Implementing catch syscall.
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
6aba47ca 4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
9b254dd1 5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
0fb0cc75 6 2008, 2009 Free Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include <ctype.h>
26#include "symtab.h"
27#include "frame.h"
28#include "inferior.h"
60250e8b 29#include "exceptions.h"
c906108c 30#include "breakpoint.h"
03f2053f 31#include "gdb_wait.h"
c906108c
SS
32#include "gdbcore.h"
33#include "gdbcmd.h"
210661e7 34#include "cli/cli-script.h"
c906108c
SS
35#include "target.h"
36#include "gdbthread.h"
37#include "annotate.h"
1adeb98a 38#include "symfile.h"
7a292a7a 39#include "top.h"
c906108c 40#include <signal.h>
2acceee2 41#include "inf-loop.h"
4e052eda 42#include "regcache.h"
fd0407d6 43#include "value.h"
06600e06 44#include "observer.h"
f636b87d 45#include "language.h"
a77053c2 46#include "solib.h"
f17517ea 47#include "main.h"
9f976b41 48#include "gdb_assert.h"
034dad6f 49#include "mi/mi-common.h"
4f8d22e3 50#include "event-top.h"
96429cc8 51#include "record.h"
edb3359d 52#include "inline-frame.h"
4efc6507 53#include "jit.h"
c906108c
SS
54
55/* Prototypes for local functions */
56
96baa820 57static void signals_info (char *, int);
c906108c 58
96baa820 59static void handle_command (char *, int);
c906108c 60
96baa820 61static void sig_print_info (enum target_signal);
c906108c 62
96baa820 63static void sig_print_header (void);
c906108c 64
74b7792f 65static void resume_cleanups (void *);
c906108c 66
96baa820 67static int hook_stop_stub (void *);
c906108c 68
96baa820
JM
69static int restore_selected_frame (void *);
70
71static void build_infrun (void);
72
4ef3f3be 73static int follow_fork (void);
96baa820
JM
74
75static void set_schedlock_func (char *args, int from_tty,
488f131b 76 struct cmd_list_element *c);
96baa820 77
4e1c45ea 78static int currently_stepping (struct thread_info *tp);
96baa820 79
b3444185
PA
80static int currently_stepping_or_nexting_callback (struct thread_info *tp,
81 void *data);
a7212384 82
96baa820
JM
83static void xdb_handle_command (char *args, int from_tty);
84
6a6b96b9 85static int prepare_to_proceed (int);
ea67f13b 86
96baa820 87void _initialize_infrun (void);
43ff13b4 88
e58b0e63
PA
89void nullify_last_target_wait_ptid (void);
90
5fbbeb29
CF
91/* When set, stop the 'step' command if we enter a function which has
92 no line number information. The normal behavior is that we step
93 over such function. */
94int step_stop_if_no_debug = 0;
920d2a44
AC
95static void
96show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
97 struct cmd_list_element *c, const char *value)
98{
99 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
100}
5fbbeb29 101
43ff13b4 102/* In asynchronous mode, but simulating synchronous execution. */
96baa820 103
43ff13b4
JM
104int sync_execution = 0;
105
c906108c
SS
106/* wait_for_inferior and normal_stop use this to notify the user
107 when the inferior stopped in a different thread than it had been
96baa820
JM
108 running in. */
109
39f77062 110static ptid_t previous_inferior_ptid;
7a292a7a 111
237fc4c9
PA
112int debug_displaced = 0;
113static void
114show_debug_displaced (struct ui_file *file, int from_tty,
115 struct cmd_list_element *c, const char *value)
116{
117 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
118}
119
527159b7 120static int debug_infrun = 0;
920d2a44
AC
121static void
122show_debug_infrun (struct ui_file *file, int from_tty,
123 struct cmd_list_element *c, const char *value)
124{
125 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
126}
527159b7 127
d4f3574e
SS
128/* If the program uses ELF-style shared libraries, then calls to
129 functions in shared libraries go through stubs, which live in a
130 table called the PLT (Procedure Linkage Table). The first time the
131 function is called, the stub sends control to the dynamic linker,
132 which looks up the function's real address, patches the stub so
133 that future calls will go directly to the function, and then passes
134 control to the function.
135
136 If we are stepping at the source level, we don't want to see any of
137 this --- we just want to skip over the stub and the dynamic linker.
138 The simple approach is to single-step until control leaves the
139 dynamic linker.
140
ca557f44
AC
141 However, on some systems (e.g., Red Hat's 5.2 distribution) the
142 dynamic linker calls functions in the shared C library, so you
143 can't tell from the PC alone whether the dynamic linker is still
144 running. In this case, we use a step-resume breakpoint to get us
145 past the dynamic linker, as if we were using "next" to step over a
146 function call.
d4f3574e 147
cfd8ab24 148 in_solib_dynsym_resolve_code() says whether we're in the dynamic
d4f3574e
SS
149 linker code or not. Normally, this means we single-step. However,
150 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
151 address where we can place a step-resume breakpoint to get past the
152 linker's symbol resolution function.
153
cfd8ab24 154 in_solib_dynsym_resolve_code() can generally be implemented in a
d4f3574e
SS
155 pretty portable way, by comparing the PC against the address ranges
156 of the dynamic linker's sections.
157
158 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
159 it depends on internal details of the dynamic linker. It's usually
160 not too hard to figure out where to put a breakpoint, but it
161 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
162 sanity checking. If it can't figure things out, returning zero and
163 getting the (possibly confusing) stepping behavior is better than
164 signalling an error, which will obscure the change in the
165 inferior's state. */
c906108c 166
c906108c
SS
167/* This function returns TRUE if pc is the address of an instruction
168 that lies within the dynamic linker (such as the event hook, or the
169 dld itself).
170
171 This function must be used only when a dynamic linker event has
172 been caught, and the inferior is being stepped out of the hook, or
173 undefined results are guaranteed. */
174
175#ifndef SOLIB_IN_DYNAMIC_LINKER
176#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
177#endif
178
c2c6d25f 179
7a292a7a
SS
180/* Convert the #defines into values. This is temporary until wfi control
181 flow is completely sorted out. */
182
692590c1
MS
183#ifndef CANNOT_STEP_HW_WATCHPOINTS
184#define CANNOT_STEP_HW_WATCHPOINTS 0
185#else
186#undef CANNOT_STEP_HW_WATCHPOINTS
187#define CANNOT_STEP_HW_WATCHPOINTS 1
188#endif
189
c906108c
SS
190/* Tables of how to react to signals; the user sets them. */
191
192static unsigned char *signal_stop;
193static unsigned char *signal_print;
194static unsigned char *signal_program;
195
196#define SET_SIGS(nsigs,sigs,flags) \
197 do { \
198 int signum = (nsigs); \
199 while (signum-- > 0) \
200 if ((sigs)[signum]) \
201 (flags)[signum] = 1; \
202 } while (0)
203
204#define UNSET_SIGS(nsigs,sigs,flags) \
205 do { \
206 int signum = (nsigs); \
207 while (signum-- > 0) \
208 if ((sigs)[signum]) \
209 (flags)[signum] = 0; \
210 } while (0)
211
39f77062
KB
212/* Value to pass to target_resume() to cause all threads to resume */
213
edb3359d 214#define RESUME_ALL minus_one_ptid
c906108c
SS
215
216/* Command list pointer for the "stop" placeholder. */
217
218static struct cmd_list_element *stop_command;
219
c906108c
SS
220/* Function inferior was in as of last step command. */
221
222static struct symbol *step_start_function;
223
c906108c
SS
224/* Nonzero if we want to give control to the user when we're notified
225 of shared library events by the dynamic linker. */
226static int stop_on_solib_events;
920d2a44
AC
227static void
228show_stop_on_solib_events (struct ui_file *file, int from_tty,
229 struct cmd_list_element *c, const char *value)
230{
231 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
232 value);
233}
c906108c 234
c906108c
SS
235/* Nonzero means expecting a trace trap
236 and should stop the inferior and return silently when it happens. */
237
238int stop_after_trap;
239
642fd101
DE
240/* Save register contents here when executing a "finish" command or are
241 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
242 Thus this contains the return value from the called function (assuming
243 values are returned in a register). */
244
72cec141 245struct regcache *stop_registers;
c906108c 246
c906108c
SS
247/* Nonzero after stop if current stack frame should be printed. */
248
249static int stop_print_frame;
250
e02bc4cc 251/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
252 returned by target_wait()/deprecated_target_wait_hook(). This
253 information is returned by get_last_target_status(). */
39f77062 254static ptid_t target_last_wait_ptid;
e02bc4cc
DS
255static struct target_waitstatus target_last_waitstatus;
256
0d1e5fa7
PA
257static void context_switch (ptid_t ptid);
258
4e1c45ea 259void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7
PA
260
261void init_infwait_state (void);
a474d7c2 262
53904c9e
AC
263static const char follow_fork_mode_child[] = "child";
264static const char follow_fork_mode_parent[] = "parent";
265
488f131b 266static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
267 follow_fork_mode_child,
268 follow_fork_mode_parent,
269 NULL
ef346e04 270};
c906108c 271
53904c9e 272static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
273static void
274show_follow_fork_mode_string (struct ui_file *file, int from_tty,
275 struct cmd_list_element *c, const char *value)
276{
277 fprintf_filtered (file, _("\
278Debugger response to a program call of fork or vfork is \"%s\".\n"),
279 value);
280}
c906108c
SS
281\f
282
e58b0e63
PA
283/* Tell the target to follow the fork we're stopped at. Returns true
284 if the inferior should be resumed; false, if the target for some
285 reason decided it's best not to resume. */
286
6604731b 287static int
4ef3f3be 288follow_fork (void)
c906108c 289{
ea1dd7bc 290 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
291 int should_resume = 1;
292 struct thread_info *tp;
293
294 /* Copy user stepping state to the new inferior thread. FIXME: the
295 followed fork child thread should have a copy of most of the
4e3990f4
DE
296 parent thread structure's run control related fields, not just these.
297 Initialized to avoid "may be used uninitialized" warnings from gcc. */
298 struct breakpoint *step_resume_breakpoint = NULL;
299 CORE_ADDR step_range_start = 0;
300 CORE_ADDR step_range_end = 0;
301 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
302
303 if (!non_stop)
304 {
305 ptid_t wait_ptid;
306 struct target_waitstatus wait_status;
307
308 /* Get the last target status returned by target_wait(). */
309 get_last_target_status (&wait_ptid, &wait_status);
310
311 /* If not stopped at a fork event, then there's nothing else to
312 do. */
313 if (wait_status.kind != TARGET_WAITKIND_FORKED
314 && wait_status.kind != TARGET_WAITKIND_VFORKED)
315 return 1;
316
317 /* Check if we switched over from WAIT_PTID, since the event was
318 reported. */
319 if (!ptid_equal (wait_ptid, minus_one_ptid)
320 && !ptid_equal (inferior_ptid, wait_ptid))
321 {
322 /* We did. Switch back to WAIT_PTID thread, to tell the
323 target to follow it (in either direction). We'll
324 afterwards refuse to resume, and inform the user what
325 happened. */
326 switch_to_thread (wait_ptid);
327 should_resume = 0;
328 }
329 }
330
331 tp = inferior_thread ();
332
333 /* If there were any forks/vforks that were caught and are now to be
334 followed, then do so now. */
335 switch (tp->pending_follow.kind)
336 {
337 case TARGET_WAITKIND_FORKED:
338 case TARGET_WAITKIND_VFORKED:
339 {
340 ptid_t parent, child;
341
342 /* If the user did a next/step, etc, over a fork call,
343 preserve the stepping state in the fork child. */
344 if (follow_child && should_resume)
345 {
346 step_resume_breakpoint
347 = clone_momentary_breakpoint (tp->step_resume_breakpoint);
348 step_range_start = tp->step_range_start;
349 step_range_end = tp->step_range_end;
350 step_frame_id = tp->step_frame_id;
351
352 /* For now, delete the parent's sr breakpoint, otherwise,
353 parent/child sr breakpoints are considered duplicates,
354 and the child version will not be installed. Remove
355 this when the breakpoints module becomes aware of
356 inferiors and address spaces. */
357 delete_step_resume_breakpoint (tp);
358 tp->step_range_start = 0;
359 tp->step_range_end = 0;
360 tp->step_frame_id = null_frame_id;
361 }
362
363 parent = inferior_ptid;
364 child = tp->pending_follow.value.related_pid;
365
366 /* Tell the target to do whatever is necessary to follow
367 either parent or child. */
368 if (target_follow_fork (follow_child))
369 {
370 /* Target refused to follow, or there's some other reason
371 we shouldn't resume. */
372 should_resume = 0;
373 }
374 else
375 {
376 /* This pending follow fork event is now handled, one way
377 or another. The previous selected thread may be gone
378 from the lists by now, but if it is still around, need
379 to clear the pending follow request. */
e09875d4 380 tp = find_thread_ptid (parent);
e58b0e63
PA
381 if (tp)
382 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
383
384 /* This makes sure we don't try to apply the "Switched
385 over from WAIT_PID" logic above. */
386 nullify_last_target_wait_ptid ();
387
388 /* If we followed the child, switch to it... */
389 if (follow_child)
390 {
391 switch_to_thread (child);
392
393 /* ... and preserve the stepping state, in case the
394 user was stepping over the fork call. */
395 if (should_resume)
396 {
397 tp = inferior_thread ();
398 tp->step_resume_breakpoint = step_resume_breakpoint;
399 tp->step_range_start = step_range_start;
400 tp->step_range_end = step_range_end;
401 tp->step_frame_id = step_frame_id;
402 }
403 else
404 {
405 /* If we get here, it was because we're trying to
406 resume from a fork catchpoint, but, the user
407 has switched threads away from the thread that
408 forked. In that case, the resume command
409 issued is most likely not applicable to the
410 child, so just warn, and refuse to resume. */
411 warning (_("\
412Not resuming: switched threads before following fork child.\n"));
413 }
414
415 /* Reset breakpoints in the child as appropriate. */
416 follow_inferior_reset_breakpoints ();
417 }
418 else
419 switch_to_thread (parent);
420 }
421 }
422 break;
423 case TARGET_WAITKIND_SPURIOUS:
424 /* Nothing to follow. */
425 break;
426 default:
427 internal_error (__FILE__, __LINE__,
428 "Unexpected pending_follow.kind %d\n",
429 tp->pending_follow.kind);
430 break;
431 }
c906108c 432
e58b0e63 433 return should_resume;
c906108c
SS
434}
435
6604731b
DJ
436void
437follow_inferior_reset_breakpoints (void)
c906108c 438{
4e1c45ea
PA
439 struct thread_info *tp = inferior_thread ();
440
6604731b
DJ
441 /* Was there a step_resume breakpoint? (There was if the user
442 did a "next" at the fork() call.) If so, explicitly reset its
443 thread number.
444
445 step_resumes are a form of bp that are made to be per-thread.
446 Since we created the step_resume bp when the parent process
447 was being debugged, and now are switching to the child process,
448 from the breakpoint package's viewpoint, that's a switch of
449 "threads". We must update the bp's notion of which thread
450 it is for, or it'll be ignored when it triggers. */
451
4e1c45ea
PA
452 if (tp->step_resume_breakpoint)
453 breakpoint_re_set_thread (tp->step_resume_breakpoint);
6604731b
DJ
454
455 /* Reinsert all breakpoints in the child. The user may have set
456 breakpoints after catching the fork, in which case those
457 were never set in the child, but only in the parent. This makes
458 sure the inserted breakpoints match the breakpoint list. */
459
460 breakpoint_re_set ();
461 insert_breakpoints ();
c906108c 462}
c906108c 463
1adeb98a
FN
464/* EXECD_PATHNAME is assumed to be non-NULL. */
465
c906108c 466static void
3a3e9ee3 467follow_exec (ptid_t pid, char *execd_pathname)
c906108c 468{
7a292a7a 469 struct target_ops *tgt;
4e1c45ea 470 struct thread_info *th = inferior_thread ();
7a292a7a 471
c906108c
SS
472 /* This is an exec event that we actually wish to pay attention to.
473 Refresh our symbol table to the newly exec'd program, remove any
474 momentary bp's, etc.
475
476 If there are breakpoints, they aren't really inserted now,
477 since the exec() transformed our inferior into a fresh set
478 of instructions.
479
480 We want to preserve symbolic breakpoints on the list, since
481 we have hopes that they can be reset after the new a.out's
482 symbol table is read.
483
484 However, any "raw" breakpoints must be removed from the list
485 (e.g., the solib bp's), since their address is probably invalid
486 now.
487
488 And, we DON'T want to call delete_breakpoints() here, since
489 that may write the bp's "shadow contents" (the instruction
490 value that was overwritten witha TRAP instruction). Since
491 we now have a new a.out, those shadow contents aren't valid. */
492 update_breakpoints_after_exec ();
493
494 /* If there was one, it's gone now. We cannot truly step-to-next
495 statement through an exec(). */
4e1c45ea
PA
496 th->step_resume_breakpoint = NULL;
497 th->step_range_start = 0;
498 th->step_range_end = 0;
c906108c 499
a75724bc
PA
500 /* The target reports the exec event to the main thread, even if
501 some other thread does the exec, and even if the main thread was
502 already stopped --- if debugging in non-stop mode, it's possible
503 the user had the main thread held stopped in the previous image
504 --- release it now. This is the same behavior as step-over-exec
505 with scheduler-locking on in all-stop mode. */
506 th->stop_requested = 0;
507
c906108c 508 /* What is this a.out's name? */
a3f17187 509 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
c906108c
SS
510
511 /* We've followed the inferior through an exec. Therefore, the
512 inferior has essentially been killed & reborn. */
7a292a7a 513
c906108c 514 gdb_flush (gdb_stdout);
6ca15a4b
PA
515
516 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
517
518 if (gdb_sysroot && *gdb_sysroot)
519 {
520 char *name = alloca (strlen (gdb_sysroot)
521 + strlen (execd_pathname)
522 + 1);
523 strcpy (name, gdb_sysroot);
524 strcat (name, execd_pathname);
525 execd_pathname = name;
526 }
c906108c
SS
527
528 /* That a.out is now the one to use. */
529 exec_file_attach (execd_pathname, 0);
530
cce9b6bf
PA
531 /* Reset the shared library package. This ensures that we get a
532 shlib event when the child reaches "_start", at which point the
533 dld will have had a chance to initialize the child. */
534 /* Also, loading a symbol file below may trigger symbol lookups, and
535 we don't want those to be satisfied by the libraries of the
536 previous incarnation of this process. */
537 no_shared_libraries (NULL, 0);
538
539 /* Load the main file's symbols. */
1adeb98a 540 symbol_file_add_main (execd_pathname, 0);
c906108c 541
7a292a7a 542#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 543 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2
MK
544#else
545 solib_create_inferior_hook ();
7a292a7a 546#endif
c906108c 547
4efc6507
DE
548 jit_inferior_created_hook ();
549
c906108c
SS
550 /* Reinsert all breakpoints. (Those which were symbolic have
551 been reset to the proper address in the new a.out, thanks
552 to symbol_file_command...) */
553 insert_breakpoints ();
554
555 /* The next resume of this inferior should bring it to the shlib
556 startup breakpoints. (If the user had also set bp's on
557 "main" from the old (parent) process, then they'll auto-
558 matically get reset there in the new process.) */
c906108c
SS
559}
560
561/* Non-zero if we just simulating a single-step. This is needed
562 because we cannot remove the breakpoints in the inferior process
563 until after the `wait' in `wait_for_inferior'. */
564static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
565
566/* The thread we inserted single-step breakpoints for. */
567static ptid_t singlestep_ptid;
568
fd48f117
DJ
569/* PC when we started this single-step. */
570static CORE_ADDR singlestep_pc;
571
9f976b41
DJ
572/* If another thread hit the singlestep breakpoint, we save the original
573 thread here so that we can resume single-stepping it later. */
574static ptid_t saved_singlestep_ptid;
575static int stepping_past_singlestep_breakpoint;
6a6b96b9 576
ca67fcb8
VP
577/* If not equal to null_ptid, this means that after stepping over breakpoint
578 is finished, we need to switch to deferred_step_ptid, and step it.
579
580 The use case is when one thread has hit a breakpoint, and then the user
581 has switched to another thread and issued 'step'. We need to step over
582 breakpoint in the thread which hit the breakpoint, but then continue
583 stepping the thread user has selected. */
584static ptid_t deferred_step_ptid;
c906108c 585\f
237fc4c9
PA
586/* Displaced stepping. */
587
588/* In non-stop debugging mode, we must take special care to manage
589 breakpoints properly; in particular, the traditional strategy for
590 stepping a thread past a breakpoint it has hit is unsuitable.
591 'Displaced stepping' is a tactic for stepping one thread past a
592 breakpoint it has hit while ensuring that other threads running
593 concurrently will hit the breakpoint as they should.
594
595 The traditional way to step a thread T off a breakpoint in a
596 multi-threaded program in all-stop mode is as follows:
597
598 a0) Initially, all threads are stopped, and breakpoints are not
599 inserted.
600 a1) We single-step T, leaving breakpoints uninserted.
601 a2) We insert breakpoints, and resume all threads.
602
603 In non-stop debugging, however, this strategy is unsuitable: we
604 don't want to have to stop all threads in the system in order to
605 continue or step T past a breakpoint. Instead, we use displaced
606 stepping:
607
608 n0) Initially, T is stopped, other threads are running, and
609 breakpoints are inserted.
610 n1) We copy the instruction "under" the breakpoint to a separate
611 location, outside the main code stream, making any adjustments
612 to the instruction, register, and memory state as directed by
613 T's architecture.
614 n2) We single-step T over the instruction at its new location.
615 n3) We adjust the resulting register and memory state as directed
616 by T's architecture. This includes resetting T's PC to point
617 back into the main instruction stream.
618 n4) We resume T.
619
620 This approach depends on the following gdbarch methods:
621
622 - gdbarch_max_insn_length and gdbarch_displaced_step_location
623 indicate where to copy the instruction, and how much space must
624 be reserved there. We use these in step n1.
625
626 - gdbarch_displaced_step_copy_insn copies a instruction to a new
627 address, and makes any necessary adjustments to the instruction,
628 register contents, and memory. We use this in step n1.
629
630 - gdbarch_displaced_step_fixup adjusts registers and memory after
631 we have successfuly single-stepped the instruction, to yield the
632 same effect the instruction would have had if we had executed it
633 at its original address. We use this in step n3.
634
635 - gdbarch_displaced_step_free_closure provides cleanup.
636
637 The gdbarch_displaced_step_copy_insn and
638 gdbarch_displaced_step_fixup functions must be written so that
639 copying an instruction with gdbarch_displaced_step_copy_insn,
640 single-stepping across the copied instruction, and then applying
641 gdbarch_displaced_insn_fixup should have the same effects on the
642 thread's memory and registers as stepping the instruction in place
643 would have. Exactly which responsibilities fall to the copy and
644 which fall to the fixup is up to the author of those functions.
645
646 See the comments in gdbarch.sh for details.
647
648 Note that displaced stepping and software single-step cannot
649 currently be used in combination, although with some care I think
650 they could be made to. Software single-step works by placing
651 breakpoints on all possible subsequent instructions; if the
652 displaced instruction is a PC-relative jump, those breakpoints
653 could fall in very strange places --- on pages that aren't
654 executable, or at addresses that are not proper instruction
655 boundaries. (We do generally let other threads run while we wait
656 to hit the software single-step breakpoint, and they might
657 encounter such a corrupted instruction.) One way to work around
658 this would be to have gdbarch_displaced_step_copy_insn fully
659 simulate the effect of PC-relative instructions (and return NULL)
660 on architectures that use software single-stepping.
661
662 In non-stop mode, we can have independent and simultaneous step
663 requests, so more than one thread may need to simultaneously step
664 over a breakpoint. The current implementation assumes there is
665 only one scratch space per process. In this case, we have to
666 serialize access to the scratch space. If thread A wants to step
667 over a breakpoint, but we are currently waiting for some other
668 thread to complete a displaced step, we leave thread A stopped and
669 place it in the displaced_step_request_queue. Whenever a displaced
670 step finishes, we pick the next thread in the queue and start a new
671 displaced step operation on it. See displaced_step_prepare and
672 displaced_step_fixup for details. */
673
674/* If this is not null_ptid, this is the thread carrying out a
675 displaced single-step. This thread's state will require fixing up
676 once it has completed its step. */
677static ptid_t displaced_step_ptid;
678
679struct displaced_step_request
680{
681 ptid_t ptid;
682 struct displaced_step_request *next;
683};
684
685/* A queue of pending displaced stepping requests. */
686struct displaced_step_request *displaced_step_request_queue;
687
688/* The architecture the thread had when we stepped it. */
689static struct gdbarch *displaced_step_gdbarch;
690
691/* The closure provided gdbarch_displaced_step_copy_insn, to be used
692 for post-step cleanup. */
693static struct displaced_step_closure *displaced_step_closure;
694
695/* The address of the original instruction, and the copy we made. */
696static CORE_ADDR displaced_step_original, displaced_step_copy;
697
698/* Saved contents of copy area. */
699static gdb_byte *displaced_step_saved_copy;
700
fff08868
HZ
701/* Enum strings for "set|show displaced-stepping". */
702
703static const char can_use_displaced_stepping_auto[] = "auto";
704static const char can_use_displaced_stepping_on[] = "on";
705static const char can_use_displaced_stepping_off[] = "off";
706static const char *can_use_displaced_stepping_enum[] =
707{
708 can_use_displaced_stepping_auto,
709 can_use_displaced_stepping_on,
710 can_use_displaced_stepping_off,
711 NULL,
712};
713
714/* If ON, and the architecture supports it, GDB will use displaced
715 stepping to step over breakpoints. If OFF, or if the architecture
716 doesn't support it, GDB will instead use the traditional
717 hold-and-step approach. If AUTO (which is the default), GDB will
718 decide which technique to use to step over breakpoints depending on
719 which of all-stop or non-stop mode is active --- displaced stepping
720 in non-stop mode; hold-and-step in all-stop mode. */
721
722static const char *can_use_displaced_stepping =
723 can_use_displaced_stepping_auto;
724
237fc4c9
PA
725static void
726show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
727 struct cmd_list_element *c,
728 const char *value)
729{
fff08868
HZ
730 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
731 fprintf_filtered (file, _("\
732Debugger's willingness to use displaced stepping to step over \
733breakpoints is %s (currently %s).\n"),
734 value, non_stop ? "on" : "off");
735 else
736 fprintf_filtered (file, _("\
737Debugger's willingness to use displaced stepping to step over \
738breakpoints is %s.\n"), value);
237fc4c9
PA
739}
740
fff08868
HZ
741/* Return non-zero if displaced stepping can/should be used to step
742 over breakpoints. */
743
237fc4c9
PA
744static int
745use_displaced_stepping (struct gdbarch *gdbarch)
746{
fff08868
HZ
747 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
748 && non_stop)
749 || can_use_displaced_stepping == can_use_displaced_stepping_on)
96429cc8
HZ
750 && gdbarch_displaced_step_copy_insn_p (gdbarch)
751 && !RECORD_IS_USED);
237fc4c9
PA
752}
753
754/* Clean out any stray displaced stepping state. */
755static void
756displaced_step_clear (void)
757{
758 /* Indicate that there is no cleanup pending. */
759 displaced_step_ptid = null_ptid;
760
761 if (displaced_step_closure)
762 {
763 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
764 displaced_step_closure);
765 displaced_step_closure = NULL;
766 }
767}
768
769static void
9f5a595d 770displaced_step_clear_cleanup (void *ignore)
237fc4c9 771{
9f5a595d 772 displaced_step_clear ();
237fc4c9
PA
773}
774
775/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
776void
777displaced_step_dump_bytes (struct ui_file *file,
778 const gdb_byte *buf,
779 size_t len)
780{
781 int i;
782
783 for (i = 0; i < len; i++)
784 fprintf_unfiltered (file, "%02x ", buf[i]);
785 fputs_unfiltered ("\n", file);
786}
787
788/* Prepare to single-step, using displaced stepping.
789
790 Note that we cannot use displaced stepping when we have a signal to
791 deliver. If we have a signal to deliver and an instruction to step
792 over, then after the step, there will be no indication from the
793 target whether the thread entered a signal handler or ignored the
794 signal and stepped over the instruction successfully --- both cases
795 result in a simple SIGTRAP. In the first case we mustn't do a
796 fixup, and in the second case we must --- but we can't tell which.
797 Comments in the code for 'random signals' in handle_inferior_event
798 explain how we handle this case instead.
