Make handle_no_resumed transfer terminal
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
b811d2c2 4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
c906108c
SS
28#include "gdbcore.h"
29#include "gdbcmd.h"
30#include "target.h"
2f4fcf00 31#include "target-connection.h"
c906108c
SS
32#include "gdbthread.h"
33#include "annotate.h"
1adeb98a 34#include "symfile.h"
7a292a7a 35#include "top.h"
2acceee2 36#include "inf-loop.h"
4e052eda 37#include "regcache.h"
fd0407d6 38#include "value.h"
76727919 39#include "observable.h"
f636b87d 40#include "language.h"
a77053c2 41#include "solib.h"
f17517ea 42#include "main.h"
186c406b 43#include "block.h"
034dad6f 44#include "mi/mi-common.h"
4f8d22e3 45#include "event-top.h"
96429cc8 46#include "record.h"
d02ed0bb 47#include "record-full.h"
edb3359d 48#include "inline-frame.h"
4efc6507 49#include "jit.h"
06cd862c 50#include "tracepoint.h"
1bfeeb0f 51#include "skip.h"
28106bc2
SDJ
52#include "probe.h"
53#include "objfiles.h"
de0bea00 54#include "completer.h"
9107fc8d 55#include "target-descriptions.h"
f15cb84a 56#include "target-dcache.h"
d83ad864 57#include "terminal.h"
ff862be4 58#include "solist.h"
400b5eca 59#include "gdbsupport/event-loop.h"
243a9253 60#include "thread-fsm.h"
268a13a5 61#include "gdbsupport/enum-flags.h"
5ed8105e 62#include "progspace-and-thread.h"
268a13a5 63#include "gdbsupport/gdb_optional.h"
46a62268 64#include "arch-utils.h"
268a13a5
TT
65#include "gdbsupport/scope-exit.h"
66#include "gdbsupport/forward-scope-exit.h"
06cc9596 67#include "gdbsupport/gdb_select.h"
5b6d1e4f 68#include <unordered_map>
93b54c8e 69#include "async-event.h"
c906108c
SS
70
71/* Prototypes for local functions */
72
2ea28649 73static void sig_print_info (enum gdb_signal);
c906108c 74
96baa820 75static void sig_print_header (void);
c906108c 76
d83ad864
DB
77static void follow_inferior_reset_breakpoints (void);
78
a289b8f6
JK
79static int currently_stepping (struct thread_info *tp);
80
2c03e5be 81static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
82
83static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
84
2484c66b
UW
85static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
86
8550d3b3
YQ
87static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
88
aff4e175
AB
89static void resume (gdb_signal sig);
90
5b6d1e4f
PA
91static void wait_for_inferior (inferior *inf);
92
372316f1
PA
93/* Asynchronous signal handler registered as event loop source for
94 when we have pending events ready to be passed to the core. */
95static struct async_event_handler *infrun_async_inferior_event_token;
96
97/* Stores whether infrun_async was previously enabled or disabled.
98 Starts off as -1, indicating "never enabled/disabled". */
99static int infrun_is_async = -1;
100
101/* See infrun.h. */
102
103void
104infrun_async (int enable)
105{
106 if (infrun_is_async != enable)
107 {
108 infrun_is_async = enable;
109
110 if (debug_infrun)
111 fprintf_unfiltered (gdb_stdlog,
112 "infrun: infrun_async(%d)\n",
113 enable);
114
115 if (enable)
116 mark_async_event_handler (infrun_async_inferior_event_token);
117 else
118 clear_async_event_handler (infrun_async_inferior_event_token);
119 }
120}
121
0b333c5e
PA
122/* See infrun.h. */
123
124void
125mark_infrun_async_event_handler (void)
126{
127 mark_async_event_handler (infrun_async_inferior_event_token);
128}
129
5fbbeb29
CF
130/* When set, stop the 'step' command if we enter a function which has
131 no line number information. The normal behavior is that we step
132 over such function. */
491144b5 133bool step_stop_if_no_debug = false;
920d2a44
AC
134static void
135show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
136 struct cmd_list_element *c, const char *value)
137{
138 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
139}
5fbbeb29 140
b9f437de
PA
141/* proceed and normal_stop use this to notify the user when the
142 inferior stopped in a different thread than it had been running
143 in. */
96baa820 144
39f77062 145static ptid_t previous_inferior_ptid;
7a292a7a 146
07107ca6
LM
147/* If set (default for legacy reasons), when following a fork, GDB
148 will detach from one of the fork branches, child or parent.
149 Exactly which branch is detached depends on 'set follow-fork-mode'
150 setting. */
151
491144b5 152static bool detach_fork = true;
6c95b8df 153
491144b5 154bool debug_displaced = false;
237fc4c9
PA
155static void
156show_debug_displaced (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158{
159 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
160}
161
ccce17b0 162unsigned int debug_infrun = 0;
920d2a44
AC
163static void
164show_debug_infrun (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166{
167 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
168}
527159b7 169
03583c20
UW
170
171/* Support for disabling address space randomization. */
172
491144b5 173bool disable_randomization = true;
03583c20
UW
174
175static void
176show_disable_randomization (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178{
179 if (target_supports_disable_randomization ())
180 fprintf_filtered (file,
181 _("Disabling randomization of debuggee's "
182 "virtual address space is %s.\n"),
183 value);
184 else
185 fputs_filtered (_("Disabling randomization of debuggee's "
186 "virtual address space is unsupported on\n"
187 "this platform.\n"), file);
188}
189
190static void
eb4c3f4a 191set_disable_randomization (const char *args, int from_tty,
03583c20
UW
192 struct cmd_list_element *c)
193{
194 if (!target_supports_disable_randomization ())
195 error (_("Disabling randomization of debuggee's "
196 "virtual address space is unsupported on\n"
197 "this platform."));
198}
199
d32dc48e
PA
200/* User interface for non-stop mode. */
201
491144b5
CB
202bool non_stop = false;
203static bool non_stop_1 = false;
d32dc48e
PA
204
205static void
eb4c3f4a 206set_non_stop (const char *args, int from_tty,
d32dc48e
PA
207 struct cmd_list_element *c)
208{
209 if (target_has_execution)
210 {
211 non_stop_1 = non_stop;
212 error (_("Cannot change this setting while the inferior is running."));
213 }
214
215 non_stop = non_stop_1;
216}
217
218static void
219show_non_stop (struct ui_file *file, int from_tty,
220 struct cmd_list_element *c, const char *value)
221{
222 fprintf_filtered (file,
223 _("Controlling the inferior in non-stop mode is %s.\n"),
224 value);
225}
226
d914c394
SS
227/* "Observer mode" is somewhat like a more extreme version of
228 non-stop, in which all GDB operations that might affect the
229 target's execution have been disabled. */
230
491144b5
CB
231bool observer_mode = false;
232static bool observer_mode_1 = false;
d914c394
SS
233
234static void
eb4c3f4a 235set_observer_mode (const char *args, int from_tty,
d914c394
SS
236 struct cmd_list_element *c)
237{
d914c394
SS
238 if (target_has_execution)
239 {
240 observer_mode_1 = observer_mode;
241 error (_("Cannot change this setting while the inferior is running."));
242 }
243
244 observer_mode = observer_mode_1;
245
246 may_write_registers = !observer_mode;
247 may_write_memory = !observer_mode;
248 may_insert_breakpoints = !observer_mode;
249 may_insert_tracepoints = !observer_mode;
250 /* We can insert fast tracepoints in or out of observer mode,
251 but enable them if we're going into this mode. */
252 if (observer_mode)
491144b5 253 may_insert_fast_tracepoints = true;
d914c394
SS
254 may_stop = !observer_mode;
255 update_target_permissions ();
256
257 /* Going *into* observer mode we must force non-stop, then
258 going out we leave it that way. */
259 if (observer_mode)
260 {
d914c394 261 pagination_enabled = 0;
491144b5 262 non_stop = non_stop_1 = true;
d914c394
SS
263 }
264
265 if (from_tty)
266 printf_filtered (_("Observer mode is now %s.\n"),
267 (observer_mode ? "on" : "off"));
268}
269
270static void
271show_observer_mode (struct ui_file *file, int from_tty,
272 struct cmd_list_element *c, const char *value)
273{
274 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
275}
276
277/* This updates the value of observer mode based on changes in
278 permissions. Note that we are deliberately ignoring the values of
279 may-write-registers and may-write-memory, since the user may have
280 reason to enable these during a session, for instance to turn on a
281 debugging-related global. */
282
283void
284update_observer_mode (void)
285{
491144b5
CB
286 bool newval = (!may_insert_breakpoints
287 && !may_insert_tracepoints
288 && may_insert_fast_tracepoints
289 && !may_stop
290 && non_stop);
d914c394
SS
291
292 /* Let the user know if things change. */
293 if (newval != observer_mode)
294 printf_filtered (_("Observer mode is now %s.\n"),
295 (newval ? "on" : "off"));
296
297 observer_mode = observer_mode_1 = newval;
298}
c2c6d25f 299
c906108c
SS
300/* Tables of how to react to signals; the user sets them. */
301
adc6a863
PA
302static unsigned char signal_stop[GDB_SIGNAL_LAST];
303static unsigned char signal_print[GDB_SIGNAL_LAST];
304static unsigned char signal_program[GDB_SIGNAL_LAST];
c906108c 305
ab04a2af
TT
306/* Table of signals that are registered with "catch signal". A
307 non-zero entry indicates that the signal is caught by some "catch
adc6a863
PA
308 signal" command. */
309static unsigned char signal_catch[GDB_SIGNAL_LAST];
ab04a2af 310
2455069d
UW
311/* Table of signals that the target may silently handle.
312 This is automatically determined from the flags above,
313 and simply cached here. */
adc6a863 314static unsigned char signal_pass[GDB_SIGNAL_LAST];
2455069d 315
c906108c
SS
316#define SET_SIGS(nsigs,sigs,flags) \
317 do { \
318 int signum = (nsigs); \
319 while (signum-- > 0) \
320 if ((sigs)[signum]) \
321 (flags)[signum] = 1; \
322 } while (0)
323
324#define UNSET_SIGS(nsigs,sigs,flags) \
325 do { \
326 int signum = (nsigs); \
327 while (signum-- > 0) \
328 if ((sigs)[signum]) \
329 (flags)[signum] = 0; \
330 } while (0)
331
9b224c5e
PA
332/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
333 this function is to avoid exporting `signal_program'. */
334
335void
336update_signals_program_target (void)
337{
adc6a863 338 target_program_signals (signal_program);
9b224c5e
PA
339}
340
1777feb0 341/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 342
edb3359d 343#define RESUME_ALL minus_one_ptid
c906108c
SS
344
345/* Command list pointer for the "stop" placeholder. */
346
347static struct cmd_list_element *stop_command;
348
c906108c
SS
349/* Nonzero if we want to give control to the user when we're notified
350 of shared library events by the dynamic linker. */
628fe4e4 351int stop_on_solib_events;
f9e14852
GB
352
353/* Enable or disable optional shared library event breakpoints
354 as appropriate when the above flag is changed. */
355
356static void
eb4c3f4a
TT
357set_stop_on_solib_events (const char *args,
358 int from_tty, struct cmd_list_element *c)
f9e14852
GB
359{
360 update_solib_breakpoints ();
361}
362
920d2a44
AC
363static void
364show_stop_on_solib_events (struct ui_file *file, int from_tty,
365 struct cmd_list_element *c, const char *value)
366{
367 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
368 value);
369}
c906108c 370
c906108c
SS
371/* Nonzero after stop if current stack frame should be printed. */
372
373static int stop_print_frame;
374
5b6d1e4f
PA
375/* This is a cached copy of the target/ptid/waitstatus of the last
376 event returned by target_wait()/deprecated_target_wait_hook().
377 This information is returned by get_last_target_status(). */
378static process_stratum_target *target_last_proc_target;
39f77062 379static ptid_t target_last_wait_ptid;
e02bc4cc
DS
380static struct target_waitstatus target_last_waitstatus;
381
4e1c45ea 382void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 383
53904c9e
AC
384static const char follow_fork_mode_child[] = "child";
385static const char follow_fork_mode_parent[] = "parent";
386
40478521 387static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
388 follow_fork_mode_child,
389 follow_fork_mode_parent,
390 NULL
ef346e04 391};
c906108c 392
53904c9e 393static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
394static void
395show_follow_fork_mode_string (struct ui_file *file, int from_tty,
396 struct cmd_list_element *c, const char *value)
397{
3e43a32a
MS
398 fprintf_filtered (file,
399 _("Debugger response to a program "
400 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
401 value);
402}
c906108c
SS
403\f
404
d83ad864
DB
405/* Handle changes to the inferior list based on the type of fork,
406 which process is being followed, and whether the other process
407 should be detached. On entry inferior_ptid must be the ptid of
408 the fork parent. At return inferior_ptid is the ptid of the
409 followed inferior. */
410
5ab2fbf1
SM
411static bool
412follow_fork_inferior (bool follow_child, bool detach_fork)
d83ad864
DB
413{
414 int has_vforked;
79639e11 415 ptid_t parent_ptid, child_ptid;
d83ad864
DB
416
417 has_vforked = (inferior_thread ()->pending_follow.kind
418 == TARGET_WAITKIND_VFORKED);
79639e11
PA
419 parent_ptid = inferior_ptid;
420 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
421
422 if (has_vforked
423 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 424 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
425 && !(follow_child || detach_fork || sched_multi))
426 {
427 /* The parent stays blocked inside the vfork syscall until the
428 child execs or exits. If we don't let the child run, then
429 the parent stays blocked. If we're telling the parent to run
430 in the foreground, the user will not be able to ctrl-c to get
431 back the terminal, effectively hanging the debug session. */
432 fprintf_filtered (gdb_stderr, _("\
433Can not resume the parent process over vfork in the foreground while\n\
434holding the child stopped. Try \"set detach-on-fork\" or \
435\"set schedule-multiple\".\n"));
d83ad864
DB
436 return 1;
437 }
438
439 if (!follow_child)
440 {
441 /* Detach new forked process? */
442 if (detach_fork)
443 {
d83ad864
DB
444 /* Before detaching from the child, remove all breakpoints
445 from it. If we forked, then this has already been taken
446 care of by infrun.c. If we vforked however, any
447 breakpoint inserted in the parent is visible in the
448 child, even those added while stopped in a vfork
449 catchpoint. This will remove the breakpoints from the
450 parent also, but they'll be reinserted below. */
451 if (has_vforked)
452 {
453 /* Keep breakpoints list in sync. */
00431a78 454 remove_breakpoints_inf (current_inferior ());
d83ad864
DB
455 }
456
f67c0c91 457 if (print_inferior_events)
d83ad864 458 {
8dd06f7a 459 /* Ensure that we have a process ptid. */
e99b03dc 460 ptid_t process_ptid = ptid_t (child_ptid.pid ());
8dd06f7a 461
223ffa71 462 target_terminal::ours_for_output ();
d83ad864 463 fprintf_filtered (gdb_stdlog,
f67c0c91 464 _("[Detaching after %s from child %s]\n"),
6f259a23 465 has_vforked ? "vfork" : "fork",
a068643d 466 target_pid_to_str (process_ptid).c_str ());
d83ad864
DB
467 }
468 }
469 else
470 {
471 struct inferior *parent_inf, *child_inf;
d83ad864
DB
472
473 /* Add process to GDB's tables. */
e99b03dc 474 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
475
476 parent_inf = current_inferior ();
477 child_inf->attach_flag = parent_inf->attach_flag;
478 copy_terminal_info (child_inf, parent_inf);
479 child_inf->gdbarch = parent_inf->gdbarch;
480 copy_inferior_target_desc_info (child_inf, parent_inf);
481
5ed8105e 482 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 483
2a00d7ce 484 set_current_inferior (child_inf);
5b6d1e4f 485 switch_to_no_thread ();
d83ad864 486 child_inf->symfile_flags = SYMFILE_NO_READ;
5b6d1e4f 487 push_target (parent_inf->process_target ());
18493a00
PA
488 thread_info *child_thr
489 = add_thread_silent (child_inf->process_target (), child_ptid);
d83ad864
DB
490
491 /* If this is a vfork child, then the address-space is
492 shared with the parent. */
493 if (has_vforked)
494 {
495 child_inf->pspace = parent_inf->pspace;
496 child_inf->aspace = parent_inf->aspace;
497
5b6d1e4f
PA
498 exec_on_vfork ();
499
d83ad864
DB
500 /* The parent will be frozen until the child is done
501 with the shared region. Keep track of the
502 parent. */
503 child_inf->vfork_parent = parent_inf;
504 child_inf->pending_detach = 0;
505 parent_inf->vfork_child = child_inf;
506 parent_inf->pending_detach = 0;
18493a00
PA
507
508 /* Now that the inferiors and program spaces are all
509 wired up, we can switch to the child thread (which
510 switches inferior and program space too). */
511 switch_to_thread (child_thr);
d83ad864
DB
512 }
513 else
514 {
515 child_inf->aspace = new_address_space ();
564b1e3f 516 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
517 child_inf->removable = 1;
518 set_current_program_space (child_inf->pspace);
519 clone_program_space (child_inf->pspace, parent_inf->pspace);
520
18493a00
PA
521 /* solib_create_inferior_hook relies on the current
522 thread. */
523 switch_to_thread (child_thr);
524
d83ad864
DB
525 /* Let the shared library layer (e.g., solib-svr4) learn
526 about this new process, relocate the cloned exec, pull
527 in shared libraries, and install the solib event
528 breakpoint. If a "cloned-VM" event was propagated
529 better throughout the core, this wouldn't be
530 required. */
531 solib_create_inferior_hook (0);
532 }
d83ad864
DB
533 }
534
535 if (has_vforked)
536 {
537 struct inferior *parent_inf;
538
539 parent_inf = current_inferior ();
540
541 /* If we detached from the child, then we have to be careful
542 to not insert breakpoints in the parent until the child
543 is done with the shared memory region. However, if we're
544 staying attached to the child, then we can and should
545 insert breakpoints, so that we can debug it. A
546 subsequent child exec or exit is enough to know when does
547 the child stops using the parent's address space. */
548 parent_inf->waiting_for_vfork_done = detach_fork;
549 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
550 }
551 }
552 else
553 {
554 /* Follow the child. */
555 struct inferior *parent_inf, *child_inf;
556 struct program_space *parent_pspace;
557
f67c0c91 558 if (print_inferior_events)
d83ad864 559 {
f67c0c91
SDJ
560 std::string parent_pid = target_pid_to_str (parent_ptid);
561 std::string child_pid = target_pid_to_str (child_ptid);
562
223ffa71 563 target_terminal::ours_for_output ();
6f259a23 564 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
565 _("[Attaching after %s %s to child %s]\n"),
566 parent_pid.c_str (),
6f259a23 567 has_vforked ? "vfork" : "fork",
f67c0c91 568 child_pid.c_str ());
d83ad864
DB
569 }
570
571 /* Add the new inferior first, so that the target_detach below
572 doesn't unpush the target. */
573
e99b03dc 574 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
575
576 parent_inf = current_inferior ();
577 child_inf->attach_flag = parent_inf->attach_flag;
578 copy_terminal_info (child_inf, parent_inf);
579 child_inf->gdbarch = parent_inf->gdbarch;
580 copy_inferior_target_desc_info (child_inf, parent_inf);
581
582 parent_pspace = parent_inf->pspace;
583
5b6d1e4f 584 process_stratum_target *target = parent_inf->process_target ();
d83ad864 585
5b6d1e4f
PA
586 {
587 /* Hold a strong reference to the target while (maybe)
588 detaching the parent. Otherwise detaching could close the
589 target. */
590 auto target_ref = target_ops_ref::new_reference (target);
591
592 /* If we're vforking, we want to hold on to the parent until
593 the child exits or execs. At child exec or exit time we
594 can remove the old breakpoints from the parent and detach
595 or resume debugging it. Otherwise, detach the parent now;
596 we'll want to reuse it's program/address spaces, but we
597 can't set them to the child before removing breakpoints
598 from the parent, otherwise, the breakpoints module could
599 decide to remove breakpoints from the wrong process (since
600 they'd be assigned to the same address space). */
601
602 if (has_vforked)
603 {
604 gdb_assert (child_inf->vfork_parent == NULL);
605 gdb_assert (parent_inf->vfork_child == NULL);
606 child_inf->vfork_parent = parent_inf;
607 child_inf->pending_detach = 0;
608 parent_inf->vfork_child = child_inf;
609 parent_inf->pending_detach = detach_fork;
610 parent_inf->waiting_for_vfork_done = 0;
611 }
612 else if (detach_fork)
613 {
614 if (print_inferior_events)
615 {
616 /* Ensure that we have a process ptid. */
617 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
618
619 target_terminal::ours_for_output ();
620 fprintf_filtered (gdb_stdlog,
621 _("[Detaching after fork from "
622 "parent %s]\n"),
623 target_pid_to_str (process_ptid).c_str ());
624 }
8dd06f7a 625
5b6d1e4f
PA
626 target_detach (parent_inf, 0);
627 parent_inf = NULL;
628 }
6f259a23 629
5b6d1e4f 630 /* Note that the detach above makes PARENT_INF dangling. */
d83ad864 631
5b6d1e4f
PA
632 /* Add the child thread to the appropriate lists, and switch
633 to this new thread, before cloning the program space, and
634 informing the solib layer about this new process. */
d83ad864 635
5b6d1e4f
PA
636 set_current_inferior (child_inf);
637 push_target (target);
638 }
d83ad864 639
18493a00 640 thread_info *child_thr = add_thread_silent (target, child_ptid);
d83ad864
DB
641
642 /* If this is a vfork child, then the address-space is shared
643 with the parent. If we detached from the parent, then we can
644 reuse the parent's program/address spaces. */
645 if (has_vforked || detach_fork)
646 {
647 child_inf->pspace = parent_pspace;
648 child_inf->aspace = child_inf->pspace->aspace;
5b6d1e4f
PA
649
650 exec_on_vfork ();
d83ad864
DB
651 }
652 else
653 {
654 child_inf->aspace = new_address_space ();
564b1e3f 655 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
656 child_inf->removable = 1;
657 child_inf->symfile_flags = SYMFILE_NO_READ;
658 set_current_program_space (child_inf->pspace);
659 clone_program_space (child_inf->pspace, parent_pspace);
660
661 /* Let the shared library layer (e.g., solib-svr4) learn
662 about this new process, relocate the cloned exec, pull in
663 shared libraries, and install the solib event breakpoint.
664 If a "cloned-VM" event was propagated better throughout
665 the core, this wouldn't be required. */
666 solib_create_inferior_hook (0);
667 }
18493a00
PA
668
669 switch_to_thread (child_thr);
d83ad864
DB
670 }
671
672 return target_follow_fork (follow_child, detach_fork);
673}
674
e58b0e63
PA
675/* Tell the target to follow the fork we're stopped at. Returns true
676 if the inferior should be resumed; false, if the target for some
677 reason decided it's best not to resume. */
678
5ab2fbf1
SM
679static bool
680follow_fork ()
c906108c 681{
5ab2fbf1
SM
682 bool follow_child = (follow_fork_mode_string == follow_fork_mode_child);
683 bool should_resume = true;
e58b0e63
PA
684 struct thread_info *tp;
685
686 /* Copy user stepping state to the new inferior thread. FIXME: the
687 followed fork child thread should have a copy of most of the
4e3990f4
DE
688 parent thread structure's run control related fields, not just these.
689 Initialized to avoid "may be used uninitialized" warnings from gcc. */
690 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 691 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
692 CORE_ADDR step_range_start = 0;
693 CORE_ADDR step_range_end = 0;
bf4cb9be
TV
694 int current_line = 0;
695 symtab *current_symtab = NULL;
4e3990f4 696 struct frame_id step_frame_id = { 0 };
8980e177 697 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
698
699 if (!non_stop)
700 {
5b6d1e4f 701 process_stratum_target *wait_target;
e58b0e63
PA
702 ptid_t wait_ptid;
703 struct target_waitstatus wait_status;
704
705 /* Get the last target status returned by target_wait(). */
5b6d1e4f 706 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
e58b0e63
PA
707
708 /* If not stopped at a fork event, then there's nothing else to
709 do. */
710 if (wait_status.kind != TARGET_WAITKIND_FORKED
711 && wait_status.kind != TARGET_WAITKIND_VFORKED)
712 return 1;
713
714 /* Check if we switched over from WAIT_PTID, since the event was
715 reported. */
00431a78 716 if (wait_ptid != minus_one_ptid
5b6d1e4f
PA
717 && (current_inferior ()->process_target () != wait_target
718 || inferior_ptid != wait_ptid))
e58b0e63
PA
719 {
720 /* We did. Switch back to WAIT_PTID thread, to tell the
721 target to follow it (in either direction). We'll
722 afterwards refuse to resume, and inform the user what
723 happened. */
5b6d1e4f 724 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
00431a78 725 switch_to_thread (wait_thread);
5ab2fbf1 726 should_resume = false;
e58b0e63
PA
727 }
728 }
729
730 tp = inferior_thread ();
731
732 /* If there were any forks/vforks that were caught and are now to be
733 followed, then do so now. */
734 switch (tp->pending_follow.kind)
735 {
736 case TARGET_WAITKIND_FORKED:
737 case TARGET_WAITKIND_VFORKED:
738 {
739 ptid_t parent, child;
740
741 /* If the user did a next/step, etc, over a fork call,
742 preserve the stepping state in the fork child. */
743 if (follow_child && should_resume)
744 {
8358c15c
JK
745 step_resume_breakpoint = clone_momentary_breakpoint
746 (tp->control.step_resume_breakpoint);
16c381f0
JK
747 step_range_start = tp->control.step_range_start;
748 step_range_end = tp->control.step_range_end;
bf4cb9be
TV
749 current_line = tp->current_line;
750 current_symtab = tp->current_symtab;
16c381f0 751 step_frame_id = tp->control.step_frame_id;
186c406b
TT
752 exception_resume_breakpoint
753 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 754 thread_fsm = tp->thread_fsm;
e58b0e63
PA
755
756 /* For now, delete the parent's sr breakpoint, otherwise,
757 parent/child sr breakpoints are considered duplicates,
758 and the child version will not be installed. Remove
759 this when the breakpoints module becomes aware of
760 inferiors and address spaces. */
761 delete_step_resume_breakpoint (tp);
16c381f0
JK
762 tp->control.step_range_start = 0;
763 tp->control.step_range_end = 0;
764 tp->control.step_frame_id = null_frame_id;
186c406b 765 delete_exception_resume_breakpoint (tp);
8980e177 766 tp->thread_fsm = NULL;
e58b0e63
PA
767 }
768
769 parent = inferior_ptid;
770 child = tp->pending_follow.value.related_pid;
771
5b6d1e4f 772 process_stratum_target *parent_targ = tp->inf->process_target ();
d83ad864
DB
773 /* Set up inferior(s) as specified by the caller, and tell the
774 target to do whatever is necessary to follow either parent
775 or child. */
776 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
777 {
778 /* Target refused to follow, or there's some other reason
779 we shouldn't resume. */
780 should_resume = 0;
781 }
782 else
783 {
784 /* This pending follow fork event is now handled, one way
785 or another. The previous selected thread may be gone
786 from the lists by now, but if it is still around, need
787 to clear the pending follow request. */
5b6d1e4f 788 tp = find_thread_ptid (parent_targ, parent);
e58b0e63
PA
789 if (tp)
790 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
791
792 /* This makes sure we don't try to apply the "Switched
793 over from WAIT_PID" logic above. */
794 nullify_last_target_wait_ptid ();
795
1777feb0 796 /* If we followed the child, switch to it... */
e58b0e63
PA
797 if (follow_child)
798 {
5b6d1e4f 799 thread_info *child_thr = find_thread_ptid (parent_targ, child);
00431a78 800 switch_to_thread (child_thr);
e58b0e63
PA
801
802 /* ... and preserve the stepping state, in case the
803 user was stepping over the fork call. */
804 if (should_resume)
805 {
806 tp = inferior_thread ();
8358c15c
JK
807 tp->control.step_resume_breakpoint
808 = step_resume_breakpoint;
16c381f0
JK
809 tp->control.step_range_start = step_range_start;
810 tp->control.step_range_end = step_range_end;
bf4cb9be
TV
811 tp->current_line = current_line;
812 tp->current_symtab = current_symtab;
16c381f0 813 tp->control.step_frame_id = step_frame_id;
186c406b
TT
814 tp->control.exception_resume_breakpoint
815 = exception_resume_breakpoint;
8980e177 816 tp->thread_fsm = thread_fsm;
e58b0e63
PA
817 }
818 else
819 {
820 /* If we get here, it was because we're trying to
821 resume from a fork catchpoint, but, the user
822 has switched threads away from the thread that
823 forked. In that case, the resume command
824 issued is most likely not applicable to the
825 child, so just warn, and refuse to resume. */
3e43a32a 826 warning (_("Not resuming: switched threads "
fd7dcb94 827 "before following fork child."));
e58b0e63
PA
828 }
829
830 /* Reset breakpoints in the child as appropriate. */
831 follow_inferior_reset_breakpoints ();
832 }
e58b0e63
PA
833 }
834 }
835 break;
836 case TARGET_WAITKIND_SPURIOUS:
837 /* Nothing to follow. */
838 break;
839 default:
840 internal_error (__FILE__, __LINE__,
841 "Unexpected pending_follow.kind %d\n",
842 tp->pending_follow.kind);
843 break;
844 }
c906108c 845
e58b0e63 846 return should_resume;
c906108c
SS
847}
848
d83ad864 849static void
6604731b 850follow_inferior_reset_breakpoints (void)
c906108c 851{
4e1c45ea
PA
852 struct thread_info *tp = inferior_thread ();
853
6604731b
DJ
854 /* Was there a step_resume breakpoint? (There was if the user
855 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
856 thread number. Cloned step_resume breakpoints are disabled on
857 creation, so enable it here now that it is associated with the
858 correct thread.
6604731b
DJ
859
860 step_resumes are a form of bp that are made to be per-thread.
