*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
6aba47ca 4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
9b254dd1 5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
7b6bb8da 6 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include <ctype.h>
26#include "symtab.h"
27#include "frame.h"
28#include "inferior.h"
60250e8b 29#include "exceptions.h"
c906108c 30#include "breakpoint.h"
03f2053f 31#include "gdb_wait.h"
c906108c
SS
32#include "gdbcore.h"
33#include "gdbcmd.h"
210661e7 34#include "cli/cli-script.h"
c906108c
SS
35#include "target.h"
36#include "gdbthread.h"
37#include "annotate.h"
1adeb98a 38#include "symfile.h"
7a292a7a 39#include "top.h"
c906108c 40#include <signal.h>
2acceee2 41#include "inf-loop.h"
4e052eda 42#include "regcache.h"
fd0407d6 43#include "value.h"
06600e06 44#include "observer.h"
f636b87d 45#include "language.h"
a77053c2 46#include "solib.h"
f17517ea 47#include "main.h"
186c406b
TT
48#include "dictionary.h"
49#include "block.h"
9f976b41 50#include "gdb_assert.h"
034dad6f 51#include "mi/mi-common.h"
4f8d22e3 52#include "event-top.h"
96429cc8 53#include "record.h"
edb3359d 54#include "inline-frame.h"
4efc6507 55#include "jit.h"
06cd862c 56#include "tracepoint.h"
be34f849 57#include "continuations.h"
c906108c
SS
58
59/* Prototypes for local functions */
60
96baa820 61static void signals_info (char *, int);
c906108c 62
96baa820 63static void handle_command (char *, int);
c906108c 64
96baa820 65static void sig_print_info (enum target_signal);
c906108c 66
96baa820 67static void sig_print_header (void);
c906108c 68
74b7792f 69static void resume_cleanups (void *);
c906108c 70
96baa820 71static int hook_stop_stub (void *);
c906108c 72
96baa820
JM
73static int restore_selected_frame (void *);
74
4ef3f3be 75static int follow_fork (void);
96baa820
JM
76
77static void set_schedlock_func (char *args, int from_tty,
488f131b 78 struct cmd_list_element *c);
96baa820 79
a289b8f6
JK
80static int currently_stepping (struct thread_info *tp);
81
b3444185
PA
82static int currently_stepping_or_nexting_callback (struct thread_info *tp,
83 void *data);
a7212384 84
96baa820
JM
85static void xdb_handle_command (char *args, int from_tty);
86
6a6b96b9 87static int prepare_to_proceed (int);
ea67f13b 88
33d62d64
JK
89static void print_exited_reason (int exitstatus);
90
91static void print_signal_exited_reason (enum target_signal siggnal);
92
93static void print_no_history_reason (void);
94
95static void print_signal_received_reason (enum target_signal siggnal);
96
97static void print_end_stepping_range_reason (void);
98
96baa820 99void _initialize_infrun (void);
43ff13b4 100
e58b0e63
PA
101void nullify_last_target_wait_ptid (void);
102
2c03e5be 103static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
104
105static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
106
2484c66b
UW
107static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
108
5fbbeb29
CF
109/* When set, stop the 'step' command if we enter a function which has
110 no line number information. The normal behavior is that we step
111 over such function. */
112int step_stop_if_no_debug = 0;
920d2a44
AC
113static void
114show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
115 struct cmd_list_element *c, const char *value)
116{
117 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
118}
5fbbeb29 119
1777feb0 120/* In asynchronous mode, but simulating synchronous execution. */
96baa820 121
43ff13b4
JM
122int sync_execution = 0;
123
c906108c
SS
124/* wait_for_inferior and normal_stop use this to notify the user
125 when the inferior stopped in a different thread than it had been
96baa820
JM
126 running in. */
127
39f77062 128static ptid_t previous_inferior_ptid;
7a292a7a 129
6c95b8df
PA
130/* Default behavior is to detach newly forked processes (legacy). */
131int detach_fork = 1;
132
237fc4c9
PA
133int debug_displaced = 0;
134static void
135show_debug_displaced (struct ui_file *file, int from_tty,
136 struct cmd_list_element *c, const char *value)
137{
138 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
139}
140
628fe4e4 141int debug_infrun = 0;
920d2a44
AC
142static void
143show_debug_infrun (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145{
146 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
147}
527159b7 148
d4f3574e
SS
149/* If the program uses ELF-style shared libraries, then calls to
150 functions in shared libraries go through stubs, which live in a
151 table called the PLT (Procedure Linkage Table). The first time the
152 function is called, the stub sends control to the dynamic linker,
153 which looks up the function's real address, patches the stub so
154 that future calls will go directly to the function, and then passes
155 control to the function.
156
157 If we are stepping at the source level, we don't want to see any of
158 this --- we just want to skip over the stub and the dynamic linker.
159 The simple approach is to single-step until control leaves the
160 dynamic linker.
161
ca557f44
AC
162 However, on some systems (e.g., Red Hat's 5.2 distribution) the
163 dynamic linker calls functions in the shared C library, so you
164 can't tell from the PC alone whether the dynamic linker is still
165 running. In this case, we use a step-resume breakpoint to get us
166 past the dynamic linker, as if we were using "next" to step over a
167 function call.
d4f3574e 168
cfd8ab24 169 in_solib_dynsym_resolve_code() says whether we're in the dynamic
d4f3574e
SS
170 linker code or not. Normally, this means we single-step. However,
171 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
172 address where we can place a step-resume breakpoint to get past the
173 linker's symbol resolution function.
174
cfd8ab24 175 in_solib_dynsym_resolve_code() can generally be implemented in a
d4f3574e
SS
176 pretty portable way, by comparing the PC against the address ranges
177 of the dynamic linker's sections.
178
179 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
180 it depends on internal details of the dynamic linker. It's usually
181 not too hard to figure out where to put a breakpoint, but it
182 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
183 sanity checking. If it can't figure things out, returning zero and
184 getting the (possibly confusing) stepping behavior is better than
185 signalling an error, which will obscure the change in the
186 inferior's state. */
c906108c 187
c906108c
SS
188/* This function returns TRUE if pc is the address of an instruction
189 that lies within the dynamic linker (such as the event hook, or the
190 dld itself).
191
192 This function must be used only when a dynamic linker event has
193 been caught, and the inferior is being stepped out of the hook, or
194 undefined results are guaranteed. */
195
196#ifndef SOLIB_IN_DYNAMIC_LINKER
197#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
198#endif
199
d914c394
SS
200/* "Observer mode" is somewhat like a more extreme version of
201 non-stop, in which all GDB operations that might affect the
202 target's execution have been disabled. */
203
204static int non_stop_1 = 0;
205
206int observer_mode = 0;
207static int observer_mode_1 = 0;
208
209static void
210set_observer_mode (char *args, int from_tty,
211 struct cmd_list_element *c)
212{
213 extern int pagination_enabled;
214
215 if (target_has_execution)
216 {
217 observer_mode_1 = observer_mode;
218 error (_("Cannot change this setting while the inferior is running."));
219 }
220
221 observer_mode = observer_mode_1;
222
223 may_write_registers = !observer_mode;
224 may_write_memory = !observer_mode;
225 may_insert_breakpoints = !observer_mode;
226 may_insert_tracepoints = !observer_mode;
227 /* We can insert fast tracepoints in or out of observer mode,
228 but enable them if we're going into this mode. */
229 if (observer_mode)
230 may_insert_fast_tracepoints = 1;
231 may_stop = !observer_mode;
232 update_target_permissions ();
233
234 /* Going *into* observer mode we must force non-stop, then
235 going out we leave it that way. */
236 if (observer_mode)
237 {
238 target_async_permitted = 1;
239 pagination_enabled = 0;
240 non_stop = non_stop_1 = 1;
241 }
242
243 if (from_tty)
244 printf_filtered (_("Observer mode is now %s.\n"),
245 (observer_mode ? "on" : "off"));
246}
247
248static void
249show_observer_mode (struct ui_file *file, int from_tty,
250 struct cmd_list_element *c, const char *value)
251{
252 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
253}
254
255/* This updates the value of observer mode based on changes in
256 permissions. Note that we are deliberately ignoring the values of
257 may-write-registers and may-write-memory, since the user may have
258 reason to enable these during a session, for instance to turn on a
259 debugging-related global. */
260
261void
262update_observer_mode (void)
263{
264 int newval;
265
266 newval = (!may_insert_breakpoints
267 && !may_insert_tracepoints
268 && may_insert_fast_tracepoints
269 && !may_stop
270 && non_stop);
271
272 /* Let the user know if things change. */
273 if (newval != observer_mode)
274 printf_filtered (_("Observer mode is now %s.\n"),
275 (newval ? "on" : "off"));
276
277 observer_mode = observer_mode_1 = newval;
278}
c2c6d25f 279
c906108c
SS
280/* Tables of how to react to signals; the user sets them. */
281
282static unsigned char *signal_stop;
283static unsigned char *signal_print;
284static unsigned char *signal_program;
285
2455069d
UW
286/* Table of signals that the target may silently handle.
287 This is automatically determined from the flags above,
288 and simply cached here. */
289static unsigned char *signal_pass;
290
c906108c
SS
291#define SET_SIGS(nsigs,sigs,flags) \
292 do { \
293 int signum = (nsigs); \
294 while (signum-- > 0) \
295 if ((sigs)[signum]) \
296 (flags)[signum] = 1; \
297 } while (0)
298
299#define UNSET_SIGS(nsigs,sigs,flags) \
300 do { \
301 int signum = (nsigs); \
302 while (signum-- > 0) \
303 if ((sigs)[signum]) \
304 (flags)[signum] = 0; \
305 } while (0)
306
1777feb0 307/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 308
edb3359d 309#define RESUME_ALL minus_one_ptid
c906108c
SS
310
311/* Command list pointer for the "stop" placeholder. */
312
313static struct cmd_list_element *stop_command;
314
c906108c
SS
315/* Function inferior was in as of last step command. */
316
317static struct symbol *step_start_function;
318
c906108c
SS
319/* Nonzero if we want to give control to the user when we're notified
320 of shared library events by the dynamic linker. */
628fe4e4 321int stop_on_solib_events;
920d2a44
AC
322static void
323show_stop_on_solib_events (struct ui_file *file, int from_tty,
324 struct cmd_list_element *c, const char *value)
325{
326 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
327 value);
328}
c906108c 329
c906108c
SS
330/* Nonzero means expecting a trace trap
331 and should stop the inferior and return silently when it happens. */
332
333int stop_after_trap;
334
642fd101
DE
335/* Save register contents here when executing a "finish" command or are
336 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
337 Thus this contains the return value from the called function (assuming
338 values are returned in a register). */
339
72cec141 340struct regcache *stop_registers;
c906108c 341
c906108c
SS
342/* Nonzero after stop if current stack frame should be printed. */
343
344static int stop_print_frame;
345
e02bc4cc 346/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
347 returned by target_wait()/deprecated_target_wait_hook(). This
348 information is returned by get_last_target_status(). */
39f77062 349static ptid_t target_last_wait_ptid;
e02bc4cc
DS
350static struct target_waitstatus target_last_waitstatus;
351
0d1e5fa7
PA
352static void context_switch (ptid_t ptid);
353
4e1c45ea 354void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7
PA
355
356void init_infwait_state (void);
a474d7c2 357
53904c9e
AC
358static const char follow_fork_mode_child[] = "child";
359static const char follow_fork_mode_parent[] = "parent";
360
488f131b 361static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
362 follow_fork_mode_child,
363 follow_fork_mode_parent,
364 NULL
ef346e04 365};
c906108c 366
53904c9e 367static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
368static void
369show_follow_fork_mode_string (struct ui_file *file, int from_tty,
370 struct cmd_list_element *c, const char *value)
371{
3e43a32a
MS
372 fprintf_filtered (file,
373 _("Debugger response to a program "
374 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
375 value);
376}
c906108c
SS
377\f
378
e58b0e63
PA
379/* Tell the target to follow the fork we're stopped at. Returns true
380 if the inferior should be resumed; false, if the target for some
381 reason decided it's best not to resume. */
382
6604731b 383static int
4ef3f3be 384follow_fork (void)
c906108c 385{
ea1dd7bc 386 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
387 int should_resume = 1;
388 struct thread_info *tp;
389
390 /* Copy user stepping state to the new inferior thread. FIXME: the
391 followed fork child thread should have a copy of most of the
4e3990f4
DE
392 parent thread structure's run control related fields, not just these.
393 Initialized to avoid "may be used uninitialized" warnings from gcc. */
394 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 395 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
396 CORE_ADDR step_range_start = 0;
397 CORE_ADDR step_range_end = 0;
398 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
399
400 if (!non_stop)
401 {
402 ptid_t wait_ptid;
403 struct target_waitstatus wait_status;
404
405 /* Get the last target status returned by target_wait(). */
406 get_last_target_status (&wait_ptid, &wait_status);
407
408 /* If not stopped at a fork event, then there's nothing else to
409 do. */
410 if (wait_status.kind != TARGET_WAITKIND_FORKED
411 && wait_status.kind != TARGET_WAITKIND_VFORKED)
412 return 1;
413
414 /* Check if we switched over from WAIT_PTID, since the event was
415 reported. */
416 if (!ptid_equal (wait_ptid, minus_one_ptid)
417 && !ptid_equal (inferior_ptid, wait_ptid))
418 {
419 /* We did. Switch back to WAIT_PTID thread, to tell the
420 target to follow it (in either direction). We'll
421 afterwards refuse to resume, and inform the user what
422 happened. */
423 switch_to_thread (wait_ptid);
424 should_resume = 0;
425 }
426 }
427
428 tp = inferior_thread ();
429
430 /* If there were any forks/vforks that were caught and are now to be
431 followed, then do so now. */
432 switch (tp->pending_follow.kind)
433 {
434 case TARGET_WAITKIND_FORKED:
435 case TARGET_WAITKIND_VFORKED:
436 {
437 ptid_t parent, child;
438
439 /* If the user did a next/step, etc, over a fork call,
440 preserve the stepping state in the fork child. */
441 if (follow_child && should_resume)
442 {
8358c15c
JK
443 step_resume_breakpoint = clone_momentary_breakpoint
444 (tp->control.step_resume_breakpoint);
16c381f0
JK
445 step_range_start = tp->control.step_range_start;
446 step_range_end = tp->control.step_range_end;
447 step_frame_id = tp->control.step_frame_id;
186c406b
TT
448 exception_resume_breakpoint
449 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
e58b0e63
PA
450
451 /* For now, delete the parent's sr breakpoint, otherwise,
452 parent/child sr breakpoints are considered duplicates,
453 and the child version will not be installed. Remove
454 this when the breakpoints module becomes aware of
455 inferiors and address spaces. */
456 delete_step_resume_breakpoint (tp);
16c381f0
JK
457 tp->control.step_range_start = 0;
458 tp->control.step_range_end = 0;
459 tp->control.step_frame_id = null_frame_id;
186c406b 460 delete_exception_resume_breakpoint (tp);
e58b0e63
PA
461 }
462
463 parent = inferior_ptid;
464 child = tp->pending_follow.value.related_pid;
465
466 /* Tell the target to do whatever is necessary to follow
467 either parent or child. */
468 if (target_follow_fork (follow_child))
469 {
470 /* Target refused to follow, or there's some other reason
471 we shouldn't resume. */
472 should_resume = 0;
473 }
474 else
475 {
476 /* This pending follow fork event is now handled, one way
477 or another. The previous selected thread may be gone
478 from the lists by now, but if it is still around, need
479 to clear the pending follow request. */
e09875d4 480 tp = find_thread_ptid (parent);
e58b0e63
PA
481 if (tp)
482 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
483
484 /* This makes sure we don't try to apply the "Switched
485 over from WAIT_PID" logic above. */
486 nullify_last_target_wait_ptid ();
487
1777feb0 488 /* If we followed the child, switch to it... */
e58b0e63
PA
489 if (follow_child)
490 {
491 switch_to_thread (child);
492
493 /* ... and preserve the stepping state, in case the
494 user was stepping over the fork call. */
495 if (should_resume)
496 {
497 tp = inferior_thread ();
8358c15c
JK
498 tp->control.step_resume_breakpoint
499 = step_resume_breakpoint;
16c381f0
JK
500 tp->control.step_range_start = step_range_start;
501 tp->control.step_range_end = step_range_end;
502 tp->control.step_frame_id = step_frame_id;
186c406b
TT
503 tp->control.exception_resume_breakpoint
504 = exception_resume_breakpoint;
e58b0e63
PA
505 }
506 else
507 {
508 /* If we get here, it was because we're trying to
509 resume from a fork catchpoint, but, the user
510 has switched threads away from the thread that
511 forked. In that case, the resume command
512 issued is most likely not applicable to the
513 child, so just warn, and refuse to resume. */
3e43a32a
MS
514 warning (_("Not resuming: switched threads "
515 "before following fork child.\n"));
e58b0e63
PA
516 }
517
518 /* Reset breakpoints in the child as appropriate. */
519 follow_inferior_reset_breakpoints ();
520 }
521 else
522 switch_to_thread (parent);
523 }
524 }
525 break;
526 case TARGET_WAITKIND_SPURIOUS:
527 /* Nothing to follow. */
528 break;
529 default:
530 internal_error (__FILE__, __LINE__,
531 "Unexpected pending_follow.kind %d\n",
532 tp->pending_follow.kind);
533 break;
534 }
c906108c 535
e58b0e63 536 return should_resume;
c906108c
SS
537}
538
6604731b
DJ
539void
540follow_inferior_reset_breakpoints (void)
c906108c 541{
4e1c45ea
PA
542 struct thread_info *tp = inferior_thread ();
543
6604731b
DJ
544 /* Was there a step_resume breakpoint? (There was if the user
545 did a "next" at the fork() call.) If so, explicitly reset its
546 thread number.
547
548 step_resumes are a form of bp that are made to be per-thread.
549 Since we created the step_resume bp when the parent process
550 was being debugged, and now are switching to the child process,
551 from the breakpoint package's viewpoint, that's a switch of
552 "threads". We must update the bp's notion of which thread
553 it is for, or it'll be ignored when it triggers. */
554
8358c15c
JK
555 if (tp->control.step_resume_breakpoint)
556 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
6604731b 557
186c406b
TT
558 if (tp->control.exception_resume_breakpoint)
559 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
560
6604731b
DJ
561 /* Reinsert all breakpoints in the child. The user may have set
562 breakpoints after catching the fork, in which case those
563 were never set in the child, but only in the parent. This makes
564 sure the inserted breakpoints match the breakpoint list. */
565
566 breakpoint_re_set ();
567 insert_breakpoints ();
c906108c 568}
c906108c 569
6c95b8df
PA
570/* The child has exited or execed: resume threads of the parent the
571 user wanted to be executing. */
572
573static int
574proceed_after_vfork_done (struct thread_info *thread,
575 void *arg)
576{
577 int pid = * (int *) arg;
578
579 if (ptid_get_pid (thread->ptid) == pid
580 && is_running (thread->ptid)
581 && !is_executing (thread->ptid)
582 && !thread->stop_requested
16c381f0 583 && thread->suspend.stop_signal == TARGET_SIGNAL_0)
6c95b8df
PA
584 {
585 if (debug_infrun)
586 fprintf_unfiltered (gdb_stdlog,
587 "infrun: resuming vfork parent thread %s\n",
588 target_pid_to_str (thread->ptid));
589
590 switch_to_thread (thread->ptid);
591 clear_proceed_status ();
592 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
593 }
594
595 return 0;
596}
597
598/* Called whenever we notice an exec or exit event, to handle
599 detaching or resuming a vfork parent. */
600
601static void
602handle_vfork_child_exec_or_exit (int exec)
603{
604 struct inferior *inf = current_inferior ();
605
606 if (inf->vfork_parent)
607 {
608 int resume_parent = -1;
609
610 /* This exec or exit marks the end of the shared memory region
611 between the parent and the child. If the user wanted to
612 detach from the parent, now is the time. */
613
614 if (inf->vfork_parent->pending_detach)
615 {
616 struct thread_info *tp;
617 struct cleanup *old_chain;
618 struct program_space *pspace;
619 struct address_space *aspace;
620
1777feb0 621 /* follow-fork child, detach-on-fork on. */
6c95b8df
PA
622
623 old_chain = make_cleanup_restore_current_thread ();
624
625 /* We're letting loose of the parent. */
626 tp = any_live_thread_of_process (inf->vfork_parent->pid);
627 switch_to_thread (tp->ptid);
628
629 /* We're about to detach from the parent, which implicitly
630 removes breakpoints from its address space. There's a
631 catch here: we want to reuse the spaces for the child,
632 but, parent/child are still sharing the pspace at this
633 point, although the exec in reality makes the kernel give
634 the child a fresh set of new pages. The problem here is
635 that the breakpoints module being unaware of this, would
636 likely chose the child process to write to the parent
637 address space. Swapping the child temporarily away from
638 the spaces has the desired effect. Yes, this is "sort
639 of" a hack. */
640
641 pspace = inf->pspace;
642 aspace = inf->aspace;
643 inf->aspace = NULL;
644 inf->pspace = NULL;
645
646 if (debug_infrun || info_verbose)
647 {
648 target_terminal_ours ();
649
650 if (exec)
651 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
652 "Detaching vfork parent process "
653 "%d after child exec.\n",
6c95b8df
PA
654 inf->vfork_parent->pid);
655 else
656 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
657 "Detaching vfork parent process "
658 "%d after child exit.\n",
6c95b8df
PA
659 inf->vfork_parent->pid);
660 }
661
662 target_detach (NULL, 0);
663
664 /* Put it back. */
665 inf->pspace = pspace;
666 inf->aspace = aspace;
667
668 do_cleanups (old_chain);
669 }
670 else if (exec)
671 {
672 /* We're staying attached to the parent, so, really give the
673 child a new address space. */
674 inf->pspace = add_program_space (maybe_new_address_space ());
675 inf->aspace = inf->pspace->aspace;
676 inf->removable = 1;
677 set_current_program_space (inf->pspace);
678
679 resume_parent = inf->vfork_parent->pid;
680
681 /* Break the bonds. */
682 inf->vfork_parent->vfork_child = NULL;
683 }
684 else
685 {
686 struct cleanup *old_chain;
687 struct program_space *pspace;
688
689 /* If this is a vfork child exiting, then the pspace and
690 aspaces were shared with the parent. Since we're
691 reporting the process exit, we'll be mourning all that is
692 found in the address space, and switching to null_ptid,
693 preparing to start a new inferior. But, since we don't
694 want to clobber the parent's address/program spaces, we
695 go ahead and create a new one for this exiting
696 inferior. */
697
698 /* Switch to null_ptid, so that clone_program_space doesn't want
699 to read the selected frame of a dead process. */
700 old_chain = save_inferior_ptid ();
701 inferior_ptid = null_ptid;
702
703 /* This inferior is dead, so avoid giving the breakpoints
704 module the option to write through to it (cloning a
705 program space resets breakpoints). */
706 inf->aspace = NULL;
707 inf->pspace = NULL;
708 pspace = add_program_space (maybe_new_address_space ());
709 set_current_program_space (pspace);
710 inf->removable = 1;
711 clone_program_space (pspace, inf->vfork_parent->pspace);
712 inf->pspace = pspace;
713 inf->aspace = pspace->aspace;
714
715 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 716 inferior. */
6c95b8df
PA
717 do_cleanups (old_chain);
718
719 resume_parent = inf->vfork_parent->pid;
720 /* Break the bonds. */
721 inf->vfork_parent->vfork_child = NULL;
722 }
723
724 inf->vfork_parent = NULL;
725
726 gdb_assert (current_program_space == inf->pspace);
727
728 if (non_stop && resume_parent != -1)
729 {
730 /* If the user wanted the parent to be running, let it go
731 free now. */
732 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
733
734 if (debug_infrun)
3e43a32a
MS
735 fprintf_unfiltered (gdb_stdlog,
736 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
737 resume_parent);
738
739 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
740
741 do_cleanups (old_chain);
742 }
743 }
744}
745
746/* Enum strings for "set|show displaced-stepping". */
747
748static const char follow_exec_mode_new[] = "new";
749static const char follow_exec_mode_same[] = "same";
750static const char *follow_exec_mode_names[] =
751{
752 follow_exec_mode_new,
753 follow_exec_mode_same,
754 NULL,
755};
756
757static const char *follow_exec_mode_string = follow_exec_mode_same;
758static void
759show_follow_exec_mode_string (struct ui_file *file, int from_tty,
760 struct cmd_list_element *c, const char *value)
761{
762 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
763}
764
1777feb0 765/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 766
c906108c 767static void
3a3e9ee3 768follow_exec (ptid_t pid, char *execd_pathname)
c906108c 769{
4e1c45ea 770 struct thread_info *th = inferior_thread ();
6c95b8df 771 struct inferior *inf = current_inferior ();
7a292a7a 772
c906108c
SS
773 /* This is an exec event that we actually wish to pay attention to.
774 Refresh our symbol table to the newly exec'd program, remove any
775 momentary bp's, etc.
776
777 If there are breakpoints, they aren't really inserted now,
778 since the exec() transformed our inferior into a fresh set
779 of instructions.
780
781 We want to preserve symbolic breakpoints on the list, since
782 we have hopes that they can be reset after the new a.out's
783 symbol table is read.
784
785 However, any "raw" breakpoints must be removed from the list
786 (e.g., the solib bp's), since their address is probably invalid
787 now.
788
789 And, we DON'T want to call delete_breakpoints() here, since
790 that may write the bp's "shadow contents" (the instruction
791 value that was overwritten witha TRAP instruction). Since
1777feb0 792 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
793
794 mark_breakpoints_out ();
795
c906108c
SS
796 update_breakpoints_after_exec ();
797
798 /* If there was one, it's gone now. We cannot truly step-to-next
1777feb0 799 statement through an exec(). */
8358c15c 800 th->control.step_resume_breakpoint = NULL;
186c406b 801 th->control.exception_resume_breakpoint = NULL;
16c381f0
JK
802 th->control.step_range_start = 0;
803 th->control.step_range_end = 0;
c906108c 804
a75724bc
PA
805 /* The target reports the exec event to the main thread, even if
806 some other thread does the exec, and even if the main thread was
807 already stopped --- if debugging in non-stop mode, it's possible
808 the user had the main thread held stopped in the previous image
809 --- release it now. This is the same behavior as step-over-exec
810 with scheduler-locking on in all-stop mode. */
811 th->stop_requested = 0;
812
1777feb0 813 /* What is this a.out's name? */
6c95b8df
PA
814 printf_unfiltered (_("%s is executing new program: %s\n"),
815 target_pid_to_str (inferior_ptid),
816 execd_pathname);
c906108c
SS
817
818 /* We've followed the inferior through an exec. Therefore, the
1777feb0 819 inferior has essentially been killed & reborn. */
7a292a7a 820
c906108c 821 gdb_flush (gdb_stdout);
6ca15a4b
PA
822
823 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
824
825 if (gdb_sysroot && *gdb_sysroot)
826 {
827 char *name = alloca (strlen (gdb_sysroot)
828 + strlen (execd_pathname)
829 + 1);
abbb1732 830
e85a822c
DJ
831 strcpy (name, gdb_sysroot);
832 strcat (name, execd_pathname);
833 execd_pathname = name;
834 }
c906108c 835
cce9b6bf
PA
836 /* Reset the shared library package. This ensures that we get a
837 shlib event when the child reaches "_start", at which point the
838 dld will have had a chance to initialize the child. */
839 /* Also, loading a symbol file below may trigger symbol lookups, and
840 we don't want those to be satisfied by the libraries of the
841 previous incarnation of this process. */
842 no_shared_libraries (NULL, 0);
843
6c95b8df
PA
844 if (follow_exec_mode_string == follow_exec_mode_new)
845 {
846 struct program_space *pspace;
6c95b8df
PA
847
848 /* The user wants to keep the old inferior and program spaces
849 around. Create a new fresh one, and switch to it. */
850
851 inf = add_inferior (current_inferior ()->pid);
852 pspace = add_program_space (maybe_new_address_space ());
853 inf->pspace = pspace;
854 inf->aspace = pspace->aspace;
855
856 exit_inferior_num_silent (current_inferior ()->num);
857
858 set_current_inferior (inf);
859 set_current_program_space (pspace);
860 }
861
862 gdb_assert (current_program_space == inf->pspace);
863
1777feb0 864 /* That a.out is now the one to use. */
6c95b8df
PA
865 exec_file_attach (execd_pathname, 0);
866
c1e56572
JK
867 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
868 (Position Independent Executable) main symbol file will get applied by
869 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
870 the breakpoints with the zero displacement. */
871
872 symbol_file_add (execd_pathname, SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET,
873 NULL, 0);
874
875 set_initial_language ();
c906108c 876
7a292a7a 877#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 878 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2 879#else
268a4a75 880 solib_create_inferior_hook (0);
7a292a7a 881#endif
c906108c 882
4efc6507
DE
883 jit_inferior_created_hook ();
884
c1e56572
JK
885 breakpoint_re_set ();
886
c906108c
SS
887 /* Reinsert all breakpoints. (Those which were symbolic have
888 been reset to the proper address in the new a.out, thanks
1777feb0 889 to symbol_file_command...). */
c906108c
SS
890 insert_breakpoints ();
891
892 /* The next resume of this inferior should bring it to the shlib
893 startup breakpoints. (If the user had also set bp's on
894 "main" from the old (parent) process, then they'll auto-
1777feb0 895 matically get reset there in the new process.). */
c906108c
SS
896}
897
898/* Non-zero if we just simulating a single-step. This is needed
899 because we cannot remove the breakpoints in the inferior process
900 until after the `wait' in `wait_for_inferior'. */
901static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
902
903/* The thread we inserted single-step breakpoints for. */
904static ptid_t singlestep_ptid;
905
fd48f117
DJ
906/* PC when we started this single-step. */
907static CORE_ADDR singlestep_pc;
908
9f976b41
DJ
909/* If another thread hit the singlestep breakpoint, we save the original
910 thread here so that we can resume single-stepping it later. */
911static ptid_t saved_singlestep_ptid;
912static int stepping_past_singlestep_breakpoint;
6a6b96b9 913
ca67fcb8
VP
914/* If not equal to null_ptid, this means that after stepping over breakpoint
915 is finished, we need to switch to deferred_step_ptid, and step it.
916
917 The use case is when one thread has hit a breakpoint, and then the user
1777feb0 918 has switched to another thread and issued 'step'. We need to step over
ca67fcb8
VP
919 breakpoint in the thread which hit the breakpoint, but then continue
920 stepping the thread user has selected. */
921static ptid_t deferred_step_ptid;
c906108c 922\f
237fc4c9
PA
923/* Displaced stepping. */
924
925/* In non-stop debugging mode, we must take special care to manage
926 breakpoints properly; in particular, the traditional strategy for
927 stepping a thread past a breakpoint it has hit is unsuitable.
928 'Displaced stepping' is a tactic for stepping one thread past a
929 breakpoint it has hit while ensuring that other threads running
930 concurrently will hit the breakpoint as they should.
931
932 The traditional way to step a thread T off a breakpoint in a
933 multi-threaded program in all-stop mode is as follows:
934
935 a0) Initially, all threads are stopped, and breakpoints are not
936 inserted.
937 a1) We single-step T, leaving breakpoints uninserted.
938 a2) We insert breakpoints, and resume all threads.
939
940 In non-stop debugging, however, this strategy is unsuitable: we
941 don't want to have to stop all threads in the system in order to
942 continue or step T past a breakpoint. Instead, we use displaced
943 stepping:
944
945 n0) Initially, T is stopped, other threads are running, and
946 breakpoints are inserted.
947 n1) We copy the instruction "under" the breakpoint to a separate
948 location, outside the main code stream, making any adjustments
949 to the instruction, register, and memory state as directed by
950 T's architecture.
951 n2) We single-step T over the instruction at its new location.
952 n3) We adjust the resulting register and memory state as directed
953 by T's architecture. This includes resetting T's PC to point
954 back into the main instruction stream.
955 n4) We resume T.
956
957 This approach depends on the following gdbarch methods:
958
959 - gdbarch_max_insn_length and gdbarch_displaced_step_location
960 indicate where to copy the instruction, and how much space must
961 be reserved there. We use these in step n1.
962
963 - gdbarch_displaced_step_copy_insn copies a instruction to a new
964 address, and makes any necessary adjustments to the instruction,
965 register contents, and memory. We use this in step n1.
966
967 - gdbarch_displaced_step_fixup adjusts registers and memory after
968 we have successfuly single-stepped the instruction, to yield the
969 same effect the instruction would have had if we had executed it
970 at its original address. We use this in step n3.
971
972 - gdbarch_displaced_step_free_closure provides cleanup.
973
974 The gdbarch_displaced_step_copy_insn and
975 gdbarch_displaced_step_fixup functions must be written so that
976 copying an instruction with gdbarch_displaced_step_copy_insn,
977 single-stepping across the copied instruction, and then applying
978 gdbarch_displaced_insn_fixup should have the same effects on the
979 thread's memory and registers as stepping the instruction in place
980 would have. Exactly which responsibilities fall to the copy and
981 which fall to the fixup is up to the author of those functions.
