Make step_start_function be per thread
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
32d0add0 4 Copyright (C) 1986-2015 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
06600e06 41#include "observer.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
c906108c
SS
63
64/* Prototypes for local functions */
65
96baa820 66static void signals_info (char *, int);
c906108c 67
96baa820 68static void handle_command (char *, int);
c906108c 69
2ea28649 70static void sig_print_info (enum gdb_signal);
c906108c 71
96baa820 72static void sig_print_header (void);
c906108c 73
74b7792f 74static void resume_cleanups (void *);
c906108c 75
96baa820 76static int hook_stop_stub (void *);
c906108c 77
96baa820
JM
78static int restore_selected_frame (void *);
79
4ef3f3be 80static int follow_fork (void);
96baa820 81
d83ad864
DB
82static int follow_fork_inferior (int follow_child, int detach_fork);
83
84static void follow_inferior_reset_breakpoints (void);
85
96baa820 86static void set_schedlock_func (char *args, int from_tty,
488f131b 87 struct cmd_list_element *c);
96baa820 88
a289b8f6
JK
89static int currently_stepping (struct thread_info *tp);
90
96baa820
JM
91static void xdb_handle_command (char *args, int from_tty);
92
93void _initialize_infrun (void);
43ff13b4 94
e58b0e63
PA
95void nullify_last_target_wait_ptid (void);
96
2c03e5be 97static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
98
99static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
100
2484c66b
UW
101static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
102
5fbbeb29
CF
103/* When set, stop the 'step' command if we enter a function which has
104 no line number information. The normal behavior is that we step
105 over such function. */
106int step_stop_if_no_debug = 0;
920d2a44
AC
107static void
108show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
109 struct cmd_list_element *c, const char *value)
110{
111 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
112}
5fbbeb29 113
1777feb0 114/* In asynchronous mode, but simulating synchronous execution. */
96baa820 115
43ff13b4
JM
116int sync_execution = 0;
117
b9f437de
PA
118/* proceed and normal_stop use this to notify the user when the
119 inferior stopped in a different thread than it had been running
120 in. */
96baa820 121
39f77062 122static ptid_t previous_inferior_ptid;
7a292a7a 123
07107ca6
LM
124/* If set (default for legacy reasons), when following a fork, GDB
125 will detach from one of the fork branches, child or parent.
126 Exactly which branch is detached depends on 'set follow-fork-mode'
127 setting. */
128
129static int detach_fork = 1;
6c95b8df 130
237fc4c9
PA
131int debug_displaced = 0;
132static void
133show_debug_displaced (struct ui_file *file, int from_tty,
134 struct cmd_list_element *c, const char *value)
135{
136 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
137}
138
ccce17b0 139unsigned int debug_infrun = 0;
920d2a44
AC
140static void
141show_debug_infrun (struct ui_file *file, int from_tty,
142 struct cmd_list_element *c, const char *value)
143{
144 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
145}
527159b7 146
03583c20
UW
147
148/* Support for disabling address space randomization. */
149
150int disable_randomization = 1;
151
152static void
153show_disable_randomization (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155{
156 if (target_supports_disable_randomization ())
157 fprintf_filtered (file,
158 _("Disabling randomization of debuggee's "
159 "virtual address space is %s.\n"),
160 value);
161 else
162 fputs_filtered (_("Disabling randomization of debuggee's "
163 "virtual address space is unsupported on\n"
164 "this platform.\n"), file);
165}
166
167static void
168set_disable_randomization (char *args, int from_tty,
169 struct cmd_list_element *c)
170{
171 if (!target_supports_disable_randomization ())
172 error (_("Disabling randomization of debuggee's "
173 "virtual address space is unsupported on\n"
174 "this platform."));
175}
176
d32dc48e
PA
177/* User interface for non-stop mode. */
178
179int non_stop = 0;
180static int non_stop_1 = 0;
181
182static void
183set_non_stop (char *args, int from_tty,
184 struct cmd_list_element *c)
185{
186 if (target_has_execution)
187 {
188 non_stop_1 = non_stop;
189 error (_("Cannot change this setting while the inferior is running."));
190 }
191
192 non_stop = non_stop_1;
193}
194
195static void
196show_non_stop (struct ui_file *file, int from_tty,
197 struct cmd_list_element *c, const char *value)
198{
199 fprintf_filtered (file,
200 _("Controlling the inferior in non-stop mode is %s.\n"),
201 value);
202}
203
d914c394
SS
204/* "Observer mode" is somewhat like a more extreme version of
205 non-stop, in which all GDB operations that might affect the
206 target's execution have been disabled. */
207
d914c394
SS
208int observer_mode = 0;
209static int observer_mode_1 = 0;
210
211static void
212set_observer_mode (char *args, int from_tty,
213 struct cmd_list_element *c)
214{
d914c394
SS
215 if (target_has_execution)
216 {
217 observer_mode_1 = observer_mode;
218 error (_("Cannot change this setting while the inferior is running."));
219 }
220
221 observer_mode = observer_mode_1;
222
223 may_write_registers = !observer_mode;
224 may_write_memory = !observer_mode;
225 may_insert_breakpoints = !observer_mode;
226 may_insert_tracepoints = !observer_mode;
227 /* We can insert fast tracepoints in or out of observer mode,
228 but enable them if we're going into this mode. */
229 if (observer_mode)
230 may_insert_fast_tracepoints = 1;
231 may_stop = !observer_mode;
232 update_target_permissions ();
233
234 /* Going *into* observer mode we must force non-stop, then
235 going out we leave it that way. */
236 if (observer_mode)
237 {
d914c394
SS
238 pagination_enabled = 0;
239 non_stop = non_stop_1 = 1;
240 }
241
242 if (from_tty)
243 printf_filtered (_("Observer mode is now %s.\n"),
244 (observer_mode ? "on" : "off"));
245}
246
247static void
248show_observer_mode (struct ui_file *file, int from_tty,
249 struct cmd_list_element *c, const char *value)
250{
251 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
252}
253
254/* This updates the value of observer mode based on changes in
255 permissions. Note that we are deliberately ignoring the values of
256 may-write-registers and may-write-memory, since the user may have
257 reason to enable these during a session, for instance to turn on a
258 debugging-related global. */
259
260void
261update_observer_mode (void)
262{
263 int newval;
264
265 newval = (!may_insert_breakpoints
266 && !may_insert_tracepoints
267 && may_insert_fast_tracepoints
268 && !may_stop
269 && non_stop);
270
271 /* Let the user know if things change. */
272 if (newval != observer_mode)
273 printf_filtered (_("Observer mode is now %s.\n"),
274 (newval ? "on" : "off"));
275
276 observer_mode = observer_mode_1 = newval;
277}
c2c6d25f 278
c906108c
SS
279/* Tables of how to react to signals; the user sets them. */
280
281static unsigned char *signal_stop;
282static unsigned char *signal_print;
283static unsigned char *signal_program;
284
ab04a2af
TT
285/* Table of signals that are registered with "catch signal". A
286 non-zero entry indicates that the signal is caught by some "catch
287 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
288 signals. */
289static unsigned char *signal_catch;
290
2455069d
UW
291/* Table of signals that the target may silently handle.
292 This is automatically determined from the flags above,
293 and simply cached here. */
294static unsigned char *signal_pass;
295
c906108c
SS
296#define SET_SIGS(nsigs,sigs,flags) \
297 do { \
298 int signum = (nsigs); \
299 while (signum-- > 0) \
300 if ((sigs)[signum]) \
301 (flags)[signum] = 1; \
302 } while (0)
303
304#define UNSET_SIGS(nsigs,sigs,flags) \
305 do { \
306 int signum = (nsigs); \
307 while (signum-- > 0) \
308 if ((sigs)[signum]) \
309 (flags)[signum] = 0; \
310 } while (0)
311
9b224c5e
PA
312/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
313 this function is to avoid exporting `signal_program'. */
314
315void
316update_signals_program_target (void)
317{
a493e3e2 318 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
319}
320
1777feb0 321/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 322
edb3359d 323#define RESUME_ALL minus_one_ptid
c906108c
SS
324
325/* Command list pointer for the "stop" placeholder. */
326
327static struct cmd_list_element *stop_command;
328
c906108c
SS
329/* Nonzero if we want to give control to the user when we're notified
330 of shared library events by the dynamic linker. */
628fe4e4 331int stop_on_solib_events;
f9e14852
GB
332
333/* Enable or disable optional shared library event breakpoints
334 as appropriate when the above flag is changed. */
335
336static void
337set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
338{
339 update_solib_breakpoints ();
340}
341
920d2a44
AC
342static void
343show_stop_on_solib_events (struct ui_file *file, int from_tty,
344 struct cmd_list_element *c, const char *value)
345{
346 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
347 value);
348}
c906108c 349
c906108c
SS
350/* Nonzero means expecting a trace trap
351 and should stop the inferior and return silently when it happens. */
352
353int stop_after_trap;
354
642fd101
DE
355/* Save register contents here when executing a "finish" command or are
356 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
357 Thus this contains the return value from the called function (assuming
358 values are returned in a register). */
359
72cec141 360struct regcache *stop_registers;
c906108c 361
c906108c
SS
362/* Nonzero after stop if current stack frame should be printed. */
363
364static int stop_print_frame;
365
e02bc4cc 366/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
367 returned by target_wait()/deprecated_target_wait_hook(). This
368 information is returned by get_last_target_status(). */
39f77062 369static ptid_t target_last_wait_ptid;
e02bc4cc
DS
370static struct target_waitstatus target_last_waitstatus;
371
0d1e5fa7
PA
372static void context_switch (ptid_t ptid);
373
4e1c45ea 374void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 375
53904c9e
AC
376static const char follow_fork_mode_child[] = "child";
377static const char follow_fork_mode_parent[] = "parent";
378
40478521 379static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
380 follow_fork_mode_child,
381 follow_fork_mode_parent,
382 NULL
ef346e04 383};
c906108c 384
53904c9e 385static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
386static void
387show_follow_fork_mode_string (struct ui_file *file, int from_tty,
388 struct cmd_list_element *c, const char *value)
389{
3e43a32a
MS
390 fprintf_filtered (file,
391 _("Debugger response to a program "
392 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
393 value);
394}
c906108c
SS
395\f
396
d83ad864
DB
397/* Handle changes to the inferior list based on the type of fork,
398 which process is being followed, and whether the other process
399 should be detached. On entry inferior_ptid must be the ptid of
400 the fork parent. At return inferior_ptid is the ptid of the
401 followed inferior. */
402
403static int
404follow_fork_inferior (int follow_child, int detach_fork)
405{
406 int has_vforked;
79639e11 407 ptid_t parent_ptid, child_ptid;
d83ad864
DB
408
409 has_vforked = (inferior_thread ()->pending_follow.kind
410 == TARGET_WAITKIND_VFORKED);
79639e11
PA
411 parent_ptid = inferior_ptid;
412 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
413
414 if (has_vforked
415 && !non_stop /* Non-stop always resumes both branches. */
416 && (!target_is_async_p () || sync_execution)
417 && !(follow_child || detach_fork || sched_multi))
418 {
419 /* The parent stays blocked inside the vfork syscall until the
420 child execs or exits. If we don't let the child run, then
421 the parent stays blocked. If we're telling the parent to run
422 in the foreground, the user will not be able to ctrl-c to get
423 back the terminal, effectively hanging the debug session. */
424 fprintf_filtered (gdb_stderr, _("\
425Can not resume the parent process over vfork in the foreground while\n\
426holding the child stopped. Try \"set detach-on-fork\" or \
427\"set schedule-multiple\".\n"));
428 /* FIXME output string > 80 columns. */
429 return 1;
430 }
431
432 if (!follow_child)
433 {
434 /* Detach new forked process? */
435 if (detach_fork)
436 {
437 struct cleanup *old_chain;
438
439 /* Before detaching from the child, remove all breakpoints
440 from it. If we forked, then this has already been taken
441 care of by infrun.c. If we vforked however, any
442 breakpoint inserted in the parent is visible in the
443 child, even those added while stopped in a vfork
444 catchpoint. This will remove the breakpoints from the
445 parent also, but they'll be reinserted below. */
446 if (has_vforked)
447 {
448 /* Keep breakpoints list in sync. */
449 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
450 }
451
452 if (info_verbose || debug_infrun)
453 {
6f259a23 454 target_terminal_ours_for_output ();
d83ad864 455 fprintf_filtered (gdb_stdlog,
79639e11 456 _("Detaching after %s from child %s.\n"),
6f259a23 457 has_vforked ? "vfork" : "fork",
79639e11 458 target_pid_to_str (child_ptid));
d83ad864
DB
459 }
460 }
461 else
462 {
463 struct inferior *parent_inf, *child_inf;
464 struct cleanup *old_chain;
465
466 /* Add process to GDB's tables. */
79639e11 467 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
468
469 parent_inf = current_inferior ();
470 child_inf->attach_flag = parent_inf->attach_flag;
471 copy_terminal_info (child_inf, parent_inf);
472 child_inf->gdbarch = parent_inf->gdbarch;
473 copy_inferior_target_desc_info (child_inf, parent_inf);
474
475 old_chain = save_inferior_ptid ();
476 save_current_program_space ();
477
79639e11 478 inferior_ptid = child_ptid;
d83ad864
DB
479 add_thread (inferior_ptid);
480 child_inf->symfile_flags = SYMFILE_NO_READ;
481
482 /* If this is a vfork child, then the address-space is
483 shared with the parent. */
484 if (has_vforked)
485 {
486 child_inf->pspace = parent_inf->pspace;
487 child_inf->aspace = parent_inf->aspace;
488
489 /* The parent will be frozen until the child is done
490 with the shared region. Keep track of the
491 parent. */
492 child_inf->vfork_parent = parent_inf;
493 child_inf->pending_detach = 0;
494 parent_inf->vfork_child = child_inf;
495 parent_inf->pending_detach = 0;
496 }
497 else
498 {
499 child_inf->aspace = new_address_space ();
500 child_inf->pspace = add_program_space (child_inf->aspace);
501 child_inf->removable = 1;
502 set_current_program_space (child_inf->pspace);
503 clone_program_space (child_inf->pspace, parent_inf->pspace);
504
505 /* Let the shared library layer (e.g., solib-svr4) learn
506 about this new process, relocate the cloned exec, pull
507 in shared libraries, and install the solib event
508 breakpoint. If a "cloned-VM" event was propagated
509 better throughout the core, this wouldn't be
510 required. */
511 solib_create_inferior_hook (0);
512 }
513
514 do_cleanups (old_chain);
515 }
516
517 if (has_vforked)
518 {
519 struct inferior *parent_inf;
520
521 parent_inf = current_inferior ();
522
523 /* If we detached from the child, then we have to be careful
524 to not insert breakpoints in the parent until the child
525 is done with the shared memory region. However, if we're
526 staying attached to the child, then we can and should
527 insert breakpoints, so that we can debug it. A
528 subsequent child exec or exit is enough to know when does
529 the child stops using the parent's address space. */
530 parent_inf->waiting_for_vfork_done = detach_fork;
531 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
532 }
533 }
534 else
535 {
536 /* Follow the child. */
537 struct inferior *parent_inf, *child_inf;
538 struct program_space *parent_pspace;
539
540 if (info_verbose || debug_infrun)
541 {
6f259a23
DB
542 target_terminal_ours_for_output ();
543 fprintf_filtered (gdb_stdlog,
79639e11
PA
544 _("Attaching after %s %s to child %s.\n"),
545 target_pid_to_str (parent_ptid),
6f259a23 546 has_vforked ? "vfork" : "fork",
79639e11 547 target_pid_to_str (child_ptid));
d83ad864
DB
548 }
549
550 /* Add the new inferior first, so that the target_detach below
551 doesn't unpush the target. */
552
79639e11 553 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
554
555 parent_inf = current_inferior ();
556 child_inf->attach_flag = parent_inf->attach_flag;
557 copy_terminal_info (child_inf, parent_inf);
558 child_inf->gdbarch = parent_inf->gdbarch;
559 copy_inferior_target_desc_info (child_inf, parent_inf);
560
561 parent_pspace = parent_inf->pspace;
562
563 /* If we're vforking, we want to hold on to the parent until the
564 child exits or execs. At child exec or exit time we can
565 remove the old breakpoints from the parent and detach or
566 resume debugging it. Otherwise, detach the parent now; we'll
567 want to reuse it's program/address spaces, but we can't set
568 them to the child before removing breakpoints from the
569 parent, otherwise, the breakpoints module could decide to
570 remove breakpoints from the wrong process (since they'd be
571 assigned to the same address space). */
572
573 if (has_vforked)
574 {
575 gdb_assert (child_inf->vfork_parent == NULL);
576 gdb_assert (parent_inf->vfork_child == NULL);
577 child_inf->vfork_parent = parent_inf;
578 child_inf->pending_detach = 0;
579 parent_inf->vfork_child = child_inf;
580 parent_inf->pending_detach = detach_fork;
581 parent_inf->waiting_for_vfork_done = 0;
582 }
583 else if (detach_fork)
6f259a23
DB
584 {
585 if (info_verbose || debug_infrun)
586 {
587 target_terminal_ours_for_output ();
588 fprintf_filtered (gdb_stdlog,
589 _("Detaching after fork from "
79639e11
PA
590 "child %s.\n"),
591 target_pid_to_str (child_ptid));
6f259a23
DB
592 }
593
594 target_detach (NULL, 0);
595 }
d83ad864
DB
596
597 /* Note that the detach above makes PARENT_INF dangling. */
598
599 /* Add the child thread to the appropriate lists, and switch to
600 this new thread, before cloning the program space, and
601 informing the solib layer about this new process. */
602
79639e11 603 inferior_ptid = child_ptid;
d83ad864
DB
604 add_thread (inferior_ptid);
605
606 /* If this is a vfork child, then the address-space is shared
607 with the parent. If we detached from the parent, then we can
608 reuse the parent's program/address spaces. */
609 if (has_vforked || detach_fork)
610 {
611 child_inf->pspace = parent_pspace;
612 child_inf->aspace = child_inf->pspace->aspace;
613 }
614 else
615 {
616 child_inf->aspace = new_address_space ();
617 child_inf->pspace = add_program_space (child_inf->aspace);
618 child_inf->removable = 1;
619 child_inf->symfile_flags = SYMFILE_NO_READ;
620 set_current_program_space (child_inf->pspace);
621 clone_program_space (child_inf->pspace, parent_pspace);
622
623 /* Let the shared library layer (e.g., solib-svr4) learn
624 about this new process, relocate the cloned exec, pull in
625 shared libraries, and install the solib event breakpoint.
626 If a "cloned-VM" event was propagated better throughout
627 the core, this wouldn't be required. */
628 solib_create_inferior_hook (0);
629 }
630 }
631
632 return target_follow_fork (follow_child, detach_fork);
633}
634
e58b0e63
PA
635/* Tell the target to follow the fork we're stopped at. Returns true
636 if the inferior should be resumed; false, if the target for some
637 reason decided it's best not to resume. */
638
6604731b 639static int
4ef3f3be 640follow_fork (void)
c906108c 641{
ea1dd7bc 642 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
643 int should_resume = 1;
644 struct thread_info *tp;
645
646 /* Copy user stepping state to the new inferior thread. FIXME: the
647 followed fork child thread should have a copy of most of the
4e3990f4
DE
648 parent thread structure's run control related fields, not just these.
649 Initialized to avoid "may be used uninitialized" warnings from gcc. */
650 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 651 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
652 CORE_ADDR step_range_start = 0;
653 CORE_ADDR step_range_end = 0;
654 struct frame_id step_frame_id = { 0 };
17b2616c 655 struct interp *command_interp = NULL;
e58b0e63
PA
656
657 if (!non_stop)
658 {
659 ptid_t wait_ptid;
660 struct target_waitstatus wait_status;
661
662 /* Get the last target status returned by target_wait(). */
663 get_last_target_status (&wait_ptid, &wait_status);
664
665 /* If not stopped at a fork event, then there's nothing else to
666 do. */
667 if (wait_status.kind != TARGET_WAITKIND_FORKED
668 && wait_status.kind != TARGET_WAITKIND_VFORKED)
669 return 1;
670
671 /* Check if we switched over from WAIT_PTID, since the event was
672 reported. */
673 if (!ptid_equal (wait_ptid, minus_one_ptid)
674 && !ptid_equal (inferior_ptid, wait_ptid))
675 {
676 /* We did. Switch back to WAIT_PTID thread, to tell the
677 target to follow it (in either direction). We'll
678 afterwards refuse to resume, and inform the user what
679 happened. */
680 switch_to_thread (wait_ptid);
681 should_resume = 0;
682 }
683 }
684
685 tp = inferior_thread ();
686
687 /* If there were any forks/vforks that were caught and are now to be
688 followed, then do so now. */
689 switch (tp->pending_follow.kind)
690 {
691 case TARGET_WAITKIND_FORKED:
692 case TARGET_WAITKIND_VFORKED:
693 {
694 ptid_t parent, child;
695
696 /* If the user did a next/step, etc, over a fork call,
697 preserve the stepping state in the fork child. */
698 if (follow_child && should_resume)
699 {
8358c15c
JK
700 step_resume_breakpoint = clone_momentary_breakpoint
701 (tp->control.step_resume_breakpoint);
16c381f0
JK
702 step_range_start = tp->control.step_range_start;
703 step_range_end = tp->control.step_range_end;
704 step_frame_id = tp->control.step_frame_id;
186c406b
TT
705 exception_resume_breakpoint
706 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
17b2616c 707 command_interp = tp->control.command_interp;
e58b0e63
PA
708
709 /* For now, delete the parent's sr breakpoint, otherwise,
710 parent/child sr breakpoints are considered duplicates,
711 and the child version will not be installed. Remove
712 this when the breakpoints module becomes aware of
713 inferiors and address spaces. */
714 delete_step_resume_breakpoint (tp);
16c381f0
JK
715 tp->control.step_range_start = 0;
716 tp->control.step_range_end = 0;
717 tp->control.step_frame_id = null_frame_id;
186c406b 718 delete_exception_resume_breakpoint (tp);
17b2616c 719 tp->control.command_interp = NULL;
e58b0e63
PA
720 }
721
722 parent = inferior_ptid;
723 child = tp->pending_follow.value.related_pid;
724
d83ad864
DB
725 /* Set up inferior(s) as specified by the caller, and tell the
726 target to do whatever is necessary to follow either parent
727 or child. */
728 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
729 {
730 /* Target refused to follow, or there's some other reason
731 we shouldn't resume. */
732 should_resume = 0;
733 }
734 else
735 {
736 /* This pending follow fork event is now handled, one way
737 or another. The previous selected thread may be gone
738 from the lists by now, but if it is still around, need
739 to clear the pending follow request. */
e09875d4 740 tp = find_thread_ptid (parent);
e58b0e63
PA
741 if (tp)
742 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
743
744 /* This makes sure we don't try to apply the "Switched
745 over from WAIT_PID" logic above. */
746 nullify_last_target_wait_ptid ();
747
1777feb0 748 /* If we followed the child, switch to it... */
e58b0e63
PA
749 if (follow_child)
750 {
751 switch_to_thread (child);
752
753 /* ... and preserve the stepping state, in case the
754 user was stepping over the fork call. */
755 if (should_resume)
756 {
757 tp = inferior_thread ();
8358c15c
JK
758 tp->control.step_resume_breakpoint
759 = step_resume_breakpoint;
16c381f0
JK
760 tp->control.step_range_start = step_range_start;
761 tp->control.step_range_end = step_range_end;
762 tp->control.step_frame_id = step_frame_id;
186c406b
TT
763 tp->control.exception_resume_breakpoint
764 = exception_resume_breakpoint;
17b2616c 765 tp->control.command_interp = command_interp;
e58b0e63
PA
766 }
767 else
768 {
769 /* If we get here, it was because we're trying to
770 resume from a fork catchpoint, but, the user
771 has switched threads away from the thread that
772 forked. In that case, the resume command
773 issued is most likely not applicable to the
774 child, so just warn, and refuse to resume. */
3e43a32a
MS
775 warning (_("Not resuming: switched threads "
776 "before following fork child.\n"));
e58b0e63
PA
777 }
778
779 /* Reset breakpoints in the child as appropriate. */
780 follow_inferior_reset_breakpoints ();
781 }
782 else
783 switch_to_thread (parent);
784 }
785 }
786 break;
787 case TARGET_WAITKIND_SPURIOUS:
788 /* Nothing to follow. */
789 break;
790 default:
791 internal_error (__FILE__, __LINE__,
792 "Unexpected pending_follow.kind %d\n",
793 tp->pending_follow.kind);
794 break;
795 }
c906108c 796
e58b0e63 797 return should_resume;
c906108c
SS
798}
799
d83ad864 800static void
6604731b 801follow_inferior_reset_breakpoints (void)
c906108c 802{
4e1c45ea
PA
803 struct thread_info *tp = inferior_thread ();
804
6604731b
DJ
805 /* Was there a step_resume breakpoint? (There was if the user
806 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
807 thread number. Cloned step_resume breakpoints are disabled on
808 creation, so enable it here now that it is associated with the
809 correct thread.
6604731b
DJ
810
811 step_resumes are a form of bp that are made to be per-thread.
812 Since we created the step_resume bp when the parent process
813 was being debugged, and now are switching to the child process,
814 from the breakpoint package's viewpoint, that's a switch of
815 "threads". We must update the bp's notion of which thread
816 it is for, or it'll be ignored when it triggers. */
817
8358c15c 818 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
819 {
820 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
821 tp->control.step_resume_breakpoint->loc->enabled = 1;
822 }
6604731b 823
a1aa2221 824 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 825 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
826 {
827 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
828 tp->control.exception_resume_breakpoint->loc->enabled = 1;
829 }
186c406b 830
6604731b
DJ
831 /* Reinsert all breakpoints in the child. The user may have set
832 breakpoints after catching the fork, in which case those
833 were never set in the child, but only in the parent. This makes
834 sure the inserted breakpoints match the breakpoint list. */
835
836 breakpoint_re_set ();
837 insert_breakpoints ();
c906108c 838}
c906108c 839
6c95b8df
PA
840/* The child has exited or execed: resume threads of the parent the
841 user wanted to be executing. */
842
843static int
844proceed_after_vfork_done (struct thread_info *thread,
845 void *arg)
846{
847 int pid = * (int *) arg;
848
849 if (ptid_get_pid (thread->ptid) == pid
850 && is_running (thread->ptid)
851 && !is_executing (thread->ptid)
852 && !thread->stop_requested
a493e3e2 853 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
854 {
855 if (debug_infrun)
856 fprintf_unfiltered (gdb_stdlog,
857 "infrun: resuming vfork parent thread %s\n",
858 target_pid_to_str (thread->ptid));
859
860 switch_to_thread (thread->ptid);
70509625 861 clear_proceed_status (0);
a493e3e2 862 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
6c95b8df
PA
863 }
864
865 return 0;
866}
867
868/* Called whenever we notice an exec or exit event, to handle
869 detaching or resuming a vfork parent. */
870
871static void
872handle_vfork_child_exec_or_exit (int exec)
873{
874 struct inferior *inf = current_inferior ();
875
876 if (inf->vfork_parent)
877 {
878 int resume_parent = -1;
879
880 /* This exec or exit marks the end of the shared memory region
881 between the parent and the child. If the user wanted to
882 detach from the parent, now is the time. */
883
884 if (inf->vfork_parent->pending_detach)
885 {
886 struct thread_info *tp;
887 struct cleanup *old_chain;
888 struct program_space *pspace;
889 struct address_space *aspace;
890
1777feb0 891 /* follow-fork child, detach-on-fork on. */
6c95b8df 892
68c9da30
PA
893 inf->vfork_parent->pending_detach = 0;
894
f50f4e56
PA
895 if (!exec)
896 {
897 /* If we're handling a child exit, then inferior_ptid
898 points at the inferior's pid, not to a thread. */
899 old_chain = save_inferior_ptid ();
900 save_current_program_space ();
901 save_current_inferior ();
902 }
903 else
904 old_chain = save_current_space_and_thread ();
6c95b8df
PA
905
906 /* We're letting loose of the parent. */
907 tp = any_live_thread_of_process (inf->vfork_parent->pid);
908 switch_to_thread (tp->ptid);
909
910 /* We're about to detach from the parent, which implicitly
911 removes breakpoints from its address space. There's a
912 catch here: we want to reuse the spaces for the child,
913 but, parent/child are still sharing the pspace at this
914 point, although the exec in reality makes the kernel give
915 the child a fresh set of new pages. The problem here is
916 that the breakpoints module being unaware of this, would
917 likely chose the child process to write to the parent
918 address space. Swapping the child temporarily away from
919 the spaces has the desired effect. Yes, this is "sort
920 of" a hack. */
921
922 pspace = inf->pspace;
923 aspace = inf->aspace;
924 inf->aspace = NULL;
925 inf->pspace = NULL;
926
927 if (debug_infrun || info_verbose)
928 {
6f259a23 929 target_terminal_ours_for_output ();
6c95b8df
PA
930
931 if (exec)
6f259a23
DB
932 {
933 fprintf_filtered (gdb_stdlog,
934 _("Detaching vfork parent process "
935 "%d after child exec.\n"),
936 inf->vfork_parent->pid);
937 }
6c95b8df 938 else
6f259a23
DB
939 {
940 fprintf_filtered (gdb_stdlog,
941 _("Detaching vfork parent process "
942 "%d after child exit.\n"),
943 inf->vfork_parent->pid);
944 }
6c95b8df
PA
945 }
946
947 target_detach (NULL, 0);
948
949 /* Put it back. */
950 inf->pspace = pspace;
951 inf->aspace = aspace;
952
953 do_cleanups (old_chain);
954 }
955 else if (exec)
956 {
957 /* We're staying attached to the parent, so, really give the
958 child a new address space. */
959 inf->pspace = add_program_space (maybe_new_address_space ());
960 inf->aspace = inf->pspace->aspace;
961 inf->removable = 1;
962 set_current_program_space (inf->pspace);
963
964 resume_parent = inf->vfork_parent->pid;
965
966 /* Break the bonds. */
967 inf->vfork_parent->vfork_child = NULL;
968 }
969 else
970 {
971 struct cleanup *old_chain;
972 struct program_space *pspace;
973
974 /* If this is a vfork child exiting, then the pspace and
975 aspaces were shared with the parent. Since we're
976 reporting the process exit, we'll be mourning all that is
977 found in the address space, and switching to null_ptid,
978 preparing to start a new inferior. But, since we don't
979 want to clobber the parent's address/program spaces, we
980 go ahead and create a new one for this exiting
981 inferior. */
982
983 /* Switch to null_ptid, so that clone_program_space doesn't want
984 to read the selected frame of a dead process. */
985 old_chain = save_inferior_ptid ();
986 inferior_ptid = null_ptid;
987
988 /* This inferior is dead, so avoid giving the breakpoints
989 module the option to write through to it (cloning a
990 program space resets breakpoints). */
991 inf->aspace = NULL;
992 inf->pspace = NULL;
993 pspace = add_program_space (maybe_new_address_space ());
994 set_current_program_space (pspace);
995 inf->removable = 1;
7dcd53a0 996 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
997 clone_program_space (pspace, inf->vfork_parent->pspace);
998 inf->pspace = pspace;
999 inf->aspace = pspace->aspace;
1000
1001 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 1002 inferior. */
6c95b8df
PA
1003 do_cleanups (old_chain);
1004
1005 resume_parent = inf->vfork_parent->pid;
1006 /* Break the bonds. */
1007 inf->vfork_parent->vfork_child = NULL;
1008 }
1009
1010 inf->vfork_parent = NULL;
1011
1012 gdb_assert (current_program_space == inf->pspace);
1013
1014 if (non_stop && resume_parent != -1)
1015 {
1016 /* If the user wanted the parent to be running, let it go
1017 free now. */
1018 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1019
1020 if (debug_infrun)
3e43a32a
MS
1021 fprintf_unfiltered (gdb_stdlog,
1022 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1023 resume_parent);
1024
1025 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1026
1027 do_cleanups (old_chain);
1028 }
1029 }
1030}
1031
eb6c553b 1032/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1033
1034static const char follow_exec_mode_new[] = "new";
1035static const char follow_exec_mode_same[] = "same";
40478521 1036static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1037{
1038 follow_exec_mode_new,
1039 follow_exec_mode_same,
1040 NULL,
1041};
1042
1043static const char *follow_exec_mode_string = follow_exec_mode_same;
1044static void
1045show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1046 struct cmd_list_element *c, const char *value)
1047{
1048 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1049}
1050
1777feb0 1051/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 1052
c906108c 1053static void
95e50b27 1054follow_exec (ptid_t ptid, char *execd_pathname)
c906108c 1055{
95e50b27 1056 struct thread_info *th, *tmp;
6c95b8df 1057 struct inferior *inf = current_inferior ();
95e50b27 1058 int pid = ptid_get_pid (ptid);
7a292a7a 1059
c906108c
SS
1060 /* This is an exec event that we actually wish to pay attention to.
1061 Refresh our symbol table to the newly exec'd program, remove any
1062 momentary bp's, etc.
1063
1064 If there are breakpoints, they aren't really inserted now,
1065 since the exec() transformed our inferior into a fresh set
1066 of instructions.
1067
1068 We want to preserve symbolic breakpoints on the list, since
1069 we have hopes that they can be reset after the new a.out's
1070 symbol table is read.
1071
1072 However, any "raw" breakpoints must be removed from the list
1073 (e.g., the solib bp's), since their address is probably invalid
1074 now.
1075
1076 And, we DON'T want to call delete_breakpoints() here, since
1077 that may write the bp's "shadow contents" (the instruction
1078 value that was overwritten witha TRAP instruction). Since
1777feb0 1079 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1080
1081 mark_breakpoints_out ();
1082
95e50b27
PA
1083 /* The target reports the exec event to the main thread, even if
1084 some other thread does the exec, and even if the main thread was
1085 stopped or already gone. We may still have non-leader threads of
1086 the process on our list. E.g., on targets that don't have thread
1087 exit events (like remote); or on native Linux in non-stop mode if
1088 there were only two threads in the inferior and the non-leader
1089 one is the one that execs (and nothing forces an update of the
1090 thread list up to here). When debugging remotely, it's best to
1091 avoid extra traffic, when possible, so avoid syncing the thread
1092 list with the target, and instead go ahead and delete all threads
1093 of the process but one that reported the event. Note this must
1094 be done before calling update_breakpoints_after_exec, as
1095 otherwise clearing the threads' resources would reference stale
1096 thread breakpoints -- it may have been one of these threads that
1097 stepped across the exec. We could just clear their stepping
1098 states, but as long as we're iterating, might as well delete
1099 them. Deleting them now rather than at the next user-visible
1100 stop provides a nicer sequence of events for user and MI
1101 notifications. */
1102 ALL_NON_EXITED_THREADS_SAFE (th, tmp)
1103 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1104 delete_thread (th->ptid);
1105
1106 /* We also need to clear any left over stale state for the
1107 leader/event thread. E.g., if there was any step-resume
1108 breakpoint or similar, it's gone now. We cannot truly
1109 step-to-next statement through an exec(). */
1110 th = inferior_thread ();
8358c15c 1111 th->control.step_resume_breakpoint = NULL;
186c406b 1112 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1113 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1114 th->control.step_range_start = 0;
1115 th->control.step_range_end = 0;
c906108c 1116
95e50b27
PA
1117 /* The user may have had the main thread held stopped in the
1118 previous image (e.g., schedlock on, or non-stop). Release
1119 it now. */
a75724bc
PA
1120 th->stop_requested = 0;
1121
95e50b27
PA
1122 update_breakpoints_after_exec ();
1123
1777feb0 1124 /* What is this a.out's name? */
6c95b8df
PA
1125 printf_unfiltered (_("%s is executing new program: %s\n"),
1126 target_pid_to_str (inferior_ptid),
1127 execd_pathname);
c906108c
SS
1128
1129 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1130 inferior has essentially been killed & reborn. */
7a292a7a 1131
c906108c 1132 gdb_flush (gdb_stdout);
6ca15a4b
PA
1133
1134 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
1135
1136 if (gdb_sysroot && *gdb_sysroot)
1137 {
1138 char *name = alloca (strlen (gdb_sysroot)
1139 + strlen (execd_pathname)
1140 + 1);
abbb1732 1141
e85a822c
DJ
1142 strcpy (name, gdb_sysroot);
1143 strcat (name, execd_pathname);
1144 execd_pathname = name;
1145 }
c906108c 1146
cce9b6bf
PA
1147 /* Reset the shared library package. This ensures that we get a
1148 shlib event when the child reaches "_start", at which point the
1149 dld will have had a chance to initialize the child. */
1150 /* Also, loading a symbol file below may trigger symbol lookups, and
1151 we don't want those to be satisfied by the libraries of the
1152 previous incarnation of this process. */
1153 no_shared_libraries (NULL, 0);
1154
6c95b8df
PA
1155 if (follow_exec_mode_string == follow_exec_mode_new)
1156 {
1157 struct program_space *pspace;
6c95b8df
PA
1158
1159 /* The user wants to keep the old inferior and program spaces
1160 around. Create a new fresh one, and switch to it. */
1161
1162 inf = add_inferior (current_inferior ()->pid);
1163 pspace = add_program_space (maybe_new_address_space ());
1164 inf->pspace = pspace;
1165 inf->aspace = pspace->aspace;
1166
1167 exit_inferior_num_silent (current_inferior ()->num);
1168
1169 set_current_inferior (inf);
1170 set_current_program_space (pspace);
1171 }
9107fc8d
PA
1172 else
1173 {
1174 /* The old description may no longer be fit for the new image.
