instead we delegate that to
6122 the interpreters, through observers. Interpreters then call these
6123 with whatever uiout is right. */
33d62d64 6124
fd664c91
PA
6125void
6126print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 6127{
fd664c91 6128 /* For CLI-like interpreters, print nothing. */
33d62d64 6129
fd664c91
PA
6130 if (ui_out_is_mi_like_p (uiout))
6131 {
6132 ui_out_field_string (uiout, "reason",
6133 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
6134 }
6135}
33d62d64 6136
fd664c91
PA
6137void
6138print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 6139{
33d62d64
JK
6140 annotate_signalled ();
6141 if (ui_out_is_mi_like_p (uiout))
6142 ui_out_field_string
6143 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
6144 ui_out_text (uiout, "\nProgram terminated with signal ");
6145 annotate_signal_name ();
6146 ui_out_field_string (uiout, "signal-name",
2ea28649 6147 gdb_signal_to_name (siggnal));
33d62d64
JK
6148 annotate_signal_name_end ();
6149 ui_out_text (uiout, ", ");
6150 annotate_signal_string ();
6151 ui_out_field_string (uiout, "signal-meaning",
2ea28649 6152 gdb_signal_to_string (siggnal));
33d62d64
JK
6153 annotate_signal_string_end ();
6154 ui_out_text (uiout, ".\n");
6155 ui_out_text (uiout, "The program no longer exists.\n");
6156}
6157
fd664c91
PA
6158void
6159print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 6160{
fda326dd
TT
6161 struct inferior *inf = current_inferior ();
6162 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
6163
33d62d64
JK
6164 annotate_exited (exitstatus);
6165 if (exitstatus)
6166 {
6167 if (ui_out_is_mi_like_p (uiout))
6168 ui_out_field_string (uiout, "reason",
6169 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
6170 ui_out_text (uiout, "[Inferior ");
6171 ui_out_text (uiout, plongest (inf->num));
6172 ui_out_text (uiout, " (");
6173 ui_out_text (uiout, pidstr);
6174 ui_out_text (uiout, ") exited with code ");
33d62d64 6175 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 6176 ui_out_text (uiout, "]\n");
33d62d64
JK
6177 }
6178 else
11cf8741 6179 {
9dc5e2a9 6180 if (ui_out_is_mi_like_p (uiout))
034dad6f 6181 ui_out_field_string
33d62d64 6182 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
6183 ui_out_text (uiout, "[Inferior ");
6184 ui_out_text (uiout, plongest (inf->num));
6185 ui_out_text (uiout, " (");
6186 ui_out_text (uiout, pidstr);
6187 ui_out_text (uiout, ") exited normally]\n");
33d62d64 6188 }
33d62d64
JK
6189}
6190
fd664c91
PA
6191void
6192print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64
JK
6193{
6194 annotate_signal ();
6195
a493e3e2 6196 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
33d62d64
JK
6197 {
6198 struct thread_info *t = inferior_thread ();
6199
6200 ui_out_text (uiout, "\n[");
6201 ui_out_field_string (uiout, "thread-name",
6202 target_pid_to_str (t->ptid));
6203 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
6204 ui_out_text (uiout, " stopped");
6205 }
6206 else
6207 {
6208 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 6209 annotate_signal_name ();
33d62d64
JK
6210 if (ui_out_is_mi_like_p (uiout))
6211 ui_out_field_string
6212 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 6213 ui_out_field_string (uiout, "signal-name",
2ea28649 6214 gdb_signal_to_name (siggnal));
8b93c638
JM
6215 annotate_signal_name_end ();
6216 ui_out_text (uiout, ", ");
6217 annotate_signal_string ();
488f131b 6218 ui_out_field_string (uiout, "signal-meaning",
2ea28649 6219 gdb_signal_to_string (siggnal));
8b93c638 6220 annotate_signal_string_end ();
33d62d64
JK
6221 }
6222 ui_out_text (uiout, ".\n");
6223}
252fbfc8 6224
fd664c91
PA
6225void
6226print_no_history_reason (struct ui_out *uiout)
33d62d64 6227{
fd664c91 6228 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
11cf8741 6229}
43ff13b4 6230
0c7e1a46
PA
6231/* Print current location without a level number, if we have changed
6232 functions or hit a breakpoint. Print source line if we have one.
6233 bpstat_print contains the logic deciding in detail what to print,
6234 based on the event(s) that just occurred. */
6235
6236void
6237print_stop_event (struct target_waitstatus *ws)
6238{
6239 int bpstat_ret;
6240 int source_flag;
6241 int do_frame_printing = 1;
6242 struct thread_info *tp = inferior_thread ();
6243
6244 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
6245 switch (bpstat_ret)
6246 {
6247 case PRINT_UNKNOWN:
6248 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
6249 should) carry around the function and does (or should) use
6250 that when doing a frame comparison. */
6251 if (tp->control.stop_step
6252 && frame_id_eq (tp->control.step_frame_id,
6253 get_frame_id (get_current_frame ()))
6254 && step_start_function == find_pc_function (stop_pc))
6255 {
6256 /* Finished step, just print source line. */
6257 source_flag = SRC_LINE;
6258 }
6259 else
6260 {
6261 /* Print location and source line. */
6262 source_flag = SRC_AND_LOC;
6263 }
6264 break;
6265 case PRINT_SRC_AND_LOC:
6266 /* Print location and source line. */
6267 source_flag = SRC_AND_LOC;
6268 break;
6269 case PRINT_SRC_ONLY:
6270 source_flag = SRC_LINE;
6271 break;
6272 case PRINT_NOTHING:
6273 /* Something bogus. */
6274 source_flag = SRC_LINE;
6275 do_frame_printing = 0;
6276 break;
6277 default:
6278 internal_error (__FILE__, __LINE__, _("Unknown value."));
6279 }
6280
6281 /* The behavior of this routine with respect to the source
6282 flag is:
6283 SRC_LINE: Print only source line
6284 LOCATION: Print only location
6285 SRC_AND_LOC: Print location and source line. */
6286 if (do_frame_printing)
6287 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
6288
6289 /* Display the auto-display expressions. */
6290 do_displays ();
6291}
6292
c906108c
SS
6293/* Here to return control to GDB when the inferior stops for real.
6294 Print appropriate messages, remove breakpoints, give terminal our modes.
6295
6296 STOP_PRINT_FRAME nonzero means print the executing frame
6297 (pc, function, args, file, line number and line text).
6298 BREAKPOINTS_FAILED nonzero means stop was due to error
6299 attempting to insert breakpoints. */
6300
6301void
96baa820 6302normal_stop (void)
c906108c 6303{
73b65bb0
DJ
6304 struct target_waitstatus last;
6305 ptid_t last_ptid;
29f49a6a 6306 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
6307
6308 get_last_target_status (&last_ptid, &last);
6309
29f49a6a
PA
6310 /* If an exception is thrown from this point on, make sure to
6311 propagate GDB's knowledge of the executing state to the
6312 frontend/user running state. A QUIT is an easy exception to see
6313 here, so do this before any filtered output. */
c35b1492
PA
6314 if (!non_stop)
6315 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
6316 else if (last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
6317 && last.kind != TARGET_WAITKIND_EXITED
6318 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 6319 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 6320
b57bacec
PA
6321 /* As we're presenting a stop, and potentially removing breakpoints,
6322 update the thread list so we can tell whether there are threads
6323 running on the target. With target remote, for example, we can
6324 only learn about new threads when we explicitly update the thread
6325 list. Do this before notifying the interpreters about signal
6326 stops, end of stepping ranges, etc., so that the "new thread"
6327 output is emitted before e.g., "Program received signal FOO",
6328 instead of after. */
6329 update_thread_list ();
6330
6331 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
6332 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
6333
c906108c
SS
6334 /* As with the notification of thread events, we want to delay
6335 notifying the user that we've switched thread context until
6336 the inferior actually stops.