982
983 See the comments in gdbarch.sh for details.
984
985 Note that displaced stepping and software single-step cannot
986 currently be used in combination, although with some care I think
987 they could be made to. Software single-step works by placing
988 breakpoints on all possible subsequent instructions; if the
989 displaced instruction is a PC-relative jump, those breakpoints
990 could fall in very strange places --- on pages that aren't
991 executable, or at addresses that are not proper instruction
992 boundaries. (We do generally let other threads run while we wait
993 to hit the software single-step breakpoint, and they might
994 encounter such a corrupted instruction.) One way to work around
995 this would be to have gdbarch_displaced_step_copy_insn fully
996 simulate the effect of PC-relative instructions (and return NULL)
997 on architectures that use software single-stepping.
998
999 In non-stop mode, we can have independent and simultaneous step
1000 requests, so more than one thread may need to simultaneously step
1001 over a breakpoint. The current implementation assumes there is
1002 only one scratch space per process. In this case, we have to
1003 serialize access to the scratch space. If thread A wants to step
1004 over a breakpoint, but we are currently waiting for some other
1005 thread to complete a displaced step, we leave thread A stopped and
1006 place it in the displaced_step_request_queue. Whenever a displaced
1007 step finishes, we pick the next thread in the queue and start a new
1008 displaced step operation on it. See displaced_step_prepare and
1009 displaced_step_fixup for details. */
1010
237fc4c9
PA
1011struct displaced_step_request
1012{
1013 ptid_t ptid;
1014 struct displaced_step_request *next;
1015};
1016
fc1cf338
PA
1017/* Per-inferior displaced stepping state. */
1018struct displaced_step_inferior_state
1019{
1020 /* Pointer to next in linked list. */
1021 struct displaced_step_inferior_state *next;
1022
1023 /* The process this displaced step state refers to. */
1024 int pid;
1025
1026 /* A queue of pending displaced stepping requests. One entry per
1027 thread that needs to do a displaced step. */
1028 struct displaced_step_request *step_request_queue;
1029
1030 /* If this is not null_ptid, this is the thread carrying out a
1031 displaced single-step in process PID. This thread's state will
1032 require fixing up once it has completed its step. */
1033 ptid_t step_ptid;
1034
1035 /* The architecture the thread had when we stepped it. */
1036 struct gdbarch *step_gdbarch;
1037
1038 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1039 for post-step cleanup. */
1040 struct displaced_step_closure *step_closure;
1041
1042 /* The address of the original instruction, and the copy we
1043 made. */
1044 CORE_ADDR step_original, step_copy;
1045
1046 /* Saved contents of copy area. */
1047 gdb_byte *step_saved_copy;
1048};
1049
1050/* The list of states of processes involved in displaced stepping
1051 presently. */
1052static struct displaced_step_inferior_state *displaced_step_inferior_states;
1053
1054/* Get the displaced stepping state of process PID. */
1055
1056static struct displaced_step_inferior_state *
1057get_displaced_stepping_state (int pid)
1058{
1059 struct displaced_step_inferior_state *state;
1060
1061 for (state = displaced_step_inferior_states;
1062 state != NULL;
1063 state = state->next)
1064 if (state->pid == pid)
1065 return state;
1066
1067 return NULL;
1068}
1069
1070/* Add a new displaced stepping state for process PID to the displaced
1071 stepping state list, or return a pointer to an already existing
1072 entry, if it already exists. Never returns NULL. */
1073
1074static struct displaced_step_inferior_state *
1075add_displaced_stepping_state (int pid)
1076{
1077 struct displaced_step_inferior_state *state;
1078
1079 for (state = displaced_step_inferior_states;
1080 state != NULL;
1081 state = state->next)
1082 if (state->pid == pid)
1083 return state;
237fc4c9 1084
fc1cf338
PA
1085 state = xcalloc (1, sizeof (*state));
1086 state->pid = pid;
1087 state->next = displaced_step_inferior_states;
1088 displaced_step_inferior_states = state;
237fc4c9 1089
fc1cf338
PA
1090 return state;
1091}
1092
a42244db
YQ
1093/* If inferior is in displaced stepping, and ADDR equals to starting address
1094 of copy area, return corresponding displaced_step_closure. Otherwise,
1095 return NULL. */
1096
1097struct displaced_step_closure*
1098get_displaced_step_closure_by_addr (CORE_ADDR addr)
1099{
1100 struct displaced_step_inferior_state *displaced
1101 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1102
1103 /* If checking the mode of displaced instruction in copy area. */
1104 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1105 && (displaced->step_copy == addr))
1106 return displaced->step_closure;
1107
1108 return NULL;
1109}
1110
fc1cf338 1111/* Remove the displaced stepping state of process PID. */
237fc4c9 1112
fc1cf338
PA
1113static void
1114remove_displaced_stepping_state (int pid)
1115{
1116 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1117
fc1cf338
PA
1118 gdb_assert (pid != 0);
1119
1120 it = displaced_step_inferior_states;
1121 prev_next_p = &displaced_step_inferior_states;
1122 while (it)
1123 {
1124 if (it->pid == pid)
1125 {
1126 *prev_next_p = it->next;
1127 xfree (it);
1128 return;
1129 }
1130
1131 prev_next_p = &it->next;
1132 it = *prev_next_p;
1133 }
1134}
1135
1136static void
1137infrun_inferior_exit (struct inferior *inf)
1138{
1139 remove_displaced_stepping_state (inf->pid);
1140}
237fc4c9 1141
fff08868
HZ
1142/* Enum strings for "set|show displaced-stepping". */
1143
1144static const char can_use_displaced_stepping_auto[] = "auto";
1145static const char can_use_displaced_stepping_on[] = "on";
1146static const char can_use_displaced_stepping_off[] = "off";
1147static const char *can_use_displaced_stepping_enum[] =
1148{
1149 can_use_displaced_stepping_auto,
1150 can_use_displaced_stepping_on,
1151 can_use_displaced_stepping_off,
1152 NULL,
1153};
1154
1155/* If ON, and the architecture supports it, GDB will use displaced
1156 stepping to step over breakpoints. If OFF, or if the architecture
1157 doesn't support it, GDB will instead use the traditional
1158 hold-and-step approach. If AUTO (which is the default), GDB will
1159 decide which technique to use to step over breakpoints depending on
1160 which of all-stop or non-stop mode is active --- displaced stepping
1161 in non-stop mode; hold-and-step in all-stop mode. */
1162
1163static const char *can_use_displaced_stepping =
1164 can_use_displaced_stepping_auto;
1165
237fc4c9
PA
1166static void
1167show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1168 struct cmd_list_element *c,
1169 const char *value)
1170{
fff08868 1171 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
3e43a32a
MS
1172 fprintf_filtered (file,
1173 _("Debugger's willingness to use displaced stepping "
1174 "to step over breakpoints is %s (currently %s).\n"),
fff08868
HZ
1175 value, non_stop ? "on" : "off");
1176 else
3e43a32a
MS
1177 fprintf_filtered (file,
1178 _("Debugger's willingness to use displaced stepping "
1179 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1180}
1181
fff08868
HZ
1182/* Return non-zero if displaced stepping can/should be used to step
1183 over breakpoints. */
1184
237fc4c9
PA
1185static int
1186use_displaced_stepping (struct gdbarch *gdbarch)
1187{
fff08868
HZ
1188 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
1189 && non_stop)
1190 || can_use_displaced_stepping == can_use_displaced_stepping_on)
96429cc8
HZ
1191 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1192 && !RECORD_IS_USED);
237fc4c9
PA
1193}
1194
1195/* Clean out any stray displaced stepping state. */
1196static void
fc1cf338 1197displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1198{
1199 /* Indicate that there is no cleanup pending. */
fc1cf338 1200 displaced->step_ptid = null_ptid;
237fc4c9 1201
fc1cf338 1202 if (displaced->step_closure)
237fc4c9 1203 {
fc1cf338
PA
1204 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1205 displaced->step_closure);
1206 displaced->step_closure = NULL;
237fc4c9
PA
1207 }
1208}
1209
1210static void
fc1cf338 1211displaced_step_clear_cleanup (void *arg)
237fc4c9 1212{
fc1cf338
PA
1213 struct displaced_step_inferior_state *state = arg;
1214
1215 displaced_step_clear (state);
237fc4c9
PA
1216}
1217
1218/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1219void
1220displaced_step_dump_bytes (struct ui_file *file,
1221 const gdb_byte *buf,
1222 size_t len)
1223{
1224 int i;
1225
1226 for (i = 0; i < len; i++)
1227 fprintf_unfiltered (file, "%02x ", buf[i]);
1228 fputs_unfiltered ("\n", file);
1229}
1230
1231/* Prepare to single-step, using displaced stepping.
1232
1233 Note that we cannot use displaced stepping when we have a signal to
1234 deliver. If we have a signal to deliver and an instruction to step
1235 over, then after the step, there will be no indication from the
1236 target whether the thread entered a signal handler or ignored the
1237 signal and stepped over the instruction successfully --- both cases
1238 result in a simple SIGTRAP. In the first case we mustn't do a
1239 fixup, and in the second case we must --- but we can't tell which.
1240 Comments in the code for 'random signals' in handle_inferior_event
1241 explain how we handle this case instead.
1242
1243 Returns 1 if preparing was successful -- this thread is going to be
1244 stepped now; or 0 if displaced stepping this thread got queued. */
1245static int
1246displaced_step_prepare (ptid_t ptid)
1247{
ad53cd71 1248 struct cleanup *old_cleanups, *ignore_cleanups;
237fc4c9
PA
1249 struct regcache *regcache = get_thread_regcache (ptid);
1250 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1251 CORE_ADDR original, copy;
1252 ULONGEST len;
1253 struct displaced_step_closure *closure;
fc1cf338 1254 struct displaced_step_inferior_state *displaced;
237fc4c9
PA
1255
1256 /* We should never reach this function if the architecture does not
1257 support displaced stepping. */
1258 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1259
fc1cf338
PA
1260 /* We have to displaced step one thread at a time, as we only have
1261 access to a single scratch space per inferior. */
237fc4c9 1262
fc1cf338
PA
1263 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1264
1265 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1266 {
1267 /* Already waiting for a displaced step to finish. Defer this
1268 request and place in queue. */
1269 struct displaced_step_request *req, *new_req;
1270
1271 if (debug_displaced)
1272 fprintf_unfiltered (gdb_stdlog,
1273 "displaced: defering step of %s\n",
1274 target_pid_to_str (ptid));
1275
1276 new_req = xmalloc (sizeof (*new_req));
1277 new_req->ptid = ptid;
1278 new_req->next = NULL;
1279
fc1cf338 1280 if (displaced->step_request_queue)
237fc4c9 1281 {
fc1cf338 1282 for (req = displaced->step_request_queue;
237fc4c9
PA
1283 req && req->next;
1284 req = req->next)
1285 ;
1286 req->next = new_req;
1287 }
1288 else
fc1cf338 1289 displaced->step_request_queue = new_req;
237fc4c9
PA
1290
1291 return 0;
1292 }
1293 else
1294 {
1295 if (debug_displaced)
1296 fprintf_unfiltered (gdb_stdlog,
1297 "displaced: stepping %s now\n",
1298 target_pid_to_str (ptid));
1299 }
1300
fc1cf338 1301 displaced_step_clear (displaced);
237fc4c9 1302
ad53cd71
PA
1303 old_cleanups = save_inferior_ptid ();
1304 inferior_ptid = ptid;
1305
515630c5 1306 original = regcache_read_pc (regcache);
237fc4c9
PA
1307
1308 copy = gdbarch_displaced_step_location (gdbarch);
1309 len = gdbarch_max_insn_length (gdbarch);
1310
1311 /* Save the original contents of the copy area. */
fc1cf338 1312 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1313 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338
PA
1314 &displaced->step_saved_copy);
1315 read_memory (copy, displaced->step_saved_copy, len);
237fc4c9
PA
1316 if (debug_displaced)
1317 {
5af949e3
UW
1318 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1319 paddress (gdbarch, copy));
fc1cf338
PA
1320 displaced_step_dump_bytes (gdb_stdlog,
1321 displaced->step_saved_copy,
1322 len);
237fc4c9
PA
1323 };
1324
1325 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1326 original, copy, regcache);
237fc4c9
PA
1327
1328 /* We don't support the fully-simulated case at present. */
1329 gdb_assert (closure);
1330
9f5a595d
UW
1331 /* Save the information we need to fix things up if the step
1332 succeeds. */
fc1cf338
PA
1333 displaced->step_ptid = ptid;
1334 displaced->step_gdbarch = gdbarch;
1335 displaced->step_closure = closure;
1336 displaced->step_original = original;
1337 displaced->step_copy = copy;
9f5a595d 1338
fc1cf338 1339 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1340
1341 /* Resume execution at the copy. */
515630c5 1342 regcache_write_pc (regcache, copy);
237fc4c9 1343
ad53cd71
PA
1344 discard_cleanups (ignore_cleanups);
1345
1346 do_cleanups (old_cleanups);
237fc4c9
PA
1347
1348 if (debug_displaced)
5af949e3
UW
1349 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1350 paddress (gdbarch, copy));
237fc4c9 1351
237fc4c9
PA
1352 return 1;
1353}
1354
237fc4c9 1355static void
3e43a32a
MS
1356write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1357 const gdb_byte *myaddr, int len)
237fc4c9
PA
1358{
1359 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1360
237fc4c9
PA
1361 inferior_ptid = ptid;
1362 write_memory (memaddr, myaddr, len);
1363 do_cleanups (ptid_cleanup);
1364}
1365
1366static void
1367displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
1368{
1369 struct cleanup *old_cleanups;
fc1cf338
PA
1370 struct displaced_step_inferior_state *displaced
1371 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1372
1373 /* Was any thread of this process doing a displaced step? */
1374 if (displaced == NULL)
1375 return;
237fc4c9
PA
1376
1377 /* Was this event for the pid we displaced? */
fc1cf338
PA
1378 if (ptid_equal (displaced->step_ptid, null_ptid)
1379 || ! ptid_equal (displaced->step_ptid, event_ptid))
237fc4c9
PA
1380 return;
1381
fc1cf338 1382 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1383
1384 /* Restore the contents of the copy area. */
1385 {
fc1cf338 1386 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
abbb1732 1387
fc1cf338
PA
1388 write_memory_ptid (displaced->step_ptid, displaced->step_copy,
1389 displaced->step_saved_copy, len);
237fc4c9 1390 if (debug_displaced)
5af949e3 1391 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s\n",
fc1cf338
PA
1392 paddress (displaced->step_gdbarch,
1393 displaced->step_copy));
237fc4c9
PA
1394 }
1395
1396 /* Did the instruction complete successfully? */
1397 if (signal == TARGET_SIGNAL_TRAP)
1398 {
1399 /* Fix up the resulting state. */
fc1cf338
PA
1400 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1401 displaced->step_closure,
1402 displaced->step_original,
1403 displaced->step_copy,
1404 get_thread_regcache (displaced->step_ptid));
237fc4c9
PA
1405 }
1406 else
1407 {
1408 /* Since the instruction didn't complete, all we can do is
1409 relocate the PC. */
515630c5
UW
1410 struct regcache *regcache = get_thread_regcache (event_ptid);
1411 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1412
fc1cf338 1413 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1414 regcache_write_pc (regcache, pc);
237fc4c9
PA
1415 }
1416
1417 do_cleanups (old_cleanups);
1418
fc1cf338 1419 displaced->step_ptid = null_ptid;
1c5cfe86 1420
237fc4c9 1421 /* Are there any pending displaced stepping requests? If so, run
fc1cf338
PA
1422 one now. Leave the state object around, since we're likely to
1423 need it again soon. */
1424 while (displaced->step_request_queue)
237fc4c9
PA
1425 {
1426 struct displaced_step_request *head;
1427 ptid_t ptid;
5af949e3 1428 struct regcache *regcache;
929dfd4f 1429 struct gdbarch *gdbarch;
1c5cfe86 1430 CORE_ADDR actual_pc;
6c95b8df 1431 struct address_space *aspace;
237fc4c9 1432
fc1cf338 1433 head = displaced->step_request_queue;
237fc4c9 1434 ptid = head->ptid;
fc1cf338 1435 displaced->step_request_queue = head->next;
237fc4c9
PA
1436 xfree (head);
1437
ad53cd71
PA
1438 context_switch (ptid);
1439
5af949e3
UW
1440 regcache = get_thread_regcache (ptid);
1441 actual_pc = regcache_read_pc (regcache);
6c95b8df 1442 aspace = get_regcache_aspace (regcache);
1c5cfe86 1443
6c95b8df 1444 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1445 {
1c5cfe86
PA
1446 if (debug_displaced)
1447 fprintf_unfiltered (gdb_stdlog,
1448 "displaced: stepping queued %s now\n",
1449 target_pid_to_str (ptid));
1450
1451 displaced_step_prepare (ptid);
1452
929dfd4f
JB
1453 gdbarch = get_regcache_arch (regcache);
1454
1c5cfe86
PA
1455 if (debug_displaced)
1456 {
929dfd4f 1457 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1458 gdb_byte buf[4];
1459
5af949e3
UW
1460 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1461 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1462 read_memory (actual_pc, buf, sizeof (buf));
1463 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1464 }
1465
fc1cf338
PA
1466 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1467 displaced->step_closure))
929dfd4f 1468 target_resume (ptid, 1, TARGET_SIGNAL_0);
99e40580
UW
1469 else
1470 target_resume (ptid, 0, TARGET_SIGNAL_0);
1c5cfe86
PA
1471
1472 /* Done, we're stepping a thread. */
1473 break;
ad53cd71 1474 }
1c5cfe86
PA
1475 else
1476 {
1477 int step;
1478 struct thread_info *tp = inferior_thread ();
1479
1480 /* The breakpoint we were sitting under has since been
1481 removed. */
16c381f0 1482 tp->control.trap_expected = 0;
1c5cfe86
PA
1483
1484 /* Go back to what we were trying to do. */
1485 step = currently_stepping (tp);
ad53cd71 1486
1c5cfe86 1487 if (debug_displaced)
3e43a32a
MS
1488 fprintf_unfiltered (gdb_stdlog,
1489 "breakpoint is gone %s: step(%d)\n",
1c5cfe86
PA
1490 target_pid_to_str (tp->ptid), step);
1491
1492 target_resume (ptid, step, TARGET_SIGNAL_0);
16c381f0 1493 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1c5cfe86
PA
1494
1495 /* This request was discarded. See if there's any other
1496 thread waiting for its turn. */
1497 }
237fc4c9
PA
1498 }
1499}
1500
5231c1fd
PA
1501/* Update global variables holding ptids to hold NEW_PTID if they were
1502 holding OLD_PTID. */
1503static void
1504infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1505{
1506 struct displaced_step_request *it;
fc1cf338 1507 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
1508
1509 if (ptid_equal (inferior_ptid, old_ptid))
1510 inferior_ptid = new_ptid;
1511
1512 if (ptid_equal (singlestep_ptid, old_ptid))
1513 singlestep_ptid = new_ptid;
1514
5231c1fd
PA
1515 if (ptid_equal (deferred_step_ptid, old_ptid))
1516 deferred_step_ptid = new_ptid;
1517
fc1cf338
PA
1518 for (displaced = displaced_step_inferior_states;
1519 displaced;
1520 displaced = displaced->next)
1521 {
1522 if (ptid_equal (displaced->step_ptid, old_ptid))
1523 displaced->step_ptid = new_ptid;
1524
1525 for (it = displaced->step_request_queue; it; it = it->next)
1526 if (ptid_equal (it->ptid, old_ptid))
1527 it->ptid = new_ptid;
1528 }
5231c1fd
PA
1529}
1530
237fc4c9
PA
1531\f
1532/* Resuming. */
c906108c
SS
1533
1534/* Things to clean up if we QUIT out of resume (). */
c906108c 1535static void
74b7792f 1536resume_cleanups (void *ignore)
c906108c
SS
1537{
1538 normal_stop ();
1539}
1540
53904c9e
AC
1541static const char schedlock_off[] = "off";
1542static const char schedlock_on[] = "on";
1543static const char schedlock_step[] = "step";
488f131b 1544static const char *scheduler_enums[] = {
ef346e04
AC
1545 schedlock_off,
1546 schedlock_on,
1547 schedlock_step,
1548 NULL
1549};
920d2a44
AC
1550static const char *scheduler_mode = schedlock_off;
1551static void
1552show_scheduler_mode (struct ui_file *file, int from_tty,
1553 struct cmd_list_element *c, const char *value)
1554{
3e43a32a
MS
1555 fprintf_filtered (file,
1556 _("Mode for locking scheduler "
1557 "during execution is \"%s\".\n"),
920d2a44
AC
1558 value);
1559}
c906108c
SS
1560
1561static void
96baa820 1562set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1563{
eefe576e
AC
1564 if (!target_can_lock_scheduler)
1565 {
1566 scheduler_mode = schedlock_off;
1567 error (_("Target '%s' cannot support this command."), target_shortname);
1568 }
c906108c
SS
1569}
1570
d4db2f36
PA
1571/* True if execution commands resume all threads of all processes by
1572 default; otherwise, resume only threads of the current inferior
1573 process. */
1574int sched_multi = 0;
1575
2facfe5c
DD
1576/* Try to setup for software single stepping over the specified location.
1577 Return 1 if target_resume() should use hardware single step.
1578
1579 GDBARCH the current gdbarch.
1580 PC the location to step over. */
1581
1582static int
1583maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1584{
1585 int hw_step = 1;
1586
f02253f1
HZ
1587 if (execution_direction == EXEC_FORWARD
1588 && gdbarch_software_single_step_p (gdbarch)
99e40580 1589 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 1590 {
99e40580
UW
1591 hw_step = 0;
1592 /* Do not pull these breakpoints until after a `wait' in
1777feb0 1593 `wait_for_inferior'. */
99e40580
UW
1594 singlestep_breakpoints_inserted_p = 1;
1595 singlestep_ptid = inferior_ptid;
1596 singlestep_pc = pc;
2facfe5c
DD
1597 }
1598 return hw_step;
1599}
c906108c 1600
09cee04b
PA
1601/* Return a ptid representing the set of threads that we will proceed,
1602 in the perspective of the user/frontend. We may actually resume
1603 fewer threads at first, e.g., if a thread is stopped at a
b136cd05
PA
1604 breakpoint that needs stepping-off, but that should not be visible
1605 to the user/frontend, and neither should the frontend/user be
1606 allowed to proceed any of the threads that happen to be stopped for
09cee04b
PA
1607 internal run control handling, if a previous command wanted them
1608 resumed. */
1609
1610ptid_t
1611user_visible_resume_ptid (int step)
1612{
1613 /* By default, resume all threads of all processes. */
1614 ptid_t resume_ptid = RESUME_ALL;
1615
1616 /* Maybe resume only all threads of the current process. */
1617 if (!sched_multi && target_supports_multi_process ())
1618 {
1619 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1620 }
1621
1622 /* Maybe resume a single thread after all. */
1623 if (non_stop)
1624 {
1625 /* With non-stop mode on, threads are always handled
1626 individually. */
1627 resume_ptid = inferior_ptid;
1628 }
1629 else if ((scheduler_mode == schedlock_on)
1630 || (scheduler_mode == schedlock_step
1631 && (step || singlestep_breakpoints_inserted_p)))
1632 {
1633 /* User-settable 'scheduler' mode requires solo thread resume. */
1634 resume_ptid = inferior_ptid;
1635 }
1636
1637 return resume_ptid;
1638}
1639
c906108c
SS
1640/* Resume the inferior, but allow a QUIT. This is useful if the user
1641 wants to interrupt some lengthy single-stepping operation
1642 (for child processes, the SIGINT goes to the inferior, and so
1643 we get a SIGINT random_signal, but for remote debugging and perhaps
1644 other targets, that's not true).
1645
1646 STEP nonzero if we should step (zero to continue instead).
1647 SIG is the signal to give the inferior (zero for none). */
1648void
96baa820 1649resume (int step, enum target_signal sig)
c906108c
SS
1650{
1651 int should_resume = 1;
74b7792f 1652 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1653 struct regcache *regcache = get_current_regcache ();
1654 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1655 struct thread_info *tp = inferior_thread ();
515630c5 1656 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 1657 struct address_space *aspace = get_regcache_aspace (regcache);
c7e8a53c 1658
c906108c
SS
1659 QUIT;
1660
74609e71
YQ
1661 if (current_inferior ()->waiting_for_vfork_done)
1662 {
48f9886d
PA
1663 /* Don't try to single-step a vfork parent that is waiting for
1664 the child to get out of the shared memory region (by exec'ing
1665 or exiting). This is particularly important on software
1666 single-step archs, as the child process would trip on the
1667 software single step breakpoint inserted for the parent
1668 process. Since the parent will not actually execute any
1669 instruction until the child is out of the shared region (such
1670 are vfork's semantics), it is safe to simply continue it.
1671 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1672 the parent, and tell it to `keep_going', which automatically
1673 re-sets it stepping. */
74609e71
YQ
1674 if (debug_infrun)
1675 fprintf_unfiltered (gdb_stdlog,
1676 "infrun: resume : clear step\n");
1677 step = 0;
1678 }
1679
527159b7 1680 if (debug_infrun)
237fc4c9
PA
1681 fprintf_unfiltered (gdb_stdlog,
1682 "infrun: resume (step=%d, signal=%d), "
0d9a9a5f
PA
1683 "trap_expected=%d, current thread [%s] at %s\n",
1684 step, sig, tp->control.trap_expected,
1685 target_pid_to_str (inferior_ptid),
1686 paddress (gdbarch, pc));
c906108c 1687
c2c6d25f
JM
1688 /* Normally, by the time we reach `resume', the breakpoints are either
1689 removed or inserted, as appropriate. The exception is if we're sitting
1690 at a permanent breakpoint; we need to step over it, but permanent
1691 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 1692 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 1693 {
515630c5
UW
1694 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1695 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5 1696 else
ac74f770
MS
1697 error (_("\
1698The program is stopped at a permanent breakpoint, but GDB does not know\n\
1699how to step past a permanent breakpoint on this architecture. Try using\n\
1700a command like `return' or `jump' to continue execution."));
6d350bb5 1701 }
c2c6d25f 1702
237fc4c9
PA
1703 /* If enabled, step over breakpoints by executing a copy of the
1704 instruction at a different address.
1705
1706 We can't use displaced stepping when we have a signal to deliver;
1707 the comments for displaced_step_prepare explain why. The
1708 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
1709 signals' explain what we do instead.
1710
1711 We can't use displaced stepping when we are waiting for vfork_done
1712 event, displaced stepping breaks the vfork child similarly as single
1713 step software breakpoint. */
515630c5 1714 if (use_displaced_stepping (gdbarch)
16c381f0 1715 && (tp->control.trap_expected
929dfd4f 1716 || (step && gdbarch_software_single_step_p (gdbarch)))
74609e71
YQ
1717 && sig == TARGET_SIGNAL_0
1718 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 1719 {
fc1cf338
PA
1720 struct displaced_step_inferior_state *displaced;
1721
237fc4c9 1722 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1723 {
1724 /* Got placed in displaced stepping queue. Will be resumed
1725 later when all the currently queued displaced stepping
7f7efbd9
VP
1726 requests finish. The thread is not executing at this point,
1727 and the call to set_executing will be made later. But we
1728 need to call set_running here, since from frontend point of view,
1729 the thread is running. */
1730 set_running (inferior_ptid, 1);
d56b7306
VP
1731 discard_cleanups (old_cleanups);
1732 return;
1733 }
99e40580 1734
fc1cf338
PA
1735 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1736 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1737 displaced->step_closure);
237fc4c9
PA
1738 }
1739
2facfe5c 1740 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 1741 else if (step)
2facfe5c 1742 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1743
30852783
UW
1744 /* Currently, our software single-step implementation leads to different
1745 results than hardware single-stepping in one situation: when stepping
1746 into delivering a signal which has an associated signal handler,
1747 hardware single-step will stop at the first instruction of the handler,
1748 while software single-step will simply skip execution of the handler.
1749
1750 For now, this difference in behavior is accepted since there is no
1751 easy way to actually implement single-stepping into a signal handler
1752 without kernel support.
1753
1754 However, there is one scenario where this difference leads to follow-on
1755 problems: if we're stepping off a breakpoint by removing all breakpoints
1756 and then single-stepping. In this case, the software single-step
1757 behavior means that even if there is a *breakpoint* in the signal
1758 handler, GDB still would not stop.
1759
1760 Fortunately, we can at least fix this particular issue. We detect
1761 here the case where we are about to deliver a signal while software
1762 single-stepping with breakpoints removed. In this situation, we
1763 revert the decisions to remove all breakpoints and insert single-
1764 step breakpoints, and instead we install a step-resume breakpoint
1765 at the current address, deliver the signal without stepping, and
1766 once we arrive back at the step-resume breakpoint, actually step
1767 over the breakpoint we originally wanted to step over. */
1768 if (singlestep_breakpoints_inserted_p
1769 && tp->control.trap_expected && sig != TARGET_SIGNAL_0)
1770 {
1771 /* If we have nested signals or a pending signal is delivered
1772 immediately after a handler returns, might might already have
1773 a step-resume breakpoint set on the earlier handler. We cannot
1774 set another step-resume breakpoint; just continue on until the
1775 original breakpoint is hit. */
1776 if (tp->control.step_resume_breakpoint == NULL)
1777 {
2c03e5be 1778 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
1779 tp->step_after_step_resume_breakpoint = 1;
1780 }
1781
1782 remove_single_step_breakpoints ();
1783 singlestep_breakpoints_inserted_p = 0;
1784
1785 insert_breakpoints ();
1786 tp->control.trap_expected = 0;
1787 }
1788
c906108c
SS
1789 if (should_resume)
1790 {
39f77062 1791 ptid_t resume_ptid;
dfcd3bfb 1792
cd76b0b7
VP
1793 /* If STEP is set, it's a request to use hardware stepping
1794 facilities. But in that case, we should never
1795 use singlestep breakpoint. */
1796 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1797
d4db2f36
PA
1798 /* Decide the set of threads to ask the target to resume. Start
1799 by assuming everything will be resumed, than narrow the set
1800 by applying increasingly restricting conditions. */
09cee04b 1801 resume_ptid = user_visible_resume_ptid (step);
d4db2f36
PA
1802
1803 /* Maybe resume a single thread after all. */
cd76b0b7
VP
1804 if (singlestep_breakpoints_inserted_p
1805 && stepping_past_singlestep_breakpoint)
c906108c 1806 {
cd76b0b7
VP
1807 /* The situation here is as follows. In thread T1 we wanted to
1808 single-step. Lacking hardware single-stepping we've
1809 set breakpoint at the PC of the next instruction -- call it
1810 P. After resuming, we've hit that breakpoint in thread T2.
1811 Now we've removed original breakpoint, inserted breakpoint
1812 at P+1, and try to step to advance T2 past breakpoint.
1813 We need to step only T2, as if T1 is allowed to freely run,
1814 it can run past P, and if other threads are allowed to run,
1815 they can hit breakpoint at P+1, and nested hits of single-step
1816 breakpoints is not something we'd want -- that's complicated
1817 to support, and has no value. */
1818 resume_ptid = inferior_ptid;
1819 }
d4db2f36 1820 else if ((step || singlestep_breakpoints_inserted_p)
16c381f0 1821 && tp->control.trap_expected)
cd76b0b7 1822 {
74960c60
VP
1823 /* We're allowing a thread to run past a breakpoint it has
1824 hit, by single-stepping the thread with the breakpoint
1825 removed. In which case, we need to single-step only this
1826 thread, and keep others stopped, as they can miss this
1827 breakpoint if allowed to run.
1828
1829 The current code actually removes all breakpoints when
1830 doing this, not just the one being stepped over, so if we
1831 let other threads run, we can actually miss any
1832 breakpoint, not just the one at PC. */
ef5cf84e 1833 resume_ptid = inferior_ptid;
c906108c 1834 }
ef5cf84e 1835
515630c5 1836 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1837 {
1838 /* Most targets can step a breakpoint instruction, thus
1839 executing it normally. But if this one cannot, just
1840 continue and we will hit it anyway. */
6c95b8df 1841 if (step && breakpoint_inserted_here_p (aspace, pc))
c4ed33b9
AC
1842 step = 0;
1843 }
237fc4c9
PA
1844
1845 if (debug_displaced
515630c5 1846 && use_displaced_stepping (gdbarch)
16c381f0 1847 && tp->control.trap_expected)
237fc4c9 1848 {
515630c5 1849 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
5af949e3 1850 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
515630c5 1851 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1852 gdb_byte buf[4];
1853
5af949e3
UW
1854 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1855 paddress (resume_gdbarch, actual_pc));
237fc4c9
PA
1856 read_memory (actual_pc, buf, sizeof (buf));
1857 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1858 }
1859
e58b0e63
PA
1860 /* Install inferior's terminal modes. */
1861 target_terminal_inferior ();
1862
2020b7ab
PA
1863 /* Avoid confusing the next resume, if the next stop/resume
1864 happens to apply to another thread. */
16c381f0 1865 tp->suspend.stop_signal = TARGET_SIGNAL_0;
607cecd2 1866
2455069d
UW
1867 /* Advise target which signals may be handled silently. If we have
1868 removed breakpoints because we are stepping over one (which can
1869 happen only if we are not using displaced stepping), we need to
1870 receive all signals to avoid accidentally skipping a breakpoint
1871 during execution of a signal handler. */
1872 if ((step || singlestep_breakpoints_inserted_p)
1873 && tp->control.trap_expected
1874 && !use_displaced_stepping (gdbarch))
1875 target_pass_signals (0, NULL);
1876 else
1877 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
1878
607cecd2 1879 target_resume (resume_ptid, step, sig);
c906108c
SS
1880 }
1881
1882 discard_cleanups (old_cleanups);
1883}
1884\f
237fc4c9 1885/* Proceeding. */
c906108c
SS
1886
1887/* Clear out all variables saying what to do when inferior is continued.
