Fix PR mi/20431 - Missing MI prompts after sync execution MI command (-exec-continue...
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
618f726f 4 Copyright (C) 1986-2016 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
06600e06 41#include "observer.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
ff862be4 63#include "solist.h"
372316f1 64#include "event-loop.h"
243a9253 65#include "thread-fsm.h"
8d297bbf 66#include "common/enum-flags.h"
c906108c
SS
67
68/* Prototypes for local functions */
69
96baa820 70static void signals_info (char *, int);
c906108c 71
96baa820 72static void handle_command (char *, int);
c906108c 73
2ea28649 74static void sig_print_info (enum gdb_signal);
c906108c 75
96baa820 76static void sig_print_header (void);
c906108c 77
74b7792f 78static void resume_cleanups (void *);
c906108c 79
96baa820 80static int hook_stop_stub (void *);
c906108c 81
96baa820
JM
82static int restore_selected_frame (void *);
83
4ef3f3be 84static int follow_fork (void);
96baa820 85
d83ad864
DB
86static int follow_fork_inferior (int follow_child, int detach_fork);
87
88static void follow_inferior_reset_breakpoints (void);
89
96baa820 90static void set_schedlock_func (char *args, int from_tty,
488f131b 91 struct cmd_list_element *c);
96baa820 92
a289b8f6
JK
93static int currently_stepping (struct thread_info *tp);
94
96baa820 95void _initialize_infrun (void);
43ff13b4 96
e58b0e63
PA
97void nullify_last_target_wait_ptid (void);
98
2c03e5be 99static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
100
101static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
102
2484c66b
UW
103static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
104
8550d3b3
YQ
105static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
106
372316f1
PA
107/* Asynchronous signal handler registered as event loop source for
108 when we have pending events ready to be passed to the core. */
109static struct async_event_handler *infrun_async_inferior_event_token;
110
111/* Stores whether infrun_async was previously enabled or disabled.
112 Starts off as -1, indicating "never enabled/disabled". */
113static int infrun_is_async = -1;
114
115/* See infrun.h. */
116
117void
118infrun_async (int enable)
119{
120 if (infrun_is_async != enable)
121 {
122 infrun_is_async = enable;
123
124 if (debug_infrun)
125 fprintf_unfiltered (gdb_stdlog,
126 "infrun: infrun_async(%d)\n",
127 enable);
128
129 if (enable)
130 mark_async_event_handler (infrun_async_inferior_event_token);
131 else
132 clear_async_event_handler (infrun_async_inferior_event_token);
133 }
134}
135
0b333c5e
PA
136/* See infrun.h. */
137
138void
139mark_infrun_async_event_handler (void)
140{
141 mark_async_event_handler (infrun_async_inferior_event_token);
142}
143
5fbbeb29
CF
144/* When set, stop the 'step' command if we enter a function which has
145 no line number information. The normal behavior is that we step
146 over such function. */
147int step_stop_if_no_debug = 0;
920d2a44
AC
148static void
149show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151{
152 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
153}
5fbbeb29 154
b9f437de
PA
155/* proceed and normal_stop use this to notify the user when the
156 inferior stopped in a different thread than it had been running
157 in. */
96baa820 158
39f77062 159static ptid_t previous_inferior_ptid;
7a292a7a 160
07107ca6
LM
161/* If set (default for legacy reasons), when following a fork, GDB
162 will detach from one of the fork branches, child or parent.
163 Exactly which branch is detached depends on 'set follow-fork-mode'
164 setting. */
165
166static int detach_fork = 1;
6c95b8df 167
237fc4c9
PA
168int debug_displaced = 0;
169static void
170show_debug_displaced (struct ui_file *file, int from_tty,
171 struct cmd_list_element *c, const char *value)
172{
173 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
174}
175
ccce17b0 176unsigned int debug_infrun = 0;
920d2a44
AC
177static void
178show_debug_infrun (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180{
181 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
182}
527159b7 183
03583c20
UW
184
185/* Support for disabling address space randomization. */
186
187int disable_randomization = 1;
188
189static void
190show_disable_randomization (struct ui_file *file, int from_tty,
191 struct cmd_list_element *c, const char *value)
192{
193 if (target_supports_disable_randomization ())
194 fprintf_filtered (file,
195 _("Disabling randomization of debuggee's "
196 "virtual address space is %s.\n"),
197 value);
198 else
199 fputs_filtered (_("Disabling randomization of debuggee's "
200 "virtual address space is unsupported on\n"
201 "this platform.\n"), file);
202}
203
204static void
205set_disable_randomization (char *args, int from_tty,
206 struct cmd_list_element *c)
207{
208 if (!target_supports_disable_randomization ())
209 error (_("Disabling randomization of debuggee's "
210 "virtual address space is unsupported on\n"
211 "this platform."));
212}
213
d32dc48e
PA
214/* User interface for non-stop mode. */
215
216int non_stop = 0;
217static int non_stop_1 = 0;
218
219static void
220set_non_stop (char *args, int from_tty,
221 struct cmd_list_element *c)
222{
223 if (target_has_execution)
224 {
225 non_stop_1 = non_stop;
226 error (_("Cannot change this setting while the inferior is running."));
227 }
228
229 non_stop = non_stop_1;
230}
231
232static void
233show_non_stop (struct ui_file *file, int from_tty,
234 struct cmd_list_element *c, const char *value)
235{
236 fprintf_filtered (file,
237 _("Controlling the inferior in non-stop mode is %s.\n"),
238 value);
239}
240
d914c394
SS
241/* "Observer mode" is somewhat like a more extreme version of
242 non-stop, in which all GDB operations that might affect the
243 target's execution have been disabled. */
244
d914c394
SS
245int observer_mode = 0;
246static int observer_mode_1 = 0;
247
248static void
249set_observer_mode (char *args, int from_tty,
250 struct cmd_list_element *c)
251{
d914c394
SS
252 if (target_has_execution)
253 {
254 observer_mode_1 = observer_mode;
255 error (_("Cannot change this setting while the inferior is running."));
256 }
257
258 observer_mode = observer_mode_1;
259
260 may_write_registers = !observer_mode;
261 may_write_memory = !observer_mode;
262 may_insert_breakpoints = !observer_mode;
263 may_insert_tracepoints = !observer_mode;
264 /* We can insert fast tracepoints in or out of observer mode,
265 but enable them if we're going into this mode. */
266 if (observer_mode)
267 may_insert_fast_tracepoints = 1;
268 may_stop = !observer_mode;
269 update_target_permissions ();
270
271 /* Going *into* observer mode we must force non-stop, then
272 going out we leave it that way. */
273 if (observer_mode)
274 {
d914c394
SS
275 pagination_enabled = 0;
276 non_stop = non_stop_1 = 1;
277 }
278
279 if (from_tty)
280 printf_filtered (_("Observer mode is now %s.\n"),
281 (observer_mode ? "on" : "off"));
282}
283
284static void
285show_observer_mode (struct ui_file *file, int from_tty,
286 struct cmd_list_element *c, const char *value)
287{
288 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
289}
290
291/* This updates the value of observer mode based on changes in
292 permissions. Note that we are deliberately ignoring the values of
293 may-write-registers and may-write-memory, since the user may have
294 reason to enable these during a session, for instance to turn on a
295 debugging-related global. */
296
297void
298update_observer_mode (void)
299{
300 int newval;
301
302 newval = (!may_insert_breakpoints
303 && !may_insert_tracepoints
304 && may_insert_fast_tracepoints
305 && !may_stop
306 && non_stop);
307
308 /* Let the user know if things change. */
309 if (newval != observer_mode)
310 printf_filtered (_("Observer mode is now %s.\n"),
311 (newval ? "on" : "off"));
312
313 observer_mode = observer_mode_1 = newval;
314}
c2c6d25f 315
c906108c
SS
316/* Tables of how to react to signals; the user sets them. */
317
318static unsigned char *signal_stop;
319static unsigned char *signal_print;
320static unsigned char *signal_program;
321
ab04a2af
TT
322/* Table of signals that are registered with "catch signal". A
323 non-zero entry indicates that the signal is caught by some "catch
324 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
325 signals. */
326static unsigned char *signal_catch;
327
2455069d
UW
328/* Table of signals that the target may silently handle.
329 This is automatically determined from the flags above,
330 and simply cached here. */
331static unsigned char *signal_pass;
332
c906108c
SS
333#define SET_SIGS(nsigs,sigs,flags) \
334 do { \
335 int signum = (nsigs); \
336 while (signum-- > 0) \
337 if ((sigs)[signum]) \
338 (flags)[signum] = 1; \
339 } while (0)
340
341#define UNSET_SIGS(nsigs,sigs,flags) \
342 do { \
343 int signum = (nsigs); \
344 while (signum-- > 0) \
345 if ((sigs)[signum]) \
346 (flags)[signum] = 0; \
347 } while (0)
348
9b224c5e
PA
349/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
350 this function is to avoid exporting `signal_program'. */
351
352void
353update_signals_program_target (void)
354{
a493e3e2 355 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
356}
357
1777feb0 358/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 359
edb3359d 360#define RESUME_ALL minus_one_ptid
c906108c
SS
361
362/* Command list pointer for the "stop" placeholder. */
363
364static struct cmd_list_element *stop_command;
365
c906108c
SS
366/* Nonzero if we want to give control to the user when we're notified
367 of shared library events by the dynamic linker. */
628fe4e4 368int stop_on_solib_events;
f9e14852
GB
369
370/* Enable or disable optional shared library event breakpoints
371 as appropriate when the above flag is changed. */
372
373static void
374set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
375{
376 update_solib_breakpoints ();
377}
378
920d2a44
AC
379static void
380show_stop_on_solib_events (struct ui_file *file, int from_tty,
381 struct cmd_list_element *c, const char *value)
382{
383 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
384 value);
385}
c906108c 386
c906108c
SS
387/* Nonzero after stop if current stack frame should be printed. */
388
389static int stop_print_frame;
390
e02bc4cc 391/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
392 returned by target_wait()/deprecated_target_wait_hook(). This
393 information is returned by get_last_target_status(). */
39f77062 394static ptid_t target_last_wait_ptid;
e02bc4cc
DS
395static struct target_waitstatus target_last_waitstatus;
396
0d1e5fa7
PA
397static void context_switch (ptid_t ptid);
398
4e1c45ea 399void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 400
53904c9e
AC
401static const char follow_fork_mode_child[] = "child";
402static const char follow_fork_mode_parent[] = "parent";
403
40478521 404static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
405 follow_fork_mode_child,
406 follow_fork_mode_parent,
407 NULL
ef346e04 408};
c906108c 409
53904c9e 410static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
411static void
412show_follow_fork_mode_string (struct ui_file *file, int from_tty,
413 struct cmd_list_element *c, const char *value)
414{
3e43a32a
MS
415 fprintf_filtered (file,
416 _("Debugger response to a program "
417 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
418 value);
419}
c906108c
SS
420\f
421
d83ad864
DB
422/* Handle changes to the inferior list based on the type of fork,
423 which process is being followed, and whether the other process
424 should be detached. On entry inferior_ptid must be the ptid of
425 the fork parent. At return inferior_ptid is the ptid of the
426 followed inferior. */
427
428static int
429follow_fork_inferior (int follow_child, int detach_fork)
430{
431 int has_vforked;
79639e11 432 ptid_t parent_ptid, child_ptid;
d83ad864
DB
433
434 has_vforked = (inferior_thread ()->pending_follow.kind
435 == TARGET_WAITKIND_VFORKED);
79639e11
PA
436 parent_ptid = inferior_ptid;
437 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
438
439 if (has_vforked
440 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 441 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
442 && !(follow_child || detach_fork || sched_multi))
443 {
444 /* The parent stays blocked inside the vfork syscall until the
445 child execs or exits. If we don't let the child run, then
446 the parent stays blocked. If we're telling the parent to run
447 in the foreground, the user will not be able to ctrl-c to get
448 back the terminal, effectively hanging the debug session. */
449 fprintf_filtered (gdb_stderr, _("\
450Can not resume the parent process over vfork in the foreground while\n\
451holding the child stopped. Try \"set detach-on-fork\" or \
452\"set schedule-multiple\".\n"));
453 /* FIXME output string > 80 columns. */
454 return 1;
455 }
456
457 if (!follow_child)
458 {
459 /* Detach new forked process? */
460 if (detach_fork)
461 {
d83ad864
DB
462 /* Before detaching from the child, remove all breakpoints
463 from it. If we forked, then this has already been taken
464 care of by infrun.c. If we vforked however, any
465 breakpoint inserted in the parent is visible in the
466 child, even those added while stopped in a vfork
467 catchpoint. This will remove the breakpoints from the
468 parent also, but they'll be reinserted below. */
469 if (has_vforked)
470 {
471 /* Keep breakpoints list in sync. */
472 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
473 }
474
475 if (info_verbose || debug_infrun)
476 {
8dd06f7a
DB
477 /* Ensure that we have a process ptid. */
478 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
479
6f259a23 480 target_terminal_ours_for_output ();
d83ad864 481 fprintf_filtered (gdb_stdlog,
79639e11 482 _("Detaching after %s from child %s.\n"),
6f259a23 483 has_vforked ? "vfork" : "fork",
8dd06f7a 484 target_pid_to_str (process_ptid));
d83ad864
DB
485 }
486 }
487 else
488 {
489 struct inferior *parent_inf, *child_inf;
490 struct cleanup *old_chain;
491
492 /* Add process to GDB's tables. */
79639e11 493 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
494
495 parent_inf = current_inferior ();
496 child_inf->attach_flag = parent_inf->attach_flag;
497 copy_terminal_info (child_inf, parent_inf);
498 child_inf->gdbarch = parent_inf->gdbarch;
499 copy_inferior_target_desc_info (child_inf, parent_inf);
500
501 old_chain = save_inferior_ptid ();
502 save_current_program_space ();
503
79639e11 504 inferior_ptid = child_ptid;
d83ad864
DB
505 add_thread (inferior_ptid);
506 child_inf->symfile_flags = SYMFILE_NO_READ;
507
508 /* If this is a vfork child, then the address-space is
509 shared with the parent. */
510 if (has_vforked)
511 {
512 child_inf->pspace = parent_inf->pspace;
513 child_inf->aspace = parent_inf->aspace;
514
515 /* The parent will be frozen until the child is done
516 with the shared region. Keep track of the
517 parent. */
518 child_inf->vfork_parent = parent_inf;
519 child_inf->pending_detach = 0;
520 parent_inf->vfork_child = child_inf;
521 parent_inf->pending_detach = 0;
522 }
523 else
524 {
525 child_inf->aspace = new_address_space ();
526 child_inf->pspace = add_program_space (child_inf->aspace);
527 child_inf->removable = 1;
528 set_current_program_space (child_inf->pspace);
529 clone_program_space (child_inf->pspace, parent_inf->pspace);
530
531 /* Let the shared library layer (e.g., solib-svr4) learn
532 about this new process, relocate the cloned exec, pull
533 in shared libraries, and install the solib event
534 breakpoint. If a "cloned-VM" event was propagated
535 better throughout the core, this wouldn't be
536 required. */
537 solib_create_inferior_hook (0);
538 }
539
540 do_cleanups (old_chain);
541 }
542
543 if (has_vforked)
544 {
545 struct inferior *parent_inf;
546
547 parent_inf = current_inferior ();
548
549 /* If we detached from the child, then we have to be careful
550 to not insert breakpoints in the parent until the child
551 is done with the shared memory region. However, if we're
552 staying attached to the child, then we can and should
553 insert breakpoints, so that we can debug it. A
554 subsequent child exec or exit is enough to know when does
555 the child stops using the parent's address space. */
556 parent_inf->waiting_for_vfork_done = detach_fork;
557 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
558 }
559 }
560 else
561 {
562 /* Follow the child. */
563 struct inferior *parent_inf, *child_inf;
564 struct program_space *parent_pspace;
565
566 if (info_verbose || debug_infrun)
567 {
6f259a23
DB
568 target_terminal_ours_for_output ();
569 fprintf_filtered (gdb_stdlog,
79639e11
PA
570 _("Attaching after %s %s to child %s.\n"),
571 target_pid_to_str (parent_ptid),
6f259a23 572 has_vforked ? "vfork" : "fork",
79639e11 573 target_pid_to_str (child_ptid));
d83ad864
DB
574 }
575
576 /* Add the new inferior first, so that the target_detach below
577 doesn't unpush the target. */
578
79639e11 579 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
580
581 parent_inf = current_inferior ();
582 child_inf->attach_flag = parent_inf->attach_flag;
583 copy_terminal_info (child_inf, parent_inf);
584 child_inf->gdbarch = parent_inf->gdbarch;
585 copy_inferior_target_desc_info (child_inf, parent_inf);
586
587 parent_pspace = parent_inf->pspace;
588
589 /* If we're vforking, we want to hold on to the parent until the
590 child exits or execs. At child exec or exit time we can
591 remove the old breakpoints from the parent and detach or
592 resume debugging it. Otherwise, detach the parent now; we'll
593 want to reuse it's program/address spaces, but we can't set
594 them to the child before removing breakpoints from the
595 parent, otherwise, the breakpoints module could decide to
596 remove breakpoints from the wrong process (since they'd be
597 assigned to the same address space). */
598
599 if (has_vforked)
600 {
601 gdb_assert (child_inf->vfork_parent == NULL);
602 gdb_assert (parent_inf->vfork_child == NULL);
603 child_inf->vfork_parent = parent_inf;
604 child_inf->pending_detach = 0;
605 parent_inf->vfork_child = child_inf;
606 parent_inf->pending_detach = detach_fork;
607 parent_inf->waiting_for_vfork_done = 0;
608 }
609 else if (detach_fork)
6f259a23
DB
610 {
611 if (info_verbose || debug_infrun)
612 {
8dd06f7a
DB
613 /* Ensure that we have a process ptid. */
614 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
615
6f259a23
DB
616 target_terminal_ours_for_output ();
617 fprintf_filtered (gdb_stdlog,
618 _("Detaching after fork from "
79639e11 619 "child %s.\n"),
8dd06f7a 620 target_pid_to_str (process_ptid));
6f259a23
DB
621 }
622
623 target_detach (NULL, 0);
624 }
d83ad864
DB
625
626 /* Note that the detach above makes PARENT_INF dangling. */
627
628 /* Add the child thread to the appropriate lists, and switch to
629 this new thread, before cloning the program space, and
630 informing the solib layer about this new process. */
631
79639e11 632 inferior_ptid = child_ptid;
d83ad864
DB
633 add_thread (inferior_ptid);
634
635 /* If this is a vfork child, then the address-space is shared
636 with the parent. If we detached from the parent, then we can
637 reuse the parent's program/address spaces. */
638 if (has_vforked || detach_fork)
639 {
640 child_inf->pspace = parent_pspace;
641 child_inf->aspace = child_inf->pspace->aspace;
642 }
643 else
644 {
645 child_inf->aspace = new_address_space ();
646 child_inf->pspace = add_program_space (child_inf->aspace);
647 child_inf->removable = 1;
648 child_inf->symfile_flags = SYMFILE_NO_READ;
649 set_current_program_space (child_inf->pspace);
650 clone_program_space (child_inf->pspace, parent_pspace);
651
652 /* Let the shared library layer (e.g., solib-svr4) learn
653 about this new process, relocate the cloned exec, pull in
654 shared libraries, and install the solib event breakpoint.
655 If a "cloned-VM" event was propagated better throughout
656 the core, this wouldn't be required. */
657 solib_create_inferior_hook (0);
658 }
659 }
660
661 return target_follow_fork (follow_child, detach_fork);
662}
663
e58b0e63
PA
664/* Tell the target to follow the fork we're stopped at. Returns true
665 if the inferior should be resumed; false, if the target for some
666 reason decided it's best not to resume. */
667
6604731b 668static int
4ef3f3be 669follow_fork (void)
c906108c 670{
ea1dd7bc 671 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
672 int should_resume = 1;
673 struct thread_info *tp;
674
675 /* Copy user stepping state to the new inferior thread. FIXME: the
676 followed fork child thread should have a copy of most of the
4e3990f4
DE
677 parent thread structure's run control related fields, not just these.
678 Initialized to avoid "may be used uninitialized" warnings from gcc. */
679 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 680 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
681 CORE_ADDR step_range_start = 0;
682 CORE_ADDR step_range_end = 0;
683 struct frame_id step_frame_id = { 0 };
8980e177 684 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
685
686 if (!non_stop)
687 {
688 ptid_t wait_ptid;
689 struct target_waitstatus wait_status;
690
691 /* Get the last target status returned by target_wait(). */
692 get_last_target_status (&wait_ptid, &wait_status);
693
694 /* If not stopped at a fork event, then there's nothing else to
695 do. */
696 if (wait_status.kind != TARGET_WAITKIND_FORKED
697 && wait_status.kind != TARGET_WAITKIND_VFORKED)
698 return 1;
699
700 /* Check if we switched over from WAIT_PTID, since the event was
701 reported. */
702 if (!ptid_equal (wait_ptid, minus_one_ptid)
703 && !ptid_equal (inferior_ptid, wait_ptid))
704 {
705 /* We did. Switch back to WAIT_PTID thread, to tell the
706 target to follow it (in either direction). We'll
707 afterwards refuse to resume, and inform the user what
708 happened. */
709 switch_to_thread (wait_ptid);
710 should_resume = 0;
711 }
712 }
713
714 tp = inferior_thread ();
715
716 /* If there were any forks/vforks that were caught and are now to be
717 followed, then do so now. */
718 switch (tp->pending_follow.kind)
719 {
720 case TARGET_WAITKIND_FORKED:
721 case TARGET_WAITKIND_VFORKED:
722 {
723 ptid_t parent, child;
724
725 /* If the user did a next/step, etc, over a fork call,
726 preserve the stepping state in the fork child. */
727 if (follow_child && should_resume)
728 {
8358c15c
JK
729 step_resume_breakpoint = clone_momentary_breakpoint
730 (tp->control.step_resume_breakpoint);
16c381f0
JK
731 step_range_start = tp->control.step_range_start;
732 step_range_end = tp->control.step_range_end;
733 step_frame_id = tp->control.step_frame_id;
186c406b
TT
734 exception_resume_breakpoint
735 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 736 thread_fsm = tp->thread_fsm;
e58b0e63
PA
737
738 /* For now, delete the parent's sr breakpoint, otherwise,
739 parent/child sr breakpoints are considered duplicates,
740 and the child version will not be installed. Remove
741 this when the breakpoints module becomes aware of
742 inferiors and address spaces. */
743 delete_step_resume_breakpoint (tp);
16c381f0
JK
744 tp->control.step_range_start = 0;
745 tp->control.step_range_end = 0;
746 tp->control.step_frame_id = null_frame_id;
186c406b 747 delete_exception_resume_breakpoint (tp);
8980e177 748 tp->thread_fsm = NULL;
e58b0e63
PA
749 }
750
751 parent = inferior_ptid;
752 child = tp->pending_follow.value.related_pid;
753
d83ad864
DB
754 /* Set up inferior(s) as specified by the caller, and tell the
755 target to do whatever is necessary to follow either parent
756 or child. */
757 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
758 {
759 /* Target refused to follow, or there's some other reason
760 we shouldn't resume. */
761 should_resume = 0;
762 }
763 else
764 {
765 /* This pending follow fork event is now handled, one way
766 or another. The previous selected thread may be gone
767 from the lists by now, but if it is still around, need
768 to clear the pending follow request. */
e09875d4 769 tp = find_thread_ptid (parent);
e58b0e63
PA
770 if (tp)
771 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
772
773 /* This makes sure we don't try to apply the "Switched
774 over from WAIT_PID" logic above. */
775 nullify_last_target_wait_ptid ();
776
1777feb0 777 /* If we followed the child, switch to it... */
e58b0e63
PA
778 if (follow_child)
779 {
780 switch_to_thread (child);
781
782 /* ... and preserve the stepping state, in case the
783 user was stepping over the fork call. */
784 if (should_resume)
785 {
786 tp = inferior_thread ();
8358c15c
JK
787 tp->control.step_resume_breakpoint
788 = step_resume_breakpoint;
16c381f0
JK
789 tp->control.step_range_start = step_range_start;
790 tp->control.step_range_end = step_range_end;
791 tp->control.step_frame_id = step_frame_id;
186c406b
TT
792 tp->control.exception_resume_breakpoint
793 = exception_resume_breakpoint;
8980e177 794 tp->thread_fsm = thread_fsm;
e58b0e63
PA
795 }
796 else
797 {
798 /* If we get here, it was because we're trying to
799 resume from a fork catchpoint, but, the user
800 has switched threads away from the thread that
801 forked. In that case, the resume command
802 issued is most likely not applicable to the
803 child, so just warn, and refuse to resume. */
3e43a32a 804 warning (_("Not resuming: switched threads "
fd7dcb94 805 "before following fork child."));
e58b0e63
PA
806 }
807
808 /* Reset breakpoints in the child as appropriate. */
809 follow_inferior_reset_breakpoints ();
810 }
811 else
812 switch_to_thread (parent);
813 }
814 }
815 break;
816 case TARGET_WAITKIND_SPURIOUS:
817 /* Nothing to follow. */
818 break;
819 default:
820 internal_error (__FILE__, __LINE__,
821 "Unexpected pending_follow.kind %d\n",
822 tp->pending_follow.kind);
823 break;
824 }
c906108c 825
e58b0e63 826 return should_resume;
c906108c
SS
827}
828
d83ad864 829static void
6604731b 830follow_inferior_reset_breakpoints (void)
c906108c 831{
4e1c45ea
PA
832 struct thread_info *tp = inferior_thread ();
833
6604731b
DJ
834 /* Was there a step_resume breakpoint? (There was if the user
835 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
836 thread number. Cloned step_resume breakpoints are disabled on
837 creation, so enable it here now that it is associated with the
838 correct thread.
6604731b
DJ
839
840 step_resumes are a form of bp that are made to be per-thread.
841 Since we created the step_resume bp when the parent process
842 was being debugged, and now are switching to the child process,
843 from the breakpoint package's viewpoint, that's a switch of
844 "threads". We must update the bp's notion of which thread
845 it is for, or it'll be ignored when it triggers. */
846
8358c15c 847 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
848 {
849 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
850 tp->control.step_resume_breakpoint->loc->enabled = 1;
851 }
6604731b 852
a1aa2221 853 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 854 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
855 {
856 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
857 tp->control.exception_resume_breakpoint->loc->enabled = 1;
858 }
186c406b 859
6604731b
DJ
860 /* Reinsert all breakpoints in the child. The user may have set
861 breakpoints after catching the fork, in which case those
862 were never set in the child, but only in the parent. This makes
863 sure the inserted breakpoints match the breakpoint list. */
864
865 breakpoint_re_set ();
866 insert_breakpoints ();
c906108c 867}
c906108c 868
6c95b8df
PA
869/* The child has exited or execed: resume threads of the parent the
870 user wanted to be executing. */
871
872static int
873proceed_after_vfork_done (struct thread_info *thread,
874 void *arg)
875{
876 int pid = * (int *) arg;
877
878 if (ptid_get_pid (thread->ptid) == pid
879 && is_running (thread->ptid)
880 && !is_executing (thread->ptid)
881 && !thread->stop_requested
a493e3e2 882 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
883 {
884 if (debug_infrun)
885 fprintf_unfiltered (gdb_stdlog,
886 "infrun: resuming vfork parent thread %s\n",
887 target_pid_to_str (thread->ptid));
888
889 switch_to_thread (thread->ptid);
70509625 890 clear_proceed_status (0);
64ce06e4 891 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
892 }
893
894 return 0;
895}
896
897/* Called whenever we notice an exec or exit event, to handle
898 detaching or resuming a vfork parent. */
899
900static void
901handle_vfork_child_exec_or_exit (int exec)
902{
903 struct inferior *inf = current_inferior ();
904
905 if (inf->vfork_parent)
906 {
907 int resume_parent = -1;
908
909 /* This exec or exit marks the end of the shared memory region
910 between the parent and the child. If the user wanted to
911 detach from the parent, now is the time. */
912
913 if (inf->vfork_parent->pending_detach)
914 {
915 struct thread_info *tp;
916 struct cleanup *old_chain;
917 struct program_space *pspace;
918 struct address_space *aspace;
919
1777feb0 920 /* follow-fork child, detach-on-fork on. */
6c95b8df 921
68c9da30
PA
922 inf->vfork_parent->pending_detach = 0;
923
f50f4e56
PA
924 if (!exec)
925 {
926 /* If we're handling a child exit, then inferior_ptid
927 points at the inferior's pid, not to a thread. */
928 old_chain = save_inferior_ptid ();
929 save_current_program_space ();
930 save_current_inferior ();
931 }
932 else
933 old_chain = save_current_space_and_thread ();
6c95b8df
PA
934
935 /* We're letting loose of the parent. */
936 tp = any_live_thread_of_process (inf->vfork_parent->pid);
937 switch_to_thread (tp->ptid);
938
939 /* We're about to detach from the parent, which implicitly
940 removes breakpoints from its address space. There's a
941 catch here: we want to reuse the spaces for the child,
942 but, parent/child are still sharing the pspace at this
943 point, although the exec in reality makes the kernel give
944 the child a fresh set of new pages. The problem here is
945 that the breakpoints module being unaware of this, would
946 likely chose the child process to write to the parent
947 address space. Swapping the child temporarily away from
948 the spaces has the desired effect. Yes, this is "sort
949 of" a hack. */
950
951 pspace = inf->pspace;
952 aspace = inf->aspace;
953 inf->aspace = NULL;
954 inf->pspace = NULL;
955
956 if (debug_infrun || info_verbose)
957 {
6f259a23 958 target_terminal_ours_for_output ();
6c95b8df
PA
959
960 if (exec)
6f259a23
DB
961 {
962 fprintf_filtered (gdb_stdlog,
963 _("Detaching vfork parent process "
964 "%d after child exec.\n"),
965 inf->vfork_parent->pid);
966 }
6c95b8df 967 else
6f259a23
DB
968 {
969 fprintf_filtered (gdb_stdlog,
970 _("Detaching vfork parent process "
971 "%d after child exit.\n"),
972 inf->vfork_parent->pid);
973 }
6c95b8df
PA
974 }
975
976 target_detach (NULL, 0);
977
978 /* Put it back. */
979 inf->pspace = pspace;
980 inf->aspace = aspace;
981
982 do_cleanups (old_chain);
983 }
984 else if (exec)
985 {
986 /* We're staying attached to the parent, so, really give the
987 child a new address space. */
988 inf->pspace = add_program_space (maybe_new_address_space ());
989 inf->aspace = inf->pspace->aspace;
990 inf->removable = 1;
991 set_current_program_space (inf->pspace);
992
993 resume_parent = inf->vfork_parent->pid;
994
995 /* Break the bonds. */
996 inf->vfork_parent->vfork_child = NULL;
997 }
998 else
999 {
1000 struct cleanup *old_chain;
1001 struct program_space *pspace;
1002
1003 /* If this is a vfork child exiting, then the pspace and
1004 aspaces were shared with the parent. Since we're
1005 reporting the process exit, we'll be mourning all that is
1006 found in the address space, and switching to null_ptid,
1007 preparing to start a new inferior. But, since we don't
1008 want to clobber the parent's address/program spaces, we
1009 go ahead and create a new one for this exiting
1010 inferior. */
1011
1012 /* Switch to null_ptid, so that clone_program_space doesn't want
1013 to read the selected frame of a dead process. */
1014 old_chain = save_inferior_ptid ();
1015 inferior_ptid = null_ptid;
1016
1017 /* This inferior is dead, so avoid giving the breakpoints
1018 module the option to write through to it (cloning a
1019 program space resets breakpoints). */
1020 inf->aspace = NULL;
1021 inf->pspace = NULL;
1022 pspace = add_program_space (maybe_new_address_space ());
1023 set_current_program_space (pspace);
1024 inf->removable = 1;
7dcd53a0 1025 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1026 clone_program_space (pspace, inf->vfork_parent->pspace);
1027 inf->pspace = pspace;
1028 inf->aspace = pspace->aspace;
1029
1030 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 1031 inferior. */
6c95b8df
PA
1032 do_cleanups (old_chain);
1033
1034 resume_parent = inf->vfork_parent->pid;
1035 /* Break the bonds. */
1036 inf->vfork_parent->vfork_child = NULL;
1037 }
1038
1039 inf->vfork_parent = NULL;
1040
1041 gdb_assert (current_program_space == inf->pspace);
1042
1043 if (non_stop && resume_parent != -1)
1044 {
1045 /* If the user wanted the parent to be running, let it go
1046 free now. */
1047 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1048
1049 if (debug_infrun)
3e43a32a
MS
1050 fprintf_unfiltered (gdb_stdlog,
1051 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1052 resume_parent);
1053
1054 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1055
1056 do_cleanups (old_chain);
1057 }
1058 }
1059}
1060
eb6c553b 1061/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1062
1063static const char follow_exec_mode_new[] = "new";
1064static const char follow_exec_mode_same[] = "same";
40478521 1065static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1066{
1067 follow_exec_mode_new,
1068 follow_exec_mode_same,
1069 NULL,
1070};
1071
1072static const char *follow_exec_mode_string = follow_exec_mode_same;
1073static void
1074show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1075 struct cmd_list_element *c, const char *value)
1076{
1077 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1078}
1079
1777feb0 1080/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 1081
c906108c 1082static void
95e50b27 1083follow_exec (ptid_t ptid, char *execd_pathname)
c906108c 1084{
95e50b27 1085 struct thread_info *th, *tmp;
6c95b8df 1086 struct inferior *inf = current_inferior ();
95e50b27 1087 int pid = ptid_get_pid (ptid);
94585166 1088 ptid_t process_ptid;
7a292a7a 1089
c906108c
SS
1090 /* This is an exec event that we actually wish to pay attention to.
1091 Refresh our symbol table to the newly exec'd program, remove any
1092 momentary bp's, etc.
1093
1094 If there are breakpoints, they aren't really inserted now,
1095 since the exec() transformed our inferior into a fresh set
1096 of instructions.
1097
1098 We want to preserve symbolic breakpoints on the list, since
1099 we have hopes that they can be reset after the new a.out's
1100 symbol table is read.
1101
1102 However, any "raw" breakpoints must be removed from the list
1103 (e.g., the solib bp's), since their address is probably invalid
1104 now.
1105
1106 And, we DON'T want to call delete_breakpoints() here, since
1107 that may write the bp's "shadow contents" (the instruction
1108 value that was overwritten witha TRAP instruction). Since
1777feb0 1109 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1110
1111 mark_breakpoints_out ();
1112
95e50b27
PA
1113 /* The target reports the exec event to the main thread, even if
1114 some other thread does the exec, and even if the main thread was
1115 stopped or already gone. We may still have non-leader threads of
1116 the process on our list. E.g., on targets that don't have thread
1117 exit events (like remote); or on native Linux in non-stop mode if
1118 there were only two threads in the inferior and the non-leader
1119 one is the one that execs (and nothing forces an update of the
1120 thread list up to here). When debugging remotely, it's best to
1121 avoid extra traffic, when possible, so avoid syncing the thread
1122 list with the target, and instead go ahead and delete all threads
1123 of the process but one that reported the event. Note this must
1124 be done before calling update_breakpoints_after_exec, as
1125 otherwise clearing the threads' resources would reference stale
1126 thread breakpoints -- it may have been one of these threads that
1127 stepped across the exec. We could just clear their stepping
1128 states, but as long as we're iterating, might as well delete
1129 them. Deleting them now rather than at the next user-visible
1130 stop provides a nicer sequence of events for user and MI
1131 notifications. */
8a06aea7 1132 ALL_THREADS_SAFE (th, tmp)
95e50b27
PA
1133 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1134 delete_thread (th->ptid);
1135
1136 /* We also need to clear any left over stale state for the
1137 leader/event thread. E.g., if there was any step-resume
1138 breakpoint or similar, it's gone now. We cannot truly
1139 step-to-next statement through an exec(). */
1140 th = inferior_thread ();
8358c15c 1141 th->control.step_resume_breakpoint = NULL;
186c406b 1142 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1143 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1144 th->control.step_range_start = 0;
1145 th->control.step_range_end = 0;
c906108c 1146
95e50b27
PA
1147 /* The user may have had the main thread held stopped in the
1148 previous image (e.g., schedlock on, or non-stop). Release
1149 it now. */
a75724bc
PA
1150 th->stop_requested = 0;
1151
95e50b27
PA
1152 update_breakpoints_after_exec ();
1153
1777feb0 1154 /* What is this a.out's name? */
94585166 1155 process_ptid = pid_to_ptid (pid);
6c95b8df 1156 printf_unfiltered (_("%s is executing new program: %s\n"),
94585166 1157 target_pid_to_str (process_ptid),
6c95b8df 1158 execd_pathname);
c906108c
SS
1159
1160 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1161 inferior has essentially been killed & reborn. */
7a292a7a 1162
c906108c 1163 gdb_flush (gdb_stdout);
6ca15a4b
PA
1164
1165 breakpoint_init_inferior (inf_execd);
e85a822c 1166
a3be80c3 1167 if (*gdb_sysroot != '\0')
e85a822c 1168 {
998d2a3e 1169 char *name = exec_file_find (execd_pathname, NULL);
ff862be4 1170
224c3ddb 1171 execd_pathname = (char *) alloca (strlen (name) + 1);
ff862be4
GB
1172 strcpy (execd_pathname, name);
1173 xfree (name);
e85a822c 1174 }
c906108c 1175
cce9b6bf
PA
1176 /* Reset the shared library package. This ensures that we get a
1177 shlib event when the child reaches "_start", at which point the
1178 dld will have had a chance to initialize the child. */
1179 /* Also, loading a symbol file below may trigger symbol lookups, and
1180 we don't want those to be satisfied by the libraries of the
1181 previous incarnation of this process. */
1182 no_shared_libraries (NULL, 0);
1183
6c95b8df
PA
1184 if (follow_exec_mode_string == follow_exec_mode_new)
1185 {
6c95b8df
PA
1186 /* The user wants to keep the old inferior and program spaces
1187 around. Create a new fresh one, and switch to it. */
1188
17d8546e
DB
1189 /* Do exit processing for the original inferior before adding
1190 the new inferior so we don't have two active inferiors with
1191 the same ptid, which can confuse find_inferior_ptid. */
1192 exit_inferior_num_silent (current_inferior ()->num);
1193
94585166
DB
1194 inf = add_inferior_with_spaces ();
1195 inf->pid = pid;
1196 target_follow_exec (inf, execd_pathname);
6c95b8df
PA
1197
1198 set_current_inferior (inf);
94585166
DB
1199 set_current_program_space (inf->pspace);
1200 add_thread (ptid);
6c95b8df 1201 }
9107fc8d
PA
1202 else
1203 {
1204 /* The old description may no longer be fit for the new image.
1205 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1206 old description; we'll read a new one below. No need to do
1207 this on "follow-exec-mode new", as the old inferior stays
1208 around (its description is later cleared/refetched on
1209 restart). */
1210 target_clear_description ();
1211 }
6c95b8df
PA
1212
1213 gdb_assert (current_program_space == inf->pspace);
1214
1777feb0 1215 /* That a.out is now the one to use. */
6c95b8df
PA
1216 exec_file_attach (execd_pathname, 0);
1217
c1e56572
JK
1218 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1219 (Position Independent Executable) main symbol file will get applied by
1220 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1221 the breakpoints with the zero displacement. */
1222
7dcd53a0
TT
1223 symbol_file_add (execd_pathname,
1224 (inf->symfile_flags
1225 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
1226 NULL, 0);
1227
7dcd53a0
TT
1228 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1229 set_initial_language ();
c906108c 1230
9107fc8d
PA
1231 /* If the target can specify a description, read it. Must do this
1232 after flipping to the new executable (because the target supplied
1233 description must be compatible with the executable's
1234 architecture, and the old executable may e.g., be 32-bit, while
1235 the new one 64-bit), and before anything involving memory or
1236 registers. */
1237 target_find_description ();
1238
268a4a75 1239 solib_create_inferior_hook (0);
c906108c 1240
4efc6507
DE
1241 jit_inferior_created_hook ();
1242
c1e56572
JK
1243 breakpoint_re_set ();
1244
c906108c
SS
1245 /* Reinsert all breakpoints. (Those which were symbolic have
1246 been reset to the proper address in the new a.out, thanks
1777feb0 1247 to symbol_file_command...). */
c906108c
SS
1248 insert_breakpoints ();
1249
1250 /* The next resume of this inferior should bring it to the shlib
1251 startup breakpoints. (If the user had also set bp's on
1252 "main" from the old (parent) process, then they'll auto-
1777feb0 1253 matically get reset there in the new process.). */
c906108c
SS
1254}
1255
c2829269
PA
1256/* The queue of threads that need to do a step-over operation to get
1257 past e.g., a breakpoint. What technique is used to step over the
1258 breakpoint/watchpoint does not matter -- all threads end up in the
1259 same queue, to maintain rough temporal order of execution, in order
1260 to avoid starvation, otherwise, we could e.g., find ourselves
1261 constantly stepping the same couple threads past their breakpoints
1262 over and over, if the single-step finish fast enough. */
1263struct thread_info *step_over_queue_head;
1264
6c4cfb24
PA
1265/* Bit flags indicating what the thread needs to step over. */
1266
8d297bbf 1267enum step_over_what_flag
6c4cfb24
PA
1268 {
1269 /* Step over a breakpoint. */
1270 STEP_OVER_BREAKPOINT = 1,
1271
1272 /* Step past a non-continuable watchpoint, in order to let the
1273 instruction execute so we can evaluate the watchpoint
1274 expression. */
1275 STEP_OVER_WATCHPOINT = 2
1276 };
8d297bbf 1277DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1278
963f9c80 1279/* Info about an instruction that is being stepped over. */
31e77af2
PA
1280
1281struct step_over_info
1282{
963f9c80
PA
1283 /* If we're stepping past a breakpoint, this is the address space
1284 and address of the instruction the breakpoint is set at. We'll
1285 skip inserting all breakpoints here. Valid iff ASPACE is
1286 non-NULL. */
31e77af2 1287 struct address_space *aspace;
31e77af2 1288 CORE_ADDR address;
963f9c80
PA
1289
1290 /* The instruction being stepped over triggers a nonsteppable
1291 watchpoint. If true, we'll skip inserting watchpoints. */
1292 int nonsteppable_watchpoint_p;
21edc42f
YQ
1293
1294 /* The thread's global number. */
1295 int thread;
31e77af2
PA
1296};
1297
1298/* The step-over info of the location that is being stepped over.
