gdb/:
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
6aba47ca 4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
9b254dd1 5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
0fb0cc75 6 2008, 2009 Free Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include <ctype.h>
26#include "symtab.h"
27#include "frame.h"
28#include "inferior.h"
60250e8b 29#include "exceptions.h"
c906108c 30#include "breakpoint.h"
03f2053f 31#include "gdb_wait.h"
c906108c
SS
32#include "gdbcore.h"
33#include "gdbcmd.h"
210661e7 34#include "cli/cli-script.h"
c906108c
SS
35#include "target.h"
36#include "gdbthread.h"
37#include "annotate.h"
1adeb98a 38#include "symfile.h"
7a292a7a 39#include "top.h"
c906108c 40#include <signal.h>
2acceee2 41#include "inf-loop.h"
4e052eda 42#include "regcache.h"
fd0407d6 43#include "value.h"
06600e06 44#include "observer.h"
f636b87d 45#include "language.h"
a77053c2 46#include "solib.h"
f17517ea 47#include "main.h"
9f976b41 48#include "gdb_assert.h"
034dad6f 49#include "mi/mi-common.h"
4f8d22e3 50#include "event-top.h"
96429cc8 51#include "record.h"
edb3359d 52#include "inline-frame.h"
4efc6507 53#include "jit.h"
c906108c
SS
54
55/* Prototypes for local functions */
56
96baa820 57static void signals_info (char *, int);
c906108c 58
96baa820 59static void handle_command (char *, int);
c906108c 60
96baa820 61static void sig_print_info (enum target_signal);
c906108c 62
96baa820 63static void sig_print_header (void);
c906108c 64
74b7792f 65static void resume_cleanups (void *);
c906108c 66
96baa820 67static int hook_stop_stub (void *);
c906108c 68
96baa820
JM
69static int restore_selected_frame (void *);
70
71static void build_infrun (void);
72
4ef3f3be 73static int follow_fork (void);
96baa820
JM
74
75static void set_schedlock_func (char *args, int from_tty,
488f131b 76 struct cmd_list_element *c);
96baa820 77
4e1c45ea 78static int currently_stepping (struct thread_info *tp);
96baa820 79
b3444185
PA
80static int currently_stepping_or_nexting_callback (struct thread_info *tp,
81 void *data);
a7212384 82
96baa820
JM
83static void xdb_handle_command (char *args, int from_tty);
84
6a6b96b9 85static int prepare_to_proceed (int);
ea67f13b 86
96baa820 87void _initialize_infrun (void);
43ff13b4 88
e58b0e63
PA
89void nullify_last_target_wait_ptid (void);
90
5fbbeb29
CF
91/* When set, stop the 'step' command if we enter a function which has
92 no line number information. The normal behavior is that we step
93 over such function. */
94int step_stop_if_no_debug = 0;
920d2a44
AC
95static void
96show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
97 struct cmd_list_element *c, const char *value)
98{
99 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
100}
5fbbeb29 101
43ff13b4 102/* In asynchronous mode, but simulating synchronous execution. */
96baa820 103
43ff13b4
JM
104int sync_execution = 0;
105
c906108c
SS
106/* wait_for_inferior and normal_stop use this to notify the user
107 when the inferior stopped in a different thread than it had been
96baa820
JM
108 running in. */
109
39f77062 110static ptid_t previous_inferior_ptid;
7a292a7a 111
6c95b8df
PA
112/* Default behavior is to detach newly forked processes (legacy). */
113int detach_fork = 1;
114
237fc4c9
PA
115int debug_displaced = 0;
116static void
117show_debug_displaced (struct ui_file *file, int from_tty,
118 struct cmd_list_element *c, const char *value)
119{
120 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
121}
122
527159b7 123static int debug_infrun = 0;
920d2a44
AC
124static void
125show_debug_infrun (struct ui_file *file, int from_tty,
126 struct cmd_list_element *c, const char *value)
127{
128 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
129}
527159b7 130
d4f3574e
SS
131/* If the program uses ELF-style shared libraries, then calls to
132 functions in shared libraries go through stubs, which live in a
133 table called the PLT (Procedure Linkage Table). The first time the
134 function is called, the stub sends control to the dynamic linker,
135 which looks up the function's real address, patches the stub so
136 that future calls will go directly to the function, and then passes
137 control to the function.
138
139 If we are stepping at the source level, we don't want to see any of
140 this --- we just want to skip over the stub and the dynamic linker.
141 The simple approach is to single-step until control leaves the
142 dynamic linker.
143
ca557f44
AC
144 However, on some systems (e.g., Red Hat's 5.2 distribution) the
145 dynamic linker calls functions in the shared C library, so you
146 can't tell from the PC alone whether the dynamic linker is still
147 running. In this case, we use a step-resume breakpoint to get us
148 past the dynamic linker, as if we were using "next" to step over a
149 function call.
d4f3574e 150
cfd8ab24 151 in_solib_dynsym_resolve_code() says whether we're in the dynamic
d4f3574e
SS
152 linker code or not. Normally, this means we single-step. However,
153 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
154 address where we can place a step-resume breakpoint to get past the
155 linker's symbol resolution function.
156
cfd8ab24 157 in_solib_dynsym_resolve_code() can generally be implemented in a
d4f3574e
SS
158 pretty portable way, by comparing the PC against the address ranges
159 of the dynamic linker's sections.
160
161 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
162 it depends on internal details of the dynamic linker. It's usually
163 not too hard to figure out where to put a breakpoint, but it
164 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
165 sanity checking. If it can't figure things out, returning zero and
166 getting the (possibly confusing) stepping behavior is better than
167 signalling an error, which will obscure the change in the
168 inferior's state. */
c906108c 169
c906108c
SS
170/* This function returns TRUE if pc is the address of an instruction
171 that lies within the dynamic linker (such as the event hook, or the
172 dld itself).
173
174 This function must be used only when a dynamic linker event has
175 been caught, and the inferior is being stepped out of the hook, or
176 undefined results are guaranteed. */
177
178#ifndef SOLIB_IN_DYNAMIC_LINKER
179#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
180#endif
181
c2c6d25f 182
7a292a7a
SS
183/* Convert the #defines into values. This is temporary until wfi control
184 flow is completely sorted out. */
185
692590c1
MS
186#ifndef CANNOT_STEP_HW_WATCHPOINTS
187#define CANNOT_STEP_HW_WATCHPOINTS 0
188#else
189#undef CANNOT_STEP_HW_WATCHPOINTS
190#define CANNOT_STEP_HW_WATCHPOINTS 1
191#endif
192
c906108c
SS
193/* Tables of how to react to signals; the user sets them. */
194
195static unsigned char *signal_stop;
196static unsigned char *signal_print;
197static unsigned char *signal_program;
198
199#define SET_SIGS(nsigs,sigs,flags) \
200 do { \
201 int signum = (nsigs); \
202 while (signum-- > 0) \
203 if ((sigs)[signum]) \
204 (flags)[signum] = 1; \
205 } while (0)
206
207#define UNSET_SIGS(nsigs,sigs,flags) \
208 do { \
209 int signum = (nsigs); \
210 while (signum-- > 0) \
211 if ((sigs)[signum]) \
212 (flags)[signum] = 0; \
213 } while (0)
214
39f77062
KB
215/* Value to pass to target_resume() to cause all threads to resume */
216
edb3359d 217#define RESUME_ALL minus_one_ptid
c906108c
SS
218
219/* Command list pointer for the "stop" placeholder. */
220
221static struct cmd_list_element *stop_command;
222
c906108c
SS
223/* Function inferior was in as of last step command. */
224
225static struct symbol *step_start_function;
226
c906108c
SS
227/* Nonzero if we want to give control to the user when we're notified
228 of shared library events by the dynamic linker. */
229static int stop_on_solib_events;
920d2a44
AC
230static void
231show_stop_on_solib_events (struct ui_file *file, int from_tty,
232 struct cmd_list_element *c, const char *value)
233{
234 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
235 value);
236}
c906108c 237
c906108c
SS
238/* Nonzero means expecting a trace trap
239 and should stop the inferior and return silently when it happens. */
240
241int stop_after_trap;
242
642fd101
DE
243/* Save register contents here when executing a "finish" command or are
244 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
245 Thus this contains the return value from the called function (assuming
246 values are returned in a register). */
247
72cec141 248struct regcache *stop_registers;
c906108c 249
c906108c
SS
250/* Nonzero after stop if current stack frame should be printed. */
251
252static int stop_print_frame;
253
e02bc4cc 254/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
255 returned by target_wait()/deprecated_target_wait_hook(). This
256 information is returned by get_last_target_status(). */
39f77062 257static ptid_t target_last_wait_ptid;
e02bc4cc
DS
258static struct target_waitstatus target_last_waitstatus;
259
0d1e5fa7
PA
260static void context_switch (ptid_t ptid);
261
4e1c45ea 262void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7
PA
263
264void init_infwait_state (void);
a474d7c2 265
53904c9e
AC
266static const char follow_fork_mode_child[] = "child";
267static const char follow_fork_mode_parent[] = "parent";
268
488f131b 269static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
270 follow_fork_mode_child,
271 follow_fork_mode_parent,
272 NULL
ef346e04 273};
c906108c 274
53904c9e 275static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
276static void
277show_follow_fork_mode_string (struct ui_file *file, int from_tty,
278 struct cmd_list_element *c, const char *value)
279{
280 fprintf_filtered (file, _("\
281Debugger response to a program call of fork or vfork is \"%s\".\n"),
282 value);
283}
c906108c
SS
284\f
285
e58b0e63
PA
286/* Tell the target to follow the fork we're stopped at. Returns true
287 if the inferior should be resumed; false, if the target for some
288 reason decided it's best not to resume. */
289
6604731b 290static int
4ef3f3be 291follow_fork (void)
c906108c 292{
ea1dd7bc 293 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
294 int should_resume = 1;
295 struct thread_info *tp;
296
297 /* Copy user stepping state to the new inferior thread. FIXME: the
298 followed fork child thread should have a copy of most of the
4e3990f4
DE
299 parent thread structure's run control related fields, not just these.
300 Initialized to avoid "may be used uninitialized" warnings from gcc. */
301 struct breakpoint *step_resume_breakpoint = NULL;
302 CORE_ADDR step_range_start = 0;
303 CORE_ADDR step_range_end = 0;
304 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
305
306 if (!non_stop)
307 {
308 ptid_t wait_ptid;
309 struct target_waitstatus wait_status;
310
311 /* Get the last target status returned by target_wait(). */
312 get_last_target_status (&wait_ptid, &wait_status);
313
314 /* If not stopped at a fork event, then there's nothing else to
315 do. */
316 if (wait_status.kind != TARGET_WAITKIND_FORKED
317 && wait_status.kind != TARGET_WAITKIND_VFORKED)
318 return 1;
319
320 /* Check if we switched over from WAIT_PTID, since the event was
321 reported. */
322 if (!ptid_equal (wait_ptid, minus_one_ptid)
323 && !ptid_equal (inferior_ptid, wait_ptid))
324 {
325 /* We did. Switch back to WAIT_PTID thread, to tell the
326 target to follow it (in either direction). We'll
327 afterwards refuse to resume, and inform the user what
328 happened. */
329 switch_to_thread (wait_ptid);
330 should_resume = 0;
331 }
332 }
333
334 tp = inferior_thread ();
335
336 /* If there were any forks/vforks that were caught and are now to be
337 followed, then do so now. */
338 switch (tp->pending_follow.kind)
339 {
340 case TARGET_WAITKIND_FORKED:
341 case TARGET_WAITKIND_VFORKED:
342 {
343 ptid_t parent, child;
344
345 /* If the user did a next/step, etc, over a fork call,
346 preserve the stepping state in the fork child. */
347 if (follow_child && should_resume)
348 {
349 step_resume_breakpoint
350 = clone_momentary_breakpoint (tp->step_resume_breakpoint);
351 step_range_start = tp->step_range_start;
352 step_range_end = tp->step_range_end;
353 step_frame_id = tp->step_frame_id;
354
355 /* For now, delete the parent's sr breakpoint, otherwise,
356 parent/child sr breakpoints are considered duplicates,
357 and the child version will not be installed. Remove
358 this when the breakpoints module becomes aware of
359 inferiors and address spaces. */
360 delete_step_resume_breakpoint (tp);
361 tp->step_range_start = 0;
362 tp->step_range_end = 0;
363 tp->step_frame_id = null_frame_id;
364 }
365
366 parent = inferior_ptid;
367 child = tp->pending_follow.value.related_pid;
368
369 /* Tell the target to do whatever is necessary to follow
370 either parent or child. */
371 if (target_follow_fork (follow_child))
372 {
373 /* Target refused to follow, or there's some other reason
374 we shouldn't resume. */
375 should_resume = 0;
376 }
377 else
378 {
379 /* This pending follow fork event is now handled, one way
380 or another. The previous selected thread may be gone
381 from the lists by now, but if it is still around, need
382 to clear the pending follow request. */
e09875d4 383 tp = find_thread_ptid (parent);
e58b0e63
PA
384 if (tp)
385 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
386
387 /* This makes sure we don't try to apply the "Switched
388 over from WAIT_PID" logic above. */
389 nullify_last_target_wait_ptid ();
390
391 /* If we followed the child, switch to it... */
392 if (follow_child)
393 {
394 switch_to_thread (child);
395
396 /* ... and preserve the stepping state, in case the
397 user was stepping over the fork call. */
398 if (should_resume)
399 {
400 tp = inferior_thread ();
401 tp->step_resume_breakpoint = step_resume_breakpoint;
402 tp->step_range_start = step_range_start;
403 tp->step_range_end = step_range_end;
404 tp->step_frame_id = step_frame_id;
405 }
406 else
407 {
408 /* If we get here, it was because we're trying to
409 resume from a fork catchpoint, but, the user
410 has switched threads away from the thread that
411 forked. In that case, the resume command
412 issued is most likely not applicable to the
413 child, so just warn, and refuse to resume. */
414 warning (_("\
415Not resuming: switched threads before following fork child.\n"));
416 }
417
418 /* Reset breakpoints in the child as appropriate. */
419 follow_inferior_reset_breakpoints ();
420 }
421 else
422 switch_to_thread (parent);
423 }
424 }
425 break;
426 case TARGET_WAITKIND_SPURIOUS:
427 /* Nothing to follow. */
428 break;
429 default:
430 internal_error (__FILE__, __LINE__,
431 "Unexpected pending_follow.kind %d\n",
432 tp->pending_follow.kind);
433 break;
434 }
c906108c 435
e58b0e63 436 return should_resume;
c906108c
SS
437}
438
6604731b
DJ
439void
440follow_inferior_reset_breakpoints (void)
c906108c 441{
4e1c45ea
PA
442 struct thread_info *tp = inferior_thread ();
443
6604731b
DJ
444 /* Was there a step_resume breakpoint? (There was if the user
445 did a "next" at the fork() call.) If so, explicitly reset its
446 thread number.
447
448 step_resumes are a form of bp that are made to be per-thread.
449 Since we created the step_resume bp when the parent process
450 was being debugged, and now are switching to the child process,
451 from the breakpoint package's viewpoint, that's a switch of
452 "threads". We must update the bp's notion of which thread
453 it is for, or it'll be ignored when it triggers. */
454
4e1c45ea
PA
455 if (tp->step_resume_breakpoint)
456 breakpoint_re_set_thread (tp->step_resume_breakpoint);
6604731b
DJ
457
458 /* Reinsert all breakpoints in the child. The user may have set
459 breakpoints after catching the fork, in which case those
460 were never set in the child, but only in the parent. This makes
461 sure the inserted breakpoints match the breakpoint list. */
462
463 breakpoint_re_set ();
464 insert_breakpoints ();
c906108c 465}
c906108c 466
6c95b8df
PA
467/* The child has exited or execed: resume threads of the parent the
468 user wanted to be executing. */
469
470static int
471proceed_after_vfork_done (struct thread_info *thread,
472 void *arg)
473{
474 int pid = * (int *) arg;
475
476 if (ptid_get_pid (thread->ptid) == pid
477 && is_running (thread->ptid)
478 && !is_executing (thread->ptid)
479 && !thread->stop_requested
480 && thread->stop_signal == TARGET_SIGNAL_0)
481 {
482 if (debug_infrun)
483 fprintf_unfiltered (gdb_stdlog,
484 "infrun: resuming vfork parent thread %s\n",
485 target_pid_to_str (thread->ptid));
486
487 switch_to_thread (thread->ptid);
488 clear_proceed_status ();
489 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
490 }
491
492 return 0;
493}
494
495/* Called whenever we notice an exec or exit event, to handle
496 detaching or resuming a vfork parent. */
497
498static void
499handle_vfork_child_exec_or_exit (int exec)
500{
501 struct inferior *inf = current_inferior ();
502
503 if (inf->vfork_parent)
504 {
505 int resume_parent = -1;
506
507 /* This exec or exit marks the end of the shared memory region
508 between the parent and the child. If the user wanted to
509 detach from the parent, now is the time. */
510
511 if (inf->vfork_parent->pending_detach)
512 {
513 struct thread_info *tp;
514 struct cleanup *old_chain;
515 struct program_space *pspace;
516 struct address_space *aspace;
517
518 /* follow-fork child, detach-on-fork on */
519
520 old_chain = make_cleanup_restore_current_thread ();
521
522 /* We're letting loose of the parent. */
523 tp = any_live_thread_of_process (inf->vfork_parent->pid);
524 switch_to_thread (tp->ptid);
525
526 /* We're about to detach from the parent, which implicitly
527 removes breakpoints from its address space. There's a
528 catch here: we want to reuse the spaces for the child,
529 but, parent/child are still sharing the pspace at this
530 point, although the exec in reality makes the kernel give
531 the child a fresh set of new pages. The problem here is
532 that the breakpoints module being unaware of this, would
533 likely chose the child process to write to the parent
534 address space. Swapping the child temporarily away from
535 the spaces has the desired effect. Yes, this is "sort
536 of" a hack. */
537
538 pspace = inf->pspace;
539 aspace = inf->aspace;
540 inf->aspace = NULL;
541 inf->pspace = NULL;
542
543 if (debug_infrun || info_verbose)
544 {
545 target_terminal_ours ();
546
547 if (exec)
548 fprintf_filtered (gdb_stdlog,
549 "Detaching vfork parent process %d after child exec.\n",
550 inf->vfork_parent->pid);
551 else
552 fprintf_filtered (gdb_stdlog,
553 "Detaching vfork parent process %d after child exit.\n",
554 inf->vfork_parent->pid);
555 }
556
557 target_detach (NULL, 0);
558
559 /* Put it back. */
560 inf->pspace = pspace;
561 inf->aspace = aspace;
562
563 do_cleanups (old_chain);
564 }
565 else if (exec)
566 {
567 /* We're staying attached to the parent, so, really give the
568 child a new address space. */
569 inf->pspace = add_program_space (maybe_new_address_space ());
570 inf->aspace = inf->pspace->aspace;
571 inf->removable = 1;
572 set_current_program_space (inf->pspace);
573
574 resume_parent = inf->vfork_parent->pid;
575
576 /* Break the bonds. */
577 inf->vfork_parent->vfork_child = NULL;
578 }
579 else
580 {
581 struct cleanup *old_chain;
582 struct program_space *pspace;
583
584 /* If this is a vfork child exiting, then the pspace and
585 aspaces were shared with the parent. Since we're
586 reporting the process exit, we'll be mourning all that is
587 found in the address space, and switching to null_ptid,
588 preparing to start a new inferior. But, since we don't
589 want to clobber the parent's address/program spaces, we
590 go ahead and create a new one for this exiting
591 inferior. */
592
593 /* Switch to null_ptid, so that clone_program_space doesn't want
594 to read the selected frame of a dead process. */
595 old_chain = save_inferior_ptid ();
596 inferior_ptid = null_ptid;
597
598 /* This inferior is dead, so avoid giving the breakpoints
599 module the option to write through to it (cloning a
600 program space resets breakpoints). */
601 inf->aspace = NULL;
602 inf->pspace = NULL;
603 pspace = add_program_space (maybe_new_address_space ());
604 set_current_program_space (pspace);
605 inf->removable = 1;
606 clone_program_space (pspace, inf->vfork_parent->pspace);
607 inf->pspace = pspace;
608 inf->aspace = pspace->aspace;
609
610 /* Put back inferior_ptid. We'll continue mourning this
611 inferior. */
612 do_cleanups (old_chain);
613
614 resume_parent = inf->vfork_parent->pid;
615 /* Break the bonds. */
616 inf->vfork_parent->vfork_child = NULL;
617 }
618
619 inf->vfork_parent = NULL;
620
621 gdb_assert (current_program_space == inf->pspace);
622
623 if (non_stop && resume_parent != -1)
624 {
625 /* If the user wanted the parent to be running, let it go
626 free now. */
627 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
628
629 if (debug_infrun)
630 fprintf_unfiltered (gdb_stdlog, "infrun: resuming vfork parent process %d\n",
631 resume_parent);
632
633 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
634
635 do_cleanups (old_chain);
636 }
637 }
638}
639
640/* Enum strings for "set|show displaced-stepping". */
641
642static const char follow_exec_mode_new[] = "new";
643static const char follow_exec_mode_same[] = "same";
644static const char *follow_exec_mode_names[] =
645{
646 follow_exec_mode_new,
647 follow_exec_mode_same,
648 NULL,
649};
650
651static const char *follow_exec_mode_string = follow_exec_mode_same;
652static void
653show_follow_exec_mode_string (struct ui_file *file, int from_tty,
654 struct cmd_list_element *c, const char *value)
655{
656 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
657}
658
1adeb98a
FN
659/* EXECD_PATHNAME is assumed to be non-NULL. */
660
c906108c 661static void
3a3e9ee3 662follow_exec (ptid_t pid, char *execd_pathname)
c906108c 663{
7a292a7a 664 struct target_ops *tgt;
4e1c45ea 665 struct thread_info *th = inferior_thread ();
6c95b8df 666 struct inferior *inf = current_inferior ();
7a292a7a 667
c906108c
SS
668 /* This is an exec event that we actually wish to pay attention to.
669 Refresh our symbol table to the newly exec'd program, remove any
670 momentary bp's, etc.
671
672 If there are breakpoints, they aren't really inserted now,
673 since the exec() transformed our inferior into a fresh set
674 of instructions.
675
676 We want to preserve symbolic breakpoints on the list, since
677 we have hopes that they can be reset after the new a.out's
678 symbol table is read.
679
680 However, any "raw" breakpoints must be removed from the list
681 (e.g., the solib bp's), since their address is probably invalid
682 now.
683
684 And, we DON'T want to call delete_breakpoints() here, since
685 that may write the bp's "shadow contents" (the instruction
686 value that was overwritten witha TRAP instruction). Since
687 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
688
689 mark_breakpoints_out ();
690
c906108c
SS
691 update_breakpoints_after_exec ();
692
693 /* If there was one, it's gone now. We cannot truly step-to-next
694 statement through an exec(). */
4e1c45ea
PA
695 th->step_resume_breakpoint = NULL;
696 th->step_range_start = 0;
697 th->step_range_end = 0;
c906108c 698
a75724bc
PA
699 /* The target reports the exec event to the main thread, even if
700 some other thread does the exec, and even if the main thread was
701 already stopped --- if debugging in non-stop mode, it's possible
702 the user had the main thread held stopped in the previous image
703 --- release it now. This is the same behavior as step-over-exec
704 with scheduler-locking on in all-stop mode. */
705 th->stop_requested = 0;
706
c906108c 707 /* What is this a.out's name? */
6c95b8df
PA
708 printf_unfiltered (_("%s is executing new program: %s\n"),
709 target_pid_to_str (inferior_ptid),
710 execd_pathname);
c906108c
SS
711
712 /* We've followed the inferior through an exec. Therefore, the
713 inferior has essentially been killed & reborn. */
7a292a7a 714
c906108c 715 gdb_flush (gdb_stdout);
6ca15a4b
PA
716
717 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
718
719 if (gdb_sysroot && *gdb_sysroot)
720 {
721 char *name = alloca (strlen (gdb_sysroot)
722 + strlen (execd_pathname)
723 + 1);
724 strcpy (name, gdb_sysroot);
725 strcat (name, execd_pathname);
726 execd_pathname = name;
727 }
c906108c 728
cce9b6bf
PA
729 /* Reset the shared library package. This ensures that we get a
730 shlib event when the child reaches "_start", at which point the
731 dld will have had a chance to initialize the child. */
732 /* Also, loading a symbol file below may trigger symbol lookups, and
733 we don't want those to be satisfied by the libraries of the
734 previous incarnation of this process. */
735 no_shared_libraries (NULL, 0);
736
6c95b8df
PA
737 if (follow_exec_mode_string == follow_exec_mode_new)
738 {
739 struct program_space *pspace;
740 struct inferior *new_inf;
741
742 /* The user wants to keep the old inferior and program spaces
743 around. Create a new fresh one, and switch to it. */
744
745 inf = add_inferior (current_inferior ()->pid);
746 pspace = add_program_space (maybe_new_address_space ());
747 inf->pspace = pspace;
748 inf->aspace = pspace->aspace;
749
750 exit_inferior_num_silent (current_inferior ()->num);
751
752 set_current_inferior (inf);
753 set_current_program_space (pspace);
754 }
755
756 gdb_assert (current_program_space == inf->pspace);
757
758 /* That a.out is now the one to use. */
759 exec_file_attach (execd_pathname, 0);
760
cce9b6bf 761 /* Load the main file's symbols. */
1adeb98a 762 symbol_file_add_main (execd_pathname, 0);
c906108c 763
7a292a7a 764#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 765 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2
MK
766#else
767 solib_create_inferior_hook ();
7a292a7a 768#endif
c906108c 769
4efc6507
DE
770 jit_inferior_created_hook ();
771
c906108c
SS
772 /* Reinsert all breakpoints. (Those which were symbolic have
773 been reset to the proper address in the new a.out, thanks
774 to symbol_file_command...) */
775 insert_breakpoints ();
776
777 /* The next resume of this inferior should bring it to the shlib
778 startup breakpoints. (If the user had also set bp's on
779 "main" from the old (parent) process, then they'll auto-
780 matically get reset there in the new process.) */
c906108c
SS
781}
782
783/* Non-zero if we just simulating a single-step. This is needed
784 because we cannot remove the breakpoints in the inferior process
785 until after the `wait' in `wait_for_inferior'. */
786static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
787
788/* The thread we inserted single-step breakpoints for. */
789static ptid_t singlestep_ptid;
790
fd48f117
DJ
791/* PC when we started this single-step. */
792static CORE_ADDR singlestep_pc;
793
9f976b41
DJ
794/* If another thread hit the singlestep breakpoint, we save the original
795 thread here so that we can resume single-stepping it later. */
796static ptid_t saved_singlestep_ptid;
797static int stepping_past_singlestep_breakpoint;
6a6b96b9 798
ca67fcb8
VP
799/* If not equal to null_ptid, this means that after stepping over breakpoint
800 is finished, we need to switch to deferred_step_ptid, and step it.
801
802 The use case is when one thread has hit a breakpoint, and then the user
803 has switched to another thread and issued 'step'. We need to step over
804 breakpoint in the thread which hit the breakpoint, but then continue
805 stepping the thread user has selected. */
806static ptid_t deferred_step_ptid;
c906108c 807\f
237fc4c9
PA
808/* Displaced stepping. */
809
810/* In non-stop debugging mode, we must take special care to manage
811 breakpoints properly; in particular, the traditional strategy for
812 stepping a thread past a breakpoint it has hit is unsuitable.
813 'Displaced stepping' is a tactic for stepping one thread past a
814 breakpoint it has hit while ensuring that other threads running
815 concurrently will hit the breakpoint as they should.
816
817 The traditional way to step a thread T off a breakpoint in a
818 multi-threaded program in all-stop mode is as follows:
819
820 a0) Initially, all threads are stopped, and breakpoints are not
821 inserted.
822 a1) We single-step T, leaving breakpoints uninserted.
823 a2) We insert breakpoints, and resume all threads.
824
825 In non-stop debugging, however, this strategy is unsuitable: we
826 don't want to have to stop all threads in the system in order to
827 continue or step T past a breakpoint. Instead, we use displaced
828 stepping:
829
830 n0) Initially, T is stopped, other threads are running, and
831 breakpoints are inserted.
832 n1) We copy the instruction "under" the breakpoint to a separate
833 location, outside the main code stream, making any adjustments
834 to the instruction, register, and memory state as directed by
835 T's architecture.
836 n2) We single-step T over the instruction at its new location.
837 n3) We adjust the resulting register and memory state as directed
838 by T's architecture. This includes resetting T's PC to point
839 back into the main instruction stream.
840 n4) We resume T.
841
842 This approach depends on the following gdbarch methods:
843
844 - gdbarch_max_insn_length and gdbarch_displaced_step_location
845 indicate where to copy the instruction, and how much space must
846 be reserved there. We use these in step n1.
847
848 - gdbarch_displaced_step_copy_insn copies a instruction to a new
849 address, and makes any necessary adjustments to the instruction,
850 register contents, and memory. We use this in step n1.
851
852 - gdbarch_displaced_step_fixup adjusts registers and memory after
853 we have successfuly single-stepped the instruction, to yield the
854 same effect the instruction would have had if we had executed it
855 at its original address. We use this in step n3.
856
857 - gdbarch_displaced_step_free_closure provides cleanup.
858
859 The gdbarch_displaced_step_copy_insn and
860 gdbarch_displaced_step_fixup functions must be written so that
861 copying an instruction with gdbarch_displaced_step_copy_insn,
862 single-stepping across the copied instruction, and then applying
863 gdbarch_displaced_insn_fixup should have the same effects on the
864 thread's memory and registers as stepping the instruction in place
865 would have. Exactly which responsibilities fall to the copy and
866 which fall to the fixup is up to the author of those functions.