799
800 Returns 1 if preparing was successful -- this thread is going to be
801 stepped now; or 0 if displaced stepping this thread got queued. */
802static int
803displaced_step_prepare (ptid_t ptid)
804{
ad53cd71 805 struct cleanup *old_cleanups, *ignore_cleanups;
237fc4c9
PA
806 struct regcache *regcache = get_thread_regcache (ptid);
807 struct gdbarch *gdbarch = get_regcache_arch (regcache);
808 CORE_ADDR original, copy;
809 ULONGEST len;
810 struct displaced_step_closure *closure;
811
812 /* We should never reach this function if the architecture does not
813 support displaced stepping. */
814 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
815
816 /* For the first cut, we're displaced stepping one thread at a
817 time. */
818
819 if (!ptid_equal (displaced_step_ptid, null_ptid))
820 {
821 /* Already waiting for a displaced step to finish. Defer this
822 request and place in queue. */
823 struct displaced_step_request *req, *new_req;
824
825 if (debug_displaced)
826 fprintf_unfiltered (gdb_stdlog,
827 "displaced: defering step of %s\n",
828 target_pid_to_str (ptid));
829
830 new_req = xmalloc (sizeof (*new_req));
831 new_req->ptid = ptid;
832 new_req->next = NULL;
833
834 if (displaced_step_request_queue)
835 {
836 for (req = displaced_step_request_queue;
837 req && req->next;
838 req = req->next)
839 ;
840 req->next = new_req;
841 }
842 else
843 displaced_step_request_queue = new_req;
844
845 return 0;
846 }
847 else
848 {
849 if (debug_displaced)
850 fprintf_unfiltered (gdb_stdlog,
851 "displaced: stepping %s now\n",
852 target_pid_to_str (ptid));
853 }
854
855 displaced_step_clear ();
856
ad53cd71
PA
857 old_cleanups = save_inferior_ptid ();
858 inferior_ptid = ptid;
859
515630c5 860 original = regcache_read_pc (regcache);
237fc4c9
PA
861
862 copy = gdbarch_displaced_step_location (gdbarch);
863 len = gdbarch_max_insn_length (gdbarch);
864
865 /* Save the original contents of the copy area. */
866 displaced_step_saved_copy = xmalloc (len);
ad53cd71
PA
867 ignore_cleanups = make_cleanup (free_current_contents,
868 &displaced_step_saved_copy);
237fc4c9
PA
869 read_memory (copy, displaced_step_saved_copy, len);
870 if (debug_displaced)
871 {
5af949e3
UW
872 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
873 paddress (gdbarch, copy));
237fc4c9
PA
874 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
875 };
876
877 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 878 original, copy, regcache);
237fc4c9
PA
879
880 /* We don't support the fully-simulated case at present. */
881 gdb_assert (closure);
882
9f5a595d
UW
883 /* Save the information we need to fix things up if the step
884 succeeds. */
885 displaced_step_ptid = ptid;
886 displaced_step_gdbarch = gdbarch;
887 displaced_step_closure = closure;
888 displaced_step_original = original;
889 displaced_step_copy = copy;
890
891 make_cleanup (displaced_step_clear_cleanup, 0);
237fc4c9
PA
892
893 /* Resume execution at the copy. */
515630c5 894 regcache_write_pc (regcache, copy);
237fc4c9 895
ad53cd71
PA
896 discard_cleanups (ignore_cleanups);
897
898 do_cleanups (old_cleanups);
237fc4c9
PA
899
900 if (debug_displaced)
5af949e3
UW
901 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
902 paddress (gdbarch, copy));
237fc4c9 903
237fc4c9
PA
904 return 1;
905}
906
237fc4c9
PA
907static void
908write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
909{
910 struct cleanup *ptid_cleanup = save_inferior_ptid ();
911 inferior_ptid = ptid;
912 write_memory (memaddr, myaddr, len);
913 do_cleanups (ptid_cleanup);
914}
915
916static void
917displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
918{
919 struct cleanup *old_cleanups;
920
921 /* Was this event for the pid we displaced? */
922 if (ptid_equal (displaced_step_ptid, null_ptid)
923 || ! ptid_equal (displaced_step_ptid, event_ptid))
924 return;
925
926 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
927
928 /* Restore the contents of the copy area. */
929 {
930 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
931 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
932 displaced_step_saved_copy, len);
933 if (debug_displaced)
5af949e3
UW
934 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s\n",
935 paddress (displaced_step_gdbarch,
936 displaced_step_copy));
237fc4c9
PA
937 }
938
939 /* Did the instruction complete successfully? */
940 if (signal == TARGET_SIGNAL_TRAP)
941 {
942 /* Fix up the resulting state. */
943 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
944 displaced_step_closure,
945 displaced_step_original,
946 displaced_step_copy,
947 get_thread_regcache (displaced_step_ptid));
948 }
949 else
950 {
951 /* Since the instruction didn't complete, all we can do is
952 relocate the PC. */
515630c5
UW
953 struct regcache *regcache = get_thread_regcache (event_ptid);
954 CORE_ADDR pc = regcache_read_pc (regcache);
237fc4c9 955 pc = displaced_step_original + (pc - displaced_step_copy);
515630c5 956 regcache_write_pc (regcache, pc);
237fc4c9
PA
957 }
958
959 do_cleanups (old_cleanups);
960
1c5cfe86
PA
961 displaced_step_ptid = null_ptid;
962
237fc4c9
PA
963 /* Are there any pending displaced stepping requests? If so, run
964 one now. */
1c5cfe86 965 while (displaced_step_request_queue)
237fc4c9
PA
966 {
967 struct displaced_step_request *head;
968 ptid_t ptid;
5af949e3 969 struct regcache *regcache;
929dfd4f 970 struct gdbarch *gdbarch;
1c5cfe86 971 CORE_ADDR actual_pc;
237fc4c9
PA
972
973 head = displaced_step_request_queue;
974 ptid = head->ptid;
975 displaced_step_request_queue = head->next;
976 xfree (head);
977
ad53cd71
PA
978 context_switch (ptid);
979
5af949e3
UW
980 regcache = get_thread_regcache (ptid);
981 actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
982
983 if (breakpoint_here_p (actual_pc))
ad53cd71 984 {
1c5cfe86
PA
985 if (debug_displaced)
986 fprintf_unfiltered (gdb_stdlog,
987 "displaced: stepping queued %s now\n",
988 target_pid_to_str (ptid));
989
990 displaced_step_prepare (ptid);
991
929dfd4f
JB
992 gdbarch = get_regcache_arch (regcache);
993
1c5cfe86
PA
994 if (debug_displaced)
995 {
929dfd4f 996 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
997 gdb_byte buf[4];
998
5af949e3
UW
999 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1000 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1001 read_memory (actual_pc, buf, sizeof (buf));
1002 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1003 }
1004
929dfd4f
JB
1005 if (gdbarch_software_single_step_p (gdbarch))
1006 target_resume (ptid, 0, TARGET_SIGNAL_0);
1007 else
1008 target_resume (ptid, 1, TARGET_SIGNAL_0);
1c5cfe86
PA
1009
1010 /* Done, we're stepping a thread. */
1011 break;
ad53cd71 1012 }
1c5cfe86
PA
1013 else
1014 {
1015 int step;
1016 struct thread_info *tp = inferior_thread ();
1017
1018 /* The breakpoint we were sitting under has since been
1019 removed. */
1020 tp->trap_expected = 0;
1021
1022 /* Go back to what we were trying to do. */
1023 step = currently_stepping (tp);
ad53cd71 1024
1c5cfe86
PA
1025 if (debug_displaced)
1026 fprintf_unfiltered (gdb_stdlog, "breakpoint is gone %s: step(%d)\n",
1027 target_pid_to_str (tp->ptid), step);
1028
1029 target_resume (ptid, step, TARGET_SIGNAL_0);
1030 tp->stop_signal = TARGET_SIGNAL_0;
1031
1032 /* This request was discarded. See if there's any other
1033 thread waiting for its turn. */
1034 }
237fc4c9
PA
1035 }
1036}
1037
5231c1fd
PA
1038/* Update global variables holding ptids to hold NEW_PTID if they were
1039 holding OLD_PTID. */
1040static void
1041infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1042{
1043 struct displaced_step_request *it;
1044
1045 if (ptid_equal (inferior_ptid, old_ptid))
1046 inferior_ptid = new_ptid;
1047
1048 if (ptid_equal (singlestep_ptid, old_ptid))
1049 singlestep_ptid = new_ptid;
1050
1051 if (ptid_equal (displaced_step_ptid, old_ptid))
1052 displaced_step_ptid = new_ptid;
1053
1054 if (ptid_equal (deferred_step_ptid, old_ptid))
1055 deferred_step_ptid = new_ptid;
1056
1057 for (it = displaced_step_request_queue; it; it = it->next)
1058 if (ptid_equal (it->ptid, old_ptid))
1059 it->ptid = new_ptid;
1060}
1061
237fc4c9
PA
1062\f
1063/* Resuming. */
c906108c
SS
1064
1065/* Things to clean up if we QUIT out of resume (). */
c906108c 1066static void
74b7792f 1067resume_cleanups (void *ignore)
c906108c
SS
1068{
1069 normal_stop ();
1070}
1071
53904c9e
AC
1072static const char schedlock_off[] = "off";
1073static const char schedlock_on[] = "on";
1074static const char schedlock_step[] = "step";
488f131b 1075static const char *scheduler_enums[] = {
ef346e04
AC
1076 schedlock_off,
1077 schedlock_on,
1078 schedlock_step,
1079 NULL
1080};
920d2a44
AC
1081static const char *scheduler_mode = schedlock_off;
1082static void
1083show_scheduler_mode (struct ui_file *file, int from_tty,
1084 struct cmd_list_element *c, const char *value)
1085{
1086 fprintf_filtered (file, _("\
1087Mode for locking scheduler during execution is \"%s\".\n"),
1088 value);
1089}
c906108c
SS
1090
1091static void
96baa820 1092set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1093{
eefe576e
AC
1094 if (!target_can_lock_scheduler)
1095 {
1096 scheduler_mode = schedlock_off;
1097 error (_("Target '%s' cannot support this command."), target_shortname);
1098 }
c906108c
SS
1099}
1100
d4db2f36
PA
1101/* True if execution commands resume all threads of all processes by
1102 default; otherwise, resume only threads of the current inferior
1103 process. */
1104int sched_multi = 0;
1105
2facfe5c
DD
1106/* Try to setup for software single stepping over the specified location.
1107 Return 1 if target_resume() should use hardware single step.
1108
1109 GDBARCH the current gdbarch.
1110 PC the location to step over. */
1111
1112static int
1113maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1114{
1115 int hw_step = 1;
1116
929dfd4f 1117 if (gdbarch_software_single_step_p (gdbarch))
2facfe5c 1118 {
929dfd4f
JB
1119 if (use_displaced_stepping (gdbarch))
1120 hw_step = 0;
1121 else if (gdbarch_software_single_step (gdbarch, get_current_frame ()))
1122 {
1123 hw_step = 0;
1124 /* Do not pull these breakpoints until after a `wait' in
1125 `wait_for_inferior' */
1126 singlestep_breakpoints_inserted_p = 1;
1127 singlestep_ptid = inferior_ptid;
1128 singlestep_pc = pc;
1129 }
2facfe5c
DD
1130 }
1131 return hw_step;
1132}
c906108c
SS
1133
1134/* Resume the inferior, but allow a QUIT. This is useful if the user
1135 wants to interrupt some lengthy single-stepping operation
1136 (for child processes, the SIGINT goes to the inferior, and so
1137 we get a SIGINT random_signal, but for remote debugging and perhaps
1138 other targets, that's not true).
1139
1140 STEP nonzero if we should step (zero to continue instead).
1141 SIG is the signal to give the inferior (zero for none). */
1142void
96baa820 1143resume (int step, enum target_signal sig)
c906108c
SS
1144{
1145 int should_resume = 1;
74b7792f 1146 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1147 struct regcache *regcache = get_current_regcache ();
1148 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1149 struct thread_info *tp = inferior_thread ();
515630c5 1150 CORE_ADDR pc = regcache_read_pc (regcache);
c7e8a53c 1151
c906108c
SS
1152 QUIT;
1153
527159b7 1154 if (debug_infrun)
237fc4c9
PA
1155 fprintf_unfiltered (gdb_stdlog,
1156 "infrun: resume (step=%d, signal=%d), "
4e1c45ea
PA
1157 "trap_expected=%d\n",
1158 step, sig, tp->trap_expected);
c906108c 1159
692590c1
MS
1160 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
1161 over an instruction that causes a page fault without triggering
1162 a hardware watchpoint. The kernel properly notices that it shouldn't
1163 stop, because the hardware watchpoint is not triggered, but it forgets
1164 the step request and continues the program normally.
1165 Work around the problem by removing hardware watchpoints if a step is
1166 requested, GDB will check for a hardware watchpoint trigger after the
1167 step anyway. */
c36b740a 1168 if (CANNOT_STEP_HW_WATCHPOINTS && step)
692590c1 1169 remove_hw_watchpoints ();
488f131b 1170
692590c1 1171
c2c6d25f
JM
1172 /* Normally, by the time we reach `resume', the breakpoints are either
1173 removed or inserted, as appropriate. The exception is if we're sitting
1174 at a permanent breakpoint; we need to step over it, but permanent
1175 breakpoints can't be removed. So we have to test for it here. */
237fc4c9 1176 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
6d350bb5 1177 {
515630c5
UW
1178 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1179 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5
UW
1180 else
1181 error (_("\
1182The program is stopped at a permanent breakpoint, but GDB does not know\n\
1183how to step past a permanent breakpoint on this architecture. Try using\n\
1184a command like `return' or `jump' to continue execution."));
1185 }
c2c6d25f 1186
237fc4c9
PA
1187 /* If enabled, step over breakpoints by executing a copy of the
1188 instruction at a different address.
1189
1190 We can't use displaced stepping when we have a signal to deliver;
1191 the comments for displaced_step_prepare explain why. The
1192 comments in the handle_inferior event for dealing with 'random
1193 signals' explain what we do instead. */
515630c5 1194 if (use_displaced_stepping (gdbarch)
929dfd4f
JB
1195 && (tp->trap_expected
1196 || (step && gdbarch_software_single_step_p (gdbarch)))
237fc4c9
PA
1197 && sig == TARGET_SIGNAL_0)
1198 {
1199 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1200 {
1201 /* Got placed in displaced stepping queue. Will be resumed
1202 later when all the currently queued displaced stepping
7f7efbd9
VP
1203 requests finish. The thread is not executing at this point,
1204 and the call to set_executing will be made later. But we
1205 need to call set_running here, since from frontend point of view,
1206 the thread is running. */
1207 set_running (inferior_ptid, 1);
d56b7306
VP
1208 discard_cleanups (old_cleanups);
1209 return;
1210 }
237fc4c9
PA
1211 }
1212
2facfe5c
DD
1213 /* Do we need to do it the hard way, w/temp breakpoints? */
1214 if (step)
1215 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1216
c906108c
SS
1217 if (should_resume)
1218 {
39f77062 1219 ptid_t resume_ptid;
dfcd3bfb 1220
cd76b0b7
VP
1221 /* If STEP is set, it's a request to use hardware stepping
1222 facilities. But in that case, we should never
1223 use singlestep breakpoint. */
1224 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1225
d4db2f36
PA
1226 /* Decide the set of threads to ask the target to resume. Start
1227 by assuming everything will be resumed, than narrow the set
1228 by applying increasingly restricting conditions. */
1229
1230 /* By default, resume all threads of all processes. */
1231 resume_ptid = RESUME_ALL;
1232
1233 /* Maybe resume only all threads of the current process. */
1234 if (!sched_multi && target_supports_multi_process ())
1235 {
1236 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1237 }
1238
1239 /* Maybe resume a single thread after all. */
cd76b0b7
VP
1240 if (singlestep_breakpoints_inserted_p
1241 && stepping_past_singlestep_breakpoint)
c906108c 1242 {
cd76b0b7
VP
1243 /* The situation here is as follows. In thread T1 we wanted to
1244 single-step. Lacking hardware single-stepping we've
1245 set breakpoint at the PC of the next instruction -- call it
1246 P. After resuming, we've hit that breakpoint in thread T2.
1247 Now we've removed original breakpoint, inserted breakpoint
1248 at P+1, and try to step to advance T2 past breakpoint.
1249 We need to step only T2, as if T1 is allowed to freely run,
1250 it can run past P, and if other threads are allowed to run,
1251 they can hit breakpoint at P+1, and nested hits of single-step
1252 breakpoints is not something we'd want -- that's complicated
1253 to support, and has no value. */
1254 resume_ptid = inferior_ptid;
1255 }
d4db2f36
PA
1256 else if ((step || singlestep_breakpoints_inserted_p)
1257 && tp->trap_expected)
cd76b0b7 1258 {
74960c60
VP
1259 /* We're allowing a thread to run past a breakpoint it has
1260 hit, by single-stepping the thread with the breakpoint
1261 removed. In which case, we need to single-step only this
1262 thread, and keep others stopped, as they can miss this
1263 breakpoint if allowed to run.
1264
1265 The current code actually removes all breakpoints when
1266 doing this, not just the one being stepped over, so if we
1267 let other threads run, we can actually miss any
1268 breakpoint, not just the one at PC. */
ef5cf84e 1269 resume_ptid = inferior_ptid;
c906108c 1270 }
d4db2f36 1271 else if (non_stop)
94cc34af
PA
1272 {
1273 /* With non-stop mode on, threads are always handled
1274 individually. */
1275 resume_ptid = inferior_ptid;
1276 }
1277 else if ((scheduler_mode == schedlock_on)
1278 || (scheduler_mode == schedlock_step
1279 && (step || singlestep_breakpoints_inserted_p)))
c906108c 1280 {
ef5cf84e 1281 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 1282 resume_ptid = inferior_ptid;
c906108c 1283 }
ef5cf84e 1284
515630c5 1285 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1286 {
1287 /* Most targets can step a breakpoint instruction, thus
1288 executing it normally. But if this one cannot, just
1289 continue and we will hit it anyway. */
237fc4c9 1290 if (step && breakpoint_inserted_here_p (pc))
c4ed33b9
AC
1291 step = 0;
1292 }
237fc4c9
PA
1293
1294 if (debug_displaced
515630c5 1295 && use_displaced_stepping (gdbarch)
4e1c45ea 1296 && tp->trap_expected)
237fc4c9 1297 {
515630c5 1298 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
5af949e3 1299 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
515630c5 1300 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1301 gdb_byte buf[4];
1302
5af949e3
UW
1303 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1304 paddress (resume_gdbarch, actual_pc));
237fc4c9
PA
1305 read_memory (actual_pc, buf, sizeof (buf));
1306 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1307 }
1308
e58b0e63
PA
1309 /* Install inferior's terminal modes. */
1310 target_terminal_inferior ();
1311
2020b7ab
PA
1312 /* Avoid confusing the next resume, if the next stop/resume
1313 happens to apply to another thread. */
1314 tp->stop_signal = TARGET_SIGNAL_0;
607cecd2
PA
1315
1316 target_resume (resume_ptid, step, sig);
c906108c
SS
1317 }
1318
1319 discard_cleanups (old_cleanups);
1320}
1321\f
237fc4c9 1322/* Proceeding. */
c906108c
SS
1323
1324/* Clear out all variables saying what to do when inferior is continued.
1325 First do this, then set the ones you want, then call `proceed'. */
1326
a7212384
UW
1327static void
1328clear_proceed_status_thread (struct thread_info *tp)
c906108c 1329{
a7212384
UW
1330 if (debug_infrun)
1331 fprintf_unfiltered (gdb_stdlog,
1332 "infrun: clear_proceed_status_thread (%s)\n",
1333 target_pid_to_str (tp->ptid));
d6b48e9c 1334
a7212384
UW
1335 tp->trap_expected = 0;
1336 tp->step_range_start = 0;
1337 tp->step_range_end = 0;
1338 tp->step_frame_id = null_frame_id;
edb3359d 1339 tp->step_stack_frame_id = null_frame_id;
a7212384
UW
1340 tp->step_over_calls = STEP_OVER_UNDEBUGGABLE;
1341 tp->stop_requested = 0;
4e1c45ea 1342
a7212384 1343 tp->stop_step = 0;
32400beb 1344
a7212384 1345 tp->proceed_to_finish = 0;
414c69f7 1346
a7212384
UW
1347 /* Discard any remaining commands or status from previous stop. */
1348 bpstat_clear (&tp->stop_bpstat);
1349}
32400beb 1350
a7212384
UW
1351static int
1352clear_proceed_status_callback (struct thread_info *tp, void *data)
1353{
1354 if (is_exited (tp->ptid))
1355 return 0;
d6b48e9c 1356
a7212384
UW
1357 clear_proceed_status_thread (tp);
1358 return 0;
1359}
1360
1361void
1362clear_proceed_status (void)
1363{
1364 if (!ptid_equal (inferior_ptid, null_ptid))
1365 {
1366 struct inferior *inferior;
1367
1368 if (non_stop)
1369 {
1370 /* If in non-stop mode, only delete the per-thread status
1371 of the current thread. */
1372 clear_proceed_status_thread (inferior_thread ());
1373 }
1374 else
1375 {
1376 /* In all-stop mode, delete the per-thread status of
1377 *all* threads. */
1378 iterate_over_threads (clear_proceed_status_callback, NULL);
1379 }
1380
d6b48e9c
PA
1381 inferior = current_inferior ();
1382 inferior->stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
1383 }
1384
c906108c 1385 stop_after_trap = 0;
f3b1572e
PA
1386
1387 observer_notify_about_to_proceed ();
c906108c 1388
d5c31457
UW
1389 if (stop_registers)
1390 {
1391 regcache_xfree (stop_registers);
1392 stop_registers = NULL;
1393 }
c906108c
SS
1394}
1395
5a437975
DE
1396/* Check the current thread against the thread that reported the most recent
1397 event. If a step-over is required return TRUE and set the current thread
1398 to the old thread. Otherwise return FALSE.
1399
1400 This should be suitable for any targets that support threads. */
ea67f13b
DJ
1401
1402static int
6a6b96b9 1403prepare_to_proceed (int step)
ea67f13b
DJ
1404{
1405 ptid_t wait_ptid;
1406 struct target_waitstatus wait_status;
5a437975
DE
1407 int schedlock_enabled;
1408
1409 /* With non-stop mode on, threads are always handled individually. */
1410 gdb_assert (! non_stop);
ea67f13b
DJ
1411
1412 /* Get the last target status returned by target_wait(). */
1413 get_last_target_status (&wait_ptid, &wait_status);
1414
6a6b96b9 1415 /* Make sure we were stopped at a breakpoint. */
ea67f13b 1416 if (wait_status.kind != TARGET_WAITKIND_STOPPED
6a6b96b9 1417 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
ea67f13b
DJ
1418 {
1419 return 0;
1420 }
1421
5a437975
DE
1422 schedlock_enabled = (scheduler_mode == schedlock_on
1423 || (scheduler_mode == schedlock_step
1424 && step));
1425
d4db2f36
PA
1426 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
1427 if (schedlock_enabled)
1428 return 0;
1429
1430 /* Don't switch over if we're about to resume some other process
1431 other than WAIT_PTID's, and schedule-multiple is off. */
1432 if (!sched_multi
1433 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
1434 return 0;
1435
6a6b96b9 1436 /* Switched over from WAIT_PID. */
ea67f13b 1437 if (!ptid_equal (wait_ptid, minus_one_ptid)
d4db2f36 1438 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 1439 {
515630c5
UW
1440 struct regcache *regcache = get_thread_regcache (wait_ptid);
1441
1442 if (breakpoint_here_p (regcache_read_pc (regcache)))
ea67f13b 1443 {
515630c5
UW
1444 /* If stepping, remember current thread to switch back to. */
1445 if (step)
1446 deferred_step_ptid = inferior_ptid;
ea67f13b 1447
515630c5
UW
1448 /* Switch back to WAIT_PID thread. */
1449 switch_to_thread (wait_ptid);
6a6b96b9 1450
515630c5
UW
1451 /* We return 1 to indicate that there is a breakpoint here,
1452 so we need to step over it before continuing to avoid
1453 hitting it straight away. */
1454 return 1;
1455 }
ea67f13b
DJ
1456 }
1457
1458 return 0;
ea67f13b 1459}
e4846b08 1460
c906108c
SS
1461/* Basic routine for continuing the program in various fashions.
1462
1463 ADDR is the address to resume at, or -1 for resume where stopped.
1464 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 1465 or -1 for act according to how it stopped.
c906108c 1466 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
1467 -1 means return after that and print nothing.
1468 You should probably set various step_... variables
1469 before calling here, if you are stepping.
c906108c
SS
1470
1471 You should call clear_proceed_status before calling proceed. */
1472
1473void
96baa820 1474proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c 1475{
e58b0e63
PA
1476 struct regcache *regcache;
1477 struct gdbarch *gdbarch;
4e1c45ea 1478 struct thread_info *tp;
e58b0e63 1479 CORE_ADDR pc;
c906108c
SS
1480 int oneproc = 0;
1481
e58b0e63
PA
1482 /* If we're stopped at a fork/vfork, follow the branch set by the
1483 "set follow-fork-mode" command; otherwise, we'll just proceed
1484 resuming the current thread. */
1485 if (!follow_fork ())
1486 {
1487 /* The target for some reason decided not to resume. */
1488 normal_stop ();
1489 return;
1490 }
1491
1492 regcache = get_current_regcache ();
1493 gdbarch = get_regcache_arch (regcache);
1494 pc = regcache_read_pc (regcache);
1495
c906108c 1496 if (step > 0)
515630c5 1497 step_start_function = find_pc_function (pc);
c906108c
SS
1498 if (step < 0)
1499 stop_after_trap = 1;
1500
2acceee2 1501 if (addr == (CORE_ADDR) -1)
c906108c 1502 {
b2175913
MS
1503 if (pc == stop_pc && breakpoint_here_p (pc)
1504 && execution_direction != EXEC_REVERSE)
3352ef37
AC
1505 /* There is a breakpoint at the address we will resume at,
1506 step one instruction before inserting breakpoints so that
1507 we do not stop right away (and report a second hit at this
b2175913
MS
1508 breakpoint).
1509
1510 Note, we don't do this in reverse, because we won't
1511 actually be executing the breakpoint insn anyway.
1512 We'll be (un-)executing the previous instruction. */
1513
c906108c 1514 oneproc = 1;
515630c5
UW
1515 else if (gdbarch_single_step_through_delay_p (gdbarch)
1516 && gdbarch_single_step_through_delay (gdbarch,
1517 get_current_frame ()))
3352ef37
AC
1518 /* We stepped onto an instruction that needs to be stepped
1519 again before re-inserting the breakpoint, do so. */
c906108c
SS
1520 oneproc = 1;
1521 }
1522 else
1523 {
515630c5 1524 regcache_write_pc (regcache, addr);
c906108c
SS
1525 }
1526
527159b7 1527 if (debug_infrun)
8a9de0e4 1528 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
1529 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
1530 paddress (gdbarch, addr), siggnal, step);
527159b7 1531
94cc34af
PA
1532 if (non_stop)
1533 /* In non-stop, each thread is handled individually. The context
1534 must already be set to the right thread here. */
1535 ;
1536 else
1537 {
1538 /* In a multi-threaded task we may select another thread and
1539 then continue or step.
c906108c 1540
94cc34af
PA
1541 But if the old thread was stopped at a breakpoint, it will
1542 immediately cause another breakpoint stop without any
1543 execution (i.e. it will report a breakpoint hit incorrectly).
