Record minimal symbols directly in reader.
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
618f726f 4 Copyright (C) 1986-2016 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
06600e06 41#include "observer.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
ff862be4 63#include "solist.h"
372316f1 64#include "event-loop.h"
243a9253 65#include "thread-fsm.h"
8d297bbf 66#include "common/enum-flags.h"
c906108c
SS
67
68/* Prototypes for local functions */
69
96baa820 70static void signals_info (char *, int);
c906108c 71
96baa820 72static void handle_command (char *, int);
c906108c 73
2ea28649 74static void sig_print_info (enum gdb_signal);
c906108c 75
96baa820 76static void sig_print_header (void);
c906108c 77
74b7792f 78static void resume_cleanups (void *);
c906108c 79
96baa820 80static int hook_stop_stub (void *);
c906108c 81
96baa820
JM
82static int restore_selected_frame (void *);
83
4ef3f3be 84static int follow_fork (void);
96baa820 85
d83ad864
DB
86static int follow_fork_inferior (int follow_child, int detach_fork);
87
88static void follow_inferior_reset_breakpoints (void);
89
96baa820 90static void set_schedlock_func (char *args, int from_tty,
488f131b 91 struct cmd_list_element *c);
96baa820 92
a289b8f6
JK
93static int currently_stepping (struct thread_info *tp);
94
96baa820 95void _initialize_infrun (void);
43ff13b4 96
e58b0e63
PA
97void nullify_last_target_wait_ptid (void);
98
2c03e5be 99static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
100
101static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
102
2484c66b
UW
103static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
104
8550d3b3
YQ
105static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
106
372316f1
PA
107/* Asynchronous signal handler registered as event loop source for
108 when we have pending events ready to be passed to the core. */
109static struct async_event_handler *infrun_async_inferior_event_token;
110
111/* Stores whether infrun_async was previously enabled or disabled.
112 Starts off as -1, indicating "never enabled/disabled". */
113static int infrun_is_async = -1;
114
115/* See infrun.h. */
116
117void
118infrun_async (int enable)
119{
120 if (infrun_is_async != enable)
121 {
122 infrun_is_async = enable;
123
124 if (debug_infrun)
125 fprintf_unfiltered (gdb_stdlog,
126 "infrun: infrun_async(%d)\n",
127 enable);
128
129 if (enable)
130 mark_async_event_handler (infrun_async_inferior_event_token);
131 else
132 clear_async_event_handler (infrun_async_inferior_event_token);
133 }
134}
135
0b333c5e
PA
136/* See infrun.h. */
137
138void
139mark_infrun_async_event_handler (void)
140{
141 mark_async_event_handler (infrun_async_inferior_event_token);
142}
143
5fbbeb29
CF
144/* When set, stop the 'step' command if we enter a function which has
145 no line number information. The normal behavior is that we step
146 over such function. */
147int step_stop_if_no_debug = 0;
920d2a44
AC
148static void
149show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151{
152 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
153}
5fbbeb29 154
b9f437de
PA
155/* proceed and normal_stop use this to notify the user when the
156 inferior stopped in a different thread than it had been running
157 in. */
96baa820 158
39f77062 159static ptid_t previous_inferior_ptid;
7a292a7a 160
07107ca6
LM
161/* If set (default for legacy reasons), when following a fork, GDB
162 will detach from one of the fork branches, child or parent.
163 Exactly which branch is detached depends on 'set follow-fork-mode'
164 setting. */
165
166static int detach_fork = 1;
6c95b8df 167
237fc4c9
PA
168int debug_displaced = 0;
169static void
170show_debug_displaced (struct ui_file *file, int from_tty,
171 struct cmd_list_element *c, const char *value)
172{
173 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
174}
175
ccce17b0 176unsigned int debug_infrun = 0;
920d2a44
AC
177static void
178show_debug_infrun (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180{
181 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
182}
527159b7 183
03583c20
UW
184
185/* Support for disabling address space randomization. */
186
187int disable_randomization = 1;
188
189static void
190show_disable_randomization (struct ui_file *file, int from_tty,
191 struct cmd_list_element *c, const char *value)
192{
193 if (target_supports_disable_randomization ())
194 fprintf_filtered (file,
195 _("Disabling randomization of debuggee's "
196 "virtual address space is %s.\n"),
197 value);
198 else
199 fputs_filtered (_("Disabling randomization of debuggee's "
200 "virtual address space is unsupported on\n"
201 "this platform.\n"), file);
202}
203
204static void
205set_disable_randomization (char *args, int from_tty,
206 struct cmd_list_element *c)
207{
208 if (!target_supports_disable_randomization ())
209 error (_("Disabling randomization of debuggee's "
210 "virtual address space is unsupported on\n"
211 "this platform."));
212}
213
d32dc48e
PA
214/* User interface for non-stop mode. */
215
216int non_stop = 0;
217static int non_stop_1 = 0;
218
219static void
220set_non_stop (char *args, int from_tty,
221 struct cmd_list_element *c)
222{
223 if (target_has_execution)
224 {
225 non_stop_1 = non_stop;
226 error (_("Cannot change this setting while the inferior is running."));
227 }
228
229 non_stop = non_stop_1;
230}
231
232static void
233show_non_stop (struct ui_file *file, int from_tty,
234 struct cmd_list_element *c, const char *value)
235{
236 fprintf_filtered (file,
237 _("Controlling the inferior in non-stop mode is %s.\n"),
238 value);
239}
240
d914c394
SS
241/* "Observer mode" is somewhat like a more extreme version of
242 non-stop, in which all GDB operations that might affect the
243 target's execution have been disabled. */
244
d914c394
SS
245int observer_mode = 0;
246static int observer_mode_1 = 0;
247
248static void
249set_observer_mode (char *args, int from_tty,
250 struct cmd_list_element *c)
251{
d914c394
SS
252 if (target_has_execution)
253 {
254 observer_mode_1 = observer_mode;
255 error (_("Cannot change this setting while the inferior is running."));
256 }
257
258 observer_mode = observer_mode_1;
259
260 may_write_registers = !observer_mode;
261 may_write_memory = !observer_mode;
262 may_insert_breakpoints = !observer_mode;
263 may_insert_tracepoints = !observer_mode;
264 /* We can insert fast tracepoints in or out of observer mode,
265 but enable them if we're going into this mode. */
266 if (observer_mode)
267 may_insert_fast_tracepoints = 1;
268 may_stop = !observer_mode;
269 update_target_permissions ();
270
271 /* Going *into* observer mode we must force non-stop, then
272 going out we leave it that way. */
273 if (observer_mode)
274 {
d914c394
SS
275 pagination_enabled = 0;
276 non_stop = non_stop_1 = 1;
277 }
278
279 if (from_tty)
280 printf_filtered (_("Observer mode is now %s.\n"),
281 (observer_mode ? "on" : "off"));
282}
283
284static void
285show_observer_mode (struct ui_file *file, int from_tty,
286 struct cmd_list_element *c, const char *value)
287{
288 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
289}
290
291/* This updates the value of observer mode based on changes in
292 permissions. Note that we are deliberately ignoring the values of
293 may-write-registers and may-write-memory, since the user may have
294 reason to enable these during a session, for instance to turn on a
295 debugging-related global. */
296
297void
298update_observer_mode (void)
299{
300 int newval;
301
302 newval = (!may_insert_breakpoints
303 && !may_insert_tracepoints
304 && may_insert_fast_tracepoints
305 && !may_stop
306 && non_stop);
307
308 /* Let the user know if things change. */
309 if (newval != observer_mode)
310 printf_filtered (_("Observer mode is now %s.\n"),
311 (newval ? "on" : "off"));
312
313 observer_mode = observer_mode_1 = newval;
314}
c2c6d25f 315
c906108c
SS
316/* Tables of how to react to signals; the user sets them. */
317
318static unsigned char *signal_stop;
319static unsigned char *signal_print;
320static unsigned char *signal_program;
321
ab04a2af
TT
322/* Table of signals that are registered with "catch signal". A
323 non-zero entry indicates that the signal is caught by some "catch
324 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
325 signals. */
326static unsigned char *signal_catch;
327
2455069d
UW
328/* Table of signals that the target may silently handle.
329 This is automatically determined from the flags above,
330 and simply cached here. */
331static unsigned char *signal_pass;
332
c906108c
SS
333#define SET_SIGS(nsigs,sigs,flags) \
334 do { \
335 int signum = (nsigs); \
336 while (signum-- > 0) \
337 if ((sigs)[signum]) \
338 (flags)[signum] = 1; \
339 } while (0)
340
341#define UNSET_SIGS(nsigs,sigs,flags) \
342 do { \
343 int signum = (nsigs); \
344 while (signum-- > 0) \
345 if ((sigs)[signum]) \
346 (flags)[signum] = 0; \
347 } while (0)
348
9b224c5e
PA
349/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
350 this function is to avoid exporting `signal_program'. */
351
352void
353update_signals_program_target (void)
354{
a493e3e2 355 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
356}
357
1777feb0 358/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 359
edb3359d 360#define RESUME_ALL minus_one_ptid
c906108c
SS
361
362/* Command list pointer for the "stop" placeholder. */
363
364static struct cmd_list_element *stop_command;
365
c906108c
SS
366/* Nonzero if we want to give control to the user when we're notified
367 of shared library events by the dynamic linker. */
628fe4e4 368int stop_on_solib_events;
f9e14852
GB
369
370/* Enable or disable optional shared library event breakpoints
371 as appropriate when the above flag is changed. */
372
373static void
374set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
375{
376 update_solib_breakpoints ();
377}
378
920d2a44
AC
379static void
380show_stop_on_solib_events (struct ui_file *file, int from_tty,
381 struct cmd_list_element *c, const char *value)
382{
383 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
384 value);
385}
c906108c 386
c906108c
SS
387/* Nonzero after stop if current stack frame should be printed. */
388
389static int stop_print_frame;
390
e02bc4cc 391/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
392 returned by target_wait()/deprecated_target_wait_hook(). This
393 information is returned by get_last_target_status(). */
39f77062 394static ptid_t target_last_wait_ptid;
e02bc4cc
DS
395static struct target_waitstatus target_last_waitstatus;
396
0d1e5fa7
PA
397static void context_switch (ptid_t ptid);
398
4e1c45ea 399void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 400
53904c9e
AC
401static const char follow_fork_mode_child[] = "child";
402static const char follow_fork_mode_parent[] = "parent";
403
40478521 404static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
405 follow_fork_mode_child,
406 follow_fork_mode_parent,
407 NULL
ef346e04 408};
c906108c 409
53904c9e 410static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
411static void
412show_follow_fork_mode_string (struct ui_file *file, int from_tty,
413 struct cmd_list_element *c, const char *value)
414{
3e43a32a
MS
415 fprintf_filtered (file,
416 _("Debugger response to a program "
417 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
418 value);
419}
c906108c
SS
420\f
421
d83ad864
DB
422/* Handle changes to the inferior list based on the type of fork,
423 which process is being followed, and whether the other process
424 should be detached. On entry inferior_ptid must be the ptid of
425 the fork parent. At return inferior_ptid is the ptid of the
426 followed inferior. */
427
428static int
429follow_fork_inferior (int follow_child, int detach_fork)
430{
431 int has_vforked;
79639e11 432 ptid_t parent_ptid, child_ptid;
d83ad864
DB
433
434 has_vforked = (inferior_thread ()->pending_follow.kind
435 == TARGET_WAITKIND_VFORKED);
79639e11
PA
436 parent_ptid = inferior_ptid;
437 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
438
439 if (has_vforked
440 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 441 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
442 && !(follow_child || detach_fork || sched_multi))
443 {
444 /* The parent stays blocked inside the vfork syscall until the
445 child execs or exits. If we don't let the child run, then
446 the parent stays blocked. If we're telling the parent to run
447 in the foreground, the user will not be able to ctrl-c to get
448 back the terminal, effectively hanging the debug session. */
449 fprintf_filtered (gdb_stderr, _("\
450Can not resume the parent process over vfork in the foreground while\n\
451holding the child stopped. Try \"set detach-on-fork\" or \
452\"set schedule-multiple\".\n"));
453 /* FIXME output string > 80 columns. */
454 return 1;
455 }
456
457 if (!follow_child)
458 {
459 /* Detach new forked process? */
460 if (detach_fork)
461 {
d83ad864
DB
462 /* Before detaching from the child, remove all breakpoints
463 from it. If we forked, then this has already been taken
464 care of by infrun.c. If we vforked however, any
465 breakpoint inserted in the parent is visible in the
466 child, even those added while stopped in a vfork
467 catchpoint. This will remove the breakpoints from the
468 parent also, but they'll be reinserted below. */
469 if (has_vforked)
470 {
471 /* Keep breakpoints list in sync. */
472 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
473 }
474
475 if (info_verbose || debug_infrun)
476 {
8dd06f7a
DB
477 /* Ensure that we have a process ptid. */
478 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
479
6f259a23 480 target_terminal_ours_for_output ();
d83ad864 481 fprintf_filtered (gdb_stdlog,
79639e11 482 _("Detaching after %s from child %s.\n"),
6f259a23 483 has_vforked ? "vfork" : "fork",
8dd06f7a 484 target_pid_to_str (process_ptid));
d83ad864
DB
485 }
486 }
487 else
488 {
489 struct inferior *parent_inf, *child_inf;
490 struct cleanup *old_chain;
491
492 /* Add process to GDB's tables. */
79639e11 493 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
494
495 parent_inf = current_inferior ();
496 child_inf->attach_flag = parent_inf->attach_flag;
497 copy_terminal_info (child_inf, parent_inf);
498 child_inf->gdbarch = parent_inf->gdbarch;
499 copy_inferior_target_desc_info (child_inf, parent_inf);
500
501 old_chain = save_inferior_ptid ();
502 save_current_program_space ();
503
79639e11 504 inferior_ptid = child_ptid;
d83ad864
DB
505 add_thread (inferior_ptid);
506 child_inf->symfile_flags = SYMFILE_NO_READ;
507
508 /* If this is a vfork child, then the address-space is
509 shared with the parent. */
510 if (has_vforked)
511 {
512 child_inf->pspace = parent_inf->pspace;
513 child_inf->aspace = parent_inf->aspace;
514
515 /* The parent will be frozen until the child is done
516 with the shared region. Keep track of the
517 parent. */
518 child_inf->vfork_parent = parent_inf;
519 child_inf->pending_detach = 0;
520 parent_inf->vfork_child = child_inf;
521 parent_inf->pending_detach = 0;
522 }
523 else
524 {
525 child_inf->aspace = new_address_space ();
526 child_inf->pspace = add_program_space (child_inf->aspace);
527 child_inf->removable = 1;
528 set_current_program_space (child_inf->pspace);
529 clone_program_space (child_inf->pspace, parent_inf->pspace);
530
531 /* Let the shared library layer (e.g., solib-svr4) learn
532 about this new process, relocate the cloned exec, pull
533 in shared libraries, and install the solib event
534 breakpoint. If a "cloned-VM" event was propagated
535 better throughout the core, this wouldn't be
536 required. */
537 solib_create_inferior_hook (0);
538 }
539
540 do_cleanups (old_chain);
541 }
542
543 if (has_vforked)
544 {
545 struct inferior *parent_inf;
546
547 parent_inf = current_inferior ();
548
549 /* If we detached from the child, then we have to be careful
550 to not insert breakpoints in the parent until the child
551 is done with the shared memory region. However, if we're
552 staying attached to the child, then we can and should
553 insert breakpoints, so that we can debug it. A
554 subsequent child exec or exit is enough to know when does
555 the child stops using the parent's address space. */
556 parent_inf->waiting_for_vfork_done = detach_fork;
557 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
558 }
559 }
560 else
561 {
562 /* Follow the child. */
563 struct inferior *parent_inf, *child_inf;
564 struct program_space *parent_pspace;
565
566 if (info_verbose || debug_infrun)
567 {
6f259a23
DB
568 target_terminal_ours_for_output ();
569 fprintf_filtered (gdb_stdlog,
79639e11
PA
570 _("Attaching after %s %s to child %s.\n"),
571 target_pid_to_str (parent_ptid),
6f259a23 572 has_vforked ? "vfork" : "fork",
79639e11 573 target_pid_to_str (child_ptid));
d83ad864
DB
574 }
575
576 /* Add the new inferior first, so that the target_detach below
577 doesn't unpush the target. */
578
79639e11 579 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
580
581 parent_inf = current_inferior ();
582 child_inf->attach_flag = parent_inf->attach_flag;
583 copy_terminal_info (child_inf, parent_inf);
584 child_inf->gdbarch = parent_inf->gdbarch;
585 copy_inferior_target_desc_info (child_inf, parent_inf);
586
587 parent_pspace = parent_inf->pspace;
588
589 /* If we're vforking, we want to hold on to the parent until the
590 child exits or execs. At child exec or exit time we can
591 remove the old breakpoints from the parent and detach or
592 resume debugging it. Otherwise, detach the parent now; we'll
593 want to reuse it's program/address spaces, but we can't set
594 them to the child before removing breakpoints from the
595 parent, otherwise, the breakpoints module could decide to
596 remove breakpoints from the wrong process (since they'd be
597 assigned to the same address space). */
598
599 if (has_vforked)
600 {
601 gdb_assert (child_inf->vfork_parent == NULL);
602 gdb_assert (parent_inf->vfork_child == NULL);
603 child_inf->vfork_parent = parent_inf;
604 child_inf->pending_detach = 0;
605 parent_inf->vfork_child = child_inf;
606 parent_inf->pending_detach = detach_fork;
607 parent_inf->waiting_for_vfork_done = 0;
608 }
609 else if (detach_fork)
6f259a23
DB
610 {
611 if (info_verbose || debug_infrun)
612 {
8dd06f7a
DB
613 /* Ensure that we have a process ptid. */
614 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
615
6f259a23
DB
616 target_terminal_ours_for_output ();
617 fprintf_filtered (gdb_stdlog,
618 _("Detaching after fork from "
79639e11 619 "child %s.\n"),
8dd06f7a 620 target_pid_to_str (process_ptid));
6f259a23
DB
621 }
622
623 target_detach (NULL, 0);
624 }
d83ad864
DB
625
626 /* Note that the detach above makes PARENT_INF dangling. */
627
628 /* Add the child thread to the appropriate lists, and switch to
629 this new thread, before cloning the program space, and
630 informing the solib layer about this new process. */
631
79639e11 632 inferior_ptid = child_ptid;
d83ad864
DB
633 add_thread (inferior_ptid);
634
635 /* If this is a vfork child, then the address-space is shared
636 with the parent. If we detached from the parent, then we can
637 reuse the parent's program/address spaces. */
638 if (has_vforked || detach_fork)
639 {
640 child_inf->pspace = parent_pspace;
641 child_inf->aspace = child_inf->pspace->aspace;
642 }
643 else
644 {
645 child_inf->aspace = new_address_space ();
646 child_inf->pspace = add_program_space (child_inf->aspace);
647 child_inf->removable = 1;
648 child_inf->symfile_flags = SYMFILE_NO_READ;
649 set_current_program_space (child_inf->pspace);
650 clone_program_space (child_inf->pspace, parent_pspace);
651
652 /* Let the shared library layer (e.g., solib-svr4) learn
653 about this new process, relocate the cloned exec, pull in
654 shared libraries, and install the solib event breakpoint.
655 If a "cloned-VM" event was propagated better throughout
656 the core, this wouldn't be required. */
657 solib_create_inferior_hook (0);
658 }
659 }
660
661 return target_follow_fork (follow_child, detach_fork);
662}
663
e58b0e63
PA
664/* Tell the target to follow the fork we're stopped at. Returns true
665 if the inferior should be resumed; false, if the target for some
666 reason decided it's best not to resume. */
667
6604731b 668static int
4ef3f3be 669follow_fork (void)
c906108c 670{
ea1dd7bc 671 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
672 int should_resume = 1;
673 struct thread_info *tp;
674
675 /* Copy user stepping state to the new inferior thread. FIXME: the
676 followed fork child thread should have a copy of most of the
4e3990f4
DE
677 parent thread structure's run control related fields, not just these.
678 Initialized to avoid "may be used uninitialized" warnings from gcc. */
679 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 680 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
681 CORE_ADDR step_range_start = 0;
682 CORE_ADDR step_range_end = 0;
683 struct frame_id step_frame_id = { 0 };
8980e177 684 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
685
686 if (!non_stop)
687 {
688 ptid_t wait_ptid;
689 struct target_waitstatus wait_status;
690
691 /* Get the last target status returned by target_wait(). */
692 get_last_target_status (&wait_ptid, &wait_status);
693
694 /* If not stopped at a fork event, then there's nothing else to
695 do. */
696 if (wait_status.kind != TARGET_WAITKIND_FORKED
697 && wait_status.kind != TARGET_WAITKIND_VFORKED)
698 return 1;
699
700 /* Check if we switched over from WAIT_PTID, since the event was
701 reported. */
702 if (!ptid_equal (wait_ptid, minus_one_ptid)
703 && !ptid_equal (inferior_ptid, wait_ptid))
704 {
705 /* We did. Switch back to WAIT_PTID thread, to tell the
706 target to follow it (in either direction). We'll
707 afterwards refuse to resume, and inform the user what
708 happened. */
709 switch_to_thread (wait_ptid);
710 should_resume = 0;
711 }
712 }
713
714 tp = inferior_thread ();
715
716 /* If there were any forks/vforks that were caught and are now to be
717 followed, then do so now. */
718 switch (tp->pending_follow.kind)
719 {
720 case TARGET_WAITKIND_FORKED:
721 case TARGET_WAITKIND_VFORKED:
722 {
723 ptid_t parent, child;
724
725 /* If the user did a next/step, etc, over a fork call,
726 preserve the stepping state in the fork child. */
727 if (follow_child && should_resume)
728 {
8358c15c
JK
729 step_resume_breakpoint = clone_momentary_breakpoint
730 (tp->control.step_resume_breakpoint);
16c381f0
JK
731 step_range_start = tp->control.step_range_start;
732 step_range_end = tp->control.step_range_end;
733 step_frame_id = tp->control.step_frame_id;
186c406b
TT
734 exception_resume_breakpoint
735 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 736 thread_fsm = tp->thread_fsm;
e58b0e63
PA
737
738 /* For now, delete the parent's sr breakpoint, otherwise,
739 parent/child sr breakpoints are considered duplicates,
740 and the child version will not be installed. Remove
741 this when the breakpoints module becomes aware of
742 inferiors and address spaces. */
743 delete_step_resume_breakpoint (tp);
16c381f0
JK
744 tp->control.step_range_start = 0;
745 tp->control.step_range_end = 0;
746 tp->control.step_frame_id = null_frame_id;
186c406b 747 delete_exception_resume_breakpoint (tp);
8980e177 748 tp->thread_fsm = NULL;
e58b0e63
PA
749 }
750
751 parent = inferior_ptid;
752 child = tp->pending_follow.value.related_pid;
753
d83ad864
DB
754 /* Set up inferior(s) as specified by the caller, and tell the
755 target to do whatever is necessary to follow either parent
756 or child. */
757 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
758 {
759 /* Target refused to follow, or there's some other reason
760 we shouldn't resume. */
761 should_resume = 0;
762 }
763 else
764 {
765 /* This pending follow fork event is now handled, one way
766 or another. The previous selected thread may be gone
767 from the lists by now, but if it is still around, need
768 to clear the pending follow request. */
e09875d4 769 tp = find_thread_ptid (parent);
e58b0e63
PA
770 if (tp)
771 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
772
773 /* This makes sure we don't try to apply the "Switched
774 over from WAIT_PID" logic above. */
775 nullify_last_target_wait_ptid ();
776
1777feb0 777 /* If we followed the child, switch to it... */
e58b0e63
PA
778 if (follow_child)
779 {
780 switch_to_thread (child);
781
782 /* ... and preserve the stepping state, in case the
783 user was stepping over the fork call. */
784 if (should_resume)
785 {
786 tp = inferior_thread ();
8358c15c
JK
787 tp->control.step_resume_breakpoint
788 = step_resume_breakpoint;
16c381f0
JK
789 tp->control.step_range_start = step_range_start;
790 tp->control.step_range_end = step_range_end;
791 tp->control.step_frame_id = step_frame_id;
186c406b
TT
792 tp->control.exception_resume_breakpoint
793 = exception_resume_breakpoint;
8980e177 794 tp->thread_fsm = thread_fsm;
e58b0e63
PA
795 }
796 else
797 {
798 /* If we get here, it was because we're trying to
799 resume from a fork catchpoint, but, the user
800 has switched threads away from the thread that
801 forked. In that case, the resume command
802 issued is most likely not applicable to the
803 child, so just warn, and refuse to resume. */
3e43a32a 804 warning (_("Not resuming: switched threads "
fd7dcb94 805 "before following fork child."));
e58b0e63
PA
806 }
807
808 /* Reset breakpoints in the child as appropriate. */
809 follow_inferior_reset_breakpoints ();
810 }
811 else
812 switch_to_thread (parent);
813 }
814 }
815 break;
816 case TARGET_WAITKIND_SPURIOUS:
817 /* Nothing to follow. */
818 break;
819 default:
820 internal_error (__FILE__, __LINE__,
821 "Unexpected pending_follow.kind %d\n",
822 tp->pending_follow.kind);
823 break;
824 }
c906108c 825
e58b0e63 826 return should_resume;
c906108c
SS
827}
828
d83ad864 829static void
6604731b 830follow_inferior_reset_breakpoints (void)
c906108c 831{
4e1c45ea
PA
832 struct thread_info *tp = inferior_thread ();
833
6604731b
DJ
834 /* Was there a step_resume breakpoint? (There was if the user
835 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
836 thread number. Cloned step_resume breakpoints are disabled on
837 creation, so enable it here now that it is associated with the
838 correct thread.
6604731b
DJ
839
840 step_resumes are a form of bp that are made to be per-thread.
841 Since we created the step_resume bp when the parent process
842 was being debugged, and now are switching to the child process,
843 from the breakpoint package's viewpoint, that's a switch of
844 "threads". We must update the bp's notion of which thread
845 it is for, or it'll be ignored when it triggers. */
846
8358c15c 847 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
848 {
849 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
850 tp->control.step_resume_breakpoint->loc->enabled = 1;
851 }
6604731b 852
a1aa2221 853 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 854 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
855 {
856 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
857 tp->control.exception_resume_breakpoint->loc->enabled = 1;
858 }
186c406b 859
6604731b
DJ
860 /* Reinsert all breakpoints in the child. The user may have set
861 breakpoints after catching the fork, in which case those
862 were never set in the child, but only in the parent. This makes
863 sure the inserted breakpoints match the breakpoint list. */
864
865 breakpoint_re_set ();
866 insert_breakpoints ();
c906108c 867}
c906108c 868
6c95b8df
PA
869/* The child has exited or execed: resume threads of the parent the
870 user wanted to be executing. */
871
872static int
873proceed_after_vfork_done (struct thread_info *thread,
874 void *arg)
875{
876 int pid = * (int *) arg;
877
878 if (ptid_get_pid (thread->ptid) == pid
879 && is_running (thread->ptid)
880 && !is_executing (thread->ptid)
881 && !thread->stop_requested
a493e3e2 882 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
883 {
884 if (debug_infrun)
885 fprintf_unfiltered (gdb_stdlog,
886 "infrun: resuming vfork parent thread %s\n",
887 target_pid_to_str (thread->ptid));
888
889 switch_to_thread (thread->ptid);
70509625 890 clear_proceed_status (0);
64ce06e4 891 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
892 }
893
894 return 0;
895}
896
897/* Called whenever we notice an exec or exit event, to handle
898 detaching or resuming a vfork parent. */
899
900static void
901handle_vfork_child_exec_or_exit (int exec)
902{
903 struct inferior *inf = current_inferior ();
904
905 if (inf->vfork_parent)
906 {
907 int resume_parent = -1;
908
909 /* This exec or exit marks the end of the shared memory region
910 between the parent and the child. If the user wanted to
911 detach from the parent, now is the time. */
912
913 if (inf->vfork_parent->pending_detach)
914 {
915 struct thread_info *tp;
916 struct cleanup *old_chain;
917 struct program_space *pspace;
918 struct address_space *aspace;
919
1777feb0 920 /* follow-fork child, detach-on-fork on. */
6c95b8df 921
68c9da30
PA
922 inf->vfork_parent->pending_detach = 0;
923
f50f4e56
PA
924 if (!exec)
925 {
926 /* If we're handling a child exit, then inferior_ptid
927 points at the inferior's pid, not to a thread. */
928 old_chain = save_inferior_ptid ();
929 save_current_program_space ();
930 save_current_inferior ();
931 }
932 else
933 old_chain = save_current_space_and_thread ();
6c95b8df
PA
934
935 /* We're letting loose of the parent. */
936 tp = any_live_thread_of_process (inf->vfork_parent->pid);
937 switch_to_thread (tp->ptid);
938
939 /* We're about to detach from the parent, which implicitly
940 removes breakpoints from its address space. There's a
941 catch here: we want to reuse the spaces for the child,
942 but, parent/child are still sharing the pspace at this
943 point, although the exec in reality makes the kernel give
944 the child a fresh set of new pages. The problem here is
945 that the breakpoints module being unaware of this, would
946 likely chose the child process to write to the parent
947 address space. Swapping the child temporarily away from
948 the spaces has the desired effect. Yes, this is "sort
949 of" a hack. */
950
951 pspace = inf->pspace;
952 aspace = inf->aspace;
953 inf->aspace = NULL;
954 inf->pspace = NULL;
955
956 if (debug_infrun || info_verbose)
957 {
6f259a23 958 target_terminal_ours_for_output ();
6c95b8df
PA
959
960 if (exec)
6f259a23
DB
961 {
962 fprintf_filtered (gdb_stdlog,
963 _("Detaching vfork parent process "
964 "%d after child exec.\n"),
965 inf->vfork_parent->pid);
966 }
6c95b8df 967 else
6f259a23
DB
968 {
969 fprintf_filtered (gdb_stdlog,
970 _("Detaching vfork parent process "
971 "%d after child exit.\n"),
972 inf->vfork_parent->pid);
973 }
6c95b8df
PA
974 }
975
976 target_detach (NULL, 0);
977
978 /* Put it back. */
979 inf->pspace = pspace;
980 inf->aspace = aspace;
981
982 do_cleanups (old_chain);
983 }
984 else if (exec)
985 {
986 /* We're staying attached to the parent, so, really give the
987 child a new address space. */
988 inf->pspace = add_program_space (maybe_new_address_space ());
989 inf->aspace = inf->pspace->aspace;
990 inf->removable = 1;
991 set_current_program_space (inf->pspace);
992
993 resume_parent = inf->vfork_parent->pid;
994
995 /* Break the bonds. */
996 inf->vfork_parent->vfork_child = NULL;
997 }
998 else
999 {
1000 struct cleanup *old_chain;
1001 struct program_space *pspace;
1002
1003 /* If this is a vfork child exiting, then the pspace and
1004 aspaces were shared with the parent. Since we're
1005 reporting the process exit, we'll be mourning all that is
1006 found in the address space, and switching to null_ptid,
1007 preparing to start a new inferior. But, since we don't
1008 want to clobber the parent's address/program spaces, we
1009 go ahead and create a new one for this exiting
1010 inferior. */
1011
1012 /* Switch to null_ptid, so that clone_program_space doesn't want
1013 to read the selected frame of a dead process. */
1014 old_chain = save_inferior_ptid ();
1015 inferior_ptid = null_ptid;
1016
1017 /* This inferior is dead, so avoid giving the breakpoints
1018 module the option to write through to it (cloning a
1019 program space resets breakpoints). */
1020 inf->aspace = NULL;
1021 inf->pspace = NULL;
1022 pspace = add_program_space (maybe_new_address_space ());
1023 set_current_program_space (pspace);
1024 inf->removable = 1;
7dcd53a0 1025 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1026 clone_program_space (pspace, inf->vfork_parent->pspace);
1027 inf->pspace = pspace;
1028 inf->aspace = pspace->aspace;
1029
1030 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 1031 inferior. */
6c95b8df
PA
1032 do_cleanups (old_chain);
1033
1034 resume_parent = inf->vfork_parent->pid;
1035 /* Break the bonds. */
1036 inf->vfork_parent->vfork_child = NULL;
1037 }
1038
1039 inf->vfork_parent = NULL;
1040
1041 gdb_assert (current_program_space == inf->pspace);
1042
1043 if (non_stop && resume_parent != -1)
1044 {
1045 /* If the user wanted the parent to be running, let it go
1046 free now. */
1047 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1048
1049 if (debug_infrun)
3e43a32a
MS
1050 fprintf_unfiltered (gdb_stdlog,
1051 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1052 resume_parent);
1053
1054 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1055
1056 do_cleanups (old_chain);
1057 }
1058 }
1059}
1060
eb6c553b 1061/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1062
1063static const char follow_exec_mode_new[] = "new";
1064static const char follow_exec_mode_same[] = "same";
40478521 1065static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1066{
1067 follow_exec_mode_new,
1068 follow_exec_mode_same,
1069 NULL,
1070};
1071
1072static const char *follow_exec_mode_string = follow_exec_mode_same;
1073static void
1074show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1075 struct cmd_list_element *c, const char *value)
1076{
1077 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1078}
1079
1777feb0 1080/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 1081
c906108c 1082static void
95e50b27 1083follow_exec (ptid_t ptid, char *execd_pathname)
c906108c 1084{
95e50b27 1085 struct thread_info *th, *tmp;
6c95b8df 1086 struct inferior *inf = current_inferior ();
95e50b27 1087 int pid = ptid_get_pid (ptid);
94585166 1088 ptid_t process_ptid;
7a292a7a 1089
c906108c
SS
1090 /* This is an exec event that we actually wish to pay attention to.
1091 Refresh our symbol table to the newly exec'd program, remove any
1092 momentary bp's, etc.
1093
1094 If there are breakpoints, they aren't really inserted now,
1095 since the exec() transformed our inferior into a fresh set
1096 of instructions.
1097
1098 We want to preserve symbolic breakpoints on the list, since
1099 we have hopes that they can be reset after the new a.out's
1100 symbol table is read.
1101
1102 However, any "raw" breakpoints must be removed from the list
1103 (e.g., the solib bp's), since their address is probably invalid
1104 now.
1105
1106 And, we DON'T want to call delete_breakpoints() here, since
1107 that may write the bp's "shadow contents" (the instruction
1108 value that was overwritten witha TRAP instruction). Since
1777feb0 1109 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1110
1111 mark_breakpoints_out ();
1112
95e50b27
PA
1113 /* The target reports the exec event to the main thread, even if
1114 some other thread does the exec, and even if the main thread was
1115 stopped or already gone. We may still have non-leader threads of
1116 the process on our list. E.g., on targets that don't have thread
1117 exit events (like remote); or on native Linux in non-stop mode if
1118 there were only two threads in the inferior and the non-leader
1119 one is the one that execs (and nothing forces an update of the
1120 thread list up to here). When debugging remotely, it's best to
1121 avoid extra traffic, when possible, so avoid syncing the thread
1122 list with the target, and instead go ahead and delete all threads
1123 of the process but one that reported the event. Note this must
1124 be done before calling update_breakpoints_after_exec, as
1125 otherwise clearing the threads' resources would reference stale
1126 thread breakpoints -- it may have been one of these threads that
1127 stepped across the exec. We could just clear their stepping
1128 states, but as long as we're iterating, might as well delete
1129 them. Deleting them now rather than at the next user-visible
1130 stop provides a nicer sequence of events for user and MI
1131 notifications. */
8a06aea7 1132 ALL_THREADS_SAFE (th, tmp)
95e50b27
PA
1133 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1134 delete_thread (th->ptid);
1135
1136 /* We also need to clear any left over stale state for the
1137 leader/event thread. E.g., if there was any step-resume
1138 breakpoint or similar, it's gone now. We cannot truly
1139 step-to-next statement through an exec(). */
1140 th = inferior_thread ();
8358c15c 1141 th->control.step_resume_breakpoint = NULL;
186c406b 1142 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1143 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1144 th->control.step_range_start = 0;
1145 th->control.step_range_end = 0;
c906108c 1146
95e50b27
PA
1147 /* The user may have had the main thread held stopped in the
1148 previous image (e.g., schedlock on, or non-stop). Release
1149 it now. */
a75724bc
PA
1150 th->stop_requested = 0;
1151
95e50b27
PA
1152 update_breakpoints_after_exec ();
1153
1777feb0 1154 /* What is this a.out's name? */
94585166 1155 process_ptid = pid_to_ptid (pid);
6c95b8df 1156 printf_unfiltered (_("%s is executing new program: %s\n"),
94585166 1157 target_pid_to_str (process_ptid),
6c95b8df 1158 execd_pathname);
c906108c
SS
1159
1160 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1161 inferior has essentially been killed & reborn. */
7a292a7a 1162
c906108c 1163 gdb_flush (gdb_stdout);
6ca15a4b
PA
1164
1165 breakpoint_init_inferior (inf_execd);
e85a822c 1166
a3be80c3 1167 if (*gdb_sysroot != '\0')
e85a822c 1168 {
998d2a3e 1169 char *name = exec_file_find (execd_pathname, NULL);
ff862be4 1170
224c3ddb 1171 execd_pathname = (char *) alloca (strlen (name) + 1);
ff862be4
GB
1172 strcpy (execd_pathname, name);
1173 xfree (name);
e85a822c 1174 }
c906108c 1175
cce9b6bf
PA
1176 /* Reset the shared library package. This ensures that we get a
1177 shlib event when the child reaches "_start", at which point the
1178 dld will have had a chance to initialize the child. */
1179 /* Also, loading a symbol file below may trigger symbol lookups, and
1180 we don't want those to be satisfied by the libraries of the
1181 previous incarnation of this process. */
1182 no_shared_libraries (NULL, 0);
1183
6c95b8df
PA
1184 if (follow_exec_mode_string == follow_exec_mode_new)
1185 {
6c95b8df
PA
1186 /* The user wants to keep the old inferior and program spaces
1187 around. Create a new fresh one, and switch to it. */
1188
17d8546e
DB
1189 /* Do exit processing for the original inferior before adding
1190 the new inferior so we don't have two active inferiors with
1191 the same ptid, which can confuse find_inferior_ptid. */
1192 exit_inferior_num_silent (current_inferior ()->num);
1193
94585166
DB
1194 inf = add_inferior_with_spaces ();
1195 inf->pid = pid;
1196 target_follow_exec (inf, execd_pathname);
6c95b8df
PA
1197
1198 set_current_inferior (inf);
94585166
DB
1199 set_current_program_space (inf->pspace);
1200 add_thread (ptid);
6c95b8df 1201 }
9107fc8d
PA
1202 else
1203 {
1204 /* The old description may no longer be fit for the new image.
1205 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1206 old description; we'll read a new one below. No need to do
1207 this on "follow-exec-mode new", as the old inferior stays
1208 around (its description is later cleared/refetched on
1209 restart). */
1210 target_clear_description ();
1211 }
6c95b8df
PA
1212
1213 gdb_assert (current_program_space == inf->pspace);
1214
1777feb0 1215 /* That a.out is now the one to use. */
6c95b8df
PA
1216 exec_file_attach (execd_pathname, 0);
1217
c1e56572
JK
1218 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1219 (Position Independent Executable) main symbol file will get applied by
1220 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1221 the breakpoints with the zero displacement. */
1222
7dcd53a0
TT
1223 symbol_file_add (execd_pathname,
1224 (inf->symfile_flags
1225 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
1226 NULL, 0);
1227
7dcd53a0
TT
1228 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1229 set_initial_language ();
c906108c 1230
9107fc8d
PA
1231 /* If the target can specify a description, read it. Must do this
1232 after flipping to the new executable (because the target supplied
1233 description must be compatible with the executable's
1234 architecture, and the old executable may e.g., be 32-bit, while
1235 the new one 64-bit), and before anything involving memory or
1236 registers. */
1237 target_find_description ();
1238
268a4a75 1239 solib_create_inferior_hook (0);
c906108c 1240
4efc6507
DE
1241 jit_inferior_created_hook ();
1242
c1e56572
JK
1243 breakpoint_re_set ();
1244
c906108c
SS
1245 /* Reinsert all breakpoints. (Those which were symbolic have
1246 been reset to the proper address in the new a.out, thanks
1777feb0 1247 to symbol_file_command...). */
c906108c
SS
1248 insert_breakpoints ();
1249
1250 /* The next resume of this inferior should bring it to the shlib
1251 startup breakpoints. (If the user had also set bp's on
1252 "main" from the old (parent) process, then they'll auto-
1777feb0 1253 matically get reset there in the new process.). */
c906108c
SS
1254}
1255
c2829269
PA
1256/* The queue of threads that need to do a step-over operation to get
1257 past e.g., a breakpoint. What technique is used to step over the
1258 breakpoint/watchpoint does not matter -- all threads end up in the
1259 same queue, to maintain rough temporal order of execution, in order
1260 to avoid starvation, otherwise, we could e.g., find ourselves
1261 constantly stepping the same couple threads past their breakpoints
1262 over and over, if the single-step finish fast enough. */
1263struct thread_info *step_over_queue_head;
1264
6c4cfb24
PA
1265/* Bit flags indicating what the thread needs to step over. */
1266
8d297bbf 1267enum step_over_what_flag
6c4cfb24
PA
1268 {
1269 /* Step over a breakpoint. */
1270 STEP_OVER_BREAKPOINT = 1,
1271
1272 /* Step past a non-continuable watchpoint, in order to let the
1273 instruction execute so we can evaluate the watchpoint
1274 expression. */
1275 STEP_OVER_WATCHPOINT = 2
1276 };
8d297bbf 1277DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1278
963f9c80 1279/* Info about an instruction that is being stepped over. */
31e77af2
PA
1280
1281struct step_over_info
1282{
963f9c80
PA
1283 /* If we're stepping past a breakpoint, this is the address space
1284 and address of the instruction the breakpoint is set at. We'll
1285 skip inserting all breakpoints here. Valid iff ASPACE is
1286 non-NULL. */
31e77af2 1287 struct address_space *aspace;
31e77af2 1288 CORE_ADDR address;
963f9c80
PA
1289
1290 /* The instruction being stepped over triggers a nonsteppable
1291 watchpoint. If true, we'll skip inserting watchpoints. */
1292 int nonsteppable_watchpoint_p;
21edc42f
YQ
1293
1294 /* The thread's global number. */
1295 int thread;
31e77af2
PA
1296};
1297
1298/* The step-over info of the location that is being stepped over.