861 Since we created the step_resume bp when the parent process
862 was being debugged, and now are switching to the child process,
863 from the breakpoint package's viewpoint, that's a switch of
864 "threads". We must update the bp's notion of which thread
865 it is for, or it'll be ignored when it triggers. */
866
8358c15c 867 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
868 {
869 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
870 tp->control.step_resume_breakpoint->loc->enabled = 1;
871 }
6604731b 872
a1aa2221 873 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 874 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
875 {
876 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
877 tp->control.exception_resume_breakpoint->loc->enabled = 1;
878 }
186c406b 879
6604731b
DJ
880 /* Reinsert all breakpoints in the child. The user may have set
881 breakpoints after catching the fork, in which case those
882 were never set in the child, but only in the parent. This makes
883 sure the inserted breakpoints match the breakpoint list. */
884
885 breakpoint_re_set ();
886 insert_breakpoints ();
c906108c 887}
c906108c 888
6c95b8df
PA
889/* The child has exited or execed: resume threads of the parent the
890 user wanted to be executing. */
891
892static int
893proceed_after_vfork_done (struct thread_info *thread,
894 void *arg)
895{
896 int pid = * (int *) arg;
897
00431a78
PA
898 if (thread->ptid.pid () == pid
899 && thread->state == THREAD_RUNNING
900 && !thread->executing
6c95b8df 901 && !thread->stop_requested
a493e3e2 902 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
903 {
904 if (debug_infrun)
905 fprintf_unfiltered (gdb_stdlog,
906 "infrun: resuming vfork parent thread %s\n",
a068643d 907 target_pid_to_str (thread->ptid).c_str ());
6c95b8df 908
00431a78 909 switch_to_thread (thread);
70509625 910 clear_proceed_status (0);
64ce06e4 911 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
912 }
913
914 return 0;
915}
916
917/* Called whenever we notice an exec or exit event, to handle
918 detaching or resuming a vfork parent. */
919
920static void
921handle_vfork_child_exec_or_exit (int exec)
922{
923 struct inferior *inf = current_inferior ();
924
925 if (inf->vfork_parent)
926 {
927 int resume_parent = -1;
928
929 /* This exec or exit marks the end of the shared memory region
b73715df
TV
930 between the parent and the child. Break the bonds. */
931 inferior *vfork_parent = inf->vfork_parent;
932 inf->vfork_parent->vfork_child = NULL;
933 inf->vfork_parent = NULL;
6c95b8df 934
b73715df
TV
935 /* If the user wanted to detach from the parent, now is the
936 time. */
937 if (vfork_parent->pending_detach)
6c95b8df 938 {
6c95b8df
PA
939 struct program_space *pspace;
940 struct address_space *aspace;
941
1777feb0 942 /* follow-fork child, detach-on-fork on. */
6c95b8df 943
b73715df 944 vfork_parent->pending_detach = 0;
68c9da30 945
18493a00 946 scoped_restore_current_pspace_and_thread restore_thread;
6c95b8df
PA
947
948 /* We're letting loose of the parent. */
18493a00 949 thread_info *tp = any_live_thread_of_inferior (vfork_parent);
00431a78 950 switch_to_thread (tp);
6c95b8df
PA
951
952 /* We're about to detach from the parent, which implicitly
953 removes breakpoints from its address space. There's a
954 catch here: we want to reuse the spaces for the child,
955 but, parent/child are still sharing the pspace at this
956 point, although the exec in reality makes the kernel give
957 the child a fresh set of new pages. The problem here is
958 that the breakpoints module being unaware of this, would
959 likely chose the child process to write to the parent
960 address space. Swapping the child temporarily away from
961 the spaces has the desired effect. Yes, this is "sort
962 of" a hack. */
963
964 pspace = inf->pspace;
965 aspace = inf->aspace;
966 inf->aspace = NULL;
967 inf->pspace = NULL;
968
f67c0c91 969 if (print_inferior_events)
6c95b8df 970 {
a068643d 971 std::string pidstr
b73715df 972 = target_pid_to_str (ptid_t (vfork_parent->pid));
f67c0c91 973
223ffa71 974 target_terminal::ours_for_output ();
6c95b8df
PA
975
976 if (exec)
6f259a23
DB
977 {
978 fprintf_filtered (gdb_stdlog,
f67c0c91 979 _("[Detaching vfork parent %s "
a068643d 980 "after child exec]\n"), pidstr.c_str ());
6f259a23 981 }
6c95b8df 982 else
6f259a23
DB
983 {
984 fprintf_filtered (gdb_stdlog,
f67c0c91 985 _("[Detaching vfork parent %s "
a068643d 986 "after child exit]\n"), pidstr.c_str ());
6f259a23 987 }
6c95b8df
PA
988 }
989
b73715df 990 target_detach (vfork_parent, 0);
6c95b8df
PA
991
992 /* Put it back. */
993 inf->pspace = pspace;
994 inf->aspace = aspace;
6c95b8df
PA
995 }
996 else if (exec)
997 {
998 /* We're staying attached to the parent, so, really give the
999 child a new address space. */
564b1e3f 1000 inf->pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
1001 inf->aspace = inf->pspace->aspace;
1002 inf->removable = 1;
1003 set_current_program_space (inf->pspace);
1004
b73715df 1005 resume_parent = vfork_parent->pid;
6c95b8df
PA
1006 }
1007 else
1008 {
6c95b8df
PA
1009 /* If this is a vfork child exiting, then the pspace and
1010 aspaces were shared with the parent. Since we're
1011 reporting the process exit, we'll be mourning all that is
1012 found in the address space, and switching to null_ptid,
1013 preparing to start a new inferior. But, since we don't
1014 want to clobber the parent's address/program spaces, we
1015 go ahead and create a new one for this exiting
1016 inferior. */
1017
18493a00 1018 /* Switch to no-thread while running clone_program_space, so
5ed8105e
PA
1019 that clone_program_space doesn't want to read the
1020 selected frame of a dead process. */
18493a00
PA
1021 scoped_restore_current_thread restore_thread;
1022 switch_to_no_thread ();
6c95b8df 1023
53af73bf
PA
1024 inf->pspace = new program_space (maybe_new_address_space ());
1025 inf->aspace = inf->pspace->aspace;
1026 set_current_program_space (inf->pspace);
6c95b8df 1027 inf->removable = 1;
7dcd53a0 1028 inf->symfile_flags = SYMFILE_NO_READ;
53af73bf 1029 clone_program_space (inf->pspace, vfork_parent->pspace);
6c95b8df 1030
b73715df 1031 resume_parent = vfork_parent->pid;
6c95b8df
PA
1032 }
1033
6c95b8df
PA
1034 gdb_assert (current_program_space == inf->pspace);
1035
1036 if (non_stop && resume_parent != -1)
1037 {
1038 /* If the user wanted the parent to be running, let it go
1039 free now. */
5ed8105e 1040 scoped_restore_current_thread restore_thread;
6c95b8df
PA
1041
1042 if (debug_infrun)
3e43a32a
MS
1043 fprintf_unfiltered (gdb_stdlog,
1044 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1045 resume_parent);
1046
1047 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1048 }
1049 }
1050}
1051
eb6c553b 1052/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1053
1054static const char follow_exec_mode_new[] = "new";
1055static const char follow_exec_mode_same[] = "same";
40478521 1056static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1057{
1058 follow_exec_mode_new,
1059 follow_exec_mode_same,
1060 NULL,
1061};
1062
1063static const char *follow_exec_mode_string = follow_exec_mode_same;
1064static void
1065show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1066 struct cmd_list_element *c, const char *value)
1067{
1068 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1069}
1070
ecf45d2c 1071/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1072
c906108c 1073static void
4ca51187 1074follow_exec (ptid_t ptid, const char *exec_file_target)
c906108c 1075{
6c95b8df 1076 struct inferior *inf = current_inferior ();
e99b03dc 1077 int pid = ptid.pid ();
94585166 1078 ptid_t process_ptid;
7a292a7a 1079
65d2b333
PW
1080 /* Switch terminal for any messages produced e.g. by
1081 breakpoint_re_set. */
1082 target_terminal::ours_for_output ();
1083
c906108c
SS
1084 /* This is an exec event that we actually wish to pay attention to.
1085 Refresh our symbol table to the newly exec'd program, remove any
1086 momentary bp's, etc.
1087
1088 If there are breakpoints, they aren't really inserted now,
1089 since the exec() transformed our inferior into a fresh set
1090 of instructions.
1091
1092 We want to preserve symbolic breakpoints on the list, since
1093 we have hopes that they can be reset after the new a.out's
1094 symbol table is read.
1095
1096 However, any "raw" breakpoints must be removed from the list
1097 (e.g., the solib bp's), since their address is probably invalid
1098 now.
1099
1100 And, we DON'T want to call delete_breakpoints() here, since
1101 that may write the bp's "shadow contents" (the instruction
85102364 1102 value that was overwritten with a TRAP instruction). Since
1777feb0 1103 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1104
1105 mark_breakpoints_out ();
1106
95e50b27
PA
1107 /* The target reports the exec event to the main thread, even if
1108 some other thread does the exec, and even if the main thread was
1109 stopped or already gone. We may still have non-leader threads of
1110 the process on our list. E.g., on targets that don't have thread
1111 exit events (like remote); or on native Linux in non-stop mode if
1112 there were only two threads in the inferior and the non-leader
1113 one is the one that execs (and nothing forces an update of the
1114 thread list up to here). When debugging remotely, it's best to
1115 avoid extra traffic, when possible, so avoid syncing the thread
1116 list with the target, and instead go ahead and delete all threads
1117 of the process but one that reported the event. Note this must
1118 be done before calling update_breakpoints_after_exec, as
1119 otherwise clearing the threads' resources would reference stale
1120 thread breakpoints -- it may have been one of these threads that
1121 stepped across the exec. We could just clear their stepping
1122 states, but as long as we're iterating, might as well delete
1123 them. Deleting them now rather than at the next user-visible
1124 stop provides a nicer sequence of events for user and MI
1125 notifications. */
08036331 1126 for (thread_info *th : all_threads_safe ())
d7e15655 1127 if (th->ptid.pid () == pid && th->ptid != ptid)
00431a78 1128 delete_thread (th);
95e50b27
PA
1129
1130 /* We also need to clear any left over stale state for the
1131 leader/event thread. E.g., if there was any step-resume
1132 breakpoint or similar, it's gone now. We cannot truly
1133 step-to-next statement through an exec(). */
08036331 1134 thread_info *th = inferior_thread ();
8358c15c 1135 th->control.step_resume_breakpoint = NULL;
186c406b 1136 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1137 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1138 th->control.step_range_start = 0;
1139 th->control.step_range_end = 0;
c906108c 1140
95e50b27
PA
1141 /* The user may have had the main thread held stopped in the
1142 previous image (e.g., schedlock on, or non-stop). Release
1143 it now. */
a75724bc
PA
1144 th->stop_requested = 0;
1145
95e50b27
PA
1146 update_breakpoints_after_exec ();
1147
1777feb0 1148 /* What is this a.out's name? */
f2907e49 1149 process_ptid = ptid_t (pid);
6c95b8df 1150 printf_unfiltered (_("%s is executing new program: %s\n"),
a068643d 1151 target_pid_to_str (process_ptid).c_str (),
ecf45d2c 1152 exec_file_target);
c906108c
SS
1153
1154 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1155 inferior has essentially been killed & reborn. */
7a292a7a 1156
6ca15a4b 1157 breakpoint_init_inferior (inf_execd);
e85a822c 1158
797bc1cb
TT
1159 gdb::unique_xmalloc_ptr<char> exec_file_host
1160 = exec_file_find (exec_file_target, NULL);
ff862be4 1161
ecf45d2c
SL
1162 /* If we were unable to map the executable target pathname onto a host
1163 pathname, tell the user that. Otherwise GDB's subsequent behavior
1164 is confusing. Maybe it would even be better to stop at this point
1165 so that the user can specify a file manually before continuing. */
1166 if (exec_file_host == NULL)
1167 warning (_("Could not load symbols for executable %s.\n"
1168 "Do you need \"set sysroot\"?"),
1169 exec_file_target);
c906108c 1170
cce9b6bf
PA
1171 /* Reset the shared library package. This ensures that we get a
1172 shlib event when the child reaches "_start", at which point the
1173 dld will have had a chance to initialize the child. */
1174 /* Also, loading a symbol file below may trigger symbol lookups, and
1175 we don't want those to be satisfied by the libraries of the
1176 previous incarnation of this process. */
1177 no_shared_libraries (NULL, 0);
1178
6c95b8df
PA
1179 if (follow_exec_mode_string == follow_exec_mode_new)
1180 {
6c95b8df
PA
1181 /* The user wants to keep the old inferior and program spaces
1182 around. Create a new fresh one, and switch to it. */
1183
35ed81d4
SM
1184 /* Do exit processing for the original inferior before setting the new
1185 inferior's pid. Having two inferiors with the same pid would confuse
1186 find_inferior_p(t)id. Transfer the terminal state and info from the
1187 old to the new inferior. */
1188 inf = add_inferior_with_spaces ();
1189 swap_terminal_info (inf, current_inferior ());
057302ce 1190 exit_inferior_silent (current_inferior ());
17d8546e 1191
94585166 1192 inf->pid = pid;
ecf45d2c 1193 target_follow_exec (inf, exec_file_target);
6c95b8df 1194
5b6d1e4f
PA
1195 inferior *org_inferior = current_inferior ();
1196 switch_to_inferior_no_thread (inf);
1197 push_target (org_inferior->process_target ());
1198 thread_info *thr = add_thread (inf->process_target (), ptid);
1199 switch_to_thread (thr);
6c95b8df 1200 }
9107fc8d
PA
1201 else
1202 {
1203 /* The old description may no longer be fit for the new image.
1204 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1205 old description; we'll read a new one below. No need to do
1206 this on "follow-exec-mode new", as the old inferior stays
1207 around (its description is later cleared/refetched on
1208 restart). */
1209 target_clear_description ();
1210 }
6c95b8df
PA
1211
1212 gdb_assert (current_program_space == inf->pspace);
1213
ecf45d2c
SL
1214 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1215 because the proper displacement for a PIE (Position Independent
1216 Executable) main symbol file will only be computed by
1217 solib_create_inferior_hook below. breakpoint_re_set would fail
1218 to insert the breakpoints with the zero displacement. */
797bc1cb 1219 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
c906108c 1220
9107fc8d
PA
1221 /* If the target can specify a description, read it. Must do this
1222 after flipping to the new executable (because the target supplied
1223 description must be compatible with the executable's
1224 architecture, and the old executable may e.g., be 32-bit, while
1225 the new one 64-bit), and before anything involving memory or
1226 registers. */
1227 target_find_description ();
1228
268a4a75 1229 solib_create_inferior_hook (0);
c906108c 1230
4efc6507
DE
1231 jit_inferior_created_hook ();
1232
c1e56572
JK
1233 breakpoint_re_set ();
1234
c906108c
SS
1235 /* Reinsert all breakpoints. (Those which were symbolic have
1236 been reset to the proper address in the new a.out, thanks
1777feb0 1237 to symbol_file_command...). */
c906108c
SS
1238 insert_breakpoints ();
1239
1240 /* The next resume of this inferior should bring it to the shlib
1241 startup breakpoints. (If the user had also set bp's on
1242 "main" from the old (parent) process, then they'll auto-
1777feb0 1243 matically get reset there in the new process.). */
c906108c
SS
1244}
1245
c2829269
PA
1246/* The queue of threads that need to do a step-over operation to get
1247 past e.g., a breakpoint. What technique is used to step over the
1248 breakpoint/watchpoint does not matter -- all threads end up in the
1249 same queue, to maintain rough temporal order of execution, in order
1250 to avoid starvation, otherwise, we could e.g., find ourselves
1251 constantly stepping the same couple threads past their breakpoints
1252 over and over, if the single-step finish fast enough. */
1253struct thread_info *step_over_queue_head;
1254
6c4cfb24
PA
1255/* Bit flags indicating what the thread needs to step over. */
1256
8d297bbf 1257enum step_over_what_flag
6c4cfb24
PA
1258 {
1259 /* Step over a breakpoint. */
1260 STEP_OVER_BREAKPOINT = 1,
1261
1262 /* Step past a non-continuable watchpoint, in order to let the
1263 instruction execute so we can evaluate the watchpoint
1264 expression. */
1265 STEP_OVER_WATCHPOINT = 2
1266 };
8d297bbf 1267DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1268
963f9c80 1269/* Info about an instruction that is being stepped over. */
31e77af2
PA
1270
1271struct step_over_info
1272{
963f9c80
PA
1273 /* If we're stepping past a breakpoint, this is the address space
1274 and address of the instruction the breakpoint is set at. We'll
1275 skip inserting all breakpoints here. Valid iff ASPACE is
1276 non-NULL. */
8b86c959 1277 const address_space *aspace;
31e77af2 1278 CORE_ADDR address;
963f9c80
PA
1279
1280 /* The instruction being stepped over triggers a nonsteppable
1281 watchpoint. If true, we'll skip inserting watchpoints. */
1282 int nonsteppable_watchpoint_p;
21edc42f
YQ
1283
1284 /* The thread's global number. */
1285 int thread;
31e77af2
PA
1286};
1287
1288/* The step-over info of the location that is being stepped over.
1289
1290 Note that with async/breakpoint always-inserted mode, a user might
1291 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1292 being stepped over. As setting a new breakpoint inserts all
1293 breakpoints, we need to make sure the breakpoint being stepped over
1294 isn't inserted then. We do that by only clearing the step-over
1295 info when the step-over is actually finished (or aborted).
1296
1297 Presently GDB can only step over one breakpoint at any given time.
1298 Given threads that can't run code in the same address space as the
1299 breakpoint's can't really miss the breakpoint, GDB could be taught
1300 to step-over at most one breakpoint per address space (so this info
1301 could move to the address space object if/when GDB is extended).
1302 The set of breakpoints being stepped over will normally be much
1303 smaller than the set of all breakpoints, so a flag in the
1304 breakpoint location structure would be wasteful. A separate list
1305 also saves complexity and run-time, as otherwise we'd have to go
1306 through all breakpoint locations clearing their flag whenever we
1307 start a new sequence. Similar considerations weigh against storing
1308 this info in the thread object. Plus, not all step overs actually
1309 have breakpoint locations -- e.g., stepping past a single-step
1310 breakpoint, or stepping to complete a non-continuable
1311 watchpoint. */
1312static struct step_over_info step_over_info;
1313
1314/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1315 stepping over.
1316 N.B. We record the aspace and address now, instead of say just the thread,
1317 because when we need the info later the thread may be running. */
31e77af2
PA
1318
1319static void
8b86c959 1320set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1321 int nonsteppable_watchpoint_p,
1322 int thread)
31e77af2
PA
1323{
1324 step_over_info.aspace = aspace;
1325 step_over_info.address = address;
963f9c80 1326 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1327 step_over_info.thread = thread;
31e77af2
PA
1328}
1329
1330/* Called when we're not longer stepping over a breakpoint / an
1331 instruction, so all breakpoints are free to be (re)inserted. */
1332
1333static void
1334clear_step_over_info (void)
1335{
372316f1
PA
1336 if (debug_infrun)
1337 fprintf_unfiltered (gdb_stdlog,
1338 "infrun: clear_step_over_info\n");
31e77af2
PA
1339 step_over_info.aspace = NULL;
1340 step_over_info.address = 0;
963f9c80 1341 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1342 step_over_info.thread = -1;
31e77af2
PA
1343}
1344
7f89fd65 1345/* See infrun.h. */
31e77af2
PA
1346
1347int
1348stepping_past_instruction_at (struct address_space *aspace,
1349 CORE_ADDR address)
1350{
1351 return (step_over_info.aspace != NULL
1352 && breakpoint_address_match (aspace, address,
1353 step_over_info.aspace,
1354 step_over_info.address));
1355}
1356
963f9c80
PA
1357/* See infrun.h. */
1358
21edc42f
YQ
1359int
1360thread_is_stepping_over_breakpoint (int thread)
1361{
1362 return (step_over_info.thread != -1
1363 && thread == step_over_info.thread);
1364}
1365
1366/* See infrun.h. */
1367
963f9c80
PA
1368int
1369stepping_past_nonsteppable_watchpoint (void)
1370{
1371 return step_over_info.nonsteppable_watchpoint_p;
1372}
1373
6cc83d2a
PA
1374/* Returns true if step-over info is valid. */
1375
1376static int
1377step_over_info_valid_p (void)
1378{
963f9c80
PA
1379 return (step_over_info.aspace != NULL
1380 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1381}
1382
c906108c 1383\f
237fc4c9
PA
1384/* Displaced stepping. */
1385
1386/* In non-stop debugging mode, we must take special care to manage
1387 breakpoints properly; in particular, the traditional strategy for
1388 stepping a thread past a breakpoint it has hit is unsuitable.
1389 'Displaced stepping' is a tactic for stepping one thread past a
1390 breakpoint it has hit while ensuring that other threads running
1391 concurrently will hit the breakpoint as they should.
1392
1393 The traditional way to step a thread T off a breakpoint in a
1394 multi-threaded program in all-stop mode is as follows:
1395
1396 a0) Initially, all threads are stopped, and breakpoints are not
1397 inserted.
1398 a1) We single-step T, leaving breakpoints uninserted.
1399 a2) We insert breakpoints, and resume all threads.
1400
1401 In non-stop debugging, however, this strategy is unsuitable: we
1402 don't want to have to stop all threads in the system in order to
1403 continue or step T past a breakpoint. Instead, we use displaced
1404 stepping:
1405
1406 n0) Initially, T is stopped, other threads are running, and
1407 breakpoints are inserted.
1408 n1) We copy the instruction "under" the breakpoint to a separate
1409 location, outside the main code stream, making any adjustments
1410 to the instruction, register, and memory state as directed by
1411 T's architecture.
1412 n2) We single-step T over the instruction at its new location.
1413 n3) We adjust the resulting register and memory state as directed
1414 by T's architecture. This includes resetting T's PC to point
1415 back into the main instruction stream.
1416 n4) We resume T.
1417
1418 This approach depends on the following gdbarch methods:
1419
1420 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1421 indicate where to copy the instruction, and how much space must
1422 be reserved there. We use these in step n1.
1423
1424 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1425 address, and makes any necessary adjustments to the instruction,
1426 register contents, and memory. We use this in step n1.
1427
1428 - gdbarch_displaced_step_fixup adjusts registers and memory after
85102364 1429 we have successfully single-stepped the instruction, to yield the
237fc4c9
PA
1430 same effect the instruction would have had if we had executed it
1431 at its original address. We use this in step n3.
1432
237fc4c9
PA
1433 The gdbarch_displaced_step_copy_insn and
1434 gdbarch_displaced_step_fixup functions must be written so that
1435 copying an instruction with gdbarch_displaced_step_copy_insn,
1436 single-stepping across the copied instruction, and then applying
1437 gdbarch_displaced_insn_fixup should have the same effects on the
1438 thread's memory and registers as stepping the instruction in place
1439 would have. Exactly which responsibilities fall to the copy and
1440 which fall to the fixup is up to the author of those functions.
1441
1442 See the comments in gdbarch.sh for details.
1443
1444 Note that displaced stepping and software single-step cannot
1445 currently be used in combination, although with some care I think
1446 they could be made to. Software single-step works by placing
1447 breakpoints on all possible subsequent instructions; if the
1448 displaced instruction is a PC-relative jump, those breakpoints
1449 could fall in very strange places --- on pages that aren't
1450 executable, or at addresses that are not proper instruction
1451 boundaries. (We do generally let other threads run while we wait
1452 to hit the software single-step breakpoint, and they might
1453 encounter such a corrupted instruction.) One way to work around
1454 this would be to have gdbarch_displaced_step_copy_insn fully
1455 simulate the effect of PC-relative instructions (and return NULL)
1456 on architectures that use software single-stepping.
1457
1458 In non-stop mode, we can have independent and simultaneous step
1459 requests, so more than one thread may need to simultaneously step
1460 over a breakpoint. The current implementation assumes there is
1461 only one scratch space per process. In this case, we have to
1462 serialize access to the scratch space. If thread A wants to step
1463 over a breakpoint, but we are currently waiting for some other
1464 thread to complete a displaced step, we leave thread A stopped and
1465 place it in the displaced_step_request_queue. Whenever a displaced
1466 step finishes, we pick the next thread in the queue and start a new
1467 displaced step operation on it. See displaced_step_prepare and
1468 displaced_step_fixup for details. */
1469
cfba9872
SM
1470/* Default destructor for displaced_step_closure. */
1471
1472displaced_step_closure::~displaced_step_closure () = default;
1473
fc1cf338
PA
1474/* Get the displaced stepping state of process PID. */
1475
39a36629 1476static displaced_step_inferior_state *
00431a78 1477get_displaced_stepping_state (inferior *inf)
fc1cf338 1478{
d20172fc 1479 return &inf->displaced_step_state;
fc1cf338
PA
1480}
1481
372316f1
PA
1482/* Returns true if any inferior has a thread doing a displaced
1483 step. */
1484
39a36629
SM
1485static bool
1486displaced_step_in_progress_any_inferior ()
372316f1 1487{
d20172fc 1488 for (inferior *i : all_inferiors ())
39a36629 1489 {
d20172fc 1490 if (i->displaced_step_state.step_thread != nullptr)
39a36629
SM
1491 return true;
1492 }
372316f1 1493
39a36629 1494 return false;
372316f1
PA
1495}
1496
c0987663
YQ
1497/* Return true if thread represented by PTID is doing a displaced
1498 step. */
1499
1500static int
00431a78 1501displaced_step_in_progress_thread (thread_info *thread)
c0987663 1502{
00431a78 1503 gdb_assert (thread != NULL);
c0987663 1504
d20172fc 1505 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
c0987663
YQ
1506}
1507
8f572e5c
PA
1508/* Return true if process PID has a thread doing a displaced step. */
1509
1510static int
00431a78 1511displaced_step_in_progress (inferior *inf)
8f572e5c 1512{
d20172fc 1513 return get_displaced_stepping_state (inf)->step_thread != nullptr;
fc1cf338
PA
1514}
1515
a42244db
YQ
1516/* If inferior is in displaced stepping, and ADDR equals to starting address
1517 of copy area, return corresponding displaced_step_closure. Otherwise,
1518 return NULL. */
1519
1520struct displaced_step_closure*
1521get_displaced_step_closure_by_addr (CORE_ADDR addr)
1522{
d20172fc 1523 displaced_step_inferior_state *displaced
00431a78 1524 = get_displaced_stepping_state (current_inferior ());
a42244db
YQ
1525
1526 /* If checking the mode of displaced instruction in copy area. */
d20172fc 1527 if (displaced->step_thread != nullptr
00431a78 1528 && displaced->step_copy == addr)
d8d83535 1529 return displaced->step_closure.get ();
a42244db
YQ
1530
1531 return NULL;
1532}
1533
fc1cf338
PA
1534static void
1535infrun_inferior_exit (struct inferior *inf)
1536{
d20172fc 1537 inf->displaced_step_state.reset ();
fc1cf338 1538}
237fc4c9 1539
fff08868
HZ
1540/* If ON, and the architecture supports it, GDB will use displaced
1541 stepping to step over breakpoints. If OFF, or if the architecture
1542 doesn't support it, GDB will instead use the traditional
1543 hold-and-step approach. If AUTO (which is the default), GDB will
1544 decide which technique to use to step over breakpoints depending on
9822cb57 1545 whether the target works in a non-stop way (see use_displaced_stepping). */
fff08868 1546
72d0e2c5 1547static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1548
237fc4c9
PA
1549static void
1550show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1551 struct cmd_list_element *c,
1552 const char *value)
1553{
72d0e2c5 1554 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1555 fprintf_filtered (file,
1556 _("Debugger's willingness to use displaced stepping "
1557 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1558 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1559 else
3e43a32a
MS
1560 fprintf_filtered (file,
1561 _("Debugger's willingness to use displaced stepping "
1562 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1563}
1564
9822cb57
SM
1565/* Return true if the gdbarch implements the required methods to use
1566 displaced stepping. */
1567
1568static bool
1569gdbarch_supports_displaced_stepping (gdbarch *arch)
1570{
1571 /* Only check for the presence of step_copy_insn. Other required methods
1572 are checked by the gdbarch validation. */
1573 return gdbarch_displaced_step_copy_insn_p (arch);
1574}
1575
fff08868 1576/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1577 over breakpoints of thread TP. */
fff08868 1578
9822cb57
SM
1579static bool
1580use_displaced_stepping (thread_info *tp)
237fc4c9 1581{
9822cb57
SM
1582 /* If the user disabled it explicitly, don't use displaced stepping. */
1583 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1584 return false;
1585
1586 /* If "auto", only use displaced stepping if the target operates in a non-stop
1587 way. */
1588 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1589 && !target_is_non_stop_p ())
1590 return false;
1591
1592 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1593
1594 /* If the architecture doesn't implement displaced stepping, don't use
1595 it. */
1596 if (!gdbarch_supports_displaced_stepping (gdbarch))
1597 return false;
1598
1599 /* If recording, don't use displaced stepping. */
1600 if (find_record_target () != nullptr)
1601 return false;
1602
d20172fc
SM
1603 displaced_step_inferior_state *displaced_state
1604 = get_displaced_stepping_state (tp->inf);
3fc8eb30 1605
9822cb57
SM
1606 /* If displaced stepping failed before for this inferior, don't bother trying
1607 again. */
1608 if (displaced_state->failed_before)
1609 return false;
1610
1611 return true;
237fc4c9
PA
1612}
1613
d8d83535
SM
1614/* Simple function wrapper around displaced_step_inferior_state::reset. */
1615
237fc4c9 1616static void
d8d83535 1617displaced_step_reset (displaced_step_inferior_state *displaced)
237fc4c9 1618{
d8d83535 1619 displaced->reset ();
237fc4c9
PA
1620}
1621
d8d83535
SM
1622/* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1623 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1624
1625using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
237fc4c9
PA
1626
1627/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1628void
1629displaced_step_dump_bytes (struct ui_file *file,
1630 const gdb_byte *buf,
1631 size_t len)
1632{
1633 int i;
1634
1635 for (i = 0; i < len; i++)
1636 fprintf_unfiltered (file, "%02x ", buf[i]);
1637 fputs_unfiltered ("\n", file);
1638}
1639
1640/* Prepare to single-step, using displaced stepping.
1641
1642 Note that we cannot use displaced stepping when we have a signal to
1643 deliver. If we have a signal to deliver and an instruction to step
1644 over, then after the step, there will be no indication from the
1645 target whether the thread entered a signal handler or ignored the
1646 signal and stepped over the instruction successfully --- both cases
1647 result in a simple SIGTRAP. In the first case we mustn't do a
1648 fixup, and in the second case we must --- but we can't tell which.
1649 Comments in the code for 'random signals' in handle_inferior_event
1650 explain how we handle this case instead.
