2005-02-18 H.J. Lu <hongjiu.lu@intel.com>
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c
AC
3
4 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
c6f0559b
AC
5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
6 Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b
JM
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
c906108c
SS
24
25#include "defs.h"
26#include "gdb_string.h"
27#include <ctype.h>
28#include "symtab.h"
29#include "frame.h"
30#include "inferior.h"
60250e8b 31#include "exceptions.h"
c906108c 32#include "breakpoint.h"
03f2053f 33#include "gdb_wait.h"
c906108c
SS
34#include "gdbcore.h"
35#include "gdbcmd.h"
210661e7 36#include "cli/cli-script.h"
c906108c
SS
37#include "target.h"
38#include "gdbthread.h"
39#include "annotate.h"
1adeb98a 40#include "symfile.h"
7a292a7a 41#include "top.h"
c906108c 42#include <signal.h>
2acceee2 43#include "inf-loop.h"
4e052eda 44#include "regcache.h"
fd0407d6 45#include "value.h"
06600e06 46#include "observer.h"
f636b87d 47#include "language.h"
9f976b41 48#include "gdb_assert.h"
c906108c
SS
49
50/* Prototypes for local functions */
51
96baa820 52static void signals_info (char *, int);
c906108c 53
96baa820 54static void handle_command (char *, int);
c906108c 55
96baa820 56static void sig_print_info (enum target_signal);
c906108c 57
96baa820 58static void sig_print_header (void);
c906108c 59
74b7792f 60static void resume_cleanups (void *);
c906108c 61
96baa820 62static int hook_stop_stub (void *);
c906108c 63
96baa820
JM
64static int restore_selected_frame (void *);
65
66static void build_infrun (void);
67
4ef3f3be 68static int follow_fork (void);
96baa820
JM
69
70static void set_schedlock_func (char *args, int from_tty,
488f131b 71 struct cmd_list_element *c);
96baa820 72
96baa820
JM
73struct execution_control_state;
74
75static int currently_stepping (struct execution_control_state *ecs);
76
77static void xdb_handle_command (char *args, int from_tty);
78
ea67f13b
DJ
79static int prepare_to_proceed (void);
80
96baa820 81void _initialize_infrun (void);
43ff13b4 82
c906108c
SS
83int inferior_ignoring_startup_exec_events = 0;
84int inferior_ignoring_leading_exec_events = 0;
85
5fbbeb29
CF
86/* When set, stop the 'step' command if we enter a function which has
87 no line number information. The normal behavior is that we step
88 over such function. */
89int step_stop_if_no_debug = 0;
90
43ff13b4 91/* In asynchronous mode, but simulating synchronous execution. */
96baa820 92
43ff13b4
JM
93int sync_execution = 0;
94
c906108c
SS
95/* wait_for_inferior and normal_stop use this to notify the user
96 when the inferior stopped in a different thread than it had been
96baa820
JM
97 running in. */
98
39f77062 99static ptid_t previous_inferior_ptid;
7a292a7a
SS
100
101/* This is true for configurations that may follow through execl() and
102 similar functions. At present this is only true for HP-UX native. */
103
104#ifndef MAY_FOLLOW_EXEC
105#define MAY_FOLLOW_EXEC (0)
c906108c
SS
106#endif
107
7a292a7a
SS
108static int may_follow_exec = MAY_FOLLOW_EXEC;
109
527159b7
RC
110static int debug_infrun = 0;
111
d4f3574e
SS
112/* If the program uses ELF-style shared libraries, then calls to
113 functions in shared libraries go through stubs, which live in a
114 table called the PLT (Procedure Linkage Table). The first time the
115 function is called, the stub sends control to the dynamic linker,
116 which looks up the function's real address, patches the stub so
117 that future calls will go directly to the function, and then passes
118 control to the function.
119
120 If we are stepping at the source level, we don't want to see any of
121 this --- we just want to skip over the stub and the dynamic linker.
122 The simple approach is to single-step until control leaves the
123 dynamic linker.
124
ca557f44
AC
125 However, on some systems (e.g., Red Hat's 5.2 distribution) the
126 dynamic linker calls functions in the shared C library, so you
127 can't tell from the PC alone whether the dynamic linker is still
128 running. In this case, we use a step-resume breakpoint to get us
129 past the dynamic linker, as if we were using "next" to step over a
130 function call.
d4f3574e
SS
131
132 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
133 linker code or not. Normally, this means we single-step. However,
134 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
135 address where we can place a step-resume breakpoint to get past the
136 linker's symbol resolution function.
137
138 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
139 pretty portable way, by comparing the PC against the address ranges
140 of the dynamic linker's sections.
141
142 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
143 it depends on internal details of the dynamic linker. It's usually
144 not too hard to figure out where to put a breakpoint, but it
145 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
146 sanity checking. If it can't figure things out, returning zero and
147 getting the (possibly confusing) stepping behavior is better than
148 signalling an error, which will obscure the change in the
149 inferior's state. */
c906108c
SS
150
151#ifndef IN_SOLIB_DYNSYM_RESOLVE_CODE
152#define IN_SOLIB_DYNSYM_RESOLVE_CODE(pc) 0
153#endif
154
c906108c
SS
155/* This function returns TRUE if pc is the address of an instruction
156 that lies within the dynamic linker (such as the event hook, or the
157 dld itself).
158
159 This function must be used only when a dynamic linker event has
160 been caught, and the inferior is being stepped out of the hook, or
161 undefined results are guaranteed. */
162
163#ifndef SOLIB_IN_DYNAMIC_LINKER
164#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
165#endif
166
c2c6d25f
JM
167/* We can't step off a permanent breakpoint in the ordinary way, because we
168 can't remove it. Instead, we have to advance the PC to the next
169 instruction. This macro should expand to a pointer to a function that
170 does that, or zero if we have no such function. If we don't have a
171 definition for it, we have to report an error. */
488f131b 172#ifndef SKIP_PERMANENT_BREAKPOINT
c2c6d25f
JM
173#define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
174static void
c2d11a7d 175default_skip_permanent_breakpoint (void)
c2c6d25f 176{
8a3fe4f8 177 error (_("\
c2c6d25f
JM
178The program is stopped at a permanent breakpoint, but GDB does not know\n\
179how to step past a permanent breakpoint on this architecture. Try using\n\
8a3fe4f8 180a command like `return' or `jump' to continue execution."));
c2c6d25f
JM
181}
182#endif
488f131b 183
c2c6d25f 184
7a292a7a
SS
185/* Convert the #defines into values. This is temporary until wfi control
186 flow is completely sorted out. */
187
188#ifndef HAVE_STEPPABLE_WATCHPOINT
189#define HAVE_STEPPABLE_WATCHPOINT 0
190#else
191#undef HAVE_STEPPABLE_WATCHPOINT
192#define HAVE_STEPPABLE_WATCHPOINT 1
193#endif
194
692590c1
MS
195#ifndef CANNOT_STEP_HW_WATCHPOINTS
196#define CANNOT_STEP_HW_WATCHPOINTS 0
197#else
198#undef CANNOT_STEP_HW_WATCHPOINTS
199#define CANNOT_STEP_HW_WATCHPOINTS 1
200#endif
201
c906108c
SS
202/* Tables of how to react to signals; the user sets them. */
203
204static unsigned char *signal_stop;
205static unsigned char *signal_print;
206static unsigned char *signal_program;
207
208#define SET_SIGS(nsigs,sigs,flags) \
209 do { \
210 int signum = (nsigs); \
211 while (signum-- > 0) \
212 if ((sigs)[signum]) \
213 (flags)[signum] = 1; \
214 } while (0)
215
216#define UNSET_SIGS(nsigs,sigs,flags) \
217 do { \
218 int signum = (nsigs); \
219 while (signum-- > 0) \
220 if ((sigs)[signum]) \
221 (flags)[signum] = 0; \
222 } while (0)
223
39f77062
KB
224/* Value to pass to target_resume() to cause all threads to resume */
225
226#define RESUME_ALL (pid_to_ptid (-1))
c906108c
SS
227
228/* Command list pointer for the "stop" placeholder. */
229
230static struct cmd_list_element *stop_command;
231
232/* Nonzero if breakpoints are now inserted in the inferior. */
233
234static int breakpoints_inserted;
235
236/* Function inferior was in as of last step command. */
237
238static struct symbol *step_start_function;
239
240/* Nonzero if we are expecting a trace trap and should proceed from it. */
241
242static int trap_expected;
243
244#ifdef SOLIB_ADD
245/* Nonzero if we want to give control to the user when we're notified
246 of shared library events by the dynamic linker. */
247static int stop_on_solib_events;
248#endif
249
c906108c
SS
250/* Nonzero means expecting a trace trap
251 and should stop the inferior and return silently when it happens. */
252
253int stop_after_trap;
254
255/* Nonzero means expecting a trap and caller will handle it themselves.
256 It is used after attach, due to attaching to a process;
257 when running in the shell before the child program has been exec'd;
258 and when running some kinds of remote stuff (FIXME?). */
259
c0236d92 260enum stop_kind stop_soon;
c906108c
SS
261
262/* Nonzero if proceed is being used for a "finish" command or a similar
263 situation when stop_registers should be saved. */
264
265int proceed_to_finish;
266
267/* Save register contents here when about to pop a stack dummy frame,
268 if-and-only-if proceed_to_finish is set.
269 Thus this contains the return value from the called function (assuming
270 values are returned in a register). */
271
72cec141 272struct regcache *stop_registers;
c906108c
SS
273
274/* Nonzero if program stopped due to error trying to insert breakpoints. */
275
276static int breakpoints_failed;
277
278/* Nonzero after stop if current stack frame should be printed. */
279
280static int stop_print_frame;
281
282static struct breakpoint *step_resume_breakpoint = NULL;
c906108c 283
e02bc4cc 284/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
285 returned by target_wait()/deprecated_target_wait_hook(). This
286 information is returned by get_last_target_status(). */
39f77062 287static ptid_t target_last_wait_ptid;
e02bc4cc
DS
288static struct target_waitstatus target_last_waitstatus;
289
c906108c
SS
290/* This is used to remember when a fork, vfork or exec event
291 was caught by a catchpoint, and thus the event is to be
292 followed at the next resume of the inferior, and not
293 immediately. */
294static struct
488f131b
JB
295{
296 enum target_waitkind kind;
297 struct
c906108c 298 {
488f131b 299 int parent_pid;
488f131b 300 int child_pid;
c906108c 301 }
488f131b
JB
302 fork_event;
303 char *execd_pathname;
304}
c906108c
SS
305pending_follow;
306
53904c9e
AC
307static const char follow_fork_mode_child[] = "child";
308static const char follow_fork_mode_parent[] = "parent";
309
488f131b 310static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
311 follow_fork_mode_child,
312 follow_fork_mode_parent,
313 NULL
ef346e04 314};
c906108c 315
53904c9e 316static const char *follow_fork_mode_string = follow_fork_mode_parent;
c906108c
SS
317\f
318
6604731b 319static int
4ef3f3be 320follow_fork (void)
c906108c 321{
ea1dd7bc 322 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
c906108c 323
6604731b 324 return target_follow_fork (follow_child);
c906108c
SS
325}
326
6604731b
DJ
327void
328follow_inferior_reset_breakpoints (void)
c906108c 329{
6604731b
DJ
330 /* Was there a step_resume breakpoint? (There was if the user
331 did a "next" at the fork() call.) If so, explicitly reset its
332 thread number.
333
334 step_resumes are a form of bp that are made to be per-thread.
335 Since we created the step_resume bp when the parent process
336 was being debugged, and now are switching to the child process,
337 from the breakpoint package's viewpoint, that's a switch of
338 "threads". We must update the bp's notion of which thread
339 it is for, or it'll be ignored when it triggers. */
340
341 if (step_resume_breakpoint)
342 breakpoint_re_set_thread (step_resume_breakpoint);
343
344 /* Reinsert all breakpoints in the child. The user may have set
345 breakpoints after catching the fork, in which case those
346 were never set in the child, but only in the parent. This makes
347 sure the inserted breakpoints match the breakpoint list. */
348
349 breakpoint_re_set ();
350 insert_breakpoints ();
c906108c 351}
c906108c 352
1adeb98a
FN
353/* EXECD_PATHNAME is assumed to be non-NULL. */
354
c906108c 355static void
96baa820 356follow_exec (int pid, char *execd_pathname)
c906108c 357{
c906108c 358 int saved_pid = pid;
7a292a7a
SS
359 struct target_ops *tgt;
360
361 if (!may_follow_exec)
362 return;
c906108c 363
c906108c
SS
364 /* This is an exec event that we actually wish to pay attention to.
365 Refresh our symbol table to the newly exec'd program, remove any
366 momentary bp's, etc.
367
368 If there are breakpoints, they aren't really inserted now,
369 since the exec() transformed our inferior into a fresh set
370 of instructions.
371
372 We want to preserve symbolic breakpoints on the list, since
373 we have hopes that they can be reset after the new a.out's
374 symbol table is read.
375
376 However, any "raw" breakpoints must be removed from the list
377 (e.g., the solib bp's), since their address is probably invalid
378 now.
379
380 And, we DON'T want to call delete_breakpoints() here, since
381 that may write the bp's "shadow contents" (the instruction
382 value that was overwritten witha TRAP instruction). Since
383 we now have a new a.out, those shadow contents aren't valid. */
384 update_breakpoints_after_exec ();
385
386 /* If there was one, it's gone now. We cannot truly step-to-next
387 statement through an exec(). */
388 step_resume_breakpoint = NULL;
389 step_range_start = 0;
390 step_range_end = 0;
391
c906108c 392 /* What is this a.out's name? */
a3f17187 393 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
c906108c
SS
394
395 /* We've followed the inferior through an exec. Therefore, the
396 inferior has essentially been killed & reborn. */
7a292a7a
SS
397
398 /* First collect the run target in effect. */
399 tgt = find_run_target ();
400 /* If we can't find one, things are in a very strange state... */
401 if (tgt == NULL)
8a3fe4f8 402 error (_("Could find run target to save before following exec"));
7a292a7a 403
c906108c
SS
404 gdb_flush (gdb_stdout);
405 target_mourn_inferior ();
39f77062 406 inferior_ptid = pid_to_ptid (saved_pid);
488f131b 407 /* Because mourn_inferior resets inferior_ptid. */
7a292a7a 408 push_target (tgt);
c906108c
SS
409
410 /* That a.out is now the one to use. */
411 exec_file_attach (execd_pathname, 0);
412
413 /* And also is where symbols can be found. */
1adeb98a 414 symbol_file_add_main (execd_pathname, 0);
c906108c
SS
415
416 /* Reset the shared library package. This ensures that we get
417 a shlib event when the child reaches "_start", at which point
418 the dld will have had a chance to initialize the child. */
7a292a7a 419#if defined(SOLIB_RESTART)
c906108c 420 SOLIB_RESTART ();
7a292a7a
SS
421#endif
422#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 423 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
7a292a7a 424#endif
c906108c
SS
425
426 /* Reinsert all breakpoints. (Those which were symbolic have
427 been reset to the proper address in the new a.out, thanks
428 to symbol_file_command...) */
429 insert_breakpoints ();
430
431 /* The next resume of this inferior should bring it to the shlib
432 startup breakpoints. (If the user had also set bp's on
433 "main" from the old (parent) process, then they'll auto-
434 matically get reset there in the new process.) */
c906108c
SS
435}
436
437/* Non-zero if we just simulating a single-step. This is needed
438 because we cannot remove the breakpoints in the inferior process
439 until after the `wait' in `wait_for_inferior'. */
440static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
441
442/* The thread we inserted single-step breakpoints for. */
443static ptid_t singlestep_ptid;
444
445/* If another thread hit the singlestep breakpoint, we save the original
446 thread here so that we can resume single-stepping it later. */
447static ptid_t saved_singlestep_ptid;
448static int stepping_past_singlestep_breakpoint;
c906108c
SS
449\f
450
451/* Things to clean up if we QUIT out of resume (). */
c906108c 452static void
74b7792f 453resume_cleanups (void *ignore)
c906108c
SS
454{
455 normal_stop ();
456}
457
53904c9e
AC
458static const char schedlock_off[] = "off";
459static const char schedlock_on[] = "on";
460static const char schedlock_step[] = "step";
461static const char *scheduler_mode = schedlock_off;
488f131b 462static const char *scheduler_enums[] = {
ef346e04
AC
463 schedlock_off,
464 schedlock_on,
465 schedlock_step,
466 NULL
467};
c906108c
SS
468
469static void
96baa820 470set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 471{
cb1a6d5f
AC
472 /* NOTE: cagney/2002-03-17: The deprecated_add_show_from_set()
473 function clones the set command passed as a parameter. The clone
474 operation will include (BUG?) any ``set'' command callback, if
475 present. Commands like ``info set'' call all the ``show''
476 command callbacks. Unfortunately, for ``show'' commands cloned
477 from ``set'', this includes callbacks belonging to ``set''
478 commands. Making this worse, this only occures if
479 deprecated_add_show_from_set() is called after add_cmd_sfunc()
480 (BUG?). */
1868c04e 481 if (cmd_type (c) == set_cmd)
c906108c
SS
482 if (!target_can_lock_scheduler)
483 {
484 scheduler_mode = schedlock_off;
8a3fe4f8 485 error (_("Target '%s' cannot support this command."), target_shortname);
c906108c
SS
486 }
487}
488
489
490/* Resume the inferior, but allow a QUIT. This is useful if the user
491 wants to interrupt some lengthy single-stepping operation
492 (for child processes, the SIGINT goes to the inferior, and so
493 we get a SIGINT random_signal, but for remote debugging and perhaps
494 other targets, that's not true).
495
496 STEP nonzero if we should step (zero to continue instead).
497 SIG is the signal to give the inferior (zero for none). */
498void
96baa820 499resume (int step, enum target_signal sig)
c906108c
SS
500{
501 int should_resume = 1;
74b7792f 502 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
c906108c
SS
503 QUIT;
504
527159b7 505 if (debug_infrun)
8a9de0e4
AC
506 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
507 step, sig);
527159b7 508
ef5cf84e
MS
509 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
510
c906108c 511
692590c1
MS
512 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
513 over an instruction that causes a page fault without triggering
514 a hardware watchpoint. The kernel properly notices that it shouldn't
515 stop, because the hardware watchpoint is not triggered, but it forgets
516 the step request and continues the program normally.