6337
73b65bb0
DJ
6338 There's no point in saying anything if the inferior has exited.
6339 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
6340 "received a signal".
6341
6342 Also skip saying anything in non-stop mode. In that mode, as we
6343 don't want GDB to switch threads behind the user's back, to avoid
6344 races where the user is typing a command to apply to thread x,
6345 but GDB switches to thread y before the user finishes entering
6346 the command, fetch_inferior_event installs a cleanup to restore
6347 the current thread back to the thread the user had selected right
6348 after this event is handled, so we're not really switching, only
6349 informing of a stop. */
4f8d22e3
PA
6350 if (!non_stop
6351 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
6352 && target_has_execution
6353 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
6354 && last.kind != TARGET_WAITKIND_EXITED
6355 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
6356 {
6357 target_terminal_ours_for_output ();
a3f17187 6358 printf_filtered (_("[Switching to %s]\n"),
c95310c6 6359 target_pid_to_str (inferior_ptid));
b8fa951a 6360 annotate_thread_changed ();
39f77062 6361 previous_inferior_ptid = inferior_ptid;
c906108c 6362 }
c906108c 6363
0e5bf2a8
PA
6364 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
6365 {
6366 gdb_assert (sync_execution || !target_can_async_p ());
6367
6368 target_terminal_ours_for_output ();
6369 printf_filtered (_("No unwaited-for children left.\n"));
6370 }
6371
b57bacec 6372 /* Note: this depends on the update_thread_list call above. */
a25a5a45 6373 if (!breakpoints_should_be_inserted_now () && target_has_execution)
c906108c
SS
6374 {
6375 if (remove_breakpoints ())
6376 {
6377 target_terminal_ours_for_output ();
3e43a32a
MS
6378 printf_filtered (_("Cannot remove breakpoints because "
6379 "program is no longer writable.\nFurther "
6380 "execution is probably impossible.\n"));
c906108c
SS
6381 }
6382 }
c906108c 6383
c906108c
SS
6384 /* If an auto-display called a function and that got a signal,
6385 delete that auto-display to avoid an infinite recursion. */
6386
6387 if (stopped_by_random_signal)
6388 disable_current_display ();
6389
b57bacec 6390 /* Notify observers if we finished a "step"-like command, etc. */
af679fd0
PA
6391 if (target_has_execution
6392 && last.kind != TARGET_WAITKIND_SIGNALLED
6393 && last.kind != TARGET_WAITKIND_EXITED
16c381f0 6394 && inferior_thread ()->control.stop_step)
b57bacec 6395 {
31cc0b80 6396 /* But not if in the middle of doing a "step n" operation for
b57bacec
PA
6397 n > 1 */
6398 if (inferior_thread ()->step_multi)
6399 goto done;
6400
6401 observer_notify_end_stepping_range ();
6402 }
c906108c
SS
6403
6404 target_terminal_ours ();
0f641c01 6405 async_enable_stdin ();
c906108c 6406
7abfe014
DJ
6407 /* Set the current source location. This will also happen if we
6408 display the frame below, but the current SAL will be incorrect
6409 during a user hook-stop function. */
d729566a 6410 if (has_stack_frames () && !stop_stack_dummy)
5166082f 6411 set_current_sal_from_frame (get_current_frame ());
7abfe014 6412
251bde03
PA
6413 /* Let the user/frontend see the threads as stopped, but do nothing
6414 if the thread was running an infcall. We may be e.g., evaluating
6415 a breakpoint condition. In that case, the thread had state
6416 THREAD_RUNNING before the infcall, and shall remain set to
6417 running, all without informing the user/frontend about state
6418 transition changes. If this is actually a call command, then the
6419 thread was originally already stopped, so there's no state to
6420 finish either. */
6421 if (target_has_execution && inferior_thread ()->control.in_infcall)
6422 discard_cleanups (old_chain);
6423 else
6424 do_cleanups (old_chain);
dd7e2d2b
PA
6425
6426 /* Look up the hook_stop and run it (CLI internally handles problem
6427 of stop_command's pre-hook not existing). */
6428 if (stop_command)
6429 catch_errors (hook_stop_stub, stop_command,
6430 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6431
d729566a 6432 if (!has_stack_frames ())
d51fd4c8 6433 goto done;
c906108c 6434
32400beb
PA
6435 if (last.kind == TARGET_WAITKIND_SIGNALLED
6436 || last.kind == TARGET_WAITKIND_EXITED)
6437 goto done;
6438
c906108c
SS
6439 /* Select innermost stack frame - i.e., current frame is frame 0,
6440 and current location is based on that.
6441 Don't do this on return from a stack dummy routine,
1777feb0 6442 or if the program has exited. */
c906108c
SS
6443
6444 if (!stop_stack_dummy)
6445 {
0f7d239c 6446 select_frame (get_current_frame ());
c906108c 6447
d01a8610
AS
6448 /* If --batch-silent is enabled then there's no need to print the current
6449 source location, and to try risks causing an error message about
6450 missing source files. */
6451 if (stop_print_frame && !batch_silent)
0c7e1a46 6452 print_stop_event (&last);
c906108c
SS
6453 }
6454
6455 /* Save the function value return registers, if we care.
6456 We might be about to restore their previous contents. */
9da8c2a0
PA
6457 if (inferior_thread ()->control.proceed_to_finish
6458 && execution_direction != EXEC_REVERSE)
d5c31457
UW
6459 {
6460 /* This should not be necessary. */
6461 if (stop_registers)
6462 regcache_xfree (stop_registers);
6463
6464 /* NB: The copy goes through to the target picking up the value of
6465 all the registers. */
6466 stop_registers = regcache_dup (get_current_regcache ());
6467 }
c906108c 6468
aa7d318d 6469 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 6470 {
b89667eb
DE
6471 /* Pop the empty frame that contains the stack dummy.
6472 This also restores inferior state prior to the call
16c381f0 6473 (struct infcall_suspend_state). */
b89667eb 6474 struct frame_info *frame = get_current_frame ();
abbb1732 6475
b89667eb
DE
6476 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6477 frame_pop (frame);
3e43a32a
MS
6478 /* frame_pop() calls reinit_frame_cache as the last thing it
6479 does which means there's currently no selected frame. We
6480 don't need to re-establish a selected frame if the dummy call
6481 returns normally, that will be done by
6482 restore_infcall_control_state. However, we do have to handle
6483 the case where the dummy call is returning after being
6484 stopped (e.g. the dummy call previously hit a breakpoint).
6485 We can't know which case we have so just always re-establish
6486 a selected frame here. */
0f7d239c 6487 select_frame (get_current_frame ());
c906108c
SS
6488 }
6489
c906108c
SS
6490done:
6491 annotate_stopped ();
41d2bdb4
PA
6492
6493 /* Suppress the stop observer if we're in the middle of:
6494
6495 - a step n (n > 1), as there still more steps to be done.
6496
6497 - a "finish" command, as the observer will be called in
6498 finish_command_continuation, so it can include the inferior
6499 function's return value.
