gdb
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
6aba47ca 4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
9b254dd1 5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
0fb0cc75 6 2008, 2009 Free Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include <ctype.h>
26#include "symtab.h"
27#include "frame.h"
28#include "inferior.h"
60250e8b 29#include "exceptions.h"
c906108c 30#include "breakpoint.h"
03f2053f 31#include "gdb_wait.h"
c906108c
SS
32#include "gdbcore.h"
33#include "gdbcmd.h"
210661e7 34#include "cli/cli-script.h"
c906108c
SS
35#include "target.h"
36#include "gdbthread.h"
37#include "annotate.h"
1adeb98a 38#include "symfile.h"
7a292a7a 39#include "top.h"
c906108c 40#include <signal.h>
2acceee2 41#include "inf-loop.h"
4e052eda 42#include "regcache.h"
fd0407d6 43#include "value.h"
06600e06 44#include "observer.h"
f636b87d 45#include "language.h"
a77053c2 46#include "solib.h"
f17517ea 47#include "main.h"
9f976b41 48#include "gdb_assert.h"
034dad6f 49#include "mi/mi-common.h"
4f8d22e3 50#include "event-top.h"
96429cc8 51#include "record.h"
c906108c
SS
52
53/* Prototypes for local functions */
54
96baa820 55static void signals_info (char *, int);
c906108c 56
96baa820 57static void handle_command (char *, int);
c906108c 58
96baa820 59static void sig_print_info (enum target_signal);
c906108c 60
96baa820 61static void sig_print_header (void);
c906108c 62
74b7792f 63static void resume_cleanups (void *);
c906108c 64
96baa820 65static int hook_stop_stub (void *);
c906108c 66
96baa820
JM
67static int restore_selected_frame (void *);
68
69static void build_infrun (void);
70
4ef3f3be 71static int follow_fork (void);
96baa820
JM
72
73static void set_schedlock_func (char *args, int from_tty,
488f131b 74 struct cmd_list_element *c);
96baa820 75
4e1c45ea 76static int currently_stepping (struct thread_info *tp);
96baa820 77
a7212384
UW
78static int currently_stepping_callback (struct thread_info *tp, void *data);
79
96baa820
JM
80static void xdb_handle_command (char *args, int from_tty);
81
6a6b96b9 82static int prepare_to_proceed (int);
ea67f13b 83
96baa820 84void _initialize_infrun (void);
43ff13b4 85
e58b0e63
PA
86void nullify_last_target_wait_ptid (void);
87
5fbbeb29
CF
88/* When set, stop the 'step' command if we enter a function which has
89 no line number information. The normal behavior is that we step
90 over such function. */
91int step_stop_if_no_debug = 0;
920d2a44
AC
92static void
93show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
94 struct cmd_list_element *c, const char *value)
95{
96 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
97}
5fbbeb29 98
43ff13b4 99/* In asynchronous mode, but simulating synchronous execution. */
96baa820 100
43ff13b4
JM
101int sync_execution = 0;
102
c906108c
SS
103/* wait_for_inferior and normal_stop use this to notify the user
104 when the inferior stopped in a different thread than it had been
96baa820
JM
105 running in. */
106
39f77062 107static ptid_t previous_inferior_ptid;
7a292a7a 108
237fc4c9
PA
109int debug_displaced = 0;
110static void
111show_debug_displaced (struct ui_file *file, int from_tty,
112 struct cmd_list_element *c, const char *value)
113{
114 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
115}
116
527159b7 117static int debug_infrun = 0;
920d2a44
AC
118static void
119show_debug_infrun (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c, const char *value)
121{
122 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
123}
527159b7 124
d4f3574e
SS
125/* If the program uses ELF-style shared libraries, then calls to
126 functions in shared libraries go through stubs, which live in a
127 table called the PLT (Procedure Linkage Table). The first time the
128 function is called, the stub sends control to the dynamic linker,
129 which looks up the function's real address, patches the stub so
130 that future calls will go directly to the function, and then passes
131 control to the function.
132
133 If we are stepping at the source level, we don't want to see any of
134 this --- we just want to skip over the stub and the dynamic linker.
135 The simple approach is to single-step until control leaves the
136 dynamic linker.
137
ca557f44
AC
138 However, on some systems (e.g., Red Hat's 5.2 distribution) the
139 dynamic linker calls functions in the shared C library, so you
140 can't tell from the PC alone whether the dynamic linker is still
141 running. In this case, we use a step-resume breakpoint to get us
142 past the dynamic linker, as if we were using "next" to step over a
143 function call.
d4f3574e 144
cfd8ab24 145 in_solib_dynsym_resolve_code() says whether we're in the dynamic
d4f3574e
SS
146 linker code or not. Normally, this means we single-step. However,
147 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
148 address where we can place a step-resume breakpoint to get past the
149 linker's symbol resolution function.
150
cfd8ab24 151 in_solib_dynsym_resolve_code() can generally be implemented in a
d4f3574e
SS
152 pretty portable way, by comparing the PC against the address ranges
153 of the dynamic linker's sections.
154
155 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
156 it depends on internal details of the dynamic linker. It's usually
157 not too hard to figure out where to put a breakpoint, but it
158 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
159 sanity checking. If it can't figure things out, returning zero and
160 getting the (possibly confusing) stepping behavior is better than
161 signalling an error, which will obscure the change in the
162 inferior's state. */
c906108c 163
c906108c
SS
164/* This function returns TRUE if pc is the address of an instruction
165 that lies within the dynamic linker (such as the event hook, or the
166 dld itself).
167
168 This function must be used only when a dynamic linker event has
169 been caught, and the inferior is being stepped out of the hook, or
170 undefined results are guaranteed. */
171
172#ifndef SOLIB_IN_DYNAMIC_LINKER
173#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
174#endif
175
c2c6d25f 176
7a292a7a
SS
177/* Convert the #defines into values. This is temporary until wfi control
178 flow is completely sorted out. */
179
692590c1
MS
180#ifndef CANNOT_STEP_HW_WATCHPOINTS
181#define CANNOT_STEP_HW_WATCHPOINTS 0
182#else
183#undef CANNOT_STEP_HW_WATCHPOINTS
184#define CANNOT_STEP_HW_WATCHPOINTS 1
185#endif
186
c906108c
SS
187/* Tables of how to react to signals; the user sets them. */
188
189static unsigned char *signal_stop;
190static unsigned char *signal_print;
191static unsigned char *signal_program;
192
193#define SET_SIGS(nsigs,sigs,flags) \
194 do { \
195 int signum = (nsigs); \
196 while (signum-- > 0) \
197 if ((sigs)[signum]) \
198 (flags)[signum] = 1; \
199 } while (0)
200
201#define UNSET_SIGS(nsigs,sigs,flags) \
202 do { \
203 int signum = (nsigs); \
204 while (signum-- > 0) \
205 if ((sigs)[signum]) \
206 (flags)[signum] = 0; \
207 } while (0)
208
39f77062
KB
209/* Value to pass to target_resume() to cause all threads to resume */
210
211#define RESUME_ALL (pid_to_ptid (-1))
c906108c
SS
212
213/* Command list pointer for the "stop" placeholder. */
214
215static struct cmd_list_element *stop_command;
216
c906108c
SS
217/* Function inferior was in as of last step command. */
218
219static struct symbol *step_start_function;
220
c906108c
SS
221/* Nonzero if we want to give control to the user when we're notified
222 of shared library events by the dynamic linker. */
223static int stop_on_solib_events;
920d2a44
AC
224static void
225show_stop_on_solib_events (struct ui_file *file, int from_tty,
226 struct cmd_list_element *c, const char *value)
227{
228 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
229 value);
230}
c906108c 231
c906108c
SS
232/* Nonzero means expecting a trace trap
233 and should stop the inferior and return silently when it happens. */
234
235int stop_after_trap;
236
642fd101
DE
237/* Save register contents here when executing a "finish" command or are
238 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
239 Thus this contains the return value from the called function (assuming
240 values are returned in a register). */
241
72cec141 242struct regcache *stop_registers;
c906108c 243
c906108c
SS
244/* Nonzero after stop if current stack frame should be printed. */
245
246static int stop_print_frame;
247
e02bc4cc 248/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
249 returned by target_wait()/deprecated_target_wait_hook(). This
250 information is returned by get_last_target_status(). */
39f77062 251static ptid_t target_last_wait_ptid;
e02bc4cc
DS
252static struct target_waitstatus target_last_waitstatus;
253
0d1e5fa7
PA
254static void context_switch (ptid_t ptid);
255
4e1c45ea 256void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7
PA
257
258void init_infwait_state (void);
a474d7c2 259
53904c9e
AC
260static const char follow_fork_mode_child[] = "child";
261static const char follow_fork_mode_parent[] = "parent";
262
488f131b 263static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
264 follow_fork_mode_child,
265 follow_fork_mode_parent,
266 NULL
ef346e04 267};
c906108c 268
53904c9e 269static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
270static void
271show_follow_fork_mode_string (struct ui_file *file, int from_tty,
272 struct cmd_list_element *c, const char *value)
273{
274 fprintf_filtered (file, _("\
275Debugger response to a program call of fork or vfork is \"%s\".\n"),
276 value);
277}
c906108c
SS
278\f
279
e58b0e63
PA
280/* Tell the target to follow the fork we're stopped at. Returns true
281 if the inferior should be resumed; false, if the target for some
282 reason decided it's best not to resume. */
283
6604731b 284static int
4ef3f3be 285follow_fork (void)
c906108c 286{
ea1dd7bc 287 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
288 int should_resume = 1;
289 struct thread_info *tp;
290
291 /* Copy user stepping state to the new inferior thread. FIXME: the
292 followed fork child thread should have a copy of most of the
4e3990f4
DE
293 parent thread structure's run control related fields, not just these.
294 Initialized to avoid "may be used uninitialized" warnings from gcc. */
295 struct breakpoint *step_resume_breakpoint = NULL;
296 CORE_ADDR step_range_start = 0;
297 CORE_ADDR step_range_end = 0;
298 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
299
300 if (!non_stop)
301 {
302 ptid_t wait_ptid;
303 struct target_waitstatus wait_status;
304
305 /* Get the last target status returned by target_wait(). */
306 get_last_target_status (&wait_ptid, &wait_status);
307
308 /* If not stopped at a fork event, then there's nothing else to
309 do. */
310 if (wait_status.kind != TARGET_WAITKIND_FORKED
311 && wait_status.kind != TARGET_WAITKIND_VFORKED)
312 return 1;
313
314 /* Check if we switched over from WAIT_PTID, since the event was
315 reported. */
316 if (!ptid_equal (wait_ptid, minus_one_ptid)
317 && !ptid_equal (inferior_ptid, wait_ptid))
318 {
319 /* We did. Switch back to WAIT_PTID thread, to tell the
320 target to follow it (in either direction). We'll
321 afterwards refuse to resume, and inform the user what
322 happened. */
323 switch_to_thread (wait_ptid);
324 should_resume = 0;
325 }
326 }
327
328 tp = inferior_thread ();
329
330 /* If there were any forks/vforks that were caught and are now to be
331 followed, then do so now. */
332 switch (tp->pending_follow.kind)
333 {
334 case TARGET_WAITKIND_FORKED:
335 case TARGET_WAITKIND_VFORKED:
336 {
337 ptid_t parent, child;
338
339 /* If the user did a next/step, etc, over a fork call,
340 preserve the stepping state in the fork child. */
341 if (follow_child && should_resume)
342 {
343 step_resume_breakpoint
344 = clone_momentary_breakpoint (tp->step_resume_breakpoint);
345 step_range_start = tp->step_range_start;
346 step_range_end = tp->step_range_end;
347 step_frame_id = tp->step_frame_id;
348
349 /* For now, delete the parent's sr breakpoint, otherwise,
350 parent/child sr breakpoints are considered duplicates,
351 and the child version will not be installed. Remove
352 this when the breakpoints module becomes aware of
353 inferiors and address spaces. */
354 delete_step_resume_breakpoint (tp);
355 tp->step_range_start = 0;
356 tp->step_range_end = 0;
357 tp->step_frame_id = null_frame_id;
358 }
359
360 parent = inferior_ptid;
361 child = tp->pending_follow.value.related_pid;
362
363 /* Tell the target to do whatever is necessary to follow
364 either parent or child. */
365 if (target_follow_fork (follow_child))
366 {
367 /* Target refused to follow, or there's some other reason
368 we shouldn't resume. */
369 should_resume = 0;
370 }
371 else
372 {
373 /* This pending follow fork event is now handled, one way
374 or another. The previous selected thread may be gone
375 from the lists by now, but if it is still around, need
376 to clear the pending follow request. */
e09875d4 377 tp = find_thread_ptid (parent);
e58b0e63
PA
378 if (tp)
379 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
380
381 /* This makes sure we don't try to apply the "Switched
382 over from WAIT_PID" logic above. */
383 nullify_last_target_wait_ptid ();
384
385 /* If we followed the child, switch to it... */
386 if (follow_child)
387 {
388 switch_to_thread (child);
389
390 /* ... and preserve the stepping state, in case the
391 user was stepping over the fork call. */
392 if (should_resume)
393 {
394 tp = inferior_thread ();
395 tp->step_resume_breakpoint = step_resume_breakpoint;
396 tp->step_range_start = step_range_start;
397 tp->step_range_end = step_range_end;
398 tp->step_frame_id = step_frame_id;
399 }
400 else
401 {
402 /* If we get here, it was because we're trying to
403 resume from a fork catchpoint, but, the user
404 has switched threads away from the thread that
405 forked. In that case, the resume command
406 issued is most likely not applicable to the
407 child, so just warn, and refuse to resume. */
408 warning (_("\
409Not resuming: switched threads before following fork child.\n"));
410 }
411
412 /* Reset breakpoints in the child as appropriate. */
413 follow_inferior_reset_breakpoints ();
414 }
415 else
416 switch_to_thread (parent);
417 }
418 }
419 break;
420 case TARGET_WAITKIND_SPURIOUS:
421 /* Nothing to follow. */
422 break;
423 default:
424 internal_error (__FILE__, __LINE__,
425 "Unexpected pending_follow.kind %d\n",
426 tp->pending_follow.kind);
427 break;
428 }
c906108c 429
e58b0e63 430 return should_resume;
c906108c
SS
431}
432
6604731b
DJ
433void
434follow_inferior_reset_breakpoints (void)
c906108c 435{
4e1c45ea
PA
436 struct thread_info *tp = inferior_thread ();
437
6604731b
DJ
438 /* Was there a step_resume breakpoint? (There was if the user
439 did a "next" at the fork() call.) If so, explicitly reset its
440 thread number.
441
442 step_resumes are a form of bp that are made to be per-thread.
443 Since we created the step_resume bp when the parent process
444 was being debugged, and now are switching to the child process,
445 from the breakpoint package's viewpoint, that's a switch of
446 "threads". We must update the bp's notion of which thread
447 it is for, or it'll be ignored when it triggers. */
448
4e1c45ea
PA
449 if (tp->step_resume_breakpoint)
450 breakpoint_re_set_thread (tp->step_resume_breakpoint);
6604731b
DJ
451
452 /* Reinsert all breakpoints in the child. The user may have set
453 breakpoints after catching the fork, in which case those
454 were never set in the child, but only in the parent. This makes
455 sure the inserted breakpoints match the breakpoint list. */
456
457 breakpoint_re_set ();
458 insert_breakpoints ();
c906108c 459}
c906108c 460
1adeb98a
FN
461/* EXECD_PATHNAME is assumed to be non-NULL. */
462
c906108c 463static void
3a3e9ee3 464follow_exec (ptid_t pid, char *execd_pathname)
c906108c 465{
7a292a7a 466 struct target_ops *tgt;
4e1c45ea 467 struct thread_info *th = inferior_thread ();
7a292a7a 468
c906108c
SS
469 /* This is an exec event that we actually wish to pay attention to.
470 Refresh our symbol table to the newly exec'd program, remove any
471 momentary bp's, etc.
472
473 If there are breakpoints, they aren't really inserted now,
474 since the exec() transformed our inferior into a fresh set
475 of instructions.
476
477 We want to preserve symbolic breakpoints on the list, since
478 we have hopes that they can be reset after the new a.out's
479 symbol table is read.
480
481 However, any "raw" breakpoints must be removed from the list
482 (e.g., the solib bp's), since their address is probably invalid
483 now.
484
485 And, we DON'T want to call delete_breakpoints() here, since
486 that may write the bp's "shadow contents" (the instruction
487 value that was overwritten witha TRAP instruction). Since
488 we now have a new a.out, those shadow contents aren't valid. */
489 update_breakpoints_after_exec ();
490
491 /* If there was one, it's gone now. We cannot truly step-to-next
492 statement through an exec(). */
4e1c45ea
PA
493 th->step_resume_breakpoint = NULL;
494 th->step_range_start = 0;
495 th->step_range_end = 0;
c906108c 496
a75724bc
PA
497 /* The target reports the exec event to the main thread, even if
498 some other thread does the exec, and even if the main thread was
499 already stopped --- if debugging in non-stop mode, it's possible
500 the user had the main thread held stopped in the previous image
501 --- release it now. This is the same behavior as step-over-exec
502 with scheduler-locking on in all-stop mode. */
503 th->stop_requested = 0;
504
c906108c 505 /* What is this a.out's name? */
a3f17187 506 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
c906108c
SS
507
508 /* We've followed the inferior through an exec. Therefore, the
509 inferior has essentially been killed & reborn. */
7a292a7a 510
c906108c 511 gdb_flush (gdb_stdout);
6ca15a4b
PA
512
513 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
514
515 if (gdb_sysroot && *gdb_sysroot)
516 {
517 char *name = alloca (strlen (gdb_sysroot)
518 + strlen (execd_pathname)
519 + 1);
520 strcpy (name, gdb_sysroot);
521 strcat (name, execd_pathname);
522 execd_pathname = name;
523 }
c906108c
SS
524
525 /* That a.out is now the one to use. */
526 exec_file_attach (execd_pathname, 0);
527
cce9b6bf
PA
528 /* Reset the shared library package. This ensures that we get a
529 shlib event when the child reaches "_start", at which point the
530 dld will have had a chance to initialize the child. */
531 /* Also, loading a symbol file below may trigger symbol lookups, and
532 we don't want those to be satisfied by the libraries of the
533 previous incarnation of this process. */
534 no_shared_libraries (NULL, 0);
535
536 /* Load the main file's symbols. */
1adeb98a 537 symbol_file_add_main (execd_pathname, 0);
c906108c 538
7a292a7a 539#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 540 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2
MK
541#else
542 solib_create_inferior_hook ();
7a292a7a 543#endif
c906108c
SS
544
545 /* Reinsert all breakpoints. (Those which were symbolic have
546 been reset to the proper address in the new a.out, thanks
547 to symbol_file_command...) */
548 insert_breakpoints ();
549
550 /* The next resume of this inferior should bring it to the shlib
551 startup breakpoints. (If the user had also set bp's on
552 "main" from the old (parent) process, then they'll auto-
553 matically get reset there in the new process.) */
c906108c
SS
554}
555
556/* Non-zero if we just simulating a single-step. This is needed
557 because we cannot remove the breakpoints in the inferior process
558 until after the `wait' in `wait_for_inferior'. */
559static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
560
561/* The thread we inserted single-step breakpoints for. */
562static ptid_t singlestep_ptid;
563
fd48f117
DJ
564/* PC when we started this single-step. */
565static CORE_ADDR singlestep_pc;
566
9f976b41
DJ
567/* If another thread hit the singlestep breakpoint, we save the original
568 thread here so that we can resume single-stepping it later. */
569static ptid_t saved_singlestep_ptid;
570static int stepping_past_singlestep_breakpoint;
6a6b96b9 571
ca67fcb8
VP
572/* If not equal to null_ptid, this means that after stepping over breakpoint
573 is finished, we need to switch to deferred_step_ptid, and step it.
574
575 The use case is when one thread has hit a breakpoint, and then the user
576 has switched to another thread and issued 'step'. We need to step over
577 breakpoint in the thread which hit the breakpoint, but then continue
578 stepping the thread user has selected. */
579static ptid_t deferred_step_ptid;
c906108c 580\f
237fc4c9
PA
581/* Displaced stepping. */
582
583/* In non-stop debugging mode, we must take special care to manage
584 breakpoints properly; in particular, the traditional strategy for
585 stepping a thread past a breakpoint it has hit is unsuitable.
586 'Displaced stepping' is a tactic for stepping one thread past a
587 breakpoint it has hit while ensuring that other threads running
588 concurrently will hit the breakpoint as they should.
589
590 The traditional way to step a thread T off a breakpoint in a
591 multi-threaded program in all-stop mode is as follows:
592
593 a0) Initially, all threads are stopped, and breakpoints are not
594 inserted.
595 a1) We single-step T, leaving breakpoints uninserted.
596 a2) We insert breakpoints, and resume all threads.
597
598 In non-stop debugging, however, this strategy is unsuitable: we
599 don't want to have to stop all threads in the system in order to
600 continue or step T past a breakpoint. Instead, we use displaced
601 stepping:
602
603 n0) Initially, T is stopped, other threads are running, and
604 breakpoints are inserted.
605 n1) We copy the instruction "under" the breakpoint to a separate
606 location, outside the main code stream, making any adjustments
607 to the instruction, register, and memory state as directed by
608 T's architecture.
609 n2) We single-step T over the instruction at its new location.
610 n3) We adjust the resulting register and memory state as directed
611 by T's architecture. This includes resetting T's PC to point
612 back into the main instruction stream.
613 n4) We resume T.
614
615 This approach depends on the following gdbarch methods:
616
617 - gdbarch_max_insn_length and gdbarch_displaced_step_location
618 indicate where to copy the instruction, and how much space must
619 be reserved there. We use these in step n1.
620
621 - gdbarch_displaced_step_copy_insn copies a instruction to a new
622 address, and makes any necessary adjustments to the instruction,
623 register contents, and memory. We use this in step n1.
624
625 - gdbarch_displaced_step_fixup adjusts registers and memory after
626 we have successfuly single-stepped the instruction, to yield the
627 same effect the instruction would have had if we had executed it
628 at its original address. We use this in step n3.
629
630 - gdbarch_displaced_step_free_closure provides cleanup.
631
632 The gdbarch_displaced_step_copy_insn and
633 gdbarch_displaced_step_fixup functions must be written so that
634 copying an instruction with gdbarch_displaced_step_copy_insn,
635 single-stepping across the copied instruction, and then applying
636 gdbarch_displaced_insn_fixup should have the same effects on the
637 thread's memory and registers as stepping the instruction in place
638 would have. Exactly which responsibilities fall to the copy and
639 which fall to the fixup is up to the author of those functions.
640
641 See the comments in gdbarch.sh for details.
642
643 Note that displaced stepping and software single-step cannot
644 currently be used in combination, although with some care I think
645 they could be made to. Software single-step works by placing
646 breakpoints on all possible subsequent instructions; if the
647 displaced instruction is a PC-relative jump, those breakpoints
648 could fall in very strange places --- on pages that aren't
649 executable, or at addresses that are not proper instruction
650 boundaries. (We do generally let other threads run while we wait
651 to hit the software single-step breakpoint, and they might
652 encounter such a corrupted instruction.) One way to work around
653 this would be to have gdbarch_displaced_step_copy_insn fully
654 simulate the effect of PC-relative instructions (and return NULL)
655 on architectures that use software single-stepping.
656
657 In non-stop mode, we can have independent and simultaneous step
658 requests, so more than one thread may need to simultaneously step
659 over a breakpoint. The current implementation assumes there is
660 only one scratch space per process. In this case, we have to
661 serialize access to the scratch space. If thread A wants to step
662 over a breakpoint, but we are currently waiting for some other
663 thread to complete a displaced step, we leave thread A stopped and
664 place it in the displaced_step_request_queue. Whenever a displaced
665 step finishes, we pick the next thread in the queue and start a new
666 displaced step operation on it. See displaced_step_prepare and
667 displaced_step_fixup for details. */
668
669/* If this is not null_ptid, this is the thread carrying out a
670 displaced single-step. This thread's state will require fixing up
671 once it has completed its step. */
672static ptid_t displaced_step_ptid;
673
674struct displaced_step_request
675{
676 ptid_t ptid;
677 struct displaced_step_request *next;
678};
679
680/* A queue of pending displaced stepping requests. */
681struct displaced_step_request *displaced_step_request_queue;
682
683/* The architecture the thread had when we stepped it. */
684static struct gdbarch *displaced_step_gdbarch;
685
686/* The closure provided gdbarch_displaced_step_copy_insn, to be used
687 for post-step cleanup. */
688static struct displaced_step_closure *displaced_step_closure;
689
690/* The address of the original instruction, and the copy we made. */
691static CORE_ADDR displaced_step_original, displaced_step_copy;
692
693/* Saved contents of copy area. */
694static gdb_byte *displaced_step_saved_copy;
695
fff08868
HZ
696/* Enum strings for "set|show displaced-stepping". */
697
698static const char can_use_displaced_stepping_auto[] = "auto";
699static const char can_use_displaced_stepping_on[] = "on";
700static const char can_use_displaced_stepping_off[] = "off";
701static const char *can_use_displaced_stepping_enum[] =
702{
703 can_use_displaced_stepping_auto,
704 can_use_displaced_stepping_on,
705 can_use_displaced_stepping_off,
706 NULL,
707};
708
709/* If ON, and the architecture supports it, GDB will use displaced
710 stepping to step over breakpoints. If OFF, or if the architecture
711 doesn't support it, GDB will instead use the traditional
712 hold-and-step approach. If AUTO (which is the default), GDB will
713 decide which technique to use to step over breakpoints depending on
714 which of all-stop or non-stop mode is active --- displaced stepping
715 in non-stop mode; hold-and-step in all-stop mode. */
716
717static const char *can_use_displaced_stepping =
718 can_use_displaced_stepping_auto;
719
237fc4c9
PA
720static void
721show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
722 struct cmd_list_element *c,
723 const char *value)
724{
fff08868
HZ
725 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
726 fprintf_filtered (file, _("\
727Debugger's willingness to use displaced stepping to step over \
728breakpoints is %s (currently %s).\n"),
729 value, non_stop ? "on" : "off");
730 else
731 fprintf_filtered (file, _("\
732Debugger's willingness to use displaced stepping to step over \
733breakpoints is %s.\n"), value);
237fc4c9
PA
734}
735
fff08868
HZ
736/* Return non-zero if displaced stepping can/should be used to step
737 over breakpoints. */
738
237fc4c9
PA
739static int
740use_displaced_stepping (struct gdbarch *gdbarch)
741{
fff08868
HZ
742 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
743 && non_stop)
744 || can_use_displaced_stepping == can_use_displaced_stepping_on)
96429cc8
HZ
745 && gdbarch_displaced_step_copy_insn_p (gdbarch)
746 && !RECORD_IS_USED);
237fc4c9
PA
747}
748
749/* Clean out any stray displaced stepping state. */
750static void
751displaced_step_clear (void)
752{
753 /* Indicate that there is no cleanup pending. */
754 displaced_step_ptid = null_ptid;
755
756 if (displaced_step_closure)
757 {
758 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
759 displaced_step_closure);
760 displaced_step_closure = NULL;
761 }
762}
763
764static void
765cleanup_displaced_step_closure (void *ptr)
766{
767 struct displaced_step_closure *closure = ptr;
768
769 gdbarch_displaced_step_free_closure (current_gdbarch, closure);
770}
771
772/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
773void
774displaced_step_dump_bytes (struct ui_file *file,
775 const gdb_byte *buf,
776 size_t len)
777{
778 int i;
779
780 for (i = 0; i < len; i++)
781 fprintf_unfiltered (file, "%02x ", buf[i]);
782 fputs_unfiltered ("\n", file);
783}
784
785/* Prepare to single-step, using displaced stepping.