1299
1300 Note that with async/breakpoint always-inserted mode, a user might
1301 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1302 being stepped over. As setting a new breakpoint inserts all
1303 breakpoints, we need to make sure the breakpoint being stepped over
1304 isn't inserted then. We do that by only clearing the step-over
1305 info when the step-over is actually finished (or aborted).
1306
1307 Presently GDB can only step over one breakpoint at any given time.
1308 Given threads that can't run code in the same address space as the
1309 breakpoint's can't really miss the breakpoint, GDB could be taught
1310 to step-over at most one breakpoint per address space (so this info
1311 could move to the address space object if/when GDB is extended).
1312 The set of breakpoints being stepped over will normally be much
1313 smaller than the set of all breakpoints, so a flag in the
1314 breakpoint location structure would be wasteful. A separate list
1315 also saves complexity and run-time, as otherwise we'd have to go
1316 through all breakpoint locations clearing their flag whenever we
1317 start a new sequence. Similar considerations weigh against storing
1318 this info in the thread object. Plus, not all step overs actually
1319 have breakpoint locations -- e.g., stepping past a single-step
1320 breakpoint, or stepping to complete a non-continuable
1321 watchpoint. */
1322static struct step_over_info step_over_info;
1323
1324/* Record the address of the breakpoint/instruction we're currently
1325 stepping over. */
1326
1327static void
963f9c80 1328set_step_over_info (struct address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1329 int nonsteppable_watchpoint_p,
1330 int thread)
31e77af2
PA
1331{
1332 step_over_info.aspace = aspace;
1333 step_over_info.address = address;
963f9c80 1334 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1335 step_over_info.thread = thread;
31e77af2
PA
1336}
1337
1338/* Called when we're not longer stepping over a breakpoint / an
1339 instruction, so all breakpoints are free to be (re)inserted. */
1340
1341static void
1342clear_step_over_info (void)
1343{
372316f1
PA
1344 if (debug_infrun)
1345 fprintf_unfiltered (gdb_stdlog,
1346 "infrun: clear_step_over_info\n");
31e77af2
PA
1347 step_over_info.aspace = NULL;
1348 step_over_info.address = 0;
963f9c80 1349 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1350 step_over_info.thread = -1;
31e77af2
PA
1351}
1352
7f89fd65 1353/* See infrun.h. */
31e77af2
PA
1354
1355int
1356stepping_past_instruction_at (struct address_space *aspace,
1357 CORE_ADDR address)
1358{
1359 return (step_over_info.aspace != NULL
1360 && breakpoint_address_match (aspace, address,
1361 step_over_info.aspace,
1362 step_over_info.address));
1363}
1364
963f9c80
PA
1365/* See infrun.h. */
1366
21edc42f
YQ
1367int
1368thread_is_stepping_over_breakpoint (int thread)
1369{
1370 return (step_over_info.thread != -1
1371 && thread == step_over_info.thread);
1372}
1373
1374/* See infrun.h. */
1375
963f9c80
PA
1376int
1377stepping_past_nonsteppable_watchpoint (void)
1378{
1379 return step_over_info.nonsteppable_watchpoint_p;
1380}
1381
6cc83d2a
PA
1382/* Returns true if step-over info is valid. */
1383
1384static int
1385step_over_info_valid_p (void)
1386{
963f9c80
PA
1387 return (step_over_info.aspace != NULL
1388 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1389}
1390
c906108c 1391\f
237fc4c9
PA
1392/* Displaced stepping. */
1393
1394/* In non-stop debugging mode, we must take special care to manage
1395 breakpoints properly; in particular, the traditional strategy for
1396 stepping a thread past a breakpoint it has hit is unsuitable.
1397 'Displaced stepping' is a tactic for stepping one thread past a
1398 breakpoint it has hit while ensuring that other threads running
1399 concurrently will hit the breakpoint as they should.
1400
1401 The traditional way to step a thread T off a breakpoint in a
1402 multi-threaded program in all-stop mode is as follows:
1403
1404 a0) Initially, all threads are stopped, and breakpoints are not
1405 inserted.
1406 a1) We single-step T, leaving breakpoints uninserted.
1407 a2) We insert breakpoints, and resume all threads.
1408
1409 In non-stop debugging, however, this strategy is unsuitable: we
1410 don't want to have to stop all threads in the system in order to
1411 continue or step T past a breakpoint. Instead, we use displaced
1412 stepping:
1413
1414 n0) Initially, T is stopped, other threads are running, and
1415 breakpoints are inserted.
1416 n1) We copy the instruction "under" the breakpoint to a separate
1417 location, outside the main code stream, making any adjustments
1418 to the instruction, register, and memory state as directed by
1419 T's architecture.
1420 n2) We single-step T over the instruction at its new location.
1421 n3) We adjust the resulting register and memory state as directed
1422 by T's architecture. This includes resetting T's PC to point
1423 back into the main instruction stream.
1424 n4) We resume T.
1425
1426 This approach depends on the following gdbarch methods:
1427
1428 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1429 indicate where to copy the instruction, and how much space must
1430 be reserved there. We use these in step n1.
1431
1432 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1433 address, and makes any necessary adjustments to the instruction,
1434 register contents, and memory. We use this in step n1.
1435
1436 - gdbarch_displaced_step_fixup adjusts registers and memory after
1437 we have successfuly single-stepped the instruction, to yield the
1438 same effect the instruction would have had if we had executed it
1439 at its original address. We use this in step n3.
1440
1441 - gdbarch_displaced_step_free_closure provides cleanup.
1442
1443 The gdbarch_displaced_step_copy_insn and
1444 gdbarch_displaced_step_fixup functions must be written so that
1445 copying an instruction with gdbarch_displaced_step_copy_insn,
1446 single-stepping across the copied instruction, and then applying
1447 gdbarch_displaced_insn_fixup should have the same effects on the
1448 thread's memory and registers as stepping the instruction in place
1449 would have. Exactly which responsibilities fall to the copy and
1450 which fall to the fixup is up to the author of those functions.
1451
1452 See the comments in gdbarch.sh for details.
1453
1454 Note that displaced stepping and software single-step cannot
1455 currently be used in combination, although with some care I think
1456 they could be made to. Software single-step works by placing
1457 breakpoints on all possible subsequent instructions; if the
1458 displaced instruction is a PC-relative jump, those breakpoints
1459 could fall in very strange places --- on pages that aren't
1460 executable, or at addresses that are not proper instruction
1461 boundaries. (We do generally let other threads run while we wait
1462 to hit the software single-step breakpoint, and they might
1463 encounter such a corrupted instruction.) One way to work around
1464 this would be to have gdbarch_displaced_step_copy_insn fully
1465 simulate the effect of PC-relative instructions (and return NULL)
1466 on architectures that use software single-stepping.
1467
1468 In non-stop mode, we can have independent and simultaneous step
1469 requests, so more than one thread may need to simultaneously step
1470 over a breakpoint. The current implementation assumes there is
1471 only one scratch space per process. In this case, we have to
1472 serialize access to the scratch space. If thread A wants to step
1473 over a breakpoint, but we are currently waiting for some other
1474 thread to complete a displaced step, we leave thread A stopped and
1475 place it in the displaced_step_request_queue. Whenever a displaced
1476 step finishes, we pick the next thread in the queue and start a new
1477 displaced step operation on it. See displaced_step_prepare and
1478 displaced_step_fixup for details. */
1479
fc1cf338
PA
1480/* Per-inferior displaced stepping state. */
1481struct displaced_step_inferior_state
1482{
1483 /* Pointer to next in linked list. */
1484 struct displaced_step_inferior_state *next;
1485
1486 /* The process this displaced step state refers to. */
1487 int pid;
1488
3fc8eb30
PA
1489 /* True if preparing a displaced step ever failed. If so, we won't
1490 try displaced stepping for this inferior again. */
1491 int failed_before;
1492
fc1cf338
PA
1493 /* If this is not null_ptid, this is the thread carrying out a
1494 displaced single-step in process PID. This thread's state will
1495 require fixing up once it has completed its step. */
1496 ptid_t step_ptid;
1497
1498 /* The architecture the thread had when we stepped it. */
1499 struct gdbarch *step_gdbarch;
1500
1501 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1502 for post-step cleanup. */
1503 struct displaced_step_closure *step_closure;
1504
1505 /* The address of the original instruction, and the copy we
1506 made. */
1507 CORE_ADDR step_original, step_copy;
1508
1509 /* Saved contents of copy area. */
1510 gdb_byte *step_saved_copy;
1511};
1512
1513/* The list of states of processes involved in displaced stepping
1514 presently. */
1515static struct displaced_step_inferior_state *displaced_step_inferior_states;
1516
1517/* Get the displaced stepping state of process PID. */
1518
1519static struct displaced_step_inferior_state *
1520get_displaced_stepping_state (int pid)
1521{
1522 struct displaced_step_inferior_state *state;
1523
1524 for (state = displaced_step_inferior_states;
1525 state != NULL;
1526 state = state->next)
1527 if (state->pid == pid)
1528 return state;
1529
1530 return NULL;
1531}
1532
372316f1
PA
1533/* Returns true if any inferior has a thread doing a displaced
1534 step. */
1535
1536static int
1537displaced_step_in_progress_any_inferior (void)
1538{
1539 struct displaced_step_inferior_state *state;
1540
1541 for (state = displaced_step_inferior_states;
1542 state != NULL;
1543 state = state->next)
1544 if (!ptid_equal (state->step_ptid, null_ptid))
1545 return 1;
1546
1547 return 0;
1548}
1549
c0987663
YQ
1550/* Return true if thread represented by PTID is doing a displaced
1551 step. */
1552
1553static int
1554displaced_step_in_progress_thread (ptid_t ptid)
1555{
1556 struct displaced_step_inferior_state *displaced;
1557
1558 gdb_assert (!ptid_equal (ptid, null_ptid));
1559
1560 displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1561
1562 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1563}
1564
8f572e5c
PA
1565/* Return true if process PID has a thread doing a displaced step. */
1566
1567static int
1568displaced_step_in_progress (int pid)
1569{
1570 struct displaced_step_inferior_state *displaced;
1571
1572 displaced = get_displaced_stepping_state (pid);
1573 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1574 return 1;
1575
1576 return 0;
1577}
1578
fc1cf338
PA
1579/* Add a new displaced stepping state for process PID to the displaced
1580 stepping state list, or return a pointer to an already existing
1581 entry, if it already exists. Never returns NULL. */
1582
1583static struct displaced_step_inferior_state *
1584add_displaced_stepping_state (int pid)
1585{
1586 struct displaced_step_inferior_state *state;
1587
1588 for (state = displaced_step_inferior_states;
1589 state != NULL;
1590 state = state->next)
1591 if (state->pid == pid)
1592 return state;
237fc4c9 1593
8d749320 1594 state = XCNEW (struct displaced_step_inferior_state);
fc1cf338
PA
1595 state->pid = pid;
1596 state->next = displaced_step_inferior_states;
1597 displaced_step_inferior_states = state;
237fc4c9 1598
fc1cf338
PA
1599 return state;
1600}
1601
a42244db
YQ
1602/* If inferior is in displaced stepping, and ADDR equals to starting address
1603 of copy area, return corresponding displaced_step_closure. Otherwise,
1604 return NULL. */
1605
1606struct displaced_step_closure*
1607get_displaced_step_closure_by_addr (CORE_ADDR addr)
1608{
1609 struct displaced_step_inferior_state *displaced
1610 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1611
1612 /* If checking the mode of displaced instruction in copy area. */
1613 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1614 && (displaced->step_copy == addr))
1615 return displaced->step_closure;
1616
1617 return NULL;
1618}
1619
fc1cf338 1620/* Remove the displaced stepping state of process PID. */
237fc4c9 1621
fc1cf338
PA
1622static void
1623remove_displaced_stepping_state (int pid)
1624{
1625 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1626
fc1cf338
PA
1627 gdb_assert (pid != 0);
1628
1629 it = displaced_step_inferior_states;
1630 prev_next_p = &displaced_step_inferior_states;
1631 while (it)
1632 {
1633 if (it->pid == pid)
1634 {
1635 *prev_next_p = it->next;
1636 xfree (it);
1637 return;
1638 }
1639
1640 prev_next_p = &it->next;
1641 it = *prev_next_p;
1642 }
1643}
1644
1645static void
1646infrun_inferior_exit (struct inferior *inf)
1647{
1648 remove_displaced_stepping_state (inf->pid);
1649}
237fc4c9 1650
fff08868
HZ
1651/* If ON, and the architecture supports it, GDB will use displaced
1652 stepping to step over breakpoints. If OFF, or if the architecture
1653 doesn't support it, GDB will instead use the traditional
1654 hold-and-step approach. If AUTO (which is the default), GDB will
1655 decide which technique to use to step over breakpoints depending on
1656 which of all-stop or non-stop mode is active --- displaced stepping
1657 in non-stop mode; hold-and-step in all-stop mode. */
1658
72d0e2c5 1659static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1660
237fc4c9
PA
1661static void
1662show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1663 struct cmd_list_element *c,
1664 const char *value)
1665{
72d0e2c5 1666 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1667 fprintf_filtered (file,
1668 _("Debugger's willingness to use displaced stepping "
1669 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1670 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1671 else
3e43a32a
MS
1672 fprintf_filtered (file,
1673 _("Debugger's willingness to use displaced stepping "
1674 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1675}
1676
fff08868 1677/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1678 over breakpoints of thread TP. */
fff08868 1679
237fc4c9 1680static int
3fc8eb30 1681use_displaced_stepping (struct thread_info *tp)
237fc4c9 1682{
3fc8eb30
PA
1683 struct regcache *regcache = get_thread_regcache (tp->ptid);
1684 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1685 struct displaced_step_inferior_state *displaced_state;
1686
1687 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1688
fbea99ea
PA
1689 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1690 && target_is_non_stop_p ())
72d0e2c5 1691 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1692 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30
PA
1693 && find_record_target () == NULL
1694 && (displaced_state == NULL
1695 || !displaced_state->failed_before));
237fc4c9
PA
1696}
1697
1698/* Clean out any stray displaced stepping state. */
1699static void
fc1cf338 1700displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1701{
1702 /* Indicate that there is no cleanup pending. */
fc1cf338 1703 displaced->step_ptid = null_ptid;
237fc4c9 1704
fc1cf338 1705 if (displaced->step_closure)
237fc4c9 1706 {
fc1cf338
PA
1707 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1708 displaced->step_closure);
1709 displaced->step_closure = NULL;
237fc4c9
PA
1710 }
1711}
1712
1713static void
fc1cf338 1714displaced_step_clear_cleanup (void *arg)
237fc4c9 1715{
9a3c8263
SM
1716 struct displaced_step_inferior_state *state
1717 = (struct displaced_step_inferior_state *) arg;
fc1cf338
PA
1718
1719 displaced_step_clear (state);
237fc4c9
PA
1720}
1721
1722/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1723void
1724displaced_step_dump_bytes (struct ui_file *file,
1725 const gdb_byte *buf,
1726 size_t len)
1727{
1728 int i;
1729
1730 for (i = 0; i < len; i++)
1731 fprintf_unfiltered (file, "%02x ", buf[i]);
1732 fputs_unfiltered ("\n", file);
1733}
1734
1735/* Prepare to single-step, using displaced stepping.
1736
1737 Note that we cannot use displaced stepping when we have a signal to
1738 deliver. If we have a signal to deliver and an instruction to step
1739 over, then after the step, there will be no indication from the
1740 target whether the thread entered a signal handler or ignored the
1741 signal and stepped over the instruction successfully --- both cases
1742 result in a simple SIGTRAP. In the first case we mustn't do a
1743 fixup, and in the second case we must --- but we can't tell which.
1744 Comments in the code for 'random signals' in handle_inferior_event
1745 explain how we handle this case instead.
1746
1747 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1748 stepped now; 0 if displaced stepping this thread got queued; or -1
1749 if this instruction can't be displaced stepped. */
1750
237fc4c9 1751static int
3fc8eb30 1752displaced_step_prepare_throw (ptid_t ptid)
237fc4c9 1753{
ad53cd71 1754 struct cleanup *old_cleanups, *ignore_cleanups;
c1e36e3e 1755 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1756 struct regcache *regcache = get_thread_regcache (ptid);
1757 struct gdbarch *gdbarch = get_regcache_arch (regcache);
d35ae833 1758 struct address_space *aspace = get_regcache_aspace (regcache);
237fc4c9
PA
1759 CORE_ADDR original, copy;
1760 ULONGEST len;
1761 struct displaced_step_closure *closure;
fc1cf338 1762 struct displaced_step_inferior_state *displaced;
9e529e1d 1763 int status;
237fc4c9
PA
1764
1765 /* We should never reach this function if the architecture does not
1766 support displaced stepping. */
1767 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1768
c2829269
PA
1769 /* Nor if the thread isn't meant to step over a breakpoint. */
1770 gdb_assert (tp->control.trap_expected);
1771
c1e36e3e
PA
1772 /* Disable range stepping while executing in the scratch pad. We
1773 want a single-step even if executing the displaced instruction in
1774 the scratch buffer lands within the stepping range (e.g., a
1775 jump/branch). */
1776 tp->control.may_range_step = 0;
1777
fc1cf338
PA
1778 /* We have to displaced step one thread at a time, as we only have
1779 access to a single scratch space per inferior. */
237fc4c9 1780
fc1cf338
PA
1781 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1782
1783 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1784 {
1785 /* Already waiting for a displaced step to finish. Defer this
1786 request and place in queue. */
237fc4c9
PA
1787
1788 if (debug_displaced)
1789 fprintf_unfiltered (gdb_stdlog,
c2829269 1790 "displaced: deferring step of %s\n",
237fc4c9
PA
1791 target_pid_to_str (ptid));
1792
c2829269 1793 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1794 return 0;
1795 }
1796 else
1797 {
1798 if (debug_displaced)
1799 fprintf_unfiltered (gdb_stdlog,
1800 "displaced: stepping %s now\n",
1801 target_pid_to_str (ptid));
1802 }
1803
fc1cf338 1804 displaced_step_clear (displaced);
237fc4c9 1805
ad53cd71
PA
1806 old_cleanups = save_inferior_ptid ();
1807 inferior_ptid = ptid;
1808
515630c5 1809 original = regcache_read_pc (regcache);
237fc4c9
PA
1810
1811 copy = gdbarch_displaced_step_location (gdbarch);
1812 len = gdbarch_max_insn_length (gdbarch);
1813
d35ae833
PA
1814 if (breakpoint_in_range_p (aspace, copy, len))
1815 {
1816 /* There's a breakpoint set in the scratch pad location range
1817 (which is usually around the entry point). We'd either
1818 install it before resuming, which would overwrite/corrupt the
1819 scratch pad, or if it was already inserted, this displaced
1820 step would overwrite it. The latter is OK in the sense that
1821 we already assume that no thread is going to execute the code
1822 in the scratch pad range (after initial startup) anyway, but
1823 the former is unacceptable. Simply punt and fallback to
1824 stepping over this breakpoint in-line. */
1825 if (debug_displaced)
1826 {
1827 fprintf_unfiltered (gdb_stdlog,
1828 "displaced: breakpoint set in scratch pad. "
1829 "Stepping over breakpoint in-line instead.\n");
1830 }
1831
1832 do_cleanups (old_cleanups);
1833 return -1;
1834 }
1835
237fc4c9 1836 /* Save the original contents of the copy area. */
224c3ddb 1837 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
ad53cd71 1838 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1839 &displaced->step_saved_copy);
9e529e1d
JK
1840 status = target_read_memory (copy, displaced->step_saved_copy, len);
1841 if (status != 0)
1842 throw_error (MEMORY_ERROR,
1843 _("Error accessing memory address %s (%s) for "
1844 "displaced-stepping scratch space."),
1845 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1846 if (debug_displaced)
1847 {
5af949e3
UW
1848 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1849 paddress (gdbarch, copy));
fc1cf338
PA
1850 displaced_step_dump_bytes (gdb_stdlog,
1851 displaced->step_saved_copy,
1852 len);
237fc4c9
PA
1853 };
1854
1855 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1856 original, copy, regcache);
7f03bd92
PA
1857 if (closure == NULL)
1858 {
1859 /* The architecture doesn't know how or want to displaced step
1860 this instruction or instruction sequence. Fallback to
1861 stepping over the breakpoint in-line. */
1862 do_cleanups (old_cleanups);
1863 return -1;
1864 }
237fc4c9 1865
9f5a595d
UW
1866 /* Save the information we need to fix things up if the step
1867 succeeds. */
fc1cf338
PA
1868 displaced->step_ptid = ptid;
1869 displaced->step_gdbarch = gdbarch;
1870 displaced->step_closure = closure;
1871 displaced->step_original = original;
1872 displaced->step_copy = copy;
9f5a595d 1873
fc1cf338 1874 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1875
1876 /* Resume execution at the copy. */
515630c5 1877 regcache_write_pc (regcache, copy);
237fc4c9 1878
ad53cd71
PA
1879 discard_cleanups (ignore_cleanups);
1880
1881 do_cleanups (old_cleanups);
237fc4c9
PA
1882
1883 if (debug_displaced)
5af949e3
UW
1884 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1885 paddress (gdbarch, copy));
237fc4c9 1886
237fc4c9
PA
1887 return 1;
1888}
1889
3fc8eb30
PA
1890/* Wrapper for displaced_step_prepare_throw that disabled further
1891 attempts at displaced stepping if we get a memory error. */
1892
1893static int
1894displaced_step_prepare (ptid_t ptid)
1895{
1896 int prepared = -1;
1897
1898 TRY
1899 {
1900 prepared = displaced_step_prepare_throw (ptid);
1901 }
1902 CATCH (ex, RETURN_MASK_ERROR)
1903 {
1904 struct displaced_step_inferior_state *displaced_state;
1905
16b41842
PA
1906 if (ex.error != MEMORY_ERROR
1907 && ex.error != NOT_SUPPORTED_ERROR)
3fc8eb30
PA
1908 throw_exception (ex);
1909
1910 if (debug_infrun)
1911 {
1912 fprintf_unfiltered (gdb_stdlog,
1913 "infrun: disabling displaced stepping: %s\n",
1914 ex.message);
1915 }
1916
1917 /* Be verbose if "set displaced-stepping" is "on", silent if
1918 "auto". */
1919 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1920 {
fd7dcb94 1921 warning (_("disabling displaced stepping: %s"),
3fc8eb30
PA
1922 ex.message);
1923 }
1924
1925 /* Disable further displaced stepping attempts. */
1926 displaced_state
1927 = get_displaced_stepping_state (ptid_get_pid (ptid));
1928 displaced_state->failed_before = 1;
1929 }
1930 END_CATCH
1931
1932 return prepared;
1933}
1934
237fc4c9 1935static void
3e43a32a
MS
1936write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1937 const gdb_byte *myaddr, int len)
237fc4c9
PA
1938{
1939 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1940
237fc4c9
PA
1941 inferior_ptid = ptid;
1942 write_memory (memaddr, myaddr, len);
1943 do_cleanups (ptid_cleanup);
1944}
1945
e2d96639
YQ
1946/* Restore the contents of the copy area for thread PTID. */
1947
1948static void
1949displaced_step_restore (struct displaced_step_inferior_state *displaced,
1950 ptid_t ptid)
1951{
1952 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1953
1954 write_memory_ptid (ptid, displaced->step_copy,
1955 displaced->step_saved_copy, len);
1956 if (debug_displaced)
1957 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1958 target_pid_to_str (ptid),
1959 paddress (displaced->step_gdbarch,
1960 displaced->step_copy));
1961}
1962
372316f1
PA
1963/* If we displaced stepped an instruction successfully, adjust
1964 registers and memory to yield the same effect the instruction would
1965 have had if we had executed it at its original address, and return
1966 1. If the instruction didn't complete, relocate the PC and return
1967 -1. If the thread wasn't displaced stepping, return 0. */
1968
1969static int
2ea28649 1970displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1971{
1972 struct cleanup *old_cleanups;
fc1cf338
PA
1973 struct displaced_step_inferior_state *displaced
1974 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
372316f1 1975 int ret;
fc1cf338
PA
1976
1977 /* Was any thread of this process doing a displaced step? */
1978 if (displaced == NULL)
372316f1 1979 return 0;
237fc4c9
PA
1980
1981 /* Was this event for the pid we displaced? */
fc1cf338
PA
1982 if (ptid_equal (displaced->step_ptid, null_ptid)
1983 || ! ptid_equal (displaced->step_ptid, event_ptid))
372316f1 1984 return 0;
237fc4c9 1985
fc1cf338 1986 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1987
e2d96639 1988 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9 1989
cb71640d
PA
1990 /* Fixup may need to read memory/registers. Switch to the thread
1991 that we're fixing up. Also, target_stopped_by_watchpoint checks
1992 the current thread. */
1993 switch_to_thread (event_ptid);
1994
237fc4c9 1995 /* Did the instruction complete successfully? */
cb71640d
PA
1996 if (signal == GDB_SIGNAL_TRAP
1997 && !(target_stopped_by_watchpoint ()
1998 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1999 || target_have_steppable_watchpoint)))
237fc4c9
PA
2000 {
2001 /* Fix up the resulting state. */
fc1cf338
PA
2002 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
2003 displaced->step_closure,
2004 displaced->step_original,
2005 displaced->step_copy,
2006 get_thread_regcache (displaced->step_ptid));
372316f1 2007 ret = 1;
237fc4c9
PA
2008 }
2009 else
2010 {
2011 /* Since the instruction didn't complete, all we can do is
2012 relocate the PC. */
515630c5
UW
2013 struct regcache *regcache = get_thread_regcache (event_ptid);
2014 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 2015
fc1cf338 2016 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 2017 regcache_write_pc (regcache, pc);
372316f1 2018 ret = -1;
237fc4c9
PA
2019 }
2020
2021 do_cleanups (old_cleanups);
2022
fc1cf338 2023 displaced->step_ptid = null_ptid;
372316f1
PA
2024
2025 return ret;
c2829269 2026}
1c5cfe86 2027
4d9d9d04
PA
2028/* Data to be passed around while handling an event. This data is
2029 discarded between events. */
2030struct execution_control_state
2031{
2032 ptid_t ptid;
2033 /* The thread that got the event, if this was a thread event; NULL
2034 otherwise. */
2035 struct thread_info *event_thread;
2036
2037 struct target_waitstatus ws;
2038 int stop_func_filled_in;
2039 CORE_ADDR stop_func_start;
2040 CORE_ADDR stop_func_end;
2041 const char *stop_func_name;
2042 int wait_some_more;
2043
2044 /* True if the event thread hit the single-step breakpoint of
2045 another thread. Thus the event doesn't cause a stop, the thread
2046 needs to be single-stepped past the single-step breakpoint before
2047 we can switch back to the original stepping thread. */
2048 int hit_singlestep_breakpoint;
2049};
2050
2051/* Clear ECS and set it to point at TP. */
c2829269
PA
2052
2053static void
4d9d9d04
PA
2054reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2055{
2056 memset (ecs, 0, sizeof (*ecs));
2057 ecs->event_thread = tp;
2058 ecs->ptid = tp->ptid;
2059}
2060
2061static void keep_going_pass_signal (struct execution_control_state *ecs);
2062static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 2063static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 2064static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
2065
2066/* Are there any pending step-over requests? If so, run all we can
2067 now and return true. Otherwise, return false. */
2068
2069static int
c2829269
PA
2070start_step_over (void)
2071{
2072 struct thread_info *tp, *next;
2073
372316f1
PA
2074 /* Don't start a new step-over if we already have an in-line
2075 step-over operation ongoing. */
2076 if (step_over_info_valid_p ())
2077 return 0;
2078
c2829269 2079 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 2080 {
4d9d9d04
PA
2081 struct execution_control_state ecss;
2082 struct execution_control_state *ecs = &ecss;
8d297bbf 2083 step_over_what step_what;
372316f1 2084 int must_be_in_line;
c2829269
PA
2085
2086 next = thread_step_over_chain_next (tp);
237fc4c9 2087
c2829269
PA
2088 /* If this inferior already has a displaced step in process,
2089 don't start a new one. */
4d9d9d04 2090 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
c2829269
PA
2091 continue;
2092
372316f1
PA
2093 step_what = thread_still_needs_step_over (tp);
2094 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2095 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 2096 && !use_displaced_stepping (tp)));
372316f1
PA
2097
2098 /* We currently stop all threads of all processes to step-over
2099 in-line. If we need to start a new in-line step-over, let
2100 any pending displaced steps finish first. */
2101 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2102 return 0;
2103
c2829269
PA
2104 thread_step_over_chain_remove (tp);
2105
2106 if (step_over_queue_head == NULL)
2107 {
2108 if (debug_infrun)
2109 fprintf_unfiltered (gdb_stdlog,
2110 "infrun: step-over queue now empty\n");
2111 }
2112
372316f1
PA
2113 if (tp->control.trap_expected
2114 || tp->resumed
2115 || tp->executing)
ad53cd71 2116 {
4d9d9d04
PA
2117 internal_error (__FILE__, __LINE__,
2118 "[%s] has inconsistent state: "
372316f1 2119 "trap_expected=%d, resumed=%d, executing=%d\n",
4d9d9d04
PA
2120 target_pid_to_str (tp->ptid),
2121 tp->control.trap_expected,
372316f1 2122 tp->resumed,
4d9d9d04 2123 tp->executing);
ad53cd71 2124 }
1c5cfe86 2125
4d9d9d04
PA
2126 if (debug_infrun)
2127 fprintf_unfiltered (gdb_stdlog,
2128 "infrun: resuming [%s] for step-over\n",
2129 target_pid_to_str (tp->ptid));
2130
2131 /* keep_going_pass_signal skips the step-over if the breakpoint
2132 is no longer inserted. In all-stop, we want to keep looking
2133 for a thread that needs a step-over instead of resuming TP,
2134 because we wouldn't be able to resume anything else until the
2135 target stops again. In non-stop, the resume always resumes
2136 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2137 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2138 continue;
8550d3b3 2139
4d9d9d04
PA
2140 switch_to_thread (tp->ptid);
2141 reset_ecs (ecs, tp);
2142 keep_going_pass_signal (ecs);
1c5cfe86 2143
4d9d9d04
PA
2144 if (!ecs->wait_some_more)
2145 error (_("Command aborted."));
1c5cfe86 2146
372316f1
PA
2147 gdb_assert (tp->resumed);
2148
2149 /* If we started a new in-line step-over, we're done. */
2150 if (step_over_info_valid_p ())
2151 {
2152 gdb_assert (tp->control.trap_expected);
2153 return 1;
2154 }
2155
fbea99ea 2156 if (!target_is_non_stop_p ())
4d9d9d04
PA
2157 {
2158 /* On all-stop, shouldn't have resumed unless we needed a
2159 step over. */
2160 gdb_assert (tp->control.trap_expected
2161 || tp->step_after_step_resume_breakpoint);
2162
2163 /* With remote targets (at least), in all-stop, we can't
2164 issue any further remote commands until the program stops
2165 again. */
2166 return 1;
1c5cfe86 2167 }
c2829269 2168
4d9d9d04
PA
2169 /* Either the thread no longer needed a step-over, or a new
2170 displaced stepping sequence started. Even in the latter
2171 case, continue looking. Maybe we can also start another
2172 displaced step on a thread of other process. */
237fc4c9 2173 }
4d9d9d04
PA
2174
2175 return 0;
237fc4c9
PA
2176}
2177
5231c1fd
PA
2178/* Update global variables holding ptids to hold NEW_PTID if they were
2179 holding OLD_PTID. */
2180static void
2181infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2182{
fc1cf338 2183 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
2184
2185 if (ptid_equal (inferior_ptid, old_ptid))
2186 inferior_ptid = new_ptid;
2187
fc1cf338
PA
2188 for (displaced = displaced_step_inferior_states;
2189 displaced;
2190 displaced = displaced->next)
2191 {
2192 if (ptid_equal (displaced->step_ptid, old_ptid))
2193 displaced->step_ptid = new_ptid;
fc1cf338 2194 }
5231c1fd
PA
2195}
2196
237fc4c9
PA
2197\f
2198/* Resuming. */
c906108c
SS
2199
2200/* Things to clean up if we QUIT out of resume (). */
c906108c 2201static void
74b7792f 2202resume_cleanups (void *ignore)
c906108c 2203{
34b7e8a6
PA
2204 if (!ptid_equal (inferior_ptid, null_ptid))
2205 delete_single_step_breakpoints (inferior_thread ());
7c16b83e 2206
c906108c
SS
2207 normal_stop ();
2208}
2209
53904c9e
AC
2210static const char schedlock_off[] = "off";
2211static const char schedlock_on[] = "on";
2212static const char schedlock_step[] = "step";
f2665db5 2213static const char schedlock_replay[] = "replay";
40478521 2214static const char *const scheduler_enums[] = {
ef346e04
AC
2215 schedlock_off,
2216 schedlock_on,
2217 schedlock_step,
f2665db5 2218 schedlock_replay,
ef346e04
AC
2219 NULL
2220};
f2665db5 2221static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2222static void
2223show_scheduler_mode (struct ui_file *file, int from_tty,
2224 struct cmd_list_element *c, const char *value)
2225{
3e43a32a
MS
2226 fprintf_filtered (file,
2227 _("Mode for locking scheduler "
2228 "during execution is \"%s\".\n"),
920d2a44
AC
2229 value);
2230}
c906108c
SS
2231
2232static void
96baa820 2233set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 2234{
eefe576e
AC
2235 if (!target_can_lock_scheduler)
2236 {
2237 scheduler_mode = schedlock_off;
2238 error (_("Target '%s' cannot support this command."), target_shortname);
2239 }
c906108c
SS
2240}
2241
d4db2f36
PA
2242/* True if execution commands resume all threads of all processes by
2243 default; otherwise, resume only threads of the current inferior
2244 process. */
2245int sched_multi = 0;
2246
2facfe5c
DD
2247/* Try to setup for software single stepping over the specified location.
2248 Return 1 if target_resume() should use hardware single step.
2249
2250 GDBARCH the current gdbarch.
2251 PC the location to step over. */
2252
2253static int
2254maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2255{
2256 int hw_step = 1;
2257
f02253f1
HZ
2258 if (execution_direction == EXEC_FORWARD
2259 && gdbarch_software_single_step_p (gdbarch)
99e40580 2260 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 2261 {
99e40580 2262 hw_step = 0;
2facfe5c
DD
2263 }
2264 return hw_step;
2265}
c906108c 2266
f3263aa4
PA
2267/* See infrun.h. */
2268
09cee04b
PA
2269ptid_t
2270user_visible_resume_ptid (int step)
2271{
f3263aa4 2272 ptid_t resume_ptid;
09cee04b 2273
09cee04b
PA
2274 if (non_stop)
2275 {
2276 /* With non-stop mode on, threads are always handled
2277 individually. */
2278 resume_ptid = inferior_ptid;
2279 }
2280 else if ((scheduler_mode == schedlock_on)
03d46957 2281 || (scheduler_mode == schedlock_step && step))
09cee04b 2282 {
f3263aa4
PA
2283 /* User-settable 'scheduler' mode requires solo thread
2284 resume. */
09cee04b
PA
2285 resume_ptid = inferior_ptid;
2286 }
f2665db5
MM
2287 else if ((scheduler_mode == schedlock_replay)
2288 && target_record_will_replay (minus_one_ptid, execution_direction))
2289 {
2290 /* User-settable 'scheduler' mode requires solo thread resume in replay
2291 mode. */
2292 resume_ptid = inferior_ptid;
2293 }
f3263aa4
PA
2294 else if (!sched_multi && target_supports_multi_process ())
2295 {
2296 /* Resume all threads of the current process (and none of other
2297 processes). */
2298 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2299 }
2300 else
2301 {
2302 /* Resume all threads of all processes. */
2303 resume_ptid = RESUME_ALL;
2304 }
09cee04b
PA
2305
2306 return resume_ptid;
2307}
2308
fbea99ea
PA
2309/* Return a ptid representing the set of threads that we will resume,
2310 in the perspective of the target, assuming run control handling
2311 does not require leaving some threads stopped (e.g., stepping past
2312 breakpoint). USER_STEP indicates whether we're about to start the
2313 target for a stepping command. */
2314
2315static ptid_t
2316internal_resume_ptid (int user_step)
2317{
2318 /* In non-stop, we always control threads individually. Note that
2319 the target may always work in non-stop mode even with "set
2320 non-stop off", in which case user_visible_resume_ptid could
2321 return a wildcard ptid. */
2322 if (target_is_non_stop_p ())
2323 return inferior_ptid;
2324 else
2325 return user_visible_resume_ptid (user_step);
2326}
2327
64ce06e4
PA
2328/* Wrapper for target_resume, that handles infrun-specific
2329 bookkeeping. */
2330
2331static void
2332do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2333{
2334 struct thread_info *tp = inferior_thread ();
2335
2336 /* Install inferior's terminal modes. */
2337 target_terminal_inferior ();
2338
2339 /* Avoid confusing the next resume, if the next stop/resume
2340 happens to apply to another thread. */
2341 tp->suspend.stop_signal = GDB_SIGNAL_0;
2342
8f572e5c
PA
2343 /* Advise target which signals may be handled silently.
2344
2345 If we have removed breakpoints because we are stepping over one
2346 in-line (in any thread), we need to receive all signals to avoid
2347 accidentally skipping a breakpoint during execution of a signal
2348 handler.
2349
2350 Likewise if we're displaced stepping, otherwise a trap for a
2351 breakpoint in a signal handler might be confused with the
2352 displaced step finishing. We don't make the displaced_step_fixup
2353 step distinguish the cases instead, because:
2354
2355 - a backtrace while stopped in the signal handler would show the
2356 scratch pad as frame older than the signal handler, instead of
2357 the real mainline code.
2358
2359 - when the thread is later resumed, the signal handler would
2360 return to the scratch pad area, which would no longer be
2361 valid. */
2362 if (step_over_info_valid_p ()
2363 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
64ce06e4
PA
2364 target_pass_signals (0, NULL);
2365 else
2366 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2367
2368 target_resume (resume_ptid, step, sig);
2369}
2370
c906108c
SS
2371/* Resume the inferior, but allow a QUIT. This is useful if the user
2372 wants to interrupt some lengthy single-stepping operation
2373 (for child processes, the SIGINT goes to the inferior, and so
2374 we get a SIGINT random_signal, but for remote debugging and perhaps
2375 other targets, that's not true).
2376
c906108c
SS
2377 SIG is the signal to give the inferior (zero for none). */
2378void
64ce06e4 2379resume (enum gdb_signal sig)
c906108c 2380{
74b7792f 2381 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
2382 struct regcache *regcache = get_current_regcache ();
2383 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 2384 struct thread_info *tp = inferior_thread ();
515630c5 2385 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 2386 struct address_space *aspace = get_regcache_aspace (regcache);
b0f16a3e 2387 ptid_t resume_ptid;
856e7dd6
PA
2388 /* This represents the user's step vs continue request. When
2389 deciding whether "set scheduler-locking step" applies, it's the
2390 user's intention that counts. */
2391 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2392 /* This represents what we'll actually request the target to do.
2393 This can decay from a step to a continue, if e.g., we need to
2394 implement single-stepping with breakpoints (software
2395 single-step). */
6b403daa 2396 int step;
c7e8a53c 2397
c2829269
PA
2398 gdb_assert (!thread_is_in_step_over_chain (tp));
2399
c906108c
SS
2400 QUIT;
2401
372316f1
PA
2402 if (tp->suspend.waitstatus_pending_p)
2403 {
2404 if (debug_infrun)
2405 {
2406 char *statstr;
2407
2408 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2409 fprintf_unfiltered (gdb_stdlog,
2410 "infrun: resume: thread %s has pending wait status %s "
2411 "(currently_stepping=%d).\n",
2412 target_pid_to_str (tp->ptid), statstr,
2413 currently_stepping (tp));
2414 xfree (statstr);
2415 }
2416
2417 tp->resumed = 1;
2418
2419 /* FIXME: What should we do if we are supposed to resume this
2420 thread with a signal? Maybe we should maintain a queue of
2421 pending signals to deliver. */
2422 if (sig != GDB_SIGNAL_0)
2423 {
fd7dcb94 2424 warning (_("Couldn't deliver signal %s to %s."),
372316f1
PA
2425 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2426 }
2427
2428 tp->suspend.stop_signal = GDB_SIGNAL_0;
2429 discard_cleanups (old_cleanups);
2430
2431 if (target_can_async_p ())
2432 target_async (1);
2433 return;
2434 }
2435
2436 tp->stepped_breakpoint = 0;
2437
6b403daa
PA
2438 /* Depends on stepped_breakpoint. */
2439 step = currently_stepping (tp);
2440
74609e71
YQ
2441 if (current_inferior ()->waiting_for_vfork_done)
2442 {
48f9886d
PA
2443 /* Don't try to single-step a vfork parent that is waiting for
2444 the child to get out of the shared memory region (by exec'ing
2445 or exiting). This is particularly important on software
2446 single-step archs, as the child process would trip on the
2447 software single step breakpoint inserted for the parent
2448 process. Since the parent will not actually execute any
2449 instruction until the child is out of the shared region (such
2450 are vfork's semantics), it is safe to simply continue it.