1175 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1176 old description; we'll read a new one below. No need to do
1177 this on "follow-exec-mode new", as the old inferior stays
1178 around (its description is later cleared/refetched on
1179 restart). */
1180 target_clear_description ();
1181 }
6c95b8df
PA
1182
1183 gdb_assert (current_program_space == inf->pspace);
1184
1777feb0 1185 /* That a.out is now the one to use. */
6c95b8df
PA
1186 exec_file_attach (execd_pathname, 0);
1187
c1e56572
JK
1188 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1189 (Position Independent Executable) main symbol file will get applied by
1190 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1191 the breakpoints with the zero displacement. */
1192
7dcd53a0
TT
1193 symbol_file_add (execd_pathname,
1194 (inf->symfile_flags
1195 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
1196 NULL, 0);
1197
7dcd53a0
TT
1198 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1199 set_initial_language ();
c906108c 1200
9107fc8d
PA
1201 /* If the target can specify a description, read it. Must do this
1202 after flipping to the new executable (because the target supplied
1203 description must be compatible with the executable's
1204 architecture, and the old executable may e.g., be 32-bit, while
1205 the new one 64-bit), and before anything involving memory or
1206 registers. */
1207 target_find_description ();
1208
268a4a75 1209 solib_create_inferior_hook (0);
c906108c 1210
4efc6507
DE
1211 jit_inferior_created_hook ();
1212
c1e56572
JK
1213 breakpoint_re_set ();
1214
c906108c
SS
1215 /* Reinsert all breakpoints. (Those which were symbolic have
1216 been reset to the proper address in the new a.out, thanks
1777feb0 1217 to symbol_file_command...). */
c906108c
SS
1218 insert_breakpoints ();
1219
1220 /* The next resume of this inferior should bring it to the shlib
1221 startup breakpoints. (If the user had also set bp's on
1222 "main" from the old (parent) process, then they'll auto-
1777feb0 1223 matically get reset there in the new process.). */
c906108c
SS
1224}
1225
963f9c80 1226/* Info about an instruction that is being stepped over. */
31e77af2
PA
1227
1228struct step_over_info
1229{
963f9c80
PA
1230 /* If we're stepping past a breakpoint, this is the address space
1231 and address of the instruction the breakpoint is set at. We'll
1232 skip inserting all breakpoints here. Valid iff ASPACE is
1233 non-NULL. */
31e77af2 1234 struct address_space *aspace;
31e77af2 1235 CORE_ADDR address;
963f9c80
PA
1236
1237 /* The instruction being stepped over triggers a nonsteppable
1238 watchpoint. If true, we'll skip inserting watchpoints. */
1239 int nonsteppable_watchpoint_p;
31e77af2
PA
1240};
1241
1242/* The step-over info of the location that is being stepped over.
1243
1244 Note that with async/breakpoint always-inserted mode, a user might
1245 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1246 being stepped over. As setting a new breakpoint inserts all
1247 breakpoints, we need to make sure the breakpoint being stepped over
1248 isn't inserted then. We do that by only clearing the step-over
1249 info when the step-over is actually finished (or aborted).
1250
1251 Presently GDB can only step over one breakpoint at any given time.
1252 Given threads that can't run code in the same address space as the
1253 breakpoint's can't really miss the breakpoint, GDB could be taught
1254 to step-over at most one breakpoint per address space (so this info
1255 could move to the address space object if/when GDB is extended).
1256 The set of breakpoints being stepped over will normally be much
1257 smaller than the set of all breakpoints, so a flag in the
1258 breakpoint location structure would be wasteful. A separate list
1259 also saves complexity and run-time, as otherwise we'd have to go
1260 through all breakpoint locations clearing their flag whenever we
1261 start a new sequence. Similar considerations weigh against storing
1262 this info in the thread object. Plus, not all step overs actually
1263 have breakpoint locations -- e.g., stepping past a single-step
1264 breakpoint, or stepping to complete a non-continuable
1265 watchpoint. */
1266static struct step_over_info step_over_info;
1267
1268/* Record the address of the breakpoint/instruction we're currently
1269 stepping over. */
1270
1271static void
963f9c80
PA
1272set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1273 int nonsteppable_watchpoint_p)
31e77af2
PA
1274{
1275 step_over_info.aspace = aspace;
1276 step_over_info.address = address;
963f9c80 1277 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
31e77af2
PA
1278}
1279
1280/* Called when we're not longer stepping over a breakpoint / an
1281 instruction, so all breakpoints are free to be (re)inserted. */
1282
1283static void
1284clear_step_over_info (void)
1285{
1286 step_over_info.aspace = NULL;
1287 step_over_info.address = 0;
963f9c80 1288 step_over_info.nonsteppable_watchpoint_p = 0;
31e77af2
PA
1289}
1290
7f89fd65 1291/* See infrun.h. */
31e77af2
PA
1292
1293int
1294stepping_past_instruction_at (struct address_space *aspace,
1295 CORE_ADDR address)
1296{
1297 return (step_over_info.aspace != NULL
1298 && breakpoint_address_match (aspace, address,
1299 step_over_info.aspace,
1300 step_over_info.address));
1301}
1302
963f9c80
PA
1303/* See infrun.h. */
1304
1305int
1306stepping_past_nonsteppable_watchpoint (void)
1307{
1308 return step_over_info.nonsteppable_watchpoint_p;
1309}
1310
6cc83d2a
PA
1311/* Returns true if step-over info is valid. */
1312
1313static int
1314step_over_info_valid_p (void)
1315{
963f9c80
PA
1316 return (step_over_info.aspace != NULL
1317 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1318}
1319
c906108c 1320\f
237fc4c9
PA
1321/* Displaced stepping. */
1322
1323/* In non-stop debugging mode, we must take special care to manage
1324 breakpoints properly; in particular, the traditional strategy for
1325 stepping a thread past a breakpoint it has hit is unsuitable.
1326 'Displaced stepping' is a tactic for stepping one thread past a
1327 breakpoint it has hit while ensuring that other threads running
1328 concurrently will hit the breakpoint as they should.
1329
1330 The traditional way to step a thread T off a breakpoint in a
1331 multi-threaded program in all-stop mode is as follows:
1332
1333 a0) Initially, all threads are stopped, and breakpoints are not
1334 inserted.
1335 a1) We single-step T, leaving breakpoints uninserted.
1336 a2) We insert breakpoints, and resume all threads.
1337
1338 In non-stop debugging, however, this strategy is unsuitable: we
1339 don't want to have to stop all threads in the system in order to
1340 continue or step T past a breakpoint. Instead, we use displaced
1341 stepping:
1342
1343 n0) Initially, T is stopped, other threads are running, and
1344 breakpoints are inserted.
1345 n1) We copy the instruction "under" the breakpoint to a separate
1346 location, outside the main code stream, making any adjustments
1347 to the instruction, register, and memory state as directed by
1348 T's architecture.
1349 n2) We single-step T over the instruction at its new location.
1350 n3) We adjust the resulting register and memory state as directed
1351 by T's architecture. This includes resetting T's PC to point
1352 back into the main instruction stream.
1353 n4) We resume T.
1354
1355 This approach depends on the following gdbarch methods:
1356
1357 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1358 indicate where to copy the instruction, and how much space must
1359 be reserved there. We use these in step n1.
1360
1361 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1362 address, and makes any necessary adjustments to the instruction,
1363 register contents, and memory. We use this in step n1.
1364
1365 - gdbarch_displaced_step_fixup adjusts registers and memory after
1366 we have successfuly single-stepped the instruction, to yield the
1367 same effect the instruction would have had if we had executed it
1368 at its original address. We use this in step n3.
1369
1370 - gdbarch_displaced_step_free_closure provides cleanup.
1371
1372 The gdbarch_displaced_step_copy_insn and
1373 gdbarch_displaced_step_fixup functions must be written so that
1374 copying an instruction with gdbarch_displaced_step_copy_insn,
1375 single-stepping across the copied instruction, and then applying
1376 gdbarch_displaced_insn_fixup should have the same effects on the
1377 thread's memory and registers as stepping the instruction in place
1378 would have. Exactly which responsibilities fall to the copy and
1379 which fall to the fixup is up to the author of those functions.
1380
1381 See the comments in gdbarch.sh for details.
1382
1383 Note that displaced stepping and software single-step cannot
1384 currently be used in combination, although with some care I think
1385 they could be made to. Software single-step works by placing
1386 breakpoints on all possible subsequent instructions; if the
1387 displaced instruction is a PC-relative jump, those breakpoints
1388 could fall in very strange places --- on pages that aren't
1389 executable, or at addresses that are not proper instruction
1390 boundaries. (We do generally let other threads run while we wait
1391 to hit the software single-step breakpoint, and they might
1392 encounter such a corrupted instruction.) One way to work around
1393 this would be to have gdbarch_displaced_step_copy_insn fully
1394 simulate the effect of PC-relative instructions (and return NULL)
1395 on architectures that use software single-stepping.
1396
1397 In non-stop mode, we can have independent and simultaneous step
1398 requests, so more than one thread may need to simultaneously step
1399 over a breakpoint. The current implementation assumes there is
1400 only one scratch space per process. In this case, we have to
1401 serialize access to the scratch space. If thread A wants to step
1402 over a breakpoint, but we are currently waiting for some other
1403 thread to complete a displaced step, we leave thread A stopped and
1404 place it in the displaced_step_request_queue. Whenever a displaced
1405 step finishes, we pick the next thread in the queue and start a new
1406 displaced step operation on it. See displaced_step_prepare and
1407 displaced_step_fixup for details. */
1408
237fc4c9
PA
1409struct displaced_step_request
1410{
1411 ptid_t ptid;
1412 struct displaced_step_request *next;
1413};
1414
fc1cf338
PA
1415/* Per-inferior displaced stepping state. */
1416struct displaced_step_inferior_state
1417{
1418 /* Pointer to next in linked list. */
1419 struct displaced_step_inferior_state *next;
1420
1421 /* The process this displaced step state refers to. */
1422 int pid;
1423
1424 /* A queue of pending displaced stepping requests. One entry per
1425 thread that needs to do a displaced step. */
1426 struct displaced_step_request *step_request_queue;
1427
1428 /* If this is not null_ptid, this is the thread carrying out a
1429 displaced single-step in process PID. This thread's state will
1430 require fixing up once it has completed its step. */
1431 ptid_t step_ptid;
1432
1433 /* The architecture the thread had when we stepped it. */
1434 struct gdbarch *step_gdbarch;
1435
1436 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1437 for post-step cleanup. */
1438 struct displaced_step_closure *step_closure;
1439
1440 /* The address of the original instruction, and the copy we
1441 made. */
1442 CORE_ADDR step_original, step_copy;
1443
1444 /* Saved contents of copy area. */
1445 gdb_byte *step_saved_copy;
1446};
1447
1448/* The list of states of processes involved in displaced stepping
1449 presently. */
1450static struct displaced_step_inferior_state *displaced_step_inferior_states;
1451
1452/* Get the displaced stepping state of process PID. */
1453
1454static struct displaced_step_inferior_state *
1455get_displaced_stepping_state (int pid)
1456{
1457 struct displaced_step_inferior_state *state;
1458
1459 for (state = displaced_step_inferior_states;
1460 state != NULL;
1461 state = state->next)
1462 if (state->pid == pid)
1463 return state;
1464
1465 return NULL;
1466}
1467
1468/* Add a new displaced stepping state for process PID to the displaced
1469 stepping state list, or return a pointer to an already existing
1470 entry, if it already exists. Never returns NULL. */
1471
1472static struct displaced_step_inferior_state *
1473add_displaced_stepping_state (int pid)
1474{
1475 struct displaced_step_inferior_state *state;
1476
1477 for (state = displaced_step_inferior_states;
1478 state != NULL;
1479 state = state->next)
1480 if (state->pid == pid)
1481 return state;
237fc4c9 1482
fc1cf338
PA
1483 state = xcalloc (1, sizeof (*state));
1484 state->pid = pid;
1485 state->next = displaced_step_inferior_states;
1486 displaced_step_inferior_states = state;
237fc4c9 1487
fc1cf338
PA
1488 return state;
1489}
1490
a42244db
YQ
1491/* If inferior is in displaced stepping, and ADDR equals to starting address
1492 of copy area, return corresponding displaced_step_closure. Otherwise,
1493 return NULL. */
1494
1495struct displaced_step_closure*
1496get_displaced_step_closure_by_addr (CORE_ADDR addr)
1497{
1498 struct displaced_step_inferior_state *displaced
1499 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1500
1501 /* If checking the mode of displaced instruction in copy area. */
1502 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1503 && (displaced->step_copy == addr))
1504 return displaced->step_closure;
1505
1506 return NULL;
1507}
1508
fc1cf338 1509/* Remove the displaced stepping state of process PID. */
237fc4c9 1510
fc1cf338
PA
1511static void
1512remove_displaced_stepping_state (int pid)
1513{
1514 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1515
fc1cf338
PA
1516 gdb_assert (pid != 0);
1517
1518 it = displaced_step_inferior_states;
1519 prev_next_p = &displaced_step_inferior_states;
1520 while (it)
1521 {
1522 if (it->pid == pid)
1523 {
1524 *prev_next_p = it->next;
1525 xfree (it);
1526 return;
1527 }
1528
1529 prev_next_p = &it->next;
1530 it = *prev_next_p;
1531 }
1532}
1533
1534static void
1535infrun_inferior_exit (struct inferior *inf)
1536{
1537 remove_displaced_stepping_state (inf->pid);
1538}
237fc4c9 1539
fff08868
HZ
1540/* If ON, and the architecture supports it, GDB will use displaced
1541 stepping to step over breakpoints. If OFF, or if the architecture
1542 doesn't support it, GDB will instead use the traditional
1543 hold-and-step approach. If AUTO (which is the default), GDB will
1544 decide which technique to use to step over breakpoints depending on
1545 which of all-stop or non-stop mode is active --- displaced stepping
1546 in non-stop mode; hold-and-step in all-stop mode. */
1547
72d0e2c5 1548static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1549
237fc4c9
PA
1550static void
1551show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1552 struct cmd_list_element *c,
1553 const char *value)
1554{
72d0e2c5 1555 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1556 fprintf_filtered (file,
1557 _("Debugger's willingness to use displaced stepping "
1558 "to step over breakpoints is %s (currently %s).\n"),
fff08868
HZ
1559 value, non_stop ? "on" : "off");
1560 else
3e43a32a
MS
1561 fprintf_filtered (file,
1562 _("Debugger's willingness to use displaced stepping "
1563 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1564}
1565
fff08868
HZ
1566/* Return non-zero if displaced stepping can/should be used to step
1567 over breakpoints. */
1568
237fc4c9
PA
1569static int
1570use_displaced_stepping (struct gdbarch *gdbarch)
1571{
72d0e2c5
YQ
1572 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1573 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1574 && gdbarch_displaced_step_copy_insn_p (gdbarch)
8213266a 1575 && find_record_target () == NULL);
237fc4c9
PA
1576}
1577
1578/* Clean out any stray displaced stepping state. */
1579static void
fc1cf338 1580displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1581{
1582 /* Indicate that there is no cleanup pending. */
fc1cf338 1583 displaced->step_ptid = null_ptid;
237fc4c9 1584
fc1cf338 1585 if (displaced->step_closure)
237fc4c9 1586 {
fc1cf338
PA
1587 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1588 displaced->step_closure);
1589 displaced->step_closure = NULL;
237fc4c9
PA
1590 }
1591}
1592
1593static void
fc1cf338 1594displaced_step_clear_cleanup (void *arg)
237fc4c9 1595{
fc1cf338
PA
1596 struct displaced_step_inferior_state *state = arg;
1597
1598 displaced_step_clear (state);
237fc4c9
PA
1599}
1600
1601/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1602void
1603displaced_step_dump_bytes (struct ui_file *file,
1604 const gdb_byte *buf,
1605 size_t len)
1606{
1607 int i;
1608
1609 for (i = 0; i < len; i++)
1610 fprintf_unfiltered (file, "%02x ", buf[i]);
1611 fputs_unfiltered ("\n", file);
1612}
1613
1614/* Prepare to single-step, using displaced stepping.
1615
1616 Note that we cannot use displaced stepping when we have a signal to
1617 deliver. If we have a signal to deliver and an instruction to step
1618 over, then after the step, there will be no indication from the
1619 target whether the thread entered a signal handler or ignored the
1620 signal and stepped over the instruction successfully --- both cases
1621 result in a simple SIGTRAP. In the first case we mustn't do a
1622 fixup, and in the second case we must --- but we can't tell which.
1623 Comments in the code for 'random signals' in handle_inferior_event
1624 explain how we handle this case instead.
1625
1626 Returns 1 if preparing was successful -- this thread is going to be
1627 stepped now; or 0 if displaced stepping this thread got queued. */
1628static int
1629displaced_step_prepare (ptid_t ptid)
1630{
ad53cd71 1631 struct cleanup *old_cleanups, *ignore_cleanups;
c1e36e3e 1632 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1633 struct regcache *regcache = get_thread_regcache (ptid);
1634 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1635 CORE_ADDR original, copy;
1636 ULONGEST len;
1637 struct displaced_step_closure *closure;
fc1cf338 1638 struct displaced_step_inferior_state *displaced;
9e529e1d 1639 int status;
237fc4c9
PA
1640
1641 /* We should never reach this function if the architecture does not
1642 support displaced stepping. */
1643 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1644
c1e36e3e
PA
1645 /* Disable range stepping while executing in the scratch pad. We
1646 want a single-step even if executing the displaced instruction in
1647 the scratch buffer lands within the stepping range (e.g., a
1648 jump/branch). */
1649 tp->control.may_range_step = 0;
1650
fc1cf338
PA
1651 /* We have to displaced step one thread at a time, as we only have
1652 access to a single scratch space per inferior. */
237fc4c9 1653
fc1cf338
PA
1654 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1655
1656 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1657 {
1658 /* Already waiting for a displaced step to finish. Defer this
1659 request and place in queue. */
1660 struct displaced_step_request *req, *new_req;
1661
1662 if (debug_displaced)
1663 fprintf_unfiltered (gdb_stdlog,
1664 "displaced: defering step of %s\n",
1665 target_pid_to_str (ptid));
1666
1667 new_req = xmalloc (sizeof (*new_req));
1668 new_req->ptid = ptid;
1669 new_req->next = NULL;
1670
fc1cf338 1671 if (displaced->step_request_queue)
237fc4c9 1672 {
fc1cf338 1673 for (req = displaced->step_request_queue;
237fc4c9
PA
1674 req && req->next;
1675 req = req->next)
1676 ;
1677 req->next = new_req;
1678 }
1679 else
fc1cf338 1680 displaced->step_request_queue = new_req;
237fc4c9
PA
1681
1682 return 0;
1683 }
1684 else
1685 {
1686 if (debug_displaced)
1687 fprintf_unfiltered (gdb_stdlog,
1688 "displaced: stepping %s now\n",
1689 target_pid_to_str (ptid));
1690 }
1691
fc1cf338 1692 displaced_step_clear (displaced);
237fc4c9 1693
ad53cd71
PA
1694 old_cleanups = save_inferior_ptid ();
1695 inferior_ptid = ptid;
1696
515630c5 1697 original = regcache_read_pc (regcache);
237fc4c9
PA
1698
1699 copy = gdbarch_displaced_step_location (gdbarch);
1700 len = gdbarch_max_insn_length (gdbarch);
1701
1702 /* Save the original contents of the copy area. */
fc1cf338 1703 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1704 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1705 &displaced->step_saved_copy);
9e529e1d
JK
1706 status = target_read_memory (copy, displaced->step_saved_copy, len);
1707 if (status != 0)
1708 throw_error (MEMORY_ERROR,
1709 _("Error accessing memory address %s (%s) for "
1710 "displaced-stepping scratch space."),
1711 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1712 if (debug_displaced)
1713 {
5af949e3
UW
1714 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1715 paddress (gdbarch, copy));
fc1cf338
PA
1716 displaced_step_dump_bytes (gdb_stdlog,
1717 displaced->step_saved_copy,
1718 len);
237fc4c9
PA
1719 };
1720
1721 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1722 original, copy, regcache);
237fc4c9
PA
1723
1724 /* We don't support the fully-simulated case at present. */
1725 gdb_assert (closure);
1726
9f5a595d
UW
1727 /* Save the information we need to fix things up if the step
1728 succeeds. */
fc1cf338
PA
1729 displaced->step_ptid = ptid;
1730 displaced->step_gdbarch = gdbarch;
1731 displaced->step_closure = closure;
1732 displaced->step_original = original;
1733 displaced->step_copy = copy;
9f5a595d 1734
fc1cf338 1735 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1736
1737 /* Resume execution at the copy. */
515630c5 1738 regcache_write_pc (regcache, copy);
237fc4c9 1739
ad53cd71
PA
1740 discard_cleanups (ignore_cleanups);
1741
1742 do_cleanups (old_cleanups);
237fc4c9
PA
1743
1744 if (debug_displaced)
5af949e3
UW
1745 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1746 paddress (gdbarch, copy));
237fc4c9 1747
237fc4c9
PA
1748 return 1;
1749}
1750
237fc4c9 1751static void
3e43a32a
MS
1752write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1753 const gdb_byte *myaddr, int len)
237fc4c9
PA
1754{
1755 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1756
237fc4c9
PA
1757 inferior_ptid = ptid;
1758 write_memory (memaddr, myaddr, len);
1759 do_cleanups (ptid_cleanup);
1760}
1761
e2d96639
YQ
1762/* Restore the contents of the copy area for thread PTID. */
1763
1764static void
1765displaced_step_restore (struct displaced_step_inferior_state *displaced,
1766 ptid_t ptid)
1767{
1768 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1769
1770 write_memory_ptid (ptid, displaced->step_copy,
1771 displaced->step_saved_copy, len);
1772 if (debug_displaced)
1773 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1774 target_pid_to_str (ptid),
1775 paddress (displaced->step_gdbarch,
1776 displaced->step_copy));
1777}
1778
237fc4c9 1779static void
2ea28649 1780displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1781{
1782 struct cleanup *old_cleanups;
fc1cf338
PA
1783 struct displaced_step_inferior_state *displaced
1784 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1785
1786 /* Was any thread of this process doing a displaced step? */
1787 if (displaced == NULL)
1788 return;
237fc4c9
PA
1789
1790 /* Was this event for the pid we displaced? */
fc1cf338
PA
1791 if (ptid_equal (displaced->step_ptid, null_ptid)
1792 || ! ptid_equal (displaced->step_ptid, event_ptid))
237fc4c9
PA
1793 return;
1794
fc1cf338 1795 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1796
e2d96639 1797 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9
PA
1798
1799 /* Did the instruction complete successfully? */
a493e3e2 1800 if (signal == GDB_SIGNAL_TRAP)
237fc4c9 1801 {
b052c4fb
PA
1802 /* Fixup may need to read memory/registers. Switch to the
1803 thread that we're fixing up. */
1804 switch_to_thread (event_ptid);
1805
237fc4c9 1806 /* Fix up the resulting state. */
fc1cf338
PA
1807 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1808 displaced->step_closure,
1809 displaced->step_original,
1810 displaced->step_copy,
1811 get_thread_regcache (displaced->step_ptid));
237fc4c9
PA
1812 }
1813 else
1814 {
1815 /* Since the instruction didn't complete, all we can do is
1816 relocate the PC. */
515630c5
UW
1817 struct regcache *regcache = get_thread_regcache (event_ptid);
1818 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1819
fc1cf338 1820 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1821 regcache_write_pc (regcache, pc);
237fc4c9
PA
1822 }
1823
1824 do_cleanups (old_cleanups);
1825
fc1cf338 1826 displaced->step_ptid = null_ptid;
1c5cfe86 1827
237fc4c9 1828 /* Are there any pending displaced stepping requests? If so, run
fc1cf338
PA
1829 one now. Leave the state object around, since we're likely to
1830 need it again soon. */
1831 while (displaced->step_request_queue)
237fc4c9
PA
1832 {
1833 struct displaced_step_request *head;
1834 ptid_t ptid;
5af949e3 1835 struct regcache *regcache;
929dfd4f 1836 struct gdbarch *gdbarch;
1c5cfe86 1837 CORE_ADDR actual_pc;
6c95b8df 1838 struct address_space *aspace;
237fc4c9 1839
fc1cf338 1840 head = displaced->step_request_queue;
237fc4c9 1841 ptid = head->ptid;
fc1cf338 1842 displaced->step_request_queue = head->next;
237fc4c9
PA
1843 xfree (head);
1844
ad53cd71
PA
1845 context_switch (ptid);
1846
5af949e3
UW
1847 regcache = get_thread_regcache (ptid);
1848 actual_pc = regcache_read_pc (regcache);
6c95b8df 1849 aspace = get_regcache_aspace (regcache);
1c5cfe86 1850
6c95b8df 1851 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1852 {
1c5cfe86
PA
1853 if (debug_displaced)
1854 fprintf_unfiltered (gdb_stdlog,
1855 "displaced: stepping queued %s now\n",
1856 target_pid_to_str (ptid));
1857
1858 displaced_step_prepare (ptid);
1859
929dfd4f
JB
1860 gdbarch = get_regcache_arch (regcache);
1861
1c5cfe86
PA
1862 if (debug_displaced)
1863 {
929dfd4f 1864 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1865 gdb_byte buf[4];
1866
5af949e3
UW
1867 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1868 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1869 read_memory (actual_pc, buf, sizeof (buf));
1870 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1871 }
1872
fc1cf338
PA
1873 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1874 displaced->step_closure))
a493e3e2 1875 target_resume (ptid, 1, GDB_SIGNAL_0);
99e40580 1876 else
a493e3e2 1877 target_resume (ptid, 0, GDB_SIGNAL_0);
1c5cfe86
PA
1878
1879 /* Done, we're stepping a thread. */
1880 break;
ad53cd71 1881 }
1c5cfe86
PA
1882 else
1883 {
1884 int step;
1885 struct thread_info *tp = inferior_thread ();
1886
1887 /* The breakpoint we were sitting under has since been
1888 removed. */
16c381f0 1889 tp->control.trap_expected = 0;
1c5cfe86
PA
1890
1891 /* Go back to what we were trying to do. */
1892 step = currently_stepping (tp);
ad53cd71 1893
1c5cfe86 1894 if (debug_displaced)
3e43a32a 1895 fprintf_unfiltered (gdb_stdlog,
27d2932e 1896 "displaced: breakpoint is gone: %s, step(%d)\n",
1c5cfe86
PA
1897 target_pid_to_str (tp->ptid), step);
1898
a493e3e2
PA
1899 target_resume (ptid, step, GDB_SIGNAL_0);
1900 tp->suspend.stop_signal = GDB_SIGNAL_0;
1c5cfe86
PA
1901
1902 /* This request was discarded. See if there's any other
1903 thread waiting for its turn. */
1904 }
237fc4c9
PA
1905 }
1906}
1907
5231c1fd
PA
1908/* Update global variables holding ptids to hold NEW_PTID if they were
1909 holding OLD_PTID. */
1910static void
1911infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1912{
1913 struct displaced_step_request *it;
fc1cf338 1914 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
1915
1916 if (ptid_equal (inferior_ptid, old_ptid))
1917 inferior_ptid = new_ptid;
1918
fc1cf338
PA
1919 for (displaced = displaced_step_inferior_states;
1920 displaced;
1921 displaced = displaced->next)
1922 {
1923 if (ptid_equal (displaced->step_ptid, old_ptid))
1924 displaced->step_ptid = new_ptid;
1925
1926 for (it = displaced->step_request_queue; it; it = it->next)
1927 if (ptid_equal (it->ptid, old_ptid))
1928 it->ptid = new_ptid;
1929 }
5231c1fd
PA
1930}
1931
237fc4c9
PA
1932\f
1933/* Resuming. */
c906108c
SS
1934
1935/* Things to clean up if we QUIT out of resume (). */
c906108c 1936static void
74b7792f 1937resume_cleanups (void *ignore)
c906108c 1938{
34b7e8a6
PA
1939 if (!ptid_equal (inferior_ptid, null_ptid))
1940 delete_single_step_breakpoints (inferior_thread ());
7c16b83e 1941
c906108c
SS
1942 normal_stop ();
1943}
1944
53904c9e
AC
1945static const char schedlock_off[] = "off";
1946static const char schedlock_on[] = "on";
1947static const char schedlock_step[] = "step";
40478521 1948static const char *const scheduler_enums[] = {
ef346e04
AC
1949 schedlock_off,
1950 schedlock_on,
1951 schedlock_step,
1952 NULL
1953};
920d2a44
AC
1954static const char *scheduler_mode = schedlock_off;
1955static void
1956show_scheduler_mode (struct ui_file *file, int from_tty,
1957 struct cmd_list_element *c, const char *value)
1958{
3e43a32a
MS
1959 fprintf_filtered (file,
1960 _("Mode for locking scheduler "
1961 "during execution is \"%s\".\n"),
920d2a44
AC
1962 value);
1963}
c906108c
SS
1964
1965static void
96baa820 1966set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1967{
eefe576e
AC
1968 if (!target_can_lock_scheduler)
1969 {
1970 scheduler_mode = schedlock_off;
1971 error (_("Target '%s' cannot support this command."), target_shortname);
1972 }
c906108c
SS
1973}
1974
d4db2f36
PA
1975/* True if execution commands resume all threads of all processes by
1976 default; otherwise, resume only threads of the current inferior
1977 process. */
1978int sched_multi = 0;
1979
2facfe5c
DD
1980/* Try to setup for software single stepping over the specified location.
1981 Return 1 if target_resume() should use hardware single step.
1982
1983 GDBARCH the current gdbarch.
1984 PC the location to step over. */
1985
1986static int
1987maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1988{
1989 int hw_step = 1;
1990
f02253f1
HZ
1991 if (execution_direction == EXEC_FORWARD
1992 && gdbarch_software_single_step_p (gdbarch)
99e40580 1993 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 1994 {
99e40580 1995 hw_step = 0;
2facfe5c
DD
1996 }
1997 return hw_step;
1998}
c906108c 1999
09cee04b
PA
2000ptid_t
2001user_visible_resume_ptid (int step)
2002{
2003 /* By default, resume all threads of all processes. */
2004 ptid_t resume_ptid = RESUME_ALL;
2005
2006 /* Maybe resume only all threads of the current process. */
2007 if (!sched_multi && target_supports_multi_process ())
2008 {
2009 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2010 }
2011
2012 /* Maybe resume a single thread after all. */
2013 if (non_stop)
2014 {
2015 /* With non-stop mode on, threads are always handled
2016 individually. */
2017 resume_ptid = inferior_ptid;
2018 }
2019 else if ((scheduler_mode == schedlock_on)
03d46957 2020 || (scheduler_mode == schedlock_step && step))
09cee04b
PA
2021 {
2022 /* User-settable 'scheduler' mode requires solo thread resume. */
2023 resume_ptid = inferior_ptid;
2024 }
2025
70509625
PA
2026 /* We may actually resume fewer threads at first, e.g., if a thread
2027 is stopped at a breakpoint that needs stepping-off, but that
2028 should not be visible to the user/frontend, and neither should
2029 the frontend/user be allowed to proceed any of the threads that
2030 happen to be stopped for internal run control handling, if a
2031 previous command wanted them resumed. */
09cee04b
PA
2032 return resume_ptid;
2033}
2034
c906108c
SS
2035/* Resume the inferior, but allow a QUIT. This is useful if the user
2036 wants to interrupt some lengthy single-stepping operation
2037 (for child processes, the SIGINT goes to the inferior, and so
2038 we get a SIGINT random_signal, but for remote debugging and perhaps
2039 other targets, that's not true).
2040
2041 STEP nonzero if we should step (zero to continue instead).
2042 SIG is the signal to give the inferior (zero for none). */
2043void
2ea28649 2044resume (int step, enum gdb_signal sig)
c906108c 2045{
74b7792f 2046 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
2047 struct regcache *regcache = get_current_regcache ();
2048 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 2049 struct thread_info *tp = inferior_thread ();
515630c5 2050 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 2051 struct address_space *aspace = get_regcache_aspace (regcache);
b0f16a3e 2052 ptid_t resume_ptid;
a09dd441
PA
2053 /* From here on, this represents the caller's step vs continue
2054 request, while STEP represents what we'll actually request the
2055 target to do. STEP can decay from a step to a continue, if e.g.,
2056 we need to implement single-stepping with breakpoints (software
2057 single-step). When deciding whether "set scheduler-locking step"
2058 applies, it's the callers intention that counts. */
2059 const int entry_step = step;
c7e8a53c 2060
af48d08f
PA
2061 tp->stepped_breakpoint = 0;
2062
c906108c
SS
2063 QUIT;
2064
74609e71
YQ
2065 if (current_inferior ()->waiting_for_vfork_done)
2066 {
48f9886d
PA
2067 /* Don't try to single-step a vfork parent that is waiting for
2068 the child to get out of the shared memory region (by exec'ing
2069 or exiting). This is particularly important on software
2070 single-step archs, as the child process would trip on the
2071 software single step breakpoint inserted for the parent
2072 process. Since the parent will not actually execute any
2073 instruction until the child is out of the shared region (such
2074 are vfork's semantics), it is safe to simply continue it.
2075 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2076 the parent, and tell it to `keep_going', which automatically
2077 re-sets it stepping. */
74609e71
YQ
2078 if (debug_infrun)
2079 fprintf_unfiltered (gdb_stdlog,
2080 "infrun: resume : clear step\n");
a09dd441 2081 step = 0;
74609e71
YQ
2082 }
2083
527159b7 2084 if (debug_infrun)
237fc4c9 2085 fprintf_unfiltered (gdb_stdlog,
c9737c08 2086 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2087 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2088 step, gdb_signal_to_symbol_string (sig),
2089 tp->control.trap_expected,
0d9a9a5f
PA
2090 target_pid_to_str (inferior_ptid),
2091 paddress (gdbarch, pc));
c906108c 2092
c2c6d25f
JM
2093 /* Normally, by the time we reach `resume', the breakpoints are either
2094 removed or inserted, as appropriate. The exception is if we're sitting
2095 at a permanent breakpoint; we need to step over it, but permanent
2096 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2097 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2098 {
af48d08f
PA
2099 if (sig != GDB_SIGNAL_0)
2100 {
2101 /* We have a signal to pass to the inferior. The resume
2102 may, or may not take us to the signal handler. If this
2103 is a step, we'll need to stop in the signal handler, if
2104 there's one, (if the target supports stepping into
2105 handlers), or in the next mainline instruction, if
2106 there's no handler. If this is a continue, we need to be
2107 sure to run the handler with all breakpoints inserted.