786
787 Note that we cannot use displaced stepping when we have a signal to
788 deliver. If we have a signal to deliver and an instruction to step
789 over, then after the step, there will be no indication from the
790 target whether the thread entered a signal handler or ignored the
791 signal and stepped over the instruction successfully --- both cases
792 result in a simple SIGTRAP. In the first case we mustn't do a
793 fixup, and in the second case we must --- but we can't tell which.
794 Comments in the code for 'random signals' in handle_inferior_event
795 explain how we handle this case instead.
796
797 Returns 1 if preparing was successful -- this thread is going to be
798 stepped now; or 0 if displaced stepping this thread got queued. */
799static int
800displaced_step_prepare (ptid_t ptid)
801{
ad53cd71 802 struct cleanup *old_cleanups, *ignore_cleanups;
237fc4c9
PA
803 struct regcache *regcache = get_thread_regcache (ptid);
804 struct gdbarch *gdbarch = get_regcache_arch (regcache);
805 CORE_ADDR original, copy;
806 ULONGEST len;
807 struct displaced_step_closure *closure;
808
809 /* We should never reach this function if the architecture does not
810 support displaced stepping. */
811 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
812
813 /* For the first cut, we're displaced stepping one thread at a
814 time. */
815
816 if (!ptid_equal (displaced_step_ptid, null_ptid))
817 {
818 /* Already waiting for a displaced step to finish. Defer this
819 request and place in queue. */
820 struct displaced_step_request *req, *new_req;
821
822 if (debug_displaced)
823 fprintf_unfiltered (gdb_stdlog,
824 "displaced: defering step of %s\n",
825 target_pid_to_str (ptid));
826
827 new_req = xmalloc (sizeof (*new_req));
828 new_req->ptid = ptid;
829 new_req->next = NULL;
830
831 if (displaced_step_request_queue)
832 {
833 for (req = displaced_step_request_queue;
834 req && req->next;
835 req = req->next)
836 ;
837 req->next = new_req;
838 }
839 else
840 displaced_step_request_queue = new_req;
841
842 return 0;
843 }
844 else
845 {
846 if (debug_displaced)
847 fprintf_unfiltered (gdb_stdlog,
848 "displaced: stepping %s now\n",
849 target_pid_to_str (ptid));
850 }
851
852 displaced_step_clear ();
853
ad53cd71
PA
854 old_cleanups = save_inferior_ptid ();
855 inferior_ptid = ptid;
856
515630c5 857 original = regcache_read_pc (regcache);
237fc4c9
PA
858
859 copy = gdbarch_displaced_step_location (gdbarch);
860 len = gdbarch_max_insn_length (gdbarch);
861
862 /* Save the original contents of the copy area. */
863 displaced_step_saved_copy = xmalloc (len);
ad53cd71
PA
864 ignore_cleanups = make_cleanup (free_current_contents,
865 &displaced_step_saved_copy);
237fc4c9
PA
866 read_memory (copy, displaced_step_saved_copy, len);
867 if (debug_displaced)
868 {
869 fprintf_unfiltered (gdb_stdlog, "displaced: saved 0x%s: ",
870 paddr_nz (copy));
871 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
872 };
873
874 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 875 original, copy, regcache);
237fc4c9
PA
876
877 /* We don't support the fully-simulated case at present. */
878 gdb_assert (closure);
879
880 make_cleanup (cleanup_displaced_step_closure, closure);
881
882 /* Resume execution at the copy. */
515630c5 883 regcache_write_pc (regcache, copy);
237fc4c9 884
ad53cd71
PA
885 discard_cleanups (ignore_cleanups);
886
887 do_cleanups (old_cleanups);
237fc4c9
PA
888
889 if (debug_displaced)
890 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to 0x%s\n",
ad53cd71 891 paddr_nz (copy));
237fc4c9
PA
892
893 /* Save the information we need to fix things up if the step
894 succeeds. */
895 displaced_step_ptid = ptid;
896 displaced_step_gdbarch = gdbarch;
897 displaced_step_closure = closure;
898 displaced_step_original = original;
899 displaced_step_copy = copy;
900 return 1;
901}
902
903static void
904displaced_step_clear_cleanup (void *ignore)
905{
906 displaced_step_clear ();
907}
908
909static void
910write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
911{
912 struct cleanup *ptid_cleanup = save_inferior_ptid ();
913 inferior_ptid = ptid;
914 write_memory (memaddr, myaddr, len);
915 do_cleanups (ptid_cleanup);
916}
917
918static void
919displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
920{
921 struct cleanup *old_cleanups;
922
923 /* Was this event for the pid we displaced? */
924 if (ptid_equal (displaced_step_ptid, null_ptid)
925 || ! ptid_equal (displaced_step_ptid, event_ptid))
926 return;
927
928 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
929
930 /* Restore the contents of the copy area. */
931 {
932 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
933 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
934 displaced_step_saved_copy, len);
935 if (debug_displaced)
936 fprintf_unfiltered (gdb_stdlog, "displaced: restored 0x%s\n",
937 paddr_nz (displaced_step_copy));
938 }
939
940 /* Did the instruction complete successfully? */
941 if (signal == TARGET_SIGNAL_TRAP)
942 {
943 /* Fix up the resulting state. */
944 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
945 displaced_step_closure,
946 displaced_step_original,
947 displaced_step_copy,
948 get_thread_regcache (displaced_step_ptid));
949 }
950 else
951 {
952 /* Since the instruction didn't complete, all we can do is
953 relocate the PC. */
515630c5
UW
954 struct regcache *regcache = get_thread_regcache (event_ptid);
955 CORE_ADDR pc = regcache_read_pc (regcache);
237fc4c9 956 pc = displaced_step_original + (pc - displaced_step_copy);
515630c5 957 regcache_write_pc (regcache, pc);
237fc4c9
PA
958 }
959
960 do_cleanups (old_cleanups);
961
1c5cfe86
PA
962 displaced_step_ptid = null_ptid;
963
237fc4c9
PA
964 /* Are there any pending displaced stepping requests? If so, run
965 one now. */
1c5cfe86 966 while (displaced_step_request_queue)
237fc4c9
PA
967 {
968 struct displaced_step_request *head;
969 ptid_t ptid;
1c5cfe86 970 CORE_ADDR actual_pc;
237fc4c9
PA
971
972 head = displaced_step_request_queue;
973 ptid = head->ptid;
974 displaced_step_request_queue = head->next;
975 xfree (head);
976
ad53cd71
PA
977 context_switch (ptid);
978
fb14de7b 979 actual_pc = regcache_read_pc (get_thread_regcache (ptid));
1c5cfe86
PA
980
981 if (breakpoint_here_p (actual_pc))
ad53cd71 982 {
1c5cfe86
PA
983 if (debug_displaced)
984 fprintf_unfiltered (gdb_stdlog,
985 "displaced: stepping queued %s now\n",
986 target_pid_to_str (ptid));
987
988 displaced_step_prepare (ptid);
989
990 if (debug_displaced)
991 {
992 gdb_byte buf[4];
993
994 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
995 paddr_nz (actual_pc));
996 read_memory (actual_pc, buf, sizeof (buf));
997 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
998 }
999
1000 target_resume (ptid, 1, TARGET_SIGNAL_0);
1001
1002 /* Done, we're stepping a thread. */
1003 break;
ad53cd71 1004 }
1c5cfe86
PA
1005 else
1006 {
1007 int step;
1008 struct thread_info *tp = inferior_thread ();
1009
1010 /* The breakpoint we were sitting under has since been
1011 removed. */
1012 tp->trap_expected = 0;
1013
1014 /* Go back to what we were trying to do. */
1015 step = currently_stepping (tp);
ad53cd71 1016
1c5cfe86
PA
1017 if (debug_displaced)
1018 fprintf_unfiltered (gdb_stdlog, "breakpoint is gone %s: step(%d)\n",
1019 target_pid_to_str (tp->ptid), step);
1020
1021 target_resume (ptid, step, TARGET_SIGNAL_0);
1022 tp->stop_signal = TARGET_SIGNAL_0;
1023
1024 /* This request was discarded. See if there's any other
1025 thread waiting for its turn. */
1026 }
237fc4c9
PA
1027 }
1028}
1029
5231c1fd
PA
1030/* Update global variables holding ptids to hold NEW_PTID if they were
1031 holding OLD_PTID. */
1032static void
1033infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1034{
1035 struct displaced_step_request *it;
1036
1037 if (ptid_equal (inferior_ptid, old_ptid))
1038 inferior_ptid = new_ptid;
1039
1040 if (ptid_equal (singlestep_ptid, old_ptid))
1041 singlestep_ptid = new_ptid;
1042
1043 if (ptid_equal (displaced_step_ptid, old_ptid))
1044 displaced_step_ptid = new_ptid;
1045
1046 if (ptid_equal (deferred_step_ptid, old_ptid))
1047 deferred_step_ptid = new_ptid;
1048
1049 for (it = displaced_step_request_queue; it; it = it->next)
1050 if (ptid_equal (it->ptid, old_ptid))
1051 it->ptid = new_ptid;
1052}
1053
237fc4c9
PA
1054\f
1055/* Resuming. */
c906108c
SS
1056
1057/* Things to clean up if we QUIT out of resume (). */
c906108c 1058static void
74b7792f 1059resume_cleanups (void *ignore)
c906108c
SS
1060{
1061 normal_stop ();
1062}
1063
53904c9e
AC
1064static const char schedlock_off[] = "off";
1065static const char schedlock_on[] = "on";
1066static const char schedlock_step[] = "step";
488f131b 1067static const char *scheduler_enums[] = {
ef346e04
AC
1068 schedlock_off,
1069 schedlock_on,
1070 schedlock_step,
1071 NULL
1072};
920d2a44
AC
1073static const char *scheduler_mode = schedlock_off;
1074static void
1075show_scheduler_mode (struct ui_file *file, int from_tty,
1076 struct cmd_list_element *c, const char *value)
1077{
1078 fprintf_filtered (file, _("\
1079Mode for locking scheduler during execution is \"%s\".\n"),
1080 value);
1081}
c906108c
SS
1082
1083static void
96baa820 1084set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1085{
eefe576e
AC
1086 if (!target_can_lock_scheduler)
1087 {
1088 scheduler_mode = schedlock_off;
1089 error (_("Target '%s' cannot support this command."), target_shortname);
1090 }
c906108c
SS
1091}
1092
2facfe5c
DD
1093/* Try to setup for software single stepping over the specified location.
1094 Return 1 if target_resume() should use hardware single step.
1095
1096 GDBARCH the current gdbarch.
1097 PC the location to step over. */
1098
1099static int
1100maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1101{
1102 int hw_step = 1;
1103
1104 if (gdbarch_software_single_step_p (gdbarch)
1105 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1106 {
1107 hw_step = 0;
1108 /* Do not pull these breakpoints until after a `wait' in
1109 `wait_for_inferior' */
1110 singlestep_breakpoints_inserted_p = 1;
1111 singlestep_ptid = inferior_ptid;
1112 singlestep_pc = pc;
1113 }
1114 return hw_step;
1115}
c906108c
SS
1116
1117/* Resume the inferior, but allow a QUIT. This is useful if the user
1118 wants to interrupt some lengthy single-stepping operation
1119 (for child processes, the SIGINT goes to the inferior, and so
1120 we get a SIGINT random_signal, but for remote debugging and perhaps
1121 other targets, that's not true).
1122
1123 STEP nonzero if we should step (zero to continue instead).
1124 SIG is the signal to give the inferior (zero for none). */
1125void
96baa820 1126resume (int step, enum target_signal sig)
c906108c
SS
1127{
1128 int should_resume = 1;
74b7792f 1129 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1130 struct regcache *regcache = get_current_regcache ();
1131 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1132 struct thread_info *tp = inferior_thread ();
515630c5 1133 CORE_ADDR pc = regcache_read_pc (regcache);
c7e8a53c 1134
c906108c
SS
1135 QUIT;
1136
527159b7 1137 if (debug_infrun)
237fc4c9
PA
1138 fprintf_unfiltered (gdb_stdlog,
1139 "infrun: resume (step=%d, signal=%d), "
4e1c45ea
PA
1140 "trap_expected=%d\n",
1141 step, sig, tp->trap_expected);
c906108c 1142
692590c1
MS
1143 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
1144 over an instruction that causes a page fault without triggering
1145 a hardware watchpoint. The kernel properly notices that it shouldn't
1146 stop, because the hardware watchpoint is not triggered, but it forgets
1147 the step request and continues the program normally.
1148 Work around the problem by removing hardware watchpoints if a step is
1149 requested, GDB will check for a hardware watchpoint trigger after the
1150 step anyway. */
c36b740a 1151 if (CANNOT_STEP_HW_WATCHPOINTS && step)
692590c1 1152 remove_hw_watchpoints ();
488f131b 1153
692590c1 1154
c2c6d25f
JM
1155 /* Normally, by the time we reach `resume', the breakpoints are either
1156 removed or inserted, as appropriate. The exception is if we're sitting
1157 at a permanent breakpoint; we need to step over it, but permanent
1158 breakpoints can't be removed. So we have to test for it here. */
237fc4c9 1159 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
6d350bb5 1160 {
515630c5
UW
1161 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1162 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5
UW
1163 else
1164 error (_("\
1165The program is stopped at a permanent breakpoint, but GDB does not know\n\
1166how to step past a permanent breakpoint on this architecture. Try using\n\
1167a command like `return' or `jump' to continue execution."));
1168 }
c2c6d25f 1169
237fc4c9
PA
1170 /* If enabled, step over breakpoints by executing a copy of the
1171 instruction at a different address.
1172
1173 We can't use displaced stepping when we have a signal to deliver;
1174 the comments for displaced_step_prepare explain why. The
1175 comments in the handle_inferior event for dealing with 'random
1176 signals' explain what we do instead. */
515630c5 1177 if (use_displaced_stepping (gdbarch)
4e1c45ea 1178 && tp->trap_expected
237fc4c9
PA
1179 && sig == TARGET_SIGNAL_0)
1180 {
1181 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1182 {
1183 /* Got placed in displaced stepping queue. Will be resumed
1184 later when all the currently queued displaced stepping
7f7efbd9
VP
1185 requests finish. The thread is not executing at this point,
1186 and the call to set_executing will be made later. But we
1187 need to call set_running here, since from frontend point of view,
1188 the thread is running. */
1189 set_running (inferior_ptid, 1);
d56b7306
VP
1190 discard_cleanups (old_cleanups);
1191 return;
1192 }
237fc4c9
PA
1193 }
1194
2facfe5c
DD
1195 /* Do we need to do it the hard way, w/temp breakpoints? */
1196 if (step)
1197 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1198
c906108c
SS
1199 if (should_resume)
1200 {
39f77062 1201 ptid_t resume_ptid;
dfcd3bfb 1202
488f131b 1203 resume_ptid = RESUME_ALL; /* Default */
ef5cf84e 1204
cd76b0b7
VP
1205 /* If STEP is set, it's a request to use hardware stepping
1206 facilities. But in that case, we should never
1207 use singlestep breakpoint. */
1208 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1209
1210 if (singlestep_breakpoints_inserted_p
1211 && stepping_past_singlestep_breakpoint)
c906108c 1212 {
cd76b0b7
VP
1213 /* The situation here is as follows. In thread T1 we wanted to
1214 single-step. Lacking hardware single-stepping we've
1215 set breakpoint at the PC of the next instruction -- call it
1216 P. After resuming, we've hit that breakpoint in thread T2.
1217 Now we've removed original breakpoint, inserted breakpoint
1218 at P+1, and try to step to advance T2 past breakpoint.
1219 We need to step only T2, as if T1 is allowed to freely run,
1220 it can run past P, and if other threads are allowed to run,
1221 they can hit breakpoint at P+1, and nested hits of single-step
1222 breakpoints is not something we'd want -- that's complicated
1223 to support, and has no value. */
1224 resume_ptid = inferior_ptid;
1225 }
c906108c 1226
e842223a 1227 if ((step || singlestep_breakpoints_inserted_p)
4e1c45ea 1228 && tp->trap_expected)
cd76b0b7 1229 {
74960c60
VP
1230 /* We're allowing a thread to run past a breakpoint it has
1231 hit, by single-stepping the thread with the breakpoint
1232 removed. In which case, we need to single-step only this
1233 thread, and keep others stopped, as they can miss this
1234 breakpoint if allowed to run.
1235
1236 The current code actually removes all breakpoints when
1237 doing this, not just the one being stepped over, so if we
1238 let other threads run, we can actually miss any
1239 breakpoint, not just the one at PC. */
ef5cf84e 1240 resume_ptid = inferior_ptid;
c906108c 1241 }
ef5cf84e 1242
94cc34af
PA
1243 if (non_stop)
1244 {
1245 /* With non-stop mode on, threads are always handled
1246 individually. */
1247 resume_ptid = inferior_ptid;
1248 }
1249 else if ((scheduler_mode == schedlock_on)
1250 || (scheduler_mode == schedlock_step
1251 && (step || singlestep_breakpoints_inserted_p)))
c906108c 1252 {
ef5cf84e 1253 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 1254 resume_ptid = inferior_ptid;
c906108c 1255 }
ef5cf84e 1256
515630c5 1257 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1258 {
1259 /* Most targets can step a breakpoint instruction, thus
1260 executing it normally. But if this one cannot, just
1261 continue and we will hit it anyway. */
237fc4c9 1262 if (step && breakpoint_inserted_here_p (pc))
c4ed33b9
AC
1263 step = 0;
1264 }
237fc4c9
PA
1265
1266 if (debug_displaced
515630c5 1267 && use_displaced_stepping (gdbarch)
4e1c45ea 1268 && tp->trap_expected)
237fc4c9 1269 {
515630c5
UW
1270 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1271 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1272 gdb_byte buf[4];
1273
1274 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
1275 paddr_nz (actual_pc));
1276 read_memory (actual_pc, buf, sizeof (buf));
1277 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1278 }
1279
e58b0e63
PA
1280 /* Install inferior's terminal modes. */
1281 target_terminal_inferior ();
1282
2020b7ab
PA
1283 /* Avoid confusing the next resume, if the next stop/resume
1284 happens to apply to another thread. */
1285 tp->stop_signal = TARGET_SIGNAL_0;
607cecd2
PA
1286
1287 target_resume (resume_ptid, step, sig);
c906108c
SS
1288 }
1289
1290 discard_cleanups (old_cleanups);
1291}
1292\f
237fc4c9 1293/* Proceeding. */
c906108c
SS
1294
1295/* Clear out all variables saying what to do when inferior is continued.
1296 First do this, then set the ones you want, then call `proceed'. */
1297
a7212384
UW
1298static void
1299clear_proceed_status_thread (struct thread_info *tp)
c906108c 1300{
a7212384
UW
1301 if (debug_infrun)
1302 fprintf_unfiltered (gdb_stdlog,
1303 "infrun: clear_proceed_status_thread (%s)\n",
1304 target_pid_to_str (tp->ptid));
d6b48e9c 1305
a7212384
UW
1306 tp->trap_expected = 0;
1307 tp->step_range_start = 0;
1308 tp->step_range_end = 0;
1309 tp->step_frame_id = null_frame_id;
1310 tp->step_over_calls = STEP_OVER_UNDEBUGGABLE;
1311 tp->stop_requested = 0;
4e1c45ea 1312
a7212384 1313 tp->stop_step = 0;
32400beb 1314
a7212384 1315 tp->proceed_to_finish = 0;
414c69f7 1316
a7212384
UW
1317 /* Discard any remaining commands or status from previous stop. */
1318 bpstat_clear (&tp->stop_bpstat);
1319}
32400beb 1320
a7212384
UW
1321static int
1322clear_proceed_status_callback (struct thread_info *tp, void *data)
1323{
1324 if (is_exited (tp->ptid))
1325 return 0;
d6b48e9c 1326
a7212384
UW
1327 clear_proceed_status_thread (tp);
1328 return 0;
1329}
1330
1331void
1332clear_proceed_status (void)
1333{
1334 if (!ptid_equal (inferior_ptid, null_ptid))
1335 {
1336 struct inferior *inferior;
1337
1338 if (non_stop)
1339 {
1340 /* If in non-stop mode, only delete the per-thread status
1341 of the current thread. */
1342 clear_proceed_status_thread (inferior_thread ());
1343 }
1344 else
1345 {
1346 /* In all-stop mode, delete the per-thread status of
1347 *all* threads. */
1348 iterate_over_threads (clear_proceed_status_callback, NULL);
1349 }
1350
d6b48e9c
PA
1351 inferior = current_inferior ();
1352 inferior->stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
1353 }
1354
c906108c 1355 stop_after_trap = 0;
f3b1572e
PA
1356
1357 observer_notify_about_to_proceed ();
c906108c 1358
d5c31457
UW
1359 if (stop_registers)
1360 {
1361 regcache_xfree (stop_registers);
1362 stop_registers = NULL;
1363 }
c906108c
SS
1364}
1365
ea67f13b
DJ
1366/* This should be suitable for any targets that support threads. */
1367
1368static int
6a6b96b9 1369prepare_to_proceed (int step)
ea67f13b
DJ
1370{
1371 ptid_t wait_ptid;
1372 struct target_waitstatus wait_status;
1373
1374 /* Get the last target status returned by target_wait(). */
1375 get_last_target_status (&wait_ptid, &wait_status);
1376
6a6b96b9 1377 /* Make sure we were stopped at a breakpoint. */
ea67f13b 1378 if (wait_status.kind != TARGET_WAITKIND_STOPPED
6a6b96b9 1379 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
ea67f13b
DJ
1380 {
1381 return 0;
1382 }
1383
6a6b96b9 1384 /* Switched over from WAIT_PID. */
ea67f13b 1385 if (!ptid_equal (wait_ptid, minus_one_ptid)
515630c5 1386 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 1387 {
515630c5
UW
1388 struct regcache *regcache = get_thread_regcache (wait_ptid);
1389
1390 if (breakpoint_here_p (regcache_read_pc (regcache)))
ea67f13b 1391 {
515630c5
UW
1392 /* If stepping, remember current thread to switch back to. */
1393 if (step)
1394 deferred_step_ptid = inferior_ptid;
ea67f13b 1395
515630c5
UW
1396 /* Switch back to WAIT_PID thread. */
1397 switch_to_thread (wait_ptid);
6a6b96b9 1398
515630c5
UW
1399 /* We return 1 to indicate that there is a breakpoint here,
1400 so we need to step over it before continuing to avoid
1401 hitting it straight away. */
1402 return 1;
1403 }
ea67f13b
DJ
1404 }
1405
1406 return 0;
ea67f13b 1407}
e4846b08 1408
c906108c
SS
1409/* Basic routine for continuing the program in various fashions.
1410
1411 ADDR is the address to resume at, or -1 for resume where stopped.
1412 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 1413 or -1 for act according to how it stopped.
c906108c 1414 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
1415 -1 means return after that and print nothing.
1416 You should probably set various step_... variables
1417 before calling here, if you are stepping.
c906108c
SS
1418
1419 You should call clear_proceed_status before calling proceed. */
1420
1421void
96baa820 1422proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c 1423{
e58b0e63
PA
1424 struct regcache *regcache;
1425 struct gdbarch *gdbarch;
4e1c45ea 1426 struct thread_info *tp;
e58b0e63 1427 CORE_ADDR pc;
c906108c
SS
1428 int oneproc = 0;
1429
e58b0e63
PA
1430 /* If we're stopped at a fork/vfork, follow the branch set by the
1431 "set follow-fork-mode" command; otherwise, we'll just proceed
1432 resuming the current thread. */
1433 if (!follow_fork ())
1434 {
1435 /* The target for some reason decided not to resume. */
1436 normal_stop ();
1437 return;
1438 }
1439
1440 regcache = get_current_regcache ();
1441 gdbarch = get_regcache_arch (regcache);
1442 pc = regcache_read_pc (regcache);
1443
c906108c 1444 if (step > 0)
515630c5 1445 step_start_function = find_pc_function (pc);
c906108c
SS
1446 if (step < 0)
1447 stop_after_trap = 1;
1448
2acceee2 1449 if (addr == (CORE_ADDR) -1)
c906108c 1450 {
b2175913
MS
1451 if (pc == stop_pc && breakpoint_here_p (pc)
1452 && execution_direction != EXEC_REVERSE)
3352ef37
AC
1453 /* There is a breakpoint at the address we will resume at,
1454 step one instruction before inserting breakpoints so that
1455 we do not stop right away (and report a second hit at this
b2175913
MS
1456 breakpoint).
1457
1458 Note, we don't do this in reverse, because we won't
1459 actually be executing the breakpoint insn anyway.
1460 We'll be (un-)executing the previous instruction. */
1461
c906108c 1462 oneproc = 1;
515630c5
UW
1463 else if (gdbarch_single_step_through_delay_p (gdbarch)
1464 && gdbarch_single_step_through_delay (gdbarch,
1465 get_current_frame ()))
3352ef37
AC
1466 /* We stepped onto an instruction that needs to be stepped
1467 again before re-inserting the breakpoint, do so. */
c906108c
SS
1468 oneproc = 1;
1469 }
1470 else
1471 {
515630c5 1472 regcache_write_pc (regcache, addr);
c906108c
SS
1473 }
1474
527159b7 1475 if (debug_infrun)
8a9de0e4
AC
1476 fprintf_unfiltered (gdb_stdlog,
1477 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
1478 paddr_nz (addr), siggnal, step);
527159b7 1479
94cc34af
PA
1480 if (non_stop)
1481 /* In non-stop, each thread is handled individually. The context
1482 must already be set to the right thread here. */
1483 ;
1484 else
1485 {
1486 /* In a multi-threaded task we may select another thread and
1487 then continue or step.
c906108c 1488
94cc34af
PA
1489 But if the old thread was stopped at a breakpoint, it will
1490 immediately cause another breakpoint stop without any
1491 execution (i.e. it will report a breakpoint hit incorrectly).