2451 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2452 the parent, and tell it to `keep_going', which automatically
2453 re-sets it stepping. */
74609e71
YQ
2454 if (debug_infrun)
2455 fprintf_unfiltered (gdb_stdlog,
2456 "infrun: resume : clear step\n");
a09dd441 2457 step = 0;
74609e71
YQ
2458 }
2459
527159b7 2460 if (debug_infrun)
237fc4c9 2461 fprintf_unfiltered (gdb_stdlog,
c9737c08 2462 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2463 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2464 step, gdb_signal_to_symbol_string (sig),
2465 tp->control.trap_expected,
0d9a9a5f
PA
2466 target_pid_to_str (inferior_ptid),
2467 paddress (gdbarch, pc));
c906108c 2468
c2c6d25f
JM
2469 /* Normally, by the time we reach `resume', the breakpoints are either
2470 removed or inserted, as appropriate. The exception is if we're sitting
2471 at a permanent breakpoint; we need to step over it, but permanent
2472 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2473 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2474 {
af48d08f
PA
2475 if (sig != GDB_SIGNAL_0)
2476 {
2477 /* We have a signal to pass to the inferior. The resume
2478 may, or may not take us to the signal handler. If this
2479 is a step, we'll need to stop in the signal handler, if
2480 there's one, (if the target supports stepping into
2481 handlers), or in the next mainline instruction, if
2482 there's no handler. If this is a continue, we need to be
2483 sure to run the handler with all breakpoints inserted.
2484 In all cases, set a breakpoint at the current address
2485 (where the handler returns to), and once that breakpoint
2486 is hit, resume skipping the permanent breakpoint. If
2487 that breakpoint isn't hit, then we've stepped into the
2488 signal handler (or hit some other event). We'll delete
2489 the step-resume breakpoint then. */
2490
2491 if (debug_infrun)
2492 fprintf_unfiltered (gdb_stdlog,
2493 "infrun: resume: skipping permanent breakpoint, "
2494 "deliver signal first\n");
2495
2496 clear_step_over_info ();
2497 tp->control.trap_expected = 0;
2498
2499 if (tp->control.step_resume_breakpoint == NULL)
2500 {
2501 /* Set a "high-priority" step-resume, as we don't want
2502 user breakpoints at PC to trigger (again) when this
2503 hits. */
2504 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2505 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2506
2507 tp->step_after_step_resume_breakpoint = step;
2508 }
2509
2510 insert_breakpoints ();
2511 }
2512 else
2513 {
2514 /* There's no signal to pass, we can go ahead and skip the
2515 permanent breakpoint manually. */
2516 if (debug_infrun)
2517 fprintf_unfiltered (gdb_stdlog,
2518 "infrun: resume: skipping permanent breakpoint\n");
2519 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2520 /* Update pc to reflect the new address from which we will
2521 execute instructions. */
2522 pc = regcache_read_pc (regcache);
2523
2524 if (step)
2525 {
2526 /* We've already advanced the PC, so the stepping part
2527 is done. Now we need to arrange for a trap to be
2528 reported to handle_inferior_event. Set a breakpoint
2529 at the current PC, and run to it. Don't update
2530 prev_pc, because if we end in
44a1ee51
PA
2531 switch_back_to_stepped_thread, we want the "expected
2532 thread advanced also" branch to be taken. IOW, we
2533 don't want this thread to step further from PC
af48d08f 2534 (overstep). */
1ac806b8 2535 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2536 insert_single_step_breakpoint (gdbarch, aspace, pc);
2537 insert_breakpoints ();
2538
fbea99ea 2539 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2540 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
af48d08f 2541 discard_cleanups (old_cleanups);
372316f1 2542 tp->resumed = 1;
af48d08f
PA
2543 return;
2544 }
2545 }
6d350bb5 2546 }
c2c6d25f 2547
c1e36e3e
PA
2548 /* If we have a breakpoint to step over, make sure to do a single
2549 step only. Same if we have software watchpoints. */
2550 if (tp->control.trap_expected || bpstat_should_step ())
2551 tp->control.may_range_step = 0;
2552
237fc4c9
PA
2553 /* If enabled, step over breakpoints by executing a copy of the
2554 instruction at a different address.
2555
2556 We can't use displaced stepping when we have a signal to deliver;
2557 the comments for displaced_step_prepare explain why. The
2558 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2559 signals' explain what we do instead.
2560
2561 We can't use displaced stepping when we are waiting for vfork_done
2562 event, displaced stepping breaks the vfork child similarly as single
2563 step software breakpoint. */
3fc8eb30
PA
2564 if (tp->control.trap_expected
2565 && use_displaced_stepping (tp)
cb71640d 2566 && !step_over_info_valid_p ()
a493e3e2 2567 && sig == GDB_SIGNAL_0
74609e71 2568 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2569 {
3fc8eb30 2570 int prepared = displaced_step_prepare (inferior_ptid);
fc1cf338 2571
3fc8eb30 2572 if (prepared == 0)
d56b7306 2573 {
4d9d9d04
PA
2574 if (debug_infrun)
2575 fprintf_unfiltered (gdb_stdlog,
2576 "Got placed in step-over queue\n");
2577
2578 tp->control.trap_expected = 0;
d56b7306
VP
2579 discard_cleanups (old_cleanups);
2580 return;
2581 }
3fc8eb30
PA
2582 else if (prepared < 0)
2583 {
2584 /* Fallback to stepping over the breakpoint in-line. */
2585
2586 if (target_is_non_stop_p ())
2587 stop_all_threads ();
2588
2589 set_step_over_info (get_regcache_aspace (regcache),
21edc42f 2590 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2591
2592 step = maybe_software_singlestep (gdbarch, pc);
2593
2594 insert_breakpoints ();
2595 }
2596 else if (prepared > 0)
2597 {
2598 struct displaced_step_inferior_state *displaced;
99e40580 2599
3fc8eb30
PA
2600 /* Update pc to reflect the new address from which we will
2601 execute instructions due to displaced stepping. */
2602 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
ca7781d2 2603
3fc8eb30
PA
2604 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2605 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2606 displaced->step_closure);
2607 }
237fc4c9
PA
2608 }
2609
2facfe5c 2610 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2611 else if (step)
2facfe5c 2612 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2613
30852783
UW
2614 /* Currently, our software single-step implementation leads to different
2615 results than hardware single-stepping in one situation: when stepping
2616 into delivering a signal which has an associated signal handler,
2617 hardware single-step will stop at the first instruction of the handler,
2618 while software single-step will simply skip execution of the handler.
2619
2620 For now, this difference in behavior is accepted since there is no
2621 easy way to actually implement single-stepping into a signal handler
2622 without kernel support.
2623
2624 However, there is one scenario where this difference leads to follow-on
2625 problems: if we're stepping off a breakpoint by removing all breakpoints
2626 and then single-stepping. In this case, the software single-step
2627 behavior means that even if there is a *breakpoint* in the signal
2628 handler, GDB still would not stop.
2629
2630 Fortunately, we can at least fix this particular issue. We detect
2631 here the case where we are about to deliver a signal while software
2632 single-stepping with breakpoints removed. In this situation, we
2633 revert the decisions to remove all breakpoints and insert single-
2634 step breakpoints, and instead we install a step-resume breakpoint
2635 at the current address, deliver the signal without stepping, and
2636 once we arrive back at the step-resume breakpoint, actually step
2637 over the breakpoint we originally wanted to step over. */
34b7e8a6 2638 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2639 && sig != GDB_SIGNAL_0
2640 && step_over_info_valid_p ())
30852783
UW
2641 {
2642 /* If we have nested signals or a pending signal is delivered
2643 immediately after a handler returns, might might already have
2644 a step-resume breakpoint set on the earlier handler. We cannot
2645 set another step-resume breakpoint; just continue on until the
2646 original breakpoint is hit. */
2647 if (tp->control.step_resume_breakpoint == NULL)
2648 {
2c03e5be 2649 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2650 tp->step_after_step_resume_breakpoint = 1;
2651 }
2652
34b7e8a6 2653 delete_single_step_breakpoints (tp);
30852783 2654
31e77af2 2655 clear_step_over_info ();
30852783 2656 tp->control.trap_expected = 0;
31e77af2
PA
2657
2658 insert_breakpoints ();
30852783
UW
2659 }
2660
b0f16a3e
SM
2661 /* If STEP is set, it's a request to use hardware stepping
2662 facilities. But in that case, we should never
2663 use singlestep breakpoint. */
34b7e8a6 2664 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2665
fbea99ea 2666 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2667 if (tp->control.trap_expected)
b0f16a3e
SM
2668 {
2669 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2670 hit, either by single-stepping the thread with the breakpoint
2671 removed, or by displaced stepping, with the breakpoint inserted.
2672 In the former case, we need to single-step only this thread,
2673 and keep others stopped, as they can miss this breakpoint if
2674 allowed to run. That's not really a problem for displaced
2675 stepping, but, we still keep other threads stopped, in case
2676 another thread is also stopped for a breakpoint waiting for
2677 its turn in the displaced stepping queue. */
b0f16a3e
SM
2678 resume_ptid = inferior_ptid;
2679 }
fbea99ea
PA
2680 else
2681 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2682
7f5ef605
PA
2683 if (execution_direction != EXEC_REVERSE
2684 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2685 {
372316f1
PA
2686 /* There are two cases where we currently need to step a
2687 breakpoint instruction when we have a signal to deliver:
2688
2689 - See handle_signal_stop where we handle random signals that
2690 could take out us out of the stepping range. Normally, in
2691 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2692 signal handler with a breakpoint at PC, but there are cases
2693 where we should _always_ single-step, even if we have a
2694 step-resume breakpoint, like when a software watchpoint is
2695 set. Assuming single-stepping and delivering a signal at the
2696 same time would takes us to the signal handler, then we could
2697 have removed the breakpoint at PC to step over it. However,
2698 some hardware step targets (like e.g., Mac OS) can't step
2699 into signal handlers, and for those, we need to leave the
2700 breakpoint at PC inserted, as otherwise if the handler
2701 recurses and executes PC again, it'll miss the breakpoint.
2702 So we leave the breakpoint inserted anyway, but we need to
2703 record that we tried to step a breakpoint instruction, so
372316f1
PA
2704 that adjust_pc_after_break doesn't end up confused.
2705
2706 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2707 in one thread after another thread that was stepping had been
2708 momentarily paused for a step-over. When we re-resume the
2709 stepping thread, it may be resumed from that address with a
2710 breakpoint that hasn't trapped yet. Seen with
2711 gdb.threads/non-stop-fair-events.exp, on targets that don't
2712 do displaced stepping. */
2713
2714 if (debug_infrun)
2715 fprintf_unfiltered (gdb_stdlog,
2716 "infrun: resume: [%s] stepped breakpoint\n",
2717 target_pid_to_str (tp->ptid));
7f5ef605
PA
2718
2719 tp->stepped_breakpoint = 1;
2720
b0f16a3e
SM
2721 /* Most targets can step a breakpoint instruction, thus
2722 executing it normally. But if this one cannot, just
2723 continue and we will hit it anyway. */
7f5ef605 2724 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2725 step = 0;
2726 }
ef5cf84e 2727
b0f16a3e 2728 if (debug_displaced
cb71640d 2729 && tp->control.trap_expected
3fc8eb30 2730 && use_displaced_stepping (tp)
cb71640d 2731 && !step_over_info_valid_p ())
b0f16a3e 2732 {
d9b67d9f 2733 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
b0f16a3e
SM
2734 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2735 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2736 gdb_byte buf[4];
2737
2738 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2739 paddress (resume_gdbarch, actual_pc));
2740 read_memory (actual_pc, buf, sizeof (buf));
2741 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2742 }
237fc4c9 2743
b0f16a3e
SM
2744 if (tp->control.may_range_step)
2745 {
2746 /* If we're resuming a thread with the PC out of the step
2747 range, then we're doing some nested/finer run control
2748 operation, like stepping the thread out of the dynamic
2749 linker or the displaced stepping scratch pad. We
2750 shouldn't have allowed a range step then. */
2751 gdb_assert (pc_in_thread_step_range (pc, tp));
2752 }
c1e36e3e 2753
64ce06e4 2754 do_target_resume (resume_ptid, step, sig);
372316f1 2755 tp->resumed = 1;
c906108c
SS
2756 discard_cleanups (old_cleanups);
2757}
2758\f
237fc4c9 2759/* Proceeding. */
c906108c 2760
4c2f2a79
PA
2761/* See infrun.h. */
2762
2763/* Counter that tracks number of user visible stops. This can be used
2764 to tell whether a command has proceeded the inferior past the
2765 current location. This allows e.g., inferior function calls in
2766 breakpoint commands to not interrupt the command list. When the
2767 call finishes successfully, the inferior is standing at the same
2768 breakpoint as if nothing happened (and so we don't call
2769 normal_stop). */
2770static ULONGEST current_stop_id;
2771
2772/* See infrun.h. */
2773
2774ULONGEST
2775get_stop_id (void)
2776{
2777 return current_stop_id;
2778}
2779
2780/* Called when we report a user visible stop. */
2781
2782static void
2783new_stop_id (void)
2784{
2785 current_stop_id++;
2786}
2787
c906108c
SS
2788/* Clear out all variables saying what to do when inferior is continued.
2789 First do this, then set the ones you want, then call `proceed'. */
2790
a7212384
UW
2791static void
2792clear_proceed_status_thread (struct thread_info *tp)
c906108c 2793{
a7212384
UW
2794 if (debug_infrun)
2795 fprintf_unfiltered (gdb_stdlog,
2796 "infrun: clear_proceed_status_thread (%s)\n",
2797 target_pid_to_str (tp->ptid));
d6b48e9c 2798
372316f1
PA
2799 /* If we're starting a new sequence, then the previous finished
2800 single-step is no longer relevant. */
2801 if (tp->suspend.waitstatus_pending_p)
2802 {
2803 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2804 {
2805 if (debug_infrun)
2806 fprintf_unfiltered (gdb_stdlog,
2807 "infrun: clear_proceed_status: pending "
2808 "event of %s was a finished step. "
2809 "Discarding.\n",
2810 target_pid_to_str (tp->ptid));
2811
2812 tp->suspend.waitstatus_pending_p = 0;
2813 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2814 }
2815 else if (debug_infrun)
2816 {
2817 char *statstr;
2818
2819 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2820 fprintf_unfiltered (gdb_stdlog,
2821 "infrun: clear_proceed_status_thread: thread %s "
2822 "has pending wait status %s "
2823 "(currently_stepping=%d).\n",
2824 target_pid_to_str (tp->ptid), statstr,
2825 currently_stepping (tp));
2826 xfree (statstr);
2827 }
2828 }
2829
70509625
PA
2830 /* If this signal should not be seen by program, give it zero.
2831 Used for debugging signals. */
2832 if (!signal_pass_state (tp->suspend.stop_signal))
2833 tp->suspend.stop_signal = GDB_SIGNAL_0;
2834
243a9253
PA
2835 thread_fsm_delete (tp->thread_fsm);
2836 tp->thread_fsm = NULL;
2837
16c381f0
JK
2838 tp->control.trap_expected = 0;
2839 tp->control.step_range_start = 0;
2840 tp->control.step_range_end = 0;
c1e36e3e 2841 tp->control.may_range_step = 0;
16c381f0
JK
2842 tp->control.step_frame_id = null_frame_id;
2843 tp->control.step_stack_frame_id = null_frame_id;
2844 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2845 tp->control.step_start_function = NULL;
a7212384 2846 tp->stop_requested = 0;
4e1c45ea 2847
16c381f0 2848 tp->control.stop_step = 0;
32400beb 2849
16c381f0 2850 tp->control.proceed_to_finish = 0;
414c69f7 2851
856e7dd6 2852 tp->control.stepping_command = 0;
17b2616c 2853
a7212384 2854 /* Discard any remaining commands or status from previous stop. */
16c381f0 2855 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2856}
32400beb 2857
a7212384 2858void
70509625 2859clear_proceed_status (int step)
a7212384 2860{
f2665db5
MM
2861 /* With scheduler-locking replay, stop replaying other threads if we're
2862 not replaying the user-visible resume ptid.
2863
2864 This is a convenience feature to not require the user to explicitly
2865 stop replaying the other threads. We're assuming that the user's
2866 intent is to resume tracing the recorded process. */
2867 if (!non_stop && scheduler_mode == schedlock_replay
2868 && target_record_is_replaying (minus_one_ptid)
2869 && !target_record_will_replay (user_visible_resume_ptid (step),
2870 execution_direction))
2871 target_record_stop_replaying ();
2872
6c95b8df
PA
2873 if (!non_stop)
2874 {
70509625
PA
2875 struct thread_info *tp;
2876 ptid_t resume_ptid;
2877
2878 resume_ptid = user_visible_resume_ptid (step);
2879
2880 /* In all-stop mode, delete the per-thread status of all threads
2881 we're about to resume, implicitly and explicitly. */
2882 ALL_NON_EXITED_THREADS (tp)
2883 {
2884 if (!ptid_match (tp->ptid, resume_ptid))
2885 continue;
2886 clear_proceed_status_thread (tp);
2887 }
6c95b8df
PA
2888 }
2889
a7212384
UW
2890 if (!ptid_equal (inferior_ptid, null_ptid))
2891 {
2892 struct inferior *inferior;
2893
2894 if (non_stop)
2895 {
6c95b8df
PA
2896 /* If in non-stop mode, only delete the per-thread status of
2897 the current thread. */
a7212384
UW
2898 clear_proceed_status_thread (inferior_thread ());
2899 }
6c95b8df 2900
d6b48e9c 2901 inferior = current_inferior ();
16c381f0 2902 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2903 }
2904
f3b1572e 2905 observer_notify_about_to_proceed ();
c906108c
SS
2906}
2907
99619bea
PA
2908/* Returns true if TP is still stopped at a breakpoint that needs
2909 stepping-over in order to make progress. If the breakpoint is gone
2910 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2911
2912static int
6c4cfb24 2913thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2914{
2915 if (tp->stepping_over_breakpoint)
2916 {
2917 struct regcache *regcache = get_thread_regcache (tp->ptid);
2918
2919 if (breakpoint_here_p (get_regcache_aspace (regcache),
af48d08f
PA
2920 regcache_read_pc (regcache))
2921 == ordinary_breakpoint_here)
99619bea
PA
2922 return 1;
2923
2924 tp->stepping_over_breakpoint = 0;
2925 }
2926
2927 return 0;
2928}
2929
6c4cfb24
PA
2930/* Check whether thread TP still needs to start a step-over in order
2931 to make progress when resumed. Returns an bitwise or of enum
2932 step_over_what bits, indicating what needs to be stepped over. */
2933
8d297bbf 2934static step_over_what
6c4cfb24
PA
2935thread_still_needs_step_over (struct thread_info *tp)
2936{
8d297bbf 2937 step_over_what what = 0;
6c4cfb24
PA
2938
2939 if (thread_still_needs_step_over_bp (tp))
2940 what |= STEP_OVER_BREAKPOINT;
2941
2942 if (tp->stepping_over_watchpoint
2943 && !target_have_steppable_watchpoint)
2944 what |= STEP_OVER_WATCHPOINT;
2945
2946 return what;
2947}
2948
483805cf
PA
2949/* Returns true if scheduler locking applies. STEP indicates whether
2950 we're about to do a step/next-like command to a thread. */
2951
2952static int
856e7dd6 2953schedlock_applies (struct thread_info *tp)
483805cf
PA
2954{
2955 return (scheduler_mode == schedlock_on
2956 || (scheduler_mode == schedlock_step
f2665db5
MM
2957 && tp->control.stepping_command)
2958 || (scheduler_mode == schedlock_replay
2959 && target_record_will_replay (minus_one_ptid,
2960 execution_direction)));
483805cf
PA
2961}
2962
c906108c
SS
2963/* Basic routine for continuing the program in various fashions.
2964
2965 ADDR is the address to resume at, or -1 for resume where stopped.
2966 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2967 or -1 for act according to how it stopped.
c906108c 2968 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2969 -1 means return after that and print nothing.
2970 You should probably set various step_... variables
2971 before calling here, if you are stepping.
c906108c
SS
2972
2973 You should call clear_proceed_status before calling proceed. */
2974
2975void
64ce06e4 2976proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2977{
e58b0e63
PA
2978 struct regcache *regcache;
2979 struct gdbarch *gdbarch;
4e1c45ea 2980 struct thread_info *tp;
e58b0e63 2981 CORE_ADDR pc;
6c95b8df 2982 struct address_space *aspace;
4d9d9d04
PA
2983 ptid_t resume_ptid;
2984 struct execution_control_state ecss;
2985 struct execution_control_state *ecs = &ecss;
2986 struct cleanup *old_chain;
2987 int started;
c906108c 2988
e58b0e63
PA
2989 /* If we're stopped at a fork/vfork, follow the branch set by the
2990 "set follow-fork-mode" command; otherwise, we'll just proceed
2991 resuming the current thread. */
2992 if (!follow_fork ())
2993 {
2994 /* The target for some reason decided not to resume. */
2995 normal_stop ();
f148b27e
PA
2996 if (target_can_async_p ())
2997 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2998 return;
2999 }
3000
842951eb
PA
3001 /* We'll update this if & when we switch to a new thread. */
3002 previous_inferior_ptid = inferior_ptid;
3003
e58b0e63
PA
3004 regcache = get_current_regcache ();
3005 gdbarch = get_regcache_arch (regcache);
6c95b8df 3006 aspace = get_regcache_aspace (regcache);
e58b0e63 3007 pc = regcache_read_pc (regcache);
2adfaa28 3008 tp = inferior_thread ();
e58b0e63 3009
99619bea
PA
3010 /* Fill in with reasonable starting values. */
3011 init_thread_stepping_state (tp);
3012
c2829269
PA
3013 gdb_assert (!thread_is_in_step_over_chain (tp));
3014
2acceee2 3015 if (addr == (CORE_ADDR) -1)
c906108c 3016 {
af48d08f
PA
3017 if (pc == stop_pc
3018 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 3019 && execution_direction != EXEC_REVERSE)
3352ef37
AC
3020 /* There is a breakpoint at the address we will resume at,
3021 step one instruction before inserting breakpoints so that
3022 we do not stop right away (and report a second hit at this
b2175913
MS
3023 breakpoint).
3024
3025 Note, we don't do this in reverse, because we won't
3026 actually be executing the breakpoint insn anyway.
3027 We'll be (un-)executing the previous instruction. */
99619bea 3028 tp->stepping_over_breakpoint = 1;
515630c5
UW
3029 else if (gdbarch_single_step_through_delay_p (gdbarch)
3030 && gdbarch_single_step_through_delay (gdbarch,
3031 get_current_frame ()))
3352ef37
AC
3032 /* We stepped onto an instruction that needs to be stepped
3033 again before re-inserting the breakpoint, do so. */
99619bea 3034 tp->stepping_over_breakpoint = 1;
c906108c
SS
3035 }
3036 else
3037 {
515630c5 3038 regcache_write_pc (regcache, addr);
c906108c
SS
3039 }
3040
70509625
PA
3041 if (siggnal != GDB_SIGNAL_DEFAULT)
3042 tp->suspend.stop_signal = siggnal;
3043
4d9d9d04
PA
3044 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3045
3046 /* If an exception is thrown from this point on, make sure to
3047 propagate GDB's knowledge of the executing state to the
3048 frontend/user running state. */
3049 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3050
3051 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3052 threads (e.g., we might need to set threads stepping over
3053 breakpoints first), from the user/frontend's point of view, all
3054 threads in RESUME_PTID are now running. Unless we're calling an
3055 inferior function, as in that case we pretend the inferior
3056 doesn't run at all. */
3057 if (!tp->control.in_infcall)
3058 set_running (resume_ptid, 1);
17b2616c 3059
527159b7 3060 if (debug_infrun)
8a9de0e4 3061 fprintf_unfiltered (gdb_stdlog,
64ce06e4 3062 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 3063 paddress (gdbarch, addr),
64ce06e4 3064 gdb_signal_to_symbol_string (siggnal));
527159b7 3065
4d9d9d04
PA
3066 annotate_starting ();
3067
3068 /* Make sure that output from GDB appears before output from the
3069 inferior. */
3070 gdb_flush (gdb_stdout);
3071
3072 /* In a multi-threaded task we may select another thread and
3073 then continue or step.
3074
3075 But if a thread that we're resuming had stopped at a breakpoint,
3076 it will immediately cause another breakpoint stop without any
3077 execution (i.e. it will report a breakpoint hit incorrectly). So
3078 we must step over it first.
3079
3080 Look for threads other than the current (TP) that reported a
3081 breakpoint hit and haven't been resumed yet since. */
3082
3083 /* If scheduler locking applies, we can avoid iterating over all
3084 threads. */
3085 if (!non_stop && !schedlock_applies (tp))
94cc34af 3086 {
4d9d9d04
PA
3087 struct thread_info *current = tp;
3088
3089 ALL_NON_EXITED_THREADS (tp)
3090 {
3091 /* Ignore the current thread here. It's handled
3092 afterwards. */
3093 if (tp == current)
3094 continue;
99619bea 3095
4d9d9d04
PA
3096 /* Ignore threads of processes we're not resuming. */
3097 if (!ptid_match (tp->ptid, resume_ptid))
3098 continue;
c906108c 3099
4d9d9d04
PA
3100 if (!thread_still_needs_step_over (tp))
3101 continue;
3102
3103 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3104
99619bea
PA
3105 if (debug_infrun)
3106 fprintf_unfiltered (gdb_stdlog,
3107 "infrun: need to step-over [%s] first\n",
4d9d9d04 3108 target_pid_to_str (tp->ptid));
99619bea 3109
4d9d9d04 3110 thread_step_over_chain_enqueue (tp);
2adfaa28 3111 }
31e77af2 3112
4d9d9d04 3113 tp = current;
30852783
UW
3114 }
3115
4d9d9d04
PA
3116 /* Enqueue the current thread last, so that we move all other
3117 threads over their breakpoints first. */
3118 if (tp->stepping_over_breakpoint)
3119 thread_step_over_chain_enqueue (tp);
30852783 3120
4d9d9d04
PA
3121 /* If the thread isn't started, we'll still need to set its prev_pc,
3122 so that switch_back_to_stepped_thread knows the thread hasn't
3123 advanced. Must do this before resuming any thread, as in
3124 all-stop/remote, once we resume we can't send any other packet
3125 until the target stops again. */
3126 tp->prev_pc = regcache_read_pc (regcache);
99619bea 3127
4d9d9d04 3128 started = start_step_over ();
c906108c 3129
4d9d9d04
PA
3130 if (step_over_info_valid_p ())
3131 {
3132 /* Either this thread started a new in-line step over, or some
3133 other thread was already doing one. In either case, don't
3134 resume anything else until the step-over is finished. */
3135 }
fbea99ea 3136 else if (started && !target_is_non_stop_p ())
4d9d9d04
PA
3137 {
3138 /* A new displaced stepping sequence was started. In all-stop,
3139 we can't talk to the target anymore until it next stops. */
3140 }
fbea99ea
PA
3141 else if (!non_stop && target_is_non_stop_p ())
3142 {
3143 /* In all-stop, but the target is always in non-stop mode.
3144 Start all other threads that are implicitly resumed too. */
3145 ALL_NON_EXITED_THREADS (tp)
3146 {
3147 /* Ignore threads of processes we're not resuming. */
3148 if (!ptid_match (tp->ptid, resume_ptid))
3149 continue;
3150
3151 if (tp->resumed)
3152 {
3153 if (debug_infrun)
3154 fprintf_unfiltered (gdb_stdlog,
3155 "infrun: proceed: [%s] resumed\n",
3156 target_pid_to_str (tp->ptid));
3157 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3158 continue;
3159 }
3160
3161 if (thread_is_in_step_over_chain (tp))
3162 {
3163 if (debug_infrun)
3164 fprintf_unfiltered (gdb_stdlog,
3165 "infrun: proceed: [%s] needs step-over\n",
3166 target_pid_to_str (tp->ptid));
3167 continue;
3168 }
3169
3170 if (debug_infrun)
3171 fprintf_unfiltered (gdb_stdlog,
3172 "infrun: proceed: resuming %s\n",
3173 target_pid_to_str (tp->ptid));
3174
3175 reset_ecs (ecs, tp);
3176 switch_to_thread (tp->ptid);
3177 keep_going_pass_signal (ecs);
3178 if (!ecs->wait_some_more)
fd7dcb94 3179 error (_("Command aborted."));
fbea99ea
PA
3180 }
3181 }
372316f1 3182 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
4d9d9d04
PA
3183 {
3184 /* The thread wasn't started, and isn't queued, run it now. */
3185 reset_ecs (ecs, tp);
3186 switch_to_thread (tp->ptid);
3187 keep_going_pass_signal (ecs);
3188 if (!ecs->wait_some_more)
fd7dcb94 3189 error (_("Command aborted."));
4d9d9d04 3190 }
c906108c 3191
4d9d9d04 3192 discard_cleanups (old_chain);
c906108c 3193
0b333c5e
PA
3194 /* Tell the event loop to wait for it to stop. If the target
3195 supports asynchronous execution, it'll do this from within
3196 target_resume. */
362646f5 3197 if (!target_can_async_p ())
0b333c5e 3198 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3199}
c906108c
SS
3200\f
3201
3202/* Start remote-debugging of a machine over a serial link. */
96baa820 3203
c906108c 3204void
8621d6a9 3205start_remote (int from_tty)
c906108c 3206{
d6b48e9c 3207 struct inferior *inferior;
d6b48e9c
PA
3208
3209 inferior = current_inferior ();
16c381f0 3210 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3211
1777feb0 3212 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3213 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3214 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3215 nothing is returned (instead of just blocking). Because of this,
3216 targets expecting an immediate response need to, internally, set
3217 things up so that the target_wait() is forced to eventually
1777feb0 3218 timeout. */
6426a772
JM
3219 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3220 differentiate to its caller what the state of the target is after
3221 the initial open has been performed. Here we're assuming that
3222 the target has stopped. It should be possible to eventually have
3223 target_open() return to the caller an indication that the target
3224 is currently running and GDB state should be set to the same as
1777feb0 3225 for an async run. */
e4c8541f 3226 wait_for_inferior ();
8621d6a9
DJ
3227
3228 /* Now that the inferior has stopped, do any bookkeeping like
3229 loading shared libraries. We want to do this before normal_stop,
3230 so that the displayed frame is up to date. */
3231 post_create_inferior (&current_target, from_tty);
3232
6426a772 3233 normal_stop ();
c906108c
SS
3234}
3235
3236/* Initialize static vars when a new inferior begins. */
3237
3238void
96baa820 3239init_wait_for_inferior (void)
c906108c
SS
3240{
3241 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3242
c906108c
SS
3243 breakpoint_init_inferior (inf_starting);
3244
70509625 3245 clear_proceed_status (0);
9f976b41 3246
ca005067 3247 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3248
842951eb 3249 previous_inferior_ptid = inferior_ptid;
0d1e5fa7 3250
edb3359d
DJ
3251 /* Discard any skipped inlined frames. */
3252 clear_inline_frame_state (minus_one_ptid);
c906108c 3253}
237fc4c9 3254
c906108c 3255\f
488f131b 3256
ec9499be 3257static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3258
568d6575
UW
3259static void handle_step_into_function (struct gdbarch *gdbarch,
3260 struct execution_control_state *ecs);
3261static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3262 struct execution_control_state *ecs);
4f5d7f63 3263static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3264static void check_exception_resume (struct execution_control_state *,
28106bc2 3265 struct frame_info *);
611c83ae 3266
bdc36728 3267static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3268static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3269static void keep_going (struct execution_control_state *ecs);
94c57d6a 3270static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3271static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3272
252fbfc8
PA
3273/* Callback for iterate over threads. If the thread is stopped, but
3274 the user/frontend doesn't know about that yet, go through
3275 normal_stop, as if the thread had just stopped now. ARG points at
3276 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
3277 ptid_is_pid(PTID) is true, applies to all threads of the process
3278 pointed at by PTID. Otherwise, apply only to the thread pointed by
3279 PTID. */
3280
3281static int
3282infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
3283{
3284 ptid_t ptid = * (ptid_t *) arg;
3285
3286 if ((ptid_equal (info->ptid, ptid)
3287 || ptid_equal (minus_one_ptid, ptid)
3288 || (ptid_is_pid (ptid)
3289 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
3290 && is_running (info->ptid)
3291 && !is_executing (info->ptid))
3292 {
3293 struct cleanup *old_chain;
3294 struct execution_control_state ecss;
3295 struct execution_control_state *ecs = &ecss;
3296
3297 memset (ecs, 0, sizeof (*ecs));
3298
3299 old_chain = make_cleanup_restore_current_thread ();
3300
f15cb84a
YQ
3301 overlay_cache_invalid = 1;
3302 /* Flush target cache before starting to handle each event.
3303 Target was running and cache could be stale. This is just a
3304 heuristic. Running threads may modify target memory, but we
3305 don't get any event. */
3306 target_dcache_invalidate ();
3307
252fbfc8
PA
3308 /* Go through handle_inferior_event/normal_stop, so we always
3309 have consistent output as if the stop event had been
3310 reported. */
3311 ecs->ptid = info->ptid;
243a9253 3312 ecs->event_thread = info;
252fbfc8 3313 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 3314 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
3315
3316 handle_inferior_event (ecs);
3317
3318 if (!ecs->wait_some_more)
3319 {
243a9253
PA
3320 /* Cancel any running execution command. */
3321 thread_cancel_execution_command (info);
3322
252fbfc8 3323 normal_stop ();
252fbfc8
PA
3324 }
3325
3326 do_cleanups (old_chain);
3327 }
3328
3329 return 0;
3330}
3331
3332/* This function is attached as a "thread_stop_requested" observer.
3333 Cleanup local state that assumed the PTID was to be resumed, and
3334 report the stop to the frontend. */
3335
2c0b251b 3336static void
252fbfc8
PA
3337infrun_thread_stop_requested (ptid_t ptid)
3338{
c2829269 3339 struct thread_info *tp;
252fbfc8 3340
c2829269
PA
3341 /* PTID was requested to stop. Remove matching threads from the
3342 step-over queue, so we don't try to resume them
3343 automatically. */
3344 ALL_NON_EXITED_THREADS (tp)
3345 if (ptid_match (tp->ptid, ptid))
3346 {
3347 if (thread_is_in_step_over_chain (tp))
3348 thread_step_over_chain_remove (tp);
3349 }
252fbfc8
PA
3350
3351 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
3352}
3353
a07daef3
PA
3354static void
3355infrun_thread_thread_exit (struct thread_info *tp, int silent)
3356{
3357 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3358 nullify_last_target_wait_ptid ();
3359}
3360
0cbcdb96
PA
3361/* Delete the step resume, single-step and longjmp/exception resume
3362 breakpoints of TP. */
4e1c45ea 3363
0cbcdb96
PA
3364static void
3365delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3366{
0cbcdb96
PA
3367 delete_step_resume_breakpoint (tp);
3368 delete_exception_resume_breakpoint (tp);
34b7e8a6 3369 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3370}
3371
0cbcdb96
PA
3372/* If the target still has execution, call FUNC for each thread that
3373 just stopped. In all-stop, that's all the non-exited threads; in
3374 non-stop, that's the current thread, only. */
3375
3376typedef void (*for_each_just_stopped_thread_callback_func)
3377 (struct thread_info *tp);
4e1c45ea
PA
3378
3379static void
0cbcdb96 3380for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3381{
0cbcdb96 3382 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
4e1c45ea
PA
3383 return;
3384
fbea99ea 3385 if (target_is_non_stop_p ())
4e1c45ea 3386 {
0cbcdb96
PA
3387 /* If in non-stop mode, only the current thread stopped. */
3388 func (inferior_thread ());
4e1c45ea
PA
3389 }
3390 else
0cbcdb96
PA
3391 {
3392 struct thread_info *tp;
3393
3394 /* In all-stop mode, all threads have stopped. */
3395 ALL_NON_EXITED_THREADS (tp)
3396 {
3397 func (tp);
3398 }
3399 }
3400}
3401
3402/* Delete the step resume and longjmp/exception resume breakpoints of
3403 the threads that just stopped. */
3404
3405static void
3406delete_just_stopped_threads_infrun_breakpoints (void)
3407{
3408 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3409}
3410
3411/* Delete the single-step breakpoints of the threads that just
3412 stopped. */
7c16b83e 3413
34b7e8a6
PA
3414static void
3415delete_just_stopped_threads_single_step_breakpoints (void)
3416{
3417 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3418}
3419
1777feb0 3420/* A cleanup wrapper. */
4e1c45ea
PA
3421
3422static void
0cbcdb96 3423delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
4e1c45ea 3424{
0cbcdb96 3425 delete_just_stopped_threads_infrun_breakpoints ();
4e1c45ea
PA
3426}
3427
221e1a37 3428/* See infrun.h. */
223698f8 3429
221e1a37 3430void
223698f8
DE
3431print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3432 const struct target_waitstatus *ws)
3433{
3434 char *status_string = target_waitstatus_to_string (ws);
3435 struct ui_file *tmp_stream = mem_fileopen ();
3436 char *text;
223698f8
DE
3437
3438 /* The text is split over several lines because it was getting too long.
3439 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3440 output as a unit; we want only one timestamp printed if debug_timestamp
3441 is set. */
3442
3443 fprintf_unfiltered (tmp_stream,
1176ecec
PA
3444 "infrun: target_wait (%d.%ld.%ld",
3445 ptid_get_pid (waiton_ptid),
3446 ptid_get_lwp (waiton_ptid),
3447 ptid_get_tid (waiton_ptid));
dfd4cc63 3448 if (ptid_get_pid (waiton_ptid) != -1)
223698f8
DE
3449 fprintf_unfiltered (tmp_stream,
3450 " [%s]", target_pid_to_str (waiton_ptid));
3451 fprintf_unfiltered (tmp_stream, ", status) =\n");
3452 fprintf_unfiltered (tmp_stream,
1176ecec 3453 "infrun: %d.%ld.%ld [%s],\n",
dfd4cc63 3454 ptid_get_pid (result_ptid),
1176ecec
PA
3455 ptid_get_lwp (result_ptid),
3456 ptid_get_tid (result_ptid),
dfd4cc63 3457 target_pid_to_str (result_ptid));
223698f8
DE
3458 fprintf_unfiltered (tmp_stream,
3459 "infrun: %s\n",
3460 status_string);
3461
759ef836 3462 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
3463
3464 /* This uses %s in part to handle %'s in the text, but also to avoid
3465 a gcc error: the format attribute requires a string literal. */
3466 fprintf_unfiltered (gdb_stdlog, "%s", text);
3467
3468 xfree (status_string);
3469 xfree (text);
3470 ui_file_delete (tmp_stream);
3471}
3472
372316f1
PA
3473/* Select a thread at random, out of those which are resumed and have
3474 had events. */
3475
3476static struct thread_info *
3477random_pending_event_thread (ptid_t waiton_ptid)
3478{
3479 struct thread_info *event_tp;
3480 int num_events = 0;
3481 int random_selector;
3482
3483 /* First see how many events we have. Count only resumed threads
3484 that have an event pending. */
3485 ALL_NON_EXITED_THREADS (event_tp)
3486 if (ptid_match (event_tp->ptid, waiton_ptid)
3487 && event_tp->resumed
3488 && event_tp->suspend.waitstatus_pending_p)
3489 num_events++;
3490
3491 if (num_events == 0)
3492 return NULL;
3493
3494 /* Now randomly pick a thread out of those that have had events. */
3495 random_selector = (int)
3496 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3497
3498 if (debug_infrun && num_events > 1)
3499 fprintf_unfiltered (gdb_stdlog,
3500 "infrun: Found %d events, selecting #%d\n",
3501 num_events, random_selector);
3502
3503 /* Select the Nth thread that has had an event. */
3504 ALL_NON_EXITED_THREADS (event_tp)
3505 if (ptid_match (event_tp->ptid, waiton_ptid)
3506 && event_tp->resumed
3507 && event_tp->suspend.waitstatus_pending_p)
3508 if (random_selector-- == 0)
3509 break;
3510
3511 return event_tp;
3512}
3513
3514/* Wrapper for target_wait that first checks whether threads have
3515 pending statuses to report before actually asking the target for
3516 more events. */
3517
3518static ptid_t
3519do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3520{
3521 ptid_t event_ptid;
3522 struct thread_info *tp;
3523
3524 /* First check if there is a resumed thread with a wait status
3525 pending. */
3526 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3527 {
3528 tp = random_pending_event_thread (ptid);
3529 }
3530 else
3531 {
3532 if (debug_infrun)
3533 fprintf_unfiltered (gdb_stdlog,
3534 "infrun: Waiting for specific thread %s.\n",
3535 target_pid_to_str (ptid));
3536
3537 /* We have a specific thread to check. */
3538 tp = find_thread_ptid (ptid);
3539 gdb_assert (tp != NULL);
3540 if (!tp->suspend.waitstatus_pending_p)
3541 tp = NULL;
3542 }
3543
3544 if (tp != NULL
3545 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3546 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3547 {
3548 struct regcache *regcache = get_thread_regcache (tp->ptid);
3549 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3550 CORE_ADDR pc;
3551 int discard = 0;
3552
3553 pc = regcache_read_pc (regcache);
3554
3555 if (pc != tp->suspend.stop_pc)
3556 {
3557 if (debug_infrun)
3558 fprintf_unfiltered (gdb_stdlog,
3559 "infrun: PC of %s changed. was=%s, now=%s\n",
3560 target_pid_to_str (tp->ptid),
3561 paddress (gdbarch, tp->prev_pc),
3562 paddress (gdbarch, pc));
3563 discard = 1;
3564 }
3565 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3566 {
3567 if (debug_infrun)
3568 fprintf_unfiltered (gdb_stdlog,
3569 "infrun: previous breakpoint of %s, at %s gone\n",
3570 target_pid_to_str (tp->ptid),
3571 paddress (gdbarch, pc));
3572
3573 discard = 1;
3574 }
3575
3576 if (discard)
3577 {
3578 if (debug_infrun)
3579 fprintf_unfiltered (gdb_stdlog,
3580 "infrun: pending event of %s cancelled.\n",
3581 target_pid_to_str (tp->ptid));
3582
3583 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3584 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3585 }
3586 }
3587
3588 if (tp != NULL)
3589 {
3590 if (debug_infrun)
3591 {
3592 char *statstr;
3593
3594 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3595 fprintf_unfiltered (gdb_stdlog,
3596 "infrun: Using pending wait status %s for %s.\n",
3597 statstr,
3598 target_pid_to_str (tp->ptid));
3599 xfree (statstr);
3600 }
3601
3602 /* Now that we've selected our final event LWP, un-adjust its PC
3603 if it was a software breakpoint (and the target doesn't
3604 always adjust the PC itself). */
3605 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3606 && !target_supports_stopped_by_sw_breakpoint ())
3607 {
3608 struct regcache *regcache;
3609 struct gdbarch *gdbarch;
3610 int decr_pc;
3611
3612 regcache = get_thread_regcache (tp->ptid);
3613 gdbarch = get_regcache_arch (regcache);
3614
3615 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3616 if (decr_pc != 0)
3617 {
3618 CORE_ADDR pc;
3619
3620 pc = regcache_read_pc (regcache);
3621 regcache_write_pc (regcache, pc + decr_pc);
3622 }
3623 }
3624
3625 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3626 *status = tp->suspend.waitstatus;
3627 tp->suspend.waitstatus_pending_p = 0;
3628
3629 /* Wake up the event loop again, until all pending events are
3630 processed. */
3631 if (target_is_async_p ())
3632 mark_async_event_handler (infrun_async_inferior_event_token);
3633 return tp->ptid;
3634 }
3635
3636 /* But if we don't find one, we'll have to wait. */
3637
3638 if (deprecated_target_wait_hook)
3639 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3640 else
3641 event_ptid = target_wait (ptid, status, options);
3642
3643 return event_ptid;
3644}
3645
24291992
PA
3646/* Prepare and stabilize the inferior for detaching it. E.g.,
3647 detaching while a thread is displaced stepping is a recipe for
3648 crashing it, as nothing would readjust the PC out of the scratch
3649 pad. */
3650
3651void
3652prepare_for_detach (void)
3653{
3654 struct inferior *inf = current_inferior ();
3655 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3656 struct cleanup *old_chain_1;
3657 struct displaced_step_inferior_state *displaced;
3658
3659 displaced = get_displaced_stepping_state (inf->pid);
3660
3661 /* Is any thread of this process displaced stepping? If not,
3662 there's nothing else to do. */
3663 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3664 return;
3665
3666 if (debug_infrun)
3667 fprintf_unfiltered (gdb_stdlog,
3668 "displaced-stepping in-process while detaching");
3669
3670 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3671 inf->detaching = 1;
3672
3673 while (!ptid_equal (displaced->step_ptid, null_ptid))
3674 {
3675 struct cleanup *old_chain_2;
3676 struct execution_control_state ecss;
3677 struct execution_control_state *ecs;
3678
3679 ecs = &ecss;
3680 memset (ecs, 0, sizeof (*ecs));
3681
3682 overlay_cache_invalid = 1;
f15cb84a
YQ
3683 /* Flush target cache before starting to handle each event.