6500
6501 - calling an inferior function, as we pretend we inferior didn't
6502 run at all. The return value of the call is handled by the
6503 expression evaluator, through call_function_by_hand. */
6504
6505 if (!target_has_execution
6506 || last.kind == TARGET_WAITKIND_SIGNALLED
6507 || last.kind == TARGET_WAITKIND_EXITED
0e5bf2a8 6508 || last.kind == TARGET_WAITKIND_NO_RESUMED
2ca0b532
PA
6509 || (!(inferior_thread ()->step_multi
6510 && inferior_thread ()->control.stop_step)
16c381f0
JK
6511 && !(inferior_thread ()->control.stop_bpstat
6512 && inferior_thread ()->control.proceed_to_finish)
6513 && !inferior_thread ()->control.in_infcall))
347bddb7
PA
6514 {
6515 if (!ptid_equal (inferior_ptid, null_ptid))
16c381f0 6516 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
1d33d6ba 6517 stop_print_frame);
347bddb7 6518 else
1d33d6ba 6519 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 6520 }
347bddb7 6521
48844aa6
PA
6522 if (target_has_execution)
6523 {
6524 if (last.kind != TARGET_WAITKIND_SIGNALLED
6525 && last.kind != TARGET_WAITKIND_EXITED)
6526 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6527 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 6528 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 6529 }
6c95b8df
PA
6530
6531 /* Try to get rid of automatically added inferiors that are no
6532 longer needed. Keeping those around slows down things linearly.
6533 Note that this never removes the current inferior. */
6534 prune_inferiors ();
c906108c
SS
6535}
6536
6537static int
96baa820 6538hook_stop_stub (void *cmd)
c906108c 6539{
5913bcb0 6540 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
6541 return (0);
6542}
6543\f
c5aa993b 6544int
96baa820 6545signal_stop_state (int signo)
c906108c 6546{
d6b48e9c 6547 return signal_stop[signo];
c906108c
SS
6548}
6549
c5aa993b 6550int
96baa820 6551signal_print_state (int signo)
c906108c
SS
6552{
6553 return signal_print[signo];
6554}
6555
c5aa993b 6556int
96baa820 6557signal_pass_state (int signo)
c906108c
SS
6558{
6559 return signal_program[signo];
6560}
6561
2455069d
UW
6562static void
6563signal_cache_update (int signo)
6564{
6565 if (signo == -1)
6566 {
a493e3e2 6567 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
6568 signal_cache_update (signo);
6569
6570 return;
6571 }
6572
6573 signal_pass[signo] = (signal_stop[signo] == 0
6574 && signal_print[signo] == 0
ab04a2af
TT
6575 && signal_program[signo] == 1
6576 && signal_catch[signo] == 0);
2455069d
UW
6577}
6578
488f131b 6579int
7bda5e4a 6580signal_stop_update (int signo, int state)
d4f3574e
SS
6581{
6582 int ret = signal_stop[signo];
abbb1732 6583
d4f3574e 6584 signal_stop[signo] = state;
2455069d 6585 signal_cache_update (signo);
d4f3574e
SS
6586 return ret;
6587}
6588
488f131b 6589int
7bda5e4a 6590signal_print_update (int signo, int state)
d4f3574e
SS
6591{
6592 int ret = signal_print[signo];
abbb1732 6593
d4f3574e 6594 signal_print[signo] = state;
2455069d 6595 signal_cache_update (signo);
d4f3574e
SS
6596 return ret;
6597}
6598
488f131b 6599int
7bda5e4a 6600signal_pass_update (int signo, int state)
d4f3574e
SS
6601{
6602 int ret = signal_program[signo];
abbb1732 6603
d4f3574e 6604 signal_program[signo] = state;
2455069d 6605 signal_cache_update (signo);
d4f3574e
SS
6606 return ret;
6607}
6608
ab04a2af
TT
6609/* Update the global 'signal_catch' from INFO and notify the
6610 target. */
6611
6612void
6613signal_catch_update (const unsigned int *info)
6614{
6615 int i;
6616
6617 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6618 signal_catch[i] = info[i] > 0;
6619 signal_cache_update (-1);
6620 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6621}
6622
c906108c 6623static void
96baa820 6624sig_print_header (void)
c906108c 6625{
3e43a32a
MS
6626 printf_filtered (_("Signal Stop\tPrint\tPass "
6627 "to program\tDescription\n"));
c906108c
SS
6628}
6629
6630static void
2ea28649 6631sig_print_info (enum gdb_signal oursig)
c906108c 6632{
2ea28649 6633 const char *name = gdb_signal_to_name (oursig);
c906108c 6634 int name_padding = 13 - strlen (name);
96baa820 6635
c906108c
SS
6636 if (name_padding <= 0)
6637 name_padding = 0;
6638
6639 printf_filtered ("%s", name);
488f131b 6640 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
6641 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6642 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6643 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 6644 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
6645}
6646
6647/* Specify how various signals in the inferior should be handled. */
6648
6649static void
96baa820 6650handle_command (char *args, int from_tty)
c906108c
SS
6651{
6652 char **argv;
6653 int digits, wordlen;
6654 int sigfirst, signum, siglast;
2ea28649 6655 enum gdb_signal oursig;
c906108c
SS
6656 int allsigs;
6657 int nsigs;
6658 unsigned char *sigs;
6659 struct cleanup *old_chain;
6660
6661 if (args == NULL)
6662 {
e2e0b3e5 6663 error_no_arg (_("signal to handle"));
c906108c
SS
6664 }
6665
1777feb0 6666 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 6667
a493e3e2 6668 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
6669 sigs = (unsigned char *) alloca (nsigs);
6670 memset (sigs, 0, nsigs);
6671
1777feb0 6672 /* Break the command line up into args. */
c906108c 6673
d1a41061 6674 argv = gdb_buildargv (args);
7a292a7a 6675 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6676
6677 /* Walk through the args, looking for signal oursigs, signal names, and
6678 actions. Signal numbers and signal names may be interspersed with
6679 actions, with the actions being performed for all signals cumulatively
1777feb0 6680 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
6681
6682 while (*argv != NULL)
6683 {
6684 wordlen = strlen (*argv);
6685 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6686 {;
6687 }
6688 allsigs = 0;
6689 sigfirst = siglast = -1;
6690
6691 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6692 {
6693 /* Apply action to all signals except those used by the
1777feb0 6694 debugger. Silently skip those. */
c906108c
SS
6695 allsigs = 1;
6696 sigfirst = 0;
6697 siglast = nsigs - 1;
6698 }
6699 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6700 {
6701 SET_SIGS (nsigs, sigs, signal_stop);
6702 SET_SIGS (nsigs, sigs, signal_print);
6703 }
6704 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6705 {
6706 UNSET_SIGS (nsigs, sigs, signal_program);
6707 }
6708 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6709 {
6710 SET_SIGS (nsigs, sigs, signal_print);
6711 }
6712 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6713 {
6714 SET_SIGS (nsigs, sigs, signal_program);
6715 }
6716 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6717 {
6718 UNSET_SIGS (nsigs, sigs, signal_stop);
6719 }
6720 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6721 {
6722 SET_SIGS (nsigs, sigs, signal_program);
6723 }
6724 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6725 {
6726 UNSET_SIGS (nsigs, sigs, signal_print);
6727 UNSET_SIGS (nsigs, sigs, signal_stop);
6728 }
6729 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6730 {
6731 UNSET_SIGS (nsigs, sigs, signal_program);
6732 }
6733 else if (digits > 0)
6734 {
6735 /* It is numeric. The numeric signal refers to our own
6736 internal signal numbering from target.h, not to host/target
6737 signal number. This is a feature; users really should be
6738 using symbolic names anyway, and the common ones like
6739 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6740