1492 So we must step over it first.
c906108c 1493
94cc34af
PA
1494 prepare_to_proceed checks the current thread against the
1495 thread that reported the most recent event. If a step-over
1496 is required it returns TRUE and sets the current thread to
1497 the old thread. */
1498 if (prepare_to_proceed (step))
1499 oneproc = 1;
1500 }
c906108c 1501
4e1c45ea
PA
1502 /* prepare_to_proceed may change the current thread. */
1503 tp = inferior_thread ();
1504
c906108c 1505 if (oneproc)
74960c60 1506 {
4e1c45ea 1507 tp->trap_expected = 1;
237fc4c9
PA
1508 /* If displaced stepping is enabled, we can step over the
1509 breakpoint without hitting it, so leave all breakpoints
1510 inserted. Otherwise we need to disable all breakpoints, step
1511 one instruction, and then re-add them when that step is
1512 finished. */
515630c5 1513 if (!use_displaced_stepping (gdbarch))
237fc4c9 1514 remove_breakpoints ();
74960c60 1515 }
237fc4c9
PA
1516
1517 /* We can insert breakpoints if we're not trying to step over one,
1518 or if we are stepping over one but we're using displaced stepping
1519 to do so. */
4e1c45ea 1520 if (! tp->trap_expected || use_displaced_stepping (gdbarch))
c36b740a 1521 insert_breakpoints ();
c906108c 1522
2020b7ab
PA
1523 if (!non_stop)
1524 {
1525 /* Pass the last stop signal to the thread we're resuming,
1526 irrespective of whether the current thread is the thread that
1527 got the last event or not. This was historically GDB's
1528 behaviour before keeping a stop_signal per thread. */
1529
1530 struct thread_info *last_thread;
1531 ptid_t last_ptid;
1532 struct target_waitstatus last_status;
1533
1534 get_last_target_status (&last_ptid, &last_status);
1535 if (!ptid_equal (inferior_ptid, last_ptid)
1536 && !ptid_equal (last_ptid, null_ptid)
1537 && !ptid_equal (last_ptid, minus_one_ptid))
1538 {
e09875d4 1539 last_thread = find_thread_ptid (last_ptid);
2020b7ab
PA
1540 if (last_thread)
1541 {
1542 tp->stop_signal = last_thread->stop_signal;
1543 last_thread->stop_signal = TARGET_SIGNAL_0;
1544 }
1545 }
1546 }
1547
c906108c 1548 if (siggnal != TARGET_SIGNAL_DEFAULT)
2020b7ab 1549 tp->stop_signal = siggnal;
c906108c
SS
1550 /* If this signal should not be seen by program,
1551 give it zero. Used for debugging signals. */
2020b7ab
PA
1552 else if (!signal_program[tp->stop_signal])
1553 tp->stop_signal = TARGET_SIGNAL_0;
c906108c
SS
1554
1555 annotate_starting ();
1556
1557 /* Make sure that output from GDB appears before output from the
1558 inferior. */
1559 gdb_flush (gdb_stdout);
1560
e4846b08
JJ
1561 /* Refresh prev_pc value just prior to resuming. This used to be
1562 done in stop_stepping, however, setting prev_pc there did not handle
1563 scenarios such as inferior function calls or returning from
1564 a function via the return command. In those cases, the prev_pc
1565 value was not set properly for subsequent commands. The prev_pc value
1566 is used to initialize the starting line number in the ecs. With an
1567 invalid value, the gdb next command ends up stopping at the position
1568 represented by the next line table entry past our start position.
1569 On platforms that generate one line table entry per line, this
1570 is not a problem. However, on the ia64, the compiler generates
1571 extraneous line table entries that do not increase the line number.
1572 When we issue the gdb next command on the ia64 after an inferior call
1573 or a return command, we often end up a few instructions forward, still
1574 within the original line we started.
1575
1576 An attempt was made to have init_execution_control_state () refresh
1577 the prev_pc value before calculating the line number. This approach
1578 did not work because on platforms that use ptrace, the pc register
1579 cannot be read unless the inferior is stopped. At that point, we
515630c5 1580 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
e4846b08 1581 call can fail. Setting the prev_pc value here ensures the value is
8fb3e588 1582 updated correctly when the inferior is stopped. */
4e1c45ea 1583 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 1584
59f0d5d9 1585 /* Fill in with reasonable starting values. */
4e1c45ea 1586 init_thread_stepping_state (tp);
59f0d5d9 1587
59f0d5d9
PA
1588 /* Reset to normal state. */
1589 init_infwait_state ();
1590
c906108c 1591 /* Resume inferior. */
2020b7ab 1592 resume (oneproc || step || bpstat_should_step (), tp->stop_signal);
c906108c
SS
1593
1594 /* Wait for it to stop (if not standalone)
1595 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
1596 /* Do this only if we are not using the event loop, or if the target
1597 does not support asynchronous execution. */
362646f5 1598 if (!target_can_async_p ())
43ff13b4 1599 {
ae123ec6 1600 wait_for_inferior (0);
43ff13b4
JM
1601 normal_stop ();
1602 }
c906108c 1603}
c906108c
SS
1604\f
1605
1606/* Start remote-debugging of a machine over a serial link. */
96baa820 1607
c906108c 1608void
8621d6a9 1609start_remote (int from_tty)
c906108c 1610{
d6b48e9c 1611 struct inferior *inferior;
c906108c 1612 init_wait_for_inferior ();
d6b48e9c
PA
1613
1614 inferior = current_inferior ();
1615 inferior->stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 1616
6426a772
JM
1617 /* Always go on waiting for the target, regardless of the mode. */
1618 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 1619 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
1620 nothing is returned (instead of just blocking). Because of this,
1621 targets expecting an immediate response need to, internally, set
1622 things up so that the target_wait() is forced to eventually
1623 timeout. */
1624 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1625 differentiate to its caller what the state of the target is after
1626 the initial open has been performed. Here we're assuming that
1627 the target has stopped. It should be possible to eventually have
1628 target_open() return to the caller an indication that the target
1629 is currently running and GDB state should be set to the same as
1630 for an async run. */
ae123ec6 1631 wait_for_inferior (0);
8621d6a9
DJ
1632
1633 /* Now that the inferior has stopped, do any bookkeeping like
1634 loading shared libraries. We want to do this before normal_stop,
1635 so that the displayed frame is up to date. */
1636 post_create_inferior (&current_target, from_tty);
1637
6426a772 1638 normal_stop ();
c906108c
SS
1639}
1640
1641/* Initialize static vars when a new inferior begins. */
1642
1643void
96baa820 1644init_wait_for_inferior (void)
c906108c
SS
1645{
1646 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 1647
c906108c
SS
1648 breakpoint_init_inferior (inf_starting);
1649
c906108c 1650 clear_proceed_status ();
9f976b41
DJ
1651
1652 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 1653 deferred_step_ptid = null_ptid;
ca005067
DJ
1654
1655 target_last_wait_ptid = minus_one_ptid;
237fc4c9 1656
0d1e5fa7
PA
1657 previous_inferior_ptid = null_ptid;
1658 init_infwait_state ();
1659
237fc4c9 1660 displaced_step_clear ();
c906108c 1661}
237fc4c9 1662
c906108c 1663\f
b83266a0
SS
1664/* This enum encodes possible reasons for doing a target_wait, so that
1665 wfi can call target_wait in one place. (Ultimately the call will be
1666 moved out of the infinite loop entirely.) */
1667
c5aa993b
JM
1668enum infwait_states
1669{
cd0fc7c3
SS
1670 infwait_normal_state,
1671 infwait_thread_hop_state,
d983da9c 1672 infwait_step_watch_state,
cd0fc7c3 1673 infwait_nonstep_watch_state
b83266a0
SS
1674};
1675
11cf8741
JM
1676/* Why did the inferior stop? Used to print the appropriate messages
1677 to the interface from within handle_inferior_event(). */
1678enum inferior_stop_reason
1679{
11cf8741
JM
1680 /* Step, next, nexti, stepi finished. */
1681 END_STEPPING_RANGE,
11cf8741
JM
1682 /* Inferior terminated by signal. */
1683 SIGNAL_EXITED,
1684 /* Inferior exited. */
1685 EXITED,
1686 /* Inferior received signal, and user asked to be notified. */
b2175913
MS
1687 SIGNAL_RECEIVED,
1688 /* Reverse execution -- target ran out of history info. */
1689 NO_HISTORY
11cf8741
JM
1690};
1691
0d1e5fa7
PA
1692/* The PTID we'll do a target_wait on.*/
1693ptid_t waiton_ptid;
1694
1695/* Current inferior wait state. */
1696enum infwait_states infwait_state;
cd0fc7c3 1697
0d1e5fa7
PA
1698/* Data to be passed around while handling an event. This data is
1699 discarded between events. */
c5aa993b 1700struct execution_control_state
488f131b 1701{
0d1e5fa7 1702 ptid_t ptid;
4e1c45ea
PA
1703 /* The thread that got the event, if this was a thread event; NULL
1704 otherwise. */
1705 struct thread_info *event_thread;
1706
488f131b 1707 struct target_waitstatus ws;
488f131b
JB
1708 int random_signal;
1709 CORE_ADDR stop_func_start;
1710 CORE_ADDR stop_func_end;
1711 char *stop_func_name;
488f131b 1712 int new_thread_event;
488f131b
JB
1713 int wait_some_more;
1714};
1715
1716void init_execution_control_state (struct execution_control_state *ecs);
1717
1718void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 1719
b2175913
MS
1720static void handle_step_into_function (struct execution_control_state *ecs);
1721static void handle_step_into_function_backward (struct execution_control_state *ecs);
44cbf7b5 1722static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
14e60db5 1723static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
44cbf7b5
AC
1724static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
1725 struct frame_id sr_id);
611c83ae
PA
1726static void insert_longjmp_resume_breakpoint (CORE_ADDR);
1727
104c1213
JM
1728static void stop_stepping (struct execution_control_state *ecs);
1729static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 1730static void keep_going (struct execution_control_state *ecs);
488f131b
JB
1731static void print_stop_reason (enum inferior_stop_reason stop_reason,
1732 int stop_info);
104c1213 1733
252fbfc8
PA
1734/* Callback for iterate over threads. If the thread is stopped, but
1735 the user/frontend doesn't know about that yet, go through
1736 normal_stop, as if the thread had just stopped now. ARG points at
1737 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
1738 ptid_is_pid(PTID) is true, applies to all threads of the process
1739 pointed at by PTID. Otherwise, apply only to the thread pointed by
1740 PTID. */
1741
1742static int
1743infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
1744{
1745 ptid_t ptid = * (ptid_t *) arg;
1746
1747 if ((ptid_equal (info->ptid, ptid)
1748 || ptid_equal (minus_one_ptid, ptid)
1749 || (ptid_is_pid (ptid)
1750 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
1751 && is_running (info->ptid)
1752 && !is_executing (info->ptid))
1753 {
1754 struct cleanup *old_chain;
1755 struct execution_control_state ecss;
1756 struct execution_control_state *ecs = &ecss;
1757
1758 memset (ecs, 0, sizeof (*ecs));
1759
1760 old_chain = make_cleanup_restore_current_thread ();
1761
1762 switch_to_thread (info->ptid);
1763
1764 /* Go through handle_inferior_event/normal_stop, so we always
1765 have consistent output as if the stop event had been
1766 reported. */
1767 ecs->ptid = info->ptid;
e09875d4 1768 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8
PA
1769 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1770 ecs->ws.value.sig = TARGET_SIGNAL_0;
1771
1772 handle_inferior_event (ecs);
1773
1774 if (!ecs->wait_some_more)
1775 {
1776 struct thread_info *tp;
1777
1778 normal_stop ();
1779
1780 /* Finish off the continuations. The continations
1781 themselves are responsible for realising the thread
1782 didn't finish what it was supposed to do. */
1783 tp = inferior_thread ();
1784 do_all_intermediate_continuations_thread (tp);
1785 do_all_continuations_thread (tp);
1786 }
1787
1788 do_cleanups (old_chain);
1789 }
1790
1791 return 0;
1792}
1793
1794/* This function is attached as a "thread_stop_requested" observer.
1795 Cleanup local state that assumed the PTID was to be resumed, and
1796 report the stop to the frontend. */
1797
2c0b251b 1798static void
252fbfc8
PA
1799infrun_thread_stop_requested (ptid_t ptid)
1800{
1801 struct displaced_step_request *it, *next, *prev = NULL;
1802
1803 /* PTID was requested to stop. Remove it from the displaced
1804 stepping queue, so we don't try to resume it automatically. */
1805 for (it = displaced_step_request_queue; it; it = next)
1806 {
1807 next = it->next;
1808
1809 if (ptid_equal (it->ptid, ptid)
1810 || ptid_equal (minus_one_ptid, ptid)
1811 || (ptid_is_pid (ptid)
1812 && ptid_get_pid (ptid) == ptid_get_pid (it->ptid)))
1813 {
1814 if (displaced_step_request_queue == it)
1815 displaced_step_request_queue = it->next;
1816 else
1817 prev->next = it->next;
1818
1819 xfree (it);
1820 }
1821 else
1822 prev = it;
1823 }
1824
1825 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
1826}
1827
a07daef3
PA
1828static void
1829infrun_thread_thread_exit (struct thread_info *tp, int silent)
1830{
1831 if (ptid_equal (target_last_wait_ptid, tp->ptid))
1832 nullify_last_target_wait_ptid ();
1833}
1834
4e1c45ea
PA
1835/* Callback for iterate_over_threads. */
1836
1837static int
1838delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
1839{
1840 if (is_exited (info->ptid))
1841 return 0;
1842
1843 delete_step_resume_breakpoint (info);
1844 return 0;
1845}
1846
1847/* In all-stop, delete the step resume breakpoint of any thread that
1848 had one. In non-stop, delete the step resume breakpoint of the
1849 thread that just stopped. */
1850
1851static void
1852delete_step_thread_step_resume_breakpoint (void)
1853{
1854 if (!target_has_execution
1855 || ptid_equal (inferior_ptid, null_ptid))
1856 /* If the inferior has exited, we have already deleted the step
1857 resume breakpoints out of GDB's lists. */
1858 return;
1859
1860 if (non_stop)
1861 {
1862 /* If in non-stop mode, only delete the step-resume or
1863 longjmp-resume breakpoint of the thread that just stopped
1864 stepping. */
1865 struct thread_info *tp = inferior_thread ();
1866 delete_step_resume_breakpoint (tp);
1867 }
1868 else
1869 /* In all-stop mode, delete all step-resume and longjmp-resume
1870 breakpoints of any thread that had them. */
1871 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
1872}
1873
1874/* A cleanup wrapper. */
1875
1876static void
1877delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
1878{
1879 delete_step_thread_step_resume_breakpoint ();
1880}
1881
223698f8
DE
1882/* Pretty print the results of target_wait, for debugging purposes. */
1883
1884static void
1885print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
1886 const struct target_waitstatus *ws)
1887{
1888 char *status_string = target_waitstatus_to_string (ws);
1889 struct ui_file *tmp_stream = mem_fileopen ();
1890 char *text;
1891 long len;
1892
1893 /* The text is split over several lines because it was getting too long.
1894 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
1895 output as a unit; we want only one timestamp printed if debug_timestamp
1896 is set. */
1897
1898 fprintf_unfiltered (tmp_stream,
1899 "infrun: target_wait (%d", PIDGET (waiton_ptid));
1900 if (PIDGET (waiton_ptid) != -1)
1901 fprintf_unfiltered (tmp_stream,
1902 " [%s]", target_pid_to_str (waiton_ptid));
1903 fprintf_unfiltered (tmp_stream, ", status) =\n");
1904 fprintf_unfiltered (tmp_stream,
1905 "infrun: %d [%s],\n",
1906 PIDGET (result_ptid), target_pid_to_str (result_ptid));
1907 fprintf_unfiltered (tmp_stream,
1908 "infrun: %s\n",
1909 status_string);
1910
1911 text = ui_file_xstrdup (tmp_stream, &len);
1912
1913 /* This uses %s in part to handle %'s in the text, but also to avoid
1914 a gcc error: the format attribute requires a string literal. */
1915 fprintf_unfiltered (gdb_stdlog, "%s", text);
1916
1917 xfree (status_string);
1918 xfree (text);
1919 ui_file_delete (tmp_stream);
1920}
1921
cd0fc7c3 1922/* Wait for control to return from inferior to debugger.
ae123ec6
JB
1923
1924 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1925 as if they were SIGTRAP signals. This can be useful during
1926 the startup sequence on some targets such as HP/UX, where
1927 we receive an EXEC event instead of the expected SIGTRAP.
1928
cd0fc7c3
SS
1929 If inferior gets a signal, we may decide to start it up again
1930 instead of returning. That is why there is a loop in this function.
1931 When this function actually returns it means the inferior
1932 should be left stopped and GDB should read more commands. */
1933
1934void
ae123ec6 1935wait_for_inferior (int treat_exec_as_sigtrap)
cd0fc7c3
SS
1936{
1937 struct cleanup *old_cleanups;
0d1e5fa7 1938 struct execution_control_state ecss;
cd0fc7c3 1939 struct execution_control_state *ecs;
c906108c 1940
527159b7 1941 if (debug_infrun)
ae123ec6
JB
1942 fprintf_unfiltered
1943 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1944 treat_exec_as_sigtrap);
527159b7 1945
4e1c45ea
PA
1946 old_cleanups =
1947 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 1948
cd0fc7c3 1949 ecs = &ecss;
0d1e5fa7
PA
1950 memset (ecs, 0, sizeof (*ecs));
1951
cd0fc7c3
SS
1952 overlay_cache_invalid = 1;
1953
e0bb1c1c
PA
1954 /* We'll update this if & when we switch to a new thread. */
1955 previous_inferior_ptid = inferior_ptid;
1956
cd0fc7c3
SS
1957 /* We have to invalidate the registers BEFORE calling target_wait
1958 because they can be loaded from the target while in target_wait.
1959 This makes remote debugging a bit more efficient for those
1960 targets that provide critical registers as part of their normal
1961 status mechanism. */
1962
1963 registers_changed ();
b83266a0 1964
c906108c
SS
1965 while (1)
1966 {
29f49a6a
PA
1967 struct cleanup *old_chain;
1968
9a4105ab 1969 if (deprecated_target_wait_hook)
47608cb1 1970 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 1971 else
47608cb1 1972 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 1973
f00150c9 1974 if (debug_infrun)
223698f8 1975 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 1976
ae123ec6
JB
1977 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
1978 {
1979 xfree (ecs->ws.value.execd_pathname);
1980 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1981 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
1982 }
1983
29f49a6a
PA
1984 /* If an error happens while handling the event, propagate GDB's
1985 knowledge of the executing state to the frontend/user running
1986 state. */
1987 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
1988
cd0fc7c3
SS
1989 /* Now figure out what to do with the result of the result. */
1990 handle_inferior_event (ecs);
c906108c 1991
29f49a6a
PA
1992 /* No error, don't finish the state yet. */
1993 discard_cleanups (old_chain);
1994
cd0fc7c3
SS
1995 if (!ecs->wait_some_more)
1996 break;
1997 }
4e1c45ea 1998
cd0fc7c3
SS
1999 do_cleanups (old_cleanups);
2000}
c906108c 2001
43ff13b4
JM
2002/* Asynchronous version of wait_for_inferior. It is called by the
2003 event loop whenever a change of state is detected on the file
2004 descriptor corresponding to the target. It can be called more than
2005 once to complete a single execution command. In such cases we need
a474d7c2
PA
2006 to keep the state in a global variable ECSS. If it is the last time
2007 that this function is called for a single execution command, then
2008 report to the user that the inferior has stopped, and do the
2009 necessary cleanups. */
43ff13b4
JM
2010
2011void
fba45db2 2012fetch_inferior_event (void *client_data)
43ff13b4 2013{
0d1e5fa7 2014 struct execution_control_state ecss;
a474d7c2 2015 struct execution_control_state *ecs = &ecss;
4f8d22e3 2016 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2017 struct cleanup *ts_old_chain;
4f8d22e3 2018 int was_sync = sync_execution;
43ff13b4 2019
0d1e5fa7
PA
2020 memset (ecs, 0, sizeof (*ecs));
2021
59f0d5d9 2022 overlay_cache_invalid = 1;
43ff13b4 2023
e0bb1c1c
PA
2024 /* We can only rely on wait_for_more being correct before handling
2025 the event in all-stop, but previous_inferior_ptid isn't used in
2026 non-stop. */
2027 if (!ecs->wait_some_more)
2028 /* We'll update this if & when we switch to a new thread. */
2029 previous_inferior_ptid = inferior_ptid;
2030
4f8d22e3
PA
2031 if (non_stop)
2032 /* In non-stop mode, the user/frontend should not notice a thread
2033 switch due to internal events. Make sure we reverse to the
2034 user selected thread and frame after handling the event and
2035 running any breakpoint commands. */
2036 make_cleanup_restore_current_thread ();
2037
59f0d5d9
PA
2038 /* We have to invalidate the registers BEFORE calling target_wait
2039 because they can be loaded from the target while in target_wait.
2040 This makes remote debugging a bit more efficient for those
2041 targets that provide critical registers as part of their normal
2042 status mechanism. */
43ff13b4 2043
59f0d5d9 2044 registers_changed ();
43ff13b4 2045
9a4105ab 2046 if (deprecated_target_wait_hook)
a474d7c2 2047 ecs->ptid =
47608cb1 2048 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2049 else
47608cb1 2050 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2051
f00150c9 2052 if (debug_infrun)
223698f8 2053 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2054
94cc34af
PA
2055 if (non_stop
2056 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2057 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2058 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2059 /* In non-stop mode, each thread is handled individually. Switch
2060 early, so the global state is set correctly for this
2061 thread. */
2062 context_switch (ecs->ptid);
2063
29f49a6a
PA
2064 /* If an error happens while handling the event, propagate GDB's
2065 knowledge of the executing state to the frontend/user running
2066 state. */
2067 if (!non_stop)
2068 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2069 else
2070 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2071
43ff13b4 2072 /* Now figure out what to do with the result of the result. */
a474d7c2 2073 handle_inferior_event (ecs);
43ff13b4 2074
a474d7c2 2075 if (!ecs->wait_some_more)
43ff13b4 2076 {
d6b48e9c
PA
2077 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2078
4e1c45ea 2079 delete_step_thread_step_resume_breakpoint ();
f107f563 2080
d6b48e9c
PA
2081 /* We may not find an inferior if this was a process exit. */
2082 if (inf == NULL || inf->stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2083 normal_stop ();
2084
af679fd0
PA
2085 if (target_has_execution
2086 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2087 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2088 && ecs->event_thread->step_multi
414c69f7 2089 && ecs->event_thread->stop_step)
c2d11a7d
JM
2090 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2091 else
2092 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4 2093 }
4f8d22e3 2094
29f49a6a
PA
2095 /* No error, don't finish the thread states yet. */
2096 discard_cleanups (ts_old_chain);
2097
4f8d22e3
PA
2098 /* Revert thread and frame. */
2099 do_cleanups (old_chain);
2100
2101 /* If the inferior was in sync execution mode, and now isn't,
2102 restore the prompt. */
2103 if (was_sync && !sync_execution)
2104 display_gdb_prompt (0);
43ff13b4
JM
2105}
2106
cd0fc7c3
SS
2107/* Prepare an execution control state for looping through a
2108 wait_for_inferior-type loop. */
2109
2110void
96baa820 2111init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3
SS
2112{
2113 ecs->random_signal = 0;
0d1e5fa7
PA
2114}
2115
2116/* Clear context switchable stepping state. */
2117
2118void
4e1c45ea 2119init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 2120{
2afb61aa
PA
2121 struct symtab_and_line sal;
2122
0d1e5fa7
PA
2123 tss->stepping_over_breakpoint = 0;
2124 tss->step_after_step_resume_breakpoint = 0;
2125 tss->stepping_through_solib_after_catch = 0;
2126 tss->stepping_through_solib_catchpoints = NULL;
2afb61aa 2127
4e1c45ea 2128 sal = find_pc_line (tss->prev_pc, 0);
2afb61aa
PA
2129 tss->current_line = sal.line;
2130 tss->current_symtab = sal.symtab;
cd0fc7c3
SS
2131}
2132
e02bc4cc 2133/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2134 target_wait()/deprecated_target_wait_hook(). The data is actually
2135 cached by handle_inferior_event(), which gets called immediately
2136 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2137
2138void
488f131b 2139get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2140{
39f77062 2141 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2142 *status = target_last_waitstatus;
2143}
2144
ac264b3b
MS
2145void
2146nullify_last_target_wait_ptid (void)
2147{
2148 target_last_wait_ptid = minus_one_ptid;
2149}
2150
dcf4fbde 2151/* Switch thread contexts. */
dd80620e
MS
2152
2153static void
0d1e5fa7 2154context_switch (ptid_t ptid)
dd80620e 2155{
fd48f117
DJ
2156 if (debug_infrun)
2157 {
2158 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2159 target_pid_to_str (inferior_ptid));
2160 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2161 target_pid_to_str (ptid));
fd48f117
DJ
2162 }
2163
0d1e5fa7 2164 switch_to_thread (ptid);
dd80620e
MS
2165}
2166
4fa8626c
DJ
2167static void
2168adjust_pc_after_break (struct execution_control_state *ecs)
2169{
24a73cce
UW
2170 struct regcache *regcache;
2171 struct gdbarch *gdbarch;
8aad930b 2172 CORE_ADDR breakpoint_pc;
4fa8626c 2173
4fa8626c
DJ
2174 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2175 we aren't, just return.
9709f61c
DJ
2176
2177 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2178 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2179 implemented by software breakpoints should be handled through the normal
2180 breakpoint layer.
8fb3e588 2181
4fa8626c
DJ
2182 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2183 different signals (SIGILL or SIGEMT for instance), but it is less
2184 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2185 gdbarch_decr_pc_after_break. I don't know any specific target that
2186 generates these signals at breakpoints (the code has been in GDB since at
2187 least 1992) so I can not guess how to handle them here.
8fb3e588 2188
e6cf7916
UW
2189 In earlier versions of GDB, a target with
2190 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2191 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2192 target with both of these set in GDB history, and it seems unlikely to be
2193 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2194
2195 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2196 return;
2197
2198 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2199 return;
2200
4058b839
PA
2201 /* In reverse execution, when a breakpoint is hit, the instruction
2202 under it has already been de-executed. The reported PC always
2203 points at the breakpoint address, so adjusting it further would
2204 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2205 architecture:
2206
2207 B1 0x08000000 : INSN1
2208 B2 0x08000001 : INSN2
2209 0x08000002 : INSN3
2210 PC -> 0x08000003 : INSN4
2211
2212 Say you're stopped at 0x08000003 as above. Reverse continuing
2213 from that point should hit B2 as below. Reading the PC when the
2214 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2215 been de-executed already.
2216
2217 B1 0x08000000 : INSN1
2218 B2 PC -> 0x08000001 : INSN2
2219 0x08000002 : INSN3
2220 0x08000003 : INSN4
2221
2222 We can't apply the same logic as for forward execution, because
2223 we would wrongly adjust the PC to 0x08000000, since there's a
2224 breakpoint at PC - 1. We'd then report a hit on B1, although
2225 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2226 behaviour. */
2227 if (execution_direction == EXEC_REVERSE)
2228 return;
2229
24a73cce
UW
2230 /* If this target does not decrement the PC after breakpoints, then
2231 we have nothing to do. */
2232 regcache = get_thread_regcache (ecs->ptid);
2233 gdbarch = get_regcache_arch (regcache);
2234 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2235 return;
2236
8aad930b
AC
2237 /* Find the location where (if we've hit a breakpoint) the
2238 breakpoint would be. */
515630c5
UW
2239 breakpoint_pc = regcache_read_pc (regcache)
2240 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 2241
1c5cfe86
PA
2242 /* Check whether there actually is a software breakpoint inserted at
2243 that location.