867
868 See the comments in gdbarch.sh for details.
869
870 Note that displaced stepping and software single-step cannot
871 currently be used in combination, although with some care I think
872 they could be made to. Software single-step works by placing
873 breakpoints on all possible subsequent instructions; if the
874 displaced instruction is a PC-relative jump, those breakpoints
875 could fall in very strange places --- on pages that aren't
876 executable, or at addresses that are not proper instruction
877 boundaries. (We do generally let other threads run while we wait
878 to hit the software single-step breakpoint, and they might
879 encounter such a corrupted instruction.) One way to work around
880 this would be to have gdbarch_displaced_step_copy_insn fully
881 simulate the effect of PC-relative instructions (and return NULL)
882 on architectures that use software single-stepping.
883
884 In non-stop mode, we can have independent and simultaneous step
885 requests, so more than one thread may need to simultaneously step
886 over a breakpoint. The current implementation assumes there is
887 only one scratch space per process. In this case, we have to
888 serialize access to the scratch space. If thread A wants to step
889 over a breakpoint, but we are currently waiting for some other
890 thread to complete a displaced step, we leave thread A stopped and
891 place it in the displaced_step_request_queue. Whenever a displaced
892 step finishes, we pick the next thread in the queue and start a new
893 displaced step operation on it. See displaced_step_prepare and
894 displaced_step_fixup for details. */
895
896/* If this is not null_ptid, this is the thread carrying out a
897 displaced single-step. This thread's state will require fixing up
898 once it has completed its step. */
899static ptid_t displaced_step_ptid;
900
901struct displaced_step_request
902{
903 ptid_t ptid;
904 struct displaced_step_request *next;
905};
906
907/* A queue of pending displaced stepping requests. */
908struct displaced_step_request *displaced_step_request_queue;
909
910/* The architecture the thread had when we stepped it. */
911static struct gdbarch *displaced_step_gdbarch;
912
913/* The closure provided gdbarch_displaced_step_copy_insn, to be used
914 for post-step cleanup. */
915static struct displaced_step_closure *displaced_step_closure;
916
917/* The address of the original instruction, and the copy we made. */
918static CORE_ADDR displaced_step_original, displaced_step_copy;
919
920/* Saved contents of copy area. */
921static gdb_byte *displaced_step_saved_copy;
922
fff08868
HZ
923/* Enum strings for "set|show displaced-stepping". */
924
925static const char can_use_displaced_stepping_auto[] = "auto";
926static const char can_use_displaced_stepping_on[] = "on";
927static const char can_use_displaced_stepping_off[] = "off";
928static const char *can_use_displaced_stepping_enum[] =
929{
930 can_use_displaced_stepping_auto,
931 can_use_displaced_stepping_on,
932 can_use_displaced_stepping_off,
933 NULL,
934};
935
936/* If ON, and the architecture supports it, GDB will use displaced
937 stepping to step over breakpoints. If OFF, or if the architecture
938 doesn't support it, GDB will instead use the traditional
939 hold-and-step approach. If AUTO (which is the default), GDB will
940 decide which technique to use to step over breakpoints depending on
941 which of all-stop or non-stop mode is active --- displaced stepping
942 in non-stop mode; hold-and-step in all-stop mode. */
943
944static const char *can_use_displaced_stepping =
945 can_use_displaced_stepping_auto;
946
237fc4c9
PA
947static void
948show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
949 struct cmd_list_element *c,
950 const char *value)
951{
fff08868
HZ
952 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
953 fprintf_filtered (file, _("\
954Debugger's willingness to use displaced stepping to step over \
955breakpoints is %s (currently %s).\n"),
956 value, non_stop ? "on" : "off");
957 else
958 fprintf_filtered (file, _("\
959Debugger's willingness to use displaced stepping to step over \
960breakpoints is %s.\n"), value);
237fc4c9
PA
961}
962
fff08868
HZ
963/* Return non-zero if displaced stepping can/should be used to step
964 over breakpoints. */
965
237fc4c9
PA
966static int
967use_displaced_stepping (struct gdbarch *gdbarch)
968{
fff08868
HZ
969 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
970 && non_stop)
971 || can_use_displaced_stepping == can_use_displaced_stepping_on)
96429cc8
HZ
972 && gdbarch_displaced_step_copy_insn_p (gdbarch)
973 && !RECORD_IS_USED);
237fc4c9
PA
974}
975
976/* Clean out any stray displaced stepping state. */
977static void
978displaced_step_clear (void)
979{
980 /* Indicate that there is no cleanup pending. */
981 displaced_step_ptid = null_ptid;
982
983 if (displaced_step_closure)
984 {
985 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
986 displaced_step_closure);
987 displaced_step_closure = NULL;
988 }
989}
990
991static void
9f5a595d 992displaced_step_clear_cleanup (void *ignore)
237fc4c9 993{
9f5a595d 994 displaced_step_clear ();
237fc4c9
PA
995}
996
997/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
998void
999displaced_step_dump_bytes (struct ui_file *file,
1000 const gdb_byte *buf,
1001 size_t len)
1002{
1003 int i;
1004
1005 for (i = 0; i < len; i++)
1006 fprintf_unfiltered (file, "%02x ", buf[i]);
1007 fputs_unfiltered ("\n", file);
1008}
1009
1010/* Prepare to single-step, using displaced stepping.
1011
1012 Note that we cannot use displaced stepping when we have a signal to
1013 deliver. If we have a signal to deliver and an instruction to step
1014 over, then after the step, there will be no indication from the
1015 target whether the thread entered a signal handler or ignored the
1016 signal and stepped over the instruction successfully --- both cases
1017 result in a simple SIGTRAP. In the first case we mustn't do a
1018 fixup, and in the second case we must --- but we can't tell which.
1019 Comments in the code for 'random signals' in handle_inferior_event
1020 explain how we handle this case instead.
1021
1022 Returns 1 if preparing was successful -- this thread is going to be
1023 stepped now; or 0 if displaced stepping this thread got queued. */
1024static int
1025displaced_step_prepare (ptid_t ptid)
1026{
ad53cd71 1027 struct cleanup *old_cleanups, *ignore_cleanups;
237fc4c9
PA
1028 struct regcache *regcache = get_thread_regcache (ptid);
1029 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1030 CORE_ADDR original, copy;
1031 ULONGEST len;
1032 struct displaced_step_closure *closure;
1033
1034 /* We should never reach this function if the architecture does not
1035 support displaced stepping. */
1036 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1037
1038 /* For the first cut, we're displaced stepping one thread at a
1039 time. */
1040
1041 if (!ptid_equal (displaced_step_ptid, null_ptid))
1042 {
1043 /* Already waiting for a displaced step to finish. Defer this
1044 request and place in queue. */
1045 struct displaced_step_request *req, *new_req;
1046
1047 if (debug_displaced)
1048 fprintf_unfiltered (gdb_stdlog,
1049 "displaced: defering step of %s\n",
1050 target_pid_to_str (ptid));
1051
1052 new_req = xmalloc (sizeof (*new_req));
1053 new_req->ptid = ptid;
1054 new_req->next = NULL;
1055
1056 if (displaced_step_request_queue)
1057 {
1058 for (req = displaced_step_request_queue;
1059 req && req->next;
1060 req = req->next)
1061 ;
1062 req->next = new_req;
1063 }
1064 else
1065 displaced_step_request_queue = new_req;
1066
1067 return 0;
1068 }
1069 else
1070 {
1071 if (debug_displaced)
1072 fprintf_unfiltered (gdb_stdlog,
1073 "displaced: stepping %s now\n",
1074 target_pid_to_str (ptid));
1075 }
1076
1077 displaced_step_clear ();
1078
ad53cd71
PA
1079 old_cleanups = save_inferior_ptid ();
1080 inferior_ptid = ptid;
1081
515630c5 1082 original = regcache_read_pc (regcache);
237fc4c9
PA
1083
1084 copy = gdbarch_displaced_step_location (gdbarch);
1085 len = gdbarch_max_insn_length (gdbarch);
1086
1087 /* Save the original contents of the copy area. */
1088 displaced_step_saved_copy = xmalloc (len);
ad53cd71
PA
1089 ignore_cleanups = make_cleanup (free_current_contents,
1090 &displaced_step_saved_copy);
237fc4c9
PA
1091 read_memory (copy, displaced_step_saved_copy, len);
1092 if (debug_displaced)
1093 {
5af949e3
UW
1094 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1095 paddress (gdbarch, copy));
237fc4c9
PA
1096 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
1097 };
1098
1099 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1100 original, copy, regcache);
237fc4c9
PA
1101
1102 /* We don't support the fully-simulated case at present. */
1103 gdb_assert (closure);
1104
9f5a595d
UW
1105 /* Save the information we need to fix things up if the step
1106 succeeds. */
1107 displaced_step_ptid = ptid;
1108 displaced_step_gdbarch = gdbarch;
1109 displaced_step_closure = closure;
1110 displaced_step_original = original;
1111 displaced_step_copy = copy;
1112
1113 make_cleanup (displaced_step_clear_cleanup, 0);
237fc4c9
PA
1114
1115 /* Resume execution at the copy. */
515630c5 1116 regcache_write_pc (regcache, copy);
237fc4c9 1117
ad53cd71
PA
1118 discard_cleanups (ignore_cleanups);
1119
1120 do_cleanups (old_cleanups);
237fc4c9
PA
1121
1122 if (debug_displaced)
5af949e3
UW
1123 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1124 paddress (gdbarch, copy));
237fc4c9 1125
237fc4c9
PA
1126 return 1;
1127}
1128
237fc4c9
PA
1129static void
1130write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1131{
1132 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1133 inferior_ptid = ptid;
1134 write_memory (memaddr, myaddr, len);
1135 do_cleanups (ptid_cleanup);
1136}
1137
1138static void
1139displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
1140{
1141 struct cleanup *old_cleanups;
1142
1143 /* Was this event for the pid we displaced? */
1144 if (ptid_equal (displaced_step_ptid, null_ptid)
1145 || ! ptid_equal (displaced_step_ptid, event_ptid))
1146 return;
1147
1148 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
1149
1150 /* Restore the contents of the copy area. */
1151 {
1152 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
1153 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
1154 displaced_step_saved_copy, len);
1155 if (debug_displaced)
5af949e3
UW
1156 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s\n",
1157 paddress (displaced_step_gdbarch,
1158 displaced_step_copy));
237fc4c9
PA
1159 }
1160
1161 /* Did the instruction complete successfully? */
1162 if (signal == TARGET_SIGNAL_TRAP)
1163 {
1164 /* Fix up the resulting state. */
1165 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
1166 displaced_step_closure,
1167 displaced_step_original,
1168 displaced_step_copy,
1169 get_thread_regcache (displaced_step_ptid));
1170 }
1171 else
1172 {
1173 /* Since the instruction didn't complete, all we can do is
1174 relocate the PC. */
515630c5
UW
1175 struct regcache *regcache = get_thread_regcache (event_ptid);
1176 CORE_ADDR pc = regcache_read_pc (regcache);
237fc4c9 1177 pc = displaced_step_original + (pc - displaced_step_copy);
515630c5 1178 regcache_write_pc (regcache, pc);
237fc4c9
PA
1179 }
1180
1181 do_cleanups (old_cleanups);
1182
1c5cfe86
PA
1183 displaced_step_ptid = null_ptid;
1184
237fc4c9
PA
1185 /* Are there any pending displaced stepping requests? If so, run
1186 one now. */
1c5cfe86 1187 while (displaced_step_request_queue)
237fc4c9
PA
1188 {
1189 struct displaced_step_request *head;
1190 ptid_t ptid;
5af949e3 1191 struct regcache *regcache;
929dfd4f 1192 struct gdbarch *gdbarch;
1c5cfe86 1193 CORE_ADDR actual_pc;
6c95b8df 1194 struct address_space *aspace;
237fc4c9
PA
1195
1196 head = displaced_step_request_queue;
1197 ptid = head->ptid;
1198 displaced_step_request_queue = head->next;
1199 xfree (head);
1200
ad53cd71
PA
1201 context_switch (ptid);
1202
5af949e3
UW
1203 regcache = get_thread_regcache (ptid);
1204 actual_pc = regcache_read_pc (regcache);
6c95b8df 1205 aspace = get_regcache_aspace (regcache);
1c5cfe86 1206
6c95b8df 1207 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1208 {
1c5cfe86
PA
1209 if (debug_displaced)
1210 fprintf_unfiltered (gdb_stdlog,
1211 "displaced: stepping queued %s now\n",
1212 target_pid_to_str (ptid));
1213
1214 displaced_step_prepare (ptid);
1215
929dfd4f
JB
1216 gdbarch = get_regcache_arch (regcache);
1217
1c5cfe86
PA
1218 if (debug_displaced)
1219 {
929dfd4f 1220 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1221 gdb_byte buf[4];
1222
5af949e3
UW
1223 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1224 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1225 read_memory (actual_pc, buf, sizeof (buf));
1226 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1227 }
1228
99e40580
UW
1229 if (gdbarch_displaced_step_hw_singlestep
1230 (gdbarch, displaced_step_closure))
929dfd4f 1231 target_resume (ptid, 1, TARGET_SIGNAL_0);
99e40580
UW
1232 else
1233 target_resume (ptid, 0, TARGET_SIGNAL_0);
1c5cfe86
PA
1234
1235 /* Done, we're stepping a thread. */
1236 break;
ad53cd71 1237 }
1c5cfe86
PA
1238 else
1239 {
1240 int step;
1241 struct thread_info *tp = inferior_thread ();
1242
1243 /* The breakpoint we were sitting under has since been
1244 removed. */
1245 tp->trap_expected = 0;
1246
1247 /* Go back to what we were trying to do. */
1248 step = currently_stepping (tp);
ad53cd71 1249
1c5cfe86
PA
1250 if (debug_displaced)
1251 fprintf_unfiltered (gdb_stdlog, "breakpoint is gone %s: step(%d)\n",
1252 target_pid_to_str (tp->ptid), step);
1253
1254 target_resume (ptid, step, TARGET_SIGNAL_0);
1255 tp->stop_signal = TARGET_SIGNAL_0;
1256
1257 /* This request was discarded. See if there's any other
1258 thread waiting for its turn. */
1259 }
237fc4c9
PA
1260 }
1261}
1262
5231c1fd
PA
1263/* Update global variables holding ptids to hold NEW_PTID if they were
1264 holding OLD_PTID. */
1265static void
1266infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1267{
1268 struct displaced_step_request *it;
1269
1270 if (ptid_equal (inferior_ptid, old_ptid))
1271 inferior_ptid = new_ptid;
1272
1273 if (ptid_equal (singlestep_ptid, old_ptid))
1274 singlestep_ptid = new_ptid;
1275
1276 if (ptid_equal (displaced_step_ptid, old_ptid))
1277 displaced_step_ptid = new_ptid;
1278
1279 if (ptid_equal (deferred_step_ptid, old_ptid))
1280 deferred_step_ptid = new_ptid;
1281
1282 for (it = displaced_step_request_queue; it; it = it->next)
1283 if (ptid_equal (it->ptid, old_ptid))
1284 it->ptid = new_ptid;
1285}
1286
237fc4c9
PA
1287\f
1288/* Resuming. */
c906108c
SS
1289
1290/* Things to clean up if we QUIT out of resume (). */
c906108c 1291static void
74b7792f 1292resume_cleanups (void *ignore)
c906108c
SS
1293{
1294 normal_stop ();
1295}
1296
53904c9e
AC
1297static const char schedlock_off[] = "off";
1298static const char schedlock_on[] = "on";
1299static const char schedlock_step[] = "step";
488f131b 1300static const char *scheduler_enums[] = {
ef346e04
AC
1301 schedlock_off,
1302 schedlock_on,
1303 schedlock_step,
1304 NULL
1305};
920d2a44
AC
1306static const char *scheduler_mode = schedlock_off;
1307static void
1308show_scheduler_mode (struct ui_file *file, int from_tty,
1309 struct cmd_list_element *c, const char *value)
1310{
1311 fprintf_filtered (file, _("\
1312Mode for locking scheduler during execution is \"%s\".\n"),
1313 value);
1314}
c906108c
SS
1315
1316static void
96baa820 1317set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1318{
eefe576e
AC
1319 if (!target_can_lock_scheduler)
1320 {
1321 scheduler_mode = schedlock_off;
1322 error (_("Target '%s' cannot support this command."), target_shortname);
1323 }
c906108c
SS
1324}
1325
d4db2f36
PA
1326/* True if execution commands resume all threads of all processes by
1327 default; otherwise, resume only threads of the current inferior
1328 process. */
1329int sched_multi = 0;
1330
2facfe5c
DD
1331/* Try to setup for software single stepping over the specified location.
1332 Return 1 if target_resume() should use hardware single step.
1333
1334 GDBARCH the current gdbarch.
1335 PC the location to step over. */
1336
1337static int
1338maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1339{
1340 int hw_step = 1;
1341
99e40580
UW
1342 if (gdbarch_software_single_step_p (gdbarch)
1343 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 1344 {
99e40580
UW
1345 hw_step = 0;
1346 /* Do not pull these breakpoints until after a `wait' in
1347 `wait_for_inferior' */
1348 singlestep_breakpoints_inserted_p = 1;
1349 singlestep_ptid = inferior_ptid;
1350 singlestep_pc = pc;
2facfe5c
DD
1351 }
1352 return hw_step;
1353}
c906108c
SS
1354
1355/* Resume the inferior, but allow a QUIT. This is useful if the user
1356 wants to interrupt some lengthy single-stepping operation
1357 (for child processes, the SIGINT goes to the inferior, and so
1358 we get a SIGINT random_signal, but for remote debugging and perhaps
1359 other targets, that's not true).
1360
1361 STEP nonzero if we should step (zero to continue instead).
1362 SIG is the signal to give the inferior (zero for none). */
1363void
96baa820 1364resume (int step, enum target_signal sig)
c906108c
SS
1365{
1366 int should_resume = 1;
74b7792f 1367 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1368 struct regcache *regcache = get_current_regcache ();
1369 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1370 struct thread_info *tp = inferior_thread ();
515630c5 1371 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 1372 struct address_space *aspace = get_regcache_aspace (regcache);
c7e8a53c 1373
c906108c
SS
1374 QUIT;
1375
527159b7 1376 if (debug_infrun)
237fc4c9
PA
1377 fprintf_unfiltered (gdb_stdlog,
1378 "infrun: resume (step=%d, signal=%d), "
4e1c45ea
PA
1379 "trap_expected=%d\n",
1380 step, sig, tp->trap_expected);
c906108c 1381
692590c1
MS
1382 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
1383 over an instruction that causes a page fault without triggering
1384 a hardware watchpoint. The kernel properly notices that it shouldn't
1385 stop, because the hardware watchpoint is not triggered, but it forgets
1386 the step request and continues the program normally.
1387 Work around the problem by removing hardware watchpoints if a step is
1388 requested, GDB will check for a hardware watchpoint trigger after the
1389 step anyway. */
c36b740a 1390 if (CANNOT_STEP_HW_WATCHPOINTS && step)
692590c1 1391 remove_hw_watchpoints ();
488f131b 1392
692590c1 1393
c2c6d25f
JM
1394 /* Normally, by the time we reach `resume', the breakpoints are either
1395 removed or inserted, as appropriate. The exception is if we're sitting
1396 at a permanent breakpoint; we need to step over it, but permanent
1397 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 1398 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 1399 {
515630c5
UW
1400 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1401 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5
UW
1402 else
1403 error (_("\
1404The program is stopped at a permanent breakpoint, but GDB does not know\n\
1405how to step past a permanent breakpoint on this architecture. Try using\n\
1406a command like `return' or `jump' to continue execution."));
1407 }
c2c6d25f 1408
237fc4c9
PA
1409 /* If enabled, step over breakpoints by executing a copy of the
1410 instruction at a different address.
1411
1412 We can't use displaced stepping when we have a signal to deliver;
1413 the comments for displaced_step_prepare explain why. The
1414 comments in the handle_inferior event for dealing with 'random
1415 signals' explain what we do instead. */
515630c5 1416 if (use_displaced_stepping (gdbarch)
929dfd4f
JB
1417 && (tp->trap_expected
1418 || (step && gdbarch_software_single_step_p (gdbarch)))
237fc4c9
PA
1419 && sig == TARGET_SIGNAL_0)
1420 {
1421 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1422 {
1423 /* Got placed in displaced stepping queue. Will be resumed
1424 later when all the currently queued displaced stepping
7f7efbd9
VP
1425 requests finish. The thread is not executing at this point,
1426 and the call to set_executing will be made later. But we
1427 need to call set_running here, since from frontend point of view,
1428 the thread is running. */
1429 set_running (inferior_ptid, 1);
d56b7306
VP
1430 discard_cleanups (old_cleanups);
1431 return;
1432 }
99e40580
UW
1433
1434 step = gdbarch_displaced_step_hw_singlestep
1435 (gdbarch, displaced_step_closure);
237fc4c9
PA
1436 }
1437
2facfe5c 1438 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 1439 else if (step)
2facfe5c 1440 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1441
c906108c
SS
1442 if (should_resume)
1443 {
39f77062 1444 ptid_t resume_ptid;
dfcd3bfb 1445
cd76b0b7
VP
1446 /* If STEP is set, it's a request to use hardware stepping
1447 facilities. But in that case, we should never
1448 use singlestep breakpoint. */
1449 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1450
d4db2f36
PA
1451 /* Decide the set of threads to ask the target to resume. Start
1452 by assuming everything will be resumed, than narrow the set
1453 by applying increasingly restricting conditions. */
1454
1455 /* By default, resume all threads of all processes. */
1456 resume_ptid = RESUME_ALL;
1457
1458 /* Maybe resume only all threads of the current process. */
1459 if (!sched_multi && target_supports_multi_process ())
1460 {
1461 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1462 }
1463
1464 /* Maybe resume a single thread after all. */
cd76b0b7
VP
1465 if (singlestep_breakpoints_inserted_p
1466 && stepping_past_singlestep_breakpoint)
c906108c 1467 {
cd76b0b7
VP
1468 /* The situation here is as follows. In thread T1 we wanted to
1469 single-step. Lacking hardware single-stepping we've
1470 set breakpoint at the PC of the next instruction -- call it
1471 P. After resuming, we've hit that breakpoint in thread T2.
1472 Now we've removed original breakpoint, inserted breakpoint
1473 at P+1, and try to step to advance T2 past breakpoint.
1474 We need to step only T2, as if T1 is allowed to freely run,
1475 it can run past P, and if other threads are allowed to run,
1476 they can hit breakpoint at P+1, and nested hits of single-step
1477 breakpoints is not something we'd want -- that's complicated
1478 to support, and has no value. */
1479 resume_ptid = inferior_ptid;
1480 }
d4db2f36
PA
1481 else if ((step || singlestep_breakpoints_inserted_p)
1482 && tp->trap_expected)
cd76b0b7 1483 {
74960c60
VP
1484 /* We're allowing a thread to run past a breakpoint it has
1485 hit, by single-stepping the thread with the breakpoint
1486 removed. In which case, we need to single-step only this
1487 thread, and keep others stopped, as they can miss this
1488 breakpoint if allowed to run.
1489
1490 The current code actually removes all breakpoints when
1491 doing this, not just the one being stepped over, so if we
1492 let other threads run, we can actually miss any
1493 breakpoint, not just the one at PC. */
ef5cf84e 1494 resume_ptid = inferior_ptid;
c906108c 1495 }
d4db2f36 1496 else if (non_stop)
94cc34af
PA
1497 {
1498 /* With non-stop mode on, threads are always handled
1499 individually. */
1500 resume_ptid = inferior_ptid;
1501 }
1502 else if ((scheduler_mode == schedlock_on)
1503 || (scheduler_mode == schedlock_step
1504 && (step || singlestep_breakpoints_inserted_p)))
c906108c 1505 {
ef5cf84e 1506 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 1507 resume_ptid = inferior_ptid;
c906108c 1508 }
ef5cf84e 1509
515630c5 1510 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1511 {
1512 /* Most targets can step a breakpoint instruction, thus
1513 executing it normally. But if this one cannot, just
1514 continue and we will hit it anyway. */
6c95b8df 1515 if (step && breakpoint_inserted_here_p (aspace, pc))
c4ed33b9
AC
1516 step = 0;
1517 }
237fc4c9
PA
1518
1519 if (debug_displaced
515630c5 1520 && use_displaced_stepping (gdbarch)
4e1c45ea 1521 && tp->trap_expected)
237fc4c9 1522 {
515630c5 1523 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
5af949e3 1524 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
515630c5 1525 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1526 gdb_byte buf[4];
1527
5af949e3
UW
1528 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1529 paddress (resume_gdbarch, actual_pc));
237fc4c9
PA
1530 read_memory (actual_pc, buf, sizeof (buf));
1531 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1532 }
1533
e58b0e63
PA
1534 /* Install inferior's terminal modes. */
1535 target_terminal_inferior ();
1536
2020b7ab
PA
1537 /* Avoid confusing the next resume, if the next stop/resume
1538 happens to apply to another thread. */
1539 tp->stop_signal = TARGET_SIGNAL_0;
607cecd2
PA
1540
1541 target_resume (resume_ptid, step, sig);
c906108c
SS
1542 }
1543
1544 discard_cleanups (old_cleanups);
1545}
1546\f
237fc4c9 1547/* Proceeding. */
c906108c
SS
1548
1549/* Clear out all variables saying what to do when inferior is continued.
1550 First do this, then set the ones you want, then call `proceed'. */
1551
a7212384
UW
1552static void
1553clear_proceed_status_thread (struct thread_info *tp)
c906108c 1554{
a7212384
UW
1555 if (debug_infrun)
1556 fprintf_unfiltered (gdb_stdlog,
1557 "infrun: clear_proceed_status_thread (%s)\n",
1558 target_pid_to_str (tp->ptid));
d6b48e9c 1559
a7212384
UW
1560 tp->trap_expected = 0;
1561 tp->step_range_start = 0;
1562 tp->step_range_end = 0;
1563 tp->step_frame_id = null_frame_id;
edb3359d 1564 tp->step_stack_frame_id = null_frame_id;
a7212384
UW
1565 tp->step_over_calls = STEP_OVER_UNDEBUGGABLE;
1566 tp->stop_requested = 0;
4e1c45ea 1567
a7212384 1568 tp->stop_step = 0;
32400beb 1569
a7212384 1570 tp->proceed_to_finish = 0;
414c69f7 1571
a7212384
UW
1572 /* Discard any remaining commands or status from previous stop. */
1573 bpstat_clear (&tp->stop_bpstat);
1574}
32400beb 1575
a7212384
UW
1576static int
1577clear_proceed_status_callback (struct thread_info *tp, void *data)
1578{
1579 if (is_exited (tp->ptid))
1580 return 0;
d6b48e9c 1581
a7212384
UW
1582 clear_proceed_status_thread (tp);
1583 return 0;
1584}
1585
1586void
1587clear_proceed_status (void)
1588{
6c95b8df
PA
1589 if (!non_stop)
1590 {
1591 /* In all-stop mode, delete the per-thread status of all
1592 threads, even if inferior_ptid is null_ptid, there may be
1593 threads on the list. E.g., we may be launching a new
1594 process, while selecting the executable. */
1595 iterate_over_threads (clear_proceed_status_callback, NULL);
1596 }
1597
a7212384
UW
1598 if (!ptid_equal (inferior_ptid, null_ptid))
1599 {
1600 struct inferior *inferior;
1601
1602 if (non_stop)
1603 {
6c95b8df
PA
1604 /* If in non-stop mode, only delete the per-thread status of
1605 the current thread. */
a7212384
UW
1606 clear_proceed_status_thread (inferior_thread ());
1607 }
6c95b8df 1608
d6b48e9c
PA
1609 inferior = current_inferior ();
1610 inferior->stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
1611 }
1612
c906108c 1613 stop_after_trap = 0;
f3b1572e
PA
1614
1615 observer_notify_about_to_proceed ();
c906108c 1616
d5c31457
UW
1617 if (stop_registers)
1618 {
1619 regcache_xfree (stop_registers);
1620 stop_registers = NULL;
1621 }
c906108c
SS
1622}
1623
5a437975
DE
1624/* Check the current thread against the thread that reported the most recent
1625 event. If a step-over is required return TRUE and set the current thread
1626 to the old thread. Otherwise return FALSE.
1627
1628 This should be suitable for any targets that support threads. */
ea67f13b
DJ
1629
1630static int
6a6b96b9 1631prepare_to_proceed (int step)
ea67f13b
DJ
1632{
1633 ptid_t wait_ptid;
1634 struct target_waitstatus wait_status;
5a437975
DE
1635 int schedlock_enabled;
1636
1637 /* With non-stop mode on, threads are always handled individually. */
1638 gdb_assert (! non_stop);
ea67f13b
DJ
1639
1640 /* Get the last target status returned by target_wait(). */
1641 get_last_target_status (&wait_ptid, &wait_status);
1642
6a6b96b9 1643 /* Make sure we were stopped at a breakpoint. */
ea67f13b 1644 if (wait_status.kind != TARGET_WAITKIND_STOPPED
6a6b96b9 1645 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
ea67f13b
DJ
1646 {
1647 return 0;
1648 }
1649
5a437975
DE
1650 schedlock_enabled = (scheduler_mode == schedlock_on
1651 || (scheduler_mode == schedlock_step
1652 && step));
1653
d4db2f36
PA
1654 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
1655 if (schedlock_enabled)
1656 return 0;
1657
1658 /* Don't switch over if we're about to resume some other process
1659 other than WAIT_PTID's, and schedule-multiple is off. */
1660 if (!sched_multi
1661 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
1662 return 0;
1663
6a6b96b9 1664 /* Switched over from WAIT_PID. */
ea67f13b 1665 if (!ptid_equal (wait_ptid, minus_one_ptid)
d4db2f36 1666 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 1667 {
515630c5
UW
1668 struct regcache *regcache = get_thread_regcache (wait_ptid);
1669
6c95b8df
PA
1670 if (breakpoint_here_p (get_regcache_aspace (regcache),
1671 regcache_read_pc (regcache)))
ea67f13b 1672 {
515630c5
UW
1673 /* If stepping, remember current thread to switch back to. */
1674 if (step)
1675 deferred_step_ptid = inferior_ptid;
ea67f13b 1676
515630c5
UW
1677 /* Switch back to WAIT_PID thread. */
1678 switch_to_thread (wait_ptid);
6a6b96b9 1679
515630c5
UW
1680 /* We return 1 to indicate that there is a breakpoint here,
1681 so we need to step over it before continuing to avoid
1682 hitting it straight away. */
1683 return 1;
1684 }
ea67f13b
DJ
1685 }
1686
1687 return 0;
ea67f13b 1688}
e4846b08 1689
c906108c
SS
1690/* Basic routine for continuing the program in various fashions.
