* dummy-frame.h (dummy_frame_pop): Add prototype.
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
6aba47ca 4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
9b254dd1
DJ
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008 Free Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include <ctype.h>
26#include "symtab.h"
27#include "frame.h"
28#include "inferior.h"
60250e8b 29#include "exceptions.h"
c906108c 30#include "breakpoint.h"
03f2053f 31#include "gdb_wait.h"
c906108c
SS
32#include "gdbcore.h"
33#include "gdbcmd.h"
210661e7 34#include "cli/cli-script.h"
c906108c
SS
35#include "target.h"
36#include "gdbthread.h"
37#include "annotate.h"
1adeb98a 38#include "symfile.h"
7a292a7a 39#include "top.h"
c906108c 40#include <signal.h>
2acceee2 41#include "inf-loop.h"
4e052eda 42#include "regcache.h"
fd0407d6 43#include "value.h"
06600e06 44#include "observer.h"
f636b87d 45#include "language.h"
a77053c2 46#include "solib.h"
f17517ea 47#include "main.h"
a77053c2 48
9f976b41 49#include "gdb_assert.h"
034dad6f 50#include "mi/mi-common.h"
4f8d22e3 51#include "event-top.h"
c906108c
SS
52
53/* Prototypes for local functions */
54
96baa820 55static void signals_info (char *, int);
c906108c 56
96baa820 57static void handle_command (char *, int);
c906108c 58
96baa820 59static void sig_print_info (enum target_signal);
c906108c 60
96baa820 61static void sig_print_header (void);
c906108c 62
74b7792f 63static void resume_cleanups (void *);
c906108c 64
96baa820 65static int hook_stop_stub (void *);
c906108c 66
96baa820
JM
67static int restore_selected_frame (void *);
68
69static void build_infrun (void);
70
4ef3f3be 71static int follow_fork (void);
96baa820
JM
72
73static void set_schedlock_func (char *args, int from_tty,
488f131b 74 struct cmd_list_element *c);
96baa820 75
0d1e5fa7 76struct thread_stepping_state;
96baa820 77
0d1e5fa7 78static int currently_stepping (struct thread_stepping_state *tss);
96baa820
JM
79
80static void xdb_handle_command (char *args, int from_tty);
81
6a6b96b9 82static int prepare_to_proceed (int);
ea67f13b 83
96baa820 84void _initialize_infrun (void);
43ff13b4 85
5fbbeb29
CF
86/* When set, stop the 'step' command if we enter a function which has
87 no line number information. The normal behavior is that we step
88 over such function. */
89int step_stop_if_no_debug = 0;
920d2a44
AC
90static void
91show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
92 struct cmd_list_element *c, const char *value)
93{
94 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
95}
5fbbeb29 96
43ff13b4 97/* In asynchronous mode, but simulating synchronous execution. */
96baa820 98
43ff13b4
JM
99int sync_execution = 0;
100
c906108c
SS
101/* wait_for_inferior and normal_stop use this to notify the user
102 when the inferior stopped in a different thread than it had been
96baa820
JM
103 running in. */
104
39f77062 105static ptid_t previous_inferior_ptid;
7a292a7a 106
237fc4c9
PA
107int debug_displaced = 0;
108static void
109show_debug_displaced (struct ui_file *file, int from_tty,
110 struct cmd_list_element *c, const char *value)
111{
112 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
113}
114
527159b7 115static int debug_infrun = 0;
920d2a44
AC
116static void
117show_debug_infrun (struct ui_file *file, int from_tty,
118 struct cmd_list_element *c, const char *value)
119{
120 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
121}
527159b7 122
d4f3574e
SS
123/* If the program uses ELF-style shared libraries, then calls to
124 functions in shared libraries go through stubs, which live in a
125 table called the PLT (Procedure Linkage Table). The first time the
126 function is called, the stub sends control to the dynamic linker,
127 which looks up the function's real address, patches the stub so
128 that future calls will go directly to the function, and then passes
129 control to the function.
130
131 If we are stepping at the source level, we don't want to see any of
132 this --- we just want to skip over the stub and the dynamic linker.
133 The simple approach is to single-step until control leaves the
134 dynamic linker.
135
ca557f44
AC
136 However, on some systems (e.g., Red Hat's 5.2 distribution) the
137 dynamic linker calls functions in the shared C library, so you
138 can't tell from the PC alone whether the dynamic linker is still
139 running. In this case, we use a step-resume breakpoint to get us
140 past the dynamic linker, as if we were using "next" to step over a
141 function call.
d4f3574e 142
cfd8ab24 143 in_solib_dynsym_resolve_code() says whether we're in the dynamic
d4f3574e
SS
144 linker code or not. Normally, this means we single-step. However,
145 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
146 address where we can place a step-resume breakpoint to get past the
147 linker's symbol resolution function.
148
cfd8ab24 149 in_solib_dynsym_resolve_code() can generally be implemented in a
d4f3574e
SS
150 pretty portable way, by comparing the PC against the address ranges
151 of the dynamic linker's sections.
152
153 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
154 it depends on internal details of the dynamic linker. It's usually
155 not too hard to figure out where to put a breakpoint, but it
156 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
157 sanity checking. If it can't figure things out, returning zero and
158 getting the (possibly confusing) stepping behavior is better than
159 signalling an error, which will obscure the change in the
160 inferior's state. */
c906108c 161
c906108c
SS
162/* This function returns TRUE if pc is the address of an instruction
163 that lies within the dynamic linker (such as the event hook, or the
164 dld itself).
165
166 This function must be used only when a dynamic linker event has
167 been caught, and the inferior is being stepped out of the hook, or
168 undefined results are guaranteed. */
169
170#ifndef SOLIB_IN_DYNAMIC_LINKER
171#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
172#endif
173
c2c6d25f 174
7a292a7a
SS
175/* Convert the #defines into values. This is temporary until wfi control
176 flow is completely sorted out. */
177
692590c1
MS
178#ifndef CANNOT_STEP_HW_WATCHPOINTS
179#define CANNOT_STEP_HW_WATCHPOINTS 0
180#else
181#undef CANNOT_STEP_HW_WATCHPOINTS
182#define CANNOT_STEP_HW_WATCHPOINTS 1
183#endif
184
c906108c
SS
185/* Tables of how to react to signals; the user sets them. */
186
187static unsigned char *signal_stop;
188static unsigned char *signal_print;
189static unsigned char *signal_program;
190
191#define SET_SIGS(nsigs,sigs,flags) \
192 do { \
193 int signum = (nsigs); \
194 while (signum-- > 0) \
195 if ((sigs)[signum]) \
196 (flags)[signum] = 1; \
197 } while (0)
198
199#define UNSET_SIGS(nsigs,sigs,flags) \
200 do { \
201 int signum = (nsigs); \
202 while (signum-- > 0) \
203 if ((sigs)[signum]) \
204 (flags)[signum] = 0; \
205 } while (0)
206
39f77062
KB
207/* Value to pass to target_resume() to cause all threads to resume */
208
209#define RESUME_ALL (pid_to_ptid (-1))
c906108c
SS
210
211/* Command list pointer for the "stop" placeholder. */
212
213static struct cmd_list_element *stop_command;
214
c906108c
SS
215/* Function inferior was in as of last step command. */
216
217static struct symbol *step_start_function;
218
ca67fcb8 219/* Nonzero if we are presently stepping over a breakpoint.
c906108c 220
ca67fcb8
VP
221 If we hit a breakpoint or watchpoint, and then continue,
222 we need to single step the current thread with breakpoints
223 disabled, to avoid hitting the same breakpoint or
224 watchpoint again. And we should step just a single
225 thread and keep other threads stopped, so that
226 other threads don't miss breakpoints while they are removed.
227
228 So, this variable simultaneously means that we need to single
229 step the current thread, keep other threads stopped, and that
230 breakpoints should be removed while we step.
231
232 This variable is set either:
233 - in proceed, when we resume inferior on user's explicit request
234 - in keep_going, if handle_inferior_event decides we need to
235 step over breakpoint.
236
237 The variable is cleared in clear_proceed_status, called every
238 time before we call proceed. The proceed calls wait_for_inferior,
239 which calls handle_inferior_event in a loop, and until
240 wait_for_inferior exits, this variable is changed only by keep_going. */
241
242static int stepping_over_breakpoint;
c906108c 243
c906108c
SS
244/* Nonzero if we want to give control to the user when we're notified
245 of shared library events by the dynamic linker. */
246static int stop_on_solib_events;
920d2a44
AC
247static void
248show_stop_on_solib_events (struct ui_file *file, int from_tty,
249 struct cmd_list_element *c, const char *value)
250{
251 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
252 value);
253}
c906108c 254
c906108c
SS
255/* Nonzero means expecting a trace trap
256 and should stop the inferior and return silently when it happens. */
257
258int stop_after_trap;
259
260/* Nonzero means expecting a trap and caller will handle it themselves.
261 It is used after attach, due to attaching to a process;
262 when running in the shell before the child program has been exec'd;
263 and when running some kinds of remote stuff (FIXME?). */
264
c0236d92 265enum stop_kind stop_soon;
c906108c
SS
266
267/* Nonzero if proceed is being used for a "finish" command or a similar
268 situation when stop_registers should be saved. */
269
270int proceed_to_finish;
271
272/* Save register contents here when about to pop a stack dummy frame,
273 if-and-only-if proceed_to_finish is set.
274 Thus this contains the return value from the called function (assuming
275 values are returned in a register). */
276
72cec141 277struct regcache *stop_registers;
c906108c 278
c906108c
SS
279/* Nonzero after stop if current stack frame should be printed. */
280
281static int stop_print_frame;
282
611c83ae 283/* Step-resume or longjmp-resume breakpoint. */
c906108c 284static struct breakpoint *step_resume_breakpoint = NULL;
c906108c 285
e02bc4cc 286/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
287 returned by target_wait()/deprecated_target_wait_hook(). This
288 information is returned by get_last_target_status(). */
39f77062 289static ptid_t target_last_wait_ptid;
e02bc4cc
DS
290static struct target_waitstatus target_last_waitstatus;
291
0d1e5fa7
PA
292/* Context-switchable data. */
293struct thread_stepping_state
294{
295 /* Should we step over breakpoint next time keep_going
296 is called? */
297 int stepping_over_breakpoint;
0d1e5fa7
PA
298 int current_line;
299 struct symtab *current_symtab;
300 int step_after_step_resume_breakpoint;
301 int stepping_through_solib_after_catch;
302 bpstat stepping_through_solib_catchpoints;
303};
304
305struct thread_stepping_state gtss;
306struct thread_stepping_state *tss = &gtss;
307
308static void context_switch (ptid_t ptid);
309
310void init_thread_stepping_state (struct thread_stepping_state *tss);
311
312void init_infwait_state (void);
a474d7c2 313
c906108c
SS
314/* This is used to remember when a fork, vfork or exec event
315 was caught by a catchpoint, and thus the event is to be
316 followed at the next resume of the inferior, and not
317 immediately. */
318static struct
488f131b
JB
319{
320 enum target_waitkind kind;
321 struct
c906108c 322 {
3a3e9ee3
PA
323 ptid_t parent_pid;
324 ptid_t child_pid;
c906108c 325 }
488f131b
JB
326 fork_event;
327 char *execd_pathname;
328}
c906108c
SS
329pending_follow;
330
53904c9e
AC
331static const char follow_fork_mode_child[] = "child";
332static const char follow_fork_mode_parent[] = "parent";
333
488f131b 334static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
335 follow_fork_mode_child,
336 follow_fork_mode_parent,
337 NULL
ef346e04 338};
c906108c 339
53904c9e 340static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
341static void
342show_follow_fork_mode_string (struct ui_file *file, int from_tty,
343 struct cmd_list_element *c, const char *value)
344{
345 fprintf_filtered (file, _("\
346Debugger response to a program call of fork or vfork is \"%s\".\n"),
347 value);
348}
c906108c
SS
349\f
350
6604731b 351static int
4ef3f3be 352follow_fork (void)
c906108c 353{
ea1dd7bc 354 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
c906108c 355
6604731b 356 return target_follow_fork (follow_child);
c906108c
SS
357}
358
6604731b
DJ
359void
360follow_inferior_reset_breakpoints (void)
c906108c 361{
6604731b
DJ
362 /* Was there a step_resume breakpoint? (There was if the user
363 did a "next" at the fork() call.) If so, explicitly reset its
364 thread number.
365
366 step_resumes are a form of bp that are made to be per-thread.
367 Since we created the step_resume bp when the parent process
368 was being debugged, and now are switching to the child process,
369 from the breakpoint package's viewpoint, that's a switch of
370 "threads". We must update the bp's notion of which thread
371 it is for, or it'll be ignored when it triggers. */
372
373 if (step_resume_breakpoint)
374 breakpoint_re_set_thread (step_resume_breakpoint);
375
376 /* Reinsert all breakpoints in the child. The user may have set
377 breakpoints after catching the fork, in which case those
378 were never set in the child, but only in the parent. This makes
379 sure the inserted breakpoints match the breakpoint list. */
380
381 breakpoint_re_set ();
382 insert_breakpoints ();
c906108c 383}
c906108c 384
1adeb98a
FN
385/* EXECD_PATHNAME is assumed to be non-NULL. */
386
c906108c 387static void
3a3e9ee3 388follow_exec (ptid_t pid, char *execd_pathname)
c906108c 389{
3a3e9ee3 390 ptid_t saved_pid = pid;
7a292a7a
SS
391 struct target_ops *tgt;
392
c906108c
SS
393 /* This is an exec event that we actually wish to pay attention to.
394 Refresh our symbol table to the newly exec'd program, remove any
395 momentary bp's, etc.
396
397 If there are breakpoints, they aren't really inserted now,
398 since the exec() transformed our inferior into a fresh set
399 of instructions.
400
401 We want to preserve symbolic breakpoints on the list, since
402 we have hopes that they can be reset after the new a.out's
403 symbol table is read.
404
405 However, any "raw" breakpoints must be removed from the list
406 (e.g., the solib bp's), since their address is probably invalid
407 now.
408
409 And, we DON'T want to call delete_breakpoints() here, since
410 that may write the bp's "shadow contents" (the instruction
411 value that was overwritten witha TRAP instruction). Since
412 we now have a new a.out, those shadow contents aren't valid. */
413 update_breakpoints_after_exec ();
414
415 /* If there was one, it's gone now. We cannot truly step-to-next
416 statement through an exec(). */
417 step_resume_breakpoint = NULL;
418 step_range_start = 0;
419 step_range_end = 0;
420
c906108c 421 /* What is this a.out's name? */
a3f17187 422 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
c906108c
SS
423
424 /* We've followed the inferior through an exec. Therefore, the
425 inferior has essentially been killed & reborn. */
7a292a7a 426
c906108c 427 gdb_flush (gdb_stdout);
e85a822c 428 generic_mourn_inferior ();
488f131b 429 /* Because mourn_inferior resets inferior_ptid. */
3a3e9ee3 430 inferior_ptid = saved_pid;
e85a822c
DJ
431
432 if (gdb_sysroot && *gdb_sysroot)
433 {
434 char *name = alloca (strlen (gdb_sysroot)
435 + strlen (execd_pathname)
436 + 1);
437 strcpy (name, gdb_sysroot);
438 strcat (name, execd_pathname);
439 execd_pathname = name;
440 }
c906108c
SS
441
442 /* That a.out is now the one to use. */
443 exec_file_attach (execd_pathname, 0);
444
cce9b6bf
PA
445 /* Reset the shared library package. This ensures that we get a
446 shlib event when the child reaches "_start", at which point the
447 dld will have had a chance to initialize the child. */
448 /* Also, loading a symbol file below may trigger symbol lookups, and
449 we don't want those to be satisfied by the libraries of the
450 previous incarnation of this process. */
451 no_shared_libraries (NULL, 0);
452
453 /* Load the main file's symbols. */
1adeb98a 454 symbol_file_add_main (execd_pathname, 0);
c906108c 455
7a292a7a 456#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 457 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2
MK
458#else
459 solib_create_inferior_hook ();
7a292a7a 460#endif
c906108c
SS
461
462 /* Reinsert all breakpoints. (Those which were symbolic have
463 been reset to the proper address in the new a.out, thanks
464 to symbol_file_command...) */
465 insert_breakpoints ();
466
467 /* The next resume of this inferior should bring it to the shlib
468 startup breakpoints. (If the user had also set bp's on
469 "main" from the old (parent) process, then they'll auto-
470 matically get reset there in the new process.) */
c906108c
SS
471}
472
473/* Non-zero if we just simulating a single-step. This is needed
474 because we cannot remove the breakpoints in the inferior process
475 until after the `wait' in `wait_for_inferior'. */
476static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
477
478/* The thread we inserted single-step breakpoints for. */
479static ptid_t singlestep_ptid;
480
fd48f117
DJ
481/* PC when we started this single-step. */
482static CORE_ADDR singlestep_pc;
483
9f976b41
DJ
484/* If another thread hit the singlestep breakpoint, we save the original
485 thread here so that we can resume single-stepping it later. */
486static ptid_t saved_singlestep_ptid;
487static int stepping_past_singlestep_breakpoint;
6a6b96b9 488
ca67fcb8
VP
489/* If not equal to null_ptid, this means that after stepping over breakpoint
490 is finished, we need to switch to deferred_step_ptid, and step it.
491
492 The use case is when one thread has hit a breakpoint, and then the user
493 has switched to another thread and issued 'step'. We need to step over
494 breakpoint in the thread which hit the breakpoint, but then continue
495 stepping the thread user has selected. */
496static ptid_t deferred_step_ptid;
c906108c 497\f
237fc4c9
PA
498/* Displaced stepping. */
499
500/* In non-stop debugging mode, we must take special care to manage
501 breakpoints properly; in particular, the traditional strategy for
502 stepping a thread past a breakpoint it has hit is unsuitable.
503 'Displaced stepping' is a tactic for stepping one thread past a
504 breakpoint it has hit while ensuring that other threads running
505 concurrently will hit the breakpoint as they should.
506
507 The traditional way to step a thread T off a breakpoint in a
508 multi-threaded program in all-stop mode is as follows:
509
510 a0) Initially, all threads are stopped, and breakpoints are not
511 inserted.
512 a1) We single-step T, leaving breakpoints uninserted.
513 a2) We insert breakpoints, and resume all threads.
514
515 In non-stop debugging, however, this strategy is unsuitable: we
516 don't want to have to stop all threads in the system in order to
517 continue or step T past a breakpoint. Instead, we use displaced
518 stepping:
519
520 n0) Initially, T is stopped, other threads are running, and
521 breakpoints are inserted.
522 n1) We copy the instruction "under" the breakpoint to a separate
523 location, outside the main code stream, making any adjustments
524 to the instruction, register, and memory state as directed by
525 T's architecture.
526 n2) We single-step T over the instruction at its new location.
527 n3) We adjust the resulting register and memory state as directed
528 by T's architecture. This includes resetting T's PC to point
529 back into the main instruction stream.
530 n4) We resume T.
531
532 This approach depends on the following gdbarch methods:
533
534 - gdbarch_max_insn_length and gdbarch_displaced_step_location
535 indicate where to copy the instruction, and how much space must
536 be reserved there. We use these in step n1.
537
538 - gdbarch_displaced_step_copy_insn copies a instruction to a new
539 address, and makes any necessary adjustments to the instruction,
540 register contents, and memory. We use this in step n1.
541
542 - gdbarch_displaced_step_fixup adjusts registers and memory after
543 we have successfuly single-stepped the instruction, to yield the
544 same effect the instruction would have had if we had executed it
545 at its original address. We use this in step n3.
546
547 - gdbarch_displaced_step_free_closure provides cleanup.
548
549 The gdbarch_displaced_step_copy_insn and
550 gdbarch_displaced_step_fixup functions must be written so that
551 copying an instruction with gdbarch_displaced_step_copy_insn,
552 single-stepping across the copied instruction, and then applying
553 gdbarch_displaced_insn_fixup should have the same effects on the
554 thread's memory and registers as stepping the instruction in place
555 would have. Exactly which responsibilities fall to the copy and
556 which fall to the fixup is up to the author of those functions.
557
558 See the comments in gdbarch.sh for details.
559
560 Note that displaced stepping and software single-step cannot
561 currently be used in combination, although with some care I think
562 they could be made to. Software single-step works by placing
563 breakpoints on all possible subsequent instructions; if the
564 displaced instruction is a PC-relative jump, those breakpoints
565 could fall in very strange places --- on pages that aren't
566 executable, or at addresses that are not proper instruction
567 boundaries. (We do generally let other threads run while we wait
568 to hit the software single-step breakpoint, and they might
569 encounter such a corrupted instruction.) One way to work around
570 this would be to have gdbarch_displaced_step_copy_insn fully
571 simulate the effect of PC-relative instructions (and return NULL)
572 on architectures that use software single-stepping.
573
574 In non-stop mode, we can have independent and simultaneous step
575 requests, so more than one thread may need to simultaneously step
576 over a breakpoint. The current implementation assumes there is
577 only one scratch space per process. In this case, we have to
578 serialize access to the scratch space. If thread A wants to step
579 over a breakpoint, but we are currently waiting for some other
580 thread to complete a displaced step, we leave thread A stopped and
581 place it in the displaced_step_request_queue. Whenever a displaced
582 step finishes, we pick the next thread in the queue and start a new
583 displaced step operation on it. See displaced_step_prepare and
584 displaced_step_fixup for details. */
585
586/* If this is not null_ptid, this is the thread carrying out a
587 displaced single-step. This thread's state will require fixing up
588 once it has completed its step. */
589static ptid_t displaced_step_ptid;
590
591struct displaced_step_request
592{
593 ptid_t ptid;
594 struct displaced_step_request *next;
595};
596
597/* A queue of pending displaced stepping requests. */
598struct displaced_step_request *displaced_step_request_queue;
599
600/* The architecture the thread had when we stepped it. */
601static struct gdbarch *displaced_step_gdbarch;
602
603/* The closure provided gdbarch_displaced_step_copy_insn, to be used
604 for post-step cleanup. */
605static struct displaced_step_closure *displaced_step_closure;
606
607/* The address of the original instruction, and the copy we made. */
608static CORE_ADDR displaced_step_original, displaced_step_copy;
609
610/* Saved contents of copy area. */
611static gdb_byte *displaced_step_saved_copy;
612
613/* When this is non-zero, we are allowed to use displaced stepping, if
614 the architecture supports it. When this is zero, we use
615 traditional the hold-and-step approach. */
616int can_use_displaced_stepping = 1;
617static void
618show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
619 struct cmd_list_element *c,
620 const char *value)
621{
622 fprintf_filtered (file, _("\
623Debugger's willingness to use displaced stepping to step over "
624"breakpoints is %s.\n"), value);
625}
626
627/* Return non-zero if displaced stepping is enabled, and can be used
628 with GDBARCH. */
629static int
630use_displaced_stepping (struct gdbarch *gdbarch)
631{
632 return (can_use_displaced_stepping
633 && gdbarch_displaced_step_copy_insn_p (gdbarch));
634}
635
636/* Clean out any stray displaced stepping state. */
637static void
638displaced_step_clear (void)
639{
640 /* Indicate that there is no cleanup pending. */
641 displaced_step_ptid = null_ptid;
642
643 if (displaced_step_closure)
644 {
645 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
646 displaced_step_closure);
647 displaced_step_closure = NULL;
648 }
649}
650
651static void
652cleanup_displaced_step_closure (void *ptr)
653{
654 struct displaced_step_closure *closure = ptr;
655
656 gdbarch_displaced_step_free_closure (current_gdbarch, closure);
657}
658
659/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
660void
661displaced_step_dump_bytes (struct ui_file *file,
662 const gdb_byte *buf,
663 size_t len)
664{
665 int i;
666
667 for (i = 0; i < len; i++)
668 fprintf_unfiltered (file, "%02x ", buf[i]);
669 fputs_unfiltered ("\n", file);
670}
671
672/* Prepare to single-step, using displaced stepping.