2244
2245 If in non-stop mode, a race condition is possible where we've
2246 removed a breakpoint, but stop events for that breakpoint were
2247 already queued and arrive later. To suppress those spurious
2248 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2249 and retire them after a number of stop events are reported. */
2250 if (software_breakpoint_inserted_here_p (breakpoint_pc)
2251 || (non_stop && moribund_breakpoint_here_p (breakpoint_pc)))
8aad930b 2252 {
96429cc8
HZ
2253 struct cleanup *old_cleanups = NULL;
2254 if (RECORD_IS_USED)
2255 old_cleanups = record_gdb_operation_disable_set ();
2256
1c0fdd0e
UW
2257 /* When using hardware single-step, a SIGTRAP is reported for both
2258 a completed single-step and a software breakpoint. Need to
2259 differentiate between the two, as the latter needs adjusting
2260 but the former does not.
2261
2262 The SIGTRAP can be due to a completed hardware single-step only if
2263 - we didn't insert software single-step breakpoints
2264 - the thread to be examined is still the current thread
2265 - this thread is currently being stepped
2266
2267 If any of these events did not occur, we must have stopped due
2268 to hitting a software breakpoint, and have to back up to the
2269 breakpoint address.
2270
2271 As a special case, we could have hardware single-stepped a
2272 software breakpoint. In this case (prev_pc == breakpoint_pc),
2273 we also need to back up to the breakpoint address. */
2274
2275 if (singlestep_breakpoints_inserted_p
2276 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
2277 || !currently_stepping (ecs->event_thread)
2278 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 2279 regcache_write_pc (regcache, breakpoint_pc);
96429cc8
HZ
2280
2281 if (RECORD_IS_USED)
2282 do_cleanups (old_cleanups);
8aad930b 2283 }
4fa8626c
DJ
2284}
2285
0d1e5fa7
PA
2286void
2287init_infwait_state (void)
2288{
2289 waiton_ptid = pid_to_ptid (-1);
2290 infwait_state = infwait_normal_state;
2291}
2292
94cc34af
PA
2293void
2294error_is_running (void)
2295{
2296 error (_("\
2297Cannot execute this command while the selected thread is running."));
2298}
2299
2300void
2301ensure_not_running (void)
2302{
2303 if (is_running (inferior_ptid))
2304 error_is_running ();
2305}
2306
cd0fc7c3
SS
2307/* Given an execution control state that has been freshly filled in
2308 by an event from the inferior, figure out what it means and take
2309 appropriate action. */
c906108c 2310
cd0fc7c3 2311void
96baa820 2312handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 2313{
c8edd8b4 2314 int sw_single_step_trap_p = 0;
d983da9c
DJ
2315 int stopped_by_watchpoint;
2316 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 2317 struct symtab_and_line stop_pc_sal;
d6b48e9c
PA
2318 enum stop_kind stop_soon;
2319
2320 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2321 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2322 && ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2323 {
2324 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2325 gdb_assert (inf);
2326 stop_soon = inf->stop_soon;
2327 }
2328 else
2329 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 2330
e02bc4cc 2331 /* Cache the last pid/waitstatus. */
39f77062 2332 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 2333 target_last_waitstatus = ecs->ws;
e02bc4cc 2334
ca005067
DJ
2335 /* Always clear state belonging to the previous time we stopped. */
2336 stop_stack_dummy = 0;
2337
8c90c137
LM
2338 /* If it's a new process, add it to the thread database */
2339
2340 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
2341 && !ptid_equal (ecs->ptid, minus_one_ptid)
2342 && !in_thread_list (ecs->ptid));
2343
2344 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2345 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
2346 add_thread (ecs->ptid);
2347
e09875d4 2348 ecs->event_thread = find_thread_ptid (ecs->ptid);
88ed393a
JK
2349
2350 /* Dependent on valid ECS->EVENT_THREAD. */
2351 adjust_pc_after_break (ecs);
2352
2353 /* Dependent on the current PC value modified by adjust_pc_after_break. */
2354 reinit_frame_cache ();
2355
8c90c137
LM
2356 if (ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2357 {
1c5cfe86
PA
2358 breakpoint_retire_moribund ();
2359
48844aa6
PA
2360 /* Mark the non-executing threads accordingly. In all-stop, all
2361 threads of all processes are stopped when we get any event
2362 reported. In non-stop mode, only the event thread stops. If
2363 we're handling a process exit in non-stop mode, there's
2364 nothing to do, as threads of the dead process are gone, and
2365 threads of any other process were left running. */
2366 if (!non_stop)
2367 set_executing (minus_one_ptid, 0);
2368 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2369 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
2370 set_executing (inferior_ptid, 0);
8c90c137
LM
2371 }
2372
0d1e5fa7 2373 switch (infwait_state)
488f131b
JB
2374 {
2375 case infwait_thread_hop_state:
527159b7 2376 if (debug_infrun)
8a9de0e4 2377 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
488f131b 2378 /* Cancel the waiton_ptid. */
0d1e5fa7 2379 waiton_ptid = pid_to_ptid (-1);
65e82032 2380 break;
b83266a0 2381
488f131b 2382 case infwait_normal_state:
527159b7 2383 if (debug_infrun)
8a9de0e4 2384 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
2385 break;
2386
2387 case infwait_step_watch_state:
2388 if (debug_infrun)
2389 fprintf_unfiltered (gdb_stdlog,
2390 "infrun: infwait_step_watch_state\n");
2391
2392 stepped_after_stopped_by_watchpoint = 1;
488f131b 2393 break;
b83266a0 2394
488f131b 2395 case infwait_nonstep_watch_state:
527159b7 2396 if (debug_infrun)
8a9de0e4
AC
2397 fprintf_unfiltered (gdb_stdlog,
2398 "infrun: infwait_nonstep_watch_state\n");
488f131b 2399 insert_breakpoints ();
c906108c 2400
488f131b
JB
2401 /* FIXME-maybe: is this cleaner than setting a flag? Does it
2402 handle things like signals arriving and other things happening
2403 in combination correctly? */
2404 stepped_after_stopped_by_watchpoint = 1;
2405 break;
65e82032
AC
2406
2407 default:
e2e0b3e5 2408 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 2409 }
0d1e5fa7 2410 infwait_state = infwait_normal_state;
c906108c 2411
488f131b
JB
2412 switch (ecs->ws.kind)
2413 {
2414 case TARGET_WAITKIND_LOADED:
527159b7 2415 if (debug_infrun)
8a9de0e4 2416 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
2417 /* Ignore gracefully during startup of the inferior, as it might
2418 be the shell which has just loaded some objects, otherwise
2419 add the symbols for the newly loaded objects. Also ignore at
2420 the beginning of an attach or remote session; we will query
2421 the full list of libraries once the connection is
2422 established. */
c0236d92 2423 if (stop_soon == NO_STOP_QUIETLY)
488f131b 2424 {
488f131b
JB
2425 /* Check for any newly added shared libraries if we're
2426 supposed to be adding them automatically. Switch
2427 terminal for any messages produced by
2428 breakpoint_re_set. */
2429 target_terminal_ours_for_output ();
aff6338a 2430 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
2431 stack's section table is kept up-to-date. Architectures,
2432 (e.g., PPC64), use the section table to perform
2433 operations such as address => section name and hence
2434 require the table to contain all sections (including
2435 those found in shared libraries). */
aff6338a 2436 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
2437 exec_ops to SOLIB_ADD. This is because current GDB is
2438 only tooled to propagate section_table changes out from
2439 the "current_target" (see target_resize_to_sections), and
2440 not up from the exec stratum. This, of course, isn't
2441 right. "infrun.c" should only interact with the
2442 exec/process stratum, instead relying on the target stack
2443 to propagate relevant changes (stop, section table
2444 changed, ...) up to other layers. */
b0f4b84b 2445#ifdef SOLIB_ADD
aff6338a 2446 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
b0f4b84b
DJ
2447#else
2448 solib_add (NULL, 0, &current_target, auto_solib_add);
2449#endif
488f131b
JB
2450 target_terminal_inferior ();
2451
b0f4b84b
DJ
2452 /* If requested, stop when the dynamic linker notifies
2453 gdb of events. This allows the user to get control
2454 and place breakpoints in initializer routines for
2455 dynamically loaded objects (among other things). */
2456 if (stop_on_solib_events)
2457 {
2458 stop_stepping (ecs);
2459 return;
2460 }
2461
2462 /* NOTE drow/2007-05-11: This might be a good place to check
2463 for "catch load". */
488f131b 2464 }
b0f4b84b
DJ
2465
2466 /* If we are skipping through a shell, or through shared library
2467 loading that we aren't interested in, resume the program. If
2468 we're running the program normally, also resume. But stop if
2469 we're attaching or setting up a remote connection. */
2470 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
2471 {
74960c60
VP
2472 /* Loading of shared libraries might have changed breakpoint
2473 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
2474 if (stop_soon == NO_STOP_QUIETLY
2475 && !breakpoints_always_inserted_mode ())
74960c60 2476 insert_breakpoints ();
b0f4b84b
DJ
2477 resume (0, TARGET_SIGNAL_0);
2478 prepare_to_wait (ecs);
2479 return;
2480 }
2481
2482 break;
c5aa993b 2483
488f131b 2484 case TARGET_WAITKIND_SPURIOUS:
527159b7 2485 if (debug_infrun)
8a9de0e4 2486 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
2487 resume (0, TARGET_SIGNAL_0);
2488 prepare_to_wait (ecs);
2489 return;
c5aa993b 2490
488f131b 2491 case TARGET_WAITKIND_EXITED:
527159b7 2492 if (debug_infrun)
8a9de0e4 2493 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
fb66883a 2494 inferior_ptid = ecs->ptid;
488f131b
JB
2495 target_terminal_ours (); /* Must do this before mourn anyway */
2496 print_stop_reason (EXITED, ecs->ws.value.integer);
2497
2498 /* Record the exit code in the convenience variable $_exitcode, so
2499 that the user can inspect this again later. */
2500 set_internalvar (lookup_internalvar ("_exitcode"),
8b9b9e1a 2501 value_from_longest (builtin_type_int32,
488f131b
JB
2502 (LONGEST) ecs->ws.value.integer));
2503 gdb_flush (gdb_stdout);
2504 target_mourn_inferior ();
1c0fdd0e 2505 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
2506 stop_print_frame = 0;
2507 stop_stepping (ecs);
2508 return;
c5aa993b 2509
488f131b 2510 case TARGET_WAITKIND_SIGNALLED:
527159b7 2511 if (debug_infrun)
8a9de0e4 2512 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
fb66883a 2513 inferior_ptid = ecs->ptid;
488f131b 2514 stop_print_frame = 0;
488f131b 2515 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 2516
488f131b
JB
2517 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
2518 reach here unless the inferior is dead. However, for years
2519 target_kill() was called here, which hints that fatal signals aren't
2520 really fatal on some systems. If that's true, then some changes
2521 may be needed. */
2522 target_mourn_inferior ();
c906108c 2523
2020b7ab 2524 print_stop_reason (SIGNAL_EXITED, ecs->ws.value.sig);
1c0fdd0e 2525 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
2526 stop_stepping (ecs);
2527 return;
c906108c 2528
488f131b
JB
2529 /* The following are the only cases in which we keep going;
2530 the above cases end in a continue or goto. */
2531 case TARGET_WAITKIND_FORKED:
deb3b17b 2532 case TARGET_WAITKIND_VFORKED:
527159b7 2533 if (debug_infrun)
8a9de0e4 2534 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
c906108c 2535
5a2901d9
DJ
2536 if (!ptid_equal (ecs->ptid, inferior_ptid))
2537 {
0d1e5fa7 2538 context_switch (ecs->ptid);
35f196d9 2539 reinit_frame_cache ();
5a2901d9
DJ
2540 }
2541
b242c3c2
PA
2542 /* Immediately detach breakpoints from the child before there's
2543 any chance of letting the user delete breakpoints from the
2544 breakpoint lists. If we don't do this early, it's easy to
2545 leave left over traps in the child, vis: "break foo; catch
2546 fork; c; <fork>; del; c; <child calls foo>". We only follow
2547 the fork on the last `continue', and by that time the
2548 breakpoint at "foo" is long gone from the breakpoint table.
2549 If we vforked, then we don't need to unpatch here, since both
2550 parent and child are sharing the same memory pages; we'll
2551 need to unpatch at follow/detach time instead to be certain
2552 that new breakpoints added between catchpoint hit time and
2553 vfork follow are detached. */
2554 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
2555 {
2556 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
2557
2558 /* This won't actually modify the breakpoint list, but will
2559 physically remove the breakpoints from the child. */
2560 detach_breakpoints (child_pid);
2561 }
2562
e58b0e63
PA
2563 /* In case the event is caught by a catchpoint, remember that
2564 the event is to be followed at the next resume of the thread,
2565 and not immediately. */
2566 ecs->event_thread->pending_follow = ecs->ws;
2567
fb14de7b 2568 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 2569
347bddb7 2570 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
675bf4cb 2571
347bddb7 2572 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
04e68871
DJ
2573
2574 /* If no catchpoint triggered for this, then keep going. */
2575 if (ecs->random_signal)
2576 {
e58b0e63
PA
2577 int should_resume;
2578
2020b7ab 2579 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
e58b0e63
PA
2580
2581 should_resume = follow_fork ();
2582
2583 ecs->event_thread = inferior_thread ();
2584 ecs->ptid = inferior_ptid;
2585
2586 if (should_resume)
2587 keep_going (ecs);
2588 else
2589 stop_stepping (ecs);
04e68871
DJ
2590 return;
2591 }
2020b7ab 2592 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
2593 goto process_event_stop_test;
2594
2595 case TARGET_WAITKIND_EXECD:
527159b7 2596 if (debug_infrun)
fc5261f2 2597 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 2598
5a2901d9
DJ
2599 if (!ptid_equal (ecs->ptid, inferior_ptid))
2600 {
0d1e5fa7 2601 context_switch (ecs->ptid);
35f196d9 2602 reinit_frame_cache ();
5a2901d9
DJ
2603 }
2604
fb14de7b 2605 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f
PA
2606
2607 /* This causes the eventpoints and symbol table to be reset.
2608 Must do this now, before trying to determine whether to
2609 stop. */
71b43ef8 2610 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f
PA
2611
2612 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2613 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2614
71b43ef8
PA
2615 /* Note that this may be referenced from inside
2616 bpstat_stop_status above, through inferior_has_execd. */
2617 xfree (ecs->ws.value.execd_pathname);
2618 ecs->ws.value.execd_pathname = NULL;
2619
04e68871
DJ
2620 /* If no catchpoint triggered for this, then keep going. */
2621 if (ecs->random_signal)
2622 {
2020b7ab 2623 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
04e68871
DJ
2624 keep_going (ecs);
2625 return;
2626 }
2020b7ab 2627 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
2628 goto process_event_stop_test;
2629
b4dc5ffa
MK
2630 /* Be careful not to try to gather much state about a thread
2631 that's in a syscall. It's frequently a losing proposition. */
488f131b 2632 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 2633 if (debug_infrun)
8a9de0e4 2634 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
488f131b
JB
2635 resume (0, TARGET_SIGNAL_0);
2636 prepare_to_wait (ecs);
2637 return;
c906108c 2638
488f131b
JB
2639 /* Before examining the threads further, step this thread to
2640 get it entirely out of the syscall. (We get notice of the
2641 event when the thread is just on the verge of exiting a
2642 syscall. Stepping one instruction seems to get it back
b4dc5ffa 2643 into user code.) */
488f131b 2644 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 2645 if (debug_infrun)
8a9de0e4 2646 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
488f131b 2647 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
488f131b
JB
2648 prepare_to_wait (ecs);
2649 return;
c906108c 2650
488f131b 2651 case TARGET_WAITKIND_STOPPED:
527159b7 2652 if (debug_infrun)
8a9de0e4 2653 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
2020b7ab 2654 ecs->event_thread->stop_signal = ecs->ws.value.sig;
488f131b 2655 break;
c906108c 2656
b2175913
MS
2657 case TARGET_WAITKIND_NO_HISTORY:
2658 /* Reverse execution: target ran out of history info. */
fb14de7b 2659 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
b2175913
MS
2660 print_stop_reason (NO_HISTORY, 0);
2661 stop_stepping (ecs);
2662 return;
2663
488f131b
JB
2664 /* We had an event in the inferior, but we are not interested
2665 in handling it at this level. The lower layers have already
8e7d2c16 2666 done what needs to be done, if anything.
8fb3e588
AC
2667
2668 One of the possible circumstances for this is when the
2669 inferior produces output for the console. The inferior has
2670 not stopped, and we are ignoring the event. Another possible
2671 circumstance is any event which the lower level knows will be
2672 reported multiple times without an intervening resume. */
488f131b 2673 case TARGET_WAITKIND_IGNORE:
527159b7 2674 if (debug_infrun)
8a9de0e4 2675 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
8e7d2c16 2676 prepare_to_wait (ecs);
488f131b
JB
2677 return;
2678 }
c906108c 2679
488f131b
JB
2680 if (ecs->new_thread_event)
2681 {
94cc34af
PA
2682 if (non_stop)
2683 /* Non-stop assumes that the target handles adding new threads
2684 to the thread list. */
2685 internal_error (__FILE__, __LINE__, "\
2686targets should add new threads to the thread list themselves in non-stop mode.");
2687
2688 /* We may want to consider not doing a resume here in order to
2689 give the user a chance to play with the new thread. It might
2690 be good to make that a user-settable option. */
2691
2692 /* At this point, all threads are stopped (happens automatically
2693 in either the OS or the native code). Therefore we need to
2694 continue all threads in order to make progress. */
2695
488f131b
JB
2696 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
2697 prepare_to_wait (ecs);
2698 return;
2699 }
c906108c 2700
2020b7ab 2701 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
2702 {
2703 /* Do we need to clean up the state of a thread that has
2704 completed a displaced single-step? (Doing so usually affects
2705 the PC, so do it here, before we set stop_pc.) */
2706 displaced_step_fixup (ecs->ptid, ecs->event_thread->stop_signal);
2707
2708 /* If we either finished a single-step or hit a breakpoint, but
2709 the user wanted this thread to be stopped, pretend we got a
2710 SIG0 (generic unsignaled stop). */
2711
2712 if (ecs->event_thread->stop_requested
2713 && ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2714 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2715 }
237fc4c9 2716
515630c5 2717 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 2718
527159b7 2719 if (debug_infrun)
237fc4c9
PA
2720 {
2721 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n",
2722 paddr_nz (stop_pc));
d92524f1 2723 if (target_stopped_by_watchpoint ())
237fc4c9
PA
2724 {
2725 CORE_ADDR addr;
2726 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2727
2728 if (target_stopped_data_address (&current_target, &addr))
2729 fprintf_unfiltered (gdb_stdlog,
2730 "infrun: stopped data address = 0x%s\n",
2731 paddr_nz (addr));
2732 else
2733 fprintf_unfiltered (gdb_stdlog,
2734 "infrun: (no data address available)\n");
2735 }
2736 }
527159b7 2737
9f976b41
DJ
2738 if (stepping_past_singlestep_breakpoint)
2739 {
1c0fdd0e 2740 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
2741 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2742 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2743
2744 stepping_past_singlestep_breakpoint = 0;
2745
2746 /* We've either finished single-stepping past the single-step
8fb3e588
AC
2747 breakpoint, or stopped for some other reason. It would be nice if
2748 we could tell, but we can't reliably. */
2020b7ab 2749 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 2750 {
527159b7 2751 if (debug_infrun)
8a9de0e4 2752 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
9f976b41 2753 /* Pull the single step breakpoints out of the target. */
e0cd558a 2754 remove_single_step_breakpoints ();
9f976b41
DJ
2755 singlestep_breakpoints_inserted_p = 0;
2756
2757 ecs->random_signal = 0;
2758
0d1e5fa7 2759 context_switch (saved_singlestep_ptid);
9a4105ab
AC
2760 if (deprecated_context_hook)
2761 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
2762
2763 resume (1, TARGET_SIGNAL_0);
2764 prepare_to_wait (ecs);
2765 return;
2766 }
2767 }
2768
ca67fcb8 2769 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 2770 {
94cc34af
PA
2771 /* In non-stop mode, there's never a deferred_step_ptid set. */
2772 gdb_assert (!non_stop);
2773
6a6b96b9
UW
2774 /* If we stopped for some other reason than single-stepping, ignore
2775 the fact that we were supposed to switch back. */
2020b7ab 2776 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
6a6b96b9
UW
2777 {
2778 if (debug_infrun)
2779 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 2780 "infrun: handling deferred step\n");
6a6b96b9
UW
2781
2782 /* Pull the single step breakpoints out of the target. */
2783 if (singlestep_breakpoints_inserted_p)
2784 {
2785 remove_single_step_breakpoints ();
2786 singlestep_breakpoints_inserted_p = 0;
2787 }
2788
2789 /* Note: We do not call context_switch at this point, as the
2790 context is already set up for stepping the original thread. */
ca67fcb8
VP
2791 switch_to_thread (deferred_step_ptid);
2792 deferred_step_ptid = null_ptid;
6a6b96b9
UW
2793 /* Suppress spurious "Switching to ..." message. */
2794 previous_inferior_ptid = inferior_ptid;
2795
2796 resume (1, TARGET_SIGNAL_0);
2797 prepare_to_wait (ecs);
2798 return;
2799 }
ca67fcb8
VP
2800
2801 deferred_step_ptid = null_ptid;
6a6b96b9
UW
2802 }
2803
488f131b
JB
2804 /* See if a thread hit a thread-specific breakpoint that was meant for
2805 another thread. If so, then step that thread past the breakpoint,
2806 and continue it. */
2807
2020b7ab 2808 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
488f131b 2809 {
9f976b41
DJ
2810 int thread_hop_needed = 0;
2811
f8d40ec8
JB
2812 /* Check if a regular breakpoint has been hit before checking
2813 for a potential single step breakpoint. Otherwise, GDB will
2814 not see this breakpoint hit when stepping onto breakpoints. */
c36b740a 2815 if (regular_breakpoint_inserted_here_p (stop_pc))
488f131b 2816 {
c5aa993b 2817 ecs->random_signal = 0;
4fa8626c 2818 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
9f976b41
DJ
2819 thread_hop_needed = 1;
2820 }
1c0fdd0e 2821 else if (singlestep_breakpoints_inserted_p)
9f976b41 2822 {
fd48f117
DJ
2823 /* We have not context switched yet, so this should be true
2824 no matter which thread hit the singlestep breakpoint. */
2825 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2826 if (debug_infrun)
2827 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2828 "trap for %s\n",
2829 target_pid_to_str (ecs->ptid));
2830
9f976b41
DJ
2831 ecs->random_signal = 0;
2832 /* The call to in_thread_list is necessary because PTIDs sometimes
2833 change when we go from single-threaded to multi-threaded. If
2834 the singlestep_ptid is still in the list, assume that it is
2835 really different from ecs->ptid. */
2836 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2837 && in_thread_list (singlestep_ptid))
2838 {
fd48f117
DJ
2839 /* If the PC of the thread we were trying to single-step
2840 has changed, discard this event (which we were going
2841 to ignore anyway), and pretend we saw that thread
2842 trap. This prevents us continuously moving the
2843 single-step breakpoint forward, one instruction at a
2844 time. If the PC has changed, then the thread we were
2845 trying to single-step has trapped or been signalled,
2846 but the event has not been reported to GDB yet.
2847
2848 There might be some cases where this loses signal
2849 information, if a signal has arrived at exactly the
2850 same time that the PC changed, but this is the best
2851 we can do with the information available. Perhaps we
2852 should arrange to report all events for all threads
2853 when they stop, or to re-poll the remote looking for
2854 this particular thread (i.e. temporarily enable
2855 schedlock). */
515630c5
UW
2856
2857 CORE_ADDR new_singlestep_pc
2858 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
2859
2860 if (new_singlestep_pc != singlestep_pc)
fd48f117 2861 {
2020b7ab
PA
2862 enum target_signal stop_signal;
2863
fd48f117
DJ
2864 if (debug_infrun)
2865 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2866 " but expected thread advanced also\n");
2867
2868 /* The current context still belongs to
2869 singlestep_ptid. Don't swap here, since that's
2870 the context we want to use. Just fudge our
2871 state and continue. */
2020b7ab
PA
2872 stop_signal = ecs->event_thread->stop_signal;
2873 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
fd48f117 2874 ecs->ptid = singlestep_ptid;
e09875d4 2875 ecs->event_thread = find_thread_ptid (ecs->ptid);
2020b7ab 2876 ecs->event_thread->stop_signal = stop_signal;
515630c5 2877 stop_pc = new_singlestep_pc;
fd48f117
DJ
2878 }
2879 else
2880 {
2881 if (debug_infrun)
2882 fprintf_unfiltered (gdb_stdlog,
2883 "infrun: unexpected thread\n");
2884
2885 thread_hop_needed = 1;
2886 stepping_past_singlestep_breakpoint = 1;
2887 saved_singlestep_ptid = singlestep_ptid;
2888 }
9f976b41
DJ
2889 }
2890 }
2891
2892 if (thread_hop_needed)
8fb3e588 2893 {
237fc4c9 2894 int remove_status = 0;
8fb3e588 2895
527159b7 2896 if (debug_infrun)
8a9de0e4 2897 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 2898
8fb3e588
AC
2899 /* Saw a breakpoint, but it was hit by the wrong thread.