1888 First do this, then set the ones you want, then call `proceed'. */
1889
a7212384
UW
1890static void
1891clear_proceed_status_thread (struct thread_info *tp)
c906108c 1892{
a7212384
UW
1893 if (debug_infrun)
1894 fprintf_unfiltered (gdb_stdlog,
1895 "infrun: clear_proceed_status_thread (%s)\n",
1896 target_pid_to_str (tp->ptid));
d6b48e9c 1897
16c381f0
JK
1898 tp->control.trap_expected = 0;
1899 tp->control.step_range_start = 0;
1900 tp->control.step_range_end = 0;
1901 tp->control.step_frame_id = null_frame_id;
1902 tp->control.step_stack_frame_id = null_frame_id;
1903 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
a7212384 1904 tp->stop_requested = 0;
4e1c45ea 1905
16c381f0 1906 tp->control.stop_step = 0;
32400beb 1907
16c381f0 1908 tp->control.proceed_to_finish = 0;
414c69f7 1909
a7212384 1910 /* Discard any remaining commands or status from previous stop. */
16c381f0 1911 bpstat_clear (&tp->control.stop_bpstat);
a7212384 1912}
32400beb 1913
a7212384
UW
1914static int
1915clear_proceed_status_callback (struct thread_info *tp, void *data)
1916{
1917 if (is_exited (tp->ptid))
1918 return 0;
d6b48e9c 1919
a7212384
UW
1920 clear_proceed_status_thread (tp);
1921 return 0;
1922}
1923
1924void
1925clear_proceed_status (void)
1926{
6c95b8df
PA
1927 if (!non_stop)
1928 {
1929 /* In all-stop mode, delete the per-thread status of all
1930 threads, even if inferior_ptid is null_ptid, there may be
1931 threads on the list. E.g., we may be launching a new
1932 process, while selecting the executable. */
1933 iterate_over_threads (clear_proceed_status_callback, NULL);
1934 }
1935
a7212384
UW
1936 if (!ptid_equal (inferior_ptid, null_ptid))
1937 {
1938 struct inferior *inferior;
1939
1940 if (non_stop)
1941 {
6c95b8df
PA
1942 /* If in non-stop mode, only delete the per-thread status of
1943 the current thread. */
a7212384
UW
1944 clear_proceed_status_thread (inferior_thread ());
1945 }
6c95b8df 1946
d6b48e9c 1947 inferior = current_inferior ();
16c381f0 1948 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
1949 }
1950
c906108c 1951 stop_after_trap = 0;
f3b1572e
PA
1952
1953 observer_notify_about_to_proceed ();
c906108c 1954
d5c31457
UW
1955 if (stop_registers)
1956 {
1957 regcache_xfree (stop_registers);
1958 stop_registers = NULL;
1959 }
c906108c
SS
1960}
1961
5a437975
DE
1962/* Check the current thread against the thread that reported the most recent
1963 event. If a step-over is required return TRUE and set the current thread
1964 to the old thread. Otherwise return FALSE.
1965
1777feb0 1966 This should be suitable for any targets that support threads. */
ea67f13b
DJ
1967
1968static int
6a6b96b9 1969prepare_to_proceed (int step)
ea67f13b
DJ
1970{
1971 ptid_t wait_ptid;
1972 struct target_waitstatus wait_status;
5a437975
DE
1973 int schedlock_enabled;
1974
1975 /* With non-stop mode on, threads are always handled individually. */
1976 gdb_assert (! non_stop);
ea67f13b
DJ
1977
1978 /* Get the last target status returned by target_wait(). */
1979 get_last_target_status (&wait_ptid, &wait_status);
1980
6a6b96b9 1981 /* Make sure we were stopped at a breakpoint. */
ea67f13b 1982 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2b009048
DJ
1983 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
1984 && wait_status.value.sig != TARGET_SIGNAL_ILL
1985 && wait_status.value.sig != TARGET_SIGNAL_SEGV
1986 && wait_status.value.sig != TARGET_SIGNAL_EMT))
ea67f13b
DJ
1987 {
1988 return 0;
1989 }
1990
5a437975
DE
1991 schedlock_enabled = (scheduler_mode == schedlock_on
1992 || (scheduler_mode == schedlock_step
1993 && step));
1994
d4db2f36
PA
1995 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
1996 if (schedlock_enabled)
1997 return 0;
1998
1999 /* Don't switch over if we're about to resume some other process
2000 other than WAIT_PTID's, and schedule-multiple is off. */
2001 if (!sched_multi
2002 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2003 return 0;
2004
6a6b96b9 2005 /* Switched over from WAIT_PID. */
ea67f13b 2006 if (!ptid_equal (wait_ptid, minus_one_ptid)
d4db2f36 2007 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 2008 {
515630c5
UW
2009 struct regcache *regcache = get_thread_regcache (wait_ptid);
2010
6c95b8df
PA
2011 if (breakpoint_here_p (get_regcache_aspace (regcache),
2012 regcache_read_pc (regcache)))
ea67f13b 2013 {
515630c5
UW
2014 /* If stepping, remember current thread to switch back to. */
2015 if (step)
2016 deferred_step_ptid = inferior_ptid;
ea67f13b 2017
515630c5
UW
2018 /* Switch back to WAIT_PID thread. */
2019 switch_to_thread (wait_ptid);
6a6b96b9 2020
0d9a9a5f
PA
2021 if (debug_infrun)
2022 fprintf_unfiltered (gdb_stdlog,
2023 "infrun: prepare_to_proceed (step=%d), "
2024 "switched to [%s]\n",
2025 step, target_pid_to_str (inferior_ptid));
2026
515630c5
UW
2027 /* We return 1 to indicate that there is a breakpoint here,
2028 so we need to step over it before continuing to avoid
1777feb0 2029 hitting it straight away. */
515630c5
UW
2030 return 1;
2031 }
ea67f13b
DJ
2032 }
2033
2034 return 0;
ea67f13b 2035}
e4846b08 2036
c906108c
SS
2037/* Basic routine for continuing the program in various fashions.
2038
2039 ADDR is the address to resume at, or -1 for resume where stopped.
2040 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2041 or -1 for act according to how it stopped.
c906108c 2042 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2043 -1 means return after that and print nothing.
2044 You should probably set various step_... variables
2045 before calling here, if you are stepping.
c906108c
SS
2046
2047 You should call clear_proceed_status before calling proceed. */
2048
2049void
96baa820 2050proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c 2051{
e58b0e63
PA
2052 struct regcache *regcache;
2053 struct gdbarch *gdbarch;
4e1c45ea 2054 struct thread_info *tp;
e58b0e63 2055 CORE_ADDR pc;
6c95b8df 2056 struct address_space *aspace;
c906108c
SS
2057 int oneproc = 0;
2058
e58b0e63
PA
2059 /* If we're stopped at a fork/vfork, follow the branch set by the
2060 "set follow-fork-mode" command; otherwise, we'll just proceed
2061 resuming the current thread. */
2062 if (!follow_fork ())
2063 {
2064 /* The target for some reason decided not to resume. */
2065 normal_stop ();
f148b27e
PA
2066 if (target_can_async_p ())
2067 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2068 return;
2069 }
2070
842951eb
PA
2071 /* We'll update this if & when we switch to a new thread. */
2072 previous_inferior_ptid = inferior_ptid;
2073
e58b0e63
PA
2074 regcache = get_current_regcache ();
2075 gdbarch = get_regcache_arch (regcache);
6c95b8df 2076 aspace = get_regcache_aspace (regcache);
e58b0e63
PA
2077 pc = regcache_read_pc (regcache);
2078
c906108c 2079 if (step > 0)
515630c5 2080 step_start_function = find_pc_function (pc);
c906108c
SS
2081 if (step < 0)
2082 stop_after_trap = 1;
2083
2acceee2 2084 if (addr == (CORE_ADDR) -1)
c906108c 2085 {
6c95b8df 2086 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
b2175913 2087 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2088 /* There is a breakpoint at the address we will resume at,
2089 step one instruction before inserting breakpoints so that
2090 we do not stop right away (and report a second hit at this
b2175913
MS
2091 breakpoint).
2092
2093 Note, we don't do this in reverse, because we won't
2094 actually be executing the breakpoint insn anyway.
2095 We'll be (un-)executing the previous instruction. */
2096
c906108c 2097 oneproc = 1;
515630c5
UW
2098 else if (gdbarch_single_step_through_delay_p (gdbarch)
2099 && gdbarch_single_step_through_delay (gdbarch,
2100 get_current_frame ()))
3352ef37
AC
2101 /* We stepped onto an instruction that needs to be stepped
2102 again before re-inserting the breakpoint, do so. */
c906108c
SS
2103 oneproc = 1;
2104 }
2105 else
2106 {
515630c5 2107 regcache_write_pc (regcache, addr);
c906108c
SS
2108 }
2109
527159b7 2110 if (debug_infrun)
8a9de0e4 2111 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
2112 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2113 paddress (gdbarch, addr), siggnal, step);
527159b7 2114
94cc34af
PA
2115 if (non_stop)
2116 /* In non-stop, each thread is handled individually. The context
2117 must already be set to the right thread here. */
2118 ;
2119 else
2120 {
2121 /* In a multi-threaded task we may select another thread and
2122 then continue or step.
c906108c 2123
94cc34af
PA
2124 But if the old thread was stopped at a breakpoint, it will
2125 immediately cause another breakpoint stop without any
2126 execution (i.e. it will report a breakpoint hit incorrectly).
2127 So we must step over it first.
c906108c 2128
94cc34af
PA
2129 prepare_to_proceed checks the current thread against the
2130 thread that reported the most recent event. If a step-over
2131 is required it returns TRUE and sets the current thread to
1777feb0 2132 the old thread. */
94cc34af
PA
2133 if (prepare_to_proceed (step))
2134 oneproc = 1;
2135 }
c906108c 2136
4e1c45ea
PA
2137 /* prepare_to_proceed may change the current thread. */
2138 tp = inferior_thread ();
2139
30852783
UW
2140 if (oneproc)
2141 {
2142 tp->control.trap_expected = 1;
2143 /* If displaced stepping is enabled, we can step over the
2144 breakpoint without hitting it, so leave all breakpoints
2145 inserted. Otherwise we need to disable all breakpoints, step
2146 one instruction, and then re-add them when that step is
2147 finished. */
2148 if (!use_displaced_stepping (gdbarch))
2149 remove_breakpoints ();
2150 }
2151
2152 /* We can insert breakpoints if we're not trying to step over one,
2153 or if we are stepping over one but we're using displaced stepping
2154 to do so. */
2155 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2156 insert_breakpoints ();
2157
2020b7ab
PA
2158 if (!non_stop)
2159 {
2160 /* Pass the last stop signal to the thread we're resuming,
2161 irrespective of whether the current thread is the thread that
2162 got the last event or not. This was historically GDB's
2163 behaviour before keeping a stop_signal per thread. */
2164
2165 struct thread_info *last_thread;
2166 ptid_t last_ptid;
2167 struct target_waitstatus last_status;
2168
2169 get_last_target_status (&last_ptid, &last_status);
2170 if (!ptid_equal (inferior_ptid, last_ptid)
2171 && !ptid_equal (last_ptid, null_ptid)
2172 && !ptid_equal (last_ptid, minus_one_ptid))
2173 {
e09875d4 2174 last_thread = find_thread_ptid (last_ptid);
2020b7ab
PA
2175 if (last_thread)
2176 {
16c381f0
JK
2177 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2178 last_thread->suspend.stop_signal = TARGET_SIGNAL_0;
2020b7ab
PA
2179 }
2180 }
2181 }
2182
c906108c 2183 if (siggnal != TARGET_SIGNAL_DEFAULT)
16c381f0 2184 tp->suspend.stop_signal = siggnal;
c906108c
SS
2185 /* If this signal should not be seen by program,
2186 give it zero. Used for debugging signals. */
16c381f0
JK
2187 else if (!signal_program[tp->suspend.stop_signal])
2188 tp->suspend.stop_signal = TARGET_SIGNAL_0;
c906108c
SS
2189
2190 annotate_starting ();
2191
2192 /* Make sure that output from GDB appears before output from the
2193 inferior. */
2194 gdb_flush (gdb_stdout);
2195
e4846b08
JJ
2196 /* Refresh prev_pc value just prior to resuming. This used to be
2197 done in stop_stepping, however, setting prev_pc there did not handle
2198 scenarios such as inferior function calls or returning from
2199 a function via the return command. In those cases, the prev_pc
2200 value was not set properly for subsequent commands. The prev_pc value
2201 is used to initialize the starting line number in the ecs. With an
2202 invalid value, the gdb next command ends up stopping at the position
2203 represented by the next line table entry past our start position.
2204 On platforms that generate one line table entry per line, this
2205 is not a problem. However, on the ia64, the compiler generates
2206 extraneous line table entries that do not increase the line number.
2207 When we issue the gdb next command on the ia64 after an inferior call
2208 or a return command, we often end up a few instructions forward, still
2209 within the original line we started.
2210
d5cd6034
JB
2211 An attempt was made to refresh the prev_pc at the same time the
2212 execution_control_state is initialized (for instance, just before
2213 waiting for an inferior event). But this approach did not work
2214 because of platforms that use ptrace, where the pc register cannot
2215 be read unless the inferior is stopped. At that point, we are not
2216 guaranteed the inferior is stopped and so the regcache_read_pc() call
2217 can fail. Setting the prev_pc value here ensures the value is updated
2218 correctly when the inferior is stopped. */
4e1c45ea 2219 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 2220
59f0d5d9 2221 /* Fill in with reasonable starting values. */
4e1c45ea 2222 init_thread_stepping_state (tp);
59f0d5d9 2223
59f0d5d9
PA
2224 /* Reset to normal state. */
2225 init_infwait_state ();
2226
c906108c 2227 /* Resume inferior. */
16c381f0 2228 resume (oneproc || step || bpstat_should_step (), tp->suspend.stop_signal);
c906108c
SS
2229
2230 /* Wait for it to stop (if not standalone)
2231 and in any case decode why it stopped, and act accordingly. */
43ff13b4 2232 /* Do this only if we are not using the event loop, or if the target
1777feb0 2233 does not support asynchronous execution. */
362646f5 2234 if (!target_can_async_p ())
43ff13b4 2235 {
e4c8541f 2236 wait_for_inferior ();
43ff13b4
JM
2237 normal_stop ();
2238 }
c906108c 2239}
c906108c
SS
2240\f
2241
2242/* Start remote-debugging of a machine over a serial link. */
96baa820 2243
c906108c 2244void
8621d6a9 2245start_remote (int from_tty)
c906108c 2246{
d6b48e9c 2247 struct inferior *inferior;
d6b48e9c
PA
2248
2249 inferior = current_inferior ();
16c381f0 2250 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 2251
1777feb0 2252 /* Always go on waiting for the target, regardless of the mode. */
6426a772 2253 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 2254 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
2255 nothing is returned (instead of just blocking). Because of this,
2256 targets expecting an immediate response need to, internally, set
2257 things up so that the target_wait() is forced to eventually
1777feb0 2258 timeout. */
6426a772
JM
2259 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2260 differentiate to its caller what the state of the target is after
2261 the initial open has been performed. Here we're assuming that
2262 the target has stopped. It should be possible to eventually have
2263 target_open() return to the caller an indication that the target
2264 is currently running and GDB state should be set to the same as
1777feb0 2265 for an async run. */
e4c8541f 2266 wait_for_inferior ();
8621d6a9
DJ
2267
2268 /* Now that the inferior has stopped, do any bookkeeping like
2269 loading shared libraries. We want to do this before normal_stop,
2270 so that the displayed frame is up to date. */
2271 post_create_inferior (&current_target, from_tty);
2272
6426a772 2273 normal_stop ();
c906108c
SS
2274}
2275
2276/* Initialize static vars when a new inferior begins. */
2277
2278void
96baa820 2279init_wait_for_inferior (void)
c906108c
SS
2280{
2281 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 2282
c906108c
SS
2283 breakpoint_init_inferior (inf_starting);
2284
c906108c 2285 clear_proceed_status ();
9f976b41
DJ
2286
2287 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 2288 deferred_step_ptid = null_ptid;
ca005067
DJ
2289
2290 target_last_wait_ptid = minus_one_ptid;
237fc4c9 2291
842951eb 2292 previous_inferior_ptid = inferior_ptid;
0d1e5fa7
PA
2293 init_infwait_state ();
2294
edb3359d
DJ
2295 /* Discard any skipped inlined frames. */
2296 clear_inline_frame_state (minus_one_ptid);
c906108c 2297}
237fc4c9 2298
c906108c 2299\f
b83266a0
SS
2300/* This enum encodes possible reasons for doing a target_wait, so that
2301 wfi can call target_wait in one place. (Ultimately the call will be
2302 moved out of the infinite loop entirely.) */
2303
c5aa993b
JM
2304enum infwait_states
2305{
cd0fc7c3
SS
2306 infwait_normal_state,
2307 infwait_thread_hop_state,
d983da9c 2308 infwait_step_watch_state,
cd0fc7c3 2309 infwait_nonstep_watch_state
b83266a0
SS
2310};
2311
0d1e5fa7
PA
2312/* The PTID we'll do a target_wait on.*/
2313ptid_t waiton_ptid;
2314
2315/* Current inferior wait state. */
2316enum infwait_states infwait_state;
cd0fc7c3 2317
0d1e5fa7
PA
2318/* Data to be passed around while handling an event. This data is
2319 discarded between events. */
c5aa993b 2320struct execution_control_state
488f131b 2321{
0d1e5fa7 2322 ptid_t ptid;
4e1c45ea
PA
2323 /* The thread that got the event, if this was a thread event; NULL
2324 otherwise. */
2325 struct thread_info *event_thread;
2326
488f131b 2327 struct target_waitstatus ws;
488f131b 2328 int random_signal;
7e324e48 2329 int stop_func_filled_in;
488f131b
JB
2330 CORE_ADDR stop_func_start;
2331 CORE_ADDR stop_func_end;
2332 char *stop_func_name;
488f131b 2333 int new_thread_event;
488f131b
JB
2334 int wait_some_more;
2335};
2336
ec9499be 2337static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2338
568d6575
UW
2339static void handle_step_into_function (struct gdbarch *gdbarch,
2340 struct execution_control_state *ecs);
2341static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2342 struct execution_control_state *ecs);
186c406b
TT
2343static void check_exception_resume (struct execution_control_state *,
2344 struct frame_info *, struct symbol *);
611c83ae 2345
104c1213
JM
2346static void stop_stepping (struct execution_control_state *ecs);
2347static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2348static void keep_going (struct execution_control_state *ecs);
104c1213 2349
252fbfc8
PA
2350/* Callback for iterate over threads. If the thread is stopped, but
2351 the user/frontend doesn't know about that yet, go through
2352 normal_stop, as if the thread had just stopped now. ARG points at
2353 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2354 ptid_is_pid(PTID) is true, applies to all threads of the process
2355 pointed at by PTID. Otherwise, apply only to the thread pointed by
2356 PTID. */
2357
2358static int
2359infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2360{
2361 ptid_t ptid = * (ptid_t *) arg;
2362
2363 if ((ptid_equal (info->ptid, ptid)
2364 || ptid_equal (minus_one_ptid, ptid)
2365 || (ptid_is_pid (ptid)
2366 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2367 && is_running (info->ptid)
2368 && !is_executing (info->ptid))
2369 {
2370 struct cleanup *old_chain;
2371 struct execution_control_state ecss;
2372 struct execution_control_state *ecs = &ecss;
2373
2374 memset (ecs, 0, sizeof (*ecs));
2375
2376 old_chain = make_cleanup_restore_current_thread ();
2377
2378 switch_to_thread (info->ptid);
2379
2380 /* Go through handle_inferior_event/normal_stop, so we always
2381 have consistent output as if the stop event had been
2382 reported. */
2383 ecs->ptid = info->ptid;
e09875d4 2384 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8
PA
2385 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2386 ecs->ws.value.sig = TARGET_SIGNAL_0;
2387
2388 handle_inferior_event (ecs);
2389
2390 if (!ecs->wait_some_more)
2391 {
2392 struct thread_info *tp;
2393
2394 normal_stop ();
2395
fa4cd53f 2396 /* Finish off the continuations. */
252fbfc8 2397 tp = inferior_thread ();
fa4cd53f
PA
2398 do_all_intermediate_continuations_thread (tp, 1);
2399 do_all_continuations_thread (tp, 1);
252fbfc8
PA
2400 }
2401
2402 do_cleanups (old_chain);
2403 }
2404
2405 return 0;
2406}
2407
2408/* This function is attached as a "thread_stop_requested" observer.
2409 Cleanup local state that assumed the PTID was to be resumed, and
2410 report the stop to the frontend. */
2411
2c0b251b 2412static void
252fbfc8
PA
2413infrun_thread_stop_requested (ptid_t ptid)
2414{
fc1cf338 2415 struct displaced_step_inferior_state *displaced;
252fbfc8
PA
2416
2417 /* PTID was requested to stop. Remove it from the displaced
2418 stepping queue, so we don't try to resume it automatically. */
fc1cf338
PA
2419
2420 for (displaced = displaced_step_inferior_states;
2421 displaced;
2422 displaced = displaced->next)
252fbfc8 2423 {
fc1cf338 2424 struct displaced_step_request *it, **prev_next_p;
252fbfc8 2425
fc1cf338
PA
2426 it = displaced->step_request_queue;
2427 prev_next_p = &displaced->step_request_queue;
2428 while (it)
252fbfc8 2429 {
fc1cf338
PA
2430 if (ptid_match (it->ptid, ptid))
2431 {
2432 *prev_next_p = it->next;
2433 it->next = NULL;
2434 xfree (it);
2435 }
252fbfc8 2436 else
fc1cf338
PA
2437 {
2438 prev_next_p = &it->next;
2439 }
252fbfc8 2440
fc1cf338 2441 it = *prev_next_p;
252fbfc8 2442 }
252fbfc8
PA
2443 }
2444
2445 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2446}
2447
a07daef3
PA
2448static void
2449infrun_thread_thread_exit (struct thread_info *tp, int silent)
2450{
2451 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2452 nullify_last_target_wait_ptid ();
2453}
2454
4e1c45ea
PA
2455/* Callback for iterate_over_threads. */
2456
2457static int
2458delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2459{
2460 if (is_exited (info->ptid))
2461 return 0;
2462
2463 delete_step_resume_breakpoint (info);
186c406b 2464 delete_exception_resume_breakpoint (info);
4e1c45ea
PA
2465 return 0;
2466}
2467
2468/* In all-stop, delete the step resume breakpoint of any thread that
2469 had one. In non-stop, delete the step resume breakpoint of the
2470 thread that just stopped. */
2471
2472static void
2473delete_step_thread_step_resume_breakpoint (void)
2474{
2475 if (!target_has_execution
2476 || ptid_equal (inferior_ptid, null_ptid))
2477 /* If the inferior has exited, we have already deleted the step
2478 resume breakpoints out of GDB's lists. */
2479 return;
2480
2481 if (non_stop)
2482 {
2483 /* If in non-stop mode, only delete the step-resume or
2484 longjmp-resume breakpoint of the thread that just stopped
2485 stepping. */
2486 struct thread_info *tp = inferior_thread ();
abbb1732 2487
4e1c45ea 2488 delete_step_resume_breakpoint (tp);
186c406b 2489 delete_exception_resume_breakpoint (tp);
4e1c45ea
PA
2490 }
2491 else
2492 /* In all-stop mode, delete all step-resume and longjmp-resume
2493 breakpoints of any thread that had them. */
2494 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2495}
2496
1777feb0 2497/* A cleanup wrapper. */
4e1c45ea
PA
2498
2499static void
2500delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2501{
2502 delete_step_thread_step_resume_breakpoint ();
2503}
2504
223698f8
DE
2505/* Pretty print the results of target_wait, for debugging purposes. */
2506
2507static void
2508print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2509 const struct target_waitstatus *ws)
2510{
2511 char *status_string = target_waitstatus_to_string (ws);
2512 struct ui_file *tmp_stream = mem_fileopen ();
2513 char *text;
223698f8
DE
2514
2515 /* The text is split over several lines because it was getting too long.
2516 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2517 output as a unit; we want only one timestamp printed if debug_timestamp
2518 is set. */
2519
2520 fprintf_unfiltered (tmp_stream,
2521 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2522 if (PIDGET (waiton_ptid) != -1)
2523 fprintf_unfiltered (tmp_stream,
2524 " [%s]", target_pid_to_str (waiton_ptid));
2525 fprintf_unfiltered (tmp_stream, ", status) =\n");
2526 fprintf_unfiltered (tmp_stream,
2527 "infrun: %d [%s],\n",
2528 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2529 fprintf_unfiltered (tmp_stream,
2530 "infrun: %s\n",
2531 status_string);
2532
759ef836 2533 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
2534
2535 /* This uses %s in part to handle %'s in the text, but also to avoid
2536 a gcc error: the format attribute requires a string literal. */
2537 fprintf_unfiltered (gdb_stdlog, "%s", text);
2538
2539 xfree (status_string);
2540 xfree (text);
2541 ui_file_delete (tmp_stream);
2542}
2543
24291992
PA
2544/* Prepare and stabilize the inferior for detaching it. E.g.,
2545 detaching while a thread is displaced stepping is a recipe for
2546 crashing it, as nothing would readjust the PC out of the scratch
2547 pad. */
2548
2549void
2550prepare_for_detach (void)
2551{
2552 struct inferior *inf = current_inferior ();
2553 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2554 struct cleanup *old_chain_1;
2555 struct displaced_step_inferior_state *displaced;
2556
2557 displaced = get_displaced_stepping_state (inf->pid);
2558
2559 /* Is any thread of this process displaced stepping? If not,
2560 there's nothing else to do. */
2561 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2562 return;
2563
2564 if (debug_infrun)
2565 fprintf_unfiltered (gdb_stdlog,
2566 "displaced-stepping in-process while detaching");
2567
2568 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2569 inf->detaching = 1;
2570
2571 while (!ptid_equal (displaced->step_ptid, null_ptid))
2572 {
2573 struct cleanup *old_chain_2;
2574 struct execution_control_state ecss;
2575 struct execution_control_state *ecs;
2576
2577 ecs = &ecss;
2578 memset (ecs, 0, sizeof (*ecs));
2579
2580 overlay_cache_invalid = 1;
2581
2582 /* We have to invalidate the registers BEFORE calling
2583 target_wait because they can be loaded from the target while
2584 in target_wait. This makes remote debugging a bit more
2585 efficient for those targets that provide critical registers
1777feb0 2586 as part of their normal status mechanism. */
24291992
PA
2587
2588 registers_changed ();
2589
2590 if (deprecated_target_wait_hook)
2591 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2592 else
2593 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2594
2595 if (debug_infrun)
2596 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2597
2598 /* If an error happens while handling the event, propagate GDB's
2599 knowledge of the executing state to the frontend/user running
2600 state. */
3e43a32a
MS
2601 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2602 &minus_one_ptid);
24291992 2603
4d533103
PA
2604 /* In non-stop mode, each thread is handled individually.
2605 Switch early, so the global state is set correctly for this
2606 thread. */
2607 if (non_stop
2608 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2609 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2610 context_switch (ecs->ptid);
2611
24291992
PA
2612 /* Now figure out what to do with the result of the result. */
2613 handle_inferior_event (ecs);
2614
2615 /* No error, don't finish the state yet. */
2616 discard_cleanups (old_chain_2);
2617
2618 /* Breakpoints and watchpoints are not installed on the target
2619 at this point, and signals are passed directly to the
2620 inferior, so this must mean the process is gone. */
2621 if (!ecs->wait_some_more)
2622 {
2623 discard_cleanups (old_chain_1);
2624 error (_("Program exited while detaching"));
2625 }
2626 }
2627
2628 discard_cleanups (old_chain_1);
2629}
2630
cd0fc7c3 2631/* Wait for control to return from inferior to debugger.
ae123ec6 2632
cd0fc7c3
SS
2633 If inferior gets a signal, we may decide to start it up again
2634 instead of returning. That is why there is a loop in this function.
2635 When this function actually returns it means the inferior
2636 should be left stopped and GDB should read more commands. */
2637
2638void
e4c8541f 2639wait_for_inferior (void)
cd0fc7c3
SS
2640{
2641 struct cleanup *old_cleanups;
0d1e5fa7 2642 struct execution_control_state ecss;
cd0fc7c3 2643 struct execution_control_state *ecs;
c906108c 2644
527159b7 2645 if (debug_infrun)
ae123ec6 2646 fprintf_unfiltered
e4c8541f 2647 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 2648
4e1c45ea
PA
2649 old_cleanups =
2650 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 2651
cd0fc7c3 2652 ecs = &ecss;
0d1e5fa7
PA
2653 memset (ecs, 0, sizeof (*ecs));
2654
c906108c
SS
2655 while (1)
2656 {
29f49a6a
PA
2657 struct cleanup *old_chain;
2658
ec9499be
UW
2659 /* We have to invalidate the registers BEFORE calling target_wait
2660 because they can be loaded from the target while in target_wait.
2661 This makes remote debugging a bit more efficient for those
2662 targets that provide critical registers as part of their normal
1777feb0 2663 status mechanism. */
ec9499be
UW
2664
2665 overlay_cache_invalid = 1;
2666 registers_changed ();
2667
9a4105ab 2668 if (deprecated_target_wait_hook)
47608cb1 2669 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 2670 else
47608cb1 2671 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 2672
f00150c9 2673 if (debug_infrun)
223698f8 2674 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2675
29f49a6a
PA
2676 /* If an error happens while handling the event, propagate GDB's
2677 knowledge of the executing state to the frontend/user running
2678 state. */
2679 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2680
a96d9b2e
SDJ
2681 if (ecs->ws.kind == TARGET_WAITKIND_SYSCALL_ENTRY
2682 || ecs->ws.kind == TARGET_WAITKIND_SYSCALL_RETURN)
2683 ecs->ws.value.syscall_number = UNKNOWN_SYSCALL;
2684
cd0fc7c3
SS
2685 /* Now figure out what to do with the result of the result. */
2686 handle_inferior_event (ecs);
c906108c 2687
29f49a6a
PA
2688 /* No error, don't finish the state yet. */
2689 discard_cleanups (old_chain);
2690
cd0fc7c3
SS
2691 if (!ecs->wait_some_more)
2692 break;
2693 }
4e1c45ea 2694
cd0fc7c3
SS
2695 do_cleanups (old_cleanups);
2696}
c906108c 2697
1777feb0 2698/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 2699 event loop whenever a change of state is detected on the file
1777feb0
MS
2700 descriptor corresponding to the target. It can be called more than
2701 once to complete a single execution command. In such cases we need
2702 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
2703 that this function is called for a single execution command, then
2704 report to the user that the inferior has stopped, and do the
1777feb0 2705 necessary cleanups. */
43ff13b4
JM
2706
2707void
fba45db2 2708fetch_inferior_event (void *client_data)
43ff13b4 2709{
0d1e5fa7 2710 struct execution_control_state ecss;
a474d7c2 2711 struct execution_control_state *ecs = &ecss;
4f8d22e3 2712 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2713 struct cleanup *ts_old_chain;
4f8d22e3 2714 int was_sync = sync_execution;
43ff13b4 2715
0d1e5fa7
PA
2716 memset (ecs, 0, sizeof (*ecs));
2717
c5187ac6
PA
2718 /* We're handling a live event, so make sure we're doing live
2719 debugging. If we're looking at traceframes while the target is
2720 running, we're going to need to get back to that mode after
2721 handling the event. */
2722 if (non_stop)
2723 {
2724 make_cleanup_restore_current_traceframe ();
e6e4e701 2725 set_current_traceframe (-1);
c5187ac6
PA
2726 }
2727
4f8d22e3
PA
2728 if (non_stop)
2729 /* In non-stop mode, the user/frontend should not notice a thread
2730 switch due to internal events. Make sure we reverse to the
2731 user selected thread and frame after handling the event and
2732 running any breakpoint commands. */
2733 make_cleanup_restore_current_thread ();
2734
59f0d5d9
PA
2735 /* We have to invalidate the registers BEFORE calling target_wait
2736 because they can be loaded from the target while in target_wait.
