* infrun.c (fetch_inferior_event): Only call normal_stop if not
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
6aba47ca 4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
9b254dd1
DJ
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008 Free Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include <ctype.h>
26#include "symtab.h"
27#include "frame.h"
28#include "inferior.h"
60250e8b 29#include "exceptions.h"
c906108c 30#include "breakpoint.h"
03f2053f 31#include "gdb_wait.h"
c906108c
SS
32#include "gdbcore.h"
33#include "gdbcmd.h"
210661e7 34#include "cli/cli-script.h"
c906108c
SS
35#include "target.h"
36#include "gdbthread.h"
37#include "annotate.h"
1adeb98a 38#include "symfile.h"
7a292a7a 39#include "top.h"
c906108c 40#include <signal.h>
2acceee2 41#include "inf-loop.h"
4e052eda 42#include "regcache.h"
fd0407d6 43#include "value.h"
06600e06 44#include "observer.h"
f636b87d 45#include "language.h"
a77053c2 46#include "solib.h"
f17517ea 47#include "main.h"
a77053c2 48
9f976b41 49#include "gdb_assert.h"
034dad6f 50#include "mi/mi-common.h"
4f8d22e3 51#include "event-top.h"
c906108c
SS
52
53/* Prototypes for local functions */
54
96baa820 55static void signals_info (char *, int);
c906108c 56
96baa820 57static void handle_command (char *, int);
c906108c 58
96baa820 59static void sig_print_info (enum target_signal);
c906108c 60
96baa820 61static void sig_print_header (void);
c906108c 62
74b7792f 63static void resume_cleanups (void *);
c906108c 64
96baa820 65static int hook_stop_stub (void *);
c906108c 66
96baa820
JM
67static int restore_selected_frame (void *);
68
69static void build_infrun (void);
70
4ef3f3be 71static int follow_fork (void);
96baa820
JM
72
73static void set_schedlock_func (char *args, int from_tty,
488f131b 74 struct cmd_list_element *c);
96baa820 75
0d1e5fa7 76struct thread_stepping_state;
96baa820 77
0d1e5fa7 78static int currently_stepping (struct thread_stepping_state *tss);
96baa820
JM
79
80static void xdb_handle_command (char *args, int from_tty);
81
6a6b96b9 82static int prepare_to_proceed (int);
ea67f13b 83
96baa820 84void _initialize_infrun (void);
43ff13b4 85
5fbbeb29
CF
86/* When set, stop the 'step' command if we enter a function which has
87 no line number information. The normal behavior is that we step
88 over such function. */
89int step_stop_if_no_debug = 0;
920d2a44
AC
90static void
91show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
92 struct cmd_list_element *c, const char *value)
93{
94 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
95}
5fbbeb29 96
43ff13b4 97/* In asynchronous mode, but simulating synchronous execution. */
96baa820 98
43ff13b4
JM
99int sync_execution = 0;
100
c906108c
SS
101/* wait_for_inferior and normal_stop use this to notify the user
102 when the inferior stopped in a different thread than it had been
96baa820
JM
103 running in. */
104
39f77062 105static ptid_t previous_inferior_ptid;
7a292a7a 106
237fc4c9
PA
107int debug_displaced = 0;
108static void
109show_debug_displaced (struct ui_file *file, int from_tty,
110 struct cmd_list_element *c, const char *value)
111{
112 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
113}
114
527159b7 115static int debug_infrun = 0;
920d2a44
AC
116static void
117show_debug_infrun (struct ui_file *file, int from_tty,
118 struct cmd_list_element *c, const char *value)
119{
120 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
121}
527159b7 122
d4f3574e
SS
123/* If the program uses ELF-style shared libraries, then calls to
124 functions in shared libraries go through stubs, which live in a
125 table called the PLT (Procedure Linkage Table). The first time the
126 function is called, the stub sends control to the dynamic linker,
127 which looks up the function's real address, patches the stub so
128 that future calls will go directly to the function, and then passes
129 control to the function.
130
131 If we are stepping at the source level, we don't want to see any of
132 this --- we just want to skip over the stub and the dynamic linker.
133 The simple approach is to single-step until control leaves the
134 dynamic linker.
135
ca557f44
AC
136 However, on some systems (e.g., Red Hat's 5.2 distribution) the
137 dynamic linker calls functions in the shared C library, so you
138 can't tell from the PC alone whether the dynamic linker is still
139 running. In this case, we use a step-resume breakpoint to get us
140 past the dynamic linker, as if we were using "next" to step over a
141 function call.
d4f3574e 142
cfd8ab24 143 in_solib_dynsym_resolve_code() says whether we're in the dynamic
d4f3574e
SS
144 linker code or not. Normally, this means we single-step. However,
145 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
146 address where we can place a step-resume breakpoint to get past the
147 linker's symbol resolution function.
148
cfd8ab24 149 in_solib_dynsym_resolve_code() can generally be implemented in a
d4f3574e
SS
150 pretty portable way, by comparing the PC against the address ranges
151 of the dynamic linker's sections.
152
153 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
154 it depends on internal details of the dynamic linker. It's usually
155 not too hard to figure out where to put a breakpoint, but it
156 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
157 sanity checking. If it can't figure things out, returning zero and
158 getting the (possibly confusing) stepping behavior is better than
159 signalling an error, which will obscure the change in the
160 inferior's state. */
c906108c 161
c906108c
SS
162/* This function returns TRUE if pc is the address of an instruction
163 that lies within the dynamic linker (such as the event hook, or the
164 dld itself).
165
166 This function must be used only when a dynamic linker event has
167 been caught, and the inferior is being stepped out of the hook, or
168 undefined results are guaranteed. */
169
170#ifndef SOLIB_IN_DYNAMIC_LINKER
171#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
172#endif
173
c2c6d25f 174
7a292a7a
SS
175/* Convert the #defines into values. This is temporary until wfi control
176 flow is completely sorted out. */
177
692590c1
MS
178#ifndef CANNOT_STEP_HW_WATCHPOINTS
179#define CANNOT_STEP_HW_WATCHPOINTS 0
180#else
181#undef CANNOT_STEP_HW_WATCHPOINTS
182#define CANNOT_STEP_HW_WATCHPOINTS 1
183#endif
184
c906108c
SS
185/* Tables of how to react to signals; the user sets them. */
186
187static unsigned char *signal_stop;
188static unsigned char *signal_print;
189static unsigned char *signal_program;
190
191#define SET_SIGS(nsigs,sigs,flags) \
192 do { \
193 int signum = (nsigs); \
194 while (signum-- > 0) \
195 if ((sigs)[signum]) \
196 (flags)[signum] = 1; \
197 } while (0)
198
199#define UNSET_SIGS(nsigs,sigs,flags) \
200 do { \
201 int signum = (nsigs); \
202 while (signum-- > 0) \
203 if ((sigs)[signum]) \
204 (flags)[signum] = 0; \
205 } while (0)
206
39f77062
KB
207/* Value to pass to target_resume() to cause all threads to resume */
208
209#define RESUME_ALL (pid_to_ptid (-1))
c906108c
SS
210
211/* Command list pointer for the "stop" placeholder. */
212
213static struct cmd_list_element *stop_command;
214
c906108c
SS
215/* Function inferior was in as of last step command. */
216
217static struct symbol *step_start_function;
218
ca67fcb8 219/* Nonzero if we are presently stepping over a breakpoint.
c906108c 220
ca67fcb8
VP
221 If we hit a breakpoint or watchpoint, and then continue,
222 we need to single step the current thread with breakpoints
223 disabled, to avoid hitting the same breakpoint or
224 watchpoint again. And we should step just a single
225 thread and keep other threads stopped, so that
226 other threads don't miss breakpoints while they are removed.
227
228 So, this variable simultaneously means that we need to single
229 step the current thread, keep other threads stopped, and that
230 breakpoints should be removed while we step.
231
232 This variable is set either:
233 - in proceed, when we resume inferior on user's explicit request
234 - in keep_going, if handle_inferior_event decides we need to
235 step over breakpoint.
236
237 The variable is cleared in clear_proceed_status, called every
238 time before we call proceed. The proceed calls wait_for_inferior,
239 which calls handle_inferior_event in a loop, and until
240 wait_for_inferior exits, this variable is changed only by keep_going. */
241
242static int stepping_over_breakpoint;
c906108c 243
c906108c
SS
244/* Nonzero if we want to give control to the user when we're notified
245 of shared library events by the dynamic linker. */
246static int stop_on_solib_events;
920d2a44
AC
247static void
248show_stop_on_solib_events (struct ui_file *file, int from_tty,
249 struct cmd_list_element *c, const char *value)
250{
251 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
252 value);
253}
c906108c 254
c906108c
SS
255/* Nonzero means expecting a trace trap
256 and should stop the inferior and return silently when it happens. */
257
258int stop_after_trap;
259
260/* Nonzero means expecting a trap and caller will handle it themselves.
261 It is used after attach, due to attaching to a process;
262 when running in the shell before the child program has been exec'd;
263 and when running some kinds of remote stuff (FIXME?). */
264
c0236d92 265enum stop_kind stop_soon;
c906108c
SS
266
267/* Nonzero if proceed is being used for a "finish" command or a similar
268 situation when stop_registers should be saved. */
269
270int proceed_to_finish;
271
272/* Save register contents here when about to pop a stack dummy frame,
273 if-and-only-if proceed_to_finish is set.
274 Thus this contains the return value from the called function (assuming
275 values are returned in a register). */
276
72cec141 277struct regcache *stop_registers;
c906108c 278
c906108c
SS
279/* Nonzero after stop if current stack frame should be printed. */
280
281static int stop_print_frame;
282
611c83ae 283/* Step-resume or longjmp-resume breakpoint. */
c906108c 284static struct breakpoint *step_resume_breakpoint = NULL;
c906108c 285
e02bc4cc 286/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
287 returned by target_wait()/deprecated_target_wait_hook(). This
288 information is returned by get_last_target_status(). */
39f77062 289static ptid_t target_last_wait_ptid;
e02bc4cc
DS
290static struct target_waitstatus target_last_waitstatus;
291
0d1e5fa7
PA
292/* Context-switchable data. */
293struct thread_stepping_state
294{
295 /* Should we step over breakpoint next time keep_going
296 is called? */
297 int stepping_over_breakpoint;
0d1e5fa7
PA
298 int current_line;
299 struct symtab *current_symtab;
300 int step_after_step_resume_breakpoint;
301 int stepping_through_solib_after_catch;
302 bpstat stepping_through_solib_catchpoints;
303};
304
305struct thread_stepping_state gtss;
306struct thread_stepping_state *tss = &gtss;
307
308static void context_switch (ptid_t ptid);
309
310void init_thread_stepping_state (struct thread_stepping_state *tss);
311
312void init_infwait_state (void);
a474d7c2 313
c906108c
SS
314/* This is used to remember when a fork, vfork or exec event
315 was caught by a catchpoint, and thus the event is to be
316 followed at the next resume of the inferior, and not
317 immediately. */
318static struct
488f131b
JB
319{
320 enum target_waitkind kind;
321 struct
c906108c 322 {
3a3e9ee3
PA
323 ptid_t parent_pid;
324 ptid_t child_pid;
c906108c 325 }
488f131b
JB
326 fork_event;
327 char *execd_pathname;
328}
c906108c
SS
329pending_follow;
330
53904c9e
AC
331static const char follow_fork_mode_child[] = "child";
332static const char follow_fork_mode_parent[] = "parent";
333
488f131b 334static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
335 follow_fork_mode_child,
336 follow_fork_mode_parent,
337 NULL
ef346e04 338};
c906108c 339
53904c9e 340static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
341static void
342show_follow_fork_mode_string (struct ui_file *file, int from_tty,
343 struct cmd_list_element *c, const char *value)
344{
345 fprintf_filtered (file, _("\
346Debugger response to a program call of fork or vfork is \"%s\".\n"),
347 value);
348}
c906108c
SS
349\f
350
6604731b 351static int
4ef3f3be 352follow_fork (void)
c906108c 353{
ea1dd7bc 354 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
c906108c 355
6604731b 356 return target_follow_fork (follow_child);
c906108c
SS
357}
358
6604731b
DJ
359void
360follow_inferior_reset_breakpoints (void)
c906108c 361{
6604731b
DJ
362 /* Was there a step_resume breakpoint? (There was if the user
363 did a "next" at the fork() call.) If so, explicitly reset its
364 thread number.
365
366 step_resumes are a form of bp that are made to be per-thread.
367 Since we created the step_resume bp when the parent process
368 was being debugged, and now are switching to the child process,
369 from the breakpoint package's viewpoint, that's a switch of
370 "threads". We must update the bp's notion of which thread
371 it is for, or it'll be ignored when it triggers. */
372
373 if (step_resume_breakpoint)
374 breakpoint_re_set_thread (step_resume_breakpoint);
375
376 /* Reinsert all breakpoints in the child. The user may have set
377 breakpoints after catching the fork, in which case those
378 were never set in the child, but only in the parent. This makes
379 sure the inserted breakpoints match the breakpoint list. */
380
381 breakpoint_re_set ();
382 insert_breakpoints ();
c906108c 383}
c906108c 384
1adeb98a
FN
385/* EXECD_PATHNAME is assumed to be non-NULL. */
386
c906108c 387static void
3a3e9ee3 388follow_exec (ptid_t pid, char *execd_pathname)
c906108c 389{
3a3e9ee3 390 ptid_t saved_pid = pid;
7a292a7a
SS
391 struct target_ops *tgt;
392
c906108c
SS
393 /* This is an exec event that we actually wish to pay attention to.
394 Refresh our symbol table to the newly exec'd program, remove any
395 momentary bp's, etc.
396
397 If there are breakpoints, they aren't really inserted now,
398 since the exec() transformed our inferior into a fresh set
399 of instructions.
400
401 We want to preserve symbolic breakpoints on the list, since
402 we have hopes that they can be reset after the new a.out's
403 symbol table is read.
404
405 However, any "raw" breakpoints must be removed from the list
406 (e.g., the solib bp's), since their address is probably invalid
407 now.
408
409 And, we DON'T want to call delete_breakpoints() here, since
410 that may write the bp's "shadow contents" (the instruction
411 value that was overwritten witha TRAP instruction). Since
412 we now have a new a.out, those shadow contents aren't valid. */
413 update_breakpoints_after_exec ();
414
415 /* If there was one, it's gone now. We cannot truly step-to-next
416 statement through an exec(). */
417 step_resume_breakpoint = NULL;
418 step_range_start = 0;
419 step_range_end = 0;
420
c906108c 421 /* What is this a.out's name? */
a3f17187 422 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
c906108c
SS
423
424 /* We've followed the inferior through an exec. Therefore, the
425 inferior has essentially been killed & reborn. */
7a292a7a 426
c906108c 427 gdb_flush (gdb_stdout);
e85a822c 428 generic_mourn_inferior ();
488f131b 429 /* Because mourn_inferior resets inferior_ptid. */
3a3e9ee3 430 inferior_ptid = saved_pid;
e85a822c
DJ
431
432 if (gdb_sysroot && *gdb_sysroot)
433 {
434 char *name = alloca (strlen (gdb_sysroot)
435 + strlen (execd_pathname)
436 + 1);
437 strcpy (name, gdb_sysroot);
438 strcat (name, execd_pathname);
439 execd_pathname = name;
440 }
c906108c
SS
441
442 /* That a.out is now the one to use. */
443 exec_file_attach (execd_pathname, 0);
444
cce9b6bf
PA
445 /* Reset the shared library package. This ensures that we get a
446 shlib event when the child reaches "_start", at which point the
447 dld will have had a chance to initialize the child. */
448 /* Also, loading a symbol file below may trigger symbol lookups, and
449 we don't want those to be satisfied by the libraries of the
450 previous incarnation of this process. */
451 no_shared_libraries (NULL, 0);
452
453 /* Load the main file's symbols. */
1adeb98a 454 symbol_file_add_main (execd_pathname, 0);
c906108c 455
7a292a7a 456#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 457 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2
MK
458#else
459 solib_create_inferior_hook ();
7a292a7a 460#endif
c906108c
SS
461
462 /* Reinsert all breakpoints. (Those which were symbolic have
463 been reset to the proper address in the new a.out, thanks
464 to symbol_file_command...) */
465 insert_breakpoints ();
466
467 /* The next resume of this inferior should bring it to the shlib
468 startup breakpoints. (If the user had also set bp's on
469 "main" from the old (parent) process, then they'll auto-
470 matically get reset there in the new process.) */
c906108c
SS
471}
472
473/* Non-zero if we just simulating a single-step. This is needed
474 because we cannot remove the breakpoints in the inferior process
475 until after the `wait' in `wait_for_inferior'. */
476static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
477
478/* The thread we inserted single-step breakpoints for. */
479static ptid_t singlestep_ptid;
480
fd48f117
DJ
481/* PC when we started this single-step. */
482static CORE_ADDR singlestep_pc;
483
9f976b41
DJ
484/* If another thread hit the singlestep breakpoint, we save the original
485 thread here so that we can resume single-stepping it later. */
486static ptid_t saved_singlestep_ptid;
487static int stepping_past_singlestep_breakpoint;
6a6b96b9 488
ca67fcb8
VP
489/* If not equal to null_ptid, this means that after stepping over breakpoint
490 is finished, we need to switch to deferred_step_ptid, and step it.
491
492 The use case is when one thread has hit a breakpoint, and then the user
493 has switched to another thread and issued 'step'. We need to step over
494 breakpoint in the thread which hit the breakpoint, but then continue
495 stepping the thread user has selected. */
496static ptid_t deferred_step_ptid;
c906108c 497\f
237fc4c9
PA
498/* Displaced stepping. */
499
500/* In non-stop debugging mode, we must take special care to manage
501 breakpoints properly; in particular, the traditional strategy for
502 stepping a thread past a breakpoint it has hit is unsuitable.
503 'Displaced stepping' is a tactic for stepping one thread past a
504 breakpoint it has hit while ensuring that other threads running
505 concurrently will hit the breakpoint as they should.
506
507 The traditional way to step a thread T off a breakpoint in a
508 multi-threaded program in all-stop mode is as follows:
509
510 a0) Initially, all threads are stopped, and breakpoints are not
511 inserted.
512 a1) We single-step T, leaving breakpoints uninserted.
513 a2) We insert breakpoints, and resume all threads.
514
515 In non-stop debugging, however, this strategy is unsuitable: we
516 don't want to have to stop all threads in the system in order to
517 continue or step T past a breakpoint. Instead, we use displaced
518 stepping:
519
520 n0) Initially, T is stopped, other threads are running, and
521 breakpoints are inserted.
522 n1) We copy the instruction "under" the breakpoint to a separate
523 location, outside the main code stream, making any adjustments
524 to the instruction, register, and memory state as directed by
525 T's architecture.
526 n2) We single-step T over the instruction at its new location.
527 n3) We adjust the resulting register and memory state as directed
528 by T's architecture. This includes resetting T's PC to point
529 back into the main instruction stream.
530 n4) We resume T.
531
532 This approach depends on the following gdbarch methods:
533
534 - gdbarch_max_insn_length and gdbarch_displaced_step_location
535 indicate where to copy the instruction, and how much space must
536 be reserved there. We use these in step n1.
537
538 - gdbarch_displaced_step_copy_insn copies a instruction to a new
539 address, and makes any necessary adjustments to the instruction,
540 register contents, and memory. We use this in step n1.
541
542 - gdbarch_displaced_step_fixup adjusts registers and memory after
543 we have successfuly single-stepped the instruction, to yield the
544 same effect the instruction would have had if we had executed it
545 at its original address. We use this in step n3.
546
547 - gdbarch_displaced_step_free_closure provides cleanup.
548
549 The gdbarch_displaced_step_copy_insn and
550 gdbarch_displaced_step_fixup functions must be written so that
551 copying an instruction with gdbarch_displaced_step_copy_insn,
552 single-stepping across the copied instruction, and then applying
553 gdbarch_displaced_insn_fixup should have the same effects on the
554 thread's memory and registers as stepping the instruction in place
555 would have. Exactly which responsibilities fall to the copy and
556 which fall to the fixup is up to the author of those functions.
557
558 See the comments in gdbarch.sh for details.
559
560 Note that displaced stepping and software single-step cannot
561 currently be used in combination, although with some care I think
562 they could be made to. Software single-step works by placing
563 breakpoints on all possible subsequent instructions; if the
564 displaced instruction is a PC-relative jump, those breakpoints
565 could fall in very strange places --- on pages that aren't
566 executable, or at addresses that are not proper instruction
567 boundaries. (We do generally let other threads run while we wait
568 to hit the software single-step breakpoint, and they might
569 encounter such a corrupted instruction.) One way to work around
570 this would be to have gdbarch_displaced_step_copy_insn fully
571 simulate the effect of PC-relative instructions (and return NULL)
572 on architectures that use software single-stepping.
573
574 In non-stop mode, we can have independent and simultaneous step
575 requests, so more than one thread may need to simultaneously step
576 over a breakpoint. The current implementation assumes there is
577 only one scratch space per process. In this case, we have to
578 serialize access to the scratch space. If thread A wants to step
579 over a breakpoint, but we are currently waiting for some other
580 thread to complete a displaced step, we leave thread A stopped and
581 place it in the displaced_step_request_queue. Whenever a displaced
582 step finishes, we pick the next thread in the queue and start a new
583 displaced step operation on it. See displaced_step_prepare and
584 displaced_step_fixup for details. */
585
586/* If this is not null_ptid, this is the thread carrying out a
587 displaced single-step. This thread's state will require fixing up
588 once it has completed its step. */
589static ptid_t displaced_step_ptid;
590
591struct displaced_step_request
592{
593 ptid_t ptid;
594 struct displaced_step_request *next;
595};
596
597/* A queue of pending displaced stepping requests. */
598struct displaced_step_request *displaced_step_request_queue;
599
600/* The architecture the thread had when we stepped it. */
601static struct gdbarch *displaced_step_gdbarch;
602
603/* The closure provided gdbarch_displaced_step_copy_insn, to be used
604 for post-step cleanup. */
605static struct displaced_step_closure *displaced_step_closure;
606
607/* The address of the original instruction, and the copy we made. */
608static CORE_ADDR displaced_step_original, displaced_step_copy;
609
610/* Saved contents of copy area. */
611static gdb_byte *displaced_step_saved_copy;
612
613/* When this is non-zero, we are allowed to use displaced stepping, if
614 the architecture supports it. When this is zero, we use
615 traditional the hold-and-step approach. */
616int can_use_displaced_stepping = 1;
617static void
618show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
619 struct cmd_list_element *c,
620 const char *value)
621{
622 fprintf_filtered (file, _("\
623Debugger's willingness to use displaced stepping to step over "
624"breakpoints is %s.\n"), value);
625}
626
627/* Return non-zero if displaced stepping is enabled, and can be used
628 with GDBARCH. */
629static int
630use_displaced_stepping (struct gdbarch *gdbarch)
631{
632 return (can_use_displaced_stepping
633 && gdbarch_displaced_step_copy_insn_p (gdbarch));
634}
635
636/* Clean out any stray displaced stepping state. */
637static void
638displaced_step_clear (void)
639{
640 /* Indicate that there is no cleanup pending. */
641 displaced_step_ptid = null_ptid;
642
643 if (displaced_step_closure)
644 {
645 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
646 displaced_step_closure);
647 displaced_step_closure = NULL;
648 }
649}
650
651static void
652cleanup_displaced_step_closure (void *ptr)
653{
654 struct displaced_step_closure *closure = ptr;
655
656 gdbarch_displaced_step_free_closure (current_gdbarch, closure);
657}
658
659/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
660void
661displaced_step_dump_bytes (struct ui_file *file,
662 const gdb_byte *buf,
663 size_t len)
664{
665 int i;
666
667 for (i = 0; i < len; i++)
668 fprintf_unfiltered (file, "%02x ", buf[i]);
669 fputs_unfiltered ("\n", file);
670}
671
672/* Prepare to single-step, using displaced stepping.