1299
1300 Note that with async/breakpoint always-inserted mode, a user might
1301 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1302 being stepped over. As setting a new breakpoint inserts all
1303 breakpoints, we need to make sure the breakpoint being stepped over
1304 isn't inserted then. We do that by only clearing the step-over
1305 info when the step-over is actually finished (or aborted).
1306
1307 Presently GDB can only step over one breakpoint at any given time.
1308 Given threads that can't run code in the same address space as the
1309 breakpoint's can't really miss the breakpoint, GDB could be taught
1310 to step-over at most one breakpoint per address space (so this info
1311 could move to the address space object if/when GDB is extended).
1312 The set of breakpoints being stepped over will normally be much
1313 smaller than the set of all breakpoints, so a flag in the
1314 breakpoint location structure would be wasteful. A separate list
1315 also saves complexity and run-time, as otherwise we'd have to go
1316 through all breakpoint locations clearing their flag whenever we
1317 start a new sequence. Similar considerations weigh against storing
1318 this info in the thread object. Plus, not all step overs actually
1319 have breakpoint locations -- e.g., stepping past a single-step
1320 breakpoint, or stepping to complete a non-continuable
1321 watchpoint. */
1322static struct step_over_info step_over_info;
1323
1324/* Record the address of the breakpoint/instruction we're currently
1325 stepping over. */
1326
1327static void
963f9c80 1328set_step_over_info (struct address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1329 int nonsteppable_watchpoint_p,
1330 int thread)
31e77af2
PA
1331{
1332 step_over_info.aspace = aspace;
1333 step_over_info.address = address;
963f9c80 1334 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1335 step_over_info.thread = thread;
31e77af2
PA
1336}
1337
1338/* Called when we're not longer stepping over a breakpoint / an
1339 instruction, so all breakpoints are free to be (re)inserted. */
1340
1341static void
1342clear_step_over_info (void)
1343{
372316f1
PA
1344 if (debug_infrun)
1345 fprintf_unfiltered (gdb_stdlog,
1346 "infrun: clear_step_over_info\n");
31e77af2
PA
1347 step_over_info.aspace = NULL;
1348 step_over_info.address = 0;
963f9c80 1349 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1350 step_over_info.thread = -1;
31e77af2
PA
1351}
1352
7f89fd65 1353/* See infrun.h. */
31e77af2
PA
1354
1355int
1356stepping_past_instruction_at (struct address_space *aspace,
1357 CORE_ADDR address)
1358{
1359 return (step_over_info.aspace != NULL
1360 && breakpoint_address_match (aspace, address,
1361 step_over_info.aspace,
1362 step_over_info.address));
1363}
1364
963f9c80
PA
1365/* See infrun.h. */
1366
21edc42f
YQ
1367int
1368thread_is_stepping_over_breakpoint (int thread)
1369{
1370 return (step_over_info.thread != -1
1371 && thread == step_over_info.thread);
1372}
1373
1374/* See infrun.h. */
1375
963f9c80
PA
1376int
1377stepping_past_nonsteppable_watchpoint (void)
1378{
1379 return step_over_info.nonsteppable_watchpoint_p;
1380}
1381
6cc83d2a
PA
1382/* Returns true if step-over info is valid. */
1383
1384static int
1385step_over_info_valid_p (void)
1386{
963f9c80
PA
1387 return (step_over_info.aspace != NULL
1388 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1389}
1390
c906108c 1391\f
237fc4c9
PA
1392/* Displaced stepping. */
1393
1394/* In non-stop debugging mode, we must take special care to manage
1395 breakpoints properly; in particular, the traditional strategy for
1396 stepping a thread past a breakpoint it has hit is unsuitable.
1397 'Displaced stepping' is a tactic for stepping one thread past a
1398 breakpoint it has hit while ensuring that other threads running
1399 concurrently will hit the breakpoint as they should.
1400
1401 The traditional way to step a thread T off a breakpoint in a
1402 multi-threaded program in all-stop mode is as follows:
1403
1404 a0) Initially, all threads are stopped, and breakpoints are not
1405 inserted.
1406 a1) We single-step T, leaving breakpoints uninserted.
1407 a2) We insert breakpoints, and resume all threads.
1408
1409 In non-stop debugging, however, this strategy is unsuitable: we
1410 don't want to have to stop all threads in the system in order to
1411 continue or step T past a breakpoint. Instead, we use displaced
1412 stepping:
1413
1414 n0) Initially, T is stopped, other threads are running, and
1415 breakpoints are inserted.
1416 n1) We copy the instruction "under" the breakpoint to a separate
1417 location, outside the main code stream, making any adjustments
1418 to the instruction, register, and memory state as directed by
1419 T's architecture.
1420 n2) We single-step T over the instruction at its new location.
1421 n3) We adjust the resulting register and memory state as directed
1422 by T's architecture. This includes resetting T's PC to point
1423 back into the main instruction stream.
1424 n4) We resume T.
1425
1426 This approach depends on the following gdbarch methods:
1427
1428 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1429 indicate where to copy the instruction, and how much space must
1430 be reserved there. We use these in step n1.
1431
1432 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1433 address, and makes any necessary adjustments to the instruction,
1434 register contents, and memory. We use this in step n1.
1435
1436 - gdbarch_displaced_step_fixup adjusts registers and memory after
1437 we have successfuly single-stepped the instruction, to yield the
1438 same effect the instruction would have had if we had executed it
1439 at its original address. We use this in step n3.
1440
1441 - gdbarch_displaced_step_free_closure provides cleanup.
1442
1443 The gdbarch_displaced_step_copy_insn and
1444 gdbarch_displaced_step_fixup functions must be written so that
1445 copying an instruction with gdbarch_displaced_step_copy_insn,
1446 single-stepping across the copied instruction, and then applying
1447 gdbarch_displaced_insn_fixup should have the same effects on the
1448 thread's memory and registers as stepping the instruction in place
1449 would have. Exactly which responsibilities fall to the copy and
1450 which fall to the fixup is up to the author of those functions.
1451
1452 See the comments in gdbarch.sh for details.
1453
1454 Note that displaced stepping and software single-step cannot
1455 currently be used in combination, although with some care I think
1456 they could be made to. Software single-step works by placing
1457 breakpoints on all possible subsequent instructions; if the
1458 displaced instruction is a PC-relative jump, those breakpoints
1459 could fall in very strange places --- on pages that aren't
1460 executable, or at addresses that are not proper instruction
1461 boundaries. (We do generally let other threads run while we wait
1462 to hit the software single-step breakpoint, and they might
1463 encounter such a corrupted instruction.) One way to work around
1464 this would be to have gdbarch_displaced_step_copy_insn fully
1465 simulate the effect of PC-relative instructions (and return NULL)
1466 on architectures that use software single-stepping.
1467
1468 In non-stop mode, we can have independent and simultaneous step
1469 requests, so more than one thread may need to simultaneously step
1470 over a breakpoint. The current implementation assumes there is
1471 only one scratch space per process. In this case, we have to
1472 serialize access to the scratch space. If thread A wants to step
1473 over a breakpoint, but we are currently waiting for some other
1474 thread to complete a displaced step, we leave thread A stopped and
1475 place it in the displaced_step_request_queue. Whenever a displaced
1476 step finishes, we pick the next thread in the queue and start a new
1477 displaced step operation on it. See displaced_step_prepare and
1478 displaced_step_fixup for details. */
1479
fc1cf338
PA
1480/* Per-inferior displaced stepping state. */
1481struct displaced_step_inferior_state
1482{
1483 /* Pointer to next in linked list. */
1484 struct displaced_step_inferior_state *next;
1485
1486 /* The process this displaced step state refers to. */
1487 int pid;
1488
3fc8eb30
PA
1489 /* True if preparing a displaced step ever failed. If so, we won't
1490 try displaced stepping for this inferior again. */
1491 int failed_before;
1492
fc1cf338
PA
1493 /* If this is not null_ptid, this is the thread carrying out a
1494 displaced single-step in process PID. This thread's state will
1495 require fixing up once it has completed its step. */
1496 ptid_t step_ptid;
1497
1498 /* The architecture the thread had when we stepped it. */
1499 struct gdbarch *step_gdbarch;
1500
1501 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1502 for post-step cleanup. */
1503 struct displaced_step_closure *step_closure;
1504
1505 /* The address of the original instruction, and the copy we
1506 made. */
1507 CORE_ADDR step_original, step_copy;
1508
1509 /* Saved contents of copy area. */
1510 gdb_byte *step_saved_copy;
1511};
1512
1513/* The list of states of processes involved in displaced stepping
1514 presently. */
1515static struct displaced_step_inferior_state *displaced_step_inferior_states;
1516
1517/* Get the displaced stepping state of process PID. */
1518
1519static struct displaced_step_inferior_state *
1520get_displaced_stepping_state (int pid)
1521{
1522 struct displaced_step_inferior_state *state;
1523
1524 for (state = displaced_step_inferior_states;
1525 state != NULL;
1526 state = state->next)
1527 if (state->pid == pid)
1528 return state;
1529
1530 return NULL;
1531}
1532
372316f1
PA
1533/* Returns true if any inferior has a thread doing a displaced
1534 step. */
1535
1536static int
1537displaced_step_in_progress_any_inferior (void)
1538{
1539 struct displaced_step_inferior_state *state;
1540
1541 for (state = displaced_step_inferior_states;
1542 state != NULL;
1543 state = state->next)
1544 if (!ptid_equal (state->step_ptid, null_ptid))
1545 return 1;
1546
1547 return 0;
1548}
1549
c0987663
YQ
1550/* Return true if thread represented by PTID is doing a displaced
1551 step. */
1552
1553static int
1554displaced_step_in_progress_thread (ptid_t ptid)
1555{
1556 struct displaced_step_inferior_state *displaced;
1557
1558 gdb_assert (!ptid_equal (ptid, null_ptid));
1559
1560 displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1561
1562 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1563}
1564
8f572e5c
PA
1565/* Return true if process PID has a thread doing a displaced step. */
1566
1567static int
1568displaced_step_in_progress (int pid)
1569{
1570 struct displaced_step_inferior_state *displaced;
1571
1572 displaced = get_displaced_stepping_state (pid);
1573 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1574 return 1;
1575
1576 return 0;
1577}
1578
fc1cf338
PA
1579/* Add a new displaced stepping state for process PID to the displaced
1580 stepping state list, or return a pointer to an already existing
1581 entry, if it already exists. Never returns NULL. */
1582
1583static struct displaced_step_inferior_state *
1584add_displaced_stepping_state (int pid)
1585{
1586 struct displaced_step_inferior_state *state;
1587
1588 for (state = displaced_step_inferior_states;
1589 state != NULL;
1590 state = state->next)
1591 if (state->pid == pid)
1592 return state;
237fc4c9 1593
8d749320 1594 state = XCNEW (struct displaced_step_inferior_state);
fc1cf338
PA
1595 state->pid = pid;
1596 state->next = displaced_step_inferior_states;
1597 displaced_step_inferior_states = state;
237fc4c9 1598
fc1cf338
PA
1599 return state;
1600}
1601
a42244db
YQ
1602/* If inferior is in displaced stepping, and ADDR equals to starting address
1603 of copy area, return corresponding displaced_step_closure. Otherwise,
1604 return NULL. */
1605
1606struct displaced_step_closure*
1607get_displaced_step_closure_by_addr (CORE_ADDR addr)
1608{
1609 struct displaced_step_inferior_state *displaced
1610 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1611
1612 /* If checking the mode of displaced instruction in copy area. */
1613 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1614 && (displaced->step_copy == addr))
1615 return displaced->step_closure;
1616
1617 return NULL;
1618}
1619
fc1cf338 1620/* Remove the displaced stepping state of process PID. */
237fc4c9 1621
fc1cf338
PA
1622static void
1623remove_displaced_stepping_state (int pid)
1624{
1625 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1626
fc1cf338
PA
1627 gdb_assert (pid != 0);
1628
1629 it = displaced_step_inferior_states;
1630 prev_next_p = &displaced_step_inferior_states;
1631 while (it)
1632 {
1633 if (it->pid == pid)
1634 {
1635 *prev_next_p = it->next;
1636 xfree (it);
1637 return;
1638 }
1639
1640 prev_next_p = &it->next;
1641 it = *prev_next_p;
1642 }
1643}
1644
1645static void
1646infrun_inferior_exit (struct inferior *inf)
1647{
1648 remove_displaced_stepping_state (inf->pid);
1649}
237fc4c9 1650
fff08868
HZ
1651/* If ON, and the architecture supports it, GDB will use displaced
1652 stepping to step over breakpoints. If OFF, or if the architecture
1653 doesn't support it, GDB will instead use the traditional
1654 hold-and-step approach. If AUTO (which is the default), GDB will
1655 decide which technique to use to step over breakpoints depending on
1656 which of all-stop or non-stop mode is active --- displaced stepping
1657 in non-stop mode; hold-and-step in all-stop mode. */
1658
72d0e2c5 1659static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1660
237fc4c9
PA
1661static void
1662show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1663 struct cmd_list_element *c,
1664 const char *value)
1665{
72d0e2c5 1666 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1667 fprintf_filtered (file,
1668 _("Debugger's willingness to use displaced stepping "
1669 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1670 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1671 else
3e43a32a
MS
1672 fprintf_filtered (file,
1673 _("Debugger's willingness to use displaced stepping "
1674 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1675}
1676
fff08868 1677/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1678 over breakpoints of thread TP. */
fff08868 1679
237fc4c9 1680static int
3fc8eb30 1681use_displaced_stepping (struct thread_info *tp)
237fc4c9 1682{
3fc8eb30
PA
1683 struct regcache *regcache = get_thread_regcache (tp->ptid);
1684 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1685 struct displaced_step_inferior_state *displaced_state;
1686
1687 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1688
fbea99ea
PA
1689 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1690 && target_is_non_stop_p ())
72d0e2c5 1691 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1692 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30
PA
1693 && find_record_target () == NULL
1694 && (displaced_state == NULL
1695 || !displaced_state->failed_before));
237fc4c9
PA
1696}
1697
1698/* Clean out any stray displaced stepping state. */
1699static void
fc1cf338 1700displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1701{
1702 /* Indicate that there is no cleanup pending. */
fc1cf338 1703 displaced->step_ptid = null_ptid;
237fc4c9 1704
fc1cf338 1705 if (displaced->step_closure)
237fc4c9 1706 {
fc1cf338
PA
1707 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1708 displaced->step_closure);
1709 displaced->step_closure = NULL;
237fc4c9
PA
1710 }
1711}
1712
1713static void
fc1cf338 1714displaced_step_clear_cleanup (void *arg)
237fc4c9 1715{
9a3c8263
SM
1716 struct displaced_step_inferior_state *state
1717 = (struct displaced_step_inferior_state *) arg;
fc1cf338
PA
1718
1719 displaced_step_clear (state);
237fc4c9
PA
1720}
1721
1722/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1723void
1724displaced_step_dump_bytes (struct ui_file *file,
1725 const gdb_byte *buf,
1726 size_t len)
1727{
1728 int i;
1729
1730 for (i = 0; i < len; i++)
1731 fprintf_unfiltered (file, "%02x ", buf[i]);
1732 fputs_unfiltered ("\n", file);
1733}
1734
1735/* Prepare to single-step, using displaced stepping.
1736
1737 Note that we cannot use displaced stepping when we have a signal to
1738 deliver. If we have a signal to deliver and an instruction to step
1739 over, then after the step, there will be no indication from the
1740 target whether the thread entered a signal handler or ignored the
1741 signal and stepped over the instruction successfully --- both cases
1742 result in a simple SIGTRAP. In the first case we mustn't do a
1743 fixup, and in the second case we must --- but we can't tell which.
1744 Comments in the code for 'random signals' in handle_inferior_event
1745 explain how we handle this case instead.
1746
1747 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1748 stepped now; 0 if displaced stepping this thread got queued; or -1
1749 if this instruction can't be displaced stepped. */
1750
237fc4c9 1751static int
3fc8eb30 1752displaced_step_prepare_throw (ptid_t ptid)
237fc4c9 1753{
ad53cd71 1754 struct cleanup *old_cleanups, *ignore_cleanups;
c1e36e3e 1755 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1756 struct regcache *regcache = get_thread_regcache (ptid);
1757 struct gdbarch *gdbarch = get_regcache_arch (regcache);
d35ae833 1758 struct address_space *aspace = get_regcache_aspace (regcache);
237fc4c9
PA
1759 CORE_ADDR original, copy;
1760 ULONGEST len;
1761 struct displaced_step_closure *closure;
fc1cf338 1762 struct displaced_step_inferior_state *displaced;
9e529e1d 1763 int status;
237fc4c9
PA
1764
1765 /* We should never reach this function if the architecture does not
1766 support displaced stepping. */
1767 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1768
c2829269
PA
1769 /* Nor if the thread isn't meant to step over a breakpoint. */
1770 gdb_assert (tp->control.trap_expected);
1771
c1e36e3e
PA
1772 /* Disable range stepping while executing in the scratch pad. We
1773 want a single-step even if executing the displaced instruction in
1774 the scratch buffer lands within the stepping range (e.g., a
1775 jump/branch). */
1776 tp->control.may_range_step = 0;
1777
fc1cf338
PA
1778 /* We have to displaced step one thread at a time, as we only have
1779 access to a single scratch space per inferior. */
237fc4c9 1780
fc1cf338
PA
1781 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1782
1783 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1784 {
1785 /* Already waiting for a displaced step to finish. Defer this
1786 request and place in queue. */
237fc4c9
PA
1787
1788 if (debug_displaced)
1789 fprintf_unfiltered (gdb_stdlog,
c2829269 1790 "displaced: deferring step of %s\n",
237fc4c9
PA
1791 target_pid_to_str (ptid));
1792
c2829269 1793 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1794 return 0;
1795 }
1796 else
1797 {
1798 if (debug_displaced)
1799 fprintf_unfiltered (gdb_stdlog,
1800 "displaced: stepping %s now\n",
1801 target_pid_to_str (ptid));
1802 }
1803
fc1cf338 1804 displaced_step_clear (displaced);
237fc4c9 1805
ad53cd71
PA
1806 old_cleanups = save_inferior_ptid ();
1807 inferior_ptid = ptid;
1808
515630c5 1809 original = regcache_read_pc (regcache);
237fc4c9
PA
1810
1811 copy = gdbarch_displaced_step_location (gdbarch);
1812 len = gdbarch_max_insn_length (gdbarch);
1813
d35ae833
PA
1814 if (breakpoint_in_range_p (aspace, copy, len))
1815 {
1816 /* There's a breakpoint set in the scratch pad location range
1817 (which is usually around the entry point). We'd either
1818 install it before resuming, which would overwrite/corrupt the
1819 scratch pad, or if it was already inserted, this displaced
1820 step would overwrite it. The latter is OK in the sense that
1821 we already assume that no thread is going to execute the code
1822 in the scratch pad range (after initial startup) anyway, but
1823 the former is unacceptable. Simply punt and fallback to
1824 stepping over this breakpoint in-line. */
1825 if (debug_displaced)
1826 {
1827 fprintf_unfiltered (gdb_stdlog,
1828 "displaced: breakpoint set in scratch pad. "
1829 "Stepping over breakpoint in-line instead.\n");
1830 }
1831
1832 do_cleanups (old_cleanups);
1833 return -1;
1834 }
1835
237fc4c9 1836 /* Save the original contents of the copy area. */
224c3ddb 1837 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
ad53cd71 1838 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1839 &displaced->step_saved_copy);
9e529e1d
JK
1840 status = target_read_memory (copy, displaced->step_saved_copy, len);
1841 if (status != 0)
1842 throw_error (MEMORY_ERROR,
1843 _("Error accessing memory address %s (%s) for "
1844 "displaced-stepping scratch space."),
1845 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1846 if (debug_displaced)
1847 {
5af949e3
UW
1848 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1849 paddress (gdbarch, copy));
fc1cf338
PA
1850 displaced_step_dump_bytes (gdb_stdlog,
1851 displaced->step_saved_copy,
1852 len);
237fc4c9
PA
1853 };
1854
1855 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1856 original, copy, regcache);
7f03bd92
PA
1857 if (closure == NULL)
1858 {
1859 /* The architecture doesn't know how or want to displaced step
1860 this instruction or instruction sequence. Fallback to
1861 stepping over the breakpoint in-line. */
1862 do_cleanups (old_cleanups);
1863 return -1;
1864 }
237fc4c9 1865
9f5a595d
UW
1866 /* Save the information we need to fix things up if the step
1867 succeeds. */
fc1cf338
PA
1868 displaced->step_ptid = ptid;
1869 displaced->step_gdbarch = gdbarch;
1870 displaced->step_closure = closure;
1871 displaced->step_original = original;
1872 displaced->step_copy = copy;
9f5a595d 1873
fc1cf338 1874 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1875
1876 /* Resume execution at the copy. */
515630c5 1877 regcache_write_pc (regcache, copy);
237fc4c9 1878
ad53cd71
PA
1879 discard_cleanups (ignore_cleanups);
1880
1881 do_cleanups (old_cleanups);
237fc4c9
PA
1882
1883 if (debug_displaced)
5af949e3
UW
1884 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1885 paddress (gdbarch, copy));
237fc4c9 1886
237fc4c9
PA
1887 return 1;
1888}
1889
3fc8eb30
PA
1890/* Wrapper for displaced_step_prepare_throw that disabled further
1891 attempts at displaced stepping if we get a memory error. */
1892
1893static int
1894displaced_step_prepare (ptid_t ptid)
1895{
1896 int prepared = -1;
1897
1898 TRY
1899 {
1900 prepared = displaced_step_prepare_throw (ptid);
1901 }
1902 CATCH (ex, RETURN_MASK_ERROR)
1903 {
1904 struct displaced_step_inferior_state *displaced_state;
1905
16b41842
PA
1906 if (ex.error != MEMORY_ERROR
1907 && ex.error != NOT_SUPPORTED_ERROR)
3fc8eb30
PA
1908 throw_exception (ex);
1909
1910 if (debug_infrun)
1911 {
1912 fprintf_unfiltered (gdb_stdlog,
1913 "infrun: disabling displaced stepping: %s\n",
1914 ex.message);
1915 }
1916
1917 /* Be verbose if "set displaced-stepping" is "on", silent if
1918 "auto". */
1919 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1920 {
fd7dcb94 1921 warning (_("disabling displaced stepping: %s"),
3fc8eb30
PA
1922 ex.message);
1923 }
1924
1925 /* Disable further displaced stepping attempts. */
1926 displaced_state
1927 = get_displaced_stepping_state (ptid_get_pid (ptid));
1928 displaced_state->failed_before = 1;
1929 }
1930 END_CATCH
1931
1932 return prepared;
1933}
1934
237fc4c9 1935static void
3e43a32a
MS
1936write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1937 const gdb_byte *myaddr, int len)
237fc4c9
PA
1938{
1939 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1940
237fc4c9
PA
1941 inferior_ptid = ptid;
1942 write_memory (memaddr, myaddr, len);
1943 do_cleanups (ptid_cleanup);
1944}
1945
e2d96639
YQ
1946/* Restore the contents of the copy area for thread PTID. */
1947
1948static void
1949displaced_step_restore (struct displaced_step_inferior_state *displaced,
1950 ptid_t ptid)
1951{
1952 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1953
1954 write_memory_ptid (ptid, displaced->step_copy,
1955 displaced->step_saved_copy, len);
1956 if (debug_displaced)
1957 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1958 target_pid_to_str (ptid),
1959 paddress (displaced->step_gdbarch,
1960 displaced->step_copy));
1961}
1962
372316f1
PA
1963/* If we displaced stepped an instruction successfully, adjust
1964 registers and memory to yield the same effect the instruction would
1965 have had if we had executed it at its original address, and return
1966 1. If the instruction didn't complete, relocate the PC and return
1967 -1. If the thread wasn't displaced stepping, return 0. */
1968
1969static int
2ea28649 1970displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1971{
1972 struct cleanup *old_cleanups;
fc1cf338
PA
1973 struct displaced_step_inferior_state *displaced
1974 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
372316f1 1975 int ret;
fc1cf338
PA
1976
1977 /* Was any thread of this process doing a displaced step? */
1978 if (displaced == NULL)
372316f1 1979 return 0;
237fc4c9
PA
1980
1981 /* Was this event for the pid we displaced? */
fc1cf338
PA
1982 if (ptid_equal (displaced->step_ptid, null_ptid)
1983 || ! ptid_equal (displaced->step_ptid, event_ptid))
372316f1 1984 return 0;
237fc4c9 1985
fc1cf338 1986 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1987
e2d96639 1988 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9 1989
cb71640d
PA
1990 /* Fixup may need to read memory/registers. Switch to the thread
1991 that we're fixing up. Also, target_stopped_by_watchpoint checks
1992 the current thread. */
1993 switch_to_thread (event_ptid);
1994
237fc4c9 1995 /* Did the instruction complete successfully? */
cb71640d
PA
1996 if (signal == GDB_SIGNAL_TRAP
1997 && !(target_stopped_by_watchpoint ()
1998 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1999 || target_have_steppable_watchpoint)))
237fc4c9
PA
2000 {
2001 /* Fix up the resulting state. */
fc1cf338
PA
2002 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
2003 displaced->step_closure,
2004 displaced->step_original,
2005 displaced->step_copy,
2006 get_thread_regcache (displaced->step_ptid));
372316f1 2007 ret = 1;
237fc4c9
PA
2008 }
2009 else
2010 {
2011 /* Since the instruction didn't complete, all we can do is
2012 relocate the PC. */
515630c5
UW
2013 struct regcache *regcache = get_thread_regcache (event_ptid);
2014 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 2015
fc1cf338 2016 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 2017 regcache_write_pc (regcache, pc);
372316f1 2018 ret = -1;
237fc4c9
PA
2019 }
2020
2021 do_cleanups (old_cleanups);
2022
fc1cf338 2023 displaced->step_ptid = null_ptid;
372316f1
PA
2024
2025 return ret;
c2829269 2026}
1c5cfe86 2027
4d9d9d04
PA
2028/* Data to be passed around while handling an event. This data is
2029 discarded between events. */
2030struct execution_control_state
2031{
2032 ptid_t ptid;
2033 /* The thread that got the event, if this was a thread event; NULL
2034 otherwise. */
2035 struct thread_info *event_thread;
2036
2037 struct target_waitstatus ws;
2038 int stop_func_filled_in;
2039 CORE_ADDR stop_func_start;
2040 CORE_ADDR stop_func_end;
2041 const char *stop_func_name;
2042 int wait_some_more;
2043
2044 /* True if the event thread hit the single-step breakpoint of
2045 another thread. Thus the event doesn't cause a stop, the thread
2046 needs to be single-stepped past the single-step breakpoint before
2047 we can switch back to the original stepping thread. */
2048 int hit_singlestep_breakpoint;
2049};
2050
2051/* Clear ECS and set it to point at TP. */
c2829269
PA
2052
2053static void
4d9d9d04
PA
2054reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2055{
2056 memset (ecs, 0, sizeof (*ecs));
2057 ecs->event_thread = tp;
2058 ecs->ptid = tp->ptid;
2059}
2060
2061static void keep_going_pass_signal (struct execution_control_state *ecs);
2062static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 2063static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 2064static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
2065
2066/* Are there any pending step-over requests? If so, run all we can
2067 now and return true. Otherwise, return false. */
2068
2069static int
c2829269
PA
2070start_step_over (void)
2071{
2072 struct thread_info *tp, *next;
2073
372316f1
PA
2074 /* Don't start a new step-over if we already have an in-line
2075 step-over operation ongoing. */
2076 if (step_over_info_valid_p ())
2077 return 0;
2078
c2829269 2079 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 2080 {
4d9d9d04
PA
2081 struct execution_control_state ecss;
2082 struct execution_control_state *ecs = &ecss;
8d297bbf 2083 step_over_what step_what;
372316f1 2084 int must_be_in_line;
c2829269
PA
2085
2086 next = thread_step_over_chain_next (tp);
237fc4c9 2087
c2829269
PA
2088 /* If this inferior already has a displaced step in process,
2089 don't start a new one. */
4d9d9d04 2090 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
c2829269
PA
2091 continue;
2092
372316f1
PA
2093 step_what = thread_still_needs_step_over (tp);
2094 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2095 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 2096 && !use_displaced_stepping (tp)));
372316f1
PA
2097
2098 /* We currently stop all threads of all processes to step-over
2099 in-line. If we need to start a new in-line step-over, let
2100 any pending displaced steps finish first. */
2101 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2102 return 0;
2103
c2829269
PA
2104 thread_step_over_chain_remove (tp);
2105
2106 if (step_over_queue_head == NULL)
2107 {
2108 if (debug_infrun)
2109 fprintf_unfiltered (gdb_stdlog,
2110 "infrun: step-over queue now empty\n");
2111 }
2112
372316f1
PA
2113 if (tp->control.trap_expected
2114 || tp->resumed
2115 || tp->executing)
ad53cd71 2116 {
4d9d9d04
PA
2117 internal_error (__FILE__, __LINE__,
2118 "[%s] has inconsistent state: "
372316f1 2119 "trap_expected=%d, resumed=%d, executing=%d\n",
4d9d9d04
PA
2120 target_pid_to_str (tp->ptid),
2121 tp->control.trap_expected,
372316f1 2122 tp->resumed,
4d9d9d04 2123 tp->executing);
ad53cd71 2124 }
1c5cfe86 2125
4d9d9d04
PA
2126 if (debug_infrun)
2127 fprintf_unfiltered (gdb_stdlog,
2128 "infrun: resuming [%s] for step-over\n",
2129 target_pid_to_str (tp->ptid));
2130
2131 /* keep_going_pass_signal skips the step-over if the breakpoint
2132 is no longer inserted. In all-stop, we want to keep looking
2133 for a thread that needs a step-over instead of resuming TP,
2134 because we wouldn't be able to resume anything else until the
2135 target stops again. In non-stop, the resume always resumes
2136 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2137 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2138 continue;
8550d3b3 2139
4d9d9d04
PA
2140 switch_to_thread (tp->ptid);
2141 reset_ecs (ecs, tp);
2142 keep_going_pass_signal (ecs);
1c5cfe86 2143
4d9d9d04
PA
2144 if (!ecs->wait_some_more)
2145 error (_("Command aborted."));
1c5cfe86 2146
372316f1
PA
2147 gdb_assert (tp->resumed);
2148
2149 /* If we started a new in-line step-over, we're done. */
2150 if (step_over_info_valid_p ())
2151 {
2152 gdb_assert (tp->control.trap_expected);
2153 return 1;
2154 }
2155
fbea99ea 2156 if (!target_is_non_stop_p ())
4d9d9d04
PA
2157 {
2158 /* On all-stop, shouldn't have resumed unless we needed a
2159 step over. */
2160 gdb_assert (tp->control.trap_expected
2161 || tp->step_after_step_resume_breakpoint);
2162
2163 /* With remote targets (at least), in all-stop, we can't
2164 issue any further remote commands until the program stops
2165 again. */
2166 return 1;
1c5cfe86 2167 }
c2829269 2168
4d9d9d04
PA
2169 /* Either the thread no longer needed a step-over, or a new
2170 displaced stepping sequence started. Even in the latter
2171 case, continue looking. Maybe we can also start another
2172 displaced step on a thread of other process. */
237fc4c9 2173 }
4d9d9d04
PA
2174
2175 return 0;
237fc4c9
PA
2176}
2177
5231c1fd
PA
2178/* Update global variables holding ptids to hold NEW_PTID if they were
2179 holding OLD_PTID. */
2180static void
2181infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2182{
fc1cf338 2183 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
2184
2185 if (ptid_equal (inferior_ptid, old_ptid))
2186 inferior_ptid = new_ptid;
2187
fc1cf338
PA
2188 for (displaced = displaced_step_inferior_states;
2189 displaced;
2190 displaced = displaced->next)
2191 {
2192 if (ptid_equal (displaced->step_ptid, old_ptid))
2193 displaced->step_ptid = new_ptid;
fc1cf338 2194 }
5231c1fd
PA
2195}
2196
237fc4c9
PA
2197\f
2198/* Resuming. */
c906108c
SS
2199
2200/* Things to clean up if we QUIT out of resume (). */
c906108c 2201static void
74b7792f 2202resume_cleanups (void *ignore)
c906108c 2203{
34b7e8a6
PA
2204 if (!ptid_equal (inferior_ptid, null_ptid))
2205 delete_single_step_breakpoints (inferior_thread ());
7c16b83e 2206
c906108c
SS
2207 normal_stop ();
2208}
2209
53904c9e
AC
2210static const char schedlock_off[] = "off";
2211static const char schedlock_on[] = "on";
2212static const char schedlock_step[] = "step";
f2665db5 2213static const char schedlock_replay[] = "replay";
40478521 2214static const char *const scheduler_enums[] = {
ef346e04
AC
2215 schedlock_off,
2216 schedlock_on,
2217 schedlock_step,
f2665db5 2218 schedlock_replay,
ef346e04
AC
2219 NULL
2220};
f2665db5 2221static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2222static void
2223show_scheduler_mode (struct ui_file *file, int from_tty,
2224 struct cmd_list_element *c, const char *value)
2225{
3e43a32a
MS
2226 fprintf_filtered (file,
2227 _("Mode for locking scheduler "
2228 "during execution is \"%s\".\n"),
920d2a44
AC
2229 value);
2230}
c906108c
SS
2231
2232static void
96baa820 2233set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 2234{
eefe576e
AC
2235 if (!target_can_lock_scheduler)
2236 {
2237 scheduler_mode = schedlock_off;
2238 error (_("Target '%s' cannot support this command."), target_shortname);
2239 }
c906108c
SS
2240}
2241
d4db2f36
PA
2242/* True if execution commands resume all threads of all processes by
2243 default; otherwise, resume only threads of the current inferior
2244 process. */
2245int sched_multi = 0;
2246
2facfe5c
DD
2247/* Try to setup for software single stepping over the specified location.
2248 Return 1 if target_resume() should use hardware single step.
2249
2250 GDBARCH the current gdbarch.
2251 PC the location to step over. */
2252
2253static int
2254maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2255{
2256 int hw_step = 1;
2257
f02253f1
HZ
2258 if (execution_direction == EXEC_FORWARD
2259 && gdbarch_software_single_step_p (gdbarch)
99e40580 2260 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 2261 {
99e40580 2262 hw_step = 0;
2facfe5c
DD
2263 }
2264 return hw_step;
2265}
c906108c 2266
f3263aa4
PA
2267/* See infrun.h. */
2268
09cee04b
PA
2269ptid_t
2270user_visible_resume_ptid (int step)
2271{
f3263aa4 2272 ptid_t resume_ptid;
09cee04b 2273
09cee04b
PA
2274 if (non_stop)
2275 {
2276 /* With non-stop mode on, threads are always handled
2277 individually. */
2278 resume_ptid = inferior_ptid;
2279 }
2280 else if ((scheduler_mode == schedlock_on)
03d46957 2281 || (scheduler_mode == schedlock_step && step))
09cee04b 2282 {
f3263aa4
PA
2283 /* User-settable 'scheduler' mode requires solo thread
2284 resume. */
09cee04b
PA
2285 resume_ptid = inferior_ptid;
2286 }
f2665db5
MM
2287 else if ((scheduler_mode == schedlock_replay)
2288 && target_record_will_replay (minus_one_ptid, execution_direction))
2289 {
2290 /* User-settable 'scheduler' mode requires solo thread resume in replay
2291 mode. */
2292 resume_ptid = inferior_ptid;
2293 }
f3263aa4
PA
2294 else if (!sched_multi && target_supports_multi_process ())
2295 {
2296 /* Resume all threads of the current process (and none of other
2297 processes). */
2298 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2299 }
2300 else
2301 {
2302 /* Resume all threads of all processes. */
2303 resume_ptid = RESUME_ALL;
2304 }
09cee04b
PA
2305
2306 return resume_ptid;
2307}
2308
fbea99ea
PA
2309/* Return a ptid representing the set of threads that we will resume,
2310 in the perspective of the target, assuming run control handling
2311 does not require leaving some threads stopped (e.g., stepping past
2312 breakpoint). USER_STEP indicates whether we're about to start the
2313 target for a stepping command. */
2314
2315static ptid_t
2316internal_resume_ptid (int user_step)
2317{
2318 /* In non-stop, we always control threads individually. Note that
2319 the target may always work in non-stop mode even with "set
2320 non-stop off", in which case user_visible_resume_ptid could
2321 return a wildcard ptid. */
2322 if (target_is_non_stop_p ())
2323 return inferior_ptid;
2324 else
2325 return user_visible_resume_ptid (user_step);
2326}
2327
64ce06e4
PA
2328/* Wrapper for target_resume, that handles infrun-specific
2329 bookkeeping. */
2330
2331static void
2332do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2333{
2334 struct thread_info *tp = inferior_thread ();
2335
2336 /* Install inferior's terminal modes. */
2337 target_terminal_inferior ();
2338
2339 /* Avoid confusing the next resume, if the next stop/resume
2340 happens to apply to another thread. */
2341 tp->suspend.stop_signal = GDB_SIGNAL_0;
2342
8f572e5c
PA
2343 /* Advise target which signals may be handled silently.
2344
2345 If we have removed breakpoints because we are stepping over one
2346 in-line (in any thread), we need to receive all signals to avoid
2347 accidentally skipping a breakpoint during execution of a signal
2348 handler.
2349
2350 Likewise if we're displaced stepping, otherwise a trap for a
2351 breakpoint in a signal handler might be confused with the
2352 displaced step finishing. We don't make the displaced_step_fixup
2353 step distinguish the cases instead, because:
2354
2355 - a backtrace while stopped in the signal handler would show the
2356 scratch pad as frame older than the signal handler, instead of
2357 the real mainline code.
2358
2359 - when the thread is later resumed, the signal handler would
2360 return to the scratch pad area, which would no longer be
2361 valid. */
2362 if (step_over_info_valid_p ()
2363 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
64ce06e4
PA
2364 target_pass_signals (0, NULL);
2365 else
2366 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2367
2368 target_resume (resume_ptid, step, sig);
2369}
2370
c906108c
SS
2371/* Resume the inferior, but allow a QUIT. This is useful if the user
2372 wants to interrupt some lengthy single-stepping operation
2373 (for child processes, the SIGINT goes to the inferior, and so
2374 we get a SIGINT random_signal, but for remote debugging and perhaps
2375 other targets, that's not true).
2376
c906108c
SS
2377 SIG is the signal to give the inferior (zero for none). */
2378void
64ce06e4 2379resume (enum gdb_signal sig)
c906108c 2380{
74b7792f 2381 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
2382 struct regcache *regcache = get_current_regcache ();
2383 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 2384 struct thread_info *tp = inferior_thread ();
515630c5 2385 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 2386 struct address_space *aspace = get_regcache_aspace (regcache);
b0f16a3e 2387 ptid_t resume_ptid;
856e7dd6
PA
2388 /* This represents the user's step vs continue request. When
2389 deciding whether "set scheduler-locking step" applies, it's the
2390 user's intention that counts. */
2391 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2392 /* This represents what we'll actually request the target to do.
2393 This can decay from a step to a continue, if e.g., we need to
2394 implement single-stepping with breakpoints (software
2395 single-step). */
6b403daa 2396 int step;
c7e8a53c 2397
c2829269
PA
2398 gdb_assert (!thread_is_in_step_over_chain (tp));
2399
c906108c
SS
2400 QUIT;
2401
372316f1
PA
2402 if (tp->suspend.waitstatus_pending_p)
2403 {
2404 if (debug_infrun)
2405 {
2406 char *statstr;
2407
2408 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2409 fprintf_unfiltered (gdb_stdlog,
2410 "infrun: resume: thread %s has pending wait status %s "
2411 "(currently_stepping=%d).\n",
2412 target_pid_to_str (tp->ptid), statstr,
2413 currently_stepping (tp));
2414 xfree (statstr);
2415 }
2416
2417 tp->resumed = 1;
2418
2419 /* FIXME: What should we do if we are supposed to resume this
2420 thread with a signal? Maybe we should maintain a queue of
2421 pending signals to deliver. */
2422 if (sig != GDB_SIGNAL_0)
2423 {
fd7dcb94 2424 warning (_("Couldn't deliver signal %s to %s."),
372316f1
PA
2425 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2426 }
2427
2428 tp->suspend.stop_signal = GDB_SIGNAL_0;
2429 discard_cleanups (old_cleanups);
2430
2431 if (target_can_async_p ())
2432 target_async (1);
2433 return;
2434 }
2435
2436 tp->stepped_breakpoint = 0;
2437
6b403daa
PA
2438 /* Depends on stepped_breakpoint. */
2439 step = currently_stepping (tp);
2440
74609e71
YQ
2441 if (current_inferior ()->waiting_for_vfork_done)
2442 {
48f9886d
PA
2443 /* Don't try to single-step a vfork parent that is waiting for
2444 the child to get out of the shared memory region (by exec'ing
2445 or exiting). This is particularly important on software
2446 single-step archs, as the child process would trip on the
2447 software single step breakpoint inserted for the parent
2448 process. Since the parent will not actually execute any
2449 instruction until the child is out of the shared region (such
2450 are vfork's semantics), it is safe to simply continue it.