1651
1652 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1653 stepped now; 0 if displaced stepping this thread got queued; or -1
1654 if this instruction can't be displaced stepped. */
1655
237fc4c9 1656static int
00431a78 1657displaced_step_prepare_throw (thread_info *tp)
237fc4c9 1658{
00431a78 1659 regcache *regcache = get_thread_regcache (tp);
ac7936df 1660 struct gdbarch *gdbarch = regcache->arch ();
8b86c959 1661 const address_space *aspace = regcache->aspace ();
237fc4c9
PA
1662 CORE_ADDR original, copy;
1663 ULONGEST len;
9e529e1d 1664 int status;
237fc4c9
PA
1665
1666 /* We should never reach this function if the architecture does not
1667 support displaced stepping. */
9822cb57 1668 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
237fc4c9 1669
c2829269
PA
1670 /* Nor if the thread isn't meant to step over a breakpoint. */
1671 gdb_assert (tp->control.trap_expected);
1672
c1e36e3e
PA
1673 /* Disable range stepping while executing in the scratch pad. We
1674 want a single-step even if executing the displaced instruction in
1675 the scratch buffer lands within the stepping range (e.g., a
1676 jump/branch). */
1677 tp->control.may_range_step = 0;
1678
fc1cf338
PA
1679 /* We have to displaced step one thread at a time, as we only have
1680 access to a single scratch space per inferior. */
237fc4c9 1681
d20172fc
SM
1682 displaced_step_inferior_state *displaced
1683 = get_displaced_stepping_state (tp->inf);
fc1cf338 1684
00431a78 1685 if (displaced->step_thread != nullptr)
237fc4c9
PA
1686 {
1687 /* Already waiting for a displaced step to finish. Defer this
1688 request and place in queue. */
237fc4c9
PA
1689
1690 if (debug_displaced)
1691 fprintf_unfiltered (gdb_stdlog,
c2829269 1692 "displaced: deferring step of %s\n",
a068643d 1693 target_pid_to_str (tp->ptid).c_str ());
237fc4c9 1694
c2829269 1695 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1696 return 0;
1697 }
1698 else
1699 {
1700 if (debug_displaced)
1701 fprintf_unfiltered (gdb_stdlog,
1702 "displaced: stepping %s now\n",
a068643d 1703 target_pid_to_str (tp->ptid).c_str ());
237fc4c9
PA
1704 }
1705
d8d83535 1706 displaced_step_reset (displaced);
237fc4c9 1707
00431a78
PA
1708 scoped_restore_current_thread restore_thread;
1709
1710 switch_to_thread (tp);
ad53cd71 1711
515630c5 1712 original = regcache_read_pc (regcache);
237fc4c9
PA
1713
1714 copy = gdbarch_displaced_step_location (gdbarch);
1715 len = gdbarch_max_insn_length (gdbarch);
1716
d35ae833
PA
1717 if (breakpoint_in_range_p (aspace, copy, len))
1718 {
1719 /* There's a breakpoint set in the scratch pad location range
1720 (which is usually around the entry point). We'd either
1721 install it before resuming, which would overwrite/corrupt the
1722 scratch pad, or if it was already inserted, this displaced
1723 step would overwrite it. The latter is OK in the sense that
1724 we already assume that no thread is going to execute the code
1725 in the scratch pad range (after initial startup) anyway, but
1726 the former is unacceptable. Simply punt and fallback to
1727 stepping over this breakpoint in-line. */
1728 if (debug_displaced)
1729 {
1730 fprintf_unfiltered (gdb_stdlog,
1731 "displaced: breakpoint set in scratch pad. "
1732 "Stepping over breakpoint in-line instead.\n");
1733 }
1734
d35ae833
PA
1735 return -1;
1736 }
1737
237fc4c9 1738 /* Save the original contents of the copy area. */
d20172fc
SM
1739 displaced->step_saved_copy.resize (len);
1740 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
9e529e1d
JK
1741 if (status != 0)
1742 throw_error (MEMORY_ERROR,
1743 _("Error accessing memory address %s (%s) for "
1744 "displaced-stepping scratch space."),
1745 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1746 if (debug_displaced)
1747 {
5af949e3
UW
1748 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1749 paddress (gdbarch, copy));
fc1cf338 1750 displaced_step_dump_bytes (gdb_stdlog,
d20172fc 1751 displaced->step_saved_copy.data (),
fc1cf338 1752 len);
237fc4c9
PA
1753 };
1754
e8217e61
SM
1755 displaced->step_closure
1756 = gdbarch_displaced_step_copy_insn (gdbarch, original, copy, regcache);
1757 if (displaced->step_closure == NULL)
7f03bd92
PA
1758 {
1759 /* The architecture doesn't know how or want to displaced step
1760 this instruction or instruction sequence. Fallback to
1761 stepping over the breakpoint in-line. */
7f03bd92
PA
1762 return -1;
1763 }
237fc4c9 1764
9f5a595d
UW
1765 /* Save the information we need to fix things up if the step
1766 succeeds. */
00431a78 1767 displaced->step_thread = tp;
fc1cf338 1768 displaced->step_gdbarch = gdbarch;
fc1cf338
PA
1769 displaced->step_original = original;
1770 displaced->step_copy = copy;
9f5a595d 1771
9799571e 1772 {
d8d83535 1773 displaced_step_reset_cleanup cleanup (displaced);
237fc4c9 1774
9799571e
TT
1775 /* Resume execution at the copy. */
1776 regcache_write_pc (regcache, copy);
237fc4c9 1777
9799571e
TT
1778 cleanup.release ();
1779 }
ad53cd71 1780
237fc4c9 1781 if (debug_displaced)
5af949e3
UW
1782 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1783 paddress (gdbarch, copy));
237fc4c9 1784
237fc4c9
PA
1785 return 1;
1786}
1787
3fc8eb30
PA
1788/* Wrapper for displaced_step_prepare_throw that disabled further
1789 attempts at displaced stepping if we get a memory error. */
1790
1791static int
00431a78 1792displaced_step_prepare (thread_info *thread)
3fc8eb30
PA
1793{
1794 int prepared = -1;
1795
a70b8144 1796 try
3fc8eb30 1797 {
00431a78 1798 prepared = displaced_step_prepare_throw (thread);
3fc8eb30 1799 }
230d2906 1800 catch (const gdb_exception_error &ex)
3fc8eb30
PA
1801 {
1802 struct displaced_step_inferior_state *displaced_state;
1803
16b41842
PA
1804 if (ex.error != MEMORY_ERROR
1805 && ex.error != NOT_SUPPORTED_ERROR)
eedc3f4f 1806 throw;
3fc8eb30
PA
1807
1808 if (debug_infrun)
1809 {
1810 fprintf_unfiltered (gdb_stdlog,
1811 "infrun: disabling displaced stepping: %s\n",
3d6e9d23 1812 ex.what ());
3fc8eb30
PA
1813 }
1814
1815 /* Be verbose if "set displaced-stepping" is "on", silent if
1816 "auto". */
1817 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1818 {
fd7dcb94 1819 warning (_("disabling displaced stepping: %s"),
3d6e9d23 1820 ex.what ());
3fc8eb30
PA
1821 }
1822
1823 /* Disable further displaced stepping attempts. */
1824 displaced_state
00431a78 1825 = get_displaced_stepping_state (thread->inf);
3fc8eb30
PA
1826 displaced_state->failed_before = 1;
1827 }
3fc8eb30
PA
1828
1829 return prepared;
1830}
1831
237fc4c9 1832static void
3e43a32a
MS
1833write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1834 const gdb_byte *myaddr, int len)
237fc4c9 1835{
2989a365 1836 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
abbb1732 1837
237fc4c9
PA
1838 inferior_ptid = ptid;
1839 write_memory (memaddr, myaddr, len);
237fc4c9
PA
1840}
1841
e2d96639
YQ
1842/* Restore the contents of the copy area for thread PTID. */
1843
1844static void
1845displaced_step_restore (struct displaced_step_inferior_state *displaced,
1846 ptid_t ptid)
1847{
1848 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1849
1850 write_memory_ptid (ptid, displaced->step_copy,
d20172fc 1851 displaced->step_saved_copy.data (), len);
e2d96639
YQ
1852 if (debug_displaced)
1853 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
a068643d 1854 target_pid_to_str (ptid).c_str (),
e2d96639
YQ
1855 paddress (displaced->step_gdbarch,
1856 displaced->step_copy));
1857}
1858
372316f1
PA
1859/* If we displaced stepped an instruction successfully, adjust
1860 registers and memory to yield the same effect the instruction would
1861 have had if we had executed it at its original address, and return
1862 1. If the instruction didn't complete, relocate the PC and return
1863 -1. If the thread wasn't displaced stepping, return 0. */
1864
1865static int
00431a78 1866displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
237fc4c9 1867{
fc1cf338 1868 struct displaced_step_inferior_state *displaced
00431a78 1869 = get_displaced_stepping_state (event_thread->inf);
372316f1 1870 int ret;
fc1cf338 1871
00431a78
PA
1872 /* Was this event for the thread we displaced? */
1873 if (displaced->step_thread != event_thread)
372316f1 1874 return 0;
237fc4c9 1875
cb71640d
PA
1876 /* Fixup may need to read memory/registers. Switch to the thread
1877 that we're fixing up. Also, target_stopped_by_watchpoint checks
d43b7a2d
TBA
1878 the current thread, and displaced_step_restore performs ptid-dependent
1879 memory accesses using current_inferior() and current_top_target(). */
00431a78 1880 switch_to_thread (event_thread);
cb71640d 1881
d43b7a2d
TBA
1882 displaced_step_reset_cleanup cleanup (displaced);
1883
1884 displaced_step_restore (displaced, displaced->step_thread->ptid);
1885
237fc4c9 1886 /* Did the instruction complete successfully? */
cb71640d
PA
1887 if (signal == GDB_SIGNAL_TRAP
1888 && !(target_stopped_by_watchpoint ()
1889 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1890 || target_have_steppable_watchpoint)))
237fc4c9
PA
1891 {
1892 /* Fix up the resulting state. */
fc1cf338 1893 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
d8d83535 1894 displaced->step_closure.get (),
fc1cf338
PA
1895 displaced->step_original,
1896 displaced->step_copy,
00431a78 1897 get_thread_regcache (displaced->step_thread));
372316f1 1898 ret = 1;
237fc4c9
PA
1899 }
1900 else
1901 {
1902 /* Since the instruction didn't complete, all we can do is
1903 relocate the PC. */
00431a78 1904 struct regcache *regcache = get_thread_regcache (event_thread);
515630c5 1905 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1906
fc1cf338 1907 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1908 regcache_write_pc (regcache, pc);
372316f1 1909 ret = -1;
237fc4c9
PA
1910 }
1911
372316f1 1912 return ret;
c2829269 1913}
1c5cfe86 1914
4d9d9d04
PA
1915/* Data to be passed around while handling an event. This data is
1916 discarded between events. */
1917struct execution_control_state
1918{
5b6d1e4f 1919 process_stratum_target *target;
4d9d9d04
PA
1920 ptid_t ptid;
1921 /* The thread that got the event, if this was a thread event; NULL
1922 otherwise. */
1923 struct thread_info *event_thread;
1924
1925 struct target_waitstatus ws;
1926 int stop_func_filled_in;
1927 CORE_ADDR stop_func_start;
1928 CORE_ADDR stop_func_end;
1929 const char *stop_func_name;
1930 int wait_some_more;
1931
1932 /* True if the event thread hit the single-step breakpoint of
1933 another thread. Thus the event doesn't cause a stop, the thread
1934 needs to be single-stepped past the single-step breakpoint before
1935 we can switch back to the original stepping thread. */
1936 int hit_singlestep_breakpoint;
1937};
1938
1939/* Clear ECS and set it to point at TP. */
c2829269
PA
1940
1941static void
4d9d9d04
PA
1942reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1943{
1944 memset (ecs, 0, sizeof (*ecs));
1945 ecs->event_thread = tp;
1946 ecs->ptid = tp->ptid;
1947}
1948
1949static void keep_going_pass_signal (struct execution_control_state *ecs);
1950static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 1951static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 1952static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
1953
1954/* Are there any pending step-over requests? If so, run all we can
1955 now and return true. Otherwise, return false. */
1956
1957static int
c2829269
PA
1958start_step_over (void)
1959{
1960 struct thread_info *tp, *next;
1961
372316f1
PA
1962 /* Don't start a new step-over if we already have an in-line
1963 step-over operation ongoing. */
1964 if (step_over_info_valid_p ())
1965 return 0;
1966
c2829269 1967 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 1968 {
4d9d9d04
PA
1969 struct execution_control_state ecss;
1970 struct execution_control_state *ecs = &ecss;
8d297bbf 1971 step_over_what step_what;
372316f1 1972 int must_be_in_line;
c2829269 1973
c65d6b55
PA
1974 gdb_assert (!tp->stop_requested);
1975
c2829269 1976 next = thread_step_over_chain_next (tp);
237fc4c9 1977
c2829269
PA
1978 /* If this inferior already has a displaced step in process,
1979 don't start a new one. */
00431a78 1980 if (displaced_step_in_progress (tp->inf))
c2829269
PA
1981 continue;
1982
372316f1
PA
1983 step_what = thread_still_needs_step_over (tp);
1984 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1985 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 1986 && !use_displaced_stepping (tp)));
372316f1
PA
1987
1988 /* We currently stop all threads of all processes to step-over
1989 in-line. If we need to start a new in-line step-over, let
1990 any pending displaced steps finish first. */
1991 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1992 return 0;
1993
c2829269
PA
1994 thread_step_over_chain_remove (tp);
1995
1996 if (step_over_queue_head == NULL)
1997 {
1998 if (debug_infrun)
1999 fprintf_unfiltered (gdb_stdlog,
2000 "infrun: step-over queue now empty\n");
2001 }
2002
372316f1
PA
2003 if (tp->control.trap_expected
2004 || tp->resumed
2005 || tp->executing)
ad53cd71 2006 {
4d9d9d04
PA
2007 internal_error (__FILE__, __LINE__,
2008 "[%s] has inconsistent state: "
372316f1 2009 "trap_expected=%d, resumed=%d, executing=%d\n",
a068643d 2010 target_pid_to_str (tp->ptid).c_str (),
4d9d9d04 2011 tp->control.trap_expected,
372316f1 2012 tp->resumed,
4d9d9d04 2013 tp->executing);
ad53cd71 2014 }
1c5cfe86 2015
4d9d9d04
PA
2016 if (debug_infrun)
2017 fprintf_unfiltered (gdb_stdlog,
2018 "infrun: resuming [%s] for step-over\n",
a068643d 2019 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04
PA
2020
2021 /* keep_going_pass_signal skips the step-over if the breakpoint
2022 is no longer inserted. In all-stop, we want to keep looking
2023 for a thread that needs a step-over instead of resuming TP,
2024 because we wouldn't be able to resume anything else until the
2025 target stops again. In non-stop, the resume always resumes
2026 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2027 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2028 continue;
8550d3b3 2029
00431a78 2030 switch_to_thread (tp);
4d9d9d04
PA
2031 reset_ecs (ecs, tp);
2032 keep_going_pass_signal (ecs);
1c5cfe86 2033
4d9d9d04
PA
2034 if (!ecs->wait_some_more)
2035 error (_("Command aborted."));
1c5cfe86 2036
372316f1
PA
2037 gdb_assert (tp->resumed);
2038
2039 /* If we started a new in-line step-over, we're done. */
2040 if (step_over_info_valid_p ())
2041 {
2042 gdb_assert (tp->control.trap_expected);
2043 return 1;
2044 }
2045
fbea99ea 2046 if (!target_is_non_stop_p ())
4d9d9d04
PA
2047 {
2048 /* On all-stop, shouldn't have resumed unless we needed a
2049 step over. */
2050 gdb_assert (tp->control.trap_expected
2051 || tp->step_after_step_resume_breakpoint);
2052
2053 /* With remote targets (at least), in all-stop, we can't
2054 issue any further remote commands until the program stops
2055 again. */
2056 return 1;
1c5cfe86 2057 }
c2829269 2058
4d9d9d04
PA
2059 /* Either the thread no longer needed a step-over, or a new
2060 displaced stepping sequence started. Even in the latter
2061 case, continue looking. Maybe we can also start another
2062 displaced step on a thread of other process. */
237fc4c9 2063 }
4d9d9d04
PA
2064
2065 return 0;
237fc4c9
PA
2066}
2067
5231c1fd
PA
2068/* Update global variables holding ptids to hold NEW_PTID if they were
2069 holding OLD_PTID. */
2070static void
2071infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2072{
d7e15655 2073 if (inferior_ptid == old_ptid)
5231c1fd 2074 inferior_ptid = new_ptid;
5231c1fd
PA
2075}
2076
237fc4c9 2077\f
c906108c 2078
53904c9e
AC
2079static const char schedlock_off[] = "off";
2080static const char schedlock_on[] = "on";
2081static const char schedlock_step[] = "step";
f2665db5 2082static const char schedlock_replay[] = "replay";
40478521 2083static const char *const scheduler_enums[] = {
ef346e04
AC
2084 schedlock_off,
2085 schedlock_on,
2086 schedlock_step,
f2665db5 2087 schedlock_replay,
ef346e04
AC
2088 NULL
2089};
f2665db5 2090static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2091static void
2092show_scheduler_mode (struct ui_file *file, int from_tty,
2093 struct cmd_list_element *c, const char *value)
2094{
3e43a32a
MS
2095 fprintf_filtered (file,
2096 _("Mode for locking scheduler "
2097 "during execution is \"%s\".\n"),
920d2a44
AC
2098 value);
2099}
c906108c
SS
2100
2101static void
eb4c3f4a 2102set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
c906108c 2103{
eefe576e
AC
2104 if (!target_can_lock_scheduler)
2105 {
2106 scheduler_mode = schedlock_off;
2107 error (_("Target '%s' cannot support this command."), target_shortname);
2108 }
c906108c
SS
2109}
2110
d4db2f36
PA
2111/* True if execution commands resume all threads of all processes by
2112 default; otherwise, resume only threads of the current inferior
2113 process. */
491144b5 2114bool sched_multi = false;
d4db2f36 2115
2facfe5c
DD
2116/* Try to setup for software single stepping over the specified location.
2117 Return 1 if target_resume() should use hardware single step.
2118
2119 GDBARCH the current gdbarch.
2120 PC the location to step over. */
2121
2122static int
2123maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2124{
2125 int hw_step = 1;
2126
f02253f1 2127 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2128 && gdbarch_software_single_step_p (gdbarch))
2129 hw_step = !insert_single_step_breakpoints (gdbarch);
2130
2facfe5c
DD
2131 return hw_step;
2132}
c906108c 2133
f3263aa4
PA
2134/* See infrun.h. */
2135
09cee04b
PA
2136ptid_t
2137user_visible_resume_ptid (int step)
2138{
f3263aa4 2139 ptid_t resume_ptid;
09cee04b 2140
09cee04b
PA
2141 if (non_stop)
2142 {
2143 /* With non-stop mode on, threads are always handled
2144 individually. */
2145 resume_ptid = inferior_ptid;
2146 }
2147 else if ((scheduler_mode == schedlock_on)
03d46957 2148 || (scheduler_mode == schedlock_step && step))
09cee04b 2149 {
f3263aa4
PA
2150 /* User-settable 'scheduler' mode requires solo thread
2151 resume. */
09cee04b
PA
2152 resume_ptid = inferior_ptid;
2153 }
f2665db5
MM
2154 else if ((scheduler_mode == schedlock_replay)
2155 && target_record_will_replay (minus_one_ptid, execution_direction))
2156 {
2157 /* User-settable 'scheduler' mode requires solo thread resume in replay
2158 mode. */
2159 resume_ptid = inferior_ptid;
2160 }
f3263aa4
PA
2161 else if (!sched_multi && target_supports_multi_process ())
2162 {
2163 /* Resume all threads of the current process (and none of other
2164 processes). */
e99b03dc 2165 resume_ptid = ptid_t (inferior_ptid.pid ());
f3263aa4
PA
2166 }
2167 else
2168 {
2169 /* Resume all threads of all processes. */
2170 resume_ptid = RESUME_ALL;
2171 }
09cee04b
PA
2172
2173 return resume_ptid;
2174}
2175
5b6d1e4f
PA
2176/* See infrun.h. */
2177
2178process_stratum_target *
2179user_visible_resume_target (ptid_t resume_ptid)
2180{
2181 return (resume_ptid == minus_one_ptid && sched_multi
2182 ? NULL
2183 : current_inferior ()->process_target ());
2184}
2185
fbea99ea
PA
2186/* Return a ptid representing the set of threads that we will resume,
2187 in the perspective of the target, assuming run control handling
2188 does not require leaving some threads stopped (e.g., stepping past
2189 breakpoint). USER_STEP indicates whether we're about to start the
2190 target for a stepping command. */
2191
2192static ptid_t
2193internal_resume_ptid (int user_step)
2194{
2195 /* In non-stop, we always control threads individually. Note that
2196 the target may always work in non-stop mode even with "set
2197 non-stop off", in which case user_visible_resume_ptid could
2198 return a wildcard ptid. */
2199 if (target_is_non_stop_p ())
2200 return inferior_ptid;
2201 else
2202 return user_visible_resume_ptid (user_step);
2203}
2204
64ce06e4
PA
2205/* Wrapper for target_resume, that handles infrun-specific
2206 bookkeeping. */
2207
2208static void
2209do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2210{
2211 struct thread_info *tp = inferior_thread ();
2212
c65d6b55
PA
2213 gdb_assert (!tp->stop_requested);
2214
64ce06e4 2215 /* Install inferior's terminal modes. */
223ffa71 2216 target_terminal::inferior ();
64ce06e4
PA
2217
2218 /* Avoid confusing the next resume, if the next stop/resume
2219 happens to apply to another thread. */
2220 tp->suspend.stop_signal = GDB_SIGNAL_0;
2221
8f572e5c
PA
2222 /* Advise target which signals may be handled silently.
2223
2224 If we have removed breakpoints because we are stepping over one
2225 in-line (in any thread), we need to receive all signals to avoid
2226 accidentally skipping a breakpoint during execution of a signal
2227 handler.
2228
2229 Likewise if we're displaced stepping, otherwise a trap for a
2230 breakpoint in a signal handler might be confused with the
2231 displaced step finishing. We don't make the displaced_step_fixup
2232 step distinguish the cases instead, because:
2233
2234 - a backtrace while stopped in the signal handler would show the
2235 scratch pad as frame older than the signal handler, instead of
2236 the real mainline code.
2237
2238 - when the thread is later resumed, the signal handler would
2239 return to the scratch pad area, which would no longer be
2240 valid. */
2241 if (step_over_info_valid_p ()
00431a78 2242 || displaced_step_in_progress (tp->inf))
adc6a863 2243 target_pass_signals ({});
64ce06e4 2244 else
adc6a863 2245 target_pass_signals (signal_pass);
64ce06e4
PA
2246
2247 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2248
2249 target_commit_resume ();
5b6d1e4f
PA
2250
2251 if (target_can_async_p ())
2252 target_async (1);
64ce06e4
PA
2253}
2254
d930703d 2255/* Resume the inferior. SIG is the signal to give the inferior
71d378ae
PA
2256 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2257 call 'resume', which handles exceptions. */
c906108c 2258
71d378ae
PA
2259static void
2260resume_1 (enum gdb_signal sig)
c906108c 2261{
515630c5 2262 struct regcache *regcache = get_current_regcache ();
ac7936df 2263 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2264 struct thread_info *tp = inferior_thread ();
8b86c959 2265 const address_space *aspace = regcache->aspace ();
b0f16a3e 2266 ptid_t resume_ptid;
856e7dd6
PA
2267 /* This represents the user's step vs continue request. When
2268 deciding whether "set scheduler-locking step" applies, it's the
2269 user's intention that counts. */
2270 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2271 /* This represents what we'll actually request the target to do.
2272 This can decay from a step to a continue, if e.g., we need to
2273 implement single-stepping with breakpoints (software
2274 single-step). */
6b403daa 2275 int step;
c7e8a53c 2276
c65d6b55 2277 gdb_assert (!tp->stop_requested);
c2829269
PA
2278 gdb_assert (!thread_is_in_step_over_chain (tp));
2279
372316f1
PA
2280 if (tp->suspend.waitstatus_pending_p)
2281 {
2282 if (debug_infrun)
2283 {
23fdd69e
SM
2284 std::string statstr
2285 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2286
372316f1 2287 fprintf_unfiltered (gdb_stdlog,
23fdd69e
SM
2288 "infrun: resume: thread %s has pending wait "
2289 "status %s (currently_stepping=%d).\n",
a068643d
TT
2290 target_pid_to_str (tp->ptid).c_str (),
2291 statstr.c_str (),
372316f1 2292 currently_stepping (tp));
372316f1
PA
2293 }
2294
5b6d1e4f 2295 tp->inf->process_target ()->threads_executing = true;
719546c4 2296 tp->resumed = true;
372316f1
PA
2297
2298 /* FIXME: What should we do if we are supposed to resume this
2299 thread with a signal? Maybe we should maintain a queue of
2300 pending signals to deliver. */
2301 if (sig != GDB_SIGNAL_0)
2302 {
fd7dcb94 2303 warning (_("Couldn't deliver signal %s to %s."),
a068643d
TT
2304 gdb_signal_to_name (sig),
2305 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2306 }
2307
2308 tp->suspend.stop_signal = GDB_SIGNAL_0;
372316f1
PA
2309
2310 if (target_can_async_p ())
9516f85a
AB
2311 {
2312 target_async (1);
2313 /* Tell the event loop we have an event to process. */
2314 mark_async_event_handler (infrun_async_inferior_event_token);
2315 }
372316f1
PA
2316 return;
2317 }
2318
2319 tp->stepped_breakpoint = 0;
2320
6b403daa
PA
2321 /* Depends on stepped_breakpoint. */
2322 step = currently_stepping (tp);
2323
74609e71
YQ
2324 if (current_inferior ()->waiting_for_vfork_done)
2325 {
48f9886d
PA
2326 /* Don't try to single-step a vfork parent that is waiting for
2327 the child to get out of the shared memory region (by exec'ing
2328 or exiting). This is particularly important on software
2329 single-step archs, as the child process would trip on the
2330 software single step breakpoint inserted for the parent
2331 process. Since the parent will not actually execute any
2332 instruction until the child is out of the shared region (such
2333 are vfork's semantics), it is safe to simply continue it.
2334 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2335 the parent, and tell it to `keep_going', which automatically
2336 re-sets it stepping. */
74609e71
YQ
2337 if (debug_infrun)
2338 fprintf_unfiltered (gdb_stdlog,
2339 "infrun: resume : clear step\n");
a09dd441 2340 step = 0;
74609e71
YQ
2341 }
2342
7ca9b62a
TBA
2343 CORE_ADDR pc = regcache_read_pc (regcache);
2344
527159b7 2345 if (debug_infrun)
237fc4c9 2346 fprintf_unfiltered (gdb_stdlog,
c9737c08 2347 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2348 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2349 step, gdb_signal_to_symbol_string (sig),
2350 tp->control.trap_expected,
a068643d 2351 target_pid_to_str (inferior_ptid).c_str (),
0d9a9a5f 2352 paddress (gdbarch, pc));
c906108c 2353
c2c6d25f
JM
2354 /* Normally, by the time we reach `resume', the breakpoints are either
2355 removed or inserted, as appropriate. The exception is if we're sitting
2356 at a permanent breakpoint; we need to step over it, but permanent
2357 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2358 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2359 {
af48d08f
PA
2360 if (sig != GDB_SIGNAL_0)
2361 {
2362 /* We have a signal to pass to the inferior. The resume
2363 may, or may not take us to the signal handler. If this
2364 is a step, we'll need to stop in the signal handler, if
2365 there's one, (if the target supports stepping into
2366 handlers), or in the next mainline instruction, if
2367 there's no handler. If this is a continue, we need to be
2368 sure to run the handler with all breakpoints inserted.
2369 In all cases, set a breakpoint at the current address
2370 (where the handler returns to), and once that breakpoint
2371 is hit, resume skipping the permanent breakpoint. If
2372 that breakpoint isn't hit, then we've stepped into the
2373 signal handler (or hit some other event). We'll delete
2374 the step-resume breakpoint then. */
2375
2376 if (debug_infrun)
2377 fprintf_unfiltered (gdb_stdlog,
2378 "infrun: resume: skipping permanent breakpoint, "
2379 "deliver signal first\n");
2380
2381 clear_step_over_info ();
2382 tp->control.trap_expected = 0;
2383
2384 if (tp->control.step_resume_breakpoint == NULL)
2385 {
2386 /* Set a "high-priority" step-resume, as we don't want
2387 user breakpoints at PC to trigger (again) when this
2388 hits. */
2389 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2390 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2391
2392 tp->step_after_step_resume_breakpoint = step;
2393 }
2394
2395 insert_breakpoints ();
2396 }
2397 else
2398 {
2399 /* There's no signal to pass, we can go ahead and skip the
2400 permanent breakpoint manually. */
2401 if (debug_infrun)
2402 fprintf_unfiltered (gdb_stdlog,
2403 "infrun: resume: skipping permanent breakpoint\n");
2404 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2405 /* Update pc to reflect the new address from which we will
2406 execute instructions. */
2407 pc = regcache_read_pc (regcache);
2408
2409 if (step)
2410 {
2411 /* We've already advanced the PC, so the stepping part
2412 is done. Now we need to arrange for a trap to be
2413 reported to handle_inferior_event. Set a breakpoint
2414 at the current PC, and run to it. Don't update
2415 prev_pc, because if we end in
44a1ee51
PA
2416 switch_back_to_stepped_thread, we want the "expected
2417 thread advanced also" branch to be taken. IOW, we
2418 don't want this thread to step further from PC
af48d08f 2419 (overstep). */
1ac806b8 2420 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2421 insert_single_step_breakpoint (gdbarch, aspace, pc);
2422 insert_breakpoints ();
2423
fbea99ea 2424 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2425 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
719546c4 2426 tp->resumed = true;
af48d08f
PA
2427 return;
2428 }
2429 }
6d350bb5 2430 }
c2c6d25f 2431
c1e36e3e
PA
2432 /* If we have a breakpoint to step over, make sure to do a single
2433 step only. Same if we have software watchpoints. */
2434 if (tp->control.trap_expected || bpstat_should_step ())
2435 tp->control.may_range_step = 0;
2436
7da6a5b9
LM
2437 /* If displaced stepping is enabled, step over breakpoints by executing a
2438 copy of the instruction at a different address.
237fc4c9
PA
2439
2440 We can't use displaced stepping when we have a signal to deliver;
2441 the comments for displaced_step_prepare explain why. The
2442 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2443 signals' explain what we do instead.
2444
2445 We can't use displaced stepping when we are waiting for vfork_done
2446 event, displaced stepping breaks the vfork child similarly as single
2447 step software breakpoint. */
3fc8eb30
PA
2448 if (tp->control.trap_expected
2449 && use_displaced_stepping (tp)
cb71640d 2450 && !step_over_info_valid_p ()
a493e3e2 2451 && sig == GDB_SIGNAL_0
74609e71 2452 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2453 {
00431a78 2454 int prepared = displaced_step_prepare (tp);
fc1cf338 2455
3fc8eb30 2456 if (prepared == 0)
d56b7306 2457 {
4d9d9d04
PA
2458 if (debug_infrun)
2459 fprintf_unfiltered (gdb_stdlog,
2460 "Got placed in step-over queue\n");
2461
2462 tp->control.trap_expected = 0;
d56b7306
VP
2463 return;
2464 }
3fc8eb30
PA
2465 else if (prepared < 0)
2466 {
2467 /* Fallback to stepping over the breakpoint in-line. */
2468
2469 if (target_is_non_stop_p ())
2470 stop_all_threads ();
2471
a01bda52 2472 set_step_over_info (regcache->aspace (),
21edc42f 2473 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2474
2475 step = maybe_software_singlestep (gdbarch, pc);
2476
2477 insert_breakpoints ();
2478 }
2479 else if (prepared > 0)
2480 {
2481 struct displaced_step_inferior_state *displaced;
99e40580 2482
3fc8eb30
PA
2483 /* Update pc to reflect the new address from which we will
2484 execute instructions due to displaced stepping. */
00431a78 2485 pc = regcache_read_pc (get_thread_regcache (tp));
ca7781d2 2486
00431a78 2487 displaced = get_displaced_stepping_state (tp->inf);
d8d83535
SM
2488 step = gdbarch_displaced_step_hw_singlestep
2489 (gdbarch, displaced->step_closure.get ());
3fc8eb30 2490 }
237fc4c9
PA
2491 }
2492
2facfe5c 2493 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2494 else if (step)
2facfe5c 2495 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2496
30852783
UW
2497 /* Currently, our software single-step implementation leads to different
2498 results than hardware single-stepping in one situation: when stepping
2499 into delivering a signal which has an associated signal handler,
2500 hardware single-step will stop at the first instruction of the handler,
2501 while software single-step will simply skip execution of the handler.
2502
2503 For now, this difference in behavior is accepted since there is no
2504 easy way to actually implement single-stepping into a signal handler
2505 without kernel support.
2506
2507 However, there is one scenario where this difference leads to follow-on
2508 problems: if we're stepping off a breakpoint by removing all breakpoints
2509 and then single-stepping. In this case, the software single-step
2510 behavior means that even if there is a *breakpoint* in the signal
2511 handler, GDB still would not stop.
2512
2513 Fortunately, we can at least fix this particular issue. We detect
2514 here the case where we are about to deliver a signal while software
2515 single-stepping with breakpoints removed. In this situation, we
2516 revert the decisions to remove all breakpoints and insert single-
2517 step breakpoints, and instead we install a step-resume breakpoint
2518 at the current address, deliver the signal without stepping, and
2519 once we arrive back at the step-resume breakpoint, actually step
2520 over the breakpoint we originally wanted to step over. */
34b7e8a6 2521 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2522 && sig != GDB_SIGNAL_0
2523 && step_over_info_valid_p ())
30852783
UW
2524 {
2525 /* If we have nested signals or a pending signal is delivered
7da6a5b9 2526 immediately after a handler returns, might already have
30852783
UW
2527 a step-resume breakpoint set on the earlier handler. We cannot
2528 set another step-resume breakpoint; just continue on until the
2529 original breakpoint is hit. */
2530 if (tp->control.step_resume_breakpoint == NULL)
2531 {
2c03e5be 2532 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2533 tp->step_after_step_resume_breakpoint = 1;
2534 }
2535
34b7e8a6 2536 delete_single_step_breakpoints (tp);
30852783 2537
31e77af2 2538 clear_step_over_info ();
30852783 2539 tp->control.trap_expected = 0;
31e77af2
PA
2540
2541 insert_breakpoints ();
30852783
UW
2542 }
2543
b0f16a3e
SM
2544 /* If STEP is set, it's a request to use hardware stepping
2545 facilities. But in that case, we should never
2546 use singlestep breakpoint. */
34b7e8a6 2547 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2548
fbea99ea 2549 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2550 if (tp->control.trap_expected)
b0f16a3e
SM
2551 {
2552 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2553 hit, either by single-stepping the thread with the breakpoint
2554 removed, or by displaced stepping, with the breakpoint inserted.
2555 In the former case, we need to single-step only this thread,
2556 and keep others stopped, as they can miss this breakpoint if
2557 allowed to run. That's not really a problem for displaced
2558 stepping, but, we still keep other threads stopped, in case
2559 another thread is also stopped for a breakpoint waiting for
2560 its turn in the displaced stepping queue. */
b0f16a3e
SM
2561 resume_ptid = inferior_ptid;
2562 }
fbea99ea
PA
2563 else
2564 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2565
7f5ef605
PA
2566 if (execution_direction != EXEC_REVERSE
2567 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2568 {
372316f1
PA
2569 /* There are two cases where we currently need to step a
2570 breakpoint instruction when we have a signal to deliver:
2571
2572 - See handle_signal_stop where we handle random signals that
2573 could take out us out of the stepping range. Normally, in
2574 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2575 signal handler with a breakpoint at PC, but there are cases
2576 where we should _always_ single-step, even if we have a
2577 step-resume breakpoint, like when a software watchpoint is
2578 set. Assuming single-stepping and delivering a signal at the
2579 same time would takes us to the signal handler, then we could
2580 have removed the breakpoint at PC to step over it. However,
2581 some hardware step targets (like e.g., Mac OS) can't step
2582 into signal handlers, and for those, we need to leave the
2583 breakpoint at PC inserted, as otherwise if the handler
2584 recurses and executes PC again, it'll miss the breakpoint.
2585 So we leave the breakpoint inserted anyway, but we need to
2586 record that we tried to step a breakpoint instruction, so
372316f1
PA
2587 that adjust_pc_after_break doesn't end up confused.
2588
2589 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2590 in one thread after another thread that was stepping had been
2591 momentarily paused for a step-over. When we re-resume the
2592 stepping thread, it may be resumed from that address with a
2593 breakpoint that hasn't trapped yet. Seen with
2594 gdb.threads/non-stop-fair-events.exp, on targets that don't
2595 do displaced stepping. */
2596
2597 if (debug_infrun)
2598 fprintf_unfiltered (gdb_stdlog,
2599 "infrun: resume: [%s] stepped breakpoint\n",
a068643d 2600 target_pid_to_str (tp->ptid).c_str ());
7f5ef605
PA
2601
2602 tp->stepped_breakpoint = 1;
2603
b0f16a3e
SM
2604 /* Most targets can step a breakpoint instruction, thus
2605 executing it normally. But if this one cannot, just
2606 continue and we will hit it anyway. */
7f5ef605 2607 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2608 step = 0;
2609 }
ef5cf84e 2610
b0f16a3e 2611 if (debug_displaced
cb71640d 2612 && tp->control.trap_expected
3fc8eb30 2613 && use_displaced_stepping (tp)
cb71640d 2614 && !step_over_info_valid_p ())
b0f16a3e 2615 {
00431a78 2616 struct regcache *resume_regcache = get_thread_regcache (tp);
ac7936df 2617 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2618 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2619 gdb_byte buf[4];
2620
2621 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2622 paddress (resume_gdbarch, actual_pc));
2623 read_memory (actual_pc, buf, sizeof (buf));
2624 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2625 }
237fc4c9 2626
b0f16a3e
SM
2627 if (tp->control.may_range_step)
2628 {
2629 /* If we're resuming a thread with the PC out of the step
2630 range, then we're doing some nested/finer run control
2631 operation, like stepping the thread out of the dynamic
2632 linker or the displaced stepping scratch pad. We
2633 shouldn't have allowed a range step then. */
2634 gdb_assert (pc_in_thread_step_range (pc, tp));
2635 }
c1e36e3e 2636
64ce06e4 2637 do_target_resume (resume_ptid, step, sig);
719546c4 2638 tp->resumed = true;
c906108c 2639}
71d378ae
PA
2640
2641/* Resume the inferior. SIG is the signal to give the inferior
2642 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2643 rolls back state on error. */
2644
aff4e175 2645static void
71d378ae
PA
2646resume (gdb_signal sig)
2647{
a70b8144 2648 try
71d378ae
PA
2649 {
2650 resume_1 (sig);
2651 }
230d2906 2652 catch (const gdb_exception &ex)
71d378ae
PA
2653 {
2654 /* If resuming is being aborted for any reason, delete any
2655 single-step breakpoint resume_1 may have created, to avoid
2656 confusing the following resumption, and to avoid leaving
2657 single-step breakpoints perturbing other threads, in case
2658 we're running in non-stop mode. */
2659 if (inferior_ptid != null_ptid)
2660 delete_single_step_breakpoints (inferior_thread ());
eedc3f4f 2661 throw;
71d378ae 2662 }
71d378ae
PA
2663}
2664
c906108c 2665\f
237fc4c9 2666/* Proceeding. */
c906108c 2667
4c2f2a79
PA
2668/* See infrun.h. */
2669
2670/* Counter that tracks number of user visible stops. This can be used
2671 to tell whether a command has proceeded the inferior past the
2672 current location. This allows e.g., inferior function calls in
2673 breakpoint commands to not interrupt the command list. When the
2674 call finishes successfully, the inferior is standing at the same
2675 breakpoint as if nothing happened (and so we don't call
2676 normal_stop). */
2677static ULONGEST current_stop_id;
2678
2679/* See infrun.h. */
2680
2681ULONGEST
2682get_stop_id (void)
2683{
2684 return current_stop_id;
2685}
2686
2687/* Called when we report a user visible stop. */
2688
2689static void
2690new_stop_id (void)
2691{
2692 current_stop_id++;
2693}
2694
c906108c
SS
2695/* Clear out all variables saying what to do when inferior is continued.
