Add ATTRIBUTE_UNUSED_RESULT to ref_ptr::release
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
42a4f53d 4 Copyright (C) 1986-2019 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
0747795c 28#include "common/gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
76727919 41#include "observable.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
ff862be4 63#include "solist.h"
372316f1 64#include "event-loop.h"
243a9253 65#include "thread-fsm.h"
8d297bbf 66#include "common/enum-flags.h"
5ed8105e
PA
67#include "progspace-and-thread.h"
68#include "common/gdb_optional.h"
46a62268 69#include "arch-utils.h"
4c41382a 70#include "common/scope-exit.h"
c906108c
SS
71
72/* Prototypes for local functions */
73
2ea28649 74static void sig_print_info (enum gdb_signal);
c906108c 75
96baa820 76static void sig_print_header (void);
c906108c 77
4ef3f3be 78static int follow_fork (void);
96baa820 79
d83ad864
DB
80static int follow_fork_inferior (int follow_child, int detach_fork);
81
82static void follow_inferior_reset_breakpoints (void);
83
a289b8f6
JK
84static int currently_stepping (struct thread_info *tp);
85
e58b0e63
PA
86void nullify_last_target_wait_ptid (void);
87
2c03e5be 88static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
89
90static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
91
2484c66b
UW
92static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
93
8550d3b3
YQ
94static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
95
aff4e175
AB
96static void resume (gdb_signal sig);
97
372316f1
PA
98/* Asynchronous signal handler registered as event loop source for
99 when we have pending events ready to be passed to the core. */
100static struct async_event_handler *infrun_async_inferior_event_token;
101
102/* Stores whether infrun_async was previously enabled or disabled.
103 Starts off as -1, indicating "never enabled/disabled". */
104static int infrun_is_async = -1;
105
106/* See infrun.h. */
107
108void
109infrun_async (int enable)
110{
111 if (infrun_is_async != enable)
112 {
113 infrun_is_async = enable;
114
115 if (debug_infrun)
116 fprintf_unfiltered (gdb_stdlog,
117 "infrun: infrun_async(%d)\n",
118 enable);
119
120 if (enable)
121 mark_async_event_handler (infrun_async_inferior_event_token);
122 else
123 clear_async_event_handler (infrun_async_inferior_event_token);
124 }
125}
126
0b333c5e
PA
127/* See infrun.h. */
128
129void
130mark_infrun_async_event_handler (void)
131{
132 mark_async_event_handler (infrun_async_inferior_event_token);
133}
134
5fbbeb29
CF
135/* When set, stop the 'step' command if we enter a function which has
136 no line number information. The normal behavior is that we step
137 over such function. */
138int step_stop_if_no_debug = 0;
920d2a44
AC
139static void
140show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
141 struct cmd_list_element *c, const char *value)
142{
143 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
144}
5fbbeb29 145
b9f437de
PA
146/* proceed and normal_stop use this to notify the user when the
147 inferior stopped in a different thread than it had been running
148 in. */
96baa820 149
39f77062 150static ptid_t previous_inferior_ptid;
7a292a7a 151
07107ca6
LM
152/* If set (default for legacy reasons), when following a fork, GDB
153 will detach from one of the fork branches, child or parent.
154 Exactly which branch is detached depends on 'set follow-fork-mode'
155 setting. */
156
157static int detach_fork = 1;
6c95b8df 158
237fc4c9
PA
159int debug_displaced = 0;
160static void
161show_debug_displaced (struct ui_file *file, int from_tty,
162 struct cmd_list_element *c, const char *value)
163{
164 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
165}
166
ccce17b0 167unsigned int debug_infrun = 0;
920d2a44
AC
168static void
169show_debug_infrun (struct ui_file *file, int from_tty,
170 struct cmd_list_element *c, const char *value)
171{
172 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
173}
527159b7 174
03583c20
UW
175
176/* Support for disabling address space randomization. */
177
178int disable_randomization = 1;
179
180static void
181show_disable_randomization (struct ui_file *file, int from_tty,
182 struct cmd_list_element *c, const char *value)
183{
184 if (target_supports_disable_randomization ())
185 fprintf_filtered (file,
186 _("Disabling randomization of debuggee's "
187 "virtual address space is %s.\n"),
188 value);
189 else
190 fputs_filtered (_("Disabling randomization of debuggee's "
191 "virtual address space is unsupported on\n"
192 "this platform.\n"), file);
193}
194
195static void
eb4c3f4a 196set_disable_randomization (const char *args, int from_tty,
03583c20
UW
197 struct cmd_list_element *c)
198{
199 if (!target_supports_disable_randomization ())
200 error (_("Disabling randomization of debuggee's "
201 "virtual address space is unsupported on\n"
202 "this platform."));
203}
204
d32dc48e
PA
205/* User interface for non-stop mode. */
206
207int non_stop = 0;
208static int non_stop_1 = 0;
209
210static void
eb4c3f4a 211set_non_stop (const char *args, int from_tty,
d32dc48e
PA
212 struct cmd_list_element *c)
213{
214 if (target_has_execution)
215 {
216 non_stop_1 = non_stop;
217 error (_("Cannot change this setting while the inferior is running."));
218 }
219
220 non_stop = non_stop_1;
221}
222
223static void
224show_non_stop (struct ui_file *file, int from_tty,
225 struct cmd_list_element *c, const char *value)
226{
227 fprintf_filtered (file,
228 _("Controlling the inferior in non-stop mode is %s.\n"),
229 value);
230}
231
d914c394
SS
232/* "Observer mode" is somewhat like a more extreme version of
233 non-stop, in which all GDB operations that might affect the
234 target's execution have been disabled. */
235
d914c394
SS
236int observer_mode = 0;
237static int observer_mode_1 = 0;
238
239static void
eb4c3f4a 240set_observer_mode (const char *args, int from_tty,
d914c394
SS
241 struct cmd_list_element *c)
242{
d914c394
SS
243 if (target_has_execution)
244 {
245 observer_mode_1 = observer_mode;
246 error (_("Cannot change this setting while the inferior is running."));
247 }
248
249 observer_mode = observer_mode_1;
250
251 may_write_registers = !observer_mode;
252 may_write_memory = !observer_mode;
253 may_insert_breakpoints = !observer_mode;
254 may_insert_tracepoints = !observer_mode;
255 /* We can insert fast tracepoints in or out of observer mode,
256 but enable them if we're going into this mode. */
257 if (observer_mode)
258 may_insert_fast_tracepoints = 1;
259 may_stop = !observer_mode;
260 update_target_permissions ();
261
262 /* Going *into* observer mode we must force non-stop, then
263 going out we leave it that way. */
264 if (observer_mode)
265 {
d914c394
SS
266 pagination_enabled = 0;
267 non_stop = non_stop_1 = 1;
268 }
269
270 if (from_tty)
271 printf_filtered (_("Observer mode is now %s.\n"),
272 (observer_mode ? "on" : "off"));
273}
274
275static void
276show_observer_mode (struct ui_file *file, int from_tty,
277 struct cmd_list_element *c, const char *value)
278{
279 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
280}
281
282/* This updates the value of observer mode based on changes in
283 permissions. Note that we are deliberately ignoring the values of
284 may-write-registers and may-write-memory, since the user may have
285 reason to enable these during a session, for instance to turn on a
286 debugging-related global. */
287
288void
289update_observer_mode (void)
290{
291 int newval;
292
293 newval = (!may_insert_breakpoints
294 && !may_insert_tracepoints
295 && may_insert_fast_tracepoints
296 && !may_stop
297 && non_stop);
298
299 /* Let the user know if things change. */
300 if (newval != observer_mode)
301 printf_filtered (_("Observer mode is now %s.\n"),
302 (newval ? "on" : "off"));
303
304 observer_mode = observer_mode_1 = newval;
305}
c2c6d25f 306
c906108c
SS
307/* Tables of how to react to signals; the user sets them. */
308
adc6a863
PA
309static unsigned char signal_stop[GDB_SIGNAL_LAST];
310static unsigned char signal_print[GDB_SIGNAL_LAST];
311static unsigned char signal_program[GDB_SIGNAL_LAST];
c906108c 312
ab04a2af
TT
313/* Table of signals that are registered with "catch signal". A
314 non-zero entry indicates that the signal is caught by some "catch
adc6a863
PA
315 signal" command. */
316static unsigned char signal_catch[GDB_SIGNAL_LAST];
ab04a2af 317
2455069d
UW
318/* Table of signals that the target may silently handle.
319 This is automatically determined from the flags above,
320 and simply cached here. */
adc6a863 321static unsigned char signal_pass[GDB_SIGNAL_LAST];
2455069d 322
c906108c
SS
323#define SET_SIGS(nsigs,sigs,flags) \
324 do { \
325 int signum = (nsigs); \
326 while (signum-- > 0) \
327 if ((sigs)[signum]) \
328 (flags)[signum] = 1; \
329 } while (0)
330
331#define UNSET_SIGS(nsigs,sigs,flags) \
332 do { \
333 int signum = (nsigs); \
334 while (signum-- > 0) \
335 if ((sigs)[signum]) \
336 (flags)[signum] = 0; \
337 } while (0)
338
9b224c5e
PA
339/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
340 this function is to avoid exporting `signal_program'. */
341
342void
343update_signals_program_target (void)
344{
adc6a863 345 target_program_signals (signal_program);
9b224c5e
PA
346}
347
1777feb0 348/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 349
edb3359d 350#define RESUME_ALL minus_one_ptid
c906108c
SS
351
352/* Command list pointer for the "stop" placeholder. */
353
354static struct cmd_list_element *stop_command;
355
c906108c
SS
356/* Nonzero if we want to give control to the user when we're notified
357 of shared library events by the dynamic linker. */
628fe4e4 358int stop_on_solib_events;
f9e14852
GB
359
360/* Enable or disable optional shared library event breakpoints
361 as appropriate when the above flag is changed. */
362
363static void
eb4c3f4a
TT
364set_stop_on_solib_events (const char *args,
365 int from_tty, struct cmd_list_element *c)
f9e14852
GB
366{
367 update_solib_breakpoints ();
368}
369
920d2a44
AC
370static void
371show_stop_on_solib_events (struct ui_file *file, int from_tty,
372 struct cmd_list_element *c, const char *value)
373{
374 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
375 value);
376}
c906108c 377
c906108c
SS
378/* Nonzero after stop if current stack frame should be printed. */
379
380static int stop_print_frame;
381
e02bc4cc 382/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
383 returned by target_wait()/deprecated_target_wait_hook(). This
384 information is returned by get_last_target_status(). */
39f77062 385static ptid_t target_last_wait_ptid;
e02bc4cc
DS
386static struct target_waitstatus target_last_waitstatus;
387
4e1c45ea 388void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 389
53904c9e
AC
390static const char follow_fork_mode_child[] = "child";
391static const char follow_fork_mode_parent[] = "parent";
392
40478521 393static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
394 follow_fork_mode_child,
395 follow_fork_mode_parent,
396 NULL
ef346e04 397};
c906108c 398
53904c9e 399static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
400static void
401show_follow_fork_mode_string (struct ui_file *file, int from_tty,
402 struct cmd_list_element *c, const char *value)
403{
3e43a32a
MS
404 fprintf_filtered (file,
405 _("Debugger response to a program "
406 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
407 value);
408}
c906108c
SS
409\f
410
d83ad864
DB
411/* Handle changes to the inferior list based on the type of fork,
412 which process is being followed, and whether the other process
413 should be detached. On entry inferior_ptid must be the ptid of
414 the fork parent. At return inferior_ptid is the ptid of the
415 followed inferior. */
416
417static int
418follow_fork_inferior (int follow_child, int detach_fork)
419{
420 int has_vforked;
79639e11 421 ptid_t parent_ptid, child_ptid;
d83ad864
DB
422
423 has_vforked = (inferior_thread ()->pending_follow.kind
424 == TARGET_WAITKIND_VFORKED);
79639e11
PA
425 parent_ptid = inferior_ptid;
426 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
427
428 if (has_vforked
429 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 430 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
431 && !(follow_child || detach_fork || sched_multi))
432 {
433 /* The parent stays blocked inside the vfork syscall until the
434 child execs or exits. If we don't let the child run, then
435 the parent stays blocked. If we're telling the parent to run
436 in the foreground, the user will not be able to ctrl-c to get
437 back the terminal, effectively hanging the debug session. */
438 fprintf_filtered (gdb_stderr, _("\
439Can not resume the parent process over vfork in the foreground while\n\
440holding the child stopped. Try \"set detach-on-fork\" or \
441\"set schedule-multiple\".\n"));
442 /* FIXME output string > 80 columns. */
443 return 1;
444 }
445
446 if (!follow_child)
447 {
448 /* Detach new forked process? */
449 if (detach_fork)
450 {
d83ad864
DB
451 /* Before detaching from the child, remove all breakpoints
452 from it. If we forked, then this has already been taken
453 care of by infrun.c. If we vforked however, any
454 breakpoint inserted in the parent is visible in the
455 child, even those added while stopped in a vfork
456 catchpoint. This will remove the breakpoints from the
457 parent also, but they'll be reinserted below. */
458 if (has_vforked)
459 {
460 /* Keep breakpoints list in sync. */
00431a78 461 remove_breakpoints_inf (current_inferior ());
d83ad864
DB
462 }
463
f67c0c91 464 if (print_inferior_events)
d83ad864 465 {
8dd06f7a 466 /* Ensure that we have a process ptid. */
e99b03dc 467 ptid_t process_ptid = ptid_t (child_ptid.pid ());
8dd06f7a 468
223ffa71 469 target_terminal::ours_for_output ();
d83ad864 470 fprintf_filtered (gdb_stdlog,
f67c0c91 471 _("[Detaching after %s from child %s]\n"),
6f259a23 472 has_vforked ? "vfork" : "fork",
8dd06f7a 473 target_pid_to_str (process_ptid));
d83ad864
DB
474 }
475 }
476 else
477 {
478 struct inferior *parent_inf, *child_inf;
d83ad864
DB
479
480 /* Add process to GDB's tables. */
e99b03dc 481 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
482
483 parent_inf = current_inferior ();
484 child_inf->attach_flag = parent_inf->attach_flag;
485 copy_terminal_info (child_inf, parent_inf);
486 child_inf->gdbarch = parent_inf->gdbarch;
487 copy_inferior_target_desc_info (child_inf, parent_inf);
488
5ed8105e 489 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 490
79639e11 491 inferior_ptid = child_ptid;
f67c0c91 492 add_thread_silent (inferior_ptid);
2a00d7ce 493 set_current_inferior (child_inf);
d83ad864
DB
494 child_inf->symfile_flags = SYMFILE_NO_READ;
495
496 /* If this is a vfork child, then the address-space is
497 shared with the parent. */
498 if (has_vforked)
499 {
500 child_inf->pspace = parent_inf->pspace;
501 child_inf->aspace = parent_inf->aspace;
502
503 /* The parent will be frozen until the child is done
504 with the shared region. Keep track of the
505 parent. */
506 child_inf->vfork_parent = parent_inf;
507 child_inf->pending_detach = 0;
508 parent_inf->vfork_child = child_inf;
509 parent_inf->pending_detach = 0;
510 }
511 else
512 {
513 child_inf->aspace = new_address_space ();
564b1e3f 514 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
515 child_inf->removable = 1;
516 set_current_program_space (child_inf->pspace);
517 clone_program_space (child_inf->pspace, parent_inf->pspace);
518
519 /* Let the shared library layer (e.g., solib-svr4) learn
520 about this new process, relocate the cloned exec, pull
521 in shared libraries, and install the solib event
522 breakpoint. If a "cloned-VM" event was propagated
523 better throughout the core, this wouldn't be
524 required. */
525 solib_create_inferior_hook (0);
526 }
d83ad864
DB
527 }
528
529 if (has_vforked)
530 {
531 struct inferior *parent_inf;
532
533 parent_inf = current_inferior ();
534
535 /* If we detached from the child, then we have to be careful
536 to not insert breakpoints in the parent until the child
537 is done with the shared memory region. However, if we're
538 staying attached to the child, then we can and should
539 insert breakpoints, so that we can debug it. A
540 subsequent child exec or exit is enough to know when does
541 the child stops using the parent's address space. */
542 parent_inf->waiting_for_vfork_done = detach_fork;
543 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
544 }
545 }
546 else
547 {
548 /* Follow the child. */
549 struct inferior *parent_inf, *child_inf;
550 struct program_space *parent_pspace;
551
f67c0c91 552 if (print_inferior_events)
d83ad864 553 {
f67c0c91
SDJ
554 std::string parent_pid = target_pid_to_str (parent_ptid);
555 std::string child_pid = target_pid_to_str (child_ptid);
556
223ffa71 557 target_terminal::ours_for_output ();
6f259a23 558 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
559 _("[Attaching after %s %s to child %s]\n"),
560 parent_pid.c_str (),
6f259a23 561 has_vforked ? "vfork" : "fork",
f67c0c91 562 child_pid.c_str ());
d83ad864
DB
563 }
564
565 /* Add the new inferior first, so that the target_detach below
566 doesn't unpush the target. */
567
e99b03dc 568 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
569
570 parent_inf = current_inferior ();
571 child_inf->attach_flag = parent_inf->attach_flag;
572 copy_terminal_info (child_inf, parent_inf);
573 child_inf->gdbarch = parent_inf->gdbarch;
574 copy_inferior_target_desc_info (child_inf, parent_inf);
575
576 parent_pspace = parent_inf->pspace;
577
578 /* If we're vforking, we want to hold on to the parent until the
579 child exits or execs. At child exec or exit time we can
580 remove the old breakpoints from the parent and detach or
581 resume debugging it. Otherwise, detach the parent now; we'll
582 want to reuse it's program/address spaces, but we can't set
583 them to the child before removing breakpoints from the
584 parent, otherwise, the breakpoints module could decide to
585 remove breakpoints from the wrong process (since they'd be
586 assigned to the same address space). */
587
588 if (has_vforked)
589 {
590 gdb_assert (child_inf->vfork_parent == NULL);
591 gdb_assert (parent_inf->vfork_child == NULL);
592 child_inf->vfork_parent = parent_inf;
593 child_inf->pending_detach = 0;
594 parent_inf->vfork_child = child_inf;
595 parent_inf->pending_detach = detach_fork;
596 parent_inf->waiting_for_vfork_done = 0;
597 }
598 else if (detach_fork)
6f259a23 599 {
f67c0c91 600 if (print_inferior_events)
6f259a23 601 {
8dd06f7a 602 /* Ensure that we have a process ptid. */
e99b03dc 603 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
8dd06f7a 604
223ffa71 605 target_terminal::ours_for_output ();
6f259a23 606 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
607 _("[Detaching after fork from "
608 "parent %s]\n"),
8dd06f7a 609 target_pid_to_str (process_ptid));
6f259a23
DB
610 }
611
6e1e1966 612 target_detach (parent_inf, 0);
6f259a23 613 }
d83ad864
DB
614
615 /* Note that the detach above makes PARENT_INF dangling. */
616
617 /* Add the child thread to the appropriate lists, and switch to
618 this new thread, before cloning the program space, and
619 informing the solib layer about this new process. */
620
79639e11 621 inferior_ptid = child_ptid;
f67c0c91 622 add_thread_silent (inferior_ptid);
2a00d7ce 623 set_current_inferior (child_inf);
d83ad864
DB
624
625 /* If this is a vfork child, then the address-space is shared
626 with the parent. If we detached from the parent, then we can
627 reuse the parent's program/address spaces. */
628 if (has_vforked || detach_fork)
629 {
630 child_inf->pspace = parent_pspace;
631 child_inf->aspace = child_inf->pspace->aspace;
632 }
633 else
634 {
635 child_inf->aspace = new_address_space ();
564b1e3f 636 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
637 child_inf->removable = 1;
638 child_inf->symfile_flags = SYMFILE_NO_READ;
639 set_current_program_space (child_inf->pspace);
640 clone_program_space (child_inf->pspace, parent_pspace);
641
642 /* Let the shared library layer (e.g., solib-svr4) learn
643 about this new process, relocate the cloned exec, pull in
644 shared libraries, and install the solib event breakpoint.
645 If a "cloned-VM" event was propagated better throughout
646 the core, this wouldn't be required. */
647 solib_create_inferior_hook (0);
648 }
649 }
650
651 return target_follow_fork (follow_child, detach_fork);
652}
653
e58b0e63
PA
654/* Tell the target to follow the fork we're stopped at. Returns true
655 if the inferior should be resumed; false, if the target for some
656 reason decided it's best not to resume. */
657
6604731b 658static int
4ef3f3be 659follow_fork (void)
c906108c 660{
ea1dd7bc 661 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
662 int should_resume = 1;
663 struct thread_info *tp;
664
665 /* Copy user stepping state to the new inferior thread. FIXME: the
666 followed fork child thread should have a copy of most of the
4e3990f4
DE
667 parent thread structure's run control related fields, not just these.
668 Initialized to avoid "may be used uninitialized" warnings from gcc. */
669 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 670 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
671 CORE_ADDR step_range_start = 0;
672 CORE_ADDR step_range_end = 0;
673 struct frame_id step_frame_id = { 0 };
8980e177 674 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
675
676 if (!non_stop)
677 {
678 ptid_t wait_ptid;
679 struct target_waitstatus wait_status;
680
681 /* Get the last target status returned by target_wait(). */
682 get_last_target_status (&wait_ptid, &wait_status);
683
684 /* If not stopped at a fork event, then there's nothing else to
685 do. */
686 if (wait_status.kind != TARGET_WAITKIND_FORKED
687 && wait_status.kind != TARGET_WAITKIND_VFORKED)
688 return 1;
689
690 /* Check if we switched over from WAIT_PTID, since the event was
691 reported. */
00431a78
PA
692 if (wait_ptid != minus_one_ptid
693 && inferior_ptid != wait_ptid)
e58b0e63
PA
694 {
695 /* We did. Switch back to WAIT_PTID thread, to tell the
696 target to follow it (in either direction). We'll
697 afterwards refuse to resume, and inform the user what
698 happened. */
00431a78
PA
699 thread_info *wait_thread
700 = find_thread_ptid (wait_ptid);
701 switch_to_thread (wait_thread);
e58b0e63
PA
702 should_resume = 0;
703 }
704 }
705
706 tp = inferior_thread ();
707
708 /* If there were any forks/vforks that were caught and are now to be
709 followed, then do so now. */
710 switch (tp->pending_follow.kind)
711 {
712 case TARGET_WAITKIND_FORKED:
713 case TARGET_WAITKIND_VFORKED:
714 {
715 ptid_t parent, child;
716
717 /* If the user did a next/step, etc, over a fork call,
718 preserve the stepping state in the fork child. */
719 if (follow_child && should_resume)
720 {
8358c15c
JK
721 step_resume_breakpoint = clone_momentary_breakpoint
722 (tp->control.step_resume_breakpoint);
16c381f0
JK
723 step_range_start = tp->control.step_range_start;
724 step_range_end = tp->control.step_range_end;
725 step_frame_id = tp->control.step_frame_id;
186c406b
TT
726 exception_resume_breakpoint
727 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 728 thread_fsm = tp->thread_fsm;
e58b0e63
PA
729
730 /* For now, delete the parent's sr breakpoint, otherwise,
731 parent/child sr breakpoints are considered duplicates,
732 and the child version will not be installed. Remove
733 this when the breakpoints module becomes aware of
734 inferiors and address spaces. */
735 delete_step_resume_breakpoint (tp);
16c381f0
JK
736 tp->control.step_range_start = 0;
737 tp->control.step_range_end = 0;
738 tp->control.step_frame_id = null_frame_id;
186c406b 739 delete_exception_resume_breakpoint (tp);
8980e177 740 tp->thread_fsm = NULL;
e58b0e63
PA
741 }
742
743 parent = inferior_ptid;
744 child = tp->pending_follow.value.related_pid;
745
d83ad864
DB
746 /* Set up inferior(s) as specified by the caller, and tell the
747 target to do whatever is necessary to follow either parent
748 or child. */
749 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
750 {
751 /* Target refused to follow, or there's some other reason
752 we shouldn't resume. */
753 should_resume = 0;
754 }
755 else
756 {
757 /* This pending follow fork event is now handled, one way
758 or another. The previous selected thread may be gone
759 from the lists by now, but if it is still around, need
760 to clear the pending follow request. */
e09875d4 761 tp = find_thread_ptid (parent);
e58b0e63
PA
762 if (tp)
763 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
764
765 /* This makes sure we don't try to apply the "Switched
766 over from WAIT_PID" logic above. */
767 nullify_last_target_wait_ptid ();
768
1777feb0 769 /* If we followed the child, switch to it... */
e58b0e63
PA
770 if (follow_child)
771 {
00431a78
PA
772 thread_info *child_thr = find_thread_ptid (child);
773 switch_to_thread (child_thr);
e58b0e63
PA
774
775 /* ... and preserve the stepping state, in case the
776 user was stepping over the fork call. */
777 if (should_resume)
778 {
779 tp = inferior_thread ();
8358c15c
JK
780 tp->control.step_resume_breakpoint
781 = step_resume_breakpoint;
16c381f0
JK
782 tp->control.step_range_start = step_range_start;
783 tp->control.step_range_end = step_range_end;
784 tp->control.step_frame_id = step_frame_id;
186c406b
TT
785 tp->control.exception_resume_breakpoint
786 = exception_resume_breakpoint;
8980e177 787 tp->thread_fsm = thread_fsm;
e58b0e63
PA
788 }
789 else
790 {
791 /* If we get here, it was because we're trying to
792 resume from a fork catchpoint, but, the user
793 has switched threads away from the thread that
794 forked. In that case, the resume command
795 issued is most likely not applicable to the
796 child, so just warn, and refuse to resume. */
3e43a32a 797 warning (_("Not resuming: switched threads "
fd7dcb94 798 "before following fork child."));
e58b0e63
PA
799 }
800
801 /* Reset breakpoints in the child as appropriate. */
802 follow_inferior_reset_breakpoints ();
803 }
e58b0e63
PA
804 }
805 }
806 break;
807 case TARGET_WAITKIND_SPURIOUS:
808 /* Nothing to follow. */
809 break;
810 default:
811 internal_error (__FILE__, __LINE__,
812 "Unexpected pending_follow.kind %d\n",
813 tp->pending_follow.kind);
814 break;
815 }
c906108c 816
e58b0e63 817 return should_resume;
c906108c
SS
818}
819
d83ad864 820static void
6604731b 821follow_inferior_reset_breakpoints (void)
c906108c 822{
4e1c45ea
PA
823 struct thread_info *tp = inferior_thread ();
824
6604731b
DJ
825 /* Was there a step_resume breakpoint? (There was if the user
826 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
827 thread number. Cloned step_resume breakpoints are disabled on
828 creation, so enable it here now that it is associated with the
829 correct thread.
6604731b
DJ
830
831 step_resumes are a form of bp that are made to be per-thread.
832 Since we created the step_resume bp when the parent process
833 was being debugged, and now are switching to the child process,
834 from the breakpoint package's viewpoint, that's a switch of
835 "threads". We must update the bp's notion of which thread
836 it is for, or it'll be ignored when it triggers. */
837
8358c15c 838 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
839 {
840 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
841 tp->control.step_resume_breakpoint->loc->enabled = 1;
842 }
6604731b 843
a1aa2221 844 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 845 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
846 {
847 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
848 tp->control.exception_resume_breakpoint->loc->enabled = 1;
849 }
186c406b 850
6604731b
DJ
851 /* Reinsert all breakpoints in the child. The user may have set
852 breakpoints after catching the fork, in which case those
853 were never set in the child, but only in the parent. This makes
854 sure the inserted breakpoints match the breakpoint list. */
855
856 breakpoint_re_set ();
857 insert_breakpoints ();
c906108c 858}
c906108c 859
6c95b8df
PA
860/* The child has exited or execed: resume threads of the parent the
861 user wanted to be executing. */
862
863static int
864proceed_after_vfork_done (struct thread_info *thread,
865 void *arg)
866{
867 int pid = * (int *) arg;
868
00431a78
PA
869 if (thread->ptid.pid () == pid
870 && thread->state == THREAD_RUNNING
871 && !thread->executing
6c95b8df 872 && !thread->stop_requested
a493e3e2 873 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
874 {
875 if (debug_infrun)
876 fprintf_unfiltered (gdb_stdlog,
877 "infrun: resuming vfork parent thread %s\n",
878 target_pid_to_str (thread->ptid));
879
00431a78 880 switch_to_thread (thread);
70509625 881 clear_proceed_status (0);
64ce06e4 882 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
883 }
884
885 return 0;
886}
887
5ed8105e
PA
888/* Save/restore inferior_ptid, current program space and current
889 inferior. Only use this if the current context points at an exited
890 inferior (and therefore there's no current thread to save). */
891class scoped_restore_exited_inferior
892{
893public:
894 scoped_restore_exited_inferior ()
895 : m_saved_ptid (&inferior_ptid)
896 {}
897
898private:
899 scoped_restore_tmpl<ptid_t> m_saved_ptid;
900 scoped_restore_current_program_space m_pspace;
901 scoped_restore_current_inferior m_inferior;
902};
903
6c95b8df
PA
904/* Called whenever we notice an exec or exit event, to handle
905 detaching or resuming a vfork parent. */
906
907static void
908handle_vfork_child_exec_or_exit (int exec)
909{
910 struct inferior *inf = current_inferior ();
911
912 if (inf->vfork_parent)
913 {
914 int resume_parent = -1;
915
916 /* This exec or exit marks the end of the shared memory region
917 between the parent and the child. If the user wanted to
918 detach from the parent, now is the time. */
919
920 if (inf->vfork_parent->pending_detach)
921 {
922 struct thread_info *tp;
6c95b8df
PA
923 struct program_space *pspace;
924 struct address_space *aspace;
925
1777feb0 926 /* follow-fork child, detach-on-fork on. */
6c95b8df 927
68c9da30
PA
928 inf->vfork_parent->pending_detach = 0;
929
5ed8105e
PA
930 gdb::optional<scoped_restore_exited_inferior>
931 maybe_restore_inferior;
932 gdb::optional<scoped_restore_current_pspace_and_thread>
933 maybe_restore_thread;
934
935 /* If we're handling a child exit, then inferior_ptid points
936 at the inferior's pid, not to a thread. */
f50f4e56 937 if (!exec)
5ed8105e 938 maybe_restore_inferior.emplace ();
f50f4e56 939 else
5ed8105e 940 maybe_restore_thread.emplace ();
6c95b8df
PA
941
942 /* We're letting loose of the parent. */
00431a78
PA
943 tp = any_live_thread_of_inferior (inf->vfork_parent);
944 switch_to_thread (tp);
6c95b8df
PA
945
946 /* We're about to detach from the parent, which implicitly
947 removes breakpoints from its address space. There's a
948 catch here: we want to reuse the spaces for the child,
949 but, parent/child are still sharing the pspace at this
950 point, although the exec in reality makes the kernel give
951 the child a fresh set of new pages. The problem here is
952 that the breakpoints module being unaware of this, would
953 likely chose the child process to write to the parent
954 address space. Swapping the child temporarily away from
955 the spaces has the desired effect. Yes, this is "sort
956 of" a hack. */
957
958 pspace = inf->pspace;
959 aspace = inf->aspace;
960 inf->aspace = NULL;
961 inf->pspace = NULL;
962
f67c0c91 963 if (print_inferior_events)
6c95b8df 964 {
f67c0c91 965 const char *pidstr
f2907e49 966 = target_pid_to_str (ptid_t (inf->vfork_parent->pid));
f67c0c91 967
223ffa71 968 target_terminal::ours_for_output ();
6c95b8df
PA
969
970 if (exec)
6f259a23
DB
971 {
972 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
973 _("[Detaching vfork parent %s "
974 "after child exec]\n"), pidstr);
6f259a23 975 }
6c95b8df 976 else
6f259a23
DB
977 {
978 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
979 _("[Detaching vfork parent %s "
980 "after child exit]\n"), pidstr);
6f259a23 981 }
6c95b8df
PA
982 }
983
6e1e1966 984 target_detach (inf->vfork_parent, 0);
6c95b8df
PA
985
986 /* Put it back. */
987 inf->pspace = pspace;
988 inf->aspace = aspace;
6c95b8df
PA
989 }
990 else if (exec)
991 {
992 /* We're staying attached to the parent, so, really give the
993 child a new address space. */
564b1e3f 994 inf->pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
995 inf->aspace = inf->pspace->aspace;
996 inf->removable = 1;
997 set_current_program_space (inf->pspace);
998
999 resume_parent = inf->vfork_parent->pid;
1000
1001 /* Break the bonds. */
1002 inf->vfork_parent->vfork_child = NULL;
1003 }
1004 else
1005 {
6c95b8df
PA
1006 struct program_space *pspace;
1007
1008 /* If this is a vfork child exiting, then the pspace and
1009 aspaces were shared with the parent. Since we're
1010 reporting the process exit, we'll be mourning all that is
1011 found in the address space, and switching to null_ptid,
1012 preparing to start a new inferior. But, since we don't
1013 want to clobber the parent's address/program spaces, we
1014 go ahead and create a new one for this exiting
1015 inferior. */
1016
5ed8105e
PA
1017 /* Switch to null_ptid while running clone_program_space, so
1018 that clone_program_space doesn't want to read the
1019 selected frame of a dead process. */
1020 scoped_restore restore_ptid
1021 = make_scoped_restore (&inferior_ptid, null_ptid);
6c95b8df
PA
1022
1023 /* This inferior is dead, so avoid giving the breakpoints
1024 module the option to write through to it (cloning a
1025 program space resets breakpoints). */
1026 inf->aspace = NULL;
1027 inf->pspace = NULL;
564b1e3f 1028 pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
1029 set_current_program_space (pspace);
1030 inf->removable = 1;
7dcd53a0 1031 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1032 clone_program_space (pspace, inf->vfork_parent->pspace);
1033 inf->pspace = pspace;
1034 inf->aspace = pspace->aspace;
1035
6c95b8df
PA
1036 resume_parent = inf->vfork_parent->pid;
1037 /* Break the bonds. */
1038 inf->vfork_parent->vfork_child = NULL;
1039 }
1040
1041 inf->vfork_parent = NULL;
1042
1043 gdb_assert (current_program_space == inf->pspace);
1044
1045 if (non_stop && resume_parent != -1)
1046 {
1047 /* If the user wanted the parent to be running, let it go
1048 free now. */
5ed8105e 1049 scoped_restore_current_thread restore_thread;
6c95b8df
PA
1050
1051 if (debug_infrun)
3e43a32a
MS
1052 fprintf_unfiltered (gdb_stdlog,
1053 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1054 resume_parent);
1055
1056 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1057 }
1058 }
1059}
1060
eb6c553b 1061/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1062
1063static const char follow_exec_mode_new[] = "new";
1064static const char follow_exec_mode_same[] = "same";
40478521 1065static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1066{
1067 follow_exec_mode_new,
1068 follow_exec_mode_same,
1069 NULL,
1070};
1071
1072static const char *follow_exec_mode_string = follow_exec_mode_same;
1073static void
1074show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1075 struct cmd_list_element *c, const char *value)
1076{
1077 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1078}
1079
ecf45d2c 1080/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1081
c906108c 1082static void
ecf45d2c 1083follow_exec (ptid_t ptid, char *exec_file_target)
c906108c 1084{
6c95b8df 1085 struct inferior *inf = current_inferior ();
e99b03dc 1086 int pid = ptid.pid ();
94585166 1087 ptid_t process_ptid;
7a292a7a 1088
c906108c
SS
1089 /* This is an exec event that we actually wish to pay attention to.
1090 Refresh our symbol table to the newly exec'd program, remove any
1091 momentary bp's, etc.
1092
1093 If there are breakpoints, they aren't really inserted now,
1094 since the exec() transformed our inferior into a fresh set
1095 of instructions.
1096
1097 We want to preserve symbolic breakpoints on the list, since
1098 we have hopes that they can be reset after the new a.out's
1099 symbol table is read.
1100
1101 However, any "raw" breakpoints must be removed from the list
1102 (e.g., the solib bp's), since their address is probably invalid
1103 now.
1104
1105 And, we DON'T want to call delete_breakpoints() here, since
1106 that may write the bp's "shadow contents" (the instruction
1107 value that was overwritten witha TRAP instruction). Since
1777feb0 1108 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1109
1110 mark_breakpoints_out ();
1111
95e50b27
PA
1112 /* The target reports the exec event to the main thread, even if
1113 some other thread does the exec, and even if the main thread was
1114 stopped or already gone. We may still have non-leader threads of
1115 the process on our list. E.g., on targets that don't have thread
1116 exit events (like remote); or on native Linux in non-stop mode if
1117 there were only two threads in the inferior and the non-leader
1118 one is the one that execs (and nothing forces an update of the
1119 thread list up to here). When debugging remotely, it's best to
1120 avoid extra traffic, when possible, so avoid syncing the thread
1121 list with the target, and instead go ahead and delete all threads
1122 of the process but one that reported the event. Note this must
1123 be done before calling update_breakpoints_after_exec, as
1124 otherwise clearing the threads' resources would reference stale
1125 thread breakpoints -- it may have been one of these threads that
1126 stepped across the exec. We could just clear their stepping
1127 states, but as long as we're iterating, might as well delete
1128 them. Deleting them now rather than at the next user-visible
1129 stop provides a nicer sequence of events for user and MI
1130 notifications. */
08036331 1131 for (thread_info *th : all_threads_safe ())
d7e15655 1132 if (th->ptid.pid () == pid && th->ptid != ptid)
00431a78 1133 delete_thread (th);
95e50b27
PA
1134
1135 /* We also need to clear any left over stale state for the
1136 leader/event thread. E.g., if there was any step-resume
1137 breakpoint or similar, it's gone now. We cannot truly
1138 step-to-next statement through an exec(). */
08036331 1139 thread_info *th = inferior_thread ();
8358c15c 1140 th->control.step_resume_breakpoint = NULL;
186c406b 1141 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1142 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1143 th->control.step_range_start = 0;
1144 th->control.step_range_end = 0;
c906108c 1145
95e50b27
PA
1146 /* The user may have had the main thread held stopped in the
1147 previous image (e.g., schedlock on, or non-stop). Release
1148 it now. */
a75724bc
PA
1149 th->stop_requested = 0;
1150
95e50b27
PA
1151 update_breakpoints_after_exec ();
1152
1777feb0 1153 /* What is this a.out's name? */
f2907e49 1154 process_ptid = ptid_t (pid);
6c95b8df 1155 printf_unfiltered (_("%s is executing new program: %s\n"),
94585166 1156 target_pid_to_str (process_ptid),
ecf45d2c 1157 exec_file_target);
c906108c
SS
1158
1159 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1160 inferior has essentially been killed & reborn. */
7a292a7a 1161
c906108c 1162 gdb_flush (gdb_stdout);
6ca15a4b
PA
1163
1164 breakpoint_init_inferior (inf_execd);
e85a822c 1165
797bc1cb
TT
1166 gdb::unique_xmalloc_ptr<char> exec_file_host
1167 = exec_file_find (exec_file_target, NULL);
ff862be4 1168
ecf45d2c
SL
1169 /* If we were unable to map the executable target pathname onto a host
1170 pathname, tell the user that. Otherwise GDB's subsequent behavior
1171 is confusing. Maybe it would even be better to stop at this point
1172 so that the user can specify a file manually before continuing. */
1173 if (exec_file_host == NULL)
1174 warning (_("Could not load symbols for executable %s.\n"
1175 "Do you need \"set sysroot\"?"),
1176 exec_file_target);
c906108c 1177
cce9b6bf
PA
1178 /* Reset the shared library package. This ensures that we get a
1179 shlib event when the child reaches "_start", at which point the
1180 dld will have had a chance to initialize the child. */
1181 /* Also, loading a symbol file below may trigger symbol lookups, and
1182 we don't want those to be satisfied by the libraries of the
1183 previous incarnation of this process. */
1184 no_shared_libraries (NULL, 0);
1185
6c95b8df
PA
1186 if (follow_exec_mode_string == follow_exec_mode_new)
1187 {
6c95b8df
PA
1188 /* The user wants to keep the old inferior and program spaces
1189 around. Create a new fresh one, and switch to it. */
1190
35ed81d4
SM
1191 /* Do exit processing for the original inferior before setting the new
1192 inferior's pid. Having two inferiors with the same pid would confuse
1193 find_inferior_p(t)id. Transfer the terminal state and info from the
1194 old to the new inferior. */
1195 inf = add_inferior_with_spaces ();
1196 swap_terminal_info (inf, current_inferior ());
057302ce 1197 exit_inferior_silent (current_inferior ());
17d8546e 1198
94585166 1199 inf->pid = pid;
ecf45d2c 1200 target_follow_exec (inf, exec_file_target);
6c95b8df
PA
1201
1202 set_current_inferior (inf);
94585166 1203 set_current_program_space (inf->pspace);
c4c17fb0 1204 add_thread (ptid);
6c95b8df 1205 }
9107fc8d
PA
1206 else
1207 {
1208 /* The old description may no longer be fit for the new image.