6741 sigfirst = siglast = (int)
2ea28649 6742 gdb_signal_from_command (atoi (*argv));
c906108c
SS
6743 if ((*argv)[digits] == '-')
6744 {
6745 siglast = (int)
2ea28649 6746 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
6747 }
6748 if (sigfirst > siglast)
6749 {
1777feb0 6750 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
6751 signum = sigfirst;
6752 sigfirst = siglast;
6753 siglast = signum;
6754 }
6755 }
6756 else
6757 {
2ea28649 6758 oursig = gdb_signal_from_name (*argv);
a493e3e2 6759 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
6760 {
6761 sigfirst = siglast = (int) oursig;
6762 }
6763 else
6764 {
6765 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 6766 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
6767 }
6768 }
6769
6770 /* If any signal numbers or symbol names were found, set flags for
1777feb0 6771 which signals to apply actions to. */
c906108c
SS
6772
6773 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6774 {
2ea28649 6775 switch ((enum gdb_signal) signum)
c906108c 6776 {
a493e3e2
PA
6777 case GDB_SIGNAL_TRAP:
6778 case GDB_SIGNAL_INT:
c906108c
SS
6779 if (!allsigs && !sigs[signum])
6780 {
9e2f0ad4 6781 if (query (_("%s is used by the debugger.\n\
3e43a32a 6782Are you sure you want to change it? "),
2ea28649 6783 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
6784 {
6785 sigs[signum] = 1;
6786 }
6787 else
6788 {
a3f17187 6789 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
6790 gdb_flush (gdb_stdout);
6791 }
6792 }
6793 break;
a493e3e2
PA
6794 case GDB_SIGNAL_0:
6795 case GDB_SIGNAL_DEFAULT:
6796 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
6797 /* Make sure that "all" doesn't print these. */
6798 break;
6799 default:
6800 sigs[signum] = 1;
6801 break;
6802 }
6803 }
6804
6805 argv++;
6806 }
6807
3a031f65
PA
6808 for (signum = 0; signum < nsigs; signum++)
6809 if (sigs[signum])
6810 {
2455069d 6811 signal_cache_update (-1);
a493e3e2
PA
6812 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6813 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 6814
3a031f65
PA
6815 if (from_tty)
6816 {
6817 /* Show the results. */
6818 sig_print_header ();
6819 for (; signum < nsigs; signum++)
6820 if (sigs[signum])
6821 sig_print_info (signum);
6822 }
6823
6824 break;
6825 }
c906108c
SS
6826
6827 do_cleanups (old_chain);
6828}
6829
de0bea00
MF
6830/* Complete the "handle" command. */
6831
6832static VEC (char_ptr) *
6833handle_completer (struct cmd_list_element *ignore,
6f937416 6834 const char *text, const char *word)
de0bea00
MF
6835{
6836 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
6837 static const char * const keywords[] =
6838 {
6839 "all",
6840 "stop",
6841 "ignore",
6842 "print",
6843 "pass",
6844 "nostop",
6845 "noignore",
6846 "noprint",
6847 "nopass",
6848 NULL,
6849 };
6850
6851 vec_signals = signal_completer (ignore, text, word);
6852 vec_keywords = complete_on_enum (keywords, word, word);
6853
6854 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
6855 VEC_free (char_ptr, vec_signals);
6856 VEC_free (char_ptr, vec_keywords);
6857 return return_val;
6858}
6859
c906108c 6860static void
96baa820 6861xdb_handle_command (char *args, int from_tty)
c906108c
SS
6862{
6863 char **argv;
6864 struct cleanup *old_chain;
6865
d1a41061
PP
6866 if (args == NULL)
6867 error_no_arg (_("xdb command"));
6868
1777feb0 6869 /* Break the command line up into args. */
c906108c 6870
d1a41061 6871 argv = gdb_buildargv (args);
7a292a7a 6872 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6873 if (argv[1] != (char *) NULL)
6874 {
6875 char *argBuf;
6876 int bufLen;
6877
6878 bufLen = strlen (argv[0]) + 20;
6879 argBuf = (char *) xmalloc (bufLen);
6880 if (argBuf)
6881 {
6882 int validFlag = 1;
2ea28649 6883 enum gdb_signal oursig;
c906108c 6884
2ea28649 6885 oursig = gdb_signal_from_name (argv[0]);
c906108c
SS
6886 memset (argBuf, 0, bufLen);
6887 if (strcmp (argv[1], "Q") == 0)
6888 sprintf (argBuf, "%s %s", argv[0], "noprint");
6889 else
6890 {
6891 if (strcmp (argv[1], "s") == 0)
6892 {
6893 if (!signal_stop[oursig])
6894 sprintf (argBuf, "%s %s", argv[0], "stop");
6895 else
6896 sprintf (argBuf, "%s %s", argv[0], "nostop");
6897 }
6898 else if (strcmp (argv[1], "i") == 0)
6899 {
6900 if (!signal_program[oursig])
6901 sprintf (argBuf, "%s %s", argv[0], "pass");
6902 else
6903 sprintf (argBuf, "%s %s", argv[0], "nopass");
6904 }
6905 else if (strcmp (argv[1], "r") == 0)
6906 {
6907 if (!signal_print[oursig])
6908 sprintf (argBuf, "%s %s", argv[0], "print");
6909 else
6910 sprintf (argBuf, "%s %s", argv[0], "noprint");
6911 }
6912 else
6913 validFlag = 0;
6914 }
6915 if (validFlag)
6916 handle_command (argBuf, from_tty);
6917 else
a3f17187 6918 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 6919 if (argBuf)
b8c9b27d 6920 xfree (argBuf);
c906108c
SS
6921 }
6922 }
6923 do_cleanups (old_chain);
6924}
6925
2ea28649
PA
6926enum gdb_signal
6927gdb_signal_from_command (int num)
ed01b82c
PA
6928{
6929 if (num >= 1 && num <= 15)
2ea28649 6930 return (enum gdb_signal) num;
ed01b82c
PA
6931 error (_("Only signals 1-15 are valid as numeric signals.\n\
6932Use \"info signals\" for a list of symbolic signals."));
6933}
6934
c906108c
SS
6935/* Print current contents of the tables set by the handle command.
6936 It is possible we should just be printing signals actually used
6937 by the current target (but for things to work right when switching
6938 targets, all signals should be in the signal tables). */
6939
6940static void
96baa820 6941signals_info (char *signum_exp, int from_tty)
c906108c 6942{
2ea28649 6943 enum gdb_signal oursig;
abbb1732 6944
c906108c
SS
6945 sig_print_header ();
6946
6947 if (signum_exp)
6948 {
6949 /* First see if this is a symbol name. */
2ea28649 6950 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 6951 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
6952 {
6953 /* No, try numeric. */
6954 oursig =
2ea28649 6955 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
6956 }
6957 sig_print_info (oursig);
6958 return;
6959 }
6960
6961 printf_filtered ("\n");
6962 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
6963 for (oursig = GDB_SIGNAL_FIRST;
6964 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 6965 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
6966 {
6967 QUIT;
6968
a493e3e2
PA
6969 if (oursig != GDB_SIGNAL_UNKNOWN
6970 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
6971 sig_print_info (oursig);
6972 }
6973
3e43a32a
MS
6974 printf_filtered (_("\nUse the \"handle\" command "
6975 "to change these tables.\n"));
c906108c 6976}
4aa995e1 6977
c709acd1
PA
6978/* Check if it makes sense to read $_siginfo from the current thread
6979 at this point. If not, throw an error. */
6980
6981static void
6982validate_siginfo_access (void)
6983{
6984 /* No current inferior, no siginfo. */
6985 if (ptid_equal (inferior_ptid, null_ptid))
6986 error (_("No thread selected."));
6987
6988 /* Don't try to read from a dead thread. */
6989 if (is_exited (inferior_ptid))
6990 error (_("The current thread has terminated"));
6991
6992 /* ... or from a spinning thread. */
6993 if (is_running (inferior_ptid))
6994 error (_("Selected thread is running."));
6995}
6996
4aa995e1
PA
6997/* The $_siginfo convenience variable is a bit special. We don't know
6998 for sure the type of the value until we actually have a chance to
7a9dd1b2 6999 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
7000 also dependent on which thread you have selected.