3684 Target was running and cache could be stale. This is just a
3685 heuristic. Running threads may modify target memory, but we
3686 don't get any event. */
3687 target_dcache_invalidate ();
24291992 3688
372316f1 3689 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3690
3691 if (debug_infrun)
3692 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3693
3694 /* If an error happens while handling the event, propagate GDB's
3695 knowledge of the executing state to the frontend/user running
3696 state. */
3e43a32a
MS
3697 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3698 &minus_one_ptid);
24291992
PA
3699
3700 /* Now figure out what to do with the result of the result. */
3701 handle_inferior_event (ecs);
3702
3703 /* No error, don't finish the state yet. */
3704 discard_cleanups (old_chain_2);
3705
3706 /* Breakpoints and watchpoints are not installed on the target
3707 at this point, and signals are passed directly to the
3708 inferior, so this must mean the process is gone. */
3709 if (!ecs->wait_some_more)
3710 {
3711 discard_cleanups (old_chain_1);
3712 error (_("Program exited while detaching"));
3713 }
3714 }
3715
3716 discard_cleanups (old_chain_1);
3717}
3718
cd0fc7c3 3719/* Wait for control to return from inferior to debugger.
ae123ec6 3720
cd0fc7c3
SS
3721 If inferior gets a signal, we may decide to start it up again
3722 instead of returning. That is why there is a loop in this function.
3723 When this function actually returns it means the inferior
3724 should be left stopped and GDB should read more commands. */
3725
3726void
e4c8541f 3727wait_for_inferior (void)
cd0fc7c3
SS
3728{
3729 struct cleanup *old_cleanups;
e6f5c25b 3730 struct cleanup *thread_state_chain;
c906108c 3731
527159b7 3732 if (debug_infrun)
ae123ec6 3733 fprintf_unfiltered
e4c8541f 3734 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3735
0cbcdb96
PA
3736 old_cleanups
3737 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3738 NULL);
cd0fc7c3 3739
e6f5c25b
PA
3740 /* If an error happens while handling the event, propagate GDB's
3741 knowledge of the executing state to the frontend/user running
3742 state. */
3743 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3744
c906108c
SS
3745 while (1)
3746 {
ae25568b
PA
3747 struct execution_control_state ecss;
3748 struct execution_control_state *ecs = &ecss;
963f9c80 3749 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3750
ae25568b
PA
3751 memset (ecs, 0, sizeof (*ecs));
3752
ec9499be 3753 overlay_cache_invalid = 1;
ec9499be 3754
f15cb84a
YQ
3755 /* Flush target cache before starting to handle each event.
3756 Target was running and cache could be stale. This is just a
3757 heuristic. Running threads may modify target memory, but we
3758 don't get any event. */
3759 target_dcache_invalidate ();
3760
372316f1 3761 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3762
f00150c9 3763 if (debug_infrun)
223698f8 3764 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3765
cd0fc7c3
SS
3766 /* Now figure out what to do with the result of the result. */
3767 handle_inferior_event (ecs);
c906108c 3768
cd0fc7c3
SS
3769 if (!ecs->wait_some_more)
3770 break;
3771 }
4e1c45ea 3772
e6f5c25b
PA
3773 /* No error, don't finish the state yet. */
3774 discard_cleanups (thread_state_chain);
3775
cd0fc7c3
SS
3776 do_cleanups (old_cleanups);
3777}
c906108c 3778
d3d4baed
PA
3779/* Cleanup that reinstalls the readline callback handler, if the
3780 target is running in the background. If while handling the target
3781 event something triggered a secondary prompt, like e.g., a
3782 pagination prompt, we'll have removed the callback handler (see
3783 gdb_readline_wrapper_line). Need to do this as we go back to the
3784 event loop, ready to process further input. Note this has no
3785 effect if the handler hasn't actually been removed, because calling
3786 rl_callback_handler_install resets the line buffer, thus losing
3787 input. */
3788
3789static void
3790reinstall_readline_callback_handler_cleanup (void *arg)
3791{
3b12939d
PA
3792 struct ui *ui = current_ui;
3793
3794 if (!ui->async)
6c400b59
PA
3795 {
3796 /* We're not going back to the top level event loop yet. Don't
3797 install the readline callback, as it'd prep the terminal,
3798 readline-style (raw, noecho) (e.g., --batch). We'll install
3799 it the next time the prompt is displayed, when we're ready
3800 for input. */
3801 return;
3802 }
3803
3b12939d 3804 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3805 gdb_rl_callback_handler_reinstall ();
3806}
3807
243a9253
PA
3808/* Clean up the FSMs of threads that are now stopped. In non-stop,
3809 that's just the event thread. In all-stop, that's all threads. */
3810
3811static void
3812clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3813{
3814 struct thread_info *thr = ecs->event_thread;
3815
3816 if (thr != NULL && thr->thread_fsm != NULL)
8980e177 3817 thread_fsm_clean_up (thr->thread_fsm, thr);
243a9253
PA
3818
3819 if (!non_stop)
3820 {
3821 ALL_NON_EXITED_THREADS (thr)
3822 {
3823 if (thr->thread_fsm == NULL)
3824 continue;
3825 if (thr == ecs->event_thread)
3826 continue;
3827
3828 switch_to_thread (thr->ptid);
8980e177 3829 thread_fsm_clean_up (thr->thread_fsm, thr);
243a9253
PA
3830 }
3831
3832 if (ecs->event_thread != NULL)
3833 switch_to_thread (ecs->event_thread->ptid);
3834 }
3835}
3836
3b12939d
PA
3837/* Helper for all_uis_check_sync_execution_done that works on the
3838 current UI. */
3839
3840static void
3841check_curr_ui_sync_execution_done (void)
3842{
3843 struct ui *ui = current_ui;
3844
3845 if (ui->prompt_state == PROMPT_NEEDED
3846 && ui->async
3847 && !gdb_in_secondary_prompt_p (ui))
3848 {
3849 target_terminal_ours ();
3850 observer_notify_sync_execution_done ();
3eb7562a 3851 ui_register_input_event_handler (ui);
3b12939d
PA
3852 }
3853}
3854
3855/* See infrun.h. */
3856
3857void
3858all_uis_check_sync_execution_done (void)
3859{
3860 struct switch_thru_all_uis state;
3861
3862 SWITCH_THRU_ALL_UIS (state)
3863 {
3864 check_curr_ui_sync_execution_done ();
3865 }
3866}
3867
a8836c93
PA
3868/* See infrun.h. */
3869
3870void
3871all_uis_on_sync_execution_starting (void)
3872{
3873 struct switch_thru_all_uis state;
3874
3875 SWITCH_THRU_ALL_UIS (state)
3876 {
3877 if (current_ui->prompt_state == PROMPT_NEEDED)
3878 async_disable_stdin ();
3879 }
3880}
3881
1777feb0 3882/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3883 event loop whenever a change of state is detected on the file
1777feb0
MS
3884 descriptor corresponding to the target. It can be called more than
3885 once to complete a single execution command. In such cases we need
3886 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3887 that this function is called for a single execution command, then
3888 report to the user that the inferior has stopped, and do the
1777feb0 3889 necessary cleanups. */
43ff13b4
JM
3890
3891void
fba45db2 3892fetch_inferior_event (void *client_data)
43ff13b4 3893{
0d1e5fa7 3894 struct execution_control_state ecss;
a474d7c2 3895 struct execution_control_state *ecs = &ecss;
4f8d22e3 3896 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 3897 struct cleanup *ts_old_chain;
0f641c01 3898 int cmd_done = 0;
963f9c80 3899 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3900
0d1e5fa7
PA
3901 memset (ecs, 0, sizeof (*ecs));
3902
c61db772
PA
3903 /* Events are always processed with the main UI as current UI. This
3904 way, warnings, debug output, etc. are always consistently sent to
3905 the main console. */
4b6749b9 3906 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3907
d3d4baed
PA
3908 /* End up with readline processing input, if necessary. */
3909 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3910
c5187ac6
PA
3911 /* We're handling a live event, so make sure we're doing live
3912 debugging. If we're looking at traceframes while the target is
3913 running, we're going to need to get back to that mode after
3914 handling the event. */
3915 if (non_stop)
3916 {
3917 make_cleanup_restore_current_traceframe ();
e6e4e701 3918 set_current_traceframe (-1);
c5187ac6
PA
3919 }
3920
4f8d22e3
PA
3921 if (non_stop)
3922 /* In non-stop mode, the user/frontend should not notice a thread
3923 switch due to internal events. Make sure we reverse to the
3924 user selected thread and frame after handling the event and
3925 running any breakpoint commands. */
3926 make_cleanup_restore_current_thread ();
3927
ec9499be 3928 overlay_cache_invalid = 1;
f15cb84a
YQ
3929 /* Flush target cache before starting to handle each event. Target
3930 was running and cache could be stale. This is just a heuristic.
3931 Running threads may modify target memory, but we don't get any
3932 event. */
3933 target_dcache_invalidate ();
3dd5b83d 3934
b7b633e9
TT
3935 scoped_restore save_exec_dir
3936 = make_scoped_restore (&execution_direction, target_execution_direction ());
32231432 3937
0b333c5e
PA
3938 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3939 target_can_async_p () ? TARGET_WNOHANG : 0);
43ff13b4 3940
f00150c9 3941 if (debug_infrun)
223698f8 3942 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3943
29f49a6a
PA
3944 /* If an error happens while handling the event, propagate GDB's
3945 knowledge of the executing state to the frontend/user running
3946 state. */
fbea99ea 3947 if (!target_is_non_stop_p ())
29f49a6a
PA
3948 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3949 else
3950 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3951
353d1d73
JK
3952 /* Get executed before make_cleanup_restore_current_thread above to apply
3953 still for the thread which has thrown the exception. */
3954 make_bpstat_clear_actions_cleanup ();
3955
7c16b83e
PA
3956 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3957
43ff13b4 3958 /* Now figure out what to do with the result of the result. */
a474d7c2 3959 handle_inferior_event (ecs);
43ff13b4 3960
a474d7c2 3961 if (!ecs->wait_some_more)
43ff13b4 3962 {
c9657e70 3963 struct inferior *inf = find_inferior_ptid (ecs->ptid);
243a9253
PA
3964 int should_stop = 1;
3965 struct thread_info *thr = ecs->event_thread;
388a7084 3966 int should_notify_stop = 1;
d6b48e9c 3967
0cbcdb96 3968 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3969
243a9253
PA
3970 if (thr != NULL)
3971 {
3972 struct thread_fsm *thread_fsm = thr->thread_fsm;
3973
3974 if (thread_fsm != NULL)
8980e177 3975 should_stop = thread_fsm_should_stop (thread_fsm, thr);
243a9253
PA
3976 }
3977
3978 if (!should_stop)
3979 {
3980 keep_going (ecs);
3981 }
c2d11a7d 3982 else
0f641c01 3983 {
243a9253
PA
3984 clean_up_just_stopped_threads_fsms (ecs);
3985
388a7084
PA
3986 if (thr != NULL && thr->thread_fsm != NULL)
3987 {
3988 should_notify_stop
3989 = thread_fsm_should_notify_stop (thr->thread_fsm);
3990 }
3991
3992 if (should_notify_stop)
3993 {
4c2f2a79
PA
3994 int proceeded = 0;
3995
388a7084
PA
3996 /* We may not find an inferior if this was a process exit. */
3997 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4c2f2a79 3998 proceeded = normal_stop ();
243a9253 3999
4c2f2a79
PA
4000 if (!proceeded)
4001 {
4002 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
4003 cmd_done = 1;
4004 }
388a7084 4005 }
0f641c01 4006 }
43ff13b4 4007 }
4f8d22e3 4008
29f49a6a
PA
4009 /* No error, don't finish the thread states yet. */
4010 discard_cleanups (ts_old_chain);
4011
4f8d22e3
PA
4012 /* Revert thread and frame. */
4013 do_cleanups (old_chain);
4014
3b12939d
PA
4015 /* If a UI was in sync execution mode, and now isn't, restore its
4016 prompt (a synchronous execution command has finished, and we're
4017 ready for input). */
4018 all_uis_check_sync_execution_done ();
0f641c01
PA
4019
4020 if (cmd_done
0f641c01
PA
4021 && exec_done_display_p
4022 && (ptid_equal (inferior_ptid, null_ptid)
4023 || !is_running (inferior_ptid)))
4024 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
4025}
4026
edb3359d
DJ
4027/* Record the frame and location we're currently stepping through. */
4028void
4029set_step_info (struct frame_info *frame, struct symtab_and_line sal)
4030{
4031 struct thread_info *tp = inferior_thread ();
4032
16c381f0
JK
4033 tp->control.step_frame_id = get_frame_id (frame);
4034 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
4035
4036 tp->current_symtab = sal.symtab;
4037 tp->current_line = sal.line;
4038}
4039
0d1e5fa7
PA
4040/* Clear context switchable stepping state. */
4041
4042void
4e1c45ea 4043init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 4044{
7f5ef605 4045 tss->stepped_breakpoint = 0;
0d1e5fa7 4046 tss->stepping_over_breakpoint = 0;
963f9c80 4047 tss->stepping_over_watchpoint = 0;
0d1e5fa7 4048 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
4049}
4050
c32c64b7
DE
4051/* Set the cached copy of the last ptid/waitstatus. */
4052
6efcd9a8 4053void
c32c64b7
DE
4054set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4055{
4056 target_last_wait_ptid = ptid;
4057 target_last_waitstatus = status;
4058}
4059
e02bc4cc 4060/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
4061 target_wait()/deprecated_target_wait_hook(). The data is actually
4062 cached by handle_inferior_event(), which gets called immediately
4063 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
4064
4065void
488f131b 4066get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 4067{
39f77062 4068 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
4069 *status = target_last_waitstatus;
4070}
4071
ac264b3b
MS
4072void
4073nullify_last_target_wait_ptid (void)
4074{
4075 target_last_wait_ptid = minus_one_ptid;
4076}
4077
dcf4fbde 4078/* Switch thread contexts. */
dd80620e
MS
4079
4080static void
0d1e5fa7 4081context_switch (ptid_t ptid)
dd80620e 4082{
4b51d87b 4083 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
4084 {
4085 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4086 target_pid_to_str (inferior_ptid));
4087 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 4088 target_pid_to_str (ptid));
fd48f117
DJ
4089 }
4090
0d1e5fa7 4091 switch_to_thread (ptid);
dd80620e
MS
4092}
4093
d8dd4d5f
PA
4094/* If the target can't tell whether we've hit breakpoints
4095 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4096 check whether that could have been caused by a breakpoint. If so,
4097 adjust the PC, per gdbarch_decr_pc_after_break. */
4098
4fa8626c 4099static void
d8dd4d5f
PA
4100adjust_pc_after_break (struct thread_info *thread,
4101 struct target_waitstatus *ws)
4fa8626c 4102{
24a73cce
UW
4103 struct regcache *regcache;
4104 struct gdbarch *gdbarch;
6c95b8df 4105 struct address_space *aspace;
118e6252 4106 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4107
4fa8626c
DJ
4108 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4109 we aren't, just return.
9709f61c
DJ
4110
4111 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4112 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4113 implemented by software breakpoints should be handled through the normal
4114 breakpoint layer.
8fb3e588 4115
4fa8626c
DJ
4116 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4117 different signals (SIGILL or SIGEMT for instance), but it is less
4118 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4119 gdbarch_decr_pc_after_break. I don't know any specific target that
4120 generates these signals at breakpoints (the code has been in GDB since at
4121 least 1992) so I can not guess how to handle them here.
8fb3e588 4122
e6cf7916
UW
4123 In earlier versions of GDB, a target with
4124 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4125 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4126 target with both of these set in GDB history, and it seems unlikely to be
4127 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4128
d8dd4d5f 4129 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4130 return;
4131
d8dd4d5f 4132 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4133 return;
4134
4058b839
PA
4135 /* In reverse execution, when a breakpoint is hit, the instruction
4136 under it has already been de-executed. The reported PC always
4137 points at the breakpoint address, so adjusting it further would
4138 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4139 architecture:
4140
4141 B1 0x08000000 : INSN1
4142 B2 0x08000001 : INSN2
4143 0x08000002 : INSN3
4144 PC -> 0x08000003 : INSN4
4145
4146 Say you're stopped at 0x08000003 as above. Reverse continuing
4147 from that point should hit B2 as below. Reading the PC when the
4148 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4149 been de-executed already.
4150
4151 B1 0x08000000 : INSN1
4152 B2 PC -> 0x08000001 : INSN2
4153 0x08000002 : INSN3
4154 0x08000003 : INSN4
4155
4156 We can't apply the same logic as for forward execution, because
4157 we would wrongly adjust the PC to 0x08000000, since there's a
4158 breakpoint at PC - 1. We'd then report a hit on B1, although
4159 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4160 behaviour. */
4161 if (execution_direction == EXEC_REVERSE)
4162 return;
4163
1cf4d951
PA
4164 /* If the target can tell whether the thread hit a SW breakpoint,
4165 trust it. Targets that can tell also adjust the PC
4166 themselves. */
4167 if (target_supports_stopped_by_sw_breakpoint ())
4168 return;
4169
4170 /* Note that relying on whether a breakpoint is planted in memory to
4171 determine this can fail. E.g,. the breakpoint could have been
4172 removed since. Or the thread could have been told to step an
4173 instruction the size of a breakpoint instruction, and only
4174 _after_ was a breakpoint inserted at its address. */
4175
24a73cce
UW
4176 /* If this target does not decrement the PC after breakpoints, then
4177 we have nothing to do. */
d8dd4d5f 4178 regcache = get_thread_regcache (thread->ptid);
24a73cce 4179 gdbarch = get_regcache_arch (regcache);
118e6252 4180
527a273a 4181 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4182 if (decr_pc == 0)
24a73cce
UW
4183 return;
4184
6c95b8df
PA
4185 aspace = get_regcache_aspace (regcache);
4186
8aad930b
AC
4187 /* Find the location where (if we've hit a breakpoint) the
4188 breakpoint would be. */
118e6252 4189 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4190
1cf4d951
PA
4191 /* If the target can't tell whether a software breakpoint triggered,
4192 fallback to figuring it out based on breakpoints we think were
4193 inserted in the target, and on whether the thread was stepped or
4194 continued. */
4195
1c5cfe86
PA
4196 /* Check whether there actually is a software breakpoint inserted at
4197 that location.
4198
4199 If in non-stop mode, a race condition is possible where we've
4200 removed a breakpoint, but stop events for that breakpoint were
4201 already queued and arrive later. To suppress those spurious
4202 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4203 and retire them after a number of stop events are reported. Note
4204 this is an heuristic and can thus get confused. The real fix is
4205 to get the "stopped by SW BP and needs adjustment" info out of
4206 the target/kernel (and thus never reach here; see above). */
6c95b8df 4207 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4208 || (target_is_non_stop_p ()
4209 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4210 {
77f9e713 4211 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
abbb1732 4212
8213266a 4213 if (record_full_is_used ())
77f9e713 4214 record_full_gdb_operation_disable_set ();
96429cc8 4215
1c0fdd0e
UW
4216 /* When using hardware single-step, a SIGTRAP is reported for both
4217 a completed single-step and a software breakpoint. Need to
4218 differentiate between the two, as the latter needs adjusting
4219 but the former does not.
4220
4221 The SIGTRAP can be due to a completed hardware single-step only if
4222 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4223 - this thread is currently being stepped
4224
4225 If any of these events did not occur, we must have stopped due
4226 to hitting a software breakpoint, and have to back up to the
4227 breakpoint address.
4228
4229 As a special case, we could have hardware single-stepped a
4230 software breakpoint. In this case (prev_pc == breakpoint_pc),
4231 we also need to back up to the breakpoint address. */
4232
d8dd4d5f
PA
4233 if (thread_has_single_step_breakpoints_set (thread)
4234 || !currently_stepping (thread)
4235 || (thread->stepped_breakpoint
4236 && thread->prev_pc == breakpoint_pc))
515630c5 4237 regcache_write_pc (regcache, breakpoint_pc);
96429cc8 4238
77f9e713 4239 do_cleanups (old_cleanups);
8aad930b 4240 }
4fa8626c
DJ
4241}
4242
edb3359d
DJ
4243static int
4244stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4245{
4246 for (frame = get_prev_frame (frame);
4247 frame != NULL;
4248 frame = get_prev_frame (frame))
4249 {
4250 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4251 return 1;
4252 if (get_frame_type (frame) != INLINE_FRAME)
4253 break;
4254 }
4255
4256 return 0;
4257}
4258
a96d9b2e
SDJ
4259/* Auxiliary function that handles syscall entry/return events.
4260 It returns 1 if the inferior should keep going (and GDB
4261 should ignore the event), or 0 if the event deserves to be
4262 processed. */
ca2163eb 4263
a96d9b2e 4264static int
ca2163eb 4265handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4266{
ca2163eb 4267 struct regcache *regcache;
ca2163eb
PA
4268 int syscall_number;
4269
4270 if (!ptid_equal (ecs->ptid, inferior_ptid))
4271 context_switch (ecs->ptid);
4272
4273 regcache = get_thread_regcache (ecs->ptid);
f90263c1 4274 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
4275 stop_pc = regcache_read_pc (regcache);
4276
a96d9b2e
SDJ
4277 if (catch_syscall_enabled () > 0
4278 && catching_syscall_number (syscall_number) > 0)
4279 {
4280 if (debug_infrun)
4281 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4282 syscall_number);
a96d9b2e 4283
16c381f0 4284 ecs->event_thread->control.stop_bpstat
6c95b8df 4285 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 4286 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4287
ce12b012 4288 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4289 {
4290 /* Catchpoint hit. */
ca2163eb
PA
4291 return 0;
4292 }
a96d9b2e 4293 }
ca2163eb
PA
4294
4295 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4296 keep_going (ecs);
4297 return 1;
a96d9b2e
SDJ
4298}
4299
7e324e48
GB
4300/* Lazily fill in the execution_control_state's stop_func_* fields. */
4301
4302static void
4303fill_in_stop_func (struct gdbarch *gdbarch,
4304 struct execution_control_state *ecs)
4305{
4306 if (!ecs->stop_func_filled_in)
4307 {
4308 /* Don't care about return value; stop_func_start and stop_func_name
4309 will both be 0 if it doesn't work. */
4310 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4311 &ecs->stop_func_start, &ecs->stop_func_end);
4312 ecs->stop_func_start
4313 += gdbarch_deprecated_function_start_offset (gdbarch);
4314
591a12a1
UW
4315 if (gdbarch_skip_entrypoint_p (gdbarch))
4316 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4317 ecs->stop_func_start);
4318
7e324e48
GB
4319 ecs->stop_func_filled_in = 1;
4320 }
4321}
4322
4f5d7f63
PA
4323
4324/* Return the STOP_SOON field of the inferior pointed at by PTID. */
4325
4326static enum stop_kind
4327get_inferior_stop_soon (ptid_t ptid)
4328{
c9657e70 4329 struct inferior *inf = find_inferior_ptid (ptid);
4f5d7f63
PA
4330
4331 gdb_assert (inf != NULL);
4332 return inf->control.stop_soon;
4333}
4334
372316f1
PA
4335/* Wait for one event. Store the resulting waitstatus in WS, and
4336 return the event ptid. */
4337
4338static ptid_t
4339wait_one (struct target_waitstatus *ws)
4340{
4341 ptid_t event_ptid;
4342 ptid_t wait_ptid = minus_one_ptid;
4343
4344 overlay_cache_invalid = 1;
4345
4346 /* Flush target cache before starting to handle each event.
4347 Target was running and cache could be stale. This is just a
4348 heuristic. Running threads may modify target memory, but we
4349 don't get any event. */
4350 target_dcache_invalidate ();
4351
4352 if (deprecated_target_wait_hook)
4353 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4354 else
4355 event_ptid = target_wait (wait_ptid, ws, 0);
4356
4357 if (debug_infrun)
4358 print_target_wait_results (wait_ptid, event_ptid, ws);
4359
4360 return event_ptid;
4361}
4362
4363/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4364 instead of the current thread. */
4365#define THREAD_STOPPED_BY(REASON) \
4366static int \
4367thread_stopped_by_ ## REASON (ptid_t ptid) \
4368{ \
4369 struct cleanup *old_chain; \
4370 int res; \
4371 \
4372 old_chain = save_inferior_ptid (); \
4373 inferior_ptid = ptid; \
4374 \
4375 res = target_stopped_by_ ## REASON (); \
4376 \
4377 do_cleanups (old_chain); \
4378 \
4379 return res; \
4380}
4381
4382/* Generate thread_stopped_by_watchpoint. */
4383THREAD_STOPPED_BY (watchpoint)
4384/* Generate thread_stopped_by_sw_breakpoint. */
4385THREAD_STOPPED_BY (sw_breakpoint)
4386/* Generate thread_stopped_by_hw_breakpoint. */
4387THREAD_STOPPED_BY (hw_breakpoint)
4388
4389/* Cleanups that switches to the PTID pointed at by PTID_P. */
4390
4391static void
4392switch_to_thread_cleanup (void *ptid_p)
4393{
4394 ptid_t ptid = *(ptid_t *) ptid_p;
4395
4396 switch_to_thread (ptid);
4397}
4398
4399/* Save the thread's event and stop reason to process it later. */
4400
4401static void
4402save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4403{
4404 struct regcache *regcache;
4405 struct address_space *aspace;
4406
4407 if (debug_infrun)
4408 {
4409 char *statstr;
4410
4411 statstr = target_waitstatus_to_string (ws);
4412 fprintf_unfiltered (gdb_stdlog,
4413 "infrun: saving status %s for %d.%ld.%ld\n",
4414 statstr,
4415 ptid_get_pid (tp->ptid),
4416 ptid_get_lwp (tp->ptid),
4417 ptid_get_tid (tp->ptid));
4418 xfree (statstr);
4419 }
4420
4421 /* Record for later. */
4422 tp->suspend.waitstatus = *ws;
4423 tp->suspend.waitstatus_pending_p = 1;
4424
4425 regcache = get_thread_regcache (tp->ptid);
4426 aspace = get_regcache_aspace (regcache);
4427
4428 if (ws->kind == TARGET_WAITKIND_STOPPED
4429 && ws->value.sig == GDB_SIGNAL_TRAP)
4430 {
4431 CORE_ADDR pc = regcache_read_pc (regcache);
4432
4433 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4434
4435 if (thread_stopped_by_watchpoint (tp->ptid))
4436 {
4437 tp->suspend.stop_reason
4438 = TARGET_STOPPED_BY_WATCHPOINT;
4439 }
4440 else if (target_supports_stopped_by_sw_breakpoint ()
4441 && thread_stopped_by_sw_breakpoint (tp->ptid))
4442 {
4443 tp->suspend.stop_reason
4444 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4445 }
4446 else if (target_supports_stopped_by_hw_breakpoint ()
4447 && thread_stopped_by_hw_breakpoint (tp->ptid))
4448 {
4449 tp->suspend.stop_reason
4450 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4451 }
4452 else if (!target_supports_stopped_by_hw_breakpoint ()
4453 && hardware_breakpoint_inserted_here_p (aspace,
4454 pc))
4455 {
4456 tp->suspend.stop_reason
4457 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4458 }
4459 else if (!target_supports_stopped_by_sw_breakpoint ()
4460 && software_breakpoint_inserted_here_p (aspace,
4461 pc))
4462 {
4463 tp->suspend.stop_reason
4464 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4465 }
4466 else if (!thread_has_single_step_breakpoints_set (tp)
4467 && currently_stepping (tp))
4468 {
4469 tp->suspend.stop_reason
4470 = TARGET_STOPPED_BY_SINGLE_STEP;
4471 }
4472 }
4473}
4474
65706a29
PA
4475/* A cleanup that disables thread create/exit events. */
4476
4477static void
4478disable_thread_events (void *arg)
4479{
4480 target_thread_events (0);
4481}
4482
6efcd9a8 4483/* See infrun.h. */
372316f1 4484
6efcd9a8 4485void
372316f1
PA
4486stop_all_threads (void)
4487{
4488 /* We may need multiple passes to discover all threads. */
4489 int pass;
4490 int iterations = 0;
4491 ptid_t entry_ptid;
4492 struct cleanup *old_chain;
4493
fbea99ea 4494 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4495
4496 if (debug_infrun)
4497 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4498
4499 entry_ptid = inferior_ptid;
4500 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4501
65706a29
PA
4502 target_thread_events (1);
4503 make_cleanup (disable_thread_events, NULL);
4504
372316f1
PA
4505 /* Request threads to stop, and then wait for the stops. Because
4506 threads we already know about can spawn more threads while we're
4507 trying to stop them, and we only learn about new threads when we
4508 update the thread list, do this in a loop, and keep iterating
4509 until two passes find no threads that need to be stopped. */
4510 for (pass = 0; pass < 2; pass++, iterations++)
4511 {
4512 if (debug_infrun)
4513 fprintf_unfiltered (gdb_stdlog,
4514 "infrun: stop_all_threads, pass=%d, "
4515 "iterations=%d\n", pass, iterations);
4516 while (1)
4517 {
4518 ptid_t event_ptid;
4519 struct target_waitstatus ws;
4520 int need_wait = 0;
4521 struct thread_info *t;
4522
4523 update_thread_list ();
4524
4525 /* Go through all threads looking for threads that we need
4526 to tell the target to stop. */
4527 ALL_NON_EXITED_THREADS (t)
4528 {
4529 if (t->executing)
4530 {
4531 /* If already stopping, don't request a stop again.
4532 We just haven't seen the notification yet. */
4533 if (!t->stop_requested)
4534 {
4535 if (debug_infrun)
4536 fprintf_unfiltered (gdb_stdlog,
4537 "infrun: %s executing, "
4538 "need stop\n",
4539 target_pid_to_str (t->ptid));
4540 target_stop (t->ptid);
4541 t->stop_requested = 1;
4542 }
4543 else
4544 {
4545 if (debug_infrun)
4546 fprintf_unfiltered (gdb_stdlog,
4547 "infrun: %s executing, "
4548 "already stopping\n",
4549 target_pid_to_str (t->ptid));
4550 }
4551
4552 if (t->stop_requested)
4553 need_wait = 1;
4554 }
4555 else
4556 {
4557 if (debug_infrun)
4558 fprintf_unfiltered (gdb_stdlog,
4559 "infrun: %s not executing\n",
4560 target_pid_to_str (t->ptid));
4561
4562 /* The thread may be not executing, but still be
4563 resumed with a pending status to process. */
4564 t->resumed = 0;
4565 }
4566 }
4567
4568 if (!need_wait)
4569 break;
4570
4571 /* If we find new threads on the second iteration, restart
4572 over. We want to see two iterations in a row with all
4573 threads stopped. */
4574 if (pass > 0)
4575 pass = -1;
4576
4577 event_ptid = wait_one (&ws);
4578 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4579 {
4580 /* All resumed threads exited. */
4581 }
65706a29
PA
4582 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4583 || ws.kind == TARGET_WAITKIND_EXITED
372316f1
PA
4584 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4585 {
4586 if (debug_infrun)
4587 {
4588 ptid_t ptid = pid_to_ptid (ws.value.integer);
4589
4590 fprintf_unfiltered (gdb_stdlog,
4591 "infrun: %s exited while "
4592 "stopping threads\n",
4593 target_pid_to_str (ptid));
4594 }
4595 }
4596 else
4597 {
6efcd9a8
PA
4598 struct inferior *inf;
4599
372316f1
PA
4600 t = find_thread_ptid (event_ptid);
4601 if (t == NULL)
4602 t = add_thread (event_ptid);
4603
4604 t->stop_requested = 0;
4605 t->executing = 0;
4606 t->resumed = 0;
4607 t->control.may_range_step = 0;
4608
6efcd9a8
PA
4609 /* This may be the first time we see the inferior report
4610 a stop. */
4611 inf = find_inferior_ptid (event_ptid);
4612 if (inf->needs_setup)
4613 {
4614 switch_to_thread_no_regs (t);
4615 setup_inferior (0);
4616 }
4617
372316f1
PA
4618 if (ws.kind == TARGET_WAITKIND_STOPPED
4619 && ws.value.sig == GDB_SIGNAL_0)
4620 {
4621 /* We caught the event that we intended to catch, so
4622 there's no event pending. */
4623 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4624 t->suspend.waitstatus_pending_p = 0;
4625
4626 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4627 {
4628 /* Add it back to the step-over queue. */
4629 if (debug_infrun)
4630 {
4631 fprintf_unfiltered (gdb_stdlog,
4632 "infrun: displaced-step of %s "
4633 "canceled: adding back to the "
4634 "step-over queue\n",
4635 target_pid_to_str (t->ptid));
4636 }
4637 t->control.trap_expected = 0;
4638 thread_step_over_chain_enqueue (t);
4639 }
4640 }
4641 else
4642 {
4643 enum gdb_signal sig;
4644 struct regcache *regcache;
372316f1
PA
4645
4646 if (debug_infrun)
4647 {
4648 char *statstr;
4649
4650 statstr = target_waitstatus_to_string (&ws);
4651 fprintf_unfiltered (gdb_stdlog,
4652 "infrun: target_wait %s, saving "
4653 "status for %d.%ld.%ld\n",
4654 statstr,
4655 ptid_get_pid (t->ptid),
4656 ptid_get_lwp (t->ptid),
4657 ptid_get_tid (t->ptid));
4658 xfree (statstr);
4659 }
4660
4661 /* Record for later. */
4662 save_waitstatus (t, &ws);
4663
4664 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4665 ? ws.value.sig : GDB_SIGNAL_0);
4666
4667 if (displaced_step_fixup (t->ptid, sig) < 0)
4668 {
4669 /* Add it back to the step-over queue. */
4670 t->control.trap_expected = 0;
4671 thread_step_over_chain_enqueue (t);
4672 }
4673
4674 regcache = get_thread_regcache (t->ptid);
4675 t->suspend.stop_pc = regcache_read_pc (regcache);
4676
4677 if (debug_infrun)
4678 {
4679 fprintf_unfiltered (gdb_stdlog,
4680 "infrun: saved stop_pc=%s for %s "
4681 "(currently_stepping=%d)\n",
4682 paddress (target_gdbarch (),
4683 t->suspend.stop_pc),
4684 target_pid_to_str (t->ptid),
4685 currently_stepping (t));
4686 }
4687 }
4688 }
4689 }
4690 }
4691
4692 do_cleanups (old_chain);
4693
4694 if (debug_infrun)
4695 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4696}
4697
f4836ba9
PA
4698/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4699
4700static int
4701handle_no_resumed (struct execution_control_state *ecs)
4702{
4703 struct inferior *inf;
4704 struct thread_info *thread;
4705
3b12939d 4706 if (target_can_async_p ())
f4836ba9 4707 {
3b12939d
PA
4708 struct ui *ui;
4709 int any_sync = 0;
f4836ba9 4710
3b12939d
PA
4711 ALL_UIS (ui)
4712 {
4713 if (ui->prompt_state == PROMPT_BLOCKED)
4714 {
4715 any_sync = 1;
4716 break;
4717 }
4718 }
4719 if (!any_sync)
4720 {
4721 /* There were no unwaited-for children left in the target, but,
4722 we're not synchronously waiting for events either. Just
4723 ignore. */
4724
4725 if (debug_infrun)
4726 fprintf_unfiltered (gdb_stdlog,
4727 "infrun: TARGET_WAITKIND_NO_RESUMED "
4728 "(ignoring: bg)\n");
4729 prepare_to_wait (ecs);
4730 return 1;
4731 }
f4836ba9
PA
4732 }
4733
4734 /* Otherwise, if we were running a synchronous execution command, we
4735 may need to cancel it and give the user back the terminal.
4736
4737 In non-stop mode, the target can't tell whether we've already
4738 consumed previous stop events, so it can end up sending us a
4739 no-resumed event like so:
4740
4741 #0 - thread 1 is left stopped
4742
4743 #1 - thread 2 is resumed and hits breakpoint
4744 -> TARGET_WAITKIND_STOPPED
4745
4746 #2 - thread 3 is resumed and exits
4747 this is the last resumed thread, so
4748 -> TARGET_WAITKIND_NO_RESUMED
4749
4750 #3 - gdb processes stop for thread 2 and decides to re-resume
4751 it.
4752
4753 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4754 thread 2 is now resumed, so the event should be ignored.
4755
4756 IOW, if the stop for thread 2 doesn't end a foreground command,
4757 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4758 event. But it could be that the event meant that thread 2 itself
4759 (or whatever other thread was the last resumed thread) exited.
4760
4761 To address this we refresh the thread list and check whether we
4762 have resumed threads _now_. In the example above, this removes
4763 thread 3 from the thread list. If thread 2 was re-resumed, we
4764 ignore this event. If we find no thread resumed, then we cancel
4765 the synchronous command show "no unwaited-for " to the user. */
4766 update_thread_list ();
4767
4768 ALL_NON_EXITED_THREADS (thread)
4769 {
4770 if (thread->executing
4771 || thread->suspend.waitstatus_pending_p)
4772 {
4773 /* There were no unwaited-for children left in the target at
4774 some point, but there are now. Just ignore. */
4775 if (debug_infrun)
4776 fprintf_unfiltered (gdb_stdlog,
4777 "infrun: TARGET_WAITKIND_NO_RESUMED "
4778 "(ignoring: found resumed)\n");
4779 prepare_to_wait (ecs);
4780 return 1;
4781 }
4782 }
4783
4784 /* Note however that we may find no resumed thread because the whole
4785 process exited meanwhile (thus updating the thread list results
4786 in an empty thread list). In this case we know we'll be getting
4787 a process exit event shortly. */
4788 ALL_INFERIORS (inf)
4789 {
4790 if (inf->pid == 0)
4791 continue;
4792
4793 thread = any_live_thread_of_process (inf->pid);
4794 if (thread == NULL)
4795 {
4796 if (debug_infrun)
4797 fprintf_unfiltered (gdb_stdlog,
4798 "infrun: TARGET_WAITKIND_NO_RESUMED "
4799 "(expect process exit)\n");
4800 prepare_to_wait (ecs);
4801 return 1;
4802 }
4803 }
4804
4805 /* Go ahead and report the event. */
4806 return 0;
4807}
4808
05ba8510
PA
4809/* Given an execution control state that has been freshly filled in by
4810 an event from the inferior, figure out what it means and take
4811 appropriate action.