1209 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1210 old description; we'll read a new one below. No need to do
1211 this on "follow-exec-mode new", as the old inferior stays
1212 around (its description is later cleared/refetched on
1213 restart). */
1214 target_clear_description ();
1215 }
6c95b8df
PA
1216
1217 gdb_assert (current_program_space == inf->pspace);
1218
ecf45d2c
SL
1219 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1220 because the proper displacement for a PIE (Position Independent
1221 Executable) main symbol file will only be computed by
1222 solib_create_inferior_hook below. breakpoint_re_set would fail
1223 to insert the breakpoints with the zero displacement. */
797bc1cb 1224 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
c906108c 1225
9107fc8d
PA
1226 /* If the target can specify a description, read it. Must do this
1227 after flipping to the new executable (because the target supplied
1228 description must be compatible with the executable's
1229 architecture, and the old executable may e.g., be 32-bit, while
1230 the new one 64-bit), and before anything involving memory or
1231 registers. */
1232 target_find_description ();
1233
268a4a75 1234 solib_create_inferior_hook (0);
c906108c 1235
4efc6507
DE
1236 jit_inferior_created_hook ();
1237
c1e56572
JK
1238 breakpoint_re_set ();
1239
c906108c
SS
1240 /* Reinsert all breakpoints. (Those which were symbolic have
1241 been reset to the proper address in the new a.out, thanks
1777feb0 1242 to symbol_file_command...). */
c906108c
SS
1243 insert_breakpoints ();
1244
1245 /* The next resume of this inferior should bring it to the shlib
1246 startup breakpoints. (If the user had also set bp's on
1247 "main" from the old (parent) process, then they'll auto-
1777feb0 1248 matically get reset there in the new process.). */
c906108c
SS
1249}
1250
c2829269
PA
1251/* The queue of threads that need to do a step-over operation to get
1252 past e.g., a breakpoint. What technique is used to step over the
1253 breakpoint/watchpoint does not matter -- all threads end up in the
1254 same queue, to maintain rough temporal order of execution, in order
1255 to avoid starvation, otherwise, we could e.g., find ourselves
1256 constantly stepping the same couple threads past their breakpoints
1257 over and over, if the single-step finish fast enough. */
1258struct thread_info *step_over_queue_head;
1259
6c4cfb24
PA
1260/* Bit flags indicating what the thread needs to step over. */
1261
8d297bbf 1262enum step_over_what_flag
6c4cfb24
PA
1263 {
1264 /* Step over a breakpoint. */
1265 STEP_OVER_BREAKPOINT = 1,
1266
1267 /* Step past a non-continuable watchpoint, in order to let the
1268 instruction execute so we can evaluate the watchpoint
1269 expression. */
1270 STEP_OVER_WATCHPOINT = 2
1271 };
8d297bbf 1272DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1273
963f9c80 1274/* Info about an instruction that is being stepped over. */
31e77af2
PA
1275
1276struct step_over_info
1277{
963f9c80
PA
1278 /* If we're stepping past a breakpoint, this is the address space
1279 and address of the instruction the breakpoint is set at. We'll
1280 skip inserting all breakpoints here. Valid iff ASPACE is
1281 non-NULL. */
8b86c959 1282 const address_space *aspace;
31e77af2 1283 CORE_ADDR address;
963f9c80
PA
1284
1285 /* The instruction being stepped over triggers a nonsteppable
1286 watchpoint. If true, we'll skip inserting watchpoints. */
1287 int nonsteppable_watchpoint_p;
21edc42f
YQ
1288
1289 /* The thread's global number. */
1290 int thread;
31e77af2
PA
1291};
1292
1293/* The step-over info of the location that is being stepped over.
1294
1295 Note that with async/breakpoint always-inserted mode, a user might
1296 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1297 being stepped over. As setting a new breakpoint inserts all
1298 breakpoints, we need to make sure the breakpoint being stepped over
1299 isn't inserted then. We do that by only clearing the step-over
1300 info when the step-over is actually finished (or aborted).
1301
1302 Presently GDB can only step over one breakpoint at any given time.
1303 Given threads that can't run code in the same address space as the
1304 breakpoint's can't really miss the breakpoint, GDB could be taught
1305 to step-over at most one breakpoint per address space (so this info
1306 could move to the address space object if/when GDB is extended).
1307 The set of breakpoints being stepped over will normally be much
1308 smaller than the set of all breakpoints, so a flag in the
1309 breakpoint location structure would be wasteful. A separate list
1310 also saves complexity and run-time, as otherwise we'd have to go
1311 through all breakpoint locations clearing their flag whenever we
1312 start a new sequence. Similar considerations weigh against storing
1313 this info in the thread object. Plus, not all step overs actually
1314 have breakpoint locations -- e.g., stepping past a single-step
1315 breakpoint, or stepping to complete a non-continuable
1316 watchpoint. */
1317static struct step_over_info step_over_info;
1318
1319/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1320 stepping over.
1321 N.B. We record the aspace and address now, instead of say just the thread,
1322 because when we need the info later the thread may be running. */
31e77af2
PA
1323
1324static void
8b86c959 1325set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1326 int nonsteppable_watchpoint_p,
1327 int thread)
31e77af2
PA
1328{
1329 step_over_info.aspace = aspace;
1330 step_over_info.address = address;
963f9c80 1331 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1332 step_over_info.thread = thread;
31e77af2
PA
1333}
1334
1335/* Called when we're not longer stepping over a breakpoint / an
1336 instruction, so all breakpoints are free to be (re)inserted. */
1337
1338static void
1339clear_step_over_info (void)
1340{
372316f1
PA
1341 if (debug_infrun)
1342 fprintf_unfiltered (gdb_stdlog,
1343 "infrun: clear_step_over_info\n");
31e77af2
PA
1344 step_over_info.aspace = NULL;
1345 step_over_info.address = 0;
963f9c80 1346 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1347 step_over_info.thread = -1;
31e77af2
PA
1348}
1349
7f89fd65 1350/* See infrun.h. */
31e77af2
PA
1351
1352int
1353stepping_past_instruction_at (struct address_space *aspace,
1354 CORE_ADDR address)
1355{
1356 return (step_over_info.aspace != NULL
1357 && breakpoint_address_match (aspace, address,
1358 step_over_info.aspace,
1359 step_over_info.address));
1360}
1361
963f9c80
PA
1362/* See infrun.h. */
1363
21edc42f
YQ
1364int
1365thread_is_stepping_over_breakpoint (int thread)
1366{
1367 return (step_over_info.thread != -1
1368 && thread == step_over_info.thread);
1369}
1370
1371/* See infrun.h. */
1372
963f9c80
PA
1373int
1374stepping_past_nonsteppable_watchpoint (void)
1375{
1376 return step_over_info.nonsteppable_watchpoint_p;
1377}
1378
6cc83d2a
PA
1379/* Returns true if step-over info is valid. */
1380
1381static int
1382step_over_info_valid_p (void)
1383{
963f9c80
PA
1384 return (step_over_info.aspace != NULL
1385 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1386}
1387
c906108c 1388\f
237fc4c9
PA
1389/* Displaced stepping. */
1390
1391/* In non-stop debugging mode, we must take special care to manage
1392 breakpoints properly; in particular, the traditional strategy for
1393 stepping a thread past a breakpoint it has hit is unsuitable.
1394 'Displaced stepping' is a tactic for stepping one thread past a
1395 breakpoint it has hit while ensuring that other threads running
1396 concurrently will hit the breakpoint as they should.
1397
1398 The traditional way to step a thread T off a breakpoint in a
1399 multi-threaded program in all-stop mode is as follows:
1400
1401 a0) Initially, all threads are stopped, and breakpoints are not
1402 inserted.
1403 a1) We single-step T, leaving breakpoints uninserted.
1404 a2) We insert breakpoints, and resume all threads.
1405
1406 In non-stop debugging, however, this strategy is unsuitable: we
1407 don't want to have to stop all threads in the system in order to
1408 continue or step T past a breakpoint. Instead, we use displaced
1409 stepping:
1410
1411 n0) Initially, T is stopped, other threads are running, and
1412 breakpoints are inserted.
1413 n1) We copy the instruction "under" the breakpoint to a separate
1414 location, outside the main code stream, making any adjustments
1415 to the instruction, register, and memory state as directed by
1416 T's architecture.
1417 n2) We single-step T over the instruction at its new location.
1418 n3) We adjust the resulting register and memory state as directed
1419 by T's architecture. This includes resetting T's PC to point
1420 back into the main instruction stream.
1421 n4) We resume T.
1422
1423 This approach depends on the following gdbarch methods:
1424
1425 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1426 indicate where to copy the instruction, and how much space must
1427 be reserved there. We use these in step n1.
1428
1429 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1430 address, and makes any necessary adjustments to the instruction,
1431 register contents, and memory. We use this in step n1.
1432
1433 - gdbarch_displaced_step_fixup adjusts registers and memory after
1434 we have successfuly single-stepped the instruction, to yield the
1435 same effect the instruction would have had if we had executed it
1436 at its original address. We use this in step n3.
1437
237fc4c9
PA
1438 The gdbarch_displaced_step_copy_insn and
1439 gdbarch_displaced_step_fixup functions must be written so that
1440 copying an instruction with gdbarch_displaced_step_copy_insn,
1441 single-stepping across the copied instruction, and then applying
1442 gdbarch_displaced_insn_fixup should have the same effects on the
1443 thread's memory and registers as stepping the instruction in place
1444 would have. Exactly which responsibilities fall to the copy and
1445 which fall to the fixup is up to the author of those functions.
1446
1447 See the comments in gdbarch.sh for details.
1448
1449 Note that displaced stepping and software single-step cannot
1450 currently be used in combination, although with some care I think
1451 they could be made to. Software single-step works by placing
1452 breakpoints on all possible subsequent instructions; if the
1453 displaced instruction is a PC-relative jump, those breakpoints
1454 could fall in very strange places --- on pages that aren't
1455 executable, or at addresses that are not proper instruction
1456 boundaries. (We do generally let other threads run while we wait
1457 to hit the software single-step breakpoint, and they might
1458 encounter such a corrupted instruction.) One way to work around
1459 this would be to have gdbarch_displaced_step_copy_insn fully
1460 simulate the effect of PC-relative instructions (and return NULL)
1461 on architectures that use software single-stepping.
1462
1463 In non-stop mode, we can have independent and simultaneous step
1464 requests, so more than one thread may need to simultaneously step
1465 over a breakpoint. The current implementation assumes there is
1466 only one scratch space per process. In this case, we have to
1467 serialize access to the scratch space. If thread A wants to step
1468 over a breakpoint, but we are currently waiting for some other
1469 thread to complete a displaced step, we leave thread A stopped and
1470 place it in the displaced_step_request_queue. Whenever a displaced
1471 step finishes, we pick the next thread in the queue and start a new
1472 displaced step operation on it. See displaced_step_prepare and
1473 displaced_step_fixup for details. */
1474
cfba9872
SM
1475/* Default destructor for displaced_step_closure. */
1476
1477displaced_step_closure::~displaced_step_closure () = default;
1478
fc1cf338
PA
1479/* Get the displaced stepping state of process PID. */
1480
39a36629 1481static displaced_step_inferior_state *
00431a78 1482get_displaced_stepping_state (inferior *inf)
fc1cf338 1483{
d20172fc 1484 return &inf->displaced_step_state;
fc1cf338
PA
1485}
1486
372316f1
PA
1487/* Returns true if any inferior has a thread doing a displaced
1488 step. */
1489
39a36629
SM
1490static bool
1491displaced_step_in_progress_any_inferior ()
372316f1 1492{
d20172fc 1493 for (inferior *i : all_inferiors ())
39a36629 1494 {
d20172fc 1495 if (i->displaced_step_state.step_thread != nullptr)
39a36629
SM
1496 return true;
1497 }
372316f1 1498
39a36629 1499 return false;
372316f1
PA
1500}
1501
c0987663
YQ
1502/* Return true if thread represented by PTID is doing a displaced
1503 step. */
1504
1505static int
00431a78 1506displaced_step_in_progress_thread (thread_info *thread)
c0987663 1507{
00431a78 1508 gdb_assert (thread != NULL);
c0987663 1509
d20172fc 1510 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
c0987663
YQ
1511}
1512
8f572e5c
PA
1513/* Return true if process PID has a thread doing a displaced step. */
1514
1515static int
00431a78 1516displaced_step_in_progress (inferior *inf)
8f572e5c 1517{
d20172fc 1518 return get_displaced_stepping_state (inf)->step_thread != nullptr;
fc1cf338
PA
1519}
1520
a42244db
YQ
1521/* If inferior is in displaced stepping, and ADDR equals to starting address
1522 of copy area, return corresponding displaced_step_closure. Otherwise,
1523 return NULL. */
1524
1525struct displaced_step_closure*
1526get_displaced_step_closure_by_addr (CORE_ADDR addr)
1527{
d20172fc 1528 displaced_step_inferior_state *displaced
00431a78 1529 = get_displaced_stepping_state (current_inferior ());
a42244db
YQ
1530
1531 /* If checking the mode of displaced instruction in copy area. */
d20172fc 1532 if (displaced->step_thread != nullptr
00431a78 1533 && displaced->step_copy == addr)
a42244db
YQ
1534 return displaced->step_closure;
1535
1536 return NULL;
1537}
1538
fc1cf338
PA
1539static void
1540infrun_inferior_exit (struct inferior *inf)
1541{
d20172fc 1542 inf->displaced_step_state.reset ();
fc1cf338 1543}
237fc4c9 1544
fff08868
HZ
1545/* If ON, and the architecture supports it, GDB will use displaced
1546 stepping to step over breakpoints. If OFF, or if the architecture
1547 doesn't support it, GDB will instead use the traditional
1548 hold-and-step approach. If AUTO (which is the default), GDB will
1549 decide which technique to use to step over breakpoints depending on
1550 which of all-stop or non-stop mode is active --- displaced stepping
1551 in non-stop mode; hold-and-step in all-stop mode. */
1552
72d0e2c5 1553static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1554
237fc4c9
PA
1555static void
1556show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1557 struct cmd_list_element *c,
1558 const char *value)
1559{
72d0e2c5 1560 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1561 fprintf_filtered (file,
1562 _("Debugger's willingness to use displaced stepping "
1563 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1564 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1565 else
3e43a32a
MS
1566 fprintf_filtered (file,
1567 _("Debugger's willingness to use displaced stepping "
1568 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1569}
1570
fff08868 1571/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1572 over breakpoints of thread TP. */
fff08868 1573
237fc4c9 1574static int
3fc8eb30 1575use_displaced_stepping (struct thread_info *tp)
237fc4c9 1576{
00431a78 1577 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 1578 struct gdbarch *gdbarch = regcache->arch ();
d20172fc
SM
1579 displaced_step_inferior_state *displaced_state
1580 = get_displaced_stepping_state (tp->inf);
3fc8eb30 1581
fbea99ea
PA
1582 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1583 && target_is_non_stop_p ())
72d0e2c5 1584 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1585 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30 1586 && find_record_target () == NULL
d20172fc 1587 && !displaced_state->failed_before);
237fc4c9
PA
1588}
1589
1590/* Clean out any stray displaced stepping state. */
1591static void
fc1cf338 1592displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1593{
1594 /* Indicate that there is no cleanup pending. */
00431a78 1595 displaced->step_thread = nullptr;
237fc4c9 1596
cfba9872 1597 delete displaced->step_closure;
6d45d4b4 1598 displaced->step_closure = NULL;
237fc4c9
PA
1599}
1600
1601static void
fc1cf338 1602displaced_step_clear_cleanup (void *arg)
237fc4c9 1603{
9a3c8263
SM
1604 struct displaced_step_inferior_state *state
1605 = (struct displaced_step_inferior_state *) arg;
fc1cf338
PA
1606
1607 displaced_step_clear (state);
237fc4c9
PA
1608}
1609
1610/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1611void
1612displaced_step_dump_bytes (struct ui_file *file,
1613 const gdb_byte *buf,
1614 size_t len)
1615{
1616 int i;
1617
1618 for (i = 0; i < len; i++)
1619 fprintf_unfiltered (file, "%02x ", buf[i]);
1620 fputs_unfiltered ("\n", file);
1621}
1622
1623/* Prepare to single-step, using displaced stepping.
1624
1625 Note that we cannot use displaced stepping when we have a signal to
1626 deliver. If we have a signal to deliver and an instruction to step
1627 over, then after the step, there will be no indication from the
1628 target whether the thread entered a signal handler or ignored the
1629 signal and stepped over the instruction successfully --- both cases
1630 result in a simple SIGTRAP. In the first case we mustn't do a
1631 fixup, and in the second case we must --- but we can't tell which.
1632 Comments in the code for 'random signals' in handle_inferior_event
1633 explain how we handle this case instead.
1634
1635 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1636 stepped now; 0 if displaced stepping this thread got queued; or -1
1637 if this instruction can't be displaced stepped. */
1638
237fc4c9 1639static int
00431a78 1640displaced_step_prepare_throw (thread_info *tp)
237fc4c9 1641{
00431a78 1642 regcache *regcache = get_thread_regcache (tp);
ac7936df 1643 struct gdbarch *gdbarch = regcache->arch ();
8b86c959 1644 const address_space *aspace = regcache->aspace ();
237fc4c9
PA
1645 CORE_ADDR original, copy;
1646 ULONGEST len;
1647 struct displaced_step_closure *closure;
9e529e1d 1648 int status;
237fc4c9
PA
1649
1650 /* We should never reach this function if the architecture does not
1651 support displaced stepping. */
1652 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1653
c2829269
PA
1654 /* Nor if the thread isn't meant to step over a breakpoint. */
1655 gdb_assert (tp->control.trap_expected);
1656
c1e36e3e
PA
1657 /* Disable range stepping while executing in the scratch pad. We
1658 want a single-step even if executing the displaced instruction in
1659 the scratch buffer lands within the stepping range (e.g., a
1660 jump/branch). */
1661 tp->control.may_range_step = 0;
1662
fc1cf338
PA
1663 /* We have to displaced step one thread at a time, as we only have
1664 access to a single scratch space per inferior. */
237fc4c9 1665
d20172fc
SM
1666 displaced_step_inferior_state *displaced
1667 = get_displaced_stepping_state (tp->inf);
fc1cf338 1668
00431a78 1669 if (displaced->step_thread != nullptr)
237fc4c9
PA
1670 {
1671 /* Already waiting for a displaced step to finish. Defer this
1672 request and place in queue. */
237fc4c9
PA
1673
1674 if (debug_displaced)
1675 fprintf_unfiltered (gdb_stdlog,
c2829269 1676 "displaced: deferring step of %s\n",
00431a78 1677 target_pid_to_str (tp->ptid));
237fc4c9 1678
c2829269 1679 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1680 return 0;
1681 }
1682 else
1683 {
1684 if (debug_displaced)
1685 fprintf_unfiltered (gdb_stdlog,
1686 "displaced: stepping %s now\n",
00431a78 1687 target_pid_to_str (tp->ptid));
237fc4c9
PA
1688 }
1689
fc1cf338 1690 displaced_step_clear (displaced);
237fc4c9 1691
00431a78
PA
1692 scoped_restore_current_thread restore_thread;
1693
1694 switch_to_thread (tp);
ad53cd71 1695
515630c5 1696 original = regcache_read_pc (regcache);
237fc4c9
PA
1697
1698 copy = gdbarch_displaced_step_location (gdbarch);
1699 len = gdbarch_max_insn_length (gdbarch);
1700
d35ae833
PA
1701 if (breakpoint_in_range_p (aspace, copy, len))
1702 {
1703 /* There's a breakpoint set in the scratch pad location range
1704 (which is usually around the entry point). We'd either
1705 install it before resuming, which would overwrite/corrupt the
1706 scratch pad, or if it was already inserted, this displaced
1707 step would overwrite it. The latter is OK in the sense that
1708 we already assume that no thread is going to execute the code
1709 in the scratch pad range (after initial startup) anyway, but
1710 the former is unacceptable. Simply punt and fallback to
1711 stepping over this breakpoint in-line. */
1712 if (debug_displaced)
1713 {
1714 fprintf_unfiltered (gdb_stdlog,
1715 "displaced: breakpoint set in scratch pad. "
1716 "Stepping over breakpoint in-line instead.\n");
1717 }
1718
d35ae833
PA
1719 return -1;
1720 }
1721
237fc4c9 1722 /* Save the original contents of the copy area. */
d20172fc
SM
1723 displaced->step_saved_copy.resize (len);
1724 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
9e529e1d
JK
1725 if (status != 0)
1726 throw_error (MEMORY_ERROR,
1727 _("Error accessing memory address %s (%s) for "
1728 "displaced-stepping scratch space."),
1729 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1730 if (debug_displaced)
1731 {
5af949e3
UW
1732 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1733 paddress (gdbarch, copy));
fc1cf338 1734 displaced_step_dump_bytes (gdb_stdlog,
d20172fc 1735 displaced->step_saved_copy.data (),
fc1cf338 1736 len);
237fc4c9
PA
1737 };
1738
1739 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1740 original, copy, regcache);
7f03bd92
PA
1741 if (closure == NULL)
1742 {
1743 /* The architecture doesn't know how or want to displaced step
1744 this instruction or instruction sequence. Fallback to
1745 stepping over the breakpoint in-line. */
7f03bd92
PA
1746 return -1;
1747 }
237fc4c9 1748
9f5a595d
UW
1749 /* Save the information we need to fix things up if the step
1750 succeeds. */
00431a78 1751 displaced->step_thread = tp;
fc1cf338
PA
1752 displaced->step_gdbarch = gdbarch;
1753 displaced->step_closure = closure;
1754 displaced->step_original = original;
1755 displaced->step_copy = copy;
9f5a595d 1756
d20172fc
SM
1757 cleanup *ignore_cleanups
1758 = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1759
1760 /* Resume execution at the copy. */
515630c5 1761 regcache_write_pc (regcache, copy);
237fc4c9 1762
ad53cd71
PA
1763 discard_cleanups (ignore_cleanups);
1764
237fc4c9 1765 if (debug_displaced)
5af949e3
UW
1766 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1767 paddress (gdbarch, copy));
237fc4c9 1768
237fc4c9
PA
1769 return 1;
1770}
1771
3fc8eb30
PA
1772/* Wrapper for displaced_step_prepare_throw that disabled further
1773 attempts at displaced stepping if we get a memory error. */
1774
1775static int
00431a78 1776displaced_step_prepare (thread_info *thread)
3fc8eb30
PA
1777{
1778 int prepared = -1;
1779
1780 TRY
1781 {
00431a78 1782 prepared = displaced_step_prepare_throw (thread);
3fc8eb30
PA
1783 }
1784 CATCH (ex, RETURN_MASK_ERROR)
1785 {
1786 struct displaced_step_inferior_state *displaced_state;
1787
16b41842
PA
1788 if (ex.error != MEMORY_ERROR
1789 && ex.error != NOT_SUPPORTED_ERROR)
3fc8eb30
PA
1790 throw_exception (ex);
1791
1792 if (debug_infrun)
1793 {
1794 fprintf_unfiltered (gdb_stdlog,
1795 "infrun: disabling displaced stepping: %s\n",
1796 ex.message);
1797 }
1798
1799 /* Be verbose if "set displaced-stepping" is "on", silent if
1800 "auto". */
1801 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1802 {
fd7dcb94 1803 warning (_("disabling displaced stepping: %s"),
3fc8eb30
PA
1804 ex.message);
1805 }
1806
1807 /* Disable further displaced stepping attempts. */
1808 displaced_state
00431a78 1809 = get_displaced_stepping_state (thread->inf);
3fc8eb30
PA
1810 displaced_state->failed_before = 1;
1811 }
1812 END_CATCH
1813
1814 return prepared;
1815}
1816
237fc4c9 1817static void
3e43a32a
MS
1818write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1819 const gdb_byte *myaddr, int len)
237fc4c9 1820{
2989a365 1821 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
abbb1732 1822
237fc4c9
PA
1823 inferior_ptid = ptid;
1824 write_memory (memaddr, myaddr, len);
237fc4c9
PA
1825}
1826
e2d96639
YQ
1827/* Restore the contents of the copy area for thread PTID. */
1828
1829static void
1830displaced_step_restore (struct displaced_step_inferior_state *displaced,
1831 ptid_t ptid)
1832{
1833 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1834
1835 write_memory_ptid (ptid, displaced->step_copy,
d20172fc 1836 displaced->step_saved_copy.data (), len);
e2d96639
YQ
1837 if (debug_displaced)
1838 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1839 target_pid_to_str (ptid),
1840 paddress (displaced->step_gdbarch,
1841 displaced->step_copy));
1842}
1843
372316f1
PA
1844/* If we displaced stepped an instruction successfully, adjust
1845 registers and memory to yield the same effect the instruction would
1846 have had if we had executed it at its original address, and return
1847 1. If the instruction didn't complete, relocate the PC and return
1848 -1. If the thread wasn't displaced stepping, return 0. */
1849
1850static int
00431a78 1851displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
237fc4c9
PA
1852{
1853 struct cleanup *old_cleanups;
fc1cf338 1854 struct displaced_step_inferior_state *displaced
00431a78 1855 = get_displaced_stepping_state (event_thread->inf);
372316f1 1856 int ret;
fc1cf338 1857
00431a78
PA
1858 /* Was this event for the thread we displaced? */
1859 if (displaced->step_thread != event_thread)
372316f1 1860 return 0;
237fc4c9 1861
fc1cf338 1862 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1863
00431a78 1864 displaced_step_restore (displaced, displaced->step_thread->ptid);
237fc4c9 1865
cb71640d
PA
1866 /* Fixup may need to read memory/registers. Switch to the thread
1867 that we're fixing up. Also, target_stopped_by_watchpoint checks
1868 the current thread. */
00431a78 1869 switch_to_thread (event_thread);
cb71640d 1870
237fc4c9 1871 /* Did the instruction complete successfully? */
cb71640d
PA
1872 if (signal == GDB_SIGNAL_TRAP
1873 && !(target_stopped_by_watchpoint ()
1874 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1875 || target_have_steppable_watchpoint)))
237fc4c9
PA
1876 {
1877 /* Fix up the resulting state. */
fc1cf338
PA
1878 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1879 displaced->step_closure,
1880 displaced->step_original,
1881 displaced->step_copy,
00431a78 1882 get_thread_regcache (displaced->step_thread));
372316f1 1883 ret = 1;
237fc4c9
PA
1884 }
1885 else
1886 {
1887 /* Since the instruction didn't complete, all we can do is
1888 relocate the PC. */
00431a78 1889 struct regcache *regcache = get_thread_regcache (event_thread);
515630c5 1890 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1891
fc1cf338 1892 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1893 regcache_write_pc (regcache, pc);
372316f1 1894 ret = -1;
237fc4c9
PA
1895 }
1896
1897 do_cleanups (old_cleanups);
1898
00431a78 1899 displaced->step_thread = nullptr;
372316f1
PA
1900
1901 return ret;
c2829269 1902}
1c5cfe86 1903
4d9d9d04
PA
1904/* Data to be passed around while handling an event. This data is
1905 discarded between events. */
1906struct execution_control_state
1907{
1908 ptid_t ptid;
1909 /* The thread that got the event, if this was a thread event; NULL
1910 otherwise. */
1911 struct thread_info *event_thread;
1912
1913 struct target_waitstatus ws;
1914 int stop_func_filled_in;
1915 CORE_ADDR stop_func_start;
1916 CORE_ADDR stop_func_end;
1917 const char *stop_func_name;
1918 int wait_some_more;
1919
1920 /* True if the event thread hit the single-step breakpoint of
1921 another thread. Thus the event doesn't cause a stop, the thread
1922 needs to be single-stepped past the single-step breakpoint before
1923 we can switch back to the original stepping thread. */
1924 int hit_singlestep_breakpoint;
1925};
1926
1927/* Clear ECS and set it to point at TP. */
c2829269
PA
1928
1929static void
4d9d9d04
PA
1930reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1931{
1932 memset (ecs, 0, sizeof (*ecs));
1933 ecs->event_thread = tp;
1934 ecs->ptid = tp->ptid;
1935}
1936
1937static void keep_going_pass_signal (struct execution_control_state *ecs);
1938static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 1939static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 1940static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
1941
1942/* Are there any pending step-over requests? If so, run all we can
1943 now and return true. Otherwise, return false. */
1944
1945static int
c2829269
PA
1946start_step_over (void)
1947{
1948 struct thread_info *tp, *next;
1949
372316f1
PA
1950 /* Don't start a new step-over if we already have an in-line
1951 step-over operation ongoing. */
1952 if (step_over_info_valid_p ())
1953 return 0;
1954
c2829269 1955 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 1956 {
4d9d9d04
PA
1957 struct execution_control_state ecss;
1958 struct execution_control_state *ecs = &ecss;
8d297bbf 1959 step_over_what step_what;
372316f1 1960 int must_be_in_line;
c2829269 1961
c65d6b55
PA
1962 gdb_assert (!tp->stop_requested);
1963
c2829269 1964 next = thread_step_over_chain_next (tp);
237fc4c9 1965
c2829269
PA
1966 /* If this inferior already has a displaced step in process,
1967 don't start a new one. */
00431a78 1968 if (displaced_step_in_progress (tp->inf))
c2829269
PA
1969 continue;
1970
372316f1
PA
1971 step_what = thread_still_needs_step_over (tp);
1972 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1973 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 1974 && !use_displaced_stepping (tp)));
372316f1
PA
1975
1976 /* We currently stop all threads of all processes to step-over
1977 in-line. If we need to start a new in-line step-over, let
1978 any pending displaced steps finish first. */
1979 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1980 return 0;
1981
c2829269
PA
1982 thread_step_over_chain_remove (tp);
1983
1984 if (step_over_queue_head == NULL)
1985 {
1986 if (debug_infrun)
1987 fprintf_unfiltered (gdb_stdlog,
1988 "infrun: step-over queue now empty\n");
1989 }
1990
372316f1
PA
1991 if (tp->control.trap_expected
1992 || tp->resumed
1993 || tp->executing)
ad53cd71 1994 {
4d9d9d04
PA
1995 internal_error (__FILE__, __LINE__,
1996 "[%s] has inconsistent state: "
372316f1 1997 "trap_expected=%d, resumed=%d, executing=%d\n",
4d9d9d04
PA
1998 target_pid_to_str (tp->ptid),
1999 tp->control.trap_expected,
372316f1 2000 tp->resumed,
4d9d9d04 2001 tp->executing);
ad53cd71 2002 }
1c5cfe86 2003
4d9d9d04
PA
2004 if (debug_infrun)
2005 fprintf_unfiltered (gdb_stdlog,
2006 "infrun: resuming [%s] for step-over\n",
2007 target_pid_to_str (tp->ptid));
2008
2009 /* keep_going_pass_signal skips the step-over if the breakpoint
2010 is no longer inserted. In all-stop, we want to keep looking
2011 for a thread that needs a step-over instead of resuming TP,
2012 because we wouldn't be able to resume anything else until the
2013 target stops again. In non-stop, the resume always resumes
2014 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2015 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2016 continue;
8550d3b3 2017
00431a78 2018 switch_to_thread (tp);
4d9d9d04
PA
2019 reset_ecs (ecs, tp);
2020 keep_going_pass_signal (ecs);
1c5cfe86 2021
4d9d9d04
PA
2022 if (!ecs->wait_some_more)
2023 error (_("Command aborted."));
1c5cfe86 2024
372316f1
PA
2025 gdb_assert (tp->resumed);
2026
2027 /* If we started a new in-line step-over, we're done. */
2028 if (step_over_info_valid_p ())
2029 {
2030 gdb_assert (tp->control.trap_expected);
2031 return 1;
2032 }
2033
fbea99ea 2034 if (!target_is_non_stop_p ())
4d9d9d04
PA
2035 {
2036 /* On all-stop, shouldn't have resumed unless we needed a
2037 step over. */
2038 gdb_assert (tp->control.trap_expected
2039 || tp->step_after_step_resume_breakpoint);
2040
2041 /* With remote targets (at least), in all-stop, we can't
2042 issue any further remote commands until the program stops
2043 again. */
2044 return 1;
1c5cfe86 2045 }
c2829269 2046
4d9d9d04
PA
2047 /* Either the thread no longer needed a step-over, or a new
2048 displaced stepping sequence started. Even in the latter
2049 case, continue looking. Maybe we can also start another
2050 displaced step on a thread of other process. */
237fc4c9 2051 }
4d9d9d04
PA
2052
2053 return 0;
237fc4c9
PA
2054}
2055
5231c1fd
PA
2056/* Update global variables holding ptids to hold NEW_PTID if they were
2057 holding OLD_PTID. */
2058static void
2059infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2060{
d7e15655 2061 if (inferior_ptid == old_ptid)
5231c1fd 2062 inferior_ptid = new_ptid;
5231c1fd
PA
2063}
2064
237fc4c9 2065\f
c906108c 2066
53904c9e
AC
2067static const char schedlock_off[] = "off";
2068static const char schedlock_on[] = "on";
2069static const char schedlock_step[] = "step";
f2665db5 2070static const char schedlock_replay[] = "replay";
40478521 2071static const char *const scheduler_enums[] = {
ef346e04
AC
2072 schedlock_off,
2073 schedlock_on,
2074 schedlock_step,
f2665db5 2075 schedlock_replay,
ef346e04
AC
2076 NULL
2077};
f2665db5 2078static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2079static void
2080show_scheduler_mode (struct ui_file *file, int from_tty,
2081 struct cmd_list_element *c, const char *value)
2082{
3e43a32a
MS
2083 fprintf_filtered (file,
2084 _("Mode for locking scheduler "
2085 "during execution is \"%s\".\n"),
920d2a44
AC
2086 value);
2087}
c906108c
SS
2088
2089static void
eb4c3f4a 2090set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
c906108c 2091{
eefe576e
AC
2092 if (!target_can_lock_scheduler)
2093 {
2094 scheduler_mode = schedlock_off;
2095 error (_("Target '%s' cannot support this command."), target_shortname);
2096 }
c906108c
SS
2097}
2098
d4db2f36
PA
2099/* True if execution commands resume all threads of all processes by
2100 default; otherwise, resume only threads of the current inferior
2101 process. */
2102int sched_multi = 0;
2103
2facfe5c
DD
2104/* Try to setup for software single stepping over the specified location.
2105 Return 1 if target_resume() should use hardware single step.
2106
2107 GDBARCH the current gdbarch.
2108 PC the location to step over. */
2109
2110static int
2111maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2112{
2113 int hw_step = 1;
2114
f02253f1 2115 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2116 && gdbarch_software_single_step_p (gdbarch))
2117 hw_step = !insert_single_step_breakpoints (gdbarch);
2118
2facfe5c
DD
2119 return hw_step;
2120}
c906108c 2121
f3263aa4
PA
2122/* See infrun.h. */
2123
09cee04b
PA
2124ptid_t
2125user_visible_resume_ptid (int step)
2126{
f3263aa4 2127 ptid_t resume_ptid;
09cee04b 2128
09cee04b
PA
2129 if (non_stop)
2130 {
2131 /* With non-stop mode on, threads are always handled
2132 individually. */
2133 resume_ptid = inferior_ptid;
2134 }
2135 else if ((scheduler_mode == schedlock_on)
03d46957 2136 || (scheduler_mode == schedlock_step && step))
09cee04b 2137 {
f3263aa4
PA
2138 /* User-settable 'scheduler' mode requires solo thread
2139 resume. */
09cee04b
PA
2140 resume_ptid = inferior_ptid;
2141 }
f2665db5
MM
2142 else if ((scheduler_mode == schedlock_replay)
2143 && target_record_will_replay (minus_one_ptid, execution_direction))
2144 {
2145 /* User-settable 'scheduler' mode requires solo thread resume in replay
2146 mode. */
2147 resume_ptid = inferior_ptid;
2148 }
f3263aa4
PA
2149 else if (!sched_multi && target_supports_multi_process ())
2150 {
2151 /* Resume all threads of the current process (and none of other
2152 processes). */
e99b03dc 2153 resume_ptid = ptid_t (inferior_ptid.pid ());
f3263aa4
PA
2154 }
2155 else
2156 {
2157 /* Resume all threads of all processes. */
2158 resume_ptid = RESUME_ALL;
2159 }
09cee04b
PA
2160
2161 return resume_ptid;
2162}
2163
fbea99ea
PA
2164/* Return a ptid representing the set of threads that we will resume,
2165 in the perspective of the target, assuming run control handling
2166 does not require leaving some threads stopped (e.g., stepping past
2167 breakpoint). USER_STEP indicates whether we're about to start the
2168 target for a stepping command. */
2169
2170static ptid_t
2171internal_resume_ptid (int user_step)
2172{
2173 /* In non-stop, we always control threads individually. Note that
2174 the target may always work in non-stop mode even with "set
2175 non-stop off", in which case user_visible_resume_ptid could
2176 return a wildcard ptid. */
2177 if (target_is_non_stop_p ())
2178 return inferior_ptid;
2179 else
2180 return user_visible_resume_ptid (user_step);
2181}
2182
64ce06e4
PA
2183/* Wrapper for target_resume, that handles infrun-specific
2184 bookkeeping. */
2185
2186static void
2187do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2188{
2189 struct thread_info *tp = inferior_thread ();
2190
c65d6b55
PA
2191 gdb_assert (!tp->stop_requested);
2192
64ce06e4 2193 /* Install inferior's terminal modes. */
223ffa71 2194 target_terminal::inferior ();
64ce06e4
PA
2195
2196 /* Avoid confusing the next resume, if the next stop/resume
2197 happens to apply to another thread. */
2198 tp->suspend.stop_signal = GDB_SIGNAL_0;
2199
8f572e5c
PA
2200 /* Advise target which signals may be handled silently.
2201
2202 If we have removed breakpoints because we are stepping over one
2203 in-line (in any thread), we need to receive all signals to avoid
2204 accidentally skipping a breakpoint during execution of a signal
2205 handler.
2206
2207 Likewise if we're displaced stepping, otherwise a trap for a
2208 breakpoint in a signal handler might be confused with the
2209 displaced step finishing. We don't make the displaced_step_fixup
2210 step distinguish the cases instead, because:
2211
2212 - a backtrace while stopped in the signal handler would show the
2213 scratch pad as frame older than the signal handler, instead of
2214 the real mainline code.
2215
2216 - when the thread is later resumed, the signal handler would
2217 return to the scratch pad area, which would no longer be
2218 valid. */
2219 if (step_over_info_valid_p ()
00431a78 2220 || displaced_step_in_progress (tp->inf))
adc6a863 2221 target_pass_signals ({});
64ce06e4 2222 else
adc6a863 2223 target_pass_signals (signal_pass);
64ce06e4
PA
2224
2225 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2226
2227 target_commit_resume ();
64ce06e4
PA
2228}
2229
d930703d 2230/* Resume the inferior. SIG is the signal to give the inferior
71d378ae
PA
2231 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2232 call 'resume', which handles exceptions. */
c906108c 2233
71d378ae
PA
2234static void
2235resume_1 (enum gdb_signal sig)
c906108c 2236{
515630c5 2237 struct regcache *regcache = get_current_regcache ();
ac7936df 2238 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2239 struct thread_info *tp = inferior_thread ();
515630c5 2240 CORE_ADDR pc = regcache_read_pc (regcache);
8b86c959 2241 const address_space *aspace = regcache->aspace ();
b0f16a3e 2242 ptid_t resume_ptid;
856e7dd6
PA
2243 /* This represents the user's step vs continue request. When
2244 deciding whether "set scheduler-locking step" applies, it's the
2245 user's intention that counts. */
2246 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2247 /* This represents what we'll actually request the target to do.
2248 This can decay from a step to a continue, if e.g., we need to
2249 implement single-stepping with breakpoints (software
2250 single-step). */
6b403daa 2251 int step;
c7e8a53c 2252
c65d6b55 2253 gdb_assert (!tp->stop_requested);
c2829269
PA
2254 gdb_assert (!thread_is_in_step_over_chain (tp));
2255
372316f1
PA
2256 if (tp->suspend.waitstatus_pending_p)
2257 {
2258 if (debug_infrun)
2259 {
23fdd69e
SM
2260 std::string statstr
2261 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2262
372316f1 2263 fprintf_unfiltered (gdb_stdlog,
23fdd69e
SM
2264 "infrun: resume: thread %s has pending wait "
2265 "status %s (currently_stepping=%d).\n",
2266 target_pid_to_str (tp->ptid), statstr.c_str (),
372316f1 2267 currently_stepping (tp));
372316f1
PA
2268 }
2269
2270 tp->resumed = 1;
2271
2272 /* FIXME: What should we do if we are supposed to resume this
2273 thread with a signal? Maybe we should maintain a queue of
2274 pending signals to deliver. */
2275 if (sig != GDB_SIGNAL_0)
2276 {
fd7dcb94 2277 warning (_("Couldn't deliver signal %s to %s."),
372316f1
PA
2278 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2279 }
2280
2281 tp->suspend.stop_signal = GDB_SIGNAL_0;
372316f1
PA
2282
2283 if (target_can_async_p ())
9516f85a
AB
2284 {
2285 target_async (1);
2286 /* Tell the event loop we have an event to process. */
2287 mark_async_event_handler (infrun_async_inferior_event_token);
2288 }
372316f1
PA
2289 return;
2290 }
2291
2292 tp->stepped_breakpoint = 0;
2293
6b403daa
PA
2294 /* Depends on stepped_breakpoint. */
2295 step = currently_stepping (tp);
2296
74609e71
YQ
2297 if (current_inferior ()->waiting_for_vfork_done)
2298 {
48f9886d
PA
2299 /* Don't try to single-step a vfork parent that is waiting for
2300 the child to get out of the shared memory region (by exec'ing
2301 or exiting). This is particularly important on software
2302 single-step archs, as the child process would trip on the
2303 software single step breakpoint inserted for the parent
2304 process. Since the parent will not actually execute any
2305 instruction until the child is out of the shared region (such
2306 are vfork's semantics), it is safe to simply continue it.