7001
7002 1. making $_siginfo be an internalvar that creates a new value on
7003 access.
7004
7005 2. making the value of $_siginfo be an lval_computed value. */
7006
7007/* This function implements the lval_computed support for reading a
7008 $_siginfo value. */
7009
7010static void
7011siginfo_value_read (struct value *v)
7012{
7013 LONGEST transferred;
7014
c709acd1
PA
7015 validate_siginfo_access ();
7016
4aa995e1
PA
7017 transferred =
7018 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
7019 NULL,
7020 value_contents_all_raw (v),
7021 value_offset (v),
7022 TYPE_LENGTH (value_type (v)));
7023
7024 if (transferred != TYPE_LENGTH (value_type (v)))
7025 error (_("Unable to read siginfo"));
7026}
7027
7028/* This function implements the lval_computed support for writing a
7029 $_siginfo value. */
7030
7031static void
7032siginfo_value_write (struct value *v, struct value *fromval)
7033{
7034 LONGEST transferred;
7035
c709acd1
PA
7036 validate_siginfo_access ();
7037
4aa995e1
PA
7038 transferred = target_write (&current_target,
7039 TARGET_OBJECT_SIGNAL_INFO,
7040 NULL,
7041 value_contents_all_raw (fromval),
7042 value_offset (v),
7043 TYPE_LENGTH (value_type (fromval)));
7044
7045 if (transferred != TYPE_LENGTH (value_type (fromval)))
7046 error (_("Unable to write siginfo"));
7047}
7048
c8f2448a 7049static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
7050 {
7051 siginfo_value_read,
7052 siginfo_value_write
7053 };
7054
7055/* Return a new value with the correct type for the siginfo object of
78267919
UW
7056 the current thread using architecture GDBARCH. Return a void value
7057 if there's no object available. */
4aa995e1 7058
2c0b251b 7059static struct value *
22d2b532
SDJ
7060siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
7061 void *ignore)
4aa995e1 7062{
4aa995e1 7063 if (target_has_stack
78267919
UW
7064 && !ptid_equal (inferior_ptid, null_ptid)
7065 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 7066 {
78267919 7067 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 7068
78267919 7069 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
7070 }
7071
78267919 7072 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
7073}
7074
c906108c 7075\f
16c381f0
JK
7076/* infcall_suspend_state contains state about the program itself like its
7077 registers and any signal it received when it last stopped.
7078 This state must be restored regardless of how the inferior function call
7079 ends (either successfully, or after it hits a breakpoint or signal)
7080 if the program is to properly continue where it left off. */
7081
7082struct infcall_suspend_state
7a292a7a 7083{
16c381f0 7084 struct thread_suspend_state thread_suspend;
dd80ea3c 7085#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 7086 struct inferior_suspend_state inferior_suspend;
dd80ea3c 7087#endif
16c381f0
JK
7088
7089 /* Other fields: */
7a292a7a 7090 CORE_ADDR stop_pc;
b89667eb 7091 struct regcache *registers;
1736ad11 7092
35515841 7093 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
7094 struct gdbarch *siginfo_gdbarch;
7095
7096 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
7097 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
7098 content would be invalid. */
7099 gdb_byte *siginfo_data;
b89667eb
DE
7100};
7101
16c381f0
JK
7102struct infcall_suspend_state *
7103save_infcall_suspend_state (void)
b89667eb 7104{
16c381f0 7105 struct infcall_suspend_state *inf_state;
b89667eb 7106 struct thread_info *tp = inferior_thread ();
974a734b 7107#if 0
16c381f0 7108 struct inferior *inf = current_inferior ();
974a734b 7109#endif
1736ad11
JK
7110 struct regcache *regcache = get_current_regcache ();
7111 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7112 gdb_byte *siginfo_data = NULL;
7113
7114 if (gdbarch_get_siginfo_type_p (gdbarch))
7115 {
7116 struct type *type = gdbarch_get_siginfo_type (gdbarch);
7117 size_t len = TYPE_LENGTH (type);
7118 struct cleanup *back_to;
7119
7120 siginfo_data = xmalloc (len);
7121 back_to = make_cleanup (xfree, siginfo_data);
7122
7123 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
7124 siginfo_data, 0, len) == len)
7125 discard_cleanups (back_to);
7126 else
7127 {
7128 /* Errors ignored. */
7129 do_cleanups (back_to);
7130 siginfo_data = NULL;
7131 }
7132 }
7133
41bf6aca 7134 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
7135
7136 if (siginfo_data)
7137 {
7138 inf_state->siginfo_gdbarch = gdbarch;
7139 inf_state->siginfo_data = siginfo_data;
7140 }
b89667eb 7141
16c381f0 7142 inf_state->thread_suspend = tp->suspend;
dd80ea3c 7143#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 7144 inf_state->inferior_suspend = inf->suspend;
dd80ea3c 7145#endif
16c381f0 7146
35515841 7147 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
7148 GDB_SIGNAL_0 anyway. */
7149 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 7150
b89667eb
DE
7151 inf_state->stop_pc = stop_pc;
7152
1736ad11 7153 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
7154
7155 return inf_state;
7156}
7157
7158/* Restore inferior session state to INF_STATE. */
7159
7160void
16c381f0 7161restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
7162{
7163 struct thread_info *tp = inferior_thread ();
974a734b 7164#if 0
16c381f0 7165 struct inferior *inf = current_inferior ();
974a734b 7166#endif
1736ad11
JK
7167 struct regcache *regcache = get_current_regcache ();
7168 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 7169
16c381f0 7170 tp->suspend = inf_state->thread_suspend;
dd80ea3c 7171#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 7172 inf->suspend = inf_state->inferior_suspend;
dd80ea3c 7173#endif
16c381f0 7174
b89667eb
DE
7175 stop_pc = inf_state->stop_pc;
7176
1736ad11
JK
7177 if (inf_state->siginfo_gdbarch == gdbarch)
7178 {
7179 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
7180
7181 /* Errors ignored. */
7182 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 7183 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
7184 }
7185
b89667eb
DE
7186 /* The inferior can be gone if the user types "print exit(0)"
7187 (and perhaps other times). */
7188 if (target_has_execution)
7189 /* NB: The register write goes through to the target. */
1736ad11 7190 regcache_cpy (regcache, inf_state->registers);
803b5f95 7191
16c381f0 7192 discard_infcall_suspend_state (inf_state);
b89667eb
DE
7193}
7194
7195static void
16c381f0 7196do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 7197{
16c381f0 7198 restore_infcall_suspend_state (state);
b89667eb
DE
7199}
7200
7201struct cleanup *
16c381f0
JK
7202make_cleanup_restore_infcall_suspend_state
7203 (struct infcall_suspend_state *inf_state)
b89667eb 7204{
16c381f0 7205 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
7206}
7207
7208void
16c381f0 7209discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
7210{
7211 regcache_xfree (inf_state->registers);
803b5f95 7212 xfree (inf_state->siginfo_data);
b89667eb
DE
7213 xfree (inf_state);
7214}
7215
7216struct regcache *
16c381f0 7217get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
7218{
7219 return inf_state->registers;
7220}
7221
16c381f0
JK
7222/* infcall_control_state contains state regarding gdb's control of the
7223 inferior itself like stepping control. It also contains session state like
7224 the user's currently selected frame. */
b89667eb 7225
16c381f0 7226struct infcall_control_state
b89667eb 7227{
16c381f0
JK
7228 struct thread_control_state thread_control;
7229 struct inferior_control_state inferior_control;
d82142e2
JK
7230
7231 /* Other fields: */
7232 enum stop_stack_kind stop_stack_dummy;
7233 int stopped_by_random_signal;
7a292a7a 7234 int stop_after_trap;
