Remove cleanup from stop_all_threads
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
42a4f53d 4 Copyright (C) 1986-2019 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
76727919 41#include "observable.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
ff862be4 63#include "solist.h"
372316f1 64#include "event-loop.h"
243a9253 65#include "thread-fsm.h"
8d297bbf 66#include "common/enum-flags.h"
5ed8105e
PA
67#include "progspace-and-thread.h"
68#include "common/gdb_optional.h"
46a62268 69#include "arch-utils.h"
4c41382a 70#include "common/scope-exit.h"
c906108c
SS
71
72/* Prototypes for local functions */
73
2ea28649 74static void sig_print_info (enum gdb_signal);
c906108c 75
96baa820 76static void sig_print_header (void);
c906108c 77
4ef3f3be 78static int follow_fork (void);
96baa820 79
d83ad864
DB
80static int follow_fork_inferior (int follow_child, int detach_fork);
81
82static void follow_inferior_reset_breakpoints (void);
83
a289b8f6
JK
84static int currently_stepping (struct thread_info *tp);
85
e58b0e63
PA
86void nullify_last_target_wait_ptid (void);
87
2c03e5be 88static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
89
90static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
91
2484c66b
UW
92static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
93
8550d3b3
YQ
94static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
95
aff4e175
AB
96static void resume (gdb_signal sig);
97
372316f1
PA
98/* Asynchronous signal handler registered as event loop source for
99 when we have pending events ready to be passed to the core. */
100static struct async_event_handler *infrun_async_inferior_event_token;
101
102/* Stores whether infrun_async was previously enabled or disabled.
103 Starts off as -1, indicating "never enabled/disabled". */
104static int infrun_is_async = -1;
105
106/* See infrun.h. */
107
108void
109infrun_async (int enable)
110{
111 if (infrun_is_async != enable)
112 {
113 infrun_is_async = enable;
114
115 if (debug_infrun)
116 fprintf_unfiltered (gdb_stdlog,
117 "infrun: infrun_async(%d)\n",
118 enable);
119
120 if (enable)
121 mark_async_event_handler (infrun_async_inferior_event_token);
122 else
123 clear_async_event_handler (infrun_async_inferior_event_token);
124 }
125}
126
0b333c5e
PA
127/* See infrun.h. */
128
129void
130mark_infrun_async_event_handler (void)
131{
132 mark_async_event_handler (infrun_async_inferior_event_token);
133}
134
5fbbeb29
CF
135/* When set, stop the 'step' command if we enter a function which has
136 no line number information. The normal behavior is that we step
137 over such function. */
138int step_stop_if_no_debug = 0;
920d2a44
AC
139static void
140show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
141 struct cmd_list_element *c, const char *value)
142{
143 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
144}
5fbbeb29 145
b9f437de
PA
146/* proceed and normal_stop use this to notify the user when the
147 inferior stopped in a different thread than it had been running
148 in. */
96baa820 149
39f77062 150static ptid_t previous_inferior_ptid;
7a292a7a 151
07107ca6
LM
152/* If set (default for legacy reasons), when following a fork, GDB
153 will detach from one of the fork branches, child or parent.
154 Exactly which branch is detached depends on 'set follow-fork-mode'
155 setting. */
156
157static int detach_fork = 1;
6c95b8df 158
237fc4c9
PA
159int debug_displaced = 0;
160static void
161show_debug_displaced (struct ui_file *file, int from_tty,
162 struct cmd_list_element *c, const char *value)
163{
164 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
165}
166
ccce17b0 167unsigned int debug_infrun = 0;
920d2a44
AC
168static void
169show_debug_infrun (struct ui_file *file, int from_tty,
170 struct cmd_list_element *c, const char *value)
171{
172 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
173}
527159b7 174
03583c20
UW
175
176/* Support for disabling address space randomization. */
177
178int disable_randomization = 1;
179
180static void
181show_disable_randomization (struct ui_file *file, int from_tty,
182 struct cmd_list_element *c, const char *value)
183{
184 if (target_supports_disable_randomization ())
185 fprintf_filtered (file,
186 _("Disabling randomization of debuggee's "
187 "virtual address space is %s.\n"),
188 value);
189 else
190 fputs_filtered (_("Disabling randomization of debuggee's "
191 "virtual address space is unsupported on\n"
192 "this platform.\n"), file);
193}
194
195static void
eb4c3f4a 196set_disable_randomization (const char *args, int from_tty,
03583c20
UW
197 struct cmd_list_element *c)
198{
199 if (!target_supports_disable_randomization ())
200 error (_("Disabling randomization of debuggee's "
201 "virtual address space is unsupported on\n"
202 "this platform."));
203}
204
d32dc48e
PA
205/* User interface for non-stop mode. */
206
207int non_stop = 0;
208static int non_stop_1 = 0;
209
210static void
eb4c3f4a 211set_non_stop (const char *args, int from_tty,
d32dc48e
PA
212 struct cmd_list_element *c)
213{
214 if (target_has_execution)
215 {
216 non_stop_1 = non_stop;
217 error (_("Cannot change this setting while the inferior is running."));
218 }
219
220 non_stop = non_stop_1;
221}
222
223static void
224show_non_stop (struct ui_file *file, int from_tty,
225 struct cmd_list_element *c, const char *value)
226{
227 fprintf_filtered (file,
228 _("Controlling the inferior in non-stop mode is %s.\n"),
229 value);
230}
231
d914c394
SS
232/* "Observer mode" is somewhat like a more extreme version of
233 non-stop, in which all GDB operations that might affect the
234 target's execution have been disabled. */
235
d914c394
SS
236int observer_mode = 0;
237static int observer_mode_1 = 0;
238
239static void
eb4c3f4a 240set_observer_mode (const char *args, int from_tty,
d914c394
SS
241 struct cmd_list_element *c)
242{
d914c394
SS
243 if (target_has_execution)
244 {
245 observer_mode_1 = observer_mode;
246 error (_("Cannot change this setting while the inferior is running."));
247 }
248
249 observer_mode = observer_mode_1;
250
251 may_write_registers = !observer_mode;
252 may_write_memory = !observer_mode;
253 may_insert_breakpoints = !observer_mode;
254 may_insert_tracepoints = !observer_mode;
255 /* We can insert fast tracepoints in or out of observer mode,
256 but enable them if we're going into this mode. */
257 if (observer_mode)
258 may_insert_fast_tracepoints = 1;
259 may_stop = !observer_mode;
260 update_target_permissions ();
261
262 /* Going *into* observer mode we must force non-stop, then
263 going out we leave it that way. */
264 if (observer_mode)
265 {
d914c394
SS
266 pagination_enabled = 0;
267 non_stop = non_stop_1 = 1;
268 }
269
270 if (from_tty)
271 printf_filtered (_("Observer mode is now %s.\n"),
272 (observer_mode ? "on" : "off"));
273}
274
275static void
276show_observer_mode (struct ui_file *file, int from_tty,
277 struct cmd_list_element *c, const char *value)
278{
279 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
280}
281
282/* This updates the value of observer mode based on changes in
283 permissions. Note that we are deliberately ignoring the values of
284 may-write-registers and may-write-memory, since the user may have
285 reason to enable these during a session, for instance to turn on a
286 debugging-related global. */
287
288void
289update_observer_mode (void)
290{
291 int newval;
292
293 newval = (!may_insert_breakpoints
294 && !may_insert_tracepoints
295 && may_insert_fast_tracepoints
296 && !may_stop
297 && non_stop);
298
299 /* Let the user know if things change. */
300 if (newval != observer_mode)
301 printf_filtered (_("Observer mode is now %s.\n"),
302 (newval ? "on" : "off"));
303
304 observer_mode = observer_mode_1 = newval;
305}
c2c6d25f 306
c906108c
SS
307/* Tables of how to react to signals; the user sets them. */
308
309static unsigned char *signal_stop;
310static unsigned char *signal_print;
311static unsigned char *signal_program;
312
ab04a2af
TT
313/* Table of signals that are registered with "catch signal". A
314 non-zero entry indicates that the signal is caught by some "catch
315 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
316 signals. */
317static unsigned char *signal_catch;
318
2455069d
UW
319/* Table of signals that the target may silently handle.
320 This is automatically determined from the flags above,
321 and simply cached here. */
322static unsigned char *signal_pass;
323
c906108c
SS
324#define SET_SIGS(nsigs,sigs,flags) \
325 do { \
326 int signum = (nsigs); \
327 while (signum-- > 0) \
328 if ((sigs)[signum]) \
329 (flags)[signum] = 1; \
330 } while (0)
331
332#define UNSET_SIGS(nsigs,sigs,flags) \
333 do { \
334 int signum = (nsigs); \
335 while (signum-- > 0) \
336 if ((sigs)[signum]) \
337 (flags)[signum] = 0; \
338 } while (0)
339
9b224c5e
PA
340/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
341 this function is to avoid exporting `signal_program'. */
342
343void
344update_signals_program_target (void)
345{
a493e3e2 346 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
347}
348
1777feb0 349/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 350
edb3359d 351#define RESUME_ALL minus_one_ptid
c906108c
SS
352
353/* Command list pointer for the "stop" placeholder. */
354
355static struct cmd_list_element *stop_command;
356
c906108c
SS
357/* Nonzero if we want to give control to the user when we're notified
358 of shared library events by the dynamic linker. */
628fe4e4 359int stop_on_solib_events;
f9e14852
GB
360
361/* Enable or disable optional shared library event breakpoints
362 as appropriate when the above flag is changed. */
363
364static void
eb4c3f4a
TT
365set_stop_on_solib_events (const char *args,
366 int from_tty, struct cmd_list_element *c)
f9e14852
GB
367{
368 update_solib_breakpoints ();
369}
370
920d2a44
AC
371static void
372show_stop_on_solib_events (struct ui_file *file, int from_tty,
373 struct cmd_list_element *c, const char *value)
374{
375 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
376 value);
377}
c906108c 378
c906108c
SS
379/* Nonzero after stop if current stack frame should be printed. */
380
381static int stop_print_frame;
382
e02bc4cc 383/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
384 returned by target_wait()/deprecated_target_wait_hook(). This
385 information is returned by get_last_target_status(). */
39f77062 386static ptid_t target_last_wait_ptid;
e02bc4cc
DS
387static struct target_waitstatus target_last_waitstatus;
388
4e1c45ea 389void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 390
53904c9e
AC
391static const char follow_fork_mode_child[] = "child";
392static const char follow_fork_mode_parent[] = "parent";
393
40478521 394static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
395 follow_fork_mode_child,
396 follow_fork_mode_parent,
397 NULL
ef346e04 398};
c906108c 399
53904c9e 400static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
401static void
402show_follow_fork_mode_string (struct ui_file *file, int from_tty,
403 struct cmd_list_element *c, const char *value)
404{
3e43a32a
MS
405 fprintf_filtered (file,
406 _("Debugger response to a program "
407 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
408 value);
409}
c906108c
SS
410\f
411
d83ad864
DB
412/* Handle changes to the inferior list based on the type of fork,
413 which process is being followed, and whether the other process
414 should be detached. On entry inferior_ptid must be the ptid of
415 the fork parent. At return inferior_ptid is the ptid of the
416 followed inferior. */
417
418static int
419follow_fork_inferior (int follow_child, int detach_fork)
420{
421 int has_vforked;
79639e11 422 ptid_t parent_ptid, child_ptid;
d83ad864
DB
423
424 has_vforked = (inferior_thread ()->pending_follow.kind
425 == TARGET_WAITKIND_VFORKED);
79639e11
PA
426 parent_ptid = inferior_ptid;
427 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
428
429 if (has_vforked
430 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 431 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
432 && !(follow_child || detach_fork || sched_multi))
433 {
434 /* The parent stays blocked inside the vfork syscall until the
435 child execs or exits. If we don't let the child run, then
436 the parent stays blocked. If we're telling the parent to run
437 in the foreground, the user will not be able to ctrl-c to get
438 back the terminal, effectively hanging the debug session. */
439 fprintf_filtered (gdb_stderr, _("\
440Can not resume the parent process over vfork in the foreground while\n\
441holding the child stopped. Try \"set detach-on-fork\" or \
442\"set schedule-multiple\".\n"));
443 /* FIXME output string > 80 columns. */
444 return 1;
445 }
446
447 if (!follow_child)
448 {
449 /* Detach new forked process? */
450 if (detach_fork)
451 {
d83ad864
DB
452 /* Before detaching from the child, remove all breakpoints
453 from it. If we forked, then this has already been taken
454 care of by infrun.c. If we vforked however, any
455 breakpoint inserted in the parent is visible in the
456 child, even those added while stopped in a vfork
457 catchpoint. This will remove the breakpoints from the
458 parent also, but they'll be reinserted below. */
459 if (has_vforked)
460 {
461 /* Keep breakpoints list in sync. */
00431a78 462 remove_breakpoints_inf (current_inferior ());
d83ad864
DB
463 }
464
f67c0c91 465 if (print_inferior_events)
d83ad864 466 {
8dd06f7a 467 /* Ensure that we have a process ptid. */
e99b03dc 468 ptid_t process_ptid = ptid_t (child_ptid.pid ());
8dd06f7a 469
223ffa71 470 target_terminal::ours_for_output ();
d83ad864 471 fprintf_filtered (gdb_stdlog,
f67c0c91 472 _("[Detaching after %s from child %s]\n"),
6f259a23 473 has_vforked ? "vfork" : "fork",
8dd06f7a 474 target_pid_to_str (process_ptid));
d83ad864
DB
475 }
476 }
477 else
478 {
479 struct inferior *parent_inf, *child_inf;
d83ad864
DB
480
481 /* Add process to GDB's tables. */
e99b03dc 482 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
483
484 parent_inf = current_inferior ();
485 child_inf->attach_flag = parent_inf->attach_flag;
486 copy_terminal_info (child_inf, parent_inf);
487 child_inf->gdbarch = parent_inf->gdbarch;
488 copy_inferior_target_desc_info (child_inf, parent_inf);
489
5ed8105e 490 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 491
79639e11 492 inferior_ptid = child_ptid;
f67c0c91 493 add_thread_silent (inferior_ptid);
2a00d7ce 494 set_current_inferior (child_inf);
d83ad864
DB
495 child_inf->symfile_flags = SYMFILE_NO_READ;
496
497 /* If this is a vfork child, then the address-space is
498 shared with the parent. */
499 if (has_vforked)
500 {
501 child_inf->pspace = parent_inf->pspace;
502 child_inf->aspace = parent_inf->aspace;
503
504 /* The parent will be frozen until the child is done
505 with the shared region. Keep track of the
506 parent. */
507 child_inf->vfork_parent = parent_inf;
508 child_inf->pending_detach = 0;
509 parent_inf->vfork_child = child_inf;
510 parent_inf->pending_detach = 0;
511 }
512 else
513 {
514 child_inf->aspace = new_address_space ();
564b1e3f 515 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
516 child_inf->removable = 1;
517 set_current_program_space (child_inf->pspace);
518 clone_program_space (child_inf->pspace, parent_inf->pspace);
519
520 /* Let the shared library layer (e.g., solib-svr4) learn
521 about this new process, relocate the cloned exec, pull
522 in shared libraries, and install the solib event
523 breakpoint. If a "cloned-VM" event was propagated
524 better throughout the core, this wouldn't be
525 required. */
526 solib_create_inferior_hook (0);
527 }
d83ad864
DB
528 }
529
530 if (has_vforked)
531 {
532 struct inferior *parent_inf;
533
534 parent_inf = current_inferior ();
535
536 /* If we detached from the child, then we have to be careful
537 to not insert breakpoints in the parent until the child
538 is done with the shared memory region. However, if we're
539 staying attached to the child, then we can and should
540 insert breakpoints, so that we can debug it. A
541 subsequent child exec or exit is enough to know when does
542 the child stops using the parent's address space. */
543 parent_inf->waiting_for_vfork_done = detach_fork;
544 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
545 }
546 }
547 else
548 {
549 /* Follow the child. */
550 struct inferior *parent_inf, *child_inf;
551 struct program_space *parent_pspace;
552
f67c0c91 553 if (print_inferior_events)
d83ad864 554 {
f67c0c91
SDJ
555 std::string parent_pid = target_pid_to_str (parent_ptid);
556 std::string child_pid = target_pid_to_str (child_ptid);
557
223ffa71 558 target_terminal::ours_for_output ();
6f259a23 559 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
560 _("[Attaching after %s %s to child %s]\n"),
561 parent_pid.c_str (),
6f259a23 562 has_vforked ? "vfork" : "fork",
f67c0c91 563 child_pid.c_str ());
d83ad864
DB
564 }
565
566 /* Add the new inferior first, so that the target_detach below
567 doesn't unpush the target. */
568
e99b03dc 569 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
570
571 parent_inf = current_inferior ();
572 child_inf->attach_flag = parent_inf->attach_flag;
573 copy_terminal_info (child_inf, parent_inf);
574 child_inf->gdbarch = parent_inf->gdbarch;
575 copy_inferior_target_desc_info (child_inf, parent_inf);
576
577 parent_pspace = parent_inf->pspace;
578
579 /* If we're vforking, we want to hold on to the parent until the
580 child exits or execs. At child exec or exit time we can
581 remove the old breakpoints from the parent and detach or
582 resume debugging it. Otherwise, detach the parent now; we'll
583 want to reuse it's program/address spaces, but we can't set
584 them to the child before removing breakpoints from the
585 parent, otherwise, the breakpoints module could decide to
586 remove breakpoints from the wrong process (since they'd be
587 assigned to the same address space). */
588
589 if (has_vforked)
590 {
591 gdb_assert (child_inf->vfork_parent == NULL);
592 gdb_assert (parent_inf->vfork_child == NULL);
593 child_inf->vfork_parent = parent_inf;
594 child_inf->pending_detach = 0;
595 parent_inf->vfork_child = child_inf;
596 parent_inf->pending_detach = detach_fork;
597 parent_inf->waiting_for_vfork_done = 0;
598 }
599 else if (detach_fork)
6f259a23 600 {
f67c0c91 601 if (print_inferior_events)
6f259a23 602 {
8dd06f7a 603 /* Ensure that we have a process ptid. */
e99b03dc 604 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
8dd06f7a 605
223ffa71 606 target_terminal::ours_for_output ();
6f259a23 607 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
608 _("[Detaching after fork from "
609 "parent %s]\n"),
8dd06f7a 610 target_pid_to_str (process_ptid));
6f259a23
DB
611 }
612
6e1e1966 613 target_detach (parent_inf, 0);
6f259a23 614 }
d83ad864
DB
615
616 /* Note that the detach above makes PARENT_INF dangling. */
617
618 /* Add the child thread to the appropriate lists, and switch to
619 this new thread, before cloning the program space, and
620 informing the solib layer about this new process. */
621
79639e11 622 inferior_ptid = child_ptid;
f67c0c91 623 add_thread_silent (inferior_ptid);
2a00d7ce 624 set_current_inferior (child_inf);
d83ad864
DB
625
626 /* If this is a vfork child, then the address-space is shared
627 with the parent. If we detached from the parent, then we can
628 reuse the parent's program/address spaces. */
629 if (has_vforked || detach_fork)
630 {
631 child_inf->pspace = parent_pspace;
632 child_inf->aspace = child_inf->pspace->aspace;
633 }
634 else
635 {
636 child_inf->aspace = new_address_space ();
564b1e3f 637 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
638 child_inf->removable = 1;
639 child_inf->symfile_flags = SYMFILE_NO_READ;
640 set_current_program_space (child_inf->pspace);
641 clone_program_space (child_inf->pspace, parent_pspace);
642
643 /* Let the shared library layer (e.g., solib-svr4) learn
644 about this new process, relocate the cloned exec, pull in
645 shared libraries, and install the solib event breakpoint.
646 If a "cloned-VM" event was propagated better throughout
647 the core, this wouldn't be required. */
648 solib_create_inferior_hook (0);
649 }
650 }
651
652 return target_follow_fork (follow_child, detach_fork);
653}
654
e58b0e63
PA
655/* Tell the target to follow the fork we're stopped at. Returns true
656 if the inferior should be resumed; false, if the target for some
657 reason decided it's best not to resume. */
658
6604731b 659static int
4ef3f3be 660follow_fork (void)
c906108c 661{
ea1dd7bc 662 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
663 int should_resume = 1;
664 struct thread_info *tp;
665
666 /* Copy user stepping state to the new inferior thread. FIXME: the
667 followed fork child thread should have a copy of most of the
4e3990f4
DE
668 parent thread structure's run control related fields, not just these.
669 Initialized to avoid "may be used uninitialized" warnings from gcc. */
670 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 671 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
672 CORE_ADDR step_range_start = 0;
673 CORE_ADDR step_range_end = 0;
674 struct frame_id step_frame_id = { 0 };
8980e177 675 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
676
677 if (!non_stop)
678 {
679 ptid_t wait_ptid;
680 struct target_waitstatus wait_status;
681
682 /* Get the last target status returned by target_wait(). */
683 get_last_target_status (&wait_ptid, &wait_status);
684
685 /* If not stopped at a fork event, then there's nothing else to
686 do. */
687 if (wait_status.kind != TARGET_WAITKIND_FORKED
688 && wait_status.kind != TARGET_WAITKIND_VFORKED)
689 return 1;
690
691 /* Check if we switched over from WAIT_PTID, since the event was
692 reported. */
00431a78
PA
693 if (wait_ptid != minus_one_ptid
694 && inferior_ptid != wait_ptid)
e58b0e63
PA
695 {
696 /* We did. Switch back to WAIT_PTID thread, to tell the
697 target to follow it (in either direction). We'll
698 afterwards refuse to resume, and inform the user what
699 happened. */
00431a78
PA
700 thread_info *wait_thread
701 = find_thread_ptid (wait_ptid);
702 switch_to_thread (wait_thread);
e58b0e63
PA
703 should_resume = 0;
704 }
705 }
706
707 tp = inferior_thread ();
708
709 /* If there were any forks/vforks that were caught and are now to be
710 followed, then do so now. */
711 switch (tp->pending_follow.kind)
712 {
713 case TARGET_WAITKIND_FORKED:
714 case TARGET_WAITKIND_VFORKED:
715 {
716 ptid_t parent, child;
717
718 /* If the user did a next/step, etc, over a fork call,
719 preserve the stepping state in the fork child. */
720 if (follow_child && should_resume)
721 {
8358c15c
JK
722 step_resume_breakpoint = clone_momentary_breakpoint
723 (tp->control.step_resume_breakpoint);
16c381f0
JK
724 step_range_start = tp->control.step_range_start;
725 step_range_end = tp->control.step_range_end;
726 step_frame_id = tp->control.step_frame_id;
186c406b
TT
727 exception_resume_breakpoint
728 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 729 thread_fsm = tp->thread_fsm;
e58b0e63
PA
730
731 /* For now, delete the parent's sr breakpoint, otherwise,
732 parent/child sr breakpoints are considered duplicates,
733 and the child version will not be installed. Remove
734 this when the breakpoints module becomes aware of
735 inferiors and address spaces. */
736 delete_step_resume_breakpoint (tp);
16c381f0
JK
737 tp->control.step_range_start = 0;
738 tp->control.step_range_end = 0;
739 tp->control.step_frame_id = null_frame_id;
186c406b 740 delete_exception_resume_breakpoint (tp);
8980e177 741 tp->thread_fsm = NULL;
e58b0e63
PA
742 }
743
744 parent = inferior_ptid;
745 child = tp->pending_follow.value.related_pid;
746
d83ad864
DB
747 /* Set up inferior(s) as specified by the caller, and tell the
748 target to do whatever is necessary to follow either parent
749 or child. */
750 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
751 {
752 /* Target refused to follow, or there's some other reason
753 we shouldn't resume. */
754 should_resume = 0;
755 }
756 else
757 {
758 /* This pending follow fork event is now handled, one way
759 or another. The previous selected thread may be gone
760 from the lists by now, but if it is still around, need
761 to clear the pending follow request. */
e09875d4 762 tp = find_thread_ptid (parent);
e58b0e63
PA
763 if (tp)
764 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
765
766 /* This makes sure we don't try to apply the "Switched
767 over from WAIT_PID" logic above. */
768 nullify_last_target_wait_ptid ();
769
1777feb0 770 /* If we followed the child, switch to it... */
e58b0e63
PA
771 if (follow_child)
772 {
00431a78
PA
773 thread_info *child_thr = find_thread_ptid (child);
774 switch_to_thread (child_thr);
e58b0e63
PA
775
776 /* ... and preserve the stepping state, in case the
777 user was stepping over the fork call. */
778 if (should_resume)
779 {
780 tp = inferior_thread ();
8358c15c
JK
781 tp->control.step_resume_breakpoint
782 = step_resume_breakpoint;
16c381f0
JK
783 tp->control.step_range_start = step_range_start;
784 tp->control.step_range_end = step_range_end;
785 tp->control.step_frame_id = step_frame_id;
186c406b
TT
786 tp->control.exception_resume_breakpoint
787 = exception_resume_breakpoint;
8980e177 788 tp->thread_fsm = thread_fsm;
e58b0e63
PA
789 }
790 else
791 {
792 /* If we get here, it was because we're trying to
793 resume from a fork catchpoint, but, the user
794 has switched threads away from the thread that
795 forked. In that case, the resume command
796 issued is most likely not applicable to the
797 child, so just warn, and refuse to resume. */
3e43a32a 798 warning (_("Not resuming: switched threads "
fd7dcb94 799 "before following fork child."));
e58b0e63
PA
800 }
801
802 /* Reset breakpoints in the child as appropriate. */
803 follow_inferior_reset_breakpoints ();
804 }
e58b0e63
PA
805 }
806 }
807 break;
808 case TARGET_WAITKIND_SPURIOUS:
809 /* Nothing to follow. */
810 break;
811 default:
812 internal_error (__FILE__, __LINE__,
813 "Unexpected pending_follow.kind %d\n",
814 tp->pending_follow.kind);
815 break;
816 }
c906108c 817
e58b0e63 818 return should_resume;
c906108c
SS
819}
820
d83ad864 821static void
6604731b 822follow_inferior_reset_breakpoints (void)
c906108c 823{
4e1c45ea
PA
824 struct thread_info *tp = inferior_thread ();
825
6604731b
DJ
826 /* Was there a step_resume breakpoint? (There was if the user
827 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
828 thread number. Cloned step_resume breakpoints are disabled on
829 creation, so enable it here now that it is associated with the
830 correct thread.
6604731b
DJ
831
832 step_resumes are a form of bp that are made to be per-thread.
833 Since we created the step_resume bp when the parent process
834 was being debugged, and now are switching to the child process,
835 from the breakpoint package's viewpoint, that's a switch of
836 "threads". We must update the bp's notion of which thread
837 it is for, or it'll be ignored when it triggers. */
838
8358c15c 839 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
840 {
841 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
842 tp->control.step_resume_breakpoint->loc->enabled = 1;
843 }
6604731b 844
a1aa2221 845 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 846 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
847 {
848 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
849 tp->control.exception_resume_breakpoint->loc->enabled = 1;
850 }
186c406b 851
6604731b
DJ
852 /* Reinsert all breakpoints in the child. The user may have set
853 breakpoints after catching the fork, in which case those
854 were never set in the child, but only in the parent. This makes
855 sure the inserted breakpoints match the breakpoint list. */
856
857 breakpoint_re_set ();
858 insert_breakpoints ();
c906108c 859}
c906108c 860
6c95b8df
PA
861/* The child has exited or execed: resume threads of the parent the
862 user wanted to be executing. */
863
864static int
865proceed_after_vfork_done (struct thread_info *thread,
866 void *arg)
867{
868 int pid = * (int *) arg;
869
00431a78
PA
870 if (thread->ptid.pid () == pid
871 && thread->state == THREAD_RUNNING
872 && !thread->executing
6c95b8df 873 && !thread->stop_requested
a493e3e2 874 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
875 {
876 if (debug_infrun)
877 fprintf_unfiltered (gdb_stdlog,
878 "infrun: resuming vfork parent thread %s\n",
879 target_pid_to_str (thread->ptid));
880
00431a78 881 switch_to_thread (thread);
70509625 882 clear_proceed_status (0);
64ce06e4 883 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
884 }
885
886 return 0;
887}
888
5ed8105e
PA
889/* Save/restore inferior_ptid, current program space and current
890 inferior. Only use this if the current context points at an exited
891 inferior (and therefore there's no current thread to save). */
892class scoped_restore_exited_inferior
893{
894public:
895 scoped_restore_exited_inferior ()
896 : m_saved_ptid (&inferior_ptid)
897 {}
898
899private:
900 scoped_restore_tmpl<ptid_t> m_saved_ptid;
901 scoped_restore_current_program_space m_pspace;
902 scoped_restore_current_inferior m_inferior;
903};
904
6c95b8df
PA
905/* Called whenever we notice an exec or exit event, to handle
906 detaching or resuming a vfork parent. */
907
908static void
909handle_vfork_child_exec_or_exit (int exec)
910{
911 struct inferior *inf = current_inferior ();
912
913 if (inf->vfork_parent)
914 {
915 int resume_parent = -1;
916
917 /* This exec or exit marks the end of the shared memory region
918 between the parent and the child. If the user wanted to
919 detach from the parent, now is the time. */
920
921 if (inf->vfork_parent->pending_detach)
922 {
923 struct thread_info *tp;
6c95b8df
PA
924 struct program_space *pspace;
925 struct address_space *aspace;
926
1777feb0 927 /* follow-fork child, detach-on-fork on. */
6c95b8df 928
68c9da30
PA
929 inf->vfork_parent->pending_detach = 0;
930
5ed8105e
PA
931 gdb::optional<scoped_restore_exited_inferior>
932 maybe_restore_inferior;
933 gdb::optional<scoped_restore_current_pspace_and_thread>
934 maybe_restore_thread;
935
936 /* If we're handling a child exit, then inferior_ptid points
937 at the inferior's pid, not to a thread. */
f50f4e56 938 if (!exec)
5ed8105e 939 maybe_restore_inferior.emplace ();
f50f4e56 940 else
5ed8105e 941 maybe_restore_thread.emplace ();
6c95b8df
PA
942
943 /* We're letting loose of the parent. */
00431a78
PA
944 tp = any_live_thread_of_inferior (inf->vfork_parent);
945 switch_to_thread (tp);
6c95b8df
PA
946
947 /* We're about to detach from the parent, which implicitly
948 removes breakpoints from its address space. There's a
949 catch here: we want to reuse the spaces for the child,
950 but, parent/child are still sharing the pspace at this
951 point, although the exec in reality makes the kernel give
952 the child a fresh set of new pages. The problem here is
953 that the breakpoints module being unaware of this, would
954 likely chose the child process to write to the parent
955 address space. Swapping the child temporarily away from
956 the spaces has the desired effect. Yes, this is "sort
957 of" a hack. */
958
959 pspace = inf->pspace;
960 aspace = inf->aspace;
961 inf->aspace = NULL;
962 inf->pspace = NULL;
963
f67c0c91 964 if (print_inferior_events)
6c95b8df 965 {
f67c0c91 966 const char *pidstr
f2907e49 967 = target_pid_to_str (ptid_t (inf->vfork_parent->pid));
f67c0c91 968
223ffa71 969 target_terminal::ours_for_output ();
6c95b8df
PA
970
971 if (exec)
6f259a23
DB
972 {
973 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
974 _("[Detaching vfork parent %s "
975 "after child exec]\n"), pidstr);
6f259a23 976 }
6c95b8df 977 else
6f259a23
DB
978 {
979 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
980 _("[Detaching vfork parent %s "
981 "after child exit]\n"), pidstr);
6f259a23 982 }
6c95b8df
PA
983 }
984
6e1e1966 985 target_detach (inf->vfork_parent, 0);
6c95b8df
PA
986
987 /* Put it back. */
988 inf->pspace = pspace;
989 inf->aspace = aspace;
6c95b8df
PA
990 }
991 else if (exec)
992 {
993 /* We're staying attached to the parent, so, really give the
994 child a new address space. */
564b1e3f 995 inf->pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
996 inf->aspace = inf->pspace->aspace;
997 inf->removable = 1;
998 set_current_program_space (inf->pspace);
999
1000 resume_parent = inf->vfork_parent->pid;
1001
1002 /* Break the bonds. */
1003 inf->vfork_parent->vfork_child = NULL;
1004 }
1005 else
1006 {
6c95b8df
PA
1007 struct program_space *pspace;
1008
1009 /* If this is a vfork child exiting, then the pspace and
1010 aspaces were shared with the parent. Since we're
1011 reporting the process exit, we'll be mourning all that is
1012 found in the address space, and switching to null_ptid,
1013 preparing to start a new inferior. But, since we don't
1014 want to clobber the parent's address/program spaces, we
1015 go ahead and create a new one for this exiting
1016 inferior. */
1017
5ed8105e
PA
1018 /* Switch to null_ptid while running clone_program_space, so
1019 that clone_program_space doesn't want to read the
1020 selected frame of a dead process. */
1021 scoped_restore restore_ptid
1022 = make_scoped_restore (&inferior_ptid, null_ptid);
6c95b8df
PA
1023
1024 /* This inferior is dead, so avoid giving the breakpoints
1025 module the option to write through to it (cloning a
1026 program space resets breakpoints). */
1027 inf->aspace = NULL;
1028 inf->pspace = NULL;
564b1e3f 1029 pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
1030 set_current_program_space (pspace);
1031 inf->removable = 1;
7dcd53a0 1032 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1033 clone_program_space (pspace, inf->vfork_parent->pspace);
1034 inf->pspace = pspace;
1035 inf->aspace = pspace->aspace;
1036
6c95b8df
PA
1037 resume_parent = inf->vfork_parent->pid;
1038 /* Break the bonds. */
1039 inf->vfork_parent->vfork_child = NULL;
1040 }
1041
1042 inf->vfork_parent = NULL;
1043
1044 gdb_assert (current_program_space == inf->pspace);
1045
1046 if (non_stop && resume_parent != -1)
1047 {
1048 /* If the user wanted the parent to be running, let it go
1049 free now. */
5ed8105e 1050 scoped_restore_current_thread restore_thread;
6c95b8df
PA
1051
1052 if (debug_infrun)
3e43a32a
MS
1053 fprintf_unfiltered (gdb_stdlog,
1054 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1055 resume_parent);
1056
1057 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1058 }
1059 }
1060}
1061
eb6c553b 1062/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1063
1064static const char follow_exec_mode_new[] = "new";
1065static const char follow_exec_mode_same[] = "same";
40478521 1066static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1067{
1068 follow_exec_mode_new,
1069 follow_exec_mode_same,
1070 NULL,
1071};
1072
1073static const char *follow_exec_mode_string = follow_exec_mode_same;
1074static void
1075show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1076 struct cmd_list_element *c, const char *value)
1077{
1078 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1079}
1080
ecf45d2c 1081/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1082
c906108c 1083static void
ecf45d2c 1084follow_exec (ptid_t ptid, char *exec_file_target)
c906108c 1085{
6c95b8df 1086 struct inferior *inf = current_inferior ();
e99b03dc 1087 int pid = ptid.pid ();
94585166 1088 ptid_t process_ptid;
7a292a7a 1089
c906108c
SS
1090 /* This is an exec event that we actually wish to pay attention to.
1091 Refresh our symbol table to the newly exec'd program, remove any
1092 momentary bp's, etc.
1093
1094 If there are breakpoints, they aren't really inserted now,
1095 since the exec() transformed our inferior into a fresh set
1096 of instructions.
1097
1098 We want to preserve symbolic breakpoints on the list, since
1099 we have hopes that they can be reset after the new a.out's
1100 symbol table is read.
1101
1102 However, any "raw" breakpoints must be removed from the list
1103 (e.g., the solib bp's), since their address is probably invalid
1104 now.
1105
1106 And, we DON'T want to call delete_breakpoints() here, since
1107 that may write the bp's "shadow contents" (the instruction
1108 value that was overwritten witha TRAP instruction). Since
1777feb0 1109 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1110
1111 mark_breakpoints_out ();
1112
95e50b27
PA
1113 /* The target reports the exec event to the main thread, even if
1114 some other thread does the exec, and even if the main thread was
1115 stopped or already gone. We may still have non-leader threads of
1116 the process on our list. E.g., on targets that don't have thread
1117 exit events (like remote); or on native Linux in non-stop mode if
1118 there were only two threads in the inferior and the non-leader
1119 one is the one that execs (and nothing forces an update of the
1120 thread list up to here). When debugging remotely, it's best to
1121 avoid extra traffic, when possible, so avoid syncing the thread
1122 list with the target, and instead go ahead and delete all threads
1123 of the process but one that reported the event. Note this must
1124 be done before calling update_breakpoints_after_exec, as
1125 otherwise clearing the threads' resources would reference stale
1126 thread breakpoints -- it may have been one of these threads that
1127 stepped across the exec. We could just clear their stepping
1128 states, but as long as we're iterating, might as well delete
1129 them. Deleting them now rather than at the next user-visible
1130 stop provides a nicer sequence of events for user and MI
1131 notifications. */
08036331 1132 for (thread_info *th : all_threads_safe ())
d7e15655 1133 if (th->ptid.pid () == pid && th->ptid != ptid)
00431a78 1134 delete_thread (th);
95e50b27
PA
1135
1136 /* We also need to clear any left over stale state for the
1137 leader/event thread. E.g., if there was any step-resume
1138 breakpoint or similar, it's gone now. We cannot truly
1139 step-to-next statement through an exec(). */
08036331 1140 thread_info *th = inferior_thread ();
8358c15c 1141 th->control.step_resume_breakpoint = NULL;
186c406b 1142 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1143 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1144 th->control.step_range_start = 0;
1145 th->control.step_range_end = 0;
c906108c 1146
95e50b27
PA
1147 /* The user may have had the main thread held stopped in the
1148 previous image (e.g., schedlock on, or non-stop). Release
1149 it now. */
a75724bc
PA
1150 th->stop_requested = 0;
1151
95e50b27
PA
1152 update_breakpoints_after_exec ();
1153
1777feb0 1154 /* What is this a.out's name? */
f2907e49 1155 process_ptid = ptid_t (pid);
6c95b8df 1156 printf_unfiltered (_("%s is executing new program: %s\n"),
94585166 1157 target_pid_to_str (process_ptid),
ecf45d2c 1158 exec_file_target);
c906108c
SS
1159
1160 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1161 inferior has essentially been killed & reborn. */
7a292a7a 1162
c906108c 1163 gdb_flush (gdb_stdout);
6ca15a4b
PA
1164
1165 breakpoint_init_inferior (inf_execd);
e85a822c 1166
797bc1cb
TT
1167 gdb::unique_xmalloc_ptr<char> exec_file_host
1168 = exec_file_find (exec_file_target, NULL);
ff862be4 1169
ecf45d2c
SL
1170 /* If we were unable to map the executable target pathname onto a host
1171 pathname, tell the user that. Otherwise GDB's subsequent behavior
1172 is confusing. Maybe it would even be better to stop at this point
1173 so that the user can specify a file manually before continuing. */
1174 if (exec_file_host == NULL)
1175 warning (_("Could not load symbols for executable %s.\n"
1176 "Do you need \"set sysroot\"?"),
1177 exec_file_target);
c906108c 1178
cce9b6bf
PA
1179 /* Reset the shared library package. This ensures that we get a
1180 shlib event when the child reaches "_start", at which point the
1181 dld will have had a chance to initialize the child. */
1182 /* Also, loading a symbol file below may trigger symbol lookups, and
1183 we don't want those to be satisfied by the libraries of the
1184 previous incarnation of this process. */
1185 no_shared_libraries (NULL, 0);
1186
6c95b8df
PA
1187 if (follow_exec_mode_string == follow_exec_mode_new)
1188 {
6c95b8df
PA
1189 /* The user wants to keep the old inferior and program spaces
1190 around. Create a new fresh one, and switch to it. */
1191
35ed81d4
SM
1192 /* Do exit processing for the original inferior before setting the new
1193 inferior's pid. Having two inferiors with the same pid would confuse
1194 find_inferior_p(t)id. Transfer the terminal state and info from the
1195 old to the new inferior. */
1196 inf = add_inferior_with_spaces ();
1197 swap_terminal_info (inf, current_inferior ());
057302ce 1198 exit_inferior_silent (current_inferior ());
17d8546e 1199
94585166 1200 inf->pid = pid;
ecf45d2c 1201 target_follow_exec (inf, exec_file_target);
6c95b8df
PA
1202
1203 set_current_inferior (inf);
94585166 1204 set_current_program_space (inf->pspace);
c4c17fb0 1205 add_thread (ptid);
6c95b8df 1206 }
9107fc8d
PA
1207 else
1208 {
1209 /* The old description may no longer be fit for the new image.