4812
4813 The alternatives are:
4814
22bcd14b 4815 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4816 debugger.
4817
4818 2) keep_going and return; to wait for the next event (set
4819 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4820 once). */
c906108c 4821
ec9499be 4822static void
0b6e5e10 4823handle_inferior_event_1 (struct execution_control_state *ecs)
cd0fc7c3 4824{
d6b48e9c
PA
4825 enum stop_kind stop_soon;
4826
28736962
PA
4827 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4828 {
4829 /* We had an event in the inferior, but we are not interested in
4830 handling it at this level. The lower layers have already
4831 done what needs to be done, if anything.
4832
4833 One of the possible circumstances for this is when the
4834 inferior produces output for the console. The inferior has
4835 not stopped, and we are ignoring the event. Another possible
4836 circumstance is any event which the lower level knows will be
4837 reported multiple times without an intervening resume. */
4838 if (debug_infrun)
4839 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4840 prepare_to_wait (ecs);
4841 return;
4842 }
4843
65706a29
PA
4844 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4845 {
4846 if (debug_infrun)
4847 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4848 prepare_to_wait (ecs);
4849 return;
4850 }
4851
0e5bf2a8 4852 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
4853 && handle_no_resumed (ecs))
4854 return;
0e5bf2a8 4855
1777feb0 4856 /* Cache the last pid/waitstatus. */
c32c64b7 4857 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4858
ca005067 4859 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4860 stop_stack_dummy = STOP_NONE;
ca005067 4861
0e5bf2a8
PA
4862 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4863 {
4864 /* No unwaited-for children left. IOW, all resumed children
4865 have exited. */
4866 if (debug_infrun)
4867 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4868
4869 stop_print_frame = 0;
22bcd14b 4870 stop_waiting (ecs);
0e5bf2a8
PA
4871 return;
4872 }
4873
8c90c137 4874 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4875 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4876 {
4877 ecs->event_thread = find_thread_ptid (ecs->ptid);
4878 /* If it's a new thread, add it to the thread database. */
4879 if (ecs->event_thread == NULL)
4880 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4881
4882 /* Disable range stepping. If the next step request could use a
4883 range, this will be end up re-enabled then. */
4884 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4885 }
88ed393a
JK
4886
4887 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4888 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4889
4890 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4891 reinit_frame_cache ();
4892
28736962
PA
4893 breakpoint_retire_moribund ();
4894
2b009048
DJ
4895 /* First, distinguish signals caused by the debugger from signals
4896 that have to do with the program's own actions. Note that
4897 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4898 on the operating system version. Here we detect when a SIGILL or
4899 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4900 something similar for SIGSEGV, since a SIGSEGV will be generated
4901 when we're trying to execute a breakpoint instruction on a
4902 non-executable stack. This happens for call dummy breakpoints
4903 for architectures like SPARC that place call dummies on the
4904 stack. */
2b009048 4905 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4906 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4907 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4908 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4909 {
de0a0249
UW
4910 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4911
4912 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4913 regcache_read_pc (regcache)))
4914 {
4915 if (debug_infrun)
4916 fprintf_unfiltered (gdb_stdlog,
4917 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4918 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4919 }
2b009048
DJ
4920 }
4921
28736962
PA
4922 /* Mark the non-executing threads accordingly. In all-stop, all
4923 threads of all processes are stopped when we get any event
e1316e60 4924 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4925 {
4926 ptid_t mark_ptid;
4927
fbea99ea 4928 if (!target_is_non_stop_p ())
372316f1
PA
4929 mark_ptid = minus_one_ptid;
4930 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4931 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4932 {
4933 /* If we're handling a process exit in non-stop mode, even
4934 though threads haven't been deleted yet, one would think
4935 that there is nothing to do, as threads of the dead process
4936 will be soon deleted, and threads of any other process were
4937 left running. However, on some targets, threads survive a
4938 process exit event. E.g., for the "checkpoint" command,
4939 when the current checkpoint/fork exits, linux-fork.c
4940 automatically switches to another fork from within
4941 target_mourn_inferior, by associating the same
4942 inferior/thread to another fork. We haven't mourned yet at
4943 this point, but we must mark any threads left in the
4944 process as not-executing so that finish_thread_state marks
4945 them stopped (in the user's perspective) if/when we present
4946 the stop to the user. */
4947 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4948 }
4949 else
4950 mark_ptid = ecs->ptid;
4951
4952 set_executing (mark_ptid, 0);
4953
4954 /* Likewise the resumed flag. */
4955 set_resumed (mark_ptid, 0);
4956 }
8c90c137 4957
488f131b
JB
4958 switch (ecs->ws.kind)
4959 {
4960 case TARGET_WAITKIND_LOADED:
527159b7 4961 if (debug_infrun)
8a9de0e4 4962 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
5c09a2c5
PA
4963 if (!ptid_equal (ecs->ptid, inferior_ptid))
4964 context_switch (ecs->ptid);
b0f4b84b
DJ
4965 /* Ignore gracefully during startup of the inferior, as it might
4966 be the shell which has just loaded some objects, otherwise
4967 add the symbols for the newly loaded objects. Also ignore at
4968 the beginning of an attach or remote session; we will query
4969 the full list of libraries once the connection is
4970 established. */
4f5d7f63
PA
4971
4972 stop_soon = get_inferior_stop_soon (ecs->ptid);
c0236d92 4973 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4974 {
edcc5120
TT
4975 struct regcache *regcache;
4976
edcc5120
TT
4977 regcache = get_thread_regcache (ecs->ptid);
4978
4979 handle_solib_event ();
4980
4981 ecs->event_thread->control.stop_bpstat
4982 = bpstat_stop_status (get_regcache_aspace (regcache),
4983 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4984
ce12b012 4985 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4986 {
4987 /* A catchpoint triggered. */
94c57d6a
PA
4988 process_event_stop_test (ecs);
4989 return;
edcc5120 4990 }
488f131b 4991
b0f4b84b
DJ
4992 /* If requested, stop when the dynamic linker notifies
4993 gdb of events. This allows the user to get control
4994 and place breakpoints in initializer routines for
4995 dynamically loaded objects (among other things). */
a493e3e2 4996 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4997 if (stop_on_solib_events)
4998 {
55409f9d
DJ
4999 /* Make sure we print "Stopped due to solib-event" in
5000 normal_stop. */
5001 stop_print_frame = 1;
5002
22bcd14b 5003 stop_waiting (ecs);
b0f4b84b
DJ
5004 return;
5005 }
488f131b 5006 }
b0f4b84b
DJ
5007
5008 /* If we are skipping through a shell, or through shared library
5009 loading that we aren't interested in, resume the program. If
5c09a2c5 5010 we're running the program normally, also resume. */
b0f4b84b
DJ
5011 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5012 {
74960c60
VP
5013 /* Loading of shared libraries might have changed breakpoint
5014 addresses. Make sure new breakpoints are inserted. */
a25a5a45 5015 if (stop_soon == NO_STOP_QUIETLY)
74960c60 5016 insert_breakpoints ();
64ce06e4 5017 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
5018 prepare_to_wait (ecs);
5019 return;
5020 }
5021
5c09a2c5
PA
5022 /* But stop if we're attaching or setting up a remote
5023 connection. */
5024 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5025 || stop_soon == STOP_QUIETLY_REMOTE)
5026 {
5027 if (debug_infrun)
5028 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 5029 stop_waiting (ecs);
5c09a2c5
PA
5030 return;
5031 }
5032
5033 internal_error (__FILE__, __LINE__,
5034 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 5035
488f131b 5036 case TARGET_WAITKIND_SPURIOUS:
527159b7 5037 if (debug_infrun)
8a9de0e4 5038 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 5039 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 5040 context_switch (ecs->ptid);
64ce06e4 5041 resume (GDB_SIGNAL_0);
488f131b
JB
5042 prepare_to_wait (ecs);
5043 return;
c5aa993b 5044
65706a29
PA
5045 case TARGET_WAITKIND_THREAD_CREATED:
5046 if (debug_infrun)
5047 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
5048 if (!ptid_equal (ecs->ptid, inferior_ptid))
5049 context_switch (ecs->ptid);
5050 if (!switch_back_to_stepped_thread (ecs))
5051 keep_going (ecs);
5052 return;
5053
488f131b 5054 case TARGET_WAITKIND_EXITED:
940c3c06 5055 case TARGET_WAITKIND_SIGNALLED:
527159b7 5056 if (debug_infrun)
940c3c06
PA
5057 {
5058 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5059 fprintf_unfiltered (gdb_stdlog,
5060 "infrun: TARGET_WAITKIND_EXITED\n");
5061 else
5062 fprintf_unfiltered (gdb_stdlog,
5063 "infrun: TARGET_WAITKIND_SIGNALLED\n");
5064 }
5065
fb66883a 5066 inferior_ptid = ecs->ptid;
c9657e70 5067 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
5068 set_current_program_space (current_inferior ()->pspace);
5069 handle_vfork_child_exec_or_exit (0);
1777feb0 5070 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 5071
0c557179
SDJ
5072 /* Clearing any previous state of convenience variables. */
5073 clear_exit_convenience_vars ();
5074
940c3c06
PA
5075 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5076 {
5077 /* Record the exit code in the convenience variable $_exitcode, so
5078 that the user can inspect this again later. */
5079 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5080 (LONGEST) ecs->ws.value.integer);
5081
5082 /* Also record this in the inferior itself. */
5083 current_inferior ()->has_exit_code = 1;
5084 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 5085
98eb56a4
PA
5086 /* Support the --return-child-result option. */
5087 return_child_result_value = ecs->ws.value.integer;
5088
fd664c91 5089 observer_notify_exited (ecs->ws.value.integer);
940c3c06
PA
5090 }
5091 else
0c557179
SDJ
5092 {
5093 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5094 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5095
5096 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5097 {
5098 /* Set the value of the internal variable $_exitsignal,
5099 which holds the signal uncaught by the inferior. */
5100 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5101 gdbarch_gdb_signal_to_target (gdbarch,
5102 ecs->ws.value.sig));
5103 }
5104 else
5105 {
5106 /* We don't have access to the target's method used for
5107 converting between signal numbers (GDB's internal
5108 representation <-> target's representation).
5109 Therefore, we cannot do a good job at displaying this
5110 information to the user. It's better to just warn
5111 her about it (if infrun debugging is enabled), and
5112 give up. */
5113 if (debug_infrun)
5114 fprintf_filtered (gdb_stdlog, _("\
5115Cannot fill $_exitsignal with the correct signal number.\n"));
5116 }
5117
fd664c91 5118 observer_notify_signal_exited (ecs->ws.value.sig);
0c557179 5119 }
8cf64490 5120
488f131b 5121 gdb_flush (gdb_stdout);
bc1e6c81 5122 target_mourn_inferior (inferior_ptid);
488f131b 5123 stop_print_frame = 0;
22bcd14b 5124 stop_waiting (ecs);
488f131b 5125 return;
c5aa993b 5126
488f131b 5127 /* The following are the only cases in which we keep going;
1777feb0 5128 the above cases end in a continue or goto. */
488f131b 5129 case TARGET_WAITKIND_FORKED:
deb3b17b 5130 case TARGET_WAITKIND_VFORKED:
527159b7 5131 if (debug_infrun)
fed708ed
PA
5132 {
5133 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5134 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5135 else
5136 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5137 }
c906108c 5138
e2d96639
YQ
5139 /* Check whether the inferior is displaced stepping. */
5140 {
5141 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5142 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e2d96639
YQ
5143
5144 /* If checking displaced stepping is supported, and thread
5145 ecs->ptid is displaced stepping. */
c0987663 5146 if (displaced_step_in_progress_thread (ecs->ptid))
e2d96639
YQ
5147 {
5148 struct inferior *parent_inf
c9657e70 5149 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
5150 struct regcache *child_regcache;
5151 CORE_ADDR parent_pc;
5152
5153 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5154 indicating that the displaced stepping of syscall instruction
5155 has been done. Perform cleanup for parent process here. Note
5156 that this operation also cleans up the child process for vfork,
5157 because their pages are shared. */
a493e3e2 5158 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
c2829269
PA
5159 /* Start a new step-over in another thread if there's one
5160 that needs it. */
5161 start_step_over ();
e2d96639
YQ
5162
5163 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5164 {
c0987663
YQ
5165 struct displaced_step_inferior_state *displaced
5166 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
5167
e2d96639
YQ
5168 /* Restore scratch pad for child process. */
5169 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5170 }
5171
5172 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5173 the child's PC is also within the scratchpad. Set the child's PC
5174 to the parent's PC value, which has already been fixed up.
5175 FIXME: we use the parent's aspace here, although we're touching
5176 the child, because the child hasn't been added to the inferior
5177 list yet at this point. */
5178
5179 child_regcache
5180 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5181 gdbarch,
5182 parent_inf->aspace);
5183 /* Read PC value of parent process. */
5184 parent_pc = regcache_read_pc (regcache);
5185
5186 if (debug_displaced)
5187 fprintf_unfiltered (gdb_stdlog,
5188 "displaced: write child pc from %s to %s\n",
5189 paddress (gdbarch,
5190 regcache_read_pc (child_regcache)),
5191 paddress (gdbarch, parent_pc));
5192
5193 regcache_write_pc (child_regcache, parent_pc);
5194 }
5195 }
5196
5a2901d9 5197 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 5198 context_switch (ecs->ptid);
5a2901d9 5199
b242c3c2
PA
5200 /* Immediately detach breakpoints from the child before there's
5201 any chance of letting the user delete breakpoints from the
5202 breakpoint lists. If we don't do this early, it's easy to
5203 leave left over traps in the child, vis: "break foo; catch
5204 fork; c; <fork>; del; c; <child calls foo>". We only follow
5205 the fork on the last `continue', and by that time the
5206 breakpoint at "foo" is long gone from the breakpoint table.
5207 If we vforked, then we don't need to unpatch here, since both
5208 parent and child are sharing the same memory pages; we'll
5209 need to unpatch at follow/detach time instead to be certain
5210 that new breakpoints added between catchpoint hit time and
5211 vfork follow are detached. */
5212 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5213 {
b242c3c2
PA
5214 /* This won't actually modify the breakpoint list, but will
5215 physically remove the breakpoints from the child. */
d80ee84f 5216 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5217 }
5218
34b7e8a6 5219 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5220
e58b0e63
PA
5221 /* In case the event is caught by a catchpoint, remember that
5222 the event is to be followed at the next resume of the thread,
5223 and not immediately. */
5224 ecs->event_thread->pending_follow = ecs->ws;
5225
fb14de7b 5226 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 5227
16c381f0 5228 ecs->event_thread->control.stop_bpstat
6c95b8df 5229 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 5230 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 5231
ce12b012
PA
5232 /* If no catchpoint triggered for this, then keep going. Note
5233 that we're interested in knowing the bpstat actually causes a
5234 stop, not just if it may explain the signal. Software
5235 watchpoints, for example, always appear in the bpstat. */
5236 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5237 {
6c95b8df
PA
5238 ptid_t parent;
5239 ptid_t child;
e58b0e63 5240 int should_resume;
3e43a32a
MS
5241 int follow_child
5242 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5243
a493e3e2 5244 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
5245
5246 should_resume = follow_fork ();
5247
6c95b8df
PA
5248 parent = ecs->ptid;
5249 child = ecs->ws.value.related_pid;
5250
a2077e25
PA
5251 /* At this point, the parent is marked running, and the
5252 child is marked stopped. */
5253
5254 /* If not resuming the parent, mark it stopped. */
5255 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5256 set_running (parent, 0);
5257
5258 /* If resuming the child, mark it running. */
5259 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5260 set_running (child, 1);
5261
6c95b8df 5262 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5263 if (!detach_fork && (non_stop
5264 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5265 {
5266 if (follow_child)
5267 switch_to_thread (parent);
5268 else
5269 switch_to_thread (child);
5270
5271 ecs->event_thread = inferior_thread ();
5272 ecs->ptid = inferior_ptid;
5273 keep_going (ecs);
5274 }
5275
5276 if (follow_child)
5277 switch_to_thread (child);
5278 else
5279 switch_to_thread (parent);
5280
e58b0e63
PA
5281 ecs->event_thread = inferior_thread ();
5282 ecs->ptid = inferior_ptid;
5283
5284 if (should_resume)
5285 keep_going (ecs);
5286 else
22bcd14b 5287 stop_waiting (ecs);
04e68871
DJ
5288 return;
5289 }
94c57d6a
PA
5290 process_event_stop_test (ecs);
5291 return;
488f131b 5292
6c95b8df
PA
5293 case TARGET_WAITKIND_VFORK_DONE:
5294 /* Done with the shared memory region. Re-insert breakpoints in
5295 the parent, and keep going. */
5296
5297 if (debug_infrun)
3e43a32a
MS
5298 fprintf_unfiltered (gdb_stdlog,
5299 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
5300
5301 if (!ptid_equal (ecs->ptid, inferior_ptid))
5302 context_switch (ecs->ptid);
5303
5304 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5305 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
5306 /* This also takes care of reinserting breakpoints in the
5307 previously locked inferior. */
5308 keep_going (ecs);
5309 return;
5310
488f131b 5311 case TARGET_WAITKIND_EXECD:
527159b7 5312 if (debug_infrun)
fc5261f2 5313 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 5314
5a2901d9 5315 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 5316 context_switch (ecs->ptid);
5a2901d9 5317
fb14de7b 5318 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 5319
6c95b8df
PA
5320 /* Do whatever is necessary to the parent branch of the vfork. */
5321 handle_vfork_child_exec_or_exit (1);
5322
795e548f
PA
5323 /* This causes the eventpoints and symbol table to be reset.
5324 Must do this now, before trying to determine whether to
5325 stop. */
71b43ef8 5326 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5327
17d8546e
DB
5328 /* In follow_exec we may have deleted the original thread and
5329 created a new one. Make sure that the event thread is the
5330 execd thread for that case (this is a nop otherwise). */
5331 ecs->event_thread = inferior_thread ();
5332
16c381f0 5333 ecs->event_thread->control.stop_bpstat
6c95b8df 5334 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 5335 stop_pc, ecs->ptid, &ecs->ws);
795e548f 5336
71b43ef8
PA
5337 /* Note that this may be referenced from inside
5338 bpstat_stop_status above, through inferior_has_execd. */
5339 xfree (ecs->ws.value.execd_pathname);
5340 ecs->ws.value.execd_pathname = NULL;
5341
04e68871 5342 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5343 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5344 {
a493e3e2 5345 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5346 keep_going (ecs);
5347 return;
5348 }
94c57d6a
PA
5349 process_event_stop_test (ecs);
5350 return;
488f131b 5351
b4dc5ffa
MK
5352 /* Be careful not to try to gather much state about a thread
5353 that's in a syscall. It's frequently a losing proposition. */
488f131b 5354 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 5355 if (debug_infrun)
3e43a32a
MS
5356 fprintf_unfiltered (gdb_stdlog,
5357 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 5358 /* Getting the current syscall number. */
94c57d6a
PA
5359 if (handle_syscall_event (ecs) == 0)
5360 process_event_stop_test (ecs);
5361 return;
c906108c 5362
488f131b
JB
5363 /* Before examining the threads further, step this thread to
5364 get it entirely out of the syscall. (We get notice of the
5365 event when the thread is just on the verge of exiting a
5366 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5367 into user code.) */
488f131b 5368 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 5369 if (debug_infrun)
3e43a32a
MS
5370 fprintf_unfiltered (gdb_stdlog,
5371 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
5372 if (handle_syscall_event (ecs) == 0)
5373 process_event_stop_test (ecs);
5374 return;
c906108c 5375
488f131b 5376 case TARGET_WAITKIND_STOPPED:
527159b7 5377 if (debug_infrun)
8a9de0e4 5378 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 5379 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
4f5d7f63
PA
5380 handle_signal_stop (ecs);
5381 return;
c906108c 5382
b2175913 5383 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
5384 if (debug_infrun)
5385 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 5386 /* Reverse execution: target ran out of history info. */
eab402df 5387
d1988021
MM
5388 /* Switch to the stopped thread. */
5389 if (!ptid_equal (ecs->ptid, inferior_ptid))
5390 context_switch (ecs->ptid);
5391 if (debug_infrun)
5392 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5393
34b7e8a6 5394 delete_just_stopped_threads_single_step_breakpoints ();
d1988021 5395 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
fd664c91 5396 observer_notify_no_history ();
22bcd14b 5397 stop_waiting (ecs);
b2175913 5398 return;
488f131b 5399 }
4f5d7f63
PA
5400}
5401
0b6e5e10
JB
5402/* A wrapper around handle_inferior_event_1, which also makes sure
5403 that all temporary struct value objects that were created during
5404 the handling of the event get deleted at the end. */
5405
5406static void
5407handle_inferior_event (struct execution_control_state *ecs)
5408{
5409 struct value *mark = value_mark ();
5410
5411 handle_inferior_event_1 (ecs);
5412 /* Purge all temporary values created during the event handling,
5413 as it could be a long time before we return to the command level
5414 where such values would otherwise be purged. */
5415 value_free_to_mark (mark);
5416}
5417
372316f1
PA
5418/* Restart threads back to what they were trying to do back when we
5419 paused them for an in-line step-over. The EVENT_THREAD thread is
5420 ignored. */
4d9d9d04
PA
5421
5422static void
372316f1
PA
5423restart_threads (struct thread_info *event_thread)
5424{
5425 struct thread_info *tp;
372316f1
PA
5426
5427 /* In case the instruction just stepped spawned a new thread. */
5428 update_thread_list ();
5429
5430 ALL_NON_EXITED_THREADS (tp)
5431 {
5432 if (tp == event_thread)
5433 {
5434 if (debug_infrun)
5435 fprintf_unfiltered (gdb_stdlog,
5436 "infrun: restart threads: "
5437 "[%s] is event thread\n",
5438 target_pid_to_str (tp->ptid));
5439 continue;
5440 }
5441
5442 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5443 {
5444 if (debug_infrun)
5445 fprintf_unfiltered (gdb_stdlog,
5446 "infrun: restart threads: "
5447 "[%s] not meant to be running\n",
5448 target_pid_to_str (tp->ptid));
5449 continue;
5450 }
5451
5452 if (tp->resumed)
5453 {
5454 if (debug_infrun)
5455 fprintf_unfiltered (gdb_stdlog,
5456 "infrun: restart threads: [%s] resumed\n",
5457 target_pid_to_str (tp->ptid));
5458 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5459 continue;
5460 }
5461
5462 if (thread_is_in_step_over_chain (tp))
5463 {
5464 if (debug_infrun)
5465 fprintf_unfiltered (gdb_stdlog,
5466 "infrun: restart threads: "
5467 "[%s] needs step-over\n",
5468 target_pid_to_str (tp->ptid));
5469 gdb_assert (!tp->resumed);
5470 continue;
5471 }
5472
5473
5474 if (tp->suspend.waitstatus_pending_p)
5475 {
5476 if (debug_infrun)
5477 fprintf_unfiltered (gdb_stdlog,
5478 "infrun: restart threads: "
5479 "[%s] has pending status\n",
5480 target_pid_to_str (tp->ptid));
5481 tp->resumed = 1;
5482 continue;
5483 }
5484
5485 /* If some thread needs to start a step-over at this point, it
5486 should still be in the step-over queue, and thus skipped
5487 above. */
5488 if (thread_still_needs_step_over (tp))
5489 {
5490 internal_error (__FILE__, __LINE__,
5491 "thread [%s] needs a step-over, but not in "
5492 "step-over queue\n",
5493 target_pid_to_str (tp->ptid));
5494 }
5495
5496 if (currently_stepping (tp))
5497 {
5498 if (debug_infrun)
5499 fprintf_unfiltered (gdb_stdlog,
5500 "infrun: restart threads: [%s] was stepping\n",
5501 target_pid_to_str (tp->ptid));
5502 keep_going_stepped_thread (tp);
5503 }
5504 else
5505 {
5506 struct execution_control_state ecss;
5507 struct execution_control_state *ecs = &ecss;
5508
5509 if (debug_infrun)
5510 fprintf_unfiltered (gdb_stdlog,
5511 "infrun: restart threads: [%s] continuing\n",
5512 target_pid_to_str (tp->ptid));
5513 reset_ecs (ecs, tp);
5514 switch_to_thread (tp->ptid);
5515 keep_going_pass_signal (ecs);
5516 }
5517 }
5518}
5519
5520/* Callback for iterate_over_threads. Find a resumed thread that has
5521 a pending waitstatus. */
5522
5523static int
5524resumed_thread_with_pending_status (struct thread_info *tp,
5525 void *arg)
5526{
5527 return (tp->resumed
5528 && tp->suspend.waitstatus_pending_p);
5529}
5530
5531/* Called when we get an event that may finish an in-line or
5532 out-of-line (displaced stepping) step-over started previously.
5533 Return true if the event is processed and we should go back to the
5534 event loop; false if the caller should continue processing the
5535 event. */
5536
5537static int
4d9d9d04
PA
5538finish_step_over (struct execution_control_state *ecs)
5539{
372316f1
PA
5540 int had_step_over_info;
5541
4d9d9d04
PA
5542 displaced_step_fixup (ecs->ptid,
5543 ecs->event_thread->suspend.stop_signal);
5544
372316f1
PA
5545 had_step_over_info = step_over_info_valid_p ();
5546
5547 if (had_step_over_info)
4d9d9d04
PA
5548 {
5549 /* If we're stepping over a breakpoint with all threads locked,
5550 then only the thread that was stepped should be reporting
5551 back an event. */
5552 gdb_assert (ecs->event_thread->control.trap_expected);
5553
5554 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5555 clear_step_over_info ();
5556 }
5557
fbea99ea 5558 if (!target_is_non_stop_p ())
372316f1 5559 return 0;
4d9d9d04
PA
5560
5561 /* Start a new step-over in another thread if there's one that
5562 needs it. */
5563 start_step_over ();
372316f1
PA
5564
5565 /* If we were stepping over a breakpoint before, and haven't started
5566 a new in-line step-over sequence, then restart all other threads
5567 (except the event thread). We can't do this in all-stop, as then
5568 e.g., we wouldn't be able to issue any other remote packet until
5569 these other threads stop. */
5570 if (had_step_over_info && !step_over_info_valid_p ())
5571 {
5572 struct thread_info *pending;
5573
5574 /* If we only have threads with pending statuses, the restart
5575 below won't restart any thread and so nothing re-inserts the
5576 breakpoint we just stepped over. But we need it inserted
5577 when we later process the pending events, otherwise if
5578 another thread has a pending event for this breakpoint too,
5579 we'd discard its event (because the breakpoint that
5580 originally caused the event was no longer inserted). */
5581 context_switch (ecs->ptid);
5582 insert_breakpoints ();
5583
5584 restart_threads (ecs->event_thread);
5585
5586 /* If we have events pending, go through handle_inferior_event
5587 again, picking up a pending event at random. This avoids
5588 thread starvation. */
5589
5590 /* But not if we just stepped over a watchpoint in order to let
5591 the instruction execute so we can evaluate its expression.
5592 The set of watchpoints that triggered is recorded in the
5593 breakpoint objects themselves (see bp->watchpoint_triggered).
5594 If we processed another event first, that other event could
5595 clobber this info. */
5596 if (ecs->event_thread->stepping_over_watchpoint)
5597 return 0;
5598
5599 pending = iterate_over_threads (resumed_thread_with_pending_status,
5600 NULL);
5601 if (pending != NULL)
5602 {
5603 struct thread_info *tp = ecs->event_thread;
5604 struct regcache *regcache;
5605
5606 if (debug_infrun)
5607 {
5608 fprintf_unfiltered (gdb_stdlog,
5609 "infrun: found resumed threads with "
5610 "pending events, saving status\n");
5611 }
5612
5613 gdb_assert (pending != tp);
5614
5615 /* Record the event thread's event for later. */
5616 save_waitstatus (tp, &ecs->ws);
5617 /* This was cleared early, by handle_inferior_event. Set it
5618 so this pending event is considered by
5619 do_target_wait. */
5620 tp->resumed = 1;
5621
5622 gdb_assert (!tp->executing);
5623
5624 regcache = get_thread_regcache (tp->ptid);
5625 tp->suspend.stop_pc = regcache_read_pc (regcache);
5626
5627 if (debug_infrun)
5628 {
5629 fprintf_unfiltered (gdb_stdlog,
5630 "infrun: saved stop_pc=%s for %s "
5631 "(currently_stepping=%d)\n",
5632 paddress (target_gdbarch (),
5633 tp->suspend.stop_pc),
5634 target_pid_to_str (tp->ptid),
5635 currently_stepping (tp));
5636 }
5637
5638 /* This in-line step-over finished; clear this so we won't
5639 start a new one. This is what handle_signal_stop would
5640 do, if we returned false. */
5641 tp->stepping_over_breakpoint = 0;
5642
5643 /* Wake up the event loop again. */
5644 mark_async_event_handler (infrun_async_inferior_event_token);
5645
5646 prepare_to_wait (ecs);
5647 return 1;
5648 }
5649 }
5650
5651 return 0;
4d9d9d04
PA
5652}
5653
4f5d7f63
PA
5654/* Come here when the program has stopped with a signal. */
5655
5656static void
5657handle_signal_stop (struct execution_control_state *ecs)
5658{
5659 struct frame_info *frame;
5660 struct gdbarch *gdbarch;
5661 int stopped_by_watchpoint;
5662 enum stop_kind stop_soon;
5663 int random_signal;
c906108c 5664
f0407826
DE
5665 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5666
5667 /* Do we need to clean up the state of a thread that has
5668 completed a displaced single-step? (Doing so usually affects
5669 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5670 if (finish_step_over (ecs))
5671 return;
f0407826
DE
5672
5673 /* If we either finished a single-step or hit a breakpoint, but
5674 the user wanted this thread to be stopped, pretend we got a
5675 SIG0 (generic unsignaled stop). */
5676 if (ecs->event_thread->stop_requested
5677 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5678 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5679
515630c5 5680 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 5681
527159b7 5682 if (debug_infrun)
237fc4c9 5683 {
5af949e3
UW
5684 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5685 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
5686 struct cleanup *old_chain = save_inferior_ptid ();
5687
5688 inferior_ptid = ecs->ptid;
5af949e3
UW
5689
5690 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5691 paddress (gdbarch, stop_pc));
d92524f1 5692 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5693 {
5694 CORE_ADDR addr;
abbb1732 5695
237fc4c9
PA
5696 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5697
5698 if (target_stopped_data_address (&current_target, &addr))
5699 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5700 "infrun: stopped data address = %s\n",
5701 paddress (gdbarch, addr));
237fc4c9
PA
5702 else
5703 fprintf_unfiltered (gdb_stdlog,
5704 "infrun: (no data address available)\n");
5705 }
7f82dfc7
JK
5706
5707 do_cleanups (old_chain);
237fc4c9 5708 }
527159b7 5709
36fa8042
PA
5710 /* This is originated from start_remote(), start_inferior() and
5711 shared libraries hook functions. */
5712 stop_soon = get_inferior_stop_soon (ecs->ptid);
5713 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5714 {
5715 if (!ptid_equal (ecs->ptid, inferior_ptid))
5716 context_switch (ecs->ptid);
5717 if (debug_infrun)
5718 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5719 stop_print_frame = 1;
22bcd14b 5720 stop_waiting (ecs);
36fa8042
PA
5721 return;
5722 }
5723
36fa8042
PA
5724 /* This originates from attach_command(). We need to overwrite
5725 the stop_signal here, because some kernels don't ignore a
5726 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5727 See more comments in inferior.h. On the other hand, if we
5728 get a non-SIGSTOP, report it to the user - assume the backend
5729 will handle the SIGSTOP if it should show up later.
5730
5731 Also consider that the attach is complete when we see a
5732 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5733 target extended-remote report it instead of a SIGSTOP
5734 (e.g. gdbserver). We already rely on SIGTRAP being our
5735 signal, so this is no exception.
5736
5737 Also consider that the attach is complete when we see a
5738 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5739 the target to stop all threads of the inferior, in case the
5740 low level attach operation doesn't stop them implicitly. If
5741 they weren't stopped implicitly, then the stub will report a
5742 GDB_SIGNAL_0, meaning: stopped for no particular reason
5743 other than GDB's request. */
5744 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5745 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5746 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5747 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5748 {
5749 stop_print_frame = 1;
22bcd14b 5750 stop_waiting (ecs);
36fa8042
PA
5751 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5752 return;
5753 }
5754
488f131b 5755 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
5756 so, then switch to that thread. */
5757 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 5758 {
527159b7 5759 if (debug_infrun)
8a9de0e4 5760 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5761
0d1e5fa7 5762 context_switch (ecs->ptid);
c5aa993b 5763
9a4105ab 5764 if (deprecated_context_hook)
5d5658a1 5765 deprecated_context_hook (ptid_to_global_thread_id (ecs->ptid));
488f131b 5766 }
c906108c 5767
568d6575
UW
5768 /* At this point, get hold of the now-current thread's frame. */
5769 frame = get_current_frame ();
5770 gdbarch = get_frame_arch (frame);
5771
2adfaa28 5772 /* Pull the single step breakpoints out of the target. */
af48d08f 5773 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5774 {
af48d08f
PA
5775 struct regcache *regcache;
5776 struct address_space *aspace;
5777 CORE_ADDR pc;
2adfaa28 5778
af48d08f
PA
5779 regcache = get_thread_regcache (ecs->ptid);
5780 aspace = get_regcache_aspace (regcache);
5781 pc = regcache_read_pc (regcache);
34b7e8a6 5782
af48d08f
PA
5783 /* However, before doing so, if this single-step breakpoint was
5784 actually for another thread, set this thread up for moving
5785 past it. */
5786 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5787 aspace, pc))
5788 {
5789 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5790 {
5791 if (debug_infrun)
5792 {
5793 fprintf_unfiltered (gdb_stdlog,
af48d08f 5794 "infrun: [%s] hit another thread's "
34b7e8a6
PA
5795 "single-step breakpoint\n",
5796 target_pid_to_str (ecs->ptid));
2adfaa28 5797 }
af48d08f
PA
5798 ecs->hit_singlestep_breakpoint = 1;
5799 }
5800 }
5801 else
5802 {
5803 if (debug_infrun)
5804 {
5805 fprintf_unfiltered (gdb_stdlog,
5806 "infrun: [%s] hit its "
5807 "single-step breakpoint\n",
5808 target_pid_to_str (ecs->ptid));
2adfaa28
PA
5809 }
5810 }
488f131b 5811 }
af48d08f 5812 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5813
963f9c80
PA
5814 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5815 && ecs->event_thread->control.trap_expected
5816 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5817 stopped_by_watchpoint = 0;
5818 else
5819 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5820
5821 /* If necessary, step over this watchpoint. We'll be back to display
5822 it in a moment. */
5823 if (stopped_by_watchpoint
d92524f1 5824 && (target_have_steppable_watchpoint
568d6575 5825 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5826 {
488f131b
JB
5827 /* At this point, we are stopped at an instruction which has
5828 attempted to write to a piece of memory under control of
5829 a watchpoint. The instruction hasn't actually executed
5830 yet. If we were to evaluate the watchpoint expression
5831 now, we would get the old value, and therefore no change
5832 would seem to have occurred.
5833
5834 In order to make watchpoints work `right', we really need
5835 to complete the memory write, and then evaluate the
d983da9c
DJ
5836 watchpoint expression. We do this by single-stepping the
5837 target.
5838
7f89fd65 5839 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5840 it. For example, the PA can (with some kernel cooperation)
5841 single step over a watchpoint without disabling the watchpoint.
5842
5843 It is far more common to need to disable a watchpoint to step
5844 the inferior over it. If we have non-steppable watchpoints,
5845 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5846 disable all watchpoints.
5847
5848 Any breakpoint at PC must also be stepped over -- if there's
5849 one, it will have already triggered before the watchpoint
5850 triggered, and we either already reported it to the user, or
5851 it didn't cause a stop and we called keep_going. In either
5852 case, if there was a breakpoint at PC, we must be trying to
5853 step past it. */
5854 ecs->event_thread->stepping_over_watchpoint = 1;
5855 keep_going (ecs);
488f131b
JB
5856 return;
5857 }
5858
4e1c45ea 5859 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5860 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5861 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5862 ecs->event_thread->control.stop_step = 0;
488f131b 5863 stop_print_frame = 1;
488f131b 5864 stopped_by_random_signal = 0;
488f131b 5865
edb3359d
DJ
5866 /* Hide inlined functions starting here, unless we just performed stepi or
5867 nexti. After stepi and nexti, always show the innermost frame (not any
5868 inline function call sites). */
16c381f0 5869 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
5870 {
5871 struct address_space *aspace =
5872 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5873
5874 /* skip_inline_frames is expensive, so we avoid it if we can
5875 determine that the address is one where functions cannot have
5876 been inlined. This improves performance with inferiors that
5877 load a lot of shared libraries, because the solib event
5878 breakpoint is defined as the address of a function (i.e. not
5879 inline). Note that we have to check the previous PC as well
5880 as the current one to catch cases when we have just
5881 single-stepped off a breakpoint prior to reinstating it.
5882 Note that we're assuming that the code we single-step to is
5883 not inline, but that's not definitive: there's nothing
5884 preventing the event breakpoint function from containing
5885 inlined code, and the single-step ending up there. If the
5886 user had set a breakpoint on that inlined code, the missing
5887 skip_inline_frames call would break things. Fortunately
5888 that's an extremely unlikely scenario. */
09ac7c10 5889 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
5890 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5891 && ecs->event_thread->control.trap_expected
5892 && pc_at_non_inline_function (aspace,
5893 ecs->event_thread->prev_pc,
09ac7c10 5894 &ecs->ws)))
1c5a993e
MR
5895 {
5896 skip_inline_frames (ecs->ptid);
5897
5898 /* Re-fetch current thread's frame in case that invalidated
5899 the frame cache. */
5900 frame = get_current_frame ();
5901 gdbarch = get_frame_arch (frame);
5902 }
0574c78f 5903 }
edb3359d 5904
a493e3e2 5905 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5906 && ecs->event_thread->control.trap_expected
568d6575 5907 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5908 && currently_stepping (ecs->event_thread))
3352ef37 5909 {
b50d7442 5910 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5911 also on an instruction that needs to be stepped multiple
1777feb0 5912 times before it's been fully executing. E.g., architectures
3352ef37
AC
5913 with a delay slot. It needs to be stepped twice, once for
5914 the instruction and once for the delay slot. */
5915 int step_through_delay
568d6575 5916 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5917
527159b7 5918 if (debug_infrun && step_through_delay)
8a9de0e4 5919 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5920 if (ecs->event_thread->control.step_range_end == 0
5921 && step_through_delay)
3352ef37
AC
5922 {
5923 /* The user issued a continue when stopped at a breakpoint.
5924 Set up for another trap and get out of here. */
4e1c45ea 5925 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5926 keep_going (ecs);
5927 return;
5928 }
5929 else if (step_through_delay)
5930 {
5931 /* The user issued a step when stopped at a breakpoint.
5932 Maybe we should stop, maybe we should not - the delay
5933 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5934 case, don't decide that here, just set
5935 ecs->stepping_over_breakpoint, making sure we
5936 single-step again before breakpoints are re-inserted. */
4e1c45ea 5937 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5938 }
5939 }
5940
ab04a2af
TT
5941 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5942 handles this event. */
5943 ecs->event_thread->control.stop_bpstat
5944 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5945 stop_pc, ecs->ptid, &ecs->ws);
db82e815 5946
ab04a2af
TT
5947 /* Following in case break condition called a
5948 function. */
5949 stop_print_frame = 1;
73dd234f 5950
ab04a2af
TT
5951 /* This is where we handle "moribund" watchpoints. Unlike
5952 software breakpoints traps, hardware watchpoint traps are
5953 always distinguishable from random traps. If no high-level
5954 watchpoint is associated with the reported stop data address
5955 anymore, then the bpstat does not explain the signal ---
5956 simply make sure to ignore it if `stopped_by_watchpoint' is
5957 set. */
5958
5959 if (debug_infrun
5960 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5961 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5962 GDB_SIGNAL_TRAP)
ab04a2af
TT
5963 && stopped_by_watchpoint)
5964 fprintf_unfiltered (gdb_stdlog,
5965 "infrun: no user watchpoint explains "
5966 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5967
bac7d97b 5968 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5969 at one stage in the past included checks for an inferior
5970 function call's call dummy's return breakpoint. The original
5971 comment, that went with the test, read:
03cebad2 5972
ab04a2af
TT
5973 ``End of a stack dummy. Some systems (e.g. Sony news) give
5974 another signal besides SIGTRAP, so check here as well as
5975 above.''
73dd234f 5976
ab04a2af
TT
5977 If someone ever tries to get call dummys on a
5978 non-executable stack to work (where the target would stop
5979 with something like a SIGSEGV), then those tests might need
5980 to be re-instated. Given, however, that the tests were only
5981 enabled when momentary breakpoints were not being used, I
5982 suspect that it won't be the case.