517 Work around the problem by removing hardware watchpoints if a step is
518 requested, GDB will check for a hardware watchpoint trigger after the
519 step anyway. */
520 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
521 remove_hw_watchpoints ();
488f131b 522
692590c1 523
c2c6d25f
JM
524 /* Normally, by the time we reach `resume', the breakpoints are either
525 removed or inserted, as appropriate. The exception is if we're sitting
526 at a permanent breakpoint; we need to step over it, but permanent
527 breakpoints can't be removed. So we have to test for it here. */
528 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
529 SKIP_PERMANENT_BREAKPOINT ();
530
b0ed3589 531 if (SOFTWARE_SINGLE_STEP_P () && step)
c906108c
SS
532 {
533 /* Do it the hard way, w/temp breakpoints */
c5aa993b 534 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
c906108c
SS
535 /* ...and don't ask hardware to do it. */
536 step = 0;
537 /* and do not pull these breakpoints until after a `wait' in
538 `wait_for_inferior' */
539 singlestep_breakpoints_inserted_p = 1;
9f976b41 540 singlestep_ptid = inferior_ptid;
c906108c
SS
541 }
542
c906108c 543 /* If there were any forks/vforks/execs that were caught and are
6604731b 544 now to be followed, then do so. */
c906108c
SS
545 switch (pending_follow.kind)
546 {
6604731b
DJ
547 case TARGET_WAITKIND_FORKED:
548 case TARGET_WAITKIND_VFORKED:
c906108c 549 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
6604731b
DJ
550 if (follow_fork ())
551 should_resume = 0;
c906108c
SS
552 break;
553
6604731b 554 case TARGET_WAITKIND_EXECD:
c906108c 555 /* follow_exec is called as soon as the exec event is seen. */
6604731b 556 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
c906108c
SS
557 break;
558
559 default:
560 break;
561 }
c906108c
SS
562
563 /* Install inferior's terminal modes. */
564 target_terminal_inferior ();
565
566 if (should_resume)
567 {
39f77062 568 ptid_t resume_ptid;
dfcd3bfb 569
488f131b 570 resume_ptid = RESUME_ALL; /* Default */
ef5cf84e 571
8fb3e588
AC
572 if ((step || singlestep_breakpoints_inserted_p)
573 && (stepping_past_singlestep_breakpoint
574 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
c906108c 575 {
ef5cf84e
MS
576 /* Stepping past a breakpoint without inserting breakpoints.
577 Make sure only the current thread gets to step, so that
578 other threads don't sneak past breakpoints while they are
579 not inserted. */
c906108c 580
ef5cf84e 581 resume_ptid = inferior_ptid;
c906108c 582 }
ef5cf84e 583
8fb3e588
AC
584 if ((scheduler_mode == schedlock_on)
585 || (scheduler_mode == schedlock_step
586 && (step || singlestep_breakpoints_inserted_p)))
c906108c 587 {
ef5cf84e 588 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 589 resume_ptid = inferior_ptid;
c906108c 590 }
ef5cf84e 591
c4ed33b9
AC
592 if (CANNOT_STEP_BREAKPOINT)
593 {
594 /* Most targets can step a breakpoint instruction, thus
595 executing it normally. But if this one cannot, just
596 continue and we will hit it anyway. */
597 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
598 step = 0;
599 }
39f77062 600 target_resume (resume_ptid, step, sig);
c906108c
SS
601 }
602
603 discard_cleanups (old_cleanups);
604}
605\f
606
607/* Clear out all variables saying what to do when inferior is continued.
608 First do this, then set the ones you want, then call `proceed'. */
609
610void
96baa820 611clear_proceed_status (void)
c906108c
SS
612{
613 trap_expected = 0;
614 step_range_start = 0;
615 step_range_end = 0;
aa0cd9c1 616 step_frame_id = null_frame_id;
5fbbeb29 617 step_over_calls = STEP_OVER_UNDEBUGGABLE;
c906108c 618 stop_after_trap = 0;
c0236d92 619 stop_soon = NO_STOP_QUIETLY;
c906108c
SS
620 proceed_to_finish = 0;
621 breakpoint_proceeded = 1; /* We're about to proceed... */
622
623 /* Discard any remaining commands or status from previous stop. */
624 bpstat_clear (&stop_bpstat);
625}
626
ea67f13b
DJ
627/* This should be suitable for any targets that support threads. */
628
629static int
630prepare_to_proceed (void)
631{
632 ptid_t wait_ptid;
633 struct target_waitstatus wait_status;
634
635 /* Get the last target status returned by target_wait(). */
636 get_last_target_status (&wait_ptid, &wait_status);
637
638 /* Make sure we were stopped either at a breakpoint, or because
639 of a Ctrl-C. */
640 if (wait_status.kind != TARGET_WAITKIND_STOPPED
8fb3e588
AC
641 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
642 && wait_status.value.sig != TARGET_SIGNAL_INT))
ea67f13b
DJ
643 {
644 return 0;
645 }
646
647 if (!ptid_equal (wait_ptid, minus_one_ptid)
648 && !ptid_equal (inferior_ptid, wait_ptid))
649 {
650 /* Switched over from WAIT_PID. */
651 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
652
653 if (wait_pc != read_pc ())
654 {
655 /* Switch back to WAIT_PID thread. */
656 inferior_ptid = wait_ptid;
657
658 /* FIXME: This stuff came from switch_to_thread() in
659 thread.c (which should probably be a public function). */
660 flush_cached_frames ();
661 registers_changed ();
662 stop_pc = wait_pc;
663 select_frame (get_current_frame ());
664 }
665
8fb3e588
AC
666 /* We return 1 to indicate that there is a breakpoint here,
667 so we need to step over it before continuing to avoid
668 hitting it straight away. */
669 if (breakpoint_here_p (wait_pc))
670 return 1;
ea67f13b
DJ
671 }
672
673 return 0;
8fb3e588 674
ea67f13b 675}
e4846b08
JJ
676
677/* Record the pc of the program the last time it stopped. This is
678 just used internally by wait_for_inferior, but need to be preserved
679 over calls to it and cleared when the inferior is started. */
680static CORE_ADDR prev_pc;
681
c906108c
SS
682/* Basic routine for continuing the program in various fashions.
683
684 ADDR is the address to resume at, or -1 for resume where stopped.
685 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 686 or -1 for act according to how it stopped.
c906108c 687 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
688 -1 means return after that and print nothing.
689 You should probably set various step_... variables
690 before calling here, if you are stepping.
c906108c
SS
691
692 You should call clear_proceed_status before calling proceed. */
693
694void
96baa820 695proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c
SS
696{
697 int oneproc = 0;
698
699 if (step > 0)
700 step_start_function = find_pc_function (read_pc ());
701 if (step < 0)
702 stop_after_trap = 1;
703
2acceee2 704 if (addr == (CORE_ADDR) -1)
c906108c 705 {
c906108c 706 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
3352ef37
AC
707 /* There is a breakpoint at the address we will resume at,
708 step one instruction before inserting breakpoints so that
709 we do not stop right away (and report a second hit at this
710 breakpoint). */
c906108c 711 oneproc = 1;
3352ef37
AC
712 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
713 && gdbarch_single_step_through_delay (current_gdbarch,
714 get_current_frame ()))
715 /* We stepped onto an instruction that needs to be stepped
716 again before re-inserting the breakpoint, do so. */
c906108c
SS
717 oneproc = 1;
718 }
719 else
720 {
721 write_pc (addr);
c906108c
SS
722 }
723
527159b7 724 if (debug_infrun)
8a9de0e4
AC
725 fprintf_unfiltered (gdb_stdlog,
726 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
727 paddr_nz (addr), siggnal, step);
527159b7 728
c906108c
SS
729 /* In a multi-threaded task we may select another thread
730 and then continue or step.
731
732 But if the old thread was stopped at a breakpoint, it
733 will immediately cause another breakpoint stop without
734 any execution (i.e. it will report a breakpoint hit
735 incorrectly). So we must step over it first.
736
ea67f13b 737 prepare_to_proceed checks the current thread against the thread
c906108c
SS
738 that reported the most recent event. If a step-over is required
739 it returns TRUE and sets the current thread to the old thread. */
ea67f13b
DJ
740 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
741 oneproc = 1;
c906108c 742
c906108c
SS
743 if (oneproc)
744 /* We will get a trace trap after one instruction.
745 Continue it automatically and insert breakpoints then. */
746 trap_expected = 1;
747 else
748 {
81d0cc19
GS
749 insert_breakpoints ();
750 /* If we get here there was no call to error() in
8fb3e588 751 insert breakpoints -- so they were inserted. */
c906108c
SS
752 breakpoints_inserted = 1;
753 }
754
755 if (siggnal != TARGET_SIGNAL_DEFAULT)
756 stop_signal = siggnal;
757 /* If this signal should not be seen by program,
758 give it zero. Used for debugging signals. */
759 else if (!signal_program[stop_signal])
760 stop_signal = TARGET_SIGNAL_0;
761
762 annotate_starting ();
763
764 /* Make sure that output from GDB appears before output from the
765 inferior. */
766 gdb_flush (gdb_stdout);
767
e4846b08
JJ
768 /* Refresh prev_pc value just prior to resuming. This used to be
769 done in stop_stepping, however, setting prev_pc there did not handle
770 scenarios such as inferior function calls or returning from
771 a function via the return command. In those cases, the prev_pc
772 value was not set properly for subsequent commands. The prev_pc value
773 is used to initialize the starting line number in the ecs. With an
774 invalid value, the gdb next command ends up stopping at the position
775 represented by the next line table entry past our start position.
776 On platforms that generate one line table entry per line, this
777 is not a problem. However, on the ia64, the compiler generates
778 extraneous line table entries that do not increase the line number.
779 When we issue the gdb next command on the ia64 after an inferior call
780 or a return command, we often end up a few instructions forward, still
781 within the original line we started.
782
783 An attempt was made to have init_execution_control_state () refresh
784 the prev_pc value before calculating the line number. This approach
785 did not work because on platforms that use ptrace, the pc register
786 cannot be read unless the inferior is stopped. At that point, we
787 are not guaranteed the inferior is stopped and so the read_pc ()
788 call can fail. Setting the prev_pc value here ensures the value is
8fb3e588 789 updated correctly when the inferior is stopped. */
e4846b08
JJ
790 prev_pc = read_pc ();
791
c906108c
SS
792 /* Resume inferior. */
793 resume (oneproc || step || bpstat_should_step (), stop_signal);
794
795 /* Wait for it to stop (if not standalone)
796 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
797 /* Do this only if we are not using the event loop, or if the target
798 does not support asynchronous execution. */
362646f5 799 if (!target_can_async_p ())
43ff13b4
JM
800 {
801 wait_for_inferior ();
802 normal_stop ();
803 }
c906108c 804}
c906108c
SS
805\f
806
807/* Start remote-debugging of a machine over a serial link. */
96baa820 808
c906108c 809void
96baa820 810start_remote (void)
c906108c
SS
811{
812 init_thread_list ();
813 init_wait_for_inferior ();
c0236d92 814 stop_soon = STOP_QUIETLY;
c906108c 815 trap_expected = 0;
43ff13b4 816
6426a772
JM
817 /* Always go on waiting for the target, regardless of the mode. */
818 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 819 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
820 nothing is returned (instead of just blocking). Because of this,
821 targets expecting an immediate response need to, internally, set
822 things up so that the target_wait() is forced to eventually
823 timeout. */
824 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
825 differentiate to its caller what the state of the target is after
826 the initial open has been performed. Here we're assuming that
827 the target has stopped. It should be possible to eventually have
828 target_open() return to the caller an indication that the target
829 is currently running and GDB state should be set to the same as
830 for an async run. */
831 wait_for_inferior ();
832 normal_stop ();
c906108c
SS
833}
834
835/* Initialize static vars when a new inferior begins. */
836
837void
96baa820 838init_wait_for_inferior (void)
c906108c
SS
839{
840 /* These are meaningless until the first time through wait_for_inferior. */
841 prev_pc = 0;
c906108c 842
c906108c
SS
843 breakpoints_inserted = 0;
844 breakpoint_init_inferior (inf_starting);
845
846 /* Don't confuse first call to proceed(). */
847 stop_signal = TARGET_SIGNAL_0;
848
849 /* The first resume is not following a fork/vfork/exec. */
850 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
c906108c 851
c906108c 852 clear_proceed_status ();
9f976b41
DJ
853
854 stepping_past_singlestep_breakpoint = 0;
c906108c 855}
c906108c 856\f
b83266a0
SS
857/* This enum encodes possible reasons for doing a target_wait, so that
858 wfi can call target_wait in one place. (Ultimately the call will be
859 moved out of the infinite loop entirely.) */
860
c5aa993b
JM
861enum infwait_states
862{
cd0fc7c3
SS
863 infwait_normal_state,
864 infwait_thread_hop_state,
cd0fc7c3 865 infwait_nonstep_watch_state
b83266a0
SS
866};
867
11cf8741
JM
868/* Why did the inferior stop? Used to print the appropriate messages
869 to the interface from within handle_inferior_event(). */
870enum inferior_stop_reason
871{
872 /* We don't know why. */
873 STOP_UNKNOWN,
874 /* Step, next, nexti, stepi finished. */
875 END_STEPPING_RANGE,
876 /* Found breakpoint. */
877 BREAKPOINT_HIT,
878 /* Inferior terminated by signal. */
879 SIGNAL_EXITED,
880 /* Inferior exited. */
881 EXITED,
882 /* Inferior received signal, and user asked to be notified. */
883 SIGNAL_RECEIVED
884};
885
cd0fc7c3
SS
886/* This structure contains what used to be local variables in
887 wait_for_inferior. Probably many of them can return to being
888 locals in handle_inferior_event. */
889
c5aa993b 890struct execution_control_state
488f131b
JB
891{
892 struct target_waitstatus ws;
893 struct target_waitstatus *wp;
894 int another_trap;
895 int random_signal;
896 CORE_ADDR stop_func_start;
897 CORE_ADDR stop_func_end;
898 char *stop_func_name;
899 struct symtab_and_line sal;
488f131b
JB
900 int current_line;
901 struct symtab *current_symtab;
902 int handling_longjmp; /* FIXME */
903 ptid_t ptid;
904 ptid_t saved_inferior_ptid;
68f53502 905 int step_after_step_resume_breakpoint;
488f131b
JB
906 int stepping_through_solib_after_catch;
907 bpstat stepping_through_solib_catchpoints;
488f131b
JB
908 int new_thread_event;
909 struct target_waitstatus tmpstatus;
910 enum infwait_states infwait_state;
911 ptid_t waiton_ptid;
912 int wait_some_more;
913};
914
915void init_execution_control_state (struct execution_control_state *ecs);
916
917void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 918
c2c6d25f 919static void step_into_function (struct execution_control_state *ecs);
44cbf7b5
AC
920static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
921static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
922 struct frame_id sr_id);
104c1213
JM
923static void stop_stepping (struct execution_control_state *ecs);
924static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 925static void keep_going (struct execution_control_state *ecs);
488f131b
JB
926static void print_stop_reason (enum inferior_stop_reason stop_reason,
927 int stop_info);
104c1213 928
cd0fc7c3
SS
929/* Wait for control to return from inferior to debugger.
930 If inferior gets a signal, we may decide to start it up again
931 instead of returning. That is why there is a loop in this function.
932 When this function actually returns it means the inferior
933 should be left stopped and GDB should read more commands. */
934
935void
96baa820 936wait_for_inferior (void)
cd0fc7c3
SS
937{
938 struct cleanup *old_cleanups;
939 struct execution_control_state ecss;
940 struct execution_control_state *ecs;
c906108c 941
527159b7 942 if (debug_infrun)
8a9de0e4 943 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
527159b7 944
8601f500 945 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
c906108c 946 &step_resume_breakpoint);
cd0fc7c3
SS
947
948 /* wfi still stays in a loop, so it's OK just to take the address of
949 a local to get the ecs pointer. */
950 ecs = &ecss;
951
952 /* Fill in with reasonable starting values. */
953 init_execution_control_state (ecs);
954
c906108c 955 /* We'll update this if & when we switch to a new thread. */
39f77062 956 previous_inferior_ptid = inferior_ptid;
c906108c 957
cd0fc7c3
SS
958 overlay_cache_invalid = 1;
959
960 /* We have to invalidate the registers BEFORE calling target_wait
961 because they can be loaded from the target while in target_wait.
962 This makes remote debugging a bit more efficient for those
963 targets that provide critical registers as part of their normal
964 status mechanism. */
965
966 registers_changed ();
b83266a0 967
c906108c
SS
968 while (1)
969 {
9a4105ab
AC
970 if (deprecated_target_wait_hook)
971 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
cd0fc7c3 972 else
39f77062 973 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
c906108c 974
cd0fc7c3
SS
975 /* Now figure out what to do with the result of the result. */
976 handle_inferior_event (ecs);
c906108c 977
cd0fc7c3
SS
978 if (!ecs->wait_some_more)
979 break;
980 }
981 do_cleanups (old_cleanups);
982}
c906108c 983
43ff13b4
JM
984/* Asynchronous version of wait_for_inferior. It is called by the
985 event loop whenever a change of state is detected on the file
986 descriptor corresponding to the target. It can be called more than
987 once to complete a single execution command. In such cases we need
988 to keep the state in a global variable ASYNC_ECSS. If it is the
989 last time that this function is called for a single execution
990 command, then report to the user that the inferior has stopped, and
991 do the necessary cleanups. */
992
993struct execution_control_state async_ecss;
994struct execution_control_state *async_ecs;
995
996void
fba45db2 997fetch_inferior_event (void *client_data)
43ff13b4
JM
998{
999 static struct cleanup *old_cleanups;
1000
c5aa993b 1001 async_ecs = &async_ecss;
43ff13b4
JM
1002
1003 if (!async_ecs->wait_some_more)
1004 {
488f131b 1005 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
c5aa993b 1006 &step_resume_breakpoint);
43ff13b4
JM
1007
1008 /* Fill in with reasonable starting values. */
1009 init_execution_control_state (async_ecs);
1010
43ff13b4 1011 /* We'll update this if & when we switch to a new thread. */
39f77062 1012 previous_inferior_ptid = inferior_ptid;
43ff13b4
JM
1013
1014 overlay_cache_invalid = 1;
1015
1016 /* We have to invalidate the registers BEFORE calling target_wait
c5aa993b
JM
1017 because they can be loaded from the target while in target_wait.