1691
1692 ADDR is the address to resume at, or -1 for resume where stopped.
1693 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 1694 or -1 for act according to how it stopped.
c906108c 1695 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
1696 -1 means return after that and print nothing.
1697 You should probably set various step_... variables
1698 before calling here, if you are stepping.
c906108c
SS
1699
1700 You should call clear_proceed_status before calling proceed. */
1701
1702void
96baa820 1703proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c 1704{
e58b0e63
PA
1705 struct regcache *regcache;
1706 struct gdbarch *gdbarch;
4e1c45ea 1707 struct thread_info *tp;
e58b0e63 1708 CORE_ADDR pc;
6c95b8df 1709 struct address_space *aspace;
c906108c
SS
1710 int oneproc = 0;
1711
e58b0e63
PA
1712 /* If we're stopped at a fork/vfork, follow the branch set by the
1713 "set follow-fork-mode" command; otherwise, we'll just proceed
1714 resuming the current thread. */
1715 if (!follow_fork ())
1716 {
1717 /* The target for some reason decided not to resume. */
1718 normal_stop ();
1719 return;
1720 }
1721
1722 regcache = get_current_regcache ();
1723 gdbarch = get_regcache_arch (regcache);
6c95b8df 1724 aspace = get_regcache_aspace (regcache);
e58b0e63
PA
1725 pc = regcache_read_pc (regcache);
1726
c906108c 1727 if (step > 0)
515630c5 1728 step_start_function = find_pc_function (pc);
c906108c
SS
1729 if (step < 0)
1730 stop_after_trap = 1;
1731
2acceee2 1732 if (addr == (CORE_ADDR) -1)
c906108c 1733 {
6c95b8df 1734 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
b2175913 1735 && execution_direction != EXEC_REVERSE)
3352ef37
AC
1736 /* There is a breakpoint at the address we will resume at,
1737 step one instruction before inserting breakpoints so that
1738 we do not stop right away (and report a second hit at this
b2175913
MS
1739 breakpoint).
1740
1741 Note, we don't do this in reverse, because we won't
1742 actually be executing the breakpoint insn anyway.
1743 We'll be (un-)executing the previous instruction. */
1744
c906108c 1745 oneproc = 1;
515630c5
UW
1746 else if (gdbarch_single_step_through_delay_p (gdbarch)
1747 && gdbarch_single_step_through_delay (gdbarch,
1748 get_current_frame ()))
3352ef37
AC
1749 /* We stepped onto an instruction that needs to be stepped
1750 again before re-inserting the breakpoint, do so. */
c906108c
SS
1751 oneproc = 1;
1752 }
1753 else
1754 {
515630c5 1755 regcache_write_pc (regcache, addr);
c906108c
SS
1756 }
1757
527159b7 1758 if (debug_infrun)
8a9de0e4 1759 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
1760 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
1761 paddress (gdbarch, addr), siggnal, step);
527159b7 1762
94cc34af
PA
1763 if (non_stop)
1764 /* In non-stop, each thread is handled individually. The context
1765 must already be set to the right thread here. */
1766 ;
1767 else
1768 {
1769 /* In a multi-threaded task we may select another thread and
1770 then continue or step.
c906108c 1771
94cc34af
PA
1772 But if the old thread was stopped at a breakpoint, it will
1773 immediately cause another breakpoint stop without any
1774 execution (i.e. it will report a breakpoint hit incorrectly).
1775 So we must step over it first.
c906108c 1776
94cc34af
PA
1777 prepare_to_proceed checks the current thread against the
1778 thread that reported the most recent event. If a step-over
1779 is required it returns TRUE and sets the current thread to
1780 the old thread. */
1781 if (prepare_to_proceed (step))
1782 oneproc = 1;
1783 }
c906108c 1784
4e1c45ea
PA
1785 /* prepare_to_proceed may change the current thread. */
1786 tp = inferior_thread ();
1787
c906108c 1788 if (oneproc)
74960c60 1789 {
4e1c45ea 1790 tp->trap_expected = 1;
237fc4c9
PA
1791 /* If displaced stepping is enabled, we can step over the
1792 breakpoint without hitting it, so leave all breakpoints
1793 inserted. Otherwise we need to disable all breakpoints, step
1794 one instruction, and then re-add them when that step is
1795 finished. */
515630c5 1796 if (!use_displaced_stepping (gdbarch))
237fc4c9 1797 remove_breakpoints ();
74960c60 1798 }
237fc4c9
PA
1799
1800 /* We can insert breakpoints if we're not trying to step over one,
1801 or if we are stepping over one but we're using displaced stepping
1802 to do so. */
4e1c45ea 1803 if (! tp->trap_expected || use_displaced_stepping (gdbarch))
c36b740a 1804 insert_breakpoints ();
c906108c 1805
2020b7ab
PA
1806 if (!non_stop)
1807 {
1808 /* Pass the last stop signal to the thread we're resuming,
1809 irrespective of whether the current thread is the thread that
1810 got the last event or not. This was historically GDB's
1811 behaviour before keeping a stop_signal per thread. */
1812
1813 struct thread_info *last_thread;
1814 ptid_t last_ptid;
1815 struct target_waitstatus last_status;
1816
1817 get_last_target_status (&last_ptid, &last_status);
1818 if (!ptid_equal (inferior_ptid, last_ptid)
1819 && !ptid_equal (last_ptid, null_ptid)
1820 && !ptid_equal (last_ptid, minus_one_ptid))
1821 {
e09875d4 1822 last_thread = find_thread_ptid (last_ptid);
2020b7ab
PA
1823 if (last_thread)
1824 {
1825 tp->stop_signal = last_thread->stop_signal;
1826 last_thread->stop_signal = TARGET_SIGNAL_0;
1827 }
1828 }
1829 }
1830
c906108c 1831 if (siggnal != TARGET_SIGNAL_DEFAULT)
2020b7ab 1832 tp->stop_signal = siggnal;
c906108c
SS
1833 /* If this signal should not be seen by program,
1834 give it zero. Used for debugging signals. */
2020b7ab
PA
1835 else if (!signal_program[tp->stop_signal])
1836 tp->stop_signal = TARGET_SIGNAL_0;
c906108c
SS
1837
1838 annotate_starting ();
1839
1840 /* Make sure that output from GDB appears before output from the
1841 inferior. */
1842 gdb_flush (gdb_stdout);
1843
e4846b08
JJ
1844 /* Refresh prev_pc value just prior to resuming. This used to be
1845 done in stop_stepping, however, setting prev_pc there did not handle
1846 scenarios such as inferior function calls or returning from
1847 a function via the return command. In those cases, the prev_pc
1848 value was not set properly for subsequent commands. The prev_pc value
1849 is used to initialize the starting line number in the ecs. With an
1850 invalid value, the gdb next command ends up stopping at the position
1851 represented by the next line table entry past our start position.
1852 On platforms that generate one line table entry per line, this
1853 is not a problem. However, on the ia64, the compiler generates
1854 extraneous line table entries that do not increase the line number.
1855 When we issue the gdb next command on the ia64 after an inferior call
1856 or a return command, we often end up a few instructions forward, still
1857 within the original line we started.
1858
1859 An attempt was made to have init_execution_control_state () refresh
1860 the prev_pc value before calculating the line number. This approach
1861 did not work because on platforms that use ptrace, the pc register
1862 cannot be read unless the inferior is stopped. At that point, we
515630c5 1863 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
e4846b08 1864 call can fail. Setting the prev_pc value here ensures the value is
8fb3e588 1865 updated correctly when the inferior is stopped. */
4e1c45ea 1866 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 1867
59f0d5d9 1868 /* Fill in with reasonable starting values. */
4e1c45ea 1869 init_thread_stepping_state (tp);
59f0d5d9 1870
59f0d5d9
PA
1871 /* Reset to normal state. */
1872 init_infwait_state ();
1873
c906108c 1874 /* Resume inferior. */
2020b7ab 1875 resume (oneproc || step || bpstat_should_step (), tp->stop_signal);
c906108c
SS
1876
1877 /* Wait for it to stop (if not standalone)
1878 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
1879 /* Do this only if we are not using the event loop, or if the target
1880 does not support asynchronous execution. */
362646f5 1881 if (!target_can_async_p ())
43ff13b4 1882 {
ae123ec6 1883 wait_for_inferior (0);
43ff13b4
JM
1884 normal_stop ();
1885 }
c906108c 1886}
c906108c
SS
1887\f
1888
1889/* Start remote-debugging of a machine over a serial link. */
96baa820 1890
c906108c 1891void
8621d6a9 1892start_remote (int from_tty)
c906108c 1893{
d6b48e9c 1894 struct inferior *inferior;
c906108c 1895 init_wait_for_inferior ();
d6b48e9c
PA
1896
1897 inferior = current_inferior ();
1898 inferior->stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 1899
6426a772
JM
1900 /* Always go on waiting for the target, regardless of the mode. */
1901 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 1902 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
1903 nothing is returned (instead of just blocking). Because of this,
1904 targets expecting an immediate response need to, internally, set
1905 things up so that the target_wait() is forced to eventually
1906 timeout. */
1907 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1908 differentiate to its caller what the state of the target is after
1909 the initial open has been performed. Here we're assuming that
1910 the target has stopped. It should be possible to eventually have
1911 target_open() return to the caller an indication that the target
1912 is currently running and GDB state should be set to the same as
1913 for an async run. */
ae123ec6 1914 wait_for_inferior (0);
8621d6a9
DJ
1915
1916 /* Now that the inferior has stopped, do any bookkeeping like
1917 loading shared libraries. We want to do this before normal_stop,
1918 so that the displayed frame is up to date. */
1919 post_create_inferior (&current_target, from_tty);
1920
6426a772 1921 normal_stop ();
c906108c
SS
1922}
1923
1924/* Initialize static vars when a new inferior begins. */
1925
1926void
96baa820 1927init_wait_for_inferior (void)
c906108c
SS
1928{
1929 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 1930
c906108c
SS
1931 breakpoint_init_inferior (inf_starting);
1932
c906108c 1933 clear_proceed_status ();
9f976b41
DJ
1934
1935 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 1936 deferred_step_ptid = null_ptid;
ca005067
DJ
1937
1938 target_last_wait_ptid = minus_one_ptid;
237fc4c9 1939
0d1e5fa7
PA
1940 previous_inferior_ptid = null_ptid;
1941 init_infwait_state ();
1942
237fc4c9 1943 displaced_step_clear ();
edb3359d
DJ
1944
1945 /* Discard any skipped inlined frames. */
1946 clear_inline_frame_state (minus_one_ptid);
c906108c 1947}
237fc4c9 1948
c906108c 1949\f
b83266a0
SS
1950/* This enum encodes possible reasons for doing a target_wait, so that
1951 wfi can call target_wait in one place. (Ultimately the call will be
1952 moved out of the infinite loop entirely.) */
1953
c5aa993b
JM
1954enum infwait_states
1955{
cd0fc7c3
SS
1956 infwait_normal_state,
1957 infwait_thread_hop_state,
d983da9c 1958 infwait_step_watch_state,
cd0fc7c3 1959 infwait_nonstep_watch_state
b83266a0
SS
1960};
1961
11cf8741
JM
1962/* Why did the inferior stop? Used to print the appropriate messages
1963 to the interface from within handle_inferior_event(). */
1964enum inferior_stop_reason
1965{
11cf8741
JM
1966 /* Step, next, nexti, stepi finished. */
1967 END_STEPPING_RANGE,
11cf8741
JM
1968 /* Inferior terminated by signal. */
1969 SIGNAL_EXITED,
1970 /* Inferior exited. */
1971 EXITED,
1972 /* Inferior received signal, and user asked to be notified. */
b2175913
MS
1973 SIGNAL_RECEIVED,
1974 /* Reverse execution -- target ran out of history info. */
1975 NO_HISTORY
11cf8741
JM
1976};
1977
0d1e5fa7
PA
1978/* The PTID we'll do a target_wait on.*/
1979ptid_t waiton_ptid;
1980
1981/* Current inferior wait state. */
1982enum infwait_states infwait_state;
cd0fc7c3 1983
0d1e5fa7
PA
1984/* Data to be passed around while handling an event. This data is
1985 discarded between events. */
c5aa993b 1986struct execution_control_state
488f131b 1987{
0d1e5fa7 1988 ptid_t ptid;
4e1c45ea
PA
1989 /* The thread that got the event, if this was a thread event; NULL
1990 otherwise. */
1991 struct thread_info *event_thread;
1992
488f131b 1993 struct target_waitstatus ws;
488f131b
JB
1994 int random_signal;
1995 CORE_ADDR stop_func_start;
1996 CORE_ADDR stop_func_end;
1997 char *stop_func_name;
488f131b 1998 int new_thread_event;
488f131b
JB
1999 int wait_some_more;
2000};
2001
edb3359d 2002static void init_execution_control_state (struct execution_control_state *ecs);
488f131b 2003
ec9499be 2004static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2005
568d6575
UW
2006static void handle_step_into_function (struct gdbarch *gdbarch,
2007 struct execution_control_state *ecs);
2008static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2009 struct execution_control_state *ecs);
44cbf7b5 2010static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
14e60db5 2011static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
a6d9a66e
UW
2012static void insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
2013 struct symtab_and_line sr_sal,
44cbf7b5 2014 struct frame_id sr_id);
a6d9a66e 2015static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
611c83ae 2016
104c1213
JM
2017static void stop_stepping (struct execution_control_state *ecs);
2018static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2019static void keep_going (struct execution_control_state *ecs);
488f131b
JB
2020static void print_stop_reason (enum inferior_stop_reason stop_reason,
2021 int stop_info);
104c1213 2022
252fbfc8
PA
2023/* Callback for iterate over threads. If the thread is stopped, but
2024 the user/frontend doesn't know about that yet, go through
2025 normal_stop, as if the thread had just stopped now. ARG points at
2026 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2027 ptid_is_pid(PTID) is true, applies to all threads of the process
2028 pointed at by PTID. Otherwise, apply only to the thread pointed by
2029 PTID. */
2030
2031static int
2032infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2033{
2034 ptid_t ptid = * (ptid_t *) arg;
2035
2036 if ((ptid_equal (info->ptid, ptid)
2037 || ptid_equal (minus_one_ptid, ptid)
2038 || (ptid_is_pid (ptid)
2039 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2040 && is_running (info->ptid)
2041 && !is_executing (info->ptid))
2042 {
2043 struct cleanup *old_chain;
2044 struct execution_control_state ecss;
2045 struct execution_control_state *ecs = &ecss;
2046
2047 memset (ecs, 0, sizeof (*ecs));
2048
2049 old_chain = make_cleanup_restore_current_thread ();
2050
2051 switch_to_thread (info->ptid);
2052
2053 /* Go through handle_inferior_event/normal_stop, so we always
2054 have consistent output as if the stop event had been
2055 reported. */
2056 ecs->ptid = info->ptid;
e09875d4 2057 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8
PA
2058 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2059 ecs->ws.value.sig = TARGET_SIGNAL_0;
2060
2061 handle_inferior_event (ecs);
2062
2063 if (!ecs->wait_some_more)
2064 {
2065 struct thread_info *tp;
2066
2067 normal_stop ();
2068
2069 /* Finish off the continuations. The continations
2070 themselves are responsible for realising the thread
2071 didn't finish what it was supposed to do. */
2072 tp = inferior_thread ();
2073 do_all_intermediate_continuations_thread (tp);
2074 do_all_continuations_thread (tp);
2075 }
2076
2077 do_cleanups (old_chain);
2078 }
2079
2080 return 0;
2081}
2082
2083/* This function is attached as a "thread_stop_requested" observer.
2084 Cleanup local state that assumed the PTID was to be resumed, and
2085 report the stop to the frontend. */
2086
2c0b251b 2087static void
252fbfc8
PA
2088infrun_thread_stop_requested (ptid_t ptid)
2089{
2090 struct displaced_step_request *it, *next, *prev = NULL;
2091
2092 /* PTID was requested to stop. Remove it from the displaced
2093 stepping queue, so we don't try to resume it automatically. */
2094 for (it = displaced_step_request_queue; it; it = next)
2095 {
2096 next = it->next;
2097
2098 if (ptid_equal (it->ptid, ptid)
2099 || ptid_equal (minus_one_ptid, ptid)
2100 || (ptid_is_pid (ptid)
2101 && ptid_get_pid (ptid) == ptid_get_pid (it->ptid)))
2102 {
2103 if (displaced_step_request_queue == it)
2104 displaced_step_request_queue = it->next;
2105 else
2106 prev->next = it->next;
2107
2108 xfree (it);
2109 }
2110 else
2111 prev = it;
2112 }
2113
2114 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2115}
2116
a07daef3
PA
2117static void
2118infrun_thread_thread_exit (struct thread_info *tp, int silent)
2119{
2120 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2121 nullify_last_target_wait_ptid ();
2122}
2123
4e1c45ea
PA
2124/* Callback for iterate_over_threads. */
2125
2126static int
2127delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2128{
2129 if (is_exited (info->ptid))
2130 return 0;
2131
2132 delete_step_resume_breakpoint (info);
2133 return 0;
2134}
2135
2136/* In all-stop, delete the step resume breakpoint of any thread that
2137 had one. In non-stop, delete the step resume breakpoint of the
2138 thread that just stopped. */
2139
2140static void
2141delete_step_thread_step_resume_breakpoint (void)
2142{
2143 if (!target_has_execution
2144 || ptid_equal (inferior_ptid, null_ptid))
2145 /* If the inferior has exited, we have already deleted the step
2146 resume breakpoints out of GDB's lists. */
2147 return;
2148
2149 if (non_stop)
2150 {
2151 /* If in non-stop mode, only delete the step-resume or
2152 longjmp-resume breakpoint of the thread that just stopped
2153 stepping. */
2154 struct thread_info *tp = inferior_thread ();
2155 delete_step_resume_breakpoint (tp);
2156 }
2157 else
2158 /* In all-stop mode, delete all step-resume and longjmp-resume
2159 breakpoints of any thread that had them. */
2160 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2161}
2162
2163/* A cleanup wrapper. */
2164
2165static void
2166delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2167{
2168 delete_step_thread_step_resume_breakpoint ();
2169}
2170
223698f8
DE
2171/* Pretty print the results of target_wait, for debugging purposes. */
2172
2173static void
2174print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2175 const struct target_waitstatus *ws)
2176{
2177 char *status_string = target_waitstatus_to_string (ws);
2178 struct ui_file *tmp_stream = mem_fileopen ();
2179 char *text;
223698f8
DE
2180
2181 /* The text is split over several lines because it was getting too long.
2182 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2183 output as a unit; we want only one timestamp printed if debug_timestamp
2184 is set. */
2185
2186 fprintf_unfiltered (tmp_stream,
2187 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2188 if (PIDGET (waiton_ptid) != -1)
2189 fprintf_unfiltered (tmp_stream,
2190 " [%s]", target_pid_to_str (waiton_ptid));
2191 fprintf_unfiltered (tmp_stream, ", status) =\n");
2192 fprintf_unfiltered (tmp_stream,
2193 "infrun: %d [%s],\n",
2194 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2195 fprintf_unfiltered (tmp_stream,
2196 "infrun: %s\n",
2197 status_string);
2198
759ef836 2199 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
2200
2201 /* This uses %s in part to handle %'s in the text, but also to avoid
2202 a gcc error: the format attribute requires a string literal. */
2203 fprintf_unfiltered (gdb_stdlog, "%s", text);
2204
2205 xfree (status_string);
2206 xfree (text);
2207 ui_file_delete (tmp_stream);
2208}
2209
cd0fc7c3 2210/* Wait for control to return from inferior to debugger.
ae123ec6
JB
2211
2212 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
2213 as if they were SIGTRAP signals. This can be useful during
2214 the startup sequence on some targets such as HP/UX, where
2215 we receive an EXEC event instead of the expected SIGTRAP.
2216
cd0fc7c3
SS
2217 If inferior gets a signal, we may decide to start it up again
2218 instead of returning. That is why there is a loop in this function.
2219 When this function actually returns it means the inferior
2220 should be left stopped and GDB should read more commands. */
2221
2222void
ae123ec6 2223wait_for_inferior (int treat_exec_as_sigtrap)
cd0fc7c3
SS
2224{
2225 struct cleanup *old_cleanups;
0d1e5fa7 2226 struct execution_control_state ecss;
cd0fc7c3 2227 struct execution_control_state *ecs;
c906108c 2228
527159b7 2229 if (debug_infrun)
ae123ec6
JB
2230 fprintf_unfiltered
2231 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
2232 treat_exec_as_sigtrap);
527159b7 2233
4e1c45ea
PA
2234 old_cleanups =
2235 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 2236
cd0fc7c3 2237 ecs = &ecss;
0d1e5fa7
PA
2238 memset (ecs, 0, sizeof (*ecs));
2239
e0bb1c1c
PA
2240 /* We'll update this if & when we switch to a new thread. */
2241 previous_inferior_ptid = inferior_ptid;
2242
c906108c
SS
2243 while (1)
2244 {
29f49a6a
PA
2245 struct cleanup *old_chain;
2246
ec9499be
UW
2247 /* We have to invalidate the registers BEFORE calling target_wait
2248 because they can be loaded from the target while in target_wait.
2249 This makes remote debugging a bit more efficient for those
2250 targets that provide critical registers as part of their normal
2251 status mechanism. */
2252
2253 overlay_cache_invalid = 1;
2254 registers_changed ();
2255
9a4105ab 2256 if (deprecated_target_wait_hook)
47608cb1 2257 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 2258 else
47608cb1 2259 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 2260
f00150c9 2261 if (debug_infrun)
223698f8 2262 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2263
ae123ec6
JB
2264 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
2265 {
2266 xfree (ecs->ws.value.execd_pathname);
2267 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2268 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
2269 }
2270
29f49a6a
PA
2271 /* If an error happens while handling the event, propagate GDB's
2272 knowledge of the executing state to the frontend/user running
2273 state. */
2274 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2275
a96d9b2e
SDJ
2276 if (ecs->ws.kind == TARGET_WAITKIND_SYSCALL_ENTRY
2277 || ecs->ws.kind == TARGET_WAITKIND_SYSCALL_RETURN)
2278 ecs->ws.value.syscall_number = UNKNOWN_SYSCALL;
2279
cd0fc7c3
SS
2280 /* Now figure out what to do with the result of the result. */
2281 handle_inferior_event (ecs);
c906108c 2282
29f49a6a
PA
2283 /* No error, don't finish the state yet. */
2284 discard_cleanups (old_chain);
2285
cd0fc7c3
SS
2286 if (!ecs->wait_some_more)
2287 break;
2288 }
4e1c45ea 2289
cd0fc7c3
SS
2290 do_cleanups (old_cleanups);
2291}
c906108c 2292
43ff13b4
JM
2293/* Asynchronous version of wait_for_inferior. It is called by the
2294 event loop whenever a change of state is detected on the file
2295 descriptor corresponding to the target. It can be called more than
2296 once to complete a single execution command. In such cases we need
a474d7c2
PA
2297 to keep the state in a global variable ECSS. If it is the last time
2298 that this function is called for a single execution command, then
2299 report to the user that the inferior has stopped, and do the
2300 necessary cleanups. */
43ff13b4
JM
2301
2302void
fba45db2 2303fetch_inferior_event (void *client_data)
43ff13b4 2304{
0d1e5fa7 2305 struct execution_control_state ecss;
a474d7c2 2306 struct execution_control_state *ecs = &ecss;
4f8d22e3 2307 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2308 struct cleanup *ts_old_chain;
4f8d22e3 2309 int was_sync = sync_execution;
43ff13b4 2310
0d1e5fa7
PA
2311 memset (ecs, 0, sizeof (*ecs));
2312
ec9499be
UW
2313 /* We'll update this if & when we switch to a new thread. */
2314 previous_inferior_ptid = inferior_ptid;
e0bb1c1c 2315
4f8d22e3
PA
2316 if (non_stop)
2317 /* In non-stop mode, the user/frontend should not notice a thread
2318 switch due to internal events. Make sure we reverse to the
2319 user selected thread and frame after handling the event and
2320 running any breakpoint commands. */
2321 make_cleanup_restore_current_thread ();
2322
59f0d5d9
PA
2323 /* We have to invalidate the registers BEFORE calling target_wait
2324 because they can be loaded from the target while in target_wait.
2325 This makes remote debugging a bit more efficient for those
2326 targets that provide critical registers as part of their normal
2327 status mechanism. */
43ff13b4 2328
ec9499be 2329 overlay_cache_invalid = 1;
59f0d5d9 2330 registers_changed ();
43ff13b4 2331
9a4105ab 2332 if (deprecated_target_wait_hook)
a474d7c2 2333 ecs->ptid =
47608cb1 2334 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2335 else
47608cb1 2336 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2337
f00150c9 2338 if (debug_infrun)
223698f8 2339 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2340
94cc34af
PA
2341 if (non_stop
2342 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2343 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2344 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2345 /* In non-stop mode, each thread is handled individually. Switch
2346 early, so the global state is set correctly for this
2347 thread. */
2348 context_switch (ecs->ptid);
2349
29f49a6a
PA
2350 /* If an error happens while handling the event, propagate GDB's
2351 knowledge of the executing state to the frontend/user running
2352 state. */
2353 if (!non_stop)
2354 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2355 else
2356 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2357
43ff13b4 2358 /* Now figure out what to do with the result of the result. */
a474d7c2 2359 handle_inferior_event (ecs);
43ff13b4 2360
a474d7c2 2361 if (!ecs->wait_some_more)
43ff13b4 2362 {
d6b48e9c
PA
2363 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2364
4e1c45ea 2365 delete_step_thread_step_resume_breakpoint ();
f107f563 2366
d6b48e9c
PA
2367 /* We may not find an inferior if this was a process exit. */
2368 if (inf == NULL || inf->stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2369 normal_stop ();
2370
af679fd0
PA
2371 if (target_has_execution
2372 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2373 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2374 && ecs->event_thread->step_multi
414c69f7 2375 && ecs->event_thread->stop_step)
c2d11a7d
JM
2376 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2377 else
2378 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4 2379 }
4f8d22e3 2380
29f49a6a
PA
2381 /* No error, don't finish the thread states yet. */
2382 discard_cleanups (ts_old_chain);
2383
4f8d22e3
PA
2384 /* Revert thread and frame. */
2385 do_cleanups (old_chain);
2386
2387 /* If the inferior was in sync execution mode, and now isn't,
2388 restore the prompt. */
2389 if (was_sync && !sync_execution)
2390 display_gdb_prompt (0);
43ff13b4
JM
2391}
2392
edb3359d
DJ
2393/* Record the frame and location we're currently stepping through. */
2394void
2395set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2396{
2397 struct thread_info *tp = inferior_thread ();
2398
2399 tp->step_frame_id = get_frame_id (frame);
2400 tp->step_stack_frame_id = get_stack_frame_id (frame);
2401
2402 tp->current_symtab = sal.symtab;
2403 tp->current_line = sal.line;
2404}
2405
cd0fc7c3
SS
2406/* Prepare an execution control state for looping through a
2407 wait_for_inferior-type loop. */
2408
edb3359d 2409static void
96baa820 2410init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3
SS
2411{
2412 ecs->random_signal = 0;
0d1e5fa7
PA
2413}
2414
2415/* Clear context switchable stepping state. */
2416
2417void
4e1c45ea 2418init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7
PA
2419{
2420 tss->stepping_over_breakpoint = 0;
2421 tss->step_after_step_resume_breakpoint = 0;
2422 tss->stepping_through_solib_after_catch = 0;
2423 tss->stepping_through_solib_catchpoints = NULL;
cd0fc7c3
SS
2424}
2425
e02bc4cc 2426/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2427 target_wait()/deprecated_target_wait_hook(). The data is actually
2428 cached by handle_inferior_event(), which gets called immediately
2429 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2430
2431void
488f131b 2432get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2433{
39f77062 2434 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2435 *status = target_last_waitstatus;
2436}
2437
ac264b3b
MS
2438void
2439nullify_last_target_wait_ptid (void)
2440{
2441 target_last_wait_ptid = minus_one_ptid;
2442}
2443
dcf4fbde 2444/* Switch thread contexts. */
dd80620e
MS
2445
2446static void
0d1e5fa7 2447context_switch (ptid_t ptid)
dd80620e 2448{
fd48f117
DJ
2449 if (debug_infrun)
2450 {
2451 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2452 target_pid_to_str (inferior_ptid));
2453 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2454 target_pid_to_str (ptid));
fd48f117
DJ
2455 }
2456
0d1e5fa7 2457 switch_to_thread (ptid);
dd80620e
MS
2458}
2459
4fa8626c
DJ
2460static void
2461adjust_pc_after_break (struct execution_control_state *ecs)
2462{
24a73cce
UW
2463 struct regcache *regcache;
2464 struct gdbarch *gdbarch;
6c95b8df 2465 struct address_space *aspace;
8aad930b 2466 CORE_ADDR breakpoint_pc;
4fa8626c 2467
4fa8626c
DJ
2468 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2469 we aren't, just return.
9709f61c
DJ
2470
2471 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2472 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2473 implemented by software breakpoints should be handled through the normal
2474 breakpoint layer.
8fb3e588 2475
4fa8626c
DJ
2476 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2477 different signals (SIGILL or SIGEMT for instance), but it is less
2478 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2479 gdbarch_decr_pc_after_break. I don't know any specific target that
2480 generates these signals at breakpoints (the code has been in GDB since at
2481 least 1992) so I can not guess how to handle them here.