1210 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1211 old description; we'll read a new one below. No need to do
1212 this on "follow-exec-mode new", as the old inferior stays
1213 around (its description is later cleared/refetched on
1214 restart). */
1215 target_clear_description ();
1216 }
6c95b8df
PA
1217
1218 gdb_assert (current_program_space == inf->pspace);
1219
ecf45d2c
SL
1220 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1221 because the proper displacement for a PIE (Position Independent
1222 Executable) main symbol file will only be computed by
1223 solib_create_inferior_hook below. breakpoint_re_set would fail
1224 to insert the breakpoints with the zero displacement. */
797bc1cb 1225 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
c906108c 1226
9107fc8d
PA
1227 /* If the target can specify a description, read it. Must do this
1228 after flipping to the new executable (because the target supplied
1229 description must be compatible with the executable's
1230 architecture, and the old executable may e.g., be 32-bit, while
1231 the new one 64-bit), and before anything involving memory or
1232 registers. */
1233 target_find_description ();
1234
268a4a75 1235 solib_create_inferior_hook (0);
c906108c 1236
4efc6507
DE
1237 jit_inferior_created_hook ();
1238
c1e56572
JK
1239 breakpoint_re_set ();
1240
c906108c
SS
1241 /* Reinsert all breakpoints. (Those which were symbolic have
1242 been reset to the proper address in the new a.out, thanks
1777feb0 1243 to symbol_file_command...). */
c906108c
SS
1244 insert_breakpoints ();
1245
1246 /* The next resume of this inferior should bring it to the shlib
1247 startup breakpoints. (If the user had also set bp's on
1248 "main" from the old (parent) process, then they'll auto-
1777feb0 1249 matically get reset there in the new process.). */
c906108c
SS
1250}
1251
c2829269
PA
1252/* The queue of threads that need to do a step-over operation to get
1253 past e.g., a breakpoint. What technique is used to step over the
1254 breakpoint/watchpoint does not matter -- all threads end up in the
1255 same queue, to maintain rough temporal order of execution, in order
1256 to avoid starvation, otherwise, we could e.g., find ourselves
1257 constantly stepping the same couple threads past their breakpoints
1258 over and over, if the single-step finish fast enough. */
1259struct thread_info *step_over_queue_head;
1260
6c4cfb24
PA
1261/* Bit flags indicating what the thread needs to step over. */
1262
8d297bbf 1263enum step_over_what_flag
6c4cfb24
PA
1264 {
1265 /* Step over a breakpoint. */
1266 STEP_OVER_BREAKPOINT = 1,
1267
1268 /* Step past a non-continuable watchpoint, in order to let the
1269 instruction execute so we can evaluate the watchpoint
1270 expression. */
1271 STEP_OVER_WATCHPOINT = 2
1272 };
8d297bbf 1273DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1274
963f9c80 1275/* Info about an instruction that is being stepped over. */
31e77af2
PA
1276
1277struct step_over_info
1278{
963f9c80
PA
1279 /* If we're stepping past a breakpoint, this is the address space
1280 and address of the instruction the breakpoint is set at. We'll
1281 skip inserting all breakpoints here. Valid iff ASPACE is
1282 non-NULL. */
8b86c959 1283 const address_space *aspace;
31e77af2 1284 CORE_ADDR address;
963f9c80
PA
1285
1286 /* The instruction being stepped over triggers a nonsteppable
1287 watchpoint. If true, we'll skip inserting watchpoints. */
1288 int nonsteppable_watchpoint_p;
21edc42f
YQ
1289
1290 /* The thread's global number. */
1291 int thread;
31e77af2
PA
1292};
1293
1294/* The step-over info of the location that is being stepped over.
1295
1296 Note that with async/breakpoint always-inserted mode, a user might
1297 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1298 being stepped over. As setting a new breakpoint inserts all
1299 breakpoints, we need to make sure the breakpoint being stepped over
1300 isn't inserted then. We do that by only clearing the step-over
1301 info when the step-over is actually finished (or aborted).
1302
1303 Presently GDB can only step over one breakpoint at any given time.
1304 Given threads that can't run code in the same address space as the
1305 breakpoint's can't really miss the breakpoint, GDB could be taught
1306 to step-over at most one breakpoint per address space (so this info
1307 could move to the address space object if/when GDB is extended).
1308 The set of breakpoints being stepped over will normally be much
1309 smaller than the set of all breakpoints, so a flag in the
1310 breakpoint location structure would be wasteful. A separate list
1311 also saves complexity and run-time, as otherwise we'd have to go
1312 through all breakpoint locations clearing their flag whenever we
1313 start a new sequence. Similar considerations weigh against storing
1314 this info in the thread object. Plus, not all step overs actually
1315 have breakpoint locations -- e.g., stepping past a single-step
1316 breakpoint, or stepping to complete a non-continuable
1317 watchpoint. */
1318static struct step_over_info step_over_info;
1319
1320/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1321 stepping over.
1322 N.B. We record the aspace and address now, instead of say just the thread,
1323 because when we need the info later the thread may be running. */
31e77af2
PA
1324
1325static void
8b86c959 1326set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1327 int nonsteppable_watchpoint_p,
1328 int thread)
31e77af2
PA
1329{
1330 step_over_info.aspace = aspace;
1331 step_over_info.address = address;
963f9c80 1332 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1333 step_over_info.thread = thread;
31e77af2
PA
1334}
1335
1336/* Called when we're not longer stepping over a breakpoint / an
1337 instruction, so all breakpoints are free to be (re)inserted. */
1338
1339static void
1340clear_step_over_info (void)
1341{
372316f1
PA
1342 if (debug_infrun)
1343 fprintf_unfiltered (gdb_stdlog,
1344 "infrun: clear_step_over_info\n");
31e77af2
PA
1345 step_over_info.aspace = NULL;
1346 step_over_info.address = 0;
963f9c80 1347 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1348 step_over_info.thread = -1;
31e77af2
PA
1349}
1350
7f89fd65 1351/* See infrun.h. */
31e77af2
PA
1352
1353int
1354stepping_past_instruction_at (struct address_space *aspace,
1355 CORE_ADDR address)
1356{
1357 return (step_over_info.aspace != NULL
1358 && breakpoint_address_match (aspace, address,
1359 step_over_info.aspace,
1360 step_over_info.address));
1361}
1362
963f9c80
PA
1363/* See infrun.h. */
1364
21edc42f
YQ
1365int
1366thread_is_stepping_over_breakpoint (int thread)
1367{
1368 return (step_over_info.thread != -1
1369 && thread == step_over_info.thread);
1370}
1371
1372/* See infrun.h. */
1373
963f9c80
PA
1374int
1375stepping_past_nonsteppable_watchpoint (void)
1376{
1377 return step_over_info.nonsteppable_watchpoint_p;
1378}
1379
6cc83d2a
PA
1380/* Returns true if step-over info is valid. */
1381
1382static int
1383step_over_info_valid_p (void)
1384{
963f9c80
PA
1385 return (step_over_info.aspace != NULL
1386 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1387}
1388
c906108c 1389\f
237fc4c9
PA
1390/* Displaced stepping. */
1391
1392/* In non-stop debugging mode, we must take special care to manage
1393 breakpoints properly; in particular, the traditional strategy for
1394 stepping a thread past a breakpoint it has hit is unsuitable.
1395 'Displaced stepping' is a tactic for stepping one thread past a
1396 breakpoint it has hit while ensuring that other threads running
1397 concurrently will hit the breakpoint as they should.
1398
1399 The traditional way to step a thread T off a breakpoint in a
1400 multi-threaded program in all-stop mode is as follows:
1401
1402 a0) Initially, all threads are stopped, and breakpoints are not
1403 inserted.
1404 a1) We single-step T, leaving breakpoints uninserted.
1405 a2) We insert breakpoints, and resume all threads.
1406
1407 In non-stop debugging, however, this strategy is unsuitable: we
1408 don't want to have to stop all threads in the system in order to
1409 continue or step T past a breakpoint. Instead, we use displaced
1410 stepping:
1411
1412 n0) Initially, T is stopped, other threads are running, and
1413 breakpoints are inserted.
1414 n1) We copy the instruction "under" the breakpoint to a separate
1415 location, outside the main code stream, making any adjustments
1416 to the instruction, register, and memory state as directed by
1417 T's architecture.
1418 n2) We single-step T over the instruction at its new location.
1419 n3) We adjust the resulting register and memory state as directed
1420 by T's architecture. This includes resetting T's PC to point
1421 back into the main instruction stream.
1422 n4) We resume T.
1423
1424 This approach depends on the following gdbarch methods:
1425
1426 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1427 indicate where to copy the instruction, and how much space must
1428 be reserved there. We use these in step n1.
1429
1430 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1431 address, and makes any necessary adjustments to the instruction,
1432 register contents, and memory. We use this in step n1.
1433
1434 - gdbarch_displaced_step_fixup adjusts registers and memory after
1435 we have successfuly single-stepped the instruction, to yield the
1436 same effect the instruction would have had if we had executed it
1437 at its original address. We use this in step n3.
1438
237fc4c9
PA
1439 The gdbarch_displaced_step_copy_insn and
1440 gdbarch_displaced_step_fixup functions must be written so that
1441 copying an instruction with gdbarch_displaced_step_copy_insn,
1442 single-stepping across the copied instruction, and then applying
1443 gdbarch_displaced_insn_fixup should have the same effects on the
1444 thread's memory and registers as stepping the instruction in place
1445 would have. Exactly which responsibilities fall to the copy and
1446 which fall to the fixup is up to the author of those functions.
1447
1448 See the comments in gdbarch.sh for details.
1449
1450 Note that displaced stepping and software single-step cannot
1451 currently be used in combination, although with some care I think
1452 they could be made to. Software single-step works by placing
1453 breakpoints on all possible subsequent instructions; if the
1454 displaced instruction is a PC-relative jump, those breakpoints
1455 could fall in very strange places --- on pages that aren't
1456 executable, or at addresses that are not proper instruction
1457 boundaries. (We do generally let other threads run while we wait
1458 to hit the software single-step breakpoint, and they might
1459 encounter such a corrupted instruction.) One way to work around
1460 this would be to have gdbarch_displaced_step_copy_insn fully
1461 simulate the effect of PC-relative instructions (and return NULL)
1462 on architectures that use software single-stepping.
1463
1464 In non-stop mode, we can have independent and simultaneous step
1465 requests, so more than one thread may need to simultaneously step
1466 over a breakpoint. The current implementation assumes there is
1467 only one scratch space per process. In this case, we have to
1468 serialize access to the scratch space. If thread A wants to step
1469 over a breakpoint, but we are currently waiting for some other
1470 thread to complete a displaced step, we leave thread A stopped and
1471 place it in the displaced_step_request_queue. Whenever a displaced
1472 step finishes, we pick the next thread in the queue and start a new
1473 displaced step operation on it. See displaced_step_prepare and
1474 displaced_step_fixup for details. */
1475
cfba9872
SM
1476/* Default destructor for displaced_step_closure. */
1477
1478displaced_step_closure::~displaced_step_closure () = default;
1479
fc1cf338
PA
1480/* Get the displaced stepping state of process PID. */
1481
39a36629 1482static displaced_step_inferior_state *
00431a78 1483get_displaced_stepping_state (inferior *inf)
fc1cf338 1484{
d20172fc 1485 return &inf->displaced_step_state;
fc1cf338
PA
1486}
1487
372316f1
PA
1488/* Returns true if any inferior has a thread doing a displaced
1489 step. */
1490
39a36629
SM
1491static bool
1492displaced_step_in_progress_any_inferior ()
372316f1 1493{
d20172fc 1494 for (inferior *i : all_inferiors ())
39a36629 1495 {
d20172fc 1496 if (i->displaced_step_state.step_thread != nullptr)
39a36629
SM
1497 return true;
1498 }
372316f1 1499
39a36629 1500 return false;
372316f1
PA
1501}
1502
c0987663
YQ
1503/* Return true if thread represented by PTID is doing a displaced
1504 step. */
1505
1506static int
00431a78 1507displaced_step_in_progress_thread (thread_info *thread)
c0987663 1508{
00431a78 1509 gdb_assert (thread != NULL);
c0987663 1510
d20172fc 1511 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
c0987663
YQ
1512}
1513
8f572e5c
PA
1514/* Return true if process PID has a thread doing a displaced step. */
1515
1516static int
00431a78 1517displaced_step_in_progress (inferior *inf)
8f572e5c 1518{
d20172fc 1519 return get_displaced_stepping_state (inf)->step_thread != nullptr;
fc1cf338
PA
1520}
1521
a42244db
YQ
1522/* If inferior is in displaced stepping, and ADDR equals to starting address
1523 of copy area, return corresponding displaced_step_closure. Otherwise,
1524 return NULL. */
1525
1526struct displaced_step_closure*
1527get_displaced_step_closure_by_addr (CORE_ADDR addr)
1528{
d20172fc 1529 displaced_step_inferior_state *displaced
00431a78 1530 = get_displaced_stepping_state (current_inferior ());
a42244db
YQ
1531
1532 /* If checking the mode of displaced instruction in copy area. */
d20172fc 1533 if (displaced->step_thread != nullptr
00431a78 1534 && displaced->step_copy == addr)
a42244db
YQ
1535 return displaced->step_closure;
1536
1537 return NULL;
1538}
1539
fc1cf338
PA
1540static void
1541infrun_inferior_exit (struct inferior *inf)
1542{
d20172fc 1543 inf->displaced_step_state.reset ();
fc1cf338 1544}
237fc4c9 1545
fff08868
HZ
1546/* If ON, and the architecture supports it, GDB will use displaced
1547 stepping to step over breakpoints. If OFF, or if the architecture
1548 doesn't support it, GDB will instead use the traditional
1549 hold-and-step approach. If AUTO (which is the default), GDB will
1550 decide which technique to use to step over breakpoints depending on
1551 which of all-stop or non-stop mode is active --- displaced stepping
1552 in non-stop mode; hold-and-step in all-stop mode. */
1553
72d0e2c5 1554static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1555
237fc4c9
PA
1556static void
1557show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1558 struct cmd_list_element *c,
1559 const char *value)
1560{
72d0e2c5 1561 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1562 fprintf_filtered (file,
1563 _("Debugger's willingness to use displaced stepping "
1564 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1565 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1566 else
3e43a32a
MS
1567 fprintf_filtered (file,
1568 _("Debugger's willingness to use displaced stepping "
1569 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1570}
1571
fff08868 1572/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1573 over breakpoints of thread TP. */
fff08868 1574
237fc4c9 1575static int
3fc8eb30 1576use_displaced_stepping (struct thread_info *tp)
237fc4c9 1577{
00431a78 1578 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 1579 struct gdbarch *gdbarch = regcache->arch ();
d20172fc
SM
1580 displaced_step_inferior_state *displaced_state
1581 = get_displaced_stepping_state (tp->inf);
3fc8eb30 1582
fbea99ea
PA
1583 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1584 && target_is_non_stop_p ())
72d0e2c5 1585 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1586 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30 1587 && find_record_target () == NULL
d20172fc 1588 && !displaced_state->failed_before);
237fc4c9
PA
1589}
1590
1591/* Clean out any stray displaced stepping state. */
1592static void
fc1cf338 1593displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1594{
1595 /* Indicate that there is no cleanup pending. */
00431a78 1596 displaced->step_thread = nullptr;
237fc4c9 1597
cfba9872 1598 delete displaced->step_closure;
6d45d4b4 1599 displaced->step_closure = NULL;
237fc4c9
PA
1600}
1601
1602static void
fc1cf338 1603displaced_step_clear_cleanup (void *arg)
237fc4c9 1604{
9a3c8263
SM
1605 struct displaced_step_inferior_state *state
1606 = (struct displaced_step_inferior_state *) arg;
fc1cf338
PA
1607
1608 displaced_step_clear (state);
237fc4c9
PA
1609}
1610
1611/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1612void
1613displaced_step_dump_bytes (struct ui_file *file,
1614 const gdb_byte *buf,
1615 size_t len)
1616{
1617 int i;
1618
1619 for (i = 0; i < len; i++)
1620 fprintf_unfiltered (file, "%02x ", buf[i]);
1621 fputs_unfiltered ("\n", file);
1622}
1623
1624/* Prepare to single-step, using displaced stepping.
1625
1626 Note that we cannot use displaced stepping when we have a signal to
1627 deliver. If we have a signal to deliver and an instruction to step
1628 over, then after the step, there will be no indication from the
1629 target whether the thread entered a signal handler or ignored the
1630 signal and stepped over the instruction successfully --- both cases
1631 result in a simple SIGTRAP. In the first case we mustn't do a
1632 fixup, and in the second case we must --- but we can't tell which.
1633 Comments in the code for 'random signals' in handle_inferior_event
1634 explain how we handle this case instead.
1635
1636 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1637 stepped now; 0 if displaced stepping this thread got queued; or -1
1638 if this instruction can't be displaced stepped. */
1639
237fc4c9 1640static int
00431a78 1641displaced_step_prepare_throw (thread_info *tp)
237fc4c9 1642{
00431a78 1643 regcache *regcache = get_thread_regcache (tp);
ac7936df 1644 struct gdbarch *gdbarch = regcache->arch ();
8b86c959 1645 const address_space *aspace = regcache->aspace ();
237fc4c9
PA
1646 CORE_ADDR original, copy;
1647 ULONGEST len;
1648 struct displaced_step_closure *closure;
9e529e1d 1649 int status;
237fc4c9
PA
1650
1651 /* We should never reach this function if the architecture does not
1652 support displaced stepping. */
1653 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1654
c2829269
PA
1655 /* Nor if the thread isn't meant to step over a breakpoint. */
1656 gdb_assert (tp->control.trap_expected);
1657
c1e36e3e
PA
1658 /* Disable range stepping while executing in the scratch pad. We
1659 want a single-step even if executing the displaced instruction in
1660 the scratch buffer lands within the stepping range (e.g., a
1661 jump/branch). */
1662 tp->control.may_range_step = 0;
1663
fc1cf338
PA
1664 /* We have to displaced step one thread at a time, as we only have
1665 access to a single scratch space per inferior. */
237fc4c9 1666
d20172fc
SM
1667 displaced_step_inferior_state *displaced
1668 = get_displaced_stepping_state (tp->inf);
fc1cf338 1669
00431a78 1670 if (displaced->step_thread != nullptr)
237fc4c9
PA
1671 {
1672 /* Already waiting for a displaced step to finish. Defer this
1673 request and place in queue. */
237fc4c9
PA
1674
1675 if (debug_displaced)
1676 fprintf_unfiltered (gdb_stdlog,
c2829269 1677 "displaced: deferring step of %s\n",
00431a78 1678 target_pid_to_str (tp->ptid));
237fc4c9 1679
c2829269 1680 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1681 return 0;
1682 }
1683 else
1684 {
1685 if (debug_displaced)
1686 fprintf_unfiltered (gdb_stdlog,
1687 "displaced: stepping %s now\n",
00431a78 1688 target_pid_to_str (tp->ptid));
237fc4c9
PA
1689 }
1690
fc1cf338 1691 displaced_step_clear (displaced);
237fc4c9 1692
00431a78
PA
1693 scoped_restore_current_thread restore_thread;
1694
1695 switch_to_thread (tp);
ad53cd71 1696
515630c5 1697 original = regcache_read_pc (regcache);
237fc4c9
PA
1698
1699 copy = gdbarch_displaced_step_location (gdbarch);
1700 len = gdbarch_max_insn_length (gdbarch);
1701
d35ae833
PA
1702 if (breakpoint_in_range_p (aspace, copy, len))
1703 {
1704 /* There's a breakpoint set in the scratch pad location range
1705 (which is usually around the entry point). We'd either
1706 install it before resuming, which would overwrite/corrupt the
1707 scratch pad, or if it was already inserted, this displaced
1708 step would overwrite it. The latter is OK in the sense that
1709 we already assume that no thread is going to execute the code
1710 in the scratch pad range (after initial startup) anyway, but
1711 the former is unacceptable. Simply punt and fallback to
1712 stepping over this breakpoint in-line. */
1713 if (debug_displaced)
1714 {
1715 fprintf_unfiltered (gdb_stdlog,
1716 "displaced: breakpoint set in scratch pad. "
1717 "Stepping over breakpoint in-line instead.\n");
1718 }
1719
d35ae833
PA
1720 return -1;
1721 }
1722
237fc4c9 1723 /* Save the original contents of the copy area. */
d20172fc
SM
1724 displaced->step_saved_copy.resize (len);
1725 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
9e529e1d
JK
1726 if (status != 0)
1727 throw_error (MEMORY_ERROR,
1728 _("Error accessing memory address %s (%s) for "
1729 "displaced-stepping scratch space."),
1730 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1731 if (debug_displaced)
1732 {
5af949e3
UW
1733 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1734 paddress (gdbarch, copy));
fc1cf338 1735 displaced_step_dump_bytes (gdb_stdlog,
d20172fc 1736 displaced->step_saved_copy.data (),
fc1cf338 1737 len);
237fc4c9
PA
1738 };
1739
1740 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1741 original, copy, regcache);
7f03bd92
PA
1742 if (closure == NULL)
1743 {
1744 /* The architecture doesn't know how or want to displaced step
1745 this instruction or instruction sequence. Fallback to
1746 stepping over the breakpoint in-line. */
7f03bd92
PA
1747 return -1;
1748 }
237fc4c9 1749
9f5a595d
UW
1750 /* Save the information we need to fix things up if the step
1751 succeeds. */
00431a78 1752 displaced->step_thread = tp;
fc1cf338
PA
1753 displaced->step_gdbarch = gdbarch;
1754 displaced->step_closure = closure;
1755 displaced->step_original = original;
1756 displaced->step_copy = copy;
9f5a595d 1757
d20172fc
SM
1758 cleanup *ignore_cleanups
1759 = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1760
1761 /* Resume execution at the copy. */
515630c5 1762 regcache_write_pc (regcache, copy);
237fc4c9 1763
ad53cd71
PA
1764 discard_cleanups (ignore_cleanups);
1765
237fc4c9 1766 if (debug_displaced)
5af949e3
UW
1767 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1768 paddress (gdbarch, copy));
237fc4c9 1769
237fc4c9
PA
1770 return 1;
1771}
1772
3fc8eb30
PA
1773/* Wrapper for displaced_step_prepare_throw that disabled further
1774 attempts at displaced stepping if we get a memory error. */
1775
1776static int
00431a78 1777displaced_step_prepare (thread_info *thread)
3fc8eb30
PA
1778{
1779 int prepared = -1;
1780
1781 TRY
1782 {
00431a78 1783 prepared = displaced_step_prepare_throw (thread);
3fc8eb30
PA
1784 }
1785 CATCH (ex, RETURN_MASK_ERROR)
1786 {
1787 struct displaced_step_inferior_state *displaced_state;
1788
16b41842
PA
1789 if (ex.error != MEMORY_ERROR
1790 && ex.error != NOT_SUPPORTED_ERROR)
3fc8eb30
PA
1791 throw_exception (ex);
1792
1793 if (debug_infrun)
1794 {
1795 fprintf_unfiltered (gdb_stdlog,
1796 "infrun: disabling displaced stepping: %s\n",
1797 ex.message);
1798 }
1799
1800 /* Be verbose if "set displaced-stepping" is "on", silent if
1801 "auto". */
1802 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1803 {
fd7dcb94 1804 warning (_("disabling displaced stepping: %s"),
3fc8eb30
PA
1805 ex.message);
1806 }
1807
1808 /* Disable further displaced stepping attempts. */
1809 displaced_state
00431a78 1810 = get_displaced_stepping_state (thread->inf);
3fc8eb30
PA
1811 displaced_state->failed_before = 1;
1812 }
1813 END_CATCH
1814
1815 return prepared;
1816}
1817
237fc4c9 1818static void
3e43a32a
MS
1819write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1820 const gdb_byte *myaddr, int len)
237fc4c9 1821{
2989a365 1822 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
abbb1732 1823
237fc4c9
PA
1824 inferior_ptid = ptid;
1825 write_memory (memaddr, myaddr, len);
237fc4c9
PA
1826}
1827
e2d96639
YQ
1828/* Restore the contents of the copy area for thread PTID. */
1829
1830static void
1831displaced_step_restore (struct displaced_step_inferior_state *displaced,
1832 ptid_t ptid)
1833{
1834 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1835
1836 write_memory_ptid (ptid, displaced->step_copy,
d20172fc 1837 displaced->step_saved_copy.data (), len);
e2d96639
YQ
1838 if (debug_displaced)
1839 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1840 target_pid_to_str (ptid),
1841 paddress (displaced->step_gdbarch,
1842 displaced->step_copy));
1843}
1844
372316f1
PA
1845/* If we displaced stepped an instruction successfully, adjust
1846 registers and memory to yield the same effect the instruction would
1847 have had if we had executed it at its original address, and return
1848 1. If the instruction didn't complete, relocate the PC and return
1849 -1. If the thread wasn't displaced stepping, return 0. */
1850
1851static int
00431a78 1852displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
237fc4c9
PA
1853{
1854 struct cleanup *old_cleanups;
fc1cf338 1855 struct displaced_step_inferior_state *displaced
00431a78 1856 = get_displaced_stepping_state (event_thread->inf);
372316f1 1857 int ret;
fc1cf338 1858
00431a78
PA
1859 /* Was this event for the thread we displaced? */
1860 if (displaced->step_thread != event_thread)
372316f1 1861 return 0;
237fc4c9 1862
fc1cf338 1863 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1864
00431a78 1865 displaced_step_restore (displaced, displaced->step_thread->ptid);
237fc4c9 1866
cb71640d
PA
1867 /* Fixup may need to read memory/registers. Switch to the thread
1868 that we're fixing up. Also, target_stopped_by_watchpoint checks
1869 the current thread. */
00431a78 1870 switch_to_thread (event_thread);
cb71640d 1871
237fc4c9 1872 /* Did the instruction complete successfully? */
cb71640d
PA
1873 if (signal == GDB_SIGNAL_TRAP
1874 && !(target_stopped_by_watchpoint ()
1875 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1876 || target_have_steppable_watchpoint)))
237fc4c9
PA
1877 {
1878 /* Fix up the resulting state. */
fc1cf338
PA
1879 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1880 displaced->step_closure,
1881 displaced->step_original,
1882 displaced->step_copy,
00431a78 1883 get_thread_regcache (displaced->step_thread));
372316f1 1884 ret = 1;
237fc4c9
PA
1885 }
1886 else
1887 {
1888 /* Since the instruction didn't complete, all we can do is
1889 relocate the PC. */
00431a78 1890 struct regcache *regcache = get_thread_regcache (event_thread);
515630c5 1891 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1892
fc1cf338 1893 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1894 regcache_write_pc (regcache, pc);
372316f1 1895 ret = -1;
237fc4c9
PA
1896 }
1897
1898 do_cleanups (old_cleanups);
1899
00431a78 1900 displaced->step_thread = nullptr;
372316f1
PA
1901
1902 return ret;
c2829269 1903}
1c5cfe86 1904
4d9d9d04
PA
1905/* Data to be passed around while handling an event. This data is
1906 discarded between events. */
1907struct execution_control_state
1908{
1909 ptid_t ptid;
1910 /* The thread that got the event, if this was a thread event; NULL
1911 otherwise. */
1912 struct thread_info *event_thread;
1913
1914 struct target_waitstatus ws;
1915 int stop_func_filled_in;
1916 CORE_ADDR stop_func_start;
1917 CORE_ADDR stop_func_end;
1918 const char *stop_func_name;
1919 int wait_some_more;
1920
1921 /* True if the event thread hit the single-step breakpoint of
1922 another thread. Thus the event doesn't cause a stop, the thread
1923 needs to be single-stepped past the single-step breakpoint before
1924 we can switch back to the original stepping thread. */
1925 int hit_singlestep_breakpoint;
1926};
1927
1928/* Clear ECS and set it to point at TP. */
c2829269
PA
1929
1930static void
4d9d9d04
PA
1931reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1932{
1933 memset (ecs, 0, sizeof (*ecs));
1934 ecs->event_thread = tp;
1935 ecs->ptid = tp->ptid;
1936}
1937
1938static void keep_going_pass_signal (struct execution_control_state *ecs);
1939static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 1940static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 1941static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
1942
1943/* Are there any pending step-over requests? If so, run all we can
1944 now and return true. Otherwise, return false. */
1945
1946static int
c2829269
PA
1947start_step_over (void)
1948{
1949 struct thread_info *tp, *next;
1950
372316f1
PA
1951 /* Don't start a new step-over if we already have an in-line
1952 step-over operation ongoing. */
1953 if (step_over_info_valid_p ())
1954 return 0;
1955
c2829269 1956 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 1957 {
4d9d9d04
PA
1958 struct execution_control_state ecss;
1959 struct execution_control_state *ecs = &ecss;
8d297bbf 1960 step_over_what step_what;
372316f1 1961 int must_be_in_line;
c2829269 1962
c65d6b55
PA
1963 gdb_assert (!tp->stop_requested);
1964
c2829269 1965 next = thread_step_over_chain_next (tp);
237fc4c9 1966
c2829269
PA
1967 /* If this inferior already has a displaced step in process,
1968 don't start a new one. */
00431a78 1969 if (displaced_step_in_progress (tp->inf))
c2829269
PA
1970 continue;
1971
372316f1
PA
1972 step_what = thread_still_needs_step_over (tp);
1973 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1974 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 1975 && !use_displaced_stepping (tp)));
372316f1
PA
1976
1977 /* We currently stop all threads of all processes to step-over
1978 in-line. If we need to start a new in-line step-over, let
1979 any pending displaced steps finish first. */
1980 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1981 return 0;
1982
c2829269
PA
1983 thread_step_over_chain_remove (tp);
1984
1985 if (step_over_queue_head == NULL)
1986 {
1987 if (debug_infrun)
1988 fprintf_unfiltered (gdb_stdlog,
1989 "infrun: step-over queue now empty\n");
1990 }
1991
372316f1
PA
1992 if (tp->control.trap_expected
1993 || tp->resumed
1994 || tp->executing)
ad53cd71 1995 {
4d9d9d04
PA
1996 internal_error (__FILE__, __LINE__,
1997 "[%s] has inconsistent state: "
372316f1 1998 "trap_expected=%d, resumed=%d, executing=%d\n",
4d9d9d04
PA
1999 target_pid_to_str (tp->ptid),
2000 tp->control.trap_expected,
372316f1 2001 tp->resumed,
4d9d9d04 2002 tp->executing);
ad53cd71 2003 }
1c5cfe86 2004
4d9d9d04
PA
2005 if (debug_infrun)
2006 fprintf_unfiltered (gdb_stdlog,
2007 "infrun: resuming [%s] for step-over\n",
2008 target_pid_to_str (tp->ptid));
2009
2010 /* keep_going_pass_signal skips the step-over if the breakpoint
2011 is no longer inserted. In all-stop, we want to keep looking
2012 for a thread that needs a step-over instead of resuming TP,
2013 because we wouldn't be able to resume anything else until the
2014 target stops again. In non-stop, the resume always resumes
2015 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2016 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2017 continue;
8550d3b3 2018
00431a78 2019 switch_to_thread (tp);
4d9d9d04
PA
2020 reset_ecs (ecs, tp);
2021 keep_going_pass_signal (ecs);
1c5cfe86 2022
4d9d9d04
PA
2023 if (!ecs->wait_some_more)
2024 error (_("Command aborted."));
1c5cfe86 2025
372316f1
PA
2026 gdb_assert (tp->resumed);
2027
2028 /* If we started a new in-line step-over, we're done. */
2029 if (step_over_info_valid_p ())
2030 {
2031 gdb_assert (tp->control.trap_expected);
2032 return 1;
2033 }
2034
fbea99ea 2035 if (!target_is_non_stop_p ())
4d9d9d04
PA
2036 {
2037 /* On all-stop, shouldn't have resumed unless we needed a
2038 step over. */
2039 gdb_assert (tp->control.trap_expected
2040 || tp->step_after_step_resume_breakpoint);
2041
2042 /* With remote targets (at least), in all-stop, we can't
2043 issue any further remote commands until the program stops
2044 again. */
2045 return 1;
1c5cfe86 2046 }
c2829269 2047
4d9d9d04
PA
2048 /* Either the thread no longer needed a step-over, or a new
2049 displaced stepping sequence started. Even in the latter
2050 case, continue looking. Maybe we can also start another
2051 displaced step on a thread of other process. */
237fc4c9 2052 }
4d9d9d04
PA
2053
2054 return 0;
237fc4c9
PA
2055}
2056
5231c1fd
PA
2057/* Update global variables holding ptids to hold NEW_PTID if they were
2058 holding OLD_PTID. */
2059static void
2060infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2061{
d7e15655 2062 if (inferior_ptid == old_ptid)
5231c1fd 2063 inferior_ptid = new_ptid;
5231c1fd
PA
2064}
2065
237fc4c9 2066\f
c906108c 2067
53904c9e
AC
2068static const char schedlock_off[] = "off";
2069static const char schedlock_on[] = "on";
2070static const char schedlock_step[] = "step";
f2665db5 2071static const char schedlock_replay[] = "replay";
40478521 2072static const char *const scheduler_enums[] = {
ef346e04
AC
2073 schedlock_off,
2074 schedlock_on,
2075 schedlock_step,
f2665db5 2076 schedlock_replay,
ef346e04
AC
2077 NULL
2078};
f2665db5 2079static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2080static void
2081show_scheduler_mode (struct ui_file *file, int from_tty,
2082 struct cmd_list_element *c, const char *value)
2083{
3e43a32a
MS
2084 fprintf_filtered (file,
2085 _("Mode for locking scheduler "
2086 "during execution is \"%s\".\n"),
920d2a44
AC
2087 value);
2088}
c906108c
SS
2089
2090static void
eb4c3f4a 2091set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
c906108c 2092{
eefe576e
AC
2093 if (!target_can_lock_scheduler)
2094 {
2095 scheduler_mode = schedlock_off;
2096 error (_("Target '%s' cannot support this command."), target_shortname);
2097 }
c906108c
SS
2098}
2099
d4db2f36
PA
2100/* True if execution commands resume all threads of all processes by
2101 default; otherwise, resume only threads of the current inferior
2102 process. */
2103int sched_multi = 0;
2104
2facfe5c
DD
2105/* Try to setup for software single stepping over the specified location.
2106 Return 1 if target_resume() should use hardware single step.
2107
2108 GDBARCH the current gdbarch.
2109 PC the location to step over. */
2110
2111static int
2112maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2113{
2114 int hw_step = 1;
2115
f02253f1 2116 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2117 && gdbarch_software_single_step_p (gdbarch))
2118 hw_step = !insert_single_step_breakpoints (gdbarch);
2119
2facfe5c
DD
2120 return hw_step;
2121}
c906108c 2122
f3263aa4
PA
2123/* See infrun.h. */
2124
09cee04b
PA
2125ptid_t
2126user_visible_resume_ptid (int step)
2127{
f3263aa4 2128 ptid_t resume_ptid;
09cee04b 2129
09cee04b
PA
2130 if (non_stop)
2131 {
2132 /* With non-stop mode on, threads are always handled
2133 individually. */
2134 resume_ptid = inferior_ptid;
2135 }
2136 else if ((scheduler_mode == schedlock_on)
03d46957 2137 || (scheduler_mode == schedlock_step && step))
09cee04b 2138 {
f3263aa4
PA
2139 /* User-settable 'scheduler' mode requires solo thread
2140 resume. */
09cee04b
PA
2141 resume_ptid = inferior_ptid;
2142 }
f2665db5
MM
2143 else if ((scheduler_mode == schedlock_replay)
2144 && target_record_will_replay (minus_one_ptid, execution_direction))
2145 {
2146 /* User-settable 'scheduler' mode requires solo thread resume in replay
2147 mode. */
2148 resume_ptid = inferior_ptid;
2149 }
f3263aa4
PA
2150 else if (!sched_multi && target_supports_multi_process ())
2151 {
2152 /* Resume all threads of the current process (and none of other
2153 processes). */
e99b03dc 2154 resume_ptid = ptid_t (inferior_ptid.pid ());
f3263aa4
PA
2155 }
2156 else
2157 {
2158 /* Resume all threads of all processes. */
2159 resume_ptid = RESUME_ALL;
2160 }
09cee04b
PA
2161
2162 return resume_ptid;
2163}
2164
fbea99ea
PA
2165/* Return a ptid representing the set of threads that we will resume,
2166 in the perspective of the target, assuming run control handling
2167 does not require leaving some threads stopped (e.g., stepping past
2168 breakpoint). USER_STEP indicates whether we're about to start the
2169 target for a stepping command. */
2170
2171static ptid_t
2172internal_resume_ptid (int user_step)
2173{
2174 /* In non-stop, we always control threads individually. Note that
2175 the target may always work in non-stop mode even with "set
2176 non-stop off", in which case user_visible_resume_ptid could
2177 return a wildcard ptid. */
2178 if (target_is_non_stop_p ())
2179 return inferior_ptid;
2180 else
2181 return user_visible_resume_ptid (user_step);
2182}
2183
64ce06e4
PA
2184/* Wrapper for target_resume, that handles infrun-specific
2185 bookkeeping. */
2186
2187static void
2188do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2189{
2190 struct thread_info *tp = inferior_thread ();
2191
c65d6b55
PA
2192 gdb_assert (!tp->stop_requested);
2193
64ce06e4 2194 /* Install inferior's terminal modes. */
223ffa71 2195 target_terminal::inferior ();
64ce06e4
PA
2196
2197 /* Avoid confusing the next resume, if the next stop/resume
2198 happens to apply to another thread. */
2199 tp->suspend.stop_signal = GDB_SIGNAL_0;
2200
8f572e5c
PA
2201 /* Advise target which signals may be handled silently.
2202
2203 If we have removed breakpoints because we are stepping over one
2204 in-line (in any thread), we need to receive all signals to avoid
2205 accidentally skipping a breakpoint during execution of a signal
2206 handler.
2207
2208 Likewise if we're displaced stepping, otherwise a trap for a
2209 breakpoint in a signal handler might be confused with the
2210 displaced step finishing. We don't make the displaced_step_fixup
2211 step distinguish the cases instead, because:
2212
2213 - a backtrace while stopped in the signal handler would show the
2214 scratch pad as frame older than the signal handler, instead of
2215 the real mainline code.
2216
2217 - when the thread is later resumed, the signal handler would
2218 return to the scratch pad area, which would no longer be
2219 valid. */
2220 if (step_over_info_valid_p ()
00431a78 2221 || displaced_step_in_progress (tp->inf))
64ce06e4
PA
2222 target_pass_signals (0, NULL);
2223 else
2224 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2225
2226 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2227
2228 target_commit_resume ();
64ce06e4
PA
2229}
2230
d930703d 2231/* Resume the inferior. SIG is the signal to give the inferior
71d378ae
PA
2232 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2233 call 'resume', which handles exceptions. */
c906108c 2234
71d378ae
PA
2235static void
2236resume_1 (enum gdb_signal sig)
c906108c 2237{
515630c5 2238 struct regcache *regcache = get_current_regcache ();
ac7936df 2239 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2240 struct thread_info *tp = inferior_thread ();
515630c5 2241 CORE_ADDR pc = regcache_read_pc (regcache);
8b86c959 2242 const address_space *aspace = regcache->aspace ();
b0f16a3e 2243 ptid_t resume_ptid;
856e7dd6
PA
2244 /* This represents the user's step vs continue request. When
2245 deciding whether "set scheduler-locking step" applies, it's the
2246 user's intention that counts. */
2247 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2248 /* This represents what we'll actually request the target to do.
2249 This can decay from a step to a continue, if e.g., we need to
2250 implement single-stepping with breakpoints (software
2251 single-step). */
6b403daa 2252 int step;
c7e8a53c 2253
c65d6b55 2254 gdb_assert (!tp->stop_requested);
c2829269
PA
2255 gdb_assert (!thread_is_in_step_over_chain (tp));
2256
372316f1
PA
2257 if (tp->suspend.waitstatus_pending_p)
2258 {
2259 if (debug_infrun)
2260 {
23fdd69e
SM
2261 std::string statstr
2262 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2263
372316f1 2264 fprintf_unfiltered (gdb_stdlog,
23fdd69e
SM
2265 "infrun: resume: thread %s has pending wait "
2266 "status %s (currently_stepping=%d).\n",
2267 target_pid_to_str (tp->ptid), statstr.c_str (),
372316f1 2268 currently_stepping (tp));
372316f1
PA
2269 }
2270
2271 tp->resumed = 1;
2272
2273 /* FIXME: What should we do if we are supposed to resume this
2274 thread with a signal? Maybe we should maintain a queue of
2275 pending signals to deliver. */
2276 if (sig != GDB_SIGNAL_0)
2277 {
fd7dcb94 2278 warning (_("Couldn't deliver signal %s to %s."),
372316f1
PA
2279 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2280 }
2281
2282 tp->suspend.stop_signal = GDB_SIGNAL_0;
372316f1
PA
2283
2284 if (target_can_async_p ())
9516f85a
AB
2285 {
2286 target_async (1);
2287 /* Tell the event loop we have an event to process. */
2288 mark_async_event_handler (infrun_async_inferior_event_token);
2289 }
372316f1
PA
2290 return;
2291 }
2292
2293 tp->stepped_breakpoint = 0;
2294
6b403daa
PA
2295 /* Depends on stepped_breakpoint. */
2296 step = currently_stepping (tp);
2297
74609e71
YQ
2298 if (current_inferior ()->waiting_for_vfork_done)
2299 {
48f9886d
PA
2300 /* Don't try to single-step a vfork parent that is waiting for
2301 the child to get out of the shared memory region (by exec'ing
2302 or exiting). This is particularly important on software
2303 single-step archs, as the child process would trip on the
2304 software single step breakpoint inserted for the parent
2305 process. Since the parent will not actually execute any
2306 instruction until the child is out of the shared region (such
2307 are vfork's semantics), it is safe to simply continue it.
2308 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2309 the parent, and tell it to `keep_going', which automatically
2310 re-sets it stepping. */
74609e71
YQ
2311 if (debug_infrun)
2312 fprintf_unfiltered (gdb_stdlog,
2313 "infrun: resume : clear step\n");
a09dd441 2314 step = 0;
74609e71
YQ
2315 }
2316
527159b7 2317 if (debug_infrun)
237fc4c9 2318 fprintf_unfiltered (gdb_stdlog,
c9737c08 2319 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2320 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2321 step, gdb_signal_to_symbol_string (sig),
2322 tp->control.trap_expected,
0d9a9a5f
PA
2323 target_pid_to_str (inferior_ptid),
2324 paddress (gdbarch, pc));
c906108c 2325
c2c6d25f
JM
2326 /* Normally, by the time we reach `resume', the breakpoints are either
2327 removed or inserted, as appropriate. The exception is if we're sitting
2328 at a permanent breakpoint; we need to step over it, but permanent
2329 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2330 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2331 {
af48d08f
PA
2332 if (sig != GDB_SIGNAL_0)
2333 {
2334 /* We have a signal to pass to the inferior. The resume
2335 may, or may not take us to the signal handler. If this
2336 is a step, we'll need to stop in the signal handler, if
2337 there's one, (if the target supports stepping into
2338 handlers), or in the next mainline instruction, if
2339 there's no handler. If this is a continue, we need to be
2340 sure to run the handler with all breakpoints inserted.