1544 So we must step over it first.
c906108c 1545
94cc34af
PA
1546 prepare_to_proceed checks the current thread against the
1547 thread that reported the most recent event. If a step-over
1548 is required it returns TRUE and sets the current thread to
1549 the old thread. */
1550 if (prepare_to_proceed (step))
1551 oneproc = 1;
1552 }
c906108c 1553
4e1c45ea
PA
1554 /* prepare_to_proceed may change the current thread. */
1555 tp = inferior_thread ();
1556
c906108c 1557 if (oneproc)
74960c60 1558 {
4e1c45ea 1559 tp->trap_expected = 1;
237fc4c9
PA
1560 /* If displaced stepping is enabled, we can step over the
1561 breakpoint without hitting it, so leave all breakpoints
1562 inserted. Otherwise we need to disable all breakpoints, step
1563 one instruction, and then re-add them when that step is
1564 finished. */
515630c5 1565 if (!use_displaced_stepping (gdbarch))
237fc4c9 1566 remove_breakpoints ();
74960c60 1567 }
237fc4c9
PA
1568
1569 /* We can insert breakpoints if we're not trying to step over one,
1570 or if we are stepping over one but we're using displaced stepping
1571 to do so. */
4e1c45ea 1572 if (! tp->trap_expected || use_displaced_stepping (gdbarch))
c36b740a 1573 insert_breakpoints ();
c906108c 1574
2020b7ab
PA
1575 if (!non_stop)
1576 {
1577 /* Pass the last stop signal to the thread we're resuming,
1578 irrespective of whether the current thread is the thread that
1579 got the last event or not. This was historically GDB's
1580 behaviour before keeping a stop_signal per thread. */
1581
1582 struct thread_info *last_thread;
1583 ptid_t last_ptid;
1584 struct target_waitstatus last_status;
1585
1586 get_last_target_status (&last_ptid, &last_status);
1587 if (!ptid_equal (inferior_ptid, last_ptid)
1588 && !ptid_equal (last_ptid, null_ptid)
1589 && !ptid_equal (last_ptid, minus_one_ptid))
1590 {
e09875d4 1591 last_thread = find_thread_ptid (last_ptid);
2020b7ab
PA
1592 if (last_thread)
1593 {
1594 tp->stop_signal = last_thread->stop_signal;
1595 last_thread->stop_signal = TARGET_SIGNAL_0;
1596 }
1597 }
1598 }
1599
c906108c 1600 if (siggnal != TARGET_SIGNAL_DEFAULT)
2020b7ab 1601 tp->stop_signal = siggnal;
c906108c
SS
1602 /* If this signal should not be seen by program,
1603 give it zero. Used for debugging signals. */
2020b7ab
PA
1604 else if (!signal_program[tp->stop_signal])
1605 tp->stop_signal = TARGET_SIGNAL_0;
c906108c
SS
1606
1607 annotate_starting ();
1608
1609 /* Make sure that output from GDB appears before output from the
1610 inferior. */
1611 gdb_flush (gdb_stdout);
1612
e4846b08
JJ
1613 /* Refresh prev_pc value just prior to resuming. This used to be
1614 done in stop_stepping, however, setting prev_pc there did not handle
1615 scenarios such as inferior function calls or returning from
1616 a function via the return command. In those cases, the prev_pc
1617 value was not set properly for subsequent commands. The prev_pc value
1618 is used to initialize the starting line number in the ecs. With an
1619 invalid value, the gdb next command ends up stopping at the position
1620 represented by the next line table entry past our start position.
1621 On platforms that generate one line table entry per line, this
1622 is not a problem. However, on the ia64, the compiler generates
1623 extraneous line table entries that do not increase the line number.
1624 When we issue the gdb next command on the ia64 after an inferior call
1625 or a return command, we often end up a few instructions forward, still
1626 within the original line we started.
1627
1628 An attempt was made to have init_execution_control_state () refresh
1629 the prev_pc value before calculating the line number. This approach
1630 did not work because on platforms that use ptrace, the pc register
1631 cannot be read unless the inferior is stopped. At that point, we
515630c5 1632 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
e4846b08 1633 call can fail. Setting the prev_pc value here ensures the value is
8fb3e588 1634 updated correctly when the inferior is stopped. */
4e1c45ea 1635 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 1636
59f0d5d9 1637 /* Fill in with reasonable starting values. */
4e1c45ea 1638 init_thread_stepping_state (tp);
59f0d5d9 1639
59f0d5d9
PA
1640 /* Reset to normal state. */
1641 init_infwait_state ();
1642
c906108c 1643 /* Resume inferior. */
2020b7ab 1644 resume (oneproc || step || bpstat_should_step (), tp->stop_signal);
c906108c
SS
1645
1646 /* Wait for it to stop (if not standalone)
1647 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
1648 /* Do this only if we are not using the event loop, or if the target
1649 does not support asynchronous execution. */
362646f5 1650 if (!target_can_async_p ())
43ff13b4 1651 {
ae123ec6 1652 wait_for_inferior (0);
43ff13b4
JM
1653 normal_stop ();
1654 }
c906108c 1655}
c906108c
SS
1656\f
1657
1658/* Start remote-debugging of a machine over a serial link. */
96baa820 1659
c906108c 1660void
8621d6a9 1661start_remote (int from_tty)
c906108c 1662{
d6b48e9c 1663 struct inferior *inferior;
c906108c 1664 init_wait_for_inferior ();
d6b48e9c
PA
1665
1666 inferior = current_inferior ();
1667 inferior->stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 1668
6426a772
JM
1669 /* Always go on waiting for the target, regardless of the mode. */
1670 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 1671 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
1672 nothing is returned (instead of just blocking). Because of this,
1673 targets expecting an immediate response need to, internally, set
1674 things up so that the target_wait() is forced to eventually
1675 timeout. */
1676 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1677 differentiate to its caller what the state of the target is after
1678 the initial open has been performed. Here we're assuming that
1679 the target has stopped. It should be possible to eventually have
1680 target_open() return to the caller an indication that the target
1681 is currently running and GDB state should be set to the same as
1682 for an async run. */
ae123ec6 1683 wait_for_inferior (0);
8621d6a9
DJ
1684
1685 /* Now that the inferior has stopped, do any bookkeeping like
1686 loading shared libraries. We want to do this before normal_stop,
1687 so that the displayed frame is up to date. */
1688 post_create_inferior (&current_target, from_tty);
1689
6426a772 1690 normal_stop ();
c906108c
SS
1691}
1692
1693/* Initialize static vars when a new inferior begins. */
1694
1695void
96baa820 1696init_wait_for_inferior (void)
c906108c
SS
1697{
1698 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 1699
c906108c
SS
1700 breakpoint_init_inferior (inf_starting);
1701
c906108c 1702 clear_proceed_status ();
9f976b41
DJ
1703
1704 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 1705 deferred_step_ptid = null_ptid;
ca005067
DJ
1706
1707 target_last_wait_ptid = minus_one_ptid;
237fc4c9 1708
0d1e5fa7
PA
1709 previous_inferior_ptid = null_ptid;
1710 init_infwait_state ();
1711
237fc4c9 1712 displaced_step_clear ();
edb3359d
DJ
1713
1714 /* Discard any skipped inlined frames. */
1715 clear_inline_frame_state (minus_one_ptid);
c906108c 1716}
237fc4c9 1717
c906108c 1718\f
b83266a0
SS
1719/* This enum encodes possible reasons for doing a target_wait, so that
1720 wfi can call target_wait in one place. (Ultimately the call will be
1721 moved out of the infinite loop entirely.) */
1722
c5aa993b
JM
1723enum infwait_states
1724{
cd0fc7c3
SS
1725 infwait_normal_state,
1726 infwait_thread_hop_state,
d983da9c 1727 infwait_step_watch_state,
cd0fc7c3 1728 infwait_nonstep_watch_state
b83266a0
SS
1729};
1730
11cf8741
JM
1731/* Why did the inferior stop? Used to print the appropriate messages
1732 to the interface from within handle_inferior_event(). */
1733enum inferior_stop_reason
1734{
11cf8741
JM
1735 /* Step, next, nexti, stepi finished. */
1736 END_STEPPING_RANGE,
11cf8741
JM
1737 /* Inferior terminated by signal. */
1738 SIGNAL_EXITED,
1739 /* Inferior exited. */
1740 EXITED,
1741 /* Inferior received signal, and user asked to be notified. */
b2175913
MS
1742 SIGNAL_RECEIVED,
1743 /* Reverse execution -- target ran out of history info. */
1744 NO_HISTORY
11cf8741
JM
1745};
1746
0d1e5fa7
PA
1747/* The PTID we'll do a target_wait on.*/
1748ptid_t waiton_ptid;
1749
1750/* Current inferior wait state. */
1751enum infwait_states infwait_state;
cd0fc7c3 1752
0d1e5fa7
PA
1753/* Data to be passed around while handling an event. This data is
1754 discarded between events. */
c5aa993b 1755struct execution_control_state
488f131b 1756{
0d1e5fa7 1757 ptid_t ptid;
4e1c45ea
PA
1758 /* The thread that got the event, if this was a thread event; NULL
1759 otherwise. */
1760 struct thread_info *event_thread;
1761
488f131b 1762 struct target_waitstatus ws;
488f131b
JB
1763 int random_signal;
1764 CORE_ADDR stop_func_start;
1765 CORE_ADDR stop_func_end;
1766 char *stop_func_name;
488f131b 1767 int new_thread_event;
488f131b
JB
1768 int wait_some_more;
1769};
1770
edb3359d 1771static void init_execution_control_state (struct execution_control_state *ecs);
488f131b 1772
ec9499be 1773static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 1774
568d6575
UW
1775static void handle_step_into_function (struct gdbarch *gdbarch,
1776 struct execution_control_state *ecs);
1777static void handle_step_into_function_backward (struct gdbarch *gdbarch,
1778 struct execution_control_state *ecs);
44cbf7b5 1779static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
14e60db5 1780static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
a6d9a66e
UW
1781static void insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
1782 struct symtab_and_line sr_sal,
44cbf7b5 1783 struct frame_id sr_id);
a6d9a66e 1784static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
611c83ae 1785
104c1213
JM
1786static void stop_stepping (struct execution_control_state *ecs);
1787static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 1788static void keep_going (struct execution_control_state *ecs);
488f131b
JB
1789static void print_stop_reason (enum inferior_stop_reason stop_reason,
1790 int stop_info);
104c1213 1791
252fbfc8
PA
1792/* Callback for iterate over threads. If the thread is stopped, but
1793 the user/frontend doesn't know about that yet, go through
1794 normal_stop, as if the thread had just stopped now. ARG points at
1795 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
1796 ptid_is_pid(PTID) is true, applies to all threads of the process
1797 pointed at by PTID. Otherwise, apply only to the thread pointed by
1798 PTID. */
1799
1800static int
1801infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
1802{
1803 ptid_t ptid = * (ptid_t *) arg;
1804
1805 if ((ptid_equal (info->ptid, ptid)
1806 || ptid_equal (minus_one_ptid, ptid)
1807 || (ptid_is_pid (ptid)
1808 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
1809 && is_running (info->ptid)
1810 && !is_executing (info->ptid))
1811 {
1812 struct cleanup *old_chain;
1813 struct execution_control_state ecss;
1814 struct execution_control_state *ecs = &ecss;
1815
1816 memset (ecs, 0, sizeof (*ecs));
1817
1818 old_chain = make_cleanup_restore_current_thread ();
1819
1820 switch_to_thread (info->ptid);
1821
1822 /* Go through handle_inferior_event/normal_stop, so we always
1823 have consistent output as if the stop event had been
1824 reported. */
1825 ecs->ptid = info->ptid;
e09875d4 1826 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8
PA
1827 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1828 ecs->ws.value.sig = TARGET_SIGNAL_0;
1829
1830 handle_inferior_event (ecs);
1831
1832 if (!ecs->wait_some_more)
1833 {
1834 struct thread_info *tp;
1835
1836 normal_stop ();
1837
1838 /* Finish off the continuations. The continations
1839 themselves are responsible for realising the thread
1840 didn't finish what it was supposed to do. */
1841 tp = inferior_thread ();
1842 do_all_intermediate_continuations_thread (tp);
1843 do_all_continuations_thread (tp);
1844 }
1845
1846 do_cleanups (old_chain);
1847 }
1848
1849 return 0;
1850}
1851
1852/* This function is attached as a "thread_stop_requested" observer.
1853 Cleanup local state that assumed the PTID was to be resumed, and
1854 report the stop to the frontend. */
1855
2c0b251b 1856static void
252fbfc8
PA
1857infrun_thread_stop_requested (ptid_t ptid)
1858{
1859 struct displaced_step_request *it, *next, *prev = NULL;
1860
1861 /* PTID was requested to stop. Remove it from the displaced
1862 stepping queue, so we don't try to resume it automatically. */
1863 for (it = displaced_step_request_queue; it; it = next)
1864 {
1865 next = it->next;
1866
1867 if (ptid_equal (it->ptid, ptid)
1868 || ptid_equal (minus_one_ptid, ptid)
1869 || (ptid_is_pid (ptid)
1870 && ptid_get_pid (ptid) == ptid_get_pid (it->ptid)))
1871 {
1872 if (displaced_step_request_queue == it)
1873 displaced_step_request_queue = it->next;
1874 else
1875 prev->next = it->next;
1876
1877 xfree (it);
1878 }
1879 else
1880 prev = it;
1881 }
1882
1883 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
1884}
1885
a07daef3
PA
1886static void
1887infrun_thread_thread_exit (struct thread_info *tp, int silent)
1888{
1889 if (ptid_equal (target_last_wait_ptid, tp->ptid))
1890 nullify_last_target_wait_ptid ();
1891}
1892
4e1c45ea
PA
1893/* Callback for iterate_over_threads. */
1894
1895static int
1896delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
1897{
1898 if (is_exited (info->ptid))
1899 return 0;
1900
1901 delete_step_resume_breakpoint (info);
1902 return 0;
1903}
1904
1905/* In all-stop, delete the step resume breakpoint of any thread that
1906 had one. In non-stop, delete the step resume breakpoint of the
1907 thread that just stopped. */
1908
1909static void
1910delete_step_thread_step_resume_breakpoint (void)
1911{
1912 if (!target_has_execution
1913 || ptid_equal (inferior_ptid, null_ptid))
1914 /* If the inferior has exited, we have already deleted the step
1915 resume breakpoints out of GDB's lists. */
1916 return;
1917
1918 if (non_stop)
1919 {
1920 /* If in non-stop mode, only delete the step-resume or
1921 longjmp-resume breakpoint of the thread that just stopped
1922 stepping. */
1923 struct thread_info *tp = inferior_thread ();
1924 delete_step_resume_breakpoint (tp);
1925 }
1926 else
1927 /* In all-stop mode, delete all step-resume and longjmp-resume
1928 breakpoints of any thread that had them. */
1929 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
1930}
1931
1932/* A cleanup wrapper. */
1933
1934static void
1935delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
1936{
1937 delete_step_thread_step_resume_breakpoint ();
1938}
1939
223698f8
DE
1940/* Pretty print the results of target_wait, for debugging purposes. */
1941
1942static void
1943print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
1944 const struct target_waitstatus *ws)
1945{
1946 char *status_string = target_waitstatus_to_string (ws);
1947 struct ui_file *tmp_stream = mem_fileopen ();
1948 char *text;
223698f8
DE
1949
1950 /* The text is split over several lines because it was getting too long.
1951 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
1952 output as a unit; we want only one timestamp printed if debug_timestamp
1953 is set. */
1954
1955 fprintf_unfiltered (tmp_stream,
1956 "infrun: target_wait (%d", PIDGET (waiton_ptid));
1957 if (PIDGET (waiton_ptid) != -1)
1958 fprintf_unfiltered (tmp_stream,
1959 " [%s]", target_pid_to_str (waiton_ptid));
1960 fprintf_unfiltered (tmp_stream, ", status) =\n");
1961 fprintf_unfiltered (tmp_stream,
1962 "infrun: %d [%s],\n",
1963 PIDGET (result_ptid), target_pid_to_str (result_ptid));
1964 fprintf_unfiltered (tmp_stream,
1965 "infrun: %s\n",
1966 status_string);
1967
759ef836 1968 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
1969
1970 /* This uses %s in part to handle %'s in the text, but also to avoid
1971 a gcc error: the format attribute requires a string literal. */
1972 fprintf_unfiltered (gdb_stdlog, "%s", text);
1973
1974 xfree (status_string);
1975 xfree (text);
1976 ui_file_delete (tmp_stream);
1977}
1978
cd0fc7c3 1979/* Wait for control to return from inferior to debugger.
ae123ec6
JB
1980
1981 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1982 as if they were SIGTRAP signals. This can be useful during
1983 the startup sequence on some targets such as HP/UX, where
1984 we receive an EXEC event instead of the expected SIGTRAP.
1985
cd0fc7c3
SS
1986 If inferior gets a signal, we may decide to start it up again
1987 instead of returning. That is why there is a loop in this function.
1988 When this function actually returns it means the inferior
1989 should be left stopped and GDB should read more commands. */
1990
1991void
ae123ec6 1992wait_for_inferior (int treat_exec_as_sigtrap)
cd0fc7c3
SS
1993{
1994 struct cleanup *old_cleanups;
0d1e5fa7 1995 struct execution_control_state ecss;
cd0fc7c3 1996 struct execution_control_state *ecs;
c906108c 1997
527159b7 1998 if (debug_infrun)
ae123ec6
JB
1999 fprintf_unfiltered
2000 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
2001 treat_exec_as_sigtrap);
527159b7 2002
4e1c45ea
PA
2003 old_cleanups =
2004 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 2005
cd0fc7c3 2006 ecs = &ecss;
0d1e5fa7
PA
2007 memset (ecs, 0, sizeof (*ecs));
2008
e0bb1c1c
PA
2009 /* We'll update this if & when we switch to a new thread. */
2010 previous_inferior_ptid = inferior_ptid;
2011
c906108c
SS
2012 while (1)
2013 {
29f49a6a
PA
2014 struct cleanup *old_chain;
2015
ec9499be
UW
2016 /* We have to invalidate the registers BEFORE calling target_wait
2017 because they can be loaded from the target while in target_wait.
2018 This makes remote debugging a bit more efficient for those
2019 targets that provide critical registers as part of their normal
2020 status mechanism. */
2021
2022 overlay_cache_invalid = 1;
2023 registers_changed ();
2024
9a4105ab 2025 if (deprecated_target_wait_hook)
47608cb1 2026 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 2027 else
47608cb1 2028 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 2029
f00150c9 2030 if (debug_infrun)
223698f8 2031 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2032
ae123ec6
JB
2033 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
2034 {
2035 xfree (ecs->ws.value.execd_pathname);
2036 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2037 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
2038 }
2039
29f49a6a
PA
2040 /* If an error happens while handling the event, propagate GDB's
2041 knowledge of the executing state to the frontend/user running
2042 state. */
2043 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2044
a96d9b2e
SDJ
2045 if (ecs->ws.kind == TARGET_WAITKIND_SYSCALL_ENTRY
2046 || ecs->ws.kind == TARGET_WAITKIND_SYSCALL_RETURN)
2047 ecs->ws.value.syscall_number = UNKNOWN_SYSCALL;
2048
cd0fc7c3
SS
2049 /* Now figure out what to do with the result of the result. */
2050 handle_inferior_event (ecs);
c906108c 2051
29f49a6a
PA
2052 /* No error, don't finish the state yet. */
2053 discard_cleanups (old_chain);
2054
cd0fc7c3
SS
2055 if (!ecs->wait_some_more)
2056 break;
2057 }
4e1c45ea 2058
cd0fc7c3
SS
2059 do_cleanups (old_cleanups);
2060}
c906108c 2061
43ff13b4
JM
2062/* Asynchronous version of wait_for_inferior. It is called by the
2063 event loop whenever a change of state is detected on the file
2064 descriptor corresponding to the target. It can be called more than
2065 once to complete a single execution command. In such cases we need
a474d7c2
PA
2066 to keep the state in a global variable ECSS. If it is the last time
2067 that this function is called for a single execution command, then
2068 report to the user that the inferior has stopped, and do the
2069 necessary cleanups. */
43ff13b4
JM
2070
2071void
fba45db2 2072fetch_inferior_event (void *client_data)
43ff13b4 2073{
0d1e5fa7 2074 struct execution_control_state ecss;
a474d7c2 2075 struct execution_control_state *ecs = &ecss;
4f8d22e3 2076 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2077 struct cleanup *ts_old_chain;
4f8d22e3 2078 int was_sync = sync_execution;
43ff13b4 2079
0d1e5fa7
PA
2080 memset (ecs, 0, sizeof (*ecs));
2081
ec9499be
UW
2082 /* We'll update this if & when we switch to a new thread. */
2083 previous_inferior_ptid = inferior_ptid;
e0bb1c1c 2084
4f8d22e3
PA
2085 if (non_stop)
2086 /* In non-stop mode, the user/frontend should not notice a thread
2087 switch due to internal events. Make sure we reverse to the
2088 user selected thread and frame after handling the event and
2089 running any breakpoint commands. */
2090 make_cleanup_restore_current_thread ();
2091
59f0d5d9
PA
2092 /* We have to invalidate the registers BEFORE calling target_wait
2093 because they can be loaded from the target while in target_wait.
2094 This makes remote debugging a bit more efficient for those
2095 targets that provide critical registers as part of their normal
2096 status mechanism. */
43ff13b4 2097
ec9499be 2098 overlay_cache_invalid = 1;
59f0d5d9 2099 registers_changed ();
43ff13b4 2100
9a4105ab 2101 if (deprecated_target_wait_hook)
a474d7c2 2102 ecs->ptid =
47608cb1 2103 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2104 else
47608cb1 2105 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2106
f00150c9 2107 if (debug_infrun)
223698f8 2108 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2109
94cc34af
PA
2110 if (non_stop
2111 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2112 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2113 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2114 /* In non-stop mode, each thread is handled individually. Switch
2115 early, so the global state is set correctly for this
2116 thread. */
2117 context_switch (ecs->ptid);
2118
29f49a6a
PA
2119 /* If an error happens while handling the event, propagate GDB's
2120 knowledge of the executing state to the frontend/user running
2121 state. */
2122 if (!non_stop)
2123 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2124 else
2125 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2126
43ff13b4 2127 /* Now figure out what to do with the result of the result. */
a474d7c2 2128 handle_inferior_event (ecs);
43ff13b4 2129
a474d7c2 2130 if (!ecs->wait_some_more)
43ff13b4 2131 {
d6b48e9c
PA
2132 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2133
4e1c45ea 2134 delete_step_thread_step_resume_breakpoint ();
f107f563 2135
d6b48e9c
PA
2136 /* We may not find an inferior if this was a process exit. */
2137 if (inf == NULL || inf->stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2138 normal_stop ();
2139
af679fd0
PA
2140 if (target_has_execution
2141 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2142 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2143 && ecs->event_thread->step_multi
414c69f7 2144 && ecs->event_thread->stop_step)
c2d11a7d
JM
2145 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2146 else
2147 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4 2148 }
4f8d22e3 2149
29f49a6a
PA
2150 /* No error, don't finish the thread states yet. */
2151 discard_cleanups (ts_old_chain);
2152
4f8d22e3
PA
2153 /* Revert thread and frame. */
2154 do_cleanups (old_chain);
2155
2156 /* If the inferior was in sync execution mode, and now isn't,
2157 restore the prompt. */
2158 if (was_sync && !sync_execution)
2159 display_gdb_prompt (0);
43ff13b4
JM
2160}
2161
edb3359d
DJ
2162/* Record the frame and location we're currently stepping through. */
2163void
2164set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2165{
2166 struct thread_info *tp = inferior_thread ();
2167
2168 tp->step_frame_id = get_frame_id (frame);
2169 tp->step_stack_frame_id = get_stack_frame_id (frame);
2170
2171 tp->current_symtab = sal.symtab;
2172 tp->current_line = sal.line;
2173}
2174
cd0fc7c3
SS
2175/* Prepare an execution control state for looping through a
2176 wait_for_inferior-type loop. */
2177
edb3359d 2178static void
96baa820 2179init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3
SS
2180{
2181 ecs->random_signal = 0;
0d1e5fa7
PA
2182}
2183
2184/* Clear context switchable stepping state. */
2185
2186void
4e1c45ea 2187init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7
PA
2188{
2189 tss->stepping_over_breakpoint = 0;
2190 tss->step_after_step_resume_breakpoint = 0;
2191 tss->stepping_through_solib_after_catch = 0;
2192 tss->stepping_through_solib_catchpoints = NULL;
cd0fc7c3
SS
2193}
2194
e02bc4cc 2195/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2196 target_wait()/deprecated_target_wait_hook(). The data is actually
2197 cached by handle_inferior_event(), which gets called immediately
2198 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2199
2200void
488f131b 2201get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2202{
39f77062 2203 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2204 *status = target_last_waitstatus;
2205}
2206
ac264b3b
MS
2207void
2208nullify_last_target_wait_ptid (void)
2209{
2210 target_last_wait_ptid = minus_one_ptid;
2211}
2212
dcf4fbde 2213/* Switch thread contexts. */
dd80620e
MS
2214
2215static void
0d1e5fa7 2216context_switch (ptid_t ptid)
dd80620e 2217{
fd48f117
DJ
2218 if (debug_infrun)
2219 {
2220 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2221 target_pid_to_str (inferior_ptid));
2222 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2223 target_pid_to_str (ptid));
fd48f117
DJ
2224 }
2225
0d1e5fa7 2226 switch_to_thread (ptid);
dd80620e
MS
2227}
2228
4fa8626c
DJ
2229static void
2230adjust_pc_after_break (struct execution_control_state *ecs)
2231{
24a73cce
UW
2232 struct regcache *regcache;
2233 struct gdbarch *gdbarch;
8aad930b 2234 CORE_ADDR breakpoint_pc;
4fa8626c 2235
4fa8626c
DJ
2236 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2237 we aren't, just return.
9709f61c
DJ
2238
2239 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2240 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2241 implemented by software breakpoints should be handled through the normal
2242 breakpoint layer.
8fb3e588 2243
4fa8626c
DJ
2244 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2245 different signals (SIGILL or SIGEMT for instance), but it is less
2246 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2247 gdbarch_decr_pc_after_break. I don't know any specific target that
2248 generates these signals at breakpoints (the code has been in GDB since at
2249 least 1992) so I can not guess how to handle them here.
8fb3e588 2250
e6cf7916
UW
2251 In earlier versions of GDB, a target with
2252 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2253 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2254 target with both of these set in GDB history, and it seems unlikely to be
2255 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2256
2257 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2258 return;
2259
2260 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2261 return;
2262
4058b839
PA
2263 /* In reverse execution, when a breakpoint is hit, the instruction
2264 under it has already been de-executed. The reported PC always
2265 points at the breakpoint address, so adjusting it further would
2266 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2267 architecture:
2268
2269 B1 0x08000000 : INSN1
2270 B2 0x08000001 : INSN2
2271 0x08000002 : INSN3
2272 PC -> 0x08000003 : INSN4
2273
2274 Say you're stopped at 0x08000003 as above. Reverse continuing
2275 from that point should hit B2 as below. Reading the PC when the
2276 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2277 been de-executed already.
2278
2279 B1 0x08000000 : INSN1
2280 B2 PC -> 0x08000001 : INSN2
2281 0x08000002 : INSN3
2282 0x08000003 : INSN4
2283
2284 We can't apply the same logic as for forward execution, because
2285 we would wrongly adjust the PC to 0x08000000, since there's a
2286 breakpoint at PC - 1. We'd then report a hit on B1, although
2287 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2288 behaviour. */
2289 if (execution_direction == EXEC_REVERSE)
2290 return;
2291
24a73cce
UW
2292 /* If this target does not decrement the PC after breakpoints, then
2293 we have nothing to do. */
2294 regcache = get_thread_regcache (ecs->ptid);
2295 gdbarch = get_regcache_arch (regcache);
2296 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2297 return;
2298
8aad930b
AC
2299 /* Find the location where (if we've hit a breakpoint) the
2300 breakpoint would be. */
515630c5
UW
2301 breakpoint_pc = regcache_read_pc (regcache)
2302 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 2303
1c5cfe86
PA
2304 /* Check whether there actually is a software breakpoint inserted at
2305 that location.
2306
2307 If in non-stop mode, a race condition is possible where we've
2308 removed a breakpoint, but stop events for that breakpoint were
2309 already queued and arrive later. To suppress those spurious
2310 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2311 and retire them after a number of stop events are reported. */
2312 if (software_breakpoint_inserted_here_p (breakpoint_pc)
2313 || (non_stop && moribund_breakpoint_here_p (breakpoint_pc)))
8aad930b 2314 {
96429cc8
HZ
2315 struct cleanup *old_cleanups = NULL;
2316 if (RECORD_IS_USED)
2317 old_cleanups = record_gdb_operation_disable_set ();
2318
1c0fdd0e
UW
2319 /* When using hardware single-step, a SIGTRAP is reported for both
2320 a completed single-step and a software breakpoint. Need to
2321 differentiate between the two, as the latter needs adjusting
2322 but the former does not.
2323
2324 The SIGTRAP can be due to a completed hardware single-step only if
2325 - we didn't insert software single-step breakpoints
2326 - the thread to be examined is still the current thread
2327 - this thread is currently being stepped
2328
2329 If any of these events did not occur, we must have stopped due
2330 to hitting a software breakpoint, and have to back up to the
2331 breakpoint address.