2900 Just continue. */
2901
1c0fdd0e 2902 if (singlestep_breakpoints_inserted_p)
488f131b 2903 {
8fb3e588 2904 /* Pull the single step breakpoints out of the target. */
e0cd558a 2905 remove_single_step_breakpoints ();
8fb3e588
AC
2906 singlestep_breakpoints_inserted_p = 0;
2907 }
2908
237fc4c9
PA
2909 /* If the arch can displace step, don't remove the
2910 breakpoints. */
2911 if (!use_displaced_stepping (current_gdbarch))
2912 remove_status = remove_breakpoints ();
2913
8fb3e588
AC
2914 /* Did we fail to remove breakpoints? If so, try
2915 to set the PC past the bp. (There's at least
2916 one situation in which we can fail to remove
2917 the bp's: On HP-UX's that use ttrace, we can't
2918 change the address space of a vforking child
2919 process until the child exits (well, okay, not
2920 then either :-) or execs. */
2921 if (remove_status != 0)
9d9cd7ac 2922 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
2923 else
2924 { /* Single step */
8fb3e588 2925 if (!ptid_equal (inferior_ptid, ecs->ptid))
0d1e5fa7
PA
2926 context_switch (ecs->ptid);
2927
94cc34af
PA
2928 if (!non_stop)
2929 {
2930 /* Only need to require the next event from this
2931 thread in all-stop mode. */
2932 waiton_ptid = ecs->ptid;
2933 infwait_state = infwait_thread_hop_state;
2934 }
8fb3e588 2935
4e1c45ea 2936 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588
AC
2937 keep_going (ecs);
2938 registers_changed ();
2939 return;
2940 }
488f131b 2941 }
1c0fdd0e 2942 else if (singlestep_breakpoints_inserted_p)
8fb3e588
AC
2943 {
2944 sw_single_step_trap_p = 1;
2945 ecs->random_signal = 0;
2946 }
488f131b
JB
2947 }
2948 else
2949 ecs->random_signal = 1;
c906108c 2950
488f131b 2951 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
2952 so, then switch to that thread. */
2953 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 2954 {
527159b7 2955 if (debug_infrun)
8a9de0e4 2956 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 2957
0d1e5fa7 2958 context_switch (ecs->ptid);
c5aa993b 2959
9a4105ab
AC
2960 if (deprecated_context_hook)
2961 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 2962 }
c906108c 2963
1c0fdd0e 2964 if (singlestep_breakpoints_inserted_p)
488f131b
JB
2965 {
2966 /* Pull the single step breakpoints out of the target. */
e0cd558a 2967 remove_single_step_breakpoints ();
488f131b
JB
2968 singlestep_breakpoints_inserted_p = 0;
2969 }
c906108c 2970
d983da9c
DJ
2971 if (stepped_after_stopped_by_watchpoint)
2972 stopped_by_watchpoint = 0;
2973 else
2974 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
2975
2976 /* If necessary, step over this watchpoint. We'll be back to display
2977 it in a moment. */
2978 if (stopped_by_watchpoint
d92524f1 2979 && (target_have_steppable_watchpoint
d983da9c 2980 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
488f131b 2981 {
488f131b
JB
2982 /* At this point, we are stopped at an instruction which has
2983 attempted to write to a piece of memory under control of
2984 a watchpoint. The instruction hasn't actually executed
2985 yet. If we were to evaluate the watchpoint expression
2986 now, we would get the old value, and therefore no change
2987 would seem to have occurred.
2988
2989 In order to make watchpoints work `right', we really need
2990 to complete the memory write, and then evaluate the
d983da9c
DJ
2991 watchpoint expression. We do this by single-stepping the
2992 target.
2993
2994 It may not be necessary to disable the watchpoint to stop over
2995 it. For example, the PA can (with some kernel cooperation)
2996 single step over a watchpoint without disabling the watchpoint.
2997
2998 It is far more common to need to disable a watchpoint to step
2999 the inferior over it. If we have non-steppable watchpoints,
3000 we must disable the current watchpoint; it's simplest to
3001 disable all watchpoints and breakpoints. */
2facfe5c
DD
3002 int hw_step = 1;
3003
d92524f1 3004 if (!target_have_steppable_watchpoint)
d983da9c 3005 remove_breakpoints ();
2facfe5c 3006 /* Single step */
fb14de7b 3007 hw_step = maybe_software_singlestep (current_gdbarch, stop_pc);
2facfe5c 3008 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
b9412953 3009 registers_changed ();
0d1e5fa7 3010 waiton_ptid = ecs->ptid;
d92524f1 3011 if (target_have_steppable_watchpoint)
0d1e5fa7 3012 infwait_state = infwait_step_watch_state;
d983da9c 3013 else
0d1e5fa7 3014 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
3015 prepare_to_wait (ecs);
3016 return;
3017 }
3018
488f131b
JB
3019 ecs->stop_func_start = 0;
3020 ecs->stop_func_end = 0;
3021 ecs->stop_func_name = 0;
3022 /* Don't care about return value; stop_func_start and stop_func_name
3023 will both be 0 if it doesn't work. */
3024 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3025 &ecs->stop_func_start, &ecs->stop_func_end);
cbf3b44a
UW
3026 ecs->stop_func_start
3027 += gdbarch_deprecated_function_start_offset (current_gdbarch);
4e1c45ea 3028 ecs->event_thread->stepping_over_breakpoint = 0;
347bddb7 3029 bpstat_clear (&ecs->event_thread->stop_bpstat);
414c69f7 3030 ecs->event_thread->stop_step = 0;
488f131b
JB
3031 stop_print_frame = 1;
3032 ecs->random_signal = 0;
3033 stopped_by_random_signal = 0;
488f131b 3034
2020b7ab 3035 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4e1c45ea 3036 && ecs->event_thread->trap_expected
3352ef37 3037 && gdbarch_single_step_through_delay_p (current_gdbarch)
4e1c45ea 3038 && currently_stepping (ecs->event_thread))
3352ef37 3039 {
b50d7442 3040 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37
AC
3041 also on an instruction that needs to be stepped multiple
3042 times before it's been fully executing. E.g., architectures
3043 with a delay slot. It needs to be stepped twice, once for
3044 the instruction and once for the delay slot. */
3045 int step_through_delay
3046 = gdbarch_single_step_through_delay (current_gdbarch,
3047 get_current_frame ());
527159b7 3048 if (debug_infrun && step_through_delay)
8a9de0e4 3049 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4e1c45ea 3050 if (ecs->event_thread->step_range_end == 0 && step_through_delay)
3352ef37
AC
3051 {
3052 /* The user issued a continue when stopped at a breakpoint.
3053 Set up for another trap and get out of here. */
4e1c45ea 3054 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
3055 keep_going (ecs);
3056 return;
3057 }
3058 else if (step_through_delay)
3059 {
3060 /* The user issued a step when stopped at a breakpoint.
3061 Maybe we should stop, maybe we should not - the delay
3062 slot *might* correspond to a line of source. In any
ca67fcb8
VP
3063 case, don't decide that here, just set
3064 ecs->stepping_over_breakpoint, making sure we
3065 single-step again before breakpoints are re-inserted. */
4e1c45ea 3066 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
3067 }
3068 }
3069
488f131b
JB
3070 /* Look at the cause of the stop, and decide what to do.
3071 The alternatives are:
0d1e5fa7
PA
3072 1) stop_stepping and return; to really stop and return to the debugger,
3073 2) keep_going and return to start up again
4e1c45ea 3074 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
3075 3) set ecs->random_signal to 1, and the decision between 1 and 2
3076 will be made according to the signal handling tables. */
3077
3078 /* First, distinguish signals caused by the debugger from signals
03cebad2
MK
3079 that have to do with the program's own actions. Note that
3080 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3081 on the operating system version. Here we detect when a SIGILL or
3082 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3083 something similar for SIGSEGV, since a SIGSEGV will be generated
3084 when we're trying to execute a breakpoint instruction on a
3085 non-executable stack. This happens for call dummy breakpoints
3086 for architectures like SPARC that place call dummies on the
237fc4c9 3087 stack.
488f131b 3088
237fc4c9
PA
3089 If we're doing a displaced step past a breakpoint, then the
3090 breakpoint is always inserted at the original instruction;
3091 non-standard signals can't be explained by the breakpoint. */
2020b7ab 3092 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4e1c45ea 3093 || (! ecs->event_thread->trap_expected
237fc4c9 3094 && breakpoint_inserted_here_p (stop_pc)
2020b7ab
PA
3095 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_ILL
3096 || ecs->event_thread->stop_signal == TARGET_SIGNAL_SEGV
3097 || ecs->event_thread->stop_signal == TARGET_SIGNAL_EMT))
b0f4b84b
DJ
3098 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
3099 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 3100 {
2020b7ab 3101 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
488f131b 3102 {
527159b7 3103 if (debug_infrun)
8a9de0e4 3104 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
3105 stop_print_frame = 0;
3106 stop_stepping (ecs);
3107 return;
3108 }
c54cfec8
EZ
3109
3110 /* This is originated from start_remote(), start_inferior() and
3111 shared libraries hook functions. */
b0f4b84b 3112 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 3113 {
527159b7 3114 if (debug_infrun)
8a9de0e4 3115 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
3116 stop_stepping (ecs);
3117 return;
3118 }
3119
c54cfec8 3120 /* This originates from attach_command(). We need to overwrite
a0d21d28
PA
3121 the stop_signal here, because some kernels don't ignore a
3122 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
3123 See more comments in inferior.h. On the other hand, if we
a0ef4274 3124 get a non-SIGSTOP, report it to the user - assume the backend
a0d21d28
PA
3125 will handle the SIGSTOP if it should show up later.
3126
3127 Also consider that the attach is complete when we see a
3128 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
3129 target extended-remote report it instead of a SIGSTOP
3130 (e.g. gdbserver). We already rely on SIGTRAP being our
e0ba6746
PA
3131 signal, so this is no exception.
3132
3133 Also consider that the attach is complete when we see a
3134 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
3135 the target to stop all threads of the inferior, in case the
3136 low level attach operation doesn't stop them implicitly. If
3137 they weren't stopped implicitly, then the stub will report a
3138 TARGET_SIGNAL_0, meaning: stopped for no particular reason
3139 other than GDB's request. */
a0ef4274 3140 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
2020b7ab 3141 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_STOP
e0ba6746
PA
3142 || ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3143 || ecs->event_thread->stop_signal == TARGET_SIGNAL_0))
c54cfec8
EZ
3144 {
3145 stop_stepping (ecs);
2020b7ab 3146 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
c54cfec8
EZ
3147 return;
3148 }
3149
fba57f8f 3150 /* See if there is a breakpoint at the current PC. */
347bddb7 3151 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
fba57f8f
VP
3152
3153 /* Following in case break condition called a
3154 function. */
3155 stop_print_frame = 1;
488f131b 3156
73dd234f 3157 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
3158 at one stage in the past included checks for an inferior
3159 function call's call dummy's return breakpoint. The original
3160 comment, that went with the test, read:
73dd234f 3161
8fb3e588
AC
3162 ``End of a stack dummy. Some systems (e.g. Sony news) give
3163 another signal besides SIGTRAP, so check here as well as
3164 above.''
73dd234f 3165
8002d778 3166 If someone ever tries to get call dummys on a
73dd234f 3167 non-executable stack to work (where the target would stop
03cebad2
MK
3168 with something like a SIGSEGV), then those tests might need
3169 to be re-instated. Given, however, that the tests were only
73dd234f 3170 enabled when momentary breakpoints were not being used, I
03cebad2
MK
3171 suspect that it won't be the case.
3172
8fb3e588
AC
3173 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
3174 be necessary for call dummies on a non-executable stack on
3175 SPARC. */
73dd234f 3176
2020b7ab 3177 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
488f131b 3178 ecs->random_signal
347bddb7 3179 = !(bpstat_explains_signal (ecs->event_thread->stop_bpstat)
4e1c45ea
PA
3180 || ecs->event_thread->trap_expected
3181 || (ecs->event_thread->step_range_end
3182 && ecs->event_thread->step_resume_breakpoint == NULL));
488f131b
JB
3183 else
3184 {
347bddb7 3185 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
488f131b 3186 if (!ecs->random_signal)
2020b7ab 3187 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3188 }
3189 }
3190
3191 /* When we reach this point, we've pretty much decided
3192 that the reason for stopping must've been a random
3193 (unexpected) signal. */
3194
3195 else
3196 ecs->random_signal = 1;
488f131b 3197
04e68871 3198process_event_stop_test:
488f131b
JB
3199 /* For the program's own signals, act according to
3200 the signal handling tables. */
3201
3202 if (ecs->random_signal)
3203 {
3204 /* Signal not for debugging purposes. */
3205 int printed = 0;
3206
527159b7 3207 if (debug_infrun)
2020b7ab
PA
3208 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
3209 ecs->event_thread->stop_signal);
527159b7 3210
488f131b
JB
3211 stopped_by_random_signal = 1;
3212
2020b7ab 3213 if (signal_print[ecs->event_thread->stop_signal])
488f131b
JB
3214 {
3215 printed = 1;
3216 target_terminal_ours_for_output ();
2020b7ab 3217 print_stop_reason (SIGNAL_RECEIVED, ecs->event_thread->stop_signal);
488f131b 3218 }
252fbfc8
PA
3219 /* Always stop on signals if we're either just gaining control
3220 of the program, or the user explicitly requested this thread
3221 to remain stopped. */
d6b48e9c 3222 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 3223 || ecs->event_thread->stop_requested
d6b48e9c 3224 || signal_stop_state (ecs->event_thread->stop_signal))
488f131b
JB
3225 {
3226 stop_stepping (ecs);
3227 return;
3228 }
3229 /* If not going to stop, give terminal back
3230 if we took it away. */
3231 else if (printed)
3232 target_terminal_inferior ();
3233
3234 /* Clear the signal if it should not be passed. */
2020b7ab
PA
3235 if (signal_program[ecs->event_thread->stop_signal] == 0)
3236 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
488f131b 3237
fb14de7b 3238 if (ecs->event_thread->prev_pc == stop_pc
4e1c45ea
PA
3239 && ecs->event_thread->trap_expected
3240 && ecs->event_thread->step_resume_breakpoint == NULL)
68f53502
AC
3241 {
3242 /* We were just starting a new sequence, attempting to
3243 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 3244 Instead this signal arrives. This signal will take us out
68f53502
AC
3245 of the stepping range so GDB needs to remember to, when
3246 the signal handler returns, resume stepping off that
3247 breakpoint. */
3248 /* To simplify things, "continue" is forced to use the same
3249 code paths as single-step - set a breakpoint at the
3250 signal return address and then, once hit, step off that
3251 breakpoint. */
237fc4c9
PA
3252 if (debug_infrun)
3253 fprintf_unfiltered (gdb_stdlog,
3254 "infrun: signal arrived while stepping over "
3255 "breakpoint\n");
d3169d93 3256
44cbf7b5 3257 insert_step_resume_breakpoint_at_frame (get_current_frame ());
4e1c45ea 3258 ecs->event_thread->step_after_step_resume_breakpoint = 1;
9d799f85
AC
3259 keep_going (ecs);
3260 return;
68f53502 3261 }
9d799f85 3262
4e1c45ea 3263 if (ecs->event_thread->step_range_end != 0
2020b7ab 3264 && ecs->event_thread->stop_signal != TARGET_SIGNAL_0
4e1c45ea
PA
3265 && (ecs->event_thread->step_range_start <= stop_pc
3266 && stop_pc < ecs->event_thread->step_range_end)
9d799f85 3267 && frame_id_eq (get_frame_id (get_current_frame ()),
4e1c45ea
PA
3268 ecs->event_thread->step_frame_id)
3269 && ecs->event_thread->step_resume_breakpoint == NULL)
d303a6c7
AC
3270 {
3271 /* The inferior is about to take a signal that will take it
3272 out of the single step range. Set a breakpoint at the
3273 current PC (which is presumably where the signal handler
3274 will eventually return) and then allow the inferior to
3275 run free.
3276
3277 Note that this is only needed for a signal delivered
3278 while in the single-step range. Nested signals aren't a
3279 problem as they eventually all return. */
237fc4c9
PA
3280 if (debug_infrun)
3281 fprintf_unfiltered (gdb_stdlog,
3282 "infrun: signal may take us out of "
3283 "single-step range\n");
3284
44cbf7b5 3285 insert_step_resume_breakpoint_at_frame (get_current_frame ());
9d799f85
AC
3286 keep_going (ecs);
3287 return;
d303a6c7 3288 }
9d799f85
AC
3289
3290 /* Note: step_resume_breakpoint may be non-NULL. This occures
3291 when either there's a nested signal, or when there's a
3292 pending signal enabled just as the signal handler returns
3293 (leaving the inferior at the step-resume-breakpoint without
3294 actually executing it). Either way continue until the
3295 breakpoint is really hit. */
488f131b
JB
3296 keep_going (ecs);
3297 return;
3298 }
3299
3300 /* Handle cases caused by hitting a breakpoint. */
3301 {
3302 CORE_ADDR jmp_buf_pc;
3303 struct bpstat_what what;
3304
347bddb7 3305 what = bpstat_what (ecs->event_thread->stop_bpstat);
488f131b
JB
3306
3307 if (what.call_dummy)
3308 {
3309 stop_stack_dummy = 1;
c5aa993b 3310 }
c906108c 3311
488f131b 3312 switch (what.main_action)
c5aa993b 3313 {
488f131b 3314 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
611c83ae
PA
3315 /* If we hit the breakpoint at longjmp while stepping, we
3316 install a momentary breakpoint at the target of the
3317 jmp_buf. */
3318
3319 if (debug_infrun)
3320 fprintf_unfiltered (gdb_stdlog,
3321 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
3322
4e1c45ea 3323 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 3324
91104499 3325 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
60ade65d
UW
3326 || !gdbarch_get_longjmp_target (current_gdbarch,
3327 get_current_frame (), &jmp_buf_pc))
c5aa993b 3328 {
611c83ae
PA
3329 if (debug_infrun)
3330 fprintf_unfiltered (gdb_stdlog, "\
3331infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
488f131b 3332 keep_going (ecs);
104c1213 3333 return;
c5aa993b 3334 }
488f131b 3335
611c83ae
PA
3336 /* We're going to replace the current step-resume breakpoint
3337 with a longjmp-resume breakpoint. */
4e1c45ea 3338 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae
PA
3339
3340 /* Insert a breakpoint at resume address. */
3341 insert_longjmp_resume_breakpoint (jmp_buf_pc);
c906108c 3342
488f131b
JB
3343 keep_going (ecs);
3344 return;
c906108c 3345
488f131b 3346 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
527159b7 3347 if (debug_infrun)
611c83ae
PA
3348 fprintf_unfiltered (gdb_stdlog,
3349 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
3350
4e1c45ea
PA
3351 gdb_assert (ecs->event_thread->step_resume_breakpoint != NULL);
3352 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae 3353
414c69f7 3354 ecs->event_thread->stop_step = 1;
611c83ae
PA
3355 print_stop_reason (END_STEPPING_RANGE, 0);
3356 stop_stepping (ecs);
3357 return;
488f131b
JB
3358
3359 case BPSTAT_WHAT_SINGLE:
527159b7 3360 if (debug_infrun)
8802d8ed 3361 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4e1c45ea 3362 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b
JB
3363 /* Still need to check other stuff, at least the case
3364 where we are stepping and step out of the right range. */
3365 break;
c906108c 3366
488f131b 3367 case BPSTAT_WHAT_STOP_NOISY:
527159b7 3368 if (debug_infrun)
8802d8ed 3369 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 3370 stop_print_frame = 1;
c906108c 3371
d303a6c7
AC
3372 /* We are about to nuke the step_resume_breakpointt via the
3373 cleanup chain, so no need to worry about it here. */
c5aa993b 3374
488f131b
JB
3375 stop_stepping (ecs);
3376 return;
c5aa993b 3377
488f131b 3378 case BPSTAT_WHAT_STOP_SILENT:
527159b7 3379 if (debug_infrun)
8802d8ed 3380 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 3381 stop_print_frame = 0;
c5aa993b 3382
d303a6c7
AC
3383 /* We are about to nuke the step_resume_breakpoin via the
3384 cleanup chain, so no need to worry about it here. */
c5aa993b 3385
488f131b 3386 stop_stepping (ecs);
e441088d 3387 return;
c5aa993b 3388
488f131b 3389 case BPSTAT_WHAT_STEP_RESUME:
527159b7 3390 if (debug_infrun)
8802d8ed 3391 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
527159b7 3392
4e1c45ea
PA
3393 delete_step_resume_breakpoint (ecs->event_thread);
3394 if (ecs->event_thread->step_after_step_resume_breakpoint)
68f53502
AC
3395 {
3396 /* Back when the step-resume breakpoint was inserted, we
3397 were trying to single-step off a breakpoint. Go back
3398 to doing that. */
4e1c45ea
PA
3399 ecs->event_thread->step_after_step_resume_breakpoint = 0;
3400 ecs->event_thread->stepping_over_breakpoint = 1;
68f53502
AC
3401 keep_going (ecs);
3402 return;
3403 }
b2175913
MS
3404 if (stop_pc == ecs->stop_func_start
3405 && execution_direction == EXEC_REVERSE)
3406 {
3407 /* We are stepping over a function call in reverse, and
3408 just hit the step-resume breakpoint at the start
3409 address of the function. Go back to single-stepping,
3410 which should take us back to the function call. */
3411 ecs->event_thread->stepping_over_breakpoint = 1;
3412 keep_going (ecs);
3413 return;
3414 }
488f131b
JB
3415 break;
3416
488f131b 3417 case BPSTAT_WHAT_CHECK_SHLIBS:
c906108c 3418 {
527159b7 3419 if (debug_infrun)
8802d8ed 3420 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
488f131b
JB
3421
3422 /* Check for any newly added shared libraries if we're
3423 supposed to be adding them automatically. Switch
3424 terminal for any messages produced by
3425 breakpoint_re_set. */
3426 target_terminal_ours_for_output ();
aff6338a 3427 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
3428 stack's section table is kept up-to-date. Architectures,
3429 (e.g., PPC64), use the section table to perform
3430 operations such as address => section name and hence
3431 require the table to contain all sections (including
3432 those found in shared libraries). */
aff6338a 3433 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
3434 exec_ops to SOLIB_ADD. This is because current GDB is
3435 only tooled to propagate section_table changes out from
3436 the "current_target" (see target_resize_to_sections), and
3437 not up from the exec stratum. This, of course, isn't
3438 right. "infrun.c" should only interact with the
3439 exec/process stratum, instead relying on the target stack
3440 to propagate relevant changes (stop, section table
3441 changed, ...) up to other layers. */
a77053c2 3442#ifdef SOLIB_ADD
aff6338a 3443 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
a77053c2
MK
3444#else
3445 solib_add (NULL, 0, &current_target, auto_solib_add);
3446#endif
488f131b
JB
3447 target_terminal_inferior ();
3448
488f131b
JB
3449 /* If requested, stop when the dynamic linker notifies
3450 gdb of events. This allows the user to get control
3451 and place breakpoints in initializer routines for
3452 dynamically loaded objects (among other things). */
877522db 3453 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 3454 {
488f131b 3455 stop_stepping (ecs);
d4f3574e
SS
3456 return;
3457 }
c5aa993b 3458 else
c5aa993b 3459 {
488f131b 3460 /* We want to step over this breakpoint, then keep going. */
4e1c45ea 3461 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 3462 break;
c5aa993b 3463 }
488f131b 3464 }
488f131b 3465 break;
c906108c 3466
488f131b
JB
3467 case BPSTAT_WHAT_LAST:
3468 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 3469
488f131b
JB
3470 case BPSTAT_WHAT_KEEP_CHECKING:
3471 break;
3472 }
3473 }
c906108c 3474
488f131b
JB
3475 /* We come here if we hit a breakpoint but should not
3476 stop for it. Possibly we also were stepping
3477 and should stop for that. So fall through and
3478 test for stepping. But, if not stepping,
3479 do not stop. */
c906108c 3480
a7212384
UW
3481 /* In all-stop mode, if we're currently stepping but have stopped in
3482 some other thread, we need to switch back to the stepped thread. */
3483 if (!non_stop)
3484 {
3485 struct thread_info *tp;
3486 tp = iterate_over_threads (currently_stepping_callback,
3487 ecs->event_thread);
3488 if (tp)
3489 {
3490 /* However, if the current thread is blocked on some internal
3491 breakpoint, and we simply need to step over that breakpoint
3492 to get it going again, do that first. */
3493 if ((ecs->event_thread->trap_expected
3494 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
3495 || ecs->event_thread->stepping_over_breakpoint)
3496 {
3497 keep_going (ecs);
3498 return;
3499 }
3500
3501 /* Otherwise, we no longer expect a trap in the current thread.
3502 Clear the trap_expected flag before switching back -- this is
3503 what keep_going would do as well, if we called it. */
3504 ecs->event_thread->trap_expected = 0;
3505
3506 if (debug_infrun)
3507 fprintf_unfiltered (gdb_stdlog,
3508 "infrun: switching back to stepped thread\n");
3509
3510 ecs->event_thread = tp;
3511 ecs->ptid = tp->ptid;
3512 context_switch (ecs->ptid);
3513 keep_going (ecs);
3514 return;
3515 }
3516 }
3517
9d1ff73f
MS
3518 /* Are we stepping to get the inferior out of the dynamic linker's
3519 hook (and possibly the dld itself) after catching a shlib
3520 event? */
4e1c45ea 3521 if (ecs->event_thread->stepping_through_solib_after_catch)
488f131b
JB
3522 {
3523#if defined(SOLIB_ADD)
3524 /* Have we reached our destination? If not, keep going. */
3525 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
3526 {
527159b7 3527 if (debug_infrun)
8a9de0e4 3528 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
4e1c45ea 3529 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 3530 keep_going (ecs);
104c1213 3531 return;
488f131b
JB
3532 }
3533#endif
527159b7 3534 if (debug_infrun)
8a9de0e4 3535 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
488f131b
JB
3536 /* Else, stop and report the catchpoint(s) whose triggering
3537 caused us to begin stepping. */
4e1c45ea 3538 ecs->event_thread->stepping_through_solib_after_catch = 0;
347bddb7
PA
3539 bpstat_clear (&ecs->event_thread->stop_bpstat);
3540 ecs->event_thread->stop_bpstat
3541 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
4e1c45ea 3542 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
488f131b
JB
3543 stop_print_frame = 1;
3544 stop_stepping (ecs);
3545 return;
3546 }
c906108c 3547
4e1c45ea 3548 if (ecs->event_thread->step_resume_breakpoint)
488f131b 3549 {
527159b7 3550 if (debug_infrun)
d3169d93
DJ
3551 fprintf_unfiltered (gdb_stdlog,
3552 "infrun: step-resume breakpoint is inserted\n");
527159b7 3553
488f131b
JB
3554 /* Having a step-resume breakpoint overrides anything
3555 else having to do with stepping commands until
3556 that breakpoint is reached. */
488f131b
JB
3557 keep_going (ecs);
3558 return;
3559 }
c5aa993b 3560
4e1c45ea 3561 if (ecs->event_thread->step_range_end == 0)
488f131b 3562 {
527159b7 3563 if (debug_infrun)
8a9de0e4 3564 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 3565 /* Likewise if we aren't even stepping. */
488f131b
JB
3566 keep_going (ecs);
3567 return;
3568 }
c5aa993b 3569
488f131b 3570 /* If stepping through a line, keep going if still within it.
c906108c 3571
488f131b
JB
3572 Note that step_range_end is the address of the first instruction
3573 beyond the step range, and NOT the address of the last instruction
3574 within it! */
4e1c45ea
PA
3575 if (stop_pc >= ecs->event_thread->step_range_start
3576 && stop_pc < ecs->event_thread->step_range_end)
488f131b 3577 {
527159b7 3578 if (debug_infrun)
b2175913 3579 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
4e1c45ea
PA
3580 paddr_nz (ecs->event_thread->step_range_start),
3581 paddr_nz (ecs->event_thread->step_range_end));
b2175913
MS
3582
3583 /* When stepping backward, stop at beginning of line range
3584 (unless it's the function entry point, in which case
3585 keep going back to the call point). */
3586 if (stop_pc == ecs->event_thread->step_range_start
3587 && stop_pc != ecs->stop_func_start
3588 && execution_direction == EXEC_REVERSE)
3589 {
3590 ecs->event_thread->stop_step = 1;
3591 print_stop_reason (END_STEPPING_RANGE, 0);
3592 stop_stepping (ecs);
3593 }
3594 else
3595 keep_going (ecs);
3596
488f131b
JB
3597 return;
3598 }
c5aa993b 3599
488f131b 3600 /* We stepped out of the stepping range. */
c906108c 3601
488f131b
JB
3602 /* If we are stepping at the source level and entered the runtime
3603 loader dynamic symbol resolution code, we keep on single stepping
3604 until we exit the run time loader code and reach the callee's
3605 address. */
078130d0 3606 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 3607 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 3608 {
4c8c40e6
MK
3609 CORE_ADDR pc_after_resolver =
3610 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
c906108c 3611
527159b7 3612 if (debug_infrun)
8a9de0e4 3613 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
527159b7 3614
488f131b
JB
3615 if (pc_after_resolver)
3616 {
3617 /* Set up a step-resume breakpoint at the address
3618 indicated by SKIP_SOLIB_RESOLVER. */
3619 struct symtab_and_line sr_sal;
fe39c653 3620 init_sal (&sr_sal);
488f131b
JB
3621 sr_sal.pc = pc_after_resolver;
3622
44cbf7b5 3623 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c5aa993b 3624 }
c906108c 3625
488f131b
JB
3626 keep_going (ecs);
3627 return;
3628 }
c906108c 3629
4e1c45ea 3630 if (ecs->event_thread->step_range_end != 1
078130d0
PA
3631 && (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3632 || ecs->event_thread->step_over_calls == STEP_OVER_ALL)
42edda50 3633 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
488f131b 3634 {
527159b7 3635 if (debug_infrun)
8a9de0e4 3636 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
42edda50 3637 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
3638 a signal trampoline (either by a signal being delivered or by
3639 the signal handler returning). Just single-step until the
3640 inferior leaves the trampoline (either by calling the handler
3641 or returning). */
488f131b
JB
3642 keep_going (ecs);
3643 return;
3644 }
c906108c 3645
c17eaafe
DJ
3646 /* Check for subroutine calls. The check for the current frame
3647 equalling the step ID is not necessary - the check of the
3648 previous frame's ID is sufficient - but it is a common case and
3649 cheaper than checking the previous frame's ID.