1018 This makes remote debugging a bit more efficient for those
1019 targets that provide critical registers as part of their normal
1020 status mechanism. */
43ff13b4
JM
1021
1022 registers_changed ();
1023 }
1024
9a4105ab 1025 if (deprecated_target_wait_hook)
488f131b 1026 async_ecs->ptid =
9a4105ab 1027 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4 1028 else
39f77062 1029 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4
JM
1030
1031 /* Now figure out what to do with the result of the result. */
1032 handle_inferior_event (async_ecs);
1033
1034 if (!async_ecs->wait_some_more)
1035 {
adf40b2e 1036 /* Do only the cleanups that have been added by this
488f131b
JB
1037 function. Let the continuations for the commands do the rest,
1038 if there are any. */
43ff13b4
JM
1039 do_exec_cleanups (old_cleanups);
1040 normal_stop ();
c2d11a7d
JM
1041 if (step_multi && stop_step)
1042 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1043 else
1044 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4
JM
1045 }
1046}
1047
cd0fc7c3
SS
1048/* Prepare an execution control state for looping through a
1049 wait_for_inferior-type loop. */
1050
1051void
96baa820 1052init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3 1053{
c2d11a7d 1054 /* ecs->another_trap? */
cd0fc7c3 1055 ecs->random_signal = 0;
68f53502 1056 ecs->step_after_step_resume_breakpoint = 0;
cd0fc7c3 1057 ecs->handling_longjmp = 0; /* FIXME */
cd0fc7c3
SS
1058 ecs->stepping_through_solib_after_catch = 0;
1059 ecs->stepping_through_solib_catchpoints = NULL;
cd0fc7c3
SS
1060 ecs->sal = find_pc_line (prev_pc, 0);
1061 ecs->current_line = ecs->sal.line;
1062 ecs->current_symtab = ecs->sal.symtab;
1063 ecs->infwait_state = infwait_normal_state;
39f77062 1064 ecs->waiton_ptid = pid_to_ptid (-1);
cd0fc7c3
SS
1065 ecs->wp = &(ecs->ws);
1066}
1067
e02bc4cc 1068/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
1069 target_wait()/deprecated_target_wait_hook(). The data is actually
1070 cached by handle_inferior_event(), which gets called immediately
1071 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
1072
1073void
488f131b 1074get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 1075{
39f77062 1076 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
1077 *status = target_last_waitstatus;
1078}
1079
dd80620e
MS
1080/* Switch thread contexts, maintaining "infrun state". */
1081
1082static void
1083context_switch (struct execution_control_state *ecs)
1084{
1085 /* Caution: it may happen that the new thread (or the old one!)
1086 is not in the thread list. In this case we must not attempt
1087 to "switch context", or we run the risk that our context may
1088 be lost. This may happen as a result of the target module
1089 mishandling thread creation. */
1090
1091 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
488f131b 1092 { /* Perform infrun state context switch: */
dd80620e 1093 /* Save infrun state for the old thread. */
0ce3d317 1094 save_infrun_state (inferior_ptid, prev_pc,
dd80620e 1095 trap_expected, step_resume_breakpoint,
15960608 1096 step_range_start,
aa0cd9c1 1097 step_range_end, &step_frame_id,
dd80620e
MS
1098 ecs->handling_longjmp, ecs->another_trap,
1099 ecs->stepping_through_solib_after_catch,
1100 ecs->stepping_through_solib_catchpoints,
f2c9ca08 1101 ecs->current_line, ecs->current_symtab);
dd80620e
MS
1102
1103 /* Load infrun state for the new thread. */
0ce3d317 1104 load_infrun_state (ecs->ptid, &prev_pc,
dd80620e 1105 &trap_expected, &step_resume_breakpoint,
15960608 1106 &step_range_start,
aa0cd9c1 1107 &step_range_end, &step_frame_id,
dd80620e
MS
1108 &ecs->handling_longjmp, &ecs->another_trap,
1109 &ecs->stepping_through_solib_after_catch,
1110 &ecs->stepping_through_solib_catchpoints,
f2c9ca08 1111 &ecs->current_line, &ecs->current_symtab);
dd80620e
MS
1112 }
1113 inferior_ptid = ecs->ptid;
1114}
1115
4fa8626c
DJ
1116static void
1117adjust_pc_after_break (struct execution_control_state *ecs)
1118{
8aad930b 1119 CORE_ADDR breakpoint_pc;
4fa8626c
DJ
1120
1121 /* If this target does not decrement the PC after breakpoints, then
1122 we have nothing to do. */
1123 if (DECR_PC_AFTER_BREAK == 0)
1124 return;
1125
1126 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1127 we aren't, just return.
9709f61c
DJ
1128
1129 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1130 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1131 by software breakpoints should be handled through the normal breakpoint
1132 layer.
8fb3e588 1133
4fa8626c
DJ
1134 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1135 different signals (SIGILL or SIGEMT for instance), but it is less
1136 clear where the PC is pointing afterwards. It may not match
1137 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1138 these signals at breakpoints (the code has been in GDB since at least
1139 1992) so I can not guess how to handle them here.
8fb3e588 1140
4fa8626c
DJ
1141 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1142 would have the PC after hitting a watchpoint affected by
1143 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set
1144 in GDB history, and it seems unlikely to be correct, so
1145 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */
1146
1147 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1148 return;
1149
1150 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1151 return;
1152
8aad930b
AC
1153 /* Find the location where (if we've hit a breakpoint) the
1154 breakpoint would be. */
1155 breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1156
1157 if (SOFTWARE_SINGLE_STEP_P ())
1158 {
1159 /* When using software single-step, a SIGTRAP can only indicate
8fb3e588
AC
1160 an inserted breakpoint. This actually makes things
1161 easier. */
8aad930b
AC
1162 if (singlestep_breakpoints_inserted_p)
1163 /* When software single stepping, the instruction at [prev_pc]
1164 is never a breakpoint, but the instruction following
1165 [prev_pc] (in program execution order) always is. Assume
1166 that following instruction was reached and hence a software
1167 breakpoint was hit. */
1168 write_pc_pid (breakpoint_pc, ecs->ptid);
1169 else if (software_breakpoint_inserted_here_p (breakpoint_pc))
1170 /* The inferior was free running (i.e., no single-step
1171 breakpoints inserted) and it hit a software breakpoint. */
1172 write_pc_pid (breakpoint_pc, ecs->ptid);
1173 }
1174 else
1175 {
1176 /* When using hardware single-step, a SIGTRAP is reported for
8fb3e588
AC
1177 both a completed single-step and a software breakpoint. Need
1178 to differentiate between the two as the latter needs
1179 adjusting but the former does not. */
8aad930b
AC
1180 if (currently_stepping (ecs))
1181 {
1182 if (prev_pc == breakpoint_pc
1183 && software_breakpoint_inserted_here_p (breakpoint_pc))
1184 /* Hardware single-stepped a software breakpoint (as
1185 occures when the inferior is resumed with PC pointing
1186 at not-yet-hit software breakpoint). Since the
1187 breakpoint really is executed, the inferior needs to be
1188 backed up to the breakpoint address. */
1189 write_pc_pid (breakpoint_pc, ecs->ptid);
1190 }
1191 else
1192 {
1193 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1194 /* The inferior was free running (i.e., no hardware
1195 single-step and no possibility of a false SIGTRAP) and
1196 hit a software breakpoint. */
1197 write_pc_pid (breakpoint_pc, ecs->ptid);
1198 }
1199 }
4fa8626c
DJ
1200}
1201
cd0fc7c3
SS
1202/* Given an execution control state that has been freshly filled in
1203 by an event from the inferior, figure out what it means and take
1204 appropriate action. */
c906108c 1205
7270d8f2
OF
1206int stepped_after_stopped_by_watchpoint;
1207
cd0fc7c3 1208void
96baa820 1209handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 1210{
65e82032
AC
1211 /* NOTE: cagney/2003-03-28: If you're looking at this code and
1212 thinking that the variable stepped_after_stopped_by_watchpoint
1213 isn't used, then you're wrong! The macro STOPPED_BY_WATCHPOINT,
1214 defined in the file "config/pa/nm-hppah.h", accesses the variable
1215 indirectly. Mutter something rude about the HP merge. */
c8edd8b4 1216 int sw_single_step_trap_p = 0;
8fb3e588 1217 int stopped_by_watchpoint = -1; /* Mark as unknown. */
cd0fc7c3 1218
e02bc4cc 1219 /* Cache the last pid/waitstatus. */
39f77062 1220 target_last_wait_ptid = ecs->ptid;
e02bc4cc
DS
1221 target_last_waitstatus = *ecs->wp;
1222
4fa8626c
DJ
1223 adjust_pc_after_break (ecs);
1224
488f131b
JB
1225 switch (ecs->infwait_state)
1226 {
1227 case infwait_thread_hop_state:
527159b7 1228 if (debug_infrun)
8a9de0e4 1229 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
488f131b
JB
1230 /* Cancel the waiton_ptid. */
1231 ecs->waiton_ptid = pid_to_ptid (-1);
65e82032 1232 break;
b83266a0 1233
488f131b 1234 case infwait_normal_state:
527159b7 1235 if (debug_infrun)
8a9de0e4 1236 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
488f131b
JB
1237 stepped_after_stopped_by_watchpoint = 0;
1238 break;
b83266a0 1239
488f131b 1240 case infwait_nonstep_watch_state:
527159b7 1241 if (debug_infrun)
8a9de0e4
AC
1242 fprintf_unfiltered (gdb_stdlog,
1243 "infrun: infwait_nonstep_watch_state\n");
488f131b 1244 insert_breakpoints ();
c906108c 1245
488f131b
JB
1246 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1247 handle things like signals arriving and other things happening
1248 in combination correctly? */
1249 stepped_after_stopped_by_watchpoint = 1;
1250 break;
65e82032
AC
1251
1252 default:
e2e0b3e5 1253 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b
JB
1254 }
1255 ecs->infwait_state = infwait_normal_state;
c906108c 1256
488f131b 1257 flush_cached_frames ();
c906108c 1258
488f131b 1259 /* If it's a new process, add it to the thread database */
c906108c 1260
488f131b 1261 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
b9b5d7ea 1262 && !ptid_equal (ecs->ptid, minus_one_ptid)
488f131b
JB
1263 && !in_thread_list (ecs->ptid));
1264
1265 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1266 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1267 {
1268 add_thread (ecs->ptid);
c906108c 1269
488f131b
JB
1270 ui_out_text (uiout, "[New ");
1271 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1272 ui_out_text (uiout, "]\n");
488f131b 1273 }
c906108c 1274
488f131b
JB
1275 switch (ecs->ws.kind)
1276 {
1277 case TARGET_WAITKIND_LOADED:
527159b7 1278 if (debug_infrun)
8a9de0e4 1279 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
488f131b
JB
1280 /* Ignore gracefully during startup of the inferior, as it
1281 might be the shell which has just loaded some objects,
1282 otherwise add the symbols for the newly loaded objects. */
c906108c 1283#ifdef SOLIB_ADD
c0236d92 1284 if (stop_soon == NO_STOP_QUIETLY)
488f131b
JB
1285 {
1286 /* Remove breakpoints, SOLIB_ADD might adjust
1287 breakpoint addresses via breakpoint_re_set. */
1288 if (breakpoints_inserted)
1289 remove_breakpoints ();
c906108c 1290
488f131b
JB
1291 /* Check for any newly added shared libraries if we're
1292 supposed to be adding them automatically. Switch
1293 terminal for any messages produced by
1294 breakpoint_re_set. */
1295 target_terminal_ours_for_output ();
aff6338a 1296 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
1297 stack's section table is kept up-to-date. Architectures,
1298 (e.g., PPC64), use the section table to perform
1299 operations such as address => section name and hence
1300 require the table to contain all sections (including
1301 those found in shared libraries). */
aff6338a 1302 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
1303 exec_ops to SOLIB_ADD. This is because current GDB is
1304 only tooled to propagate section_table changes out from
1305 the "current_target" (see target_resize_to_sections), and
1306 not up from the exec stratum. This, of course, isn't
1307 right. "infrun.c" should only interact with the
1308 exec/process stratum, instead relying on the target stack
1309 to propagate relevant changes (stop, section table
1310 changed, ...) up to other layers. */
aff6338a 1311 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
488f131b
JB
1312 target_terminal_inferior ();
1313
1314 /* Reinsert breakpoints and continue. */
1315 if (breakpoints_inserted)
1316 insert_breakpoints ();
1317 }
c906108c 1318#endif
488f131b
JB
1319 resume (0, TARGET_SIGNAL_0);
1320 prepare_to_wait (ecs);
1321 return;
c5aa993b 1322
488f131b 1323 case TARGET_WAITKIND_SPURIOUS:
527159b7 1324 if (debug_infrun)
8a9de0e4 1325 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
1326 resume (0, TARGET_SIGNAL_0);
1327 prepare_to_wait (ecs);
1328 return;
c5aa993b 1329
488f131b 1330 case TARGET_WAITKIND_EXITED:
527159b7 1331 if (debug_infrun)
8a9de0e4 1332 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
488f131b
JB
1333 target_terminal_ours (); /* Must do this before mourn anyway */
1334 print_stop_reason (EXITED, ecs->ws.value.integer);
1335
1336 /* Record the exit code in the convenience variable $_exitcode, so
1337 that the user can inspect this again later. */
1338 set_internalvar (lookup_internalvar ("_exitcode"),
1339 value_from_longest (builtin_type_int,
1340 (LONGEST) ecs->ws.value.integer));
1341 gdb_flush (gdb_stdout);
1342 target_mourn_inferior ();
1343 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1344 stop_print_frame = 0;
1345 stop_stepping (ecs);
1346 return;
c5aa993b 1347
488f131b 1348 case TARGET_WAITKIND_SIGNALLED:
527159b7 1349 if (debug_infrun)
8a9de0e4 1350 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
488f131b
JB
1351 stop_print_frame = 0;
1352 stop_signal = ecs->ws.value.sig;
1353 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 1354
488f131b
JB
1355 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1356 reach here unless the inferior is dead. However, for years
1357 target_kill() was called here, which hints that fatal signals aren't
1358 really fatal on some systems. If that's true, then some changes
1359 may be needed. */
1360 target_mourn_inferior ();
c906108c 1361
488f131b
JB
1362 print_stop_reason (SIGNAL_EXITED, stop_signal);
1363 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1364 stop_stepping (ecs);
1365 return;
c906108c 1366
488f131b
JB
1367 /* The following are the only cases in which we keep going;
1368 the above cases end in a continue or goto. */
1369 case TARGET_WAITKIND_FORKED:
deb3b17b 1370 case TARGET_WAITKIND_VFORKED:
527159b7 1371 if (debug_infrun)
8a9de0e4 1372 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
488f131b
JB
1373 stop_signal = TARGET_SIGNAL_TRAP;
1374 pending_follow.kind = ecs->ws.kind;
1375
8e7d2c16
DJ
1376 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1377 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
c906108c 1378
488f131b 1379 stop_pc = read_pc ();
675bf4cb 1380
00d4360e 1381 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
675bf4cb 1382
488f131b 1383 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
04e68871
DJ
1384
1385 /* If no catchpoint triggered for this, then keep going. */
1386 if (ecs->random_signal)
1387 {
1388 stop_signal = TARGET_SIGNAL_0;
1389 keep_going (ecs);
1390 return;
1391 }
488f131b
JB
1392 goto process_event_stop_test;
1393
1394 case TARGET_WAITKIND_EXECD:
527159b7 1395 if (debug_infrun)
8a9de0e4 1396 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECED\n");
488f131b
JB
1397 stop_signal = TARGET_SIGNAL_TRAP;
1398
7d2830a3 1399 /* NOTE drow/2002-12-05: This code should be pushed down into the
8fb3e588
AC
1400 target_wait function. Until then following vfork on HP/UX 10.20
1401 is probably broken by this. Of course, it's broken anyway. */
488f131b
JB
1402 /* Is this a target which reports multiple exec events per actual
1403 call to exec()? (HP-UX using ptrace does, for example.) If so,
1404 ignore all but the last one. Just resume the exec'r, and wait
1405 for the next exec event. */
1406 if (inferior_ignoring_leading_exec_events)
1407 {
1408 inferior_ignoring_leading_exec_events--;
1409 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1410 ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.
1411 parent_pid);
1412 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1413 prepare_to_wait (ecs);
1414 return;
1415 }
1416 inferior_ignoring_leading_exec_events =
1417 target_reported_exec_events_per_exec_call () - 1;
1418
1419 pending_follow.execd_pathname =
1420 savestring (ecs->ws.value.execd_pathname,
1421 strlen (ecs->ws.value.execd_pathname));
1422
488f131b
JB
1423 /* This causes the eventpoints and symbol table to be reset. Must
1424 do this now, before trying to determine whether to stop. */
1425 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1426 xfree (pending_follow.execd_pathname);
c906108c 1427
488f131b
JB
1428 stop_pc = read_pc_pid (ecs->ptid);
1429 ecs->saved_inferior_ptid = inferior_ptid;
1430 inferior_ptid = ecs->ptid;
675bf4cb 1431
00d4360e 1432 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
675bf4cb 1433
488f131b
JB
1434 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1435 inferior_ptid = ecs->saved_inferior_ptid;
04e68871
DJ
1436
1437 /* If no catchpoint triggered for this, then keep going. */
1438 if (ecs->random_signal)
1439 {
1440 stop_signal = TARGET_SIGNAL_0;
1441 keep_going (ecs);
1442 return;
1443 }
488f131b
JB
1444 goto process_event_stop_test;
1445
b4dc5ffa
MK
1446 /* Be careful not to try to gather much state about a thread
1447 that's in a syscall. It's frequently a losing proposition. */
488f131b 1448 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 1449 if (debug_infrun)
8a9de0e4 1450 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
488f131b
JB
1451 resume (0, TARGET_SIGNAL_0);
1452 prepare_to_wait (ecs);
1453 return;
c906108c 1454
488f131b
JB
1455 /* Before examining the threads further, step this thread to
1456 get it entirely out of the syscall. (We get notice of the
1457 event when the thread is just on the verge of exiting a
1458 syscall. Stepping one instruction seems to get it back
b4dc5ffa 1459 into user code.) */
488f131b 1460 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 1461 if (debug_infrun)
8a9de0e4 1462 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
488f131b 1463 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
488f131b
JB
1464 prepare_to_wait (ecs);
1465 return;
c906108c 1466
488f131b 1467 case TARGET_WAITKIND_STOPPED:
527159b7 1468 if (debug_infrun)
8a9de0e4 1469 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
488f131b
JB
1470 stop_signal = ecs->ws.value.sig;
1471 break;
c906108c 1472
488f131b
JB
1473 /* We had an event in the inferior, but we are not interested
1474 in handling it at this level. The lower layers have already
8e7d2c16 1475 done what needs to be done, if anything.