488f131b 5983
ab04a2af
TT
5984 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5985 be necessary for call dummies on a non-executable stack on
5986 SPARC. */
488f131b 5987
bac7d97b 5988 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5989 random_signal
5990 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5991 ecs->event_thread->suspend.stop_signal);
bac7d97b 5992
1cf4d951
PA
5993 /* Maybe this was a trap for a software breakpoint that has since
5994 been removed. */
5995 if (random_signal && target_stopped_by_sw_breakpoint ())
5996 {
5997 if (program_breakpoint_here_p (gdbarch, stop_pc))
5998 {
5999 struct regcache *regcache;
6000 int decr_pc;
6001
6002 /* Re-adjust PC to what the program would see if GDB was not
6003 debugging it. */
6004 regcache = get_thread_regcache (ecs->event_thread->ptid);
527a273a 6005 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
6006 if (decr_pc != 0)
6007 {
6008 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
6009
6010 if (record_full_is_used ())
6011 record_full_gdb_operation_disable_set ();
6012
6013 regcache_write_pc (regcache, stop_pc + decr_pc);
6014
6015 do_cleanups (old_cleanups);
6016 }
6017 }
6018 else
6019 {
6020 /* A delayed software breakpoint event. Ignore the trap. */
6021 if (debug_infrun)
6022 fprintf_unfiltered (gdb_stdlog,
6023 "infrun: delayed software breakpoint "
6024 "trap, ignoring\n");
6025 random_signal = 0;
6026 }
6027 }
6028
6029 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6030 has since been removed. */
6031 if (random_signal && target_stopped_by_hw_breakpoint ())
6032 {
6033 /* A delayed hardware breakpoint event. Ignore the trap. */
6034 if (debug_infrun)
6035 fprintf_unfiltered (gdb_stdlog,
6036 "infrun: delayed hardware breakpoint/watchpoint "
6037 "trap, ignoring\n");
6038 random_signal = 0;
6039 }
6040
bac7d97b
PA
6041 /* If not, perhaps stepping/nexting can. */
6042 if (random_signal)
6043 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6044 && currently_stepping (ecs->event_thread));
ab04a2af 6045
2adfaa28
PA
6046 /* Perhaps the thread hit a single-step breakpoint of _another_
6047 thread. Single-step breakpoints are transparent to the
6048 breakpoints module. */
6049 if (random_signal)
6050 random_signal = !ecs->hit_singlestep_breakpoint;
6051
bac7d97b
PA
6052 /* No? Perhaps we got a moribund watchpoint. */
6053 if (random_signal)
6054 random_signal = !stopped_by_watchpoint;
ab04a2af 6055
488f131b
JB
6056 /* For the program's own signals, act according to
6057 the signal handling tables. */
6058
ce12b012 6059 if (random_signal)
488f131b
JB
6060 {
6061 /* Signal not for debugging purposes. */
c9657e70 6062 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 6063 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 6064
527159b7 6065 if (debug_infrun)
c9737c08
PA
6066 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6067 gdb_signal_to_symbol_string (stop_signal));
527159b7 6068
488f131b
JB
6069 stopped_by_random_signal = 1;
6070
252fbfc8
PA
6071 /* Always stop on signals if we're either just gaining control
6072 of the program, or the user explicitly requested this thread
6073 to remain stopped. */
d6b48e9c 6074 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 6075 || ecs->event_thread->stop_requested
24291992 6076 || (!inf->detaching
16c381f0 6077 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 6078 {
22bcd14b 6079 stop_waiting (ecs);
488f131b
JB
6080 return;
6081 }
b57bacec
PA
6082
6083 /* Notify observers the signal has "handle print" set. Note we
6084 returned early above if stopping; normal_stop handles the
6085 printing in that case. */
6086 if (signal_print[ecs->event_thread->suspend.stop_signal])
6087 {
6088 /* The signal table tells us to print about this signal. */
6089 target_terminal_ours_for_output ();
6090 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
6091 target_terminal_inferior ();
6092 }
488f131b
JB
6093
6094 /* Clear the signal if it should not be passed. */
16c381f0 6095 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 6096 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 6097
fb14de7b 6098 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 6099 && ecs->event_thread->control.trap_expected
8358c15c 6100 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502 6101 {
372316f1
PA
6102 int was_in_line;
6103
68f53502
AC
6104 /* We were just starting a new sequence, attempting to
6105 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 6106 Instead this signal arrives. This signal will take us out
68f53502
AC
6107 of the stepping range so GDB needs to remember to, when
6108 the signal handler returns, resume stepping off that
6109 breakpoint. */
6110 /* To simplify things, "continue" is forced to use the same
6111 code paths as single-step - set a breakpoint at the
6112 signal return address and then, once hit, step off that
6113 breakpoint. */
237fc4c9
PA
6114 if (debug_infrun)
6115 fprintf_unfiltered (gdb_stdlog,
6116 "infrun: signal arrived while stepping over "
6117 "breakpoint\n");
d3169d93 6118
372316f1
PA
6119 was_in_line = step_over_info_valid_p ();
6120 clear_step_over_info ();
2c03e5be 6121 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 6122 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6123 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6124 ecs->event_thread->control.trap_expected = 0;
d137e6dc 6125
fbea99ea 6126 if (target_is_non_stop_p ())
372316f1 6127 {
fbea99ea
PA
6128 /* Either "set non-stop" is "on", or the target is
6129 always in non-stop mode. In this case, we have a bit
6130 more work to do. Resume the current thread, and if
6131 we had paused all threads, restart them while the
6132 signal handler runs. */
372316f1
PA
6133 keep_going (ecs);
6134
372316f1
PA
6135 if (was_in_line)
6136 {
372316f1
PA
6137 restart_threads (ecs->event_thread);
6138 }
6139 else if (debug_infrun)
6140 {
6141 fprintf_unfiltered (gdb_stdlog,
6142 "infrun: no need to restart threads\n");
6143 }
6144 return;
6145 }
6146
d137e6dc
PA
6147 /* If we were nexting/stepping some other thread, switch to
6148 it, so that we don't continue it, losing control. */
6149 if (!switch_back_to_stepped_thread (ecs))
6150 keep_going (ecs);
9d799f85 6151 return;
68f53502 6152 }
9d799f85 6153
e5f8a7cc
PA
6154 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6155 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6156 || ecs->event_thread->control.step_range_end == 1)
edb3359d 6157 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 6158 ecs->event_thread->control.step_stack_frame_id)
8358c15c 6159 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
6160 {
6161 /* The inferior is about to take a signal that will take it
6162 out of the single step range. Set a breakpoint at the
6163 current PC (which is presumably where the signal handler
6164 will eventually return) and then allow the inferior to
6165 run free.
6166
6167 Note that this is only needed for a signal delivered
6168 while in the single-step range. Nested signals aren't a
6169 problem as they eventually all return. */
237fc4c9
PA
6170 if (debug_infrun)
6171 fprintf_unfiltered (gdb_stdlog,
6172 "infrun: signal may take us out of "
6173 "single-step range\n");
6174
372316f1 6175 clear_step_over_info ();
2c03e5be 6176 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 6177 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6178 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6179 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
6180 keep_going (ecs);
6181 return;
d303a6c7 6182 }
9d799f85
AC
6183
6184 /* Note: step_resume_breakpoint may be non-NULL. This occures
6185 when either there's a nested signal, or when there's a
6186 pending signal enabled just as the signal handler returns
6187 (leaving the inferior at the step-resume-breakpoint without
6188 actually executing it). Either way continue until the
6189 breakpoint is really hit. */
c447ac0b
PA
6190
6191 if (!switch_back_to_stepped_thread (ecs))
6192 {
6193 if (debug_infrun)
6194 fprintf_unfiltered (gdb_stdlog,
6195 "infrun: random signal, keep going\n");
6196
6197 keep_going (ecs);
6198 }
6199 return;
488f131b 6200 }
94c57d6a
PA
6201
6202 process_event_stop_test (ecs);
6203}
6204
6205/* Come here when we've got some debug event / signal we can explain
6206 (IOW, not a random signal), and test whether it should cause a
6207 stop, or whether we should resume the inferior (transparently).
6208 E.g., could be a breakpoint whose condition evaluates false; we
6209 could be still stepping within the line; etc. */
6210
6211static void
6212process_event_stop_test (struct execution_control_state *ecs)
6213{
6214 struct symtab_and_line stop_pc_sal;
6215 struct frame_info *frame;
6216 struct gdbarch *gdbarch;
cdaa5b73
PA
6217 CORE_ADDR jmp_buf_pc;
6218 struct bpstat_what what;
94c57d6a 6219
cdaa5b73 6220 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6221
cdaa5b73
PA
6222 frame = get_current_frame ();
6223 gdbarch = get_frame_arch (frame);
fcf3daef 6224
cdaa5b73 6225 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6226
cdaa5b73
PA
6227 if (what.call_dummy)
6228 {
6229 stop_stack_dummy = what.call_dummy;
6230 }
186c406b 6231
243a9253
PA
6232 /* A few breakpoint types have callbacks associated (e.g.,
6233 bp_jit_event). Run them now. */
6234 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6235
cdaa5b73
PA
6236 /* If we hit an internal event that triggers symbol changes, the
6237 current frame will be invalidated within bpstat_what (e.g., if we
6238 hit an internal solib event). Re-fetch it. */
6239 frame = get_current_frame ();
6240 gdbarch = get_frame_arch (frame);
e2e4d78b 6241
cdaa5b73
PA
6242 switch (what.main_action)
6243 {
6244 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6245 /* If we hit the breakpoint at longjmp while stepping, we
6246 install a momentary breakpoint at the target of the
6247 jmp_buf. */
186c406b 6248
cdaa5b73
PA
6249 if (debug_infrun)
6250 fprintf_unfiltered (gdb_stdlog,
6251 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6252
cdaa5b73 6253 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6254
cdaa5b73
PA
6255 if (what.is_longjmp)
6256 {
6257 struct value *arg_value;
6258
6259 /* If we set the longjmp breakpoint via a SystemTap probe,
6260 then use it to extract the arguments. The destination PC
6261 is the third argument to the probe. */
6262 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6263 if (arg_value)
8fa0c4f8
AA
6264 {
6265 jmp_buf_pc = value_as_address (arg_value);
6266 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6267 }
cdaa5b73
PA
6268 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6269 || !gdbarch_get_longjmp_target (gdbarch,
6270 frame, &jmp_buf_pc))
e2e4d78b 6271 {
cdaa5b73
PA
6272 if (debug_infrun)
6273 fprintf_unfiltered (gdb_stdlog,
6274 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6275 "(!gdbarch_get_longjmp_target)\n");
6276 keep_going (ecs);
6277 return;
e2e4d78b 6278 }
e2e4d78b 6279
cdaa5b73
PA
6280 /* Insert a breakpoint at resume address. */
6281 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6282 }
6283 else
6284 check_exception_resume (ecs, frame);
6285 keep_going (ecs);
6286 return;
e81a37f7 6287
cdaa5b73
PA
6288 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6289 {
6290 struct frame_info *init_frame;
e81a37f7 6291
cdaa5b73 6292 /* There are several cases to consider.
c906108c 6293
cdaa5b73
PA
6294 1. The initiating frame no longer exists. In this case we
6295 must stop, because the exception or longjmp has gone too
6296 far.
2c03e5be 6297
cdaa5b73
PA
6298 2. The initiating frame exists, and is the same as the
6299 current frame. We stop, because the exception or longjmp
6300 has been caught.
2c03e5be 6301
cdaa5b73
PA
6302 3. The initiating frame exists and is different from the
6303 current frame. This means the exception or longjmp has
6304 been caught beneath the initiating frame, so keep going.
c906108c 6305
cdaa5b73
PA
6306 4. longjmp breakpoint has been placed just to protect
6307 against stale dummy frames and user is not interested in
6308 stopping around longjmps. */
c5aa993b 6309
cdaa5b73
PA
6310 if (debug_infrun)
6311 fprintf_unfiltered (gdb_stdlog,
6312 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6313
cdaa5b73
PA
6314 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6315 != NULL);
6316 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6317
cdaa5b73
PA
6318 if (what.is_longjmp)
6319 {
b67a2c6f 6320 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6321
cdaa5b73 6322 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6323 {
cdaa5b73
PA
6324 /* Case 4. */
6325 keep_going (ecs);
6326 return;
e5ef252a 6327 }
cdaa5b73 6328 }
c5aa993b 6329
cdaa5b73 6330 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6331
cdaa5b73
PA
6332 if (init_frame)
6333 {
6334 struct frame_id current_id
6335 = get_frame_id (get_current_frame ());
6336 if (frame_id_eq (current_id,
6337 ecs->event_thread->initiating_frame))
6338 {
6339 /* Case 2. Fall through. */
6340 }
6341 else
6342 {
6343 /* Case 3. */
6344 keep_going (ecs);
6345 return;
6346 }
68f53502 6347 }
488f131b 6348
cdaa5b73
PA
6349 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6350 exists. */
6351 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6352
bdc36728 6353 end_stepping_range (ecs);
cdaa5b73
PA
6354 }
6355 return;
e5ef252a 6356
cdaa5b73
PA
6357 case BPSTAT_WHAT_SINGLE:
6358 if (debug_infrun)
6359 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6360 ecs->event_thread->stepping_over_breakpoint = 1;
6361 /* Still need to check other stuff, at least the case where we
6362 are stepping and step out of the right range. */
6363 break;
e5ef252a 6364
cdaa5b73
PA
6365 case BPSTAT_WHAT_STEP_RESUME:
6366 if (debug_infrun)
6367 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6368
cdaa5b73
PA
6369 delete_step_resume_breakpoint (ecs->event_thread);
6370 if (ecs->event_thread->control.proceed_to_finish
6371 && execution_direction == EXEC_REVERSE)
6372 {
6373 struct thread_info *tp = ecs->event_thread;
6374
6375 /* We are finishing a function in reverse, and just hit the
6376 step-resume breakpoint at the start address of the
6377 function, and we're almost there -- just need to back up
6378 by one more single-step, which should take us back to the
6379 function call. */
6380 tp->control.step_range_start = tp->control.step_range_end = 1;
6381 keep_going (ecs);
e5ef252a 6382 return;
cdaa5b73
PA
6383 }
6384 fill_in_stop_func (gdbarch, ecs);
6385 if (stop_pc == ecs->stop_func_start
6386 && execution_direction == EXEC_REVERSE)
6387 {
6388 /* We are stepping over a function call in reverse, and just
6389 hit the step-resume breakpoint at the start address of
6390 the function. Go back to single-stepping, which should
6391 take us back to the function call. */
6392 ecs->event_thread->stepping_over_breakpoint = 1;
6393 keep_going (ecs);
6394 return;
6395 }
6396 break;
e5ef252a 6397
cdaa5b73
PA
6398 case BPSTAT_WHAT_STOP_NOISY:
6399 if (debug_infrun)
6400 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6401 stop_print_frame = 1;
e5ef252a 6402
99619bea
PA
6403 /* Assume the thread stopped for a breapoint. We'll still check
6404 whether a/the breakpoint is there when the thread is next
6405 resumed. */
6406 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6407
22bcd14b 6408 stop_waiting (ecs);
cdaa5b73 6409 return;
e5ef252a 6410
cdaa5b73
PA
6411 case BPSTAT_WHAT_STOP_SILENT:
6412 if (debug_infrun)
6413 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6414 stop_print_frame = 0;
e5ef252a 6415
99619bea
PA
6416 /* Assume the thread stopped for a breapoint. We'll still check
6417 whether a/the breakpoint is there when the thread is next
6418 resumed. */
6419 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6420 stop_waiting (ecs);
cdaa5b73
PA
6421 return;
6422
6423 case BPSTAT_WHAT_HP_STEP_RESUME:
6424 if (debug_infrun)
6425 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6426
6427 delete_step_resume_breakpoint (ecs->event_thread);
6428 if (ecs->event_thread->step_after_step_resume_breakpoint)
6429 {
6430 /* Back when the step-resume breakpoint was inserted, we
6431 were trying to single-step off a breakpoint. Go back to
6432 doing that. */
6433 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6434 ecs->event_thread->stepping_over_breakpoint = 1;
6435 keep_going (ecs);
6436 return;
e5ef252a 6437 }
cdaa5b73
PA
6438 break;
6439
6440 case BPSTAT_WHAT_KEEP_CHECKING:
6441 break;
e5ef252a 6442 }
c906108c 6443
af48d08f
PA
6444 /* If we stepped a permanent breakpoint and we had a high priority
6445 step-resume breakpoint for the address we stepped, but we didn't
6446 hit it, then we must have stepped into the signal handler. The
6447 step-resume was only necessary to catch the case of _not_
6448 stepping into the handler, so delete it, and fall through to
6449 checking whether the step finished. */
6450 if (ecs->event_thread->stepped_breakpoint)
6451 {
6452 struct breakpoint *sr_bp
6453 = ecs->event_thread->control.step_resume_breakpoint;
6454
8d707a12
PA
6455 if (sr_bp != NULL
6456 && sr_bp->loc->permanent
af48d08f
PA
6457 && sr_bp->type == bp_hp_step_resume
6458 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6459 {
6460 if (debug_infrun)
6461 fprintf_unfiltered (gdb_stdlog,
6462 "infrun: stepped permanent breakpoint, stopped in "
6463 "handler\n");
6464 delete_step_resume_breakpoint (ecs->event_thread);
6465 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6466 }
6467 }
6468
cdaa5b73
PA
6469 /* We come here if we hit a breakpoint but should not stop for it.
6470 Possibly we also were stepping and should stop for that. So fall
6471 through and test for stepping. But, if not stepping, do not
6472 stop. */
c906108c 6473
a7212384
UW
6474 /* In all-stop mode, if we're currently stepping but have stopped in
6475 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6476 if (switch_back_to_stepped_thread (ecs))
6477 return;
776f04fa 6478
8358c15c 6479 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6480 {
527159b7 6481 if (debug_infrun)
d3169d93
DJ
6482 fprintf_unfiltered (gdb_stdlog,
6483 "infrun: step-resume breakpoint is inserted\n");
527159b7 6484
488f131b
JB
6485 /* Having a step-resume breakpoint overrides anything
6486 else having to do with stepping commands until
6487 that breakpoint is reached. */
488f131b
JB
6488 keep_going (ecs);
6489 return;
6490 }
c5aa993b 6491
16c381f0 6492 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6493 {
527159b7 6494 if (debug_infrun)
8a9de0e4 6495 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6496 /* Likewise if we aren't even stepping. */
488f131b
JB
6497 keep_going (ecs);
6498 return;
6499 }
c5aa993b 6500
4b7703ad
JB
6501 /* Re-fetch current thread's frame in case the code above caused
6502 the frame cache to be re-initialized, making our FRAME variable
6503 a dangling pointer. */
6504 frame = get_current_frame ();
628fe4e4 6505 gdbarch = get_frame_arch (frame);
7e324e48 6506 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6507
488f131b 6508 /* If stepping through a line, keep going if still within it.
c906108c 6509
488f131b
JB
6510 Note that step_range_end is the address of the first instruction
6511 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6512 within it!
6513
6514 Note also that during reverse execution, we may be stepping
6515 through a function epilogue and therefore must detect when
6516 the current-frame changes in the middle of a line. */
6517
ce4c476a 6518 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 6519 && (execution_direction != EXEC_REVERSE
388a8562 6520 || frame_id_eq (get_frame_id (frame),
16c381f0 6521 ecs->event_thread->control.step_frame_id)))
488f131b 6522 {
527159b7 6523 if (debug_infrun)
5af949e3
UW
6524 fprintf_unfiltered
6525 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6526 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6527 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6528
c1e36e3e
PA
6529 /* Tentatively re-enable range stepping; `resume' disables it if
6530 necessary (e.g., if we're stepping over a breakpoint or we
6531 have software watchpoints). */
6532 ecs->event_thread->control.may_range_step = 1;
6533
b2175913
MS
6534 /* When stepping backward, stop at beginning of line range
6535 (unless it's the function entry point, in which case
6536 keep going back to the call point). */
16c381f0 6537 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6538 && stop_pc != ecs->stop_func_start
6539 && execution_direction == EXEC_REVERSE)
bdc36728 6540 end_stepping_range (ecs);
b2175913
MS
6541 else
6542 keep_going (ecs);
6543
488f131b
JB
6544 return;
6545 }
c5aa993b 6546
488f131b 6547 /* We stepped out of the stepping range. */
c906108c 6548
488f131b 6549 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6550 loader dynamic symbol resolution code...
6551
6552 EXEC_FORWARD: we keep on single stepping until we exit the run
6553 time loader code and reach the callee's address.
6554
6555 EXEC_REVERSE: we've already executed the callee (backward), and
6556 the runtime loader code is handled just like any other
6557 undebuggable function call. Now we need only keep stepping
6558 backward through the trampoline code, and that's handled further
6559 down, so there is nothing for us to do here. */
6560
6561 if (execution_direction != EXEC_REVERSE
16c381f0 6562 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 6563 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 6564 {
4c8c40e6 6565 CORE_ADDR pc_after_resolver =
568d6575 6566 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 6567
527159b7 6568 if (debug_infrun)
3e43a32a
MS
6569 fprintf_unfiltered (gdb_stdlog,
6570 "infrun: stepped into dynsym resolve code\n");
527159b7 6571
488f131b
JB
6572 if (pc_after_resolver)
6573 {
6574 /* Set up a step-resume breakpoint at the address
6575 indicated by SKIP_SOLIB_RESOLVER. */
6576 struct symtab_and_line sr_sal;
abbb1732 6577
fe39c653 6578 init_sal (&sr_sal);
488f131b 6579 sr_sal.pc = pc_after_resolver;
6c95b8df 6580 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6581
a6d9a66e
UW
6582 insert_step_resume_breakpoint_at_sal (gdbarch,
6583 sr_sal, null_frame_id);
c5aa993b 6584 }
c906108c 6585
488f131b
JB
6586 keep_going (ecs);
6587 return;
6588 }
c906108c 6589
16c381f0
JK
6590 if (ecs->event_thread->control.step_range_end != 1
6591 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6592 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6593 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6594 {
527159b7 6595 if (debug_infrun)
3e43a32a
MS
6596 fprintf_unfiltered (gdb_stdlog,
6597 "infrun: stepped into signal trampoline\n");
42edda50 6598 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6599 a signal trampoline (either by a signal being delivered or by
6600 the signal handler returning). Just single-step until the
6601 inferior leaves the trampoline (either by calling the handler
6602 or returning). */
488f131b
JB
6603 keep_going (ecs);
6604 return;
6605 }
c906108c 6606
14132e89
MR
6607 /* If we're in the return path from a shared library trampoline,
6608 we want to proceed through the trampoline when stepping. */
6609 /* macro/2012-04-25: This needs to come before the subroutine
6610 call check below as on some targets return trampolines look
6611 like subroutine calls (MIPS16 return thunks). */
6612 if (gdbarch_in_solib_return_trampoline (gdbarch,
6613 stop_pc, ecs->stop_func_name)
6614 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6615 {
6616 /* Determine where this trampoline returns. */
6617 CORE_ADDR real_stop_pc;
6618
6619 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6620
6621 if (debug_infrun)
6622 fprintf_unfiltered (gdb_stdlog,
6623 "infrun: stepped into solib return tramp\n");
6624
6625 /* Only proceed through if we know where it's going. */
6626 if (real_stop_pc)
6627 {
6628 /* And put the step-breakpoint there and go until there. */
6629 struct symtab_and_line sr_sal;
6630
6631 init_sal (&sr_sal); /* initialize to zeroes */
6632 sr_sal.pc = real_stop_pc;
6633 sr_sal.section = find_pc_overlay (sr_sal.pc);
6634 sr_sal.pspace = get_frame_program_space (frame);
6635
6636 /* Do not specify what the fp should be when we stop since
6637 on some machines the prologue is where the new fp value
6638 is established. */
6639 insert_step_resume_breakpoint_at_sal (gdbarch,
6640 sr_sal, null_frame_id);
6641
6642 /* Restart without fiddling with the step ranges or
6643 other state. */
6644 keep_going (ecs);
6645 return;
6646 }
6647 }
6648
c17eaafe
DJ
6649 /* Check for subroutine calls. The check for the current frame
6650 equalling the step ID is not necessary - the check of the
6651 previous frame's ID is sufficient - but it is a common case and
6652 cheaper than checking the previous frame's ID.
14e60db5
DJ
6653
6654 NOTE: frame_id_eq will never report two invalid frame IDs as
6655 being equal, so to get into this block, both the current and
6656 previous frame must have valid frame IDs. */
005ca36a
JB
6657 /* The outer_frame_id check is a heuristic to detect stepping
6658 through startup code. If we step over an instruction which
6659 sets the stack pointer from an invalid value to a valid value,
6660 we may detect that as a subroutine call from the mythical
6661 "outermost" function. This could be fixed by marking
6662 outermost frames as !stack_p,code_p,special_p. Then the
6663 initial outermost frame, before sp was valid, would
ce6cca6d 6664 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6665 for more. */
edb3359d 6666 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6667 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6668 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6669 ecs->event_thread->control.step_stack_frame_id)
6670 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6671 outer_frame_id)
885eeb5b
PA
6672 || (ecs->event_thread->control.step_start_function
6673 != find_pc_function (stop_pc)))))
488f131b 6674 {
95918acb 6675 CORE_ADDR real_stop_pc;
8fb3e588 6676
527159b7 6677 if (debug_infrun)
8a9de0e4 6678 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6679
b7a084be 6680 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6681 {
6682 /* I presume that step_over_calls is only 0 when we're
6683 supposed to be stepping at the assembly language level
6684 ("stepi"). Just stop. */
388a8562 6685 /* And this works the same backward as frontward. MVS */
bdc36728 6686 end_stepping_range (ecs);
95918acb
AC
6687 return;
6688 }
8fb3e588 6689
388a8562
MS
6690 /* Reverse stepping through solib trampolines. */
6691
6692 if (execution_direction == EXEC_REVERSE
16c381f0 6693 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6694 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6695 || (ecs->stop_func_start == 0
6696 && in_solib_dynsym_resolve_code (stop_pc))))
6697 {
6698 /* Any solib trampoline code can be handled in reverse
6699 by simply continuing to single-step. We have already
6700 executed the solib function (backwards), and a few
6701 steps will take us back through the trampoline to the
6702 caller. */
6703 keep_going (ecs);
6704 return;
6705 }
6706
16c381f0 6707 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6708 {
b2175913
MS
6709 /* We're doing a "next".
6710
6711 Normal (forward) execution: set a breakpoint at the
6712 callee's return address (the address at which the caller
6713 will resume).
6714
6715 Reverse (backward) execution. set the step-resume
6716 breakpoint at the start of the function that we just
6717 stepped into (backwards), and continue to there. When we
6130d0b7 6718 get there, we'll need to single-step back to the caller. */
b2175913
MS
6719
6720 if (execution_direction == EXEC_REVERSE)
6721 {
acf9414f
JK
6722 /* If we're already at the start of the function, we've either
6723 just stepped backward into a single instruction function,
6724 or stepped back out of a signal handler to the first instruction
6725 of the function. Just keep going, which will single-step back
6726 to the caller. */
58c48e72 6727 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f
JK
6728 {
6729 struct symtab_and_line sr_sal;
6730
6731 /* Normal function call return (static or dynamic). */
6732 init_sal (&sr_sal);
6733 sr_sal.pc = ecs->stop_func_start;
6734 sr_sal.pspace = get_frame_program_space (frame);
6735 insert_step_resume_breakpoint_at_sal (gdbarch,
6736 sr_sal, null_frame_id);
6737 }
b2175913
MS
6738 }
6739 else
568d6575 6740 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6741
8567c30f
AC
6742 keep_going (ecs);
6743 return;
6744 }
a53c66de 6745
95918acb 6746 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6747 calling routine and the real function), locate the real
6748 function. That's what tells us (a) whether we want to step
6749 into it at all, and (b) what prologue we want to run to the
6750 end of, if we do step into it. */
568d6575 6751 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6752 if (real_stop_pc == 0)
568d6575 6753 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6754 if (real_stop_pc != 0)
6755 ecs->stop_func_start = real_stop_pc;
8fb3e588 6756
db5f024e 6757 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
6758 {
6759 struct symtab_and_line sr_sal;
abbb1732 6760
1b2bfbb9
RC
6761 init_sal (&sr_sal);
6762 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6763 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6764
a6d9a66e
UW
6765 insert_step_resume_breakpoint_at_sal (gdbarch,
6766 sr_sal, null_frame_id);
8fb3e588
AC
6767 keep_going (ecs);
6768 return;
1b2bfbb9
RC
6769 }
6770
95918acb 6771 /* If we have line number information for the function we are
1bfeeb0f
JL
6772 thinking of stepping into and the function isn't on the skip
6773 list, step into it.
95918acb 6774
8fb3e588
AC
6775 If there are several symtabs at that PC (e.g. with include
6776 files), just want to know whether *any* of them have line
6777 numbers. find_pc_line handles this. */
95918acb
AC
6778 {
6779 struct symtab_and_line tmp_sal;
8fb3e588 6780
95918acb 6781 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6782 if (tmp_sal.line != 0
85817405
JK
6783 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6784 &tmp_sal))
95918acb 6785 {
b2175913 6786 if (execution_direction == EXEC_REVERSE)
568d6575 6787 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6788 else
568d6575 6789 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6790 return;
6791 }
6792 }
6793
6794 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6795 set, we stop the step so that the user has a chance to switch
6796 in assembly mode. */
16c381f0 6797 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6798 && step_stop_if_no_debug)
95918acb 6799 {
bdc36728 6800 end_stepping_range (ecs);
95918acb
AC
6801 return;
6802 }
6803
b2175913
MS
6804 if (execution_direction == EXEC_REVERSE)
6805 {
acf9414f
JK
6806 /* If we're already at the start of the function, we've either just
6807 stepped backward into a single instruction function without line
6808 number info, or stepped back out of a signal handler to the first
6809 instruction of the function without line number info. Just keep
6810 going, which will single-step back to the caller. */
6811 if (ecs->stop_func_start != stop_pc)
6812 {
6813 /* Set a breakpoint at callee's start address.
6814 From there we can step once and be back in the caller. */
6815 struct symtab_and_line sr_sal;
abbb1732 6816
acf9414f
JK
6817 init_sal (&sr_sal);
6818 sr_sal.pc = ecs->stop_func_start;
6819 sr_sal.pspace = get_frame_program_space (frame);
6820 insert_step_resume_breakpoint_at_sal (gdbarch,
6821 sr_sal, null_frame_id);
6822 }
b2175913
MS
6823 }
6824 else
6825 /* Set a breakpoint at callee's return address (the address
6826 at which the caller will resume). */
568d6575 6827 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6828
95918acb 6829 keep_going (ecs);
488f131b 6830 return;
488f131b 6831 }
c906108c 6832
fdd654f3
MS
6833 /* Reverse stepping through solib trampolines. */
6834
6835 if (execution_direction == EXEC_REVERSE
16c381f0 6836 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
6837 {
6838 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6839 || (ecs->stop_func_start == 0
6840 && in_solib_dynsym_resolve_code (stop_pc)))
6841 {
6842 /* Any solib trampoline code can be handled in reverse
6843 by simply continuing to single-step. We have already
6844 executed the solib function (backwards), and a few
6845 steps will take us back through the trampoline to the
6846 caller. */
6847 keep_going (ecs);
6848 return;
6849 }
6850 else if (in_solib_dynsym_resolve_code (stop_pc))
6851 {
6852 /* Stepped backward into the solib dynsym resolver.
6853 Set a breakpoint at its start and continue, then
6854 one more step will take us out. */
6855 struct symtab_and_line sr_sal;
abbb1732 6856
fdd654f3
MS
6857 init_sal (&sr_sal);
6858 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6859 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6860 insert_step_resume_breakpoint_at_sal (gdbarch,
6861 sr_sal, null_frame_id);
6862 keep_going (ecs);
6863 return;
6864 }
6865 }
6866
2afb61aa 6867 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 6868
1b2bfbb9
RC
6869 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6870 the trampoline processing logic, however, there are some trampolines
6871 that have no names, so we should do trampoline handling first. */
16c381f0 6872 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6873 && ecs->stop_func_name == NULL
2afb61aa 6874 && stop_pc_sal.line == 0)
1b2bfbb9 6875 {
527159b7 6876 if (debug_infrun)
3e43a32a
MS
6877 fprintf_unfiltered (gdb_stdlog,
6878 "infrun: stepped into undebuggable function\n");
527159b7 6879
1b2bfbb9 6880 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6881 undebuggable function (where there is no debugging information
6882 and no line number corresponding to the address where the
1b2bfbb9
RC
6883 inferior stopped). Since we want to skip this kind of code,
6884 we keep going until the inferior returns from this
14e60db5
DJ
6885 function - unless the user has asked us not to (via
6886 set step-mode) or we no longer know how to get back
6887 to the call site. */
6888 if (step_stop_if_no_debug
c7ce8faa 6889 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6890 {
6891 /* If we have no line number and the step-stop-if-no-debug
6892 is set, we stop the step so that the user has a chance to
6893 switch in assembly mode. */
bdc36728 6894 end_stepping_range (ecs);
1b2bfbb9
RC
6895 return;
6896 }
6897 else
6898 {
6899 /* Set a breakpoint at callee's return address (the address
6900 at which the caller will resume). */
568d6575 6901 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6902 keep_going (ecs);
6903 return;
6904 }
6905 }
6906
16c381f0 6907 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6908 {
6909 /* It is stepi or nexti. We always want to stop stepping after
6910 one instruction. */
527159b7 6911 if (debug_infrun)
8a9de0e4 6912 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6913 end_stepping_range (ecs);
1b2bfbb9
RC
6914 return;
6915 }
6916
2afb61aa 6917 if (stop_pc_sal.line == 0)
488f131b
JB
6918 {
6919 /* We have no line number information. That means to stop
6920 stepping (does this always happen right after one instruction,
6921 when we do "s" in a function with no line numbers,
6922 or can this happen as a result of a return or longjmp?). */
527159b7 6923 if (debug_infrun)
8a9de0e4 6924 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6925 end_stepping_range (ecs);
488f131b
JB
6926 return;
6927 }
c906108c 6928
edb3359d
DJ
6929 /* Look for "calls" to inlined functions, part one. If the inline
6930 frame machinery detected some skipped call sites, we have entered
6931 a new inline function. */
6932
6933 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6934 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
6935 && inline_skipped_frames (ecs->ptid))
6936 {
6937 struct symtab_and_line call_sal;
6938
6939 if (debug_infrun)
6940 fprintf_unfiltered (gdb_stdlog,
6941 "infrun: stepped into inlined function\n");
6942
6943 find_frame_sal (get_current_frame (), &call_sal);
6944
16c381f0 6945 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6946 {
6947 /* For "step", we're going to stop. But if the call site
6948 for this inlined function is on the same source line as
6949 we were previously stepping, go down into the function
6950 first. Otherwise stop at the call site. */
6951
6952 if (call_sal.line == ecs->event_thread->current_line
6953 && call_sal.symtab == ecs->event_thread->current_symtab)
6954 step_into_inline_frame (ecs->ptid);
6955
bdc36728 6956 end_stepping_range (ecs);
edb3359d
DJ
6957 return;
6958 }
6959 else
6960 {
6961 /* For "next", we should stop at the call site if it is on a
6962 different source line. Otherwise continue through the
6963 inlined function. */
6964 if (call_sal.line == ecs->event_thread->current_line
6965 && call_sal.symtab == ecs->event_thread->current_symtab)
6966 keep_going (ecs);
6967 else
bdc36728 6968 end_stepping_range (ecs);
edb3359d
DJ
6969 return;
6970 }
6971 }
6972
6973 /* Look for "calls" to inlined functions, part two. If we are still
6974 in the same real function we were stepping through, but we have
6975 to go further up to find the exact frame ID, we are stepping
6976 through a more inlined call beyond its call site. */
6977
6978 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6979 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6980 ecs->event_thread->control.step_frame_id)
edb3359d 6981 && stepped_in_from (get_current_frame (),
16c381f0 6982 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6983 {
6984 if (debug_infrun)
6985 fprintf_unfiltered (gdb_stdlog,
6986 "infrun: stepping through inlined function\n");
6987
16c381f0 6988 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
6989 keep_going (ecs);
6990 else
bdc36728 6991 end_stepping_range (ecs);
edb3359d
DJ
6992 return;
6993 }
6994
2afb61aa 6995 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6996 && (ecs->event_thread->current_line != stop_pc_sal.line
6997 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
6998 {
6999 /* We are at the start of a different line. So stop. Note that
7000 we don't stop if we step into the middle of a different line.
7001 That is said to make things like for (;;) statements work
7002 better. */
527159b7 7003 if (debug_infrun)
3e43a32a
MS
7004 fprintf_unfiltered (gdb_stdlog,
7005 "infrun: stepped to a different line\n");
bdc36728 7006 end_stepping_range (ecs);
488f131b
JB
7007 return;
7008 }
c906108c 7009
488f131b 7010 /* We aren't done stepping.
c906108c 7011
488f131b
JB
7012 Optimize by setting the stepping range to the line.
7013 (We might not be in the original line, but if we entered a
7014 new line in mid-statement, we continue stepping. This makes
7015 things like for(;;) statements work better.) */
c906108c 7016
16c381f0
JK
7017 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7018 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 7019 ecs->event_thread->control.may_range_step = 1;
edb3359d 7020 set_step_info (frame, stop_pc_sal);
488f131b 7021
527159b7 7022 if (debug_infrun)
8a9de0e4 7023 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 7024 keep_going (ecs);
104c1213
JM
7025}
7026
c447ac0b
PA
7027/* In all-stop mode, if we're currently stepping but have stopped in
7028 some other thread, we may need to switch back to the stepped
7029 thread. Returns true we set the inferior running, false if we left
7030 it stopped (and the event needs further processing). */
7031
7032static int
7033switch_back_to_stepped_thread (struct execution_control_state *ecs)
7034{
fbea99ea 7035 if (!target_is_non_stop_p ())
c447ac0b
PA
7036 {
7037 struct thread_info *tp;
99619bea
PA
7038 struct thread_info *stepping_thread;
7039
7040 /* If any thread is blocked on some internal breakpoint, and we
7041 simply need to step over that breakpoint to get it going
7042 again, do that first. */
7043
7044 /* However, if we see an event for the stepping thread, then we
7045 know all other threads have been moved past their breakpoints
7046 already. Let the caller check whether the step is finished,
7047 etc., before deciding to move it past a breakpoint. */
7048 if (ecs->event_thread->control.step_range_end != 0)
7049 return 0;
7050
7051 /* Check if the current thread is blocked on an incomplete
7052 step-over, interrupted by a random signal. */
7053 if (ecs->event_thread->control.trap_expected
7054 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 7055 {
99619bea
PA
7056 if (debug_infrun)
7057 {
7058 fprintf_unfiltered (gdb_stdlog,
7059 "infrun: need to finish step-over of [%s]\n",
7060 target_pid_to_str (ecs->event_thread->ptid));
7061 }
7062 keep_going (ecs);
7063 return 1;
7064 }
2adfaa28 7065
99619bea
PA
7066 /* Check if the current thread is blocked by a single-step
7067 breakpoint of another thread. */
7068 if (ecs->hit_singlestep_breakpoint)
7069 {
7070 if (debug_infrun)
7071 {
7072 fprintf_unfiltered (gdb_stdlog,
7073 "infrun: need to step [%s] over single-step "
7074 "breakpoint\n",
7075 target_pid_to_str (ecs->ptid));
7076 }
7077 keep_going (ecs);
7078 return 1;
7079 }
7080
4d9d9d04
PA
7081 /* If this thread needs yet another step-over (e.g., stepping
7082 through a delay slot), do it first before moving on to
7083 another thread. */
7084 if (thread_still_needs_step_over (ecs->event_thread))
7085 {
7086 if (debug_infrun)
7087 {
7088 fprintf_unfiltered (gdb_stdlog,
7089 "infrun: thread [%s] still needs step-over\n",
7090 target_pid_to_str (ecs->event_thread->ptid));
7091 }
7092 keep_going (ecs);
7093 return 1;
7094 }
70509625 7095
483805cf
PA
7096 /* If scheduler locking applies even if not stepping, there's no
7097 need to walk over threads. Above we've checked whether the
7098 current thread is stepping. If some other thread not the
7099 event thread is stepping, then it must be that scheduler
7100 locking is not in effect. */
856e7dd6 7101 if (schedlock_applies (ecs->event_thread))
483805cf
PA
7102 return 0;
7103
4d9d9d04
PA
7104 /* Otherwise, we no longer expect a trap in the current thread.
7105 Clear the trap_expected flag before switching back -- this is
7106 what keep_going does as well, if we call it. */
7107 ecs->event_thread->control.trap_expected = 0;
7108
7109 /* Likewise, clear the signal if it should not be passed. */
7110 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7111 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7112
7113 /* Do all pending step-overs before actually proceeding with
483805cf 7114 step/next/etc. */
4d9d9d04
PA
7115 if (start_step_over ())
7116 {
7117 prepare_to_wait (ecs);
7118 return 1;
7119 }
7120
7121 /* Look for the stepping/nexting thread. */
483805cf 7122 stepping_thread = NULL;
4d9d9d04 7123
034f788c 7124 ALL_NON_EXITED_THREADS (tp)
483805cf 7125 {
fbea99ea
PA
7126 /* Ignore threads of processes the caller is not
7127 resuming. */
483805cf 7128 if (!sched_multi
1afd5965 7129 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
483805cf
PA
7130 continue;
7131
7132 /* When stepping over a breakpoint, we lock all threads
7133 except the one that needs to move past the breakpoint.