2332
2333 As a special case, we could have hardware single-stepped a
2334 software breakpoint. In this case (prev_pc == breakpoint_pc),
2335 we also need to back up to the breakpoint address. */
2336
2337 if (singlestep_breakpoints_inserted_p
2338 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
2339 || !currently_stepping (ecs->event_thread)
2340 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 2341 regcache_write_pc (regcache, breakpoint_pc);
96429cc8
HZ
2342
2343 if (RECORD_IS_USED)
2344 do_cleanups (old_cleanups);
8aad930b 2345 }
4fa8626c
DJ
2346}
2347
0d1e5fa7
PA
2348void
2349init_infwait_state (void)
2350{
2351 waiton_ptid = pid_to_ptid (-1);
2352 infwait_state = infwait_normal_state;
2353}
2354
94cc34af
PA
2355void
2356error_is_running (void)
2357{
2358 error (_("\
2359Cannot execute this command while the selected thread is running."));
2360}
2361
2362void
2363ensure_not_running (void)
2364{
2365 if (is_running (inferior_ptid))
2366 error_is_running ();
2367}
2368
edb3359d
DJ
2369static int
2370stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
2371{
2372 for (frame = get_prev_frame (frame);
2373 frame != NULL;
2374 frame = get_prev_frame (frame))
2375 {
2376 if (frame_id_eq (get_frame_id (frame), step_frame_id))
2377 return 1;
2378 if (get_frame_type (frame) != INLINE_FRAME)
2379 break;
2380 }
2381
2382 return 0;
2383}
2384
a96d9b2e
SDJ
2385/* Auxiliary function that handles syscall entry/return events.
2386 It returns 1 if the inferior should keep going (and GDB
2387 should ignore the event), or 0 if the event deserves to be
2388 processed. */
2389static int
2390deal_with_syscall_event (struct execution_control_state *ecs)
2391{
2392 struct regcache *regcache = get_thread_regcache (ecs->ptid);
2393 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2394 int syscall_number = gdbarch_get_syscall_number (gdbarch,
2395 ecs->ptid);
2396 target_last_waitstatus.value.syscall_number = syscall_number;
2397
2398 if (catch_syscall_enabled () > 0
2399 && catching_syscall_number (syscall_number) > 0)
2400 {
2401 if (debug_infrun)
2402 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
2403 syscall_number);
2404 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2405
2406 if (!ptid_equal (ecs->ptid, inferior_ptid))
2407 {
2408 context_switch (ecs->ptid);
2409 reinit_frame_cache ();
2410 }
2411
2412 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2413
2414 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2415
2416 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2417
2418 /* If no catchpoint triggered for this, then keep going. */
2419 if (ecs->random_signal)
2420 {
2421 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2422 keep_going (ecs);
2423 return 1;
2424 }
2425 return 0;
2426 }
2427 else
2428 {
2429 resume (0, TARGET_SIGNAL_0);
2430 prepare_to_wait (ecs);
2431 return 1;
2432 }
2433}
2434
cd0fc7c3
SS
2435/* Given an execution control state that has been freshly filled in
2436 by an event from the inferior, figure out what it means and take
2437 appropriate action. */
c906108c 2438
ec9499be 2439static void
96baa820 2440handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 2441{
568d6575
UW
2442 struct frame_info *frame;
2443 struct gdbarch *gdbarch;
c8edd8b4 2444 int sw_single_step_trap_p = 0;
d983da9c
DJ
2445 int stopped_by_watchpoint;
2446 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 2447 struct symtab_and_line stop_pc_sal;
d6b48e9c
PA
2448 enum stop_kind stop_soon;
2449
2450 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2451 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2452 && ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2453 {
2454 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2455 gdb_assert (inf);
2456 stop_soon = inf->stop_soon;
2457 }
2458 else
2459 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 2460
e02bc4cc 2461 /* Cache the last pid/waitstatus. */
39f77062 2462 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 2463 target_last_waitstatus = ecs->ws;
e02bc4cc 2464
ca005067
DJ
2465 /* Always clear state belonging to the previous time we stopped. */
2466 stop_stack_dummy = 0;
2467
8c90c137
LM
2468 /* If it's a new process, add it to the thread database */
2469
2470 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
2471 && !ptid_equal (ecs->ptid, minus_one_ptid)
2472 && !in_thread_list (ecs->ptid));
2473
2474 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2475 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
2476 add_thread (ecs->ptid);
2477
e09875d4 2478 ecs->event_thread = find_thread_ptid (ecs->ptid);
88ed393a
JK
2479
2480 /* Dependent on valid ECS->EVENT_THREAD. */
2481 adjust_pc_after_break (ecs);
2482
2483 /* Dependent on the current PC value modified by adjust_pc_after_break. */
2484 reinit_frame_cache ();
2485
8c90c137
LM
2486 if (ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2487 {
1c5cfe86
PA
2488 breakpoint_retire_moribund ();
2489
48844aa6
PA
2490 /* Mark the non-executing threads accordingly. In all-stop, all
2491 threads of all processes are stopped when we get any event
2492 reported. In non-stop mode, only the event thread stops. If
2493 we're handling a process exit in non-stop mode, there's
2494 nothing to do, as threads of the dead process are gone, and
2495 threads of any other process were left running. */
2496 if (!non_stop)
2497 set_executing (minus_one_ptid, 0);
2498 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2499 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
2500 set_executing (inferior_ptid, 0);
8c90c137
LM
2501 }
2502
0d1e5fa7 2503 switch (infwait_state)
488f131b
JB
2504 {
2505 case infwait_thread_hop_state:
527159b7 2506 if (debug_infrun)
8a9de0e4 2507 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
65e82032 2508 break;
b83266a0 2509
488f131b 2510 case infwait_normal_state:
527159b7 2511 if (debug_infrun)
8a9de0e4 2512 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
2513 break;
2514
2515 case infwait_step_watch_state:
2516 if (debug_infrun)
2517 fprintf_unfiltered (gdb_stdlog,
2518 "infrun: infwait_step_watch_state\n");
2519
2520 stepped_after_stopped_by_watchpoint = 1;
488f131b 2521 break;
b83266a0 2522
488f131b 2523 case infwait_nonstep_watch_state:
527159b7 2524 if (debug_infrun)
8a9de0e4
AC
2525 fprintf_unfiltered (gdb_stdlog,
2526 "infrun: infwait_nonstep_watch_state\n");
488f131b 2527 insert_breakpoints ();
c906108c 2528
488f131b
JB
2529 /* FIXME-maybe: is this cleaner than setting a flag? Does it
2530 handle things like signals arriving and other things happening
2531 in combination correctly? */
2532 stepped_after_stopped_by_watchpoint = 1;
2533 break;
65e82032
AC
2534
2535 default:
e2e0b3e5 2536 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 2537 }
ec9499be 2538
0d1e5fa7 2539 infwait_state = infwait_normal_state;
ec9499be 2540 waiton_ptid = pid_to_ptid (-1);
c906108c 2541
488f131b
JB
2542 switch (ecs->ws.kind)
2543 {
2544 case TARGET_WAITKIND_LOADED:
527159b7 2545 if (debug_infrun)
8a9de0e4 2546 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
2547 /* Ignore gracefully during startup of the inferior, as it might
2548 be the shell which has just loaded some objects, otherwise
2549 add the symbols for the newly loaded objects. Also ignore at
2550 the beginning of an attach or remote session; we will query
2551 the full list of libraries once the connection is
2552 established. */
c0236d92 2553 if (stop_soon == NO_STOP_QUIETLY)
488f131b 2554 {
488f131b
JB
2555 /* Check for any newly added shared libraries if we're
2556 supposed to be adding them automatically. Switch
2557 terminal for any messages produced by
2558 breakpoint_re_set. */
2559 target_terminal_ours_for_output ();
aff6338a 2560 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
2561 stack's section table is kept up-to-date. Architectures,
2562 (e.g., PPC64), use the section table to perform
2563 operations such as address => section name and hence
2564 require the table to contain all sections (including
2565 those found in shared libraries). */
b0f4b84b 2566#ifdef SOLIB_ADD
aff6338a 2567 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
b0f4b84b
DJ
2568#else
2569 solib_add (NULL, 0, &current_target, auto_solib_add);
2570#endif
488f131b
JB
2571 target_terminal_inferior ();
2572
b0f4b84b
DJ
2573 /* If requested, stop when the dynamic linker notifies
2574 gdb of events. This allows the user to get control
2575 and place breakpoints in initializer routines for
2576 dynamically loaded objects (among other things). */
2577 if (stop_on_solib_events)
2578 {
2579 stop_stepping (ecs);
2580 return;
2581 }
2582
2583 /* NOTE drow/2007-05-11: This might be a good place to check
2584 for "catch load". */
488f131b 2585 }
b0f4b84b
DJ
2586
2587 /* If we are skipping through a shell, or through shared library
2588 loading that we aren't interested in, resume the program. If
2589 we're running the program normally, also resume. But stop if
2590 we're attaching or setting up a remote connection. */
2591 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
2592 {
74960c60
VP
2593 /* Loading of shared libraries might have changed breakpoint
2594 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
2595 if (stop_soon == NO_STOP_QUIETLY
2596 && !breakpoints_always_inserted_mode ())
74960c60 2597 insert_breakpoints ();
b0f4b84b
DJ
2598 resume (0, TARGET_SIGNAL_0);
2599 prepare_to_wait (ecs);
2600 return;
2601 }
2602
2603 break;
c5aa993b 2604
488f131b 2605 case TARGET_WAITKIND_SPURIOUS:
527159b7 2606 if (debug_infrun)
8a9de0e4 2607 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
2608 resume (0, TARGET_SIGNAL_0);
2609 prepare_to_wait (ecs);
2610 return;
c5aa993b 2611
488f131b 2612 case TARGET_WAITKIND_EXITED:
527159b7 2613 if (debug_infrun)
8a9de0e4 2614 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
fb66883a 2615 inferior_ptid = ecs->ptid;
488f131b
JB
2616 target_terminal_ours (); /* Must do this before mourn anyway */
2617 print_stop_reason (EXITED, ecs->ws.value.integer);
2618
2619 /* Record the exit code in the convenience variable $_exitcode, so
2620 that the user can inspect this again later. */
4fa62494
UW
2621 set_internalvar_integer (lookup_internalvar ("_exitcode"),
2622 (LONGEST) ecs->ws.value.integer);
488f131b
JB
2623 gdb_flush (gdb_stdout);
2624 target_mourn_inferior ();
1c0fdd0e 2625 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
2626 stop_print_frame = 0;
2627 stop_stepping (ecs);
2628 return;
c5aa993b 2629
488f131b 2630 case TARGET_WAITKIND_SIGNALLED:
527159b7 2631 if (debug_infrun)
8a9de0e4 2632 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
fb66883a 2633 inferior_ptid = ecs->ptid;
488f131b 2634 stop_print_frame = 0;
488f131b 2635 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 2636
488f131b
JB
2637 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
2638 reach here unless the inferior is dead. However, for years
2639 target_kill() was called here, which hints that fatal signals aren't
2640 really fatal on some systems. If that's true, then some changes
2641 may be needed. */
2642 target_mourn_inferior ();
c906108c 2643
2020b7ab 2644 print_stop_reason (SIGNAL_EXITED, ecs->ws.value.sig);
1c0fdd0e 2645 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
2646 stop_stepping (ecs);
2647 return;
c906108c 2648
488f131b
JB
2649 /* The following are the only cases in which we keep going;
2650 the above cases end in a continue or goto. */
2651 case TARGET_WAITKIND_FORKED:
deb3b17b 2652 case TARGET_WAITKIND_VFORKED:
527159b7 2653 if (debug_infrun)
8a9de0e4 2654 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
c906108c 2655
5a2901d9
DJ
2656 if (!ptid_equal (ecs->ptid, inferior_ptid))
2657 {
0d1e5fa7 2658 context_switch (ecs->ptid);
35f196d9 2659 reinit_frame_cache ();
5a2901d9
DJ
2660 }
2661
b242c3c2
PA
2662 /* Immediately detach breakpoints from the child before there's
2663 any chance of letting the user delete breakpoints from the
2664 breakpoint lists. If we don't do this early, it's easy to
2665 leave left over traps in the child, vis: "break foo; catch
2666 fork; c; <fork>; del; c; <child calls foo>". We only follow
2667 the fork on the last `continue', and by that time the
2668 breakpoint at "foo" is long gone from the breakpoint table.
2669 If we vforked, then we don't need to unpatch here, since both
2670 parent and child are sharing the same memory pages; we'll
2671 need to unpatch at follow/detach time instead to be certain
2672 that new breakpoints added between catchpoint hit time and
2673 vfork follow are detached. */
2674 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
2675 {
2676 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
2677
2678 /* This won't actually modify the breakpoint list, but will
2679 physically remove the breakpoints from the child. */
2680 detach_breakpoints (child_pid);
2681 }
2682
e58b0e63
PA
2683 /* In case the event is caught by a catchpoint, remember that
2684 the event is to be followed at the next resume of the thread,
2685 and not immediately. */
2686 ecs->event_thread->pending_follow = ecs->ws;
2687
fb14de7b 2688 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 2689
347bddb7 2690 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
675bf4cb 2691
347bddb7 2692 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
04e68871
DJ
2693
2694 /* If no catchpoint triggered for this, then keep going. */
2695 if (ecs->random_signal)
2696 {
e58b0e63
PA
2697 int should_resume;
2698
2020b7ab 2699 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
e58b0e63
PA
2700
2701 should_resume = follow_fork ();
2702
2703 ecs->event_thread = inferior_thread ();
2704 ecs->ptid = inferior_ptid;
2705
2706 if (should_resume)
2707 keep_going (ecs);
2708 else
2709 stop_stepping (ecs);
04e68871
DJ
2710 return;
2711 }
2020b7ab 2712 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
2713 goto process_event_stop_test;
2714
2715 case TARGET_WAITKIND_EXECD:
527159b7 2716 if (debug_infrun)
fc5261f2 2717 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 2718
5a2901d9
DJ
2719 if (!ptid_equal (ecs->ptid, inferior_ptid))
2720 {
0d1e5fa7 2721 context_switch (ecs->ptid);
35f196d9 2722 reinit_frame_cache ();
5a2901d9
DJ
2723 }
2724
fb14de7b 2725 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f
PA
2726
2727 /* This causes the eventpoints and symbol table to be reset.
2728 Must do this now, before trying to determine whether to
2729 stop. */
71b43ef8 2730 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f
PA
2731
2732 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2733 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2734
71b43ef8
PA
2735 /* Note that this may be referenced from inside
2736 bpstat_stop_status above, through inferior_has_execd. */
2737 xfree (ecs->ws.value.execd_pathname);
2738 ecs->ws.value.execd_pathname = NULL;
2739
04e68871
DJ
2740 /* If no catchpoint triggered for this, then keep going. */
2741 if (ecs->random_signal)
2742 {
2020b7ab 2743 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
04e68871
DJ
2744 keep_going (ecs);
2745 return;
2746 }
2020b7ab 2747 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
2748 goto process_event_stop_test;
2749
b4dc5ffa
MK
2750 /* Be careful not to try to gather much state about a thread
2751 that's in a syscall. It's frequently a losing proposition. */
488f131b 2752 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 2753 if (debug_infrun)
8a9de0e4 2754 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
a96d9b2e
SDJ
2755 /* Getting the current syscall number */
2756 if (deal_with_syscall_event (ecs) != 0)
2757 return;
2758 goto process_event_stop_test;
2759 break;
c906108c 2760
488f131b
JB
2761 /* Before examining the threads further, step this thread to
2762 get it entirely out of the syscall. (We get notice of the
2763 event when the thread is just on the verge of exiting a
2764 syscall. Stepping one instruction seems to get it back
b4dc5ffa 2765 into user code.) */
488f131b 2766 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 2767 if (debug_infrun)
8a9de0e4 2768 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
a96d9b2e
SDJ
2769 if (deal_with_syscall_event (ecs) != 0)
2770 return;
2771 goto process_event_stop_test;
2772 break;
c906108c 2773
488f131b 2774 case TARGET_WAITKIND_STOPPED:
527159b7 2775 if (debug_infrun)
8a9de0e4 2776 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
2020b7ab 2777 ecs->event_thread->stop_signal = ecs->ws.value.sig;
488f131b 2778 break;
c906108c 2779
b2175913
MS
2780 case TARGET_WAITKIND_NO_HISTORY:
2781 /* Reverse execution: target ran out of history info. */
fb14de7b 2782 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
b2175913
MS
2783 print_stop_reason (NO_HISTORY, 0);
2784 stop_stepping (ecs);
2785 return;
2786
488f131b
JB
2787 /* We had an event in the inferior, but we are not interested
2788 in handling it at this level. The lower layers have already
8e7d2c16 2789 done what needs to be done, if anything.
8fb3e588
AC
2790
2791 One of the possible circumstances for this is when the
2792 inferior produces output for the console. The inferior has
2793 not stopped, and we are ignoring the event. Another possible
2794 circumstance is any event which the lower level knows will be
2795 reported multiple times without an intervening resume. */
488f131b 2796 case TARGET_WAITKIND_IGNORE:
527159b7 2797 if (debug_infrun)
8a9de0e4 2798 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
8e7d2c16 2799 prepare_to_wait (ecs);
488f131b
JB
2800 return;
2801 }
c906108c 2802
488f131b
JB
2803 if (ecs->new_thread_event)
2804 {
94cc34af
PA
2805 if (non_stop)
2806 /* Non-stop assumes that the target handles adding new threads
2807 to the thread list. */
2808 internal_error (__FILE__, __LINE__, "\
2809targets should add new threads to the thread list themselves in non-stop mode.");
2810
2811 /* We may want to consider not doing a resume here in order to
2812 give the user a chance to play with the new thread. It might
2813 be good to make that a user-settable option. */
2814
2815 /* At this point, all threads are stopped (happens automatically
2816 in either the OS or the native code). Therefore we need to
2817 continue all threads in order to make progress. */
2818
173853dc
PA
2819 if (!ptid_equal (ecs->ptid, inferior_ptid))
2820 context_switch (ecs->ptid);
488f131b
JB
2821 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
2822 prepare_to_wait (ecs);
2823 return;
2824 }
c906108c 2825
2020b7ab 2826 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
2827 {
2828 /* Do we need to clean up the state of a thread that has
2829 completed a displaced single-step? (Doing so usually affects
2830 the PC, so do it here, before we set stop_pc.) */
2831 displaced_step_fixup (ecs->ptid, ecs->event_thread->stop_signal);
2832
2833 /* If we either finished a single-step or hit a breakpoint, but
2834 the user wanted this thread to be stopped, pretend we got a
2835 SIG0 (generic unsignaled stop). */
2836
2837 if (ecs->event_thread->stop_requested
2838 && ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2839 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2840 }
237fc4c9 2841
515630c5 2842 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 2843
527159b7 2844 if (debug_infrun)
237fc4c9 2845 {
5af949e3
UW
2846 struct regcache *regcache = get_thread_regcache (ecs->ptid);
2847 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2848
2849 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
2850 paddress (gdbarch, stop_pc));
d92524f1 2851 if (target_stopped_by_watchpoint ())
237fc4c9
PA
2852 {
2853 CORE_ADDR addr;
2854 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2855
2856 if (target_stopped_data_address (&current_target, &addr))
2857 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
2858 "infrun: stopped data address = %s\n",
2859 paddress (gdbarch, addr));
237fc4c9
PA
2860 else
2861 fprintf_unfiltered (gdb_stdlog,
2862 "infrun: (no data address available)\n");
2863 }
2864 }
527159b7 2865
9f976b41
DJ
2866 if (stepping_past_singlestep_breakpoint)
2867 {
1c0fdd0e 2868 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
2869 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2870 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2871
2872 stepping_past_singlestep_breakpoint = 0;
2873
2874 /* We've either finished single-stepping past the single-step
8fb3e588
AC
2875 breakpoint, or stopped for some other reason. It would be nice if
2876 we could tell, but we can't reliably. */
2020b7ab 2877 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 2878 {
527159b7 2879 if (debug_infrun)
8a9de0e4 2880 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
9f976b41 2881 /* Pull the single step breakpoints out of the target. */
e0cd558a 2882 remove_single_step_breakpoints ();
9f976b41
DJ
2883 singlestep_breakpoints_inserted_p = 0;
2884
2885 ecs->random_signal = 0;
79626f8a 2886 ecs->event_thread->trap_expected = 0;
9f976b41 2887
0d1e5fa7 2888 context_switch (saved_singlestep_ptid);
9a4105ab
AC
2889 if (deprecated_context_hook)
2890 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
2891
2892 resume (1, TARGET_SIGNAL_0);
2893 prepare_to_wait (ecs);
2894 return;
2895 }
2896 }
2897
ca67fcb8 2898 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 2899 {
94cc34af
PA
2900 /* In non-stop mode, there's never a deferred_step_ptid set. */
2901 gdb_assert (!non_stop);
2902
6a6b96b9
UW
2903 /* If we stopped for some other reason than single-stepping, ignore
2904 the fact that we were supposed to switch back. */
2020b7ab 2905 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
6a6b96b9
UW
2906 {
2907 if (debug_infrun)
2908 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 2909 "infrun: handling deferred step\n");
6a6b96b9
UW
2910
2911 /* Pull the single step breakpoints out of the target. */
2912 if (singlestep_breakpoints_inserted_p)
2913 {
2914 remove_single_step_breakpoints ();
2915 singlestep_breakpoints_inserted_p = 0;
2916 }
2917
2918 /* Note: We do not call context_switch at this point, as the
2919 context is already set up for stepping the original thread. */
ca67fcb8
VP
2920 switch_to_thread (deferred_step_ptid);
2921 deferred_step_ptid = null_ptid;
6a6b96b9
UW
2922 /* Suppress spurious "Switching to ..." message. */
2923 previous_inferior_ptid = inferior_ptid;
2924
2925 resume (1, TARGET_SIGNAL_0);
2926 prepare_to_wait (ecs);
2927 return;
2928 }
ca67fcb8
VP
2929
2930 deferred_step_ptid = null_ptid;
6a6b96b9
UW
2931 }
2932
488f131b
JB
2933 /* See if a thread hit a thread-specific breakpoint that was meant for
2934 another thread. If so, then step that thread past the breakpoint,
2935 and continue it. */
2936
2020b7ab 2937 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
488f131b 2938 {
9f976b41
DJ
2939 int thread_hop_needed = 0;
2940
f8d40ec8
JB
2941 /* Check if a regular breakpoint has been hit before checking
2942 for a potential single step breakpoint. Otherwise, GDB will
2943 not see this breakpoint hit when stepping onto breakpoints. */
c36b740a 2944 if (regular_breakpoint_inserted_here_p (stop_pc))
488f131b 2945 {
c5aa993b 2946 ecs->random_signal = 0;
4fa8626c 2947 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
9f976b41
DJ
2948 thread_hop_needed = 1;
2949 }
1c0fdd0e 2950 else if (singlestep_breakpoints_inserted_p)
9f976b41 2951 {
fd48f117
DJ
2952 /* We have not context switched yet, so this should be true
2953 no matter which thread hit the singlestep breakpoint. */
2954 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2955 if (debug_infrun)
2956 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2957 "trap for %s\n",
2958 target_pid_to_str (ecs->ptid));
2959
9f976b41
DJ
2960 ecs->random_signal = 0;
2961 /* The call to in_thread_list is necessary because PTIDs sometimes
2962 change when we go from single-threaded to multi-threaded. If
2963 the singlestep_ptid is still in the list, assume that it is
2964 really different from ecs->ptid. */
2965 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2966 && in_thread_list (singlestep_ptid))
2967 {
fd48f117
DJ
2968 /* If the PC of the thread we were trying to single-step
2969 has changed, discard this event (which we were going
2970 to ignore anyway), and pretend we saw that thread
2971 trap. This prevents us continuously moving the
2972 single-step breakpoint forward, one instruction at a
2973 time. If the PC has changed, then the thread we were
2974 trying to single-step has trapped or been signalled,
2975 but the event has not been reported to GDB yet.
2976
2977 There might be some cases where this loses signal
2978 information, if a signal has arrived at exactly the
2979 same time that the PC changed, but this is the best
2980 we can do with the information available. Perhaps we
2981 should arrange to report all events for all threads
2982 when they stop, or to re-poll the remote looking for
2983 this particular thread (i.e. temporarily enable
2984 schedlock). */
515630c5
UW
2985
2986 CORE_ADDR new_singlestep_pc
2987 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
2988
2989 if (new_singlestep_pc != singlestep_pc)
fd48f117 2990 {
2020b7ab
PA
2991 enum target_signal stop_signal;
2992
fd48f117
DJ
2993 if (debug_infrun)
2994 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2995 " but expected thread advanced also\n");
2996
2997 /* The current context still belongs to
2998 singlestep_ptid. Don't swap here, since that's
2999 the context we want to use. Just fudge our
3000 state and continue. */
2020b7ab
PA
3001 stop_signal = ecs->event_thread->stop_signal;
3002 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
fd48f117 3003 ecs->ptid = singlestep_ptid;
e09875d4 3004 ecs->event_thread = find_thread_ptid (ecs->ptid);
2020b7ab 3005 ecs->event_thread->stop_signal = stop_signal;
515630c5 3006 stop_pc = new_singlestep_pc;
fd48f117
DJ
3007 }
3008 else
3009 {
3010 if (debug_infrun)
3011 fprintf_unfiltered (gdb_stdlog,
3012 "infrun: unexpected thread\n");
3013
3014 thread_hop_needed = 1;
3015 stepping_past_singlestep_breakpoint = 1;
3016 saved_singlestep_ptid = singlestep_ptid;
3017 }
9f976b41
DJ
3018 }
3019 }
3020
3021 if (thread_hop_needed)
8fb3e588 3022 {
9f5a595d 3023 struct regcache *thread_regcache;
237fc4c9 3024 int remove_status = 0;
8fb3e588 3025
527159b7 3026 if (debug_infrun)
8a9de0e4 3027 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 3028
b3444185
PA
3029 /* Switch context before touching inferior memory, the
3030 previous thread may have exited. */
3031 if (!ptid_equal (inferior_ptid, ecs->ptid))
3032 context_switch (ecs->ptid);
3033
8fb3e588
AC
3034 /* Saw a breakpoint, but it was hit by the wrong thread.
3035 Just continue. */
3036
1c0fdd0e 3037 if (singlestep_breakpoints_inserted_p)
488f131b 3038 {
8fb3e588 3039 /* Pull the single step breakpoints out of the target. */
e0cd558a 3040 remove_single_step_breakpoints ();
8fb3e588
AC
3041 singlestep_breakpoints_inserted_p = 0;
3042 }
3043
237fc4c9
PA
3044 /* If the arch can displace step, don't remove the
3045 breakpoints. */
9f5a595d
UW
3046 thread_regcache = get_thread_regcache (ecs->ptid);
3047 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
3048 remove_status = remove_breakpoints ();
3049
8fb3e588
AC
3050 /* Did we fail to remove breakpoints? If so, try
3051 to set the PC past the bp. (There's at least
3052 one situation in which we can fail to remove
3053 the bp's: On HP-UX's that use ttrace, we can't
3054 change the address space of a vforking child
3055 process until the child exits (well, okay, not
3056 then either :-) or execs. */
3057 if (remove_status != 0)
9d9cd7ac 3058 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
3059 else
3060 { /* Single step */
94cc34af
PA
3061 if (!non_stop)
3062 {
3063 /* Only need to require the next event from this
3064 thread in all-stop mode. */
3065 waiton_ptid = ecs->ptid;
3066 infwait_state = infwait_thread_hop_state;
3067 }
8fb3e588 3068
4e1c45ea 3069 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588 3070 keep_going (ecs);
8fb3e588
AC
3071 return;
3072 }
488f131b 3073 }
1c0fdd0e 3074 else if (singlestep_breakpoints_inserted_p)
8fb3e588
AC
3075 {
3076 sw_single_step_trap_p = 1;
3077 ecs->random_signal = 0;
3078 }
488f131b
JB
3079 }
3080 else
3081 ecs->random_signal = 1;
c906108c 3082
488f131b 3083 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
3084 so, then switch to that thread. */
3085 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 3086 {
527159b7 3087 if (debug_infrun)
8a9de0e4 3088 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 3089
0d1e5fa7 3090 context_switch (ecs->ptid);
c5aa993b 3091
9a4105ab
AC
3092 if (deprecated_context_hook)
3093 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 3094 }
c906108c 3095
568d6575
UW
3096 /* At this point, get hold of the now-current thread's frame. */
3097 frame = get_current_frame ();
3098 gdbarch = get_frame_arch (frame);
3099
1c0fdd0e 3100 if (singlestep_breakpoints_inserted_p)
488f131b
JB
3101 {
3102 /* Pull the single step breakpoints out of the target. */
e0cd558a 3103 remove_single_step_breakpoints ();
488f131b
JB
3104 singlestep_breakpoints_inserted_p = 0;
3105 }
c906108c 3106
d983da9c
DJ
3107 if (stepped_after_stopped_by_watchpoint)
3108 stopped_by_watchpoint = 0;
3109 else
3110 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3111
3112 /* If necessary, step over this watchpoint. We'll be back to display
3113 it in a moment. */
3114 if (stopped_by_watchpoint
d92524f1 3115 && (target_have_steppable_watchpoint
568d6575 3116 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 3117 {
488f131b
JB
3118 /* At this point, we are stopped at an instruction which has
3119 attempted to write to a piece of memory under control of
3120 a watchpoint. The instruction hasn't actually executed
3121 yet. If we were to evaluate the watchpoint expression
3122 now, we would get the old value, and therefore no change
3123 would seem to have occurred.