2341 In all cases, set a breakpoint at the current address
2342 (where the handler returns to), and once that breakpoint
2343 is hit, resume skipping the permanent breakpoint. If
2344 that breakpoint isn't hit, then we've stepped into the
2345 signal handler (or hit some other event). We'll delete
2346 the step-resume breakpoint then. */
2347
2348 if (debug_infrun)
2349 fprintf_unfiltered (gdb_stdlog,
2350 "infrun: resume: skipping permanent breakpoint, "
2351 "deliver signal first\n");
2352
2353 clear_step_over_info ();
2354 tp->control.trap_expected = 0;
2355
2356 if (tp->control.step_resume_breakpoint == NULL)
2357 {
2358 /* Set a "high-priority" step-resume, as we don't want
2359 user breakpoints at PC to trigger (again) when this
2360 hits. */
2361 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2362 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2363
2364 tp->step_after_step_resume_breakpoint = step;
2365 }
2366
2367 insert_breakpoints ();
2368 }
2369 else
2370 {
2371 /* There's no signal to pass, we can go ahead and skip the
2372 permanent breakpoint manually. */
2373 if (debug_infrun)
2374 fprintf_unfiltered (gdb_stdlog,
2375 "infrun: resume: skipping permanent breakpoint\n");
2376 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2377 /* Update pc to reflect the new address from which we will
2378 execute instructions. */
2379 pc = regcache_read_pc (regcache);
2380
2381 if (step)
2382 {
2383 /* We've already advanced the PC, so the stepping part
2384 is done. Now we need to arrange for a trap to be
2385 reported to handle_inferior_event. Set a breakpoint
2386 at the current PC, and run to it. Don't update
2387 prev_pc, because if we end in
44a1ee51
PA
2388 switch_back_to_stepped_thread, we want the "expected
2389 thread advanced also" branch to be taken. IOW, we
2390 don't want this thread to step further from PC
af48d08f 2391 (overstep). */
1ac806b8 2392 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2393 insert_single_step_breakpoint (gdbarch, aspace, pc);
2394 insert_breakpoints ();
2395
fbea99ea 2396 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2397 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
372316f1 2398 tp->resumed = 1;
af48d08f
PA
2399 return;
2400 }
2401 }
6d350bb5 2402 }
c2c6d25f 2403
c1e36e3e
PA
2404 /* If we have a breakpoint to step over, make sure to do a single
2405 step only. Same if we have software watchpoints. */
2406 if (tp->control.trap_expected || bpstat_should_step ())
2407 tp->control.may_range_step = 0;
2408
237fc4c9
PA
2409 /* If enabled, step over breakpoints by executing a copy of the
2410 instruction at a different address.
2411
2412 We can't use displaced stepping when we have a signal to deliver;
2413 the comments for displaced_step_prepare explain why. The
2414 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2415 signals' explain what we do instead.
2416
2417 We can't use displaced stepping when we are waiting for vfork_done
2418 event, displaced stepping breaks the vfork child similarly as single
2419 step software breakpoint. */
3fc8eb30
PA
2420 if (tp->control.trap_expected
2421 && use_displaced_stepping (tp)
cb71640d 2422 && !step_over_info_valid_p ()
a493e3e2 2423 && sig == GDB_SIGNAL_0
74609e71 2424 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2425 {
00431a78 2426 int prepared = displaced_step_prepare (tp);
fc1cf338 2427
3fc8eb30 2428 if (prepared == 0)
d56b7306 2429 {
4d9d9d04
PA
2430 if (debug_infrun)
2431 fprintf_unfiltered (gdb_stdlog,
2432 "Got placed in step-over queue\n");
2433
2434 tp->control.trap_expected = 0;
d56b7306
VP
2435 return;
2436 }
3fc8eb30
PA
2437 else if (prepared < 0)
2438 {
2439 /* Fallback to stepping over the breakpoint in-line. */
2440
2441 if (target_is_non_stop_p ())
2442 stop_all_threads ();
2443
a01bda52 2444 set_step_over_info (regcache->aspace (),
21edc42f 2445 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2446
2447 step = maybe_software_singlestep (gdbarch, pc);
2448
2449 insert_breakpoints ();
2450 }
2451 else if (prepared > 0)
2452 {
2453 struct displaced_step_inferior_state *displaced;
99e40580 2454
3fc8eb30
PA
2455 /* Update pc to reflect the new address from which we will
2456 execute instructions due to displaced stepping. */
00431a78 2457 pc = regcache_read_pc (get_thread_regcache (tp));
ca7781d2 2458
00431a78 2459 displaced = get_displaced_stepping_state (tp->inf);
3fc8eb30
PA
2460 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2461 displaced->step_closure);
2462 }
237fc4c9
PA
2463 }
2464
2facfe5c 2465 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2466 else if (step)
2facfe5c 2467 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2468
30852783
UW
2469 /* Currently, our software single-step implementation leads to different
2470 results than hardware single-stepping in one situation: when stepping
2471 into delivering a signal which has an associated signal handler,
2472 hardware single-step will stop at the first instruction of the handler,
2473 while software single-step will simply skip execution of the handler.
2474
2475 For now, this difference in behavior is accepted since there is no
2476 easy way to actually implement single-stepping into a signal handler
2477 without kernel support.
2478
2479 However, there is one scenario where this difference leads to follow-on
2480 problems: if we're stepping off a breakpoint by removing all breakpoints
2481 and then single-stepping. In this case, the software single-step
2482 behavior means that even if there is a *breakpoint* in the signal
2483 handler, GDB still would not stop.
2484
2485 Fortunately, we can at least fix this particular issue. We detect
2486 here the case where we are about to deliver a signal while software
2487 single-stepping with breakpoints removed. In this situation, we
2488 revert the decisions to remove all breakpoints and insert single-
2489 step breakpoints, and instead we install a step-resume breakpoint
2490 at the current address, deliver the signal without stepping, and
2491 once we arrive back at the step-resume breakpoint, actually step
2492 over the breakpoint we originally wanted to step over. */
34b7e8a6 2493 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2494 && sig != GDB_SIGNAL_0
2495 && step_over_info_valid_p ())
30852783
UW
2496 {
2497 /* If we have nested signals or a pending signal is delivered
2498 immediately after a handler returns, might might already have
2499 a step-resume breakpoint set on the earlier handler. We cannot
2500 set another step-resume breakpoint; just continue on until the
2501 original breakpoint is hit. */
2502 if (tp->control.step_resume_breakpoint == NULL)
2503 {
2c03e5be 2504 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2505 tp->step_after_step_resume_breakpoint = 1;
2506 }
2507
34b7e8a6 2508 delete_single_step_breakpoints (tp);
30852783 2509
31e77af2 2510 clear_step_over_info ();
30852783 2511 tp->control.trap_expected = 0;
31e77af2
PA
2512
2513 insert_breakpoints ();
30852783
UW
2514 }
2515
b0f16a3e
SM
2516 /* If STEP is set, it's a request to use hardware stepping
2517 facilities. But in that case, we should never
2518 use singlestep breakpoint. */
34b7e8a6 2519 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2520
fbea99ea 2521 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2522 if (tp->control.trap_expected)
b0f16a3e
SM
2523 {
2524 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2525 hit, either by single-stepping the thread with the breakpoint
2526 removed, or by displaced stepping, with the breakpoint inserted.
2527 In the former case, we need to single-step only this thread,
2528 and keep others stopped, as they can miss this breakpoint if
2529 allowed to run. That's not really a problem for displaced
2530 stepping, but, we still keep other threads stopped, in case
2531 another thread is also stopped for a breakpoint waiting for
2532 its turn in the displaced stepping queue. */
b0f16a3e
SM
2533 resume_ptid = inferior_ptid;
2534 }
fbea99ea
PA
2535 else
2536 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2537
7f5ef605
PA
2538 if (execution_direction != EXEC_REVERSE
2539 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2540 {
372316f1
PA
2541 /* There are two cases where we currently need to step a
2542 breakpoint instruction when we have a signal to deliver:
2543
2544 - See handle_signal_stop where we handle random signals that
2545 could take out us out of the stepping range. Normally, in
2546 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2547 signal handler with a breakpoint at PC, but there are cases
2548 where we should _always_ single-step, even if we have a
2549 step-resume breakpoint, like when a software watchpoint is
2550 set. Assuming single-stepping and delivering a signal at the
2551 same time would takes us to the signal handler, then we could
2552 have removed the breakpoint at PC to step over it. However,
2553 some hardware step targets (like e.g., Mac OS) can't step
2554 into signal handlers, and for those, we need to leave the
2555 breakpoint at PC inserted, as otherwise if the handler
2556 recurses and executes PC again, it'll miss the breakpoint.
2557 So we leave the breakpoint inserted anyway, but we need to
2558 record that we tried to step a breakpoint instruction, so
372316f1
PA
2559 that adjust_pc_after_break doesn't end up confused.
2560
2561 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2562 in one thread after another thread that was stepping had been
2563 momentarily paused for a step-over. When we re-resume the
2564 stepping thread, it may be resumed from that address with a
2565 breakpoint that hasn't trapped yet. Seen with
2566 gdb.threads/non-stop-fair-events.exp, on targets that don't
2567 do displaced stepping. */
2568
2569 if (debug_infrun)
2570 fprintf_unfiltered (gdb_stdlog,
2571 "infrun: resume: [%s] stepped breakpoint\n",
2572 target_pid_to_str (tp->ptid));
7f5ef605
PA
2573
2574 tp->stepped_breakpoint = 1;
2575
b0f16a3e
SM
2576 /* Most targets can step a breakpoint instruction, thus
2577 executing it normally. But if this one cannot, just
2578 continue and we will hit it anyway. */
7f5ef605 2579 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2580 step = 0;
2581 }
ef5cf84e 2582
b0f16a3e 2583 if (debug_displaced
cb71640d 2584 && tp->control.trap_expected
3fc8eb30 2585 && use_displaced_stepping (tp)
cb71640d 2586 && !step_over_info_valid_p ())
b0f16a3e 2587 {
00431a78 2588 struct regcache *resume_regcache = get_thread_regcache (tp);
ac7936df 2589 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2590 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2591 gdb_byte buf[4];
2592
2593 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2594 paddress (resume_gdbarch, actual_pc));
2595 read_memory (actual_pc, buf, sizeof (buf));
2596 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2597 }
237fc4c9 2598
b0f16a3e
SM
2599 if (tp->control.may_range_step)
2600 {
2601 /* If we're resuming a thread with the PC out of the step
2602 range, then we're doing some nested/finer run control
2603 operation, like stepping the thread out of the dynamic
2604 linker or the displaced stepping scratch pad. We
2605 shouldn't have allowed a range step then. */
2606 gdb_assert (pc_in_thread_step_range (pc, tp));
2607 }
c1e36e3e 2608
64ce06e4 2609 do_target_resume (resume_ptid, step, sig);
372316f1 2610 tp->resumed = 1;
c906108c 2611}
71d378ae
PA
2612
2613/* Resume the inferior. SIG is the signal to give the inferior
2614 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2615 rolls back state on error. */
2616
aff4e175 2617static void
71d378ae
PA
2618resume (gdb_signal sig)
2619{
2620 TRY
2621 {
2622 resume_1 (sig);
2623 }
2624 CATCH (ex, RETURN_MASK_ALL)
2625 {
2626 /* If resuming is being aborted for any reason, delete any
2627 single-step breakpoint resume_1 may have created, to avoid
2628 confusing the following resumption, and to avoid leaving
2629 single-step breakpoints perturbing other threads, in case
2630 we're running in non-stop mode. */
2631 if (inferior_ptid != null_ptid)
2632 delete_single_step_breakpoints (inferior_thread ());
2633 throw_exception (ex);
2634 }
2635 END_CATCH
2636}
2637
c906108c 2638\f
237fc4c9 2639/* Proceeding. */
c906108c 2640
4c2f2a79
PA
2641/* See infrun.h. */
2642
2643/* Counter that tracks number of user visible stops. This can be used
2644 to tell whether a command has proceeded the inferior past the
2645 current location. This allows e.g., inferior function calls in
2646 breakpoint commands to not interrupt the command list. When the
2647 call finishes successfully, the inferior is standing at the same
2648 breakpoint as if nothing happened (and so we don't call
2649 normal_stop). */
2650static ULONGEST current_stop_id;
2651
2652/* See infrun.h. */
2653
2654ULONGEST
2655get_stop_id (void)
2656{
2657 return current_stop_id;
2658}
2659
2660/* Called when we report a user visible stop. */
2661
2662static void
2663new_stop_id (void)
2664{
2665 current_stop_id++;
2666}
2667
c906108c
SS
2668/* Clear out all variables saying what to do when inferior is continued.
2669 First do this, then set the ones you want, then call `proceed'. */
2670
a7212384
UW
2671static void
2672clear_proceed_status_thread (struct thread_info *tp)
c906108c 2673{
a7212384
UW
2674 if (debug_infrun)
2675 fprintf_unfiltered (gdb_stdlog,
2676 "infrun: clear_proceed_status_thread (%s)\n",
2677 target_pid_to_str (tp->ptid));
d6b48e9c 2678
372316f1
PA
2679 /* If we're starting a new sequence, then the previous finished
2680 single-step is no longer relevant. */
2681 if (tp->suspend.waitstatus_pending_p)
2682 {
2683 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2684 {
2685 if (debug_infrun)
2686 fprintf_unfiltered (gdb_stdlog,
2687 "infrun: clear_proceed_status: pending "
2688 "event of %s was a finished step. "
2689 "Discarding.\n",
2690 target_pid_to_str (tp->ptid));
2691
2692 tp->suspend.waitstatus_pending_p = 0;
2693 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2694 }
2695 else if (debug_infrun)
2696 {
23fdd69e
SM
2697 std::string statstr
2698 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2699
372316f1
PA
2700 fprintf_unfiltered (gdb_stdlog,
2701 "infrun: clear_proceed_status_thread: thread %s "
2702 "has pending wait status %s "
2703 "(currently_stepping=%d).\n",
23fdd69e 2704 target_pid_to_str (tp->ptid), statstr.c_str (),
372316f1 2705 currently_stepping (tp));
372316f1
PA
2706 }
2707 }
2708
70509625
PA
2709 /* If this signal should not be seen by program, give it zero.
2710 Used for debugging signals. */
2711 if (!signal_pass_state (tp->suspend.stop_signal))
2712 tp->suspend.stop_signal = GDB_SIGNAL_0;
2713
243a9253
PA
2714 thread_fsm_delete (tp->thread_fsm);
2715 tp->thread_fsm = NULL;
2716
16c381f0
JK
2717 tp->control.trap_expected = 0;
2718 tp->control.step_range_start = 0;
2719 tp->control.step_range_end = 0;
c1e36e3e 2720 tp->control.may_range_step = 0;
16c381f0
JK
2721 tp->control.step_frame_id = null_frame_id;
2722 tp->control.step_stack_frame_id = null_frame_id;
2723 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2724 tp->control.step_start_function = NULL;
a7212384 2725 tp->stop_requested = 0;
4e1c45ea 2726
16c381f0 2727 tp->control.stop_step = 0;
32400beb 2728
16c381f0 2729 tp->control.proceed_to_finish = 0;
414c69f7 2730
856e7dd6 2731 tp->control.stepping_command = 0;
17b2616c 2732
a7212384 2733 /* Discard any remaining commands or status from previous stop. */
16c381f0 2734 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2735}
32400beb 2736
a7212384 2737void
70509625 2738clear_proceed_status (int step)
a7212384 2739{
f2665db5
MM
2740 /* With scheduler-locking replay, stop replaying other threads if we're
2741 not replaying the user-visible resume ptid.
2742
2743 This is a convenience feature to not require the user to explicitly
2744 stop replaying the other threads. We're assuming that the user's
2745 intent is to resume tracing the recorded process. */
2746 if (!non_stop && scheduler_mode == schedlock_replay
2747 && target_record_is_replaying (minus_one_ptid)
2748 && !target_record_will_replay (user_visible_resume_ptid (step),
2749 execution_direction))
2750 target_record_stop_replaying ();
2751
08036331 2752 if (!non_stop && inferior_ptid != null_ptid)
6c95b8df 2753 {
08036331 2754 ptid_t resume_ptid = user_visible_resume_ptid (step);
70509625
PA
2755
2756 /* In all-stop mode, delete the per-thread status of all threads
2757 we're about to resume, implicitly and explicitly. */
08036331
PA
2758 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2759 clear_proceed_status_thread (tp);
6c95b8df
PA
2760 }
2761
d7e15655 2762 if (inferior_ptid != null_ptid)
a7212384
UW
2763 {
2764 struct inferior *inferior;
2765
2766 if (non_stop)
2767 {
6c95b8df
PA
2768 /* If in non-stop mode, only delete the per-thread status of
2769 the current thread. */
a7212384
UW
2770 clear_proceed_status_thread (inferior_thread ());
2771 }
6c95b8df 2772
d6b48e9c 2773 inferior = current_inferior ();
16c381f0 2774 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2775 }
2776
76727919 2777 gdb::observers::about_to_proceed.notify ();
c906108c
SS
2778}
2779
99619bea
PA
2780/* Returns true if TP is still stopped at a breakpoint that needs
2781 stepping-over in order to make progress. If the breakpoint is gone
2782 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2783
2784static int
6c4cfb24 2785thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2786{
2787 if (tp->stepping_over_breakpoint)
2788 {
00431a78 2789 struct regcache *regcache = get_thread_regcache (tp);
99619bea 2790
a01bda52 2791 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2792 regcache_read_pc (regcache))
2793 == ordinary_breakpoint_here)
99619bea
PA
2794 return 1;
2795
2796 tp->stepping_over_breakpoint = 0;
2797 }
2798
2799 return 0;
2800}
2801
6c4cfb24
PA
2802/* Check whether thread TP still needs to start a step-over in order
2803 to make progress when resumed. Returns an bitwise or of enum
2804 step_over_what bits, indicating what needs to be stepped over. */
2805
8d297bbf 2806static step_over_what
6c4cfb24
PA
2807thread_still_needs_step_over (struct thread_info *tp)
2808{
8d297bbf 2809 step_over_what what = 0;
6c4cfb24
PA
2810
2811 if (thread_still_needs_step_over_bp (tp))
2812 what |= STEP_OVER_BREAKPOINT;
2813
2814 if (tp->stepping_over_watchpoint
2815 && !target_have_steppable_watchpoint)
2816 what |= STEP_OVER_WATCHPOINT;
2817
2818 return what;
2819}
2820
483805cf
PA
2821/* Returns true if scheduler locking applies. STEP indicates whether
2822 we're about to do a step/next-like command to a thread. */
2823
2824static int
856e7dd6 2825schedlock_applies (struct thread_info *tp)
483805cf
PA
2826{
2827 return (scheduler_mode == schedlock_on
2828 || (scheduler_mode == schedlock_step
f2665db5
MM
2829 && tp->control.stepping_command)
2830 || (scheduler_mode == schedlock_replay
2831 && target_record_will_replay (minus_one_ptid,
2832 execution_direction)));
483805cf
PA
2833}
2834
c906108c
SS
2835/* Basic routine for continuing the program in various fashions.
2836
2837 ADDR is the address to resume at, or -1 for resume where stopped.
aff4e175
AB
2838 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2839 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
c906108c
SS
2840
2841 You should call clear_proceed_status before calling proceed. */
2842
2843void
64ce06e4 2844proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2845{
e58b0e63
PA
2846 struct regcache *regcache;
2847 struct gdbarch *gdbarch;
e58b0e63 2848 CORE_ADDR pc;
4d9d9d04
PA
2849 ptid_t resume_ptid;
2850 struct execution_control_state ecss;
2851 struct execution_control_state *ecs = &ecss;
4d9d9d04 2852 int started;
c906108c 2853
e58b0e63
PA
2854 /* If we're stopped at a fork/vfork, follow the branch set by the
2855 "set follow-fork-mode" command; otherwise, we'll just proceed
2856 resuming the current thread. */
2857 if (!follow_fork ())
2858 {
2859 /* The target for some reason decided not to resume. */
2860 normal_stop ();
f148b27e
PA
2861 if (target_can_async_p ())
2862 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2863 return;
2864 }
2865
842951eb
PA
2866 /* We'll update this if & when we switch to a new thread. */
2867 previous_inferior_ptid = inferior_ptid;
2868
e58b0e63 2869 regcache = get_current_regcache ();
ac7936df 2870 gdbarch = regcache->arch ();
8b86c959
YQ
2871 const address_space *aspace = regcache->aspace ();
2872
e58b0e63 2873 pc = regcache_read_pc (regcache);
08036331 2874 thread_info *cur_thr = inferior_thread ();
e58b0e63 2875
99619bea 2876 /* Fill in with reasonable starting values. */
08036331 2877 init_thread_stepping_state (cur_thr);
99619bea 2878
08036331 2879 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
c2829269 2880
2acceee2 2881 if (addr == (CORE_ADDR) -1)
c906108c 2882 {
08036331 2883 if (pc == cur_thr->suspend.stop_pc
af48d08f 2884 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 2885 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2886 /* There is a breakpoint at the address we will resume at,
2887 step one instruction before inserting breakpoints so that
2888 we do not stop right away (and report a second hit at this
b2175913
MS
2889 breakpoint).
2890
2891 Note, we don't do this in reverse, because we won't
2892 actually be executing the breakpoint insn anyway.
2893 We'll be (un-)executing the previous instruction. */
08036331 2894 cur_thr->stepping_over_breakpoint = 1;
515630c5
UW
2895 else if (gdbarch_single_step_through_delay_p (gdbarch)
2896 && gdbarch_single_step_through_delay (gdbarch,
2897 get_current_frame ()))
3352ef37
AC
2898 /* We stepped onto an instruction that needs to be stepped
2899 again before re-inserting the breakpoint, do so. */
08036331 2900 cur_thr->stepping_over_breakpoint = 1;
c906108c
SS
2901 }
2902 else
2903 {
515630c5 2904 regcache_write_pc (regcache, addr);
c906108c
SS
2905 }
2906
70509625 2907 if (siggnal != GDB_SIGNAL_DEFAULT)
08036331 2908 cur_thr->suspend.stop_signal = siggnal;
70509625 2909
08036331 2910 resume_ptid = user_visible_resume_ptid (cur_thr->control.stepping_command);
4d9d9d04
PA
2911
2912 /* If an exception is thrown from this point on, make sure to
2913 propagate GDB's knowledge of the executing state to the
2914 frontend/user running state. */
731f534f 2915 scoped_finish_thread_state finish_state (resume_ptid);
4d9d9d04
PA
2916
2917 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2918 threads (e.g., we might need to set threads stepping over
2919 breakpoints first), from the user/frontend's point of view, all
2920 threads in RESUME_PTID are now running. Unless we're calling an
2921 inferior function, as in that case we pretend the inferior
2922 doesn't run at all. */
08036331 2923 if (!cur_thr->control.in_infcall)
4d9d9d04 2924 set_running (resume_ptid, 1);
17b2616c 2925
527159b7 2926 if (debug_infrun)
8a9de0e4 2927 fprintf_unfiltered (gdb_stdlog,
64ce06e4 2928 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 2929 paddress (gdbarch, addr),
64ce06e4 2930 gdb_signal_to_symbol_string (siggnal));
527159b7 2931
4d9d9d04
PA
2932 annotate_starting ();
2933
2934 /* Make sure that output from GDB appears before output from the
2935 inferior. */
2936 gdb_flush (gdb_stdout);
2937
d930703d
PA
2938 /* Since we've marked the inferior running, give it the terminal. A
2939 QUIT/Ctrl-C from here on is forwarded to the target (which can
2940 still detect attempts to unblock a stuck connection with repeated
2941 Ctrl-C from within target_pass_ctrlc). */
2942 target_terminal::inferior ();
2943
4d9d9d04
PA
2944 /* In a multi-threaded task we may select another thread and
2945 then continue or step.
2946
2947 But if a thread that we're resuming had stopped at a breakpoint,
2948 it will immediately cause another breakpoint stop without any
2949 execution (i.e. it will report a breakpoint hit incorrectly). So
2950 we must step over it first.
2951
2952 Look for threads other than the current (TP) that reported a
2953 breakpoint hit and haven't been resumed yet since. */
2954
2955 /* If scheduler locking applies, we can avoid iterating over all
2956 threads. */
08036331 2957 if (!non_stop && !schedlock_applies (cur_thr))
94cc34af 2958 {
08036331
PA
2959 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2960 {
4d9d9d04
PA
2961 /* Ignore the current thread here. It's handled
2962 afterwards. */
08036331 2963 if (tp == cur_thr)
4d9d9d04 2964 continue;
c906108c 2965
4d9d9d04
PA
2966 if (!thread_still_needs_step_over (tp))
2967 continue;
2968
2969 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 2970
99619bea
PA
2971 if (debug_infrun)
2972 fprintf_unfiltered (gdb_stdlog,
2973 "infrun: need to step-over [%s] first\n",
4d9d9d04 2974 target_pid_to_str (tp->ptid));
99619bea 2975
4d9d9d04 2976 thread_step_over_chain_enqueue (tp);
2adfaa28 2977 }
30852783
UW
2978 }
2979
4d9d9d04
PA
2980 /* Enqueue the current thread last, so that we move all other
2981 threads over their breakpoints first. */
08036331
PA
2982 if (cur_thr->stepping_over_breakpoint)
2983 thread_step_over_chain_enqueue (cur_thr);
30852783 2984
4d9d9d04
PA
2985 /* If the thread isn't started, we'll still need to set its prev_pc,
2986 so that switch_back_to_stepped_thread knows the thread hasn't
2987 advanced. Must do this before resuming any thread, as in
2988 all-stop/remote, once we resume we can't send any other packet
2989 until the target stops again. */
08036331 2990 cur_thr->prev_pc = regcache_read_pc (regcache);
99619bea 2991
a9bc57b9
TT
2992 {
2993 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
85ad3aaf 2994
a9bc57b9 2995 started = start_step_over ();
c906108c 2996
a9bc57b9
TT
2997 if (step_over_info_valid_p ())
2998 {
2999 /* Either this thread started a new in-line step over, or some
3000 other thread was already doing one. In either case, don't
3001 resume anything else until the step-over is finished. */
3002 }
3003 else if (started && !target_is_non_stop_p ())
3004 {
3005 /* A new displaced stepping sequence was started. In all-stop,
3006 we can't talk to the target anymore until it next stops. */
3007 }
3008 else if (!non_stop && target_is_non_stop_p ())
3009 {
3010 /* In all-stop, but the target is always in non-stop mode.
3011 Start all other threads that are implicitly resumed too. */
08036331 3012 for (thread_info *tp : all_non_exited_threads (resume_ptid))
fbea99ea 3013 {
fbea99ea
PA
3014 if (tp->resumed)
3015 {
3016 if (debug_infrun)
3017 fprintf_unfiltered (gdb_stdlog,
3018 "infrun: proceed: [%s] resumed\n",
3019 target_pid_to_str (tp->ptid));
3020 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3021 continue;
3022 }
3023
3024 if (thread_is_in_step_over_chain (tp))
3025 {
3026 if (debug_infrun)
3027 fprintf_unfiltered (gdb_stdlog,
3028 "infrun: proceed: [%s] needs step-over\n",
3029 target_pid_to_str (tp->ptid));
3030 continue;
3031 }
3032
3033 if (debug_infrun)
3034 fprintf_unfiltered (gdb_stdlog,
3035 "infrun: proceed: resuming %s\n",
3036 target_pid_to_str (tp->ptid));
3037
3038 reset_ecs (ecs, tp);
00431a78 3039 switch_to_thread (tp);
fbea99ea
PA
3040 keep_going_pass_signal (ecs);
3041 if (!ecs->wait_some_more)
fd7dcb94 3042 error (_("Command aborted."));
fbea99ea 3043 }
a9bc57b9 3044 }
08036331 3045 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
a9bc57b9
TT
3046 {
3047 /* The thread wasn't started, and isn't queued, run it now. */
08036331
PA
3048 reset_ecs (ecs, cur_thr);
3049 switch_to_thread (cur_thr);
a9bc57b9
TT
3050 keep_going_pass_signal (ecs);
3051 if (!ecs->wait_some_more)
3052 error (_("Command aborted."));
3053 }
3054 }
c906108c 3055
85ad3aaf
PA
3056 target_commit_resume ();
3057
731f534f 3058 finish_state.release ();
c906108c 3059
0b333c5e
PA
3060 /* Tell the event loop to wait for it to stop. If the target
3061 supports asynchronous execution, it'll do this from within
3062 target_resume. */
362646f5 3063 if (!target_can_async_p ())
0b333c5e 3064 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3065}
c906108c
SS
3066\f
3067
3068/* Start remote-debugging of a machine over a serial link. */
96baa820 3069
c906108c 3070void
8621d6a9 3071start_remote (int from_tty)
c906108c 3072{
d6b48e9c 3073 struct inferior *inferior;
d6b48e9c
PA
3074
3075 inferior = current_inferior ();
16c381f0 3076 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3077
1777feb0 3078 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3079 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3080 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3081 nothing is returned (instead of just blocking). Because of this,
3082 targets expecting an immediate response need to, internally, set
3083 things up so that the target_wait() is forced to eventually
1777feb0 3084 timeout. */
6426a772
JM
3085 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3086 differentiate to its caller what the state of the target is after
3087 the initial open has been performed. Here we're assuming that
3088 the target has stopped. It should be possible to eventually have
3089 target_open() return to the caller an indication that the target
3090 is currently running and GDB state should be set to the same as
1777feb0 3091 for an async run. */
e4c8541f 3092 wait_for_inferior ();
8621d6a9
DJ
3093
3094 /* Now that the inferior has stopped, do any bookkeeping like
3095 loading shared libraries. We want to do this before normal_stop,
3096 so that the displayed frame is up to date. */
8b88a78e 3097 post_create_inferior (current_top_target (), from_tty);
8621d6a9 3098
6426a772 3099 normal_stop ();
c906108c
SS
3100}
3101
3102/* Initialize static vars when a new inferior begins. */
3103
3104void
96baa820 3105init_wait_for_inferior (void)
c906108c
SS
3106{
3107 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3108
c906108c
SS
3109 breakpoint_init_inferior (inf_starting);
3110
70509625 3111 clear_proceed_status (0);
9f976b41 3112
ca005067 3113 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3114
842951eb 3115 previous_inferior_ptid = inferior_ptid;
c906108c 3116}
237fc4c9 3117
c906108c 3118\f
488f131b 3119
ec9499be 3120static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3121
568d6575
UW
3122static void handle_step_into_function (struct gdbarch *gdbarch,
3123 struct execution_control_state *ecs);
3124static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3125 struct execution_control_state *ecs);
4f5d7f63 3126static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3127static void check_exception_resume (struct execution_control_state *,
28106bc2 3128 struct frame_info *);
611c83ae 3129
bdc36728 3130static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3131static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3132static void keep_going (struct execution_control_state *ecs);
94c57d6a 3133static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3134static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3135
252fbfc8
PA
3136/* This function is attached as a "thread_stop_requested" observer.
3137 Cleanup local state that assumed the PTID was to be resumed, and
3138 report the stop to the frontend. */
3139
2c0b251b 3140static void
252fbfc8
PA
3141infrun_thread_stop_requested (ptid_t ptid)
3142{
c65d6b55
PA
3143 /* PTID was requested to stop. If the thread was already stopped,
3144 but the user/frontend doesn't know about that yet (e.g., the
3145 thread had been temporarily paused for some step-over), set up
3146 for reporting the stop now. */
08036331
PA
3147 for (thread_info *tp : all_threads (ptid))
3148 {
3149 if (tp->state != THREAD_RUNNING)
3150 continue;
3151 if (tp->executing)
3152 continue;
c65d6b55 3153
08036331
PA
3154 /* Remove matching threads from the step-over queue, so
3155 start_step_over doesn't try to resume them
3156 automatically. */
3157 if (thread_is_in_step_over_chain (tp))
3158 thread_step_over_chain_remove (tp);
c65d6b55 3159
08036331
PA
3160 /* If the thread is stopped, but the user/frontend doesn't
3161 know about that yet, queue a pending event, as if the
3162 thread had just stopped now. Unless the thread already had
3163 a pending event. */
3164 if (!tp->suspend.waitstatus_pending_p)
3165 {
3166 tp->suspend.waitstatus_pending_p = 1;
3167 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3168 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3169 }
c65d6b55 3170
08036331
PA
3171 /* Clear the inline-frame state, since we're re-processing the
3172 stop. */
3173 clear_inline_frame_state (tp->ptid);
c65d6b55 3174
08036331
PA
3175 /* If this thread was paused because some other thread was
3176 doing an inline-step over, let that finish first. Once
3177 that happens, we'll restart all threads and consume pending
3178 stop events then. */
3179 if (step_over_info_valid_p ())
3180 continue;
3181
3182 /* Otherwise we can process the (new) pending event now. Set
3183 it so this pending event is considered by
3184 do_target_wait. */
3185 tp->resumed = 1;
3186 }
252fbfc8
PA
3187}
3188
a07daef3
PA
3189static void
3190infrun_thread_thread_exit (struct thread_info *tp, int silent)
3191{
d7e15655 3192 if (target_last_wait_ptid == tp->ptid)
a07daef3
PA
3193 nullify_last_target_wait_ptid ();
3194}
3195
0cbcdb96
PA
3196/* Delete the step resume, single-step and longjmp/exception resume
3197 breakpoints of TP. */
4e1c45ea 3198
0cbcdb96
PA
3199static void
3200delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3201{
0cbcdb96
PA
3202 delete_step_resume_breakpoint (tp);
3203 delete_exception_resume_breakpoint (tp);
34b7e8a6 3204 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3205}
3206
0cbcdb96
PA
3207/* If the target still has execution, call FUNC for each thread that
3208 just stopped. In all-stop, that's all the non-exited threads; in
3209 non-stop, that's the current thread, only. */
3210
3211typedef void (*for_each_just_stopped_thread_callback_func)
3212 (struct thread_info *tp);
4e1c45ea
PA
3213
3214static void
0cbcdb96 3215for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3216{
d7e15655 3217 if (!target_has_execution || inferior_ptid == null_ptid)
4e1c45ea
PA
3218 return;
3219
fbea99ea 3220 if (target_is_non_stop_p ())
4e1c45ea 3221 {
0cbcdb96
PA
3222 /* If in non-stop mode, only the current thread stopped. */
3223 func (inferior_thread ());
4e1c45ea
PA
3224 }
3225 else
0cbcdb96 3226 {
0cbcdb96 3227 /* In all-stop mode, all threads have stopped. */
08036331
PA
3228 for (thread_info *tp : all_non_exited_threads ())
3229 func (tp);
0cbcdb96
PA
3230 }
3231}
3232
3233/* Delete the step resume and longjmp/exception resume breakpoints of
3234 the threads that just stopped. */
3235
3236static void
3237delete_just_stopped_threads_infrun_breakpoints (void)
3238{
3239 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3240}
3241
3242/* Delete the single-step breakpoints of the threads that just
3243 stopped. */
7c16b83e 3244
34b7e8a6
PA
3245static void
3246delete_just_stopped_threads_single_step_breakpoints (void)
3247{
3248 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3249}
3250
221e1a37 3251/* See infrun.h. */
223698f8 3252
221e1a37 3253void
223698f8
DE
3254print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3255 const struct target_waitstatus *ws)
3256{
23fdd69e 3257 std::string status_string = target_waitstatus_to_string (ws);
d7e74731 3258 string_file stb;
223698f8
DE
3259
3260 /* The text is split over several lines because it was getting too long.
3261 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3262 output as a unit; we want only one timestamp printed if debug_timestamp
3263 is set. */
3264
d7e74731 3265 stb.printf ("infrun: target_wait (%d.%ld.%ld",
e99b03dc 3266 waiton_ptid.pid (),
e38504b3 3267 waiton_ptid.lwp (),
cc6bcb54 3268 waiton_ptid.tid ());
e99b03dc 3269 if (waiton_ptid.pid () != -1)
d7e74731
PA
3270 stb.printf (" [%s]", target_pid_to_str (waiton_ptid));
3271 stb.printf (", status) =\n");
3272 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
e99b03dc 3273 result_ptid.pid (),
e38504b3 3274 result_ptid.lwp (),
cc6bcb54 3275 result_ptid.tid (),
d7e74731 3276 target_pid_to_str (result_ptid));
23fdd69e 3277 stb.printf ("infrun: %s\n", status_string.c_str ());
223698f8
DE
3278
3279 /* This uses %s in part to handle %'s in the text, but also to avoid
3280 a gcc error: the format attribute requires a string literal. */
d7e74731 3281 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3282}
3283
372316f1
PA
3284/* Select a thread at random, out of those which are resumed and have
3285 had events. */
3286
3287static struct thread_info *
3288random_pending_event_thread (ptid_t waiton_ptid)
3289{
372316f1 3290 int num_events = 0;
08036331
PA
3291
3292 auto has_event = [] (thread_info *tp)
3293 {
3294 return (tp->resumed
3295 && tp->suspend.waitstatus_pending_p);
3296 };
372316f1
PA
3297
3298 /* First see how many events we have. Count only resumed threads
3299 that have an event pending. */
08036331
PA
3300 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3301 if (has_event (tp))
372316f1
PA
3302 num_events++;
3303
3304 if (num_events == 0)
3305 return NULL;
3306
3307 /* Now randomly pick a thread out of those that have had events. */
08036331
PA
3308 int random_selector = (int) ((num_events * (double) rand ())
3309 / (RAND_MAX + 1.0));
372316f1
PA
3310
3311 if (debug_infrun && num_events > 1)
3312 fprintf_unfiltered (gdb_stdlog,
3313 "infrun: Found %d events, selecting #%d\n",
3314 num_events, random_selector);
3315
3316 /* Select the Nth thread that has had an event. */
08036331
PA
3317 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3318 if (has_event (tp))
372316f1 3319 if (random_selector-- == 0)
08036331 3320 return tp;
372316f1 3321
08036331 3322 gdb_assert_not_reached ("event thread not found");
372316f1
PA
3323}
3324
3325/* Wrapper for target_wait that first checks whether threads have
3326 pending statuses to report before actually asking the target for
3327 more events. */
3328
3329static ptid_t
3330do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3331{
3332 ptid_t event_ptid;
3333 struct thread_info *tp;
3334
3335 /* First check if there is a resumed thread with a wait status
3336 pending. */
d7e15655 3337 if (ptid == minus_one_ptid || ptid.is_pid ())
372316f1
PA
3338 {
3339 tp = random_pending_event_thread (ptid);
3340 }
3341 else
3342 {
3343 if (debug_infrun)
3344 fprintf_unfiltered (gdb_stdlog,
3345 "infrun: Waiting for specific thread %s.\n",
3346 target_pid_to_str (ptid));
3347
3348 /* We have a specific thread to check. */
3349 tp = find_thread_ptid (ptid);
3350 gdb_assert (tp != NULL);
3351 if (!tp->suspend.waitstatus_pending_p)
3352 tp = NULL;
3353 }
3354
3355 if (tp != NULL
3356 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3357 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3358 {
00431a78 3359 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 3360 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3361 CORE_ADDR pc;
3362 int discard = 0;
3363
3364 pc = regcache_read_pc (regcache);
3365
3366 if (pc != tp->suspend.stop_pc)
3367 {
3368 if (debug_infrun)
3369 fprintf_unfiltered (gdb_stdlog,
3370 "infrun: PC of %s changed. was=%s, now=%s\n",
3371 target_pid_to_str (tp->ptid),
defd2172 3372 paddress (gdbarch, tp->suspend.stop_pc),
372316f1
PA
3373 paddress (gdbarch, pc));
3374 discard = 1;
3375 }
a01bda52 3376 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1
PA
3377 {
3378 if (debug_infrun)
3379 fprintf_unfiltered (gdb_stdlog,
3380 "infrun: previous breakpoint of %s, at %s gone\n",
3381 target_pid_to_str (tp->ptid),
3382 paddress (gdbarch, pc));
3383
3384 discard = 1;
3385 }
3386
3387 if (discard)
3388 {
3389 if (debug_infrun)
3390 fprintf_unfiltered (gdb_stdlog,
3391 "infrun: pending event of %s cancelled.\n",
3392 target_pid_to_str (tp->ptid));
3393
3394 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3395 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3396 }
3397 }
3398
3399 if (tp != NULL)
3400 {
3401 if (debug_infrun)
3402 {
23fdd69e
SM
3403 std::string statstr
3404 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 3405
372316f1
PA
3406 fprintf_unfiltered (gdb_stdlog,
3407 "infrun: Using pending wait status %s for %s.\n",
23fdd69e 3408 statstr.c_str (),
372316f1 3409 target_pid_to_str (tp->ptid));
372316f1
PA
3410 }
3411
3412 /* Now that we've selected our final event LWP, un-adjust its PC
3413 if it was a software breakpoint (and the target doesn't
3414 always adjust the PC itself). */
3415 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3416 && !target_supports_stopped_by_sw_breakpoint ())
3417 {
3418 struct regcache *regcache;
3419 struct gdbarch *gdbarch;
3420 int decr_pc;
3421
00431a78 3422 regcache = get_thread_regcache (tp);
ac7936df 3423 gdbarch = regcache->arch ();
372316f1
PA
3424
3425 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3426 if (decr_pc != 0)
3427 {
3428 CORE_ADDR pc;
3429
3430 pc = regcache_read_pc (regcache);
3431 regcache_write_pc (regcache, pc + decr_pc);
3432 }
3433 }
3434
3435 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3436 *status = tp->suspend.waitstatus;
3437 tp->suspend.waitstatus_pending_p = 0;
3438
3439 /* Wake up the event loop again, until all pending events are
3440 processed. */
3441 if (target_is_async_p ())
3442 mark_async_event_handler (infrun_async_inferior_event_token);
3443 return tp->ptid;
3444 }
3445
3446 /* But if we don't find one, we'll have to wait. */
3447
3448 if (deprecated_target_wait_hook)
3449 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3450 else
3451 event_ptid = target_wait (ptid, status, options);
3452
3453 return event_ptid;
3454}
3455
24291992
PA
3456/* Prepare and stabilize the inferior for detaching it. E.g.,
3457 detaching while a thread is displaced stepping is a recipe for
3458 crashing it, as nothing would readjust the PC out of the scratch
3459 pad. */
3460
3461void
3462prepare_for_detach (void)
3463{
3464 struct inferior *inf = current_inferior ();
f2907e49 3465 ptid_t pid_ptid = ptid_t (inf->pid);
24291992 3466
00431a78 3467 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
24291992
PA
3468
3469 /* Is any thread of this process displaced stepping? If not,
3470 there's nothing else to do. */
d20172fc 3471 if (displaced->step_thread == nullptr)
24291992
PA
3472 return;
3473
3474 if (debug_infrun)
3475 fprintf_unfiltered (gdb_stdlog,
3476 "displaced-stepping in-process while detaching");
3477
9bcb1f16 3478 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992 3479
00431a78 3480 while (displaced->step_thread != nullptr)
24291992 3481 {
24291992
PA
3482 struct execution_control_state ecss;
3483 struct execution_control_state *ecs;
3484
3485 ecs = &ecss;
3486 memset (ecs, 0, sizeof (*ecs));
3487
3488 overlay_cache_invalid = 1;
f15cb84a
YQ
3489 /* Flush target cache before starting to handle each event.