8fb3e588
AC
1476
1477 One of the possible circumstances for this is when the
1478 inferior produces output for the console. The inferior has
1479 not stopped, and we are ignoring the event. Another possible
1480 circumstance is any event which the lower level knows will be
1481 reported multiple times without an intervening resume. */
488f131b 1482 case TARGET_WAITKIND_IGNORE:
527159b7 1483 if (debug_infrun)
8a9de0e4 1484 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
8e7d2c16 1485 prepare_to_wait (ecs);
488f131b
JB
1486 return;
1487 }
c906108c 1488
488f131b
JB
1489 /* We may want to consider not doing a resume here in order to give
1490 the user a chance to play with the new thread. It might be good
1491 to make that a user-settable option. */
c906108c 1492
488f131b
JB
1493 /* At this point, all threads are stopped (happens automatically in
1494 either the OS or the native code). Therefore we need to continue
1495 all threads in order to make progress. */
1496 if (ecs->new_thread_event)
1497 {
1498 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1499 prepare_to_wait (ecs);
1500 return;
1501 }
c906108c 1502
488f131b
JB
1503 stop_pc = read_pc_pid (ecs->ptid);
1504
527159b7 1505 if (debug_infrun)
8a9de0e4 1506 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
527159b7 1507
9f976b41
DJ
1508 if (stepping_past_singlestep_breakpoint)
1509 {
8fb3e588
AC
1510 gdb_assert (SOFTWARE_SINGLE_STEP_P ()
1511 && singlestep_breakpoints_inserted_p);
9f976b41
DJ
1512 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1513 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1514
1515 stepping_past_singlestep_breakpoint = 0;
1516
1517 /* We've either finished single-stepping past the single-step
8fb3e588
AC
1518 breakpoint, or stopped for some other reason. It would be nice if
1519 we could tell, but we can't reliably. */
9f976b41 1520 if (stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 1521 {
527159b7 1522 if (debug_infrun)
8a9de0e4 1523 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
9f976b41
DJ
1524 /* Pull the single step breakpoints out of the target. */
1525 SOFTWARE_SINGLE_STEP (0, 0);
1526 singlestep_breakpoints_inserted_p = 0;
1527
1528 ecs->random_signal = 0;
1529
1530 ecs->ptid = saved_singlestep_ptid;
1531 context_switch (ecs);
9a4105ab
AC
1532 if (deprecated_context_hook)
1533 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
1534
1535 resume (1, TARGET_SIGNAL_0);
1536 prepare_to_wait (ecs);
1537 return;
1538 }
1539 }
1540
1541 stepping_past_singlestep_breakpoint = 0;
1542
488f131b
JB
1543 /* See if a thread hit a thread-specific breakpoint that was meant for
1544 another thread. If so, then step that thread past the breakpoint,
1545 and continue it. */
1546
1547 if (stop_signal == TARGET_SIGNAL_TRAP)
1548 {
9f976b41
DJ
1549 int thread_hop_needed = 0;
1550
f8d40ec8
JB
1551 /* Check if a regular breakpoint has been hit before checking
1552 for a potential single step breakpoint. Otherwise, GDB will
1553 not see this breakpoint hit when stepping onto breakpoints. */
4fa8626c 1554 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
488f131b 1555 {
c5aa993b 1556 ecs->random_signal = 0;
4fa8626c 1557 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
9f976b41
DJ
1558 thread_hop_needed = 1;
1559 }
1560 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1561 {
1562 ecs->random_signal = 0;
1563 /* The call to in_thread_list is necessary because PTIDs sometimes
1564 change when we go from single-threaded to multi-threaded. If
1565 the singlestep_ptid is still in the list, assume that it is
1566 really different from ecs->ptid. */
1567 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1568 && in_thread_list (singlestep_ptid))
1569 {
1570 thread_hop_needed = 1;
1571 stepping_past_singlestep_breakpoint = 1;
1572 saved_singlestep_ptid = singlestep_ptid;
1573 }
1574 }
1575
1576 if (thread_hop_needed)
8fb3e588
AC
1577 {
1578 int remove_status;
1579
527159b7 1580 if (debug_infrun)
8a9de0e4 1581 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 1582
8fb3e588
AC
1583 /* Saw a breakpoint, but it was hit by the wrong thread.
1584 Just continue. */
1585
1586 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
488f131b 1587 {
8fb3e588
AC
1588 /* Pull the single step breakpoints out of the target. */
1589 SOFTWARE_SINGLE_STEP (0, 0);
1590 singlestep_breakpoints_inserted_p = 0;
1591 }
1592
1593 remove_status = remove_breakpoints ();
1594 /* Did we fail to remove breakpoints? If so, try
1595 to set the PC past the bp. (There's at least
1596 one situation in which we can fail to remove
1597 the bp's: On HP-UX's that use ttrace, we can't
1598 change the address space of a vforking child
1599 process until the child exits (well, okay, not
1600 then either :-) or execs. */
1601 if (remove_status != 0)
1602 {
1603 /* FIXME! This is obviously non-portable! */
1604 write_pc_pid (stop_pc + 4, ecs->ptid);
1605 /* We need to restart all the threads now,
1606 * unles we're running in scheduler-locked mode.
1607 * Use currently_stepping to determine whether to
1608 * step or continue.
1609 */
1610 /* FIXME MVS: is there any reason not to call resume()? */
1611 if (scheduler_mode == schedlock_on)
1612 target_resume (ecs->ptid,
1613 currently_stepping (ecs), TARGET_SIGNAL_0);
488f131b 1614 else
8fb3e588
AC
1615 target_resume (RESUME_ALL,
1616 currently_stepping (ecs), TARGET_SIGNAL_0);
1617 prepare_to_wait (ecs);
1618 return;
1619 }
1620 else
1621 { /* Single step */
1622 breakpoints_inserted = 0;
1623 if (!ptid_equal (inferior_ptid, ecs->ptid))
1624 context_switch (ecs);
1625 ecs->waiton_ptid = ecs->ptid;
1626 ecs->wp = &(ecs->ws);
1627 ecs->another_trap = 1;
1628
1629 ecs->infwait_state = infwait_thread_hop_state;
1630 keep_going (ecs);
1631 registers_changed ();
1632 return;
1633 }
488f131b 1634 }
f8d40ec8 1635 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
8fb3e588
AC
1636 {
1637 sw_single_step_trap_p = 1;
1638 ecs->random_signal = 0;
1639 }
488f131b
JB
1640 }
1641 else
1642 ecs->random_signal = 1;
c906108c 1643
488f131b 1644 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
1645 so, then switch to that thread. */
1646 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 1647 {
527159b7 1648 if (debug_infrun)
8a9de0e4 1649 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 1650
488f131b 1651 context_switch (ecs);
c5aa993b 1652
9a4105ab
AC
1653 if (deprecated_context_hook)
1654 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
c5aa993b 1655
488f131b
JB
1656 flush_cached_frames ();
1657 }
c906108c 1658
488f131b
JB
1659 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1660 {
1661 /* Pull the single step breakpoints out of the target. */
1662 SOFTWARE_SINGLE_STEP (0, 0);
1663 singlestep_breakpoints_inserted_p = 0;
1664 }
c906108c 1665
488f131b
JB
1666 /* It may not be necessary to disable the watchpoint to stop over
1667 it. For example, the PA can (with some kernel cooperation)
1668 single step over a watchpoint without disabling the watchpoint. */
1669 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1670 {
527159b7 1671 if (debug_infrun)
8a9de0e4 1672 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
488f131b
JB
1673 resume (1, 0);
1674 prepare_to_wait (ecs);
1675 return;
1676 }
c906108c 1677
488f131b
JB
1678 /* It is far more common to need to disable a watchpoint to step
1679 the inferior over it. FIXME. What else might a debug
1680 register or page protection watchpoint scheme need here? */
1681 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1682 {
1683 /* At this point, we are stopped at an instruction which has
1684 attempted to write to a piece of memory under control of
1685 a watchpoint. The instruction hasn't actually executed
1686 yet. If we were to evaluate the watchpoint expression
1687 now, we would get the old value, and therefore no change
1688 would seem to have occurred.
1689
1690 In order to make watchpoints work `right', we really need
1691 to complete the memory write, and then evaluate the
1692 watchpoint expression. The following code does that by
1693 removing the watchpoint (actually, all watchpoints and
1694 breakpoints), single-stepping the target, re-inserting
1695 watchpoints, and then falling through to let normal
1696 single-step processing handle proceed. Since this
1697 includes evaluating watchpoints, things will come to a
1698 stop in the correct manner. */
1699
527159b7 1700 if (debug_infrun)
8a9de0e4 1701 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
488f131b
JB
1702 remove_breakpoints ();
1703 registers_changed ();
1704 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
c5aa993b 1705
488f131b
JB
1706 ecs->waiton_ptid = ecs->ptid;
1707 ecs->wp = &(ecs->ws);
1708 ecs->infwait_state = infwait_nonstep_watch_state;
1709 prepare_to_wait (ecs);
1710 return;
1711 }
1712
1713 /* It may be possible to simply continue after a watchpoint. */
1714 if (HAVE_CONTINUABLE_WATCHPOINT)
00d4360e 1715 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
488f131b
JB
1716
1717 ecs->stop_func_start = 0;
1718 ecs->stop_func_end = 0;
1719 ecs->stop_func_name = 0;
1720 /* Don't care about return value; stop_func_start and stop_func_name
1721 will both be 0 if it doesn't work. */
1722 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1723 &ecs->stop_func_start, &ecs->stop_func_end);
782263ab 1724 ecs->stop_func_start += DEPRECATED_FUNCTION_START_OFFSET;
488f131b
JB
1725 ecs->another_trap = 0;
1726 bpstat_clear (&stop_bpstat);
1727 stop_step = 0;
1728 stop_stack_dummy = 0;
1729 stop_print_frame = 1;
1730 ecs->random_signal = 0;
1731 stopped_by_random_signal = 0;
1732 breakpoints_failed = 0;
1733
3352ef37
AC
1734 if (stop_signal == TARGET_SIGNAL_TRAP
1735 && trap_expected
1736 && gdbarch_single_step_through_delay_p (current_gdbarch)
1737 && currently_stepping (ecs))
1738 {
1739 /* We're trying to step of a breakpoint. Turns out that we're
1740 also on an instruction that needs to be stepped multiple
1741 times before it's been fully executing. E.g., architectures
1742 with a delay slot. It needs to be stepped twice, once for
1743 the instruction and once for the delay slot. */
1744 int step_through_delay
1745 = gdbarch_single_step_through_delay (current_gdbarch,
1746 get_current_frame ());
527159b7 1747 if (debug_infrun && step_through_delay)
8a9de0e4 1748 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
3352ef37
AC
1749 if (step_range_end == 0 && step_through_delay)
1750 {
1751 /* The user issued a continue when stopped at a breakpoint.
1752 Set up for another trap and get out of here. */
1753 ecs->another_trap = 1;
1754 keep_going (ecs);
1755 return;
1756 }
1757 else if (step_through_delay)
1758 {
1759 /* The user issued a step when stopped at a breakpoint.
1760 Maybe we should stop, maybe we should not - the delay
1761 slot *might* correspond to a line of source. In any
1762 case, don't decide that here, just set ecs->another_trap,
1763 making sure we single-step again before breakpoints are
1764 re-inserted. */
1765 ecs->another_trap = 1;
1766 }
1767 }
1768
488f131b
JB
1769 /* Look at the cause of the stop, and decide what to do.
1770 The alternatives are:
1771 1) break; to really stop and return to the debugger,
1772 2) drop through to start up again
1773 (set ecs->another_trap to 1 to single step once)
1774 3) set ecs->random_signal to 1, and the decision between 1 and 2
1775 will be made according to the signal handling tables. */
1776
1777 /* First, distinguish signals caused by the debugger from signals
03cebad2
MK
1778 that have to do with the program's own actions. Note that
1779 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1780 on the operating system version. Here we detect when a SIGILL or
1781 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1782 something similar for SIGSEGV, since a SIGSEGV will be generated
1783 when we're trying to execute a breakpoint instruction on a
1784 non-executable stack. This happens for call dummy breakpoints
1785 for architectures like SPARC that place call dummies on the
1786 stack. */
488f131b
JB
1787
1788 if (stop_signal == TARGET_SIGNAL_TRAP
8fb3e588
AC
1789 || (breakpoints_inserted
1790 && (stop_signal == TARGET_SIGNAL_ILL
1791 || stop_signal == TARGET_SIGNAL_SEGV
1792 || stop_signal == TARGET_SIGNAL_EMT))
1793 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
488f131b
JB
1794 {
1795 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1796 {
527159b7 1797 if (debug_infrun)
8a9de0e4 1798 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
1799 stop_print_frame = 0;
1800 stop_stepping (ecs);
1801 return;
1802 }
c54cfec8
EZ
1803
1804 /* This is originated from start_remote(), start_inferior() and
1805 shared libraries hook functions. */
c0236d92 1806 if (stop_soon == STOP_QUIETLY)
488f131b 1807 {
527159b7 1808 if (debug_infrun)
8a9de0e4 1809 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
1810 stop_stepping (ecs);
1811 return;
1812 }
1813
c54cfec8
EZ
1814 /* This originates from attach_command(). We need to overwrite
1815 the stop_signal here, because some kernels don't ignore a
1816 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1817 See more comments in inferior.h. */
c0236d92 1818 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
c54cfec8
EZ
1819 {
1820 stop_stepping (ecs);
1821 if (stop_signal == TARGET_SIGNAL_STOP)
1822 stop_signal = TARGET_SIGNAL_0;
1823 return;
1824 }
1825
d303a6c7
AC
1826 /* Don't even think about breakpoints if just proceeded over a
1827 breakpoint. */
1828 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
527159b7
RC
1829 {
1830 if (debug_infrun)
8a9de0e4 1831 fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n");
527159b7
RC
1832 bpstat_clear (&stop_bpstat);
1833 }
488f131b
JB
1834 else
1835 {
1836 /* See if there is a breakpoint at the current PC. */
8fb3e588 1837 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
00d4360e 1838 stopped_by_watchpoint);
488f131b 1839
488f131b
JB
1840 /* Following in case break condition called a
1841 function. */
1842 stop_print_frame = 1;
1843 }
1844
73dd234f 1845 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
1846 at one stage in the past included checks for an inferior
1847 function call's call dummy's return breakpoint. The original
1848 comment, that went with the test, read:
73dd234f 1849
8fb3e588
AC
1850 ``End of a stack dummy. Some systems (e.g. Sony news) give
1851 another signal besides SIGTRAP, so check here as well as
1852 above.''
73dd234f
AC
1853
1854 If someone ever tries to get get call dummys on a
1855 non-executable stack to work (where the target would stop
03cebad2
MK
1856 with something like a SIGSEGV), then those tests might need
1857 to be re-instated. Given, however, that the tests were only
73dd234f 1858 enabled when momentary breakpoints were not being used, I
03cebad2
MK
1859 suspect that it won't be the case.
1860
8fb3e588
AC
1861 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1862 be necessary for call dummies on a non-executable stack on
1863 SPARC. */
73dd234f 1864
488f131b
JB
1865 if (stop_signal == TARGET_SIGNAL_TRAP)
1866 ecs->random_signal
1867 = !(bpstat_explains_signal (stop_bpstat)
1868 || trap_expected
488f131b 1869 || (step_range_end && step_resume_breakpoint == NULL));
488f131b
JB
1870 else
1871 {
73dd234f 1872 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
488f131b
JB
1873 if (!ecs->random_signal)
1874 stop_signal = TARGET_SIGNAL_TRAP;
1875 }
1876 }
1877
1878 /* When we reach this point, we've pretty much decided
1879 that the reason for stopping must've been a random
1880 (unexpected) signal. */
1881
1882 else
1883 ecs->random_signal = 1;
488f131b 1884
04e68871 1885process_event_stop_test:
488f131b
JB
1886 /* For the program's own signals, act according to
1887 the signal handling tables. */
1888
1889 if (ecs->random_signal)
1890 {
1891 /* Signal not for debugging purposes. */
1892 int printed = 0;
1893
527159b7 1894 if (debug_infrun)
8a9de0e4 1895 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
527159b7 1896
488f131b
JB
1897 stopped_by_random_signal = 1;
1898
1899 if (signal_print[stop_signal])
1900 {
1901 printed = 1;
1902 target_terminal_ours_for_output ();
1903 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
1904 }
1905 if (signal_stop[stop_signal])
1906 {
1907 stop_stepping (ecs);
1908 return;
1909 }
1910 /* If not going to stop, give terminal back
1911 if we took it away. */
1912 else if (printed)
1913 target_terminal_inferior ();
1914
1915 /* Clear the signal if it should not be passed. */
1916 if (signal_program[stop_signal] == 0)
1917 stop_signal = TARGET_SIGNAL_0;
1918
68f53502
AC
1919 if (prev_pc == read_pc ()
1920 && !breakpoints_inserted
1921 && breakpoint_here_p (read_pc ())
1922 && step_resume_breakpoint == NULL)
1923 {
1924 /* We were just starting a new sequence, attempting to
1925 single-step off of a breakpoint and expecting a SIGTRAP.
1926 Intead this signal arrives. This signal will take us out
1927 of the stepping range so GDB needs to remember to, when
1928 the signal handler returns, resume stepping off that
1929 breakpoint. */
1930 /* To simplify things, "continue" is forced to use the same
1931 code paths as single-step - set a breakpoint at the
1932 signal return address and then, once hit, step off that
1933 breakpoint. */
44cbf7b5 1934 insert_step_resume_breakpoint_at_frame (get_current_frame ());
68f53502 1935 ecs->step_after_step_resume_breakpoint = 1;
9d799f85
AC
1936 keep_going (ecs);
1937 return;
68f53502 1938 }
9d799f85
AC
1939
1940 if (step_range_end != 0
1941 && stop_signal != TARGET_SIGNAL_0
1942 && stop_pc >= step_range_start && stop_pc < step_range_end
1943 && frame_id_eq (get_frame_id (get_current_frame ()),
1944 step_frame_id)
1945 && step_resume_breakpoint == NULL)
d303a6c7
AC
1946 {
1947 /* The inferior is about to take a signal that will take it
1948 out of the single step range. Set a breakpoint at the
1949 current PC (which is presumably where the signal handler
1950 will eventually return) and then allow the inferior to
1951 run free.