3124
3125 In order to make watchpoints work `right', we really need
3126 to complete the memory write, and then evaluate the
d983da9c
DJ
3127 watchpoint expression. We do this by single-stepping the
3128 target.
3129
3130 It may not be necessary to disable the watchpoint to stop over
3131 it. For example, the PA can (with some kernel cooperation)
3132 single step over a watchpoint without disabling the watchpoint.
3133
3134 It is far more common to need to disable a watchpoint to step
3135 the inferior over it. If we have non-steppable watchpoints,
3136 we must disable the current watchpoint; it's simplest to
3137 disable all watchpoints and breakpoints. */
2facfe5c
DD
3138 int hw_step = 1;
3139
d92524f1 3140 if (!target_have_steppable_watchpoint)
d983da9c 3141 remove_breakpoints ();
2facfe5c 3142 /* Single step */
568d6575 3143 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
2facfe5c 3144 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
0d1e5fa7 3145 waiton_ptid = ecs->ptid;
d92524f1 3146 if (target_have_steppable_watchpoint)
0d1e5fa7 3147 infwait_state = infwait_step_watch_state;
d983da9c 3148 else
0d1e5fa7 3149 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
3150 prepare_to_wait (ecs);
3151 return;
3152 }
3153
488f131b
JB
3154 ecs->stop_func_start = 0;
3155 ecs->stop_func_end = 0;
3156 ecs->stop_func_name = 0;
3157 /* Don't care about return value; stop_func_start and stop_func_name
3158 will both be 0 if it doesn't work. */
3159 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3160 &ecs->stop_func_start, &ecs->stop_func_end);
cbf3b44a 3161 ecs->stop_func_start
568d6575 3162 += gdbarch_deprecated_function_start_offset (gdbarch);
4e1c45ea 3163 ecs->event_thread->stepping_over_breakpoint = 0;
347bddb7 3164 bpstat_clear (&ecs->event_thread->stop_bpstat);
414c69f7 3165 ecs->event_thread->stop_step = 0;
488f131b
JB
3166 stop_print_frame = 1;
3167 ecs->random_signal = 0;
3168 stopped_by_random_signal = 0;
488f131b 3169
edb3359d
DJ
3170 /* Hide inlined functions starting here, unless we just performed stepi or
3171 nexti. After stepi and nexti, always show the innermost frame (not any
3172 inline function call sites). */
3173 if (ecs->event_thread->step_range_end != 1)
3174 skip_inline_frames (ecs->ptid);
3175
2020b7ab 3176 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4e1c45ea 3177 && ecs->event_thread->trap_expected
568d6575 3178 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 3179 && currently_stepping (ecs->event_thread))
3352ef37 3180 {
b50d7442 3181 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37
AC
3182 also on an instruction that needs to be stepped multiple
3183 times before it's been fully executing. E.g., architectures
3184 with a delay slot. It needs to be stepped twice, once for
3185 the instruction and once for the delay slot. */
3186 int step_through_delay
568d6575 3187 = gdbarch_single_step_through_delay (gdbarch, frame);
527159b7 3188 if (debug_infrun && step_through_delay)
8a9de0e4 3189 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4e1c45ea 3190 if (ecs->event_thread->step_range_end == 0 && step_through_delay)
3352ef37
AC
3191 {
3192 /* The user issued a continue when stopped at a breakpoint.
3193 Set up for another trap and get out of here. */
4e1c45ea 3194 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
3195 keep_going (ecs);
3196 return;
3197 }
3198 else if (step_through_delay)
3199 {
3200 /* The user issued a step when stopped at a breakpoint.
3201 Maybe we should stop, maybe we should not - the delay
3202 slot *might* correspond to a line of source. In any
ca67fcb8
VP
3203 case, don't decide that here, just set
3204 ecs->stepping_over_breakpoint, making sure we
3205 single-step again before breakpoints are re-inserted. */
4e1c45ea 3206 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
3207 }
3208 }
3209
488f131b
JB
3210 /* Look at the cause of the stop, and decide what to do.
3211 The alternatives are:
0d1e5fa7
PA
3212 1) stop_stepping and return; to really stop and return to the debugger,
3213 2) keep_going and return to start up again
4e1c45ea 3214 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
3215 3) set ecs->random_signal to 1, and the decision between 1 and 2
3216 will be made according to the signal handling tables. */
3217
3218 /* First, distinguish signals caused by the debugger from signals
03cebad2
MK
3219 that have to do with the program's own actions. Note that
3220 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3221 on the operating system version. Here we detect when a SIGILL or
3222 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3223 something similar for SIGSEGV, since a SIGSEGV will be generated
3224 when we're trying to execute a breakpoint instruction on a
3225 non-executable stack. This happens for call dummy breakpoints
3226 for architectures like SPARC that place call dummies on the
237fc4c9 3227 stack.
488f131b 3228
237fc4c9
PA
3229 If we're doing a displaced step past a breakpoint, then the
3230 breakpoint is always inserted at the original instruction;
3231 non-standard signals can't be explained by the breakpoint. */
2020b7ab 3232 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4e1c45ea 3233 || (! ecs->event_thread->trap_expected
237fc4c9 3234 && breakpoint_inserted_here_p (stop_pc)
2020b7ab
PA
3235 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_ILL
3236 || ecs->event_thread->stop_signal == TARGET_SIGNAL_SEGV
3237 || ecs->event_thread->stop_signal == TARGET_SIGNAL_EMT))
b0f4b84b
DJ
3238 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
3239 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 3240 {
2020b7ab 3241 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
488f131b 3242 {
527159b7 3243 if (debug_infrun)
8a9de0e4 3244 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
3245 stop_print_frame = 0;
3246 stop_stepping (ecs);
3247 return;
3248 }
c54cfec8
EZ
3249
3250 /* This is originated from start_remote(), start_inferior() and
3251 shared libraries hook functions. */
b0f4b84b 3252 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 3253 {
527159b7 3254 if (debug_infrun)
8a9de0e4 3255 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
3256 stop_stepping (ecs);
3257 return;
3258 }
3259
c54cfec8 3260 /* This originates from attach_command(). We need to overwrite
a0d21d28
PA
3261 the stop_signal here, because some kernels don't ignore a
3262 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
3263 See more comments in inferior.h. On the other hand, if we
a0ef4274 3264 get a non-SIGSTOP, report it to the user - assume the backend
a0d21d28
PA
3265 will handle the SIGSTOP if it should show up later.
3266
3267 Also consider that the attach is complete when we see a
3268 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
3269 target extended-remote report it instead of a SIGSTOP
3270 (e.g. gdbserver). We already rely on SIGTRAP being our
e0ba6746
PA
3271 signal, so this is no exception.
3272
3273 Also consider that the attach is complete when we see a
3274 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
3275 the target to stop all threads of the inferior, in case the
3276 low level attach operation doesn't stop them implicitly. If
3277 they weren't stopped implicitly, then the stub will report a
3278 TARGET_SIGNAL_0, meaning: stopped for no particular reason
3279 other than GDB's request. */
a0ef4274 3280 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
2020b7ab 3281 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_STOP
e0ba6746
PA
3282 || ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3283 || ecs->event_thread->stop_signal == TARGET_SIGNAL_0))
c54cfec8
EZ
3284 {
3285 stop_stepping (ecs);
2020b7ab 3286 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
c54cfec8
EZ
3287 return;
3288 }
3289
fba57f8f 3290 /* See if there is a breakpoint at the current PC. */
347bddb7 3291 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
fba57f8f
VP
3292
3293 /* Following in case break condition called a
3294 function. */
3295 stop_print_frame = 1;
488f131b 3296
73dd234f 3297 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
3298 at one stage in the past included checks for an inferior
3299 function call's call dummy's return breakpoint. The original
3300 comment, that went with the test, read:
73dd234f 3301
8fb3e588
AC
3302 ``End of a stack dummy. Some systems (e.g. Sony news) give
3303 another signal besides SIGTRAP, so check here as well as
3304 above.''
73dd234f 3305
8002d778 3306 If someone ever tries to get call dummys on a
73dd234f 3307 non-executable stack to work (where the target would stop
03cebad2
MK
3308 with something like a SIGSEGV), then those tests might need
3309 to be re-instated. Given, however, that the tests were only
73dd234f 3310 enabled when momentary breakpoints were not being used, I
03cebad2
MK
3311 suspect that it won't be the case.
3312
8fb3e588
AC
3313 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
3314 be necessary for call dummies on a non-executable stack on
3315 SPARC. */
73dd234f 3316
2020b7ab 3317 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
488f131b 3318 ecs->random_signal
347bddb7 3319 = !(bpstat_explains_signal (ecs->event_thread->stop_bpstat)
4e1c45ea
PA
3320 || ecs->event_thread->trap_expected
3321 || (ecs->event_thread->step_range_end
3322 && ecs->event_thread->step_resume_breakpoint == NULL));
488f131b
JB
3323 else
3324 {
347bddb7 3325 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
488f131b 3326 if (!ecs->random_signal)
2020b7ab 3327 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3328 }
3329 }
3330
3331 /* When we reach this point, we've pretty much decided
3332 that the reason for stopping must've been a random
3333 (unexpected) signal. */
3334
3335 else
3336 ecs->random_signal = 1;
488f131b 3337
04e68871 3338process_event_stop_test:
568d6575
UW
3339
3340 /* Re-fetch current thread's frame in case we did a
3341 "goto process_event_stop_test" above. */
3342 frame = get_current_frame ();
3343 gdbarch = get_frame_arch (frame);
3344
488f131b
JB
3345 /* For the program's own signals, act according to
3346 the signal handling tables. */
3347
3348 if (ecs->random_signal)
3349 {
3350 /* Signal not for debugging purposes. */
3351 int printed = 0;
3352
527159b7 3353 if (debug_infrun)
2020b7ab
PA
3354 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
3355 ecs->event_thread->stop_signal);
527159b7 3356
488f131b
JB
3357 stopped_by_random_signal = 1;
3358
2020b7ab 3359 if (signal_print[ecs->event_thread->stop_signal])
488f131b
JB
3360 {
3361 printed = 1;
3362 target_terminal_ours_for_output ();
2020b7ab 3363 print_stop_reason (SIGNAL_RECEIVED, ecs->event_thread->stop_signal);
488f131b 3364 }
252fbfc8
PA
3365 /* Always stop on signals if we're either just gaining control
3366 of the program, or the user explicitly requested this thread
3367 to remain stopped. */
d6b48e9c 3368 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 3369 || ecs->event_thread->stop_requested
d6b48e9c 3370 || signal_stop_state (ecs->event_thread->stop_signal))
488f131b
JB
3371 {
3372 stop_stepping (ecs);
3373 return;
3374 }
3375 /* If not going to stop, give terminal back
3376 if we took it away. */
3377 else if (printed)
3378 target_terminal_inferior ();
3379
3380 /* Clear the signal if it should not be passed. */
2020b7ab
PA
3381 if (signal_program[ecs->event_thread->stop_signal] == 0)
3382 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
488f131b 3383
fb14de7b 3384 if (ecs->event_thread->prev_pc == stop_pc
4e1c45ea
PA
3385 && ecs->event_thread->trap_expected
3386 && ecs->event_thread->step_resume_breakpoint == NULL)
68f53502
AC
3387 {
3388 /* We were just starting a new sequence, attempting to
3389 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 3390 Instead this signal arrives. This signal will take us out
68f53502
AC
3391 of the stepping range so GDB needs to remember to, when
3392 the signal handler returns, resume stepping off that
3393 breakpoint. */
3394 /* To simplify things, "continue" is forced to use the same
3395 code paths as single-step - set a breakpoint at the
3396 signal return address and then, once hit, step off that
3397 breakpoint. */
237fc4c9
PA
3398 if (debug_infrun)
3399 fprintf_unfiltered (gdb_stdlog,
3400 "infrun: signal arrived while stepping over "
3401 "breakpoint\n");
d3169d93 3402
568d6575 3403 insert_step_resume_breakpoint_at_frame (frame);
4e1c45ea 3404 ecs->event_thread->step_after_step_resume_breakpoint = 1;
9d799f85
AC
3405 keep_going (ecs);
3406 return;
68f53502 3407 }
9d799f85 3408
4e1c45ea 3409 if (ecs->event_thread->step_range_end != 0
2020b7ab 3410 && ecs->event_thread->stop_signal != TARGET_SIGNAL_0
4e1c45ea
PA
3411 && (ecs->event_thread->step_range_start <= stop_pc
3412 && stop_pc < ecs->event_thread->step_range_end)
edb3359d
DJ
3413 && frame_id_eq (get_stack_frame_id (frame),
3414 ecs->event_thread->step_stack_frame_id)
4e1c45ea 3415 && ecs->event_thread->step_resume_breakpoint == NULL)
d303a6c7
AC
3416 {
3417 /* The inferior is about to take a signal that will take it
3418 out of the single step range. Set a breakpoint at the
3419 current PC (which is presumably where the signal handler
3420 will eventually return) and then allow the inferior to
3421 run free.
3422
3423 Note that this is only needed for a signal delivered
3424 while in the single-step range. Nested signals aren't a
3425 problem as they eventually all return. */
237fc4c9
PA
3426 if (debug_infrun)
3427 fprintf_unfiltered (gdb_stdlog,
3428 "infrun: signal may take us out of "
3429 "single-step range\n");
3430
568d6575 3431 insert_step_resume_breakpoint_at_frame (frame);
9d799f85
AC
3432 keep_going (ecs);
3433 return;
d303a6c7 3434 }
9d799f85
AC
3435
3436 /* Note: step_resume_breakpoint may be non-NULL. This occures
3437 when either there's a nested signal, or when there's a
3438 pending signal enabled just as the signal handler returns
3439 (leaving the inferior at the step-resume-breakpoint without
3440 actually executing it). Either way continue until the
3441 breakpoint is really hit. */
488f131b
JB
3442 keep_going (ecs);
3443 return;
3444 }
3445
3446 /* Handle cases caused by hitting a breakpoint. */
3447 {
3448 CORE_ADDR jmp_buf_pc;
3449 struct bpstat_what what;
3450
347bddb7 3451 what = bpstat_what (ecs->event_thread->stop_bpstat);
488f131b
JB
3452
3453 if (what.call_dummy)
3454 {
3455 stop_stack_dummy = 1;
c5aa993b 3456 }
c906108c 3457
488f131b 3458 switch (what.main_action)
c5aa993b 3459 {
488f131b 3460 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
611c83ae
PA
3461 /* If we hit the breakpoint at longjmp while stepping, we
3462 install a momentary breakpoint at the target of the
3463 jmp_buf. */
3464
3465 if (debug_infrun)
3466 fprintf_unfiltered (gdb_stdlog,
3467 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
3468
4e1c45ea 3469 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 3470
568d6575
UW
3471 if (!gdbarch_get_longjmp_target_p (gdbarch)
3472 || !gdbarch_get_longjmp_target (gdbarch, frame, &jmp_buf_pc))
c5aa993b 3473 {
611c83ae
PA
3474 if (debug_infrun)
3475 fprintf_unfiltered (gdb_stdlog, "\
3476infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
488f131b 3477 keep_going (ecs);
104c1213 3478 return;
c5aa993b 3479 }
488f131b 3480
611c83ae
PA
3481 /* We're going to replace the current step-resume breakpoint
3482 with a longjmp-resume breakpoint. */
4e1c45ea 3483 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae
PA
3484
3485 /* Insert a breakpoint at resume address. */
a6d9a66e 3486 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
c906108c 3487
488f131b
JB
3488 keep_going (ecs);
3489 return;
c906108c 3490
488f131b 3491 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
527159b7 3492 if (debug_infrun)
611c83ae
PA
3493 fprintf_unfiltered (gdb_stdlog,
3494 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
3495
4e1c45ea
PA
3496 gdb_assert (ecs->event_thread->step_resume_breakpoint != NULL);
3497 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae 3498
414c69f7 3499 ecs->event_thread->stop_step = 1;
611c83ae
PA
3500 print_stop_reason (END_STEPPING_RANGE, 0);
3501 stop_stepping (ecs);
3502 return;
488f131b
JB
3503
3504 case BPSTAT_WHAT_SINGLE:
527159b7 3505 if (debug_infrun)
8802d8ed 3506 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4e1c45ea 3507 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b
JB
3508 /* Still need to check other stuff, at least the case
3509 where we are stepping and step out of the right range. */
3510 break;
c906108c 3511
488f131b 3512 case BPSTAT_WHAT_STOP_NOISY:
527159b7 3513 if (debug_infrun)
8802d8ed 3514 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 3515 stop_print_frame = 1;
c906108c 3516
d303a6c7
AC
3517 /* We are about to nuke the step_resume_breakpointt via the
3518 cleanup chain, so no need to worry about it here. */
c5aa993b 3519
488f131b
JB
3520 stop_stepping (ecs);
3521 return;
c5aa993b 3522
488f131b 3523 case BPSTAT_WHAT_STOP_SILENT:
527159b7 3524 if (debug_infrun)
8802d8ed 3525 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 3526 stop_print_frame = 0;
c5aa993b 3527
d303a6c7
AC
3528 /* We are about to nuke the step_resume_breakpoin via the
3529 cleanup chain, so no need to worry about it here. */
c5aa993b 3530
488f131b 3531 stop_stepping (ecs);
e441088d 3532 return;
c5aa993b 3533
488f131b 3534 case BPSTAT_WHAT_STEP_RESUME:
527159b7 3535 if (debug_infrun)
8802d8ed 3536 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
527159b7 3537
4e1c45ea
PA
3538 delete_step_resume_breakpoint (ecs->event_thread);
3539 if (ecs->event_thread->step_after_step_resume_breakpoint)
68f53502
AC
3540 {
3541 /* Back when the step-resume breakpoint was inserted, we
3542 were trying to single-step off a breakpoint. Go back
3543 to doing that. */
4e1c45ea
PA
3544 ecs->event_thread->step_after_step_resume_breakpoint = 0;
3545 ecs->event_thread->stepping_over_breakpoint = 1;
68f53502
AC
3546 keep_going (ecs);
3547 return;
3548 }
b2175913
MS
3549 if (stop_pc == ecs->stop_func_start
3550 && execution_direction == EXEC_REVERSE)
3551 {
3552 /* We are stepping over a function call in reverse, and
3553 just hit the step-resume breakpoint at the start
3554 address of the function. Go back to single-stepping,
3555 which should take us back to the function call. */
3556 ecs->event_thread->stepping_over_breakpoint = 1;
3557 keep_going (ecs);
3558 return;
3559 }
488f131b
JB
3560 break;
3561
488f131b 3562 case BPSTAT_WHAT_CHECK_SHLIBS:
c906108c 3563 {
527159b7 3564 if (debug_infrun)
8802d8ed 3565 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
488f131b
JB
3566
3567 /* Check for any newly added shared libraries if we're
3568 supposed to be adding them automatically. Switch
3569 terminal for any messages produced by
3570 breakpoint_re_set. */
3571 target_terminal_ours_for_output ();
aff6338a 3572 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
3573 stack's section table is kept up-to-date. Architectures,
3574 (e.g., PPC64), use the section table to perform
3575 operations such as address => section name and hence
3576 require the table to contain all sections (including
3577 those found in shared libraries). */
a77053c2 3578#ifdef SOLIB_ADD
aff6338a 3579 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
a77053c2
MK
3580#else
3581 solib_add (NULL, 0, &current_target, auto_solib_add);
3582#endif
488f131b
JB
3583 target_terminal_inferior ();
3584
488f131b
JB
3585 /* If requested, stop when the dynamic linker notifies
3586 gdb of events. This allows the user to get control
3587 and place breakpoints in initializer routines for
3588 dynamically loaded objects (among other things). */
877522db 3589 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 3590 {
488f131b 3591 stop_stepping (ecs);
d4f3574e
SS
3592 return;
3593 }
c5aa993b 3594 else
c5aa993b 3595 {
488f131b 3596 /* We want to step over this breakpoint, then keep going. */
4e1c45ea 3597 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 3598 break;
c5aa993b 3599 }
488f131b 3600 }
488f131b 3601 break;
4efc6507
DE
3602
3603 case BPSTAT_WHAT_CHECK_JIT:
3604 if (debug_infrun)
3605 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_JIT\n");
3606
3607 /* Switch terminal for any messages produced by breakpoint_re_set. */
3608 target_terminal_ours_for_output ();
3609
0756c555 3610 jit_event_handler (gdbarch);
4efc6507
DE
3611
3612 target_terminal_inferior ();
3613
3614 /* We want to step over this breakpoint, then keep going. */
3615 ecs->event_thread->stepping_over_breakpoint = 1;
3616
3617 break;
c906108c 3618
488f131b
JB
3619 case BPSTAT_WHAT_LAST:
3620 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 3621
488f131b
JB
3622 case BPSTAT_WHAT_KEEP_CHECKING:
3623 break;
3624 }
3625 }
c906108c 3626
488f131b
JB
3627 /* We come here if we hit a breakpoint but should not
3628 stop for it. Possibly we also were stepping
3629 and should stop for that. So fall through and
3630 test for stepping. But, if not stepping,
3631 do not stop. */
c906108c 3632
a7212384
UW
3633 /* In all-stop mode, if we're currently stepping but have stopped in
3634 some other thread, we need to switch back to the stepped thread. */
3635 if (!non_stop)
3636 {
3637 struct thread_info *tp;
b3444185 3638 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
a7212384
UW
3639 ecs->event_thread);
3640 if (tp)
3641 {
3642 /* However, if the current thread is blocked on some internal
3643 breakpoint, and we simply need to step over that breakpoint
3644 to get it going again, do that first. */
3645 if ((ecs->event_thread->trap_expected
3646 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
3647 || ecs->event_thread->stepping_over_breakpoint)
3648 {
3649 keep_going (ecs);
3650 return;
3651 }
3652
66852e9c
PA
3653 /* If the stepping thread exited, then don't try to switch
3654 back and resume it, which could fail in several different
3655 ways depending on the target. Instead, just keep going.
3656
3657 We can find a stepping dead thread in the thread list in
3658 two cases:
3659
3660 - The target supports thread exit events, and when the
3661 target tries to delete the thread from the thread list,
3662 inferior_ptid pointed at the exiting thread. In such
3663 case, calling delete_thread does not really remove the
3664 thread from the list; instead, the thread is left listed,
3665 with 'exited' state.
3666
3667 - The target's debug interface does not support thread
3668 exit events, and so we have no idea whatsoever if the
3669 previously stepping thread is still alive. For that
3670 reason, we need to synchronously query the target
3671 now. */
b3444185
PA
3672 if (is_exited (tp->ptid)
3673 || !target_thread_alive (tp->ptid))
3674 {
3675 if (debug_infrun)
3676 fprintf_unfiltered (gdb_stdlog, "\
3677infrun: not switching back to stepped thread, it has vanished\n");
3678
3679 delete_thread (tp->ptid);
3680 keep_going (ecs);
3681 return;
3682 }
3683
a7212384
UW
3684 /* Otherwise, we no longer expect a trap in the current thread.
3685 Clear the trap_expected flag before switching back -- this is
3686 what keep_going would do as well, if we called it. */
3687 ecs->event_thread->trap_expected = 0;
3688
3689 if (debug_infrun)
3690 fprintf_unfiltered (gdb_stdlog,
3691 "infrun: switching back to stepped thread\n");
3692
3693 ecs->event_thread = tp;
3694 ecs->ptid = tp->ptid;
3695 context_switch (ecs->ptid);
3696 keep_going (ecs);
3697 return;
3698 }
3699 }
3700
9d1ff73f
MS
3701 /* Are we stepping to get the inferior out of the dynamic linker's
3702 hook (and possibly the dld itself) after catching a shlib
3703 event? */
4e1c45ea 3704 if (ecs->event_thread->stepping_through_solib_after_catch)
488f131b
JB
3705 {
3706#if defined(SOLIB_ADD)
3707 /* Have we reached our destination? If not, keep going. */
3708 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
3709 {
527159b7 3710 if (debug_infrun)
8a9de0e4 3711 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
4e1c45ea 3712 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 3713 keep_going (ecs);
104c1213 3714 return;
488f131b
JB
3715 }
3716#endif
527159b7 3717 if (debug_infrun)
8a9de0e4 3718 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
488f131b
JB
3719 /* Else, stop and report the catchpoint(s) whose triggering
3720 caused us to begin stepping. */
4e1c45ea 3721 ecs->event_thread->stepping_through_solib_after_catch = 0;
347bddb7
PA
3722 bpstat_clear (&ecs->event_thread->stop_bpstat);
3723 ecs->event_thread->stop_bpstat
3724 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
4e1c45ea 3725 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
488f131b
JB
3726 stop_print_frame = 1;
3727 stop_stepping (ecs);
3728 return;
3729 }
c906108c 3730
4e1c45ea 3731 if (ecs->event_thread->step_resume_breakpoint)
488f131b 3732 {
527159b7 3733 if (debug_infrun)
d3169d93
DJ
3734 fprintf_unfiltered (gdb_stdlog,
3735 "infrun: step-resume breakpoint is inserted\n");
527159b7 3736
488f131b
JB
3737 /* Having a step-resume breakpoint overrides anything
3738 else having to do with stepping commands until
3739 that breakpoint is reached. */
488f131b
JB
3740 keep_going (ecs);
3741 return;
3742 }
c5aa993b 3743
4e1c45ea 3744 if (ecs->event_thread->step_range_end == 0)
488f131b 3745 {
527159b7 3746 if (debug_infrun)
8a9de0e4 3747 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 3748 /* Likewise if we aren't even stepping. */
488f131b
JB
3749 keep_going (ecs);
3750 return;
3751 }
c5aa993b 3752
488f131b 3753 /* If stepping through a line, keep going if still within it.
c906108c 3754
488f131b
JB
3755 Note that step_range_end is the address of the first instruction
3756 beyond the step range, and NOT the address of the last instruction
31410e84
MS
3757 within it!
3758
3759 Note also that during reverse execution, we may be stepping
3760 through a function epilogue and therefore must detect when
3761 the current-frame changes in the middle of a line. */
3762
4e1c45ea 3763 if (stop_pc >= ecs->event_thread->step_range_start
31410e84
MS
3764 && stop_pc < ecs->event_thread->step_range_end
3765 && (execution_direction != EXEC_REVERSE
388a8562 3766 || frame_id_eq (get_frame_id (frame),
31410e84 3767 ecs->event_thread->step_frame_id)))
488f131b 3768 {
527159b7 3769 if (debug_infrun)
5af949e3
UW
3770 fprintf_unfiltered
3771 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
3772 paddress (gdbarch, ecs->event_thread->step_range_start),
3773 paddress (gdbarch, ecs->event_thread->step_range_end));
b2175913
MS
3774
3775 /* When stepping backward, stop at beginning of line range
3776 (unless it's the function entry point, in which case
3777 keep going back to the call point). */
3778 if (stop_pc == ecs->event_thread->step_range_start
3779 && stop_pc != ecs->stop_func_start
3780 && execution_direction == EXEC_REVERSE)
3781 {
3782 ecs->event_thread->stop_step = 1;
3783 print_stop_reason (END_STEPPING_RANGE, 0);
3784 stop_stepping (ecs);
3785 }
3786 else
3787 keep_going (ecs);
3788
488f131b
JB
3789 return;
3790 }
c5aa993b 3791
488f131b 3792 /* We stepped out of the stepping range. */
c906108c 3793
488f131b 3794 /* If we are stepping at the source level and entered the runtime
388a8562
MS
3795 loader dynamic symbol resolution code...
3796
3797 EXEC_FORWARD: we keep on single stepping until we exit the run
3798 time loader code and reach the callee's address.