673
674 Note that we cannot use displaced stepping when we have a signal to
675 deliver. If we have a signal to deliver and an instruction to step
676 over, then after the step, there will be no indication from the
677 target whether the thread entered a signal handler or ignored the
678 signal and stepped over the instruction successfully --- both cases
679 result in a simple SIGTRAP. In the first case we mustn't do a
680 fixup, and in the second case we must --- but we can't tell which.
681 Comments in the code for 'random signals' in handle_inferior_event
682 explain how we handle this case instead.
683
684 Returns 1 if preparing was successful -- this thread is going to be
685 stepped now; or 0 if displaced stepping this thread got queued. */
686static int
687displaced_step_prepare (ptid_t ptid)
688{
689 struct cleanup *old_cleanups;
690 struct regcache *regcache = get_thread_regcache (ptid);
691 struct gdbarch *gdbarch = get_regcache_arch (regcache);
692 CORE_ADDR original, copy;
693 ULONGEST len;
694 struct displaced_step_closure *closure;
695
696 /* We should never reach this function if the architecture does not
697 support displaced stepping. */
698 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
699
700 /* For the first cut, we're displaced stepping one thread at a
701 time. */
702
703 if (!ptid_equal (displaced_step_ptid, null_ptid))
704 {
705 /* Already waiting for a displaced step to finish. Defer this
706 request and place in queue. */
707 struct displaced_step_request *req, *new_req;
708
709 if (debug_displaced)
710 fprintf_unfiltered (gdb_stdlog,
711 "displaced: defering step of %s\n",
712 target_pid_to_str (ptid));
713
714 new_req = xmalloc (sizeof (*new_req));
715 new_req->ptid = ptid;
716 new_req->next = NULL;
717
718 if (displaced_step_request_queue)
719 {
720 for (req = displaced_step_request_queue;
721 req && req->next;
722 req = req->next)
723 ;
724 req->next = new_req;
725 }
726 else
727 displaced_step_request_queue = new_req;
728
729 return 0;
730 }
731 else
732 {
733 if (debug_displaced)
734 fprintf_unfiltered (gdb_stdlog,
735 "displaced: stepping %s now\n",
736 target_pid_to_str (ptid));
737 }
738
739 displaced_step_clear ();
740
515630c5 741 original = regcache_read_pc (regcache);
237fc4c9
PA
742
743 copy = gdbarch_displaced_step_location (gdbarch);
744 len = gdbarch_max_insn_length (gdbarch);
745
746 /* Save the original contents of the copy area. */
747 displaced_step_saved_copy = xmalloc (len);
748 old_cleanups = make_cleanup (free_current_contents,
749 &displaced_step_saved_copy);
750 read_memory (copy, displaced_step_saved_copy, len);
751 if (debug_displaced)
752 {
753 fprintf_unfiltered (gdb_stdlog, "displaced: saved 0x%s: ",
754 paddr_nz (copy));
755 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
756 };
757
758 closure = gdbarch_displaced_step_copy_insn (gdbarch,
759 original, copy, regcache);
760
761 /* We don't support the fully-simulated case at present. */
762 gdb_assert (closure);
763
764 make_cleanup (cleanup_displaced_step_closure, closure);
765
766 /* Resume execution at the copy. */
515630c5 767 regcache_write_pc (regcache, copy);
237fc4c9
PA
768
769 discard_cleanups (old_cleanups);
770
771 if (debug_displaced)
772 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to 0x%s\n",
773 paddr_nz (copy));
774
775 /* Save the information we need to fix things up if the step
776 succeeds. */
777 displaced_step_ptid = ptid;
778 displaced_step_gdbarch = gdbarch;
779 displaced_step_closure = closure;
780 displaced_step_original = original;
781 displaced_step_copy = copy;
782 return 1;
783}
784
785static void
786displaced_step_clear_cleanup (void *ignore)
787{
788 displaced_step_clear ();
789}
790
791static void
792write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
793{
794 struct cleanup *ptid_cleanup = save_inferior_ptid ();
795 inferior_ptid = ptid;
796 write_memory (memaddr, myaddr, len);
797 do_cleanups (ptid_cleanup);
798}
799
800static void
801displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
802{
803 struct cleanup *old_cleanups;
804
805 /* Was this event for the pid we displaced? */
806 if (ptid_equal (displaced_step_ptid, null_ptid)
807 || ! ptid_equal (displaced_step_ptid, event_ptid))
808 return;
809
810 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
811
812 /* Restore the contents of the copy area. */
813 {
814 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
815 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
816 displaced_step_saved_copy, len);
817 if (debug_displaced)
818 fprintf_unfiltered (gdb_stdlog, "displaced: restored 0x%s\n",
819 paddr_nz (displaced_step_copy));
820 }
821
822 /* Did the instruction complete successfully? */
823 if (signal == TARGET_SIGNAL_TRAP)
824 {
825 /* Fix up the resulting state. */
826 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
827 displaced_step_closure,
828 displaced_step_original,
829 displaced_step_copy,
830 get_thread_regcache (displaced_step_ptid));
831 }
832 else
833 {
834 /* Since the instruction didn't complete, all we can do is
835 relocate the PC. */
515630c5
UW
836 struct regcache *regcache = get_thread_regcache (event_ptid);
837 CORE_ADDR pc = regcache_read_pc (regcache);
237fc4c9 838 pc = displaced_step_original + (pc - displaced_step_copy);
515630c5 839 regcache_write_pc (regcache, pc);
237fc4c9
PA
840 }
841
842 do_cleanups (old_cleanups);
843
844 /* Are there any pending displaced stepping requests? If so, run
845 one now. */
846 if (displaced_step_request_queue)
847 {
848 struct displaced_step_request *head;
849 ptid_t ptid;
850
851 head = displaced_step_request_queue;
852 ptid = head->ptid;
853 displaced_step_request_queue = head->next;
854 xfree (head);
855
856 if (debug_displaced)
857 fprintf_unfiltered (gdb_stdlog,
858 "displaced: stepping queued %s now\n",
859 target_pid_to_str (ptid));
860
861
862 displaced_step_ptid = null_ptid;
863 displaced_step_prepare (ptid);
864 target_resume (ptid, 1, TARGET_SIGNAL_0);
865 }
866}
867
5231c1fd
PA
868/* Update global variables holding ptids to hold NEW_PTID if they were
869 holding OLD_PTID. */
870static void
871infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
872{
873 struct displaced_step_request *it;
874
875 if (ptid_equal (inferior_ptid, old_ptid))
876 inferior_ptid = new_ptid;
877
878 if (ptid_equal (singlestep_ptid, old_ptid))
879 singlestep_ptid = new_ptid;
880
881 if (ptid_equal (displaced_step_ptid, old_ptid))
882 displaced_step_ptid = new_ptid;
883
884 if (ptid_equal (deferred_step_ptid, old_ptid))
885 deferred_step_ptid = new_ptid;
886
887 for (it = displaced_step_request_queue; it; it = it->next)
888 if (ptid_equal (it->ptid, old_ptid))
889 it->ptid = new_ptid;
890}
891
237fc4c9
PA
892\f
893/* Resuming. */
c906108c
SS
894
895/* Things to clean up if we QUIT out of resume (). */
c906108c 896static void
74b7792f 897resume_cleanups (void *ignore)
c906108c
SS
898{
899 normal_stop ();
900}
901
53904c9e
AC
902static const char schedlock_off[] = "off";
903static const char schedlock_on[] = "on";
904static const char schedlock_step[] = "step";
488f131b 905static const char *scheduler_enums[] = {
ef346e04
AC
906 schedlock_off,
907 schedlock_on,
908 schedlock_step,
909 NULL
910};
920d2a44
AC
911static const char *scheduler_mode = schedlock_off;
912static void
913show_scheduler_mode (struct ui_file *file, int from_tty,
914 struct cmd_list_element *c, const char *value)
915{
916 fprintf_filtered (file, _("\
917Mode for locking scheduler during execution is \"%s\".\n"),
918 value);
919}
c906108c
SS
920
921static void
96baa820 922set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 923{
eefe576e
AC
924 if (!target_can_lock_scheduler)
925 {
926 scheduler_mode = schedlock_off;
927 error (_("Target '%s' cannot support this command."), target_shortname);
928 }
c906108c
SS
929}
930
931
932/* Resume the inferior, but allow a QUIT. This is useful if the user
933 wants to interrupt some lengthy single-stepping operation
934 (for child processes, the SIGINT goes to the inferior, and so
935 we get a SIGINT random_signal, but for remote debugging and perhaps
936 other targets, that's not true).
937
938 STEP nonzero if we should step (zero to continue instead).
939 SIG is the signal to give the inferior (zero for none). */
940void
96baa820 941resume (int step, enum target_signal sig)
c906108c
SS
942{
943 int should_resume = 1;
74b7792f 944 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
945 struct regcache *regcache = get_current_regcache ();
946 struct gdbarch *gdbarch = get_regcache_arch (regcache);
947 CORE_ADDR pc = regcache_read_pc (regcache);
c906108c
SS
948 QUIT;
949
527159b7 950 if (debug_infrun)
237fc4c9
PA
951 fprintf_unfiltered (gdb_stdlog,
952 "infrun: resume (step=%d, signal=%d), "
953 "stepping_over_breakpoint=%d\n",
954 step, sig, stepping_over_breakpoint);
c906108c 955
692590c1
MS
956 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
957 over an instruction that causes a page fault without triggering
958 a hardware watchpoint. The kernel properly notices that it shouldn't
959 stop, because the hardware watchpoint is not triggered, but it forgets
960 the step request and continues the program normally.
961 Work around the problem by removing hardware watchpoints if a step is
962 requested, GDB will check for a hardware watchpoint trigger after the
963 step anyway. */
c36b740a 964 if (CANNOT_STEP_HW_WATCHPOINTS && step)
692590c1 965 remove_hw_watchpoints ();
488f131b 966
692590c1 967
c2c6d25f
JM
968 /* Normally, by the time we reach `resume', the breakpoints are either
969 removed or inserted, as appropriate. The exception is if we're sitting
970 at a permanent breakpoint; we need to step over it, but permanent
971 breakpoints can't be removed. So we have to test for it here. */
237fc4c9 972 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
6d350bb5 973 {
515630c5
UW
974 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
975 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5
UW
976 else
977 error (_("\
978The program is stopped at a permanent breakpoint, but GDB does not know\n\
979how to step past a permanent breakpoint on this architecture. Try using\n\
980a command like `return' or `jump' to continue execution."));
981 }
c2c6d25f 982
237fc4c9
PA
983 /* If enabled, step over breakpoints by executing a copy of the
984 instruction at a different address.
985
986 We can't use displaced stepping when we have a signal to deliver;
987 the comments for displaced_step_prepare explain why. The
988 comments in the handle_inferior event for dealing with 'random
989 signals' explain what we do instead. */
515630c5 990 if (use_displaced_stepping (gdbarch)
237fc4c9
PA
991 && stepping_over_breakpoint
992 && sig == TARGET_SIGNAL_0)
993 {
994 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
995 {
996 /* Got placed in displaced stepping queue. Will be resumed
997 later when all the currently queued displaced stepping
7f7efbd9
VP
998 requests finish. The thread is not executing at this point,
999 and the call to set_executing will be made later. But we
1000 need to call set_running here, since from frontend point of view,
1001 the thread is running. */
1002 set_running (inferior_ptid, 1);
d56b7306
VP
1003 discard_cleanups (old_cleanups);
1004 return;
1005 }
237fc4c9
PA
1006 }
1007
515630c5 1008 if (step && gdbarch_software_single_step_p (gdbarch))
c906108c
SS
1009 {
1010 /* Do it the hard way, w/temp breakpoints */
515630c5 1011 if (gdbarch_software_single_step (gdbarch, get_current_frame ()))
e6590a1b
UW
1012 {
1013 /* ...and don't ask hardware to do it. */
1014 step = 0;
1015 /* and do not pull these breakpoints until after a `wait' in
1016 `wait_for_inferior' */
1017 singlestep_breakpoints_inserted_p = 1;
1018 singlestep_ptid = inferior_ptid;
237fc4c9 1019 singlestep_pc = pc;
e6590a1b 1020 }
c906108c
SS
1021 }
1022
c906108c 1023 /* If there were any forks/vforks/execs that were caught and are
6604731b 1024 now to be followed, then do so. */
c906108c
SS
1025 switch (pending_follow.kind)
1026 {
6604731b
DJ
1027 case TARGET_WAITKIND_FORKED:
1028 case TARGET_WAITKIND_VFORKED:
c906108c 1029 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
6604731b
DJ
1030 if (follow_fork ())
1031 should_resume = 0;
c906108c
SS
1032 break;
1033
6604731b 1034 case TARGET_WAITKIND_EXECD:
c906108c 1035 /* follow_exec is called as soon as the exec event is seen. */
6604731b 1036 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
c906108c
SS
1037 break;
1038
1039 default:
1040 break;
1041 }
c906108c
SS
1042
1043 /* Install inferior's terminal modes. */
1044 target_terminal_inferior ();
1045
1046 if (should_resume)
1047 {
39f77062 1048 ptid_t resume_ptid;
dfcd3bfb 1049
488f131b 1050 resume_ptid = RESUME_ALL; /* Default */
ef5cf84e 1051
cd76b0b7
VP
1052 /* If STEP is set, it's a request to use hardware stepping
1053 facilities. But in that case, we should never
1054 use singlestep breakpoint. */
1055 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1056
1057 if (singlestep_breakpoints_inserted_p
1058 && stepping_past_singlestep_breakpoint)
c906108c 1059 {
cd76b0b7
VP
1060 /* The situation here is as follows. In thread T1 we wanted to
1061 single-step. Lacking hardware single-stepping we've
1062 set breakpoint at the PC of the next instruction -- call it
1063 P. After resuming, we've hit that breakpoint in thread T2.
1064 Now we've removed original breakpoint, inserted breakpoint
1065 at P+1, and try to step to advance T2 past breakpoint.
1066 We need to step only T2, as if T1 is allowed to freely run,
1067 it can run past P, and if other threads are allowed to run,
1068 they can hit breakpoint at P+1, and nested hits of single-step
1069 breakpoints is not something we'd want -- that's complicated
1070 to support, and has no value. */
1071 resume_ptid = inferior_ptid;
1072 }
c906108c 1073
e842223a 1074 if ((step || singlestep_breakpoints_inserted_p)
74960c60 1075 && stepping_over_breakpoint)
cd76b0b7 1076 {
74960c60
VP
1077 /* We're allowing a thread to run past a breakpoint it has
1078 hit, by single-stepping the thread with the breakpoint
1079 removed. In which case, we need to single-step only this
1080 thread, and keep others stopped, as they can miss this
1081 breakpoint if allowed to run.
1082
1083 The current code actually removes all breakpoints when
1084 doing this, not just the one being stepped over, so if we
1085 let other threads run, we can actually miss any
1086 breakpoint, not just the one at PC. */
ef5cf84e 1087 resume_ptid = inferior_ptid;
c906108c 1088 }
ef5cf84e 1089
94cc34af
PA
1090 if (non_stop)
1091 {
1092 /* With non-stop mode on, threads are always handled
1093 individually. */
1094 resume_ptid = inferior_ptid;
1095 }
1096 else if ((scheduler_mode == schedlock_on)
1097 || (scheduler_mode == schedlock_step
1098 && (step || singlestep_breakpoints_inserted_p)))
c906108c 1099 {
ef5cf84e 1100 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 1101 resume_ptid = inferior_ptid;
c906108c 1102 }
ef5cf84e 1103
515630c5 1104 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1105 {
1106 /* Most targets can step a breakpoint instruction, thus
1107 executing it normally. But if this one cannot, just
1108 continue and we will hit it anyway. */
237fc4c9 1109 if (step && breakpoint_inserted_here_p (pc))
c4ed33b9
AC
1110 step = 0;
1111 }
237fc4c9
PA
1112
1113 if (debug_displaced
515630c5 1114 && use_displaced_stepping (gdbarch)
237fc4c9
PA
1115 && stepping_over_breakpoint)
1116 {
515630c5
UW
1117 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1118 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1119 gdb_byte buf[4];
1120
1121 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
1122 paddr_nz (actual_pc));
1123 read_memory (actual_pc, buf, sizeof (buf));
1124 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1125 }
1126
39f77062 1127 target_resume (resume_ptid, step, sig);
c906108c
SS
1128 }
1129
1130 discard_cleanups (old_cleanups);
1131}
1132\f
237fc4c9 1133/* Proceeding. */
c906108c
SS
1134
1135/* Clear out all variables saying what to do when inferior is continued.
1136 First do this, then set the ones you want, then call `proceed'. */
1137
1138void
96baa820 1139clear_proceed_status (void)
c906108c 1140{
ca67fcb8 1141 stepping_over_breakpoint = 0;
c906108c
SS
1142 step_range_start = 0;
1143 step_range_end = 0;
aa0cd9c1 1144 step_frame_id = null_frame_id;
5fbbeb29 1145 step_over_calls = STEP_OVER_UNDEBUGGABLE;
c906108c 1146 stop_after_trap = 0;
c0236d92 1147 stop_soon = NO_STOP_QUIETLY;
c906108c
SS
1148 proceed_to_finish = 0;
1149 breakpoint_proceeded = 1; /* We're about to proceed... */
1150
d5c31457
UW
1151 if (stop_registers)
1152 {
1153 regcache_xfree (stop_registers);
1154 stop_registers = NULL;
1155 }
1156
c906108c
SS
1157 /* Discard any remaining commands or status from previous stop. */
1158 bpstat_clear (&stop_bpstat);
1159}
1160
ea67f13b
DJ
1161/* This should be suitable for any targets that support threads. */
1162
1163static int
6a6b96b9 1164prepare_to_proceed (int step)
ea67f13b
DJ
1165{
1166 ptid_t wait_ptid;
1167 struct target_waitstatus wait_status;
1168
1169 /* Get the last target status returned by target_wait(). */
1170 get_last_target_status (&wait_ptid, &wait_status);
1171
6a6b96b9 1172 /* Make sure we were stopped at a breakpoint. */
ea67f13b 1173 if (wait_status.kind != TARGET_WAITKIND_STOPPED
6a6b96b9 1174 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
ea67f13b
DJ
1175 {
1176 return 0;
1177 }
1178
6a6b96b9 1179 /* Switched over from WAIT_PID. */
ea67f13b 1180 if (!ptid_equal (wait_ptid, minus_one_ptid)
515630c5 1181 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 1182 {
515630c5
UW
1183 struct regcache *regcache = get_thread_regcache (wait_ptid);
1184
1185 if (breakpoint_here_p (regcache_read_pc (regcache)))
ea67f13b 1186 {
515630c5
UW
1187 /* If stepping, remember current thread to switch back to. */
1188 if (step)
1189 deferred_step_ptid = inferior_ptid;
ea67f13b 1190
515630c5
UW
1191 /* Switch back to WAIT_PID thread. */
1192 switch_to_thread (wait_ptid);
6a6b96b9 1193
515630c5
UW
1194 /* We return 1 to indicate that there is a breakpoint here,
1195 so we need to step over it before continuing to avoid
1196 hitting it straight away. */
1197 return 1;
1198 }
ea67f13b
DJ
1199 }
1200
1201 return 0;
ea67f13b 1202}
e4846b08
JJ
1203
1204/* Record the pc of the program the last time it stopped. This is
1205 just used internally by wait_for_inferior, but need to be preserved
1206 over calls to it and cleared when the inferior is started. */
1207static CORE_ADDR prev_pc;
1208
c906108c
SS
1209/* Basic routine for continuing the program in various fashions.
1210
1211 ADDR is the address to resume at, or -1 for resume where stopped.
1212 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 1213 or -1 for act according to how it stopped.
c906108c 1214 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
1215 -1 means return after that and print nothing.
1216 You should probably set various step_... variables
1217 before calling here, if you are stepping.
c906108c
SS
1218
1219 You should call clear_proceed_status before calling proceed. */
1220
1221void
96baa820 1222proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c 1223{
515630c5
UW
1224 struct regcache *regcache = get_current_regcache ();
1225 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1226 CORE_ADDR pc = regcache_read_pc (regcache);
c906108c
SS
1227 int oneproc = 0;
1228
1229 if (step > 0)
515630c5 1230 step_start_function = find_pc_function (pc);
c906108c
SS
1231 if (step < 0)
1232 stop_after_trap = 1;
1233
2acceee2 1234 if (addr == (CORE_ADDR) -1)
c906108c 1235 {
515630c5 1236 if (pc == stop_pc && breakpoint_here_p (pc))
3352ef37
AC
1237 /* There is a breakpoint at the address we will resume at,
1238 step one instruction before inserting breakpoints so that
1239 we do not stop right away (and report a second hit at this
1240 breakpoint). */
c906108c 1241 oneproc = 1;
515630c5
UW
1242 else if (gdbarch_single_step_through_delay_p (gdbarch)
1243 && gdbarch_single_step_through_delay (gdbarch,
1244 get_current_frame ()))
3352ef37
AC
1245 /* We stepped onto an instruction that needs to be stepped
1246 again before re-inserting the breakpoint, do so. */
c906108c
SS
1247 oneproc = 1;
1248 }
1249 else
1250 {
515630c5 1251 regcache_write_pc (regcache, addr);
c906108c
SS
1252 }
1253
527159b7 1254 if (debug_infrun)
8a9de0e4
AC
1255 fprintf_unfiltered (gdb_stdlog,
1256 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
1257 paddr_nz (addr), siggnal, step);
527159b7 1258
94cc34af
PA
1259 if (non_stop)
1260 /* In non-stop, each thread is handled individually. The context
1261 must already be set to the right thread here. */
1262 ;
1263 else
1264 {
1265 /* In a multi-threaded task we may select another thread and
1266 then continue or step.
c906108c 1267
94cc34af
PA
1268 But if the old thread was stopped at a breakpoint, it will
1269 immediately cause another breakpoint stop without any
1270 execution (i.e. it will report a breakpoint hit incorrectly).