2451 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2452 the parent, and tell it to `keep_going', which automatically
2453 re-sets it stepping. */
74609e71
YQ
2454 if (debug_infrun)
2455 fprintf_unfiltered (gdb_stdlog,
2456 "infrun: resume : clear step\n");
a09dd441 2457 step = 0;
74609e71
YQ
2458 }
2459
527159b7 2460 if (debug_infrun)
237fc4c9 2461 fprintf_unfiltered (gdb_stdlog,
c9737c08 2462 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2463 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2464 step, gdb_signal_to_symbol_string (sig),
2465 tp->control.trap_expected,
0d9a9a5f
PA
2466 target_pid_to_str (inferior_ptid),
2467 paddress (gdbarch, pc));
c906108c 2468
c2c6d25f
JM
2469 /* Normally, by the time we reach `resume', the breakpoints are either
2470 removed or inserted, as appropriate. The exception is if we're sitting
2471 at a permanent breakpoint; we need to step over it, but permanent
2472 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2473 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2474 {
af48d08f
PA
2475 if (sig != GDB_SIGNAL_0)
2476 {
2477 /* We have a signal to pass to the inferior. The resume
2478 may, or may not take us to the signal handler. If this
2479 is a step, we'll need to stop in the signal handler, if
2480 there's one, (if the target supports stepping into
2481 handlers), or in the next mainline instruction, if
2482 there's no handler. If this is a continue, we need to be
2483 sure to run the handler with all breakpoints inserted.
2484 In all cases, set a breakpoint at the current address
2485 (where the handler returns to), and once that breakpoint
2486 is hit, resume skipping the permanent breakpoint. If
2487 that breakpoint isn't hit, then we've stepped into the
2488 signal handler (or hit some other event). We'll delete
2489 the step-resume breakpoint then. */
2490
2491 if (debug_infrun)
2492 fprintf_unfiltered (gdb_stdlog,
2493 "infrun: resume: skipping permanent breakpoint, "
2494 "deliver signal first\n");
2495
2496 clear_step_over_info ();
2497 tp->control.trap_expected = 0;
2498
2499 if (tp->control.step_resume_breakpoint == NULL)
2500 {
2501 /* Set a "high-priority" step-resume, as we don't want
2502 user breakpoints at PC to trigger (again) when this
2503 hits. */
2504 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2505 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2506
2507 tp->step_after_step_resume_breakpoint = step;
2508 }
2509
2510 insert_breakpoints ();
2511 }
2512 else
2513 {
2514 /* There's no signal to pass, we can go ahead and skip the
2515 permanent breakpoint manually. */
2516 if (debug_infrun)
2517 fprintf_unfiltered (gdb_stdlog,
2518 "infrun: resume: skipping permanent breakpoint\n");
2519 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2520 /* Update pc to reflect the new address from which we will
2521 execute instructions. */
2522 pc = regcache_read_pc (regcache);
2523
2524 if (step)
2525 {
2526 /* We've already advanced the PC, so the stepping part
2527 is done. Now we need to arrange for a trap to be
2528 reported to handle_inferior_event. Set a breakpoint
2529 at the current PC, and run to it. Don't update
2530 prev_pc, because if we end in
44a1ee51
PA
2531 switch_back_to_stepped_thread, we want the "expected
2532 thread advanced also" branch to be taken. IOW, we
2533 don't want this thread to step further from PC
af48d08f 2534 (overstep). */
1ac806b8 2535 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2536 insert_single_step_breakpoint (gdbarch, aspace, pc);
2537 insert_breakpoints ();
2538
fbea99ea 2539 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2540 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
af48d08f 2541 discard_cleanups (old_cleanups);
372316f1 2542 tp->resumed = 1;
af48d08f
PA
2543 return;
2544 }
2545 }
6d350bb5 2546 }
c2c6d25f 2547
c1e36e3e
PA
2548 /* If we have a breakpoint to step over, make sure to do a single
2549 step only. Same if we have software watchpoints. */
2550 if (tp->control.trap_expected || bpstat_should_step ())
2551 tp->control.may_range_step = 0;
2552
237fc4c9
PA
2553 /* If enabled, step over breakpoints by executing a copy of the
2554 instruction at a different address.
2555
2556 We can't use displaced stepping when we have a signal to deliver;
2557 the comments for displaced_step_prepare explain why. The
2558 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2559 signals' explain what we do instead.
2560
2561 We can't use displaced stepping when we are waiting for vfork_done
2562 event, displaced stepping breaks the vfork child similarly as single
2563 step software breakpoint. */
3fc8eb30
PA
2564 if (tp->control.trap_expected
2565 && use_displaced_stepping (tp)
cb71640d 2566 && !step_over_info_valid_p ()
a493e3e2 2567 && sig == GDB_SIGNAL_0
74609e71 2568 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2569 {
3fc8eb30 2570 int prepared = displaced_step_prepare (inferior_ptid);
fc1cf338 2571
3fc8eb30 2572 if (prepared == 0)
d56b7306 2573 {
4d9d9d04
PA
2574 if (debug_infrun)
2575 fprintf_unfiltered (gdb_stdlog,
2576 "Got placed in step-over queue\n");
2577
2578 tp->control.trap_expected = 0;
d56b7306
VP
2579 discard_cleanups (old_cleanups);
2580 return;
2581 }
3fc8eb30
PA
2582 else if (prepared < 0)
2583 {
2584 /* Fallback to stepping over the breakpoint in-line. */
2585
2586 if (target_is_non_stop_p ())
2587 stop_all_threads ();
2588
2589 set_step_over_info (get_regcache_aspace (regcache),
21edc42f 2590 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2591
2592 step = maybe_software_singlestep (gdbarch, pc);
2593
2594 insert_breakpoints ();
2595 }
2596 else if (prepared > 0)
2597 {
2598 struct displaced_step_inferior_state *displaced;
99e40580 2599
3fc8eb30
PA
2600 /* Update pc to reflect the new address from which we will
2601 execute instructions due to displaced stepping. */
2602 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
ca7781d2 2603
3fc8eb30
PA
2604 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2605 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2606 displaced->step_closure);
2607 }
237fc4c9
PA
2608 }
2609
2facfe5c 2610 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2611 else if (step)
2facfe5c 2612 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2613
30852783
UW
2614 /* Currently, our software single-step implementation leads to different
2615 results than hardware single-stepping in one situation: when stepping
2616 into delivering a signal which has an associated signal handler,
2617 hardware single-step will stop at the first instruction of the handler,
2618 while software single-step will simply skip execution of the handler.
2619
2620 For now, this difference in behavior is accepted since there is no
2621 easy way to actually implement single-stepping into a signal handler
2622 without kernel support.
2623
2624 However, there is one scenario where this difference leads to follow-on
2625 problems: if we're stepping off a breakpoint by removing all breakpoints
2626 and then single-stepping. In this case, the software single-step
2627 behavior means that even if there is a *breakpoint* in the signal
2628 handler, GDB still would not stop.
2629
2630 Fortunately, we can at least fix this particular issue. We detect
2631 here the case where we are about to deliver a signal while software
2632 single-stepping with breakpoints removed. In this situation, we
2633 revert the decisions to remove all breakpoints and insert single-
2634 step breakpoints, and instead we install a step-resume breakpoint
2635 at the current address, deliver the signal without stepping, and
2636 once we arrive back at the step-resume breakpoint, actually step
2637 over the breakpoint we originally wanted to step over. */
34b7e8a6 2638 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2639 && sig != GDB_SIGNAL_0
2640 && step_over_info_valid_p ())
30852783
UW
2641 {
2642 /* If we have nested signals or a pending signal is delivered
2643 immediately after a handler returns, might might already have
2644 a step-resume breakpoint set on the earlier handler. We cannot
2645 set another step-resume breakpoint; just continue on until the
2646 original breakpoint is hit. */
2647 if (tp->control.step_resume_breakpoint == NULL)
2648 {
2c03e5be 2649 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2650 tp->step_after_step_resume_breakpoint = 1;
2651 }
2652
34b7e8a6 2653 delete_single_step_breakpoints (tp);
30852783 2654
31e77af2 2655 clear_step_over_info ();
30852783 2656 tp->control.trap_expected = 0;
31e77af2
PA
2657
2658 insert_breakpoints ();
30852783
UW
2659 }
2660
b0f16a3e
SM
2661 /* If STEP is set, it's a request to use hardware stepping
2662 facilities. But in that case, we should never
2663 use singlestep breakpoint. */
34b7e8a6 2664 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2665
fbea99ea 2666 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2667 if (tp->control.trap_expected)
b0f16a3e
SM
2668 {
2669 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2670 hit, either by single-stepping the thread with the breakpoint
2671 removed, or by displaced stepping, with the breakpoint inserted.
2672 In the former case, we need to single-step only this thread,
2673 and keep others stopped, as they can miss this breakpoint if
2674 allowed to run. That's not really a problem for displaced
2675 stepping, but, we still keep other threads stopped, in case
2676 another thread is also stopped for a breakpoint waiting for
2677 its turn in the displaced stepping queue. */
b0f16a3e
SM
2678 resume_ptid = inferior_ptid;
2679 }
fbea99ea
PA
2680 else
2681 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2682
7f5ef605
PA
2683 if (execution_direction != EXEC_REVERSE
2684 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2685 {
372316f1
PA
2686 /* There are two cases where we currently need to step a
2687 breakpoint instruction when we have a signal to deliver:
2688
2689 - See handle_signal_stop where we handle random signals that
2690 could take out us out of the stepping range. Normally, in
2691 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2692 signal handler with a breakpoint at PC, but there are cases
2693 where we should _always_ single-step, even if we have a
2694 step-resume breakpoint, like when a software watchpoint is
2695 set. Assuming single-stepping and delivering a signal at the
2696 same time would takes us to the signal handler, then we could
2697 have removed the breakpoint at PC to step over it. However,
2698 some hardware step targets (like e.g., Mac OS) can't step
2699 into signal handlers, and for those, we need to leave the
2700 breakpoint at PC inserted, as otherwise if the handler
2701 recurses and executes PC again, it'll miss the breakpoint.
2702 So we leave the breakpoint inserted anyway, but we need to
2703 record that we tried to step a breakpoint instruction, so
372316f1
PA
2704 that adjust_pc_after_break doesn't end up confused.
2705
2706 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2707 in one thread after another thread that was stepping had been
2708 momentarily paused for a step-over. When we re-resume the
2709 stepping thread, it may be resumed from that address with a
2710 breakpoint that hasn't trapped yet. Seen with
2711 gdb.threads/non-stop-fair-events.exp, on targets that don't
2712 do displaced stepping. */
2713
2714 if (debug_infrun)
2715 fprintf_unfiltered (gdb_stdlog,
2716 "infrun: resume: [%s] stepped breakpoint\n",
2717 target_pid_to_str (tp->ptid));
7f5ef605
PA
2718
2719 tp->stepped_breakpoint = 1;
2720
b0f16a3e
SM
2721 /* Most targets can step a breakpoint instruction, thus
2722 executing it normally. But if this one cannot, just
2723 continue and we will hit it anyway. */
7f5ef605 2724 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2725 step = 0;
2726 }
ef5cf84e 2727
b0f16a3e 2728 if (debug_displaced
cb71640d 2729 && tp->control.trap_expected
3fc8eb30 2730 && use_displaced_stepping (tp)
cb71640d 2731 && !step_over_info_valid_p ())
b0f16a3e 2732 {
d9b67d9f 2733 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
b0f16a3e
SM
2734 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2735 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2736 gdb_byte buf[4];
2737
2738 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2739 paddress (resume_gdbarch, actual_pc));
2740 read_memory (actual_pc, buf, sizeof (buf));
2741 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2742 }
237fc4c9 2743
b0f16a3e
SM
2744 if (tp->control.may_range_step)
2745 {
2746 /* If we're resuming a thread with the PC out of the step
2747 range, then we're doing some nested/finer run control
2748 operation, like stepping the thread out of the dynamic
2749 linker or the displaced stepping scratch pad. We
2750 shouldn't have allowed a range step then. */
2751 gdb_assert (pc_in_thread_step_range (pc, tp));
2752 }
c1e36e3e 2753
64ce06e4 2754 do_target_resume (resume_ptid, step, sig);
372316f1 2755 tp->resumed = 1;
c906108c
SS
2756 discard_cleanups (old_cleanups);
2757}
2758\f
237fc4c9 2759/* Proceeding. */
c906108c 2760
4c2f2a79
PA
2761/* See infrun.h. */
2762
2763/* Counter that tracks number of user visible stops. This can be used
2764 to tell whether a command has proceeded the inferior past the
2765 current location. This allows e.g., inferior function calls in
2766 breakpoint commands to not interrupt the command list. When the
2767 call finishes successfully, the inferior is standing at the same
2768 breakpoint as if nothing happened (and so we don't call
2769 normal_stop). */
2770static ULONGEST current_stop_id;
2771
2772/* See infrun.h. */
2773
2774ULONGEST
2775get_stop_id (void)
2776{
2777 return current_stop_id;
2778}
2779
2780/* Called when we report a user visible stop. */
2781
2782static void
2783new_stop_id (void)
2784{
2785 current_stop_id++;
2786}
2787
c906108c
SS
2788/* Clear out all variables saying what to do when inferior is continued.
2789 First do this, then set the ones you want, then call `proceed'. */
2790
a7212384
UW
2791static void
2792clear_proceed_status_thread (struct thread_info *tp)
c906108c 2793{
a7212384
UW
2794 if (debug_infrun)
2795 fprintf_unfiltered (gdb_stdlog,
2796 "infrun: clear_proceed_status_thread (%s)\n",
2797 target_pid_to_str (tp->ptid));
d6b48e9c 2798
372316f1
PA
2799 /* If we're starting a new sequence, then the previous finished
2800 single-step is no longer relevant. */
2801 if (tp->suspend.waitstatus_pending_p)
2802 {
2803 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2804 {
2805 if (debug_infrun)
2806 fprintf_unfiltered (gdb_stdlog,
2807 "infrun: clear_proceed_status: pending "
2808 "event of %s was a finished step. "
2809 "Discarding.\n",
2810 target_pid_to_str (tp->ptid));
2811
2812 tp->suspend.waitstatus_pending_p = 0;
2813 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2814 }
2815 else if (debug_infrun)
2816 {
2817 char *statstr;
2818
2819 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2820 fprintf_unfiltered (gdb_stdlog,
2821 "infrun: clear_proceed_status_thread: thread %s "
2822 "has pending wait status %s "
2823 "(currently_stepping=%d).\n",
2824 target_pid_to_str (tp->ptid), statstr,
2825 currently_stepping (tp));
2826 xfree (statstr);
2827 }
2828 }
2829
70509625
PA
2830 /* If this signal should not be seen by program, give it zero.
2831 Used for debugging signals. */
2832 if (!signal_pass_state (tp->suspend.stop_signal))
2833 tp->suspend.stop_signal = GDB_SIGNAL_0;
2834
243a9253
PA
2835 thread_fsm_delete (tp->thread_fsm);
2836 tp->thread_fsm = NULL;
2837
16c381f0
JK
2838 tp->control.trap_expected = 0;
2839 tp->control.step_range_start = 0;
2840 tp->control.step_range_end = 0;
c1e36e3e 2841 tp->control.may_range_step = 0;
16c381f0
JK
2842 tp->control.step_frame_id = null_frame_id;
2843 tp->control.step_stack_frame_id = null_frame_id;
2844 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2845 tp->control.step_start_function = NULL;
a7212384 2846 tp->stop_requested = 0;
4e1c45ea 2847
16c381f0 2848 tp->control.stop_step = 0;
32400beb 2849
16c381f0 2850 tp->control.proceed_to_finish = 0;
414c69f7 2851
856e7dd6 2852 tp->control.stepping_command = 0;
17b2616c 2853
a7212384 2854 /* Discard any remaining commands or status from previous stop. */
16c381f0 2855 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2856}
32400beb 2857
a7212384 2858void
70509625 2859clear_proceed_status (int step)
a7212384 2860{
f2665db5
MM
2861 /* With scheduler-locking replay, stop replaying other threads if we're
2862 not replaying the user-visible resume ptid.
2863
2864 This is a convenience feature to not require the user to explicitly
2865 stop replaying the other threads. We're assuming that the user's
2866 intent is to resume tracing the recorded process. */
2867 if (!non_stop && scheduler_mode == schedlock_replay
2868 && target_record_is_replaying (minus_one_ptid)
2869 && !target_record_will_replay (user_visible_resume_ptid (step),
2870 execution_direction))
2871 target_record_stop_replaying ();
2872
6c95b8df
PA
2873 if (!non_stop)
2874 {
70509625
PA
2875 struct thread_info *tp;
2876 ptid_t resume_ptid;
2877
2878 resume_ptid = user_visible_resume_ptid (step);
2879
2880 /* In all-stop mode, delete the per-thread status of all threads
2881 we're about to resume, implicitly and explicitly. */
2882 ALL_NON_EXITED_THREADS (tp)
2883 {
2884 if (!ptid_match (tp->ptid, resume_ptid))
2885 continue;
2886 clear_proceed_status_thread (tp);
2887 }
6c95b8df
PA
2888 }
2889
a7212384
UW
2890 if (!ptid_equal (inferior_ptid, null_ptid))
2891 {
2892 struct inferior *inferior;
2893
2894 if (non_stop)
2895 {
6c95b8df
PA
2896 /* If in non-stop mode, only delete the per-thread status of
2897 the current thread. */
a7212384
UW
2898 clear_proceed_status_thread (inferior_thread ());
2899 }
6c95b8df 2900
d6b48e9c 2901 inferior = current_inferior ();
16c381f0 2902 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2903 }
2904
f3b1572e 2905 observer_notify_about_to_proceed ();
c906108c
SS
2906}
2907
99619bea
PA
2908/* Returns true if TP is still stopped at a breakpoint that needs
2909 stepping-over in order to make progress. If the breakpoint is gone
2910 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2911
2912static int
6c4cfb24 2913thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2914{
2915 if (tp->stepping_over_breakpoint)
2916 {
2917 struct regcache *regcache = get_thread_regcache (tp->ptid);
2918
2919 if (breakpoint_here_p (get_regcache_aspace (regcache),
af48d08f
PA
2920 regcache_read_pc (regcache))
2921 == ordinary_breakpoint_here)
99619bea
PA
2922 return 1;
2923
2924 tp->stepping_over_breakpoint = 0;
2925 }
2926
2927 return 0;
2928}
2929
6c4cfb24
PA
2930/* Check whether thread TP still needs to start a step-over in order
2931 to make progress when resumed. Returns an bitwise or of enum
2932 step_over_what bits, indicating what needs to be stepped over. */
2933
8d297bbf 2934static step_over_what
6c4cfb24
PA
2935thread_still_needs_step_over (struct thread_info *tp)
2936{
8d297bbf 2937 step_over_what what = 0;
6c4cfb24
PA
2938
2939 if (thread_still_needs_step_over_bp (tp))
2940 what |= STEP_OVER_BREAKPOINT;
2941
2942 if (tp->stepping_over_watchpoint
2943 && !target_have_steppable_watchpoint)
2944 what |= STEP_OVER_WATCHPOINT;
2945
2946 return what;
2947}
2948
483805cf
PA
2949/* Returns true if scheduler locking applies. STEP indicates whether
2950 we're about to do a step/next-like command to a thread. */
2951
2952static int
856e7dd6 2953schedlock_applies (struct thread_info *tp)
483805cf
PA
2954{
2955 return (scheduler_mode == schedlock_on
2956 || (scheduler_mode == schedlock_step
f2665db5
MM
2957 && tp->control.stepping_command)
2958 || (scheduler_mode == schedlock_replay
2959 && target_record_will_replay (minus_one_ptid,
2960 execution_direction)));
483805cf
PA
2961}
2962
c906108c
SS
2963/* Basic routine for continuing the program in various fashions.
2964
2965 ADDR is the address to resume at, or -1 for resume where stopped.
2966 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2967 or -1 for act according to how it stopped.
c906108c 2968 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2969 -1 means return after that and print nothing.
2970 You should probably set various step_... variables
2971 before calling here, if you are stepping.
c906108c
SS
2972
2973 You should call clear_proceed_status before calling proceed. */
2974
2975void
64ce06e4 2976proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2977{
e58b0e63
PA
2978 struct regcache *regcache;
2979 struct gdbarch *gdbarch;
4e1c45ea 2980 struct thread_info *tp;
e58b0e63 2981 CORE_ADDR pc;
6c95b8df 2982 struct address_space *aspace;
4d9d9d04
PA
2983 ptid_t resume_ptid;
2984 struct execution_control_state ecss;
2985 struct execution_control_state *ecs = &ecss;
2986 struct cleanup *old_chain;
2987 int started;
c906108c 2988
e58b0e63
PA
2989 /* If we're stopped at a fork/vfork, follow the branch set by the
2990 "set follow-fork-mode" command; otherwise, we'll just proceed
2991 resuming the current thread. */
2992 if (!follow_fork ())
2993 {
2994 /* The target for some reason decided not to resume. */
2995 normal_stop ();
f148b27e
PA
2996 if (target_can_async_p ())
2997 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2998 return;
2999 }
3000
842951eb
PA
3001 /* We'll update this if & when we switch to a new thread. */
3002 previous_inferior_ptid = inferior_ptid;
3003
e58b0e63
PA
3004 regcache = get_current_regcache ();
3005 gdbarch = get_regcache_arch (regcache);
6c95b8df 3006 aspace = get_regcache_aspace (regcache);
e58b0e63 3007 pc = regcache_read_pc (regcache);
2adfaa28 3008 tp = inferior_thread ();
e58b0e63 3009
99619bea
PA
3010 /* Fill in with reasonable starting values. */
3011 init_thread_stepping_state (tp);
3012
c2829269
PA
3013 gdb_assert (!thread_is_in_step_over_chain (tp));
3014
2acceee2 3015 if (addr == (CORE_ADDR) -1)
c906108c 3016 {
af48d08f
PA
3017 if (pc == stop_pc
3018 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 3019 && execution_direction != EXEC_REVERSE)
3352ef37
AC
3020 /* There is a breakpoint at the address we will resume at,
3021 step one instruction before inserting breakpoints so that
3022 we do not stop right away (and report a second hit at this
b2175913
MS
3023 breakpoint).
3024
3025 Note, we don't do this in reverse, because we won't
3026 actually be executing the breakpoint insn anyway.
3027 We'll be (un-)executing the previous instruction. */
99619bea 3028 tp->stepping_over_breakpoint = 1;
515630c5
UW
3029 else if (gdbarch_single_step_through_delay_p (gdbarch)
3030 && gdbarch_single_step_through_delay (gdbarch,
3031 get_current_frame ()))
3352ef37
AC
3032 /* We stepped onto an instruction that needs to be stepped
3033 again before re-inserting the breakpoint, do so. */
99619bea 3034 tp->stepping_over_breakpoint = 1;
c906108c
SS
3035 }
3036 else
3037 {
515630c5 3038 regcache_write_pc (regcache, addr);
c906108c
SS
3039 }
3040
70509625
PA
3041 if (siggnal != GDB_SIGNAL_DEFAULT)
3042 tp->suspend.stop_signal = siggnal;
3043
4d9d9d04
PA
3044 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3045
3046 /* If an exception is thrown from this point on, make sure to
3047 propagate GDB's knowledge of the executing state to the
3048 frontend/user running state. */
3049 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3050
3051 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3052 threads (e.g., we might need to set threads stepping over
3053 breakpoints first), from the user/frontend's point of view, all
3054 threads in RESUME_PTID are now running. Unless we're calling an
3055 inferior function, as in that case we pretend the inferior
3056 doesn't run at all. */
3057 if (!tp->control.in_infcall)
3058 set_running (resume_ptid, 1);
17b2616c 3059
527159b7 3060 if (debug_infrun)
8a9de0e4 3061 fprintf_unfiltered (gdb_stdlog,
64ce06e4 3062 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 3063 paddress (gdbarch, addr),
64ce06e4 3064 gdb_signal_to_symbol_string (siggnal));
527159b7 3065
4d9d9d04
PA
3066 annotate_starting ();
3067
3068 /* Make sure that output from GDB appears before output from the
3069 inferior. */
3070 gdb_flush (gdb_stdout);
3071
3072 /* In a multi-threaded task we may select another thread and
3073 then continue or step.
3074
3075 But if a thread that we're resuming had stopped at a breakpoint,
3076 it will immediately cause another breakpoint stop without any
3077 execution (i.e. it will report a breakpoint hit incorrectly). So
3078 we must step over it first.
3079
3080 Look for threads other than the current (TP) that reported a
3081 breakpoint hit and haven't been resumed yet since. */
3082
3083 /* If scheduler locking applies, we can avoid iterating over all
3084 threads. */
3085 if (!non_stop && !schedlock_applies (tp))
94cc34af 3086 {
4d9d9d04
PA
3087 struct thread_info *current = tp;
3088
3089 ALL_NON_EXITED_THREADS (tp)
3090 {
3091 /* Ignore the current thread here. It's handled
3092 afterwards. */
3093 if (tp == current)
3094 continue;
99619bea 3095
4d9d9d04
PA
3096 /* Ignore threads of processes we're not resuming. */
3097 if (!ptid_match (tp->ptid, resume_ptid))
3098 continue;
c906108c 3099
4d9d9d04
PA
3100 if (!thread_still_needs_step_over (tp))
3101 continue;
3102
3103 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3104
99619bea
PA
3105 if (debug_infrun)
3106 fprintf_unfiltered (gdb_stdlog,
3107 "infrun: need to step-over [%s] first\n",
4d9d9d04 3108 target_pid_to_str (tp->ptid));
99619bea 3109
4d9d9d04 3110 thread_step_over_chain_enqueue (tp);
2adfaa28 3111 }
31e77af2 3112
4d9d9d04 3113 tp = current;
30852783
UW
3114 }
3115
4d9d9d04
PA
3116 /* Enqueue the current thread last, so that we move all other
3117 threads over their breakpoints first. */
3118 if (tp->stepping_over_breakpoint)
3119 thread_step_over_chain_enqueue (tp);
30852783 3120
4d9d9d04
PA
3121 /* If the thread isn't started, we'll still need to set its prev_pc,
3122 so that switch_back_to_stepped_thread knows the thread hasn't
3123 advanced. Must do this before resuming any thread, as in
3124 all-stop/remote, once we resume we can't send any other packet
3125 until the target stops again. */
3126 tp->prev_pc = regcache_read_pc (regcache);
99619bea 3127
4d9d9d04 3128 started = start_step_over ();
c906108c 3129
4d9d9d04
PA
3130 if (step_over_info_valid_p ())
3131 {
3132 /* Either this thread started a new in-line step over, or some
3133 other thread was already doing one. In either case, don't
3134 resume anything else until the step-over is finished. */
3135 }
fbea99ea 3136 else if (started && !target_is_non_stop_p ())
4d9d9d04
PA
3137 {
3138 /* A new displaced stepping sequence was started. In all-stop,
3139 we can't talk to the target anymore until it next stops. */
3140 }
fbea99ea
PA
3141 else if (!non_stop && target_is_non_stop_p ())
3142 {
3143 /* In all-stop, but the target is always in non-stop mode.
3144 Start all other threads that are implicitly resumed too. */
3145 ALL_NON_EXITED_THREADS (tp)
3146 {
3147 /* Ignore threads of processes we're not resuming. */
3148 if (!ptid_match (tp->ptid, resume_ptid))
3149 continue;
3150
3151 if (tp->resumed)
3152 {
3153 if (debug_infrun)
3154 fprintf_unfiltered (gdb_stdlog,
3155 "infrun: proceed: [%s] resumed\n",
3156 target_pid_to_str (tp->ptid));
3157 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3158 continue;
3159 }
3160
3161 if (thread_is_in_step_over_chain (tp))
3162 {
3163 if (debug_infrun)
3164 fprintf_unfiltered (gdb_stdlog,
3165 "infrun: proceed: [%s] needs step-over\n",
3166 target_pid_to_str (tp->ptid));
3167 continue;
3168 }
3169
3170 if (debug_infrun)
3171 fprintf_unfiltered (gdb_stdlog,
3172 "infrun: proceed: resuming %s\n",
3173 target_pid_to_str (tp->ptid));
3174
3175 reset_ecs (ecs, tp);
3176 switch_to_thread (tp->ptid);
3177 keep_going_pass_signal (ecs);
3178 if (!ecs->wait_some_more)
fd7dcb94 3179 error (_("Command aborted."));
fbea99ea
PA
3180 }
3181 }
372316f1 3182 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
4d9d9d04
PA
3183 {
3184 /* The thread wasn't started, and isn't queued, run it now. */
3185 reset_ecs (ecs, tp);
3186 switch_to_thread (tp->ptid);
3187 keep_going_pass_signal (ecs);
3188 if (!ecs->wait_some_more)
fd7dcb94 3189 error (_("Command aborted."));
4d9d9d04 3190 }
c906108c 3191
4d9d9d04 3192 discard_cleanups (old_chain);
c906108c 3193
0b333c5e
PA
3194 /* Tell the event loop to wait for it to stop. If the target
3195 supports asynchronous execution, it'll do this from within
3196 target_resume. */
362646f5 3197 if (!target_can_async_p ())
0b333c5e 3198 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3199}
c906108c
SS
3200\f
3201
3202/* Start remote-debugging of a machine over a serial link. */
96baa820 3203
c906108c 3204void
8621d6a9 3205start_remote (int from_tty)
c906108c 3206{
d6b48e9c 3207 struct inferior *inferior;
d6b48e9c
PA
3208
3209 inferior = current_inferior ();
16c381f0 3210 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3211
1777feb0 3212 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3213 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3214 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3215 nothing is returned (instead of just blocking). Because of this,
3216 targets expecting an immediate response need to, internally, set
3217 things up so that the target_wait() is forced to eventually
1777feb0 3218 timeout. */
6426a772
JM
3219 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3220 differentiate to its caller what the state of the target is after
3221 the initial open has been performed. Here we're assuming that
3222 the target has stopped. It should be possible to eventually have
3223 target_open() return to the caller an indication that the target
3224 is currently running and GDB state should be set to the same as
1777feb0 3225 for an async run. */
e4c8541f 3226 wait_for_inferior ();
8621d6a9
DJ
3227
3228 /* Now that the inferior has stopped, do any bookkeeping like
3229 loading shared libraries. We want to do this before normal_stop,
3230 so that the displayed frame is up to date. */
3231 post_create_inferior (&current_target, from_tty);
3232
6426a772 3233 normal_stop ();
c906108c
SS
3234}
3235
3236/* Initialize static vars when a new inferior begins. */
3237
3238void
96baa820 3239init_wait_for_inferior (void)
c906108c
SS
3240{
3241 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3242
c906108c
SS
3243 breakpoint_init_inferior (inf_starting);
3244
70509625 3245 clear_proceed_status (0);
9f976b41 3246
ca005067 3247 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3248
842951eb 3249 previous_inferior_ptid = inferior_ptid;
0d1e5fa7 3250
edb3359d
DJ
3251 /* Discard any skipped inlined frames. */
3252 clear_inline_frame_state (minus_one_ptid);
c906108c 3253}
237fc4c9 3254
c906108c 3255\f
488f131b 3256
ec9499be 3257static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3258
568d6575
UW
3259static void handle_step_into_function (struct gdbarch *gdbarch,
3260 struct execution_control_state *ecs);
3261static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3262 struct execution_control_state *ecs);
4f5d7f63 3263static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3264static void check_exception_resume (struct execution_control_state *,
28106bc2 3265 struct frame_info *);
611c83ae 3266
bdc36728 3267static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3268static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3269static void keep_going (struct execution_control_state *ecs);
94c57d6a 3270static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3271static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3272
252fbfc8
PA
3273/* Callback for iterate over threads. If the thread is stopped, but
3274 the user/frontend doesn't know about that yet, go through
3275 normal_stop, as if the thread had just stopped now. ARG points at
3276 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
3277 ptid_is_pid(PTID) is true, applies to all threads of the process
3278 pointed at by PTID. Otherwise, apply only to the thread pointed by
3279 PTID. */
3280
3281static int
3282infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
3283{
3284 ptid_t ptid = * (ptid_t *) arg;
3285
3286 if ((ptid_equal (info->ptid, ptid)
3287 || ptid_equal (minus_one_ptid, ptid)
3288 || (ptid_is_pid (ptid)
3289 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
3290 && is_running (info->ptid)
3291 && !is_executing (info->ptid))
3292 {
3293 struct cleanup *old_chain;
3294 struct execution_control_state ecss;
3295 struct execution_control_state *ecs = &ecss;
3296
3297 memset (ecs, 0, sizeof (*ecs));
3298
3299 old_chain = make_cleanup_restore_current_thread ();
3300
f15cb84a
YQ
3301 overlay_cache_invalid = 1;
3302 /* Flush target cache before starting to handle each event.
3303 Target was running and cache could be stale. This is just a
3304 heuristic. Running threads may modify target memory, but we
3305 don't get any event. */
3306 target_dcache_invalidate ();
3307
252fbfc8
PA
3308 /* Go through handle_inferior_event/normal_stop, so we always
3309 have consistent output as if the stop event had been
3310 reported. */
3311 ecs->ptid = info->ptid;
243a9253 3312 ecs->event_thread = info;
252fbfc8 3313 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 3314 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
3315
3316 handle_inferior_event (ecs);
3317
3318 if (!ecs->wait_some_more)
3319 {
243a9253
PA
3320 /* Cancel any running execution command. */
3321 thread_cancel_execution_command (info);
3322
252fbfc8 3323 normal_stop ();
252fbfc8
PA
3324 }
3325
3326 do_cleanups (old_chain);
3327 }
3328
3329 return 0;
3330}
3331
3332/* This function is attached as a "thread_stop_requested" observer.
3333 Cleanup local state that assumed the PTID was to be resumed, and
3334 report the stop to the frontend. */
3335
2c0b251b 3336static void
252fbfc8
PA
3337infrun_thread_stop_requested (ptid_t ptid)
3338{
c2829269 3339 struct thread_info *tp;
252fbfc8 3340
c2829269
PA
3341 /* PTID was requested to stop. Remove matching threads from the
3342 step-over queue, so we don't try to resume them
3343 automatically. */
3344 ALL_NON_EXITED_THREADS (tp)
3345 if (ptid_match (tp->ptid, ptid))
3346 {
3347 if (thread_is_in_step_over_chain (tp))
3348 thread_step_over_chain_remove (tp);
3349 }
252fbfc8
PA
3350
3351 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
3352}
3353
a07daef3
PA
3354static void
3355infrun_thread_thread_exit (struct thread_info *tp, int silent)
3356{
3357 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3358 nullify_last_target_wait_ptid ();
3359}
3360
0cbcdb96
PA
3361/* Delete the step resume, single-step and longjmp/exception resume
3362 breakpoints of TP. */
4e1c45ea 3363
0cbcdb96
PA
3364static void
3365delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3366{
0cbcdb96
PA
3367 delete_step_resume_breakpoint (tp);
3368 delete_exception_resume_breakpoint (tp);
34b7e8a6 3369 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3370}
3371
0cbcdb96
PA
3372/* If the target still has execution, call FUNC for each thread that
3373 just stopped. In all-stop, that's all the non-exited threads; in
3374 non-stop, that's the current thread, only. */
3375
3376typedef void (*for_each_just_stopped_thread_callback_func)
3377 (struct thread_info *tp);
4e1c45ea
PA
3378
3379static void
0cbcdb96 3380for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3381{
0cbcdb96 3382 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
4e1c45ea
PA
3383 return;
3384
fbea99ea 3385 if (target_is_non_stop_p ())
4e1c45ea 3386 {
0cbcdb96
PA
3387 /* If in non-stop mode, only the current thread stopped. */
3388 func (inferior_thread ());
4e1c45ea
PA
3389 }
3390 else
0cbcdb96
PA
3391 {
3392 struct thread_info *tp;
3393
3394 /* In all-stop mode, all threads have stopped. */
3395 ALL_NON_EXITED_THREADS (tp)
3396 {
3397 func (tp);
3398 }
3399 }
3400}
3401
3402/* Delete the step resume and longjmp/exception resume breakpoints of
3403 the threads that just stopped. */
3404
3405static void
3406delete_just_stopped_threads_infrun_breakpoints (void)
3407{
3408 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3409}
3410
3411/* Delete the single-step breakpoints of the threads that just
3412 stopped. */
7c16b83e 3413
34b7e8a6
PA
3414static void
3415delete_just_stopped_threads_single_step_breakpoints (void)
3416{
3417 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3418}
3419
1777feb0 3420/* A cleanup wrapper. */
4e1c45ea
PA
3421
3422static void
0cbcdb96 3423delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
4e1c45ea 3424{
0cbcdb96 3425 delete_just_stopped_threads_infrun_breakpoints ();
4e1c45ea
PA
3426}
3427
221e1a37 3428/* See infrun.h. */
223698f8 3429
221e1a37 3430void
223698f8
DE
3431print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3432 const struct target_waitstatus *ws)
3433{
3434 char *status_string = target_waitstatus_to_string (ws);
3435 struct ui_file *tmp_stream = mem_fileopen ();
3436 char *text;
223698f8
DE
3437
3438 /* The text is split over several lines because it was getting too long.
3439 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3440 output as a unit; we want only one timestamp printed if debug_timestamp
3441 is set. */
3442
3443 fprintf_unfiltered (tmp_stream,
1176ecec
PA
3444 "infrun: target_wait (%d.%ld.%ld",
3445 ptid_get_pid (waiton_ptid),
3446 ptid_get_lwp (waiton_ptid),
3447 ptid_get_tid (waiton_ptid));
dfd4cc63 3448 if (ptid_get_pid (waiton_ptid) != -1)
223698f8
DE
3449 fprintf_unfiltered (tmp_stream,
3450 " [%s]", target_pid_to_str (waiton_ptid));
3451 fprintf_unfiltered (tmp_stream, ", status) =\n");
3452 fprintf_unfiltered (tmp_stream,
1176ecec 3453 "infrun: %d.%ld.%ld [%s],\n",
dfd4cc63 3454 ptid_get_pid (result_ptid),
1176ecec
PA
3455 ptid_get_lwp (result_ptid),
3456 ptid_get_tid (result_ptid),
dfd4cc63 3457 target_pid_to_str (result_ptid));
223698f8
DE
3458 fprintf_unfiltered (tmp_stream,
3459 "infrun: %s\n",
3460 status_string);
3461
759ef836 3462 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
3463
3464 /* This uses %s in part to handle %'s in the text, but also to avoid
3465 a gcc error: the format attribute requires a string literal. */
3466 fprintf_unfiltered (gdb_stdlog, "%s", text);
3467
3468 xfree (status_string);
3469 xfree (text);
3470 ui_file_delete (tmp_stream);
3471}
3472
372316f1
PA
3473/* Select a thread at random, out of those which are resumed and have
3474 had events. */
3475
3476static struct thread_info *
3477random_pending_event_thread (ptid_t waiton_ptid)
3478{
3479 struct thread_info *event_tp;
3480 int num_events = 0;
3481 int random_selector;
3482
3483 /* First see how many events we have. Count only resumed threads
3484 that have an event pending. */
3485 ALL_NON_EXITED_THREADS (event_tp)
3486 if (ptid_match (event_tp->ptid, waiton_ptid)
3487 && event_tp->resumed
3488 && event_tp->suspend.waitstatus_pending_p)
3489 num_events++;
3490
3491 if (num_events == 0)
3492 return NULL;
3493
3494 /* Now randomly pick a thread out of those that have had events. */
3495 random_selector = (int)
3496 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3497
3498 if (debug_infrun && num_events > 1)
3499 fprintf_unfiltered (gdb_stdlog,
3500 "infrun: Found %d events, selecting #%d\n",
3501 num_events, random_selector);
3502
3503 /* Select the Nth thread that has had an event. */
3504 ALL_NON_EXITED_THREADS (event_tp)
3505 if (ptid_match (event_tp->ptid, waiton_ptid)
3506 && event_tp->resumed
3507 && event_tp->suspend.waitstatus_pending_p)
3508 if (random_selector-- == 0)
3509 break;
3510
3511 return event_tp;
3512}
3513
3514/* Wrapper for target_wait that first checks whether threads have
3515 pending statuses to report before actually asking the target for
3516 more events. */
3517
3518static ptid_t
3519do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3520{
3521 ptid_t event_ptid;
3522 struct thread_info *tp;
3523
3524 /* First check if there is a resumed thread with a wait status
3525 pending. */
3526 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3527 {
3528 tp = random_pending_event_thread (ptid);
3529 }
3530 else
3531 {
3532 if (debug_infrun)
3533 fprintf_unfiltered (gdb_stdlog,
3534 "infrun: Waiting for specific thread %s.\n",
3535 target_pid_to_str (ptid));
3536
3537 /* We have a specific thread to check. */
3538 tp = find_thread_ptid (ptid);
3539 gdb_assert (tp != NULL);
3540 if (!tp->suspend.waitstatus_pending_p)
3541 tp = NULL;
3542 }
3543
3544 if (tp != NULL
3545 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3546 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3547 {
3548 struct regcache *regcache = get_thread_regcache (tp->ptid);
3549 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3550 CORE_ADDR pc;
3551 int discard = 0;
3552
3553 pc = regcache_read_pc (regcache);
3554
3555 if (pc != tp->suspend.stop_pc)
3556 {
3557 if (debug_infrun)
3558 fprintf_unfiltered (gdb_stdlog,
3559 "infrun: PC of %s changed. was=%s, now=%s\n",
3560 target_pid_to_str (tp->ptid),
3561 paddress (gdbarch, tp->prev_pc),
3562 paddress (gdbarch, pc));
3563 discard = 1;
3564 }
3565 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3566 {
3567 if (debug_infrun)
3568 fprintf_unfiltered (gdb_stdlog,
3569 "infrun: previous breakpoint of %s, at %s gone\n",
3570 target_pid_to_str (tp->ptid),
3571 paddress (gdbarch, pc));
3572
3573 discard = 1;
3574 }
3575
3576 if (discard)
3577 {
3578 if (debug_infrun)
3579 fprintf_unfiltered (gdb_stdlog,
3580 "infrun: pending event of %s cancelled.\n",
3581 target_pid_to_str (tp->ptid));
3582
3583 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3584 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3585 }
3586 }
3587
3588 if (tp != NULL)
3589 {
3590 if (debug_infrun)
3591 {
3592 char *statstr;
3593
3594 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3595 fprintf_unfiltered (gdb_stdlog,
3596 "infrun: Using pending wait status %s for %s.\n",
3597 statstr,
3598 target_pid_to_str (tp->ptid));
3599 xfree (statstr);
3600 }
3601
3602 /* Now that we've selected our final event LWP, un-adjust its PC
3603 if it was a software breakpoint (and the target doesn't
3604 always adjust the PC itself). */
3605 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3606 && !target_supports_stopped_by_sw_breakpoint ())
3607 {
3608 struct regcache *regcache;
3609 struct gdbarch *gdbarch;
3610 int decr_pc;
3611
3612 regcache = get_thread_regcache (tp->ptid);
3613 gdbarch = get_regcache_arch (regcache);
3614
3615 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3616 if (decr_pc != 0)
3617 {
3618 CORE_ADDR pc;
3619
3620 pc = regcache_read_pc (regcache);
3621 regcache_write_pc (regcache, pc + decr_pc);
3622 }
3623 }
3624
3625 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3626 *status = tp->suspend.waitstatus;
3627 tp->suspend.waitstatus_pending_p = 0;
3628
3629 /* Wake up the event loop again, until all pending events are
3630 processed. */
3631 if (target_is_async_p ())
3632 mark_async_event_handler (infrun_async_inferior_event_token);
3633 return tp->ptid;
3634 }
3635
3636 /* But if we don't find one, we'll have to wait. */
3637
3638 if (deprecated_target_wait_hook)
3639 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3640 else
3641 event_ptid = target_wait (ptid, status, options);
3642
3643 return event_ptid;
3644}
3645
24291992
PA
3646/* Prepare and stabilize the inferior for detaching it. E.g.,
3647 detaching while a thread is displaced stepping is a recipe for
3648 crashing it, as nothing would readjust the PC out of the scratch
3649 pad. */
3650
3651void
3652prepare_for_detach (void)
3653{
3654 struct inferior *inf = current_inferior ();
3655 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3656 struct cleanup *old_chain_1;
3657 struct displaced_step_inferior_state *displaced;
3658
3659 displaced = get_displaced_stepping_state (inf->pid);
3660
3661 /* Is any thread of this process displaced stepping? If not,
3662 there's nothing else to do. */
3663 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3664 return;
3665
3666 if (debug_infrun)
3667 fprintf_unfiltered (gdb_stdlog,
3668 "displaced-stepping in-process while detaching");
3669
3670 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3671 inf->detaching = 1;
3672
3673 while (!ptid_equal (displaced->step_ptid, null_ptid))
3674 {
3675 struct cleanup *old_chain_2;
3676 struct execution_control_state ecss;
3677 struct execution_control_state *ecs;
3678
3679 ecs = &ecss;
3680 memset (ecs, 0, sizeof (*ecs));
3681
3682 overlay_cache_invalid = 1;
f15cb84a
YQ
3683 /* Flush target cache before starting to handle each event.