8fb3e588 2482
e6cf7916
UW
2483 In earlier versions of GDB, a target with
2484 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2485 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2486 target with both of these set in GDB history, and it seems unlikely to be
2487 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2488
2489 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2490 return;
2491
2492 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2493 return;
2494
4058b839
PA
2495 /* In reverse execution, when a breakpoint is hit, the instruction
2496 under it has already been de-executed. The reported PC always
2497 points at the breakpoint address, so adjusting it further would
2498 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2499 architecture:
2500
2501 B1 0x08000000 : INSN1
2502 B2 0x08000001 : INSN2
2503 0x08000002 : INSN3
2504 PC -> 0x08000003 : INSN4
2505
2506 Say you're stopped at 0x08000003 as above. Reverse continuing
2507 from that point should hit B2 as below. Reading the PC when the
2508 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2509 been de-executed already.
2510
2511 B1 0x08000000 : INSN1
2512 B2 PC -> 0x08000001 : INSN2
2513 0x08000002 : INSN3
2514 0x08000003 : INSN4
2515
2516 We can't apply the same logic as for forward execution, because
2517 we would wrongly adjust the PC to 0x08000000, since there's a
2518 breakpoint at PC - 1. We'd then report a hit on B1, although
2519 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2520 behaviour. */
2521 if (execution_direction == EXEC_REVERSE)
2522 return;
2523
24a73cce
UW
2524 /* If this target does not decrement the PC after breakpoints, then
2525 we have nothing to do. */
2526 regcache = get_thread_regcache (ecs->ptid);
2527 gdbarch = get_regcache_arch (regcache);
2528 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2529 return;
2530
6c95b8df
PA
2531 aspace = get_regcache_aspace (regcache);
2532
8aad930b
AC
2533 /* Find the location where (if we've hit a breakpoint) the
2534 breakpoint would be. */
515630c5
UW
2535 breakpoint_pc = regcache_read_pc (regcache)
2536 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 2537
1c5cfe86
PA
2538 /* Check whether there actually is a software breakpoint inserted at
2539 that location.
2540
2541 If in non-stop mode, a race condition is possible where we've
2542 removed a breakpoint, but stop events for that breakpoint were
2543 already queued and arrive later. To suppress those spurious
2544 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2545 and retire them after a number of stop events are reported. */
6c95b8df
PA
2546 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2547 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 2548 {
96429cc8
HZ
2549 struct cleanup *old_cleanups = NULL;
2550 if (RECORD_IS_USED)
2551 old_cleanups = record_gdb_operation_disable_set ();
2552
1c0fdd0e
UW
2553 /* When using hardware single-step, a SIGTRAP is reported for both
2554 a completed single-step and a software breakpoint. Need to
2555 differentiate between the two, as the latter needs adjusting
2556 but the former does not.
2557
2558 The SIGTRAP can be due to a completed hardware single-step only if
2559 - we didn't insert software single-step breakpoints
2560 - the thread to be examined is still the current thread
2561 - this thread is currently being stepped
2562
2563 If any of these events did not occur, we must have stopped due
2564 to hitting a software breakpoint, and have to back up to the
2565 breakpoint address.
2566
2567 As a special case, we could have hardware single-stepped a
2568 software breakpoint. In this case (prev_pc == breakpoint_pc),
2569 we also need to back up to the breakpoint address. */
2570
2571 if (singlestep_breakpoints_inserted_p
2572 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
2573 || !currently_stepping (ecs->event_thread)
2574 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 2575 regcache_write_pc (regcache, breakpoint_pc);
96429cc8
HZ
2576
2577 if (RECORD_IS_USED)
2578 do_cleanups (old_cleanups);
8aad930b 2579 }
4fa8626c
DJ
2580}
2581
0d1e5fa7
PA
2582void
2583init_infwait_state (void)
2584{
2585 waiton_ptid = pid_to_ptid (-1);
2586 infwait_state = infwait_normal_state;
2587}
2588
94cc34af
PA
2589void
2590error_is_running (void)
2591{
2592 error (_("\
2593Cannot execute this command while the selected thread is running."));
2594}
2595
2596void
2597ensure_not_running (void)
2598{
2599 if (is_running (inferior_ptid))
2600 error_is_running ();
2601}
2602
edb3359d
DJ
2603static int
2604stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
2605{
2606 for (frame = get_prev_frame (frame);
2607 frame != NULL;
2608 frame = get_prev_frame (frame))
2609 {
2610 if (frame_id_eq (get_frame_id (frame), step_frame_id))
2611 return 1;
2612 if (get_frame_type (frame) != INLINE_FRAME)
2613 break;
2614 }
2615
2616 return 0;
2617}
2618
a96d9b2e
SDJ
2619/* Auxiliary function that handles syscall entry/return events.
2620 It returns 1 if the inferior should keep going (and GDB
2621 should ignore the event), or 0 if the event deserves to be
2622 processed. */
ca2163eb 2623
a96d9b2e 2624static int
ca2163eb 2625handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 2626{
ca2163eb
PA
2627 struct regcache *regcache;
2628 struct gdbarch *gdbarch;
2629 int syscall_number;
2630
2631 if (!ptid_equal (ecs->ptid, inferior_ptid))
2632 context_switch (ecs->ptid);
2633
2634 regcache = get_thread_regcache (ecs->ptid);
2635 gdbarch = get_regcache_arch (regcache);
2636 syscall_number = gdbarch_get_syscall_number (gdbarch, ecs->ptid);
2637 stop_pc = regcache_read_pc (regcache);
2638
a96d9b2e
SDJ
2639 target_last_waitstatus.value.syscall_number = syscall_number;
2640
2641 if (catch_syscall_enabled () > 0
2642 && catching_syscall_number (syscall_number) > 0)
2643 {
2644 if (debug_infrun)
2645 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
2646 syscall_number);
a96d9b2e 2647
6c95b8df
PA
2648 ecs->event_thread->stop_bpstat
2649 = bpstat_stop_status (get_regcache_aspace (regcache),
2650 stop_pc, ecs->ptid);
a96d9b2e
SDJ
2651 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2652
ca2163eb
PA
2653 if (!ecs->random_signal)
2654 {
2655 /* Catchpoint hit. */
2656 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2657 return 0;
2658 }
a96d9b2e 2659 }
ca2163eb
PA
2660
2661 /* If no catchpoint triggered for this, then keep going. */
2662 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2663 keep_going (ecs);
2664 return 1;
a96d9b2e
SDJ
2665}
2666
cd0fc7c3
SS
2667/* Given an execution control state that has been freshly filled in
2668 by an event from the inferior, figure out what it means and take
2669 appropriate action. */
c906108c 2670
ec9499be 2671static void
96baa820 2672handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 2673{
568d6575
UW
2674 struct frame_info *frame;
2675 struct gdbarch *gdbarch;
c8edd8b4 2676 int sw_single_step_trap_p = 0;
d983da9c
DJ
2677 int stopped_by_watchpoint;
2678 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 2679 struct symtab_and_line stop_pc_sal;
d6b48e9c
PA
2680 enum stop_kind stop_soon;
2681
28736962
PA
2682 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
2683 {
2684 /* We had an event in the inferior, but we are not interested in
2685 handling it at this level. The lower layers have already
2686 done what needs to be done, if anything.
2687
2688 One of the possible circumstances for this is when the
2689 inferior produces output for the console. The inferior has
2690 not stopped, and we are ignoring the event. Another possible
2691 circumstance is any event which the lower level knows will be
2692 reported multiple times without an intervening resume. */
2693 if (debug_infrun)
2694 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
2695 prepare_to_wait (ecs);
2696 return;
2697 }
2698
d6b48e9c 2699 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
28736962 2700 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
d6b48e9c
PA
2701 {
2702 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2703 gdb_assert (inf);
2704 stop_soon = inf->stop_soon;
2705 }
2706 else
2707 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 2708
e02bc4cc 2709 /* Cache the last pid/waitstatus. */
39f77062 2710 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 2711 target_last_waitstatus = ecs->ws;
e02bc4cc 2712
ca005067
DJ
2713 /* Always clear state belonging to the previous time we stopped. */
2714 stop_stack_dummy = 0;
2715
8c90c137
LM
2716 /* If it's a new process, add it to the thread database */
2717
2718 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
2719 && !ptid_equal (ecs->ptid, minus_one_ptid)
2720 && !in_thread_list (ecs->ptid));
2721
2722 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2723 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
2724 add_thread (ecs->ptid);
2725
e09875d4 2726 ecs->event_thread = find_thread_ptid (ecs->ptid);
88ed393a
JK
2727
2728 /* Dependent on valid ECS->EVENT_THREAD. */
2729 adjust_pc_after_break (ecs);
2730
2731 /* Dependent on the current PC value modified by adjust_pc_after_break. */
2732 reinit_frame_cache ();
2733
28736962
PA
2734 breakpoint_retire_moribund ();
2735
2736 /* Mark the non-executing threads accordingly. In all-stop, all
2737 threads of all processes are stopped when we get any event
2738 reported. In non-stop mode, only the event thread stops. If
2739 we're handling a process exit in non-stop mode, there's nothing
2740 to do, as threads of the dead process are gone, and threads of
2741 any other process were left running. */
2742 if (!non_stop)
2743 set_executing (minus_one_ptid, 0);
2744 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2745 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
2746 set_executing (inferior_ptid, 0);
8c90c137 2747
0d1e5fa7 2748 switch (infwait_state)
488f131b
JB
2749 {
2750 case infwait_thread_hop_state:
527159b7 2751 if (debug_infrun)
8a9de0e4 2752 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
65e82032 2753 break;
b83266a0 2754
488f131b 2755 case infwait_normal_state:
527159b7 2756 if (debug_infrun)
8a9de0e4 2757 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
2758 break;
2759
2760 case infwait_step_watch_state:
2761 if (debug_infrun)
2762 fprintf_unfiltered (gdb_stdlog,
2763 "infrun: infwait_step_watch_state\n");
2764
2765 stepped_after_stopped_by_watchpoint = 1;
488f131b 2766 break;
b83266a0 2767
488f131b 2768 case infwait_nonstep_watch_state:
527159b7 2769 if (debug_infrun)
8a9de0e4
AC
2770 fprintf_unfiltered (gdb_stdlog,
2771 "infrun: infwait_nonstep_watch_state\n");
488f131b 2772 insert_breakpoints ();
c906108c 2773
488f131b
JB
2774 /* FIXME-maybe: is this cleaner than setting a flag? Does it
2775 handle things like signals arriving and other things happening
2776 in combination correctly? */
2777 stepped_after_stopped_by_watchpoint = 1;
2778 break;
65e82032
AC
2779
2780 default:
e2e0b3e5 2781 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 2782 }
ec9499be 2783
0d1e5fa7 2784 infwait_state = infwait_normal_state;
ec9499be 2785 waiton_ptid = pid_to_ptid (-1);
c906108c 2786
488f131b
JB
2787 switch (ecs->ws.kind)
2788 {
2789 case TARGET_WAITKIND_LOADED:
527159b7 2790 if (debug_infrun)
8a9de0e4 2791 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
2792 /* Ignore gracefully during startup of the inferior, as it might
2793 be the shell which has just loaded some objects, otherwise
2794 add the symbols for the newly loaded objects. Also ignore at
2795 the beginning of an attach or remote session; we will query
2796 the full list of libraries once the connection is
2797 established. */
c0236d92 2798 if (stop_soon == NO_STOP_QUIETLY)
488f131b 2799 {
488f131b
JB
2800 /* Check for any newly added shared libraries if we're
2801 supposed to be adding them automatically. Switch
2802 terminal for any messages produced by
2803 breakpoint_re_set. */
2804 target_terminal_ours_for_output ();
aff6338a 2805 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
2806 stack's section table is kept up-to-date. Architectures,
2807 (e.g., PPC64), use the section table to perform
2808 operations such as address => section name and hence
2809 require the table to contain all sections (including
2810 those found in shared libraries). */
b0f4b84b 2811#ifdef SOLIB_ADD
aff6338a 2812 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
b0f4b84b
DJ
2813#else
2814 solib_add (NULL, 0, &current_target, auto_solib_add);
2815#endif
488f131b
JB
2816 target_terminal_inferior ();
2817
b0f4b84b
DJ
2818 /* If requested, stop when the dynamic linker notifies
2819 gdb of events. This allows the user to get control
2820 and place breakpoints in initializer routines for
2821 dynamically loaded objects (among other things). */
2822 if (stop_on_solib_events)
2823 {
2824 stop_stepping (ecs);
2825 return;
2826 }
2827
2828 /* NOTE drow/2007-05-11: This might be a good place to check
2829 for "catch load". */
488f131b 2830 }
b0f4b84b
DJ
2831
2832 /* If we are skipping through a shell, or through shared library
2833 loading that we aren't interested in, resume the program. If
2834 we're running the program normally, also resume. But stop if
2835 we're attaching or setting up a remote connection. */
2836 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
2837 {
74960c60
VP
2838 /* Loading of shared libraries might have changed breakpoint
2839 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
2840 if (stop_soon == NO_STOP_QUIETLY
2841 && !breakpoints_always_inserted_mode ())
74960c60 2842 insert_breakpoints ();
b0f4b84b
DJ
2843 resume (0, TARGET_SIGNAL_0);
2844 prepare_to_wait (ecs);
2845 return;
2846 }
2847
2848 break;
c5aa993b 2849
488f131b 2850 case TARGET_WAITKIND_SPURIOUS:
527159b7 2851 if (debug_infrun)
8a9de0e4 2852 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
2853 resume (0, TARGET_SIGNAL_0);
2854 prepare_to_wait (ecs);
2855 return;
c5aa993b 2856
488f131b 2857 case TARGET_WAITKIND_EXITED:
527159b7 2858 if (debug_infrun)
8a9de0e4 2859 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
fb66883a 2860 inferior_ptid = ecs->ptid;
6c95b8df
PA
2861 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
2862 set_current_program_space (current_inferior ()->pspace);
2863 handle_vfork_child_exec_or_exit (0);
488f131b
JB
2864 target_terminal_ours (); /* Must do this before mourn anyway */
2865 print_stop_reason (EXITED, ecs->ws.value.integer);
2866
2867 /* Record the exit code in the convenience variable $_exitcode, so
2868 that the user can inspect this again later. */
4fa62494
UW
2869 set_internalvar_integer (lookup_internalvar ("_exitcode"),
2870 (LONGEST) ecs->ws.value.integer);
488f131b
JB
2871 gdb_flush (gdb_stdout);
2872 target_mourn_inferior ();
1c0fdd0e 2873 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
2874 stop_print_frame = 0;
2875 stop_stepping (ecs);
2876 return;
c5aa993b 2877
488f131b 2878 case TARGET_WAITKIND_SIGNALLED:
527159b7 2879 if (debug_infrun)
8a9de0e4 2880 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
fb66883a 2881 inferior_ptid = ecs->ptid;
6c95b8df
PA
2882 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
2883 set_current_program_space (current_inferior ()->pspace);
2884 handle_vfork_child_exec_or_exit (0);
488f131b 2885 stop_print_frame = 0;
488f131b 2886 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 2887
488f131b
JB
2888 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
2889 reach here unless the inferior is dead. However, for years
2890 target_kill() was called here, which hints that fatal signals aren't
2891 really fatal on some systems. If that's true, then some changes
2892 may be needed. */
2893 target_mourn_inferior ();
c906108c 2894
2020b7ab 2895 print_stop_reason (SIGNAL_EXITED, ecs->ws.value.sig);
1c0fdd0e 2896 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
2897 stop_stepping (ecs);
2898 return;
c906108c 2899
488f131b
JB
2900 /* The following are the only cases in which we keep going;
2901 the above cases end in a continue or goto. */
2902 case TARGET_WAITKIND_FORKED:
deb3b17b 2903 case TARGET_WAITKIND_VFORKED:
527159b7 2904 if (debug_infrun)
8a9de0e4 2905 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
c906108c 2906
5a2901d9
DJ
2907 if (!ptid_equal (ecs->ptid, inferior_ptid))
2908 {
0d1e5fa7 2909 context_switch (ecs->ptid);
35f196d9 2910 reinit_frame_cache ();
5a2901d9
DJ
2911 }
2912
b242c3c2
PA
2913 /* Immediately detach breakpoints from the child before there's
2914 any chance of letting the user delete breakpoints from the
2915 breakpoint lists. If we don't do this early, it's easy to
2916 leave left over traps in the child, vis: "break foo; catch
2917 fork; c; <fork>; del; c; <child calls foo>". We only follow
2918 the fork on the last `continue', and by that time the
2919 breakpoint at "foo" is long gone from the breakpoint table.
2920 If we vforked, then we don't need to unpatch here, since both
2921 parent and child are sharing the same memory pages; we'll
2922 need to unpatch at follow/detach time instead to be certain
2923 that new breakpoints added between catchpoint hit time and
2924 vfork follow are detached. */
2925 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
2926 {
2927 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
2928
2929 /* This won't actually modify the breakpoint list, but will
2930 physically remove the breakpoints from the child. */
2931 detach_breakpoints (child_pid);
2932 }
2933
e58b0e63
PA
2934 /* In case the event is caught by a catchpoint, remember that
2935 the event is to be followed at the next resume of the thread,
2936 and not immediately. */
2937 ecs->event_thread->pending_follow = ecs->ws;
2938
fb14de7b 2939 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 2940
6c95b8df
PA
2941 ecs->event_thread->stop_bpstat
2942 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
2943 stop_pc, ecs->ptid);
675bf4cb 2944
347bddb7 2945 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
04e68871
DJ
2946
2947 /* If no catchpoint triggered for this, then keep going. */
2948 if (ecs->random_signal)
2949 {
6c95b8df
PA
2950 ptid_t parent;
2951 ptid_t child;
e58b0e63 2952 int should_resume;
6c95b8df 2953 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 2954
2020b7ab 2955 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
e58b0e63
PA
2956
2957 should_resume = follow_fork ();
2958
6c95b8df
PA
2959 parent = ecs->ptid;
2960 child = ecs->ws.value.related_pid;
2961
2962 /* In non-stop mode, also resume the other branch. */
2963 if (non_stop && !detach_fork)
2964 {
2965 if (follow_child)
2966 switch_to_thread (parent);
2967 else
2968 switch_to_thread (child);
2969
2970 ecs->event_thread = inferior_thread ();
2971 ecs->ptid = inferior_ptid;
2972 keep_going (ecs);
2973 }
2974
2975 if (follow_child)
2976 switch_to_thread (child);
2977 else
2978 switch_to_thread (parent);
2979
e58b0e63
PA
2980 ecs->event_thread = inferior_thread ();
2981 ecs->ptid = inferior_ptid;
2982
2983 if (should_resume)
2984 keep_going (ecs);
2985 else
2986 stop_stepping (ecs);
04e68871
DJ
2987 return;
2988 }
2020b7ab 2989 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
2990 goto process_event_stop_test;
2991
6c95b8df
PA
2992 case TARGET_WAITKIND_VFORK_DONE:
2993 /* Done with the shared memory region. Re-insert breakpoints in
2994 the parent, and keep going. */
2995
2996 if (debug_infrun)
2997 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORK_DONE\n");
2998
2999 if (!ptid_equal (ecs->ptid, inferior_ptid))
3000 context_switch (ecs->ptid);
3001
3002 current_inferior ()->waiting_for_vfork_done = 0;
3003 /* This also takes care of reinserting breakpoints in the
3004 previously locked inferior. */
3005 keep_going (ecs);
3006 return;
3007
488f131b 3008 case TARGET_WAITKIND_EXECD:
527159b7 3009 if (debug_infrun)
fc5261f2 3010 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 3011
5a2901d9
DJ
3012 if (!ptid_equal (ecs->ptid, inferior_ptid))
3013 {
0d1e5fa7 3014 context_switch (ecs->ptid);
35f196d9 3015 reinit_frame_cache ();
5a2901d9
DJ
3016 }
3017
fb14de7b 3018 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 3019
6c95b8df
PA
3020 /* Do whatever is necessary to the parent branch of the vfork. */
3021 handle_vfork_child_exec_or_exit (1);
3022
795e548f
PA
3023 /* This causes the eventpoints and symbol table to be reset.
3024 Must do this now, before trying to determine whether to
3025 stop. */
71b43ef8 3026 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 3027
6c95b8df
PA
3028 ecs->event_thread->stop_bpstat
3029 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3030 stop_pc, ecs->ptid);
795e548f
PA
3031 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
3032
71b43ef8
PA
3033 /* Note that this may be referenced from inside
3034 bpstat_stop_status above, through inferior_has_execd. */
3035 xfree (ecs->ws.value.execd_pathname);
3036 ecs->ws.value.execd_pathname = NULL;
3037
04e68871
DJ
3038 /* If no catchpoint triggered for this, then keep going. */
3039 if (ecs->random_signal)
3040 {
2020b7ab 3041 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
04e68871
DJ
3042 keep_going (ecs);
3043 return;
3044 }
2020b7ab 3045 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3046 goto process_event_stop_test;
3047
b4dc5ffa
MK
3048 /* Be careful not to try to gather much state about a thread
3049 that's in a syscall. It's frequently a losing proposition. */
488f131b 3050 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 3051 if (debug_infrun)
8a9de0e4 3052 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
a96d9b2e 3053 /* Getting the current syscall number */
ca2163eb 3054 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3055 return;
3056 goto process_event_stop_test;
c906108c 3057
488f131b
JB
3058 /* Before examining the threads further, step this thread to
3059 get it entirely out of the syscall. (We get notice of the
3060 event when the thread is just on the verge of exiting a
3061 syscall. Stepping one instruction seems to get it back
b4dc5ffa 3062 into user code.) */
488f131b 3063 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 3064 if (debug_infrun)
8a9de0e4 3065 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
ca2163eb 3066 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3067 return;
3068 goto process_event_stop_test;
c906108c 3069
488f131b 3070 case TARGET_WAITKIND_STOPPED:
527159b7 3071 if (debug_infrun)
8a9de0e4 3072 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
2020b7ab 3073 ecs->event_thread->stop_signal = ecs->ws.value.sig;
488f131b 3074 break;
c906108c 3075
b2175913
MS
3076 case TARGET_WAITKIND_NO_HISTORY:
3077 /* Reverse execution: target ran out of history info. */
fb14de7b 3078 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
b2175913
MS
3079 print_stop_reason (NO_HISTORY, 0);
3080 stop_stepping (ecs);
3081 return;
488f131b 3082 }
c906108c 3083
488f131b
JB
3084 if (ecs->new_thread_event)
3085 {
94cc34af
PA
3086 if (non_stop)
3087 /* Non-stop assumes that the target handles adding new threads
3088 to the thread list. */
3089 internal_error (__FILE__, __LINE__, "\
3090targets should add new threads to the thread list themselves in non-stop mode.");
3091
3092 /* We may want to consider not doing a resume here in order to
3093 give the user a chance to play with the new thread. It might
3094 be good to make that a user-settable option. */
3095
3096 /* At this point, all threads are stopped (happens automatically
3097 in either the OS or the native code). Therefore we need to
3098 continue all threads in order to make progress. */
3099
173853dc
PA
3100 if (!ptid_equal (ecs->ptid, inferior_ptid))
3101 context_switch (ecs->ptid);
488f131b
JB
3102 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
3103 prepare_to_wait (ecs);
3104 return;
3105 }
c906108c 3106
2020b7ab 3107 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
3108 {
3109 /* Do we need to clean up the state of a thread that has
3110 completed a displaced single-step? (Doing so usually affects
3111 the PC, so do it here, before we set stop_pc.) */
3112 displaced_step_fixup (ecs->ptid, ecs->event_thread->stop_signal);
3113
3114 /* If we either finished a single-step or hit a breakpoint, but
3115 the user wanted this thread to be stopped, pretend we got a
3116 SIG0 (generic unsignaled stop). */
3117
3118 if (ecs->event_thread->stop_requested
3119 && ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
3120 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
3121 }
237fc4c9 3122
515630c5 3123 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 3124
527159b7 3125 if (debug_infrun)
237fc4c9 3126 {
5af949e3
UW
3127 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3128 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3129
3130 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3131 paddress (gdbarch, stop_pc));
d92524f1 3132 if (target_stopped_by_watchpoint ())
237fc4c9
PA
3133 {
3134 CORE_ADDR addr;
3135 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3136
3137 if (target_stopped_data_address (&current_target, &addr))
3138 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
3139 "infrun: stopped data address = %s\n",
3140 paddress (gdbarch, addr));
237fc4c9
PA
3141 else
3142 fprintf_unfiltered (gdb_stdlog,
3143 "infrun: (no data address available)\n");
3144 }
3145 }
527159b7 3146
9f976b41
DJ
3147 if (stepping_past_singlestep_breakpoint)
3148 {
1c0fdd0e 3149 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
3150 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3151 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3152
3153 stepping_past_singlestep_breakpoint = 0;
3154
3155 /* We've either finished single-stepping past the single-step
8fb3e588
AC
3156 breakpoint, or stopped for some other reason. It would be nice if
3157 we could tell, but we can't reliably. */
2020b7ab 3158 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 3159 {
527159b7 3160 if (debug_infrun)
8a9de0e4 3161 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
9f976b41 3162 /* Pull the single step breakpoints out of the target. */
e0cd558a 3163 remove_single_step_breakpoints ();
9f976b41
DJ
3164 singlestep_breakpoints_inserted_p = 0;
3165
3166 ecs->random_signal = 0;
79626f8a 3167 ecs->event_thread->trap_expected = 0;
9f976b41 3168
0d1e5fa7 3169 context_switch (saved_singlestep_ptid);
9a4105ab
AC
3170 if (deprecated_context_hook)
3171 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
3172
3173 resume (1, TARGET_SIGNAL_0);
3174 prepare_to_wait (ecs);
3175 return;
3176 }
3177 }
3178
ca67fcb8 3179 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 3180 {
94cc34af
PA
3181 /* In non-stop mode, there's never a deferred_step_ptid set. */
3182 gdb_assert (!non_stop);
3183
6a6b96b9
UW
3184 /* If we stopped for some other reason than single-stepping, ignore
3185 the fact that we were supposed to switch back. */
2020b7ab 3186 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
6a6b96b9
UW
3187 {
3188 if (debug_infrun)
3189 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 3190 "infrun: handling deferred step\n");
6a6b96b9
UW
3191
3192 /* Pull the single step breakpoints out of the target. */
3193 if (singlestep_breakpoints_inserted_p)
3194 {
3195 remove_single_step_breakpoints ();
3196 singlestep_breakpoints_inserted_p = 0;
3197 }
3198
3199 /* Note: We do not call context_switch at this point, as the
3200 context is already set up for stepping the original thread. */
ca67fcb8
VP
3201 switch_to_thread (deferred_step_ptid);
3202 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3203 /* Suppress spurious "Switching to ..." message. */
3204 previous_inferior_ptid = inferior_ptid;
3205
3206 resume (1, TARGET_SIGNAL_0);
3207 prepare_to_wait (ecs);
3208 return;
3209 }
ca67fcb8
VP
3210
3211 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3212 }
3213
488f131b
JB
3214 /* See if a thread hit a thread-specific breakpoint that was meant for
3215 another thread. If so, then step that thread past the breakpoint,
3216 and continue it. */
3217
2020b7ab 3218 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
488f131b 3219 {
9f976b41 3220 int thread_hop_needed = 0;
6c95b8df 3221 struct address_space *aspace = get_regcache_aspace (get_current_regcache ());
9f976b41 3222
f8d40ec8
JB
3223 /* Check if a regular breakpoint has been hit before checking
3224 for a potential single step breakpoint. Otherwise, GDB will
3225 not see this breakpoint hit when stepping onto breakpoints. */
6c95b8df 3226 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
488f131b 3227 {
c5aa993b 3228 ecs->random_signal = 0;
6c95b8df 3229 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
9f976b41
DJ
3230 thread_hop_needed = 1;
3231 }
1c0fdd0e 3232 else if (singlestep_breakpoints_inserted_p)
9f976b41 3233 {
fd48f117
DJ
3234 /* We have not context switched yet, so this should be true
3235 no matter which thread hit the singlestep breakpoint. */
3236 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3237 if (debug_infrun)
3238 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3239 "trap for %s\n",
3240 target_pid_to_str (ecs->ptid));
3241
9f976b41
DJ
3242 ecs->random_signal = 0;
3243 /* The call to in_thread_list is necessary because PTIDs sometimes
3244 change when we go from single-threaded to multi-threaded. If
3245 the singlestep_ptid is still in the list, assume that it is
3246 really different from ecs->ptid. */
3247 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3248 && in_thread_list (singlestep_ptid))
3249 {
fd48f117
DJ
3250 /* If the PC of the thread we were trying to single-step
3251 has changed, discard this event (which we were going
3252 to ignore anyway), and pretend we saw that thread
3253 trap. This prevents us continuously moving the
3254 single-step breakpoint forward, one instruction at a
3255 time. If the PC has changed, then the thread we were
3256 trying to single-step has trapped or been signalled,
3257 but the event has not been reported to GDB yet.
3258
3259 There might be some cases where this loses signal
3260 information, if a signal has arrived at exactly the
3261 same time that the PC changed, but this is the best
3262 we can do with the information available. Perhaps we
3263 should arrange to report all events for all threads
3264 when they stop, or to re-poll the remote looking for
3265 this particular thread (i.e. temporarily enable
3266 schedlock). */
515630c5
UW
3267
3268 CORE_ADDR new_singlestep_pc
3269 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3270
3271 if (new_singlestep_pc != singlestep_pc)
fd48f117 3272 {
2020b7ab
PA
3273 enum target_signal stop_signal;
3274
fd48f117
DJ
3275 if (debug_infrun)
3276 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3277 " but expected thread advanced also\n");
3278
3279 /* The current context still belongs to
3280 singlestep_ptid. Don't swap here, since that's
3281 the context we want to use. Just fudge our
3282 state and continue. */
2020b7ab
PA
3283 stop_signal = ecs->event_thread->stop_signal;
3284 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
fd48f117 3285 ecs->ptid = singlestep_ptid;
e09875d4 3286 ecs->event_thread = find_thread_ptid (ecs->ptid);
2020b7ab 3287 ecs->event_thread->stop_signal = stop_signal;
515630c5 3288 stop_pc = new_singlestep_pc;
fd48f117
DJ
3289 }
3290 else
3291 {
3292 if (debug_infrun)
3293 fprintf_unfiltered (gdb_stdlog,
3294 "infrun: unexpected thread\n");
3295
3296 thread_hop_needed = 1;
3297 stepping_past_singlestep_breakpoint = 1;
3298 saved_singlestep_ptid = singlestep_ptid;
3299 }
9f976b41
DJ
3300 }
3301 }
3302
3303 if (thread_hop_needed)
8fb3e588 3304 {
9f5a595d 3305 struct regcache *thread_regcache;
237fc4c9 3306 int remove_status = 0;
8fb3e588 3307
527159b7 3308 if (debug_infrun)
8a9de0e4 3309 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 3310
b3444185
PA
3311 /* Switch context before touching inferior memory, the
3312 previous thread may have exited. */
3313 if (!ptid_equal (inferior_ptid, ecs->ptid))
3314 context_switch (ecs->ptid);
3315
8fb3e588
AC
3316 /* Saw a breakpoint, but it was hit by the wrong thread.