1271 So we must step over it first.
c906108c 1272
94cc34af
PA
1273 prepare_to_proceed checks the current thread against the
1274 thread that reported the most recent event. If a step-over
1275 is required it returns TRUE and sets the current thread to
1276 the old thread. */
1277 if (prepare_to_proceed (step))
1278 oneproc = 1;
1279 }
c906108c 1280
c906108c 1281 if (oneproc)
74960c60 1282 {
74960c60 1283 stepping_over_breakpoint = 1;
237fc4c9
PA
1284 /* If displaced stepping is enabled, we can step over the
1285 breakpoint without hitting it, so leave all breakpoints
1286 inserted. Otherwise we need to disable all breakpoints, step
1287 one instruction, and then re-add them when that step is
1288 finished. */
515630c5 1289 if (!use_displaced_stepping (gdbarch))
237fc4c9 1290 remove_breakpoints ();
74960c60 1291 }
237fc4c9
PA
1292
1293 /* We can insert breakpoints if we're not trying to step over one,
1294 or if we are stepping over one but we're using displaced stepping
1295 to do so. */
515630c5 1296 if (! stepping_over_breakpoint || use_displaced_stepping (gdbarch))
c36b740a 1297 insert_breakpoints ();
c906108c
SS
1298
1299 if (siggnal != TARGET_SIGNAL_DEFAULT)
1300 stop_signal = siggnal;
1301 /* If this signal should not be seen by program,
1302 give it zero. Used for debugging signals. */
1303 else if (!signal_program[stop_signal])
1304 stop_signal = TARGET_SIGNAL_0;
1305
1306 annotate_starting ();
1307
1308 /* Make sure that output from GDB appears before output from the
1309 inferior. */
1310 gdb_flush (gdb_stdout);
1311
e4846b08
JJ
1312 /* Refresh prev_pc value just prior to resuming. This used to be
1313 done in stop_stepping, however, setting prev_pc there did not handle
1314 scenarios such as inferior function calls or returning from
1315 a function via the return command. In those cases, the prev_pc
1316 value was not set properly for subsequent commands. The prev_pc value
1317 is used to initialize the starting line number in the ecs. With an
1318 invalid value, the gdb next command ends up stopping at the position
1319 represented by the next line table entry past our start position.
1320 On platforms that generate one line table entry per line, this
1321 is not a problem. However, on the ia64, the compiler generates
1322 extraneous line table entries that do not increase the line number.
1323 When we issue the gdb next command on the ia64 after an inferior call
1324 or a return command, we often end up a few instructions forward, still
1325 within the original line we started.
1326
1327 An attempt was made to have init_execution_control_state () refresh
1328 the prev_pc value before calculating the line number. This approach
1329 did not work because on platforms that use ptrace, the pc register
1330 cannot be read unless the inferior is stopped. At that point, we
515630c5 1331 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
e4846b08 1332 call can fail. Setting the prev_pc value here ensures the value is
8fb3e588 1333 updated correctly when the inferior is stopped. */
515630c5 1334 prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 1335
59f0d5d9
PA
1336 /* Fill in with reasonable starting values. */
1337 init_thread_stepping_state (tss);
1338
59f0d5d9
PA
1339 /* Reset to normal state. */
1340 init_infwait_state ();
1341
c906108c
SS
1342 /* Resume inferior. */
1343 resume (oneproc || step || bpstat_should_step (), stop_signal);
1344
1345 /* Wait for it to stop (if not standalone)
1346 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
1347 /* Do this only if we are not using the event loop, or if the target
1348 does not support asynchronous execution. */
362646f5 1349 if (!target_can_async_p ())
43ff13b4 1350 {
ae123ec6 1351 wait_for_inferior (0);
43ff13b4
JM
1352 normal_stop ();
1353 }
c906108c 1354}
c906108c
SS
1355\f
1356
1357/* Start remote-debugging of a machine over a serial link. */
96baa820 1358
c906108c 1359void
8621d6a9 1360start_remote (int from_tty)
c906108c 1361{
c906108c 1362 init_wait_for_inferior ();
b0f4b84b 1363 stop_soon = STOP_QUIETLY_REMOTE;
ca67fcb8 1364 stepping_over_breakpoint = 0;
43ff13b4 1365
6426a772
JM
1366 /* Always go on waiting for the target, regardless of the mode. */
1367 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 1368 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
1369 nothing is returned (instead of just blocking). Because of this,
1370 targets expecting an immediate response need to, internally, set
1371 things up so that the target_wait() is forced to eventually
1372 timeout. */
1373 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1374 differentiate to its caller what the state of the target is after
1375 the initial open has been performed. Here we're assuming that
1376 the target has stopped. It should be possible to eventually have
1377 target_open() return to the caller an indication that the target
1378 is currently running and GDB state should be set to the same as
1379 for an async run. */
ae123ec6 1380 wait_for_inferior (0);
8621d6a9
DJ
1381
1382 /* Now that the inferior has stopped, do any bookkeeping like
1383 loading shared libraries. We want to do this before normal_stop,
1384 so that the displayed frame is up to date. */
1385 post_create_inferior (&current_target, from_tty);
1386
6426a772 1387 normal_stop ();
c906108c
SS
1388}
1389
1390/* Initialize static vars when a new inferior begins. */
1391
1392void
96baa820 1393init_wait_for_inferior (void)
c906108c
SS
1394{
1395 /* These are meaningless until the first time through wait_for_inferior. */
1396 prev_pc = 0;
c906108c 1397
c906108c
SS
1398 breakpoint_init_inferior (inf_starting);
1399
1400 /* Don't confuse first call to proceed(). */
1401 stop_signal = TARGET_SIGNAL_0;
1402
1403 /* The first resume is not following a fork/vfork/exec. */
1404 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
c906108c 1405
c906108c 1406 clear_proceed_status ();
9f976b41
DJ
1407
1408 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 1409 deferred_step_ptid = null_ptid;
ca005067
DJ
1410
1411 target_last_wait_ptid = minus_one_ptid;
237fc4c9 1412
0d1e5fa7
PA
1413 init_thread_stepping_state (tss);
1414 previous_inferior_ptid = null_ptid;
1415 init_infwait_state ();
1416
237fc4c9 1417 displaced_step_clear ();
c906108c 1418}
237fc4c9 1419
c906108c 1420\f
b83266a0
SS
1421/* This enum encodes possible reasons for doing a target_wait, so that
1422 wfi can call target_wait in one place. (Ultimately the call will be
1423 moved out of the infinite loop entirely.) */
1424
c5aa993b
JM
1425enum infwait_states
1426{
cd0fc7c3
SS
1427 infwait_normal_state,
1428 infwait_thread_hop_state,
d983da9c 1429 infwait_step_watch_state,
cd0fc7c3 1430 infwait_nonstep_watch_state
b83266a0
SS
1431};
1432
11cf8741
JM
1433/* Why did the inferior stop? Used to print the appropriate messages
1434 to the interface from within handle_inferior_event(). */
1435enum inferior_stop_reason
1436{
11cf8741
JM
1437 /* Step, next, nexti, stepi finished. */
1438 END_STEPPING_RANGE,
11cf8741
JM
1439 /* Inferior terminated by signal. */
1440 SIGNAL_EXITED,
1441 /* Inferior exited. */
1442 EXITED,
1443 /* Inferior received signal, and user asked to be notified. */
1444 SIGNAL_RECEIVED
1445};
1446
0d1e5fa7
PA
1447/* The PTID we'll do a target_wait on.*/
1448ptid_t waiton_ptid;
1449
1450/* Current inferior wait state. */
1451enum infwait_states infwait_state;
cd0fc7c3 1452
0d1e5fa7
PA
1453/* Data to be passed around while handling an event. This data is
1454 discarded between events. */
c5aa993b 1455struct execution_control_state
488f131b 1456{
0d1e5fa7 1457 ptid_t ptid;
488f131b 1458 struct target_waitstatus ws;
488f131b
JB
1459 int random_signal;
1460 CORE_ADDR stop_func_start;
1461 CORE_ADDR stop_func_end;
1462 char *stop_func_name;
488f131b 1463 int new_thread_event;
488f131b
JB
1464 int wait_some_more;
1465};
1466
1467void init_execution_control_state (struct execution_control_state *ecs);
1468
1469void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 1470
c2c6d25f 1471static void step_into_function (struct execution_control_state *ecs);
44cbf7b5 1472static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
14e60db5 1473static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
44cbf7b5
AC
1474static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
1475 struct frame_id sr_id);
611c83ae
PA
1476static void insert_longjmp_resume_breakpoint (CORE_ADDR);
1477
104c1213
JM
1478static void stop_stepping (struct execution_control_state *ecs);
1479static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 1480static void keep_going (struct execution_control_state *ecs);
488f131b
JB
1481static void print_stop_reason (enum inferior_stop_reason stop_reason,
1482 int stop_info);
104c1213 1483
cd0fc7c3 1484/* Wait for control to return from inferior to debugger.
ae123ec6
JB
1485
1486 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1487 as if they were SIGTRAP signals. This can be useful during
1488 the startup sequence on some targets such as HP/UX, where
1489 we receive an EXEC event instead of the expected SIGTRAP.
1490
cd0fc7c3
SS
1491 If inferior gets a signal, we may decide to start it up again
1492 instead of returning. That is why there is a loop in this function.
1493 When this function actually returns it means the inferior
1494 should be left stopped and GDB should read more commands. */
1495
1496void
ae123ec6 1497wait_for_inferior (int treat_exec_as_sigtrap)
cd0fc7c3
SS
1498{
1499 struct cleanup *old_cleanups;
0d1e5fa7 1500 struct execution_control_state ecss;
cd0fc7c3 1501 struct execution_control_state *ecs;
c906108c 1502
527159b7 1503 if (debug_infrun)
ae123ec6
JB
1504 fprintf_unfiltered
1505 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1506 treat_exec_as_sigtrap);
527159b7 1507
8601f500 1508 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
c906108c 1509 &step_resume_breakpoint);
cd0fc7c3 1510
cd0fc7c3 1511 ecs = &ecss;
0d1e5fa7
PA
1512 memset (ecs, 0, sizeof (*ecs));
1513
cd0fc7c3
SS
1514 overlay_cache_invalid = 1;
1515
e0bb1c1c
PA
1516 /* We'll update this if & when we switch to a new thread. */
1517 previous_inferior_ptid = inferior_ptid;
1518
cd0fc7c3
SS
1519 /* We have to invalidate the registers BEFORE calling target_wait
1520 because they can be loaded from the target while in target_wait.
1521 This makes remote debugging a bit more efficient for those
1522 targets that provide critical registers as part of their normal
1523 status mechanism. */
1524
1525 registers_changed ();
b83266a0 1526
c906108c
SS
1527 while (1)
1528 {
9a4105ab 1529 if (deprecated_target_wait_hook)
0d1e5fa7 1530 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
cd0fc7c3 1531 else
0d1e5fa7 1532 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
c906108c 1533
ae123ec6
JB
1534 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
1535 {
1536 xfree (ecs->ws.value.execd_pathname);
1537 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1538 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
1539 }
1540
cd0fc7c3
SS
1541 /* Now figure out what to do with the result of the result. */
1542 handle_inferior_event (ecs);
c906108c 1543
cd0fc7c3
SS
1544 if (!ecs->wait_some_more)
1545 break;
1546 }
1547 do_cleanups (old_cleanups);
1548}
c906108c 1549
43ff13b4
JM
1550/* Asynchronous version of wait_for_inferior. It is called by the
1551 event loop whenever a change of state is detected on the file
1552 descriptor corresponding to the target. It can be called more than
1553 once to complete a single execution command. In such cases we need
a474d7c2
PA
1554 to keep the state in a global variable ECSS. If it is the last time
1555 that this function is called for a single execution command, then
1556 report to the user that the inferior has stopped, and do the
1557 necessary cleanups. */
43ff13b4
JM
1558
1559void
fba45db2 1560fetch_inferior_event (void *client_data)
43ff13b4 1561{
0d1e5fa7 1562 struct execution_control_state ecss;
a474d7c2 1563 struct execution_control_state *ecs = &ecss;
4f8d22e3
PA
1564 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
1565 int was_sync = sync_execution;
43ff13b4 1566
0d1e5fa7
PA
1567 memset (ecs, 0, sizeof (*ecs));
1568
59f0d5d9 1569 overlay_cache_invalid = 1;
43ff13b4 1570
e0bb1c1c
PA
1571 /* We can only rely on wait_for_more being correct before handling
1572 the event in all-stop, but previous_inferior_ptid isn't used in
1573 non-stop. */
1574 if (!ecs->wait_some_more)
1575 /* We'll update this if & when we switch to a new thread. */
1576 previous_inferior_ptid = inferior_ptid;
1577
4f8d22e3
PA
1578 if (non_stop)
1579 /* In non-stop mode, the user/frontend should not notice a thread
1580 switch due to internal events. Make sure we reverse to the
1581 user selected thread and frame after handling the event and
1582 running any breakpoint commands. */
1583 make_cleanup_restore_current_thread ();
1584
59f0d5d9
PA
1585 /* We have to invalidate the registers BEFORE calling target_wait
1586 because they can be loaded from the target while in target_wait.
1587 This makes remote debugging a bit more efficient for those
1588 targets that provide critical registers as part of their normal
1589 status mechanism. */
43ff13b4 1590
59f0d5d9 1591 registers_changed ();
43ff13b4 1592
9a4105ab 1593 if (deprecated_target_wait_hook)
a474d7c2 1594 ecs->ptid =
0d1e5fa7 1595 deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
43ff13b4 1596 else
0d1e5fa7 1597 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
43ff13b4 1598
94cc34af
PA
1599 if (non_stop
1600 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
1601 && ecs->ws.kind != TARGET_WAITKIND_EXITED
1602 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
1603 /* In non-stop mode, each thread is handled individually. Switch
1604 early, so the global state is set correctly for this
1605 thread. */
1606 context_switch (ecs->ptid);
1607
43ff13b4 1608 /* Now figure out what to do with the result of the result. */
a474d7c2 1609 handle_inferior_event (ecs);
43ff13b4 1610
a474d7c2 1611 if (!ecs->wait_some_more)
43ff13b4 1612 {
f107f563
VP
1613 delete_step_resume_breakpoint (&step_resume_breakpoint);
1614
83c265ab
PA
1615 if (stop_soon == NO_STOP_QUIETLY)
1616 normal_stop ();
1617
c2d11a7d
JM
1618 if (step_multi && stop_step)
1619 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1620 else
1621 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4 1622 }
4f8d22e3
PA
1623
1624 /* Revert thread and frame. */
1625 do_cleanups (old_chain);
1626
1627 /* If the inferior was in sync execution mode, and now isn't,
1628 restore the prompt. */
1629 if (was_sync && !sync_execution)
1630 display_gdb_prompt (0);
43ff13b4
JM
1631}
1632
cd0fc7c3
SS
1633/* Prepare an execution control state for looping through a
1634 wait_for_inferior-type loop. */
1635
1636void
96baa820 1637init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3
SS
1638{
1639 ecs->random_signal = 0;
0d1e5fa7
PA
1640}
1641
1642/* Clear context switchable stepping state. */
1643
1644void
1645init_thread_stepping_state (struct thread_stepping_state *tss)
1646{
2afb61aa
PA
1647 struct symtab_and_line sal;
1648
0d1e5fa7
PA
1649 tss->stepping_over_breakpoint = 0;
1650 tss->step_after_step_resume_breakpoint = 0;
1651 tss->stepping_through_solib_after_catch = 0;
1652 tss->stepping_through_solib_catchpoints = NULL;
2afb61aa
PA
1653
1654 sal = find_pc_line (prev_pc, 0);
1655 tss->current_line = sal.line;
1656 tss->current_symtab = sal.symtab;
cd0fc7c3
SS
1657}
1658
e02bc4cc 1659/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
1660 target_wait()/deprecated_target_wait_hook(). The data is actually
1661 cached by handle_inferior_event(), which gets called immediately
1662 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
1663
1664void
488f131b 1665get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 1666{
39f77062 1667 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
1668 *status = target_last_waitstatus;
1669}
1670
ac264b3b
MS
1671void
1672nullify_last_target_wait_ptid (void)
1673{
1674 target_last_wait_ptid = minus_one_ptid;
1675}
1676
dd80620e
MS
1677/* Switch thread contexts, maintaining "infrun state". */
1678
1679static void
0d1e5fa7 1680context_switch (ptid_t ptid)
dd80620e
MS
1681{
1682 /* Caution: it may happen that the new thread (or the old one!)
1683 is not in the thread list. In this case we must not attempt
1684 to "switch context", or we run the risk that our context may
1685 be lost. This may happen as a result of the target module
1686 mishandling thread creation. */
1687
fd48f117
DJ
1688 if (debug_infrun)
1689 {
1690 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1691 target_pid_to_str (inferior_ptid));
1692 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 1693 target_pid_to_str (ptid));
fd48f117
DJ
1694 }
1695
0d1e5fa7 1696 if (in_thread_list (inferior_ptid) && in_thread_list (ptid))
488f131b 1697 { /* Perform infrun state context switch: */
dd80620e 1698 /* Save infrun state for the old thread. */
0ce3d317 1699 save_infrun_state (inferior_ptid, prev_pc,
ca67fcb8 1700 stepping_over_breakpoint, step_resume_breakpoint,
15960608 1701 step_range_start,
aa0cd9c1 1702 step_range_end, &step_frame_id,
0d1e5fa7
PA
1703 tss->stepping_over_breakpoint,
1704 tss->stepping_through_solib_after_catch,
1705 tss->stepping_through_solib_catchpoints,
1706 tss->current_line, tss->current_symtab,
a474d7c2
PA
1707 cmd_continuation, intermediate_continuation,
1708 proceed_to_finish,
1709 step_over_calls,
1710 stop_step,
1711 step_multi,
1712 stop_signal,
1713 stop_bpstat);
dd80620e
MS
1714
1715 /* Load infrun state for the new thread. */
0d1e5fa7 1716 load_infrun_state (ptid, &prev_pc,
ca67fcb8 1717 &stepping_over_breakpoint, &step_resume_breakpoint,
15960608 1718 &step_range_start,
aa0cd9c1 1719 &step_range_end, &step_frame_id,
0d1e5fa7
PA
1720 &tss->stepping_over_breakpoint,
1721 &tss->stepping_through_solib_after_catch,
1722 &tss->stepping_through_solib_catchpoints,
1723 &tss->current_line, &tss->current_symtab,
a474d7c2
PA
1724 &cmd_continuation, &intermediate_continuation,
1725 &proceed_to_finish,
1726 &step_over_calls,
1727 &stop_step,
1728 &step_multi,
1729 &stop_signal,
1730 &stop_bpstat);
dd80620e 1731 }
6a6b96b9 1732
0d1e5fa7 1733 switch_to_thread (ptid);
dd80620e
MS
1734}
1735
a474d7c2
PA
1736/* Context switch to thread PTID. */
1737ptid_t
1738context_switch_to (ptid_t ptid)
1739{
1740 ptid_t current_ptid = inferior_ptid;
1741
1742 /* Context switch to the new thread. */
1743 if (!ptid_equal (ptid, inferior_ptid))
1744 {
0d1e5fa7 1745 context_switch (ptid);
a474d7c2
PA
1746 }
1747 return current_ptid;
1748}
1749
4fa8626c
DJ
1750static void
1751adjust_pc_after_break (struct execution_control_state *ecs)
1752{
24a73cce
UW
1753 struct regcache *regcache;
1754 struct gdbarch *gdbarch;
8aad930b 1755 CORE_ADDR breakpoint_pc;
4fa8626c 1756
4fa8626c
DJ
1757 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1758 we aren't, just return.
9709f61c
DJ
1759
1760 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
1761 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1762 implemented by software breakpoints should be handled through the normal
1763 breakpoint layer.
8fb3e588 1764
4fa8626c
DJ
1765 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1766 different signals (SIGILL or SIGEMT for instance), but it is less
1767 clear where the PC is pointing afterwards. It may not match
b798847d
UW
1768 gdbarch_decr_pc_after_break. I don't know any specific target that
1769 generates these signals at breakpoints (the code has been in GDB since at
1770 least 1992) so I can not guess how to handle them here.
8fb3e588 1771
e6cf7916
UW
1772 In earlier versions of GDB, a target with
1773 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
1774 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1775 target with both of these set in GDB history, and it seems unlikely to be
1776 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
1777
1778 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1779 return;
1780
1781 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1782 return;
1783
24a73cce
UW
1784 /* If this target does not decrement the PC after breakpoints, then
1785 we have nothing to do. */
1786 regcache = get_thread_regcache (ecs->ptid);
1787 gdbarch = get_regcache_arch (regcache);
1788 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
1789 return;
1790
8aad930b
AC
1791 /* Find the location where (if we've hit a breakpoint) the
1792 breakpoint would be. */
515630c5
UW
1793 breakpoint_pc = regcache_read_pc (regcache)
1794 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 1795
1c0fdd0e
UW
1796 /* Check whether there actually is a software breakpoint inserted
1797 at that location. */
1798 if (software_breakpoint_inserted_here_p (breakpoint_pc))
8aad930b 1799 {
1c0fdd0e
UW
1800 /* When using hardware single-step, a SIGTRAP is reported for both
1801 a completed single-step and a software breakpoint. Need to
1802 differentiate between the two, as the latter needs adjusting
1803 but the former does not.
1804
1805 The SIGTRAP can be due to a completed hardware single-step only if
1806 - we didn't insert software single-step breakpoints
1807 - the thread to be examined is still the current thread
1808 - this thread is currently being stepped
1809
1810 If any of these events did not occur, we must have stopped due
1811 to hitting a software breakpoint, and have to back up to the
1812 breakpoint address.