2307 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2308 the parent, and tell it to `keep_going', which automatically
2309 re-sets it stepping. */
74609e71
YQ
2310 if (debug_infrun)
2311 fprintf_unfiltered (gdb_stdlog,
2312 "infrun: resume : clear step\n");
a09dd441 2313 step = 0;
74609e71
YQ
2314 }
2315
527159b7 2316 if (debug_infrun)
237fc4c9 2317 fprintf_unfiltered (gdb_stdlog,
c9737c08 2318 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2319 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2320 step, gdb_signal_to_symbol_string (sig),
2321 tp->control.trap_expected,
0d9a9a5f
PA
2322 target_pid_to_str (inferior_ptid),
2323 paddress (gdbarch, pc));
c906108c 2324
c2c6d25f
JM
2325 /* Normally, by the time we reach `resume', the breakpoints are either
2326 removed or inserted, as appropriate. The exception is if we're sitting
2327 at a permanent breakpoint; we need to step over it, but permanent
2328 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2329 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2330 {
af48d08f
PA
2331 if (sig != GDB_SIGNAL_0)
2332 {
2333 /* We have a signal to pass to the inferior. The resume
2334 may, or may not take us to the signal handler. If this
2335 is a step, we'll need to stop in the signal handler, if
2336 there's one, (if the target supports stepping into
2337 handlers), or in the next mainline instruction, if
2338 there's no handler. If this is a continue, we need to be
2339 sure to run the handler with all breakpoints inserted.
2340 In all cases, set a breakpoint at the current address
2341 (where the handler returns to), and once that breakpoint
2342 is hit, resume skipping the permanent breakpoint. If
2343 that breakpoint isn't hit, then we've stepped into the
2344 signal handler (or hit some other event). We'll delete
2345 the step-resume breakpoint then. */
2346
2347 if (debug_infrun)
2348 fprintf_unfiltered (gdb_stdlog,
2349 "infrun: resume: skipping permanent breakpoint, "
2350 "deliver signal first\n");
2351
2352 clear_step_over_info ();
2353 tp->control.trap_expected = 0;
2354
2355 if (tp->control.step_resume_breakpoint == NULL)
2356 {
2357 /* Set a "high-priority" step-resume, as we don't want
2358 user breakpoints at PC to trigger (again) when this
2359 hits. */
2360 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2361 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2362
2363 tp->step_after_step_resume_breakpoint = step;
2364 }
2365
2366 insert_breakpoints ();
2367 }
2368 else
2369 {
2370 /* There's no signal to pass, we can go ahead and skip the
2371 permanent breakpoint manually. */
2372 if (debug_infrun)
2373 fprintf_unfiltered (gdb_stdlog,
2374 "infrun: resume: skipping permanent breakpoint\n");
2375 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2376 /* Update pc to reflect the new address from which we will
2377 execute instructions. */
2378 pc = regcache_read_pc (regcache);
2379
2380 if (step)
2381 {
2382 /* We've already advanced the PC, so the stepping part
2383 is done. Now we need to arrange for a trap to be
2384 reported to handle_inferior_event. Set a breakpoint
2385 at the current PC, and run to it. Don't update
2386 prev_pc, because if we end in
44a1ee51
PA
2387 switch_back_to_stepped_thread, we want the "expected
2388 thread advanced also" branch to be taken. IOW, we
2389 don't want this thread to step further from PC
af48d08f 2390 (overstep). */
1ac806b8 2391 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2392 insert_single_step_breakpoint (gdbarch, aspace, pc);
2393 insert_breakpoints ();
2394
fbea99ea 2395 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2396 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
372316f1 2397 tp->resumed = 1;
af48d08f
PA
2398 return;
2399 }
2400 }
6d350bb5 2401 }
c2c6d25f 2402
c1e36e3e
PA
2403 /* If we have a breakpoint to step over, make sure to do a single
2404 step only. Same if we have software watchpoints. */
2405 if (tp->control.trap_expected || bpstat_should_step ())
2406 tp->control.may_range_step = 0;
2407
237fc4c9
PA
2408 /* If enabled, step over breakpoints by executing a copy of the
2409 instruction at a different address.
2410
2411 We can't use displaced stepping when we have a signal to deliver;
2412 the comments for displaced_step_prepare explain why. The
2413 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2414 signals' explain what we do instead.
2415
2416 We can't use displaced stepping when we are waiting for vfork_done
2417 event, displaced stepping breaks the vfork child similarly as single
2418 step software breakpoint. */
3fc8eb30
PA
2419 if (tp->control.trap_expected
2420 && use_displaced_stepping (tp)
cb71640d 2421 && !step_over_info_valid_p ()
a493e3e2 2422 && sig == GDB_SIGNAL_0
74609e71 2423 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2424 {
00431a78 2425 int prepared = displaced_step_prepare (tp);
fc1cf338 2426
3fc8eb30 2427 if (prepared == 0)
d56b7306 2428 {
4d9d9d04
PA
2429 if (debug_infrun)
2430 fprintf_unfiltered (gdb_stdlog,
2431 "Got placed in step-over queue\n");
2432
2433 tp->control.trap_expected = 0;
d56b7306
VP
2434 return;
2435 }
3fc8eb30
PA
2436 else if (prepared < 0)
2437 {
2438 /* Fallback to stepping over the breakpoint in-line. */
2439
2440 if (target_is_non_stop_p ())
2441 stop_all_threads ();
2442
a01bda52 2443 set_step_over_info (regcache->aspace (),
21edc42f 2444 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2445
2446 step = maybe_software_singlestep (gdbarch, pc);
2447
2448 insert_breakpoints ();
2449 }
2450 else if (prepared > 0)
2451 {
2452 struct displaced_step_inferior_state *displaced;
99e40580 2453
3fc8eb30
PA
2454 /* Update pc to reflect the new address from which we will
2455 execute instructions due to displaced stepping. */
00431a78 2456 pc = regcache_read_pc (get_thread_regcache (tp));
ca7781d2 2457
00431a78 2458 displaced = get_displaced_stepping_state (tp->inf);
3fc8eb30
PA
2459 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2460 displaced->step_closure);
2461 }
237fc4c9
PA
2462 }
2463
2facfe5c 2464 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2465 else if (step)
2facfe5c 2466 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2467
30852783
UW
2468 /* Currently, our software single-step implementation leads to different
2469 results than hardware single-stepping in one situation: when stepping
2470 into delivering a signal which has an associated signal handler,
2471 hardware single-step will stop at the first instruction of the handler,
2472 while software single-step will simply skip execution of the handler.
2473
2474 For now, this difference in behavior is accepted since there is no
2475 easy way to actually implement single-stepping into a signal handler
2476 without kernel support.
2477
2478 However, there is one scenario where this difference leads to follow-on
2479 problems: if we're stepping off a breakpoint by removing all breakpoints
2480 and then single-stepping. In this case, the software single-step
2481 behavior means that even if there is a *breakpoint* in the signal
2482 handler, GDB still would not stop.
2483
2484 Fortunately, we can at least fix this particular issue. We detect
2485 here the case where we are about to deliver a signal while software
2486 single-stepping with breakpoints removed. In this situation, we
2487 revert the decisions to remove all breakpoints and insert single-
2488 step breakpoints, and instead we install a step-resume breakpoint
2489 at the current address, deliver the signal without stepping, and
2490 once we arrive back at the step-resume breakpoint, actually step
2491 over the breakpoint we originally wanted to step over. */
34b7e8a6 2492 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2493 && sig != GDB_SIGNAL_0
2494 && step_over_info_valid_p ())
30852783
UW
2495 {
2496 /* If we have nested signals or a pending signal is delivered
2497 immediately after a handler returns, might might already have
2498 a step-resume breakpoint set on the earlier handler. We cannot
2499 set another step-resume breakpoint; just continue on until the
2500 original breakpoint is hit. */
2501 if (tp->control.step_resume_breakpoint == NULL)
2502 {
2c03e5be 2503 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2504 tp->step_after_step_resume_breakpoint = 1;
2505 }
2506
34b7e8a6 2507 delete_single_step_breakpoints (tp);
30852783 2508
31e77af2 2509 clear_step_over_info ();
30852783 2510 tp->control.trap_expected = 0;
31e77af2
PA
2511
2512 insert_breakpoints ();
30852783
UW
2513 }
2514
b0f16a3e
SM
2515 /* If STEP is set, it's a request to use hardware stepping
2516 facilities. But in that case, we should never
2517 use singlestep breakpoint. */
34b7e8a6 2518 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2519
fbea99ea 2520 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2521 if (tp->control.trap_expected)
b0f16a3e
SM
2522 {
2523 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2524 hit, either by single-stepping the thread with the breakpoint
2525 removed, or by displaced stepping, with the breakpoint inserted.
2526 In the former case, we need to single-step only this thread,
2527 and keep others stopped, as they can miss this breakpoint if
2528 allowed to run. That's not really a problem for displaced
2529 stepping, but, we still keep other threads stopped, in case
2530 another thread is also stopped for a breakpoint waiting for
2531 its turn in the displaced stepping queue. */
b0f16a3e
SM
2532 resume_ptid = inferior_ptid;
2533 }
fbea99ea
PA
2534 else
2535 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2536
7f5ef605
PA
2537 if (execution_direction != EXEC_REVERSE
2538 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2539 {
372316f1
PA
2540 /* There are two cases where we currently need to step a
2541 breakpoint instruction when we have a signal to deliver:
2542
2543 - See handle_signal_stop where we handle random signals that
2544 could take out us out of the stepping range. Normally, in
2545 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2546 signal handler with a breakpoint at PC, but there are cases
2547 where we should _always_ single-step, even if we have a
2548 step-resume breakpoint, like when a software watchpoint is
2549 set. Assuming single-stepping and delivering a signal at the
2550 same time would takes us to the signal handler, then we could
2551 have removed the breakpoint at PC to step over it. However,
2552 some hardware step targets (like e.g., Mac OS) can't step
2553 into signal handlers, and for those, we need to leave the
2554 breakpoint at PC inserted, as otherwise if the handler
2555 recurses and executes PC again, it'll miss the breakpoint.
2556 So we leave the breakpoint inserted anyway, but we need to
2557 record that we tried to step a breakpoint instruction, so
372316f1
PA
2558 that adjust_pc_after_break doesn't end up confused.
2559
2560 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2561 in one thread after another thread that was stepping had been
2562 momentarily paused for a step-over. When we re-resume the
2563 stepping thread, it may be resumed from that address with a
2564 breakpoint that hasn't trapped yet. Seen with
2565 gdb.threads/non-stop-fair-events.exp, on targets that don't
2566 do displaced stepping. */
2567
2568 if (debug_infrun)
2569 fprintf_unfiltered (gdb_stdlog,
2570 "infrun: resume: [%s] stepped breakpoint\n",
2571 target_pid_to_str (tp->ptid));
7f5ef605
PA
2572
2573 tp->stepped_breakpoint = 1;
2574
b0f16a3e
SM
2575 /* Most targets can step a breakpoint instruction, thus
2576 executing it normally. But if this one cannot, just
2577 continue and we will hit it anyway. */
7f5ef605 2578 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2579 step = 0;
2580 }
ef5cf84e 2581
b0f16a3e 2582 if (debug_displaced
cb71640d 2583 && tp->control.trap_expected
3fc8eb30 2584 && use_displaced_stepping (tp)
cb71640d 2585 && !step_over_info_valid_p ())
b0f16a3e 2586 {
00431a78 2587 struct regcache *resume_regcache = get_thread_regcache (tp);
ac7936df 2588 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2589 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2590 gdb_byte buf[4];
2591
2592 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2593 paddress (resume_gdbarch, actual_pc));
2594 read_memory (actual_pc, buf, sizeof (buf));
2595 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2596 }
237fc4c9 2597
b0f16a3e
SM
2598 if (tp->control.may_range_step)
2599 {
2600 /* If we're resuming a thread with the PC out of the step
2601 range, then we're doing some nested/finer run control
2602 operation, like stepping the thread out of the dynamic
2603 linker or the displaced stepping scratch pad. We
2604 shouldn't have allowed a range step then. */
2605 gdb_assert (pc_in_thread_step_range (pc, tp));
2606 }
c1e36e3e 2607
64ce06e4 2608 do_target_resume (resume_ptid, step, sig);
372316f1 2609 tp->resumed = 1;
c906108c 2610}
71d378ae
PA
2611
2612/* Resume the inferior. SIG is the signal to give the inferior
2613 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2614 rolls back state on error. */
2615
aff4e175 2616static void
71d378ae
PA
2617resume (gdb_signal sig)
2618{
2619 TRY
2620 {
2621 resume_1 (sig);
2622 }
2623 CATCH (ex, RETURN_MASK_ALL)
2624 {
2625 /* If resuming is being aborted for any reason, delete any
2626 single-step breakpoint resume_1 may have created, to avoid
2627 confusing the following resumption, and to avoid leaving
2628 single-step breakpoints perturbing other threads, in case
2629 we're running in non-stop mode. */
2630 if (inferior_ptid != null_ptid)
2631 delete_single_step_breakpoints (inferior_thread ());
2632 throw_exception (ex);
2633 }
2634 END_CATCH
2635}
2636
c906108c 2637\f
237fc4c9 2638/* Proceeding. */
c906108c 2639
4c2f2a79
PA
2640/* See infrun.h. */
2641
2642/* Counter that tracks number of user visible stops. This can be used
2643 to tell whether a command has proceeded the inferior past the
2644 current location. This allows e.g., inferior function calls in
2645 breakpoint commands to not interrupt the command list. When the
2646 call finishes successfully, the inferior is standing at the same
2647 breakpoint as if nothing happened (and so we don't call
2648 normal_stop). */
2649static ULONGEST current_stop_id;
2650
2651/* See infrun.h. */
2652
2653ULONGEST
2654get_stop_id (void)
2655{
2656 return current_stop_id;
2657}
2658
2659/* Called when we report a user visible stop. */
2660
2661static void
2662new_stop_id (void)
2663{
2664 current_stop_id++;
2665}
2666
c906108c
SS
2667/* Clear out all variables saying what to do when inferior is continued.
2668 First do this, then set the ones you want, then call `proceed'. */
2669
a7212384
UW
2670static void
2671clear_proceed_status_thread (struct thread_info *tp)
c906108c 2672{
a7212384
UW
2673 if (debug_infrun)
2674 fprintf_unfiltered (gdb_stdlog,
2675 "infrun: clear_proceed_status_thread (%s)\n",
2676 target_pid_to_str (tp->ptid));
d6b48e9c 2677
372316f1
PA
2678 /* If we're starting a new sequence, then the previous finished
2679 single-step is no longer relevant. */
2680 if (tp->suspend.waitstatus_pending_p)
2681 {
2682 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2683 {
2684 if (debug_infrun)
2685 fprintf_unfiltered (gdb_stdlog,
2686 "infrun: clear_proceed_status: pending "
2687 "event of %s was a finished step. "
2688 "Discarding.\n",
2689 target_pid_to_str (tp->ptid));
2690
2691 tp->suspend.waitstatus_pending_p = 0;
2692 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2693 }
2694 else if (debug_infrun)
2695 {
23fdd69e
SM
2696 std::string statstr
2697 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2698
372316f1
PA
2699 fprintf_unfiltered (gdb_stdlog,
2700 "infrun: clear_proceed_status_thread: thread %s "
2701 "has pending wait status %s "
2702 "(currently_stepping=%d).\n",
23fdd69e 2703 target_pid_to_str (tp->ptid), statstr.c_str (),
372316f1 2704 currently_stepping (tp));
372316f1
PA
2705 }
2706 }
2707
70509625
PA
2708 /* If this signal should not be seen by program, give it zero.
2709 Used for debugging signals. */
2710 if (!signal_pass_state (tp->suspend.stop_signal))
2711 tp->suspend.stop_signal = GDB_SIGNAL_0;
2712
46e3ed7f 2713 delete tp->thread_fsm;
243a9253
PA
2714 tp->thread_fsm = NULL;
2715
16c381f0
JK
2716 tp->control.trap_expected = 0;
2717 tp->control.step_range_start = 0;
2718 tp->control.step_range_end = 0;
c1e36e3e 2719 tp->control.may_range_step = 0;
16c381f0
JK
2720 tp->control.step_frame_id = null_frame_id;
2721 tp->control.step_stack_frame_id = null_frame_id;
2722 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2723 tp->control.step_start_function = NULL;
a7212384 2724 tp->stop_requested = 0;
4e1c45ea 2725
16c381f0 2726 tp->control.stop_step = 0;
32400beb 2727
16c381f0 2728 tp->control.proceed_to_finish = 0;
414c69f7 2729
856e7dd6 2730 tp->control.stepping_command = 0;
17b2616c 2731
a7212384 2732 /* Discard any remaining commands or status from previous stop. */
16c381f0 2733 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2734}
32400beb 2735
a7212384 2736void
70509625 2737clear_proceed_status (int step)
a7212384 2738{
f2665db5
MM
2739 /* With scheduler-locking replay, stop replaying other threads if we're
2740 not replaying the user-visible resume ptid.
2741
2742 This is a convenience feature to not require the user to explicitly
2743 stop replaying the other threads. We're assuming that the user's
2744 intent is to resume tracing the recorded process. */
2745 if (!non_stop && scheduler_mode == schedlock_replay
2746 && target_record_is_replaying (minus_one_ptid)
2747 && !target_record_will_replay (user_visible_resume_ptid (step),
2748 execution_direction))
2749 target_record_stop_replaying ();
2750
08036331 2751 if (!non_stop && inferior_ptid != null_ptid)
6c95b8df 2752 {
08036331 2753 ptid_t resume_ptid = user_visible_resume_ptid (step);
70509625
PA
2754
2755 /* In all-stop mode, delete the per-thread status of all threads
2756 we're about to resume, implicitly and explicitly. */
08036331
PA
2757 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2758 clear_proceed_status_thread (tp);
6c95b8df
PA
2759 }
2760
d7e15655 2761 if (inferior_ptid != null_ptid)
a7212384
UW
2762 {
2763 struct inferior *inferior;
2764
2765 if (non_stop)
2766 {
6c95b8df
PA
2767 /* If in non-stop mode, only delete the per-thread status of
2768 the current thread. */
a7212384
UW
2769 clear_proceed_status_thread (inferior_thread ());
2770 }
6c95b8df 2771
d6b48e9c 2772 inferior = current_inferior ();
16c381f0 2773 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2774 }
2775
76727919 2776 gdb::observers::about_to_proceed.notify ();
c906108c
SS
2777}
2778
99619bea
PA
2779/* Returns true if TP is still stopped at a breakpoint that needs
2780 stepping-over in order to make progress. If the breakpoint is gone
2781 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2782
2783static int
6c4cfb24 2784thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2785{
2786 if (tp->stepping_over_breakpoint)
2787 {
00431a78 2788 struct regcache *regcache = get_thread_regcache (tp);
99619bea 2789
a01bda52 2790 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2791 regcache_read_pc (regcache))
2792 == ordinary_breakpoint_here)
99619bea
PA
2793 return 1;
2794
2795 tp->stepping_over_breakpoint = 0;
2796 }
2797
2798 return 0;
2799}
2800
6c4cfb24
PA
2801/* Check whether thread TP still needs to start a step-over in order
2802 to make progress when resumed. Returns an bitwise or of enum
2803 step_over_what bits, indicating what needs to be stepped over. */
2804
8d297bbf 2805static step_over_what
6c4cfb24
PA
2806thread_still_needs_step_over (struct thread_info *tp)
2807{
8d297bbf 2808 step_over_what what = 0;
6c4cfb24
PA
2809
2810 if (thread_still_needs_step_over_bp (tp))
2811 what |= STEP_OVER_BREAKPOINT;
2812
2813 if (tp->stepping_over_watchpoint
2814 && !target_have_steppable_watchpoint)
2815 what |= STEP_OVER_WATCHPOINT;
2816
2817 return what;
2818}
2819
483805cf
PA
2820/* Returns true if scheduler locking applies. STEP indicates whether
2821 we're about to do a step/next-like command to a thread. */
2822
2823static int
856e7dd6 2824schedlock_applies (struct thread_info *tp)
483805cf
PA
2825{
2826 return (scheduler_mode == schedlock_on
2827 || (scheduler_mode == schedlock_step
f2665db5
MM
2828 && tp->control.stepping_command)
2829 || (scheduler_mode == schedlock_replay
2830 && target_record_will_replay (minus_one_ptid,
2831 execution_direction)));
483805cf
PA
2832}
2833
c906108c
SS
2834/* Basic routine for continuing the program in various fashions.
2835
2836 ADDR is the address to resume at, or -1 for resume where stopped.
aff4e175
AB
2837 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2838 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
c906108c
SS
2839
2840 You should call clear_proceed_status before calling proceed. */
2841
2842void
64ce06e4 2843proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2844{
e58b0e63
PA
2845 struct regcache *regcache;
2846 struct gdbarch *gdbarch;
e58b0e63 2847 CORE_ADDR pc;
4d9d9d04
PA
2848 ptid_t resume_ptid;
2849 struct execution_control_state ecss;
2850 struct execution_control_state *ecs = &ecss;
4d9d9d04 2851 int started;
c906108c 2852
e58b0e63
PA
2853 /* If we're stopped at a fork/vfork, follow the branch set by the
2854 "set follow-fork-mode" command; otherwise, we'll just proceed
2855 resuming the current thread. */
2856 if (!follow_fork ())
2857 {
2858 /* The target for some reason decided not to resume. */
2859 normal_stop ();
f148b27e
PA
2860 if (target_can_async_p ())
2861 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2862 return;
2863 }
2864
842951eb
PA
2865 /* We'll update this if & when we switch to a new thread. */
2866 previous_inferior_ptid = inferior_ptid;
2867
e58b0e63 2868 regcache = get_current_regcache ();
ac7936df 2869 gdbarch = regcache->arch ();
8b86c959
YQ
2870 const address_space *aspace = regcache->aspace ();
2871
e58b0e63 2872 pc = regcache_read_pc (regcache);
08036331 2873 thread_info *cur_thr = inferior_thread ();
e58b0e63 2874
99619bea 2875 /* Fill in with reasonable starting values. */
08036331 2876 init_thread_stepping_state (cur_thr);
99619bea 2877
08036331 2878 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
c2829269 2879
2acceee2 2880 if (addr == (CORE_ADDR) -1)
c906108c 2881 {
08036331 2882 if (pc == cur_thr->suspend.stop_pc
af48d08f 2883 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 2884 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2885 /* There is a breakpoint at the address we will resume at,
2886 step one instruction before inserting breakpoints so that
2887 we do not stop right away (and report a second hit at this
b2175913
MS
2888 breakpoint).
2889
2890 Note, we don't do this in reverse, because we won't
2891 actually be executing the breakpoint insn anyway.
2892 We'll be (un-)executing the previous instruction. */
08036331 2893 cur_thr->stepping_over_breakpoint = 1;
515630c5
UW
2894 else if (gdbarch_single_step_through_delay_p (gdbarch)
2895 && gdbarch_single_step_through_delay (gdbarch,
2896 get_current_frame ()))
3352ef37
AC
2897 /* We stepped onto an instruction that needs to be stepped
2898 again before re-inserting the breakpoint, do so. */
08036331 2899 cur_thr->stepping_over_breakpoint = 1;
c906108c
SS
2900 }
2901 else
2902 {
515630c5 2903 regcache_write_pc (regcache, addr);
c906108c
SS
2904 }
2905
70509625 2906 if (siggnal != GDB_SIGNAL_DEFAULT)
08036331 2907 cur_thr->suspend.stop_signal = siggnal;
70509625 2908
08036331 2909 resume_ptid = user_visible_resume_ptid (cur_thr->control.stepping_command);
4d9d9d04
PA
2910
2911 /* If an exception is thrown from this point on, make sure to
2912 propagate GDB's knowledge of the executing state to the
2913 frontend/user running state. */
731f534f 2914 scoped_finish_thread_state finish_state (resume_ptid);
4d9d9d04
PA
2915
2916 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2917 threads (e.g., we might need to set threads stepping over
2918 breakpoints first), from the user/frontend's point of view, all
2919 threads in RESUME_PTID are now running. Unless we're calling an
2920 inferior function, as in that case we pretend the inferior
2921 doesn't run at all. */
08036331 2922 if (!cur_thr->control.in_infcall)
4d9d9d04 2923 set_running (resume_ptid, 1);
17b2616c 2924
527159b7 2925 if (debug_infrun)
8a9de0e4 2926 fprintf_unfiltered (gdb_stdlog,
64ce06e4 2927 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 2928 paddress (gdbarch, addr),
64ce06e4 2929 gdb_signal_to_symbol_string (siggnal));
527159b7 2930
4d9d9d04
PA
2931 annotate_starting ();
2932
2933 /* Make sure that output from GDB appears before output from the
2934 inferior. */
2935 gdb_flush (gdb_stdout);
2936
d930703d
PA
2937 /* Since we've marked the inferior running, give it the terminal. A
2938 QUIT/Ctrl-C from here on is forwarded to the target (which can
2939 still detect attempts to unblock a stuck connection with repeated
2940 Ctrl-C from within target_pass_ctrlc). */
2941 target_terminal::inferior ();
2942
4d9d9d04
PA
2943 /* In a multi-threaded task we may select another thread and
2944 then continue or step.
2945
2946 But if a thread that we're resuming had stopped at a breakpoint,
2947 it will immediately cause another breakpoint stop without any
2948 execution (i.e. it will report a breakpoint hit incorrectly). So
2949 we must step over it first.
2950
2951 Look for threads other than the current (TP) that reported a
2952 breakpoint hit and haven't been resumed yet since. */
2953
2954 /* If scheduler locking applies, we can avoid iterating over all
2955 threads. */
08036331 2956 if (!non_stop && !schedlock_applies (cur_thr))
94cc34af 2957 {
08036331
PA
2958 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2959 {
4d9d9d04
PA
2960 /* Ignore the current thread here. It's handled
2961 afterwards. */
08036331 2962 if (tp == cur_thr)
4d9d9d04 2963 continue;
c906108c 2964
4d9d9d04
PA
2965 if (!thread_still_needs_step_over (tp))
2966 continue;
2967
2968 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 2969
99619bea
PA
2970 if (debug_infrun)
2971 fprintf_unfiltered (gdb_stdlog,
2972 "infrun: need to step-over [%s] first\n",
4d9d9d04 2973 target_pid_to_str (tp->ptid));
99619bea 2974
4d9d9d04 2975 thread_step_over_chain_enqueue (tp);
2adfaa28 2976 }
30852783
UW
2977 }
2978
4d9d9d04
PA
2979 /* Enqueue the current thread last, so that we move all other
2980 threads over their breakpoints first. */
08036331
PA
2981 if (cur_thr->stepping_over_breakpoint)
2982 thread_step_over_chain_enqueue (cur_thr);
30852783 2983
4d9d9d04
PA
2984 /* If the thread isn't started, we'll still need to set its prev_pc,
2985 so that switch_back_to_stepped_thread knows the thread hasn't
2986 advanced. Must do this before resuming any thread, as in
2987 all-stop/remote, once we resume we can't send any other packet
2988 until the target stops again. */
08036331 2989 cur_thr->prev_pc = regcache_read_pc (regcache);
99619bea 2990
a9bc57b9
TT
2991 {
2992 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
85ad3aaf 2993
a9bc57b9 2994 started = start_step_over ();
c906108c 2995
a9bc57b9
TT
2996 if (step_over_info_valid_p ())
2997 {
2998 /* Either this thread started a new in-line step over, or some
2999 other thread was already doing one. In either case, don't
3000 resume anything else until the step-over is finished. */
3001 }
3002 else if (started && !target_is_non_stop_p ())
3003 {
3004 /* A new displaced stepping sequence was started. In all-stop,
3005 we can't talk to the target anymore until it next stops. */
3006 }
3007 else if (!non_stop && target_is_non_stop_p ())
3008 {
3009 /* In all-stop, but the target is always in non-stop mode.
3010 Start all other threads that are implicitly resumed too. */
08036331 3011 for (thread_info *tp : all_non_exited_threads (resume_ptid))
fbea99ea 3012 {
fbea99ea
PA
3013 if (tp->resumed)
3014 {
3015 if (debug_infrun)
3016 fprintf_unfiltered (gdb_stdlog,
3017 "infrun: proceed: [%s] resumed\n",
3018 target_pid_to_str (tp->ptid));
3019 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3020 continue;
3021 }
3022
3023 if (thread_is_in_step_over_chain (tp))
3024 {
3025 if (debug_infrun)
3026 fprintf_unfiltered (gdb_stdlog,
3027 "infrun: proceed: [%s] needs step-over\n",
3028 target_pid_to_str (tp->ptid));
3029 continue;
3030 }
3031
3032 if (debug_infrun)
3033 fprintf_unfiltered (gdb_stdlog,
3034 "infrun: proceed: resuming %s\n",
3035 target_pid_to_str (tp->ptid));
3036
3037 reset_ecs (ecs, tp);
00431a78 3038 switch_to_thread (tp);
fbea99ea
PA
3039 keep_going_pass_signal (ecs);
3040 if (!ecs->wait_some_more)
fd7dcb94 3041 error (_("Command aborted."));
fbea99ea 3042 }
a9bc57b9 3043 }
08036331 3044 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
a9bc57b9
TT
3045 {
3046 /* The thread wasn't started, and isn't queued, run it now. */
08036331
PA
3047 reset_ecs (ecs, cur_thr);
3048 switch_to_thread (cur_thr);
a9bc57b9
TT
3049 keep_going_pass_signal (ecs);
3050 if (!ecs->wait_some_more)
3051 error (_("Command aborted."));
3052 }
3053 }
c906108c 3054
85ad3aaf
PA
3055 target_commit_resume ();
3056
731f534f 3057 finish_state.release ();
c906108c 3058
0b333c5e
PA
3059 /* Tell the event loop to wait for it to stop. If the target
3060 supports asynchronous execution, it'll do this from within
3061 target_resume. */
362646f5 3062 if (!target_can_async_p ())
0b333c5e 3063 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3064}
c906108c
SS
3065\f
3066
3067/* Start remote-debugging of a machine over a serial link. */
96baa820 3068
c906108c 3069void
8621d6a9 3070start_remote (int from_tty)
c906108c 3071{
d6b48e9c 3072 struct inferior *inferior;
d6b48e9c
PA
3073
3074 inferior = current_inferior ();
16c381f0 3075 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3076
1777feb0 3077 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3078 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3079 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3080 nothing is returned (instead of just blocking). Because of this,
3081 targets expecting an immediate response need to, internally, set
3082 things up so that the target_wait() is forced to eventually
1777feb0 3083 timeout. */
6426a772
JM
3084 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3085 differentiate to its caller what the state of the target is after
3086 the initial open has been performed. Here we're assuming that
3087 the target has stopped. It should be possible to eventually have
3088 target_open() return to the caller an indication that the target
3089 is currently running and GDB state should be set to the same as
1777feb0 3090 for an async run. */
e4c8541f 3091 wait_for_inferior ();
8621d6a9
DJ
3092
3093 /* Now that the inferior has stopped, do any bookkeeping like
3094 loading shared libraries. We want to do this before normal_stop,
3095 so that the displayed frame is up to date. */
8b88a78e 3096 post_create_inferior (current_top_target (), from_tty);
8621d6a9 3097
6426a772 3098 normal_stop ();
c906108c
SS
3099}
3100
3101/* Initialize static vars when a new inferior begins. */
3102
3103void
96baa820 3104init_wait_for_inferior (void)
c906108c
SS
3105{
3106 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3107
c906108c
SS
3108 breakpoint_init_inferior (inf_starting);
3109
70509625 3110 clear_proceed_status (0);
9f976b41 3111
ca005067 3112 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3113
842951eb 3114 previous_inferior_ptid = inferior_ptid;
c906108c 3115}
237fc4c9 3116
c906108c 3117\f
488f131b 3118
ec9499be 3119static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3120
568d6575
UW
3121static void handle_step_into_function (struct gdbarch *gdbarch,
3122 struct execution_control_state *ecs);
3123static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3124 struct execution_control_state *ecs);
4f5d7f63 3125static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3126static void check_exception_resume (struct execution_control_state *,
28106bc2 3127 struct frame_info *);
611c83ae 3128
bdc36728 3129static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3130static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3131static void keep_going (struct execution_control_state *ecs);
94c57d6a 3132static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3133static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3134
252fbfc8
PA
3135/* This function is attached as a "thread_stop_requested" observer.
3136 Cleanup local state that assumed the PTID was to be resumed, and
3137 report the stop to the frontend. */
3138
2c0b251b 3139static void
252fbfc8
PA
3140infrun_thread_stop_requested (ptid_t ptid)
3141{
c65d6b55
PA
3142 /* PTID was requested to stop. If the thread was already stopped,
3143 but the user/frontend doesn't know about that yet (e.g., the
3144 thread had been temporarily paused for some step-over), set up
3145 for reporting the stop now. */
08036331
PA
3146 for (thread_info *tp : all_threads (ptid))
3147 {
3148 if (tp->state != THREAD_RUNNING)
3149 continue;
3150 if (tp->executing)
3151 continue;
c65d6b55 3152
08036331
PA
3153 /* Remove matching threads from the step-over queue, so
3154 start_step_over doesn't try to resume them
3155 automatically. */
3156 if (thread_is_in_step_over_chain (tp))
3157 thread_step_over_chain_remove (tp);
c65d6b55 3158
08036331
PA
3159 /* If the thread is stopped, but the user/frontend doesn't
3160 know about that yet, queue a pending event, as if the
3161 thread had just stopped now. Unless the thread already had
3162 a pending event. */
3163 if (!tp->suspend.waitstatus_pending_p)
3164 {
3165 tp->suspend.waitstatus_pending_p = 1;
3166 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3167 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3168 }
c65d6b55 3169
08036331
PA
3170 /* Clear the inline-frame state, since we're re-processing the
3171 stop. */
3172 clear_inline_frame_state (tp->ptid);
c65d6b55 3173
08036331
PA
3174 /* If this thread was paused because some other thread was
3175 doing an inline-step over, let that finish first. Once
3176 that happens, we'll restart all threads and consume pending
3177 stop events then. */
3178 if (step_over_info_valid_p ())
3179 continue;
3180
3181 /* Otherwise we can process the (new) pending event now. Set
3182 it so this pending event is considered by
3183 do_target_wait. */
3184 tp->resumed = 1;
3185 }
252fbfc8
PA
3186}
3187
a07daef3
PA
3188static void
3189infrun_thread_thread_exit (struct thread_info *tp, int silent)
3190{
d7e15655 3191 if (target_last_wait_ptid == tp->ptid)
a07daef3
PA
3192 nullify_last_target_wait_ptid ();
3193}
3194
0cbcdb96
PA
3195/* Delete the step resume, single-step and longjmp/exception resume
3196 breakpoints of TP. */
4e1c45ea 3197
0cbcdb96
PA
3198static void
3199delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3200{
0cbcdb96
PA
3201 delete_step_resume_breakpoint (tp);
3202 delete_exception_resume_breakpoint (tp);
34b7e8a6 3203 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3204}
3205
0cbcdb96
PA
3206/* If the target still has execution, call FUNC for each thread that
3207 just stopped. In all-stop, that's all the non-exited threads; in
3208 non-stop, that's the current thread, only. */
3209
3210typedef void (*for_each_just_stopped_thread_callback_func)
3211 (struct thread_info *tp);
4e1c45ea
PA
3212
3213static void
0cbcdb96 3214for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3215{
d7e15655 3216 if (!target_has_execution || inferior_ptid == null_ptid)
4e1c45ea
PA
3217 return;
3218
fbea99ea 3219 if (target_is_non_stop_p ())
4e1c45ea 3220 {
0cbcdb96
PA
3221 /* If in non-stop mode, only the current thread stopped. */
3222 func (inferior_thread ());
4e1c45ea
PA
3223 }
3224 else
0cbcdb96 3225 {
0cbcdb96 3226 /* In all-stop mode, all threads have stopped. */
08036331
PA
3227 for (thread_info *tp : all_non_exited_threads ())
3228 func (tp);
0cbcdb96
PA
3229 }
3230}
3231
3232/* Delete the step resume and longjmp/exception resume breakpoints of
3233 the threads that just stopped. */
3234
3235static void
3236delete_just_stopped_threads_infrun_breakpoints (void)
3237{
3238 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3239}
3240
3241/* Delete the single-step breakpoints of the threads that just
3242 stopped. */
7c16b83e 3243
34b7e8a6
PA
3244static void
3245delete_just_stopped_threads_single_step_breakpoints (void)
3246{
3247 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3248}
3249
221e1a37 3250/* See infrun.h. */
223698f8 3251
221e1a37 3252void
223698f8
DE
3253print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3254 const struct target_waitstatus *ws)
3255{
23fdd69e 3256 std::string status_string = target_waitstatus_to_string (ws);
d7e74731 3257 string_file stb;
223698f8
DE
3258
3259 /* The text is split over several lines because it was getting too long.
3260 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3261 output as a unit; we want only one timestamp printed if debug_timestamp
3262 is set. */
3263
d7e74731 3264 stb.printf ("infrun: target_wait (%d.%ld.%ld",
e99b03dc 3265 waiton_ptid.pid (),
e38504b3 3266 waiton_ptid.lwp (),
cc6bcb54 3267 waiton_ptid.tid ());
e99b03dc 3268 if (waiton_ptid.pid () != -1)
d7e74731
PA
3269 stb.printf (" [%s]", target_pid_to_str (waiton_ptid));
3270 stb.printf (", status) =\n");
3271 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
e99b03dc 3272 result_ptid.pid (),
e38504b3 3273 result_ptid.lwp (),
cc6bcb54 3274 result_ptid.tid (),
d7e74731 3275 target_pid_to_str (result_ptid));
23fdd69e 3276 stb.printf ("infrun: %s\n", status_string.c_str ());
223698f8
DE
3277
3278 /* This uses %s in part to handle %'s in the text, but also to avoid
3279 a gcc error: the format attribute requires a string literal. */
d7e74731 3280 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3281}
3282
372316f1
PA
3283/* Select a thread at random, out of those which are resumed and have
3284 had events. */
3285
3286static struct thread_info *
3287random_pending_event_thread (ptid_t waiton_ptid)
3288{
372316f1 3289 int num_events = 0;
08036331
PA
3290
3291 auto has_event = [] (thread_info *tp)
3292 {
3293 return (tp->resumed
3294 && tp->suspend.waitstatus_pending_p);
3295 };
372316f1
PA
3296
3297 /* First see how many events we have. Count only resumed threads
3298 that have an event pending. */
08036331
PA
3299 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3300 if (has_event (tp))
372316f1
PA
3301 num_events++;
3302
3303 if (num_events == 0)
3304 return NULL;
3305
3306 /* Now randomly pick a thread out of those that have had events. */
08036331
PA
3307 int random_selector = (int) ((num_events * (double) rand ())
3308 / (RAND_MAX + 1.0));
372316f1
PA
3309
3310 if (debug_infrun && num_events > 1)
3311 fprintf_unfiltered (gdb_stdlog,
3312 "infrun: Found %d events, selecting #%d\n",
3313 num_events, random_selector);
3314
3315 /* Select the Nth thread that has had an event. */
08036331
PA
3316 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3317 if (has_event (tp))
372316f1 3318 if (random_selector-- == 0)
08036331 3319 return tp;
372316f1 3320
08036331 3321 gdb_assert_not_reached ("event thread not found");
372316f1
PA
3322}
3323
3324/* Wrapper for target_wait that first checks whether threads have
3325 pending statuses to report before actually asking the target for
3326 more events. */
3327
3328static ptid_t
3329do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3330{
3331 ptid_t event_ptid;
3332 struct thread_info *tp;
3333
3334 /* First check if there is a resumed thread with a wait status
3335 pending. */
d7e15655 3336 if (ptid == minus_one_ptid || ptid.is_pid ())
372316f1
PA
3337 {
3338 tp = random_pending_event_thread (ptid);
3339 }
3340 else
3341 {
3342 if (debug_infrun)
3343 fprintf_unfiltered (gdb_stdlog,
3344 "infrun: Waiting for specific thread %s.\n",
3345 target_pid_to_str (ptid));
3346
3347 /* We have a specific thread to check. */
3348 tp = find_thread_ptid (ptid);
3349 gdb_assert (tp != NULL);
3350 if (!tp->suspend.waitstatus_pending_p)
3351 tp = NULL;
3352 }
3353
3354 if (tp != NULL
3355 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3356 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3357 {
00431a78 3358 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 3359 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3360 CORE_ADDR pc;
3361 int discard = 0;
3362
3363 pc = regcache_read_pc (regcache);
3364
3365 if (pc != tp->suspend.stop_pc)
3366 {
3367 if (debug_infrun)
3368 fprintf_unfiltered (gdb_stdlog,
3369 "infrun: PC of %s changed. was=%s, now=%s\n",
3370 target_pid_to_str (tp->ptid),
defd2172 3371 paddress (gdbarch, tp->suspend.stop_pc),
372316f1
PA
3372 paddress (gdbarch, pc));
3373 discard = 1;
3374 }
a01bda52 3375 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1
PA
3376 {
3377 if (debug_infrun)
3378 fprintf_unfiltered (gdb_stdlog,
3379 "infrun: previous breakpoint of %s, at %s gone\n",
3380 target_pid_to_str (tp->ptid),
3381 paddress (gdbarch, pc));
3382
3383 discard = 1;
3384 }
3385
3386 if (discard)
3387 {
3388 if (debug_infrun)
3389 fprintf_unfiltered (gdb_stdlog,
3390 "infrun: pending event of %s cancelled.\n",
3391 target_pid_to_str (tp->ptid));
3392
3393 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3394 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3395 }
3396 }
3397
3398 if (tp != NULL)
3399 {
3400 if (debug_infrun)
3401 {
23fdd69e
SM
3402 std::string statstr
3403 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 3404
372316f1
PA
3405 fprintf_unfiltered (gdb_stdlog,
3406 "infrun: Using pending wait status %s for %s.\n",
23fdd69e 3407 statstr.c_str (),
372316f1 3408 target_pid_to_str (tp->ptid));
372316f1
PA
3409 }
3410
3411 /* Now that we've selected our final event LWP, un-adjust its PC
3412 if it was a software breakpoint (and the target doesn't
3413 always adjust the PC itself). */
3414 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3415 && !target_supports_stopped_by_sw_breakpoint ())
3416 {
3417 struct regcache *regcache;
3418 struct gdbarch *gdbarch;
3419 int decr_pc;
3420
00431a78 3421 regcache = get_thread_regcache (tp);
ac7936df 3422 gdbarch = regcache->arch ();
372316f1
PA
3423
3424 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3425 if (decr_pc != 0)
3426 {
3427 CORE_ADDR pc;
3428
3429 pc = regcache_read_pc (regcache);
3430 regcache_write_pc (regcache, pc + decr_pc);
3431 }
3432 }
3433
3434 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3435 *status = tp->suspend.waitstatus;
3436 tp->suspend.waitstatus_pending_p = 0;
3437
3438 /* Wake up the event loop again, until all pending events are
3439 processed. */
3440 if (target_is_async_p ())
3441 mark_async_event_handler (infrun_async_inferior_event_token);
3442 return tp->ptid;
3443 }
3444
3445 /* But if we don't find one, we'll have to wait. */
3446
3447 if (deprecated_target_wait_hook)
3448 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3449 else
3450 event_ptid = target_wait (ptid, status, options);
3451
3452 return event_ptid;
3453}
3454
24291992
PA
3455/* Prepare and stabilize the inferior for detaching it. E.g.,
3456 detaching while a thread is displaced stepping is a recipe for
3457 crashing it, as nothing would readjust the PC out of the scratch
3458 pad. */
3459
3460void
3461prepare_for_detach (void)
3462{
3463 struct inferior *inf = current_inferior ();
f2907e49 3464 ptid_t pid_ptid = ptid_t (inf->pid);
24291992 3465
00431a78 3466 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
24291992
PA
3467
3468 /* Is any thread of this process displaced stepping? If not,
3469 there's nothing else to do. */
d20172fc 3470 if (displaced->step_thread == nullptr)
24291992
PA
3471 return;
3472
3473 if (debug_infrun)
3474 fprintf_unfiltered (gdb_stdlog,
3475 "displaced-stepping in-process while detaching");
3476
9bcb1f16 3477 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992 3478
00431a78 3479 while (displaced->step_thread != nullptr)
24291992 3480 {
24291992
PA
3481 struct execution_control_state ecss;
3482 struct execution_control_state *ecs;
3483
3484 ecs = &ecss;
3485 memset (ecs, 0, sizeof (*ecs));
3486
3487 overlay_cache_invalid = 1;
f15cb84a
YQ
3488 /* Flush target cache before starting to handle each event.