2108 In all cases, set a breakpoint at the current address
2109 (where the handler returns to), and once that breakpoint
2110 is hit, resume skipping the permanent breakpoint. If
2111 that breakpoint isn't hit, then we've stepped into the
2112 signal handler (or hit some other event). We'll delete
2113 the step-resume breakpoint then. */
2114
2115 if (debug_infrun)
2116 fprintf_unfiltered (gdb_stdlog,
2117 "infrun: resume: skipping permanent breakpoint, "
2118 "deliver signal first\n");
2119
2120 clear_step_over_info ();
2121 tp->control.trap_expected = 0;
2122
2123 if (tp->control.step_resume_breakpoint == NULL)
2124 {
2125 /* Set a "high-priority" step-resume, as we don't want
2126 user breakpoints at PC to trigger (again) when this
2127 hits. */
2128 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2129 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2130
2131 tp->step_after_step_resume_breakpoint = step;
2132 }
2133
2134 insert_breakpoints ();
2135 }
2136 else
2137 {
2138 /* There's no signal to pass, we can go ahead and skip the
2139 permanent breakpoint manually. */
2140 if (debug_infrun)
2141 fprintf_unfiltered (gdb_stdlog,
2142 "infrun: resume: skipping permanent breakpoint\n");
2143 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2144 /* Update pc to reflect the new address from which we will
2145 execute instructions. */
2146 pc = regcache_read_pc (regcache);
2147
2148 if (step)
2149 {
2150 /* We've already advanced the PC, so the stepping part
2151 is done. Now we need to arrange for a trap to be
2152 reported to handle_inferior_event. Set a breakpoint
2153 at the current PC, and run to it. Don't update
2154 prev_pc, because if we end in
2155 switch_back_to_stepping, we want the "expected thread
2156 advanced also" branch to be taken. IOW, we don't
2157 want this thread to step further from PC
2158 (overstep). */
2159 insert_single_step_breakpoint (gdbarch, aspace, pc);
2160 insert_breakpoints ();
2161
2162 tp->suspend.stop_signal = GDB_SIGNAL_0;
2163 /* We're continuing with all breakpoints inserted. It's
2164 safe to let the target bypass signals. */
2165 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2166 /* ... and safe to let other threads run, according to
2167 schedlock. */
2168 resume_ptid = user_visible_resume_ptid (entry_step);
2169 target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2170 discard_cleanups (old_cleanups);
2171 return;
2172 }
2173 }
6d350bb5 2174 }
c2c6d25f 2175
c1e36e3e
PA
2176 /* If we have a breakpoint to step over, make sure to do a single
2177 step only. Same if we have software watchpoints. */
2178 if (tp->control.trap_expected || bpstat_should_step ())
2179 tp->control.may_range_step = 0;
2180
237fc4c9
PA
2181 /* If enabled, step over breakpoints by executing a copy of the
2182 instruction at a different address.
2183
2184 We can't use displaced stepping when we have a signal to deliver;
2185 the comments for displaced_step_prepare explain why. The
2186 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2187 signals' explain what we do instead.
2188
2189 We can't use displaced stepping when we are waiting for vfork_done
2190 event, displaced stepping breaks the vfork child similarly as single
2191 step software breakpoint. */
515630c5 2192 if (use_displaced_stepping (gdbarch)
36728e82 2193 && tp->control.trap_expected
a493e3e2 2194 && sig == GDB_SIGNAL_0
74609e71 2195 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2196 {
fc1cf338
PA
2197 struct displaced_step_inferior_state *displaced;
2198
237fc4c9 2199 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
2200 {
2201 /* Got placed in displaced stepping queue. Will be resumed
2202 later when all the currently queued displaced stepping
251bde03
PA
2203 requests finish. The thread is not executing at this
2204 point, and the call to set_executing will be made later.
2205 But we need to call set_running here, since from the
2206 user/frontend's point of view, threads were set running.
2207 Unless we're calling an inferior function, as in that
2208 case we pretend the inferior doesn't run at all. */
2209 if (!tp->control.in_infcall)
a09dd441 2210 set_running (user_visible_resume_ptid (entry_step), 1);
d56b7306
VP
2211 discard_cleanups (old_cleanups);
2212 return;
2213 }
99e40580 2214
ca7781d2
LM
2215 /* Update pc to reflect the new address from which we will execute
2216 instructions due to displaced stepping. */
2217 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2218
fc1cf338 2219 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
a09dd441
PA
2220 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2221 displaced->step_closure);
237fc4c9
PA
2222 }
2223
2facfe5c 2224 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2225 else if (step)
2facfe5c 2226 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2227
30852783
UW
2228 /* Currently, our software single-step implementation leads to different
2229 results than hardware single-stepping in one situation: when stepping
2230 into delivering a signal which has an associated signal handler,
2231 hardware single-step will stop at the first instruction of the handler,
2232 while software single-step will simply skip execution of the handler.
2233
2234 For now, this difference in behavior is accepted since there is no
2235 easy way to actually implement single-stepping into a signal handler
2236 without kernel support.
2237
2238 However, there is one scenario where this difference leads to follow-on
2239 problems: if we're stepping off a breakpoint by removing all breakpoints
2240 and then single-stepping. In this case, the software single-step
2241 behavior means that even if there is a *breakpoint* in the signal
2242 handler, GDB still would not stop.
2243
2244 Fortunately, we can at least fix this particular issue. We detect
2245 here the case where we are about to deliver a signal while software
2246 single-stepping with breakpoints removed. In this situation, we
2247 revert the decisions to remove all breakpoints and insert single-
2248 step breakpoints, and instead we install a step-resume breakpoint
2249 at the current address, deliver the signal without stepping, and
2250 once we arrive back at the step-resume breakpoint, actually step
2251 over the breakpoint we originally wanted to step over. */
34b7e8a6 2252 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2253 && sig != GDB_SIGNAL_0
2254 && step_over_info_valid_p ())
30852783
UW
2255 {
2256 /* If we have nested signals or a pending signal is delivered
2257 immediately after a handler returns, might might already have
2258 a step-resume breakpoint set on the earlier handler. We cannot
2259 set another step-resume breakpoint; just continue on until the
2260 original breakpoint is hit. */
2261 if (tp->control.step_resume_breakpoint == NULL)
2262 {
2c03e5be 2263 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2264 tp->step_after_step_resume_breakpoint = 1;
2265 }
2266
34b7e8a6 2267 delete_single_step_breakpoints (tp);
30852783 2268
31e77af2 2269 clear_step_over_info ();
30852783 2270 tp->control.trap_expected = 0;
31e77af2
PA
2271
2272 insert_breakpoints ();
30852783
UW
2273 }
2274
b0f16a3e
SM
2275 /* If STEP is set, it's a request to use hardware stepping
2276 facilities. But in that case, we should never
2277 use singlestep breakpoint. */
34b7e8a6 2278 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2279
b0f16a3e
SM
2280 /* Decide the set of threads to ask the target to resume. Start
2281 by assuming everything will be resumed, than narrow the set
2282 by applying increasingly restricting conditions. */
a09dd441 2283 resume_ptid = user_visible_resume_ptid (entry_step);
cd76b0b7 2284
251bde03
PA
2285 /* Even if RESUME_PTID is a wildcard, and we end up resuming less
2286 (e.g., we might need to step over a breakpoint), from the
2287 user/frontend's point of view, all threads in RESUME_PTID are now
2288 running. Unless we're calling an inferior function, as in that
2289 case pretend we inferior doesn't run at all. */
2290 if (!tp->control.in_infcall)
2291 set_running (resume_ptid, 1);
2292
b0f16a3e 2293 /* Maybe resume a single thread after all. */
34b7e8a6 2294 if ((step || thread_has_single_step_breakpoints_set (tp))
b0f16a3e
SM
2295 && tp->control.trap_expected)
2296 {
2297 /* We're allowing a thread to run past a breakpoint it has
2298 hit, by single-stepping the thread with the breakpoint
2299 removed. In which case, we need to single-step only this
2300 thread, and keep others stopped, as they can miss this
2301 breakpoint if allowed to run. */
2302 resume_ptid = inferior_ptid;
2303 }
d4db2f36 2304
7f5ef605
PA
2305 if (execution_direction != EXEC_REVERSE
2306 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2307 {
7f5ef605
PA
2308 /* The only case we currently need to step a breakpoint
2309 instruction is when we have a signal to deliver. See
2310 handle_signal_stop where we handle random signals that could
2311 take out us out of the stepping range. Normally, in that
2312 case we end up continuing (instead of stepping) over the
2313 signal handler with a breakpoint at PC, but there are cases
2314 where we should _always_ single-step, even if we have a
2315 step-resume breakpoint, like when a software watchpoint is
2316 set. Assuming single-stepping and delivering a signal at the
2317 same time would takes us to the signal handler, then we could
2318 have removed the breakpoint at PC to step over it. However,
2319 some hardware step targets (like e.g., Mac OS) can't step
2320 into signal handlers, and for those, we need to leave the
2321 breakpoint at PC inserted, as otherwise if the handler
2322 recurses and executes PC again, it'll miss the breakpoint.
2323 So we leave the breakpoint inserted anyway, but we need to
2324 record that we tried to step a breakpoint instruction, so
2325 that adjust_pc_after_break doesn't end up confused. */
2326 gdb_assert (sig != GDB_SIGNAL_0);
2327
2328 tp->stepped_breakpoint = 1;
2329
b0f16a3e
SM
2330 /* Most targets can step a breakpoint instruction, thus
2331 executing it normally. But if this one cannot, just
2332 continue and we will hit it anyway. */
7f5ef605 2333 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2334 step = 0;
2335 }
ef5cf84e 2336
b0f16a3e
SM
2337 if (debug_displaced
2338 && use_displaced_stepping (gdbarch)
2339 && tp->control.trap_expected)
2340 {
2341 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
2342 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2343 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2344 gdb_byte buf[4];
2345
2346 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2347 paddress (resume_gdbarch, actual_pc));
2348 read_memory (actual_pc, buf, sizeof (buf));
2349 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2350 }
237fc4c9 2351
b0f16a3e
SM
2352 if (tp->control.may_range_step)
2353 {
2354 /* If we're resuming a thread with the PC out of the step
2355 range, then we're doing some nested/finer run control
2356 operation, like stepping the thread out of the dynamic
2357 linker or the displaced stepping scratch pad. We
2358 shouldn't have allowed a range step then. */
2359 gdb_assert (pc_in_thread_step_range (pc, tp));
2360 }
c1e36e3e 2361
b0f16a3e
SM
2362 /* Install inferior's terminal modes. */
2363 target_terminal_inferior ();
2364
2365 /* Avoid confusing the next resume, if the next stop/resume
2366 happens to apply to another thread. */
2367 tp->suspend.stop_signal = GDB_SIGNAL_0;
2368
2369 /* Advise target which signals may be handled silently. If we have
6cc83d2a
PA
2370 removed breakpoints because we are stepping over one (in any
2371 thread), we need to receive all signals to avoid accidentally
2372 skipping a breakpoint during execution of a signal handler. */
2373 if (step_over_info_valid_p ())
b0f16a3e
SM
2374 target_pass_signals (0, NULL);
2375 else
2376 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2455069d 2377
b0f16a3e 2378 target_resume (resume_ptid, step, sig);
c906108c
SS
2379
2380 discard_cleanups (old_cleanups);
2381}
2382\f
237fc4c9 2383/* Proceeding. */
c906108c
SS
2384
2385/* Clear out all variables saying what to do when inferior is continued.
2386 First do this, then set the ones you want, then call `proceed'. */
2387
a7212384
UW
2388static void
2389clear_proceed_status_thread (struct thread_info *tp)
c906108c 2390{
a7212384
UW
2391 if (debug_infrun)
2392 fprintf_unfiltered (gdb_stdlog,
2393 "infrun: clear_proceed_status_thread (%s)\n",
2394 target_pid_to_str (tp->ptid));
d6b48e9c 2395
70509625
PA
2396 /* If this signal should not be seen by program, give it zero.
2397 Used for debugging signals. */
2398 if (!signal_pass_state (tp->suspend.stop_signal))
2399 tp->suspend.stop_signal = GDB_SIGNAL_0;
2400
16c381f0
JK
2401 tp->control.trap_expected = 0;
2402 tp->control.step_range_start = 0;
2403 tp->control.step_range_end = 0;
c1e36e3e 2404 tp->control.may_range_step = 0;
16c381f0
JK
2405 tp->control.step_frame_id = null_frame_id;
2406 tp->control.step_stack_frame_id = null_frame_id;
2407 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2408 tp->control.step_start_function = NULL;
a7212384 2409 tp->stop_requested = 0;
4e1c45ea 2410
16c381f0 2411 tp->control.stop_step = 0;
32400beb 2412
16c381f0 2413 tp->control.proceed_to_finish = 0;
414c69f7 2414
17b2616c
PA
2415 tp->control.command_interp = NULL;
2416
a7212384 2417 /* Discard any remaining commands or status from previous stop. */
16c381f0 2418 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2419}
32400beb 2420
a7212384 2421void
70509625 2422clear_proceed_status (int step)
a7212384 2423{
6c95b8df
PA
2424 if (!non_stop)
2425 {
70509625
PA
2426 struct thread_info *tp;
2427 ptid_t resume_ptid;
2428
2429 resume_ptid = user_visible_resume_ptid (step);
2430
2431 /* In all-stop mode, delete the per-thread status of all threads
2432 we're about to resume, implicitly and explicitly. */
2433 ALL_NON_EXITED_THREADS (tp)
2434 {
2435 if (!ptid_match (tp->ptid, resume_ptid))
2436 continue;
2437 clear_proceed_status_thread (tp);
2438 }
6c95b8df
PA
2439 }
2440
a7212384
UW
2441 if (!ptid_equal (inferior_ptid, null_ptid))
2442 {
2443 struct inferior *inferior;
2444
2445 if (non_stop)
2446 {
6c95b8df
PA
2447 /* If in non-stop mode, only delete the per-thread status of
2448 the current thread. */
a7212384
UW
2449 clear_proceed_status_thread (inferior_thread ());
2450 }
6c95b8df 2451
d6b48e9c 2452 inferior = current_inferior ();
16c381f0 2453 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2454 }
2455
c906108c 2456 stop_after_trap = 0;
f3b1572e 2457
31e77af2
PA
2458 clear_step_over_info ();
2459
f3b1572e 2460 observer_notify_about_to_proceed ();
c906108c 2461
d5c31457
UW
2462 if (stop_registers)
2463 {
2464 regcache_xfree (stop_registers);
2465 stop_registers = NULL;
2466 }
c906108c
SS
2467}
2468
99619bea
PA
2469/* Returns true if TP is still stopped at a breakpoint that needs
2470 stepping-over in order to make progress. If the breakpoint is gone
2471 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2472
2473static int
99619bea
PA
2474thread_still_needs_step_over (struct thread_info *tp)
2475{
2476 if (tp->stepping_over_breakpoint)
2477 {
2478 struct regcache *regcache = get_thread_regcache (tp->ptid);
2479
2480 if (breakpoint_here_p (get_regcache_aspace (regcache),
af48d08f
PA
2481 regcache_read_pc (regcache))
2482 == ordinary_breakpoint_here)
99619bea
PA
2483 return 1;
2484
2485 tp->stepping_over_breakpoint = 0;
2486 }
2487
2488 return 0;
2489}
2490
483805cf
PA
2491/* Returns true if scheduler locking applies. STEP indicates whether
2492 we're about to do a step/next-like command to a thread. */
2493
2494static int
2495schedlock_applies (int step)
2496{
2497 return (scheduler_mode == schedlock_on
2498 || (scheduler_mode == schedlock_step
2499 && step));
2500}
2501
99619bea
PA
2502/* Look a thread other than EXCEPT that has previously reported a
2503 breakpoint event, and thus needs a step-over in order to make
2504 progress. Returns NULL is none is found. STEP indicates whether
2505 we're about to step the current thread, in order to decide whether
2506 "set scheduler-locking step" applies. */
2507
2508static struct thread_info *
2509find_thread_needs_step_over (int step, struct thread_info *except)
ea67f13b 2510{
99619bea 2511 struct thread_info *tp, *current;
5a437975
DE
2512
2513 /* With non-stop mode on, threads are always handled individually. */
2514 gdb_assert (! non_stop);
ea67f13b 2515
99619bea 2516 current = inferior_thread ();
d4db2f36 2517
99619bea
PA
2518 /* If scheduler locking applies, we can avoid iterating over all
2519 threads. */
483805cf 2520 if (schedlock_applies (step))
ea67f13b 2521 {
99619bea
PA
2522 if (except != current
2523 && thread_still_needs_step_over (current))
2524 return current;
515630c5 2525
99619bea
PA
2526 return NULL;
2527 }
0d9a9a5f 2528
034f788c 2529 ALL_NON_EXITED_THREADS (tp)
99619bea
PA
2530 {
2531 /* Ignore the EXCEPT thread. */
2532 if (tp == except)
2533 continue;
2534 /* Ignore threads of processes we're not resuming. */
2535 if (!sched_multi
2536 && ptid_get_pid (tp->ptid) != ptid_get_pid (inferior_ptid))
2537 continue;
2538
2539 if (thread_still_needs_step_over (tp))
2540 return tp;
ea67f13b
DJ
2541 }
2542
99619bea 2543 return NULL;
ea67f13b 2544}
e4846b08 2545
c906108c
SS
2546/* Basic routine for continuing the program in various fashions.
2547
2548 ADDR is the address to resume at, or -1 for resume where stopped.
2549 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2550 or -1 for act according to how it stopped.
c906108c 2551 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2552 -1 means return after that and print nothing.
2553 You should probably set various step_... variables
2554 before calling here, if you are stepping.
c906108c
SS
2555
2556 You should call clear_proceed_status before calling proceed. */
2557
2558void
2ea28649 2559proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
c906108c 2560{
e58b0e63
PA
2561 struct regcache *regcache;
2562 struct gdbarch *gdbarch;
4e1c45ea 2563 struct thread_info *tp;
e58b0e63 2564 CORE_ADDR pc;
6c95b8df 2565 struct address_space *aspace;
c906108c 2566
e58b0e63
PA
2567 /* If we're stopped at a fork/vfork, follow the branch set by the
2568 "set follow-fork-mode" command; otherwise, we'll just proceed
2569 resuming the current thread. */
2570 if (!follow_fork ())
2571 {
2572 /* The target for some reason decided not to resume. */
2573 normal_stop ();
f148b27e
PA
2574 if (target_can_async_p ())
2575 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2576 return;
2577 }
2578
842951eb
PA
2579 /* We'll update this if & when we switch to a new thread. */
2580 previous_inferior_ptid = inferior_ptid;
2581
e58b0e63
PA
2582 regcache = get_current_regcache ();
2583 gdbarch = get_regcache_arch (regcache);
6c95b8df 2584 aspace = get_regcache_aspace (regcache);
e58b0e63 2585 pc = regcache_read_pc (regcache);
2adfaa28 2586 tp = inferior_thread ();
e58b0e63 2587
3333f03a 2588 if (step)
885eeb5b 2589 tp->control.step_start_function = find_pc_function (pc);
c906108c 2590
99619bea
PA
2591 /* Fill in with reasonable starting values. */
2592 init_thread_stepping_state (tp);
2593
2acceee2 2594 if (addr == (CORE_ADDR) -1)
c906108c 2595 {
af48d08f
PA
2596 if (pc == stop_pc
2597 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 2598 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2599 /* There is a breakpoint at the address we will resume at,
2600 step one instruction before inserting breakpoints so that
2601 we do not stop right away (and report a second hit at this
b2175913
MS
2602 breakpoint).
2603
2604 Note, we don't do this in reverse, because we won't
2605 actually be executing the breakpoint insn anyway.
2606 We'll be (un-)executing the previous instruction. */
99619bea 2607 tp->stepping_over_breakpoint = 1;
515630c5
UW
2608 else if (gdbarch_single_step_through_delay_p (gdbarch)
2609 && gdbarch_single_step_through_delay (gdbarch,
2610 get_current_frame ()))
3352ef37
AC
2611 /* We stepped onto an instruction that needs to be stepped
2612 again before re-inserting the breakpoint, do so. */
99619bea 2613 tp->stepping_over_breakpoint = 1;
c906108c
SS
2614 }
2615 else
2616 {
515630c5 2617 regcache_write_pc (regcache, addr);
c906108c
SS
2618 }
2619
70509625
PA
2620 if (siggnal != GDB_SIGNAL_DEFAULT)
2621 tp->suspend.stop_signal = siggnal;
2622
17b2616c
PA
2623 /* Record the interpreter that issued the execution command that
2624 caused this thread to resume. If the top level interpreter is
2625 MI/async, and the execution command was a CLI command
2626 (next/step/etc.), we'll want to print stop event output to the MI
2627 console channel (the stepped-to line, etc.), as if the user
2628 entered the execution command on a real GDB console. */
2629 inferior_thread ()->control.command_interp = command_interp ();
2630
527159b7 2631 if (debug_infrun)
8a9de0e4 2632 fprintf_unfiltered (gdb_stdlog,
c9737c08
PA
2633 "infrun: proceed (addr=%s, signal=%s, step=%d)\n",
2634 paddress (gdbarch, addr),
2635 gdb_signal_to_symbol_string (siggnal), step);
527159b7 2636
94cc34af
PA
2637 if (non_stop)
2638 /* In non-stop, each thread is handled individually. The context
2639 must already be set to the right thread here. */
2640 ;
2641 else
2642 {
99619bea
PA
2643 struct thread_info *step_over;
2644
94cc34af
PA
2645 /* In a multi-threaded task we may select another thread and
2646 then continue or step.
c906108c 2647
94cc34af
PA
2648 But if the old thread was stopped at a breakpoint, it will
2649 immediately cause another breakpoint stop without any
2650 execution (i.e. it will report a breakpoint hit incorrectly).
2651 So we must step over it first.
c906108c 2652
99619bea
PA
2653 Look for a thread other than the current (TP) that reported a
2654 breakpoint hit and hasn't been resumed yet since. */
2655 step_over = find_thread_needs_step_over (step, tp);
2656 if (step_over != NULL)
2adfaa28 2657 {
99619bea
PA
2658 if (debug_infrun)
2659 fprintf_unfiltered (gdb_stdlog,
2660 "infrun: need to step-over [%s] first\n",
2661 target_pid_to_str (step_over->ptid));
2662
2663 /* Store the prev_pc for the stepping thread too, needed by
2664 switch_back_to_stepping thread. */
2665 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2666 switch_to_thread (step_over->ptid);
2667 tp = step_over;
2adfaa28 2668 }
94cc34af 2669 }
c906108c 2670
31e77af2
PA
2671 /* If we need to step over a breakpoint, and we're not using
2672 displaced stepping to do so, insert all breakpoints (watchpoints,
2673 etc.) but the one we're stepping over, step one instruction, and
2674 then re-insert the breakpoint when that step is finished. */
99619bea 2675 if (tp->stepping_over_breakpoint && !use_displaced_stepping (gdbarch))
30852783 2676 {
31e77af2
PA
2677 struct regcache *regcache = get_current_regcache ();
2678
2679 set_step_over_info (get_regcache_aspace (regcache),
963f9c80 2680 regcache_read_pc (regcache), 0);
30852783 2681 }
31e77af2
PA
2682 else
2683 clear_step_over_info ();
30852783 2684
31e77af2 2685 insert_breakpoints ();
30852783 2686
99619bea
PA
2687 tp->control.trap_expected = tp->stepping_over_breakpoint;
2688
c906108c
SS
2689 annotate_starting ();
2690
2691 /* Make sure that output from GDB appears before output from the
2692 inferior. */
2693 gdb_flush (gdb_stdout);
2694
e4846b08 2695 /* Refresh prev_pc value just prior to resuming. This used to be
22bcd14b 2696 done in stop_waiting, however, setting prev_pc there did not handle
e4846b08
JJ
2697 scenarios such as inferior function calls or returning from
2698 a function via the return command. In those cases, the prev_pc
2699 value was not set properly for subsequent commands. The prev_pc value
2700 is used to initialize the starting line number in the ecs. With an
2701 invalid value, the gdb next command ends up stopping at the position
2702 represented by the next line table entry past our start position.
2703 On platforms that generate one line table entry per line, this
2704 is not a problem. However, on the ia64, the compiler generates
2705 extraneous line table entries that do not increase the line number.
2706 When we issue the gdb next command on the ia64 after an inferior call
2707 or a return command, we often end up a few instructions forward, still
2708 within the original line we started.
2709
d5cd6034
JB
2710 An attempt was made to refresh the prev_pc at the same time the
2711 execution_control_state is initialized (for instance, just before
2712 waiting for an inferior event). But this approach did not work
2713 because of platforms that use ptrace, where the pc register cannot
2714 be read unless the inferior is stopped. At that point, we are not
2715 guaranteed the inferior is stopped and so the regcache_read_pc() call
2716 can fail. Setting the prev_pc value here ensures the value is updated
2717 correctly when the inferior is stopped. */
4e1c45ea 2718 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 2719
c906108c 2720 /* Resume inferior. */
99619bea 2721 resume (tp->control.trap_expected || step || bpstat_should_step (),
0de5618e 2722 tp->suspend.stop_signal);
c906108c
SS
2723
2724 /* Wait for it to stop (if not standalone)
2725 and in any case decode why it stopped, and act accordingly. */
43ff13b4 2726 /* Do this only if we are not using the event loop, or if the target
1777feb0 2727 does not support asynchronous execution. */
362646f5 2728 if (!target_can_async_p ())
43ff13b4 2729 {
e4c8541f 2730 wait_for_inferior ();
43ff13b4
JM
2731 normal_stop ();
2732 }
c906108c 2733}
c906108c
SS
2734\f
2735
2736/* Start remote-debugging of a machine over a serial link. */
96baa820 2737
c906108c 2738void
8621d6a9 2739start_remote (int from_tty)
c906108c 2740{
d6b48e9c 2741 struct inferior *inferior;
d6b48e9c
PA
2742
2743 inferior = current_inferior ();
16c381f0 2744 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 2745
1777feb0 2746 /* Always go on waiting for the target, regardless of the mode. */
6426a772 2747 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 2748 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
2749 nothing is returned (instead of just blocking). Because of this,
2750 targets expecting an immediate response need to, internally, set
2751 things up so that the target_wait() is forced to eventually
1777feb0 2752 timeout. */
6426a772
JM
2753 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2754 differentiate to its caller what the state of the target is after
2755 the initial open has been performed. Here we're assuming that
2756 the target has stopped. It should be possible to eventually have
2757 target_open() return to the caller an indication that the target
2758 is currently running and GDB state should be set to the same as
1777feb0 2759 for an async run. */
e4c8541f 2760 wait_for_inferior ();
8621d6a9
DJ
2761
2762 /* Now that the inferior has stopped, do any bookkeeping like
2763 loading shared libraries. We want to do this before normal_stop,
2764 so that the displayed frame is up to date. */
2765 post_create_inferior (&current_target, from_tty);
2766
6426a772 2767 normal_stop ();
c906108c
SS
2768}
2769
2770/* Initialize static vars when a new inferior begins. */
2771
2772void
96baa820 2773init_wait_for_inferior (void)
c906108c
SS
2774{
2775 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 2776
c906108c
SS
2777 breakpoint_init_inferior (inf_starting);
2778
70509625 2779 clear_proceed_status (0);
9f976b41 2780
ca005067 2781 target_last_wait_ptid = minus_one_ptid;
237fc4c9 2782
842951eb 2783 previous_inferior_ptid = inferior_ptid;
0d1e5fa7 2784
edb3359d
DJ
2785 /* Discard any skipped inlined frames. */
2786 clear_inline_frame_state (minus_one_ptid);
c906108c 2787}
237fc4c9 2788
c906108c 2789\f
0d1e5fa7
PA
2790/* Data to be passed around while handling an event. This data is
2791 discarded between events. */
c5aa993b 2792struct execution_control_state
488f131b 2793{
0d1e5fa7 2794 ptid_t ptid;
4e1c45ea
PA
2795 /* The thread that got the event, if this was a thread event; NULL
2796 otherwise. */
2797 struct thread_info *event_thread;
2798
488f131b 2799 struct target_waitstatus ws;
7e324e48 2800 int stop_func_filled_in;
488f131b
JB
2801 CORE_ADDR stop_func_start;
2802 CORE_ADDR stop_func_end;
2c02bd72 2803 const char *stop_func_name;
488f131b 2804 int wait_some_more;
4f5d7f63 2805
2adfaa28
PA
2806 /* True if the event thread hit the single-step breakpoint of
2807 another thread. Thus the event doesn't cause a stop, the thread
2808 needs to be single-stepped past the single-step breakpoint before
2809 we can switch back to the original stepping thread. */
2810 int hit_singlestep_breakpoint;
488f131b
JB
2811};
2812
ec9499be 2813static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2814
568d6575
UW
2815static void handle_step_into_function (struct gdbarch *gdbarch,
2816 struct execution_control_state *ecs);
2817static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2818 struct execution_control_state *ecs);
4f5d7f63 2819static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 2820static void check_exception_resume (struct execution_control_state *,
28106bc2 2821 struct frame_info *);
611c83ae 2822
bdc36728 2823static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 2824static void stop_waiting (struct execution_control_state *ecs);
104c1213 2825static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2826static void keep_going (struct execution_control_state *ecs);
94c57d6a 2827static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 2828static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 2829
252fbfc8
PA
2830/* Callback for iterate over threads. If the thread is stopped, but
2831 the user/frontend doesn't know about that yet, go through
2832 normal_stop, as if the thread had just stopped now. ARG points at
2833 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2834 ptid_is_pid(PTID) is true, applies to all threads of the process
2835 pointed at by PTID. Otherwise, apply only to the thread pointed by
2836 PTID. */
2837
2838static int
2839infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2840{
2841 ptid_t ptid = * (ptid_t *) arg;
2842
2843 if ((ptid_equal (info->ptid, ptid)
2844 || ptid_equal (minus_one_ptid, ptid)
2845 || (ptid_is_pid (ptid)
2846 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2847 && is_running (info->ptid)
2848 && !is_executing (info->ptid))
2849 {
2850 struct cleanup *old_chain;
2851 struct execution_control_state ecss;
2852 struct execution_control_state *ecs = &ecss;
2853
2854 memset (ecs, 0, sizeof (*ecs));
2855
2856 old_chain = make_cleanup_restore_current_thread ();
2857
f15cb84a
YQ
2858 overlay_cache_invalid = 1;
2859 /* Flush target cache before starting to handle each event.
2860 Target was running and cache could be stale. This is just a
2861 heuristic. Running threads may modify target memory, but we
2862 don't get any event. */
2863 target_dcache_invalidate ();
2864
252fbfc8
PA
2865 /* Go through handle_inferior_event/normal_stop, so we always
2866 have consistent output as if the stop event had been
2867 reported. */
2868 ecs->ptid = info->ptid;
e09875d4 2869 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8 2870 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 2871 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
2872
2873 handle_inferior_event (ecs);
2874
2875 if (!ecs->wait_some_more)
2876 {
2877 struct thread_info *tp;
2878
2879 normal_stop ();
2880
fa4cd53f 2881 /* Finish off the continuations. */
252fbfc8 2882 tp = inferior_thread ();
fa4cd53f
PA
2883 do_all_intermediate_continuations_thread (tp, 1);
2884 do_all_continuations_thread (tp, 1);
252fbfc8
PA
2885 }
2886
2887 do_cleanups (old_chain);
2888 }
2889
2890 return 0;
2891}
2892
2893/* This function is attached as a "thread_stop_requested" observer.
2894 Cleanup local state that assumed the PTID was to be resumed, and
2895 report the stop to the frontend. */
2896
2c0b251b 2897static void
252fbfc8
PA
2898infrun_thread_stop_requested (ptid_t ptid)
2899{
fc1cf338 2900 struct displaced_step_inferior_state *displaced;
252fbfc8
PA
2901
2902 /* PTID was requested to stop. Remove it from the displaced
2903 stepping queue, so we don't try to resume it automatically. */
fc1cf338
PA
2904
2905 for (displaced = displaced_step_inferior_states;
2906 displaced;
2907 displaced = displaced->next)
252fbfc8 2908 {
fc1cf338 2909 struct displaced_step_request *it, **prev_next_p;
252fbfc8 2910
fc1cf338
PA
2911 it = displaced->step_request_queue;
2912 prev_next_p = &displaced->step_request_queue;
2913 while (it)
252fbfc8 2914 {
fc1cf338
PA
2915 if (ptid_match (it->ptid, ptid))
2916 {
2917 *prev_next_p = it->next;
2918 it->next = NULL;
2919 xfree (it);
2920 }
252fbfc8 2921 else
fc1cf338
PA
2922 {
2923 prev_next_p = &it->next;
2924 }
252fbfc8 2925
fc1cf338 2926 it = *prev_next_p;
252fbfc8 2927 }
252fbfc8
PA
2928 }
2929
2930 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2931}
2932
a07daef3
PA
2933static void
2934infrun_thread_thread_exit (struct thread_info *tp, int silent)
2935{
2936 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2937 nullify_last_target_wait_ptid ();
2938}
2939
0cbcdb96
PA
2940/* Delete the step resume, single-step and longjmp/exception resume
2941 breakpoints of TP. */
4e1c45ea 2942
0cbcdb96
PA
2943static void
2944delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 2945{
0cbcdb96
PA
2946 delete_step_resume_breakpoint (tp);
2947 delete_exception_resume_breakpoint (tp);
34b7e8a6 2948 delete_single_step_breakpoints (tp);
4e1c45ea
PA
2949}
2950
0cbcdb96
PA
2951/* If the target still has execution, call FUNC for each thread that
2952 just stopped. In all-stop, that's all the non-exited threads; in
2953 non-stop, that's the current thread, only. */
2954
2955typedef void (*for_each_just_stopped_thread_callback_func)
2956 (struct thread_info *tp);
4e1c45ea
PA
2957
2958static void
0cbcdb96 2959for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 2960{
0cbcdb96 2961 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
4e1c45ea
PA
2962 return;
2963
2964 if (non_stop)
2965 {
0cbcdb96
PA
2966 /* If in non-stop mode, only the current thread stopped. */
2967 func (inferior_thread ());
4e1c45ea
PA
2968 }
2969 else
0cbcdb96
PA
2970 {
2971 struct thread_info *tp;
2972
2973 /* In all-stop mode, all threads have stopped. */
2974 ALL_NON_EXITED_THREADS (tp)
2975 {
2976 func (tp);
2977 }
2978 }
2979}
2980
2981/* Delete the step resume and longjmp/exception resume breakpoints of
2982 the threads that just stopped. */
2983
2984static void
2985delete_just_stopped_threads_infrun_breakpoints (void)
2986{
2987 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
2988}
2989
2990/* Delete the single-step breakpoints of the threads that just
2991 stopped. */
7c16b83e 2992
34b7e8a6
PA
2993static void
2994delete_just_stopped_threads_single_step_breakpoints (void)
2995{
2996 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
2997}
2998
1777feb0 2999/* A cleanup wrapper. */
4e1c45ea
PA
3000
3001static void
0cbcdb96 3002delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
4e1c45ea 3003{
0cbcdb96 3004 delete_just_stopped_threads_infrun_breakpoints ();
4e1c45ea
PA
3005}
3006
223698f8
DE
3007/* Pretty print the results of target_wait, for debugging purposes. */
3008
3009static void
3010print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3011 const struct target_waitstatus *ws)
3012{
3013 char *status_string = target_waitstatus_to_string (ws);
3014 struct ui_file *tmp_stream = mem_fileopen ();
3015 char *text;
223698f8
DE
3016
3017 /* The text is split over several lines because it was getting too long.