673
674 Note that we cannot use displaced stepping when we have a signal to
675 deliver. If we have a signal to deliver and an instruction to step
676 over, then after the step, there will be no indication from the
677 target whether the thread entered a signal handler or ignored the
678 signal and stepped over the instruction successfully --- both cases
679 result in a simple SIGTRAP. In the first case we mustn't do a
680 fixup, and in the second case we must --- but we can't tell which.
681 Comments in the code for 'random signals' in handle_inferior_event
682 explain how we handle this case instead.
683
684 Returns 1 if preparing was successful -- this thread is going to be
685 stepped now; or 0 if displaced stepping this thread got queued. */
686static int
687displaced_step_prepare (ptid_t ptid)
688{
689 struct cleanup *old_cleanups;
690 struct regcache *regcache = get_thread_regcache (ptid);
691 struct gdbarch *gdbarch = get_regcache_arch (regcache);
692 CORE_ADDR original, copy;
693 ULONGEST len;
694 struct displaced_step_closure *closure;
695
696 /* We should never reach this function if the architecture does not
697 support displaced stepping. */
698 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
699
700 /* For the first cut, we're displaced stepping one thread at a
701 time. */
702
703 if (!ptid_equal (displaced_step_ptid, null_ptid))
704 {
705 /* Already waiting for a displaced step to finish. Defer this
706 request and place in queue. */
707 struct displaced_step_request *req, *new_req;
708
709 if (debug_displaced)
710 fprintf_unfiltered (gdb_stdlog,
711 "displaced: defering step of %s\n",
712 target_pid_to_str (ptid));
713
714 new_req = xmalloc (sizeof (*new_req));
715 new_req->ptid = ptid;
716 new_req->next = NULL;
717
718 if (displaced_step_request_queue)
719 {
720 for (req = displaced_step_request_queue;
721 req && req->next;
722 req = req->next)
723 ;
724 req->next = new_req;
725 }
726 else
727 displaced_step_request_queue = new_req;
728
729 return 0;
730 }
731 else
732 {
733 if (debug_displaced)
734 fprintf_unfiltered (gdb_stdlog,
735 "displaced: stepping %s now\n",
736 target_pid_to_str (ptid));
737 }
738
739 displaced_step_clear ();
740
515630c5 741 original = regcache_read_pc (regcache);
237fc4c9
PA
742
743 copy = gdbarch_displaced_step_location (gdbarch);
744 len = gdbarch_max_insn_length (gdbarch);
745
746 /* Save the original contents of the copy area. */
747 displaced_step_saved_copy = xmalloc (len);
748 old_cleanups = make_cleanup (free_current_contents,
749 &displaced_step_saved_copy);
750 read_memory (copy, displaced_step_saved_copy, len);
751 if (debug_displaced)
752 {
753 fprintf_unfiltered (gdb_stdlog, "displaced: saved 0x%s: ",
754 paddr_nz (copy));
755 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
756 };
757
758 closure = gdbarch_displaced_step_copy_insn (gdbarch,
759 original, copy, regcache);
760
761 /* We don't support the fully-simulated case at present. */
762 gdb_assert (closure);
763
764 make_cleanup (cleanup_displaced_step_closure, closure);
765
766 /* Resume execution at the copy. */
515630c5 767 regcache_write_pc (regcache, copy);
237fc4c9
PA
768
769 discard_cleanups (old_cleanups);
770
771 if (debug_displaced)
772 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to 0x%s\n",
773 paddr_nz (copy));
774
775 /* Save the information we need to fix things up if the step
776 succeeds. */
777 displaced_step_ptid = ptid;
778 displaced_step_gdbarch = gdbarch;
779 displaced_step_closure = closure;
780 displaced_step_original = original;
781 displaced_step_copy = copy;
782 return 1;
783}
784
785static void
786displaced_step_clear_cleanup (void *ignore)
787{
788 displaced_step_clear ();
789}
790
791static void
792write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
793{
794 struct cleanup *ptid_cleanup = save_inferior_ptid ();
795 inferior_ptid = ptid;
796 write_memory (memaddr, myaddr, len);
797 do_cleanups (ptid_cleanup);
798}
799
800static void
801displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
802{
803 struct cleanup *old_cleanups;
804
805 /* Was this event for the pid we displaced? */
806 if (ptid_equal (displaced_step_ptid, null_ptid)
807 || ! ptid_equal (displaced_step_ptid, event_ptid))
808 return;
809
810 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
811
812 /* Restore the contents of the copy area. */
813 {
814 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
815 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
816 displaced_step_saved_copy, len);
817 if (debug_displaced)
818 fprintf_unfiltered (gdb_stdlog, "displaced: restored 0x%s\n",
819 paddr_nz (displaced_step_copy));
820 }
821
822 /* Did the instruction complete successfully? */
823 if (signal == TARGET_SIGNAL_TRAP)
824 {
825 /* Fix up the resulting state. */
826 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
827 displaced_step_closure,
828 displaced_step_original,
829 displaced_step_copy,
830 get_thread_regcache (displaced_step_ptid));
831 }
832 else
833 {
834 /* Since the instruction didn't complete, all we can do is
835 relocate the PC. */
515630c5
UW
836 struct regcache *regcache = get_thread_regcache (event_ptid);
837 CORE_ADDR pc = regcache_read_pc (regcache);
237fc4c9 838 pc = displaced_step_original + (pc - displaced_step_copy);
515630c5 839 regcache_write_pc (regcache, pc);
237fc4c9
PA
840 }
841
842 do_cleanups (old_cleanups);
843
844 /* Are there any pending displaced stepping requests? If so, run
845 one now. */
846 if (displaced_step_request_queue)
847 {
848 struct displaced_step_request *head;
849 ptid_t ptid;
850
851 head = displaced_step_request_queue;
852 ptid = head->ptid;
853 displaced_step_request_queue = head->next;
854 xfree (head);
855
856 if (debug_displaced)
857 fprintf_unfiltered (gdb_stdlog,
858 "displaced: stepping queued %s now\n",
859 target_pid_to_str (ptid));
860
861
862 displaced_step_ptid = null_ptid;
863 displaced_step_prepare (ptid);
864 target_resume (ptid, 1, TARGET_SIGNAL_0);
865 }
866}
867
868\f
869/* Resuming. */
c906108c
SS
870
871/* Things to clean up if we QUIT out of resume (). */
c906108c 872static void
74b7792f 873resume_cleanups (void *ignore)
c906108c
SS
874{
875 normal_stop ();
876}
877
53904c9e
AC
878static const char schedlock_off[] = "off";
879static const char schedlock_on[] = "on";
880static const char schedlock_step[] = "step";
488f131b 881static const char *scheduler_enums[] = {
ef346e04
AC
882 schedlock_off,
883 schedlock_on,
884 schedlock_step,
885 NULL
886};
920d2a44
AC
887static const char *scheduler_mode = schedlock_off;
888static void
889show_scheduler_mode (struct ui_file *file, int from_tty,
890 struct cmd_list_element *c, const char *value)
891{
892 fprintf_filtered (file, _("\
893Mode for locking scheduler during execution is \"%s\".\n"),
894 value);
895}
c906108c
SS
896
897static void
96baa820 898set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 899{
eefe576e
AC
900 if (!target_can_lock_scheduler)
901 {
902 scheduler_mode = schedlock_off;
903 error (_("Target '%s' cannot support this command."), target_shortname);
904 }
c906108c
SS
905}
906
907
908/* Resume the inferior, but allow a QUIT. This is useful if the user
909 wants to interrupt some lengthy single-stepping operation
910 (for child processes, the SIGINT goes to the inferior, and so
911 we get a SIGINT random_signal, but for remote debugging and perhaps
912 other targets, that's not true).
913
914 STEP nonzero if we should step (zero to continue instead).
915 SIG is the signal to give the inferior (zero for none). */
916void
96baa820 917resume (int step, enum target_signal sig)
c906108c
SS
918{
919 int should_resume = 1;
74b7792f 920 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
921 struct regcache *regcache = get_current_regcache ();
922 struct gdbarch *gdbarch = get_regcache_arch (regcache);
923 CORE_ADDR pc = regcache_read_pc (regcache);
c906108c
SS
924 QUIT;
925
527159b7 926 if (debug_infrun)
237fc4c9
PA
927 fprintf_unfiltered (gdb_stdlog,
928 "infrun: resume (step=%d, signal=%d), "
929 "stepping_over_breakpoint=%d\n",
930 step, sig, stepping_over_breakpoint);
c906108c 931
692590c1
MS
932 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
933 over an instruction that causes a page fault without triggering
934 a hardware watchpoint. The kernel properly notices that it shouldn't
935 stop, because the hardware watchpoint is not triggered, but it forgets
936 the step request and continues the program normally.
937 Work around the problem by removing hardware watchpoints if a step is
938 requested, GDB will check for a hardware watchpoint trigger after the
939 step anyway. */
c36b740a 940 if (CANNOT_STEP_HW_WATCHPOINTS && step)
692590c1 941 remove_hw_watchpoints ();
488f131b 942
692590c1 943
c2c6d25f
JM
944 /* Normally, by the time we reach `resume', the breakpoints are either
945 removed or inserted, as appropriate. The exception is if we're sitting
946 at a permanent breakpoint; we need to step over it, but permanent
947 breakpoints can't be removed. So we have to test for it here. */
237fc4c9 948 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
6d350bb5 949 {
515630c5
UW
950 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
951 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5
UW
952 else
953 error (_("\
954The program is stopped at a permanent breakpoint, but GDB does not know\n\
955how to step past a permanent breakpoint on this architecture. Try using\n\
956a command like `return' or `jump' to continue execution."));
957 }
c2c6d25f 958
237fc4c9
PA
959 /* If enabled, step over breakpoints by executing a copy of the
960 instruction at a different address.
961
962 We can't use displaced stepping when we have a signal to deliver;
963 the comments for displaced_step_prepare explain why. The
964 comments in the handle_inferior event for dealing with 'random
965 signals' explain what we do instead. */
515630c5 966 if (use_displaced_stepping (gdbarch)
237fc4c9
PA
967 && stepping_over_breakpoint
968 && sig == TARGET_SIGNAL_0)
969 {
970 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
971 {
972 /* Got placed in displaced stepping queue. Will be resumed
973 later when all the currently queued displaced stepping
974 requests finish. */
975 discard_cleanups (old_cleanups);
976 return;
977 }
237fc4c9
PA
978 }
979
515630c5 980 if (step && gdbarch_software_single_step_p (gdbarch))
c906108c
SS
981 {
982 /* Do it the hard way, w/temp breakpoints */
515630c5 983 if (gdbarch_software_single_step (gdbarch, get_current_frame ()))
e6590a1b
UW
984 {
985 /* ...and don't ask hardware to do it. */
986 step = 0;
987 /* and do not pull these breakpoints until after a `wait' in
988 `wait_for_inferior' */
989 singlestep_breakpoints_inserted_p = 1;
990 singlestep_ptid = inferior_ptid;
237fc4c9 991 singlestep_pc = pc;
e6590a1b 992 }
c906108c
SS
993 }
994
c906108c 995 /* If there were any forks/vforks/execs that were caught and are
6604731b 996 now to be followed, then do so. */
c906108c
SS
997 switch (pending_follow.kind)
998 {
6604731b
DJ
999 case TARGET_WAITKIND_FORKED:
1000 case TARGET_WAITKIND_VFORKED:
c906108c 1001 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
6604731b
DJ
1002 if (follow_fork ())
1003 should_resume = 0;
c906108c
SS
1004 break;
1005
6604731b 1006 case TARGET_WAITKIND_EXECD:
c906108c 1007 /* follow_exec is called as soon as the exec event is seen. */
6604731b 1008 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
c906108c
SS
1009 break;
1010
1011 default:
1012 break;
1013 }
c906108c
SS
1014
1015 /* Install inferior's terminal modes. */
1016 target_terminal_inferior ();
1017
1018 if (should_resume)
1019 {
39f77062 1020 ptid_t resume_ptid;
dfcd3bfb 1021
488f131b 1022 resume_ptid = RESUME_ALL; /* Default */
ef5cf84e 1023
cd76b0b7
VP
1024 /* If STEP is set, it's a request to use hardware stepping
1025 facilities. But in that case, we should never
1026 use singlestep breakpoint. */
1027 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1028
1029 if (singlestep_breakpoints_inserted_p
1030 && stepping_past_singlestep_breakpoint)
c906108c 1031 {
cd76b0b7
VP
1032 /* The situation here is as follows. In thread T1 we wanted to
1033 single-step. Lacking hardware single-stepping we've
1034 set breakpoint at the PC of the next instruction -- call it
1035 P. After resuming, we've hit that breakpoint in thread T2.
1036 Now we've removed original breakpoint, inserted breakpoint
1037 at P+1, and try to step to advance T2 past breakpoint.
1038 We need to step only T2, as if T1 is allowed to freely run,
1039 it can run past P, and if other threads are allowed to run,
1040 they can hit breakpoint at P+1, and nested hits of single-step
1041 breakpoints is not something we'd want -- that's complicated
1042 to support, and has no value. */
1043 resume_ptid = inferior_ptid;
1044 }
c906108c 1045
e842223a 1046 if ((step || singlestep_breakpoints_inserted_p)
74960c60 1047 && stepping_over_breakpoint)
cd76b0b7 1048 {
74960c60
VP
1049 /* We're allowing a thread to run past a breakpoint it has
1050 hit, by single-stepping the thread with the breakpoint
1051 removed. In which case, we need to single-step only this
1052 thread, and keep others stopped, as they can miss this
1053 breakpoint if allowed to run.
1054
1055 The current code actually removes all breakpoints when
1056 doing this, not just the one being stepped over, so if we
1057 let other threads run, we can actually miss any
1058 breakpoint, not just the one at PC. */
ef5cf84e 1059 resume_ptid = inferior_ptid;
c906108c 1060 }
ef5cf84e 1061
94cc34af
PA
1062 if (non_stop)
1063 {
1064 /* With non-stop mode on, threads are always handled
1065 individually. */
1066 resume_ptid = inferior_ptid;
1067 }
1068 else if ((scheduler_mode == schedlock_on)
1069 || (scheduler_mode == schedlock_step
1070 && (step || singlestep_breakpoints_inserted_p)))
c906108c 1071 {
ef5cf84e 1072 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 1073 resume_ptid = inferior_ptid;
c906108c 1074 }
ef5cf84e 1075
515630c5 1076 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1077 {
1078 /* Most targets can step a breakpoint instruction, thus
1079 executing it normally. But if this one cannot, just
1080 continue and we will hit it anyway. */
237fc4c9 1081 if (step && breakpoint_inserted_here_p (pc))
c4ed33b9
AC
1082 step = 0;
1083 }
237fc4c9
PA
1084
1085 if (debug_displaced
515630c5 1086 && use_displaced_stepping (gdbarch)
237fc4c9
PA
1087 && stepping_over_breakpoint)
1088 {
515630c5
UW
1089 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1090 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1091 gdb_byte buf[4];
1092
1093 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
1094 paddr_nz (actual_pc));
1095 read_memory (actual_pc, buf, sizeof (buf));
1096 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1097 }
1098
39f77062 1099 target_resume (resume_ptid, step, sig);
c906108c
SS
1100 }
1101
1102 discard_cleanups (old_cleanups);
1103}
1104\f
237fc4c9 1105/* Proceeding. */
c906108c
SS
1106
1107/* Clear out all variables saying what to do when inferior is continued.
1108 First do this, then set the ones you want, then call `proceed'. */
1109
1110void
96baa820 1111clear_proceed_status (void)
c906108c 1112{
ca67fcb8 1113 stepping_over_breakpoint = 0;
c906108c
SS
1114 step_range_start = 0;
1115 step_range_end = 0;
aa0cd9c1 1116 step_frame_id = null_frame_id;
5fbbeb29 1117 step_over_calls = STEP_OVER_UNDEBUGGABLE;
c906108c 1118 stop_after_trap = 0;
c0236d92 1119 stop_soon = NO_STOP_QUIETLY;
c906108c
SS
1120 proceed_to_finish = 0;
1121 breakpoint_proceeded = 1; /* We're about to proceed... */
1122
d5c31457
UW
1123 if (stop_registers)
1124 {
1125 regcache_xfree (stop_registers);
1126 stop_registers = NULL;
1127 }
1128
c906108c
SS
1129 /* Discard any remaining commands or status from previous stop. */
1130 bpstat_clear (&stop_bpstat);
1131}
1132
ea67f13b
DJ
1133/* This should be suitable for any targets that support threads. */
1134
1135static int
6a6b96b9 1136prepare_to_proceed (int step)
ea67f13b
DJ
1137{
1138 ptid_t wait_ptid;
1139 struct target_waitstatus wait_status;
1140
1141 /* Get the last target status returned by target_wait(). */
1142 get_last_target_status (&wait_ptid, &wait_status);
1143
6a6b96b9 1144 /* Make sure we were stopped at a breakpoint. */
ea67f13b 1145 if (wait_status.kind != TARGET_WAITKIND_STOPPED
6a6b96b9 1146 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
ea67f13b
DJ
1147 {
1148 return 0;
1149 }
1150
6a6b96b9 1151 /* Switched over from WAIT_PID. */
ea67f13b 1152 if (!ptid_equal (wait_ptid, minus_one_ptid)
515630c5 1153 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 1154 {
515630c5
UW
1155 struct regcache *regcache = get_thread_regcache (wait_ptid);
1156
1157 if (breakpoint_here_p (regcache_read_pc (regcache)))
ea67f13b 1158 {
515630c5
UW
1159 /* If stepping, remember current thread to switch back to. */
1160 if (step)
1161 deferred_step_ptid = inferior_ptid;
ea67f13b 1162
515630c5
UW
1163 /* Switch back to WAIT_PID thread. */
1164 switch_to_thread (wait_ptid);
6a6b96b9 1165
515630c5
UW
1166 /* We return 1 to indicate that there is a breakpoint here,
1167 so we need to step over it before continuing to avoid
1168 hitting it straight away. */
1169 return 1;
1170 }
ea67f13b
DJ
1171 }
1172
1173 return 0;
ea67f13b 1174}
e4846b08
JJ
1175
1176/* Record the pc of the program the last time it stopped. This is
1177 just used internally by wait_for_inferior, but need to be preserved
1178 over calls to it and cleared when the inferior is started. */
1179static CORE_ADDR prev_pc;
1180
c906108c
SS
1181/* Basic routine for continuing the program in various fashions.
1182
1183 ADDR is the address to resume at, or -1 for resume where stopped.
1184 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 1185 or -1 for act according to how it stopped.
c906108c 1186 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
1187 -1 means return after that and print nothing.
1188 You should probably set various step_... variables
1189 before calling here, if you are stepping.
c906108c
SS
1190
1191 You should call clear_proceed_status before calling proceed. */
1192
1193void
96baa820 1194proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c 1195{
515630c5
UW
1196 struct regcache *regcache = get_current_regcache ();
1197 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1198 CORE_ADDR pc = regcache_read_pc (regcache);
c906108c
SS
1199 int oneproc = 0;
1200
1201 if (step > 0)
515630c5 1202 step_start_function = find_pc_function (pc);
c906108c
SS
1203 if (step < 0)
1204 stop_after_trap = 1;
1205
2acceee2 1206 if (addr == (CORE_ADDR) -1)
c906108c 1207 {
515630c5 1208 if (pc == stop_pc && breakpoint_here_p (pc))
3352ef37
AC
1209 /* There is a breakpoint at the address we will resume at,
1210 step one instruction before inserting breakpoints so that
1211 we do not stop right away (and report a second hit at this
1212 breakpoint). */
c906108c 1213 oneproc = 1;
515630c5
UW
1214 else if (gdbarch_single_step_through_delay_p (gdbarch)
1215 && gdbarch_single_step_through_delay (gdbarch,
1216 get_current_frame ()))
3352ef37
AC
1217 /* We stepped onto an instruction that needs to be stepped
1218 again before re-inserting the breakpoint, do so. */
c906108c
SS
1219 oneproc = 1;
1220 }
1221 else
1222 {
515630c5 1223 regcache_write_pc (regcache, addr);
c906108c
SS
1224 }
1225
527159b7 1226 if (debug_infrun)
8a9de0e4
AC
1227 fprintf_unfiltered (gdb_stdlog,
1228 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
1229 paddr_nz (addr), siggnal, step);
527159b7 1230
94cc34af
PA
1231 if (non_stop)
1232 /* In non-stop, each thread is handled individually. The context
1233 must already be set to the right thread here. */
1234 ;
1235 else
1236 {
1237 /* In a multi-threaded task we may select another thread and
1238 then continue or step.
c906108c 1239
94cc34af
PA
1240 But if the old thread was stopped at a breakpoint, it will
1241 immediately cause another breakpoint stop without any
1242 execution (i.e. it will report a breakpoint hit incorrectly).
1243 So we must step over it first.
c906108c 1244
94cc34af
PA
1245 prepare_to_proceed checks the current thread against the
1246 thread that reported the most recent event. If a step-over
1247 is required it returns TRUE and sets the current thread to
1248 the old thread. */
1249 if (prepare_to_proceed (step))
1250 oneproc = 1;
1251 }
c906108c 1252
c906108c 1253 if (oneproc)
74960c60 1254 {
74960c60 1255 stepping_over_breakpoint = 1;
237fc4c9
PA
1256 /* If displaced stepping is enabled, we can step over the
1257 breakpoint without hitting it, so leave all breakpoints
1258 inserted. Otherwise we need to disable all breakpoints, step
1259 one instruction, and then re-add them when that step is
1260 finished. */
515630c5 1261 if (!use_displaced_stepping (gdbarch))
237fc4c9 1262 remove_breakpoints ();
74960c60 1263 }
237fc4c9
PA
1264
1265 /* We can insert breakpoints if we're not trying to step over one,
1266 or if we are stepping over one but we're using displaced stepping
1267 to do so. */
515630c5 1268 if (! stepping_over_breakpoint || use_displaced_stepping (gdbarch))
c36b740a 1269 insert_breakpoints ();
c906108c
SS
1270
1271 if (siggnal != TARGET_SIGNAL_DEFAULT)
1272 stop_signal = siggnal;
1273 /* If this signal should not be seen by program,
1274 give it zero. Used for debugging signals. */
1275 else if (!signal_program[stop_signal])
1276 stop_signal = TARGET_SIGNAL_0;
1277
1278 annotate_starting ();
1279
1280 /* Make sure that output from GDB appears before output from the
1281 inferior. */
1282 gdb_flush (gdb_stdout);
1283
e4846b08
JJ
1284 /* Refresh prev_pc value just prior to resuming. This used to be
1285 done in stop_stepping, however, setting prev_pc there did not handle
1286 scenarios such as inferior function calls or returning from
1287 a function via the return command. In those cases, the prev_pc
1288 value was not set properly for subsequent commands. The prev_pc value
1289 is used to initialize the starting line number in the ecs. With an
1290 invalid value, the gdb next command ends up stopping at the position
1291 represented by the next line table entry past our start position.