1813
1814 As a special case, we could have hardware single-stepped a
1815 software breakpoint. In this case (prev_pc == breakpoint_pc),
1816 we also need to back up to the breakpoint address. */
1817
1818 if (singlestep_breakpoints_inserted_p
1819 || !ptid_equal (ecs->ptid, inferior_ptid)
0d1e5fa7 1820 || !currently_stepping (tss)
1c0fdd0e 1821 || prev_pc == breakpoint_pc)
515630c5 1822 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 1823 }
4fa8626c
DJ
1824}
1825
0d1e5fa7
PA
1826void
1827init_infwait_state (void)
1828{
1829 waiton_ptid = pid_to_ptid (-1);
1830 infwait_state = infwait_normal_state;
1831}
1832
94cc34af
PA
1833void
1834error_is_running (void)
1835{
1836 error (_("\
1837Cannot execute this command while the selected thread is running."));
1838}
1839
1840void
1841ensure_not_running (void)
1842{
1843 if (is_running (inferior_ptid))
1844 error_is_running ();
1845}
1846
cd0fc7c3
SS
1847/* Given an execution control state that has been freshly filled in
1848 by an event from the inferior, figure out what it means and take
1849 appropriate action. */
c906108c 1850
cd0fc7c3 1851void
96baa820 1852handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 1853{
c8edd8b4 1854 int sw_single_step_trap_p = 0;
d983da9c
DJ
1855 int stopped_by_watchpoint;
1856 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 1857 struct symtab_and_line stop_pc_sal;
cd0fc7c3 1858
20874c92
VP
1859 breakpoint_retire_moribund ();
1860
e02bc4cc 1861 /* Cache the last pid/waitstatus. */
39f77062 1862 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 1863 target_last_waitstatus = ecs->ws;
e02bc4cc 1864
ca005067
DJ
1865 /* Always clear state belonging to the previous time we stopped. */
1866 stop_stack_dummy = 0;
1867
4fa8626c
DJ
1868 adjust_pc_after_break (ecs);
1869
8c90c137
LM
1870 reinit_frame_cache ();
1871
1872 /* If it's a new process, add it to the thread database */
1873
1874 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1875 && !ptid_equal (ecs->ptid, minus_one_ptid)
1876 && !in_thread_list (ecs->ptid));
1877
1878 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1879 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1880 add_thread (ecs->ptid);
1881
1882 if (ecs->ws.kind != TARGET_WAITKIND_IGNORE)
1883 {
1884 /* Mark the non-executing threads accordingly. */
1885 if (!non_stop
1886 || ecs->ws.kind == TARGET_WAITKIND_EXITED
1887 || ecs->ws.kind == TARGET_WAITKIND_SIGNALLED)
1888 set_executing (pid_to_ptid (-1), 0);
1889 else
1890 set_executing (ecs->ptid, 0);
1891 }
1892
0d1e5fa7 1893 switch (infwait_state)
488f131b
JB
1894 {
1895 case infwait_thread_hop_state:
527159b7 1896 if (debug_infrun)
8a9de0e4 1897 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
488f131b 1898 /* Cancel the waiton_ptid. */
0d1e5fa7 1899 waiton_ptid = pid_to_ptid (-1);
65e82032 1900 break;
b83266a0 1901
488f131b 1902 case infwait_normal_state:
527159b7 1903 if (debug_infrun)
8a9de0e4 1904 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
1905 break;
1906
1907 case infwait_step_watch_state:
1908 if (debug_infrun)
1909 fprintf_unfiltered (gdb_stdlog,
1910 "infrun: infwait_step_watch_state\n");
1911
1912 stepped_after_stopped_by_watchpoint = 1;
488f131b 1913 break;
b83266a0 1914
488f131b 1915 case infwait_nonstep_watch_state:
527159b7 1916 if (debug_infrun)
8a9de0e4
AC
1917 fprintf_unfiltered (gdb_stdlog,
1918 "infrun: infwait_nonstep_watch_state\n");
488f131b 1919 insert_breakpoints ();
c906108c 1920
488f131b
JB
1921 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1922 handle things like signals arriving and other things happening
1923 in combination correctly? */
1924 stepped_after_stopped_by_watchpoint = 1;
1925 break;
65e82032
AC
1926
1927 default:
e2e0b3e5 1928 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 1929 }
0d1e5fa7 1930 infwait_state = infwait_normal_state;
c906108c 1931
488f131b
JB
1932 switch (ecs->ws.kind)
1933 {
1934 case TARGET_WAITKIND_LOADED:
527159b7 1935 if (debug_infrun)
8a9de0e4 1936 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
1937 /* Ignore gracefully during startup of the inferior, as it might
1938 be the shell which has just loaded some objects, otherwise
1939 add the symbols for the newly loaded objects. Also ignore at
1940 the beginning of an attach or remote session; we will query
1941 the full list of libraries once the connection is
1942 established. */
c0236d92 1943 if (stop_soon == NO_STOP_QUIETLY)
488f131b 1944 {
488f131b
JB
1945 /* Check for any newly added shared libraries if we're
1946 supposed to be adding them automatically. Switch
1947 terminal for any messages produced by
1948 breakpoint_re_set. */
1949 target_terminal_ours_for_output ();
aff6338a 1950 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
1951 stack's section table is kept up-to-date. Architectures,
1952 (e.g., PPC64), use the section table to perform
1953 operations such as address => section name and hence
1954 require the table to contain all sections (including
1955 those found in shared libraries). */
aff6338a 1956 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
1957 exec_ops to SOLIB_ADD. This is because current GDB is
1958 only tooled to propagate section_table changes out from
1959 the "current_target" (see target_resize_to_sections), and
1960 not up from the exec stratum. This, of course, isn't
1961 right. "infrun.c" should only interact with the
1962 exec/process stratum, instead relying on the target stack
1963 to propagate relevant changes (stop, section table
1964 changed, ...) up to other layers. */
b0f4b84b 1965#ifdef SOLIB_ADD
aff6338a 1966 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
b0f4b84b
DJ
1967#else
1968 solib_add (NULL, 0, &current_target, auto_solib_add);
1969#endif
488f131b
JB
1970 target_terminal_inferior ();
1971
b0f4b84b
DJ
1972 /* If requested, stop when the dynamic linker notifies
1973 gdb of events. This allows the user to get control
1974 and place breakpoints in initializer routines for
1975 dynamically loaded objects (among other things). */
1976 if (stop_on_solib_events)
1977 {
1978 stop_stepping (ecs);
1979 return;
1980 }
1981
1982 /* NOTE drow/2007-05-11: This might be a good place to check
1983 for "catch load". */
488f131b 1984 }
b0f4b84b
DJ
1985
1986 /* If we are skipping through a shell, or through shared library
1987 loading that we aren't interested in, resume the program. If
1988 we're running the program normally, also resume. But stop if
1989 we're attaching or setting up a remote connection. */
1990 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
1991 {
74960c60
VP
1992 /* Loading of shared libraries might have changed breakpoint
1993 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
1994 if (stop_soon == NO_STOP_QUIETLY
1995 && !breakpoints_always_inserted_mode ())
74960c60 1996 insert_breakpoints ();
b0f4b84b
DJ
1997 resume (0, TARGET_SIGNAL_0);
1998 prepare_to_wait (ecs);
1999 return;
2000 }
2001
2002 break;
c5aa993b 2003
488f131b 2004 case TARGET_WAITKIND_SPURIOUS:
527159b7 2005 if (debug_infrun)
8a9de0e4 2006 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
2007 resume (0, TARGET_SIGNAL_0);
2008 prepare_to_wait (ecs);
2009 return;
c5aa993b 2010
488f131b 2011 case TARGET_WAITKIND_EXITED:
527159b7 2012 if (debug_infrun)
8a9de0e4 2013 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
488f131b
JB
2014 target_terminal_ours (); /* Must do this before mourn anyway */
2015 print_stop_reason (EXITED, ecs->ws.value.integer);
2016
2017 /* Record the exit code in the convenience variable $_exitcode, so
2018 that the user can inspect this again later. */
2019 set_internalvar (lookup_internalvar ("_exitcode"),
2020 value_from_longest (builtin_type_int,
2021 (LONGEST) ecs->ws.value.integer));
2022 gdb_flush (gdb_stdout);
2023 target_mourn_inferior ();
1c0fdd0e 2024 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
2025 stop_print_frame = 0;
2026 stop_stepping (ecs);
2027 return;
c5aa993b 2028
488f131b 2029 case TARGET_WAITKIND_SIGNALLED:
527159b7 2030 if (debug_infrun)
8a9de0e4 2031 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
488f131b
JB
2032 stop_print_frame = 0;
2033 stop_signal = ecs->ws.value.sig;
2034 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 2035
488f131b
JB
2036 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
2037 reach here unless the inferior is dead. However, for years
2038 target_kill() was called here, which hints that fatal signals aren't
2039 really fatal on some systems. If that's true, then some changes
2040 may be needed. */
2041 target_mourn_inferior ();
c906108c 2042
488f131b 2043 print_stop_reason (SIGNAL_EXITED, stop_signal);
1c0fdd0e 2044 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
2045 stop_stepping (ecs);
2046 return;
c906108c 2047
488f131b
JB
2048 /* The following are the only cases in which we keep going;
2049 the above cases end in a continue or goto. */
2050 case TARGET_WAITKIND_FORKED:
deb3b17b 2051 case TARGET_WAITKIND_VFORKED:
527159b7 2052 if (debug_infrun)
8a9de0e4 2053 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
488f131b
JB
2054 stop_signal = TARGET_SIGNAL_TRAP;
2055 pending_follow.kind = ecs->ws.kind;
2056
3a3e9ee3 2057 pending_follow.fork_event.parent_pid = ecs->ptid;
8e7d2c16 2058 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
c906108c 2059
5a2901d9
DJ
2060 if (!ptid_equal (ecs->ptid, inferior_ptid))
2061 {
0d1e5fa7 2062 context_switch (ecs->ptid);
35f196d9 2063 reinit_frame_cache ();
5a2901d9
DJ
2064 }
2065
488f131b 2066 stop_pc = read_pc ();
675bf4cb 2067
d983da9c 2068 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
675bf4cb 2069
488f131b 2070 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
04e68871
DJ
2071
2072 /* If no catchpoint triggered for this, then keep going. */
2073 if (ecs->random_signal)
2074 {
2075 stop_signal = TARGET_SIGNAL_0;
2076 keep_going (ecs);
2077 return;
2078 }
488f131b
JB
2079 goto process_event_stop_test;
2080
2081 case TARGET_WAITKIND_EXECD:
527159b7 2082 if (debug_infrun)
fc5261f2 2083 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b
JB
2084 stop_signal = TARGET_SIGNAL_TRAP;
2085
488f131b
JB
2086 pending_follow.execd_pathname =
2087 savestring (ecs->ws.value.execd_pathname,
2088 strlen (ecs->ws.value.execd_pathname));
2089
488f131b
JB
2090 /* This causes the eventpoints and symbol table to be reset. Must
2091 do this now, before trying to determine whether to stop. */
3a3e9ee3 2092 follow_exec (inferior_ptid, pending_follow.execd_pathname);
488f131b 2093 xfree (pending_follow.execd_pathname);
c906108c 2094
515630c5 2095 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 2096
0d1e5fa7
PA
2097 {
2098 /* The breakpoints module may need to touch the inferior's
2099 memory. Switch to the (stopped) event ptid
2100 momentarily. */
2101 ptid_t saved_inferior_ptid = inferior_ptid;
2102 inferior_ptid = ecs->ptid;
675bf4cb 2103
0d1e5fa7
PA
2104 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2105
2106 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
2107 inferior_ptid = saved_inferior_ptid;
2108 }
04e68871 2109
5a2901d9
DJ
2110 if (!ptid_equal (ecs->ptid, inferior_ptid))
2111 {
0d1e5fa7 2112 context_switch (ecs->ptid);
35f196d9 2113 reinit_frame_cache ();
5a2901d9
DJ
2114 }
2115
04e68871
DJ
2116 /* If no catchpoint triggered for this, then keep going. */
2117 if (ecs->random_signal)
2118 {
2119 stop_signal = TARGET_SIGNAL_0;
2120 keep_going (ecs);
2121 return;
2122 }
488f131b
JB
2123 goto process_event_stop_test;
2124
b4dc5ffa
MK
2125 /* Be careful not to try to gather much state about a thread
2126 that's in a syscall. It's frequently a losing proposition. */
488f131b 2127 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 2128 if (debug_infrun)
8a9de0e4 2129 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
488f131b
JB
2130 resume (0, TARGET_SIGNAL_0);
2131 prepare_to_wait (ecs);
2132 return;
c906108c 2133
488f131b
JB
2134 /* Before examining the threads further, step this thread to
2135 get it entirely out of the syscall. (We get notice of the
2136 event when the thread is just on the verge of exiting a
2137 syscall. Stepping one instruction seems to get it back
b4dc5ffa 2138 into user code.) */
488f131b 2139 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 2140 if (debug_infrun)
8a9de0e4 2141 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
488f131b 2142 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
488f131b
JB
2143 prepare_to_wait (ecs);
2144 return;
c906108c 2145
488f131b 2146 case TARGET_WAITKIND_STOPPED:
527159b7 2147 if (debug_infrun)
8a9de0e4 2148 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
488f131b
JB
2149 stop_signal = ecs->ws.value.sig;
2150 break;
c906108c 2151
488f131b
JB
2152 /* We had an event in the inferior, but we are not interested
2153 in handling it at this level. The lower layers have already
8e7d2c16 2154 done what needs to be done, if anything.
8fb3e588
AC
2155
2156 One of the possible circumstances for this is when the
2157 inferior produces output for the console. The inferior has
2158 not stopped, and we are ignoring the event. Another possible
2159 circumstance is any event which the lower level knows will be
2160 reported multiple times without an intervening resume. */
488f131b 2161 case TARGET_WAITKIND_IGNORE:
527159b7 2162 if (debug_infrun)
8a9de0e4 2163 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
8e7d2c16 2164 prepare_to_wait (ecs);
488f131b
JB
2165 return;
2166 }
c906108c 2167
488f131b
JB
2168 if (ecs->new_thread_event)
2169 {
94cc34af
PA
2170 if (non_stop)
2171 /* Non-stop assumes that the target handles adding new threads
2172 to the thread list. */
2173 internal_error (__FILE__, __LINE__, "\
2174targets should add new threads to the thread list themselves in non-stop mode.");
2175
2176 /* We may want to consider not doing a resume here in order to
2177 give the user a chance to play with the new thread. It might
2178 be good to make that a user-settable option. */
2179
2180 /* At this point, all threads are stopped (happens automatically
2181 in either the OS or the native code). Therefore we need to
2182 continue all threads in order to make progress. */
2183
488f131b
JB
2184 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
2185 prepare_to_wait (ecs);
2186 return;
2187 }
c906108c 2188
237fc4c9
PA
2189 /* Do we need to clean up the state of a thread that has completed a
2190 displaced single-step? (Doing so usually affects the PC, so do
2191 it here, before we set stop_pc.) */
2192 displaced_step_fixup (ecs->ptid, stop_signal);
2193
515630c5 2194 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 2195
527159b7 2196 if (debug_infrun)
237fc4c9
PA
2197 {
2198 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n",
2199 paddr_nz (stop_pc));
2200 if (STOPPED_BY_WATCHPOINT (&ecs->ws))
2201 {
2202 CORE_ADDR addr;
2203 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2204
2205 if (target_stopped_data_address (&current_target, &addr))
2206 fprintf_unfiltered (gdb_stdlog,
2207 "infrun: stopped data address = 0x%s\n",
2208 paddr_nz (addr));
2209 else
2210 fprintf_unfiltered (gdb_stdlog,
2211 "infrun: (no data address available)\n");
2212 }
2213 }
527159b7 2214
9f976b41
DJ
2215 if (stepping_past_singlestep_breakpoint)
2216 {
1c0fdd0e 2217 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
2218 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2219 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2220
2221 stepping_past_singlestep_breakpoint = 0;
2222
2223 /* We've either finished single-stepping past the single-step
8fb3e588
AC
2224 breakpoint, or stopped for some other reason. It would be nice if
2225 we could tell, but we can't reliably. */
9f976b41 2226 if (stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 2227 {
527159b7 2228 if (debug_infrun)
8a9de0e4 2229 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
9f976b41 2230 /* Pull the single step breakpoints out of the target. */
e0cd558a 2231 remove_single_step_breakpoints ();
9f976b41
DJ
2232 singlestep_breakpoints_inserted_p = 0;
2233
2234 ecs->random_signal = 0;
2235
0d1e5fa7 2236 context_switch (saved_singlestep_ptid);
9a4105ab
AC
2237 if (deprecated_context_hook)
2238 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
2239
2240 resume (1, TARGET_SIGNAL_0);
2241 prepare_to_wait (ecs);
2242 return;
2243 }
2244 }
2245
2246 stepping_past_singlestep_breakpoint = 0;
2247
ca67fcb8 2248 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 2249 {
94cc34af
PA
2250 /* In non-stop mode, there's never a deferred_step_ptid set. */
2251 gdb_assert (!non_stop);
2252
6a6b96b9
UW
2253 /* If we stopped for some other reason than single-stepping, ignore
2254 the fact that we were supposed to switch back. */
2255 if (stop_signal == TARGET_SIGNAL_TRAP)
2256 {
2257 if (debug_infrun)
2258 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 2259 "infrun: handling deferred step\n");
6a6b96b9
UW
2260
2261 /* Pull the single step breakpoints out of the target. */
2262 if (singlestep_breakpoints_inserted_p)
2263 {
2264 remove_single_step_breakpoints ();
2265 singlestep_breakpoints_inserted_p = 0;
2266 }
2267
2268 /* Note: We do not call context_switch at this point, as the
2269 context is already set up for stepping the original thread. */
ca67fcb8
VP
2270 switch_to_thread (deferred_step_ptid);
2271 deferred_step_ptid = null_ptid;
6a6b96b9
UW
2272 /* Suppress spurious "Switching to ..." message. */
2273 previous_inferior_ptid = inferior_ptid;
2274
2275 resume (1, TARGET_SIGNAL_0);
2276 prepare_to_wait (ecs);
2277 return;
2278 }
ca67fcb8
VP
2279
2280 deferred_step_ptid = null_ptid;
6a6b96b9
UW
2281 }
2282
488f131b
JB
2283 /* See if a thread hit a thread-specific breakpoint that was meant for
2284 another thread. If so, then step that thread past the breakpoint,
2285 and continue it. */
2286
2287 if (stop_signal == TARGET_SIGNAL_TRAP)
2288 {
9f976b41
DJ
2289 int thread_hop_needed = 0;
2290
f8d40ec8
JB
2291 /* Check if a regular breakpoint has been hit before checking
2292 for a potential single step breakpoint. Otherwise, GDB will
2293 not see this breakpoint hit when stepping onto breakpoints. */
c36b740a 2294 if (regular_breakpoint_inserted_here_p (stop_pc))
488f131b 2295 {
c5aa993b 2296 ecs->random_signal = 0;
4fa8626c 2297 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
9f976b41
DJ
2298 thread_hop_needed = 1;
2299 }
1c0fdd0e 2300 else if (singlestep_breakpoints_inserted_p)
9f976b41 2301 {
fd48f117
DJ
2302 /* We have not context switched yet, so this should be true
2303 no matter which thread hit the singlestep breakpoint. */
2304 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2305 if (debug_infrun)
2306 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2307 "trap for %s\n",
2308 target_pid_to_str (ecs->ptid));
2309
9f976b41
DJ
2310 ecs->random_signal = 0;
2311 /* The call to in_thread_list is necessary because PTIDs sometimes
2312 change when we go from single-threaded to multi-threaded. If
2313 the singlestep_ptid is still in the list, assume that it is
2314 really different from ecs->ptid. */
2315 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2316 && in_thread_list (singlestep_ptid))
2317 {
fd48f117
DJ
2318 /* If the PC of the thread we were trying to single-step
2319 has changed, discard this event (which we were going
2320 to ignore anyway), and pretend we saw that thread
2321 trap. This prevents us continuously moving the
2322 single-step breakpoint forward, one instruction at a
2323 time. If the PC has changed, then the thread we were
2324 trying to single-step has trapped or been signalled,
2325 but the event has not been reported to GDB yet.
2326
2327 There might be some cases where this loses signal
2328 information, if a signal has arrived at exactly the
2329 same time that the PC changed, but this is the best
2330 we can do with the information available. Perhaps we
2331 should arrange to report all events for all threads
2332 when they stop, or to re-poll the remote looking for
2333 this particular thread (i.e. temporarily enable
2334 schedlock). */
515630c5
UW
2335
2336 CORE_ADDR new_singlestep_pc
2337 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
2338
2339 if (new_singlestep_pc != singlestep_pc)
fd48f117
DJ
2340 {
2341 if (debug_infrun)
2342 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2343 " but expected thread advanced also\n");
2344
2345 /* The current context still belongs to
2346 singlestep_ptid. Don't swap here, since that's
2347 the context we want to use. Just fudge our
2348 state and continue. */
2349 ecs->ptid = singlestep_ptid;
515630c5 2350 stop_pc = new_singlestep_pc;
fd48f117
DJ
2351 }
2352 else
2353 {
2354 if (debug_infrun)
2355 fprintf_unfiltered (gdb_stdlog,
2356 "infrun: unexpected thread\n");
2357
2358 thread_hop_needed = 1;
2359 stepping_past_singlestep_breakpoint = 1;
2360 saved_singlestep_ptid = singlestep_ptid;
2361 }
9f976b41
DJ
2362 }
2363 }
2364
2365 if (thread_hop_needed)
8fb3e588 2366 {
237fc4c9 2367 int remove_status = 0;
8fb3e588 2368
527159b7 2369 if (debug_infrun)
8a9de0e4 2370 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 2371
8fb3e588
AC
2372 /* Saw a breakpoint, but it was hit by the wrong thread.
2373 Just continue. */
2374
1c0fdd0e 2375 if (singlestep_breakpoints_inserted_p)
488f131b 2376 {
8fb3e588 2377 /* Pull the single step breakpoints out of the target. */
e0cd558a 2378 remove_single_step_breakpoints ();
8fb3e588
AC
2379 singlestep_breakpoints_inserted_p = 0;
2380 }
2381
237fc4c9
PA
2382 /* If the arch can displace step, don't remove the
2383 breakpoints. */
2384 if (!use_displaced_stepping (current_gdbarch))
2385 remove_status = remove_breakpoints ();
2386
8fb3e588
AC
2387 /* Did we fail to remove breakpoints? If so, try
2388 to set the PC past the bp. (There's at least
2389 one situation in which we can fail to remove
2390 the bp's: On HP-UX's that use ttrace, we can't
2391 change the address space of a vforking child
2392 process until the child exits (well, okay, not
2393 then either :-) or execs. */
2394 if (remove_status != 0)
9d9cd7ac 2395 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
2396 else
2397 { /* Single step */
8fb3e588 2398 if (!ptid_equal (inferior_ptid, ecs->ptid))
0d1e5fa7
PA
2399 context_switch (ecs->ptid);
2400
94cc34af
PA
2401 if (!non_stop)
2402 {
2403 /* Only need to require the next event from this
2404 thread in all-stop mode. */
2405 waiton_ptid = ecs->ptid;
2406 infwait_state = infwait_thread_hop_state;
2407 }
8fb3e588 2408
0d1e5fa7 2409 tss->stepping_over_breakpoint = 1;
8fb3e588
AC
2410 keep_going (ecs);
2411 registers_changed ();
2412 return;
2413 }
488f131b 2414 }
1c0fdd0e 2415 else if (singlestep_breakpoints_inserted_p)
8fb3e588
AC
2416 {
2417 sw_single_step_trap_p = 1;
2418 ecs->random_signal = 0;
2419 }
488f131b
JB
2420 }
2421 else
2422 ecs->random_signal = 1;
c906108c 2423
488f131b 2424 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
2425 so, then switch to that thread. */
2426 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 2427 {
527159b7 2428 if (debug_infrun)
8a9de0e4 2429 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 2430
0d1e5fa7 2431 context_switch (ecs->ptid);
c5aa993b 2432
9a4105ab
AC
2433 if (deprecated_context_hook)
2434 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 2435 }
c906108c 2436
1c0fdd0e 2437 if (singlestep_breakpoints_inserted_p)
488f131b
JB
2438 {
2439 /* Pull the single step breakpoints out of the target. */
e0cd558a 2440 remove_single_step_breakpoints ();
488f131b
JB
2441 singlestep_breakpoints_inserted_p = 0;
2442 }
c906108c 2443
d983da9c
DJ
2444 if (stepped_after_stopped_by_watchpoint)
2445 stopped_by_watchpoint = 0;
2446 else
2447 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
2448
2449 /* If necessary, step over this watchpoint. We'll be back to display
2450 it in a moment. */
2451 if (stopped_by_watchpoint
2452 && (HAVE_STEPPABLE_WATCHPOINT
2453 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
488f131b 2454 {
488f131b
JB
2455 /* At this point, we are stopped at an instruction which has
2456 attempted to write to a piece of memory under control of
2457 a watchpoint. The instruction hasn't actually executed
2458 yet. If we were to evaluate the watchpoint expression
2459 now, we would get the old value, and therefore no change
2460 would seem to have occurred.