3799
3800 EXEC_REVERSE: we've already executed the callee (backward), and
3801 the runtime loader code is handled just like any other
3802 undebuggable function call. Now we need only keep stepping
3803 backward through the trampoline code, and that's handled further
3804 down, so there is nothing for us to do here. */
3805
3806 if (execution_direction != EXEC_REVERSE
3807 && ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 3808 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 3809 {
4c8c40e6 3810 CORE_ADDR pc_after_resolver =
568d6575 3811 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 3812
527159b7 3813 if (debug_infrun)
8a9de0e4 3814 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
527159b7 3815
488f131b
JB
3816 if (pc_after_resolver)
3817 {
3818 /* Set up a step-resume breakpoint at the address
3819 indicated by SKIP_SOLIB_RESOLVER. */
3820 struct symtab_and_line sr_sal;
fe39c653 3821 init_sal (&sr_sal);
488f131b
JB
3822 sr_sal.pc = pc_after_resolver;
3823
a6d9a66e
UW
3824 insert_step_resume_breakpoint_at_sal (gdbarch,
3825 sr_sal, null_frame_id);
c5aa993b 3826 }
c906108c 3827
488f131b
JB
3828 keep_going (ecs);
3829 return;
3830 }
c906108c 3831
4e1c45ea 3832 if (ecs->event_thread->step_range_end != 1
078130d0
PA
3833 && (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3834 || ecs->event_thread->step_over_calls == STEP_OVER_ALL)
568d6575 3835 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 3836 {
527159b7 3837 if (debug_infrun)
8a9de0e4 3838 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
42edda50 3839 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
3840 a signal trampoline (either by a signal being delivered or by
3841 the signal handler returning). Just single-step until the
3842 inferior leaves the trampoline (either by calling the handler
3843 or returning). */
488f131b
JB
3844 keep_going (ecs);
3845 return;
3846 }
c906108c 3847
c17eaafe
DJ
3848 /* Check for subroutine calls. The check for the current frame
3849 equalling the step ID is not necessary - the check of the
3850 previous frame's ID is sufficient - but it is a common case and
3851 cheaper than checking the previous frame's ID.
14e60db5
DJ
3852
3853 NOTE: frame_id_eq will never report two invalid frame IDs as
3854 being equal, so to get into this block, both the current and
3855 previous frame must have valid frame IDs. */
005ca36a
JB
3856 /* The outer_frame_id check is a heuristic to detect stepping
3857 through startup code. If we step over an instruction which
3858 sets the stack pointer from an invalid value to a valid value,
3859 we may detect that as a subroutine call from the mythical
3860 "outermost" function. This could be fixed by marking
3861 outermost frames as !stack_p,code_p,special_p. Then the
3862 initial outermost frame, before sp was valid, would
3863 have code_addr == &_start. See the commend in frame_id_eq
3864 for more. */
edb3359d
DJ
3865 if (!frame_id_eq (get_stack_frame_id (frame),
3866 ecs->event_thread->step_stack_frame_id)
005ca36a
JB
3867 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
3868 ecs->event_thread->step_stack_frame_id)
3869 && (!frame_id_eq (ecs->event_thread->step_stack_frame_id,
3870 outer_frame_id)
3871 || step_start_function != find_pc_function (stop_pc))))
488f131b 3872 {
95918acb 3873 CORE_ADDR real_stop_pc;
8fb3e588 3874
527159b7 3875 if (debug_infrun)
8a9de0e4 3876 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 3877
078130d0 3878 if ((ecs->event_thread->step_over_calls == STEP_OVER_NONE)
4e1c45ea 3879 || ((ecs->event_thread->step_range_end == 1)
d80b854b 3880 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 3881 ecs->stop_func_start)))
95918acb
AC
3882 {
3883 /* I presume that step_over_calls is only 0 when we're
3884 supposed to be stepping at the assembly language level
3885 ("stepi"). Just stop. */
3886 /* Also, maybe we just did a "nexti" inside a prolog, so we
3887 thought it was a subroutine call but it was not. Stop as
3888 well. FENN */
388a8562 3889 /* And this works the same backward as frontward. MVS */
414c69f7 3890 ecs->event_thread->stop_step = 1;
95918acb
AC
3891 print_stop_reason (END_STEPPING_RANGE, 0);
3892 stop_stepping (ecs);
3893 return;
3894 }
8fb3e588 3895
388a8562
MS
3896 /* Reverse stepping through solib trampolines. */
3897
3898 if (execution_direction == EXEC_REVERSE
fdd654f3 3899 && ecs->event_thread->step_over_calls != STEP_OVER_NONE
388a8562
MS
3900 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
3901 || (ecs->stop_func_start == 0
3902 && in_solib_dynsym_resolve_code (stop_pc))))
3903 {
3904 /* Any solib trampoline code can be handled in reverse
3905 by simply continuing to single-step. We have already
3906 executed the solib function (backwards), and a few
3907 steps will take us back through the trampoline to the
3908 caller. */
3909 keep_going (ecs);
3910 return;
3911 }
3912
078130d0 3913 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
8567c30f 3914 {
b2175913
MS
3915 /* We're doing a "next".
3916
3917 Normal (forward) execution: set a breakpoint at the
3918 callee's return address (the address at which the caller
3919 will resume).
3920
3921 Reverse (backward) execution. set the step-resume
3922 breakpoint at the start of the function that we just
3923 stepped into (backwards), and continue to there. When we
6130d0b7 3924 get there, we'll need to single-step back to the caller. */
b2175913
MS
3925
3926 if (execution_direction == EXEC_REVERSE)
3927 {
3928 struct symtab_and_line sr_sal;
3067f6e5 3929
388a8562
MS
3930 /* Normal function call return (static or dynamic). */
3931 init_sal (&sr_sal);
3932 sr_sal.pc = ecs->stop_func_start;
a6d9a66e
UW
3933 insert_step_resume_breakpoint_at_sal (gdbarch,
3934 sr_sal, null_frame_id);
b2175913
MS
3935 }
3936 else
568d6575 3937 insert_step_resume_breakpoint_at_caller (frame);
b2175913 3938
8567c30f
AC
3939 keep_going (ecs);
3940 return;
3941 }
a53c66de 3942
95918acb 3943 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
3944 calling routine and the real function), locate the real
3945 function. That's what tells us (a) whether we want to step
3946 into it at all, and (b) what prologue we want to run to the
3947 end of, if we do step into it. */
568d6575 3948 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 3949 if (real_stop_pc == 0)
568d6575 3950 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
3951 if (real_stop_pc != 0)
3952 ecs->stop_func_start = real_stop_pc;
8fb3e588 3953
db5f024e 3954 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
3955 {
3956 struct symtab_and_line sr_sal;
3957 init_sal (&sr_sal);
3958 sr_sal.pc = ecs->stop_func_start;
3959
a6d9a66e
UW
3960 insert_step_resume_breakpoint_at_sal (gdbarch,
3961 sr_sal, null_frame_id);
8fb3e588
AC
3962 keep_going (ecs);
3963 return;
1b2bfbb9
RC
3964 }
3965
95918acb 3966 /* If we have line number information for the function we are
8fb3e588 3967 thinking of stepping into, step into it.
95918acb 3968
8fb3e588
AC
3969 If there are several symtabs at that PC (e.g. with include
3970 files), just want to know whether *any* of them have line
3971 numbers. find_pc_line handles this. */
95918acb
AC
3972 {
3973 struct symtab_and_line tmp_sal;
8fb3e588 3974
95918acb
AC
3975 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
3976 if (tmp_sal.line != 0)
3977 {
b2175913 3978 if (execution_direction == EXEC_REVERSE)
568d6575 3979 handle_step_into_function_backward (gdbarch, ecs);
b2175913 3980 else
568d6575 3981 handle_step_into_function (gdbarch, ecs);
95918acb
AC
3982 return;
3983 }
3984 }
3985
3986 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
3987 set, we stop the step so that the user has a chance to switch
3988 in assembly mode. */
078130d0
PA
3989 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3990 && step_stop_if_no_debug)
95918acb 3991 {
414c69f7 3992 ecs->event_thread->stop_step = 1;
95918acb
AC
3993 print_stop_reason (END_STEPPING_RANGE, 0);
3994 stop_stepping (ecs);
3995 return;
3996 }
3997
b2175913
MS
3998 if (execution_direction == EXEC_REVERSE)
3999 {
4000 /* Set a breakpoint at callee's start address.
4001 From there we can step once and be back in the caller. */
4002 struct symtab_and_line sr_sal;
4003 init_sal (&sr_sal);
4004 sr_sal.pc = ecs->stop_func_start;
a6d9a66e
UW
4005 insert_step_resume_breakpoint_at_sal (gdbarch,
4006 sr_sal, null_frame_id);
b2175913
MS
4007 }
4008 else
4009 /* Set a breakpoint at callee's return address (the address
4010 at which the caller will resume). */
568d6575 4011 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4012
95918acb 4013 keep_going (ecs);
488f131b 4014 return;
488f131b 4015 }
c906108c 4016
fdd654f3
MS
4017 /* Reverse stepping through solib trampolines. */
4018
4019 if (execution_direction == EXEC_REVERSE
4020 && ecs->event_thread->step_over_calls != STEP_OVER_NONE)
4021 {
4022 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4023 || (ecs->stop_func_start == 0
4024 && in_solib_dynsym_resolve_code (stop_pc)))
4025 {
4026 /* Any solib trampoline code can be handled in reverse
4027 by simply continuing to single-step. We have already
4028 executed the solib function (backwards), and a few
4029 steps will take us back through the trampoline to the
4030 caller. */
4031 keep_going (ecs);
4032 return;
4033 }
4034 else if (in_solib_dynsym_resolve_code (stop_pc))
4035 {
4036 /* Stepped backward into the solib dynsym resolver.
4037 Set a breakpoint at its start and continue, then
4038 one more step will take us out. */
4039 struct symtab_and_line sr_sal;
4040 init_sal (&sr_sal);
4041 sr_sal.pc = ecs->stop_func_start;
4042 insert_step_resume_breakpoint_at_sal (gdbarch,
4043 sr_sal, null_frame_id);
4044 keep_going (ecs);
4045 return;
4046 }
4047 }
4048
488f131b
JB
4049 /* If we're in the return path from a shared library trampoline,
4050 we want to proceed through the trampoline when stepping. */
568d6575 4051 if (gdbarch_in_solib_return_trampoline (gdbarch,
e76f05fa 4052 stop_pc, ecs->stop_func_name))
488f131b 4053 {
488f131b 4054 /* Determine where this trampoline returns. */
52f729a7 4055 CORE_ADDR real_stop_pc;
568d6575 4056 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
c906108c 4057
527159b7 4058 if (debug_infrun)
8a9de0e4 4059 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
527159b7 4060
488f131b 4061 /* Only proceed through if we know where it's going. */
d764a824 4062 if (real_stop_pc)
488f131b
JB
4063 {
4064 /* And put the step-breakpoint there and go until there. */
4065 struct symtab_and_line sr_sal;
4066
fe39c653 4067 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 4068 sr_sal.pc = real_stop_pc;
488f131b 4069 sr_sal.section = find_pc_overlay (sr_sal.pc);
44cbf7b5
AC
4070
4071 /* Do not specify what the fp should be when we stop since
4072 on some machines the prologue is where the new fp value
4073 is established. */
a6d9a66e
UW
4074 insert_step_resume_breakpoint_at_sal (gdbarch,
4075 sr_sal, null_frame_id);
c906108c 4076
488f131b
JB
4077 /* Restart without fiddling with the step ranges or
4078 other state. */
4079 keep_going (ecs);
4080 return;
4081 }
4082 }
c906108c 4083
2afb61aa 4084 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 4085
1b2bfbb9
RC
4086 /* NOTE: tausq/2004-05-24: This if block used to be done before all
4087 the trampoline processing logic, however, there are some trampolines
4088 that have no names, so we should do trampoline handling first. */
078130d0 4089 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 4090 && ecs->stop_func_name == NULL
2afb61aa 4091 && stop_pc_sal.line == 0)
1b2bfbb9 4092 {
527159b7 4093 if (debug_infrun)
8a9de0e4 4094 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
527159b7 4095
1b2bfbb9 4096 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
4097 undebuggable function (where there is no debugging information
4098 and no line number corresponding to the address where the
1b2bfbb9
RC
4099 inferior stopped). Since we want to skip this kind of code,
4100 we keep going until the inferior returns from this
14e60db5
DJ
4101 function - unless the user has asked us not to (via
4102 set step-mode) or we no longer know how to get back
4103 to the call site. */
4104 if (step_stop_if_no_debug
c7ce8faa 4105 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
4106 {
4107 /* If we have no line number and the step-stop-if-no-debug
4108 is set, we stop the step so that the user has a chance to
4109 switch in assembly mode. */
414c69f7 4110 ecs->event_thread->stop_step = 1;
1b2bfbb9
RC
4111 print_stop_reason (END_STEPPING_RANGE, 0);
4112 stop_stepping (ecs);
4113 return;
4114 }
4115 else
4116 {
4117 /* Set a breakpoint at callee's return address (the address
4118 at which the caller will resume). */
568d6575 4119 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
4120 keep_going (ecs);
4121 return;
4122 }
4123 }
4124
4e1c45ea 4125 if (ecs->event_thread->step_range_end == 1)
1b2bfbb9
RC
4126 {
4127 /* It is stepi or nexti. We always want to stop stepping after
4128 one instruction. */
527159b7 4129 if (debug_infrun)
8a9de0e4 4130 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
414c69f7 4131 ecs->event_thread->stop_step = 1;
1b2bfbb9
RC
4132 print_stop_reason (END_STEPPING_RANGE, 0);
4133 stop_stepping (ecs);
4134 return;
4135 }
4136
2afb61aa 4137 if (stop_pc_sal.line == 0)
488f131b
JB
4138 {
4139 /* We have no line number information. That means to stop
4140 stepping (does this always happen right after one instruction,
4141 when we do "s" in a function with no line numbers,
4142 or can this happen as a result of a return or longjmp?). */
527159b7 4143 if (debug_infrun)
8a9de0e4 4144 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
414c69f7 4145 ecs->event_thread->stop_step = 1;
488f131b
JB
4146 print_stop_reason (END_STEPPING_RANGE, 0);
4147 stop_stepping (ecs);
4148 return;
4149 }
c906108c 4150
edb3359d
DJ
4151 /* Look for "calls" to inlined functions, part one. If the inline
4152 frame machinery detected some skipped call sites, we have entered
4153 a new inline function. */
4154
4155 if (frame_id_eq (get_frame_id (get_current_frame ()),
4156 ecs->event_thread->step_frame_id)
4157 && inline_skipped_frames (ecs->ptid))
4158 {
4159 struct symtab_and_line call_sal;
4160
4161 if (debug_infrun)
4162 fprintf_unfiltered (gdb_stdlog,
4163 "infrun: stepped into inlined function\n");
4164
4165 find_frame_sal (get_current_frame (), &call_sal);
4166
4167 if (ecs->event_thread->step_over_calls != STEP_OVER_ALL)
4168 {
4169 /* For "step", we're going to stop. But if the call site
4170 for this inlined function is on the same source line as
4171 we were previously stepping, go down into the function
4172 first. Otherwise stop at the call site. */
4173
4174 if (call_sal.line == ecs->event_thread->current_line
4175 && call_sal.symtab == ecs->event_thread->current_symtab)
4176 step_into_inline_frame (ecs->ptid);
4177
4178 ecs->event_thread->stop_step = 1;
4179 print_stop_reason (END_STEPPING_RANGE, 0);
4180 stop_stepping (ecs);
4181 return;
4182 }
4183 else
4184 {
4185 /* For "next", we should stop at the call site if it is on a
4186 different source line. Otherwise continue through the
4187 inlined function. */
4188 if (call_sal.line == ecs->event_thread->current_line
4189 && call_sal.symtab == ecs->event_thread->current_symtab)
4190 keep_going (ecs);
4191 else
4192 {
4193 ecs->event_thread->stop_step = 1;
4194 print_stop_reason (END_STEPPING_RANGE, 0);
4195 stop_stepping (ecs);
4196 }
4197 return;
4198 }
4199 }
4200
4201 /* Look for "calls" to inlined functions, part two. If we are still
4202 in the same real function we were stepping through, but we have
4203 to go further up to find the exact frame ID, we are stepping
4204 through a more inlined call beyond its call site. */
4205
4206 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
4207 && !frame_id_eq (get_frame_id (get_current_frame ()),
4208 ecs->event_thread->step_frame_id)
4209 && stepped_in_from (get_current_frame (),
4210 ecs->event_thread->step_frame_id))
4211 {
4212 if (debug_infrun)
4213 fprintf_unfiltered (gdb_stdlog,
4214 "infrun: stepping through inlined function\n");
4215
4216 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
4217 keep_going (ecs);
4218 else
4219 {
4220 ecs->event_thread->stop_step = 1;
4221 print_stop_reason (END_STEPPING_RANGE, 0);
4222 stop_stepping (ecs);
4223 }
4224 return;
4225 }
4226
2afb61aa 4227 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
4228 && (ecs->event_thread->current_line != stop_pc_sal.line
4229 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
4230 {
4231 /* We are at the start of a different line. So stop. Note that
4232 we don't stop if we step into the middle of a different line.
4233 That is said to make things like for (;;) statements work
4234 better. */
527159b7 4235 if (debug_infrun)
8a9de0e4 4236 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
414c69f7 4237 ecs->event_thread->stop_step = 1;
488f131b
JB
4238 print_stop_reason (END_STEPPING_RANGE, 0);
4239 stop_stepping (ecs);
4240 return;
4241 }
c906108c 4242
488f131b 4243 /* We aren't done stepping.
c906108c 4244
488f131b
JB
4245 Optimize by setting the stepping range to the line.
4246 (We might not be in the original line, but if we entered a
4247 new line in mid-statement, we continue stepping. This makes
4248 things like for(;;) statements work better.) */
c906108c 4249
4e1c45ea
PA
4250 ecs->event_thread->step_range_start = stop_pc_sal.pc;
4251 ecs->event_thread->step_range_end = stop_pc_sal.end;
edb3359d 4252 set_step_info (frame, stop_pc_sal);
488f131b 4253
527159b7 4254 if (debug_infrun)
8a9de0e4 4255 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 4256 keep_going (ecs);
104c1213
JM
4257}
4258
b3444185 4259/* Is thread TP in the middle of single-stepping? */
104c1213 4260
a7212384 4261static int
b3444185 4262currently_stepping (struct thread_info *tp)
a7212384 4263{
b3444185
PA
4264 return ((tp->step_range_end && tp->step_resume_breakpoint == NULL)
4265 || tp->trap_expected
4266 || tp->stepping_through_solib_after_catch
4267 || bpstat_should_step ());
a7212384
UW
4268}
4269
b3444185
PA
4270/* Returns true if any thread *but* the one passed in "data" is in the
4271 middle of stepping or of handling a "next". */
a7212384 4272
104c1213 4273static int
b3444185 4274currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
104c1213 4275{
b3444185
PA
4276 if (tp == data)
4277 return 0;
4278
4279 return (tp->step_range_end
4280 || tp->trap_expected
4281 || tp->stepping_through_solib_after_catch);
104c1213 4282}
c906108c 4283
b2175913
MS
4284/* Inferior has stepped into a subroutine call with source code that
4285 we should not step over. Do step to the first line of code in
4286 it. */
c2c6d25f
JM
4287
4288static void
568d6575
UW
4289handle_step_into_function (struct gdbarch *gdbarch,
4290 struct execution_control_state *ecs)
c2c6d25f
JM
4291{
4292 struct symtab *s;
2afb61aa 4293 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f
JM
4294
4295 s = find_pc_symtab (stop_pc);
4296 if (s && s->language != language_asm)
568d6575 4297 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 4298 ecs->stop_func_start);
c2c6d25f 4299
2afb61aa 4300 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
4301 /* Use the step_resume_break to step until the end of the prologue,
4302 even if that involves jumps (as it seems to on the vax under
4303 4.2). */
4304 /* If the prologue ends in the middle of a source line, continue to
4305 the end of that source line (if it is still within the function).
4306 Otherwise, just go to end of prologue. */
2afb61aa
PA
4307 if (stop_func_sal.end
4308 && stop_func_sal.pc != ecs->stop_func_start
4309 && stop_func_sal.end < ecs->stop_func_end)
4310 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 4311
2dbd5e30
KB
4312 /* Architectures which require breakpoint adjustment might not be able
4313 to place a breakpoint at the computed address. If so, the test
4314 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
4315 ecs->stop_func_start to an address at which a breakpoint may be
4316 legitimately placed.
8fb3e588 4317
2dbd5e30
KB
4318 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
4319 made, GDB will enter an infinite loop when stepping through
4320 optimized code consisting of VLIW instructions which contain
4321 subinstructions corresponding to different source lines. On
4322 FR-V, it's not permitted to place a breakpoint on any but the
4323 first subinstruction of a VLIW instruction. When a breakpoint is
4324 set, GDB will adjust the breakpoint address to the beginning of
4325 the VLIW instruction. Thus, we need to make the corresponding
4326 adjustment here when computing the stop address. */
8fb3e588 4327
568d6575 4328 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
4329 {
4330 ecs->stop_func_start
568d6575 4331 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 4332 ecs->stop_func_start);
2dbd5e30
KB
4333 }
4334
c2c6d25f
JM
4335 if (ecs->stop_func_start == stop_pc)
4336 {
4337 /* We are already there: stop now. */
414c69f7 4338 ecs->event_thread->stop_step = 1;
488f131b 4339 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
4340 stop_stepping (ecs);
4341 return;
4342 }
4343 else
4344 {
4345 /* Put the step-breakpoint there and go until there. */
fe39c653 4346 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
4347 sr_sal.pc = ecs->stop_func_start;
4348 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
44cbf7b5 4349
c2c6d25f 4350 /* Do not specify what the fp should be when we stop since on
488f131b
JB
4351 some machines the prologue is where the new fp value is
4352 established. */
a6d9a66e 4353 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
4354
4355 /* And make sure stepping stops right away then. */
4e1c45ea 4356 ecs->event_thread->step_range_end = ecs->event_thread->step_range_start;
c2c6d25f
JM
4357 }
4358 keep_going (ecs);
4359}
d4f3574e 4360
b2175913
MS
4361/* Inferior has stepped backward into a subroutine call with source
4362 code that we should not step over. Do step to the beginning of the
4363 last line of code in it. */
4364
4365static void
568d6575
UW
4366handle_step_into_function_backward (struct gdbarch *gdbarch,
4367 struct execution_control_state *ecs)
b2175913
MS
4368{
4369 struct symtab *s;
4370 struct symtab_and_line stop_func_sal, sr_sal;
4371
4372 s = find_pc_symtab (stop_pc);
4373 if (s && s->language != language_asm)
568d6575 4374 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
4375 ecs->stop_func_start);
4376
4377 stop_func_sal = find_pc_line (stop_pc, 0);
4378
4379 /* OK, we're just going to keep stepping here. */
4380 if (stop_func_sal.pc == stop_pc)
4381 {
4382 /* We're there already. Just stop stepping now. */
4383 ecs->event_thread->stop_step = 1;
4384 print_stop_reason (END_STEPPING_RANGE, 0);
4385 stop_stepping (ecs);
4386 }
4387 else
4388 {
4389 /* Else just reset the step range and keep going.
4390 No step-resume breakpoint, they don't work for
4391 epilogues, which can have multiple entry paths. */
4392 ecs->event_thread->step_range_start = stop_func_sal.pc;
4393 ecs->event_thread->step_range_end = stop_func_sal.end;
4394 keep_going (ecs);
4395 }
4396 return;
4397}
4398
d3169d93 4399/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
4400 This is used to both functions and to skip over code. */
4401
4402static void
a6d9a66e
UW
4403insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
4404 struct symtab_and_line sr_sal,
44cbf7b5
AC
4405 struct frame_id sr_id)
4406{
611c83ae
PA
4407 /* There should never be more than one step-resume or longjmp-resume
4408 breakpoint per thread, so we should never be setting a new
44cbf7b5 4409 step_resume_breakpoint when one is already active. */
4e1c45ea 4410 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
d3169d93
DJ
4411
4412 if (debug_infrun)
4413 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
4414 "infrun: inserting step-resume breakpoint at %s\n",
4415 paddress (gdbarch, sr_sal.pc));
d3169d93 4416
4e1c45ea 4417 inferior_thread ()->step_resume_breakpoint
a6d9a66e 4418 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, bp_step_resume);
44cbf7b5 4419}
7ce450bd 4420
d3169d93 4421/* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
14e60db5 4422 to skip a potential signal handler.
7ce450bd 4423
14e60db5
DJ
4424 This is called with the interrupted function's frame. The signal
4425 handler, when it returns, will resume the interrupted function at
4426 RETURN_FRAME.pc. */
d303a6c7
AC
4427
4428static void
44cbf7b5 4429insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
4430{
4431 struct symtab_and_line sr_sal;
a6d9a66e 4432 struct gdbarch *gdbarch;
d303a6c7 4433
f4c1edd8 4434 gdb_assert (return_frame != NULL);
d303a6c7
AC
4435 init_sal (&sr_sal); /* initialize to zeros */
4436
a6d9a66e 4437 gdbarch = get_frame_arch (return_frame);
568d6575 4438 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7
AC
4439 sr_sal.section = find_pc_overlay (sr_sal.pc);
4440
a6d9a66e
UW
4441 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
4442 get_stack_frame_id (return_frame));
d303a6c7
AC
4443}
4444
14e60db5
DJ
4445/* Similar to insert_step_resume_breakpoint_at_frame, except
4446 but a breakpoint at the previous frame's PC. This is used to
4447 skip a function after stepping into it (for "next" or if the called
4448 function has no debugging information).
4449
4450 The current function has almost always been reached by single
4451 stepping a call or return instruction. NEXT_FRAME belongs to the
4452 current function, and the breakpoint will be set at the caller's
4453 resume address.
4454
4455 This is a separate function rather than reusing
4456 insert_step_resume_breakpoint_at_frame in order to avoid
4457 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 4458 of frame_unwind_caller_id for an example). */
14e60db5
DJ
4459
4460static void
4461insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
4462{
4463 struct symtab_and_line sr_sal;
a6d9a66e 4464 struct gdbarch *gdbarch;
14e60db5
DJ
4465
4466 /* We shouldn't have gotten here if we don't know where the call site
4467 is. */
c7ce8faa 4468 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
4469
4470 init_sal (&sr_sal); /* initialize to zeros */
4471
a6d9a66e 4472 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
4473 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
4474 frame_unwind_caller_pc (next_frame));
14e60db5
DJ
4475 sr_sal.section = find_pc_overlay (sr_sal.pc);
4476
a6d9a66e 4477 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 4478 frame_unwind_caller_id (next_frame));
14e60db5
DJ
4479}
4480
611c83ae
PA
4481/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
4482 new breakpoint at the target of a jmp_buf. The handling of
4483 longjmp-resume uses the same mechanisms used for handling
4484 "step-resume" breakpoints. */
4485
4486static void
a6d9a66e 4487insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae
PA
4488{
4489 /* There should never be more than one step-resume or longjmp-resume
4490 breakpoint per thread, so we should never be setting a new
4491 longjmp_resume_breakpoint when one is already active. */
4e1c45ea 4492 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
611c83ae
PA
4493
4494 if (debug_infrun)
4495 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
4496 "infrun: inserting longjmp-resume breakpoint at %s\n",
4497 paddress (gdbarch, pc));
611c83ae 4498
4e1c45ea 4499 inferior_thread ()->step_resume_breakpoint =
a6d9a66e 4500 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
4501}
4502
104c1213
JM
4503static void
4504stop_stepping (struct execution_control_state *ecs)
4505{
527159b7 4506 if (debug_infrun)
8a9de0e4 4507 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 4508
cd0fc7c3
SS
4509 /* Let callers know we don't want to wait for the inferior anymore. */
4510 ecs->wait_some_more = 0;
4511}
4512
d4f3574e
SS
4513/* This function handles various cases where we need to continue
4514 waiting for the inferior. */
4515/* (Used to be the keep_going: label in the old wait_for_inferior) */
4516
4517static void
4518keep_going (struct execution_control_state *ecs)
4519{
d4f3574e 4520 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
4521 ecs->event_thread->prev_pc
4522 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 4523
d4f3574e
SS
4524 /* If we did not do break;, it means we should keep running the
4525 inferior and not return to debugger. */
4526
2020b7ab
PA
4527 if (ecs->event_thread->trap_expected
4528 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
d4f3574e
SS
4529 {
4530 /* We took a signal (which we are supposed to pass through to
4e1c45ea
PA
4531 the inferior, else we'd not get here) and we haven't yet
4532 gotten our trap. Simply continue. */
2020b7ab
PA
4533 resume (currently_stepping (ecs->event_thread),
4534 ecs->event_thread->stop_signal);
d4f3574e
SS
4535 }
4536 else
4537 {
4538 /* Either the trap was not expected, but we are continuing
488f131b
JB
4539 anyway (the user asked that this signal be passed to the
4540 child)
4541 -- or --
4542 The signal was SIGTRAP, e.g. it was our signal, but we
4543 decided we should resume from it.
d4f3574e 4544
c36b740a 4545 We're going to run this baby now!
d4f3574e 4546
c36b740a
VP
4547 Note that insert_breakpoints won't try to re-insert
4548 already inserted breakpoints. Therefore, we don't
4549 care if breakpoints were already inserted, or not. */
4550
4e1c45ea 4551 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 4552 {
9f5a595d
UW
4553 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
4554 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
4555 /* Since we can't do a displaced step, we have to remove
4556 the breakpoint while we step it. To keep things
4557 simple, we remove them all. */
4558 remove_breakpoints ();
45e8c884
VP
4559 }
4560 else
d4f3574e 4561 {
e236ba44 4562 struct gdb_exception e;
569631c6
UW
4563 /* Stop stepping when inserting breakpoints
4564 has failed. */
e236ba44
VP
4565 TRY_CATCH (e, RETURN_MASK_ERROR)
4566 {
4567 insert_breakpoints ();
4568 }
4569 if (e.reason < 0)
d4f3574e
SS
4570 {
4571 stop_stepping (ecs);
4572 return;
4573 }
d4f3574e
SS
4574 }
4575
4e1c45ea 4576 ecs->event_thread->trap_expected = ecs->event_thread->stepping_over_breakpoint;
d4f3574e
SS
4577
4578 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
4579 specifies that such a signal should be delivered to the
4580 target program).