2696 First do this, then set the ones you want, then call `proceed'. */
2697
a7212384
UW
2698static void
2699clear_proceed_status_thread (struct thread_info *tp)
c906108c 2700{
a7212384
UW
2701 if (debug_infrun)
2702 fprintf_unfiltered (gdb_stdlog,
2703 "infrun: clear_proceed_status_thread (%s)\n",
a068643d 2704 target_pid_to_str (tp->ptid).c_str ());
d6b48e9c 2705
372316f1
PA
2706 /* If we're starting a new sequence, then the previous finished
2707 single-step is no longer relevant. */
2708 if (tp->suspend.waitstatus_pending_p)
2709 {
2710 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2711 {
2712 if (debug_infrun)
2713 fprintf_unfiltered (gdb_stdlog,
2714 "infrun: clear_proceed_status: pending "
2715 "event of %s was a finished step. "
2716 "Discarding.\n",
a068643d 2717 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2718
2719 tp->suspend.waitstatus_pending_p = 0;
2720 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2721 }
2722 else if (debug_infrun)
2723 {
23fdd69e
SM
2724 std::string statstr
2725 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2726
372316f1
PA
2727 fprintf_unfiltered (gdb_stdlog,
2728 "infrun: clear_proceed_status_thread: thread %s "
2729 "has pending wait status %s "
2730 "(currently_stepping=%d).\n",
a068643d
TT
2731 target_pid_to_str (tp->ptid).c_str (),
2732 statstr.c_str (),
372316f1 2733 currently_stepping (tp));
372316f1
PA
2734 }
2735 }
2736
70509625
PA
2737 /* If this signal should not be seen by program, give it zero.
2738 Used for debugging signals. */
2739 if (!signal_pass_state (tp->suspend.stop_signal))
2740 tp->suspend.stop_signal = GDB_SIGNAL_0;
2741
46e3ed7f 2742 delete tp->thread_fsm;
243a9253
PA
2743 tp->thread_fsm = NULL;
2744
16c381f0
JK
2745 tp->control.trap_expected = 0;
2746 tp->control.step_range_start = 0;
2747 tp->control.step_range_end = 0;
c1e36e3e 2748 tp->control.may_range_step = 0;
16c381f0
JK
2749 tp->control.step_frame_id = null_frame_id;
2750 tp->control.step_stack_frame_id = null_frame_id;
2751 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2752 tp->control.step_start_function = NULL;
a7212384 2753 tp->stop_requested = 0;
4e1c45ea 2754
16c381f0 2755 tp->control.stop_step = 0;
32400beb 2756
16c381f0 2757 tp->control.proceed_to_finish = 0;
414c69f7 2758
856e7dd6 2759 tp->control.stepping_command = 0;
17b2616c 2760
a7212384 2761 /* Discard any remaining commands or status from previous stop. */
16c381f0 2762 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2763}
32400beb 2764
a7212384 2765void
70509625 2766clear_proceed_status (int step)
a7212384 2767{
f2665db5
MM
2768 /* With scheduler-locking replay, stop replaying other threads if we're
2769 not replaying the user-visible resume ptid.
2770
2771 This is a convenience feature to not require the user to explicitly
2772 stop replaying the other threads. We're assuming that the user's
2773 intent is to resume tracing the recorded process. */
2774 if (!non_stop && scheduler_mode == schedlock_replay
2775 && target_record_is_replaying (minus_one_ptid)
2776 && !target_record_will_replay (user_visible_resume_ptid (step),
2777 execution_direction))
2778 target_record_stop_replaying ();
2779
08036331 2780 if (!non_stop && inferior_ptid != null_ptid)
6c95b8df 2781 {
08036331 2782 ptid_t resume_ptid = user_visible_resume_ptid (step);
5b6d1e4f
PA
2783 process_stratum_target *resume_target
2784 = user_visible_resume_target (resume_ptid);
70509625
PA
2785
2786 /* In all-stop mode, delete the per-thread status of all threads
2787 we're about to resume, implicitly and explicitly. */
5b6d1e4f 2788 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
08036331 2789 clear_proceed_status_thread (tp);
6c95b8df
PA
2790 }
2791
d7e15655 2792 if (inferior_ptid != null_ptid)
a7212384
UW
2793 {
2794 struct inferior *inferior;
2795
2796 if (non_stop)
2797 {
6c95b8df
PA
2798 /* If in non-stop mode, only delete the per-thread status of
2799 the current thread. */
a7212384
UW
2800 clear_proceed_status_thread (inferior_thread ());
2801 }
6c95b8df 2802
d6b48e9c 2803 inferior = current_inferior ();
16c381f0 2804 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2805 }
2806
76727919 2807 gdb::observers::about_to_proceed.notify ();
c906108c
SS
2808}
2809
99619bea
PA
2810/* Returns true if TP is still stopped at a breakpoint that needs
2811 stepping-over in order to make progress. If the breakpoint is gone
2812 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2813
2814static int
6c4cfb24 2815thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2816{
2817 if (tp->stepping_over_breakpoint)
2818 {
00431a78 2819 struct regcache *regcache = get_thread_regcache (tp);
99619bea 2820
a01bda52 2821 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2822 regcache_read_pc (regcache))
2823 == ordinary_breakpoint_here)
99619bea
PA
2824 return 1;
2825
2826 tp->stepping_over_breakpoint = 0;
2827 }
2828
2829 return 0;
2830}
2831
6c4cfb24
PA
2832/* Check whether thread TP still needs to start a step-over in order
2833 to make progress when resumed. Returns an bitwise or of enum
2834 step_over_what bits, indicating what needs to be stepped over. */
2835
8d297bbf 2836static step_over_what
6c4cfb24
PA
2837thread_still_needs_step_over (struct thread_info *tp)
2838{
8d297bbf 2839 step_over_what what = 0;
6c4cfb24
PA
2840
2841 if (thread_still_needs_step_over_bp (tp))
2842 what |= STEP_OVER_BREAKPOINT;
2843
2844 if (tp->stepping_over_watchpoint
2845 && !target_have_steppable_watchpoint)
2846 what |= STEP_OVER_WATCHPOINT;
2847
2848 return what;
2849}
2850
483805cf
PA
2851/* Returns true if scheduler locking applies. STEP indicates whether
2852 we're about to do a step/next-like command to a thread. */
2853
2854static int
856e7dd6 2855schedlock_applies (struct thread_info *tp)
483805cf
PA
2856{
2857 return (scheduler_mode == schedlock_on
2858 || (scheduler_mode == schedlock_step
f2665db5
MM
2859 && tp->control.stepping_command)
2860 || (scheduler_mode == schedlock_replay
2861 && target_record_will_replay (minus_one_ptid,
2862 execution_direction)));
483805cf
PA
2863}
2864
5b6d1e4f
PA
2865/* Calls target_commit_resume on all targets. */
2866
2867static void
2868commit_resume_all_targets ()
2869{
2870 scoped_restore_current_thread restore_thread;
2871
2872 /* Map between process_target and a representative inferior. This
2873 is to avoid committing a resume in the same target more than
2874 once. Resumptions must be idempotent, so this is an
2875 optimization. */
2876 std::unordered_map<process_stratum_target *, inferior *> conn_inf;
2877
2878 for (inferior *inf : all_non_exited_inferiors ())
2879 if (inf->has_execution ())
2880 conn_inf[inf->process_target ()] = inf;
2881
2882 for (const auto &ci : conn_inf)
2883 {
2884 inferior *inf = ci.second;
2885 switch_to_inferior_no_thread (inf);
2886 target_commit_resume ();
2887 }
2888}
2889
2f4fcf00
PA
2890/* Check that all the targets we're about to resume are in non-stop
2891 mode. Ideally, we'd only care whether all targets support
2892 target-async, but we're not there yet. E.g., stop_all_threads
2893 doesn't know how to handle all-stop targets. Also, the remote
2894 protocol in all-stop mode is synchronous, irrespective of
2895 target-async, which means that things like a breakpoint re-set
2896 triggered by one target would try to read memory from all targets
2897 and fail. */
2898
2899static void
2900check_multi_target_resumption (process_stratum_target *resume_target)
2901{
2902 if (!non_stop && resume_target == nullptr)
2903 {
2904 scoped_restore_current_thread restore_thread;
2905
2906 /* This is used to track whether we're resuming more than one
2907 target. */
2908 process_stratum_target *first_connection = nullptr;
2909
2910 /* The first inferior we see with a target that does not work in
2911 always-non-stop mode. */
2912 inferior *first_not_non_stop = nullptr;
2913
2914 for (inferior *inf : all_non_exited_inferiors (resume_target))
2915 {
2916 switch_to_inferior_no_thread (inf);
2917
2918 if (!target_has_execution)
2919 continue;
2920
2921 process_stratum_target *proc_target
2922 = current_inferior ()->process_target();
2923
2924 if (!target_is_non_stop_p ())
2925 first_not_non_stop = inf;
2926
2927 if (first_connection == nullptr)
2928 first_connection = proc_target;
2929 else if (first_connection != proc_target
2930 && first_not_non_stop != nullptr)
2931 {
2932 switch_to_inferior_no_thread (first_not_non_stop);
2933
2934 proc_target = current_inferior ()->process_target();
2935
2936 error (_("Connection %d (%s) does not support "
2937 "multi-target resumption."),
2938 proc_target->connection_number,
2939 make_target_connection_string (proc_target).c_str ());
2940 }
2941 }
2942 }
2943}
2944
c906108c
SS
2945/* Basic routine for continuing the program in various fashions.
2946
2947 ADDR is the address to resume at, or -1 for resume where stopped.
aff4e175
AB
2948 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2949 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
c906108c
SS
2950
2951 You should call clear_proceed_status before calling proceed. */
2952
2953void
64ce06e4 2954proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2955{
e58b0e63
PA
2956 struct regcache *regcache;
2957 struct gdbarch *gdbarch;
e58b0e63 2958 CORE_ADDR pc;
4d9d9d04
PA
2959 struct execution_control_state ecss;
2960 struct execution_control_state *ecs = &ecss;
4d9d9d04 2961 int started;
c906108c 2962
e58b0e63
PA
2963 /* If we're stopped at a fork/vfork, follow the branch set by the
2964 "set follow-fork-mode" command; otherwise, we'll just proceed
2965 resuming the current thread. */
2966 if (!follow_fork ())
2967 {
2968 /* The target for some reason decided not to resume. */
2969 normal_stop ();
f148b27e 2970 if (target_can_async_p ())
b1a35af2 2971 inferior_event_handler (INF_EXEC_COMPLETE);
e58b0e63
PA
2972 return;
2973 }
2974
842951eb
PA
2975 /* We'll update this if & when we switch to a new thread. */
2976 previous_inferior_ptid = inferior_ptid;
2977
e58b0e63 2978 regcache = get_current_regcache ();
ac7936df 2979 gdbarch = regcache->arch ();
8b86c959
YQ
2980 const address_space *aspace = regcache->aspace ();
2981
fc75c28b
TBA
2982 pc = regcache_read_pc_protected (regcache);
2983
08036331 2984 thread_info *cur_thr = inferior_thread ();
e58b0e63 2985
99619bea 2986 /* Fill in with reasonable starting values. */
08036331 2987 init_thread_stepping_state (cur_thr);
99619bea 2988
08036331 2989 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
c2829269 2990
5b6d1e4f
PA
2991 ptid_t resume_ptid
2992 = user_visible_resume_ptid (cur_thr->control.stepping_command);
2993 process_stratum_target *resume_target
2994 = user_visible_resume_target (resume_ptid);
2995
2f4fcf00
PA
2996 check_multi_target_resumption (resume_target);
2997
2acceee2 2998 if (addr == (CORE_ADDR) -1)
c906108c 2999 {
08036331 3000 if (pc == cur_thr->suspend.stop_pc
af48d08f 3001 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 3002 && execution_direction != EXEC_REVERSE)
3352ef37
AC
3003 /* There is a breakpoint at the address we will resume at,
3004 step one instruction before inserting breakpoints so that
3005 we do not stop right away (and report a second hit at this
b2175913
MS
3006 breakpoint).
3007
3008 Note, we don't do this in reverse, because we won't
3009 actually be executing the breakpoint insn anyway.
3010 We'll be (un-)executing the previous instruction. */
08036331 3011 cur_thr->stepping_over_breakpoint = 1;
515630c5
UW
3012 else if (gdbarch_single_step_through_delay_p (gdbarch)
3013 && gdbarch_single_step_through_delay (gdbarch,
3014 get_current_frame ()))
3352ef37
AC
3015 /* We stepped onto an instruction that needs to be stepped
3016 again before re-inserting the breakpoint, do so. */
08036331 3017 cur_thr->stepping_over_breakpoint = 1;
c906108c
SS
3018 }
3019 else
3020 {
515630c5 3021 regcache_write_pc (regcache, addr);
c906108c
SS
3022 }
3023
70509625 3024 if (siggnal != GDB_SIGNAL_DEFAULT)
08036331 3025 cur_thr->suspend.stop_signal = siggnal;
70509625 3026
4d9d9d04
PA
3027 /* If an exception is thrown from this point on, make sure to
3028 propagate GDB's knowledge of the executing state to the
3029 frontend/user running state. */
5b6d1e4f 3030 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
4d9d9d04
PA
3031
3032 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3033 threads (e.g., we might need to set threads stepping over
3034 breakpoints first), from the user/frontend's point of view, all
3035 threads in RESUME_PTID are now running. Unless we're calling an
3036 inferior function, as in that case we pretend the inferior
3037 doesn't run at all. */
08036331 3038 if (!cur_thr->control.in_infcall)
719546c4 3039 set_running (resume_target, resume_ptid, true);
17b2616c 3040
527159b7 3041 if (debug_infrun)
8a9de0e4 3042 fprintf_unfiltered (gdb_stdlog,
64ce06e4 3043 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 3044 paddress (gdbarch, addr),
64ce06e4 3045 gdb_signal_to_symbol_string (siggnal));
527159b7 3046
4d9d9d04
PA
3047 annotate_starting ();
3048
3049 /* Make sure that output from GDB appears before output from the
3050 inferior. */
3051 gdb_flush (gdb_stdout);
3052
d930703d
PA
3053 /* Since we've marked the inferior running, give it the terminal. A
3054 QUIT/Ctrl-C from here on is forwarded to the target (which can
3055 still detect attempts to unblock a stuck connection with repeated
3056 Ctrl-C from within target_pass_ctrlc). */
3057 target_terminal::inferior ();
3058
4d9d9d04
PA
3059 /* In a multi-threaded task we may select another thread and
3060 then continue or step.
3061
3062 But if a thread that we're resuming had stopped at a breakpoint,
3063 it will immediately cause another breakpoint stop without any
3064 execution (i.e. it will report a breakpoint hit incorrectly). So
3065 we must step over it first.
3066
3067 Look for threads other than the current (TP) that reported a
3068 breakpoint hit and haven't been resumed yet since. */
3069
3070 /* If scheduler locking applies, we can avoid iterating over all
3071 threads. */
08036331 3072 if (!non_stop && !schedlock_applies (cur_thr))
94cc34af 3073 {
5b6d1e4f
PA
3074 for (thread_info *tp : all_non_exited_threads (resume_target,
3075 resume_ptid))
08036331 3076 {
f3f8ece4
PA
3077 switch_to_thread_no_regs (tp);
3078
4d9d9d04
PA
3079 /* Ignore the current thread here. It's handled
3080 afterwards. */
08036331 3081 if (tp == cur_thr)
4d9d9d04 3082 continue;
c906108c 3083
4d9d9d04
PA
3084 if (!thread_still_needs_step_over (tp))
3085 continue;
3086
3087 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3088
99619bea
PA
3089 if (debug_infrun)
3090 fprintf_unfiltered (gdb_stdlog,
3091 "infrun: need to step-over [%s] first\n",
a068643d 3092 target_pid_to_str (tp->ptid).c_str ());
99619bea 3093
4d9d9d04 3094 thread_step_over_chain_enqueue (tp);
2adfaa28 3095 }
f3f8ece4
PA
3096
3097 switch_to_thread (cur_thr);
30852783
UW
3098 }
3099
4d9d9d04
PA
3100 /* Enqueue the current thread last, so that we move all other
3101 threads over their breakpoints first. */
08036331
PA
3102 if (cur_thr->stepping_over_breakpoint)
3103 thread_step_over_chain_enqueue (cur_thr);
30852783 3104
4d9d9d04
PA
3105 /* If the thread isn't started, we'll still need to set its prev_pc,
3106 so that switch_back_to_stepped_thread knows the thread hasn't
3107 advanced. Must do this before resuming any thread, as in
3108 all-stop/remote, once we resume we can't send any other packet
3109 until the target stops again. */
fc75c28b 3110 cur_thr->prev_pc = regcache_read_pc_protected (regcache);
99619bea 3111
a9bc57b9
TT
3112 {
3113 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
85ad3aaf 3114
a9bc57b9 3115 started = start_step_over ();
c906108c 3116
a9bc57b9
TT
3117 if (step_over_info_valid_p ())
3118 {
3119 /* Either this thread started a new in-line step over, or some
3120 other thread was already doing one. In either case, don't
3121 resume anything else until the step-over is finished. */
3122 }
3123 else if (started && !target_is_non_stop_p ())
3124 {
3125 /* A new displaced stepping sequence was started. In all-stop,
3126 we can't talk to the target anymore until it next stops. */
3127 }
3128 else if (!non_stop && target_is_non_stop_p ())
3129 {
3130 /* In all-stop, but the target is always in non-stop mode.
3131 Start all other threads that are implicitly resumed too. */
5b6d1e4f
PA
3132 for (thread_info *tp : all_non_exited_threads (resume_target,
3133 resume_ptid))
3134 {
3135 switch_to_thread_no_regs (tp);
3136
f9fac3c8
SM
3137 if (!tp->inf->has_execution ())
3138 {
3139 if (debug_infrun)
3140 fprintf_unfiltered (gdb_stdlog,
3141 "infrun: proceed: [%s] target has "
3142 "no execution\n",
3143 target_pid_to_str (tp->ptid).c_str ());
3144 continue;
3145 }
f3f8ece4 3146
f9fac3c8
SM
3147 if (tp->resumed)
3148 {
3149 if (debug_infrun)
3150 fprintf_unfiltered (gdb_stdlog,
3151 "infrun: proceed: [%s] resumed\n",
3152 target_pid_to_str (tp->ptid).c_str ());
3153 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3154 continue;
3155 }
fbea99ea 3156
f9fac3c8
SM
3157 if (thread_is_in_step_over_chain (tp))
3158 {
3159 if (debug_infrun)
3160 fprintf_unfiltered (gdb_stdlog,
3161 "infrun: proceed: [%s] needs step-over\n",
3162 target_pid_to_str (tp->ptid).c_str ());
3163 continue;
3164 }
fbea99ea 3165
f9fac3c8
SM
3166 if (debug_infrun)
3167 fprintf_unfiltered (gdb_stdlog,
3168 "infrun: proceed: resuming %s\n",
3169 target_pid_to_str (tp->ptid).c_str ());
fbea99ea 3170
f9fac3c8
SM
3171 reset_ecs (ecs, tp);
3172 switch_to_thread (tp);
3173 keep_going_pass_signal (ecs);
3174 if (!ecs->wait_some_more)
3175 error (_("Command aborted."));
3176 }
a9bc57b9 3177 }
08036331 3178 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
a9bc57b9
TT
3179 {
3180 /* The thread wasn't started, and isn't queued, run it now. */
08036331
PA
3181 reset_ecs (ecs, cur_thr);
3182 switch_to_thread (cur_thr);
a9bc57b9
TT
3183 keep_going_pass_signal (ecs);
3184 if (!ecs->wait_some_more)
3185 error (_("Command aborted."));
3186 }
3187 }
c906108c 3188
5b6d1e4f 3189 commit_resume_all_targets ();
85ad3aaf 3190
731f534f 3191 finish_state.release ();
c906108c 3192
873657b9
PA
3193 /* If we've switched threads above, switch back to the previously
3194 current thread. We don't want the user to see a different
3195 selected thread. */
3196 switch_to_thread (cur_thr);
3197
0b333c5e
PA
3198 /* Tell the event loop to wait for it to stop. If the target
3199 supports asynchronous execution, it'll do this from within
3200 target_resume. */
362646f5 3201 if (!target_can_async_p ())
0b333c5e 3202 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3203}
c906108c
SS
3204\f
3205
3206/* Start remote-debugging of a machine over a serial link. */
96baa820 3207
c906108c 3208void
8621d6a9 3209start_remote (int from_tty)
c906108c 3210{
5b6d1e4f
PA
3211 inferior *inf = current_inferior ();
3212 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3213
1777feb0 3214 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3215 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3216 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3217 nothing is returned (instead of just blocking). Because of this,
3218 targets expecting an immediate response need to, internally, set
3219 things up so that the target_wait() is forced to eventually
1777feb0 3220 timeout. */
6426a772
JM
3221 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3222 differentiate to its caller what the state of the target is after
3223 the initial open has been performed. Here we're assuming that
3224 the target has stopped. It should be possible to eventually have
3225 target_open() return to the caller an indication that the target
3226 is currently running and GDB state should be set to the same as
1777feb0 3227 for an async run. */
5b6d1e4f 3228 wait_for_inferior (inf);
8621d6a9
DJ
3229
3230 /* Now that the inferior has stopped, do any bookkeeping like
3231 loading shared libraries. We want to do this before normal_stop,
3232 so that the displayed frame is up to date. */
8b88a78e 3233 post_create_inferior (current_top_target (), from_tty);
8621d6a9 3234
6426a772 3235 normal_stop ();
c906108c
SS
3236}
3237
3238/* Initialize static vars when a new inferior begins. */
3239
3240void
96baa820 3241init_wait_for_inferior (void)
c906108c
SS
3242{
3243 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3244
c906108c
SS
3245 breakpoint_init_inferior (inf_starting);
3246
70509625 3247 clear_proceed_status (0);
9f976b41 3248
ab1ddbcf 3249 nullify_last_target_wait_ptid ();
237fc4c9 3250
842951eb 3251 previous_inferior_ptid = inferior_ptid;
c906108c 3252}
237fc4c9 3253
c906108c 3254\f
488f131b 3255
ec9499be 3256static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3257
568d6575
UW
3258static void handle_step_into_function (struct gdbarch *gdbarch,
3259 struct execution_control_state *ecs);
3260static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3261 struct execution_control_state *ecs);
4f5d7f63 3262static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3263static void check_exception_resume (struct execution_control_state *,
28106bc2 3264 struct frame_info *);
611c83ae 3265
bdc36728 3266static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3267static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3268static void keep_going (struct execution_control_state *ecs);
94c57d6a 3269static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3270static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3271
252fbfc8
PA
3272/* This function is attached as a "thread_stop_requested" observer.
3273 Cleanup local state that assumed the PTID was to be resumed, and
3274 report the stop to the frontend. */
3275
2c0b251b 3276static void
252fbfc8
PA
3277infrun_thread_stop_requested (ptid_t ptid)
3278{
5b6d1e4f
PA
3279 process_stratum_target *curr_target = current_inferior ()->process_target ();
3280
c65d6b55
PA
3281 /* PTID was requested to stop. If the thread was already stopped,
3282 but the user/frontend doesn't know about that yet (e.g., the
3283 thread had been temporarily paused for some step-over), set up
3284 for reporting the stop now. */
5b6d1e4f 3285 for (thread_info *tp : all_threads (curr_target, ptid))
08036331
PA
3286 {
3287 if (tp->state != THREAD_RUNNING)
3288 continue;
3289 if (tp->executing)
3290 continue;
c65d6b55 3291
08036331
PA
3292 /* Remove matching threads from the step-over queue, so
3293 start_step_over doesn't try to resume them
3294 automatically. */
3295 if (thread_is_in_step_over_chain (tp))
3296 thread_step_over_chain_remove (tp);
c65d6b55 3297
08036331
PA
3298 /* If the thread is stopped, but the user/frontend doesn't
3299 know about that yet, queue a pending event, as if the
3300 thread had just stopped now. Unless the thread already had
3301 a pending event. */
3302 if (!tp->suspend.waitstatus_pending_p)
3303 {
3304 tp->suspend.waitstatus_pending_p = 1;
3305 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3306 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3307 }
c65d6b55 3308
08036331
PA
3309 /* Clear the inline-frame state, since we're re-processing the
3310 stop. */
5b6d1e4f 3311 clear_inline_frame_state (tp);
c65d6b55 3312
08036331
PA
3313 /* If this thread was paused because some other thread was
3314 doing an inline-step over, let that finish first. Once
3315 that happens, we'll restart all threads and consume pending
3316 stop events then. */
3317 if (step_over_info_valid_p ())
3318 continue;
3319
3320 /* Otherwise we can process the (new) pending event now. Set
3321 it so this pending event is considered by
3322 do_target_wait. */
719546c4 3323 tp->resumed = true;
08036331 3324 }
252fbfc8
PA
3325}
3326
a07daef3
PA
3327static void
3328infrun_thread_thread_exit (struct thread_info *tp, int silent)
3329{
5b6d1e4f
PA
3330 if (target_last_proc_target == tp->inf->process_target ()
3331 && target_last_wait_ptid == tp->ptid)
a07daef3
PA
3332 nullify_last_target_wait_ptid ();
3333}
3334
0cbcdb96
PA
3335/* Delete the step resume, single-step and longjmp/exception resume
3336 breakpoints of TP. */
4e1c45ea 3337
0cbcdb96
PA
3338static void
3339delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3340{
0cbcdb96
PA
3341 delete_step_resume_breakpoint (tp);
3342 delete_exception_resume_breakpoint (tp);
34b7e8a6 3343 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3344}
3345
0cbcdb96
PA
3346/* If the target still has execution, call FUNC for each thread that
3347 just stopped. In all-stop, that's all the non-exited threads; in
3348 non-stop, that's the current thread, only. */
3349
3350typedef void (*for_each_just_stopped_thread_callback_func)
3351 (struct thread_info *tp);
4e1c45ea
PA
3352
3353static void
0cbcdb96 3354for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3355{
d7e15655 3356 if (!target_has_execution || inferior_ptid == null_ptid)
4e1c45ea
PA
3357 return;
3358
fbea99ea 3359 if (target_is_non_stop_p ())
4e1c45ea 3360 {
0cbcdb96
PA
3361 /* If in non-stop mode, only the current thread stopped. */
3362 func (inferior_thread ());
4e1c45ea
PA
3363 }
3364 else
0cbcdb96 3365 {
0cbcdb96 3366 /* In all-stop mode, all threads have stopped. */
08036331
PA
3367 for (thread_info *tp : all_non_exited_threads ())
3368 func (tp);
0cbcdb96
PA
3369 }
3370}
3371
3372/* Delete the step resume and longjmp/exception resume breakpoints of
3373 the threads that just stopped. */
3374
3375static void
3376delete_just_stopped_threads_infrun_breakpoints (void)
3377{
3378 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3379}
3380
3381/* Delete the single-step breakpoints of the threads that just
3382 stopped. */
7c16b83e 3383
34b7e8a6
PA
3384static void
3385delete_just_stopped_threads_single_step_breakpoints (void)
3386{
3387 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3388}
3389
221e1a37 3390/* See infrun.h. */
223698f8 3391
221e1a37 3392void
223698f8
DE
3393print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3394 const struct target_waitstatus *ws)
3395{
23fdd69e 3396 std::string status_string = target_waitstatus_to_string (ws);
d7e74731 3397 string_file stb;
223698f8
DE
3398
3399 /* The text is split over several lines because it was getting too long.