2737 This makes remote debugging a bit more efficient for those
2738 targets that provide critical registers as part of their normal
1777feb0 2739 status mechanism. */
43ff13b4 2740
ec9499be 2741 overlay_cache_invalid = 1;
3dd5b83d
PA
2742
2743 /* But don't do it if the current thread is already stopped (hence
2744 this is either a delayed event that will result in
2745 TARGET_WAITKIND_IGNORE, or it's an event for another thread (and
2746 we always clear the register and frame caches when the user
2747 switches threads anyway). If we didn't do this, a spurious
2748 delayed event in all-stop mode would make the user lose the
2749 selected frame. */
2750 if (non_stop || is_executing (inferior_ptid))
2751 registers_changed ();
43ff13b4 2752
32231432
PA
2753 make_cleanup_restore_integer (&execution_direction);
2754 execution_direction = target_execution_direction ();
2755
9a4105ab 2756 if (deprecated_target_wait_hook)
a474d7c2 2757 ecs->ptid =
47608cb1 2758 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2759 else
47608cb1 2760 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2761
f00150c9 2762 if (debug_infrun)
223698f8 2763 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2764
94cc34af
PA
2765 if (non_stop
2766 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2767 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2768 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2769 /* In non-stop mode, each thread is handled individually. Switch
2770 early, so the global state is set correctly for this
2771 thread. */
2772 context_switch (ecs->ptid);
2773
29f49a6a
PA
2774 /* If an error happens while handling the event, propagate GDB's
2775 knowledge of the executing state to the frontend/user running
2776 state. */
2777 if (!non_stop)
2778 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2779 else
2780 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2781
353d1d73
JK
2782 /* Get executed before make_cleanup_restore_current_thread above to apply
2783 still for the thread which has thrown the exception. */
2784 make_bpstat_clear_actions_cleanup ();
2785
43ff13b4 2786 /* Now figure out what to do with the result of the result. */
a474d7c2 2787 handle_inferior_event (ecs);
43ff13b4 2788
a474d7c2 2789 if (!ecs->wait_some_more)
43ff13b4 2790 {
d6b48e9c
PA
2791 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2792
4e1c45ea 2793 delete_step_thread_step_resume_breakpoint ();
f107f563 2794
d6b48e9c 2795 /* We may not find an inferior if this was a process exit. */
16c381f0 2796 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2797 normal_stop ();
2798
af679fd0
PA
2799 if (target_has_execution
2800 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2801 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2802 && ecs->event_thread->step_multi
16c381f0 2803 && ecs->event_thread->control.stop_step)
c2d11a7d
JM
2804 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2805 else
2806 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4 2807 }
4f8d22e3 2808
29f49a6a
PA
2809 /* No error, don't finish the thread states yet. */
2810 discard_cleanups (ts_old_chain);
2811
4f8d22e3
PA
2812 /* Revert thread and frame. */
2813 do_cleanups (old_chain);
2814
2815 /* If the inferior was in sync execution mode, and now isn't,
2816 restore the prompt. */
2817 if (was_sync && !sync_execution)
2818 display_gdb_prompt (0);
43ff13b4
JM
2819}
2820
edb3359d
DJ
2821/* Record the frame and location we're currently stepping through. */
2822void
2823set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2824{
2825 struct thread_info *tp = inferior_thread ();
2826
16c381f0
JK
2827 tp->control.step_frame_id = get_frame_id (frame);
2828 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
2829
2830 tp->current_symtab = sal.symtab;
2831 tp->current_line = sal.line;
2832}
2833
0d1e5fa7
PA
2834/* Clear context switchable stepping state. */
2835
2836void
4e1c45ea 2837init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7
PA
2838{
2839 tss->stepping_over_breakpoint = 0;
2840 tss->step_after_step_resume_breakpoint = 0;
2841 tss->stepping_through_solib_after_catch = 0;
2842 tss->stepping_through_solib_catchpoints = NULL;
cd0fc7c3
SS
2843}
2844
e02bc4cc 2845/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2846 target_wait()/deprecated_target_wait_hook(). The data is actually
2847 cached by handle_inferior_event(), which gets called immediately
2848 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2849
2850void
488f131b 2851get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2852{
39f77062 2853 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2854 *status = target_last_waitstatus;
2855}
2856
ac264b3b
MS
2857void
2858nullify_last_target_wait_ptid (void)
2859{
2860 target_last_wait_ptid = minus_one_ptid;
2861}
2862
dcf4fbde 2863/* Switch thread contexts. */
dd80620e
MS
2864
2865static void
0d1e5fa7 2866context_switch (ptid_t ptid)
dd80620e 2867{
fd48f117
DJ
2868 if (debug_infrun)
2869 {
2870 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2871 target_pid_to_str (inferior_ptid));
2872 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2873 target_pid_to_str (ptid));
fd48f117
DJ
2874 }
2875
0d1e5fa7 2876 switch_to_thread (ptid);
dd80620e
MS
2877}
2878
4fa8626c
DJ
2879static void
2880adjust_pc_after_break (struct execution_control_state *ecs)
2881{
24a73cce
UW
2882 struct regcache *regcache;
2883 struct gdbarch *gdbarch;
6c95b8df 2884 struct address_space *aspace;
8aad930b 2885 CORE_ADDR breakpoint_pc;
4fa8626c 2886
4fa8626c
DJ
2887 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2888 we aren't, just return.
9709f61c
DJ
2889
2890 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2891 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2892 implemented by software breakpoints should be handled through the normal
2893 breakpoint layer.
8fb3e588 2894
4fa8626c
DJ
2895 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2896 different signals (SIGILL or SIGEMT for instance), but it is less
2897 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2898 gdbarch_decr_pc_after_break. I don't know any specific target that
2899 generates these signals at breakpoints (the code has been in GDB since at
2900 least 1992) so I can not guess how to handle them here.
8fb3e588 2901
e6cf7916
UW
2902 In earlier versions of GDB, a target with
2903 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2904 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2905 target with both of these set in GDB history, and it seems unlikely to be
2906 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2907
2908 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2909 return;
2910
2911 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2912 return;
2913
4058b839
PA
2914 /* In reverse execution, when a breakpoint is hit, the instruction
2915 under it has already been de-executed. The reported PC always
2916 points at the breakpoint address, so adjusting it further would
2917 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2918 architecture:
2919
2920 B1 0x08000000 : INSN1
2921 B2 0x08000001 : INSN2
2922 0x08000002 : INSN3
2923 PC -> 0x08000003 : INSN4
2924
2925 Say you're stopped at 0x08000003 as above. Reverse continuing
2926 from that point should hit B2 as below. Reading the PC when the
2927 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2928 been de-executed already.
2929
2930 B1 0x08000000 : INSN1
2931 B2 PC -> 0x08000001 : INSN2
2932 0x08000002 : INSN3
2933 0x08000003 : INSN4
2934
2935 We can't apply the same logic as for forward execution, because
2936 we would wrongly adjust the PC to 0x08000000, since there's a
2937 breakpoint at PC - 1. We'd then report a hit on B1, although
2938 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2939 behaviour. */
2940 if (execution_direction == EXEC_REVERSE)
2941 return;
2942
24a73cce
UW
2943 /* If this target does not decrement the PC after breakpoints, then
2944 we have nothing to do. */
2945 regcache = get_thread_regcache (ecs->ptid);
2946 gdbarch = get_regcache_arch (regcache);
2947 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2948 return;
2949
6c95b8df
PA
2950 aspace = get_regcache_aspace (regcache);
2951
8aad930b
AC
2952 /* Find the location where (if we've hit a breakpoint) the
2953 breakpoint would be. */
515630c5
UW
2954 breakpoint_pc = regcache_read_pc (regcache)
2955 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 2956
1c5cfe86
PA
2957 /* Check whether there actually is a software breakpoint inserted at
2958 that location.
2959
2960 If in non-stop mode, a race condition is possible where we've
2961 removed a breakpoint, but stop events for that breakpoint were
2962 already queued and arrive later. To suppress those spurious
2963 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2964 and retire them after a number of stop events are reported. */
6c95b8df
PA
2965 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2966 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 2967 {
96429cc8 2968 struct cleanup *old_cleanups = NULL;
abbb1732 2969
96429cc8
HZ
2970 if (RECORD_IS_USED)
2971 old_cleanups = record_gdb_operation_disable_set ();
2972
1c0fdd0e
UW
2973 /* When using hardware single-step, a SIGTRAP is reported for both
2974 a completed single-step and a software breakpoint. Need to
2975 differentiate between the two, as the latter needs adjusting
2976 but the former does not.
2977
2978 The SIGTRAP can be due to a completed hardware single-step only if
2979 - we didn't insert software single-step breakpoints
2980 - the thread to be examined is still the current thread
2981 - this thread is currently being stepped
2982
2983 If any of these events did not occur, we must have stopped due
2984 to hitting a software breakpoint, and have to back up to the
2985 breakpoint address.
2986
2987 As a special case, we could have hardware single-stepped a
2988 software breakpoint. In this case (prev_pc == breakpoint_pc),
2989 we also need to back up to the breakpoint address. */
2990
2991 if (singlestep_breakpoints_inserted_p
2992 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
2993 || !currently_stepping (ecs->event_thread)
2994 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 2995 regcache_write_pc (regcache, breakpoint_pc);
96429cc8
HZ
2996
2997 if (RECORD_IS_USED)
2998 do_cleanups (old_cleanups);
8aad930b 2999 }
4fa8626c
DJ
3000}
3001
0d1e5fa7
PA
3002void
3003init_infwait_state (void)
3004{
3005 waiton_ptid = pid_to_ptid (-1);
3006 infwait_state = infwait_normal_state;
3007}
3008
94cc34af
PA
3009void
3010error_is_running (void)
3011{
3e43a32a
MS
3012 error (_("Cannot execute this command while "
3013 "the selected thread is running."));
94cc34af
PA
3014}
3015
3016void
3017ensure_not_running (void)
3018{
3019 if (is_running (inferior_ptid))
3020 error_is_running ();
3021}
3022
edb3359d
DJ
3023static int
3024stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3025{
3026 for (frame = get_prev_frame (frame);
3027 frame != NULL;
3028 frame = get_prev_frame (frame))
3029 {
3030 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3031 return 1;
3032 if (get_frame_type (frame) != INLINE_FRAME)
3033 break;
3034 }
3035
3036 return 0;
3037}
3038
a96d9b2e
SDJ
3039/* Auxiliary function that handles syscall entry/return events.
3040 It returns 1 if the inferior should keep going (and GDB
3041 should ignore the event), or 0 if the event deserves to be
3042 processed. */
ca2163eb 3043
a96d9b2e 3044static int
ca2163eb 3045handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 3046{
ca2163eb
PA
3047 struct regcache *regcache;
3048 struct gdbarch *gdbarch;
3049 int syscall_number;
3050
3051 if (!ptid_equal (ecs->ptid, inferior_ptid))
3052 context_switch (ecs->ptid);
3053
3054 regcache = get_thread_regcache (ecs->ptid);
3055 gdbarch = get_regcache_arch (regcache);
3056 syscall_number = gdbarch_get_syscall_number (gdbarch, ecs->ptid);
3057 stop_pc = regcache_read_pc (regcache);
3058
a96d9b2e
SDJ
3059 target_last_waitstatus.value.syscall_number = syscall_number;
3060
3061 if (catch_syscall_enabled () > 0
3062 && catching_syscall_number (syscall_number) > 0)
3063 {
3064 if (debug_infrun)
3065 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3066 syscall_number);
a96d9b2e 3067
16c381f0 3068 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
3069 = bpstat_stop_status (get_regcache_aspace (regcache),
3070 stop_pc, ecs->ptid);
16c381f0
JK
3071 ecs->random_signal
3072 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
a96d9b2e 3073
ca2163eb
PA
3074 if (!ecs->random_signal)
3075 {
3076 /* Catchpoint hit. */
16c381f0 3077 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
ca2163eb
PA
3078 return 0;
3079 }
a96d9b2e 3080 }
ca2163eb
PA
3081
3082 /* If no catchpoint triggered for this, then keep going. */
16c381f0 3083 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
ca2163eb
PA
3084 keep_going (ecs);
3085 return 1;
a96d9b2e
SDJ
3086}
3087
7e324e48
GB
3088/* Clear the supplied execution_control_state's stop_func_* fields. */
3089
3090static void
3091clear_stop_func (struct execution_control_state *ecs)
3092{
3093 ecs->stop_func_filled_in = 0;
3094 ecs->stop_func_start = 0;
3095 ecs->stop_func_end = 0;
3096 ecs->stop_func_name = NULL;
3097}
3098
3099/* Lazily fill in the execution_control_state's stop_func_* fields. */
3100
3101static void
3102fill_in_stop_func (struct gdbarch *gdbarch,
3103 struct execution_control_state *ecs)
3104{
3105 if (!ecs->stop_func_filled_in)
3106 {
3107 /* Don't care about return value; stop_func_start and stop_func_name
3108 will both be 0 if it doesn't work. */
3109 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3110 &ecs->stop_func_start, &ecs->stop_func_end);
3111 ecs->stop_func_start
3112 += gdbarch_deprecated_function_start_offset (gdbarch);
3113
3114 ecs->stop_func_filled_in = 1;
3115 }
3116}
3117
cd0fc7c3
SS
3118/* Given an execution control state that has been freshly filled in
3119 by an event from the inferior, figure out what it means and take
3120 appropriate action. */
c906108c 3121
ec9499be 3122static void
96baa820 3123handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 3124{
568d6575
UW
3125 struct frame_info *frame;
3126 struct gdbarch *gdbarch;
d983da9c
DJ
3127 int stopped_by_watchpoint;
3128 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 3129 struct symtab_and_line stop_pc_sal;
d6b48e9c
PA
3130 enum stop_kind stop_soon;
3131
28736962
PA
3132 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3133 {
3134 /* We had an event in the inferior, but we are not interested in
3135 handling it at this level. The lower layers have already
3136 done what needs to be done, if anything.
3137
3138 One of the possible circumstances for this is when the
3139 inferior produces output for the console. The inferior has
3140 not stopped, and we are ignoring the event. Another possible
3141 circumstance is any event which the lower level knows will be
3142 reported multiple times without an intervening resume. */
3143 if (debug_infrun)
3144 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3145 prepare_to_wait (ecs);
3146 return;
3147 }
3148
d6b48e9c 3149 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
28736962 3150 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
d6b48e9c
PA
3151 {
3152 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
abbb1732 3153
d6b48e9c 3154 gdb_assert (inf);
16c381f0 3155 stop_soon = inf->control.stop_soon;
d6b48e9c
PA
3156 }
3157 else
3158 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 3159
1777feb0 3160 /* Cache the last pid/waitstatus. */
39f77062 3161 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 3162 target_last_waitstatus = ecs->ws;
e02bc4cc 3163
ca005067 3164 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 3165 stop_stack_dummy = STOP_NONE;
ca005067 3166
1777feb0 3167 /* If it's a new process, add it to the thread database. */
8c90c137
LM
3168
3169 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
3170 && !ptid_equal (ecs->ptid, minus_one_ptid)
3171 && !in_thread_list (ecs->ptid));
3172
3173 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3174 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
3175 add_thread (ecs->ptid);
3176
e09875d4 3177 ecs->event_thread = find_thread_ptid (ecs->ptid);
88ed393a
JK
3178
3179 /* Dependent on valid ECS->EVENT_THREAD. */
3180 adjust_pc_after_break (ecs);
3181
3182 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3183 reinit_frame_cache ();
3184
28736962
PA
3185 breakpoint_retire_moribund ();
3186
2b009048
DJ
3187 /* First, distinguish signals caused by the debugger from signals
3188 that have to do with the program's own actions. Note that
3189 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3190 on the operating system version. Here we detect when a SIGILL or
3191 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3192 something similar for SIGSEGV, since a SIGSEGV will be generated
3193 when we're trying to execute a breakpoint instruction on a
3194 non-executable stack. This happens for call dummy breakpoints
3195 for architectures like SPARC that place call dummies on the
3196 stack. */
2b009048
DJ
3197 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3198 && (ecs->ws.value.sig == TARGET_SIGNAL_ILL
3199 || ecs->ws.value.sig == TARGET_SIGNAL_SEGV
de0a0249 3200 || ecs->ws.value.sig == TARGET_SIGNAL_EMT))
2b009048 3201 {
de0a0249
UW
3202 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3203
3204 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3205 regcache_read_pc (regcache)))
3206 {
3207 if (debug_infrun)
3208 fprintf_unfiltered (gdb_stdlog,
3209 "infrun: Treating signal as SIGTRAP\n");
3210 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
3211 }
2b009048
DJ
3212 }
3213
28736962
PA
3214 /* Mark the non-executing threads accordingly. In all-stop, all
3215 threads of all processes are stopped when we get any event
3216 reported. In non-stop mode, only the event thread stops. If
3217 we're handling a process exit in non-stop mode, there's nothing
3218 to do, as threads of the dead process are gone, and threads of
3219 any other process were left running. */
3220 if (!non_stop)
3221 set_executing (minus_one_ptid, 0);
3222 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3223 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3224 set_executing (inferior_ptid, 0);
8c90c137 3225
0d1e5fa7 3226 switch (infwait_state)
488f131b
JB
3227 {
3228 case infwait_thread_hop_state:
527159b7 3229 if (debug_infrun)
8a9de0e4 3230 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
65e82032 3231 break;
b83266a0 3232
488f131b 3233 case infwait_normal_state:
527159b7 3234 if (debug_infrun)
8a9de0e4 3235 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
3236 break;
3237
3238 case infwait_step_watch_state:
3239 if (debug_infrun)
3240 fprintf_unfiltered (gdb_stdlog,
3241 "infrun: infwait_step_watch_state\n");
3242
3243 stepped_after_stopped_by_watchpoint = 1;
488f131b 3244 break;
b83266a0 3245
488f131b 3246 case infwait_nonstep_watch_state:
527159b7 3247 if (debug_infrun)
8a9de0e4
AC
3248 fprintf_unfiltered (gdb_stdlog,
3249 "infrun: infwait_nonstep_watch_state\n");
488f131b 3250 insert_breakpoints ();
c906108c 3251
488f131b
JB
3252 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3253 handle things like signals arriving and other things happening
3254 in combination correctly? */
3255 stepped_after_stopped_by_watchpoint = 1;
3256 break;
65e82032
AC
3257
3258 default:
e2e0b3e5 3259 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 3260 }
ec9499be 3261
0d1e5fa7 3262 infwait_state = infwait_normal_state;
ec9499be 3263 waiton_ptid = pid_to_ptid (-1);
c906108c 3264
488f131b
JB
3265 switch (ecs->ws.kind)
3266 {
3267 case TARGET_WAITKIND_LOADED:
527159b7 3268 if (debug_infrun)
8a9de0e4 3269 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
3270 /* Ignore gracefully during startup of the inferior, as it might
3271 be the shell which has just loaded some objects, otherwise
3272 add the symbols for the newly loaded objects. Also ignore at
3273 the beginning of an attach or remote session; we will query
3274 the full list of libraries once the connection is
3275 established. */
c0236d92 3276 if (stop_soon == NO_STOP_QUIETLY)
488f131b 3277 {
488f131b
JB
3278 /* Check for any newly added shared libraries if we're
3279 supposed to be adding them automatically. Switch
3280 terminal for any messages produced by
3281 breakpoint_re_set. */
3282 target_terminal_ours_for_output ();
aff6338a 3283 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
3284 stack's section table is kept up-to-date. Architectures,
3285 (e.g., PPC64), use the section table to perform
3286 operations such as address => section name and hence
3287 require the table to contain all sections (including
3288 those found in shared libraries). */
b0f4b84b 3289#ifdef SOLIB_ADD
aff6338a 3290 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
b0f4b84b
DJ
3291#else
3292 solib_add (NULL, 0, &current_target, auto_solib_add);
3293#endif
488f131b
JB
3294 target_terminal_inferior ();
3295
b0f4b84b
DJ
3296 /* If requested, stop when the dynamic linker notifies
3297 gdb of events. This allows the user to get control
3298 and place breakpoints in initializer routines for
3299 dynamically loaded objects (among other things). */
3300 if (stop_on_solib_events)
3301 {
55409f9d
DJ
3302 /* Make sure we print "Stopped due to solib-event" in
3303 normal_stop. */
3304 stop_print_frame = 1;
3305
b0f4b84b
DJ
3306 stop_stepping (ecs);
3307 return;
3308 }
3309
3310 /* NOTE drow/2007-05-11: This might be a good place to check
3311 for "catch load". */
488f131b 3312 }
b0f4b84b
DJ
3313
3314 /* If we are skipping through a shell, or through shared library
3315 loading that we aren't interested in, resume the program. If
3316 we're running the program normally, also resume. But stop if
3317 we're attaching or setting up a remote connection. */
3318 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3319 {
74960c60
VP
3320 /* Loading of shared libraries might have changed breakpoint
3321 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
3322 if (stop_soon == NO_STOP_QUIETLY
3323 && !breakpoints_always_inserted_mode ())
74960c60 3324 insert_breakpoints ();
b0f4b84b
DJ
3325 resume (0, TARGET_SIGNAL_0);
3326 prepare_to_wait (ecs);
3327 return;
3328 }
3329
3330 break;
c5aa993b 3331
488f131b 3332 case TARGET_WAITKIND_SPURIOUS:
527159b7 3333 if (debug_infrun)
8a9de0e4 3334 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
3335 resume (0, TARGET_SIGNAL_0);
3336 prepare_to_wait (ecs);
3337 return;
c5aa993b 3338
488f131b 3339 case TARGET_WAITKIND_EXITED:
527159b7 3340 if (debug_infrun)
8a9de0e4 3341 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
fb66883a 3342 inferior_ptid = ecs->ptid;
6c95b8df
PA
3343 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3344 set_current_program_space (current_inferior ()->pspace);
3345 handle_vfork_child_exec_or_exit (0);
1777feb0 3346 target_terminal_ours (); /* Must do this before mourn anyway. */
33d62d64 3347 print_exited_reason (ecs->ws.value.integer);
488f131b
JB
3348
3349 /* Record the exit code in the convenience variable $_exitcode, so
3350 that the user can inspect this again later. */
4fa62494
UW
3351 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3352 (LONGEST) ecs->ws.value.integer);
8cf64490
TT
3353
3354 /* Also record this in the inferior itself. */
3355 current_inferior ()->has_exit_code = 1;
3356 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3357
488f131b
JB
3358 gdb_flush (gdb_stdout);
3359 target_mourn_inferior ();
1c0fdd0e 3360 singlestep_breakpoints_inserted_p = 0;
d03285ec 3361 cancel_single_step_breakpoints ();
488f131b
JB
3362 stop_print_frame = 0;
3363 stop_stepping (ecs);
3364 return;
c5aa993b 3365
488f131b 3366 case TARGET_WAITKIND_SIGNALLED:
527159b7 3367 if (debug_infrun)
8a9de0e4 3368 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
fb66883a 3369 inferior_ptid = ecs->ptid;
6c95b8df
PA
3370 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3371 set_current_program_space (current_inferior ()->pspace);
3372 handle_vfork_child_exec_or_exit (0);
488f131b 3373 stop_print_frame = 0;
1777feb0 3374 target_terminal_ours (); /* Must do this before mourn anyway. */
c5aa993b 3375
488f131b
JB
3376 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
3377 reach here unless the inferior is dead. However, for years
3378 target_kill() was called here, which hints that fatal signals aren't
3379 really fatal on some systems. If that's true, then some changes
1777feb0 3380 may be needed. */
488f131b 3381 target_mourn_inferior ();
c906108c 3382
33d62d64 3383 print_signal_exited_reason (ecs->ws.value.sig);
1c0fdd0e 3384 singlestep_breakpoints_inserted_p = 0;
d03285ec 3385 cancel_single_step_breakpoints ();
488f131b
JB
3386 stop_stepping (ecs);
3387 return;
c906108c 3388
488f131b 3389 /* The following are the only cases in which we keep going;
1777feb0 3390 the above cases end in a continue or goto. */
488f131b 3391 case TARGET_WAITKIND_FORKED:
deb3b17b 3392 case TARGET_WAITKIND_VFORKED:
527159b7 3393 if (debug_infrun)
8a9de0e4 3394 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
c906108c 3395
5a2901d9
DJ
3396 if (!ptid_equal (ecs->ptid, inferior_ptid))
3397 {
0d1e5fa7 3398 context_switch (ecs->ptid);
35f196d9 3399 reinit_frame_cache ();
5a2901d9
DJ
3400 }
3401
b242c3c2
PA
3402 /* Immediately detach breakpoints from the child before there's
3403 any chance of letting the user delete breakpoints from the
3404 breakpoint lists. If we don't do this early, it's easy to
3405 leave left over traps in the child, vis: "break foo; catch
3406 fork; c; <fork>; del; c; <child calls foo>". We only follow
3407 the fork on the last `continue', and by that time the
3408 breakpoint at "foo" is long gone from the breakpoint table.
3409 If we vforked, then we don't need to unpatch here, since both
3410 parent and child are sharing the same memory pages; we'll
3411 need to unpatch at follow/detach time instead to be certain
3412 that new breakpoints added between catchpoint hit time and
3413 vfork follow are detached. */
3414 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3415 {
3416 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
3417
3418 /* This won't actually modify the breakpoint list, but will
3419 physically remove the breakpoints from the child. */
3420 detach_breakpoints (child_pid);
3421 }
3422
d03285ec
UW
3423 if (singlestep_breakpoints_inserted_p)
3424 {
1777feb0 3425 /* Pull the single step breakpoints out of the target. */
d03285ec
UW
3426 remove_single_step_breakpoints ();
3427 singlestep_breakpoints_inserted_p = 0;
3428 }
3429
e58b0e63
PA
3430 /* In case the event is caught by a catchpoint, remember that
3431 the event is to be followed at the next resume of the thread,
3432 and not immediately. */
3433 ecs->event_thread->pending_follow = ecs->ws;
3434
fb14de7b 3435 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 3436
16c381f0 3437 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
3438 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3439 stop_pc, ecs->ptid);
675bf4cb 3440
67822962
PA
3441 /* Note that we're interested in knowing the bpstat actually
3442 causes a stop, not just if it may explain the signal.
3443 Software watchpoints, for example, always appear in the
3444 bpstat. */
16c381f0
JK
3445 ecs->random_signal
3446 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
04e68871
DJ
3447
3448 /* If no catchpoint triggered for this, then keep going. */
3449 if (ecs->random_signal)
3450 {
6c95b8df
PA
3451 ptid_t parent;
3452 ptid_t child;
e58b0e63 3453 int should_resume;
3e43a32a
MS
3454 int follow_child
3455 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 3456
16c381f0 3457 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
e58b0e63
PA
3458
3459 should_resume = follow_fork ();
3460
6c95b8df
PA
3461 parent = ecs->ptid;
3462 child = ecs->ws.value.related_pid;
3463
3464 /* In non-stop mode, also resume the other branch. */
3465 if (non_stop && !detach_fork)
3466 {
3467 if (follow_child)
3468 switch_to_thread (parent);
3469 else
3470 switch_to_thread (child);
3471
3472 ecs->event_thread = inferior_thread ();
3473 ecs->ptid = inferior_ptid;
3474 keep_going (ecs);
3475 }
3476
3477 if (follow_child)
3478 switch_to_thread (child);
3479 else
3480 switch_to_thread (parent);
3481
e58b0e63
PA
3482 ecs->event_thread = inferior_thread ();
3483 ecs->ptid = inferior_ptid;
3484
3485 if (should_resume)
3486 keep_going (ecs);
3487 else
3488 stop_stepping (ecs);
04e68871
DJ
3489 return;
3490 }
16c381f0 3491 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3492 goto process_event_stop_test;
3493
6c95b8df
PA
3494 case TARGET_WAITKIND_VFORK_DONE:
3495 /* Done with the shared memory region. Re-insert breakpoints in
3496 the parent, and keep going. */
3497
3498 if (debug_infrun)
3e43a32a
MS
3499 fprintf_unfiltered (gdb_stdlog,
3500 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
3501
3502 if (!ptid_equal (ecs->ptid, inferior_ptid))
3503 context_switch (ecs->ptid);
3504
3505 current_inferior ()->waiting_for_vfork_done = 0;
56710373 3506 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
3507 /* This also takes care of reinserting breakpoints in the
3508 previously locked inferior. */
3509 keep_going (ecs);
3510 return;
3511
488f131b 3512 case TARGET_WAITKIND_EXECD:
527159b7 3513 if (debug_infrun)
fc5261f2 3514 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 3515
5a2901d9
DJ
3516 if (!ptid_equal (ecs->ptid, inferior_ptid))
3517 {
0d1e5fa7 3518 context_switch (ecs->ptid);
35f196d9 3519 reinit_frame_cache ();
5a2901d9
DJ
3520 }
3521
d03285ec
UW
3522 singlestep_breakpoints_inserted_p = 0;
3523 cancel_single_step_breakpoints ();
3524
fb14de7b 3525 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 3526
6c95b8df
PA
3527 /* Do whatever is necessary to the parent branch of the vfork. */
3528 handle_vfork_child_exec_or_exit (1);
3529
795e548f
PA
3530 /* This causes the eventpoints and symbol table to be reset.