14e60db5
DJ
3650
3651 NOTE: frame_id_eq will never report two invalid frame IDs as
3652 being equal, so to get into this block, both the current and
3653 previous frame must have valid frame IDs. */
4e1c45ea
PA
3654 if (!frame_id_eq (get_frame_id (get_current_frame ()),
3655 ecs->event_thread->step_frame_id)
b2175913
MS
3656 && (frame_id_eq (frame_unwind_id (get_current_frame ()),
3657 ecs->event_thread->step_frame_id)
3658 || execution_direction == EXEC_REVERSE))
488f131b 3659 {
95918acb 3660 CORE_ADDR real_stop_pc;
8fb3e588 3661
527159b7 3662 if (debug_infrun)
8a9de0e4 3663 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 3664
078130d0 3665 if ((ecs->event_thread->step_over_calls == STEP_OVER_NONE)
4e1c45ea
PA
3666 || ((ecs->event_thread->step_range_end == 1)
3667 && in_prologue (ecs->event_thread->prev_pc,
3668 ecs->stop_func_start)))
95918acb
AC
3669 {
3670 /* I presume that step_over_calls is only 0 when we're
3671 supposed to be stepping at the assembly language level
3672 ("stepi"). Just stop. */
3673 /* Also, maybe we just did a "nexti" inside a prolog, so we
3674 thought it was a subroutine call but it was not. Stop as
3675 well. FENN */
414c69f7 3676 ecs->event_thread->stop_step = 1;
95918acb
AC
3677 print_stop_reason (END_STEPPING_RANGE, 0);
3678 stop_stepping (ecs);
3679 return;
3680 }
8fb3e588 3681
078130d0 3682 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
8567c30f 3683 {
b2175913
MS
3684 /* We're doing a "next".
3685
3686 Normal (forward) execution: set a breakpoint at the
3687 callee's return address (the address at which the caller
3688 will resume).
3689
3690 Reverse (backward) execution. set the step-resume
3691 breakpoint at the start of the function that we just
3692 stepped into (backwards), and continue to there. When we
6130d0b7 3693 get there, we'll need to single-step back to the caller. */
b2175913
MS
3694
3695 if (execution_direction == EXEC_REVERSE)
3696 {
3697 struct symtab_and_line sr_sal;
3067f6e5
MS
3698
3699 if (ecs->stop_func_start == 0
3700 && in_solib_dynsym_resolve_code (stop_pc))
3701 {
3702 /* Stepped into runtime loader dynamic symbol
3703 resolution code. Since we're in reverse,
3704 we have already backed up through the runtime
3705 loader and the dynamic function. This is just
3706 the trampoline (jump table).
3707
3708 Just keep stepping, we'll soon be home.
3709 */
3710 keep_going (ecs);
3711 return;
3712 }
3713 /* Normal (staticly linked) function call return. */
b2175913
MS
3714 init_sal (&sr_sal);
3715 sr_sal.pc = ecs->stop_func_start;
3716 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3717 }
3718 else
3719 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3720
8567c30f
AC
3721 keep_going (ecs);
3722 return;
3723 }
a53c66de 3724
95918acb 3725 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
3726 calling routine and the real function), locate the real
3727 function. That's what tells us (a) whether we want to step
3728 into it at all, and (b) what prologue we want to run to the
3729 end of, if we do step into it. */
52f729a7 3730 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
95918acb 3731 if (real_stop_pc == 0)
52f729a7
UW
3732 real_stop_pc = gdbarch_skip_trampoline_code
3733 (current_gdbarch, get_current_frame (), stop_pc);
95918acb
AC
3734 if (real_stop_pc != 0)
3735 ecs->stop_func_start = real_stop_pc;
8fb3e588 3736
db5f024e 3737 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
3738 {
3739 struct symtab_and_line sr_sal;
3740 init_sal (&sr_sal);
3741 sr_sal.pc = ecs->stop_func_start;
3742
44cbf7b5 3743 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
8fb3e588
AC
3744 keep_going (ecs);
3745 return;
1b2bfbb9
RC
3746 }
3747
95918acb 3748 /* If we have line number information for the function we are
8fb3e588 3749 thinking of stepping into, step into it.
95918acb 3750
8fb3e588
AC
3751 If there are several symtabs at that PC (e.g. with include
3752 files), just want to know whether *any* of them have line
3753 numbers. find_pc_line handles this. */
95918acb
AC
3754 {
3755 struct symtab_and_line tmp_sal;
8fb3e588 3756
95918acb
AC
3757 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
3758 if (tmp_sal.line != 0)
3759 {
b2175913
MS
3760 if (execution_direction == EXEC_REVERSE)
3761 handle_step_into_function_backward (ecs);
3762 else
3763 handle_step_into_function (ecs);
95918acb
AC
3764 return;
3765 }
3766 }
3767
3768 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
3769 set, we stop the step so that the user has a chance to switch
3770 in assembly mode. */
078130d0
PA
3771 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3772 && step_stop_if_no_debug)
95918acb 3773 {
414c69f7 3774 ecs->event_thread->stop_step = 1;
95918acb
AC
3775 print_stop_reason (END_STEPPING_RANGE, 0);
3776 stop_stepping (ecs);
3777 return;
3778 }
3779
b2175913
MS
3780 if (execution_direction == EXEC_REVERSE)
3781 {
3782 /* Set a breakpoint at callee's start address.
3783 From there we can step once and be back in the caller. */
3784 struct symtab_and_line sr_sal;
3785 init_sal (&sr_sal);
3786 sr_sal.pc = ecs->stop_func_start;
3787 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3788 }
3789 else
3790 /* Set a breakpoint at callee's return address (the address
3791 at which the caller will resume). */
3792 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3793
95918acb 3794 keep_going (ecs);
488f131b 3795 return;
488f131b 3796 }
c906108c 3797
488f131b
JB
3798 /* If we're in the return path from a shared library trampoline,
3799 we want to proceed through the trampoline when stepping. */
e76f05fa
UW
3800 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
3801 stop_pc, ecs->stop_func_name))
488f131b 3802 {
488f131b 3803 /* Determine where this trampoline returns. */
52f729a7
UW
3804 CORE_ADDR real_stop_pc;
3805 real_stop_pc = gdbarch_skip_trampoline_code
3806 (current_gdbarch, get_current_frame (), stop_pc);
c906108c 3807
527159b7 3808 if (debug_infrun)
8a9de0e4 3809 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
527159b7 3810
488f131b 3811 /* Only proceed through if we know where it's going. */
d764a824 3812 if (real_stop_pc)
488f131b
JB
3813 {
3814 /* And put the step-breakpoint there and go until there. */
3815 struct symtab_and_line sr_sal;
3816
fe39c653 3817 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 3818 sr_sal.pc = real_stop_pc;
488f131b 3819 sr_sal.section = find_pc_overlay (sr_sal.pc);
44cbf7b5
AC
3820
3821 /* Do not specify what the fp should be when we stop since
3822 on some machines the prologue is where the new fp value
3823 is established. */
3824 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c906108c 3825
488f131b
JB
3826 /* Restart without fiddling with the step ranges or
3827 other state. */
3828 keep_going (ecs);
3829 return;
3830 }
3831 }
c906108c 3832
2afb61aa 3833 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 3834
1b2bfbb9
RC
3835 /* NOTE: tausq/2004-05-24: This if block used to be done before all
3836 the trampoline processing logic, however, there are some trampolines
3837 that have no names, so we should do trampoline handling first. */
078130d0 3838 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 3839 && ecs->stop_func_name == NULL
2afb61aa 3840 && stop_pc_sal.line == 0)
1b2bfbb9 3841 {
527159b7 3842 if (debug_infrun)
8a9de0e4 3843 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
527159b7 3844
1b2bfbb9 3845 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
3846 undebuggable function (where there is no debugging information
3847 and no line number corresponding to the address where the
1b2bfbb9
RC
3848 inferior stopped). Since we want to skip this kind of code,
3849 we keep going until the inferior returns from this
14e60db5
DJ
3850 function - unless the user has asked us not to (via
3851 set step-mode) or we no longer know how to get back
3852 to the call site. */
3853 if (step_stop_if_no_debug
eb2f4a08 3854 || !frame_id_p (frame_unwind_id (get_current_frame ())))
1b2bfbb9
RC
3855 {
3856 /* If we have no line number and the step-stop-if-no-debug
3857 is set, we stop the step so that the user has a chance to
3858 switch in assembly mode. */
414c69f7 3859 ecs->event_thread->stop_step = 1;
1b2bfbb9
RC
3860 print_stop_reason (END_STEPPING_RANGE, 0);
3861 stop_stepping (ecs);
3862 return;
3863 }
3864 else
3865 {
3866 /* Set a breakpoint at callee's return address (the address
3867 at which the caller will resume). */
14e60db5 3868 insert_step_resume_breakpoint_at_caller (get_current_frame ());
1b2bfbb9
RC
3869 keep_going (ecs);
3870 return;
3871 }
3872 }
3873
4e1c45ea 3874 if (ecs->event_thread->step_range_end == 1)
1b2bfbb9
RC
3875 {
3876 /* It is stepi or nexti. We always want to stop stepping after
3877 one instruction. */
527159b7 3878 if (debug_infrun)
8a9de0e4 3879 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
414c69f7 3880 ecs->event_thread->stop_step = 1;
1b2bfbb9
RC
3881 print_stop_reason (END_STEPPING_RANGE, 0);
3882 stop_stepping (ecs);
3883 return;
3884 }
3885
2afb61aa 3886 if (stop_pc_sal.line == 0)
488f131b
JB
3887 {
3888 /* We have no line number information. That means to stop
3889 stepping (does this always happen right after one instruction,
3890 when we do "s" in a function with no line numbers,
3891 or can this happen as a result of a return or longjmp?). */
527159b7 3892 if (debug_infrun)
8a9de0e4 3893 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
414c69f7 3894 ecs->event_thread->stop_step = 1;
488f131b
JB
3895 print_stop_reason (END_STEPPING_RANGE, 0);
3896 stop_stepping (ecs);
3897 return;
3898 }
c906108c 3899
2afb61aa 3900 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
3901 && (ecs->event_thread->current_line != stop_pc_sal.line
3902 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
3903 {
3904 /* We are at the start of a different line. So stop. Note that
3905 we don't stop if we step into the middle of a different line.
3906 That is said to make things like for (;;) statements work
3907 better. */
527159b7 3908 if (debug_infrun)
8a9de0e4 3909 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
414c69f7 3910 ecs->event_thread->stop_step = 1;
488f131b
JB
3911 print_stop_reason (END_STEPPING_RANGE, 0);
3912 stop_stepping (ecs);
3913 return;
3914 }
c906108c 3915
488f131b 3916 /* We aren't done stepping.
c906108c 3917
488f131b
JB
3918 Optimize by setting the stepping range to the line.
3919 (We might not be in the original line, but if we entered a
3920 new line in mid-statement, we continue stepping. This makes
3921 things like for(;;) statements work better.) */
c906108c 3922
4e1c45ea
PA
3923 ecs->event_thread->step_range_start = stop_pc_sal.pc;
3924 ecs->event_thread->step_range_end = stop_pc_sal.end;
3925 ecs->event_thread->step_frame_id = get_frame_id (get_current_frame ());
3926 ecs->event_thread->current_line = stop_pc_sal.line;
3927 ecs->event_thread->current_symtab = stop_pc_sal.symtab;
488f131b 3928
527159b7 3929 if (debug_infrun)
8a9de0e4 3930 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 3931 keep_going (ecs);
104c1213
JM
3932}
3933
3934/* Are we in the middle of stepping? */
3935
a7212384
UW
3936static int
3937currently_stepping_thread (struct thread_info *tp)
3938{
3939 return (tp->step_range_end && tp->step_resume_breakpoint == NULL)
3940 || tp->trap_expected
3941 || tp->stepping_through_solib_after_catch;
3942}
3943
3944static int
3945currently_stepping_callback (struct thread_info *tp, void *data)
3946{
3947 /* Return true if any thread *but* the one passed in "data" is
3948 in the middle of stepping. */
3949 return tp != data && currently_stepping_thread (tp);
3950}
3951
104c1213 3952static int
4e1c45ea 3953currently_stepping (struct thread_info *tp)
104c1213 3954{
a7212384 3955 return currently_stepping_thread (tp) || bpstat_should_step ();
104c1213 3956}
c906108c 3957
b2175913
MS
3958/* Inferior has stepped into a subroutine call with source code that
3959 we should not step over. Do step to the first line of code in
3960 it. */
c2c6d25f
JM
3961
3962static void
b2175913 3963handle_step_into_function (struct execution_control_state *ecs)
c2c6d25f
JM
3964{
3965 struct symtab *s;
2afb61aa 3966 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f
JM
3967
3968 s = find_pc_symtab (stop_pc);
3969 if (s && s->language != language_asm)
b2175913
MS
3970 ecs->stop_func_start = gdbarch_skip_prologue (current_gdbarch,
3971 ecs->stop_func_start);
c2c6d25f 3972
2afb61aa 3973 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
3974 /* Use the step_resume_break to step until the end of the prologue,
3975 even if that involves jumps (as it seems to on the vax under
3976 4.2). */
3977 /* If the prologue ends in the middle of a source line, continue to
3978 the end of that source line (if it is still within the function).
3979 Otherwise, just go to end of prologue. */
2afb61aa
PA
3980 if (stop_func_sal.end
3981 && stop_func_sal.pc != ecs->stop_func_start
3982 && stop_func_sal.end < ecs->stop_func_end)
3983 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 3984
2dbd5e30
KB
3985 /* Architectures which require breakpoint adjustment might not be able
3986 to place a breakpoint at the computed address. If so, the test
3987 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
3988 ecs->stop_func_start to an address at which a breakpoint may be
3989 legitimately placed.
8fb3e588 3990
2dbd5e30
KB
3991 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
3992 made, GDB will enter an infinite loop when stepping through
3993 optimized code consisting of VLIW instructions which contain
3994 subinstructions corresponding to different source lines. On
3995 FR-V, it's not permitted to place a breakpoint on any but the
3996 first subinstruction of a VLIW instruction. When a breakpoint is
3997 set, GDB will adjust the breakpoint address to the beginning of
3998 the VLIW instruction. Thus, we need to make the corresponding
3999 adjustment here when computing the stop address. */
8fb3e588 4000
2dbd5e30
KB
4001 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
4002 {
4003 ecs->stop_func_start
4004 = gdbarch_adjust_breakpoint_address (current_gdbarch,
8fb3e588 4005 ecs->stop_func_start);
2dbd5e30
KB
4006 }
4007
c2c6d25f
JM
4008 if (ecs->stop_func_start == stop_pc)
4009 {
4010 /* We are already there: stop now. */
414c69f7 4011 ecs->event_thread->stop_step = 1;
488f131b 4012 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
4013 stop_stepping (ecs);
4014 return;
4015 }
4016 else
4017 {
4018 /* Put the step-breakpoint there and go until there. */
fe39c653 4019 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
4020 sr_sal.pc = ecs->stop_func_start;
4021 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
44cbf7b5 4022
c2c6d25f 4023 /* Do not specify what the fp should be when we stop since on
488f131b
JB
4024 some machines the prologue is where the new fp value is
4025 established. */
44cbf7b5 4026 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c2c6d25f
JM
4027
4028 /* And make sure stepping stops right away then. */
4e1c45ea 4029 ecs->event_thread->step_range_end = ecs->event_thread->step_range_start;
c2c6d25f
JM
4030 }
4031 keep_going (ecs);
4032}
d4f3574e 4033
b2175913
MS
4034/* Inferior has stepped backward into a subroutine call with source
4035 code that we should not step over. Do step to the beginning of the
4036 last line of code in it. */
4037
4038static void
4039handle_step_into_function_backward (struct execution_control_state *ecs)
4040{
4041 struct symtab *s;
4042 struct symtab_and_line stop_func_sal, sr_sal;
4043
4044 s = find_pc_symtab (stop_pc);
4045 if (s && s->language != language_asm)
4046 ecs->stop_func_start = gdbarch_skip_prologue (current_gdbarch,
4047 ecs->stop_func_start);
4048
4049 stop_func_sal = find_pc_line (stop_pc, 0);
4050
4051 /* OK, we're just going to keep stepping here. */
4052 if (stop_func_sal.pc == stop_pc)
4053 {
4054 /* We're there already. Just stop stepping now. */
4055 ecs->event_thread->stop_step = 1;
4056 print_stop_reason (END_STEPPING_RANGE, 0);
4057 stop_stepping (ecs);
4058 }
4059 else
4060 {
4061 /* Else just reset the step range and keep going.
4062 No step-resume breakpoint, they don't work for
4063 epilogues, which can have multiple entry paths. */
4064 ecs->event_thread->step_range_start = stop_func_sal.pc;
4065 ecs->event_thread->step_range_end = stop_func_sal.end;
4066 keep_going (ecs);
4067 }
4068 return;
4069}
4070
d3169d93 4071/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
4072 This is used to both functions and to skip over code. */
4073
4074static void
4075insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
4076 struct frame_id sr_id)
4077{
611c83ae
PA
4078 /* There should never be more than one step-resume or longjmp-resume
4079 breakpoint per thread, so we should never be setting a new
44cbf7b5 4080 step_resume_breakpoint when one is already active. */
4e1c45ea 4081 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
d3169d93
DJ
4082
4083 if (debug_infrun)
4084 fprintf_unfiltered (gdb_stdlog,
4085 "infrun: inserting step-resume breakpoint at 0x%s\n",
4086 paddr_nz (sr_sal.pc));
4087
4e1c45ea
PA
4088 inferior_thread ()->step_resume_breakpoint
4089 = set_momentary_breakpoint (sr_sal, sr_id, bp_step_resume);
44cbf7b5 4090}
7ce450bd 4091
d3169d93 4092/* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
14e60db5 4093 to skip a potential signal handler.
7ce450bd 4094
14e60db5
DJ
4095 This is called with the interrupted function's frame. The signal
4096 handler, when it returns, will resume the interrupted function at
4097 RETURN_FRAME.pc. */
d303a6c7
AC
4098
4099static void
44cbf7b5 4100insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
4101{
4102 struct symtab_and_line sr_sal;
4103
f4c1edd8 4104 gdb_assert (return_frame != NULL);
d303a6c7
AC
4105 init_sal (&sr_sal); /* initialize to zeros */
4106
bf6ae464
UW
4107 sr_sal.pc = gdbarch_addr_bits_remove
4108 (current_gdbarch, get_frame_pc (return_frame));
d303a6c7
AC
4109 sr_sal.section = find_pc_overlay (sr_sal.pc);
4110
44cbf7b5 4111 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
d303a6c7
AC
4112}
4113
14e60db5
DJ
4114/* Similar to insert_step_resume_breakpoint_at_frame, except
4115 but a breakpoint at the previous frame's PC. This is used to
4116 skip a function after stepping into it (for "next" or if the called
4117 function has no debugging information).
4118
4119 The current function has almost always been reached by single
4120 stepping a call or return instruction. NEXT_FRAME belongs to the
4121 current function, and the breakpoint will be set at the caller's
4122 resume address.
4123
4124 This is a separate function rather than reusing
4125 insert_step_resume_breakpoint_at_frame in order to avoid
4126 get_prev_frame, which may stop prematurely (see the implementation
eb2f4a08 4127 of frame_unwind_id for an example). */
14e60db5
DJ
4128
4129static void
4130insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
4131{
4132 struct symtab_and_line sr_sal;
4133
4134 /* We shouldn't have gotten here if we don't know where the call site
4135 is. */
eb2f4a08 4136 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
14e60db5
DJ
4137
4138 init_sal (&sr_sal); /* initialize to zeros */
4139
bf6ae464 4140 sr_sal.pc = gdbarch_addr_bits_remove
eb2f4a08 4141 (current_gdbarch, frame_pc_unwind (next_frame));
14e60db5
DJ
4142 sr_sal.section = find_pc_overlay (sr_sal.pc);
4143
eb2f4a08 4144 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
14e60db5
DJ
4145}
4146
611c83ae
PA
4147/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
4148 new breakpoint at the target of a jmp_buf. The handling of
4149 longjmp-resume uses the same mechanisms used for handling
4150 "step-resume" breakpoints. */
4151
4152static void
4153insert_longjmp_resume_breakpoint (CORE_ADDR pc)
4154{
4155 /* There should never be more than one step-resume or longjmp-resume
4156 breakpoint per thread, so we should never be setting a new
4157 longjmp_resume_breakpoint when one is already active. */
4e1c45ea 4158 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
611c83ae
PA
4159
4160 if (debug_infrun)
4161 fprintf_unfiltered (gdb_stdlog,
4162 "infrun: inserting longjmp-resume breakpoint at 0x%s\n",
4163 paddr_nz (pc));
4164
4e1c45ea 4165 inferior_thread ()->step_resume_breakpoint =
611c83ae
PA
4166 set_momentary_breakpoint_at_pc (pc, bp_longjmp_resume);
4167}
4168
104c1213
JM
4169static void
4170stop_stepping (struct execution_control_state *ecs)
4171{
527159b7 4172 if (debug_infrun)
8a9de0e4 4173 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 4174
cd0fc7c3
SS
4175 /* Let callers know we don't want to wait for the inferior anymore. */
4176 ecs->wait_some_more = 0;
4177}
4178
d4f3574e
SS
4179/* This function handles various cases where we need to continue
4180 waiting for the inferior. */
4181/* (Used to be the keep_going: label in the old wait_for_inferior) */
4182
4183static void
4184keep_going (struct execution_control_state *ecs)
4185{
d4f3574e 4186 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
4187 ecs->event_thread->prev_pc
4188 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 4189
d4f3574e
SS
4190 /* If we did not do break;, it means we should keep running the
4191 inferior and not return to debugger. */
4192
2020b7ab
PA
4193 if (ecs->event_thread->trap_expected
4194 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
d4f3574e
SS
4195 {
4196 /* We took a signal (which we are supposed to pass through to
4e1c45ea
PA
4197 the inferior, else we'd not get here) and we haven't yet
4198 gotten our trap. Simply continue. */
2020b7ab
PA
4199 resume (currently_stepping (ecs->event_thread),
4200 ecs->event_thread->stop_signal);
d4f3574e
SS
4201 }
4202 else
4203 {
4204 /* Either the trap was not expected, but we are continuing
488f131b
JB
4205 anyway (the user asked that this signal be passed to the
4206 child)
4207 -- or --
4208 The signal was SIGTRAP, e.g. it was our signal, but we
4209 decided we should resume from it.
d4f3574e 4210
c36b740a 4211 We're going to run this baby now!
d4f3574e 4212
c36b740a
VP
4213 Note that insert_breakpoints won't try to re-insert
4214 already inserted breakpoints. Therefore, we don't
4215 care if breakpoints were already inserted, or not. */
4216
4e1c45ea 4217 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 4218 {
237fc4c9
PA
4219 if (! use_displaced_stepping (current_gdbarch))
4220 /* Since we can't do a displaced step, we have to remove
4221 the breakpoint while we step it. To keep things
4222 simple, we remove them all. */
4223 remove_breakpoints ();
45e8c884
VP
4224 }
4225 else
d4f3574e 4226 {
e236ba44 4227 struct gdb_exception e;
569631c6
UW
4228 /* Stop stepping when inserting breakpoints
4229 has failed. */
e236ba44
VP
4230 TRY_CATCH (e, RETURN_MASK_ERROR)
4231 {
4232 insert_breakpoints ();
4233 }
4234 if (e.reason < 0)
d4f3574e
SS
4235 {
4236 stop_stepping (ecs);
4237 return;
4238 }
d4f3574e
SS
4239 }
4240
4e1c45ea 4241 ecs->event_thread->trap_expected = ecs->event_thread->stepping_over_breakpoint;
d4f3574e
SS
4242
4243 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
4244 specifies that such a signal should be delivered to the
4245 target program).