2461
2462 In order to make watchpoints work `right', we really need
2463 to complete the memory write, and then evaluate the
d983da9c
DJ
2464 watchpoint expression. We do this by single-stepping the
2465 target.
2466
2467 It may not be necessary to disable the watchpoint to stop over
2468 it. For example, the PA can (with some kernel cooperation)
2469 single step over a watchpoint without disabling the watchpoint.
2470
2471 It is far more common to need to disable a watchpoint to step
2472 the inferior over it. If we have non-steppable watchpoints,
2473 we must disable the current watchpoint; it's simplest to
2474 disable all watchpoints and breakpoints. */
2475
2476 if (!HAVE_STEPPABLE_WATCHPOINT)
2477 remove_breakpoints ();
488f131b
JB
2478 registers_changed ();
2479 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
0d1e5fa7 2480 waiton_ptid = ecs->ptid;
d983da9c 2481 if (HAVE_STEPPABLE_WATCHPOINT)
0d1e5fa7 2482 infwait_state = infwait_step_watch_state;
d983da9c 2483 else
0d1e5fa7 2484 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
2485 prepare_to_wait (ecs);
2486 return;
2487 }
2488
488f131b
JB
2489 ecs->stop_func_start = 0;
2490 ecs->stop_func_end = 0;
2491 ecs->stop_func_name = 0;
2492 /* Don't care about return value; stop_func_start and stop_func_name
2493 will both be 0 if it doesn't work. */
2494 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2495 &ecs->stop_func_start, &ecs->stop_func_end);
cbf3b44a
UW
2496 ecs->stop_func_start
2497 += gdbarch_deprecated_function_start_offset (current_gdbarch);
0d1e5fa7 2498 tss->stepping_over_breakpoint = 0;
488f131b
JB
2499 bpstat_clear (&stop_bpstat);
2500 stop_step = 0;
488f131b
JB
2501 stop_print_frame = 1;
2502 ecs->random_signal = 0;
2503 stopped_by_random_signal = 0;
488f131b 2504
3352ef37 2505 if (stop_signal == TARGET_SIGNAL_TRAP
ca67fcb8 2506 && stepping_over_breakpoint
3352ef37 2507 && gdbarch_single_step_through_delay_p (current_gdbarch)
0d1e5fa7 2508 && currently_stepping (tss))
3352ef37 2509 {
b50d7442 2510 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37
AC
2511 also on an instruction that needs to be stepped multiple
2512 times before it's been fully executing. E.g., architectures
2513 with a delay slot. It needs to be stepped twice, once for
2514 the instruction and once for the delay slot. */
2515 int step_through_delay
2516 = gdbarch_single_step_through_delay (current_gdbarch,
2517 get_current_frame ());
527159b7 2518 if (debug_infrun && step_through_delay)
8a9de0e4 2519 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
3352ef37
AC
2520 if (step_range_end == 0 && step_through_delay)
2521 {
2522 /* The user issued a continue when stopped at a breakpoint.
2523 Set up for another trap and get out of here. */
0d1e5fa7 2524 tss->stepping_over_breakpoint = 1;
3352ef37
AC
2525 keep_going (ecs);
2526 return;
2527 }
2528 else if (step_through_delay)
2529 {
2530 /* The user issued a step when stopped at a breakpoint.
2531 Maybe we should stop, maybe we should not - the delay
2532 slot *might* correspond to a line of source. In any
ca67fcb8
VP
2533 case, don't decide that here, just set
2534 ecs->stepping_over_breakpoint, making sure we
2535 single-step again before breakpoints are re-inserted. */
0d1e5fa7 2536 tss->stepping_over_breakpoint = 1;
3352ef37
AC
2537 }
2538 }
2539
488f131b
JB
2540 /* Look at the cause of the stop, and decide what to do.
2541 The alternatives are:
0d1e5fa7
PA
2542 1) stop_stepping and return; to really stop and return to the debugger,
2543 2) keep_going and return to start up again
2544 (set tss->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
2545 3) set ecs->random_signal to 1, and the decision between 1 and 2
2546 will be made according to the signal handling tables. */
2547
2548 /* First, distinguish signals caused by the debugger from signals
03cebad2
MK
2549 that have to do with the program's own actions. Note that
2550 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
2551 on the operating system version. Here we detect when a SIGILL or
2552 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
2553 something similar for SIGSEGV, since a SIGSEGV will be generated
2554 when we're trying to execute a breakpoint instruction on a
2555 non-executable stack. This happens for call dummy breakpoints
2556 for architectures like SPARC that place call dummies on the
237fc4c9 2557 stack.
488f131b 2558
237fc4c9
PA
2559 If we're doing a displaced step past a breakpoint, then the
2560 breakpoint is always inserted at the original instruction;
2561 non-standard signals can't be explained by the breakpoint. */
488f131b 2562 if (stop_signal == TARGET_SIGNAL_TRAP
237fc4c9
PA
2563 || (! stepping_over_breakpoint
2564 && breakpoint_inserted_here_p (stop_pc)
8fb3e588
AC
2565 && (stop_signal == TARGET_SIGNAL_ILL
2566 || stop_signal == TARGET_SIGNAL_SEGV
2567 || stop_signal == TARGET_SIGNAL_EMT))
b0f4b84b
DJ
2568 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
2569 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b
JB
2570 {
2571 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
2572 {
527159b7 2573 if (debug_infrun)
8a9de0e4 2574 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
2575 stop_print_frame = 0;
2576 stop_stepping (ecs);
2577 return;
2578 }
c54cfec8
EZ
2579
2580 /* This is originated from start_remote(), start_inferior() and
2581 shared libraries hook functions. */
b0f4b84b 2582 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 2583 {
527159b7 2584 if (debug_infrun)
8a9de0e4 2585 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
2586 stop_stepping (ecs);
2587 return;
2588 }
2589
c54cfec8 2590 /* This originates from attach_command(). We need to overwrite
a0d21d28
PA
2591 the stop_signal here, because some kernels don't ignore a
2592 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
2593 See more comments in inferior.h. On the other hand, if we
a0ef4274 2594 get a non-SIGSTOP, report it to the user - assume the backend
a0d21d28
PA
2595 will handle the SIGSTOP if it should show up later.
2596
2597 Also consider that the attach is complete when we see a
2598 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
2599 target extended-remote report it instead of a SIGSTOP
2600 (e.g. gdbserver). We already rely on SIGTRAP being our
2601 signal, so this is no exception. */
a0ef4274 2602 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
a0d21d28
PA
2603 && (stop_signal == TARGET_SIGNAL_STOP
2604 || stop_signal == TARGET_SIGNAL_TRAP))
c54cfec8
EZ
2605 {
2606 stop_stepping (ecs);
a0ef4274 2607 stop_signal = TARGET_SIGNAL_0;
c54cfec8
EZ
2608 return;
2609 }
2610
fba57f8f
VP
2611 /* See if there is a breakpoint at the current PC. */
2612 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2613
2614 /* Following in case break condition called a
2615 function. */
2616 stop_print_frame = 1;
488f131b 2617
73dd234f 2618 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
2619 at one stage in the past included checks for an inferior
2620 function call's call dummy's return breakpoint. The original
2621 comment, that went with the test, read:
73dd234f 2622
8fb3e588
AC
2623 ``End of a stack dummy. Some systems (e.g. Sony news) give
2624 another signal besides SIGTRAP, so check here as well as
2625 above.''
73dd234f
AC
2626
2627 If someone ever tries to get get call dummys on a
2628 non-executable stack to work (where the target would stop
03cebad2
MK
2629 with something like a SIGSEGV), then those tests might need
2630 to be re-instated. Given, however, that the tests were only
73dd234f 2631 enabled when momentary breakpoints were not being used, I
03cebad2
MK
2632 suspect that it won't be the case.
2633
8fb3e588
AC
2634 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2635 be necessary for call dummies on a non-executable stack on
2636 SPARC. */
73dd234f 2637
488f131b
JB
2638 if (stop_signal == TARGET_SIGNAL_TRAP)
2639 ecs->random_signal
2640 = !(bpstat_explains_signal (stop_bpstat)
ca67fcb8 2641 || stepping_over_breakpoint
488f131b 2642 || (step_range_end && step_resume_breakpoint == NULL));
488f131b
JB
2643 else
2644 {
73dd234f 2645 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
488f131b
JB
2646 if (!ecs->random_signal)
2647 stop_signal = TARGET_SIGNAL_TRAP;
2648 }
2649 }
2650
2651 /* When we reach this point, we've pretty much decided
2652 that the reason for stopping must've been a random
2653 (unexpected) signal. */
2654
2655 else
2656 ecs->random_signal = 1;
488f131b 2657
04e68871 2658process_event_stop_test:
488f131b
JB
2659 /* For the program's own signals, act according to
2660 the signal handling tables. */
2661
2662 if (ecs->random_signal)
2663 {
2664 /* Signal not for debugging purposes. */
2665 int printed = 0;
2666
527159b7 2667 if (debug_infrun)
8a9de0e4 2668 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
527159b7 2669
488f131b
JB
2670 stopped_by_random_signal = 1;
2671
2672 if (signal_print[stop_signal])
2673 {
2674 printed = 1;
2675 target_terminal_ours_for_output ();
2676 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2677 }
a0ef4274 2678 if (signal_stop_state (stop_signal))
488f131b
JB
2679 {
2680 stop_stepping (ecs);
2681 return;
2682 }
2683 /* If not going to stop, give terminal back
2684 if we took it away. */
2685 else if (printed)
2686 target_terminal_inferior ();
2687
2688 /* Clear the signal if it should not be passed. */
2689 if (signal_program[stop_signal] == 0)
2690 stop_signal = TARGET_SIGNAL_0;
2691
68f53502 2692 if (prev_pc == read_pc ()
74960c60 2693 && stepping_over_breakpoint
68f53502
AC
2694 && step_resume_breakpoint == NULL)
2695 {
2696 /* We were just starting a new sequence, attempting to
2697 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 2698 Instead this signal arrives. This signal will take us out
68f53502
AC
2699 of the stepping range so GDB needs to remember to, when
2700 the signal handler returns, resume stepping off that
2701 breakpoint. */
2702 /* To simplify things, "continue" is forced to use the same
2703 code paths as single-step - set a breakpoint at the
2704 signal return address and then, once hit, step off that
2705 breakpoint. */
237fc4c9
PA
2706 if (debug_infrun)
2707 fprintf_unfiltered (gdb_stdlog,
2708 "infrun: signal arrived while stepping over "
2709 "breakpoint\n");
d3169d93 2710
44cbf7b5 2711 insert_step_resume_breakpoint_at_frame (get_current_frame ());
0d1e5fa7 2712 tss->step_after_step_resume_breakpoint = 1;
9d799f85
AC
2713 keep_going (ecs);
2714 return;
68f53502 2715 }
9d799f85
AC
2716
2717 if (step_range_end != 0
2718 && stop_signal != TARGET_SIGNAL_0
2719 && stop_pc >= step_range_start && stop_pc < step_range_end
2720 && frame_id_eq (get_frame_id (get_current_frame ()),
2721 step_frame_id)
2722 && step_resume_breakpoint == NULL)
d303a6c7
AC
2723 {
2724 /* The inferior is about to take a signal that will take it
2725 out of the single step range. Set a breakpoint at the
2726 current PC (which is presumably where the signal handler
2727 will eventually return) and then allow the inferior to
2728 run free.
2729
2730 Note that this is only needed for a signal delivered
2731 while in the single-step range. Nested signals aren't a
2732 problem as they eventually all return. */
237fc4c9
PA
2733 if (debug_infrun)
2734 fprintf_unfiltered (gdb_stdlog,
2735 "infrun: signal may take us out of "
2736 "single-step range\n");
2737
44cbf7b5 2738 insert_step_resume_breakpoint_at_frame (get_current_frame ());
9d799f85
AC
2739 keep_going (ecs);
2740 return;
d303a6c7 2741 }
9d799f85
AC
2742
2743 /* Note: step_resume_breakpoint may be non-NULL. This occures
2744 when either there's a nested signal, or when there's a
2745 pending signal enabled just as the signal handler returns
2746 (leaving the inferior at the step-resume-breakpoint without
2747 actually executing it). Either way continue until the
2748 breakpoint is really hit. */
488f131b
JB
2749 keep_going (ecs);
2750 return;
2751 }
2752
2753 /* Handle cases caused by hitting a breakpoint. */
2754 {
2755 CORE_ADDR jmp_buf_pc;
2756 struct bpstat_what what;
2757
2758 what = bpstat_what (stop_bpstat);
2759
2760 if (what.call_dummy)
2761 {
2762 stop_stack_dummy = 1;
c5aa993b 2763 }
c906108c 2764
488f131b 2765 switch (what.main_action)
c5aa993b 2766 {
488f131b 2767 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
611c83ae
PA
2768 /* If we hit the breakpoint at longjmp while stepping, we
2769 install a momentary breakpoint at the target of the
2770 jmp_buf. */
2771
2772 if (debug_infrun)
2773 fprintf_unfiltered (gdb_stdlog,
2774 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2775
0d1e5fa7 2776 tss->stepping_over_breakpoint = 1;
611c83ae 2777
91104499 2778 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
60ade65d
UW
2779 || !gdbarch_get_longjmp_target (current_gdbarch,
2780 get_current_frame (), &jmp_buf_pc))
c5aa993b 2781 {
611c83ae
PA
2782 if (debug_infrun)
2783 fprintf_unfiltered (gdb_stdlog, "\
2784infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
488f131b 2785 keep_going (ecs);
104c1213 2786 return;
c5aa993b 2787 }
488f131b 2788
611c83ae
PA
2789 /* We're going to replace the current step-resume breakpoint
2790 with a longjmp-resume breakpoint. */
488f131b 2791 if (step_resume_breakpoint != NULL)
611c83ae
PA
2792 delete_step_resume_breakpoint (&step_resume_breakpoint);
2793
2794 /* Insert a breakpoint at resume address. */
2795 insert_longjmp_resume_breakpoint (jmp_buf_pc);
c906108c 2796
488f131b
JB
2797 keep_going (ecs);
2798 return;
c906108c 2799
488f131b 2800 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
527159b7 2801 if (debug_infrun)
611c83ae
PA
2802 fprintf_unfiltered (gdb_stdlog,
2803 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2804
2805 gdb_assert (step_resume_breakpoint != NULL);
2806 delete_step_resume_breakpoint (&step_resume_breakpoint);
2807
2808 stop_step = 1;
2809 print_stop_reason (END_STEPPING_RANGE, 0);
2810 stop_stepping (ecs);
2811 return;
488f131b
JB
2812
2813 case BPSTAT_WHAT_SINGLE:
527159b7 2814 if (debug_infrun)
8802d8ed 2815 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
0d1e5fa7 2816 tss->stepping_over_breakpoint = 1;
488f131b
JB
2817 /* Still need to check other stuff, at least the case
2818 where we are stepping and step out of the right range. */
2819 break;
c906108c 2820
488f131b 2821 case BPSTAT_WHAT_STOP_NOISY:
527159b7 2822 if (debug_infrun)
8802d8ed 2823 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 2824 stop_print_frame = 1;
c906108c 2825
d303a6c7
AC
2826 /* We are about to nuke the step_resume_breakpointt via the
2827 cleanup chain, so no need to worry about it here. */
c5aa993b 2828
488f131b
JB
2829 stop_stepping (ecs);
2830 return;
c5aa993b 2831
488f131b 2832 case BPSTAT_WHAT_STOP_SILENT:
527159b7 2833 if (debug_infrun)
8802d8ed 2834 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 2835 stop_print_frame = 0;
c5aa993b 2836
d303a6c7
AC
2837 /* We are about to nuke the step_resume_breakpoin via the
2838 cleanup chain, so no need to worry about it here. */
c5aa993b 2839
488f131b 2840 stop_stepping (ecs);
e441088d 2841 return;
c5aa993b 2842
488f131b
JB
2843 case BPSTAT_WHAT_STEP_RESUME:
2844 /* This proably demands a more elegant solution, but, yeah
2845 right...
c5aa993b 2846
488f131b
JB
2847 This function's use of the simple variable
2848 step_resume_breakpoint doesn't seem to accomodate
2849 simultaneously active step-resume bp's, although the
2850 breakpoint list certainly can.
c5aa993b 2851
488f131b
JB
2852 If we reach here and step_resume_breakpoint is already
2853 NULL, then apparently we have multiple active
2854 step-resume bp's. We'll just delete the breakpoint we
2855 stopped at, and carry on.
2856
2857 Correction: what the code currently does is delete a
2858 step-resume bp, but it makes no effort to ensure that
2859 the one deleted is the one currently stopped at. MVS */
c5aa993b 2860
527159b7 2861 if (debug_infrun)
8802d8ed 2862 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
527159b7 2863
488f131b
JB
2864 if (step_resume_breakpoint == NULL)
2865 {
2866 step_resume_breakpoint =
2867 bpstat_find_step_resume_breakpoint (stop_bpstat);
2868 }
2869 delete_step_resume_breakpoint (&step_resume_breakpoint);
0d1e5fa7 2870 if (tss->step_after_step_resume_breakpoint)
68f53502
AC
2871 {
2872 /* Back when the step-resume breakpoint was inserted, we
2873 were trying to single-step off a breakpoint. Go back
2874 to doing that. */
0d1e5fa7
PA
2875 tss->step_after_step_resume_breakpoint = 0;
2876 tss->stepping_over_breakpoint = 1;
68f53502
AC
2877 keep_going (ecs);
2878 return;
2879 }
488f131b
JB
2880 break;
2881
488f131b
JB
2882 case BPSTAT_WHAT_CHECK_SHLIBS:
2883 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
c906108c 2884 {
527159b7 2885 if (debug_infrun)
8802d8ed 2886 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
488f131b
JB
2887
2888 /* Check for any newly added shared libraries if we're
2889 supposed to be adding them automatically. Switch
2890 terminal for any messages produced by
2891 breakpoint_re_set. */
2892 target_terminal_ours_for_output ();
aff6338a 2893 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
2894 stack's section table is kept up-to-date. Architectures,
2895 (e.g., PPC64), use the section table to perform
2896 operations such as address => section name and hence
2897 require the table to contain all sections (including
2898 those found in shared libraries). */
aff6338a 2899 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
2900 exec_ops to SOLIB_ADD. This is because current GDB is
2901 only tooled to propagate section_table changes out from
2902 the "current_target" (see target_resize_to_sections), and
2903 not up from the exec stratum. This, of course, isn't
2904 right. "infrun.c" should only interact with the
2905 exec/process stratum, instead relying on the target stack
2906 to propagate relevant changes (stop, section table
2907 changed, ...) up to other layers. */
a77053c2 2908#ifdef SOLIB_ADD
aff6338a 2909 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
a77053c2
MK
2910#else
2911 solib_add (NULL, 0, &current_target, auto_solib_add);
2912#endif
488f131b
JB
2913 target_terminal_inferior ();
2914
488f131b
JB
2915 /* If requested, stop when the dynamic linker notifies
2916 gdb of events. This allows the user to get control
2917 and place breakpoints in initializer routines for
2918 dynamically loaded objects (among other things). */
877522db 2919 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 2920 {
488f131b 2921 stop_stepping (ecs);
d4f3574e
SS
2922 return;
2923 }
c5aa993b 2924
488f131b
JB
2925 /* If we stopped due to an explicit catchpoint, then the
2926 (see above) call to SOLIB_ADD pulled in any symbols
2927 from a newly-loaded library, if appropriate.
2928
2929 We do want the inferior to stop, but not where it is
2930 now, which is in the dynamic linker callback. Rather,
2931 we would like it stop in the user's program, just after
2932 the call that caused this catchpoint to trigger. That
2933 gives the user a more useful vantage from which to
2934 examine their program's state. */
8fb3e588
AC
2935 else if (what.main_action
2936 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
c906108c 2937 {
488f131b
JB
2938 /* ??rehrauer: If I could figure out how to get the
2939 right return PC from here, we could just set a temp
2940 breakpoint and resume. I'm not sure we can without
2941 cracking open the dld's shared libraries and sniffing
2942 their unwind tables and text/data ranges, and that's
2943 not a terribly portable notion.