3531 Must do this now, before trying to determine whether to
3532 stop. */
71b43ef8 3533 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 3534
16c381f0 3535 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
3536 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3537 stop_pc, ecs->ptid);
16c381f0
JK
3538 ecs->random_signal
3539 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
795e548f 3540
71b43ef8
PA
3541 /* Note that this may be referenced from inside
3542 bpstat_stop_status above, through inferior_has_execd. */
3543 xfree (ecs->ws.value.execd_pathname);
3544 ecs->ws.value.execd_pathname = NULL;
3545
04e68871
DJ
3546 /* If no catchpoint triggered for this, then keep going. */
3547 if (ecs->random_signal)
3548 {
16c381f0 3549 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
04e68871
DJ
3550 keep_going (ecs);
3551 return;
3552 }
16c381f0 3553 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3554 goto process_event_stop_test;
3555
b4dc5ffa
MK
3556 /* Be careful not to try to gather much state about a thread
3557 that's in a syscall. It's frequently a losing proposition. */
488f131b 3558 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 3559 if (debug_infrun)
3e43a32a
MS
3560 fprintf_unfiltered (gdb_stdlog,
3561 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 3562 /* Getting the current syscall number. */
ca2163eb 3563 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3564 return;
3565 goto process_event_stop_test;
c906108c 3566
488f131b
JB
3567 /* Before examining the threads further, step this thread to
3568 get it entirely out of the syscall. (We get notice of the
3569 event when the thread is just on the verge of exiting a
3570 syscall. Stepping one instruction seems to get it back
b4dc5ffa 3571 into user code.) */
488f131b 3572 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 3573 if (debug_infrun)
3e43a32a
MS
3574 fprintf_unfiltered (gdb_stdlog,
3575 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
ca2163eb 3576 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3577 return;
3578 goto process_event_stop_test;
c906108c 3579
488f131b 3580 case TARGET_WAITKIND_STOPPED:
527159b7 3581 if (debug_infrun)
8a9de0e4 3582 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 3583 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
488f131b 3584 break;
c906108c 3585
b2175913
MS
3586 case TARGET_WAITKIND_NO_HISTORY:
3587 /* Reverse execution: target ran out of history info. */
fb14de7b 3588 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
33d62d64 3589 print_no_history_reason ();
b2175913
MS
3590 stop_stepping (ecs);
3591 return;
488f131b 3592 }
c906108c 3593
488f131b
JB
3594 if (ecs->new_thread_event)
3595 {
94cc34af
PA
3596 if (non_stop)
3597 /* Non-stop assumes that the target handles adding new threads
3598 to the thread list. */
3e43a32a
MS
3599 internal_error (__FILE__, __LINE__,
3600 "targets should add new threads to the thread "
3601 "list themselves in non-stop mode.");
94cc34af
PA
3602
3603 /* We may want to consider not doing a resume here in order to
3604 give the user a chance to play with the new thread. It might
3605 be good to make that a user-settable option. */
3606
3607 /* At this point, all threads are stopped (happens automatically
3608 in either the OS or the native code). Therefore we need to
3609 continue all threads in order to make progress. */
3610
173853dc
PA
3611 if (!ptid_equal (ecs->ptid, inferior_ptid))
3612 context_switch (ecs->ptid);
488f131b
JB
3613 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
3614 prepare_to_wait (ecs);
3615 return;
3616 }
c906108c 3617
2020b7ab 3618 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
3619 {
3620 /* Do we need to clean up the state of a thread that has
3621 completed a displaced single-step? (Doing so usually affects
3622 the PC, so do it here, before we set stop_pc.) */
16c381f0
JK
3623 displaced_step_fixup (ecs->ptid,
3624 ecs->event_thread->suspend.stop_signal);
252fbfc8
PA
3625
3626 /* If we either finished a single-step or hit a breakpoint, but
3627 the user wanted this thread to be stopped, pretend we got a
3628 SIG0 (generic unsignaled stop). */
3629
3630 if (ecs->event_thread->stop_requested
16c381f0
JK
3631 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3632 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
252fbfc8 3633 }
237fc4c9 3634
515630c5 3635 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 3636
527159b7 3637 if (debug_infrun)
237fc4c9 3638 {
5af949e3
UW
3639 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3640 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
3641 struct cleanup *old_chain = save_inferior_ptid ();
3642
3643 inferior_ptid = ecs->ptid;
5af949e3
UW
3644
3645 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3646 paddress (gdbarch, stop_pc));
d92524f1 3647 if (target_stopped_by_watchpoint ())
237fc4c9
PA
3648 {
3649 CORE_ADDR addr;
abbb1732 3650
237fc4c9
PA
3651 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3652
3653 if (target_stopped_data_address (&current_target, &addr))
3654 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
3655 "infrun: stopped data address = %s\n",
3656 paddress (gdbarch, addr));
237fc4c9
PA
3657 else
3658 fprintf_unfiltered (gdb_stdlog,
3659 "infrun: (no data address available)\n");
3660 }
7f82dfc7
JK
3661
3662 do_cleanups (old_chain);
237fc4c9 3663 }
527159b7 3664
9f976b41
DJ
3665 if (stepping_past_singlestep_breakpoint)
3666 {
1c0fdd0e 3667 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
3668 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3669 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3670
3671 stepping_past_singlestep_breakpoint = 0;
3672
3673 /* We've either finished single-stepping past the single-step
8fb3e588
AC
3674 breakpoint, or stopped for some other reason. It would be nice if
3675 we could tell, but we can't reliably. */
16c381f0 3676 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 3677 {
527159b7 3678 if (debug_infrun)
3e43a32a
MS
3679 fprintf_unfiltered (gdb_stdlog,
3680 "infrun: stepping_past_"
3681 "singlestep_breakpoint\n");
9f976b41 3682 /* Pull the single step breakpoints out of the target. */
e0cd558a 3683 remove_single_step_breakpoints ();
9f976b41
DJ
3684 singlestep_breakpoints_inserted_p = 0;
3685
3686 ecs->random_signal = 0;
16c381f0 3687 ecs->event_thread->control.trap_expected = 0;
9f976b41 3688
0d1e5fa7 3689 context_switch (saved_singlestep_ptid);
9a4105ab
AC
3690 if (deprecated_context_hook)
3691 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
3692
3693 resume (1, TARGET_SIGNAL_0);
3694 prepare_to_wait (ecs);
3695 return;
3696 }
3697 }
3698
ca67fcb8 3699 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 3700 {
94cc34af
PA
3701 /* In non-stop mode, there's never a deferred_step_ptid set. */
3702 gdb_assert (!non_stop);
3703
6a6b96b9
UW
3704 /* If we stopped for some other reason than single-stepping, ignore
3705 the fact that we were supposed to switch back. */
16c381f0 3706 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
6a6b96b9
UW
3707 {
3708 if (debug_infrun)
3709 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 3710 "infrun: handling deferred step\n");
6a6b96b9
UW
3711
3712 /* Pull the single step breakpoints out of the target. */
3713 if (singlestep_breakpoints_inserted_p)
3714 {
3715 remove_single_step_breakpoints ();
3716 singlestep_breakpoints_inserted_p = 0;
3717 }
3718
cd3da28e
PA
3719 ecs->event_thread->control.trap_expected = 0;
3720
6a6b96b9
UW
3721 /* Note: We do not call context_switch at this point, as the
3722 context is already set up for stepping the original thread. */
ca67fcb8
VP
3723 switch_to_thread (deferred_step_ptid);
3724 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3725 /* Suppress spurious "Switching to ..." message. */
3726 previous_inferior_ptid = inferior_ptid;
3727
3728 resume (1, TARGET_SIGNAL_0);
3729 prepare_to_wait (ecs);
3730 return;
3731 }
ca67fcb8
VP
3732
3733 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3734 }
3735
488f131b
JB
3736 /* See if a thread hit a thread-specific breakpoint that was meant for
3737 another thread. If so, then step that thread past the breakpoint,
3738 and continue it. */
3739
16c381f0 3740 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
488f131b 3741 {
9f976b41 3742 int thread_hop_needed = 0;
cf00dfa7
VP
3743 struct address_space *aspace =
3744 get_regcache_aspace (get_thread_regcache (ecs->ptid));
9f976b41 3745
f8d40ec8 3746 /* Check if a regular breakpoint has been hit before checking
1777feb0 3747 for a potential single step breakpoint. Otherwise, GDB will
f8d40ec8 3748 not see this breakpoint hit when stepping onto breakpoints. */
6c95b8df 3749 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
488f131b 3750 {
c5aa993b 3751 ecs->random_signal = 0;
6c95b8df 3752 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
9f976b41
DJ
3753 thread_hop_needed = 1;
3754 }
1c0fdd0e 3755 else if (singlestep_breakpoints_inserted_p)
9f976b41 3756 {
fd48f117
DJ
3757 /* We have not context switched yet, so this should be true
3758 no matter which thread hit the singlestep breakpoint. */
3759 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3760 if (debug_infrun)
3761 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3762 "trap for %s\n",
3763 target_pid_to_str (ecs->ptid));
3764
9f976b41
DJ
3765 ecs->random_signal = 0;
3766 /* The call to in_thread_list is necessary because PTIDs sometimes
3767 change when we go from single-threaded to multi-threaded. If
3768 the singlestep_ptid is still in the list, assume that it is
3769 really different from ecs->ptid. */
3770 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3771 && in_thread_list (singlestep_ptid))
3772 {
fd48f117
DJ
3773 /* If the PC of the thread we were trying to single-step
3774 has changed, discard this event (which we were going
3775 to ignore anyway), and pretend we saw that thread
3776 trap. This prevents us continuously moving the
3777 single-step breakpoint forward, one instruction at a
3778 time. If the PC has changed, then the thread we were
3779 trying to single-step has trapped or been signalled,
3780 but the event has not been reported to GDB yet.
3781
3782 There might be some cases where this loses signal
3783 information, if a signal has arrived at exactly the
3784 same time that the PC changed, but this is the best
3785 we can do with the information available. Perhaps we
3786 should arrange to report all events for all threads
3787 when they stop, or to re-poll the remote looking for
3788 this particular thread (i.e. temporarily enable
3789 schedlock). */
515630c5
UW
3790
3791 CORE_ADDR new_singlestep_pc
3792 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3793
3794 if (new_singlestep_pc != singlestep_pc)
fd48f117 3795 {
2020b7ab
PA
3796 enum target_signal stop_signal;
3797
fd48f117
DJ
3798 if (debug_infrun)
3799 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3800 " but expected thread advanced also\n");
3801
3802 /* The current context still belongs to
3803 singlestep_ptid. Don't swap here, since that's
3804 the context we want to use. Just fudge our
3805 state and continue. */
16c381f0
JK
3806 stop_signal = ecs->event_thread->suspend.stop_signal;
3807 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
fd48f117 3808 ecs->ptid = singlestep_ptid;
e09875d4 3809 ecs->event_thread = find_thread_ptid (ecs->ptid);
16c381f0 3810 ecs->event_thread->suspend.stop_signal = stop_signal;
515630c5 3811 stop_pc = new_singlestep_pc;
fd48f117
DJ
3812 }
3813 else
3814 {
3815 if (debug_infrun)
3816 fprintf_unfiltered (gdb_stdlog,
3817 "infrun: unexpected thread\n");
3818
3819 thread_hop_needed = 1;
3820 stepping_past_singlestep_breakpoint = 1;
3821 saved_singlestep_ptid = singlestep_ptid;
3822 }
9f976b41
DJ
3823 }
3824 }
3825
3826 if (thread_hop_needed)
8fb3e588 3827 {
9f5a595d 3828 struct regcache *thread_regcache;
237fc4c9 3829 int remove_status = 0;
8fb3e588 3830
527159b7 3831 if (debug_infrun)
8a9de0e4 3832 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 3833
b3444185
PA
3834 /* Switch context before touching inferior memory, the
3835 previous thread may have exited. */
3836 if (!ptid_equal (inferior_ptid, ecs->ptid))
3837 context_switch (ecs->ptid);
3838
8fb3e588 3839 /* Saw a breakpoint, but it was hit by the wrong thread.
1777feb0 3840 Just continue. */
8fb3e588 3841
1c0fdd0e 3842 if (singlestep_breakpoints_inserted_p)
488f131b 3843 {
1777feb0 3844 /* Pull the single step breakpoints out of the target. */
e0cd558a 3845 remove_single_step_breakpoints ();
8fb3e588
AC
3846 singlestep_breakpoints_inserted_p = 0;
3847 }
3848
237fc4c9
PA
3849 /* If the arch can displace step, don't remove the
3850 breakpoints. */
9f5a595d
UW
3851 thread_regcache = get_thread_regcache (ecs->ptid);
3852 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
3853 remove_status = remove_breakpoints ();
3854
8fb3e588
AC
3855 /* Did we fail to remove breakpoints? If so, try
3856 to set the PC past the bp. (There's at least
3857 one situation in which we can fail to remove
3858 the bp's: On HP-UX's that use ttrace, we can't
3859 change the address space of a vforking child
3860 process until the child exits (well, okay, not
1777feb0 3861 then either :-) or execs. */
8fb3e588 3862 if (remove_status != 0)
9d9cd7ac 3863 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
3864 else
3865 { /* Single step */
94cc34af
PA
3866 if (!non_stop)
3867 {
3868 /* Only need to require the next event from this
3869 thread in all-stop mode. */
3870 waiton_ptid = ecs->ptid;
3871 infwait_state = infwait_thread_hop_state;
3872 }
8fb3e588 3873
4e1c45ea 3874 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588 3875 keep_going (ecs);
8fb3e588
AC
3876 return;
3877 }
488f131b 3878 }
1c0fdd0e 3879 else if (singlestep_breakpoints_inserted_p)
8fb3e588 3880 {
8fb3e588
AC
3881 ecs->random_signal = 0;
3882 }
488f131b
JB
3883 }
3884 else
3885 ecs->random_signal = 1;
c906108c 3886
488f131b 3887 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
3888 so, then switch to that thread. */
3889 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 3890 {
527159b7 3891 if (debug_infrun)
8a9de0e4 3892 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 3893
0d1e5fa7 3894 context_switch (ecs->ptid);
c5aa993b 3895
9a4105ab
AC
3896 if (deprecated_context_hook)
3897 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 3898 }
c906108c 3899
568d6575
UW
3900 /* At this point, get hold of the now-current thread's frame. */
3901 frame = get_current_frame ();
3902 gdbarch = get_frame_arch (frame);
3903
1c0fdd0e 3904 if (singlestep_breakpoints_inserted_p)
488f131b 3905 {
1777feb0 3906 /* Pull the single step breakpoints out of the target. */
e0cd558a 3907 remove_single_step_breakpoints ();
488f131b
JB
3908 singlestep_breakpoints_inserted_p = 0;
3909 }
c906108c 3910
d983da9c
DJ
3911 if (stepped_after_stopped_by_watchpoint)
3912 stopped_by_watchpoint = 0;
3913 else
3914 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3915
3916 /* If necessary, step over this watchpoint. We'll be back to display
3917 it in a moment. */
3918 if (stopped_by_watchpoint
d92524f1 3919 && (target_have_steppable_watchpoint
568d6575 3920 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 3921 {
488f131b
JB
3922 /* At this point, we are stopped at an instruction which has
3923 attempted to write to a piece of memory under control of
3924 a watchpoint. The instruction hasn't actually executed
3925 yet. If we were to evaluate the watchpoint expression
3926 now, we would get the old value, and therefore no change
3927 would seem to have occurred.
3928
3929 In order to make watchpoints work `right', we really need
3930 to complete the memory write, and then evaluate the
d983da9c
DJ
3931 watchpoint expression. We do this by single-stepping the
3932 target.
3933
3934 It may not be necessary to disable the watchpoint to stop over
3935 it. For example, the PA can (with some kernel cooperation)
3936 single step over a watchpoint without disabling the watchpoint.
3937
3938 It is far more common to need to disable a watchpoint to step
3939 the inferior over it. If we have non-steppable watchpoints,
3940 we must disable the current watchpoint; it's simplest to
3941 disable all watchpoints and breakpoints. */
2facfe5c
DD
3942 int hw_step = 1;
3943
d92524f1 3944 if (!target_have_steppable_watchpoint)
2455069d
UW
3945 {
3946 remove_breakpoints ();
3947 /* See comment in resume why we need to stop bypassing signals
3948 while breakpoints have been removed. */
3949 target_pass_signals (0, NULL);
3950 }
2facfe5c 3951 /* Single step */
568d6575 3952 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
2facfe5c 3953 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
0d1e5fa7 3954 waiton_ptid = ecs->ptid;
d92524f1 3955 if (target_have_steppable_watchpoint)
0d1e5fa7 3956 infwait_state = infwait_step_watch_state;
d983da9c 3957 else
0d1e5fa7 3958 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
3959 prepare_to_wait (ecs);
3960 return;
3961 }
3962
7e324e48 3963 clear_stop_func (ecs);
4e1c45ea 3964 ecs->event_thread->stepping_over_breakpoint = 0;
16c381f0
JK
3965 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
3966 ecs->event_thread->control.stop_step = 0;
488f131b
JB
3967 stop_print_frame = 1;
3968 ecs->random_signal = 0;
3969 stopped_by_random_signal = 0;
488f131b 3970
edb3359d
DJ
3971 /* Hide inlined functions starting here, unless we just performed stepi or
3972 nexti. After stepi and nexti, always show the innermost frame (not any
3973 inline function call sites). */
16c381f0 3974 if (ecs->event_thread->control.step_range_end != 1)
edb3359d
DJ
3975 skip_inline_frames (ecs->ptid);
3976
16c381f0
JK
3977 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
3978 && ecs->event_thread->control.trap_expected
568d6575 3979 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 3980 && currently_stepping (ecs->event_thread))
3352ef37 3981 {
b50d7442 3982 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 3983 also on an instruction that needs to be stepped multiple
1777feb0 3984 times before it's been fully executing. E.g., architectures
3352ef37
AC
3985 with a delay slot. It needs to be stepped twice, once for
3986 the instruction and once for the delay slot. */
3987 int step_through_delay
568d6575 3988 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 3989
527159b7 3990 if (debug_infrun && step_through_delay)
8a9de0e4 3991 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
3992 if (ecs->event_thread->control.step_range_end == 0
3993 && step_through_delay)
3352ef37
AC
3994 {
3995 /* The user issued a continue when stopped at a breakpoint.
3996 Set up for another trap and get out of here. */
4e1c45ea 3997 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
3998 keep_going (ecs);
3999 return;
4000 }
4001 else if (step_through_delay)
4002 {
4003 /* The user issued a step when stopped at a breakpoint.
4004 Maybe we should stop, maybe we should not - the delay
4005 slot *might* correspond to a line of source. In any
ca67fcb8
VP
4006 case, don't decide that here, just set
4007 ecs->stepping_over_breakpoint, making sure we
4008 single-step again before breakpoints are re-inserted. */
4e1c45ea 4009 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4010 }
4011 }
4012
488f131b
JB
4013 /* Look at the cause of the stop, and decide what to do.
4014 The alternatives are:
0d1e5fa7
PA
4015 1) stop_stepping and return; to really stop and return to the debugger,
4016 2) keep_going and return to start up again
4e1c45ea 4017 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
4018 3) set ecs->random_signal to 1, and the decision between 1 and 2
4019 will be made according to the signal handling tables. */
4020
16c381f0 4021 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
b0f4b84b
DJ
4022 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
4023 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 4024 {
16c381f0
JK
4025 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4026 && stop_after_trap)
488f131b 4027 {
527159b7 4028 if (debug_infrun)
8a9de0e4 4029 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
4030 stop_print_frame = 0;
4031 stop_stepping (ecs);
4032 return;
4033 }
c54cfec8
EZ
4034
4035 /* This is originated from start_remote(), start_inferior() and
4036 shared libraries hook functions. */
b0f4b84b 4037 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 4038 {
527159b7 4039 if (debug_infrun)
8a9de0e4 4040 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
4041 stop_stepping (ecs);
4042 return;
4043 }
4044
c54cfec8 4045 /* This originates from attach_command(). We need to overwrite
a0d21d28
PA
4046 the stop_signal here, because some kernels don't ignore a
4047 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4048 See more comments in inferior.h. On the other hand, if we
a0ef4274 4049 get a non-SIGSTOP, report it to the user - assume the backend
a0d21d28
PA
4050 will handle the SIGSTOP if it should show up later.
4051
4052 Also consider that the attach is complete when we see a
4053 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4054 target extended-remote report it instead of a SIGSTOP
4055 (e.g. gdbserver). We already rely on SIGTRAP being our
e0ba6746
PA
4056 signal, so this is no exception.
4057
4058 Also consider that the attach is complete when we see a
4059 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4060 the target to stop all threads of the inferior, in case the
4061 low level attach operation doesn't stop them implicitly. If
4062 they weren't stopped implicitly, then the stub will report a
4063 TARGET_SIGNAL_0, meaning: stopped for no particular reason
4064 other than GDB's request. */
a0ef4274 4065 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
16c381f0
JK
4066 && (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_STOP
4067 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4068 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_0))
c54cfec8
EZ
4069 {
4070 stop_stepping (ecs);
16c381f0 4071 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
c54cfec8
EZ
4072 return;
4073 }
4074
fba57f8f 4075 /* See if there is a breakpoint at the current PC. */
16c381f0 4076 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
4077 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4078 stop_pc, ecs->ptid);
4079
fba57f8f
VP
4080 /* Following in case break condition called a
4081 function. */
4082 stop_print_frame = 1;
488f131b 4083
db82e815
PA
4084 /* This is where we handle "moribund" watchpoints. Unlike
4085 software breakpoints traps, hardware watchpoint traps are
4086 always distinguishable from random traps. If no high-level
4087 watchpoint is associated with the reported stop data address
4088 anymore, then the bpstat does not explain the signal ---
4089 simply make sure to ignore it if `stopped_by_watchpoint' is
4090 set. */
4091
4092 if (debug_infrun
16c381f0
JK
4093 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4094 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
db82e815 4095 && stopped_by_watchpoint)
3e43a32a
MS
4096 fprintf_unfiltered (gdb_stdlog,
4097 "infrun: no user watchpoint explains "
4098 "watchpoint SIGTRAP, ignoring\n");
db82e815 4099
73dd234f 4100 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
4101 at one stage in the past included checks for an inferior
4102 function call's call dummy's return breakpoint. The original
4103 comment, that went with the test, read:
73dd234f 4104
8fb3e588
AC
4105 ``End of a stack dummy. Some systems (e.g. Sony news) give
4106 another signal besides SIGTRAP, so check here as well as
4107 above.''
73dd234f 4108
8002d778 4109 If someone ever tries to get call dummys on a
73dd234f 4110 non-executable stack to work (where the target would stop
03cebad2
MK
4111 with something like a SIGSEGV), then those tests might need
4112 to be re-instated. Given, however, that the tests were only
73dd234f 4113 enabled when momentary breakpoints were not being used, I
03cebad2
MK
4114 suspect that it won't be the case.
4115
8fb3e588
AC
4116 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4117 be necessary for call dummies on a non-executable stack on
4118 SPARC. */
73dd234f 4119
16c381f0 4120 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
488f131b 4121 ecs->random_signal
16c381f0 4122 = !(bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
db82e815 4123 || stopped_by_watchpoint
16c381f0
JK
4124 || ecs->event_thread->control.trap_expected
4125 || (ecs->event_thread->control.step_range_end
8358c15c
JK
4126 && (ecs->event_thread->control.step_resume_breakpoint
4127 == NULL)));
488f131b
JB
4128 else
4129 {
16c381f0
JK
4130 ecs->random_signal = !bpstat_explains_signal
4131 (ecs->event_thread->control.stop_bpstat);
488f131b 4132 if (!ecs->random_signal)
16c381f0 4133 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
4134 }
4135 }
4136
4137 /* When we reach this point, we've pretty much decided
4138 that the reason for stopping must've been a random
1777feb0 4139 (unexpected) signal. */
488f131b
JB
4140
4141 else
4142 ecs->random_signal = 1;
488f131b 4143
04e68871 4144process_event_stop_test:
568d6575
UW
4145
4146 /* Re-fetch current thread's frame in case we did a
4147 "goto process_event_stop_test" above. */
4148 frame = get_current_frame ();
4149 gdbarch = get_frame_arch (frame);
4150
488f131b
JB
4151 /* For the program's own signals, act according to
4152 the signal handling tables. */
4153
4154 if (ecs->random_signal)
4155 {
4156 /* Signal not for debugging purposes. */
4157 int printed = 0;
24291992 4158 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
488f131b 4159
527159b7 4160 if (debug_infrun)
2020b7ab 4161 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
16c381f0 4162 ecs->event_thread->suspend.stop_signal);
527159b7 4163
488f131b
JB
4164 stopped_by_random_signal = 1;
4165
16c381f0 4166 if (signal_print[ecs->event_thread->suspend.stop_signal])
488f131b
JB
4167 {
4168 printed = 1;
4169 target_terminal_ours_for_output ();
16c381f0
JK
4170 print_signal_received_reason
4171 (ecs->event_thread->suspend.stop_signal);
488f131b 4172 }
252fbfc8
PA
4173 /* Always stop on signals if we're either just gaining control
4174 of the program, or the user explicitly requested this thread
4175 to remain stopped. */
d6b48e9c 4176 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 4177 || ecs->event_thread->stop_requested
24291992 4178 || (!inf->detaching
16c381f0 4179 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b
JB
4180 {
4181 stop_stepping (ecs);
4182 return;
4183 }
4184 /* If not going to stop, give terminal back
4185 if we took it away. */
4186 else if (printed)
4187 target_terminal_inferior ();
4188
4189 /* Clear the signal if it should not be passed. */
16c381f0
JK
4190 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4191 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
488f131b 4192
fb14de7b 4193 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 4194 && ecs->event_thread->control.trap_expected
8358c15c 4195 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
4196 {
4197 /* We were just starting a new sequence, attempting to
4198 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 4199 Instead this signal arrives. This signal will take us out
68f53502
AC
4200 of the stepping range so GDB needs to remember to, when
4201 the signal handler returns, resume stepping off that
4202 breakpoint. */
4203 /* To simplify things, "continue" is forced to use the same
4204 code paths as single-step - set a breakpoint at the
4205 signal return address and then, once hit, step off that
4206 breakpoint. */
237fc4c9
PA
4207 if (debug_infrun)
4208 fprintf_unfiltered (gdb_stdlog,
4209 "infrun: signal arrived while stepping over "
4210 "breakpoint\n");
d3169d93 4211
2c03e5be 4212 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 4213 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4214 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4215 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4216 keep_going (ecs);
4217 return;
68f53502 4218 }
9d799f85 4219
16c381f0
JK
4220 if (ecs->event_thread->control.step_range_end != 0
4221 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_0
4222 && (ecs->event_thread->control.step_range_start <= stop_pc
4223 && stop_pc < ecs->event_thread->control.step_range_end)
edb3359d 4224 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 4225 ecs->event_thread->control.step_stack_frame_id)
8358c15c 4226 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
4227 {
4228 /* The inferior is about to take a signal that will take it
4229 out of the single step range. Set a breakpoint at the
4230 current PC (which is presumably where the signal handler
4231 will eventually return) and then allow the inferior to
4232 run free.
4233
4234 Note that this is only needed for a signal delivered
4235 while in the single-step range. Nested signals aren't a
4236 problem as they eventually all return. */
237fc4c9
PA
4237 if (debug_infrun)
4238 fprintf_unfiltered (gdb_stdlog,
4239 "infrun: signal may take us out of "
4240 "single-step range\n");
4241
2c03e5be 4242 insert_hp_step_resume_breakpoint_at_frame (frame);
2455069d
UW
4243 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4244 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4245 keep_going (ecs);
4246 return;
d303a6c7 4247 }
9d799f85
AC
4248
4249 /* Note: step_resume_breakpoint may be non-NULL. This occures
4250 when either there's a nested signal, or when there's a
4251 pending signal enabled just as the signal handler returns
4252 (leaving the inferior at the step-resume-breakpoint without
4253 actually executing it). Either way continue until the
4254 breakpoint is really hit. */
488f131b
JB
4255 keep_going (ecs);
4256 return;
4257 }
4258
4259 /* Handle cases caused by hitting a breakpoint. */
4260 {
4261 CORE_ADDR jmp_buf_pc;
4262 struct bpstat_what what;
4263
16c381f0 4264 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
488f131b
JB
4265
4266 if (what.call_dummy)
4267 {
aa7d318d 4268 stop_stack_dummy = what.call_dummy;
c5aa993b 4269 }
c906108c 4270
628fe4e4
JK
4271 /* If we hit an internal event that triggers symbol changes, the
4272 current frame will be invalidated within bpstat_what (e.g., if
4273 we hit an internal solib event). Re-fetch it. */
4274 frame = get_current_frame ();
4275 gdbarch = get_frame_arch (frame);
4276
488f131b 4277 switch (what.main_action)
c5aa993b 4278 {
488f131b 4279 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
611c83ae
PA
4280 /* If we hit the breakpoint at longjmp while stepping, we
4281 install a momentary breakpoint at the target of the
4282 jmp_buf. */
4283
4284 if (debug_infrun)
4285 fprintf_unfiltered (gdb_stdlog,
4286 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4287
4e1c45ea 4288 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 4289
186c406b 4290 if (what.is_longjmp)
c5aa993b 4291 {
186c406b
TT
4292 if (!gdbarch_get_longjmp_target_p (gdbarch)
4293 || !gdbarch_get_longjmp_target (gdbarch,
4294 frame, &jmp_buf_pc))
4295 {
4296 if (debug_infrun)
3e43a32a
MS
4297 fprintf_unfiltered (gdb_stdlog,
4298 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4299 "(!gdbarch_get_longjmp_target)\n");
186c406b
TT
4300 keep_going (ecs);
4301 return;
4302 }
488f131b 4303
186c406b
TT
4304 /* We're going to replace the current step-resume breakpoint
4305 with a longjmp-resume breakpoint. */
4306 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae 4307
186c406b
TT
4308 /* Insert a breakpoint at resume address. */
4309 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4310 }
4311 else
4312 {
4313 struct symbol *func = get_frame_function (frame);
c906108c 4314
186c406b
TT
4315 if (func)
4316 check_exception_resume (ecs, frame, func);
4317 }
488f131b
JB
4318 keep_going (ecs);
4319 return;
c906108c 4320
488f131b 4321 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
527159b7 4322 if (debug_infrun)
611c83ae
PA
4323 fprintf_unfiltered (gdb_stdlog,
4324 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4325
186c406b
TT
4326 if (what.is_longjmp)
4327 {
4328 gdb_assert (ecs->event_thread->control.step_resume_breakpoint
4329 != NULL);
4330 delete_step_resume_breakpoint (ecs->event_thread);
4331 }
4332 else
4333 {
4334 /* There are several cases to consider.
4335
4336 1. The initiating frame no longer exists. In this case
4337 we must stop, because the exception has gone too far.
4338
4339 2. The initiating frame exists, and is the same as the
4340 current frame. We stop, because the exception has been
4341 caught.
4342
4343 3. The initiating frame exists and is different from
4344 the current frame. This means the exception has been
4345 caught beneath the initiating frame, so keep going. */
4346 struct frame_info *init_frame
4347 = frame_find_by_id (ecs->event_thread->initiating_frame);
4348
4349 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4350 != NULL);
4351 delete_exception_resume_breakpoint (ecs->event_thread);
4352
4353 if (init_frame)
4354 {
4355 struct frame_id current_id
4356 = get_frame_id (get_current_frame ());
4357 if (frame_id_eq (current_id,
4358 ecs->event_thread->initiating_frame))
4359 {
4360 /* Case 2. Fall through. */
4361 }
4362 else
4363 {
4364 /* Case 3. */
4365 keep_going (ecs);
4366 return;
4367 }
4368 }
4369
4370 /* For Cases 1 and 2, remove the step-resume breakpoint,
4371 if it exists. */
4372 delete_step_resume_breakpoint (ecs->event_thread);
4373 }
611c83ae 4374
16c381f0 4375 ecs->event_thread->control.stop_step = 1;
33d62d64 4376 print_end_stepping_range_reason ();
611c83ae
PA
4377 stop_stepping (ecs);
4378 return;
488f131b
JB
4379
4380 case BPSTAT_WHAT_SINGLE:
527159b7 4381 if (debug_infrun)
8802d8ed 4382 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4e1c45ea 4383 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b
JB
4384 /* Still need to check other stuff, at least the case
4385 where we are stepping and step out of the right range. */
4386 break;
c906108c 4387
2c03e5be
PA
4388 case BPSTAT_WHAT_STEP_RESUME:
4389 if (debug_infrun)
4390 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4391
4392 delete_step_resume_breakpoint (ecs->event_thread);
9da8c2a0
PA
4393 if (ecs->event_thread->control.proceed_to_finish
4394 && execution_direction == EXEC_REVERSE)
4395 {
4396 struct thread_info *tp = ecs->event_thread;
4397
4398 /* We are finishing a function in reverse, and just hit
4399 the step-resume breakpoint at the start address of the
4400 function, and we're almost there -- just need to back
4401 up by one more single-step, which should take us back
4402 to the function call. */
4403 tp->control.step_range_start = tp->control.step_range_end = 1;
4404 keep_going (ecs);
4405 return;
4406 }
7e324e48 4407 fill_in_stop_func (gdbarch, ecs);
2c03e5be
PA
4408 if (stop_pc == ecs->stop_func_start
4409 && execution_direction == EXEC_REVERSE)
4410 {
4411 /* We are stepping over a function call in reverse, and
4412 just hit the step-resume breakpoint at the start
4413 address of the function. Go back to single-stepping,
4414 which should take us back to the function call. */
4415 ecs->event_thread->stepping_over_breakpoint = 1;
4416 keep_going (ecs);
4417 return;
4418 }
4419 break;
4420
488f131b 4421 case BPSTAT_WHAT_STOP_NOISY:
527159b7 4422 if (debug_infrun)
8802d8ed 4423 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 4424 stop_print_frame = 1;
c906108c 4425
d303a6c7
AC
4426 /* We are about to nuke the step_resume_breakpointt via the
4427 cleanup chain, so no need to worry about it here. */
c5aa993b 4428
488f131b
JB
4429 stop_stepping (ecs);
4430 return;
c5aa993b 4431
488f131b 4432 case BPSTAT_WHAT_STOP_SILENT:
527159b7 4433 if (debug_infrun)
8802d8ed 4434 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 4435 stop_print_frame = 0;
c5aa993b 4436
d303a6c7
AC
4437 /* We are about to nuke the step_resume_breakpoin via the
4438 cleanup chain, so no need to worry about it here. */
c5aa993b 4439
488f131b 4440 stop_stepping (ecs);
e441088d 4441 return;
c5aa993b 4442
2c03e5be 4443 case BPSTAT_WHAT_HP_STEP_RESUME:
527159b7 4444 if (debug_infrun)
2c03e5be 4445 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
527159b7 4446
4e1c45ea
PA
4447 delete_step_resume_breakpoint (ecs->event_thread);
4448 if (ecs->event_thread->step_after_step_resume_breakpoint)
68f53502
AC
4449 {
4450 /* Back when the step-resume breakpoint was inserted, we
4451 were trying to single-step off a breakpoint. Go back
4452 to doing that. */
4e1c45ea
PA
4453 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4454 ecs->event_thread->stepping_over_breakpoint = 1;
68f53502
AC
4455 keep_going (ecs);
4456 return;
4457 }
488f131b
JB
4458 break;
4459
488f131b
JB
4460 case BPSTAT_WHAT_KEEP_CHECKING:
4461 break;
4462 }
4463 }
c906108c 4464
488f131b
JB
4465 /* We come here if we hit a breakpoint but should not
4466 stop for it. Possibly we also were stepping
4467 and should stop for that. So fall through and
4468 test for stepping. But, if not stepping,
4469 do not stop. */
c906108c 4470
a7212384
UW
4471 /* In all-stop mode, if we're currently stepping but have stopped in
4472 some other thread, we need to switch back to the stepped thread. */
4473 if (!non_stop)
4474 {
4475 struct thread_info *tp;
abbb1732 4476
b3444185 4477 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
a7212384
UW
4478 ecs->event_thread);
4479 if (tp)
4480 {
4481 /* However, if the current thread is blocked on some internal
4482 breakpoint, and we simply need to step over that breakpoint
4483 to get it going again, do that first. */
16c381f0
JK
4484 if ((ecs->event_thread->control.trap_expected
4485 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
a7212384
UW
4486 || ecs->event_thread->stepping_over_breakpoint)
4487 {
4488 keep_going (ecs);
4489 return;
4490 }
4491
66852e9c
PA
4492 /* If the stepping thread exited, then don't try to switch
4493 back and resume it, which could fail in several different
4494 ways depending on the target. Instead, just keep going.
4495
4496 We can find a stepping dead thread in the thread list in
4497 two cases:
4498
4499 - The target supports thread exit events, and when the
4500 target tries to delete the thread from the thread list,
4501 inferior_ptid pointed at the exiting thread. In such
4502 case, calling delete_thread does not really remove the
4503 thread from the list; instead, the thread is left listed,
4504 with 'exited' state.
4505
4506 - The target's debug interface does not support thread
4507 exit events, and so we have no idea whatsoever if the
4508 previously stepping thread is still alive. For that
4509 reason, we need to synchronously query the target
4510 now. */
b3444185
PA
4511 if (is_exited (tp->ptid)
4512 || !target_thread_alive (tp->ptid))
4513 {
4514 if (debug_infrun)
3e43a32a
MS
4515 fprintf_unfiltered (gdb_stdlog,
4516 "infrun: not switching back to "
4517 "stepped thread, it has vanished\n");
b3444185
PA
4518
4519 delete_thread (tp->ptid);
4520 keep_going (ecs);
4521 return;
4522 }
4523
a7212384
UW
4524 /* Otherwise, we no longer expect a trap in the current thread.