1952
1953 Note that this is only needed for a signal delivered
1954 while in the single-step range. Nested signals aren't a
1955 problem as they eventually all return. */
44cbf7b5 1956 insert_step_resume_breakpoint_at_frame (get_current_frame ());
9d799f85
AC
1957 keep_going (ecs);
1958 return;
d303a6c7 1959 }
9d799f85
AC
1960
1961 /* Note: step_resume_breakpoint may be non-NULL. This occures
1962 when either there's a nested signal, or when there's a
1963 pending signal enabled just as the signal handler returns
1964 (leaving the inferior at the step-resume-breakpoint without
1965 actually executing it). Either way continue until the
1966 breakpoint is really hit. */
488f131b
JB
1967 keep_going (ecs);
1968 return;
1969 }
1970
1971 /* Handle cases caused by hitting a breakpoint. */
1972 {
1973 CORE_ADDR jmp_buf_pc;
1974 struct bpstat_what what;
1975
1976 what = bpstat_what (stop_bpstat);
1977
1978 if (what.call_dummy)
1979 {
1980 stop_stack_dummy = 1;
c5aa993b 1981 }
c906108c 1982
488f131b 1983 switch (what.main_action)
c5aa993b 1984 {
488f131b
JB
1985 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
1986 /* If we hit the breakpoint at longjmp, disable it for the
1987 duration of this command. Then, install a temporary
1988 breakpoint at the target of the jmp_buf. */
527159b7 1989 if (debug_infrun)
8a9de0e4 1990 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_SET_LONGJMP_RESUME\n");
488f131b
JB
1991 disable_longjmp_breakpoint ();
1992 remove_breakpoints ();
1993 breakpoints_inserted = 0;
1994 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
c5aa993b 1995 {
488f131b 1996 keep_going (ecs);
104c1213 1997 return;
c5aa993b 1998 }
488f131b
JB
1999
2000 /* Need to blow away step-resume breakpoint, as it
2001 interferes with us */
2002 if (step_resume_breakpoint != NULL)
104c1213 2003 {
488f131b 2004 delete_step_resume_breakpoint (&step_resume_breakpoint);
104c1213 2005 }
c906108c 2006
8fb3e588 2007 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
488f131b
JB
2008 ecs->handling_longjmp = 1; /* FIXME */
2009 keep_going (ecs);
2010 return;
c906108c 2011
488f131b
JB
2012 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2013 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
527159b7 2014 if (debug_infrun)
8a9de0e4 2015 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_CLEAR_LONGJMP_RESUME\n");
488f131b
JB
2016 remove_breakpoints ();
2017 breakpoints_inserted = 0;
488f131b
JB
2018 disable_longjmp_breakpoint ();
2019 ecs->handling_longjmp = 0; /* FIXME */
2020 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2021 break;
2022 /* else fallthrough */
2023
2024 case BPSTAT_WHAT_SINGLE:
527159b7 2025 if (debug_infrun)
8a9de0e4 2026 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_SINGLE\n");
488f131b 2027 if (breakpoints_inserted)
c5aa993b 2028 {
488f131b 2029 remove_breakpoints ();
c5aa993b 2030 }
488f131b
JB
2031 breakpoints_inserted = 0;
2032 ecs->another_trap = 1;
2033 /* Still need to check other stuff, at least the case
2034 where we are stepping and step out of the right range. */
2035 break;
c906108c 2036
488f131b 2037 case BPSTAT_WHAT_STOP_NOISY:
527159b7 2038 if (debug_infrun)
8a9de0e4 2039 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_STOP_NOISY\n");
488f131b 2040 stop_print_frame = 1;
c906108c 2041
d303a6c7
AC
2042 /* We are about to nuke the step_resume_breakpointt via the
2043 cleanup chain, so no need to worry about it here. */
c5aa993b 2044
488f131b
JB
2045 stop_stepping (ecs);
2046 return;
c5aa993b 2047
488f131b 2048 case BPSTAT_WHAT_STOP_SILENT:
527159b7 2049 if (debug_infrun)
8a9de0e4 2050 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_STOP_SILENT\n");
488f131b 2051 stop_print_frame = 0;
c5aa993b 2052
d303a6c7
AC
2053 /* We are about to nuke the step_resume_breakpoin via the
2054 cleanup chain, so no need to worry about it here. */
c5aa993b 2055
488f131b 2056 stop_stepping (ecs);
e441088d 2057 return;
c5aa993b 2058
488f131b
JB
2059 case BPSTAT_WHAT_STEP_RESUME:
2060 /* This proably demands a more elegant solution, but, yeah
2061 right...
c5aa993b 2062
488f131b
JB
2063 This function's use of the simple variable
2064 step_resume_breakpoint doesn't seem to accomodate
2065 simultaneously active step-resume bp's, although the
2066 breakpoint list certainly can.
c5aa993b 2067
488f131b
JB
2068 If we reach here and step_resume_breakpoint is already
2069 NULL, then apparently we have multiple active
2070 step-resume bp's. We'll just delete the breakpoint we
2071 stopped at, and carry on.
2072
2073 Correction: what the code currently does is delete a
2074 step-resume bp, but it makes no effort to ensure that
2075 the one deleted is the one currently stopped at. MVS */
c5aa993b 2076
527159b7 2077 if (debug_infrun)
8a9de0e4 2078 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_STEP_RESUME\n");
527159b7 2079
488f131b
JB
2080 if (step_resume_breakpoint == NULL)
2081 {
2082 step_resume_breakpoint =
2083 bpstat_find_step_resume_breakpoint (stop_bpstat);
2084 }
2085 delete_step_resume_breakpoint (&step_resume_breakpoint);
68f53502
AC
2086 if (ecs->step_after_step_resume_breakpoint)
2087 {
2088 /* Back when the step-resume breakpoint was inserted, we
2089 were trying to single-step off a breakpoint. Go back
2090 to doing that. */
2091 ecs->step_after_step_resume_breakpoint = 0;
2092 remove_breakpoints ();
2093 breakpoints_inserted = 0;
2094 ecs->another_trap = 1;
2095 keep_going (ecs);
2096 return;
2097 }
488f131b
JB
2098 break;
2099
2100 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
527159b7 2101 if (debug_infrun)
8a9de0e4 2102 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_THROUGH_SIGTRAMP\n");
488f131b
JB
2103 /* If were waiting for a trap, hitting the step_resume_break
2104 doesn't count as getting it. */
2105 if (trap_expected)
2106 ecs->another_trap = 1;
2107 break;
2108
2109 case BPSTAT_WHAT_CHECK_SHLIBS:
2110 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2111#ifdef SOLIB_ADD
c906108c 2112 {
527159b7 2113 if (debug_infrun)
8a9de0e4 2114 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_CHECK_SHLIBS\n");
488f131b
JB
2115 /* Remove breakpoints, we eventually want to step over the
2116 shlib event breakpoint, and SOLIB_ADD might adjust
2117 breakpoint addresses via breakpoint_re_set. */
2118 if (breakpoints_inserted)
2119 remove_breakpoints ();
c5aa993b 2120 breakpoints_inserted = 0;
488f131b
JB
2121
2122 /* Check for any newly added shared libraries if we're
2123 supposed to be adding them automatically. Switch
2124 terminal for any messages produced by
2125 breakpoint_re_set. */
2126 target_terminal_ours_for_output ();
aff6338a 2127 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
2128 stack's section table is kept up-to-date. Architectures,
2129 (e.g., PPC64), use the section table to perform
2130 operations such as address => section name and hence
2131 require the table to contain all sections (including
2132 those found in shared libraries). */
aff6338a 2133 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
2134 exec_ops to SOLIB_ADD. This is because current GDB is
2135 only tooled to propagate section_table changes out from
2136 the "current_target" (see target_resize_to_sections), and
2137 not up from the exec stratum. This, of course, isn't
2138 right. "infrun.c" should only interact with the
2139 exec/process stratum, instead relying on the target stack
2140 to propagate relevant changes (stop, section table
2141 changed, ...) up to other layers. */
aff6338a 2142 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
488f131b
JB
2143 target_terminal_inferior ();
2144
2145 /* Try to reenable shared library breakpoints, additional
2146 code segments in shared libraries might be mapped in now. */
2147 re_enable_breakpoints_in_shlibs ();
2148
2149 /* If requested, stop when the dynamic linker notifies
2150 gdb of events. This allows the user to get control
2151 and place breakpoints in initializer routines for
2152 dynamically loaded objects (among other things). */
877522db 2153 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 2154 {
488f131b 2155 stop_stepping (ecs);
d4f3574e
SS
2156 return;
2157 }
c5aa993b 2158
488f131b
JB
2159 /* If we stopped due to an explicit catchpoint, then the
2160 (see above) call to SOLIB_ADD pulled in any symbols
2161 from a newly-loaded library, if appropriate.
2162
2163 We do want the inferior to stop, but not where it is
2164 now, which is in the dynamic linker callback. Rather,
2165 we would like it stop in the user's program, just after
2166 the call that caused this catchpoint to trigger. That
2167 gives the user a more useful vantage from which to
2168 examine their program's state. */
8fb3e588
AC
2169 else if (what.main_action
2170 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
c906108c 2171 {
488f131b
JB
2172 /* ??rehrauer: If I could figure out how to get the
2173 right return PC from here, we could just set a temp
2174 breakpoint and resume. I'm not sure we can without
2175 cracking open the dld's shared libraries and sniffing
2176 their unwind tables and text/data ranges, and that's
2177 not a terribly portable notion.
2178
2179 Until that time, we must step the inferior out of the
2180 dld callback, and also out of the dld itself (and any
2181 code or stubs in libdld.sl, such as "shl_load" and
2182 friends) until we reach non-dld code. At that point,
2183 we can stop stepping. */
2184 bpstat_get_triggered_catchpoints (stop_bpstat,
2185 &ecs->
2186 stepping_through_solib_catchpoints);
2187 ecs->stepping_through_solib_after_catch = 1;
2188
2189 /* Be sure to lift all breakpoints, so the inferior does
2190 actually step past this point... */
2191 ecs->another_trap = 1;
2192 break;
c906108c 2193 }
c5aa993b 2194 else
c5aa993b 2195 {
488f131b 2196 /* We want to step over this breakpoint, then keep going. */
c5aa993b 2197 ecs->another_trap = 1;
488f131b 2198 break;
c5aa993b 2199 }
488f131b
JB
2200 }
2201#endif
2202 break;
c906108c 2203
488f131b
JB
2204 case BPSTAT_WHAT_LAST:
2205 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 2206
488f131b
JB
2207 case BPSTAT_WHAT_KEEP_CHECKING:
2208 break;
2209 }
2210 }
c906108c 2211
488f131b
JB
2212 /* We come here if we hit a breakpoint but should not
2213 stop for it. Possibly we also were stepping
2214 and should stop for that. So fall through and
2215 test for stepping. But, if not stepping,
2216 do not stop. */
c906108c 2217
9d1ff73f
MS
2218 /* Are we stepping to get the inferior out of the dynamic linker's
2219 hook (and possibly the dld itself) after catching a shlib
2220 event? */
488f131b
JB
2221 if (ecs->stepping_through_solib_after_catch)
2222 {
2223#if defined(SOLIB_ADD)
2224 /* Have we reached our destination? If not, keep going. */
2225 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2226 {
527159b7 2227 if (debug_infrun)
8a9de0e4 2228 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
488f131b
JB
2229 ecs->another_trap = 1;
2230 keep_going (ecs);
104c1213 2231 return;
488f131b
JB
2232 }
2233#endif
527159b7 2234 if (debug_infrun)
8a9de0e4 2235 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
488f131b
JB
2236 /* Else, stop and report the catchpoint(s) whose triggering
2237 caused us to begin stepping. */
2238 ecs->stepping_through_solib_after_catch = 0;
2239 bpstat_clear (&stop_bpstat);
2240 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2241 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2242 stop_print_frame = 1;
2243 stop_stepping (ecs);
2244 return;
2245 }
c906108c 2246
488f131b
JB
2247 if (step_resume_breakpoint)
2248 {
527159b7 2249 if (debug_infrun)
8a9de0e4 2250 fprintf_unfiltered (gdb_stdlog, "infrun: step-resume breakpoint\n");
527159b7 2251
488f131b
JB
2252 /* Having a step-resume breakpoint overrides anything
2253 else having to do with stepping commands until
2254 that breakpoint is reached. */
488f131b
JB
2255 keep_going (ecs);
2256 return;
2257 }
c5aa993b 2258
488f131b
JB
2259 if (step_range_end == 0)
2260 {
527159b7 2261 if (debug_infrun)
8a9de0e4 2262 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 2263 /* Likewise if we aren't even stepping. */
488f131b
JB
2264 keep_going (ecs);
2265 return;
2266 }
c5aa993b 2267
488f131b 2268 /* If stepping through a line, keep going if still within it.
c906108c 2269
488f131b
JB
2270 Note that step_range_end is the address of the first instruction
2271 beyond the step range, and NOT the address of the last instruction
2272 within it! */
2273 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2274 {
527159b7 2275 if (debug_infrun)
8a9de0e4 2276 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
527159b7
RC
2277 paddr_nz (step_range_start),
2278 paddr_nz (step_range_end));
488f131b
JB
2279 keep_going (ecs);
2280 return;
2281 }
c5aa993b 2282
488f131b 2283 /* We stepped out of the stepping range. */
c906108c 2284
488f131b
JB
2285 /* If we are stepping at the source level and entered the runtime
2286 loader dynamic symbol resolution code, we keep on single stepping
2287 until we exit the run time loader code and reach the callee's
2288 address. */
2289 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2290 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc))
2291 {
4c8c40e6
MK
2292 CORE_ADDR pc_after_resolver =
2293 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
c906108c 2294
527159b7 2295 if (debug_infrun)
8a9de0e4 2296 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
527159b7 2297
488f131b
JB
2298 if (pc_after_resolver)
2299 {
2300 /* Set up a step-resume breakpoint at the address
2301 indicated by SKIP_SOLIB_RESOLVER. */
2302 struct symtab_and_line sr_sal;
fe39c653 2303 init_sal (&sr_sal);
488f131b
JB
2304 sr_sal.pc = pc_after_resolver;
2305
44cbf7b5 2306 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c5aa993b 2307 }
c906108c 2308
488f131b
JB
2309 keep_going (ecs);
2310 return;
2311 }
c906108c 2312
42edda50
AC
2313 if (step_range_end != 1
2314 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2315 || step_over_calls == STEP_OVER_ALL)
2316 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
488f131b 2317 {
527159b7 2318 if (debug_infrun)
8a9de0e4 2319 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
42edda50 2320 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
2321 a signal trampoline (either by a signal being delivered or by
2322 the signal handler returning). Just single-step until the
2323 inferior leaves the trampoline (either by calling the handler
2324 or returning). */
488f131b
JB
2325 keep_going (ecs);
2326 return;
2327 }
c906108c 2328
8fb3e588 2329 if (frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
488f131b
JB
2330 {
2331 /* It's a subroutine call. */
95918acb 2332 CORE_ADDR real_stop_pc;
8fb3e588 2333
527159b7 2334 if (debug_infrun)
8a9de0e4 2335 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 2336
95918acb
AC
2337 if ((step_over_calls == STEP_OVER_NONE)
2338 || ((step_range_end == 1)
2339 && in_prologue (prev_pc, ecs->stop_func_start)))
2340 {
2341 /* I presume that step_over_calls is only 0 when we're
2342 supposed to be stepping at the assembly language level
2343 ("stepi"). Just stop. */
2344 /* Also, maybe we just did a "nexti" inside a prolog, so we
2345 thought it was a subroutine call but it was not. Stop as
2346 well. FENN */
2347 stop_step = 1;
2348 print_stop_reason (END_STEPPING_RANGE, 0);
2349 stop_stepping (ecs);
2350 return;
2351 }
8fb3e588 2352
8567c30f
AC
2353 if (step_over_calls == STEP_OVER_ALL)
2354 {
2355 /* We're doing a "next", set a breakpoint at callee's return
2356 address (the address at which the caller will
2357 resume). */
44cbf7b5 2358 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
8567c30f
AC
2359 keep_going (ecs);
2360 return;
2361 }
a53c66de 2362
95918acb 2363 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
2364 calling routine and the real function), locate the real
2365 function. That's what tells us (a) whether we want to step
2366 into it at all, and (b) what prologue we want to run to the
2367 end of, if we do step into it. */
95918acb
AC
2368 real_stop_pc = skip_language_trampoline (stop_pc);
2369 if (real_stop_pc == 0)
2370 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2371 if (real_stop_pc != 0)
2372 ecs->stop_func_start = real_stop_pc;
8fb3e588 2373
1b2bfbb9
RC
2374 if (IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start))
2375 {
2376 struct symtab_and_line sr_sal;
2377 init_sal (&sr_sal);
2378 sr_sal.pc = ecs->stop_func_start;
2379
44cbf7b5 2380 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
8fb3e588
AC
2381 keep_going (ecs);
2382 return;
1b2bfbb9
RC
2383 }
2384
95918acb 2385 /* If we have line number information for the function we are
8fb3e588 2386 thinking of stepping into, step into it.