3684 Target was running and cache could be stale. This is just a
3685 heuristic. Running threads may modify target memory, but we
3686 don't get any event. */
3687 target_dcache_invalidate ();
24291992 3688
372316f1 3689 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3690
3691 if (debug_infrun)
3692 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3693
3694 /* If an error happens while handling the event, propagate GDB's
3695 knowledge of the executing state to the frontend/user running
3696 state. */
3e43a32a
MS
3697 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3698 &minus_one_ptid);
24291992
PA
3699
3700 /* Now figure out what to do with the result of the result. */
3701 handle_inferior_event (ecs);
3702
3703 /* No error, don't finish the state yet. */
3704 discard_cleanups (old_chain_2);
3705
3706 /* Breakpoints and watchpoints are not installed on the target
3707 at this point, and signals are passed directly to the
3708 inferior, so this must mean the process is gone. */
3709 if (!ecs->wait_some_more)
3710 {
3711 discard_cleanups (old_chain_1);
3712 error (_("Program exited while detaching"));
3713 }
3714 }
3715
3716 discard_cleanups (old_chain_1);
3717}
3718
cd0fc7c3 3719/* Wait for control to return from inferior to debugger.
ae123ec6 3720
cd0fc7c3
SS
3721 If inferior gets a signal, we may decide to start it up again
3722 instead of returning. That is why there is a loop in this function.
3723 When this function actually returns it means the inferior
3724 should be left stopped and GDB should read more commands. */
3725
3726void
e4c8541f 3727wait_for_inferior (void)
cd0fc7c3
SS
3728{
3729 struct cleanup *old_cleanups;
e6f5c25b 3730 struct cleanup *thread_state_chain;
c906108c 3731
527159b7 3732 if (debug_infrun)
ae123ec6 3733 fprintf_unfiltered
e4c8541f 3734 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3735
0cbcdb96
PA
3736 old_cleanups
3737 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3738 NULL);
cd0fc7c3 3739
e6f5c25b
PA
3740 /* If an error happens while handling the event, propagate GDB's
3741 knowledge of the executing state to the frontend/user running
3742 state. */
3743 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3744
c906108c
SS
3745 while (1)
3746 {
ae25568b
PA
3747 struct execution_control_state ecss;
3748 struct execution_control_state *ecs = &ecss;
963f9c80 3749 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3750
ae25568b
PA
3751 memset (ecs, 0, sizeof (*ecs));
3752
ec9499be 3753 overlay_cache_invalid = 1;
ec9499be 3754
f15cb84a
YQ
3755 /* Flush target cache before starting to handle each event.
3756 Target was running and cache could be stale. This is just a
3757 heuristic. Running threads may modify target memory, but we
3758 don't get any event. */
3759 target_dcache_invalidate ();
3760
372316f1 3761 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3762
f00150c9 3763 if (debug_infrun)
223698f8 3764 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3765
cd0fc7c3
SS
3766 /* Now figure out what to do with the result of the result. */
3767 handle_inferior_event (ecs);
c906108c 3768
cd0fc7c3
SS
3769 if (!ecs->wait_some_more)
3770 break;
3771 }
4e1c45ea 3772
e6f5c25b
PA
3773 /* No error, don't finish the state yet. */
3774 discard_cleanups (thread_state_chain);
3775
cd0fc7c3
SS
3776 do_cleanups (old_cleanups);
3777}
c906108c 3778
d3d4baed
PA
3779/* Cleanup that reinstalls the readline callback handler, if the
3780 target is running in the background. If while handling the target
3781 event something triggered a secondary prompt, like e.g., a
3782 pagination prompt, we'll have removed the callback handler (see
3783 gdb_readline_wrapper_line). Need to do this as we go back to the
3784 event loop, ready to process further input. Note this has no
3785 effect if the handler hasn't actually been removed, because calling
3786 rl_callback_handler_install resets the line buffer, thus losing
3787 input. */
3788
3789static void
3790reinstall_readline_callback_handler_cleanup (void *arg)
3791{
3b12939d
PA
3792 struct ui *ui = current_ui;
3793
3794 if (!ui->async)
6c400b59
PA
3795 {
3796 /* We're not going back to the top level event loop yet. Don't
3797 install the readline callback, as it'd prep the terminal,
3798 readline-style (raw, noecho) (e.g., --batch). We'll install
3799 it the next time the prompt is displayed, when we're ready
3800 for input. */
3801 return;
3802 }
3803
3b12939d 3804 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3805 gdb_rl_callback_handler_reinstall ();
3806}
3807
243a9253
PA
3808/* Clean up the FSMs of threads that are now stopped. In non-stop,
3809 that's just the event thread. In all-stop, that's all threads. */
3810
3811static void
3812clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3813{
3814 struct thread_info *thr = ecs->event_thread;
3815
3816 if (thr != NULL && thr->thread_fsm != NULL)
8980e177 3817 thread_fsm_clean_up (thr->thread_fsm, thr);
243a9253
PA
3818
3819 if (!non_stop)
3820 {
3821 ALL_NON_EXITED_THREADS (thr)
3822 {
3823 if (thr->thread_fsm == NULL)
3824 continue;
3825 if (thr == ecs->event_thread)
3826 continue;
3827
3828 switch_to_thread (thr->ptid);
8980e177 3829 thread_fsm_clean_up (thr->thread_fsm, thr);
243a9253
PA
3830 }
3831
3832 if (ecs->event_thread != NULL)
3833 switch_to_thread (ecs->event_thread->ptid);
3834 }
3835}
3836
3b12939d
PA
3837/* Helper for all_uis_check_sync_execution_done that works on the
3838 current UI. */
3839
3840static void
3841check_curr_ui_sync_execution_done (void)
3842{
3843 struct ui *ui = current_ui;
3844
3845 if (ui->prompt_state == PROMPT_NEEDED
3846 && ui->async
3847 && !gdb_in_secondary_prompt_p (ui))
3848 {
3849 target_terminal_ours ();
3850 observer_notify_sync_execution_done ();
3851 }
3852}
3853
3854/* See infrun.h. */
3855
3856void
3857all_uis_check_sync_execution_done (void)
3858{
3859 struct switch_thru_all_uis state;
3860
3861 SWITCH_THRU_ALL_UIS (state)
3862 {
3863 check_curr_ui_sync_execution_done ();
3864 }
3865}
3866
a8836c93
PA
3867/* See infrun.h. */
3868
3869void
3870all_uis_on_sync_execution_starting (void)
3871{
3872 struct switch_thru_all_uis state;
3873
3874 SWITCH_THRU_ALL_UIS (state)
3875 {
3876 if (current_ui->prompt_state == PROMPT_NEEDED)
3877 async_disable_stdin ();
3878 }
3879}
3880
170742de
PA
3881/* A cleanup that restores the execution direction to the value saved
3882 in *ARG. */
3883
3884static void
3885restore_execution_direction (void *arg)
3886{
3887 enum exec_direction_kind *save_exec_dir = (enum exec_direction_kind *) arg;
3888
3889 execution_direction = *save_exec_dir;
3890}
3891
1777feb0 3892/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3893 event loop whenever a change of state is detected on the file
1777feb0
MS
3894 descriptor corresponding to the target. It can be called more than
3895 once to complete a single execution command. In such cases we need
3896 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3897 that this function is called for a single execution command, then
3898 report to the user that the inferior has stopped, and do the
1777feb0 3899 necessary cleanups. */
43ff13b4
JM
3900
3901void
fba45db2 3902fetch_inferior_event (void *client_data)
43ff13b4 3903{
0d1e5fa7 3904 struct execution_control_state ecss;
a474d7c2 3905 struct execution_control_state *ecs = &ecss;
4f8d22e3 3906 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 3907 struct cleanup *ts_old_chain;
170742de 3908 enum exec_direction_kind save_exec_dir = execution_direction;
0f641c01 3909 int cmd_done = 0;
963f9c80 3910 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3911
0d1e5fa7
PA
3912 memset (ecs, 0, sizeof (*ecs));
3913
c61db772
PA
3914 /* Events are always processed with the main UI as current UI. This
3915 way, warnings, debug output, etc. are always consistently sent to
3916 the main console. */
3917 make_cleanup (restore_ui_cleanup, current_ui);
3918 current_ui = main_ui;
3919
d3d4baed
PA
3920 /* End up with readline processing input, if necessary. */
3921 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3922
c5187ac6
PA
3923 /* We're handling a live event, so make sure we're doing live
3924 debugging. If we're looking at traceframes while the target is
3925 running, we're going to need to get back to that mode after
3926 handling the event. */
3927 if (non_stop)
3928 {
3929 make_cleanup_restore_current_traceframe ();
e6e4e701 3930 set_current_traceframe (-1);
c5187ac6
PA
3931 }
3932
4f8d22e3
PA
3933 if (non_stop)
3934 /* In non-stop mode, the user/frontend should not notice a thread
3935 switch due to internal events. Make sure we reverse to the
3936 user selected thread and frame after handling the event and
3937 running any breakpoint commands. */
3938 make_cleanup_restore_current_thread ();
3939
ec9499be 3940 overlay_cache_invalid = 1;
f15cb84a
YQ
3941 /* Flush target cache before starting to handle each event. Target
3942 was running and cache could be stale. This is just a heuristic.
3943 Running threads may modify target memory, but we don't get any
3944 event. */
3945 target_dcache_invalidate ();
3dd5b83d 3946
170742de 3947 make_cleanup (restore_execution_direction, &save_exec_dir);
32231432
PA
3948 execution_direction = target_execution_direction ();
3949
0b333c5e
PA
3950 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3951 target_can_async_p () ? TARGET_WNOHANG : 0);
43ff13b4 3952
f00150c9 3953 if (debug_infrun)
223698f8 3954 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3955
29f49a6a
PA
3956 /* If an error happens while handling the event, propagate GDB's
3957 knowledge of the executing state to the frontend/user running
3958 state. */
fbea99ea 3959 if (!target_is_non_stop_p ())
29f49a6a
PA
3960 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3961 else
3962 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3963
353d1d73
JK
3964 /* Get executed before make_cleanup_restore_current_thread above to apply
3965 still for the thread which has thrown the exception. */
3966 make_bpstat_clear_actions_cleanup ();
3967
7c16b83e
PA
3968 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3969
43ff13b4 3970 /* Now figure out what to do with the result of the result. */
a474d7c2 3971 handle_inferior_event (ecs);
43ff13b4 3972
a474d7c2 3973 if (!ecs->wait_some_more)
43ff13b4 3974 {
c9657e70 3975 struct inferior *inf = find_inferior_ptid (ecs->ptid);
243a9253
PA
3976 int should_stop = 1;
3977 struct thread_info *thr = ecs->event_thread;
388a7084 3978 int should_notify_stop = 1;
d6b48e9c 3979
0cbcdb96 3980 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3981
243a9253
PA
3982 if (thr != NULL)
3983 {
3984 struct thread_fsm *thread_fsm = thr->thread_fsm;
3985
3986 if (thread_fsm != NULL)
8980e177 3987 should_stop = thread_fsm_should_stop (thread_fsm, thr);
243a9253
PA
3988 }
3989
3990 if (!should_stop)
3991 {
3992 keep_going (ecs);
3993 }
c2d11a7d 3994 else
0f641c01 3995 {
243a9253
PA
3996 clean_up_just_stopped_threads_fsms (ecs);
3997
388a7084
PA
3998 if (thr != NULL && thr->thread_fsm != NULL)
3999 {
4000 should_notify_stop
4001 = thread_fsm_should_notify_stop (thr->thread_fsm);
4002 }
4003
4004 if (should_notify_stop)
4005 {
4c2f2a79
PA
4006 int proceeded = 0;
4007
388a7084
PA
4008 /* We may not find an inferior if this was a process exit. */
4009 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4c2f2a79 4010 proceeded = normal_stop ();
243a9253 4011
4c2f2a79
PA
4012 if (!proceeded)
4013 {
4014 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
4015 cmd_done = 1;
4016 }
388a7084 4017 }
0f641c01 4018 }
43ff13b4 4019 }
4f8d22e3 4020
29f49a6a
PA
4021 /* No error, don't finish the thread states yet. */
4022 discard_cleanups (ts_old_chain);
4023
4f8d22e3
PA
4024 /* Revert thread and frame. */
4025 do_cleanups (old_chain);
4026
3b12939d
PA
4027 /* If a UI was in sync execution mode, and now isn't, restore its
4028 prompt (a synchronous execution command has finished, and we're
4029 ready for input). */
4030 all_uis_check_sync_execution_done ();
0f641c01
PA
4031
4032 if (cmd_done
0f641c01
PA
4033 && exec_done_display_p
4034 && (ptid_equal (inferior_ptid, null_ptid)
4035 || !is_running (inferior_ptid)))
4036 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
4037}
4038
edb3359d
DJ
4039/* Record the frame and location we're currently stepping through. */
4040void
4041set_step_info (struct frame_info *frame, struct symtab_and_line sal)
4042{
4043 struct thread_info *tp = inferior_thread ();
4044
16c381f0
JK
4045 tp->control.step_frame_id = get_frame_id (frame);
4046 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
4047
4048 tp->current_symtab = sal.symtab;
4049 tp->current_line = sal.line;
4050}
4051
0d1e5fa7
PA
4052/* Clear context switchable stepping state. */
4053
4054void
4e1c45ea 4055init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 4056{
7f5ef605 4057 tss->stepped_breakpoint = 0;
0d1e5fa7 4058 tss->stepping_over_breakpoint = 0;
963f9c80 4059 tss->stepping_over_watchpoint = 0;
0d1e5fa7 4060 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
4061}
4062
c32c64b7
DE
4063/* Set the cached copy of the last ptid/waitstatus. */
4064
6efcd9a8 4065void
c32c64b7
DE
4066set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4067{
4068 target_last_wait_ptid = ptid;
4069 target_last_waitstatus = status;
4070}
4071
e02bc4cc 4072/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
4073 target_wait()/deprecated_target_wait_hook(). The data is actually
4074 cached by handle_inferior_event(), which gets called immediately
4075 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
4076
4077void
488f131b 4078get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 4079{
39f77062 4080 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
4081 *status = target_last_waitstatus;
4082}
4083
ac264b3b
MS
4084void
4085nullify_last_target_wait_ptid (void)
4086{
4087 target_last_wait_ptid = minus_one_ptid;
4088}
4089
dcf4fbde 4090/* Switch thread contexts. */
dd80620e
MS
4091
4092static void
0d1e5fa7 4093context_switch (ptid_t ptid)
dd80620e 4094{
4b51d87b 4095 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
4096 {
4097 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4098 target_pid_to_str (inferior_ptid));
4099 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 4100 target_pid_to_str (ptid));
fd48f117
DJ
4101 }
4102
0d1e5fa7 4103 switch_to_thread (ptid);
dd80620e
MS
4104}
4105
d8dd4d5f
PA
4106/* If the target can't tell whether we've hit breakpoints
4107 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4108 check whether that could have been caused by a breakpoint. If so,
4109 adjust the PC, per gdbarch_decr_pc_after_break. */
4110
4fa8626c 4111static void
d8dd4d5f
PA
4112adjust_pc_after_break (struct thread_info *thread,
4113 struct target_waitstatus *ws)
4fa8626c 4114{
24a73cce
UW
4115 struct regcache *regcache;
4116 struct gdbarch *gdbarch;
6c95b8df 4117 struct address_space *aspace;
118e6252 4118 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4119
4fa8626c
DJ
4120 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4121 we aren't, just return.
9709f61c
DJ
4122
4123 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4124 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4125 implemented by software breakpoints should be handled through the normal
4126 breakpoint layer.
8fb3e588 4127
4fa8626c
DJ
4128 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4129 different signals (SIGILL or SIGEMT for instance), but it is less
4130 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4131 gdbarch_decr_pc_after_break. I don't know any specific target that
4132 generates these signals at breakpoints (the code has been in GDB since at
4133 least 1992) so I can not guess how to handle them here.
8fb3e588 4134
e6cf7916
UW
4135 In earlier versions of GDB, a target with
4136 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4137 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4138 target with both of these set in GDB history, and it seems unlikely to be
4139 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4140
d8dd4d5f 4141 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4142 return;
4143
d8dd4d5f 4144 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4145 return;
4146
4058b839
PA
4147 /* In reverse execution, when a breakpoint is hit, the instruction
4148 under it has already been de-executed. The reported PC always
4149 points at the breakpoint address, so adjusting it further would
4150 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4151 architecture:
4152
4153 B1 0x08000000 : INSN1
4154 B2 0x08000001 : INSN2
4155 0x08000002 : INSN3
4156 PC -> 0x08000003 : INSN4
4157
4158 Say you're stopped at 0x08000003 as above. Reverse continuing
4159 from that point should hit B2 as below. Reading the PC when the
4160 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4161 been de-executed already.
4162
4163 B1 0x08000000 : INSN1
4164 B2 PC -> 0x08000001 : INSN2
4165 0x08000002 : INSN3
4166 0x08000003 : INSN4
4167
4168 We can't apply the same logic as for forward execution, because
4169 we would wrongly adjust the PC to 0x08000000, since there's a
4170 breakpoint at PC - 1. We'd then report a hit on B1, although
4171 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4172 behaviour. */
4173 if (execution_direction == EXEC_REVERSE)
4174 return;
4175
1cf4d951
PA
4176 /* If the target can tell whether the thread hit a SW breakpoint,
4177 trust it. Targets that can tell also adjust the PC
4178 themselves. */
4179 if (target_supports_stopped_by_sw_breakpoint ())
4180 return;
4181
4182 /* Note that relying on whether a breakpoint is planted in memory to
4183 determine this can fail. E.g,. the breakpoint could have been
4184 removed since. Or the thread could have been told to step an
4185 instruction the size of a breakpoint instruction, and only
4186 _after_ was a breakpoint inserted at its address. */
4187
24a73cce
UW
4188 /* If this target does not decrement the PC after breakpoints, then
4189 we have nothing to do. */
d8dd4d5f 4190 regcache = get_thread_regcache (thread->ptid);
24a73cce 4191 gdbarch = get_regcache_arch (regcache);
118e6252 4192
527a273a 4193 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4194 if (decr_pc == 0)
24a73cce
UW
4195 return;
4196
6c95b8df
PA
4197 aspace = get_regcache_aspace (regcache);
4198
8aad930b
AC
4199 /* Find the location where (if we've hit a breakpoint) the
4200 breakpoint would be. */
118e6252 4201 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4202
1cf4d951
PA
4203 /* If the target can't tell whether a software breakpoint triggered,
4204 fallback to figuring it out based on breakpoints we think were
4205 inserted in the target, and on whether the thread was stepped or
4206 continued. */
4207
1c5cfe86
PA
4208 /* Check whether there actually is a software breakpoint inserted at
4209 that location.
4210
4211 If in non-stop mode, a race condition is possible where we've
4212 removed a breakpoint, but stop events for that breakpoint were
4213 already queued and arrive later. To suppress those spurious
4214 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4215 and retire them after a number of stop events are reported. Note
4216 this is an heuristic and can thus get confused. The real fix is
4217 to get the "stopped by SW BP and needs adjustment" info out of
4218 the target/kernel (and thus never reach here; see above). */
6c95b8df 4219 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4220 || (target_is_non_stop_p ()
4221 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4222 {
77f9e713 4223 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
abbb1732 4224
8213266a 4225 if (record_full_is_used ())
77f9e713 4226 record_full_gdb_operation_disable_set ();
96429cc8 4227
1c0fdd0e
UW
4228 /* When using hardware single-step, a SIGTRAP is reported for both
4229 a completed single-step and a software breakpoint. Need to
4230 differentiate between the two, as the latter needs adjusting
4231 but the former does not.
4232
4233 The SIGTRAP can be due to a completed hardware single-step only if
4234 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4235 - this thread is currently being stepped
4236
4237 If any of these events did not occur, we must have stopped due
4238 to hitting a software breakpoint, and have to back up to the
4239 breakpoint address.
4240
4241 As a special case, we could have hardware single-stepped a
4242 software breakpoint. In this case (prev_pc == breakpoint_pc),
4243 we also need to back up to the breakpoint address. */
4244
d8dd4d5f
PA
4245 if (thread_has_single_step_breakpoints_set (thread)
4246 || !currently_stepping (thread)
4247 || (thread->stepped_breakpoint
4248 && thread->prev_pc == breakpoint_pc))
515630c5 4249 regcache_write_pc (regcache, breakpoint_pc);
96429cc8 4250
77f9e713 4251 do_cleanups (old_cleanups);
8aad930b 4252 }
4fa8626c
DJ
4253}
4254
edb3359d
DJ
4255static int
4256stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4257{
4258 for (frame = get_prev_frame (frame);
4259 frame != NULL;
4260 frame = get_prev_frame (frame))
4261 {
4262 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4263 return 1;
4264 if (get_frame_type (frame) != INLINE_FRAME)
4265 break;
4266 }
4267
4268 return 0;
4269}
4270
a96d9b2e
SDJ
4271/* Auxiliary function that handles syscall entry/return events.
4272 It returns 1 if the inferior should keep going (and GDB
4273 should ignore the event), or 0 if the event deserves to be
4274 processed. */
ca2163eb 4275
a96d9b2e 4276static int
ca2163eb 4277handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4278{
ca2163eb 4279 struct regcache *regcache;
ca2163eb
PA
4280 int syscall_number;
4281
4282 if (!ptid_equal (ecs->ptid, inferior_ptid))
4283 context_switch (ecs->ptid);
4284
4285 regcache = get_thread_regcache (ecs->ptid);
f90263c1 4286 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
4287 stop_pc = regcache_read_pc (regcache);
4288
a96d9b2e
SDJ
4289 if (catch_syscall_enabled () > 0
4290 && catching_syscall_number (syscall_number) > 0)
4291 {
4292 if (debug_infrun)
4293 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4294 syscall_number);
a96d9b2e 4295
16c381f0 4296 ecs->event_thread->control.stop_bpstat
6c95b8df 4297 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 4298 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4299
ce12b012 4300 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4301 {
4302 /* Catchpoint hit. */
ca2163eb
PA
4303 return 0;
4304 }
a96d9b2e 4305 }
ca2163eb
PA
4306
4307 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4308 keep_going (ecs);
4309 return 1;
a96d9b2e
SDJ
4310}
4311
7e324e48
GB
4312/* Lazily fill in the execution_control_state's stop_func_* fields. */
4313
4314static void
4315fill_in_stop_func (struct gdbarch *gdbarch,
4316 struct execution_control_state *ecs)
4317{
4318 if (!ecs->stop_func_filled_in)
4319 {
4320 /* Don't care about return value; stop_func_start and stop_func_name
4321 will both be 0 if it doesn't work. */
4322 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4323 &ecs->stop_func_start, &ecs->stop_func_end);
4324 ecs->stop_func_start
4325 += gdbarch_deprecated_function_start_offset (gdbarch);
4326
591a12a1
UW
4327 if (gdbarch_skip_entrypoint_p (gdbarch))
4328 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4329 ecs->stop_func_start);
4330
7e324e48
GB
4331 ecs->stop_func_filled_in = 1;
4332 }
4333}
4334
4f5d7f63
PA
4335
4336/* Return the STOP_SOON field of the inferior pointed at by PTID. */
4337
4338static enum stop_kind
4339get_inferior_stop_soon (ptid_t ptid)
4340{
c9657e70 4341 struct inferior *inf = find_inferior_ptid (ptid);
4f5d7f63
PA
4342
4343 gdb_assert (inf != NULL);
4344 return inf->control.stop_soon;
4345}
4346
372316f1
PA
4347/* Wait for one event. Store the resulting waitstatus in WS, and
4348 return the event ptid. */
4349
4350static ptid_t
4351wait_one (struct target_waitstatus *ws)
4352{
4353 ptid_t event_ptid;
4354 ptid_t wait_ptid = minus_one_ptid;
4355
4356 overlay_cache_invalid = 1;
4357
4358 /* Flush target cache before starting to handle each event.
4359 Target was running and cache could be stale. This is just a
4360 heuristic. Running threads may modify target memory, but we
4361 don't get any event. */
4362 target_dcache_invalidate ();
4363
4364 if (deprecated_target_wait_hook)
4365 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4366 else
4367 event_ptid = target_wait (wait_ptid, ws, 0);
4368
4369 if (debug_infrun)
4370 print_target_wait_results (wait_ptid, event_ptid, ws);
4371
4372 return event_ptid;
4373}
4374
4375/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4376 instead of the current thread. */
4377#define THREAD_STOPPED_BY(REASON) \
4378static int \
4379thread_stopped_by_ ## REASON (ptid_t ptid) \
4380{ \
4381 struct cleanup *old_chain; \
4382 int res; \
4383 \
4384 old_chain = save_inferior_ptid (); \
4385 inferior_ptid = ptid; \
4386 \
4387 res = target_stopped_by_ ## REASON (); \
4388 \
4389 do_cleanups (old_chain); \
4390 \
4391 return res; \
4392}
4393
4394/* Generate thread_stopped_by_watchpoint. */
4395THREAD_STOPPED_BY (watchpoint)
4396/* Generate thread_stopped_by_sw_breakpoint. */
4397THREAD_STOPPED_BY (sw_breakpoint)
4398/* Generate thread_stopped_by_hw_breakpoint. */
4399THREAD_STOPPED_BY (hw_breakpoint)
4400
4401/* Cleanups that switches to the PTID pointed at by PTID_P. */
4402
4403static void
4404switch_to_thread_cleanup (void *ptid_p)
4405{
4406 ptid_t ptid = *(ptid_t *) ptid_p;
4407
4408 switch_to_thread (ptid);
4409}
4410
4411/* Save the thread's event and stop reason to process it later. */
4412
4413static void
4414save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4415{
4416 struct regcache *regcache;
4417 struct address_space *aspace;
4418
4419 if (debug_infrun)
4420 {
4421 char *statstr;
4422
4423 statstr = target_waitstatus_to_string (ws);
4424 fprintf_unfiltered (gdb_stdlog,
4425 "infrun: saving status %s for %d.%ld.%ld\n",
4426 statstr,
4427 ptid_get_pid (tp->ptid),
4428 ptid_get_lwp (tp->ptid),
4429 ptid_get_tid (tp->ptid));
4430 xfree (statstr);
4431 }
4432
4433 /* Record for later. */
4434 tp->suspend.waitstatus = *ws;
4435 tp->suspend.waitstatus_pending_p = 1;
4436
4437 regcache = get_thread_regcache (tp->ptid);
4438 aspace = get_regcache_aspace (regcache);
4439
4440 if (ws->kind == TARGET_WAITKIND_STOPPED
4441 && ws->value.sig == GDB_SIGNAL_TRAP)
4442 {
4443 CORE_ADDR pc = regcache_read_pc (regcache);
4444
4445 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4446
4447 if (thread_stopped_by_watchpoint (tp->ptid))
4448 {
4449 tp->suspend.stop_reason
4450 = TARGET_STOPPED_BY_WATCHPOINT;
4451 }
4452 else if (target_supports_stopped_by_sw_breakpoint ()
4453 && thread_stopped_by_sw_breakpoint (tp->ptid))
4454 {
4455 tp->suspend.stop_reason
4456 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4457 }
4458 else if (target_supports_stopped_by_hw_breakpoint ()
4459 && thread_stopped_by_hw_breakpoint (tp->ptid))
4460 {
4461 tp->suspend.stop_reason
4462 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4463 }
4464 else if (!target_supports_stopped_by_hw_breakpoint ()
4465 && hardware_breakpoint_inserted_here_p (aspace,
4466 pc))
4467 {
4468 tp->suspend.stop_reason
4469 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4470 }
4471 else if (!target_supports_stopped_by_sw_breakpoint ()
4472 && software_breakpoint_inserted_here_p (aspace,
4473 pc))
4474 {
4475 tp->suspend.stop_reason
4476 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4477 }
4478 else if (!thread_has_single_step_breakpoints_set (tp)
4479 && currently_stepping (tp))
4480 {
4481 tp->suspend.stop_reason
4482 = TARGET_STOPPED_BY_SINGLE_STEP;
4483 }
4484 }
4485}
4486
65706a29
PA
4487/* A cleanup that disables thread create/exit events. */
4488
4489static void
4490disable_thread_events (void *arg)
4491{
4492 target_thread_events (0);
4493}
4494
6efcd9a8 4495/* See infrun.h. */
372316f1 4496
6efcd9a8 4497void
372316f1
PA
4498stop_all_threads (void)
4499{
4500 /* We may need multiple passes to discover all threads. */
4501 int pass;
4502 int iterations = 0;
4503 ptid_t entry_ptid;
4504 struct cleanup *old_chain;
4505
fbea99ea 4506 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4507
4508 if (debug_infrun)
4509 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4510
4511 entry_ptid = inferior_ptid;
4512 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4513
65706a29
PA
4514 target_thread_events (1);
4515 make_cleanup (disable_thread_events, NULL);
4516
372316f1
PA
4517 /* Request threads to stop, and then wait for the stops. Because
4518 threads we already know about can spawn more threads while we're
4519 trying to stop them, and we only learn about new threads when we
4520 update the thread list, do this in a loop, and keep iterating
4521 until two passes find no threads that need to be stopped. */
4522 for (pass = 0; pass < 2; pass++, iterations++)
4523 {
4524 if (debug_infrun)
4525 fprintf_unfiltered (gdb_stdlog,
4526 "infrun: stop_all_threads, pass=%d, "
4527 "iterations=%d\n", pass, iterations);
4528 while (1)
4529 {
4530 ptid_t event_ptid;
4531 struct target_waitstatus ws;
4532 int need_wait = 0;
4533 struct thread_info *t;
4534
4535 update_thread_list ();
4536
4537 /* Go through all threads looking for threads that we need
4538 to tell the target to stop. */
4539 ALL_NON_EXITED_THREADS (t)
4540 {
4541 if (t->executing)
4542 {
4543 /* If already stopping, don't request a stop again.
4544 We just haven't seen the notification yet. */
4545 if (!t->stop_requested)
4546 {
4547 if (debug_infrun)
4548 fprintf_unfiltered (gdb_stdlog,
4549 "infrun: %s executing, "
4550 "need stop\n",
4551 target_pid_to_str (t->ptid));
4552 target_stop (t->ptid);
4553 t->stop_requested = 1;
4554 }
4555 else
4556 {
4557 if (debug_infrun)
4558 fprintf_unfiltered (gdb_stdlog,
4559 "infrun: %s executing, "
4560 "already stopping\n",
4561 target_pid_to_str (t->ptid));
4562 }
4563
4564 if (t->stop_requested)
4565 need_wait = 1;
4566 }
4567 else
4568 {
4569 if (debug_infrun)
4570 fprintf_unfiltered (gdb_stdlog,
4571 "infrun: %s not executing\n",
4572 target_pid_to_str (t->ptid));
4573
4574 /* The thread may be not executing, but still be
4575 resumed with a pending status to process. */
4576 t->resumed = 0;
4577 }
4578 }
4579
4580 if (!need_wait)
4581 break;
4582
4583 /* If we find new threads on the second iteration, restart
4584 over. We want to see two iterations in a row with all
4585 threads stopped. */
4586 if (pass > 0)
4587 pass = -1;
4588
4589 event_ptid = wait_one (&ws);
4590 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4591 {
4592 /* All resumed threads exited. */
4593 }
65706a29
PA
4594 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4595 || ws.kind == TARGET_WAITKIND_EXITED
372316f1
PA
4596 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4597 {
4598 if (debug_infrun)
4599 {
4600 ptid_t ptid = pid_to_ptid (ws.value.integer);
4601
4602 fprintf_unfiltered (gdb_stdlog,
4603 "infrun: %s exited while "
4604 "stopping threads\n",
4605 target_pid_to_str (ptid));
4606 }
4607 }
4608 else
4609 {
6efcd9a8
PA
4610 struct inferior *inf;
4611
372316f1
PA
4612 t = find_thread_ptid (event_ptid);
4613 if (t == NULL)
4614 t = add_thread (event_ptid);
4615
4616 t->stop_requested = 0;
4617 t->executing = 0;
4618 t->resumed = 0;
4619 t->control.may_range_step = 0;
4620
6efcd9a8
PA
4621 /* This may be the first time we see the inferior report
4622 a stop. */
4623 inf = find_inferior_ptid (event_ptid);
4624 if (inf->needs_setup)
4625 {
4626 switch_to_thread_no_regs (t);
4627 setup_inferior (0);
4628 }
4629
372316f1
PA
4630 if (ws.kind == TARGET_WAITKIND_STOPPED
4631 && ws.value.sig == GDB_SIGNAL_0)
4632 {
4633 /* We caught the event that we intended to catch, so
4634 there's no event pending. */
4635 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4636 t->suspend.waitstatus_pending_p = 0;
4637
4638 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4639 {
4640 /* Add it back to the step-over queue. */
4641 if (debug_infrun)
4642 {
4643 fprintf_unfiltered (gdb_stdlog,
4644 "infrun: displaced-step of %s "
4645 "canceled: adding back to the "
4646 "step-over queue\n",
4647 target_pid_to_str (t->ptid));
4648 }
4649 t->control.trap_expected = 0;
4650 thread_step_over_chain_enqueue (t);
4651 }
4652 }
4653 else
4654 {
4655 enum gdb_signal sig;
4656 struct regcache *regcache;
372316f1
PA
4657
4658 if (debug_infrun)
4659 {
4660 char *statstr;
4661
4662 statstr = target_waitstatus_to_string (&ws);
4663 fprintf_unfiltered (gdb_stdlog,
4664 "infrun: target_wait %s, saving "
4665 "status for %d.%ld.%ld\n",
4666 statstr,
4667 ptid_get_pid (t->ptid),
4668 ptid_get_lwp (t->ptid),
4669 ptid_get_tid (t->ptid));
4670 xfree (statstr);
4671 }
4672
4673 /* Record for later. */
4674 save_waitstatus (t, &ws);
4675
4676 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4677 ? ws.value.sig : GDB_SIGNAL_0);
4678
4679 if (displaced_step_fixup (t->ptid, sig) < 0)
4680 {
4681 /* Add it back to the step-over queue. */
4682 t->control.trap_expected = 0;
4683 thread_step_over_chain_enqueue (t);
4684 }
4685
4686 regcache = get_thread_regcache (t->ptid);
4687 t->suspend.stop_pc = regcache_read_pc (regcache);
4688
4689 if (debug_infrun)
4690 {
4691 fprintf_unfiltered (gdb_stdlog,
4692 "infrun: saved stop_pc=%s for %s "
4693 "(currently_stepping=%d)\n",
4694 paddress (target_gdbarch (),
4695 t->suspend.stop_pc),
4696 target_pid_to_str (t->ptid),
4697 currently_stepping (t));
4698 }
4699 }
4700 }
4701 }
4702 }
4703
4704 do_cleanups (old_chain);
4705
4706 if (debug_infrun)
4707 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4708}
4709
f4836ba9
PA
4710/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4711
4712static int
4713handle_no_resumed (struct execution_control_state *ecs)
4714{
4715 struct inferior *inf;
4716 struct thread_info *thread;
4717
3b12939d 4718 if (target_can_async_p ())
f4836ba9 4719 {
3b12939d
PA
4720 struct ui *ui;
4721 int any_sync = 0;
f4836ba9 4722
3b12939d
PA
4723 ALL_UIS (ui)
4724 {
4725 if (ui->prompt_state == PROMPT_BLOCKED)
4726 {
4727 any_sync = 1;
4728 break;
4729 }
4730 }
4731 if (!any_sync)
4732 {
4733 /* There were no unwaited-for children left in the target, but,
4734 we're not synchronously waiting for events either. Just
4735 ignore. */
4736
4737 if (debug_infrun)
4738 fprintf_unfiltered (gdb_stdlog,
4739 "infrun: TARGET_WAITKIND_NO_RESUMED "
4740 "(ignoring: bg)\n");
4741 prepare_to_wait (ecs);
4742 return 1;
4743 }
f4836ba9
PA
4744 }
4745
4746 /* Otherwise, if we were running a synchronous execution command, we
4747 may need to cancel it and give the user back the terminal.
4748
4749 In non-stop mode, the target can't tell whether we've already
4750 consumed previous stop events, so it can end up sending us a
4751 no-resumed event like so:
4752
4753 #0 - thread 1 is left stopped
4754
4755 #1 - thread 2 is resumed and hits breakpoint
4756 -> TARGET_WAITKIND_STOPPED
4757
4758 #2 - thread 3 is resumed and exits
4759 this is the last resumed thread, so
4760 -> TARGET_WAITKIND_NO_RESUMED
4761
4762 #3 - gdb processes stop for thread 2 and decides to re-resume
4763 it.
4764
4765 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4766 thread 2 is now resumed, so the event should be ignored.
4767
4768 IOW, if the stop for thread 2 doesn't end a foreground command,
4769 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4770 event. But it could be that the event meant that thread 2 itself
4771 (or whatever other thread was the last resumed thread) exited.
4772
4773 To address this we refresh the thread list and check whether we
4774 have resumed threads _now_. In the example above, this removes
4775 thread 3 from the thread list. If thread 2 was re-resumed, we
4776 ignore this event. If we find no thread resumed, then we cancel
4777 the synchronous command show "no unwaited-for " to the user. */
4778 update_thread_list ();
4779
4780 ALL_NON_EXITED_THREADS (thread)
4781 {
4782 if (thread->executing
4783 || thread->suspend.waitstatus_pending_p)
4784 {
4785 /* There were no unwaited-for children left in the target at
4786 some point, but there are now. Just ignore. */
4787 if (debug_infrun)
4788 fprintf_unfiltered (gdb_stdlog,
4789 "infrun: TARGET_WAITKIND_NO_RESUMED "
4790 "(ignoring: found resumed)\n");
4791 prepare_to_wait (ecs);
4792 return 1;
4793 }
4794 }
4795
4796 /* Note however that we may find no resumed thread because the whole
4797 process exited meanwhile (thus updating the thread list results
4798 in an empty thread list). In this case we know we'll be getting
4799 a process exit event shortly. */
4800 ALL_INFERIORS (inf)
4801 {
4802 if (inf->pid == 0)
4803 continue;
4804
4805 thread = any_live_thread_of_process (inf->pid);
4806 if (thread == NULL)
4807 {
4808 if (debug_infrun)
4809 fprintf_unfiltered (gdb_stdlog,
4810 "infrun: TARGET_WAITKIND_NO_RESUMED "
4811 "(expect process exit)\n");
4812 prepare_to_wait (ecs);
4813 return 1;
4814 }
4815 }
4816
4817 /* Go ahead and report the event. */
4818 return 0;
4819}
4820
05ba8510
PA
4821/* Given an execution control state that has been freshly filled in by
4822 an event from the inferior, figure out what it means and take
4823 appropriate action.