4525 Clear the trap_expected flag before switching back -- this is
4526 what keep_going would do as well, if we called it. */
16c381f0 4527 ecs->event_thread->control.trap_expected = 0;
a7212384
UW
4528
4529 if (debug_infrun)
4530 fprintf_unfiltered (gdb_stdlog,
4531 "infrun: switching back to stepped thread\n");
4532
4533 ecs->event_thread = tp;
4534 ecs->ptid = tp->ptid;
4535 context_switch (ecs->ptid);
4536 keep_going (ecs);
4537 return;
4538 }
4539 }
4540
9d1ff73f
MS
4541 /* Are we stepping to get the inferior out of the dynamic linker's
4542 hook (and possibly the dld itself) after catching a shlib
4543 event? */
4e1c45ea 4544 if (ecs->event_thread->stepping_through_solib_after_catch)
488f131b
JB
4545 {
4546#if defined(SOLIB_ADD)
1777feb0 4547 /* Have we reached our destination? If not, keep going. */
488f131b
JB
4548 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
4549 {
527159b7 4550 if (debug_infrun)
3e43a32a
MS
4551 fprintf_unfiltered (gdb_stdlog,
4552 "infrun: stepping in dynamic linker\n");
4e1c45ea 4553 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 4554 keep_going (ecs);
104c1213 4555 return;
488f131b
JB
4556 }
4557#endif
527159b7 4558 if (debug_infrun)
8a9de0e4 4559 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
488f131b 4560 /* Else, stop and report the catchpoint(s) whose triggering
1777feb0 4561 caused us to begin stepping. */
4e1c45ea 4562 ecs->event_thread->stepping_through_solib_after_catch = 0;
16c381f0
JK
4563 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4564 ecs->event_thread->control.stop_bpstat
347bddb7 4565 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
4e1c45ea 4566 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
488f131b
JB
4567 stop_print_frame = 1;
4568 stop_stepping (ecs);
4569 return;
4570 }
c906108c 4571
8358c15c 4572 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 4573 {
527159b7 4574 if (debug_infrun)
d3169d93
DJ
4575 fprintf_unfiltered (gdb_stdlog,
4576 "infrun: step-resume breakpoint is inserted\n");
527159b7 4577
488f131b
JB
4578 /* Having a step-resume breakpoint overrides anything
4579 else having to do with stepping commands until
4580 that breakpoint is reached. */
488f131b
JB
4581 keep_going (ecs);
4582 return;
4583 }
c5aa993b 4584
16c381f0 4585 if (ecs->event_thread->control.step_range_end == 0)
488f131b 4586 {
527159b7 4587 if (debug_infrun)
8a9de0e4 4588 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 4589 /* Likewise if we aren't even stepping. */
488f131b
JB
4590 keep_going (ecs);
4591 return;
4592 }
c5aa993b 4593
4b7703ad
JB
4594 /* Re-fetch current thread's frame in case the code above caused
4595 the frame cache to be re-initialized, making our FRAME variable
4596 a dangling pointer. */
4597 frame = get_current_frame ();
628fe4e4 4598 gdbarch = get_frame_arch (frame);
7e324e48 4599 fill_in_stop_func (gdbarch, ecs);
4b7703ad 4600
488f131b 4601 /* If stepping through a line, keep going if still within it.
c906108c 4602
488f131b
JB
4603 Note that step_range_end is the address of the first instruction
4604 beyond the step range, and NOT the address of the last instruction
31410e84
MS
4605 within it!
4606
4607 Note also that during reverse execution, we may be stepping
4608 through a function epilogue and therefore must detect when
4609 the current-frame changes in the middle of a line. */
4610
16c381f0
JK
4611 if (stop_pc >= ecs->event_thread->control.step_range_start
4612 && stop_pc < ecs->event_thread->control.step_range_end
31410e84 4613 && (execution_direction != EXEC_REVERSE
388a8562 4614 || frame_id_eq (get_frame_id (frame),
16c381f0 4615 ecs->event_thread->control.step_frame_id)))
488f131b 4616 {
527159b7 4617 if (debug_infrun)
5af949e3
UW
4618 fprintf_unfiltered
4619 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
4620 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4621 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913
MS
4622
4623 /* When stepping backward, stop at beginning of line range
4624 (unless it's the function entry point, in which case
4625 keep going back to the call point). */
16c381f0 4626 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
4627 && stop_pc != ecs->stop_func_start
4628 && execution_direction == EXEC_REVERSE)
4629 {
16c381f0 4630 ecs->event_thread->control.stop_step = 1;
33d62d64 4631 print_end_stepping_range_reason ();
b2175913
MS
4632 stop_stepping (ecs);
4633 }
4634 else
4635 keep_going (ecs);
4636
488f131b
JB
4637 return;
4638 }
c5aa993b 4639
488f131b 4640 /* We stepped out of the stepping range. */
c906108c 4641
488f131b 4642 /* If we are stepping at the source level and entered the runtime
388a8562
MS
4643 loader dynamic symbol resolution code...
4644
4645 EXEC_FORWARD: we keep on single stepping until we exit the run
4646 time loader code and reach the callee's address.
4647
4648 EXEC_REVERSE: we've already executed the callee (backward), and
4649 the runtime loader code is handled just like any other
4650 undebuggable function call. Now we need only keep stepping
4651 backward through the trampoline code, and that's handled further
4652 down, so there is nothing for us to do here. */
4653
4654 if (execution_direction != EXEC_REVERSE
16c381f0 4655 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 4656 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 4657 {
4c8c40e6 4658 CORE_ADDR pc_after_resolver =
568d6575 4659 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 4660
527159b7 4661 if (debug_infrun)
3e43a32a
MS
4662 fprintf_unfiltered (gdb_stdlog,
4663 "infrun: stepped into dynsym resolve code\n");
527159b7 4664
488f131b
JB
4665 if (pc_after_resolver)
4666 {
4667 /* Set up a step-resume breakpoint at the address
4668 indicated by SKIP_SOLIB_RESOLVER. */
4669 struct symtab_and_line sr_sal;
abbb1732 4670
fe39c653 4671 init_sal (&sr_sal);
488f131b 4672 sr_sal.pc = pc_after_resolver;
6c95b8df 4673 sr_sal.pspace = get_frame_program_space (frame);
488f131b 4674
a6d9a66e
UW
4675 insert_step_resume_breakpoint_at_sal (gdbarch,
4676 sr_sal, null_frame_id);
c5aa993b 4677 }
c906108c 4678
488f131b
JB
4679 keep_going (ecs);
4680 return;
4681 }
c906108c 4682
16c381f0
JK
4683 if (ecs->event_thread->control.step_range_end != 1
4684 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4685 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 4686 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 4687 {
527159b7 4688 if (debug_infrun)
3e43a32a
MS
4689 fprintf_unfiltered (gdb_stdlog,
4690 "infrun: stepped into signal trampoline\n");
42edda50 4691 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
4692 a signal trampoline (either by a signal being delivered or by
4693 the signal handler returning). Just single-step until the
4694 inferior leaves the trampoline (either by calling the handler
4695 or returning). */
488f131b
JB
4696 keep_going (ecs);
4697 return;
4698 }
c906108c 4699
c17eaafe
DJ
4700 /* Check for subroutine calls. The check for the current frame
4701 equalling the step ID is not necessary - the check of the
4702 previous frame's ID is sufficient - but it is a common case and
4703 cheaper than checking the previous frame's ID.
14e60db5
DJ
4704
4705 NOTE: frame_id_eq will never report two invalid frame IDs as
4706 being equal, so to get into this block, both the current and
4707 previous frame must have valid frame IDs. */
005ca36a
JB
4708 /* The outer_frame_id check is a heuristic to detect stepping
4709 through startup code. If we step over an instruction which
4710 sets the stack pointer from an invalid value to a valid value,
4711 we may detect that as a subroutine call from the mythical
4712 "outermost" function. This could be fixed by marking
4713 outermost frames as !stack_p,code_p,special_p. Then the
4714 initial outermost frame, before sp was valid, would
ce6cca6d 4715 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 4716 for more. */
edb3359d 4717 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 4718 ecs->event_thread->control.step_stack_frame_id)
005ca36a 4719 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
4720 ecs->event_thread->control.step_stack_frame_id)
4721 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a
JB
4722 outer_frame_id)
4723 || step_start_function != find_pc_function (stop_pc))))
488f131b 4724 {
95918acb 4725 CORE_ADDR real_stop_pc;
8fb3e588 4726
527159b7 4727 if (debug_infrun)
8a9de0e4 4728 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 4729
16c381f0
JK
4730 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4731 || ((ecs->event_thread->control.step_range_end == 1)
d80b854b 4732 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 4733 ecs->stop_func_start)))
95918acb
AC
4734 {
4735 /* I presume that step_over_calls is only 0 when we're
4736 supposed to be stepping at the assembly language level
4737 ("stepi"). Just stop. */
4738 /* Also, maybe we just did a "nexti" inside a prolog, so we
4739 thought it was a subroutine call but it was not. Stop as
4740 well. FENN */
388a8562 4741 /* And this works the same backward as frontward. MVS */
16c381f0 4742 ecs->event_thread->control.stop_step = 1;
33d62d64 4743 print_end_stepping_range_reason ();
95918acb
AC
4744 stop_stepping (ecs);
4745 return;
4746 }
8fb3e588 4747
388a8562
MS
4748 /* Reverse stepping through solib trampolines. */
4749
4750 if (execution_direction == EXEC_REVERSE
16c381f0 4751 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
4752 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4753 || (ecs->stop_func_start == 0
4754 && in_solib_dynsym_resolve_code (stop_pc))))
4755 {
4756 /* Any solib trampoline code can be handled in reverse
4757 by simply continuing to single-step. We have already
4758 executed the solib function (backwards), and a few
4759 steps will take us back through the trampoline to the
4760 caller. */
4761 keep_going (ecs);
4762 return;
4763 }
4764
16c381f0 4765 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 4766 {
b2175913
MS
4767 /* We're doing a "next".
4768
4769 Normal (forward) execution: set a breakpoint at the
4770 callee's return address (the address at which the caller
4771 will resume).
4772
4773 Reverse (backward) execution. set the step-resume
4774 breakpoint at the start of the function that we just
4775 stepped into (backwards), and continue to there. When we
6130d0b7 4776 get there, we'll need to single-step back to the caller. */
b2175913
MS
4777
4778 if (execution_direction == EXEC_REVERSE)
4779 {
4780 struct symtab_and_line sr_sal;
3067f6e5 4781
388a8562
MS
4782 /* Normal function call return (static or dynamic). */
4783 init_sal (&sr_sal);
4784 sr_sal.pc = ecs->stop_func_start;
6c95b8df
PA
4785 sr_sal.pspace = get_frame_program_space (frame);
4786 insert_step_resume_breakpoint_at_sal (gdbarch,
4787 sr_sal, null_frame_id);
b2175913
MS
4788 }
4789 else
568d6575 4790 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4791
8567c30f
AC
4792 keep_going (ecs);
4793 return;
4794 }
a53c66de 4795
95918acb 4796 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
4797 calling routine and the real function), locate the real
4798 function. That's what tells us (a) whether we want to step
4799 into it at all, and (b) what prologue we want to run to the
4800 end of, if we do step into it. */
568d6575 4801 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 4802 if (real_stop_pc == 0)
568d6575 4803 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
4804 if (real_stop_pc != 0)
4805 ecs->stop_func_start = real_stop_pc;
8fb3e588 4806
db5f024e 4807 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
4808 {
4809 struct symtab_and_line sr_sal;
abbb1732 4810
1b2bfbb9
RC
4811 init_sal (&sr_sal);
4812 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4813 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 4814
a6d9a66e
UW
4815 insert_step_resume_breakpoint_at_sal (gdbarch,
4816 sr_sal, null_frame_id);
8fb3e588
AC
4817 keep_going (ecs);
4818 return;
1b2bfbb9
RC
4819 }
4820
95918acb 4821 /* If we have line number information for the function we are
8fb3e588 4822 thinking of stepping into, step into it.
95918acb 4823
8fb3e588
AC
4824 If there are several symtabs at that PC (e.g. with include
4825 files), just want to know whether *any* of them have line
4826 numbers. find_pc_line handles this. */
95918acb
AC
4827 {
4828 struct symtab_and_line tmp_sal;
8fb3e588 4829
95918acb
AC
4830 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4831 if (tmp_sal.line != 0)
4832 {
b2175913 4833 if (execution_direction == EXEC_REVERSE)
568d6575 4834 handle_step_into_function_backward (gdbarch, ecs);
b2175913 4835 else
568d6575 4836 handle_step_into_function (gdbarch, ecs);
95918acb
AC
4837 return;
4838 }
4839 }
4840
4841 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
4842 set, we stop the step so that the user has a chance to switch
4843 in assembly mode. */
16c381f0 4844 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 4845 && step_stop_if_no_debug)
95918acb 4846 {
16c381f0 4847 ecs->event_thread->control.stop_step = 1;
33d62d64 4848 print_end_stepping_range_reason ();
95918acb
AC
4849 stop_stepping (ecs);
4850 return;
4851 }
4852
b2175913
MS
4853 if (execution_direction == EXEC_REVERSE)
4854 {
4855 /* Set a breakpoint at callee's start address.
4856 From there we can step once and be back in the caller. */
4857 struct symtab_and_line sr_sal;
abbb1732 4858
b2175913
MS
4859 init_sal (&sr_sal);
4860 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4861 sr_sal.pspace = get_frame_program_space (frame);
a6d9a66e
UW
4862 insert_step_resume_breakpoint_at_sal (gdbarch,
4863 sr_sal, null_frame_id);
b2175913
MS
4864 }
4865 else
4866 /* Set a breakpoint at callee's return address (the address
4867 at which the caller will resume). */
568d6575 4868 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4869
95918acb 4870 keep_going (ecs);
488f131b 4871 return;
488f131b 4872 }
c906108c 4873
fdd654f3
MS
4874 /* Reverse stepping through solib trampolines. */
4875
4876 if (execution_direction == EXEC_REVERSE
16c381f0 4877 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
4878 {
4879 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4880 || (ecs->stop_func_start == 0
4881 && in_solib_dynsym_resolve_code (stop_pc)))
4882 {
4883 /* Any solib trampoline code can be handled in reverse
4884 by simply continuing to single-step. We have already
4885 executed the solib function (backwards), and a few
4886 steps will take us back through the trampoline to the
4887 caller. */
4888 keep_going (ecs);
4889 return;
4890 }
4891 else if (in_solib_dynsym_resolve_code (stop_pc))
4892 {
4893 /* Stepped backward into the solib dynsym resolver.
4894 Set a breakpoint at its start and continue, then
4895 one more step will take us out. */
4896 struct symtab_and_line sr_sal;
abbb1732 4897
fdd654f3
MS
4898 init_sal (&sr_sal);
4899 sr_sal.pc = ecs->stop_func_start;
9d1807c3 4900 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
4901 insert_step_resume_breakpoint_at_sal (gdbarch,
4902 sr_sal, null_frame_id);
4903 keep_going (ecs);
4904 return;
4905 }
4906 }
4907
488f131b
JB
4908 /* If we're in the return path from a shared library trampoline,
4909 we want to proceed through the trampoline when stepping. */
568d6575 4910 if (gdbarch_in_solib_return_trampoline (gdbarch,
e76f05fa 4911 stop_pc, ecs->stop_func_name))
488f131b 4912 {
488f131b 4913 /* Determine where this trampoline returns. */
52f729a7 4914 CORE_ADDR real_stop_pc;
abbb1732 4915
568d6575 4916 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
c906108c 4917
527159b7 4918 if (debug_infrun)
3e43a32a
MS
4919 fprintf_unfiltered (gdb_stdlog,
4920 "infrun: stepped into solib return tramp\n");
527159b7 4921
488f131b 4922 /* Only proceed through if we know where it's going. */
d764a824 4923 if (real_stop_pc)
488f131b 4924 {
1777feb0 4925 /* And put the step-breakpoint there and go until there. */
488f131b
JB
4926 struct symtab_and_line sr_sal;
4927
fe39c653 4928 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 4929 sr_sal.pc = real_stop_pc;
488f131b 4930 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 4931 sr_sal.pspace = get_frame_program_space (frame);
44cbf7b5
AC
4932
4933 /* Do not specify what the fp should be when we stop since
4934 on some machines the prologue is where the new fp value
4935 is established. */
a6d9a66e
UW
4936 insert_step_resume_breakpoint_at_sal (gdbarch,
4937 sr_sal, null_frame_id);
c906108c 4938
488f131b
JB
4939 /* Restart without fiddling with the step ranges or
4940 other state. */
4941 keep_going (ecs);
4942 return;
4943 }
4944 }
c906108c 4945
2afb61aa 4946 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 4947
1b2bfbb9
RC
4948 /* NOTE: tausq/2004-05-24: This if block used to be done before all
4949 the trampoline processing logic, however, there are some trampolines
4950 that have no names, so we should do trampoline handling first. */
16c381f0 4951 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 4952 && ecs->stop_func_name == NULL
2afb61aa 4953 && stop_pc_sal.line == 0)
1b2bfbb9 4954 {
527159b7 4955 if (debug_infrun)
3e43a32a
MS
4956 fprintf_unfiltered (gdb_stdlog,
4957 "infrun: stepped into undebuggable function\n");
527159b7 4958
1b2bfbb9 4959 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
4960 undebuggable function (where there is no debugging information
4961 and no line number corresponding to the address where the
1b2bfbb9
RC
4962 inferior stopped). Since we want to skip this kind of code,
4963 we keep going until the inferior returns from this
14e60db5
DJ
4964 function - unless the user has asked us not to (via
4965 set step-mode) or we no longer know how to get back
4966 to the call site. */
4967 if (step_stop_if_no_debug
c7ce8faa 4968 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
4969 {
4970 /* If we have no line number and the step-stop-if-no-debug
4971 is set, we stop the step so that the user has a chance to
4972 switch in assembly mode. */
16c381f0 4973 ecs->event_thread->control.stop_step = 1;
33d62d64 4974 print_end_stepping_range_reason ();
1b2bfbb9
RC
4975 stop_stepping (ecs);
4976 return;
4977 }
4978 else
4979 {
4980 /* Set a breakpoint at callee's return address (the address
4981 at which the caller will resume). */
568d6575 4982 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
4983 keep_going (ecs);
4984 return;
4985 }
4986 }
4987
16c381f0 4988 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
4989 {
4990 /* It is stepi or nexti. We always want to stop stepping after
4991 one instruction. */
527159b7 4992 if (debug_infrun)
8a9de0e4 4993 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
16c381f0 4994 ecs->event_thread->control.stop_step = 1;
33d62d64 4995 print_end_stepping_range_reason ();
1b2bfbb9
RC
4996 stop_stepping (ecs);
4997 return;
4998 }
4999
2afb61aa 5000 if (stop_pc_sal.line == 0)
488f131b
JB
5001 {
5002 /* We have no line number information. That means to stop
5003 stepping (does this always happen right after one instruction,
5004 when we do "s" in a function with no line numbers,
5005 or can this happen as a result of a return or longjmp?). */
527159b7 5006 if (debug_infrun)
8a9de0e4 5007 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
16c381f0 5008 ecs->event_thread->control.stop_step = 1;
33d62d64 5009 print_end_stepping_range_reason ();
488f131b
JB
5010 stop_stepping (ecs);
5011 return;
5012 }
c906108c 5013
edb3359d
DJ
5014 /* Look for "calls" to inlined functions, part one. If the inline
5015 frame machinery detected some skipped call sites, we have entered
5016 a new inline function. */
5017
5018 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5019 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
5020 && inline_skipped_frames (ecs->ptid))
5021 {
5022 struct symtab_and_line call_sal;
5023
5024 if (debug_infrun)
5025 fprintf_unfiltered (gdb_stdlog,
5026 "infrun: stepped into inlined function\n");
5027
5028 find_frame_sal (get_current_frame (), &call_sal);
5029
16c381f0 5030 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
5031 {
5032 /* For "step", we're going to stop. But if the call site
5033 for this inlined function is on the same source line as
5034 we were previously stepping, go down into the function
5035 first. Otherwise stop at the call site. */
5036
5037 if (call_sal.line == ecs->event_thread->current_line
5038 && call_sal.symtab == ecs->event_thread->current_symtab)
5039 step_into_inline_frame (ecs->ptid);
5040
16c381f0 5041 ecs->event_thread->control.stop_step = 1;
33d62d64 5042 print_end_stepping_range_reason ();
edb3359d
DJ
5043 stop_stepping (ecs);
5044 return;
5045 }
5046 else
5047 {
5048 /* For "next", we should stop at the call site if it is on a
5049 different source line. Otherwise continue through the
5050 inlined function. */
5051 if (call_sal.line == ecs->event_thread->current_line
5052 && call_sal.symtab == ecs->event_thread->current_symtab)
5053 keep_going (ecs);
5054 else
5055 {
16c381f0 5056 ecs->event_thread->control.stop_step = 1;
33d62d64 5057 print_end_stepping_range_reason ();
edb3359d
DJ
5058 stop_stepping (ecs);
5059 }
5060 return;
5061 }
5062 }
5063
5064 /* Look for "calls" to inlined functions, part two. If we are still
5065 in the same real function we were stepping through, but we have
5066 to go further up to find the exact frame ID, we are stepping
5067 through a more inlined call beyond its call site. */
5068
5069 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5070 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5071 ecs->event_thread->control.step_frame_id)
edb3359d 5072 && stepped_in_from (get_current_frame (),
16c381f0 5073 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
5074 {
5075 if (debug_infrun)
5076 fprintf_unfiltered (gdb_stdlog,
5077 "infrun: stepping through inlined function\n");
5078
16c381f0 5079 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
5080 keep_going (ecs);
5081 else
5082 {
16c381f0 5083 ecs->event_thread->control.stop_step = 1;
33d62d64 5084 print_end_stepping_range_reason ();
edb3359d
DJ
5085 stop_stepping (ecs);
5086 }
5087 return;
5088 }
5089
2afb61aa 5090 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
5091 && (ecs->event_thread->current_line != stop_pc_sal.line
5092 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
5093 {
5094 /* We are at the start of a different line. So stop. Note that
5095 we don't stop if we step into the middle of a different line.
5096 That is said to make things like for (;;) statements work
5097 better. */
527159b7 5098 if (debug_infrun)
3e43a32a
MS
5099 fprintf_unfiltered (gdb_stdlog,
5100 "infrun: stepped to a different line\n");
16c381f0 5101 ecs->event_thread->control.stop_step = 1;
33d62d64 5102 print_end_stepping_range_reason ();
488f131b
JB
5103 stop_stepping (ecs);
5104 return;
5105 }
c906108c 5106
488f131b 5107 /* We aren't done stepping.
c906108c 5108
488f131b
JB
5109 Optimize by setting the stepping range to the line.
5110 (We might not be in the original line, but if we entered a
5111 new line in mid-statement, we continue stepping. This makes
5112 things like for(;;) statements work better.) */
c906108c 5113
16c381f0
JK
5114 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5115 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
edb3359d 5116 set_step_info (frame, stop_pc_sal);
488f131b 5117
527159b7 5118 if (debug_infrun)
8a9de0e4 5119 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 5120 keep_going (ecs);
104c1213
JM
5121}
5122
b3444185 5123/* Is thread TP in the middle of single-stepping? */
104c1213 5124
a289b8f6 5125static int
b3444185 5126currently_stepping (struct thread_info *tp)
a7212384 5127{
8358c15c
JK
5128 return ((tp->control.step_range_end
5129 && tp->control.step_resume_breakpoint == NULL)
5130 || tp->control.trap_expected
5131 || tp->stepping_through_solib_after_catch
5132 || bpstat_should_step ());
a7212384
UW
5133}
5134
b3444185
PA
5135/* Returns true if any thread *but* the one passed in "data" is in the
5136 middle of stepping or of handling a "next". */
a7212384 5137
104c1213 5138static int
b3444185 5139currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
104c1213 5140{
b3444185
PA
5141 if (tp == data)
5142 return 0;
5143
16c381f0
JK
5144 return (tp->control.step_range_end
5145 || tp->control.trap_expected
b3444185 5146 || tp->stepping_through_solib_after_catch);
104c1213 5147}
c906108c 5148
b2175913
MS
5149/* Inferior has stepped into a subroutine call with source code that
5150 we should not step over. Do step to the first line of code in
5151 it. */
c2c6d25f
JM
5152
5153static void
568d6575
UW
5154handle_step_into_function (struct gdbarch *gdbarch,
5155 struct execution_control_state *ecs)
c2c6d25f
JM
5156{
5157 struct symtab *s;
2afb61aa 5158 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 5159
7e324e48
GB
5160 fill_in_stop_func (gdbarch, ecs);
5161
c2c6d25f
JM
5162 s = find_pc_symtab (stop_pc);
5163 if (s && s->language != language_asm)
568d6575 5164 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 5165 ecs->stop_func_start);
c2c6d25f 5166
2afb61aa 5167 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
5168 /* Use the step_resume_break to step until the end of the prologue,
5169 even if that involves jumps (as it seems to on the vax under
5170 4.2). */
5171 /* If the prologue ends in the middle of a source line, continue to
5172 the end of that source line (if it is still within the function).
5173 Otherwise, just go to end of prologue. */
2afb61aa
PA
5174 if (stop_func_sal.end
5175 && stop_func_sal.pc != ecs->stop_func_start
5176 && stop_func_sal.end < ecs->stop_func_end)
5177 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 5178
2dbd5e30
KB
5179 /* Architectures which require breakpoint adjustment might not be able
5180 to place a breakpoint at the computed address. If so, the test
5181 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5182 ecs->stop_func_start to an address at which a breakpoint may be
5183 legitimately placed.
8fb3e588 5184
2dbd5e30
KB
5185 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5186 made, GDB will enter an infinite loop when stepping through
5187 optimized code consisting of VLIW instructions which contain
5188 subinstructions corresponding to different source lines. On
5189 FR-V, it's not permitted to place a breakpoint on any but the
5190 first subinstruction of a VLIW instruction. When a breakpoint is
5191 set, GDB will adjust the breakpoint address to the beginning of
5192 the VLIW instruction. Thus, we need to make the corresponding
5193 adjustment here when computing the stop address. */
8fb3e588 5194
568d6575 5195 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
5196 {
5197 ecs->stop_func_start
568d6575 5198 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 5199 ecs->stop_func_start);
2dbd5e30
KB
5200 }
5201
c2c6d25f
JM
5202 if (ecs->stop_func_start == stop_pc)
5203 {
5204 /* We are already there: stop now. */
16c381f0 5205 ecs->event_thread->control.stop_step = 1;
33d62d64 5206 print_end_stepping_range_reason ();
c2c6d25f
JM
5207 stop_stepping (ecs);
5208 return;
5209 }
5210 else
5211 {
5212 /* Put the step-breakpoint there and go until there. */
fe39c653 5213 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
5214 sr_sal.pc = ecs->stop_func_start;
5215 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 5216 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 5217
c2c6d25f 5218 /* Do not specify what the fp should be when we stop since on
488f131b
JB
5219 some machines the prologue is where the new fp value is
5220 established. */
a6d9a66e 5221 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
5222
5223 /* And make sure stepping stops right away then. */
16c381f0
JK
5224 ecs->event_thread->control.step_range_end
5225 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
5226 }
5227 keep_going (ecs);
5228}
d4f3574e 5229
b2175913
MS
5230/* Inferior has stepped backward into a subroutine call with source
5231 code that we should not step over. Do step to the beginning of the
5232 last line of code in it. */
5233
5234static void
568d6575
UW
5235handle_step_into_function_backward (struct gdbarch *gdbarch,
5236 struct execution_control_state *ecs)
b2175913
MS
5237{
5238 struct symtab *s;
167e4384 5239 struct symtab_and_line stop_func_sal;
b2175913 5240
7e324e48
GB
5241 fill_in_stop_func (gdbarch, ecs);
5242
b2175913
MS
5243 s = find_pc_symtab (stop_pc);
5244 if (s && s->language != language_asm)
568d6575 5245 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
5246 ecs->stop_func_start);
5247
5248 stop_func_sal = find_pc_line (stop_pc, 0);
5249
5250 /* OK, we're just going to keep stepping here. */
5251 if (stop_func_sal.pc == stop_pc)
5252 {
5253 /* We're there already. Just stop stepping now. */
16c381f0 5254 ecs->event_thread->control.stop_step = 1;
33d62d64 5255 print_end_stepping_range_reason ();
b2175913
MS
5256 stop_stepping (ecs);
5257 }
5258 else
5259 {
5260 /* Else just reset the step range and keep going.
5261 No step-resume breakpoint, they don't work for
5262 epilogues, which can have multiple entry paths. */
16c381f0
JK
5263 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5264 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
5265 keep_going (ecs);
5266 }
5267 return;
5268}
5269
d3169d93 5270/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
5271 This is used to both functions and to skip over code. */
5272
5273static void
2c03e5be
PA
5274insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5275 struct symtab_and_line sr_sal,
5276 struct frame_id sr_id,
5277 enum bptype sr_type)
44cbf7b5 5278{
611c83ae
PA
5279 /* There should never be more than one step-resume or longjmp-resume
5280 breakpoint per thread, so we should never be setting a new
44cbf7b5 5281 step_resume_breakpoint when one is already active. */
8358c15c 5282 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 5283 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
5284
5285 if (debug_infrun)
5286 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5287 "infrun: inserting step-resume breakpoint at %s\n",
5288 paddress (gdbarch, sr_sal.pc));
d3169d93 5289
8358c15c 5290 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
5291 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5292}
5293
9da8c2a0 5294void
2c03e5be
PA
5295insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5296 struct symtab_and_line sr_sal,
5297 struct frame_id sr_id)
5298{
5299 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5300 sr_sal, sr_id,
5301 bp_step_resume);
44cbf7b5 5302}
7ce450bd 5303
2c03e5be
PA
5304/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5305 This is used to skip a potential signal handler.
7ce450bd 5306
14e60db5
DJ
5307 This is called with the interrupted function's frame. The signal
5308 handler, when it returns, will resume the interrupted function at
5309 RETURN_FRAME.pc. */
d303a6c7
AC
5310
5311static void
2c03e5be 5312insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
5313{
5314 struct symtab_and_line sr_sal;
a6d9a66e 5315 struct gdbarch *gdbarch;
d303a6c7 5316
f4c1edd8 5317 gdb_assert (return_frame != NULL);
d303a6c7
AC
5318 init_sal (&sr_sal); /* initialize to zeros */
5319
a6d9a66e 5320 gdbarch = get_frame_arch (return_frame);
568d6575 5321 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 5322 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5323 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 5324
2c03e5be
PA
5325 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5326 get_stack_frame_id (return_frame),
5327 bp_hp_step_resume);
d303a6c7
AC
5328}
5329
2c03e5be
PA
5330/* Insert a "step-resume breakpoint" at the previous frame's PC. This
5331 is used to skip a function after stepping into it (for "next" or if
5332 the called function has no debugging information).
14e60db5
DJ
5333
5334 The current function has almost always been reached by single
5335 stepping a call or return instruction. NEXT_FRAME belongs to the
5336 current function, and the breakpoint will be set at the caller's
5337 resume address.
5338
5339 This is a separate function rather than reusing
2c03e5be 5340 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 5341 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 5342 of frame_unwind_caller_id for an example). */
14e60db5
DJ
5343
5344static void
5345insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5346{
5347 struct symtab_and_line sr_sal;
a6d9a66e 5348 struct gdbarch *gdbarch;
14e60db5
DJ
5349
5350 /* We shouldn't have gotten here if we don't know where the call site
5351 is. */
c7ce8faa 5352 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
5353
5354 init_sal (&sr_sal); /* initialize to zeros */
5355
a6d9a66e 5356 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
5357 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5358 frame_unwind_caller_pc (next_frame));
14e60db5 5359 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5360 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 5361
a6d9a66e 5362 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 5363 frame_unwind_caller_id (next_frame));
14e60db5
DJ
5364}
5365
611c83ae
PA
5366/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5367 new breakpoint at the target of a jmp_buf. The handling of
5368 longjmp-resume uses the same mechanisms used for handling
5369 "step-resume" breakpoints. */
5370
5371static void
a6d9a66e 5372insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae
PA
5373{
5374 /* There should never be more than one step-resume or longjmp-resume
5375 breakpoint per thread, so we should never be setting a new
5376 longjmp_resume_breakpoint when one is already active. */
8358c15c 5377 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
611c83ae
PA
5378
5379 if (debug_infrun)
5380 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5381 "infrun: inserting longjmp-resume breakpoint at %s\n",
5382 paddress (gdbarch, pc));
611c83ae 5383
8358c15c 5384 inferior_thread ()->control.step_resume_breakpoint =
a6d9a66e 5385 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
5386}
5387
186c406b
TT
5388/* Insert an exception resume breakpoint. TP is the thread throwing
5389 the exception. The block B is the block of the unwinder debug hook
5390 function. FRAME is the frame corresponding to the call to this
5391 function. SYM is the symbol of the function argument holding the
5392 target PC of the exception. */
5393
5394static void
5395insert_exception_resume_breakpoint (struct thread_info *tp,
5396 struct block *b,
5397 struct frame_info *frame,
5398 struct symbol *sym)
5399{
5400 struct gdb_exception e;
5401
5402 /* We want to ignore errors here. */
5403 TRY_CATCH (e, RETURN_MASK_ERROR)
5404 {
5405 struct symbol *vsym;
5406 struct value *value;
5407 CORE_ADDR handler;
5408 struct breakpoint *bp;
5409
5410 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5411 value = read_var_value (vsym, frame);
5412 /* If the value was optimized out, revert to the old behavior. */
5413 if (! value_optimized_out (value))
5414 {
5415 handler = value_as_address (value);
5416
5417 if (debug_infrun)
5418 fprintf_unfiltered (gdb_stdlog,
5419 "infrun: exception resume at %lx\n",
5420 (unsigned long) handler);
5421
5422 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5423 handler, bp_exception_resume);
5424 bp->thread = tp->num;
5425 inferior_thread ()->control.exception_resume_breakpoint = bp;
5426 }
5427 }
5428}
5429
5430/* This is called when an exception has been intercepted. Check to
5431 see whether the exception's destination is of interest, and if so,
5432 set an exception resume breakpoint there. */
5433
5434static void
5435check_exception_resume (struct execution_control_state *ecs,
5436 struct frame_info *frame, struct symbol *func)
5437{
5438 struct gdb_exception e;
5439
5440 TRY_CATCH (e, RETURN_MASK_ERROR)
5441 {
5442 struct block *b;
5443 struct dict_iterator iter;
5444 struct symbol *sym;
5445 int argno = 0;
5446
5447 /* The exception breakpoint is a thread-specific breakpoint on
5448 the unwinder's debug hook, declared as:
5449
5450 void _Unwind_DebugHook (void *cfa, void *handler);
5451
5452 The CFA argument indicates the frame to which control is
5453 about to be transferred. HANDLER is the destination PC.