3018 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3019 output as a unit; we want only one timestamp printed if debug_timestamp
3020 is set. */
3021
3022 fprintf_unfiltered (tmp_stream,
dfd4cc63
LM
3023 "infrun: target_wait (%d", ptid_get_pid (waiton_ptid));
3024 if (ptid_get_pid (waiton_ptid) != -1)
223698f8
DE
3025 fprintf_unfiltered (tmp_stream,
3026 " [%s]", target_pid_to_str (waiton_ptid));
3027 fprintf_unfiltered (tmp_stream, ", status) =\n");
3028 fprintf_unfiltered (tmp_stream,
3029 "infrun: %d [%s],\n",
dfd4cc63
LM
3030 ptid_get_pid (result_ptid),
3031 target_pid_to_str (result_ptid));
223698f8
DE
3032 fprintf_unfiltered (tmp_stream,
3033 "infrun: %s\n",
3034 status_string);
3035
759ef836 3036 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
3037
3038 /* This uses %s in part to handle %'s in the text, but also to avoid
3039 a gcc error: the format attribute requires a string literal. */
3040 fprintf_unfiltered (gdb_stdlog, "%s", text);
3041
3042 xfree (status_string);
3043 xfree (text);
3044 ui_file_delete (tmp_stream);
3045}
3046
24291992
PA
3047/* Prepare and stabilize the inferior for detaching it. E.g.,
3048 detaching while a thread is displaced stepping is a recipe for
3049 crashing it, as nothing would readjust the PC out of the scratch
3050 pad. */
3051
3052void
3053prepare_for_detach (void)
3054{
3055 struct inferior *inf = current_inferior ();
3056 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3057 struct cleanup *old_chain_1;
3058 struct displaced_step_inferior_state *displaced;
3059
3060 displaced = get_displaced_stepping_state (inf->pid);
3061
3062 /* Is any thread of this process displaced stepping? If not,
3063 there's nothing else to do. */
3064 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3065 return;
3066
3067 if (debug_infrun)
3068 fprintf_unfiltered (gdb_stdlog,
3069 "displaced-stepping in-process while detaching");
3070
3071 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3072 inf->detaching = 1;
3073
3074 while (!ptid_equal (displaced->step_ptid, null_ptid))
3075 {
3076 struct cleanup *old_chain_2;
3077 struct execution_control_state ecss;
3078 struct execution_control_state *ecs;
3079
3080 ecs = &ecss;
3081 memset (ecs, 0, sizeof (*ecs));
3082
3083 overlay_cache_invalid = 1;
f15cb84a
YQ
3084 /* Flush target cache before starting to handle each event.
3085 Target was running and cache could be stale. This is just a
3086 heuristic. Running threads may modify target memory, but we
3087 don't get any event. */
3088 target_dcache_invalidate ();
24291992 3089
24291992
PA
3090 if (deprecated_target_wait_hook)
3091 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
3092 else
3093 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
3094
3095 if (debug_infrun)
3096 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3097
3098 /* If an error happens while handling the event, propagate GDB's
3099 knowledge of the executing state to the frontend/user running
3100 state. */
3e43a32a
MS
3101 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3102 &minus_one_ptid);
24291992
PA
3103
3104 /* Now figure out what to do with the result of the result. */
3105 handle_inferior_event (ecs);
3106
3107 /* No error, don't finish the state yet. */
3108 discard_cleanups (old_chain_2);
3109
3110 /* Breakpoints and watchpoints are not installed on the target
3111 at this point, and signals are passed directly to the
3112 inferior, so this must mean the process is gone. */
3113 if (!ecs->wait_some_more)
3114 {
3115 discard_cleanups (old_chain_1);
3116 error (_("Program exited while detaching"));
3117 }
3118 }
3119
3120 discard_cleanups (old_chain_1);
3121}
3122
cd0fc7c3 3123/* Wait for control to return from inferior to debugger.
ae123ec6 3124
cd0fc7c3
SS
3125 If inferior gets a signal, we may decide to start it up again
3126 instead of returning. That is why there is a loop in this function.
3127 When this function actually returns it means the inferior
3128 should be left stopped and GDB should read more commands. */
3129
3130void
e4c8541f 3131wait_for_inferior (void)
cd0fc7c3
SS
3132{
3133 struct cleanup *old_cleanups;
c906108c 3134
527159b7 3135 if (debug_infrun)
ae123ec6 3136 fprintf_unfiltered
e4c8541f 3137 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3138
0cbcdb96
PA
3139 old_cleanups
3140 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3141 NULL);
cd0fc7c3 3142
c906108c
SS
3143 while (1)
3144 {
ae25568b
PA
3145 struct execution_control_state ecss;
3146 struct execution_control_state *ecs = &ecss;
29f49a6a 3147 struct cleanup *old_chain;
963f9c80 3148 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3149
ae25568b
PA
3150 memset (ecs, 0, sizeof (*ecs));
3151
ec9499be 3152 overlay_cache_invalid = 1;
ec9499be 3153
f15cb84a
YQ
3154 /* Flush target cache before starting to handle each event.
3155 Target was running and cache could be stale. This is just a
3156 heuristic. Running threads may modify target memory, but we
3157 don't get any event. */
3158 target_dcache_invalidate ();
3159
9a4105ab 3160 if (deprecated_target_wait_hook)
47608cb1 3161 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 3162 else
47608cb1 3163 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3164
f00150c9 3165 if (debug_infrun)
223698f8 3166 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3167
29f49a6a
PA
3168 /* If an error happens while handling the event, propagate GDB's
3169 knowledge of the executing state to the frontend/user running
3170 state. */
3171 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3172
cd0fc7c3
SS
3173 /* Now figure out what to do with the result of the result. */
3174 handle_inferior_event (ecs);
c906108c 3175
29f49a6a
PA
3176 /* No error, don't finish the state yet. */
3177 discard_cleanups (old_chain);
3178
cd0fc7c3
SS
3179 if (!ecs->wait_some_more)
3180 break;
3181 }
4e1c45ea 3182
cd0fc7c3
SS
3183 do_cleanups (old_cleanups);
3184}
c906108c 3185
d3d4baed
PA
3186/* Cleanup that reinstalls the readline callback handler, if the
3187 target is running in the background. If while handling the target
3188 event something triggered a secondary prompt, like e.g., a
3189 pagination prompt, we'll have removed the callback handler (see
3190 gdb_readline_wrapper_line). Need to do this as we go back to the
3191 event loop, ready to process further input. Note this has no
3192 effect if the handler hasn't actually been removed, because calling
3193 rl_callback_handler_install resets the line buffer, thus losing
3194 input. */
3195
3196static void
3197reinstall_readline_callback_handler_cleanup (void *arg)
3198{
6c400b59
PA
3199 if (!interpreter_async)
3200 {
3201 /* We're not going back to the top level event loop yet. Don't
3202 install the readline callback, as it'd prep the terminal,
3203 readline-style (raw, noecho) (e.g., --batch). We'll install
3204 it the next time the prompt is displayed, when we're ready
3205 for input. */
3206 return;
3207 }
3208
d3d4baed
PA
3209 if (async_command_editing_p && !sync_execution)
3210 gdb_rl_callback_handler_reinstall ();
3211}
3212
1777feb0 3213/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3214 event loop whenever a change of state is detected on the file
1777feb0
MS
3215 descriptor corresponding to the target. It can be called more than
3216 once to complete a single execution command. In such cases we need
3217 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3218 that this function is called for a single execution command, then
3219 report to the user that the inferior has stopped, and do the
1777feb0 3220 necessary cleanups. */
43ff13b4
JM
3221
3222void
fba45db2 3223fetch_inferior_event (void *client_data)
43ff13b4 3224{
0d1e5fa7 3225 struct execution_control_state ecss;
a474d7c2 3226 struct execution_control_state *ecs = &ecss;
4f8d22e3 3227 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 3228 struct cleanup *ts_old_chain;
4f8d22e3 3229 int was_sync = sync_execution;
0f641c01 3230 int cmd_done = 0;
963f9c80 3231 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3232
0d1e5fa7
PA
3233 memset (ecs, 0, sizeof (*ecs));
3234
d3d4baed
PA
3235 /* End up with readline processing input, if necessary. */
3236 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3237
c5187ac6
PA
3238 /* We're handling a live event, so make sure we're doing live
3239 debugging. If we're looking at traceframes while the target is
3240 running, we're going to need to get back to that mode after
3241 handling the event. */
3242 if (non_stop)
3243 {
3244 make_cleanup_restore_current_traceframe ();
e6e4e701 3245 set_current_traceframe (-1);
c5187ac6
PA
3246 }
3247
4f8d22e3
PA
3248 if (non_stop)
3249 /* In non-stop mode, the user/frontend should not notice a thread
3250 switch due to internal events. Make sure we reverse to the
3251 user selected thread and frame after handling the event and
3252 running any breakpoint commands. */
3253 make_cleanup_restore_current_thread ();
3254
ec9499be 3255 overlay_cache_invalid = 1;
f15cb84a
YQ
3256 /* Flush target cache before starting to handle each event. Target
3257 was running and cache could be stale. This is just a heuristic.
3258 Running threads may modify target memory, but we don't get any
3259 event. */
3260 target_dcache_invalidate ();
3dd5b83d 3261
32231432
PA
3262 make_cleanup_restore_integer (&execution_direction);
3263 execution_direction = target_execution_direction ();
3264
9a4105ab 3265 if (deprecated_target_wait_hook)
a474d7c2 3266 ecs->ptid =
47608cb1 3267 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 3268 else
47608cb1 3269 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 3270
f00150c9 3271 if (debug_infrun)
223698f8 3272 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3273
29f49a6a
PA
3274 /* If an error happens while handling the event, propagate GDB's
3275 knowledge of the executing state to the frontend/user running
3276 state. */
3277 if (!non_stop)
3278 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3279 else
3280 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3281
353d1d73
JK
3282 /* Get executed before make_cleanup_restore_current_thread above to apply
3283 still for the thread which has thrown the exception. */
3284 make_bpstat_clear_actions_cleanup ();
3285
7c16b83e
PA
3286 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3287
43ff13b4 3288 /* Now figure out what to do with the result of the result. */
a474d7c2 3289 handle_inferior_event (ecs);
43ff13b4 3290
a474d7c2 3291 if (!ecs->wait_some_more)
43ff13b4 3292 {
c9657e70 3293 struct inferior *inf = find_inferior_ptid (ecs->ptid);
d6b48e9c 3294
0cbcdb96 3295 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3296
d6b48e9c 3297 /* We may not find an inferior if this was a process exit. */
16c381f0 3298 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
3299 normal_stop ();
3300
af679fd0 3301 if (target_has_execution
0e5bf2a8 3302 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
af679fd0
PA
3303 && ecs->ws.kind != TARGET_WAITKIND_EXITED
3304 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3305 && ecs->event_thread->step_multi
16c381f0 3306 && ecs->event_thread->control.stop_step)
c2d11a7d
JM
3307 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
3308 else
0f641c01
PA
3309 {
3310 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3311 cmd_done = 1;
3312 }
43ff13b4 3313 }
4f8d22e3 3314
29f49a6a
PA
3315 /* No error, don't finish the thread states yet. */
3316 discard_cleanups (ts_old_chain);
3317
4f8d22e3
PA
3318 /* Revert thread and frame. */
3319 do_cleanups (old_chain);
3320
3321 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
3322 restore the prompt (a synchronous execution command has finished,
3323 and we're ready for input). */
b4a14fd0 3324 if (interpreter_async && was_sync && !sync_execution)
92bcb5f9 3325 observer_notify_sync_execution_done ();
0f641c01
PA
3326
3327 if (cmd_done
3328 && !was_sync
3329 && exec_done_display_p
3330 && (ptid_equal (inferior_ptid, null_ptid)
3331 || !is_running (inferior_ptid)))
3332 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3333}
3334
edb3359d
DJ
3335/* Record the frame and location we're currently stepping through. */
3336void
3337set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3338{
3339 struct thread_info *tp = inferior_thread ();
3340
16c381f0
JK
3341 tp->control.step_frame_id = get_frame_id (frame);
3342 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
3343
3344 tp->current_symtab = sal.symtab;
3345 tp->current_line = sal.line;
3346}
3347
0d1e5fa7
PA
3348/* Clear context switchable stepping state. */
3349
3350void
4e1c45ea 3351init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 3352{
7f5ef605 3353 tss->stepped_breakpoint = 0;
0d1e5fa7 3354 tss->stepping_over_breakpoint = 0;
963f9c80 3355 tss->stepping_over_watchpoint = 0;
0d1e5fa7 3356 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
3357}
3358
c32c64b7
DE
3359/* Set the cached copy of the last ptid/waitstatus. */
3360
3361static void
3362set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3363{
3364 target_last_wait_ptid = ptid;
3365 target_last_waitstatus = status;
3366}
3367
e02bc4cc 3368/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
3369 target_wait()/deprecated_target_wait_hook(). The data is actually
3370 cached by handle_inferior_event(), which gets called immediately
3371 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
3372
3373void
488f131b 3374get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 3375{
39f77062 3376 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
3377 *status = target_last_waitstatus;
3378}
3379
ac264b3b
MS
3380void
3381nullify_last_target_wait_ptid (void)
3382{
3383 target_last_wait_ptid = minus_one_ptid;
3384}
3385
dcf4fbde 3386/* Switch thread contexts. */
dd80620e
MS
3387
3388static void
0d1e5fa7 3389context_switch (ptid_t ptid)
dd80620e 3390{
4b51d87b 3391 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
3392 {
3393 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3394 target_pid_to_str (inferior_ptid));
3395 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 3396 target_pid_to_str (ptid));
fd48f117
DJ
3397 }
3398
0d1e5fa7 3399 switch_to_thread (ptid);
dd80620e
MS
3400}
3401
4fa8626c
DJ
3402static void
3403adjust_pc_after_break (struct execution_control_state *ecs)
3404{
24a73cce
UW
3405 struct regcache *regcache;
3406 struct gdbarch *gdbarch;
6c95b8df 3407 struct address_space *aspace;
118e6252 3408 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 3409
4fa8626c
DJ
3410 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3411 we aren't, just return.
9709f61c
DJ
3412
3413 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
3414 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3415 implemented by software breakpoints should be handled through the normal
3416 breakpoint layer.
8fb3e588 3417
4fa8626c
DJ
3418 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3419 different signals (SIGILL or SIGEMT for instance), but it is less
3420 clear where the PC is pointing afterwards. It may not match
b798847d
UW
3421 gdbarch_decr_pc_after_break. I don't know any specific target that
3422 generates these signals at breakpoints (the code has been in GDB since at
3423 least 1992) so I can not guess how to handle them here.
8fb3e588 3424
e6cf7916
UW
3425 In earlier versions of GDB, a target with
3426 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
3427 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3428 target with both of these set in GDB history, and it seems unlikely to be
3429 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
3430
3431 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
3432 return;
3433
a493e3e2 3434 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
3435 return;
3436
4058b839
PA
3437 /* In reverse execution, when a breakpoint is hit, the instruction
3438 under it has already been de-executed. The reported PC always
3439 points at the breakpoint address, so adjusting it further would
3440 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3441 architecture:
3442
3443 B1 0x08000000 : INSN1
3444 B2 0x08000001 : INSN2
3445 0x08000002 : INSN3
3446 PC -> 0x08000003 : INSN4
3447
3448 Say you're stopped at 0x08000003 as above. Reverse continuing
3449 from that point should hit B2 as below. Reading the PC when the
3450 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3451 been de-executed already.
3452
3453 B1 0x08000000 : INSN1
3454 B2 PC -> 0x08000001 : INSN2
3455 0x08000002 : INSN3
3456 0x08000003 : INSN4
3457
3458 We can't apply the same logic as for forward execution, because
3459 we would wrongly adjust the PC to 0x08000000, since there's a
3460 breakpoint at PC - 1. We'd then report a hit on B1, although
3461 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3462 behaviour. */
3463 if (execution_direction == EXEC_REVERSE)
3464 return;
3465
1cf4d951
PA
3466 /* If the target can tell whether the thread hit a SW breakpoint,
3467 trust it. Targets that can tell also adjust the PC
3468 themselves. */
3469 if (target_supports_stopped_by_sw_breakpoint ())
3470 return;
3471
3472 /* Note that relying on whether a breakpoint is planted in memory to
3473 determine this can fail. E.g,. the breakpoint could have been
3474 removed since. Or the thread could have been told to step an
3475 instruction the size of a breakpoint instruction, and only
3476 _after_ was a breakpoint inserted at its address. */
3477
24a73cce
UW
3478 /* If this target does not decrement the PC after breakpoints, then
3479 we have nothing to do. */
3480 regcache = get_thread_regcache (ecs->ptid);
3481 gdbarch = get_regcache_arch (regcache);
118e6252 3482
527a273a 3483 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 3484 if (decr_pc == 0)
24a73cce
UW
3485 return;
3486
6c95b8df
PA
3487 aspace = get_regcache_aspace (regcache);
3488
8aad930b
AC
3489 /* Find the location where (if we've hit a breakpoint) the
3490 breakpoint would be. */
118e6252 3491 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 3492
1cf4d951
PA
3493 /* If the target can't tell whether a software breakpoint triggered,
3494 fallback to figuring it out based on breakpoints we think were
3495 inserted in the target, and on whether the thread was stepped or
3496 continued. */
3497
1c5cfe86
PA
3498 /* Check whether there actually is a software breakpoint inserted at
3499 that location.
3500
3501 If in non-stop mode, a race condition is possible where we've
3502 removed a breakpoint, but stop events for that breakpoint were
3503 already queued and arrive later. To suppress those spurious
3504 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
3505 and retire them after a number of stop events are reported. Note
3506 this is an heuristic and can thus get confused. The real fix is
3507 to get the "stopped by SW BP and needs adjustment" info out of
3508 the target/kernel (and thus never reach here; see above). */
6c95b8df
PA
3509 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3510 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 3511 {
77f9e713 3512 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
abbb1732 3513
8213266a 3514 if (record_full_is_used ())
77f9e713 3515 record_full_gdb_operation_disable_set ();
96429cc8 3516
1c0fdd0e
UW
3517 /* When using hardware single-step, a SIGTRAP is reported for both
3518 a completed single-step and a software breakpoint. Need to
3519 differentiate between the two, as the latter needs adjusting
3520 but the former does not.
3521
3522 The SIGTRAP can be due to a completed hardware single-step only if
3523 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
3524 - this thread is currently being stepped
3525
3526 If any of these events did not occur, we must have stopped due
3527 to hitting a software breakpoint, and have to back up to the
3528 breakpoint address.
3529
3530 As a special case, we could have hardware single-stepped a
3531 software breakpoint. In this case (prev_pc == breakpoint_pc),
3532 we also need to back up to the breakpoint address. */
3533
34b7e8a6 3534 if (thread_has_single_step_breakpoints_set (ecs->event_thread)
4e1c45ea 3535 || !currently_stepping (ecs->event_thread)
7f5ef605
PA
3536 || (ecs->event_thread->stepped_breakpoint
3537 && ecs->event_thread->prev_pc == breakpoint_pc))
515630c5 3538 regcache_write_pc (regcache, breakpoint_pc);
96429cc8 3539
77f9e713 3540 do_cleanups (old_cleanups);
8aad930b 3541 }
4fa8626c
DJ
3542}
3543
edb3359d
DJ
3544static int
3545stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3546{
3547 for (frame = get_prev_frame (frame);
3548 frame != NULL;
3549 frame = get_prev_frame (frame))
3550 {
3551 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3552 return 1;
3553 if (get_frame_type (frame) != INLINE_FRAME)
3554 break;
3555 }
3556
3557 return 0;
3558}
3559
a96d9b2e
SDJ
3560/* Auxiliary function that handles syscall entry/return events.
3561 It returns 1 if the inferior should keep going (and GDB
3562 should ignore the event), or 0 if the event deserves to be
3563 processed. */
ca2163eb 3564
a96d9b2e 3565static int
ca2163eb 3566handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 3567{
ca2163eb 3568 struct regcache *regcache;
ca2163eb
PA
3569 int syscall_number;
3570
3571 if (!ptid_equal (ecs->ptid, inferior_ptid))
3572 context_switch (ecs->ptid);
3573
3574 regcache = get_thread_regcache (ecs->ptid);
f90263c1 3575 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
3576 stop_pc = regcache_read_pc (regcache);
3577
a96d9b2e
SDJ
3578 if (catch_syscall_enabled () > 0
3579 && catching_syscall_number (syscall_number) > 0)
3580 {
3581 if (debug_infrun)
3582 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3583 syscall_number);
a96d9b2e 3584
16c381f0 3585 ecs->event_thread->control.stop_bpstat
6c95b8df 3586 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 3587 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 3588
ce12b012 3589 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
3590 {
3591 /* Catchpoint hit. */
ca2163eb
PA
3592 return 0;
3593 }
a96d9b2e 3594 }
ca2163eb
PA
3595
3596 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
3597 keep_going (ecs);
3598 return 1;
a96d9b2e
SDJ
3599}
3600
7e324e48
GB
3601/* Lazily fill in the execution_control_state's stop_func_* fields. */
3602
3603static void
3604fill_in_stop_func (struct gdbarch *gdbarch,
3605 struct execution_control_state *ecs)
3606{
3607 if (!ecs->stop_func_filled_in)
3608 {
3609 /* Don't care about return value; stop_func_start and stop_func_name
3610 will both be 0 if it doesn't work. */
3611 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3612 &ecs->stop_func_start, &ecs->stop_func_end);
3613 ecs->stop_func_start
3614 += gdbarch_deprecated_function_start_offset (gdbarch);
3615
591a12a1
UW
3616 if (gdbarch_skip_entrypoint_p (gdbarch))
3617 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
3618 ecs->stop_func_start);
3619
7e324e48
GB
3620 ecs->stop_func_filled_in = 1;
3621 }
3622}
3623
4f5d7f63
PA
3624
3625/* Return the STOP_SOON field of the inferior pointed at by PTID. */
3626
3627static enum stop_kind
3628get_inferior_stop_soon (ptid_t ptid)
3629{
c9657e70 3630 struct inferior *inf = find_inferior_ptid (ptid);
4f5d7f63
PA
3631
3632 gdb_assert (inf != NULL);
3633 return inf->control.stop_soon;
3634}
3635
05ba8510
PA
3636/* Given an execution control state that has been freshly filled in by
3637 an event from the inferior, figure out what it means and take
3638 appropriate action.
3639
3640 The alternatives are:
3641
22bcd14b 3642 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
3643 debugger.
3644
3645 2) keep_going and return; to wait for the next event (set
3646 ecs->event_thread->stepping_over_breakpoint to 1 to single step
3647 once). */
c906108c 3648
ec9499be 3649static void
96baa820 3650handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 3651{
d6b48e9c
PA
3652 enum stop_kind stop_soon;
3653
28736962
PA
3654 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3655 {
3656 /* We had an event in the inferior, but we are not interested in
3657 handling it at this level. The lower layers have already
3658 done what needs to be done, if anything.
3659
3660 One of the possible circumstances for this is when the
3661 inferior produces output for the console. The inferior has
3662 not stopped, and we are ignoring the event. Another possible
3663 circumstance is any event which the lower level knows will be
3664 reported multiple times without an intervening resume. */
3665 if (debug_infrun)
3666 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3667 prepare_to_wait (ecs);
3668 return;
3669 }
3670
0e5bf2a8
PA
3671 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3672 && target_can_async_p () && !sync_execution)
3673 {
3674 /* There were no unwaited-for children left in the target, but,
3675 we're not synchronously waiting for events either. Just
3676 ignore. Otherwise, if we were running a synchronous
3677 execution command, we need to cancel it and give the user
3678 back the terminal. */
3679 if (debug_infrun)
3680 fprintf_unfiltered (gdb_stdlog,
3681 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3682 prepare_to_wait (ecs);
3683 return;
3684 }
3685
1777feb0 3686 /* Cache the last pid/waitstatus. */
c32c64b7 3687 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 3688
ca005067 3689 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 3690 stop_stack_dummy = STOP_NONE;
ca005067 3691
0e5bf2a8
PA
3692 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3693 {
3694 /* No unwaited-for children left. IOW, all resumed children
3695 have exited. */
3696 if (debug_infrun)
3697 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3698
3699 stop_print_frame = 0;
22bcd14b 3700 stop_waiting (ecs);
0e5bf2a8
PA
3701 return;
3702 }
3703
8c90c137 3704 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 3705 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
3706 {
3707 ecs->event_thread = find_thread_ptid (ecs->ptid);
3708 /* If it's a new thread, add it to the thread database. */
3709 if (ecs->event_thread == NULL)
3710 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
3711
3712 /* Disable range stepping. If the next step request could use a
3713 range, this will be end up re-enabled then. */
3714 ecs->event_thread->control.may_range_step = 0;
359f5fe6 3715 }
88ed393a
JK
3716
3717 /* Dependent on valid ECS->EVENT_THREAD. */
3718 adjust_pc_after_break (ecs);
3719
3720 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3721 reinit_frame_cache ();
3722
28736962
PA
3723 breakpoint_retire_moribund ();
3724
2b009048
DJ
3725 /* First, distinguish signals caused by the debugger from signals
3726 that have to do with the program's own actions. Note that
3727 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3728 on the operating system version. Here we detect when a SIGILL or
3729 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3730 something similar for SIGSEGV, since a SIGSEGV will be generated
3731 when we're trying to execute a breakpoint instruction on a
3732 non-executable stack. This happens for call dummy breakpoints
3733 for architectures like SPARC that place call dummies on the
3734 stack. */
2b009048 3735 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
3736 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3737 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3738 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 3739 {
de0a0249
UW
3740 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3741
3742 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3743 regcache_read_pc (regcache)))
3744 {
3745 if (debug_infrun)
3746 fprintf_unfiltered (gdb_stdlog,
3747 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 3748 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 3749 }
2b009048
DJ
3750 }
3751
28736962
PA
3752 /* Mark the non-executing threads accordingly. In all-stop, all
3753 threads of all processes are stopped when we get any event
3754 reported. In non-stop mode, only the event thread stops. If
3755 we're handling a process exit in non-stop mode, there's nothing
3756 to do, as threads of the dead process are gone, and threads of
3757 any other process were left running. */
3758 if (!non_stop)
3759 set_executing (minus_one_ptid, 0);
3760 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3761 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
7aee8dc2 3762 set_executing (ecs->ptid, 0);
8c90c137 3763
488f131b
JB
3764 switch (ecs->ws.kind)
3765 {
3766 case TARGET_WAITKIND_LOADED:
527159b7 3767 if (debug_infrun)
8a9de0e4 3768 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
5c09a2c5
PA
3769 if (!ptid_equal (ecs->ptid, inferior_ptid))
3770 context_switch (ecs->ptid);
b0f4b84b
DJ
3771 /* Ignore gracefully during startup of the inferior, as it might
3772 be the shell which has just loaded some objects, otherwise
3773 add the symbols for the newly loaded objects. Also ignore at
3774 the beginning of an attach or remote session; we will query
3775 the full list of libraries once the connection is
3776 established. */
4f5d7f63
PA
3777
3778 stop_soon = get_inferior_stop_soon (ecs->ptid);
c0236d92 3779 if (stop_soon == NO_STOP_QUIETLY)
488f131b 3780 {
edcc5120
TT
3781 struct regcache *regcache;
3782
edcc5120
TT
3783 regcache = get_thread_regcache (ecs->ptid);
3784
3785 handle_solib_event ();
3786
3787 ecs->event_thread->control.stop_bpstat
3788 = bpstat_stop_status (get_regcache_aspace (regcache),
3789 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 3790
ce12b012 3791 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
3792 {
3793 /* A catchpoint triggered. */
94c57d6a
PA
3794 process_event_stop_test (ecs);
3795 return;
edcc5120 3796 }
488f131b 3797
b0f4b84b
DJ
3798 /* If requested, stop when the dynamic linker notifies
3799 gdb of events. This allows the user to get control
3800 and place breakpoints in initializer routines for
3801 dynamically loaded objects (among other things). */
a493e3e2 3802 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
3803 if (stop_on_solib_events)
3804 {
55409f9d
DJ
3805 /* Make sure we print "Stopped due to solib-event" in
3806 normal_stop. */
3807 stop_print_frame = 1;
3808
22bcd14b 3809 stop_waiting (ecs);
b0f4b84b
DJ
3810 return;
3811 }
488f131b 3812 }
b0f4b84b
DJ
3813
3814 /* If we are skipping through a shell, or through shared library
3815 loading that we aren't interested in, resume the program. If
5c09a2c5 3816 we're running the program normally, also resume. */
b0f4b84b
DJ
3817 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3818 {
74960c60
VP
3819 /* Loading of shared libraries might have changed breakpoint
3820 addresses. Make sure new breakpoints are inserted. */
a25a5a45 3821 if (stop_soon == NO_STOP_QUIETLY)
74960c60 3822 insert_breakpoints ();
a493e3e2 3823 resume (0, GDB_SIGNAL_0);
b0f4b84b
DJ
3824 prepare_to_wait (ecs);
3825 return;
3826 }
3827
5c09a2c5
PA
3828 /* But stop if we're attaching or setting up a remote
3829 connection. */
3830 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3831 || stop_soon == STOP_QUIETLY_REMOTE)
3832 {
3833 if (debug_infrun)
3834 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 3835 stop_waiting (ecs);
5c09a2c5
PA
3836 return;
3837 }
3838
3839 internal_error (__FILE__, __LINE__,
3840 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 3841
488f131b 3842 case TARGET_WAITKIND_SPURIOUS:
527159b7 3843 if (debug_infrun)
8a9de0e4 3844 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 3845 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 3846 context_switch (ecs->ptid);
a493e3e2 3847 resume (0, GDB_SIGNAL_0);
488f131b
JB
3848 prepare_to_wait (ecs);
3849 return;
c5aa993b 3850
488f131b 3851 case TARGET_WAITKIND_EXITED:
940c3c06 3852 case TARGET_WAITKIND_SIGNALLED:
527159b7 3853 if (debug_infrun)
940c3c06
PA
3854 {
3855 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3856 fprintf_unfiltered (gdb_stdlog,
3857 "infrun: TARGET_WAITKIND_EXITED\n");
3858 else
3859 fprintf_unfiltered (gdb_stdlog,
3860 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3861 }
3862
fb66883a 3863 inferior_ptid = ecs->ptid;
c9657e70 3864 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
3865 set_current_program_space (current_inferior ()->pspace);
3866 handle_vfork_child_exec_or_exit (0);
1777feb0 3867 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 3868
0c557179
SDJ
3869 /* Clearing any previous state of convenience variables. */
3870 clear_exit_convenience_vars ();
3871
940c3c06
PA
3872 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3873 {
3874 /* Record the exit code in the convenience variable $_exitcode, so
3875 that the user can inspect this again later. */
3876 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3877 (LONGEST) ecs->ws.value.integer);
3878
3879 /* Also record this in the inferior itself. */
3880 current_inferior ()->has_exit_code = 1;
3881 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 3882
98eb56a4
PA
3883 /* Support the --return-child-result option. */
3884 return_child_result_value = ecs->ws.value.integer;
3885
fd664c91 3886 observer_notify_exited (ecs->ws.value.integer);
940c3c06
PA
3887 }
3888 else
0c557179
SDJ
3889 {
3890 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3891 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3892
3893 if (gdbarch_gdb_signal_to_target_p (gdbarch))
3894 {
3895 /* Set the value of the internal variable $_exitsignal,
3896 which holds the signal uncaught by the inferior. */
3897 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
3898 gdbarch_gdb_signal_to_target (gdbarch,
3899 ecs->ws.value.sig));
3900 }
3901 else
3902 {
3903 /* We don't have access to the target's method used for
3904 converting between signal numbers (GDB's internal
3905 representation <-> target's representation).
3906 Therefore, we cannot do a good job at displaying this
3907 information to the user. It's better to just warn
3908 her about it (if infrun debugging is enabled), and
3909 give up. */
3910 if (debug_infrun)
3911 fprintf_filtered (gdb_stdlog, _("\
3912Cannot fill $_exitsignal with the correct signal number.\n"));
3913 }
3914
fd664c91 3915 observer_notify_signal_exited (ecs->ws.value.sig);
0c557179 3916 }
8cf64490 3917
488f131b
JB
3918 gdb_flush (gdb_stdout);
3919 target_mourn_inferior ();
488f131b 3920 stop_print_frame = 0;
22bcd14b 3921 stop_waiting (ecs);
488f131b 3922 return;
c5aa993b 3923
488f131b 3924 /* The following are the only cases in which we keep going;
1777feb0 3925 the above cases end in a continue or goto. */
488f131b 3926 case TARGET_WAITKIND_FORKED:
deb3b17b 3927 case TARGET_WAITKIND_VFORKED:
527159b7 3928 if (debug_infrun)
fed708ed
PA
3929 {
3930 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3931 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3932 else
3933 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3934 }
c906108c 3935
e2d96639
YQ
3936 /* Check whether the inferior is displaced stepping. */
3937 {
3938 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3939 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3940 struct displaced_step_inferior_state *displaced
3941 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3942
3943 /* If checking displaced stepping is supported, and thread
3944 ecs->ptid is displaced stepping. */
3945 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3946 {
3947 struct inferior *parent_inf
c9657e70 3948 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
3949 struct regcache *child_regcache;
3950 CORE_ADDR parent_pc;
3951
3952 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3953 indicating that the displaced stepping of syscall instruction
3954 has been done. Perform cleanup for parent process here. Note
3955 that this operation also cleans up the child process for vfork,
3956 because their pages are shared. */
a493e3e2 3957 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
e2d96639
YQ
3958
3959 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3960 {
3961 /* Restore scratch pad for child process. */
3962 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3963 }
3964
3965 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3966 the child's PC is also within the scratchpad. Set the child's PC
3967 to the parent's PC value, which has already been fixed up.
3968 FIXME: we use the parent's aspace here, although we're touching
3969 the child, because the child hasn't been added to the inferior
3970 list yet at this point. */
3971
3972 child_regcache
3973 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3974 gdbarch,
3975 parent_inf->aspace);
3976 /* Read PC value of parent process. */
3977 parent_pc = regcache_read_pc (regcache);
3978
3979 if (debug_displaced)
3980 fprintf_unfiltered (gdb_stdlog,
3981 "displaced: write child pc from %s to %s\n",
3982 paddress (gdbarch,
3983 regcache_read_pc (child_regcache)),
3984 paddress (gdbarch, parent_pc));
3985
3986 regcache_write_pc (child_regcache, parent_pc);
3987 }
3988 }
3989
5a2901d9 3990 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 3991 context_switch (ecs->ptid);
5a2901d9 3992
b242c3c2
PA
3993 /* Immediately detach breakpoints from the child before there's
3994 any chance of letting the user delete breakpoints from the
3995 breakpoint lists. If we don't do this early, it's easy to
3996 leave left over traps in the child, vis: "break foo; catch
3997 fork; c; <fork>; del; c; <child calls foo>". We only follow
3998 the fork on the last `continue', and by that time the
3999 breakpoint at "foo" is long gone from the breakpoint table.