95918acb 2387
8fb3e588
AC
2388 If there are several symtabs at that PC (e.g. with include
2389 files), just want to know whether *any* of them have line
2390 numbers. find_pc_line handles this. */
95918acb
AC
2391 {
2392 struct symtab_and_line tmp_sal;
8fb3e588 2393
95918acb
AC
2394 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2395 if (tmp_sal.line != 0)
2396 {
2397 step_into_function (ecs);
2398 return;
2399 }
2400 }
2401
2402 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
2403 set, we stop the step so that the user has a chance to switch
2404 in assembly mode. */
95918acb
AC
2405 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2406 {
2407 stop_step = 1;
2408 print_stop_reason (END_STEPPING_RANGE, 0);
2409 stop_stepping (ecs);
2410 return;
2411 }
2412
2413 /* Set a breakpoint at callee's return address (the address at
8fb3e588 2414 which the caller will resume). */
44cbf7b5 2415 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
95918acb 2416 keep_going (ecs);
488f131b 2417 return;
488f131b 2418 }
c906108c 2419
488f131b
JB
2420 /* If we're in the return path from a shared library trampoline,
2421 we want to proceed through the trampoline when stepping. */
2422 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2423 {
488f131b 2424 /* Determine where this trampoline returns. */
5cf4d23a 2425 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
c906108c 2426
527159b7 2427 if (debug_infrun)
8a9de0e4 2428 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
527159b7 2429
488f131b 2430 /* Only proceed through if we know where it's going. */
d764a824 2431 if (real_stop_pc)
488f131b
JB
2432 {
2433 /* And put the step-breakpoint there and go until there. */
2434 struct symtab_and_line sr_sal;
2435
fe39c653 2436 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 2437 sr_sal.pc = real_stop_pc;
488f131b 2438 sr_sal.section = find_pc_overlay (sr_sal.pc);
44cbf7b5
AC
2439
2440 /* Do not specify what the fp should be when we stop since
2441 on some machines the prologue is where the new fp value
2442 is established. */
2443 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c906108c 2444
488f131b
JB
2445 /* Restart without fiddling with the step ranges or
2446 other state. */
2447 keep_going (ecs);
2448 return;
2449 }
2450 }
c906108c 2451
1b2bfbb9
RC
2452 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2453 the trampoline processing logic, however, there are some trampolines
2454 that have no names, so we should do trampoline handling first. */
2455 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2456 && ecs->stop_func_name == NULL)
2457 {
527159b7 2458 if (debug_infrun)
8a9de0e4 2459 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
527159b7 2460
1b2bfbb9
RC
2461 /* The inferior just stepped into, or returned to, an
2462 undebuggable function (where there is no symbol, not even a
2463 minimal symbol, corresponding to the address where the
2464 inferior stopped). Since we want to skip this kind of code,
2465 we keep going until the inferior returns from this
2466 function. */
2467 if (step_stop_if_no_debug)
2468 {
2469 /* If we have no line number and the step-stop-if-no-debug
2470 is set, we stop the step so that the user has a chance to
2471 switch in assembly mode. */
2472 stop_step = 1;
2473 print_stop_reason (END_STEPPING_RANGE, 0);
2474 stop_stepping (ecs);
2475 return;
2476 }
2477 else
2478 {
2479 /* Set a breakpoint at callee's return address (the address
2480 at which the caller will resume). */
44cbf7b5 2481 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
1b2bfbb9
RC
2482 keep_going (ecs);
2483 return;
2484 }
2485 }
2486
2487 if (step_range_end == 1)
2488 {
2489 /* It is stepi or nexti. We always want to stop stepping after
2490 one instruction. */
527159b7 2491 if (debug_infrun)
8a9de0e4 2492 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
1b2bfbb9
RC
2493 stop_step = 1;
2494 print_stop_reason (END_STEPPING_RANGE, 0);
2495 stop_stepping (ecs);
2496 return;
2497 }
2498
2499 ecs->sal = find_pc_line (stop_pc, 0);
2500
488f131b
JB
2501 if (ecs->sal.line == 0)
2502 {
2503 /* We have no line number information. That means to stop
2504 stepping (does this always happen right after one instruction,
2505 when we do "s" in a function with no line numbers,
2506 or can this happen as a result of a return or longjmp?). */
527159b7 2507 if (debug_infrun)
8a9de0e4 2508 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
488f131b
JB
2509 stop_step = 1;
2510 print_stop_reason (END_STEPPING_RANGE, 0);
2511 stop_stepping (ecs);
2512 return;
2513 }
c906108c 2514
488f131b
JB
2515 if ((stop_pc == ecs->sal.pc)
2516 && (ecs->current_line != ecs->sal.line
2517 || ecs->current_symtab != ecs->sal.symtab))
2518 {
2519 /* We are at the start of a different line. So stop. Note that
2520 we don't stop if we step into the middle of a different line.
2521 That is said to make things like for (;;) statements work
2522 better. */
527159b7 2523 if (debug_infrun)
8a9de0e4 2524 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
488f131b
JB
2525 stop_step = 1;
2526 print_stop_reason (END_STEPPING_RANGE, 0);
2527 stop_stepping (ecs);
2528 return;
2529 }
c906108c 2530
488f131b 2531 /* We aren't done stepping.
c906108c 2532
488f131b
JB
2533 Optimize by setting the stepping range to the line.
2534 (We might not be in the original line, but if we entered a
2535 new line in mid-statement, we continue stepping. This makes
2536 things like for(;;) statements work better.) */
c906108c 2537
488f131b 2538 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
c5aa993b 2539 {
488f131b
JB
2540 /* If this is the last line of the function, don't keep stepping
2541 (it would probably step us out of the function).
2542 This is particularly necessary for a one-line function,
2543 in which after skipping the prologue we better stop even though
2544 we will be in mid-line. */
527159b7 2545 if (debug_infrun)
8a9de0e4 2546 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n");
488f131b
JB
2547 stop_step = 1;
2548 print_stop_reason (END_STEPPING_RANGE, 0);
2549 stop_stepping (ecs);
2550 return;
c5aa993b 2551 }
488f131b
JB
2552 step_range_start = ecs->sal.pc;
2553 step_range_end = ecs->sal.end;
aa0cd9c1 2554 step_frame_id = get_frame_id (get_current_frame ());
488f131b
JB
2555 ecs->current_line = ecs->sal.line;
2556 ecs->current_symtab = ecs->sal.symtab;
2557
aa0cd9c1
AC
2558 /* In the case where we just stepped out of a function into the
2559 middle of a line of the caller, continue stepping, but
2560 step_frame_id must be modified to current frame */
65815ea1
AC
2561#if 0
2562 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2563 generous. It will trigger on things like a step into a frameless
2564 stackless leaf function. I think the logic should instead look
2565 at the unwound frame ID has that should give a more robust
2566 indication of what happened. */
8fb3e588
AC
2567 if (step - ID == current - ID)
2568 still stepping in same function;
2569 else if (step - ID == unwind (current - ID))
2570 stepped into a function;
2571 else
2572 stepped out of a function;
2573 /* Of course this assumes that the frame ID unwind code is robust
2574 and we're willing to introduce frame unwind logic into this
2575 function. Fortunately, those days are nearly upon us. */
65815ea1 2576#endif
488f131b 2577 {
aa0cd9c1
AC
2578 struct frame_id current_frame = get_frame_id (get_current_frame ());
2579 if (!(frame_id_inner (current_frame, step_frame_id)))
2580 step_frame_id = current_frame;
488f131b 2581 }
c906108c 2582
527159b7 2583 if (debug_infrun)
8a9de0e4 2584 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 2585 keep_going (ecs);
104c1213
JM
2586}
2587
2588/* Are we in the middle of stepping? */
2589
2590static int
2591currently_stepping (struct execution_control_state *ecs)
2592{
d303a6c7 2593 return ((!ecs->handling_longjmp
104c1213
JM
2594 && ((step_range_end && step_resume_breakpoint == NULL)
2595 || trap_expected))
2596 || ecs->stepping_through_solib_after_catch
2597 || bpstat_should_step ());
2598}
c906108c 2599
c2c6d25f
JM
2600/* Subroutine call with source code we should not step over. Do step
2601 to the first line of code in it. */
2602
2603static void
2604step_into_function (struct execution_control_state *ecs)
2605{
2606 struct symtab *s;
2607 struct symtab_and_line sr_sal;
2608
2609 s = find_pc_symtab (stop_pc);
2610 if (s && s->language != language_asm)
2611 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2612
2613 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2614 /* Use the step_resume_break to step until the end of the prologue,
2615 even if that involves jumps (as it seems to on the vax under
2616 4.2). */
2617 /* If the prologue ends in the middle of a source line, continue to
2618 the end of that source line (if it is still within the function).
2619 Otherwise, just go to end of prologue. */
c2c6d25f
JM
2620 if (ecs->sal.end
2621 && ecs->sal.pc != ecs->stop_func_start
2622 && ecs->sal.end < ecs->stop_func_end)
2623 ecs->stop_func_start = ecs->sal.end;
c2c6d25f 2624
2dbd5e30
KB
2625 /* Architectures which require breakpoint adjustment might not be able
2626 to place a breakpoint at the computed address. If so, the test
2627 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2628 ecs->stop_func_start to an address at which a breakpoint may be
2629 legitimately placed.
8fb3e588 2630
2dbd5e30
KB
2631 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2632 made, GDB will enter an infinite loop when stepping through
2633 optimized code consisting of VLIW instructions which contain
2634 subinstructions corresponding to different source lines. On
2635 FR-V, it's not permitted to place a breakpoint on any but the
2636 first subinstruction of a VLIW instruction. When a breakpoint is
2637 set, GDB will adjust the breakpoint address to the beginning of
2638 the VLIW instruction. Thus, we need to make the corresponding
2639 adjustment here when computing the stop address. */
8fb3e588 2640
2dbd5e30
KB
2641 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2642 {
2643 ecs->stop_func_start
2644 = gdbarch_adjust_breakpoint_address (current_gdbarch,
8fb3e588 2645 ecs->stop_func_start);
2dbd5e30
KB
2646 }
2647
c2c6d25f
JM
2648 if (ecs->stop_func_start == stop_pc)
2649 {
2650 /* We are already there: stop now. */
2651 stop_step = 1;
488f131b 2652 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
2653 stop_stepping (ecs);
2654 return;
2655 }
2656 else
2657 {
2658 /* Put the step-breakpoint there and go until there. */
fe39c653 2659 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
2660 sr_sal.pc = ecs->stop_func_start;
2661 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
44cbf7b5 2662
c2c6d25f 2663 /* Do not specify what the fp should be when we stop since on
488f131b
JB
2664 some machines the prologue is where the new fp value is
2665 established. */
44cbf7b5 2666 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c2c6d25f
JM
2667
2668 /* And make sure stepping stops right away then. */
2669 step_range_end = step_range_start;
2670 }
2671 keep_going (ecs);
2672}
d4f3574e 2673
44cbf7b5
AC
2674/* Insert a "step resume breakpoint" at SR_SAL with frame ID SR_ID.
2675 This is used to both functions and to skip over code. */
2676
2677static void
2678insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2679 struct frame_id sr_id)
2680{
2681 /* There should never be more than one step-resume breakpoint per
2682 thread, so we should never be setting a new
2683 step_resume_breakpoint when one is already active. */
2684 gdb_assert (step_resume_breakpoint == NULL);
2685 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2686 bp_step_resume);
2687 if (breakpoints_inserted)
2688 insert_breakpoints ();
2689}
2690
7ce450bd
AC
2691/* Insert a "step resume breakpoint" at RETURN_FRAME.pc. This is used
2692 to skip a function (next, skip-no-debug) or signal. It's assumed
2693 that the function/signal handler being skipped eventually returns
2694 to the breakpoint inserted at RETURN_FRAME.pc.
2695
2696 For the skip-function case, the function may have been reached by
2697 either single stepping a call / return / signal-return instruction,
2698 or by hitting a breakpoint. In all cases, the RETURN_FRAME belongs
2699 to the skip-function's caller.
2700
2701 For the signals case, this is called with the interrupted
2702 function's frame. The signal handler, when it returns, will resume
2703 the interrupted function at RETURN_FRAME.pc. */
d303a6c7
AC
2704
2705static void
44cbf7b5 2706insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
2707{
2708 struct symtab_and_line sr_sal;
2709
d303a6c7
AC
2710 init_sal (&sr_sal); /* initialize to zeros */
2711
7ce450bd 2712 sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (return_frame));
d303a6c7
AC
2713 sr_sal.section = find_pc_overlay (sr_sal.pc);
2714
44cbf7b5 2715 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
d303a6c7
AC
2716}
2717
104c1213
JM
2718static void
2719stop_stepping (struct execution_control_state *ecs)
2720{
527159b7 2721 if (debug_infrun)
8a9de0e4 2722 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 2723
cd0fc7c3
SS
2724 /* Let callers know we don't want to wait for the inferior anymore. */
2725 ecs->wait_some_more = 0;
2726}
2727
d4f3574e
SS
2728/* This function handles various cases where we need to continue
2729 waiting for the inferior. */
2730/* (Used to be the keep_going: label in the old wait_for_inferior) */
2731
2732static void
2733keep_going (struct execution_control_state *ecs)
2734{
d4f3574e 2735 /* Save the pc before execution, to compare with pc after stop. */
488f131b 2736 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
d4f3574e 2737
d4f3574e
SS
2738 /* If we did not do break;, it means we should keep running the
2739 inferior and not return to debugger. */
2740
2741 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2742 {
2743 /* We took a signal (which we are supposed to pass through to
488f131b
JB
2744 the inferior, else we'd have done a break above) and we
2745 haven't yet gotten our trap. Simply continue. */
d4f3574e
SS
2746 resume (currently_stepping (ecs), stop_signal);
2747 }
2748 else
2749 {
2750 /* Either the trap was not expected, but we are continuing
488f131b
JB
2751 anyway (the user asked that this signal be passed to the
2752 child)
2753 -- or --
2754 The signal was SIGTRAP, e.g. it was our signal, but we
2755 decided we should resume from it.
d4f3574e 2756
68f53502 2757 We're going to run this baby now! */
d4f3574e 2758
68f53502 2759 if (!breakpoints_inserted && !ecs->another_trap)
d4f3574e
SS
2760 {
2761 breakpoints_failed = insert_breakpoints ();
2762 if (breakpoints_failed)
2763 {
2764 stop_stepping (ecs);
2765 return;
2766 }
2767 breakpoints_inserted = 1;
2768 }
2769
2770 trap_expected = ecs->another_trap;
2771
2772 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
2773 specifies that such a signal should be delivered to the
2774 target program).
2775
2776 Typically, this would occure when a user is debugging a
2777 target monitor on a simulator: the target monitor sets a
2778 breakpoint; the simulator encounters this break-point and
2779 halts the simulation handing control to GDB; GDB, noteing
2780 that the break-point isn't valid, returns control back to the
2781 simulator; the simulator then delivers the hardware
2782 equivalent of a SIGNAL_TRAP to the program being debugged. */
2783
2784 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
d4f3574e
SS
2785 stop_signal = TARGET_SIGNAL_0;
2786
d4f3574e
SS
2787
2788 resume (currently_stepping (ecs), stop_signal);
2789 }
2790
488f131b 2791 prepare_to_wait (ecs);
d4f3574e
SS
2792}
2793
104c1213
JM
2794/* This function normally comes after a resume, before
2795 handle_inferior_event exits. It takes care of any last bits of
2796 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 2797
104c1213
JM
2798static void
2799prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 2800{
527159b7 2801 if (debug_infrun)
8a9de0e4 2802 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213
JM
2803 if (ecs->infwait_state == infwait_normal_state)
2804 {
2805 overlay_cache_invalid = 1;
2806
2807 /* We have to invalidate the registers BEFORE calling
488f131b
JB
2808 target_wait because they can be loaded from the target while
2809 in target_wait. This makes remote debugging a bit more
2810 efficient for those targets that provide critical registers
2811 as part of their normal status mechanism. */
104c1213
JM
2812
2813 registers_changed ();
39f77062 2814 ecs->waiton_ptid = pid_to_ptid (-1);
104c1213
JM
2815 ecs->wp = &(ecs->ws);
2816 }
2817 /* This is the old end of the while loop. Let everybody know we
2818 want to wait for the inferior some more and get called again
2819 soon. */
2820 ecs->wait_some_more = 1;
c906108c 2821}
11cf8741
JM
2822
2823/* Print why the inferior has stopped. We always print something when
2824 the inferior exits, or receives a signal. The rest of the cases are
2825 dealt with later on in normal_stop() and print_it_typical(). Ideally
2826 there should be a call to this function from handle_inferior_event()
2827 each time stop_stepping() is called.*/
2828static void
2829print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2830{
2831 switch (stop_reason)
2832 {
2833 case STOP_UNKNOWN:
2834 /* We don't deal with these cases from handle_inferior_event()
2835 yet. */
2836 break;
2837 case END_STEPPING_RANGE:
2838 /* We are done with a step/next/si/ni command. */
2839 /* For now print nothing. */
fb40c209 2840 /* Print a message only if not in the middle of doing a "step n"
488f131b 2841 operation for n > 1 */
fb40c209 2842 if (!step_multi || !stop_step)
9dc5e2a9 2843 if (ui_out_is_mi_like_p (uiout))
fb40c209 2844 ui_out_field_string (uiout, "reason", "end-stepping-range");
11cf8741
JM
2845 break;
2846 case BREAKPOINT_HIT:
2847 /* We found a breakpoint. */
2848 /* For now print nothing. */
2849 break;
2850 case SIGNAL_EXITED:
2851 /* The inferior was terminated by a signal. */
8b93c638 2852 annotate_signalled ();
9dc5e2a9 2853 if (ui_out_is_mi_like_p (uiout))
fb40c209 2854 ui_out_field_string (uiout, "reason", "exited-signalled");
8b93c638
JM
2855 ui_out_text (uiout, "\nProgram terminated with signal ");
2856 annotate_signal_name ();
488f131b
JB
2857 ui_out_field_string (uiout, "signal-name",
2858 target_signal_to_name (stop_info));
8b93c638
JM
2859 annotate_signal_name_end ();
2860 ui_out_text (uiout, ", ");
2861 annotate_signal_string ();
488f131b
JB
2862 ui_out_field_string (uiout, "signal-meaning",
2863 target_signal_to_string (stop_info));
8b93c638
JM
2864 annotate_signal_string_end ();
2865 ui_out_text (uiout, ".\n");
2866 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
2867 break;
2868 case EXITED:
2869 /* The inferior program is finished. */
8b93c638
JM
2870 annotate_exited (stop_info);
2871 if (stop_info)
2872 {
9dc5e2a9 2873 if (ui_out_is_mi_like_p (uiout))
fb40c209 2874 ui_out_field_string (uiout, "reason", "exited");
8b93c638 2875 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
2876 ui_out_field_fmt (uiout, "exit-code", "0%o",
2877 (unsigned int) stop_info);
8b93c638
JM
2878 ui_out_text (uiout, ".\n");
2879 }
2880 else
2881 {
9dc5e2a9 2882 if (ui_out_is_mi_like_p (uiout))
fb40c209 2883 ui_out_field_string (uiout, "reason", "exited-normally");
8b93c638
JM
2884 ui_out_text (uiout, "\nProgram exited normally.\n");
2885 }
11cf8741
JM
2886 break;
2887 case SIGNAL_RECEIVED:
2888 /* Signal received. The signal table tells us to print about
2889 it. */
8b93c638
JM
2890 annotate_signal ();
2891 ui_out_text (uiout, "\nProgram received signal ");
2892 annotate_signal_name ();
84c6c83c
KS
2893 if (ui_out_is_mi_like_p (uiout))
2894 ui_out_field_string (uiout, "reason", "signal-received");
488f131b
JB
2895 ui_out_field_string (uiout, "signal-name",
2896 target_signal_to_name (stop_info));
8b93c638
JM
2897 annotate_signal_name_end ();
2898 ui_out_text (uiout, ", ");
2899 annotate_signal_string ();
488f131b
JB
2900 ui_out_field_string (uiout, "signal-meaning",
2901 target_signal_to_string (stop_info));
8b93c638
JM
2902 annotate_signal_string_end ();
2903 ui_out_text (uiout, ".\n");
11cf8741
JM
2904 break;
2905 default:
8e65ff28 2906 internal_error (__FILE__, __LINE__,
e2e0b3e5 2907 _("print_stop_reason: unrecognized enum value"));
11cf8741
JM
2908 break;
2909 }
2910}
c906108c 2911\f
43ff13b4 2912
c906108c
SS
2913/* Here to return control to GDB when the inferior stops for real.