3490 Target was running and cache could be stale. This is just a
3491 heuristic. Running threads may modify target memory, but we
3492 don't get any event. */
3493 target_dcache_invalidate ();
24291992 3494
372316f1 3495 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3496
3497 if (debug_infrun)
3498 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3499
3500 /* If an error happens while handling the event, propagate GDB's
3501 knowledge of the executing state to the frontend/user running
3502 state. */
731f534f 3503 scoped_finish_thread_state finish_state (minus_one_ptid);
24291992
PA
3504
3505 /* Now figure out what to do with the result of the result. */
3506 handle_inferior_event (ecs);
3507
3508 /* No error, don't finish the state yet. */
731f534f 3509 finish_state.release ();
24291992
PA
3510
3511 /* Breakpoints and watchpoints are not installed on the target
3512 at this point, and signals are passed directly to the
3513 inferior, so this must mean the process is gone. */
3514 if (!ecs->wait_some_more)
3515 {
9bcb1f16 3516 restore_detaching.release ();
24291992
PA
3517 error (_("Program exited while detaching"));
3518 }
3519 }
3520
9bcb1f16 3521 restore_detaching.release ();
24291992
PA
3522}
3523
cd0fc7c3 3524/* Wait for control to return from inferior to debugger.
ae123ec6 3525
cd0fc7c3
SS
3526 If inferior gets a signal, we may decide to start it up again
3527 instead of returning. That is why there is a loop in this function.
3528 When this function actually returns it means the inferior
3529 should be left stopped and GDB should read more commands. */
3530
3531void
e4c8541f 3532wait_for_inferior (void)
cd0fc7c3 3533{
527159b7 3534 if (debug_infrun)
ae123ec6 3535 fprintf_unfiltered
e4c8541f 3536 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3537
4c41382a 3538 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
cd0fc7c3 3539
e6f5c25b
PA
3540 /* If an error happens while handling the event, propagate GDB's
3541 knowledge of the executing state to the frontend/user running
3542 state. */
731f534f 3543 scoped_finish_thread_state finish_state (minus_one_ptid);
e6f5c25b 3544
c906108c
SS
3545 while (1)
3546 {
ae25568b
PA
3547 struct execution_control_state ecss;
3548 struct execution_control_state *ecs = &ecss;
963f9c80 3549 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3550
ae25568b
PA
3551 memset (ecs, 0, sizeof (*ecs));
3552
ec9499be 3553 overlay_cache_invalid = 1;
ec9499be 3554
f15cb84a
YQ
3555 /* Flush target cache before starting to handle each event.
3556 Target was running and cache could be stale. This is just a
3557 heuristic. Running threads may modify target memory, but we
3558 don't get any event. */
3559 target_dcache_invalidate ();
3560
372316f1 3561 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3562
f00150c9 3563 if (debug_infrun)
223698f8 3564 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3565
cd0fc7c3
SS
3566 /* Now figure out what to do with the result of the result. */
3567 handle_inferior_event (ecs);
c906108c 3568
cd0fc7c3
SS
3569 if (!ecs->wait_some_more)
3570 break;
3571 }
4e1c45ea 3572
e6f5c25b 3573 /* No error, don't finish the state yet. */
731f534f 3574 finish_state.release ();
cd0fc7c3 3575}
c906108c 3576
d3d4baed
PA
3577/* Cleanup that reinstalls the readline callback handler, if the
3578 target is running in the background. If while handling the target
3579 event something triggered a secondary prompt, like e.g., a
3580 pagination prompt, we'll have removed the callback handler (see
3581 gdb_readline_wrapper_line). Need to do this as we go back to the
3582 event loop, ready to process further input. Note this has no
3583 effect if the handler hasn't actually been removed, because calling
3584 rl_callback_handler_install resets the line buffer, thus losing
3585 input. */
3586
3587static void
3588reinstall_readline_callback_handler_cleanup (void *arg)
3589{
3b12939d
PA
3590 struct ui *ui = current_ui;
3591
3592 if (!ui->async)
6c400b59
PA
3593 {
3594 /* We're not going back to the top level event loop yet. Don't
3595 install the readline callback, as it'd prep the terminal,
3596 readline-style (raw, noecho) (e.g., --batch). We'll install
3597 it the next time the prompt is displayed, when we're ready
3598 for input. */
3599 return;
3600 }
3601
3b12939d 3602 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3603 gdb_rl_callback_handler_reinstall ();
3604}
3605
243a9253
PA
3606/* Clean up the FSMs of threads that are now stopped. In non-stop,
3607 that's just the event thread. In all-stop, that's all threads. */
3608
3609static void
3610clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3611{
08036331
PA
3612 if (ecs->event_thread != NULL
3613 && ecs->event_thread->thread_fsm != NULL)
3614 thread_fsm_clean_up (ecs->event_thread->thread_fsm,
3615 ecs->event_thread);
243a9253
PA
3616
3617 if (!non_stop)
3618 {
08036331 3619 for (thread_info *thr : all_non_exited_threads ())
243a9253
PA
3620 {
3621 if (thr->thread_fsm == NULL)
3622 continue;
3623 if (thr == ecs->event_thread)
3624 continue;
3625
00431a78 3626 switch_to_thread (thr);
8980e177 3627 thread_fsm_clean_up (thr->thread_fsm, thr);
243a9253
PA
3628 }
3629
3630 if (ecs->event_thread != NULL)
00431a78 3631 switch_to_thread (ecs->event_thread);
243a9253
PA
3632 }
3633}
3634
3b12939d
PA
3635/* Helper for all_uis_check_sync_execution_done that works on the
3636 current UI. */
3637
3638static void
3639check_curr_ui_sync_execution_done (void)
3640{
3641 struct ui *ui = current_ui;
3642
3643 if (ui->prompt_state == PROMPT_NEEDED
3644 && ui->async
3645 && !gdb_in_secondary_prompt_p (ui))
3646 {
223ffa71 3647 target_terminal::ours ();
76727919 3648 gdb::observers::sync_execution_done.notify ();
3eb7562a 3649 ui_register_input_event_handler (ui);
3b12939d
PA
3650 }
3651}
3652
3653/* See infrun.h. */
3654
3655void
3656all_uis_check_sync_execution_done (void)
3657{
0e454242 3658 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3659 {
3660 check_curr_ui_sync_execution_done ();
3661 }
3662}
3663
a8836c93
PA
3664/* See infrun.h. */
3665
3666void
3667all_uis_on_sync_execution_starting (void)
3668{
0e454242 3669 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3670 {
3671 if (current_ui->prompt_state == PROMPT_NEEDED)
3672 async_disable_stdin ();
3673 }
3674}
3675
1777feb0 3676/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3677 event loop whenever a change of state is detected on the file
1777feb0
MS
3678 descriptor corresponding to the target. It can be called more than
3679 once to complete a single execution command. In such cases we need
3680 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3681 that this function is called for a single execution command, then
3682 report to the user that the inferior has stopped, and do the
1777feb0 3683 necessary cleanups. */
43ff13b4
JM
3684
3685void
fba45db2 3686fetch_inferior_event (void *client_data)
43ff13b4 3687{
0d1e5fa7 3688 struct execution_control_state ecss;
a474d7c2 3689 struct execution_control_state *ecs = &ecss;
4f8d22e3 3690 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
0f641c01 3691 int cmd_done = 0;
963f9c80 3692 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3693
0d1e5fa7
PA
3694 memset (ecs, 0, sizeof (*ecs));
3695
c61db772
PA
3696 /* Events are always processed with the main UI as current UI. This
3697 way, warnings, debug output, etc. are always consistently sent to
3698 the main console. */
4b6749b9 3699 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3700
d3d4baed
PA
3701 /* End up with readline processing input, if necessary. */
3702 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3703
c5187ac6
PA
3704 /* We're handling a live event, so make sure we're doing live
3705 debugging. If we're looking at traceframes while the target is
3706 running, we're going to need to get back to that mode after
3707 handling the event. */
6f14adc5 3708 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
c5187ac6
PA
3709 if (non_stop)
3710 {
6f14adc5 3711 maybe_restore_traceframe.emplace ();
e6e4e701 3712 set_current_traceframe (-1);
c5187ac6
PA
3713 }
3714
5ed8105e
PA
3715 gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3716
4f8d22e3
PA
3717 if (non_stop)
3718 /* In non-stop mode, the user/frontend should not notice a thread
3719 switch due to internal events. Make sure we reverse to the
3720 user selected thread and frame after handling the event and
3721 running any breakpoint commands. */
5ed8105e 3722 maybe_restore_thread.emplace ();
4f8d22e3 3723
ec9499be 3724 overlay_cache_invalid = 1;
f15cb84a
YQ
3725 /* Flush target cache before starting to handle each event. Target
3726 was running and cache could be stale. This is just a heuristic.
3727 Running threads may modify target memory, but we don't get any
3728 event. */
3729 target_dcache_invalidate ();
3dd5b83d 3730
b7b633e9
TT
3731 scoped_restore save_exec_dir
3732 = make_scoped_restore (&execution_direction, target_execution_direction ());
32231432 3733
0b333c5e
PA
3734 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3735 target_can_async_p () ? TARGET_WNOHANG : 0);
43ff13b4 3736
f00150c9 3737 if (debug_infrun)
223698f8 3738 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3739
29f49a6a
PA
3740 /* If an error happens while handling the event, propagate GDB's
3741 knowledge of the executing state to the frontend/user running
3742 state. */
731f534f
PA
3743 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3744 scoped_finish_thread_state finish_state (finish_ptid);
29f49a6a 3745
353d1d73
JK
3746 /* Get executed before make_cleanup_restore_current_thread above to apply
3747 still for the thread which has thrown the exception. */
694c6bf5
TT
3748 auto defer_bpstat_clear
3749 = make_scope_exit (bpstat_clear_actions);
4c41382a
TT
3750 auto defer_delete_threads
3751 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
7c16b83e 3752
43ff13b4 3753 /* Now figure out what to do with the result of the result. */
a474d7c2 3754 handle_inferior_event (ecs);
43ff13b4 3755
a474d7c2 3756 if (!ecs->wait_some_more)
43ff13b4 3757 {
c9657e70 3758 struct inferior *inf = find_inferior_ptid (ecs->ptid);
243a9253
PA
3759 int should_stop = 1;
3760 struct thread_info *thr = ecs->event_thread;
d6b48e9c 3761
0cbcdb96 3762 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3763
243a9253
PA
3764 if (thr != NULL)
3765 {
3766 struct thread_fsm *thread_fsm = thr->thread_fsm;
3767
3768 if (thread_fsm != NULL)
8980e177 3769 should_stop = thread_fsm_should_stop (thread_fsm, thr);
243a9253
PA
3770 }
3771
3772 if (!should_stop)
3773 {
3774 keep_going (ecs);
3775 }
c2d11a7d 3776 else
0f641c01 3777 {
1840d81a
AB
3778 int should_notify_stop = 1;
3779 int proceeded = 0;
3780
243a9253
PA
3781 clean_up_just_stopped_threads_fsms (ecs);
3782
388a7084
PA
3783 if (thr != NULL && thr->thread_fsm != NULL)
3784 {
3785 should_notify_stop
3786 = thread_fsm_should_notify_stop (thr->thread_fsm);
3787 }
3788
3789 if (should_notify_stop)
3790 {
3791 /* We may not find an inferior if this was a process exit. */
3792 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4c2f2a79 3793 proceeded = normal_stop ();
1840d81a 3794 }
243a9253 3795
1840d81a
AB
3796 if (!proceeded)
3797 {
3798 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3799 cmd_done = 1;
388a7084 3800 }
0f641c01 3801 }
43ff13b4 3802 }
4f8d22e3 3803
4c41382a 3804 defer_delete_threads.release ();
694c6bf5 3805 defer_bpstat_clear.release ();
29f49a6a 3806
731f534f
PA
3807 /* No error, don't finish the thread states yet. */
3808 finish_state.release ();
3809
4f8d22e3
PA
3810 /* Revert thread and frame. */
3811 do_cleanups (old_chain);
3812
3b12939d
PA
3813 /* If a UI was in sync execution mode, and now isn't, restore its
3814 prompt (a synchronous execution command has finished, and we're
3815 ready for input). */
3816 all_uis_check_sync_execution_done ();
0f641c01
PA
3817
3818 if (cmd_done
0f641c01 3819 && exec_done_display_p
00431a78
PA
3820 && (inferior_ptid == null_ptid
3821 || inferior_thread ()->state != THREAD_RUNNING))
0f641c01 3822 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3823}
3824
edb3359d
DJ
3825/* Record the frame and location we're currently stepping through. */
3826void
3827set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3828{
3829 struct thread_info *tp = inferior_thread ();
3830
16c381f0
JK
3831 tp->control.step_frame_id = get_frame_id (frame);
3832 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
3833
3834 tp->current_symtab = sal.symtab;
3835 tp->current_line = sal.line;
3836}
3837
0d1e5fa7
PA
3838/* Clear context switchable stepping state. */
3839
3840void
4e1c45ea 3841init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 3842{
7f5ef605 3843 tss->stepped_breakpoint = 0;
0d1e5fa7 3844 tss->stepping_over_breakpoint = 0;
963f9c80 3845 tss->stepping_over_watchpoint = 0;
0d1e5fa7 3846 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
3847}
3848
c32c64b7
DE
3849/* Set the cached copy of the last ptid/waitstatus. */
3850
6efcd9a8 3851void
c32c64b7
DE
3852set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3853{
3854 target_last_wait_ptid = ptid;
3855 target_last_waitstatus = status;
3856}
3857
e02bc4cc 3858/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
3859 target_wait()/deprecated_target_wait_hook(). The data is actually
3860 cached by handle_inferior_event(), which gets called immediately
3861 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
3862
3863void
488f131b 3864get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 3865{
39f77062 3866 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
3867 *status = target_last_waitstatus;
3868}
3869
ac264b3b
MS
3870void
3871nullify_last_target_wait_ptid (void)
3872{
3873 target_last_wait_ptid = minus_one_ptid;
3874}
3875
dcf4fbde 3876/* Switch thread contexts. */
dd80620e
MS
3877
3878static void
00431a78 3879context_switch (execution_control_state *ecs)
dd80620e 3880{
00431a78
PA
3881 if (debug_infrun
3882 && ecs->ptid != inferior_ptid
3883 && ecs->event_thread != inferior_thread ())
fd48f117
DJ
3884 {
3885 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3886 target_pid_to_str (inferior_ptid));
3887 fprintf_unfiltered (gdb_stdlog, "to %s\n",
00431a78 3888 target_pid_to_str (ecs->ptid));
fd48f117
DJ
3889 }
3890
00431a78 3891 switch_to_thread (ecs->event_thread);
dd80620e
MS
3892}
3893
d8dd4d5f
PA
3894/* If the target can't tell whether we've hit breakpoints
3895 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
3896 check whether that could have been caused by a breakpoint. If so,
3897 adjust the PC, per gdbarch_decr_pc_after_break. */
3898
4fa8626c 3899static void
d8dd4d5f
PA
3900adjust_pc_after_break (struct thread_info *thread,
3901 struct target_waitstatus *ws)
4fa8626c 3902{
24a73cce
UW
3903 struct regcache *regcache;
3904 struct gdbarch *gdbarch;
118e6252 3905 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 3906
4fa8626c
DJ
3907 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3908 we aren't, just return.
9709f61c
DJ
3909
3910 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
3911 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3912 implemented by software breakpoints should be handled through the normal
3913 breakpoint layer.
8fb3e588 3914
4fa8626c
DJ
3915 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3916 different signals (SIGILL or SIGEMT for instance), but it is less
3917 clear where the PC is pointing afterwards. It may not match
b798847d
UW
3918 gdbarch_decr_pc_after_break. I don't know any specific target that
3919 generates these signals at breakpoints (the code has been in GDB since at
3920 least 1992) so I can not guess how to handle them here.
8fb3e588 3921
e6cf7916
UW
3922 In earlier versions of GDB, a target with
3923 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
3924 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3925 target with both of these set in GDB history, and it seems unlikely to be
3926 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 3927
d8dd4d5f 3928 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
3929 return;
3930
d8dd4d5f 3931 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
3932 return;
3933
4058b839
PA
3934 /* In reverse execution, when a breakpoint is hit, the instruction
3935 under it has already been de-executed. The reported PC always
3936 points at the breakpoint address, so adjusting it further would
3937 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3938 architecture:
3939
3940 B1 0x08000000 : INSN1
3941 B2 0x08000001 : INSN2
3942 0x08000002 : INSN3
3943 PC -> 0x08000003 : INSN4
3944
3945 Say you're stopped at 0x08000003 as above. Reverse continuing
3946 from that point should hit B2 as below. Reading the PC when the
3947 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3948 been de-executed already.
3949
3950 B1 0x08000000 : INSN1
3951 B2 PC -> 0x08000001 : INSN2
3952 0x08000002 : INSN3
3953 0x08000003 : INSN4
3954
3955 We can't apply the same logic as for forward execution, because
3956 we would wrongly adjust the PC to 0x08000000, since there's a
3957 breakpoint at PC - 1. We'd then report a hit on B1, although
3958 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3959 behaviour. */
3960 if (execution_direction == EXEC_REVERSE)
3961 return;
3962
1cf4d951
PA
3963 /* If the target can tell whether the thread hit a SW breakpoint,
3964 trust it. Targets that can tell also adjust the PC
3965 themselves. */
3966 if (target_supports_stopped_by_sw_breakpoint ())
3967 return;
3968
3969 /* Note that relying on whether a breakpoint is planted in memory to
3970 determine this can fail. E.g,. the breakpoint could have been
3971 removed since. Or the thread could have been told to step an
3972 instruction the size of a breakpoint instruction, and only
3973 _after_ was a breakpoint inserted at its address. */
3974
24a73cce
UW
3975 /* If this target does not decrement the PC after breakpoints, then
3976 we have nothing to do. */
00431a78 3977 regcache = get_thread_regcache (thread);
ac7936df 3978 gdbarch = regcache->arch ();
118e6252 3979
527a273a 3980 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 3981 if (decr_pc == 0)
24a73cce
UW
3982 return;
3983
8b86c959 3984 const address_space *aspace = regcache->aspace ();
6c95b8df 3985
8aad930b
AC
3986 /* Find the location where (if we've hit a breakpoint) the
3987 breakpoint would be. */
118e6252 3988 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 3989
1cf4d951
PA
3990 /* If the target can't tell whether a software breakpoint triggered,
3991 fallback to figuring it out based on breakpoints we think were
3992 inserted in the target, and on whether the thread was stepped or
3993 continued. */
3994
1c5cfe86
PA
3995 /* Check whether there actually is a software breakpoint inserted at
3996 that location.
3997
3998 If in non-stop mode, a race condition is possible where we've
3999 removed a breakpoint, but stop events for that breakpoint were
4000 already queued and arrive later. To suppress those spurious
4001 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4002 and retire them after a number of stop events are reported. Note
4003 this is an heuristic and can thus get confused. The real fix is
4004 to get the "stopped by SW BP and needs adjustment" info out of
4005 the target/kernel (and thus never reach here; see above). */
6c95b8df 4006 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4007 || (target_is_non_stop_p ()
4008 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4009 {
07036511 4010 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 4011
8213266a 4012 if (record_full_is_used ())
07036511
TT
4013 restore_operation_disable.emplace
4014 (record_full_gdb_operation_disable_set ());
96429cc8 4015
1c0fdd0e
UW
4016 /* When using hardware single-step, a SIGTRAP is reported for both
4017 a completed single-step and a software breakpoint. Need to
4018 differentiate between the two, as the latter needs adjusting
4019 but the former does not.
4020
4021 The SIGTRAP can be due to a completed hardware single-step only if
4022 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4023 - this thread is currently being stepped
4024
4025 If any of these events did not occur, we must have stopped due
4026 to hitting a software breakpoint, and have to back up to the
4027 breakpoint address.
4028
4029 As a special case, we could have hardware single-stepped a
4030 software breakpoint. In this case (prev_pc == breakpoint_pc),
4031 we also need to back up to the breakpoint address. */
4032
d8dd4d5f
PA
4033 if (thread_has_single_step_breakpoints_set (thread)
4034 || !currently_stepping (thread)
4035 || (thread->stepped_breakpoint
4036 && thread->prev_pc == breakpoint_pc))
515630c5 4037 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4038 }
4fa8626c
DJ
4039}
4040
edb3359d
DJ
4041static int
4042stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4043{
4044 for (frame = get_prev_frame (frame);
4045 frame != NULL;
4046 frame = get_prev_frame (frame))
4047 {
4048 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4049 return 1;
4050 if (get_frame_type (frame) != INLINE_FRAME)
4051 break;
4052 }
4053
4054 return 0;
4055}
4056
c65d6b55
PA
4057/* If the event thread has the stop requested flag set, pretend it
4058 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4059 target_stop). */
4060
4061static bool
4062handle_stop_requested (struct execution_control_state *ecs)
4063{
4064 if (ecs->event_thread->stop_requested)
4065 {
4066 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4067 ecs->ws.value.sig = GDB_SIGNAL_0;
4068 handle_signal_stop (ecs);
4069 return true;
4070 }
4071 return false;
4072}
4073
a96d9b2e
SDJ
4074/* Auxiliary function that handles syscall entry/return events.
4075 It returns 1 if the inferior should keep going (and GDB
4076 should ignore the event), or 0 if the event deserves to be
4077 processed. */
ca2163eb 4078
a96d9b2e 4079static int
ca2163eb 4080handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4081{
ca2163eb 4082 struct regcache *regcache;
ca2163eb
PA
4083 int syscall_number;
4084
00431a78 4085 context_switch (ecs);
ca2163eb 4086
00431a78 4087 regcache = get_thread_regcache (ecs->event_thread);
f90263c1 4088 syscall_number = ecs->ws.value.syscall_number;
f2ffa92b 4089 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
ca2163eb 4090
a96d9b2e
SDJ
4091 if (catch_syscall_enabled () > 0
4092 && catching_syscall_number (syscall_number) > 0)
4093 {
4094 if (debug_infrun)
4095 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4096 syscall_number);
a96d9b2e 4097
16c381f0 4098 ecs->event_thread->control.stop_bpstat
a01bda52 4099 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4100 ecs->event_thread->suspend.stop_pc,
4101 ecs->event_thread, &ecs->ws);
ab04a2af 4102
c65d6b55
PA
4103 if (handle_stop_requested (ecs))
4104 return 0;
4105
ce12b012 4106 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4107 {
4108 /* Catchpoint hit. */
ca2163eb
PA
4109 return 0;
4110 }
a96d9b2e 4111 }
ca2163eb 4112
c65d6b55
PA
4113 if (handle_stop_requested (ecs))
4114 return 0;
4115
ca2163eb 4116 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4117 keep_going (ecs);
4118 return 1;
a96d9b2e
SDJ
4119}
4120
7e324e48
GB
4121/* Lazily fill in the execution_control_state's stop_func_* fields. */
4122
4123static void
4124fill_in_stop_func (struct gdbarch *gdbarch,
4125 struct execution_control_state *ecs)
4126{
4127 if (!ecs->stop_func_filled_in)
4128 {
4129 /* Don't care about return value; stop_func_start and stop_func_name
4130 will both be 0 if it doesn't work. */
59adbf5d
KB
4131 find_function_entry_range_from_pc (ecs->event_thread->suspend.stop_pc,
4132 &ecs->stop_func_name,
4133 &ecs->stop_func_start,
4134 &ecs->stop_func_end);
7e324e48
GB
4135 ecs->stop_func_start
4136 += gdbarch_deprecated_function_start_offset (gdbarch);
4137
591a12a1
UW
4138 if (gdbarch_skip_entrypoint_p (gdbarch))
4139 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4140 ecs->stop_func_start);
4141
7e324e48
GB
4142 ecs->stop_func_filled_in = 1;
4143 }
4144}
4145
4f5d7f63 4146
00431a78 4147/* Return the STOP_SOON field of the inferior pointed at by ECS. */
4f5d7f63
PA
4148
4149static enum stop_kind
00431a78 4150get_inferior_stop_soon (execution_control_state *ecs)
4f5d7f63 4151{
00431a78 4152 struct inferior *inf = find_inferior_ptid (ecs->ptid);
4f5d7f63
PA
4153
4154 gdb_assert (inf != NULL);
4155 return inf->control.stop_soon;
4156}
4157
372316f1
PA
4158/* Wait for one event. Store the resulting waitstatus in WS, and
4159 return the event ptid. */
4160
4161static ptid_t
4162wait_one (struct target_waitstatus *ws)
4163{
4164 ptid_t event_ptid;
4165 ptid_t wait_ptid = minus_one_ptid;
4166
4167 overlay_cache_invalid = 1;
4168
4169 /* Flush target cache before starting to handle each event.
4170 Target was running and cache could be stale. This is just a
4171 heuristic. Running threads may modify target memory, but we
4172 don't get any event. */
4173 target_dcache_invalidate ();
4174
4175 if (deprecated_target_wait_hook)
4176 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4177 else
4178 event_ptid = target_wait (wait_ptid, ws, 0);
4179
4180 if (debug_infrun)
4181 print_target_wait_results (wait_ptid, event_ptid, ws);
4182
4183 return event_ptid;
4184}
4185
4186/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4187 instead of the current thread. */
4188#define THREAD_STOPPED_BY(REASON) \
4189static int \
4190thread_stopped_by_ ## REASON (ptid_t ptid) \
4191{ \
2989a365 4192 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
372316f1
PA
4193 inferior_ptid = ptid; \
4194 \
2989a365 4195 return target_stopped_by_ ## REASON (); \
372316f1
PA
4196}
4197
4198/* Generate thread_stopped_by_watchpoint. */
4199THREAD_STOPPED_BY (watchpoint)
4200/* Generate thread_stopped_by_sw_breakpoint. */
4201THREAD_STOPPED_BY (sw_breakpoint)
4202/* Generate thread_stopped_by_hw_breakpoint. */
4203THREAD_STOPPED_BY (hw_breakpoint)
4204
372316f1
PA
4205/* Save the thread's event and stop reason to process it later. */
4206
4207static void
4208save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4209{
372316f1
PA
4210 if (debug_infrun)
4211 {
23fdd69e 4212 std::string statstr = target_waitstatus_to_string (ws);
372316f1 4213
372316f1
PA
4214 fprintf_unfiltered (gdb_stdlog,
4215 "infrun: saving status %s for %d.%ld.%ld\n",
23fdd69e 4216 statstr.c_str (),
e99b03dc 4217 tp->ptid.pid (),
e38504b3 4218 tp->ptid.lwp (),
cc6bcb54 4219 tp->ptid.tid ());
372316f1
PA
4220 }
4221
4222 /* Record for later. */
4223 tp->suspend.waitstatus = *ws;
4224 tp->suspend.waitstatus_pending_p = 1;
4225
00431a78 4226 struct regcache *regcache = get_thread_regcache (tp);
8b86c959 4227 const address_space *aspace = regcache->aspace ();
372316f1
PA
4228
4229 if (ws->kind == TARGET_WAITKIND_STOPPED
4230 && ws->value.sig == GDB_SIGNAL_TRAP)
4231 {
4232 CORE_ADDR pc = regcache_read_pc (regcache);
4233
4234 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4235
4236 if (thread_stopped_by_watchpoint (tp->ptid))
4237 {
4238 tp->suspend.stop_reason
4239 = TARGET_STOPPED_BY_WATCHPOINT;
4240 }
4241 else if (target_supports_stopped_by_sw_breakpoint ()
4242 && thread_stopped_by_sw_breakpoint (tp->ptid))
4243 {
4244 tp->suspend.stop_reason
4245 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4246 }
4247 else if (target_supports_stopped_by_hw_breakpoint ()
4248 && thread_stopped_by_hw_breakpoint (tp->ptid))
4249 {
4250 tp->suspend.stop_reason
4251 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4252 }
4253 else if (!target_supports_stopped_by_hw_breakpoint ()
4254 && hardware_breakpoint_inserted_here_p (aspace,
4255 pc))
4256 {
4257 tp->suspend.stop_reason
4258 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4259 }
4260 else if (!target_supports_stopped_by_sw_breakpoint ()
4261 && software_breakpoint_inserted_here_p (aspace,
4262 pc))
4263 {
4264 tp->suspend.stop_reason
4265 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4266 }
4267 else if (!thread_has_single_step_breakpoints_set (tp)
4268 && currently_stepping (tp))
4269 {
4270 tp->suspend.stop_reason
4271 = TARGET_STOPPED_BY_SINGLE_STEP;
4272 }
4273 }
4274}
4275
6efcd9a8 4276/* See infrun.h. */
372316f1 4277
6efcd9a8 4278void
372316f1
PA
4279stop_all_threads (void)
4280{
4281 /* We may need multiple passes to discover all threads. */
4282 int pass;
4283 int iterations = 0;
372316f1 4284
fbea99ea 4285 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4286
4287 if (debug_infrun)
4288 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4289
00431a78 4290 scoped_restore_current_thread restore_thread;
372316f1 4291
65706a29 4292 target_thread_events (1);
9885e6bb 4293 SCOPE_EXIT { target_thread_events (0); };
65706a29 4294
372316f1
PA
4295 /* Request threads to stop, and then wait for the stops. Because
4296 threads we already know about can spawn more threads while we're
4297 trying to stop them, and we only learn about new threads when we
4298 update the thread list, do this in a loop, and keep iterating
4299 until two passes find no threads that need to be stopped. */
4300 for (pass = 0; pass < 2; pass++, iterations++)
4301 {
4302 if (debug_infrun)
4303 fprintf_unfiltered (gdb_stdlog,
4304 "infrun: stop_all_threads, pass=%d, "
4305 "iterations=%d\n", pass, iterations);
4306 while (1)
4307 {
4308 ptid_t event_ptid;
4309 struct target_waitstatus ws;
4310 int need_wait = 0;
372316f1
PA
4311
4312 update_thread_list ();
4313
4314 /* Go through all threads looking for threads that we need
4315 to tell the target to stop. */
08036331 4316 for (thread_info *t : all_non_exited_threads ())
372316f1
PA
4317 {
4318 if (t->executing)
4319 {
4320 /* If already stopping, don't request a stop again.
4321 We just haven't seen the notification yet. */
4322 if (!t->stop_requested)
4323 {
4324 if (debug_infrun)
4325 fprintf_unfiltered (gdb_stdlog,
4326 "infrun: %s executing, "
4327 "need stop\n",
4328 target_pid_to_str (t->ptid));
4329 target_stop (t->ptid);
4330 t->stop_requested = 1;
4331 }
4332 else
4333 {
4334 if (debug_infrun)
4335 fprintf_unfiltered (gdb_stdlog,
4336 "infrun: %s executing, "
4337 "already stopping\n",
4338 target_pid_to_str (t->ptid));
4339 }
4340
4341 if (t->stop_requested)
4342 need_wait = 1;
4343 }
4344 else
4345 {
4346 if (debug_infrun)
4347 fprintf_unfiltered (gdb_stdlog,
4348 "infrun: %s not executing\n",
4349 target_pid_to_str (t->ptid));
4350
4351 /* The thread may be not executing, but still be
4352 resumed with a pending status to process. */
4353 t->resumed = 0;
4354 }
4355 }
4356
4357 if (!need_wait)
4358 break;
4359
4360 /* If we find new threads on the second iteration, restart
4361 over. We want to see two iterations in a row with all
4362 threads stopped. */
4363 if (pass > 0)
4364 pass = -1;
4365
4366 event_ptid = wait_one (&ws);
00431a78 4367
372316f1
PA
4368 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4369 {
4370 /* All resumed threads exited. */
4371 }
65706a29
PA
4372 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4373 || ws.kind == TARGET_WAITKIND_EXITED
372316f1
PA
4374 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4375 {
4376 if (debug_infrun)
4377 {
f2907e49 4378 ptid_t ptid = ptid_t (ws.value.integer);
372316f1
PA
4379
4380 fprintf_unfiltered (gdb_stdlog,
4381 "infrun: %s exited while "
4382 "stopping threads\n",
4383 target_pid_to_str (ptid));
4384 }
4385 }
4386 else
4387 {
08036331 4388 thread_info *t = find_thread_ptid (event_ptid);
372316f1
PA
4389 if (t == NULL)
4390 t = add_thread (event_ptid);
4391
4392 t->stop_requested = 0;
4393 t->executing = 0;
4394 t->resumed = 0;
4395 t->control.may_range_step = 0;
4396
6efcd9a8
PA
4397 /* This may be the first time we see the inferior report
4398 a stop. */
08036331 4399 inferior *inf = find_inferior_ptid (event_ptid);
6efcd9a8
PA
4400 if (inf->needs_setup)
4401 {
4402 switch_to_thread_no_regs (t);
4403 setup_inferior (0);
4404 }
4405
372316f1
PA
4406 if (ws.kind == TARGET_WAITKIND_STOPPED
4407 && ws.value.sig == GDB_SIGNAL_0)
4408 {
4409 /* We caught the event that we intended to catch, so
4410 there's no event pending. */
4411 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4412 t->suspend.waitstatus_pending_p = 0;
4413
00431a78 4414 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
372316f1
PA
4415 {
4416 /* Add it back to the step-over queue. */
4417 if (debug_infrun)
4418 {
4419 fprintf_unfiltered (gdb_stdlog,
4420 "infrun: displaced-step of %s "
4421 "canceled: adding back to the "
4422 "step-over queue\n",
4423 target_pid_to_str (t->ptid));
4424 }
4425 t->control.trap_expected = 0;
4426 thread_step_over_chain_enqueue (t);
4427 }
4428 }
4429 else
4430 {
4431 enum gdb_signal sig;
4432 struct regcache *regcache;
372316f1
PA
4433
4434 if (debug_infrun)
4435 {
23fdd69e 4436 std::string statstr = target_waitstatus_to_string (&ws);
372316f1 4437
372316f1
PA
4438 fprintf_unfiltered (gdb_stdlog,
4439 "infrun: target_wait %s, saving "
4440 "status for %d.%ld.%ld\n",
23fdd69e 4441 statstr.c_str (),
e99b03dc 4442 t->ptid.pid (),
e38504b3 4443 t->ptid.lwp (),
cc6bcb54 4444 t->ptid.tid ());
372316f1
PA
4445 }
4446
4447 /* Record for later. */
4448 save_waitstatus (t, &ws);
4449
4450 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4451 ? ws.value.sig : GDB_SIGNAL_0);
4452
00431a78 4453 if (displaced_step_fixup (t, sig) < 0)
372316f1
PA
4454 {
4455 /* Add it back to the step-over queue. */
4456 t->control.trap_expected = 0;
4457 thread_step_over_chain_enqueue (t);
4458 }
4459
00431a78 4460 regcache = get_thread_regcache (t);
372316f1
PA
4461 t->suspend.stop_pc = regcache_read_pc (regcache);
4462
4463 if (debug_infrun)
4464 {
4465 fprintf_unfiltered (gdb_stdlog,
4466 "infrun: saved stop_pc=%s for %s "
4467 "(currently_stepping=%d)\n",
4468 paddress (target_gdbarch (),
4469 t->suspend.stop_pc),
4470 target_pid_to_str (t->ptid),
4471 currently_stepping (t));
4472 }
4473 }
4474 }
4475 }
4476 }
4477
372316f1
PA
4478 if (debug_infrun)
4479 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4480}
4481
f4836ba9
PA
4482/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4483
4484static int
4485handle_no_resumed (struct execution_control_state *ecs)
4486{
3b12939d 4487 if (target_can_async_p ())
f4836ba9 4488 {
3b12939d
PA
4489 struct ui *ui;
4490 int any_sync = 0;
f4836ba9 4491
3b12939d
PA
4492 ALL_UIS (ui)
4493 {
4494 if (ui->prompt_state == PROMPT_BLOCKED)
4495 {
4496 any_sync = 1;
4497 break;
4498 }
4499 }
4500 if (!any_sync)
4501 {
4502 /* There were no unwaited-for children left in the target, but,
4503 we're not synchronously waiting for events either. Just
4504 ignore. */
4505
4506 if (debug_infrun)
4507 fprintf_unfiltered (gdb_stdlog,
4508 "infrun: TARGET_WAITKIND_NO_RESUMED "
4509 "(ignoring: bg)\n");
4510 prepare_to_wait (ecs);
4511 return 1;
4512 }
f4836ba9
PA
4513 }
4514
4515 /* Otherwise, if we were running a synchronous execution command, we
4516 may need to cancel it and give the user back the terminal.
4517
4518 In non-stop mode, the target can't tell whether we've already
4519 consumed previous stop events, so it can end up sending us a
4520 no-resumed event like so:
4521
4522 #0 - thread 1 is left stopped
4523
4524 #1 - thread 2 is resumed and hits breakpoint
4525 -> TARGET_WAITKIND_STOPPED
4526
4527 #2 - thread 3 is resumed and exits
4528 this is the last resumed thread, so
4529 -> TARGET_WAITKIND_NO_RESUMED
4530
4531 #3 - gdb processes stop for thread 2 and decides to re-resume
4532 it.
4533
4534 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4535 thread 2 is now resumed, so the event should be ignored.
4536
4537 IOW, if the stop for thread 2 doesn't end a foreground command,
4538 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4539 event. But it could be that the event meant that thread 2 itself
4540 (or whatever other thread was the last resumed thread) exited.
4541
4542 To address this we refresh the thread list and check whether we
4543 have resumed threads _now_. In the example above, this removes
4544 thread 3 from the thread list. If thread 2 was re-resumed, we
4545 ignore this event. If we find no thread resumed, then we cancel
4546 the synchronous command show "no unwaited-for " to the user. */
4547 update_thread_list ();
4548
08036331 4549 for (thread_info *thread : all_non_exited_threads ())
f4836ba9
PA
4550 {
4551 if (thread->executing
4552 || thread->suspend.waitstatus_pending_p)
4553 {
4554 /* There were no unwaited-for children left in the target at
4555 some point, but there are now. Just ignore. */
4556 if (debug_infrun)
4557 fprintf_unfiltered (gdb_stdlog,
4558 "infrun: TARGET_WAITKIND_NO_RESUMED "
4559 "(ignoring: found resumed)\n");
4560 prepare_to_wait (ecs);
4561 return 1;
4562 }
4563 }
4564
4565 /* Note however that we may find no resumed thread because the whole
4566 process exited meanwhile (thus updating the thread list results
4567 in an empty thread list). In this case we know we'll be getting
4568 a process exit event shortly. */
08036331 4569 for (inferior *inf : all_inferiors ())
f4836ba9
PA
4570 {
4571 if (inf->pid == 0)
4572 continue;
4573
08036331 4574 thread_info *thread = any_live_thread_of_inferior (inf);
f4836ba9
PA
4575 if (thread == NULL)
4576 {
4577 if (debug_infrun)
4578 fprintf_unfiltered (gdb_stdlog,
4579 "infrun: TARGET_WAITKIND_NO_RESUMED "
4580 "(expect process exit)\n");
4581 prepare_to_wait (ecs);
4582 return 1;
4583 }
4584 }
4585
4586 /* Go ahead and report the event. */
4587 return 0;
4588}
4589
05ba8510
PA
4590/* Given an execution control state that has been freshly filled in by
4591 an event from the inferior, figure out what it means and take
4592 appropriate action.
4593
4594 The alternatives are:
4595
22bcd14b 4596 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4597 debugger.
4598
4599 2) keep_going and return; to wait for the next event (set
4600 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4601 once). */
c906108c 4602
ec9499be 4603static void
0b6e5e10 4604handle_inferior_event_1 (struct execution_control_state *ecs)
cd0fc7c3 4605{
d6b48e9c
PA
4606 enum stop_kind stop_soon;
4607
28736962
PA
4608 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4609 {
4610 /* We had an event in the inferior, but we are not interested in
4611 handling it at this level. The lower layers have already
4612 done what needs to be done, if anything.