2944
2945 Until that time, we must step the inferior out of the
2946 dld callback, and also out of the dld itself (and any
2947 code or stubs in libdld.sl, such as "shl_load" and
2948 friends) until we reach non-dld code. At that point,
2949 we can stop stepping. */
2950 bpstat_get_triggered_catchpoints (stop_bpstat,
0d1e5fa7 2951 &tss->
488f131b 2952 stepping_through_solib_catchpoints);
0d1e5fa7 2953 tss->stepping_through_solib_after_catch = 1;
488f131b
JB
2954
2955 /* Be sure to lift all breakpoints, so the inferior does
2956 actually step past this point... */
0d1e5fa7 2957 tss->stepping_over_breakpoint = 1;
488f131b 2958 break;
c906108c 2959 }
c5aa993b 2960 else
c5aa993b 2961 {
488f131b 2962 /* We want to step over this breakpoint, then keep going. */
0d1e5fa7 2963 tss->stepping_over_breakpoint = 1;
488f131b 2964 break;
c5aa993b 2965 }
488f131b 2966 }
488f131b 2967 break;
c906108c 2968
488f131b
JB
2969 case BPSTAT_WHAT_LAST:
2970 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 2971
488f131b
JB
2972 case BPSTAT_WHAT_KEEP_CHECKING:
2973 break;
2974 }
2975 }
c906108c 2976
488f131b
JB
2977 /* We come here if we hit a breakpoint but should not
2978 stop for it. Possibly we also were stepping
2979 and should stop for that. So fall through and
2980 test for stepping. But, if not stepping,
2981 do not stop. */
c906108c 2982
9d1ff73f
MS
2983 /* Are we stepping to get the inferior out of the dynamic linker's
2984 hook (and possibly the dld itself) after catching a shlib
2985 event? */
0d1e5fa7 2986 if (tss->stepping_through_solib_after_catch)
488f131b
JB
2987 {
2988#if defined(SOLIB_ADD)
2989 /* Have we reached our destination? If not, keep going. */
2990 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2991 {
527159b7 2992 if (debug_infrun)
8a9de0e4 2993 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
0d1e5fa7 2994 tss->stepping_over_breakpoint = 1;
488f131b 2995 keep_going (ecs);
104c1213 2996 return;
488f131b
JB
2997 }
2998#endif
527159b7 2999 if (debug_infrun)
8a9de0e4 3000 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
488f131b
JB
3001 /* Else, stop and report the catchpoint(s) whose triggering
3002 caused us to begin stepping. */
0d1e5fa7 3003 tss->stepping_through_solib_after_catch = 0;
488f131b 3004 bpstat_clear (&stop_bpstat);
0d1e5fa7
PA
3005 stop_bpstat = bpstat_copy (tss->stepping_through_solib_catchpoints);
3006 bpstat_clear (&tss->stepping_through_solib_catchpoints);
488f131b
JB
3007 stop_print_frame = 1;
3008 stop_stepping (ecs);
3009 return;
3010 }
c906108c 3011
488f131b
JB
3012 if (step_resume_breakpoint)
3013 {
527159b7 3014 if (debug_infrun)
d3169d93
DJ
3015 fprintf_unfiltered (gdb_stdlog,
3016 "infrun: step-resume breakpoint is inserted\n");
527159b7 3017
488f131b
JB
3018 /* Having a step-resume breakpoint overrides anything
3019 else having to do with stepping commands until
3020 that breakpoint is reached. */
488f131b
JB
3021 keep_going (ecs);
3022 return;
3023 }
c5aa993b 3024
488f131b
JB
3025 if (step_range_end == 0)
3026 {
527159b7 3027 if (debug_infrun)
8a9de0e4 3028 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 3029 /* Likewise if we aren't even stepping. */
488f131b
JB
3030 keep_going (ecs);
3031 return;
3032 }
c5aa993b 3033
488f131b 3034 /* If stepping through a line, keep going if still within it.
c906108c 3035
488f131b
JB
3036 Note that step_range_end is the address of the first instruction
3037 beyond the step range, and NOT the address of the last instruction
3038 within it! */
3039 if (stop_pc >= step_range_start && stop_pc < step_range_end)
3040 {
527159b7 3041 if (debug_infrun)
8a9de0e4 3042 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
527159b7
RC
3043 paddr_nz (step_range_start),
3044 paddr_nz (step_range_end));
488f131b
JB
3045 keep_going (ecs);
3046 return;
3047 }
c5aa993b 3048
488f131b 3049 /* We stepped out of the stepping range. */
c906108c 3050
488f131b
JB
3051 /* If we are stepping at the source level and entered the runtime
3052 loader dynamic symbol resolution code, we keep on single stepping
3053 until we exit the run time loader code and reach the callee's
3054 address. */
3055 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 3056 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 3057 {
4c8c40e6
MK
3058 CORE_ADDR pc_after_resolver =
3059 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
c906108c 3060
527159b7 3061 if (debug_infrun)
8a9de0e4 3062 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
527159b7 3063
488f131b
JB
3064 if (pc_after_resolver)
3065 {
3066 /* Set up a step-resume breakpoint at the address
3067 indicated by SKIP_SOLIB_RESOLVER. */
3068 struct symtab_and_line sr_sal;
fe39c653 3069 init_sal (&sr_sal);
488f131b
JB
3070 sr_sal.pc = pc_after_resolver;
3071
44cbf7b5 3072 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c5aa993b 3073 }
c906108c 3074
488f131b
JB
3075 keep_going (ecs);
3076 return;
3077 }
c906108c 3078
42edda50
AC
3079 if (step_range_end != 1
3080 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
3081 || step_over_calls == STEP_OVER_ALL)
3082 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
488f131b 3083 {
527159b7 3084 if (debug_infrun)
8a9de0e4 3085 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
42edda50 3086 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
3087 a signal trampoline (either by a signal being delivered or by
3088 the signal handler returning). Just single-step until the
3089 inferior leaves the trampoline (either by calling the handler
3090 or returning). */
488f131b
JB
3091 keep_going (ecs);
3092 return;
3093 }
c906108c 3094
c17eaafe
DJ
3095 /* Check for subroutine calls. The check for the current frame
3096 equalling the step ID is not necessary - the check of the
3097 previous frame's ID is sufficient - but it is a common case and
3098 cheaper than checking the previous frame's ID.
14e60db5
DJ
3099
3100 NOTE: frame_id_eq will never report two invalid frame IDs as
3101 being equal, so to get into this block, both the current and
3102 previous frame must have valid frame IDs. */
c17eaafe 3103 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
eb2f4a08 3104 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
488f131b 3105 {
95918acb 3106 CORE_ADDR real_stop_pc;
8fb3e588 3107
527159b7 3108 if (debug_infrun)
8a9de0e4 3109 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 3110
95918acb
AC
3111 if ((step_over_calls == STEP_OVER_NONE)
3112 || ((step_range_end == 1)
3113 && in_prologue (prev_pc, ecs->stop_func_start)))
3114 {
3115 /* I presume that step_over_calls is only 0 when we're
3116 supposed to be stepping at the assembly language level
3117 ("stepi"). Just stop. */
3118 /* Also, maybe we just did a "nexti" inside a prolog, so we
3119 thought it was a subroutine call but it was not. Stop as
3120 well. FENN */
3121 stop_step = 1;
3122 print_stop_reason (END_STEPPING_RANGE, 0);
3123 stop_stepping (ecs);
3124 return;
3125 }
8fb3e588 3126
8567c30f
AC
3127 if (step_over_calls == STEP_OVER_ALL)
3128 {
3129 /* We're doing a "next", set a breakpoint at callee's return
3130 address (the address at which the caller will
3131 resume). */
14e60db5 3132 insert_step_resume_breakpoint_at_caller (get_current_frame ());
8567c30f
AC
3133 keep_going (ecs);
3134 return;
3135 }
a53c66de 3136
95918acb 3137 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
3138 calling routine and the real function), locate the real
3139 function. That's what tells us (a) whether we want to step
3140 into it at all, and (b) what prologue we want to run to the
3141 end of, if we do step into it. */
52f729a7 3142 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
95918acb 3143 if (real_stop_pc == 0)
52f729a7
UW
3144 real_stop_pc = gdbarch_skip_trampoline_code
3145 (current_gdbarch, get_current_frame (), stop_pc);
95918acb
AC
3146 if (real_stop_pc != 0)
3147 ecs->stop_func_start = real_stop_pc;
8fb3e588 3148
cfd8ab24 3149 if (in_solib_dynsym_resolve_code (ecs->stop_func_start))
1b2bfbb9
RC
3150 {
3151 struct symtab_and_line sr_sal;
3152 init_sal (&sr_sal);
3153 sr_sal.pc = ecs->stop_func_start;
3154
44cbf7b5 3155 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
8fb3e588
AC
3156 keep_going (ecs);
3157 return;
1b2bfbb9
RC
3158 }
3159
95918acb 3160 /* If we have line number information for the function we are
8fb3e588 3161 thinking of stepping into, step into it.
95918acb 3162
8fb3e588
AC
3163 If there are several symtabs at that PC (e.g. with include
3164 files), just want to know whether *any* of them have line
3165 numbers. find_pc_line handles this. */
95918acb
AC
3166 {
3167 struct symtab_and_line tmp_sal;
8fb3e588 3168
95918acb
AC
3169 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
3170 if (tmp_sal.line != 0)
3171 {
3172 step_into_function (ecs);
3173 return;
3174 }
3175 }
3176
3177 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
3178 set, we stop the step so that the user has a chance to switch
3179 in assembly mode. */
95918acb
AC
3180 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
3181 {
3182 stop_step = 1;
3183 print_stop_reason (END_STEPPING_RANGE, 0);
3184 stop_stepping (ecs);
3185 return;
3186 }
3187
3188 /* Set a breakpoint at callee's return address (the address at
8fb3e588 3189 which the caller will resume). */
14e60db5 3190 insert_step_resume_breakpoint_at_caller (get_current_frame ());
95918acb 3191 keep_going (ecs);
488f131b 3192 return;
488f131b 3193 }
c906108c 3194
488f131b
JB
3195 /* If we're in the return path from a shared library trampoline,
3196 we want to proceed through the trampoline when stepping. */
e76f05fa
UW
3197 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
3198 stop_pc, ecs->stop_func_name))
488f131b 3199 {
488f131b 3200 /* Determine where this trampoline returns. */
52f729a7
UW
3201 CORE_ADDR real_stop_pc;
3202 real_stop_pc = gdbarch_skip_trampoline_code
3203 (current_gdbarch, get_current_frame (), stop_pc);
c906108c 3204
527159b7 3205 if (debug_infrun)
8a9de0e4 3206 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
527159b7 3207
488f131b 3208 /* Only proceed through if we know where it's going. */
d764a824 3209 if (real_stop_pc)
488f131b
JB
3210 {
3211 /* And put the step-breakpoint there and go until there. */
3212 struct symtab_and_line sr_sal;
3213
fe39c653 3214 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 3215 sr_sal.pc = real_stop_pc;
488f131b 3216 sr_sal.section = find_pc_overlay (sr_sal.pc);
44cbf7b5
AC
3217
3218 /* Do not specify what the fp should be when we stop since
3219 on some machines the prologue is where the new fp value
3220 is established. */
3221 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c906108c 3222
488f131b
JB
3223 /* Restart without fiddling with the step ranges or
3224 other state. */
3225 keep_going (ecs);
3226 return;
3227 }
3228 }
c906108c 3229
2afb61aa 3230 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 3231
1b2bfbb9
RC
3232 /* NOTE: tausq/2004-05-24: This if block used to be done before all
3233 the trampoline processing logic, however, there are some trampolines
3234 that have no names, so we should do trampoline handling first. */
3235 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 3236 && ecs->stop_func_name == NULL
2afb61aa 3237 && stop_pc_sal.line == 0)
1b2bfbb9 3238 {
527159b7 3239 if (debug_infrun)
8a9de0e4 3240 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
527159b7 3241
1b2bfbb9 3242 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
3243 undebuggable function (where there is no debugging information
3244 and no line number corresponding to the address where the
1b2bfbb9
RC
3245 inferior stopped). Since we want to skip this kind of code,
3246 we keep going until the inferior returns from this
14e60db5
DJ
3247 function - unless the user has asked us not to (via
3248 set step-mode) or we no longer know how to get back
3249 to the call site. */
3250 if (step_stop_if_no_debug
eb2f4a08 3251 || !frame_id_p (frame_unwind_id (get_current_frame ())))
1b2bfbb9
RC
3252 {
3253 /* If we have no line number and the step-stop-if-no-debug
3254 is set, we stop the step so that the user has a chance to
3255 switch in assembly mode. */
3256 stop_step = 1;
3257 print_stop_reason (END_STEPPING_RANGE, 0);
3258 stop_stepping (ecs);
3259 return;
3260 }
3261 else
3262 {
3263 /* Set a breakpoint at callee's return address (the address
3264 at which the caller will resume). */
14e60db5 3265 insert_step_resume_breakpoint_at_caller (get_current_frame ());
1b2bfbb9
RC
3266 keep_going (ecs);
3267 return;
3268 }
3269 }
3270
3271 if (step_range_end == 1)
3272 {
3273 /* It is stepi or nexti. We always want to stop stepping after
3274 one instruction. */
527159b7 3275 if (debug_infrun)
8a9de0e4 3276 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
1b2bfbb9
RC
3277 stop_step = 1;
3278 print_stop_reason (END_STEPPING_RANGE, 0);
3279 stop_stepping (ecs);
3280 return;
3281 }
3282
2afb61aa 3283 if (stop_pc_sal.line == 0)
488f131b
JB
3284 {
3285 /* We have no line number information. That means to stop
3286 stepping (does this always happen right after one instruction,
3287 when we do "s" in a function with no line numbers,
3288 or can this happen as a result of a return or longjmp?). */
527159b7 3289 if (debug_infrun)
8a9de0e4 3290 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
488f131b
JB
3291 stop_step = 1;
3292 print_stop_reason (END_STEPPING_RANGE, 0);
3293 stop_stepping (ecs);
3294 return;
3295 }
c906108c 3296
2afb61aa
PA
3297 if ((stop_pc == stop_pc_sal.pc)
3298 && (tss->current_line != stop_pc_sal.line
3299 || tss->current_symtab != stop_pc_sal.symtab))
488f131b
JB
3300 {
3301 /* We are at the start of a different line. So stop. Note that
3302 we don't stop if we step into the middle of a different line.
3303 That is said to make things like for (;;) statements work
3304 better. */
527159b7 3305 if (debug_infrun)
8a9de0e4 3306 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
488f131b
JB
3307 stop_step = 1;
3308 print_stop_reason (END_STEPPING_RANGE, 0);
3309 stop_stepping (ecs);
3310 return;
3311 }
c906108c 3312
488f131b 3313 /* We aren't done stepping.
c906108c 3314
488f131b
JB
3315 Optimize by setting the stepping range to the line.
3316 (We might not be in the original line, but if we entered a
3317 new line in mid-statement, we continue stepping. This makes
3318 things like for(;;) statements work better.) */
c906108c 3319
2afb61aa
PA
3320 step_range_start = stop_pc_sal.pc;
3321 step_range_end = stop_pc_sal.end;
aa0cd9c1 3322 step_frame_id = get_frame_id (get_current_frame ());
2afb61aa
PA
3323 tss->current_line = stop_pc_sal.line;
3324 tss->current_symtab = stop_pc_sal.symtab;
488f131b 3325
527159b7 3326 if (debug_infrun)
8a9de0e4 3327 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 3328 keep_going (ecs);
104c1213
JM
3329}
3330
3331/* Are we in the middle of stepping? */
3332
3333static int
0d1e5fa7 3334currently_stepping (struct thread_stepping_state *tss)
104c1213 3335{
611c83ae
PA
3336 return (((step_range_end && step_resume_breakpoint == NULL)
3337 || stepping_over_breakpoint)
0d1e5fa7 3338 || tss->stepping_through_solib_after_catch
104c1213
JM
3339 || bpstat_should_step ());
3340}
c906108c 3341
c2c6d25f
JM
3342/* Subroutine call with source code we should not step over. Do step
3343 to the first line of code in it. */
3344
3345static void
3346step_into_function (struct execution_control_state *ecs)
3347{
3348 struct symtab *s;
2afb61aa 3349 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f
JM
3350
3351 s = find_pc_symtab (stop_pc);
3352 if (s && s->language != language_asm)
a433963d
UW
3353 ecs->stop_func_start = gdbarch_skip_prologue
3354 (current_gdbarch, ecs->stop_func_start);
c2c6d25f 3355
2afb61aa 3356 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
3357 /* Use the step_resume_break to step until the end of the prologue,
3358 even if that involves jumps (as it seems to on the vax under
3359 4.2). */
3360 /* If the prologue ends in the middle of a source line, continue to
3361 the end of that source line (if it is still within the function).
3362 Otherwise, just go to end of prologue. */
2afb61aa
PA
3363 if (stop_func_sal.end
3364 && stop_func_sal.pc != ecs->stop_func_start
3365 && stop_func_sal.end < ecs->stop_func_end)
3366 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 3367
2dbd5e30
KB
3368 /* Architectures which require breakpoint adjustment might not be able
3369 to place a breakpoint at the computed address. If so, the test
3370 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
3371 ecs->stop_func_start to an address at which a breakpoint may be
3372 legitimately placed.
8fb3e588 3373
2dbd5e30
KB
3374 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
3375 made, GDB will enter an infinite loop when stepping through
3376 optimized code consisting of VLIW instructions which contain
3377 subinstructions corresponding to different source lines. On
3378 FR-V, it's not permitted to place a breakpoint on any but the
3379 first subinstruction of a VLIW instruction. When a breakpoint is
3380 set, GDB will adjust the breakpoint address to the beginning of
3381 the VLIW instruction. Thus, we need to make the corresponding
3382 adjustment here when computing the stop address. */
8fb3e588 3383
2dbd5e30
KB
3384 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
3385 {
3386 ecs->stop_func_start
3387 = gdbarch_adjust_breakpoint_address (current_gdbarch,
8fb3e588 3388 ecs->stop_func_start);
2dbd5e30
KB
3389 }
3390
c2c6d25f
JM
3391 if (ecs->stop_func_start == stop_pc)
3392 {
3393 /* We are already there: stop now. */
3394 stop_step = 1;
488f131b 3395 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
3396 stop_stepping (ecs);
3397 return;
3398 }
3399 else
3400 {
3401 /* Put the step-breakpoint there and go until there. */
fe39c653 3402 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
3403 sr_sal.pc = ecs->stop_func_start;
3404 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
44cbf7b5 3405
c2c6d25f 3406 /* Do not specify what the fp should be when we stop since on
488f131b
JB
3407 some machines the prologue is where the new fp value is
3408 established. */
44cbf7b5 3409 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c2c6d25f
JM
3410
3411 /* And make sure stepping stops right away then. */
3412 step_range_end = step_range_start;
3413 }
3414 keep_going (ecs);
3415}
d4f3574e 3416
d3169d93 3417/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
3418 This is used to both functions and to skip over code. */
3419
3420static void
3421insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
3422 struct frame_id sr_id)
3423{
611c83ae
PA
3424 /* There should never be more than one step-resume or longjmp-resume
3425 breakpoint per thread, so we should never be setting a new
44cbf7b5
AC
3426 step_resume_breakpoint when one is already active. */
3427 gdb_assert (step_resume_breakpoint == NULL);
d3169d93
DJ
3428
3429 if (debug_infrun)
3430 fprintf_unfiltered (gdb_stdlog,
3431 "infrun: inserting step-resume breakpoint at 0x%s\n",
3432 paddr_nz (sr_sal.pc));
3433
44cbf7b5
AC
3434 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
3435 bp_step_resume);
44cbf7b5 3436}
7ce450bd 3437
d3169d93 3438/* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
14e60db5 3439 to skip a potential signal handler.
7ce450bd 3440
14e60db5
DJ
3441 This is called with the interrupted function's frame. The signal
3442 handler, when it returns, will resume the interrupted function at
3443 RETURN_FRAME.pc. */
d303a6c7
AC
3444
3445static void
44cbf7b5 3446insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
3447{
3448 struct symtab_and_line sr_sal;
3449
f4c1edd8 3450 gdb_assert (return_frame != NULL);
d303a6c7
AC
3451 init_sal (&sr_sal); /* initialize to zeros */
3452
bf6ae464
UW
3453 sr_sal.pc = gdbarch_addr_bits_remove
3454 (current_gdbarch, get_frame_pc (return_frame));
d303a6c7
AC
3455 sr_sal.section = find_pc_overlay (sr_sal.pc);
3456
44cbf7b5 3457 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
d303a6c7
AC
3458}
3459
14e60db5
DJ
3460/* Similar to insert_step_resume_breakpoint_at_frame, except
3461 but a breakpoint at the previous frame's PC. This is used to
3462 skip a function after stepping into it (for "next" or if the called
3463 function has no debugging information).
3464
3465 The current function has almost always been reached by single
3466 stepping a call or return instruction. NEXT_FRAME belongs to the
3467 current function, and the breakpoint will be set at the caller's
3468 resume address.
3469
3470 This is a separate function rather than reusing
3471 insert_step_resume_breakpoint_at_frame in order to avoid
3472 get_prev_frame, which may stop prematurely (see the implementation
eb2f4a08 3473 of frame_unwind_id for an example). */
14e60db5
DJ
3474
3475static void
3476insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
3477{
3478 struct symtab_and_line sr_sal;
3479
3480 /* We shouldn't have gotten here if we don't know where the call site
3481 is. */
eb2f4a08 3482 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
14e60db5
DJ
3483
3484 init_sal (&sr_sal); /* initialize to zeros */
3485
bf6ae464 3486 sr_sal.pc = gdbarch_addr_bits_remove
eb2f4a08 3487 (current_gdbarch, frame_pc_unwind (next_frame));
14e60db5
DJ
3488 sr_sal.section = find_pc_overlay (sr_sal.pc);
3489
eb2f4a08 3490 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
14e60db5
DJ
3491}
3492
611c83ae
PA
3493/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
3494 new breakpoint at the target of a jmp_buf. The handling of
3495 longjmp-resume uses the same mechanisms used for handling
3496 "step-resume" breakpoints. */
3497
3498static void
3499insert_longjmp_resume_breakpoint (CORE_ADDR pc)
3500{
3501 /* There should never be more than one step-resume or longjmp-resume
3502 breakpoint per thread, so we should never be setting a new
3503 longjmp_resume_breakpoint when one is already active. */
3504 gdb_assert (step_resume_breakpoint == NULL);
3505
3506 if (debug_infrun)
3507 fprintf_unfiltered (gdb_stdlog,
3508 "infrun: inserting longjmp-resume breakpoint at 0x%s\n",
3509 paddr_nz (pc));
3510
3511 step_resume_breakpoint =
3512 set_momentary_breakpoint_at_pc (pc, bp_longjmp_resume);
3513}
3514
104c1213
JM
3515static void
3516stop_stepping (struct execution_control_state *ecs)
3517{
527159b7 3518 if (debug_infrun)
8a9de0e4 3519 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 3520
cd0fc7c3
SS
3521 /* Let callers know we don't want to wait for the inferior anymore. */
3522 ecs->wait_some_more = 0;
3523}
3524
d4f3574e
SS
3525/* This function handles various cases where we need to continue
3526 waiting for the inferior. */
3527/* (Used to be the keep_going: label in the old wait_for_inferior) */
3528
3529static void
3530keep_going (struct execution_control_state *ecs)
3531{
d4f3574e 3532 /* Save the pc before execution, to compare with pc after stop. */
488f131b 3533 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
d4f3574e 3534
d4f3574e
SS
3535 /* If we did not do break;, it means we should keep running the
3536 inferior and not return to debugger. */
3537
ca67fcb8 3538 if (stepping_over_breakpoint && stop_signal != TARGET_SIGNAL_TRAP)
d4f3574e
SS
3539 {
3540 /* We took a signal (which we are supposed to pass through to
488f131b
JB
3541 the inferior, else we'd have done a break above) and we
3542 haven't yet gotten our trap. Simply continue. */
0d1e5fa7 3543 resume (currently_stepping (tss), stop_signal);
d4f3574e
SS
3544 }
3545 else
3546 {
3547 /* Either the trap was not expected, but we are continuing
488f131b
JB
3548 anyway (the user asked that this signal be passed to the
3549 child)
3550 -- or --
3551 The signal was SIGTRAP, e.g. it was our signal, but we
3552 decided we should resume from it.
d4f3574e 3553
c36b740a 3554 We're going to run this baby now!
d4f3574e 3555
c36b740a
VP
3556 Note that insert_breakpoints won't try to re-insert
3557 already inserted breakpoints. Therefore, we don't
3558 care if breakpoints were already inserted, or not. */
3559
0d1e5fa7 3560 if (tss->stepping_over_breakpoint)
45e8c884 3561 {
237fc4c9
PA
3562 if (! use_displaced_stepping (current_gdbarch))
3563 /* Since we can't do a displaced step, we have to remove
3564 the breakpoint while we step it. To keep things
3565 simple, we remove them all. */
3566 remove_breakpoints ();
45e8c884
VP
3567 }
3568 else
d4f3574e 3569 {
e236ba44 3570 struct gdb_exception e;
569631c6
UW
3571 /* Stop stepping when inserting breakpoints
3572 has failed. */
e236ba44
VP
3573 TRY_CATCH (e, RETURN_MASK_ERROR)
3574 {
3575 insert_breakpoints ();
3576 }
3577 if (e.reason < 0)
d4f3574e
SS
3578 {
3579 stop_stepping (ecs);
3580 return;
3581 }
d4f3574e
SS
3582 }
3583
0d1e5fa7 3584 stepping_over_breakpoint = tss->stepping_over_breakpoint;
d4f3574e
SS
3585
3586 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
3587 specifies that such a signal should be delivered to the
3588 target program).