4824
4825 The alternatives are:
4826
22bcd14b 4827 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4828 debugger.
4829
4830 2) keep_going and return; to wait for the next event (set
4831 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4832 once). */
c906108c 4833
ec9499be 4834static void
0b6e5e10 4835handle_inferior_event_1 (struct execution_control_state *ecs)
cd0fc7c3 4836{
d6b48e9c
PA
4837 enum stop_kind stop_soon;
4838
28736962
PA
4839 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4840 {
4841 /* We had an event in the inferior, but we are not interested in
4842 handling it at this level. The lower layers have already
4843 done what needs to be done, if anything.
4844
4845 One of the possible circumstances for this is when the
4846 inferior produces output for the console. The inferior has
4847 not stopped, and we are ignoring the event. Another possible
4848 circumstance is any event which the lower level knows will be
4849 reported multiple times without an intervening resume. */
4850 if (debug_infrun)
4851 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4852 prepare_to_wait (ecs);
4853 return;
4854 }
4855
65706a29
PA
4856 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4857 {
4858 if (debug_infrun)
4859 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4860 prepare_to_wait (ecs);
4861 return;
4862 }
4863
0e5bf2a8 4864 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
4865 && handle_no_resumed (ecs))
4866 return;
0e5bf2a8 4867
1777feb0 4868 /* Cache the last pid/waitstatus. */
c32c64b7 4869 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4870
ca005067 4871 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4872 stop_stack_dummy = STOP_NONE;
ca005067 4873
0e5bf2a8
PA
4874 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4875 {
4876 /* No unwaited-for children left. IOW, all resumed children
4877 have exited. */
4878 if (debug_infrun)
4879 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4880
4881 stop_print_frame = 0;
22bcd14b 4882 stop_waiting (ecs);
0e5bf2a8
PA
4883 return;
4884 }
4885
8c90c137 4886 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4887 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4888 {
4889 ecs->event_thread = find_thread_ptid (ecs->ptid);
4890 /* If it's a new thread, add it to the thread database. */
4891 if (ecs->event_thread == NULL)
4892 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4893
4894 /* Disable range stepping. If the next step request could use a
4895 range, this will be end up re-enabled then. */
4896 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4897 }
88ed393a
JK
4898
4899 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4900 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4901
4902 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4903 reinit_frame_cache ();
4904
28736962
PA
4905 breakpoint_retire_moribund ();
4906
2b009048
DJ
4907 /* First, distinguish signals caused by the debugger from signals
4908 that have to do with the program's own actions. Note that
4909 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4910 on the operating system version. Here we detect when a SIGILL or
4911 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4912 something similar for SIGSEGV, since a SIGSEGV will be generated
4913 when we're trying to execute a breakpoint instruction on a
4914 non-executable stack. This happens for call dummy breakpoints
4915 for architectures like SPARC that place call dummies on the
4916 stack. */
2b009048 4917 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4918 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4919 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4920 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4921 {
de0a0249
UW
4922 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4923
4924 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4925 regcache_read_pc (regcache)))
4926 {
4927 if (debug_infrun)
4928 fprintf_unfiltered (gdb_stdlog,
4929 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4930 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4931 }
2b009048
DJ
4932 }
4933
28736962
PA
4934 /* Mark the non-executing threads accordingly. In all-stop, all
4935 threads of all processes are stopped when we get any event
e1316e60 4936 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4937 {
4938 ptid_t mark_ptid;
4939
fbea99ea 4940 if (!target_is_non_stop_p ())
372316f1
PA
4941 mark_ptid = minus_one_ptid;
4942 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4943 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4944 {
4945 /* If we're handling a process exit in non-stop mode, even
4946 though threads haven't been deleted yet, one would think
4947 that there is nothing to do, as threads of the dead process
4948 will be soon deleted, and threads of any other process were
4949 left running. However, on some targets, threads survive a
4950 process exit event. E.g., for the "checkpoint" command,
4951 when the current checkpoint/fork exits, linux-fork.c
4952 automatically switches to another fork from within
4953 target_mourn_inferior, by associating the same
4954 inferior/thread to another fork. We haven't mourned yet at
4955 this point, but we must mark any threads left in the
4956 process as not-executing so that finish_thread_state marks
4957 them stopped (in the user's perspective) if/when we present
4958 the stop to the user. */
4959 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4960 }
4961 else
4962 mark_ptid = ecs->ptid;
4963
4964 set_executing (mark_ptid, 0);
4965
4966 /* Likewise the resumed flag. */
4967 set_resumed (mark_ptid, 0);
4968 }
8c90c137 4969
488f131b
JB
4970 switch (ecs->ws.kind)
4971 {
4972 case TARGET_WAITKIND_LOADED:
527159b7 4973 if (debug_infrun)
8a9de0e4 4974 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
5c09a2c5
PA
4975 if (!ptid_equal (ecs->ptid, inferior_ptid))
4976 context_switch (ecs->ptid);
b0f4b84b
DJ
4977 /* Ignore gracefully during startup of the inferior, as it might
4978 be the shell which has just loaded some objects, otherwise
4979 add the symbols for the newly loaded objects. Also ignore at
4980 the beginning of an attach or remote session; we will query
4981 the full list of libraries once the connection is
4982 established. */
4f5d7f63
PA
4983
4984 stop_soon = get_inferior_stop_soon (ecs->ptid);
c0236d92 4985 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4986 {
edcc5120
TT
4987 struct regcache *regcache;
4988
edcc5120
TT
4989 regcache = get_thread_regcache (ecs->ptid);
4990
4991 handle_solib_event ();
4992
4993 ecs->event_thread->control.stop_bpstat
4994 = bpstat_stop_status (get_regcache_aspace (regcache),
4995 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4996
ce12b012 4997 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4998 {
4999 /* A catchpoint triggered. */
94c57d6a
PA
5000 process_event_stop_test (ecs);
5001 return;
edcc5120 5002 }
488f131b 5003
b0f4b84b
DJ
5004 /* If requested, stop when the dynamic linker notifies
5005 gdb of events. This allows the user to get control
5006 and place breakpoints in initializer routines for
5007 dynamically loaded objects (among other things). */
a493e3e2 5008 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
5009 if (stop_on_solib_events)
5010 {
55409f9d
DJ
5011 /* Make sure we print "Stopped due to solib-event" in
5012 normal_stop. */
5013 stop_print_frame = 1;
5014
22bcd14b 5015 stop_waiting (ecs);
b0f4b84b
DJ
5016 return;
5017 }
488f131b 5018 }
b0f4b84b
DJ
5019
5020 /* If we are skipping through a shell, or through shared library
5021 loading that we aren't interested in, resume the program. If
5c09a2c5 5022 we're running the program normally, also resume. */
b0f4b84b
DJ
5023 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5024 {
74960c60
VP
5025 /* Loading of shared libraries might have changed breakpoint
5026 addresses. Make sure new breakpoints are inserted. */
a25a5a45 5027 if (stop_soon == NO_STOP_QUIETLY)
74960c60 5028 insert_breakpoints ();
64ce06e4 5029 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
5030 prepare_to_wait (ecs);
5031 return;
5032 }
5033
5c09a2c5
PA
5034 /* But stop if we're attaching or setting up a remote
5035 connection. */
5036 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5037 || stop_soon == STOP_QUIETLY_REMOTE)
5038 {
5039 if (debug_infrun)
5040 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 5041 stop_waiting (ecs);
5c09a2c5
PA
5042 return;
5043 }
5044
5045 internal_error (__FILE__, __LINE__,
5046 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 5047
488f131b 5048 case TARGET_WAITKIND_SPURIOUS:
527159b7 5049 if (debug_infrun)
8a9de0e4 5050 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 5051 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 5052 context_switch (ecs->ptid);
64ce06e4 5053 resume (GDB_SIGNAL_0);
488f131b
JB
5054 prepare_to_wait (ecs);
5055 return;
c5aa993b 5056
65706a29
PA
5057 case TARGET_WAITKIND_THREAD_CREATED:
5058 if (debug_infrun)
5059 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
5060 if (!ptid_equal (ecs->ptid, inferior_ptid))
5061 context_switch (ecs->ptid);
5062 if (!switch_back_to_stepped_thread (ecs))
5063 keep_going (ecs);
5064 return;
5065
488f131b 5066 case TARGET_WAITKIND_EXITED:
940c3c06 5067 case TARGET_WAITKIND_SIGNALLED:
527159b7 5068 if (debug_infrun)
940c3c06
PA
5069 {
5070 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5071 fprintf_unfiltered (gdb_stdlog,
5072 "infrun: TARGET_WAITKIND_EXITED\n");
5073 else
5074 fprintf_unfiltered (gdb_stdlog,
5075 "infrun: TARGET_WAITKIND_SIGNALLED\n");
5076 }
5077
fb66883a 5078 inferior_ptid = ecs->ptid;
c9657e70 5079 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
5080 set_current_program_space (current_inferior ()->pspace);
5081 handle_vfork_child_exec_or_exit (0);
1777feb0 5082 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 5083
0c557179
SDJ
5084 /* Clearing any previous state of convenience variables. */
5085 clear_exit_convenience_vars ();
5086
940c3c06
PA
5087 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5088 {
5089 /* Record the exit code in the convenience variable $_exitcode, so
5090 that the user can inspect this again later. */
5091 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5092 (LONGEST) ecs->ws.value.integer);
5093
5094 /* Also record this in the inferior itself. */
5095 current_inferior ()->has_exit_code = 1;
5096 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 5097
98eb56a4
PA
5098 /* Support the --return-child-result option. */
5099 return_child_result_value = ecs->ws.value.integer;
5100
fd664c91 5101 observer_notify_exited (ecs->ws.value.integer);
940c3c06
PA
5102 }
5103 else
0c557179
SDJ
5104 {
5105 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5106 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5107
5108 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5109 {
5110 /* Set the value of the internal variable $_exitsignal,
5111 which holds the signal uncaught by the inferior. */
5112 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5113 gdbarch_gdb_signal_to_target (gdbarch,
5114 ecs->ws.value.sig));
5115 }
5116 else
5117 {
5118 /* We don't have access to the target's method used for
5119 converting between signal numbers (GDB's internal
5120 representation <-> target's representation).
5121 Therefore, we cannot do a good job at displaying this
5122 information to the user. It's better to just warn
5123 her about it (if infrun debugging is enabled), and
5124 give up. */
5125 if (debug_infrun)
5126 fprintf_filtered (gdb_stdlog, _("\
5127Cannot fill $_exitsignal with the correct signal number.\n"));
5128 }
5129
fd664c91 5130 observer_notify_signal_exited (ecs->ws.value.sig);
0c557179 5131 }
8cf64490 5132
488f131b
JB
5133 gdb_flush (gdb_stdout);
5134 target_mourn_inferior ();
488f131b 5135 stop_print_frame = 0;
22bcd14b 5136 stop_waiting (ecs);
488f131b 5137 return;
c5aa993b 5138
488f131b 5139 /* The following are the only cases in which we keep going;
1777feb0 5140 the above cases end in a continue or goto. */
488f131b 5141 case TARGET_WAITKIND_FORKED:
deb3b17b 5142 case TARGET_WAITKIND_VFORKED:
527159b7 5143 if (debug_infrun)
fed708ed
PA
5144 {
5145 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5146 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5147 else
5148 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5149 }
c906108c 5150
e2d96639
YQ
5151 /* Check whether the inferior is displaced stepping. */
5152 {
5153 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5154 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e2d96639
YQ
5155
5156 /* If checking displaced stepping is supported, and thread
5157 ecs->ptid is displaced stepping. */
c0987663 5158 if (displaced_step_in_progress_thread (ecs->ptid))
e2d96639
YQ
5159 {
5160 struct inferior *parent_inf
c9657e70 5161 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
5162 struct regcache *child_regcache;
5163 CORE_ADDR parent_pc;
5164
5165 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5166 indicating that the displaced stepping of syscall instruction
5167 has been done. Perform cleanup for parent process here. Note
5168 that this operation also cleans up the child process for vfork,
5169 because their pages are shared. */
a493e3e2 5170 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
c2829269
PA
5171 /* Start a new step-over in another thread if there's one
5172 that needs it. */
5173 start_step_over ();
e2d96639
YQ
5174
5175 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5176 {
c0987663
YQ
5177 struct displaced_step_inferior_state *displaced
5178 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
5179
e2d96639
YQ
5180 /* Restore scratch pad for child process. */
5181 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5182 }
5183
5184 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5185 the child's PC is also within the scratchpad. Set the child's PC
5186 to the parent's PC value, which has already been fixed up.
5187 FIXME: we use the parent's aspace here, although we're touching
5188 the child, because the child hasn't been added to the inferior
5189 list yet at this point. */
5190
5191 child_regcache
5192 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5193 gdbarch,
5194 parent_inf->aspace);
5195 /* Read PC value of parent process. */
5196 parent_pc = regcache_read_pc (regcache);
5197
5198 if (debug_displaced)
5199 fprintf_unfiltered (gdb_stdlog,
5200 "displaced: write child pc from %s to %s\n",
5201 paddress (gdbarch,
5202 regcache_read_pc (child_regcache)),
5203 paddress (gdbarch, parent_pc));
5204
5205 regcache_write_pc (child_regcache, parent_pc);
5206 }
5207 }
5208
5a2901d9 5209 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 5210 context_switch (ecs->ptid);
5a2901d9 5211
b242c3c2
PA
5212 /* Immediately detach breakpoints from the child before there's
5213 any chance of letting the user delete breakpoints from the
5214 breakpoint lists. If we don't do this early, it's easy to
5215 leave left over traps in the child, vis: "break foo; catch
5216 fork; c; <fork>; del; c; <child calls foo>". We only follow
5217 the fork on the last `continue', and by that time the
5218 breakpoint at "foo" is long gone from the breakpoint table.
5219 If we vforked, then we don't need to unpatch here, since both
5220 parent and child are sharing the same memory pages; we'll
5221 need to unpatch at follow/detach time instead to be certain
5222 that new breakpoints added between catchpoint hit time and
5223 vfork follow are detached. */
5224 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5225 {
b242c3c2
PA
5226 /* This won't actually modify the breakpoint list, but will
5227 physically remove the breakpoints from the child. */
d80ee84f 5228 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5229 }
5230
34b7e8a6 5231 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5232
e58b0e63
PA
5233 /* In case the event is caught by a catchpoint, remember that
5234 the event is to be followed at the next resume of the thread,
5235 and not immediately. */
5236 ecs->event_thread->pending_follow = ecs->ws;
5237
fb14de7b 5238 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 5239
16c381f0 5240 ecs->event_thread->control.stop_bpstat
6c95b8df 5241 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 5242 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 5243
ce12b012
PA
5244 /* If no catchpoint triggered for this, then keep going. Note
5245 that we're interested in knowing the bpstat actually causes a
5246 stop, not just if it may explain the signal. Software
5247 watchpoints, for example, always appear in the bpstat. */
5248 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5249 {
6c95b8df
PA
5250 ptid_t parent;
5251 ptid_t child;
e58b0e63 5252 int should_resume;
3e43a32a
MS
5253 int follow_child
5254 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5255
a493e3e2 5256 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
5257
5258 should_resume = follow_fork ();
5259
6c95b8df
PA
5260 parent = ecs->ptid;
5261 child = ecs->ws.value.related_pid;
5262
a2077e25
PA
5263 /* At this point, the parent is marked running, and the
5264 child is marked stopped. */
5265
5266 /* If not resuming the parent, mark it stopped. */
5267 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5268 set_running (parent, 0);
5269
5270 /* If resuming the child, mark it running. */
5271 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5272 set_running (child, 1);
5273
6c95b8df 5274 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5275 if (!detach_fork && (non_stop
5276 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5277 {
5278 if (follow_child)
5279 switch_to_thread (parent);
5280 else
5281 switch_to_thread (child);
5282
5283 ecs->event_thread = inferior_thread ();
5284 ecs->ptid = inferior_ptid;
5285 keep_going (ecs);
5286 }
5287
5288 if (follow_child)
5289 switch_to_thread (child);
5290 else
5291 switch_to_thread (parent);
5292
e58b0e63
PA
5293 ecs->event_thread = inferior_thread ();
5294 ecs->ptid = inferior_ptid;
5295
5296 if (should_resume)
5297 keep_going (ecs);
5298 else
22bcd14b 5299 stop_waiting (ecs);
04e68871
DJ
5300 return;
5301 }
94c57d6a
PA
5302 process_event_stop_test (ecs);
5303 return;
488f131b 5304
6c95b8df
PA
5305 case TARGET_WAITKIND_VFORK_DONE:
5306 /* Done with the shared memory region. Re-insert breakpoints in
5307 the parent, and keep going. */
5308
5309 if (debug_infrun)
3e43a32a
MS
5310 fprintf_unfiltered (gdb_stdlog,
5311 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
5312
5313 if (!ptid_equal (ecs->ptid, inferior_ptid))
5314 context_switch (ecs->ptid);
5315
5316 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5317 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
5318 /* This also takes care of reinserting breakpoints in the
5319 previously locked inferior. */
5320 keep_going (ecs);
5321 return;
5322
488f131b 5323 case TARGET_WAITKIND_EXECD:
527159b7 5324 if (debug_infrun)
fc5261f2 5325 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 5326
5a2901d9 5327 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 5328 context_switch (ecs->ptid);
5a2901d9 5329
fb14de7b 5330 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 5331
6c95b8df
PA
5332 /* Do whatever is necessary to the parent branch of the vfork. */
5333 handle_vfork_child_exec_or_exit (1);
5334
795e548f
PA
5335 /* This causes the eventpoints and symbol table to be reset.
5336 Must do this now, before trying to determine whether to
5337 stop. */
71b43ef8 5338 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5339
17d8546e
DB
5340 /* In follow_exec we may have deleted the original thread and
5341 created a new one. Make sure that the event thread is the
5342 execd thread for that case (this is a nop otherwise). */
5343 ecs->event_thread = inferior_thread ();
5344
16c381f0 5345 ecs->event_thread->control.stop_bpstat
6c95b8df 5346 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 5347 stop_pc, ecs->ptid, &ecs->ws);
795e548f 5348
71b43ef8
PA
5349 /* Note that this may be referenced from inside
5350 bpstat_stop_status above, through inferior_has_execd. */
5351 xfree (ecs->ws.value.execd_pathname);
5352 ecs->ws.value.execd_pathname = NULL;
5353
04e68871 5354 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5355 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5356 {
a493e3e2 5357 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5358 keep_going (ecs);
5359 return;
5360 }
94c57d6a
PA
5361 process_event_stop_test (ecs);
5362 return;
488f131b 5363
b4dc5ffa
MK
5364 /* Be careful not to try to gather much state about a thread
5365 that's in a syscall. It's frequently a losing proposition. */
488f131b 5366 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 5367 if (debug_infrun)
3e43a32a
MS
5368 fprintf_unfiltered (gdb_stdlog,
5369 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 5370 /* Getting the current syscall number. */
94c57d6a
PA
5371 if (handle_syscall_event (ecs) == 0)
5372 process_event_stop_test (ecs);
5373 return;
c906108c 5374
488f131b
JB
5375 /* Before examining the threads further, step this thread to
5376 get it entirely out of the syscall. (We get notice of the
5377 event when the thread is just on the verge of exiting a
5378 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5379 into user code.) */
488f131b 5380 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 5381 if (debug_infrun)
3e43a32a
MS
5382 fprintf_unfiltered (gdb_stdlog,
5383 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
5384 if (handle_syscall_event (ecs) == 0)
5385 process_event_stop_test (ecs);
5386 return;
c906108c 5387
488f131b 5388 case TARGET_WAITKIND_STOPPED:
527159b7 5389 if (debug_infrun)
8a9de0e4 5390 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 5391 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
4f5d7f63
PA
5392 handle_signal_stop (ecs);
5393 return;
c906108c 5394
b2175913 5395 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
5396 if (debug_infrun)
5397 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 5398 /* Reverse execution: target ran out of history info. */
eab402df 5399
d1988021
MM
5400 /* Switch to the stopped thread. */
5401 if (!ptid_equal (ecs->ptid, inferior_ptid))
5402 context_switch (ecs->ptid);
5403 if (debug_infrun)
5404 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5405
34b7e8a6 5406 delete_just_stopped_threads_single_step_breakpoints ();
d1988021 5407 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
fd664c91 5408 observer_notify_no_history ();
22bcd14b 5409 stop_waiting (ecs);
b2175913 5410 return;
488f131b 5411 }
4f5d7f63
PA
5412}
5413
0b6e5e10
JB
5414/* A wrapper around handle_inferior_event_1, which also makes sure
5415 that all temporary struct value objects that were created during
5416 the handling of the event get deleted at the end. */
5417
5418static void
5419handle_inferior_event (struct execution_control_state *ecs)
5420{
5421 struct value *mark = value_mark ();
5422
5423 handle_inferior_event_1 (ecs);
5424 /* Purge all temporary values created during the event handling,
5425 as it could be a long time before we return to the command level
5426 where such values would otherwise be purged. */
5427 value_free_to_mark (mark);
5428}
5429
372316f1
PA
5430/* Restart threads back to what they were trying to do back when we
5431 paused them for an in-line step-over. The EVENT_THREAD thread is
5432 ignored. */
4d9d9d04
PA
5433
5434static void
372316f1
PA
5435restart_threads (struct thread_info *event_thread)
5436{
5437 struct thread_info *tp;
372316f1
PA
5438
5439 /* In case the instruction just stepped spawned a new thread. */
5440 update_thread_list ();
5441
5442 ALL_NON_EXITED_THREADS (tp)
5443 {
5444 if (tp == event_thread)
5445 {
5446 if (debug_infrun)
5447 fprintf_unfiltered (gdb_stdlog,
5448 "infrun: restart threads: "
5449 "[%s] is event thread\n",
5450 target_pid_to_str (tp->ptid));
5451 continue;
5452 }
5453
5454 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5455 {
5456 if (debug_infrun)
5457 fprintf_unfiltered (gdb_stdlog,
5458 "infrun: restart threads: "
5459 "[%s] not meant to be running\n",
5460 target_pid_to_str (tp->ptid));
5461 continue;
5462 }
5463
5464 if (tp->resumed)
5465 {
5466 if (debug_infrun)
5467 fprintf_unfiltered (gdb_stdlog,
5468 "infrun: restart threads: [%s] resumed\n",
5469 target_pid_to_str (tp->ptid));
5470 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5471 continue;
5472 }
5473
5474 if (thread_is_in_step_over_chain (tp))
5475 {
5476 if (debug_infrun)
5477 fprintf_unfiltered (gdb_stdlog,
5478 "infrun: restart threads: "
5479 "[%s] needs step-over\n",
5480 target_pid_to_str (tp->ptid));
5481 gdb_assert (!tp->resumed);
5482 continue;
5483 }
5484
5485
5486 if (tp->suspend.waitstatus_pending_p)
5487 {
5488 if (debug_infrun)
5489 fprintf_unfiltered (gdb_stdlog,
5490 "infrun: restart threads: "
5491 "[%s] has pending status\n",
5492 target_pid_to_str (tp->ptid));
5493 tp->resumed = 1;
5494 continue;
5495 }
5496
5497 /* If some thread needs to start a step-over at this point, it
5498 should still be in the step-over queue, and thus skipped
5499 above. */
5500 if (thread_still_needs_step_over (tp))
5501 {
5502 internal_error (__FILE__, __LINE__,
5503 "thread [%s] needs a step-over, but not in "
5504 "step-over queue\n",
5505 target_pid_to_str (tp->ptid));
5506 }
5507
5508 if (currently_stepping (tp))
5509 {
5510 if (debug_infrun)
5511 fprintf_unfiltered (gdb_stdlog,
5512 "infrun: restart threads: [%s] was stepping\n",
5513 target_pid_to_str (tp->ptid));
5514 keep_going_stepped_thread (tp);
5515 }
5516 else
5517 {
5518 struct execution_control_state ecss;
5519 struct execution_control_state *ecs = &ecss;
5520
5521 if (debug_infrun)
5522 fprintf_unfiltered (gdb_stdlog,
5523 "infrun: restart threads: [%s] continuing\n",
5524 target_pid_to_str (tp->ptid));
5525 reset_ecs (ecs, tp);
5526 switch_to_thread (tp->ptid);
5527 keep_going_pass_signal (ecs);
5528 }
5529 }
5530}
5531
5532/* Callback for iterate_over_threads. Find a resumed thread that has
5533 a pending waitstatus. */
5534
5535static int
5536resumed_thread_with_pending_status (struct thread_info *tp,
5537 void *arg)
5538{
5539 return (tp->resumed
5540 && tp->suspend.waitstatus_pending_p);
5541}
5542
5543/* Called when we get an event that may finish an in-line or
5544 out-of-line (displaced stepping) step-over started previously.
5545 Return true if the event is processed and we should go back to the
5546 event loop; false if the caller should continue processing the
5547 event. */
5548
5549static int
4d9d9d04
PA
5550finish_step_over (struct execution_control_state *ecs)
5551{
372316f1
PA
5552 int had_step_over_info;
5553
4d9d9d04
PA
5554 displaced_step_fixup (ecs->ptid,
5555 ecs->event_thread->suspend.stop_signal);
5556
372316f1
PA
5557 had_step_over_info = step_over_info_valid_p ();
5558
5559 if (had_step_over_info)
4d9d9d04
PA
5560 {
5561 /* If we're stepping over a breakpoint with all threads locked,
5562 then only the thread that was stepped should be reporting
5563 back an event. */
5564 gdb_assert (ecs->event_thread->control.trap_expected);
5565
5566 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5567 clear_step_over_info ();
5568 }
5569
fbea99ea 5570 if (!target_is_non_stop_p ())
372316f1 5571 return 0;
4d9d9d04
PA
5572
5573 /* Start a new step-over in another thread if there's one that
5574 needs it. */
5575 start_step_over ();
372316f1
PA
5576
5577 /* If we were stepping over a breakpoint before, and haven't started
5578 a new in-line step-over sequence, then restart all other threads
5579 (except the event thread). We can't do this in all-stop, as then
5580 e.g., we wouldn't be able to issue any other remote packet until
5581 these other threads stop. */
5582 if (had_step_over_info && !step_over_info_valid_p ())
5583 {
5584 struct thread_info *pending;
5585
5586 /* If we only have threads with pending statuses, the restart
5587 below won't restart any thread and so nothing re-inserts the
5588 breakpoint we just stepped over. But we need it inserted
5589 when we later process the pending events, otherwise if
5590 another thread has a pending event for this breakpoint too,
5591 we'd discard its event (because the breakpoint that
5592 originally caused the event was no longer inserted). */
5593 context_switch (ecs->ptid);
5594 insert_breakpoints ();
5595
5596 restart_threads (ecs->event_thread);
5597
5598 /* If we have events pending, go through handle_inferior_event
5599 again, picking up a pending event at random. This avoids
5600 thread starvation. */
5601
5602 /* But not if we just stepped over a watchpoint in order to let
5603 the instruction execute so we can evaluate its expression.
5604 The set of watchpoints that triggered is recorded in the
5605 breakpoint objects themselves (see bp->watchpoint_triggered).
5606 If we processed another event first, that other event could
5607 clobber this info. */
5608 if (ecs->event_thread->stepping_over_watchpoint)
5609 return 0;
5610
5611 pending = iterate_over_threads (resumed_thread_with_pending_status,
5612 NULL);
5613 if (pending != NULL)
5614 {
5615 struct thread_info *tp = ecs->event_thread;
5616 struct regcache *regcache;
5617
5618 if (debug_infrun)
5619 {
5620 fprintf_unfiltered (gdb_stdlog,
5621 "infrun: found resumed threads with "
5622 "pending events, saving status\n");
5623 }
5624
5625 gdb_assert (pending != tp);
5626
5627 /* Record the event thread's event for later. */
5628 save_waitstatus (tp, &ecs->ws);
5629 /* This was cleared early, by handle_inferior_event. Set it
5630 so this pending event is considered by
5631 do_target_wait. */
5632 tp->resumed = 1;
5633
5634 gdb_assert (!tp->executing);
5635
5636 regcache = get_thread_regcache (tp->ptid);
5637 tp->suspend.stop_pc = regcache_read_pc (regcache);
5638
5639 if (debug_infrun)
5640 {
5641 fprintf_unfiltered (gdb_stdlog,
5642 "infrun: saved stop_pc=%s for %s "
5643 "(currently_stepping=%d)\n",
5644 paddress (target_gdbarch (),
5645 tp->suspend.stop_pc),
5646 target_pid_to_str (tp->ptid),
5647 currently_stepping (tp));
5648 }
5649
5650 /* This in-line step-over finished; clear this so we won't
5651 start a new one. This is what handle_signal_stop would
5652 do, if we returned false. */
5653 tp->stepping_over_breakpoint = 0;
5654
5655 /* Wake up the event loop again. */
5656 mark_async_event_handler (infrun_async_inferior_event_token);
5657
5658 prepare_to_wait (ecs);
5659 return 1;
5660 }
5661 }
5662
5663 return 0;
4d9d9d04
PA
5664}
5665
4f5d7f63
PA
5666/* Come here when the program has stopped with a signal. */
5667
5668static void
5669handle_signal_stop (struct execution_control_state *ecs)
5670{
5671 struct frame_info *frame;
5672 struct gdbarch *gdbarch;
5673 int stopped_by_watchpoint;
5674 enum stop_kind stop_soon;
5675 int random_signal;
c906108c 5676
f0407826
DE
5677 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5678
5679 /* Do we need to clean up the state of a thread that has
5680 completed a displaced single-step? (Doing so usually affects
5681 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5682 if (finish_step_over (ecs))
5683 return;
f0407826
DE
5684
5685 /* If we either finished a single-step or hit a breakpoint, but
5686 the user wanted this thread to be stopped, pretend we got a
5687 SIG0 (generic unsignaled stop). */
5688 if (ecs->event_thread->stop_requested
5689 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5690 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5691
515630c5 5692 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 5693
527159b7 5694 if (debug_infrun)
237fc4c9 5695 {
5af949e3
UW
5696 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5697 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
5698 struct cleanup *old_chain = save_inferior_ptid ();
5699
5700 inferior_ptid = ecs->ptid;
5af949e3
UW
5701
5702 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5703 paddress (gdbarch, stop_pc));
d92524f1 5704 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5705 {
5706 CORE_ADDR addr;
abbb1732 5707
237fc4c9
PA
5708 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5709
5710 if (target_stopped_data_address (&current_target, &addr))
5711 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5712 "infrun: stopped data address = %s\n",
5713 paddress (gdbarch, addr));
237fc4c9
PA
5714 else
5715 fprintf_unfiltered (gdb_stdlog,
5716 "infrun: (no data address available)\n");
5717 }
7f82dfc7
JK
5718
5719 do_cleanups (old_chain);
237fc4c9 5720 }
527159b7 5721
36fa8042
PA
5722 /* This is originated from start_remote(), start_inferior() and
5723 shared libraries hook functions. */
5724 stop_soon = get_inferior_stop_soon (ecs->ptid);
5725 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5726 {
5727 if (!ptid_equal (ecs->ptid, inferior_ptid))
5728 context_switch (ecs->ptid);
5729 if (debug_infrun)
5730 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5731 stop_print_frame = 1;
22bcd14b 5732 stop_waiting (ecs);
36fa8042
PA
5733 return;
5734 }
5735
36fa8042
PA
5736 /* This originates from attach_command(). We need to overwrite
5737 the stop_signal here, because some kernels don't ignore a
5738 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5739 See more comments in inferior.h. On the other hand, if we
5740 get a non-SIGSTOP, report it to the user - assume the backend
5741 will handle the SIGSTOP if it should show up later.
5742
5743 Also consider that the attach is complete when we see a
5744 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5745 target extended-remote report it instead of a SIGSTOP
5746 (e.g. gdbserver). We already rely on SIGTRAP being our
5747 signal, so this is no exception.
5748
5749 Also consider that the attach is complete when we see a
5750 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5751 the target to stop all threads of the inferior, in case the
5752 low level attach operation doesn't stop them implicitly. If
5753 they weren't stopped implicitly, then the stub will report a
5754 GDB_SIGNAL_0, meaning: stopped for no particular reason
5755 other than GDB's request. */
5756 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5757 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5758 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5759 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5760 {
5761 stop_print_frame = 1;
22bcd14b 5762 stop_waiting (ecs);
36fa8042
PA
5763 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5764 return;
5765 }
5766
488f131b 5767 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
5768 so, then switch to that thread. */
5769 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 5770 {
527159b7 5771 if (debug_infrun)
8a9de0e4 5772 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5773
0d1e5fa7 5774 context_switch (ecs->ptid);
c5aa993b 5775
9a4105ab 5776 if (deprecated_context_hook)
5d5658a1 5777 deprecated_context_hook (ptid_to_global_thread_id (ecs->ptid));
488f131b 5778 }
c906108c 5779
568d6575
UW
5780 /* At this point, get hold of the now-current thread's frame. */
5781 frame = get_current_frame ();
5782 gdbarch = get_frame_arch (frame);
5783
2adfaa28 5784 /* Pull the single step breakpoints out of the target. */
af48d08f 5785 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5786 {
af48d08f
PA
5787 struct regcache *regcache;
5788 struct address_space *aspace;
5789 CORE_ADDR pc;
2adfaa28 5790
af48d08f
PA
5791 regcache = get_thread_regcache (ecs->ptid);
5792 aspace = get_regcache_aspace (regcache);
5793 pc = regcache_read_pc (regcache);
34b7e8a6 5794
af48d08f
PA
5795 /* However, before doing so, if this single-step breakpoint was
5796 actually for another thread, set this thread up for moving
5797 past it. */
5798 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5799 aspace, pc))
5800 {
5801 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5802 {
5803 if (debug_infrun)
5804 {
5805 fprintf_unfiltered (gdb_stdlog,
af48d08f 5806 "infrun: [%s] hit another thread's "
34b7e8a6
PA
5807 "single-step breakpoint\n",
5808 target_pid_to_str (ecs->ptid));
2adfaa28 5809 }
af48d08f
PA
5810 ecs->hit_singlestep_breakpoint = 1;
5811 }
5812 }
5813 else
5814 {
5815 if (debug_infrun)
5816 {
5817 fprintf_unfiltered (gdb_stdlog,
5818 "infrun: [%s] hit its "
5819 "single-step breakpoint\n",
5820 target_pid_to_str (ecs->ptid));
2adfaa28
PA
5821 }
5822 }
488f131b 5823 }
af48d08f 5824 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5825
963f9c80
PA
5826 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5827 && ecs->event_thread->control.trap_expected
5828 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5829 stopped_by_watchpoint = 0;
5830 else
5831 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5832
5833 /* If necessary, step over this watchpoint. We'll be back to display
5834 it in a moment. */
5835 if (stopped_by_watchpoint
d92524f1 5836 && (target_have_steppable_watchpoint
568d6575 5837 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5838 {
488f131b
JB
5839 /* At this point, we are stopped at an instruction which has
5840 attempted to write to a piece of memory under control of
5841 a watchpoint. The instruction hasn't actually executed
5842 yet. If we were to evaluate the watchpoint expression
5843 now, we would get the old value, and therefore no change
5844 would seem to have occurred.
5845
5846 In order to make watchpoints work `right', we really need
5847 to complete the memory write, and then evaluate the
d983da9c
DJ
5848 watchpoint expression. We do this by single-stepping the
5849 target.
5850
7f89fd65 5851 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5852 it. For example, the PA can (with some kernel cooperation)
5853 single step over a watchpoint without disabling the watchpoint.
5854
5855 It is far more common to need to disable a watchpoint to step
5856 the inferior over it. If we have non-steppable watchpoints,
5857 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5858 disable all watchpoints.
5859
5860 Any breakpoint at PC must also be stepped over -- if there's
5861 one, it will have already triggered before the watchpoint
5862 triggered, and we either already reported it to the user, or
5863 it didn't cause a stop and we called keep_going. In either
5864 case, if there was a breakpoint at PC, we must be trying to
5865 step past it. */
5866 ecs->event_thread->stepping_over_watchpoint = 1;
5867 keep_going (ecs);
488f131b
JB
5868 return;
5869 }
5870
4e1c45ea 5871 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5872 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5873 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5874 ecs->event_thread->control.stop_step = 0;
488f131b 5875 stop_print_frame = 1;
488f131b 5876 stopped_by_random_signal = 0;
488f131b 5877
edb3359d
DJ
5878 /* Hide inlined functions starting here, unless we just performed stepi or
5879 nexti. After stepi and nexti, always show the innermost frame (not any
5880 inline function call sites). */
16c381f0 5881 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
5882 {
5883 struct address_space *aspace =
5884 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5885
5886 /* skip_inline_frames is expensive, so we avoid it if we can
5887 determine that the address is one where functions cannot have
5888 been inlined. This improves performance with inferiors that
5889 load a lot of shared libraries, because the solib event
5890 breakpoint is defined as the address of a function (i.e. not
5891 inline). Note that we have to check the previous PC as well
5892 as the current one to catch cases when we have just
5893 single-stepped off a breakpoint prior to reinstating it.
5894 Note that we're assuming that the code we single-step to is
5895 not inline, but that's not definitive: there's nothing
5896 preventing the event breakpoint function from containing
5897 inlined code, and the single-step ending up there. If the
5898 user had set a breakpoint on that inlined code, the missing
5899 skip_inline_frames call would break things. Fortunately
5900 that's an extremely unlikely scenario. */
09ac7c10 5901 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
5902 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5903 && ecs->event_thread->control.trap_expected
5904 && pc_at_non_inline_function (aspace,
5905 ecs->event_thread->prev_pc,
09ac7c10 5906 &ecs->ws)))
1c5a993e
MR
5907 {
5908 skip_inline_frames (ecs->ptid);
5909
5910 /* Re-fetch current thread's frame in case that invalidated
5911 the frame cache. */
5912 frame = get_current_frame ();
5913 gdbarch = get_frame_arch (frame);
5914 }
0574c78f 5915 }
edb3359d 5916
a493e3e2 5917 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5918 && ecs->event_thread->control.trap_expected
568d6575 5919 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5920 && currently_stepping (ecs->event_thread))
3352ef37 5921 {
b50d7442 5922 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5923 also on an instruction that needs to be stepped multiple
1777feb0 5924 times before it's been fully executing. E.g., architectures
3352ef37
AC
5925 with a delay slot. It needs to be stepped twice, once for
5926 the instruction and once for the delay slot. */
5927 int step_through_delay
568d6575 5928 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5929
527159b7 5930 if (debug_infrun && step_through_delay)
8a9de0e4 5931 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5932 if (ecs->event_thread->control.step_range_end == 0
5933 && step_through_delay)
3352ef37
AC
5934 {
5935 /* The user issued a continue when stopped at a breakpoint.
5936 Set up for another trap and get out of here. */
4e1c45ea 5937 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5938 keep_going (ecs);
5939 return;
5940 }
5941 else if (step_through_delay)
5942 {
5943 /* The user issued a step when stopped at a breakpoint.
5944 Maybe we should stop, maybe we should not - the delay
5945 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5946 case, don't decide that here, just set
5947 ecs->stepping_over_breakpoint, making sure we
5948 single-step again before breakpoints are re-inserted. */
4e1c45ea 5949 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5950 }
5951 }
5952
ab04a2af
TT
5953 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5954 handles this event. */
5955 ecs->event_thread->control.stop_bpstat
5956 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5957 stop_pc, ecs->ptid, &ecs->ws);
db82e815 5958
ab04a2af
TT
5959 /* Following in case break condition called a
5960 function. */
5961 stop_print_frame = 1;
73dd234f 5962
ab04a2af
TT
5963 /* This is where we handle "moribund" watchpoints. Unlike
5964 software breakpoints traps, hardware watchpoint traps are
5965 always distinguishable from random traps. If no high-level
5966 watchpoint is associated with the reported stop data address
5967 anymore, then the bpstat does not explain the signal ---
5968 simply make sure to ignore it if `stopped_by_watchpoint' is
5969 set. */
5970
5971 if (debug_infrun
5972 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5973 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5974 GDB_SIGNAL_TRAP)
ab04a2af
TT
5975 && stopped_by_watchpoint)
5976 fprintf_unfiltered (gdb_stdlog,
5977 "infrun: no user watchpoint explains "
5978 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5979
bac7d97b 5980 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5981 at one stage in the past included checks for an inferior
5982 function call's call dummy's return breakpoint. The original
5983 comment, that went with the test, read:
03cebad2 5984
ab04a2af
TT
5985 ``End of a stack dummy. Some systems (e.g. Sony news) give
5986 another signal besides SIGTRAP, so check here as well as
5987 above.''
73dd234f 5988
ab04a2af
TT
5989 If someone ever tries to get call dummys on a
5990 non-executable stack to work (where the target would stop
5991 with something like a SIGSEGV), then those tests might need
5992 to be re-instated. Given, however, that the tests were only
5993 enabled when momentary breakpoints were not being used, I
5994 suspect that it won't be the case.