4613
4614 One of the possible circumstances for this is when the
4615 inferior produces output for the console. The inferior has
4616 not stopped, and we are ignoring the event. Another possible
4617 circumstance is any event which the lower level knows will be
4618 reported multiple times without an intervening resume. */
4619 if (debug_infrun)
4620 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4621 prepare_to_wait (ecs);
4622 return;
4623 }
4624
65706a29
PA
4625 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4626 {
4627 if (debug_infrun)
4628 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4629 prepare_to_wait (ecs);
4630 return;
4631 }
4632
0e5bf2a8 4633 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
4634 && handle_no_resumed (ecs))
4635 return;
0e5bf2a8 4636
1777feb0 4637 /* Cache the last pid/waitstatus. */
c32c64b7 4638 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4639
ca005067 4640 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4641 stop_stack_dummy = STOP_NONE;
ca005067 4642
0e5bf2a8
PA
4643 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4644 {
4645 /* No unwaited-for children left. IOW, all resumed children
4646 have exited. */
4647 if (debug_infrun)
4648 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4649
4650 stop_print_frame = 0;
22bcd14b 4651 stop_waiting (ecs);
0e5bf2a8
PA
4652 return;
4653 }
4654
8c90c137 4655 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4656 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4657 {
4658 ecs->event_thread = find_thread_ptid (ecs->ptid);
4659 /* If it's a new thread, add it to the thread database. */
4660 if (ecs->event_thread == NULL)
4661 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4662
4663 /* Disable range stepping. If the next step request could use a
4664 range, this will be end up re-enabled then. */
4665 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4666 }
88ed393a
JK
4667
4668 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4669 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4670
4671 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4672 reinit_frame_cache ();
4673
28736962
PA
4674 breakpoint_retire_moribund ();
4675
2b009048
DJ
4676 /* First, distinguish signals caused by the debugger from signals
4677 that have to do with the program's own actions. Note that
4678 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4679 on the operating system version. Here we detect when a SIGILL or
4680 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4681 something similar for SIGSEGV, since a SIGSEGV will be generated
4682 when we're trying to execute a breakpoint instruction on a
4683 non-executable stack. This happens for call dummy breakpoints
4684 for architectures like SPARC that place call dummies on the
4685 stack. */
2b009048 4686 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4687 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4688 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4689 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4690 {
00431a78 4691 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
de0a0249 4692
a01bda52 4693 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
4694 regcache_read_pc (regcache)))
4695 {
4696 if (debug_infrun)
4697 fprintf_unfiltered (gdb_stdlog,
4698 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4699 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4700 }
2b009048
DJ
4701 }
4702
28736962
PA
4703 /* Mark the non-executing threads accordingly. In all-stop, all
4704 threads of all processes are stopped when we get any event
e1316e60 4705 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4706 {
4707 ptid_t mark_ptid;
4708
fbea99ea 4709 if (!target_is_non_stop_p ())
372316f1
PA
4710 mark_ptid = minus_one_ptid;
4711 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4712 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4713 {
4714 /* If we're handling a process exit in non-stop mode, even
4715 though threads haven't been deleted yet, one would think
4716 that there is nothing to do, as threads of the dead process
4717 will be soon deleted, and threads of any other process were
4718 left running. However, on some targets, threads survive a
4719 process exit event. E.g., for the "checkpoint" command,
4720 when the current checkpoint/fork exits, linux-fork.c
4721 automatically switches to another fork from within
4722 target_mourn_inferior, by associating the same
4723 inferior/thread to another fork. We haven't mourned yet at
4724 this point, but we must mark any threads left in the
4725 process as not-executing so that finish_thread_state marks
4726 them stopped (in the user's perspective) if/when we present
4727 the stop to the user. */
e99b03dc 4728 mark_ptid = ptid_t (ecs->ptid.pid ());
372316f1
PA
4729 }
4730 else
4731 mark_ptid = ecs->ptid;
4732
4733 set_executing (mark_ptid, 0);
4734
4735 /* Likewise the resumed flag. */
4736 set_resumed (mark_ptid, 0);
4737 }
8c90c137 4738
488f131b
JB
4739 switch (ecs->ws.kind)
4740 {
4741 case TARGET_WAITKIND_LOADED:
527159b7 4742 if (debug_infrun)
8a9de0e4 4743 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
00431a78 4744 context_switch (ecs);
b0f4b84b
DJ
4745 /* Ignore gracefully during startup of the inferior, as it might
4746 be the shell which has just loaded some objects, otherwise
4747 add the symbols for the newly loaded objects. Also ignore at
4748 the beginning of an attach or remote session; we will query
4749 the full list of libraries once the connection is
4750 established. */
4f5d7f63 4751
00431a78 4752 stop_soon = get_inferior_stop_soon (ecs);
c0236d92 4753 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4754 {
edcc5120
TT
4755 struct regcache *regcache;
4756
00431a78 4757 regcache = get_thread_regcache (ecs->event_thread);
edcc5120
TT
4758
4759 handle_solib_event ();
4760
4761 ecs->event_thread->control.stop_bpstat
a01bda52 4762 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4763 ecs->event_thread->suspend.stop_pc,
4764 ecs->event_thread, &ecs->ws);
ab04a2af 4765
c65d6b55
PA
4766 if (handle_stop_requested (ecs))
4767 return;
4768
ce12b012 4769 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4770 {
4771 /* A catchpoint triggered. */
94c57d6a
PA
4772 process_event_stop_test (ecs);
4773 return;
edcc5120 4774 }
488f131b 4775
b0f4b84b
DJ
4776 /* If requested, stop when the dynamic linker notifies
4777 gdb of events. This allows the user to get control
4778 and place breakpoints in initializer routines for
4779 dynamically loaded objects (among other things). */
a493e3e2 4780 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4781 if (stop_on_solib_events)
4782 {
55409f9d
DJ
4783 /* Make sure we print "Stopped due to solib-event" in
4784 normal_stop. */
4785 stop_print_frame = 1;
4786
22bcd14b 4787 stop_waiting (ecs);
b0f4b84b
DJ
4788 return;
4789 }
488f131b 4790 }
b0f4b84b
DJ
4791
4792 /* If we are skipping through a shell, or through shared library
4793 loading that we aren't interested in, resume the program. If
5c09a2c5 4794 we're running the program normally, also resume. */
b0f4b84b
DJ
4795 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4796 {
74960c60
VP
4797 /* Loading of shared libraries might have changed breakpoint
4798 addresses. Make sure new breakpoints are inserted. */
a25a5a45 4799 if (stop_soon == NO_STOP_QUIETLY)
74960c60 4800 insert_breakpoints ();
64ce06e4 4801 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
4802 prepare_to_wait (ecs);
4803 return;
4804 }
4805
5c09a2c5
PA
4806 /* But stop if we're attaching or setting up a remote
4807 connection. */
4808 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4809 || stop_soon == STOP_QUIETLY_REMOTE)
4810 {
4811 if (debug_infrun)
4812 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 4813 stop_waiting (ecs);
5c09a2c5
PA
4814 return;
4815 }
4816
4817 internal_error (__FILE__, __LINE__,
4818 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 4819
488f131b 4820 case TARGET_WAITKIND_SPURIOUS:
527159b7 4821 if (debug_infrun)
8a9de0e4 4822 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
c65d6b55
PA
4823 if (handle_stop_requested (ecs))
4824 return;
00431a78 4825 context_switch (ecs);
64ce06e4 4826 resume (GDB_SIGNAL_0);
488f131b
JB
4827 prepare_to_wait (ecs);
4828 return;
c5aa993b 4829
65706a29
PA
4830 case TARGET_WAITKIND_THREAD_CREATED:
4831 if (debug_infrun)
4832 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
c65d6b55
PA
4833 if (handle_stop_requested (ecs))
4834 return;
00431a78 4835 context_switch (ecs);
65706a29
PA
4836 if (!switch_back_to_stepped_thread (ecs))
4837 keep_going (ecs);
4838 return;
4839
488f131b 4840 case TARGET_WAITKIND_EXITED:
940c3c06 4841 case TARGET_WAITKIND_SIGNALLED:
527159b7 4842 if (debug_infrun)
940c3c06
PA
4843 {
4844 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4845 fprintf_unfiltered (gdb_stdlog,
4846 "infrun: TARGET_WAITKIND_EXITED\n");
4847 else
4848 fprintf_unfiltered (gdb_stdlog,
4849 "infrun: TARGET_WAITKIND_SIGNALLED\n");
4850 }
4851
fb66883a 4852 inferior_ptid = ecs->ptid;
c9657e70 4853 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
4854 set_current_program_space (current_inferior ()->pspace);
4855 handle_vfork_child_exec_or_exit (0);
223ffa71 4856 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 4857
0c557179
SDJ
4858 /* Clearing any previous state of convenience variables. */
4859 clear_exit_convenience_vars ();
4860
940c3c06
PA
4861 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4862 {
4863 /* Record the exit code in the convenience variable $_exitcode, so
4864 that the user can inspect this again later. */
4865 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4866 (LONGEST) ecs->ws.value.integer);
4867
4868 /* Also record this in the inferior itself. */
4869 current_inferior ()->has_exit_code = 1;
4870 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 4871
98eb56a4
PA
4872 /* Support the --return-child-result option. */
4873 return_child_result_value = ecs->ws.value.integer;
4874
76727919 4875 gdb::observers::exited.notify (ecs->ws.value.integer);
940c3c06
PA
4876 }
4877 else
0c557179 4878 {
00431a78 4879 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
0c557179
SDJ
4880
4881 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4882 {
4883 /* Set the value of the internal variable $_exitsignal,
4884 which holds the signal uncaught by the inferior. */
4885 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4886 gdbarch_gdb_signal_to_target (gdbarch,
4887 ecs->ws.value.sig));
4888 }
4889 else
4890 {
4891 /* We don't have access to the target's method used for
4892 converting between signal numbers (GDB's internal
4893 representation <-> target's representation).
4894 Therefore, we cannot do a good job at displaying this
4895 information to the user. It's better to just warn
4896 her about it (if infrun debugging is enabled), and
4897 give up. */
4898 if (debug_infrun)
4899 fprintf_filtered (gdb_stdlog, _("\
4900Cannot fill $_exitsignal with the correct signal number.\n"));
4901 }
4902
76727919 4903 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
0c557179 4904 }
8cf64490 4905
488f131b 4906 gdb_flush (gdb_stdout);
bc1e6c81 4907 target_mourn_inferior (inferior_ptid);
488f131b 4908 stop_print_frame = 0;
22bcd14b 4909 stop_waiting (ecs);
488f131b 4910 return;
c5aa993b 4911
488f131b 4912 /* The following are the only cases in which we keep going;
1777feb0 4913 the above cases end in a continue or goto. */
488f131b 4914 case TARGET_WAITKIND_FORKED:
deb3b17b 4915 case TARGET_WAITKIND_VFORKED:
527159b7 4916 if (debug_infrun)
fed708ed
PA
4917 {
4918 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4919 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
4920 else
4921 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
4922 }
c906108c 4923
e2d96639
YQ
4924 /* Check whether the inferior is displaced stepping. */
4925 {
00431a78 4926 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
ac7936df 4927 struct gdbarch *gdbarch = regcache->arch ();
e2d96639
YQ
4928
4929 /* If checking displaced stepping is supported, and thread
4930 ecs->ptid is displaced stepping. */
00431a78 4931 if (displaced_step_in_progress_thread (ecs->event_thread))
e2d96639
YQ
4932 {
4933 struct inferior *parent_inf
c9657e70 4934 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
4935 struct regcache *child_regcache;
4936 CORE_ADDR parent_pc;
4937
4938 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4939 indicating that the displaced stepping of syscall instruction
4940 has been done. Perform cleanup for parent process here. Note
4941 that this operation also cleans up the child process for vfork,
4942 because their pages are shared. */
00431a78 4943 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
c2829269
PA
4944 /* Start a new step-over in another thread if there's one
4945 that needs it. */
4946 start_step_over ();
e2d96639
YQ
4947
4948 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4949 {
c0987663 4950 struct displaced_step_inferior_state *displaced
00431a78 4951 = get_displaced_stepping_state (parent_inf);
c0987663 4952
e2d96639
YQ
4953 /* Restore scratch pad for child process. */
4954 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4955 }
4956
4957 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4958 the child's PC is also within the scratchpad. Set the child's PC
4959 to the parent's PC value, which has already been fixed up.
4960 FIXME: we use the parent's aspace here, although we're touching
4961 the child, because the child hasn't been added to the inferior
4962 list yet at this point. */
4963
4964 child_regcache
4965 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4966 gdbarch,
4967 parent_inf->aspace);
4968 /* Read PC value of parent process. */
4969 parent_pc = regcache_read_pc (regcache);
4970
4971 if (debug_displaced)
4972 fprintf_unfiltered (gdb_stdlog,
4973 "displaced: write child pc from %s to %s\n",
4974 paddress (gdbarch,
4975 regcache_read_pc (child_regcache)),
4976 paddress (gdbarch, parent_pc));
4977
4978 regcache_write_pc (child_regcache, parent_pc);
4979 }
4980 }
4981
00431a78 4982 context_switch (ecs);
5a2901d9 4983
b242c3c2
PA
4984 /* Immediately detach breakpoints from the child before there's
4985 any chance of letting the user delete breakpoints from the
4986 breakpoint lists. If we don't do this early, it's easy to
4987 leave left over traps in the child, vis: "break foo; catch
4988 fork; c; <fork>; del; c; <child calls foo>". We only follow
4989 the fork on the last `continue', and by that time the
4990 breakpoint at "foo" is long gone from the breakpoint table.
4991 If we vforked, then we don't need to unpatch here, since both
4992 parent and child are sharing the same memory pages; we'll
4993 need to unpatch at follow/detach time instead to be certain
4994 that new breakpoints added between catchpoint hit time and
4995 vfork follow are detached. */
4996 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
4997 {
b242c3c2
PA
4998 /* This won't actually modify the breakpoint list, but will
4999 physically remove the breakpoints from the child. */
d80ee84f 5000 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5001 }
5002
34b7e8a6 5003 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5004
e58b0e63
PA
5005 /* In case the event is caught by a catchpoint, remember that
5006 the event is to be followed at the next resume of the thread,
5007 and not immediately. */
5008 ecs->event_thread->pending_follow = ecs->ws;
5009
f2ffa92b
PA
5010 ecs->event_thread->suspend.stop_pc
5011 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
675bf4cb 5012
16c381f0 5013 ecs->event_thread->control.stop_bpstat
a01bda52 5014 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5015 ecs->event_thread->suspend.stop_pc,
5016 ecs->event_thread, &ecs->ws);
675bf4cb 5017
c65d6b55
PA
5018 if (handle_stop_requested (ecs))
5019 return;
5020
ce12b012
PA
5021 /* If no catchpoint triggered for this, then keep going. Note
5022 that we're interested in knowing the bpstat actually causes a
5023 stop, not just if it may explain the signal. Software
5024 watchpoints, for example, always appear in the bpstat. */
5025 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5026 {
e58b0e63 5027 int should_resume;
3e43a32a
MS
5028 int follow_child
5029 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5030
a493e3e2 5031 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
5032
5033 should_resume = follow_fork ();
5034
00431a78
PA
5035 thread_info *parent = ecs->event_thread;
5036 thread_info *child = find_thread_ptid (ecs->ws.value.related_pid);
6c95b8df 5037
a2077e25
PA
5038 /* At this point, the parent is marked running, and the
5039 child is marked stopped. */
5040
5041 /* If not resuming the parent, mark it stopped. */
5042 if (follow_child && !detach_fork && !non_stop && !sched_multi)
00431a78 5043 parent->set_running (false);
a2077e25
PA
5044
5045 /* If resuming the child, mark it running. */
5046 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
00431a78 5047 child->set_running (true);
a2077e25 5048
6c95b8df 5049 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5050 if (!detach_fork && (non_stop
5051 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5052 {
5053 if (follow_child)
5054 switch_to_thread (parent);
5055 else
5056 switch_to_thread (child);
5057
5058 ecs->event_thread = inferior_thread ();
5059 ecs->ptid = inferior_ptid;
5060 keep_going (ecs);
5061 }
5062
5063 if (follow_child)
5064 switch_to_thread (child);
5065 else
5066 switch_to_thread (parent);
5067
e58b0e63
PA
5068 ecs->event_thread = inferior_thread ();
5069 ecs->ptid = inferior_ptid;
5070
5071 if (should_resume)
5072 keep_going (ecs);
5073 else
22bcd14b 5074 stop_waiting (ecs);
04e68871
DJ
5075 return;
5076 }
94c57d6a
PA
5077 process_event_stop_test (ecs);
5078 return;
488f131b 5079
6c95b8df
PA
5080 case TARGET_WAITKIND_VFORK_DONE:
5081 /* Done with the shared memory region. Re-insert breakpoints in
5082 the parent, and keep going. */
5083
5084 if (debug_infrun)
3e43a32a
MS
5085 fprintf_unfiltered (gdb_stdlog,
5086 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df 5087
00431a78 5088 context_switch (ecs);
6c95b8df
PA
5089
5090 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5091 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5092
5093 if (handle_stop_requested (ecs))
5094 return;
5095
6c95b8df
PA
5096 /* This also takes care of reinserting breakpoints in the
5097 previously locked inferior. */
5098 keep_going (ecs);
5099 return;
5100
488f131b 5101 case TARGET_WAITKIND_EXECD:
527159b7 5102 if (debug_infrun)
fc5261f2 5103 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 5104
cbd2b4e3
PA
5105 /* Note we can't read registers yet (the stop_pc), because we
5106 don't yet know the inferior's post-exec architecture.
5107 'stop_pc' is explicitly read below instead. */
00431a78 5108 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5109
6c95b8df
PA
5110 /* Do whatever is necessary to the parent branch of the vfork. */
5111 handle_vfork_child_exec_or_exit (1);
5112
795e548f
PA
5113 /* This causes the eventpoints and symbol table to be reset.
5114 Must do this now, before trying to determine whether to
5115 stop. */
71b43ef8 5116 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5117
17d8546e
DB
5118 /* In follow_exec we may have deleted the original thread and
5119 created a new one. Make sure that the event thread is the
5120 execd thread for that case (this is a nop otherwise). */
5121 ecs->event_thread = inferior_thread ();
5122
f2ffa92b
PA
5123 ecs->event_thread->suspend.stop_pc
5124 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
ecdc3a72 5125
16c381f0 5126 ecs->event_thread->control.stop_bpstat
a01bda52 5127 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5128 ecs->event_thread->suspend.stop_pc,
5129 ecs->event_thread, &ecs->ws);
795e548f 5130
71b43ef8
PA
5131 /* Note that this may be referenced from inside
5132 bpstat_stop_status above, through inferior_has_execd. */
5133 xfree (ecs->ws.value.execd_pathname);
5134 ecs->ws.value.execd_pathname = NULL;
5135
c65d6b55
PA
5136 if (handle_stop_requested (ecs))
5137 return;
5138
04e68871 5139 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5140 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5141 {
a493e3e2 5142 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5143 keep_going (ecs);
5144 return;
5145 }
94c57d6a
PA
5146 process_event_stop_test (ecs);
5147 return;
488f131b 5148
b4dc5ffa
MK
5149 /* Be careful not to try to gather much state about a thread
5150 that's in a syscall. It's frequently a losing proposition. */
488f131b 5151 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 5152 if (debug_infrun)
3e43a32a
MS
5153 fprintf_unfiltered (gdb_stdlog,
5154 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 5155 /* Getting the current syscall number. */
94c57d6a
PA
5156 if (handle_syscall_event (ecs) == 0)
5157 process_event_stop_test (ecs);
5158 return;
c906108c 5159
488f131b
JB
5160 /* Before examining the threads further, step this thread to
5161 get it entirely out of the syscall. (We get notice of the
5162 event when the thread is just on the verge of exiting a
5163 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5164 into user code.) */
488f131b 5165 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 5166 if (debug_infrun)
3e43a32a
MS
5167 fprintf_unfiltered (gdb_stdlog,
5168 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
5169 if (handle_syscall_event (ecs) == 0)
5170 process_event_stop_test (ecs);
5171 return;
c906108c 5172
488f131b 5173 case TARGET_WAITKIND_STOPPED:
527159b7 5174 if (debug_infrun)
8a9de0e4 5175 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
4f5d7f63
PA
5176 handle_signal_stop (ecs);
5177 return;
c906108c 5178
b2175913 5179 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
5180 if (debug_infrun)
5181 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 5182 /* Reverse execution: target ran out of history info. */
eab402df 5183
d1988021 5184 /* Switch to the stopped thread. */
00431a78 5185 context_switch (ecs);
d1988021
MM
5186 if (debug_infrun)
5187 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5188
34b7e8a6 5189 delete_just_stopped_threads_single_step_breakpoints ();
f2ffa92b
PA
5190 ecs->event_thread->suspend.stop_pc
5191 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
c65d6b55
PA
5192
5193 if (handle_stop_requested (ecs))
5194 return;
5195
76727919 5196 gdb::observers::no_history.notify ();
22bcd14b 5197 stop_waiting (ecs);
b2175913 5198 return;
488f131b 5199 }
4f5d7f63
PA
5200}
5201
0b6e5e10
JB
5202/* A wrapper around handle_inferior_event_1, which also makes sure
5203 that all temporary struct value objects that were created during
5204 the handling of the event get deleted at the end. */
5205
5206static void
5207handle_inferior_event (struct execution_control_state *ecs)
5208{
5209 struct value *mark = value_mark ();
5210
5211 handle_inferior_event_1 (ecs);
5212 /* Purge all temporary values created during the event handling,
5213 as it could be a long time before we return to the command level
5214 where such values would otherwise be purged. */
5215 value_free_to_mark (mark);
5216}
5217
372316f1
PA
5218/* Restart threads back to what they were trying to do back when we
5219 paused them for an in-line step-over. The EVENT_THREAD thread is
5220 ignored. */
4d9d9d04
PA
5221
5222static void
372316f1
PA
5223restart_threads (struct thread_info *event_thread)
5224{
372316f1
PA
5225 /* In case the instruction just stepped spawned a new thread. */
5226 update_thread_list ();
5227
08036331 5228 for (thread_info *tp : all_non_exited_threads ())
372316f1
PA
5229 {
5230 if (tp == event_thread)
5231 {
5232 if (debug_infrun)
5233 fprintf_unfiltered (gdb_stdlog,
5234 "infrun: restart threads: "
5235 "[%s] is event thread\n",
5236 target_pid_to_str (tp->ptid));
5237 continue;
5238 }
5239
5240 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5241 {
5242 if (debug_infrun)
5243 fprintf_unfiltered (gdb_stdlog,
5244 "infrun: restart threads: "
5245 "[%s] not meant to be running\n",
5246 target_pid_to_str (tp->ptid));
5247 continue;
5248 }
5249
5250 if (tp->resumed)
5251 {
5252 if (debug_infrun)
5253 fprintf_unfiltered (gdb_stdlog,
5254 "infrun: restart threads: [%s] resumed\n",
5255 target_pid_to_str (tp->ptid));
5256 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5257 continue;
5258 }
5259
5260 if (thread_is_in_step_over_chain (tp))
5261 {
5262 if (debug_infrun)
5263 fprintf_unfiltered (gdb_stdlog,
5264 "infrun: restart threads: "
5265 "[%s] needs step-over\n",
5266 target_pid_to_str (tp->ptid));
5267 gdb_assert (!tp->resumed);
5268 continue;
5269 }
5270
5271
5272 if (tp->suspend.waitstatus_pending_p)
5273 {
5274 if (debug_infrun)
5275 fprintf_unfiltered (gdb_stdlog,
5276 "infrun: restart threads: "
5277 "[%s] has pending status\n",
5278 target_pid_to_str (tp->ptid));
5279 tp->resumed = 1;
5280 continue;
5281 }
5282
c65d6b55
PA
5283 gdb_assert (!tp->stop_requested);
5284
372316f1
PA
5285 /* If some thread needs to start a step-over at this point, it
5286 should still be in the step-over queue, and thus skipped
5287 above. */
5288 if (thread_still_needs_step_over (tp))
5289 {
5290 internal_error (__FILE__, __LINE__,
5291 "thread [%s] needs a step-over, but not in "
5292 "step-over queue\n",
5293 target_pid_to_str (tp->ptid));
5294 }
5295
5296 if (currently_stepping (tp))
5297 {
5298 if (debug_infrun)
5299 fprintf_unfiltered (gdb_stdlog,
5300 "infrun: restart threads: [%s] was stepping\n",
5301 target_pid_to_str (tp->ptid));
5302 keep_going_stepped_thread (tp);
5303 }
5304 else
5305 {
5306 struct execution_control_state ecss;
5307 struct execution_control_state *ecs = &ecss;
5308
5309 if (debug_infrun)
5310 fprintf_unfiltered (gdb_stdlog,
5311 "infrun: restart threads: [%s] continuing\n",
5312 target_pid_to_str (tp->ptid));
5313 reset_ecs (ecs, tp);
00431a78 5314 switch_to_thread (tp);
372316f1
PA
5315 keep_going_pass_signal (ecs);
5316 }
5317 }
5318}
5319
5320/* Callback for iterate_over_threads. Find a resumed thread that has
5321 a pending waitstatus. */
5322
5323static int
5324resumed_thread_with_pending_status (struct thread_info *tp,
5325 void *arg)
5326{
5327 return (tp->resumed
5328 && tp->suspend.waitstatus_pending_p);
5329}
5330
5331/* Called when we get an event that may finish an in-line or
5332 out-of-line (displaced stepping) step-over started previously.
5333 Return true if the event is processed and we should go back to the
5334 event loop; false if the caller should continue processing the
5335 event. */
5336
5337static int
4d9d9d04
PA
5338finish_step_over (struct execution_control_state *ecs)
5339{
372316f1
PA
5340 int had_step_over_info;
5341
00431a78 5342 displaced_step_fixup (ecs->event_thread,
4d9d9d04
PA
5343 ecs->event_thread->suspend.stop_signal);
5344
372316f1
PA
5345 had_step_over_info = step_over_info_valid_p ();
5346
5347 if (had_step_over_info)
4d9d9d04
PA
5348 {
5349 /* If we're stepping over a breakpoint with all threads locked,
5350 then only the thread that was stepped should be reporting
5351 back an event. */
5352 gdb_assert (ecs->event_thread->control.trap_expected);
5353
c65d6b55 5354 clear_step_over_info ();
4d9d9d04
PA
5355 }
5356
fbea99ea 5357 if (!target_is_non_stop_p ())
372316f1 5358 return 0;
4d9d9d04
PA
5359
5360 /* Start a new step-over in another thread if there's one that
5361 needs it. */
5362 start_step_over ();
372316f1
PA
5363
5364 /* If we were stepping over a breakpoint before, and haven't started
5365 a new in-line step-over sequence, then restart all other threads
5366 (except the event thread). We can't do this in all-stop, as then
5367 e.g., we wouldn't be able to issue any other remote packet until
5368 these other threads stop. */
5369 if (had_step_over_info && !step_over_info_valid_p ())
5370 {
5371 struct thread_info *pending;
5372
5373 /* If we only have threads with pending statuses, the restart
5374 below won't restart any thread and so nothing re-inserts the
5375 breakpoint we just stepped over. But we need it inserted
5376 when we later process the pending events, otherwise if
5377 another thread has a pending event for this breakpoint too,
5378 we'd discard its event (because the breakpoint that
5379 originally caused the event was no longer inserted). */
00431a78 5380 context_switch (ecs);
372316f1
PA
5381 insert_breakpoints ();
5382
5383 restart_threads (ecs->event_thread);
5384
5385 /* If we have events pending, go through handle_inferior_event
5386 again, picking up a pending event at random. This avoids
5387 thread starvation. */
5388
5389 /* But not if we just stepped over a watchpoint in order to let
5390 the instruction execute so we can evaluate its expression.
5391 The set of watchpoints that triggered is recorded in the
5392 breakpoint objects themselves (see bp->watchpoint_triggered).
5393 If we processed another event first, that other event could
5394 clobber this info. */
5395 if (ecs->event_thread->stepping_over_watchpoint)
5396 return 0;
5397
5398 pending = iterate_over_threads (resumed_thread_with_pending_status,
5399 NULL);
5400 if (pending != NULL)
5401 {
5402 struct thread_info *tp = ecs->event_thread;
5403 struct regcache *regcache;
5404
5405 if (debug_infrun)
5406 {
5407 fprintf_unfiltered (gdb_stdlog,
5408 "infrun: found resumed threads with "
5409 "pending events, saving status\n");
5410 }
5411
5412 gdb_assert (pending != tp);
5413
5414 /* Record the event thread's event for later. */
5415 save_waitstatus (tp, &ecs->ws);
5416 /* This was cleared early, by handle_inferior_event. Set it
5417 so this pending event is considered by
5418 do_target_wait. */
5419 tp->resumed = 1;
5420
5421 gdb_assert (!tp->executing);
5422
00431a78 5423 regcache = get_thread_regcache (tp);
372316f1
PA
5424 tp->suspend.stop_pc = regcache_read_pc (regcache);
5425
5426 if (debug_infrun)
5427 {
5428 fprintf_unfiltered (gdb_stdlog,
5429 "infrun: saved stop_pc=%s for %s "
5430 "(currently_stepping=%d)\n",
5431 paddress (target_gdbarch (),
5432 tp->suspend.stop_pc),
5433 target_pid_to_str (tp->ptid),
5434 currently_stepping (tp));
5435 }
5436
5437 /* This in-line step-over finished; clear this so we won't
5438 start a new one. This is what handle_signal_stop would
5439 do, if we returned false. */
5440 tp->stepping_over_breakpoint = 0;
5441
5442 /* Wake up the event loop again. */
5443 mark_async_event_handler (infrun_async_inferior_event_token);
5444
5445 prepare_to_wait (ecs);
5446 return 1;
5447 }
5448 }
5449
5450 return 0;
4d9d9d04
PA
5451}
5452
4f5d7f63
PA
5453/* Come here when the program has stopped with a signal. */
5454
5455static void
5456handle_signal_stop (struct execution_control_state *ecs)
5457{
5458 struct frame_info *frame;
5459 struct gdbarch *gdbarch;
5460 int stopped_by_watchpoint;
5461 enum stop_kind stop_soon;
5462 int random_signal;
c906108c 5463
f0407826
DE
5464 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5465
c65d6b55
PA
5466 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5467
f0407826
DE
5468 /* Do we need to clean up the state of a thread that has
5469 completed a displaced single-step? (Doing so usually affects
5470 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5471 if (finish_step_over (ecs))
5472 return;
f0407826
DE
5473
5474 /* If we either finished a single-step or hit a breakpoint, but
5475 the user wanted this thread to be stopped, pretend we got a
5476 SIG0 (generic unsignaled stop). */
5477 if (ecs->event_thread->stop_requested
5478 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5479 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5480
f2ffa92b
PA
5481 ecs->event_thread->suspend.stop_pc
5482 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
488f131b 5483
527159b7 5484 if (debug_infrun)
237fc4c9 5485 {
00431a78 5486 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
b926417a 5487 struct gdbarch *reg_gdbarch = regcache->arch ();
2989a365 5488 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
7f82dfc7
JK
5489
5490 inferior_ptid = ecs->ptid;
5af949e3
UW
5491
5492 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
b926417a 5493 paddress (reg_gdbarch,
f2ffa92b 5494 ecs->event_thread->suspend.stop_pc));
d92524f1 5495 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5496 {
5497 CORE_ADDR addr;
abbb1732 5498
237fc4c9
PA
5499 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5500
8b88a78e 5501 if (target_stopped_data_address (current_top_target (), &addr))
237fc4c9 5502 fprintf_unfiltered (gdb_stdlog,
5af949e3 5503 "infrun: stopped data address = %s\n",
b926417a 5504 paddress (reg_gdbarch, addr));
237fc4c9
PA
5505 else
5506 fprintf_unfiltered (gdb_stdlog,
5507 "infrun: (no data address available)\n");
5508 }
5509 }
527159b7 5510
36fa8042
PA
5511 /* This is originated from start_remote(), start_inferior() and
5512 shared libraries hook functions. */
00431a78 5513 stop_soon = get_inferior_stop_soon (ecs);
36fa8042
PA
5514 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5515 {
00431a78 5516 context_switch (ecs);
36fa8042
PA
5517 if (debug_infrun)
5518 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5519 stop_print_frame = 1;
22bcd14b 5520 stop_waiting (ecs);
36fa8042
PA
5521 return;
5522 }
5523
36fa8042
PA
5524 /* This originates from attach_command(). We need to overwrite
5525 the stop_signal here, because some kernels don't ignore a
5526 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5527 See more comments in inferior.h. On the other hand, if we
5528 get a non-SIGSTOP, report it to the user - assume the backend
5529 will handle the SIGSTOP if it should show up later.
5530
5531 Also consider that the attach is complete when we see a
5532 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5533 target extended-remote report it instead of a SIGSTOP
5534 (e.g. gdbserver). We already rely on SIGTRAP being our
5535 signal, so this is no exception.
5536
5537 Also consider that the attach is complete when we see a
5538 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5539 the target to stop all threads of the inferior, in case the
5540 low level attach operation doesn't stop them implicitly. If
5541 they weren't stopped implicitly, then the stub will report a
5542 GDB_SIGNAL_0, meaning: stopped for no particular reason
5543 other than GDB's request. */
5544 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5545 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5546 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5547 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5548 {
5549 stop_print_frame = 1;
22bcd14b 5550 stop_waiting (ecs);
36fa8042
PA
5551 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5552 return;
5553 }
5554
488f131b 5555 /* See if something interesting happened to the non-current thread. If
b40c7d58 5556 so, then switch to that thread. */
d7e15655 5557 if (ecs->ptid != inferior_ptid)
488f131b 5558 {
527159b7 5559 if (debug_infrun)
8a9de0e4 5560 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5561
00431a78 5562 context_switch (ecs);
c5aa993b 5563
9a4105ab 5564 if (deprecated_context_hook)
00431a78 5565 deprecated_context_hook (ecs->event_thread->global_num);
488f131b 5566 }
c906108c 5567
568d6575
UW
5568 /* At this point, get hold of the now-current thread's frame. */
5569 frame = get_current_frame ();
5570 gdbarch = get_frame_arch (frame);
5571
2adfaa28 5572 /* Pull the single step breakpoints out of the target. */
af48d08f 5573 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5574 {
af48d08f 5575 struct regcache *regcache;
af48d08f 5576 CORE_ADDR pc;
2adfaa28 5577
00431a78 5578 regcache = get_thread_regcache (ecs->event_thread);
8b86c959
YQ
5579 const address_space *aspace = regcache->aspace ();
5580
af48d08f 5581 pc = regcache_read_pc (regcache);
34b7e8a6 5582
af48d08f
PA
5583 /* However, before doing so, if this single-step breakpoint was
5584 actually for another thread, set this thread up for moving
5585 past it. */
5586 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5587 aspace, pc))
5588 {
5589 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5590 {
5591 if (debug_infrun)
5592 {
5593 fprintf_unfiltered (gdb_stdlog,
af48d08f 5594 "infrun: [%s] hit another thread's "
34b7e8a6
PA
5595 "single-step breakpoint\n",
5596 target_pid_to_str (ecs->ptid));
2adfaa28 5597 }
af48d08f
PA
5598 ecs->hit_singlestep_breakpoint = 1;
5599 }
5600 }
5601 else
5602 {
5603 if (debug_infrun)
5604 {
5605 fprintf_unfiltered (gdb_stdlog,
5606 "infrun: [%s] hit its "
5607 "single-step breakpoint\n",
5608 target_pid_to_str (ecs->ptid));
2adfaa28
PA
5609 }
5610 }
488f131b 5611 }
af48d08f 5612 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5613
963f9c80
PA
5614 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5615 && ecs->event_thread->control.trap_expected
5616 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5617 stopped_by_watchpoint = 0;
5618 else
5619 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5620
5621 /* If necessary, step over this watchpoint. We'll be back to display
5622 it in a moment. */
5623 if (stopped_by_watchpoint
d92524f1 5624 && (target_have_steppable_watchpoint
568d6575 5625 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5626 {
488f131b
JB
5627 /* At this point, we are stopped at an instruction which has
5628 attempted to write to a piece of memory under control of
5629 a watchpoint. The instruction hasn't actually executed
5630 yet. If we were to evaluate the watchpoint expression
5631 now, we would get the old value, and therefore no change
5632 would seem to have occurred.
5633
5634 In order to make watchpoints work `right', we really need
5635 to complete the memory write, and then evaluate the
d983da9c
DJ
5636 watchpoint expression. We do this by single-stepping the
5637 target.
5638
7f89fd65 5639 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5640 it. For example, the PA can (with some kernel cooperation)
5641 single step over a watchpoint without disabling the watchpoint.
5642
5643 It is far more common to need to disable a watchpoint to step
5644 the inferior over it. If we have non-steppable watchpoints,
5645 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5646 disable all watchpoints.
5647
5648 Any breakpoint at PC must also be stepped over -- if there's
5649 one, it will have already triggered before the watchpoint
5650 triggered, and we either already reported it to the user, or
5651 it didn't cause a stop and we called keep_going. In either
5652 case, if there was a breakpoint at PC, we must be trying to
5653 step past it. */
5654 ecs->event_thread->stepping_over_watchpoint = 1;
5655 keep_going (ecs);
488f131b
JB
5656 return;
5657 }
5658
4e1c45ea 5659 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5660 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5661 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5662 ecs->event_thread->control.stop_step = 0;
488f131b 5663 stop_print_frame = 1;
488f131b 5664 stopped_by_random_signal = 0;
ddfe970e 5665 bpstat stop_chain = NULL;
488f131b 5666
edb3359d
DJ
5667 /* Hide inlined functions starting here, unless we just performed stepi or
5668 nexti. After stepi and nexti, always show the innermost frame (not any
5669 inline function call sites). */
16c381f0 5670 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 5671 {
00431a78
PA
5672 const address_space *aspace
5673 = get_thread_regcache (ecs->event_thread)->aspace ();
0574c78f
GB
5674
5675 /* skip_inline_frames is expensive, so we avoid it if we can
5676 determine that the address is one where functions cannot have
5677 been inlined. This improves performance with inferiors that
5678 load a lot of shared libraries, because the solib event
5679 breakpoint is defined as the address of a function (i.e. not
5680 inline). Note that we have to check the previous PC as well
5681 as the current one to catch cases when we have just
5682 single-stepped off a breakpoint prior to reinstating it.
5683 Note that we're assuming that the code we single-step to is
5684 not inline, but that's not definitive: there's nothing
5685 preventing the event breakpoint function from containing
5686 inlined code, and the single-step ending up there. If the
5687 user had set a breakpoint on that inlined code, the missing
5688 skip_inline_frames call would break things. Fortunately
5689 that's an extremely unlikely scenario. */
f2ffa92b
PA
5690 if (!pc_at_non_inline_function (aspace,
5691 ecs->event_thread->suspend.stop_pc,
5692 &ecs->ws)
a210c238
MR
5693 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5694 && ecs->event_thread->control.trap_expected
5695 && pc_at_non_inline_function (aspace,
5696 ecs->event_thread->prev_pc,
09ac7c10 5697 &ecs->ws)))
1c5a993e 5698 {
f2ffa92b
PA
5699 stop_chain = build_bpstat_chain (aspace,
5700 ecs->event_thread->suspend.stop_pc,
5701 &ecs->ws);
00431a78 5702 skip_inline_frames (ecs->event_thread, stop_chain);
1c5a993e
MR
5703
5704 /* Re-fetch current thread's frame in case that invalidated
5705 the frame cache. */
5706 frame = get_current_frame ();
5707 gdbarch = get_frame_arch (frame);
5708 }
0574c78f 5709 }
edb3359d 5710
a493e3e2 5711 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5712 && ecs->event_thread->control.trap_expected
568d6575 5713 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5714 && currently_stepping (ecs->event_thread))
3352ef37 5715 {
b50d7442 5716 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5717 also on an instruction that needs to be stepped multiple
1777feb0 5718 times before it's been fully executing. E.g., architectures
3352ef37
AC
5719 with a delay slot. It needs to be stepped twice, once for
5720 the instruction and once for the delay slot. */
5721 int step_through_delay
568d6575 5722 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5723
527159b7 5724 if (debug_infrun && step_through_delay)
8a9de0e4 5725 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5726 if (ecs->event_thread->control.step_range_end == 0
5727 && step_through_delay)
3352ef37
AC
5728 {
5729 /* The user issued a continue when stopped at a breakpoint.
5730 Set up for another trap and get out of here. */
4e1c45ea 5731 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5732 keep_going (ecs);
5733 return;
5734 }
5735 else if (step_through_delay)
5736 {
5737 /* The user issued a step when stopped at a breakpoint.
5738 Maybe we should stop, maybe we should not - the delay
5739 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5740 case, don't decide that here, just set
5741 ecs->stepping_over_breakpoint, making sure we
5742 single-step again before breakpoints are re-inserted. */
4e1c45ea 5743 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5744 }
5745 }
5746
ab04a2af
TT
5747 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5748 handles this event. */
5749 ecs->event_thread->control.stop_bpstat
a01bda52 5750 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5751 ecs->event_thread->suspend.stop_pc,
5752 ecs->event_thread, &ecs->ws, stop_chain);
db82e815 5753
ab04a2af
TT
5754 /* Following in case break condition called a
5755 function. */
5756 stop_print_frame = 1;
73dd234f 5757
ab04a2af
TT
5758 /* This is where we handle "moribund" watchpoints. Unlike
5759 software breakpoints traps, hardware watchpoint traps are
5760 always distinguishable from random traps. If no high-level
5761 watchpoint is associated with the reported stop data address
5762 anymore, then the bpstat does not explain the signal ---
5763 simply make sure to ignore it if `stopped_by_watchpoint' is
5764 set. */
5765
5766 if (debug_infrun
5767 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5768 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5769 GDB_SIGNAL_TRAP)
ab04a2af
TT
5770 && stopped_by_watchpoint)
5771 fprintf_unfiltered (gdb_stdlog,
5772 "infrun: no user watchpoint explains "
5773 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5774
bac7d97b 5775 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5776 at one stage in the past included checks for an inferior
5777 function call's call dummy's return breakpoint. The original
5778 comment, that went with the test, read:
03cebad2 5779
ab04a2af
TT
5780 ``End of a stack dummy. Some systems (e.g. Sony news) give
5781 another signal besides SIGTRAP, so check here as well as
5782 above.''