3589
3590 Typically, this would occure when a user is debugging a
3591 target monitor on a simulator: the target monitor sets a
3592 breakpoint; the simulator encounters this break-point and
3593 halts the simulation handing control to GDB; GDB, noteing
3594 that the break-point isn't valid, returns control back to the
3595 simulator; the simulator then delivers the hardware
3596 equivalent of a SIGNAL_TRAP to the program being debugged. */
3597
3598 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
d4f3574e
SS
3599 stop_signal = TARGET_SIGNAL_0;
3600
d4f3574e 3601
0d1e5fa7 3602 resume (currently_stepping (tss), stop_signal);
d4f3574e
SS
3603 }
3604
488f131b 3605 prepare_to_wait (ecs);
d4f3574e
SS
3606}
3607
104c1213
JM
3608/* This function normally comes after a resume, before
3609 handle_inferior_event exits. It takes care of any last bits of
3610 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 3611
104c1213
JM
3612static void
3613prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 3614{
527159b7 3615 if (debug_infrun)
8a9de0e4 3616 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
0d1e5fa7 3617 if (infwait_state == infwait_normal_state)
104c1213
JM
3618 {
3619 overlay_cache_invalid = 1;
3620
3621 /* We have to invalidate the registers BEFORE calling
488f131b
JB
3622 target_wait because they can be loaded from the target while
3623 in target_wait. This makes remote debugging a bit more
3624 efficient for those targets that provide critical registers
3625 as part of their normal status mechanism. */
104c1213
JM
3626
3627 registers_changed ();
0d1e5fa7 3628 waiton_ptid = pid_to_ptid (-1);
104c1213
JM
3629 }
3630 /* This is the old end of the while loop. Let everybody know we
3631 want to wait for the inferior some more and get called again
3632 soon. */
3633 ecs->wait_some_more = 1;
c906108c 3634}
11cf8741
JM
3635
3636/* Print why the inferior has stopped. We always print something when
3637 the inferior exits, or receives a signal. The rest of the cases are
3638 dealt with later on in normal_stop() and print_it_typical(). Ideally
3639 there should be a call to this function from handle_inferior_event()
3640 each time stop_stepping() is called.*/
3641static void
3642print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
3643{
3644 switch (stop_reason)
3645 {
11cf8741
JM
3646 case END_STEPPING_RANGE:
3647 /* We are done with a step/next/si/ni command. */
3648 /* For now print nothing. */
fb40c209 3649 /* Print a message only if not in the middle of doing a "step n"
488f131b 3650 operation for n > 1 */
fb40c209 3651 if (!step_multi || !stop_step)
9dc5e2a9 3652 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3653 ui_out_field_string
3654 (uiout, "reason",
3655 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
11cf8741 3656 break;
11cf8741
JM
3657 case SIGNAL_EXITED:
3658 /* The inferior was terminated by a signal. */
8b93c638 3659 annotate_signalled ();
9dc5e2a9 3660 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3661 ui_out_field_string
3662 (uiout, "reason",
3663 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8b93c638
JM
3664 ui_out_text (uiout, "\nProgram terminated with signal ");
3665 annotate_signal_name ();
488f131b
JB
3666 ui_out_field_string (uiout, "signal-name",
3667 target_signal_to_name (stop_info));
8b93c638
JM
3668 annotate_signal_name_end ();
3669 ui_out_text (uiout, ", ");
3670 annotate_signal_string ();
488f131b
JB
3671 ui_out_field_string (uiout, "signal-meaning",
3672 target_signal_to_string (stop_info));
8b93c638
JM
3673 annotate_signal_string_end ();
3674 ui_out_text (uiout, ".\n");
3675 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
3676 break;
3677 case EXITED:
3678 /* The inferior program is finished. */
8b93c638
JM
3679 annotate_exited (stop_info);
3680 if (stop_info)
3681 {
9dc5e2a9 3682 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3683 ui_out_field_string (uiout, "reason",
3684 async_reason_lookup (EXEC_ASYNC_EXITED));
8b93c638 3685 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
3686 ui_out_field_fmt (uiout, "exit-code", "0%o",
3687 (unsigned int) stop_info);
8b93c638
JM
3688 ui_out_text (uiout, ".\n");
3689 }
3690 else
3691 {
9dc5e2a9 3692 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3693 ui_out_field_string
3694 (uiout, "reason",
3695 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8b93c638
JM
3696 ui_out_text (uiout, "\nProgram exited normally.\n");
3697 }
f17517ea
AS
3698 /* Support the --return-child-result option. */
3699 return_child_result_value = stop_info;
11cf8741
JM
3700 break;
3701 case SIGNAL_RECEIVED:
3702 /* Signal received. The signal table tells us to print about
3703 it. */
8b93c638
JM
3704 annotate_signal ();
3705 ui_out_text (uiout, "\nProgram received signal ");
3706 annotate_signal_name ();
84c6c83c 3707 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3708 ui_out_field_string
3709 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b
JB
3710 ui_out_field_string (uiout, "signal-name",
3711 target_signal_to_name (stop_info));
8b93c638
JM
3712 annotate_signal_name_end ();
3713 ui_out_text (uiout, ", ");
3714 annotate_signal_string ();
488f131b
JB
3715 ui_out_field_string (uiout, "signal-meaning",
3716 target_signal_to_string (stop_info));
8b93c638
JM
3717 annotate_signal_string_end ();
3718 ui_out_text (uiout, ".\n");
11cf8741
JM
3719 break;
3720 default:
8e65ff28 3721 internal_error (__FILE__, __LINE__,
e2e0b3e5 3722 _("print_stop_reason: unrecognized enum value"));
11cf8741
JM
3723 break;
3724 }
3725}
c906108c 3726\f
43ff13b4 3727
c906108c
SS
3728/* Here to return control to GDB when the inferior stops for real.
3729 Print appropriate messages, remove breakpoints, give terminal our modes.
3730
3731 STOP_PRINT_FRAME nonzero means print the executing frame
3732 (pc, function, args, file, line number and line text).
3733 BREAKPOINTS_FAILED nonzero means stop was due to error
3734 attempting to insert breakpoints. */
3735
3736void
96baa820 3737normal_stop (void)
c906108c 3738{
73b65bb0
DJ
3739 struct target_waitstatus last;
3740 ptid_t last_ptid;
3741
3742 get_last_target_status (&last_ptid, &last);
3743
4f8d22e3
PA
3744 /* In non-stop mode, we don't want GDB to switch threads behind the
3745 user's back, to avoid races where the user is typing a command to
3746 apply to thread x, but GDB switches to thread y before the user
3747 finishes entering the command. */
3748
c906108c
SS
3749 /* As with the notification of thread events, we want to delay
3750 notifying the user that we've switched thread context until
3751 the inferior actually stops.
3752
73b65bb0
DJ
3753 There's no point in saying anything if the inferior has exited.
3754 Note that SIGNALLED here means "exited with a signal", not
3755 "received a signal". */
4f8d22e3
PA
3756 if (!non_stop
3757 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
3758 && target_has_execution
3759 && last.kind != TARGET_WAITKIND_SIGNALLED
3760 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
3761 {
3762 target_terminal_ours_for_output ();
a3f17187 3763 printf_filtered (_("[Switching to %s]\n"),
c95310c6 3764 target_pid_to_str (inferior_ptid));
b8fa951a 3765 annotate_thread_changed ();
39f77062 3766 previous_inferior_ptid = inferior_ptid;
c906108c 3767 }
c906108c 3768
4fa8626c 3769 /* NOTE drow/2004-01-17: Is this still necessary? */
c906108c
SS
3770 /* Make sure that the current_frame's pc is correct. This
3771 is a correction for setting up the frame info before doing
b798847d 3772 gdbarch_decr_pc_after_break */
b87efeee
AC
3773 if (target_has_execution)
3774 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
b798847d 3775 gdbarch_decr_pc_after_break, the program counter can change. Ask the
b87efeee 3776 frame code to check for this and sort out any resultant mess.
b798847d 3777 gdbarch_decr_pc_after_break needs to just go away. */
2f107107 3778 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
c906108c 3779
74960c60 3780 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
3781 {
3782 if (remove_breakpoints ())
3783 {
3784 target_terminal_ours_for_output ();
a3f17187
AC
3785 printf_filtered (_("\
3786Cannot remove breakpoints because program is no longer writable.\n\
3787It might be running in another process.\n\
3788Further execution is probably impossible.\n"));
c906108c
SS
3789 }
3790 }
c906108c 3791
c906108c
SS
3792 /* If an auto-display called a function and that got a signal,
3793 delete that auto-display to avoid an infinite recursion. */
3794
3795 if (stopped_by_random_signal)
3796 disable_current_display ();
3797
3798 /* Don't print a message if in the middle of doing a "step n"
3799 operation for n > 1 */
3800 if (step_multi && stop_step)
3801 goto done;
3802
3803 target_terminal_ours ();
3804
7abfe014
DJ
3805 /* Set the current source location. This will also happen if we
3806 display the frame below, but the current SAL will be incorrect
3807 during a user hook-stop function. */
3808 if (target_has_stack && !stop_stack_dummy)
3809 set_current_sal_from_frame (get_current_frame (), 1);
3810
5913bcb0
AC
3811 /* Look up the hook_stop and run it (CLI internally handles problem
3812 of stop_command's pre-hook not existing). */
3813 if (stop_command)
3814 catch_errors (hook_stop_stub, stop_command,
3815 "Error while running hook_stop:\n", RETURN_MASK_ALL);
c906108c
SS
3816
3817 if (!target_has_stack)
3818 {
3819
3820 goto done;
3821 }
3822
3823 /* Select innermost stack frame - i.e., current frame is frame 0,
3824 and current location is based on that.
3825 Don't do this on return from a stack dummy routine,
3826 or if the program has exited. */
3827
3828 if (!stop_stack_dummy)
3829 {
0f7d239c 3830 select_frame (get_current_frame ());
c906108c
SS
3831
3832 /* Print current location without a level number, if
c5aa993b
JM
3833 we have changed functions or hit a breakpoint.
3834 Print source line if we have one.
3835 bpstat_print() contains the logic deciding in detail
3836 what to print, based on the event(s) that just occurred. */
c906108c 3837
d01a8610
AS
3838 /* If --batch-silent is enabled then there's no need to print the current
3839 source location, and to try risks causing an error message about
3840 missing source files. */
3841 if (stop_print_frame && !batch_silent)
c906108c
SS
3842 {
3843 int bpstat_ret;
3844 int source_flag;
917317f4 3845 int do_frame_printing = 1;
c906108c
SS
3846
3847 bpstat_ret = bpstat_print (stop_bpstat);
917317f4
JM
3848 switch (bpstat_ret)
3849 {
3850 case PRINT_UNKNOWN:
b0f4b84b
DJ
3851 /* If we had hit a shared library event breakpoint,
3852 bpstat_print would print out this message. If we hit
3853 an OS-level shared library event, do the same
3854 thing. */
3855 if (last.kind == TARGET_WAITKIND_LOADED)
3856 {
3857 printf_filtered (_("Stopped due to shared library event\n"));
3858 source_flag = SRC_LINE; /* something bogus */
3859 do_frame_printing = 0;
3860 break;
3861 }
3862
aa0cd9c1 3863 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
3864 (or should) carry around the function and does (or
3865 should) use that when doing a frame comparison. */
917317f4 3866 if (stop_step
aa0cd9c1
AC
3867 && frame_id_eq (step_frame_id,
3868 get_frame_id (get_current_frame ()))
917317f4 3869 && step_start_function == find_pc_function (stop_pc))
488f131b 3870 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 3871 else
488f131b 3872 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3873 break;
3874 case PRINT_SRC_AND_LOC:
488f131b 3875 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3876 break;
3877 case PRINT_SRC_ONLY:
c5394b80 3878 source_flag = SRC_LINE;
917317f4
JM
3879 break;
3880 case PRINT_NOTHING:
488f131b 3881 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
3882 do_frame_printing = 0;
3883 break;
3884 default:
e2e0b3e5 3885 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 3886 }
c906108c 3887
9dc5e2a9 3888 if (ui_out_is_mi_like_p (uiout))
b1a268e5
VP
3889 {
3890
3891 ui_out_field_int (uiout, "thread-id",
3892 pid_to_thread_id (inferior_ptid));
3893 if (non_stop)
3894 {
3895 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end
3896 (uiout, "stopped-threads");
3897 ui_out_field_int (uiout, NULL,
3898 pid_to_thread_id (inferior_ptid));
3899 do_cleanups (back_to);
3900 }
3901 else
3902 ui_out_field_string (uiout, "stopped-threads", "all");
3903 }
c906108c
SS
3904 /* The behavior of this routine with respect to the source
3905 flag is:
c5394b80
JM
3906 SRC_LINE: Print only source line
3907 LOCATION: Print only location
3908 SRC_AND_LOC: Print location and source line */
917317f4 3909 if (do_frame_printing)
b04f3ab4 3910 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
3911
3912 /* Display the auto-display expressions. */
3913 do_displays ();
3914 }
3915 }
3916
3917 /* Save the function value return registers, if we care.
3918 We might be about to restore their previous contents. */
3919 if (proceed_to_finish)
d5c31457
UW
3920 {
3921 /* This should not be necessary. */
3922 if (stop_registers)
3923 regcache_xfree (stop_registers);
3924
3925 /* NB: The copy goes through to the target picking up the value of
3926 all the registers. */
3927 stop_registers = regcache_dup (get_current_regcache ());
3928 }
c906108c
SS
3929
3930 if (stop_stack_dummy)
3931 {
dbe9fe58
AC
3932 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3933 ends with a setting of the current frame, so we can use that
3934 next. */
3935 frame_pop (get_current_frame ());
c906108c 3936 /* Set stop_pc to what it was before we called the function.
c5aa993b
JM
3937 Can't rely on restore_inferior_status because that only gets
3938 called if we don't stop in the called function. */
c906108c 3939 stop_pc = read_pc ();
0f7d239c 3940 select_frame (get_current_frame ());
c906108c
SS
3941 }
3942
c906108c
SS
3943done:
3944 annotate_stopped ();
8f6a8e84 3945 if (!suppress_stop_observer && !step_multi)
f5871ec0 3946 observer_notify_normal_stop (stop_bpstat);
2cec12e5
AR
3947 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3948 Delete any breakpoint that is to be deleted at the next stop. */
3949 breakpoint_auto_delete (stop_bpstat);
94cc34af
PA
3950
3951 if (target_has_execution
3952 && last.kind != TARGET_WAITKIND_SIGNALLED
3953 && last.kind != TARGET_WAITKIND_EXITED)
3954 {
3955 if (!non_stop)
3956 set_running (pid_to_ptid (-1), 0);
3957 else
3958 set_running (inferior_ptid, 0);
3959 }
c906108c
SS
3960}
3961
3962static int
96baa820 3963hook_stop_stub (void *cmd)
c906108c 3964{
5913bcb0 3965 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
3966 return (0);
3967}
3968\f
c5aa993b 3969int
96baa820 3970signal_stop_state (int signo)
c906108c 3971{
a0ef4274
DJ
3972 /* Always stop on signals if we're just gaining control of the
3973 program. */
3974 return signal_stop[signo] || stop_soon != NO_STOP_QUIETLY;
c906108c
SS
3975}
3976
c5aa993b 3977int
96baa820 3978signal_print_state (int signo)
c906108c
SS
3979{
3980 return signal_print[signo];
3981}
3982
c5aa993b 3983int
96baa820 3984signal_pass_state (int signo)
c906108c
SS
3985{
3986 return signal_program[signo];
3987}
3988
488f131b 3989int
7bda5e4a 3990signal_stop_update (int signo, int state)
d4f3574e
SS
3991{
3992 int ret = signal_stop[signo];
3993 signal_stop[signo] = state;
3994 return ret;
3995}
3996
488f131b 3997int
7bda5e4a 3998signal_print_update (int signo, int state)
d4f3574e
SS
3999{
4000 int ret = signal_print[signo];
4001 signal_print[signo] = state;
4002 return ret;
4003}
4004
488f131b 4005int
7bda5e4a 4006signal_pass_update (int signo, int state)
d4f3574e
SS
4007{
4008 int ret = signal_program[signo];
4009 signal_program[signo] = state;
4010 return ret;
4011}
4012
c906108c 4013static void
96baa820 4014sig_print_header (void)
c906108c 4015{
a3f17187
AC
4016 printf_filtered (_("\
4017Signal Stop\tPrint\tPass to program\tDescription\n"));
c906108c
SS
4018}
4019
4020static void
96baa820 4021sig_print_info (enum target_signal oursig)
c906108c
SS
4022{
4023 char *name = target_signal_to_name (oursig);
4024 int name_padding = 13 - strlen (name);
96baa820 4025
c906108c
SS
4026 if (name_padding <= 0)
4027 name_padding = 0;
4028
4029 printf_filtered ("%s", name);
488f131b 4030 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
4031 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
4032 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
4033 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
4034 printf_filtered ("%s\n", target_signal_to_string (oursig));
4035}
4036
4037/* Specify how various signals in the inferior should be handled. */
4038
4039static void
96baa820 4040handle_command (char *args, int from_tty)
c906108c
SS
4041{
4042 char **argv;
4043 int digits, wordlen;
4044 int sigfirst, signum, siglast;
4045 enum target_signal oursig;
4046 int allsigs;
4047 int nsigs;
4048 unsigned char *sigs;
4049 struct cleanup *old_chain;
4050
4051 if (args == NULL)
4052 {
e2e0b3e5 4053 error_no_arg (_("signal to handle"));
c906108c
SS
4054 }
4055
4056 /* Allocate and zero an array of flags for which signals to handle. */
4057
4058 nsigs = (int) TARGET_SIGNAL_LAST;
4059 sigs = (unsigned char *) alloca (nsigs);
4060 memset (sigs, 0, nsigs);
4061
4062 /* Break the command line up into args. */
4063
4064 argv = buildargv (args);
4065 if (argv == NULL)
4066 {
4067 nomem (0);
4068 }
7a292a7a 4069 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
4070
4071 /* Walk through the args, looking for signal oursigs, signal names, and
4072 actions. Signal numbers and signal names may be interspersed with
4073 actions, with the actions being performed for all signals cumulatively
4074 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
4075
4076 while (*argv != NULL)
4077 {
4078 wordlen = strlen (*argv);
4079 for (digits = 0; isdigit ((*argv)[digits]); digits++)
4080 {;
4081 }
4082 allsigs = 0;
4083 sigfirst = siglast = -1;
4084
4085 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
4086 {
4087 /* Apply action to all signals except those used by the
4088 debugger. Silently skip those. */
4089 allsigs = 1;
4090 sigfirst = 0;
4091 siglast = nsigs - 1;
4092 }
4093 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
4094 {
4095 SET_SIGS (nsigs, sigs, signal_stop);
4096 SET_SIGS (nsigs, sigs, signal_print);
4097 }
4098 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
4099 {
4100 UNSET_SIGS (nsigs, sigs, signal_program);
4101 }
4102 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
4103 {
4104 SET_SIGS (nsigs, sigs, signal_print);
4105 }
4106 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
4107 {
4108 SET_SIGS (nsigs, sigs, signal_program);
4109 }
4110 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
4111 {
4112 UNSET_SIGS (nsigs, sigs, signal_stop);
4113 }
4114 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
4115 {
4116 SET_SIGS (nsigs, sigs, signal_program);
4117 }
4118 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
4119 {
4120 UNSET_SIGS (nsigs, sigs, signal_print);
4121 UNSET_SIGS (nsigs, sigs, signal_stop);
4122 }
4123 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
4124 {
4125 UNSET_SIGS (nsigs, sigs, signal_program);
4126 }
4127 else if (digits > 0)
4128 {
4129 /* It is numeric. The numeric signal refers to our own
4130 internal signal numbering from target.h, not to host/target
4131 signal number. This is a feature; users really should be
4132 using symbolic names anyway, and the common ones like
4133 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
4134
4135 sigfirst = siglast = (int)
4136 target_signal_from_command (atoi (*argv));
4137 if ((*argv)[digits] == '-')
4138 {
4139 siglast = (int)
4140 target_signal_from_command (atoi ((*argv) + digits + 1));
4141 }
4142 if (sigfirst > siglast)
4143 {
4144 /* Bet he didn't figure we'd think of this case... */
4145 signum = sigfirst;
4146 sigfirst = siglast;
4147 siglast = signum;
4148 }
4149 }
4150 else
4151 {
4152 oursig = target_signal_from_name (*argv);
4153 if (oursig != TARGET_SIGNAL_UNKNOWN)
4154 {
4155 sigfirst = siglast = (int) oursig;
4156 }
4157 else
4158 {
4159 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 4160 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
4161 }
4162 }
4163
4164 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 4165 which signals to apply actions to. */
c906108c
SS
4166
4167 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
4168 {
4169 switch ((enum target_signal) signum)
4170 {
4171 case TARGET_SIGNAL_TRAP:
4172 case TARGET_SIGNAL_INT:
4173 if (!allsigs && !sigs[signum])
4174 {
4175 if (query ("%s is used by the debugger.\n\
488f131b 4176Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
4177 {
4178 sigs[signum] = 1;
4179 }
4180 else
4181 {
a3f17187 4182 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
4183 gdb_flush (gdb_stdout);
4184 }
4185 }
4186 break;
4187 case TARGET_SIGNAL_0:
4188 case TARGET_SIGNAL_DEFAULT:
4189 case TARGET_SIGNAL_UNKNOWN:
4190 /* Make sure that "all" doesn't print these. */
4191 break;
4192 default:
4193 sigs[signum] = 1;
4194 break;
4195 }
4196 }
4197
4198 argv++;
4199 }
4200
39f77062 4201 target_notice_signals (inferior_ptid);
c906108c
SS
4202
4203 if (from_tty)
4204 {
4205 /* Show the results. */
4206 sig_print_header ();
4207 for (signum = 0; signum < nsigs; signum++)
4208 {
4209 if (sigs[signum])
4210 {
4211 sig_print_info (signum);
4212 }
4213 }
4214 }
4215
4216 do_cleanups (old_chain);
4217}
4218
4219static void
96baa820 4220xdb_handle_command (char *args, int from_tty)
c906108c
SS
4221{
4222 char **argv;
4223 struct cleanup *old_chain;
4224
4225 /* Break the command line up into args. */
4226
4227 argv = buildargv (args);
4228 if (argv == NULL)
4229 {
4230 nomem (0);
4231 }
7a292a7a 4232 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
4233 if (argv[1] != (char *) NULL)
4234 {
4235 char *argBuf;
4236 int bufLen;
4237
4238 bufLen = strlen (argv[0]) + 20;
4239 argBuf = (char *) xmalloc (bufLen);
4240 if (argBuf)
4241 {
4242 int validFlag = 1;
4243 enum target_signal oursig;
4244
4245 oursig = target_signal_from_name (argv[0]);
4246 memset (argBuf, 0, bufLen);
4247 if (strcmp (argv[1], "Q") == 0)
4248 sprintf (argBuf, "%s %s", argv[0], "noprint");
4249 else
4250 {
4251 if (strcmp (argv[1], "s") == 0)
4252 {
4253 if (!signal_stop[oursig])
4254 sprintf (argBuf, "%s %s", argv[0], "stop");
4255 else
4256 sprintf (argBuf, "%s %s", argv[0], "nostop");
4257 }
4258 else if (strcmp (argv[1], "i") == 0)
4259 {
4260 if (!signal_program[oursig])
4261 sprintf (argBuf, "%s %s", argv[0], "pass");
4262 else
4263 sprintf (argBuf, "%s %s", argv[0], "nopass");
4264 }
4265 else if (strcmp (argv[1], "r") == 0)
4266 {
4267 if (!signal_print[oursig])
4268 sprintf (argBuf, "%s %s", argv[0], "print");
4269 else
4270 sprintf (argBuf, "%s %s", argv[0], "noprint");
4271 }
4272 else
4273 validFlag = 0;
4274 }
4275 if (validFlag)
4276 handle_command (argBuf, from_tty);
4277 else
a3f17187 4278 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 4279 if (argBuf)
b8c9b27d 4280 xfree (argBuf);
c906108c
SS
4281 }
4282 }
4283 do_cleanups (old_chain);
4284}
4285
4286/* Print current contents of the tables set by the handle command.