2914 Print appropriate messages, remove breakpoints, give terminal our modes.
2915
2916 STOP_PRINT_FRAME nonzero means print the executing frame
2917 (pc, function, args, file, line number and line text).
2918 BREAKPOINTS_FAILED nonzero means stop was due to error
2919 attempting to insert breakpoints. */
2920
2921void
96baa820 2922normal_stop (void)
c906108c 2923{
73b65bb0
DJ
2924 struct target_waitstatus last;
2925 ptid_t last_ptid;
2926
2927 get_last_target_status (&last_ptid, &last);
2928
c906108c
SS
2929 /* As with the notification of thread events, we want to delay
2930 notifying the user that we've switched thread context until
2931 the inferior actually stops.
2932
73b65bb0
DJ
2933 There's no point in saying anything if the inferior has exited.
2934 Note that SIGNALLED here means "exited with a signal", not
2935 "received a signal". */
488f131b 2936 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
2937 && target_has_execution
2938 && last.kind != TARGET_WAITKIND_SIGNALLED
2939 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
2940 {
2941 target_terminal_ours_for_output ();
a3f17187 2942 printf_filtered (_("[Switching to %s]\n"),
39f77062
KB
2943 target_pid_or_tid_to_str (inferior_ptid));
2944 previous_inferior_ptid = inferior_ptid;
c906108c 2945 }
c906108c 2946
4fa8626c 2947 /* NOTE drow/2004-01-17: Is this still necessary? */
c906108c
SS
2948 /* Make sure that the current_frame's pc is correct. This
2949 is a correction for setting up the frame info before doing
2950 DECR_PC_AFTER_BREAK */
b87efeee
AC
2951 if (target_has_execution)
2952 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
2953 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
2954 frame code to check for this and sort out any resultant mess.
2955 DECR_PC_AFTER_BREAK needs to just go away. */
2f107107 2956 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
c906108c 2957
c906108c
SS
2958 if (target_has_execution && breakpoints_inserted)
2959 {
2960 if (remove_breakpoints ())
2961 {
2962 target_terminal_ours_for_output ();
a3f17187
AC
2963 printf_filtered (_("\
2964Cannot remove breakpoints because program is no longer writable.\n\
2965It might be running in another process.\n\
2966Further execution is probably impossible.\n"));
c906108c
SS
2967 }
2968 }
2969 breakpoints_inserted = 0;
2970
2971 /* Delete the breakpoint we stopped at, if it wants to be deleted.
2972 Delete any breakpoint that is to be deleted at the next stop. */
2973
2974 breakpoint_auto_delete (stop_bpstat);
2975
2976 /* If an auto-display called a function and that got a signal,
2977 delete that auto-display to avoid an infinite recursion. */
2978
2979 if (stopped_by_random_signal)
2980 disable_current_display ();
2981
2982 /* Don't print a message if in the middle of doing a "step n"
2983 operation for n > 1 */
2984 if (step_multi && stop_step)
2985 goto done;
2986
2987 target_terminal_ours ();
2988
5913bcb0
AC
2989 /* Look up the hook_stop and run it (CLI internally handles problem
2990 of stop_command's pre-hook not existing). */
2991 if (stop_command)
2992 catch_errors (hook_stop_stub, stop_command,
2993 "Error while running hook_stop:\n", RETURN_MASK_ALL);
c906108c
SS
2994
2995 if (!target_has_stack)
2996 {
2997
2998 goto done;
2999 }
3000
3001 /* Select innermost stack frame - i.e., current frame is frame 0,
3002 and current location is based on that.
3003 Don't do this on return from a stack dummy routine,
3004 or if the program has exited. */
3005
3006 if (!stop_stack_dummy)
3007 {
0f7d239c 3008 select_frame (get_current_frame ());
c906108c
SS
3009
3010 /* Print current location without a level number, if
c5aa993b
JM
3011 we have changed functions or hit a breakpoint.
3012 Print source line if we have one.
3013 bpstat_print() contains the logic deciding in detail
3014 what to print, based on the event(s) that just occurred. */
c906108c 3015
6e7f8b9c 3016 if (stop_print_frame && deprecated_selected_frame)
c906108c
SS
3017 {
3018 int bpstat_ret;
3019 int source_flag;
917317f4 3020 int do_frame_printing = 1;
c906108c
SS
3021
3022 bpstat_ret = bpstat_print (stop_bpstat);
917317f4
JM
3023 switch (bpstat_ret)
3024 {
3025 case PRINT_UNKNOWN:
aa0cd9c1 3026 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
3027 (or should) carry around the function and does (or
3028 should) use that when doing a frame comparison. */
917317f4 3029 if (stop_step
aa0cd9c1
AC
3030 && frame_id_eq (step_frame_id,
3031 get_frame_id (get_current_frame ()))
917317f4 3032 && step_start_function == find_pc_function (stop_pc))
488f131b 3033 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 3034 else
488f131b 3035 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3036 break;
3037 case PRINT_SRC_AND_LOC:
488f131b 3038 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3039 break;
3040 case PRINT_SRC_ONLY:
c5394b80 3041 source_flag = SRC_LINE;
917317f4
JM
3042 break;
3043 case PRINT_NOTHING:
488f131b 3044 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
3045 do_frame_printing = 0;
3046 break;
3047 default:
e2e0b3e5 3048 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 3049 }
fb40c209 3050 /* For mi, have the same behavior every time we stop:
488f131b 3051 print everything but the source line. */
9dc5e2a9 3052 if (ui_out_is_mi_like_p (uiout))
fb40c209 3053 source_flag = LOC_AND_ADDRESS;
c906108c 3054
9dc5e2a9 3055 if (ui_out_is_mi_like_p (uiout))
39f77062 3056 ui_out_field_int (uiout, "thread-id",
488f131b 3057 pid_to_thread_id (inferior_ptid));
c906108c
SS
3058 /* The behavior of this routine with respect to the source
3059 flag is:
c5394b80
JM
3060 SRC_LINE: Print only source line
3061 LOCATION: Print only location
3062 SRC_AND_LOC: Print location and source line */
917317f4 3063 if (do_frame_printing)
b04f3ab4 3064 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
3065
3066 /* Display the auto-display expressions. */
3067 do_displays ();
3068 }
3069 }
3070
3071 /* Save the function value return registers, if we care.
3072 We might be about to restore their previous contents. */
3073 if (proceed_to_finish)
72cec141
AC
3074 /* NB: The copy goes through to the target picking up the value of
3075 all the registers. */
3076 regcache_cpy (stop_registers, current_regcache);
c906108c
SS
3077
3078 if (stop_stack_dummy)
3079 {
dbe9fe58
AC
3080 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3081 ends with a setting of the current frame, so we can use that
3082 next. */
3083 frame_pop (get_current_frame ());
c906108c 3084 /* Set stop_pc to what it was before we called the function.
c5aa993b
JM
3085 Can't rely on restore_inferior_status because that only gets
3086 called if we don't stop in the called function. */
c906108c 3087 stop_pc = read_pc ();
0f7d239c 3088 select_frame (get_current_frame ());
c906108c
SS
3089 }
3090
c906108c
SS
3091done:
3092 annotate_stopped ();
7a464420 3093 observer_notify_normal_stop (stop_bpstat);
c906108c
SS
3094}
3095
3096static int
96baa820 3097hook_stop_stub (void *cmd)
c906108c 3098{
5913bcb0 3099 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
3100 return (0);
3101}
3102\f
c5aa993b 3103int
96baa820 3104signal_stop_state (int signo)
c906108c
SS
3105{
3106 return signal_stop[signo];
3107}
3108
c5aa993b 3109int
96baa820 3110signal_print_state (int signo)
c906108c
SS
3111{
3112 return signal_print[signo];
3113}
3114
c5aa993b 3115int
96baa820 3116signal_pass_state (int signo)
c906108c
SS
3117{
3118 return signal_program[signo];
3119}
3120
488f131b 3121int
7bda5e4a 3122signal_stop_update (int signo, int state)
d4f3574e
SS
3123{
3124 int ret = signal_stop[signo];
3125 signal_stop[signo] = state;
3126 return ret;
3127}
3128
488f131b 3129int
7bda5e4a 3130signal_print_update (int signo, int state)
d4f3574e
SS
3131{
3132 int ret = signal_print[signo];
3133 signal_print[signo] = state;
3134 return ret;
3135}
3136
488f131b 3137int
7bda5e4a 3138signal_pass_update (int signo, int state)
d4f3574e
SS
3139{
3140 int ret = signal_program[signo];
3141 signal_program[signo] = state;
3142 return ret;
3143}
3144
c906108c 3145static void
96baa820 3146sig_print_header (void)
c906108c 3147{
a3f17187
AC
3148 printf_filtered (_("\
3149Signal Stop\tPrint\tPass to program\tDescription\n"));
c906108c
SS
3150}
3151
3152static void
96baa820 3153sig_print_info (enum target_signal oursig)
c906108c
SS
3154{
3155 char *name = target_signal_to_name (oursig);
3156 int name_padding = 13 - strlen (name);
96baa820 3157
c906108c
SS
3158 if (name_padding <= 0)
3159 name_padding = 0;
3160
3161 printf_filtered ("%s", name);
488f131b 3162 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
3163 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3164 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3165 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3166 printf_filtered ("%s\n", target_signal_to_string (oursig));
3167}
3168
3169/* Specify how various signals in the inferior should be handled. */
3170
3171static void
96baa820 3172handle_command (char *args, int from_tty)
c906108c
SS
3173{
3174 char **argv;
3175 int digits, wordlen;
3176 int sigfirst, signum, siglast;
3177 enum target_signal oursig;
3178 int allsigs;
3179 int nsigs;
3180 unsigned char *sigs;
3181 struct cleanup *old_chain;
3182
3183 if (args == NULL)
3184 {
e2e0b3e5 3185 error_no_arg (_("signal to handle"));
c906108c
SS
3186 }
3187
3188 /* Allocate and zero an array of flags for which signals to handle. */
3189
3190 nsigs = (int) TARGET_SIGNAL_LAST;
3191 sigs = (unsigned char *) alloca (nsigs);
3192 memset (sigs, 0, nsigs);
3193
3194 /* Break the command line up into args. */
3195
3196 argv = buildargv (args);
3197 if (argv == NULL)
3198 {
3199 nomem (0);
3200 }
7a292a7a 3201 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3202
3203 /* Walk through the args, looking for signal oursigs, signal names, and
3204 actions. Signal numbers and signal names may be interspersed with
3205 actions, with the actions being performed for all signals cumulatively
3206 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3207
3208 while (*argv != NULL)
3209 {
3210 wordlen = strlen (*argv);
3211 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3212 {;
3213 }
3214 allsigs = 0;
3215 sigfirst = siglast = -1;
3216
3217 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3218 {
3219 /* Apply action to all signals except those used by the
3220 debugger. Silently skip those. */
3221 allsigs = 1;
3222 sigfirst = 0;
3223 siglast = nsigs - 1;
3224 }
3225 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3226 {
3227 SET_SIGS (nsigs, sigs, signal_stop);
3228 SET_SIGS (nsigs, sigs, signal_print);
3229 }
3230 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3231 {
3232 UNSET_SIGS (nsigs, sigs, signal_program);
3233 }
3234 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3235 {
3236 SET_SIGS (nsigs, sigs, signal_print);
3237 }
3238 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3239 {
3240 SET_SIGS (nsigs, sigs, signal_program);
3241 }
3242 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3243 {
3244 UNSET_SIGS (nsigs, sigs, signal_stop);
3245 }
3246 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3247 {
3248 SET_SIGS (nsigs, sigs, signal_program);
3249 }
3250 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3251 {
3252 UNSET_SIGS (nsigs, sigs, signal_print);
3253 UNSET_SIGS (nsigs, sigs, signal_stop);
3254 }
3255 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3256 {
3257 UNSET_SIGS (nsigs, sigs, signal_program);
3258 }
3259 else if (digits > 0)
3260 {
3261 /* It is numeric. The numeric signal refers to our own
3262 internal signal numbering from target.h, not to host/target
3263 signal number. This is a feature; users really should be
3264 using symbolic names anyway, and the common ones like
3265 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3266
3267 sigfirst = siglast = (int)
3268 target_signal_from_command (atoi (*argv));
3269 if ((*argv)[digits] == '-')
3270 {
3271 siglast = (int)
3272 target_signal_from_command (atoi ((*argv) + digits + 1));
3273 }
3274 if (sigfirst > siglast)
3275 {
3276 /* Bet he didn't figure we'd think of this case... */
3277 signum = sigfirst;
3278 sigfirst = siglast;
3279 siglast = signum;
3280 }
3281 }
3282 else
3283 {
3284 oursig = target_signal_from_name (*argv);
3285 if (oursig != TARGET_SIGNAL_UNKNOWN)
3286 {
3287 sigfirst = siglast = (int) oursig;
3288 }
3289 else
3290 {
3291 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 3292 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
3293 }
3294 }
3295
3296 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 3297 which signals to apply actions to. */
c906108c
SS
3298
3299 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3300 {
3301 switch ((enum target_signal) signum)
3302 {
3303 case TARGET_SIGNAL_TRAP:
3304 case TARGET_SIGNAL_INT:
3305 if (!allsigs && !sigs[signum])
3306 {
3307 if (query ("%s is used by the debugger.\n\
488f131b 3308Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
3309 {
3310 sigs[signum] = 1;
3311 }
3312 else
3313 {
a3f17187 3314 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
3315 gdb_flush (gdb_stdout);
3316 }
3317 }
3318 break;
3319 case TARGET_SIGNAL_0:
3320 case TARGET_SIGNAL_DEFAULT:
3321 case TARGET_SIGNAL_UNKNOWN:
3322 /* Make sure that "all" doesn't print these. */
3323 break;
3324 default:
3325 sigs[signum] = 1;
3326 break;
3327 }
3328 }
3329
3330 argv++;
3331 }
3332
39f77062 3333 target_notice_signals (inferior_ptid);
c906108c
SS
3334
3335 if (from_tty)
3336 {
3337 /* Show the results. */
3338 sig_print_header ();
3339 for (signum = 0; signum < nsigs; signum++)
3340 {
3341 if (sigs[signum])
3342 {
3343 sig_print_info (signum);
3344 }
3345 }
3346 }
3347
3348 do_cleanups (old_chain);
3349}
3350
3351static void
96baa820 3352xdb_handle_command (char *args, int from_tty)
c906108c
SS
3353{
3354 char **argv;
3355 struct cleanup *old_chain;
3356
3357 /* Break the command line up into args. */
3358
3359 argv = buildargv (args);
3360 if (argv == NULL)
3361 {
3362 nomem (0);
3363 }
7a292a7a 3364 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3365 if (argv[1] != (char *) NULL)
3366 {
3367 char *argBuf;
3368 int bufLen;
3369
3370 bufLen = strlen (argv[0]) + 20;
3371 argBuf = (char *) xmalloc (bufLen);
3372 if (argBuf)
3373 {
3374 int validFlag = 1;
3375 enum target_signal oursig;
3376
3377 oursig = target_signal_from_name (argv[0]);
3378 memset (argBuf, 0, bufLen);
3379 if (strcmp (argv[1], "Q") == 0)
3380 sprintf (argBuf, "%s %s", argv[0], "noprint");
3381 else
3382 {
3383 if (strcmp (argv[1], "s") == 0)
3384 {
3385 if (!signal_stop[oursig])
3386 sprintf (argBuf, "%s %s", argv[0], "stop");
3387 else
3388 sprintf (argBuf, "%s %s", argv[0], "nostop");
3389 }
3390 else if (strcmp (argv[1], "i") == 0)
3391 {
3392 if (!signal_program[oursig])
3393 sprintf (argBuf, "%s %s", argv[0], "pass");
3394 else
3395 sprintf (argBuf, "%s %s", argv[0], "nopass");
3396 }
3397 else if (strcmp (argv[1], "r") == 0)
3398 {
3399 if (!signal_print[oursig])
3400 sprintf (argBuf, "%s %s", argv[0], "print");
3401 else
3402 sprintf (argBuf, "%s %s", argv[0], "noprint");
3403 }
3404 else
3405 validFlag = 0;
3406 }
3407 if (validFlag)
3408 handle_command (argBuf, from_tty);
3409 else
a3f17187 3410 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 3411 if (argBuf)
b8c9b27d 3412 xfree (argBuf);
c906108c
SS
3413 }
3414 }
3415 do_cleanups (old_chain);
3416}
3417
3418/* Print current contents of the tables set by the handle command.
3419 It is possible we should just be printing signals actually used
3420 by the current target (but for things to work right when switching
3421 targets, all signals should be in the signal tables). */
3422
3423static void
96baa820 3424signals_info (char *signum_exp, int from_tty)
c906108c
SS
3425{
3426 enum target_signal oursig;
3427 sig_print_header ();
3428
3429 if (signum_exp)
3430 {
3431 /* First see if this is a symbol name. */
3432 oursig = target_signal_from_name (signum_exp);
3433 if (oursig == TARGET_SIGNAL_UNKNOWN)
3434 {
3435 /* No, try numeric. */
3436 oursig =
bb518678 3437 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
3438 }
3439 sig_print_info (oursig);
3440 return;
3441 }
3442
3443 printf_filtered ("\n");
3444 /* These ugly casts brought to you by the native VAX compiler. */
3445 for (oursig = TARGET_SIGNAL_FIRST;
3446 (int) oursig < (int) TARGET_SIGNAL_LAST;
3447 oursig = (enum target_signal) ((int) oursig + 1))
3448 {
3449 QUIT;
3450
3451 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 3452 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
3453 sig_print_info (oursig);
3454 }
3455
a3f17187 3456 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
c906108c
SS
3457}
3458\f
7a292a7a
SS
3459struct inferior_status
3460{
3461 enum target_signal stop_signal;
3462 CORE_ADDR stop_pc;
3463 bpstat stop_bpstat;
3464 int stop_step;
3465 int stop_stack_dummy;
3466 int stopped_by_random_signal;
3467 int trap_expected;
3468 CORE_ADDR step_range_start;
3469 CORE_ADDR step_range_end;
aa0cd9c1 3470 struct frame_id step_frame_id;
5fbbeb29 3471 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
3472 CORE_ADDR step_resume_break_address;
3473 int stop_after_trap;
c0236d92 3474 int stop_soon;
72cec141 3475 struct regcache *stop_registers;
7a292a7a
SS
3476
3477 /* These are here because if call_function_by_hand has written some
3478 registers and then decides to call error(), we better not have changed
3479 any registers. */
72cec141 3480 struct regcache *registers;
7a292a7a 3481
101dcfbe
AC
3482 /* A frame unique identifier. */
3483 struct frame_id selected_frame_id;
3484
7a292a7a
SS
3485 int breakpoint_proceeded;
3486 int restore_stack_info;
3487 int proceed_to_finish;
3488};
3489
7a292a7a 3490void
96baa820
JM
3491write_inferior_status_register (struct inferior_status *inf_status, int regno,
3492 LONGEST val)
7a292a7a 3493{
3acba339 3494 int size = register_size (current_gdbarch, regno);
7a292a7a
SS
3495 void *buf = alloca (size);
3496 store_signed_integer (buf, size, val);
0818c12a 3497 regcache_raw_write (inf_status->registers, regno, buf);
7a292a7a
SS
3498}
3499
c906108c
SS
3500/* Save all of the information associated with the inferior<==>gdb
3501 connection. INF_STATUS is a pointer to a "struct inferior_status"
3502 (defined in inferior.h). */
3503
7a292a7a 3504struct inferior_status *
96baa820 3505save_inferior_status (int restore_stack_info)
c906108c 3506{
72cec141 3507 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
7a292a7a 3508
c906108c
SS
3509 inf_status->stop_signal = stop_signal;
3510 inf_status->stop_pc = stop_pc;
3511 inf_status->stop_step = stop_step;
3512 inf_status->stop_stack_dummy = stop_stack_dummy;
3513 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3514 inf_status->trap_expected = trap_expected;
3515 inf_status->step_range_start = step_range_start;
3516 inf_status->step_range_end = step_range_end;
aa0cd9c1 3517 inf_status->step_frame_id = step_frame_id;
c906108c
SS
3518 inf_status->step_over_calls = step_over_calls;
3519 inf_status->stop_after_trap = stop_after_trap;
c0236d92 3520 inf_status->stop_soon = stop_soon;
c906108c
SS
3521 /* Save original bpstat chain here; replace it with copy of chain.