4246
4247 Typically, this would occure when a user is debugging a
4248 target monitor on a simulator: the target monitor sets a
4249 breakpoint; the simulator encounters this break-point and
4250 halts the simulation handing control to GDB; GDB, noteing
4251 that the break-point isn't valid, returns control back to the
4252 simulator; the simulator then delivers the hardware
4253 equivalent of a SIGNAL_TRAP to the program being debugged. */
4254
2020b7ab
PA
4255 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4256 && !signal_program[ecs->event_thread->stop_signal])
4257 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
d4f3574e 4258
2020b7ab
PA
4259 resume (currently_stepping (ecs->event_thread),
4260 ecs->event_thread->stop_signal);
d4f3574e
SS
4261 }
4262
488f131b 4263 prepare_to_wait (ecs);
d4f3574e
SS
4264}
4265
104c1213
JM
4266/* This function normally comes after a resume, before
4267 handle_inferior_event exits. It takes care of any last bits of
4268 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 4269
104c1213
JM
4270static void
4271prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 4272{
527159b7 4273 if (debug_infrun)
8a9de0e4 4274 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
0d1e5fa7 4275 if (infwait_state == infwait_normal_state)
104c1213
JM
4276 {
4277 overlay_cache_invalid = 1;
4278
4279 /* We have to invalidate the registers BEFORE calling
488f131b
JB
4280 target_wait because they can be loaded from the target while
4281 in target_wait. This makes remote debugging a bit more
4282 efficient for those targets that provide critical registers
4283 as part of their normal status mechanism. */
104c1213
JM
4284
4285 registers_changed ();
0d1e5fa7 4286 waiton_ptid = pid_to_ptid (-1);
104c1213
JM
4287 }
4288 /* This is the old end of the while loop. Let everybody know we
4289 want to wait for the inferior some more and get called again
4290 soon. */
4291 ecs->wait_some_more = 1;
c906108c 4292}
11cf8741
JM
4293
4294/* Print why the inferior has stopped. We always print something when
4295 the inferior exits, or receives a signal. The rest of the cases are
4296 dealt with later on in normal_stop() and print_it_typical(). Ideally
4297 there should be a call to this function from handle_inferior_event()
4298 each time stop_stepping() is called.*/
4299static void
4300print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
4301{
4302 switch (stop_reason)
4303 {
11cf8741
JM
4304 case END_STEPPING_RANGE:
4305 /* We are done with a step/next/si/ni command. */
4306 /* For now print nothing. */
fb40c209 4307 /* Print a message only if not in the middle of doing a "step n"
488f131b 4308 operation for n > 1 */
414c69f7
PA
4309 if (!inferior_thread ()->step_multi
4310 || !inferior_thread ()->stop_step)
9dc5e2a9 4311 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4312 ui_out_field_string
4313 (uiout, "reason",
4314 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
11cf8741 4315 break;
11cf8741
JM
4316 case SIGNAL_EXITED:
4317 /* The inferior was terminated by a signal. */
8b93c638 4318 annotate_signalled ();
9dc5e2a9 4319 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4320 ui_out_field_string
4321 (uiout, "reason",
4322 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8b93c638
JM
4323 ui_out_text (uiout, "\nProgram terminated with signal ");
4324 annotate_signal_name ();
488f131b
JB
4325 ui_out_field_string (uiout, "signal-name",
4326 target_signal_to_name (stop_info));
8b93c638
JM
4327 annotate_signal_name_end ();
4328 ui_out_text (uiout, ", ");
4329 annotate_signal_string ();
488f131b
JB
4330 ui_out_field_string (uiout, "signal-meaning",
4331 target_signal_to_string (stop_info));
8b93c638
JM
4332 annotate_signal_string_end ();
4333 ui_out_text (uiout, ".\n");
4334 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
4335 break;
4336 case EXITED:
4337 /* The inferior program is finished. */
8b93c638
JM
4338 annotate_exited (stop_info);
4339 if (stop_info)
4340 {
9dc5e2a9 4341 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4342 ui_out_field_string (uiout, "reason",
4343 async_reason_lookup (EXEC_ASYNC_EXITED));
8b93c638 4344 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
4345 ui_out_field_fmt (uiout, "exit-code", "0%o",
4346 (unsigned int) stop_info);
8b93c638
JM
4347 ui_out_text (uiout, ".\n");
4348 }
4349 else
4350 {
9dc5e2a9 4351 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4352 ui_out_field_string
4353 (uiout, "reason",
4354 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8b93c638
JM
4355 ui_out_text (uiout, "\nProgram exited normally.\n");
4356 }
f17517ea
AS
4357 /* Support the --return-child-result option. */
4358 return_child_result_value = stop_info;
11cf8741
JM
4359 break;
4360 case SIGNAL_RECEIVED:
252fbfc8
PA
4361 /* Signal received. The signal table tells us to print about
4362 it. */
8b93c638 4363 annotate_signal ();
252fbfc8
PA
4364
4365 if (stop_info == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
4366 {
4367 struct thread_info *t = inferior_thread ();
4368
4369 ui_out_text (uiout, "\n[");
4370 ui_out_field_string (uiout, "thread-name",
4371 target_pid_to_str (t->ptid));
4372 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
4373 ui_out_text (uiout, " stopped");
4374 }
4375 else
4376 {
4377 ui_out_text (uiout, "\nProgram received signal ");
4378 annotate_signal_name ();
4379 if (ui_out_is_mi_like_p (uiout))
4380 ui_out_field_string
4381 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
4382 ui_out_field_string (uiout, "signal-name",
4383 target_signal_to_name (stop_info));
4384 annotate_signal_name_end ();
4385 ui_out_text (uiout, ", ");
4386 annotate_signal_string ();
4387 ui_out_field_string (uiout, "signal-meaning",
4388 target_signal_to_string (stop_info));
4389 annotate_signal_string_end ();
4390 }
8b93c638 4391 ui_out_text (uiout, ".\n");
11cf8741 4392 break;
b2175913
MS
4393 case NO_HISTORY:
4394 /* Reverse execution: target ran out of history info. */
4395 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
4396 break;
11cf8741 4397 default:
8e65ff28 4398 internal_error (__FILE__, __LINE__,
e2e0b3e5 4399 _("print_stop_reason: unrecognized enum value"));
11cf8741
JM
4400 break;
4401 }
4402}
c906108c 4403\f
43ff13b4 4404
c906108c
SS
4405/* Here to return control to GDB when the inferior stops for real.
4406 Print appropriate messages, remove breakpoints, give terminal our modes.
4407
4408 STOP_PRINT_FRAME nonzero means print the executing frame
4409 (pc, function, args, file, line number and line text).
4410 BREAKPOINTS_FAILED nonzero means stop was due to error
4411 attempting to insert breakpoints. */
4412
4413void
96baa820 4414normal_stop (void)
c906108c 4415{
73b65bb0
DJ
4416 struct target_waitstatus last;
4417 ptid_t last_ptid;
29f49a6a 4418 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
4419
4420 get_last_target_status (&last_ptid, &last);
4421
29f49a6a
PA
4422 /* If an exception is thrown from this point on, make sure to
4423 propagate GDB's knowledge of the executing state to the
4424 frontend/user running state. A QUIT is an easy exception to see
4425 here, so do this before any filtered output. */
4426 if (target_has_execution)
4427 {
4428 if (!non_stop)
fee0be5d 4429 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
29f49a6a
PA
4430 else if (last.kind != TARGET_WAITKIND_SIGNALLED
4431 && last.kind != TARGET_WAITKIND_EXITED)
fee0be5d 4432 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a
PA
4433 }
4434
4f8d22e3
PA
4435 /* In non-stop mode, we don't want GDB to switch threads behind the
4436 user's back, to avoid races where the user is typing a command to
4437 apply to thread x, but GDB switches to thread y before the user
4438 finishes entering the command. */
4439
c906108c
SS
4440 /* As with the notification of thread events, we want to delay
4441 notifying the user that we've switched thread context until
4442 the inferior actually stops.
4443
73b65bb0
DJ
4444 There's no point in saying anything if the inferior has exited.
4445 Note that SIGNALLED here means "exited with a signal", not
4446 "received a signal". */
4f8d22e3
PA
4447 if (!non_stop
4448 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
4449 && target_has_execution
4450 && last.kind != TARGET_WAITKIND_SIGNALLED
4451 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
4452 {
4453 target_terminal_ours_for_output ();
a3f17187 4454 printf_filtered (_("[Switching to %s]\n"),
c95310c6 4455 target_pid_to_str (inferior_ptid));
b8fa951a 4456 annotate_thread_changed ();
39f77062 4457 previous_inferior_ptid = inferior_ptid;
c906108c 4458 }
c906108c 4459
74960c60 4460 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
4461 {
4462 if (remove_breakpoints ())
4463 {
4464 target_terminal_ours_for_output ();
a3f17187
AC
4465 printf_filtered (_("\
4466Cannot remove breakpoints because program is no longer writable.\n\
a3f17187 4467Further execution is probably impossible.\n"));
c906108c
SS
4468 }
4469 }
c906108c 4470
c906108c
SS
4471 /* If an auto-display called a function and that got a signal,
4472 delete that auto-display to avoid an infinite recursion. */
4473
4474 if (stopped_by_random_signal)
4475 disable_current_display ();
4476
4477 /* Don't print a message if in the middle of doing a "step n"
4478 operation for n > 1 */
af679fd0
PA
4479 if (target_has_execution
4480 && last.kind != TARGET_WAITKIND_SIGNALLED
4481 && last.kind != TARGET_WAITKIND_EXITED
4482 && inferior_thread ()->step_multi
414c69f7 4483 && inferior_thread ()->stop_step)
c906108c
SS
4484 goto done;
4485
4486 target_terminal_ours ();
4487
7abfe014
DJ
4488 /* Set the current source location. This will also happen if we
4489 display the frame below, but the current SAL will be incorrect
4490 during a user hook-stop function. */
d729566a 4491 if (has_stack_frames () && !stop_stack_dummy)
7abfe014
DJ
4492 set_current_sal_from_frame (get_current_frame (), 1);
4493
dd7e2d2b
PA
4494 /* Let the user/frontend see the threads as stopped. */
4495 do_cleanups (old_chain);
4496
4497 /* Look up the hook_stop and run it (CLI internally handles problem
4498 of stop_command's pre-hook not existing). */
4499 if (stop_command)
4500 catch_errors (hook_stop_stub, stop_command,
4501 "Error while running hook_stop:\n", RETURN_MASK_ALL);
4502
d729566a 4503 if (!has_stack_frames ())
d51fd4c8 4504 goto done;
c906108c 4505
32400beb
PA
4506 if (last.kind == TARGET_WAITKIND_SIGNALLED
4507 || last.kind == TARGET_WAITKIND_EXITED)
4508 goto done;
4509
c906108c
SS
4510 /* Select innermost stack frame - i.e., current frame is frame 0,
4511 and current location is based on that.
4512 Don't do this on return from a stack dummy routine,
4513 or if the program has exited. */
4514
4515 if (!stop_stack_dummy)
4516 {
0f7d239c 4517 select_frame (get_current_frame ());
c906108c
SS
4518
4519 /* Print current location without a level number, if
c5aa993b
JM
4520 we have changed functions or hit a breakpoint.
4521 Print source line if we have one.
4522 bpstat_print() contains the logic deciding in detail
4523 what to print, based on the event(s) that just occurred. */
c906108c 4524
d01a8610
AS
4525 /* If --batch-silent is enabled then there's no need to print the current
4526 source location, and to try risks causing an error message about
4527 missing source files. */
4528 if (stop_print_frame && !batch_silent)
c906108c
SS
4529 {
4530 int bpstat_ret;
4531 int source_flag;
917317f4 4532 int do_frame_printing = 1;
347bddb7 4533 struct thread_info *tp = inferior_thread ();
c906108c 4534
347bddb7 4535 bpstat_ret = bpstat_print (tp->stop_bpstat);
917317f4
JM
4536 switch (bpstat_ret)
4537 {
4538 case PRINT_UNKNOWN:
b0f4b84b
DJ
4539 /* If we had hit a shared library event breakpoint,
4540 bpstat_print would print out this message. If we hit
4541 an OS-level shared library event, do the same
4542 thing. */
4543 if (last.kind == TARGET_WAITKIND_LOADED)
4544 {
4545 printf_filtered (_("Stopped due to shared library event\n"));
4546 source_flag = SRC_LINE; /* something bogus */
4547 do_frame_printing = 0;
4548 break;
4549 }
4550
aa0cd9c1 4551 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
4552 (or should) carry around the function and does (or
4553 should) use that when doing a frame comparison. */
414c69f7 4554 if (tp->stop_step
347bddb7 4555 && frame_id_eq (tp->step_frame_id,
aa0cd9c1 4556 get_frame_id (get_current_frame ()))
917317f4 4557 && step_start_function == find_pc_function (stop_pc))
488f131b 4558 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 4559 else
488f131b 4560 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
4561 break;
4562 case PRINT_SRC_AND_LOC:
488f131b 4563 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
4564 break;
4565 case PRINT_SRC_ONLY:
c5394b80 4566 source_flag = SRC_LINE;
917317f4
JM
4567 break;
4568 case PRINT_NOTHING:
488f131b 4569 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
4570 do_frame_printing = 0;
4571 break;
4572 default:
e2e0b3e5 4573 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 4574 }
c906108c
SS
4575
4576 /* The behavior of this routine with respect to the source
4577 flag is:
c5394b80
JM
4578 SRC_LINE: Print only source line
4579 LOCATION: Print only location
4580 SRC_AND_LOC: Print location and source line */
917317f4 4581 if (do_frame_printing)
b04f3ab4 4582 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
4583
4584 /* Display the auto-display expressions. */
4585 do_displays ();
4586 }
4587 }
4588
4589 /* Save the function value return registers, if we care.
4590 We might be about to restore their previous contents. */
32400beb 4591 if (inferior_thread ()->proceed_to_finish)
d5c31457
UW
4592 {
4593 /* This should not be necessary. */
4594 if (stop_registers)
4595 regcache_xfree (stop_registers);
4596
4597 /* NB: The copy goes through to the target picking up the value of
4598 all the registers. */
4599 stop_registers = regcache_dup (get_current_regcache ());
4600 }
c906108c
SS
4601
4602 if (stop_stack_dummy)
4603 {
b89667eb
DE
4604 /* Pop the empty frame that contains the stack dummy.
4605 This also restores inferior state prior to the call
4606 (struct inferior_thread_state). */
4607 struct frame_info *frame = get_current_frame ();
4608 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
4609 frame_pop (frame);
4610 /* frame_pop() calls reinit_frame_cache as the last thing it does
4611 which means there's currently no selected frame. We don't need
4612 to re-establish a selected frame if the dummy call returns normally,
4613 that will be done by restore_inferior_status. However, we do have
4614 to handle the case where the dummy call is returning after being
4615 stopped (e.g. the dummy call previously hit a breakpoint). We
4616 can't know which case we have so just always re-establish a
4617 selected frame here. */
0f7d239c 4618 select_frame (get_current_frame ());
c906108c
SS
4619 }
4620
c906108c
SS
4621done:
4622 annotate_stopped ();
41d2bdb4
PA
4623
4624 /* Suppress the stop observer if we're in the middle of:
4625
4626 - a step n (n > 1), as there still more steps to be done.
4627
4628 - a "finish" command, as the observer will be called in
4629 finish_command_continuation, so it can include the inferior
4630 function's return value.
4631
4632 - calling an inferior function, as we pretend we inferior didn't
4633 run at all. The return value of the call is handled by the
4634 expression evaluator, through call_function_by_hand. */
4635
4636 if (!target_has_execution
4637 || last.kind == TARGET_WAITKIND_SIGNALLED
4638 || last.kind == TARGET_WAITKIND_EXITED
4639 || (!inferior_thread ()->step_multi
4640 && !(inferior_thread ()->stop_bpstat
c5a4d20b
PA
4641 && inferior_thread ()->proceed_to_finish)
4642 && !inferior_thread ()->in_infcall))
347bddb7
PA
4643 {
4644 if (!ptid_equal (inferior_ptid, null_ptid))
1d33d6ba
VP
4645 observer_notify_normal_stop (inferior_thread ()->stop_bpstat,
4646 stop_print_frame);
347bddb7 4647 else
1d33d6ba 4648 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 4649 }
347bddb7 4650
48844aa6
PA
4651 if (target_has_execution)
4652 {
4653 if (last.kind != TARGET_WAITKIND_SIGNALLED
4654 && last.kind != TARGET_WAITKIND_EXITED)
4655 /* Delete the breakpoint we stopped at, if it wants to be deleted.
4656 Delete any breakpoint that is to be deleted at the next stop. */
4657 breakpoint_auto_delete (inferior_thread ()->stop_bpstat);
94cc34af 4658 }
c906108c
SS
4659}
4660
4661static int
96baa820 4662hook_stop_stub (void *cmd)
c906108c 4663{
5913bcb0 4664 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
4665 return (0);
4666}
4667\f
c5aa993b 4668int
96baa820 4669signal_stop_state (int signo)
c906108c 4670{
d6b48e9c 4671 return signal_stop[signo];
c906108c
SS
4672}
4673
c5aa993b 4674int
96baa820 4675signal_print_state (int signo)
c906108c
SS
4676{
4677 return signal_print[signo];
4678}
4679
c5aa993b 4680int
96baa820 4681signal_pass_state (int signo)
c906108c
SS
4682{
4683 return signal_program[signo];
4684}
4685
488f131b 4686int
7bda5e4a 4687signal_stop_update (int signo, int state)
d4f3574e
SS
4688{
4689 int ret = signal_stop[signo];
4690 signal_stop[signo] = state;
4691 return ret;
4692}
4693
488f131b 4694int
7bda5e4a 4695signal_print_update (int signo, int state)
d4f3574e
SS
4696{
4697 int ret = signal_print[signo];
4698 signal_print[signo] = state;
4699 return ret;
4700}
4701
488f131b 4702int
7bda5e4a 4703signal_pass_update (int signo, int state)
d4f3574e
SS
4704{
4705 int ret = signal_program[signo];
4706 signal_program[signo] = state;
4707 return ret;
4708}
4709
c906108c 4710static void
96baa820 4711sig_print_header (void)
c906108c 4712{
a3f17187
AC
4713 printf_filtered (_("\
4714Signal Stop\tPrint\tPass to program\tDescription\n"));
c906108c
SS
4715}
4716
4717static void
96baa820 4718sig_print_info (enum target_signal oursig)
c906108c 4719{
54363045 4720 const char *name = target_signal_to_name (oursig);
c906108c 4721 int name_padding = 13 - strlen (name);
96baa820 4722
c906108c
SS
4723 if (name_padding <= 0)
4724 name_padding = 0;
4725
4726 printf_filtered ("%s", name);
488f131b 4727 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
4728 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
4729 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
4730 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
4731 printf_filtered ("%s\n", target_signal_to_string (oursig));
4732}
4733
4734/* Specify how various signals in the inferior should be handled. */
4735
4736static void
96baa820 4737handle_command (char *args, int from_tty)
c906108c
SS
4738{
4739 char **argv;
4740 int digits, wordlen;
4741 int sigfirst, signum, siglast;
4742 enum target_signal oursig;
4743 int allsigs;
4744 int nsigs;
4745 unsigned char *sigs;
4746 struct cleanup *old_chain;
4747
4748 if (args == NULL)
4749 {
e2e0b3e5 4750 error_no_arg (_("signal to handle"));
c906108c
SS
4751 }
4752
4753 /* Allocate and zero an array of flags for which signals to handle. */
4754
4755 nsigs = (int) TARGET_SIGNAL_LAST;
4756 sigs = (unsigned char *) alloca (nsigs);
4757 memset (sigs, 0, nsigs);
4758
4759 /* Break the command line up into args. */
4760
d1a41061 4761 argv = gdb_buildargv (args);
7a292a7a 4762 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
4763
4764 /* Walk through the args, looking for signal oursigs, signal names, and
4765 actions. Signal numbers and signal names may be interspersed with
4766 actions, with the actions being performed for all signals cumulatively
4767 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
4768
4769 while (*argv != NULL)
4770 {
4771 wordlen = strlen (*argv);
4772 for (digits = 0; isdigit ((*argv)[digits]); digits++)
4773 {;
4774 }
4775 allsigs = 0;
4776 sigfirst = siglast = -1;
4777
4778 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
4779 {
4780 /* Apply action to all signals except those used by the
4781 debugger. Silently skip those. */
4782 allsigs = 1;
4783 sigfirst = 0;
4784 siglast = nsigs - 1;
4785 }
4786 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
4787 {
4788 SET_SIGS (nsigs, sigs, signal_stop);
4789 SET_SIGS (nsigs, sigs, signal_print);
4790 }
4791 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
4792 {
4793 UNSET_SIGS (nsigs, sigs, signal_program);
4794 }
4795 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
4796 {
4797 SET_SIGS (nsigs, sigs, signal_print);
4798 }
4799 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
4800 {
4801 SET_SIGS (nsigs, sigs, signal_program);
4802 }
4803 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
4804 {
4805 UNSET_SIGS (nsigs, sigs, signal_stop);
4806 }
4807 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
4808 {
4809 SET_SIGS (nsigs, sigs, signal_program);
4810 }
4811 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
4812 {
4813 UNSET_SIGS (nsigs, sigs, signal_print);
4814 UNSET_SIGS (nsigs, sigs, signal_stop);
4815 }
4816 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
4817 {
4818 UNSET_SIGS (nsigs, sigs, signal_program);
4819 }
4820 else if (digits > 0)
4821 {
4822 /* It is numeric. The numeric signal refers to our own
4823 internal signal numbering from target.h, not to host/target
4824 signal number. This is a feature; users really should be
4825 using symbolic names anyway, and the common ones like
4826 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
4827
4828 sigfirst = siglast = (int)
4829 target_signal_from_command (atoi (*argv));
4830 if ((*argv)[digits] == '-')
4831 {
4832 siglast = (int)
4833 target_signal_from_command (atoi ((*argv) + digits + 1));
4834 }
4835 if (sigfirst > siglast)
4836 {
4837 /* Bet he didn't figure we'd think of this case... */
4838 signum = sigfirst;
4839 sigfirst = siglast;
4840 siglast = signum;
4841 }
4842 }
4843 else
4844 {
4845 oursig = target_signal_from_name (*argv);
4846 if (oursig != TARGET_SIGNAL_UNKNOWN)
4847 {
4848 sigfirst = siglast = (int) oursig;
4849 }
4850 else
4851 {
4852 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 4853 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
4854 }
4855 }
4856
4857 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 4858 which signals to apply actions to. */
c906108c
SS
4859
4860 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
4861 {
4862 switch ((enum target_signal) signum)
4863 {
4864 case TARGET_SIGNAL_TRAP:
4865 case TARGET_SIGNAL_INT:
4866 if (!allsigs && !sigs[signum])
4867 {
9e2f0ad4
HZ
4868 if (query (_("%s is used by the debugger.\n\
4869Are you sure you want to change it? "), target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
4870 {
4871 sigs[signum] = 1;
4872 }
4873 else
4874 {
a3f17187 4875 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
4876 gdb_flush (gdb_stdout);
4877 }
4878 }
4879 break;
4880 case TARGET_SIGNAL_0:
4881 case TARGET_SIGNAL_DEFAULT:
4882 case TARGET_SIGNAL_UNKNOWN:
4883 /* Make sure that "all" doesn't print these. */
4884 break;
4885 default:
4886 sigs[signum] = 1;
4887 break;
4888 }
4889 }
4890
4891 argv++;
4892 }
4893
3a031f65
PA
4894 for (signum = 0; signum < nsigs; signum++)
4895 if (sigs[signum])
4896 {
4897 target_notice_signals (inferior_ptid);
c906108c 4898
3a031f65
PA
4899 if (from_tty)
4900 {
4901 /* Show the results. */
4902 sig_print_header ();
4903 for (; signum < nsigs; signum++)
4904 if (sigs[signum])
4905 sig_print_info (signum);
4906 }
4907
4908 break;
4909 }
c906108c
SS
4910
4911 do_cleanups (old_chain);
4912}
4913
4914static void
96baa820 4915xdb_handle_command (char *args, int from_tty)
c906108c
SS
4916{
4917 char **argv;
4918 struct cleanup *old_chain;
4919
d1a41061
PP
4920 if (args == NULL)
4921 error_no_arg (_("xdb command"));
4922
c906108c
SS
4923 /* Break the command line up into args. */
4924
d1a41061 4925 argv = gdb_buildargv (args);
7a292a7a 4926 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
4927 if (argv[1] != (char *) NULL)
4928 {
4929 char *argBuf;
4930 int bufLen;
4931
4932 bufLen = strlen (argv[0]) + 20;
4933 argBuf = (char *) xmalloc (bufLen);
4934 if (argBuf)
4935 {
4936 int validFlag = 1;
4937 enum target_signal oursig;
4938
4939 oursig = target_signal_from_name (argv[0]);
4940 memset (argBuf, 0, bufLen);
4941 if (strcmp (argv[1], "Q") == 0)
4942 sprintf (argBuf, "%s %s", argv[0], "noprint");
4943 else
4944 {
4945 if (strcmp (argv[1], "s") == 0)
4946 {
4947 if (!signal_stop[oursig])
4948 sprintf (argBuf, "%s %s", argv[0], "stop");
4949 else
4950 sprintf (argBuf, "%s %s", argv[0], "nostop");
4951 }
4952 else if (strcmp (argv[1], "i") == 0)
4953 {
4954 if (!signal_program[oursig])
4955 sprintf (argBuf, "%s %s", argv[0], "pass");
4956 else
4957 sprintf (argBuf, "%s %s", argv[0], "nopass");
4958 }
4959 else if (strcmp (argv[1], "r") == 0)
4960 {
4961 if (!signal_print[oursig])
4962 sprintf (argBuf, "%s %s", argv[0], "print");
4963 else
4964 sprintf (argBuf, "%s %s", argv[0], "noprint");
4965 }
4966 else
4967 validFlag = 0;
4968 }
4969 if (validFlag)
4970 handle_command (argBuf, from_tty);
4971 else
a3f17187 4972 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 4973 if (argBuf)
b8c9b27d 4974 xfree (argBuf);
c906108c
SS
4975 }
4976 }
4977 do_cleanups (old_chain);
4978}
4979
4980/* Print current contents of the tables set by the handle command.
4981 It is possible we should just be printing signals actually used
4982 by the current target (but for things to work right when switching
4983 targets, all signals should be in the signal tables). */
4984
4985static void
96baa820 4986signals_info (char *signum_exp, int from_tty)
c906108c
SS
4987{
4988 enum target_signal oursig;
4989 sig_print_header ();
4990
4991 if (signum_exp)
4992 {
4993 /* First see if this is a symbol name. */
4994 oursig = target_signal_from_name (signum_exp);
4995 if (oursig == TARGET_SIGNAL_UNKNOWN)
4996 {
4997 /* No, try numeric. */
4998 oursig =
bb518678 4999 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
5000 }
5001 sig_print_info (oursig);
5002 return;
5003 }
5004
5005 printf_filtered ("\n");
5006 /* These ugly casts brought to you by the native VAX compiler. */
5007 for (oursig = TARGET_SIGNAL_FIRST;
5008 (int) oursig < (int) TARGET_SIGNAL_LAST;
5009 oursig = (enum target_signal) ((int) oursig + 1))
5010 {
5011 QUIT;
5012
5013 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 5014 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
5015 sig_print_info (oursig);
5016 }
5017
a3f17187 5018 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
c906108c 5019}
4aa995e1
PA
5020
5021/* The $_siginfo convenience variable is a bit special. We don't know
5022 for sure the type of the value until we actually have a chance to
5023 fetch the data. The type can change depending on gdbarch, so it it
5024 also dependent on which thread you have selected.
5025
5026 1. making $_siginfo be an internalvar that creates a new value on
5027 access.