488f131b 5995
ab04a2af
TT
5996 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5997 be necessary for call dummies on a non-executable stack on
5998 SPARC. */
488f131b 5999
bac7d97b 6000 /* See if the breakpoints module can explain the signal. */
47591c29
PA
6001 random_signal
6002 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6003 ecs->event_thread->suspend.stop_signal);
bac7d97b 6004
1cf4d951
PA
6005 /* Maybe this was a trap for a software breakpoint that has since
6006 been removed. */
6007 if (random_signal && target_stopped_by_sw_breakpoint ())
6008 {
6009 if (program_breakpoint_here_p (gdbarch, stop_pc))
6010 {
6011 struct regcache *regcache;
6012 int decr_pc;
6013
6014 /* Re-adjust PC to what the program would see if GDB was not
6015 debugging it. */
6016 regcache = get_thread_regcache (ecs->event_thread->ptid);
527a273a 6017 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
6018 if (decr_pc != 0)
6019 {
6020 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
6021
6022 if (record_full_is_used ())
6023 record_full_gdb_operation_disable_set ();
6024
6025 regcache_write_pc (regcache, stop_pc + decr_pc);
6026
6027 do_cleanups (old_cleanups);
6028 }
6029 }
6030 else
6031 {
6032 /* A delayed software breakpoint event. Ignore the trap. */
6033 if (debug_infrun)
6034 fprintf_unfiltered (gdb_stdlog,
6035 "infrun: delayed software breakpoint "
6036 "trap, ignoring\n");
6037 random_signal = 0;
6038 }
6039 }
6040
6041 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6042 has since been removed. */
6043 if (random_signal && target_stopped_by_hw_breakpoint ())
6044 {
6045 /* A delayed hardware breakpoint event. Ignore the trap. */
6046 if (debug_infrun)
6047 fprintf_unfiltered (gdb_stdlog,
6048 "infrun: delayed hardware breakpoint/watchpoint "
6049 "trap, ignoring\n");
6050 random_signal = 0;
6051 }
6052
bac7d97b
PA
6053 /* If not, perhaps stepping/nexting can. */
6054 if (random_signal)
6055 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6056 && currently_stepping (ecs->event_thread));
ab04a2af 6057
2adfaa28
PA
6058 /* Perhaps the thread hit a single-step breakpoint of _another_
6059 thread. Single-step breakpoints are transparent to the
6060 breakpoints module. */
6061 if (random_signal)
6062 random_signal = !ecs->hit_singlestep_breakpoint;
6063
bac7d97b
PA
6064 /* No? Perhaps we got a moribund watchpoint. */
6065 if (random_signal)
6066 random_signal = !stopped_by_watchpoint;
ab04a2af 6067
488f131b
JB
6068 /* For the program's own signals, act according to
6069 the signal handling tables. */
6070
ce12b012 6071 if (random_signal)
488f131b
JB
6072 {
6073 /* Signal not for debugging purposes. */
c9657e70 6074 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 6075 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 6076
527159b7 6077 if (debug_infrun)
c9737c08
PA
6078 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6079 gdb_signal_to_symbol_string (stop_signal));
527159b7 6080
488f131b
JB
6081 stopped_by_random_signal = 1;
6082
252fbfc8
PA
6083 /* Always stop on signals if we're either just gaining control
6084 of the program, or the user explicitly requested this thread
6085 to remain stopped. */
d6b48e9c 6086 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 6087 || ecs->event_thread->stop_requested
24291992 6088 || (!inf->detaching
16c381f0 6089 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 6090 {
22bcd14b 6091 stop_waiting (ecs);
488f131b
JB
6092 return;
6093 }
b57bacec
PA
6094
6095 /* Notify observers the signal has "handle print" set. Note we
6096 returned early above if stopping; normal_stop handles the
6097 printing in that case. */
6098 if (signal_print[ecs->event_thread->suspend.stop_signal])
6099 {
6100 /* The signal table tells us to print about this signal. */
6101 target_terminal_ours_for_output ();
6102 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
6103 target_terminal_inferior ();
6104 }
488f131b
JB
6105
6106 /* Clear the signal if it should not be passed. */
16c381f0 6107 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 6108 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 6109
fb14de7b 6110 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 6111 && ecs->event_thread->control.trap_expected
8358c15c 6112 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502 6113 {
372316f1
PA
6114 int was_in_line;
6115
68f53502
AC
6116 /* We were just starting a new sequence, attempting to
6117 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 6118 Instead this signal arrives. This signal will take us out
68f53502
AC
6119 of the stepping range so GDB needs to remember to, when
6120 the signal handler returns, resume stepping off that
6121 breakpoint. */
6122 /* To simplify things, "continue" is forced to use the same
6123 code paths as single-step - set a breakpoint at the
6124 signal return address and then, once hit, step off that
6125 breakpoint. */
237fc4c9
PA
6126 if (debug_infrun)
6127 fprintf_unfiltered (gdb_stdlog,
6128 "infrun: signal arrived while stepping over "
6129 "breakpoint\n");
d3169d93 6130
372316f1
PA
6131 was_in_line = step_over_info_valid_p ();
6132 clear_step_over_info ();
2c03e5be 6133 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 6134 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6135 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6136 ecs->event_thread->control.trap_expected = 0;
d137e6dc 6137
fbea99ea 6138 if (target_is_non_stop_p ())
372316f1 6139 {
fbea99ea
PA
6140 /* Either "set non-stop" is "on", or the target is
6141 always in non-stop mode. In this case, we have a bit
6142 more work to do. Resume the current thread, and if
6143 we had paused all threads, restart them while the
6144 signal handler runs. */
372316f1
PA
6145 keep_going (ecs);
6146
372316f1
PA
6147 if (was_in_line)
6148 {
372316f1
PA
6149 restart_threads (ecs->event_thread);
6150 }
6151 else if (debug_infrun)
6152 {
6153 fprintf_unfiltered (gdb_stdlog,
6154 "infrun: no need to restart threads\n");
6155 }
6156 return;
6157 }
6158
d137e6dc
PA
6159 /* If we were nexting/stepping some other thread, switch to
6160 it, so that we don't continue it, losing control. */
6161 if (!switch_back_to_stepped_thread (ecs))
6162 keep_going (ecs);
9d799f85 6163 return;
68f53502 6164 }
9d799f85 6165
e5f8a7cc
PA
6166 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6167 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6168 || ecs->event_thread->control.step_range_end == 1)
edb3359d 6169 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 6170 ecs->event_thread->control.step_stack_frame_id)
8358c15c 6171 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
6172 {
6173 /* The inferior is about to take a signal that will take it
6174 out of the single step range. Set a breakpoint at the
6175 current PC (which is presumably where the signal handler
6176 will eventually return) and then allow the inferior to
6177 run free.
6178
6179 Note that this is only needed for a signal delivered
6180 while in the single-step range. Nested signals aren't a
6181 problem as they eventually all return. */
237fc4c9
PA
6182 if (debug_infrun)
6183 fprintf_unfiltered (gdb_stdlog,
6184 "infrun: signal may take us out of "
6185 "single-step range\n");
6186
372316f1 6187 clear_step_over_info ();
2c03e5be 6188 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 6189 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6190 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6191 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
6192 keep_going (ecs);
6193 return;
d303a6c7 6194 }
9d799f85
AC
6195
6196 /* Note: step_resume_breakpoint may be non-NULL. This occures
6197 when either there's a nested signal, or when there's a
6198 pending signal enabled just as the signal handler returns
6199 (leaving the inferior at the step-resume-breakpoint without
6200 actually executing it). Either way continue until the
6201 breakpoint is really hit. */
c447ac0b
PA
6202
6203 if (!switch_back_to_stepped_thread (ecs))
6204 {
6205 if (debug_infrun)
6206 fprintf_unfiltered (gdb_stdlog,
6207 "infrun: random signal, keep going\n");
6208
6209 keep_going (ecs);
6210 }
6211 return;
488f131b 6212 }
94c57d6a
PA
6213
6214 process_event_stop_test (ecs);
6215}
6216
6217/* Come here when we've got some debug event / signal we can explain
6218 (IOW, not a random signal), and test whether it should cause a
6219 stop, or whether we should resume the inferior (transparently).
6220 E.g., could be a breakpoint whose condition evaluates false; we
6221 could be still stepping within the line; etc. */
6222
6223static void
6224process_event_stop_test (struct execution_control_state *ecs)
6225{
6226 struct symtab_and_line stop_pc_sal;
6227 struct frame_info *frame;
6228 struct gdbarch *gdbarch;
cdaa5b73
PA
6229 CORE_ADDR jmp_buf_pc;
6230 struct bpstat_what what;
94c57d6a 6231
cdaa5b73 6232 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6233
cdaa5b73
PA
6234 frame = get_current_frame ();
6235 gdbarch = get_frame_arch (frame);
fcf3daef 6236
cdaa5b73 6237 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6238
cdaa5b73
PA
6239 if (what.call_dummy)
6240 {
6241 stop_stack_dummy = what.call_dummy;
6242 }
186c406b 6243
243a9253
PA
6244 /* A few breakpoint types have callbacks associated (e.g.,
6245 bp_jit_event). Run them now. */
6246 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6247
cdaa5b73
PA
6248 /* If we hit an internal event that triggers symbol changes, the
6249 current frame will be invalidated within bpstat_what (e.g., if we
6250 hit an internal solib event). Re-fetch it. */
6251 frame = get_current_frame ();
6252 gdbarch = get_frame_arch (frame);
e2e4d78b 6253
cdaa5b73
PA
6254 switch (what.main_action)
6255 {
6256 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6257 /* If we hit the breakpoint at longjmp while stepping, we
6258 install a momentary breakpoint at the target of the
6259 jmp_buf. */
186c406b 6260
cdaa5b73
PA
6261 if (debug_infrun)
6262 fprintf_unfiltered (gdb_stdlog,
6263 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6264
cdaa5b73 6265 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6266
cdaa5b73
PA
6267 if (what.is_longjmp)
6268 {
6269 struct value *arg_value;
6270
6271 /* If we set the longjmp breakpoint via a SystemTap probe,
6272 then use it to extract the arguments. The destination PC
6273 is the third argument to the probe. */
6274 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6275 if (arg_value)
8fa0c4f8
AA
6276 {
6277 jmp_buf_pc = value_as_address (arg_value);
6278 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6279 }
cdaa5b73
PA
6280 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6281 || !gdbarch_get_longjmp_target (gdbarch,
6282 frame, &jmp_buf_pc))
e2e4d78b 6283 {
cdaa5b73
PA
6284 if (debug_infrun)
6285 fprintf_unfiltered (gdb_stdlog,
6286 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6287 "(!gdbarch_get_longjmp_target)\n");
6288 keep_going (ecs);
6289 return;
e2e4d78b 6290 }
e2e4d78b 6291
cdaa5b73
PA
6292 /* Insert a breakpoint at resume address. */
6293 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6294 }
6295 else
6296 check_exception_resume (ecs, frame);
6297 keep_going (ecs);
6298 return;
e81a37f7 6299
cdaa5b73
PA
6300 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6301 {
6302 struct frame_info *init_frame;
e81a37f7 6303
cdaa5b73 6304 /* There are several cases to consider.
c906108c 6305
cdaa5b73
PA
6306 1. The initiating frame no longer exists. In this case we
6307 must stop, because the exception or longjmp has gone too
6308 far.
2c03e5be 6309
cdaa5b73
PA
6310 2. The initiating frame exists, and is the same as the
6311 current frame. We stop, because the exception or longjmp
6312 has been caught.
2c03e5be 6313
cdaa5b73
PA
6314 3. The initiating frame exists and is different from the
6315 current frame. This means the exception or longjmp has
6316 been caught beneath the initiating frame, so keep going.
c906108c 6317
cdaa5b73
PA
6318 4. longjmp breakpoint has been placed just to protect
6319 against stale dummy frames and user is not interested in
6320 stopping around longjmps. */
c5aa993b 6321
cdaa5b73
PA
6322 if (debug_infrun)
6323 fprintf_unfiltered (gdb_stdlog,
6324 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6325
cdaa5b73
PA
6326 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6327 != NULL);
6328 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6329
cdaa5b73
PA
6330 if (what.is_longjmp)
6331 {
b67a2c6f 6332 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6333
cdaa5b73 6334 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6335 {
cdaa5b73
PA
6336 /* Case 4. */
6337 keep_going (ecs);
6338 return;
e5ef252a 6339 }
cdaa5b73 6340 }
c5aa993b 6341
cdaa5b73 6342 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6343
cdaa5b73
PA
6344 if (init_frame)
6345 {
6346 struct frame_id current_id
6347 = get_frame_id (get_current_frame ());
6348 if (frame_id_eq (current_id,
6349 ecs->event_thread->initiating_frame))
6350 {
6351 /* Case 2. Fall through. */
6352 }
6353 else
6354 {
6355 /* Case 3. */
6356 keep_going (ecs);
6357 return;
6358 }
68f53502 6359 }
488f131b 6360
cdaa5b73
PA
6361 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6362 exists. */
6363 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6364
bdc36728 6365 end_stepping_range (ecs);
cdaa5b73
PA
6366 }
6367 return;
e5ef252a 6368
cdaa5b73
PA
6369 case BPSTAT_WHAT_SINGLE:
6370 if (debug_infrun)
6371 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6372 ecs->event_thread->stepping_over_breakpoint = 1;
6373 /* Still need to check other stuff, at least the case where we
6374 are stepping and step out of the right range. */
6375 break;
e5ef252a 6376
cdaa5b73
PA
6377 case BPSTAT_WHAT_STEP_RESUME:
6378 if (debug_infrun)
6379 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6380
cdaa5b73
PA
6381 delete_step_resume_breakpoint (ecs->event_thread);
6382 if (ecs->event_thread->control.proceed_to_finish
6383 && execution_direction == EXEC_REVERSE)
6384 {
6385 struct thread_info *tp = ecs->event_thread;
6386
6387 /* We are finishing a function in reverse, and just hit the
6388 step-resume breakpoint at the start address of the
6389 function, and we're almost there -- just need to back up
6390 by one more single-step, which should take us back to the
6391 function call. */
6392 tp->control.step_range_start = tp->control.step_range_end = 1;
6393 keep_going (ecs);
e5ef252a 6394 return;
cdaa5b73
PA
6395 }
6396 fill_in_stop_func (gdbarch, ecs);
6397 if (stop_pc == ecs->stop_func_start
6398 && execution_direction == EXEC_REVERSE)
6399 {
6400 /* We are stepping over a function call in reverse, and just
6401 hit the step-resume breakpoint at the start address of
6402 the function. Go back to single-stepping, which should
6403 take us back to the function call. */
6404 ecs->event_thread->stepping_over_breakpoint = 1;
6405 keep_going (ecs);
6406 return;
6407 }
6408 break;
e5ef252a 6409
cdaa5b73
PA
6410 case BPSTAT_WHAT_STOP_NOISY:
6411 if (debug_infrun)
6412 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6413 stop_print_frame = 1;
e5ef252a 6414
99619bea
PA
6415 /* Assume the thread stopped for a breapoint. We'll still check
6416 whether a/the breakpoint is there when the thread is next
6417 resumed. */
6418 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6419
22bcd14b 6420 stop_waiting (ecs);
cdaa5b73 6421 return;
e5ef252a 6422
cdaa5b73
PA
6423 case BPSTAT_WHAT_STOP_SILENT:
6424 if (debug_infrun)
6425 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6426 stop_print_frame = 0;
e5ef252a 6427
99619bea
PA
6428 /* Assume the thread stopped for a breapoint. We'll still check
6429 whether a/the breakpoint is there when the thread is next
6430 resumed. */
6431 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6432 stop_waiting (ecs);
cdaa5b73
PA
6433 return;
6434
6435 case BPSTAT_WHAT_HP_STEP_RESUME:
6436 if (debug_infrun)
6437 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6438
6439 delete_step_resume_breakpoint (ecs->event_thread);
6440 if (ecs->event_thread->step_after_step_resume_breakpoint)
6441 {
6442 /* Back when the step-resume breakpoint was inserted, we
6443 were trying to single-step off a breakpoint. Go back to
6444 doing that. */
6445 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6446 ecs->event_thread->stepping_over_breakpoint = 1;
6447 keep_going (ecs);
6448 return;
e5ef252a 6449 }
cdaa5b73
PA
6450 break;
6451
6452 case BPSTAT_WHAT_KEEP_CHECKING:
6453 break;
e5ef252a 6454 }
c906108c 6455
af48d08f
PA
6456 /* If we stepped a permanent breakpoint and we had a high priority
6457 step-resume breakpoint for the address we stepped, but we didn't
6458 hit it, then we must have stepped into the signal handler. The
6459 step-resume was only necessary to catch the case of _not_
6460 stepping into the handler, so delete it, and fall through to
6461 checking whether the step finished. */
6462 if (ecs->event_thread->stepped_breakpoint)
6463 {
6464 struct breakpoint *sr_bp
6465 = ecs->event_thread->control.step_resume_breakpoint;
6466
8d707a12
PA
6467 if (sr_bp != NULL
6468 && sr_bp->loc->permanent
af48d08f
PA
6469 && sr_bp->type == bp_hp_step_resume
6470 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6471 {
6472 if (debug_infrun)
6473 fprintf_unfiltered (gdb_stdlog,
6474 "infrun: stepped permanent breakpoint, stopped in "
6475 "handler\n");
6476 delete_step_resume_breakpoint (ecs->event_thread);
6477 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6478 }
6479 }
6480
cdaa5b73
PA
6481 /* We come here if we hit a breakpoint but should not stop for it.
6482 Possibly we also were stepping and should stop for that. So fall
6483 through and test for stepping. But, if not stepping, do not
6484 stop. */
c906108c 6485
a7212384
UW
6486 /* In all-stop mode, if we're currently stepping but have stopped in
6487 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6488 if (switch_back_to_stepped_thread (ecs))
6489 return;
776f04fa 6490
8358c15c 6491 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6492 {
527159b7 6493 if (debug_infrun)
d3169d93
DJ
6494 fprintf_unfiltered (gdb_stdlog,
6495 "infrun: step-resume breakpoint is inserted\n");
527159b7 6496
488f131b
JB
6497 /* Having a step-resume breakpoint overrides anything
6498 else having to do with stepping commands until
6499 that breakpoint is reached. */
488f131b
JB
6500 keep_going (ecs);
6501 return;
6502 }
c5aa993b 6503
16c381f0 6504 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6505 {
527159b7 6506 if (debug_infrun)
8a9de0e4 6507 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6508 /* Likewise if we aren't even stepping. */
488f131b
JB
6509 keep_going (ecs);
6510 return;
6511 }
c5aa993b 6512
4b7703ad
JB
6513 /* Re-fetch current thread's frame in case the code above caused
6514 the frame cache to be re-initialized, making our FRAME variable
6515 a dangling pointer. */
6516 frame = get_current_frame ();
628fe4e4 6517 gdbarch = get_frame_arch (frame);
7e324e48 6518 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6519
488f131b 6520 /* If stepping through a line, keep going if still within it.
c906108c 6521
488f131b
JB
6522 Note that step_range_end is the address of the first instruction
6523 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6524 within it!
6525
6526 Note also that during reverse execution, we may be stepping
6527 through a function epilogue and therefore must detect when
6528 the current-frame changes in the middle of a line. */
6529
ce4c476a 6530 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 6531 && (execution_direction != EXEC_REVERSE
388a8562 6532 || frame_id_eq (get_frame_id (frame),
16c381f0 6533 ecs->event_thread->control.step_frame_id)))
488f131b 6534 {
527159b7 6535 if (debug_infrun)
5af949e3
UW
6536 fprintf_unfiltered
6537 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6538 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6539 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6540
c1e36e3e
PA
6541 /* Tentatively re-enable range stepping; `resume' disables it if
6542 necessary (e.g., if we're stepping over a breakpoint or we
6543 have software watchpoints). */
6544 ecs->event_thread->control.may_range_step = 1;
6545
b2175913
MS
6546 /* When stepping backward, stop at beginning of line range
6547 (unless it's the function entry point, in which case
6548 keep going back to the call point). */
16c381f0 6549 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6550 && stop_pc != ecs->stop_func_start
6551 && execution_direction == EXEC_REVERSE)
bdc36728 6552 end_stepping_range (ecs);
b2175913
MS
6553 else
6554 keep_going (ecs);
6555
488f131b
JB
6556 return;
6557 }
c5aa993b 6558
488f131b 6559 /* We stepped out of the stepping range. */
c906108c 6560
488f131b 6561 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6562 loader dynamic symbol resolution code...
6563
6564 EXEC_FORWARD: we keep on single stepping until we exit the run
6565 time loader code and reach the callee's address.
6566
6567 EXEC_REVERSE: we've already executed the callee (backward), and
6568 the runtime loader code is handled just like any other
6569 undebuggable function call. Now we need only keep stepping
6570 backward through the trampoline code, and that's handled further
6571 down, so there is nothing for us to do here. */
6572
6573 if (execution_direction != EXEC_REVERSE
16c381f0 6574 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 6575 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 6576 {
4c8c40e6 6577 CORE_ADDR pc_after_resolver =
568d6575 6578 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 6579
527159b7 6580 if (debug_infrun)
3e43a32a
MS
6581 fprintf_unfiltered (gdb_stdlog,
6582 "infrun: stepped into dynsym resolve code\n");
527159b7 6583
488f131b
JB
6584 if (pc_after_resolver)
6585 {
6586 /* Set up a step-resume breakpoint at the address
6587 indicated by SKIP_SOLIB_RESOLVER. */
6588 struct symtab_and_line sr_sal;
abbb1732 6589
fe39c653 6590 init_sal (&sr_sal);
488f131b 6591 sr_sal.pc = pc_after_resolver;
6c95b8df 6592 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6593
a6d9a66e
UW
6594 insert_step_resume_breakpoint_at_sal (gdbarch,
6595 sr_sal, null_frame_id);
c5aa993b 6596 }
c906108c 6597
488f131b
JB
6598 keep_going (ecs);
6599 return;
6600 }
c906108c 6601
16c381f0
JK
6602 if (ecs->event_thread->control.step_range_end != 1
6603 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6604 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6605 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6606 {
527159b7 6607 if (debug_infrun)
3e43a32a
MS
6608 fprintf_unfiltered (gdb_stdlog,
6609 "infrun: stepped into signal trampoline\n");
42edda50 6610 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6611 a signal trampoline (either by a signal being delivered or by
6612 the signal handler returning). Just single-step until the
6613 inferior leaves the trampoline (either by calling the handler
6614 or returning). */
488f131b
JB
6615 keep_going (ecs);
6616 return;
6617 }
c906108c 6618
14132e89
MR
6619 /* If we're in the return path from a shared library trampoline,
6620 we want to proceed through the trampoline when stepping. */
6621 /* macro/2012-04-25: This needs to come before the subroutine
6622 call check below as on some targets return trampolines look
6623 like subroutine calls (MIPS16 return thunks). */
6624 if (gdbarch_in_solib_return_trampoline (gdbarch,
6625 stop_pc, ecs->stop_func_name)
6626 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6627 {
6628 /* Determine where this trampoline returns. */
6629 CORE_ADDR real_stop_pc;
6630
6631 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6632
6633 if (debug_infrun)
6634 fprintf_unfiltered (gdb_stdlog,
6635 "infrun: stepped into solib return tramp\n");
6636
6637 /* Only proceed through if we know where it's going. */
6638 if (real_stop_pc)
6639 {
6640 /* And put the step-breakpoint there and go until there. */
6641 struct symtab_and_line sr_sal;
6642
6643 init_sal (&sr_sal); /* initialize to zeroes */
6644 sr_sal.pc = real_stop_pc;
6645 sr_sal.section = find_pc_overlay (sr_sal.pc);
6646 sr_sal.pspace = get_frame_program_space (frame);
6647
6648 /* Do not specify what the fp should be when we stop since
6649 on some machines the prologue is where the new fp value
6650 is established. */
6651 insert_step_resume_breakpoint_at_sal (gdbarch,
6652 sr_sal, null_frame_id);
6653
6654 /* Restart without fiddling with the step ranges or
6655 other state. */
6656 keep_going (ecs);
6657 return;
6658 }
6659 }
6660
c17eaafe
DJ
6661 /* Check for subroutine calls. The check for the current frame
6662 equalling the step ID is not necessary - the check of the
6663 previous frame's ID is sufficient - but it is a common case and
6664 cheaper than checking the previous frame's ID.
14e60db5
DJ
6665
6666 NOTE: frame_id_eq will never report two invalid frame IDs as
6667 being equal, so to get into this block, both the current and
6668 previous frame must have valid frame IDs. */
005ca36a
JB
6669 /* The outer_frame_id check is a heuristic to detect stepping
6670 through startup code. If we step over an instruction which
6671 sets the stack pointer from an invalid value to a valid value,
6672 we may detect that as a subroutine call from the mythical
6673 "outermost" function. This could be fixed by marking
6674 outermost frames as !stack_p,code_p,special_p. Then the
6675 initial outermost frame, before sp was valid, would
ce6cca6d 6676 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6677 for more. */
edb3359d 6678 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6679 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6680 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6681 ecs->event_thread->control.step_stack_frame_id)
6682 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6683 outer_frame_id)
885eeb5b
PA
6684 || (ecs->event_thread->control.step_start_function
6685 != find_pc_function (stop_pc)))))
488f131b 6686 {
95918acb 6687 CORE_ADDR real_stop_pc;
8fb3e588 6688
527159b7 6689 if (debug_infrun)
8a9de0e4 6690 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6691
b7a084be 6692 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6693 {
6694 /* I presume that step_over_calls is only 0 when we're
6695 supposed to be stepping at the assembly language level
6696 ("stepi"). Just stop. */
388a8562 6697 /* And this works the same backward as frontward. MVS */
bdc36728 6698 end_stepping_range (ecs);
95918acb
AC
6699 return;
6700 }
8fb3e588 6701
388a8562
MS
6702 /* Reverse stepping through solib trampolines. */
6703
6704 if (execution_direction == EXEC_REVERSE
16c381f0 6705 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6706 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6707 || (ecs->stop_func_start == 0
6708 && in_solib_dynsym_resolve_code (stop_pc))))
6709 {
6710 /* Any solib trampoline code can be handled in reverse
6711 by simply continuing to single-step. We have already
6712 executed the solib function (backwards), and a few
6713 steps will take us back through the trampoline to the
6714 caller. */
6715 keep_going (ecs);
6716 return;
6717 }
6718
16c381f0 6719 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6720 {
b2175913
MS
6721 /* We're doing a "next".
6722
6723 Normal (forward) execution: set a breakpoint at the
6724 callee's return address (the address at which the caller
6725 will resume).
6726
6727 Reverse (backward) execution. set the step-resume
6728 breakpoint at the start of the function that we just
6729 stepped into (backwards), and continue to there. When we
6130d0b7 6730 get there, we'll need to single-step back to the caller. */
b2175913
MS
6731
6732 if (execution_direction == EXEC_REVERSE)
6733 {
acf9414f
JK
6734 /* If we're already at the start of the function, we've either
6735 just stepped backward into a single instruction function,
6736 or stepped back out of a signal handler to the first instruction
6737 of the function. Just keep going, which will single-step back
6738 to the caller. */
58c48e72 6739 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f
JK
6740 {
6741 struct symtab_and_line sr_sal;
6742
6743 /* Normal function call return (static or dynamic). */
6744 init_sal (&sr_sal);
6745 sr_sal.pc = ecs->stop_func_start;
6746 sr_sal.pspace = get_frame_program_space (frame);
6747 insert_step_resume_breakpoint_at_sal (gdbarch,
6748 sr_sal, null_frame_id);
6749 }
b2175913
MS
6750 }
6751 else
568d6575 6752 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6753
8567c30f
AC
6754 keep_going (ecs);
6755 return;
6756 }
a53c66de 6757
95918acb 6758 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6759 calling routine and the real function), locate the real
6760 function. That's what tells us (a) whether we want to step
6761 into it at all, and (b) what prologue we want to run to the
6762 end of, if we do step into it. */
568d6575 6763 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6764 if (real_stop_pc == 0)
568d6575 6765 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6766 if (real_stop_pc != 0)
6767 ecs->stop_func_start = real_stop_pc;
8fb3e588 6768
db5f024e 6769 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
6770 {
6771 struct symtab_and_line sr_sal;
abbb1732 6772
1b2bfbb9
RC
6773 init_sal (&sr_sal);
6774 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6775 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6776
a6d9a66e
UW
6777 insert_step_resume_breakpoint_at_sal (gdbarch,
6778 sr_sal, null_frame_id);
8fb3e588
AC
6779 keep_going (ecs);
6780 return;
1b2bfbb9
RC
6781 }
6782
95918acb 6783 /* If we have line number information for the function we are
1bfeeb0f
JL
6784 thinking of stepping into and the function isn't on the skip
6785 list, step into it.
95918acb 6786
8fb3e588
AC
6787 If there are several symtabs at that PC (e.g. with include
6788 files), just want to know whether *any* of them have line
6789 numbers. find_pc_line handles this. */
95918acb
AC
6790 {
6791 struct symtab_and_line tmp_sal;
8fb3e588 6792
95918acb 6793 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6794 if (tmp_sal.line != 0
85817405
JK
6795 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6796 &tmp_sal))
95918acb 6797 {
b2175913 6798 if (execution_direction == EXEC_REVERSE)
568d6575 6799 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6800 else
568d6575 6801 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6802 return;
6803 }
6804 }
6805
6806 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6807 set, we stop the step so that the user has a chance to switch
6808 in assembly mode. */
16c381f0 6809 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6810 && step_stop_if_no_debug)
95918acb 6811 {
bdc36728 6812 end_stepping_range (ecs);
95918acb
AC
6813 return;
6814 }
6815
b2175913
MS
6816 if (execution_direction == EXEC_REVERSE)
6817 {
acf9414f
JK
6818 /* If we're already at the start of the function, we've either just
6819 stepped backward into a single instruction function without line
6820 number info, or stepped back out of a signal handler to the first
6821 instruction of the function without line number info. Just keep
6822 going, which will single-step back to the caller. */
6823 if (ecs->stop_func_start != stop_pc)
6824 {
6825 /* Set a breakpoint at callee's start address.
6826 From there we can step once and be back in the caller. */
6827 struct symtab_and_line sr_sal;
abbb1732 6828
acf9414f
JK
6829 init_sal (&sr_sal);
6830 sr_sal.pc = ecs->stop_func_start;
6831 sr_sal.pspace = get_frame_program_space (frame);
6832 insert_step_resume_breakpoint_at_sal (gdbarch,
6833 sr_sal, null_frame_id);
6834 }
b2175913
MS
6835 }
6836 else
6837 /* Set a breakpoint at callee's return address (the address
6838 at which the caller will resume). */
568d6575 6839 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6840
95918acb 6841 keep_going (ecs);
488f131b 6842 return;
488f131b 6843 }
c906108c 6844
fdd654f3
MS
6845 /* Reverse stepping through solib trampolines. */
6846
6847 if (execution_direction == EXEC_REVERSE
16c381f0 6848 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
6849 {
6850 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6851 || (ecs->stop_func_start == 0
6852 && in_solib_dynsym_resolve_code (stop_pc)))
6853 {
6854 /* Any solib trampoline code can be handled in reverse
6855 by simply continuing to single-step. We have already
6856 executed the solib function (backwards), and a few
6857 steps will take us back through the trampoline to the
6858 caller. */
6859 keep_going (ecs);
6860 return;
6861 }
6862 else if (in_solib_dynsym_resolve_code (stop_pc))
6863 {
6864 /* Stepped backward into the solib dynsym resolver.
6865 Set a breakpoint at its start and continue, then
6866 one more step will take us out. */
6867 struct symtab_and_line sr_sal;
abbb1732 6868
fdd654f3
MS
6869 init_sal (&sr_sal);
6870 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6871 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6872 insert_step_resume_breakpoint_at_sal (gdbarch,
6873 sr_sal, null_frame_id);
6874 keep_going (ecs);
6875 return;
6876 }
6877 }
6878
2afb61aa 6879 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 6880
1b2bfbb9
RC
6881 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6882 the trampoline processing logic, however, there are some trampolines
6883 that have no names, so we should do trampoline handling first. */
16c381f0 6884 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6885 && ecs->stop_func_name == NULL
2afb61aa 6886 && stop_pc_sal.line == 0)
1b2bfbb9 6887 {
527159b7 6888 if (debug_infrun)
3e43a32a
MS
6889 fprintf_unfiltered (gdb_stdlog,
6890 "infrun: stepped into undebuggable function\n");
527159b7 6891
1b2bfbb9 6892 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6893 undebuggable function (where there is no debugging information
6894 and no line number corresponding to the address where the
1b2bfbb9
RC
6895 inferior stopped). Since we want to skip this kind of code,
6896 we keep going until the inferior returns from this
14e60db5
DJ
6897 function - unless the user has asked us not to (via
6898 set step-mode) or we no longer know how to get back
6899 to the call site. */
6900 if (step_stop_if_no_debug
c7ce8faa 6901 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6902 {
6903 /* If we have no line number and the step-stop-if-no-debug
6904 is set, we stop the step so that the user has a chance to
6905 switch in assembly mode. */
bdc36728 6906 end_stepping_range (ecs);
1b2bfbb9
RC
6907 return;
6908 }
6909 else
6910 {
6911 /* Set a breakpoint at callee's return address (the address
6912 at which the caller will resume). */
568d6575 6913 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6914 keep_going (ecs);
6915 return;
6916 }
6917 }
6918
16c381f0 6919 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6920 {
6921 /* It is stepi or nexti. We always want to stop stepping after
6922 one instruction. */
527159b7 6923 if (debug_infrun)
8a9de0e4 6924 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6925 end_stepping_range (ecs);
1b2bfbb9
RC
6926 return;
6927 }
6928
2afb61aa 6929 if (stop_pc_sal.line == 0)
488f131b
JB
6930 {
6931 /* We have no line number information. That means to stop
6932 stepping (does this always happen right after one instruction,
6933 when we do "s" in a function with no line numbers,
6934 or can this happen as a result of a return or longjmp?). */
527159b7 6935 if (debug_infrun)
8a9de0e4 6936 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6937 end_stepping_range (ecs);
488f131b
JB
6938 return;
6939 }
c906108c 6940
edb3359d
DJ
6941 /* Look for "calls" to inlined functions, part one. If the inline
6942 frame machinery detected some skipped call sites, we have entered
6943 a new inline function. */
6944
6945 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6946 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
6947 && inline_skipped_frames (ecs->ptid))
6948 {
6949 struct symtab_and_line call_sal;
6950
6951 if (debug_infrun)
6952 fprintf_unfiltered (gdb_stdlog,
6953 "infrun: stepped into inlined function\n");
6954
6955 find_frame_sal (get_current_frame (), &call_sal);
6956
16c381f0 6957 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6958 {
6959 /* For "step", we're going to stop. But if the call site
6960 for this inlined function is on the same source line as
6961 we were previously stepping, go down into the function
6962 first. Otherwise stop at the call site. */
6963
6964 if (call_sal.line == ecs->event_thread->current_line
6965 && call_sal.symtab == ecs->event_thread->current_symtab)
6966 step_into_inline_frame (ecs->ptid);
6967
bdc36728 6968 end_stepping_range (ecs);
edb3359d
DJ
6969 return;
6970 }
6971 else
6972 {
6973 /* For "next", we should stop at the call site if it is on a
6974 different source line. Otherwise continue through the
6975 inlined function. */
6976 if (call_sal.line == ecs->event_thread->current_line
6977 && call_sal.symtab == ecs->event_thread->current_symtab)
6978 keep_going (ecs);
6979 else
bdc36728 6980 end_stepping_range (ecs);
edb3359d
DJ
6981 return;
6982 }
6983 }
6984
6985 /* Look for "calls" to inlined functions, part two. If we are still
6986 in the same real function we were stepping through, but we have
6987 to go further up to find the exact frame ID, we are stepping
6988 through a more inlined call beyond its call site. */
6989
6990 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6991 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6992 ecs->event_thread->control.step_frame_id)
edb3359d 6993 && stepped_in_from (get_current_frame (),
16c381f0 6994 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6995 {
6996 if (debug_infrun)
6997 fprintf_unfiltered (gdb_stdlog,
6998 "infrun: stepping through inlined function\n");
6999
16c381f0 7000 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
7001 keep_going (ecs);
7002 else
bdc36728 7003 end_stepping_range (ecs);
edb3359d
DJ
7004 return;
7005 }
7006
2afb61aa 7007 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
7008 && (ecs->event_thread->current_line != stop_pc_sal.line
7009 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
7010 {
7011 /* We are at the start of a different line. So stop. Note that
7012 we don't stop if we step into the middle of a different line.
7013 That is said to make things like for (;;) statements work
7014 better. */
527159b7 7015 if (debug_infrun)
3e43a32a
MS
7016 fprintf_unfiltered (gdb_stdlog,
7017 "infrun: stepped to a different line\n");
bdc36728 7018 end_stepping_range (ecs);
488f131b
JB
7019 return;
7020 }
c906108c 7021
488f131b 7022 /* We aren't done stepping.
c906108c 7023
488f131b
JB
7024 Optimize by setting the stepping range to the line.
7025 (We might not be in the original line, but if we entered a
7026 new line in mid-statement, we continue stepping. This makes
7027 things like for(;;) statements work better.) */
c906108c 7028
16c381f0
JK
7029 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7030 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 7031 ecs->event_thread->control.may_range_step = 1;
edb3359d 7032 set_step_info (frame, stop_pc_sal);
488f131b 7033
527159b7 7034 if (debug_infrun)
8a9de0e4 7035 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 7036 keep_going (ecs);
104c1213
JM
7037}
7038
c447ac0b
PA
7039/* In all-stop mode, if we're currently stepping but have stopped in
7040 some other thread, we may need to switch back to the stepped
7041 thread. Returns true we set the inferior running, false if we left
7042 it stopped (and the event needs further processing). */
7043
7044static int
7045switch_back_to_stepped_thread (struct execution_control_state *ecs)
7046{
fbea99ea 7047 if (!target_is_non_stop_p ())
c447ac0b
PA
7048 {
7049 struct thread_info *tp;
99619bea
PA
7050 struct thread_info *stepping_thread;
7051
7052 /* If any thread is blocked on some internal breakpoint, and we
7053 simply need to step over that breakpoint to get it going
7054 again, do that first. */
7055
7056 /* However, if we see an event for the stepping thread, then we
7057 know all other threads have been moved past their breakpoints
7058 already. Let the caller check whether the step is finished,
7059 etc., before deciding to move it past a breakpoint. */
7060 if (ecs->event_thread->control.step_range_end != 0)
7061 return 0;
7062
7063 /* Check if the current thread is blocked on an incomplete
7064 step-over, interrupted by a random signal. */
7065 if (ecs->event_thread->control.trap_expected
7066 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 7067 {
99619bea
PA
7068 if (debug_infrun)
7069 {
7070 fprintf_unfiltered (gdb_stdlog,
7071 "infrun: need to finish step-over of [%s]\n",
7072 target_pid_to_str (ecs->event_thread->ptid));
7073 }
7074 keep_going (ecs);
7075 return 1;
7076 }
2adfaa28 7077
99619bea
PA
7078 /* Check if the current thread is blocked by a single-step
7079 breakpoint of another thread. */
7080 if (ecs->hit_singlestep_breakpoint)
7081 {
7082 if (debug_infrun)
7083 {
7084 fprintf_unfiltered (gdb_stdlog,
7085 "infrun: need to step [%s] over single-step "
7086 "breakpoint\n",
7087 target_pid_to_str (ecs->ptid));
7088 }
7089 keep_going (ecs);
7090 return 1;
7091 }
7092
4d9d9d04
PA
7093 /* If this thread needs yet another step-over (e.g., stepping
7094 through a delay slot), do it first before moving on to
7095 another thread. */
7096 if (thread_still_needs_step_over (ecs->event_thread))
7097 {
7098 if (debug_infrun)
7099 {
7100 fprintf_unfiltered (gdb_stdlog,
7101 "infrun: thread [%s] still needs step-over\n",
7102 target_pid_to_str (ecs->event_thread->ptid));
7103 }
7104 keep_going (ecs);
7105 return 1;
7106 }
70509625 7107
483805cf
PA
7108 /* If scheduler locking applies even if not stepping, there's no
7109 need to walk over threads. Above we've checked whether the
7110 current thread is stepping. If some other thread not the
7111 event thread is stepping, then it must be that scheduler
7112 locking is not in effect. */
856e7dd6 7113 if (schedlock_applies (ecs->event_thread))
483805cf
PA
7114 return 0;
7115
4d9d9d04
PA
7116 /* Otherwise, we no longer expect a trap in the current thread.
7117 Clear the trap_expected flag before switching back -- this is
7118 what keep_going does as well, if we call it. */
7119 ecs->event_thread->control.trap_expected = 0;
7120
7121 /* Likewise, clear the signal if it should not be passed. */
7122 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7123 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7124
7125 /* Do all pending step-overs before actually proceeding with
483805cf 7126 step/next/etc. */
4d9d9d04
PA
7127 if (start_step_over ())
7128 {
7129 prepare_to_wait (ecs);
7130 return 1;
7131 }
7132
7133 /* Look for the stepping/nexting thread. */
483805cf 7134 stepping_thread = NULL;
4d9d9d04 7135
034f788c 7136 ALL_NON_EXITED_THREADS (tp)
483805cf 7137 {
fbea99ea
PA
7138 /* Ignore threads of processes the caller is not
7139 resuming. */
483805cf 7140 if (!sched_multi
1afd5965 7141 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
483805cf
PA
7142 continue;
7143
7144 /* When stepping over a breakpoint, we lock all threads
7145 except the one that needs to move past the breakpoint.