73dd234f 5783
ab04a2af
TT
5784 If someone ever tries to get call dummys on a
5785 non-executable stack to work (where the target would stop
5786 with something like a SIGSEGV), then those tests might need
5787 to be re-instated. Given, however, that the tests were only
5788 enabled when momentary breakpoints were not being used, I
5789 suspect that it won't be the case.
488f131b 5790
ab04a2af
TT
5791 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5792 be necessary for call dummies on a non-executable stack on
5793 SPARC. */
488f131b 5794
bac7d97b 5795 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5796 random_signal
5797 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5798 ecs->event_thread->suspend.stop_signal);
bac7d97b 5799
1cf4d951
PA
5800 /* Maybe this was a trap for a software breakpoint that has since
5801 been removed. */
5802 if (random_signal && target_stopped_by_sw_breakpoint ())
5803 {
f2ffa92b
PA
5804 if (program_breakpoint_here_p (gdbarch,
5805 ecs->event_thread->suspend.stop_pc))
1cf4d951
PA
5806 {
5807 struct regcache *regcache;
5808 int decr_pc;
5809
5810 /* Re-adjust PC to what the program would see if GDB was not
5811 debugging it. */
00431a78 5812 regcache = get_thread_regcache (ecs->event_thread);
527a273a 5813 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
5814 if (decr_pc != 0)
5815 {
07036511
TT
5816 gdb::optional<scoped_restore_tmpl<int>>
5817 restore_operation_disable;
1cf4d951
PA
5818
5819 if (record_full_is_used ())
07036511
TT
5820 restore_operation_disable.emplace
5821 (record_full_gdb_operation_disable_set ());
1cf4d951 5822
f2ffa92b
PA
5823 regcache_write_pc (regcache,
5824 ecs->event_thread->suspend.stop_pc + decr_pc);
1cf4d951
PA
5825 }
5826 }
5827 else
5828 {
5829 /* A delayed software breakpoint event. Ignore the trap. */
5830 if (debug_infrun)
5831 fprintf_unfiltered (gdb_stdlog,
5832 "infrun: delayed software breakpoint "
5833 "trap, ignoring\n");
5834 random_signal = 0;
5835 }
5836 }
5837
5838 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5839 has since been removed. */
5840 if (random_signal && target_stopped_by_hw_breakpoint ())
5841 {
5842 /* A delayed hardware breakpoint event. Ignore the trap. */
5843 if (debug_infrun)
5844 fprintf_unfiltered (gdb_stdlog,
5845 "infrun: delayed hardware breakpoint/watchpoint "
5846 "trap, ignoring\n");
5847 random_signal = 0;
5848 }
5849
bac7d97b
PA
5850 /* If not, perhaps stepping/nexting can. */
5851 if (random_signal)
5852 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5853 && currently_stepping (ecs->event_thread));
ab04a2af 5854
2adfaa28
PA
5855 /* Perhaps the thread hit a single-step breakpoint of _another_
5856 thread. Single-step breakpoints are transparent to the
5857 breakpoints module. */
5858 if (random_signal)
5859 random_signal = !ecs->hit_singlestep_breakpoint;
5860
bac7d97b
PA
5861 /* No? Perhaps we got a moribund watchpoint. */
5862 if (random_signal)
5863 random_signal = !stopped_by_watchpoint;
ab04a2af 5864
c65d6b55
PA
5865 /* Always stop if the user explicitly requested this thread to
5866 remain stopped. */
5867 if (ecs->event_thread->stop_requested)
5868 {
5869 random_signal = 1;
5870 if (debug_infrun)
5871 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
5872 }
5873
488f131b
JB
5874 /* For the program's own signals, act according to
5875 the signal handling tables. */
5876
ce12b012 5877 if (random_signal)
488f131b
JB
5878 {
5879 /* Signal not for debugging purposes. */
c9657e70 5880 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 5881 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 5882
527159b7 5883 if (debug_infrun)
c9737c08
PA
5884 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5885 gdb_signal_to_symbol_string (stop_signal));
527159b7 5886
488f131b
JB
5887 stopped_by_random_signal = 1;
5888
252fbfc8
PA
5889 /* Always stop on signals if we're either just gaining control
5890 of the program, or the user explicitly requested this thread
5891 to remain stopped. */
d6b48e9c 5892 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 5893 || ecs->event_thread->stop_requested
24291992 5894 || (!inf->detaching
16c381f0 5895 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 5896 {
22bcd14b 5897 stop_waiting (ecs);
488f131b
JB
5898 return;
5899 }
b57bacec
PA
5900
5901 /* Notify observers the signal has "handle print" set. Note we
5902 returned early above if stopping; normal_stop handles the
5903 printing in that case. */
5904 if (signal_print[ecs->event_thread->suspend.stop_signal])
5905 {
5906 /* The signal table tells us to print about this signal. */
223ffa71 5907 target_terminal::ours_for_output ();
76727919 5908 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
223ffa71 5909 target_terminal::inferior ();
b57bacec 5910 }
488f131b
JB
5911
5912 /* Clear the signal if it should not be passed. */
16c381f0 5913 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 5914 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 5915
f2ffa92b 5916 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
16c381f0 5917 && ecs->event_thread->control.trap_expected
8358c15c 5918 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
5919 {
5920 /* We were just starting a new sequence, attempting to
5921 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 5922 Instead this signal arrives. This signal will take us out
68f53502
AC
5923 of the stepping range so GDB needs to remember to, when
5924 the signal handler returns, resume stepping off that
5925 breakpoint. */
5926 /* To simplify things, "continue" is forced to use the same
5927 code paths as single-step - set a breakpoint at the
5928 signal return address and then, once hit, step off that
5929 breakpoint. */
237fc4c9
PA
5930 if (debug_infrun)
5931 fprintf_unfiltered (gdb_stdlog,
5932 "infrun: signal arrived while stepping over "
5933 "breakpoint\n");
d3169d93 5934
2c03e5be 5935 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 5936 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5937 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5938 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
5939
5940 /* If we were nexting/stepping some other thread, switch to
5941 it, so that we don't continue it, losing control. */
5942 if (!switch_back_to_stepped_thread (ecs))
5943 keep_going (ecs);
9d799f85 5944 return;
68f53502 5945 }
9d799f85 5946
e5f8a7cc 5947 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
f2ffa92b
PA
5948 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
5949 ecs->event_thread)
e5f8a7cc 5950 || ecs->event_thread->control.step_range_end == 1)
edb3359d 5951 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 5952 ecs->event_thread->control.step_stack_frame_id)
8358c15c 5953 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
5954 {
5955 /* The inferior is about to take a signal that will take it
5956 out of the single step range. Set a breakpoint at the
5957 current PC (which is presumably where the signal handler
5958 will eventually return) and then allow the inferior to
5959 run free.
5960
5961 Note that this is only needed for a signal delivered
5962 while in the single-step range. Nested signals aren't a
5963 problem as they eventually all return. */
237fc4c9
PA
5964 if (debug_infrun)
5965 fprintf_unfiltered (gdb_stdlog,
5966 "infrun: signal may take us out of "
5967 "single-step range\n");
5968
372316f1 5969 clear_step_over_info ();
2c03e5be 5970 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 5971 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5972 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5973 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
5974 keep_going (ecs);
5975 return;
d303a6c7 5976 }
9d799f85
AC
5977
5978 /* Note: step_resume_breakpoint may be non-NULL. This occures
5979 when either there's a nested signal, or when there's a
5980 pending signal enabled just as the signal handler returns
5981 (leaving the inferior at the step-resume-breakpoint without
5982 actually executing it). Either way continue until the
5983 breakpoint is really hit. */
c447ac0b
PA
5984
5985 if (!switch_back_to_stepped_thread (ecs))
5986 {
5987 if (debug_infrun)
5988 fprintf_unfiltered (gdb_stdlog,
5989 "infrun: random signal, keep going\n");
5990
5991 keep_going (ecs);
5992 }
5993 return;
488f131b 5994 }
94c57d6a
PA
5995
5996 process_event_stop_test (ecs);
5997}
5998
5999/* Come here when we've got some debug event / signal we can explain
6000 (IOW, not a random signal), and test whether it should cause a
6001 stop, or whether we should resume the inferior (transparently).
6002 E.g., could be a breakpoint whose condition evaluates false; we
6003 could be still stepping within the line; etc. */
6004
6005static void
6006process_event_stop_test (struct execution_control_state *ecs)
6007{
6008 struct symtab_and_line stop_pc_sal;
6009 struct frame_info *frame;
6010 struct gdbarch *gdbarch;
cdaa5b73
PA
6011 CORE_ADDR jmp_buf_pc;
6012 struct bpstat_what what;
94c57d6a 6013
cdaa5b73 6014 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6015
cdaa5b73
PA
6016 frame = get_current_frame ();
6017 gdbarch = get_frame_arch (frame);
fcf3daef 6018
cdaa5b73 6019 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6020
cdaa5b73
PA
6021 if (what.call_dummy)
6022 {
6023 stop_stack_dummy = what.call_dummy;
6024 }
186c406b 6025
243a9253
PA
6026 /* A few breakpoint types have callbacks associated (e.g.,
6027 bp_jit_event). Run them now. */
6028 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6029
cdaa5b73
PA
6030 /* If we hit an internal event that triggers symbol changes, the
6031 current frame will be invalidated within bpstat_what (e.g., if we
6032 hit an internal solib event). Re-fetch it. */
6033 frame = get_current_frame ();
6034 gdbarch = get_frame_arch (frame);
e2e4d78b 6035
cdaa5b73
PA
6036 switch (what.main_action)
6037 {
6038 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6039 /* If we hit the breakpoint at longjmp while stepping, we
6040 install a momentary breakpoint at the target of the
6041 jmp_buf. */
186c406b 6042
cdaa5b73
PA
6043 if (debug_infrun)
6044 fprintf_unfiltered (gdb_stdlog,
6045 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6046
cdaa5b73 6047 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6048
cdaa5b73
PA
6049 if (what.is_longjmp)
6050 {
6051 struct value *arg_value;
6052
6053 /* If we set the longjmp breakpoint via a SystemTap probe,
6054 then use it to extract the arguments. The destination PC
6055 is the third argument to the probe. */
6056 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6057 if (arg_value)
8fa0c4f8
AA
6058 {
6059 jmp_buf_pc = value_as_address (arg_value);
6060 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6061 }
cdaa5b73
PA
6062 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6063 || !gdbarch_get_longjmp_target (gdbarch,
6064 frame, &jmp_buf_pc))
e2e4d78b 6065 {
cdaa5b73
PA
6066 if (debug_infrun)
6067 fprintf_unfiltered (gdb_stdlog,
6068 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6069 "(!gdbarch_get_longjmp_target)\n");
6070 keep_going (ecs);
6071 return;
e2e4d78b 6072 }
e2e4d78b 6073
cdaa5b73
PA
6074 /* Insert a breakpoint at resume address. */
6075 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6076 }
6077 else
6078 check_exception_resume (ecs, frame);
6079 keep_going (ecs);
6080 return;
e81a37f7 6081
cdaa5b73
PA
6082 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6083 {
6084 struct frame_info *init_frame;
e81a37f7 6085
cdaa5b73 6086 /* There are several cases to consider.
c906108c 6087
cdaa5b73
PA
6088 1. The initiating frame no longer exists. In this case we
6089 must stop, because the exception or longjmp has gone too
6090 far.
2c03e5be 6091
cdaa5b73
PA
6092 2. The initiating frame exists, and is the same as the
6093 current frame. We stop, because the exception or longjmp
6094 has been caught.
2c03e5be 6095
cdaa5b73
PA
6096 3. The initiating frame exists and is different from the
6097 current frame. This means the exception or longjmp has
6098 been caught beneath the initiating frame, so keep going.
c906108c 6099
cdaa5b73
PA
6100 4. longjmp breakpoint has been placed just to protect
6101 against stale dummy frames and user is not interested in
6102 stopping around longjmps. */
c5aa993b 6103
cdaa5b73
PA
6104 if (debug_infrun)
6105 fprintf_unfiltered (gdb_stdlog,
6106 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6107
cdaa5b73
PA
6108 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6109 != NULL);
6110 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6111
cdaa5b73
PA
6112 if (what.is_longjmp)
6113 {
b67a2c6f 6114 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6115
cdaa5b73 6116 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6117 {
cdaa5b73
PA
6118 /* Case 4. */
6119 keep_going (ecs);
6120 return;
e5ef252a 6121 }
cdaa5b73 6122 }
c5aa993b 6123
cdaa5b73 6124 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6125
cdaa5b73
PA
6126 if (init_frame)
6127 {
6128 struct frame_id current_id
6129 = get_frame_id (get_current_frame ());
6130 if (frame_id_eq (current_id,
6131 ecs->event_thread->initiating_frame))
6132 {
6133 /* Case 2. Fall through. */
6134 }
6135 else
6136 {
6137 /* Case 3. */
6138 keep_going (ecs);
6139 return;
6140 }
68f53502 6141 }
488f131b 6142
cdaa5b73
PA
6143 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6144 exists. */
6145 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6146
bdc36728 6147 end_stepping_range (ecs);
cdaa5b73
PA
6148 }
6149 return;
e5ef252a 6150
cdaa5b73
PA
6151 case BPSTAT_WHAT_SINGLE:
6152 if (debug_infrun)
6153 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6154 ecs->event_thread->stepping_over_breakpoint = 1;
6155 /* Still need to check other stuff, at least the case where we
6156 are stepping and step out of the right range. */
6157 break;
e5ef252a 6158
cdaa5b73
PA
6159 case BPSTAT_WHAT_STEP_RESUME:
6160 if (debug_infrun)
6161 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6162
cdaa5b73
PA
6163 delete_step_resume_breakpoint (ecs->event_thread);
6164 if (ecs->event_thread->control.proceed_to_finish
6165 && execution_direction == EXEC_REVERSE)
6166 {
6167 struct thread_info *tp = ecs->event_thread;
6168
6169 /* We are finishing a function in reverse, and just hit the
6170 step-resume breakpoint at the start address of the
6171 function, and we're almost there -- just need to back up
6172 by one more single-step, which should take us back to the
6173 function call. */
6174 tp->control.step_range_start = tp->control.step_range_end = 1;
6175 keep_going (ecs);
e5ef252a 6176 return;
cdaa5b73
PA
6177 }
6178 fill_in_stop_func (gdbarch, ecs);
f2ffa92b 6179 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
cdaa5b73
PA
6180 && execution_direction == EXEC_REVERSE)
6181 {
6182 /* We are stepping over a function call in reverse, and just
6183 hit the step-resume breakpoint at the start address of
6184 the function. Go back to single-stepping, which should
6185 take us back to the function call. */
6186 ecs->event_thread->stepping_over_breakpoint = 1;
6187 keep_going (ecs);
6188 return;
6189 }
6190 break;
e5ef252a 6191
cdaa5b73
PA
6192 case BPSTAT_WHAT_STOP_NOISY:
6193 if (debug_infrun)
6194 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6195 stop_print_frame = 1;
e5ef252a 6196
99619bea
PA
6197 /* Assume the thread stopped for a breapoint. We'll still check
6198 whether a/the breakpoint is there when the thread is next
6199 resumed. */
6200 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6201
22bcd14b 6202 stop_waiting (ecs);
cdaa5b73 6203 return;
e5ef252a 6204
cdaa5b73
PA
6205 case BPSTAT_WHAT_STOP_SILENT:
6206 if (debug_infrun)
6207 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6208 stop_print_frame = 0;
e5ef252a 6209
99619bea
PA
6210 /* Assume the thread stopped for a breapoint. We'll still check
6211 whether a/the breakpoint is there when the thread is next
6212 resumed. */
6213 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6214 stop_waiting (ecs);
cdaa5b73
PA
6215 return;
6216
6217 case BPSTAT_WHAT_HP_STEP_RESUME:
6218 if (debug_infrun)
6219 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6220
6221 delete_step_resume_breakpoint (ecs->event_thread);
6222 if (ecs->event_thread->step_after_step_resume_breakpoint)
6223 {
6224 /* Back when the step-resume breakpoint was inserted, we
6225 were trying to single-step off a breakpoint. Go back to
6226 doing that. */
6227 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6228 ecs->event_thread->stepping_over_breakpoint = 1;
6229 keep_going (ecs);
6230 return;
e5ef252a 6231 }
cdaa5b73
PA
6232 break;
6233
6234 case BPSTAT_WHAT_KEEP_CHECKING:
6235 break;
e5ef252a 6236 }
c906108c 6237
af48d08f
PA
6238 /* If we stepped a permanent breakpoint and we had a high priority
6239 step-resume breakpoint for the address we stepped, but we didn't
6240 hit it, then we must have stepped into the signal handler. The
6241 step-resume was only necessary to catch the case of _not_
6242 stepping into the handler, so delete it, and fall through to
6243 checking whether the step finished. */
6244 if (ecs->event_thread->stepped_breakpoint)
6245 {
6246 struct breakpoint *sr_bp
6247 = ecs->event_thread->control.step_resume_breakpoint;
6248
8d707a12
PA
6249 if (sr_bp != NULL
6250 && sr_bp->loc->permanent
af48d08f
PA
6251 && sr_bp->type == bp_hp_step_resume
6252 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6253 {
6254 if (debug_infrun)
6255 fprintf_unfiltered (gdb_stdlog,
6256 "infrun: stepped permanent breakpoint, stopped in "
6257 "handler\n");
6258 delete_step_resume_breakpoint (ecs->event_thread);
6259 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6260 }
6261 }
6262
cdaa5b73
PA
6263 /* We come here if we hit a breakpoint but should not stop for it.
6264 Possibly we also were stepping and should stop for that. So fall
6265 through and test for stepping. But, if not stepping, do not
6266 stop. */
c906108c 6267
a7212384
UW
6268 /* In all-stop mode, if we're currently stepping but have stopped in
6269 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6270 if (switch_back_to_stepped_thread (ecs))
6271 return;
776f04fa 6272
8358c15c 6273 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6274 {
527159b7 6275 if (debug_infrun)
d3169d93
DJ
6276 fprintf_unfiltered (gdb_stdlog,
6277 "infrun: step-resume breakpoint is inserted\n");
527159b7 6278
488f131b
JB
6279 /* Having a step-resume breakpoint overrides anything
6280 else having to do with stepping commands until
6281 that breakpoint is reached. */
488f131b
JB
6282 keep_going (ecs);
6283 return;
6284 }
c5aa993b 6285
16c381f0 6286 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6287 {
527159b7 6288 if (debug_infrun)
8a9de0e4 6289 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6290 /* Likewise if we aren't even stepping. */
488f131b
JB
6291 keep_going (ecs);
6292 return;
6293 }
c5aa993b 6294
4b7703ad
JB
6295 /* Re-fetch current thread's frame in case the code above caused
6296 the frame cache to be re-initialized, making our FRAME variable
6297 a dangling pointer. */
6298 frame = get_current_frame ();
628fe4e4 6299 gdbarch = get_frame_arch (frame);
7e324e48 6300 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6301
488f131b 6302 /* If stepping through a line, keep going if still within it.
c906108c 6303
488f131b
JB
6304 Note that step_range_end is the address of the first instruction
6305 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6306 within it!
6307
6308 Note also that during reverse execution, we may be stepping
6309 through a function epilogue and therefore must detect when
6310 the current-frame changes in the middle of a line. */
6311
f2ffa92b
PA
6312 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6313 ecs->event_thread)
31410e84 6314 && (execution_direction != EXEC_REVERSE
388a8562 6315 || frame_id_eq (get_frame_id (frame),
16c381f0 6316 ecs->event_thread->control.step_frame_id)))
488f131b 6317 {
527159b7 6318 if (debug_infrun)
5af949e3
UW
6319 fprintf_unfiltered
6320 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6321 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6322 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6323
c1e36e3e
PA
6324 /* Tentatively re-enable range stepping; `resume' disables it if
6325 necessary (e.g., if we're stepping over a breakpoint or we
6326 have software watchpoints). */
6327 ecs->event_thread->control.may_range_step = 1;
6328
b2175913
MS
6329 /* When stepping backward, stop at beginning of line range
6330 (unless it's the function entry point, in which case
6331 keep going back to the call point). */
f2ffa92b 6332 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
16c381f0 6333 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6334 && stop_pc != ecs->stop_func_start
6335 && execution_direction == EXEC_REVERSE)
bdc36728 6336 end_stepping_range (ecs);
b2175913
MS
6337 else
6338 keep_going (ecs);
6339
488f131b
JB
6340 return;
6341 }
c5aa993b 6342
488f131b 6343 /* We stepped out of the stepping range. */
c906108c 6344
488f131b 6345 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6346 loader dynamic symbol resolution code...
6347
6348 EXEC_FORWARD: we keep on single stepping until we exit the run
6349 time loader code and reach the callee's address.
6350
6351 EXEC_REVERSE: we've already executed the callee (backward), and
6352 the runtime loader code is handled just like any other
6353 undebuggable function call. Now we need only keep stepping
6354 backward through the trampoline code, and that's handled further
6355 down, so there is nothing for us to do here. */
6356
6357 if (execution_direction != EXEC_REVERSE
16c381f0 6358 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
f2ffa92b 6359 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
488f131b 6360 {
4c8c40e6 6361 CORE_ADDR pc_after_resolver =
f2ffa92b
PA
6362 gdbarch_skip_solib_resolver (gdbarch,
6363 ecs->event_thread->suspend.stop_pc);
c906108c 6364
527159b7 6365 if (debug_infrun)
3e43a32a
MS
6366 fprintf_unfiltered (gdb_stdlog,
6367 "infrun: stepped into dynsym resolve code\n");
527159b7 6368
488f131b
JB
6369 if (pc_after_resolver)
6370 {
6371 /* Set up a step-resume breakpoint at the address
6372 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6373 symtab_and_line sr_sal;
488f131b 6374 sr_sal.pc = pc_after_resolver;
6c95b8df 6375 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6376
a6d9a66e
UW
6377 insert_step_resume_breakpoint_at_sal (gdbarch,
6378 sr_sal, null_frame_id);
c5aa993b 6379 }
c906108c 6380
488f131b
JB
6381 keep_going (ecs);
6382 return;
6383 }
c906108c 6384
1d509aa6
MM
6385 /* Step through an indirect branch thunk. */
6386 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
f2ffa92b
PA
6387 && gdbarch_in_indirect_branch_thunk (gdbarch,
6388 ecs->event_thread->suspend.stop_pc))
1d509aa6
MM
6389 {
6390 if (debug_infrun)
6391 fprintf_unfiltered (gdb_stdlog,
6392 "infrun: stepped into indirect branch thunk\n");
6393 keep_going (ecs);
6394 return;
6395 }
6396
16c381f0
JK
6397 if (ecs->event_thread->control.step_range_end != 1
6398 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6399 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6400 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6401 {
527159b7 6402 if (debug_infrun)
3e43a32a
MS
6403 fprintf_unfiltered (gdb_stdlog,
6404 "infrun: stepped into signal trampoline\n");
42edda50 6405 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6406 a signal trampoline (either by a signal being delivered or by
6407 the signal handler returning). Just single-step until the
6408 inferior leaves the trampoline (either by calling the handler
6409 or returning). */
488f131b
JB
6410 keep_going (ecs);
6411 return;
6412 }
c906108c 6413
14132e89
MR
6414 /* If we're in the return path from a shared library trampoline,
6415 we want to proceed through the trampoline when stepping. */
6416 /* macro/2012-04-25: This needs to come before the subroutine
6417 call check below as on some targets return trampolines look
6418 like subroutine calls (MIPS16 return thunks). */
6419 if (gdbarch_in_solib_return_trampoline (gdbarch,
f2ffa92b
PA
6420 ecs->event_thread->suspend.stop_pc,
6421 ecs->stop_func_name)
14132e89
MR
6422 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6423 {
6424 /* Determine where this trampoline returns. */
f2ffa92b
PA
6425 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6426 CORE_ADDR real_stop_pc
6427 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
14132e89
MR
6428
6429 if (debug_infrun)
6430 fprintf_unfiltered (gdb_stdlog,
6431 "infrun: stepped into solib return tramp\n");
6432
6433 /* Only proceed through if we know where it's going. */
6434 if (real_stop_pc)
6435 {
6436 /* And put the step-breakpoint there and go until there. */
51abb421 6437 symtab_and_line sr_sal;
14132e89
MR
6438 sr_sal.pc = real_stop_pc;
6439 sr_sal.section = find_pc_overlay (sr_sal.pc);
6440 sr_sal.pspace = get_frame_program_space (frame);
6441
6442 /* Do not specify what the fp should be when we stop since
6443 on some machines the prologue is where the new fp value
6444 is established. */
6445 insert_step_resume_breakpoint_at_sal (gdbarch,
6446 sr_sal, null_frame_id);
6447
6448 /* Restart without fiddling with the step ranges or
6449 other state. */
6450 keep_going (ecs);
6451 return;
6452 }
6453 }
6454
c17eaafe
DJ
6455 /* Check for subroutine calls. The check for the current frame
6456 equalling the step ID is not necessary - the check of the
6457 previous frame's ID is sufficient - but it is a common case and
6458 cheaper than checking the previous frame's ID.
14e60db5
DJ
6459
6460 NOTE: frame_id_eq will never report two invalid frame IDs as
6461 being equal, so to get into this block, both the current and
6462 previous frame must have valid frame IDs. */
005ca36a
JB
6463 /* The outer_frame_id check is a heuristic to detect stepping
6464 through startup code. If we step over an instruction which
6465 sets the stack pointer from an invalid value to a valid value,
6466 we may detect that as a subroutine call from the mythical
6467 "outermost" function. This could be fixed by marking
6468 outermost frames as !stack_p,code_p,special_p. Then the
6469 initial outermost frame, before sp was valid, would
ce6cca6d 6470 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6471 for more. */
edb3359d 6472 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6473 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6474 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6475 ecs->event_thread->control.step_stack_frame_id)
6476 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6477 outer_frame_id)
885eeb5b 6478 || (ecs->event_thread->control.step_start_function
f2ffa92b 6479 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
488f131b 6480 {
f2ffa92b 6481 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
95918acb 6482 CORE_ADDR real_stop_pc;
8fb3e588 6483
527159b7 6484 if (debug_infrun)
8a9de0e4 6485 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6486
b7a084be 6487 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6488 {
6489 /* I presume that step_over_calls is only 0 when we're
6490 supposed to be stepping at the assembly language level
6491 ("stepi"). Just stop. */
388a8562 6492 /* And this works the same backward as frontward. MVS */
bdc36728 6493 end_stepping_range (ecs);
95918acb
AC
6494 return;
6495 }
8fb3e588 6496
388a8562
MS
6497 /* Reverse stepping through solib trampolines. */
6498
6499 if (execution_direction == EXEC_REVERSE
16c381f0 6500 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6501 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6502 || (ecs->stop_func_start == 0
6503 && in_solib_dynsym_resolve_code (stop_pc))))
6504 {
6505 /* Any solib trampoline code can be handled in reverse
6506 by simply continuing to single-step. We have already
6507 executed the solib function (backwards), and a few
6508 steps will take us back through the trampoline to the
6509 caller. */
6510 keep_going (ecs);
6511 return;
6512 }
6513
16c381f0 6514 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6515 {
b2175913
MS
6516 /* We're doing a "next".
6517
6518 Normal (forward) execution: set a breakpoint at the
6519 callee's return address (the address at which the caller
6520 will resume).
6521
6522 Reverse (backward) execution. set the step-resume
6523 breakpoint at the start of the function that we just
6524 stepped into (backwards), and continue to there. When we
6130d0b7 6525 get there, we'll need to single-step back to the caller. */
b2175913
MS
6526
6527 if (execution_direction == EXEC_REVERSE)
6528 {
acf9414f
JK
6529 /* If we're already at the start of the function, we've either
6530 just stepped backward into a single instruction function,
6531 or stepped back out of a signal handler to the first instruction
6532 of the function. Just keep going, which will single-step back
6533 to the caller. */
58c48e72 6534 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 6535 {
acf9414f 6536 /* Normal function call return (static or dynamic). */
51abb421 6537 symtab_and_line sr_sal;
acf9414f
JK
6538 sr_sal.pc = ecs->stop_func_start;
6539 sr_sal.pspace = get_frame_program_space (frame);
6540 insert_step_resume_breakpoint_at_sal (gdbarch,
6541 sr_sal, null_frame_id);
6542 }
b2175913
MS
6543 }
6544 else
568d6575 6545 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6546
8567c30f
AC
6547 keep_going (ecs);
6548 return;
6549 }
a53c66de 6550
95918acb 6551 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6552 calling routine and the real function), locate the real
6553 function. That's what tells us (a) whether we want to step
6554 into it at all, and (b) what prologue we want to run to the
6555 end of, if we do step into it. */
568d6575 6556 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6557 if (real_stop_pc == 0)
568d6575 6558 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6559 if (real_stop_pc != 0)
6560 ecs->stop_func_start = real_stop_pc;
8fb3e588 6561
db5f024e 6562 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 6563 {
51abb421 6564 symtab_and_line sr_sal;
1b2bfbb9 6565 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6566 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6567
a6d9a66e
UW
6568 insert_step_resume_breakpoint_at_sal (gdbarch,
6569 sr_sal, null_frame_id);
8fb3e588
AC
6570 keep_going (ecs);
6571 return;
1b2bfbb9
RC
6572 }
6573
95918acb 6574 /* If we have line number information for the function we are
1bfeeb0f
JL
6575 thinking of stepping into and the function isn't on the skip
6576 list, step into it.
95918acb 6577
8fb3e588
AC
6578 If there are several symtabs at that PC (e.g. with include
6579 files), just want to know whether *any* of them have line
6580 numbers. find_pc_line handles this. */
95918acb
AC
6581 {
6582 struct symtab_and_line tmp_sal;
8fb3e588 6583
95918acb 6584 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6585 if (tmp_sal.line != 0
85817405 6586 && !function_name_is_marked_for_skip (ecs->stop_func_name,
de7985c3 6587 tmp_sal))
95918acb 6588 {
b2175913 6589 if (execution_direction == EXEC_REVERSE)
568d6575 6590 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6591 else
568d6575 6592 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6593 return;
6594 }
6595 }
6596
6597 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6598 set, we stop the step so that the user has a chance to switch
6599 in assembly mode. */
16c381f0 6600 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6601 && step_stop_if_no_debug)
95918acb 6602 {
bdc36728 6603 end_stepping_range (ecs);
95918acb
AC
6604 return;
6605 }
6606
b2175913
MS
6607 if (execution_direction == EXEC_REVERSE)
6608 {
acf9414f
JK
6609 /* If we're already at the start of the function, we've either just
6610 stepped backward into a single instruction function without line
6611 number info, or stepped back out of a signal handler to the first
6612 instruction of the function without line number info. Just keep
6613 going, which will single-step back to the caller. */
6614 if (ecs->stop_func_start != stop_pc)
6615 {
6616 /* Set a breakpoint at callee's start address.
6617 From there we can step once and be back in the caller. */
51abb421 6618 symtab_and_line sr_sal;
acf9414f
JK
6619 sr_sal.pc = ecs->stop_func_start;
6620 sr_sal.pspace = get_frame_program_space (frame);
6621 insert_step_resume_breakpoint_at_sal (gdbarch,
6622 sr_sal, null_frame_id);
6623 }
b2175913
MS
6624 }
6625 else
6626 /* Set a breakpoint at callee's return address (the address
6627 at which the caller will resume). */
568d6575 6628 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6629
95918acb 6630 keep_going (ecs);
488f131b 6631 return;
488f131b 6632 }
c906108c 6633
fdd654f3
MS
6634 /* Reverse stepping through solib trampolines. */
6635
6636 if (execution_direction == EXEC_REVERSE
16c381f0 6637 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3 6638 {
f2ffa92b
PA
6639 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6640
fdd654f3
MS
6641 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6642 || (ecs->stop_func_start == 0
6643 && in_solib_dynsym_resolve_code (stop_pc)))
6644 {
6645 /* Any solib trampoline code can be handled in reverse
6646 by simply continuing to single-step. We have already
6647 executed the solib function (backwards), and a few
6648 steps will take us back through the trampoline to the
6649 caller. */
6650 keep_going (ecs);
6651 return;
6652 }
6653 else if (in_solib_dynsym_resolve_code (stop_pc))
6654 {
6655 /* Stepped backward into the solib dynsym resolver.
6656 Set a breakpoint at its start and continue, then
6657 one more step will take us out. */
51abb421 6658 symtab_and_line sr_sal;
fdd654f3 6659 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6660 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6661 insert_step_resume_breakpoint_at_sal (gdbarch,
6662 sr_sal, null_frame_id);
6663 keep_going (ecs);
6664 return;
6665 }
6666 }
6667
f2ffa92b 6668 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7ed0fe66 6669
1b2bfbb9
RC
6670 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6671 the trampoline processing logic, however, there are some trampolines
6672 that have no names, so we should do trampoline handling first. */
16c381f0 6673 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6674 && ecs->stop_func_name == NULL
2afb61aa 6675 && stop_pc_sal.line == 0)
1b2bfbb9 6676 {
527159b7 6677 if (debug_infrun)
3e43a32a
MS
6678 fprintf_unfiltered (gdb_stdlog,
6679 "infrun: stepped into undebuggable function\n");
527159b7 6680
1b2bfbb9 6681 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6682 undebuggable function (where there is no debugging information
6683 and no line number corresponding to the address where the
1b2bfbb9
RC
6684 inferior stopped). Since we want to skip this kind of code,
6685 we keep going until the inferior returns from this
14e60db5
DJ
6686 function - unless the user has asked us not to (via
6687 set step-mode) or we no longer know how to get back
6688 to the call site. */
6689 if (step_stop_if_no_debug
c7ce8faa 6690 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6691 {
6692 /* If we have no line number and the step-stop-if-no-debug
6693 is set, we stop the step so that the user has a chance to
6694 switch in assembly mode. */
bdc36728 6695 end_stepping_range (ecs);
1b2bfbb9
RC
6696 return;
6697 }
6698 else
6699 {
6700 /* Set a breakpoint at callee's return address (the address
6701 at which the caller will resume). */
568d6575 6702 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6703 keep_going (ecs);
6704 return;
6705 }
6706 }
6707
16c381f0 6708 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6709 {
6710 /* It is stepi or nexti. We always want to stop stepping after
6711 one instruction. */
527159b7 6712 if (debug_infrun)
8a9de0e4 6713 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6714 end_stepping_range (ecs);
1b2bfbb9
RC
6715 return;
6716 }
6717
2afb61aa 6718 if (stop_pc_sal.line == 0)
488f131b
JB
6719 {
6720 /* We have no line number information. That means to stop
6721 stepping (does this always happen right after one instruction,
6722 when we do "s" in a function with no line numbers,
6723 or can this happen as a result of a return or longjmp?). */
527159b7 6724 if (debug_infrun)
8a9de0e4 6725 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6726 end_stepping_range (ecs);
488f131b
JB
6727 return;
6728 }
c906108c 6729
edb3359d
DJ
6730 /* Look for "calls" to inlined functions, part one. If the inline
6731 frame machinery detected some skipped call sites, we have entered
6732 a new inline function. */
6733
6734 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6735 ecs->event_thread->control.step_frame_id)
00431a78 6736 && inline_skipped_frames (ecs->event_thread))
edb3359d 6737 {
edb3359d
DJ
6738 if (debug_infrun)
6739 fprintf_unfiltered (gdb_stdlog,
6740 "infrun: stepped into inlined function\n");
6741
51abb421 6742 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 6743
16c381f0 6744 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6745 {
6746 /* For "step", we're going to stop. But if the call site
6747 for this inlined function is on the same source line as
6748 we were previously stepping, go down into the function
6749 first. Otherwise stop at the call site. */
6750
6751 if (call_sal.line == ecs->event_thread->current_line
6752 && call_sal.symtab == ecs->event_thread->current_symtab)
00431a78 6753 step_into_inline_frame (ecs->event_thread);
edb3359d 6754
bdc36728 6755 end_stepping_range (ecs);
edb3359d
DJ
6756 return;
6757 }
6758 else
6759 {
6760 /* For "next", we should stop at the call site if it is on a
6761 different source line. Otherwise continue through the
6762 inlined function. */
6763 if (call_sal.line == ecs->event_thread->current_line
6764 && call_sal.symtab == ecs->event_thread->current_symtab)
6765 keep_going (ecs);
6766 else
bdc36728 6767 end_stepping_range (ecs);
edb3359d
DJ
6768 return;
6769 }
6770 }
6771
6772 /* Look for "calls" to inlined functions, part two. If we are still
6773 in the same real function we were stepping through, but we have
6774 to go further up to find the exact frame ID, we are stepping
6775 through a more inlined call beyond its call site. */
6776
6777 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6778 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6779 ecs->event_thread->control.step_frame_id)
edb3359d 6780 && stepped_in_from (get_current_frame (),
16c381f0 6781 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6782 {
6783 if (debug_infrun)
6784 fprintf_unfiltered (gdb_stdlog,
6785 "infrun: stepping through inlined function\n");
6786
16c381f0 6787 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
6788 keep_going (ecs);
6789 else
bdc36728 6790 end_stepping_range (ecs);
edb3359d
DJ
6791 return;
6792 }
6793
f2ffa92b 6794 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6795 && (ecs->event_thread->current_line != stop_pc_sal.line
6796 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
6797 {
6798 /* We are at the start of a different line. So stop. Note that
6799 we don't stop if we step into the middle of a different line.
6800 That is said to make things like for (;;) statements work
6801 better. */
527159b7 6802 if (debug_infrun)
3e43a32a
MS
6803 fprintf_unfiltered (gdb_stdlog,
6804 "infrun: stepped to a different line\n");
bdc36728 6805 end_stepping_range (ecs);
488f131b
JB
6806 return;
6807 }
c906108c 6808
488f131b 6809 /* We aren't done stepping.
c906108c 6810
488f131b
JB
6811 Optimize by setting the stepping range to the line.
6812 (We might not be in the original line, but if we entered a
6813 new line in mid-statement, we continue stepping. This makes
6814 things like for(;;) statements work better.) */
c906108c 6815
16c381f0
JK
6816 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6817 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 6818 ecs->event_thread->control.may_range_step = 1;
edb3359d 6819 set_step_info (frame, stop_pc_sal);
488f131b 6820
527159b7 6821 if (debug_infrun)
8a9de0e4 6822 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 6823 keep_going (ecs);
104c1213
JM
6824}
6825
c447ac0b
PA
6826/* In all-stop mode, if we're currently stepping but have stopped in
6827 some other thread, we may need to switch back to the stepped
6828 thread. Returns true we set the inferior running, false if we left
6829 it stopped (and the event needs further processing). */
6830
6831static int
6832switch_back_to_stepped_thread (struct execution_control_state *ecs)
6833{
fbea99ea 6834 if (!target_is_non_stop_p ())
c447ac0b 6835 {
99619bea
PA
6836 struct thread_info *stepping_thread;
6837
6838 /* If any thread is blocked on some internal breakpoint, and we
6839 simply need to step over that breakpoint to get it going
6840 again, do that first. */
6841
6842 /* However, if we see an event for the stepping thread, then we
6843 know all other threads have been moved past their breakpoints
6844 already. Let the caller check whether the step is finished,
6845 etc., before deciding to move it past a breakpoint. */
6846 if (ecs->event_thread->control.step_range_end != 0)
6847 return 0;
6848
6849 /* Check if the current thread is blocked on an incomplete
6850 step-over, interrupted by a random signal. */
6851 if (ecs->event_thread->control.trap_expected
6852 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 6853 {
99619bea
PA
6854 if (debug_infrun)
6855 {
6856 fprintf_unfiltered (gdb_stdlog,
6857 "infrun: need to finish step-over of [%s]\n",
6858 target_pid_to_str (ecs->event_thread->ptid));
6859 }
6860 keep_going (ecs);
6861 return 1;
6862 }
2adfaa28 6863
99619bea
PA
6864 /* Check if the current thread is blocked by a single-step
6865 breakpoint of another thread. */
6866 if (ecs->hit_singlestep_breakpoint)
6867 {
6868 if (debug_infrun)
6869 {
6870 fprintf_unfiltered (gdb_stdlog,
6871 "infrun: need to step [%s] over single-step "
6872 "breakpoint\n",
6873 target_pid_to_str (ecs->ptid));
6874 }
6875 keep_going (ecs);
6876 return 1;
6877 }
6878
4d9d9d04
PA
6879 /* If this thread needs yet another step-over (e.g., stepping
6880 through a delay slot), do it first before moving on to
6881 another thread. */
6882 if (thread_still_needs_step_over (ecs->event_thread))
6883 {
6884 if (debug_infrun)
6885 {
6886 fprintf_unfiltered (gdb_stdlog,
6887 "infrun: thread [%s] still needs step-over\n",
6888 target_pid_to_str (ecs->event_thread->ptid));
6889 }
6890 keep_going (ecs);
6891 return 1;
6892 }
70509625 6893
483805cf
PA
6894 /* If scheduler locking applies even if not stepping, there's no
6895 need to walk over threads. Above we've checked whether the
6896 current thread is stepping. If some other thread not the
6897 event thread is stepping, then it must be that scheduler
6898 locking is not in effect. */
856e7dd6 6899 if (schedlock_applies (ecs->event_thread))
483805cf
PA
6900 return 0;
6901
4d9d9d04
PA
6902 /* Otherwise, we no longer expect a trap in the current thread.