1292 On platforms that generate one line table entry per line, this
1293 is not a problem. However, on the ia64, the compiler generates
1294 extraneous line table entries that do not increase the line number.
1295 When we issue the gdb next command on the ia64 after an inferior call
1296 or a return command, we often end up a few instructions forward, still
1297 within the original line we started.
1298
1299 An attempt was made to have init_execution_control_state () refresh
1300 the prev_pc value before calculating the line number. This approach
1301 did not work because on platforms that use ptrace, the pc register
1302 cannot be read unless the inferior is stopped. At that point, we
515630c5 1303 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
e4846b08 1304 call can fail. Setting the prev_pc value here ensures the value is
8fb3e588 1305 updated correctly when the inferior is stopped. */
515630c5 1306 prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 1307
59f0d5d9
PA
1308 /* Fill in with reasonable starting values. */
1309 init_thread_stepping_state (tss);
1310
1311 /* We'll update this if & when we switch to a new thread. */
1312 previous_inferior_ptid = inferior_ptid;
1313
1314 /* Reset to normal state. */
1315 init_infwait_state ();
1316
c906108c
SS
1317 /* Resume inferior. */
1318 resume (oneproc || step || bpstat_should_step (), stop_signal);
1319
1320 /* Wait for it to stop (if not standalone)
1321 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
1322 /* Do this only if we are not using the event loop, or if the target
1323 does not support asynchronous execution. */
362646f5 1324 if (!target_can_async_p ())
43ff13b4 1325 {
ae123ec6 1326 wait_for_inferior (0);
43ff13b4
JM
1327 normal_stop ();
1328 }
c906108c 1329}
c906108c
SS
1330\f
1331
1332/* Start remote-debugging of a machine over a serial link. */
96baa820 1333
c906108c 1334void
8621d6a9 1335start_remote (int from_tty)
c906108c 1336{
c906108c 1337 init_wait_for_inferior ();
b0f4b84b 1338 stop_soon = STOP_QUIETLY_REMOTE;
ca67fcb8 1339 stepping_over_breakpoint = 0;
43ff13b4 1340
6426a772
JM
1341 /* Always go on waiting for the target, regardless of the mode. */
1342 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 1343 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
1344 nothing is returned (instead of just blocking). Because of this,
1345 targets expecting an immediate response need to, internally, set
1346 things up so that the target_wait() is forced to eventually
1347 timeout. */
1348 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1349 differentiate to its caller what the state of the target is after
1350 the initial open has been performed. Here we're assuming that
1351 the target has stopped. It should be possible to eventually have
1352 target_open() return to the caller an indication that the target
1353 is currently running and GDB state should be set to the same as
1354 for an async run. */
ae123ec6 1355 wait_for_inferior (0);
8621d6a9
DJ
1356
1357 /* Now that the inferior has stopped, do any bookkeeping like
1358 loading shared libraries. We want to do this before normal_stop,
1359 so that the displayed frame is up to date. */
1360 post_create_inferior (&current_target, from_tty);
1361
6426a772 1362 normal_stop ();
c906108c
SS
1363}
1364
1365/* Initialize static vars when a new inferior begins. */
1366
1367void
96baa820 1368init_wait_for_inferior (void)
c906108c
SS
1369{
1370 /* These are meaningless until the first time through wait_for_inferior. */
1371 prev_pc = 0;
c906108c 1372
c906108c
SS
1373 breakpoint_init_inferior (inf_starting);
1374
1375 /* Don't confuse first call to proceed(). */
1376 stop_signal = TARGET_SIGNAL_0;
1377
1378 /* The first resume is not following a fork/vfork/exec. */
1379 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
c906108c 1380
c906108c 1381 clear_proceed_status ();
9f976b41
DJ
1382
1383 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 1384 deferred_step_ptid = null_ptid;
ca005067
DJ
1385
1386 target_last_wait_ptid = minus_one_ptid;
237fc4c9 1387
0d1e5fa7
PA
1388 init_thread_stepping_state (tss);
1389 previous_inferior_ptid = null_ptid;
1390 init_infwait_state ();
1391
237fc4c9 1392 displaced_step_clear ();
c906108c 1393}
237fc4c9 1394
c906108c 1395\f
b83266a0
SS
1396/* This enum encodes possible reasons for doing a target_wait, so that
1397 wfi can call target_wait in one place. (Ultimately the call will be
1398 moved out of the infinite loop entirely.) */
1399
c5aa993b
JM
1400enum infwait_states
1401{
cd0fc7c3
SS
1402 infwait_normal_state,
1403 infwait_thread_hop_state,
d983da9c 1404 infwait_step_watch_state,
cd0fc7c3 1405 infwait_nonstep_watch_state
b83266a0
SS
1406};
1407
11cf8741
JM
1408/* Why did the inferior stop? Used to print the appropriate messages
1409 to the interface from within handle_inferior_event(). */
1410enum inferior_stop_reason
1411{
11cf8741
JM
1412 /* Step, next, nexti, stepi finished. */
1413 END_STEPPING_RANGE,
11cf8741
JM
1414 /* Inferior terminated by signal. */
1415 SIGNAL_EXITED,
1416 /* Inferior exited. */
1417 EXITED,
1418 /* Inferior received signal, and user asked to be notified. */
1419 SIGNAL_RECEIVED
1420};
1421
0d1e5fa7
PA
1422/* The PTID we'll do a target_wait on.*/
1423ptid_t waiton_ptid;
1424
1425/* Current inferior wait state. */
1426enum infwait_states infwait_state;
cd0fc7c3 1427
0d1e5fa7
PA
1428/* Data to be passed around while handling an event. This data is
1429 discarded between events. */
c5aa993b 1430struct execution_control_state
488f131b 1431{
0d1e5fa7 1432 ptid_t ptid;
488f131b 1433 struct target_waitstatus ws;
488f131b
JB
1434 int random_signal;
1435 CORE_ADDR stop_func_start;
1436 CORE_ADDR stop_func_end;
1437 char *stop_func_name;
488f131b 1438 int new_thread_event;
488f131b
JB
1439 int wait_some_more;
1440};
1441
1442void init_execution_control_state (struct execution_control_state *ecs);
1443
1444void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 1445
c2c6d25f 1446static void step_into_function (struct execution_control_state *ecs);
44cbf7b5 1447static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
14e60db5 1448static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
44cbf7b5
AC
1449static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
1450 struct frame_id sr_id);
611c83ae
PA
1451static void insert_longjmp_resume_breakpoint (CORE_ADDR);
1452
104c1213
JM
1453static void stop_stepping (struct execution_control_state *ecs);
1454static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 1455static void keep_going (struct execution_control_state *ecs);
488f131b
JB
1456static void print_stop_reason (enum inferior_stop_reason stop_reason,
1457 int stop_info);
104c1213 1458
cd0fc7c3 1459/* Wait for control to return from inferior to debugger.
ae123ec6
JB
1460
1461 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1462 as if they were SIGTRAP signals. This can be useful during
1463 the startup sequence on some targets such as HP/UX, where
1464 we receive an EXEC event instead of the expected SIGTRAP.
1465
cd0fc7c3
SS
1466 If inferior gets a signal, we may decide to start it up again
1467 instead of returning. That is why there is a loop in this function.
1468 When this function actually returns it means the inferior
1469 should be left stopped and GDB should read more commands. */
1470
1471void
ae123ec6 1472wait_for_inferior (int treat_exec_as_sigtrap)
cd0fc7c3
SS
1473{
1474 struct cleanup *old_cleanups;
0d1e5fa7 1475 struct execution_control_state ecss;
cd0fc7c3 1476 struct execution_control_state *ecs;
c906108c 1477
527159b7 1478 if (debug_infrun)
ae123ec6
JB
1479 fprintf_unfiltered
1480 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1481 treat_exec_as_sigtrap);
527159b7 1482
8601f500 1483 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
c906108c 1484 &step_resume_breakpoint);
cd0fc7c3 1485
cd0fc7c3 1486 ecs = &ecss;
0d1e5fa7
PA
1487 memset (ecs, 0, sizeof (*ecs));
1488
cd0fc7c3
SS
1489 overlay_cache_invalid = 1;
1490
1491 /* We have to invalidate the registers BEFORE calling target_wait
1492 because they can be loaded from the target while in target_wait.
1493 This makes remote debugging a bit more efficient for those
1494 targets that provide critical registers as part of their normal
1495 status mechanism. */
1496
1497 registers_changed ();
b83266a0 1498
c906108c
SS
1499 while (1)
1500 {
9a4105ab 1501 if (deprecated_target_wait_hook)
0d1e5fa7 1502 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
cd0fc7c3 1503 else
0d1e5fa7 1504 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
c906108c 1505
ae123ec6
JB
1506 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
1507 {
1508 xfree (ecs->ws.value.execd_pathname);
1509 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1510 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
1511 }
1512
cd0fc7c3
SS
1513 /* Now figure out what to do with the result of the result. */
1514 handle_inferior_event (ecs);
c906108c 1515
cd0fc7c3
SS
1516 if (!ecs->wait_some_more)
1517 break;
1518 }
1519 do_cleanups (old_cleanups);
1520}
c906108c 1521
43ff13b4
JM
1522/* Asynchronous version of wait_for_inferior. It is called by the
1523 event loop whenever a change of state is detected on the file
1524 descriptor corresponding to the target. It can be called more than
1525 once to complete a single execution command. In such cases we need
a474d7c2
PA
1526 to keep the state in a global variable ECSS. If it is the last time
1527 that this function is called for a single execution command, then
1528 report to the user that the inferior has stopped, and do the
1529 necessary cleanups. */
43ff13b4
JM
1530
1531void
fba45db2 1532fetch_inferior_event (void *client_data)
43ff13b4 1533{
0d1e5fa7 1534 struct execution_control_state ecss;
a474d7c2 1535 struct execution_control_state *ecs = &ecss;
4f8d22e3
PA
1536 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
1537 int was_sync = sync_execution;
43ff13b4 1538
0d1e5fa7
PA
1539 memset (ecs, 0, sizeof (*ecs));
1540
59f0d5d9 1541 overlay_cache_invalid = 1;
43ff13b4 1542
4f8d22e3
PA
1543 if (non_stop)
1544 /* In non-stop mode, the user/frontend should not notice a thread
1545 switch due to internal events. Make sure we reverse to the
1546 user selected thread and frame after handling the event and
1547 running any breakpoint commands. */
1548 make_cleanup_restore_current_thread ();
1549
59f0d5d9
PA
1550 /* We have to invalidate the registers BEFORE calling target_wait
1551 because they can be loaded from the target while in target_wait.
1552 This makes remote debugging a bit more efficient for those
1553 targets that provide critical registers as part of their normal
1554 status mechanism. */
43ff13b4 1555
59f0d5d9 1556 registers_changed ();
43ff13b4 1557
9a4105ab 1558 if (deprecated_target_wait_hook)
a474d7c2 1559 ecs->ptid =
0d1e5fa7 1560 deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
43ff13b4 1561 else
0d1e5fa7 1562 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
43ff13b4 1563
94cc34af
PA
1564 if (non_stop
1565 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
1566 && ecs->ws.kind != TARGET_WAITKIND_EXITED
1567 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
1568 /* In non-stop mode, each thread is handled individually. Switch
1569 early, so the global state is set correctly for this
1570 thread. */
1571 context_switch (ecs->ptid);
1572
43ff13b4 1573 /* Now figure out what to do with the result of the result. */
a474d7c2 1574 handle_inferior_event (ecs);
43ff13b4 1575
a474d7c2 1576 if (!ecs->wait_some_more)
43ff13b4 1577 {
f107f563
VP
1578 delete_step_resume_breakpoint (&step_resume_breakpoint);
1579
83c265ab
PA
1580 if (stop_soon == NO_STOP_QUIETLY)
1581 normal_stop ();
1582
c2d11a7d
JM
1583 if (step_multi && stop_step)
1584 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1585 else
1586 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4 1587 }
4f8d22e3
PA
1588
1589 /* Revert thread and frame. */
1590 do_cleanups (old_chain);
1591
1592 /* If the inferior was in sync execution mode, and now isn't,
1593 restore the prompt. */
1594 if (was_sync && !sync_execution)
1595 display_gdb_prompt (0);
43ff13b4
JM
1596}
1597
cd0fc7c3
SS
1598/* Prepare an execution control state for looping through a
1599 wait_for_inferior-type loop. */
1600
1601void
96baa820 1602init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3
SS
1603{
1604 ecs->random_signal = 0;
0d1e5fa7
PA
1605}
1606
1607/* Clear context switchable stepping state. */
1608
1609void
1610init_thread_stepping_state (struct thread_stepping_state *tss)
1611{
2afb61aa
PA
1612 struct symtab_and_line sal;
1613
0d1e5fa7
PA
1614 tss->stepping_over_breakpoint = 0;
1615 tss->step_after_step_resume_breakpoint = 0;
1616 tss->stepping_through_solib_after_catch = 0;
1617 tss->stepping_through_solib_catchpoints = NULL;
2afb61aa
PA
1618
1619 sal = find_pc_line (prev_pc, 0);
1620 tss->current_line = sal.line;
1621 tss->current_symtab = sal.symtab;
cd0fc7c3
SS
1622}
1623
e02bc4cc 1624/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
1625 target_wait()/deprecated_target_wait_hook(). The data is actually
1626 cached by handle_inferior_event(), which gets called immediately
1627 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
1628
1629void
488f131b 1630get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 1631{
39f77062 1632 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
1633 *status = target_last_waitstatus;
1634}
1635
ac264b3b
MS
1636void
1637nullify_last_target_wait_ptid (void)
1638{
1639 target_last_wait_ptid = minus_one_ptid;
1640}
1641
dd80620e
MS
1642/* Switch thread contexts, maintaining "infrun state". */
1643
1644static void
0d1e5fa7 1645context_switch (ptid_t ptid)
dd80620e
MS
1646{
1647 /* Caution: it may happen that the new thread (or the old one!)
1648 is not in the thread list. In this case we must not attempt
1649 to "switch context", or we run the risk that our context may
1650 be lost. This may happen as a result of the target module
1651 mishandling thread creation. */
1652
fd48f117
DJ
1653 if (debug_infrun)
1654 {
1655 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1656 target_pid_to_str (inferior_ptid));
1657 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 1658 target_pid_to_str (ptid));
fd48f117
DJ
1659 }
1660
0d1e5fa7 1661 if (in_thread_list (inferior_ptid) && in_thread_list (ptid))
488f131b 1662 { /* Perform infrun state context switch: */
dd80620e 1663 /* Save infrun state for the old thread. */
0ce3d317 1664 save_infrun_state (inferior_ptid, prev_pc,
ca67fcb8 1665 stepping_over_breakpoint, step_resume_breakpoint,
15960608 1666 step_range_start,
aa0cd9c1 1667 step_range_end, &step_frame_id,
0d1e5fa7
PA
1668 tss->stepping_over_breakpoint,
1669 tss->stepping_through_solib_after_catch,
1670 tss->stepping_through_solib_catchpoints,
1671 tss->current_line, tss->current_symtab,
a474d7c2
PA
1672 cmd_continuation, intermediate_continuation,
1673 proceed_to_finish,
1674 step_over_calls,
1675 stop_step,
1676 step_multi,
1677 stop_signal,
1678 stop_bpstat);
dd80620e
MS
1679
1680 /* Load infrun state for the new thread. */
0d1e5fa7 1681 load_infrun_state (ptid, &prev_pc,
ca67fcb8 1682 &stepping_over_breakpoint, &step_resume_breakpoint,
15960608 1683 &step_range_start,
aa0cd9c1 1684 &step_range_end, &step_frame_id,
0d1e5fa7
PA
1685 &tss->stepping_over_breakpoint,
1686 &tss->stepping_through_solib_after_catch,
1687 &tss->stepping_through_solib_catchpoints,
1688 &tss->current_line, &tss->current_symtab,
a474d7c2
PA
1689 &cmd_continuation, &intermediate_continuation,
1690 &proceed_to_finish,
1691 &step_over_calls,
1692 &stop_step,
1693 &step_multi,
1694 &stop_signal,
1695 &stop_bpstat);
dd80620e 1696 }
6a6b96b9 1697
0d1e5fa7 1698 switch_to_thread (ptid);
dd80620e
MS
1699}
1700
a474d7c2
PA
1701/* Context switch to thread PTID. */
1702ptid_t
1703context_switch_to (ptid_t ptid)
1704{
1705 ptid_t current_ptid = inferior_ptid;
1706
1707 /* Context switch to the new thread. */
1708 if (!ptid_equal (ptid, inferior_ptid))
1709 {
0d1e5fa7 1710 context_switch (ptid);
a474d7c2
PA
1711 }
1712 return current_ptid;
1713}
1714
4fa8626c
DJ
1715static void
1716adjust_pc_after_break (struct execution_control_state *ecs)
1717{
515630c5
UW
1718 struct regcache *regcache = get_thread_regcache (ecs->ptid);
1719 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8aad930b 1720 CORE_ADDR breakpoint_pc;
4fa8626c
DJ
1721
1722 /* If this target does not decrement the PC after breakpoints, then
1723 we have nothing to do. */
515630c5 1724 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
4fa8626c
DJ
1725 return;
1726
1727 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1728 we aren't, just return.
9709f61c
DJ
1729
1730 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
1731 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1732 implemented by software breakpoints should be handled through the normal
1733 breakpoint layer.
8fb3e588 1734
4fa8626c
DJ
1735 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1736 different signals (SIGILL or SIGEMT for instance), but it is less
1737 clear where the PC is pointing afterwards. It may not match
b798847d
UW
1738 gdbarch_decr_pc_after_break. I don't know any specific target that
1739 generates these signals at breakpoints (the code has been in GDB since at
1740 least 1992) so I can not guess how to handle them here.
8fb3e588 1741
e6cf7916
UW
1742 In earlier versions of GDB, a target with
1743 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
1744 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1745 target with both of these set in GDB history, and it seems unlikely to be
1746 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
1747
1748 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1749 return;
1750
1751 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1752 return;
1753
8aad930b
AC
1754 /* Find the location where (if we've hit a breakpoint) the
1755 breakpoint would be. */
515630c5
UW
1756 breakpoint_pc = regcache_read_pc (regcache)
1757 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 1758
1c0fdd0e
UW
1759 /* Check whether there actually is a software breakpoint inserted
1760 at that location. */
1761 if (software_breakpoint_inserted_here_p (breakpoint_pc))
8aad930b 1762 {
1c0fdd0e
UW
1763 /* When using hardware single-step, a SIGTRAP is reported for both
1764 a completed single-step and a software breakpoint. Need to
1765 differentiate between the two, as the latter needs adjusting
1766 but the former does not.
1767
1768 The SIGTRAP can be due to a completed hardware single-step only if
1769 - we didn't insert software single-step breakpoints
1770 - the thread to be examined is still the current thread
1771 - this thread is currently being stepped
1772
1773 If any of these events did not occur, we must have stopped due
1774 to hitting a software breakpoint, and have to back up to the
1775 breakpoint address.