7134 If a non-event thread has this set, the "incomplete
7135 step-over" check above should have caught it earlier. */
372316f1
PA
7136 if (tp->control.trap_expected)
7137 {
7138 internal_error (__FILE__, __LINE__,
7139 "[%s] has inconsistent state: "
7140 "trap_expected=%d\n",
7141 target_pid_to_str (tp->ptid),
7142 tp->control.trap_expected);
7143 }
483805cf
PA
7144
7145 /* Did we find the stepping thread? */
7146 if (tp->control.step_range_end)
7147 {
7148 /* Yep. There should only one though. */
7149 gdb_assert (stepping_thread == NULL);
7150
7151 /* The event thread is handled at the top, before we
7152 enter this loop. */
7153 gdb_assert (tp != ecs->event_thread);
7154
7155 /* If some thread other than the event thread is
7156 stepping, then scheduler locking can't be in effect,
7157 otherwise we wouldn't have resumed the current event
7158 thread in the first place. */
856e7dd6 7159 gdb_assert (!schedlock_applies (tp));
483805cf
PA
7160
7161 stepping_thread = tp;
7162 }
99619bea
PA
7163 }
7164
483805cf 7165 if (stepping_thread != NULL)
99619bea 7166 {
c447ac0b
PA
7167 if (debug_infrun)
7168 fprintf_unfiltered (gdb_stdlog,
7169 "infrun: switching back to stepped thread\n");
7170
2ac7589c
PA
7171 if (keep_going_stepped_thread (stepping_thread))
7172 {
7173 prepare_to_wait (ecs);
7174 return 1;
7175 }
7176 }
7177 }
2adfaa28 7178
2ac7589c
PA
7179 return 0;
7180}
2adfaa28 7181
2ac7589c
PA
7182/* Set a previously stepped thread back to stepping. Returns true on
7183 success, false if the resume is not possible (e.g., the thread
7184 vanished). */
7185
7186static int
7187keep_going_stepped_thread (struct thread_info *tp)
7188{
7189 struct frame_info *frame;
2ac7589c
PA
7190 struct execution_control_state ecss;
7191 struct execution_control_state *ecs = &ecss;
2adfaa28 7192
2ac7589c
PA
7193 /* If the stepping thread exited, then don't try to switch back and
7194 resume it, which could fail in several different ways depending
7195 on the target. Instead, just keep going.
2adfaa28 7196
2ac7589c
PA
7197 We can find a stepping dead thread in the thread list in two
7198 cases:
2adfaa28 7199
2ac7589c
PA
7200 - The target supports thread exit events, and when the target
7201 tries to delete the thread from the thread list, inferior_ptid
7202 pointed at the exiting thread. In such case, calling
7203 delete_thread does not really remove the thread from the list;
7204 instead, the thread is left listed, with 'exited' state.
64ce06e4 7205
2ac7589c
PA
7206 - The target's debug interface does not support thread exit
7207 events, and so we have no idea whatsoever if the previously
7208 stepping thread is still alive. For that reason, we need to
7209 synchronously query the target now. */
2adfaa28 7210
2ac7589c
PA
7211 if (is_exited (tp->ptid)
7212 || !target_thread_alive (tp->ptid))
7213 {
7214 if (debug_infrun)
7215 fprintf_unfiltered (gdb_stdlog,
7216 "infrun: not resuming previously "
7217 "stepped thread, it has vanished\n");
7218
7219 delete_thread (tp->ptid);
7220 return 0;
c447ac0b 7221 }
2ac7589c
PA
7222
7223 if (debug_infrun)
7224 fprintf_unfiltered (gdb_stdlog,
7225 "infrun: resuming previously stepped thread\n");
7226
7227 reset_ecs (ecs, tp);
7228 switch_to_thread (tp->ptid);
7229
7230 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7231 frame = get_current_frame ();
2ac7589c
PA
7232
7233 /* If the PC of the thread we were trying to single-step has
7234 changed, then that thread has trapped or been signaled, but the
7235 event has not been reported to GDB yet. Re-poll the target
7236 looking for this particular thread's event (i.e. temporarily
7237 enable schedlock) by:
7238
7239 - setting a break at the current PC
7240 - resuming that particular thread, only (by setting trap
7241 expected)
7242
7243 This prevents us continuously moving the single-step breakpoint
7244 forward, one instruction at a time, overstepping. */
7245
7246 if (stop_pc != tp->prev_pc)
7247 {
7248 ptid_t resume_ptid;
7249
7250 if (debug_infrun)
7251 fprintf_unfiltered (gdb_stdlog,
7252 "infrun: expected thread advanced also (%s -> %s)\n",
7253 paddress (target_gdbarch (), tp->prev_pc),
7254 paddress (target_gdbarch (), stop_pc));
7255
7256 /* Clear the info of the previous step-over, as it's no longer
7257 valid (if the thread was trying to step over a breakpoint, it
7258 has already succeeded). It's what keep_going would do too,
7259 if we called it. Do this before trying to insert the sss
7260 breakpoint, otherwise if we were previously trying to step
7261 over this exact address in another thread, the breakpoint is
7262 skipped. */
7263 clear_step_over_info ();
7264 tp->control.trap_expected = 0;
7265
7266 insert_single_step_breakpoint (get_frame_arch (frame),
7267 get_frame_address_space (frame),
7268 stop_pc);
7269
372316f1 7270 tp->resumed = 1;
fbea99ea 7271 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7272 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7273 }
7274 else
7275 {
7276 if (debug_infrun)
7277 fprintf_unfiltered (gdb_stdlog,
7278 "infrun: expected thread still hasn't advanced\n");
7279
7280 keep_going_pass_signal (ecs);
7281 }
7282 return 1;
c447ac0b
PA
7283}
7284
8b061563
PA
7285/* Is thread TP in the middle of (software or hardware)
7286 single-stepping? (Note the result of this function must never be
7287 passed directly as target_resume's STEP parameter.) */
104c1213 7288
a289b8f6 7289static int
b3444185 7290currently_stepping (struct thread_info *tp)
a7212384 7291{
8358c15c
JK
7292 return ((tp->control.step_range_end
7293 && tp->control.step_resume_breakpoint == NULL)
7294 || tp->control.trap_expected
af48d08f 7295 || tp->stepped_breakpoint
8358c15c 7296 || bpstat_should_step ());
a7212384
UW
7297}
7298
b2175913
MS
7299/* Inferior has stepped into a subroutine call with source code that
7300 we should not step over. Do step to the first line of code in
7301 it. */
c2c6d25f
JM
7302
7303static void
568d6575
UW
7304handle_step_into_function (struct gdbarch *gdbarch,
7305 struct execution_control_state *ecs)
c2c6d25f 7306{
43f3e411 7307 struct compunit_symtab *cust;
2afb61aa 7308 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 7309
7e324e48
GB
7310 fill_in_stop_func (gdbarch, ecs);
7311
43f3e411
DE
7312 cust = find_pc_compunit_symtab (stop_pc);
7313 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 7314 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 7315 ecs->stop_func_start);
c2c6d25f 7316
2afb61aa 7317 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7318 /* Use the step_resume_break to step until the end of the prologue,
7319 even if that involves jumps (as it seems to on the vax under
7320 4.2). */
7321 /* If the prologue ends in the middle of a source line, continue to
7322 the end of that source line (if it is still within the function).
7323 Otherwise, just go to end of prologue. */
2afb61aa
PA
7324 if (stop_func_sal.end
7325 && stop_func_sal.pc != ecs->stop_func_start
7326 && stop_func_sal.end < ecs->stop_func_end)
7327 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7328
2dbd5e30
KB
7329 /* Architectures which require breakpoint adjustment might not be able
7330 to place a breakpoint at the computed address. If so, the test
7331 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7332 ecs->stop_func_start to an address at which a breakpoint may be
7333 legitimately placed.
8fb3e588 7334
2dbd5e30
KB
7335 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7336 made, GDB will enter an infinite loop when stepping through
7337 optimized code consisting of VLIW instructions which contain
7338 subinstructions corresponding to different source lines. On
7339 FR-V, it's not permitted to place a breakpoint on any but the
7340 first subinstruction of a VLIW instruction. When a breakpoint is
7341 set, GDB will adjust the breakpoint address to the beginning of
7342 the VLIW instruction. Thus, we need to make the corresponding
7343 adjustment here when computing the stop address. */
8fb3e588 7344
568d6575 7345 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7346 {
7347 ecs->stop_func_start
568d6575 7348 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7349 ecs->stop_func_start);
2dbd5e30
KB
7350 }
7351
c2c6d25f
JM
7352 if (ecs->stop_func_start == stop_pc)
7353 {
7354 /* We are already there: stop now. */
bdc36728 7355 end_stepping_range (ecs);
c2c6d25f
JM
7356 return;
7357 }
7358 else
7359 {
7360 /* Put the step-breakpoint there and go until there. */
fe39c653 7361 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
7362 sr_sal.pc = ecs->stop_func_start;
7363 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7364 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7365
c2c6d25f 7366 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7367 some machines the prologue is where the new fp value is
7368 established. */
a6d9a66e 7369 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7370
7371 /* And make sure stepping stops right away then. */
16c381f0
JK
7372 ecs->event_thread->control.step_range_end
7373 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7374 }
7375 keep_going (ecs);
7376}
d4f3574e 7377
b2175913
MS
7378/* Inferior has stepped backward into a subroutine call with source
7379 code that we should not step over. Do step to the beginning of the
7380 last line of code in it. */
7381
7382static void
568d6575
UW
7383handle_step_into_function_backward (struct gdbarch *gdbarch,
7384 struct execution_control_state *ecs)
b2175913 7385{
43f3e411 7386 struct compunit_symtab *cust;
167e4384 7387 struct symtab_and_line stop_func_sal;
b2175913 7388
7e324e48
GB
7389 fill_in_stop_func (gdbarch, ecs);
7390
43f3e411
DE
7391 cust = find_pc_compunit_symtab (stop_pc);
7392 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 7393 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
7394 ecs->stop_func_start);
7395
7396 stop_func_sal = find_pc_line (stop_pc, 0);
7397
7398 /* OK, we're just going to keep stepping here. */
7399 if (stop_func_sal.pc == stop_pc)
7400 {
7401 /* We're there already. Just stop stepping now. */
bdc36728 7402 end_stepping_range (ecs);
b2175913
MS
7403 }
7404 else
7405 {
7406 /* Else just reset the step range and keep going.
7407 No step-resume breakpoint, they don't work for
7408 epilogues, which can have multiple entry paths. */
16c381f0
JK
7409 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7410 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7411 keep_going (ecs);
7412 }
7413 return;
7414}
7415
d3169d93 7416/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7417 This is used to both functions and to skip over code. */
7418
7419static void
2c03e5be
PA
7420insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7421 struct symtab_and_line sr_sal,
7422 struct frame_id sr_id,
7423 enum bptype sr_type)
44cbf7b5 7424{
611c83ae
PA
7425 /* There should never be more than one step-resume or longjmp-resume
7426 breakpoint per thread, so we should never be setting a new
44cbf7b5 7427 step_resume_breakpoint when one is already active. */
8358c15c 7428 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7429 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7430
7431 if (debug_infrun)
7432 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7433 "infrun: inserting step-resume breakpoint at %s\n",
7434 paddress (gdbarch, sr_sal.pc));
d3169d93 7435
8358c15c 7436 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
7437 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7438}
7439
9da8c2a0 7440void
2c03e5be
PA
7441insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7442 struct symtab_and_line sr_sal,
7443 struct frame_id sr_id)
7444{
7445 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7446 sr_sal, sr_id,
7447 bp_step_resume);
44cbf7b5 7448}
7ce450bd 7449
2c03e5be
PA
7450/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7451 This is used to skip a potential signal handler.
7ce450bd 7452
14e60db5
DJ
7453 This is called with the interrupted function's frame. The signal
7454 handler, when it returns, will resume the interrupted function at
7455 RETURN_FRAME.pc. */
d303a6c7
AC
7456
7457static void
2c03e5be 7458insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
7459{
7460 struct symtab_and_line sr_sal;
a6d9a66e 7461 struct gdbarch *gdbarch;
d303a6c7 7462
f4c1edd8 7463 gdb_assert (return_frame != NULL);
d303a6c7
AC
7464 init_sal (&sr_sal); /* initialize to zeros */
7465
a6d9a66e 7466 gdbarch = get_frame_arch (return_frame);
568d6575 7467 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7468 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7469 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7470
2c03e5be
PA
7471 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7472 get_stack_frame_id (return_frame),
7473 bp_hp_step_resume);
d303a6c7
AC
7474}
7475
2c03e5be
PA
7476/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7477 is used to skip a function after stepping into it (for "next" or if
7478 the called function has no debugging information).
14e60db5
DJ
7479
7480 The current function has almost always been reached by single
7481 stepping a call or return instruction. NEXT_FRAME belongs to the
7482 current function, and the breakpoint will be set at the caller's
7483 resume address.
7484
7485 This is a separate function rather than reusing
2c03e5be 7486 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7487 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7488 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7489
7490static void
7491insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7492{
7493 struct symtab_and_line sr_sal;
a6d9a66e 7494 struct gdbarch *gdbarch;
14e60db5
DJ
7495
7496 /* We shouldn't have gotten here if we don't know where the call site
7497 is. */
c7ce8faa 7498 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
7499
7500 init_sal (&sr_sal); /* initialize to zeros */
7501
a6d9a66e 7502 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
7503 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7504 frame_unwind_caller_pc (next_frame));
14e60db5 7505 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7506 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7507
a6d9a66e 7508 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7509 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7510}
7511
611c83ae
PA
7512/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7513 new breakpoint at the target of a jmp_buf. The handling of
7514 longjmp-resume uses the same mechanisms used for handling
7515 "step-resume" breakpoints. */
7516
7517static void
a6d9a66e 7518insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7519{
e81a37f7
TT
7520 /* There should never be more than one longjmp-resume breakpoint per
7521 thread, so we should never be setting a new
611c83ae 7522 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7523 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7524
7525 if (debug_infrun)
7526 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7527 "infrun: inserting longjmp-resume breakpoint at %s\n",
7528 paddress (gdbarch, pc));
611c83ae 7529
e81a37f7 7530 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 7531 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
7532}
7533
186c406b
TT
7534/* Insert an exception resume breakpoint. TP is the thread throwing
7535 the exception. The block B is the block of the unwinder debug hook
7536 function. FRAME is the frame corresponding to the call to this
7537 function. SYM is the symbol of the function argument holding the
7538 target PC of the exception. */
7539
7540static void
7541insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7542 const struct block *b,
186c406b
TT
7543 struct frame_info *frame,
7544 struct symbol *sym)
7545{
492d29ea 7546 TRY
186c406b 7547 {
63e43d3a 7548 struct block_symbol vsym;
186c406b
TT
7549 struct value *value;
7550 CORE_ADDR handler;
7551 struct breakpoint *bp;
7552
63e43d3a
PMR
7553 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7554 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7555 /* If the value was optimized out, revert to the old behavior. */
7556 if (! value_optimized_out (value))
7557 {
7558 handler = value_as_address (value);
7559
7560 if (debug_infrun)
7561 fprintf_unfiltered (gdb_stdlog,
7562 "infrun: exception resume at %lx\n",
7563 (unsigned long) handler);
7564
7565 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7566 handler, bp_exception_resume);
c70a6932
JK
7567
7568 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7569 frame = NULL;
7570
5d5658a1 7571 bp->thread = tp->global_num;
186c406b
TT
7572 inferior_thread ()->control.exception_resume_breakpoint = bp;
7573 }
7574 }
492d29ea
PA
7575 CATCH (e, RETURN_MASK_ERROR)
7576 {
7577 /* We want to ignore errors here. */
7578 }
7579 END_CATCH
186c406b
TT
7580}
7581
28106bc2
SDJ
7582/* A helper for check_exception_resume that sets an
7583 exception-breakpoint based on a SystemTap probe. */
7584
7585static void
7586insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7587 const struct bound_probe *probe,
28106bc2
SDJ
7588 struct frame_info *frame)
7589{
7590 struct value *arg_value;
7591 CORE_ADDR handler;
7592 struct breakpoint *bp;
7593
7594 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7595 if (!arg_value)
7596 return;
7597
7598 handler = value_as_address (arg_value);
7599
7600 if (debug_infrun)
7601 fprintf_unfiltered (gdb_stdlog,
7602 "infrun: exception resume at %s\n",
6bac7473 7603 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7604 handler));
7605
7606 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7607 handler, bp_exception_resume);
5d5658a1 7608 bp->thread = tp->global_num;
28106bc2
SDJ
7609 inferior_thread ()->control.exception_resume_breakpoint = bp;
7610}
7611
186c406b
TT
7612/* This is called when an exception has been intercepted. Check to
7613 see whether the exception's destination is of interest, and if so,
7614 set an exception resume breakpoint there. */
7615
7616static void
7617check_exception_resume (struct execution_control_state *ecs,
28106bc2 7618 struct frame_info *frame)
186c406b 7619{
729662a5 7620 struct bound_probe probe;
28106bc2
SDJ
7621 struct symbol *func;
7622
7623 /* First see if this exception unwinding breakpoint was set via a
7624 SystemTap probe point. If so, the probe has two arguments: the
7625 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7626 set a breakpoint there. */
6bac7473 7627 probe = find_probe_by_pc (get_frame_pc (frame));
729662a5 7628 if (probe.probe)
28106bc2 7629 {
729662a5 7630 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7631 return;
7632 }
7633
7634 func = get_frame_function (frame);
7635 if (!func)
7636 return;
186c406b 7637
492d29ea 7638 TRY
186c406b 7639 {
3977b71f 7640 const struct block *b;
8157b174 7641 struct block_iterator iter;
186c406b
TT
7642 struct symbol *sym;
7643 int argno = 0;
7644
7645 /* The exception breakpoint is a thread-specific breakpoint on
7646 the unwinder's debug hook, declared as:
7647
7648 void _Unwind_DebugHook (void *cfa, void *handler);
7649
7650 The CFA argument indicates the frame to which control is
7651 about to be transferred. HANDLER is the destination PC.
7652
7653 We ignore the CFA and set a temporary breakpoint at HANDLER.
7654 This is not extremely efficient but it avoids issues in gdb
7655 with computing the DWARF CFA, and it also works even in weird
7656 cases such as throwing an exception from inside a signal
7657 handler. */
7658
7659 b = SYMBOL_BLOCK_VALUE (func);
7660 ALL_BLOCK_SYMBOLS (b, iter, sym)
7661 {
7662 if (!SYMBOL_IS_ARGUMENT (sym))
7663 continue;
7664
7665 if (argno == 0)
7666 ++argno;
7667 else
7668 {
7669 insert_exception_resume_breakpoint (ecs->event_thread,
7670 b, frame, sym);
7671 break;
7672 }
7673 }
7674 }
492d29ea
PA
7675 CATCH (e, RETURN_MASK_ERROR)
7676 {
7677 }
7678 END_CATCH
186c406b
TT
7679}
7680
104c1213 7681static void
22bcd14b 7682stop_waiting (struct execution_control_state *ecs)
104c1213 7683{
527159b7 7684 if (debug_infrun)
22bcd14b 7685 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7686
31e77af2
PA
7687 clear_step_over_info ();
7688
cd0fc7c3
SS
7689 /* Let callers know we don't want to wait for the inferior anymore. */
7690 ecs->wait_some_more = 0;
fbea99ea
PA
7691
7692 /* If all-stop, but the target is always in non-stop mode, stop all
7693 threads now that we're presenting the stop to the user. */
7694 if (!non_stop && target_is_non_stop_p ())
7695 stop_all_threads ();
cd0fc7c3
SS
7696}
7697
4d9d9d04
PA
7698/* Like keep_going, but passes the signal to the inferior, even if the
7699 signal is set to nopass. */
d4f3574e
SS
7700
7701static void
4d9d9d04 7702keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7703{
c4dbc9af
PA
7704 /* Make sure normal_stop is called if we get a QUIT handled before
7705 reaching resume. */
7706 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7707
4d9d9d04 7708 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
372316f1 7709 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7710
d4f3574e 7711 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
7712 ecs->event_thread->prev_pc
7713 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 7714
4d9d9d04 7715 if (ecs->event_thread->control.trap_expected)
d4f3574e 7716 {
4d9d9d04
PA
7717 struct thread_info *tp = ecs->event_thread;
7718
7719 if (debug_infrun)
7720 fprintf_unfiltered (gdb_stdlog,
7721 "infrun: %s has trap_expected set, "
7722 "resuming to collect trap\n",
7723 target_pid_to_str (tp->ptid));
7724
a9ba6bae
PA
7725 /* We haven't yet gotten our trap, and either: intercepted a
7726 non-signal event (e.g., a fork); or took a signal which we
7727 are supposed to pass through to the inferior. Simply
7728 continue. */
c4dbc9af 7729 discard_cleanups (old_cleanups);
64ce06e4 7730 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7731 }
372316f1
PA
7732 else if (step_over_info_valid_p ())
7733 {
7734 /* Another thread is stepping over a breakpoint in-line. If
7735 this thread needs a step-over too, queue the request. In
7736 either case, this resume must be deferred for later. */
7737 struct thread_info *tp = ecs->event_thread;
7738
7739 if (ecs->hit_singlestep_breakpoint
7740 || thread_still_needs_step_over (tp))
7741 {
7742 if (debug_infrun)
7743 fprintf_unfiltered (gdb_stdlog,
7744 "infrun: step-over already in progress: "
7745 "step-over for %s deferred\n",
7746 target_pid_to_str (tp->ptid));
7747 thread_step_over_chain_enqueue (tp);
7748 }
7749 else
7750 {
7751 if (debug_infrun)
7752 fprintf_unfiltered (gdb_stdlog,
7753 "infrun: step-over in progress: "
7754 "resume of %s deferred\n",
7755 target_pid_to_str (tp->ptid));
7756 }
7757
7758 discard_cleanups (old_cleanups);
7759 }
d4f3574e
SS
7760 else
7761 {
31e77af2 7762 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7763 int remove_bp;
7764 int remove_wps;
8d297bbf 7765 step_over_what step_what;
31e77af2 7766
d4f3574e 7767 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7768 anyway (if we got a signal, the user asked it be passed to
7769 the child)
7770 -- or --
7771 We got our expected trap, but decided we should resume from
7772 it.
d4f3574e 7773
a9ba6bae 7774 We're going to run this baby now!
d4f3574e 7775
c36b740a
VP
7776 Note that insert_breakpoints won't try to re-insert
7777 already inserted breakpoints. Therefore, we don't
7778 care if breakpoints were already inserted, or not. */
a9ba6bae 7779
31e77af2
PA
7780 /* If we need to step over a breakpoint, and we're not using
7781 displaced stepping to do so, insert all breakpoints
7782 (watchpoints, etc.) but the one we're stepping over, step one
7783 instruction, and then re-insert the breakpoint when that step
7784 is finished. */
963f9c80 7785
6c4cfb24
PA
7786 step_what = thread_still_needs_step_over (ecs->event_thread);
7787
963f9c80 7788 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7789 || (step_what & STEP_OVER_BREAKPOINT));
7790 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7791
cb71640d
PA
7792 /* We can't use displaced stepping if we need to step past a
7793 watchpoint. The instruction copied to the scratch pad would
7794 still trigger the watchpoint. */
7795 if (remove_bp
3fc8eb30 7796 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7797 {
31e77af2 7798 set_step_over_info (get_regcache_aspace (regcache),
21edc42f
YQ
7799 regcache_read_pc (regcache), remove_wps,
7800 ecs->event_thread->global_num);
45e8c884 7801 }
963f9c80 7802 else if (remove_wps)
21edc42f 7803 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7804
7805 /* If we now need to do an in-line step-over, we need to stop
7806 all other threads. Note this must be done before
7807 insert_breakpoints below, because that removes the breakpoint
7808 we're about to step over, otherwise other threads could miss
7809 it. */
fbea99ea 7810 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7811 stop_all_threads ();
abbb1732 7812
31e77af2 7813 /* Stop stepping if inserting breakpoints fails. */
492d29ea 7814 TRY
31e77af2
PA
7815 {
7816 insert_breakpoints ();
7817 }
492d29ea 7818 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
7819 {
7820 exception_print (gdb_stderr, e);
22bcd14b 7821 stop_waiting (ecs);
de1fe8c8 7822 discard_cleanups (old_cleanups);
31e77af2 7823 return;
d4f3574e 7824 }
492d29ea 7825 END_CATCH
d4f3574e 7826
963f9c80 7827 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7828
c4dbc9af 7829 discard_cleanups (old_cleanups);
64ce06e4 7830 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7831 }
7832
488f131b 7833 prepare_to_wait (ecs);
d4f3574e
SS
7834}
7835
4d9d9d04
PA
7836/* Called when we should continue running the inferior, because the
7837 current event doesn't cause a user visible stop. This does the
7838 resuming part; waiting for the next event is done elsewhere. */
7839
7840static void
7841keep_going (struct execution_control_state *ecs)
7842{
7843 if (ecs->event_thread->control.trap_expected
7844 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7845 ecs->event_thread->control.trap_expected = 0;
7846
7847 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7848 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7849 keep_going_pass_signal (ecs);
7850}
7851
104c1213
JM
7852/* This function normally comes after a resume, before
7853 handle_inferior_event exits. It takes care of any last bits of
7854 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7855
104c1213
JM
7856static void
7857prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7858{
527159b7 7859 if (debug_infrun)
8a9de0e4 7860 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7861
104c1213 7862 ecs->wait_some_more = 1;
0b333c5e
PA
7863
7864 if (!target_is_async_p ())
7865 mark_infrun_async_event_handler ();
c906108c 7866}
11cf8741 7867
fd664c91 7868/* We are done with the step range of a step/next/si/ni command.
b57bacec 7869 Called once for each n of a "step n" operation. */
fd664c91
PA
7870
7871static void
bdc36728 7872end_stepping_range (struct execution_control_state *ecs)
fd664c91 7873{
bdc36728 7874 ecs->event_thread->control.stop_step = 1;
bdc36728 7875 stop_waiting (ecs);
fd664c91
PA
7876}
7877
33d62d64
JK
7878/* Several print_*_reason functions to print why the inferior has stopped.
7879 We always print something when the inferior exits, or receives a signal.
7880 The rest of the cases are dealt with later on in normal_stop and
7881 print_it_typical. Ideally there should be a call to one of these
7882 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7883 stop_waiting is called.
33d62d64 7884
fd664c91
PA
7885 Note that we don't call these directly, instead we delegate that to
7886 the interpreters, through observers. Interpreters then call these
7887 with whatever uiout is right. */
33d62d64 7888
fd664c91
PA
7889void
7890print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7891{
fd664c91 7892 /* For CLI-like interpreters, print nothing. */
33d62d64 7893
fd664c91
PA
7894 if (ui_out_is_mi_like_p (uiout))
7895 {
7896 ui_out_field_string (uiout, "reason",
7897 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7898 }
7899}
33d62d64 7900
fd664c91
PA
7901void
7902print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7903{
33d62d64
JK
7904 annotate_signalled ();
7905 if (ui_out_is_mi_like_p (uiout))
7906 ui_out_field_string
7907 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7908 ui_out_text (uiout, "\nProgram terminated with signal ");
7909 annotate_signal_name ();
7910 ui_out_field_string (uiout, "signal-name",
2ea28649 7911 gdb_signal_to_name (siggnal));
33d62d64
JK
7912 annotate_signal_name_end ();
7913 ui_out_text (uiout, ", ");
7914 annotate_signal_string ();
7915 ui_out_field_string (uiout, "signal-meaning",
2ea28649 7916 gdb_signal_to_string (siggnal));
33d62d64
JK
7917 annotate_signal_string_end ();
7918 ui_out_text (uiout, ".\n");
7919 ui_out_text (uiout, "The program no longer exists.\n");
7920}
7921
fd664c91
PA
7922void
7923print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7924{
fda326dd
TT
7925 struct inferior *inf = current_inferior ();
7926 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7927
33d62d64
JK
7928 annotate_exited (exitstatus);
7929 if (exitstatus)
7930 {
7931 if (ui_out_is_mi_like_p (uiout))
7932 ui_out_field_string (uiout, "reason",
7933 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
7934 ui_out_text (uiout, "[Inferior ");
7935 ui_out_text (uiout, plongest (inf->num));
7936 ui_out_text (uiout, " (");
7937 ui_out_text (uiout, pidstr);
7938 ui_out_text (uiout, ") exited with code ");
33d62d64 7939 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 7940 ui_out_text (uiout, "]\n");
33d62d64
JK
7941 }
7942 else
11cf8741 7943 {
9dc5e2a9 7944 if (ui_out_is_mi_like_p (uiout))
034dad6f 7945 ui_out_field_string
33d62d64 7946 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
7947 ui_out_text (uiout, "[Inferior ");
7948 ui_out_text (uiout, plongest (inf->num));
7949 ui_out_text (uiout, " (");
7950 ui_out_text (uiout, pidstr);
7951 ui_out_text (uiout, ") exited normally]\n");
33d62d64 7952 }
33d62d64
JK
7953}
7954
012b3a21
WT
7955/* Some targets/architectures can do extra processing/display of
7956 segmentation faults. E.g., Intel MPX boundary faults.
7957 Call the architecture dependent function to handle the fault. */
7958
7959static void
7960handle_segmentation_fault (struct ui_out *uiout)
7961{
7962 struct regcache *regcache = get_current_regcache ();
7963 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7964
7965 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7966 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7967}
7968
fd664c91
PA
7969void
7970print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 7971{
f303dbd6
PA
7972 struct thread_info *thr = inferior_thread ();
7973
33d62d64
JK
7974 annotate_signal ();
7975
f303dbd6
PA
7976 if (ui_out_is_mi_like_p (uiout))
7977 ;
7978 else if (show_thread_that_caused_stop ())
33d62d64 7979 {
f303dbd6 7980 const char *name;
33d62d64 7981
f303dbd6
PA
7982 ui_out_text (uiout, "\nThread ");
7983 ui_out_field_fmt (uiout, "thread-id", "%s", print_thread_id (thr));
7984
7985 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7986 if (name != NULL)
7987 {
7988 ui_out_text (uiout, " \"");
7989 ui_out_field_fmt (uiout, "name", "%s", name);
7990 ui_out_text (uiout, "\"");
7991 }
33d62d64 7992 }
f303dbd6
PA
7993 else
7994 ui_out_text (uiout, "\nProgram");
7995
7996 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
7997 ui_out_text (uiout, " stopped");
33d62d64
JK
7998 else
7999 {
f303dbd6 8000 ui_out_text (uiout, " received signal ");
8b93c638 8001 annotate_signal_name ();
33d62d64
JK
8002 if (ui_out_is_mi_like_p (uiout))
8003 ui_out_field_string
8004 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 8005 ui_out_field_string (uiout, "signal-name",
2ea28649 8006 gdb_signal_to_name (siggnal));
8b93c638
JM
8007 annotate_signal_name_end ();
8008 ui_out_text (uiout, ", ");
8009 annotate_signal_string ();
488f131b 8010 ui_out_field_string (uiout, "signal-meaning",
2ea28649 8011 gdb_signal_to_string (siggnal));
012b3a21
WT
8012
8013 if (siggnal == GDB_SIGNAL_SEGV)
8014 handle_segmentation_fault (uiout);
8015
8b93c638 8016 annotate_signal_string_end ();
33d62d64
JK
8017 }
8018 ui_out_text (uiout, ".\n");
8019}
252fbfc8 8020
fd664c91
PA
8021void
8022print_no_history_reason (struct ui_out *uiout)
33d62d64 8023{
fd664c91 8024 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
11cf8741 8025}
43ff13b4 8026
0c7e1a46
PA
8027/* Print current location without a level number, if we have changed
8028 functions or hit a breakpoint. Print source line if we have one.
8029 bpstat_print contains the logic deciding in detail what to print,
8030 based on the event(s) that just occurred. */
8031
243a9253
PA
8032static void
8033print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
8034{
8035 int bpstat_ret;
f486487f 8036 enum print_what source_flag;
0c7e1a46
PA
8037 int do_frame_printing = 1;
8038 struct thread_info *tp = inferior_thread ();
8039
8040 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8041 switch (bpstat_ret)
8042 {
8043 case PRINT_UNKNOWN:
8044 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8045 should) carry around the function and does (or should) use
8046 that when doing a frame comparison. */
8047 if (tp->control.stop_step
8048 && frame_id_eq (tp->control.step_frame_id,
8049 get_frame_id (get_current_frame ()))
885eeb5b 8050 && tp->control.step_start_function == find_pc_function (stop_pc))
0c7e1a46
PA
8051 {
8052 /* Finished step, just print source line. */
8053 source_flag = SRC_LINE;
8054 }
8055 else
8056 {
8057 /* Print location and source line. */
8058 source_flag = SRC_AND_LOC;
8059 }
8060 break;
8061 case PRINT_SRC_AND_LOC:
8062 /* Print location and source line. */
8063 source_flag = SRC_AND_LOC;
8064 break;
8065 case PRINT_SRC_ONLY:
8066 source_flag = SRC_LINE;
8067 break;
8068 case PRINT_NOTHING:
8069 /* Something bogus. */
8070 source_flag = SRC_LINE;
8071 do_frame_printing = 0;
8072 break;
8073 default:
8074 internal_error (__FILE__, __LINE__, _("Unknown value."));
8075 }
8076
8077 /* The behavior of this routine with respect to the source
8078 flag is:
8079 SRC_LINE: Print only source line
8080 LOCATION: Print only location
8081 SRC_AND_LOC: Print location and source line. */
8082 if (do_frame_printing)
8083 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
8084}
8085
243a9253
PA
8086/* See infrun.h. */
8087
8088void
8089print_stop_event (struct ui_out *uiout)
8090{
8091 struct cleanup *old_chain;
8092 struct target_waitstatus last;
8093 ptid_t last_ptid;
8094 struct thread_info *tp;
8095
8096 get_last_target_status (&last_ptid, &last);
8097
cd94f6d5 8098 old_chain = make_cleanup_restore_current_uiout ();
243a9253
PA
8099 current_uiout = uiout;
8100
8101 print_stop_location (&last);
0c7e1a46
PA
8102
8103 /* Display the auto-display expressions. */
8104 do_displays ();
243a9253
PA
8105
8106 do_cleanups (old_chain);
8107
8108 tp = inferior_thread ();
8109 if (tp->thread_fsm != NULL
8110 && thread_fsm_finished_p (tp->thread_fsm))
8111 {
8112 struct return_value_info *rv;
8113
8114 rv = thread_fsm_return_value (tp->thread_fsm);
8115 if (rv != NULL)
8116 print_return_value (uiout, rv);
8117 }
0c7e1a46
PA
8118}
8119
388a7084
PA
8120/* See infrun.h. */
8121
8122void
8123maybe_remove_breakpoints (void)
8124{
8125 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8126 {
8127 if (remove_breakpoints ())
8128 {
8129 target_terminal_ours_for_output ();
8130 printf_filtered (_("Cannot remove breakpoints because "
8131 "program is no longer writable.\nFurther "
8132 "execution is probably impossible.\n"));
8133 }
8134 }
8135}
8136
4c2f2a79
PA
8137/* The execution context that just caused a normal stop. */
8138
8139struct stop_context
8140{
8141 /* The stop ID. */
8142 ULONGEST stop_id;
c906108c 8143
4c2f2a79 8144 /* The event PTID. */
c906108c 8145
4c2f2a79
PA
8146 ptid_t ptid;
8147
8148 /* If stopp for a thread event, this is the thread that caused the
8149 stop. */
8150 struct thread_info *thread;
8151
8152 /* The inferior that caused the stop. */
8153 int inf_num;
8154};
8155
8156/* Returns a new stop context. If stopped for a thread event, this
8157 takes a strong reference to the thread. */
8158
8159static struct stop_context *
8160save_stop_context (void)
8161{
224c3ddb 8162 struct stop_context *sc = XNEW (struct stop_context);
4c2f2a79
PA
8163
8164 sc->stop_id = get_stop_id ();
8165 sc->ptid = inferior_ptid;
8166 sc->inf_num = current_inferior ()->num;
8167
8168 if (!ptid_equal (inferior_ptid, null_ptid))
8169 {
8170 /* Take a strong reference so that the thread can't be deleted
8171 yet. */
8172 sc->thread = inferior_thread ();
8173 sc->thread->refcount++;
8174 }
8175 else
8176 sc->thread = NULL;
8177
8178 return sc;
8179}
8180
8181/* Release a stop context previously created with save_stop_context.
8182 Releases the strong reference to the thread as well. */
8183
8184static void
8185release_stop_context_cleanup (void *arg)
8186{
9a3c8263 8187 struct stop_context *sc = (struct stop_context *) arg;
4c2f2a79
PA
8188
8189 if (sc->thread != NULL)
8190 sc->thread->refcount--;
8191 xfree (sc);
8192}
8193
8194/* Return true if the current context no longer matches the saved stop
8195 context. */
8196
8197static int
8198stop_context_changed (struct stop_context *prev)
8199{
8200 if (!ptid_equal (prev->ptid, inferior_ptid))
8201 return 1;
8202 if (prev->inf_num != current_inferior ()->num)
8203 return 1;
8204 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8205 return 1;
8206 if (get_stop_id () != prev->stop_id)
8207 return 1;
8208 return 0;
8209}
8210
8211/* See infrun.h. */
8212
8213int
96baa820 8214normal_stop (void)
c906108c 8215{
73b65bb0
DJ
8216 struct target_waitstatus last;
8217 ptid_t last_ptid;
29f49a6a 8218 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
e1316e60 8219 ptid_t pid_ptid;
3b12939d 8220 struct switch_thru_all_uis state;
73b65bb0
DJ
8221
8222 get_last_target_status (&last_ptid, &last);
8223
4c2f2a79
PA
8224 new_stop_id ();
8225
29f49a6a
PA
8226 /* If an exception is thrown from this point on, make sure to
8227 propagate GDB's knowledge of the executing state to the
8228 frontend/user running state. A QUIT is an easy exception to see
8229 here, so do this before any filtered output. */
c35b1492
PA
8230 if (!non_stop)
8231 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
e1316e60
PA
8232 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8233 || last.kind == TARGET_WAITKIND_EXITED)
8234 {
8235 /* On some targets, we may still have live threads in the
8236 inferior when we get a process exit event. E.g., for
8237 "checkpoint", when the current checkpoint/fork exits,
8238 linux-fork.c automatically switches to another fork from
8239 within target_mourn_inferior. */
8240 if (!ptid_equal (inferior_ptid, null_ptid))
8241 {
8242 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8243 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8244 }
8245 }
8246 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 8247 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 8248
b57bacec
PA
8249 /* As we're presenting a stop, and potentially removing breakpoints,
8250 update the thread list so we can tell whether there are threads
8251 running on the target. With target remote, for example, we can
8252 only learn about new threads when we explicitly update the thread
8253 list. Do this before notifying the interpreters about signal
8254 stops, end of stepping ranges, etc., so that the "new thread"
8255 output is emitted before e.g., "Program received signal FOO",
8256 instead of after. */
8257 update_thread_list ();
8258
8259 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8260 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8261
c906108c
SS
8262 /* As with the notification of thread events, we want to delay
8263 notifying the user that we've switched thread context until
8264 the inferior actually stops.
8265
73b65bb0
DJ
8266 There's no point in saying anything if the inferior has exited.
8267 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8268 "received a signal".
8269
8270 Also skip saying anything in non-stop mode. In that mode, as we
8271 don't want GDB to switch threads behind the user's back, to avoid
8272 races where the user is typing a command to apply to thread x,
8273 but GDB switches to thread y before the user finishes entering
8274 the command, fetch_inferior_event installs a cleanup to restore
8275 the current thread back to the thread the user had selected right
8276 after this event is handled, so we're not really switching, only
8277 informing of a stop. */
4f8d22e3
PA
8278 if (!non_stop
8279 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
8280 && target_has_execution
8281 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8282 && last.kind != TARGET_WAITKIND_EXITED
8283 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8284 {
3b12939d
PA
8285 SWITCH_THRU_ALL_UIS (state)
8286 {
8287 target_terminal_ours_for_output ();
8288 printf_filtered (_("[Switching to %s]\n"),
8289 target_pid_to_str (inferior_ptid));
8290 annotate_thread_changed ();
8291 }
39f77062 8292 previous_inferior_ptid = inferior_ptid;
c906108c 8293 }
c906108c 8294
0e5bf2a8
PA
8295 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8296 {
3b12939d
PA
8297 SWITCH_THRU_ALL_UIS (state)
8298 if (current_ui->prompt_state == PROMPT_BLOCKED)
8299 {
8300 target_terminal_ours_for_output ();
8301 printf_filtered (_("No unwaited-for children left.\n"));
8302 }
0e5bf2a8
PA
8303 }
8304
b57bacec 8305 /* Note: this depends on the update_thread_list call above. */
388a7084 8306 maybe_remove_breakpoints ();
c906108c 8307
c906108c
SS
8308 /* If an auto-display called a function and that got a signal,
8309 delete that auto-display to avoid an infinite recursion. */
8310
8311 if (stopped_by_random_signal)
8312 disable_current_display ();
8313
3b12939d
PA
8314 SWITCH_THRU_ALL_UIS (state)
8315 {
8316 async_enable_stdin ();
8317 }
c906108c 8318
388a7084
PA
8319 /* Let the user/frontend see the threads as stopped. */
8320 do_cleanups (old_chain);
8321
8322 /* Select innermost stack frame - i.e., current frame is frame 0,
8323 and current location is based on that. Handle the case where the
8324 dummy call is returning after being stopped. E.g. the dummy call
8325 previously hit a breakpoint. (If the dummy call returns
8326 normally, we won't reach here.) Do this before the stop hook is
8327 run, so that it doesn't get to see the temporary dummy frame,
8328 which is not where we'll present the stop. */
8329 if (has_stack_frames ())
8330 {
8331 if (stop_stack_dummy == STOP_STACK_DUMMY)
8332 {
8333 /* Pop the empty frame that contains the stack dummy. This
8334 also restores inferior state prior to the call (struct
8335 infcall_suspend_state). */
8336 struct frame_info *frame = get_current_frame ();
8337
8338 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8339 frame_pop (frame);
8340 /* frame_pop calls reinit_frame_cache as the last thing it
8341 does which means there's now no selected frame. */
8342 }
8343
8344 select_frame (get_current_frame ());
8345
8346 /* Set the current source location. */
8347 set_current_sal_from_frame (get_current_frame ());
8348 }
dd7e2d2b
PA
8349
8350 /* Look up the hook_stop and run it (CLI internally handles problem
8351 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8352 if (stop_command != NULL)
8353 {
8354 struct stop_context *saved_context = save_stop_context ();
8355 struct cleanup *old_chain
8356 = make_cleanup (release_stop_context_cleanup, saved_context);
8357
8358 catch_errors (hook_stop_stub, stop_command,
8359 "Error while running hook_stop:\n", RETURN_MASK_ALL);
8360
8361 /* If the stop hook resumes the target, then there's no point in
8362 trying to notify about the previous stop; its context is
8363 gone. Likewise if the command switches thread or inferior --
8364 the observers would print a stop for the wrong
8365 thread/inferior. */
8366 if (stop_context_changed (saved_context))
8367 {
8368 do_cleanups (old_chain);
8369 return 1;
8370 }
8371 do_cleanups (old_chain);
8372 }
dd7e2d2b 8373
388a7084
PA
8374 /* Notify observers about the stop. This is where the interpreters
8375 print the stop event. */
8376 if (!ptid_equal (inferior_ptid, null_ptid))
8377 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8378 stop_print_frame);
8379 else
8380 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 8381
243a9253
PA
8382 annotate_stopped ();
8383
48844aa6
PA
8384 if (target_has_execution)
8385 {
8386 if (last.kind != TARGET_WAITKIND_SIGNALLED
8387 && last.kind != TARGET_WAITKIND_EXITED)
8388 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8389 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8390 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8391 }
6c95b8df
PA
8392
8393 /* Try to get rid of automatically added inferiors that are no
8394 longer needed. Keeping those around slows down things linearly.