3400 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3401 output as a unit; we want only one timestamp printed if debug_timestamp
3402 is set. */
3403
d7e74731 3404 stb.printf ("infrun: target_wait (%d.%ld.%ld",
e99b03dc 3405 waiton_ptid.pid (),
e38504b3 3406 waiton_ptid.lwp (),
cc6bcb54 3407 waiton_ptid.tid ());
e99b03dc 3408 if (waiton_ptid.pid () != -1)
a068643d 3409 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
d7e74731
PA
3410 stb.printf (", status) =\n");
3411 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
e99b03dc 3412 result_ptid.pid (),
e38504b3 3413 result_ptid.lwp (),
cc6bcb54 3414 result_ptid.tid (),
a068643d 3415 target_pid_to_str (result_ptid).c_str ());
23fdd69e 3416 stb.printf ("infrun: %s\n", status_string.c_str ());
223698f8
DE
3417
3418 /* This uses %s in part to handle %'s in the text, but also to avoid
3419 a gcc error: the format attribute requires a string literal. */
d7e74731 3420 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3421}
3422
372316f1
PA
3423/* Select a thread at random, out of those which are resumed and have
3424 had events. */
3425
3426static struct thread_info *
5b6d1e4f 3427random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
372316f1 3428{
372316f1 3429 int num_events = 0;
08036331 3430
5b6d1e4f 3431 auto has_event = [&] (thread_info *tp)
08036331 3432 {
5b6d1e4f
PA
3433 return (tp->ptid.matches (waiton_ptid)
3434 && tp->resumed
08036331
PA
3435 && tp->suspend.waitstatus_pending_p);
3436 };
372316f1
PA
3437
3438 /* First see how many events we have. Count only resumed threads
3439 that have an event pending. */
5b6d1e4f 3440 for (thread_info *tp : inf->non_exited_threads ())
08036331 3441 if (has_event (tp))
372316f1
PA
3442 num_events++;
3443
3444 if (num_events == 0)
3445 return NULL;
3446
3447 /* Now randomly pick a thread out of those that have had events. */
08036331
PA
3448 int random_selector = (int) ((num_events * (double) rand ())
3449 / (RAND_MAX + 1.0));
372316f1
PA
3450
3451 if (debug_infrun && num_events > 1)
3452 fprintf_unfiltered (gdb_stdlog,
3453 "infrun: Found %d events, selecting #%d\n",
3454 num_events, random_selector);
3455
3456 /* Select the Nth thread that has had an event. */
5b6d1e4f 3457 for (thread_info *tp : inf->non_exited_threads ())
08036331 3458 if (has_event (tp))
372316f1 3459 if (random_selector-- == 0)
08036331 3460 return tp;
372316f1 3461
08036331 3462 gdb_assert_not_reached ("event thread not found");
372316f1
PA
3463}
3464
3465/* Wrapper for target_wait that first checks whether threads have
3466 pending statuses to report before actually asking the target for
5b6d1e4f
PA
3467 more events. INF is the inferior we're using to call target_wait
3468 on. */
372316f1
PA
3469
3470static ptid_t
5b6d1e4f
PA
3471do_target_wait_1 (inferior *inf, ptid_t ptid,
3472 target_waitstatus *status, int options)
372316f1
PA
3473{
3474 ptid_t event_ptid;
3475 struct thread_info *tp;
3476
24ed6739
AB
3477 /* We know that we are looking for an event in the target of inferior
3478 INF, but we don't know which thread the event might come from. As
3479 such we want to make sure that INFERIOR_PTID is reset so that none of
3480 the wait code relies on it - doing so is always a mistake. */
3481 switch_to_inferior_no_thread (inf);
3482
372316f1
PA
3483 /* First check if there is a resumed thread with a wait status
3484 pending. */
d7e15655 3485 if (ptid == minus_one_ptid || ptid.is_pid ())
372316f1 3486 {
5b6d1e4f 3487 tp = random_pending_event_thread (inf, ptid);
372316f1
PA
3488 }
3489 else
3490 {
3491 if (debug_infrun)
3492 fprintf_unfiltered (gdb_stdlog,
3493 "infrun: Waiting for specific thread %s.\n",
a068643d 3494 target_pid_to_str (ptid).c_str ());
372316f1
PA
3495
3496 /* We have a specific thread to check. */
5b6d1e4f 3497 tp = find_thread_ptid (inf, ptid);
372316f1
PA
3498 gdb_assert (tp != NULL);
3499 if (!tp->suspend.waitstatus_pending_p)
3500 tp = NULL;
3501 }
3502
3503 if (tp != NULL
3504 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3505 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3506 {
00431a78 3507 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 3508 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3509 CORE_ADDR pc;
3510 int discard = 0;
3511
3512 pc = regcache_read_pc (regcache);
3513
3514 if (pc != tp->suspend.stop_pc)
3515 {
3516 if (debug_infrun)
3517 fprintf_unfiltered (gdb_stdlog,
3518 "infrun: PC of %s changed. was=%s, now=%s\n",
a068643d 3519 target_pid_to_str (tp->ptid).c_str (),
defd2172 3520 paddress (gdbarch, tp->suspend.stop_pc),
372316f1
PA
3521 paddress (gdbarch, pc));
3522 discard = 1;
3523 }
a01bda52 3524 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1
PA
3525 {
3526 if (debug_infrun)
3527 fprintf_unfiltered (gdb_stdlog,
3528 "infrun: previous breakpoint of %s, at %s gone\n",
a068643d 3529 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
3530 paddress (gdbarch, pc));
3531
3532 discard = 1;
3533 }
3534
3535 if (discard)
3536 {
3537 if (debug_infrun)
3538 fprintf_unfiltered (gdb_stdlog,
3539 "infrun: pending event of %s cancelled.\n",
a068643d 3540 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3541
3542 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3543 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3544 }
3545 }
3546
3547 if (tp != NULL)
3548 {
3549 if (debug_infrun)
3550 {
23fdd69e
SM
3551 std::string statstr
3552 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 3553
372316f1
PA
3554 fprintf_unfiltered (gdb_stdlog,
3555 "infrun: Using pending wait status %s for %s.\n",
23fdd69e 3556 statstr.c_str (),
a068643d 3557 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3558 }
3559
3560 /* Now that we've selected our final event LWP, un-adjust its PC
3561 if it was a software breakpoint (and the target doesn't
3562 always adjust the PC itself). */
3563 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3564 && !target_supports_stopped_by_sw_breakpoint ())
3565 {
3566 struct regcache *regcache;
3567 struct gdbarch *gdbarch;
3568 int decr_pc;
3569
00431a78 3570 regcache = get_thread_regcache (tp);
ac7936df 3571 gdbarch = regcache->arch ();
372316f1
PA
3572
3573 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3574 if (decr_pc != 0)
3575 {
3576 CORE_ADDR pc;
3577
3578 pc = regcache_read_pc (regcache);
3579 regcache_write_pc (regcache, pc + decr_pc);
3580 }
3581 }
3582
3583 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3584 *status = tp->suspend.waitstatus;
3585 tp->suspend.waitstatus_pending_p = 0;
3586
3587 /* Wake up the event loop again, until all pending events are
3588 processed. */
3589 if (target_is_async_p ())
3590 mark_async_event_handler (infrun_async_inferior_event_token);
3591 return tp->ptid;
3592 }
3593
3594 /* But if we don't find one, we'll have to wait. */
3595
3596 if (deprecated_target_wait_hook)
3597 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3598 else
3599 event_ptid = target_wait (ptid, status, options);
3600
3601 return event_ptid;
3602}
3603
5b6d1e4f
PA
3604/* Returns true if INF has any resumed thread with a status
3605 pending. */
3606
3607static bool
3608threads_are_resumed_pending_p (inferior *inf)
3609{
3610 for (thread_info *tp : inf->non_exited_threads ())
3611 if (tp->resumed
3612 && tp->suspend.waitstatus_pending_p)
3613 return true;
3614
3615 return false;
3616}
3617
3618/* Wrapper for target_wait that first checks whether threads have
3619 pending statuses to report before actually asking the target for
3620 more events. Polls for events from all inferiors/targets. */
3621
3622static bool
3623do_target_wait (ptid_t wait_ptid, execution_control_state *ecs, int options)
3624{
3625 int num_inferiors = 0;
3626 int random_selector;
3627
3628 /* For fairness, we pick the first inferior/target to poll at
3629 random, and then continue polling the rest of the inferior list
3630 starting from that one in a circular fashion until the whole list
3631 is polled once. */
3632
3633 auto inferior_matches = [&wait_ptid] (inferior *inf)
3634 {
3635 return (inf->process_target () != NULL
3636 && (threads_are_executing (inf->process_target ())
3637 || threads_are_resumed_pending_p (inf))
3638 && ptid_t (inf->pid).matches (wait_ptid));
3639 };
3640
3641 /* First see how many resumed inferiors we have. */
3642 for (inferior *inf : all_inferiors ())
3643 if (inferior_matches (inf))
3644 num_inferiors++;
3645
3646 if (num_inferiors == 0)
3647 {
3648 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3649 return false;
3650 }
3651
3652 /* Now randomly pick an inferior out of those that were resumed. */
3653 random_selector = (int)
3654 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3655
3656 if (debug_infrun && num_inferiors > 1)
3657 fprintf_unfiltered (gdb_stdlog,
3658 "infrun: Found %d inferiors, starting at #%d\n",
3659 num_inferiors, random_selector);
3660
3661 /* Select the Nth inferior that was resumed. */
3662
3663 inferior *selected = nullptr;
3664
3665 for (inferior *inf : all_inferiors ())
3666 if (inferior_matches (inf))
3667 if (random_selector-- == 0)
3668 {
3669 selected = inf;
3670 break;
3671 }
3672
3673 /* Now poll for events out of each of the resumed inferior's
3674 targets, starting from the selected one. */
3675
3676 auto do_wait = [&] (inferior *inf)
3677 {
5b6d1e4f
PA
3678 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3679 ecs->target = inf->process_target ();
3680 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3681 };
3682
3683 /* Needed in all-stop+target-non-stop mode, because we end up here
3684 spuriously after the target is all stopped and we've already
3685 reported the stop to the user, polling for events. */
3686 scoped_restore_current_thread restore_thread;
3687
3688 int inf_num = selected->num;
3689 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3690 if (inferior_matches (inf))
3691 if (do_wait (inf))
3692 return true;
3693
3694 for (inferior *inf = inferior_list;
3695 inf != NULL && inf->num < inf_num;
3696 inf = inf->next)
3697 if (inferior_matches (inf))
3698 if (do_wait (inf))
3699 return true;
3700
3701 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3702 return false;
3703}
3704
24291992
PA
3705/* Prepare and stabilize the inferior for detaching it. E.g.,
3706 detaching while a thread is displaced stepping is a recipe for
3707 crashing it, as nothing would readjust the PC out of the scratch
3708 pad. */
3709
3710void
3711prepare_for_detach (void)
3712{
3713 struct inferior *inf = current_inferior ();
f2907e49 3714 ptid_t pid_ptid = ptid_t (inf->pid);
24291992 3715
00431a78 3716 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
24291992
PA
3717
3718 /* Is any thread of this process displaced stepping? If not,
3719 there's nothing else to do. */
d20172fc 3720 if (displaced->step_thread == nullptr)
24291992
PA
3721 return;
3722
3723 if (debug_infrun)
3724 fprintf_unfiltered (gdb_stdlog,
3725 "displaced-stepping in-process while detaching");
3726
9bcb1f16 3727 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992 3728
00431a78 3729 while (displaced->step_thread != nullptr)
24291992 3730 {
24291992
PA
3731 struct execution_control_state ecss;
3732 struct execution_control_state *ecs;
3733
3734 ecs = &ecss;
3735 memset (ecs, 0, sizeof (*ecs));
3736
3737 overlay_cache_invalid = 1;
f15cb84a
YQ
3738 /* Flush target cache before starting to handle each event.
3739 Target was running and cache could be stale. This is just a
3740 heuristic. Running threads may modify target memory, but we
3741 don't get any event. */
3742 target_dcache_invalidate ();
24291992 3743
5b6d1e4f 3744 do_target_wait (pid_ptid, ecs, 0);
24291992
PA
3745
3746 if (debug_infrun)
3747 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3748
3749 /* If an error happens while handling the event, propagate GDB's
3750 knowledge of the executing state to the frontend/user running
3751 state. */
5b6d1e4f
PA
3752 scoped_finish_thread_state finish_state (inf->process_target (),
3753 minus_one_ptid);
24291992
PA
3754
3755 /* Now figure out what to do with the result of the result. */
3756 handle_inferior_event (ecs);
3757
3758 /* No error, don't finish the state yet. */
731f534f 3759 finish_state.release ();
24291992
PA
3760
3761 /* Breakpoints and watchpoints are not installed on the target
3762 at this point, and signals are passed directly to the
3763 inferior, so this must mean the process is gone. */
3764 if (!ecs->wait_some_more)
3765 {
9bcb1f16 3766 restore_detaching.release ();
24291992
PA
3767 error (_("Program exited while detaching"));
3768 }
3769 }
3770
9bcb1f16 3771 restore_detaching.release ();
24291992
PA
3772}
3773
cd0fc7c3 3774/* Wait for control to return from inferior to debugger.
ae123ec6 3775
cd0fc7c3
SS
3776 If inferior gets a signal, we may decide to start it up again
3777 instead of returning. That is why there is a loop in this function.
3778 When this function actually returns it means the inferior
3779 should be left stopped and GDB should read more commands. */
3780
5b6d1e4f
PA
3781static void
3782wait_for_inferior (inferior *inf)
cd0fc7c3 3783{
527159b7 3784 if (debug_infrun)
ae123ec6 3785 fprintf_unfiltered
e4c8541f 3786 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3787
4c41382a 3788 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
cd0fc7c3 3789
e6f5c25b
PA
3790 /* If an error happens while handling the event, propagate GDB's
3791 knowledge of the executing state to the frontend/user running
3792 state. */
5b6d1e4f
PA
3793 scoped_finish_thread_state finish_state
3794 (inf->process_target (), minus_one_ptid);
e6f5c25b 3795
c906108c
SS
3796 while (1)
3797 {
ae25568b
PA
3798 struct execution_control_state ecss;
3799 struct execution_control_state *ecs = &ecss;
29f49a6a 3800
ae25568b
PA
3801 memset (ecs, 0, sizeof (*ecs));
3802
ec9499be 3803 overlay_cache_invalid = 1;
ec9499be 3804
f15cb84a
YQ
3805 /* Flush target cache before starting to handle each event.
3806 Target was running and cache could be stale. This is just a
3807 heuristic. Running threads may modify target memory, but we
3808 don't get any event. */
3809 target_dcache_invalidate ();
3810
5b6d1e4f
PA
3811 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3812 ecs->target = inf->process_target ();
c906108c 3813
f00150c9 3814 if (debug_infrun)
5b6d1e4f 3815 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
f00150c9 3816
cd0fc7c3
SS
3817 /* Now figure out what to do with the result of the result. */
3818 handle_inferior_event (ecs);
c906108c 3819
cd0fc7c3
SS
3820 if (!ecs->wait_some_more)
3821 break;
3822 }
4e1c45ea 3823
e6f5c25b 3824 /* No error, don't finish the state yet. */
731f534f 3825 finish_state.release ();
cd0fc7c3 3826}
c906108c 3827
d3d4baed
PA
3828/* Cleanup that reinstalls the readline callback handler, if the
3829 target is running in the background. If while handling the target
3830 event something triggered a secondary prompt, like e.g., a
3831 pagination prompt, we'll have removed the callback handler (see
3832 gdb_readline_wrapper_line). Need to do this as we go back to the
3833 event loop, ready to process further input. Note this has no
3834 effect if the handler hasn't actually been removed, because calling
3835 rl_callback_handler_install resets the line buffer, thus losing
3836 input. */
3837
3838static void
d238133d 3839reinstall_readline_callback_handler_cleanup ()
d3d4baed 3840{
3b12939d
PA
3841 struct ui *ui = current_ui;
3842
3843 if (!ui->async)
6c400b59
PA
3844 {
3845 /* We're not going back to the top level event loop yet. Don't
3846 install the readline callback, as it'd prep the terminal,
3847 readline-style (raw, noecho) (e.g., --batch). We'll install
3848 it the next time the prompt is displayed, when we're ready
3849 for input. */
3850 return;
3851 }
3852
3b12939d 3853 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3854 gdb_rl_callback_handler_reinstall ();
3855}
3856
243a9253
PA
3857/* Clean up the FSMs of threads that are now stopped. In non-stop,
3858 that's just the event thread. In all-stop, that's all threads. */
3859
3860static void
3861clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3862{
08036331
PA
3863 if (ecs->event_thread != NULL
3864 && ecs->event_thread->thread_fsm != NULL)
46e3ed7f 3865 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
243a9253
PA
3866
3867 if (!non_stop)
3868 {
08036331 3869 for (thread_info *thr : all_non_exited_threads ())
243a9253
PA
3870 {
3871 if (thr->thread_fsm == NULL)
3872 continue;
3873 if (thr == ecs->event_thread)
3874 continue;
3875
00431a78 3876 switch_to_thread (thr);
46e3ed7f 3877 thr->thread_fsm->clean_up (thr);
243a9253
PA
3878 }
3879
3880 if (ecs->event_thread != NULL)
00431a78 3881 switch_to_thread (ecs->event_thread);
243a9253
PA
3882 }
3883}
3884
3b12939d
PA
3885/* Helper for all_uis_check_sync_execution_done that works on the
3886 current UI. */
3887
3888static void
3889check_curr_ui_sync_execution_done (void)
3890{
3891 struct ui *ui = current_ui;
3892
3893 if (ui->prompt_state == PROMPT_NEEDED
3894 && ui->async
3895 && !gdb_in_secondary_prompt_p (ui))
3896 {
223ffa71 3897 target_terminal::ours ();
76727919 3898 gdb::observers::sync_execution_done.notify ();
3eb7562a 3899 ui_register_input_event_handler (ui);
3b12939d
PA
3900 }
3901}
3902
3903/* See infrun.h. */
3904
3905void
3906all_uis_check_sync_execution_done (void)
3907{
0e454242 3908 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3909 {
3910 check_curr_ui_sync_execution_done ();
3911 }
3912}
3913
a8836c93
PA
3914/* See infrun.h. */
3915
3916void
3917all_uis_on_sync_execution_starting (void)
3918{
0e454242 3919 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3920 {
3921 if (current_ui->prompt_state == PROMPT_NEEDED)
3922 async_disable_stdin ();
3923 }
3924}
3925
1777feb0 3926/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3927 event loop whenever a change of state is detected on the file
1777feb0
MS
3928 descriptor corresponding to the target. It can be called more than
3929 once to complete a single execution command. In such cases we need
3930 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3931 that this function is called for a single execution command, then
3932 report to the user that the inferior has stopped, and do the
1777feb0 3933 necessary cleanups. */
43ff13b4
JM
3934
3935void
b1a35af2 3936fetch_inferior_event ()
43ff13b4 3937{
0d1e5fa7 3938 struct execution_control_state ecss;
a474d7c2 3939 struct execution_control_state *ecs = &ecss;
0f641c01 3940 int cmd_done = 0;
43ff13b4 3941
0d1e5fa7
PA
3942 memset (ecs, 0, sizeof (*ecs));
3943
c61db772
PA
3944 /* Events are always processed with the main UI as current UI. This
3945 way, warnings, debug output, etc. are always consistently sent to
3946 the main console. */
4b6749b9 3947 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3948
d3d4baed 3949 /* End up with readline processing input, if necessary. */
d238133d
TT
3950 {
3951 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3952
3953 /* We're handling a live event, so make sure we're doing live
3954 debugging. If we're looking at traceframes while the target is
3955 running, we're going to need to get back to that mode after
3956 handling the event. */
3957 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3958 if (non_stop)
3959 {
3960 maybe_restore_traceframe.emplace ();
3961 set_current_traceframe (-1);
3962 }
43ff13b4 3963
873657b9
PA
3964 /* The user/frontend should not notice a thread switch due to
3965 internal events. Make sure we revert to the user selected
3966 thread and frame after handling the event and running any
3967 breakpoint commands. */
3968 scoped_restore_current_thread restore_thread;
d238133d
TT
3969
3970 overlay_cache_invalid = 1;
3971 /* Flush target cache before starting to handle each event. Target
3972 was running and cache could be stale. This is just a heuristic.
3973 Running threads may modify target memory, but we don't get any
3974 event. */
3975 target_dcache_invalidate ();
3976
3977 scoped_restore save_exec_dir
3978 = make_scoped_restore (&execution_direction,
3979 target_execution_direction ());
3980
5b6d1e4f
PA
3981 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
3982 return;
3983
3984 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3985
3986 /* Switch to the target that generated the event, so we can do
3987 target calls. Any inferior bound to the target will do, so we
3988 just switch to the first we find. */
3989 for (inferior *inf : all_inferiors (ecs->target))
3990 {
3991 switch_to_inferior_no_thread (inf);
3992 break;
3993 }
d238133d
TT
3994
3995 if (debug_infrun)
5b6d1e4f 3996 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
d238133d
TT
3997
3998 /* If an error happens while handling the event, propagate GDB's
3999 knowledge of the executing state to the frontend/user running
4000 state. */
4001 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
5b6d1e4f 4002 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
d238133d 4003
979a0d13 4004 /* Get executed before scoped_restore_current_thread above to apply
d238133d
TT
4005 still for the thread which has thrown the exception. */
4006 auto defer_bpstat_clear
4007 = make_scope_exit (bpstat_clear_actions);
4008 auto defer_delete_threads
4009 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
4010
4011 /* Now figure out what to do with the result of the result. */
4012 handle_inferior_event (ecs);
4013
4014 if (!ecs->wait_some_more)
4015 {
5b6d1e4f 4016 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
d238133d
TT
4017 int should_stop = 1;
4018 struct thread_info *thr = ecs->event_thread;
d6b48e9c 4019
d238133d 4020 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 4021
d238133d
TT
4022 if (thr != NULL)
4023 {
4024 struct thread_fsm *thread_fsm = thr->thread_fsm;
243a9253 4025
d238133d 4026 if (thread_fsm != NULL)
46e3ed7f 4027 should_stop = thread_fsm->should_stop (thr);
d238133d 4028 }
243a9253 4029
d238133d
TT
4030 if (!should_stop)
4031 {
4032 keep_going (ecs);
4033 }
4034 else
4035 {
46e3ed7f 4036 bool should_notify_stop = true;
d238133d 4037 int proceeded = 0;
1840d81a 4038
d238133d 4039 clean_up_just_stopped_threads_fsms (ecs);
243a9253 4040
d238133d 4041 if (thr != NULL && thr->thread_fsm != NULL)
46e3ed7f 4042 should_notify_stop = thr->thread_fsm->should_notify_stop ();
388a7084 4043
d238133d
TT
4044 if (should_notify_stop)
4045 {
4046 /* We may not find an inferior if this was a process exit. */
4047 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4048 proceeded = normal_stop ();
4049 }
243a9253 4050
d238133d
TT
4051 if (!proceeded)
4052 {
b1a35af2 4053 inferior_event_handler (INF_EXEC_COMPLETE);
d238133d
TT
4054 cmd_done = 1;
4055 }
873657b9
PA
4056
4057 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
4058 previously selected thread is gone. We have two
4059 choices - switch to no thread selected, or restore the
4060 previously selected thread (now exited). We chose the
4061 later, just because that's what GDB used to do. After
4062 this, "info threads" says "The current thread <Thread
4063 ID 2> has terminated." instead of "No thread
4064 selected.". */
4065 if (!non_stop
4066 && cmd_done
4067 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
4068 restore_thread.dont_restore ();
d238133d
TT
4069 }
4070 }
4f8d22e3 4071
d238133d
TT
4072 defer_delete_threads.release ();
4073 defer_bpstat_clear.release ();
29f49a6a 4074
d238133d
TT
4075 /* No error, don't finish the thread states yet. */
4076 finish_state.release ();
731f534f 4077
d238133d
TT
4078 /* This scope is used to ensure that readline callbacks are
4079 reinstalled here. */
4080 }
4f8d22e3 4081
3b12939d
PA
4082 /* If a UI was in sync execution mode, and now isn't, restore its
4083 prompt (a synchronous execution command has finished, and we're
4084 ready for input). */
4085 all_uis_check_sync_execution_done ();
0f641c01
PA
4086
4087 if (cmd_done
0f641c01 4088 && exec_done_display_p
00431a78
PA
4089 && (inferior_ptid == null_ptid
4090 || inferior_thread ()->state != THREAD_RUNNING))
0f641c01 4091 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
4092}
4093
29734269
SM
4094/* See infrun.h. */
4095
edb3359d 4096void
29734269
SM
4097set_step_info (thread_info *tp, struct frame_info *frame,
4098 struct symtab_and_line sal)
edb3359d 4099{
29734269
SM
4100 /* This can be removed once this function no longer implicitly relies on the
4101 inferior_ptid value. */
4102 gdb_assert (inferior_ptid == tp->ptid);
edb3359d 4103
16c381f0
JK
4104 tp->control.step_frame_id = get_frame_id (frame);
4105 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
4106
4107 tp->current_symtab = sal.symtab;
4108 tp->current_line = sal.line;
4109}
4110
0d1e5fa7
PA
4111/* Clear context switchable stepping state. */
4112
4113void
4e1c45ea 4114init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 4115{
7f5ef605 4116 tss->stepped_breakpoint = 0;
0d1e5fa7 4117 tss->stepping_over_breakpoint = 0;
963f9c80 4118 tss->stepping_over_watchpoint = 0;
0d1e5fa7 4119 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
4120}
4121
ab1ddbcf 4122/* See infrun.h. */
c32c64b7 4123
6efcd9a8 4124void
5b6d1e4f
PA
4125set_last_target_status (process_stratum_target *target, ptid_t ptid,
4126 target_waitstatus status)
c32c64b7 4127{
5b6d1e4f 4128 target_last_proc_target = target;
c32c64b7
DE
4129 target_last_wait_ptid = ptid;
4130 target_last_waitstatus = status;
4131}
4132
ab1ddbcf 4133/* See infrun.h. */
e02bc4cc
DS
4134
4135void
5b6d1e4f
PA
4136get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4137 target_waitstatus *status)
e02bc4cc 4138{
5b6d1e4f
PA
4139 if (target != nullptr)
4140 *target = target_last_proc_target;
ab1ddbcf
PA
4141 if (ptid != nullptr)
4142 *ptid = target_last_wait_ptid;
4143 if (status != nullptr)
4144 *status = target_last_waitstatus;
e02bc4cc
DS
4145}
4146
ab1ddbcf
PA
4147/* See infrun.h. */
4148
ac264b3b
MS
4149void
4150nullify_last_target_wait_ptid (void)
4151{
5b6d1e4f 4152 target_last_proc_target = nullptr;
ac264b3b 4153 target_last_wait_ptid = minus_one_ptid;
ab1ddbcf 4154 target_last_waitstatus = {};
ac264b3b
MS
4155}
4156
dcf4fbde 4157/* Switch thread contexts. */
dd80620e
MS
4158
4159static void
00431a78 4160context_switch (execution_control_state *ecs)
dd80620e 4161{
00431a78
PA
4162 if (debug_infrun
4163 && ecs->ptid != inferior_ptid
5b6d1e4f
PA
4164 && (inferior_ptid == null_ptid
4165 || ecs->event_thread != inferior_thread ()))
fd48f117
DJ
4166 {
4167 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
a068643d 4168 target_pid_to_str (inferior_ptid).c_str ());
fd48f117 4169 fprintf_unfiltered (gdb_stdlog, "to %s\n",
a068643d 4170 target_pid_to_str (ecs->ptid).c_str ());
fd48f117
DJ
4171 }
4172
00431a78 4173 switch_to_thread (ecs->event_thread);
dd80620e
MS
4174}
4175
d8dd4d5f
PA
4176/* If the target can't tell whether we've hit breakpoints
4177 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4178 check whether that could have been caused by a breakpoint. If so,
4179 adjust the PC, per gdbarch_decr_pc_after_break. */
4180
4fa8626c 4181static void
d8dd4d5f
PA
4182adjust_pc_after_break (struct thread_info *thread,
4183 struct target_waitstatus *ws)
4fa8626c 4184{
24a73cce
UW
4185 struct regcache *regcache;
4186 struct gdbarch *gdbarch;
118e6252 4187 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4188
4fa8626c
DJ
4189 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4190 we aren't, just return.
9709f61c
DJ
4191
4192 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4193 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4194 implemented by software breakpoints should be handled through the normal
4195 breakpoint layer.
8fb3e588 4196
4fa8626c
DJ
4197 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4198 different signals (SIGILL or SIGEMT for instance), but it is less
4199 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4200 gdbarch_decr_pc_after_break. I don't know any specific target that
4201 generates these signals at breakpoints (the code has been in GDB since at
4202 least 1992) so I can not guess how to handle them here.
8fb3e588 4203
e6cf7916
UW
4204 In earlier versions of GDB, a target with
4205 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4206 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4207 target with both of these set in GDB history, and it seems unlikely to be
4208 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4209
d8dd4d5f 4210 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4211 return;
4212
d8dd4d5f 4213 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4214 return;
4215
4058b839
PA
4216 /* In reverse execution, when a breakpoint is hit, the instruction
4217 under it has already been de-executed. The reported PC always
4218 points at the breakpoint address, so adjusting it further would
4219 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4220 architecture:
4221
4222 B1 0x08000000 : INSN1
4223 B2 0x08000001 : INSN2
4224 0x08000002 : INSN3
4225 PC -> 0x08000003 : INSN4
4226
4227 Say you're stopped at 0x08000003 as above. Reverse continuing
4228 from that point should hit B2 as below. Reading the PC when the
4229 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4230 been de-executed already.
4231
4232 B1 0x08000000 : INSN1
4233 B2 PC -> 0x08000001 : INSN2
4234 0x08000002 : INSN3
4235 0x08000003 : INSN4
4236
4237 We can't apply the same logic as for forward execution, because
4238 we would wrongly adjust the PC to 0x08000000, since there's a
4239 breakpoint at PC - 1. We'd then report a hit on B1, although
4240 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4241 behaviour. */
4242 if (execution_direction == EXEC_REVERSE)
4243 return;
4244
1cf4d951
PA
4245 /* If the target can tell whether the thread hit a SW breakpoint,
4246 trust it. Targets that can tell also adjust the PC
4247 themselves. */
4248 if (target_supports_stopped_by_sw_breakpoint ())
4249 return;
4250
4251 /* Note that relying on whether a breakpoint is planted in memory to
4252 determine this can fail. E.g,. the breakpoint could have been
4253 removed since. Or the thread could have been told to step an
4254 instruction the size of a breakpoint instruction, and only
4255 _after_ was a breakpoint inserted at its address. */
4256
24a73cce
UW
4257 /* If this target does not decrement the PC after breakpoints, then
4258 we have nothing to do. */
00431a78 4259 regcache = get_thread_regcache (thread);
ac7936df 4260 gdbarch = regcache->arch ();
118e6252 4261
527a273a 4262 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4263 if (decr_pc == 0)
24a73cce
UW
4264 return;
4265
8b86c959 4266 const address_space *aspace = regcache->aspace ();
6c95b8df 4267
8aad930b
AC
4268 /* Find the location where (if we've hit a breakpoint) the
4269 breakpoint would be. */
118e6252 4270 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4271
1cf4d951
PA
4272 /* If the target can't tell whether a software breakpoint triggered,
4273 fallback to figuring it out based on breakpoints we think were
4274 inserted in the target, and on whether the thread was stepped or
4275 continued. */
4276
1c5cfe86
PA
4277 /* Check whether there actually is a software breakpoint inserted at
4278 that location.
4279
4280 If in non-stop mode, a race condition is possible where we've
4281 removed a breakpoint, but stop events for that breakpoint were
4282 already queued and arrive later. To suppress those spurious
4283 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4284 and retire them after a number of stop events are reported. Note
4285 this is an heuristic and can thus get confused. The real fix is
4286 to get the "stopped by SW BP and needs adjustment" info out of
4287 the target/kernel (and thus never reach here; see above). */
6c95b8df 4288 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4289 || (target_is_non_stop_p ()
4290 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4291 {
07036511 4292 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 4293
8213266a 4294 if (record_full_is_used ())
07036511
TT
4295 restore_operation_disable.emplace
4296 (record_full_gdb_operation_disable_set ());
96429cc8 4297
1c0fdd0e
UW
4298 /* When using hardware single-step, a SIGTRAP is reported for both
4299 a completed single-step and a software breakpoint. Need to
4300 differentiate between the two, as the latter needs adjusting
4301 but the former does not.
4302
4303 The SIGTRAP can be due to a completed hardware single-step only if
4304 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4305 - this thread is currently being stepped
4306
4307 If any of these events did not occur, we must have stopped due
4308 to hitting a software breakpoint, and have to back up to the
4309 breakpoint address.
4310
4311 As a special case, we could have hardware single-stepped a
4312 software breakpoint. In this case (prev_pc == breakpoint_pc),
4313 we also need to back up to the breakpoint address. */
4314
d8dd4d5f
PA
4315 if (thread_has_single_step_breakpoints_set (thread)
4316 || !currently_stepping (thread)
4317 || (thread->stepped_breakpoint
4318 && thread->prev_pc == breakpoint_pc))
515630c5 4319 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4320 }
4fa8626c
DJ
4321}
4322
edb3359d
DJ
4323static int
4324stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4325{
4326 for (frame = get_prev_frame (frame);
4327 frame != NULL;
4328 frame = get_prev_frame (frame))
4329 {
4330 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4331 return 1;
4332 if (get_frame_type (frame) != INLINE_FRAME)
4333 break;
4334 }
4335
4336 return 0;
4337}
4338
4a4c04f1
BE
4339/* Look for an inline frame that is marked for skip.
4340 If PREV_FRAME is TRUE start at the previous frame,
4341 otherwise start at the current frame. Stop at the
4342 first non-inline frame, or at the frame where the
4343 step started. */
4344
4345static bool
4346inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4347{
4348 struct frame_info *frame = get_current_frame ();
4349
4350 if (prev_frame)
4351 frame = get_prev_frame (frame);
4352
4353 for (; frame != NULL; frame = get_prev_frame (frame))
4354 {
4355 const char *fn = NULL;
4356 symtab_and_line sal;
4357 struct symbol *sym;
4358
4359 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4360 break;
4361 if (get_frame_type (frame) != INLINE_FRAME)
4362 break;
4363
4364 sal = find_frame_sal (frame);
4365 sym = get_frame_function (frame);
4366
4367 if (sym != NULL)
4368 fn = sym->print_name ();
4369
4370 if (sal.line != 0
4371 && function_name_is_marked_for_skip (fn, sal))
4372 return true;
4373 }
4374
4375 return false;
4376}
4377
c65d6b55
PA
4378/* If the event thread has the stop requested flag set, pretend it
4379 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4380 target_stop). */
4381
4382static bool
4383handle_stop_requested (struct execution_control_state *ecs)
4384{
4385 if (ecs->event_thread->stop_requested)
4386 {
4387 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4388 ecs->ws.value.sig = GDB_SIGNAL_0;
4389 handle_signal_stop (ecs);
4390 return true;
4391 }
4392 return false;
4393}
4394
a96d9b2e
SDJ
4395/* Auxiliary function that handles syscall entry/return events.
4396 It returns 1 if the inferior should keep going (and GDB
4397 should ignore the event), or 0 if the event deserves to be
4398 processed. */
ca2163eb 4399
a96d9b2e 4400static int
ca2163eb 4401handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4402{
ca2163eb 4403 struct regcache *regcache;
ca2163eb
PA
4404 int syscall_number;
4405
00431a78 4406 context_switch (ecs);
ca2163eb 4407
00431a78 4408 regcache = get_thread_regcache (ecs->event_thread);
f90263c1 4409 syscall_number = ecs->ws.value.syscall_number;
f2ffa92b 4410 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
ca2163eb 4411
a96d9b2e
SDJ
4412 if (catch_syscall_enabled () > 0
4413 && catching_syscall_number (syscall_number) > 0)
4414 {
4415 if (debug_infrun)
4416 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4417 syscall_number);
a96d9b2e 4418
16c381f0 4419 ecs->event_thread->control.stop_bpstat
a01bda52 4420 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4421 ecs->event_thread->suspend.stop_pc,
4422 ecs->event_thread, &ecs->ws);
ab04a2af 4423
c65d6b55
PA
4424 if (handle_stop_requested (ecs))
4425 return 0;
4426
ce12b012 4427 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4428 {
4429 /* Catchpoint hit. */
ca2163eb
PA
4430 return 0;
4431 }
a96d9b2e 4432 }
ca2163eb 4433
c65d6b55
PA
4434 if (handle_stop_requested (ecs))
4435 return 0;
4436
ca2163eb 4437 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4438 keep_going (ecs);
4439 return 1;
a96d9b2e
SDJ
4440}
4441
7e324e48
GB
4442/* Lazily fill in the execution_control_state's stop_func_* fields. */
4443
4444static void
4445fill_in_stop_func (struct gdbarch *gdbarch,
4446 struct execution_control_state *ecs)
4447{
4448 if (!ecs->stop_func_filled_in)
4449 {
98a617f8
KB
4450 const block *block;
4451
7e324e48
GB
4452 /* Don't care about return value; stop_func_start and stop_func_name
4453 will both be 0 if it doesn't work. */
98a617f8
KB
4454 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4455 &ecs->stop_func_name,
4456 &ecs->stop_func_start,
4457 &ecs->stop_func_end,
4458 &block);
4459
4460 /* The call to find_pc_partial_function, above, will set
4461 stop_func_start and stop_func_end to the start and end
4462 of the range containing the stop pc. If this range
4463 contains the entry pc for the block (which is always the
4464 case for contiguous blocks), advance stop_func_start past
4465 the function's start offset and entrypoint. Note that
4466 stop_func_start is NOT advanced when in a range of a
4467 non-contiguous block that does not contain the entry pc. */
4468 if (block != nullptr
4469 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4470 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4471 {
4472 ecs->stop_func_start
4473 += gdbarch_deprecated_function_start_offset (gdbarch);
4474
4475 if (gdbarch_skip_entrypoint_p (gdbarch))
4476 ecs->stop_func_start
4477 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4478 }
591a12a1 4479
7e324e48
GB
4480 ecs->stop_func_filled_in = 1;
4481 }
4482}
4483
4f5d7f63 4484
00431a78 4485/* Return the STOP_SOON field of the inferior pointed at by ECS. */
4f5d7f63
PA
4486
4487static enum stop_kind
00431a78 4488get_inferior_stop_soon (execution_control_state *ecs)
4f5d7f63 4489{
5b6d1e4f 4490 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4f5d7f63
PA
4491
4492 gdb_assert (inf != NULL);
4493 return inf->control.stop_soon;
4494}
4495
5b6d1e4f
PA
4496/* Poll for one event out of the current target. Store the resulting
4497 waitstatus in WS, and return the event ptid. Does not block. */
372316f1
PA
4498
4499static ptid_t
5b6d1e4f 4500poll_one_curr_target (struct target_waitstatus *ws)
372316f1
PA
4501{
4502 ptid_t event_ptid;
372316f1
PA
4503
4504 overlay_cache_invalid = 1;
4505
4506 /* Flush target cache before starting to handle each event.