3489 Target was running and cache could be stale. This is just a
3490 heuristic. Running threads may modify target memory, but we
3491 don't get any event. */
3492 target_dcache_invalidate ();
24291992 3493
372316f1 3494 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3495
3496 if (debug_infrun)
3497 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3498
3499 /* If an error happens while handling the event, propagate GDB's
3500 knowledge of the executing state to the frontend/user running
3501 state. */
731f534f 3502 scoped_finish_thread_state finish_state (minus_one_ptid);
24291992
PA
3503
3504 /* Now figure out what to do with the result of the result. */
3505 handle_inferior_event (ecs);
3506
3507 /* No error, don't finish the state yet. */
731f534f 3508 finish_state.release ();
24291992
PA
3509
3510 /* Breakpoints and watchpoints are not installed on the target
3511 at this point, and signals are passed directly to the
3512 inferior, so this must mean the process is gone. */
3513 if (!ecs->wait_some_more)
3514 {
9bcb1f16 3515 restore_detaching.release ();
24291992
PA
3516 error (_("Program exited while detaching"));
3517 }
3518 }
3519
9bcb1f16 3520 restore_detaching.release ();
24291992
PA
3521}
3522
cd0fc7c3 3523/* Wait for control to return from inferior to debugger.
ae123ec6 3524
cd0fc7c3
SS
3525 If inferior gets a signal, we may decide to start it up again
3526 instead of returning. That is why there is a loop in this function.
3527 When this function actually returns it means the inferior
3528 should be left stopped and GDB should read more commands. */
3529
3530void
e4c8541f 3531wait_for_inferior (void)
cd0fc7c3 3532{
527159b7 3533 if (debug_infrun)
ae123ec6 3534 fprintf_unfiltered
e4c8541f 3535 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3536
4c41382a 3537 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
cd0fc7c3 3538
e6f5c25b
PA
3539 /* If an error happens while handling the event, propagate GDB's
3540 knowledge of the executing state to the frontend/user running
3541 state. */
731f534f 3542 scoped_finish_thread_state finish_state (minus_one_ptid);
e6f5c25b 3543
c906108c
SS
3544 while (1)
3545 {
ae25568b
PA
3546 struct execution_control_state ecss;
3547 struct execution_control_state *ecs = &ecss;
963f9c80 3548 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3549
ae25568b
PA
3550 memset (ecs, 0, sizeof (*ecs));
3551
ec9499be 3552 overlay_cache_invalid = 1;
ec9499be 3553
f15cb84a
YQ
3554 /* Flush target cache before starting to handle each event.
3555 Target was running and cache could be stale. This is just a
3556 heuristic. Running threads may modify target memory, but we
3557 don't get any event. */
3558 target_dcache_invalidate ();
3559
372316f1 3560 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3561
f00150c9 3562 if (debug_infrun)
223698f8 3563 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3564
cd0fc7c3
SS
3565 /* Now figure out what to do with the result of the result. */
3566 handle_inferior_event (ecs);
c906108c 3567
cd0fc7c3
SS
3568 if (!ecs->wait_some_more)
3569 break;
3570 }
4e1c45ea 3571
e6f5c25b 3572 /* No error, don't finish the state yet. */
731f534f 3573 finish_state.release ();
cd0fc7c3 3574}
c906108c 3575
d3d4baed
PA
3576/* Cleanup that reinstalls the readline callback handler, if the
3577 target is running in the background. If while handling the target
3578 event something triggered a secondary prompt, like e.g., a
3579 pagination prompt, we'll have removed the callback handler (see
3580 gdb_readline_wrapper_line). Need to do this as we go back to the
3581 event loop, ready to process further input. Note this has no
3582 effect if the handler hasn't actually been removed, because calling
3583 rl_callback_handler_install resets the line buffer, thus losing
3584 input. */
3585
3586static void
d238133d 3587reinstall_readline_callback_handler_cleanup ()
d3d4baed 3588{
3b12939d
PA
3589 struct ui *ui = current_ui;
3590
3591 if (!ui->async)
6c400b59
PA
3592 {
3593 /* We're not going back to the top level event loop yet. Don't
3594 install the readline callback, as it'd prep the terminal,
3595 readline-style (raw, noecho) (e.g., --batch). We'll install
3596 it the next time the prompt is displayed, when we're ready
3597 for input. */
3598 return;
3599 }
3600
3b12939d 3601 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3602 gdb_rl_callback_handler_reinstall ();
3603}
3604
243a9253
PA
3605/* Clean up the FSMs of threads that are now stopped. In non-stop,
3606 that's just the event thread. In all-stop, that's all threads. */
3607
3608static void
3609clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3610{
08036331
PA
3611 if (ecs->event_thread != NULL
3612 && ecs->event_thread->thread_fsm != NULL)
46e3ed7f 3613 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
243a9253
PA
3614
3615 if (!non_stop)
3616 {
08036331 3617 for (thread_info *thr : all_non_exited_threads ())
243a9253
PA
3618 {
3619 if (thr->thread_fsm == NULL)
3620 continue;
3621 if (thr == ecs->event_thread)
3622 continue;
3623
00431a78 3624 switch_to_thread (thr);
46e3ed7f 3625 thr->thread_fsm->clean_up (thr);
243a9253
PA
3626 }
3627
3628 if (ecs->event_thread != NULL)
00431a78 3629 switch_to_thread (ecs->event_thread);
243a9253
PA
3630 }
3631}
3632
3b12939d
PA
3633/* Helper for all_uis_check_sync_execution_done that works on the
3634 current UI. */
3635
3636static void
3637check_curr_ui_sync_execution_done (void)
3638{
3639 struct ui *ui = current_ui;
3640
3641 if (ui->prompt_state == PROMPT_NEEDED
3642 && ui->async
3643 && !gdb_in_secondary_prompt_p (ui))
3644 {
223ffa71 3645 target_terminal::ours ();
76727919 3646 gdb::observers::sync_execution_done.notify ();
3eb7562a 3647 ui_register_input_event_handler (ui);
3b12939d
PA
3648 }
3649}
3650
3651/* See infrun.h. */
3652
3653void
3654all_uis_check_sync_execution_done (void)
3655{
0e454242 3656 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3657 {
3658 check_curr_ui_sync_execution_done ();
3659 }
3660}
3661
a8836c93
PA
3662/* See infrun.h. */
3663
3664void
3665all_uis_on_sync_execution_starting (void)
3666{
0e454242 3667 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3668 {
3669 if (current_ui->prompt_state == PROMPT_NEEDED)
3670 async_disable_stdin ();
3671 }
3672}
3673
1777feb0 3674/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3675 event loop whenever a change of state is detected on the file
1777feb0
MS
3676 descriptor corresponding to the target. It can be called more than
3677 once to complete a single execution command. In such cases we need
3678 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3679 that this function is called for a single execution command, then
3680 report to the user that the inferior has stopped, and do the
1777feb0 3681 necessary cleanups. */
43ff13b4
JM
3682
3683void
fba45db2 3684fetch_inferior_event (void *client_data)
43ff13b4 3685{
0d1e5fa7 3686 struct execution_control_state ecss;
a474d7c2 3687 struct execution_control_state *ecs = &ecss;
0f641c01 3688 int cmd_done = 0;
963f9c80 3689 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3690
0d1e5fa7
PA
3691 memset (ecs, 0, sizeof (*ecs));
3692
c61db772
PA
3693 /* Events are always processed with the main UI as current UI. This
3694 way, warnings, debug output, etc. are always consistently sent to
3695 the main console. */
4b6749b9 3696 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3697
d3d4baed 3698 /* End up with readline processing input, if necessary. */
d238133d
TT
3699 {
3700 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3701
3702 /* We're handling a live event, so make sure we're doing live
3703 debugging. If we're looking at traceframes while the target is
3704 running, we're going to need to get back to that mode after
3705 handling the event. */
3706 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3707 if (non_stop)
3708 {
3709 maybe_restore_traceframe.emplace ();
3710 set_current_traceframe (-1);
3711 }
43ff13b4 3712
d238133d
TT
3713 gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3714
3715 if (non_stop)
3716 /* In non-stop mode, the user/frontend should not notice a thread
3717 switch due to internal events. Make sure we reverse to the
3718 user selected thread and frame after handling the event and
3719 running any breakpoint commands. */
3720 maybe_restore_thread.emplace ();
3721
3722 overlay_cache_invalid = 1;
3723 /* Flush target cache before starting to handle each event. Target
3724 was running and cache could be stale. This is just a heuristic.
3725 Running threads may modify target memory, but we don't get any
3726 event. */
3727 target_dcache_invalidate ();
3728
3729 scoped_restore save_exec_dir
3730 = make_scoped_restore (&execution_direction,
3731 target_execution_direction ());
3732
3733 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3734 target_can_async_p () ? TARGET_WNOHANG : 0);
3735
3736 if (debug_infrun)
3737 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3738
3739 /* If an error happens while handling the event, propagate GDB's
3740 knowledge of the executing state to the frontend/user running
3741 state. */
3742 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3743 scoped_finish_thread_state finish_state (finish_ptid);
3744
979a0d13 3745 /* Get executed before scoped_restore_current_thread above to apply
d238133d
TT
3746 still for the thread which has thrown the exception. */
3747 auto defer_bpstat_clear
3748 = make_scope_exit (bpstat_clear_actions);
3749 auto defer_delete_threads
3750 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3751
3752 /* Now figure out what to do with the result of the result. */
3753 handle_inferior_event (ecs);
3754
3755 if (!ecs->wait_some_more)
3756 {
3757 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3758 int should_stop = 1;
3759 struct thread_info *thr = ecs->event_thread;
d6b48e9c 3760
d238133d 3761 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3762
d238133d
TT
3763 if (thr != NULL)
3764 {
3765 struct thread_fsm *thread_fsm = thr->thread_fsm;
243a9253 3766
d238133d 3767 if (thread_fsm != NULL)
46e3ed7f 3768 should_stop = thread_fsm->should_stop (thr);
d238133d 3769 }
243a9253 3770
d238133d
TT
3771 if (!should_stop)
3772 {
3773 keep_going (ecs);
3774 }
3775 else
3776 {
46e3ed7f 3777 bool should_notify_stop = true;
d238133d 3778 int proceeded = 0;
1840d81a 3779
d238133d 3780 clean_up_just_stopped_threads_fsms (ecs);
243a9253 3781
d238133d 3782 if (thr != NULL && thr->thread_fsm != NULL)
46e3ed7f 3783 should_notify_stop = thr->thread_fsm->should_notify_stop ();
388a7084 3784
d238133d
TT
3785 if (should_notify_stop)
3786 {
3787 /* We may not find an inferior if this was a process exit. */
3788 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3789 proceeded = normal_stop ();
3790 }
243a9253 3791
d238133d
TT
3792 if (!proceeded)
3793 {
3794 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3795 cmd_done = 1;
3796 }
3797 }
3798 }
4f8d22e3 3799
d238133d
TT
3800 defer_delete_threads.release ();
3801 defer_bpstat_clear.release ();
29f49a6a 3802
d238133d
TT
3803 /* No error, don't finish the thread states yet. */
3804 finish_state.release ();
731f534f 3805
d238133d
TT
3806 /* This scope is used to ensure that readline callbacks are
3807 reinstalled here. */
3808 }
4f8d22e3 3809
3b12939d
PA
3810 /* If a UI was in sync execution mode, and now isn't, restore its
3811 prompt (a synchronous execution command has finished, and we're
3812 ready for input). */
3813 all_uis_check_sync_execution_done ();
0f641c01
PA
3814
3815 if (cmd_done
0f641c01 3816 && exec_done_display_p
00431a78
PA
3817 && (inferior_ptid == null_ptid
3818 || inferior_thread ()->state != THREAD_RUNNING))
0f641c01 3819 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3820}
3821
edb3359d
DJ
3822/* Record the frame and location we're currently stepping through. */
3823void
3824set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3825{
3826 struct thread_info *tp = inferior_thread ();
3827
16c381f0
JK
3828 tp->control.step_frame_id = get_frame_id (frame);
3829 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
3830
3831 tp->current_symtab = sal.symtab;
3832 tp->current_line = sal.line;
3833}
3834
0d1e5fa7
PA
3835/* Clear context switchable stepping state. */
3836
3837void
4e1c45ea 3838init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 3839{
7f5ef605 3840 tss->stepped_breakpoint = 0;
0d1e5fa7 3841 tss->stepping_over_breakpoint = 0;
963f9c80 3842 tss->stepping_over_watchpoint = 0;
0d1e5fa7 3843 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
3844}
3845
c32c64b7
DE
3846/* Set the cached copy of the last ptid/waitstatus. */
3847
6efcd9a8 3848void
c32c64b7
DE
3849set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3850{
3851 target_last_wait_ptid = ptid;
3852 target_last_waitstatus = status;
3853}
3854
e02bc4cc 3855/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
3856 target_wait()/deprecated_target_wait_hook(). The data is actually
3857 cached by handle_inferior_event(), which gets called immediately
3858 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
3859
3860void
488f131b 3861get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 3862{
39f77062 3863 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
3864 *status = target_last_waitstatus;
3865}
3866
ac264b3b
MS
3867void
3868nullify_last_target_wait_ptid (void)
3869{
3870 target_last_wait_ptid = minus_one_ptid;
3871}
3872
dcf4fbde 3873/* Switch thread contexts. */
dd80620e
MS
3874
3875static void
00431a78 3876context_switch (execution_control_state *ecs)
dd80620e 3877{
00431a78
PA
3878 if (debug_infrun
3879 && ecs->ptid != inferior_ptid
3880 && ecs->event_thread != inferior_thread ())
fd48f117
DJ
3881 {
3882 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3883 target_pid_to_str (inferior_ptid));
3884 fprintf_unfiltered (gdb_stdlog, "to %s\n",
00431a78 3885 target_pid_to_str (ecs->ptid));
fd48f117
DJ
3886 }
3887
00431a78 3888 switch_to_thread (ecs->event_thread);
dd80620e
MS
3889}
3890
d8dd4d5f
PA
3891/* If the target can't tell whether we've hit breakpoints
3892 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
3893 check whether that could have been caused by a breakpoint. If so,
3894 adjust the PC, per gdbarch_decr_pc_after_break. */
3895
4fa8626c 3896static void
d8dd4d5f
PA
3897adjust_pc_after_break (struct thread_info *thread,
3898 struct target_waitstatus *ws)
4fa8626c 3899{
24a73cce
UW
3900 struct regcache *regcache;
3901 struct gdbarch *gdbarch;
118e6252 3902 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 3903
4fa8626c
DJ
3904 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3905 we aren't, just return.
9709f61c
DJ
3906
3907 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
3908 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3909 implemented by software breakpoints should be handled through the normal
3910 breakpoint layer.
8fb3e588 3911
4fa8626c
DJ
3912 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3913 different signals (SIGILL or SIGEMT for instance), but it is less
3914 clear where the PC is pointing afterwards. It may not match
b798847d
UW
3915 gdbarch_decr_pc_after_break. I don't know any specific target that
3916 generates these signals at breakpoints (the code has been in GDB since at
3917 least 1992) so I can not guess how to handle them here.
8fb3e588 3918
e6cf7916
UW
3919 In earlier versions of GDB, a target with
3920 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
3921 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3922 target with both of these set in GDB history, and it seems unlikely to be
3923 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 3924
d8dd4d5f 3925 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
3926 return;
3927
d8dd4d5f 3928 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
3929 return;
3930
4058b839
PA
3931 /* In reverse execution, when a breakpoint is hit, the instruction
3932 under it has already been de-executed. The reported PC always
3933 points at the breakpoint address, so adjusting it further would
3934 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3935 architecture:
3936
3937 B1 0x08000000 : INSN1
3938 B2 0x08000001 : INSN2
3939 0x08000002 : INSN3
3940 PC -> 0x08000003 : INSN4
3941
3942 Say you're stopped at 0x08000003 as above. Reverse continuing
3943 from that point should hit B2 as below. Reading the PC when the
3944 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3945 been de-executed already.
3946
3947 B1 0x08000000 : INSN1
3948 B2 PC -> 0x08000001 : INSN2
3949 0x08000002 : INSN3
3950 0x08000003 : INSN4
3951
3952 We can't apply the same logic as for forward execution, because
3953 we would wrongly adjust the PC to 0x08000000, since there's a
3954 breakpoint at PC - 1. We'd then report a hit on B1, although
3955 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3956 behaviour. */
3957 if (execution_direction == EXEC_REVERSE)
3958 return;
3959
1cf4d951
PA
3960 /* If the target can tell whether the thread hit a SW breakpoint,
3961 trust it. Targets that can tell also adjust the PC
3962 themselves. */
3963 if (target_supports_stopped_by_sw_breakpoint ())
3964 return;
3965
3966 /* Note that relying on whether a breakpoint is planted in memory to
3967 determine this can fail. E.g,. the breakpoint could have been
3968 removed since. Or the thread could have been told to step an
3969 instruction the size of a breakpoint instruction, and only
3970 _after_ was a breakpoint inserted at its address. */
3971
24a73cce
UW
3972 /* If this target does not decrement the PC after breakpoints, then
3973 we have nothing to do. */
00431a78 3974 regcache = get_thread_regcache (thread);
ac7936df 3975 gdbarch = regcache->arch ();
118e6252 3976
527a273a 3977 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 3978 if (decr_pc == 0)
24a73cce
UW
3979 return;
3980
8b86c959 3981 const address_space *aspace = regcache->aspace ();
6c95b8df 3982
8aad930b
AC
3983 /* Find the location where (if we've hit a breakpoint) the
3984 breakpoint would be. */
118e6252 3985 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 3986
1cf4d951
PA
3987 /* If the target can't tell whether a software breakpoint triggered,
3988 fallback to figuring it out based on breakpoints we think were
3989 inserted in the target, and on whether the thread was stepped or
3990 continued. */
3991
1c5cfe86
PA
3992 /* Check whether there actually is a software breakpoint inserted at
3993 that location.
3994
3995 If in non-stop mode, a race condition is possible where we've
3996 removed a breakpoint, but stop events for that breakpoint were
3997 already queued and arrive later. To suppress those spurious
3998 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
3999 and retire them after a number of stop events are reported. Note
4000 this is an heuristic and can thus get confused. The real fix is
4001 to get the "stopped by SW BP and needs adjustment" info out of
4002 the target/kernel (and thus never reach here; see above). */
6c95b8df 4003 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4004 || (target_is_non_stop_p ()
4005 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4006 {
07036511 4007 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 4008
8213266a 4009 if (record_full_is_used ())
07036511
TT
4010 restore_operation_disable.emplace
4011 (record_full_gdb_operation_disable_set ());
96429cc8 4012
1c0fdd0e
UW
4013 /* When using hardware single-step, a SIGTRAP is reported for both
4014 a completed single-step and a software breakpoint. Need to
4015 differentiate between the two, as the latter needs adjusting
4016 but the former does not.
4017
4018 The SIGTRAP can be due to a completed hardware single-step only if
4019 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4020 - this thread is currently being stepped
4021
4022 If any of these events did not occur, we must have stopped due
4023 to hitting a software breakpoint, and have to back up to the
4024 breakpoint address.
4025
4026 As a special case, we could have hardware single-stepped a
4027 software breakpoint. In this case (prev_pc == breakpoint_pc),
4028 we also need to back up to the breakpoint address. */
4029
d8dd4d5f
PA
4030 if (thread_has_single_step_breakpoints_set (thread)
4031 || !currently_stepping (thread)
4032 || (thread->stepped_breakpoint
4033 && thread->prev_pc == breakpoint_pc))
515630c5 4034 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4035 }
4fa8626c
DJ
4036}
4037
edb3359d
DJ
4038static int
4039stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4040{
4041 for (frame = get_prev_frame (frame);
4042 frame != NULL;
4043 frame = get_prev_frame (frame))
4044 {
4045 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4046 return 1;
4047 if (get_frame_type (frame) != INLINE_FRAME)
4048 break;
4049 }
4050
4051 return 0;
4052}
4053
c65d6b55
PA
4054/* If the event thread has the stop requested flag set, pretend it
4055 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4056 target_stop). */
4057
4058static bool
4059handle_stop_requested (struct execution_control_state *ecs)
4060{
4061 if (ecs->event_thread->stop_requested)
4062 {
4063 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4064 ecs->ws.value.sig = GDB_SIGNAL_0;
4065 handle_signal_stop (ecs);
4066 return true;
4067 }
4068 return false;
4069}
4070
a96d9b2e
SDJ
4071/* Auxiliary function that handles syscall entry/return events.
4072 It returns 1 if the inferior should keep going (and GDB
4073 should ignore the event), or 0 if the event deserves to be
4074 processed. */
ca2163eb 4075
a96d9b2e 4076static int
ca2163eb 4077handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4078{
ca2163eb 4079 struct regcache *regcache;
ca2163eb
PA
4080 int syscall_number;
4081
00431a78 4082 context_switch (ecs);
ca2163eb 4083
00431a78 4084 regcache = get_thread_regcache (ecs->event_thread);
f90263c1 4085 syscall_number = ecs->ws.value.syscall_number;
f2ffa92b 4086 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
ca2163eb 4087
a96d9b2e
SDJ
4088 if (catch_syscall_enabled () > 0
4089 && catching_syscall_number (syscall_number) > 0)
4090 {
4091 if (debug_infrun)
4092 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4093 syscall_number);
a96d9b2e 4094
16c381f0 4095 ecs->event_thread->control.stop_bpstat
a01bda52 4096 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4097 ecs->event_thread->suspend.stop_pc,
4098 ecs->event_thread, &ecs->ws);
ab04a2af 4099
c65d6b55
PA
4100 if (handle_stop_requested (ecs))
4101 return 0;
4102
ce12b012 4103 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4104 {
4105 /* Catchpoint hit. */
ca2163eb
PA
4106 return 0;
4107 }
a96d9b2e 4108 }
ca2163eb 4109
c65d6b55
PA
4110 if (handle_stop_requested (ecs))
4111 return 0;
4112
ca2163eb 4113 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4114 keep_going (ecs);
4115 return 1;
a96d9b2e
SDJ
4116}
4117
7e324e48
GB
4118/* Lazily fill in the execution_control_state's stop_func_* fields. */
4119
4120static void
4121fill_in_stop_func (struct gdbarch *gdbarch,
4122 struct execution_control_state *ecs)
4123{
4124 if (!ecs->stop_func_filled_in)
4125 {
4126 /* Don't care about return value; stop_func_start and stop_func_name
4127 will both be 0 if it doesn't work. */
59adbf5d
KB
4128 find_function_entry_range_from_pc (ecs->event_thread->suspend.stop_pc,
4129 &ecs->stop_func_name,
4130 &ecs->stop_func_start,
4131 &ecs->stop_func_end);
7e324e48
GB
4132 ecs->stop_func_start
4133 += gdbarch_deprecated_function_start_offset (gdbarch);
4134
591a12a1
UW
4135 if (gdbarch_skip_entrypoint_p (gdbarch))
4136 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4137 ecs->stop_func_start);
4138
7e324e48
GB
4139 ecs->stop_func_filled_in = 1;
4140 }
4141}
4142
4f5d7f63 4143
00431a78 4144/* Return the STOP_SOON field of the inferior pointed at by ECS. */
4f5d7f63
PA
4145
4146static enum stop_kind
00431a78 4147get_inferior_stop_soon (execution_control_state *ecs)
4f5d7f63 4148{
00431a78 4149 struct inferior *inf = find_inferior_ptid (ecs->ptid);
4f5d7f63
PA
4150
4151 gdb_assert (inf != NULL);
4152 return inf->control.stop_soon;
4153}
4154
372316f1
PA
4155/* Wait for one event. Store the resulting waitstatus in WS, and
4156 return the event ptid. */
4157
4158static ptid_t
4159wait_one (struct target_waitstatus *ws)
4160{
4161 ptid_t event_ptid;
4162 ptid_t wait_ptid = minus_one_ptid;
4163
4164 overlay_cache_invalid = 1;
4165
4166 /* Flush target cache before starting to handle each event.
4167 Target was running and cache could be stale. This is just a
4168 heuristic. Running threads may modify target memory, but we
4169 don't get any event. */
4170 target_dcache_invalidate ();
4171
4172 if (deprecated_target_wait_hook)
4173 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4174 else
4175 event_ptid = target_wait (wait_ptid, ws, 0);
4176
4177 if (debug_infrun)
4178 print_target_wait_results (wait_ptid, event_ptid, ws);
4179
4180 return event_ptid;
4181}
4182
4183/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4184 instead of the current thread. */
4185#define THREAD_STOPPED_BY(REASON) \
4186static int \
4187thread_stopped_by_ ## REASON (ptid_t ptid) \
4188{ \
2989a365 4189 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
372316f1
PA
4190 inferior_ptid = ptid; \
4191 \
2989a365 4192 return target_stopped_by_ ## REASON (); \
372316f1
PA
4193}
4194
4195/* Generate thread_stopped_by_watchpoint. */
4196THREAD_STOPPED_BY (watchpoint)
4197/* Generate thread_stopped_by_sw_breakpoint. */
4198THREAD_STOPPED_BY (sw_breakpoint)
4199/* Generate thread_stopped_by_hw_breakpoint. */
4200THREAD_STOPPED_BY (hw_breakpoint)
4201
372316f1
PA
4202/* Save the thread's event and stop reason to process it later. */
4203
4204static void
4205save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4206{
372316f1
PA
4207 if (debug_infrun)
4208 {
23fdd69e 4209 std::string statstr = target_waitstatus_to_string (ws);
372316f1 4210
372316f1
PA
4211 fprintf_unfiltered (gdb_stdlog,
4212 "infrun: saving status %s for %d.%ld.%ld\n",
23fdd69e 4213 statstr.c_str (),
e99b03dc 4214 tp->ptid.pid (),
e38504b3 4215 tp->ptid.lwp (),
cc6bcb54 4216 tp->ptid.tid ());
372316f1
PA
4217 }
4218
4219 /* Record for later. */
4220 tp->suspend.waitstatus = *ws;
4221 tp->suspend.waitstatus_pending_p = 1;
4222
00431a78 4223 struct regcache *regcache = get_thread_regcache (tp);
8b86c959 4224 const address_space *aspace = regcache->aspace ();
372316f1
PA
4225
4226 if (ws->kind == TARGET_WAITKIND_STOPPED
4227 && ws->value.sig == GDB_SIGNAL_TRAP)
4228 {
4229 CORE_ADDR pc = regcache_read_pc (regcache);
4230
4231 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4232
4233 if (thread_stopped_by_watchpoint (tp->ptid))
4234 {
4235 tp->suspend.stop_reason
4236 = TARGET_STOPPED_BY_WATCHPOINT;
4237 }
4238 else if (target_supports_stopped_by_sw_breakpoint ()
4239 && thread_stopped_by_sw_breakpoint (tp->ptid))
4240 {
4241 tp->suspend.stop_reason
4242 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4243 }
4244 else if (target_supports_stopped_by_hw_breakpoint ()
4245 && thread_stopped_by_hw_breakpoint (tp->ptid))
4246 {
4247 tp->suspend.stop_reason
4248 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4249 }
4250 else if (!target_supports_stopped_by_hw_breakpoint ()
4251 && hardware_breakpoint_inserted_here_p (aspace,
4252 pc))
4253 {
4254 tp->suspend.stop_reason
4255 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4256 }
4257 else if (!target_supports_stopped_by_sw_breakpoint ()
4258 && software_breakpoint_inserted_here_p (aspace,
4259 pc))
4260 {
4261 tp->suspend.stop_reason
4262 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4263 }
4264 else if (!thread_has_single_step_breakpoints_set (tp)
4265 && currently_stepping (tp))
4266 {
4267 tp->suspend.stop_reason
4268 = TARGET_STOPPED_BY_SINGLE_STEP;
4269 }
4270 }
4271}
4272
6efcd9a8 4273/* See infrun.h. */
372316f1 4274
6efcd9a8 4275void
372316f1
PA
4276stop_all_threads (void)
4277{
4278 /* We may need multiple passes to discover all threads. */
4279 int pass;
4280 int iterations = 0;
372316f1 4281
fbea99ea 4282 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4283
4284 if (debug_infrun)
4285 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4286
00431a78 4287 scoped_restore_current_thread restore_thread;
372316f1 4288
65706a29 4289 target_thread_events (1);
9885e6bb 4290 SCOPE_EXIT { target_thread_events (0); };
65706a29 4291
372316f1
PA
4292 /* Request threads to stop, and then wait for the stops. Because
4293 threads we already know about can spawn more threads while we're
4294 trying to stop them, and we only learn about new threads when we
4295 update the thread list, do this in a loop, and keep iterating
4296 until two passes find no threads that need to be stopped. */
4297 for (pass = 0; pass < 2; pass++, iterations++)
4298 {
4299 if (debug_infrun)
4300 fprintf_unfiltered (gdb_stdlog,
4301 "infrun: stop_all_threads, pass=%d, "
4302 "iterations=%d\n", pass, iterations);
4303 while (1)
4304 {
4305 ptid_t event_ptid;
4306 struct target_waitstatus ws;
4307 int need_wait = 0;
372316f1
PA
4308
4309 update_thread_list ();
4310
4311 /* Go through all threads looking for threads that we need
4312 to tell the target to stop. */
08036331 4313 for (thread_info *t : all_non_exited_threads ())
372316f1
PA
4314 {
4315 if (t->executing)
4316 {
4317 /* If already stopping, don't request a stop again.
4318 We just haven't seen the notification yet. */
4319 if (!t->stop_requested)
4320 {
4321 if (debug_infrun)
4322 fprintf_unfiltered (gdb_stdlog,
4323 "infrun: %s executing, "
4324 "need stop\n",
4325 target_pid_to_str (t->ptid));
4326 target_stop (t->ptid);
4327 t->stop_requested = 1;
4328 }
4329 else
4330 {
4331 if (debug_infrun)
4332 fprintf_unfiltered (gdb_stdlog,
4333 "infrun: %s executing, "
4334 "already stopping\n",
4335 target_pid_to_str (t->ptid));
4336 }
4337
4338 if (t->stop_requested)
4339 need_wait = 1;
4340 }
4341 else
4342 {
4343 if (debug_infrun)
4344 fprintf_unfiltered (gdb_stdlog,
4345 "infrun: %s not executing\n",
4346 target_pid_to_str (t->ptid));
4347
4348 /* The thread may be not executing, but still be
4349 resumed with a pending status to process. */
4350 t->resumed = 0;
4351 }
4352 }
4353
4354 if (!need_wait)
4355 break;
4356
4357 /* If we find new threads on the second iteration, restart
4358 over. We want to see two iterations in a row with all
4359 threads stopped. */
4360 if (pass > 0)
4361 pass = -1;
4362
4363 event_ptid = wait_one (&ws);
00431a78 4364
372316f1
PA
4365 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4366 {
4367 /* All resumed threads exited. */
4368 }
65706a29
PA
4369 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4370 || ws.kind == TARGET_WAITKIND_EXITED
372316f1
PA
4371 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4372 {
4373 if (debug_infrun)
4374 {
f2907e49 4375 ptid_t ptid = ptid_t (ws.value.integer);
372316f1
PA
4376
4377 fprintf_unfiltered (gdb_stdlog,
4378 "infrun: %s exited while "
4379 "stopping threads\n",
4380 target_pid_to_str (ptid));
4381 }
4382 }
4383 else
4384 {
08036331 4385 thread_info *t = find_thread_ptid (event_ptid);
372316f1
PA
4386 if (t == NULL)
4387 t = add_thread (event_ptid);
4388
4389 t->stop_requested = 0;
4390 t->executing = 0;
4391 t->resumed = 0;
4392 t->control.may_range_step = 0;
4393
6efcd9a8
PA
4394 /* This may be the first time we see the inferior report
4395 a stop. */
08036331 4396 inferior *inf = find_inferior_ptid (event_ptid);
6efcd9a8
PA
4397 if (inf->needs_setup)
4398 {
4399 switch_to_thread_no_regs (t);
4400 setup_inferior (0);
4401 }
4402
372316f1
PA
4403 if (ws.kind == TARGET_WAITKIND_STOPPED
4404 && ws.value.sig == GDB_SIGNAL_0)
4405 {
4406 /* We caught the event that we intended to catch, so
4407 there's no event pending. */
4408 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4409 t->suspend.waitstatus_pending_p = 0;
4410
00431a78 4411 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
372316f1
PA
4412 {
4413 /* Add it back to the step-over queue. */
4414 if (debug_infrun)
4415 {
4416 fprintf_unfiltered (gdb_stdlog,
4417 "infrun: displaced-step of %s "
4418 "canceled: adding back to the "
4419 "step-over queue\n",
4420 target_pid_to_str (t->ptid));
4421 }
4422 t->control.trap_expected = 0;
4423 thread_step_over_chain_enqueue (t);
4424 }
4425 }
4426 else
4427 {
4428 enum gdb_signal sig;
4429 struct regcache *regcache;
372316f1
PA
4430
4431 if (debug_infrun)
4432 {
23fdd69e 4433 std::string statstr = target_waitstatus_to_string (&ws);
372316f1 4434
372316f1
PA
4435 fprintf_unfiltered (gdb_stdlog,
4436 "infrun: target_wait %s, saving "
4437 "status for %d.%ld.%ld\n",
23fdd69e 4438 statstr.c_str (),
e99b03dc 4439 t->ptid.pid (),
e38504b3 4440 t->ptid.lwp (),
cc6bcb54 4441 t->ptid.tid ());
372316f1
PA
4442 }
4443
4444 /* Record for later. */
4445 save_waitstatus (t, &ws);
4446
4447 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4448 ? ws.value.sig : GDB_SIGNAL_0);
4449
00431a78 4450 if (displaced_step_fixup (t, sig) < 0)
372316f1
PA
4451 {
4452 /* Add it back to the step-over queue. */
4453 t->control.trap_expected = 0;
4454 thread_step_over_chain_enqueue (t);
4455 }
4456
00431a78 4457 regcache = get_thread_regcache (t);
372316f1
PA
4458 t->suspend.stop_pc = regcache_read_pc (regcache);
4459
4460 if (debug_infrun)
4461 {
4462 fprintf_unfiltered (gdb_stdlog,
4463 "infrun: saved stop_pc=%s for %s "
4464 "(currently_stepping=%d)\n",
4465 paddress (target_gdbarch (),
4466 t->suspend.stop_pc),
4467 target_pid_to_str (t->ptid),
4468 currently_stepping (t));
4469 }
4470 }
4471 }
4472 }
4473 }
4474
372316f1
PA
4475 if (debug_infrun)
4476 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4477}
4478
f4836ba9
PA
4479/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4480
4481static int
4482handle_no_resumed (struct execution_control_state *ecs)
4483{
3b12939d 4484 if (target_can_async_p ())
f4836ba9 4485 {
3b12939d
PA
4486 struct ui *ui;
4487 int any_sync = 0;
f4836ba9 4488
3b12939d
PA
4489 ALL_UIS (ui)
4490 {
4491 if (ui->prompt_state == PROMPT_BLOCKED)
4492 {
4493 any_sync = 1;
4494 break;
4495 }
4496 }
4497 if (!any_sync)
4498 {
4499 /* There were no unwaited-for children left in the target, but,
4500 we're not synchronously waiting for events either. Just
4501 ignore. */
4502
4503 if (debug_infrun)
4504 fprintf_unfiltered (gdb_stdlog,
4505 "infrun: TARGET_WAITKIND_NO_RESUMED "
4506 "(ignoring: bg)\n");
4507 prepare_to_wait (ecs);
4508 return 1;
4509 }
f4836ba9
PA
4510 }
4511
4512 /* Otherwise, if we were running a synchronous execution command, we
4513 may need to cancel it and give the user back the terminal.
4514
4515 In non-stop mode, the target can't tell whether we've already
4516 consumed previous stop events, so it can end up sending us a
4517 no-resumed event like so:
4518
4519 #0 - thread 1 is left stopped
4520
4521 #1 - thread 2 is resumed and hits breakpoint
4522 -> TARGET_WAITKIND_STOPPED
4523
4524 #2 - thread 3 is resumed and exits
4525 this is the last resumed thread, so
4526 -> TARGET_WAITKIND_NO_RESUMED
4527
4528 #3 - gdb processes stop for thread 2 and decides to re-resume
4529 it.
4530
4531 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4532 thread 2 is now resumed, so the event should be ignored.
4533
4534 IOW, if the stop for thread 2 doesn't end a foreground command,
4535 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4536 event. But it could be that the event meant that thread 2 itself
4537 (or whatever other thread was the last resumed thread) exited.
4538
4539 To address this we refresh the thread list and check whether we
4540 have resumed threads _now_. In the example above, this removes
4541 thread 3 from the thread list. If thread 2 was re-resumed, we
4542 ignore this event. If we find no thread resumed, then we cancel
4543 the synchronous command show "no unwaited-for " to the user. */
4544 update_thread_list ();
4545
08036331 4546 for (thread_info *thread : all_non_exited_threads ())
f4836ba9
PA
4547 {
4548 if (thread->executing
4549 || thread->suspend.waitstatus_pending_p)
4550 {
4551 /* There were no unwaited-for children left in the target at
4552 some point, but there are now. Just ignore. */
4553 if (debug_infrun)
4554 fprintf_unfiltered (gdb_stdlog,
4555 "infrun: TARGET_WAITKIND_NO_RESUMED "
4556 "(ignoring: found resumed)\n");
4557 prepare_to_wait (ecs);
4558 return 1;
4559 }
4560 }
4561
4562 /* Note however that we may find no resumed thread because the whole
4563 process exited meanwhile (thus updating the thread list results
4564 in an empty thread list). In this case we know we'll be getting
4565 a process exit event shortly. */
08036331 4566 for (inferior *inf : all_inferiors ())
f4836ba9
PA
4567 {
4568 if (inf->pid == 0)
4569 continue;
4570
08036331 4571 thread_info *thread = any_live_thread_of_inferior (inf);
f4836ba9
PA
4572 if (thread == NULL)
4573 {
4574 if (debug_infrun)
4575 fprintf_unfiltered (gdb_stdlog,
4576 "infrun: TARGET_WAITKIND_NO_RESUMED "
4577 "(expect process exit)\n");
4578 prepare_to_wait (ecs);
4579 return 1;
4580 }
4581 }
4582
4583 /* Go ahead and report the event. */
4584 return 0;
4585}
4586
05ba8510
PA
4587/* Given an execution control state that has been freshly filled in by
4588 an event from the inferior, figure out what it means and take
4589 appropriate action.
4590
4591 The alternatives are:
4592
22bcd14b 4593 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4594 debugger.
4595
4596 2) keep_going and return; to wait for the next event (set
4597 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4598 once). */
c906108c 4599
ec9499be 4600static void
0b6e5e10 4601handle_inferior_event_1 (struct execution_control_state *ecs)
cd0fc7c3 4602{
d6b48e9c
PA
4603 enum stop_kind stop_soon;
4604
28736962
PA
4605 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4606 {
4607 /* We had an event in the inferior, but we are not interested in
4608 handling it at this level. The lower layers have already
4609 done what needs to be done, if anything.