4581
4582 Typically, this would occure when a user is debugging a
4583 target monitor on a simulator: the target monitor sets a
4584 breakpoint; the simulator encounters this break-point and
4585 halts the simulation handing control to GDB; GDB, noteing
4586 that the break-point isn't valid, returns control back to the
4587 simulator; the simulator then delivers the hardware
4588 equivalent of a SIGNAL_TRAP to the program being debugged. */
4589
2020b7ab
PA
4590 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4591 && !signal_program[ecs->event_thread->stop_signal])
4592 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
d4f3574e 4593
2020b7ab
PA
4594 resume (currently_stepping (ecs->event_thread),
4595 ecs->event_thread->stop_signal);
d4f3574e
SS
4596 }
4597
488f131b 4598 prepare_to_wait (ecs);
d4f3574e
SS
4599}
4600
104c1213
JM
4601/* This function normally comes after a resume, before
4602 handle_inferior_event exits. It takes care of any last bits of
4603 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 4604
104c1213
JM
4605static void
4606prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 4607{
527159b7 4608 if (debug_infrun)
8a9de0e4 4609 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 4610
104c1213
JM
4611 /* This is the old end of the while loop. Let everybody know we
4612 want to wait for the inferior some more and get called again
4613 soon. */
4614 ecs->wait_some_more = 1;
c906108c 4615}
11cf8741
JM
4616
4617/* Print why the inferior has stopped. We always print something when
4618 the inferior exits, or receives a signal. The rest of the cases are
4619 dealt with later on in normal_stop() and print_it_typical(). Ideally
4620 there should be a call to this function from handle_inferior_event()
4621 each time stop_stepping() is called.*/
4622static void
4623print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
4624{
4625 switch (stop_reason)
4626 {
11cf8741
JM
4627 case END_STEPPING_RANGE:
4628 /* We are done with a step/next/si/ni command. */
4629 /* For now print nothing. */
fb40c209 4630 /* Print a message only if not in the middle of doing a "step n"
488f131b 4631 operation for n > 1 */
414c69f7
PA
4632 if (!inferior_thread ()->step_multi
4633 || !inferior_thread ()->stop_step)
9dc5e2a9 4634 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4635 ui_out_field_string
4636 (uiout, "reason",
4637 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
11cf8741 4638 break;
11cf8741
JM
4639 case SIGNAL_EXITED:
4640 /* The inferior was terminated by a signal. */
8b93c638 4641 annotate_signalled ();
9dc5e2a9 4642 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4643 ui_out_field_string
4644 (uiout, "reason",
4645 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8b93c638
JM
4646 ui_out_text (uiout, "\nProgram terminated with signal ");
4647 annotate_signal_name ();
488f131b
JB
4648 ui_out_field_string (uiout, "signal-name",
4649 target_signal_to_name (stop_info));
8b93c638
JM
4650 annotate_signal_name_end ();
4651 ui_out_text (uiout, ", ");
4652 annotate_signal_string ();
488f131b
JB
4653 ui_out_field_string (uiout, "signal-meaning",
4654 target_signal_to_string (stop_info));
8b93c638
JM
4655 annotate_signal_string_end ();
4656 ui_out_text (uiout, ".\n");
4657 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
4658 break;
4659 case EXITED:
4660 /* The inferior program is finished. */
8b93c638
JM
4661 annotate_exited (stop_info);
4662 if (stop_info)
4663 {
9dc5e2a9 4664 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4665 ui_out_field_string (uiout, "reason",
4666 async_reason_lookup (EXEC_ASYNC_EXITED));
8b93c638 4667 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
4668 ui_out_field_fmt (uiout, "exit-code", "0%o",
4669 (unsigned int) stop_info);
8b93c638
JM
4670 ui_out_text (uiout, ".\n");
4671 }
4672 else
4673 {
9dc5e2a9 4674 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4675 ui_out_field_string
4676 (uiout, "reason",
4677 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8b93c638
JM
4678 ui_out_text (uiout, "\nProgram exited normally.\n");
4679 }
f17517ea
AS
4680 /* Support the --return-child-result option. */
4681 return_child_result_value = stop_info;
11cf8741
JM
4682 break;
4683 case SIGNAL_RECEIVED:
252fbfc8
PA
4684 /* Signal received. The signal table tells us to print about
4685 it. */
8b93c638 4686 annotate_signal ();
252fbfc8
PA
4687
4688 if (stop_info == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
4689 {
4690 struct thread_info *t = inferior_thread ();
4691
4692 ui_out_text (uiout, "\n[");
4693 ui_out_field_string (uiout, "thread-name",
4694 target_pid_to_str (t->ptid));
4695 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
4696 ui_out_text (uiout, " stopped");
4697 }
4698 else
4699 {
4700 ui_out_text (uiout, "\nProgram received signal ");
4701 annotate_signal_name ();
4702 if (ui_out_is_mi_like_p (uiout))
4703 ui_out_field_string
4704 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
4705 ui_out_field_string (uiout, "signal-name",
4706 target_signal_to_name (stop_info));
4707 annotate_signal_name_end ();
4708 ui_out_text (uiout, ", ");
4709 annotate_signal_string ();
4710 ui_out_field_string (uiout, "signal-meaning",
4711 target_signal_to_string (stop_info));
4712 annotate_signal_string_end ();
4713 }
8b93c638 4714 ui_out_text (uiout, ".\n");
11cf8741 4715 break;
b2175913
MS
4716 case NO_HISTORY:
4717 /* Reverse execution: target ran out of history info. */
4718 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
4719 break;
11cf8741 4720 default:
8e65ff28 4721 internal_error (__FILE__, __LINE__,
e2e0b3e5 4722 _("print_stop_reason: unrecognized enum value"));
11cf8741
JM
4723 break;
4724 }
4725}
c906108c 4726\f
43ff13b4 4727
c906108c
SS
4728/* Here to return control to GDB when the inferior stops for real.
4729 Print appropriate messages, remove breakpoints, give terminal our modes.
4730
4731 STOP_PRINT_FRAME nonzero means print the executing frame
4732 (pc, function, args, file, line number and line text).
4733 BREAKPOINTS_FAILED nonzero means stop was due to error
4734 attempting to insert breakpoints. */
4735
4736void
96baa820 4737normal_stop (void)
c906108c 4738{
73b65bb0
DJ
4739 struct target_waitstatus last;
4740 ptid_t last_ptid;
29f49a6a 4741 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
4742
4743 get_last_target_status (&last_ptid, &last);
4744
29f49a6a
PA
4745 /* If an exception is thrown from this point on, make sure to
4746 propagate GDB's knowledge of the executing state to the
4747 frontend/user running state. A QUIT is an easy exception to see
4748 here, so do this before any filtered output. */
c35b1492
PA
4749 if (!non_stop)
4750 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
4751 else if (last.kind != TARGET_WAITKIND_SIGNALLED
4752 && last.kind != TARGET_WAITKIND_EXITED)
4753 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 4754
4f8d22e3
PA
4755 /* In non-stop mode, we don't want GDB to switch threads behind the
4756 user's back, to avoid races where the user is typing a command to
4757 apply to thread x, but GDB switches to thread y before the user
4758 finishes entering the command. */
4759
c906108c
SS
4760 /* As with the notification of thread events, we want to delay
4761 notifying the user that we've switched thread context until
4762 the inferior actually stops.
4763
73b65bb0
DJ
4764 There's no point in saying anything if the inferior has exited.
4765 Note that SIGNALLED here means "exited with a signal", not
4766 "received a signal". */
4f8d22e3
PA
4767 if (!non_stop
4768 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
4769 && target_has_execution
4770 && last.kind != TARGET_WAITKIND_SIGNALLED
4771 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
4772 {
4773 target_terminal_ours_for_output ();
a3f17187 4774 printf_filtered (_("[Switching to %s]\n"),
c95310c6 4775 target_pid_to_str (inferior_ptid));
b8fa951a 4776 annotate_thread_changed ();
39f77062 4777 previous_inferior_ptid = inferior_ptid;
c906108c 4778 }
c906108c 4779
74960c60 4780 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
4781 {
4782 if (remove_breakpoints ())
4783 {
4784 target_terminal_ours_for_output ();
a3f17187
AC
4785 printf_filtered (_("\
4786Cannot remove breakpoints because program is no longer writable.\n\
a3f17187 4787Further execution is probably impossible.\n"));
c906108c
SS
4788 }
4789 }
c906108c 4790
c906108c
SS
4791 /* If an auto-display called a function and that got a signal,
4792 delete that auto-display to avoid an infinite recursion. */
4793
4794 if (stopped_by_random_signal)
4795 disable_current_display ();
4796
4797 /* Don't print a message if in the middle of doing a "step n"
4798 operation for n > 1 */
af679fd0
PA
4799 if (target_has_execution
4800 && last.kind != TARGET_WAITKIND_SIGNALLED
4801 && last.kind != TARGET_WAITKIND_EXITED
4802 && inferior_thread ()->step_multi
414c69f7 4803 && inferior_thread ()->stop_step)
c906108c
SS
4804 goto done;
4805
4806 target_terminal_ours ();
4807
7abfe014
DJ
4808 /* Set the current source location. This will also happen if we
4809 display the frame below, but the current SAL will be incorrect
4810 during a user hook-stop function. */
d729566a 4811 if (has_stack_frames () && !stop_stack_dummy)
7abfe014
DJ
4812 set_current_sal_from_frame (get_current_frame (), 1);
4813
dd7e2d2b
PA
4814 /* Let the user/frontend see the threads as stopped. */
4815 do_cleanups (old_chain);
4816
4817 /* Look up the hook_stop and run it (CLI internally handles problem
4818 of stop_command's pre-hook not existing). */
4819 if (stop_command)
4820 catch_errors (hook_stop_stub, stop_command,
4821 "Error while running hook_stop:\n", RETURN_MASK_ALL);
4822
d729566a 4823 if (!has_stack_frames ())
d51fd4c8 4824 goto done;
c906108c 4825
32400beb
PA
4826 if (last.kind == TARGET_WAITKIND_SIGNALLED
4827 || last.kind == TARGET_WAITKIND_EXITED)
4828 goto done;
4829
c906108c
SS
4830 /* Select innermost stack frame - i.e., current frame is frame 0,
4831 and current location is based on that.
4832 Don't do this on return from a stack dummy routine,
4833 or if the program has exited. */
4834
4835 if (!stop_stack_dummy)
4836 {
0f7d239c 4837 select_frame (get_current_frame ());
c906108c
SS
4838
4839 /* Print current location without a level number, if
c5aa993b
JM
4840 we have changed functions or hit a breakpoint.
4841 Print source line if we have one.
4842 bpstat_print() contains the logic deciding in detail
4843 what to print, based on the event(s) that just occurred. */
c906108c 4844
d01a8610
AS
4845 /* If --batch-silent is enabled then there's no need to print the current
4846 source location, and to try risks causing an error message about
4847 missing source files. */
4848 if (stop_print_frame && !batch_silent)
c906108c
SS
4849 {
4850 int bpstat_ret;
4851 int source_flag;
917317f4 4852 int do_frame_printing = 1;
347bddb7 4853 struct thread_info *tp = inferior_thread ();
c906108c 4854
347bddb7 4855 bpstat_ret = bpstat_print (tp->stop_bpstat);
917317f4
JM
4856 switch (bpstat_ret)
4857 {
4858 case PRINT_UNKNOWN:
b0f4b84b
DJ
4859 /* If we had hit a shared library event breakpoint,
4860 bpstat_print would print out this message. If we hit
4861 an OS-level shared library event, do the same
4862 thing. */
4863 if (last.kind == TARGET_WAITKIND_LOADED)
4864 {
4865 printf_filtered (_("Stopped due to shared library event\n"));
4866 source_flag = SRC_LINE; /* something bogus */
4867 do_frame_printing = 0;
4868 break;
4869 }
4870
aa0cd9c1 4871 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
4872 (or should) carry around the function and does (or
4873 should) use that when doing a frame comparison. */
414c69f7 4874 if (tp->stop_step
347bddb7 4875 && frame_id_eq (tp->step_frame_id,
aa0cd9c1 4876 get_frame_id (get_current_frame ()))
917317f4 4877 && step_start_function == find_pc_function (stop_pc))
488f131b 4878 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 4879 else
488f131b 4880 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
4881 break;
4882 case PRINT_SRC_AND_LOC:
488f131b 4883 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
4884 break;
4885 case PRINT_SRC_ONLY:
c5394b80 4886 source_flag = SRC_LINE;
917317f4
JM
4887 break;
4888 case PRINT_NOTHING:
488f131b 4889 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
4890 do_frame_printing = 0;
4891 break;
4892 default:
e2e0b3e5 4893 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 4894 }
c906108c
SS
4895
4896 /* The behavior of this routine with respect to the source
4897 flag is:
c5394b80
JM
4898 SRC_LINE: Print only source line
4899 LOCATION: Print only location
4900 SRC_AND_LOC: Print location and source line */
917317f4 4901 if (do_frame_printing)
b04f3ab4 4902 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
4903
4904 /* Display the auto-display expressions. */
4905 do_displays ();
4906 }
4907 }
4908
4909 /* Save the function value return registers, if we care.
4910 We might be about to restore their previous contents. */
32400beb 4911 if (inferior_thread ()->proceed_to_finish)
d5c31457
UW
4912 {
4913 /* This should not be necessary. */
4914 if (stop_registers)
4915 regcache_xfree (stop_registers);
4916
4917 /* NB: The copy goes through to the target picking up the value of
4918 all the registers. */
4919 stop_registers = regcache_dup (get_current_regcache ());
4920 }
c906108c
SS
4921
4922 if (stop_stack_dummy)
4923 {
b89667eb
DE
4924 /* Pop the empty frame that contains the stack dummy.
4925 This also restores inferior state prior to the call
4926 (struct inferior_thread_state). */
4927 struct frame_info *frame = get_current_frame ();
4928 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
4929 frame_pop (frame);
4930 /* frame_pop() calls reinit_frame_cache as the last thing it does
4931 which means there's currently no selected frame. We don't need
4932 to re-establish a selected frame if the dummy call returns normally,
4933 that will be done by restore_inferior_status. However, we do have
4934 to handle the case where the dummy call is returning after being
4935 stopped (e.g. the dummy call previously hit a breakpoint). We
4936 can't know which case we have so just always re-establish a
4937 selected frame here. */
0f7d239c 4938 select_frame (get_current_frame ());
c906108c
SS
4939 }
4940
c906108c
SS
4941done:
4942 annotate_stopped ();
41d2bdb4
PA
4943
4944 /* Suppress the stop observer if we're in the middle of:
4945
4946 - a step n (n > 1), as there still more steps to be done.
4947
4948 - a "finish" command, as the observer will be called in
4949 finish_command_continuation, so it can include the inferior
4950 function's return value.
4951
4952 - calling an inferior function, as we pretend we inferior didn't
4953 run at all. The return value of the call is handled by the
4954 expression evaluator, through call_function_by_hand. */
4955
4956 if (!target_has_execution
4957 || last.kind == TARGET_WAITKIND_SIGNALLED
4958 || last.kind == TARGET_WAITKIND_EXITED
4959 || (!inferior_thread ()->step_multi
4960 && !(inferior_thread ()->stop_bpstat
c5a4d20b
PA
4961 && inferior_thread ()->proceed_to_finish)
4962 && !inferior_thread ()->in_infcall))
347bddb7
PA
4963 {
4964 if (!ptid_equal (inferior_ptid, null_ptid))
1d33d6ba
VP
4965 observer_notify_normal_stop (inferior_thread ()->stop_bpstat,
4966 stop_print_frame);
347bddb7 4967 else
1d33d6ba 4968 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 4969 }
347bddb7 4970
48844aa6
PA
4971 if (target_has_execution)
4972 {
4973 if (last.kind != TARGET_WAITKIND_SIGNALLED
4974 && last.kind != TARGET_WAITKIND_EXITED)
4975 /* Delete the breakpoint we stopped at, if it wants to be deleted.
4976 Delete any breakpoint that is to be deleted at the next stop. */
4977 breakpoint_auto_delete (inferior_thread ()->stop_bpstat);
94cc34af 4978 }
c906108c
SS
4979}
4980
4981static int
96baa820 4982hook_stop_stub (void *cmd)
c906108c 4983{
5913bcb0 4984 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
4985 return (0);
4986}
4987\f
c5aa993b 4988int
96baa820 4989signal_stop_state (int signo)
c906108c 4990{
d6b48e9c 4991 return signal_stop[signo];
c906108c
SS
4992}
4993
c5aa993b 4994int
96baa820 4995signal_print_state (int signo)
c906108c
SS
4996{
4997 return signal_print[signo];
4998}
4999
c5aa993b 5000int
96baa820 5001signal_pass_state (int signo)
c906108c
SS
5002{
5003 return signal_program[signo];
5004}
5005
488f131b 5006int
7bda5e4a 5007signal_stop_update (int signo, int state)
d4f3574e
SS
5008{
5009 int ret = signal_stop[signo];
5010 signal_stop[signo] = state;
5011 return ret;
5012}
5013
488f131b 5014int
7bda5e4a 5015signal_print_update (int signo, int state)
d4f3574e
SS
5016{
5017 int ret = signal_print[signo];
5018 signal_print[signo] = state;
5019 return ret;
5020}
5021
488f131b 5022int
7bda5e4a 5023signal_pass_update (int signo, int state)
d4f3574e
SS
5024{
5025 int ret = signal_program[signo];
5026 signal_program[signo] = state;
5027 return ret;
5028}
5029
c906108c 5030static void
96baa820 5031sig_print_header (void)
c906108c 5032{
a3f17187
AC
5033 printf_filtered (_("\
5034Signal Stop\tPrint\tPass to program\tDescription\n"));
c906108c
SS
5035}
5036
5037static void
96baa820 5038sig_print_info (enum target_signal oursig)
c906108c 5039{
54363045 5040 const char *name = target_signal_to_name (oursig);
c906108c 5041 int name_padding = 13 - strlen (name);
96baa820 5042
c906108c
SS
5043 if (name_padding <= 0)
5044 name_padding = 0;
5045
5046 printf_filtered ("%s", name);
488f131b 5047 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
5048 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
5049 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
5050 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
5051 printf_filtered ("%s\n", target_signal_to_string (oursig));
5052}
5053
5054/* Specify how various signals in the inferior should be handled. */
5055
5056static void
96baa820 5057handle_command (char *args, int from_tty)
c906108c
SS
5058{
5059 char **argv;
5060 int digits, wordlen;
5061 int sigfirst, signum, siglast;
5062 enum target_signal oursig;
5063 int allsigs;
5064 int nsigs;
5065 unsigned char *sigs;
5066 struct cleanup *old_chain;
5067
5068 if (args == NULL)
5069 {
e2e0b3e5 5070 error_no_arg (_("signal to handle"));
c906108c
SS
5071 }
5072
5073 /* Allocate and zero an array of flags for which signals to handle. */
5074
5075 nsigs = (int) TARGET_SIGNAL_LAST;
5076 sigs = (unsigned char *) alloca (nsigs);
5077 memset (sigs, 0, nsigs);
5078
5079 /* Break the command line up into args. */
5080
d1a41061 5081 argv = gdb_buildargv (args);
7a292a7a 5082 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
5083
5084 /* Walk through the args, looking for signal oursigs, signal names, and
5085 actions. Signal numbers and signal names may be interspersed with
5086 actions, with the actions being performed for all signals cumulatively
5087 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
5088
5089 while (*argv != NULL)
5090 {
5091 wordlen = strlen (*argv);
5092 for (digits = 0; isdigit ((*argv)[digits]); digits++)
5093 {;
5094 }
5095 allsigs = 0;
5096 sigfirst = siglast = -1;
5097
5098 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
5099 {
5100 /* Apply action to all signals except those used by the
5101 debugger. Silently skip those. */
5102 allsigs = 1;
5103 sigfirst = 0;
5104 siglast = nsigs - 1;
5105 }
5106 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
5107 {
5108 SET_SIGS (nsigs, sigs, signal_stop);
5109 SET_SIGS (nsigs, sigs, signal_print);
5110 }
5111 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
5112 {
5113 UNSET_SIGS (nsigs, sigs, signal_program);
5114 }
5115 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
5116 {
5117 SET_SIGS (nsigs, sigs, signal_print);
5118 }
5119 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
5120 {
5121 SET_SIGS (nsigs, sigs, signal_program);
5122 }
5123 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
5124 {
5125 UNSET_SIGS (nsigs, sigs, signal_stop);
5126 }
5127 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
5128 {
5129 SET_SIGS (nsigs, sigs, signal_program);
5130 }
5131 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
5132 {
5133 UNSET_SIGS (nsigs, sigs, signal_print);
5134 UNSET_SIGS (nsigs, sigs, signal_stop);
5135 }
5136 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
5137 {
5138 UNSET_SIGS (nsigs, sigs, signal_program);
5139 }
5140 else if (digits > 0)
5141 {
5142 /* It is numeric. The numeric signal refers to our own
5143 internal signal numbering from target.h, not to host/target
5144 signal number. This is a feature; users really should be
5145 using symbolic names anyway, and the common ones like
5146 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
5147
5148 sigfirst = siglast = (int)
5149 target_signal_from_command (atoi (*argv));
5150 if ((*argv)[digits] == '-')
5151 {
5152 siglast = (int)
5153 target_signal_from_command (atoi ((*argv) + digits + 1));
5154 }
5155 if (sigfirst > siglast)
5156 {
5157 /* Bet he didn't figure we'd think of this case... */
5158 signum = sigfirst;
5159 sigfirst = siglast;
5160 siglast = signum;
5161 }
5162 }
5163 else
5164 {
5165 oursig = target_signal_from_name (*argv);
5166 if (oursig != TARGET_SIGNAL_UNKNOWN)
5167 {
5168 sigfirst = siglast = (int) oursig;
5169 }
5170 else
5171 {
5172 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 5173 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
5174 }
5175 }
5176
5177 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 5178 which signals to apply actions to. */
c906108c
SS
5179
5180 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
5181 {
5182 switch ((enum target_signal) signum)
5183 {
5184 case TARGET_SIGNAL_TRAP:
5185 case TARGET_SIGNAL_INT:
5186 if (!allsigs && !sigs[signum])
5187 {
9e2f0ad4
HZ
5188 if (query (_("%s is used by the debugger.\n\
5189Are you sure you want to change it? "), target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
5190 {
5191 sigs[signum] = 1;
5192 }
5193 else
5194 {
a3f17187 5195 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
5196 gdb_flush (gdb_stdout);
5197 }
5198 }
5199 break;
5200 case TARGET_SIGNAL_0:
5201 case TARGET_SIGNAL_DEFAULT:
5202 case TARGET_SIGNAL_UNKNOWN:
5203 /* Make sure that "all" doesn't print these. */
5204 break;
5205 default:
5206 sigs[signum] = 1;
5207 break;
5208 }
5209 }
5210
5211 argv++;
5212 }
5213
3a031f65
PA
5214 for (signum = 0; signum < nsigs; signum++)
5215 if (sigs[signum])
5216 {
5217 target_notice_signals (inferior_ptid);
c906108c 5218
3a031f65
PA
5219 if (from_tty)
5220 {
5221 /* Show the results. */
5222 sig_print_header ();
5223 for (; signum < nsigs; signum++)
5224 if (sigs[signum])
5225 sig_print_info (signum);
5226 }
5227
5228 break;
5229 }
c906108c
SS
5230
5231 do_cleanups (old_chain);
5232}
5233
5234static void
96baa820 5235xdb_handle_command (char *args, int from_tty)
c906108c
SS
5236{
5237 char **argv;
5238 struct cleanup *old_chain;
5239
d1a41061
PP
5240 if (args == NULL)
5241 error_no_arg (_("xdb command"));
5242
c906108c
SS
5243 /* Break the command line up into args. */
5244
d1a41061 5245 argv = gdb_buildargv (args);
7a292a7a 5246 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
5247 if (argv[1] != (char *) NULL)
5248 {
5249 char *argBuf;
5250 int bufLen;
5251
5252 bufLen = strlen (argv[0]) + 20;
5253 argBuf = (char *) xmalloc (bufLen);
5254 if (argBuf)
5255 {
5256 int validFlag = 1;
5257 enum target_signal oursig;
5258
5259 oursig = target_signal_from_name (argv[0]);
5260 memset (argBuf, 0, bufLen);
5261 if (strcmp (argv[1], "Q") == 0)
5262 sprintf (argBuf, "%s %s", argv[0], "noprint");
5263 else
5264 {
5265 if (strcmp (argv[1], "s") == 0)
5266 {
5267 if (!signal_stop[oursig])
5268 sprintf (argBuf, "%s %s", argv[0], "stop");
5269 else
5270 sprintf (argBuf, "%s %s", argv[0], "nostop");
5271 }
5272 else if (strcmp (argv[1], "i") == 0)
5273 {
5274 if (!signal_program[oursig])
5275 sprintf (argBuf, "%s %s", argv[0], "pass");
5276 else
5277 sprintf (argBuf, "%s %s", argv[0], "nopass");
5278 }
5279 else if (strcmp (argv[1], "r") == 0)
5280 {
5281 if (!signal_print[oursig])
5282 sprintf (argBuf, "%s %s", argv[0], "print");
5283 else
5284 sprintf (argBuf, "%s %s", argv[0], "noprint");
5285 }
5286 else
5287 validFlag = 0;
5288 }
5289 if (validFlag)
5290 handle_command (argBuf, from_tty);
5291 else
a3f17187 5292 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 5293 if (argBuf)
b8c9b27d 5294 xfree (argBuf);
c906108c
SS
5295 }
5296 }
5297 do_cleanups (old_chain);
5298}
5299
5300/* Print current contents of the tables set by the handle command.
5301 It is possible we should just be printing signals actually used
5302 by the current target (but for things to work right when switching
5303 targets, all signals should be in the signal tables). */
5304
5305static void
96baa820 5306signals_info (char *signum_exp, int from_tty)
c906108c
SS
5307{
5308 enum target_signal oursig;
5309 sig_print_header ();
5310
5311 if (signum_exp)
5312 {
5313 /* First see if this is a symbol name. */
5314 oursig = target_signal_from_name (signum_exp);
5315 if (oursig == TARGET_SIGNAL_UNKNOWN)
5316 {
5317 /* No, try numeric. */
5318 oursig =
bb518678 5319 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
5320 }
5321 sig_print_info (oursig);
5322 return;
5323 }
5324
5325 printf_filtered ("\n");
5326 /* These ugly casts brought to you by the native VAX compiler. */
5327 for (oursig = TARGET_SIGNAL_FIRST;
5328 (int) oursig < (int) TARGET_SIGNAL_LAST;
5329 oursig = (enum target_signal) ((int) oursig + 1))
5330 {
5331 QUIT;
5332
5333 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 5334 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
5335 sig_print_info (oursig);
5336 }
5337
a3f17187 5338 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
c906108c 5339}
4aa995e1
PA
5340
5341/* The $_siginfo convenience variable is a bit special. We don't know
5342 for sure the type of the value until we actually have a chance to
5343 fetch the data. The type can change depending on gdbarch, so it it
5344 also dependent on which thread you have selected.
5345
5346 1. making $_siginfo be an internalvar that creates a new value on
5347 access.