3317 Just continue. */
3318
1c0fdd0e 3319 if (singlestep_breakpoints_inserted_p)
488f131b 3320 {
8fb3e588 3321 /* Pull the single step breakpoints out of the target. */
e0cd558a 3322 remove_single_step_breakpoints ();
8fb3e588
AC
3323 singlestep_breakpoints_inserted_p = 0;
3324 }
3325
237fc4c9
PA
3326 /* If the arch can displace step, don't remove the
3327 breakpoints. */
9f5a595d
UW
3328 thread_regcache = get_thread_regcache (ecs->ptid);
3329 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
3330 remove_status = remove_breakpoints ();
3331
8fb3e588
AC
3332 /* Did we fail to remove breakpoints? If so, try
3333 to set the PC past the bp. (There's at least
3334 one situation in which we can fail to remove
3335 the bp's: On HP-UX's that use ttrace, we can't
3336 change the address space of a vforking child
3337 process until the child exits (well, okay, not
3338 then either :-) or execs. */
3339 if (remove_status != 0)
9d9cd7ac 3340 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
3341 else
3342 { /* Single step */
94cc34af
PA
3343 if (!non_stop)
3344 {
3345 /* Only need to require the next event from this
3346 thread in all-stop mode. */
3347 waiton_ptid = ecs->ptid;
3348 infwait_state = infwait_thread_hop_state;
3349 }
8fb3e588 3350
4e1c45ea 3351 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588 3352 keep_going (ecs);
8fb3e588
AC
3353 return;
3354 }
488f131b 3355 }
1c0fdd0e 3356 else if (singlestep_breakpoints_inserted_p)
8fb3e588
AC
3357 {
3358 sw_single_step_trap_p = 1;
3359 ecs->random_signal = 0;
3360 }
488f131b
JB
3361 }
3362 else
3363 ecs->random_signal = 1;
c906108c 3364
488f131b 3365 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
3366 so, then switch to that thread. */
3367 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 3368 {
527159b7 3369 if (debug_infrun)
8a9de0e4 3370 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 3371
0d1e5fa7 3372 context_switch (ecs->ptid);
c5aa993b 3373
9a4105ab
AC
3374 if (deprecated_context_hook)
3375 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 3376 }
c906108c 3377
568d6575
UW
3378 /* At this point, get hold of the now-current thread's frame. */
3379 frame = get_current_frame ();
3380 gdbarch = get_frame_arch (frame);
3381
1c0fdd0e 3382 if (singlestep_breakpoints_inserted_p)
488f131b
JB
3383 {
3384 /* Pull the single step breakpoints out of the target. */
e0cd558a 3385 remove_single_step_breakpoints ();
488f131b
JB
3386 singlestep_breakpoints_inserted_p = 0;
3387 }
c906108c 3388
d983da9c
DJ
3389 if (stepped_after_stopped_by_watchpoint)
3390 stopped_by_watchpoint = 0;
3391 else
3392 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3393
3394 /* If necessary, step over this watchpoint. We'll be back to display
3395 it in a moment. */
3396 if (stopped_by_watchpoint
d92524f1 3397 && (target_have_steppable_watchpoint
568d6575 3398 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 3399 {
488f131b
JB
3400 /* At this point, we are stopped at an instruction which has
3401 attempted to write to a piece of memory under control of
3402 a watchpoint. The instruction hasn't actually executed
3403 yet. If we were to evaluate the watchpoint expression
3404 now, we would get the old value, and therefore no change
3405 would seem to have occurred.
3406
3407 In order to make watchpoints work `right', we really need
3408 to complete the memory write, and then evaluate the
d983da9c
DJ
3409 watchpoint expression. We do this by single-stepping the
3410 target.
3411
3412 It may not be necessary to disable the watchpoint to stop over
3413 it. For example, the PA can (with some kernel cooperation)
3414 single step over a watchpoint without disabling the watchpoint.
3415
3416 It is far more common to need to disable a watchpoint to step
3417 the inferior over it. If we have non-steppable watchpoints,
3418 we must disable the current watchpoint; it's simplest to
3419 disable all watchpoints and breakpoints. */
2facfe5c
DD
3420 int hw_step = 1;
3421
d92524f1 3422 if (!target_have_steppable_watchpoint)
d983da9c 3423 remove_breakpoints ();
2facfe5c 3424 /* Single step */
568d6575 3425 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
2facfe5c 3426 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
0d1e5fa7 3427 waiton_ptid = ecs->ptid;
d92524f1 3428 if (target_have_steppable_watchpoint)
0d1e5fa7 3429 infwait_state = infwait_step_watch_state;
d983da9c 3430 else
0d1e5fa7 3431 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
3432 prepare_to_wait (ecs);
3433 return;
3434 }
3435
488f131b
JB
3436 ecs->stop_func_start = 0;
3437 ecs->stop_func_end = 0;
3438 ecs->stop_func_name = 0;
3439 /* Don't care about return value; stop_func_start and stop_func_name
3440 will both be 0 if it doesn't work. */
3441 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3442 &ecs->stop_func_start, &ecs->stop_func_end);
cbf3b44a 3443 ecs->stop_func_start
568d6575 3444 += gdbarch_deprecated_function_start_offset (gdbarch);
4e1c45ea 3445 ecs->event_thread->stepping_over_breakpoint = 0;
347bddb7 3446 bpstat_clear (&ecs->event_thread->stop_bpstat);
414c69f7 3447 ecs->event_thread->stop_step = 0;
488f131b
JB
3448 stop_print_frame = 1;
3449 ecs->random_signal = 0;
3450 stopped_by_random_signal = 0;
488f131b 3451
edb3359d
DJ
3452 /* Hide inlined functions starting here, unless we just performed stepi or
3453 nexti. After stepi and nexti, always show the innermost frame (not any
3454 inline function call sites). */
3455 if (ecs->event_thread->step_range_end != 1)
3456 skip_inline_frames (ecs->ptid);
3457
2020b7ab 3458 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4e1c45ea 3459 && ecs->event_thread->trap_expected
568d6575 3460 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 3461 && currently_stepping (ecs->event_thread))
3352ef37 3462 {
b50d7442 3463 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37
AC
3464 also on an instruction that needs to be stepped multiple
3465 times before it's been fully executing. E.g., architectures
3466 with a delay slot. It needs to be stepped twice, once for
3467 the instruction and once for the delay slot. */
3468 int step_through_delay
568d6575 3469 = gdbarch_single_step_through_delay (gdbarch, frame);
527159b7 3470 if (debug_infrun && step_through_delay)
8a9de0e4 3471 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4e1c45ea 3472 if (ecs->event_thread->step_range_end == 0 && step_through_delay)
3352ef37
AC
3473 {
3474 /* The user issued a continue when stopped at a breakpoint.
3475 Set up for another trap and get out of here. */
4e1c45ea 3476 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
3477 keep_going (ecs);
3478 return;
3479 }
3480 else if (step_through_delay)
3481 {
3482 /* The user issued a step when stopped at a breakpoint.
3483 Maybe we should stop, maybe we should not - the delay
3484 slot *might* correspond to a line of source. In any
ca67fcb8
VP
3485 case, don't decide that here, just set
3486 ecs->stepping_over_breakpoint, making sure we
3487 single-step again before breakpoints are re-inserted. */
4e1c45ea 3488 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
3489 }
3490 }
3491
488f131b
JB
3492 /* Look at the cause of the stop, and decide what to do.
3493 The alternatives are:
0d1e5fa7
PA
3494 1) stop_stepping and return; to really stop and return to the debugger,
3495 2) keep_going and return to start up again
4e1c45ea 3496 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
3497 3) set ecs->random_signal to 1, and the decision between 1 and 2
3498 will be made according to the signal handling tables. */
3499
3500 /* First, distinguish signals caused by the debugger from signals
03cebad2
MK
3501 that have to do with the program's own actions. Note that
3502 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3503 on the operating system version. Here we detect when a SIGILL or
3504 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3505 something similar for SIGSEGV, since a SIGSEGV will be generated
3506 when we're trying to execute a breakpoint instruction on a
3507 non-executable stack. This happens for call dummy breakpoints
3508 for architectures like SPARC that place call dummies on the
237fc4c9 3509 stack.
488f131b 3510
237fc4c9
PA
3511 If we're doing a displaced step past a breakpoint, then the
3512 breakpoint is always inserted at the original instruction;
3513 non-standard signals can't be explained by the breakpoint. */
2020b7ab 3514 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4e1c45ea 3515 || (! ecs->event_thread->trap_expected
6c95b8df
PA
3516 && breakpoint_inserted_here_p (get_regcache_aspace (get_current_regcache ()),
3517 stop_pc)
2020b7ab
PA
3518 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_ILL
3519 || ecs->event_thread->stop_signal == TARGET_SIGNAL_SEGV
3520 || ecs->event_thread->stop_signal == TARGET_SIGNAL_EMT))
b0f4b84b
DJ
3521 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
3522 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 3523 {
2020b7ab 3524 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
488f131b 3525 {
527159b7 3526 if (debug_infrun)
8a9de0e4 3527 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
3528 stop_print_frame = 0;
3529 stop_stepping (ecs);
3530 return;
3531 }
c54cfec8
EZ
3532
3533 /* This is originated from start_remote(), start_inferior() and
3534 shared libraries hook functions. */
b0f4b84b 3535 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 3536 {
527159b7 3537 if (debug_infrun)
8a9de0e4 3538 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
3539 stop_stepping (ecs);
3540 return;
3541 }
3542
c54cfec8 3543 /* This originates from attach_command(). We need to overwrite
a0d21d28
PA
3544 the stop_signal here, because some kernels don't ignore a
3545 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
3546 See more comments in inferior.h. On the other hand, if we
a0ef4274 3547 get a non-SIGSTOP, report it to the user - assume the backend
a0d21d28
PA
3548 will handle the SIGSTOP if it should show up later.
3549
3550 Also consider that the attach is complete when we see a
3551 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
3552 target extended-remote report it instead of a SIGSTOP
3553 (e.g. gdbserver). We already rely on SIGTRAP being our
e0ba6746
PA
3554 signal, so this is no exception.
3555
3556 Also consider that the attach is complete when we see a
3557 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
3558 the target to stop all threads of the inferior, in case the
3559 low level attach operation doesn't stop them implicitly. If
3560 they weren't stopped implicitly, then the stub will report a
3561 TARGET_SIGNAL_0, meaning: stopped for no particular reason
3562 other than GDB's request. */
a0ef4274 3563 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
2020b7ab 3564 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_STOP
e0ba6746
PA
3565 || ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3566 || ecs->event_thread->stop_signal == TARGET_SIGNAL_0))
c54cfec8
EZ
3567 {
3568 stop_stepping (ecs);
2020b7ab 3569 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
c54cfec8
EZ
3570 return;
3571 }
3572
fba57f8f 3573 /* See if there is a breakpoint at the current PC. */
6c95b8df
PA
3574 ecs->event_thread->stop_bpstat
3575 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3576 stop_pc, ecs->ptid);
3577
fba57f8f
VP
3578 /* Following in case break condition called a
3579 function. */
3580 stop_print_frame = 1;
488f131b 3581
73dd234f 3582 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
3583 at one stage in the past included checks for an inferior
3584 function call's call dummy's return breakpoint. The original
3585 comment, that went with the test, read:
73dd234f 3586
8fb3e588
AC
3587 ``End of a stack dummy. Some systems (e.g. Sony news) give
3588 another signal besides SIGTRAP, so check here as well as
3589 above.''
73dd234f 3590
8002d778 3591 If someone ever tries to get call dummys on a
73dd234f 3592 non-executable stack to work (where the target would stop
03cebad2
MK
3593 with something like a SIGSEGV), then those tests might need
3594 to be re-instated. Given, however, that the tests were only
73dd234f 3595 enabled when momentary breakpoints were not being used, I
03cebad2
MK
3596 suspect that it won't be the case.
3597
8fb3e588
AC
3598 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
3599 be necessary for call dummies on a non-executable stack on
3600 SPARC. */
73dd234f 3601
2020b7ab 3602 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
488f131b 3603 ecs->random_signal
347bddb7 3604 = !(bpstat_explains_signal (ecs->event_thread->stop_bpstat)
4e1c45ea
PA
3605 || ecs->event_thread->trap_expected
3606 || (ecs->event_thread->step_range_end
3607 && ecs->event_thread->step_resume_breakpoint == NULL));
488f131b
JB
3608 else
3609 {
347bddb7 3610 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
488f131b 3611 if (!ecs->random_signal)
2020b7ab 3612 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3613 }
3614 }
3615
3616 /* When we reach this point, we've pretty much decided
3617 that the reason for stopping must've been a random
3618 (unexpected) signal. */
3619
3620 else
3621 ecs->random_signal = 1;
488f131b 3622
04e68871 3623process_event_stop_test:
568d6575
UW
3624
3625 /* Re-fetch current thread's frame in case we did a
3626 "goto process_event_stop_test" above. */
3627 frame = get_current_frame ();
3628 gdbarch = get_frame_arch (frame);
3629
488f131b
JB
3630 /* For the program's own signals, act according to
3631 the signal handling tables. */
3632
3633 if (ecs->random_signal)
3634 {
3635 /* Signal not for debugging purposes. */
3636 int printed = 0;
3637
527159b7 3638 if (debug_infrun)
2020b7ab
PA
3639 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
3640 ecs->event_thread->stop_signal);
527159b7 3641
488f131b
JB
3642 stopped_by_random_signal = 1;
3643
2020b7ab 3644 if (signal_print[ecs->event_thread->stop_signal])
488f131b
JB
3645 {
3646 printed = 1;
3647 target_terminal_ours_for_output ();
2020b7ab 3648 print_stop_reason (SIGNAL_RECEIVED, ecs->event_thread->stop_signal);
488f131b 3649 }
252fbfc8
PA
3650 /* Always stop on signals if we're either just gaining control
3651 of the program, or the user explicitly requested this thread
3652 to remain stopped. */
d6b48e9c 3653 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 3654 || ecs->event_thread->stop_requested
d6b48e9c 3655 || signal_stop_state (ecs->event_thread->stop_signal))
488f131b
JB
3656 {
3657 stop_stepping (ecs);
3658 return;
3659 }
3660 /* If not going to stop, give terminal back
3661 if we took it away. */
3662 else if (printed)
3663 target_terminal_inferior ();
3664
3665 /* Clear the signal if it should not be passed. */
2020b7ab
PA
3666 if (signal_program[ecs->event_thread->stop_signal] == 0)
3667 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
488f131b 3668
fb14de7b 3669 if (ecs->event_thread->prev_pc == stop_pc
4e1c45ea
PA
3670 && ecs->event_thread->trap_expected
3671 && ecs->event_thread->step_resume_breakpoint == NULL)
68f53502
AC
3672 {
3673 /* We were just starting a new sequence, attempting to
3674 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 3675 Instead this signal arrives. This signal will take us out
68f53502
AC
3676 of the stepping range so GDB needs to remember to, when
3677 the signal handler returns, resume stepping off that
3678 breakpoint. */
3679 /* To simplify things, "continue" is forced to use the same
3680 code paths as single-step - set a breakpoint at the
3681 signal return address and then, once hit, step off that
3682 breakpoint. */
237fc4c9
PA
3683 if (debug_infrun)
3684 fprintf_unfiltered (gdb_stdlog,
3685 "infrun: signal arrived while stepping over "
3686 "breakpoint\n");
d3169d93 3687
568d6575 3688 insert_step_resume_breakpoint_at_frame (frame);
4e1c45ea 3689 ecs->event_thread->step_after_step_resume_breakpoint = 1;
9d799f85
AC
3690 keep_going (ecs);
3691 return;
68f53502 3692 }
9d799f85 3693
4e1c45ea 3694 if (ecs->event_thread->step_range_end != 0
2020b7ab 3695 && ecs->event_thread->stop_signal != TARGET_SIGNAL_0
4e1c45ea
PA
3696 && (ecs->event_thread->step_range_start <= stop_pc
3697 && stop_pc < ecs->event_thread->step_range_end)
edb3359d
DJ
3698 && frame_id_eq (get_stack_frame_id (frame),
3699 ecs->event_thread->step_stack_frame_id)
4e1c45ea 3700 && ecs->event_thread->step_resume_breakpoint == NULL)
d303a6c7
AC
3701 {
3702 /* The inferior is about to take a signal that will take it
3703 out of the single step range. Set a breakpoint at the
3704 current PC (which is presumably where the signal handler
3705 will eventually return) and then allow the inferior to
3706 run free.
3707
3708 Note that this is only needed for a signal delivered
3709 while in the single-step range. Nested signals aren't a
3710 problem as they eventually all return. */
237fc4c9
PA
3711 if (debug_infrun)
3712 fprintf_unfiltered (gdb_stdlog,
3713 "infrun: signal may take us out of "
3714 "single-step range\n");
3715
568d6575 3716 insert_step_resume_breakpoint_at_frame (frame);
9d799f85
AC
3717 keep_going (ecs);
3718 return;
d303a6c7 3719 }
9d799f85
AC
3720
3721 /* Note: step_resume_breakpoint may be non-NULL. This occures
3722 when either there's a nested signal, or when there's a
3723 pending signal enabled just as the signal handler returns
3724 (leaving the inferior at the step-resume-breakpoint without
3725 actually executing it). Either way continue until the
3726 breakpoint is really hit. */
488f131b
JB
3727 keep_going (ecs);
3728 return;
3729 }
3730
3731 /* Handle cases caused by hitting a breakpoint. */
3732 {
3733 CORE_ADDR jmp_buf_pc;
3734 struct bpstat_what what;
3735
347bddb7 3736 what = bpstat_what (ecs->event_thread->stop_bpstat);
488f131b
JB
3737
3738 if (what.call_dummy)
3739 {
3740 stop_stack_dummy = 1;
c5aa993b 3741 }
c906108c 3742
488f131b 3743 switch (what.main_action)
c5aa993b 3744 {
488f131b 3745 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
611c83ae
PA
3746 /* If we hit the breakpoint at longjmp while stepping, we
3747 install a momentary breakpoint at the target of the
3748 jmp_buf. */
3749
3750 if (debug_infrun)
3751 fprintf_unfiltered (gdb_stdlog,
3752 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
3753
4e1c45ea 3754 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 3755
568d6575
UW
3756 if (!gdbarch_get_longjmp_target_p (gdbarch)
3757 || !gdbarch_get_longjmp_target (gdbarch, frame, &jmp_buf_pc))
c5aa993b 3758 {
611c83ae
PA
3759 if (debug_infrun)
3760 fprintf_unfiltered (gdb_stdlog, "\
3761infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
488f131b 3762 keep_going (ecs);
104c1213 3763 return;
c5aa993b 3764 }
488f131b 3765
611c83ae
PA
3766 /* We're going to replace the current step-resume breakpoint
3767 with a longjmp-resume breakpoint. */
4e1c45ea 3768 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae
PA
3769
3770 /* Insert a breakpoint at resume address. */
a6d9a66e 3771 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
c906108c 3772
488f131b
JB
3773 keep_going (ecs);
3774 return;
c906108c 3775
488f131b 3776 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
527159b7 3777 if (debug_infrun)
611c83ae
PA
3778 fprintf_unfiltered (gdb_stdlog,
3779 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
3780
4e1c45ea
PA
3781 gdb_assert (ecs->event_thread->step_resume_breakpoint != NULL);
3782 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae 3783
414c69f7 3784 ecs->event_thread->stop_step = 1;
611c83ae
PA
3785 print_stop_reason (END_STEPPING_RANGE, 0);
3786 stop_stepping (ecs);
3787 return;
488f131b
JB
3788
3789 case BPSTAT_WHAT_SINGLE:
527159b7 3790 if (debug_infrun)
8802d8ed 3791 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4e1c45ea 3792 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b
JB
3793 /* Still need to check other stuff, at least the case
3794 where we are stepping and step out of the right range. */
3795 break;
c906108c 3796
488f131b 3797 case BPSTAT_WHAT_STOP_NOISY:
527159b7 3798 if (debug_infrun)
8802d8ed 3799 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 3800 stop_print_frame = 1;
c906108c 3801
d303a6c7
AC
3802 /* We are about to nuke the step_resume_breakpointt via the
3803 cleanup chain, so no need to worry about it here. */
c5aa993b 3804
488f131b
JB
3805 stop_stepping (ecs);
3806 return;
c5aa993b 3807
488f131b 3808 case BPSTAT_WHAT_STOP_SILENT:
527159b7 3809 if (debug_infrun)
8802d8ed 3810 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 3811 stop_print_frame = 0;
c5aa993b 3812
d303a6c7
AC
3813 /* We are about to nuke the step_resume_breakpoin via the
3814 cleanup chain, so no need to worry about it here. */
c5aa993b 3815
488f131b 3816 stop_stepping (ecs);
e441088d 3817 return;
c5aa993b 3818
488f131b 3819 case BPSTAT_WHAT_STEP_RESUME:
527159b7 3820 if (debug_infrun)
8802d8ed 3821 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
527159b7 3822
4e1c45ea
PA
3823 delete_step_resume_breakpoint (ecs->event_thread);
3824 if (ecs->event_thread->step_after_step_resume_breakpoint)
68f53502
AC
3825 {
3826 /* Back when the step-resume breakpoint was inserted, we
3827 were trying to single-step off a breakpoint. Go back
3828 to doing that. */
4e1c45ea
PA
3829 ecs->event_thread->step_after_step_resume_breakpoint = 0;
3830 ecs->event_thread->stepping_over_breakpoint = 1;
68f53502
AC
3831 keep_going (ecs);
3832 return;
3833 }
b2175913
MS
3834 if (stop_pc == ecs->stop_func_start
3835 && execution_direction == EXEC_REVERSE)
3836 {
3837 /* We are stepping over a function call in reverse, and
3838 just hit the step-resume breakpoint at the start
3839 address of the function. Go back to single-stepping,
3840 which should take us back to the function call. */
3841 ecs->event_thread->stepping_over_breakpoint = 1;
3842 keep_going (ecs);
3843 return;
3844 }
488f131b
JB
3845 break;
3846
488f131b 3847 case BPSTAT_WHAT_CHECK_SHLIBS:
c906108c 3848 {
527159b7 3849 if (debug_infrun)
8802d8ed 3850 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
488f131b
JB
3851
3852 /* Check for any newly added shared libraries if we're
3853 supposed to be adding them automatically. Switch
3854 terminal for any messages produced by
3855 breakpoint_re_set. */
3856 target_terminal_ours_for_output ();
aff6338a 3857 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
3858 stack's section table is kept up-to-date. Architectures,
3859 (e.g., PPC64), use the section table to perform
3860 operations such as address => section name and hence
3861 require the table to contain all sections (including
3862 those found in shared libraries). */
a77053c2 3863#ifdef SOLIB_ADD
aff6338a 3864 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
a77053c2
MK
3865#else
3866 solib_add (NULL, 0, &current_target, auto_solib_add);
3867#endif
488f131b
JB
3868 target_terminal_inferior ();
3869
488f131b
JB
3870 /* If requested, stop when the dynamic linker notifies
3871 gdb of events. This allows the user to get control
3872 and place breakpoints in initializer routines for
3873 dynamically loaded objects (among other things). */
877522db 3874 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 3875 {
488f131b 3876 stop_stepping (ecs);
d4f3574e
SS
3877 return;
3878 }
c5aa993b 3879 else
c5aa993b 3880 {
488f131b 3881 /* We want to step over this breakpoint, then keep going. */
4e1c45ea 3882 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 3883 break;
c5aa993b 3884 }
488f131b 3885 }
488f131b 3886 break;
4efc6507
DE
3887
3888 case BPSTAT_WHAT_CHECK_JIT:
3889 if (debug_infrun)
3890 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_JIT\n");
3891
3892 /* Switch terminal for any messages produced by breakpoint_re_set. */
3893 target_terminal_ours_for_output ();
3894
0756c555 3895 jit_event_handler (gdbarch);
4efc6507
DE
3896
3897 target_terminal_inferior ();
3898
3899 /* We want to step over this breakpoint, then keep going. */
3900 ecs->event_thread->stepping_over_breakpoint = 1;
3901
3902 break;
c906108c 3903
488f131b
JB
3904 case BPSTAT_WHAT_LAST:
3905 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 3906
488f131b
JB
3907 case BPSTAT_WHAT_KEEP_CHECKING:
3908 break;
3909 }
3910 }
c906108c 3911
488f131b
JB
3912 /* We come here if we hit a breakpoint but should not
3913 stop for it. Possibly we also were stepping
3914 and should stop for that. So fall through and
3915 test for stepping. But, if not stepping,
3916 do not stop. */
c906108c 3917
a7212384
UW
3918 /* In all-stop mode, if we're currently stepping but have stopped in
3919 some other thread, we need to switch back to the stepped thread. */
3920 if (!non_stop)
3921 {
3922 struct thread_info *tp;
b3444185 3923 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
a7212384
UW
3924 ecs->event_thread);
3925 if (tp)
3926 {
3927 /* However, if the current thread is blocked on some internal
3928 breakpoint, and we simply need to step over that breakpoint
3929 to get it going again, do that first. */
3930 if ((ecs->event_thread->trap_expected
3931 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
3932 || ecs->event_thread->stepping_over_breakpoint)
3933 {
3934 keep_going (ecs);
3935 return;
3936 }
3937
66852e9c
PA
3938 /* If the stepping thread exited, then don't try to switch
3939 back and resume it, which could fail in several different
3940 ways depending on the target. Instead, just keep going.
3941
3942 We can find a stepping dead thread in the thread list in
3943 two cases:
3944
3945 - The target supports thread exit events, and when the
3946 target tries to delete the thread from the thread list,
3947 inferior_ptid pointed at the exiting thread. In such
3948 case, calling delete_thread does not really remove the
3949 thread from the list; instead, the thread is left listed,
3950 with 'exited' state.
3951
3952 - The target's debug interface does not support thread
3953 exit events, and so we have no idea whatsoever if the
3954 previously stepping thread is still alive. For that
3955 reason, we need to synchronously query the target
3956 now. */
b3444185
PA
3957 if (is_exited (tp->ptid)
3958 || !target_thread_alive (tp->ptid))
3959 {
3960 if (debug_infrun)
3961 fprintf_unfiltered (gdb_stdlog, "\
3962infrun: not switching back to stepped thread, it has vanished\n");
3963
3964 delete_thread (tp->ptid);
3965 keep_going (ecs);
3966 return;
3967 }
3968
a7212384
UW
3969 /* Otherwise, we no longer expect a trap in the current thread.
3970 Clear the trap_expected flag before switching back -- this is
3971 what keep_going would do as well, if we called it. */
3972 ecs->event_thread->trap_expected = 0;
3973
3974 if (debug_infrun)
3975 fprintf_unfiltered (gdb_stdlog,
3976 "infrun: switching back to stepped thread\n");
3977
3978 ecs->event_thread = tp;
3979 ecs->ptid = tp->ptid;
3980 context_switch (ecs->ptid);
3981 keep_going (ecs);
3982 return;
3983 }
3984 }
3985
9d1ff73f
MS
3986 /* Are we stepping to get the inferior out of the dynamic linker's
3987 hook (and possibly the dld itself) after catching a shlib
3988 event? */
4e1c45ea 3989 if (ecs->event_thread->stepping_through_solib_after_catch)
488f131b
JB
3990 {
3991#if defined(SOLIB_ADD)
3992 /* Have we reached our destination? If not, keep going. */
3993 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
3994 {
527159b7 3995 if (debug_infrun)
8a9de0e4 3996 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
4e1c45ea 3997 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 3998 keep_going (ecs);
104c1213 3999 return;
488f131b
JB
4000 }
4001#endif
527159b7 4002 if (debug_infrun)
8a9de0e4 4003 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
488f131b
JB
4004 /* Else, stop and report the catchpoint(s) whose triggering
4005 caused us to begin stepping. */
4e1c45ea 4006 ecs->event_thread->stepping_through_solib_after_catch = 0;
347bddb7
PA
4007 bpstat_clear (&ecs->event_thread->stop_bpstat);
4008 ecs->event_thread->stop_bpstat
4009 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
4e1c45ea 4010 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
488f131b
JB
4011 stop_print_frame = 1;
4012 stop_stepping (ecs);
4013 return;
4014 }
c906108c 4015
4e1c45ea 4016 if (ecs->event_thread->step_resume_breakpoint)
488f131b 4017 {
527159b7 4018 if (debug_infrun)
d3169d93
DJ
4019 fprintf_unfiltered (gdb_stdlog,
4020 "infrun: step-resume breakpoint is inserted\n");
527159b7 4021
488f131b
JB
4022 /* Having a step-resume breakpoint overrides anything
4023 else having to do with stepping commands until
4024 that breakpoint is reached. */
488f131b
JB
4025 keep_going (ecs);
4026 return;
4027 }
c5aa993b 4028
4e1c45ea 4029 if (ecs->event_thread->step_range_end == 0)
488f131b 4030 {
527159b7 4031 if (debug_infrun)
8a9de0e4 4032 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 4033 /* Likewise if we aren't even stepping. */
488f131b
JB
4034 keep_going (ecs);
4035 return;
4036 }
c5aa993b 4037
488f131b 4038 /* If stepping through a line, keep going if still within it.
c906108c 4039
488f131b
JB
4040 Note that step_range_end is the address of the first instruction
4041 beyond the step range, and NOT the address of the last instruction
31410e84
MS
4042 within it!