4000 If we vforked, then we don't need to unpatch here, since both
4001 parent and child are sharing the same memory pages; we'll
4002 need to unpatch at follow/detach time instead to be certain
4003 that new breakpoints added between catchpoint hit time and
4004 vfork follow are detached. */
4005 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
4006 {
b242c3c2
PA
4007 /* This won't actually modify the breakpoint list, but will
4008 physically remove the breakpoints from the child. */
d80ee84f 4009 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
4010 }
4011
34b7e8a6 4012 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 4013
e58b0e63
PA
4014 /* In case the event is caught by a catchpoint, remember that
4015 the event is to be followed at the next resume of the thread,
4016 and not immediately. */
4017 ecs->event_thread->pending_follow = ecs->ws;
4018
fb14de7b 4019 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 4020
16c381f0 4021 ecs->event_thread->control.stop_bpstat
6c95b8df 4022 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 4023 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 4024
ce12b012
PA
4025 /* If no catchpoint triggered for this, then keep going. Note
4026 that we're interested in knowing the bpstat actually causes a
4027 stop, not just if it may explain the signal. Software
4028 watchpoints, for example, always appear in the bpstat. */
4029 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 4030 {
6c95b8df
PA
4031 ptid_t parent;
4032 ptid_t child;
e58b0e63 4033 int should_resume;
3e43a32a
MS
4034 int follow_child
4035 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 4036
a493e3e2 4037 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
4038
4039 should_resume = follow_fork ();
4040
6c95b8df
PA
4041 parent = ecs->ptid;
4042 child = ecs->ws.value.related_pid;
4043
4044 /* In non-stop mode, also resume the other branch. */
4045 if (non_stop && !detach_fork)
4046 {
4047 if (follow_child)
4048 switch_to_thread (parent);
4049 else
4050 switch_to_thread (child);
4051
4052 ecs->event_thread = inferior_thread ();
4053 ecs->ptid = inferior_ptid;
4054 keep_going (ecs);
4055 }
4056
4057 if (follow_child)
4058 switch_to_thread (child);
4059 else
4060 switch_to_thread (parent);
4061
e58b0e63
PA
4062 ecs->event_thread = inferior_thread ();
4063 ecs->ptid = inferior_ptid;
4064
4065 if (should_resume)
4066 keep_going (ecs);
4067 else
22bcd14b 4068 stop_waiting (ecs);
04e68871
DJ
4069 return;
4070 }
94c57d6a
PA
4071 process_event_stop_test (ecs);
4072 return;
488f131b 4073
6c95b8df
PA
4074 case TARGET_WAITKIND_VFORK_DONE:
4075 /* Done with the shared memory region. Re-insert breakpoints in
4076 the parent, and keep going. */
4077
4078 if (debug_infrun)
3e43a32a
MS
4079 fprintf_unfiltered (gdb_stdlog,
4080 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
4081
4082 if (!ptid_equal (ecs->ptid, inferior_ptid))
4083 context_switch (ecs->ptid);
4084
4085 current_inferior ()->waiting_for_vfork_done = 0;
56710373 4086 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
4087 /* This also takes care of reinserting breakpoints in the
4088 previously locked inferior. */
4089 keep_going (ecs);
4090 return;
4091
488f131b 4092 case TARGET_WAITKIND_EXECD:
527159b7 4093 if (debug_infrun)
fc5261f2 4094 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 4095
5a2901d9 4096 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 4097 context_switch (ecs->ptid);
5a2901d9 4098
fb14de7b 4099 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 4100
6c95b8df
PA
4101 /* Do whatever is necessary to the parent branch of the vfork. */
4102 handle_vfork_child_exec_or_exit (1);
4103
795e548f
PA
4104 /* This causes the eventpoints and symbol table to be reset.
4105 Must do this now, before trying to determine whether to
4106 stop. */
71b43ef8 4107 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 4108
16c381f0 4109 ecs->event_thread->control.stop_bpstat
6c95b8df 4110 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 4111 stop_pc, ecs->ptid, &ecs->ws);
795e548f 4112
71b43ef8
PA
4113 /* Note that this may be referenced from inside
4114 bpstat_stop_status above, through inferior_has_execd. */
4115 xfree (ecs->ws.value.execd_pathname);
4116 ecs->ws.value.execd_pathname = NULL;
4117
04e68871 4118 /* If no catchpoint triggered for this, then keep going. */
ce12b012 4119 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 4120 {
a493e3e2 4121 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
4122 keep_going (ecs);
4123 return;
4124 }
94c57d6a
PA
4125 process_event_stop_test (ecs);
4126 return;
488f131b 4127
b4dc5ffa
MK
4128 /* Be careful not to try to gather much state about a thread
4129 that's in a syscall. It's frequently a losing proposition. */
488f131b 4130 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 4131 if (debug_infrun)
3e43a32a
MS
4132 fprintf_unfiltered (gdb_stdlog,
4133 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 4134 /* Getting the current syscall number. */
94c57d6a
PA
4135 if (handle_syscall_event (ecs) == 0)
4136 process_event_stop_test (ecs);
4137 return;
c906108c 4138
488f131b
JB
4139 /* Before examining the threads further, step this thread to
4140 get it entirely out of the syscall. (We get notice of the
4141 event when the thread is just on the verge of exiting a
4142 syscall. Stepping one instruction seems to get it back
b4dc5ffa 4143 into user code.) */
488f131b 4144 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 4145 if (debug_infrun)
3e43a32a
MS
4146 fprintf_unfiltered (gdb_stdlog,
4147 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
4148 if (handle_syscall_event (ecs) == 0)
4149 process_event_stop_test (ecs);
4150 return;
c906108c 4151
488f131b 4152 case TARGET_WAITKIND_STOPPED:
527159b7 4153 if (debug_infrun)
8a9de0e4 4154 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 4155 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
4f5d7f63
PA
4156 handle_signal_stop (ecs);
4157 return;
c906108c 4158
b2175913 4159 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
4160 if (debug_infrun)
4161 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 4162 /* Reverse execution: target ran out of history info. */
eab402df 4163
34b7e8a6 4164 delete_just_stopped_threads_single_step_breakpoints ();
fb14de7b 4165 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
fd664c91 4166 observer_notify_no_history ();
22bcd14b 4167 stop_waiting (ecs);
b2175913 4168 return;
488f131b 4169 }
4f5d7f63
PA
4170}
4171
4172/* Come here when the program has stopped with a signal. */
4173
4174static void
4175handle_signal_stop (struct execution_control_state *ecs)
4176{
4177 struct frame_info *frame;
4178 struct gdbarch *gdbarch;
4179 int stopped_by_watchpoint;
4180 enum stop_kind stop_soon;
4181 int random_signal;
c906108c 4182
f0407826
DE
4183 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
4184
4185 /* Do we need to clean up the state of a thread that has
4186 completed a displaced single-step? (Doing so usually affects
4187 the PC, so do it here, before we set stop_pc.) */
4188 displaced_step_fixup (ecs->ptid,
4189 ecs->event_thread->suspend.stop_signal);
4190
4191 /* If we either finished a single-step or hit a breakpoint, but
4192 the user wanted this thread to be stopped, pretend we got a
4193 SIG0 (generic unsignaled stop). */
4194 if (ecs->event_thread->stop_requested
4195 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4196 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 4197
515630c5 4198 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 4199
527159b7 4200 if (debug_infrun)
237fc4c9 4201 {
5af949e3
UW
4202 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4203 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
4204 struct cleanup *old_chain = save_inferior_ptid ();
4205
4206 inferior_ptid = ecs->ptid;
5af949e3
UW
4207
4208 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
4209 paddress (gdbarch, stop_pc));
d92524f1 4210 if (target_stopped_by_watchpoint ())
237fc4c9
PA
4211 {
4212 CORE_ADDR addr;
abbb1732 4213
237fc4c9
PA
4214 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
4215
4216 if (target_stopped_data_address (&current_target, &addr))
4217 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
4218 "infrun: stopped data address = %s\n",
4219 paddress (gdbarch, addr));
237fc4c9
PA
4220 else
4221 fprintf_unfiltered (gdb_stdlog,
4222 "infrun: (no data address available)\n");
4223 }
7f82dfc7
JK
4224
4225 do_cleanups (old_chain);
237fc4c9 4226 }
527159b7 4227
36fa8042
PA
4228 /* This is originated from start_remote(), start_inferior() and
4229 shared libraries hook functions. */
4230 stop_soon = get_inferior_stop_soon (ecs->ptid);
4231 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4232 {
4233 if (!ptid_equal (ecs->ptid, inferior_ptid))
4234 context_switch (ecs->ptid);
4235 if (debug_infrun)
4236 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4237 stop_print_frame = 1;
22bcd14b 4238 stop_waiting (ecs);
36fa8042
PA
4239 return;
4240 }
4241
4242 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4243 && stop_after_trap)
4244 {
4245 if (!ptid_equal (ecs->ptid, inferior_ptid))
4246 context_switch (ecs->ptid);
4247 if (debug_infrun)
4248 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4249 stop_print_frame = 0;
22bcd14b 4250 stop_waiting (ecs);
36fa8042
PA
4251 return;
4252 }
4253
4254 /* This originates from attach_command(). We need to overwrite
4255 the stop_signal here, because some kernels don't ignore a
4256 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4257 See more comments in inferior.h. On the other hand, if we
4258 get a non-SIGSTOP, report it to the user - assume the backend
4259 will handle the SIGSTOP if it should show up later.
4260
4261 Also consider that the attach is complete when we see a
4262 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4263 target extended-remote report it instead of a SIGSTOP
4264 (e.g. gdbserver). We already rely on SIGTRAP being our
4265 signal, so this is no exception.
4266
4267 Also consider that the attach is complete when we see a
4268 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4269 the target to stop all threads of the inferior, in case the
4270 low level attach operation doesn't stop them implicitly. If
4271 they weren't stopped implicitly, then the stub will report a
4272 GDB_SIGNAL_0, meaning: stopped for no particular reason
4273 other than GDB's request. */
4274 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4275 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4276 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4277 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4278 {
4279 stop_print_frame = 1;
22bcd14b 4280 stop_waiting (ecs);
36fa8042
PA
4281 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4282 return;
4283 }
4284
488f131b 4285 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
4286 so, then switch to that thread. */
4287 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 4288 {
527159b7 4289 if (debug_infrun)
8a9de0e4 4290 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 4291
0d1e5fa7 4292 context_switch (ecs->ptid);
c5aa993b 4293
9a4105ab
AC
4294 if (deprecated_context_hook)
4295 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 4296 }
c906108c 4297
568d6575
UW
4298 /* At this point, get hold of the now-current thread's frame. */
4299 frame = get_current_frame ();
4300 gdbarch = get_frame_arch (frame);
4301
2adfaa28 4302 /* Pull the single step breakpoints out of the target. */
af48d08f 4303 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 4304 {
af48d08f
PA
4305 struct regcache *regcache;
4306 struct address_space *aspace;
4307 CORE_ADDR pc;
2adfaa28 4308
af48d08f
PA
4309 regcache = get_thread_regcache (ecs->ptid);
4310 aspace = get_regcache_aspace (regcache);
4311 pc = regcache_read_pc (regcache);
34b7e8a6 4312
af48d08f
PA
4313 /* However, before doing so, if this single-step breakpoint was
4314 actually for another thread, set this thread up for moving
4315 past it. */
4316 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
4317 aspace, pc))
4318 {
4319 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
4320 {
4321 if (debug_infrun)
4322 {
4323 fprintf_unfiltered (gdb_stdlog,
af48d08f 4324 "infrun: [%s] hit another thread's "
34b7e8a6
PA
4325 "single-step breakpoint\n",
4326 target_pid_to_str (ecs->ptid));
2adfaa28 4327 }
af48d08f
PA
4328 ecs->hit_singlestep_breakpoint = 1;
4329 }
4330 }
4331 else
4332 {
4333 if (debug_infrun)
4334 {
4335 fprintf_unfiltered (gdb_stdlog,
4336 "infrun: [%s] hit its "
4337 "single-step breakpoint\n",
4338 target_pid_to_str (ecs->ptid));
2adfaa28
PA
4339 }
4340 }
488f131b 4341 }
af48d08f 4342 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 4343
963f9c80
PA
4344 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4345 && ecs->event_thread->control.trap_expected
4346 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
4347 stopped_by_watchpoint = 0;
4348 else
4349 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4350
4351 /* If necessary, step over this watchpoint. We'll be back to display
4352 it in a moment. */
4353 if (stopped_by_watchpoint
d92524f1 4354 && (target_have_steppable_watchpoint
568d6575 4355 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 4356 {
488f131b
JB
4357 /* At this point, we are stopped at an instruction which has
4358 attempted to write to a piece of memory under control of
4359 a watchpoint. The instruction hasn't actually executed
4360 yet. If we were to evaluate the watchpoint expression
4361 now, we would get the old value, and therefore no change
4362 would seem to have occurred.
4363
4364 In order to make watchpoints work `right', we really need
4365 to complete the memory write, and then evaluate the
d983da9c
DJ
4366 watchpoint expression. We do this by single-stepping the
4367 target.
4368
7f89fd65 4369 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
4370 it. For example, the PA can (with some kernel cooperation)
4371 single step over a watchpoint without disabling the watchpoint.
4372
4373 It is far more common to need to disable a watchpoint to step
4374 the inferior over it. If we have non-steppable watchpoints,
4375 we must disable the current watchpoint; it's simplest to
963f9c80
PA
4376 disable all watchpoints.
4377
4378 Any breakpoint at PC must also be stepped over -- if there's
4379 one, it will have already triggered before the watchpoint
4380 triggered, and we either already reported it to the user, or
4381 it didn't cause a stop and we called keep_going. In either
4382 case, if there was a breakpoint at PC, we must be trying to
4383 step past it. */
4384 ecs->event_thread->stepping_over_watchpoint = 1;
4385 keep_going (ecs);
488f131b
JB
4386 return;
4387 }
4388
4e1c45ea 4389 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 4390 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
4391 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4392 ecs->event_thread->control.stop_step = 0;
488f131b 4393 stop_print_frame = 1;
488f131b 4394 stopped_by_random_signal = 0;
488f131b 4395
edb3359d
DJ
4396 /* Hide inlined functions starting here, unless we just performed stepi or
4397 nexti. After stepi and nexti, always show the innermost frame (not any
4398 inline function call sites). */
16c381f0 4399 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
4400 {
4401 struct address_space *aspace =
4402 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4403
4404 /* skip_inline_frames is expensive, so we avoid it if we can
4405 determine that the address is one where functions cannot have
4406 been inlined. This improves performance with inferiors that
4407 load a lot of shared libraries, because the solib event
4408 breakpoint is defined as the address of a function (i.e. not
4409 inline). Note that we have to check the previous PC as well
4410 as the current one to catch cases when we have just
4411 single-stepped off a breakpoint prior to reinstating it.
4412 Note that we're assuming that the code we single-step to is
4413 not inline, but that's not definitive: there's nothing
4414 preventing the event breakpoint function from containing
4415 inlined code, and the single-step ending up there. If the
4416 user had set a breakpoint on that inlined code, the missing
4417 skip_inline_frames call would break things. Fortunately
4418 that's an extremely unlikely scenario. */
09ac7c10 4419 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
4420 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4421 && ecs->event_thread->control.trap_expected
4422 && pc_at_non_inline_function (aspace,
4423 ecs->event_thread->prev_pc,
09ac7c10 4424 &ecs->ws)))
1c5a993e
MR
4425 {
4426 skip_inline_frames (ecs->ptid);
4427
4428 /* Re-fetch current thread's frame in case that invalidated
4429 the frame cache. */
4430 frame = get_current_frame ();
4431 gdbarch = get_frame_arch (frame);
4432 }
0574c78f 4433 }
edb3359d 4434
a493e3e2 4435 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 4436 && ecs->event_thread->control.trap_expected
568d6575 4437 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 4438 && currently_stepping (ecs->event_thread))
3352ef37 4439 {
b50d7442 4440 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 4441 also on an instruction that needs to be stepped multiple
1777feb0 4442 times before it's been fully executing. E.g., architectures
3352ef37
AC
4443 with a delay slot. It needs to be stepped twice, once for
4444 the instruction and once for the delay slot. */
4445 int step_through_delay
568d6575 4446 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 4447
527159b7 4448 if (debug_infrun && step_through_delay)
8a9de0e4 4449 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
4450 if (ecs->event_thread->control.step_range_end == 0
4451 && step_through_delay)
3352ef37
AC
4452 {
4453 /* The user issued a continue when stopped at a breakpoint.
4454 Set up for another trap and get out of here. */
4e1c45ea 4455 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4456 keep_going (ecs);
4457 return;
4458 }
4459 else if (step_through_delay)
4460 {
4461 /* The user issued a step when stopped at a breakpoint.
4462 Maybe we should stop, maybe we should not - the delay
4463 slot *might* correspond to a line of source. In any
ca67fcb8
VP
4464 case, don't decide that here, just set
4465 ecs->stepping_over_breakpoint, making sure we
4466 single-step again before breakpoints are re-inserted. */
4e1c45ea 4467 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4468 }
4469 }
4470
ab04a2af
TT
4471 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4472 handles this event. */
4473 ecs->event_thread->control.stop_bpstat
4474 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4475 stop_pc, ecs->ptid, &ecs->ws);
db82e815 4476
ab04a2af
TT
4477 /* Following in case break condition called a
4478 function. */
4479 stop_print_frame = 1;
73dd234f 4480
ab04a2af
TT
4481 /* This is where we handle "moribund" watchpoints. Unlike
4482 software breakpoints traps, hardware watchpoint traps are
4483 always distinguishable from random traps. If no high-level
4484 watchpoint is associated with the reported stop data address
4485 anymore, then the bpstat does not explain the signal ---
4486 simply make sure to ignore it if `stopped_by_watchpoint' is
4487 set. */
4488
4489 if (debug_infrun
4490 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 4491 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 4492 GDB_SIGNAL_TRAP)
ab04a2af
TT
4493 && stopped_by_watchpoint)
4494 fprintf_unfiltered (gdb_stdlog,
4495 "infrun: no user watchpoint explains "
4496 "watchpoint SIGTRAP, ignoring\n");
73dd234f 4497
bac7d97b 4498 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
4499 at one stage in the past included checks for an inferior
4500 function call's call dummy's return breakpoint. The original
4501 comment, that went with the test, read:
03cebad2 4502
ab04a2af
TT
4503 ``End of a stack dummy. Some systems (e.g. Sony news) give
4504 another signal besides SIGTRAP, so check here as well as
4505 above.''
73dd234f 4506
ab04a2af
TT
4507 If someone ever tries to get call dummys on a
4508 non-executable stack to work (where the target would stop
4509 with something like a SIGSEGV), then those tests might need
4510 to be re-instated. Given, however, that the tests were only
4511 enabled when momentary breakpoints were not being used, I
4512 suspect that it won't be the case.
488f131b 4513
ab04a2af
TT
4514 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4515 be necessary for call dummies on a non-executable stack on
4516 SPARC. */
488f131b 4517
bac7d97b 4518 /* See if the breakpoints module can explain the signal. */
47591c29
PA
4519 random_signal
4520 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4521 ecs->event_thread->suspend.stop_signal);
bac7d97b 4522
1cf4d951
PA
4523 /* Maybe this was a trap for a software breakpoint that has since
4524 been removed. */
4525 if (random_signal && target_stopped_by_sw_breakpoint ())
4526 {
4527 if (program_breakpoint_here_p (gdbarch, stop_pc))
4528 {
4529 struct regcache *regcache;
4530 int decr_pc;
4531
4532 /* Re-adjust PC to what the program would see if GDB was not
4533 debugging it. */
4534 regcache = get_thread_regcache (ecs->event_thread->ptid);
527a273a 4535 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
4536 if (decr_pc != 0)
4537 {
4538 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
4539
4540 if (record_full_is_used ())
4541 record_full_gdb_operation_disable_set ();
4542
4543 regcache_write_pc (regcache, stop_pc + decr_pc);
4544
4545 do_cleanups (old_cleanups);
4546 }
4547 }
4548 else
4549 {
4550 /* A delayed software breakpoint event. Ignore the trap. */
4551 if (debug_infrun)
4552 fprintf_unfiltered (gdb_stdlog,
4553 "infrun: delayed software breakpoint "
4554 "trap, ignoring\n");
4555 random_signal = 0;
4556 }
4557 }
4558
4559 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
4560 has since been removed. */
4561 if (random_signal && target_stopped_by_hw_breakpoint ())
4562 {
4563 /* A delayed hardware breakpoint event. Ignore the trap. */
4564 if (debug_infrun)
4565 fprintf_unfiltered (gdb_stdlog,
4566 "infrun: delayed hardware breakpoint/watchpoint "
4567 "trap, ignoring\n");
4568 random_signal = 0;
4569 }
4570
bac7d97b
PA
4571 /* If not, perhaps stepping/nexting can. */
4572 if (random_signal)
4573 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4574 && currently_stepping (ecs->event_thread));
ab04a2af 4575
2adfaa28
PA
4576 /* Perhaps the thread hit a single-step breakpoint of _another_
4577 thread. Single-step breakpoints are transparent to the
4578 breakpoints module. */
4579 if (random_signal)
4580 random_signal = !ecs->hit_singlestep_breakpoint;
4581
bac7d97b
PA
4582 /* No? Perhaps we got a moribund watchpoint. */
4583 if (random_signal)
4584 random_signal = !stopped_by_watchpoint;
ab04a2af 4585
488f131b
JB
4586 /* For the program's own signals, act according to
4587 the signal handling tables. */
4588
ce12b012 4589 if (random_signal)
488f131b
JB
4590 {
4591 /* Signal not for debugging purposes. */
c9657e70 4592 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 4593 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 4594
527159b7 4595 if (debug_infrun)
c9737c08
PA
4596 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
4597 gdb_signal_to_symbol_string (stop_signal));
527159b7 4598
488f131b
JB
4599 stopped_by_random_signal = 1;
4600
252fbfc8
PA
4601 /* Always stop on signals if we're either just gaining control
4602 of the program, or the user explicitly requested this thread
4603 to remain stopped. */
d6b48e9c 4604 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 4605 || ecs->event_thread->stop_requested
24291992 4606 || (!inf->detaching
16c381f0 4607 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 4608 {
22bcd14b 4609 stop_waiting (ecs);
488f131b
JB
4610 return;
4611 }
b57bacec
PA
4612
4613 /* Notify observers the signal has "handle print" set. Note we
4614 returned early above if stopping; normal_stop handles the
4615 printing in that case. */
4616 if (signal_print[ecs->event_thread->suspend.stop_signal])
4617 {
4618 /* The signal table tells us to print about this signal. */
4619 target_terminal_ours_for_output ();
4620 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
4621 target_terminal_inferior ();
4622 }
488f131b
JB
4623
4624 /* Clear the signal if it should not be passed. */
16c381f0 4625 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 4626 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 4627
fb14de7b 4628 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 4629 && ecs->event_thread->control.trap_expected
8358c15c 4630 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
4631 {
4632 /* We were just starting a new sequence, attempting to
4633 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 4634 Instead this signal arrives. This signal will take us out
68f53502
AC
4635 of the stepping range so GDB needs to remember to, when
4636 the signal handler returns, resume stepping off that
4637 breakpoint. */
4638 /* To simplify things, "continue" is forced to use the same
4639 code paths as single-step - set a breakpoint at the
4640 signal return address and then, once hit, step off that
4641 breakpoint. */
237fc4c9
PA
4642 if (debug_infrun)
4643 fprintf_unfiltered (gdb_stdlog,
4644 "infrun: signal arrived while stepping over "
4645 "breakpoint\n");
d3169d93 4646
2c03e5be 4647 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 4648 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4649 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4650 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
4651
4652 /* If we were nexting/stepping some other thread, switch to
4653 it, so that we don't continue it, losing control. */
4654 if (!switch_back_to_stepped_thread (ecs))
4655 keep_going (ecs);
9d799f85 4656 return;
68f53502 4657 }
9d799f85 4658
e5f8a7cc
PA
4659 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
4660 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
4661 || ecs->event_thread->control.step_range_end == 1)
edb3359d 4662 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 4663 ecs->event_thread->control.step_stack_frame_id)
8358c15c 4664 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
4665 {
4666 /* The inferior is about to take a signal that will take it
4667 out of the single step range. Set a breakpoint at the
4668 current PC (which is presumably where the signal handler
4669 will eventually return) and then allow the inferior to
4670 run free.
4671
4672 Note that this is only needed for a signal delivered
4673 while in the single-step range. Nested signals aren't a
4674 problem as they eventually all return. */
237fc4c9
PA
4675 if (debug_infrun)
4676 fprintf_unfiltered (gdb_stdlog,
4677 "infrun: signal may take us out of "
4678 "single-step range\n");
4679
2c03e5be 4680 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 4681 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4682 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4683 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4684 keep_going (ecs);
4685 return;
d303a6c7 4686 }
9d799f85
AC
4687
4688 /* Note: step_resume_breakpoint may be non-NULL. This occures
4689 when either there's a nested signal, or when there's a
4690 pending signal enabled just as the signal handler returns
4691 (leaving the inferior at the step-resume-breakpoint without
4692 actually executing it). Either way continue until the
4693 breakpoint is really hit. */
c447ac0b
PA
4694
4695 if (!switch_back_to_stepped_thread (ecs))
4696 {
4697 if (debug_infrun)
4698 fprintf_unfiltered (gdb_stdlog,
4699 "infrun: random signal, keep going\n");
4700
4701 keep_going (ecs);
4702 }
4703 return;
488f131b 4704 }
94c57d6a
PA
4705
4706 process_event_stop_test (ecs);
4707}
4708
4709/* Come here when we've got some debug event / signal we can explain
4710 (IOW, not a random signal), and test whether it should cause a
4711 stop, or whether we should resume the inferior (transparently).
4712 E.g., could be a breakpoint whose condition evaluates false; we
4713 could be still stepping within the line; etc. */
4714
4715static void
4716process_event_stop_test (struct execution_control_state *ecs)
4717{
4718 struct symtab_and_line stop_pc_sal;
4719 struct frame_info *frame;
4720 struct gdbarch *gdbarch;
cdaa5b73
PA
4721 CORE_ADDR jmp_buf_pc;
4722 struct bpstat_what what;
94c57d6a 4723
cdaa5b73 4724 /* Handle cases caused by hitting a breakpoint. */
611c83ae 4725
cdaa5b73
PA
4726 frame = get_current_frame ();
4727 gdbarch = get_frame_arch (frame);
fcf3daef 4728
cdaa5b73 4729 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 4730
cdaa5b73
PA
4731 if (what.call_dummy)
4732 {
4733 stop_stack_dummy = what.call_dummy;
4734 }
186c406b 4735
cdaa5b73
PA
4736 /* If we hit an internal event that triggers symbol changes, the
4737 current frame will be invalidated within bpstat_what (e.g., if we
4738 hit an internal solib event). Re-fetch it. */
4739 frame = get_current_frame ();
4740 gdbarch = get_frame_arch (frame);
e2e4d78b 4741
cdaa5b73
PA
4742 switch (what.main_action)
4743 {
4744 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4745 /* If we hit the breakpoint at longjmp while stepping, we
4746 install a momentary breakpoint at the target of the
4747 jmp_buf. */
186c406b 4748
cdaa5b73
PA
4749 if (debug_infrun)
4750 fprintf_unfiltered (gdb_stdlog,
4751 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 4752
cdaa5b73 4753 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 4754
cdaa5b73
PA
4755 if (what.is_longjmp)
4756 {
4757 struct value *arg_value;
4758
4759 /* If we set the longjmp breakpoint via a SystemTap probe,
4760 then use it to extract the arguments. The destination PC
4761 is the third argument to the probe. */
4762 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4763 if (arg_value)
8fa0c4f8
AA
4764 {
4765 jmp_buf_pc = value_as_address (arg_value);
4766 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
4767 }
cdaa5b73
PA
4768 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4769 || !gdbarch_get_longjmp_target (gdbarch,
4770 frame, &jmp_buf_pc))
e2e4d78b 4771 {
cdaa5b73
PA
4772 if (debug_infrun)
4773 fprintf_unfiltered (gdb_stdlog,
4774 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4775 "(!gdbarch_get_longjmp_target)\n");
4776 keep_going (ecs);
4777 return;
e2e4d78b 4778 }
e2e4d78b 4779
cdaa5b73
PA
4780 /* Insert a breakpoint at resume address. */
4781 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4782 }
4783 else
4784 check_exception_resume (ecs, frame);
4785 keep_going (ecs);
4786 return;
e81a37f7 4787
cdaa5b73
PA
4788 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4789 {
4790 struct frame_info *init_frame;
e81a37f7 4791
cdaa5b73 4792 /* There are several cases to consider.
c906108c 4793
cdaa5b73
PA
4794 1. The initiating frame no longer exists. In this case we
4795 must stop, because the exception or longjmp has gone too
4796 far.
2c03e5be 4797
cdaa5b73
PA
4798 2. The initiating frame exists, and is the same as the
4799 current frame. We stop, because the exception or longjmp
4800 has been caught.
2c03e5be 4801
cdaa5b73
PA
4802 3. The initiating frame exists and is different from the
4803 current frame. This means the exception or longjmp has
4804 been caught beneath the initiating frame, so keep going.
c906108c 4805
cdaa5b73
PA
4806 4. longjmp breakpoint has been placed just to protect
4807 against stale dummy frames and user is not interested in
4808 stopping around longjmps. */
c5aa993b 4809
cdaa5b73
PA
4810 if (debug_infrun)
4811 fprintf_unfiltered (gdb_stdlog,
4812 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 4813
cdaa5b73
PA
4814 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4815 != NULL);
4816 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 4817
cdaa5b73
PA
4818 if (what.is_longjmp)
4819 {
b67a2c6f 4820 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 4821
cdaa5b73 4822 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 4823 {
cdaa5b73
PA
4824 /* Case 4. */
4825 keep_going (ecs);
4826 return;
e5ef252a 4827 }
cdaa5b73 4828 }
c5aa993b 4829
cdaa5b73 4830 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 4831
cdaa5b73
PA
4832 if (init_frame)
4833 {
4834 struct frame_id current_id
4835 = get_frame_id (get_current_frame ());
4836 if (frame_id_eq (current_id,
4837 ecs->event_thread->initiating_frame))
4838 {
4839 /* Case 2. Fall through. */
4840 }
4841 else
4842 {
4843 /* Case 3. */
4844 keep_going (ecs);
4845 return;
4846 }
68f53502 4847 }
488f131b 4848
cdaa5b73
PA
4849 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
4850 exists. */
4851 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 4852
bdc36728 4853 end_stepping_range (ecs);
cdaa5b73
PA
4854 }
4855 return;
e5ef252a 4856
cdaa5b73
PA
4857 case BPSTAT_WHAT_SINGLE:
4858 if (debug_infrun)
4859 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4860 ecs->event_thread->stepping_over_breakpoint = 1;
4861 /* Still need to check other stuff, at least the case where we
4862 are stepping and step out of the right range. */
4863 break;
e5ef252a 4864
cdaa5b73
PA
4865 case BPSTAT_WHAT_STEP_RESUME:
4866 if (debug_infrun)
4867 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 4868
cdaa5b73
PA
4869 delete_step_resume_breakpoint (ecs->event_thread);
4870 if (ecs->event_thread->control.proceed_to_finish
4871 && execution_direction == EXEC_REVERSE)
4872 {
4873 struct thread_info *tp = ecs->event_thread;
4874
4875 /* We are finishing a function in reverse, and just hit the
4876 step-resume breakpoint at the start address of the
4877 function, and we're almost there -- just need to back up
4878 by one more single-step, which should take us back to the
4879 function call. */
4880 tp->control.step_range_start = tp->control.step_range_end = 1;
4881 keep_going (ecs);
e5ef252a 4882 return;
cdaa5b73
PA
4883 }
4884 fill_in_stop_func (gdbarch, ecs);
4885 if (stop_pc == ecs->stop_func_start
4886 && execution_direction == EXEC_REVERSE)
4887 {
4888 /* We are stepping over a function call in reverse, and just
4889 hit the step-resume breakpoint at the start address of
4890 the function. Go back to single-stepping, which should
4891 take us back to the function call. */
4892 ecs->event_thread->stepping_over_breakpoint = 1;
4893 keep_going (ecs);
4894 return;
4895 }
4896 break;
e5ef252a 4897
cdaa5b73
PA
4898 case BPSTAT_WHAT_STOP_NOISY:
4899 if (debug_infrun)
4900 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4901 stop_print_frame = 1;
e5ef252a 4902
99619bea
PA
4903 /* Assume the thread stopped for a breapoint. We'll still check
4904 whether a/the breakpoint is there when the thread is next
4905 resumed. */
4906 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 4907
22bcd14b 4908 stop_waiting (ecs);
cdaa5b73 4909 return;
e5ef252a 4910
cdaa5b73
PA
4911 case BPSTAT_WHAT_STOP_SILENT:
4912 if (debug_infrun)
4913 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4914 stop_print_frame = 0;
e5ef252a 4915
99619bea
PA
4916 /* Assume the thread stopped for a breapoint. We'll still check
4917 whether a/the breakpoint is there when the thread is next
4918 resumed. */
4919 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 4920 stop_waiting (ecs);
cdaa5b73
PA
4921 return;
4922
4923 case BPSTAT_WHAT_HP_STEP_RESUME:
4924 if (debug_infrun)
4925 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4926
4927 delete_step_resume_breakpoint (ecs->event_thread);
4928 if (ecs->event_thread->step_after_step_resume_breakpoint)
4929 {
4930 /* Back when the step-resume breakpoint was inserted, we
4931 were trying to single-step off a breakpoint. Go back to
4932 doing that. */
4933 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4934 ecs->event_thread->stepping_over_breakpoint = 1;
4935 keep_going (ecs);
4936 return;
e5ef252a 4937 }
cdaa5b73
PA
4938 break;
4939
4940 case BPSTAT_WHAT_KEEP_CHECKING:
4941 break;
e5ef252a 4942 }
c906108c 4943
af48d08f
PA
4944 /* If we stepped a permanent breakpoint and we had a high priority
4945 step-resume breakpoint for the address we stepped, but we didn't
4946 hit it, then we must have stepped into the signal handler. The
4947 step-resume was only necessary to catch the case of _not_
4948 stepping into the handler, so delete it, and fall through to
4949 checking whether the step finished. */
4950 if (ecs->event_thread->stepped_breakpoint)
4951 {
4952 struct breakpoint *sr_bp
4953 = ecs->event_thread->control.step_resume_breakpoint;
4954
4955 if (sr_bp->loc->permanent
4956 && sr_bp->type == bp_hp_step_resume
4957 && sr_bp->loc->address == ecs->event_thread->prev_pc)
4958 {
4959 if (debug_infrun)
4960 fprintf_unfiltered (gdb_stdlog,
4961 "infrun: stepped permanent breakpoint, stopped in "
4962 "handler\n");
4963 delete_step_resume_breakpoint (ecs->event_thread);
4964 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4965 }
4966 }
4967
cdaa5b73
PA
4968 /* We come here if we hit a breakpoint but should not stop for it.
4969 Possibly we also were stepping and should stop for that. So fall
4970 through and test for stepping. But, if not stepping, do not
4971 stop. */
c906108c 4972
a7212384
UW
4973 /* In all-stop mode, if we're currently stepping but have stopped in
4974 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
4975 if (switch_back_to_stepped_thread (ecs))
4976 return;
776f04fa 4977
8358c15c 4978 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 4979 {
527159b7 4980 if (debug_infrun)
d3169d93
DJ
4981 fprintf_unfiltered (gdb_stdlog,
4982 "infrun: step-resume breakpoint is inserted\n");
527159b7 4983
488f131b
JB
4984 /* Having a step-resume breakpoint overrides anything
4985 else having to do with stepping commands until
4986 that breakpoint is reached. */
488f131b
JB
4987 keep_going (ecs);
4988 return;
4989 }
c5aa993b 4990
16c381f0 4991 if (ecs->event_thread->control.step_range_end == 0)
488f131b 4992 {
527159b7 4993 if (debug_infrun)
8a9de0e4 4994 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 4995 /* Likewise if we aren't even stepping. */
488f131b
JB
4996 keep_going (ecs);
4997 return;
4998 }
c5aa993b 4999
4b7703ad
JB
5000 /* Re-fetch current thread's frame in case the code above caused
5001 the frame cache to be re-initialized, making our FRAME variable
5002 a dangling pointer. */
5003 frame = get_current_frame ();
628fe4e4 5004 gdbarch = get_frame_arch (frame);
7e324e48 5005 fill_in_stop_func (gdbarch, ecs);
4b7703ad 5006
488f131b 5007 /* If stepping through a line, keep going if still within it.
c906108c 5008
488f131b
JB
5009 Note that step_range_end is the address of the first instruction
5010 beyond the step range, and NOT the address of the last instruction
31410e84
MS
5011 within it!