1776
1777 As a special case, we could have hardware single-stepped a
1778 software breakpoint. In this case (prev_pc == breakpoint_pc),
1779 we also need to back up to the breakpoint address. */
1780
1781 if (singlestep_breakpoints_inserted_p
1782 || !ptid_equal (ecs->ptid, inferior_ptid)
0d1e5fa7 1783 || !currently_stepping (tss)
1c0fdd0e 1784 || prev_pc == breakpoint_pc)
515630c5 1785 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 1786 }
4fa8626c
DJ
1787}
1788
0d1e5fa7
PA
1789void
1790init_infwait_state (void)
1791{
1792 waiton_ptid = pid_to_ptid (-1);
1793 infwait_state = infwait_normal_state;
1794}
1795
94cc34af
PA
1796void
1797error_is_running (void)
1798{
1799 error (_("\
1800Cannot execute this command while the selected thread is running."));
1801}
1802
1803void
1804ensure_not_running (void)
1805{
1806 if (is_running (inferior_ptid))
1807 error_is_running ();
1808}
1809
cd0fc7c3
SS
1810/* Given an execution control state that has been freshly filled in
1811 by an event from the inferior, figure out what it means and take
1812 appropriate action. */
c906108c 1813
cd0fc7c3 1814void
96baa820 1815handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 1816{
c8edd8b4 1817 int sw_single_step_trap_p = 0;
d983da9c
DJ
1818 int stopped_by_watchpoint;
1819 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 1820 struct symtab_and_line stop_pc_sal;
cd0fc7c3 1821
20874c92
VP
1822 breakpoint_retire_moribund ();
1823
e02bc4cc 1824 /* Cache the last pid/waitstatus. */
39f77062 1825 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 1826 target_last_waitstatus = ecs->ws;
e02bc4cc 1827
ca005067
DJ
1828 /* Always clear state belonging to the previous time we stopped. */
1829 stop_stack_dummy = 0;
1830
4fa8626c
DJ
1831 adjust_pc_after_break (ecs);
1832
8c90c137
LM
1833 reinit_frame_cache ();
1834
1835 /* If it's a new process, add it to the thread database */
1836
1837 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1838 && !ptid_equal (ecs->ptid, minus_one_ptid)
1839 && !in_thread_list (ecs->ptid));
1840
1841 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1842 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1843 add_thread (ecs->ptid);
1844
1845 if (ecs->ws.kind != TARGET_WAITKIND_IGNORE)
1846 {
1847 /* Mark the non-executing threads accordingly. */
1848 if (!non_stop
1849 || ecs->ws.kind == TARGET_WAITKIND_EXITED
1850 || ecs->ws.kind == TARGET_WAITKIND_SIGNALLED)
1851 set_executing (pid_to_ptid (-1), 0);
1852 else
1853 set_executing (ecs->ptid, 0);
1854 }
1855
0d1e5fa7 1856 switch (infwait_state)
488f131b
JB
1857 {
1858 case infwait_thread_hop_state:
527159b7 1859 if (debug_infrun)
8a9de0e4 1860 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
488f131b 1861 /* Cancel the waiton_ptid. */
0d1e5fa7 1862 waiton_ptid = pid_to_ptid (-1);
65e82032 1863 break;
b83266a0 1864
488f131b 1865 case infwait_normal_state:
527159b7 1866 if (debug_infrun)
8a9de0e4 1867 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
1868 break;
1869
1870 case infwait_step_watch_state:
1871 if (debug_infrun)
1872 fprintf_unfiltered (gdb_stdlog,
1873 "infrun: infwait_step_watch_state\n");
1874
1875 stepped_after_stopped_by_watchpoint = 1;
488f131b 1876 break;
b83266a0 1877
488f131b 1878 case infwait_nonstep_watch_state:
527159b7 1879 if (debug_infrun)
8a9de0e4
AC
1880 fprintf_unfiltered (gdb_stdlog,
1881 "infrun: infwait_nonstep_watch_state\n");
488f131b 1882 insert_breakpoints ();
c906108c 1883
488f131b
JB
1884 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1885 handle things like signals arriving and other things happening
1886 in combination correctly? */
1887 stepped_after_stopped_by_watchpoint = 1;
1888 break;
65e82032
AC
1889
1890 default:
e2e0b3e5 1891 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 1892 }
0d1e5fa7 1893 infwait_state = infwait_normal_state;
c906108c 1894
488f131b
JB
1895 switch (ecs->ws.kind)
1896 {
1897 case TARGET_WAITKIND_LOADED:
527159b7 1898 if (debug_infrun)
8a9de0e4 1899 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
1900 /* Ignore gracefully during startup of the inferior, as it might
1901 be the shell which has just loaded some objects, otherwise
1902 add the symbols for the newly loaded objects. Also ignore at
1903 the beginning of an attach or remote session; we will query
1904 the full list of libraries once the connection is
1905 established. */
c0236d92 1906 if (stop_soon == NO_STOP_QUIETLY)
488f131b 1907 {
488f131b
JB
1908 /* Check for any newly added shared libraries if we're
1909 supposed to be adding them automatically. Switch
1910 terminal for any messages produced by
1911 breakpoint_re_set. */
1912 target_terminal_ours_for_output ();
aff6338a 1913 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
1914 stack's section table is kept up-to-date. Architectures,
1915 (e.g., PPC64), use the section table to perform
1916 operations such as address => section name and hence
1917 require the table to contain all sections (including
1918 those found in shared libraries). */
aff6338a 1919 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
1920 exec_ops to SOLIB_ADD. This is because current GDB is
1921 only tooled to propagate section_table changes out from
1922 the "current_target" (see target_resize_to_sections), and
1923 not up from the exec stratum. This, of course, isn't
1924 right. "infrun.c" should only interact with the
1925 exec/process stratum, instead relying on the target stack
1926 to propagate relevant changes (stop, section table
1927 changed, ...) up to other layers. */
b0f4b84b 1928#ifdef SOLIB_ADD
aff6338a 1929 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
b0f4b84b
DJ
1930#else
1931 solib_add (NULL, 0, &current_target, auto_solib_add);
1932#endif
488f131b
JB
1933 target_terminal_inferior ();
1934
b0f4b84b
DJ
1935 /* If requested, stop when the dynamic linker notifies
1936 gdb of events. This allows the user to get control
1937 and place breakpoints in initializer routines for
1938 dynamically loaded objects (among other things). */
1939 if (stop_on_solib_events)
1940 {
1941 stop_stepping (ecs);
1942 return;
1943 }
1944
1945 /* NOTE drow/2007-05-11: This might be a good place to check
1946 for "catch load". */
488f131b 1947 }
b0f4b84b
DJ
1948
1949 /* If we are skipping through a shell, or through shared library
1950 loading that we aren't interested in, resume the program. If
1951 we're running the program normally, also resume. But stop if
1952 we're attaching or setting up a remote connection. */
1953 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
1954 {
74960c60
VP
1955 /* Loading of shared libraries might have changed breakpoint
1956 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
1957 if (stop_soon == NO_STOP_QUIETLY
1958 && !breakpoints_always_inserted_mode ())
74960c60 1959 insert_breakpoints ();
b0f4b84b
DJ
1960 resume (0, TARGET_SIGNAL_0);
1961 prepare_to_wait (ecs);
1962 return;
1963 }
1964
1965 break;
c5aa993b 1966
488f131b 1967 case TARGET_WAITKIND_SPURIOUS:
527159b7 1968 if (debug_infrun)
8a9de0e4 1969 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
1970 resume (0, TARGET_SIGNAL_0);
1971 prepare_to_wait (ecs);
1972 return;
c5aa993b 1973
488f131b 1974 case TARGET_WAITKIND_EXITED:
527159b7 1975 if (debug_infrun)
8a9de0e4 1976 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
488f131b
JB
1977 target_terminal_ours (); /* Must do this before mourn anyway */
1978 print_stop_reason (EXITED, ecs->ws.value.integer);
1979
1980 /* Record the exit code in the convenience variable $_exitcode, so
1981 that the user can inspect this again later. */
1982 set_internalvar (lookup_internalvar ("_exitcode"),
1983 value_from_longest (builtin_type_int,
1984 (LONGEST) ecs->ws.value.integer));
1985 gdb_flush (gdb_stdout);
1986 target_mourn_inferior ();
1c0fdd0e 1987 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
1988 stop_print_frame = 0;
1989 stop_stepping (ecs);
1990 return;
c5aa993b 1991
488f131b 1992 case TARGET_WAITKIND_SIGNALLED:
527159b7 1993 if (debug_infrun)
8a9de0e4 1994 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
488f131b
JB
1995 stop_print_frame = 0;
1996 stop_signal = ecs->ws.value.sig;
1997 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 1998
488f131b
JB
1999 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
2000 reach here unless the inferior is dead. However, for years
2001 target_kill() was called here, which hints that fatal signals aren't
2002 really fatal on some systems. If that's true, then some changes
2003 may be needed. */
2004 target_mourn_inferior ();
c906108c 2005
488f131b 2006 print_stop_reason (SIGNAL_EXITED, stop_signal);
1c0fdd0e 2007 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
2008 stop_stepping (ecs);
2009 return;
c906108c 2010
488f131b
JB
2011 /* The following are the only cases in which we keep going;
2012 the above cases end in a continue or goto. */
2013 case TARGET_WAITKIND_FORKED:
deb3b17b 2014 case TARGET_WAITKIND_VFORKED:
527159b7 2015 if (debug_infrun)
8a9de0e4 2016 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
488f131b
JB
2017 stop_signal = TARGET_SIGNAL_TRAP;
2018 pending_follow.kind = ecs->ws.kind;
2019
3a3e9ee3 2020 pending_follow.fork_event.parent_pid = ecs->ptid;
8e7d2c16 2021 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
c906108c 2022
5a2901d9
DJ
2023 if (!ptid_equal (ecs->ptid, inferior_ptid))
2024 {
0d1e5fa7 2025 context_switch (ecs->ptid);
35f196d9 2026 reinit_frame_cache ();
5a2901d9
DJ
2027 }
2028
488f131b 2029 stop_pc = read_pc ();
675bf4cb 2030
d983da9c 2031 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
675bf4cb 2032
488f131b 2033 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
04e68871
DJ
2034
2035 /* If no catchpoint triggered for this, then keep going. */
2036 if (ecs->random_signal)
2037 {
2038 stop_signal = TARGET_SIGNAL_0;
2039 keep_going (ecs);
2040 return;
2041 }
488f131b
JB
2042 goto process_event_stop_test;
2043
2044 case TARGET_WAITKIND_EXECD:
527159b7 2045 if (debug_infrun)
fc5261f2 2046 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b
JB
2047 stop_signal = TARGET_SIGNAL_TRAP;
2048
488f131b
JB
2049 pending_follow.execd_pathname =
2050 savestring (ecs->ws.value.execd_pathname,
2051 strlen (ecs->ws.value.execd_pathname));
2052
488f131b
JB
2053 /* This causes the eventpoints and symbol table to be reset. Must
2054 do this now, before trying to determine whether to stop. */
3a3e9ee3 2055 follow_exec (inferior_ptid, pending_follow.execd_pathname);
488f131b 2056 xfree (pending_follow.execd_pathname);
c906108c 2057
515630c5 2058 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 2059
0d1e5fa7
PA
2060 {
2061 /* The breakpoints module may need to touch the inferior's
2062 memory. Switch to the (stopped) event ptid
2063 momentarily. */
2064 ptid_t saved_inferior_ptid = inferior_ptid;
2065 inferior_ptid = ecs->ptid;
675bf4cb 2066
0d1e5fa7
PA
2067 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2068
2069 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
2070 inferior_ptid = saved_inferior_ptid;
2071 }
04e68871 2072
5a2901d9
DJ
2073 if (!ptid_equal (ecs->ptid, inferior_ptid))
2074 {
0d1e5fa7 2075 context_switch (ecs->ptid);
35f196d9 2076 reinit_frame_cache ();
5a2901d9
DJ
2077 }
2078
04e68871
DJ
2079 /* If no catchpoint triggered for this, then keep going. */
2080 if (ecs->random_signal)
2081 {
2082 stop_signal = TARGET_SIGNAL_0;
2083 keep_going (ecs);
2084 return;
2085 }
488f131b
JB
2086 goto process_event_stop_test;
2087
b4dc5ffa
MK
2088 /* Be careful not to try to gather much state about a thread
2089 that's in a syscall. It's frequently a losing proposition. */
488f131b 2090 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 2091 if (debug_infrun)
8a9de0e4 2092 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
488f131b
JB
2093 resume (0, TARGET_SIGNAL_0);
2094 prepare_to_wait (ecs);
2095 return;
c906108c 2096
488f131b
JB
2097 /* Before examining the threads further, step this thread to
2098 get it entirely out of the syscall. (We get notice of the
2099 event when the thread is just on the verge of exiting a
2100 syscall. Stepping one instruction seems to get it back
b4dc5ffa 2101 into user code.) */
488f131b 2102 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 2103 if (debug_infrun)
8a9de0e4 2104 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
488f131b 2105 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
488f131b
JB
2106 prepare_to_wait (ecs);
2107 return;
c906108c 2108
488f131b 2109 case TARGET_WAITKIND_STOPPED:
527159b7 2110 if (debug_infrun)
8a9de0e4 2111 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
488f131b
JB
2112 stop_signal = ecs->ws.value.sig;
2113 break;
c906108c 2114
488f131b
JB
2115 /* We had an event in the inferior, but we are not interested
2116 in handling it at this level. The lower layers have already
8e7d2c16 2117 done what needs to be done, if anything.
8fb3e588
AC
2118
2119 One of the possible circumstances for this is when the
2120 inferior produces output for the console. The inferior has
2121 not stopped, and we are ignoring the event. Another possible
2122 circumstance is any event which the lower level knows will be
2123 reported multiple times without an intervening resume. */
488f131b 2124 case TARGET_WAITKIND_IGNORE:
527159b7 2125 if (debug_infrun)
8a9de0e4 2126 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
8e7d2c16 2127 prepare_to_wait (ecs);
488f131b
JB
2128 return;
2129 }
c906108c 2130
488f131b
JB
2131 if (ecs->new_thread_event)
2132 {
94cc34af
PA
2133 if (non_stop)
2134 /* Non-stop assumes that the target handles adding new threads
2135 to the thread list. */
2136 internal_error (__FILE__, __LINE__, "\
2137targets should add new threads to the thread list themselves in non-stop mode.");
2138
2139 /* We may want to consider not doing a resume here in order to
2140 give the user a chance to play with the new thread. It might
2141 be good to make that a user-settable option. */
2142
2143 /* At this point, all threads are stopped (happens automatically
2144 in either the OS or the native code). Therefore we need to
2145 continue all threads in order to make progress. */
2146
488f131b
JB
2147 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
2148 prepare_to_wait (ecs);
2149 return;
2150 }
c906108c 2151
237fc4c9
PA
2152 /* Do we need to clean up the state of a thread that has completed a
2153 displaced single-step? (Doing so usually affects the PC, so do
2154 it here, before we set stop_pc.) */
2155 displaced_step_fixup (ecs->ptid, stop_signal);
2156
515630c5 2157 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 2158
527159b7 2159 if (debug_infrun)
237fc4c9
PA
2160 {
2161 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n",
2162 paddr_nz (stop_pc));
2163 if (STOPPED_BY_WATCHPOINT (&ecs->ws))
2164 {
2165 CORE_ADDR addr;
2166 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2167
2168 if (target_stopped_data_address (&current_target, &addr))
2169 fprintf_unfiltered (gdb_stdlog,
2170 "infrun: stopped data address = 0x%s\n",
2171 paddr_nz (addr));
2172 else
2173 fprintf_unfiltered (gdb_stdlog,
2174 "infrun: (no data address available)\n");
2175 }
2176 }
527159b7 2177
9f976b41
DJ
2178 if (stepping_past_singlestep_breakpoint)
2179 {
1c0fdd0e 2180 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
2181 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2182 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2183
2184 stepping_past_singlestep_breakpoint = 0;
2185
2186 /* We've either finished single-stepping past the single-step
8fb3e588
AC
2187 breakpoint, or stopped for some other reason. It would be nice if
2188 we could tell, but we can't reliably. */
9f976b41 2189 if (stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 2190 {
527159b7 2191 if (debug_infrun)
8a9de0e4 2192 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
9f976b41 2193 /* Pull the single step breakpoints out of the target. */
e0cd558a 2194 remove_single_step_breakpoints ();
9f976b41
DJ
2195 singlestep_breakpoints_inserted_p = 0;
2196
2197 ecs->random_signal = 0;
2198
0d1e5fa7 2199 context_switch (saved_singlestep_ptid);
9a4105ab
AC
2200 if (deprecated_context_hook)
2201 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
2202
2203 resume (1, TARGET_SIGNAL_0);
2204 prepare_to_wait (ecs);
2205 return;
2206 }
2207 }
2208
2209 stepping_past_singlestep_breakpoint = 0;
2210
ca67fcb8 2211 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 2212 {
94cc34af
PA
2213 /* In non-stop mode, there's never a deferred_step_ptid set. */
2214 gdb_assert (!non_stop);
2215
6a6b96b9
UW
2216 /* If we stopped for some other reason than single-stepping, ignore
2217 the fact that we were supposed to switch back. */
2218 if (stop_signal == TARGET_SIGNAL_TRAP)
2219 {
2220 if (debug_infrun)
2221 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 2222 "infrun: handling deferred step\n");
6a6b96b9
UW
2223
2224 /* Pull the single step breakpoints out of the target. */
2225 if (singlestep_breakpoints_inserted_p)
2226 {
2227 remove_single_step_breakpoints ();
2228 singlestep_breakpoints_inserted_p = 0;
2229 }
2230
2231 /* Note: We do not call context_switch at this point, as the
2232 context is already set up for stepping the original thread. */
ca67fcb8
VP
2233 switch_to_thread (deferred_step_ptid);
2234 deferred_step_ptid = null_ptid;
6a6b96b9
UW
2235 /* Suppress spurious "Switching to ..." message. */
2236 previous_inferior_ptid = inferior_ptid;
2237
2238 resume (1, TARGET_SIGNAL_0);
2239 prepare_to_wait (ecs);
2240 return;
2241 }
ca67fcb8
VP
2242
2243 deferred_step_ptid = null_ptid;
6a6b96b9
UW
2244 }
2245
488f131b
JB
2246 /* See if a thread hit a thread-specific breakpoint that was meant for
2247 another thread. If so, then step that thread past the breakpoint,
2248 and continue it. */
2249
2250 if (stop_signal == TARGET_SIGNAL_TRAP)
2251 {
9f976b41
DJ
2252 int thread_hop_needed = 0;
2253
f8d40ec8
JB
2254 /* Check if a regular breakpoint has been hit before checking
2255 for a potential single step breakpoint. Otherwise, GDB will
2256 not see this breakpoint hit when stepping onto breakpoints. */
c36b740a 2257 if (regular_breakpoint_inserted_here_p (stop_pc))
488f131b 2258 {
c5aa993b 2259 ecs->random_signal = 0;
4fa8626c 2260 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
9f976b41
DJ
2261 thread_hop_needed = 1;
2262 }
1c0fdd0e 2263 else if (singlestep_breakpoints_inserted_p)
9f976b41 2264 {
fd48f117
DJ
2265 /* We have not context switched yet, so this should be true
2266 no matter which thread hit the singlestep breakpoint. */
2267 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2268 if (debug_infrun)
2269 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2270 "trap for %s\n",
2271 target_pid_to_str (ecs->ptid));
2272
9f976b41
DJ
2273 ecs->random_signal = 0;
2274 /* The call to in_thread_list is necessary because PTIDs sometimes
2275 change when we go from single-threaded to multi-threaded. If
2276 the singlestep_ptid is still in the list, assume that it is
2277 really different from ecs->ptid. */
2278 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2279 && in_thread_list (singlestep_ptid))
2280 {
fd48f117
DJ
2281 /* If the PC of the thread we were trying to single-step
2282 has changed, discard this event (which we were going
2283 to ignore anyway), and pretend we saw that thread
2284 trap. This prevents us continuously moving the
2285 single-step breakpoint forward, one instruction at a
2286 time. If the PC has changed, then the thread we were
2287 trying to single-step has trapped or been signalled,
2288 but the event has not been reported to GDB yet.
2289
2290 There might be some cases where this loses signal
2291 information, if a signal has arrived at exactly the
2292 same time that the PC changed, but this is the best
2293 we can do with the information available. Perhaps we
2294 should arrange to report all events for all threads
2295 when they stop, or to re-poll the remote looking for
2296 this particular thread (i.e. temporarily enable
2297 schedlock). */
515630c5
UW
2298
2299 CORE_ADDR new_singlestep_pc
2300 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
2301
2302 if (new_singlestep_pc != singlestep_pc)
fd48f117
DJ
2303 {
2304 if (debug_infrun)
2305 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2306 " but expected thread advanced also\n");
2307
2308 /* The current context still belongs to
2309 singlestep_ptid. Don't swap here, since that's
2310 the context we want to use. Just fudge our
2311 state and continue. */
2312 ecs->ptid = singlestep_ptid;
515630c5 2313 stop_pc = new_singlestep_pc;
fd48f117
DJ
2314 }
2315 else
2316 {
2317 if (debug_infrun)
2318 fprintf_unfiltered (gdb_stdlog,
2319 "infrun: unexpected thread\n");
2320
2321 thread_hop_needed = 1;
2322 stepping_past_singlestep_breakpoint = 1;
2323 saved_singlestep_ptid = singlestep_ptid;
2324 }
9f976b41
DJ
2325 }
2326 }
2327
2328 if (thread_hop_needed)
8fb3e588 2329 {
237fc4c9 2330 int remove_status = 0;
8fb3e588 2331
527159b7 2332 if (debug_infrun)
8a9de0e4 2333 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 2334
8fb3e588
AC
2335 /* Saw a breakpoint, but it was hit by the wrong thread.
2336 Just continue. */
2337
1c0fdd0e 2338 if (singlestep_breakpoints_inserted_p)
488f131b 2339 {
8fb3e588 2340 /* Pull the single step breakpoints out of the target. */
e0cd558a 2341 remove_single_step_breakpoints ();
8fb3e588
AC
2342 singlestep_breakpoints_inserted_p = 0;
2343 }
2344
237fc4c9
PA
2345 /* If the arch can displace step, don't remove the
2346 breakpoints. */
2347 if (!use_displaced_stepping (current_gdbarch))
2348 remove_status = remove_breakpoints ();
2349
8fb3e588
AC
2350 /* Did we fail to remove breakpoints? If so, try
2351 to set the PC past the bp. (There's at least
2352 one situation in which we can fail to remove
2353 the bp's: On HP-UX's that use ttrace, we can't
2354 change the address space of a vforking child
2355 process until the child exits (well, okay, not
2356 then either :-) or execs. */
2357 if (remove_status != 0)
9d9cd7ac 2358 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
2359 else
2360 { /* Single step */
8fb3e588 2361 if (!ptid_equal (inferior_ptid, ecs->ptid))
0d1e5fa7
PA
2362 context_switch (ecs->ptid);
2363
94cc34af
PA
2364 if (!non_stop)
2365 {
2366 /* Only need to require the next event from this
2367 thread in all-stop mode. */
2368 waiton_ptid = ecs->ptid;
2369 infwait_state = infwait_thread_hop_state;
2370 }
8fb3e588 2371
0d1e5fa7 2372 tss->stepping_over_breakpoint = 1;
8fb3e588
AC
2373 keep_going (ecs);
2374 registers_changed ();
2375 return;
2376 }
488f131b 2377 }
1c0fdd0e 2378 else if (singlestep_breakpoints_inserted_p)
8fb3e588
AC
2379 {
2380 sw_single_step_trap_p = 1;
2381 ecs->random_signal = 0;
2382 }
488f131b
JB
2383 }
2384 else
2385 ecs->random_signal = 1;
c906108c 2386
488f131b 2387 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
2388 so, then switch to that thread. */
2389 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 2390 {
527159b7 2391 if (debug_infrun)
8a9de0e4 2392 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 2393
0d1e5fa7 2394 context_switch (ecs->ptid);
c5aa993b 2395
9a4105ab
AC
2396 if (deprecated_context_hook)
2397 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 2398 }
c906108c 2399
1c0fdd0e 2400 if (singlestep_breakpoints_inserted_p)
488f131b
JB
2401 {
2402 /* Pull the single step breakpoints out of the target. */
e0cd558a 2403 remove_single_step_breakpoints ();
488f131b
JB
2404 singlestep_breakpoints_inserted_p = 0;
2405 }
c906108c 2406
d983da9c
DJ
2407 if (stepped_after_stopped_by_watchpoint)
2408 stopped_by_watchpoint = 0;
2409 else
2410 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
2411
2412 /* If necessary, step over this watchpoint. We'll be back to display
2413 it in a moment. */
2414 if (stopped_by_watchpoint
2415 && (HAVE_STEPPABLE_WATCHPOINT
2416 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
488f131b 2417 {
488f131b
JB
2418 /* At this point, we are stopped at an instruction which has
2419 attempted to write to a piece of memory under control of
2420 a watchpoint. The instruction hasn't actually executed
2421 yet. If we were to evaluate the watchpoint expression
2422 now, we would get the old value, and therefore no change
2423 would seem to have occurred.
2424
2425 In order to make watchpoints work `right', we really need
2426 to complete the memory write, and then evaluate the
d983da9c
DJ
2427 watchpoint expression. We do this by single-stepping the
2428 target.
2429
2430 It may not be necessary to disable the watchpoint to stop over
2431 it. For example, the PA can (with some kernel cooperation)
2432 single step over a watchpoint without disabling the watchpoint.