4043
4044 Note also that during reverse execution, we may be stepping
4045 through a function epilogue and therefore must detect when
4046 the current-frame changes in the middle of a line. */
4047
4e1c45ea 4048 if (stop_pc >= ecs->event_thread->step_range_start
31410e84
MS
4049 && stop_pc < ecs->event_thread->step_range_end
4050 && (execution_direction != EXEC_REVERSE
388a8562 4051 || frame_id_eq (get_frame_id (frame),
31410e84 4052 ecs->event_thread->step_frame_id)))
488f131b 4053 {
527159b7 4054 if (debug_infrun)
5af949e3
UW
4055 fprintf_unfiltered
4056 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4057 paddress (gdbarch, ecs->event_thread->step_range_start),
4058 paddress (gdbarch, ecs->event_thread->step_range_end));
b2175913
MS
4059
4060 /* When stepping backward, stop at beginning of line range
4061 (unless it's the function entry point, in which case
4062 keep going back to the call point). */
4063 if (stop_pc == ecs->event_thread->step_range_start
4064 && stop_pc != ecs->stop_func_start
4065 && execution_direction == EXEC_REVERSE)
4066 {
4067 ecs->event_thread->stop_step = 1;
4068 print_stop_reason (END_STEPPING_RANGE, 0);
4069 stop_stepping (ecs);
4070 }
4071 else
4072 keep_going (ecs);
4073
488f131b
JB
4074 return;
4075 }
c5aa993b 4076
488f131b 4077 /* We stepped out of the stepping range. */
c906108c 4078
488f131b 4079 /* If we are stepping at the source level and entered the runtime
388a8562
MS
4080 loader dynamic symbol resolution code...
4081
4082 EXEC_FORWARD: we keep on single stepping until we exit the run
4083 time loader code and reach the callee's address.
4084
4085 EXEC_REVERSE: we've already executed the callee (backward), and
4086 the runtime loader code is handled just like any other
4087 undebuggable function call. Now we need only keep stepping
4088 backward through the trampoline code, and that's handled further
4089 down, so there is nothing for us to do here. */
4090
4091 if (execution_direction != EXEC_REVERSE
4092 && ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 4093 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 4094 {
4c8c40e6 4095 CORE_ADDR pc_after_resolver =
568d6575 4096 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 4097
527159b7 4098 if (debug_infrun)
8a9de0e4 4099 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
527159b7 4100
488f131b
JB
4101 if (pc_after_resolver)
4102 {
4103 /* Set up a step-resume breakpoint at the address
4104 indicated by SKIP_SOLIB_RESOLVER. */
4105 struct symtab_and_line sr_sal;
fe39c653 4106 init_sal (&sr_sal);
488f131b 4107 sr_sal.pc = pc_after_resolver;
6c95b8df 4108 sr_sal.pspace = get_frame_program_space (frame);
488f131b 4109
a6d9a66e
UW
4110 insert_step_resume_breakpoint_at_sal (gdbarch,
4111 sr_sal, null_frame_id);
c5aa993b 4112 }
c906108c 4113
488f131b
JB
4114 keep_going (ecs);
4115 return;
4116 }
c906108c 4117
4e1c45ea 4118 if (ecs->event_thread->step_range_end != 1
078130d0
PA
4119 && (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
4120 || ecs->event_thread->step_over_calls == STEP_OVER_ALL)
568d6575 4121 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 4122 {
527159b7 4123 if (debug_infrun)
8a9de0e4 4124 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
42edda50 4125 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
4126 a signal trampoline (either by a signal being delivered or by
4127 the signal handler returning). Just single-step until the
4128 inferior leaves the trampoline (either by calling the handler
4129 or returning). */
488f131b
JB
4130 keep_going (ecs);
4131 return;
4132 }
c906108c 4133
c17eaafe
DJ
4134 /* Check for subroutine calls. The check for the current frame
4135 equalling the step ID is not necessary - the check of the
4136 previous frame's ID is sufficient - but it is a common case and
4137 cheaper than checking the previous frame's ID.
14e60db5
DJ
4138
4139 NOTE: frame_id_eq will never report two invalid frame IDs as
4140 being equal, so to get into this block, both the current and
4141 previous frame must have valid frame IDs. */
005ca36a
JB
4142 /* The outer_frame_id check is a heuristic to detect stepping
4143 through startup code. If we step over an instruction which
4144 sets the stack pointer from an invalid value to a valid value,
4145 we may detect that as a subroutine call from the mythical
4146 "outermost" function. This could be fixed by marking
4147 outermost frames as !stack_p,code_p,special_p. Then the
4148 initial outermost frame, before sp was valid, would
4149 have code_addr == &_start. See the commend in frame_id_eq
4150 for more. */
edb3359d
DJ
4151 if (!frame_id_eq (get_stack_frame_id (frame),
4152 ecs->event_thread->step_stack_frame_id)
005ca36a
JB
4153 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4154 ecs->event_thread->step_stack_frame_id)
4155 && (!frame_id_eq (ecs->event_thread->step_stack_frame_id,
4156 outer_frame_id)
4157 || step_start_function != find_pc_function (stop_pc))))
488f131b 4158 {
95918acb 4159 CORE_ADDR real_stop_pc;
8fb3e588 4160
527159b7 4161 if (debug_infrun)
8a9de0e4 4162 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 4163
078130d0 4164 if ((ecs->event_thread->step_over_calls == STEP_OVER_NONE)
4e1c45ea 4165 || ((ecs->event_thread->step_range_end == 1)
d80b854b 4166 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 4167 ecs->stop_func_start)))
95918acb
AC
4168 {
4169 /* I presume that step_over_calls is only 0 when we're
4170 supposed to be stepping at the assembly language level
4171 ("stepi"). Just stop. */
4172 /* Also, maybe we just did a "nexti" inside a prolog, so we
4173 thought it was a subroutine call but it was not. Stop as
4174 well. FENN */
388a8562 4175 /* And this works the same backward as frontward. MVS */
414c69f7 4176 ecs->event_thread->stop_step = 1;
95918acb
AC
4177 print_stop_reason (END_STEPPING_RANGE, 0);
4178 stop_stepping (ecs);
4179 return;
4180 }
8fb3e588 4181
388a8562
MS
4182 /* Reverse stepping through solib trampolines. */
4183
4184 if (execution_direction == EXEC_REVERSE
fdd654f3 4185 && ecs->event_thread->step_over_calls != STEP_OVER_NONE
388a8562
MS
4186 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4187 || (ecs->stop_func_start == 0
4188 && in_solib_dynsym_resolve_code (stop_pc))))
4189 {
4190 /* Any solib trampoline code can be handled in reverse
4191 by simply continuing to single-step. We have already
4192 executed the solib function (backwards), and a few
4193 steps will take us back through the trampoline to the
4194 caller. */
4195 keep_going (ecs);
4196 return;
4197 }
4198
078130d0 4199 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
8567c30f 4200 {
b2175913
MS
4201 /* We're doing a "next".
4202
4203 Normal (forward) execution: set a breakpoint at the
4204 callee's return address (the address at which the caller
4205 will resume).
4206
4207 Reverse (backward) execution. set the step-resume
4208 breakpoint at the start of the function that we just
4209 stepped into (backwards), and continue to there. When we
6130d0b7 4210 get there, we'll need to single-step back to the caller. */
b2175913
MS
4211
4212 if (execution_direction == EXEC_REVERSE)
4213 {
4214 struct symtab_and_line sr_sal;
3067f6e5 4215
388a8562
MS
4216 /* Normal function call return (static or dynamic). */
4217 init_sal (&sr_sal);
4218 sr_sal.pc = ecs->stop_func_start;
6c95b8df
PA
4219 sr_sal.pspace = get_frame_program_space (frame);
4220 insert_step_resume_breakpoint_at_sal (gdbarch,
4221 sr_sal, null_frame_id);
b2175913
MS
4222 }
4223 else
568d6575 4224 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4225
8567c30f
AC
4226 keep_going (ecs);
4227 return;
4228 }
a53c66de 4229
95918acb 4230 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
4231 calling routine and the real function), locate the real
4232 function. That's what tells us (a) whether we want to step
4233 into it at all, and (b) what prologue we want to run to the
4234 end of, if we do step into it. */
568d6575 4235 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 4236 if (real_stop_pc == 0)
568d6575 4237 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
4238 if (real_stop_pc != 0)
4239 ecs->stop_func_start = real_stop_pc;
8fb3e588 4240
db5f024e 4241 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
4242 {
4243 struct symtab_and_line sr_sal;
4244 init_sal (&sr_sal);
4245 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4246 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 4247
a6d9a66e
UW
4248 insert_step_resume_breakpoint_at_sal (gdbarch,
4249 sr_sal, null_frame_id);
8fb3e588
AC
4250 keep_going (ecs);
4251 return;
1b2bfbb9
RC
4252 }
4253
95918acb 4254 /* If we have line number information for the function we are
8fb3e588 4255 thinking of stepping into, step into it.
95918acb 4256
8fb3e588
AC
4257 If there are several symtabs at that PC (e.g. with include
4258 files), just want to know whether *any* of them have line
4259 numbers. find_pc_line handles this. */
95918acb
AC
4260 {
4261 struct symtab_and_line tmp_sal;
8fb3e588 4262
95918acb 4263 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
9d1807c3 4264 tmp_sal.pspace = get_frame_program_space (frame);
95918acb
AC
4265 if (tmp_sal.line != 0)
4266 {
b2175913 4267 if (execution_direction == EXEC_REVERSE)
568d6575 4268 handle_step_into_function_backward (gdbarch, ecs);
b2175913 4269 else
568d6575 4270 handle_step_into_function (gdbarch, ecs);
95918acb
AC
4271 return;
4272 }
4273 }
4274
4275 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
4276 set, we stop the step so that the user has a chance to switch
4277 in assembly mode. */
078130d0
PA
4278 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
4279 && step_stop_if_no_debug)
95918acb 4280 {
414c69f7 4281 ecs->event_thread->stop_step = 1;
95918acb
AC
4282 print_stop_reason (END_STEPPING_RANGE, 0);
4283 stop_stepping (ecs);
4284 return;
4285 }
4286
b2175913
MS
4287 if (execution_direction == EXEC_REVERSE)
4288 {
4289 /* Set a breakpoint at callee's start address.
4290 From there we can step once and be back in the caller. */
4291 struct symtab_and_line sr_sal;
4292 init_sal (&sr_sal);
4293 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4294 sr_sal.pspace = get_frame_program_space (frame);
a6d9a66e
UW
4295 insert_step_resume_breakpoint_at_sal (gdbarch,
4296 sr_sal, null_frame_id);
b2175913
MS
4297 }
4298 else
4299 /* Set a breakpoint at callee's return address (the address
4300 at which the caller will resume). */
568d6575 4301 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4302
95918acb 4303 keep_going (ecs);
488f131b 4304 return;
488f131b 4305 }
c906108c 4306
fdd654f3
MS
4307 /* Reverse stepping through solib trampolines. */
4308
4309 if (execution_direction == EXEC_REVERSE
4310 && ecs->event_thread->step_over_calls != STEP_OVER_NONE)
4311 {
4312 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4313 || (ecs->stop_func_start == 0
4314 && in_solib_dynsym_resolve_code (stop_pc)))
4315 {
4316 /* Any solib trampoline code can be handled in reverse
4317 by simply continuing to single-step. We have already
4318 executed the solib function (backwards), and a few
4319 steps will take us back through the trampoline to the
4320 caller. */
4321 keep_going (ecs);
4322 return;
4323 }
4324 else if (in_solib_dynsym_resolve_code (stop_pc))
4325 {
4326 /* Stepped backward into the solib dynsym resolver.
4327 Set a breakpoint at its start and continue, then
4328 one more step will take us out. */
4329 struct symtab_and_line sr_sal;
4330 init_sal (&sr_sal);
4331 sr_sal.pc = ecs->stop_func_start;
9d1807c3 4332 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
4333 insert_step_resume_breakpoint_at_sal (gdbarch,
4334 sr_sal, null_frame_id);
4335 keep_going (ecs);
4336 return;
4337 }
4338 }
4339
488f131b
JB
4340 /* If we're in the return path from a shared library trampoline,
4341 we want to proceed through the trampoline when stepping. */
568d6575 4342 if (gdbarch_in_solib_return_trampoline (gdbarch,
e76f05fa 4343 stop_pc, ecs->stop_func_name))
488f131b 4344 {
488f131b 4345 /* Determine where this trampoline returns. */
52f729a7 4346 CORE_ADDR real_stop_pc;
568d6575 4347 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
c906108c 4348
527159b7 4349 if (debug_infrun)
8a9de0e4 4350 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
527159b7 4351
488f131b 4352 /* Only proceed through if we know where it's going. */
d764a824 4353 if (real_stop_pc)
488f131b
JB
4354 {
4355 /* And put the step-breakpoint there and go until there. */
4356 struct symtab_and_line sr_sal;
4357
fe39c653 4358 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 4359 sr_sal.pc = real_stop_pc;
488f131b 4360 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 4361 sr_sal.pspace = get_frame_program_space (frame);
44cbf7b5
AC
4362
4363 /* Do not specify what the fp should be when we stop since
4364 on some machines the prologue is where the new fp value
4365 is established. */
a6d9a66e
UW
4366 insert_step_resume_breakpoint_at_sal (gdbarch,
4367 sr_sal, null_frame_id);
c906108c 4368
488f131b
JB
4369 /* Restart without fiddling with the step ranges or
4370 other state. */
4371 keep_going (ecs);
4372 return;
4373 }
4374 }
c906108c 4375
2afb61aa 4376 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 4377
1b2bfbb9
RC
4378 /* NOTE: tausq/2004-05-24: This if block used to be done before all
4379 the trampoline processing logic, however, there are some trampolines
4380 that have no names, so we should do trampoline handling first. */
078130d0 4381 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 4382 && ecs->stop_func_name == NULL
2afb61aa 4383 && stop_pc_sal.line == 0)
1b2bfbb9 4384 {
527159b7 4385 if (debug_infrun)
8a9de0e4 4386 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
527159b7 4387
1b2bfbb9 4388 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
4389 undebuggable function (where there is no debugging information
4390 and no line number corresponding to the address where the
1b2bfbb9
RC
4391 inferior stopped). Since we want to skip this kind of code,
4392 we keep going until the inferior returns from this
14e60db5
DJ
4393 function - unless the user has asked us not to (via
4394 set step-mode) or we no longer know how to get back
4395 to the call site. */
4396 if (step_stop_if_no_debug
c7ce8faa 4397 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
4398 {
4399 /* If we have no line number and the step-stop-if-no-debug
4400 is set, we stop the step so that the user has a chance to
4401 switch in assembly mode. */
414c69f7 4402 ecs->event_thread->stop_step = 1;
1b2bfbb9
RC
4403 print_stop_reason (END_STEPPING_RANGE, 0);
4404 stop_stepping (ecs);
4405 return;
4406 }
4407 else
4408 {
4409 /* Set a breakpoint at callee's return address (the address
4410 at which the caller will resume). */
568d6575 4411 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
4412 keep_going (ecs);
4413 return;
4414 }
4415 }
4416
4e1c45ea 4417 if (ecs->event_thread->step_range_end == 1)
1b2bfbb9
RC
4418 {
4419 /* It is stepi or nexti. We always want to stop stepping after
4420 one instruction. */
527159b7 4421 if (debug_infrun)
8a9de0e4 4422 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
414c69f7 4423 ecs->event_thread->stop_step = 1;
1b2bfbb9
RC
4424 print_stop_reason (END_STEPPING_RANGE, 0);
4425 stop_stepping (ecs);
4426 return;
4427 }
4428
2afb61aa 4429 if (stop_pc_sal.line == 0)
488f131b
JB
4430 {
4431 /* We have no line number information. That means to stop
4432 stepping (does this always happen right after one instruction,
4433 when we do "s" in a function with no line numbers,
4434 or can this happen as a result of a return or longjmp?). */
527159b7 4435 if (debug_infrun)
8a9de0e4 4436 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
414c69f7 4437 ecs->event_thread->stop_step = 1;
488f131b
JB
4438 print_stop_reason (END_STEPPING_RANGE, 0);
4439 stop_stepping (ecs);
4440 return;
4441 }
c906108c 4442
edb3359d
DJ
4443 /* Look for "calls" to inlined functions, part one. If the inline
4444 frame machinery detected some skipped call sites, we have entered
4445 a new inline function. */
4446
4447 if (frame_id_eq (get_frame_id (get_current_frame ()),
4448 ecs->event_thread->step_frame_id)
4449 && inline_skipped_frames (ecs->ptid))
4450 {
4451 struct symtab_and_line call_sal;
4452
4453 if (debug_infrun)
4454 fprintf_unfiltered (gdb_stdlog,
4455 "infrun: stepped into inlined function\n");
4456
4457 find_frame_sal (get_current_frame (), &call_sal);
4458
4459 if (ecs->event_thread->step_over_calls != STEP_OVER_ALL)
4460 {
4461 /* For "step", we're going to stop. But if the call site
4462 for this inlined function is on the same source line as
4463 we were previously stepping, go down into the function
4464 first. Otherwise stop at the call site. */
4465
4466 if (call_sal.line == ecs->event_thread->current_line
4467 && call_sal.symtab == ecs->event_thread->current_symtab)
4468 step_into_inline_frame (ecs->ptid);
4469
4470 ecs->event_thread->stop_step = 1;
4471 print_stop_reason (END_STEPPING_RANGE, 0);
4472 stop_stepping (ecs);
4473 return;
4474 }
4475 else
4476 {
4477 /* For "next", we should stop at the call site if it is on a
4478 different source line. Otherwise continue through the
4479 inlined function. */
4480 if (call_sal.line == ecs->event_thread->current_line
4481 && call_sal.symtab == ecs->event_thread->current_symtab)
4482 keep_going (ecs);
4483 else
4484 {
4485 ecs->event_thread->stop_step = 1;
4486 print_stop_reason (END_STEPPING_RANGE, 0);
4487 stop_stepping (ecs);
4488 }
4489 return;
4490 }
4491 }
4492
4493 /* Look for "calls" to inlined functions, part two. If we are still
4494 in the same real function we were stepping through, but we have
4495 to go further up to find the exact frame ID, we are stepping
4496 through a more inlined call beyond its call site. */
4497
4498 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
4499 && !frame_id_eq (get_frame_id (get_current_frame ()),
4500 ecs->event_thread->step_frame_id)
4501 && stepped_in_from (get_current_frame (),
4502 ecs->event_thread->step_frame_id))
4503 {
4504 if (debug_infrun)
4505 fprintf_unfiltered (gdb_stdlog,
4506 "infrun: stepping through inlined function\n");
4507
4508 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
4509 keep_going (ecs);
4510 else
4511 {
4512 ecs->event_thread->stop_step = 1;
4513 print_stop_reason (END_STEPPING_RANGE, 0);
4514 stop_stepping (ecs);
4515 }
4516 return;
4517 }
4518
2afb61aa 4519 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
4520 && (ecs->event_thread->current_line != stop_pc_sal.line
4521 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
4522 {
4523 /* We are at the start of a different line. So stop. Note that
4524 we don't stop if we step into the middle of a different line.
4525 That is said to make things like for (;;) statements work
4526 better. */
527159b7 4527 if (debug_infrun)
8a9de0e4 4528 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
414c69f7 4529 ecs->event_thread->stop_step = 1;
488f131b
JB
4530 print_stop_reason (END_STEPPING_RANGE, 0);
4531 stop_stepping (ecs);
4532 return;
4533 }
c906108c 4534
488f131b 4535 /* We aren't done stepping.
c906108c 4536
488f131b
JB
4537 Optimize by setting the stepping range to the line.
4538 (We might not be in the original line, but if we entered a
4539 new line in mid-statement, we continue stepping. This makes
4540 things like for(;;) statements work better.) */
c906108c 4541
4e1c45ea
PA
4542 ecs->event_thread->step_range_start = stop_pc_sal.pc;
4543 ecs->event_thread->step_range_end = stop_pc_sal.end;
edb3359d 4544 set_step_info (frame, stop_pc_sal);
488f131b 4545
527159b7 4546 if (debug_infrun)
8a9de0e4 4547 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 4548 keep_going (ecs);
104c1213
JM
4549}
4550
b3444185 4551/* Is thread TP in the middle of single-stepping? */
104c1213 4552
a7212384 4553static int
b3444185 4554currently_stepping (struct thread_info *tp)
a7212384 4555{
b3444185
PA
4556 return ((tp->step_range_end && tp->step_resume_breakpoint == NULL)
4557 || tp->trap_expected
4558 || tp->stepping_through_solib_after_catch
4559 || bpstat_should_step ());
a7212384
UW
4560}
4561
b3444185
PA
4562/* Returns true if any thread *but* the one passed in "data" is in the
4563 middle of stepping or of handling a "next". */
a7212384 4564
104c1213 4565static int
b3444185 4566currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
104c1213 4567{
b3444185
PA
4568 if (tp == data)
4569 return 0;
4570
4571 return (tp->step_range_end
4572 || tp->trap_expected
4573 || tp->stepping_through_solib_after_catch);
104c1213 4574}
c906108c 4575
b2175913
MS
4576/* Inferior has stepped into a subroutine call with source code that
4577 we should not step over. Do step to the first line of code in
4578 it. */
c2c6d25f
JM
4579
4580static void
568d6575
UW
4581handle_step_into_function (struct gdbarch *gdbarch,
4582 struct execution_control_state *ecs)
c2c6d25f
JM
4583{
4584 struct symtab *s;
2afb61aa 4585 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f
JM
4586
4587 s = find_pc_symtab (stop_pc);
4588 if (s && s->language != language_asm)
568d6575 4589 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 4590 ecs->stop_func_start);
c2c6d25f 4591
2afb61aa 4592 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
4593 /* Use the step_resume_break to step until the end of the prologue,
4594 even if that involves jumps (as it seems to on the vax under
4595 4.2). */
4596 /* If the prologue ends in the middle of a source line, continue to
4597 the end of that source line (if it is still within the function).
4598 Otherwise, just go to end of prologue. */
2afb61aa
PA
4599 if (stop_func_sal.end
4600 && stop_func_sal.pc != ecs->stop_func_start
4601 && stop_func_sal.end < ecs->stop_func_end)
4602 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 4603
2dbd5e30
KB
4604 /* Architectures which require breakpoint adjustment might not be able
4605 to place a breakpoint at the computed address. If so, the test
4606 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
4607 ecs->stop_func_start to an address at which a breakpoint may be
4608 legitimately placed.
8fb3e588 4609
2dbd5e30
KB
4610 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
4611 made, GDB will enter an infinite loop when stepping through
4612 optimized code consisting of VLIW instructions which contain
4613 subinstructions corresponding to different source lines. On
4614 FR-V, it's not permitted to place a breakpoint on any but the
4615 first subinstruction of a VLIW instruction. When a breakpoint is
4616 set, GDB will adjust the breakpoint address to the beginning of
4617 the VLIW instruction. Thus, we need to make the corresponding
4618 adjustment here when computing the stop address. */
8fb3e588 4619
568d6575 4620 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
4621 {
4622 ecs->stop_func_start
568d6575 4623 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 4624 ecs->stop_func_start);
2dbd5e30
KB
4625 }
4626
c2c6d25f
JM
4627 if (ecs->stop_func_start == stop_pc)
4628 {
4629 /* We are already there: stop now. */
414c69f7 4630 ecs->event_thread->stop_step = 1;
488f131b 4631 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
4632 stop_stepping (ecs);
4633 return;
4634 }
4635 else
4636 {
4637 /* Put the step-breakpoint there and go until there. */
fe39c653 4638 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
4639 sr_sal.pc = ecs->stop_func_start;
4640 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 4641 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 4642
c2c6d25f 4643 /* Do not specify what the fp should be when we stop since on
488f131b
JB
4644 some machines the prologue is where the new fp value is
4645 established. */
a6d9a66e 4646 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
4647
4648 /* And make sure stepping stops right away then. */
4e1c45ea 4649 ecs->event_thread->step_range_end = ecs->event_thread->step_range_start;
c2c6d25f
JM
4650 }
4651 keep_going (ecs);
4652}
d4f3574e 4653
b2175913
MS
4654/* Inferior has stepped backward into a subroutine call with source
4655 code that we should not step over. Do step to the beginning of the
4656 last line of code in it. */
4657
4658static void
568d6575
UW
4659handle_step_into_function_backward (struct gdbarch *gdbarch,
4660 struct execution_control_state *ecs)
b2175913
MS
4661{
4662 struct symtab *s;
4663 struct symtab_and_line stop_func_sal, sr_sal;
4664
4665 s = find_pc_symtab (stop_pc);
4666 if (s && s->language != language_asm)
568d6575 4667 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
4668 ecs->stop_func_start);
4669
4670 stop_func_sal = find_pc_line (stop_pc, 0);
4671
4672 /* OK, we're just going to keep stepping here. */
4673 if (stop_func_sal.pc == stop_pc)
4674 {
4675 /* We're there already. Just stop stepping now. */
4676 ecs->event_thread->stop_step = 1;
4677 print_stop_reason (END_STEPPING_RANGE, 0);
4678 stop_stepping (ecs);
4679 }
4680 else
4681 {
4682 /* Else just reset the step range and keep going.
4683 No step-resume breakpoint, they don't work for
4684 epilogues, which can have multiple entry paths. */
4685 ecs->event_thread->step_range_start = stop_func_sal.pc;
4686 ecs->event_thread->step_range_end = stop_func_sal.end;
4687 keep_going (ecs);
4688 }
4689 return;
4690}
4691
d3169d93 4692/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
4693 This is used to both functions and to skip over code. */
4694
4695static void
a6d9a66e
UW
4696insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
4697 struct symtab_and_line sr_sal,
44cbf7b5
AC
4698 struct frame_id sr_id)
4699{
611c83ae
PA
4700 /* There should never be more than one step-resume or longjmp-resume
4701 breakpoint per thread, so we should never be setting a new
44cbf7b5 4702 step_resume_breakpoint when one is already active. */
4e1c45ea 4703 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
d3169d93
DJ
4704
4705 if (debug_infrun)
4706 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
4707 "infrun: inserting step-resume breakpoint at %s\n",
4708 paddress (gdbarch, sr_sal.pc));
d3169d93 4709
4e1c45ea 4710 inferior_thread ()->step_resume_breakpoint
a6d9a66e 4711 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, bp_step_resume);
44cbf7b5 4712}
7ce450bd 4713
d3169d93 4714/* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
14e60db5 4715 to skip a potential signal handler.
7ce450bd 4716
14e60db5
DJ
4717 This is called with the interrupted function's frame. The signal
4718 handler, when it returns, will resume the interrupted function at
4719 RETURN_FRAME.pc. */
d303a6c7
AC
4720
4721static void
44cbf7b5 4722insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
4723{
4724 struct symtab_and_line sr_sal;
a6d9a66e 4725 struct gdbarch *gdbarch;
d303a6c7 4726
f4c1edd8 4727 gdb_assert (return_frame != NULL);
d303a6c7
AC
4728 init_sal (&sr_sal); /* initialize to zeros */
4729
a6d9a66e 4730 gdbarch = get_frame_arch (return_frame);
568d6575 4731 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 4732 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 4733 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 4734
a6d9a66e
UW
4735 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
4736 get_stack_frame_id (return_frame));
d303a6c7
AC
4737}
4738
14e60db5
DJ
4739/* Similar to insert_step_resume_breakpoint_at_frame, except
4740 but a breakpoint at the previous frame's PC. This is used to
4741 skip a function after stepping into it (for "next" or if the called
4742 function has no debugging information).
4743
4744 The current function has almost always been reached by single
4745 stepping a call or return instruction. NEXT_FRAME belongs to the
4746 current function, and the breakpoint will be set at the caller's
4747 resume address.
4748
4749 This is a separate function rather than reusing
4750 insert_step_resume_breakpoint_at_frame in order to avoid
4751 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 4752 of frame_unwind_caller_id for an example). */
14e60db5
DJ
4753
4754static void
4755insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
4756{
4757 struct symtab_and_line sr_sal;
a6d9a66e 4758 struct gdbarch *gdbarch;
14e60db5
DJ
4759
4760 /* We shouldn't have gotten here if we don't know where the call site
4761 is. */
c7ce8faa 4762 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
4763
4764 init_sal (&sr_sal); /* initialize to zeros */
4765
a6d9a66e 4766 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
4767 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
4768 frame_unwind_caller_pc (next_frame));
14e60db5 4769 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 4770 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 4771
a6d9a66e 4772 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 4773 frame_unwind_caller_id (next_frame));
14e60db5
DJ
4774}
4775
611c83ae
PA
4776/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
4777 new breakpoint at the target of a jmp_buf. The handling of
4778 longjmp-resume uses the same mechanisms used for handling
4779 "step-resume" breakpoints. */
4780
4781static void
a6d9a66e 4782insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae
PA
4783{
4784 /* There should never be more than one step-resume or longjmp-resume
4785 breakpoint per thread, so we should never be setting a new
4786 longjmp_resume_breakpoint when one is already active. */
4e1c45ea 4787 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
611c83ae
PA
4788
4789 if (debug_infrun)
4790 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
4791 "infrun: inserting longjmp-resume breakpoint at %s\n",
4792 paddress (gdbarch, pc));
611c83ae 4793
4e1c45ea 4794 inferior_thread ()->step_resume_breakpoint =
a6d9a66e 4795 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
4796}
4797
104c1213
JM
4798static void
4799stop_stepping (struct execution_control_state *ecs)
4800{
527159b7 4801 if (debug_infrun)
8a9de0e4 4802 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 4803
cd0fc7c3
SS
4804 /* Let callers know we don't want to wait for the inferior anymore. */
4805 ecs->wait_some_more = 0;
4806}
4807
d4f3574e
SS
4808/* This function handles various cases where we need to continue
4809 waiting for the inferior. */
4810/* (Used to be the keep_going: label in the old wait_for_inferior) */
4811
4812static void
4813keep_going (struct execution_control_state *ecs)
4814{
d4f3574e 4815 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
4816 ecs->event_thread->prev_pc
4817 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 4818
d4f3574e
SS
4819 /* If we did not do break;, it means we should keep running the
4820 inferior and not return to debugger. */
4821
2020b7ab
PA
4822 if (ecs->event_thread->trap_expected
4823 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
d4f3574e
SS
4824 {
4825 /* We took a signal (which we are supposed to pass through to
4e1c45ea
PA
4826 the inferior, else we'd not get here) and we haven't yet
4827 gotten our trap. Simply continue. */
2020b7ab
PA
4828 resume (currently_stepping (ecs->event_thread),
4829 ecs->event_thread->stop_signal);
d4f3574e
SS
4830 }
4831 else
4832 {
4833 /* Either the trap was not expected, but we are continuing
488f131b
JB
4834 anyway (the user asked that this signal be passed to the
4835 child)
4836 -- or --
4837 The signal was SIGTRAP, e.g. it was our signal, but we
4838 decided we should resume from it.
d4f3574e 4839
c36b740a 4840 We're going to run this baby now!
d4f3574e 4841
c36b740a
VP
4842 Note that insert_breakpoints won't try to re-insert
4843 already inserted breakpoints. Therefore, we don't
4844 care if breakpoints were already inserted, or not. */
4845
4e1c45ea 4846 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 4847 {
9f5a595d
UW
4848 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
4849 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
4850 /* Since we can't do a displaced step, we have to remove
4851 the breakpoint while we step it. To keep things
4852 simple, we remove them all. */
4853 remove_breakpoints ();
45e8c884
VP
4854 }
4855 else
d4f3574e 4856 {
e236ba44 4857 struct gdb_exception e;
569631c6
UW
4858 /* Stop stepping when inserting breakpoints
4859 has failed. */
e236ba44
VP
4860 TRY_CATCH (e, RETURN_MASK_ERROR)
4861 {
4862 insert_breakpoints ();
4863 }
4864 if (e.reason < 0)
d4f3574e 4865 {
97bd5475 4866 exception_print (gdb_stderr, e);
d4f3574e
SS
4867 stop_stepping (ecs);
4868 return;
4869 }
d4f3574e
SS
4870 }
4871
4e1c45ea 4872 ecs->event_thread->trap_expected = ecs->event_thread->stepping_over_breakpoint;
d4f3574e
SS
4873
4874 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
4875 specifies that such a signal should be delivered to the
4876 target program).