7146 If a non-event thread has this set, the "incomplete
7147 step-over" check above should have caught it earlier. */
372316f1
PA
7148 if (tp->control.trap_expected)
7149 {
7150 internal_error (__FILE__, __LINE__,
7151 "[%s] has inconsistent state: "
7152 "trap_expected=%d\n",
7153 target_pid_to_str (tp->ptid),
7154 tp->control.trap_expected);
7155 }
483805cf
PA
7156
7157 /* Did we find the stepping thread? */
7158 if (tp->control.step_range_end)
7159 {
7160 /* Yep. There should only one though. */
7161 gdb_assert (stepping_thread == NULL);
7162
7163 /* The event thread is handled at the top, before we
7164 enter this loop. */
7165 gdb_assert (tp != ecs->event_thread);
7166
7167 /* If some thread other than the event thread is
7168 stepping, then scheduler locking can't be in effect,
7169 otherwise we wouldn't have resumed the current event
7170 thread in the first place. */
856e7dd6 7171 gdb_assert (!schedlock_applies (tp));
483805cf
PA
7172
7173 stepping_thread = tp;
7174 }
99619bea
PA
7175 }
7176
483805cf 7177 if (stepping_thread != NULL)
99619bea 7178 {
c447ac0b
PA
7179 if (debug_infrun)
7180 fprintf_unfiltered (gdb_stdlog,
7181 "infrun: switching back to stepped thread\n");
7182
2ac7589c
PA
7183 if (keep_going_stepped_thread (stepping_thread))
7184 {
7185 prepare_to_wait (ecs);
7186 return 1;
7187 }
7188 }
7189 }
2adfaa28 7190
2ac7589c
PA
7191 return 0;
7192}
2adfaa28 7193
2ac7589c
PA
7194/* Set a previously stepped thread back to stepping. Returns true on
7195 success, false if the resume is not possible (e.g., the thread
7196 vanished). */
7197
7198static int
7199keep_going_stepped_thread (struct thread_info *tp)
7200{
7201 struct frame_info *frame;
2ac7589c
PA
7202 struct execution_control_state ecss;
7203 struct execution_control_state *ecs = &ecss;
2adfaa28 7204
2ac7589c
PA
7205 /* If the stepping thread exited, then don't try to switch back and
7206 resume it, which could fail in several different ways depending
7207 on the target. Instead, just keep going.
2adfaa28 7208
2ac7589c
PA
7209 We can find a stepping dead thread in the thread list in two
7210 cases:
2adfaa28 7211
2ac7589c
PA
7212 - The target supports thread exit events, and when the target
7213 tries to delete the thread from the thread list, inferior_ptid
7214 pointed at the exiting thread. In such case, calling
7215 delete_thread does not really remove the thread from the list;
7216 instead, the thread is left listed, with 'exited' state.
64ce06e4 7217
2ac7589c
PA
7218 - The target's debug interface does not support thread exit
7219 events, and so we have no idea whatsoever if the previously
7220 stepping thread is still alive. For that reason, we need to
7221 synchronously query the target now. */
2adfaa28 7222
2ac7589c
PA
7223 if (is_exited (tp->ptid)
7224 || !target_thread_alive (tp->ptid))
7225 {
7226 if (debug_infrun)
7227 fprintf_unfiltered (gdb_stdlog,
7228 "infrun: not resuming previously "
7229 "stepped thread, it has vanished\n");
7230
7231 delete_thread (tp->ptid);
7232 return 0;
c447ac0b 7233 }
2ac7589c
PA
7234
7235 if (debug_infrun)
7236 fprintf_unfiltered (gdb_stdlog,
7237 "infrun: resuming previously stepped thread\n");
7238
7239 reset_ecs (ecs, tp);
7240 switch_to_thread (tp->ptid);
7241
7242 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7243 frame = get_current_frame ();
2ac7589c
PA
7244
7245 /* If the PC of the thread we were trying to single-step has
7246 changed, then that thread has trapped or been signaled, but the
7247 event has not been reported to GDB yet. Re-poll the target
7248 looking for this particular thread's event (i.e. temporarily
7249 enable schedlock) by:
7250
7251 - setting a break at the current PC
7252 - resuming that particular thread, only (by setting trap
7253 expected)
7254
7255 This prevents us continuously moving the single-step breakpoint
7256 forward, one instruction at a time, overstepping. */
7257
7258 if (stop_pc != tp->prev_pc)
7259 {
7260 ptid_t resume_ptid;
7261
7262 if (debug_infrun)
7263 fprintf_unfiltered (gdb_stdlog,
7264 "infrun: expected thread advanced also (%s -> %s)\n",
7265 paddress (target_gdbarch (), tp->prev_pc),
7266 paddress (target_gdbarch (), stop_pc));
7267
7268 /* Clear the info of the previous step-over, as it's no longer
7269 valid (if the thread was trying to step over a breakpoint, it
7270 has already succeeded). It's what keep_going would do too,
7271 if we called it. Do this before trying to insert the sss
7272 breakpoint, otherwise if we were previously trying to step
7273 over this exact address in another thread, the breakpoint is
7274 skipped. */
7275 clear_step_over_info ();
7276 tp->control.trap_expected = 0;
7277
7278 insert_single_step_breakpoint (get_frame_arch (frame),
7279 get_frame_address_space (frame),
7280 stop_pc);
7281
372316f1 7282 tp->resumed = 1;
fbea99ea 7283 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7284 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7285 }
7286 else
7287 {
7288 if (debug_infrun)
7289 fprintf_unfiltered (gdb_stdlog,
7290 "infrun: expected thread still hasn't advanced\n");
7291
7292 keep_going_pass_signal (ecs);
7293 }
7294 return 1;
c447ac0b
PA
7295}
7296
8b061563
PA
7297/* Is thread TP in the middle of (software or hardware)
7298 single-stepping? (Note the result of this function must never be
7299 passed directly as target_resume's STEP parameter.) */
104c1213 7300
a289b8f6 7301static int
b3444185 7302currently_stepping (struct thread_info *tp)
a7212384 7303{
8358c15c
JK
7304 return ((tp->control.step_range_end
7305 && tp->control.step_resume_breakpoint == NULL)
7306 || tp->control.trap_expected
af48d08f 7307 || tp->stepped_breakpoint
8358c15c 7308 || bpstat_should_step ());
a7212384
UW
7309}
7310
b2175913
MS
7311/* Inferior has stepped into a subroutine call with source code that
7312 we should not step over. Do step to the first line of code in
7313 it. */
c2c6d25f
JM
7314
7315static void
568d6575
UW
7316handle_step_into_function (struct gdbarch *gdbarch,
7317 struct execution_control_state *ecs)
c2c6d25f 7318{
43f3e411 7319 struct compunit_symtab *cust;
2afb61aa 7320 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 7321
7e324e48
GB
7322 fill_in_stop_func (gdbarch, ecs);
7323
43f3e411
DE
7324 cust = find_pc_compunit_symtab (stop_pc);
7325 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 7326 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 7327 ecs->stop_func_start);
c2c6d25f 7328
2afb61aa 7329 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7330 /* Use the step_resume_break to step until the end of the prologue,
7331 even if that involves jumps (as it seems to on the vax under
7332 4.2). */
7333 /* If the prologue ends in the middle of a source line, continue to
7334 the end of that source line (if it is still within the function).
7335 Otherwise, just go to end of prologue. */
2afb61aa
PA
7336 if (stop_func_sal.end
7337 && stop_func_sal.pc != ecs->stop_func_start
7338 && stop_func_sal.end < ecs->stop_func_end)
7339 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7340
2dbd5e30
KB
7341 /* Architectures which require breakpoint adjustment might not be able
7342 to place a breakpoint at the computed address. If so, the test
7343 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7344 ecs->stop_func_start to an address at which a breakpoint may be
7345 legitimately placed.
8fb3e588 7346
2dbd5e30
KB
7347 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7348 made, GDB will enter an infinite loop when stepping through
7349 optimized code consisting of VLIW instructions which contain
7350 subinstructions corresponding to different source lines. On
7351 FR-V, it's not permitted to place a breakpoint on any but the
7352 first subinstruction of a VLIW instruction. When a breakpoint is
7353 set, GDB will adjust the breakpoint address to the beginning of
7354 the VLIW instruction. Thus, we need to make the corresponding
7355 adjustment here when computing the stop address. */
8fb3e588 7356
568d6575 7357 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7358 {
7359 ecs->stop_func_start
568d6575 7360 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7361 ecs->stop_func_start);
2dbd5e30
KB
7362 }
7363
c2c6d25f
JM
7364 if (ecs->stop_func_start == stop_pc)
7365 {
7366 /* We are already there: stop now. */
bdc36728 7367 end_stepping_range (ecs);
c2c6d25f
JM
7368 return;
7369 }
7370 else
7371 {
7372 /* Put the step-breakpoint there and go until there. */
fe39c653 7373 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
7374 sr_sal.pc = ecs->stop_func_start;
7375 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7376 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7377
c2c6d25f 7378 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7379 some machines the prologue is where the new fp value is
7380 established. */
a6d9a66e 7381 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7382
7383 /* And make sure stepping stops right away then. */
16c381f0
JK
7384 ecs->event_thread->control.step_range_end
7385 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7386 }
7387 keep_going (ecs);
7388}
d4f3574e 7389
b2175913
MS
7390/* Inferior has stepped backward into a subroutine call with source
7391 code that we should not step over. Do step to the beginning of the
7392 last line of code in it. */
7393
7394static void
568d6575
UW
7395handle_step_into_function_backward (struct gdbarch *gdbarch,
7396 struct execution_control_state *ecs)
b2175913 7397{
43f3e411 7398 struct compunit_symtab *cust;
167e4384 7399 struct symtab_and_line stop_func_sal;
b2175913 7400
7e324e48
GB
7401 fill_in_stop_func (gdbarch, ecs);
7402
43f3e411
DE
7403 cust = find_pc_compunit_symtab (stop_pc);
7404 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 7405 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
7406 ecs->stop_func_start);
7407
7408 stop_func_sal = find_pc_line (stop_pc, 0);
7409
7410 /* OK, we're just going to keep stepping here. */
7411 if (stop_func_sal.pc == stop_pc)
7412 {
7413 /* We're there already. Just stop stepping now. */
bdc36728 7414 end_stepping_range (ecs);
b2175913
MS
7415 }
7416 else
7417 {
7418 /* Else just reset the step range and keep going.
7419 No step-resume breakpoint, they don't work for
7420 epilogues, which can have multiple entry paths. */
16c381f0
JK
7421 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7422 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7423 keep_going (ecs);
7424 }
7425 return;
7426}
7427
d3169d93 7428/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7429 This is used to both functions and to skip over code. */
7430
7431static void
2c03e5be
PA
7432insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7433 struct symtab_and_line sr_sal,
7434 struct frame_id sr_id,
7435 enum bptype sr_type)
44cbf7b5 7436{
611c83ae
PA
7437 /* There should never be more than one step-resume or longjmp-resume
7438 breakpoint per thread, so we should never be setting a new
44cbf7b5 7439 step_resume_breakpoint when one is already active. */
8358c15c 7440 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7441 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7442
7443 if (debug_infrun)
7444 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7445 "infrun: inserting step-resume breakpoint at %s\n",
7446 paddress (gdbarch, sr_sal.pc));
d3169d93 7447
8358c15c 7448 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
7449 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7450}
7451
9da8c2a0 7452void
2c03e5be
PA
7453insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7454 struct symtab_and_line sr_sal,
7455 struct frame_id sr_id)
7456{
7457 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7458 sr_sal, sr_id,
7459 bp_step_resume);
44cbf7b5 7460}
7ce450bd 7461
2c03e5be
PA
7462/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7463 This is used to skip a potential signal handler.
7ce450bd 7464
14e60db5
DJ
7465 This is called with the interrupted function's frame. The signal
7466 handler, when it returns, will resume the interrupted function at
7467 RETURN_FRAME.pc. */
d303a6c7
AC
7468
7469static void
2c03e5be 7470insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
7471{
7472 struct symtab_and_line sr_sal;
a6d9a66e 7473 struct gdbarch *gdbarch;
d303a6c7 7474
f4c1edd8 7475 gdb_assert (return_frame != NULL);
d303a6c7
AC
7476 init_sal (&sr_sal); /* initialize to zeros */
7477
a6d9a66e 7478 gdbarch = get_frame_arch (return_frame);
568d6575 7479 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7480 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7481 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7482
2c03e5be
PA
7483 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7484 get_stack_frame_id (return_frame),
7485 bp_hp_step_resume);
d303a6c7
AC
7486}
7487
2c03e5be
PA
7488/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7489 is used to skip a function after stepping into it (for "next" or if
7490 the called function has no debugging information).
14e60db5
DJ
7491
7492 The current function has almost always been reached by single
7493 stepping a call or return instruction. NEXT_FRAME belongs to the
7494 current function, and the breakpoint will be set at the caller's
7495 resume address.
7496
7497 This is a separate function rather than reusing
2c03e5be 7498 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7499 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7500 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7501
7502static void
7503insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7504{
7505 struct symtab_and_line sr_sal;
a6d9a66e 7506 struct gdbarch *gdbarch;
14e60db5
DJ
7507
7508 /* We shouldn't have gotten here if we don't know where the call site
7509 is. */
c7ce8faa 7510 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
7511
7512 init_sal (&sr_sal); /* initialize to zeros */
7513
a6d9a66e 7514 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
7515 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7516 frame_unwind_caller_pc (next_frame));
14e60db5 7517 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7518 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7519
a6d9a66e 7520 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7521 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7522}
7523
611c83ae
PA
7524/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7525 new breakpoint at the target of a jmp_buf. The handling of
7526 longjmp-resume uses the same mechanisms used for handling
7527 "step-resume" breakpoints. */
7528
7529static void
a6d9a66e 7530insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7531{
e81a37f7
TT
7532 /* There should never be more than one longjmp-resume breakpoint per
7533 thread, so we should never be setting a new
611c83ae 7534 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7535 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7536
7537 if (debug_infrun)
7538 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7539 "infrun: inserting longjmp-resume breakpoint at %s\n",
7540 paddress (gdbarch, pc));
611c83ae 7541
e81a37f7 7542 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 7543 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
7544}
7545
186c406b
TT
7546/* Insert an exception resume breakpoint. TP is the thread throwing
7547 the exception. The block B is the block of the unwinder debug hook
7548 function. FRAME is the frame corresponding to the call to this
7549 function. SYM is the symbol of the function argument holding the
7550 target PC of the exception. */
7551
7552static void
7553insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7554 const struct block *b,
186c406b
TT
7555 struct frame_info *frame,
7556 struct symbol *sym)
7557{
492d29ea 7558 TRY
186c406b 7559 {
63e43d3a 7560 struct block_symbol vsym;
186c406b
TT
7561 struct value *value;
7562 CORE_ADDR handler;
7563 struct breakpoint *bp;
7564
63e43d3a
PMR
7565 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7566 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7567 /* If the value was optimized out, revert to the old behavior. */
7568 if (! value_optimized_out (value))
7569 {
7570 handler = value_as_address (value);
7571
7572 if (debug_infrun)
7573 fprintf_unfiltered (gdb_stdlog,
7574 "infrun: exception resume at %lx\n",
7575 (unsigned long) handler);
7576
7577 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7578 handler, bp_exception_resume);
c70a6932
JK
7579
7580 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7581 frame = NULL;
7582
5d5658a1 7583 bp->thread = tp->global_num;
186c406b
TT
7584 inferior_thread ()->control.exception_resume_breakpoint = bp;
7585 }
7586 }
492d29ea
PA
7587 CATCH (e, RETURN_MASK_ERROR)
7588 {
7589 /* We want to ignore errors here. */
7590 }
7591 END_CATCH
186c406b
TT
7592}
7593
28106bc2
SDJ
7594/* A helper for check_exception_resume that sets an
7595 exception-breakpoint based on a SystemTap probe. */
7596
7597static void
7598insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7599 const struct bound_probe *probe,
28106bc2
SDJ
7600 struct frame_info *frame)
7601{
7602 struct value *arg_value;
7603 CORE_ADDR handler;
7604 struct breakpoint *bp;
7605
7606 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7607 if (!arg_value)
7608 return;
7609
7610 handler = value_as_address (arg_value);
7611
7612 if (debug_infrun)
7613 fprintf_unfiltered (gdb_stdlog,
7614 "infrun: exception resume at %s\n",
6bac7473 7615 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7616 handler));
7617
7618 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7619 handler, bp_exception_resume);
5d5658a1 7620 bp->thread = tp->global_num;
28106bc2
SDJ
7621 inferior_thread ()->control.exception_resume_breakpoint = bp;
7622}
7623
186c406b
TT
7624/* This is called when an exception has been intercepted. Check to
7625 see whether the exception's destination is of interest, and if so,
7626 set an exception resume breakpoint there. */
7627
7628static void
7629check_exception_resume (struct execution_control_state *ecs,
28106bc2 7630 struct frame_info *frame)
186c406b 7631{
729662a5 7632 struct bound_probe probe;
28106bc2
SDJ
7633 struct symbol *func;
7634
7635 /* First see if this exception unwinding breakpoint was set via a
7636 SystemTap probe point. If so, the probe has two arguments: the
7637 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7638 set a breakpoint there. */
6bac7473 7639 probe = find_probe_by_pc (get_frame_pc (frame));
729662a5 7640 if (probe.probe)
28106bc2 7641 {
729662a5 7642 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7643 return;
7644 }
7645
7646 func = get_frame_function (frame);
7647 if (!func)
7648 return;
186c406b 7649
492d29ea 7650 TRY
186c406b 7651 {
3977b71f 7652 const struct block *b;
8157b174 7653 struct block_iterator iter;
186c406b
TT
7654 struct symbol *sym;
7655 int argno = 0;
7656
7657 /* The exception breakpoint is a thread-specific breakpoint on
7658 the unwinder's debug hook, declared as:
7659
7660 void _Unwind_DebugHook (void *cfa, void *handler);
7661
7662 The CFA argument indicates the frame to which control is
7663 about to be transferred. HANDLER is the destination PC.
7664
7665 We ignore the CFA and set a temporary breakpoint at HANDLER.
7666 This is not extremely efficient but it avoids issues in gdb
7667 with computing the DWARF CFA, and it also works even in weird
7668 cases such as throwing an exception from inside a signal
7669 handler. */
7670
7671 b = SYMBOL_BLOCK_VALUE (func);
7672 ALL_BLOCK_SYMBOLS (b, iter, sym)
7673 {
7674 if (!SYMBOL_IS_ARGUMENT (sym))
7675 continue;
7676
7677 if (argno == 0)
7678 ++argno;
7679 else
7680 {
7681 insert_exception_resume_breakpoint (ecs->event_thread,
7682 b, frame, sym);
7683 break;
7684 }
7685 }
7686 }
492d29ea
PA
7687 CATCH (e, RETURN_MASK_ERROR)
7688 {
7689 }
7690 END_CATCH
186c406b
TT
7691}
7692
104c1213 7693static void
22bcd14b 7694stop_waiting (struct execution_control_state *ecs)
104c1213 7695{
527159b7 7696 if (debug_infrun)
22bcd14b 7697 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7698
31e77af2
PA
7699 clear_step_over_info ();
7700
cd0fc7c3
SS
7701 /* Let callers know we don't want to wait for the inferior anymore. */
7702 ecs->wait_some_more = 0;
fbea99ea
PA
7703
7704 /* If all-stop, but the target is always in non-stop mode, stop all
7705 threads now that we're presenting the stop to the user. */
7706 if (!non_stop && target_is_non_stop_p ())
7707 stop_all_threads ();
cd0fc7c3
SS
7708}
7709
4d9d9d04
PA
7710/* Like keep_going, but passes the signal to the inferior, even if the
7711 signal is set to nopass. */
d4f3574e
SS
7712
7713static void
4d9d9d04 7714keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7715{
c4dbc9af
PA
7716 /* Make sure normal_stop is called if we get a QUIT handled before
7717 reaching resume. */
7718 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7719
4d9d9d04 7720 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
372316f1 7721 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7722
d4f3574e 7723 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
7724 ecs->event_thread->prev_pc
7725 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 7726
4d9d9d04 7727 if (ecs->event_thread->control.trap_expected)
d4f3574e 7728 {
4d9d9d04
PA
7729 struct thread_info *tp = ecs->event_thread;
7730
7731 if (debug_infrun)
7732 fprintf_unfiltered (gdb_stdlog,
7733 "infrun: %s has trap_expected set, "
7734 "resuming to collect trap\n",
7735 target_pid_to_str (tp->ptid));
7736
a9ba6bae
PA
7737 /* We haven't yet gotten our trap, and either: intercepted a
7738 non-signal event (e.g., a fork); or took a signal which we
7739 are supposed to pass through to the inferior. Simply
7740 continue. */
c4dbc9af 7741 discard_cleanups (old_cleanups);
64ce06e4 7742 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7743 }
372316f1
PA
7744 else if (step_over_info_valid_p ())
7745 {
7746 /* Another thread is stepping over a breakpoint in-line. If
7747 this thread needs a step-over too, queue the request. In
7748 either case, this resume must be deferred for later. */
7749 struct thread_info *tp = ecs->event_thread;
7750
7751 if (ecs->hit_singlestep_breakpoint
7752 || thread_still_needs_step_over (tp))
7753 {
7754 if (debug_infrun)
7755 fprintf_unfiltered (gdb_stdlog,
7756 "infrun: step-over already in progress: "
7757 "step-over for %s deferred\n",
7758 target_pid_to_str (tp->ptid));
7759 thread_step_over_chain_enqueue (tp);
7760 }
7761 else
7762 {
7763 if (debug_infrun)
7764 fprintf_unfiltered (gdb_stdlog,
7765 "infrun: step-over in progress: "
7766 "resume of %s deferred\n",
7767 target_pid_to_str (tp->ptid));
7768 }
7769
7770 discard_cleanups (old_cleanups);
7771 }
d4f3574e
SS
7772 else
7773 {
31e77af2 7774 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7775 int remove_bp;
7776 int remove_wps;
8d297bbf 7777 step_over_what step_what;
31e77af2 7778
d4f3574e 7779 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7780 anyway (if we got a signal, the user asked it be passed to
7781 the child)
7782 -- or --
7783 We got our expected trap, but decided we should resume from
7784 it.
d4f3574e 7785
a9ba6bae 7786 We're going to run this baby now!
d4f3574e 7787
c36b740a
VP
7788 Note that insert_breakpoints won't try to re-insert
7789 already inserted breakpoints. Therefore, we don't
7790 care if breakpoints were already inserted, or not. */
a9ba6bae 7791
31e77af2
PA
7792 /* If we need to step over a breakpoint, and we're not using
7793 displaced stepping to do so, insert all breakpoints
7794 (watchpoints, etc.) but the one we're stepping over, step one
7795 instruction, and then re-insert the breakpoint when that step
7796 is finished. */
963f9c80 7797
6c4cfb24
PA
7798 step_what = thread_still_needs_step_over (ecs->event_thread);
7799
963f9c80 7800 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7801 || (step_what & STEP_OVER_BREAKPOINT));
7802 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7803
cb71640d
PA
7804 /* We can't use displaced stepping if we need to step past a
7805 watchpoint. The instruction copied to the scratch pad would
7806 still trigger the watchpoint. */
7807 if (remove_bp
3fc8eb30 7808 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7809 {
31e77af2 7810 set_step_over_info (get_regcache_aspace (regcache),
21edc42f
YQ
7811 regcache_read_pc (regcache), remove_wps,
7812 ecs->event_thread->global_num);
45e8c884 7813 }
963f9c80 7814 else if (remove_wps)
21edc42f 7815 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7816
7817 /* If we now need to do an in-line step-over, we need to stop
7818 all other threads. Note this must be done before
7819 insert_breakpoints below, because that removes the breakpoint
7820 we're about to step over, otherwise other threads could miss
7821 it. */
fbea99ea 7822 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7823 stop_all_threads ();
abbb1732 7824
31e77af2 7825 /* Stop stepping if inserting breakpoints fails. */
492d29ea 7826 TRY
31e77af2
PA
7827 {
7828 insert_breakpoints ();
7829 }
492d29ea 7830 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
7831 {
7832 exception_print (gdb_stderr, e);
22bcd14b 7833 stop_waiting (ecs);
de1fe8c8 7834 discard_cleanups (old_cleanups);
31e77af2 7835 return;
d4f3574e 7836 }
492d29ea 7837 END_CATCH
d4f3574e 7838
963f9c80 7839 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7840
c4dbc9af 7841 discard_cleanups (old_cleanups);
64ce06e4 7842 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7843 }
7844
488f131b 7845 prepare_to_wait (ecs);
d4f3574e
SS
7846}
7847
4d9d9d04
PA
7848/* Called when we should continue running the inferior, because the
7849 current event doesn't cause a user visible stop. This does the
7850 resuming part; waiting for the next event is done elsewhere. */
7851
7852static void
7853keep_going (struct execution_control_state *ecs)
7854{
7855 if (ecs->event_thread->control.trap_expected
7856 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7857 ecs->event_thread->control.trap_expected = 0;
7858
7859 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7860 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7861 keep_going_pass_signal (ecs);
7862}
7863
104c1213
JM
7864/* This function normally comes after a resume, before
7865 handle_inferior_event exits. It takes care of any last bits of
7866 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7867
104c1213
JM
7868static void
7869prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7870{
527159b7 7871 if (debug_infrun)
8a9de0e4 7872 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7873
104c1213 7874 ecs->wait_some_more = 1;
0b333c5e
PA
7875
7876 if (!target_is_async_p ())
7877 mark_infrun_async_event_handler ();
c906108c 7878}
11cf8741 7879
fd664c91 7880/* We are done with the step range of a step/next/si/ni command.
b57bacec 7881 Called once for each n of a "step n" operation. */
fd664c91
PA
7882
7883static void
bdc36728 7884end_stepping_range (struct execution_control_state *ecs)
fd664c91 7885{
bdc36728 7886 ecs->event_thread->control.stop_step = 1;
bdc36728 7887 stop_waiting (ecs);
fd664c91
PA
7888}
7889
33d62d64
JK
7890/* Several print_*_reason functions to print why the inferior has stopped.
7891 We always print something when the inferior exits, or receives a signal.
7892 The rest of the cases are dealt with later on in normal_stop and
7893 print_it_typical. Ideally there should be a call to one of these
7894 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7895 stop_waiting is called.
33d62d64 7896
fd664c91
PA
7897 Note that we don't call these directly, instead we delegate that to
7898 the interpreters, through observers. Interpreters then call these
7899 with whatever uiout is right. */
33d62d64 7900
fd664c91
PA
7901void
7902print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7903{
fd664c91 7904 /* For CLI-like interpreters, print nothing. */
33d62d64 7905
fd664c91
PA
7906 if (ui_out_is_mi_like_p (uiout))
7907 {
7908 ui_out_field_string (uiout, "reason",
7909 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7910 }
7911}
33d62d64 7912
fd664c91
PA
7913void
7914print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7915{
33d62d64
JK
7916 annotate_signalled ();
7917 if (ui_out_is_mi_like_p (uiout))
7918 ui_out_field_string
7919 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7920 ui_out_text (uiout, "\nProgram terminated with signal ");
7921 annotate_signal_name ();
7922 ui_out_field_string (uiout, "signal-name",
2ea28649 7923 gdb_signal_to_name (siggnal));
33d62d64
JK
7924 annotate_signal_name_end ();
7925 ui_out_text (uiout, ", ");
7926 annotate_signal_string ();
7927 ui_out_field_string (uiout, "signal-meaning",
2ea28649 7928 gdb_signal_to_string (siggnal));
33d62d64
JK
7929 annotate_signal_string_end ();
7930 ui_out_text (uiout, ".\n");
7931 ui_out_text (uiout, "The program no longer exists.\n");
7932}
7933
fd664c91
PA
7934void
7935print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7936{
fda326dd
TT
7937 struct inferior *inf = current_inferior ();
7938 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7939
33d62d64
JK
7940 annotate_exited (exitstatus);
7941 if (exitstatus)
7942 {
7943 if (ui_out_is_mi_like_p (uiout))
7944 ui_out_field_string (uiout, "reason",
7945 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
7946 ui_out_text (uiout, "[Inferior ");
7947 ui_out_text (uiout, plongest (inf->num));
7948 ui_out_text (uiout, " (");
7949 ui_out_text (uiout, pidstr);
7950 ui_out_text (uiout, ") exited with code ");
33d62d64 7951 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 7952 ui_out_text (uiout, "]\n");
33d62d64
JK
7953 }
7954 else
11cf8741 7955 {
9dc5e2a9 7956 if (ui_out_is_mi_like_p (uiout))
034dad6f 7957 ui_out_field_string
33d62d64 7958 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
7959 ui_out_text (uiout, "[Inferior ");
7960 ui_out_text (uiout, plongest (inf->num));
7961 ui_out_text (uiout, " (");
7962 ui_out_text (uiout, pidstr);
7963 ui_out_text (uiout, ") exited normally]\n");
33d62d64 7964 }
33d62d64
JK
7965}
7966
012b3a21
WT
7967/* Some targets/architectures can do extra processing/display of
7968 segmentation faults. E.g., Intel MPX boundary faults.
7969 Call the architecture dependent function to handle the fault. */
7970
7971static void
7972handle_segmentation_fault (struct ui_out *uiout)
7973{
7974 struct regcache *regcache = get_current_regcache ();
7975 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7976
7977 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7978 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7979}
7980
fd664c91
PA
7981void
7982print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 7983{
f303dbd6
PA
7984 struct thread_info *thr = inferior_thread ();
7985
33d62d64
JK
7986 annotate_signal ();
7987
f303dbd6
PA
7988 if (ui_out_is_mi_like_p (uiout))
7989 ;
7990 else if (show_thread_that_caused_stop ())
33d62d64 7991 {
f303dbd6 7992 const char *name;
33d62d64 7993
f303dbd6
PA
7994 ui_out_text (uiout, "\nThread ");
7995 ui_out_field_fmt (uiout, "thread-id", "%s", print_thread_id (thr));
7996
7997 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7998 if (name != NULL)
7999 {
8000 ui_out_text (uiout, " \"");
8001 ui_out_field_fmt (uiout, "name", "%s", name);
8002 ui_out_text (uiout, "\"");
8003 }
33d62d64 8004 }
f303dbd6
PA
8005 else
8006 ui_out_text (uiout, "\nProgram");
8007
8008 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
8009 ui_out_text (uiout, " stopped");
33d62d64
JK
8010 else
8011 {
f303dbd6 8012 ui_out_text (uiout, " received signal ");
8b93c638 8013 annotate_signal_name ();
33d62d64
JK
8014 if (ui_out_is_mi_like_p (uiout))
8015 ui_out_field_string
8016 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 8017 ui_out_field_string (uiout, "signal-name",
2ea28649 8018 gdb_signal_to_name (siggnal));
8b93c638
JM
8019 annotate_signal_name_end ();
8020 ui_out_text (uiout, ", ");
8021 annotate_signal_string ();
488f131b 8022 ui_out_field_string (uiout, "signal-meaning",
2ea28649 8023 gdb_signal_to_string (siggnal));
012b3a21
WT
8024
8025 if (siggnal == GDB_SIGNAL_SEGV)
8026 handle_segmentation_fault (uiout);
8027
8b93c638 8028 annotate_signal_string_end ();
33d62d64
JK
8029 }
8030 ui_out_text (uiout, ".\n");
8031}
252fbfc8 8032
fd664c91
PA
8033void
8034print_no_history_reason (struct ui_out *uiout)
33d62d64 8035{
fd664c91 8036 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
11cf8741 8037}
43ff13b4 8038
0c7e1a46
PA
8039/* Print current location without a level number, if we have changed
8040 functions or hit a breakpoint. Print source line if we have one.
8041 bpstat_print contains the logic deciding in detail what to print,
8042 based on the event(s) that just occurred. */
8043
243a9253
PA
8044static void
8045print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
8046{
8047 int bpstat_ret;
f486487f 8048 enum print_what source_flag;
0c7e1a46
PA
8049 int do_frame_printing = 1;
8050 struct thread_info *tp = inferior_thread ();
8051
8052 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8053 switch (bpstat_ret)
8054 {
8055 case PRINT_UNKNOWN:
8056 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8057 should) carry around the function and does (or should) use
8058 that when doing a frame comparison. */
8059 if (tp->control.stop_step
8060 && frame_id_eq (tp->control.step_frame_id,
8061 get_frame_id (get_current_frame ()))
885eeb5b 8062 && tp->control.step_start_function == find_pc_function (stop_pc))
0c7e1a46
PA
8063 {
8064 /* Finished step, just print source line. */
8065 source_flag = SRC_LINE;
8066 }
8067 else
8068 {
8069 /* Print location and source line. */
8070 source_flag = SRC_AND_LOC;
8071 }
8072 break;
8073 case PRINT_SRC_AND_LOC:
8074 /* Print location and source line. */
8075 source_flag = SRC_AND_LOC;
8076 break;
8077 case PRINT_SRC_ONLY:
8078 source_flag = SRC_LINE;
8079 break;
8080 case PRINT_NOTHING:
8081 /* Something bogus. */
8082 source_flag = SRC_LINE;
8083 do_frame_printing = 0;
8084 break;
8085 default:
8086 internal_error (__FILE__, __LINE__, _("Unknown value."));
8087 }
8088
8089 /* The behavior of this routine with respect to the source
8090 flag is:
8091 SRC_LINE: Print only source line
8092 LOCATION: Print only location
8093 SRC_AND_LOC: Print location and source line. */
8094 if (do_frame_printing)
8095 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
8096}
8097
8098/* Cleanup that restores a previous current uiout. */
8099
8100static void
8101restore_current_uiout_cleanup (void *arg)
8102{
9a3c8263 8103 struct ui_out *saved_uiout = (struct ui_out *) arg;
243a9253
PA
8104
8105 current_uiout = saved_uiout;
8106}
8107
8108/* See infrun.h. */
8109
8110void
8111print_stop_event (struct ui_out *uiout)
8112{
8113 struct cleanup *old_chain;
8114 struct target_waitstatus last;
8115 ptid_t last_ptid;
8116 struct thread_info *tp;
8117
8118 get_last_target_status (&last_ptid, &last);
8119
8120 old_chain = make_cleanup (restore_current_uiout_cleanup, current_uiout);
8121 current_uiout = uiout;
8122
8123 print_stop_location (&last);
0c7e1a46
PA
8124
8125 /* Display the auto-display expressions. */
8126 do_displays ();
243a9253
PA
8127
8128 do_cleanups (old_chain);
8129
8130 tp = inferior_thread ();
8131 if (tp->thread_fsm != NULL
8132 && thread_fsm_finished_p (tp->thread_fsm))
8133 {
8134 struct return_value_info *rv;
8135
8136 rv = thread_fsm_return_value (tp->thread_fsm);
8137 if (rv != NULL)
8138 print_return_value (uiout, rv);
8139 }
0c7e1a46
PA
8140}
8141
388a7084
PA
8142/* See infrun.h. */
8143
8144void
8145maybe_remove_breakpoints (void)
8146{
8147 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8148 {
8149 if (remove_breakpoints ())
8150 {
8151 target_terminal_ours_for_output ();
8152 printf_filtered (_("Cannot remove breakpoints because "
8153 "program is no longer writable.\nFurther "
8154 "execution is probably impossible.\n"));
8155 }
8156 }
8157}
8158
4c2f2a79
PA
8159/* The execution context that just caused a normal stop. */
8160
8161struct stop_context
8162{
8163 /* The stop ID. */
8164 ULONGEST stop_id;
c906108c 8165
4c2f2a79 8166 /* The event PTID. */
c906108c 8167
4c2f2a79
PA
8168 ptid_t ptid;
8169
8170 /* If stopp for a thread event, this is the thread that caused the
8171 stop. */
8172 struct thread_info *thread;
8173
8174 /* The inferior that caused the stop. */
8175 int inf_num;
8176};
8177
8178/* Returns a new stop context. If stopped for a thread event, this
8179 takes a strong reference to the thread. */
8180
8181static struct stop_context *
8182save_stop_context (void)
8183{
224c3ddb 8184 struct stop_context *sc = XNEW (struct stop_context);
4c2f2a79
PA
8185
8186 sc->stop_id = get_stop_id ();
8187 sc->ptid = inferior_ptid;
8188 sc->inf_num = current_inferior ()->num;
8189
8190 if (!ptid_equal (inferior_ptid, null_ptid))
8191 {
8192 /* Take a strong reference so that the thread can't be deleted
8193 yet. */
8194 sc->thread = inferior_thread ();
8195 sc->thread->refcount++;
8196 }
8197 else
8198 sc->thread = NULL;
8199
8200 return sc;
8201}
8202
8203/* Release a stop context previously created with save_stop_context.
8204 Releases the strong reference to the thread as well. */
8205
8206static void
8207release_stop_context_cleanup (void *arg)
8208{
9a3c8263 8209 struct stop_context *sc = (struct stop_context *) arg;
4c2f2a79
PA
8210
8211 if (sc->thread != NULL)
8212 sc->thread->refcount--;
8213 xfree (sc);
8214}
8215
8216/* Return true if the current context no longer matches the saved stop
8217 context. */
8218
8219static int
8220stop_context_changed (struct stop_context *prev)
8221{
8222 if (!ptid_equal (prev->ptid, inferior_ptid))
8223 return 1;
8224 if (prev->inf_num != current_inferior ()->num)
8225 return 1;
8226 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8227 return 1;
8228 if (get_stop_id () != prev->stop_id)
8229 return 1;
8230 return 0;
8231}
8232
8233/* See infrun.h. */
8234
8235int
96baa820 8236normal_stop (void)
c906108c 8237{
73b65bb0
DJ
8238 struct target_waitstatus last;
8239 ptid_t last_ptid;
29f49a6a 8240 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
e1316e60 8241 ptid_t pid_ptid;
3b12939d 8242 struct switch_thru_all_uis state;
73b65bb0
DJ
8243
8244 get_last_target_status (&last_ptid, &last);
8245
4c2f2a79
PA
8246 new_stop_id ();
8247
29f49a6a
PA
8248 /* If an exception is thrown from this point on, make sure to
8249 propagate GDB's knowledge of the executing state to the
8250 frontend/user running state. A QUIT is an easy exception to see
8251 here, so do this before any filtered output. */
c35b1492
PA
8252 if (!non_stop)
8253 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
e1316e60
PA
8254 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8255 || last.kind == TARGET_WAITKIND_EXITED)
8256 {
8257 /* On some targets, we may still have live threads in the
8258 inferior when we get a process exit event. E.g., for
8259 "checkpoint", when the current checkpoint/fork exits,
8260 linux-fork.c automatically switches to another fork from
8261 within target_mourn_inferior. */
8262 if (!ptid_equal (inferior_ptid, null_ptid))
8263 {
8264 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8265 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8266 }
8267 }
8268 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 8269 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 8270
b57bacec
PA
8271 /* As we're presenting a stop, and potentially removing breakpoints,
8272 update the thread list so we can tell whether there are threads
8273 running on the target. With target remote, for example, we can
8274 only learn about new threads when we explicitly update the thread
8275 list. Do this before notifying the interpreters about signal
8276 stops, end of stepping ranges, etc., so that the "new thread"
8277 output is emitted before e.g., "Program received signal FOO",
8278 instead of after. */
8279 update_thread_list ();
8280
8281 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8282 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8283
c906108c
SS
8284 /* As with the notification of thread events, we want to delay
8285 notifying the user that we've switched thread context until
8286 the inferior actually stops.
8287
73b65bb0
DJ
8288 There's no point in saying anything if the inferior has exited.
8289 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8290 "received a signal".
8291
8292 Also skip saying anything in non-stop mode. In that mode, as we
8293 don't want GDB to switch threads behind the user's back, to avoid
8294 races where the user is typing a command to apply to thread x,
8295 but GDB switches to thread y before the user finishes entering
8296 the command, fetch_inferior_event installs a cleanup to restore
8297 the current thread back to the thread the user had selected right
8298 after this event is handled, so we're not really switching, only
8299 informing of a stop. */
4f8d22e3
PA
8300 if (!non_stop
8301 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
8302 && target_has_execution
8303 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8304 && last.kind != TARGET_WAITKIND_EXITED
8305 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8306 {
3b12939d
PA
8307 SWITCH_THRU_ALL_UIS (state)
8308 {
8309 target_terminal_ours_for_output ();
8310 printf_filtered (_("[Switching to %s]\n"),
8311 target_pid_to_str (inferior_ptid));
8312 annotate_thread_changed ();
8313 }
39f77062 8314 previous_inferior_ptid = inferior_ptid;
c906108c 8315 }
c906108c 8316
0e5bf2a8
PA
8317 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8318 {
3b12939d
PA
8319 SWITCH_THRU_ALL_UIS (state)
8320 if (current_ui->prompt_state == PROMPT_BLOCKED)
8321 {
8322 target_terminal_ours_for_output ();
8323 printf_filtered (_("No unwaited-for children left.\n"));
8324 }
0e5bf2a8
PA
8325 }
8326
b57bacec 8327 /* Note: this depends on the update_thread_list call above. */
388a7084 8328 maybe_remove_breakpoints ();
c906108c 8329
c906108c
SS
8330 /* If an auto-display called a function and that got a signal,
8331 delete that auto-display to avoid an infinite recursion. */
8332
8333 if (stopped_by_random_signal)
8334 disable_current_display ();
8335
3b12939d
PA
8336 SWITCH_THRU_ALL_UIS (state)
8337 {
8338 async_enable_stdin ();
8339 }
c906108c 8340
388a7084
PA
8341 /* Let the user/frontend see the threads as stopped. */
8342 do_cleanups (old_chain);
8343
8344 /* Select innermost stack frame - i.e., current frame is frame 0,
8345 and current location is based on that. Handle the case where the
8346 dummy call is returning after being stopped. E.g. the dummy call
8347 previously hit a breakpoint. (If the dummy call returns
8348 normally, we won't reach here.) Do this before the stop hook is
8349 run, so that it doesn't get to see the temporary dummy frame,
8350 which is not where we'll present the stop. */
8351 if (has_stack_frames ())
8352 {
8353 if (stop_stack_dummy == STOP_STACK_DUMMY)
8354 {
8355 /* Pop the empty frame that contains the stack dummy. This
8356 also restores inferior state prior to the call (struct
8357 infcall_suspend_state). */
8358 struct frame_info *frame = get_current_frame ();
8359
8360 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8361 frame_pop (frame);
8362 /* frame_pop calls reinit_frame_cache as the last thing it
8363 does which means there's now no selected frame. */
8364 }
8365
8366 select_frame (get_current_frame ());
8367
8368 /* Set the current source location. */
8369 set_current_sal_from_frame (get_current_frame ());
8370 }
dd7e2d2b
PA
8371
8372 /* Look up the hook_stop and run it (CLI internally handles problem
8373 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8374 if (stop_command != NULL)
8375 {
8376 struct stop_context *saved_context = save_stop_context ();
8377 struct cleanup *old_chain
8378 = make_cleanup (release_stop_context_cleanup, saved_context);
8379
8380 catch_errors (hook_stop_stub, stop_command,
8381 "Error while running hook_stop:\n", RETURN_MASK_ALL);
8382
8383 /* If the stop hook resumes the target, then there's no point in
8384 trying to notify about the previous stop; its context is
8385 gone. Likewise if the command switches thread or inferior --
8386 the observers would print a stop for the wrong
8387 thread/inferior. */
8388 if (stop_context_changed (saved_context))
8389 {
8390 do_cleanups (old_chain);
8391 return 1;
8392 }
8393 do_cleanups (old_chain);
8394 }
dd7e2d2b 8395
388a7084
PA
8396 /* Notify observers about the stop. This is where the interpreters
8397 print the stop event. */
8398 if (!ptid_equal (inferior_ptid, null_ptid))
8399 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8400 stop_print_frame);
8401 else
8402 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 8403
243a9253
PA
8404 annotate_stopped ();
8405
48844aa6
PA
8406 if (target_has_execution)
8407 {
8408 if (last.kind != TARGET_WAITKIND_SIGNALLED
8409 && last.kind != TARGET_WAITKIND_EXITED)
8410 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8411 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8412 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8413 }
6c95b8df
PA
8414
8415 /* Try to get rid of automatically added inferiors that are no
8416 longer needed. Keeping those around slows down things linearly.