8395 Note that this never removes the current inferior. */
8396 prune_inferiors ();
4c2f2a79
PA
8397
8398 return 0;
c906108c
SS
8399}
8400
8401static int
96baa820 8402hook_stop_stub (void *cmd)
c906108c 8403{
5913bcb0 8404 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
8405 return (0);
8406}
8407\f
c5aa993b 8408int
96baa820 8409signal_stop_state (int signo)
c906108c 8410{
d6b48e9c 8411 return signal_stop[signo];
c906108c
SS
8412}
8413
c5aa993b 8414int
96baa820 8415signal_print_state (int signo)
c906108c
SS
8416{
8417 return signal_print[signo];
8418}
8419
c5aa993b 8420int
96baa820 8421signal_pass_state (int signo)
c906108c
SS
8422{
8423 return signal_program[signo];
8424}
8425
2455069d
UW
8426static void
8427signal_cache_update (int signo)
8428{
8429 if (signo == -1)
8430 {
a493e3e2 8431 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8432 signal_cache_update (signo);
8433
8434 return;
8435 }
8436
8437 signal_pass[signo] = (signal_stop[signo] == 0
8438 && signal_print[signo] == 0
ab04a2af
TT
8439 && signal_program[signo] == 1
8440 && signal_catch[signo] == 0);
2455069d
UW
8441}
8442
488f131b 8443int
7bda5e4a 8444signal_stop_update (int signo, int state)
d4f3574e
SS
8445{
8446 int ret = signal_stop[signo];
abbb1732 8447
d4f3574e 8448 signal_stop[signo] = state;
2455069d 8449 signal_cache_update (signo);
d4f3574e
SS
8450 return ret;
8451}
8452
488f131b 8453int
7bda5e4a 8454signal_print_update (int signo, int state)
d4f3574e
SS
8455{
8456 int ret = signal_print[signo];
abbb1732 8457
d4f3574e 8458 signal_print[signo] = state;
2455069d 8459 signal_cache_update (signo);
d4f3574e
SS
8460 return ret;
8461}
8462
488f131b 8463int
7bda5e4a 8464signal_pass_update (int signo, int state)
d4f3574e
SS
8465{
8466 int ret = signal_program[signo];
abbb1732 8467
d4f3574e 8468 signal_program[signo] = state;
2455069d 8469 signal_cache_update (signo);
d4f3574e
SS
8470 return ret;
8471}
8472
ab04a2af
TT
8473/* Update the global 'signal_catch' from INFO and notify the
8474 target. */
8475
8476void
8477signal_catch_update (const unsigned int *info)
8478{
8479 int i;
8480
8481 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8482 signal_catch[i] = info[i] > 0;
8483 signal_cache_update (-1);
8484 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8485}
8486
c906108c 8487static void
96baa820 8488sig_print_header (void)
c906108c 8489{
3e43a32a
MS
8490 printf_filtered (_("Signal Stop\tPrint\tPass "
8491 "to program\tDescription\n"));
c906108c
SS
8492}
8493
8494static void
2ea28649 8495sig_print_info (enum gdb_signal oursig)
c906108c 8496{
2ea28649 8497 const char *name = gdb_signal_to_name (oursig);
c906108c 8498 int name_padding = 13 - strlen (name);
96baa820 8499
c906108c
SS
8500 if (name_padding <= 0)
8501 name_padding = 0;
8502
8503 printf_filtered ("%s", name);
488f131b 8504 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8505 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8506 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8507 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8508 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8509}
8510
8511/* Specify how various signals in the inferior should be handled. */
8512
8513static void
96baa820 8514handle_command (char *args, int from_tty)
c906108c
SS
8515{
8516 char **argv;
8517 int digits, wordlen;
8518 int sigfirst, signum, siglast;
2ea28649 8519 enum gdb_signal oursig;
c906108c
SS
8520 int allsigs;
8521 int nsigs;
8522 unsigned char *sigs;
8523 struct cleanup *old_chain;
8524
8525 if (args == NULL)
8526 {
e2e0b3e5 8527 error_no_arg (_("signal to handle"));
c906108c
SS
8528 }
8529
1777feb0 8530 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8531
a493e3e2 8532 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
8533 sigs = (unsigned char *) alloca (nsigs);
8534 memset (sigs, 0, nsigs);
8535
1777feb0 8536 /* Break the command line up into args. */
c906108c 8537
d1a41061 8538 argv = gdb_buildargv (args);
7a292a7a 8539 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
8540
8541 /* Walk through the args, looking for signal oursigs, signal names, and
8542 actions. Signal numbers and signal names may be interspersed with
8543 actions, with the actions being performed for all signals cumulatively
1777feb0 8544 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
8545
8546 while (*argv != NULL)
8547 {
8548 wordlen = strlen (*argv);
8549 for (digits = 0; isdigit ((*argv)[digits]); digits++)
8550 {;
8551 }
8552 allsigs = 0;
8553 sigfirst = siglast = -1;
8554
8555 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
8556 {
8557 /* Apply action to all signals except those used by the
1777feb0 8558 debugger. Silently skip those. */
c906108c
SS
8559 allsigs = 1;
8560 sigfirst = 0;
8561 siglast = nsigs - 1;
8562 }
8563 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
8564 {
8565 SET_SIGS (nsigs, sigs, signal_stop);
8566 SET_SIGS (nsigs, sigs, signal_print);
8567 }
8568 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
8569 {
8570 UNSET_SIGS (nsigs, sigs, signal_program);
8571 }
8572 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
8573 {
8574 SET_SIGS (nsigs, sigs, signal_print);
8575 }
8576 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
8577 {
8578 SET_SIGS (nsigs, sigs, signal_program);
8579 }
8580 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
8581 {
8582 UNSET_SIGS (nsigs, sigs, signal_stop);
8583 }
8584 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
8585 {
8586 SET_SIGS (nsigs, sigs, signal_program);
8587 }
8588 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
8589 {
8590 UNSET_SIGS (nsigs, sigs, signal_print);
8591 UNSET_SIGS (nsigs, sigs, signal_stop);
8592 }
8593 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
8594 {
8595 UNSET_SIGS (nsigs, sigs, signal_program);
8596 }
8597 else if (digits > 0)
8598 {
8599 /* It is numeric. The numeric signal refers to our own
8600 internal signal numbering from target.h, not to host/target
8601 signal number. This is a feature; users really should be
8602 using symbolic names anyway, and the common ones like
8603 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8604
8605 sigfirst = siglast = (int)
2ea28649 8606 gdb_signal_from_command (atoi (*argv));
c906108c
SS
8607 if ((*argv)[digits] == '-')
8608 {
8609 siglast = (int)
2ea28649 8610 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
8611 }
8612 if (sigfirst > siglast)
8613 {
1777feb0 8614 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
8615 signum = sigfirst;
8616 sigfirst = siglast;
8617 siglast = signum;
8618 }
8619 }
8620 else
8621 {
2ea28649 8622 oursig = gdb_signal_from_name (*argv);
a493e3e2 8623 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8624 {
8625 sigfirst = siglast = (int) oursig;
8626 }
8627 else
8628 {
8629 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 8630 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
8631 }
8632 }
8633
8634 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8635 which signals to apply actions to. */
c906108c
SS
8636
8637 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8638 {
2ea28649 8639 switch ((enum gdb_signal) signum)
c906108c 8640 {
a493e3e2
PA
8641 case GDB_SIGNAL_TRAP:
8642 case GDB_SIGNAL_INT:
c906108c
SS
8643 if (!allsigs && !sigs[signum])
8644 {
9e2f0ad4 8645 if (query (_("%s is used by the debugger.\n\
3e43a32a 8646Are you sure you want to change it? "),
2ea28649 8647 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8648 {
8649 sigs[signum] = 1;
8650 }
8651 else
8652 {
a3f17187 8653 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8654 gdb_flush (gdb_stdout);
8655 }
8656 }
8657 break;
a493e3e2
PA
8658 case GDB_SIGNAL_0:
8659 case GDB_SIGNAL_DEFAULT:
8660 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8661 /* Make sure that "all" doesn't print these. */
8662 break;
8663 default:
8664 sigs[signum] = 1;
8665 break;
8666 }
8667 }
8668
8669 argv++;
8670 }
8671
3a031f65
PA
8672 for (signum = 0; signum < nsigs; signum++)
8673 if (sigs[signum])
8674 {
2455069d 8675 signal_cache_update (-1);
a493e3e2
PA
8676 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8677 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 8678
3a031f65
PA
8679 if (from_tty)
8680 {
8681 /* Show the results. */
8682 sig_print_header ();
8683 for (; signum < nsigs; signum++)
8684 if (sigs[signum])
aead7601 8685 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8686 }
8687
8688 break;
8689 }
c906108c
SS
8690
8691 do_cleanups (old_chain);
8692}
8693
de0bea00
MF
8694/* Complete the "handle" command. */
8695
8696static VEC (char_ptr) *
8697handle_completer (struct cmd_list_element *ignore,
6f937416 8698 const char *text, const char *word)
de0bea00
MF
8699{
8700 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
8701 static const char * const keywords[] =
8702 {
8703 "all",
8704 "stop",
8705 "ignore",
8706 "print",
8707 "pass",
8708 "nostop",
8709 "noignore",
8710 "noprint",
8711 "nopass",
8712 NULL,
8713 };
8714
8715 vec_signals = signal_completer (ignore, text, word);
8716 vec_keywords = complete_on_enum (keywords, word, word);
8717
8718 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
8719 VEC_free (char_ptr, vec_signals);
8720 VEC_free (char_ptr, vec_keywords);
8721 return return_val;
8722}
8723
2ea28649
PA
8724enum gdb_signal
8725gdb_signal_from_command (int num)
ed01b82c
PA
8726{
8727 if (num >= 1 && num <= 15)
2ea28649 8728 return (enum gdb_signal) num;
ed01b82c
PA
8729 error (_("Only signals 1-15 are valid as numeric signals.\n\
8730Use \"info signals\" for a list of symbolic signals."));
8731}
8732
c906108c
SS
8733/* Print current contents of the tables set by the handle command.
8734 It is possible we should just be printing signals actually used
8735 by the current target (but for things to work right when switching
8736 targets, all signals should be in the signal tables). */
8737
8738static void
96baa820 8739signals_info (char *signum_exp, int from_tty)
c906108c 8740{
2ea28649 8741 enum gdb_signal oursig;
abbb1732 8742
c906108c
SS
8743 sig_print_header ();
8744
8745 if (signum_exp)
8746 {
8747 /* First see if this is a symbol name. */
2ea28649 8748 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8749 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8750 {
8751 /* No, try numeric. */
8752 oursig =
2ea28649 8753 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8754 }
8755 sig_print_info (oursig);
8756 return;
8757 }
8758
8759 printf_filtered ("\n");
8760 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8761 for (oursig = GDB_SIGNAL_FIRST;
8762 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8763 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8764 {
8765 QUIT;
8766
a493e3e2
PA
8767 if (oursig != GDB_SIGNAL_UNKNOWN
8768 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8769 sig_print_info (oursig);
8770 }
8771
3e43a32a
MS
8772 printf_filtered (_("\nUse the \"handle\" command "
8773 "to change these tables.\n"));
c906108c 8774}
4aa995e1
PA
8775
8776/* The $_siginfo convenience variable is a bit special. We don't know
8777 for sure the type of the value until we actually have a chance to
7a9dd1b2 8778 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8779 also dependent on which thread you have selected.
8780
8781 1. making $_siginfo be an internalvar that creates a new value on
8782 access.
8783
8784 2. making the value of $_siginfo be an lval_computed value. */
8785
8786/* This function implements the lval_computed support for reading a
8787 $_siginfo value. */
8788
8789static void
8790siginfo_value_read (struct value *v)
8791{
8792 LONGEST transferred;
8793
a911d87a
PA
8794 /* If we can access registers, so can we access $_siginfo. Likewise
8795 vice versa. */
8796 validate_registers_access ();
c709acd1 8797
4aa995e1
PA
8798 transferred =
8799 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8800 NULL,
8801 value_contents_all_raw (v),
8802 value_offset (v),
8803 TYPE_LENGTH (value_type (v)));
8804
8805 if (transferred != TYPE_LENGTH (value_type (v)))
8806 error (_("Unable to read siginfo"));
8807}
8808
8809/* This function implements the lval_computed support for writing a
8810 $_siginfo value. */
8811
8812static void
8813siginfo_value_write (struct value *v, struct value *fromval)
8814{
8815 LONGEST transferred;
8816
a911d87a
PA
8817 /* If we can access registers, so can we access $_siginfo. Likewise
8818 vice versa. */
8819 validate_registers_access ();
c709acd1 8820
4aa995e1
PA
8821 transferred = target_write (&current_target,
8822 TARGET_OBJECT_SIGNAL_INFO,
8823 NULL,
8824 value_contents_all_raw (fromval),
8825 value_offset (v),
8826 TYPE_LENGTH (value_type (fromval)));
8827
8828 if (transferred != TYPE_LENGTH (value_type (fromval)))
8829 error (_("Unable to write siginfo"));
8830}
8831
c8f2448a 8832static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8833 {
8834 siginfo_value_read,
8835 siginfo_value_write
8836 };
8837
8838/* Return a new value with the correct type for the siginfo object of
78267919
UW
8839 the current thread using architecture GDBARCH. Return a void value
8840 if there's no object available. */
4aa995e1 8841
2c0b251b 8842static struct value *
22d2b532
SDJ
8843siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8844 void *ignore)
4aa995e1 8845{
4aa995e1 8846 if (target_has_stack
78267919
UW
8847 && !ptid_equal (inferior_ptid, null_ptid)
8848 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8849 {
78267919 8850 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8851
78267919 8852 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8853 }
8854
78267919 8855 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8856}
8857
c906108c 8858\f
16c381f0
JK
8859/* infcall_suspend_state contains state about the program itself like its
8860 registers and any signal it received when it last stopped.
8861 This state must be restored regardless of how the inferior function call
8862 ends (either successfully, or after it hits a breakpoint or signal)
8863 if the program is to properly continue where it left off. */
8864
8865struct infcall_suspend_state
7a292a7a 8866{
16c381f0 8867 struct thread_suspend_state thread_suspend;
16c381f0
JK
8868
8869 /* Other fields: */
7a292a7a 8870 CORE_ADDR stop_pc;
b89667eb 8871 struct regcache *registers;
1736ad11 8872
35515841 8873 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
8874 struct gdbarch *siginfo_gdbarch;
8875
8876 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8877 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8878 content would be invalid. */
8879 gdb_byte *siginfo_data;
b89667eb
DE
8880};
8881
16c381f0
JK
8882struct infcall_suspend_state *
8883save_infcall_suspend_state (void)
b89667eb 8884{
16c381f0 8885 struct infcall_suspend_state *inf_state;
b89667eb 8886 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8887 struct regcache *regcache = get_current_regcache ();
8888 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8889 gdb_byte *siginfo_data = NULL;
8890
8891 if (gdbarch_get_siginfo_type_p (gdbarch))
8892 {
8893 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8894 size_t len = TYPE_LENGTH (type);
8895 struct cleanup *back_to;
8896
224c3ddb 8897 siginfo_data = (gdb_byte *) xmalloc (len);
1736ad11
JK
8898 back_to = make_cleanup (xfree, siginfo_data);
8899
8900 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8901 siginfo_data, 0, len) == len)
8902 discard_cleanups (back_to);
8903 else
8904 {
8905 /* Errors ignored. */
8906 do_cleanups (back_to);
8907 siginfo_data = NULL;
8908 }
8909 }
8910
41bf6aca 8911 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
8912
8913 if (siginfo_data)
8914 {
8915 inf_state->siginfo_gdbarch = gdbarch;
8916 inf_state->siginfo_data = siginfo_data;
8917 }
b89667eb 8918
16c381f0 8919 inf_state->thread_suspend = tp->suspend;
16c381f0 8920
35515841 8921 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
8922 GDB_SIGNAL_0 anyway. */
8923 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8924
b89667eb
DE
8925 inf_state->stop_pc = stop_pc;
8926
1736ad11 8927 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
8928
8929 return inf_state;
8930}
8931
8932/* Restore inferior session state to INF_STATE. */
8933
8934void
16c381f0 8935restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8936{
8937 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8938 struct regcache *regcache = get_current_regcache ();
8939 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 8940
16c381f0 8941 tp->suspend = inf_state->thread_suspend;
16c381f0 8942
b89667eb
DE
8943 stop_pc = inf_state->stop_pc;
8944
1736ad11
JK
8945 if (inf_state->siginfo_gdbarch == gdbarch)
8946 {
8947 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
8948
8949 /* Errors ignored. */
8950 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 8951 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
8952 }
8953
b89667eb
DE
8954 /* The inferior can be gone if the user types "print exit(0)"
8955 (and perhaps other times). */
8956 if (target_has_execution)
8957 /* NB: The register write goes through to the target. */
1736ad11 8958 regcache_cpy (regcache, inf_state->registers);
803b5f95 8959
16c381f0 8960 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8961}
8962
8963static void
16c381f0 8964do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 8965{
9a3c8263 8966 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
b89667eb
DE
8967}
8968
8969struct cleanup *
16c381f0
JK
8970make_cleanup_restore_infcall_suspend_state
8971 (struct infcall_suspend_state *inf_state)
b89667eb 8972{
16c381f0 8973 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
8974}
8975
8976void
16c381f0 8977discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8978{
8979 regcache_xfree (inf_state->registers);
803b5f95 8980 xfree (inf_state->siginfo_data);
b89667eb
DE
8981 xfree (inf_state);
8982}
8983
8984struct regcache *
16c381f0 8985get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
8986{
8987 return inf_state->registers;
8988}
8989
16c381f0
JK
8990/* infcall_control_state contains state regarding gdb's control of the
8991 inferior itself like stepping control. It also contains session state like
8992 the user's currently selected frame. */
b89667eb 8993
16c381f0 8994struct infcall_control_state
b89667eb 8995{
16c381f0
JK
8996 struct thread_control_state thread_control;
8997 struct inferior_control_state inferior_control;
d82142e2
JK
8998
8999 /* Other fields: */
9000 enum stop_stack_kind stop_stack_dummy;
9001 int stopped_by_random_signal;
7a292a7a 9002
b89667eb 9003 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 9004 struct frame_id selected_frame_id;
7a292a7a
SS
9005};
9006
c906108c 9007/* Save all of the information associated with the inferior<==>gdb
b89667eb 9008 connection. */
c906108c 9009
16c381f0
JK
9010struct infcall_control_state *
9011save_infcall_control_state (void)
c906108c 9012{
8d749320
SM
9013 struct infcall_control_state *inf_status =
9014 XNEW (struct infcall_control_state);
4e1c45ea 9015 struct thread_info *tp = inferior_thread ();
d6b48e9c 9016 struct inferior *inf = current_inferior ();
7a292a7a 9017
16c381f0
JK
9018 inf_status->thread_control = tp->control;
9019 inf_status->inferior_control = inf->control;
d82142e2 9020
8358c15c 9021 tp->control.step_resume_breakpoint = NULL;
5b79abe7 9022 tp->control.exception_resume_breakpoint = NULL;
8358c15c 9023
16c381f0
JK
9024 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9025 chain. If caller's caller is walking the chain, they'll be happier if we
9026 hand them back the original chain when restore_infcall_control_state is
9027 called. */
9028 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
9029
9030 /* Other fields: */
9031 inf_status->stop_stack_dummy = stop_stack_dummy;
9032 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 9033
206415a3 9034 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 9035
7a292a7a 9036 return inf_status;
c906108c
SS
9037}
9038
c906108c 9039static int
96baa820 9040restore_selected_frame (void *args)
c906108c 9041{
488f131b 9042 struct frame_id *fid = (struct frame_id *) args;
c906108c 9043 struct frame_info *frame;
c906108c 9044
101dcfbe 9045 frame = frame_find_by_id (*fid);
c906108c 9046
aa0cd9c1
AC
9047 /* If inf_status->selected_frame_id is NULL, there was no previously
9048 selected frame. */
101dcfbe 9049 if (frame == NULL)
c906108c 9050 {
8a3fe4f8 9051 warning (_("Unable to restore previously selected frame."));
c906108c
SS
9052 return 0;
9053 }
9054
0f7d239c 9055 select_frame (frame);
c906108c
SS
9056
9057 return (1);
9058}
9059
b89667eb
DE
9060/* Restore inferior session state to INF_STATUS. */
9061
c906108c 9062void
16c381f0 9063restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 9064{
4e1c45ea 9065 struct thread_info *tp = inferior_thread ();
d6b48e9c 9066 struct inferior *inf = current_inferior ();
4e1c45ea 9067
8358c15c
JK
9068 if (tp->control.step_resume_breakpoint)
9069 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9070
5b79abe7
TT
9071 if (tp->control.exception_resume_breakpoint)
9072 tp->control.exception_resume_breakpoint->disposition
9073 = disp_del_at_next_stop;
9074
d82142e2 9075 /* Handle the bpstat_copy of the chain. */
16c381f0 9076 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 9077
16c381f0
JK
9078 tp->control = inf_status->thread_control;
9079 inf->control = inf_status->inferior_control;
d82142e2
JK
9080
9081 /* Other fields: */
9082 stop_stack_dummy = inf_status->stop_stack_dummy;
9083 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 9084
b89667eb 9085 if (target_has_stack)
c906108c 9086 {
c906108c 9087 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
9088 walking the stack might encounter a garbage pointer and
9089 error() trying to dereference it. */
488f131b
JB
9090 if (catch_errors
9091 (restore_selected_frame, &inf_status->selected_frame_id,
9092 "Unable to restore previously selected frame:\n",
9093 RETURN_MASK_ERROR) == 0)
c906108c
SS
9094 /* Error in restoring the selected frame. Select the innermost
9095 frame. */
0f7d239c 9096 select_frame (get_current_frame ());
c906108c 9097 }
c906108c 9098
72cec141 9099 xfree (inf_status);
7a292a7a 9100}
c906108c 9101
74b7792f 9102static void
16c381f0 9103do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 9104{
9a3c8263 9105 restore_infcall_control_state ((struct infcall_control_state *) sts);
74b7792f
AC
9106}
9107
9108struct cleanup *
16c381f0
JK
9109make_cleanup_restore_infcall_control_state
9110 (struct infcall_control_state *inf_status)
74b7792f 9111{
16c381f0 9112 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
9113}
9114
c906108c 9115void
16c381f0 9116discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 9117{
8358c15c
JK
9118 if (inf_status->thread_control.step_resume_breakpoint)
9119 inf_status->thread_control.step_resume_breakpoint->disposition
9120 = disp_del_at_next_stop;
9121
5b79abe7
TT
9122 if (inf_status->thread_control.exception_resume_breakpoint)
9123 inf_status->thread_control.exception_resume_breakpoint->disposition
9124 = disp_del_at_next_stop;
9125
1777feb0 9126 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 9127 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 9128
72cec141 9129 xfree (inf_status);
7a292a7a 9130}
b89667eb 9131\f
ca6724c1
KB
9132/* restore_inferior_ptid() will be used by the cleanup machinery
9133 to restore the inferior_ptid value saved in a call to
9134 save_inferior_ptid(). */
ce696e05
KB
9135
9136static void
9137restore_inferior_ptid (void *arg)
9138{
9a3c8263 9139 ptid_t *saved_ptid_ptr = (ptid_t *) arg;
abbb1732 9140
ce696e05
KB
9141 inferior_ptid = *saved_ptid_ptr;
9142 xfree (arg);
9143}
9144
9145/* Save the value of inferior_ptid so that it may be restored by a
9146 later call to do_cleanups(). Returns the struct cleanup pointer
9147 needed for later doing the cleanup. */
9148
9149struct cleanup *
9150save_inferior_ptid (void)
9151{
8d749320 9152 ptid_t *saved_ptid_ptr = XNEW (ptid_t);
ce696e05 9153
ce696e05
KB
9154 *saved_ptid_ptr = inferior_ptid;
9155 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
9156}
0c557179 9157
7f89fd65 9158/* See infrun.h. */
0c557179
SDJ
9159
9160void
9161clear_exit_convenience_vars (void)
9162{
9163 clear_internalvar (lookup_internalvar ("_exitsignal"));
9164 clear_internalvar (lookup_internalvar ("_exitcode"));
9165}
c5aa993b 9166\f
488f131b 9167
b2175913
MS
9168/* User interface for reverse debugging:
9169 Set exec-direction / show exec-direction commands
9170 (returns error unless target implements to_set_exec_direction method). */
9171
170742de 9172enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
9173static const char exec_forward[] = "forward";
9174static const char exec_reverse[] = "reverse";
9175static const char *exec_direction = exec_forward;
40478521 9176static const char *const exec_direction_names[] = {
b2175913
MS
9177 exec_forward,
9178 exec_reverse,
9179 NULL
9180};
9181
9182static void
9183set_exec_direction_func (char *args, int from_tty,
9184 struct cmd_list_element *cmd)
9185{
9186 if (target_can_execute_reverse)
9187 {
9188 if (!strcmp (exec_direction, exec_forward))
9189 execution_direction = EXEC_FORWARD;
9190 else if (!strcmp (exec_direction, exec_reverse))
9191 execution_direction = EXEC_REVERSE;
9192 }
8bbed405
MS
9193 else
9194 {
9195 exec_direction = exec_forward;
9196 error (_("Target does not support this operation."));
9197 }
b2175913
MS
9198}
9199
9200static void
9201show_exec_direction_func (struct ui_file *out, int from_tty,
9202 struct cmd_list_element *cmd, const char *value)
9203{
9204 switch (execution_direction) {
9205 case EXEC_FORWARD:
9206 fprintf_filtered (out, _("Forward.\n"));
9207 break;
9208 case EXEC_REVERSE:
9209 fprintf_filtered (out, _("Reverse.\n"));
9210 break;
b2175913 9211 default:
d8b34453
PA
9212 internal_error (__FILE__, __LINE__,
9213 _("bogus execution_direction value: %d"),
9214 (int) execution_direction);
b2175913
MS
9215 }
9216}
9217
d4db2f36
PA
9218static void
9219show_schedule_multiple (struct ui_file *file, int from_tty,
9220 struct cmd_list_element *c, const char *value)
9221{
3e43a32a
MS
9222 fprintf_filtered (file, _("Resuming the execution of threads "
9223 "of all processes is %s.\n"), value);
d4db2f36 9224}
ad52ddc6 9225
22d2b532
SDJ
9226/* Implementation of `siginfo' variable. */
9227
9228static const struct internalvar_funcs siginfo_funcs =
9229{
9230 siginfo_make_value,
9231 NULL,
9232 NULL
9233};
9234
372316f1
PA
9235/* Callback for infrun's target events source. This is marked when a
9236 thread has a pending status to process. */
9237
9238static void
9239infrun_async_inferior_event_handler (gdb_client_data data)
9240{
372316f1
PA
9241 inferior_event_handler (INF_REG_EVENT, NULL);
9242}
9243
c906108c 9244void
96baa820 9245_initialize_infrun (void)
c906108c 9246{
52f0bd74
AC
9247 int i;
9248 int numsigs;
de0bea00 9249 struct cmd_list_element *c;
c906108c 9250
372316f1
PA
9251 /* Register extra event sources in the event loop. */
9252 infrun_async_inferior_event_token
9253 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9254
1bedd215
AC
9255 add_info ("signals", signals_info, _("\
9256What debugger does when program gets various signals.\n\
9257Specify a signal as argument to print info on that signal only."));
c906108c
SS
9258 add_info_alias ("handle", "signals", 0);
9259
de0bea00 9260 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9261Specify how to handle signals.\n\
486c7739 9262Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9263Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9264If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9265will be displayed instead.\n\
9266\n\
c906108c
SS
9267Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9268from 1-15 are allowed for compatibility with old versions of GDB.\n\
9269Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9270The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9271used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9272\n\
1bedd215 9273Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9274\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9275Stop means reenter debugger if this signal happens (implies print).\n\
9276Print means print a message if this signal happens.\n\
9277Pass means let program see this signal; otherwise program doesn't know.\n\
9278Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9279Pass and Stop may be combined.\n\
9280\n\
9281Multiple signals may be specified. Signal numbers and signal names\n\
9282may be interspersed with actions, with the actions being performed for\n\
9283all signals cumulatively specified."));
de0bea00 9284 set_cmd_completer (c, handle_completer);
486c7739 9285
c906108c 9286 if (!dbx_commands)
1a966eab
AC
9287 stop_command = add_cmd ("stop", class_obscure,
9288 not_just_help_class_command, _("\
9289There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9290This allows you to set a list of commands to be run each time execution\n\
1a966eab 9291of the program stops."), &cmdlist);
c906108c 9292
ccce17b0 9293 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9294Set inferior debugging."), _("\
9295Show inferior debugging."), _("\
9296When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9297 NULL,
9298 show_debug_infrun,
9299 &setdebuglist, &showdebuglist);
527159b7 9300
3e43a32a
MS
9301 add_setshow_boolean_cmd ("displaced", class_maintenance,
9302 &debug_displaced, _("\
237fc4c9
PA
9303Set displaced stepping debugging."), _("\
9304Show displaced stepping debugging."), _("\
9305When non-zero, displaced stepping specific debugging is enabled."),
9306 NULL,
9307 show_debug_displaced,
9308 &setdebuglist, &showdebuglist);
9309
ad52ddc6
PA
9310 add_setshow_boolean_cmd ("non-stop", no_class,
9311 &non_stop_1, _("\
9312Set whether gdb controls the inferior in non-stop mode."), _("\
9313Show whether gdb controls the inferior in non-stop mode."), _("\
9314When debugging a multi-threaded program and this setting is\n\
9315off (the default, also called all-stop mode), when one thread stops\n\
9316(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9317all other threads in the program while you interact with the thread of\n\
9318interest. When you continue or step a thread, you can allow the other\n\
9319threads to run, or have them remain stopped, but while you inspect any\n\
9320thread's state, all threads stop.\n\
9321\n\
9322In non-stop mode, when one thread stops, other threads can continue\n\
9323to run freely. You'll be able to step each thread independently,\n\
9324leave it stopped or free to run as needed."),
9325 set_non_stop,
9326 show_non_stop,
9327 &setlist,
9328 &showlist);
9329
a493e3e2 9330 numsigs = (int) GDB_SIGNAL_LAST;
8d749320
SM
9331 signal_stop = XNEWVEC (unsigned char, numsigs);
9332 signal_print = XNEWVEC (unsigned char, numsigs);
9333 signal_program = XNEWVEC (unsigned char, numsigs);
9334 signal_catch = XNEWVEC (unsigned char, numsigs);
9335 signal_pass = XNEWVEC (unsigned char, numsigs);
c906108c
SS
9336 for (i = 0; i < numsigs; i++)
9337 {
9338 signal_stop[i] = 1;
9339 signal_print[i] = 1;
9340 signal_program[i] = 1;
ab04a2af 9341 signal_catch[i] = 0;
c906108c
SS
9342 }
9343
4d9d9d04
PA
9344 /* Signals caused by debugger's own actions should not be given to
9345 the program afterwards.
9346
9347 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9348 explicitly specifies that it should be delivered to the target
9349 program. Typically, that would occur when a user is debugging a
9350 target monitor on a simulator: the target monitor sets a
9351 breakpoint; the simulator encounters this breakpoint and halts
9352 the simulation handing control to GDB; GDB, noting that the stop
9353 address doesn't map to any known breakpoint, returns control back
9354 to the simulator; the simulator then delivers the hardware
9355 equivalent of a GDB_SIGNAL_TRAP to the program being
9356 debugged. */
a493e3e2
PA
9357 signal_program[GDB_SIGNAL_TRAP] = 0;
9358 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9359
9360 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9361 signal_stop[GDB_SIGNAL_ALRM] = 0;
9362 signal_print[GDB_SIGNAL_ALRM] = 0;
9363 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9364 signal_print[GDB_SIGNAL_VTALRM] = 0;
9365 signal_stop[GDB_SIGNAL_PROF] = 0;
9366 signal_print[GDB_SIGNAL_PROF] = 0;
9367 signal_stop[GDB_SIGNAL_CHLD] = 0;
9368 signal_print[GDB_SIGNAL_CHLD] = 0;
9369 signal_stop[GDB_SIGNAL_IO] = 0;
9370 signal_print[GDB_SIGNAL_IO] = 0;
9371 signal_stop[GDB_SIGNAL_POLL] = 0;
9372 signal_print[GDB_SIGNAL_POLL] = 0;
9373 signal_stop[GDB_SIGNAL_URG] = 0;
9374 signal_print[GDB_SIGNAL_URG] = 0;
9375 signal_stop[GDB_SIGNAL_WINCH] = 0;
9376 signal_print[GDB_SIGNAL_WINCH] = 0;
9377 signal_stop[GDB_SIGNAL_PRIO] = 0;
9378 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9379
cd0fc7c3
SS
9380 /* These signals are used internally by user-level thread
9381 implementations. (See signal(5) on Solaris.) Like the above
9382 signals, a healthy program receives and handles them as part of
9383 its normal operation. */
a493e3e2
PA
9384 signal_stop[GDB_SIGNAL_LWP] = 0;
9385 signal_print[GDB_SIGNAL_LWP] = 0;
9386 signal_stop[GDB_SIGNAL_WAITING] = 0;
9387 signal_print[GDB_SIGNAL_WAITING] = 0;
9388 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9389 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9390 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9391 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9392
2455069d
UW
9393 /* Update cached state. */
9394 signal_cache_update (-1);
9395
85c07804
AC
9396 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9397 &stop_on_solib_events, _("\
9398Set stopping for shared library events."), _("\
9399Show stopping for shared library events."), _("\
c906108c
SS
9400If nonzero, gdb will give control to the user when the dynamic linker\n\
9401notifies gdb of shared library events. The most common event of interest\n\
85c07804 9402to the user would be loading/unloading of a new library."),
f9e14852 9403 set_stop_on_solib_events,
920d2a44 9404 show_stop_on_solib_events,
85c07804 9405 &setlist, &showlist);
c906108c 9406
7ab04401
AC
9407 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9408 follow_fork_mode_kind_names,
9409 &follow_fork_mode_string, _("\
9410Set debugger response to a program call of fork or vfork."), _("\
9411Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9412A fork or vfork creates a new process. follow-fork-mode can be:\n\
9413 parent - the original process is debugged after a fork\n\
9414 child - the new process is debugged after a fork\n\
ea1dd7bc 9415The unfollowed process will continue to run.\n\
7ab04401
AC
9416By default, the debugger will follow the parent process."),
9417 NULL,
920d2a44 9418 show_follow_fork_mode_string,
7ab04401
AC
9419 &setlist, &showlist);
9420
6c95b8df
PA
9421 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9422 follow_exec_mode_names,
9423 &follow_exec_mode_string, _("\
9424Set debugger response to a program call of exec."), _("\
9425Show debugger response to a program call of exec."), _("\
9426An exec call replaces the program image of a process.\n\
9427\n\
9428follow-exec-mode can be:\n\
9429\n\
cce7e648 9430 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9431to this new inferior. The program the process was running before\n\
9432the exec call can be restarted afterwards by restarting the original\n\
9433inferior.\n\
9434\n\
9435 same - the debugger keeps the process bound to the same inferior.\n\
9436The new executable image replaces the previous executable loaded in\n\
9437the inferior. Restarting the inferior after the exec call restarts\n\
9438the executable the process was running after the exec call.\n\
9439\n\
9440By default, the debugger will use the same inferior."),
9441 NULL,
9442 show_follow_exec_mode_string,
9443 &setlist, &showlist);
9444
7ab04401
AC
9445 add_setshow_enum_cmd ("scheduler-locking", class_run,
9446 scheduler_enums, &scheduler_mode, _("\
9447Set mode for locking scheduler during execution."), _("\
9448Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9449off == no locking (threads may preempt at any time)\n\
9450on == full locking (no thread except the current thread may run)\n\
9451 This applies to both normal execution and replay mode.\n\
9452step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9453 In this mode, other threads may run during other commands.\n\
9454 This applies to both normal execution and replay mode.\n\
9455replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9456 set_schedlock_func, /* traps on target vector */
920d2a44 9457 show_scheduler_mode,
7ab04401 9458 &setlist, &showlist);
5fbbeb29 9459
d4db2f36
PA
9460 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9461Set mode for resuming threads of all processes."), _("\
9462Show mode for resuming threads of all processes."), _("\
9463When on, execution commands (such as 'continue' or 'next') resume all\n\
9464threads of all processes. When off (which is the default), execution\n\
9465commands only resume the threads of the current process. The set of\n\
9466threads that are resumed is further refined by the scheduler-locking\n\
9467mode (see help set scheduler-locking)."),
9468 NULL,
9469 show_schedule_multiple,
9470 &setlist, &showlist);
9471
5bf193a2
AC
9472 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9473Set mode of the step operation."), _("\
9474Show mode of the step operation."), _("\
9475When set, doing a step over a function without debug line information\n\
9476will stop at the first instruction of that function. Otherwise, the\n\
9477function is skipped and the step command stops at a different source line."),
9478 NULL,
920d2a44 9479 show_step_stop_if_no_debug,
5bf193a2 9480 &setlist, &showlist);
ca6724c1 9481
72d0e2c5
YQ
9482 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9483 &can_use_displaced_stepping, _("\
237fc4c9
PA
9484Set debugger's willingness to use displaced stepping."), _("\
9485Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9486If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9487supported by the target architecture. If off, gdb will not use displaced\n\
9488stepping to step over breakpoints, even if such is supported by the target\n\
9489architecture. If auto (which is the default), gdb will use displaced stepping\n\
9490if the target architecture supports it and non-stop mode is active, but will not\n\
9491use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9492 NULL,
9493 show_can_use_displaced_stepping,
9494 &setlist, &showlist);
237fc4c9 9495
b2175913
MS
9496 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9497 &exec_direction, _("Set direction of execution.\n\
9498Options are 'forward' or 'reverse'."),
9499 _("Show direction of execution (forward/reverse)."),
9500 _("Tells gdb whether to execute forward or backward."),
9501 set_exec_direction_func, show_exec_direction_func,
9502 &setlist, &showlist);
9503
6c95b8df
PA
9504 /* Set/show detach-on-fork: user-settable mode. */
9505
9506 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9507Set whether gdb will detach the child of a fork."), _("\
9508Show whether gdb will detach the child of a fork."), _("\
9509Tells gdb whether to detach the child of a fork."),
9510 NULL, NULL, &setlist, &showlist);
9511
03583c20
UW
9512 /* Set/show disable address space randomization mode. */
9513
9514 add_setshow_boolean_cmd ("disable-randomization", class_support,
9515 &disable_randomization, _("\
9516Set disabling of debuggee's virtual address space randomization."), _("\
9517Show disabling of debuggee's virtual address space randomization."), _("\
9518When this mode is on (which is the default), randomization of the virtual\n\
9519address space is disabled. Standalone programs run with the randomization\n\
9520enabled by default on some platforms."),
9521 &set_disable_randomization,
9522 &show_disable_randomization,
9523 &setlist, &showlist);
9524
ca6724c1 9525 /* ptid initializations */
ca6724c1
KB
9526 inferior_ptid = null_ptid;
9527 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
9528
9529 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 9530 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 9531 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 9532 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
9533
9534 /* Explicitly create without lookup, since that tries to create a
9535 value with a void typed value, and when we get here, gdbarch
9536 isn't initialized yet. At this point, we're quite sure there
9537 isn't another convenience variable of the same name. */
22d2b532 9538 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9539
9540 add_setshow_boolean_cmd ("observer", no_class,
9541 &observer_mode_1, _("\
9542Set whether gdb controls the inferior in observer mode."), _("\
9543Show whether gdb controls the inferior in observer mode."), _("\
9544In observer mode, GDB can get data from the inferior, but not\n\
9545affect its execution. Registers and memory may not be changed,\n\
9546breakpoints may not be set, and the program cannot be interrupted\n\
9547or signalled."),
9548 set_observer_mode,
9549 show_observer_mode,
9550 &setlist,
9551 &showlist);
c906108c 9552}
This page took 2.196352 seconds and 4 git commands to generate.