4877
4878 Typically, this would occure when a user is debugging a
4879 target monitor on a simulator: the target monitor sets a
4880 breakpoint; the simulator encounters this break-point and
4881 halts the simulation handing control to GDB; GDB, noteing
4882 that the break-point isn't valid, returns control back to the
4883 simulator; the simulator then delivers the hardware
4884 equivalent of a SIGNAL_TRAP to the program being debugged. */
4885
2020b7ab
PA
4886 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4887 && !signal_program[ecs->event_thread->stop_signal])
4888 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
d4f3574e 4889
2020b7ab
PA
4890 resume (currently_stepping (ecs->event_thread),
4891 ecs->event_thread->stop_signal);
d4f3574e
SS
4892 }
4893
488f131b 4894 prepare_to_wait (ecs);
d4f3574e
SS
4895}
4896
104c1213
JM
4897/* This function normally comes after a resume, before
4898 handle_inferior_event exits. It takes care of any last bits of
4899 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 4900
104c1213
JM
4901static void
4902prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 4903{
527159b7 4904 if (debug_infrun)
8a9de0e4 4905 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 4906
104c1213
JM
4907 /* This is the old end of the while loop. Let everybody know we
4908 want to wait for the inferior some more and get called again
4909 soon. */
4910 ecs->wait_some_more = 1;
c906108c 4911}
11cf8741
JM
4912
4913/* Print why the inferior has stopped. We always print something when
4914 the inferior exits, or receives a signal. The rest of the cases are
4915 dealt with later on in normal_stop() and print_it_typical(). Ideally
4916 there should be a call to this function from handle_inferior_event()
4917 each time stop_stepping() is called.*/
4918static void
4919print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
4920{
4921 switch (stop_reason)
4922 {
11cf8741
JM
4923 case END_STEPPING_RANGE:
4924 /* We are done with a step/next/si/ni command. */
4925 /* For now print nothing. */
fb40c209 4926 /* Print a message only if not in the middle of doing a "step n"
488f131b 4927 operation for n > 1 */
414c69f7
PA
4928 if (!inferior_thread ()->step_multi
4929 || !inferior_thread ()->stop_step)
9dc5e2a9 4930 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4931 ui_out_field_string
4932 (uiout, "reason",
4933 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
11cf8741 4934 break;
11cf8741
JM
4935 case SIGNAL_EXITED:
4936 /* The inferior was terminated by a signal. */
8b93c638 4937 annotate_signalled ();
9dc5e2a9 4938 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4939 ui_out_field_string
4940 (uiout, "reason",
4941 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8b93c638
JM
4942 ui_out_text (uiout, "\nProgram terminated with signal ");
4943 annotate_signal_name ();
488f131b
JB
4944 ui_out_field_string (uiout, "signal-name",
4945 target_signal_to_name (stop_info));
8b93c638
JM
4946 annotate_signal_name_end ();
4947 ui_out_text (uiout, ", ");
4948 annotate_signal_string ();
488f131b
JB
4949 ui_out_field_string (uiout, "signal-meaning",
4950 target_signal_to_string (stop_info));
8b93c638
JM
4951 annotate_signal_string_end ();
4952 ui_out_text (uiout, ".\n");
4953 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
4954 break;
4955 case EXITED:
4956 /* The inferior program is finished. */
8b93c638
JM
4957 annotate_exited (stop_info);
4958 if (stop_info)
4959 {
9dc5e2a9 4960 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4961 ui_out_field_string (uiout, "reason",
4962 async_reason_lookup (EXEC_ASYNC_EXITED));
8b93c638 4963 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
4964 ui_out_field_fmt (uiout, "exit-code", "0%o",
4965 (unsigned int) stop_info);
8b93c638
JM
4966 ui_out_text (uiout, ".\n");
4967 }
4968 else
4969 {
9dc5e2a9 4970 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4971 ui_out_field_string
4972 (uiout, "reason",
4973 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8b93c638
JM
4974 ui_out_text (uiout, "\nProgram exited normally.\n");
4975 }
f17517ea
AS
4976 /* Support the --return-child-result option. */
4977 return_child_result_value = stop_info;
11cf8741
JM
4978 break;
4979 case SIGNAL_RECEIVED:
252fbfc8
PA
4980 /* Signal received. The signal table tells us to print about
4981 it. */
8b93c638 4982 annotate_signal ();
252fbfc8
PA
4983
4984 if (stop_info == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
4985 {
4986 struct thread_info *t = inferior_thread ();
4987
4988 ui_out_text (uiout, "\n[");
4989 ui_out_field_string (uiout, "thread-name",
4990 target_pid_to_str (t->ptid));
4991 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
4992 ui_out_text (uiout, " stopped");
4993 }
4994 else
4995 {
4996 ui_out_text (uiout, "\nProgram received signal ");
4997 annotate_signal_name ();
4998 if (ui_out_is_mi_like_p (uiout))
4999 ui_out_field_string
5000 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5001 ui_out_field_string (uiout, "signal-name",
5002 target_signal_to_name (stop_info));
5003 annotate_signal_name_end ();
5004 ui_out_text (uiout, ", ");
5005 annotate_signal_string ();
5006 ui_out_field_string (uiout, "signal-meaning",
5007 target_signal_to_string (stop_info));
5008 annotate_signal_string_end ();
5009 }
8b93c638 5010 ui_out_text (uiout, ".\n");
11cf8741 5011 break;
b2175913
MS
5012 case NO_HISTORY:
5013 /* Reverse execution: target ran out of history info. */
5014 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
5015 break;
11cf8741 5016 default:
8e65ff28 5017 internal_error (__FILE__, __LINE__,
e2e0b3e5 5018 _("print_stop_reason: unrecognized enum value"));
11cf8741
JM
5019 break;
5020 }
5021}
c906108c 5022\f
43ff13b4 5023
c906108c
SS
5024/* Here to return control to GDB when the inferior stops for real.
5025 Print appropriate messages, remove breakpoints, give terminal our modes.
5026
5027 STOP_PRINT_FRAME nonzero means print the executing frame
5028 (pc, function, args, file, line number and line text).
5029 BREAKPOINTS_FAILED nonzero means stop was due to error
5030 attempting to insert breakpoints. */
5031
5032void
96baa820 5033normal_stop (void)
c906108c 5034{
73b65bb0
DJ
5035 struct target_waitstatus last;
5036 ptid_t last_ptid;
29f49a6a 5037 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
5038
5039 get_last_target_status (&last_ptid, &last);
5040
29f49a6a
PA
5041 /* If an exception is thrown from this point on, make sure to
5042 propagate GDB's knowledge of the executing state to the
5043 frontend/user running state. A QUIT is an easy exception to see
5044 here, so do this before any filtered output. */
c35b1492
PA
5045 if (!non_stop)
5046 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5047 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5048 && last.kind != TARGET_WAITKIND_EXITED)
5049 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 5050
4f8d22e3
PA
5051 /* In non-stop mode, we don't want GDB to switch threads behind the
5052 user's back, to avoid races where the user is typing a command to
5053 apply to thread x, but GDB switches to thread y before the user
5054 finishes entering the command. */
5055
c906108c
SS
5056 /* As with the notification of thread events, we want to delay
5057 notifying the user that we've switched thread context until
5058 the inferior actually stops.
5059
73b65bb0
DJ
5060 There's no point in saying anything if the inferior has exited.
5061 Note that SIGNALLED here means "exited with a signal", not
5062 "received a signal". */
4f8d22e3
PA
5063 if (!non_stop
5064 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
5065 && target_has_execution
5066 && last.kind != TARGET_WAITKIND_SIGNALLED
5067 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
5068 {
5069 target_terminal_ours_for_output ();
a3f17187 5070 printf_filtered (_("[Switching to %s]\n"),
c95310c6 5071 target_pid_to_str (inferior_ptid));
b8fa951a 5072 annotate_thread_changed ();
39f77062 5073 previous_inferior_ptid = inferior_ptid;
c906108c 5074 }
c906108c 5075
74960c60 5076 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
5077 {
5078 if (remove_breakpoints ())
5079 {
5080 target_terminal_ours_for_output ();
a3f17187
AC
5081 printf_filtered (_("\
5082Cannot remove breakpoints because program is no longer writable.\n\
a3f17187 5083Further execution is probably impossible.\n"));
c906108c
SS
5084 }
5085 }
c906108c 5086
c906108c
SS
5087 /* If an auto-display called a function and that got a signal,
5088 delete that auto-display to avoid an infinite recursion. */
5089
5090 if (stopped_by_random_signal)
5091 disable_current_display ();
5092
5093 /* Don't print a message if in the middle of doing a "step n"
5094 operation for n > 1 */
af679fd0
PA
5095 if (target_has_execution
5096 && last.kind != TARGET_WAITKIND_SIGNALLED
5097 && last.kind != TARGET_WAITKIND_EXITED
5098 && inferior_thread ()->step_multi
414c69f7 5099 && inferior_thread ()->stop_step)
c906108c
SS
5100 goto done;
5101
5102 target_terminal_ours ();
5103
7abfe014
DJ
5104 /* Set the current source location. This will also happen if we
5105 display the frame below, but the current SAL will be incorrect
5106 during a user hook-stop function. */
d729566a 5107 if (has_stack_frames () && !stop_stack_dummy)
7abfe014
DJ
5108 set_current_sal_from_frame (get_current_frame (), 1);
5109
dd7e2d2b
PA
5110 /* Let the user/frontend see the threads as stopped. */
5111 do_cleanups (old_chain);
5112
5113 /* Look up the hook_stop and run it (CLI internally handles problem
5114 of stop_command's pre-hook not existing). */
5115 if (stop_command)
5116 catch_errors (hook_stop_stub, stop_command,
5117 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5118
d729566a 5119 if (!has_stack_frames ())
d51fd4c8 5120 goto done;
c906108c 5121
32400beb
PA
5122 if (last.kind == TARGET_WAITKIND_SIGNALLED
5123 || last.kind == TARGET_WAITKIND_EXITED)
5124 goto done;
5125
c906108c
SS
5126 /* Select innermost stack frame - i.e., current frame is frame 0,
5127 and current location is based on that.
5128 Don't do this on return from a stack dummy routine,
5129 or if the program has exited. */
5130
5131 if (!stop_stack_dummy)
5132 {
0f7d239c 5133 select_frame (get_current_frame ());
c906108c
SS
5134
5135 /* Print current location without a level number, if
c5aa993b
JM
5136 we have changed functions or hit a breakpoint.
5137 Print source line if we have one.
5138 bpstat_print() contains the logic deciding in detail
5139 what to print, based on the event(s) that just occurred. */
c906108c 5140
d01a8610
AS
5141 /* If --batch-silent is enabled then there's no need to print the current
5142 source location, and to try risks causing an error message about
5143 missing source files. */
5144 if (stop_print_frame && !batch_silent)
c906108c
SS
5145 {
5146 int bpstat_ret;
5147 int source_flag;
917317f4 5148 int do_frame_printing = 1;
347bddb7 5149 struct thread_info *tp = inferior_thread ();
c906108c 5150
347bddb7 5151 bpstat_ret = bpstat_print (tp->stop_bpstat);
917317f4
JM
5152 switch (bpstat_ret)
5153 {
5154 case PRINT_UNKNOWN:
b0f4b84b
DJ
5155 /* If we had hit a shared library event breakpoint,
5156 bpstat_print would print out this message. If we hit
5157 an OS-level shared library event, do the same
5158 thing. */
5159 if (last.kind == TARGET_WAITKIND_LOADED)
5160 {
5161 printf_filtered (_("Stopped due to shared library event\n"));
5162 source_flag = SRC_LINE; /* something bogus */
5163 do_frame_printing = 0;
5164 break;
5165 }
5166
aa0cd9c1 5167 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
5168 (or should) carry around the function and does (or
5169 should) use that when doing a frame comparison. */
414c69f7 5170 if (tp->stop_step
347bddb7 5171 && frame_id_eq (tp->step_frame_id,
aa0cd9c1 5172 get_frame_id (get_current_frame ()))
917317f4 5173 && step_start_function == find_pc_function (stop_pc))
488f131b 5174 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 5175 else
488f131b 5176 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
5177 break;
5178 case PRINT_SRC_AND_LOC:
488f131b 5179 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
5180 break;
5181 case PRINT_SRC_ONLY:
c5394b80 5182 source_flag = SRC_LINE;
917317f4
JM
5183 break;
5184 case PRINT_NOTHING:
488f131b 5185 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
5186 do_frame_printing = 0;
5187 break;
5188 default:
e2e0b3e5 5189 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 5190 }
c906108c
SS
5191
5192 /* The behavior of this routine with respect to the source
5193 flag is:
c5394b80
JM
5194 SRC_LINE: Print only source line
5195 LOCATION: Print only location
5196 SRC_AND_LOC: Print location and source line */
917317f4 5197 if (do_frame_printing)
b04f3ab4 5198 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
5199
5200 /* Display the auto-display expressions. */
5201 do_displays ();
5202 }
5203 }
5204
5205 /* Save the function value return registers, if we care.
5206 We might be about to restore their previous contents. */
32400beb 5207 if (inferior_thread ()->proceed_to_finish)
d5c31457
UW
5208 {
5209 /* This should not be necessary. */
5210 if (stop_registers)
5211 regcache_xfree (stop_registers);
5212
5213 /* NB: The copy goes through to the target picking up the value of
5214 all the registers. */
5215 stop_registers = regcache_dup (get_current_regcache ());
5216 }
c906108c
SS
5217
5218 if (stop_stack_dummy)
5219 {
b89667eb
DE
5220 /* Pop the empty frame that contains the stack dummy.
5221 This also restores inferior state prior to the call
5222 (struct inferior_thread_state). */
5223 struct frame_info *frame = get_current_frame ();
5224 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
5225 frame_pop (frame);
5226 /* frame_pop() calls reinit_frame_cache as the last thing it does
5227 which means there's currently no selected frame. We don't need
5228 to re-establish a selected frame if the dummy call returns normally,
5229 that will be done by restore_inferior_status. However, we do have
5230 to handle the case where the dummy call is returning after being
5231 stopped (e.g. the dummy call previously hit a breakpoint). We
5232 can't know which case we have so just always re-establish a
5233 selected frame here. */
0f7d239c 5234 select_frame (get_current_frame ());
c906108c
SS
5235 }
5236
c906108c
SS
5237done:
5238 annotate_stopped ();
41d2bdb4
PA
5239
5240 /* Suppress the stop observer if we're in the middle of:
5241
5242 - a step n (n > 1), as there still more steps to be done.
5243
5244 - a "finish" command, as the observer will be called in
5245 finish_command_continuation, so it can include the inferior
5246 function's return value.
5247
5248 - calling an inferior function, as we pretend we inferior didn't
5249 run at all. The return value of the call is handled by the
5250 expression evaluator, through call_function_by_hand. */
5251
5252 if (!target_has_execution
5253 || last.kind == TARGET_WAITKIND_SIGNALLED
5254 || last.kind == TARGET_WAITKIND_EXITED
5255 || (!inferior_thread ()->step_multi
5256 && !(inferior_thread ()->stop_bpstat
c5a4d20b
PA
5257 && inferior_thread ()->proceed_to_finish)
5258 && !inferior_thread ()->in_infcall))
347bddb7
PA
5259 {
5260 if (!ptid_equal (inferior_ptid, null_ptid))
1d33d6ba
VP
5261 observer_notify_normal_stop (inferior_thread ()->stop_bpstat,
5262 stop_print_frame);
347bddb7 5263 else
1d33d6ba 5264 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 5265 }
347bddb7 5266
48844aa6
PA
5267 if (target_has_execution)
5268 {
5269 if (last.kind != TARGET_WAITKIND_SIGNALLED
5270 && last.kind != TARGET_WAITKIND_EXITED)
5271 /* Delete the breakpoint we stopped at, if it wants to be deleted.
5272 Delete any breakpoint that is to be deleted at the next stop. */
5273 breakpoint_auto_delete (inferior_thread ()->stop_bpstat);
94cc34af 5274 }
6c95b8df
PA
5275
5276 /* Try to get rid of automatically added inferiors that are no
5277 longer needed. Keeping those around slows down things linearly.
5278 Note that this never removes the current inferior. */
5279 prune_inferiors ();
c906108c
SS
5280}
5281
5282static int
96baa820 5283hook_stop_stub (void *cmd)
c906108c 5284{
5913bcb0 5285 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
5286 return (0);
5287}
5288\f
c5aa993b 5289int
96baa820 5290signal_stop_state (int signo)
c906108c 5291{
d6b48e9c 5292 return signal_stop[signo];
c906108c
SS
5293}
5294
c5aa993b 5295int
96baa820 5296signal_print_state (int signo)
c906108c
SS
5297{
5298 return signal_print[signo];
5299}
5300
c5aa993b 5301int
96baa820 5302signal_pass_state (int signo)
c906108c
SS
5303{
5304 return signal_program[signo];
5305}
5306
488f131b 5307int
7bda5e4a 5308signal_stop_update (int signo, int state)
d4f3574e
SS
5309{
5310 int ret = signal_stop[signo];
5311 signal_stop[signo] = state;
5312 return ret;
5313}
5314
488f131b 5315int
7bda5e4a 5316signal_print_update (int signo, int state)
d4f3574e
SS
5317{
5318 int ret = signal_print[signo];
5319 signal_print[signo] = state;
5320 return ret;
5321}
5322
488f131b 5323int
7bda5e4a 5324signal_pass_update (int signo, int state)
d4f3574e
SS
5325{
5326 int ret = signal_program[signo];
5327 signal_program[signo] = state;
5328 return ret;
5329}
5330
c906108c 5331static void
96baa820 5332sig_print_header (void)
c906108c 5333{
a3f17187
AC
5334 printf_filtered (_("\
5335Signal Stop\tPrint\tPass to program\tDescription\n"));
c906108c
SS
5336}
5337
5338static void
96baa820 5339sig_print_info (enum target_signal oursig)
c906108c 5340{
54363045 5341 const char *name = target_signal_to_name (oursig);
c906108c 5342 int name_padding = 13 - strlen (name);
96baa820 5343
c906108c
SS
5344 if (name_padding <= 0)
5345 name_padding = 0;
5346
5347 printf_filtered ("%s", name);
488f131b 5348 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
5349 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
5350 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
5351 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
5352 printf_filtered ("%s\n", target_signal_to_string (oursig));
5353}
5354
5355/* Specify how various signals in the inferior should be handled. */
5356
5357static void
96baa820 5358handle_command (char *args, int from_tty)
c906108c
SS
5359{
5360 char **argv;
5361 int digits, wordlen;
5362 int sigfirst, signum, siglast;
5363 enum target_signal oursig;
5364 int allsigs;
5365 int nsigs;
5366 unsigned char *sigs;
5367 struct cleanup *old_chain;
5368
5369 if (args == NULL)
5370 {
e2e0b3e5 5371 error_no_arg (_("signal to handle"));
c906108c
SS
5372 }
5373
5374 /* Allocate and zero an array of flags for which signals to handle. */
5375
5376 nsigs = (int) TARGET_SIGNAL_LAST;
5377 sigs = (unsigned char *) alloca (nsigs);
5378 memset (sigs, 0, nsigs);
5379
5380 /* Break the command line up into args. */
5381
d1a41061 5382 argv = gdb_buildargv (args);
7a292a7a 5383 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
5384
5385 /* Walk through the args, looking for signal oursigs, signal names, and
5386 actions. Signal numbers and signal names may be interspersed with
5387 actions, with the actions being performed for all signals cumulatively
5388 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
5389
5390 while (*argv != NULL)
5391 {
5392 wordlen = strlen (*argv);
5393 for (digits = 0; isdigit ((*argv)[digits]); digits++)
5394 {;
5395 }
5396 allsigs = 0;
5397 sigfirst = siglast = -1;
5398
5399 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
5400 {
5401 /* Apply action to all signals except those used by the
5402 debugger. Silently skip those. */
5403 allsigs = 1;
5404 sigfirst = 0;
5405 siglast = nsigs - 1;
5406 }
5407 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
5408 {
5409 SET_SIGS (nsigs, sigs, signal_stop);
5410 SET_SIGS (nsigs, sigs, signal_print);
5411 }
5412 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
5413 {
5414 UNSET_SIGS (nsigs, sigs, signal_program);
5415 }
5416 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
5417 {
5418 SET_SIGS (nsigs, sigs, signal_print);
5419 }
5420 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
5421 {
5422 SET_SIGS (nsigs, sigs, signal_program);
5423 }
5424 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
5425 {
5426 UNSET_SIGS (nsigs, sigs, signal_stop);
5427 }
5428 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
5429 {
5430 SET_SIGS (nsigs, sigs, signal_program);
5431 }
5432 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
5433 {
5434 UNSET_SIGS (nsigs, sigs, signal_print);
5435 UNSET_SIGS (nsigs, sigs, signal_stop);
5436 }
5437 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
5438 {
5439 UNSET_SIGS (nsigs, sigs, signal_program);
5440 }
5441 else if (digits > 0)
5442 {
5443 /* It is numeric. The numeric signal refers to our own
5444 internal signal numbering from target.h, not to host/target
5445 signal number. This is a feature; users really should be
5446 using symbolic names anyway, and the common ones like
5447 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
5448
5449 sigfirst = siglast = (int)
5450 target_signal_from_command (atoi (*argv));
5451 if ((*argv)[digits] == '-')
5452 {
5453 siglast = (int)
5454 target_signal_from_command (atoi ((*argv) + digits + 1));
5455 }
5456 if (sigfirst > siglast)
5457 {
5458 /* Bet he didn't figure we'd think of this case... */
5459 signum = sigfirst;
5460 sigfirst = siglast;
5461 siglast = signum;
5462 }
5463 }
5464 else
5465 {
5466 oursig = target_signal_from_name (*argv);
5467 if (oursig != TARGET_SIGNAL_UNKNOWN)
5468 {
5469 sigfirst = siglast = (int) oursig;
5470 }
5471 else
5472 {
5473 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 5474 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
5475 }
5476 }
5477
5478 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 5479 which signals to apply actions to. */
c906108c
SS
5480
5481 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
5482 {
5483 switch ((enum target_signal) signum)
5484 {
5485 case TARGET_SIGNAL_TRAP:
5486 case TARGET_SIGNAL_INT:
5487 if (!allsigs && !sigs[signum])
5488 {
9e2f0ad4
HZ
5489 if (query (_("%s is used by the debugger.\n\
5490Are you sure you want to change it? "), target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
5491 {
5492 sigs[signum] = 1;
5493 }
5494 else
5495 {
a3f17187 5496 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
5497 gdb_flush (gdb_stdout);
5498 }
5499 }
5500 break;
5501 case TARGET_SIGNAL_0:
5502 case TARGET_SIGNAL_DEFAULT:
5503 case TARGET_SIGNAL_UNKNOWN:
5504 /* Make sure that "all" doesn't print these. */
5505 break;
5506 default:
5507 sigs[signum] = 1;
5508 break;
5509 }
5510 }
5511
5512 argv++;
5513 }
5514
3a031f65
PA
5515 for (signum = 0; signum < nsigs; signum++)
5516 if (sigs[signum])
5517 {
5518 target_notice_signals (inferior_ptid);
c906108c 5519
3a031f65
PA
5520 if (from_tty)
5521 {
5522 /* Show the results. */
5523 sig_print_header ();
5524 for (; signum < nsigs; signum++)
5525 if (sigs[signum])
5526 sig_print_info (signum);
5527 }
5528
5529 break;
5530 }
c906108c
SS
5531
5532 do_cleanups (old_chain);
5533}
5534
5535static void
96baa820 5536xdb_handle_command (char *args, int from_tty)
c906108c
SS
5537{
5538 char **argv;
5539 struct cleanup *old_chain;
5540
d1a41061
PP
5541 if (args == NULL)
5542 error_no_arg (_("xdb command"));
5543
c906108c
SS
5544 /* Break the command line up into args. */
5545
d1a41061 5546 argv = gdb_buildargv (args);
7a292a7a 5547 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
5548 if (argv[1] != (char *) NULL)
5549 {
5550 char *argBuf;
5551 int bufLen;
5552
5553 bufLen = strlen (argv[0]) + 20;
5554 argBuf = (char *) xmalloc (bufLen);
5555 if (argBuf)
5556 {
5557 int validFlag = 1;
5558 enum target_signal oursig;
5559
5560 oursig = target_signal_from_name (argv[0]);
5561 memset (argBuf, 0, bufLen);
5562 if (strcmp (argv[1], "Q") == 0)
5563 sprintf (argBuf, "%s %s", argv[0], "noprint");
5564 else
5565 {
5566 if (strcmp (argv[1], "s") == 0)
5567 {
5568 if (!signal_stop[oursig])
5569 sprintf (argBuf, "%s %s", argv[0], "stop");
5570 else
5571 sprintf (argBuf, "%s %s", argv[0], "nostop");
5572 }
5573 else if (strcmp (argv[1], "i") == 0)
5574 {
5575 if (!signal_program[oursig])
5576 sprintf (argBuf, "%s %s", argv[0], "pass");
5577 else
5578 sprintf (argBuf, "%s %s", argv[0], "nopass");
5579 }
5580 else if (strcmp (argv[1], "r") == 0)
5581 {
5582 if (!signal_print[oursig])
5583 sprintf (argBuf, "%s %s", argv[0], "print");
5584 else
5585 sprintf (argBuf, "%s %s", argv[0], "noprint");
5586 }
5587 else
5588 validFlag = 0;
5589 }
5590 if (validFlag)
5591 handle_command (argBuf, from_tty);
5592 else
a3f17187 5593 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 5594 if (argBuf)
b8c9b27d 5595 xfree (argBuf);
c906108c
SS
5596 }
5597 }
5598 do_cleanups (old_chain);
5599}
5600
5601/* Print current contents of the tables set by the handle command.
5602 It is possible we should just be printing signals actually used
5603 by the current target (but for things to work right when switching
5604 targets, all signals should be in the signal tables). */
5605
5606static void
96baa820 5607signals_info (char *signum_exp, int from_tty)
c906108c
SS
5608{
5609 enum target_signal oursig;
5610 sig_print_header ();
5611
5612 if (signum_exp)
5613 {
5614 /* First see if this is a symbol name. */
5615 oursig = target_signal_from_name (signum_exp);
5616 if (oursig == TARGET_SIGNAL_UNKNOWN)
5617 {
5618 /* No, try numeric. */
5619 oursig =
bb518678 5620 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
5621 }
5622 sig_print_info (oursig);
5623 return;
5624 }
5625
5626 printf_filtered ("\n");
5627 /* These ugly casts brought to you by the native VAX compiler. */
5628 for (oursig = TARGET_SIGNAL_FIRST;
5629 (int) oursig < (int) TARGET_SIGNAL_LAST;
5630 oursig = (enum target_signal) ((int) oursig + 1))
5631 {
5632 QUIT;
5633
5634 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 5635 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
5636 sig_print_info (oursig);
5637 }
5638
a3f17187 5639 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
c906108c 5640}
4aa995e1
PA
5641
5642/* The $_siginfo convenience variable is a bit special. We don't know
5643 for sure the type of the value until we actually have a chance to
5644 fetch the data. The type can change depending on gdbarch, so it it
5645 also dependent on which thread you have selected.
5646
5647 1. making $_siginfo be an internalvar that creates a new value on
5648 access.