7a292a7a 7235
b89667eb 7236 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 7237 struct frame_id selected_frame_id;
7a292a7a
SS
7238};
7239
c906108c 7240/* Save all of the information associated with the inferior<==>gdb
b89667eb 7241 connection. */
c906108c 7242
16c381f0
JK
7243struct infcall_control_state *
7244save_infcall_control_state (void)
c906108c 7245{
16c381f0 7246 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
4e1c45ea 7247 struct thread_info *tp = inferior_thread ();
d6b48e9c 7248 struct inferior *inf = current_inferior ();
7a292a7a 7249
16c381f0
JK
7250 inf_status->thread_control = tp->control;
7251 inf_status->inferior_control = inf->control;
d82142e2 7252
8358c15c 7253 tp->control.step_resume_breakpoint = NULL;
5b79abe7 7254 tp->control.exception_resume_breakpoint = NULL;
8358c15c 7255
16c381f0
JK
7256 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
7257 chain. If caller's caller is walking the chain, they'll be happier if we
7258 hand them back the original chain when restore_infcall_control_state is
7259 called. */
7260 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
7261
7262 /* Other fields: */
7263 inf_status->stop_stack_dummy = stop_stack_dummy;
7264 inf_status->stopped_by_random_signal = stopped_by_random_signal;
7265 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 7266
206415a3 7267 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 7268
7a292a7a 7269 return inf_status;
c906108c
SS
7270}
7271
c906108c 7272static int
96baa820 7273restore_selected_frame (void *args)
c906108c 7274{
488f131b 7275 struct frame_id *fid = (struct frame_id *) args;
c906108c 7276 struct frame_info *frame;
c906108c 7277
101dcfbe 7278 frame = frame_find_by_id (*fid);
c906108c 7279
aa0cd9c1
AC
7280 /* If inf_status->selected_frame_id is NULL, there was no previously
7281 selected frame. */
101dcfbe 7282 if (frame == NULL)
c906108c 7283 {
8a3fe4f8 7284 warning (_("Unable to restore previously selected frame."));
c906108c
SS
7285 return 0;
7286 }
7287
0f7d239c 7288 select_frame (frame);
c906108c
SS
7289
7290 return (1);
7291}
7292
b89667eb
DE
7293/* Restore inferior session state to INF_STATUS. */
7294
c906108c 7295void
16c381f0 7296restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 7297{
4e1c45ea 7298 struct thread_info *tp = inferior_thread ();
d6b48e9c 7299 struct inferior *inf = current_inferior ();
4e1c45ea 7300
8358c15c
JK
7301 if (tp->control.step_resume_breakpoint)
7302 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
7303
5b79abe7
TT
7304 if (tp->control.exception_resume_breakpoint)
7305 tp->control.exception_resume_breakpoint->disposition
7306 = disp_del_at_next_stop;
7307
d82142e2 7308 /* Handle the bpstat_copy of the chain. */
16c381f0 7309 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 7310
16c381f0
JK
7311 tp->control = inf_status->thread_control;
7312 inf->control = inf_status->inferior_control;
d82142e2
JK
7313
7314 /* Other fields: */
7315 stop_stack_dummy = inf_status->stop_stack_dummy;
7316 stopped_by_random_signal = inf_status->stopped_by_random_signal;
7317 stop_after_trap = inf_status->stop_after_trap;
c906108c 7318
b89667eb 7319 if (target_has_stack)
c906108c 7320 {
c906108c 7321 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
7322 walking the stack might encounter a garbage pointer and
7323 error() trying to dereference it. */
488f131b
JB
7324 if (catch_errors
7325 (restore_selected_frame, &inf_status->selected_frame_id,
7326 "Unable to restore previously selected frame:\n",
7327 RETURN_MASK_ERROR) == 0)
c906108c
SS
7328 /* Error in restoring the selected frame. Select the innermost
7329 frame. */
0f7d239c 7330 select_frame (get_current_frame ());
c906108c 7331 }
c906108c 7332
72cec141 7333 xfree (inf_status);
7a292a7a 7334}
c906108c 7335
74b7792f 7336static void
16c381f0 7337do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 7338{
16c381f0 7339 restore_infcall_control_state (sts);
74b7792f
AC
7340}
7341
7342struct cleanup *
16c381f0
JK
7343make_cleanup_restore_infcall_control_state
7344 (struct infcall_control_state *inf_status)
74b7792f 7345{
16c381f0 7346 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
7347}
7348
c906108c 7349void
16c381f0 7350discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 7351{
8358c15c
JK
7352 if (inf_status->thread_control.step_resume_breakpoint)
7353 inf_status->thread_control.step_resume_breakpoint->disposition
7354 = disp_del_at_next_stop;
7355
5b79abe7
TT
7356 if (inf_status->thread_control.exception_resume_breakpoint)
7357 inf_status->thread_control.exception_resume_breakpoint->disposition
7358 = disp_del_at_next_stop;
7359
1777feb0 7360 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 7361 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 7362
72cec141 7363 xfree (inf_status);
7a292a7a 7364}
b89667eb 7365\f
ca6724c1
KB
7366/* restore_inferior_ptid() will be used by the cleanup machinery
7367 to restore the inferior_ptid value saved in a call to
7368 save_inferior_ptid(). */
ce696e05
KB
7369
7370static void
7371restore_inferior_ptid (void *arg)
7372{
7373 ptid_t *saved_ptid_ptr = arg;
abbb1732 7374
ce696e05
KB
7375 inferior_ptid = *saved_ptid_ptr;
7376 xfree (arg);
7377}
7378
7379/* Save the value of inferior_ptid so that it may be restored by a
7380 later call to do_cleanups(). Returns the struct cleanup pointer
7381 needed for later doing the cleanup. */
7382
7383struct cleanup *
7384save_inferior_ptid (void)
7385{
7386 ptid_t *saved_ptid_ptr;
7387
7388 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7389 *saved_ptid_ptr = inferior_ptid;
7390 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7391}
0c557179 7392
7f89fd65 7393/* See infrun.h. */
0c557179
SDJ
7394
7395void
7396clear_exit_convenience_vars (void)
7397{
7398 clear_internalvar (lookup_internalvar ("_exitsignal"));
7399 clear_internalvar (lookup_internalvar ("_exitcode"));
7400}
c5aa993b 7401\f
488f131b 7402
b2175913
MS
7403/* User interface for reverse debugging:
7404 Set exec-direction / show exec-direction commands
7405 (returns error unless target implements to_set_exec_direction method). */
7406
32231432 7407int execution_direction = EXEC_FORWARD;
b2175913
MS
7408static const char exec_forward[] = "forward";
7409static const char exec_reverse[] = "reverse";
7410static const char *exec_direction = exec_forward;
40478521 7411static const char *const exec_direction_names[] = {
b2175913
MS
7412 exec_forward,
7413 exec_reverse,
7414 NULL
7415};
7416
7417static void
7418set_exec_direction_func (char *args, int from_tty,
7419 struct cmd_list_element *cmd)
7420{
7421 if (target_can_execute_reverse)
7422 {
7423 if (!strcmp (exec_direction, exec_forward))
7424 execution_direction = EXEC_FORWARD;
7425 else if (!strcmp (exec_direction, exec_reverse))
7426 execution_direction = EXEC_REVERSE;
7427 }
8bbed405
MS
7428 else
7429 {
7430 exec_direction = exec_forward;
7431 error (_("Target does not support this operation."));
7432 }
b2175913
MS
7433}
7434
7435static void
7436show_exec_direction_func (struct ui_file *out, int from_tty,
7437 struct cmd_list_element *cmd, const char *value)
7438{
7439 switch (execution_direction) {
7440 case EXEC_FORWARD:
7441 fprintf_filtered (out, _("Forward.\n"));
7442 break;
7443 case EXEC_REVERSE:
7444 fprintf_filtered (out, _("Reverse.\n"));
7445 break;
b2175913 7446 default:
d8b34453
PA
7447 internal_error (__FILE__, __LINE__,
7448 _("bogus execution_direction value: %d"),
7449 (int) execution_direction);
b2175913
MS
7450 }
7451}
7452
d4db2f36
PA
7453static void
7454show_schedule_multiple (struct ui_file *file, int from_tty,
7455 struct cmd_list_element *c, const char *value)