5012
5013 Note also that during reverse execution, we may be stepping
5014 through a function epilogue and therefore must detect when
5015 the current-frame changes in the middle of a line. */
5016
ce4c476a 5017 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 5018 && (execution_direction != EXEC_REVERSE
388a8562 5019 || frame_id_eq (get_frame_id (frame),
16c381f0 5020 ecs->event_thread->control.step_frame_id)))
488f131b 5021 {
527159b7 5022 if (debug_infrun)
5af949e3
UW
5023 fprintf_unfiltered
5024 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
5025 paddress (gdbarch, ecs->event_thread->control.step_range_start),
5026 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 5027
c1e36e3e
PA
5028 /* Tentatively re-enable range stepping; `resume' disables it if
5029 necessary (e.g., if we're stepping over a breakpoint or we
5030 have software watchpoints). */
5031 ecs->event_thread->control.may_range_step = 1;
5032
b2175913
MS
5033 /* When stepping backward, stop at beginning of line range
5034 (unless it's the function entry point, in which case
5035 keep going back to the call point). */
16c381f0 5036 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
5037 && stop_pc != ecs->stop_func_start
5038 && execution_direction == EXEC_REVERSE)
bdc36728 5039 end_stepping_range (ecs);
b2175913
MS
5040 else
5041 keep_going (ecs);
5042
488f131b
JB
5043 return;
5044 }
c5aa993b 5045
488f131b 5046 /* We stepped out of the stepping range. */
c906108c 5047
488f131b 5048 /* If we are stepping at the source level and entered the runtime
388a8562
MS
5049 loader dynamic symbol resolution code...
5050
5051 EXEC_FORWARD: we keep on single stepping until we exit the run
5052 time loader code and reach the callee's address.
5053
5054 EXEC_REVERSE: we've already executed the callee (backward), and
5055 the runtime loader code is handled just like any other
5056 undebuggable function call. Now we need only keep stepping
5057 backward through the trampoline code, and that's handled further
5058 down, so there is nothing for us to do here. */
5059
5060 if (execution_direction != EXEC_REVERSE
16c381f0 5061 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 5062 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 5063 {
4c8c40e6 5064 CORE_ADDR pc_after_resolver =
568d6575 5065 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 5066
527159b7 5067 if (debug_infrun)
3e43a32a
MS
5068 fprintf_unfiltered (gdb_stdlog,
5069 "infrun: stepped into dynsym resolve code\n");
527159b7 5070
488f131b
JB
5071 if (pc_after_resolver)
5072 {
5073 /* Set up a step-resume breakpoint at the address
5074 indicated by SKIP_SOLIB_RESOLVER. */
5075 struct symtab_and_line sr_sal;
abbb1732 5076
fe39c653 5077 init_sal (&sr_sal);
488f131b 5078 sr_sal.pc = pc_after_resolver;
6c95b8df 5079 sr_sal.pspace = get_frame_program_space (frame);
488f131b 5080
a6d9a66e
UW
5081 insert_step_resume_breakpoint_at_sal (gdbarch,
5082 sr_sal, null_frame_id);
c5aa993b 5083 }
c906108c 5084
488f131b
JB
5085 keep_going (ecs);
5086 return;
5087 }
c906108c 5088
16c381f0
JK
5089 if (ecs->event_thread->control.step_range_end != 1
5090 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5091 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 5092 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 5093 {
527159b7 5094 if (debug_infrun)
3e43a32a
MS
5095 fprintf_unfiltered (gdb_stdlog,
5096 "infrun: stepped into signal trampoline\n");
42edda50 5097 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
5098 a signal trampoline (either by a signal being delivered or by
5099 the signal handler returning). Just single-step until the
5100 inferior leaves the trampoline (either by calling the handler
5101 or returning). */
488f131b
JB
5102 keep_going (ecs);
5103 return;
5104 }
c906108c 5105
14132e89
MR
5106 /* If we're in the return path from a shared library trampoline,
5107 we want to proceed through the trampoline when stepping. */
5108 /* macro/2012-04-25: This needs to come before the subroutine
5109 call check below as on some targets return trampolines look
5110 like subroutine calls (MIPS16 return thunks). */
5111 if (gdbarch_in_solib_return_trampoline (gdbarch,
5112 stop_pc, ecs->stop_func_name)
5113 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5114 {
5115 /* Determine where this trampoline returns. */
5116 CORE_ADDR real_stop_pc;
5117
5118 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
5119
5120 if (debug_infrun)
5121 fprintf_unfiltered (gdb_stdlog,
5122 "infrun: stepped into solib return tramp\n");
5123
5124 /* Only proceed through if we know where it's going. */
5125 if (real_stop_pc)
5126 {
5127 /* And put the step-breakpoint there and go until there. */
5128 struct symtab_and_line sr_sal;
5129
5130 init_sal (&sr_sal); /* initialize to zeroes */
5131 sr_sal.pc = real_stop_pc;
5132 sr_sal.section = find_pc_overlay (sr_sal.pc);
5133 sr_sal.pspace = get_frame_program_space (frame);
5134
5135 /* Do not specify what the fp should be when we stop since
5136 on some machines the prologue is where the new fp value
5137 is established. */
5138 insert_step_resume_breakpoint_at_sal (gdbarch,
5139 sr_sal, null_frame_id);
5140
5141 /* Restart without fiddling with the step ranges or
5142 other state. */
5143 keep_going (ecs);
5144 return;
5145 }
5146 }
5147
c17eaafe
DJ
5148 /* Check for subroutine calls. The check for the current frame
5149 equalling the step ID is not necessary - the check of the
5150 previous frame's ID is sufficient - but it is a common case and
5151 cheaper than checking the previous frame's ID.
14e60db5
DJ
5152
5153 NOTE: frame_id_eq will never report two invalid frame IDs as
5154 being equal, so to get into this block, both the current and
5155 previous frame must have valid frame IDs. */
005ca36a
JB
5156 /* The outer_frame_id check is a heuristic to detect stepping
5157 through startup code. If we step over an instruction which
5158 sets the stack pointer from an invalid value to a valid value,
5159 we may detect that as a subroutine call from the mythical
5160 "outermost" function. This could be fixed by marking
5161 outermost frames as !stack_p,code_p,special_p. Then the
5162 initial outermost frame, before sp was valid, would
ce6cca6d 5163 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 5164 for more. */
edb3359d 5165 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 5166 ecs->event_thread->control.step_stack_frame_id)
005ca36a 5167 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
5168 ecs->event_thread->control.step_stack_frame_id)
5169 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 5170 outer_frame_id)
885eeb5b
PA
5171 || (ecs->event_thread->control.step_start_function
5172 != find_pc_function (stop_pc)))))
488f131b 5173 {
95918acb 5174 CORE_ADDR real_stop_pc;
8fb3e588 5175
527159b7 5176 if (debug_infrun)
8a9de0e4 5177 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 5178
b7a084be 5179 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
5180 {
5181 /* I presume that step_over_calls is only 0 when we're
5182 supposed to be stepping at the assembly language level
5183 ("stepi"). Just stop. */
388a8562 5184 /* And this works the same backward as frontward. MVS */
bdc36728 5185 end_stepping_range (ecs);
95918acb
AC
5186 return;
5187 }
8fb3e588 5188
388a8562
MS
5189 /* Reverse stepping through solib trampolines. */
5190
5191 if (execution_direction == EXEC_REVERSE
16c381f0 5192 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
5193 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5194 || (ecs->stop_func_start == 0
5195 && in_solib_dynsym_resolve_code (stop_pc))))
5196 {
5197 /* Any solib trampoline code can be handled in reverse
5198 by simply continuing to single-step. We have already
5199 executed the solib function (backwards), and a few
5200 steps will take us back through the trampoline to the
5201 caller. */
5202 keep_going (ecs);
5203 return;
5204 }
5205
16c381f0 5206 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 5207 {
b2175913
MS
5208 /* We're doing a "next".
5209
5210 Normal (forward) execution: set a breakpoint at the
5211 callee's return address (the address at which the caller
5212 will resume).
5213
5214 Reverse (backward) execution. set the step-resume
5215 breakpoint at the start of the function that we just
5216 stepped into (backwards), and continue to there. When we
6130d0b7 5217 get there, we'll need to single-step back to the caller. */
b2175913
MS
5218
5219 if (execution_direction == EXEC_REVERSE)
5220 {
acf9414f
JK
5221 /* If we're already at the start of the function, we've either
5222 just stepped backward into a single instruction function,
5223 or stepped back out of a signal handler to the first instruction
5224 of the function. Just keep going, which will single-step back
5225 to the caller. */
58c48e72 5226 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f
JK
5227 {
5228 struct symtab_and_line sr_sal;
5229
5230 /* Normal function call return (static or dynamic). */
5231 init_sal (&sr_sal);
5232 sr_sal.pc = ecs->stop_func_start;
5233 sr_sal.pspace = get_frame_program_space (frame);
5234 insert_step_resume_breakpoint_at_sal (gdbarch,
5235 sr_sal, null_frame_id);
5236 }
b2175913
MS
5237 }
5238 else
568d6575 5239 insert_step_resume_breakpoint_at_caller (frame);
b2175913 5240
8567c30f
AC
5241 keep_going (ecs);
5242 return;
5243 }
a53c66de 5244
95918acb 5245 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
5246 calling routine and the real function), locate the real
5247 function. That's what tells us (a) whether we want to step
5248 into it at all, and (b) what prologue we want to run to the
5249 end of, if we do step into it. */
568d6575 5250 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 5251 if (real_stop_pc == 0)
568d6575 5252 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
5253 if (real_stop_pc != 0)
5254 ecs->stop_func_start = real_stop_pc;
8fb3e588 5255
db5f024e 5256 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
5257 {
5258 struct symtab_and_line sr_sal;
abbb1732 5259
1b2bfbb9
RC
5260 init_sal (&sr_sal);
5261 sr_sal.pc = ecs->stop_func_start;
6c95b8df 5262 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 5263
a6d9a66e
UW
5264 insert_step_resume_breakpoint_at_sal (gdbarch,
5265 sr_sal, null_frame_id);
8fb3e588
AC
5266 keep_going (ecs);
5267 return;
1b2bfbb9
RC
5268 }
5269
95918acb 5270 /* If we have line number information for the function we are
1bfeeb0f
JL
5271 thinking of stepping into and the function isn't on the skip
5272 list, step into it.
95918acb 5273
8fb3e588
AC
5274 If there are several symtabs at that PC (e.g. with include
5275 files), just want to know whether *any* of them have line
5276 numbers. find_pc_line handles this. */
95918acb
AC
5277 {
5278 struct symtab_and_line tmp_sal;
8fb3e588 5279
95918acb 5280 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 5281 if (tmp_sal.line != 0
85817405
JK
5282 && !function_name_is_marked_for_skip (ecs->stop_func_name,
5283 &tmp_sal))
95918acb 5284 {
b2175913 5285 if (execution_direction == EXEC_REVERSE)
568d6575 5286 handle_step_into_function_backward (gdbarch, ecs);
b2175913 5287 else
568d6575 5288 handle_step_into_function (gdbarch, ecs);
95918acb
AC
5289 return;
5290 }
5291 }
5292
5293 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
5294 set, we stop the step so that the user has a chance to switch
5295 in assembly mode. */
16c381f0 5296 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 5297 && step_stop_if_no_debug)
95918acb 5298 {
bdc36728 5299 end_stepping_range (ecs);
95918acb
AC
5300 return;
5301 }
5302
b2175913
MS
5303 if (execution_direction == EXEC_REVERSE)
5304 {
acf9414f
JK
5305 /* If we're already at the start of the function, we've either just
5306 stepped backward into a single instruction function without line
5307 number info, or stepped back out of a signal handler to the first
5308 instruction of the function without line number info. Just keep
5309 going, which will single-step back to the caller. */
5310 if (ecs->stop_func_start != stop_pc)
5311 {
5312 /* Set a breakpoint at callee's start address.
5313 From there we can step once and be back in the caller. */
5314 struct symtab_and_line sr_sal;
abbb1732 5315
acf9414f
JK
5316 init_sal (&sr_sal);
5317 sr_sal.pc = ecs->stop_func_start;
5318 sr_sal.pspace = get_frame_program_space (frame);
5319 insert_step_resume_breakpoint_at_sal (gdbarch,
5320 sr_sal, null_frame_id);
5321 }
b2175913
MS
5322 }
5323 else
5324 /* Set a breakpoint at callee's return address (the address
5325 at which the caller will resume). */
568d6575 5326 insert_step_resume_breakpoint_at_caller (frame);
b2175913 5327
95918acb 5328 keep_going (ecs);
488f131b 5329 return;
488f131b 5330 }
c906108c 5331
fdd654f3
MS
5332 /* Reverse stepping through solib trampolines. */
5333
5334 if (execution_direction == EXEC_REVERSE
16c381f0 5335 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
5336 {
5337 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5338 || (ecs->stop_func_start == 0
5339 && in_solib_dynsym_resolve_code (stop_pc)))
5340 {
5341 /* Any solib trampoline code can be handled in reverse
5342 by simply continuing to single-step. We have already
5343 executed the solib function (backwards), and a few
5344 steps will take us back through the trampoline to the
5345 caller. */
5346 keep_going (ecs);
5347 return;
5348 }
5349 else if (in_solib_dynsym_resolve_code (stop_pc))
5350 {
5351 /* Stepped backward into the solib dynsym resolver.
5352 Set a breakpoint at its start and continue, then
5353 one more step will take us out. */
5354 struct symtab_and_line sr_sal;
abbb1732 5355
fdd654f3
MS
5356 init_sal (&sr_sal);
5357 sr_sal.pc = ecs->stop_func_start;
9d1807c3 5358 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
5359 insert_step_resume_breakpoint_at_sal (gdbarch,
5360 sr_sal, null_frame_id);
5361 keep_going (ecs);
5362 return;
5363 }
5364 }
5365
2afb61aa 5366 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 5367
1b2bfbb9
RC
5368 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5369 the trampoline processing logic, however, there are some trampolines
5370 that have no names, so we should do trampoline handling first. */
16c381f0 5371 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 5372 && ecs->stop_func_name == NULL
2afb61aa 5373 && stop_pc_sal.line == 0)
1b2bfbb9 5374 {
527159b7 5375 if (debug_infrun)
3e43a32a
MS
5376 fprintf_unfiltered (gdb_stdlog,
5377 "infrun: stepped into undebuggable function\n");
527159b7 5378
1b2bfbb9 5379 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
5380 undebuggable function (where there is no debugging information
5381 and no line number corresponding to the address where the
1b2bfbb9
RC
5382 inferior stopped). Since we want to skip this kind of code,
5383 we keep going until the inferior returns from this
14e60db5
DJ
5384 function - unless the user has asked us not to (via
5385 set step-mode) or we no longer know how to get back
5386 to the call site. */
5387 if (step_stop_if_no_debug
c7ce8faa 5388 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
5389 {
5390 /* If we have no line number and the step-stop-if-no-debug
5391 is set, we stop the step so that the user has a chance to
5392 switch in assembly mode. */
bdc36728 5393 end_stepping_range (ecs);
1b2bfbb9
RC
5394 return;
5395 }
5396 else
5397 {
5398 /* Set a breakpoint at callee's return address (the address
5399 at which the caller will resume). */
568d6575 5400 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
5401 keep_going (ecs);
5402 return;
5403 }
5404 }
5405
16c381f0 5406 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
5407 {
5408 /* It is stepi or nexti. We always want to stop stepping after
5409 one instruction. */
527159b7 5410 if (debug_infrun)
8a9de0e4 5411 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 5412 end_stepping_range (ecs);
1b2bfbb9
RC
5413 return;
5414 }
5415
2afb61aa 5416 if (stop_pc_sal.line == 0)
488f131b
JB
5417 {
5418 /* We have no line number information. That means to stop
5419 stepping (does this always happen right after one instruction,
5420 when we do "s" in a function with no line numbers,
5421 or can this happen as a result of a return or longjmp?). */
527159b7 5422 if (debug_infrun)
8a9de0e4 5423 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 5424 end_stepping_range (ecs);
488f131b
JB
5425 return;
5426 }
c906108c 5427
edb3359d
DJ
5428 /* Look for "calls" to inlined functions, part one. If the inline
5429 frame machinery detected some skipped call sites, we have entered
5430 a new inline function. */
5431
5432 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5433 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
5434 && inline_skipped_frames (ecs->ptid))
5435 {
5436 struct symtab_and_line call_sal;
5437
5438 if (debug_infrun)
5439 fprintf_unfiltered (gdb_stdlog,
5440 "infrun: stepped into inlined function\n");
5441
5442 find_frame_sal (get_current_frame (), &call_sal);
5443
16c381f0 5444 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
5445 {
5446 /* For "step", we're going to stop. But if the call site
5447 for this inlined function is on the same source line as
5448 we were previously stepping, go down into the function
5449 first. Otherwise stop at the call site. */
5450
5451 if (call_sal.line == ecs->event_thread->current_line
5452 && call_sal.symtab == ecs->event_thread->current_symtab)
5453 step_into_inline_frame (ecs->ptid);
5454
bdc36728 5455 end_stepping_range (ecs);
edb3359d
DJ
5456 return;
5457 }
5458 else
5459 {
5460 /* For "next", we should stop at the call site if it is on a
5461 different source line. Otherwise continue through the
5462 inlined function. */
5463 if (call_sal.line == ecs->event_thread->current_line
5464 && call_sal.symtab == ecs->event_thread->current_symtab)
5465 keep_going (ecs);
5466 else
bdc36728 5467 end_stepping_range (ecs);
edb3359d
DJ
5468 return;
5469 }
5470 }
5471
5472 /* Look for "calls" to inlined functions, part two. If we are still
5473 in the same real function we were stepping through, but we have
5474 to go further up to find the exact frame ID, we are stepping
5475 through a more inlined call beyond its call site. */
5476
5477 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5478 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5479 ecs->event_thread->control.step_frame_id)
edb3359d 5480 && stepped_in_from (get_current_frame (),
16c381f0 5481 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
5482 {
5483 if (debug_infrun)
5484 fprintf_unfiltered (gdb_stdlog,
5485 "infrun: stepping through inlined function\n");
5486
16c381f0 5487 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
5488 keep_going (ecs);
5489 else
bdc36728 5490 end_stepping_range (ecs);
edb3359d
DJ
5491 return;
5492 }
5493
2afb61aa 5494 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
5495 && (ecs->event_thread->current_line != stop_pc_sal.line
5496 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
5497 {
5498 /* We are at the start of a different line. So stop. Note that
5499 we don't stop if we step into the middle of a different line.
5500 That is said to make things like for (;;) statements work
5501 better. */
527159b7 5502 if (debug_infrun)
3e43a32a
MS
5503 fprintf_unfiltered (gdb_stdlog,
5504 "infrun: stepped to a different line\n");
bdc36728 5505 end_stepping_range (ecs);
488f131b
JB
5506 return;
5507 }
c906108c 5508
488f131b 5509 /* We aren't done stepping.
c906108c 5510
488f131b
JB
5511 Optimize by setting the stepping range to the line.
5512 (We might not be in the original line, but if we entered a
5513 new line in mid-statement, we continue stepping. This makes
5514 things like for(;;) statements work better.) */
c906108c 5515
16c381f0
JK
5516 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5517 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 5518 ecs->event_thread->control.may_range_step = 1;
edb3359d 5519 set_step_info (frame, stop_pc_sal);
488f131b 5520
527159b7 5521 if (debug_infrun)
8a9de0e4 5522 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 5523 keep_going (ecs);
104c1213
JM
5524}
5525
c447ac0b
PA
5526/* In all-stop mode, if we're currently stepping but have stopped in
5527 some other thread, we may need to switch back to the stepped
5528 thread. Returns true we set the inferior running, false if we left
5529 it stopped (and the event needs further processing). */
5530
5531static int
5532switch_back_to_stepped_thread (struct execution_control_state *ecs)
5533{
5534 if (!non_stop)
5535 {
5536 struct thread_info *tp;
99619bea 5537 struct thread_info *stepping_thread;
483805cf 5538 struct thread_info *step_over;
99619bea
PA
5539
5540 /* If any thread is blocked on some internal breakpoint, and we
5541 simply need to step over that breakpoint to get it going
5542 again, do that first. */
5543
5544 /* However, if we see an event for the stepping thread, then we
5545 know all other threads have been moved past their breakpoints
5546 already. Let the caller check whether the step is finished,
5547 etc., before deciding to move it past a breakpoint. */
5548 if (ecs->event_thread->control.step_range_end != 0)
5549 return 0;
5550
5551 /* Check if the current thread is blocked on an incomplete
5552 step-over, interrupted by a random signal. */
5553 if (ecs->event_thread->control.trap_expected
5554 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 5555 {
99619bea
PA
5556 if (debug_infrun)
5557 {
5558 fprintf_unfiltered (gdb_stdlog,
5559 "infrun: need to finish step-over of [%s]\n",
5560 target_pid_to_str (ecs->event_thread->ptid));
5561 }
5562 keep_going (ecs);
5563 return 1;
5564 }
2adfaa28 5565
99619bea
PA
5566 /* Check if the current thread is blocked by a single-step
5567 breakpoint of another thread. */
5568 if (ecs->hit_singlestep_breakpoint)
5569 {
5570 if (debug_infrun)
5571 {
5572 fprintf_unfiltered (gdb_stdlog,
5573 "infrun: need to step [%s] over single-step "
5574 "breakpoint\n",
5575 target_pid_to_str (ecs->ptid));
5576 }
5577 keep_going (ecs);
5578 return 1;
5579 }
5580
483805cf
PA
5581 /* Otherwise, we no longer expect a trap in the current thread.
5582 Clear the trap_expected flag before switching back -- this is
5583 what keep_going does as well, if we call it. */
5584 ecs->event_thread->control.trap_expected = 0;
5585
70509625
PA
5586 /* Likewise, clear the signal if it should not be passed. */
5587 if (!signal_program[ecs->event_thread->suspend.stop_signal])
5588 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5589
483805cf
PA
5590 /* If scheduler locking applies even if not stepping, there's no
5591 need to walk over threads. Above we've checked whether the
5592 current thread is stepping. If some other thread not the
5593 event thread is stepping, then it must be that scheduler
5594 locking is not in effect. */
5595 if (schedlock_applies (0))
5596 return 0;
5597
5598 /* Look for the stepping/nexting thread, and check if any other
5599 thread other than the stepping thread needs to start a
5600 step-over. Do all step-overs before actually proceeding with
5601 step/next/etc. */
5602 stepping_thread = NULL;
5603 step_over = NULL;
034f788c 5604 ALL_NON_EXITED_THREADS (tp)
483805cf
PA
5605 {
5606 /* Ignore threads of processes we're not resuming. */
5607 if (!sched_multi
5608 && ptid_get_pid (tp->ptid) != ptid_get_pid (inferior_ptid))
5609 continue;
5610
5611 /* When stepping over a breakpoint, we lock all threads
5612 except the one that needs to move past the breakpoint.
5613 If a non-event thread has this set, the "incomplete
5614 step-over" check above should have caught it earlier. */
5615 gdb_assert (!tp->control.trap_expected);
5616
5617 /* Did we find the stepping thread? */
5618 if (tp->control.step_range_end)
5619 {
5620 /* Yep. There should only one though. */
5621 gdb_assert (stepping_thread == NULL);
5622
5623 /* The event thread is handled at the top, before we
5624 enter this loop. */
5625 gdb_assert (tp != ecs->event_thread);
5626
5627 /* If some thread other than the event thread is
5628 stepping, then scheduler locking can't be in effect,
5629 otherwise we wouldn't have resumed the current event
5630 thread in the first place. */
35420406 5631 gdb_assert (!schedlock_applies (currently_stepping (tp)));
483805cf
PA
5632
5633 stepping_thread = tp;
5634 }
5635 else if (thread_still_needs_step_over (tp))
5636 {
5637 step_over = tp;
5638
5639 /* At the top we've returned early if the event thread
5640 is stepping. If some other thread not the event
5641 thread is stepping, then scheduler locking can't be
5642 in effect, and we can resume this thread. No need to
5643 keep looking for the stepping thread then. */
5644 break;
5645 }
5646 }
99619bea 5647
483805cf 5648 if (step_over != NULL)
99619bea 5649 {
483805cf 5650 tp = step_over;
99619bea 5651 if (debug_infrun)
c447ac0b 5652 {
99619bea
PA
5653 fprintf_unfiltered (gdb_stdlog,
5654 "infrun: need to step-over [%s]\n",
5655 target_pid_to_str (tp->ptid));
c447ac0b
PA
5656 }
5657
483805cf 5658 /* Only the stepping thread should have this set. */
99619bea
PA
5659 gdb_assert (tp->control.step_range_end == 0);
5660
99619bea
PA
5661 ecs->ptid = tp->ptid;
5662 ecs->event_thread = tp;
5663 switch_to_thread (ecs->ptid);
5664 keep_going (ecs);
5665 return 1;
5666 }
5667
483805cf 5668 if (stepping_thread != NULL)
99619bea
PA
5669 {
5670 struct frame_info *frame;
5671 struct gdbarch *gdbarch;
5672
483805cf
PA
5673 tp = stepping_thread;
5674
c447ac0b
PA
5675 /* If the stepping thread exited, then don't try to switch
5676 back and resume it, which could fail in several different
5677 ways depending on the target. Instead, just keep going.
5678
5679 We can find a stepping dead thread in the thread list in
5680 two cases:
5681
5682 - The target supports thread exit events, and when the
5683 target tries to delete the thread from the thread list,
5684 inferior_ptid pointed at the exiting thread. In such
5685 case, calling delete_thread does not really remove the
5686 thread from the list; instead, the thread is left listed,
5687 with 'exited' state.
5688
5689 - The target's debug interface does not support thread
5690 exit events, and so we have no idea whatsoever if the
5691 previously stepping thread is still alive. For that
5692 reason, we need to synchronously query the target
5693 now. */
5694 if (is_exited (tp->ptid)
5695 || !target_thread_alive (tp->ptid))
5696 {
5697 if (debug_infrun)
5698 fprintf_unfiltered (gdb_stdlog,
5699 "infrun: not switching back to "
5700 "stepped thread, it has vanished\n");
5701
5702 delete_thread (tp->ptid);
5703 keep_going (ecs);
5704 return 1;
5705 }
5706
c447ac0b
PA
5707 if (debug_infrun)
5708 fprintf_unfiltered (gdb_stdlog,
5709 "infrun: switching back to stepped thread\n");
5710
5711 ecs->event_thread = tp;
5712 ecs->ptid = tp->ptid;
5713 context_switch (ecs->ptid);
2adfaa28
PA
5714
5715 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5716 frame = get_current_frame ();
5717 gdbarch = get_frame_arch (frame);
5718
5719 /* If the PC of the thread we were trying to single-step has
99619bea
PA
5720 changed, then that thread has trapped or been signaled,
5721 but the event has not been reported to GDB yet. Re-poll
5722 the target looking for this particular thread's event
5723 (i.e. temporarily enable schedlock) by:
2adfaa28
PA
5724
5725 - setting a break at the current PC
5726 - resuming that particular thread, only (by setting
5727 trap expected)
5728
5729 This prevents us continuously moving the single-step
5730 breakpoint forward, one instruction at a time,
5731 overstepping. */
5732
af48d08f 5733 if (stop_pc != tp->prev_pc)
2adfaa28
PA
5734 {
5735 if (debug_infrun)
5736 fprintf_unfiltered (gdb_stdlog,
5737 "infrun: expected thread advanced also\n");
5738
7c16b83e
PA
5739 /* Clear the info of the previous step-over, as it's no
5740 longer valid. It's what keep_going would do too, if
5741 we called it. Must do this before trying to insert
5742 the sss breakpoint, otherwise if we were previously
5743 trying to step over this exact address in another
5744 thread, the breakpoint ends up not installed. */
5745 clear_step_over_info ();
5746
2adfaa28
PA
5747 insert_single_step_breakpoint (get_frame_arch (frame),
5748 get_frame_address_space (frame),
5749 stop_pc);
2adfaa28 5750 ecs->event_thread->control.trap_expected = 1;
2adfaa28
PA
5751
5752 resume (0, GDB_SIGNAL_0);
5753 prepare_to_wait (ecs);
5754 }
5755 else
5756 {
5757 if (debug_infrun)
5758 fprintf_unfiltered (gdb_stdlog,
5759 "infrun: expected thread still "
5760 "hasn't advanced\n");
5761 keep_going (ecs);
5762 }
5763
c447ac0b
PA
5764 return 1;
5765 }
5766 }
5767 return 0;
5768}
5769
b3444185 5770/* Is thread TP in the middle of single-stepping? */
104c1213 5771
a289b8f6 5772static int
b3444185 5773currently_stepping (struct thread_info *tp)
a7212384 5774{
8358c15c
JK
5775 return ((tp->control.step_range_end
5776 && tp->control.step_resume_breakpoint == NULL)
5777 || tp->control.trap_expected
af48d08f 5778 || tp->stepped_breakpoint
8358c15c 5779 || bpstat_should_step ());
a7212384
UW
5780}
5781
b2175913
MS
5782/* Inferior has stepped into a subroutine call with source code that
5783 we should not step over. Do step to the first line of code in
5784 it. */
c2c6d25f
JM
5785
5786static void
568d6575
UW
5787handle_step_into_function (struct gdbarch *gdbarch,
5788 struct execution_control_state *ecs)
c2c6d25f 5789{
43f3e411 5790 struct compunit_symtab *cust;
2afb61aa 5791 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 5792
7e324e48
GB
5793 fill_in_stop_func (gdbarch, ecs);
5794
43f3e411
DE
5795 cust = find_pc_compunit_symtab (stop_pc);
5796 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 5797 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 5798 ecs->stop_func_start);
c2c6d25f 5799
2afb61aa 5800 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
5801 /* Use the step_resume_break to step until the end of the prologue,
5802 even if that involves jumps (as it seems to on the vax under
5803 4.2). */
5804 /* If the prologue ends in the middle of a source line, continue to
5805 the end of that source line (if it is still within the function).
5806 Otherwise, just go to end of prologue. */
2afb61aa
PA
5807 if (stop_func_sal.end
5808 && stop_func_sal.pc != ecs->stop_func_start
5809 && stop_func_sal.end < ecs->stop_func_end)
5810 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 5811
2dbd5e30
KB
5812 /* Architectures which require breakpoint adjustment might not be able
5813 to place a breakpoint at the computed address. If so, the test
5814 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5815 ecs->stop_func_start to an address at which a breakpoint may be
5816 legitimately placed.
8fb3e588 5817
2dbd5e30
KB
5818 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5819 made, GDB will enter an infinite loop when stepping through
5820 optimized code consisting of VLIW instructions which contain
5821 subinstructions corresponding to different source lines. On
5822 FR-V, it's not permitted to place a breakpoint on any but the
5823 first subinstruction of a VLIW instruction. When a breakpoint is
5824 set, GDB will adjust the breakpoint address to the beginning of
5825 the VLIW instruction. Thus, we need to make the corresponding
5826 adjustment here when computing the stop address. */
8fb3e588 5827
568d6575 5828 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
5829 {
5830 ecs->stop_func_start
568d6575 5831 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 5832 ecs->stop_func_start);
2dbd5e30
KB
5833 }
5834
c2c6d25f
JM
5835 if (ecs->stop_func_start == stop_pc)
5836 {
5837 /* We are already there: stop now. */
bdc36728 5838 end_stepping_range (ecs);
c2c6d25f
JM
5839 return;
5840 }
5841 else
5842 {
5843 /* Put the step-breakpoint there and go until there. */
fe39c653 5844 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
5845 sr_sal.pc = ecs->stop_func_start;
5846 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 5847 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 5848
c2c6d25f 5849 /* Do not specify what the fp should be when we stop since on
488f131b
JB
5850 some machines the prologue is where the new fp value is
5851 established. */
a6d9a66e 5852 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
5853
5854 /* And make sure stepping stops right away then. */
16c381f0
JK
5855 ecs->event_thread->control.step_range_end
5856 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
5857 }
5858 keep_going (ecs);
5859}
d4f3574e 5860
b2175913
MS
5861/* Inferior has stepped backward into a subroutine call with source
5862 code that we should not step over. Do step to the beginning of the
5863 last line of code in it. */
5864
5865static void
568d6575
UW
5866handle_step_into_function_backward (struct gdbarch *gdbarch,
5867 struct execution_control_state *ecs)
b2175913 5868{
43f3e411 5869 struct compunit_symtab *cust;
167e4384 5870 struct symtab_and_line stop_func_sal;
b2175913 5871
7e324e48
GB
5872 fill_in_stop_func (gdbarch, ecs);
5873
43f3e411
DE
5874 cust = find_pc_compunit_symtab (stop_pc);
5875 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 5876 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
5877 ecs->stop_func_start);
5878
5879 stop_func_sal = find_pc_line (stop_pc, 0);
5880
5881 /* OK, we're just going to keep stepping here. */
5882 if (stop_func_sal.pc == stop_pc)
5883 {
5884 /* We're there already. Just stop stepping now. */
bdc36728 5885 end_stepping_range (ecs);
b2175913
MS
5886 }
5887 else
5888 {
5889 /* Else just reset the step range and keep going.
5890 No step-resume breakpoint, they don't work for
5891 epilogues, which can have multiple entry paths. */
16c381f0
JK
5892 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5893 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
5894 keep_going (ecs);
5895 }
5896 return;
5897}
5898
d3169d93 5899/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
5900 This is used to both functions and to skip over code. */
5901
5902static void
2c03e5be
PA
5903insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5904 struct symtab_and_line sr_sal,
5905 struct frame_id sr_id,
5906 enum bptype sr_type)
44cbf7b5 5907{
611c83ae
PA
5908 /* There should never be more than one step-resume or longjmp-resume
5909 breakpoint per thread, so we should never be setting a new
44cbf7b5 5910 step_resume_breakpoint when one is already active. */
8358c15c 5911 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 5912 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
5913
5914 if (debug_infrun)
5915 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5916 "infrun: inserting step-resume breakpoint at %s\n",
5917 paddress (gdbarch, sr_sal.pc));
d3169d93 5918
8358c15c 5919 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
5920 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5921}
5922
9da8c2a0 5923void
2c03e5be
PA
5924insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5925 struct symtab_and_line sr_sal,
5926 struct frame_id sr_id)
5927{
5928 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5929 sr_sal, sr_id,
5930 bp_step_resume);
44cbf7b5 5931}
7ce450bd 5932
2c03e5be
PA
5933/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5934 This is used to skip a potential signal handler.
7ce450bd 5935
14e60db5
DJ
5936 This is called with the interrupted function's frame. The signal
5937 handler, when it returns, will resume the interrupted function at
5938 RETURN_FRAME.pc. */
d303a6c7
AC
5939
5940static void
2c03e5be 5941insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
5942{
5943 struct symtab_and_line sr_sal;
a6d9a66e 5944 struct gdbarch *gdbarch;
d303a6c7 5945
f4c1edd8 5946 gdb_assert (return_frame != NULL);
d303a6c7
AC
5947 init_sal (&sr_sal); /* initialize to zeros */
5948
a6d9a66e 5949 gdbarch = get_frame_arch (return_frame);
568d6575 5950 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 5951 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5952 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 5953
2c03e5be
PA
5954 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5955 get_stack_frame_id (return_frame),
5956 bp_hp_step_resume);
d303a6c7
AC
5957}
5958
2c03e5be
PA
5959/* Insert a "step-resume breakpoint" at the previous frame's PC. This
5960 is used to skip a function after stepping into it (for "next" or if
5961 the called function has no debugging information).
14e60db5
DJ
5962
5963 The current function has almost always been reached by single
5964 stepping a call or return instruction. NEXT_FRAME belongs to the
5965 current function, and the breakpoint will be set at the caller's
5966 resume address.