5454
5455 We ignore the CFA and set a temporary breakpoint at HANDLER.
5456 This is not extremely efficient but it avoids issues in gdb
5457 with computing the DWARF CFA, and it also works even in weird
5458 cases such as throwing an exception from inside a signal
5459 handler. */
5460
5461 b = SYMBOL_BLOCK_VALUE (func);
5462 ALL_BLOCK_SYMBOLS (b, iter, sym)
5463 {
5464 if (!SYMBOL_IS_ARGUMENT (sym))
5465 continue;
5466
5467 if (argno == 0)
5468 ++argno;
5469 else
5470 {
5471 insert_exception_resume_breakpoint (ecs->event_thread,
5472 b, frame, sym);
5473 break;
5474 }
5475 }
5476 }
5477}
5478
104c1213
JM
5479static void
5480stop_stepping (struct execution_control_state *ecs)
5481{
527159b7 5482 if (debug_infrun)
8a9de0e4 5483 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 5484
cd0fc7c3
SS
5485 /* Let callers know we don't want to wait for the inferior anymore. */
5486 ecs->wait_some_more = 0;
5487}
5488
d4f3574e
SS
5489/* This function handles various cases where we need to continue
5490 waiting for the inferior. */
1777feb0 5491/* (Used to be the keep_going: label in the old wait_for_inferior). */
d4f3574e
SS
5492
5493static void
5494keep_going (struct execution_control_state *ecs)
5495{
c4dbc9af
PA
5496 /* Make sure normal_stop is called if we get a QUIT handled before
5497 reaching resume. */
5498 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5499
d4f3574e 5500 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
5501 ecs->event_thread->prev_pc
5502 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 5503
d4f3574e
SS
5504 /* If we did not do break;, it means we should keep running the
5505 inferior and not return to debugger. */
5506
16c381f0
JK
5507 if (ecs->event_thread->control.trap_expected
5508 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
d4f3574e
SS
5509 {
5510 /* We took a signal (which we are supposed to pass through to
4e1c45ea
PA
5511 the inferior, else we'd not get here) and we haven't yet
5512 gotten our trap. Simply continue. */
c4dbc9af
PA
5513
5514 discard_cleanups (old_cleanups);
2020b7ab 5515 resume (currently_stepping (ecs->event_thread),
16c381f0 5516 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5517 }
5518 else
5519 {
5520 /* Either the trap was not expected, but we are continuing
488f131b
JB
5521 anyway (the user asked that this signal be passed to the
5522 child)
5523 -- or --
5524 The signal was SIGTRAP, e.g. it was our signal, but we
5525 decided we should resume from it.
d4f3574e 5526
c36b740a 5527 We're going to run this baby now!
d4f3574e 5528
c36b740a
VP
5529 Note that insert_breakpoints won't try to re-insert
5530 already inserted breakpoints. Therefore, we don't
5531 care if breakpoints were already inserted, or not. */
5532
4e1c45ea 5533 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 5534 {
9f5a595d 5535 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
abbb1732 5536
9f5a595d 5537 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
5538 /* Since we can't do a displaced step, we have to remove
5539 the breakpoint while we step it. To keep things
5540 simple, we remove them all. */
5541 remove_breakpoints ();
45e8c884
VP
5542 }
5543 else
d4f3574e 5544 {
e236ba44 5545 struct gdb_exception e;
abbb1732 5546
569631c6
UW
5547 /* Stop stepping when inserting breakpoints
5548 has failed. */
e236ba44
VP
5549 TRY_CATCH (e, RETURN_MASK_ERROR)
5550 {
5551 insert_breakpoints ();
5552 }
5553 if (e.reason < 0)
d4f3574e 5554 {
97bd5475 5555 exception_print (gdb_stderr, e);
d4f3574e
SS
5556 stop_stepping (ecs);
5557 return;
5558 }
d4f3574e
SS
5559 }
5560
16c381f0
JK
5561 ecs->event_thread->control.trap_expected
5562 = ecs->event_thread->stepping_over_breakpoint;
d4f3574e
SS
5563
5564 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
5565 specifies that such a signal should be delivered to the
5566 target program).
5567
5568 Typically, this would occure when a user is debugging a
5569 target monitor on a simulator: the target monitor sets a
5570 breakpoint; the simulator encounters this break-point and
5571 halts the simulation handing control to GDB; GDB, noteing
5572 that the break-point isn't valid, returns control back to the
5573 simulator; the simulator then delivers the hardware
1777feb0 5574 equivalent of a SIGNAL_TRAP to the program being debugged. */
488f131b 5575
16c381f0
JK
5576 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
5577 && !signal_program[ecs->event_thread->suspend.stop_signal])
5578 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
d4f3574e 5579
c4dbc9af 5580 discard_cleanups (old_cleanups);
2020b7ab 5581 resume (currently_stepping (ecs->event_thread),
16c381f0 5582 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5583 }
5584
488f131b 5585 prepare_to_wait (ecs);
d4f3574e
SS
5586}
5587
104c1213
JM
5588/* This function normally comes after a resume, before
5589 handle_inferior_event exits. It takes care of any last bits of
5590 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 5591
104c1213
JM
5592static void
5593prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 5594{
527159b7 5595 if (debug_infrun)
8a9de0e4 5596 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 5597
104c1213
JM
5598 /* This is the old end of the while loop. Let everybody know we
5599 want to wait for the inferior some more and get called again
5600 soon. */
5601 ecs->wait_some_more = 1;
c906108c 5602}
11cf8741 5603
33d62d64
JK
5604/* Several print_*_reason functions to print why the inferior has stopped.
5605 We always print something when the inferior exits, or receives a signal.
5606 The rest of the cases are dealt with later on in normal_stop and
5607 print_it_typical. Ideally there should be a call to one of these
5608 print_*_reason functions functions from handle_inferior_event each time
5609 stop_stepping is called. */
5610
5611/* Print why the inferior has stopped.
5612 We are done with a step/next/si/ni command, print why the inferior has
5613 stopped. For now print nothing. Print a message only if not in the middle
5614 of doing a "step n" operation for n > 1. */
5615
5616static void
5617print_end_stepping_range_reason (void)
5618{
16c381f0
JK
5619 if ((!inferior_thread ()->step_multi
5620 || !inferior_thread ()->control.stop_step)
79a45e25
PA
5621 && ui_out_is_mi_like_p (current_uiout))
5622 ui_out_field_string (current_uiout, "reason",
33d62d64
JK
5623 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5624}
5625
5626/* The inferior was terminated by a signal, print why it stopped. */
5627
11cf8741 5628static void
33d62d64 5629print_signal_exited_reason (enum target_signal siggnal)
11cf8741 5630{
79a45e25
PA
5631 struct ui_out *uiout = current_uiout;
5632
33d62d64
JK
5633 annotate_signalled ();
5634 if (ui_out_is_mi_like_p (uiout))
5635 ui_out_field_string
5636 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5637 ui_out_text (uiout, "\nProgram terminated with signal ");
5638 annotate_signal_name ();
5639 ui_out_field_string (uiout, "signal-name",
5640 target_signal_to_name (siggnal));
5641 annotate_signal_name_end ();
5642 ui_out_text (uiout, ", ");
5643 annotate_signal_string ();
5644 ui_out_field_string (uiout, "signal-meaning",
5645 target_signal_to_string (siggnal));
5646 annotate_signal_string_end ();
5647 ui_out_text (uiout, ".\n");
5648 ui_out_text (uiout, "The program no longer exists.\n");
5649}
5650
5651/* The inferior program is finished, print why it stopped. */
5652
5653static void
5654print_exited_reason (int exitstatus)
5655{
fda326dd
TT
5656 struct inferior *inf = current_inferior ();
5657 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
79a45e25 5658 struct ui_out *uiout = current_uiout;
fda326dd 5659
33d62d64
JK
5660 annotate_exited (exitstatus);
5661 if (exitstatus)
5662 {
5663 if (ui_out_is_mi_like_p (uiout))
5664 ui_out_field_string (uiout, "reason",
5665 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
5666 ui_out_text (uiout, "[Inferior ");
5667 ui_out_text (uiout, plongest (inf->num));
5668 ui_out_text (uiout, " (");
5669 ui_out_text (uiout, pidstr);
5670 ui_out_text (uiout, ") exited with code ");
33d62d64 5671 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 5672 ui_out_text (uiout, "]\n");
33d62d64
JK
5673 }
5674 else
11cf8741 5675 {
9dc5e2a9 5676 if (ui_out_is_mi_like_p (uiout))
034dad6f 5677 ui_out_field_string
33d62d64 5678 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
5679 ui_out_text (uiout, "[Inferior ");
5680 ui_out_text (uiout, plongest (inf->num));
5681 ui_out_text (uiout, " (");
5682 ui_out_text (uiout, pidstr);
5683 ui_out_text (uiout, ") exited normally]\n");
33d62d64
JK
5684 }
5685 /* Support the --return-child-result option. */
5686 return_child_result_value = exitstatus;
5687}
5688
5689/* Signal received, print why the inferior has stopped. The signal table
1777feb0 5690 tells us to print about it. */
33d62d64
JK
5691
5692static void
5693print_signal_received_reason (enum target_signal siggnal)
5694{
79a45e25
PA
5695 struct ui_out *uiout = current_uiout;
5696
33d62d64
JK
5697 annotate_signal ();
5698
5699 if (siggnal == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5700 {
5701 struct thread_info *t = inferior_thread ();
5702
5703 ui_out_text (uiout, "\n[");
5704 ui_out_field_string (uiout, "thread-name",
5705 target_pid_to_str (t->ptid));
5706 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5707 ui_out_text (uiout, " stopped");
5708 }
5709 else
5710 {
5711 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 5712 annotate_signal_name ();
33d62d64
JK
5713 if (ui_out_is_mi_like_p (uiout))
5714 ui_out_field_string
5715 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 5716 ui_out_field_string (uiout, "signal-name",
33d62d64 5717 target_signal_to_name (siggnal));
8b93c638
JM
5718 annotate_signal_name_end ();
5719 ui_out_text (uiout, ", ");
5720 annotate_signal_string ();
488f131b 5721 ui_out_field_string (uiout, "signal-meaning",
33d62d64 5722 target_signal_to_string (siggnal));
8b93c638 5723 annotate_signal_string_end ();
33d62d64
JK
5724 }
5725 ui_out_text (uiout, ".\n");
5726}
252fbfc8 5727
33d62d64
JK
5728/* Reverse execution: target ran out of history info, print why the inferior
5729 has stopped. */
252fbfc8 5730
33d62d64
JK
5731static void
5732print_no_history_reason (void)
5733{
79a45e25 5734 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
11cf8741 5735}
43ff13b4 5736
c906108c
SS
5737/* Here to return control to GDB when the inferior stops for real.
5738 Print appropriate messages, remove breakpoints, give terminal our modes.
5739
5740 STOP_PRINT_FRAME nonzero means print the executing frame
5741 (pc, function, args, file, line number and line text).
5742 BREAKPOINTS_FAILED nonzero means stop was due to error
5743 attempting to insert breakpoints. */
5744
5745void
96baa820 5746normal_stop (void)
c906108c 5747{
73b65bb0
DJ
5748 struct target_waitstatus last;
5749 ptid_t last_ptid;
29f49a6a 5750 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
5751
5752 get_last_target_status (&last_ptid, &last);
5753
29f49a6a
PA
5754 /* If an exception is thrown from this point on, make sure to
5755 propagate GDB's knowledge of the executing state to the
5756 frontend/user running state. A QUIT is an easy exception to see
5757 here, so do this before any filtered output. */
c35b1492
PA
5758 if (!non_stop)
5759 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5760 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5761 && last.kind != TARGET_WAITKIND_EXITED)
5762 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 5763
4f8d22e3
PA
5764 /* In non-stop mode, we don't want GDB to switch threads behind the
5765 user's back, to avoid races where the user is typing a command to
5766 apply to thread x, but GDB switches to thread y before the user
5767 finishes entering the command. */
5768
c906108c
SS
5769 /* As with the notification of thread events, we want to delay
5770 notifying the user that we've switched thread context until
5771 the inferior actually stops.
5772
73b65bb0
DJ
5773 There's no point in saying anything if the inferior has exited.
5774 Note that SIGNALLED here means "exited with a signal", not
5775 "received a signal". */
4f8d22e3
PA
5776 if (!non_stop
5777 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
5778 && target_has_execution
5779 && last.kind != TARGET_WAITKIND_SIGNALLED
5780 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
5781 {
5782 target_terminal_ours_for_output ();
a3f17187 5783 printf_filtered (_("[Switching to %s]\n"),
c95310c6 5784 target_pid_to_str (inferior_ptid));
b8fa951a 5785 annotate_thread_changed ();
39f77062 5786 previous_inferior_ptid = inferior_ptid;
c906108c 5787 }
c906108c 5788
74960c60 5789 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
5790 {
5791 if (remove_breakpoints ())
5792 {
5793 target_terminal_ours_for_output ();
3e43a32a
MS
5794 printf_filtered (_("Cannot remove breakpoints because "
5795 "program is no longer writable.\nFurther "
5796 "execution is probably impossible.\n"));
c906108c
SS
5797 }
5798 }
c906108c 5799
c906108c
SS
5800 /* If an auto-display called a function and that got a signal,
5801 delete that auto-display to avoid an infinite recursion. */
5802
5803 if (stopped_by_random_signal)
5804 disable_current_display ();
5805
5806 /* Don't print a message if in the middle of doing a "step n"
5807 operation for n > 1 */
af679fd0
PA
5808 if (target_has_execution
5809 && last.kind != TARGET_WAITKIND_SIGNALLED
5810 && last.kind != TARGET_WAITKIND_EXITED
5811 && inferior_thread ()->step_multi
16c381f0 5812 && inferior_thread ()->control.stop_step)
c906108c
SS
5813 goto done;
5814
5815 target_terminal_ours ();
5816
7abfe014
DJ
5817 /* Set the current source location. This will also happen if we
5818 display the frame below, but the current SAL will be incorrect
5819 during a user hook-stop function. */
d729566a 5820 if (has_stack_frames () && !stop_stack_dummy)
7abfe014
DJ
5821 set_current_sal_from_frame (get_current_frame (), 1);
5822
dd7e2d2b
PA
5823 /* Let the user/frontend see the threads as stopped. */
5824 do_cleanups (old_chain);
5825
5826 /* Look up the hook_stop and run it (CLI internally handles problem
5827 of stop_command's pre-hook not existing). */
5828 if (stop_command)
5829 catch_errors (hook_stop_stub, stop_command,
5830 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5831
d729566a 5832 if (!has_stack_frames ())
d51fd4c8 5833 goto done;
c906108c 5834
32400beb
PA
5835 if (last.kind == TARGET_WAITKIND_SIGNALLED
5836 || last.kind == TARGET_WAITKIND_EXITED)
5837 goto done;
5838
c906108c
SS
5839 /* Select innermost stack frame - i.e., current frame is frame 0,
5840 and current location is based on that.
5841 Don't do this on return from a stack dummy routine,
1777feb0 5842 or if the program has exited. */
c906108c
SS
5843
5844 if (!stop_stack_dummy)
5845 {
0f7d239c 5846 select_frame (get_current_frame ());
c906108c
SS
5847
5848 /* Print current location without a level number, if
c5aa993b
JM
5849 we have changed functions or hit a breakpoint.
5850 Print source line if we have one.
5851 bpstat_print() contains the logic deciding in detail
1777feb0 5852 what to print, based on the event(s) that just occurred. */
c906108c 5853
d01a8610
AS
5854 /* If --batch-silent is enabled then there's no need to print the current
5855 source location, and to try risks causing an error message about
5856 missing source files. */
5857 if (stop_print_frame && !batch_silent)
c906108c
SS
5858 {
5859 int bpstat_ret;
5860 int source_flag;
917317f4 5861 int do_frame_printing = 1;
347bddb7 5862 struct thread_info *tp = inferior_thread ();
c906108c 5863
16c381f0 5864 bpstat_ret = bpstat_print (tp->control.stop_bpstat);
917317f4
JM
5865 switch (bpstat_ret)
5866 {
5867 case PRINT_UNKNOWN:
b0f4b84b
DJ
5868 /* If we had hit a shared library event breakpoint,
5869 bpstat_print would print out this message. If we hit
5870 an OS-level shared library event, do the same
5871 thing. */
5872 if (last.kind == TARGET_WAITKIND_LOADED)
5873 {
5874 printf_filtered (_("Stopped due to shared library event\n"));
5875 source_flag = SRC_LINE; /* something bogus */
5876 do_frame_printing = 0;
5877 break;
5878 }
5879
aa0cd9c1 5880 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
5881 (or should) carry around the function and does (or
5882 should) use that when doing a frame comparison. */
16c381f0
JK
5883 if (tp->control.stop_step
5884 && frame_id_eq (tp->control.step_frame_id,
aa0cd9c1 5885 get_frame_id (get_current_frame ()))
917317f4 5886 && step_start_function == find_pc_function (stop_pc))
1777feb0
MS
5887 source_flag = SRC_LINE; /* Finished step, just
5888 print source line. */
917317f4 5889 else
1777feb0
MS
5890 source_flag = SRC_AND_LOC; /* Print location and
5891 source line. */
917317f4
JM
5892 break;
5893 case PRINT_SRC_AND_LOC:
1777feb0
MS
5894 source_flag = SRC_AND_LOC; /* Print location and
5895 source line. */
917317f4
JM
5896 break;
5897 case PRINT_SRC_ONLY:
c5394b80 5898 source_flag = SRC_LINE;
917317f4
JM
5899 break;
5900 case PRINT_NOTHING:
488f131b 5901 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
5902 do_frame_printing = 0;
5903 break;
5904 default:
e2e0b3e5 5905 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 5906 }
c906108c
SS
5907
5908 /* The behavior of this routine with respect to the source
5909 flag is:
c5394b80
JM
5910 SRC_LINE: Print only source line
5911 LOCATION: Print only location
1777feb0 5912 SRC_AND_LOC: Print location and source line. */
917317f4 5913 if (do_frame_printing)
b04f3ab4 5914 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
5915
5916 /* Display the auto-display expressions. */
5917 do_displays ();
5918 }
5919 }
5920
5921 /* Save the function value return registers, if we care.
5922 We might be about to restore their previous contents. */
9da8c2a0
PA
5923 if (inferior_thread ()->control.proceed_to_finish
5924 && execution_direction != EXEC_REVERSE)
d5c31457
UW
5925 {
5926 /* This should not be necessary. */
5927 if (stop_registers)
5928 regcache_xfree (stop_registers);
5929
5930 /* NB: The copy goes through to the target picking up the value of
5931 all the registers. */
5932 stop_registers = regcache_dup (get_current_regcache ());
5933 }
c906108c 5934
aa7d318d 5935 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 5936 {
b89667eb
DE
5937 /* Pop the empty frame that contains the stack dummy.
5938 This also restores inferior state prior to the call
16c381f0 5939 (struct infcall_suspend_state). */
b89667eb 5940 struct frame_info *frame = get_current_frame ();
abbb1732 5941
b89667eb
DE
5942 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
5943 frame_pop (frame);
3e43a32a
MS
5944 /* frame_pop() calls reinit_frame_cache as the last thing it
5945 does which means there's currently no selected frame. We
5946 don't need to re-establish a selected frame if the dummy call
5947 returns normally, that will be done by
5948 restore_infcall_control_state. However, we do have to handle
5949 the case where the dummy call is returning after being
5950 stopped (e.g. the dummy call previously hit a breakpoint).
5951 We can't know which case we have so just always re-establish
5952 a selected frame here. */
0f7d239c 5953 select_frame (get_current_frame ());
c906108c
SS
5954 }
5955
c906108c
SS
5956done:
5957 annotate_stopped ();
41d2bdb4
PA
5958
5959 /* Suppress the stop observer if we're in the middle of:
5960
5961 - a step n (n > 1), as there still more steps to be done.
5962
5963 - a "finish" command, as the observer will be called in
5964 finish_command_continuation, so it can include the inferior
5965 function's return value.
5966
5967 - calling an inferior function, as we pretend we inferior didn't
5968 run at all. The return value of the call is handled by the
5969 expression evaluator, through call_function_by_hand. */
5970
5971 if (!target_has_execution
5972 || last.kind == TARGET_WAITKIND_SIGNALLED
5973 || last.kind == TARGET_WAITKIND_EXITED
5974 || (!inferior_thread ()->step_multi
16c381f0
JK
5975 && !(inferior_thread ()->control.stop_bpstat
5976 && inferior_thread ()->control.proceed_to_finish)
5977 && !inferior_thread ()->control.in_infcall))
347bddb7
PA
5978 {
5979 if (!ptid_equal (inferior_ptid, null_ptid))
16c381f0 5980 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
1d33d6ba 5981 stop_print_frame);
347bddb7 5982 else
1d33d6ba 5983 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 5984 }
347bddb7 5985
48844aa6
PA
5986 if (target_has_execution)
5987 {
5988 if (last.kind != TARGET_WAITKIND_SIGNALLED
5989 && last.kind != TARGET_WAITKIND_EXITED)
5990 /* Delete the breakpoint we stopped at, if it wants to be deleted.
5991 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 5992 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 5993 }
6c95b8df
PA
5994
5995 /* Try to get rid of automatically added inferiors that are no
5996 longer needed. Keeping those around slows down things linearly.
5997 Note that this never removes the current inferior. */
5998 prune_inferiors ();
c906108c
SS
5999}
6000
6001static int
96baa820 6002hook_stop_stub (void *cmd)
c906108c 6003{
5913bcb0 6004 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
6005 return (0);
6006}
6007\f
c5aa993b 6008int
96baa820 6009signal_stop_state (int signo)
c906108c 6010{
d6b48e9c 6011 return signal_stop[signo];
c906108c
SS
6012}
6013
c5aa993b 6014int
96baa820 6015signal_print_state (int signo)
c906108c
SS
6016{
6017 return signal_print[signo];
6018}
6019
c5aa993b 6020int
96baa820 6021signal_pass_state (int signo)
c906108c
SS
6022{
6023 return signal_program[signo];
6024}
6025
2455069d
UW
6026static void
6027signal_cache_update (int signo)
6028{
6029 if (signo == -1)
6030 {
6031 for (signo = 0; signo < (int) TARGET_SIGNAL_LAST; signo++)
6032 signal_cache_update (signo);
6033
6034 return;
6035 }
6036
6037 signal_pass[signo] = (signal_stop[signo] == 0
6038 && signal_print[signo] == 0
6039 && signal_program[signo] == 1);
6040}
6041
488f131b 6042int
7bda5e4a 6043signal_stop_update (int signo, int state)
d4f3574e
SS
6044{
6045 int ret = signal_stop[signo];
abbb1732 6046
d4f3574e 6047 signal_stop[signo] = state;
2455069d 6048 signal_cache_update (signo);
d4f3574e
SS
6049 return ret;
6050}
6051
488f131b 6052int
7bda5e4a 6053signal_print_update (int signo, int state)
d4f3574e
SS
6054{
6055 int ret = signal_print[signo];
abbb1732 6056
d4f3574e 6057 signal_print[signo] = state;
2455069d 6058 signal_cache_update (signo);
d4f3574e
SS
6059 return ret;
6060}
6061
488f131b 6062int
7bda5e4a 6063signal_pass_update (int signo, int state)
d4f3574e
SS
6064{
6065 int ret = signal_program[signo];
abbb1732 6066
d4f3574e 6067 signal_program[signo] = state;
2455069d 6068 signal_cache_update (signo);
d4f3574e
SS
6069 return ret;
6070}
6071
c906108c 6072static void
96baa820 6073sig_print_header (void)
c906108c 6074{
3e43a32a
MS
6075 printf_filtered (_("Signal Stop\tPrint\tPass "
6076 "to program\tDescription\n"));
c906108c
SS
6077}
6078
6079static void
96baa820 6080sig_print_info (enum target_signal oursig)
c906108c 6081{
54363045 6082 const char *name = target_signal_to_name (oursig);
c906108c 6083 int name_padding = 13 - strlen (name);
96baa820 6084
c906108c
SS
6085 if (name_padding <= 0)
6086 name_padding = 0;
6087
6088 printf_filtered ("%s", name);
488f131b 6089 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
6090 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6091 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6092 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6093 printf_filtered ("%s\n", target_signal_to_string (oursig));
6094}
6095
6096/* Specify how various signals in the inferior should be handled. */
6097
6098static void
96baa820 6099handle_command (char *args, int from_tty)
c906108c
SS
6100{
6101 char **argv;
6102 int digits, wordlen;
6103 int sigfirst, signum, siglast;
6104 enum target_signal oursig;
6105 int allsigs;
6106 int nsigs;
6107 unsigned char *sigs;
6108 struct cleanup *old_chain;
6109
6110 if (args == NULL)
6111 {
e2e0b3e5 6112 error_no_arg (_("signal to handle"));
c906108c
SS
6113 }
6114
1777feb0 6115 /* Allocate and zero an array of flags for which signals to handle. */
c906108c
SS
6116
6117 nsigs = (int) TARGET_SIGNAL_LAST;
6118 sigs = (unsigned char *) alloca (nsigs);
6119 memset (sigs, 0, nsigs);
6120
1777feb0 6121 /* Break the command line up into args. */
c906108c 6122
d1a41061 6123 argv = gdb_buildargv (args);
7a292a7a 6124 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6125
6126 /* Walk through the args, looking for signal oursigs, signal names, and
6127 actions. Signal numbers and signal names may be interspersed with
6128 actions, with the actions being performed for all signals cumulatively
1777feb0 6129 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
6130
6131 while (*argv != NULL)
6132 {
6133 wordlen = strlen (*argv);
6134 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6135 {;
6136 }
6137 allsigs = 0;
6138 sigfirst = siglast = -1;
6139
6140 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6141 {
6142 /* Apply action to all signals except those used by the
1777feb0 6143 debugger. Silently skip those. */
c906108c
SS
6144 allsigs = 1;
6145 sigfirst = 0;
6146 siglast = nsigs - 1;
6147 }
6148 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6149 {
6150 SET_SIGS (nsigs, sigs, signal_stop);
6151 SET_SIGS (nsigs, sigs, signal_print);
6152 }
6153 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6154 {
6155 UNSET_SIGS (nsigs, sigs, signal_program);
6156 }
6157 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6158 {
6159 SET_SIGS (nsigs, sigs, signal_print);
6160 }
6161 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6162 {
6163 SET_SIGS (nsigs, sigs, signal_program);
6164 }
6165 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6166 {
6167 UNSET_SIGS (nsigs, sigs, signal_stop);
6168 }
6169 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6170 {
6171 SET_SIGS (nsigs, sigs, signal_program);
6172 }
6173 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6174 {
6175 UNSET_SIGS (nsigs, sigs, signal_print);
6176 UNSET_SIGS (nsigs, sigs, signal_stop);
6177 }
6178 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6179 {
6180 UNSET_SIGS (nsigs, sigs, signal_program);
6181 }
6182 else if (digits > 0)
6183 {
6184 /* It is numeric. The numeric signal refers to our own
6185 internal signal numbering from target.h, not to host/target
6186 signal number. This is a feature; users really should be
6187 using symbolic names anyway, and the common ones like
6188 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6189
6190 sigfirst = siglast = (int)
6191 target_signal_from_command (atoi (*argv));
6192 if ((*argv)[digits] == '-')
6193 {
6194 siglast = (int)
6195 target_signal_from_command (atoi ((*argv) + digits + 1));
6196 }
6197 if (sigfirst > siglast)
6198 {
1777feb0 6199 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
6200 signum = sigfirst;
6201 sigfirst = siglast;
6202 siglast = signum;
6203 }
6204 }
6205 else
6206 {
6207 oursig = target_signal_from_name (*argv);
6208 if (oursig != TARGET_SIGNAL_UNKNOWN)
6209 {
6210 sigfirst = siglast = (int) oursig;
6211 }
6212 else
6213 {
6214 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 6215 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
6216 }
6217 }
6218
6219 /* If any signal numbers or symbol names were found, set flags for
1777feb0 6220 which signals to apply actions to. */
c906108c
SS
6221
6222 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6223 {
6224 switch ((enum target_signal) signum)
6225 {
6226 case TARGET_SIGNAL_TRAP:
6227 case TARGET_SIGNAL_INT:
6228 if (!allsigs && !sigs[signum])
6229 {
9e2f0ad4 6230 if (query (_("%s is used by the debugger.\n\
3e43a32a
MS
6231Are you sure you want to change it? "),
6232 target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
6233 {
6234 sigs[signum] = 1;
6235 }
6236 else
6237 {
a3f17187 6238 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
6239 gdb_flush (gdb_stdout);
6240 }
6241 }
6242 break;
6243 case TARGET_SIGNAL_0:
6244 case TARGET_SIGNAL_DEFAULT:
6245 case TARGET_SIGNAL_UNKNOWN:
6246 /* Make sure that "all" doesn't print these. */
6247 break;
6248 default:
6249 sigs[signum] = 1;
6250 break;
6251 }
6252 }
6253
6254 argv++;
6255 }
6256
3a031f65
PA
6257 for (signum = 0; signum < nsigs; signum++)
6258 if (sigs[signum])
6259 {
2455069d
UW
6260 signal_cache_update (-1);
6261 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
c906108c 6262
3a031f65
PA
6263 if (from_tty)
6264 {
6265 /* Show the results. */
6266 sig_print_header ();
6267 for (; signum < nsigs; signum++)
6268 if (sigs[signum])
6269 sig_print_info (signum);
6270 }
6271
6272 break;
6273 }
c906108c
SS
6274
6275 do_cleanups (old_chain);
6276}
6277
6278static void
96baa820 6279xdb_handle_command (char *args, int from_tty)
c906108c
SS
6280{
6281 char **argv;
6282 struct cleanup *old_chain;
6283
d1a41061
PP
6284 if (args == NULL)
6285 error_no_arg (_("xdb command"));
6286
1777feb0 6287 /* Break the command line up into args. */
c906108c 6288
d1a41061 6289 argv = gdb_buildargv (args);
7a292a7a 6290 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6291 if (argv[1] != (char *) NULL)
6292 {
6293 char *argBuf;
6294 int bufLen;
6295
6296 bufLen = strlen (argv[0]) + 20;
6297 argBuf = (char *) xmalloc (bufLen);
6298 if (argBuf)
6299 {
6300 int validFlag = 1;
6301 enum target_signal oursig;
6302
6303 oursig = target_signal_from_name (argv[0]);
6304 memset (argBuf, 0, bufLen);
6305 if (strcmp (argv[1], "Q") == 0)
6306 sprintf (argBuf, "%s %s", argv[0], "noprint");
6307 else
6308 {
6309 if (strcmp (argv[1], "s") == 0)
6310 {
6311 if (!signal_stop[oursig])
6312 sprintf (argBuf, "%s %s", argv[0], "stop");
6313 else
6314 sprintf (argBuf, "%s %s", argv[0], "nostop");
6315 }
6316 else if (strcmp (argv[1], "i") == 0)
6317 {
6318 if (!signal_program[oursig])
6319 sprintf (argBuf, "%s %s", argv[0], "pass");
6320 else
6321 sprintf (argBuf, "%s %s", argv[0], "nopass");
6322 }
6323 else if (strcmp (argv[1], "r") == 0)
6324 {
6325 if (!signal_print[oursig])
6326 sprintf (argBuf, "%s %s", argv[0], "print");
6327 else
6328 sprintf (argBuf, "%s %s", argv[0], "noprint");
6329 }
6330 else
6331 validFlag = 0;
6332 }
6333 if (validFlag)
6334 handle_command (argBuf, from_tty);
6335 else
a3f17187 6336 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 6337 if (argBuf)
b8c9b27d 6338 xfree (argBuf);
c906108c
SS
6339 }
6340 }
6341 do_cleanups (old_chain);
6342}
6343
6344/* Print current contents of the tables set by the handle command.