4610
4611 One of the possible circumstances for this is when the
4612 inferior produces output for the console. The inferior has
4613 not stopped, and we are ignoring the event. Another possible
4614 circumstance is any event which the lower level knows will be
4615 reported multiple times without an intervening resume. */
4616 if (debug_infrun)
4617 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4618 prepare_to_wait (ecs);
4619 return;
4620 }
4621
65706a29
PA
4622 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4623 {
4624 if (debug_infrun)
4625 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4626 prepare_to_wait (ecs);
4627 return;
4628 }
4629
0e5bf2a8 4630 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
4631 && handle_no_resumed (ecs))
4632 return;
0e5bf2a8 4633
1777feb0 4634 /* Cache the last pid/waitstatus. */
c32c64b7 4635 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4636
ca005067 4637 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4638 stop_stack_dummy = STOP_NONE;
ca005067 4639
0e5bf2a8
PA
4640 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4641 {
4642 /* No unwaited-for children left. IOW, all resumed children
4643 have exited. */
4644 if (debug_infrun)
4645 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4646
4647 stop_print_frame = 0;
22bcd14b 4648 stop_waiting (ecs);
0e5bf2a8
PA
4649 return;
4650 }
4651
8c90c137 4652 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4653 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4654 {
4655 ecs->event_thread = find_thread_ptid (ecs->ptid);
4656 /* If it's a new thread, add it to the thread database. */
4657 if (ecs->event_thread == NULL)
4658 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4659
4660 /* Disable range stepping. If the next step request could use a
4661 range, this will be end up re-enabled then. */
4662 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4663 }
88ed393a
JK
4664
4665 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4666 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4667
4668 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4669 reinit_frame_cache ();
4670
28736962
PA
4671 breakpoint_retire_moribund ();
4672
2b009048
DJ
4673 /* First, distinguish signals caused by the debugger from signals
4674 that have to do with the program's own actions. Note that
4675 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4676 on the operating system version. Here we detect when a SIGILL or
4677 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4678 something similar for SIGSEGV, since a SIGSEGV will be generated
4679 when we're trying to execute a breakpoint instruction on a
4680 non-executable stack. This happens for call dummy breakpoints
4681 for architectures like SPARC that place call dummies on the
4682 stack. */
2b009048 4683 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4684 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4685 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4686 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4687 {
00431a78 4688 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
de0a0249 4689
a01bda52 4690 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
4691 regcache_read_pc (regcache)))
4692 {
4693 if (debug_infrun)
4694 fprintf_unfiltered (gdb_stdlog,
4695 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4696 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4697 }
2b009048
DJ
4698 }
4699
28736962
PA
4700 /* Mark the non-executing threads accordingly. In all-stop, all
4701 threads of all processes are stopped when we get any event
e1316e60 4702 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4703 {
4704 ptid_t mark_ptid;
4705
fbea99ea 4706 if (!target_is_non_stop_p ())
372316f1
PA
4707 mark_ptid = minus_one_ptid;
4708 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4709 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4710 {
4711 /* If we're handling a process exit in non-stop mode, even
4712 though threads haven't been deleted yet, one would think
4713 that there is nothing to do, as threads of the dead process
4714 will be soon deleted, and threads of any other process were
4715 left running. However, on some targets, threads survive a
4716 process exit event. E.g., for the "checkpoint" command,
4717 when the current checkpoint/fork exits, linux-fork.c
4718 automatically switches to another fork from within
4719 target_mourn_inferior, by associating the same
4720 inferior/thread to another fork. We haven't mourned yet at
4721 this point, but we must mark any threads left in the
4722 process as not-executing so that finish_thread_state marks
4723 them stopped (in the user's perspective) if/when we present
4724 the stop to the user. */
e99b03dc 4725 mark_ptid = ptid_t (ecs->ptid.pid ());
372316f1
PA
4726 }
4727 else
4728 mark_ptid = ecs->ptid;
4729
4730 set_executing (mark_ptid, 0);
4731
4732 /* Likewise the resumed flag. */
4733 set_resumed (mark_ptid, 0);
4734 }
8c90c137 4735
488f131b
JB
4736 switch (ecs->ws.kind)
4737 {
4738 case TARGET_WAITKIND_LOADED:
527159b7 4739 if (debug_infrun)
8a9de0e4 4740 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
00431a78 4741 context_switch (ecs);
b0f4b84b
DJ
4742 /* Ignore gracefully during startup of the inferior, as it might
4743 be the shell which has just loaded some objects, otherwise
4744 add the symbols for the newly loaded objects. Also ignore at
4745 the beginning of an attach or remote session; we will query
4746 the full list of libraries once the connection is
4747 established. */
4f5d7f63 4748
00431a78 4749 stop_soon = get_inferior_stop_soon (ecs);
c0236d92 4750 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4751 {
edcc5120
TT
4752 struct regcache *regcache;
4753
00431a78 4754 regcache = get_thread_regcache (ecs->event_thread);
edcc5120
TT
4755
4756 handle_solib_event ();
4757
4758 ecs->event_thread->control.stop_bpstat
a01bda52 4759 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4760 ecs->event_thread->suspend.stop_pc,
4761 ecs->event_thread, &ecs->ws);
ab04a2af 4762
c65d6b55
PA
4763 if (handle_stop_requested (ecs))
4764 return;
4765
ce12b012 4766 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4767 {
4768 /* A catchpoint triggered. */
94c57d6a
PA
4769 process_event_stop_test (ecs);
4770 return;
edcc5120 4771 }
488f131b 4772
b0f4b84b
DJ
4773 /* If requested, stop when the dynamic linker notifies
4774 gdb of events. This allows the user to get control
4775 and place breakpoints in initializer routines for
4776 dynamically loaded objects (among other things). */
a493e3e2 4777 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4778 if (stop_on_solib_events)
4779 {
55409f9d
DJ
4780 /* Make sure we print "Stopped due to solib-event" in
4781 normal_stop. */
4782 stop_print_frame = 1;
4783
22bcd14b 4784 stop_waiting (ecs);
b0f4b84b
DJ
4785 return;
4786 }
488f131b 4787 }
b0f4b84b
DJ
4788
4789 /* If we are skipping through a shell, or through shared library
4790 loading that we aren't interested in, resume the program. If
5c09a2c5 4791 we're running the program normally, also resume. */
b0f4b84b
DJ
4792 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4793 {
74960c60
VP
4794 /* Loading of shared libraries might have changed breakpoint
4795 addresses. Make sure new breakpoints are inserted. */
a25a5a45 4796 if (stop_soon == NO_STOP_QUIETLY)
74960c60 4797 insert_breakpoints ();
64ce06e4 4798 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
4799 prepare_to_wait (ecs);
4800 return;
4801 }
4802
5c09a2c5
PA
4803 /* But stop if we're attaching or setting up a remote
4804 connection. */
4805 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4806 || stop_soon == STOP_QUIETLY_REMOTE)
4807 {
4808 if (debug_infrun)
4809 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 4810 stop_waiting (ecs);
5c09a2c5
PA
4811 return;
4812 }
4813
4814 internal_error (__FILE__, __LINE__,
4815 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 4816
488f131b 4817 case TARGET_WAITKIND_SPURIOUS:
527159b7 4818 if (debug_infrun)
8a9de0e4 4819 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
c65d6b55
PA
4820 if (handle_stop_requested (ecs))
4821 return;
00431a78 4822 context_switch (ecs);
64ce06e4 4823 resume (GDB_SIGNAL_0);
488f131b
JB
4824 prepare_to_wait (ecs);
4825 return;
c5aa993b 4826
65706a29
PA
4827 case TARGET_WAITKIND_THREAD_CREATED:
4828 if (debug_infrun)
4829 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
c65d6b55
PA
4830 if (handle_stop_requested (ecs))
4831 return;
00431a78 4832 context_switch (ecs);
65706a29
PA
4833 if (!switch_back_to_stepped_thread (ecs))
4834 keep_going (ecs);
4835 return;
4836
488f131b 4837 case TARGET_WAITKIND_EXITED:
940c3c06 4838 case TARGET_WAITKIND_SIGNALLED:
527159b7 4839 if (debug_infrun)
940c3c06
PA
4840 {
4841 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4842 fprintf_unfiltered (gdb_stdlog,
4843 "infrun: TARGET_WAITKIND_EXITED\n");
4844 else
4845 fprintf_unfiltered (gdb_stdlog,
4846 "infrun: TARGET_WAITKIND_SIGNALLED\n");
4847 }
4848
fb66883a 4849 inferior_ptid = ecs->ptid;
c9657e70 4850 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
4851 set_current_program_space (current_inferior ()->pspace);
4852 handle_vfork_child_exec_or_exit (0);
223ffa71 4853 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 4854
0c557179
SDJ
4855 /* Clearing any previous state of convenience variables. */
4856 clear_exit_convenience_vars ();
4857
940c3c06
PA
4858 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4859 {
4860 /* Record the exit code in the convenience variable $_exitcode, so
4861 that the user can inspect this again later. */
4862 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4863 (LONGEST) ecs->ws.value.integer);
4864
4865 /* Also record this in the inferior itself. */
4866 current_inferior ()->has_exit_code = 1;
4867 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 4868
98eb56a4
PA
4869 /* Support the --return-child-result option. */
4870 return_child_result_value = ecs->ws.value.integer;
4871
76727919 4872 gdb::observers::exited.notify (ecs->ws.value.integer);
940c3c06
PA
4873 }
4874 else
0c557179 4875 {
00431a78 4876 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
0c557179
SDJ
4877
4878 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4879 {
4880 /* Set the value of the internal variable $_exitsignal,
4881 which holds the signal uncaught by the inferior. */
4882 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4883 gdbarch_gdb_signal_to_target (gdbarch,
4884 ecs->ws.value.sig));
4885 }
4886 else
4887 {
4888 /* We don't have access to the target's method used for
4889 converting between signal numbers (GDB's internal
4890 representation <-> target's representation).
4891 Therefore, we cannot do a good job at displaying this
4892 information to the user. It's better to just warn
4893 her about it (if infrun debugging is enabled), and
4894 give up. */
4895 if (debug_infrun)
4896 fprintf_filtered (gdb_stdlog, _("\
4897Cannot fill $_exitsignal with the correct signal number.\n"));
4898 }
4899
76727919 4900 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
0c557179 4901 }
8cf64490 4902
488f131b 4903 gdb_flush (gdb_stdout);
bc1e6c81 4904 target_mourn_inferior (inferior_ptid);
488f131b 4905 stop_print_frame = 0;
22bcd14b 4906 stop_waiting (ecs);
488f131b 4907 return;
c5aa993b 4908
488f131b 4909 /* The following are the only cases in which we keep going;
1777feb0 4910 the above cases end in a continue or goto. */
488f131b 4911 case TARGET_WAITKIND_FORKED:
deb3b17b 4912 case TARGET_WAITKIND_VFORKED:
527159b7 4913 if (debug_infrun)
fed708ed
PA
4914 {
4915 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4916 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
4917 else
4918 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
4919 }
c906108c 4920
e2d96639
YQ
4921 /* Check whether the inferior is displaced stepping. */
4922 {
00431a78 4923 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
ac7936df 4924 struct gdbarch *gdbarch = regcache->arch ();
e2d96639
YQ
4925
4926 /* If checking displaced stepping is supported, and thread
4927 ecs->ptid is displaced stepping. */
00431a78 4928 if (displaced_step_in_progress_thread (ecs->event_thread))
e2d96639
YQ
4929 {
4930 struct inferior *parent_inf
c9657e70 4931 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
4932 struct regcache *child_regcache;
4933 CORE_ADDR parent_pc;
4934
4935 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4936 indicating that the displaced stepping of syscall instruction
4937 has been done. Perform cleanup for parent process here. Note
4938 that this operation also cleans up the child process for vfork,
4939 because their pages are shared. */
00431a78 4940 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
c2829269
PA
4941 /* Start a new step-over in another thread if there's one
4942 that needs it. */
4943 start_step_over ();
e2d96639
YQ
4944
4945 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4946 {
c0987663 4947 struct displaced_step_inferior_state *displaced
00431a78 4948 = get_displaced_stepping_state (parent_inf);
c0987663 4949
e2d96639
YQ
4950 /* Restore scratch pad for child process. */
4951 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4952 }
4953
4954 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4955 the child's PC is also within the scratchpad. Set the child's PC
4956 to the parent's PC value, which has already been fixed up.
4957 FIXME: we use the parent's aspace here, although we're touching
4958 the child, because the child hasn't been added to the inferior
4959 list yet at this point. */
4960
4961 child_regcache
4962 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4963 gdbarch,
4964 parent_inf->aspace);
4965 /* Read PC value of parent process. */
4966 parent_pc = regcache_read_pc (regcache);
4967
4968 if (debug_displaced)
4969 fprintf_unfiltered (gdb_stdlog,
4970 "displaced: write child pc from %s to %s\n",
4971 paddress (gdbarch,
4972 regcache_read_pc (child_regcache)),
4973 paddress (gdbarch, parent_pc));
4974
4975 regcache_write_pc (child_regcache, parent_pc);
4976 }
4977 }
4978
00431a78 4979 context_switch (ecs);
5a2901d9 4980
b242c3c2
PA
4981 /* Immediately detach breakpoints from the child before there's
4982 any chance of letting the user delete breakpoints from the
4983 breakpoint lists. If we don't do this early, it's easy to
4984 leave left over traps in the child, vis: "break foo; catch
4985 fork; c; <fork>; del; c; <child calls foo>". We only follow
4986 the fork on the last `continue', and by that time the
4987 breakpoint at "foo" is long gone from the breakpoint table.
4988 If we vforked, then we don't need to unpatch here, since both
4989 parent and child are sharing the same memory pages; we'll
4990 need to unpatch at follow/detach time instead to be certain
4991 that new breakpoints added between catchpoint hit time and
4992 vfork follow are detached. */
4993 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
4994 {
b242c3c2
PA
4995 /* This won't actually modify the breakpoint list, but will
4996 physically remove the breakpoints from the child. */
d80ee84f 4997 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
4998 }
4999
34b7e8a6 5000 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5001
e58b0e63
PA
5002 /* In case the event is caught by a catchpoint, remember that
5003 the event is to be followed at the next resume of the thread,
5004 and not immediately. */
5005 ecs->event_thread->pending_follow = ecs->ws;
5006
f2ffa92b
PA
5007 ecs->event_thread->suspend.stop_pc
5008 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
675bf4cb 5009
16c381f0 5010 ecs->event_thread->control.stop_bpstat
a01bda52 5011 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5012 ecs->event_thread->suspend.stop_pc,
5013 ecs->event_thread, &ecs->ws);
675bf4cb 5014
c65d6b55
PA
5015 if (handle_stop_requested (ecs))
5016 return;
5017
ce12b012
PA
5018 /* If no catchpoint triggered for this, then keep going. Note
5019 that we're interested in knowing the bpstat actually causes a
5020 stop, not just if it may explain the signal. Software
5021 watchpoints, for example, always appear in the bpstat. */
5022 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5023 {
e58b0e63 5024 int should_resume;
3e43a32a
MS
5025 int follow_child
5026 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5027
a493e3e2 5028 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
5029
5030 should_resume = follow_fork ();
5031
00431a78
PA
5032 thread_info *parent = ecs->event_thread;
5033 thread_info *child = find_thread_ptid (ecs->ws.value.related_pid);
6c95b8df 5034
a2077e25
PA
5035 /* At this point, the parent is marked running, and the
5036 child is marked stopped. */
5037
5038 /* If not resuming the parent, mark it stopped. */
5039 if (follow_child && !detach_fork && !non_stop && !sched_multi)
00431a78 5040 parent->set_running (false);
a2077e25
PA
5041
5042 /* If resuming the child, mark it running. */
5043 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
00431a78 5044 child->set_running (true);
a2077e25 5045
6c95b8df 5046 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5047 if (!detach_fork && (non_stop
5048 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5049 {
5050 if (follow_child)
5051 switch_to_thread (parent);
5052 else
5053 switch_to_thread (child);
5054
5055 ecs->event_thread = inferior_thread ();
5056 ecs->ptid = inferior_ptid;
5057 keep_going (ecs);
5058 }
5059
5060 if (follow_child)
5061 switch_to_thread (child);
5062 else
5063 switch_to_thread (parent);
5064
e58b0e63
PA
5065 ecs->event_thread = inferior_thread ();
5066 ecs->ptid = inferior_ptid;
5067
5068 if (should_resume)
5069 keep_going (ecs);
5070 else
22bcd14b 5071 stop_waiting (ecs);
04e68871
DJ
5072 return;
5073 }
94c57d6a
PA
5074 process_event_stop_test (ecs);
5075 return;
488f131b 5076
6c95b8df
PA
5077 case TARGET_WAITKIND_VFORK_DONE:
5078 /* Done with the shared memory region. Re-insert breakpoints in
5079 the parent, and keep going. */
5080
5081 if (debug_infrun)
3e43a32a
MS
5082 fprintf_unfiltered (gdb_stdlog,
5083 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df 5084
00431a78 5085 context_switch (ecs);
6c95b8df
PA
5086
5087 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5088 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5089
5090 if (handle_stop_requested (ecs))
5091 return;
5092
6c95b8df
PA
5093 /* This also takes care of reinserting breakpoints in the
5094 previously locked inferior. */
5095 keep_going (ecs);
5096 return;
5097
488f131b 5098 case TARGET_WAITKIND_EXECD:
527159b7 5099 if (debug_infrun)
fc5261f2 5100 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 5101
cbd2b4e3
PA
5102 /* Note we can't read registers yet (the stop_pc), because we
5103 don't yet know the inferior's post-exec architecture.
5104 'stop_pc' is explicitly read below instead. */
00431a78 5105 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5106
6c95b8df
PA
5107 /* Do whatever is necessary to the parent branch of the vfork. */
5108 handle_vfork_child_exec_or_exit (1);
5109
795e548f
PA
5110 /* This causes the eventpoints and symbol table to be reset.
5111 Must do this now, before trying to determine whether to
5112 stop. */
71b43ef8 5113 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5114
17d8546e
DB
5115 /* In follow_exec we may have deleted the original thread and
5116 created a new one. Make sure that the event thread is the
5117 execd thread for that case (this is a nop otherwise). */
5118 ecs->event_thread = inferior_thread ();
5119
f2ffa92b
PA
5120 ecs->event_thread->suspend.stop_pc
5121 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
ecdc3a72 5122
16c381f0 5123 ecs->event_thread->control.stop_bpstat
a01bda52 5124 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5125 ecs->event_thread->suspend.stop_pc,
5126 ecs->event_thread, &ecs->ws);
795e548f 5127
71b43ef8
PA
5128 /* Note that this may be referenced from inside
5129 bpstat_stop_status above, through inferior_has_execd. */
5130 xfree (ecs->ws.value.execd_pathname);
5131 ecs->ws.value.execd_pathname = NULL;
5132
c65d6b55
PA
5133 if (handle_stop_requested (ecs))
5134 return;
5135
04e68871 5136 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5137 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5138 {
a493e3e2 5139 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5140 keep_going (ecs);
5141 return;
5142 }
94c57d6a
PA
5143 process_event_stop_test (ecs);
5144 return;
488f131b 5145
b4dc5ffa
MK
5146 /* Be careful not to try to gather much state about a thread
5147 that's in a syscall. It's frequently a losing proposition. */
488f131b 5148 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 5149 if (debug_infrun)
3e43a32a
MS
5150 fprintf_unfiltered (gdb_stdlog,
5151 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 5152 /* Getting the current syscall number. */
94c57d6a
PA
5153 if (handle_syscall_event (ecs) == 0)
5154 process_event_stop_test (ecs);
5155 return;
c906108c 5156
488f131b
JB
5157 /* Before examining the threads further, step this thread to
5158 get it entirely out of the syscall. (We get notice of the
5159 event when the thread is just on the verge of exiting a
5160 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5161 into user code.) */
488f131b 5162 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 5163 if (debug_infrun)
3e43a32a
MS
5164 fprintf_unfiltered (gdb_stdlog,
5165 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
5166 if (handle_syscall_event (ecs) == 0)
5167 process_event_stop_test (ecs);
5168 return;
c906108c 5169
488f131b 5170 case TARGET_WAITKIND_STOPPED:
527159b7 5171 if (debug_infrun)
8a9de0e4 5172 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
4f5d7f63
PA
5173 handle_signal_stop (ecs);
5174 return;
c906108c 5175
b2175913 5176 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
5177 if (debug_infrun)
5178 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 5179 /* Reverse execution: target ran out of history info. */
eab402df 5180
d1988021 5181 /* Switch to the stopped thread. */
00431a78 5182 context_switch (ecs);
d1988021
MM
5183 if (debug_infrun)
5184 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5185
34b7e8a6 5186 delete_just_stopped_threads_single_step_breakpoints ();
f2ffa92b
PA
5187 ecs->event_thread->suspend.stop_pc
5188 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
c65d6b55
PA
5189
5190 if (handle_stop_requested (ecs))
5191 return;
5192
76727919 5193 gdb::observers::no_history.notify ();
22bcd14b 5194 stop_waiting (ecs);
b2175913 5195 return;
488f131b 5196 }
4f5d7f63
PA
5197}
5198
0b6e5e10
JB
5199/* A wrapper around handle_inferior_event_1, which also makes sure
5200 that all temporary struct value objects that were created during
5201 the handling of the event get deleted at the end. */
5202
5203static void
5204handle_inferior_event (struct execution_control_state *ecs)
5205{
5206 struct value *mark = value_mark ();
5207
5208 handle_inferior_event_1 (ecs);
5209 /* Purge all temporary values created during the event handling,
5210 as it could be a long time before we return to the command level
5211 where such values would otherwise be purged. */
5212 value_free_to_mark (mark);
5213}
5214
372316f1
PA
5215/* Restart threads back to what they were trying to do back when we
5216 paused them for an in-line step-over. The EVENT_THREAD thread is
5217 ignored. */
4d9d9d04
PA
5218
5219static void
372316f1
PA
5220restart_threads (struct thread_info *event_thread)
5221{
372316f1
PA
5222 /* In case the instruction just stepped spawned a new thread. */
5223 update_thread_list ();
5224
08036331 5225 for (thread_info *tp : all_non_exited_threads ())
372316f1
PA
5226 {
5227 if (tp == event_thread)
5228 {
5229 if (debug_infrun)
5230 fprintf_unfiltered (gdb_stdlog,
5231 "infrun: restart threads: "
5232 "[%s] is event thread\n",
5233 target_pid_to_str (tp->ptid));
5234 continue;
5235 }
5236
5237 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5238 {
5239 if (debug_infrun)
5240 fprintf_unfiltered (gdb_stdlog,
5241 "infrun: restart threads: "
5242 "[%s] not meant to be running\n",
5243 target_pid_to_str (tp->ptid));
5244 continue;
5245 }
5246
5247 if (tp->resumed)
5248 {
5249 if (debug_infrun)
5250 fprintf_unfiltered (gdb_stdlog,
5251 "infrun: restart threads: [%s] resumed\n",
5252 target_pid_to_str (tp->ptid));
5253 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5254 continue;
5255 }
5256
5257 if (thread_is_in_step_over_chain (tp))
5258 {
5259 if (debug_infrun)
5260 fprintf_unfiltered (gdb_stdlog,
5261 "infrun: restart threads: "
5262 "[%s] needs step-over\n",
5263 target_pid_to_str (tp->ptid));
5264 gdb_assert (!tp->resumed);
5265 continue;
5266 }
5267
5268
5269 if (tp->suspend.waitstatus_pending_p)
5270 {
5271 if (debug_infrun)
5272 fprintf_unfiltered (gdb_stdlog,
5273 "infrun: restart threads: "
5274 "[%s] has pending status\n",
5275 target_pid_to_str (tp->ptid));
5276 tp->resumed = 1;
5277 continue;
5278 }
5279
c65d6b55
PA
5280 gdb_assert (!tp->stop_requested);
5281
372316f1
PA
5282 /* If some thread needs to start a step-over at this point, it
5283 should still be in the step-over queue, and thus skipped
5284 above. */
5285 if (thread_still_needs_step_over (tp))
5286 {
5287 internal_error (__FILE__, __LINE__,
5288 "thread [%s] needs a step-over, but not in "
5289 "step-over queue\n",
5290 target_pid_to_str (tp->ptid));
5291 }
5292
5293 if (currently_stepping (tp))
5294 {
5295 if (debug_infrun)
5296 fprintf_unfiltered (gdb_stdlog,
5297 "infrun: restart threads: [%s] was stepping\n",
5298 target_pid_to_str (tp->ptid));
5299 keep_going_stepped_thread (tp);
5300 }
5301 else
5302 {
5303 struct execution_control_state ecss;
5304 struct execution_control_state *ecs = &ecss;
5305
5306 if (debug_infrun)
5307 fprintf_unfiltered (gdb_stdlog,
5308 "infrun: restart threads: [%s] continuing\n",
5309 target_pid_to_str (tp->ptid));
5310 reset_ecs (ecs, tp);
00431a78 5311 switch_to_thread (tp);
372316f1
PA
5312 keep_going_pass_signal (ecs);
5313 }
5314 }
5315}
5316
5317/* Callback for iterate_over_threads. Find a resumed thread that has
5318 a pending waitstatus. */
5319
5320static int
5321resumed_thread_with_pending_status (struct thread_info *tp,
5322 void *arg)
5323{
5324 return (tp->resumed
5325 && tp->suspend.waitstatus_pending_p);
5326}
5327
5328/* Called when we get an event that may finish an in-line or
5329 out-of-line (displaced stepping) step-over started previously.
5330 Return true if the event is processed and we should go back to the
5331 event loop; false if the caller should continue processing the
5332 event. */
5333
5334static int
4d9d9d04
PA
5335finish_step_over (struct execution_control_state *ecs)
5336{
372316f1
PA
5337 int had_step_over_info;
5338
00431a78 5339 displaced_step_fixup (ecs->event_thread,
4d9d9d04
PA
5340 ecs->event_thread->suspend.stop_signal);
5341
372316f1
PA
5342 had_step_over_info = step_over_info_valid_p ();
5343
5344 if (had_step_over_info)
4d9d9d04
PA
5345 {
5346 /* If we're stepping over a breakpoint with all threads locked,
5347 then only the thread that was stepped should be reporting
5348 back an event. */
5349 gdb_assert (ecs->event_thread->control.trap_expected);
5350
c65d6b55 5351 clear_step_over_info ();
4d9d9d04
PA
5352 }
5353
fbea99ea 5354 if (!target_is_non_stop_p ())
372316f1 5355 return 0;
4d9d9d04
PA
5356
5357 /* Start a new step-over in another thread if there's one that
5358 needs it. */
5359 start_step_over ();
372316f1
PA
5360
5361 /* If we were stepping over a breakpoint before, and haven't started
5362 a new in-line step-over sequence, then restart all other threads
5363 (except the event thread). We can't do this in all-stop, as then
5364 e.g., we wouldn't be able to issue any other remote packet until
5365 these other threads stop. */
5366 if (had_step_over_info && !step_over_info_valid_p ())
5367 {
5368 struct thread_info *pending;
5369
5370 /* If we only have threads with pending statuses, the restart
5371 below won't restart any thread and so nothing re-inserts the
5372 breakpoint we just stepped over. But we need it inserted
5373 when we later process the pending events, otherwise if
5374 another thread has a pending event for this breakpoint too,
5375 we'd discard its event (because the breakpoint that
5376 originally caused the event was no longer inserted). */
00431a78 5377 context_switch (ecs);
372316f1
PA
5378 insert_breakpoints ();
5379
5380 restart_threads (ecs->event_thread);
5381
5382 /* If we have events pending, go through handle_inferior_event
5383 again, picking up a pending event at random. This avoids
5384 thread starvation. */
5385
5386 /* But not if we just stepped over a watchpoint in order to let
5387 the instruction execute so we can evaluate its expression.
5388 The set of watchpoints that triggered is recorded in the
5389 breakpoint objects themselves (see bp->watchpoint_triggered).
5390 If we processed another event first, that other event could
5391 clobber this info. */
5392 if (ecs->event_thread->stepping_over_watchpoint)
5393 return 0;
5394
5395 pending = iterate_over_threads (resumed_thread_with_pending_status,
5396 NULL);
5397 if (pending != NULL)
5398 {
5399 struct thread_info *tp = ecs->event_thread;
5400 struct regcache *regcache;
5401
5402 if (debug_infrun)
5403 {
5404 fprintf_unfiltered (gdb_stdlog,
5405 "infrun: found resumed threads with "
5406 "pending events, saving status\n");
5407 }
5408
5409 gdb_assert (pending != tp);
5410
5411 /* Record the event thread's event for later. */
5412 save_waitstatus (tp, &ecs->ws);
5413 /* This was cleared early, by handle_inferior_event. Set it
5414 so this pending event is considered by
5415 do_target_wait. */
5416 tp->resumed = 1;
5417
5418 gdb_assert (!tp->executing);
5419
00431a78 5420 regcache = get_thread_regcache (tp);
372316f1
PA
5421 tp->suspend.stop_pc = regcache_read_pc (regcache);
5422
5423 if (debug_infrun)
5424 {
5425 fprintf_unfiltered (gdb_stdlog,
5426 "infrun: saved stop_pc=%s for %s "
5427 "(currently_stepping=%d)\n",
5428 paddress (target_gdbarch (),
5429 tp->suspend.stop_pc),
5430 target_pid_to_str (tp->ptid),
5431 currently_stepping (tp));
5432 }
5433
5434 /* This in-line step-over finished; clear this so we won't
5435 start a new one. This is what handle_signal_stop would
5436 do, if we returned false. */
5437 tp->stepping_over_breakpoint = 0;
5438
5439 /* Wake up the event loop again. */
5440 mark_async_event_handler (infrun_async_inferior_event_token);
5441
5442 prepare_to_wait (ecs);
5443 return 1;
5444 }
5445 }
5446
5447 return 0;
4d9d9d04
PA
5448}
5449
4f5d7f63
PA
5450/* Come here when the program has stopped with a signal. */
5451
5452static void
5453handle_signal_stop (struct execution_control_state *ecs)
5454{
5455 struct frame_info *frame;
5456 struct gdbarch *gdbarch;
5457 int stopped_by_watchpoint;
5458 enum stop_kind stop_soon;
5459 int random_signal;
c906108c 5460
f0407826
DE
5461 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5462
c65d6b55
PA
5463 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5464
f0407826
DE
5465 /* Do we need to clean up the state of a thread that has
5466 completed a displaced single-step? (Doing so usually affects
5467 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5468 if (finish_step_over (ecs))
5469 return;
f0407826
DE
5470
5471 /* If we either finished a single-step or hit a breakpoint, but
5472 the user wanted this thread to be stopped, pretend we got a
5473 SIG0 (generic unsignaled stop). */
5474 if (ecs->event_thread->stop_requested
5475 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5476 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5477
f2ffa92b
PA
5478 ecs->event_thread->suspend.stop_pc
5479 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
488f131b 5480
527159b7 5481 if (debug_infrun)
237fc4c9 5482 {
00431a78 5483 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
b926417a 5484 struct gdbarch *reg_gdbarch = regcache->arch ();
2989a365 5485 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
7f82dfc7
JK
5486
5487 inferior_ptid = ecs->ptid;
5af949e3
UW
5488
5489 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
b926417a 5490 paddress (reg_gdbarch,
f2ffa92b 5491 ecs->event_thread->suspend.stop_pc));
d92524f1 5492 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5493 {
5494 CORE_ADDR addr;
abbb1732 5495
237fc4c9
PA
5496 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5497
8b88a78e 5498 if (target_stopped_data_address (current_top_target (), &addr))
237fc4c9 5499 fprintf_unfiltered (gdb_stdlog,
5af949e3 5500 "infrun: stopped data address = %s\n",
b926417a 5501 paddress (reg_gdbarch, addr));
237fc4c9
PA
5502 else
5503 fprintf_unfiltered (gdb_stdlog,
5504 "infrun: (no data address available)\n");
5505 }
5506 }
527159b7 5507
36fa8042
PA
5508 /* This is originated from start_remote(), start_inferior() and
5509 shared libraries hook functions. */
00431a78 5510 stop_soon = get_inferior_stop_soon (ecs);
36fa8042
PA
5511 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5512 {
00431a78 5513 context_switch (ecs);
36fa8042
PA
5514 if (debug_infrun)
5515 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5516 stop_print_frame = 1;
22bcd14b 5517 stop_waiting (ecs);
36fa8042
PA
5518 return;
5519 }
5520
36fa8042
PA
5521 /* This originates from attach_command(). We need to overwrite
5522 the stop_signal here, because some kernels don't ignore a
5523 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5524 See more comments in inferior.h. On the other hand, if we
5525 get a non-SIGSTOP, report it to the user - assume the backend
5526 will handle the SIGSTOP if it should show up later.
5527
5528 Also consider that the attach is complete when we see a
5529 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5530 target extended-remote report it instead of a SIGSTOP
5531 (e.g. gdbserver). We already rely on SIGTRAP being our
5532 signal, so this is no exception.
5533
5534 Also consider that the attach is complete when we see a
5535 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5536 the target to stop all threads of the inferior, in case the
5537 low level attach operation doesn't stop them implicitly. If
5538 they weren't stopped implicitly, then the stub will report a
5539 GDB_SIGNAL_0, meaning: stopped for no particular reason
5540 other than GDB's request. */
5541 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5542 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5543 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5544 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5545 {
5546 stop_print_frame = 1;
22bcd14b 5547 stop_waiting (ecs);
36fa8042
PA
5548 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5549 return;
5550 }
5551
488f131b 5552 /* See if something interesting happened to the non-current thread. If
b40c7d58 5553 so, then switch to that thread. */
d7e15655 5554 if (ecs->ptid != inferior_ptid)
488f131b 5555 {
527159b7 5556 if (debug_infrun)
8a9de0e4 5557 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5558
00431a78 5559 context_switch (ecs);
c5aa993b 5560
9a4105ab 5561 if (deprecated_context_hook)
00431a78 5562 deprecated_context_hook (ecs->event_thread->global_num);
488f131b 5563 }
c906108c 5564
568d6575
UW
5565 /* At this point, get hold of the now-current thread's frame. */
5566 frame = get_current_frame ();
5567 gdbarch = get_frame_arch (frame);
5568
2adfaa28 5569 /* Pull the single step breakpoints out of the target. */
af48d08f 5570 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5571 {
af48d08f 5572 struct regcache *regcache;
af48d08f 5573 CORE_ADDR pc;
2adfaa28 5574
00431a78 5575 regcache = get_thread_regcache (ecs->event_thread);
8b86c959
YQ
5576 const address_space *aspace = regcache->aspace ();
5577
af48d08f 5578 pc = regcache_read_pc (regcache);
34b7e8a6 5579
af48d08f
PA
5580 /* However, before doing so, if this single-step breakpoint was
5581 actually for another thread, set this thread up for moving
5582 past it. */
5583 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5584 aspace, pc))
5585 {
5586 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5587 {
5588 if (debug_infrun)
5589 {
5590 fprintf_unfiltered (gdb_stdlog,
af48d08f 5591 "infrun: [%s] hit another thread's "
34b7e8a6
PA
5592 "single-step breakpoint\n",
5593 target_pid_to_str (ecs->ptid));
2adfaa28 5594 }
af48d08f
PA
5595 ecs->hit_singlestep_breakpoint = 1;
5596 }
5597 }
5598 else
5599 {
5600 if (debug_infrun)
5601 {
5602 fprintf_unfiltered (gdb_stdlog,
5603 "infrun: [%s] hit its "
5604 "single-step breakpoint\n",
5605 target_pid_to_str (ecs->ptid));
2adfaa28
PA
5606 }
5607 }
488f131b 5608 }
af48d08f 5609 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5610
963f9c80
PA
5611 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5612 && ecs->event_thread->control.trap_expected
5613 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5614 stopped_by_watchpoint = 0;
5615 else
5616 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5617
5618 /* If necessary, step over this watchpoint. We'll be back to display
5619 it in a moment. */
5620 if (stopped_by_watchpoint
d92524f1 5621 && (target_have_steppable_watchpoint
568d6575 5622 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5623 {
488f131b
JB
5624 /* At this point, we are stopped at an instruction which has
5625 attempted to write to a piece of memory under control of
5626 a watchpoint. The instruction hasn't actually executed
5627 yet. If we were to evaluate the watchpoint expression
5628 now, we would get the old value, and therefore no change
5629 would seem to have occurred.
5630
5631 In order to make watchpoints work `right', we really need
5632 to complete the memory write, and then evaluate the
d983da9c
DJ
5633 watchpoint expression. We do this by single-stepping the
5634 target.
5635
7f89fd65 5636 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5637 it. For example, the PA can (with some kernel cooperation)
5638 single step over a watchpoint without disabling the watchpoint.
5639
5640 It is far more common to need to disable a watchpoint to step
5641 the inferior over it. If we have non-steppable watchpoints,
5642 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5643 disable all watchpoints.
5644
5645 Any breakpoint at PC must also be stepped over -- if there's
5646 one, it will have already triggered before the watchpoint
5647 triggered, and we either already reported it to the user, or
5648 it didn't cause a stop and we called keep_going. In either
5649 case, if there was a breakpoint at PC, we must be trying to
5650 step past it. */
5651 ecs->event_thread->stepping_over_watchpoint = 1;
5652 keep_going (ecs);
488f131b
JB
5653 return;
5654 }
5655
4e1c45ea 5656 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5657 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5658 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5659 ecs->event_thread->control.stop_step = 0;
488f131b 5660 stop_print_frame = 1;
488f131b 5661 stopped_by_random_signal = 0;
ddfe970e 5662 bpstat stop_chain = NULL;
488f131b 5663
edb3359d
DJ
5664 /* Hide inlined functions starting here, unless we just performed stepi or
5665 nexti. After stepi and nexti, always show the innermost frame (not any
5666 inline function call sites). */
16c381f0 5667 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 5668 {
00431a78
PA
5669 const address_space *aspace
5670 = get_thread_regcache (ecs->event_thread)->aspace ();
0574c78f
GB
5671
5672 /* skip_inline_frames is expensive, so we avoid it if we can
5673 determine that the address is one where functions cannot have
5674 been inlined. This improves performance with inferiors that
5675 load a lot of shared libraries, because the solib event
5676 breakpoint is defined as the address of a function (i.e. not
5677 inline). Note that we have to check the previous PC as well
5678 as the current one to catch cases when we have just
5679 single-stepped off a breakpoint prior to reinstating it.
5680 Note that we're assuming that the code we single-step to is
5681 not inline, but that's not definitive: there's nothing
5682 preventing the event breakpoint function from containing
5683 inlined code, and the single-step ending up there. If the
5684 user had set a breakpoint on that inlined code, the missing
5685 skip_inline_frames call would break things. Fortunately
5686 that's an extremely unlikely scenario. */
f2ffa92b
PA
5687 if (!pc_at_non_inline_function (aspace,
5688 ecs->event_thread->suspend.stop_pc,
5689 &ecs->ws)
a210c238
MR
5690 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5691 && ecs->event_thread->control.trap_expected
5692 && pc_at_non_inline_function (aspace,
5693 ecs->event_thread->prev_pc,
09ac7c10 5694 &ecs->ws)))
1c5a993e 5695 {
f2ffa92b
PA
5696 stop_chain = build_bpstat_chain (aspace,
5697 ecs->event_thread->suspend.stop_pc,
5698 &ecs->ws);
00431a78 5699 skip_inline_frames (ecs->event_thread, stop_chain);
1c5a993e
MR
5700
5701 /* Re-fetch current thread's frame in case that invalidated
5702 the frame cache. */
5703 frame = get_current_frame ();
5704 gdbarch = get_frame_arch (frame);
5705 }
0574c78f 5706 }
edb3359d 5707
a493e3e2 5708 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5709 && ecs->event_thread->control.trap_expected
568d6575 5710 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5711 && currently_stepping (ecs->event_thread))
3352ef37 5712 {
b50d7442 5713 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5714 also on an instruction that needs to be stepped multiple
1777feb0 5715 times before it's been fully executing. E.g., architectures
3352ef37
AC
5716 with a delay slot. It needs to be stepped twice, once for
5717 the instruction and once for the delay slot. */
5718 int step_through_delay
568d6575 5719 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5720
527159b7 5721 if (debug_infrun && step_through_delay)
8a9de0e4 5722 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5723 if (ecs->event_thread->control.step_range_end == 0
5724 && step_through_delay)
3352ef37
AC
5725 {
5726 /* The user issued a continue when stopped at a breakpoint.
5727 Set up for another trap and get out of here. */
4e1c45ea 5728 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5729 keep_going (ecs);
5730 return;
5731 }
5732 else if (step_through_delay)
5733 {
5734 /* The user issued a step when stopped at a breakpoint.
5735 Maybe we should stop, maybe we should not - the delay
5736 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5737 case, don't decide that here, just set
5738 ecs->stepping_over_breakpoint, making sure we
5739 single-step again before breakpoints are re-inserted. */
4e1c45ea 5740 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5741 }
5742 }
5743
ab04a2af
TT
5744 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5745 handles this event. */
5746 ecs->event_thread->control.stop_bpstat
a01bda52 5747 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5748 ecs->event_thread->suspend.stop_pc,
5749 ecs->event_thread, &ecs->ws, stop_chain);
db82e815 5750
ab04a2af
TT
5751 /* Following in case break condition called a
5752 function. */
5753 stop_print_frame = 1;
73dd234f 5754
ab04a2af
TT
5755 /* This is where we handle "moribund" watchpoints. Unlike
5756 software breakpoints traps, hardware watchpoint traps are
5757 always distinguishable from random traps. If no high-level
5758 watchpoint is associated with the reported stop data address
5759 anymore, then the bpstat does not explain the signal ---
5760 simply make sure to ignore it if `stopped_by_watchpoint' is
5761 set. */
5762
5763 if (debug_infrun
5764 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5765 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5766 GDB_SIGNAL_TRAP)
ab04a2af
TT
5767 && stopped_by_watchpoint)
5768 fprintf_unfiltered (gdb_stdlog,
5769 "infrun: no user watchpoint explains "
5770 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5771
bac7d97b 5772 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5773 at one stage in the past included checks for an inferior
5774 function call's call dummy's return breakpoint. The original
5775 comment, that went with the test, read:
03cebad2 5776
ab04a2af
TT
5777 ``End of a stack dummy. Some systems (e.g. Sony news) give
5778 another signal besides SIGTRAP, so check here as well as
5779 above.''