2433
2434 It is far more common to need to disable a watchpoint to step
2435 the inferior over it. If we have non-steppable watchpoints,
2436 we must disable the current watchpoint; it's simplest to
2437 disable all watchpoints and breakpoints. */
2438
2439 if (!HAVE_STEPPABLE_WATCHPOINT)
2440 remove_breakpoints ();
488f131b
JB
2441 registers_changed ();
2442 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
0d1e5fa7 2443 waiton_ptid = ecs->ptid;
d983da9c 2444 if (HAVE_STEPPABLE_WATCHPOINT)
0d1e5fa7 2445 infwait_state = infwait_step_watch_state;
d983da9c 2446 else
0d1e5fa7 2447 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
2448 prepare_to_wait (ecs);
2449 return;
2450 }
2451
488f131b
JB
2452 ecs->stop_func_start = 0;
2453 ecs->stop_func_end = 0;
2454 ecs->stop_func_name = 0;
2455 /* Don't care about return value; stop_func_start and stop_func_name
2456 will both be 0 if it doesn't work. */
2457 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2458 &ecs->stop_func_start, &ecs->stop_func_end);
cbf3b44a
UW
2459 ecs->stop_func_start
2460 += gdbarch_deprecated_function_start_offset (current_gdbarch);
0d1e5fa7 2461 tss->stepping_over_breakpoint = 0;
488f131b
JB
2462 bpstat_clear (&stop_bpstat);
2463 stop_step = 0;
488f131b
JB
2464 stop_print_frame = 1;
2465 ecs->random_signal = 0;
2466 stopped_by_random_signal = 0;
488f131b 2467
3352ef37 2468 if (stop_signal == TARGET_SIGNAL_TRAP
ca67fcb8 2469 && stepping_over_breakpoint
3352ef37 2470 && gdbarch_single_step_through_delay_p (current_gdbarch)
0d1e5fa7 2471 && currently_stepping (tss))
3352ef37 2472 {
b50d7442 2473 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37
AC
2474 also on an instruction that needs to be stepped multiple
2475 times before it's been fully executing. E.g., architectures
2476 with a delay slot. It needs to be stepped twice, once for
2477 the instruction and once for the delay slot. */
2478 int step_through_delay
2479 = gdbarch_single_step_through_delay (current_gdbarch,
2480 get_current_frame ());
527159b7 2481 if (debug_infrun && step_through_delay)
8a9de0e4 2482 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
3352ef37
AC
2483 if (step_range_end == 0 && step_through_delay)
2484 {
2485 /* The user issued a continue when stopped at a breakpoint.
2486 Set up for another trap and get out of here. */
0d1e5fa7 2487 tss->stepping_over_breakpoint = 1;
3352ef37
AC
2488 keep_going (ecs);
2489 return;
2490 }
2491 else if (step_through_delay)
2492 {
2493 /* The user issued a step when stopped at a breakpoint.
2494 Maybe we should stop, maybe we should not - the delay
2495 slot *might* correspond to a line of source. In any
ca67fcb8
VP
2496 case, don't decide that here, just set
2497 ecs->stepping_over_breakpoint, making sure we
2498 single-step again before breakpoints are re-inserted. */
0d1e5fa7 2499 tss->stepping_over_breakpoint = 1;
3352ef37
AC
2500 }
2501 }
2502
488f131b
JB
2503 /* Look at the cause of the stop, and decide what to do.
2504 The alternatives are:
0d1e5fa7
PA
2505 1) stop_stepping and return; to really stop and return to the debugger,
2506 2) keep_going and return to start up again
2507 (set tss->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
2508 3) set ecs->random_signal to 1, and the decision between 1 and 2
2509 will be made according to the signal handling tables. */
2510
2511 /* First, distinguish signals caused by the debugger from signals
03cebad2
MK
2512 that have to do with the program's own actions. Note that
2513 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
2514 on the operating system version. Here we detect when a SIGILL or
2515 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
2516 something similar for SIGSEGV, since a SIGSEGV will be generated
2517 when we're trying to execute a breakpoint instruction on a
2518 non-executable stack. This happens for call dummy breakpoints
2519 for architectures like SPARC that place call dummies on the
237fc4c9 2520 stack.
488f131b 2521
237fc4c9
PA
2522 If we're doing a displaced step past a breakpoint, then the
2523 breakpoint is always inserted at the original instruction;
2524 non-standard signals can't be explained by the breakpoint. */
488f131b 2525 if (stop_signal == TARGET_SIGNAL_TRAP
237fc4c9
PA
2526 || (! stepping_over_breakpoint
2527 && breakpoint_inserted_here_p (stop_pc)
8fb3e588
AC
2528 && (stop_signal == TARGET_SIGNAL_ILL
2529 || stop_signal == TARGET_SIGNAL_SEGV
2530 || stop_signal == TARGET_SIGNAL_EMT))
b0f4b84b
DJ
2531 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
2532 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b
JB
2533 {
2534 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
2535 {
527159b7 2536 if (debug_infrun)
8a9de0e4 2537 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
2538 stop_print_frame = 0;
2539 stop_stepping (ecs);
2540 return;
2541 }
c54cfec8
EZ
2542
2543 /* This is originated from start_remote(), start_inferior() and
2544 shared libraries hook functions. */
b0f4b84b 2545 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 2546 {
527159b7 2547 if (debug_infrun)
8a9de0e4 2548 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
2549 stop_stepping (ecs);
2550 return;
2551 }
2552
c54cfec8 2553 /* This originates from attach_command(). We need to overwrite
a0d21d28
PA
2554 the stop_signal here, because some kernels don't ignore a
2555 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
2556 See more comments in inferior.h. On the other hand, if we
a0ef4274 2557 get a non-SIGSTOP, report it to the user - assume the backend
a0d21d28
PA
2558 will handle the SIGSTOP if it should show up later.
2559
2560 Also consider that the attach is complete when we see a
2561 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
2562 target extended-remote report it instead of a SIGSTOP
2563 (e.g. gdbserver). We already rely on SIGTRAP being our
2564 signal, so this is no exception. */
a0ef4274 2565 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
a0d21d28
PA
2566 && (stop_signal == TARGET_SIGNAL_STOP
2567 || stop_signal == TARGET_SIGNAL_TRAP))
c54cfec8
EZ
2568 {
2569 stop_stepping (ecs);
a0ef4274 2570 stop_signal = TARGET_SIGNAL_0;
c54cfec8
EZ
2571 return;
2572 }
2573
fba57f8f
VP
2574 /* See if there is a breakpoint at the current PC. */
2575 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2576
2577 /* Following in case break condition called a
2578 function. */
2579 stop_print_frame = 1;
488f131b 2580
73dd234f 2581 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
2582 at one stage in the past included checks for an inferior
2583 function call's call dummy's return breakpoint. The original
2584 comment, that went with the test, read:
73dd234f 2585
8fb3e588
AC
2586 ``End of a stack dummy. Some systems (e.g. Sony news) give
2587 another signal besides SIGTRAP, so check here as well as
2588 above.''
73dd234f
AC
2589
2590 If someone ever tries to get get call dummys on a
2591 non-executable stack to work (where the target would stop
03cebad2
MK
2592 with something like a SIGSEGV), then those tests might need
2593 to be re-instated. Given, however, that the tests were only
73dd234f 2594 enabled when momentary breakpoints were not being used, I
03cebad2
MK
2595 suspect that it won't be the case.
2596
8fb3e588
AC
2597 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2598 be necessary for call dummies on a non-executable stack on
2599 SPARC. */
73dd234f 2600
488f131b
JB
2601 if (stop_signal == TARGET_SIGNAL_TRAP)
2602 ecs->random_signal
2603 = !(bpstat_explains_signal (stop_bpstat)
ca67fcb8 2604 || stepping_over_breakpoint
488f131b 2605 || (step_range_end && step_resume_breakpoint == NULL));
488f131b
JB
2606 else
2607 {
73dd234f 2608 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
488f131b
JB
2609 if (!ecs->random_signal)
2610 stop_signal = TARGET_SIGNAL_TRAP;
2611 }
2612 }
2613
2614 /* When we reach this point, we've pretty much decided
2615 that the reason for stopping must've been a random
2616 (unexpected) signal. */
2617
2618 else
2619 ecs->random_signal = 1;
488f131b 2620
04e68871 2621process_event_stop_test:
488f131b
JB
2622 /* For the program's own signals, act according to
2623 the signal handling tables. */
2624
2625 if (ecs->random_signal)
2626 {
2627 /* Signal not for debugging purposes. */
2628 int printed = 0;
2629
527159b7 2630 if (debug_infrun)
8a9de0e4 2631 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
527159b7 2632
488f131b
JB
2633 stopped_by_random_signal = 1;
2634
2635 if (signal_print[stop_signal])
2636 {
2637 printed = 1;
2638 target_terminal_ours_for_output ();
2639 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2640 }
a0ef4274 2641 if (signal_stop_state (stop_signal))
488f131b
JB
2642 {
2643 stop_stepping (ecs);
2644 return;
2645 }
2646 /* If not going to stop, give terminal back
2647 if we took it away. */
2648 else if (printed)
2649 target_terminal_inferior ();
2650
2651 /* Clear the signal if it should not be passed. */
2652 if (signal_program[stop_signal] == 0)
2653 stop_signal = TARGET_SIGNAL_0;
2654
68f53502 2655 if (prev_pc == read_pc ()
74960c60 2656 && stepping_over_breakpoint
68f53502
AC
2657 && step_resume_breakpoint == NULL)
2658 {
2659 /* We were just starting a new sequence, attempting to
2660 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 2661 Instead this signal arrives. This signal will take us out
68f53502
AC
2662 of the stepping range so GDB needs to remember to, when
2663 the signal handler returns, resume stepping off that
2664 breakpoint. */
2665 /* To simplify things, "continue" is forced to use the same
2666 code paths as single-step - set a breakpoint at the
2667 signal return address and then, once hit, step off that
2668 breakpoint. */
237fc4c9
PA
2669 if (debug_infrun)
2670 fprintf_unfiltered (gdb_stdlog,
2671 "infrun: signal arrived while stepping over "
2672 "breakpoint\n");
d3169d93 2673
44cbf7b5 2674 insert_step_resume_breakpoint_at_frame (get_current_frame ());
0d1e5fa7 2675 tss->step_after_step_resume_breakpoint = 1;
9d799f85
AC
2676 keep_going (ecs);
2677 return;
68f53502 2678 }
9d799f85
AC
2679
2680 if (step_range_end != 0
2681 && stop_signal != TARGET_SIGNAL_0
2682 && stop_pc >= step_range_start && stop_pc < step_range_end
2683 && frame_id_eq (get_frame_id (get_current_frame ()),
2684 step_frame_id)
2685 && step_resume_breakpoint == NULL)
d303a6c7
AC
2686 {
2687 /* The inferior is about to take a signal that will take it
2688 out of the single step range. Set a breakpoint at the
2689 current PC (which is presumably where the signal handler
2690 will eventually return) and then allow the inferior to
2691 run free.
2692
2693 Note that this is only needed for a signal delivered
2694 while in the single-step range. Nested signals aren't a
2695 problem as they eventually all return. */
237fc4c9
PA
2696 if (debug_infrun)
2697 fprintf_unfiltered (gdb_stdlog,
2698 "infrun: signal may take us out of "
2699 "single-step range\n");
2700
44cbf7b5 2701 insert_step_resume_breakpoint_at_frame (get_current_frame ());
9d799f85
AC
2702 keep_going (ecs);
2703 return;
d303a6c7 2704 }
9d799f85
AC
2705
2706 /* Note: step_resume_breakpoint may be non-NULL. This occures
2707 when either there's a nested signal, or when there's a
2708 pending signal enabled just as the signal handler returns
2709 (leaving the inferior at the step-resume-breakpoint without
2710 actually executing it). Either way continue until the
2711 breakpoint is really hit. */
488f131b
JB
2712 keep_going (ecs);
2713 return;
2714 }
2715
2716 /* Handle cases caused by hitting a breakpoint. */
2717 {
2718 CORE_ADDR jmp_buf_pc;
2719 struct bpstat_what what;
2720
2721 what = bpstat_what (stop_bpstat);
2722
2723 if (what.call_dummy)
2724 {
2725 stop_stack_dummy = 1;
c5aa993b 2726 }
c906108c 2727
488f131b 2728 switch (what.main_action)
c5aa993b 2729 {
488f131b 2730 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
611c83ae
PA
2731 /* If we hit the breakpoint at longjmp while stepping, we
2732 install a momentary breakpoint at the target of the
2733 jmp_buf. */
2734
2735 if (debug_infrun)
2736 fprintf_unfiltered (gdb_stdlog,
2737 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2738
0d1e5fa7 2739 tss->stepping_over_breakpoint = 1;
611c83ae 2740
91104499 2741 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
60ade65d
UW
2742 || !gdbarch_get_longjmp_target (current_gdbarch,
2743 get_current_frame (), &jmp_buf_pc))
c5aa993b 2744 {
611c83ae
PA
2745 if (debug_infrun)
2746 fprintf_unfiltered (gdb_stdlog, "\
2747infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
488f131b 2748 keep_going (ecs);
104c1213 2749 return;
c5aa993b 2750 }
488f131b 2751
611c83ae
PA
2752 /* We're going to replace the current step-resume breakpoint
2753 with a longjmp-resume breakpoint. */
488f131b 2754 if (step_resume_breakpoint != NULL)
611c83ae
PA
2755 delete_step_resume_breakpoint (&step_resume_breakpoint);
2756
2757 /* Insert a breakpoint at resume address. */
2758 insert_longjmp_resume_breakpoint (jmp_buf_pc);
c906108c 2759
488f131b
JB
2760 keep_going (ecs);
2761 return;
c906108c 2762
488f131b 2763 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
527159b7 2764 if (debug_infrun)
611c83ae
PA
2765 fprintf_unfiltered (gdb_stdlog,
2766 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2767
2768 gdb_assert (step_resume_breakpoint != NULL);
2769 delete_step_resume_breakpoint (&step_resume_breakpoint);
2770
2771 stop_step = 1;
2772 print_stop_reason (END_STEPPING_RANGE, 0);
2773 stop_stepping (ecs);
2774 return;
488f131b
JB
2775
2776 case BPSTAT_WHAT_SINGLE:
527159b7 2777 if (debug_infrun)
8802d8ed 2778 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
0d1e5fa7 2779 tss->stepping_over_breakpoint = 1;
488f131b
JB
2780 /* Still need to check other stuff, at least the case
2781 where we are stepping and step out of the right range. */
2782 break;
c906108c 2783
488f131b 2784 case BPSTAT_WHAT_STOP_NOISY:
527159b7 2785 if (debug_infrun)
8802d8ed 2786 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 2787 stop_print_frame = 1;
c906108c 2788
d303a6c7
AC
2789 /* We are about to nuke the step_resume_breakpointt via the
2790 cleanup chain, so no need to worry about it here. */
c5aa993b 2791
488f131b
JB
2792 stop_stepping (ecs);
2793 return;
c5aa993b 2794
488f131b 2795 case BPSTAT_WHAT_STOP_SILENT:
527159b7 2796 if (debug_infrun)
8802d8ed 2797 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 2798 stop_print_frame = 0;
c5aa993b 2799
d303a6c7
AC
2800 /* We are about to nuke the step_resume_breakpoin via the
2801 cleanup chain, so no need to worry about it here. */
c5aa993b 2802
488f131b 2803 stop_stepping (ecs);
e441088d 2804 return;
c5aa993b 2805
488f131b
JB
2806 case BPSTAT_WHAT_STEP_RESUME:
2807 /* This proably demands a more elegant solution, but, yeah
2808 right...
c5aa993b 2809
488f131b
JB
2810 This function's use of the simple variable
2811 step_resume_breakpoint doesn't seem to accomodate
2812 simultaneously active step-resume bp's, although the
2813 breakpoint list certainly can.
c5aa993b 2814
488f131b
JB
2815 If we reach here and step_resume_breakpoint is already
2816 NULL, then apparently we have multiple active
2817 step-resume bp's. We'll just delete the breakpoint we
2818 stopped at, and carry on.
2819
2820 Correction: what the code currently does is delete a
2821 step-resume bp, but it makes no effort to ensure that
2822 the one deleted is the one currently stopped at. MVS */
c5aa993b 2823
527159b7 2824 if (debug_infrun)
8802d8ed 2825 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
527159b7 2826
488f131b
JB
2827 if (step_resume_breakpoint == NULL)
2828 {
2829 step_resume_breakpoint =
2830 bpstat_find_step_resume_breakpoint (stop_bpstat);
2831 }
2832 delete_step_resume_breakpoint (&step_resume_breakpoint);
0d1e5fa7 2833 if (tss->step_after_step_resume_breakpoint)
68f53502
AC
2834 {
2835 /* Back when the step-resume breakpoint was inserted, we
2836 were trying to single-step off a breakpoint. Go back
2837 to doing that. */
0d1e5fa7
PA
2838 tss->step_after_step_resume_breakpoint = 0;
2839 tss->stepping_over_breakpoint = 1;
68f53502
AC
2840 keep_going (ecs);
2841 return;
2842 }
488f131b
JB
2843 break;
2844
488f131b
JB
2845 case BPSTAT_WHAT_CHECK_SHLIBS:
2846 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
c906108c 2847 {
527159b7 2848 if (debug_infrun)
8802d8ed 2849 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
488f131b
JB
2850
2851 /* Check for any newly added shared libraries if we're
2852 supposed to be adding them automatically. Switch
2853 terminal for any messages produced by
2854 breakpoint_re_set. */
2855 target_terminal_ours_for_output ();
aff6338a 2856 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
2857 stack's section table is kept up-to-date. Architectures,
2858 (e.g., PPC64), use the section table to perform
2859 operations such as address => section name and hence
2860 require the table to contain all sections (including
2861 those found in shared libraries). */
aff6338a 2862 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
2863 exec_ops to SOLIB_ADD. This is because current GDB is
2864 only tooled to propagate section_table changes out from
2865 the "current_target" (see target_resize_to_sections), and
2866 not up from the exec stratum. This, of course, isn't
2867 right. "infrun.c" should only interact with the
2868 exec/process stratum, instead relying on the target stack
2869 to propagate relevant changes (stop, section table
2870 changed, ...) up to other layers. */
a77053c2 2871#ifdef SOLIB_ADD
aff6338a 2872 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
a77053c2
MK
2873#else
2874 solib_add (NULL, 0, &current_target, auto_solib_add);
2875#endif
488f131b
JB
2876 target_terminal_inferior ();
2877
488f131b
JB
2878 /* If requested, stop when the dynamic linker notifies
2879 gdb of events. This allows the user to get control
2880 and place breakpoints in initializer routines for
2881 dynamically loaded objects (among other things). */
877522db 2882 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 2883 {
488f131b 2884 stop_stepping (ecs);
d4f3574e
SS
2885 return;
2886 }
c5aa993b 2887
488f131b
JB
2888 /* If we stopped due to an explicit catchpoint, then the
2889 (see above) call to SOLIB_ADD pulled in any symbols
2890 from a newly-loaded library, if appropriate.
2891
2892 We do want the inferior to stop, but not where it is
2893 now, which is in the dynamic linker callback. Rather,
2894 we would like it stop in the user's program, just after
2895 the call that caused this catchpoint to trigger. That
2896 gives the user a more useful vantage from which to
2897 examine their program's state. */
8fb3e588
AC
2898 else if (what.main_action
2899 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
c906108c 2900 {
488f131b
JB
2901 /* ??rehrauer: If I could figure out how to get the
2902 right return PC from here, we could just set a temp
2903 breakpoint and resume. I'm not sure we can without
2904 cracking open the dld's shared libraries and sniffing
2905 their unwind tables and text/data ranges, and that's
2906 not a terribly portable notion.
2907
2908 Until that time, we must step the inferior out of the
2909 dld callback, and also out of the dld itself (and any
2910 code or stubs in libdld.sl, such as "shl_load" and
2911 friends) until we reach non-dld code. At that point,
2912 we can stop stepping. */
2913 bpstat_get_triggered_catchpoints (stop_bpstat,
0d1e5fa7 2914 &tss->
488f131b 2915 stepping_through_solib_catchpoints);
0d1e5fa7 2916 tss->stepping_through_solib_after_catch = 1;
488f131b
JB
2917
2918 /* Be sure to lift all breakpoints, so the inferior does
2919 actually step past this point... */
0d1e5fa7 2920 tss->stepping_over_breakpoint = 1;
488f131b 2921 break;
c906108c 2922 }
c5aa993b 2923 else
c5aa993b 2924 {
488f131b 2925 /* We want to step over this breakpoint, then keep going. */
0d1e5fa7 2926 tss->stepping_over_breakpoint = 1;
488f131b 2927 break;
c5aa993b 2928 }
488f131b 2929 }
488f131b 2930 break;
c906108c 2931
488f131b
JB
2932 case BPSTAT_WHAT_LAST:
2933 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 2934
488f131b
JB
2935 case BPSTAT_WHAT_KEEP_CHECKING:
2936 break;
2937 }
2938 }
c906108c 2939
488f131b
JB
2940 /* We come here if we hit a breakpoint but should not
2941 stop for it. Possibly we also were stepping
2942 and should stop for that. So fall through and
2943 test for stepping. But, if not stepping,
2944 do not stop. */
c906108c 2945
9d1ff73f
MS
2946 /* Are we stepping to get the inferior out of the dynamic linker's
2947 hook (and possibly the dld itself) after catching a shlib
2948 event? */
0d1e5fa7 2949 if (tss->stepping_through_solib_after_catch)
488f131b
JB
2950 {
2951#if defined(SOLIB_ADD)
2952 /* Have we reached our destination? If not, keep going. */
2953 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2954 {
527159b7 2955 if (debug_infrun)
8a9de0e4 2956 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
0d1e5fa7 2957 tss->stepping_over_breakpoint = 1;
488f131b 2958 keep_going (ecs);
104c1213 2959 return;
488f131b
JB
2960 }
2961#endif
527159b7 2962 if (debug_infrun)
8a9de0e4 2963 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
488f131b
JB
2964 /* Else, stop and report the catchpoint(s) whose triggering
2965 caused us to begin stepping. */
0d1e5fa7 2966 tss->stepping_through_solib_after_catch = 0;
488f131b 2967 bpstat_clear (&stop_bpstat);
0d1e5fa7
PA
2968 stop_bpstat = bpstat_copy (tss->stepping_through_solib_catchpoints);
2969 bpstat_clear (&tss->stepping_through_solib_catchpoints);
488f131b
JB
2970 stop_print_frame = 1;
2971 stop_stepping (ecs);
2972 return;
2973 }
c906108c 2974
488f131b
JB
2975 if (step_resume_breakpoint)
2976 {
527159b7 2977 if (debug_infrun)
d3169d93
DJ
2978 fprintf_unfiltered (gdb_stdlog,
2979 "infrun: step-resume breakpoint is inserted\n");
527159b7 2980
488f131b
JB
2981 /* Having a step-resume breakpoint overrides anything
2982 else having to do with stepping commands until
2983 that breakpoint is reached. */
488f131b
JB
2984 keep_going (ecs);
2985 return;
2986 }
c5aa993b 2987
488f131b
JB
2988 if (step_range_end == 0)
2989 {
527159b7 2990 if (debug_infrun)
8a9de0e4 2991 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 2992 /* Likewise if we aren't even stepping. */
488f131b
JB
2993 keep_going (ecs);
2994 return;
2995 }
c5aa993b 2996
488f131b 2997 /* If stepping through a line, keep going if still within it.
c906108c 2998
488f131b
JB
2999 Note that step_range_end is the address of the first instruction
3000 beyond the step range, and NOT the address of the last instruction
3001 within it! */
3002 if (stop_pc >= step_range_start && stop_pc < step_range_end)
3003 {
527159b7 3004 if (debug_infrun)
8a9de0e4 3005 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
527159b7
RC
3006 paddr_nz (step_range_start),
3007 paddr_nz (step_range_end));
488f131b
JB
3008 keep_going (ecs);
3009 return;
3010 }
c5aa993b 3011
488f131b 3012 /* We stepped out of the stepping range. */
c906108c 3013
488f131b
JB
3014 /* If we are stepping at the source level and entered the runtime
3015 loader dynamic symbol resolution code, we keep on single stepping
3016 until we exit the run time loader code and reach the callee's
3017 address. */
3018 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 3019 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 3020 {
4c8c40e6
MK
3021 CORE_ADDR pc_after_resolver =
3022 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
c906108c 3023
527159b7 3024 if (debug_infrun)
8a9de0e4 3025 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
527159b7 3026
488f131b
JB
3027 if (pc_after_resolver)
3028 {
3029 /* Set up a step-resume breakpoint at the address
3030 indicated by SKIP_SOLIB_RESOLVER. */
3031 struct symtab_and_line sr_sal;
fe39c653 3032 init_sal (&sr_sal);
488f131b
JB
3033 sr_sal.pc = pc_after_resolver;
3034
44cbf7b5 3035 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c5aa993b 3036 }
c906108c 3037
488f131b
JB
3038 keep_going (ecs);
3039 return;
3040 }
c906108c 3041
42edda50
AC
3042 if (step_range_end != 1
3043 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
3044 || step_over_calls == STEP_OVER_ALL)
3045 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
488f131b 3046 {
527159b7 3047 if (debug_infrun)
8a9de0e4 3048 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
42edda50 3049 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
3050 a signal trampoline (either by a signal being delivered or by
3051 the signal handler returning). Just single-step until the
3052 inferior leaves the trampoline (either by calling the handler
3053 or returning). */
488f131b
JB
3054 keep_going (ecs);
3055 return;
3056 }
c906108c 3057
c17eaafe
DJ
3058 /* Check for subroutine calls. The check for the current frame
3059 equalling the step ID is not necessary - the check of the
3060 previous frame's ID is sufficient - but it is a common case and
3061 cheaper than checking the previous frame's ID.