6903 Clear the trap_expected flag before switching back -- this is
6904 what keep_going does as well, if we call it. */
6905 ecs->event_thread->control.trap_expected = 0;
6906
6907 /* Likewise, clear the signal if it should not be passed. */
6908 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6909 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6910
6911 /* Do all pending step-overs before actually proceeding with
483805cf 6912 step/next/etc. */
4d9d9d04
PA
6913 if (start_step_over ())
6914 {
6915 prepare_to_wait (ecs);
6916 return 1;
6917 }
6918
6919 /* Look for the stepping/nexting thread. */
483805cf 6920 stepping_thread = NULL;
4d9d9d04 6921
08036331 6922 for (thread_info *tp : all_non_exited_threads ())
483805cf 6923 {
fbea99ea
PA
6924 /* Ignore threads of processes the caller is not
6925 resuming. */
483805cf 6926 if (!sched_multi
e99b03dc 6927 && tp->ptid.pid () != ecs->ptid.pid ())
483805cf
PA
6928 continue;
6929
6930 /* When stepping over a breakpoint, we lock all threads
6931 except the one that needs to move past the breakpoint.
6932 If a non-event thread has this set, the "incomplete
6933 step-over" check above should have caught it earlier. */
372316f1
PA
6934 if (tp->control.trap_expected)
6935 {
6936 internal_error (__FILE__, __LINE__,
6937 "[%s] has inconsistent state: "
6938 "trap_expected=%d\n",
6939 target_pid_to_str (tp->ptid),
6940 tp->control.trap_expected);
6941 }
483805cf
PA
6942
6943 /* Did we find the stepping thread? */
6944 if (tp->control.step_range_end)
6945 {
6946 /* Yep. There should only one though. */
6947 gdb_assert (stepping_thread == NULL);
6948
6949 /* The event thread is handled at the top, before we
6950 enter this loop. */
6951 gdb_assert (tp != ecs->event_thread);
6952
6953 /* If some thread other than the event thread is
6954 stepping, then scheduler locking can't be in effect,
6955 otherwise we wouldn't have resumed the current event
6956 thread in the first place. */
856e7dd6 6957 gdb_assert (!schedlock_applies (tp));
483805cf
PA
6958
6959 stepping_thread = tp;
6960 }
99619bea
PA
6961 }
6962
483805cf 6963 if (stepping_thread != NULL)
99619bea 6964 {
c447ac0b
PA
6965 if (debug_infrun)
6966 fprintf_unfiltered (gdb_stdlog,
6967 "infrun: switching back to stepped thread\n");
6968
2ac7589c
PA
6969 if (keep_going_stepped_thread (stepping_thread))
6970 {
6971 prepare_to_wait (ecs);
6972 return 1;
6973 }
6974 }
6975 }
2adfaa28 6976
2ac7589c
PA
6977 return 0;
6978}
2adfaa28 6979
2ac7589c
PA
6980/* Set a previously stepped thread back to stepping. Returns true on
6981 success, false if the resume is not possible (e.g., the thread
6982 vanished). */
6983
6984static int
6985keep_going_stepped_thread (struct thread_info *tp)
6986{
6987 struct frame_info *frame;
2ac7589c
PA
6988 struct execution_control_state ecss;
6989 struct execution_control_state *ecs = &ecss;
2adfaa28 6990
2ac7589c
PA
6991 /* If the stepping thread exited, then don't try to switch back and
6992 resume it, which could fail in several different ways depending
6993 on the target. Instead, just keep going.
2adfaa28 6994
2ac7589c
PA
6995 We can find a stepping dead thread in the thread list in two
6996 cases:
2adfaa28 6997
2ac7589c
PA
6998 - The target supports thread exit events, and when the target
6999 tries to delete the thread from the thread list, inferior_ptid
7000 pointed at the exiting thread. In such case, calling
7001 delete_thread does not really remove the thread from the list;
7002 instead, the thread is left listed, with 'exited' state.
64ce06e4 7003
2ac7589c
PA
7004 - The target's debug interface does not support thread exit
7005 events, and so we have no idea whatsoever if the previously
7006 stepping thread is still alive. For that reason, we need to
7007 synchronously query the target now. */
2adfaa28 7008
00431a78 7009 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
2ac7589c
PA
7010 {
7011 if (debug_infrun)
7012 fprintf_unfiltered (gdb_stdlog,
7013 "infrun: not resuming previously "
7014 "stepped thread, it has vanished\n");
7015
00431a78 7016 delete_thread (tp);
2ac7589c 7017 return 0;
c447ac0b 7018 }
2ac7589c
PA
7019
7020 if (debug_infrun)
7021 fprintf_unfiltered (gdb_stdlog,
7022 "infrun: resuming previously stepped thread\n");
7023
7024 reset_ecs (ecs, tp);
00431a78 7025 switch_to_thread (tp);
2ac7589c 7026
f2ffa92b 7027 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
2ac7589c 7028 frame = get_current_frame ();
2ac7589c
PA
7029
7030 /* If the PC of the thread we were trying to single-step has
7031 changed, then that thread has trapped or been signaled, but the
7032 event has not been reported to GDB yet. Re-poll the target
7033 looking for this particular thread's event (i.e. temporarily
7034 enable schedlock) by:
7035
7036 - setting a break at the current PC
7037 - resuming that particular thread, only (by setting trap
7038 expected)
7039
7040 This prevents us continuously moving the single-step breakpoint
7041 forward, one instruction at a time, overstepping. */
7042
f2ffa92b 7043 if (tp->suspend.stop_pc != tp->prev_pc)
2ac7589c
PA
7044 {
7045 ptid_t resume_ptid;
7046
7047 if (debug_infrun)
7048 fprintf_unfiltered (gdb_stdlog,
7049 "infrun: expected thread advanced also (%s -> %s)\n",
7050 paddress (target_gdbarch (), tp->prev_pc),
f2ffa92b 7051 paddress (target_gdbarch (), tp->suspend.stop_pc));
2ac7589c
PA
7052
7053 /* Clear the info of the previous step-over, as it's no longer
7054 valid (if the thread was trying to step over a breakpoint, it
7055 has already succeeded). It's what keep_going would do too,
7056 if we called it. Do this before trying to insert the sss
7057 breakpoint, otherwise if we were previously trying to step
7058 over this exact address in another thread, the breakpoint is
7059 skipped. */
7060 clear_step_over_info ();
7061 tp->control.trap_expected = 0;
7062
7063 insert_single_step_breakpoint (get_frame_arch (frame),
7064 get_frame_address_space (frame),
f2ffa92b 7065 tp->suspend.stop_pc);
2ac7589c 7066
372316f1 7067 tp->resumed = 1;
fbea99ea 7068 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7069 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7070 }
7071 else
7072 {
7073 if (debug_infrun)
7074 fprintf_unfiltered (gdb_stdlog,
7075 "infrun: expected thread still hasn't advanced\n");
7076
7077 keep_going_pass_signal (ecs);
7078 }
7079 return 1;
c447ac0b
PA
7080}
7081
8b061563
PA
7082/* Is thread TP in the middle of (software or hardware)
7083 single-stepping? (Note the result of this function must never be
7084 passed directly as target_resume's STEP parameter.) */
104c1213 7085
a289b8f6 7086static int
b3444185 7087currently_stepping (struct thread_info *tp)
a7212384 7088{
8358c15c
JK
7089 return ((tp->control.step_range_end
7090 && tp->control.step_resume_breakpoint == NULL)
7091 || tp->control.trap_expected
af48d08f 7092 || tp->stepped_breakpoint
8358c15c 7093 || bpstat_should_step ());
a7212384
UW
7094}
7095
b2175913
MS
7096/* Inferior has stepped into a subroutine call with source code that
7097 we should not step over. Do step to the first line of code in
7098 it. */
c2c6d25f
JM
7099
7100static void
568d6575
UW
7101handle_step_into_function (struct gdbarch *gdbarch,
7102 struct execution_control_state *ecs)
c2c6d25f 7103{
7e324e48
GB
7104 fill_in_stop_func (gdbarch, ecs);
7105
f2ffa92b
PA
7106 compunit_symtab *cust
7107 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7108 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7109 ecs->stop_func_start
7110 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7111
51abb421 7112 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7113 /* Use the step_resume_break to step until the end of the prologue,
7114 even if that involves jumps (as it seems to on the vax under
7115 4.2). */
7116 /* If the prologue ends in the middle of a source line, continue to
7117 the end of that source line (if it is still within the function).
7118 Otherwise, just go to end of prologue. */
2afb61aa
PA
7119 if (stop_func_sal.end
7120 && stop_func_sal.pc != ecs->stop_func_start
7121 && stop_func_sal.end < ecs->stop_func_end)
7122 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7123
2dbd5e30
KB
7124 /* Architectures which require breakpoint adjustment might not be able
7125 to place a breakpoint at the computed address. If so, the test
7126 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7127 ecs->stop_func_start to an address at which a breakpoint may be
7128 legitimately placed.
8fb3e588 7129
2dbd5e30
KB
7130 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7131 made, GDB will enter an infinite loop when stepping through
7132 optimized code consisting of VLIW instructions which contain
7133 subinstructions corresponding to different source lines. On
7134 FR-V, it's not permitted to place a breakpoint on any but the
7135 first subinstruction of a VLIW instruction. When a breakpoint is
7136 set, GDB will adjust the breakpoint address to the beginning of
7137 the VLIW instruction. Thus, we need to make the corresponding
7138 adjustment here when computing the stop address. */
8fb3e588 7139
568d6575 7140 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7141 {
7142 ecs->stop_func_start
568d6575 7143 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7144 ecs->stop_func_start);
2dbd5e30
KB
7145 }
7146
f2ffa92b 7147 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
c2c6d25f
JM
7148 {
7149 /* We are already there: stop now. */
bdc36728 7150 end_stepping_range (ecs);
c2c6d25f
JM
7151 return;
7152 }
7153 else
7154 {
7155 /* Put the step-breakpoint there and go until there. */
51abb421 7156 symtab_and_line sr_sal;
c2c6d25f
JM
7157 sr_sal.pc = ecs->stop_func_start;
7158 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7159 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7160
c2c6d25f 7161 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7162 some machines the prologue is where the new fp value is
7163 established. */
a6d9a66e 7164 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7165
7166 /* And make sure stepping stops right away then. */
16c381f0
JK
7167 ecs->event_thread->control.step_range_end
7168 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7169 }
7170 keep_going (ecs);
7171}
d4f3574e 7172
b2175913
MS
7173/* Inferior has stepped backward into a subroutine call with source
7174 code that we should not step over. Do step to the beginning of the
7175 last line of code in it. */
7176
7177static void
568d6575
UW
7178handle_step_into_function_backward (struct gdbarch *gdbarch,
7179 struct execution_control_state *ecs)
b2175913 7180{
43f3e411 7181 struct compunit_symtab *cust;
167e4384 7182 struct symtab_and_line stop_func_sal;
b2175913 7183
7e324e48
GB
7184 fill_in_stop_func (gdbarch, ecs);
7185
f2ffa92b 7186 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7187 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7188 ecs->stop_func_start
7189 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913 7190
f2ffa92b 7191 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
b2175913
MS
7192
7193 /* OK, we're just going to keep stepping here. */
f2ffa92b 7194 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
b2175913
MS
7195 {
7196 /* We're there already. Just stop stepping now. */
bdc36728 7197 end_stepping_range (ecs);
b2175913
MS
7198 }
7199 else
7200 {
7201 /* Else just reset the step range and keep going.
7202 No step-resume breakpoint, they don't work for
7203 epilogues, which can have multiple entry paths. */
16c381f0
JK
7204 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7205 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7206 keep_going (ecs);
7207 }
7208 return;
7209}
7210
d3169d93 7211/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7212 This is used to both functions and to skip over code. */
7213
7214static void
2c03e5be
PA
7215insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7216 struct symtab_and_line sr_sal,
7217 struct frame_id sr_id,
7218 enum bptype sr_type)
44cbf7b5 7219{
611c83ae
PA
7220 /* There should never be more than one step-resume or longjmp-resume
7221 breakpoint per thread, so we should never be setting a new
44cbf7b5 7222 step_resume_breakpoint when one is already active. */
8358c15c 7223 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7224 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7225
7226 if (debug_infrun)
7227 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7228 "infrun: inserting step-resume breakpoint at %s\n",
7229 paddress (gdbarch, sr_sal.pc));
d3169d93 7230
8358c15c 7231 inferior_thread ()->control.step_resume_breakpoint
454dafbd 7232 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
2c03e5be
PA
7233}
7234
9da8c2a0 7235void
2c03e5be
PA
7236insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7237 struct symtab_and_line sr_sal,
7238 struct frame_id sr_id)
7239{
7240 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7241 sr_sal, sr_id,
7242 bp_step_resume);
44cbf7b5 7243}
7ce450bd 7244
2c03e5be
PA
7245/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7246 This is used to skip a potential signal handler.
7ce450bd 7247
14e60db5
DJ
7248 This is called with the interrupted function's frame. The signal
7249 handler, when it returns, will resume the interrupted function at
7250 RETURN_FRAME.pc. */
d303a6c7
AC
7251
7252static void
2c03e5be 7253insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7254{
f4c1edd8 7255 gdb_assert (return_frame != NULL);
d303a6c7 7256
51abb421
PA
7257 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7258
7259 symtab_and_line sr_sal;
568d6575 7260 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7261 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7262 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7263
2c03e5be
PA
7264 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7265 get_stack_frame_id (return_frame),
7266 bp_hp_step_resume);
d303a6c7
AC
7267}
7268
2c03e5be
PA
7269/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7270 is used to skip a function after stepping into it (for "next" or if
7271 the called function has no debugging information).
14e60db5
DJ
7272
7273 The current function has almost always been reached by single
7274 stepping a call or return instruction. NEXT_FRAME belongs to the
7275 current function, and the breakpoint will be set at the caller's
7276 resume address.
7277
7278 This is a separate function rather than reusing
2c03e5be 7279 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7280 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7281 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7282
7283static void
7284insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7285{
14e60db5
DJ
7286 /* We shouldn't have gotten here if we don't know where the call site
7287 is. */
c7ce8faa 7288 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7289
51abb421 7290 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7291
51abb421 7292 symtab_and_line sr_sal;
c7ce8faa
DJ
7293 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7294 frame_unwind_caller_pc (next_frame));
14e60db5 7295 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7296 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7297
a6d9a66e 7298 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7299 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7300}
7301
611c83ae
PA
7302/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7303 new breakpoint at the target of a jmp_buf. The handling of
7304 longjmp-resume uses the same mechanisms used for handling
7305 "step-resume" breakpoints. */
7306
7307static void
a6d9a66e 7308insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7309{
e81a37f7
TT
7310 /* There should never be more than one longjmp-resume breakpoint per
7311 thread, so we should never be setting a new
611c83ae 7312 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7313 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7314
7315 if (debug_infrun)
7316 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7317 "infrun: inserting longjmp-resume breakpoint at %s\n",
7318 paddress (gdbarch, pc));
611c83ae 7319
e81a37f7 7320 inferior_thread ()->control.exception_resume_breakpoint =
454dafbd 7321 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
611c83ae
PA
7322}
7323
186c406b
TT
7324/* Insert an exception resume breakpoint. TP is the thread throwing
7325 the exception. The block B is the block of the unwinder debug hook
7326 function. FRAME is the frame corresponding to the call to this
7327 function. SYM is the symbol of the function argument holding the
7328 target PC of the exception. */
7329
7330static void
7331insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7332 const struct block *b,
186c406b
TT
7333 struct frame_info *frame,
7334 struct symbol *sym)
7335{
492d29ea 7336 TRY
186c406b 7337 {
63e43d3a 7338 struct block_symbol vsym;
186c406b
TT
7339 struct value *value;
7340 CORE_ADDR handler;
7341 struct breakpoint *bp;
7342
de63c46b
PA
7343 vsym = lookup_symbol_search_name (SYMBOL_SEARCH_NAME (sym),
7344 b, VAR_DOMAIN);
63e43d3a 7345 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7346 /* If the value was optimized out, revert to the old behavior. */
7347 if (! value_optimized_out (value))
7348 {
7349 handler = value_as_address (value);
7350
7351 if (debug_infrun)
7352 fprintf_unfiltered (gdb_stdlog,
7353 "infrun: exception resume at %lx\n",
7354 (unsigned long) handler);
7355
7356 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd
TT
7357 handler,
7358 bp_exception_resume).release ();
c70a6932
JK
7359
7360 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7361 frame = NULL;
7362
5d5658a1 7363 bp->thread = tp->global_num;
186c406b
TT
7364 inferior_thread ()->control.exception_resume_breakpoint = bp;
7365 }
7366 }
492d29ea
PA
7367 CATCH (e, RETURN_MASK_ERROR)
7368 {
7369 /* We want to ignore errors here. */
7370 }
7371 END_CATCH
186c406b
TT
7372}
7373
28106bc2
SDJ
7374/* A helper for check_exception_resume that sets an
7375 exception-breakpoint based on a SystemTap probe. */
7376
7377static void
7378insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7379 const struct bound_probe *probe,
28106bc2
SDJ
7380 struct frame_info *frame)
7381{
7382 struct value *arg_value;
7383 CORE_ADDR handler;
7384 struct breakpoint *bp;
7385
7386 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7387 if (!arg_value)
7388 return;
7389
7390 handler = value_as_address (arg_value);
7391
7392 if (debug_infrun)
7393 fprintf_unfiltered (gdb_stdlog,
7394 "infrun: exception resume at %s\n",
6bac7473 7395 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7396 handler));
7397
7398 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd 7399 handler, bp_exception_resume).release ();
5d5658a1 7400 bp->thread = tp->global_num;
28106bc2
SDJ
7401 inferior_thread ()->control.exception_resume_breakpoint = bp;
7402}
7403
186c406b
TT
7404/* This is called when an exception has been intercepted. Check to
7405 see whether the exception's destination is of interest, and if so,
7406 set an exception resume breakpoint there. */
7407
7408static void
7409check_exception_resume (struct execution_control_state *ecs,
28106bc2 7410 struct frame_info *frame)
186c406b 7411{
729662a5 7412 struct bound_probe probe;
28106bc2
SDJ
7413 struct symbol *func;
7414
7415 /* First see if this exception unwinding breakpoint was set via a
7416 SystemTap probe point. If so, the probe has two arguments: the
7417 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7418 set a breakpoint there. */
6bac7473 7419 probe = find_probe_by_pc (get_frame_pc (frame));
935676c9 7420 if (probe.prob)
28106bc2 7421 {
729662a5 7422 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7423 return;
7424 }
7425
7426 func = get_frame_function (frame);
7427 if (!func)
7428 return;
186c406b 7429
492d29ea 7430 TRY
186c406b 7431 {
3977b71f 7432 const struct block *b;
8157b174 7433 struct block_iterator iter;
186c406b
TT
7434 struct symbol *sym;
7435 int argno = 0;
7436
7437 /* The exception breakpoint is a thread-specific breakpoint on
7438 the unwinder's debug hook, declared as:
7439
7440 void _Unwind_DebugHook (void *cfa, void *handler);
7441
7442 The CFA argument indicates the frame to which control is
7443 about to be transferred. HANDLER is the destination PC.
7444
7445 We ignore the CFA and set a temporary breakpoint at HANDLER.
7446 This is not extremely efficient but it avoids issues in gdb
7447 with computing the DWARF CFA, and it also works even in weird
7448 cases such as throwing an exception from inside a signal
7449 handler. */
7450
7451 b = SYMBOL_BLOCK_VALUE (func);
7452 ALL_BLOCK_SYMBOLS (b, iter, sym)
7453 {
7454 if (!SYMBOL_IS_ARGUMENT (sym))
7455 continue;
7456
7457 if (argno == 0)
7458 ++argno;
7459 else
7460 {
7461 insert_exception_resume_breakpoint (ecs->event_thread,
7462 b, frame, sym);
7463 break;
7464 }
7465 }
7466 }
492d29ea
PA
7467 CATCH (e, RETURN_MASK_ERROR)
7468 {
7469 }
7470 END_CATCH
186c406b
TT
7471}
7472
104c1213 7473static void
22bcd14b 7474stop_waiting (struct execution_control_state *ecs)
104c1213 7475{
527159b7 7476 if (debug_infrun)
22bcd14b 7477 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7478
cd0fc7c3
SS
7479 /* Let callers know we don't want to wait for the inferior anymore. */
7480 ecs->wait_some_more = 0;
fbea99ea
PA
7481
7482 /* If all-stop, but the target is always in non-stop mode, stop all
7483 threads now that we're presenting the stop to the user. */
7484 if (!non_stop && target_is_non_stop_p ())
7485 stop_all_threads ();
cd0fc7c3
SS
7486}
7487
4d9d9d04
PA
7488/* Like keep_going, but passes the signal to the inferior, even if the
7489 signal is set to nopass. */
d4f3574e
SS
7490
7491static void
4d9d9d04 7492keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7493{
d7e15655 7494 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
372316f1 7495 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7496
d4f3574e 7497 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b 7498 ecs->event_thread->prev_pc
00431a78 7499 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
d4f3574e 7500
4d9d9d04 7501 if (ecs->event_thread->control.trap_expected)
d4f3574e 7502 {
4d9d9d04
PA
7503 struct thread_info *tp = ecs->event_thread;
7504
7505 if (debug_infrun)
7506 fprintf_unfiltered (gdb_stdlog,
7507 "infrun: %s has trap_expected set, "
7508 "resuming to collect trap\n",
7509 target_pid_to_str (tp->ptid));
7510
a9ba6bae
PA
7511 /* We haven't yet gotten our trap, and either: intercepted a
7512 non-signal event (e.g., a fork); or took a signal which we
7513 are supposed to pass through to the inferior. Simply
7514 continue. */
64ce06e4 7515 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7516 }
372316f1
PA
7517 else if (step_over_info_valid_p ())
7518 {
7519 /* Another thread is stepping over a breakpoint in-line. If
7520 this thread needs a step-over too, queue the request. In
7521 either case, this resume must be deferred for later. */
7522 struct thread_info *tp = ecs->event_thread;
7523
7524 if (ecs->hit_singlestep_breakpoint
7525 || thread_still_needs_step_over (tp))
7526 {
7527 if (debug_infrun)
7528 fprintf_unfiltered (gdb_stdlog,
7529 "infrun: step-over already in progress: "
7530 "step-over for %s deferred\n",
7531 target_pid_to_str (tp->ptid));
7532 thread_step_over_chain_enqueue (tp);
7533 }
7534 else
7535 {
7536 if (debug_infrun)
7537 fprintf_unfiltered (gdb_stdlog,
7538 "infrun: step-over in progress: "
7539 "resume of %s deferred\n",
7540 target_pid_to_str (tp->ptid));
7541 }
372316f1 7542 }
d4f3574e
SS
7543 else
7544 {
31e77af2 7545 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7546 int remove_bp;
7547 int remove_wps;
8d297bbf 7548 step_over_what step_what;
31e77af2 7549
d4f3574e 7550 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7551 anyway (if we got a signal, the user asked it be passed to
7552 the child)
7553 -- or --
7554 We got our expected trap, but decided we should resume from
7555 it.
d4f3574e 7556
a9ba6bae 7557 We're going to run this baby now!
d4f3574e 7558
c36b740a
VP
7559 Note that insert_breakpoints won't try to re-insert
7560 already inserted breakpoints. Therefore, we don't
7561 care if breakpoints were already inserted, or not. */
a9ba6bae 7562
31e77af2
PA
7563 /* If we need to step over a breakpoint, and we're not using
7564 displaced stepping to do so, insert all breakpoints
7565 (watchpoints, etc.) but the one we're stepping over, step one
7566 instruction, and then re-insert the breakpoint when that step
7567 is finished. */
963f9c80 7568
6c4cfb24
PA
7569 step_what = thread_still_needs_step_over (ecs->event_thread);
7570
963f9c80 7571 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7572 || (step_what & STEP_OVER_BREAKPOINT));
7573 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7574
cb71640d
PA
7575 /* We can't use displaced stepping if we need to step past a
7576 watchpoint. The instruction copied to the scratch pad would
7577 still trigger the watchpoint. */
7578 if (remove_bp
3fc8eb30 7579 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7580 {
a01bda52 7581 set_step_over_info (regcache->aspace (),
21edc42f
YQ
7582 regcache_read_pc (regcache), remove_wps,
7583 ecs->event_thread->global_num);
45e8c884 7584 }
963f9c80 7585 else if (remove_wps)
21edc42f 7586 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7587
7588 /* If we now need to do an in-line step-over, we need to stop
7589 all other threads. Note this must be done before
7590 insert_breakpoints below, because that removes the breakpoint
7591 we're about to step over, otherwise other threads could miss
7592 it. */
fbea99ea 7593 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7594 stop_all_threads ();
abbb1732 7595
31e77af2 7596 /* Stop stepping if inserting breakpoints fails. */
492d29ea 7597 TRY
31e77af2
PA
7598 {
7599 insert_breakpoints ();
7600 }
492d29ea 7601 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
7602 {
7603 exception_print (gdb_stderr, e);
22bcd14b 7604 stop_waiting (ecs);
bdf2a94a 7605 clear_step_over_info ();
31e77af2 7606 return;
d4f3574e 7607 }
492d29ea 7608 END_CATCH
d4f3574e 7609
963f9c80 7610 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7611
64ce06e4 7612 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7613 }
7614
488f131b 7615 prepare_to_wait (ecs);
d4f3574e
SS
7616}
7617
4d9d9d04
PA
7618/* Called when we should continue running the inferior, because the
7619 current event doesn't cause a user visible stop. This does the
7620 resuming part; waiting for the next event is done elsewhere. */
7621
7622static void
7623keep_going (struct execution_control_state *ecs)
7624{
7625 if (ecs->event_thread->control.trap_expected
7626 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7627 ecs->event_thread->control.trap_expected = 0;
7628
7629 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7630 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7631 keep_going_pass_signal (ecs);
7632}
7633
104c1213
JM
7634/* This function normally comes after a resume, before
7635 handle_inferior_event exits. It takes care of any last bits of
7636 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7637
104c1213
JM
7638static void
7639prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7640{
527159b7 7641 if (debug_infrun)
8a9de0e4 7642 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7643
104c1213 7644 ecs->wait_some_more = 1;
0b333c5e
PA
7645
7646 if (!target_is_async_p ())
7647 mark_infrun_async_event_handler ();
c906108c 7648}
11cf8741 7649
fd664c91 7650/* We are done with the step range of a step/next/si/ni command.
b57bacec 7651 Called once for each n of a "step n" operation. */
fd664c91
PA
7652
7653static void
bdc36728 7654end_stepping_range (struct execution_control_state *ecs)
fd664c91 7655{
bdc36728 7656 ecs->event_thread->control.stop_step = 1;
bdc36728 7657 stop_waiting (ecs);
fd664c91
PA
7658}
7659
33d62d64
JK
7660/* Several print_*_reason functions to print why the inferior has stopped.
7661 We always print something when the inferior exits, or receives a signal.
7662 The rest of the cases are dealt with later on in normal_stop and
7663 print_it_typical. Ideally there should be a call to one of these
7664 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7665 stop_waiting is called.
33d62d64 7666
fd664c91
PA
7667 Note that we don't call these directly, instead we delegate that to
7668 the interpreters, through observers. Interpreters then call these
7669 with whatever uiout is right. */
33d62d64 7670
fd664c91
PA
7671void
7672print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7673{
fd664c91 7674 /* For CLI-like interpreters, print nothing. */
33d62d64 7675
112e8700 7676 if (uiout->is_mi_like_p ())
fd664c91 7677 {
112e8700 7678 uiout->field_string ("reason",
fd664c91
PA
7679 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7680 }
7681}
33d62d64 7682
fd664c91
PA
7683void
7684print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7685{
33d62d64 7686 annotate_signalled ();
112e8700
SM
7687 if (uiout->is_mi_like_p ())
7688 uiout->field_string
7689 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7690 uiout->text ("\nProgram terminated with signal ");
33d62d64 7691 annotate_signal_name ();
112e8700 7692 uiout->field_string ("signal-name",
2ea28649 7693 gdb_signal_to_name (siggnal));
33d62d64 7694 annotate_signal_name_end ();
112e8700 7695 uiout->text (", ");
33d62d64 7696 annotate_signal_string ();
112e8700 7697 uiout->field_string ("signal-meaning",
2ea28649 7698 gdb_signal_to_string (siggnal));
33d62d64 7699 annotate_signal_string_end ();
112e8700
SM
7700 uiout->text (".\n");
7701 uiout->text ("The program no longer exists.\n");
33d62d64
JK
7702}
7703
fd664c91
PA
7704void
7705print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7706{
fda326dd 7707 struct inferior *inf = current_inferior ();
f2907e49 7708 const char *pidstr = target_pid_to_str (ptid_t (inf->pid));
fda326dd 7709
33d62d64
JK
7710 annotate_exited (exitstatus);
7711 if (exitstatus)
7712 {
112e8700
SM
7713 if (uiout->is_mi_like_p ())
7714 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7715 uiout->text ("[Inferior ");
7716 uiout->text (plongest (inf->num));
7717 uiout->text (" (");
7718 uiout->text (pidstr);
7719 uiout->text (") exited with code ");
7720 uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus);
7721 uiout->text ("]\n");
33d62d64
JK
7722 }
7723 else
11cf8741 7724 {
112e8700
SM
7725 if (uiout->is_mi_like_p ())
7726 uiout->field_string
7727 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7728 uiout->text ("[Inferior ");
7729 uiout->text (plongest (inf->num));
7730 uiout->text (" (");
7731 uiout->text (pidstr);
7732 uiout->text (") exited normally]\n");
33d62d64 7733 }
33d62d64
JK
7734}
7735
012b3a21
WT
7736/* Some targets/architectures can do extra processing/display of
7737 segmentation faults. E.g., Intel MPX boundary faults.
7738 Call the architecture dependent function to handle the fault. */
7739
7740static void
7741handle_segmentation_fault (struct ui_out *uiout)
7742{
7743 struct regcache *regcache = get_current_regcache ();
ac7936df 7744 struct gdbarch *gdbarch = regcache->arch ();
012b3a21
WT
7745
7746 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7747 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7748}
7749
fd664c91
PA
7750void
7751print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 7752{
f303dbd6
PA
7753 struct thread_info *thr = inferior_thread ();
7754
33d62d64
JK
7755 annotate_signal ();
7756
112e8700 7757 if (uiout->is_mi_like_p ())
f303dbd6
PA
7758 ;
7759 else if (show_thread_that_caused_stop ())
33d62d64 7760 {
f303dbd6 7761 const char *name;
33d62d64 7762
112e8700
SM
7763 uiout->text ("\nThread ");
7764 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
f303dbd6
PA
7765
7766 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7767 if (name != NULL)
7768 {
112e8700
SM
7769 uiout->text (" \"");
7770 uiout->field_fmt ("name", "%s", name);
7771 uiout->text ("\"");
f303dbd6 7772 }
33d62d64 7773 }
f303dbd6 7774 else
112e8700 7775 uiout->text ("\nProgram");
f303dbd6 7776
112e8700
SM
7777 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7778 uiout->text (" stopped");
33d62d64
JK
7779 else
7780 {
112e8700 7781 uiout->text (" received signal ");
8b93c638 7782 annotate_signal_name ();
112e8700
SM
7783 if (uiout->is_mi_like_p ())
7784 uiout->field_string
7785 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7786 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 7787 annotate_signal_name_end ();
112e8700 7788 uiout->text (", ");
8b93c638 7789 annotate_signal_string ();
112e8700 7790 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
7791
7792 if (siggnal == GDB_SIGNAL_SEGV)
7793 handle_segmentation_fault (uiout);
7794
8b93c638 7795 annotate_signal_string_end ();
33d62d64 7796 }
112e8700 7797 uiout->text (".\n");
33d62d64 7798}
252fbfc8 7799
fd664c91
PA
7800void
7801print_no_history_reason (struct ui_out *uiout)
33d62d64 7802{
112e8700 7803 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 7804}
43ff13b4 7805
0c7e1a46
PA
7806/* Print current location without a level number, if we have changed
7807 functions or hit a breakpoint. Print source line if we have one.
7808 bpstat_print contains the logic deciding in detail what to print,
7809 based on the event(s) that just occurred. */
7810
243a9253
PA
7811static void
7812print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
7813{
7814 int bpstat_ret;
f486487f 7815 enum print_what source_flag;
0c7e1a46
PA
7816 int do_frame_printing = 1;
7817 struct thread_info *tp = inferior_thread ();
7818
7819 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7820 switch (bpstat_ret)
7821 {
7822 case PRINT_UNKNOWN:
7823 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7824 should) carry around the function and does (or should) use
7825 that when doing a frame comparison. */
7826 if (tp->control.stop_step
7827 && frame_id_eq (tp->control.step_frame_id,
7828 get_frame_id (get_current_frame ()))
f2ffa92b
PA
7829 && (tp->control.step_start_function
7830 == find_pc_function (tp->suspend.stop_pc)))
0c7e1a46
PA
7831 {
7832 /* Finished step, just print source line. */
7833 source_flag = SRC_LINE;
7834 }
7835 else
7836 {
7837 /* Print location and source line. */
7838 source_flag = SRC_AND_LOC;
7839 }
7840 break;
7841 case PRINT_SRC_AND_LOC:
7842 /* Print location and source line. */
7843 source_flag = SRC_AND_LOC;
7844 break;
7845 case PRINT_SRC_ONLY:
7846 source_flag = SRC_LINE;
7847 break;
7848 case PRINT_NOTHING:
7849 /* Something bogus. */
7850 source_flag = SRC_LINE;
7851 do_frame_printing = 0;
7852 break;
7853 default:
7854 internal_error (__FILE__, __LINE__, _("Unknown value."));
7855 }
7856
7857 /* The behavior of this routine with respect to the source
7858 flag is:
7859 SRC_LINE: Print only source line
7860 LOCATION: Print only location
7861 SRC_AND_LOC: Print location and source line. */
7862 if (do_frame_printing)
7863 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
7864}
7865
243a9253
PA
7866/* See infrun.h. */
7867
7868void
7869print_stop_event (struct ui_out *uiout)
7870{
243a9253
PA
7871 struct target_waitstatus last;
7872 ptid_t last_ptid;
7873 struct thread_info *tp;
7874
7875 get_last_target_status (&last_ptid, &last);
7876
67ad9399
TT
7877 {
7878 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 7879
67ad9399 7880 print_stop_location (&last);
243a9253 7881
67ad9399
TT
7882 /* Display the auto-display expressions. */
7883 do_displays ();
7884 }
243a9253
PA
7885
7886 tp = inferior_thread ();
7887 if (tp->thread_fsm != NULL
7888 && thread_fsm_finished_p (tp->thread_fsm))
7889 {
7890 struct return_value_info *rv;
7891
7892 rv = thread_fsm_return_value (tp->thread_fsm);
7893 if (rv != NULL)
7894 print_return_value (uiout, rv);
7895 }
0c7e1a46
PA
7896}
7897
388a7084
PA
7898/* See infrun.h. */
7899
7900void
7901maybe_remove_breakpoints (void)
7902{
7903 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7904 {
7905 if (remove_breakpoints ())
7906 {
223ffa71 7907 target_terminal::ours_for_output ();
388a7084
PA
7908 printf_filtered (_("Cannot remove breakpoints because "
7909 "program is no longer writable.\nFurther "
7910 "execution is probably impossible.\n"));
7911 }
7912 }
7913}
7914
4c2f2a79
PA
7915/* The execution context that just caused a normal stop. */
7916
7917struct stop_context
7918{
2d844eaf
TT
7919 stop_context ();
7920 ~stop_context ();
7921
7922 DISABLE_COPY_AND_ASSIGN (stop_context);
7923
7924 bool changed () const;
7925
4c2f2a79
PA
7926 /* The stop ID. */
7927 ULONGEST stop_id;
c906108c 7928
4c2f2a79 7929 /* The event PTID. */
c906108c 7930
4c2f2a79
PA
7931 ptid_t ptid;
7932
7933 /* If stopp for a thread event, this is the thread that caused the
7934 stop. */
7935 struct thread_info *thread;
7936
7937 /* The inferior that caused the stop. */
7938 int inf_num;
7939};
7940
2d844eaf 7941/* Initializes a new stop context. If stopped for a thread event, this
4c2f2a79
PA
7942 takes a strong reference to the thread. */
7943
2d844eaf 7944stop_context::stop_context ()
4c2f2a79 7945{
2d844eaf
TT
7946 stop_id = get_stop_id ();
7947 ptid = inferior_ptid;
7948 inf_num = current_inferior ()->num;
4c2f2a79 7949
d7e15655 7950 if (inferior_ptid != null_ptid)
4c2f2a79
PA
7951 {
7952 /* Take a strong reference so that the thread can't be deleted
7953 yet. */
2d844eaf
TT
7954 thread = inferior_thread ();
7955 thread->incref ();
4c2f2a79
PA
7956 }
7957 else
2d844eaf 7958 thread = NULL;
4c2f2a79
PA
7959}
7960
7961/* Release a stop context previously created with save_stop_context.
7962 Releases the strong reference to the thread as well. */
7963
2d844eaf 7964stop_context::~stop_context ()
4c2f2a79 7965{
2d844eaf
TT
7966 if (thread != NULL)
7967 thread->decref ();
4c2f2a79
PA
7968}
7969
7970/* Return true if the current context no longer matches the saved stop
7971 context. */
7972
2d844eaf
TT
7973bool
7974stop_context::changed () const
7975{
7976 if (ptid != inferior_ptid)
7977 return true;
7978 if (inf_num != current_inferior ()->num)
7979 return true;
7980 if (thread != NULL && thread->state != THREAD_STOPPED)
7981 return true;
7982 if (get_stop_id () != stop_id)
7983 return true;
7984 return false;
4c2f2a79
PA
7985}
7986
7987/* See infrun.h. */
7988
7989int
96baa820 7990normal_stop (void)
c906108c 7991{
73b65bb0
DJ
7992 struct target_waitstatus last;
7993 ptid_t last_ptid;
7994
7995 get_last_target_status (&last_ptid, &last);
7996
4c2f2a79
PA
7997 new_stop_id ();
7998
29f49a6a
PA
7999 /* If an exception is thrown from this point on, make sure to
8000 propagate GDB's knowledge of the executing state to the
8001 frontend/user running state. A QUIT is an easy exception to see
8002 here, so do this before any filtered output. */
731f534f
PA
8003
8004 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8005
c35b1492 8006 if (!non_stop)
731f534f 8007 maybe_finish_thread_state.emplace (minus_one_ptid);
e1316e60
PA
8008 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8009 || last.kind == TARGET_WAITKIND_EXITED)
8010 {
8011 /* On some targets, we may still have live threads in the
8012 inferior when we get a process exit event. E.g., for
8013 "checkpoint", when the current checkpoint/fork exits,
8014 linux-fork.c automatically switches to another fork from
8015 within target_mourn_inferior. */
731f534f
PA
8016 if (inferior_ptid != null_ptid)
8017 maybe_finish_thread_state.emplace (ptid_t (inferior_ptid.pid ()));
e1316e60
PA
8018 }
8019 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
731f534f 8020 maybe_finish_thread_state.emplace (inferior_ptid);
29f49a6a 8021
b57bacec
PA
8022 /* As we're presenting a stop, and potentially removing breakpoints,
8023 update the thread list so we can tell whether there are threads
8024 running on the target. With target remote, for example, we can
8025 only learn about new threads when we explicitly update the thread
8026 list. Do this before notifying the interpreters about signal
8027 stops, end of stepping ranges, etc., so that the "new thread"
8028 output is emitted before e.g., "Program received signal FOO",
8029 instead of after. */
8030 update_thread_list ();
8031
8032 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
76727919 8033 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
b57bacec 8034
c906108c
SS
8035 /* As with the notification of thread events, we want to delay
8036 notifying the user that we've switched thread context until
8037 the inferior actually stops.
8038
73b65bb0
DJ
8039 There's no point in saying anything if the inferior has exited.
8040 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8041 "received a signal".