8417 Note that this never removes the current inferior. */
8418 prune_inferiors ();
4c2f2a79
PA
8419
8420 return 0;
c906108c
SS
8421}
8422
8423static int
96baa820 8424hook_stop_stub (void *cmd)
c906108c 8425{
5913bcb0 8426 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
8427 return (0);
8428}
8429\f
c5aa993b 8430int
96baa820 8431signal_stop_state (int signo)
c906108c 8432{
d6b48e9c 8433 return signal_stop[signo];
c906108c
SS
8434}
8435
c5aa993b 8436int
96baa820 8437signal_print_state (int signo)
c906108c
SS
8438{
8439 return signal_print[signo];
8440}
8441
c5aa993b 8442int
96baa820 8443signal_pass_state (int signo)
c906108c
SS
8444{
8445 return signal_program[signo];
8446}
8447
2455069d
UW
8448static void
8449signal_cache_update (int signo)
8450{
8451 if (signo == -1)
8452 {
a493e3e2 8453 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8454 signal_cache_update (signo);
8455
8456 return;
8457 }
8458
8459 signal_pass[signo] = (signal_stop[signo] == 0
8460 && signal_print[signo] == 0
ab04a2af
TT
8461 && signal_program[signo] == 1
8462 && signal_catch[signo] == 0);
2455069d
UW
8463}
8464
488f131b 8465int
7bda5e4a 8466signal_stop_update (int signo, int state)
d4f3574e
SS
8467{
8468 int ret = signal_stop[signo];
abbb1732 8469
d4f3574e 8470 signal_stop[signo] = state;
2455069d 8471 signal_cache_update (signo);
d4f3574e
SS
8472 return ret;
8473}
8474
488f131b 8475int
7bda5e4a 8476signal_print_update (int signo, int state)
d4f3574e
SS
8477{
8478 int ret = signal_print[signo];
abbb1732 8479
d4f3574e 8480 signal_print[signo] = state;
2455069d 8481 signal_cache_update (signo);
d4f3574e
SS
8482 return ret;
8483}
8484
488f131b 8485int
7bda5e4a 8486signal_pass_update (int signo, int state)
d4f3574e
SS
8487{
8488 int ret = signal_program[signo];
abbb1732 8489
d4f3574e 8490 signal_program[signo] = state;
2455069d 8491 signal_cache_update (signo);
d4f3574e
SS
8492 return ret;
8493}
8494
ab04a2af
TT
8495/* Update the global 'signal_catch' from INFO and notify the
8496 target. */
8497
8498void
8499signal_catch_update (const unsigned int *info)
8500{
8501 int i;
8502
8503 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8504 signal_catch[i] = info[i] > 0;
8505 signal_cache_update (-1);
8506 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8507}
8508
c906108c 8509static void
96baa820 8510sig_print_header (void)
c906108c 8511{
3e43a32a
MS
8512 printf_filtered (_("Signal Stop\tPrint\tPass "
8513 "to program\tDescription\n"));
c906108c
SS
8514}
8515
8516static void
2ea28649 8517sig_print_info (enum gdb_signal oursig)
c906108c 8518{
2ea28649 8519 const char *name = gdb_signal_to_name (oursig);
c906108c 8520 int name_padding = 13 - strlen (name);
96baa820 8521
c906108c
SS
8522 if (name_padding <= 0)
8523 name_padding = 0;
8524
8525 printf_filtered ("%s", name);
488f131b 8526 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8527 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8528 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8529 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8530 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8531}
8532
8533/* Specify how various signals in the inferior should be handled. */
8534
8535static void
96baa820 8536handle_command (char *args, int from_tty)
c906108c
SS
8537{
8538 char **argv;
8539 int digits, wordlen;
8540 int sigfirst, signum, siglast;
2ea28649 8541 enum gdb_signal oursig;
c906108c
SS
8542 int allsigs;
8543 int nsigs;
8544 unsigned char *sigs;
8545 struct cleanup *old_chain;
8546
8547 if (args == NULL)
8548 {
e2e0b3e5 8549 error_no_arg (_("signal to handle"));
c906108c
SS
8550 }
8551
1777feb0 8552 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8553
a493e3e2 8554 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
8555 sigs = (unsigned char *) alloca (nsigs);
8556 memset (sigs, 0, nsigs);
8557
1777feb0 8558 /* Break the command line up into args. */
c906108c 8559
d1a41061 8560 argv = gdb_buildargv (args);
7a292a7a 8561 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
8562
8563 /* Walk through the args, looking for signal oursigs, signal names, and
8564 actions. Signal numbers and signal names may be interspersed with
8565 actions, with the actions being performed for all signals cumulatively
1777feb0 8566 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
8567
8568 while (*argv != NULL)
8569 {
8570 wordlen = strlen (*argv);
8571 for (digits = 0; isdigit ((*argv)[digits]); digits++)
8572 {;
8573 }
8574 allsigs = 0;
8575 sigfirst = siglast = -1;
8576
8577 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
8578 {
8579 /* Apply action to all signals except those used by the
1777feb0 8580 debugger. Silently skip those. */
c906108c
SS
8581 allsigs = 1;
8582 sigfirst = 0;
8583 siglast = nsigs - 1;
8584 }
8585 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
8586 {
8587 SET_SIGS (nsigs, sigs, signal_stop);
8588 SET_SIGS (nsigs, sigs, signal_print);
8589 }
8590 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
8591 {
8592 UNSET_SIGS (nsigs, sigs, signal_program);
8593 }
8594 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
8595 {
8596 SET_SIGS (nsigs, sigs, signal_print);
8597 }
8598 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
8599 {
8600 SET_SIGS (nsigs, sigs, signal_program);
8601 }
8602 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
8603 {
8604 UNSET_SIGS (nsigs, sigs, signal_stop);
8605 }
8606 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
8607 {
8608 SET_SIGS (nsigs, sigs, signal_program);
8609 }
8610 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
8611 {
8612 UNSET_SIGS (nsigs, sigs, signal_print);
8613 UNSET_SIGS (nsigs, sigs, signal_stop);
8614 }
8615 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
8616 {
8617 UNSET_SIGS (nsigs, sigs, signal_program);
8618 }
8619 else if (digits > 0)
8620 {
8621 /* It is numeric. The numeric signal refers to our own
8622 internal signal numbering from target.h, not to host/target
8623 signal number. This is a feature; users really should be
8624 using symbolic names anyway, and the common ones like
8625 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8626
8627 sigfirst = siglast = (int)
2ea28649 8628 gdb_signal_from_command (atoi (*argv));
c906108c
SS
8629 if ((*argv)[digits] == '-')
8630 {
8631 siglast = (int)
2ea28649 8632 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
8633 }
8634 if (sigfirst > siglast)
8635 {
1777feb0 8636 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
8637 signum = sigfirst;
8638 sigfirst = siglast;
8639 siglast = signum;
8640 }
8641 }
8642 else
8643 {
2ea28649 8644 oursig = gdb_signal_from_name (*argv);
a493e3e2 8645 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8646 {
8647 sigfirst = siglast = (int) oursig;
8648 }
8649 else
8650 {
8651 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 8652 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
8653 }
8654 }
8655
8656 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8657 which signals to apply actions to. */
c906108c
SS
8658
8659 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8660 {
2ea28649 8661 switch ((enum gdb_signal) signum)
c906108c 8662 {
a493e3e2
PA
8663 case GDB_SIGNAL_TRAP:
8664 case GDB_SIGNAL_INT:
c906108c
SS
8665 if (!allsigs && !sigs[signum])
8666 {
9e2f0ad4 8667 if (query (_("%s is used by the debugger.\n\
3e43a32a 8668Are you sure you want to change it? "),
2ea28649 8669 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8670 {
8671 sigs[signum] = 1;
8672 }
8673 else
8674 {
a3f17187 8675 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8676 gdb_flush (gdb_stdout);
8677 }
8678 }
8679 break;
a493e3e2
PA
8680 case GDB_SIGNAL_0:
8681 case GDB_SIGNAL_DEFAULT:
8682 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8683 /* Make sure that "all" doesn't print these. */
8684 break;
8685 default:
8686 sigs[signum] = 1;
8687 break;
8688 }
8689 }
8690
8691 argv++;
8692 }
8693
3a031f65
PA
8694 for (signum = 0; signum < nsigs; signum++)
8695 if (sigs[signum])
8696 {
2455069d 8697 signal_cache_update (-1);
a493e3e2
PA
8698 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8699 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 8700
3a031f65
PA
8701 if (from_tty)
8702 {
8703 /* Show the results. */
8704 sig_print_header ();
8705 for (; signum < nsigs; signum++)
8706 if (sigs[signum])
aead7601 8707 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8708 }
8709
8710 break;
8711 }
c906108c
SS
8712
8713 do_cleanups (old_chain);
8714}
8715
de0bea00
MF
8716/* Complete the "handle" command. */
8717
8718static VEC (char_ptr) *
8719handle_completer (struct cmd_list_element *ignore,
6f937416 8720 const char *text, const char *word)
de0bea00
MF
8721{
8722 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
8723 static const char * const keywords[] =
8724 {
8725 "all",
8726 "stop",
8727 "ignore",
8728 "print",
8729 "pass",
8730 "nostop",
8731 "noignore",
8732 "noprint",
8733 "nopass",
8734 NULL,
8735 };
8736
8737 vec_signals = signal_completer (ignore, text, word);
8738 vec_keywords = complete_on_enum (keywords, word, word);
8739
8740 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
8741 VEC_free (char_ptr, vec_signals);
8742 VEC_free (char_ptr, vec_keywords);
8743 return return_val;
8744}
8745
2ea28649
PA
8746enum gdb_signal
8747gdb_signal_from_command (int num)
ed01b82c
PA
8748{
8749 if (num >= 1 && num <= 15)
2ea28649 8750 return (enum gdb_signal) num;
ed01b82c
PA
8751 error (_("Only signals 1-15 are valid as numeric signals.\n\
8752Use \"info signals\" for a list of symbolic signals."));
8753}
8754
c906108c
SS
8755/* Print current contents of the tables set by the handle command.
8756 It is possible we should just be printing signals actually used
8757 by the current target (but for things to work right when switching
8758 targets, all signals should be in the signal tables). */
8759
8760static void
96baa820 8761signals_info (char *signum_exp, int from_tty)
c906108c 8762{
2ea28649 8763 enum gdb_signal oursig;
abbb1732 8764
c906108c
SS
8765 sig_print_header ();
8766
8767 if (signum_exp)
8768 {
8769 /* First see if this is a symbol name. */
2ea28649 8770 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8771 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8772 {
8773 /* No, try numeric. */
8774 oursig =
2ea28649 8775 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8776 }
8777 sig_print_info (oursig);
8778 return;
8779 }
8780
8781 printf_filtered ("\n");
8782 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8783 for (oursig = GDB_SIGNAL_FIRST;
8784 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8785 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8786 {
8787 QUIT;
8788
a493e3e2
PA
8789 if (oursig != GDB_SIGNAL_UNKNOWN
8790 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8791 sig_print_info (oursig);
8792 }
8793
3e43a32a
MS
8794 printf_filtered (_("\nUse the \"handle\" command "
8795 "to change these tables.\n"));
c906108c 8796}
4aa995e1
PA
8797
8798/* The $_siginfo convenience variable is a bit special. We don't know
8799 for sure the type of the value until we actually have a chance to
7a9dd1b2 8800 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8801 also dependent on which thread you have selected.
8802
8803 1. making $_siginfo be an internalvar that creates a new value on
8804 access.
8805
8806 2. making the value of $_siginfo be an lval_computed value. */
8807
8808/* This function implements the lval_computed support for reading a
8809 $_siginfo value. */
8810
8811static void
8812siginfo_value_read (struct value *v)
8813{
8814 LONGEST transferred;
8815
a911d87a
PA
8816 /* If we can access registers, so can we access $_siginfo. Likewise
8817 vice versa. */
8818 validate_registers_access ();
c709acd1 8819
4aa995e1
PA
8820 transferred =
8821 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8822 NULL,
8823 value_contents_all_raw (v),
8824 value_offset (v),
8825 TYPE_LENGTH (value_type (v)));
8826
8827 if (transferred != TYPE_LENGTH (value_type (v)))
8828 error (_("Unable to read siginfo"));
8829}
8830
8831/* This function implements the lval_computed support for writing a
8832 $_siginfo value. */
8833
8834static void
8835siginfo_value_write (struct value *v, struct value *fromval)
8836{
8837 LONGEST transferred;
8838
a911d87a
PA
8839 /* If we can access registers, so can we access $_siginfo. Likewise
8840 vice versa. */
8841 validate_registers_access ();
c709acd1 8842
4aa995e1
PA
8843 transferred = target_write (&current_target,
8844 TARGET_OBJECT_SIGNAL_INFO,
8845 NULL,
8846 value_contents_all_raw (fromval),
8847 value_offset (v),
8848 TYPE_LENGTH (value_type (fromval)));
8849
8850 if (transferred != TYPE_LENGTH (value_type (fromval)))
8851 error (_("Unable to write siginfo"));
8852}
8853
c8f2448a 8854static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8855 {
8856 siginfo_value_read,
8857 siginfo_value_write
8858 };
8859
8860/* Return a new value with the correct type for the siginfo object of
78267919
UW
8861 the current thread using architecture GDBARCH. Return a void value
8862 if there's no object available. */
4aa995e1 8863
2c0b251b 8864static struct value *
22d2b532
SDJ
8865siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8866 void *ignore)
4aa995e1 8867{
4aa995e1 8868 if (target_has_stack
78267919
UW
8869 && !ptid_equal (inferior_ptid, null_ptid)
8870 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8871 {
78267919 8872 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8873
78267919 8874 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8875 }
8876
78267919 8877 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8878}
8879
c906108c 8880\f
16c381f0
JK
8881/* infcall_suspend_state contains state about the program itself like its
8882 registers and any signal it received when it last stopped.
8883 This state must be restored regardless of how the inferior function call
8884 ends (either successfully, or after it hits a breakpoint or signal)
8885 if the program is to properly continue where it left off. */
8886
8887struct infcall_suspend_state
7a292a7a 8888{
16c381f0 8889 struct thread_suspend_state thread_suspend;
16c381f0
JK
8890
8891 /* Other fields: */
7a292a7a 8892 CORE_ADDR stop_pc;
b89667eb 8893 struct regcache *registers;
1736ad11 8894
35515841 8895 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
8896 struct gdbarch *siginfo_gdbarch;
8897
8898 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8899 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8900 content would be invalid. */
8901 gdb_byte *siginfo_data;
b89667eb
DE
8902};
8903
16c381f0
JK
8904struct infcall_suspend_state *
8905save_infcall_suspend_state (void)
b89667eb 8906{
16c381f0 8907 struct infcall_suspend_state *inf_state;
b89667eb 8908 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8909 struct regcache *regcache = get_current_regcache ();
8910 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8911 gdb_byte *siginfo_data = NULL;
8912
8913 if (gdbarch_get_siginfo_type_p (gdbarch))
8914 {
8915 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8916 size_t len = TYPE_LENGTH (type);
8917 struct cleanup *back_to;
8918
224c3ddb 8919 siginfo_data = (gdb_byte *) xmalloc (len);
1736ad11
JK
8920 back_to = make_cleanup (xfree, siginfo_data);
8921
8922 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8923 siginfo_data, 0, len) == len)
8924 discard_cleanups (back_to);
8925 else
8926 {
8927 /* Errors ignored. */
8928 do_cleanups (back_to);
8929 siginfo_data = NULL;
8930 }
8931 }
8932
41bf6aca 8933 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
8934
8935 if (siginfo_data)
8936 {
8937 inf_state->siginfo_gdbarch = gdbarch;
8938 inf_state->siginfo_data = siginfo_data;
8939 }
b89667eb 8940
16c381f0 8941 inf_state->thread_suspend = tp->suspend;
16c381f0 8942
35515841 8943 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
8944 GDB_SIGNAL_0 anyway. */
8945 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8946
b89667eb
DE
8947 inf_state->stop_pc = stop_pc;
8948
1736ad11 8949 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
8950
8951 return inf_state;
8952}
8953
8954/* Restore inferior session state to INF_STATE. */
8955
8956void
16c381f0 8957restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8958{
8959 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8960 struct regcache *regcache = get_current_regcache ();
8961 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 8962
16c381f0 8963 tp->suspend = inf_state->thread_suspend;
16c381f0 8964
b89667eb
DE
8965 stop_pc = inf_state->stop_pc;
8966
1736ad11
JK
8967 if (inf_state->siginfo_gdbarch == gdbarch)
8968 {
8969 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
8970
8971 /* Errors ignored. */
8972 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 8973 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
8974 }
8975
b89667eb
DE
8976 /* The inferior can be gone if the user types "print exit(0)"
8977 (and perhaps other times). */
8978 if (target_has_execution)
8979 /* NB: The register write goes through to the target. */
1736ad11 8980 regcache_cpy (regcache, inf_state->registers);
803b5f95 8981
16c381f0 8982 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8983}
8984
8985static void
16c381f0 8986do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 8987{
9a3c8263 8988 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
b89667eb
DE
8989}
8990
8991struct cleanup *
16c381f0
JK
8992make_cleanup_restore_infcall_suspend_state
8993 (struct infcall_suspend_state *inf_state)
b89667eb 8994{
16c381f0 8995 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
8996}
8997
8998void
16c381f0 8999discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
9000{
9001 regcache_xfree (inf_state->registers);
803b5f95 9002 xfree (inf_state->siginfo_data);
b89667eb
DE
9003 xfree (inf_state);
9004}
9005
9006struct regcache *
16c381f0 9007get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
9008{
9009 return inf_state->registers;
9010}
9011
16c381f0
JK
9012/* infcall_control_state contains state regarding gdb's control of the
9013 inferior itself like stepping control. It also contains session state like
9014 the user's currently selected frame. */
b89667eb 9015
16c381f0 9016struct infcall_control_state
b89667eb 9017{
16c381f0
JK
9018 struct thread_control_state thread_control;
9019 struct inferior_control_state inferior_control;
d82142e2
JK
9020
9021 /* Other fields: */
9022 enum stop_stack_kind stop_stack_dummy;
9023 int stopped_by_random_signal;
7a292a7a 9024
b89667eb 9025 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 9026 struct frame_id selected_frame_id;
7a292a7a
SS
9027};
9028
c906108c 9029/* Save all of the information associated with the inferior<==>gdb
b89667eb 9030 connection. */
c906108c 9031
16c381f0
JK
9032struct infcall_control_state *
9033save_infcall_control_state (void)
c906108c 9034{
8d749320
SM
9035 struct infcall_control_state *inf_status =
9036 XNEW (struct infcall_control_state);
4e1c45ea 9037 struct thread_info *tp = inferior_thread ();
d6b48e9c 9038 struct inferior *inf = current_inferior ();
7a292a7a 9039
16c381f0
JK
9040 inf_status->thread_control = tp->control;
9041 inf_status->inferior_control = inf->control;
d82142e2 9042
8358c15c 9043 tp->control.step_resume_breakpoint = NULL;
5b79abe7 9044 tp->control.exception_resume_breakpoint = NULL;
8358c15c 9045
16c381f0
JK
9046 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9047 chain. If caller's caller is walking the chain, they'll be happier if we
9048 hand them back the original chain when restore_infcall_control_state is
9049 called. */
9050 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
9051
9052 /* Other fields: */
9053 inf_status->stop_stack_dummy = stop_stack_dummy;
9054 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 9055
206415a3 9056 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 9057
7a292a7a 9058 return inf_status;
c906108c
SS
9059}
9060
c906108c 9061static int
96baa820 9062restore_selected_frame (void *args)
c906108c 9063{
488f131b 9064 struct frame_id *fid = (struct frame_id *) args;
c906108c 9065 struct frame_info *frame;
c906108c 9066
101dcfbe 9067 frame = frame_find_by_id (*fid);
c906108c 9068
aa0cd9c1
AC
9069 /* If inf_status->selected_frame_id is NULL, there was no previously
9070 selected frame. */
101dcfbe 9071 if (frame == NULL)
c906108c 9072 {
8a3fe4f8 9073 warning (_("Unable to restore previously selected frame."));
c906108c
SS
9074 return 0;
9075 }
9076
0f7d239c 9077 select_frame (frame);
c906108c
SS
9078
9079 return (1);
9080}
9081
b89667eb
DE
9082/* Restore inferior session state to INF_STATUS. */
9083
c906108c 9084void
16c381f0 9085restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 9086{
4e1c45ea 9087 struct thread_info *tp = inferior_thread ();
d6b48e9c 9088 struct inferior *inf = current_inferior ();
4e1c45ea 9089
8358c15c
JK
9090 if (tp->control.step_resume_breakpoint)
9091 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9092
5b79abe7
TT
9093 if (tp->control.exception_resume_breakpoint)
9094 tp->control.exception_resume_breakpoint->disposition
9095 = disp_del_at_next_stop;
9096
d82142e2 9097 /* Handle the bpstat_copy of the chain. */
16c381f0 9098 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 9099
16c381f0
JK
9100 tp->control = inf_status->thread_control;
9101 inf->control = inf_status->inferior_control;
d82142e2
JK
9102
9103 /* Other fields: */
9104 stop_stack_dummy = inf_status->stop_stack_dummy;
9105 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 9106
b89667eb 9107 if (target_has_stack)
c906108c 9108 {
c906108c 9109 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
9110 walking the stack might encounter a garbage pointer and
9111 error() trying to dereference it. */
488f131b
JB
9112 if (catch_errors
9113 (restore_selected_frame, &inf_status->selected_frame_id,
9114 "Unable to restore previously selected frame:\n",
9115 RETURN_MASK_ERROR) == 0)
c906108c
SS
9116 /* Error in restoring the selected frame. Select the innermost
9117 frame. */
0f7d239c 9118 select_frame (get_current_frame ());
c906108c 9119 }
c906108c 9120
72cec141 9121 xfree (inf_status);
7a292a7a 9122}
c906108c 9123
74b7792f 9124static void
16c381f0 9125do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 9126{
9a3c8263 9127 restore_infcall_control_state ((struct infcall_control_state *) sts);
74b7792f
AC
9128}
9129
9130struct cleanup *
16c381f0
JK
9131make_cleanup_restore_infcall_control_state
9132 (struct infcall_control_state *inf_status)
74b7792f 9133{
16c381f0 9134 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
9135}
9136
c906108c 9137void
16c381f0 9138discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 9139{
8358c15c
JK
9140 if (inf_status->thread_control.step_resume_breakpoint)
9141 inf_status->thread_control.step_resume_breakpoint->disposition
9142 = disp_del_at_next_stop;
9143
5b79abe7
TT
9144 if (inf_status->thread_control.exception_resume_breakpoint)
9145 inf_status->thread_control.exception_resume_breakpoint->disposition
9146 = disp_del_at_next_stop;
9147
1777feb0 9148 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 9149 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 9150
72cec141 9151 xfree (inf_status);
7a292a7a 9152}
b89667eb 9153\f
ca6724c1
KB
9154/* restore_inferior_ptid() will be used by the cleanup machinery
9155 to restore the inferior_ptid value saved in a call to
9156 save_inferior_ptid(). */
ce696e05
KB
9157
9158static void
9159restore_inferior_ptid (void *arg)
9160{
9a3c8263 9161 ptid_t *saved_ptid_ptr = (ptid_t *) arg;
abbb1732 9162
ce696e05
KB
9163 inferior_ptid = *saved_ptid_ptr;
9164 xfree (arg);
9165}
9166
9167/* Save the value of inferior_ptid so that it may be restored by a
9168 later call to do_cleanups(). Returns the struct cleanup pointer
9169 needed for later doing the cleanup. */
9170
9171struct cleanup *
9172save_inferior_ptid (void)
9173{
8d749320 9174 ptid_t *saved_ptid_ptr = XNEW (ptid_t);
ce696e05 9175
ce696e05
KB
9176 *saved_ptid_ptr = inferior_ptid;
9177 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
9178}
0c557179 9179
7f89fd65 9180/* See infrun.h. */
0c557179
SDJ
9181
9182void
9183clear_exit_convenience_vars (void)
9184{
9185 clear_internalvar (lookup_internalvar ("_exitsignal"));
9186 clear_internalvar (lookup_internalvar ("_exitcode"));
9187}
c5aa993b 9188\f
488f131b 9189
b2175913
MS
9190/* User interface for reverse debugging:
9191 Set exec-direction / show exec-direction commands
9192 (returns error unless target implements to_set_exec_direction method). */
9193
170742de 9194enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
9195static const char exec_forward[] = "forward";
9196static const char exec_reverse[] = "reverse";
9197static const char *exec_direction = exec_forward;
40478521 9198static const char *const exec_direction_names[] = {
b2175913
MS
9199 exec_forward,
9200 exec_reverse,
9201 NULL
9202};
9203
9204static void
9205set_exec_direction_func (char *args, int from_tty,
9206 struct cmd_list_element *cmd)
9207{
9208 if (target_can_execute_reverse)
9209 {
9210 if (!strcmp (exec_direction, exec_forward))
9211 execution_direction = EXEC_FORWARD;
9212 else if (!strcmp (exec_direction, exec_reverse))
9213 execution_direction = EXEC_REVERSE;
9214 }
8bbed405
MS
9215 else
9216 {
9217 exec_direction = exec_forward;
9218 error (_("Target does not support this operation."));
9219 }
b2175913
MS
9220}
9221
9222static void
9223show_exec_direction_func (struct ui_file *out, int from_tty,
9224 struct cmd_list_element *cmd, const char *value)
9225{
9226 switch (execution_direction) {
9227 case EXEC_FORWARD:
9228 fprintf_filtered (out, _("Forward.\n"));
9229 break;
9230 case EXEC_REVERSE:
9231 fprintf_filtered (out, _("Reverse.\n"));
9232 break;
b2175913 9233 default:
d8b34453
PA
9234 internal_error (__FILE__, __LINE__,
9235 _("bogus execution_direction value: %d"),
9236 (int) execution_direction);
b2175913
MS
9237 }
9238}
9239
d4db2f36
PA
9240static void
9241show_schedule_multiple (struct ui_file *file, int from_tty,
9242 struct cmd_list_element *c, const char *value)
9243{
3e43a32a
MS
9244 fprintf_filtered (file, _("Resuming the execution of threads "
9245 "of all processes is %s.\n"), value);
d4db2f36 9246}
ad52ddc6 9247
22d2b532
SDJ
9248/* Implementation of `siginfo' variable. */
9249
9250static const struct internalvar_funcs siginfo_funcs =
9251{
9252 siginfo_make_value,
9253 NULL,
9254 NULL
9255};
9256
372316f1
PA
9257/* Callback for infrun's target events source. This is marked when a
9258 thread has a pending status to process. */
9259
9260static void
9261infrun_async_inferior_event_handler (gdb_client_data data)
9262{
372316f1
PA
9263 inferior_event_handler (INF_REG_EVENT, NULL);
9264}
9265
c906108c 9266void
96baa820 9267_initialize_infrun (void)
c906108c 9268{
52f0bd74
AC
9269 int i;
9270 int numsigs;
de0bea00 9271 struct cmd_list_element *c;
c906108c 9272
372316f1
PA
9273 /* Register extra event sources in the event loop. */
9274 infrun_async_inferior_event_token
9275 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9276
1bedd215
AC
9277 add_info ("signals", signals_info, _("\
9278What debugger does when program gets various signals.\n\
9279Specify a signal as argument to print info on that signal only."));
c906108c
SS
9280 add_info_alias ("handle", "signals", 0);
9281
de0bea00 9282 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9283Specify how to handle signals.\n\
486c7739 9284Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9285Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9286If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9287will be displayed instead.\n\
9288\n\
c906108c
SS
9289Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9290from 1-15 are allowed for compatibility with old versions of GDB.\n\
9291Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9292The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9293used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9294\n\
1bedd215 9295Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9296\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9297Stop means reenter debugger if this signal happens (implies print).\n\
9298Print means print a message if this signal happens.\n\
9299Pass means let program see this signal; otherwise program doesn't know.\n\
9300Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9301Pass and Stop may be combined.\n\
9302\n\
9303Multiple signals may be specified. Signal numbers and signal names\n\
9304may be interspersed with actions, with the actions being performed for\n\
9305all signals cumulatively specified."));
de0bea00 9306 set_cmd_completer (c, handle_completer);
486c7739 9307
c906108c 9308 if (!dbx_commands)
1a966eab
AC
9309 stop_command = add_cmd ("stop", class_obscure,
9310 not_just_help_class_command, _("\
9311There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9312This allows you to set a list of commands to be run each time execution\n\
1a966eab 9313of the program stops."), &cmdlist);
c906108c 9314
ccce17b0 9315 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9316Set inferior debugging."), _("\
9317Show inferior debugging."), _("\
9318When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9319 NULL,
9320 show_debug_infrun,
9321 &setdebuglist, &showdebuglist);
527159b7 9322
3e43a32a
MS
9323 add_setshow_boolean_cmd ("displaced", class_maintenance,
9324 &debug_displaced, _("\
237fc4c9
PA
9325Set displaced stepping debugging."), _("\
9326Show displaced stepping debugging."), _("\
9327When non-zero, displaced stepping specific debugging is enabled."),
9328 NULL,
9329 show_debug_displaced,
9330 &setdebuglist, &showdebuglist);
9331
ad52ddc6
PA
9332 add_setshow_boolean_cmd ("non-stop", no_class,
9333 &non_stop_1, _("\
9334Set whether gdb controls the inferior in non-stop mode."), _("\
9335Show whether gdb controls the inferior in non-stop mode."), _("\
9336When debugging a multi-threaded program and this setting is\n\
9337off (the default, also called all-stop mode), when one thread stops\n\
9338(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9339all other threads in the program while you interact with the thread of\n\
9340interest. When you continue or step a thread, you can allow the other\n\
9341threads to run, or have them remain stopped, but while you inspect any\n\
9342thread's state, all threads stop.\n\
9343\n\
9344In non-stop mode, when one thread stops, other threads can continue\n\
9345to run freely. You'll be able to step each thread independently,\n\
9346leave it stopped or free to run as needed."),
9347 set_non_stop,
9348 show_non_stop,
9349 &setlist,
9350 &showlist);
9351
a493e3e2 9352 numsigs = (int) GDB_SIGNAL_LAST;
8d749320
SM
9353 signal_stop = XNEWVEC (unsigned char, numsigs);
9354 signal_print = XNEWVEC (unsigned char, numsigs);
9355 signal_program = XNEWVEC (unsigned char, numsigs);
9356 signal_catch = XNEWVEC (unsigned char, numsigs);
9357 signal_pass = XNEWVEC (unsigned char, numsigs);
c906108c
SS
9358 for (i = 0; i < numsigs; i++)
9359 {
9360 signal_stop[i] = 1;
9361 signal_print[i] = 1;
9362 signal_program[i] = 1;
ab04a2af 9363 signal_catch[i] = 0;
c906108c
SS
9364 }
9365
4d9d9d04
PA
9366 /* Signals caused by debugger's own actions should not be given to
9367 the program afterwards.
9368
9369 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9370 explicitly specifies that it should be delivered to the target
9371 program. Typically, that would occur when a user is debugging a
9372 target monitor on a simulator: the target monitor sets a
9373 breakpoint; the simulator encounters this breakpoint and halts
9374 the simulation handing control to GDB; GDB, noting that the stop
9375 address doesn't map to any known breakpoint, returns control back
9376 to the simulator; the simulator then delivers the hardware
9377 equivalent of a GDB_SIGNAL_TRAP to the program being
9378 debugged. */
a493e3e2
PA
9379 signal_program[GDB_SIGNAL_TRAP] = 0;
9380 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9381
9382 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9383 signal_stop[GDB_SIGNAL_ALRM] = 0;
9384 signal_print[GDB_SIGNAL_ALRM] = 0;
9385 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9386 signal_print[GDB_SIGNAL_VTALRM] = 0;
9387 signal_stop[GDB_SIGNAL_PROF] = 0;
9388 signal_print[GDB_SIGNAL_PROF] = 0;
9389 signal_stop[GDB_SIGNAL_CHLD] = 0;
9390 signal_print[GDB_SIGNAL_CHLD] = 0;
9391 signal_stop[GDB_SIGNAL_IO] = 0;
9392 signal_print[GDB_SIGNAL_IO] = 0;
9393 signal_stop[GDB_SIGNAL_POLL] = 0;
9394 signal_print[GDB_SIGNAL_POLL] = 0;
9395 signal_stop[GDB_SIGNAL_URG] = 0;
9396 signal_print[GDB_SIGNAL_URG] = 0;
9397 signal_stop[GDB_SIGNAL_WINCH] = 0;
9398 signal_print[GDB_SIGNAL_WINCH] = 0;
9399 signal_stop[GDB_SIGNAL_PRIO] = 0;
9400 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9401
cd0fc7c3
SS
9402 /* These signals are used internally by user-level thread
9403 implementations. (See signal(5) on Solaris.) Like the above
9404 signals, a healthy program receives and handles them as part of
9405 its normal operation. */
a493e3e2
PA
9406 signal_stop[GDB_SIGNAL_LWP] = 0;
9407 signal_print[GDB_SIGNAL_LWP] = 0;
9408 signal_stop[GDB_SIGNAL_WAITING] = 0;
9409 signal_print[GDB_SIGNAL_WAITING] = 0;
9410 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9411 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9412 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9413 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9414
2455069d
UW
9415 /* Update cached state. */
9416 signal_cache_update (-1);
9417
85c07804
AC
9418 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9419 &stop_on_solib_events, _("\
9420Set stopping for shared library events."), _("\
9421Show stopping for shared library events."), _("\
c906108c
SS
9422If nonzero, gdb will give control to the user when the dynamic linker\n\
9423notifies gdb of shared library events. The most common event of interest\n\
85c07804 9424to the user would be loading/unloading of a new library."),
f9e14852 9425 set_stop_on_solib_events,
920d2a44 9426 show_stop_on_solib_events,
85c07804 9427 &setlist, &showlist);
c906108c 9428
7ab04401
AC
9429 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9430 follow_fork_mode_kind_names,
9431 &follow_fork_mode_string, _("\
9432Set debugger response to a program call of fork or vfork."), _("\
9433Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9434A fork or vfork creates a new process. follow-fork-mode can be:\n\
9435 parent - the original process is debugged after a fork\n\
9436 child - the new process is debugged after a fork\n\
ea1dd7bc 9437The unfollowed process will continue to run.\n\
7ab04401
AC
9438By default, the debugger will follow the parent process."),
9439 NULL,
920d2a44 9440 show_follow_fork_mode_string,
7ab04401
AC
9441 &setlist, &showlist);
9442
6c95b8df
PA
9443 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9444 follow_exec_mode_names,
9445 &follow_exec_mode_string, _("\
9446Set debugger response to a program call of exec."), _("\
9447Show debugger response to a program call of exec."), _("\
9448An exec call replaces the program image of a process.\n\
9449\n\
9450follow-exec-mode can be:\n\
9451\n\
cce7e648 9452 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9453to this new inferior. The program the process was running before\n\
9454the exec call can be restarted afterwards by restarting the original\n\
9455inferior.\n\
9456\n\
9457 same - the debugger keeps the process bound to the same inferior.\n\
9458The new executable image replaces the previous executable loaded in\n\
9459the inferior. Restarting the inferior after the exec call restarts\n\
9460the executable the process was running after the exec call.\n\
9461\n\
9462By default, the debugger will use the same inferior."),
9463 NULL,
9464 show_follow_exec_mode_string,
9465 &setlist, &showlist);
9466
7ab04401
AC
9467 add_setshow_enum_cmd ("scheduler-locking", class_run,
9468 scheduler_enums, &scheduler_mode, _("\
9469Set mode for locking scheduler during execution."), _("\
9470Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9471off == no locking (threads may preempt at any time)\n\
9472on == full locking (no thread except the current thread may run)\n\
9473 This applies to both normal execution and replay mode.\n\
9474step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9475 In this mode, other threads may run during other commands.\n\
9476 This applies to both normal execution and replay mode.\n\
9477replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9478 set_schedlock_func, /* traps on target vector */
920d2a44 9479 show_scheduler_mode,
7ab04401 9480 &setlist, &showlist);
5fbbeb29 9481
d4db2f36
PA
9482 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9483Set mode for resuming threads of all processes."), _("\
9484Show mode for resuming threads of all processes."), _("\
9485When on, execution commands (such as 'continue' or 'next') resume all\n\
9486threads of all processes. When off (which is the default), execution\n\
9487commands only resume the threads of the current process. The set of\n\
9488threads that are resumed is further refined by the scheduler-locking\n\
9489mode (see help set scheduler-locking)."),
9490 NULL,
9491 show_schedule_multiple,
9492 &setlist, &showlist);
9493
5bf193a2
AC
9494 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9495Set mode of the step operation."), _("\
9496Show mode of the step operation."), _("\
9497When set, doing a step over a function without debug line information\n\
9498will stop at the first instruction of that function. Otherwise, the\n\
9499function is skipped and the step command stops at a different source line."),
9500 NULL,
920d2a44 9501 show_step_stop_if_no_debug,
5bf193a2 9502 &setlist, &showlist);
ca6724c1 9503
72d0e2c5
YQ
9504 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9505 &can_use_displaced_stepping, _("\
237fc4c9
PA
9506Set debugger's willingness to use displaced stepping."), _("\
9507Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9508If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9509supported by the target architecture. If off, gdb will not use displaced\n\
9510stepping to step over breakpoints, even if such is supported by the target\n\
9511architecture. If auto (which is the default), gdb will use displaced stepping\n\
9512if the target architecture supports it and non-stop mode is active, but will not\n\
9513use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9514 NULL,
9515 show_can_use_displaced_stepping,
9516 &setlist, &showlist);
237fc4c9 9517
b2175913
MS
9518 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9519 &exec_direction, _("Set direction of execution.\n\
9520Options are 'forward' or 'reverse'."),
9521 _("Show direction of execution (forward/reverse)."),
9522 _("Tells gdb whether to execute forward or backward."),
9523 set_exec_direction_func, show_exec_direction_func,
9524 &setlist, &showlist);
9525
6c95b8df
PA
9526 /* Set/show detach-on-fork: user-settable mode. */
9527
9528 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9529Set whether gdb will detach the child of a fork."), _("\
9530Show whether gdb will detach the child of a fork."), _("\
9531Tells gdb whether to detach the child of a fork."),
9532 NULL, NULL, &setlist, &showlist);
9533
03583c20
UW
9534 /* Set/show disable address space randomization mode. */
9535
9536 add_setshow_boolean_cmd ("disable-randomization", class_support,
9537 &disable_randomization, _("\
9538Set disabling of debuggee's virtual address space randomization."), _("\
9539Show disabling of debuggee's virtual address space randomization."), _("\
9540When this mode is on (which is the default), randomization of the virtual\n\
9541address space is disabled. Standalone programs run with the randomization\n\
9542enabled by default on some platforms."),
9543 &set_disable_randomization,
9544 &show_disable_randomization,
9545 &setlist, &showlist);
9546
ca6724c1 9547 /* ptid initializations */
ca6724c1
KB
9548 inferior_ptid = null_ptid;
9549 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
9550
9551 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 9552 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 9553 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 9554 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
9555
9556 /* Explicitly create without lookup, since that tries to create a
9557 value with a void typed value, and when we get here, gdbarch
9558 isn't initialized yet. At this point, we're quite sure there
9559 isn't another convenience variable of the same name. */
22d2b532 9560 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9561
9562 add_setshow_boolean_cmd ("observer", no_class,
9563 &observer_mode_1, _("\
9564Set whether gdb controls the inferior in observer mode."), _("\
9565Show whether gdb controls the inferior in observer mode."), _("\
9566In observer mode, GDB can get data from the inferior, but not\n\
9567affect its execution. Registers and memory may not be changed,\n\
9568breakpoints may not be set, and the program cannot be interrupted\n\
9569or signalled."),
9570 set_observer_mode,
9571 show_observer_mode,
9572 &setlist,
9573 &showlist);
c906108c 9574}
This page took 2.75413 seconds and 4 git commands to generate.