14e60db5
DJ
3062
3063 NOTE: frame_id_eq will never report two invalid frame IDs as
3064 being equal, so to get into this block, both the current and
3065 previous frame must have valid frame IDs. */
c17eaafe 3066 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
eb2f4a08 3067 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
488f131b 3068 {
95918acb 3069 CORE_ADDR real_stop_pc;
8fb3e588 3070
527159b7 3071 if (debug_infrun)
8a9de0e4 3072 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 3073
95918acb
AC
3074 if ((step_over_calls == STEP_OVER_NONE)
3075 || ((step_range_end == 1)
3076 && in_prologue (prev_pc, ecs->stop_func_start)))
3077 {
3078 /* I presume that step_over_calls is only 0 when we're
3079 supposed to be stepping at the assembly language level
3080 ("stepi"). Just stop. */
3081 /* Also, maybe we just did a "nexti" inside a prolog, so we
3082 thought it was a subroutine call but it was not. Stop as
3083 well. FENN */
3084 stop_step = 1;
3085 print_stop_reason (END_STEPPING_RANGE, 0);
3086 stop_stepping (ecs);
3087 return;
3088 }
8fb3e588 3089
8567c30f
AC
3090 if (step_over_calls == STEP_OVER_ALL)
3091 {
3092 /* We're doing a "next", set a breakpoint at callee's return
3093 address (the address at which the caller will
3094 resume). */
14e60db5 3095 insert_step_resume_breakpoint_at_caller (get_current_frame ());
8567c30f
AC
3096 keep_going (ecs);
3097 return;
3098 }
a53c66de 3099
95918acb 3100 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
3101 calling routine and the real function), locate the real
3102 function. That's what tells us (a) whether we want to step
3103 into it at all, and (b) what prologue we want to run to the
3104 end of, if we do step into it. */
52f729a7 3105 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
95918acb 3106 if (real_stop_pc == 0)
52f729a7
UW
3107 real_stop_pc = gdbarch_skip_trampoline_code
3108 (current_gdbarch, get_current_frame (), stop_pc);
95918acb
AC
3109 if (real_stop_pc != 0)
3110 ecs->stop_func_start = real_stop_pc;
8fb3e588 3111
cfd8ab24 3112 if (in_solib_dynsym_resolve_code (ecs->stop_func_start))
1b2bfbb9
RC
3113 {
3114 struct symtab_and_line sr_sal;
3115 init_sal (&sr_sal);
3116 sr_sal.pc = ecs->stop_func_start;
3117
44cbf7b5 3118 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
8fb3e588
AC
3119 keep_going (ecs);
3120 return;
1b2bfbb9
RC
3121 }
3122
95918acb 3123 /* If we have line number information for the function we are
8fb3e588 3124 thinking of stepping into, step into it.
95918acb 3125
8fb3e588
AC
3126 If there are several symtabs at that PC (e.g. with include
3127 files), just want to know whether *any* of them have line
3128 numbers. find_pc_line handles this. */
95918acb
AC
3129 {
3130 struct symtab_and_line tmp_sal;
8fb3e588 3131
95918acb
AC
3132 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
3133 if (tmp_sal.line != 0)
3134 {
3135 step_into_function (ecs);
3136 return;
3137 }
3138 }
3139
3140 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
3141 set, we stop the step so that the user has a chance to switch
3142 in assembly mode. */
95918acb
AC
3143 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
3144 {
3145 stop_step = 1;
3146 print_stop_reason (END_STEPPING_RANGE, 0);
3147 stop_stepping (ecs);
3148 return;
3149 }
3150
3151 /* Set a breakpoint at callee's return address (the address at
8fb3e588 3152 which the caller will resume). */
14e60db5 3153 insert_step_resume_breakpoint_at_caller (get_current_frame ());
95918acb 3154 keep_going (ecs);
488f131b 3155 return;
488f131b 3156 }
c906108c 3157
488f131b
JB
3158 /* If we're in the return path from a shared library trampoline,
3159 we want to proceed through the trampoline when stepping. */
e76f05fa
UW
3160 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
3161 stop_pc, ecs->stop_func_name))
488f131b 3162 {
488f131b 3163 /* Determine where this trampoline returns. */
52f729a7
UW
3164 CORE_ADDR real_stop_pc;
3165 real_stop_pc = gdbarch_skip_trampoline_code
3166 (current_gdbarch, get_current_frame (), stop_pc);
c906108c 3167
527159b7 3168 if (debug_infrun)
8a9de0e4 3169 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
527159b7 3170
488f131b 3171 /* Only proceed through if we know where it's going. */
d764a824 3172 if (real_stop_pc)
488f131b
JB
3173 {
3174 /* And put the step-breakpoint there and go until there. */
3175 struct symtab_and_line sr_sal;
3176
fe39c653 3177 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 3178 sr_sal.pc = real_stop_pc;
488f131b 3179 sr_sal.section = find_pc_overlay (sr_sal.pc);
44cbf7b5
AC
3180
3181 /* Do not specify what the fp should be when we stop since
3182 on some machines the prologue is where the new fp value
3183 is established. */
3184 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c906108c 3185
488f131b
JB
3186 /* Restart without fiddling with the step ranges or
3187 other state. */
3188 keep_going (ecs);
3189 return;
3190 }
3191 }
c906108c 3192
2afb61aa 3193 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 3194
1b2bfbb9
RC
3195 /* NOTE: tausq/2004-05-24: This if block used to be done before all
3196 the trampoline processing logic, however, there are some trampolines
3197 that have no names, so we should do trampoline handling first. */
3198 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 3199 && ecs->stop_func_name == NULL
2afb61aa 3200 && stop_pc_sal.line == 0)
1b2bfbb9 3201 {
527159b7 3202 if (debug_infrun)
8a9de0e4 3203 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
527159b7 3204
1b2bfbb9 3205 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
3206 undebuggable function (where there is no debugging information
3207 and no line number corresponding to the address where the
1b2bfbb9
RC
3208 inferior stopped). Since we want to skip this kind of code,
3209 we keep going until the inferior returns from this
14e60db5
DJ
3210 function - unless the user has asked us not to (via
3211 set step-mode) or we no longer know how to get back
3212 to the call site. */
3213 if (step_stop_if_no_debug
eb2f4a08 3214 || !frame_id_p (frame_unwind_id (get_current_frame ())))
1b2bfbb9
RC
3215 {
3216 /* If we have no line number and the step-stop-if-no-debug
3217 is set, we stop the step so that the user has a chance to
3218 switch in assembly mode. */
3219 stop_step = 1;
3220 print_stop_reason (END_STEPPING_RANGE, 0);
3221 stop_stepping (ecs);
3222 return;
3223 }
3224 else
3225 {
3226 /* Set a breakpoint at callee's return address (the address
3227 at which the caller will resume). */
14e60db5 3228 insert_step_resume_breakpoint_at_caller (get_current_frame ());
1b2bfbb9
RC
3229 keep_going (ecs);
3230 return;
3231 }
3232 }
3233
3234 if (step_range_end == 1)
3235 {
3236 /* It is stepi or nexti. We always want to stop stepping after
3237 one instruction. */
527159b7 3238 if (debug_infrun)
8a9de0e4 3239 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
1b2bfbb9
RC
3240 stop_step = 1;
3241 print_stop_reason (END_STEPPING_RANGE, 0);
3242 stop_stepping (ecs);
3243 return;
3244 }
3245
2afb61aa 3246 if (stop_pc_sal.line == 0)
488f131b
JB
3247 {
3248 /* We have no line number information. That means to stop
3249 stepping (does this always happen right after one instruction,
3250 when we do "s" in a function with no line numbers,
3251 or can this happen as a result of a return or longjmp?). */
527159b7 3252 if (debug_infrun)
8a9de0e4 3253 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
488f131b
JB
3254 stop_step = 1;
3255 print_stop_reason (END_STEPPING_RANGE, 0);
3256 stop_stepping (ecs);
3257 return;
3258 }
c906108c 3259
2afb61aa
PA
3260 if ((stop_pc == stop_pc_sal.pc)
3261 && (tss->current_line != stop_pc_sal.line
3262 || tss->current_symtab != stop_pc_sal.symtab))
488f131b
JB
3263 {
3264 /* We are at the start of a different line. So stop. Note that
3265 we don't stop if we step into the middle of a different line.
3266 That is said to make things like for (;;) statements work
3267 better. */
527159b7 3268 if (debug_infrun)
8a9de0e4 3269 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
488f131b
JB
3270 stop_step = 1;
3271 print_stop_reason (END_STEPPING_RANGE, 0);
3272 stop_stepping (ecs);
3273 return;
3274 }
c906108c 3275
488f131b 3276 /* We aren't done stepping.
c906108c 3277
488f131b
JB
3278 Optimize by setting the stepping range to the line.
3279 (We might not be in the original line, but if we entered a
3280 new line in mid-statement, we continue stepping. This makes
3281 things like for(;;) statements work better.) */
c906108c 3282
2afb61aa
PA
3283 step_range_start = stop_pc_sal.pc;
3284 step_range_end = stop_pc_sal.end;
aa0cd9c1 3285 step_frame_id = get_frame_id (get_current_frame ());
2afb61aa
PA
3286 tss->current_line = stop_pc_sal.line;
3287 tss->current_symtab = stop_pc_sal.symtab;
488f131b 3288
aa0cd9c1
AC
3289 /* In the case where we just stepped out of a function into the
3290 middle of a line of the caller, continue stepping, but
3291 step_frame_id must be modified to current frame */
65815ea1
AC
3292#if 0
3293 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
3294 generous. It will trigger on things like a step into a frameless
3295 stackless leaf function. I think the logic should instead look
3296 at the unwound frame ID has that should give a more robust
3297 indication of what happened. */
8fb3e588
AC
3298 if (step - ID == current - ID)
3299 still stepping in same function;
3300 else if (step - ID == unwind (current - ID))
3301 stepped into a function;
3302 else
3303 stepped out of a function;
3304 /* Of course this assumes that the frame ID unwind code is robust
3305 and we're willing to introduce frame unwind logic into this
3306 function. Fortunately, those days are nearly upon us. */
65815ea1 3307#endif
488f131b 3308 {
09a7aba8
UW
3309 struct frame_info *frame = get_current_frame ();
3310 struct frame_id current_frame = get_frame_id (frame);
3311 if (!(frame_id_inner (get_frame_arch (frame), current_frame,
3312 step_frame_id)))
aa0cd9c1 3313 step_frame_id = current_frame;
488f131b 3314 }
c906108c 3315
527159b7 3316 if (debug_infrun)
8a9de0e4 3317 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 3318 keep_going (ecs);
104c1213
JM
3319}
3320
3321/* Are we in the middle of stepping? */
3322
3323static int
0d1e5fa7 3324currently_stepping (struct thread_stepping_state *tss)
104c1213 3325{
611c83ae
PA
3326 return (((step_range_end && step_resume_breakpoint == NULL)
3327 || stepping_over_breakpoint)
0d1e5fa7 3328 || tss->stepping_through_solib_after_catch
104c1213
JM
3329 || bpstat_should_step ());
3330}
c906108c 3331
c2c6d25f
JM
3332/* Subroutine call with source code we should not step over. Do step
3333 to the first line of code in it. */
3334
3335static void
3336step_into_function (struct execution_control_state *ecs)
3337{
3338 struct symtab *s;
2afb61aa 3339 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f
JM
3340
3341 s = find_pc_symtab (stop_pc);
3342 if (s && s->language != language_asm)
a433963d
UW
3343 ecs->stop_func_start = gdbarch_skip_prologue
3344 (current_gdbarch, ecs->stop_func_start);
c2c6d25f 3345
2afb61aa 3346 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
3347 /* Use the step_resume_break to step until the end of the prologue,
3348 even if that involves jumps (as it seems to on the vax under
3349 4.2). */
3350 /* If the prologue ends in the middle of a source line, continue to
3351 the end of that source line (if it is still within the function).
3352 Otherwise, just go to end of prologue. */
2afb61aa
PA
3353 if (stop_func_sal.end
3354 && stop_func_sal.pc != ecs->stop_func_start
3355 && stop_func_sal.end < ecs->stop_func_end)
3356 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 3357
2dbd5e30
KB
3358 /* Architectures which require breakpoint adjustment might not be able
3359 to place a breakpoint at the computed address. If so, the test
3360 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
3361 ecs->stop_func_start to an address at which a breakpoint may be
3362 legitimately placed.
8fb3e588 3363
2dbd5e30
KB
3364 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
3365 made, GDB will enter an infinite loop when stepping through
3366 optimized code consisting of VLIW instructions which contain
3367 subinstructions corresponding to different source lines. On
3368 FR-V, it's not permitted to place a breakpoint on any but the
3369 first subinstruction of a VLIW instruction. When a breakpoint is
3370 set, GDB will adjust the breakpoint address to the beginning of
3371 the VLIW instruction. Thus, we need to make the corresponding
3372 adjustment here when computing the stop address. */
8fb3e588 3373
2dbd5e30
KB
3374 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
3375 {
3376 ecs->stop_func_start
3377 = gdbarch_adjust_breakpoint_address (current_gdbarch,
8fb3e588 3378 ecs->stop_func_start);
2dbd5e30
KB
3379 }
3380
c2c6d25f
JM
3381 if (ecs->stop_func_start == stop_pc)
3382 {
3383 /* We are already there: stop now. */
3384 stop_step = 1;
488f131b 3385 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
3386 stop_stepping (ecs);
3387 return;
3388 }
3389 else
3390 {
3391 /* Put the step-breakpoint there and go until there. */
fe39c653 3392 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
3393 sr_sal.pc = ecs->stop_func_start;
3394 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
44cbf7b5 3395
c2c6d25f 3396 /* Do not specify what the fp should be when we stop since on
488f131b
JB
3397 some machines the prologue is where the new fp value is
3398 established. */
44cbf7b5 3399 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c2c6d25f
JM
3400
3401 /* And make sure stepping stops right away then. */
3402 step_range_end = step_range_start;
3403 }
3404 keep_going (ecs);
3405}
d4f3574e 3406
d3169d93 3407/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
3408 This is used to both functions and to skip over code. */
3409
3410static void
3411insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
3412 struct frame_id sr_id)
3413{
611c83ae
PA
3414 /* There should never be more than one step-resume or longjmp-resume
3415 breakpoint per thread, so we should never be setting a new
44cbf7b5
AC
3416 step_resume_breakpoint when one is already active. */
3417 gdb_assert (step_resume_breakpoint == NULL);
d3169d93
DJ
3418
3419 if (debug_infrun)
3420 fprintf_unfiltered (gdb_stdlog,
3421 "infrun: inserting step-resume breakpoint at 0x%s\n",
3422 paddr_nz (sr_sal.pc));
3423
44cbf7b5
AC
3424 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
3425 bp_step_resume);
44cbf7b5 3426}
7ce450bd 3427
d3169d93 3428/* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
14e60db5 3429 to skip a potential signal handler.
7ce450bd 3430
14e60db5
DJ
3431 This is called with the interrupted function's frame. The signal
3432 handler, when it returns, will resume the interrupted function at
3433 RETURN_FRAME.pc. */
d303a6c7
AC
3434
3435static void
44cbf7b5 3436insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
3437{
3438 struct symtab_and_line sr_sal;
3439
f4c1edd8 3440 gdb_assert (return_frame != NULL);
d303a6c7
AC
3441 init_sal (&sr_sal); /* initialize to zeros */
3442
bf6ae464
UW
3443 sr_sal.pc = gdbarch_addr_bits_remove
3444 (current_gdbarch, get_frame_pc (return_frame));
d303a6c7
AC
3445 sr_sal.section = find_pc_overlay (sr_sal.pc);
3446
44cbf7b5 3447 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
d303a6c7
AC
3448}
3449
14e60db5
DJ
3450/* Similar to insert_step_resume_breakpoint_at_frame, except
3451 but a breakpoint at the previous frame's PC. This is used to
3452 skip a function after stepping into it (for "next" or if the called
3453 function has no debugging information).
3454
3455 The current function has almost always been reached by single
3456 stepping a call or return instruction. NEXT_FRAME belongs to the
3457 current function, and the breakpoint will be set at the caller's
3458 resume address.
3459
3460 This is a separate function rather than reusing
3461 insert_step_resume_breakpoint_at_frame in order to avoid
3462 get_prev_frame, which may stop prematurely (see the implementation
eb2f4a08 3463 of frame_unwind_id for an example). */
14e60db5
DJ
3464
3465static void
3466insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
3467{
3468 struct symtab_and_line sr_sal;
3469
3470 /* We shouldn't have gotten here if we don't know where the call site
3471 is. */
eb2f4a08 3472 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
14e60db5
DJ
3473
3474 init_sal (&sr_sal); /* initialize to zeros */
3475
bf6ae464 3476 sr_sal.pc = gdbarch_addr_bits_remove
eb2f4a08 3477 (current_gdbarch, frame_pc_unwind (next_frame));
14e60db5
DJ
3478 sr_sal.section = find_pc_overlay (sr_sal.pc);
3479
eb2f4a08 3480 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
14e60db5
DJ
3481}
3482
611c83ae
PA
3483/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
3484 new breakpoint at the target of a jmp_buf. The handling of
3485 longjmp-resume uses the same mechanisms used for handling
3486 "step-resume" breakpoints. */
3487
3488static void
3489insert_longjmp_resume_breakpoint (CORE_ADDR pc)
3490{
3491 /* There should never be more than one step-resume or longjmp-resume
3492 breakpoint per thread, so we should never be setting a new
3493 longjmp_resume_breakpoint when one is already active. */
3494 gdb_assert (step_resume_breakpoint == NULL);
3495
3496 if (debug_infrun)
3497 fprintf_unfiltered (gdb_stdlog,
3498 "infrun: inserting longjmp-resume breakpoint at 0x%s\n",
3499 paddr_nz (pc));
3500
3501 step_resume_breakpoint =
3502 set_momentary_breakpoint_at_pc (pc, bp_longjmp_resume);
3503}
3504
104c1213
JM
3505static void
3506stop_stepping (struct execution_control_state *ecs)
3507{
527159b7 3508 if (debug_infrun)
8a9de0e4 3509 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 3510
cd0fc7c3
SS
3511 /* Let callers know we don't want to wait for the inferior anymore. */
3512 ecs->wait_some_more = 0;
3513}
3514
d4f3574e
SS
3515/* This function handles various cases where we need to continue
3516 waiting for the inferior. */
3517/* (Used to be the keep_going: label in the old wait_for_inferior) */
3518
3519static void
3520keep_going (struct execution_control_state *ecs)
3521{
d4f3574e 3522 /* Save the pc before execution, to compare with pc after stop. */
488f131b 3523 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
d4f3574e 3524
d4f3574e
SS
3525 /* If we did not do break;, it means we should keep running the
3526 inferior and not return to debugger. */
3527
ca67fcb8 3528 if (stepping_over_breakpoint && stop_signal != TARGET_SIGNAL_TRAP)
d4f3574e
SS
3529 {
3530 /* We took a signal (which we are supposed to pass through to
488f131b
JB
3531 the inferior, else we'd have done a break above) and we
3532 haven't yet gotten our trap. Simply continue. */
0d1e5fa7 3533 resume (currently_stepping (tss), stop_signal);
d4f3574e
SS
3534 }
3535 else
3536 {
3537 /* Either the trap was not expected, but we are continuing
488f131b
JB
3538 anyway (the user asked that this signal be passed to the
3539 child)
3540 -- or --
3541 The signal was SIGTRAP, e.g. it was our signal, but we
3542 decided we should resume from it.
d4f3574e 3543
c36b740a 3544 We're going to run this baby now!
d4f3574e 3545
c36b740a
VP
3546 Note that insert_breakpoints won't try to re-insert
3547 already inserted breakpoints. Therefore, we don't
3548 care if breakpoints were already inserted, or not. */
3549
0d1e5fa7 3550 if (tss->stepping_over_breakpoint)
45e8c884 3551 {
237fc4c9
PA
3552 if (! use_displaced_stepping (current_gdbarch))
3553 /* Since we can't do a displaced step, we have to remove
3554 the breakpoint while we step it. To keep things
3555 simple, we remove them all. */
3556 remove_breakpoints ();
45e8c884
VP
3557 }
3558 else
d4f3574e 3559 {
e236ba44 3560 struct gdb_exception e;
569631c6
UW
3561 /* Stop stepping when inserting breakpoints
3562 has failed. */
e236ba44
VP
3563 TRY_CATCH (e, RETURN_MASK_ERROR)
3564 {
3565 insert_breakpoints ();
3566 }
3567 if (e.reason < 0)
d4f3574e
SS
3568 {
3569 stop_stepping (ecs);
3570 return;
3571 }
d4f3574e
SS
3572 }
3573
0d1e5fa7 3574 stepping_over_breakpoint = tss->stepping_over_breakpoint;
d4f3574e
SS
3575
3576 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
3577 specifies that such a signal should be delivered to the
3578 target program).