6345 It is possible we should just be printing signals actually used
6346 by the current target (but for things to work right when switching
6347 targets, all signals should be in the signal tables). */
6348
6349static void
96baa820 6350signals_info (char *signum_exp, int from_tty)
c906108c
SS
6351{
6352 enum target_signal oursig;
abbb1732 6353
c906108c
SS
6354 sig_print_header ();
6355
6356 if (signum_exp)
6357 {
6358 /* First see if this is a symbol name. */
6359 oursig = target_signal_from_name (signum_exp);
6360 if (oursig == TARGET_SIGNAL_UNKNOWN)
6361 {
6362 /* No, try numeric. */
6363 oursig =
bb518678 6364 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
6365 }
6366 sig_print_info (oursig);
6367 return;
6368 }
6369
6370 printf_filtered ("\n");
6371 /* These ugly casts brought to you by the native VAX compiler. */
6372 for (oursig = TARGET_SIGNAL_FIRST;
6373 (int) oursig < (int) TARGET_SIGNAL_LAST;
6374 oursig = (enum target_signal) ((int) oursig + 1))
6375 {
6376 QUIT;
6377
6378 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 6379 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
6380 sig_print_info (oursig);
6381 }
6382
3e43a32a
MS
6383 printf_filtered (_("\nUse the \"handle\" command "
6384 "to change these tables.\n"));
c906108c 6385}
4aa995e1
PA
6386
6387/* The $_siginfo convenience variable is a bit special. We don't know
6388 for sure the type of the value until we actually have a chance to
7a9dd1b2 6389 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
6390 also dependent on which thread you have selected.
6391
6392 1. making $_siginfo be an internalvar that creates a new value on
6393 access.
6394
6395 2. making the value of $_siginfo be an lval_computed value. */
6396
6397/* This function implements the lval_computed support for reading a
6398 $_siginfo value. */
6399
6400static void
6401siginfo_value_read (struct value *v)
6402{
6403 LONGEST transferred;
6404
6405 transferred =
6406 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6407 NULL,
6408 value_contents_all_raw (v),
6409 value_offset (v),
6410 TYPE_LENGTH (value_type (v)));
6411
6412 if (transferred != TYPE_LENGTH (value_type (v)))
6413 error (_("Unable to read siginfo"));
6414}
6415
6416/* This function implements the lval_computed support for writing a
6417 $_siginfo value. */
6418
6419static void
6420siginfo_value_write (struct value *v, struct value *fromval)
6421{
6422 LONGEST transferred;
6423
6424 transferred = target_write (&current_target,
6425 TARGET_OBJECT_SIGNAL_INFO,
6426 NULL,
6427 value_contents_all_raw (fromval),
6428 value_offset (v),
6429 TYPE_LENGTH (value_type (fromval)));
6430
6431 if (transferred != TYPE_LENGTH (value_type (fromval)))
6432 error (_("Unable to write siginfo"));
6433}
6434
c8f2448a 6435static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
6436 {
6437 siginfo_value_read,
6438 siginfo_value_write
6439 };
6440
6441/* Return a new value with the correct type for the siginfo object of
78267919
UW
6442 the current thread using architecture GDBARCH. Return a void value
6443 if there's no object available. */
4aa995e1 6444
2c0b251b 6445static struct value *
78267919 6446siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
4aa995e1 6447{
4aa995e1 6448 if (target_has_stack
78267919
UW
6449 && !ptid_equal (inferior_ptid, null_ptid)
6450 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 6451 {
78267919 6452 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 6453
78267919 6454 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
6455 }
6456
78267919 6457 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
6458}
6459
c906108c 6460\f
16c381f0
JK
6461/* infcall_suspend_state contains state about the program itself like its
6462 registers and any signal it received when it last stopped.
6463 This state must be restored regardless of how the inferior function call
6464 ends (either successfully, or after it hits a breakpoint or signal)
6465 if the program is to properly continue where it left off. */
6466
6467struct infcall_suspend_state
7a292a7a 6468{
16c381f0
JK
6469 struct thread_suspend_state thread_suspend;
6470 struct inferior_suspend_state inferior_suspend;
6471
6472 /* Other fields: */
7a292a7a 6473 CORE_ADDR stop_pc;
b89667eb 6474 struct regcache *registers;
1736ad11 6475
35515841 6476 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
6477 struct gdbarch *siginfo_gdbarch;
6478
6479 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6480 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6481 content would be invalid. */
6482 gdb_byte *siginfo_data;
b89667eb
DE
6483};
6484
16c381f0
JK
6485struct infcall_suspend_state *
6486save_infcall_suspend_state (void)
b89667eb 6487{
16c381f0 6488 struct infcall_suspend_state *inf_state;
b89667eb 6489 struct thread_info *tp = inferior_thread ();
16c381f0 6490 struct inferior *inf = current_inferior ();
1736ad11
JK
6491 struct regcache *regcache = get_current_regcache ();
6492 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6493 gdb_byte *siginfo_data = NULL;
6494
6495 if (gdbarch_get_siginfo_type_p (gdbarch))
6496 {
6497 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6498 size_t len = TYPE_LENGTH (type);
6499 struct cleanup *back_to;
6500
6501 siginfo_data = xmalloc (len);
6502 back_to = make_cleanup (xfree, siginfo_data);
6503
6504 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6505 siginfo_data, 0, len) == len)
6506 discard_cleanups (back_to);
6507 else
6508 {
6509 /* Errors ignored. */
6510 do_cleanups (back_to);
6511 siginfo_data = NULL;
6512 }
6513 }
6514
16c381f0 6515 inf_state = XZALLOC (struct infcall_suspend_state);
1736ad11
JK
6516
6517 if (siginfo_data)
6518 {
6519 inf_state->siginfo_gdbarch = gdbarch;
6520 inf_state->siginfo_data = siginfo_data;
6521 }
b89667eb 6522
16c381f0
JK
6523 inf_state->thread_suspend = tp->suspend;
6524 inf_state->inferior_suspend = inf->suspend;
6525
35515841
JK
6526 /* run_inferior_call will not use the signal due to its `proceed' call with
6527 TARGET_SIGNAL_0 anyway. */
16c381f0 6528 tp->suspend.stop_signal = TARGET_SIGNAL_0;
35515841 6529
b89667eb
DE
6530 inf_state->stop_pc = stop_pc;
6531
1736ad11 6532 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
6533
6534 return inf_state;
6535}
6536
6537/* Restore inferior session state to INF_STATE. */
6538
6539void
16c381f0 6540restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6541{
6542 struct thread_info *tp = inferior_thread ();
16c381f0 6543 struct inferior *inf = current_inferior ();
1736ad11
JK
6544 struct regcache *regcache = get_current_regcache ();
6545 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 6546
16c381f0
JK
6547 tp->suspend = inf_state->thread_suspend;
6548 inf->suspend = inf_state->inferior_suspend;
6549
b89667eb
DE
6550 stop_pc = inf_state->stop_pc;
6551
1736ad11
JK
6552 if (inf_state->siginfo_gdbarch == gdbarch)
6553 {
6554 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6555 size_t len = TYPE_LENGTH (type);
6556
6557 /* Errors ignored. */
6558 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6559 inf_state->siginfo_data, 0, len);
6560 }
6561
b89667eb
DE
6562 /* The inferior can be gone if the user types "print exit(0)"
6563 (and perhaps other times). */
6564 if (target_has_execution)
6565 /* NB: The register write goes through to the target. */
1736ad11 6566 regcache_cpy (regcache, inf_state->registers);
803b5f95 6567
16c381f0 6568 discard_infcall_suspend_state (inf_state);
b89667eb
DE
6569}
6570
6571static void
16c381f0 6572do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 6573{
16c381f0 6574 restore_infcall_suspend_state (state);
b89667eb
DE
6575}
6576
6577struct cleanup *
16c381f0
JK
6578make_cleanup_restore_infcall_suspend_state
6579 (struct infcall_suspend_state *inf_state)
b89667eb 6580{
16c381f0 6581 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
6582}
6583
6584void
16c381f0 6585discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6586{
6587 regcache_xfree (inf_state->registers);
803b5f95 6588 xfree (inf_state->siginfo_data);
b89667eb
DE
6589 xfree (inf_state);
6590}
6591
6592struct regcache *
16c381f0 6593get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
6594{
6595 return inf_state->registers;
6596}
6597
16c381f0
JK
6598/* infcall_control_state contains state regarding gdb's control of the
6599 inferior itself like stepping control. It also contains session state like
6600 the user's currently selected frame. */
b89667eb 6601
16c381f0 6602struct infcall_control_state
b89667eb 6603{
16c381f0
JK
6604 struct thread_control_state thread_control;
6605 struct inferior_control_state inferior_control;
d82142e2
JK
6606
6607 /* Other fields: */
6608 enum stop_stack_kind stop_stack_dummy;
6609 int stopped_by_random_signal;
7a292a7a 6610 int stop_after_trap;
7a292a7a 6611
b89667eb 6612 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 6613 struct frame_id selected_frame_id;
7a292a7a
SS
6614};
6615
c906108c 6616/* Save all of the information associated with the inferior<==>gdb
b89667eb 6617 connection. */
c906108c 6618
16c381f0
JK
6619struct infcall_control_state *
6620save_infcall_control_state (void)
c906108c 6621{
16c381f0 6622 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
4e1c45ea 6623 struct thread_info *tp = inferior_thread ();
d6b48e9c 6624 struct inferior *inf = current_inferior ();
7a292a7a 6625
16c381f0
JK
6626 inf_status->thread_control = tp->control;
6627 inf_status->inferior_control = inf->control;
d82142e2 6628
8358c15c 6629 tp->control.step_resume_breakpoint = NULL;
5b79abe7 6630 tp->control.exception_resume_breakpoint = NULL;
8358c15c 6631
16c381f0
JK
6632 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6633 chain. If caller's caller is walking the chain, they'll be happier if we
6634 hand them back the original chain when restore_infcall_control_state is
6635 called. */
6636 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
6637
6638 /* Other fields: */
6639 inf_status->stop_stack_dummy = stop_stack_dummy;
6640 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6641 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 6642
206415a3 6643 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 6644
7a292a7a 6645 return inf_status;
c906108c
SS
6646}
6647
c906108c 6648static int
96baa820 6649restore_selected_frame (void *args)
c906108c 6650{
488f131b 6651 struct frame_id *fid = (struct frame_id *) args;
c906108c 6652 struct frame_info *frame;
c906108c 6653
101dcfbe 6654 frame = frame_find_by_id (*fid);
c906108c 6655
aa0cd9c1
AC
6656 /* If inf_status->selected_frame_id is NULL, there was no previously
6657 selected frame. */
101dcfbe 6658 if (frame == NULL)
c906108c 6659 {
8a3fe4f8 6660 warning (_("Unable to restore previously selected frame."));
c906108c
SS
6661 return 0;
6662 }
6663
0f7d239c 6664 select_frame (frame);
c906108c
SS
6665
6666 return (1);
6667}
6668
b89667eb
DE
6669/* Restore inferior session state to INF_STATUS. */
6670
c906108c 6671void
16c381f0 6672restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 6673{
4e1c45ea 6674 struct thread_info *tp = inferior_thread ();
d6b48e9c 6675 struct inferior *inf = current_inferior ();
4e1c45ea 6676
8358c15c
JK
6677 if (tp->control.step_resume_breakpoint)
6678 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6679
5b79abe7
TT
6680 if (tp->control.exception_resume_breakpoint)
6681 tp->control.exception_resume_breakpoint->disposition
6682 = disp_del_at_next_stop;
6683
d82142e2 6684 /* Handle the bpstat_copy of the chain. */
16c381f0 6685 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 6686
16c381f0
JK
6687 tp->control = inf_status->thread_control;
6688 inf->control = inf_status->inferior_control;
d82142e2
JK
6689
6690 /* Other fields: */
6691 stop_stack_dummy = inf_status->stop_stack_dummy;
6692 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6693 stop_after_trap = inf_status->stop_after_trap;
c906108c 6694
b89667eb 6695 if (target_has_stack)
c906108c 6696 {
c906108c 6697 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
6698 walking the stack might encounter a garbage pointer and
6699 error() trying to dereference it. */
488f131b
JB
6700 if (catch_errors
6701 (restore_selected_frame, &inf_status->selected_frame_id,
6702 "Unable to restore previously selected frame:\n",
6703 RETURN_MASK_ERROR) == 0)
c906108c
SS
6704 /* Error in restoring the selected frame. Select the innermost
6705 frame. */
0f7d239c 6706 select_frame (get_current_frame ());
c906108c 6707 }
c906108c 6708
72cec141 6709 xfree (inf_status);
7a292a7a 6710}
c906108c 6711
74b7792f 6712static void
16c381f0 6713do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 6714{
16c381f0 6715 restore_infcall_control_state (sts);
74b7792f
AC
6716}
6717
6718struct cleanup *
16c381f0
JK
6719make_cleanup_restore_infcall_control_state
6720 (struct infcall_control_state *inf_status)
74b7792f 6721{
16c381f0 6722 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
6723}
6724
c906108c 6725void
16c381f0 6726discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 6727{
8358c15c
JK
6728 if (inf_status->thread_control.step_resume_breakpoint)
6729 inf_status->thread_control.step_resume_breakpoint->disposition
6730 = disp_del_at_next_stop;
6731
5b79abe7
TT
6732 if (inf_status->thread_control.exception_resume_breakpoint)
6733 inf_status->thread_control.exception_resume_breakpoint->disposition
6734 = disp_del_at_next_stop;
6735
1777feb0 6736 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 6737 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 6738
72cec141 6739 xfree (inf_status);
7a292a7a 6740}
b89667eb 6741\f
47932f85 6742int
3a3e9ee3 6743inferior_has_forked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
6744{
6745 struct target_waitstatus last;
6746 ptid_t last_ptid;
6747
6748 get_last_target_status (&last_ptid, &last);
6749
6750 if (last.kind != TARGET_WAITKIND_FORKED)
6751 return 0;
6752
3a3e9ee3 6753 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
6754 return 0;
6755
6756 *child_pid = last.value.related_pid;
6757 return 1;
6758}
6759
6760int
3a3e9ee3 6761inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
6762{
6763 struct target_waitstatus last;
6764 ptid_t last_ptid;
6765
6766 get_last_target_status (&last_ptid, &last);
6767
6768 if (last.kind != TARGET_WAITKIND_VFORKED)
6769 return 0;
6770
3a3e9ee3 6771 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
6772 return 0;
6773
6774 *child_pid = last.value.related_pid;
6775 return 1;
6776}
6777
6778int
3a3e9ee3 6779inferior_has_execd (ptid_t pid, char **execd_pathname)
47932f85
DJ
6780{
6781 struct target_waitstatus last;
6782 ptid_t last_ptid;
6783
6784 get_last_target_status (&last_ptid, &last);
6785
6786 if (last.kind != TARGET_WAITKIND_EXECD)
6787 return 0;
6788
3a3e9ee3 6789 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
6790 return 0;
6791
6792 *execd_pathname = xstrdup (last.value.execd_pathname);
6793 return 1;
6794}
6795
a96d9b2e
SDJ
6796int
6797inferior_has_called_syscall (ptid_t pid, int *syscall_number)
6798{
6799 struct target_waitstatus last;
6800 ptid_t last_ptid;
6801
6802 get_last_target_status (&last_ptid, &last);
6803
6804 if (last.kind != TARGET_WAITKIND_SYSCALL_ENTRY &&
6805 last.kind != TARGET_WAITKIND_SYSCALL_RETURN)
6806 return 0;
6807
6808 if (!ptid_equal (last_ptid, pid))
6809 return 0;
6810
6811 *syscall_number = last.value.syscall_number;
6812 return 1;
6813}
6814
0723dbf5
PA
6815int
6816ptid_match (ptid_t ptid, ptid_t filter)
6817{
0723dbf5
PA
6818 if (ptid_equal (filter, minus_one_ptid))
6819 return 1;
6820 if (ptid_is_pid (filter)
6821 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6822 return 1;
6823 else if (ptid_equal (ptid, filter))
6824 return 1;
6825
6826 return 0;
6827}
6828
ca6724c1
KB
6829/* restore_inferior_ptid() will be used by the cleanup machinery
6830 to restore the inferior_ptid value saved in a call to
6831 save_inferior_ptid(). */
ce696e05
KB
6832
6833static void
6834restore_inferior_ptid (void *arg)
6835{
6836 ptid_t *saved_ptid_ptr = arg;
abbb1732 6837
ce696e05
KB
6838 inferior_ptid = *saved_ptid_ptr;
6839 xfree (arg);
6840}
6841
6842/* Save the value of inferior_ptid so that it may be restored by a
6843 later call to do_cleanups(). Returns the struct cleanup pointer
6844 needed for later doing the cleanup. */
6845
6846struct cleanup *
6847save_inferior_ptid (void)
6848{
6849 ptid_t *saved_ptid_ptr;
6850
6851 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6852 *saved_ptid_ptr = inferior_ptid;
6853 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6854}
c5aa993b 6855\f
488f131b 6856
b2175913
MS
6857/* User interface for reverse debugging:
6858 Set exec-direction / show exec-direction commands
6859 (returns error unless target implements to_set_exec_direction method). */
6860
32231432 6861int execution_direction = EXEC_FORWARD;
b2175913
MS
6862static const char exec_forward[] = "forward";
6863static const char exec_reverse[] = "reverse";
6864static const char *exec_direction = exec_forward;
6865static const char *exec_direction_names[] = {
6866 exec_forward,
6867 exec_reverse,
6868 NULL
6869};
6870
6871static void
6872set_exec_direction_func (char *args, int from_tty,
6873 struct cmd_list_element *cmd)
6874{
6875 if (target_can_execute_reverse)
6876 {
6877 if (!strcmp (exec_direction, exec_forward))
6878 execution_direction = EXEC_FORWARD;
6879 else if (!strcmp (exec_direction, exec_reverse))
6880 execution_direction = EXEC_REVERSE;
6881 }
8bbed405
MS
6882 else
6883 {
6884 exec_direction = exec_forward;
6885 error (_("Target does not support this operation."));
6886 }
b2175913
MS
6887}
6888
6889static void
6890show_exec_direction_func (struct ui_file *out, int from_tty,
6891 struct cmd_list_element *cmd, const char *value)
6892{
6893 switch (execution_direction) {
6894 case EXEC_FORWARD:
6895 fprintf_filtered (out, _("Forward.\n"));
6896 break;
6897 case EXEC_REVERSE:
6898 fprintf_filtered (out, _("Reverse.\n"));
6899 break;
b2175913 6900 default:
d8b34453
PA
6901 internal_error (__FILE__, __LINE__,
6902 _("bogus execution_direction value: %d"),
6903 (int) execution_direction);
b2175913
MS
6904 }
6905}
6906
6907/* User interface for non-stop mode. */
6908
ad52ddc6 6909int non_stop = 0;
ad52ddc6
PA
6910
6911static void
6912set_non_stop (char *args, int from_tty,
6913 struct cmd_list_element *c)
6914{
6915 if (target_has_execution)
6916 {
6917 non_stop_1 = non_stop;
6918 error (_("Cannot change this setting while the inferior is running."));
6919 }
6920
6921 non_stop = non_stop_1;
6922}
6923
6924static void
6925show_non_stop (struct ui_file *file, int from_tty,
6926 struct cmd_list_element *c, const char *value)
6927{
6928 fprintf_filtered (file,
6929 _("Controlling the inferior in non-stop mode is %s.\n"),
6930 value);
6931}
6932
d4db2f36
PA
6933static void
6934show_schedule_multiple (struct ui_file *file, int from_tty,
6935 struct cmd_list_element *c, const char *value)
6936{
3e43a32a
MS
6937 fprintf_filtered (file, _("Resuming the execution of threads "
6938 "of all processes is %s.\n"), value);
d4db2f36 6939}
ad52ddc6 6940
c906108c 6941void
96baa820 6942_initialize_infrun (void)
c906108c 6943{
52f0bd74
AC
6944 int i;
6945 int numsigs;
c906108c 6946
1bedd215
AC
6947 add_info ("signals", signals_info, _("\
6948What debugger does when program gets various signals.\n\
6949Specify a signal as argument to print info on that signal only."));
c906108c
SS
6950 add_info_alias ("handle", "signals", 0);
6951
1bedd215
AC
6952 add_com ("handle", class_run, handle_command, _("\
6953Specify how to handle a signal.\n\
c906108c
SS
6954Args are signals and actions to apply to those signals.\n\
6955Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6956from 1-15 are allowed for compatibility with old versions of GDB.\n\
6957Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6958The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
6959used by the debugger, typically SIGTRAP and SIGINT.\n\
6960Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
6961\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
6962Stop means reenter debugger if this signal happens (implies print).\n\
6963Print means print a message if this signal happens.\n\
6964Pass means let program see this signal; otherwise program doesn't know.\n\
6965Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 6966Pass and Stop may be combined."));
c906108c
SS
6967 if (xdb_commands)
6968 {
1bedd215
AC
6969 add_com ("lz", class_info, signals_info, _("\
6970What debugger does when program gets various signals.\n\
6971Specify a signal as argument to print info on that signal only."));
6972 add_com ("z", class_run, xdb_handle_command, _("\
6973Specify how to handle a signal.\n\
c906108c
SS
6974Args are signals and actions to apply to those signals.\n\
6975Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6976from 1-15 are allowed for compatibility with old versions of GDB.\n\
6977Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6978The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 6979used by the debugger, typically SIGTRAP and SIGINT.\n\
cce7e648 6980Recognized actions include \"s\" (toggles between stop and nostop),\n\
c906108c
SS
6981\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
6982nopass), \"Q\" (noprint)\n\
6983Stop means reenter debugger if this signal happens (implies print).\n\
6984Print means print a message if this signal happens.\n\
6985Pass means let program see this signal; otherwise program doesn't know.\n\
6986Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 6987Pass and Stop may be combined."));
c906108c
SS
6988 }
6989
6990 if (!dbx_commands)
1a966eab
AC
6991 stop_command = add_cmd ("stop", class_obscure,
6992 not_just_help_class_command, _("\
6993There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 6994This allows you to set a list of commands to be run each time execution\n\
1a966eab 6995of the program stops."), &cmdlist);
c906108c 6996
85c07804
AC
6997 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
6998Set inferior debugging."), _("\
6999Show inferior debugging."), _("\
7000When non-zero, inferior specific debugging is enabled."),
7001 NULL,
920d2a44 7002 show_debug_infrun,
85c07804 7003 &setdebuglist, &showdebuglist);
527159b7 7004
3e43a32a
MS
7005 add_setshow_boolean_cmd ("displaced", class_maintenance,
7006 &debug_displaced, _("\
237fc4c9
PA
7007Set displaced stepping debugging."), _("\
7008Show displaced stepping debugging."), _("\
7009When non-zero, displaced stepping specific debugging is enabled."),
7010 NULL,
7011 show_debug_displaced,
7012 &setdebuglist, &showdebuglist);
7013
ad52ddc6
PA
7014 add_setshow_boolean_cmd ("non-stop", no_class,
7015 &non_stop_1, _("\
7016Set whether gdb controls the inferior in non-stop mode."), _("\
7017Show whether gdb controls the inferior in non-stop mode."), _("\
7018When debugging a multi-threaded program and this setting is\n\
7019off (the default, also called all-stop mode), when one thread stops\n\
7020(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7021all other threads in the program while you interact with the thread of\n\
7022interest. When you continue or step a thread, you can allow the other\n\
7023threads to run, or have them remain stopped, but while you inspect any\n\
7024thread's state, all threads stop.\n\
7025\n\
7026In non-stop mode, when one thread stops, other threads can continue\n\
7027to run freely. You'll be able to step each thread independently,\n\
7028leave it stopped or free to run as needed."),
7029 set_non_stop,
7030 show_non_stop,
7031 &setlist,
7032 &showlist);
7033
c906108c 7034 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 7035 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
7036 signal_print = (unsigned char *)
7037 xmalloc (sizeof (signal_print[0]) * numsigs);
7038 signal_program = (unsigned char *)
7039 xmalloc (sizeof (signal_program[0]) * numsigs);
2455069d
UW
7040 signal_pass = (unsigned char *)
7041 xmalloc (sizeof (signal_program[0]) * numsigs);
c906108c
SS
7042 for (i = 0; i < numsigs; i++)
7043 {
7044 signal_stop[i] = 1;
7045 signal_print[i] = 1;
7046 signal_program[i] = 1;
7047 }
7048
7049 /* Signals caused by debugger's own actions
7050 should not be given to the program afterwards. */
7051 signal_program[TARGET_SIGNAL_TRAP] = 0;
7052 signal_program[TARGET_SIGNAL_INT] = 0;
7053
7054 /* Signals that are not errors should not normally enter the debugger. */
7055 signal_stop[TARGET_SIGNAL_ALRM] = 0;
7056 signal_print[TARGET_SIGNAL_ALRM] = 0;
7057 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
7058 signal_print[TARGET_SIGNAL_VTALRM] = 0;
7059 signal_stop[TARGET_SIGNAL_PROF] = 0;
7060 signal_print[TARGET_SIGNAL_PROF] = 0;
7061 signal_stop[TARGET_SIGNAL_CHLD] = 0;
7062 signal_print[TARGET_SIGNAL_CHLD] = 0;
7063 signal_stop[TARGET_SIGNAL_IO] = 0;
7064 signal_print[TARGET_SIGNAL_IO] = 0;
7065 signal_stop[TARGET_SIGNAL_POLL] = 0;
7066 signal_print[TARGET_SIGNAL_POLL] = 0;
7067 signal_stop[TARGET_SIGNAL_URG] = 0;
7068 signal_print[TARGET_SIGNAL_URG] = 0;
7069 signal_stop[TARGET_SIGNAL_WINCH] = 0;
7070 signal_print[TARGET_SIGNAL_WINCH] = 0;
16dfc9ce
JB
7071 signal_stop[TARGET_SIGNAL_PRIO] = 0;
7072 signal_print[TARGET_SIGNAL_PRIO] = 0;
c906108c 7073
cd0fc7c3
SS
7074 /* These signals are used internally by user-level thread
7075 implementations. (See signal(5) on Solaris.) Like the above
7076 signals, a healthy program receives and handles them as part of
7077 its normal operation. */
7078 signal_stop[TARGET_SIGNAL_LWP] = 0;
7079 signal_print[TARGET_SIGNAL_LWP] = 0;
7080 signal_stop[TARGET_SIGNAL_WAITING] = 0;
7081 signal_print[TARGET_SIGNAL_WAITING] = 0;
7082 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
7083 signal_print[TARGET_SIGNAL_CANCEL] = 0;
7084
2455069d
UW
7085 /* Update cached state. */
7086 signal_cache_update (-1);
7087
85c07804
AC
7088 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7089 &stop_on_solib_events, _("\
7090Set stopping for shared library events."), _("\
7091Show stopping for shared library events."), _("\
c906108c
SS
7092If nonzero, gdb will give control to the user when the dynamic linker\n\
7093notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
7094to the user would be loading/unloading of a new library."),
7095 NULL,
920d2a44 7096 show_stop_on_solib_events,
85c07804 7097 &setlist, &showlist);
c906108c 7098
7ab04401
AC
7099 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7100 follow_fork_mode_kind_names,
7101 &follow_fork_mode_string, _("\
7102Set debugger response to a program call of fork or vfork."), _("\
7103Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
7104A fork or vfork creates a new process. follow-fork-mode can be:\n\
7105 parent - the original process is debugged after a fork\n\
7106 child - the new process is debugged after a fork\n\
ea1dd7bc 7107The unfollowed process will continue to run.\n\
7ab04401
AC
7108By default, the debugger will follow the parent process."),
7109 NULL,
920d2a44 7110 show_follow_fork_mode_string,
7ab04401
AC
7111 &setlist, &showlist);
7112
6c95b8df
PA
7113 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7114 follow_exec_mode_names,
7115 &follow_exec_mode_string, _("\
7116Set debugger response to a program call of exec."), _("\
7117Show debugger response to a program call of exec."), _("\
7118An exec call replaces the program image of a process.\n\
7119\n\
7120follow-exec-mode can be:\n\
7121\n\
cce7e648 7122 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
7123to this new inferior. The program the process was running before\n\
7124the exec call can be restarted afterwards by restarting the original\n\
7125inferior.\n\
7126\n\
7127 same - the debugger keeps the process bound to the same inferior.\n\
7128The new executable image replaces the previous executable loaded in\n\
7129the inferior. Restarting the inferior after the exec call restarts\n\
7130the executable the process was running after the exec call.\n\
7131\n\
7132By default, the debugger will use the same inferior."),
7133 NULL,
7134 show_follow_exec_mode_string,
7135 &setlist, &showlist);
7136
7ab04401
AC
7137 add_setshow_enum_cmd ("scheduler-locking", class_run,
7138 scheduler_enums, &scheduler_mode, _("\
7139Set mode for locking scheduler during execution."), _("\
7140Show mode for locking scheduler during execution."), _("\
c906108c
SS
7141off == no locking (threads may preempt at any time)\n\
7142on == full locking (no thread except the current thread may run)\n\
7143step == scheduler locked during every single-step operation.\n\
7144 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
7145 Other threads may run while stepping over a function call ('next')."),
7146 set_schedlock_func, /* traps on target vector */
920d2a44 7147 show_scheduler_mode,
7ab04401 7148 &setlist, &showlist);
5fbbeb29 7149
d4db2f36
PA
7150 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7151Set mode for resuming threads of all processes."), _("\
7152Show mode for resuming threads of all processes."), _("\
7153When on, execution commands (such as 'continue' or 'next') resume all\n\
7154threads of all processes. When off (which is the default), execution\n\
7155commands only resume the threads of the current process. The set of\n\
7156threads that are resumed is further refined by the scheduler-locking\n\
7157mode (see help set scheduler-locking)."),
7158 NULL,
7159 show_schedule_multiple,
7160 &setlist, &showlist);
7161
5bf193a2
AC
7162 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7163Set mode of the step operation."), _("\
7164Show mode of the step operation."), _("\
7165When set, doing a step over a function without debug line information\n\
7166will stop at the first instruction of that function. Otherwise, the\n\
7167function is skipped and the step command stops at a different source line."),
7168 NULL,
920d2a44 7169 show_step_stop_if_no_debug,
5bf193a2 7170 &setlist, &showlist);
ca6724c1 7171
fff08868
HZ
7172 add_setshow_enum_cmd ("displaced-stepping", class_run,
7173 can_use_displaced_stepping_enum,
7174 &can_use_displaced_stepping, _("\
237fc4c9
PA
7175Set debugger's willingness to use displaced stepping."), _("\
7176Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
7177If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7178supported by the target architecture. If off, gdb will not use displaced\n\
7179stepping to step over breakpoints, even if such is supported by the target\n\
7180architecture. If auto (which is the default), gdb will use displaced stepping\n\
7181if the target architecture supports it and non-stop mode is active, but will not\n\
7182use it in all-stop mode (see help set non-stop)."),
7183 NULL,
7184 show_can_use_displaced_stepping,
7185 &setlist, &showlist);
237fc4c9 7186
b2175913
MS
7187 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7188 &exec_direction, _("Set direction of execution.\n\
7189Options are 'forward' or 'reverse'."),
7190 _("Show direction of execution (forward/reverse)."),
7191 _("Tells gdb whether to execute forward or backward."),
7192 set_exec_direction_func, show_exec_direction_func,
7193 &setlist, &showlist);
7194
6c95b8df
PA
7195 /* Set/show detach-on-fork: user-settable mode. */
7196
7197 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7198Set whether gdb will detach the child of a fork."), _("\
7199Show whether gdb will detach the child of a fork."), _("\
7200Tells gdb whether to detach the child of a fork."),
7201 NULL, NULL, &setlist, &showlist);
7202
ca6724c1 7203 /* ptid initializations */
ca6724c1
KB
7204 inferior_ptid = null_ptid;
7205 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
7206
7207 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 7208 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 7209 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 7210 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
7211
7212 /* Explicitly create without lookup, since that tries to create a
7213 value with a void typed value, and when we get here, gdbarch
7214 isn't initialized yet. At this point, we're quite sure there
7215 isn't another convenience variable of the same name. */
7216 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
d914c394
SS
7217
7218 add_setshow_boolean_cmd ("observer", no_class,
7219 &observer_mode_1, _("\
7220Set whether gdb controls the inferior in observer mode."), _("\
7221Show whether gdb controls the inferior in observer mode."), _("\
7222In observer mode, GDB can get data from the inferior, but not\n\
7223affect its execution. Registers and memory may not be changed,\n\
7224breakpoints may not be set, and the program cannot be interrupted\n\
7225or signalled."),
7226 set_observer_mode,
7227 show_observer_mode,
7228 &setlist,
7229 &showlist);
c906108c 7230}
This page took 1.952973 seconds and 4 git commands to generate.