5967
5968 This is a separate function rather than reusing
2c03e5be 5969 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 5970 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 5971 of frame_unwind_caller_id for an example). */
14e60db5
DJ
5972
5973static void
5974insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5975{
5976 struct symtab_and_line sr_sal;
a6d9a66e 5977 struct gdbarch *gdbarch;
14e60db5
DJ
5978
5979 /* We shouldn't have gotten here if we don't know where the call site
5980 is. */
c7ce8faa 5981 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
5982
5983 init_sal (&sr_sal); /* initialize to zeros */
5984
a6d9a66e 5985 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
5986 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5987 frame_unwind_caller_pc (next_frame));
14e60db5 5988 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5989 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 5990
a6d9a66e 5991 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 5992 frame_unwind_caller_id (next_frame));
14e60db5
DJ
5993}
5994
611c83ae
PA
5995/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5996 new breakpoint at the target of a jmp_buf. The handling of
5997 longjmp-resume uses the same mechanisms used for handling
5998 "step-resume" breakpoints. */
5999
6000static void
a6d9a66e 6001insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 6002{
e81a37f7
TT
6003 /* There should never be more than one longjmp-resume breakpoint per
6004 thread, so we should never be setting a new
611c83ae 6005 longjmp_resume_breakpoint when one is already active. */
e81a37f7 6006 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
6007
6008 if (debug_infrun)
6009 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
6010 "infrun: inserting longjmp-resume breakpoint at %s\n",
6011 paddress (gdbarch, pc));
611c83ae 6012
e81a37f7 6013 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 6014 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
6015}
6016
186c406b
TT
6017/* Insert an exception resume breakpoint. TP is the thread throwing
6018 the exception. The block B is the block of the unwinder debug hook
6019 function. FRAME is the frame corresponding to the call to this
6020 function. SYM is the symbol of the function argument holding the
6021 target PC of the exception. */
6022
6023static void
6024insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 6025 const struct block *b,
186c406b
TT
6026 struct frame_info *frame,
6027 struct symbol *sym)
6028{
492d29ea 6029 TRY
186c406b
TT
6030 {
6031 struct symbol *vsym;
6032 struct value *value;
6033 CORE_ADDR handler;
6034 struct breakpoint *bp;
6035
6036 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
6037 value = read_var_value (vsym, frame);
6038 /* If the value was optimized out, revert to the old behavior. */
6039 if (! value_optimized_out (value))
6040 {
6041 handler = value_as_address (value);
6042
6043 if (debug_infrun)
6044 fprintf_unfiltered (gdb_stdlog,
6045 "infrun: exception resume at %lx\n",
6046 (unsigned long) handler);
6047
6048 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
6049 handler, bp_exception_resume);
c70a6932
JK
6050
6051 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
6052 frame = NULL;
6053
186c406b
TT
6054 bp->thread = tp->num;
6055 inferior_thread ()->control.exception_resume_breakpoint = bp;
6056 }
6057 }
492d29ea
PA
6058 CATCH (e, RETURN_MASK_ERROR)
6059 {
6060 /* We want to ignore errors here. */
6061 }
6062 END_CATCH
186c406b
TT
6063}
6064
28106bc2
SDJ
6065/* A helper for check_exception_resume that sets an
6066 exception-breakpoint based on a SystemTap probe. */
6067
6068static void
6069insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 6070 const struct bound_probe *probe,
28106bc2
SDJ
6071 struct frame_info *frame)
6072{
6073 struct value *arg_value;
6074 CORE_ADDR handler;
6075 struct breakpoint *bp;
6076
6077 arg_value = probe_safe_evaluate_at_pc (frame, 1);
6078 if (!arg_value)
6079 return;
6080
6081 handler = value_as_address (arg_value);
6082
6083 if (debug_infrun)
6084 fprintf_unfiltered (gdb_stdlog,
6085 "infrun: exception resume at %s\n",
6bac7473 6086 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
6087 handler));
6088
6089 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
6090 handler, bp_exception_resume);
6091 bp->thread = tp->num;
6092 inferior_thread ()->control.exception_resume_breakpoint = bp;
6093}
6094
186c406b
TT
6095/* This is called when an exception has been intercepted. Check to
6096 see whether the exception's destination is of interest, and if so,
6097 set an exception resume breakpoint there. */
6098
6099static void
6100check_exception_resume (struct execution_control_state *ecs,
28106bc2 6101 struct frame_info *frame)
186c406b 6102{
729662a5 6103 struct bound_probe probe;
28106bc2
SDJ
6104 struct symbol *func;
6105
6106 /* First see if this exception unwinding breakpoint was set via a
6107 SystemTap probe point. If so, the probe has two arguments: the
6108 CFA and the HANDLER. We ignore the CFA, extract the handler, and
6109 set a breakpoint there. */
6bac7473 6110 probe = find_probe_by_pc (get_frame_pc (frame));
729662a5 6111 if (probe.probe)
28106bc2 6112 {
729662a5 6113 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
6114 return;
6115 }
6116
6117 func = get_frame_function (frame);
6118 if (!func)
6119 return;
186c406b 6120
492d29ea 6121 TRY
186c406b 6122 {
3977b71f 6123 const struct block *b;
8157b174 6124 struct block_iterator iter;
186c406b
TT
6125 struct symbol *sym;
6126 int argno = 0;
6127
6128 /* The exception breakpoint is a thread-specific breakpoint on
6129 the unwinder's debug hook, declared as:
6130
6131 void _Unwind_DebugHook (void *cfa, void *handler);
6132
6133 The CFA argument indicates the frame to which control is
6134 about to be transferred. HANDLER is the destination PC.
6135
6136 We ignore the CFA and set a temporary breakpoint at HANDLER.
6137 This is not extremely efficient but it avoids issues in gdb
6138 with computing the DWARF CFA, and it also works even in weird
6139 cases such as throwing an exception from inside a signal
6140 handler. */
6141
6142 b = SYMBOL_BLOCK_VALUE (func);
6143 ALL_BLOCK_SYMBOLS (b, iter, sym)
6144 {
6145 if (!SYMBOL_IS_ARGUMENT (sym))
6146 continue;
6147
6148 if (argno == 0)
6149 ++argno;
6150 else
6151 {
6152 insert_exception_resume_breakpoint (ecs->event_thread,
6153 b, frame, sym);
6154 break;
6155 }
6156 }
6157 }
492d29ea
PA
6158 CATCH (e, RETURN_MASK_ERROR)
6159 {
6160 }
6161 END_CATCH
186c406b
TT
6162}
6163
104c1213 6164static void
22bcd14b 6165stop_waiting (struct execution_control_state *ecs)
104c1213 6166{
527159b7 6167 if (debug_infrun)
22bcd14b 6168 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 6169
31e77af2
PA
6170 clear_step_over_info ();
6171
cd0fc7c3
SS
6172 /* Let callers know we don't want to wait for the inferior anymore. */
6173 ecs->wait_some_more = 0;
6174}
6175
a9ba6bae
PA
6176/* Called when we should continue running the inferior, because the
6177 current event doesn't cause a user visible stop. This does the
6178 resuming part; waiting for the next event is done elsewhere. */
d4f3574e
SS
6179
6180static void
6181keep_going (struct execution_control_state *ecs)
6182{
c4dbc9af
PA
6183 /* Make sure normal_stop is called if we get a QUIT handled before
6184 reaching resume. */
6185 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
6186
d4f3574e 6187 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
6188 ecs->event_thread->prev_pc
6189 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 6190
16c381f0 6191 if (ecs->event_thread->control.trap_expected
a493e3e2 6192 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
d4f3574e 6193 {
a9ba6bae
PA
6194 /* We haven't yet gotten our trap, and either: intercepted a
6195 non-signal event (e.g., a fork); or took a signal which we
6196 are supposed to pass through to the inferior. Simply
6197 continue. */
c4dbc9af 6198 discard_cleanups (old_cleanups);
2020b7ab 6199 resume (currently_stepping (ecs->event_thread),
16c381f0 6200 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
6201 }
6202 else
6203 {
31e77af2 6204 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
6205 int remove_bp;
6206 int remove_wps;
31e77af2 6207
d4f3574e 6208 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
6209 anyway (if we got a signal, the user asked it be passed to
6210 the child)
6211 -- or --
6212 We got our expected trap, but decided we should resume from
6213 it.
d4f3574e 6214
a9ba6bae 6215 We're going to run this baby now!
d4f3574e 6216
c36b740a
VP
6217 Note that insert_breakpoints won't try to re-insert
6218 already inserted breakpoints. Therefore, we don't
6219 care if breakpoints were already inserted, or not. */
a9ba6bae 6220
31e77af2
PA
6221 /* If we need to step over a breakpoint, and we're not using
6222 displaced stepping to do so, insert all breakpoints
6223 (watchpoints, etc.) but the one we're stepping over, step one
6224 instruction, and then re-insert the breakpoint when that step
6225 is finished. */
963f9c80
PA
6226
6227 remove_bp = (ecs->hit_singlestep_breakpoint
6228 || thread_still_needs_step_over (ecs->event_thread));
6229 remove_wps = (ecs->event_thread->stepping_over_watchpoint
6230 && !target_have_steppable_watchpoint);
6231
6232 if (remove_bp && !use_displaced_stepping (get_regcache_arch (regcache)))
45e8c884 6233 {
31e77af2 6234 set_step_over_info (get_regcache_aspace (regcache),
963f9c80 6235 regcache_read_pc (regcache), remove_wps);
45e8c884 6236 }
963f9c80
PA
6237 else if (remove_wps)
6238 set_step_over_info (NULL, 0, remove_wps);
45e8c884 6239 else
31e77af2 6240 clear_step_over_info ();
abbb1732 6241
31e77af2 6242 /* Stop stepping if inserting breakpoints fails. */
492d29ea 6243 TRY
31e77af2
PA
6244 {
6245 insert_breakpoints ();
6246 }
492d29ea 6247 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
6248 {
6249 exception_print (gdb_stderr, e);
22bcd14b 6250 stop_waiting (ecs);
31e77af2 6251 return;
d4f3574e 6252 }
492d29ea 6253 END_CATCH
d4f3574e 6254
963f9c80 6255 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 6256
a9ba6bae
PA
6257 /* Do not deliver GDB_SIGNAL_TRAP (except when the user
6258 explicitly specifies that such a signal should be delivered
6259 to the target program). Typically, that would occur when a
6260 user is debugging a target monitor on a simulator: the target
6261 monitor sets a breakpoint; the simulator encounters this
6262 breakpoint and halts the simulation handing control to GDB;
6263 GDB, noting that the stop address doesn't map to any known
6264 breakpoint, returns control back to the simulator; the
6265 simulator then delivers the hardware equivalent of a
6266 GDB_SIGNAL_TRAP to the program being debugged. */
a493e3e2 6267 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 6268 && !signal_program[ecs->event_thread->suspend.stop_signal])
a493e3e2 6269 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
d4f3574e 6270
c4dbc9af 6271 discard_cleanups (old_cleanups);
2020b7ab 6272 resume (currently_stepping (ecs->event_thread),
16c381f0 6273 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
6274 }
6275
488f131b 6276 prepare_to_wait (ecs);
d4f3574e
SS
6277}
6278
104c1213
JM
6279/* This function normally comes after a resume, before
6280 handle_inferior_event exits. It takes care of any last bits of
6281 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 6282
104c1213
JM
6283static void
6284prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 6285{
527159b7 6286 if (debug_infrun)
8a9de0e4 6287 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 6288
104c1213
JM
6289 /* This is the old end of the while loop. Let everybody know we
6290 want to wait for the inferior some more and get called again
6291 soon. */
6292 ecs->wait_some_more = 1;
c906108c 6293}
11cf8741 6294
fd664c91 6295/* We are done with the step range of a step/next/si/ni command.
b57bacec 6296 Called once for each n of a "step n" operation. */
fd664c91
PA
6297
6298static void
bdc36728 6299end_stepping_range (struct execution_control_state *ecs)
fd664c91 6300{
bdc36728 6301 ecs->event_thread->control.stop_step = 1;
bdc36728 6302 stop_waiting (ecs);
fd664c91
PA
6303}
6304
33d62d64
JK
6305/* Several print_*_reason functions to print why the inferior has stopped.
6306 We always print something when the inferior exits, or receives a signal.
6307 The rest of the cases are dealt with later on in normal_stop and
6308 print_it_typical. Ideally there should be a call to one of these
6309 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 6310 stop_waiting is called.
33d62d64 6311
fd664c91
PA
6312 Note that we don't call these directly, instead we delegate that to
6313 the interpreters, through observers. Interpreters then call these
6314 with whatever uiout is right. */
33d62d64 6315
fd664c91
PA
6316void
6317print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 6318{
fd664c91 6319 /* For CLI-like interpreters, print nothing. */
33d62d64 6320
fd664c91
PA
6321 if (ui_out_is_mi_like_p (uiout))
6322 {
6323 ui_out_field_string (uiout, "reason",
6324 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
6325 }
6326}
33d62d64 6327
fd664c91
PA
6328void
6329print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 6330{
33d62d64
JK
6331 annotate_signalled ();
6332 if (ui_out_is_mi_like_p (uiout))
6333 ui_out_field_string
6334 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
6335 ui_out_text (uiout, "\nProgram terminated with signal ");
6336 annotate_signal_name ();
6337 ui_out_field_string (uiout, "signal-name",
2ea28649 6338 gdb_signal_to_name (siggnal));
33d62d64
JK
6339 annotate_signal_name_end ();
6340 ui_out_text (uiout, ", ");
6341 annotate_signal_string ();
6342 ui_out_field_string (uiout, "signal-meaning",
2ea28649 6343 gdb_signal_to_string (siggnal));
33d62d64
JK
6344 annotate_signal_string_end ();
6345 ui_out_text (uiout, ".\n");
6346 ui_out_text (uiout, "The program no longer exists.\n");
6347}
6348
fd664c91
PA
6349void
6350print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 6351{
fda326dd
TT
6352 struct inferior *inf = current_inferior ();
6353 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
6354
33d62d64
JK
6355 annotate_exited (exitstatus);
6356 if (exitstatus)
6357 {
6358 if (ui_out_is_mi_like_p (uiout))
6359 ui_out_field_string (uiout, "reason",
6360 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
6361 ui_out_text (uiout, "[Inferior ");
6362 ui_out_text (uiout, plongest (inf->num));
6363 ui_out_text (uiout, " (");
6364 ui_out_text (uiout, pidstr);
6365 ui_out_text (uiout, ") exited with code ");
33d62d64 6366 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 6367 ui_out_text (uiout, "]\n");
33d62d64
JK
6368 }
6369 else
11cf8741 6370 {
9dc5e2a9 6371 if (ui_out_is_mi_like_p (uiout))
034dad6f 6372 ui_out_field_string
33d62d64 6373 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
6374 ui_out_text (uiout, "[Inferior ");
6375 ui_out_text (uiout, plongest (inf->num));
6376 ui_out_text (uiout, " (");
6377 ui_out_text (uiout, pidstr);
6378 ui_out_text (uiout, ") exited normally]\n");
33d62d64 6379 }
33d62d64
JK
6380}
6381
fd664c91
PA
6382void
6383print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64
JK
6384{
6385 annotate_signal ();
6386
a493e3e2 6387 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
33d62d64
JK
6388 {
6389 struct thread_info *t = inferior_thread ();
6390
6391 ui_out_text (uiout, "\n[");
6392 ui_out_field_string (uiout, "thread-name",
6393 target_pid_to_str (t->ptid));
6394 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
6395 ui_out_text (uiout, " stopped");
6396 }
6397 else
6398 {
6399 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 6400 annotate_signal_name ();
33d62d64
JK
6401 if (ui_out_is_mi_like_p (uiout))
6402 ui_out_field_string
6403 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 6404 ui_out_field_string (uiout, "signal-name",
2ea28649 6405 gdb_signal_to_name (siggnal));
8b93c638
JM
6406 annotate_signal_name_end ();
6407 ui_out_text (uiout, ", ");
6408 annotate_signal_string ();
488f131b 6409 ui_out_field_string (uiout, "signal-meaning",
2ea28649 6410 gdb_signal_to_string (siggnal));
8b93c638 6411 annotate_signal_string_end ();
33d62d64
JK
6412 }
6413 ui_out_text (uiout, ".\n");
6414}
252fbfc8 6415
fd664c91
PA
6416void
6417print_no_history_reason (struct ui_out *uiout)
33d62d64 6418{
fd664c91 6419 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
11cf8741 6420}
43ff13b4 6421
0c7e1a46
PA
6422/* Print current location without a level number, if we have changed
6423 functions or hit a breakpoint. Print source line if we have one.
6424 bpstat_print contains the logic deciding in detail what to print,
6425 based on the event(s) that just occurred. */
6426
6427void
6428print_stop_event (struct target_waitstatus *ws)
6429{
6430 int bpstat_ret;
6431 int source_flag;
6432 int do_frame_printing = 1;
6433 struct thread_info *tp = inferior_thread ();
6434
6435 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
6436 switch (bpstat_ret)
6437 {
6438 case PRINT_UNKNOWN:
6439 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
6440 should) carry around the function and does (or should) use
6441 that when doing a frame comparison. */
6442 if (tp->control.stop_step
6443 && frame_id_eq (tp->control.step_frame_id,
6444 get_frame_id (get_current_frame ()))
885eeb5b 6445 && tp->control.step_start_function == find_pc_function (stop_pc))
0c7e1a46
PA
6446 {
6447 /* Finished step, just print source line. */
6448 source_flag = SRC_LINE;
6449 }
6450 else
6451 {
6452 /* Print location and source line. */
6453 source_flag = SRC_AND_LOC;
6454 }
6455 break;
6456 case PRINT_SRC_AND_LOC:
6457 /* Print location and source line. */
6458 source_flag = SRC_AND_LOC;
6459 break;
6460 case PRINT_SRC_ONLY:
6461 source_flag = SRC_LINE;
6462 break;
6463 case PRINT_NOTHING:
6464 /* Something bogus. */
6465 source_flag = SRC_LINE;
6466 do_frame_printing = 0;
6467 break;
6468 default:
6469 internal_error (__FILE__, __LINE__, _("Unknown value."));
6470 }
6471
6472 /* The behavior of this routine with respect to the source
6473 flag is:
6474 SRC_LINE: Print only source line
6475 LOCATION: Print only location
6476 SRC_AND_LOC: Print location and source line. */
6477 if (do_frame_printing)
6478 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
6479
6480 /* Display the auto-display expressions. */
6481 do_displays ();
6482}
6483
c906108c
SS
6484/* Here to return control to GDB when the inferior stops for real.
6485 Print appropriate messages, remove breakpoints, give terminal our modes.
6486
6487 STOP_PRINT_FRAME nonzero means print the executing frame
6488 (pc, function, args, file, line number and line text).
6489 BREAKPOINTS_FAILED nonzero means stop was due to error
6490 attempting to insert breakpoints. */
6491
6492void
96baa820 6493normal_stop (void)
c906108c 6494{
73b65bb0
DJ
6495 struct target_waitstatus last;
6496 ptid_t last_ptid;
29f49a6a 6497 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
6498
6499 get_last_target_status (&last_ptid, &last);
6500
29f49a6a
PA
6501 /* If an exception is thrown from this point on, make sure to
6502 propagate GDB's knowledge of the executing state to the
6503 frontend/user running state. A QUIT is an easy exception to see
6504 here, so do this before any filtered output. */
c35b1492
PA
6505 if (!non_stop)
6506 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
6507 else if (last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
6508 && last.kind != TARGET_WAITKIND_EXITED
6509 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 6510 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 6511
b57bacec
PA
6512 /* As we're presenting a stop, and potentially removing breakpoints,
6513 update the thread list so we can tell whether there are threads
6514 running on the target. With target remote, for example, we can
6515 only learn about new threads when we explicitly update the thread
6516 list. Do this before notifying the interpreters about signal
6517 stops, end of stepping ranges, etc., so that the "new thread"
6518 output is emitted before e.g., "Program received signal FOO",
6519 instead of after. */
6520 update_thread_list ();
6521
6522 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
6523 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
6524
c906108c
SS
6525 /* As with the notification of thread events, we want to delay
6526 notifying the user that we've switched thread context until
6527 the inferior actually stops.
6528
73b65bb0
DJ
6529 There's no point in saying anything if the inferior has exited.
6530 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
6531 "received a signal".
6532
6533 Also skip saying anything in non-stop mode. In that mode, as we
6534 don't want GDB to switch threads behind the user's back, to avoid
6535 races where the user is typing a command to apply to thread x,
6536 but GDB switches to thread y before the user finishes entering
6537 the command, fetch_inferior_event installs a cleanup to restore
6538 the current thread back to the thread the user had selected right
6539 after this event is handled, so we're not really switching, only
6540 informing of a stop. */
4f8d22e3
PA
6541 if (!non_stop
6542 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
6543 && target_has_execution
6544 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
6545 && last.kind != TARGET_WAITKIND_EXITED
6546 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
6547 {
6548 target_terminal_ours_for_output ();
a3f17187 6549 printf_filtered (_("[Switching to %s]\n"),
c95310c6 6550 target_pid_to_str (inferior_ptid));
b8fa951a 6551 annotate_thread_changed ();
39f77062 6552 previous_inferior_ptid = inferior_ptid;
c906108c 6553 }
c906108c 6554
0e5bf2a8
PA
6555 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
6556 {
6557 gdb_assert (sync_execution || !target_can_async_p ());
6558
6559 target_terminal_ours_for_output ();
6560 printf_filtered (_("No unwaited-for children left.\n"));
6561 }
6562
b57bacec 6563 /* Note: this depends on the update_thread_list call above. */
a25a5a45 6564 if (!breakpoints_should_be_inserted_now () && target_has_execution)
c906108c
SS
6565 {
6566 if (remove_breakpoints ())
6567 {
6568 target_terminal_ours_for_output ();
3e43a32a
MS
6569 printf_filtered (_("Cannot remove breakpoints because "
6570 "program is no longer writable.\nFurther "
6571 "execution is probably impossible.\n"));
c906108c
SS
6572 }
6573 }
c906108c 6574
c906108c
SS
6575 /* If an auto-display called a function and that got a signal,
6576 delete that auto-display to avoid an infinite recursion. */
6577
6578 if (stopped_by_random_signal)
6579 disable_current_display ();
6580
b57bacec 6581 /* Notify observers if we finished a "step"-like command, etc. */
af679fd0
PA
6582 if (target_has_execution
6583 && last.kind != TARGET_WAITKIND_SIGNALLED
6584 && last.kind != TARGET_WAITKIND_EXITED
16c381f0 6585 && inferior_thread ()->control.stop_step)
b57bacec 6586 {
31cc0b80 6587 /* But not if in the middle of doing a "step n" operation for
b57bacec
PA
6588 n > 1 */
6589 if (inferior_thread ()->step_multi)
6590 goto done;
6591
6592 observer_notify_end_stepping_range ();
6593 }
c906108c
SS
6594
6595 target_terminal_ours ();
0f641c01 6596 async_enable_stdin ();
c906108c 6597
7abfe014
DJ
6598 /* Set the current source location. This will also happen if we
6599 display the frame below, but the current SAL will be incorrect
6600 during a user hook-stop function. */
d729566a 6601 if (has_stack_frames () && !stop_stack_dummy)
5166082f 6602 set_current_sal_from_frame (get_current_frame ());
7abfe014 6603
251bde03
PA
6604 /* Let the user/frontend see the threads as stopped, but do nothing
6605 if the thread was running an infcall. We may be e.g., evaluating
6606 a breakpoint condition. In that case, the thread had state
6607 THREAD_RUNNING before the infcall, and shall remain set to
6608 running, all without informing the user/frontend about state
6609 transition changes. If this is actually a call command, then the
6610 thread was originally already stopped, so there's no state to
6611 finish either. */
6612 if (target_has_execution && inferior_thread ()->control.in_infcall)
6613 discard_cleanups (old_chain);
6614 else
6615 do_cleanups (old_chain);
dd7e2d2b
PA
6616
6617 /* Look up the hook_stop and run it (CLI internally handles problem
6618 of stop_command's pre-hook not existing). */
6619 if (stop_command)
6620 catch_errors (hook_stop_stub, stop_command,
6621 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6622
d729566a 6623 if (!has_stack_frames ())
d51fd4c8 6624 goto done;
c906108c 6625
32400beb
PA
6626 if (last.kind == TARGET_WAITKIND_SIGNALLED
6627 || last.kind == TARGET_WAITKIND_EXITED)
6628 goto done;
6629
c906108c
SS
6630 /* Select innermost stack frame - i.e., current frame is frame 0,
6631 and current location is based on that.
6632 Don't do this on return from a stack dummy routine,
1777feb0 6633 or if the program has exited. */
c906108c
SS
6634
6635 if (!stop_stack_dummy)
6636 {
0f7d239c 6637 select_frame (get_current_frame ());
c906108c 6638
d01a8610
AS
6639 /* If --batch-silent is enabled then there's no need to print the current
6640 source location, and to try risks causing an error message about
6641 missing source files. */
6642 if (stop_print_frame && !batch_silent)
0c7e1a46 6643 print_stop_event (&last);
c906108c
SS
6644 }
6645
6646 /* Save the function value return registers, if we care.
6647 We might be about to restore their previous contents. */
9da8c2a0
PA
6648 if (inferior_thread ()->control.proceed_to_finish
6649 && execution_direction != EXEC_REVERSE)
d5c31457
UW
6650 {
6651 /* This should not be necessary. */
6652 if (stop_registers)
6653 regcache_xfree (stop_registers);
6654
6655 /* NB: The copy goes through to the target picking up the value of
6656 all the registers. */
6657 stop_registers = regcache_dup (get_current_regcache ());
6658 }
c906108c 6659
aa7d318d 6660 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 6661 {
b89667eb
DE
6662 /* Pop the empty frame that contains the stack dummy.
6663 This also restores inferior state prior to the call
16c381f0 6664 (struct infcall_suspend_state). */
b89667eb 6665 struct frame_info *frame = get_current_frame ();
abbb1732 6666
b89667eb
DE
6667 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6668 frame_pop (frame);
3e43a32a
MS
6669 /* frame_pop() calls reinit_frame_cache as the last thing it
6670 does which means there's currently no selected frame. We
6671 don't need to re-establish a selected frame if the dummy call
6672 returns normally, that will be done by
6673 restore_infcall_control_state. However, we do have to handle
6674 the case where the dummy call is returning after being
6675 stopped (e.g. the dummy call previously hit a breakpoint).
6676 We can't know which case we have so just always re-establish
6677 a selected frame here. */
0f7d239c 6678 select_frame (get_current_frame ());
c906108c
SS
6679 }
6680
c906108c
SS
6681done:
6682 annotate_stopped ();
41d2bdb4
PA
6683
6684 /* Suppress the stop observer if we're in the middle of:
6685
6686 - a step n (n > 1), as there still more steps to be done.
6687
6688 - a "finish" command, as the observer will be called in
6689 finish_command_continuation, so it can include the inferior
6690 function's return value.
6691
6692 - calling an inferior function, as we pretend we inferior didn't
6693 run at all. The return value of the call is handled by the
6694 expression evaluator, through call_function_by_hand. */
6695
6696 if (!target_has_execution
6697 || last.kind == TARGET_WAITKIND_SIGNALLED
6698 || last.kind == TARGET_WAITKIND_EXITED
0e5bf2a8 6699 || last.kind == TARGET_WAITKIND_NO_RESUMED
2ca0b532
PA
6700 || (!(inferior_thread ()->step_multi
6701 && inferior_thread ()->control.stop_step)
16c381f0
JK
6702 && !(inferior_thread ()->control.stop_bpstat
6703 && inferior_thread ()->control.proceed_to_finish)
6704 && !inferior_thread ()->control.in_infcall))
347bddb7
PA
6705 {
6706 if (!ptid_equal (inferior_ptid, null_ptid))
16c381f0 6707 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
1d33d6ba 6708 stop_print_frame);
347bddb7 6709 else
1d33d6ba 6710 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 6711 }
347bddb7 6712
48844aa6
PA
6713 if (target_has_execution)
6714 {
6715 if (last.kind != TARGET_WAITKIND_SIGNALLED
6716 && last.kind != TARGET_WAITKIND_EXITED)
6717 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6718 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 6719 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 6720 }
6c95b8df
PA
6721
6722 /* Try to get rid of automatically added inferiors that are no
6723 longer needed. Keeping those around slows down things linearly.
6724 Note that this never removes the current inferior. */
6725 prune_inferiors ();
c906108c
SS
6726}
6727
6728static int
96baa820 6729hook_stop_stub (void *cmd)
c906108c 6730{
5913bcb0 6731 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
6732 return (0);
6733}
6734\f
c5aa993b 6735int
96baa820 6736signal_stop_state (int signo)
c906108c 6737{
d6b48e9c 6738 return signal_stop[signo];
c906108c
SS
6739}
6740
c5aa993b 6741int
96baa820 6742signal_print_state (int signo)
c906108c
SS
6743{
6744 return signal_print[signo];
6745}
6746
c5aa993b 6747int
96baa820 6748signal_pass_state (int signo)
c906108c
SS
6749{
6750 return signal_program[signo];
6751}
6752
2455069d
UW
6753static void
6754signal_cache_update (int signo)
6755{
6756 if (signo == -1)
6757 {
a493e3e2 6758 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
6759 signal_cache_update (signo);
6760
6761 return;
6762 }
6763
6764 signal_pass[signo] = (signal_stop[signo] == 0
6765 && signal_print[signo] == 0
ab04a2af
TT
6766 && signal_program[signo] == 1
6767 && signal_catch[signo] == 0);
2455069d
UW
6768}
6769
488f131b 6770int
7bda5e4a 6771signal_stop_update (int signo, int state)
d4f3574e
SS
6772{
6773 int ret = signal_stop[signo];
abbb1732 6774
d4f3574e 6775 signal_stop[signo] = state;
2455069d 6776 signal_cache_update (signo);
d4f3574e
SS
6777 return ret;
6778}
6779
488f131b 6780int
7bda5e4a 6781signal_print_update (int signo, int state)
d4f3574e
SS
6782{
6783 int ret = signal_print[signo];
abbb1732 6784
d4f3574e 6785 signal_print[signo] = state;
2455069d 6786 signal_cache_update (signo);
d4f3574e
SS
6787 return ret;
6788}
6789
488f131b 6790int
7bda5e4a 6791signal_pass_update (int signo, int state)
d4f3574e
SS
6792{
6793 int ret = signal_program[signo];
abbb1732 6794
d4f3574e 6795 signal_program[signo] = state;
2455069d 6796 signal_cache_update (signo);
d4f3574e
SS
6797 return ret;
6798}
6799
ab04a2af
TT
6800/* Update the global 'signal_catch' from INFO and notify the
6801 target. */
6802
6803void
6804signal_catch_update (const unsigned int *info)
6805{
6806 int i;
6807
6808 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6809 signal_catch[i] = info[i] > 0;
6810 signal_cache_update (-1);
6811 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6812}
6813
c906108c 6814static void
96baa820 6815sig_print_header (void)
c906108c 6816{
3e43a32a
MS
6817 printf_filtered (_("Signal Stop\tPrint\tPass "
6818 "to program\tDescription\n"));
c906108c
SS
6819}
6820
6821static void
2ea28649 6822sig_print_info (enum gdb_signal oursig)
c906108c 6823{
2ea28649 6824 const char *name = gdb_signal_to_name (oursig);
c906108c 6825 int name_padding = 13 - strlen (name);
96baa820 6826
c906108c
SS
6827 if (name_padding <= 0)
6828 name_padding = 0;
6829
6830 printf_filtered ("%s", name);
488f131b 6831 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
6832 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6833 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6834 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 6835 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
6836}
6837
6838/* Specify how various signals in the inferior should be handled. */
6839
6840static void
96baa820 6841handle_command (char *args, int from_tty)
c906108c
SS
6842{
6843 char **argv;
6844 int digits, wordlen;
6845 int sigfirst, signum, siglast;
2ea28649 6846 enum gdb_signal oursig;
c906108c
SS
6847 int allsigs;
6848 int nsigs;
6849 unsigned char *sigs;
6850 struct cleanup *old_chain;
6851
6852 if (args == NULL)
6853 {
e2e0b3e5 6854 error_no_arg (_("signal to handle"));
c906108c
SS
6855 }
6856
1777feb0 6857 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 6858
a493e3e2 6859 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
6860 sigs = (unsigned char *) alloca (nsigs);
6861 memset (sigs, 0, nsigs);
6862
1777feb0 6863 /* Break the command line up into args. */
c906108c 6864
d1a41061 6865 argv = gdb_buildargv (args);
7a292a7a 6866 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6867
6868 /* Walk through the args, looking for signal oursigs, signal names, and
6869 actions. Signal numbers and signal names may be interspersed with
6870 actions, with the actions being performed for all signals cumulatively
1777feb0 6871 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
6872
6873 while (*argv != NULL)
6874 {
6875 wordlen = strlen (*argv);
6876 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6877 {;
6878 }
6879 allsigs = 0;
6880 sigfirst = siglast = -1;
6881
6882 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6883 {
6884 /* Apply action to all signals except those used by the
1777feb0 6885 debugger. Silently skip those. */
c906108c
SS
6886 allsigs = 1;
6887 sigfirst = 0;
6888 siglast = nsigs - 1;
6889 }
6890 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6891 {
6892 SET_SIGS (nsigs, sigs, signal_stop);
6893 SET_SIGS (nsigs, sigs, signal_print);
6894 }
6895 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6896 {
6897 UNSET_SIGS (nsigs, sigs, signal_program);
6898 }
6899 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6900 {
6901 SET_SIGS (nsigs, sigs, signal_print);
6902 }
6903 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6904 {
6905 SET_SIGS (nsigs, sigs, signal_program);
6906 }
6907 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6908 {
6909 UNSET_SIGS (nsigs, sigs, signal_stop);
6910 }
6911 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6912 {
6913 SET_SIGS (nsigs, sigs, signal_program);
6914 }
6915 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6916 {
6917 UNSET_SIGS (nsigs, sigs, signal_print);
6918 UNSET_SIGS (nsigs, sigs, signal_stop);
6919 }
6920 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6921 {
6922 UNSET_SIGS (nsigs, sigs, signal_program);
6923 }
6924 else if (digits > 0)
6925 {
6926 /* It is numeric. The numeric signal refers to our own
6927 internal signal numbering from target.h, not to host/target
6928 signal number. This is a feature; users really should be
6929 using symbolic names anyway, and the common ones like
6930 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6931
6932 sigfirst = siglast = (int)
2ea28649 6933 gdb_signal_from_command (atoi (*argv));
c906108c
SS
6934 if ((*argv)[digits] == '-')
6935 {
6936 siglast = (int)
2ea28649 6937 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
6938 }
6939 if (sigfirst > siglast)
6940 {
1777feb0 6941 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
6942 signum = sigfirst;
6943 sigfirst = siglast;
6944 siglast = signum;
6945 }
6946 }
6947 else
6948 {
2ea28649 6949 oursig = gdb_signal_from_name (*argv);
a493e3e2 6950 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
6951 {
6952 sigfirst = siglast = (int) oursig;
6953 }
6954 else
6955 {
6956 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 6957 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
6958 }
6959 }
6960
6961 /* If any signal numbers or symbol names were found, set flags for
1777feb0 6962 which signals to apply actions to. */
c906108c
SS
6963
6964 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6965 {
2ea28649 6966 switch ((enum gdb_signal) signum)
c906108c 6967 {
a493e3e2
PA
6968 case GDB_SIGNAL_TRAP:
6969 case GDB_SIGNAL_INT:
c906108c
SS
6970 if (!allsigs && !sigs[signum])
6971 {
9e2f0ad4 6972 if (query (_("%s is used by the debugger.\n\
3e43a32a 6973Are you sure you want to change it? "),
2ea28649 6974 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
6975 {
6976 sigs[signum] = 1;
6977 }
6978 else
6979 {
a3f17187 6980 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
6981 gdb_flush (gdb_stdout);
6982 }
6983 }
6984 break;
a493e3e2
PA
6985 case GDB_SIGNAL_0:
6986 case GDB_SIGNAL_DEFAULT:
6987 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
6988 /* Make sure that "all" doesn't print these. */
6989 break;
6990 default:
6991 sigs[signum] = 1;
6992 break;
6993 }
6994 }
6995
6996 argv++;
6997 }
6998
3a031f65
PA
6999 for (signum = 0; signum < nsigs; signum++)
7000 if (sigs[signum])
7001 {
2455069d 7002 signal_cache_update (-1);
a493e3e2
PA
7003 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
7004 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 7005
3a031f65
PA
7006 if (from_tty)
7007 {
7008 /* Show the results. */
7009 sig_print_header ();
7010 for (; signum < nsigs; signum++)
7011 if (sigs[signum])
7012 sig_print_info (signum);
7013 }
7014
7015 break;
7016 }
c906108c
SS
7017
7018 do_cleanups (old_chain);
7019}
7020
de0bea00
MF
7021/* Complete the "handle" command. */
7022
7023static VEC (char_ptr) *
7024handle_completer (struct cmd_list_element *ignore,
6f937416 7025 const char *text, const char *word)
de0bea00
MF
7026{
7027 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
7028 static const char * const keywords[] =
7029 {
7030 "all",
7031 "stop",
7032 "ignore",
7033 "print",
7034 "pass",
7035 "nostop",
7036 "noignore",
7037 "noprint",
7038 "nopass",
7039 NULL,
7040 };
7041
7042 vec_signals = signal_completer (ignore, text, word);
7043 vec_keywords = complete_on_enum (keywords, word, word);
7044
7045 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
7046 VEC_free (char_ptr, vec_signals);
7047 VEC_free (char_ptr, vec_keywords);
7048 return return_val;
7049}
7050
c906108c 7051static void
96baa820 7052xdb_handle_command (char *args, int from_tty)
c906108c
SS
7053{
7054 char **argv;
7055 struct cleanup *old_chain;
7056
d1a41061
PP
7057 if (args == NULL)
7058 error_no_arg (_("xdb command"));
7059
1777feb0 7060 /* Break the command line up into args. */
c906108c 7061
d1a41061 7062 argv = gdb_buildargv (args);
7a292a7a 7063 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
7064 if (argv[1] != (char *) NULL)
7065 {
7066 char *argBuf;
7067 int bufLen;
7068
7069 bufLen = strlen (argv[0]) + 20;
7070 argBuf = (char *) xmalloc (bufLen);
7071 if (argBuf)
7072 {
7073 int validFlag = 1;
2ea28649 7074 enum gdb_signal oursig;
c906108c 7075
2ea28649 7076 oursig = gdb_signal_from_name (argv[0]);
c906108c
SS
7077 memset (argBuf, 0, bufLen);
7078 if (strcmp (argv[1], "Q") == 0)
7079 sprintf (argBuf, "%s %s", argv[0], "noprint");
7080 else
7081 {
7082 if (strcmp (argv[1], "s") == 0)
7083 {
7084 if (!signal_stop[oursig])
7085 sprintf (argBuf, "%s %s", argv[0], "stop");
7086 else
7087 sprintf (argBuf, "%s %s", argv[0], "nostop");
7088 }
7089 else if (strcmp (argv[1], "i") == 0)
7090 {
7091 if (!signal_program[oursig])
7092 sprintf (argBuf, "%s %s", argv[0], "pass");
7093 else
7094 sprintf (argBuf, "%s %s", argv[0], "nopass");
7095 }
7096 else if (strcmp (argv[1], "r") == 0)
7097 {
7098 if (!signal_print[oursig])
7099 sprintf (argBuf, "%s %s", argv[0], "print");
7100 else
7101 sprintf (argBuf, "%s %s", argv[0], "noprint");
7102 }
7103 else
7104 validFlag = 0;
7105 }
7106 if (validFlag)
7107 handle_command (argBuf, from_tty);
7108 else
a3f17187 7109 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 7110 if (argBuf)
b8c9b27d 7111 xfree (argBuf);
c906108c
SS
7112 }
7113 }
7114 do_cleanups (old_chain);
7115}
7116
2ea28649
PA
7117enum gdb_signal
7118gdb_signal_from_command (int num)
ed01b82c
PA
7119{
7120 if (num >= 1 && num <= 15)
2ea28649 7121 return (enum gdb_signal) num;
ed01b82c
PA
7122 error (_("Only signals 1-15 are valid as numeric signals.\n\
7123Use \"info signals\" for a list of symbolic signals."));
7124}
7125
c906108c
SS
7126/* Print current contents of the tables set by the handle command.