3579
3580 Typically, this would occure when a user is debugging a
3581 target monitor on a simulator: the target monitor sets a
3582 breakpoint; the simulator encounters this break-point and
3583 halts the simulation handing control to GDB; GDB, noteing
3584 that the break-point isn't valid, returns control back to the
3585 simulator; the simulator then delivers the hardware
3586 equivalent of a SIGNAL_TRAP to the program being debugged. */
3587
3588 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
d4f3574e
SS
3589 stop_signal = TARGET_SIGNAL_0;
3590
d4f3574e 3591
0d1e5fa7 3592 resume (currently_stepping (tss), stop_signal);
d4f3574e
SS
3593 }
3594
488f131b 3595 prepare_to_wait (ecs);
d4f3574e
SS
3596}
3597
104c1213
JM
3598/* This function normally comes after a resume, before
3599 handle_inferior_event exits. It takes care of any last bits of
3600 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 3601
104c1213
JM
3602static void
3603prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 3604{
527159b7 3605 if (debug_infrun)
8a9de0e4 3606 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
0d1e5fa7 3607 if (infwait_state == infwait_normal_state)
104c1213
JM
3608 {
3609 overlay_cache_invalid = 1;
3610
3611 /* We have to invalidate the registers BEFORE calling
488f131b
JB
3612 target_wait because they can be loaded from the target while
3613 in target_wait. This makes remote debugging a bit more
3614 efficient for those targets that provide critical registers
3615 as part of their normal status mechanism. */
104c1213
JM
3616
3617 registers_changed ();
0d1e5fa7 3618 waiton_ptid = pid_to_ptid (-1);
104c1213
JM
3619 }
3620 /* This is the old end of the while loop. Let everybody know we
3621 want to wait for the inferior some more and get called again
3622 soon. */
3623 ecs->wait_some_more = 1;
c906108c 3624}
11cf8741
JM
3625
3626/* Print why the inferior has stopped. We always print something when
3627 the inferior exits, or receives a signal. The rest of the cases are
3628 dealt with later on in normal_stop() and print_it_typical(). Ideally
3629 there should be a call to this function from handle_inferior_event()
3630 each time stop_stepping() is called.*/
3631static void
3632print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
3633{
3634 switch (stop_reason)
3635 {
11cf8741
JM
3636 case END_STEPPING_RANGE:
3637 /* We are done with a step/next/si/ni command. */
3638 /* For now print nothing. */
fb40c209 3639 /* Print a message only if not in the middle of doing a "step n"
488f131b 3640 operation for n > 1 */
fb40c209 3641 if (!step_multi || !stop_step)
9dc5e2a9 3642 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3643 ui_out_field_string
3644 (uiout, "reason",
3645 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
11cf8741 3646 break;
11cf8741
JM
3647 case SIGNAL_EXITED:
3648 /* The inferior was terminated by a signal. */
8b93c638 3649 annotate_signalled ();
9dc5e2a9 3650 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3651 ui_out_field_string
3652 (uiout, "reason",
3653 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8b93c638
JM
3654 ui_out_text (uiout, "\nProgram terminated with signal ");
3655 annotate_signal_name ();
488f131b
JB
3656 ui_out_field_string (uiout, "signal-name",
3657 target_signal_to_name (stop_info));
8b93c638
JM
3658 annotate_signal_name_end ();
3659 ui_out_text (uiout, ", ");
3660 annotate_signal_string ();
488f131b
JB
3661 ui_out_field_string (uiout, "signal-meaning",
3662 target_signal_to_string (stop_info));
8b93c638
JM
3663 annotate_signal_string_end ();
3664 ui_out_text (uiout, ".\n");
3665 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
3666 break;
3667 case EXITED:
3668 /* The inferior program is finished. */
8b93c638
JM
3669 annotate_exited (stop_info);
3670 if (stop_info)
3671 {
9dc5e2a9 3672 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3673 ui_out_field_string (uiout, "reason",
3674 async_reason_lookup (EXEC_ASYNC_EXITED));
8b93c638 3675 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
3676 ui_out_field_fmt (uiout, "exit-code", "0%o",
3677 (unsigned int) stop_info);
8b93c638
JM
3678 ui_out_text (uiout, ".\n");
3679 }
3680 else
3681 {
9dc5e2a9 3682 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3683 ui_out_field_string
3684 (uiout, "reason",
3685 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8b93c638
JM
3686 ui_out_text (uiout, "\nProgram exited normally.\n");
3687 }
f17517ea
AS
3688 /* Support the --return-child-result option. */
3689 return_child_result_value = stop_info;
11cf8741
JM
3690 break;
3691 case SIGNAL_RECEIVED:
3692 /* Signal received. The signal table tells us to print about
3693 it. */
8b93c638
JM
3694 annotate_signal ();
3695 ui_out_text (uiout, "\nProgram received signal ");
3696 annotate_signal_name ();
84c6c83c 3697 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3698 ui_out_field_string
3699 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b
JB
3700 ui_out_field_string (uiout, "signal-name",
3701 target_signal_to_name (stop_info));
8b93c638
JM
3702 annotate_signal_name_end ();
3703 ui_out_text (uiout, ", ");
3704 annotate_signal_string ();
488f131b
JB
3705 ui_out_field_string (uiout, "signal-meaning",
3706 target_signal_to_string (stop_info));
8b93c638
JM
3707 annotate_signal_string_end ();
3708 ui_out_text (uiout, ".\n");
11cf8741
JM
3709 break;
3710 default:
8e65ff28 3711 internal_error (__FILE__, __LINE__,
e2e0b3e5 3712 _("print_stop_reason: unrecognized enum value"));
11cf8741
JM
3713 break;
3714 }
3715}
c906108c 3716\f
43ff13b4 3717
c906108c
SS
3718/* Here to return control to GDB when the inferior stops for real.
3719 Print appropriate messages, remove breakpoints, give terminal our modes.
3720
3721 STOP_PRINT_FRAME nonzero means print the executing frame
3722 (pc, function, args, file, line number and line text).
3723 BREAKPOINTS_FAILED nonzero means stop was due to error
3724 attempting to insert breakpoints. */
3725
3726void
96baa820 3727normal_stop (void)
c906108c 3728{
73b65bb0
DJ
3729 struct target_waitstatus last;
3730 ptid_t last_ptid;
3731
3732 get_last_target_status (&last_ptid, &last);
3733
4f8d22e3
PA
3734 /* In non-stop mode, we don't want GDB to switch threads behind the
3735 user's back, to avoid races where the user is typing a command to
3736 apply to thread x, but GDB switches to thread y before the user
3737 finishes entering the command. */
3738
c906108c
SS
3739 /* As with the notification of thread events, we want to delay
3740 notifying the user that we've switched thread context until
3741 the inferior actually stops.
3742
73b65bb0
DJ
3743 There's no point in saying anything if the inferior has exited.
3744 Note that SIGNALLED here means "exited with a signal", not
3745 "received a signal". */
4f8d22e3
PA
3746 if (!non_stop
3747 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
3748 && target_has_execution
3749 && last.kind != TARGET_WAITKIND_SIGNALLED
3750 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
3751 {
3752 target_terminal_ours_for_output ();
a3f17187 3753 printf_filtered (_("[Switching to %s]\n"),
c95310c6 3754 target_pid_to_str (inferior_ptid));
b8fa951a 3755 annotate_thread_changed ();
39f77062 3756 previous_inferior_ptid = inferior_ptid;
c906108c 3757 }
c906108c 3758
4fa8626c 3759 /* NOTE drow/2004-01-17: Is this still necessary? */
c906108c
SS
3760 /* Make sure that the current_frame's pc is correct. This
3761 is a correction for setting up the frame info before doing
b798847d 3762 gdbarch_decr_pc_after_break */
b87efeee
AC
3763 if (target_has_execution)
3764 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
b798847d 3765 gdbarch_decr_pc_after_break, the program counter can change. Ask the
b87efeee 3766 frame code to check for this and sort out any resultant mess.
b798847d 3767 gdbarch_decr_pc_after_break needs to just go away. */
2f107107 3768 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
c906108c 3769
74960c60 3770 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
3771 {
3772 if (remove_breakpoints ())
3773 {
3774 target_terminal_ours_for_output ();
a3f17187
AC
3775 printf_filtered (_("\
3776Cannot remove breakpoints because program is no longer writable.\n\
3777It might be running in another process.\n\
3778Further execution is probably impossible.\n"));
c906108c
SS
3779 }
3780 }
c906108c 3781
c906108c
SS
3782 /* If an auto-display called a function and that got a signal,
3783 delete that auto-display to avoid an infinite recursion. */
3784
3785 if (stopped_by_random_signal)
3786 disable_current_display ();
3787
3788 /* Don't print a message if in the middle of doing a "step n"
3789 operation for n > 1 */
3790 if (step_multi && stop_step)
3791 goto done;
3792
3793 target_terminal_ours ();
3794
7abfe014
DJ
3795 /* Set the current source location. This will also happen if we
3796 display the frame below, but the current SAL will be incorrect
3797 during a user hook-stop function. */
3798 if (target_has_stack && !stop_stack_dummy)
3799 set_current_sal_from_frame (get_current_frame (), 1);
3800
5913bcb0
AC
3801 /* Look up the hook_stop and run it (CLI internally handles problem
3802 of stop_command's pre-hook not existing). */
3803 if (stop_command)
3804 catch_errors (hook_stop_stub, stop_command,
3805 "Error while running hook_stop:\n", RETURN_MASK_ALL);
c906108c
SS
3806
3807 if (!target_has_stack)
3808 {
3809
3810 goto done;
3811 }
3812
3813 /* Select innermost stack frame - i.e., current frame is frame 0,
3814 and current location is based on that.
3815 Don't do this on return from a stack dummy routine,
3816 or if the program has exited. */
3817
3818 if (!stop_stack_dummy)
3819 {
0f7d239c 3820 select_frame (get_current_frame ());
c906108c
SS
3821
3822 /* Print current location without a level number, if
c5aa993b
JM
3823 we have changed functions or hit a breakpoint.
3824 Print source line if we have one.
3825 bpstat_print() contains the logic deciding in detail
3826 what to print, based on the event(s) that just occurred. */
c906108c 3827
d01a8610
AS
3828 /* If --batch-silent is enabled then there's no need to print the current
3829 source location, and to try risks causing an error message about
3830 missing source files. */
3831 if (stop_print_frame && !batch_silent)
c906108c
SS
3832 {
3833 int bpstat_ret;
3834 int source_flag;
917317f4 3835 int do_frame_printing = 1;
c906108c
SS
3836
3837 bpstat_ret = bpstat_print (stop_bpstat);
917317f4
JM
3838 switch (bpstat_ret)
3839 {
3840 case PRINT_UNKNOWN:
b0f4b84b
DJ
3841 /* If we had hit a shared library event breakpoint,
3842 bpstat_print would print out this message. If we hit
3843 an OS-level shared library event, do the same
3844 thing. */
3845 if (last.kind == TARGET_WAITKIND_LOADED)
3846 {
3847 printf_filtered (_("Stopped due to shared library event\n"));
3848 source_flag = SRC_LINE; /* something bogus */
3849 do_frame_printing = 0;
3850 break;
3851 }
3852
aa0cd9c1 3853 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
3854 (or should) carry around the function and does (or
3855 should) use that when doing a frame comparison. */
917317f4 3856 if (stop_step
aa0cd9c1
AC
3857 && frame_id_eq (step_frame_id,
3858 get_frame_id (get_current_frame ()))
917317f4 3859 && step_start_function == find_pc_function (stop_pc))
488f131b 3860 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 3861 else
488f131b 3862 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3863 break;
3864 case PRINT_SRC_AND_LOC:
488f131b 3865 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3866 break;
3867 case PRINT_SRC_ONLY:
c5394b80 3868 source_flag = SRC_LINE;
917317f4
JM
3869 break;
3870 case PRINT_NOTHING:
488f131b 3871 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
3872 do_frame_printing = 0;
3873 break;
3874 default:
e2e0b3e5 3875 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 3876 }
c906108c 3877
9dc5e2a9 3878 if (ui_out_is_mi_like_p (uiout))
b1a268e5
VP
3879 {
3880
3881 ui_out_field_int (uiout, "thread-id",
3882 pid_to_thread_id (inferior_ptid));
3883 if (non_stop)
3884 {
3885 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end
3886 (uiout, "stopped-threads");
3887 ui_out_field_int (uiout, NULL,
3888 pid_to_thread_id (inferior_ptid));
3889 do_cleanups (back_to);
3890 }
3891 else
3892 ui_out_field_string (uiout, "stopped-threads", "all");
3893 }
c906108c
SS
3894 /* The behavior of this routine with respect to the source
3895 flag is:
c5394b80
JM
3896 SRC_LINE: Print only source line
3897 LOCATION: Print only location
3898 SRC_AND_LOC: Print location and source line */
917317f4 3899 if (do_frame_printing)
b04f3ab4 3900 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
3901
3902 /* Display the auto-display expressions. */
3903 do_displays ();
3904 }
3905 }
3906
3907 /* Save the function value return registers, if we care.
3908 We might be about to restore their previous contents. */
3909 if (proceed_to_finish)
d5c31457
UW
3910 {
3911 /* This should not be necessary. */
3912 if (stop_registers)
3913 regcache_xfree (stop_registers);
3914
3915 /* NB: The copy goes through to the target picking up the value of
3916 all the registers. */
3917 stop_registers = regcache_dup (get_current_regcache ());
3918 }
c906108c
SS
3919
3920 if (stop_stack_dummy)
3921 {
dbe9fe58
AC
3922 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3923 ends with a setting of the current frame, so we can use that
3924 next. */
3925 frame_pop (get_current_frame ());
c906108c 3926 /* Set stop_pc to what it was before we called the function.
c5aa993b
JM
3927 Can't rely on restore_inferior_status because that only gets
3928 called if we don't stop in the called function. */
c906108c 3929 stop_pc = read_pc ();
0f7d239c 3930 select_frame (get_current_frame ());
c906108c
SS
3931 }
3932
c906108c
SS
3933done:
3934 annotate_stopped ();
8f6a8e84 3935 if (!suppress_stop_observer && !step_multi)
f5871ec0 3936 observer_notify_normal_stop (stop_bpstat);
2cec12e5
AR
3937 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3938 Delete any breakpoint that is to be deleted at the next stop. */
3939 breakpoint_auto_delete (stop_bpstat);
94cc34af
PA
3940
3941 if (target_has_execution
3942 && last.kind != TARGET_WAITKIND_SIGNALLED
3943 && last.kind != TARGET_WAITKIND_EXITED)
3944 {
3945 if (!non_stop)
3946 set_running (pid_to_ptid (-1), 0);
3947 else
3948 set_running (inferior_ptid, 0);
3949 }
c906108c
SS
3950}
3951
3952static int
96baa820 3953hook_stop_stub (void *cmd)
c906108c 3954{
5913bcb0 3955 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
3956 return (0);
3957}
3958\f
c5aa993b 3959int
96baa820 3960signal_stop_state (int signo)
c906108c 3961{
a0ef4274
DJ
3962 /* Always stop on signals if we're just gaining control of the
3963 program. */
3964 return signal_stop[signo] || stop_soon != NO_STOP_QUIETLY;
c906108c
SS
3965}
3966
c5aa993b 3967int
96baa820 3968signal_print_state (int signo)
c906108c
SS
3969{
3970 return signal_print[signo];
3971}
3972
c5aa993b 3973int
96baa820 3974signal_pass_state (int signo)
c906108c
SS
3975{
3976 return signal_program[signo];
3977}
3978
488f131b 3979int
7bda5e4a 3980signal_stop_update (int signo, int state)
d4f3574e
SS
3981{
3982 int ret = signal_stop[signo];
3983 signal_stop[signo] = state;
3984 return ret;
3985}
3986
488f131b 3987int
7bda5e4a 3988signal_print_update (int signo, int state)
d4f3574e
SS
3989{
3990 int ret = signal_print[signo];
3991 signal_print[signo] = state;
3992 return ret;
3993}
3994
488f131b 3995int
7bda5e4a 3996signal_pass_update (int signo, int state)
d4f3574e
SS
3997{
3998 int ret = signal_program[signo];
3999 signal_program[signo] = state;
4000 return ret;
4001}
4002
c906108c 4003static void
96baa820 4004sig_print_header (void)
c906108c 4005{
a3f17187
AC
4006 printf_filtered (_("\
4007Signal Stop\tPrint\tPass to program\tDescription\n"));
c906108c
SS
4008}
4009
4010static void
96baa820 4011sig_print_info (enum target_signal oursig)
c906108c
SS
4012{
4013 char *name = target_signal_to_name (oursig);
4014 int name_padding = 13 - strlen (name);
96baa820 4015
c906108c
SS
4016 if (name_padding <= 0)
4017 name_padding = 0;
4018
4019 printf_filtered ("%s", name);
488f131b 4020 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
4021 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
4022 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
4023 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
4024 printf_filtered ("%s\n", target_signal_to_string (oursig));
4025}
4026
4027/* Specify how various signals in the inferior should be handled. */
4028
4029static void
96baa820 4030handle_command (char *args, int from_tty)
c906108c
SS
4031{
4032 char **argv;
4033 int digits, wordlen;
4034 int sigfirst, signum, siglast;
4035 enum target_signal oursig;
4036 int allsigs;
4037 int nsigs;
4038 unsigned char *sigs;
4039 struct cleanup *old_chain;
4040
4041 if (args == NULL)
4042 {
e2e0b3e5 4043 error_no_arg (_("signal to handle"));
c906108c
SS
4044 }
4045
4046 /* Allocate and zero an array of flags for which signals to handle. */
4047
4048 nsigs = (int) TARGET_SIGNAL_LAST;
4049 sigs = (unsigned char *) alloca (nsigs);
4050 memset (sigs, 0, nsigs);
4051
4052 /* Break the command line up into args. */
4053
4054 argv = buildargv (args);
4055 if (argv == NULL)
4056 {
4057 nomem (0);
4058 }
7a292a7a 4059 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
4060
4061 /* Walk through the args, looking for signal oursigs, signal names, and
4062 actions. Signal numbers and signal names may be interspersed with
4063 actions, with the actions being performed for all signals cumulatively
4064 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
4065
4066 while (*argv != NULL)
4067 {
4068 wordlen = strlen (*argv);
4069 for (digits = 0; isdigit ((*argv)[digits]); digits++)
4070 {;
4071 }
4072 allsigs = 0;
4073 sigfirst = siglast = -1;
4074
4075 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
4076 {
4077 /* Apply action to all signals except those used by the
4078 debugger. Silently skip those. */
4079 allsigs = 1;
4080 sigfirst = 0;
4081 siglast = nsigs - 1;
4082 }
4083 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
4084 {
4085 SET_SIGS (nsigs, sigs, signal_stop);
4086 SET_SIGS (nsigs, sigs, signal_print);
4087 }
4088 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
4089 {
4090 UNSET_SIGS (nsigs, sigs, signal_program);
4091 }
4092 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
4093 {
4094 SET_SIGS (nsigs, sigs, signal_print);
4095 }
4096 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
4097 {
4098 SET_SIGS (nsigs, sigs, signal_program);
4099 }
4100 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
4101 {
4102 UNSET_SIGS (nsigs, sigs, signal_stop);
4103 }
4104 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
4105 {
4106 SET_SIGS (nsigs, sigs, signal_program);
4107 }
4108 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
4109 {
4110 UNSET_SIGS (nsigs, sigs, signal_print);
4111 UNSET_SIGS (nsigs, sigs, signal_stop);
4112 }
4113 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
4114 {
4115 UNSET_SIGS (nsigs, sigs, signal_program);
4116 }
4117 else if (digits > 0)
4118 {
4119 /* It is numeric. The numeric signal refers to our own
4120 internal signal numbering from target.h, not to host/target
4121 signal number. This is a feature; users really should be
4122 using symbolic names anyway, and the common ones like
4123 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
4124
4125 sigfirst = siglast = (int)
4126 target_signal_from_command (atoi (*argv));
4127 if ((*argv)[digits] == '-')
4128 {
4129 siglast = (int)
4130 target_signal_from_command (atoi ((*argv) + digits + 1));
4131 }
4132 if (sigfirst > siglast)
4133 {
4134 /* Bet he didn't figure we'd think of this case... */
4135 signum = sigfirst;
4136 sigfirst = siglast;
4137 siglast = signum;
4138 }
4139 }
4140 else
4141 {
4142 oursig = target_signal_from_name (*argv);
4143 if (oursig != TARGET_SIGNAL_UNKNOWN)
4144 {
4145 sigfirst = siglast = (int) oursig;
4146 }
4147 else
4148 {
4149 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 4150 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
4151 }
4152 }
4153
4154 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 4155 which signals to apply actions to. */
c906108c
SS
4156
4157 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
4158 {
4159 switch ((enum target_signal) signum)
4160 {
4161 case TARGET_SIGNAL_TRAP:
4162 case TARGET_SIGNAL_INT:
4163 if (!allsigs && !sigs[signum])
4164 {
4165 if (query ("%s is used by the debugger.\n\
488f131b 4166Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
4167 {
4168 sigs[signum] = 1;
4169 }
4170 else
4171 {
a3f17187 4172 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
4173 gdb_flush (gdb_stdout);
4174 }
4175 }
4176 break;
4177 case TARGET_SIGNAL_0:
4178 case TARGET_SIGNAL_DEFAULT:
4179 case TARGET_SIGNAL_UNKNOWN:
4180 /* Make sure that "all" doesn't print these. */
4181 break;
4182 default:
4183 sigs[signum] = 1;
4184 break;
4185 }
4186 }
4187
4188 argv++;
4189 }
4190
39f77062 4191 target_notice_signals (inferior_ptid);
c906108c
SS
4192
4193 if (from_tty)
4194 {
4195 /* Show the results. */
4196 sig_print_header ();
4197 for (signum = 0; signum < nsigs; signum++)
4198 {
4199 if (sigs[signum])
4200 {
4201 sig_print_info (signum);
4202 }
4203 }
4204 }
4205
4206 do_cleanups (old_chain);
4207}
4208
4209static void
96baa820 4210xdb_handle_command (char *args, int from_tty)
c906108c
SS
4211{
4212 char **argv;
4213 struct cleanup *old_chain;
4214
4215 /* Break the command line up into args. */
4216
4217 argv = buildargv (args);
4218 if (argv == NULL)
4219 {
4220 nomem (0);
4221 }
7a292a7a 4222 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
4223 if (argv[1] != (char *) NULL)
4224 {
4225 char *argBuf;
4226 int bufLen;
4227
4228 bufLen = strlen (argv[0]) + 20;
4229 argBuf = (char *) xmalloc (bufLen);
4230 if (argBuf)
4231 {
4232 int validFlag = 1;
4233 enum target_signal oursig;
4234
4235 oursig = target_signal_from_name (argv[0]);
4236 memset (argBuf, 0, bufLen);
4237 if (strcmp (argv[1], "Q") == 0)
4238 sprintf (argBuf, "%s %s", argv[0], "noprint");
4239 else
4240 {
4241 if (strcmp (argv[1], "s") == 0)
4242 {
4243 if (!signal_stop[oursig])
4244 sprintf (argBuf, "%s %s", argv[0], "stop");
4245 else
4246 sprintf (argBuf, "%s %s", argv[0], "nostop");
4247 }
4248 else if (strcmp (argv[1], "i") == 0)
4249 {
4250 if (!signal_program[oursig])
4251 sprintf (argBuf, "%s %s", argv[0], "pass");
4252 else
4253 sprintf (argBuf, "%s %s", argv[0], "nopass");
4254 }
4255 else if (strcmp (argv[1], "r") == 0)
4256 {
4257 if (!signal_print[oursig])
4258 sprintf (argBuf, "%s %s", argv[0], "print");
4259 else
4260 sprintf (argBuf, "%s %s", argv[0], "noprint");
4261 }
4262 else
4263 validFlag = 0;
4264 }
4265 if (validFlag)
4266 handle_command (argBuf, from_tty);
4267 else
a3f17187 4268 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 4269 if (argBuf)
b8c9b27d 4270 xfree (argBuf);
c906108c
SS
4271 }
4272 }
4273 do_cleanups (old_chain);
4274}
4275
4276/* Print current contents of the tables set by the handle command.