73dd234f 5780
ab04a2af
TT
5781 If someone ever tries to get call dummys on a
5782 non-executable stack to work (where the target would stop
5783 with something like a SIGSEGV), then those tests might need
5784 to be re-instated. Given, however, that the tests were only
5785 enabled when momentary breakpoints were not being used, I
5786 suspect that it won't be the case.
488f131b 5787
ab04a2af
TT
5788 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5789 be necessary for call dummies on a non-executable stack on
5790 SPARC. */
488f131b 5791
bac7d97b 5792 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5793 random_signal
5794 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5795 ecs->event_thread->suspend.stop_signal);
bac7d97b 5796
1cf4d951
PA
5797 /* Maybe this was a trap for a software breakpoint that has since
5798 been removed. */
5799 if (random_signal && target_stopped_by_sw_breakpoint ())
5800 {
f2ffa92b
PA
5801 if (program_breakpoint_here_p (gdbarch,
5802 ecs->event_thread->suspend.stop_pc))
1cf4d951
PA
5803 {
5804 struct regcache *regcache;
5805 int decr_pc;
5806
5807 /* Re-adjust PC to what the program would see if GDB was not
5808 debugging it. */
00431a78 5809 regcache = get_thread_regcache (ecs->event_thread);
527a273a 5810 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
5811 if (decr_pc != 0)
5812 {
07036511
TT
5813 gdb::optional<scoped_restore_tmpl<int>>
5814 restore_operation_disable;
1cf4d951
PA
5815
5816 if (record_full_is_used ())
07036511
TT
5817 restore_operation_disable.emplace
5818 (record_full_gdb_operation_disable_set ());
1cf4d951 5819
f2ffa92b
PA
5820 regcache_write_pc (regcache,
5821 ecs->event_thread->suspend.stop_pc + decr_pc);
1cf4d951
PA
5822 }
5823 }
5824 else
5825 {
5826 /* A delayed software breakpoint event. Ignore the trap. */
5827 if (debug_infrun)
5828 fprintf_unfiltered (gdb_stdlog,
5829 "infrun: delayed software breakpoint "
5830 "trap, ignoring\n");
5831 random_signal = 0;
5832 }
5833 }
5834
5835 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5836 has since been removed. */
5837 if (random_signal && target_stopped_by_hw_breakpoint ())
5838 {
5839 /* A delayed hardware breakpoint event. Ignore the trap. */
5840 if (debug_infrun)
5841 fprintf_unfiltered (gdb_stdlog,
5842 "infrun: delayed hardware breakpoint/watchpoint "
5843 "trap, ignoring\n");
5844 random_signal = 0;
5845 }
5846
bac7d97b
PA
5847 /* If not, perhaps stepping/nexting can. */
5848 if (random_signal)
5849 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5850 && currently_stepping (ecs->event_thread));
ab04a2af 5851
2adfaa28
PA
5852 /* Perhaps the thread hit a single-step breakpoint of _another_
5853 thread. Single-step breakpoints are transparent to the
5854 breakpoints module. */
5855 if (random_signal)
5856 random_signal = !ecs->hit_singlestep_breakpoint;
5857
bac7d97b
PA
5858 /* No? Perhaps we got a moribund watchpoint. */
5859 if (random_signal)
5860 random_signal = !stopped_by_watchpoint;
ab04a2af 5861
c65d6b55
PA
5862 /* Always stop if the user explicitly requested this thread to
5863 remain stopped. */
5864 if (ecs->event_thread->stop_requested)
5865 {
5866 random_signal = 1;
5867 if (debug_infrun)
5868 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
5869 }
5870
488f131b
JB
5871 /* For the program's own signals, act according to
5872 the signal handling tables. */
5873
ce12b012 5874 if (random_signal)
488f131b
JB
5875 {
5876 /* Signal not for debugging purposes. */
c9657e70 5877 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 5878 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 5879
527159b7 5880 if (debug_infrun)
c9737c08
PA
5881 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5882 gdb_signal_to_symbol_string (stop_signal));
527159b7 5883
488f131b
JB
5884 stopped_by_random_signal = 1;
5885
252fbfc8
PA
5886 /* Always stop on signals if we're either just gaining control
5887 of the program, or the user explicitly requested this thread
5888 to remain stopped. */
d6b48e9c 5889 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 5890 || ecs->event_thread->stop_requested
24291992 5891 || (!inf->detaching
16c381f0 5892 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 5893 {
22bcd14b 5894 stop_waiting (ecs);
488f131b
JB
5895 return;
5896 }
b57bacec
PA
5897
5898 /* Notify observers the signal has "handle print" set. Note we
5899 returned early above if stopping; normal_stop handles the
5900 printing in that case. */
5901 if (signal_print[ecs->event_thread->suspend.stop_signal])
5902 {
5903 /* The signal table tells us to print about this signal. */
223ffa71 5904 target_terminal::ours_for_output ();
76727919 5905 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
223ffa71 5906 target_terminal::inferior ();
b57bacec 5907 }
488f131b
JB
5908
5909 /* Clear the signal if it should not be passed. */
16c381f0 5910 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 5911 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 5912
f2ffa92b 5913 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
16c381f0 5914 && ecs->event_thread->control.trap_expected
8358c15c 5915 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
5916 {
5917 /* We were just starting a new sequence, attempting to
5918 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 5919 Instead this signal arrives. This signal will take us out
68f53502
AC
5920 of the stepping range so GDB needs to remember to, when
5921 the signal handler returns, resume stepping off that
5922 breakpoint. */
5923 /* To simplify things, "continue" is forced to use the same
5924 code paths as single-step - set a breakpoint at the
5925 signal return address and then, once hit, step off that
5926 breakpoint. */
237fc4c9
PA
5927 if (debug_infrun)
5928 fprintf_unfiltered (gdb_stdlog,
5929 "infrun: signal arrived while stepping over "
5930 "breakpoint\n");
d3169d93 5931
2c03e5be 5932 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 5933 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5934 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5935 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
5936
5937 /* If we were nexting/stepping some other thread, switch to
5938 it, so that we don't continue it, losing control. */
5939 if (!switch_back_to_stepped_thread (ecs))
5940 keep_going (ecs);
9d799f85 5941 return;
68f53502 5942 }
9d799f85 5943
e5f8a7cc 5944 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
f2ffa92b
PA
5945 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
5946 ecs->event_thread)
e5f8a7cc 5947 || ecs->event_thread->control.step_range_end == 1)
edb3359d 5948 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 5949 ecs->event_thread->control.step_stack_frame_id)
8358c15c 5950 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
5951 {
5952 /* The inferior is about to take a signal that will take it
5953 out of the single step range. Set a breakpoint at the
5954 current PC (which is presumably where the signal handler
5955 will eventually return) and then allow the inferior to
5956 run free.
5957
5958 Note that this is only needed for a signal delivered
5959 while in the single-step range. Nested signals aren't a
5960 problem as they eventually all return. */
237fc4c9
PA
5961 if (debug_infrun)
5962 fprintf_unfiltered (gdb_stdlog,
5963 "infrun: signal may take us out of "
5964 "single-step range\n");
5965
372316f1 5966 clear_step_over_info ();
2c03e5be 5967 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 5968 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5969 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5970 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
5971 keep_going (ecs);
5972 return;
d303a6c7 5973 }
9d799f85
AC
5974
5975 /* Note: step_resume_breakpoint may be non-NULL. This occures
5976 when either there's a nested signal, or when there's a
5977 pending signal enabled just as the signal handler returns
5978 (leaving the inferior at the step-resume-breakpoint without
5979 actually executing it). Either way continue until the
5980 breakpoint is really hit. */
c447ac0b
PA
5981
5982 if (!switch_back_to_stepped_thread (ecs))
5983 {
5984 if (debug_infrun)
5985 fprintf_unfiltered (gdb_stdlog,
5986 "infrun: random signal, keep going\n");
5987
5988 keep_going (ecs);
5989 }
5990 return;
488f131b 5991 }
94c57d6a
PA
5992
5993 process_event_stop_test (ecs);
5994}
5995
5996/* Come here when we've got some debug event / signal we can explain
5997 (IOW, not a random signal), and test whether it should cause a
5998 stop, or whether we should resume the inferior (transparently).
5999 E.g., could be a breakpoint whose condition evaluates false; we
6000 could be still stepping within the line; etc. */
6001
6002static void
6003process_event_stop_test (struct execution_control_state *ecs)
6004{
6005 struct symtab_and_line stop_pc_sal;
6006 struct frame_info *frame;
6007 struct gdbarch *gdbarch;
cdaa5b73
PA
6008 CORE_ADDR jmp_buf_pc;
6009 struct bpstat_what what;
94c57d6a 6010
cdaa5b73 6011 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6012
cdaa5b73
PA
6013 frame = get_current_frame ();
6014 gdbarch = get_frame_arch (frame);
fcf3daef 6015
cdaa5b73 6016 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6017
cdaa5b73
PA
6018 if (what.call_dummy)
6019 {
6020 stop_stack_dummy = what.call_dummy;
6021 }
186c406b 6022
243a9253
PA
6023 /* A few breakpoint types have callbacks associated (e.g.,
6024 bp_jit_event). Run them now. */
6025 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6026
cdaa5b73
PA
6027 /* If we hit an internal event that triggers symbol changes, the
6028 current frame will be invalidated within bpstat_what (e.g., if we
6029 hit an internal solib event). Re-fetch it. */
6030 frame = get_current_frame ();
6031 gdbarch = get_frame_arch (frame);
e2e4d78b 6032
cdaa5b73
PA
6033 switch (what.main_action)
6034 {
6035 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6036 /* If we hit the breakpoint at longjmp while stepping, we
6037 install a momentary breakpoint at the target of the
6038 jmp_buf. */
186c406b 6039
cdaa5b73
PA
6040 if (debug_infrun)
6041 fprintf_unfiltered (gdb_stdlog,
6042 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6043
cdaa5b73 6044 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6045
cdaa5b73
PA
6046 if (what.is_longjmp)
6047 {
6048 struct value *arg_value;
6049
6050 /* If we set the longjmp breakpoint via a SystemTap probe,
6051 then use it to extract the arguments. The destination PC
6052 is the third argument to the probe. */
6053 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6054 if (arg_value)
8fa0c4f8
AA
6055 {
6056 jmp_buf_pc = value_as_address (arg_value);
6057 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6058 }
cdaa5b73
PA
6059 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6060 || !gdbarch_get_longjmp_target (gdbarch,
6061 frame, &jmp_buf_pc))
e2e4d78b 6062 {
cdaa5b73
PA
6063 if (debug_infrun)
6064 fprintf_unfiltered (gdb_stdlog,
6065 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6066 "(!gdbarch_get_longjmp_target)\n");
6067 keep_going (ecs);
6068 return;
e2e4d78b 6069 }
e2e4d78b 6070
cdaa5b73
PA
6071 /* Insert a breakpoint at resume address. */
6072 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6073 }
6074 else
6075 check_exception_resume (ecs, frame);
6076 keep_going (ecs);
6077 return;
e81a37f7 6078
cdaa5b73
PA
6079 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6080 {
6081 struct frame_info *init_frame;
e81a37f7 6082
cdaa5b73 6083 /* There are several cases to consider.
c906108c 6084
cdaa5b73
PA
6085 1. The initiating frame no longer exists. In this case we
6086 must stop, because the exception or longjmp has gone too
6087 far.
2c03e5be 6088
cdaa5b73
PA
6089 2. The initiating frame exists, and is the same as the
6090 current frame. We stop, because the exception or longjmp
6091 has been caught.
2c03e5be 6092
cdaa5b73
PA
6093 3. The initiating frame exists and is different from the
6094 current frame. This means the exception or longjmp has
6095 been caught beneath the initiating frame, so keep going.
c906108c 6096
cdaa5b73
PA
6097 4. longjmp breakpoint has been placed just to protect
6098 against stale dummy frames and user is not interested in
6099 stopping around longjmps. */
c5aa993b 6100
cdaa5b73
PA
6101 if (debug_infrun)
6102 fprintf_unfiltered (gdb_stdlog,
6103 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6104
cdaa5b73
PA
6105 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6106 != NULL);
6107 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6108
cdaa5b73
PA
6109 if (what.is_longjmp)
6110 {
b67a2c6f 6111 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6112
cdaa5b73 6113 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6114 {
cdaa5b73
PA
6115 /* Case 4. */
6116 keep_going (ecs);
6117 return;
e5ef252a 6118 }
cdaa5b73 6119 }
c5aa993b 6120
cdaa5b73 6121 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6122
cdaa5b73
PA
6123 if (init_frame)
6124 {
6125 struct frame_id current_id
6126 = get_frame_id (get_current_frame ());
6127 if (frame_id_eq (current_id,
6128 ecs->event_thread->initiating_frame))
6129 {
6130 /* Case 2. Fall through. */
6131 }
6132 else
6133 {
6134 /* Case 3. */
6135 keep_going (ecs);
6136 return;
6137 }
68f53502 6138 }
488f131b 6139
cdaa5b73
PA
6140 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6141 exists. */
6142 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6143
bdc36728 6144 end_stepping_range (ecs);
cdaa5b73
PA
6145 }
6146 return;
e5ef252a 6147
cdaa5b73
PA
6148 case BPSTAT_WHAT_SINGLE:
6149 if (debug_infrun)
6150 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6151 ecs->event_thread->stepping_over_breakpoint = 1;
6152 /* Still need to check other stuff, at least the case where we
6153 are stepping and step out of the right range. */
6154 break;
e5ef252a 6155
cdaa5b73
PA
6156 case BPSTAT_WHAT_STEP_RESUME:
6157 if (debug_infrun)
6158 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6159
cdaa5b73
PA
6160 delete_step_resume_breakpoint (ecs->event_thread);
6161 if (ecs->event_thread->control.proceed_to_finish
6162 && execution_direction == EXEC_REVERSE)
6163 {
6164 struct thread_info *tp = ecs->event_thread;
6165
6166 /* We are finishing a function in reverse, and just hit the
6167 step-resume breakpoint at the start address of the
6168 function, and we're almost there -- just need to back up
6169 by one more single-step, which should take us back to the
6170 function call. */
6171 tp->control.step_range_start = tp->control.step_range_end = 1;
6172 keep_going (ecs);
e5ef252a 6173 return;
cdaa5b73
PA
6174 }
6175 fill_in_stop_func (gdbarch, ecs);
f2ffa92b 6176 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
cdaa5b73
PA
6177 && execution_direction == EXEC_REVERSE)
6178 {
6179 /* We are stepping over a function call in reverse, and just
6180 hit the step-resume breakpoint at the start address of
6181 the function. Go back to single-stepping, which should
6182 take us back to the function call. */
6183 ecs->event_thread->stepping_over_breakpoint = 1;
6184 keep_going (ecs);
6185 return;
6186 }
6187 break;
e5ef252a 6188
cdaa5b73
PA
6189 case BPSTAT_WHAT_STOP_NOISY:
6190 if (debug_infrun)
6191 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6192 stop_print_frame = 1;
e5ef252a 6193
99619bea
PA
6194 /* Assume the thread stopped for a breapoint. We'll still check
6195 whether a/the breakpoint is there when the thread is next
6196 resumed. */
6197 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6198
22bcd14b 6199 stop_waiting (ecs);
cdaa5b73 6200 return;
e5ef252a 6201
cdaa5b73
PA
6202 case BPSTAT_WHAT_STOP_SILENT:
6203 if (debug_infrun)
6204 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6205 stop_print_frame = 0;
e5ef252a 6206
99619bea
PA
6207 /* Assume the thread stopped for a breapoint. We'll still check
6208 whether a/the breakpoint is there when the thread is next
6209 resumed. */
6210 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6211 stop_waiting (ecs);
cdaa5b73
PA
6212 return;
6213
6214 case BPSTAT_WHAT_HP_STEP_RESUME:
6215 if (debug_infrun)
6216 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6217
6218 delete_step_resume_breakpoint (ecs->event_thread);
6219 if (ecs->event_thread->step_after_step_resume_breakpoint)
6220 {
6221 /* Back when the step-resume breakpoint was inserted, we
6222 were trying to single-step off a breakpoint. Go back to
6223 doing that. */
6224 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6225 ecs->event_thread->stepping_over_breakpoint = 1;
6226 keep_going (ecs);
6227 return;
e5ef252a 6228 }
cdaa5b73
PA
6229 break;
6230
6231 case BPSTAT_WHAT_KEEP_CHECKING:
6232 break;
e5ef252a 6233 }
c906108c 6234
af48d08f
PA
6235 /* If we stepped a permanent breakpoint and we had a high priority
6236 step-resume breakpoint for the address we stepped, but we didn't
6237 hit it, then we must have stepped into the signal handler. The
6238 step-resume was only necessary to catch the case of _not_
6239 stepping into the handler, so delete it, and fall through to
6240 checking whether the step finished. */
6241 if (ecs->event_thread->stepped_breakpoint)
6242 {
6243 struct breakpoint *sr_bp
6244 = ecs->event_thread->control.step_resume_breakpoint;
6245
8d707a12
PA
6246 if (sr_bp != NULL
6247 && sr_bp->loc->permanent
af48d08f
PA
6248 && sr_bp->type == bp_hp_step_resume
6249 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6250 {
6251 if (debug_infrun)
6252 fprintf_unfiltered (gdb_stdlog,
6253 "infrun: stepped permanent breakpoint, stopped in "
6254 "handler\n");
6255 delete_step_resume_breakpoint (ecs->event_thread);
6256 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6257 }
6258 }
6259
cdaa5b73
PA
6260 /* We come here if we hit a breakpoint but should not stop for it.
6261 Possibly we also were stepping and should stop for that. So fall
6262 through and test for stepping. But, if not stepping, do not
6263 stop. */
c906108c 6264
a7212384
UW
6265 /* In all-stop mode, if we're currently stepping but have stopped in
6266 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6267 if (switch_back_to_stepped_thread (ecs))
6268 return;
776f04fa 6269
8358c15c 6270 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6271 {
527159b7 6272 if (debug_infrun)
d3169d93
DJ
6273 fprintf_unfiltered (gdb_stdlog,
6274 "infrun: step-resume breakpoint is inserted\n");
527159b7 6275
488f131b
JB
6276 /* Having a step-resume breakpoint overrides anything
6277 else having to do with stepping commands until
6278 that breakpoint is reached. */
488f131b
JB
6279 keep_going (ecs);
6280 return;
6281 }
c5aa993b 6282
16c381f0 6283 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6284 {
527159b7 6285 if (debug_infrun)
8a9de0e4 6286 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6287 /* Likewise if we aren't even stepping. */
488f131b
JB
6288 keep_going (ecs);
6289 return;
6290 }
c5aa993b 6291
4b7703ad
JB
6292 /* Re-fetch current thread's frame in case the code above caused
6293 the frame cache to be re-initialized, making our FRAME variable
6294 a dangling pointer. */
6295 frame = get_current_frame ();
628fe4e4 6296 gdbarch = get_frame_arch (frame);
7e324e48 6297 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6298
488f131b 6299 /* If stepping through a line, keep going if still within it.
c906108c 6300
488f131b
JB
6301 Note that step_range_end is the address of the first instruction
6302 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6303 within it!
6304
6305 Note also that during reverse execution, we may be stepping
6306 through a function epilogue and therefore must detect when
6307 the current-frame changes in the middle of a line. */
6308
f2ffa92b
PA
6309 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6310 ecs->event_thread)
31410e84 6311 && (execution_direction != EXEC_REVERSE
388a8562 6312 || frame_id_eq (get_frame_id (frame),
16c381f0 6313 ecs->event_thread->control.step_frame_id)))
488f131b 6314 {
527159b7 6315 if (debug_infrun)
5af949e3
UW
6316 fprintf_unfiltered
6317 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6318 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6319 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6320
c1e36e3e
PA
6321 /* Tentatively re-enable range stepping; `resume' disables it if
6322 necessary (e.g., if we're stepping over a breakpoint or we
6323 have software watchpoints). */
6324 ecs->event_thread->control.may_range_step = 1;
6325
b2175913
MS
6326 /* When stepping backward, stop at beginning of line range
6327 (unless it's the function entry point, in which case
6328 keep going back to the call point). */
f2ffa92b 6329 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
16c381f0 6330 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6331 && stop_pc != ecs->stop_func_start
6332 && execution_direction == EXEC_REVERSE)
bdc36728 6333 end_stepping_range (ecs);
b2175913
MS
6334 else
6335 keep_going (ecs);
6336
488f131b
JB
6337 return;
6338 }
c5aa993b 6339
488f131b 6340 /* We stepped out of the stepping range. */
c906108c 6341
488f131b 6342 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6343 loader dynamic symbol resolution code...
6344
6345 EXEC_FORWARD: we keep on single stepping until we exit the run
6346 time loader code and reach the callee's address.
6347
6348 EXEC_REVERSE: we've already executed the callee (backward), and
6349 the runtime loader code is handled just like any other
6350 undebuggable function call. Now we need only keep stepping
6351 backward through the trampoline code, and that's handled further
6352 down, so there is nothing for us to do here. */
6353
6354 if (execution_direction != EXEC_REVERSE
16c381f0 6355 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
f2ffa92b 6356 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
488f131b 6357 {
4c8c40e6 6358 CORE_ADDR pc_after_resolver =
f2ffa92b
PA
6359 gdbarch_skip_solib_resolver (gdbarch,
6360 ecs->event_thread->suspend.stop_pc);
c906108c 6361
527159b7 6362 if (debug_infrun)
3e43a32a
MS
6363 fprintf_unfiltered (gdb_stdlog,
6364 "infrun: stepped into dynsym resolve code\n");
527159b7 6365
488f131b
JB
6366 if (pc_after_resolver)
6367 {
6368 /* Set up a step-resume breakpoint at the address
6369 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6370 symtab_and_line sr_sal;
488f131b 6371 sr_sal.pc = pc_after_resolver;
6c95b8df 6372 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6373
a6d9a66e
UW
6374 insert_step_resume_breakpoint_at_sal (gdbarch,
6375 sr_sal, null_frame_id);
c5aa993b 6376 }
c906108c 6377
488f131b
JB
6378 keep_going (ecs);
6379 return;
6380 }
c906108c 6381
1d509aa6
MM
6382 /* Step through an indirect branch thunk. */
6383 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
f2ffa92b
PA
6384 && gdbarch_in_indirect_branch_thunk (gdbarch,
6385 ecs->event_thread->suspend.stop_pc))
1d509aa6
MM
6386 {
6387 if (debug_infrun)
6388 fprintf_unfiltered (gdb_stdlog,
6389 "infrun: stepped into indirect branch thunk\n");
6390 keep_going (ecs);
6391 return;
6392 }
6393
16c381f0
JK
6394 if (ecs->event_thread->control.step_range_end != 1
6395 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6396 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6397 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6398 {
527159b7 6399 if (debug_infrun)
3e43a32a
MS
6400 fprintf_unfiltered (gdb_stdlog,
6401 "infrun: stepped into signal trampoline\n");
42edda50 6402 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6403 a signal trampoline (either by a signal being delivered or by
6404 the signal handler returning). Just single-step until the
6405 inferior leaves the trampoline (either by calling the handler
6406 or returning). */
488f131b
JB
6407 keep_going (ecs);
6408 return;
6409 }
c906108c 6410
14132e89
MR
6411 /* If we're in the return path from a shared library trampoline,
6412 we want to proceed through the trampoline when stepping. */
6413 /* macro/2012-04-25: This needs to come before the subroutine
6414 call check below as on some targets return trampolines look
6415 like subroutine calls (MIPS16 return thunks). */
6416 if (gdbarch_in_solib_return_trampoline (gdbarch,
f2ffa92b
PA
6417 ecs->event_thread->suspend.stop_pc,
6418 ecs->stop_func_name)
14132e89
MR
6419 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6420 {
6421 /* Determine where this trampoline returns. */
f2ffa92b
PA
6422 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6423 CORE_ADDR real_stop_pc
6424 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
14132e89
MR
6425
6426 if (debug_infrun)
6427 fprintf_unfiltered (gdb_stdlog,
6428 "infrun: stepped into solib return tramp\n");
6429
6430 /* Only proceed through if we know where it's going. */
6431 if (real_stop_pc)
6432 {
6433 /* And put the step-breakpoint there and go until there. */
51abb421 6434 symtab_and_line sr_sal;
14132e89
MR
6435 sr_sal.pc = real_stop_pc;
6436 sr_sal.section = find_pc_overlay (sr_sal.pc);
6437 sr_sal.pspace = get_frame_program_space (frame);
6438
6439 /* Do not specify what the fp should be when we stop since
6440 on some machines the prologue is where the new fp value
6441 is established. */
6442 insert_step_resume_breakpoint_at_sal (gdbarch,
6443 sr_sal, null_frame_id);
6444
6445 /* Restart without fiddling with the step ranges or
6446 other state. */
6447 keep_going (ecs);
6448 return;
6449 }
6450 }
6451
c17eaafe
DJ
6452 /* Check for subroutine calls. The check for the current frame
6453 equalling the step ID is not necessary - the check of the
6454 previous frame's ID is sufficient - but it is a common case and
6455 cheaper than checking the previous frame's ID.
14e60db5
DJ
6456
6457 NOTE: frame_id_eq will never report two invalid frame IDs as
6458 being equal, so to get into this block, both the current and
6459 previous frame must have valid frame IDs. */
005ca36a
JB
6460 /* The outer_frame_id check is a heuristic to detect stepping
6461 through startup code. If we step over an instruction which
6462 sets the stack pointer from an invalid value to a valid value,
6463 we may detect that as a subroutine call from the mythical
6464 "outermost" function. This could be fixed by marking
6465 outermost frames as !stack_p,code_p,special_p. Then the
6466 initial outermost frame, before sp was valid, would
ce6cca6d 6467 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6468 for more. */
edb3359d 6469 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6470 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6471 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6472 ecs->event_thread->control.step_stack_frame_id)
6473 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6474 outer_frame_id)
885eeb5b 6475 || (ecs->event_thread->control.step_start_function
f2ffa92b 6476 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
488f131b 6477 {
f2ffa92b 6478 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
95918acb 6479 CORE_ADDR real_stop_pc;
8fb3e588 6480
527159b7 6481 if (debug_infrun)
8a9de0e4 6482 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6483
b7a084be 6484 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6485 {
6486 /* I presume that step_over_calls is only 0 when we're
6487 supposed to be stepping at the assembly language level
6488 ("stepi"). Just stop. */
388a8562 6489 /* And this works the same backward as frontward. MVS */
bdc36728 6490 end_stepping_range (ecs);
95918acb
AC
6491 return;
6492 }
8fb3e588 6493
388a8562
MS
6494 /* Reverse stepping through solib trampolines. */
6495
6496 if (execution_direction == EXEC_REVERSE
16c381f0 6497 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6498 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6499 || (ecs->stop_func_start == 0
6500 && in_solib_dynsym_resolve_code (stop_pc))))
6501 {
6502 /* Any solib trampoline code can be handled in reverse
6503 by simply continuing to single-step. We have already
6504 executed the solib function (backwards), and a few
6505 steps will take us back through the trampoline to the
6506 caller. */
6507 keep_going (ecs);
6508 return;
6509 }
6510
16c381f0 6511 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6512 {
b2175913
MS
6513 /* We're doing a "next".
6514
6515 Normal (forward) execution: set a breakpoint at the
6516 callee's return address (the address at which the caller
6517 will resume).
6518
6519 Reverse (backward) execution. set the step-resume
6520 breakpoint at the start of the function that we just
6521 stepped into (backwards), and continue to there. When we
6130d0b7 6522 get there, we'll need to single-step back to the caller. */
b2175913
MS
6523
6524 if (execution_direction == EXEC_REVERSE)
6525 {
acf9414f
JK
6526 /* If we're already at the start of the function, we've either
6527 just stepped backward into a single instruction function,
6528 or stepped back out of a signal handler to the first instruction
6529 of the function. Just keep going, which will single-step back
6530 to the caller. */
58c48e72 6531 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 6532 {
acf9414f 6533 /* Normal function call return (static or dynamic). */
51abb421 6534 symtab_and_line sr_sal;
acf9414f
JK
6535 sr_sal.pc = ecs->stop_func_start;
6536 sr_sal.pspace = get_frame_program_space (frame);
6537 insert_step_resume_breakpoint_at_sal (gdbarch,
6538 sr_sal, null_frame_id);
6539 }
b2175913
MS
6540 }
6541 else
568d6575 6542 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6543
8567c30f
AC
6544 keep_going (ecs);
6545 return;
6546 }
a53c66de 6547
95918acb 6548 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6549 calling routine and the real function), locate the real
6550 function. That's what tells us (a) whether we want to step
6551 into it at all, and (b) what prologue we want to run to the
6552 end of, if we do step into it. */
568d6575 6553 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6554 if (real_stop_pc == 0)
568d6575 6555 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6556 if (real_stop_pc != 0)
6557 ecs->stop_func_start = real_stop_pc;
8fb3e588 6558
db5f024e 6559 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 6560 {
51abb421 6561 symtab_and_line sr_sal;
1b2bfbb9 6562 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6563 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6564
a6d9a66e
UW
6565 insert_step_resume_breakpoint_at_sal (gdbarch,
6566 sr_sal, null_frame_id);
8fb3e588
AC
6567 keep_going (ecs);
6568 return;
1b2bfbb9
RC
6569 }
6570
95918acb 6571 /* If we have line number information for the function we are
1bfeeb0f
JL
6572 thinking of stepping into and the function isn't on the skip
6573 list, step into it.
95918acb 6574
8fb3e588
AC
6575 If there are several symtabs at that PC (e.g. with include
6576 files), just want to know whether *any* of them have line
6577 numbers. find_pc_line handles this. */
95918acb
AC
6578 {
6579 struct symtab_and_line tmp_sal;
8fb3e588 6580
95918acb 6581 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6582 if (tmp_sal.line != 0
85817405 6583 && !function_name_is_marked_for_skip (ecs->stop_func_name,
de7985c3 6584 tmp_sal))
95918acb 6585 {
b2175913 6586 if (execution_direction == EXEC_REVERSE)
568d6575 6587 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6588 else
568d6575 6589 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6590 return;
6591 }
6592 }
6593
6594 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6595 set, we stop the step so that the user has a chance to switch
6596 in assembly mode. */
16c381f0 6597 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6598 && step_stop_if_no_debug)
95918acb 6599 {
bdc36728 6600 end_stepping_range (ecs);
95918acb
AC
6601 return;
6602 }
6603
b2175913
MS
6604 if (execution_direction == EXEC_REVERSE)
6605 {
acf9414f
JK
6606 /* If we're already at the start of the function, we've either just
6607 stepped backward into a single instruction function without line
6608 number info, or stepped back out of a signal handler to the first
6609 instruction of the function without line number info. Just keep
6610 going, which will single-step back to the caller. */
6611 if (ecs->stop_func_start != stop_pc)
6612 {
6613 /* Set a breakpoint at callee's start address.
6614 From there we can step once and be back in the caller. */
51abb421 6615 symtab_and_line sr_sal;
acf9414f
JK
6616 sr_sal.pc = ecs->stop_func_start;
6617 sr_sal.pspace = get_frame_program_space (frame);
6618 insert_step_resume_breakpoint_at_sal (gdbarch,
6619 sr_sal, null_frame_id);
6620 }
b2175913
MS
6621 }
6622 else
6623 /* Set a breakpoint at callee's return address (the address
6624 at which the caller will resume). */
568d6575 6625 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6626
95918acb 6627 keep_going (ecs);
488f131b 6628 return;
488f131b 6629 }
c906108c 6630
fdd654f3
MS
6631 /* Reverse stepping through solib trampolines. */
6632
6633 if (execution_direction == EXEC_REVERSE
16c381f0 6634 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3 6635 {
f2ffa92b
PA
6636 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6637
fdd654f3
MS
6638 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6639 || (ecs->stop_func_start == 0
6640 && in_solib_dynsym_resolve_code (stop_pc)))
6641 {
6642 /* Any solib trampoline code can be handled in reverse
6643 by simply continuing to single-step. We have already
6644 executed the solib function (backwards), and a few
6645 steps will take us back through the trampoline to the
6646 caller. */
6647 keep_going (ecs);
6648 return;
6649 }
6650 else if (in_solib_dynsym_resolve_code (stop_pc))
6651 {
6652 /* Stepped backward into the solib dynsym resolver.
6653 Set a breakpoint at its start and continue, then
6654 one more step will take us out. */
51abb421 6655 symtab_and_line sr_sal;
fdd654f3 6656 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6657 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6658 insert_step_resume_breakpoint_at_sal (gdbarch,
6659 sr_sal, null_frame_id);
6660 keep_going (ecs);
6661 return;
6662 }
6663 }
6664
f2ffa92b 6665 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7ed0fe66 6666
1b2bfbb9
RC
6667 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6668 the trampoline processing logic, however, there are some trampolines
6669 that have no names, so we should do trampoline handling first. */
16c381f0 6670 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6671 && ecs->stop_func_name == NULL
2afb61aa 6672 && stop_pc_sal.line == 0)
1b2bfbb9 6673 {
527159b7 6674 if (debug_infrun)
3e43a32a
MS
6675 fprintf_unfiltered (gdb_stdlog,
6676 "infrun: stepped into undebuggable function\n");
527159b7 6677
1b2bfbb9 6678 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6679 undebuggable function (where there is no debugging information
6680 and no line number corresponding to the address where the
1b2bfbb9
RC
6681 inferior stopped). Since we want to skip this kind of code,
6682 we keep going until the inferior returns from this
14e60db5
DJ
6683 function - unless the user has asked us not to (via
6684 set step-mode) or we no longer know how to get back
6685 to the call site. */
6686 if (step_stop_if_no_debug
c7ce8faa 6687 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6688 {
6689 /* If we have no line number and the step-stop-if-no-debug
6690 is set, we stop the step so that the user has a chance to
6691 switch in assembly mode. */
bdc36728 6692 end_stepping_range (ecs);
1b2bfbb9
RC
6693 return;
6694 }
6695 else
6696 {
6697 /* Set a breakpoint at callee's return address (the address
6698 at which the caller will resume). */
568d6575 6699 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6700 keep_going (ecs);
6701 return;
6702 }
6703 }
6704
16c381f0 6705 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6706 {
6707 /* It is stepi or nexti. We always want to stop stepping after
6708 one instruction. */
527159b7 6709 if (debug_infrun)
8a9de0e4 6710 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6711 end_stepping_range (ecs);
1b2bfbb9
RC
6712 return;
6713 }
6714
2afb61aa 6715 if (stop_pc_sal.line == 0)
488f131b
JB
6716 {
6717 /* We have no line number information. That means to stop
6718 stepping (does this always happen right after one instruction,
6719 when we do "s" in a function with no line numbers,
6720 or can this happen as a result of a return or longjmp?). */
527159b7 6721 if (debug_infrun)
8a9de0e4 6722 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6723 end_stepping_range (ecs);
488f131b
JB
6724 return;
6725 }
c906108c 6726
edb3359d
DJ
6727 /* Look for "calls" to inlined functions, part one. If the inline
6728 frame machinery detected some skipped call sites, we have entered
6729 a new inline function. */
6730
6731 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6732 ecs->event_thread->control.step_frame_id)
00431a78 6733 && inline_skipped_frames (ecs->event_thread))
edb3359d 6734 {
edb3359d
DJ
6735 if (debug_infrun)
6736 fprintf_unfiltered (gdb_stdlog,
6737 "infrun: stepped into inlined function\n");
6738
51abb421 6739 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 6740
16c381f0 6741 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6742 {
6743 /* For "step", we're going to stop. But if the call site
6744 for this inlined function is on the same source line as
6745 we were previously stepping, go down into the function
6746 first. Otherwise stop at the call site. */
6747
6748 if (call_sal.line == ecs->event_thread->current_line
6749 && call_sal.symtab == ecs->event_thread->current_symtab)
00431a78 6750 step_into_inline_frame (ecs->event_thread);
edb3359d 6751
bdc36728 6752 end_stepping_range (ecs);
edb3359d
DJ
6753 return;
6754 }
6755 else
6756 {
6757 /* For "next", we should stop at the call site if it is on a
6758 different source line. Otherwise continue through the
6759 inlined function. */
6760 if (call_sal.line == ecs->event_thread->current_line
6761 && call_sal.symtab == ecs->event_thread->current_symtab)
6762 keep_going (ecs);
6763 else
bdc36728 6764 end_stepping_range (ecs);
edb3359d
DJ
6765 return;
6766 }
6767 }
6768
6769 /* Look for "calls" to inlined functions, part two. If we are still
6770 in the same real function we were stepping through, but we have
6771 to go further up to find the exact frame ID, we are stepping
6772 through a more inlined call beyond its call site. */
6773
6774 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6775 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6776 ecs->event_thread->control.step_frame_id)
edb3359d 6777 && stepped_in_from (get_current_frame (),
16c381f0 6778 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6779 {
6780 if (debug_infrun)
6781 fprintf_unfiltered (gdb_stdlog,
6782 "infrun: stepping through inlined function\n");
6783
16c381f0 6784 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
6785 keep_going (ecs);
6786 else
bdc36728 6787 end_stepping_range (ecs);
edb3359d
DJ
6788 return;
6789 }
6790
f2ffa92b 6791 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6792 && (ecs->event_thread->current_line != stop_pc_sal.line
6793 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
6794 {
6795 /* We are at the start of a different line. So stop. Note that
6796 we don't stop if we step into the middle of a different line.
6797 That is said to make things like for (;;) statements work
6798 better. */
527159b7 6799 if (debug_infrun)
3e43a32a
MS
6800 fprintf_unfiltered (gdb_stdlog,
6801 "infrun: stepped to a different line\n");
bdc36728 6802 end_stepping_range (ecs);
488f131b
JB
6803 return;
6804 }
c906108c 6805
488f131b 6806 /* We aren't done stepping.
c906108c 6807
488f131b
JB
6808 Optimize by setting the stepping range to the line.
6809 (We might not be in the original line, but if we entered a
6810 new line in mid-statement, we continue stepping. This makes
6811 things like for(;;) statements work better.) */
c906108c 6812
16c381f0
JK
6813 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6814 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 6815 ecs->event_thread->control.may_range_step = 1;
edb3359d 6816 set_step_info (frame, stop_pc_sal);
488f131b 6817
527159b7 6818 if (debug_infrun)
8a9de0e4 6819 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 6820 keep_going (ecs);
104c1213
JM
6821}
6822
c447ac0b
PA
6823/* In all-stop mode, if we're currently stepping but have stopped in
6824 some other thread, we may need to switch back to the stepped
6825 thread. Returns true we set the inferior running, false if we left
6826 it stopped (and the event needs further processing). */
6827
6828static int
6829switch_back_to_stepped_thread (struct execution_control_state *ecs)
6830{
fbea99ea 6831 if (!target_is_non_stop_p ())
c447ac0b 6832 {
99619bea
PA
6833 struct thread_info *stepping_thread;
6834
6835 /* If any thread is blocked on some internal breakpoint, and we
6836 simply need to step over that breakpoint to get it going
6837 again, do that first. */
6838
6839 /* However, if we see an event for the stepping thread, then we
6840 know all other threads have been moved past their breakpoints
6841 already. Let the caller check whether the step is finished,
6842 etc., before deciding to move it past a breakpoint. */
6843 if (ecs->event_thread->control.step_range_end != 0)
6844 return 0;
6845
6846 /* Check if the current thread is blocked on an incomplete
6847 step-over, interrupted by a random signal. */
6848 if (ecs->event_thread->control.trap_expected
6849 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 6850 {
99619bea
PA
6851 if (debug_infrun)
6852 {
6853 fprintf_unfiltered (gdb_stdlog,
6854 "infrun: need to finish step-over of [%s]\n",
6855 target_pid_to_str (ecs->event_thread->ptid));
6856 }
6857 keep_going (ecs);
6858 return 1;
6859 }
2adfaa28 6860
99619bea
PA
6861 /* Check if the current thread is blocked by a single-step
6862 breakpoint of another thread. */
6863 if (ecs->hit_singlestep_breakpoint)
6864 {
6865 if (debug_infrun)
6866 {
6867 fprintf_unfiltered (gdb_stdlog,
6868 "infrun: need to step [%s] over single-step "
6869 "breakpoint\n",
6870 target_pid_to_str (ecs->ptid));
6871 }
6872 keep_going (ecs);
6873 return 1;
6874 }
6875
4d9d9d04
PA
6876 /* If this thread needs yet another step-over (e.g., stepping
6877 through a delay slot), do it first before moving on to
6878 another thread. */
6879 if (thread_still_needs_step_over (ecs->event_thread))
6880 {
6881 if (debug_infrun)
6882 {
6883 fprintf_unfiltered (gdb_stdlog,
6884 "infrun: thread [%s] still needs step-over\n",
6885 target_pid_to_str (ecs->event_thread->ptid));
6886 }
6887 keep_going (ecs);
6888 return 1;
6889 }
70509625 6890
483805cf
PA
6891 /* If scheduler locking applies even if not stepping, there's no
6892 need to walk over threads. Above we've checked whether the
6893 current thread is stepping. If some other thread not the
6894 event thread is stepping, then it must be that scheduler
6895 locking is not in effect. */
856e7dd6 6896 if (schedlock_applies (ecs->event_thread))
483805cf
PA
6897 return 0;
6898
4d9d9d04
PA
6899 /* Otherwise, we no longer expect a trap in the current thread.