4507 Target was running and cache could be stale. This is just a
4508 heuristic. Running threads may modify target memory, but we
4509 don't get any event. */
4510 target_dcache_invalidate ();
4511
4512 if (deprecated_target_wait_hook)
5b6d1e4f 4513 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
372316f1 4514 else
5b6d1e4f 4515 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
372316f1
PA
4516
4517 if (debug_infrun)
5b6d1e4f 4518 print_target_wait_results (minus_one_ptid, event_ptid, ws);
372316f1
PA
4519
4520 return event_ptid;
4521}
4522
5b6d1e4f
PA
4523/* An event reported by wait_one. */
4524
4525struct wait_one_event
4526{
4527 /* The target the event came out of. */
4528 process_stratum_target *target;
4529
4530 /* The PTID the event was for. */
4531 ptid_t ptid;
4532
4533 /* The waitstatus. */
4534 target_waitstatus ws;
4535};
4536
4537/* Wait for one event out of any target. */
4538
4539static wait_one_event
4540wait_one ()
4541{
4542 while (1)
4543 {
4544 for (inferior *inf : all_inferiors ())
4545 {
4546 process_stratum_target *target = inf->process_target ();
4547 if (target == NULL
4548 || !target->is_async_p ()
4549 || !target->threads_executing)
4550 continue;
4551
4552 switch_to_inferior_no_thread (inf);
4553
4554 wait_one_event event;
4555 event.target = target;
4556 event.ptid = poll_one_curr_target (&event.ws);
4557
4558 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4559 {
4560 /* If nothing is resumed, remove the target from the
4561 event loop. */
4562 target_async (0);
4563 }
4564 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4565 return event;
4566 }
4567
4568 /* Block waiting for some event. */
4569
4570 fd_set readfds;
4571 int nfds = 0;
4572
4573 FD_ZERO (&readfds);
4574
4575 for (inferior *inf : all_inferiors ())
4576 {
4577 process_stratum_target *target = inf->process_target ();
4578 if (target == NULL
4579 || !target->is_async_p ()
4580 || !target->threads_executing)
4581 continue;
4582
4583 int fd = target->async_wait_fd ();
4584 FD_SET (fd, &readfds);
4585 if (nfds <= fd)
4586 nfds = fd + 1;
4587 }
4588
4589 if (nfds == 0)
4590 {
4591 /* No waitable targets left. All must be stopped. */
4592 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4593 }
4594
4595 QUIT;
4596
4597 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4598 if (numfds < 0)
4599 {
4600 if (errno == EINTR)
4601 continue;
4602 else
4603 perror_with_name ("interruptible_select");
4604 }
4605 }
4606}
4607
372316f1
PA
4608/* Save the thread's event and stop reason to process it later. */
4609
4610static void
5b6d1e4f 4611save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
372316f1 4612{
372316f1
PA
4613 if (debug_infrun)
4614 {
23fdd69e 4615 std::string statstr = target_waitstatus_to_string (ws);
372316f1 4616
372316f1
PA
4617 fprintf_unfiltered (gdb_stdlog,
4618 "infrun: saving status %s for %d.%ld.%ld\n",
23fdd69e 4619 statstr.c_str (),
e99b03dc 4620 tp->ptid.pid (),
e38504b3 4621 tp->ptid.lwp (),
cc6bcb54 4622 tp->ptid.tid ());
372316f1
PA
4623 }
4624
4625 /* Record for later. */
4626 tp->suspend.waitstatus = *ws;
4627 tp->suspend.waitstatus_pending_p = 1;
4628
00431a78 4629 struct regcache *regcache = get_thread_regcache (tp);
8b86c959 4630 const address_space *aspace = regcache->aspace ();
372316f1
PA
4631
4632 if (ws->kind == TARGET_WAITKIND_STOPPED
4633 && ws->value.sig == GDB_SIGNAL_TRAP)
4634 {
4635 CORE_ADDR pc = regcache_read_pc (regcache);
4636
4637 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4638
18493a00
PA
4639 scoped_restore_current_thread restore_thread;
4640 switch_to_thread (tp);
4641
4642 if (target_stopped_by_watchpoint ())
372316f1
PA
4643 {
4644 tp->suspend.stop_reason
4645 = TARGET_STOPPED_BY_WATCHPOINT;
4646 }
4647 else if (target_supports_stopped_by_sw_breakpoint ()
18493a00 4648 && target_stopped_by_sw_breakpoint ())
372316f1
PA
4649 {
4650 tp->suspend.stop_reason
4651 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4652 }
4653 else if (target_supports_stopped_by_hw_breakpoint ()
18493a00 4654 && target_stopped_by_hw_breakpoint ())
372316f1
PA
4655 {
4656 tp->suspend.stop_reason
4657 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4658 }
4659 else if (!target_supports_stopped_by_hw_breakpoint ()
4660 && hardware_breakpoint_inserted_here_p (aspace,
4661 pc))
4662 {
4663 tp->suspend.stop_reason
4664 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4665 }
4666 else if (!target_supports_stopped_by_sw_breakpoint ()
4667 && software_breakpoint_inserted_here_p (aspace,
4668 pc))
4669 {
4670 tp->suspend.stop_reason
4671 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4672 }
4673 else if (!thread_has_single_step_breakpoints_set (tp)
4674 && currently_stepping (tp))
4675 {
4676 tp->suspend.stop_reason
4677 = TARGET_STOPPED_BY_SINGLE_STEP;
4678 }
4679 }
4680}
4681
293b3ebc
TBA
4682/* Mark the non-executing threads accordingly. In all-stop, all
4683 threads of all processes are stopped when we get any event
4684 reported. In non-stop mode, only the event thread stops. */
4685
4686static void
4687mark_non_executing_threads (process_stratum_target *target,
4688 ptid_t event_ptid,
4689 struct target_waitstatus ws)
4690{
4691 ptid_t mark_ptid;
4692
4693 if (!target_is_non_stop_p ())
4694 mark_ptid = minus_one_ptid;
4695 else if (ws.kind == TARGET_WAITKIND_SIGNALLED
4696 || ws.kind == TARGET_WAITKIND_EXITED)
4697 {
4698 /* If we're handling a process exit in non-stop mode, even
4699 though threads haven't been deleted yet, one would think
4700 that there is nothing to do, as threads of the dead process
4701 will be soon deleted, and threads of any other process were
4702 left running. However, on some targets, threads survive a
4703 process exit event. E.g., for the "checkpoint" command,
4704 when the current checkpoint/fork exits, linux-fork.c
4705 automatically switches to another fork from within
4706 target_mourn_inferior, by associating the same
4707 inferior/thread to another fork. We haven't mourned yet at
4708 this point, but we must mark any threads left in the
4709 process as not-executing so that finish_thread_state marks
4710 them stopped (in the user's perspective) if/when we present
4711 the stop to the user. */
4712 mark_ptid = ptid_t (event_ptid.pid ());
4713 }
4714 else
4715 mark_ptid = event_ptid;
4716
4717 set_executing (target, mark_ptid, false);
4718
4719 /* Likewise the resumed flag. */
4720 set_resumed (target, mark_ptid, false);
4721}
4722
6efcd9a8 4723/* See infrun.h. */
372316f1 4724
6efcd9a8 4725void
372316f1
PA
4726stop_all_threads (void)
4727{
4728 /* We may need multiple passes to discover all threads. */
4729 int pass;
4730 int iterations = 0;
372316f1 4731
53cccef1 4732 gdb_assert (exists_non_stop_target ());
372316f1
PA
4733
4734 if (debug_infrun)
4735 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4736
00431a78 4737 scoped_restore_current_thread restore_thread;
372316f1 4738
6ad82919
TBA
4739 /* Enable thread events of all targets. */
4740 for (auto *target : all_non_exited_process_targets ())
4741 {
4742 switch_to_target_no_thread (target);
4743 target_thread_events (true);
4744 }
4745
4746 SCOPE_EXIT
4747 {
4748 /* Disable thread events of all targets. */
4749 for (auto *target : all_non_exited_process_targets ())
4750 {
4751 switch_to_target_no_thread (target);
4752 target_thread_events (false);
4753 }
4754
4755 if (debug_infrun)
4756 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4757 };
65706a29 4758
372316f1
PA
4759 /* Request threads to stop, and then wait for the stops. Because
4760 threads we already know about can spawn more threads while we're
4761 trying to stop them, and we only learn about new threads when we
4762 update the thread list, do this in a loop, and keep iterating
4763 until two passes find no threads that need to be stopped. */
4764 for (pass = 0; pass < 2; pass++, iterations++)
4765 {
4766 if (debug_infrun)
4767 fprintf_unfiltered (gdb_stdlog,
4768 "infrun: stop_all_threads, pass=%d, "
4769 "iterations=%d\n", pass, iterations);
4770 while (1)
4771 {
29d6859f 4772 int waits_needed = 0;
372316f1 4773
a05575d3
TBA
4774 for (auto *target : all_non_exited_process_targets ())
4775 {
4776 switch_to_target_no_thread (target);
4777 update_thread_list ();
4778 }
372316f1
PA
4779
4780 /* Go through all threads looking for threads that we need
4781 to tell the target to stop. */
08036331 4782 for (thread_info *t : all_non_exited_threads ())
372316f1 4783 {
53cccef1
TBA
4784 /* For a single-target setting with an all-stop target,
4785 we would not even arrive here. For a multi-target
4786 setting, until GDB is able to handle a mixture of
4787 all-stop and non-stop targets, simply skip all-stop
4788 targets' threads. This should be fine due to the
4789 protection of 'check_multi_target_resumption'. */
4790
4791 switch_to_thread_no_regs (t);
4792 if (!target_is_non_stop_p ())
4793 continue;
4794
372316f1
PA
4795 if (t->executing)
4796 {
4797 /* If already stopping, don't request a stop again.
4798 We just haven't seen the notification yet. */
4799 if (!t->stop_requested)
4800 {
4801 if (debug_infrun)
4802 fprintf_unfiltered (gdb_stdlog,
4803 "infrun: %s executing, "
4804 "need stop\n",
a068643d 4805 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4806 target_stop (t->ptid);
4807 t->stop_requested = 1;
4808 }
4809 else
4810 {
4811 if (debug_infrun)
4812 fprintf_unfiltered (gdb_stdlog,
4813 "infrun: %s executing, "
4814 "already stopping\n",
a068643d 4815 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4816 }
4817
4818 if (t->stop_requested)
29d6859f 4819 waits_needed++;
372316f1
PA
4820 }
4821 else
4822 {
4823 if (debug_infrun)
4824 fprintf_unfiltered (gdb_stdlog,
4825 "infrun: %s not executing\n",
a068643d 4826 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4827
4828 /* The thread may be not executing, but still be
4829 resumed with a pending status to process. */
719546c4 4830 t->resumed = false;
372316f1
PA
4831 }
4832 }
4833
29d6859f 4834 if (waits_needed == 0)
372316f1
PA
4835 break;
4836
4837 /* If we find new threads on the second iteration, restart
4838 over. We want to see two iterations in a row with all
4839 threads stopped. */
4840 if (pass > 0)
4841 pass = -1;
4842
29d6859f 4843 for (int i = 0; i < waits_needed; i++)
c29705b7 4844 {
29d6859f 4845 wait_one_event event = wait_one ();
a05575d3 4846
29d6859f 4847 if (debug_infrun)
a05575d3 4848 {
29d6859f
LM
4849 fprintf_unfiltered (gdb_stdlog,
4850 "infrun: stop_all_threads %s %s\n",
4851 target_waitstatus_to_string (&event.ws).c_str (),
4852 target_pid_to_str (event.ptid).c_str ());
a05575d3
TBA
4853 }
4854
29d6859f 4855 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
a05575d3 4856 {
29d6859f
LM
4857 /* All resumed threads exited. */
4858 break;
a05575d3 4859 }
29d6859f
LM
4860 else if (event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4861 || event.ws.kind == TARGET_WAITKIND_EXITED
4862 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
6efcd9a8 4863 {
29d6859f 4864 /* One thread/process exited/signalled. */
6efcd9a8 4865
29d6859f 4866 thread_info *t = nullptr;
372316f1 4867
29d6859f
LM
4868 /* The target may have reported just a pid. If so, try
4869 the first non-exited thread. */
4870 if (event.ptid.is_pid ())
372316f1 4871 {
29d6859f
LM
4872 int pid = event.ptid.pid ();
4873 inferior *inf = find_inferior_pid (event.target, pid);
4874 for (thread_info *tp : inf->non_exited_threads ())
372316f1 4875 {
29d6859f
LM
4876 t = tp;
4877 break;
372316f1 4878 }
29d6859f
LM
4879
4880 /* If there is no available thread, the event would
4881 have to be appended to a per-inferior event list,
4882 which does not exist (and if it did, we'd have
4883 to adjust run control command to be able to
4884 resume such an inferior). We assert here instead
4885 of going into an infinite loop. */
4886 gdb_assert (t != nullptr);
4887
4888 if (debug_infrun)
4889 fprintf_unfiltered (gdb_stdlog,
4890 "infrun: stop_all_threads, using %s\n",
4891 target_pid_to_str (t->ptid).c_str ());
4892 }
4893 else
4894 {
4895 t = find_thread_ptid (event.target, event.ptid);
4896 /* Check if this is the first time we see this thread.
4897 Don't bother adding if it individually exited. */
4898 if (t == nullptr
4899 && event.ws.kind != TARGET_WAITKIND_THREAD_EXITED)
4900 t = add_thread (event.target, event.ptid);
4901 }
4902
4903 if (t != nullptr)
4904 {
4905 /* Set the threads as non-executing to avoid
4906 another stop attempt on them. */
4907 switch_to_thread_no_regs (t);
4908 mark_non_executing_threads (event.target, event.ptid,
4909 event.ws);
4910 save_waitstatus (t, &event.ws);
4911 t->stop_requested = false;
372316f1
PA
4912 }
4913 }
4914 else
4915 {
29d6859f
LM
4916 thread_info *t = find_thread_ptid (event.target, event.ptid);
4917 if (t == NULL)
4918 t = add_thread (event.target, event.ptid);
372316f1 4919
29d6859f
LM
4920 t->stop_requested = 0;
4921 t->executing = 0;
4922 t->resumed = false;
4923 t->control.may_range_step = 0;
4924
4925 /* This may be the first time we see the inferior report
4926 a stop. */
4927 inferior *inf = find_inferior_ptid (event.target, event.ptid);
4928 if (inf->needs_setup)
372316f1 4929 {
29d6859f
LM
4930 switch_to_thread_no_regs (t);
4931 setup_inferior (0);
372316f1
PA
4932 }
4933
29d6859f
LM
4934 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4935 && event.ws.value.sig == GDB_SIGNAL_0)
372316f1 4936 {
29d6859f
LM
4937 /* We caught the event that we intended to catch, so
4938 there's no event pending. */
4939 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4940 t->suspend.waitstatus_pending_p = 0;
4941
4942 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
4943 {
4944 /* Add it back to the step-over queue. */
4945 if (debug_infrun)
4946 {
4947 fprintf_unfiltered (gdb_stdlog,
4948 "infrun: displaced-step of %s "
4949 "canceled: adding back to the "
4950 "step-over queue\n",
4951 target_pid_to_str (t->ptid).c_str ());
4952 }
4953 t->control.trap_expected = 0;
4954 thread_step_over_chain_enqueue (t);
4955 }
372316f1 4956 }
29d6859f
LM
4957 else
4958 {
4959 enum gdb_signal sig;
4960 struct regcache *regcache;
372316f1 4961
29d6859f
LM
4962 if (debug_infrun)
4963 {
4964 std::string statstr = target_waitstatus_to_string (&event.ws);
372316f1 4965
29d6859f
LM
4966 fprintf_unfiltered (gdb_stdlog,
4967 "infrun: target_wait %s, saving "
4968 "status for %d.%ld.%ld\n",
4969 statstr.c_str (),
4970 t->ptid.pid (),
4971 t->ptid.lwp (),
4972 t->ptid.tid ());
4973 }
4974
4975 /* Record for later. */
4976 save_waitstatus (t, &event.ws);
4977
4978 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4979 ? event.ws.value.sig : GDB_SIGNAL_0);
4980
4981 if (displaced_step_fixup (t, sig) < 0)
4982 {
4983 /* Add it back to the step-over queue. */
4984 t->control.trap_expected = 0;
4985 thread_step_over_chain_enqueue (t);
4986 }
4987
4988 regcache = get_thread_regcache (t);
4989 t->suspend.stop_pc = regcache_read_pc (regcache);
4990
4991 if (debug_infrun)
4992 {
4993 fprintf_unfiltered (gdb_stdlog,
4994 "infrun: saved stop_pc=%s for %s "
4995 "(currently_stepping=%d)\n",
4996 paddress (target_gdbarch (),
4997 t->suspend.stop_pc),
4998 target_pid_to_str (t->ptid).c_str (),
4999 currently_stepping (t));
5000 }
372316f1
PA
5001 }
5002 }
5003 }
5004 }
5005 }
372316f1
PA
5006}
5007
f4836ba9
PA
5008/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
5009
5010static int
5011handle_no_resumed (struct execution_control_state *ecs)
5012{
3b12939d 5013 if (target_can_async_p ())
f4836ba9 5014 {
3b12939d 5015 int any_sync = 0;
f4836ba9 5016
2dab0c7b 5017 for (ui *ui : all_uis ())
3b12939d
PA
5018 {
5019 if (ui->prompt_state == PROMPT_BLOCKED)
5020 {
5021 any_sync = 1;
5022 break;
5023 }
5024 }
5025 if (!any_sync)
5026 {
5027 /* There were no unwaited-for children left in the target, but,
5028 we're not synchronously waiting for events either. Just
5029 ignore. */
5030
5031 if (debug_infrun)
5032 fprintf_unfiltered (gdb_stdlog,
5033 "infrun: TARGET_WAITKIND_NO_RESUMED "
5034 "(ignoring: bg)\n");
5035 prepare_to_wait (ecs);
5036 return 1;
5037 }
f4836ba9
PA
5038 }
5039
5040 /* Otherwise, if we were running a synchronous execution command, we
5041 may need to cancel it and give the user back the terminal.
5042
5043 In non-stop mode, the target can't tell whether we've already
5044 consumed previous stop events, so it can end up sending us a
5045 no-resumed event like so:
5046
5047 #0 - thread 1 is left stopped
5048
5049 #1 - thread 2 is resumed and hits breakpoint
5050 -> TARGET_WAITKIND_STOPPED
5051
5052 #2 - thread 3 is resumed and exits
5053 this is the last resumed thread, so
5054 -> TARGET_WAITKIND_NO_RESUMED
5055
5056 #3 - gdb processes stop for thread 2 and decides to re-resume
5057 it.
5058
5059 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
5060 thread 2 is now resumed, so the event should be ignored.
5061
5062 IOW, if the stop for thread 2 doesn't end a foreground command,
5063 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
5064 event. But it could be that the event meant that thread 2 itself
5065 (or whatever other thread was the last resumed thread) exited.
5066
5067 To address this we refresh the thread list and check whether we
5068 have resumed threads _now_. In the example above, this removes
5069 thread 3 from the thread list. If thread 2 was re-resumed, we
5070 ignore this event. If we find no thread resumed, then we cancel
2ec0f7ff
PA
5071 the synchronous command and show "no unwaited-for " to the
5072 user. */
f4836ba9 5073
aecd6cb8 5074 inferior *curr_inf = current_inferior ();
2ec0f7ff 5075
aecd6cb8
PA
5076 scoped_restore_current_thread restore_thread;
5077
5078 for (auto *target : all_non_exited_process_targets ())
5079 {
5080 switch_to_target_no_thread (target);
5081 update_thread_list ();
5082 }
5083
5084 /* If:
5085
5086 - the current target has no thread executing, and
5087 - the current inferior is native, and
5088 - the current inferior is the one which has the terminal, and
5089 - we did nothing,
5090
5091 then a Ctrl-C from this point on would remain stuck in the
5092 kernel, until a thread resumes and dequeues it. That would
5093 result in the GDB CLI not reacting to Ctrl-C, not able to
5094 interrupt the program. To address this, if the current inferior
5095 no longer has any thread executing, we give the terminal to some
5096 other inferior that has at least one thread executing. */
5097 bool swap_terminal = true;
5098
5099 /* Whether to ignore this TARGET_WAITKIND_NO_RESUMED event, or
5100 whether to report it to the user. */
5101 bool ignore_event = false;
2ec0f7ff
PA
5102
5103 for (thread_info *thread : all_non_exited_threads ())
f4836ba9 5104 {
aecd6cb8
PA
5105 if (swap_terminal && thread->executing)
5106 {
5107 if (thread->inf != curr_inf)
5108 {
5109 target_terminal::ours ();
5110
5111 switch_to_thread (thread);
5112 target_terminal::inferior ();
5113 }
5114 swap_terminal = false;
5115 }
5116
5117 if (!ignore_event
5118 && (thread->executing
5119 || thread->suspend.waitstatus_pending_p))
f4836ba9 5120 {
2ec0f7ff
PA
5121 /* Either there were no unwaited-for children left in the
5122 target at some point, but there are now, or some target
5123 other than the eventing one has unwaited-for children
5124 left. Just ignore. */
f4836ba9
PA
5125 if (debug_infrun)
5126 fprintf_unfiltered (gdb_stdlog,
5127 "infrun: TARGET_WAITKIND_NO_RESUMED "
5128 "(ignoring: found resumed)\n");
aecd6cb8
PA
5129
5130 ignore_event = true;
f4836ba9 5131 }
aecd6cb8
PA
5132
5133 if (ignore_event && !swap_terminal)
5134 break;
5135 }
5136
5137 if (ignore_event)
5138 {
5139 switch_to_inferior_no_thread (curr_inf);
5140 prepare_to_wait (ecs);
5141 return 1;
f4836ba9
PA
5142 }
5143
5144 /* Go ahead and report the event. */
5145 return 0;
5146}
5147
05ba8510
PA
5148/* Given an execution control state that has been freshly filled in by
5149 an event from the inferior, figure out what it means and take
5150 appropriate action.
5151
5152 The alternatives are:
5153
22bcd14b 5154 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
5155 debugger.
5156
5157 2) keep_going and return; to wait for the next event (set
5158 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5159 once). */
c906108c 5160
ec9499be 5161static void
595915c1 5162handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 5163{
595915c1
TT
5164 /* Make sure that all temporary struct value objects that were
5165 created during the handling of the event get deleted at the
5166 end. */
5167 scoped_value_mark free_values;
5168
d6b48e9c
PA
5169 enum stop_kind stop_soon;
5170
c29705b7
PW
5171 if (debug_infrun)
5172 fprintf_unfiltered (gdb_stdlog, "infrun: handle_inferior_event %s\n",
5173 target_waitstatus_to_string (&ecs->ws).c_str ());
5174
28736962
PA
5175 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5176 {
5177 /* We had an event in the inferior, but we are not interested in
5178 handling it at this level. The lower layers have already
5179 done what needs to be done, if anything.
5180
5181 One of the possible circumstances for this is when the
5182 inferior produces output for the console. The inferior has
5183 not stopped, and we are ignoring the event. Another possible
5184 circumstance is any event which the lower level knows will be
5185 reported multiple times without an intervening resume. */
28736962
PA
5186 prepare_to_wait (ecs);
5187 return;
5188 }
5189
65706a29
PA
5190 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5191 {
65706a29
PA
5192 prepare_to_wait (ecs);
5193 return;
5194 }
5195
0e5bf2a8 5196 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
5197 && handle_no_resumed (ecs))
5198 return;
0e5bf2a8 5199
5b6d1e4f
PA
5200 /* Cache the last target/ptid/waitstatus. */
5201 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
e02bc4cc 5202
ca005067 5203 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 5204 stop_stack_dummy = STOP_NONE;
ca005067 5205
0e5bf2a8
PA
5206 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5207 {
5208 /* No unwaited-for children left. IOW, all resumed children
5209 have exited. */
0e5bf2a8 5210 stop_print_frame = 0;
22bcd14b 5211 stop_waiting (ecs);
0e5bf2a8
PA
5212 return;
5213 }
5214
8c90c137 5215 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 5216 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6 5217 {
5b6d1e4f 5218 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
359f5fe6
PA
5219 /* If it's a new thread, add it to the thread database. */
5220 if (ecs->event_thread == NULL)
5b6d1e4f 5221 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
c1e36e3e
PA
5222
5223 /* Disable range stepping. If the next step request could use a
5224 range, this will be end up re-enabled then. */
5225 ecs->event_thread->control.may_range_step = 0;
359f5fe6 5226 }
88ed393a
JK
5227
5228 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 5229 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
5230
5231 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5232 reinit_frame_cache ();
5233
28736962
PA
5234 breakpoint_retire_moribund ();
5235
2b009048
DJ
5236 /* First, distinguish signals caused by the debugger from signals
5237 that have to do with the program's own actions. Note that
5238 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5239 on the operating system version. Here we detect when a SIGILL or
5240 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5241 something similar for SIGSEGV, since a SIGSEGV will be generated
5242 when we're trying to execute a breakpoint instruction on a
5243 non-executable stack. This happens for call dummy breakpoints
5244 for architectures like SPARC that place call dummies on the
5245 stack. */
2b009048 5246 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
5247 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5248 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5249 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 5250 {
00431a78 5251 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
de0a0249 5252
a01bda52 5253 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
5254 regcache_read_pc (regcache)))
5255 {
5256 if (debug_infrun)
5257 fprintf_unfiltered (gdb_stdlog,
5258 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 5259 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 5260 }
2b009048
DJ
5261 }
5262
293b3ebc 5263 mark_non_executing_threads (ecs->target, ecs->ptid, ecs->ws);
8c90c137 5264
488f131b
JB
5265 switch (ecs->ws.kind)
5266 {
5267 case TARGET_WAITKIND_LOADED:
00431a78 5268 context_switch (ecs);
b0f4b84b
DJ
5269 /* Ignore gracefully during startup of the inferior, as it might
5270 be the shell which has just loaded some objects, otherwise
5271 add the symbols for the newly loaded objects. Also ignore at
5272 the beginning of an attach or remote session; we will query
5273 the full list of libraries once the connection is
5274 established. */
4f5d7f63 5275
00431a78 5276 stop_soon = get_inferior_stop_soon (ecs);
c0236d92 5277 if (stop_soon == NO_STOP_QUIETLY)
488f131b 5278 {
edcc5120
TT
5279 struct regcache *regcache;
5280
00431a78 5281 regcache = get_thread_regcache (ecs->event_thread);
edcc5120
TT
5282
5283 handle_solib_event ();
5284
5285 ecs->event_thread->control.stop_bpstat
a01bda52 5286 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
5287 ecs->event_thread->suspend.stop_pc,
5288 ecs->event_thread, &ecs->ws);
ab04a2af 5289
c65d6b55
PA
5290 if (handle_stop_requested (ecs))
5291 return;
5292
ce12b012 5293 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
5294 {
5295 /* A catchpoint triggered. */
94c57d6a
PA
5296 process_event_stop_test (ecs);
5297 return;
edcc5120 5298 }
488f131b 5299
b0f4b84b
DJ
5300 /* If requested, stop when the dynamic linker notifies
5301 gdb of events. This allows the user to get control
5302 and place breakpoints in initializer routines for
5303 dynamically loaded objects (among other things). */
a493e3e2 5304 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
5305 if (stop_on_solib_events)
5306 {
55409f9d
DJ
5307 /* Make sure we print "Stopped due to solib-event" in
5308 normal_stop. */
5309 stop_print_frame = 1;
5310
22bcd14b 5311 stop_waiting (ecs);
b0f4b84b
DJ
5312 return;
5313 }
488f131b 5314 }
b0f4b84b
DJ
5315
5316 /* If we are skipping through a shell, or through shared library
5317 loading that we aren't interested in, resume the program. If
5c09a2c5 5318 we're running the program normally, also resume. */
b0f4b84b
DJ
5319 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5320 {
74960c60
VP
5321 /* Loading of shared libraries might have changed breakpoint
5322 addresses. Make sure new breakpoints are inserted. */
a25a5a45 5323 if (stop_soon == NO_STOP_QUIETLY)
74960c60 5324 insert_breakpoints ();
64ce06e4 5325 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
5326 prepare_to_wait (ecs);
5327 return;
5328 }
5329
5c09a2c5
PA
5330 /* But stop if we're attaching or setting up a remote
5331 connection. */
5332 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5333 || stop_soon == STOP_QUIETLY_REMOTE)
5334 {
5335 if (debug_infrun)
5336 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 5337 stop_waiting (ecs);
5c09a2c5
PA
5338 return;
5339 }
5340
5341 internal_error (__FILE__, __LINE__,
5342 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 5343
488f131b 5344 case TARGET_WAITKIND_SPURIOUS:
c65d6b55
PA
5345 if (handle_stop_requested (ecs))
5346 return;
00431a78 5347 context_switch (ecs);
64ce06e4 5348 resume (GDB_SIGNAL_0);
488f131b
JB
5349 prepare_to_wait (ecs);
5350 return;
c5aa993b 5351
65706a29 5352 case TARGET_WAITKIND_THREAD_CREATED:
c65d6b55
PA
5353 if (handle_stop_requested (ecs))
5354 return;
00431a78 5355 context_switch (ecs);
65706a29
PA
5356 if (!switch_back_to_stepped_thread (ecs))
5357 keep_going (ecs);
5358 return;
5359
488f131b 5360 case TARGET_WAITKIND_EXITED:
940c3c06 5361 case TARGET_WAITKIND_SIGNALLED:
18493a00
PA
5362 {
5363 /* Depending on the system, ecs->ptid may point to a thread or
5364 to a process. On some targets, target_mourn_inferior may
5365 need to have access to the just-exited thread. That is the
5366 case of GNU/Linux's "checkpoint" support, for example.
5367 Call the switch_to_xxx routine as appropriate. */
5368 thread_info *thr = find_thread_ptid (ecs->target, ecs->ptid);
5369 if (thr != nullptr)
5370 switch_to_thread (thr);
5371 else
5372 {
5373 inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
5374 switch_to_inferior_no_thread (inf);
5375 }
5376 }
6c95b8df 5377 handle_vfork_child_exec_or_exit (0);
223ffa71 5378 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 5379
0c557179
SDJ
5380 /* Clearing any previous state of convenience variables. */
5381 clear_exit_convenience_vars ();
5382
940c3c06
PA
5383 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5384 {
5385 /* Record the exit code in the convenience variable $_exitcode, so
5386 that the user can inspect this again later. */
5387 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5388 (LONGEST) ecs->ws.value.integer);
5389
5390 /* Also record this in the inferior itself. */
5391 current_inferior ()->has_exit_code = 1;
5392 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 5393
98eb56a4
PA
5394 /* Support the --return-child-result option. */
5395 return_child_result_value = ecs->ws.value.integer;
5396
76727919 5397 gdb::observers::exited.notify (ecs->ws.value.integer);
940c3c06
PA
5398 }
5399 else
0c557179 5400 {
00431a78 5401 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
0c557179
SDJ
5402
5403 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5404 {
5405 /* Set the value of the internal variable $_exitsignal,
5406 which holds the signal uncaught by the inferior. */
5407 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5408 gdbarch_gdb_signal_to_target (gdbarch,
5409 ecs->ws.value.sig));
5410 }
5411 else
5412 {
5413 /* We don't have access to the target's method used for
5414 converting between signal numbers (GDB's internal
5415 representation <-> target's representation).
5416 Therefore, we cannot do a good job at displaying this
5417 information to the user. It's better to just warn
5418 her about it (if infrun debugging is enabled), and
5419 give up. */
5420 if (debug_infrun)
5421 fprintf_filtered (gdb_stdlog, _("\
5422Cannot fill $_exitsignal with the correct signal number.\n"));
5423 }
5424
76727919 5425 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
0c557179 5426 }
8cf64490 5427
488f131b 5428 gdb_flush (gdb_stdout);
bc1e6c81 5429 target_mourn_inferior (inferior_ptid);
488f131b 5430 stop_print_frame = 0;
22bcd14b 5431 stop_waiting (ecs);
488f131b 5432 return;
c5aa993b 5433
488f131b 5434 case TARGET_WAITKIND_FORKED:
deb3b17b 5435 case TARGET_WAITKIND_VFORKED:
e2d96639
YQ
5436 /* Check whether the inferior is displaced stepping. */
5437 {
00431a78 5438 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
ac7936df 5439 struct gdbarch *gdbarch = regcache->arch ();
e2d96639
YQ
5440
5441 /* If checking displaced stepping is supported, and thread
5442 ecs->ptid is displaced stepping. */
00431a78 5443 if (displaced_step_in_progress_thread (ecs->event_thread))
e2d96639
YQ
5444 {
5445 struct inferior *parent_inf
5b6d1e4f 5446 = find_inferior_ptid (ecs->target, ecs->ptid);
e2d96639
YQ
5447 struct regcache *child_regcache;
5448 CORE_ADDR parent_pc;
5449
d8d83535
SM
5450 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5451 {
5452 struct displaced_step_inferior_state *displaced
5453 = get_displaced_stepping_state (parent_inf);
5454
5455 /* Restore scratch pad for child process. */
5456 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5457 }
5458
e2d96639
YQ
5459 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5460 indicating that the displaced stepping of syscall instruction
5461 has been done. Perform cleanup for parent process here. Note
5462 that this operation also cleans up the child process for vfork,
5463 because their pages are shared. */
00431a78 5464 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
c2829269
PA
5465 /* Start a new step-over in another thread if there's one
5466 that needs it. */
5467 start_step_over ();
e2d96639 5468
e2d96639
YQ
5469 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5470 the child's PC is also within the scratchpad. Set the child's PC
5471 to the parent's PC value, which has already been fixed up.