8042
8043 Also skip saying anything in non-stop mode. In that mode, as we
8044 don't want GDB to switch threads behind the user's back, to avoid
8045 races where the user is typing a command to apply to thread x,
8046 but GDB switches to thread y before the user finishes entering
8047 the command, fetch_inferior_event installs a cleanup to restore
8048 the current thread back to the thread the user had selected right
8049 after this event is handled, so we're not really switching, only
8050 informing of a stop. */
4f8d22e3 8051 if (!non_stop
731f534f 8052 && previous_inferior_ptid != inferior_ptid
73b65bb0
DJ
8053 && target_has_execution
8054 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8055 && last.kind != TARGET_WAITKIND_EXITED
8056 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8057 {
0e454242 8058 SWITCH_THRU_ALL_UIS ()
3b12939d 8059 {
223ffa71 8060 target_terminal::ours_for_output ();
3b12939d
PA
8061 printf_filtered (_("[Switching to %s]\n"),
8062 target_pid_to_str (inferior_ptid));
8063 annotate_thread_changed ();
8064 }
39f77062 8065 previous_inferior_ptid = inferior_ptid;
c906108c 8066 }
c906108c 8067
0e5bf2a8
PA
8068 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8069 {
0e454242 8070 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8071 if (current_ui->prompt_state == PROMPT_BLOCKED)
8072 {
223ffa71 8073 target_terminal::ours_for_output ();
3b12939d
PA
8074 printf_filtered (_("No unwaited-for children left.\n"));
8075 }
0e5bf2a8
PA
8076 }
8077
b57bacec 8078 /* Note: this depends on the update_thread_list call above. */
388a7084 8079 maybe_remove_breakpoints ();
c906108c 8080
c906108c
SS
8081 /* If an auto-display called a function and that got a signal,
8082 delete that auto-display to avoid an infinite recursion. */
8083
8084 if (stopped_by_random_signal)
8085 disable_current_display ();
8086
0e454242 8087 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8088 {
8089 async_enable_stdin ();
8090 }
c906108c 8091
388a7084 8092 /* Let the user/frontend see the threads as stopped. */
731f534f 8093 maybe_finish_thread_state.reset ();
388a7084
PA
8094
8095 /* Select innermost stack frame - i.e., current frame is frame 0,
8096 and current location is based on that. Handle the case where the
8097 dummy call is returning after being stopped. E.g. the dummy call
8098 previously hit a breakpoint. (If the dummy call returns
8099 normally, we won't reach here.) Do this before the stop hook is
8100 run, so that it doesn't get to see the temporary dummy frame,
8101 which is not where we'll present the stop. */
8102 if (has_stack_frames ())
8103 {
8104 if (stop_stack_dummy == STOP_STACK_DUMMY)
8105 {
8106 /* Pop the empty frame that contains the stack dummy. This
8107 also restores inferior state prior to the call (struct
8108 infcall_suspend_state). */
8109 struct frame_info *frame = get_current_frame ();
8110
8111 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8112 frame_pop (frame);
8113 /* frame_pop calls reinit_frame_cache as the last thing it
8114 does which means there's now no selected frame. */
8115 }
8116
8117 select_frame (get_current_frame ());
8118
8119 /* Set the current source location. */
8120 set_current_sal_from_frame (get_current_frame ());
8121 }
dd7e2d2b
PA
8122
8123 /* Look up the hook_stop and run it (CLI internally handles problem
8124 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8125 if (stop_command != NULL)
8126 {
2d844eaf 8127 stop_context saved_context;
4c2f2a79 8128
bf469271
PA
8129 TRY
8130 {
8131 execute_cmd_pre_hook (stop_command);
8132 }
8133 CATCH (ex, RETURN_MASK_ALL)
8134 {
8135 exception_fprintf (gdb_stderr, ex,
8136 "Error while running hook_stop:\n");
8137 }
8138 END_CATCH
4c2f2a79
PA
8139
8140 /* If the stop hook resumes the target, then there's no point in
8141 trying to notify about the previous stop; its context is
8142 gone. Likewise if the command switches thread or inferior --
8143 the observers would print a stop for the wrong
8144 thread/inferior. */
2d844eaf
TT
8145 if (saved_context.changed ())
8146 return 1;
4c2f2a79 8147 }
dd7e2d2b 8148
388a7084
PA
8149 /* Notify observers about the stop. This is where the interpreters
8150 print the stop event. */
d7e15655 8151 if (inferior_ptid != null_ptid)
76727919 8152 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
388a7084
PA
8153 stop_print_frame);
8154 else
76727919 8155 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
347bddb7 8156
243a9253
PA
8157 annotate_stopped ();
8158
48844aa6
PA
8159 if (target_has_execution)
8160 {
8161 if (last.kind != TARGET_WAITKIND_SIGNALLED
8162 && last.kind != TARGET_WAITKIND_EXITED)
8163 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8164 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8165 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8166 }
6c95b8df
PA
8167
8168 /* Try to get rid of automatically added inferiors that are no
8169 longer needed. Keeping those around slows down things linearly.
8170 Note that this never removes the current inferior. */
8171 prune_inferiors ();
4c2f2a79
PA
8172
8173 return 0;
c906108c 8174}
c906108c 8175\f
c5aa993b 8176int
96baa820 8177signal_stop_state (int signo)
c906108c 8178{
d6b48e9c 8179 return signal_stop[signo];
c906108c
SS
8180}
8181
c5aa993b 8182int
96baa820 8183signal_print_state (int signo)
c906108c
SS
8184{
8185 return signal_print[signo];
8186}
8187
c5aa993b 8188int
96baa820 8189signal_pass_state (int signo)
c906108c
SS
8190{
8191 return signal_program[signo];
8192}
8193
2455069d
UW
8194static void
8195signal_cache_update (int signo)
8196{
8197 if (signo == -1)
8198 {
a493e3e2 8199 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8200 signal_cache_update (signo);
8201
8202 return;
8203 }
8204
8205 signal_pass[signo] = (signal_stop[signo] == 0
8206 && signal_print[signo] == 0
ab04a2af
TT
8207 && signal_program[signo] == 1
8208 && signal_catch[signo] == 0);
2455069d
UW
8209}
8210
488f131b 8211int
7bda5e4a 8212signal_stop_update (int signo, int state)
d4f3574e
SS
8213{
8214 int ret = signal_stop[signo];
abbb1732 8215
d4f3574e 8216 signal_stop[signo] = state;
2455069d 8217 signal_cache_update (signo);
d4f3574e
SS
8218 return ret;
8219}
8220
488f131b 8221int
7bda5e4a 8222signal_print_update (int signo, int state)
d4f3574e
SS
8223{
8224 int ret = signal_print[signo];
abbb1732 8225
d4f3574e 8226 signal_print[signo] = state;
2455069d 8227 signal_cache_update (signo);
d4f3574e
SS
8228 return ret;
8229}
8230
488f131b 8231int
7bda5e4a 8232signal_pass_update (int signo, int state)
d4f3574e
SS
8233{
8234 int ret = signal_program[signo];
abbb1732 8235
d4f3574e 8236 signal_program[signo] = state;
2455069d 8237 signal_cache_update (signo);
d4f3574e
SS
8238 return ret;
8239}
8240
ab04a2af
TT
8241/* Update the global 'signal_catch' from INFO and notify the
8242 target. */
8243
8244void
8245signal_catch_update (const unsigned int *info)
8246{
8247 int i;
8248
8249 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8250 signal_catch[i] = info[i] > 0;
8251 signal_cache_update (-1);
8252 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8253}
8254
c906108c 8255static void
96baa820 8256sig_print_header (void)
c906108c 8257{
3e43a32a
MS
8258 printf_filtered (_("Signal Stop\tPrint\tPass "
8259 "to program\tDescription\n"));
c906108c
SS
8260}
8261
8262static void
2ea28649 8263sig_print_info (enum gdb_signal oursig)
c906108c 8264{
2ea28649 8265 const char *name = gdb_signal_to_name (oursig);
c906108c 8266 int name_padding = 13 - strlen (name);
96baa820 8267
c906108c
SS
8268 if (name_padding <= 0)
8269 name_padding = 0;
8270
8271 printf_filtered ("%s", name);
488f131b 8272 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8273 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8274 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8275 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8276 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8277}
8278
8279/* Specify how various signals in the inferior should be handled. */
8280
8281static void
0b39b52e 8282handle_command (const char *args, int from_tty)
c906108c 8283{
c906108c 8284 int digits, wordlen;
b926417a 8285 int sigfirst, siglast;
2ea28649 8286 enum gdb_signal oursig;
c906108c
SS
8287 int allsigs;
8288 int nsigs;
8289 unsigned char *sigs;
c906108c
SS
8290
8291 if (args == NULL)
8292 {
e2e0b3e5 8293 error_no_arg (_("signal to handle"));
c906108c
SS
8294 }
8295
1777feb0 8296 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8297
a493e3e2 8298 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
8299 sigs = (unsigned char *) alloca (nsigs);
8300 memset (sigs, 0, nsigs);
8301
1777feb0 8302 /* Break the command line up into args. */
c906108c 8303
773a1edc 8304 gdb_argv built_argv (args);
c906108c
SS
8305
8306 /* Walk through the args, looking for signal oursigs, signal names, and
8307 actions. Signal numbers and signal names may be interspersed with
8308 actions, with the actions being performed for all signals cumulatively
1777feb0 8309 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8310
773a1edc 8311 for (char *arg : built_argv)
c906108c 8312 {
773a1edc
TT
8313 wordlen = strlen (arg);
8314 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8315 {;
8316 }
8317 allsigs = 0;
8318 sigfirst = siglast = -1;
8319
773a1edc 8320 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8321 {
8322 /* Apply action to all signals except those used by the
1777feb0 8323 debugger. Silently skip those. */
c906108c
SS
8324 allsigs = 1;
8325 sigfirst = 0;
8326 siglast = nsigs - 1;
8327 }
773a1edc 8328 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8329 {
8330 SET_SIGS (nsigs, sigs, signal_stop);
8331 SET_SIGS (nsigs, sigs, signal_print);
8332 }
773a1edc 8333 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8334 {
8335 UNSET_SIGS (nsigs, sigs, signal_program);
8336 }
773a1edc 8337 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8338 {
8339 SET_SIGS (nsigs, sigs, signal_print);
8340 }
773a1edc 8341 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8342 {
8343 SET_SIGS (nsigs, sigs, signal_program);
8344 }
773a1edc 8345 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8346 {
8347 UNSET_SIGS (nsigs, sigs, signal_stop);
8348 }
773a1edc 8349 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8350 {
8351 SET_SIGS (nsigs, sigs, signal_program);
8352 }
773a1edc 8353 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8354 {
8355 UNSET_SIGS (nsigs, sigs, signal_print);
8356 UNSET_SIGS (nsigs, sigs, signal_stop);
8357 }
773a1edc 8358 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8359 {
8360 UNSET_SIGS (nsigs, sigs, signal_program);
8361 }
8362 else if (digits > 0)
8363 {
8364 /* It is numeric. The numeric signal refers to our own
8365 internal signal numbering from target.h, not to host/target
8366 signal number. This is a feature; users really should be
8367 using symbolic names anyway, and the common ones like
8368 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8369
8370 sigfirst = siglast = (int)
773a1edc
TT
8371 gdb_signal_from_command (atoi (arg));
8372 if (arg[digits] == '-')
c906108c
SS
8373 {
8374 siglast = (int)
773a1edc 8375 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8376 }
8377 if (sigfirst > siglast)
8378 {
1777feb0 8379 /* Bet he didn't figure we'd think of this case... */
b926417a 8380 std::swap (sigfirst, siglast);
c906108c
SS
8381 }
8382 }
8383 else
8384 {
773a1edc 8385 oursig = gdb_signal_from_name (arg);
a493e3e2 8386 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8387 {
8388 sigfirst = siglast = (int) oursig;
8389 }
8390 else
8391 {
8392 /* Not a number and not a recognized flag word => complain. */
773a1edc 8393 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8394 }
8395 }
8396
8397 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8398 which signals to apply actions to. */
c906108c 8399
b926417a 8400 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
c906108c 8401 {
2ea28649 8402 switch ((enum gdb_signal) signum)
c906108c 8403 {
a493e3e2
PA
8404 case GDB_SIGNAL_TRAP:
8405 case GDB_SIGNAL_INT:
c906108c
SS
8406 if (!allsigs && !sigs[signum])
8407 {
9e2f0ad4 8408 if (query (_("%s is used by the debugger.\n\
3e43a32a 8409Are you sure you want to change it? "),
2ea28649 8410 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8411 {
8412 sigs[signum] = 1;
8413 }
8414 else
8415 {
a3f17187 8416 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8417 gdb_flush (gdb_stdout);
8418 }
8419 }
8420 break;
a493e3e2
PA
8421 case GDB_SIGNAL_0:
8422 case GDB_SIGNAL_DEFAULT:
8423 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8424 /* Make sure that "all" doesn't print these. */
8425 break;
8426 default:
8427 sigs[signum] = 1;
8428 break;
8429 }
8430 }
c906108c
SS
8431 }
8432
b926417a 8433 for (int signum = 0; signum < nsigs; signum++)
3a031f65
PA
8434 if (sigs[signum])
8435 {
2455069d 8436 signal_cache_update (-1);
a493e3e2
PA
8437 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8438 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 8439
3a031f65
PA
8440 if (from_tty)
8441 {
8442 /* Show the results. */
8443 sig_print_header ();
8444 for (; signum < nsigs; signum++)
8445 if (sigs[signum])
aead7601 8446 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8447 }
8448
8449 break;
8450 }
c906108c
SS
8451}
8452
de0bea00
MF
8453/* Complete the "handle" command. */
8454
eb3ff9a5 8455static void
de0bea00 8456handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8457 completion_tracker &tracker,
6f937416 8458 const char *text, const char *word)
de0bea00 8459{
de0bea00
MF
8460 static const char * const keywords[] =
8461 {
8462 "all",
8463 "stop",
8464 "ignore",
8465 "print",
8466 "pass",
8467 "nostop",
8468 "noignore",
8469 "noprint",
8470 "nopass",
8471 NULL,
8472 };
8473
eb3ff9a5
PA
8474 signal_completer (ignore, tracker, text, word);
8475 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8476}
8477
2ea28649
PA
8478enum gdb_signal
8479gdb_signal_from_command (int num)
ed01b82c
PA
8480{
8481 if (num >= 1 && num <= 15)
2ea28649 8482 return (enum gdb_signal) num;
ed01b82c
PA
8483 error (_("Only signals 1-15 are valid as numeric signals.\n\
8484Use \"info signals\" for a list of symbolic signals."));
8485}
8486
c906108c
SS
8487/* Print current contents of the tables set by the handle command.
8488 It is possible we should just be printing signals actually used
8489 by the current target (but for things to work right when switching
8490 targets, all signals should be in the signal tables). */
8491
8492static void
1d12d88f 8493info_signals_command (const char *signum_exp, int from_tty)
c906108c 8494{
2ea28649 8495 enum gdb_signal oursig;
abbb1732 8496
c906108c
SS
8497 sig_print_header ();
8498
8499 if (signum_exp)
8500 {
8501 /* First see if this is a symbol name. */
2ea28649 8502 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8503 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8504 {
8505 /* No, try numeric. */
8506 oursig =
2ea28649 8507 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8508 }
8509 sig_print_info (oursig);
8510 return;
8511 }
8512
8513 printf_filtered ("\n");
8514 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8515 for (oursig = GDB_SIGNAL_FIRST;
8516 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8517 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8518 {
8519 QUIT;
8520
a493e3e2
PA
8521 if (oursig != GDB_SIGNAL_UNKNOWN
8522 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8523 sig_print_info (oursig);
8524 }
8525
3e43a32a
MS
8526 printf_filtered (_("\nUse the \"handle\" command "
8527 "to change these tables.\n"));
c906108c 8528}
4aa995e1
PA
8529
8530/* The $_siginfo convenience variable is a bit special. We don't know
8531 for sure the type of the value until we actually have a chance to
7a9dd1b2 8532 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8533 also dependent on which thread you have selected.
8534
8535 1. making $_siginfo be an internalvar that creates a new value on
8536 access.
8537
8538 2. making the value of $_siginfo be an lval_computed value. */
8539
8540/* This function implements the lval_computed support for reading a
8541 $_siginfo value. */
8542
8543static void
8544siginfo_value_read (struct value *v)
8545{
8546 LONGEST transferred;
8547
a911d87a
PA
8548 /* If we can access registers, so can we access $_siginfo. Likewise
8549 vice versa. */
8550 validate_registers_access ();
c709acd1 8551
4aa995e1 8552 transferred =
8b88a78e 8553 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
4aa995e1
PA
8554 NULL,
8555 value_contents_all_raw (v),
8556 value_offset (v),
8557 TYPE_LENGTH (value_type (v)));
8558
8559 if (transferred != TYPE_LENGTH (value_type (v)))
8560 error (_("Unable to read siginfo"));
8561}
8562
8563/* This function implements the lval_computed support for writing a
8564 $_siginfo value. */
8565
8566static void
8567siginfo_value_write (struct value *v, struct value *fromval)
8568{
8569 LONGEST transferred;
8570
a911d87a
PA
8571 /* If we can access registers, so can we access $_siginfo. Likewise
8572 vice versa. */
8573 validate_registers_access ();
c709acd1 8574
8b88a78e 8575 transferred = target_write (current_top_target (),
4aa995e1
PA
8576 TARGET_OBJECT_SIGNAL_INFO,
8577 NULL,
8578 value_contents_all_raw (fromval),
8579 value_offset (v),
8580 TYPE_LENGTH (value_type (fromval)));
8581
8582 if (transferred != TYPE_LENGTH (value_type (fromval)))
8583 error (_("Unable to write siginfo"));
8584}
8585
c8f2448a 8586static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8587 {
8588 siginfo_value_read,
8589 siginfo_value_write
8590 };
8591
8592/* Return a new value with the correct type for the siginfo object of
78267919
UW
8593 the current thread using architecture GDBARCH. Return a void value
8594 if there's no object available. */
4aa995e1 8595
2c0b251b 8596static struct value *
22d2b532
SDJ
8597siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8598 void *ignore)
4aa995e1 8599{
4aa995e1 8600 if (target_has_stack
d7e15655 8601 && inferior_ptid != null_ptid
78267919 8602 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8603 {
78267919 8604 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8605
78267919 8606 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8607 }
8608
78267919 8609 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8610}
8611
c906108c 8612\f
16c381f0
JK
8613/* infcall_suspend_state contains state about the program itself like its
8614 registers and any signal it received when it last stopped.
8615 This state must be restored regardless of how the inferior function call
8616 ends (either successfully, or after it hits a breakpoint or signal)
8617 if the program is to properly continue where it left off. */
8618
6bf78e29 8619class infcall_suspend_state
7a292a7a 8620{
6bf78e29
AB
8621public:
8622 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8623 once the inferior function call has finished. */
8624 infcall_suspend_state (struct gdbarch *gdbarch,
8625 const struct thread_info *tp,
8626 struct regcache *regcache)
8627 : m_thread_suspend (tp->suspend),
8628 m_registers (new readonly_detached_regcache (*regcache))
8629 {
8630 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8631
8632 if (gdbarch_get_siginfo_type_p (gdbarch))
8633 {
8634 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8635 size_t len = TYPE_LENGTH (type);
8636
8637 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8638
8639 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8640 siginfo_data.get (), 0, len) != len)
8641 {
8642 /* Errors ignored. */
8643 siginfo_data.reset (nullptr);
8644 }
8645 }
8646
8647 if (siginfo_data)
8648 {
8649 m_siginfo_gdbarch = gdbarch;
8650 m_siginfo_data = std::move (siginfo_data);
8651 }
8652 }
8653
8654 /* Return a pointer to the stored register state. */
16c381f0 8655
6bf78e29
AB
8656 readonly_detached_regcache *registers () const
8657 {
8658 return m_registers.get ();
8659 }
8660
8661 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8662
8663 void restore (struct gdbarch *gdbarch,
8664 struct thread_info *tp,
8665 struct regcache *regcache) const
8666 {
8667 tp->suspend = m_thread_suspend;
8668
8669 if (m_siginfo_gdbarch == gdbarch)
8670 {
8671 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8672
8673 /* Errors ignored. */
8674 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8675 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8676 }
8677
8678 /* The inferior can be gone if the user types "print exit(0)"
8679 (and perhaps other times). */
8680 if (target_has_execution)
8681 /* NB: The register write goes through to the target. */
8682 regcache->restore (registers ());
8683 }
8684
8685private:
8686 /* How the current thread stopped before the inferior function call was
8687 executed. */
8688 struct thread_suspend_state m_thread_suspend;
8689
8690 /* The registers before the inferior function call was executed. */
8691 std::unique_ptr<readonly_detached_regcache> m_registers;
1736ad11 8692
35515841 8693 /* Format of SIGINFO_DATA or NULL if it is not present. */
6bf78e29 8694 struct gdbarch *m_siginfo_gdbarch = nullptr;
1736ad11
JK
8695
8696 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8697 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8698 content would be invalid. */
6bf78e29 8699 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
b89667eb
DE
8700};
8701
cb524840
TT
8702infcall_suspend_state_up
8703save_infcall_suspend_state ()
b89667eb 8704{
b89667eb 8705 struct thread_info *tp = inferior_thread ();
1736ad11 8706 struct regcache *regcache = get_current_regcache ();
ac7936df 8707 struct gdbarch *gdbarch = regcache->arch ();
1736ad11 8708
6bf78e29
AB
8709 infcall_suspend_state_up inf_state
8710 (new struct infcall_suspend_state (gdbarch, tp, regcache));
1736ad11 8711
6bf78e29
AB
8712 /* Having saved the current state, adjust the thread state, discarding
8713 any stop signal information. The stop signal is not useful when
8714 starting an inferior function call, and run_inferior_call will not use
8715 the signal due to its `proceed' call with GDB_SIGNAL_0. */
a493e3e2 8716 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8717
b89667eb
DE
8718 return inf_state;
8719}
8720
8721/* Restore inferior session state to INF_STATE. */
8722
8723void
16c381f0 8724restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8725{
8726 struct thread_info *tp = inferior_thread ();
1736ad11 8727 struct regcache *regcache = get_current_regcache ();
ac7936df 8728 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 8729
6bf78e29 8730 inf_state->restore (gdbarch, tp, regcache);
16c381f0 8731 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8732}
8733
b89667eb 8734void
16c381f0 8735discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 8736{
dd848631 8737 delete inf_state;
b89667eb
DE
8738}
8739
daf6667d 8740readonly_detached_regcache *
16c381f0 8741get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb 8742{
6bf78e29 8743 return inf_state->registers ();
b89667eb
DE
8744}
8745
16c381f0
JK
8746/* infcall_control_state contains state regarding gdb's control of the
8747 inferior itself like stepping control. It also contains session state like
8748 the user's currently selected frame. */
b89667eb 8749
16c381f0 8750struct infcall_control_state
b89667eb 8751{
16c381f0
JK
8752 struct thread_control_state thread_control;
8753 struct inferior_control_state inferior_control;
d82142e2
JK
8754
8755 /* Other fields: */
ee841dd8
TT
8756 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
8757 int stopped_by_random_signal = 0;
7a292a7a 8758
b89667eb 8759 /* ID if the selected frame when the inferior function call was made. */
ee841dd8 8760 struct frame_id selected_frame_id {};
7a292a7a
SS
8761};
8762
c906108c 8763/* Save all of the information associated with the inferior<==>gdb
b89667eb 8764 connection. */
c906108c 8765
cb524840
TT
8766infcall_control_state_up
8767save_infcall_control_state ()
c906108c 8768{
cb524840 8769 infcall_control_state_up inf_status (new struct infcall_control_state);
4e1c45ea 8770 struct thread_info *tp = inferior_thread ();
d6b48e9c 8771 struct inferior *inf = current_inferior ();
7a292a7a 8772
16c381f0
JK
8773 inf_status->thread_control = tp->control;
8774 inf_status->inferior_control = inf->control;
d82142e2 8775
8358c15c 8776 tp->control.step_resume_breakpoint = NULL;
5b79abe7 8777 tp->control.exception_resume_breakpoint = NULL;
8358c15c 8778
16c381f0
JK
8779 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8780 chain. If caller's caller is walking the chain, they'll be happier if we
8781 hand them back the original chain when restore_infcall_control_state is
8782 called. */
8783 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
8784
8785 /* Other fields: */
8786 inf_status->stop_stack_dummy = stop_stack_dummy;
8787 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 8788
206415a3 8789 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 8790
7a292a7a 8791 return inf_status;
c906108c
SS
8792}
8793
bf469271
PA
8794static void
8795restore_selected_frame (const frame_id &fid)
c906108c 8796{
bf469271 8797 frame_info *frame = frame_find_by_id (fid);
c906108c 8798
aa0cd9c1
AC
8799 /* If inf_status->selected_frame_id is NULL, there was no previously
8800 selected frame. */
101dcfbe 8801 if (frame == NULL)
c906108c 8802 {
8a3fe4f8 8803 warning (_("Unable to restore previously selected frame."));
bf469271 8804 return;
c906108c
SS
8805 }
8806
0f7d239c 8807 select_frame (frame);
c906108c
SS
8808}
8809
b89667eb
DE
8810/* Restore inferior session state to INF_STATUS. */
8811
c906108c 8812void
16c381f0 8813restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 8814{
4e1c45ea 8815 struct thread_info *tp = inferior_thread ();
d6b48e9c 8816 struct inferior *inf = current_inferior ();
4e1c45ea 8817
8358c15c
JK
8818 if (tp->control.step_resume_breakpoint)
8819 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8820
5b79abe7
TT
8821 if (tp->control.exception_resume_breakpoint)
8822 tp->control.exception_resume_breakpoint->disposition
8823 = disp_del_at_next_stop;
8824
d82142e2 8825 /* Handle the bpstat_copy of the chain. */
16c381f0 8826 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 8827
16c381f0
JK
8828 tp->control = inf_status->thread_control;
8829 inf->control = inf_status->inferior_control;
d82142e2
JK
8830
8831 /* Other fields: */
8832 stop_stack_dummy = inf_status->stop_stack_dummy;
8833 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 8834
b89667eb 8835 if (target_has_stack)
c906108c 8836 {
bf469271 8837 /* The point of the try/catch is that if the stack is clobbered,
101dcfbe
AC
8838 walking the stack might encounter a garbage pointer and
8839 error() trying to dereference it. */
bf469271
PA
8840 TRY
8841 {
8842 restore_selected_frame (inf_status->selected_frame_id);
8843 }
8844 CATCH (ex, RETURN_MASK_ERROR)
8845 {
8846 exception_fprintf (gdb_stderr, ex,
8847 "Unable to restore previously selected frame:\n");
8848 /* Error in restoring the selected frame. Select the
8849 innermost frame. */
8850 select_frame (get_current_frame ());
8851 }
8852 END_CATCH
c906108c 8853 }
c906108c 8854
ee841dd8 8855 delete inf_status;
7a292a7a 8856}
c906108c
SS
8857
8858void
16c381f0 8859discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 8860{
8358c15c
JK
8861 if (inf_status->thread_control.step_resume_breakpoint)
8862 inf_status->thread_control.step_resume_breakpoint->disposition
8863 = disp_del_at_next_stop;
8864
5b79abe7
TT
8865 if (inf_status->thread_control.exception_resume_breakpoint)
8866 inf_status->thread_control.exception_resume_breakpoint->disposition
8867 = disp_del_at_next_stop;
8868
1777feb0 8869 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 8870 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 8871
ee841dd8 8872 delete inf_status;
7a292a7a 8873}
b89667eb 8874\f
7f89fd65 8875/* See infrun.h. */
0c557179
SDJ
8876
8877void
8878clear_exit_convenience_vars (void)
8879{
8880 clear_internalvar (lookup_internalvar ("_exitsignal"));
8881 clear_internalvar (lookup_internalvar ("_exitcode"));
8882}
c5aa993b 8883\f
488f131b 8884
b2175913
MS
8885/* User interface for reverse debugging:
8886 Set exec-direction / show exec-direction commands
8887 (returns error unless target implements to_set_exec_direction method). */
8888
170742de 8889enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
8890static const char exec_forward[] = "forward";
8891static const char exec_reverse[] = "reverse";
8892static const char *exec_direction = exec_forward;
40478521 8893static const char *const exec_direction_names[] = {
b2175913
MS
8894 exec_forward,
8895 exec_reverse,
8896 NULL
8897};
8898
8899static void
eb4c3f4a 8900set_exec_direction_func (const char *args, int from_tty,
b2175913
MS
8901 struct cmd_list_element *cmd)
8902{
8903 if (target_can_execute_reverse)
8904 {
8905 if (!strcmp (exec_direction, exec_forward))
8906 execution_direction = EXEC_FORWARD;
8907 else if (!strcmp (exec_direction, exec_reverse))
8908 execution_direction = EXEC_REVERSE;
8909 }
8bbed405
MS
8910 else
8911 {
8912 exec_direction = exec_forward;
8913 error (_("Target does not support this operation."));
8914 }
b2175913
MS
8915}
8916
8917static void
8918show_exec_direction_func (struct ui_file *out, int from_tty,
8919 struct cmd_list_element *cmd, const char *value)
8920{
8921 switch (execution_direction) {
8922 case EXEC_FORWARD:
8923 fprintf_filtered (out, _("Forward.\n"));
8924 break;
8925 case EXEC_REVERSE:
8926 fprintf_filtered (out, _("Reverse.\n"));
8927 break;
b2175913 8928 default:
d8b34453
PA
8929 internal_error (__FILE__, __LINE__,
8930 _("bogus execution_direction value: %d"),
8931 (int) execution_direction);
b2175913
MS
8932 }
8933}
8934
d4db2f36
PA
8935static void
8936show_schedule_multiple (struct ui_file *file, int from_tty,
8937 struct cmd_list_element *c, const char *value)
8938{
3e43a32a
MS
8939 fprintf_filtered (file, _("Resuming the execution of threads "
8940 "of all processes is %s.\n"), value);
d4db2f36 8941}
ad52ddc6 8942
22d2b532
SDJ
8943/* Implementation of `siginfo' variable. */
8944
8945static const struct internalvar_funcs siginfo_funcs =
8946{
8947 siginfo_make_value,
8948 NULL,
8949 NULL
8950};
8951
372316f1
PA
8952/* Callback for infrun's target events source. This is marked when a
8953 thread has a pending status to process. */
8954
8955static void
8956infrun_async_inferior_event_handler (gdb_client_data data)
8957{
372316f1
PA
8958 inferior_event_handler (INF_REG_EVENT, NULL);
8959}
8960
c906108c 8961void
96baa820 8962_initialize_infrun (void)
c906108c 8963{
52f0bd74
AC
8964 int i;
8965 int numsigs;
de0bea00 8966 struct cmd_list_element *c;
c906108c 8967
372316f1
PA
8968 /* Register extra event sources in the event loop. */
8969 infrun_async_inferior_event_token
8970 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
8971
11db9430 8972 add_info ("signals", info_signals_command, _("\
1bedd215
AC
8973What debugger does when program gets various signals.\n\
8974Specify a signal as argument to print info on that signal only."));
c906108c
SS
8975 add_info_alias ("handle", "signals", 0);
8976
de0bea00 8977 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 8978Specify how to handle signals.\n\
486c7739 8979Usage: handle SIGNAL [ACTIONS]\n\
c906108c 8980Args are signals and actions to apply to those signals.\n\
dfbd5e7b 8981If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
8982will be displayed instead.\n\
8983\n\
c906108c
SS
8984Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
8985from 1-15 are allowed for compatibility with old versions of GDB.\n\
8986Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
8987The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 8988used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 8989\n\
1bedd215 8990Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
8991\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
8992Stop means reenter debugger if this signal happens (implies print).\n\
8993Print means print a message if this signal happens.\n\
8994Pass means let program see this signal; otherwise program doesn't know.\n\
8995Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
8996Pass and Stop may be combined.\n\
8997\n\
8998Multiple signals may be specified. Signal numbers and signal names\n\
8999may be interspersed with actions, with the actions being performed for\n\
9000all signals cumulatively specified."));
de0bea00 9001 set_cmd_completer (c, handle_completer);
486c7739 9002
c906108c 9003 if (!dbx_commands)
1a966eab
AC
9004 stop_command = add_cmd ("stop", class_obscure,
9005 not_just_help_class_command, _("\
9006There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9007This allows you to set a list of commands to be run each time execution\n\
1a966eab 9008of the program stops."), &cmdlist);
c906108c 9009
ccce17b0 9010 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9011Set inferior debugging."), _("\
9012Show inferior debugging."), _("\
9013When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9014 NULL,
9015 show_debug_infrun,
9016 &setdebuglist, &showdebuglist);
527159b7 9017
3e43a32a
MS
9018 add_setshow_boolean_cmd ("displaced", class_maintenance,
9019 &debug_displaced, _("\
237fc4c9
PA
9020Set displaced stepping debugging."), _("\
9021Show displaced stepping debugging."), _("\
9022When non-zero, displaced stepping specific debugging is enabled."),
9023 NULL,
9024 show_debug_displaced,
9025 &setdebuglist, &showdebuglist);
9026
ad52ddc6
PA
9027 add_setshow_boolean_cmd ("non-stop", no_class,
9028 &non_stop_1, _("\
9029Set whether gdb controls the inferior in non-stop mode."), _("\
9030Show whether gdb controls the inferior in non-stop mode."), _("\
9031When debugging a multi-threaded program and this setting is\n\
9032off (the default, also called all-stop mode), when one thread stops\n\
9033(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9034all other threads in the program while you interact with the thread of\n\
9035interest. When you continue or step a thread, you can allow the other\n\
9036threads to run, or have them remain stopped, but while you inspect any\n\
9037thread's state, all threads stop.\n\
9038\n\
9039In non-stop mode, when one thread stops, other threads can continue\n\
9040to run freely. You'll be able to step each thread independently,\n\
9041leave it stopped or free to run as needed."),
9042 set_non_stop,
9043 show_non_stop,
9044 &setlist,
9045 &showlist);
9046
a493e3e2 9047 numsigs = (int) GDB_SIGNAL_LAST;
8d749320
SM
9048 signal_stop = XNEWVEC (unsigned char, numsigs);
9049 signal_print = XNEWVEC (unsigned char, numsigs);
9050 signal_program = XNEWVEC (unsigned char, numsigs);
9051 signal_catch = XNEWVEC (unsigned char, numsigs);
9052 signal_pass = XNEWVEC (unsigned char, numsigs);
c906108c
SS
9053 for (i = 0; i < numsigs; i++)
9054 {
9055 signal_stop[i] = 1;
9056 signal_print[i] = 1;
9057 signal_program[i] = 1;
ab04a2af 9058 signal_catch[i] = 0;
c906108c
SS
9059 }
9060
4d9d9d04
PA
9061 /* Signals caused by debugger's own actions should not be given to
9062 the program afterwards.
9063
9064 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9065 explicitly specifies that it should be delivered to the target
9066 program. Typically, that would occur when a user is debugging a
9067 target monitor on a simulator: the target monitor sets a
9068 breakpoint; the simulator encounters this breakpoint and halts
9069 the simulation handing control to GDB; GDB, noting that the stop
9070 address doesn't map to any known breakpoint, returns control back
9071 to the simulator; the simulator then delivers the hardware
9072 equivalent of a GDB_SIGNAL_TRAP to the program being
9073 debugged. */
a493e3e2
PA
9074 signal_program[GDB_SIGNAL_TRAP] = 0;
9075 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9076
9077 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9078 signal_stop[GDB_SIGNAL_ALRM] = 0;
9079 signal_print[GDB_SIGNAL_ALRM] = 0;
9080 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9081 signal_print[GDB_SIGNAL_VTALRM] = 0;
9082 signal_stop[GDB_SIGNAL_PROF] = 0;
9083 signal_print[GDB_SIGNAL_PROF] = 0;
9084 signal_stop[GDB_SIGNAL_CHLD] = 0;
9085 signal_print[GDB_SIGNAL_CHLD] = 0;
9086 signal_stop[GDB_SIGNAL_IO] = 0;
9087 signal_print[GDB_SIGNAL_IO] = 0;
9088 signal_stop[GDB_SIGNAL_POLL] = 0;
9089 signal_print[GDB_SIGNAL_POLL] = 0;
9090 signal_stop[GDB_SIGNAL_URG] = 0;
9091 signal_print[GDB_SIGNAL_URG] = 0;
9092 signal_stop[GDB_SIGNAL_WINCH] = 0;
9093 signal_print[GDB_SIGNAL_WINCH] = 0;
9094 signal_stop[GDB_SIGNAL_PRIO] = 0;
9095 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9096
cd0fc7c3
SS
9097 /* These signals are used internally by user-level thread
9098 implementations. (See signal(5) on Solaris.) Like the above
9099 signals, a healthy program receives and handles them as part of
9100 its normal operation. */
a493e3e2
PA
9101 signal_stop[GDB_SIGNAL_LWP] = 0;
9102 signal_print[GDB_SIGNAL_LWP] = 0;
9103 signal_stop[GDB_SIGNAL_WAITING] = 0;
9104 signal_print[GDB_SIGNAL_WAITING] = 0;
9105 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9106 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9107 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9108 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9109
2455069d
UW
9110 /* Update cached state. */
9111 signal_cache_update (-1);
9112
85c07804
AC
9113 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9114 &stop_on_solib_events, _("\
9115Set stopping for shared library events."), _("\
9116Show stopping for shared library events."), _("\
c906108c
SS
9117If nonzero, gdb will give control to the user when the dynamic linker\n\
9118notifies gdb of shared library events. The most common event of interest\n\
85c07804 9119to the user would be loading/unloading of a new library."),
f9e14852 9120 set_stop_on_solib_events,
920d2a44 9121 show_stop_on_solib_events,
85c07804 9122 &setlist, &showlist);
c906108c 9123
7ab04401
AC
9124 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9125 follow_fork_mode_kind_names,
9126 &follow_fork_mode_string, _("\
9127Set debugger response to a program call of fork or vfork."), _("\
9128Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9129A fork or vfork creates a new process. follow-fork-mode can be:\n\
9130 parent - the original process is debugged after a fork\n\
9131 child - the new process is debugged after a fork\n\
ea1dd7bc 9132The unfollowed process will continue to run.\n\
7ab04401
AC
9133By default, the debugger will follow the parent process."),
9134 NULL,
920d2a44 9135 show_follow_fork_mode_string,
7ab04401
AC
9136 &setlist, &showlist);
9137
6c95b8df
PA
9138 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9139 follow_exec_mode_names,
9140 &follow_exec_mode_string, _("\
9141Set debugger response to a program call of exec."), _("\
9142Show debugger response to a program call of exec."), _("\
9143An exec call replaces the program image of a process.\n\
9144\n\
9145follow-exec-mode can be:\n\
9146\n\
cce7e648 9147 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9148to this new inferior. The program the process was running before\n\
9149the exec call can be restarted afterwards by restarting the original\n\
9150inferior.\n\
9151\n\
9152 same - the debugger keeps the process bound to the same inferior.\n\
9153The new executable image replaces the previous executable loaded in\n\
9154the inferior. Restarting the inferior after the exec call restarts\n\
9155the executable the process was running after the exec call.\n\
9156\n\
9157By default, the debugger will use the same inferior."),
9158 NULL,
9159 show_follow_exec_mode_string,
9160 &setlist, &showlist);
9161
7ab04401
AC
9162 add_setshow_enum_cmd ("scheduler-locking", class_run,
9163 scheduler_enums, &scheduler_mode, _("\
9164Set mode for locking scheduler during execution."), _("\
9165Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9166off == no locking (threads may preempt at any time)\n\
9167on == full locking (no thread except the current thread may run)\n\
9168 This applies to both normal execution and replay mode.\n\
9169step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9170 In this mode, other threads may run during other commands.\n\
9171 This applies to both normal execution and replay mode.\n\
9172replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9173 set_schedlock_func, /* traps on target vector */
920d2a44 9174 show_scheduler_mode,
7ab04401 9175 &setlist, &showlist);
5fbbeb29 9176
d4db2f36
PA
9177 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9178Set mode for resuming threads of all processes."), _("\
9179Show mode for resuming threads of all processes."), _("\
9180When on, execution commands (such as 'continue' or 'next') resume all\n\
9181threads of all processes. When off (which is the default), execution\n\
9182commands only resume the threads of the current process. The set of\n\
9183threads that are resumed is further refined by the scheduler-locking\n\
9184mode (see help set scheduler-locking)."),
9185 NULL,
9186 show_schedule_multiple,
9187 &setlist, &showlist);
9188
5bf193a2
AC
9189 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9190Set mode of the step operation."), _("\
9191Show mode of the step operation."), _("\
9192When set, doing a step over a function without debug line information\n\
9193will stop at the first instruction of that function. Otherwise, the\n\
9194function is skipped and the step command stops at a different source line."),
9195 NULL,
920d2a44 9196 show_step_stop_if_no_debug,
5bf193a2 9197 &setlist, &showlist);
ca6724c1 9198
72d0e2c5
YQ
9199 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9200 &can_use_displaced_stepping, _("\
237fc4c9
PA
9201Set debugger's willingness to use displaced stepping."), _("\
9202Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9203If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9204supported by the target architecture. If off, gdb will not use displaced\n\
9205stepping to step over breakpoints, even if such is supported by the target\n\
9206architecture. If auto (which is the default), gdb will use displaced stepping\n\
9207if the target architecture supports it and non-stop mode is active, but will not\n\
9208use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9209 NULL,
9210 show_can_use_displaced_stepping,
9211 &setlist, &showlist);
237fc4c9 9212
b2175913
MS
9213 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9214 &exec_direction, _("Set direction of execution.\n\
9215Options are 'forward' or 'reverse'."),
9216 _("Show direction of execution (forward/reverse)."),
9217 _("Tells gdb whether to execute forward or backward."),
9218 set_exec_direction_func, show_exec_direction_func,
9219 &setlist, &showlist);
9220
6c95b8df
PA
9221 /* Set/show detach-on-fork: user-settable mode. */
9222
9223 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9224Set whether gdb will detach the child of a fork."), _("\
9225Show whether gdb will detach the child of a fork."), _("\
9226Tells gdb whether to detach the child of a fork."),
9227 NULL, NULL, &setlist, &showlist);
9228
03583c20
UW
9229 /* Set/show disable address space randomization mode. */
9230
9231 add_setshow_boolean_cmd ("disable-randomization", class_support,
9232 &disable_randomization, _("\
9233Set disabling of debuggee's virtual address space randomization."), _("\
9234Show disabling of debuggee's virtual address space randomization."), _("\
9235When this mode is on (which is the default), randomization of the virtual\n\
9236address space is disabled. Standalone programs run with the randomization\n\
9237enabled by default on some platforms."),
9238 &set_disable_randomization,
9239 &show_disable_randomization,
9240 &setlist, &showlist);
9241
ca6724c1 9242 /* ptid initializations */
ca6724c1
KB
9243 inferior_ptid = null_ptid;
9244 target_last_wait_ptid = minus_one_ptid;
5231c1fd 9245
76727919
TT
9246 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9247 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9248 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9249 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
4aa995e1
PA
9250
9251 /* Explicitly create without lookup, since that tries to create a
9252 value with a void typed value, and when we get here, gdbarch
9253 isn't initialized yet. At this point, we're quite sure there
9254 isn't another convenience variable of the same name. */
22d2b532 9255 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9256
9257 add_setshow_boolean_cmd ("observer", no_class,
9258 &observer_mode_1, _("\
9259Set whether gdb controls the inferior in observer mode."), _("\
9260Show whether gdb controls the inferior in observer mode."), _("\
9261In observer mode, GDB can get data from the inferior, but not\n\
9262affect its execution. Registers and memory may not be changed,\n\
9263breakpoints may not be set, and the program cannot be interrupted\n\
9264or signalled."),
9265 set_observer_mode,
9266 show_observer_mode,
9267 &setlist,
9268 &showlist);
c906108c 9269}
This page took 2.882262 seconds and 4 git commands to generate.