7456{
3e43a32a
MS
7457 fprintf_filtered (file, _("Resuming the execution of threads "
7458 "of all processes is %s.\n"), value);
d4db2f36 7459}
ad52ddc6 7460
22d2b532
SDJ
7461/* Implementation of `siginfo' variable. */
7462
7463static const struct internalvar_funcs siginfo_funcs =
7464{
7465 siginfo_make_value,
7466 NULL,
7467 NULL
7468};
7469
c906108c 7470void
96baa820 7471_initialize_infrun (void)
c906108c 7472{
52f0bd74
AC
7473 int i;
7474 int numsigs;
de0bea00 7475 struct cmd_list_element *c;
c906108c 7476
1bedd215
AC
7477 add_info ("signals", signals_info, _("\
7478What debugger does when program gets various signals.\n\
7479Specify a signal as argument to print info on that signal only."));
c906108c
SS
7480 add_info_alias ("handle", "signals", 0);
7481
de0bea00 7482 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 7483Specify how to handle signals.\n\
486c7739 7484Usage: handle SIGNAL [ACTIONS]\n\
c906108c 7485Args are signals and actions to apply to those signals.\n\
dfbd5e7b 7486If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
7487will be displayed instead.\n\
7488\n\
c906108c
SS
7489Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7490from 1-15 are allowed for compatibility with old versions of GDB.\n\
7491Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7492The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7493used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 7494\n\
1bedd215 7495Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
7496\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7497Stop means reenter debugger if this signal happens (implies print).\n\
7498Print means print a message if this signal happens.\n\
7499Pass means let program see this signal; otherwise program doesn't know.\n\
7500Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
7501Pass and Stop may be combined.\n\
7502\n\
7503Multiple signals may be specified. Signal numbers and signal names\n\
7504may be interspersed with actions, with the actions being performed for\n\
7505all signals cumulatively specified."));
de0bea00 7506 set_cmd_completer (c, handle_completer);
486c7739 7507
c906108c
SS
7508 if (xdb_commands)
7509 {
1bedd215
AC
7510 add_com ("lz", class_info, signals_info, _("\
7511What debugger does when program gets various signals.\n\
7512Specify a signal as argument to print info on that signal only."));
7513 add_com ("z", class_run, xdb_handle_command, _("\
7514Specify how to handle a signal.\n\
c906108c
SS
7515Args are signals and actions to apply to those signals.\n\
7516Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7517from 1-15 are allowed for compatibility with old versions of GDB.\n\
7518Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7519The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7520used by the debugger, typically SIGTRAP and SIGINT.\n\
cce7e648 7521Recognized actions include \"s\" (toggles between stop and nostop),\n\
c906108c
SS
7522\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7523nopass), \"Q\" (noprint)\n\
7524Stop means reenter debugger if this signal happens (implies print).\n\
7525Print means print a message if this signal happens.\n\
7526Pass means let program see this signal; otherwise program doesn't know.\n\
7527Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 7528Pass and Stop may be combined."));
c906108c
SS
7529 }
7530
7531 if (!dbx_commands)
1a966eab
AC
7532 stop_command = add_cmd ("stop", class_obscure,
7533 not_just_help_class_command, _("\
7534There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 7535This allows you to set a list of commands to be run each time execution\n\
1a966eab 7536of the program stops."), &cmdlist);
c906108c 7537
ccce17b0 7538 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
7539Set inferior debugging."), _("\
7540Show inferior debugging."), _("\
7541When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
7542 NULL,
7543 show_debug_infrun,
7544 &setdebuglist, &showdebuglist);
527159b7 7545
3e43a32a
MS
7546 add_setshow_boolean_cmd ("displaced", class_maintenance,
7547 &debug_displaced, _("\
237fc4c9
PA
7548Set displaced stepping debugging."), _("\
7549Show displaced stepping debugging."), _("\
7550When non-zero, displaced stepping specific debugging is enabled."),
7551 NULL,
7552 show_debug_displaced,
7553 &setdebuglist, &showdebuglist);
7554
ad52ddc6
PA
7555 add_setshow_boolean_cmd ("non-stop", no_class,
7556 &non_stop_1, _("\
7557Set whether gdb controls the inferior in non-stop mode."), _("\
7558Show whether gdb controls the inferior in non-stop mode."), _("\
7559When debugging a multi-threaded program and this setting is\n\
7560off (the default, also called all-stop mode), when one thread stops\n\
7561(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7562all other threads in the program while you interact with the thread of\n\
7563interest. When you continue or step a thread, you can allow the other\n\
7564threads to run, or have them remain stopped, but while you inspect any\n\
7565thread's state, all threads stop.\n\
7566\n\
7567In non-stop mode, when one thread stops, other threads can continue\n\
7568to run freely. You'll be able to step each thread independently,\n\
7569leave it stopped or free to run as needed."),
7570 set_non_stop,
7571 show_non_stop,
7572 &setlist,
7573 &showlist);
7574
a493e3e2 7575 numsigs = (int) GDB_SIGNAL_LAST;
488f131b 7576 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
7577 signal_print = (unsigned char *)
7578 xmalloc (sizeof (signal_print[0]) * numsigs);
7579 signal_program = (unsigned char *)
7580 xmalloc (sizeof (signal_program[0]) * numsigs);
ab04a2af
TT
7581 signal_catch = (unsigned char *)
7582 xmalloc (sizeof (signal_catch[0]) * numsigs);
2455069d 7583 signal_pass = (unsigned char *)
4395285e 7584 xmalloc (sizeof (signal_pass[0]) * numsigs);
c906108c
SS
7585 for (i = 0; i < numsigs; i++)
7586 {
7587 signal_stop[i] = 1;
7588 signal_print[i] = 1;
7589 signal_program[i] = 1;
ab04a2af 7590 signal_catch[i] = 0;
c906108c
SS
7591 }
7592
7593 /* Signals caused by debugger's own actions
7594 should not be given to the program afterwards. */
a493e3e2
PA
7595 signal_program[GDB_SIGNAL_TRAP] = 0;
7596 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
7597
7598 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
7599 signal_stop[GDB_SIGNAL_ALRM] = 0;
7600 signal_print[GDB_SIGNAL_ALRM] = 0;
7601 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7602 signal_print[GDB_SIGNAL_VTALRM] = 0;
7603 signal_stop[GDB_SIGNAL_PROF] = 0;
7604 signal_print[GDB_SIGNAL_PROF] = 0;
7605 signal_stop[GDB_SIGNAL_CHLD] = 0;
7606 signal_print[GDB_SIGNAL_CHLD] = 0;
7607 signal_stop[GDB_SIGNAL_IO] = 0;
7608 signal_print[GDB_SIGNAL_IO] = 0;
7609 signal_stop[GDB_SIGNAL_POLL] = 0;
7610 signal_print[GDB_SIGNAL_POLL] = 0;
7611 signal_stop[GDB_SIGNAL_URG] = 0;
7612 signal_print[GDB_SIGNAL_URG] = 0;
7613 signal_stop[GDB_SIGNAL_WINCH] = 0;
7614 signal_print[GDB_SIGNAL_WINCH] = 0;
7615 signal_stop[GDB_SIGNAL_PRIO] = 0;
7616 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 7617
cd0fc7c3
SS
7618 /* These signals are used internally by user-level thread
7619 implementations. (See signal(5) on Solaris.) Like the above
7620 signals, a healthy program receives and handles them as part of
7621 its normal operation. */
a493e3e2
PA
7622 signal_stop[GDB_SIGNAL_LWP] = 0;
7623 signal_print[GDB_SIGNAL_LWP] = 0;
7624 signal_stop[GDB_SIGNAL_WAITING] = 0;
7625 signal_print[GDB_SIGNAL_WAITING] = 0;
7626 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7627 signal_print[GDB_SIGNAL_CANCEL] = 0;
cd0fc7c3 7628
2455069d
UW
7629 /* Update cached state. */
7630 signal_cache_update (-1);