7127 It is possible we should just be printing signals actually used
7128 by the current target (but for things to work right when switching
7129 targets, all signals should be in the signal tables). */
7130
7131static void
96baa820 7132signals_info (char *signum_exp, int from_tty)
c906108c 7133{
2ea28649 7134 enum gdb_signal oursig;
abbb1732 7135
c906108c
SS
7136 sig_print_header ();
7137
7138 if (signum_exp)
7139 {
7140 /* First see if this is a symbol name. */
2ea28649 7141 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 7142 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
7143 {
7144 /* No, try numeric. */
7145 oursig =
2ea28649 7146 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
7147 }
7148 sig_print_info (oursig);
7149 return;
7150 }
7151
7152 printf_filtered ("\n");
7153 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
7154 for (oursig = GDB_SIGNAL_FIRST;
7155 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 7156 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
7157 {
7158 QUIT;
7159
a493e3e2
PA
7160 if (oursig != GDB_SIGNAL_UNKNOWN
7161 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
7162 sig_print_info (oursig);
7163 }
7164
3e43a32a
MS
7165 printf_filtered (_("\nUse the \"handle\" command "
7166 "to change these tables.\n"));
c906108c 7167}
4aa995e1 7168
c709acd1
PA
7169/* Check if it makes sense to read $_siginfo from the current thread
7170 at this point. If not, throw an error. */
7171
7172static void
7173validate_siginfo_access (void)
7174{
7175 /* No current inferior, no siginfo. */
7176 if (ptid_equal (inferior_ptid, null_ptid))
7177 error (_("No thread selected."));
7178
7179 /* Don't try to read from a dead thread. */
7180 if (is_exited (inferior_ptid))
7181 error (_("The current thread has terminated"));
7182
7183 /* ... or from a spinning thread. */
7184 if (is_running (inferior_ptid))
7185 error (_("Selected thread is running."));
7186}
7187
4aa995e1
PA
7188/* The $_siginfo convenience variable is a bit special. We don't know
7189 for sure the type of the value until we actually have a chance to
7a9dd1b2 7190 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
7191 also dependent on which thread you have selected.
7192
7193 1. making $_siginfo be an internalvar that creates a new value on
7194 access.
7195
7196 2. making the value of $_siginfo be an lval_computed value. */
7197
7198/* This function implements the lval_computed support for reading a
7199 $_siginfo value. */
7200
7201static void
7202siginfo_value_read (struct value *v)
7203{
7204 LONGEST transferred;
7205
c709acd1
PA
7206 validate_siginfo_access ();
7207
4aa995e1
PA
7208 transferred =
7209 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
7210 NULL,
7211 value_contents_all_raw (v),
7212 value_offset (v),
7213 TYPE_LENGTH (value_type (v)));
7214
7215 if (transferred != TYPE_LENGTH (value_type (v)))
7216 error (_("Unable to read siginfo"));
7217}
7218
7219/* This function implements the lval_computed support for writing a
7220 $_siginfo value. */
7221
7222static void
7223siginfo_value_write (struct value *v, struct value *fromval)
7224{
7225 LONGEST transferred;
7226
c709acd1
PA
7227 validate_siginfo_access ();
7228
4aa995e1
PA
7229 transferred = target_write (&current_target,
7230 TARGET_OBJECT_SIGNAL_INFO,
7231 NULL,
7232 value_contents_all_raw (fromval),
7233 value_offset (v),
7234 TYPE_LENGTH (value_type (fromval)));
7235
7236 if (transferred != TYPE_LENGTH (value_type (fromval)))
7237 error (_("Unable to write siginfo"));
7238}
7239
c8f2448a 7240static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
7241 {
7242 siginfo_value_read,
7243 siginfo_value_write
7244 };
7245
7246/* Return a new value with the correct type for the siginfo object of
78267919
UW
7247 the current thread using architecture GDBARCH. Return a void value
7248 if there's no object available. */
4aa995e1 7249
2c0b251b 7250static struct value *
22d2b532
SDJ
7251siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
7252 void *ignore)
4aa995e1 7253{
4aa995e1 7254 if (target_has_stack
78267919
UW
7255 && !ptid_equal (inferior_ptid, null_ptid)
7256 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 7257 {
78267919 7258 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 7259
78267919 7260 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
7261 }
7262
78267919 7263 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
7264}
7265
c906108c 7266\f
16c381f0
JK
7267/* infcall_suspend_state contains state about the program itself like its
7268 registers and any signal it received when it last stopped.
7269 This state must be restored regardless of how the inferior function call
7270 ends (either successfully, or after it hits a breakpoint or signal)
7271 if the program is to properly continue where it left off. */
7272
7273struct infcall_suspend_state
7a292a7a 7274{
16c381f0 7275 struct thread_suspend_state thread_suspend;
dd80ea3c 7276#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 7277 struct inferior_suspend_state inferior_suspend;
dd80ea3c 7278#endif
16c381f0
JK
7279
7280 /* Other fields: */
7a292a7a 7281 CORE_ADDR stop_pc;
b89667eb 7282 struct regcache *registers;
1736ad11 7283
35515841 7284 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
7285 struct gdbarch *siginfo_gdbarch;
7286
7287 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
7288 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
7289 content would be invalid. */
7290 gdb_byte *siginfo_data;
b89667eb
DE
7291};
7292
16c381f0
JK
7293struct infcall_suspend_state *
7294save_infcall_suspend_state (void)
b89667eb 7295{
16c381f0 7296 struct infcall_suspend_state *inf_state;
b89667eb 7297 struct thread_info *tp = inferior_thread ();
974a734b 7298#if 0
16c381f0 7299 struct inferior *inf = current_inferior ();
974a734b 7300#endif
1736ad11
JK
7301 struct regcache *regcache = get_current_regcache ();
7302 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7303 gdb_byte *siginfo_data = NULL;
7304
7305 if (gdbarch_get_siginfo_type_p (gdbarch))
7306 {
7307 struct type *type = gdbarch_get_siginfo_type (gdbarch);
7308 size_t len = TYPE_LENGTH (type);
7309 struct cleanup *back_to;
7310
7311 siginfo_data = xmalloc (len);
7312 back_to = make_cleanup (xfree, siginfo_data);
7313
7314 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
7315 siginfo_data, 0, len) == len)
7316 discard_cleanups (back_to);
7317 else
7318 {
7319 /* Errors ignored. */
7320 do_cleanups (back_to);
7321 siginfo_data = NULL;
7322 }
7323 }
7324
41bf6aca 7325 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
7326
7327 if (siginfo_data)
7328 {
7329 inf_state->siginfo_gdbarch = gdbarch;
7330 inf_state->siginfo_data = siginfo_data;
7331 }
b89667eb 7332
16c381f0 7333 inf_state->thread_suspend = tp->suspend;
dd80ea3c 7334#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 7335 inf_state->inferior_suspend = inf->suspend;
dd80ea3c 7336#endif
16c381f0 7337
35515841 7338 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
7339 GDB_SIGNAL_0 anyway. */
7340 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 7341
b89667eb
DE
7342 inf_state->stop_pc = stop_pc;
7343
1736ad11 7344 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
7345
7346 return inf_state;
7347}
7348
7349/* Restore inferior session state to INF_STATE. */
7350
7351void
16c381f0 7352restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
7353{
7354 struct thread_info *tp = inferior_thread ();
974a734b 7355#if 0
16c381f0 7356 struct inferior *inf = current_inferior ();
974a734b 7357#endif
1736ad11
JK
7358 struct regcache *regcache = get_current_regcache ();
7359 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 7360
16c381f0 7361 tp->suspend = inf_state->thread_suspend;
dd80ea3c 7362#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 7363 inf->suspend = inf_state->inferior_suspend;
dd80ea3c 7364#endif
16c381f0 7365
b89667eb
DE
7366 stop_pc = inf_state->stop_pc;
7367
1736ad11
JK
7368 if (inf_state->siginfo_gdbarch == gdbarch)
7369 {
7370 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
7371
7372 /* Errors ignored. */
7373 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 7374 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
7375 }
7376
b89667eb
DE
7377 /* The inferior can be gone if the user types "print exit(0)"
7378 (and perhaps other times). */
7379 if (target_has_execution)
7380 /* NB: The register write goes through to the target. */
1736ad11 7381 regcache_cpy (regcache, inf_state->registers);
803b5f95 7382
16c381f0 7383 discard_infcall_suspend_state (inf_state);
b89667eb
DE
7384}
7385
7386static void
16c381f0 7387do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 7388{
16c381f0 7389 restore_infcall_suspend_state (state);
b89667eb
DE
7390}
7391
7392struct cleanup *
16c381f0
JK
7393make_cleanup_restore_infcall_suspend_state
7394 (struct infcall_suspend_state *inf_state)
b89667eb 7395{
16c381f0 7396 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
7397}
7398
7399void
16c381f0 7400discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
7401{
7402 regcache_xfree (inf_state->registers);
803b5f95 7403 xfree (inf_state->siginfo_data);
b89667eb
DE
7404 xfree (inf_state);
7405}
7406
7407struct regcache *
16c381f0 7408get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
7409{
7410 return inf_state->registers;
7411}
7412
16c381f0
JK
7413/* infcall_control_state contains state regarding gdb's control of the
7414 inferior itself like stepping control. It also contains session state like
7415 the user's currently selected frame. */
b89667eb 7416
16c381f0 7417struct infcall_control_state
b89667eb 7418{
16c381f0
JK
7419 struct thread_control_state thread_control;
7420 struct inferior_control_state inferior_control;
d82142e2
JK
7421
7422 /* Other fields: */
7423 enum stop_stack_kind stop_stack_dummy;
7424 int stopped_by_random_signal;
7a292a7a 7425 int stop_after_trap;
7a292a7a 7426
b89667eb 7427 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 7428 struct frame_id selected_frame_id;
7a292a7a
SS
7429};
7430
c906108c 7431/* Save all of the information associated with the inferior<==>gdb
b89667eb 7432 connection. */
c906108c 7433
16c381f0
JK
7434struct infcall_control_state *
7435save_infcall_control_state (void)
c906108c 7436{
16c381f0 7437 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
4e1c45ea 7438 struct thread_info *tp = inferior_thread ();
d6b48e9c 7439 struct inferior *inf = current_inferior ();
7a292a7a 7440
16c381f0
JK
7441 inf_status->thread_control = tp->control;
7442 inf_status->inferior_control = inf->control;
d82142e2 7443
8358c15c 7444 tp->control.step_resume_breakpoint = NULL;
5b79abe7 7445 tp->control.exception_resume_breakpoint = NULL;
8358c15c 7446
16c381f0
JK
7447 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
7448 chain. If caller's caller is walking the chain, they'll be happier if we
7449 hand them back the original chain when restore_infcall_control_state is
7450 called. */
7451 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
7452
7453 /* Other fields: */
7454 inf_status->stop_stack_dummy = stop_stack_dummy;
7455 inf_status->stopped_by_random_signal = stopped_by_random_signal;
7456 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 7457
206415a3 7458 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 7459
7a292a7a 7460 return inf_status;
c906108c
SS
7461}
7462
c906108c 7463static int
96baa820 7464restore_selected_frame (void *args)
c906108c 7465{
488f131b 7466 struct frame_id *fid = (struct frame_id *) args;
c906108c 7467 struct frame_info *frame;
c906108c 7468
101dcfbe 7469 frame = frame_find_by_id (*fid);
c906108c 7470
aa0cd9c1
AC
7471 /* If inf_status->selected_frame_id is NULL, there was no previously
7472 selected frame. */
101dcfbe 7473 if (frame == NULL)
c906108c 7474 {
8a3fe4f8 7475 warning (_("Unable to restore previously selected frame."));
c906108c
SS
7476 return 0;
7477 }
7478
0f7d239c 7479 select_frame (frame);
c906108c
SS
7480
7481 return (1);
7482}
7483
b89667eb
DE
7484/* Restore inferior session state to INF_STATUS. */
7485
c906108c 7486void
16c381f0 7487restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 7488{
4e1c45ea 7489 struct thread_info *tp = inferior_thread ();
d6b48e9c 7490 struct inferior *inf = current_inferior ();
4e1c45ea 7491
8358c15c
JK
7492 if (tp->control.step_resume_breakpoint)
7493 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
7494
5b79abe7
TT
7495 if (tp->control.exception_resume_breakpoint)
7496 tp->control.exception_resume_breakpoint->disposition
7497 = disp_del_at_next_stop;
7498
d82142e2 7499 /* Handle the bpstat_copy of the chain. */
16c381f0 7500 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 7501
16c381f0
JK
7502 tp->control = inf_status->thread_control;
7503 inf->control = inf_status->inferior_control;
d82142e2
JK
7504
7505 /* Other fields: */
7506 stop_stack_dummy = inf_status->stop_stack_dummy;
7507 stopped_by_random_signal = inf_status->stopped_by_random_signal;
7508 stop_after_trap = inf_status->stop_after_trap;
c906108c 7509
b89667eb 7510 if (target_has_stack)
c906108c 7511 {
c906108c 7512 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
7513 walking the stack might encounter a garbage pointer and
7514 error() trying to dereference it. */
488f131b
JB
7515 if (catch_errors
7516 (restore_selected_frame, &inf_status->selected_frame_id,
7517 "Unable to restore previously selected frame:\n",
7518 RETURN_MASK_ERROR) == 0)
c906108c
SS
7519 /* Error in restoring the selected frame. Select the innermost
7520 frame. */
0f7d239c 7521 select_frame (get_current_frame ());
c906108c 7522 }
c906108c 7523
72cec141 7524 xfree (inf_status);
7a292a7a 7525}
c906108c 7526
74b7792f 7527static void
16c381f0 7528do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 7529{
16c381f0 7530 restore_infcall_control_state (sts);
74b7792f
AC
7531}
7532
7533struct cleanup *
16c381f0
JK
7534make_cleanup_restore_infcall_control_state
7535 (struct infcall_control_state *inf_status)
74b7792f 7536{
16c381f0 7537 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
7538}
7539
c906108c 7540void
16c381f0 7541discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 7542{
8358c15c
JK
7543 if (inf_status->thread_control.step_resume_breakpoint)
7544 inf_status->thread_control.step_resume_breakpoint->disposition
7545 = disp_del_at_next_stop;
7546
5b79abe7
TT
7547 if (inf_status->thread_control.exception_resume_breakpoint)
7548 inf_status->thread_control.exception_resume_breakpoint->disposition
7549 = disp_del_at_next_stop;
7550
1777feb0 7551 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 7552 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 7553
72cec141 7554 xfree (inf_status);
7a292a7a 7555}
b89667eb 7556\f
ca6724c1
KB
7557/* restore_inferior_ptid() will be used by the cleanup machinery
7558 to restore the inferior_ptid value saved in a call to
7559 save_inferior_ptid(). */
ce696e05
KB
7560
7561static void
7562restore_inferior_ptid (void *arg)
7563{
7564 ptid_t *saved_ptid_ptr = arg;
abbb1732 7565
ce696e05
KB
7566 inferior_ptid = *saved_ptid_ptr;
7567 xfree (arg);
7568}
7569
7570/* Save the value of inferior_ptid so that it may be restored by a
7571 later call to do_cleanups(). Returns the struct cleanup pointer
7572 needed for later doing the cleanup. */
7573
7574struct cleanup *
7575save_inferior_ptid (void)
7576{
7577 ptid_t *saved_ptid_ptr;
7578
7579 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7580 *saved_ptid_ptr = inferior_ptid;
7581 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7582}
0c557179 7583
7f89fd65 7584/* See infrun.h. */
0c557179
SDJ
7585
7586void
7587clear_exit_convenience_vars (void)
7588{
7589 clear_internalvar (lookup_internalvar ("_exitsignal"));
7590 clear_internalvar (lookup_internalvar ("_exitcode"));
7591}
c5aa993b 7592\f
488f131b 7593
b2175913
MS
7594/* User interface for reverse debugging:
7595 Set exec-direction / show exec-direction commands
7596 (returns error unless target implements to_set_exec_direction method). */
7597
32231432 7598int execution_direction = EXEC_FORWARD;
b2175913
MS
7599static const char exec_forward[] = "forward";
7600static const char exec_reverse[] = "reverse";
7601static const char *exec_direction = exec_forward;
40478521 7602static const char *const exec_direction_names[] = {
b2175913
MS
7603 exec_forward,
7604 exec_reverse,
7605 NULL
7606};
7607
7608static void
7609set_exec_direction_func (char *args, int from_tty,
7610 struct cmd_list_element *cmd)
7611{
7612 if (target_can_execute_reverse)
7613 {
7614 if (!strcmp (exec_direction, exec_forward))
7615 execution_direction = EXEC_FORWARD;
7616 else if (!strcmp (exec_direction, exec_reverse))
7617 execution_direction = EXEC_REVERSE;
7618 }
8bbed405
MS
7619 else
7620 {
7621 exec_direction = exec_forward;
7622 error (_("Target does not support this operation."));
7623 }
b2175913
MS
7624}
7625
7626static void
7627show_exec_direction_func (struct ui_file *out, int from_tty,
7628 struct cmd_list_element *cmd, const char *value)
7629{
7630 switch (execution_direction) {
7631 case EXEC_FORWARD:
7632 fprintf_filtered (out, _("Forward.\n"));
7633 break;
7634 case EXEC_REVERSE:
7635 fprintf_filtered (out, _("Reverse.\n"));
7636 break;
b2175913 7637 default:
d8b34453
PA
7638 internal_error (__FILE__, __LINE__,
7639 _("bogus execution_direction value: %d"),
7640 (int) execution_direction);
b2175913
MS
7641 }
7642}
7643
d4db2f36
PA
7644static void
7645show_schedule_multiple (struct ui_file *file, int from_tty,
7646 struct cmd_list_element *c, const char *value)
7647{
3e43a32a
MS
7648 fprintf_filtered (file, _("Resuming the execution of threads "
7649 "of all processes is %s.\n"), value);
d4db2f36 7650}
ad52ddc6 7651
22d2b532
SDJ
7652/* Implementation of `siginfo' variable. */
7653
7654static const struct internalvar_funcs siginfo_funcs =
7655{
7656 siginfo_make_value,
7657 NULL,
7658 NULL
7659};
7660
c906108c 7661void
96baa820 7662_initialize_infrun (void)
c906108c 7663{
52f0bd74
AC
7664 int i;
7665 int numsigs;
de0bea00 7666 struct cmd_list_element *c;
c906108c 7667
1bedd215
AC
7668 add_info ("signals", signals_info, _("\
7669What debugger does when program gets various signals.\n\
7670Specify a signal as argument to print info on that signal only."));
c906108c
SS
7671 add_info_alias ("handle", "signals", 0);
7672
de0bea00 7673 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 7674Specify how to handle signals.\n\
486c7739 7675Usage: handle SIGNAL [ACTIONS]\n\
c906108c 7676Args are signals and actions to apply to those signals.\n\
dfbd5e7b 7677If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
7678will be displayed instead.\n\
7679\n\
c906108c
SS
7680Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7681from 1-15 are allowed for compatibility with old versions of GDB.\n\
7682Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7683The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7684used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 7685\n\
1bedd215 7686Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
7687\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7688Stop means reenter debugger if this signal happens (implies print).\n\
7689Print means print a message if this signal happens.\n\
7690Pass means let program see this signal; otherwise program doesn't know.\n\
7691Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
7692Pass and Stop may be combined.\n\
7693\n\
7694Multiple signals may be specified. Signal numbers and signal names\n\
7695may be interspersed with actions, with the actions being performed for\n\
7696all signals cumulatively specified."));
de0bea00 7697 set_cmd_completer (c, handle_completer);
486c7739 7698
c906108c
SS
7699 if (xdb_commands)
7700 {
1bedd215
AC
7701 add_com ("lz", class_info, signals_info, _("\
7702What debugger does when program gets various signals.\n\
7703Specify a signal as argument to print info on that signal only."));
7704 add_com ("z", class_run, xdb_handle_command, _("\
7705Specify how to handle a signal.\n\
c906108c
SS
7706Args are signals and actions to apply to those signals.\n\
7707Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7708from 1-15 are allowed for compatibility with old versions of GDB.\n\
7709Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7710The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7711used by the debugger, typically SIGTRAP and SIGINT.\n\
cce7e648 7712Recognized actions include \"s\" (toggles between stop and nostop),\n\
c906108c
SS
7713\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7714nopass), \"Q\" (noprint)\n\
7715Stop means reenter debugger if this signal happens (implies print).\n\
7716Print means print a message if this signal happens.\n\
7717Pass means let program see this signal; otherwise program doesn't know.\n\
7718Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 7719Pass and Stop may be combined."));
c906108c
SS
7720 }
7721
7722 if (!dbx_commands)
1a966eab
AC
7723 stop_command = add_cmd ("stop", class_obscure,
7724 not_just_help_class_command, _("\
7725There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 7726This allows you to set a list of commands to be run each time execution\n\
1a966eab 7727of the program stops."), &cmdlist);
c906108c 7728
ccce17b0 7729 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
7730Set inferior debugging."), _("\
7731Show inferior debugging."), _("\
7732When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
7733 NULL,
7734 show_debug_infrun,
7735 &setdebuglist, &showdebuglist);
527159b7 7736
3e43a32a
MS
7737 add_setshow_boolean_cmd ("displaced", class_maintenance,
7738 &debug_displaced, _("\
237fc4c9
PA
7739Set displaced stepping debugging."), _("\
7740Show displaced stepping debugging."), _("\
7741When non-zero, displaced stepping specific debugging is enabled."),
7742 NULL,
7743 show_debug_displaced,
7744 &setdebuglist, &showdebuglist);
7745
ad52ddc6
PA
7746 add_setshow_boolean_cmd ("non-stop", no_class,
7747 &non_stop_1, _("\
7748Set whether gdb controls the inferior in non-stop mode."), _("\
7749Show whether gdb controls the inferior in non-stop mode."), _("\
7750When debugging a multi-threaded program and this setting is\n\
7751off (the default, also called all-stop mode), when one thread stops\n\
7752(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7753all other threads in the program while you interact with the thread of\n\
7754interest. When you continue or step a thread, you can allow the other\n\
7755threads to run, or have them remain stopped, but while you inspect any\n\
7756thread's state, all threads stop.\n\
7757\n\
7758In non-stop mode, when one thread stops, other threads can continue\n\
7759to run freely. You'll be able to step each thread independently,\n\
7760leave it stopped or free to run as needed."),
7761 set_non_stop,
7762 show_non_stop,
7763 &setlist,
7764 &showlist);
7765
a493e3e2 7766 numsigs = (int) GDB_SIGNAL_LAST;
488f131b 7767 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
7768 signal_print = (unsigned char *)
7769 xmalloc (sizeof (signal_print[0]) * numsigs);
7770 signal_program = (unsigned char *)
7771 xmalloc (sizeof (signal_program[0]) * numsigs);
ab04a2af
TT
7772 signal_catch = (unsigned char *)
7773 xmalloc (sizeof (signal_catch[0]) * numsigs);
2455069d 7774 signal_pass = (unsigned char *)
4395285e 7775 xmalloc (sizeof (signal_pass[0]) * numsigs);
c906108c
SS
7776 for (i = 0; i < numsigs; i++)
7777 {
7778 signal_stop[i] = 1;
7779 signal_print[i] = 1;
7780 signal_program[i] = 1;
ab04a2af 7781 signal_catch[i] = 0;
c906108c
SS
7782 }
7783
7784 /* Signals caused by debugger's own actions
7785 should not be given to the program afterwards. */
a493e3e2
PA
7786 signal_program[GDB_SIGNAL_TRAP] = 0;
7787 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
7788
7789 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
7790 signal_stop[GDB_SIGNAL_ALRM] = 0;
7791 signal_print[GDB_SIGNAL_ALRM] = 0;
7792 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7793 signal_print[GDB_SIGNAL_VTALRM] = 0;
7794 signal_stop[GDB_SIGNAL_PROF] = 0;
7795 signal_print[GDB_SIGNAL_PROF] = 0;
7796 signal_stop[GDB_SIGNAL_CHLD] = 0;
7797 signal_print[GDB_SIGNAL_CHLD] = 0;
7798 signal_stop[GDB_SIGNAL_IO] = 0;
7799 signal_print[GDB_SIGNAL_IO] = 0;
7800 signal_stop[GDB_SIGNAL_POLL] = 0;
7801 signal_print[GDB_SIGNAL_POLL] = 0;
7802 signal_stop[GDB_SIGNAL_URG] = 0;
7803 signal_print[GDB_SIGNAL_URG] = 0;
7804 signal_stop[GDB_SIGNAL_WINCH] = 0;
7805 signal_print[GDB_SIGNAL_WINCH] = 0;
7806 signal_stop[GDB_SIGNAL_PRIO] = 0;
7807 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 7808
cd0fc7c3
SS
7809 /* These signals are used internally by user-level thread
7810 implementations. (See signal(5) on Solaris.) Like the above
7811 signals, a healthy program receives and handles them as part of
7812 its normal operation. */
a493e3e2
PA
7813 signal_stop[GDB_SIGNAL_LWP] = 0;
7814 signal_print[GDB_SIGNAL_LWP] = 0;
7815 signal_stop[GDB_SIGNAL_WAITING] = 0;
7816 signal_print[GDB_SIGNAL_WAITING] = 0;
7817 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7818 signal_print[GDB_SIGNAL_CANCEL] = 0;
cd0fc7c3 7819
2455069d
UW
7820 /* Update cached state. */
7821 signal_cache_update (-1);
7822
85c07804
AC
7823 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7824 &stop_on_solib_events, _("\
7825Set stopping for shared library events."), _("\
7826Show stopping for shared library events."), _("\
c906108c
SS
7827If nonzero, gdb will give control to the user when the dynamic linker\n\
7828notifies gdb of shared library events. The most common event of interest\n\
85c07804 7829to the user would be loading/unloading of a new library."),
f9e14852 7830 set_stop_on_solib_events,
920d2a44 7831 show_stop_on_solib_events,
85c07804 7832 &setlist, &showlist);
c906108c 7833
7ab04401
AC
7834 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7835 follow_fork_mode_kind_names,
7836 &follow_fork_mode_string, _("\
7837Set debugger response to a program call of fork or vfork."), _("\
7838Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
7839A fork or vfork creates a new process. follow-fork-mode can be:\n\
7840 parent - the original process is debugged after a fork\n\
7841 child - the new process is debugged after a fork\n\
ea1dd7bc 7842The unfollowed process will continue to run.\n\
7ab04401
AC
7843By default, the debugger will follow the parent process."),
7844 NULL,
920d2a44 7845 show_follow_fork_mode_string,
7ab04401
AC
7846 &setlist, &showlist);
7847
6c95b8df
PA
7848 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7849 follow_exec_mode_names,
7850 &follow_exec_mode_string, _("\
7851Set debugger response to a program call of exec."), _("\
7852Show debugger response to a program call of exec."), _("\
7853An exec call replaces the program image of a process.\n\
7854\n\
7855follow-exec-mode can be:\n\
7856\n\
cce7e648 7857 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
7858to this new inferior. The program the process was running before\n\
7859the exec call can be restarted afterwards by restarting the original\n\
7860inferior.\n\
7861\n\
7862 same - the debugger keeps the process bound to the same inferior.\n\
7863The new executable image replaces the previous executable loaded in\n\
7864the inferior. Restarting the inferior after the exec call restarts\n\
7865the executable the process was running after the exec call.\n\
7866\n\
7867By default, the debugger will use the same inferior."),
7868 NULL,
7869 show_follow_exec_mode_string,
7870 &setlist, &showlist);
7871
7ab04401
AC
7872 add_setshow_enum_cmd ("scheduler-locking", class_run,
7873 scheduler_enums, &scheduler_mode, _("\
7874Set mode for locking scheduler during execution."), _("\
7875Show mode for locking scheduler during execution."), _("\
c906108c
SS
7876off == no locking (threads may preempt at any time)\n\
7877on == full locking (no thread except the current thread may run)\n\
7878step == scheduler locked during every single-step operation.\n\
7879 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
7880 Other threads may run while stepping over a function call ('next')."),
7881 set_schedlock_func, /* traps on target vector */
920d2a44 7882 show_scheduler_mode,
7ab04401 7883 &setlist, &showlist);
5fbbeb29 7884
d4db2f36
PA
7885 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7886Set mode for resuming threads of all processes."), _("\
7887Show mode for resuming threads of all processes."), _("\
7888When on, execution commands (such as 'continue' or 'next') resume all\n\
7889threads of all processes. When off (which is the default), execution\n\
7890commands only resume the threads of the current process. The set of\n\
7891threads that are resumed is further refined by the scheduler-locking\n\
7892mode (see help set scheduler-locking)."),
7893 NULL,
7894 show_schedule_multiple,
7895 &setlist, &showlist);
7896
5bf193a2
AC
7897 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7898Set mode of the step operation."), _("\
7899Show mode of the step operation."), _("\
7900When set, doing a step over a function without debug line information\n\
7901will stop at the first instruction of that function. Otherwise, the\n\
7902function is skipped and the step command stops at a different source line."),
7903 NULL,
920d2a44 7904 show_step_stop_if_no_debug,
5bf193a2 7905 &setlist, &showlist);
ca6724c1 7906
72d0e2c5
YQ
7907 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7908 &can_use_displaced_stepping, _("\
237fc4c9
PA
7909Set debugger's willingness to use displaced stepping."), _("\
7910Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
7911If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7912supported by the target architecture. If off, gdb will not use displaced\n\
7913stepping to step over breakpoints, even if such is supported by the target\n\
7914architecture. If auto (which is the default), gdb will use displaced stepping\n\
7915if the target architecture supports it and non-stop mode is active, but will not\n\
7916use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
7917 NULL,
7918 show_can_use_displaced_stepping,
7919 &setlist, &showlist);
237fc4c9 7920
b2175913
MS
7921 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7922 &exec_direction, _("Set direction of execution.\n\
7923Options are 'forward' or 'reverse'."),
7924 _("Show direction of execution (forward/reverse)."),
7925 _("Tells gdb whether to execute forward or backward."),
7926 set_exec_direction_func, show_exec_direction_func,
7927 &setlist, &showlist);
7928
6c95b8df
PA
7929 /* Set/show detach-on-fork: user-settable mode. */
7930
7931 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7932Set whether gdb will detach the child of a fork."), _("\
7933Show whether gdb will detach the child of a fork."), _("\
7934Tells gdb whether to detach the child of a fork."),
7935 NULL, NULL, &setlist, &showlist);
7936
03583c20
UW
7937 /* Set/show disable address space randomization mode. */
7938
7939 add_setshow_boolean_cmd ("disable-randomization", class_support,
7940 &disable_randomization, _("\
7941Set disabling of debuggee's virtual address space randomization."), _("\
7942Show disabling of debuggee's virtual address space randomization."), _("\
7943When this mode is on (which is the default), randomization of the virtual\n\
7944address space is disabled. Standalone programs run with the randomization\n\
7945enabled by default on some platforms."),
7946 &set_disable_randomization,
7947 &show_disable_randomization,
7948 &setlist, &showlist);
7949
ca6724c1 7950 /* ptid initializations */
ca6724c1
KB
7951 inferior_ptid = null_ptid;
7952 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
7953
7954 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 7955 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 7956 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 7957 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
7958
7959 /* Explicitly create without lookup, since that tries to create a
7960 value with a void typed value, and when we get here, gdbarch
7961 isn't initialized yet. At this point, we're quite sure there
7962 isn't another convenience variable of the same name. */
22d2b532 7963 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
7964
7965 add_setshow_boolean_cmd ("observer", no_class,
7966 &observer_mode_1, _("\
7967Set whether gdb controls the inferior in observer mode."), _("\
7968Show whether gdb controls the inferior in observer mode."), _("\
7969In observer mode, GDB can get data from the inferior, but not\n\
7970affect its execution. Registers and memory may not be changed,\n\
7971breakpoints may not be set, and the program cannot be interrupted\n\
7972or signalled."),
7973 set_observer_mode,
7974 show_observer_mode,
7975 &setlist,
7976 &showlist);
c906108c 7977}
This page took 2.525726 seconds and 4 git commands to generate.