6900 Clear the trap_expected flag before switching back -- this is
6901 what keep_going does as well, if we call it. */
6902 ecs->event_thread->control.trap_expected = 0;
6903
6904 /* Likewise, clear the signal if it should not be passed. */
6905 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6906 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6907
6908 /* Do all pending step-overs before actually proceeding with
483805cf 6909 step/next/etc. */
4d9d9d04
PA
6910 if (start_step_over ())
6911 {
6912 prepare_to_wait (ecs);
6913 return 1;
6914 }
6915
6916 /* Look for the stepping/nexting thread. */
483805cf 6917 stepping_thread = NULL;
4d9d9d04 6918
08036331 6919 for (thread_info *tp : all_non_exited_threads ())
483805cf 6920 {
fbea99ea
PA
6921 /* Ignore threads of processes the caller is not
6922 resuming. */
483805cf 6923 if (!sched_multi
e99b03dc 6924 && tp->ptid.pid () != ecs->ptid.pid ())
483805cf
PA
6925 continue;
6926
6927 /* When stepping over a breakpoint, we lock all threads
6928 except the one that needs to move past the breakpoint.
6929 If a non-event thread has this set, the "incomplete
6930 step-over" check above should have caught it earlier. */
372316f1
PA
6931 if (tp->control.trap_expected)
6932 {
6933 internal_error (__FILE__, __LINE__,
6934 "[%s] has inconsistent state: "
6935 "trap_expected=%d\n",
6936 target_pid_to_str (tp->ptid),
6937 tp->control.trap_expected);
6938 }
483805cf
PA
6939
6940 /* Did we find the stepping thread? */
6941 if (tp->control.step_range_end)
6942 {
6943 /* Yep. There should only one though. */
6944 gdb_assert (stepping_thread == NULL);
6945
6946 /* The event thread is handled at the top, before we
6947 enter this loop. */
6948 gdb_assert (tp != ecs->event_thread);
6949
6950 /* If some thread other than the event thread is
6951 stepping, then scheduler locking can't be in effect,
6952 otherwise we wouldn't have resumed the current event
6953 thread in the first place. */
856e7dd6 6954 gdb_assert (!schedlock_applies (tp));
483805cf
PA
6955
6956 stepping_thread = tp;
6957 }
99619bea
PA
6958 }
6959
483805cf 6960 if (stepping_thread != NULL)
99619bea 6961 {
c447ac0b
PA
6962 if (debug_infrun)
6963 fprintf_unfiltered (gdb_stdlog,
6964 "infrun: switching back to stepped thread\n");
6965
2ac7589c
PA
6966 if (keep_going_stepped_thread (stepping_thread))
6967 {
6968 prepare_to_wait (ecs);
6969 return 1;
6970 }
6971 }
6972 }
2adfaa28 6973
2ac7589c
PA
6974 return 0;
6975}
2adfaa28 6976
2ac7589c
PA
6977/* Set a previously stepped thread back to stepping. Returns true on
6978 success, false if the resume is not possible (e.g., the thread
6979 vanished). */
6980
6981static int
6982keep_going_stepped_thread (struct thread_info *tp)
6983{
6984 struct frame_info *frame;
2ac7589c
PA
6985 struct execution_control_state ecss;
6986 struct execution_control_state *ecs = &ecss;
2adfaa28 6987
2ac7589c
PA
6988 /* If the stepping thread exited, then don't try to switch back and
6989 resume it, which could fail in several different ways depending
6990 on the target. Instead, just keep going.
2adfaa28 6991
2ac7589c
PA
6992 We can find a stepping dead thread in the thread list in two
6993 cases:
2adfaa28 6994
2ac7589c
PA
6995 - The target supports thread exit events, and when the target
6996 tries to delete the thread from the thread list, inferior_ptid
6997 pointed at the exiting thread. In such case, calling
6998 delete_thread does not really remove the thread from the list;
6999 instead, the thread is left listed, with 'exited' state.
64ce06e4 7000
2ac7589c
PA
7001 - The target's debug interface does not support thread exit
7002 events, and so we have no idea whatsoever if the previously
7003 stepping thread is still alive. For that reason, we need to
7004 synchronously query the target now. */
2adfaa28 7005
00431a78 7006 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
2ac7589c
PA
7007 {
7008 if (debug_infrun)
7009 fprintf_unfiltered (gdb_stdlog,
7010 "infrun: not resuming previously "
7011 "stepped thread, it has vanished\n");
7012
00431a78 7013 delete_thread (tp);
2ac7589c 7014 return 0;
c447ac0b 7015 }
2ac7589c
PA
7016
7017 if (debug_infrun)
7018 fprintf_unfiltered (gdb_stdlog,
7019 "infrun: resuming previously stepped thread\n");
7020
7021 reset_ecs (ecs, tp);
00431a78 7022 switch_to_thread (tp);
2ac7589c 7023
f2ffa92b 7024 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
2ac7589c 7025 frame = get_current_frame ();
2ac7589c
PA
7026
7027 /* If the PC of the thread we were trying to single-step has
7028 changed, then that thread has trapped or been signaled, but the
7029 event has not been reported to GDB yet. Re-poll the target
7030 looking for this particular thread's event (i.e. temporarily
7031 enable schedlock) by:
7032
7033 - setting a break at the current PC
7034 - resuming that particular thread, only (by setting trap
7035 expected)
7036
7037 This prevents us continuously moving the single-step breakpoint
7038 forward, one instruction at a time, overstepping. */
7039
f2ffa92b 7040 if (tp->suspend.stop_pc != tp->prev_pc)
2ac7589c
PA
7041 {
7042 ptid_t resume_ptid;
7043
7044 if (debug_infrun)
7045 fprintf_unfiltered (gdb_stdlog,
7046 "infrun: expected thread advanced also (%s -> %s)\n",
7047 paddress (target_gdbarch (), tp->prev_pc),
f2ffa92b 7048 paddress (target_gdbarch (), tp->suspend.stop_pc));
2ac7589c
PA
7049
7050 /* Clear the info of the previous step-over, as it's no longer
7051 valid (if the thread was trying to step over a breakpoint, it
7052 has already succeeded). It's what keep_going would do too,
7053 if we called it. Do this before trying to insert the sss
7054 breakpoint, otherwise if we were previously trying to step
7055 over this exact address in another thread, the breakpoint is
7056 skipped. */
7057 clear_step_over_info ();
7058 tp->control.trap_expected = 0;
7059
7060 insert_single_step_breakpoint (get_frame_arch (frame),
7061 get_frame_address_space (frame),
f2ffa92b 7062 tp->suspend.stop_pc);
2ac7589c 7063
372316f1 7064 tp->resumed = 1;
fbea99ea 7065 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7066 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7067 }
7068 else
7069 {
7070 if (debug_infrun)
7071 fprintf_unfiltered (gdb_stdlog,
7072 "infrun: expected thread still hasn't advanced\n");
7073
7074 keep_going_pass_signal (ecs);
7075 }
7076 return 1;
c447ac0b
PA
7077}
7078
8b061563
PA
7079/* Is thread TP in the middle of (software or hardware)
7080 single-stepping? (Note the result of this function must never be
7081 passed directly as target_resume's STEP parameter.) */
104c1213 7082
a289b8f6 7083static int
b3444185 7084currently_stepping (struct thread_info *tp)
a7212384 7085{
8358c15c
JK
7086 return ((tp->control.step_range_end
7087 && tp->control.step_resume_breakpoint == NULL)
7088 || tp->control.trap_expected
af48d08f 7089 || tp->stepped_breakpoint
8358c15c 7090 || bpstat_should_step ());
a7212384
UW
7091}
7092
b2175913
MS
7093/* Inferior has stepped into a subroutine call with source code that
7094 we should not step over. Do step to the first line of code in
7095 it. */
c2c6d25f
JM
7096
7097static void
568d6575
UW
7098handle_step_into_function (struct gdbarch *gdbarch,
7099 struct execution_control_state *ecs)
c2c6d25f 7100{
7e324e48
GB
7101 fill_in_stop_func (gdbarch, ecs);
7102
f2ffa92b
PA
7103 compunit_symtab *cust
7104 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7105 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7106 ecs->stop_func_start
7107 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7108
51abb421 7109 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7110 /* Use the step_resume_break to step until the end of the prologue,
7111 even if that involves jumps (as it seems to on the vax under
7112 4.2). */
7113 /* If the prologue ends in the middle of a source line, continue to
7114 the end of that source line (if it is still within the function).
7115 Otherwise, just go to end of prologue. */
2afb61aa
PA
7116 if (stop_func_sal.end
7117 && stop_func_sal.pc != ecs->stop_func_start
7118 && stop_func_sal.end < ecs->stop_func_end)
7119 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7120
2dbd5e30
KB
7121 /* Architectures which require breakpoint adjustment might not be able
7122 to place a breakpoint at the computed address. If so, the test
7123 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7124 ecs->stop_func_start to an address at which a breakpoint may be
7125 legitimately placed.
8fb3e588 7126
2dbd5e30
KB
7127 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7128 made, GDB will enter an infinite loop when stepping through
7129 optimized code consisting of VLIW instructions which contain
7130 subinstructions corresponding to different source lines. On
7131 FR-V, it's not permitted to place a breakpoint on any but the
7132 first subinstruction of a VLIW instruction. When a breakpoint is
7133 set, GDB will adjust the breakpoint address to the beginning of
7134 the VLIW instruction. Thus, we need to make the corresponding
7135 adjustment here when computing the stop address. */
8fb3e588 7136
568d6575 7137 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7138 {
7139 ecs->stop_func_start
568d6575 7140 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7141 ecs->stop_func_start);
2dbd5e30
KB
7142 }
7143
f2ffa92b 7144 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
c2c6d25f
JM
7145 {
7146 /* We are already there: stop now. */
bdc36728 7147 end_stepping_range (ecs);
c2c6d25f
JM
7148 return;
7149 }
7150 else
7151 {
7152 /* Put the step-breakpoint there and go until there. */
51abb421 7153 symtab_and_line sr_sal;
c2c6d25f
JM
7154 sr_sal.pc = ecs->stop_func_start;
7155 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7156 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7157
c2c6d25f 7158 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7159 some machines the prologue is where the new fp value is
7160 established. */
a6d9a66e 7161 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7162
7163 /* And make sure stepping stops right away then. */
16c381f0
JK
7164 ecs->event_thread->control.step_range_end
7165 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7166 }
7167 keep_going (ecs);
7168}
d4f3574e 7169
b2175913
MS
7170/* Inferior has stepped backward into a subroutine call with source
7171 code that we should not step over. Do step to the beginning of the
7172 last line of code in it. */
7173
7174static void
568d6575
UW
7175handle_step_into_function_backward (struct gdbarch *gdbarch,
7176 struct execution_control_state *ecs)
b2175913 7177{
43f3e411 7178 struct compunit_symtab *cust;
167e4384 7179 struct symtab_and_line stop_func_sal;
b2175913 7180
7e324e48
GB
7181 fill_in_stop_func (gdbarch, ecs);
7182
f2ffa92b 7183 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7184 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7185 ecs->stop_func_start
7186 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913 7187
f2ffa92b 7188 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
b2175913
MS
7189
7190 /* OK, we're just going to keep stepping here. */
f2ffa92b 7191 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
b2175913
MS
7192 {
7193 /* We're there already. Just stop stepping now. */
bdc36728 7194 end_stepping_range (ecs);
b2175913
MS
7195 }
7196 else
7197 {
7198 /* Else just reset the step range and keep going.
7199 No step-resume breakpoint, they don't work for
7200 epilogues, which can have multiple entry paths. */
16c381f0
JK
7201 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7202 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7203 keep_going (ecs);
7204 }
7205 return;
7206}
7207
d3169d93 7208/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7209 This is used to both functions and to skip over code. */
7210
7211static void
2c03e5be
PA
7212insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7213 struct symtab_and_line sr_sal,
7214 struct frame_id sr_id,
7215 enum bptype sr_type)
44cbf7b5 7216{
611c83ae
PA
7217 /* There should never be more than one step-resume or longjmp-resume
7218 breakpoint per thread, so we should never be setting a new
44cbf7b5 7219 step_resume_breakpoint when one is already active. */
8358c15c 7220 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7221 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7222
7223 if (debug_infrun)
7224 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7225 "infrun: inserting step-resume breakpoint at %s\n",
7226 paddress (gdbarch, sr_sal.pc));
d3169d93 7227
8358c15c 7228 inferior_thread ()->control.step_resume_breakpoint
454dafbd 7229 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
2c03e5be
PA
7230}
7231
9da8c2a0 7232void
2c03e5be
PA
7233insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7234 struct symtab_and_line sr_sal,
7235 struct frame_id sr_id)
7236{
7237 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7238 sr_sal, sr_id,
7239 bp_step_resume);
44cbf7b5 7240}
7ce450bd 7241
2c03e5be
PA
7242/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7243 This is used to skip a potential signal handler.
7ce450bd 7244
14e60db5
DJ
7245 This is called with the interrupted function's frame. The signal
7246 handler, when it returns, will resume the interrupted function at
7247 RETURN_FRAME.pc. */
d303a6c7
AC
7248
7249static void
2c03e5be 7250insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7251{
f4c1edd8 7252 gdb_assert (return_frame != NULL);
d303a6c7 7253
51abb421
PA
7254 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7255
7256 symtab_and_line sr_sal;
568d6575 7257 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7258 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7259 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7260
2c03e5be
PA
7261 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7262 get_stack_frame_id (return_frame),
7263 bp_hp_step_resume);
d303a6c7
AC
7264}
7265
2c03e5be
PA
7266/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7267 is used to skip a function after stepping into it (for "next" or if
7268 the called function has no debugging information).
14e60db5
DJ
7269
7270 The current function has almost always been reached by single
7271 stepping a call or return instruction. NEXT_FRAME belongs to the
7272 current function, and the breakpoint will be set at the caller's
7273 resume address.
7274
7275 This is a separate function rather than reusing
2c03e5be 7276 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7277 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7278 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7279
7280static void
7281insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7282{
14e60db5
DJ
7283 /* We shouldn't have gotten here if we don't know where the call site
7284 is. */
c7ce8faa 7285 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7286
51abb421 7287 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7288
51abb421 7289 symtab_and_line sr_sal;
c7ce8faa
DJ
7290 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7291 frame_unwind_caller_pc (next_frame));
14e60db5 7292 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7293 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7294
a6d9a66e 7295 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7296 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7297}
7298
611c83ae
PA
7299/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7300 new breakpoint at the target of a jmp_buf. The handling of
7301 longjmp-resume uses the same mechanisms used for handling
7302 "step-resume" breakpoints. */
7303
7304static void
a6d9a66e 7305insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7306{
e81a37f7
TT
7307 /* There should never be more than one longjmp-resume breakpoint per
7308 thread, so we should never be setting a new
611c83ae 7309 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7310 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7311
7312 if (debug_infrun)
7313 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7314 "infrun: inserting longjmp-resume breakpoint at %s\n",
7315 paddress (gdbarch, pc));
611c83ae 7316
e81a37f7 7317 inferior_thread ()->control.exception_resume_breakpoint =
454dafbd 7318 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
611c83ae
PA
7319}
7320
186c406b
TT
7321/* Insert an exception resume breakpoint. TP is the thread throwing
7322 the exception. The block B is the block of the unwinder debug hook
7323 function. FRAME is the frame corresponding to the call to this
7324 function. SYM is the symbol of the function argument holding the
7325 target PC of the exception. */
7326
7327static void
7328insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7329 const struct block *b,
186c406b
TT
7330 struct frame_info *frame,
7331 struct symbol *sym)
7332{
492d29ea 7333 TRY
186c406b 7334 {
63e43d3a 7335 struct block_symbol vsym;
186c406b
TT
7336 struct value *value;
7337 CORE_ADDR handler;
7338 struct breakpoint *bp;
7339
de63c46b
PA
7340 vsym = lookup_symbol_search_name (SYMBOL_SEARCH_NAME (sym),
7341 b, VAR_DOMAIN);
63e43d3a 7342 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7343 /* If the value was optimized out, revert to the old behavior. */
7344 if (! value_optimized_out (value))
7345 {
7346 handler = value_as_address (value);
7347
7348 if (debug_infrun)
7349 fprintf_unfiltered (gdb_stdlog,
7350 "infrun: exception resume at %lx\n",
7351 (unsigned long) handler);
7352
7353 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd
TT
7354 handler,
7355 bp_exception_resume).release ();
c70a6932
JK
7356
7357 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7358 frame = NULL;
7359
5d5658a1 7360 bp->thread = tp->global_num;
186c406b
TT
7361 inferior_thread ()->control.exception_resume_breakpoint = bp;
7362 }
7363 }
492d29ea
PA
7364 CATCH (e, RETURN_MASK_ERROR)
7365 {
7366 /* We want to ignore errors here. */
7367 }
7368 END_CATCH
186c406b
TT
7369}
7370
28106bc2
SDJ
7371/* A helper for check_exception_resume that sets an
7372 exception-breakpoint based on a SystemTap probe. */
7373
7374static void
7375insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7376 const struct bound_probe *probe,
28106bc2
SDJ
7377 struct frame_info *frame)
7378{
7379 struct value *arg_value;
7380 CORE_ADDR handler;
7381 struct breakpoint *bp;
7382
7383 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7384 if (!arg_value)
7385 return;
7386
7387 handler = value_as_address (arg_value);
7388
7389 if (debug_infrun)
7390 fprintf_unfiltered (gdb_stdlog,
7391 "infrun: exception resume at %s\n",
6bac7473 7392 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7393 handler));
7394
7395 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd 7396 handler, bp_exception_resume).release ();
5d5658a1 7397 bp->thread = tp->global_num;
28106bc2
SDJ
7398 inferior_thread ()->control.exception_resume_breakpoint = bp;
7399}
7400
186c406b
TT
7401/* This is called when an exception has been intercepted. Check to
7402 see whether the exception's destination is of interest, and if so,
7403 set an exception resume breakpoint there. */
7404
7405static void
7406check_exception_resume (struct execution_control_state *ecs,
28106bc2 7407 struct frame_info *frame)
186c406b 7408{
729662a5 7409 struct bound_probe probe;
28106bc2
SDJ
7410 struct symbol *func;
7411
7412 /* First see if this exception unwinding breakpoint was set via a
7413 SystemTap probe point. If so, the probe has two arguments: the
7414 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7415 set a breakpoint there. */
6bac7473 7416 probe = find_probe_by_pc (get_frame_pc (frame));
935676c9 7417 if (probe.prob)
28106bc2 7418 {
729662a5 7419 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7420 return;
7421 }
7422
7423 func = get_frame_function (frame);
7424 if (!func)
7425 return;
186c406b 7426
492d29ea 7427 TRY
186c406b 7428 {
3977b71f 7429 const struct block *b;
8157b174 7430 struct block_iterator iter;
186c406b
TT
7431 struct symbol *sym;
7432 int argno = 0;
7433
7434 /* The exception breakpoint is a thread-specific breakpoint on
7435 the unwinder's debug hook, declared as:
7436
7437 void _Unwind_DebugHook (void *cfa, void *handler);
7438
7439 The CFA argument indicates the frame to which control is
7440 about to be transferred. HANDLER is the destination PC.
7441
7442 We ignore the CFA and set a temporary breakpoint at HANDLER.
7443 This is not extremely efficient but it avoids issues in gdb
7444 with computing the DWARF CFA, and it also works even in weird
7445 cases such as throwing an exception from inside a signal
7446 handler. */
7447
7448 b = SYMBOL_BLOCK_VALUE (func);
7449 ALL_BLOCK_SYMBOLS (b, iter, sym)
7450 {
7451 if (!SYMBOL_IS_ARGUMENT (sym))
7452 continue;
7453
7454 if (argno == 0)
7455 ++argno;
7456 else
7457 {
7458 insert_exception_resume_breakpoint (ecs->event_thread,
7459 b, frame, sym);
7460 break;
7461 }
7462 }
7463 }
492d29ea
PA
7464 CATCH (e, RETURN_MASK_ERROR)
7465 {
7466 }
7467 END_CATCH
186c406b
TT
7468}
7469
104c1213 7470static void
22bcd14b 7471stop_waiting (struct execution_control_state *ecs)
104c1213 7472{
527159b7 7473 if (debug_infrun)
22bcd14b 7474 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7475
cd0fc7c3
SS
7476 /* Let callers know we don't want to wait for the inferior anymore. */
7477 ecs->wait_some_more = 0;
fbea99ea
PA
7478
7479 /* If all-stop, but the target is always in non-stop mode, stop all
7480 threads now that we're presenting the stop to the user. */
7481 if (!non_stop && target_is_non_stop_p ())
7482 stop_all_threads ();
cd0fc7c3
SS
7483}
7484
4d9d9d04
PA
7485/* Like keep_going, but passes the signal to the inferior, even if the
7486 signal is set to nopass. */
d4f3574e
SS
7487
7488static void
4d9d9d04 7489keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7490{
d7e15655 7491 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
372316f1 7492 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7493
d4f3574e 7494 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b 7495 ecs->event_thread->prev_pc
00431a78 7496 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
d4f3574e 7497
4d9d9d04 7498 if (ecs->event_thread->control.trap_expected)
d4f3574e 7499 {
4d9d9d04
PA
7500 struct thread_info *tp = ecs->event_thread;
7501
7502 if (debug_infrun)
7503 fprintf_unfiltered (gdb_stdlog,
7504 "infrun: %s has trap_expected set, "
7505 "resuming to collect trap\n",
7506 target_pid_to_str (tp->ptid));
7507
a9ba6bae
PA
7508 /* We haven't yet gotten our trap, and either: intercepted a
7509 non-signal event (e.g., a fork); or took a signal which we
7510 are supposed to pass through to the inferior. Simply
7511 continue. */
64ce06e4 7512 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7513 }
372316f1
PA
7514 else if (step_over_info_valid_p ())
7515 {
7516 /* Another thread is stepping over a breakpoint in-line. If
7517 this thread needs a step-over too, queue the request. In
7518 either case, this resume must be deferred for later. */
7519 struct thread_info *tp = ecs->event_thread;
7520
7521 if (ecs->hit_singlestep_breakpoint
7522 || thread_still_needs_step_over (tp))
7523 {
7524 if (debug_infrun)
7525 fprintf_unfiltered (gdb_stdlog,
7526 "infrun: step-over already in progress: "
7527 "step-over for %s deferred\n",
7528 target_pid_to_str (tp->ptid));
7529 thread_step_over_chain_enqueue (tp);
7530 }
7531 else
7532 {
7533 if (debug_infrun)
7534 fprintf_unfiltered (gdb_stdlog,
7535 "infrun: step-over in progress: "
7536 "resume of %s deferred\n",
7537 target_pid_to_str (tp->ptid));
7538 }
372316f1 7539 }
d4f3574e
SS
7540 else
7541 {
31e77af2 7542 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7543 int remove_bp;
7544 int remove_wps;
8d297bbf 7545 step_over_what step_what;
31e77af2 7546
d4f3574e 7547 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7548 anyway (if we got a signal, the user asked it be passed to
7549 the child)
7550 -- or --
7551 We got our expected trap, but decided we should resume from
7552 it.
d4f3574e 7553
a9ba6bae 7554 We're going to run this baby now!
d4f3574e 7555
c36b740a
VP
7556 Note that insert_breakpoints won't try to re-insert
7557 already inserted breakpoints. Therefore, we don't
7558 care if breakpoints were already inserted, or not. */
a9ba6bae 7559
31e77af2
PA
7560 /* If we need to step over a breakpoint, and we're not using
7561 displaced stepping to do so, insert all breakpoints
7562 (watchpoints, etc.) but the one we're stepping over, step one
7563 instruction, and then re-insert the breakpoint when that step
7564 is finished. */
963f9c80 7565
6c4cfb24
PA
7566 step_what = thread_still_needs_step_over (ecs->event_thread);
7567
963f9c80 7568 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7569 || (step_what & STEP_OVER_BREAKPOINT));
7570 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7571
cb71640d
PA
7572 /* We can't use displaced stepping if we need to step past a
7573 watchpoint. The instruction copied to the scratch pad would
7574 still trigger the watchpoint. */
7575 if (remove_bp
3fc8eb30 7576 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7577 {
a01bda52 7578 set_step_over_info (regcache->aspace (),
21edc42f
YQ
7579 regcache_read_pc (regcache), remove_wps,
7580 ecs->event_thread->global_num);
45e8c884 7581 }
963f9c80 7582 else if (remove_wps)
21edc42f 7583 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7584
7585 /* If we now need to do an in-line step-over, we need to stop
7586 all other threads. Note this must be done before
7587 insert_breakpoints below, because that removes the breakpoint
7588 we're about to step over, otherwise other threads could miss
7589 it. */
fbea99ea 7590 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7591 stop_all_threads ();
abbb1732 7592
31e77af2 7593 /* Stop stepping if inserting breakpoints fails. */
492d29ea 7594 TRY
31e77af2
PA
7595 {
7596 insert_breakpoints ();
7597 }
492d29ea 7598 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
7599 {
7600 exception_print (gdb_stderr, e);
22bcd14b 7601 stop_waiting (ecs);
bdf2a94a 7602 clear_step_over_info ();
31e77af2 7603 return;
d4f3574e 7604 }
492d29ea 7605 END_CATCH
d4f3574e 7606
963f9c80 7607 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7608
64ce06e4 7609 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7610 }
7611
488f131b 7612 prepare_to_wait (ecs);
d4f3574e
SS
7613}
7614
4d9d9d04
PA
7615/* Called when we should continue running the inferior, because the
7616 current event doesn't cause a user visible stop. This does the
7617 resuming part; waiting for the next event is done elsewhere. */
7618
7619static void
7620keep_going (struct execution_control_state *ecs)
7621{
7622 if (ecs->event_thread->control.trap_expected
7623 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7624 ecs->event_thread->control.trap_expected = 0;
7625
7626 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7627 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7628 keep_going_pass_signal (ecs);
7629}
7630
104c1213
JM
7631/* This function normally comes after a resume, before
7632 handle_inferior_event exits. It takes care of any last bits of
7633 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7634
104c1213
JM
7635static void
7636prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7637{
527159b7 7638 if (debug_infrun)
8a9de0e4 7639 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7640
104c1213 7641 ecs->wait_some_more = 1;
0b333c5e
PA
7642
7643 if (!target_is_async_p ())
7644 mark_infrun_async_event_handler ();
c906108c 7645}
11cf8741 7646
fd664c91 7647/* We are done with the step range of a step/next/si/ni command.
b57bacec 7648 Called once for each n of a "step n" operation. */
fd664c91
PA
7649
7650static void
bdc36728 7651end_stepping_range (struct execution_control_state *ecs)
fd664c91 7652{
bdc36728 7653 ecs->event_thread->control.stop_step = 1;
bdc36728 7654 stop_waiting (ecs);
fd664c91
PA
7655}
7656
33d62d64
JK
7657/* Several print_*_reason functions to print why the inferior has stopped.
7658 We always print something when the inferior exits, or receives a signal.
7659 The rest of the cases are dealt with later on in normal_stop and
7660 print_it_typical. Ideally there should be a call to one of these
7661 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7662 stop_waiting is called.
33d62d64 7663
fd664c91
PA
7664 Note that we don't call these directly, instead we delegate that to
7665 the interpreters, through observers. Interpreters then call these
7666 with whatever uiout is right. */
33d62d64 7667
fd664c91
PA
7668void
7669print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7670{
fd664c91 7671 /* For CLI-like interpreters, print nothing. */
33d62d64 7672
112e8700 7673 if (uiout->is_mi_like_p ())
fd664c91 7674 {
112e8700 7675 uiout->field_string ("reason",
fd664c91
PA
7676 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7677 }
7678}
33d62d64 7679
fd664c91
PA
7680void
7681print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7682{
33d62d64 7683 annotate_signalled ();
112e8700
SM
7684 if (uiout->is_mi_like_p ())
7685 uiout->field_string
7686 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7687 uiout->text ("\nProgram terminated with signal ");
33d62d64 7688 annotate_signal_name ();
112e8700 7689 uiout->field_string ("signal-name",
2ea28649 7690 gdb_signal_to_name (siggnal));
33d62d64 7691 annotate_signal_name_end ();
112e8700 7692 uiout->text (", ");
33d62d64 7693 annotate_signal_string ();
112e8700 7694 uiout->field_string ("signal-meaning",
2ea28649 7695 gdb_signal_to_string (siggnal));
33d62d64 7696 annotate_signal_string_end ();
112e8700
SM
7697 uiout->text (".\n");
7698 uiout->text ("The program no longer exists.\n");
33d62d64
JK
7699}
7700
fd664c91
PA
7701void
7702print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7703{
fda326dd 7704 struct inferior *inf = current_inferior ();
f2907e49 7705 const char *pidstr = target_pid_to_str (ptid_t (inf->pid));
fda326dd 7706
33d62d64
JK
7707 annotate_exited (exitstatus);
7708 if (exitstatus)
7709 {
112e8700
SM
7710 if (uiout->is_mi_like_p ())
7711 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7712 uiout->text ("[Inferior ");
7713 uiout->text (plongest (inf->num));
7714 uiout->text (" (");
7715 uiout->text (pidstr);
7716 uiout->text (") exited with code ");
7717 uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus);
7718 uiout->text ("]\n");
33d62d64
JK
7719 }
7720 else
11cf8741 7721 {
112e8700
SM
7722 if (uiout->is_mi_like_p ())
7723 uiout->field_string
7724 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7725 uiout->text ("[Inferior ");
7726 uiout->text (plongest (inf->num));
7727 uiout->text (" (");
7728 uiout->text (pidstr);
7729 uiout->text (") exited normally]\n");
33d62d64 7730 }
33d62d64
JK
7731}
7732
012b3a21
WT
7733/* Some targets/architectures can do extra processing/display of
7734 segmentation faults. E.g., Intel MPX boundary faults.
7735 Call the architecture dependent function to handle the fault. */
7736
7737static void
7738handle_segmentation_fault (struct ui_out *uiout)
7739{
7740 struct regcache *regcache = get_current_regcache ();
ac7936df 7741 struct gdbarch *gdbarch = regcache->arch ();
012b3a21
WT
7742
7743 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7744 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7745}
7746
fd664c91
PA
7747void
7748print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 7749{
f303dbd6
PA
7750 struct thread_info *thr = inferior_thread ();
7751
33d62d64
JK
7752 annotate_signal ();
7753
112e8700 7754 if (uiout->is_mi_like_p ())
f303dbd6
PA
7755 ;
7756 else if (show_thread_that_caused_stop ())
33d62d64 7757 {
f303dbd6 7758 const char *name;
33d62d64 7759
112e8700
SM
7760 uiout->text ("\nThread ");
7761 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
f303dbd6
PA
7762
7763 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7764 if (name != NULL)
7765 {
112e8700
SM
7766 uiout->text (" \"");
7767 uiout->field_fmt ("name", "%s", name);
7768 uiout->text ("\"");
f303dbd6 7769 }
33d62d64 7770 }
f303dbd6 7771 else
112e8700 7772 uiout->text ("\nProgram");
f303dbd6 7773
112e8700
SM
7774 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7775 uiout->text (" stopped");
33d62d64
JK
7776 else
7777 {
112e8700 7778 uiout->text (" received signal ");
8b93c638 7779 annotate_signal_name ();
112e8700
SM
7780 if (uiout->is_mi_like_p ())
7781 uiout->field_string
7782 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7783 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 7784 annotate_signal_name_end ();
112e8700 7785 uiout->text (", ");
8b93c638 7786 annotate_signal_string ();
112e8700 7787 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
7788
7789 if (siggnal == GDB_SIGNAL_SEGV)
7790 handle_segmentation_fault (uiout);
7791
8b93c638 7792 annotate_signal_string_end ();
33d62d64 7793 }
112e8700 7794 uiout->text (".\n");
33d62d64 7795}
252fbfc8 7796
fd664c91
PA
7797void
7798print_no_history_reason (struct ui_out *uiout)
33d62d64 7799{
112e8700 7800 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 7801}
43ff13b4 7802
0c7e1a46
PA
7803/* Print current location without a level number, if we have changed
7804 functions or hit a breakpoint. Print source line if we have one.
7805 bpstat_print contains the logic deciding in detail what to print,
7806 based on the event(s) that just occurred. */
7807
243a9253
PA
7808static void
7809print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
7810{
7811 int bpstat_ret;
f486487f 7812 enum print_what source_flag;
0c7e1a46
PA
7813 int do_frame_printing = 1;
7814 struct thread_info *tp = inferior_thread ();
7815
7816 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7817 switch (bpstat_ret)
7818 {
7819 case PRINT_UNKNOWN:
7820 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7821 should) carry around the function and does (or should) use
7822 that when doing a frame comparison. */
7823 if (tp->control.stop_step
7824 && frame_id_eq (tp->control.step_frame_id,
7825 get_frame_id (get_current_frame ()))
f2ffa92b
PA
7826 && (tp->control.step_start_function
7827 == find_pc_function (tp->suspend.stop_pc)))
0c7e1a46
PA
7828 {
7829 /* Finished step, just print source line. */
7830 source_flag = SRC_LINE;
7831 }
7832 else
7833 {
7834 /* Print location and source line. */
7835 source_flag = SRC_AND_LOC;
7836 }
7837 break;
7838 case PRINT_SRC_AND_LOC:
7839 /* Print location and source line. */
7840 source_flag = SRC_AND_LOC;
7841 break;
7842 case PRINT_SRC_ONLY:
7843 source_flag = SRC_LINE;
7844 break;
7845 case PRINT_NOTHING:
7846 /* Something bogus. */
7847 source_flag = SRC_LINE;
7848 do_frame_printing = 0;
7849 break;
7850 default:
7851 internal_error (__FILE__, __LINE__, _("Unknown value."));
7852 }
7853
7854 /* The behavior of this routine with respect to the source
7855 flag is:
7856 SRC_LINE: Print only source line
7857 LOCATION: Print only location
7858 SRC_AND_LOC: Print location and source line. */
7859 if (do_frame_printing)
7860 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
7861}
7862
243a9253
PA
7863/* See infrun.h. */
7864
7865void
7866print_stop_event (struct ui_out *uiout)
7867{
243a9253
PA
7868 struct target_waitstatus last;
7869 ptid_t last_ptid;
7870 struct thread_info *tp;
7871
7872 get_last_target_status (&last_ptid, &last);
7873
67ad9399
TT
7874 {
7875 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 7876
67ad9399 7877 print_stop_location (&last);
243a9253 7878
67ad9399
TT
7879 /* Display the auto-display expressions. */
7880 do_displays ();
7881 }
243a9253
PA
7882
7883 tp = inferior_thread ();
7884 if (tp->thread_fsm != NULL
46e3ed7f 7885 && tp->thread_fsm->finished_p ())
243a9253
PA
7886 {
7887 struct return_value_info *rv;
7888
46e3ed7f 7889 rv = tp->thread_fsm->return_value ();
243a9253
PA
7890 if (rv != NULL)
7891 print_return_value (uiout, rv);
7892 }
0c7e1a46
PA
7893}
7894
388a7084
PA
7895/* See infrun.h. */
7896
7897void
7898maybe_remove_breakpoints (void)
7899{
7900 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7901 {
7902 if (remove_breakpoints ())
7903 {
223ffa71 7904 target_terminal::ours_for_output ();
388a7084
PA
7905 printf_filtered (_("Cannot remove breakpoints because "
7906 "program is no longer writable.\nFurther "
7907 "execution is probably impossible.\n"));
7908 }
7909 }
7910}
7911
4c2f2a79
PA
7912/* The execution context that just caused a normal stop. */
7913
7914struct stop_context
7915{
2d844eaf
TT
7916 stop_context ();
7917 ~stop_context ();
7918
7919 DISABLE_COPY_AND_ASSIGN (stop_context);
7920
7921 bool changed () const;
7922
4c2f2a79
PA
7923 /* The stop ID. */
7924 ULONGEST stop_id;
c906108c 7925
4c2f2a79 7926 /* The event PTID. */
c906108c 7927
4c2f2a79
PA
7928 ptid_t ptid;
7929
7930 /* If stopp for a thread event, this is the thread that caused the
7931 stop. */
7932 struct thread_info *thread;
7933
7934 /* The inferior that caused the stop. */
7935 int inf_num;
7936};
7937
2d844eaf 7938/* Initializes a new stop context. If stopped for a thread event, this
4c2f2a79
PA
7939 takes a strong reference to the thread. */
7940
2d844eaf 7941stop_context::stop_context ()
4c2f2a79 7942{
2d844eaf
TT
7943 stop_id = get_stop_id ();
7944 ptid = inferior_ptid;
7945 inf_num = current_inferior ()->num;
4c2f2a79 7946
d7e15655 7947 if (inferior_ptid != null_ptid)
4c2f2a79
PA
7948 {
7949 /* Take a strong reference so that the thread can't be deleted
7950 yet. */
2d844eaf
TT
7951 thread = inferior_thread ();
7952 thread->incref ();
4c2f2a79
PA
7953 }
7954 else
2d844eaf 7955 thread = NULL;
4c2f2a79
PA
7956}
7957
7958/* Release a stop context previously created with save_stop_context.
7959 Releases the strong reference to the thread as well. */
7960
2d844eaf 7961stop_context::~stop_context ()
4c2f2a79 7962{
2d844eaf
TT
7963 if (thread != NULL)
7964 thread->decref ();
4c2f2a79
PA
7965}
7966
7967/* Return true if the current context no longer matches the saved stop
7968 context. */
7969
2d844eaf
TT
7970bool
7971stop_context::changed () const
7972{
7973 if (ptid != inferior_ptid)
7974 return true;
7975 if (inf_num != current_inferior ()->num)
7976 return true;
7977 if (thread != NULL && thread->state != THREAD_STOPPED)
7978 return true;
7979 if (get_stop_id () != stop_id)
7980 return true;
7981 return false;
4c2f2a79
PA
7982}
7983
7984/* See infrun.h. */
7985
7986int
96baa820 7987normal_stop (void)
c906108c 7988{
73b65bb0
DJ
7989 struct target_waitstatus last;
7990 ptid_t last_ptid;
7991
7992 get_last_target_status (&last_ptid, &last);
7993
4c2f2a79
PA
7994 new_stop_id ();
7995
29f49a6a
PA
7996 /* If an exception is thrown from this point on, make sure to
7997 propagate GDB's knowledge of the executing state to the
7998 frontend/user running state. A QUIT is an easy exception to see
7999 here, so do this before any filtered output. */
731f534f
PA
8000
8001 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8002
c35b1492 8003 if (!non_stop)
731f534f 8004 maybe_finish_thread_state.emplace (minus_one_ptid);
e1316e60
PA
8005 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8006 || last.kind == TARGET_WAITKIND_EXITED)
8007 {
8008 /* On some targets, we may still have live threads in the
8009 inferior when we get a process exit event. E.g., for
8010 "checkpoint", when the current checkpoint/fork exits,
8011 linux-fork.c automatically switches to another fork from
8012 within target_mourn_inferior. */
731f534f
PA
8013 if (inferior_ptid != null_ptid)
8014 maybe_finish_thread_state.emplace (ptid_t (inferior_ptid.pid ()));
e1316e60
PA
8015 }
8016 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
731f534f 8017 maybe_finish_thread_state.emplace (inferior_ptid);
29f49a6a 8018
b57bacec
PA
8019 /* As we're presenting a stop, and potentially removing breakpoints,
8020 update the thread list so we can tell whether there are threads
8021 running on the target. With target remote, for example, we can
8022 only learn about new threads when we explicitly update the thread
8023 list. Do this before notifying the interpreters about signal
8024 stops, end of stepping ranges, etc., so that the "new thread"
8025 output is emitted before e.g., "Program received signal FOO",
8026 instead of after. */
8027 update_thread_list ();
8028
8029 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
76727919 8030 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
b57bacec 8031
c906108c
SS
8032 /* As with the notification of thread events, we want to delay
8033 notifying the user that we've switched thread context until
8034 the inferior actually stops.
8035
73b65bb0
DJ
8036 There's no point in saying anything if the inferior has exited.
8037 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8038 "received a signal".