3522 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
3523 hand them back the original chain when restore_inferior_status is
3524 called. */
c906108c
SS
3525 inf_status->stop_bpstat = stop_bpstat;
3526 stop_bpstat = bpstat_copy (stop_bpstat);
3527 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3528 inf_status->restore_stack_info = restore_stack_info;
3529 inf_status->proceed_to_finish = proceed_to_finish;
c5aa993b 3530
72cec141 3531 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
c906108c 3532
72cec141 3533 inf_status->registers = regcache_dup (current_regcache);
c906108c 3534
7a424e99 3535 inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame);
7a292a7a 3536 return inf_status;
c906108c
SS
3537}
3538
c906108c 3539static int
96baa820 3540restore_selected_frame (void *args)
c906108c 3541{
488f131b 3542 struct frame_id *fid = (struct frame_id *) args;
c906108c 3543 struct frame_info *frame;
c906108c 3544
101dcfbe 3545 frame = frame_find_by_id (*fid);
c906108c 3546
aa0cd9c1
AC
3547 /* If inf_status->selected_frame_id is NULL, there was no previously
3548 selected frame. */
101dcfbe 3549 if (frame == NULL)
c906108c 3550 {
8a3fe4f8 3551 warning (_("Unable to restore previously selected frame."));
c906108c
SS
3552 return 0;
3553 }
3554
0f7d239c 3555 select_frame (frame);
c906108c
SS
3556
3557 return (1);
3558}
3559
3560void
96baa820 3561restore_inferior_status (struct inferior_status *inf_status)
c906108c
SS
3562{
3563 stop_signal = inf_status->stop_signal;
3564 stop_pc = inf_status->stop_pc;
3565 stop_step = inf_status->stop_step;
3566 stop_stack_dummy = inf_status->stop_stack_dummy;
3567 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3568 trap_expected = inf_status->trap_expected;
3569 step_range_start = inf_status->step_range_start;
3570 step_range_end = inf_status->step_range_end;
aa0cd9c1 3571 step_frame_id = inf_status->step_frame_id;
c906108c
SS
3572 step_over_calls = inf_status->step_over_calls;
3573 stop_after_trap = inf_status->stop_after_trap;
c0236d92 3574 stop_soon = inf_status->stop_soon;
c906108c
SS
3575 bpstat_clear (&stop_bpstat);
3576 stop_bpstat = inf_status->stop_bpstat;
3577 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3578 proceed_to_finish = inf_status->proceed_to_finish;
3579
72cec141
AC
3580 /* FIXME: Is the restore of stop_registers always needed. */
3581 regcache_xfree (stop_registers);
3582 stop_registers = inf_status->stop_registers;
c906108c
SS
3583
3584 /* The inferior can be gone if the user types "print exit(0)"
3585 (and perhaps other times). */
3586 if (target_has_execution)
72cec141
AC
3587 /* NB: The register write goes through to the target. */
3588 regcache_cpy (current_regcache, inf_status->registers);
3589 regcache_xfree (inf_status->registers);
c906108c 3590
c906108c
SS
3591 /* FIXME: If we are being called after stopping in a function which
3592 is called from gdb, we should not be trying to restore the
3593 selected frame; it just prints a spurious error message (The
3594 message is useful, however, in detecting bugs in gdb (like if gdb
3595 clobbers the stack)). In fact, should we be restoring the
3596 inferior status at all in that case? . */
3597
3598 if (target_has_stack && inf_status->restore_stack_info)
3599 {
c906108c 3600 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
3601 walking the stack might encounter a garbage pointer and
3602 error() trying to dereference it. */
488f131b
JB
3603 if (catch_errors
3604 (restore_selected_frame, &inf_status->selected_frame_id,
3605 "Unable to restore previously selected frame:\n",
3606 RETURN_MASK_ERROR) == 0)
c906108c
SS
3607 /* Error in restoring the selected frame. Select the innermost
3608 frame. */
0f7d239c 3609 select_frame (get_current_frame ());
c906108c
SS
3610
3611 }
c906108c 3612
72cec141 3613 xfree (inf_status);
7a292a7a 3614}
c906108c 3615
74b7792f
AC
3616static void
3617do_restore_inferior_status_cleanup (void *sts)
3618{
3619 restore_inferior_status (sts);
3620}
3621
3622struct cleanup *
3623make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3624{
3625 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3626}
3627
c906108c 3628void
96baa820 3629discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
3630{
3631 /* See save_inferior_status for info on stop_bpstat. */
3632 bpstat_clear (&inf_status->stop_bpstat);
72cec141
AC
3633 regcache_xfree (inf_status->registers);
3634 regcache_xfree (inf_status->stop_registers);
3635 xfree (inf_status);
7a292a7a
SS
3636}
3637
47932f85
DJ
3638int
3639inferior_has_forked (int pid, int *child_pid)
3640{
3641 struct target_waitstatus last;
3642 ptid_t last_ptid;
3643
3644 get_last_target_status (&last_ptid, &last);
3645
3646 if (last.kind != TARGET_WAITKIND_FORKED)
3647 return 0;
3648
3649 if (ptid_get_pid (last_ptid) != pid)
3650 return 0;
3651
3652 *child_pid = last.value.related_pid;
3653 return 1;
3654}
3655
3656int
3657inferior_has_vforked (int pid, int *child_pid)
3658{
3659 struct target_waitstatus last;
3660 ptid_t last_ptid;
3661
3662 get_last_target_status (&last_ptid, &last);
3663
3664 if (last.kind != TARGET_WAITKIND_VFORKED)
3665 return 0;
3666
3667 if (ptid_get_pid (last_ptid) != pid)
3668 return 0;
3669
3670 *child_pid = last.value.related_pid;
3671 return 1;
3672}
3673
3674int
3675inferior_has_execd (int pid, char **execd_pathname)
3676{
3677 struct target_waitstatus last;
3678 ptid_t last_ptid;
3679
3680 get_last_target_status (&last_ptid, &last);
3681
3682 if (last.kind != TARGET_WAITKIND_EXECD)
3683 return 0;
3684
3685 if (ptid_get_pid (last_ptid) != pid)
3686 return 0;
3687
3688 *execd_pathname = xstrdup (last.value.execd_pathname);
3689 return 1;
3690}
3691
ca6724c1
KB
3692/* Oft used ptids */
3693ptid_t null_ptid;
3694ptid_t minus_one_ptid;
3695
3696/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 3697
ca6724c1
KB
3698ptid_t
3699ptid_build (int pid, long lwp, long tid)
3700{
3701 ptid_t ptid;
3702
3703 ptid.pid = pid;
3704 ptid.lwp = lwp;
3705 ptid.tid = tid;
3706 return ptid;
3707}
3708
3709/* Create a ptid from just a pid. */
3710
3711ptid_t
3712pid_to_ptid (int pid)
3713{
3714 return ptid_build (pid, 0, 0);
3715}
3716
3717/* Fetch the pid (process id) component from a ptid. */
3718
3719int
3720ptid_get_pid (ptid_t ptid)
3721{
3722 return ptid.pid;
3723}
3724
3725/* Fetch the lwp (lightweight process) component from a ptid. */
3726
3727long
3728ptid_get_lwp (ptid_t ptid)
3729{
3730 return ptid.lwp;
3731}
3732
3733/* Fetch the tid (thread id) component from a ptid. */
3734
3735long
3736ptid_get_tid (ptid_t ptid)
3737{
3738 return ptid.tid;
3739}
3740
3741/* ptid_equal() is used to test equality of two ptids. */
3742
3743int
3744ptid_equal (ptid_t ptid1, ptid_t ptid2)
3745{
3746 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 3747 && ptid1.tid == ptid2.tid);
ca6724c1
KB
3748}
3749
3750/* restore_inferior_ptid() will be used by the cleanup machinery
3751 to restore the inferior_ptid value saved in a call to
3752 save_inferior_ptid(). */
ce696e05
KB
3753
3754static void
3755restore_inferior_ptid (void *arg)
3756{
3757 ptid_t *saved_ptid_ptr = arg;
3758 inferior_ptid = *saved_ptid_ptr;
3759 xfree (arg);
3760}
3761
3762/* Save the value of inferior_ptid so that it may be restored by a
3763 later call to do_cleanups(). Returns the struct cleanup pointer
3764 needed for later doing the cleanup. */
3765
3766struct cleanup *
3767save_inferior_ptid (void)
3768{
3769 ptid_t *saved_ptid_ptr;
3770
3771 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3772 *saved_ptid_ptr = inferior_ptid;
3773 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3774}
c5aa993b 3775\f
488f131b 3776
7a292a7a 3777static void
96baa820 3778build_infrun (void)
7a292a7a 3779{
72cec141 3780 stop_registers = regcache_xmalloc (current_gdbarch);
7a292a7a 3781}
c906108c 3782
c906108c 3783void
96baa820 3784_initialize_infrun (void)
c906108c 3785{
52f0bd74
AC
3786 int i;
3787 int numsigs;
c906108c
SS
3788 struct cmd_list_element *c;
3789
046a4708
AC
3790 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3791 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
0f71a2f6 3792
1bedd215
AC
3793 add_info ("signals", signals_info, _("\
3794What debugger does when program gets various signals.\n\
3795Specify a signal as argument to print info on that signal only."));
c906108c
SS
3796 add_info_alias ("handle", "signals", 0);
3797
1bedd215
AC
3798 add_com ("handle", class_run, handle_command, _("\
3799Specify how to handle a signal.\n\
c906108c
SS
3800Args are signals and actions to apply to those signals.\n\
3801Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3802from 1-15 are allowed for compatibility with old versions of GDB.\n\
3803Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3804The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
3805used by the debugger, typically SIGTRAP and SIGINT.\n\
3806Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
3807\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3808Stop means reenter debugger if this signal happens (implies print).\n\
3809Print means print a message if this signal happens.\n\
3810Pass means let program see this signal; otherwise program doesn't know.\n\
3811Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 3812Pass and Stop may be combined."));
c906108c
SS
3813 if (xdb_commands)
3814 {
1bedd215
AC
3815 add_com ("lz", class_info, signals_info, _("\
3816What debugger does when program gets various signals.\n\
3817Specify a signal as argument to print info on that signal only."));
3818 add_com ("z", class_run, xdb_handle_command, _("\
3819Specify how to handle a signal.\n\
c906108c
SS
3820Args are signals and actions to apply to those signals.\n\
3821Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3822from 1-15 are allowed for compatibility with old versions of GDB.\n\
3823Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3824The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
3825used by the debugger, typically SIGTRAP and SIGINT.\n\
3826Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
3827\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3828nopass), \"Q\" (noprint)\n\
3829Stop means reenter debugger if this signal happens (implies print).\n\
3830Print means print a message if this signal happens.\n\
3831Pass means let program see this signal; otherwise program doesn't know.\n\
3832Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 3833Pass and Stop may be combined."));
c906108c
SS
3834 }
3835
3836 if (!dbx_commands)
1a966eab
AC
3837 stop_command = add_cmd ("stop", class_obscure,
3838 not_just_help_class_command, _("\
3839There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 3840This allows you to set a list of commands to be run each time execution\n\
1a966eab 3841of the program stops."), &cmdlist);
c906108c 3842
527159b7 3843 add_set_cmd ("infrun", class_maintenance, var_zinteger,
9d1ff73f 3844 &debug_infrun, "Set inferior debugging.\n\
527159b7
RC
3845When non-zero, inferior specific debugging is enabled.", &setdebuglist);
3846
c906108c 3847 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 3848 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
3849 signal_print = (unsigned char *)
3850 xmalloc (sizeof (signal_print[0]) * numsigs);
3851 signal_program = (unsigned char *)
3852 xmalloc (sizeof (signal_program[0]) * numsigs);
3853 for (i = 0; i < numsigs; i++)
3854 {
3855 signal_stop[i] = 1;
3856 signal_print[i] = 1;
3857 signal_program[i] = 1;
3858 }
3859
3860 /* Signals caused by debugger's own actions
3861 should not be given to the program afterwards. */
3862 signal_program[TARGET_SIGNAL_TRAP] = 0;
3863 signal_program[TARGET_SIGNAL_INT] = 0;
3864
3865 /* Signals that are not errors should not normally enter the debugger. */
3866 signal_stop[TARGET_SIGNAL_ALRM] = 0;
3867 signal_print[TARGET_SIGNAL_ALRM] = 0;
3868 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
3869 signal_print[TARGET_SIGNAL_VTALRM] = 0;
3870 signal_stop[TARGET_SIGNAL_PROF] = 0;
3871 signal_print[TARGET_SIGNAL_PROF] = 0;
3872 signal_stop[TARGET_SIGNAL_CHLD] = 0;
3873 signal_print[TARGET_SIGNAL_CHLD] = 0;
3874 signal_stop[TARGET_SIGNAL_IO] = 0;
3875 signal_print[TARGET_SIGNAL_IO] = 0;
3876 signal_stop[TARGET_SIGNAL_POLL] = 0;
3877 signal_print[TARGET_SIGNAL_POLL] = 0;
3878 signal_stop[TARGET_SIGNAL_URG] = 0;
3879 signal_print[TARGET_SIGNAL_URG] = 0;
3880 signal_stop[TARGET_SIGNAL_WINCH] = 0;
3881 signal_print[TARGET_SIGNAL_WINCH] = 0;
3882
cd0fc7c3
SS
3883 /* These signals are used internally by user-level thread
3884 implementations. (See signal(5) on Solaris.) Like the above
3885 signals, a healthy program receives and handles them as part of
3886 its normal operation. */
3887 signal_stop[TARGET_SIGNAL_LWP] = 0;
3888 signal_print[TARGET_SIGNAL_LWP] = 0;
3889 signal_stop[TARGET_SIGNAL_WAITING] = 0;
3890 signal_print[TARGET_SIGNAL_WAITING] = 0;
3891 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
3892 signal_print[TARGET_SIGNAL_CANCEL] = 0;
3893
c906108c 3894#ifdef SOLIB_ADD
cb1a6d5f 3895 deprecated_add_show_from_set
c906108c
SS
3896 (add_set_cmd ("stop-on-solib-events", class_support, var_zinteger,
3897 (char *) &stop_on_solib_events,
3898 "Set stopping for shared library events.\n\
3899If nonzero, gdb will give control to the user when the dynamic linker\n\
3900notifies gdb of shared library events. The most common event of interest\n\
9d1ff73f
MS
3901to the user would be loading/unloading of a new library.\n",
3902 &setlist),
3903 &showlist);
c906108c
SS
3904#endif
3905
3906 c = add_set_enum_cmd ("follow-fork-mode",
3907 class_run,
488f131b 3908 follow_fork_mode_kind_names, &follow_fork_mode_string,
c906108c
SS
3909 "Set debugger response to a program call of fork \
3910or vfork.\n\
3911A fork or vfork creates a new process. follow-fork-mode can be:\n\
3912 parent - the original process is debugged after a fork\n\
3913 child - the new process is debugged after a fork\n\
ea1dd7bc 3914The unfollowed process will continue to run.\n\
488f131b 3915By default, the debugger will follow the parent process.", &setlist);
cb1a6d5f 3916 deprecated_add_show_from_set (c, &showlist);
c906108c 3917
9d1ff73f
MS
3918 c = add_set_enum_cmd ("scheduler-locking", class_run,
3919 scheduler_enums, /* array of string names */
1ed2a135 3920 &scheduler_mode, /* current mode */
c906108c
SS
3921 "Set mode for locking scheduler during execution.\n\
3922off == no locking (threads may preempt at any time)\n\
3923on == full locking (no thread except the current thread may run)\n\
3924step == scheduler locked during every single-step operation.\n\
3925 In this mode, no other thread may run during a step command.\n\
9d1ff73f
MS
3926 Other threads may run while stepping over a function call ('next').",
3927 &setlist);
c906108c 3928
9f60d481 3929 set_cmd_sfunc (c, set_schedlock_func); /* traps on target vector */
cb1a6d5f 3930 deprecated_add_show_from_set (c, &showlist);
5fbbeb29 3931
5bf193a2
AC
3932 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
3933Set mode of the step operation."), _("\
3934Show mode of the step operation."), _("\
3935When set, doing a step over a function without debug line information\n\
3936will stop at the first instruction of that function. Otherwise, the\n\
3937function is skipped and the step command stops at a different source line."),
3938 NULL,
3939 NULL, /* FIXME: i18n: */
3940 &setlist, &showlist);
ca6724c1
KB
3941
3942 /* ptid initializations */
3943 null_ptid = ptid_build (0, 0, 0);
3944 minus_one_ptid = ptid_build (-1, 0, 0);
3945 inferior_ptid = null_ptid;
3946 target_last_wait_ptid = minus_one_ptid;
c906108c 3947}
This page took 0.697029 seconds and 4 git commands to generate.