7631
85c07804
AC
7632 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7633 &stop_on_solib_events, _("\
7634Set stopping for shared library events."), _("\
7635Show stopping for shared library events."), _("\
c906108c
SS
7636If nonzero, gdb will give control to the user when the dynamic linker\n\
7637notifies gdb of shared library events. The most common event of interest\n\
85c07804 7638to the user would be loading/unloading of a new library."),
f9e14852 7639 set_stop_on_solib_events,
920d2a44 7640 show_stop_on_solib_events,
85c07804 7641 &setlist, &showlist);
c906108c 7642
7ab04401
AC
7643 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7644 follow_fork_mode_kind_names,
7645 &follow_fork_mode_string, _("\
7646Set debugger response to a program call of fork or vfork."), _("\
7647Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
7648A fork or vfork creates a new process. follow-fork-mode can be:\n\
7649 parent - the original process is debugged after a fork\n\
7650 child - the new process is debugged after a fork\n\
ea1dd7bc 7651The unfollowed process will continue to run.\n\
7ab04401
AC
7652By default, the debugger will follow the parent process."),
7653 NULL,
920d2a44 7654 show_follow_fork_mode_string,
7ab04401
AC
7655 &setlist, &showlist);
7656
6c95b8df
PA
7657 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7658 follow_exec_mode_names,
7659 &follow_exec_mode_string, _("\
7660Set debugger response to a program call of exec."), _("\
7661Show debugger response to a program call of exec."), _("\
7662An exec call replaces the program image of a process.\n\
7663\n\
7664follow-exec-mode can be:\n\
7665\n\
cce7e648 7666 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
7667to this new inferior. The program the process was running before\n\
7668the exec call can be restarted afterwards by restarting the original\n\
7669inferior.\n\
7670\n\
7671 same - the debugger keeps the process bound to the same inferior.\n\
7672The new executable image replaces the previous executable loaded in\n\
7673the inferior. Restarting the inferior after the exec call restarts\n\
7674the executable the process was running after the exec call.\n\
7675\n\
7676By default, the debugger will use the same inferior."),
7677 NULL,
7678 show_follow_exec_mode_string,
7679 &setlist, &showlist);
7680
7ab04401
AC
7681 add_setshow_enum_cmd ("scheduler-locking", class_run,
7682 scheduler_enums, &scheduler_mode, _("\
7683Set mode for locking scheduler during execution."), _("\
7684Show mode for locking scheduler during execution."), _("\
c906108c
SS
7685off == no locking (threads may preempt at any time)\n\
7686on == full locking (no thread except the current thread may run)\n\
7687step == scheduler locked during every single-step operation.\n\
7688 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
7689 Other threads may run while stepping over a function call ('next')."),
7690 set_schedlock_func, /* traps on target vector */
920d2a44 7691 show_scheduler_mode,
7ab04401 7692 &setlist, &showlist);
5fbbeb29 7693
d4db2f36
PA
7694 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7695Set mode for resuming threads of all processes."), _("\
7696Show mode for resuming threads of all processes."), _("\
7697When on, execution commands (such as 'continue' or 'next') resume all\n\
7698threads of all processes. When off (which is the default), execution\n\
7699commands only resume the threads of the current process. The set of\n\
7700threads that are resumed is further refined by the scheduler-locking\n\
7701mode (see help set scheduler-locking)."),
7702 NULL,
7703 show_schedule_multiple,
7704 &setlist, &showlist);
7705
5bf193a2
AC
7706 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7707Set mode of the step operation."), _("\
7708Show mode of the step operation."), _("\
7709When set, doing a step over a function without debug line information\n\
7710will stop at the first instruction of that function. Otherwise, the\n\
7711function is skipped and the step command stops at a different source line."),
7712 NULL,
920d2a44 7713 show_step_stop_if_no_debug,
5bf193a2 7714 &setlist, &showlist);
ca6724c1 7715
72d0e2c5
YQ
7716 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7717 &can_use_displaced_stepping, _("\
237fc4c9
PA
7718Set debugger's willingness to use displaced stepping."), _("\
7719Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
7720If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7721supported by the target architecture. If off, gdb will not use displaced\n\
7722stepping to step over breakpoints, even if such is supported by the target\n\
7723architecture. If auto (which is the default), gdb will use displaced stepping\n\
7724if the target architecture supports it and non-stop mode is active, but will not\n\
7725use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
7726 NULL,
7727 show_can_use_displaced_stepping,
7728 &setlist, &showlist);
237fc4c9 7729
b2175913
MS
7730 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7731 &exec_direction, _("Set direction of execution.\n\
7732Options are 'forward' or 'reverse'."),
7733 _("Show direction of execution (forward/reverse)."),
7734 _("Tells gdb whether to execute forward or backward."),
7735 set_exec_direction_func, show_exec_direction_func,
7736 &setlist, &showlist);
7737
6c95b8df
PA
7738 /* Set/show detach-on-fork: user-settable mode. */
7739
7740 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7741Set whether gdb will detach the child of a fork."), _("\
7742Show whether gdb will detach the child of a fork."), _("\
7743Tells gdb whether to detach the child of a fork."),
7744 NULL, NULL, &setlist, &showlist);
7745
03583c20
UW
7746 /* Set/show disable address space randomization mode. */
7747
7748 add_setshow_boolean_cmd ("disable-randomization", class_support,
7749 &disable_randomization, _("\
7750Set disabling of debuggee's virtual address space randomization."), _("\
7751Show disabling of debuggee's virtual address space randomization."), _("\
7752When this mode is on (which is the default), randomization of the virtual\n\
7753address space is disabled. Standalone programs run with the randomization\n\
7754enabled by default on some platforms."),
7755 &set_disable_randomization,
7756 &show_disable_randomization,
7757 &setlist, &showlist);
7758
ca6724c1 7759 /* ptid initializations */
ca6724c1
KB
7760 inferior_ptid = null_ptid;
7761 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
7762
7763 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 7764 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 7765 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 7766 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
7767
7768 /* Explicitly create without lookup, since that tries to create a
7769 value with a void typed value, and when we get here, gdbarch
7770 isn't initialized yet. At this point, we're quite sure there
7771 isn't another convenience variable of the same name. */
22d2b532 7772 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
7773
7774 add_setshow_boolean_cmd ("observer", no_class,
7775 &observer_mode_1, _("\
7776Set whether gdb controls the inferior in observer mode."), _("\
7777Show whether gdb controls the inferior in observer mode."), _("\
7778In observer mode, GDB can get data from the inferior, but not\n\
7779affect its execution. Registers and memory may not be changed,\n\
7780breakpoints may not be set, and the program cannot be interrupted\n\
7781or signalled."),
7782 set_observer_mode,
7783 show_observer_mode,
7784 &setlist,
7785 &showlist);
c906108c 7786}
This page took 3.022638 seconds and 4 git commands to generate.