5348
5349 2. making the value of $_siginfo be an lval_computed value. */
5350
5351/* This function implements the lval_computed support for reading a
5352 $_siginfo value. */
5353
5354static void
5355siginfo_value_read (struct value *v)
5356{
5357 LONGEST transferred;
5358
5359 transferred =
5360 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
5361 NULL,
5362 value_contents_all_raw (v),
5363 value_offset (v),
5364 TYPE_LENGTH (value_type (v)));
5365
5366 if (transferred != TYPE_LENGTH (value_type (v)))
5367 error (_("Unable to read siginfo"));
5368}
5369
5370/* This function implements the lval_computed support for writing a
5371 $_siginfo value. */
5372
5373static void
5374siginfo_value_write (struct value *v, struct value *fromval)
5375{
5376 LONGEST transferred;
5377
5378 transferred = target_write (&current_target,
5379 TARGET_OBJECT_SIGNAL_INFO,
5380 NULL,
5381 value_contents_all_raw (fromval),
5382 value_offset (v),
5383 TYPE_LENGTH (value_type (fromval)));
5384
5385 if (transferred != TYPE_LENGTH (value_type (fromval)))
5386 error (_("Unable to write siginfo"));
5387}
5388
5389static struct lval_funcs siginfo_value_funcs =
5390 {
5391 siginfo_value_read,
5392 siginfo_value_write
5393 };
5394
5395/* Return a new value with the correct type for the siginfo object of
78267919
UW
5396 the current thread using architecture GDBARCH. Return a void value
5397 if there's no object available. */
4aa995e1 5398
2c0b251b 5399static struct value *
78267919 5400siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
4aa995e1 5401{
4aa995e1 5402 if (target_has_stack
78267919
UW
5403 && !ptid_equal (inferior_ptid, null_ptid)
5404 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 5405 {
78267919
UW
5406 struct type *type = gdbarch_get_siginfo_type (gdbarch);
5407 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
5408 }
5409
78267919 5410 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
5411}
5412
c906108c 5413\f
b89667eb
DE
5414/* Inferior thread state.
5415 These are details related to the inferior itself, and don't include
5416 things like what frame the user had selected or what gdb was doing
5417 with the target at the time.
5418 For inferior function calls these are things we want to restore
5419 regardless of whether the function call successfully completes
5420 or the dummy frame has to be manually popped. */
5421
5422struct inferior_thread_state
7a292a7a
SS
5423{
5424 enum target_signal stop_signal;
5425 CORE_ADDR stop_pc;
b89667eb
DE
5426 struct regcache *registers;
5427};
5428
5429struct inferior_thread_state *
5430save_inferior_thread_state (void)
5431{
5432 struct inferior_thread_state *inf_state = XMALLOC (struct inferior_thread_state);
5433 struct thread_info *tp = inferior_thread ();
5434
5435 inf_state->stop_signal = tp->stop_signal;
5436 inf_state->stop_pc = stop_pc;
5437
5438 inf_state->registers = regcache_dup (get_current_regcache ());
5439
5440 return inf_state;
5441}
5442
5443/* Restore inferior session state to INF_STATE. */
5444
5445void
5446restore_inferior_thread_state (struct inferior_thread_state *inf_state)
5447{
5448 struct thread_info *tp = inferior_thread ();
5449
5450 tp->stop_signal = inf_state->stop_signal;
5451 stop_pc = inf_state->stop_pc;
5452
5453 /* The inferior can be gone if the user types "print exit(0)"
5454 (and perhaps other times). */
5455 if (target_has_execution)
5456 /* NB: The register write goes through to the target. */
5457 regcache_cpy (get_current_regcache (), inf_state->registers);
5458 regcache_xfree (inf_state->registers);
5459 xfree (inf_state);
5460}
5461
5462static void
5463do_restore_inferior_thread_state_cleanup (void *state)
5464{
5465 restore_inferior_thread_state (state);
5466}
5467
5468struct cleanup *
5469make_cleanup_restore_inferior_thread_state (struct inferior_thread_state *inf_state)
5470{
5471 return make_cleanup (do_restore_inferior_thread_state_cleanup, inf_state);
5472}
5473
5474void
5475discard_inferior_thread_state (struct inferior_thread_state *inf_state)
5476{
5477 regcache_xfree (inf_state->registers);
5478 xfree (inf_state);
5479}
5480
5481struct regcache *
5482get_inferior_thread_state_regcache (struct inferior_thread_state *inf_state)
5483{
5484 return inf_state->registers;
5485}
5486
5487/* Session related state for inferior function calls.
5488 These are the additional bits of state that need to be restored
5489 when an inferior function call successfully completes. */
5490
5491struct inferior_status
5492{
7a292a7a
SS
5493 bpstat stop_bpstat;
5494 int stop_step;
5495 int stop_stack_dummy;
5496 int stopped_by_random_signal;
ca67fcb8 5497 int stepping_over_breakpoint;
7a292a7a
SS
5498 CORE_ADDR step_range_start;
5499 CORE_ADDR step_range_end;
aa0cd9c1 5500 struct frame_id step_frame_id;
edb3359d 5501 struct frame_id step_stack_frame_id;
5fbbeb29 5502 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
5503 CORE_ADDR step_resume_break_address;
5504 int stop_after_trap;
c0236d92 5505 int stop_soon;
7a292a7a 5506
b89667eb 5507 /* ID if the selected frame when the inferior function call was made. */
101dcfbe
AC
5508 struct frame_id selected_frame_id;
5509
7a292a7a 5510 int proceed_to_finish;
c5a4d20b 5511 int in_infcall;
7a292a7a
SS
5512};
5513
c906108c 5514/* Save all of the information associated with the inferior<==>gdb
b89667eb 5515 connection. */
c906108c 5516
7a292a7a 5517struct inferior_status *
b89667eb 5518save_inferior_status (void)
c906108c 5519{
72cec141 5520 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
4e1c45ea 5521 struct thread_info *tp = inferior_thread ();
d6b48e9c 5522 struct inferior *inf = current_inferior ();
7a292a7a 5523
414c69f7 5524 inf_status->stop_step = tp->stop_step;
c906108c
SS
5525 inf_status->stop_stack_dummy = stop_stack_dummy;
5526 inf_status->stopped_by_random_signal = stopped_by_random_signal;
4e1c45ea
PA
5527 inf_status->stepping_over_breakpoint = tp->trap_expected;
5528 inf_status->step_range_start = tp->step_range_start;
5529 inf_status->step_range_end = tp->step_range_end;
5530 inf_status->step_frame_id = tp->step_frame_id;
edb3359d 5531 inf_status->step_stack_frame_id = tp->step_stack_frame_id;
078130d0 5532 inf_status->step_over_calls = tp->step_over_calls;
c906108c 5533 inf_status->stop_after_trap = stop_after_trap;
d6b48e9c 5534 inf_status->stop_soon = inf->stop_soon;
c906108c
SS
5535 /* Save original bpstat chain here; replace it with copy of chain.
5536 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
5537 hand them back the original chain when restore_inferior_status is
5538 called. */
347bddb7
PA
5539 inf_status->stop_bpstat = tp->stop_bpstat;
5540 tp->stop_bpstat = bpstat_copy (tp->stop_bpstat);
32400beb 5541 inf_status->proceed_to_finish = tp->proceed_to_finish;
c5a4d20b 5542 inf_status->in_infcall = tp->in_infcall;
c5aa993b 5543
206415a3 5544 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 5545
7a292a7a 5546 return inf_status;
c906108c
SS
5547}
5548
c906108c 5549static int
96baa820 5550restore_selected_frame (void *args)
c906108c 5551{
488f131b 5552 struct frame_id *fid = (struct frame_id *) args;
c906108c 5553 struct frame_info *frame;
c906108c 5554
101dcfbe 5555 frame = frame_find_by_id (*fid);
c906108c 5556
aa0cd9c1
AC
5557 /* If inf_status->selected_frame_id is NULL, there was no previously
5558 selected frame. */
101dcfbe 5559 if (frame == NULL)
c906108c 5560 {
8a3fe4f8 5561 warning (_("Unable to restore previously selected frame."));
c906108c
SS
5562 return 0;
5563 }
5564
0f7d239c 5565 select_frame (frame);
c906108c
SS
5566
5567 return (1);
5568}
5569
b89667eb
DE
5570/* Restore inferior session state to INF_STATUS. */
5571
c906108c 5572void
96baa820 5573restore_inferior_status (struct inferior_status *inf_status)
c906108c 5574{
4e1c45ea 5575 struct thread_info *tp = inferior_thread ();
d6b48e9c 5576 struct inferior *inf = current_inferior ();
4e1c45ea 5577
414c69f7 5578 tp->stop_step = inf_status->stop_step;
c906108c
SS
5579 stop_stack_dummy = inf_status->stop_stack_dummy;
5580 stopped_by_random_signal = inf_status->stopped_by_random_signal;
4e1c45ea
PA
5581 tp->trap_expected = inf_status->stepping_over_breakpoint;
5582 tp->step_range_start = inf_status->step_range_start;
5583 tp->step_range_end = inf_status->step_range_end;
5584 tp->step_frame_id = inf_status->step_frame_id;
edb3359d 5585 tp->step_stack_frame_id = inf_status->step_stack_frame_id;
078130d0 5586 tp->step_over_calls = inf_status->step_over_calls;
c906108c 5587 stop_after_trap = inf_status->stop_after_trap;
d6b48e9c 5588 inf->stop_soon = inf_status->stop_soon;
347bddb7
PA
5589 bpstat_clear (&tp->stop_bpstat);
5590 tp->stop_bpstat = inf_status->stop_bpstat;
b89667eb 5591 inf_status->stop_bpstat = NULL;
32400beb 5592 tp->proceed_to_finish = inf_status->proceed_to_finish;
c5a4d20b 5593 tp->in_infcall = inf_status->in_infcall;
c906108c 5594
b89667eb 5595 if (target_has_stack)
c906108c 5596 {
c906108c 5597 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
5598 walking the stack might encounter a garbage pointer and
5599 error() trying to dereference it. */
488f131b
JB
5600 if (catch_errors
5601 (restore_selected_frame, &inf_status->selected_frame_id,
5602 "Unable to restore previously selected frame:\n",
5603 RETURN_MASK_ERROR) == 0)
c906108c
SS
5604 /* Error in restoring the selected frame. Select the innermost
5605 frame. */
0f7d239c 5606 select_frame (get_current_frame ());
c906108c 5607 }
c906108c 5608
72cec141 5609 xfree (inf_status);
7a292a7a 5610}
c906108c 5611
74b7792f
AC
5612static void
5613do_restore_inferior_status_cleanup (void *sts)
5614{
5615 restore_inferior_status (sts);
5616}
5617
5618struct cleanup *
5619make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
5620{
5621 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
5622}
5623
c906108c 5624void
96baa820 5625discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
5626{
5627 /* See save_inferior_status for info on stop_bpstat. */
5628 bpstat_clear (&inf_status->stop_bpstat);
72cec141 5629 xfree (inf_status);
7a292a7a 5630}
b89667eb 5631\f
47932f85 5632int
3a3e9ee3 5633inferior_has_forked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
5634{
5635 struct target_waitstatus last;
5636 ptid_t last_ptid;
5637
5638 get_last_target_status (&last_ptid, &last);
5639
5640 if (last.kind != TARGET_WAITKIND_FORKED)
5641 return 0;
5642
3a3e9ee3 5643 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
5644 return 0;
5645
5646 *child_pid = last.value.related_pid;
5647 return 1;
5648}
5649
5650int
3a3e9ee3 5651inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
5652{
5653 struct target_waitstatus last;
5654 ptid_t last_ptid;
5655
5656 get_last_target_status (&last_ptid, &last);
5657
5658 if (last.kind != TARGET_WAITKIND_VFORKED)
5659 return 0;
5660
3a3e9ee3 5661 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
5662 return 0;
5663
5664 *child_pid = last.value.related_pid;
5665 return 1;
5666}
5667
5668int
3a3e9ee3 5669inferior_has_execd (ptid_t pid, char **execd_pathname)
47932f85
DJ
5670{
5671 struct target_waitstatus last;
5672 ptid_t last_ptid;
5673
5674 get_last_target_status (&last_ptid, &last);
5675
5676 if (last.kind != TARGET_WAITKIND_EXECD)
5677 return 0;
5678
3a3e9ee3 5679 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
5680 return 0;
5681
5682 *execd_pathname = xstrdup (last.value.execd_pathname);
5683 return 1;
5684}
5685
a96d9b2e
SDJ
5686int
5687inferior_has_called_syscall (ptid_t pid, int *syscall_number)
5688{
5689 struct target_waitstatus last;
5690 ptid_t last_ptid;
5691
5692 get_last_target_status (&last_ptid, &last);
5693
5694 if (last.kind != TARGET_WAITKIND_SYSCALL_ENTRY &&
5695 last.kind != TARGET_WAITKIND_SYSCALL_RETURN)
5696 return 0;
5697
5698 if (!ptid_equal (last_ptid, pid))
5699 return 0;
5700
5701 *syscall_number = last.value.syscall_number;
5702 return 1;
5703}
5704
ca6724c1
KB
5705/* Oft used ptids */
5706ptid_t null_ptid;
5707ptid_t minus_one_ptid;
5708
5709/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 5710
ca6724c1
KB
5711ptid_t
5712ptid_build (int pid, long lwp, long tid)
5713{
5714 ptid_t ptid;
5715
5716 ptid.pid = pid;
5717 ptid.lwp = lwp;
5718 ptid.tid = tid;
5719 return ptid;
5720}
5721
5722/* Create a ptid from just a pid. */
5723
5724ptid_t
5725pid_to_ptid (int pid)
5726{
5727 return ptid_build (pid, 0, 0);
5728}
5729
5730/* Fetch the pid (process id) component from a ptid. */
5731
5732int
5733ptid_get_pid (ptid_t ptid)
5734{
5735 return ptid.pid;
5736}
5737
5738/* Fetch the lwp (lightweight process) component from a ptid. */
5739
5740long
5741ptid_get_lwp (ptid_t ptid)
5742{
5743 return ptid.lwp;
5744}
5745
5746/* Fetch the tid (thread id) component from a ptid. */
5747
5748long
5749ptid_get_tid (ptid_t ptid)
5750{
5751 return ptid.tid;
5752}
5753
5754/* ptid_equal() is used to test equality of two ptids. */
5755
5756int
5757ptid_equal (ptid_t ptid1, ptid_t ptid2)
5758{
5759 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 5760 && ptid1.tid == ptid2.tid);
ca6724c1
KB
5761}
5762
252fbfc8
PA
5763/* Returns true if PTID represents a process. */
5764
5765int
5766ptid_is_pid (ptid_t ptid)
5767{
5768 if (ptid_equal (minus_one_ptid, ptid))
5769 return 0;
5770 if (ptid_equal (null_ptid, ptid))
5771 return 0;
5772
5773 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
5774}
5775
ca6724c1
KB
5776/* restore_inferior_ptid() will be used by the cleanup machinery
5777 to restore the inferior_ptid value saved in a call to
5778 save_inferior_ptid(). */
ce696e05
KB
5779
5780static void
5781restore_inferior_ptid (void *arg)
5782{
5783 ptid_t *saved_ptid_ptr = arg;
5784 inferior_ptid = *saved_ptid_ptr;
5785 xfree (arg);
5786}
5787
5788/* Save the value of inferior_ptid so that it may be restored by a
5789 later call to do_cleanups(). Returns the struct cleanup pointer
5790 needed for later doing the cleanup. */
5791
5792struct cleanup *
5793save_inferior_ptid (void)
5794{
5795 ptid_t *saved_ptid_ptr;
5796
5797 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
5798 *saved_ptid_ptr = inferior_ptid;
5799 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
5800}
c5aa993b 5801\f
488f131b 5802
b2175913
MS
5803/* User interface for reverse debugging:
5804 Set exec-direction / show exec-direction commands
5805 (returns error unless target implements to_set_exec_direction method). */
5806
5807enum exec_direction_kind execution_direction = EXEC_FORWARD;
5808static const char exec_forward[] = "forward";
5809static const char exec_reverse[] = "reverse";
5810static const char *exec_direction = exec_forward;
5811static const char *exec_direction_names[] = {
5812 exec_forward,
5813 exec_reverse,
5814 NULL
5815};
5816
5817static void
5818set_exec_direction_func (char *args, int from_tty,
5819 struct cmd_list_element *cmd)
5820{
5821 if (target_can_execute_reverse)
5822 {
5823 if (!strcmp (exec_direction, exec_forward))
5824 execution_direction = EXEC_FORWARD;
5825 else if (!strcmp (exec_direction, exec_reverse))
5826 execution_direction = EXEC_REVERSE;
5827 }
5828}
5829
5830static void
5831show_exec_direction_func (struct ui_file *out, int from_tty,
5832 struct cmd_list_element *cmd, const char *value)
5833{
5834 switch (execution_direction) {
5835 case EXEC_FORWARD:
5836 fprintf_filtered (out, _("Forward.\n"));
5837 break;
5838 case EXEC_REVERSE:
5839 fprintf_filtered (out, _("Reverse.\n"));
5840 break;
5841 case EXEC_ERROR:
5842 default:
5843 fprintf_filtered (out,
5844 _("Forward (target `%s' does not support exec-direction).\n"),
5845 target_shortname);
5846 break;
5847 }
5848}
5849
5850/* User interface for non-stop mode. */
5851
ad52ddc6
PA
5852int non_stop = 0;
5853static int non_stop_1 = 0;
5854
5855static void
5856set_non_stop (char *args, int from_tty,
5857 struct cmd_list_element *c)
5858{
5859 if (target_has_execution)
5860 {
5861 non_stop_1 = non_stop;
5862 error (_("Cannot change this setting while the inferior is running."));
5863 }
5864
5865 non_stop = non_stop_1;
5866}
5867
5868static void
5869show_non_stop (struct ui_file *file, int from_tty,
5870 struct cmd_list_element *c, const char *value)
5871{
5872 fprintf_filtered (file,
5873 _("Controlling the inferior in non-stop mode is %s.\n"),
5874 value);
5875}
5876
d4db2f36
PA
5877static void
5878show_schedule_multiple (struct ui_file *file, int from_tty,
5879 struct cmd_list_element *c, const char *value)
5880{
5881 fprintf_filtered (file, _("\
5882Resuming the execution of threads of all processes is %s.\n"), value);
5883}
ad52ddc6 5884
c906108c 5885void
96baa820 5886_initialize_infrun (void)
c906108c 5887{
52f0bd74
AC
5888 int i;
5889 int numsigs;
c906108c
SS
5890 struct cmd_list_element *c;
5891
1bedd215
AC
5892 add_info ("signals", signals_info, _("\
5893What debugger does when program gets various signals.\n\
5894Specify a signal as argument to print info on that signal only."));
c906108c
SS
5895 add_info_alias ("handle", "signals", 0);
5896
1bedd215
AC
5897 add_com ("handle", class_run, handle_command, _("\
5898Specify how to handle a signal.\n\
c906108c
SS
5899Args are signals and actions to apply to those signals.\n\
5900Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5901from 1-15 are allowed for compatibility with old versions of GDB.\n\
5902Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5903The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
5904used by the debugger, typically SIGTRAP and SIGINT.\n\
5905Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
5906\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
5907Stop means reenter debugger if this signal happens (implies print).\n\
5908Print means print a message if this signal happens.\n\
5909Pass means let program see this signal; otherwise program doesn't know.\n\
5910Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 5911Pass and Stop may be combined."));
c906108c
SS
5912 if (xdb_commands)
5913 {
1bedd215
AC
5914 add_com ("lz", class_info, signals_info, _("\
5915What debugger does when program gets various signals.\n\
5916Specify a signal as argument to print info on that signal only."));
5917 add_com ("z", class_run, xdb_handle_command, _("\
5918Specify how to handle a signal.\n\
c906108c
SS
5919Args are signals and actions to apply to those signals.\n\
5920Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5921from 1-15 are allowed for compatibility with old versions of GDB.\n\
5922Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5923The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
5924used by the debugger, typically SIGTRAP and SIGINT.\n\
5925Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
5926\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
5927nopass), \"Q\" (noprint)\n\
5928Stop means reenter debugger if this signal happens (implies print).\n\
5929Print means print a message if this signal happens.\n\
5930Pass means let program see this signal; otherwise program doesn't know.\n\
5931Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 5932Pass and Stop may be combined."));
c906108c
SS
5933 }
5934
5935 if (!dbx_commands)
1a966eab
AC
5936 stop_command = add_cmd ("stop", class_obscure,
5937 not_just_help_class_command, _("\
5938There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 5939This allows you to set a list of commands to be run each time execution\n\
1a966eab 5940of the program stops."), &cmdlist);
c906108c 5941
85c07804
AC
5942 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
5943Set inferior debugging."), _("\
5944Show inferior debugging."), _("\
5945When non-zero, inferior specific debugging is enabled."),
5946 NULL,
920d2a44 5947 show_debug_infrun,
85c07804 5948 &setdebuglist, &showdebuglist);
527159b7 5949
237fc4c9
PA
5950 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
5951Set displaced stepping debugging."), _("\
5952Show displaced stepping debugging."), _("\
5953When non-zero, displaced stepping specific debugging is enabled."),
5954 NULL,
5955 show_debug_displaced,
5956 &setdebuglist, &showdebuglist);
5957
ad52ddc6
PA
5958 add_setshow_boolean_cmd ("non-stop", no_class,
5959 &non_stop_1, _("\
5960Set whether gdb controls the inferior in non-stop mode."), _("\
5961Show whether gdb controls the inferior in non-stop mode."), _("\
5962When debugging a multi-threaded program and this setting is\n\
5963off (the default, also called all-stop mode), when one thread stops\n\
5964(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
5965all other threads in the program while you interact with the thread of\n\
5966interest. When you continue or step a thread, you can allow the other\n\
5967threads to run, or have them remain stopped, but while you inspect any\n\
5968thread's state, all threads stop.\n\
5969\n\
5970In non-stop mode, when one thread stops, other threads can continue\n\
5971to run freely. You'll be able to step each thread independently,\n\
5972leave it stopped or free to run as needed."),
5973 set_non_stop,
5974 show_non_stop,
5975 &setlist,
5976 &showlist);
5977
c906108c 5978 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 5979 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
5980 signal_print = (unsigned char *)
5981 xmalloc (sizeof (signal_print[0]) * numsigs);
5982 signal_program = (unsigned char *)
5983 xmalloc (sizeof (signal_program[0]) * numsigs);
5984 for (i = 0; i < numsigs; i++)
5985 {
5986 signal_stop[i] = 1;
5987 signal_print[i] = 1;
5988 signal_program[i] = 1;
5989 }
5990
5991 /* Signals caused by debugger's own actions
5992 should not be given to the program afterwards. */
5993 signal_program[TARGET_SIGNAL_TRAP] = 0;
5994 signal_program[TARGET_SIGNAL_INT] = 0;
5995
5996 /* Signals that are not errors should not normally enter the debugger. */
5997 signal_stop[TARGET_SIGNAL_ALRM] = 0;
5998 signal_print[TARGET_SIGNAL_ALRM] = 0;
5999 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
6000 signal_print[TARGET_SIGNAL_VTALRM] = 0;
6001 signal_stop[TARGET_SIGNAL_PROF] = 0;
6002 signal_print[TARGET_SIGNAL_PROF] = 0;
6003 signal_stop[TARGET_SIGNAL_CHLD] = 0;
6004 signal_print[TARGET_SIGNAL_CHLD] = 0;
6005 signal_stop[TARGET_SIGNAL_IO] = 0;
6006 signal_print[TARGET_SIGNAL_IO] = 0;
6007 signal_stop[TARGET_SIGNAL_POLL] = 0;
6008 signal_print[TARGET_SIGNAL_POLL] = 0;
6009 signal_stop[TARGET_SIGNAL_URG] = 0;
6010 signal_print[TARGET_SIGNAL_URG] = 0;
6011 signal_stop[TARGET_SIGNAL_WINCH] = 0;
6012 signal_print[TARGET_SIGNAL_WINCH] = 0;
6013
cd0fc7c3
SS
6014 /* These signals are used internally by user-level thread
6015 implementations. (See signal(5) on Solaris.) Like the above
6016 signals, a healthy program receives and handles them as part of
6017 its normal operation. */
6018 signal_stop[TARGET_SIGNAL_LWP] = 0;
6019 signal_print[TARGET_SIGNAL_LWP] = 0;
6020 signal_stop[TARGET_SIGNAL_WAITING] = 0;
6021 signal_print[TARGET_SIGNAL_WAITING] = 0;
6022 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
6023 signal_print[TARGET_SIGNAL_CANCEL] = 0;
6024
85c07804
AC
6025 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
6026 &stop_on_solib_events, _("\
6027Set stopping for shared library events."), _("\
6028Show stopping for shared library events."), _("\
c906108c
SS
6029If nonzero, gdb will give control to the user when the dynamic linker\n\
6030notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
6031to the user would be loading/unloading of a new library."),
6032 NULL,
920d2a44 6033 show_stop_on_solib_events,
85c07804 6034 &setlist, &showlist);
c906108c 6035
7ab04401
AC
6036 add_setshow_enum_cmd ("follow-fork-mode", class_run,
6037 follow_fork_mode_kind_names,
6038 &follow_fork_mode_string, _("\
6039Set debugger response to a program call of fork or vfork."), _("\
6040Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
6041A fork or vfork creates a new process. follow-fork-mode can be:\n\
6042 parent - the original process is debugged after a fork\n\
6043 child - the new process is debugged after a fork\n\
ea1dd7bc 6044The unfollowed process will continue to run.\n\
7ab04401
AC
6045By default, the debugger will follow the parent process."),
6046 NULL,
920d2a44 6047 show_follow_fork_mode_string,
7ab04401
AC
6048 &setlist, &showlist);
6049
6050 add_setshow_enum_cmd ("scheduler-locking", class_run,
6051 scheduler_enums, &scheduler_mode, _("\
6052Set mode for locking scheduler during execution."), _("\
6053Show mode for locking scheduler during execution."), _("\
c906108c
SS
6054off == no locking (threads may preempt at any time)\n\
6055on == full locking (no thread except the current thread may run)\n\
6056step == scheduler locked during every single-step operation.\n\
6057 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
6058 Other threads may run while stepping over a function call ('next')."),
6059 set_schedlock_func, /* traps on target vector */
920d2a44 6060 show_scheduler_mode,
7ab04401 6061 &setlist, &showlist);
5fbbeb29 6062
d4db2f36
PA
6063 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
6064Set mode for resuming threads of all processes."), _("\
6065Show mode for resuming threads of all processes."), _("\
6066When on, execution commands (such as 'continue' or 'next') resume all\n\
6067threads of all processes. When off (which is the default), execution\n\
6068commands only resume the threads of the current process. The set of\n\
6069threads that are resumed is further refined by the scheduler-locking\n\
6070mode (see help set scheduler-locking)."),
6071 NULL,
6072 show_schedule_multiple,
6073 &setlist, &showlist);
6074
5bf193a2
AC
6075 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
6076Set mode of the step operation."), _("\
6077Show mode of the step operation."), _("\
6078When set, doing a step over a function without debug line information\n\
6079will stop at the first instruction of that function. Otherwise, the\n\
6080function is skipped and the step command stops at a different source line."),
6081 NULL,
920d2a44 6082 show_step_stop_if_no_debug,
5bf193a2 6083 &setlist, &showlist);
ca6724c1 6084
fff08868
HZ
6085 add_setshow_enum_cmd ("displaced-stepping", class_run,
6086 can_use_displaced_stepping_enum,
6087 &can_use_displaced_stepping, _("\
237fc4c9
PA
6088Set debugger's willingness to use displaced stepping."), _("\
6089Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
6090If on, gdb will use displaced stepping to step over breakpoints if it is\n\
6091supported by the target architecture. If off, gdb will not use displaced\n\
6092stepping to step over breakpoints, even if such is supported by the target\n\
6093architecture. If auto (which is the default), gdb will use displaced stepping\n\
6094if the target architecture supports it and non-stop mode is active, but will not\n\
6095use it in all-stop mode (see help set non-stop)."),
6096 NULL,
6097 show_can_use_displaced_stepping,
6098 &setlist, &showlist);
237fc4c9 6099
b2175913
MS
6100 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
6101 &exec_direction, _("Set direction of execution.\n\
6102Options are 'forward' or 'reverse'."),
6103 _("Show direction of execution (forward/reverse)."),
6104 _("Tells gdb whether to execute forward or backward."),
6105 set_exec_direction_func, show_exec_direction_func,
6106 &setlist, &showlist);
6107
ca6724c1
KB
6108 /* ptid initializations */
6109 null_ptid = ptid_build (0, 0, 0);
6110 minus_one_ptid = ptid_build (-1, 0, 0);
6111 inferior_ptid = null_ptid;
6112 target_last_wait_ptid = minus_one_ptid;
237fc4c9 6113 displaced_step_ptid = null_ptid;
5231c1fd
PA
6114
6115 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 6116 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 6117 observer_attach_thread_exit (infrun_thread_thread_exit);
4aa995e1
PA
6118
6119 /* Explicitly create without lookup, since that tries to create a
6120 value with a void typed value, and when we get here, gdbarch
6121 isn't initialized yet. At this point, we're quite sure there
6122 isn't another convenience variable of the same name. */
6123 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
c906108c 6124}
This page took 1.214856 seconds and 4 git commands to generate.