5472 FIXME: we use the parent's aspace here, although we're touching
5473 the child, because the child hasn't been added to the inferior
5474 list yet at this point. */
5475
5476 child_regcache
5b6d1e4f
PA
5477 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5478 ecs->ws.value.related_pid,
e2d96639
YQ
5479 gdbarch,
5480 parent_inf->aspace);
5481 /* Read PC value of parent process. */
5482 parent_pc = regcache_read_pc (regcache);
5483
5484 if (debug_displaced)
5485 fprintf_unfiltered (gdb_stdlog,
5486 "displaced: write child pc from %s to %s\n",
5487 paddress (gdbarch,
5488 regcache_read_pc (child_regcache)),
5489 paddress (gdbarch, parent_pc));
5490
5491 regcache_write_pc (child_regcache, parent_pc);
5492 }
5493 }
5494
00431a78 5495 context_switch (ecs);
5a2901d9 5496
b242c3c2
PA
5497 /* Immediately detach breakpoints from the child before there's
5498 any chance of letting the user delete breakpoints from the
5499 breakpoint lists. If we don't do this early, it's easy to
5500 leave left over traps in the child, vis: "break foo; catch
5501 fork; c; <fork>; del; c; <child calls foo>". We only follow
5502 the fork on the last `continue', and by that time the
5503 breakpoint at "foo" is long gone from the breakpoint table.
5504 If we vforked, then we don't need to unpatch here, since both
5505 parent and child are sharing the same memory pages; we'll
5506 need to unpatch at follow/detach time instead to be certain
5507 that new breakpoints added between catchpoint hit time and
5508 vfork follow are detached. */
5509 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5510 {
b242c3c2
PA
5511 /* This won't actually modify the breakpoint list, but will
5512 physically remove the breakpoints from the child. */
d80ee84f 5513 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5514 }
5515
34b7e8a6 5516 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5517
e58b0e63
PA
5518 /* In case the event is caught by a catchpoint, remember that
5519 the event is to be followed at the next resume of the thread,
5520 and not immediately. */
5521 ecs->event_thread->pending_follow = ecs->ws;
5522
f2ffa92b
PA
5523 ecs->event_thread->suspend.stop_pc
5524 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
675bf4cb 5525
16c381f0 5526 ecs->event_thread->control.stop_bpstat
a01bda52 5527 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5528 ecs->event_thread->suspend.stop_pc,
5529 ecs->event_thread, &ecs->ws);
675bf4cb 5530
c65d6b55
PA
5531 if (handle_stop_requested (ecs))
5532 return;
5533
ce12b012
PA
5534 /* If no catchpoint triggered for this, then keep going. Note
5535 that we're interested in knowing the bpstat actually causes a
5536 stop, not just if it may explain the signal. Software
5537 watchpoints, for example, always appear in the bpstat. */
5538 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5539 {
5ab2fbf1 5540 bool follow_child
3e43a32a 5541 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5542
a493e3e2 5543 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63 5544
5b6d1e4f
PA
5545 process_stratum_target *targ
5546 = ecs->event_thread->inf->process_target ();
5547
5ab2fbf1 5548 bool should_resume = follow_fork ();
e58b0e63 5549
5b6d1e4f
PA
5550 /* Note that one of these may be an invalid pointer,
5551 depending on detach_fork. */
00431a78 5552 thread_info *parent = ecs->event_thread;
5b6d1e4f
PA
5553 thread_info *child
5554 = find_thread_ptid (targ, ecs->ws.value.related_pid);
6c95b8df 5555
a2077e25
PA
5556 /* At this point, the parent is marked running, and the
5557 child is marked stopped. */
5558
5559 /* If not resuming the parent, mark it stopped. */
5560 if (follow_child && !detach_fork && !non_stop && !sched_multi)
00431a78 5561 parent->set_running (false);
a2077e25
PA
5562
5563 /* If resuming the child, mark it running. */
5564 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
00431a78 5565 child->set_running (true);
a2077e25 5566
6c95b8df 5567 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5568 if (!detach_fork && (non_stop
5569 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5570 {
5571 if (follow_child)
5572 switch_to_thread (parent);
5573 else
5574 switch_to_thread (child);
5575
5576 ecs->event_thread = inferior_thread ();
5577 ecs->ptid = inferior_ptid;
5578 keep_going (ecs);
5579 }
5580
5581 if (follow_child)
5582 switch_to_thread (child);
5583 else
5584 switch_to_thread (parent);
5585
e58b0e63
PA
5586 ecs->event_thread = inferior_thread ();
5587 ecs->ptid = inferior_ptid;
5588
5589 if (should_resume)
5590 keep_going (ecs);
5591 else
22bcd14b 5592 stop_waiting (ecs);
04e68871
DJ
5593 return;
5594 }
94c57d6a
PA
5595 process_event_stop_test (ecs);
5596 return;
488f131b 5597
6c95b8df
PA
5598 case TARGET_WAITKIND_VFORK_DONE:
5599 /* Done with the shared memory region. Re-insert breakpoints in
5600 the parent, and keep going. */
5601
00431a78 5602 context_switch (ecs);
6c95b8df
PA
5603
5604 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5605 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5606
5607 if (handle_stop_requested (ecs))
5608 return;
5609
6c95b8df
PA
5610 /* This also takes care of reinserting breakpoints in the
5611 previously locked inferior. */
5612 keep_going (ecs);
5613 return;
5614
488f131b 5615 case TARGET_WAITKIND_EXECD:
488f131b 5616
cbd2b4e3
PA
5617 /* Note we can't read registers yet (the stop_pc), because we
5618 don't yet know the inferior's post-exec architecture.
5619 'stop_pc' is explicitly read below instead. */
00431a78 5620 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5621
6c95b8df
PA
5622 /* Do whatever is necessary to the parent branch of the vfork. */
5623 handle_vfork_child_exec_or_exit (1);
5624
795e548f
PA
5625 /* This causes the eventpoints and symbol table to be reset.
5626 Must do this now, before trying to determine whether to
5627 stop. */
71b43ef8 5628 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5629
17d8546e
DB
5630 /* In follow_exec we may have deleted the original thread and
5631 created a new one. Make sure that the event thread is the
5632 execd thread for that case (this is a nop otherwise). */
5633 ecs->event_thread = inferior_thread ();
5634
f2ffa92b
PA
5635 ecs->event_thread->suspend.stop_pc
5636 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
ecdc3a72 5637
16c381f0 5638 ecs->event_thread->control.stop_bpstat
a01bda52 5639 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5640 ecs->event_thread->suspend.stop_pc,
5641 ecs->event_thread, &ecs->ws);
795e548f 5642
71b43ef8
PA
5643 /* Note that this may be referenced from inside
5644 bpstat_stop_status above, through inferior_has_execd. */
5645 xfree (ecs->ws.value.execd_pathname);
5646 ecs->ws.value.execd_pathname = NULL;
5647
c65d6b55
PA
5648 if (handle_stop_requested (ecs))
5649 return;
5650
04e68871 5651 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5652 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5653 {
a493e3e2 5654 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5655 keep_going (ecs);
5656 return;
5657 }
94c57d6a
PA
5658 process_event_stop_test (ecs);
5659 return;
488f131b 5660
b4dc5ffa
MK
5661 /* Be careful not to try to gather much state about a thread
5662 that's in a syscall. It's frequently a losing proposition. */
488f131b 5663 case TARGET_WAITKIND_SYSCALL_ENTRY:
1777feb0 5664 /* Getting the current syscall number. */
94c57d6a
PA
5665 if (handle_syscall_event (ecs) == 0)
5666 process_event_stop_test (ecs);
5667 return;
c906108c 5668
488f131b
JB
5669 /* Before examining the threads further, step this thread to
5670 get it entirely out of the syscall. (We get notice of the
5671 event when the thread is just on the verge of exiting a
5672 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5673 into user code.) */
488f131b 5674 case TARGET_WAITKIND_SYSCALL_RETURN:
94c57d6a
PA
5675 if (handle_syscall_event (ecs) == 0)
5676 process_event_stop_test (ecs);
5677 return;
c906108c 5678
488f131b 5679 case TARGET_WAITKIND_STOPPED:
4f5d7f63
PA
5680 handle_signal_stop (ecs);
5681 return;
c906108c 5682
b2175913
MS
5683 case TARGET_WAITKIND_NO_HISTORY:
5684 /* Reverse execution: target ran out of history info. */
eab402df 5685
d1988021 5686 /* Switch to the stopped thread. */
00431a78 5687 context_switch (ecs);
d1988021
MM
5688 if (debug_infrun)
5689 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5690
34b7e8a6 5691 delete_just_stopped_threads_single_step_breakpoints ();
f2ffa92b
PA
5692 ecs->event_thread->suspend.stop_pc
5693 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
c65d6b55
PA
5694
5695 if (handle_stop_requested (ecs))
5696 return;
5697
76727919 5698 gdb::observers::no_history.notify ();
22bcd14b 5699 stop_waiting (ecs);
b2175913 5700 return;
488f131b 5701 }
4f5d7f63
PA
5702}
5703
372316f1
PA
5704/* Restart threads back to what they were trying to do back when we
5705 paused them for an in-line step-over. The EVENT_THREAD thread is
5706 ignored. */
4d9d9d04
PA
5707
5708static void
372316f1
PA
5709restart_threads (struct thread_info *event_thread)
5710{
372316f1
PA
5711 /* In case the instruction just stepped spawned a new thread. */
5712 update_thread_list ();
5713
08036331 5714 for (thread_info *tp : all_non_exited_threads ())
372316f1 5715 {
f3f8ece4
PA
5716 switch_to_thread_no_regs (tp);
5717
372316f1
PA
5718 if (tp == event_thread)
5719 {
5720 if (debug_infrun)
5721 fprintf_unfiltered (gdb_stdlog,
5722 "infrun: restart threads: "
5723 "[%s] is event thread\n",
a068643d 5724 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5725 continue;
5726 }
5727
5728 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5729 {
5730 if (debug_infrun)
5731 fprintf_unfiltered (gdb_stdlog,
5732 "infrun: restart threads: "
5733 "[%s] not meant to be running\n",
a068643d 5734 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5735 continue;
5736 }
5737
5738 if (tp->resumed)
5739 {
5740 if (debug_infrun)
5741 fprintf_unfiltered (gdb_stdlog,
5742 "infrun: restart threads: [%s] resumed\n",
a068643d 5743 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5744 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5745 continue;
5746 }
5747
5748 if (thread_is_in_step_over_chain (tp))
5749 {
5750 if (debug_infrun)
5751 fprintf_unfiltered (gdb_stdlog,
5752 "infrun: restart threads: "
5753 "[%s] needs step-over\n",
a068643d 5754 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5755 gdb_assert (!tp->resumed);
5756 continue;
5757 }
5758
5759
5760 if (tp->suspend.waitstatus_pending_p)
5761 {
5762 if (debug_infrun)
5763 fprintf_unfiltered (gdb_stdlog,
5764 "infrun: restart threads: "
5765 "[%s] has pending status\n",
a068643d 5766 target_pid_to_str (tp->ptid).c_str ());
719546c4 5767 tp->resumed = true;
372316f1
PA
5768 continue;
5769 }
5770
c65d6b55
PA
5771 gdb_assert (!tp->stop_requested);
5772
372316f1
PA
5773 /* If some thread needs to start a step-over at this point, it
5774 should still be in the step-over queue, and thus skipped
5775 above. */
5776 if (thread_still_needs_step_over (tp))
5777 {
5778 internal_error (__FILE__, __LINE__,
5779 "thread [%s] needs a step-over, but not in "
5780 "step-over queue\n",
a068643d 5781 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5782 }
5783
5784 if (currently_stepping (tp))
5785 {
5786 if (debug_infrun)
5787 fprintf_unfiltered (gdb_stdlog,
5788 "infrun: restart threads: [%s] was stepping\n",
a068643d 5789 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5790 keep_going_stepped_thread (tp);
5791 }
5792 else
5793 {
5794 struct execution_control_state ecss;
5795 struct execution_control_state *ecs = &ecss;
5796
5797 if (debug_infrun)
5798 fprintf_unfiltered (gdb_stdlog,
5799 "infrun: restart threads: [%s] continuing\n",
a068643d 5800 target_pid_to_str (tp->ptid).c_str ());
372316f1 5801 reset_ecs (ecs, tp);
00431a78 5802 switch_to_thread (tp);
372316f1
PA
5803 keep_going_pass_signal (ecs);
5804 }
5805 }
5806}
5807
5808/* Callback for iterate_over_threads. Find a resumed thread that has
5809 a pending waitstatus. */
5810
5811static int
5812resumed_thread_with_pending_status (struct thread_info *tp,
5813 void *arg)
5814{
5815 return (tp->resumed
5816 && tp->suspend.waitstatus_pending_p);
5817}
5818
5819/* Called when we get an event that may finish an in-line or
5820 out-of-line (displaced stepping) step-over started previously.
5821 Return true if the event is processed and we should go back to the
5822 event loop; false if the caller should continue processing the
5823 event. */
5824
5825static int
4d9d9d04
PA
5826finish_step_over (struct execution_control_state *ecs)
5827{
372316f1
PA
5828 int had_step_over_info;
5829
00431a78 5830 displaced_step_fixup (ecs->event_thread,
4d9d9d04
PA
5831 ecs->event_thread->suspend.stop_signal);
5832
372316f1
PA
5833 had_step_over_info = step_over_info_valid_p ();
5834
5835 if (had_step_over_info)
4d9d9d04
PA
5836 {
5837 /* If we're stepping over a breakpoint with all threads locked,
5838 then only the thread that was stepped should be reporting
5839 back an event. */
5840 gdb_assert (ecs->event_thread->control.trap_expected);
5841
c65d6b55 5842 clear_step_over_info ();
4d9d9d04
PA
5843 }
5844
fbea99ea 5845 if (!target_is_non_stop_p ())
372316f1 5846 return 0;
4d9d9d04
PA
5847
5848 /* Start a new step-over in another thread if there's one that
5849 needs it. */
5850 start_step_over ();
372316f1
PA
5851
5852 /* If we were stepping over a breakpoint before, and haven't started
5853 a new in-line step-over sequence, then restart all other threads
5854 (except the event thread). We can't do this in all-stop, as then
5855 e.g., we wouldn't be able to issue any other remote packet until
5856 these other threads stop. */
5857 if (had_step_over_info && !step_over_info_valid_p ())
5858 {
5859 struct thread_info *pending;
5860
5861 /* If we only have threads with pending statuses, the restart
5862 below won't restart any thread and so nothing re-inserts the
5863 breakpoint we just stepped over. But we need it inserted
5864 when we later process the pending events, otherwise if
5865 another thread has a pending event for this breakpoint too,
5866 we'd discard its event (because the breakpoint that
5867 originally caused the event was no longer inserted). */
00431a78 5868 context_switch (ecs);
372316f1
PA
5869 insert_breakpoints ();
5870
5871 restart_threads (ecs->event_thread);
5872
5873 /* If we have events pending, go through handle_inferior_event
5874 again, picking up a pending event at random. This avoids
5875 thread starvation. */
5876
5877 /* But not if we just stepped over a watchpoint in order to let
5878 the instruction execute so we can evaluate its expression.
5879 The set of watchpoints that triggered is recorded in the
5880 breakpoint objects themselves (see bp->watchpoint_triggered).
5881 If we processed another event first, that other event could
5882 clobber this info. */
5883 if (ecs->event_thread->stepping_over_watchpoint)
5884 return 0;
5885
5886 pending = iterate_over_threads (resumed_thread_with_pending_status,
5887 NULL);
5888 if (pending != NULL)
5889 {
5890 struct thread_info *tp = ecs->event_thread;
5891 struct regcache *regcache;
5892
5893 if (debug_infrun)
5894 {
5895 fprintf_unfiltered (gdb_stdlog,
5896 "infrun: found resumed threads with "
5897 "pending events, saving status\n");
5898 }
5899
5900 gdb_assert (pending != tp);
5901
5902 /* Record the event thread's event for later. */
5903 save_waitstatus (tp, &ecs->ws);
5904 /* This was cleared early, by handle_inferior_event. Set it
5905 so this pending event is considered by
5906 do_target_wait. */
719546c4 5907 tp->resumed = true;
372316f1
PA
5908
5909 gdb_assert (!tp->executing);
5910
00431a78 5911 regcache = get_thread_regcache (tp);
372316f1
PA
5912 tp->suspend.stop_pc = regcache_read_pc (regcache);
5913
5914 if (debug_infrun)
5915 {
5916 fprintf_unfiltered (gdb_stdlog,
5917 "infrun: saved stop_pc=%s for %s "
5918 "(currently_stepping=%d)\n",
5919 paddress (target_gdbarch (),
5920 tp->suspend.stop_pc),
a068643d 5921 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
5922 currently_stepping (tp));
5923 }
5924
5925 /* This in-line step-over finished; clear this so we won't
5926 start a new one. This is what handle_signal_stop would
5927 do, if we returned false. */
5928 tp->stepping_over_breakpoint = 0;
5929
5930 /* Wake up the event loop again. */
5931 mark_async_event_handler (infrun_async_inferior_event_token);
5932
5933 prepare_to_wait (ecs);
5934 return 1;
5935 }
5936 }
5937
5938 return 0;
4d9d9d04
PA
5939}
5940
4f5d7f63
PA
5941/* Come here when the program has stopped with a signal. */
5942
5943static void
5944handle_signal_stop (struct execution_control_state *ecs)
5945{
5946 struct frame_info *frame;
5947 struct gdbarch *gdbarch;
5948 int stopped_by_watchpoint;
5949 enum stop_kind stop_soon;
5950 int random_signal;
c906108c 5951
f0407826
DE
5952 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5953
c65d6b55
PA
5954 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5955
f0407826
DE
5956 /* Do we need to clean up the state of a thread that has
5957 completed a displaced single-step? (Doing so usually affects
5958 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5959 if (finish_step_over (ecs))
5960 return;
f0407826
DE
5961
5962 /* If we either finished a single-step or hit a breakpoint, but
5963 the user wanted this thread to be stopped, pretend we got a
5964 SIG0 (generic unsignaled stop). */
5965 if (ecs->event_thread->stop_requested
5966 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5967 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5968
f2ffa92b
PA
5969 ecs->event_thread->suspend.stop_pc
5970 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
488f131b 5971
527159b7 5972 if (debug_infrun)
237fc4c9 5973 {
00431a78 5974 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
b926417a 5975 struct gdbarch *reg_gdbarch = regcache->arch ();
7f82dfc7 5976
f3f8ece4 5977 switch_to_thread (ecs->event_thread);
5af949e3
UW
5978
5979 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
b926417a 5980 paddress (reg_gdbarch,
f2ffa92b 5981 ecs->event_thread->suspend.stop_pc));
d92524f1 5982 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5983 {
5984 CORE_ADDR addr;
abbb1732 5985
237fc4c9
PA
5986 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5987
8b88a78e 5988 if (target_stopped_data_address (current_top_target (), &addr))
237fc4c9 5989 fprintf_unfiltered (gdb_stdlog,
5af949e3 5990 "infrun: stopped data address = %s\n",
b926417a 5991 paddress (reg_gdbarch, addr));
237fc4c9
PA
5992 else
5993 fprintf_unfiltered (gdb_stdlog,
5994 "infrun: (no data address available)\n");
5995 }
5996 }
527159b7 5997
36fa8042
PA
5998 /* This is originated from start_remote(), start_inferior() and
5999 shared libraries hook functions. */
00431a78 6000 stop_soon = get_inferior_stop_soon (ecs);
36fa8042
PA
6001 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
6002 {
00431a78 6003 context_switch (ecs);
36fa8042
PA
6004 if (debug_infrun)
6005 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
6006 stop_print_frame = 1;
22bcd14b 6007 stop_waiting (ecs);
36fa8042
PA
6008 return;
6009 }
6010
36fa8042
PA
6011 /* This originates from attach_command(). We need to overwrite
6012 the stop_signal here, because some kernels don't ignore a
6013 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
6014 See more comments in inferior.h. On the other hand, if we
6015 get a non-SIGSTOP, report it to the user - assume the backend
6016 will handle the SIGSTOP if it should show up later.
6017
6018 Also consider that the attach is complete when we see a
6019 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
6020 target extended-remote report it instead of a SIGSTOP
6021 (e.g. gdbserver). We already rely on SIGTRAP being our
6022 signal, so this is no exception.
6023
6024 Also consider that the attach is complete when we see a
6025 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
6026 the target to stop all threads of the inferior, in case the
6027 low level attach operation doesn't stop them implicitly. If
6028 they weren't stopped implicitly, then the stub will report a
6029 GDB_SIGNAL_0, meaning: stopped for no particular reason
6030 other than GDB's request. */
6031 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
6032 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
6033 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6034 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
6035 {
6036 stop_print_frame = 1;
22bcd14b 6037 stop_waiting (ecs);
36fa8042
PA
6038 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6039 return;
6040 }
6041
488f131b 6042 /* See if something interesting happened to the non-current thread. If
b40c7d58 6043 so, then switch to that thread. */
d7e15655 6044 if (ecs->ptid != inferior_ptid)
488f131b 6045 {
527159b7 6046 if (debug_infrun)
8a9de0e4 6047 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 6048
00431a78 6049 context_switch (ecs);
c5aa993b 6050
9a4105ab 6051 if (deprecated_context_hook)
00431a78 6052 deprecated_context_hook (ecs->event_thread->global_num);
488f131b 6053 }
c906108c 6054
568d6575
UW
6055 /* At this point, get hold of the now-current thread's frame. */
6056 frame = get_current_frame ();
6057 gdbarch = get_frame_arch (frame);
6058
2adfaa28 6059 /* Pull the single step breakpoints out of the target. */
af48d08f 6060 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 6061 {
af48d08f 6062 struct regcache *regcache;
af48d08f 6063 CORE_ADDR pc;
2adfaa28 6064
00431a78 6065 regcache = get_thread_regcache (ecs->event_thread);
8b86c959
YQ
6066 const address_space *aspace = regcache->aspace ();
6067
af48d08f 6068 pc = regcache_read_pc (regcache);
34b7e8a6 6069
af48d08f
PA
6070 /* However, before doing so, if this single-step breakpoint was
6071 actually for another thread, set this thread up for moving
6072 past it. */
6073 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
6074 aspace, pc))
6075 {
6076 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
6077 {
6078 if (debug_infrun)
6079 {
6080 fprintf_unfiltered (gdb_stdlog,
af48d08f 6081 "infrun: [%s] hit another thread's "
34b7e8a6 6082 "single-step breakpoint\n",
a068643d 6083 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28 6084 }
af48d08f
PA
6085 ecs->hit_singlestep_breakpoint = 1;
6086 }
6087 }
6088 else
6089 {
6090 if (debug_infrun)
6091 {
6092 fprintf_unfiltered (gdb_stdlog,
6093 "infrun: [%s] hit its "
6094 "single-step breakpoint\n",
a068643d 6095 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28
PA
6096 }
6097 }
488f131b 6098 }
af48d08f 6099 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 6100
963f9c80
PA
6101 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6102 && ecs->event_thread->control.trap_expected
6103 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
6104 stopped_by_watchpoint = 0;
6105 else
6106 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
6107
6108 /* If necessary, step over this watchpoint. We'll be back to display
6109 it in a moment. */
6110 if (stopped_by_watchpoint
d92524f1 6111 && (target_have_steppable_watchpoint
568d6575 6112 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 6113 {
488f131b
JB
6114 /* At this point, we are stopped at an instruction which has
6115 attempted to write to a piece of memory under control of
6116 a watchpoint. The instruction hasn't actually executed
6117 yet. If we were to evaluate the watchpoint expression
6118 now, we would get the old value, and therefore no change
6119 would seem to have occurred.
6120
6121 In order to make watchpoints work `right', we really need
6122 to complete the memory write, and then evaluate the
d983da9c
DJ
6123 watchpoint expression. We do this by single-stepping the
6124 target.
6125
7f89fd65 6126 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
6127 it. For example, the PA can (with some kernel cooperation)
6128 single step over a watchpoint without disabling the watchpoint.
6129
6130 It is far more common to need to disable a watchpoint to step
6131 the inferior over it. If we have non-steppable watchpoints,
6132 we must disable the current watchpoint; it's simplest to
963f9c80
PA
6133 disable all watchpoints.
6134
6135 Any breakpoint at PC must also be stepped over -- if there's
6136 one, it will have already triggered before the watchpoint
6137 triggered, and we either already reported it to the user, or
6138 it didn't cause a stop and we called keep_going. In either
6139 case, if there was a breakpoint at PC, we must be trying to
6140 step past it. */
6141 ecs->event_thread->stepping_over_watchpoint = 1;
6142 keep_going (ecs);
488f131b
JB
6143 return;
6144 }
6145
4e1c45ea 6146 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 6147 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
6148 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
6149 ecs->event_thread->control.stop_step = 0;
488f131b 6150 stop_print_frame = 1;
488f131b 6151 stopped_by_random_signal = 0;
ddfe970e 6152 bpstat stop_chain = NULL;
488f131b 6153
edb3359d
DJ
6154 /* Hide inlined functions starting here, unless we just performed stepi or
6155 nexti. After stepi and nexti, always show the innermost frame (not any
6156 inline function call sites). */
16c381f0 6157 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 6158 {
00431a78
PA
6159 const address_space *aspace
6160 = get_thread_regcache (ecs->event_thread)->aspace ();
0574c78f
GB
6161
6162 /* skip_inline_frames is expensive, so we avoid it if we can
6163 determine that the address is one where functions cannot have
6164 been inlined. This improves performance with inferiors that
6165 load a lot of shared libraries, because the solib event
6166 breakpoint is defined as the address of a function (i.e. not
6167 inline). Note that we have to check the previous PC as well
6168 as the current one to catch cases when we have just
6169 single-stepped off a breakpoint prior to reinstating it.
6170 Note that we're assuming that the code we single-step to is
6171 not inline, but that's not definitive: there's nothing
6172 preventing the event breakpoint function from containing
6173 inlined code, and the single-step ending up there. If the
6174 user had set a breakpoint on that inlined code, the missing
6175 skip_inline_frames call would break things. Fortunately
6176 that's an extremely unlikely scenario. */
f2ffa92b
PA
6177 if (!pc_at_non_inline_function (aspace,
6178 ecs->event_thread->suspend.stop_pc,
6179 &ecs->ws)
a210c238
MR
6180 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6181 && ecs->event_thread->control.trap_expected
6182 && pc_at_non_inline_function (aspace,
6183 ecs->event_thread->prev_pc,
09ac7c10 6184 &ecs->ws)))
1c5a993e 6185 {
f2ffa92b
PA
6186 stop_chain = build_bpstat_chain (aspace,
6187 ecs->event_thread->suspend.stop_pc,
6188 &ecs->ws);
00431a78 6189 skip_inline_frames (ecs->event_thread, stop_chain);
1c5a993e
MR
6190
6191 /* Re-fetch current thread's frame in case that invalidated
6192 the frame cache. */
6193 frame = get_current_frame ();
6194 gdbarch = get_frame_arch (frame);
6195 }
0574c78f 6196 }
edb3359d 6197
a493e3e2 6198 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 6199 && ecs->event_thread->control.trap_expected
568d6575 6200 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 6201 && currently_stepping (ecs->event_thread))
3352ef37 6202 {
b50d7442 6203 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 6204 also on an instruction that needs to be stepped multiple
1777feb0 6205 times before it's been fully executing. E.g., architectures
3352ef37
AC
6206 with a delay slot. It needs to be stepped twice, once for
6207 the instruction and once for the delay slot. */
6208 int step_through_delay
568d6575 6209 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 6210
527159b7 6211 if (debug_infrun && step_through_delay)
8a9de0e4 6212 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
6213 if (ecs->event_thread->control.step_range_end == 0
6214 && step_through_delay)
3352ef37
AC
6215 {
6216 /* The user issued a continue when stopped at a breakpoint.
6217 Set up for another trap and get out of here. */
4e1c45ea 6218 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
6219 keep_going (ecs);
6220 return;
6221 }
6222 else if (step_through_delay)
6223 {
6224 /* The user issued a step when stopped at a breakpoint.
6225 Maybe we should stop, maybe we should not - the delay
6226 slot *might* correspond to a line of source. In any
ca67fcb8
VP
6227 case, don't decide that here, just set
6228 ecs->stepping_over_breakpoint, making sure we
6229 single-step again before breakpoints are re-inserted. */
4e1c45ea 6230 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
6231 }
6232 }
6233
ab04a2af
TT
6234 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6235 handles this event. */
6236 ecs->event_thread->control.stop_bpstat
a01bda52 6237 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
6238 ecs->event_thread->suspend.stop_pc,
6239 ecs->event_thread, &ecs->ws, stop_chain);
db82e815 6240
ab04a2af
TT
6241 /* Following in case break condition called a
6242 function. */
6243 stop_print_frame = 1;
73dd234f 6244
ab04a2af
TT
6245 /* This is where we handle "moribund" watchpoints. Unlike
6246 software breakpoints traps, hardware watchpoint traps are
6247 always distinguishable from random traps. If no high-level
6248 watchpoint is associated with the reported stop data address
6249 anymore, then the bpstat does not explain the signal ---
6250 simply make sure to ignore it if `stopped_by_watchpoint' is
6251 set. */
6252
6253 if (debug_infrun
6254 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 6255 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 6256 GDB_SIGNAL_TRAP)
ab04a2af
TT
6257 && stopped_by_watchpoint)
6258 fprintf_unfiltered (gdb_stdlog,
6259 "infrun: no user watchpoint explains "
6260 "watchpoint SIGTRAP, ignoring\n");
73dd234f 6261
bac7d97b 6262 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
6263 at one stage in the past included checks for an inferior
6264 function call's call dummy's return breakpoint. The original
6265 comment, that went with the test, read:
03cebad2 6266
ab04a2af
TT
6267 ``End of a stack dummy. Some systems (e.g. Sony news) give
6268 another signal besides SIGTRAP, so check here as well as
6269 above.''
73dd234f 6270
ab04a2af
TT
6271 If someone ever tries to get call dummys on a
6272 non-executable stack to work (where the target would stop
6273 with something like a SIGSEGV), then those tests might need
6274 to be re-instated. Given, however, that the tests were only
6275 enabled when momentary breakpoints were not being used, I
6276 suspect that it won't be the case.
488f131b 6277
ab04a2af
TT
6278 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6279 be necessary for call dummies on a non-executable stack on
6280 SPARC. */
488f131b 6281
bac7d97b 6282 /* See if the breakpoints module can explain the signal. */
47591c29
PA
6283 random_signal
6284 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6285 ecs->event_thread->suspend.stop_signal);
bac7d97b 6286
1cf4d951
PA
6287 /* Maybe this was a trap for a software breakpoint that has since
6288 been removed. */
6289 if (random_signal && target_stopped_by_sw_breakpoint ())
6290 {
5133a315
LM
6291 if (gdbarch_program_breakpoint_here_p (gdbarch,
6292 ecs->event_thread->suspend.stop_pc))
1cf4d951
PA
6293 {
6294 struct regcache *regcache;
6295 int decr_pc;
6296
6297 /* Re-adjust PC to what the program would see if GDB was not
6298 debugging it. */
00431a78 6299 regcache = get_thread_regcache (ecs->event_thread);
527a273a 6300 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
6301 if (decr_pc != 0)
6302 {
07036511
TT
6303 gdb::optional<scoped_restore_tmpl<int>>
6304 restore_operation_disable;
1cf4d951
PA
6305
6306 if (record_full_is_used ())
07036511
TT
6307 restore_operation_disable.emplace
6308 (record_full_gdb_operation_disable_set ());
1cf4d951 6309
f2ffa92b
PA
6310 regcache_write_pc (regcache,
6311 ecs->event_thread->suspend.stop_pc + decr_pc);
1cf4d951
PA
6312 }
6313 }
6314 else
6315 {
6316 /* A delayed software breakpoint event. Ignore the trap. */
6317 if (debug_infrun)
6318 fprintf_unfiltered (gdb_stdlog,
6319 "infrun: delayed software breakpoint "
6320 "trap, ignoring\n");
6321 random_signal = 0;
6322 }
6323 }
6324
6325 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6326 has since been removed. */
6327 if (random_signal && target_stopped_by_hw_breakpoint ())
6328 {
6329 /* A delayed hardware breakpoint event. Ignore the trap. */
6330 if (debug_infrun)
6331 fprintf_unfiltered (gdb_stdlog,
6332 "infrun: delayed hardware breakpoint/watchpoint "
6333 "trap, ignoring\n");
6334 random_signal = 0;
6335 }
6336
bac7d97b
PA
6337 /* If not, perhaps stepping/nexting can. */
6338 if (random_signal)
6339 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6340 && currently_stepping (ecs->event_thread));
ab04a2af 6341
2adfaa28
PA
6342 /* Perhaps the thread hit a single-step breakpoint of _another_
6343 thread. Single-step breakpoints are transparent to the
6344 breakpoints module. */
6345 if (random_signal)
6346 random_signal = !ecs->hit_singlestep_breakpoint;
6347
bac7d97b
PA
6348 /* No? Perhaps we got a moribund watchpoint. */
6349 if (random_signal)
6350 random_signal = !stopped_by_watchpoint;
ab04a2af 6351
c65d6b55
PA
6352 /* Always stop if the user explicitly requested this thread to
6353 remain stopped. */
6354 if (ecs->event_thread->stop_requested)
6355 {
6356 random_signal = 1;
6357 if (debug_infrun)
6358 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6359 }
6360
488f131b
JB
6361 /* For the program's own signals, act according to
6362 the signal handling tables. */
6363
ce12b012 6364 if (random_signal)
488f131b
JB
6365 {
6366 /* Signal not for debugging purposes. */
5b6d1e4f 6367 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
c9737c08 6368 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 6369
527159b7 6370 if (debug_infrun)
c9737c08
PA
6371 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6372 gdb_signal_to_symbol_string (stop_signal));
527159b7 6373
488f131b
JB
6374 stopped_by_random_signal = 1;
6375
252fbfc8
PA
6376 /* Always stop on signals if we're either just gaining control
6377 of the program, or the user explicitly requested this thread
6378 to remain stopped. */
d6b48e9c 6379 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 6380 || ecs->event_thread->stop_requested
24291992 6381 || (!inf->detaching
16c381f0 6382 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 6383 {
22bcd14b 6384 stop_waiting (ecs);
488f131b
JB
6385 return;
6386 }
b57bacec
PA
6387
6388 /* Notify observers the signal has "handle print" set. Note we
6389 returned early above if stopping; normal_stop handles the
6390 printing in that case. */
6391 if (signal_print[ecs->event_thread->suspend.stop_signal])
6392 {
6393 /* The signal table tells us to print about this signal. */
223ffa71 6394 target_terminal::ours_for_output ();
76727919 6395 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
223ffa71 6396 target_terminal::inferior ();
b57bacec 6397 }
488f131b
JB
6398
6399 /* Clear the signal if it should not be passed. */
16c381f0 6400 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 6401 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 6402
f2ffa92b 6403 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
16c381f0 6404 && ecs->event_thread->control.trap_expected
8358c15c 6405 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
6406 {
6407 /* We were just starting a new sequence, attempting to
6408 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 6409 Instead this signal arrives. This signal will take us out
68f53502
AC
6410 of the stepping range so GDB needs to remember to, when
6411 the signal handler returns, resume stepping off that
6412 breakpoint. */
6413 /* To simplify things, "continue" is forced to use the same
6414 code paths as single-step - set a breakpoint at the
6415 signal return address and then, once hit, step off that
6416 breakpoint. */
237fc4c9
PA
6417 if (debug_infrun)
6418 fprintf_unfiltered (gdb_stdlog,
6419 "infrun: signal arrived while stepping over "
6420 "breakpoint\n");
d3169d93 6421
2c03e5be 6422 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 6423 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6424 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6425 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
6426
6427 /* If we were nexting/stepping some other thread, switch to
6428 it, so that we don't continue it, losing control. */
6429 if (!switch_back_to_stepped_thread (ecs))
6430 keep_going (ecs);
9d799f85 6431 return;
68f53502 6432 }
9d799f85 6433
e5f8a7cc 6434 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
f2ffa92b
PA
6435 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6436 ecs->event_thread)
e5f8a7cc 6437 || ecs->event_thread->control.step_range_end == 1)
edb3359d 6438 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 6439 ecs->event_thread->control.step_stack_frame_id)
8358c15c 6440 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
6441 {
6442 /* The inferior is about to take a signal that will take it
6443 out of the single step range. Set a breakpoint at the
6444 current PC (which is presumably where the signal handler
6445 will eventually return) and then allow the inferior to
6446 run free.