4287 It is possible we should just be printing signals actually used
4288 by the current target (but for things to work right when switching
4289 targets, all signals should be in the signal tables). */
4290
4291static void
96baa820 4292signals_info (char *signum_exp, int from_tty)
c906108c
SS
4293{
4294 enum target_signal oursig;
4295 sig_print_header ();
4296
4297 if (signum_exp)
4298 {
4299 /* First see if this is a symbol name. */
4300 oursig = target_signal_from_name (signum_exp);
4301 if (oursig == TARGET_SIGNAL_UNKNOWN)
4302 {
4303 /* No, try numeric. */
4304 oursig =
bb518678 4305 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
4306 }
4307 sig_print_info (oursig);
4308 return;
4309 }
4310
4311 printf_filtered ("\n");
4312 /* These ugly casts brought to you by the native VAX compiler. */
4313 for (oursig = TARGET_SIGNAL_FIRST;
4314 (int) oursig < (int) TARGET_SIGNAL_LAST;
4315 oursig = (enum target_signal) ((int) oursig + 1))
4316 {
4317 QUIT;
4318
4319 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 4320 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
4321 sig_print_info (oursig);
4322 }
4323
a3f17187 4324 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
c906108c
SS
4325}
4326\f
7a292a7a
SS
4327struct inferior_status
4328{
4329 enum target_signal stop_signal;
4330 CORE_ADDR stop_pc;
4331 bpstat stop_bpstat;
4332 int stop_step;
4333 int stop_stack_dummy;
4334 int stopped_by_random_signal;
ca67fcb8 4335 int stepping_over_breakpoint;
7a292a7a
SS
4336 CORE_ADDR step_range_start;
4337 CORE_ADDR step_range_end;
aa0cd9c1 4338 struct frame_id step_frame_id;
5fbbeb29 4339 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
4340 CORE_ADDR step_resume_break_address;
4341 int stop_after_trap;
c0236d92 4342 int stop_soon;
7a292a7a
SS
4343
4344 /* These are here because if call_function_by_hand has written some
4345 registers and then decides to call error(), we better not have changed
4346 any registers. */
72cec141 4347 struct regcache *registers;
7a292a7a 4348
101dcfbe
AC
4349 /* A frame unique identifier. */
4350 struct frame_id selected_frame_id;
4351
7a292a7a
SS
4352 int breakpoint_proceeded;
4353 int restore_stack_info;
4354 int proceed_to_finish;
4355};
4356
7a292a7a 4357void
96baa820
JM
4358write_inferior_status_register (struct inferior_status *inf_status, int regno,
4359 LONGEST val)
7a292a7a 4360{
3acba339 4361 int size = register_size (current_gdbarch, regno);
7a292a7a
SS
4362 void *buf = alloca (size);
4363 store_signed_integer (buf, size, val);
0818c12a 4364 regcache_raw_write (inf_status->registers, regno, buf);
7a292a7a
SS
4365}
4366
c906108c
SS
4367/* Save all of the information associated with the inferior<==>gdb
4368 connection. INF_STATUS is a pointer to a "struct inferior_status"
4369 (defined in inferior.h). */
4370
7a292a7a 4371struct inferior_status *
96baa820 4372save_inferior_status (int restore_stack_info)
c906108c 4373{
72cec141 4374 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
7a292a7a 4375
c906108c
SS
4376 inf_status->stop_signal = stop_signal;
4377 inf_status->stop_pc = stop_pc;
4378 inf_status->stop_step = stop_step;
4379 inf_status->stop_stack_dummy = stop_stack_dummy;
4380 inf_status->stopped_by_random_signal = stopped_by_random_signal;
ca67fcb8 4381 inf_status->stepping_over_breakpoint = stepping_over_breakpoint;
c906108c
SS
4382 inf_status->step_range_start = step_range_start;
4383 inf_status->step_range_end = step_range_end;
aa0cd9c1 4384 inf_status->step_frame_id = step_frame_id;
c906108c
SS
4385 inf_status->step_over_calls = step_over_calls;
4386 inf_status->stop_after_trap = stop_after_trap;
c0236d92 4387 inf_status->stop_soon = stop_soon;
c906108c
SS
4388 /* Save original bpstat chain here; replace it with copy of chain.
4389 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
4390 hand them back the original chain when restore_inferior_status is
4391 called. */
c906108c
SS
4392 inf_status->stop_bpstat = stop_bpstat;
4393 stop_bpstat = bpstat_copy (stop_bpstat);
4394 inf_status->breakpoint_proceeded = breakpoint_proceeded;
4395 inf_status->restore_stack_info = restore_stack_info;
4396 inf_status->proceed_to_finish = proceed_to_finish;
c5aa993b 4397
594f7785 4398 inf_status->registers = regcache_dup (get_current_regcache ());
c906108c 4399
206415a3 4400 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
7a292a7a 4401 return inf_status;
c906108c
SS
4402}
4403
c906108c 4404static int
96baa820 4405restore_selected_frame (void *args)
c906108c 4406{
488f131b 4407 struct frame_id *fid = (struct frame_id *) args;
c906108c 4408 struct frame_info *frame;
c906108c 4409
101dcfbe 4410 frame = frame_find_by_id (*fid);
c906108c 4411
aa0cd9c1
AC
4412 /* If inf_status->selected_frame_id is NULL, there was no previously
4413 selected frame. */
101dcfbe 4414 if (frame == NULL)
c906108c 4415 {
8a3fe4f8 4416 warning (_("Unable to restore previously selected frame."));
c906108c
SS
4417 return 0;
4418 }
4419
0f7d239c 4420 select_frame (frame);
c906108c
SS
4421
4422 return (1);
4423}
4424
4425void
96baa820 4426restore_inferior_status (struct inferior_status *inf_status)
c906108c
SS
4427{
4428 stop_signal = inf_status->stop_signal;
4429 stop_pc = inf_status->stop_pc;
4430 stop_step = inf_status->stop_step;
4431 stop_stack_dummy = inf_status->stop_stack_dummy;
4432 stopped_by_random_signal = inf_status->stopped_by_random_signal;
ca67fcb8 4433 stepping_over_breakpoint = inf_status->stepping_over_breakpoint;
c906108c
SS
4434 step_range_start = inf_status->step_range_start;
4435 step_range_end = inf_status->step_range_end;
aa0cd9c1 4436 step_frame_id = inf_status->step_frame_id;
c906108c
SS
4437 step_over_calls = inf_status->step_over_calls;
4438 stop_after_trap = inf_status->stop_after_trap;
c0236d92 4439 stop_soon = inf_status->stop_soon;
c906108c
SS
4440 bpstat_clear (&stop_bpstat);
4441 stop_bpstat = inf_status->stop_bpstat;
4442 breakpoint_proceeded = inf_status->breakpoint_proceeded;
4443 proceed_to_finish = inf_status->proceed_to_finish;
4444
c906108c
SS
4445 /* The inferior can be gone if the user types "print exit(0)"
4446 (and perhaps other times). */
4447 if (target_has_execution)
72cec141 4448 /* NB: The register write goes through to the target. */
594f7785 4449 regcache_cpy (get_current_regcache (), inf_status->registers);
72cec141 4450 regcache_xfree (inf_status->registers);
c906108c 4451
c906108c
SS
4452 /* FIXME: If we are being called after stopping in a function which
4453 is called from gdb, we should not be trying to restore the
4454 selected frame; it just prints a spurious error message (The
4455 message is useful, however, in detecting bugs in gdb (like if gdb
4456 clobbers the stack)). In fact, should we be restoring the
4457 inferior status at all in that case? . */
4458
4459 if (target_has_stack && inf_status->restore_stack_info)
4460 {
c906108c 4461 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
4462 walking the stack might encounter a garbage pointer and
4463 error() trying to dereference it. */
488f131b
JB
4464 if (catch_errors
4465 (restore_selected_frame, &inf_status->selected_frame_id,
4466 "Unable to restore previously selected frame:\n",
4467 RETURN_MASK_ERROR) == 0)
c906108c
SS
4468 /* Error in restoring the selected frame. Select the innermost
4469 frame. */
0f7d239c 4470 select_frame (get_current_frame ());
c906108c
SS
4471
4472 }
c906108c 4473
72cec141 4474 xfree (inf_status);
7a292a7a 4475}
c906108c 4476
74b7792f
AC
4477static void
4478do_restore_inferior_status_cleanup (void *sts)
4479{
4480 restore_inferior_status (sts);
4481}
4482
4483struct cleanup *
4484make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
4485{
4486 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
4487}
4488
c906108c 4489void
96baa820 4490discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
4491{
4492 /* See save_inferior_status for info on stop_bpstat. */
4493 bpstat_clear (&inf_status->stop_bpstat);
72cec141 4494 regcache_xfree (inf_status->registers);
72cec141 4495 xfree (inf_status);
7a292a7a
SS
4496}
4497
47932f85 4498int
3a3e9ee3 4499inferior_has_forked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
4500{
4501 struct target_waitstatus last;
4502 ptid_t last_ptid;
4503
4504 get_last_target_status (&last_ptid, &last);
4505
4506 if (last.kind != TARGET_WAITKIND_FORKED)
4507 return 0;
4508
3a3e9ee3 4509 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
4510 return 0;
4511
4512 *child_pid = last.value.related_pid;
4513 return 1;
4514}
4515
4516int
3a3e9ee3 4517inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
4518{
4519 struct target_waitstatus last;
4520 ptid_t last_ptid;
4521
4522 get_last_target_status (&last_ptid, &last);
4523
4524 if (last.kind != TARGET_WAITKIND_VFORKED)
4525 return 0;
4526
3a3e9ee3 4527 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
4528 return 0;
4529
4530 *child_pid = last.value.related_pid;
4531 return 1;
4532}
4533
4534int
3a3e9ee3 4535inferior_has_execd (ptid_t pid, char **execd_pathname)
47932f85
DJ
4536{
4537 struct target_waitstatus last;
4538 ptid_t last_ptid;
4539
4540 get_last_target_status (&last_ptid, &last);
4541
4542 if (last.kind != TARGET_WAITKIND_EXECD)
4543 return 0;
4544
3a3e9ee3 4545 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
4546 return 0;
4547
4548 *execd_pathname = xstrdup (last.value.execd_pathname);
4549 return 1;
4550}
4551
ca6724c1
KB
4552/* Oft used ptids */
4553ptid_t null_ptid;
4554ptid_t minus_one_ptid;
4555
4556/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 4557
ca6724c1
KB
4558ptid_t
4559ptid_build (int pid, long lwp, long tid)
4560{
4561 ptid_t ptid;
4562
4563 ptid.pid = pid;
4564 ptid.lwp = lwp;
4565 ptid.tid = tid;
4566 return ptid;
4567}
4568
4569/* Create a ptid from just a pid. */
4570
4571ptid_t
4572pid_to_ptid (int pid)
4573{
4574 return ptid_build (pid, 0, 0);
4575}
4576
4577/* Fetch the pid (process id) component from a ptid. */
4578
4579int
4580ptid_get_pid (ptid_t ptid)
4581{
4582 return ptid.pid;
4583}
4584
4585/* Fetch the lwp (lightweight process) component from a ptid. */
4586
4587long
4588ptid_get_lwp (ptid_t ptid)
4589{
4590 return ptid.lwp;
4591}
4592
4593/* Fetch the tid (thread id) component from a ptid. */
4594
4595long
4596ptid_get_tid (ptid_t ptid)
4597{
4598 return ptid.tid;
4599}
4600
4601/* ptid_equal() is used to test equality of two ptids. */
4602
4603int
4604ptid_equal (ptid_t ptid1, ptid_t ptid2)
4605{
4606 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 4607 && ptid1.tid == ptid2.tid);
ca6724c1
KB
4608}
4609
4610/* restore_inferior_ptid() will be used by the cleanup machinery
4611 to restore the inferior_ptid value saved in a call to
4612 save_inferior_ptid(). */
ce696e05
KB
4613
4614static void
4615restore_inferior_ptid (void *arg)
4616{
4617 ptid_t *saved_ptid_ptr = arg;
4618 inferior_ptid = *saved_ptid_ptr;
4619 xfree (arg);
4620}
4621
4622/* Save the value of inferior_ptid so that it may be restored by a
4623 later call to do_cleanups(). Returns the struct cleanup pointer
4624 needed for later doing the cleanup. */
4625
4626struct cleanup *
4627save_inferior_ptid (void)
4628{
4629 ptid_t *saved_ptid_ptr;
4630
4631 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
4632 *saved_ptid_ptr = inferior_ptid;
4633 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
4634}
c5aa993b 4635\f
488f131b 4636
ad52ddc6
PA
4637int non_stop = 0;
4638static int non_stop_1 = 0;
4639
4640static void
4641set_non_stop (char *args, int from_tty,
4642 struct cmd_list_element *c)
4643{
4644 if (target_has_execution)
4645 {
4646 non_stop_1 = non_stop;
4647 error (_("Cannot change this setting while the inferior is running."));
4648 }
4649
4650 non_stop = non_stop_1;
4651}
4652
4653static void
4654show_non_stop (struct ui_file *file, int from_tty,
4655 struct cmd_list_element *c, const char *value)
4656{
4657 fprintf_filtered (file,
4658 _("Controlling the inferior in non-stop mode is %s.\n"),
4659 value);
4660}
4661
4662
c906108c 4663void
96baa820 4664_initialize_infrun (void)
c906108c 4665{
52f0bd74
AC
4666 int i;
4667 int numsigs;
c906108c
SS
4668 struct cmd_list_element *c;
4669
1bedd215
AC
4670 add_info ("signals", signals_info, _("\
4671What debugger does when program gets various signals.\n\
4672Specify a signal as argument to print info on that signal only."));
c906108c
SS
4673 add_info_alias ("handle", "signals", 0);
4674
1bedd215
AC
4675 add_com ("handle", class_run, handle_command, _("\
4676Specify how to handle a signal.\n\
c906108c
SS
4677Args are signals and actions to apply to those signals.\n\
4678Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4679from 1-15 are allowed for compatibility with old versions of GDB.\n\
4680Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4681The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
4682used by the debugger, typically SIGTRAP and SIGINT.\n\
4683Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
4684\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
4685Stop means reenter debugger if this signal happens (implies print).\n\
4686Print means print a message if this signal happens.\n\
4687Pass means let program see this signal; otherwise program doesn't know.\n\
4688Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 4689Pass and Stop may be combined."));
c906108c
SS
4690 if (xdb_commands)
4691 {
1bedd215
AC
4692 add_com ("lz", class_info, signals_info, _("\
4693What debugger does when program gets various signals.\n\
4694Specify a signal as argument to print info on that signal only."));
4695 add_com ("z", class_run, xdb_handle_command, _("\
4696Specify how to handle a signal.\n\
c906108c
SS
4697Args are signals and actions to apply to those signals.\n\
4698Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4699from 1-15 are allowed for compatibility with old versions of GDB.\n\
4700Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4701The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
4702used by the debugger, typically SIGTRAP and SIGINT.\n\
4703Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
4704\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
4705nopass), \"Q\" (noprint)\n\
4706Stop means reenter debugger if this signal happens (implies print).\n\
4707Print means print a message if this signal happens.\n\
4708Pass means let program see this signal; otherwise program doesn't know.\n\
4709Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 4710Pass and Stop may be combined."));
c906108c
SS
4711 }
4712
4713 if (!dbx_commands)
1a966eab
AC
4714 stop_command = add_cmd ("stop", class_obscure,
4715 not_just_help_class_command, _("\
4716There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 4717This allows you to set a list of commands to be run each time execution\n\
1a966eab 4718of the program stops."), &cmdlist);
c906108c 4719
85c07804
AC
4720 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
4721Set inferior debugging."), _("\
4722Show inferior debugging."), _("\
4723When non-zero, inferior specific debugging is enabled."),
4724 NULL,
920d2a44 4725 show_debug_infrun,
85c07804 4726 &setdebuglist, &showdebuglist);
527159b7 4727
237fc4c9
PA
4728 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
4729Set displaced stepping debugging."), _("\
4730Show displaced stepping debugging."), _("\
4731When non-zero, displaced stepping specific debugging is enabled."),
4732 NULL,
4733 show_debug_displaced,
4734 &setdebuglist, &showdebuglist);
4735
ad52ddc6
PA
4736 add_setshow_boolean_cmd ("non-stop", no_class,
4737 &non_stop_1, _("\
4738Set whether gdb controls the inferior in non-stop mode."), _("\
4739Show whether gdb controls the inferior in non-stop mode."), _("\
4740When debugging a multi-threaded program and this setting is\n\
4741off (the default, also called all-stop mode), when one thread stops\n\
4742(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
4743all other threads in the program while you interact with the thread of\n\
4744interest. When you continue or step a thread, you can allow the other\n\
4745threads to run, or have them remain stopped, but while you inspect any\n\
4746thread's state, all threads stop.\n\
4747\n\
4748In non-stop mode, when one thread stops, other threads can continue\n\
4749to run freely. You'll be able to step each thread independently,\n\
4750leave it stopped or free to run as needed."),
4751 set_non_stop,
4752 show_non_stop,
4753 &setlist,
4754 &showlist);
4755
c906108c 4756 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 4757 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
4758 signal_print = (unsigned char *)
4759 xmalloc (sizeof (signal_print[0]) * numsigs);
4760 signal_program = (unsigned char *)
4761 xmalloc (sizeof (signal_program[0]) * numsigs);
4762 for (i = 0; i < numsigs; i++)
4763 {
4764 signal_stop[i] = 1;
4765 signal_print[i] = 1;
4766 signal_program[i] = 1;
4767 }
4768
4769 /* Signals caused by debugger's own actions
4770 should not be given to the program afterwards. */
4771 signal_program[TARGET_SIGNAL_TRAP] = 0;
4772 signal_program[TARGET_SIGNAL_INT] = 0;
4773
4774 /* Signals that are not errors should not normally enter the debugger. */
4775 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4776 signal_print[TARGET_SIGNAL_ALRM] = 0;
4777 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4778 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4779 signal_stop[TARGET_SIGNAL_PROF] = 0;
4780 signal_print[TARGET_SIGNAL_PROF] = 0;
4781 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4782 signal_print[TARGET_SIGNAL_CHLD] = 0;
4783 signal_stop[TARGET_SIGNAL_IO] = 0;
4784 signal_print[TARGET_SIGNAL_IO] = 0;
4785 signal_stop[TARGET_SIGNAL_POLL] = 0;
4786 signal_print[TARGET_SIGNAL_POLL] = 0;
4787 signal_stop[TARGET_SIGNAL_URG] = 0;
4788 signal_print[TARGET_SIGNAL_URG] = 0;
4789 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4790 signal_print[TARGET_SIGNAL_WINCH] = 0;
4791
cd0fc7c3
SS
4792 /* These signals are used internally by user-level thread
4793 implementations. (See signal(5) on Solaris.) Like the above
4794 signals, a healthy program receives and handles them as part of
4795 its normal operation. */
4796 signal_stop[TARGET_SIGNAL_LWP] = 0;
4797 signal_print[TARGET_SIGNAL_LWP] = 0;
4798 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4799 signal_print[TARGET_SIGNAL_WAITING] = 0;
4800 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4801 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4802
85c07804
AC
4803 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4804 &stop_on_solib_events, _("\
4805Set stopping for shared library events."), _("\
4806Show stopping for shared library events."), _("\
c906108c
SS
4807If nonzero, gdb will give control to the user when the dynamic linker\n\
4808notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
4809to the user would be loading/unloading of a new library."),
4810 NULL,
920d2a44 4811 show_stop_on_solib_events,
85c07804 4812 &setlist, &showlist);
c906108c 4813
7ab04401
AC
4814 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4815 follow_fork_mode_kind_names,
4816 &follow_fork_mode_string, _("\
4817Set debugger response to a program call of fork or vfork."), _("\
4818Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
4819A fork or vfork creates a new process. follow-fork-mode can be:\n\
4820 parent - the original process is debugged after a fork\n\
4821 child - the new process is debugged after a fork\n\
ea1dd7bc 4822The unfollowed process will continue to run.\n\
7ab04401
AC
4823By default, the debugger will follow the parent process."),
4824 NULL,
920d2a44 4825 show_follow_fork_mode_string,
7ab04401
AC
4826 &setlist, &showlist);
4827
4828 add_setshow_enum_cmd ("scheduler-locking", class_run,
4829 scheduler_enums, &scheduler_mode, _("\
4830Set mode for locking scheduler during execution."), _("\
4831Show mode for locking scheduler during execution."), _("\
c906108c
SS
4832off == no locking (threads may preempt at any time)\n\
4833on == full locking (no thread except the current thread may run)\n\
4834step == scheduler locked during every single-step operation.\n\
4835 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
4836 Other threads may run while stepping over a function call ('next')."),
4837 set_schedlock_func, /* traps on target vector */
920d2a44 4838 show_scheduler_mode,
7ab04401 4839 &setlist, &showlist);
5fbbeb29 4840
5bf193a2
AC
4841 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4842Set mode of the step operation."), _("\
4843Show mode of the step operation."), _("\
4844When set, doing a step over a function without debug line information\n\
4845will stop at the first instruction of that function. Otherwise, the\n\
4846function is skipped and the step command stops at a different source line."),
4847 NULL,
920d2a44 4848 show_step_stop_if_no_debug,
5bf193a2 4849 &setlist, &showlist);
ca6724c1 4850
237fc4c9 4851 add_setshow_boolean_cmd ("can-use-displaced-stepping", class_maintenance,
1f41b062 4852 &can_use_displaced_stepping, _("\
237fc4c9
PA
4853Set debugger's willingness to use displaced stepping."), _("\
4854Show debugger's willingness to use displaced stepping."), _("\
1f41b062 4855If zero, gdb will not use displaced stepping to step over\n\
237fc4c9 4856breakpoints, even if such is supported by the target."),
1f41b062
MS
4857 NULL,
4858 show_can_use_displaced_stepping,
4859 &maintenance_set_cmdlist,
237fc4c9
PA
4860 &maintenance_show_cmdlist);
4861
ca6724c1
KB
4862 /* ptid initializations */
4863 null_ptid = ptid_build (0, 0, 0);
4864 minus_one_ptid = ptid_build (-1, 0, 0);
4865 inferior_ptid = null_ptid;
4866 target_last_wait_ptid = minus_one_ptid;
237fc4c9 4867 displaced_step_ptid = null_ptid;
5231c1fd
PA
4868
4869 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
c906108c 4870}
This page took 1.027674 seconds and 4 git commands to generate.