8039
8040 Also skip saying anything in non-stop mode. In that mode, as we
8041 don't want GDB to switch threads behind the user's back, to avoid
8042 races where the user is typing a command to apply to thread x,
8043 but GDB switches to thread y before the user finishes entering
8044 the command, fetch_inferior_event installs a cleanup to restore
8045 the current thread back to the thread the user had selected right
8046 after this event is handled, so we're not really switching, only
8047 informing of a stop. */
4f8d22e3 8048 if (!non_stop
731f534f 8049 && previous_inferior_ptid != inferior_ptid
73b65bb0
DJ
8050 && target_has_execution
8051 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8052 && last.kind != TARGET_WAITKIND_EXITED
8053 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8054 {
0e454242 8055 SWITCH_THRU_ALL_UIS ()
3b12939d 8056 {
223ffa71 8057 target_terminal::ours_for_output ();
3b12939d
PA
8058 printf_filtered (_("[Switching to %s]\n"),
8059 target_pid_to_str (inferior_ptid));
8060 annotate_thread_changed ();
8061 }
39f77062 8062 previous_inferior_ptid = inferior_ptid;
c906108c 8063 }
c906108c 8064
0e5bf2a8
PA
8065 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8066 {
0e454242 8067 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8068 if (current_ui->prompt_state == PROMPT_BLOCKED)
8069 {
223ffa71 8070 target_terminal::ours_for_output ();
3b12939d
PA
8071 printf_filtered (_("No unwaited-for children left.\n"));
8072 }
0e5bf2a8
PA
8073 }
8074
b57bacec 8075 /* Note: this depends on the update_thread_list call above. */
388a7084 8076 maybe_remove_breakpoints ();
c906108c 8077
c906108c
SS
8078 /* If an auto-display called a function and that got a signal,
8079 delete that auto-display to avoid an infinite recursion. */
8080
8081 if (stopped_by_random_signal)
8082 disable_current_display ();
8083
0e454242 8084 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8085 {
8086 async_enable_stdin ();
8087 }
c906108c 8088
388a7084 8089 /* Let the user/frontend see the threads as stopped. */
731f534f 8090 maybe_finish_thread_state.reset ();
388a7084
PA
8091
8092 /* Select innermost stack frame - i.e., current frame is frame 0,
8093 and current location is based on that. Handle the case where the
8094 dummy call is returning after being stopped. E.g. the dummy call
8095 previously hit a breakpoint. (If the dummy call returns
8096 normally, we won't reach here.) Do this before the stop hook is
8097 run, so that it doesn't get to see the temporary dummy frame,
8098 which is not where we'll present the stop. */
8099 if (has_stack_frames ())
8100 {
8101 if (stop_stack_dummy == STOP_STACK_DUMMY)
8102 {
8103 /* Pop the empty frame that contains the stack dummy. This
8104 also restores inferior state prior to the call (struct
8105 infcall_suspend_state). */
8106 struct frame_info *frame = get_current_frame ();
8107
8108 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8109 frame_pop (frame);
8110 /* frame_pop calls reinit_frame_cache as the last thing it
8111 does which means there's now no selected frame. */
8112 }
8113
8114 select_frame (get_current_frame ());
8115
8116 /* Set the current source location. */
8117 set_current_sal_from_frame (get_current_frame ());
8118 }
dd7e2d2b
PA
8119
8120 /* Look up the hook_stop and run it (CLI internally handles problem
8121 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8122 if (stop_command != NULL)
8123 {
2d844eaf 8124 stop_context saved_context;
4c2f2a79 8125
bf469271
PA
8126 TRY
8127 {
8128 execute_cmd_pre_hook (stop_command);
8129 }
8130 CATCH (ex, RETURN_MASK_ALL)
8131 {
8132 exception_fprintf (gdb_stderr, ex,
8133 "Error while running hook_stop:\n");
8134 }
8135 END_CATCH
4c2f2a79
PA
8136
8137 /* If the stop hook resumes the target, then there's no point in
8138 trying to notify about the previous stop; its context is
8139 gone. Likewise if the command switches thread or inferior --
8140 the observers would print a stop for the wrong
8141 thread/inferior. */
2d844eaf
TT
8142 if (saved_context.changed ())
8143 return 1;
4c2f2a79 8144 }
dd7e2d2b 8145
388a7084
PA
8146 /* Notify observers about the stop. This is where the interpreters
8147 print the stop event. */
d7e15655 8148 if (inferior_ptid != null_ptid)
76727919 8149 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
388a7084
PA
8150 stop_print_frame);
8151 else
76727919 8152 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
347bddb7 8153
243a9253
PA
8154 annotate_stopped ();
8155
48844aa6
PA
8156 if (target_has_execution)
8157 {
8158 if (last.kind != TARGET_WAITKIND_SIGNALLED
8159 && last.kind != TARGET_WAITKIND_EXITED)
8160 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8161 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8162 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8163 }
6c95b8df
PA
8164
8165 /* Try to get rid of automatically added inferiors that are no
8166 longer needed. Keeping those around slows down things linearly.
8167 Note that this never removes the current inferior. */
8168 prune_inferiors ();
4c2f2a79
PA
8169
8170 return 0;
c906108c 8171}
c906108c 8172\f
c5aa993b 8173int
96baa820 8174signal_stop_state (int signo)
c906108c 8175{
d6b48e9c 8176 return signal_stop[signo];
c906108c
SS
8177}
8178
c5aa993b 8179int
96baa820 8180signal_print_state (int signo)
c906108c
SS
8181{
8182 return signal_print[signo];
8183}
8184
c5aa993b 8185int
96baa820 8186signal_pass_state (int signo)
c906108c
SS
8187{
8188 return signal_program[signo];
8189}
8190
2455069d
UW
8191static void
8192signal_cache_update (int signo)
8193{
8194 if (signo == -1)
8195 {
a493e3e2 8196 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8197 signal_cache_update (signo);
8198
8199 return;
8200 }
8201
8202 signal_pass[signo] = (signal_stop[signo] == 0
8203 && signal_print[signo] == 0
ab04a2af
TT
8204 && signal_program[signo] == 1
8205 && signal_catch[signo] == 0);
2455069d
UW
8206}
8207
488f131b 8208int
7bda5e4a 8209signal_stop_update (int signo, int state)
d4f3574e
SS
8210{
8211 int ret = signal_stop[signo];
abbb1732 8212
d4f3574e 8213 signal_stop[signo] = state;
2455069d 8214 signal_cache_update (signo);
d4f3574e
SS
8215 return ret;
8216}
8217
488f131b 8218int
7bda5e4a 8219signal_print_update (int signo, int state)
d4f3574e
SS
8220{
8221 int ret = signal_print[signo];
abbb1732 8222
d4f3574e 8223 signal_print[signo] = state;
2455069d 8224 signal_cache_update (signo);
d4f3574e
SS
8225 return ret;
8226}
8227
488f131b 8228int
7bda5e4a 8229signal_pass_update (int signo, int state)
d4f3574e
SS
8230{
8231 int ret = signal_program[signo];
abbb1732 8232
d4f3574e 8233 signal_program[signo] = state;
2455069d 8234 signal_cache_update (signo);
d4f3574e
SS
8235 return ret;
8236}
8237
ab04a2af
TT
8238/* Update the global 'signal_catch' from INFO and notify the
8239 target. */
8240
8241void
8242signal_catch_update (const unsigned int *info)
8243{
8244 int i;
8245
8246 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8247 signal_catch[i] = info[i] > 0;
8248 signal_cache_update (-1);
adc6a863 8249 target_pass_signals (signal_pass);
ab04a2af
TT
8250}
8251
c906108c 8252static void
96baa820 8253sig_print_header (void)
c906108c 8254{
3e43a32a
MS
8255 printf_filtered (_("Signal Stop\tPrint\tPass "
8256 "to program\tDescription\n"));
c906108c
SS
8257}
8258
8259static void
2ea28649 8260sig_print_info (enum gdb_signal oursig)
c906108c 8261{
2ea28649 8262 const char *name = gdb_signal_to_name (oursig);
c906108c 8263 int name_padding = 13 - strlen (name);
96baa820 8264
c906108c
SS
8265 if (name_padding <= 0)
8266 name_padding = 0;
8267
8268 printf_filtered ("%s", name);
488f131b 8269 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8270 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8271 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8272 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8273 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8274}
8275
8276/* Specify how various signals in the inferior should be handled. */
8277
8278static void
0b39b52e 8279handle_command (const char *args, int from_tty)
c906108c 8280{
c906108c 8281 int digits, wordlen;
b926417a 8282 int sigfirst, siglast;
2ea28649 8283 enum gdb_signal oursig;
c906108c 8284 int allsigs;
c906108c
SS
8285
8286 if (args == NULL)
8287 {
e2e0b3e5 8288 error_no_arg (_("signal to handle"));
c906108c
SS
8289 }
8290
1777feb0 8291 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8292
adc6a863
PA
8293 const size_t nsigs = GDB_SIGNAL_LAST;
8294 unsigned char sigs[nsigs] {};
c906108c 8295
1777feb0 8296 /* Break the command line up into args. */
c906108c 8297
773a1edc 8298 gdb_argv built_argv (args);
c906108c
SS
8299
8300 /* Walk through the args, looking for signal oursigs, signal names, and
8301 actions. Signal numbers and signal names may be interspersed with
8302 actions, with the actions being performed for all signals cumulatively
1777feb0 8303 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8304
773a1edc 8305 for (char *arg : built_argv)
c906108c 8306 {
773a1edc
TT
8307 wordlen = strlen (arg);
8308 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8309 {;
8310 }
8311 allsigs = 0;
8312 sigfirst = siglast = -1;
8313
773a1edc 8314 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8315 {
8316 /* Apply action to all signals except those used by the
1777feb0 8317 debugger. Silently skip those. */
c906108c
SS
8318 allsigs = 1;
8319 sigfirst = 0;
8320 siglast = nsigs - 1;
8321 }
773a1edc 8322 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8323 {
8324 SET_SIGS (nsigs, sigs, signal_stop);
8325 SET_SIGS (nsigs, sigs, signal_print);
8326 }
773a1edc 8327 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8328 {
8329 UNSET_SIGS (nsigs, sigs, signal_program);
8330 }
773a1edc 8331 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8332 {
8333 SET_SIGS (nsigs, sigs, signal_print);
8334 }
773a1edc 8335 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8336 {
8337 SET_SIGS (nsigs, sigs, signal_program);
8338 }
773a1edc 8339 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8340 {
8341 UNSET_SIGS (nsigs, sigs, signal_stop);
8342 }
773a1edc 8343 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8344 {
8345 SET_SIGS (nsigs, sigs, signal_program);
8346 }
773a1edc 8347 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8348 {
8349 UNSET_SIGS (nsigs, sigs, signal_print);
8350 UNSET_SIGS (nsigs, sigs, signal_stop);
8351 }
773a1edc 8352 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8353 {
8354 UNSET_SIGS (nsigs, sigs, signal_program);
8355 }
8356 else if (digits > 0)
8357 {
8358 /* It is numeric. The numeric signal refers to our own
8359 internal signal numbering from target.h, not to host/target
8360 signal number. This is a feature; users really should be
8361 using symbolic names anyway, and the common ones like
8362 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8363
8364 sigfirst = siglast = (int)
773a1edc
TT
8365 gdb_signal_from_command (atoi (arg));
8366 if (arg[digits] == '-')
c906108c
SS
8367 {
8368 siglast = (int)
773a1edc 8369 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8370 }
8371 if (sigfirst > siglast)
8372 {
1777feb0 8373 /* Bet he didn't figure we'd think of this case... */
b926417a 8374 std::swap (sigfirst, siglast);
c906108c
SS
8375 }
8376 }
8377 else
8378 {
773a1edc 8379 oursig = gdb_signal_from_name (arg);
a493e3e2 8380 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8381 {
8382 sigfirst = siglast = (int) oursig;
8383 }
8384 else
8385 {
8386 /* Not a number and not a recognized flag word => complain. */
773a1edc 8387 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8388 }
8389 }
8390
8391 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8392 which signals to apply actions to. */
c906108c 8393
b926417a 8394 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
c906108c 8395 {
2ea28649 8396 switch ((enum gdb_signal) signum)
c906108c 8397 {
a493e3e2
PA
8398 case GDB_SIGNAL_TRAP:
8399 case GDB_SIGNAL_INT:
c906108c
SS
8400 if (!allsigs && !sigs[signum])
8401 {
9e2f0ad4 8402 if (query (_("%s is used by the debugger.\n\
3e43a32a 8403Are you sure you want to change it? "),
2ea28649 8404 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8405 {
8406 sigs[signum] = 1;
8407 }
8408 else
8409 {
a3f17187 8410 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8411 gdb_flush (gdb_stdout);
8412 }
8413 }
8414 break;
a493e3e2
PA
8415 case GDB_SIGNAL_0:
8416 case GDB_SIGNAL_DEFAULT:
8417 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8418 /* Make sure that "all" doesn't print these. */
8419 break;
8420 default:
8421 sigs[signum] = 1;
8422 break;
8423 }
8424 }
c906108c
SS
8425 }
8426
b926417a 8427 for (int signum = 0; signum < nsigs; signum++)
3a031f65
PA
8428 if (sigs[signum])
8429 {
2455069d 8430 signal_cache_update (-1);
adc6a863
PA
8431 target_pass_signals (signal_pass);
8432 target_program_signals (signal_program);
c906108c 8433
3a031f65
PA
8434 if (from_tty)
8435 {
8436 /* Show the results. */
8437 sig_print_header ();
8438 for (; signum < nsigs; signum++)
8439 if (sigs[signum])
aead7601 8440 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8441 }
8442
8443 break;
8444 }
c906108c
SS
8445}
8446
de0bea00
MF
8447/* Complete the "handle" command. */
8448
eb3ff9a5 8449static void
de0bea00 8450handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8451 completion_tracker &tracker,
6f937416 8452 const char *text, const char *word)
de0bea00 8453{
de0bea00
MF
8454 static const char * const keywords[] =
8455 {
8456 "all",
8457 "stop",
8458 "ignore",
8459 "print",
8460 "pass",
8461 "nostop",
8462 "noignore",
8463 "noprint",
8464 "nopass",
8465 NULL,
8466 };
8467
eb3ff9a5
PA
8468 signal_completer (ignore, tracker, text, word);
8469 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8470}
8471
2ea28649
PA
8472enum gdb_signal
8473gdb_signal_from_command (int num)
ed01b82c
PA
8474{
8475 if (num >= 1 && num <= 15)
2ea28649 8476 return (enum gdb_signal) num;
ed01b82c
PA
8477 error (_("Only signals 1-15 are valid as numeric signals.\n\
8478Use \"info signals\" for a list of symbolic signals."));
8479}
8480
c906108c
SS
8481/* Print current contents of the tables set by the handle command.
8482 It is possible we should just be printing signals actually used
8483 by the current target (but for things to work right when switching
8484 targets, all signals should be in the signal tables). */
8485
8486static void
1d12d88f 8487info_signals_command (const char *signum_exp, int from_tty)
c906108c 8488{
2ea28649 8489 enum gdb_signal oursig;
abbb1732 8490
c906108c
SS
8491 sig_print_header ();
8492
8493 if (signum_exp)
8494 {
8495 /* First see if this is a symbol name. */
2ea28649 8496 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8497 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8498 {
8499 /* No, try numeric. */
8500 oursig =
2ea28649 8501 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8502 }
8503 sig_print_info (oursig);
8504 return;
8505 }
8506
8507 printf_filtered ("\n");
8508 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8509 for (oursig = GDB_SIGNAL_FIRST;
8510 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8511 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8512 {
8513 QUIT;
8514
a493e3e2
PA
8515 if (oursig != GDB_SIGNAL_UNKNOWN
8516 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8517 sig_print_info (oursig);
8518 }
8519
3e43a32a
MS
8520 printf_filtered (_("\nUse the \"handle\" command "
8521 "to change these tables.\n"));
c906108c 8522}
4aa995e1
PA
8523
8524/* The $_siginfo convenience variable is a bit special. We don't know
8525 for sure the type of the value until we actually have a chance to
7a9dd1b2 8526 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8527 also dependent on which thread you have selected.
8528
8529 1. making $_siginfo be an internalvar that creates a new value on
8530 access.
8531
8532 2. making the value of $_siginfo be an lval_computed value. */
8533
8534/* This function implements the lval_computed support for reading a
8535 $_siginfo value. */
8536
8537static void
8538siginfo_value_read (struct value *v)
8539{
8540 LONGEST transferred;
8541
a911d87a
PA
8542 /* If we can access registers, so can we access $_siginfo. Likewise
8543 vice versa. */
8544 validate_registers_access ();
c709acd1 8545
4aa995e1 8546 transferred =
8b88a78e 8547 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
4aa995e1
PA
8548 NULL,
8549 value_contents_all_raw (v),
8550 value_offset (v),
8551 TYPE_LENGTH (value_type (v)));
8552
8553 if (transferred != TYPE_LENGTH (value_type (v)))
8554 error (_("Unable to read siginfo"));
8555}
8556
8557/* This function implements the lval_computed support for writing a
8558 $_siginfo value. */
8559
8560static void
8561siginfo_value_write (struct value *v, struct value *fromval)
8562{
8563 LONGEST transferred;
8564
a911d87a
PA
8565 /* If we can access registers, so can we access $_siginfo. Likewise
8566 vice versa. */
8567 validate_registers_access ();
c709acd1 8568
8b88a78e 8569 transferred = target_write (current_top_target (),
4aa995e1
PA
8570 TARGET_OBJECT_SIGNAL_INFO,
8571 NULL,
8572 value_contents_all_raw (fromval),
8573 value_offset (v),
8574 TYPE_LENGTH (value_type (fromval)));
8575
8576 if (transferred != TYPE_LENGTH (value_type (fromval)))
8577 error (_("Unable to write siginfo"));
8578}
8579
c8f2448a 8580static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8581 {
8582 siginfo_value_read,
8583 siginfo_value_write
8584 };
8585
8586/* Return a new value with the correct type for the siginfo object of
78267919
UW
8587 the current thread using architecture GDBARCH. Return a void value
8588 if there's no object available. */
4aa995e1 8589
2c0b251b 8590static struct value *
22d2b532
SDJ
8591siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8592 void *ignore)
4aa995e1 8593{
4aa995e1 8594 if (target_has_stack
d7e15655 8595 && inferior_ptid != null_ptid
78267919 8596 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8597 {
78267919 8598 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8599
78267919 8600 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8601 }
8602
78267919 8603 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8604}
8605
c906108c 8606\f
16c381f0
JK
8607/* infcall_suspend_state contains state about the program itself like its
8608 registers and any signal it received when it last stopped.
8609 This state must be restored regardless of how the inferior function call
8610 ends (either successfully, or after it hits a breakpoint or signal)
8611 if the program is to properly continue where it left off. */
8612
6bf78e29 8613class infcall_suspend_state
7a292a7a 8614{
6bf78e29
AB
8615public:
8616 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8617 once the inferior function call has finished. */
8618 infcall_suspend_state (struct gdbarch *gdbarch,
8619 const struct thread_info *tp,
8620 struct regcache *regcache)
8621 : m_thread_suspend (tp->suspend),
8622 m_registers (new readonly_detached_regcache (*regcache))
8623 {
8624 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8625
8626 if (gdbarch_get_siginfo_type_p (gdbarch))
8627 {
8628 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8629 size_t len = TYPE_LENGTH (type);
8630
8631 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8632
8633 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8634 siginfo_data.get (), 0, len) != len)
8635 {
8636 /* Errors ignored. */
8637 siginfo_data.reset (nullptr);
8638 }
8639 }
8640
8641 if (siginfo_data)
8642 {
8643 m_siginfo_gdbarch = gdbarch;
8644 m_siginfo_data = std::move (siginfo_data);
8645 }
8646 }
8647
8648 /* Return a pointer to the stored register state. */
16c381f0 8649
6bf78e29
AB
8650 readonly_detached_regcache *registers () const
8651 {
8652 return m_registers.get ();
8653 }
8654
8655 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8656
8657 void restore (struct gdbarch *gdbarch,
8658 struct thread_info *tp,
8659 struct regcache *regcache) const
8660 {
8661 tp->suspend = m_thread_suspend;
8662
8663 if (m_siginfo_gdbarch == gdbarch)
8664 {
8665 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8666
8667 /* Errors ignored. */
8668 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8669 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8670 }
8671
8672 /* The inferior can be gone if the user types "print exit(0)"
8673 (and perhaps other times). */
8674 if (target_has_execution)
8675 /* NB: The register write goes through to the target. */
8676 regcache->restore (registers ());
8677 }
8678
8679private:
8680 /* How the current thread stopped before the inferior function call was
8681 executed. */
8682 struct thread_suspend_state m_thread_suspend;
8683
8684 /* The registers before the inferior function call was executed. */
8685 std::unique_ptr<readonly_detached_regcache> m_registers;
1736ad11 8686
35515841 8687 /* Format of SIGINFO_DATA or NULL if it is not present. */
6bf78e29 8688 struct gdbarch *m_siginfo_gdbarch = nullptr;
1736ad11
JK
8689
8690 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8691 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8692 content would be invalid. */
6bf78e29 8693 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
b89667eb
DE
8694};
8695
cb524840
TT
8696infcall_suspend_state_up
8697save_infcall_suspend_state ()
b89667eb 8698{
b89667eb 8699 struct thread_info *tp = inferior_thread ();
1736ad11 8700 struct regcache *regcache = get_current_regcache ();
ac7936df 8701 struct gdbarch *gdbarch = regcache->arch ();
1736ad11 8702
6bf78e29
AB
8703 infcall_suspend_state_up inf_state
8704 (new struct infcall_suspend_state (gdbarch, tp, regcache));
1736ad11 8705
6bf78e29
AB
8706 /* Having saved the current state, adjust the thread state, discarding
8707 any stop signal information. The stop signal is not useful when
8708 starting an inferior function call, and run_inferior_call will not use
8709 the signal due to its `proceed' call with GDB_SIGNAL_0. */
a493e3e2 8710 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8711
b89667eb
DE
8712 return inf_state;
8713}
8714
8715/* Restore inferior session state to INF_STATE. */
8716
8717void
16c381f0 8718restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8719{
8720 struct thread_info *tp = inferior_thread ();
1736ad11 8721 struct regcache *regcache = get_current_regcache ();
ac7936df 8722 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 8723
6bf78e29 8724 inf_state->restore (gdbarch, tp, regcache);
16c381f0 8725 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8726}
8727
b89667eb 8728void
16c381f0 8729discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 8730{
dd848631 8731 delete inf_state;
b89667eb
DE
8732}
8733
daf6667d 8734readonly_detached_regcache *
16c381f0 8735get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb 8736{
6bf78e29 8737 return inf_state->registers ();
b89667eb
DE
8738}
8739
16c381f0
JK
8740/* infcall_control_state contains state regarding gdb's control of the
8741 inferior itself like stepping control. It also contains session state like
8742 the user's currently selected frame. */
b89667eb 8743
16c381f0 8744struct infcall_control_state
b89667eb 8745{
16c381f0
JK
8746 struct thread_control_state thread_control;
8747 struct inferior_control_state inferior_control;
d82142e2
JK
8748
8749 /* Other fields: */
ee841dd8
TT
8750 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
8751 int stopped_by_random_signal = 0;
7a292a7a 8752
b89667eb 8753 /* ID if the selected frame when the inferior function call was made. */
ee841dd8 8754 struct frame_id selected_frame_id {};
7a292a7a
SS
8755};
8756
c906108c 8757/* Save all of the information associated with the inferior<==>gdb
b89667eb 8758 connection. */
c906108c 8759
cb524840
TT
8760infcall_control_state_up
8761save_infcall_control_state ()
c906108c 8762{
cb524840 8763 infcall_control_state_up inf_status (new struct infcall_control_state);
4e1c45ea 8764 struct thread_info *tp = inferior_thread ();
d6b48e9c 8765 struct inferior *inf = current_inferior ();
7a292a7a 8766
16c381f0
JK
8767 inf_status->thread_control = tp->control;
8768 inf_status->inferior_control = inf->control;
d82142e2 8769
8358c15c 8770 tp->control.step_resume_breakpoint = NULL;
5b79abe7 8771 tp->control.exception_resume_breakpoint = NULL;
8358c15c 8772
16c381f0
JK
8773 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8774 chain. If caller's caller is walking the chain, they'll be happier if we
8775 hand them back the original chain when restore_infcall_control_state is
8776 called. */
8777 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
8778
8779 /* Other fields: */
8780 inf_status->stop_stack_dummy = stop_stack_dummy;
8781 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 8782
206415a3 8783 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 8784
7a292a7a 8785 return inf_status;
c906108c
SS
8786}
8787
bf469271
PA
8788static void
8789restore_selected_frame (const frame_id &fid)
c906108c 8790{
bf469271 8791 frame_info *frame = frame_find_by_id (fid);
c906108c 8792
aa0cd9c1
AC
8793 /* If inf_status->selected_frame_id is NULL, there was no previously
8794 selected frame. */
101dcfbe 8795 if (frame == NULL)
c906108c 8796 {
8a3fe4f8 8797 warning (_("Unable to restore previously selected frame."));
bf469271 8798 return;
c906108c
SS
8799 }
8800
0f7d239c 8801 select_frame (frame);
c906108c
SS
8802}
8803
b89667eb
DE
8804/* Restore inferior session state to INF_STATUS. */
8805
c906108c 8806void
16c381f0 8807restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 8808{
4e1c45ea 8809 struct thread_info *tp = inferior_thread ();
d6b48e9c 8810 struct inferior *inf = current_inferior ();
4e1c45ea 8811
8358c15c
JK
8812 if (tp->control.step_resume_breakpoint)
8813 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8814
5b79abe7
TT
8815 if (tp->control.exception_resume_breakpoint)
8816 tp->control.exception_resume_breakpoint->disposition
8817 = disp_del_at_next_stop;
8818
d82142e2 8819 /* Handle the bpstat_copy of the chain. */
16c381f0 8820 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 8821
16c381f0
JK
8822 tp->control = inf_status->thread_control;
8823 inf->control = inf_status->inferior_control;
d82142e2
JK
8824
8825 /* Other fields: */
8826 stop_stack_dummy = inf_status->stop_stack_dummy;
8827 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 8828
b89667eb 8829 if (target_has_stack)
c906108c 8830 {
bf469271 8831 /* The point of the try/catch is that if the stack is clobbered,
101dcfbe
AC
8832 walking the stack might encounter a garbage pointer and
8833 error() trying to dereference it. */
bf469271
PA
8834 TRY
8835 {
8836 restore_selected_frame (inf_status->selected_frame_id);
8837 }
8838 CATCH (ex, RETURN_MASK_ERROR)
8839 {
8840 exception_fprintf (gdb_stderr, ex,
8841 "Unable to restore previously selected frame:\n");
8842 /* Error in restoring the selected frame. Select the
8843 innermost frame. */
8844 select_frame (get_current_frame ());
8845 }
8846 END_CATCH
c906108c 8847 }
c906108c 8848
ee841dd8 8849 delete inf_status;
7a292a7a 8850}
c906108c
SS
8851
8852void
16c381f0 8853discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 8854{
8358c15c
JK
8855 if (inf_status->thread_control.step_resume_breakpoint)
8856 inf_status->thread_control.step_resume_breakpoint->disposition
8857 = disp_del_at_next_stop;
8858
5b79abe7
TT
8859 if (inf_status->thread_control.exception_resume_breakpoint)
8860 inf_status->thread_control.exception_resume_breakpoint->disposition
8861 = disp_del_at_next_stop;
8862
1777feb0 8863 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 8864 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 8865
ee841dd8 8866 delete inf_status;
7a292a7a 8867}
b89667eb 8868\f
7f89fd65 8869/* See infrun.h. */
0c557179
SDJ
8870
8871void
8872clear_exit_convenience_vars (void)
8873{
8874 clear_internalvar (lookup_internalvar ("_exitsignal"));
8875 clear_internalvar (lookup_internalvar ("_exitcode"));
8876}
c5aa993b 8877\f
488f131b 8878
b2175913
MS
8879/* User interface for reverse debugging:
8880 Set exec-direction / show exec-direction commands
8881 (returns error unless target implements to_set_exec_direction method). */
8882
170742de 8883enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
8884static const char exec_forward[] = "forward";
8885static const char exec_reverse[] = "reverse";
8886static const char *exec_direction = exec_forward;
40478521 8887static const char *const exec_direction_names[] = {
b2175913
MS
8888 exec_forward,
8889 exec_reverse,
8890 NULL
8891};
8892
8893static void
eb4c3f4a 8894set_exec_direction_func (const char *args, int from_tty,
b2175913
MS
8895 struct cmd_list_element *cmd)
8896{
8897 if (target_can_execute_reverse)
8898 {
8899 if (!strcmp (exec_direction, exec_forward))
8900 execution_direction = EXEC_FORWARD;
8901 else if (!strcmp (exec_direction, exec_reverse))
8902 execution_direction = EXEC_REVERSE;
8903 }
8bbed405
MS
8904 else
8905 {
8906 exec_direction = exec_forward;
8907 error (_("Target does not support this operation."));
8908 }
b2175913
MS
8909}
8910
8911static void
8912show_exec_direction_func (struct ui_file *out, int from_tty,
8913 struct cmd_list_element *cmd, const char *value)
8914{
8915 switch (execution_direction) {
8916 case EXEC_FORWARD:
8917 fprintf_filtered (out, _("Forward.\n"));
8918 break;
8919 case EXEC_REVERSE:
8920 fprintf_filtered (out, _("Reverse.\n"));
8921 break;
b2175913 8922 default:
d8b34453
PA
8923 internal_error (__FILE__, __LINE__,
8924 _("bogus execution_direction value: %d"),
8925 (int) execution_direction);
b2175913
MS
8926 }
8927}
8928
d4db2f36
PA
8929static void
8930show_schedule_multiple (struct ui_file *file, int from_tty,
8931 struct cmd_list_element *c, const char *value)
8932{
3e43a32a
MS
8933 fprintf_filtered (file, _("Resuming the execution of threads "
8934 "of all processes is %s.\n"), value);
d4db2f36 8935}
ad52ddc6 8936
22d2b532
SDJ
8937/* Implementation of `siginfo' variable. */
8938
8939static const struct internalvar_funcs siginfo_funcs =
8940{
8941 siginfo_make_value,
8942 NULL,
8943 NULL
8944};
8945
372316f1
PA
8946/* Callback for infrun's target events source. This is marked when a
8947 thread has a pending status to process. */
8948
8949static void
8950infrun_async_inferior_event_handler (gdb_client_data data)
8951{
372316f1
PA
8952 inferior_event_handler (INF_REG_EVENT, NULL);
8953}
8954
c906108c 8955void
96baa820 8956_initialize_infrun (void)
c906108c 8957{
de0bea00 8958 struct cmd_list_element *c;
c906108c 8959
372316f1
PA
8960 /* Register extra event sources in the event loop. */
8961 infrun_async_inferior_event_token
8962 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
8963
11db9430 8964 add_info ("signals", info_signals_command, _("\
1bedd215
AC
8965What debugger does when program gets various signals.\n\
8966Specify a signal as argument to print info on that signal only."));
c906108c
SS
8967 add_info_alias ("handle", "signals", 0);
8968
de0bea00 8969 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 8970Specify how to handle signals.\n\
486c7739 8971Usage: handle SIGNAL [ACTIONS]\n\
c906108c 8972Args are signals and actions to apply to those signals.\n\
dfbd5e7b 8973If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
8974will be displayed instead.\n\
8975\n\
c906108c
SS
8976Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
8977from 1-15 are allowed for compatibility with old versions of GDB.\n\
8978Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
8979The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 8980used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 8981\n\
1bedd215 8982Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
8983\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
8984Stop means reenter debugger if this signal happens (implies print).\n\
8985Print means print a message if this signal happens.\n\
8986Pass means let program see this signal; otherwise program doesn't know.\n\
8987Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
8988Pass and Stop may be combined.\n\
8989\n\
8990Multiple signals may be specified. Signal numbers and signal names\n\
8991may be interspersed with actions, with the actions being performed for\n\
8992all signals cumulatively specified."));
de0bea00 8993 set_cmd_completer (c, handle_completer);
486c7739 8994
c906108c 8995 if (!dbx_commands)
1a966eab
AC
8996 stop_command = add_cmd ("stop", class_obscure,
8997 not_just_help_class_command, _("\
8998There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 8999This allows you to set a list of commands to be run each time execution\n\
1a966eab 9000of the program stops."), &cmdlist);
c906108c 9001
ccce17b0 9002 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9003Set inferior debugging."), _("\
9004Show inferior debugging."), _("\
9005When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9006 NULL,
9007 show_debug_infrun,
9008 &setdebuglist, &showdebuglist);
527159b7 9009
3e43a32a
MS
9010 add_setshow_boolean_cmd ("displaced", class_maintenance,
9011 &debug_displaced, _("\
237fc4c9
PA
9012Set displaced stepping debugging."), _("\
9013Show displaced stepping debugging."), _("\
9014When non-zero, displaced stepping specific debugging is enabled."),
9015 NULL,
9016 show_debug_displaced,
9017 &setdebuglist, &showdebuglist);
9018
ad52ddc6
PA
9019 add_setshow_boolean_cmd ("non-stop", no_class,
9020 &non_stop_1, _("\
9021Set whether gdb controls the inferior in non-stop mode."), _("\
9022Show whether gdb controls the inferior in non-stop mode."), _("\
9023When debugging a multi-threaded program and this setting is\n\
9024off (the default, also called all-stop mode), when one thread stops\n\
9025(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9026all other threads in the program while you interact with the thread of\n\
9027interest. When you continue or step a thread, you can allow the other\n\
9028threads to run, or have them remain stopped, but while you inspect any\n\
9029thread's state, all threads stop.\n\
9030\n\
9031In non-stop mode, when one thread stops, other threads can continue\n\
9032to run freely. You'll be able to step each thread independently,\n\
9033leave it stopped or free to run as needed."),
9034 set_non_stop,
9035 show_non_stop,
9036 &setlist,
9037 &showlist);
9038
adc6a863 9039 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
c906108c
SS
9040 {
9041 signal_stop[i] = 1;
9042 signal_print[i] = 1;
9043 signal_program[i] = 1;
ab04a2af 9044 signal_catch[i] = 0;
c906108c
SS
9045 }
9046
4d9d9d04
PA
9047 /* Signals caused by debugger's own actions should not be given to
9048 the program afterwards.
9049
9050 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9051 explicitly specifies that it should be delivered to the target
9052 program. Typically, that would occur when a user is debugging a
9053 target monitor on a simulator: the target monitor sets a
9054 breakpoint; the simulator encounters this breakpoint and halts
9055 the simulation handing control to GDB; GDB, noting that the stop
9056 address doesn't map to any known breakpoint, returns control back
9057 to the simulator; the simulator then delivers the hardware
9058 equivalent of a GDB_SIGNAL_TRAP to the program being
9059 debugged. */
a493e3e2
PA
9060 signal_program[GDB_SIGNAL_TRAP] = 0;
9061 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9062
9063 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9064 signal_stop[GDB_SIGNAL_ALRM] = 0;
9065 signal_print[GDB_SIGNAL_ALRM] = 0;
9066 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9067 signal_print[GDB_SIGNAL_VTALRM] = 0;
9068 signal_stop[GDB_SIGNAL_PROF] = 0;
9069 signal_print[GDB_SIGNAL_PROF] = 0;
9070 signal_stop[GDB_SIGNAL_CHLD] = 0;
9071 signal_print[GDB_SIGNAL_CHLD] = 0;
9072 signal_stop[GDB_SIGNAL_IO] = 0;
9073 signal_print[GDB_SIGNAL_IO] = 0;
9074 signal_stop[GDB_SIGNAL_POLL] = 0;
9075 signal_print[GDB_SIGNAL_POLL] = 0;
9076 signal_stop[GDB_SIGNAL_URG] = 0;
9077 signal_print[GDB_SIGNAL_URG] = 0;
9078 signal_stop[GDB_SIGNAL_WINCH] = 0;
9079 signal_print[GDB_SIGNAL_WINCH] = 0;
9080 signal_stop[GDB_SIGNAL_PRIO] = 0;
9081 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9082
cd0fc7c3
SS
9083 /* These signals are used internally by user-level thread
9084 implementations. (See signal(5) on Solaris.) Like the above
9085 signals, a healthy program receives and handles them as part of
9086 its normal operation. */
a493e3e2
PA
9087 signal_stop[GDB_SIGNAL_LWP] = 0;
9088 signal_print[GDB_SIGNAL_LWP] = 0;
9089 signal_stop[GDB_SIGNAL_WAITING] = 0;
9090 signal_print[GDB_SIGNAL_WAITING] = 0;
9091 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9092 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9093 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9094 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9095
2455069d
UW
9096 /* Update cached state. */
9097 signal_cache_update (-1);
9098
85c07804
AC
9099 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9100 &stop_on_solib_events, _("\
9101Set stopping for shared library events."), _("\
9102Show stopping for shared library events."), _("\
c906108c
SS
9103If nonzero, gdb will give control to the user when the dynamic linker\n\
9104notifies gdb of shared library events. The most common event of interest\n\
85c07804 9105to the user would be loading/unloading of a new library."),
f9e14852 9106 set_stop_on_solib_events,
920d2a44 9107 show_stop_on_solib_events,
85c07804 9108 &setlist, &showlist);
c906108c 9109
7ab04401
AC
9110 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9111 follow_fork_mode_kind_names,
9112 &follow_fork_mode_string, _("\
9113Set debugger response to a program call of fork or vfork."), _("\
9114Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9115A fork or vfork creates a new process. follow-fork-mode can be:\n\
9116 parent - the original process is debugged after a fork\n\
9117 child - the new process is debugged after a fork\n\
ea1dd7bc 9118The unfollowed process will continue to run.\n\
7ab04401
AC
9119By default, the debugger will follow the parent process."),
9120 NULL,
920d2a44 9121 show_follow_fork_mode_string,
7ab04401
AC
9122 &setlist, &showlist);
9123
6c95b8df
PA
9124 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9125 follow_exec_mode_names,
9126 &follow_exec_mode_string, _("\
9127Set debugger response to a program call of exec."), _("\
9128Show debugger response to a program call of exec."), _("\
9129An exec call replaces the program image of a process.\n\
9130\n\
9131follow-exec-mode can be:\n\
9132\n\
cce7e648 9133 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9134to this new inferior. The program the process was running before\n\
9135the exec call can be restarted afterwards by restarting the original\n\
9136inferior.\n\
9137\n\
9138 same - the debugger keeps the process bound to the same inferior.\n\
9139The new executable image replaces the previous executable loaded in\n\
9140the inferior. Restarting the inferior after the exec call restarts\n\
9141the executable the process was running after the exec call.\n\
9142\n\
9143By default, the debugger will use the same inferior."),
9144 NULL,
9145 show_follow_exec_mode_string,
9146 &setlist, &showlist);
9147
7ab04401
AC
9148 add_setshow_enum_cmd ("scheduler-locking", class_run,
9149 scheduler_enums, &scheduler_mode, _("\
9150Set mode for locking scheduler during execution."), _("\
9151Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9152off == no locking (threads may preempt at any time)\n\
9153on == full locking (no thread except the current thread may run)\n\
9154 This applies to both normal execution and replay mode.\n\
9155step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9156 In this mode, other threads may run during other commands.\n\
9157 This applies to both normal execution and replay mode.\n\
9158replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9159 set_schedlock_func, /* traps on target vector */
920d2a44 9160 show_scheduler_mode,
7ab04401 9161 &setlist, &showlist);
5fbbeb29 9162
d4db2f36
PA
9163 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9164Set mode for resuming threads of all processes."), _("\
9165Show mode for resuming threads of all processes."), _("\
9166When on, execution commands (such as 'continue' or 'next') resume all\n\
9167threads of all processes. When off (which is the default), execution\n\
9168commands only resume the threads of the current process. The set of\n\
9169threads that are resumed is further refined by the scheduler-locking\n\
9170mode (see help set scheduler-locking)."),
9171 NULL,
9172 show_schedule_multiple,
9173 &setlist, &showlist);
9174
5bf193a2
AC
9175 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9176Set mode of the step operation."), _("\
9177Show mode of the step operation."), _("\
9178When set, doing a step over a function without debug line information\n\
9179will stop at the first instruction of that function. Otherwise, the\n\
9180function is skipped and the step command stops at a different source line."),
9181 NULL,
920d2a44 9182 show_step_stop_if_no_debug,
5bf193a2 9183 &setlist, &showlist);
ca6724c1 9184
72d0e2c5
YQ
9185 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9186 &can_use_displaced_stepping, _("\
237fc4c9
PA
9187Set debugger's willingness to use displaced stepping."), _("\
9188Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9189If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9190supported by the target architecture. If off, gdb will not use displaced\n\
9191stepping to step over breakpoints, even if such is supported by the target\n\
9192architecture. If auto (which is the default), gdb will use displaced stepping\n\
9193if the target architecture supports it and non-stop mode is active, but will not\n\
9194use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9195 NULL,
9196 show_can_use_displaced_stepping,
9197 &setlist, &showlist);
237fc4c9 9198
b2175913
MS
9199 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9200 &exec_direction, _("Set direction of execution.\n\
9201Options are 'forward' or 'reverse'."),
9202 _("Show direction of execution (forward/reverse)."),
9203 _("Tells gdb whether to execute forward or backward."),
9204 set_exec_direction_func, show_exec_direction_func,
9205 &setlist, &showlist);
9206
6c95b8df
PA
9207 /* Set/show detach-on-fork: user-settable mode. */
9208
9209 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9210Set whether gdb will detach the child of a fork."), _("\
9211Show whether gdb will detach the child of a fork."), _("\
9212Tells gdb whether to detach the child of a fork."),
9213 NULL, NULL, &setlist, &showlist);
9214
03583c20
UW
9215 /* Set/show disable address space randomization mode. */
9216
9217 add_setshow_boolean_cmd ("disable-randomization", class_support,
9218 &disable_randomization, _("\
9219Set disabling of debuggee's virtual address space randomization."), _("\
9220Show disabling of debuggee's virtual address space randomization."), _("\
9221When this mode is on (which is the default), randomization of the virtual\n\
9222address space is disabled. Standalone programs run with the randomization\n\
9223enabled by default on some platforms."),
9224 &set_disable_randomization,
9225 &show_disable_randomization,
9226 &setlist, &showlist);
9227
ca6724c1 9228 /* ptid initializations */
ca6724c1
KB
9229 inferior_ptid = null_ptid;
9230 target_last_wait_ptid = minus_one_ptid;
5231c1fd 9231
76727919
TT
9232 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9233 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9234 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9235 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
4aa995e1
PA
9236
9237 /* Explicitly create without lookup, since that tries to create a
9238 value with a void typed value, and when we get here, gdbarch
9239 isn't initialized yet. At this point, we're quite sure there
9240 isn't another convenience variable of the same name. */
22d2b532 9241 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9242
9243 add_setshow_boolean_cmd ("observer", no_class,
9244 &observer_mode_1, _("\
9245Set whether gdb controls the inferior in observer mode."), _("\
9246Show whether gdb controls the inferior in observer mode."), _("\
9247In observer mode, GDB can get data from the inferior, but not\n\
9248affect its execution. Registers and memory may not be changed,\n\
9249breakpoints may not be set, and the program cannot be interrupted\n\
9250or signalled."),
9251 set_observer_mode,
9252 show_observer_mode,
9253 &setlist,
9254 &showlist);
c906108c 9255}
This page took 3.202324 seconds and 4 git commands to generate.