5649
5650 2. making the value of $_siginfo be an lval_computed value. */
5651
5652/* This function implements the lval_computed support for reading a
5653 $_siginfo value. */
5654
5655static void
5656siginfo_value_read (struct value *v)
5657{
5658 LONGEST transferred;
5659
5660 transferred =
5661 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
5662 NULL,
5663 value_contents_all_raw (v),
5664 value_offset (v),
5665 TYPE_LENGTH (value_type (v)));
5666
5667 if (transferred != TYPE_LENGTH (value_type (v)))
5668 error (_("Unable to read siginfo"));
5669}
5670
5671/* This function implements the lval_computed support for writing a
5672 $_siginfo value. */
5673
5674static void
5675siginfo_value_write (struct value *v, struct value *fromval)
5676{
5677 LONGEST transferred;
5678
5679 transferred = target_write (&current_target,
5680 TARGET_OBJECT_SIGNAL_INFO,
5681 NULL,
5682 value_contents_all_raw (fromval),
5683 value_offset (v),
5684 TYPE_LENGTH (value_type (fromval)));
5685
5686 if (transferred != TYPE_LENGTH (value_type (fromval)))
5687 error (_("Unable to write siginfo"));
5688}
5689
5690static struct lval_funcs siginfo_value_funcs =
5691 {
5692 siginfo_value_read,
5693 siginfo_value_write
5694 };
5695
5696/* Return a new value with the correct type for the siginfo object of
78267919
UW
5697 the current thread using architecture GDBARCH. Return a void value
5698 if there's no object available. */
4aa995e1 5699
2c0b251b 5700static struct value *
78267919 5701siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
4aa995e1 5702{
4aa995e1 5703 if (target_has_stack
78267919
UW
5704 && !ptid_equal (inferior_ptid, null_ptid)
5705 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 5706 {
78267919
UW
5707 struct type *type = gdbarch_get_siginfo_type (gdbarch);
5708 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
5709 }
5710
78267919 5711 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
5712}
5713
c906108c 5714\f
b89667eb
DE
5715/* Inferior thread state.
5716 These are details related to the inferior itself, and don't include
5717 things like what frame the user had selected or what gdb was doing
5718 with the target at the time.
5719 For inferior function calls these are things we want to restore
5720 regardless of whether the function call successfully completes
5721 or the dummy frame has to be manually popped. */
5722
5723struct inferior_thread_state
7a292a7a
SS
5724{
5725 enum target_signal stop_signal;
5726 CORE_ADDR stop_pc;
b89667eb
DE
5727 struct regcache *registers;
5728};
5729
5730struct inferior_thread_state *
5731save_inferior_thread_state (void)
5732{
5733 struct inferior_thread_state *inf_state = XMALLOC (struct inferior_thread_state);
5734 struct thread_info *tp = inferior_thread ();
5735
5736 inf_state->stop_signal = tp->stop_signal;
5737 inf_state->stop_pc = stop_pc;
5738
5739 inf_state->registers = regcache_dup (get_current_regcache ());
5740
5741 return inf_state;
5742}
5743
5744/* Restore inferior session state to INF_STATE. */
5745
5746void
5747restore_inferior_thread_state (struct inferior_thread_state *inf_state)
5748{
5749 struct thread_info *tp = inferior_thread ();
5750
5751 tp->stop_signal = inf_state->stop_signal;
5752 stop_pc = inf_state->stop_pc;
5753
5754 /* The inferior can be gone if the user types "print exit(0)"
5755 (and perhaps other times). */
5756 if (target_has_execution)
5757 /* NB: The register write goes through to the target. */
5758 regcache_cpy (get_current_regcache (), inf_state->registers);
5759 regcache_xfree (inf_state->registers);
5760 xfree (inf_state);
5761}
5762
5763static void
5764do_restore_inferior_thread_state_cleanup (void *state)
5765{
5766 restore_inferior_thread_state (state);
5767}
5768
5769struct cleanup *
5770make_cleanup_restore_inferior_thread_state (struct inferior_thread_state *inf_state)
5771{
5772 return make_cleanup (do_restore_inferior_thread_state_cleanup, inf_state);
5773}
5774
5775void
5776discard_inferior_thread_state (struct inferior_thread_state *inf_state)
5777{
5778 regcache_xfree (inf_state->registers);
5779 xfree (inf_state);
5780}
5781
5782struct regcache *
5783get_inferior_thread_state_regcache (struct inferior_thread_state *inf_state)
5784{
5785 return inf_state->registers;
5786}
5787
5788/* Session related state for inferior function calls.
5789 These are the additional bits of state that need to be restored
5790 when an inferior function call successfully completes. */
5791
5792struct inferior_status
5793{
7a292a7a
SS
5794 bpstat stop_bpstat;
5795 int stop_step;
5796 int stop_stack_dummy;
5797 int stopped_by_random_signal;
ca67fcb8 5798 int stepping_over_breakpoint;
7a292a7a
SS
5799 CORE_ADDR step_range_start;
5800 CORE_ADDR step_range_end;
aa0cd9c1 5801 struct frame_id step_frame_id;
edb3359d 5802 struct frame_id step_stack_frame_id;
5fbbeb29 5803 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
5804 CORE_ADDR step_resume_break_address;
5805 int stop_after_trap;
c0236d92 5806 int stop_soon;
7a292a7a 5807
b89667eb 5808 /* ID if the selected frame when the inferior function call was made. */
101dcfbe
AC
5809 struct frame_id selected_frame_id;
5810
7a292a7a 5811 int proceed_to_finish;
c5a4d20b 5812 int in_infcall;
7a292a7a
SS
5813};
5814
c906108c 5815/* Save all of the information associated with the inferior<==>gdb
b89667eb 5816 connection. */
c906108c 5817
7a292a7a 5818struct inferior_status *
b89667eb 5819save_inferior_status (void)
c906108c 5820{
72cec141 5821 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
4e1c45ea 5822 struct thread_info *tp = inferior_thread ();
d6b48e9c 5823 struct inferior *inf = current_inferior ();
7a292a7a 5824
414c69f7 5825 inf_status->stop_step = tp->stop_step;
c906108c
SS
5826 inf_status->stop_stack_dummy = stop_stack_dummy;
5827 inf_status->stopped_by_random_signal = stopped_by_random_signal;
4e1c45ea
PA
5828 inf_status->stepping_over_breakpoint = tp->trap_expected;
5829 inf_status->step_range_start = tp->step_range_start;
5830 inf_status->step_range_end = tp->step_range_end;
5831 inf_status->step_frame_id = tp->step_frame_id;
edb3359d 5832 inf_status->step_stack_frame_id = tp->step_stack_frame_id;
078130d0 5833 inf_status->step_over_calls = tp->step_over_calls;
c906108c 5834 inf_status->stop_after_trap = stop_after_trap;
d6b48e9c 5835 inf_status->stop_soon = inf->stop_soon;
c906108c
SS
5836 /* Save original bpstat chain here; replace it with copy of chain.
5837 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
5838 hand them back the original chain when restore_inferior_status is
5839 called. */
347bddb7
PA
5840 inf_status->stop_bpstat = tp->stop_bpstat;
5841 tp->stop_bpstat = bpstat_copy (tp->stop_bpstat);
32400beb 5842 inf_status->proceed_to_finish = tp->proceed_to_finish;
c5a4d20b 5843 inf_status->in_infcall = tp->in_infcall;
c5aa993b 5844
206415a3 5845 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 5846
7a292a7a 5847 return inf_status;
c906108c
SS
5848}
5849
c906108c 5850static int
96baa820 5851restore_selected_frame (void *args)
c906108c 5852{
488f131b 5853 struct frame_id *fid = (struct frame_id *) args;
c906108c 5854 struct frame_info *frame;
c906108c 5855
101dcfbe 5856 frame = frame_find_by_id (*fid);
c906108c 5857
aa0cd9c1
AC
5858 /* If inf_status->selected_frame_id is NULL, there was no previously
5859 selected frame. */
101dcfbe 5860 if (frame == NULL)
c906108c 5861 {
8a3fe4f8 5862 warning (_("Unable to restore previously selected frame."));
c906108c
SS
5863 return 0;
5864 }
5865
0f7d239c 5866 select_frame (frame);
c906108c
SS
5867
5868 return (1);
5869}
5870
b89667eb
DE
5871/* Restore inferior session state to INF_STATUS. */
5872
c906108c 5873void
96baa820 5874restore_inferior_status (struct inferior_status *inf_status)
c906108c 5875{
4e1c45ea 5876 struct thread_info *tp = inferior_thread ();
d6b48e9c 5877 struct inferior *inf = current_inferior ();
4e1c45ea 5878
414c69f7 5879 tp->stop_step = inf_status->stop_step;
c906108c
SS
5880 stop_stack_dummy = inf_status->stop_stack_dummy;
5881 stopped_by_random_signal = inf_status->stopped_by_random_signal;
4e1c45ea
PA
5882 tp->trap_expected = inf_status->stepping_over_breakpoint;
5883 tp->step_range_start = inf_status->step_range_start;
5884 tp->step_range_end = inf_status->step_range_end;
5885 tp->step_frame_id = inf_status->step_frame_id;
edb3359d 5886 tp->step_stack_frame_id = inf_status->step_stack_frame_id;
078130d0 5887 tp->step_over_calls = inf_status->step_over_calls;
c906108c 5888 stop_after_trap = inf_status->stop_after_trap;
d6b48e9c 5889 inf->stop_soon = inf_status->stop_soon;
347bddb7
PA
5890 bpstat_clear (&tp->stop_bpstat);
5891 tp->stop_bpstat = inf_status->stop_bpstat;
b89667eb 5892 inf_status->stop_bpstat = NULL;
32400beb 5893 tp->proceed_to_finish = inf_status->proceed_to_finish;
c5a4d20b 5894 tp->in_infcall = inf_status->in_infcall;
c906108c 5895
b89667eb 5896 if (target_has_stack)
c906108c 5897 {
c906108c 5898 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
5899 walking the stack might encounter a garbage pointer and
5900 error() trying to dereference it. */
488f131b
JB
5901 if (catch_errors
5902 (restore_selected_frame, &inf_status->selected_frame_id,
5903 "Unable to restore previously selected frame:\n",
5904 RETURN_MASK_ERROR) == 0)
c906108c
SS
5905 /* Error in restoring the selected frame. Select the innermost
5906 frame. */
0f7d239c 5907 select_frame (get_current_frame ());
c906108c 5908 }
c906108c 5909
72cec141 5910 xfree (inf_status);
7a292a7a 5911}
c906108c 5912
74b7792f
AC
5913static void
5914do_restore_inferior_status_cleanup (void *sts)
5915{
5916 restore_inferior_status (sts);
5917}
5918
5919struct cleanup *
5920make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
5921{
5922 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
5923}
5924
c906108c 5925void
96baa820 5926discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
5927{
5928 /* See save_inferior_status for info on stop_bpstat. */
5929 bpstat_clear (&inf_status->stop_bpstat);
72cec141 5930 xfree (inf_status);
7a292a7a 5931}
b89667eb 5932\f
47932f85 5933int
3a3e9ee3 5934inferior_has_forked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
5935{
5936 struct target_waitstatus last;
5937 ptid_t last_ptid;
5938
5939 get_last_target_status (&last_ptid, &last);
5940
5941 if (last.kind != TARGET_WAITKIND_FORKED)
5942 return 0;
5943
3a3e9ee3 5944 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
5945 return 0;
5946
5947 *child_pid = last.value.related_pid;
5948 return 1;
5949}
5950
5951int
3a3e9ee3 5952inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
5953{
5954 struct target_waitstatus last;
5955 ptid_t last_ptid;
5956
5957 get_last_target_status (&last_ptid, &last);
5958
5959 if (last.kind != TARGET_WAITKIND_VFORKED)
5960 return 0;
5961
3a3e9ee3 5962 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
5963 return 0;
5964
5965 *child_pid = last.value.related_pid;
5966 return 1;
5967}
5968
5969int
3a3e9ee3 5970inferior_has_execd (ptid_t pid, char **execd_pathname)
47932f85
DJ
5971{
5972 struct target_waitstatus last;
5973 ptid_t last_ptid;
5974
5975 get_last_target_status (&last_ptid, &last);
5976
5977 if (last.kind != TARGET_WAITKIND_EXECD)
5978 return 0;
5979
3a3e9ee3 5980 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
5981 return 0;
5982
5983 *execd_pathname = xstrdup (last.value.execd_pathname);
5984 return 1;
5985}
5986
a96d9b2e
SDJ
5987int
5988inferior_has_called_syscall (ptid_t pid, int *syscall_number)
5989{
5990 struct target_waitstatus last;
5991 ptid_t last_ptid;
5992
5993 get_last_target_status (&last_ptid, &last);
5994
5995 if (last.kind != TARGET_WAITKIND_SYSCALL_ENTRY &&
5996 last.kind != TARGET_WAITKIND_SYSCALL_RETURN)
5997 return 0;
5998
5999 if (!ptid_equal (last_ptid, pid))
6000 return 0;
6001
6002 *syscall_number = last.value.syscall_number;
6003 return 1;
6004}
6005
ca6724c1
KB
6006/* Oft used ptids */
6007ptid_t null_ptid;
6008ptid_t minus_one_ptid;
6009
6010/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 6011
ca6724c1
KB
6012ptid_t
6013ptid_build (int pid, long lwp, long tid)
6014{
6015 ptid_t ptid;
6016
6017 ptid.pid = pid;
6018 ptid.lwp = lwp;
6019 ptid.tid = tid;
6020 return ptid;
6021}
6022
6023/* Create a ptid from just a pid. */
6024
6025ptid_t
6026pid_to_ptid (int pid)
6027{
6028 return ptid_build (pid, 0, 0);
6029}
6030
6031/* Fetch the pid (process id) component from a ptid. */
6032
6033int
6034ptid_get_pid (ptid_t ptid)
6035{
6036 return ptid.pid;
6037}
6038
6039/* Fetch the lwp (lightweight process) component from a ptid. */
6040
6041long
6042ptid_get_lwp (ptid_t ptid)
6043{
6044 return ptid.lwp;
6045}
6046
6047/* Fetch the tid (thread id) component from a ptid. */
6048
6049long
6050ptid_get_tid (ptid_t ptid)
6051{
6052 return ptid.tid;
6053}
6054
6055/* ptid_equal() is used to test equality of two ptids. */
6056
6057int
6058ptid_equal (ptid_t ptid1, ptid_t ptid2)
6059{
6060 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 6061 && ptid1.tid == ptid2.tid);
ca6724c1
KB
6062}
6063
252fbfc8
PA
6064/* Returns true if PTID represents a process. */
6065
6066int
6067ptid_is_pid (ptid_t ptid)
6068{
6069 if (ptid_equal (minus_one_ptid, ptid))
6070 return 0;
6071 if (ptid_equal (null_ptid, ptid))
6072 return 0;
6073
6074 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
6075}
6076
ca6724c1
KB
6077/* restore_inferior_ptid() will be used by the cleanup machinery
6078 to restore the inferior_ptid value saved in a call to
6079 save_inferior_ptid(). */
ce696e05
KB
6080
6081static void
6082restore_inferior_ptid (void *arg)
6083{
6084 ptid_t *saved_ptid_ptr = arg;
6085 inferior_ptid = *saved_ptid_ptr;
6086 xfree (arg);
6087}
6088
6089/* Save the value of inferior_ptid so that it may be restored by a
6090 later call to do_cleanups(). Returns the struct cleanup pointer
6091 needed for later doing the cleanup. */
6092
6093struct cleanup *
6094save_inferior_ptid (void)
6095{
6096 ptid_t *saved_ptid_ptr;
6097
6098 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6099 *saved_ptid_ptr = inferior_ptid;
6100 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6101}
c5aa993b 6102\f
488f131b 6103
b2175913
MS
6104/* User interface for reverse debugging:
6105 Set exec-direction / show exec-direction commands
6106 (returns error unless target implements to_set_exec_direction method). */
6107
6108enum exec_direction_kind execution_direction = EXEC_FORWARD;
6109static const char exec_forward[] = "forward";
6110static const char exec_reverse[] = "reverse";
6111static const char *exec_direction = exec_forward;
6112static const char *exec_direction_names[] = {
6113 exec_forward,
6114 exec_reverse,
6115 NULL
6116};
6117
6118static void
6119set_exec_direction_func (char *args, int from_tty,
6120 struct cmd_list_element *cmd)
6121{
6122 if (target_can_execute_reverse)
6123 {
6124 if (!strcmp (exec_direction, exec_forward))
6125 execution_direction = EXEC_FORWARD;
6126 else if (!strcmp (exec_direction, exec_reverse))
6127 execution_direction = EXEC_REVERSE;
6128 }
6129}
6130
6131static void
6132show_exec_direction_func (struct ui_file *out, int from_tty,
6133 struct cmd_list_element *cmd, const char *value)
6134{
6135 switch (execution_direction) {
6136 case EXEC_FORWARD:
6137 fprintf_filtered (out, _("Forward.\n"));
6138 break;
6139 case EXEC_REVERSE:
6140 fprintf_filtered (out, _("Reverse.\n"));
6141 break;
6142 case EXEC_ERROR:
6143 default:
6144 fprintf_filtered (out,
6145 _("Forward (target `%s' does not support exec-direction).\n"),
6146 target_shortname);
6147 break;
6148 }
6149}
6150
6151/* User interface for non-stop mode. */
6152
ad52ddc6
PA
6153int non_stop = 0;
6154static int non_stop_1 = 0;
6155
6156static void
6157set_non_stop (char *args, int from_tty,
6158 struct cmd_list_element *c)
6159{
6160 if (target_has_execution)
6161 {
6162 non_stop_1 = non_stop;
6163 error (_("Cannot change this setting while the inferior is running."));
6164 }
6165
6166 non_stop = non_stop_1;
6167}
6168
6169static void
6170show_non_stop (struct ui_file *file, int from_tty,
6171 struct cmd_list_element *c, const char *value)
6172{
6173 fprintf_filtered (file,
6174 _("Controlling the inferior in non-stop mode is %s.\n"),
6175 value);
6176}
6177
d4db2f36
PA
6178static void
6179show_schedule_multiple (struct ui_file *file, int from_tty,
6180 struct cmd_list_element *c, const char *value)
6181{
6182 fprintf_filtered (file, _("\
6183Resuming the execution of threads of all processes is %s.\n"), value);
6184}
ad52ddc6 6185
c906108c 6186void
96baa820 6187_initialize_infrun (void)
c906108c 6188{
52f0bd74
AC
6189 int i;
6190 int numsigs;
c906108c
SS
6191 struct cmd_list_element *c;
6192
1bedd215
AC
6193 add_info ("signals", signals_info, _("\
6194What debugger does when program gets various signals.\n\
6195Specify a signal as argument to print info on that signal only."));
c906108c
SS
6196 add_info_alias ("handle", "signals", 0);
6197
1bedd215
AC
6198 add_com ("handle", class_run, handle_command, _("\
6199Specify how to handle a signal.\n\
c906108c
SS
6200Args are signals and actions to apply to those signals.\n\
6201Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6202from 1-15 are allowed for compatibility with old versions of GDB.\n\
6203Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6204The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
6205used by the debugger, typically SIGTRAP and SIGINT.\n\
6206Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
6207\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
6208Stop means reenter debugger if this signal happens (implies print).\n\
6209Print means print a message if this signal happens.\n\
6210Pass means let program see this signal; otherwise program doesn't know.\n\
6211Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 6212Pass and Stop may be combined."));
c906108c
SS
6213 if (xdb_commands)
6214 {
1bedd215
AC
6215 add_com ("lz", class_info, signals_info, _("\
6216What debugger does when program gets various signals.\n\
6217Specify a signal as argument to print info on that signal only."));
6218 add_com ("z", class_run, xdb_handle_command, _("\
6219Specify how to handle a signal.\n\
c906108c
SS
6220Args are signals and actions to apply to those signals.\n\
6221Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6222from 1-15 are allowed for compatibility with old versions of GDB.\n\
6223Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6224The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
6225used by the debugger, typically SIGTRAP and SIGINT.\n\
6226Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
6227\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
6228nopass), \"Q\" (noprint)\n\
6229Stop means reenter debugger if this signal happens (implies print).\n\
6230Print means print a message if this signal happens.\n\
6231Pass means let program see this signal; otherwise program doesn't know.\n\
6232Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 6233Pass and Stop may be combined."));
c906108c
SS
6234 }
6235
6236 if (!dbx_commands)
1a966eab
AC
6237 stop_command = add_cmd ("stop", class_obscure,
6238 not_just_help_class_command, _("\
6239There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 6240This allows you to set a list of commands to be run each time execution\n\
1a966eab 6241of the program stops."), &cmdlist);
c906108c 6242
85c07804
AC
6243 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
6244Set inferior debugging."), _("\
6245Show inferior debugging."), _("\
6246When non-zero, inferior specific debugging is enabled."),
6247 NULL,
920d2a44 6248 show_debug_infrun,
85c07804 6249 &setdebuglist, &showdebuglist);
527159b7 6250
237fc4c9
PA
6251 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
6252Set displaced stepping debugging."), _("\
6253Show displaced stepping debugging."), _("\
6254When non-zero, displaced stepping specific debugging is enabled."),
6255 NULL,
6256 show_debug_displaced,
6257 &setdebuglist, &showdebuglist);
6258
ad52ddc6
PA
6259 add_setshow_boolean_cmd ("non-stop", no_class,
6260 &non_stop_1, _("\
6261Set whether gdb controls the inferior in non-stop mode."), _("\
6262Show whether gdb controls the inferior in non-stop mode."), _("\
6263When debugging a multi-threaded program and this setting is\n\
6264off (the default, also called all-stop mode), when one thread stops\n\
6265(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
6266all other threads in the program while you interact with the thread of\n\
6267interest. When you continue or step a thread, you can allow the other\n\
6268threads to run, or have them remain stopped, but while you inspect any\n\
6269thread's state, all threads stop.\n\
6270\n\
6271In non-stop mode, when one thread stops, other threads can continue\n\
6272to run freely. You'll be able to step each thread independently,\n\
6273leave it stopped or free to run as needed."),
6274 set_non_stop,
6275 show_non_stop,
6276 &setlist,
6277 &showlist);
6278
c906108c 6279 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 6280 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
6281 signal_print = (unsigned char *)
6282 xmalloc (sizeof (signal_print[0]) * numsigs);
6283 signal_program = (unsigned char *)
6284 xmalloc (sizeof (signal_program[0]) * numsigs);
6285 for (i = 0; i < numsigs; i++)
6286 {
6287 signal_stop[i] = 1;
6288 signal_print[i] = 1;
6289 signal_program[i] = 1;
6290 }
6291
6292 /* Signals caused by debugger's own actions
6293 should not be given to the program afterwards. */
6294 signal_program[TARGET_SIGNAL_TRAP] = 0;
6295 signal_program[TARGET_SIGNAL_INT] = 0;
6296
6297 /* Signals that are not errors should not normally enter the debugger. */
6298 signal_stop[TARGET_SIGNAL_ALRM] = 0;
6299 signal_print[TARGET_SIGNAL_ALRM] = 0;
6300 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
6301 signal_print[TARGET_SIGNAL_VTALRM] = 0;
6302 signal_stop[TARGET_SIGNAL_PROF] = 0;
6303 signal_print[TARGET_SIGNAL_PROF] = 0;
6304 signal_stop[TARGET_SIGNAL_CHLD] = 0;
6305 signal_print[TARGET_SIGNAL_CHLD] = 0;
6306 signal_stop[TARGET_SIGNAL_IO] = 0;
6307 signal_print[TARGET_SIGNAL_IO] = 0;
6308 signal_stop[TARGET_SIGNAL_POLL] = 0;
6309 signal_print[TARGET_SIGNAL_POLL] = 0;
6310 signal_stop[TARGET_SIGNAL_URG] = 0;
6311 signal_print[TARGET_SIGNAL_URG] = 0;
6312 signal_stop[TARGET_SIGNAL_WINCH] = 0;
6313 signal_print[TARGET_SIGNAL_WINCH] = 0;
6314
cd0fc7c3
SS
6315 /* These signals are used internally by user-level thread
6316 implementations. (See signal(5) on Solaris.) Like the above
6317 signals, a healthy program receives and handles them as part of
6318 its normal operation. */
6319 signal_stop[TARGET_SIGNAL_LWP] = 0;
6320 signal_print[TARGET_SIGNAL_LWP] = 0;
6321 signal_stop[TARGET_SIGNAL_WAITING] = 0;
6322 signal_print[TARGET_SIGNAL_WAITING] = 0;
6323 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
6324 signal_print[TARGET_SIGNAL_CANCEL] = 0;
6325
85c07804
AC
6326 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
6327 &stop_on_solib_events, _("\
6328Set stopping for shared library events."), _("\
6329Show stopping for shared library events."), _("\
c906108c
SS
6330If nonzero, gdb will give control to the user when the dynamic linker\n\
6331notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
6332to the user would be loading/unloading of a new library."),
6333 NULL,
920d2a44 6334 show_stop_on_solib_events,
85c07804 6335 &setlist, &showlist);
c906108c 6336
7ab04401
AC
6337 add_setshow_enum_cmd ("follow-fork-mode", class_run,
6338 follow_fork_mode_kind_names,
6339 &follow_fork_mode_string, _("\
6340Set debugger response to a program call of fork or vfork."), _("\
6341Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
6342A fork or vfork creates a new process. follow-fork-mode can be:\n\
6343 parent - the original process is debugged after a fork\n\
6344 child - the new process is debugged after a fork\n\
ea1dd7bc 6345The unfollowed process will continue to run.\n\
7ab04401
AC
6346By default, the debugger will follow the parent process."),
6347 NULL,
920d2a44 6348 show_follow_fork_mode_string,
7ab04401
AC
6349 &setlist, &showlist);
6350
6c95b8df
PA
6351 add_setshow_enum_cmd ("follow-exec-mode", class_run,
6352 follow_exec_mode_names,
6353 &follow_exec_mode_string, _("\
6354Set debugger response to a program call of exec."), _("\
6355Show debugger response to a program call of exec."), _("\
6356An exec call replaces the program image of a process.\n\
6357\n\
6358follow-exec-mode can be:\n\
6359\n\
6360 new - the debugger creates a new inferior and rebinds the process \n\
6361to this new inferior. The program the process was running before\n\
6362the exec call can be restarted afterwards by restarting the original\n\
6363inferior.\n\
6364\n\
6365 same - the debugger keeps the process bound to the same inferior.\n\
6366The new executable image replaces the previous executable loaded in\n\
6367the inferior. Restarting the inferior after the exec call restarts\n\
6368the executable the process was running after the exec call.\n\
6369\n\
6370By default, the debugger will use the same inferior."),
6371 NULL,
6372 show_follow_exec_mode_string,
6373 &setlist, &showlist);
6374
7ab04401
AC
6375 add_setshow_enum_cmd ("scheduler-locking", class_run,
6376 scheduler_enums, &scheduler_mode, _("\
6377Set mode for locking scheduler during execution."), _("\
6378Show mode for locking scheduler during execution."), _("\
c906108c
SS
6379off == no locking (threads may preempt at any time)\n\
6380on == full locking (no thread except the current thread may run)\n\
6381step == scheduler locked during every single-step operation.\n\
6382 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
6383 Other threads may run while stepping over a function call ('next')."),
6384 set_schedlock_func, /* traps on target vector */
920d2a44 6385 show_scheduler_mode,
7ab04401 6386 &setlist, &showlist);
5fbbeb29 6387
d4db2f36
PA
6388 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
6389Set mode for resuming threads of all processes."), _("\
6390Show mode for resuming threads of all processes."), _("\
6391When on, execution commands (such as 'continue' or 'next') resume all\n\
6392threads of all processes. When off (which is the default), execution\n\
6393commands only resume the threads of the current process. The set of\n\
6394threads that are resumed is further refined by the scheduler-locking\n\
6395mode (see help set scheduler-locking)."),
6396 NULL,
6397 show_schedule_multiple,
6398 &setlist, &showlist);
6399
5bf193a2
AC
6400 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
6401Set mode of the step operation."), _("\
6402Show mode of the step operation."), _("\
6403When set, doing a step over a function without debug line information\n\
6404will stop at the first instruction of that function. Otherwise, the\n\
6405function is skipped and the step command stops at a different source line."),
6406 NULL,
920d2a44 6407 show_step_stop_if_no_debug,
5bf193a2 6408 &setlist, &showlist);
ca6724c1 6409
fff08868
HZ
6410 add_setshow_enum_cmd ("displaced-stepping", class_run,
6411 can_use_displaced_stepping_enum,
6412 &can_use_displaced_stepping, _("\
237fc4c9
PA
6413Set debugger's willingness to use displaced stepping."), _("\
6414Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
6415If on, gdb will use displaced stepping to step over breakpoints if it is\n\
6416supported by the target architecture. If off, gdb will not use displaced\n\
6417stepping to step over breakpoints, even if such is supported by the target\n\
6418architecture. If auto (which is the default), gdb will use displaced stepping\n\
6419if the target architecture supports it and non-stop mode is active, but will not\n\
6420use it in all-stop mode (see help set non-stop)."),
6421 NULL,
6422 show_can_use_displaced_stepping,
6423 &setlist, &showlist);
237fc4c9 6424
b2175913
MS
6425 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
6426 &exec_direction, _("Set direction of execution.\n\
6427Options are 'forward' or 'reverse'."),
6428 _("Show direction of execution (forward/reverse)."),
6429 _("Tells gdb whether to execute forward or backward."),
6430 set_exec_direction_func, show_exec_direction_func,
6431 &setlist, &showlist);
6432
6c95b8df
PA
6433 /* Set/show detach-on-fork: user-settable mode. */
6434
6435 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
6436Set whether gdb will detach the child of a fork."), _("\
6437Show whether gdb will detach the child of a fork."), _("\
6438Tells gdb whether to detach the child of a fork."),
6439 NULL, NULL, &setlist, &showlist);
6440
ca6724c1
KB
6441 /* ptid initializations */
6442 null_ptid = ptid_build (0, 0, 0);
6443 minus_one_ptid = ptid_build (-1, 0, 0);
6444 inferior_ptid = null_ptid;
6445 target_last_wait_ptid = minus_one_ptid;
237fc4c9 6446 displaced_step_ptid = null_ptid;
5231c1fd
PA
6447
6448 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 6449 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 6450 observer_attach_thread_exit (infrun_thread_thread_exit);
4aa995e1
PA
6451
6452 /* Explicitly create without lookup, since that tries to create a
6453 value with a void typed value, and when we get here, gdbarch
6454 isn't initialized yet. At this point, we're quite sure there
6455 isn't another convenience variable of the same name. */
6456 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
c906108c 6457}
This page took 1.248708 seconds and 4 git commands to generate.