4277 It is possible we should just be printing signals actually used
4278 by the current target (but for things to work right when switching
4279 targets, all signals should be in the signal tables). */
4280
4281static void
96baa820 4282signals_info (char *signum_exp, int from_tty)
c906108c
SS
4283{
4284 enum target_signal oursig;
4285 sig_print_header ();
4286
4287 if (signum_exp)
4288 {
4289 /* First see if this is a symbol name. */
4290 oursig = target_signal_from_name (signum_exp);
4291 if (oursig == TARGET_SIGNAL_UNKNOWN)
4292 {
4293 /* No, try numeric. */
4294 oursig =
bb518678 4295 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
4296 }
4297 sig_print_info (oursig);
4298 return;
4299 }
4300
4301 printf_filtered ("\n");
4302 /* These ugly casts brought to you by the native VAX compiler. */
4303 for (oursig = TARGET_SIGNAL_FIRST;
4304 (int) oursig < (int) TARGET_SIGNAL_LAST;
4305 oursig = (enum target_signal) ((int) oursig + 1))
4306 {
4307 QUIT;
4308
4309 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 4310 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
4311 sig_print_info (oursig);
4312 }
4313
a3f17187 4314 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
c906108c
SS
4315}
4316\f
7a292a7a
SS
4317struct inferior_status
4318{
4319 enum target_signal stop_signal;
4320 CORE_ADDR stop_pc;
4321 bpstat stop_bpstat;
4322 int stop_step;
4323 int stop_stack_dummy;
4324 int stopped_by_random_signal;
ca67fcb8 4325 int stepping_over_breakpoint;
7a292a7a
SS
4326 CORE_ADDR step_range_start;
4327 CORE_ADDR step_range_end;
aa0cd9c1 4328 struct frame_id step_frame_id;
5fbbeb29 4329 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
4330 CORE_ADDR step_resume_break_address;
4331 int stop_after_trap;
c0236d92 4332 int stop_soon;
7a292a7a
SS
4333
4334 /* These are here because if call_function_by_hand has written some
4335 registers and then decides to call error(), we better not have changed
4336 any registers. */
72cec141 4337 struct regcache *registers;
7a292a7a 4338
101dcfbe
AC
4339 /* A frame unique identifier. */
4340 struct frame_id selected_frame_id;
4341
7a292a7a
SS
4342 int breakpoint_proceeded;
4343 int restore_stack_info;
4344 int proceed_to_finish;
4345};
4346
7a292a7a 4347void
96baa820
JM
4348write_inferior_status_register (struct inferior_status *inf_status, int regno,
4349 LONGEST val)
7a292a7a 4350{
3acba339 4351 int size = register_size (current_gdbarch, regno);
7a292a7a
SS
4352 void *buf = alloca (size);
4353 store_signed_integer (buf, size, val);
0818c12a 4354 regcache_raw_write (inf_status->registers, regno, buf);
7a292a7a
SS
4355}
4356
c906108c
SS
4357/* Save all of the information associated with the inferior<==>gdb
4358 connection. INF_STATUS is a pointer to a "struct inferior_status"
4359 (defined in inferior.h). */
4360
7a292a7a 4361struct inferior_status *
96baa820 4362save_inferior_status (int restore_stack_info)
c906108c 4363{
72cec141 4364 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
7a292a7a 4365
c906108c
SS
4366 inf_status->stop_signal = stop_signal;
4367 inf_status->stop_pc = stop_pc;
4368 inf_status->stop_step = stop_step;
4369 inf_status->stop_stack_dummy = stop_stack_dummy;
4370 inf_status->stopped_by_random_signal = stopped_by_random_signal;
ca67fcb8 4371 inf_status->stepping_over_breakpoint = stepping_over_breakpoint;
c906108c
SS
4372 inf_status->step_range_start = step_range_start;
4373 inf_status->step_range_end = step_range_end;
aa0cd9c1 4374 inf_status->step_frame_id = step_frame_id;
c906108c
SS
4375 inf_status->step_over_calls = step_over_calls;
4376 inf_status->stop_after_trap = stop_after_trap;
c0236d92 4377 inf_status->stop_soon = stop_soon;
c906108c
SS
4378 /* Save original bpstat chain here; replace it with copy of chain.
4379 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
4380 hand them back the original chain when restore_inferior_status is
4381 called. */
c906108c
SS
4382 inf_status->stop_bpstat = stop_bpstat;
4383 stop_bpstat = bpstat_copy (stop_bpstat);
4384 inf_status->breakpoint_proceeded = breakpoint_proceeded;
4385 inf_status->restore_stack_info = restore_stack_info;
4386 inf_status->proceed_to_finish = proceed_to_finish;
c5aa993b 4387
594f7785 4388 inf_status->registers = regcache_dup (get_current_regcache ());
c906108c 4389
206415a3 4390 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
7a292a7a 4391 return inf_status;
c906108c
SS
4392}
4393
c906108c 4394static int
96baa820 4395restore_selected_frame (void *args)
c906108c 4396{
488f131b 4397 struct frame_id *fid = (struct frame_id *) args;
c906108c 4398 struct frame_info *frame;
c906108c 4399
101dcfbe 4400 frame = frame_find_by_id (*fid);
c906108c 4401
aa0cd9c1
AC
4402 /* If inf_status->selected_frame_id is NULL, there was no previously
4403 selected frame. */
101dcfbe 4404 if (frame == NULL)
c906108c 4405 {
8a3fe4f8 4406 warning (_("Unable to restore previously selected frame."));
c906108c
SS
4407 return 0;
4408 }
4409
0f7d239c 4410 select_frame (frame);
c906108c
SS
4411
4412 return (1);
4413}
4414
4415void
96baa820 4416restore_inferior_status (struct inferior_status *inf_status)
c906108c
SS
4417{
4418 stop_signal = inf_status->stop_signal;
4419 stop_pc = inf_status->stop_pc;
4420 stop_step = inf_status->stop_step;
4421 stop_stack_dummy = inf_status->stop_stack_dummy;
4422 stopped_by_random_signal = inf_status->stopped_by_random_signal;
ca67fcb8 4423 stepping_over_breakpoint = inf_status->stepping_over_breakpoint;
c906108c
SS
4424 step_range_start = inf_status->step_range_start;
4425 step_range_end = inf_status->step_range_end;
aa0cd9c1 4426 step_frame_id = inf_status->step_frame_id;
c906108c
SS
4427 step_over_calls = inf_status->step_over_calls;
4428 stop_after_trap = inf_status->stop_after_trap;
c0236d92 4429 stop_soon = inf_status->stop_soon;
c906108c
SS
4430 bpstat_clear (&stop_bpstat);
4431 stop_bpstat = inf_status->stop_bpstat;
4432 breakpoint_proceeded = inf_status->breakpoint_proceeded;
4433 proceed_to_finish = inf_status->proceed_to_finish;
4434
c906108c
SS
4435 /* The inferior can be gone if the user types "print exit(0)"
4436 (and perhaps other times). */
4437 if (target_has_execution)
72cec141 4438 /* NB: The register write goes through to the target. */
594f7785 4439 regcache_cpy (get_current_regcache (), inf_status->registers);
72cec141 4440 regcache_xfree (inf_status->registers);
c906108c 4441
c906108c
SS
4442 /* FIXME: If we are being called after stopping in a function which
4443 is called from gdb, we should not be trying to restore the
4444 selected frame; it just prints a spurious error message (The
4445 message is useful, however, in detecting bugs in gdb (like if gdb
4446 clobbers the stack)). In fact, should we be restoring the
4447 inferior status at all in that case? . */
4448
4449 if (target_has_stack && inf_status->restore_stack_info)
4450 {
c906108c 4451 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
4452 walking the stack might encounter a garbage pointer and
4453 error() trying to dereference it. */
488f131b
JB
4454 if (catch_errors
4455 (restore_selected_frame, &inf_status->selected_frame_id,
4456 "Unable to restore previously selected frame:\n",
4457 RETURN_MASK_ERROR) == 0)
c906108c
SS
4458 /* Error in restoring the selected frame. Select the innermost
4459 frame. */
0f7d239c 4460 select_frame (get_current_frame ());
c906108c
SS
4461
4462 }
c906108c 4463
72cec141 4464 xfree (inf_status);
7a292a7a 4465}
c906108c 4466
74b7792f
AC
4467static void
4468do_restore_inferior_status_cleanup (void *sts)
4469{
4470 restore_inferior_status (sts);
4471}
4472
4473struct cleanup *
4474make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
4475{
4476 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
4477}
4478
c906108c 4479void
96baa820 4480discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
4481{
4482 /* See save_inferior_status for info on stop_bpstat. */
4483 bpstat_clear (&inf_status->stop_bpstat);
72cec141 4484 regcache_xfree (inf_status->registers);
72cec141 4485 xfree (inf_status);
7a292a7a
SS
4486}
4487
47932f85 4488int
3a3e9ee3 4489inferior_has_forked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
4490{
4491 struct target_waitstatus last;
4492 ptid_t last_ptid;
4493
4494 get_last_target_status (&last_ptid, &last);
4495
4496 if (last.kind != TARGET_WAITKIND_FORKED)
4497 return 0;
4498
3a3e9ee3 4499 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
4500 return 0;
4501
4502 *child_pid = last.value.related_pid;
4503 return 1;
4504}
4505
4506int
3a3e9ee3 4507inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
4508{
4509 struct target_waitstatus last;
4510 ptid_t last_ptid;
4511
4512 get_last_target_status (&last_ptid, &last);
4513
4514 if (last.kind != TARGET_WAITKIND_VFORKED)
4515 return 0;
4516
3a3e9ee3 4517 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
4518 return 0;
4519
4520 *child_pid = last.value.related_pid;
4521 return 1;
4522}
4523
4524int
3a3e9ee3 4525inferior_has_execd (ptid_t pid, char **execd_pathname)
47932f85
DJ
4526{
4527 struct target_waitstatus last;
4528 ptid_t last_ptid;
4529
4530 get_last_target_status (&last_ptid, &last);
4531
4532 if (last.kind != TARGET_WAITKIND_EXECD)
4533 return 0;
4534
3a3e9ee3 4535 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
4536 return 0;
4537
4538 *execd_pathname = xstrdup (last.value.execd_pathname);
4539 return 1;
4540}
4541
ca6724c1
KB
4542/* Oft used ptids */
4543ptid_t null_ptid;
4544ptid_t minus_one_ptid;
4545
4546/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 4547
ca6724c1
KB
4548ptid_t
4549ptid_build (int pid, long lwp, long tid)
4550{
4551 ptid_t ptid;
4552
4553 ptid.pid = pid;
4554 ptid.lwp = lwp;
4555 ptid.tid = tid;
4556 return ptid;
4557}
4558
4559/* Create a ptid from just a pid. */
4560
4561ptid_t
4562pid_to_ptid (int pid)
4563{
4564 return ptid_build (pid, 0, 0);
4565}
4566
4567/* Fetch the pid (process id) component from a ptid. */
4568
4569int
4570ptid_get_pid (ptid_t ptid)
4571{
4572 return ptid.pid;
4573}
4574
4575/* Fetch the lwp (lightweight process) component from a ptid. */
4576
4577long
4578ptid_get_lwp (ptid_t ptid)
4579{
4580 return ptid.lwp;
4581}
4582
4583/* Fetch the tid (thread id) component from a ptid. */
4584
4585long
4586ptid_get_tid (ptid_t ptid)
4587{
4588 return ptid.tid;
4589}
4590
4591/* ptid_equal() is used to test equality of two ptids. */
4592
4593int
4594ptid_equal (ptid_t ptid1, ptid_t ptid2)
4595{
4596 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 4597 && ptid1.tid == ptid2.tid);
ca6724c1
KB
4598}
4599
4600/* restore_inferior_ptid() will be used by the cleanup machinery
4601 to restore the inferior_ptid value saved in a call to
4602 save_inferior_ptid(). */
ce696e05
KB
4603
4604static void
4605restore_inferior_ptid (void *arg)
4606{
4607 ptid_t *saved_ptid_ptr = arg;
4608 inferior_ptid = *saved_ptid_ptr;
4609 xfree (arg);
4610}
4611
4612/* Save the value of inferior_ptid so that it may be restored by a
4613 later call to do_cleanups(). Returns the struct cleanup pointer
4614 needed for later doing the cleanup. */
4615
4616struct cleanup *
4617save_inferior_ptid (void)
4618{
4619 ptid_t *saved_ptid_ptr;
4620
4621 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
4622 *saved_ptid_ptr = inferior_ptid;
4623 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
4624}
c5aa993b 4625\f
488f131b 4626
ad52ddc6
PA
4627int non_stop = 0;
4628static int non_stop_1 = 0;
4629
4630static void
4631set_non_stop (char *args, int from_tty,
4632 struct cmd_list_element *c)
4633{
4634 if (target_has_execution)
4635 {
4636 non_stop_1 = non_stop;
4637 error (_("Cannot change this setting while the inferior is running."));
4638 }
4639
4640 non_stop = non_stop_1;
4641}
4642
4643static void
4644show_non_stop (struct ui_file *file, int from_tty,
4645 struct cmd_list_element *c, const char *value)
4646{
4647 fprintf_filtered (file,
4648 _("Controlling the inferior in non-stop mode is %s.\n"),
4649 value);
4650}
4651
4652
c906108c 4653void
96baa820 4654_initialize_infrun (void)
c906108c 4655{
52f0bd74
AC
4656 int i;
4657 int numsigs;
c906108c
SS
4658 struct cmd_list_element *c;
4659
1bedd215
AC
4660 add_info ("signals", signals_info, _("\
4661What debugger does when program gets various signals.\n\
4662Specify a signal as argument to print info on that signal only."));
c906108c
SS
4663 add_info_alias ("handle", "signals", 0);
4664
1bedd215
AC
4665 add_com ("handle", class_run, handle_command, _("\
4666Specify how to handle a signal.\n\
c906108c
SS
4667Args are signals and actions to apply to those signals.\n\
4668Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4669from 1-15 are allowed for compatibility with old versions of GDB.\n\
4670Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4671The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
4672used by the debugger, typically SIGTRAP and SIGINT.\n\
4673Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
4674\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
4675Stop means reenter debugger if this signal happens (implies print).\n\
4676Print means print a message if this signal happens.\n\
4677Pass means let program see this signal; otherwise program doesn't know.\n\
4678Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 4679Pass and Stop may be combined."));
c906108c
SS
4680 if (xdb_commands)
4681 {
1bedd215
AC
4682 add_com ("lz", class_info, signals_info, _("\
4683What debugger does when program gets various signals.\n\
4684Specify a signal as argument to print info on that signal only."));
4685 add_com ("z", class_run, xdb_handle_command, _("\
4686Specify how to handle a signal.\n\
c906108c
SS
4687Args are signals and actions to apply to those signals.\n\
4688Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4689from 1-15 are allowed for compatibility with old versions of GDB.\n\
4690Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4691The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
4692used by the debugger, typically SIGTRAP and SIGINT.\n\
4693Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
4694\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
4695nopass), \"Q\" (noprint)\n\
4696Stop means reenter debugger if this signal happens (implies print).\n\
4697Print means print a message if this signal happens.\n\
4698Pass means let program see this signal; otherwise program doesn't know.\n\
4699Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 4700Pass and Stop may be combined."));
c906108c
SS
4701 }
4702
4703 if (!dbx_commands)
1a966eab
AC
4704 stop_command = add_cmd ("stop", class_obscure,
4705 not_just_help_class_command, _("\
4706There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 4707This allows you to set a list of commands to be run each time execution\n\
1a966eab 4708of the program stops."), &cmdlist);
c906108c 4709
85c07804
AC
4710 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
4711Set inferior debugging."), _("\
4712Show inferior debugging."), _("\
4713When non-zero, inferior specific debugging is enabled."),
4714 NULL,
920d2a44 4715 show_debug_infrun,
85c07804 4716 &setdebuglist, &showdebuglist);
527159b7 4717
237fc4c9
PA
4718 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
4719Set displaced stepping debugging."), _("\
4720Show displaced stepping debugging."), _("\
4721When non-zero, displaced stepping specific debugging is enabled."),
4722 NULL,
4723 show_debug_displaced,
4724 &setdebuglist, &showdebuglist);
4725
ad52ddc6
PA
4726 add_setshow_boolean_cmd ("non-stop", no_class,
4727 &non_stop_1, _("\
4728Set whether gdb controls the inferior in non-stop mode."), _("\
4729Show whether gdb controls the inferior in non-stop mode."), _("\
4730When debugging a multi-threaded program and this setting is\n\
4731off (the default, also called all-stop mode), when one thread stops\n\
4732(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
4733all other threads in the program while you interact with the thread of\n\
4734interest. When you continue or step a thread, you can allow the other\n\
4735threads to run, or have them remain stopped, but while you inspect any\n\
4736thread's state, all threads stop.\n\
4737\n\
4738In non-stop mode, when one thread stops, other threads can continue\n\
4739to run freely. You'll be able to step each thread independently,\n\
4740leave it stopped or free to run as needed."),
4741 set_non_stop,
4742 show_non_stop,
4743 &setlist,
4744 &showlist);
4745
c906108c 4746 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 4747 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
4748 signal_print = (unsigned char *)
4749 xmalloc (sizeof (signal_print[0]) * numsigs);
4750 signal_program = (unsigned char *)
4751 xmalloc (sizeof (signal_program[0]) * numsigs);
4752 for (i = 0; i < numsigs; i++)
4753 {
4754 signal_stop[i] = 1;
4755 signal_print[i] = 1;
4756 signal_program[i] = 1;
4757 }
4758
4759 /* Signals caused by debugger's own actions
4760 should not be given to the program afterwards. */
4761 signal_program[TARGET_SIGNAL_TRAP] = 0;
4762 signal_program[TARGET_SIGNAL_INT] = 0;
4763
4764 /* Signals that are not errors should not normally enter the debugger. */
4765 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4766 signal_print[TARGET_SIGNAL_ALRM] = 0;
4767 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4768 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4769 signal_stop[TARGET_SIGNAL_PROF] = 0;
4770 signal_print[TARGET_SIGNAL_PROF] = 0;
4771 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4772 signal_print[TARGET_SIGNAL_CHLD] = 0;
4773 signal_stop[TARGET_SIGNAL_IO] = 0;
4774 signal_print[TARGET_SIGNAL_IO] = 0;
4775 signal_stop[TARGET_SIGNAL_POLL] = 0;
4776 signal_print[TARGET_SIGNAL_POLL] = 0;
4777 signal_stop[TARGET_SIGNAL_URG] = 0;
4778 signal_print[TARGET_SIGNAL_URG] = 0;
4779 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4780 signal_print[TARGET_SIGNAL_WINCH] = 0;
4781
cd0fc7c3
SS
4782 /* These signals are used internally by user-level thread
4783 implementations. (See signal(5) on Solaris.) Like the above
4784 signals, a healthy program receives and handles them as part of
4785 its normal operation. */
4786 signal_stop[TARGET_SIGNAL_LWP] = 0;
4787 signal_print[TARGET_SIGNAL_LWP] = 0;
4788 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4789 signal_print[TARGET_SIGNAL_WAITING] = 0;
4790 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4791 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4792
85c07804
AC
4793 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4794 &stop_on_solib_events, _("\
4795Set stopping for shared library events."), _("\
4796Show stopping for shared library events."), _("\
c906108c
SS
4797If nonzero, gdb will give control to the user when the dynamic linker\n\
4798notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
4799to the user would be loading/unloading of a new library."),
4800 NULL,
920d2a44 4801 show_stop_on_solib_events,
85c07804 4802 &setlist, &showlist);
c906108c 4803
7ab04401
AC
4804 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4805 follow_fork_mode_kind_names,
4806 &follow_fork_mode_string, _("\
4807Set debugger response to a program call of fork or vfork."), _("\
4808Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
4809A fork or vfork creates a new process. follow-fork-mode can be:\n\
4810 parent - the original process is debugged after a fork\n\
4811 child - the new process is debugged after a fork\n\
ea1dd7bc 4812The unfollowed process will continue to run.\n\
7ab04401
AC
4813By default, the debugger will follow the parent process."),
4814 NULL,
920d2a44 4815 show_follow_fork_mode_string,
7ab04401
AC
4816 &setlist, &showlist);
4817
4818 add_setshow_enum_cmd ("scheduler-locking", class_run,
4819 scheduler_enums, &scheduler_mode, _("\
4820Set mode for locking scheduler during execution."), _("\
4821Show mode for locking scheduler during execution."), _("\
c906108c
SS
4822off == no locking (threads may preempt at any time)\n\
4823on == full locking (no thread except the current thread may run)\n\
4824step == scheduler locked during every single-step operation.\n\
4825 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
4826 Other threads may run while stepping over a function call ('next')."),
4827 set_schedlock_func, /* traps on target vector */
920d2a44 4828 show_scheduler_mode,
7ab04401 4829 &setlist, &showlist);
5fbbeb29 4830
5bf193a2
AC
4831 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4832Set mode of the step operation."), _("\
4833Show mode of the step operation."), _("\
4834When set, doing a step over a function without debug line information\n\
4835will stop at the first instruction of that function. Otherwise, the\n\
4836function is skipped and the step command stops at a different source line."),
4837 NULL,
920d2a44 4838 show_step_stop_if_no_debug,
5bf193a2 4839 &setlist, &showlist);
ca6724c1 4840
237fc4c9 4841 add_setshow_boolean_cmd ("can-use-displaced-stepping", class_maintenance,
1f41b062 4842 &can_use_displaced_stepping, _("\
237fc4c9
PA
4843Set debugger's willingness to use displaced stepping."), _("\
4844Show debugger's willingness to use displaced stepping."), _("\
1f41b062 4845If zero, gdb will not use displaced stepping to step over\n\
237fc4c9 4846breakpoints, even if such is supported by the target."),
1f41b062
MS
4847 NULL,
4848 show_can_use_displaced_stepping,
4849 &maintenance_set_cmdlist,
237fc4c9
PA
4850 &maintenance_show_cmdlist);
4851
ca6724c1
KB
4852 /* ptid initializations */
4853 null_ptid = ptid_build (0, 0, 0);
4854 minus_one_ptid = ptid_build (-1, 0, 0);
4855 inferior_ptid = null_ptid;
4856 target_last_wait_ptid = minus_one_ptid;
237fc4c9 4857 displaced_step_ptid = null_ptid;
c906108c 4858}
This page took 1.011862 seconds and 4 git commands to generate.