5028
5029 2. making the value of $_siginfo be an lval_computed value. */
5030
5031/* This function implements the lval_computed support for reading a
5032 $_siginfo value. */
5033
5034static void
5035siginfo_value_read (struct value *v)
5036{
5037 LONGEST transferred;
5038
5039 transferred =
5040 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
5041 NULL,
5042 value_contents_all_raw (v),
5043 value_offset (v),
5044 TYPE_LENGTH (value_type (v)));
5045
5046 if (transferred != TYPE_LENGTH (value_type (v)))
5047 error (_("Unable to read siginfo"));
5048}
5049
5050/* This function implements the lval_computed support for writing a
5051 $_siginfo value. */
5052
5053static void
5054siginfo_value_write (struct value *v, struct value *fromval)
5055{
5056 LONGEST transferred;
5057
5058 transferred = target_write (&current_target,
5059 TARGET_OBJECT_SIGNAL_INFO,
5060 NULL,
5061 value_contents_all_raw (fromval),
5062 value_offset (v),
5063 TYPE_LENGTH (value_type (fromval)));
5064
5065 if (transferred != TYPE_LENGTH (value_type (fromval)))
5066 error (_("Unable to write siginfo"));
5067}
5068
5069static struct lval_funcs siginfo_value_funcs =
5070 {
5071 siginfo_value_read,
5072 siginfo_value_write
5073 };
5074
5075/* Return a new value with the correct type for the siginfo object of
5076 the current thread. Return a void value if there's no object
5077 available. */
5078
2c0b251b 5079static struct value *
4aa995e1
PA
5080siginfo_make_value (struct internalvar *var)
5081{
5082 struct type *type;
5083 struct gdbarch *gdbarch;
5084
5085 if (target_has_stack
5086 && !ptid_equal (inferior_ptid, null_ptid))
5087 {
5088 gdbarch = get_frame_arch (get_current_frame ());
5089
5090 if (gdbarch_get_siginfo_type_p (gdbarch))
5091 {
5092 type = gdbarch_get_siginfo_type (gdbarch);
5093
5094 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
5095 }
5096 }
5097
5098 return allocate_value (builtin_type_void);
5099}
5100
c906108c 5101\f
b89667eb
DE
5102/* Inferior thread state.
5103 These are details related to the inferior itself, and don't include
5104 things like what frame the user had selected or what gdb was doing
5105 with the target at the time.
5106 For inferior function calls these are things we want to restore
5107 regardless of whether the function call successfully completes
5108 or the dummy frame has to be manually popped. */
5109
5110struct inferior_thread_state
7a292a7a
SS
5111{
5112 enum target_signal stop_signal;
5113 CORE_ADDR stop_pc;
b89667eb
DE
5114 struct regcache *registers;
5115};
5116
5117struct inferior_thread_state *
5118save_inferior_thread_state (void)
5119{
5120 struct inferior_thread_state *inf_state = XMALLOC (struct inferior_thread_state);
5121 struct thread_info *tp = inferior_thread ();
5122
5123 inf_state->stop_signal = tp->stop_signal;
5124 inf_state->stop_pc = stop_pc;
5125
5126 inf_state->registers = regcache_dup (get_current_regcache ());
5127
5128 return inf_state;
5129}
5130
5131/* Restore inferior session state to INF_STATE. */
5132
5133void
5134restore_inferior_thread_state (struct inferior_thread_state *inf_state)
5135{
5136 struct thread_info *tp = inferior_thread ();
5137
5138 tp->stop_signal = inf_state->stop_signal;
5139 stop_pc = inf_state->stop_pc;
5140
5141 /* The inferior can be gone if the user types "print exit(0)"
5142 (and perhaps other times). */
5143 if (target_has_execution)
5144 /* NB: The register write goes through to the target. */
5145 regcache_cpy (get_current_regcache (), inf_state->registers);
5146 regcache_xfree (inf_state->registers);
5147 xfree (inf_state);
5148}
5149
5150static void
5151do_restore_inferior_thread_state_cleanup (void *state)
5152{
5153 restore_inferior_thread_state (state);
5154}
5155
5156struct cleanup *
5157make_cleanup_restore_inferior_thread_state (struct inferior_thread_state *inf_state)
5158{
5159 return make_cleanup (do_restore_inferior_thread_state_cleanup, inf_state);
5160}
5161
5162void
5163discard_inferior_thread_state (struct inferior_thread_state *inf_state)
5164{
5165 regcache_xfree (inf_state->registers);
5166 xfree (inf_state);
5167}
5168
5169struct regcache *
5170get_inferior_thread_state_regcache (struct inferior_thread_state *inf_state)
5171{
5172 return inf_state->registers;
5173}
5174
5175/* Session related state for inferior function calls.
5176 These are the additional bits of state that need to be restored
5177 when an inferior function call successfully completes. */
5178
5179struct inferior_status
5180{
7a292a7a
SS
5181 bpstat stop_bpstat;
5182 int stop_step;
5183 int stop_stack_dummy;
5184 int stopped_by_random_signal;
ca67fcb8 5185 int stepping_over_breakpoint;
7a292a7a
SS
5186 CORE_ADDR step_range_start;
5187 CORE_ADDR step_range_end;
aa0cd9c1 5188 struct frame_id step_frame_id;
5fbbeb29 5189 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
5190 CORE_ADDR step_resume_break_address;
5191 int stop_after_trap;
c0236d92 5192 int stop_soon;
7a292a7a 5193
b89667eb 5194 /* ID if the selected frame when the inferior function call was made. */
101dcfbe
AC
5195 struct frame_id selected_frame_id;
5196
7a292a7a 5197 int proceed_to_finish;
c5a4d20b 5198 int in_infcall;
7a292a7a
SS
5199};
5200
c906108c 5201/* Save all of the information associated with the inferior<==>gdb
b89667eb 5202 connection. */
c906108c 5203
7a292a7a 5204struct inferior_status *
b89667eb 5205save_inferior_status (void)
c906108c 5206{
72cec141 5207 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
4e1c45ea 5208 struct thread_info *tp = inferior_thread ();
d6b48e9c 5209 struct inferior *inf = current_inferior ();
7a292a7a 5210
414c69f7 5211 inf_status->stop_step = tp->stop_step;
c906108c
SS
5212 inf_status->stop_stack_dummy = stop_stack_dummy;
5213 inf_status->stopped_by_random_signal = stopped_by_random_signal;
4e1c45ea
PA
5214 inf_status->stepping_over_breakpoint = tp->trap_expected;
5215 inf_status->step_range_start = tp->step_range_start;
5216 inf_status->step_range_end = tp->step_range_end;
5217 inf_status->step_frame_id = tp->step_frame_id;
078130d0 5218 inf_status->step_over_calls = tp->step_over_calls;
c906108c 5219 inf_status->stop_after_trap = stop_after_trap;
d6b48e9c 5220 inf_status->stop_soon = inf->stop_soon;
c906108c
SS
5221 /* Save original bpstat chain here; replace it with copy of chain.
5222 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
5223 hand them back the original chain when restore_inferior_status is
5224 called. */
347bddb7
PA
5225 inf_status->stop_bpstat = tp->stop_bpstat;
5226 tp->stop_bpstat = bpstat_copy (tp->stop_bpstat);
32400beb 5227 inf_status->proceed_to_finish = tp->proceed_to_finish;
c5a4d20b 5228 inf_status->in_infcall = tp->in_infcall;
c5aa993b 5229
206415a3 5230 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 5231
7a292a7a 5232 return inf_status;
c906108c
SS
5233}
5234
c906108c 5235static int
96baa820 5236restore_selected_frame (void *args)
c906108c 5237{
488f131b 5238 struct frame_id *fid = (struct frame_id *) args;
c906108c 5239 struct frame_info *frame;
c906108c 5240
101dcfbe 5241 frame = frame_find_by_id (*fid);
c906108c 5242
aa0cd9c1
AC
5243 /* If inf_status->selected_frame_id is NULL, there was no previously
5244 selected frame. */
101dcfbe 5245 if (frame == NULL)
c906108c 5246 {
8a3fe4f8 5247 warning (_("Unable to restore previously selected frame."));
c906108c
SS
5248 return 0;
5249 }
5250
0f7d239c 5251 select_frame (frame);
c906108c
SS
5252
5253 return (1);
5254}
5255
b89667eb
DE
5256/* Restore inferior session state to INF_STATUS. */
5257
c906108c 5258void
96baa820 5259restore_inferior_status (struct inferior_status *inf_status)
c906108c 5260{
4e1c45ea 5261 struct thread_info *tp = inferior_thread ();
d6b48e9c 5262 struct inferior *inf = current_inferior ();
4e1c45ea 5263
414c69f7 5264 tp->stop_step = inf_status->stop_step;
c906108c
SS
5265 stop_stack_dummy = inf_status->stop_stack_dummy;
5266 stopped_by_random_signal = inf_status->stopped_by_random_signal;
4e1c45ea
PA
5267 tp->trap_expected = inf_status->stepping_over_breakpoint;
5268 tp->step_range_start = inf_status->step_range_start;
5269 tp->step_range_end = inf_status->step_range_end;
5270 tp->step_frame_id = inf_status->step_frame_id;
078130d0 5271 tp->step_over_calls = inf_status->step_over_calls;
c906108c 5272 stop_after_trap = inf_status->stop_after_trap;
d6b48e9c 5273 inf->stop_soon = inf_status->stop_soon;
347bddb7
PA
5274 bpstat_clear (&tp->stop_bpstat);
5275 tp->stop_bpstat = inf_status->stop_bpstat;
b89667eb 5276 inf_status->stop_bpstat = NULL;
32400beb 5277 tp->proceed_to_finish = inf_status->proceed_to_finish;
c5a4d20b 5278 tp->in_infcall = inf_status->in_infcall;
c906108c 5279
b89667eb 5280 if (target_has_stack)
c906108c 5281 {
c906108c 5282 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
5283 walking the stack might encounter a garbage pointer and
5284 error() trying to dereference it. */
488f131b
JB
5285 if (catch_errors
5286 (restore_selected_frame, &inf_status->selected_frame_id,
5287 "Unable to restore previously selected frame:\n",
5288 RETURN_MASK_ERROR) == 0)
c906108c
SS
5289 /* Error in restoring the selected frame. Select the innermost
5290 frame. */
0f7d239c 5291 select_frame (get_current_frame ());
c906108c 5292 }
c906108c 5293
72cec141 5294 xfree (inf_status);
7a292a7a 5295}
c906108c 5296
74b7792f
AC
5297static void
5298do_restore_inferior_status_cleanup (void *sts)
5299{
5300 restore_inferior_status (sts);
5301}
5302
5303struct cleanup *
5304make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
5305{
5306 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
5307}
5308
c906108c 5309void
96baa820 5310discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
5311{
5312 /* See save_inferior_status for info on stop_bpstat. */
5313 bpstat_clear (&inf_status->stop_bpstat);
72cec141 5314 xfree (inf_status);
7a292a7a 5315}
b89667eb 5316\f
47932f85 5317int
3a3e9ee3 5318inferior_has_forked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
5319{
5320 struct target_waitstatus last;
5321 ptid_t last_ptid;
5322
5323 get_last_target_status (&last_ptid, &last);
5324
5325 if (last.kind != TARGET_WAITKIND_FORKED)
5326 return 0;
5327
3a3e9ee3 5328 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
5329 return 0;
5330
5331 *child_pid = last.value.related_pid;
5332 return 1;
5333}
5334
5335int
3a3e9ee3 5336inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
5337{
5338 struct target_waitstatus last;
5339 ptid_t last_ptid;
5340
5341 get_last_target_status (&last_ptid, &last);
5342
5343 if (last.kind != TARGET_WAITKIND_VFORKED)
5344 return 0;
5345
3a3e9ee3 5346 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
5347 return 0;
5348
5349 *child_pid = last.value.related_pid;
5350 return 1;
5351}
5352
5353int
3a3e9ee3 5354inferior_has_execd (ptid_t pid, char **execd_pathname)
47932f85
DJ
5355{
5356 struct target_waitstatus last;
5357 ptid_t last_ptid;
5358
5359 get_last_target_status (&last_ptid, &last);
5360
5361 if (last.kind != TARGET_WAITKIND_EXECD)
5362 return 0;
5363
3a3e9ee3 5364 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
5365 return 0;
5366
5367 *execd_pathname = xstrdup (last.value.execd_pathname);
5368 return 1;
5369}
5370
ca6724c1
KB
5371/* Oft used ptids */
5372ptid_t null_ptid;
5373ptid_t minus_one_ptid;
5374
5375/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 5376
ca6724c1
KB
5377ptid_t
5378ptid_build (int pid, long lwp, long tid)
5379{
5380 ptid_t ptid;
5381
5382 ptid.pid = pid;
5383 ptid.lwp = lwp;
5384 ptid.tid = tid;
5385 return ptid;
5386}
5387
5388/* Create a ptid from just a pid. */
5389
5390ptid_t
5391pid_to_ptid (int pid)
5392{
5393 return ptid_build (pid, 0, 0);
5394}
5395
5396/* Fetch the pid (process id) component from a ptid. */
5397
5398int
5399ptid_get_pid (ptid_t ptid)
5400{
5401 return ptid.pid;
5402}
5403
5404/* Fetch the lwp (lightweight process) component from a ptid. */
5405
5406long
5407ptid_get_lwp (ptid_t ptid)
5408{
5409 return ptid.lwp;
5410}
5411
5412/* Fetch the tid (thread id) component from a ptid. */
5413
5414long
5415ptid_get_tid (ptid_t ptid)
5416{
5417 return ptid.tid;
5418}
5419
5420/* ptid_equal() is used to test equality of two ptids. */
5421
5422int
5423ptid_equal (ptid_t ptid1, ptid_t ptid2)
5424{
5425 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 5426 && ptid1.tid == ptid2.tid);
ca6724c1
KB
5427}
5428
252fbfc8
PA
5429/* Returns true if PTID represents a process. */
5430
5431int
5432ptid_is_pid (ptid_t ptid)
5433{
5434 if (ptid_equal (minus_one_ptid, ptid))
5435 return 0;
5436 if (ptid_equal (null_ptid, ptid))
5437 return 0;
5438
5439 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
5440}
5441
ca6724c1
KB
5442/* restore_inferior_ptid() will be used by the cleanup machinery
5443 to restore the inferior_ptid value saved in a call to
5444 save_inferior_ptid(). */
ce696e05
KB
5445
5446static void
5447restore_inferior_ptid (void *arg)
5448{
5449 ptid_t *saved_ptid_ptr = arg;
5450 inferior_ptid = *saved_ptid_ptr;
5451 xfree (arg);
5452}
5453
5454/* Save the value of inferior_ptid so that it may be restored by a
5455 later call to do_cleanups(). Returns the struct cleanup pointer
5456 needed for later doing the cleanup. */
5457
5458struct cleanup *
5459save_inferior_ptid (void)
5460{
5461 ptid_t *saved_ptid_ptr;
5462
5463 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
5464 *saved_ptid_ptr = inferior_ptid;
5465 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
5466}
c5aa993b 5467\f
488f131b 5468
b2175913
MS
5469/* User interface for reverse debugging:
5470 Set exec-direction / show exec-direction commands
5471 (returns error unless target implements to_set_exec_direction method). */
5472
5473enum exec_direction_kind execution_direction = EXEC_FORWARD;
5474static const char exec_forward[] = "forward";
5475static const char exec_reverse[] = "reverse";
5476static const char *exec_direction = exec_forward;
5477static const char *exec_direction_names[] = {
5478 exec_forward,
5479 exec_reverse,
5480 NULL
5481};
5482
5483static void
5484set_exec_direction_func (char *args, int from_tty,
5485 struct cmd_list_element *cmd)
5486{
5487 if (target_can_execute_reverse)
5488 {
5489 if (!strcmp (exec_direction, exec_forward))
5490 execution_direction = EXEC_FORWARD;
5491 else if (!strcmp (exec_direction, exec_reverse))
5492 execution_direction = EXEC_REVERSE;
5493 }
5494}
5495
5496static void
5497show_exec_direction_func (struct ui_file *out, int from_tty,
5498 struct cmd_list_element *cmd, const char *value)
5499{
5500 switch (execution_direction) {
5501 case EXEC_FORWARD:
5502 fprintf_filtered (out, _("Forward.\n"));
5503 break;
5504 case EXEC_REVERSE:
5505 fprintf_filtered (out, _("Reverse.\n"));
5506 break;
5507 case EXEC_ERROR:
5508 default:
5509 fprintf_filtered (out,
5510 _("Forward (target `%s' does not support exec-direction).\n"),
5511 target_shortname);
5512 break;
5513 }
5514}
5515
5516/* User interface for non-stop mode. */
5517
ad52ddc6
PA
5518int non_stop = 0;
5519static int non_stop_1 = 0;
5520
5521static void
5522set_non_stop (char *args, int from_tty,
5523 struct cmd_list_element *c)
5524{
5525 if (target_has_execution)
5526 {
5527 non_stop_1 = non_stop;
5528 error (_("Cannot change this setting while the inferior is running."));
5529 }
5530
5531 non_stop = non_stop_1;
5532}
5533
5534static void
5535show_non_stop (struct ui_file *file, int from_tty,
5536 struct cmd_list_element *c, const char *value)
5537{
5538 fprintf_filtered (file,
5539 _("Controlling the inferior in non-stop mode is %s.\n"),
5540 value);
5541}
5542
5543
c906108c 5544void
96baa820 5545_initialize_infrun (void)
c906108c 5546{
52f0bd74
AC
5547 int i;
5548 int numsigs;
c906108c
SS
5549 struct cmd_list_element *c;
5550
1bedd215
AC
5551 add_info ("signals", signals_info, _("\
5552What debugger does when program gets various signals.\n\
5553Specify a signal as argument to print info on that signal only."));
c906108c
SS
5554 add_info_alias ("handle", "signals", 0);
5555
1bedd215
AC
5556 add_com ("handle", class_run, handle_command, _("\
5557Specify how to handle a signal.\n\
c906108c
SS
5558Args are signals and actions to apply to those signals.\n\
5559Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5560from 1-15 are allowed for compatibility with old versions of GDB.\n\
5561Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5562The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
5563used by the debugger, typically SIGTRAP and SIGINT.\n\
5564Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
5565\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
5566Stop means reenter debugger if this signal happens (implies print).\n\
5567Print means print a message if this signal happens.\n\
5568Pass means let program see this signal; otherwise program doesn't know.\n\
5569Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 5570Pass and Stop may be combined."));
c906108c
SS
5571 if (xdb_commands)
5572 {
1bedd215
AC
5573 add_com ("lz", class_info, signals_info, _("\
5574What debugger does when program gets various signals.\n\
5575Specify a signal as argument to print info on that signal only."));
5576 add_com ("z", class_run, xdb_handle_command, _("\
5577Specify how to handle a signal.\n\
c906108c
SS
5578Args are signals and actions to apply to those signals.\n\
5579Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5580from 1-15 are allowed for compatibility with old versions of GDB.\n\
5581Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5582The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
5583used by the debugger, typically SIGTRAP and SIGINT.\n\
5584Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
5585\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
5586nopass), \"Q\" (noprint)\n\
5587Stop means reenter debugger if this signal happens (implies print).\n\
5588Print means print a message if this signal happens.\n\
5589Pass means let program see this signal; otherwise program doesn't know.\n\
5590Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 5591Pass and Stop may be combined."));
c906108c
SS
5592 }
5593
5594 if (!dbx_commands)
1a966eab
AC
5595 stop_command = add_cmd ("stop", class_obscure,
5596 not_just_help_class_command, _("\
5597There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 5598This allows you to set a list of commands to be run each time execution\n\
1a966eab 5599of the program stops."), &cmdlist);
c906108c 5600
85c07804
AC
5601 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
5602Set inferior debugging."), _("\
5603Show inferior debugging."), _("\
5604When non-zero, inferior specific debugging is enabled."),
5605 NULL,
920d2a44 5606 show_debug_infrun,
85c07804 5607 &setdebuglist, &showdebuglist);
527159b7 5608
237fc4c9
PA
5609 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
5610Set displaced stepping debugging."), _("\
5611Show displaced stepping debugging."), _("\
5612When non-zero, displaced stepping specific debugging is enabled."),
5613 NULL,
5614 show_debug_displaced,
5615 &setdebuglist, &showdebuglist);
5616
ad52ddc6
PA
5617 add_setshow_boolean_cmd ("non-stop", no_class,
5618 &non_stop_1, _("\
5619Set whether gdb controls the inferior in non-stop mode."), _("\
5620Show whether gdb controls the inferior in non-stop mode."), _("\
5621When debugging a multi-threaded program and this setting is\n\
5622off (the default, also called all-stop mode), when one thread stops\n\
5623(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
5624all other threads in the program while you interact with the thread of\n\
5625interest. When you continue or step a thread, you can allow the other\n\
5626threads to run, or have them remain stopped, but while you inspect any\n\
5627thread's state, all threads stop.\n\
5628\n\
5629In non-stop mode, when one thread stops, other threads can continue\n\
5630to run freely. You'll be able to step each thread independently,\n\
5631leave it stopped or free to run as needed."),
5632 set_non_stop,
5633 show_non_stop,
5634 &setlist,
5635 &showlist);
5636
c906108c 5637 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 5638 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
5639 signal_print = (unsigned char *)
5640 xmalloc (sizeof (signal_print[0]) * numsigs);
5641 signal_program = (unsigned char *)
5642 xmalloc (sizeof (signal_program[0]) * numsigs);
5643 for (i = 0; i < numsigs; i++)
5644 {
5645 signal_stop[i] = 1;
5646 signal_print[i] = 1;
5647 signal_program[i] = 1;
5648 }
5649
5650 /* Signals caused by debugger's own actions
5651 should not be given to the program afterwards. */
5652 signal_program[TARGET_SIGNAL_TRAP] = 0;
5653 signal_program[TARGET_SIGNAL_INT] = 0;
5654
5655 /* Signals that are not errors should not normally enter the debugger. */
5656 signal_stop[TARGET_SIGNAL_ALRM] = 0;
5657 signal_print[TARGET_SIGNAL_ALRM] = 0;
5658 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
5659 signal_print[TARGET_SIGNAL_VTALRM] = 0;
5660 signal_stop[TARGET_SIGNAL_PROF] = 0;
5661 signal_print[TARGET_SIGNAL_PROF] = 0;
5662 signal_stop[TARGET_SIGNAL_CHLD] = 0;
5663 signal_print[TARGET_SIGNAL_CHLD] = 0;
5664 signal_stop[TARGET_SIGNAL_IO] = 0;
5665 signal_print[TARGET_SIGNAL_IO] = 0;
5666 signal_stop[TARGET_SIGNAL_POLL] = 0;
5667 signal_print[TARGET_SIGNAL_POLL] = 0;
5668 signal_stop[TARGET_SIGNAL_URG] = 0;
5669 signal_print[TARGET_SIGNAL_URG] = 0;
5670 signal_stop[TARGET_SIGNAL_WINCH] = 0;
5671 signal_print[TARGET_SIGNAL_WINCH] = 0;
5672
cd0fc7c3
SS
5673 /* These signals are used internally by user-level thread
5674 implementations. (See signal(5) on Solaris.) Like the above
5675 signals, a healthy program receives and handles them as part of
5676 its normal operation. */
5677 signal_stop[TARGET_SIGNAL_LWP] = 0;
5678 signal_print[TARGET_SIGNAL_LWP] = 0;
5679 signal_stop[TARGET_SIGNAL_WAITING] = 0;
5680 signal_print[TARGET_SIGNAL_WAITING] = 0;
5681 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
5682 signal_print[TARGET_SIGNAL_CANCEL] = 0;
5683
85c07804
AC
5684 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
5685 &stop_on_solib_events, _("\
5686Set stopping for shared library events."), _("\
5687Show stopping for shared library events."), _("\
c906108c
SS
5688If nonzero, gdb will give control to the user when the dynamic linker\n\
5689notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
5690to the user would be loading/unloading of a new library."),
5691 NULL,
920d2a44 5692 show_stop_on_solib_events,
85c07804 5693 &setlist, &showlist);
c906108c 5694
7ab04401
AC
5695 add_setshow_enum_cmd ("follow-fork-mode", class_run,
5696 follow_fork_mode_kind_names,
5697 &follow_fork_mode_string, _("\
5698Set debugger response to a program call of fork or vfork."), _("\
5699Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
5700A fork or vfork creates a new process. follow-fork-mode can be:\n\
5701 parent - the original process is debugged after a fork\n\
5702 child - the new process is debugged after a fork\n\
ea1dd7bc 5703The unfollowed process will continue to run.\n\
7ab04401
AC
5704By default, the debugger will follow the parent process."),
5705 NULL,
920d2a44 5706 show_follow_fork_mode_string,
7ab04401
AC
5707 &setlist, &showlist);
5708
5709 add_setshow_enum_cmd ("scheduler-locking", class_run,
5710 scheduler_enums, &scheduler_mode, _("\
5711Set mode for locking scheduler during execution."), _("\
5712Show mode for locking scheduler during execution."), _("\
c906108c
SS
5713off == no locking (threads may preempt at any time)\n\
5714on == full locking (no thread except the current thread may run)\n\
5715step == scheduler locked during every single-step operation.\n\
5716 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
5717 Other threads may run while stepping over a function call ('next')."),
5718 set_schedlock_func, /* traps on target vector */
920d2a44 5719 show_scheduler_mode,
7ab04401 5720 &setlist, &showlist);
5fbbeb29 5721
5bf193a2
AC
5722 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
5723Set mode of the step operation."), _("\
5724Show mode of the step operation."), _("\
5725When set, doing a step over a function without debug line information\n\
5726will stop at the first instruction of that function. Otherwise, the\n\
5727function is skipped and the step command stops at a different source line."),
5728 NULL,
920d2a44 5729 show_step_stop_if_no_debug,
5bf193a2 5730 &setlist, &showlist);
ca6724c1 5731
fff08868
HZ
5732 add_setshow_enum_cmd ("displaced-stepping", class_run,
5733 can_use_displaced_stepping_enum,
5734 &can_use_displaced_stepping, _("\
237fc4c9
PA
5735Set debugger's willingness to use displaced stepping."), _("\
5736Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
5737If on, gdb will use displaced stepping to step over breakpoints if it is\n\
5738supported by the target architecture. If off, gdb will not use displaced\n\
5739stepping to step over breakpoints, even if such is supported by the target\n\
5740architecture. If auto (which is the default), gdb will use displaced stepping\n\
5741if the target architecture supports it and non-stop mode is active, but will not\n\
5742use it in all-stop mode (see help set non-stop)."),
5743 NULL,
5744 show_can_use_displaced_stepping,
5745 &setlist, &showlist);
237fc4c9 5746
b2175913
MS
5747 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
5748 &exec_direction, _("Set direction of execution.\n\
5749Options are 'forward' or 'reverse'."),
5750 _("Show direction of execution (forward/reverse)."),
5751 _("Tells gdb whether to execute forward or backward."),
5752 set_exec_direction_func, show_exec_direction_func,
5753 &setlist, &showlist);
5754
ca6724c1
KB
5755 /* ptid initializations */
5756 null_ptid = ptid_build (0, 0, 0);
5757 minus_one_ptid = ptid_build (-1, 0, 0);
5758 inferior_ptid = null_ptid;
5759 target_last_wait_ptid = minus_one_ptid;
237fc4c9 5760 displaced_step_ptid = null_ptid;
5231c1fd
PA
5761
5762 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 5763 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 5764 observer_attach_thread_exit (infrun_thread_thread_exit);
4aa995e1
PA
5765
5766 /* Explicitly create without lookup, since that tries to create a
5767 value with a void typed value, and when we get here, gdbarch
5768 isn't initialized yet. At this point, we're quite sure there
5769 isn't another convenience variable of the same name. */
5770 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
c906108c 5771}
This page took 1.177512 seconds and 4 git commands to generate.