6447
6448 Note that this is only needed for a signal delivered
6449 while in the single-step range. Nested signals aren't a
6450 problem as they eventually all return. */
237fc4c9
PA
6451 if (debug_infrun)
6452 fprintf_unfiltered (gdb_stdlog,
6453 "infrun: signal may take us out of "
6454 "single-step range\n");
6455
372316f1 6456 clear_step_over_info ();
2c03e5be 6457 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 6458 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6459 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6460 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
6461 keep_going (ecs);
6462 return;
d303a6c7 6463 }
9d799f85 6464
85102364 6465 /* Note: step_resume_breakpoint may be non-NULL. This occurs
9d799f85
AC
6466 when either there's a nested signal, or when there's a
6467 pending signal enabled just as the signal handler returns
6468 (leaving the inferior at the step-resume-breakpoint without
6469 actually executing it). Either way continue until the
6470 breakpoint is really hit. */
c447ac0b
PA
6471
6472 if (!switch_back_to_stepped_thread (ecs))
6473 {
6474 if (debug_infrun)
6475 fprintf_unfiltered (gdb_stdlog,
6476 "infrun: random signal, keep going\n");
6477
6478 keep_going (ecs);
6479 }
6480 return;
488f131b 6481 }
94c57d6a
PA
6482
6483 process_event_stop_test (ecs);
6484}
6485
6486/* Come here when we've got some debug event / signal we can explain
6487 (IOW, not a random signal), and test whether it should cause a
6488 stop, or whether we should resume the inferior (transparently).
6489 E.g., could be a breakpoint whose condition evaluates false; we
6490 could be still stepping within the line; etc. */
6491
6492static void
6493process_event_stop_test (struct execution_control_state *ecs)
6494{
6495 struct symtab_and_line stop_pc_sal;
6496 struct frame_info *frame;
6497 struct gdbarch *gdbarch;
cdaa5b73
PA
6498 CORE_ADDR jmp_buf_pc;
6499 struct bpstat_what what;
94c57d6a 6500
cdaa5b73 6501 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6502
cdaa5b73
PA
6503 frame = get_current_frame ();
6504 gdbarch = get_frame_arch (frame);
fcf3daef 6505
cdaa5b73 6506 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6507
cdaa5b73
PA
6508 if (what.call_dummy)
6509 {
6510 stop_stack_dummy = what.call_dummy;
6511 }
186c406b 6512
243a9253
PA
6513 /* A few breakpoint types have callbacks associated (e.g.,
6514 bp_jit_event). Run them now. */
6515 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6516
cdaa5b73
PA
6517 /* If we hit an internal event that triggers symbol changes, the
6518 current frame will be invalidated within bpstat_what (e.g., if we
6519 hit an internal solib event). Re-fetch it. */
6520 frame = get_current_frame ();
6521 gdbarch = get_frame_arch (frame);
e2e4d78b 6522
cdaa5b73
PA
6523 switch (what.main_action)
6524 {
6525 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6526 /* If we hit the breakpoint at longjmp while stepping, we
6527 install a momentary breakpoint at the target of the
6528 jmp_buf. */
186c406b 6529
cdaa5b73
PA
6530 if (debug_infrun)
6531 fprintf_unfiltered (gdb_stdlog,
6532 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6533
cdaa5b73 6534 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6535
cdaa5b73
PA
6536 if (what.is_longjmp)
6537 {
6538 struct value *arg_value;
6539
6540 /* If we set the longjmp breakpoint via a SystemTap probe,
6541 then use it to extract the arguments. The destination PC
6542 is the third argument to the probe. */
6543 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6544 if (arg_value)
8fa0c4f8
AA
6545 {
6546 jmp_buf_pc = value_as_address (arg_value);
6547 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6548 }
cdaa5b73
PA
6549 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6550 || !gdbarch_get_longjmp_target (gdbarch,
6551 frame, &jmp_buf_pc))
e2e4d78b 6552 {
cdaa5b73
PA
6553 if (debug_infrun)
6554 fprintf_unfiltered (gdb_stdlog,
6555 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6556 "(!gdbarch_get_longjmp_target)\n");
6557 keep_going (ecs);
6558 return;
e2e4d78b 6559 }
e2e4d78b 6560
cdaa5b73
PA
6561 /* Insert a breakpoint at resume address. */
6562 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6563 }
6564 else
6565 check_exception_resume (ecs, frame);
6566 keep_going (ecs);
6567 return;
e81a37f7 6568
cdaa5b73
PA
6569 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6570 {
6571 struct frame_info *init_frame;
e81a37f7 6572
cdaa5b73 6573 /* There are several cases to consider.
c906108c 6574
cdaa5b73
PA
6575 1. The initiating frame no longer exists. In this case we
6576 must stop, because the exception or longjmp has gone too
6577 far.
2c03e5be 6578
cdaa5b73
PA
6579 2. The initiating frame exists, and is the same as the
6580 current frame. We stop, because the exception or longjmp
6581 has been caught.
2c03e5be 6582
cdaa5b73
PA
6583 3. The initiating frame exists and is different from the
6584 current frame. This means the exception or longjmp has
6585 been caught beneath the initiating frame, so keep going.
c906108c 6586
cdaa5b73
PA
6587 4. longjmp breakpoint has been placed just to protect
6588 against stale dummy frames and user is not interested in
6589 stopping around longjmps. */
c5aa993b 6590
cdaa5b73
PA
6591 if (debug_infrun)
6592 fprintf_unfiltered (gdb_stdlog,
6593 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6594
cdaa5b73
PA
6595 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6596 != NULL);
6597 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6598
cdaa5b73
PA
6599 if (what.is_longjmp)
6600 {
b67a2c6f 6601 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6602
cdaa5b73 6603 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6604 {
cdaa5b73
PA
6605 /* Case 4. */
6606 keep_going (ecs);
6607 return;
e5ef252a 6608 }
cdaa5b73 6609 }
c5aa993b 6610
cdaa5b73 6611 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6612
cdaa5b73
PA
6613 if (init_frame)
6614 {
6615 struct frame_id current_id
6616 = get_frame_id (get_current_frame ());
6617 if (frame_id_eq (current_id,
6618 ecs->event_thread->initiating_frame))
6619 {
6620 /* Case 2. Fall through. */
6621 }
6622 else
6623 {
6624 /* Case 3. */
6625 keep_going (ecs);
6626 return;
6627 }
68f53502 6628 }
488f131b 6629
cdaa5b73
PA
6630 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6631 exists. */
6632 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6633
bdc36728 6634 end_stepping_range (ecs);
cdaa5b73
PA
6635 }
6636 return;
e5ef252a 6637
cdaa5b73
PA
6638 case BPSTAT_WHAT_SINGLE:
6639 if (debug_infrun)
6640 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6641 ecs->event_thread->stepping_over_breakpoint = 1;
6642 /* Still need to check other stuff, at least the case where we
6643 are stepping and step out of the right range. */
6644 break;
e5ef252a 6645
cdaa5b73
PA
6646 case BPSTAT_WHAT_STEP_RESUME:
6647 if (debug_infrun)
6648 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6649
cdaa5b73
PA
6650 delete_step_resume_breakpoint (ecs->event_thread);
6651 if (ecs->event_thread->control.proceed_to_finish
6652 && execution_direction == EXEC_REVERSE)
6653 {
6654 struct thread_info *tp = ecs->event_thread;
6655
6656 /* We are finishing a function in reverse, and just hit the
6657 step-resume breakpoint at the start address of the
6658 function, and we're almost there -- just need to back up
6659 by one more single-step, which should take us back to the
6660 function call. */
6661 tp->control.step_range_start = tp->control.step_range_end = 1;
6662 keep_going (ecs);
e5ef252a 6663 return;
cdaa5b73
PA
6664 }
6665 fill_in_stop_func (gdbarch, ecs);
f2ffa92b 6666 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
cdaa5b73
PA
6667 && execution_direction == EXEC_REVERSE)
6668 {
6669 /* We are stepping over a function call in reverse, and just
6670 hit the step-resume breakpoint at the start address of
6671 the function. Go back to single-stepping, which should
6672 take us back to the function call. */
6673 ecs->event_thread->stepping_over_breakpoint = 1;
6674 keep_going (ecs);
6675 return;
6676 }
6677 break;
e5ef252a 6678
cdaa5b73
PA
6679 case BPSTAT_WHAT_STOP_NOISY:
6680 if (debug_infrun)
6681 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6682 stop_print_frame = 1;
e5ef252a 6683
99619bea
PA
6684 /* Assume the thread stopped for a breapoint. We'll still check
6685 whether a/the breakpoint is there when the thread is next
6686 resumed. */
6687 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6688
22bcd14b 6689 stop_waiting (ecs);
cdaa5b73 6690 return;
e5ef252a 6691
cdaa5b73
PA
6692 case BPSTAT_WHAT_STOP_SILENT:
6693 if (debug_infrun)
6694 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6695 stop_print_frame = 0;
e5ef252a 6696
99619bea
PA
6697 /* Assume the thread stopped for a breapoint. We'll still check
6698 whether a/the breakpoint is there when the thread is next
6699 resumed. */
6700 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6701 stop_waiting (ecs);
cdaa5b73
PA
6702 return;
6703
6704 case BPSTAT_WHAT_HP_STEP_RESUME:
6705 if (debug_infrun)
6706 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6707
6708 delete_step_resume_breakpoint (ecs->event_thread);
6709 if (ecs->event_thread->step_after_step_resume_breakpoint)
6710 {
6711 /* Back when the step-resume breakpoint was inserted, we
6712 were trying to single-step off a breakpoint. Go back to
6713 doing that. */
6714 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6715 ecs->event_thread->stepping_over_breakpoint = 1;
6716 keep_going (ecs);
6717 return;
e5ef252a 6718 }
cdaa5b73
PA
6719 break;
6720
6721 case BPSTAT_WHAT_KEEP_CHECKING:
6722 break;
e5ef252a 6723 }
c906108c 6724
af48d08f
PA
6725 /* If we stepped a permanent breakpoint and we had a high priority
6726 step-resume breakpoint for the address we stepped, but we didn't
6727 hit it, then we must have stepped into the signal handler. The
6728 step-resume was only necessary to catch the case of _not_
6729 stepping into the handler, so delete it, and fall through to
6730 checking whether the step finished. */
6731 if (ecs->event_thread->stepped_breakpoint)
6732 {
6733 struct breakpoint *sr_bp
6734 = ecs->event_thread->control.step_resume_breakpoint;
6735
8d707a12
PA
6736 if (sr_bp != NULL
6737 && sr_bp->loc->permanent
af48d08f
PA
6738 && sr_bp->type == bp_hp_step_resume
6739 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6740 {
6741 if (debug_infrun)
6742 fprintf_unfiltered (gdb_stdlog,
6743 "infrun: stepped permanent breakpoint, stopped in "
6744 "handler\n");
6745 delete_step_resume_breakpoint (ecs->event_thread);
6746 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6747 }
6748 }
6749
cdaa5b73
PA
6750 /* We come here if we hit a breakpoint but should not stop for it.
6751 Possibly we also were stepping and should stop for that. So fall
6752 through and test for stepping. But, if not stepping, do not
6753 stop. */
c906108c 6754
a7212384
UW
6755 /* In all-stop mode, if we're currently stepping but have stopped in
6756 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6757 if (switch_back_to_stepped_thread (ecs))
6758 return;
776f04fa 6759
8358c15c 6760 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6761 {
527159b7 6762 if (debug_infrun)
d3169d93
DJ
6763 fprintf_unfiltered (gdb_stdlog,
6764 "infrun: step-resume breakpoint is inserted\n");
527159b7 6765
488f131b
JB
6766 /* Having a step-resume breakpoint overrides anything
6767 else having to do with stepping commands until
6768 that breakpoint is reached. */
488f131b
JB
6769 keep_going (ecs);
6770 return;
6771 }
c5aa993b 6772
16c381f0 6773 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6774 {
527159b7 6775 if (debug_infrun)
8a9de0e4 6776 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6777 /* Likewise if we aren't even stepping. */
488f131b
JB
6778 keep_going (ecs);
6779 return;
6780 }
c5aa993b 6781
4b7703ad
JB
6782 /* Re-fetch current thread's frame in case the code above caused
6783 the frame cache to be re-initialized, making our FRAME variable
6784 a dangling pointer. */
6785 frame = get_current_frame ();
628fe4e4 6786 gdbarch = get_frame_arch (frame);
7e324e48 6787 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6788
488f131b 6789 /* If stepping through a line, keep going if still within it.
c906108c 6790
488f131b
JB
6791 Note that step_range_end is the address of the first instruction
6792 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6793 within it!
6794
6795 Note also that during reverse execution, we may be stepping
6796 through a function epilogue and therefore must detect when
6797 the current-frame changes in the middle of a line. */
6798
f2ffa92b
PA
6799 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6800 ecs->event_thread)
31410e84 6801 && (execution_direction != EXEC_REVERSE
388a8562 6802 || frame_id_eq (get_frame_id (frame),
16c381f0 6803 ecs->event_thread->control.step_frame_id)))
488f131b 6804 {
527159b7 6805 if (debug_infrun)
5af949e3
UW
6806 fprintf_unfiltered
6807 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6808 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6809 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6810
c1e36e3e
PA
6811 /* Tentatively re-enable range stepping; `resume' disables it if
6812 necessary (e.g., if we're stepping over a breakpoint or we
6813 have software watchpoints). */
6814 ecs->event_thread->control.may_range_step = 1;
6815
b2175913
MS
6816 /* When stepping backward, stop at beginning of line range
6817 (unless it's the function entry point, in which case
6818 keep going back to the call point). */
f2ffa92b 6819 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
16c381f0 6820 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6821 && stop_pc != ecs->stop_func_start
6822 && execution_direction == EXEC_REVERSE)
bdc36728 6823 end_stepping_range (ecs);
b2175913
MS
6824 else
6825 keep_going (ecs);
6826
488f131b
JB
6827 return;
6828 }
c5aa993b 6829
488f131b 6830 /* We stepped out of the stepping range. */
c906108c 6831
488f131b 6832 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6833 loader dynamic symbol resolution code...
6834
6835 EXEC_FORWARD: we keep on single stepping until we exit the run
6836 time loader code and reach the callee's address.
6837
6838 EXEC_REVERSE: we've already executed the callee (backward), and
6839 the runtime loader code is handled just like any other
6840 undebuggable function call. Now we need only keep stepping
6841 backward through the trampoline code, and that's handled further
6842 down, so there is nothing for us to do here. */
6843
6844 if (execution_direction != EXEC_REVERSE
16c381f0 6845 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
f2ffa92b 6846 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
488f131b 6847 {
4c8c40e6 6848 CORE_ADDR pc_after_resolver =
f2ffa92b
PA
6849 gdbarch_skip_solib_resolver (gdbarch,
6850 ecs->event_thread->suspend.stop_pc);
c906108c 6851
527159b7 6852 if (debug_infrun)
3e43a32a
MS
6853 fprintf_unfiltered (gdb_stdlog,
6854 "infrun: stepped into dynsym resolve code\n");
527159b7 6855
488f131b
JB
6856 if (pc_after_resolver)
6857 {
6858 /* Set up a step-resume breakpoint at the address
6859 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6860 symtab_and_line sr_sal;
488f131b 6861 sr_sal.pc = pc_after_resolver;
6c95b8df 6862 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6863
a6d9a66e
UW
6864 insert_step_resume_breakpoint_at_sal (gdbarch,
6865 sr_sal, null_frame_id);
c5aa993b 6866 }
c906108c 6867
488f131b
JB
6868 keep_going (ecs);
6869 return;
6870 }
c906108c 6871
1d509aa6
MM
6872 /* Step through an indirect branch thunk. */
6873 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
f2ffa92b
PA
6874 && gdbarch_in_indirect_branch_thunk (gdbarch,
6875 ecs->event_thread->suspend.stop_pc))
1d509aa6
MM
6876 {
6877 if (debug_infrun)
6878 fprintf_unfiltered (gdb_stdlog,
6879 "infrun: stepped into indirect branch thunk\n");
6880 keep_going (ecs);
6881 return;
6882 }
6883
16c381f0
JK
6884 if (ecs->event_thread->control.step_range_end != 1
6885 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6886 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6887 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6888 {
527159b7 6889 if (debug_infrun)
3e43a32a
MS
6890 fprintf_unfiltered (gdb_stdlog,
6891 "infrun: stepped into signal trampoline\n");
42edda50 6892 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6893 a signal trampoline (either by a signal being delivered or by
6894 the signal handler returning). Just single-step until the
6895 inferior leaves the trampoline (either by calling the handler
6896 or returning). */
488f131b
JB
6897 keep_going (ecs);
6898 return;
6899 }
c906108c 6900
14132e89
MR
6901 /* If we're in the return path from a shared library trampoline,
6902 we want to proceed through the trampoline when stepping. */
6903 /* macro/2012-04-25: This needs to come before the subroutine
6904 call check below as on some targets return trampolines look
6905 like subroutine calls (MIPS16 return thunks). */
6906 if (gdbarch_in_solib_return_trampoline (gdbarch,
f2ffa92b
PA
6907 ecs->event_thread->suspend.stop_pc,
6908 ecs->stop_func_name)
14132e89
MR
6909 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6910 {
6911 /* Determine where this trampoline returns. */
f2ffa92b
PA
6912 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6913 CORE_ADDR real_stop_pc
6914 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
14132e89
MR
6915
6916 if (debug_infrun)
6917 fprintf_unfiltered (gdb_stdlog,
6918 "infrun: stepped into solib return tramp\n");
6919
6920 /* Only proceed through if we know where it's going. */
6921 if (real_stop_pc)
6922 {
6923 /* And put the step-breakpoint there and go until there. */
51abb421 6924 symtab_and_line sr_sal;
14132e89
MR
6925 sr_sal.pc = real_stop_pc;
6926 sr_sal.section = find_pc_overlay (sr_sal.pc);
6927 sr_sal.pspace = get_frame_program_space (frame);
6928
6929 /* Do not specify what the fp should be when we stop since
6930 on some machines the prologue is where the new fp value
6931 is established. */
6932 insert_step_resume_breakpoint_at_sal (gdbarch,
6933 sr_sal, null_frame_id);
6934
6935 /* Restart without fiddling with the step ranges or
6936 other state. */
6937 keep_going (ecs);
6938 return;
6939 }
6940 }
6941
c17eaafe
DJ
6942 /* Check for subroutine calls. The check for the current frame
6943 equalling the step ID is not necessary - the check of the
6944 previous frame's ID is sufficient - but it is a common case and
6945 cheaper than checking the previous frame's ID.
14e60db5
DJ
6946
6947 NOTE: frame_id_eq will never report two invalid frame IDs as
6948 being equal, so to get into this block, both the current and
6949 previous frame must have valid frame IDs. */
005ca36a
JB
6950 /* The outer_frame_id check is a heuristic to detect stepping
6951 through startup code. If we step over an instruction which
6952 sets the stack pointer from an invalid value to a valid value,
6953 we may detect that as a subroutine call from the mythical
6954 "outermost" function. This could be fixed by marking
6955 outermost frames as !stack_p,code_p,special_p. Then the
6956 initial outermost frame, before sp was valid, would
ce6cca6d 6957 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6958 for more. */
edb3359d 6959 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6960 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6961 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6962 ecs->event_thread->control.step_stack_frame_id)
6963 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6964 outer_frame_id)
885eeb5b 6965 || (ecs->event_thread->control.step_start_function
f2ffa92b 6966 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
488f131b 6967 {
f2ffa92b 6968 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
95918acb 6969 CORE_ADDR real_stop_pc;
8fb3e588 6970
527159b7 6971 if (debug_infrun)
8a9de0e4 6972 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6973
b7a084be 6974 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6975 {
6976 /* I presume that step_over_calls is only 0 when we're
6977 supposed to be stepping at the assembly language level
6978 ("stepi"). Just stop. */
388a8562 6979 /* And this works the same backward as frontward. MVS */
bdc36728 6980 end_stepping_range (ecs);
95918acb
AC
6981 return;
6982 }
8fb3e588 6983
388a8562
MS
6984 /* Reverse stepping through solib trampolines. */
6985
6986 if (execution_direction == EXEC_REVERSE
16c381f0 6987 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6988 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6989 || (ecs->stop_func_start == 0
6990 && in_solib_dynsym_resolve_code (stop_pc))))
6991 {
6992 /* Any solib trampoline code can be handled in reverse
6993 by simply continuing to single-step. We have already
6994 executed the solib function (backwards), and a few
6995 steps will take us back through the trampoline to the
6996 caller. */
6997 keep_going (ecs);
6998 return;
6999 }
7000
16c381f0 7001 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 7002 {
b2175913
MS
7003 /* We're doing a "next".
7004
7005 Normal (forward) execution: set a breakpoint at the
7006 callee's return address (the address at which the caller
7007 will resume).
7008
7009 Reverse (backward) execution. set the step-resume
7010 breakpoint at the start of the function that we just
7011 stepped into (backwards), and continue to there. When we
6130d0b7 7012 get there, we'll need to single-step back to the caller. */
b2175913
MS
7013
7014 if (execution_direction == EXEC_REVERSE)
7015 {
acf9414f
JK
7016 /* If we're already at the start of the function, we've either
7017 just stepped backward into a single instruction function,
7018 or stepped back out of a signal handler to the first instruction
7019 of the function. Just keep going, which will single-step back
7020 to the caller. */
58c48e72 7021 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 7022 {
acf9414f 7023 /* Normal function call return (static or dynamic). */
51abb421 7024 symtab_and_line sr_sal;
acf9414f
JK
7025 sr_sal.pc = ecs->stop_func_start;
7026 sr_sal.pspace = get_frame_program_space (frame);
7027 insert_step_resume_breakpoint_at_sal (gdbarch,
7028 sr_sal, null_frame_id);
7029 }
b2175913
MS
7030 }
7031 else
568d6575 7032 insert_step_resume_breakpoint_at_caller (frame);
b2175913 7033
8567c30f
AC
7034 keep_going (ecs);
7035 return;
7036 }
a53c66de 7037
95918acb 7038 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
7039 calling routine and the real function), locate the real
7040 function. That's what tells us (a) whether we want to step
7041 into it at all, and (b) what prologue we want to run to the
7042 end of, if we do step into it. */
568d6575 7043 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 7044 if (real_stop_pc == 0)
568d6575 7045 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
7046 if (real_stop_pc != 0)
7047 ecs->stop_func_start = real_stop_pc;
8fb3e588 7048
db5f024e 7049 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 7050 {
51abb421 7051 symtab_and_line sr_sal;
1b2bfbb9 7052 sr_sal.pc = ecs->stop_func_start;
6c95b8df 7053 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 7054
a6d9a66e
UW
7055 insert_step_resume_breakpoint_at_sal (gdbarch,
7056 sr_sal, null_frame_id);
8fb3e588
AC
7057 keep_going (ecs);
7058 return;
1b2bfbb9
RC
7059 }
7060
95918acb 7061 /* If we have line number information for the function we are
1bfeeb0f
JL
7062 thinking of stepping into and the function isn't on the skip
7063 list, step into it.
95918acb 7064
8fb3e588
AC
7065 If there are several symtabs at that PC (e.g. with include
7066 files), just want to know whether *any* of them have line
7067 numbers. find_pc_line handles this. */
95918acb
AC
7068 {
7069 struct symtab_and_line tmp_sal;
8fb3e588 7070
95918acb 7071 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 7072 if (tmp_sal.line != 0
85817405 7073 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4a4c04f1
BE
7074 tmp_sal)
7075 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
95918acb 7076 {
b2175913 7077 if (execution_direction == EXEC_REVERSE)
568d6575 7078 handle_step_into_function_backward (gdbarch, ecs);
b2175913 7079 else
568d6575 7080 handle_step_into_function (gdbarch, ecs);
95918acb
AC
7081 return;
7082 }
7083 }
7084
7085 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
7086 set, we stop the step so that the user has a chance to switch
7087 in assembly mode. */
16c381f0 7088 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 7089 && step_stop_if_no_debug)
95918acb 7090 {
bdc36728 7091 end_stepping_range (ecs);
95918acb
AC
7092 return;
7093 }
7094
b2175913
MS
7095 if (execution_direction == EXEC_REVERSE)
7096 {
acf9414f
JK
7097 /* If we're already at the start of the function, we've either just
7098 stepped backward into a single instruction function without line
7099 number info, or stepped back out of a signal handler to the first
7100 instruction of the function without line number info. Just keep
7101 going, which will single-step back to the caller. */
7102 if (ecs->stop_func_start != stop_pc)
7103 {
7104 /* Set a breakpoint at callee's start address.
7105 From there we can step once and be back in the caller. */
51abb421 7106 symtab_and_line sr_sal;
acf9414f
JK
7107 sr_sal.pc = ecs->stop_func_start;
7108 sr_sal.pspace = get_frame_program_space (frame);
7109 insert_step_resume_breakpoint_at_sal (gdbarch,
7110 sr_sal, null_frame_id);
7111 }
b2175913
MS
7112 }
7113 else
7114 /* Set a breakpoint at callee's return address (the address
7115 at which the caller will resume). */
568d6575 7116 insert_step_resume_breakpoint_at_caller (frame);
b2175913 7117
95918acb 7118 keep_going (ecs);
488f131b 7119 return;
488f131b 7120 }
c906108c 7121
fdd654f3
MS
7122 /* Reverse stepping through solib trampolines. */
7123
7124 if (execution_direction == EXEC_REVERSE
16c381f0 7125 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3 7126 {
f2ffa92b
PA
7127 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
7128
fdd654f3
MS
7129 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
7130 || (ecs->stop_func_start == 0
7131 && in_solib_dynsym_resolve_code (stop_pc)))
7132 {
7133 /* Any solib trampoline code can be handled in reverse
7134 by simply continuing to single-step. We have already
7135 executed the solib function (backwards), and a few
7136 steps will take us back through the trampoline to the
7137 caller. */
7138 keep_going (ecs);
7139 return;
7140 }
7141 else if (in_solib_dynsym_resolve_code (stop_pc))
7142 {
7143 /* Stepped backward into the solib dynsym resolver.
7144 Set a breakpoint at its start and continue, then
7145 one more step will take us out. */
51abb421 7146 symtab_and_line sr_sal;
fdd654f3 7147 sr_sal.pc = ecs->stop_func_start;
9d1807c3 7148 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
7149 insert_step_resume_breakpoint_at_sal (gdbarch,
7150 sr_sal, null_frame_id);
7151 keep_going (ecs);
7152 return;
7153 }
7154 }
7155
8c95582d
AB
7156 /* This always returns the sal for the inner-most frame when we are in a
7157 stack of inlined frames, even if GDB actually believes that it is in a
7158 more outer frame. This is checked for below by calls to
7159 inline_skipped_frames. */
f2ffa92b 7160 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7ed0fe66 7161
1b2bfbb9
RC
7162 /* NOTE: tausq/2004-05-24: This if block used to be done before all
7163 the trampoline processing logic, however, there are some trampolines
7164 that have no names, so we should do trampoline handling first. */
16c381f0 7165 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 7166 && ecs->stop_func_name == NULL
2afb61aa 7167 && stop_pc_sal.line == 0)
1b2bfbb9 7168 {
527159b7 7169 if (debug_infrun)
3e43a32a
MS
7170 fprintf_unfiltered (gdb_stdlog,
7171 "infrun: stepped into undebuggable function\n");
527159b7 7172
1b2bfbb9 7173 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
7174 undebuggable function (where there is no debugging information
7175 and no line number corresponding to the address where the
1b2bfbb9
RC
7176 inferior stopped). Since we want to skip this kind of code,
7177 we keep going until the inferior returns from this
14e60db5
DJ
7178 function - unless the user has asked us not to (via
7179 set step-mode) or we no longer know how to get back
7180 to the call site. */
7181 if (step_stop_if_no_debug
c7ce8faa 7182 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
7183 {
7184 /* If we have no line number and the step-stop-if-no-debug
7185 is set, we stop the step so that the user has a chance to
7186 switch in assembly mode. */
bdc36728 7187 end_stepping_range (ecs);
1b2bfbb9
RC
7188 return;
7189 }
7190 else
7191 {
7192 /* Set a breakpoint at callee's return address (the address
7193 at which the caller will resume). */
568d6575 7194 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
7195 keep_going (ecs);
7196 return;
7197 }
7198 }
7199
16c381f0 7200 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
7201 {
7202 /* It is stepi or nexti. We always want to stop stepping after
7203 one instruction. */
527159b7 7204 if (debug_infrun)
8a9de0e4 7205 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 7206 end_stepping_range (ecs);
1b2bfbb9
RC
7207 return;
7208 }
7209
2afb61aa 7210 if (stop_pc_sal.line == 0)
488f131b
JB
7211 {
7212 /* We have no line number information. That means to stop
7213 stepping (does this always happen right after one instruction,
7214 when we do "s" in a function with no line numbers,
7215 or can this happen as a result of a return or longjmp?). */
527159b7 7216 if (debug_infrun)
8a9de0e4 7217 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 7218 end_stepping_range (ecs);
488f131b
JB
7219 return;
7220 }
c906108c 7221
edb3359d
DJ
7222 /* Look for "calls" to inlined functions, part one. If the inline
7223 frame machinery detected some skipped call sites, we have entered
7224 a new inline function. */
7225
7226 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 7227 ecs->event_thread->control.step_frame_id)
00431a78 7228 && inline_skipped_frames (ecs->event_thread))
edb3359d 7229 {
edb3359d
DJ
7230 if (debug_infrun)
7231 fprintf_unfiltered (gdb_stdlog,
7232 "infrun: stepped into inlined function\n");
7233
51abb421 7234 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 7235
16c381f0 7236 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
7237 {
7238 /* For "step", we're going to stop. But if the call site
7239 for this inlined function is on the same source line as
7240 we were previously stepping, go down into the function
7241 first. Otherwise stop at the call site. */
7242
7243 if (call_sal.line == ecs->event_thread->current_line
7244 && call_sal.symtab == ecs->event_thread->current_symtab)
4a4c04f1
BE
7245 {
7246 step_into_inline_frame (ecs->event_thread);
7247 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7248 {
7249 keep_going (ecs);
7250 return;
7251 }
7252 }
edb3359d 7253
bdc36728 7254 end_stepping_range (ecs);
edb3359d
DJ
7255 return;
7256 }
7257 else
7258 {
7259 /* For "next", we should stop at the call site if it is on a
7260 different source line. Otherwise continue through the
7261 inlined function. */
7262 if (call_sal.line == ecs->event_thread->current_line
7263 && call_sal.symtab == ecs->event_thread->current_symtab)
7264 keep_going (ecs);
7265 else
bdc36728 7266 end_stepping_range (ecs);
edb3359d
DJ
7267 return;
7268 }
7269 }
7270
7271 /* Look for "calls" to inlined functions, part two. If we are still
7272 in the same real function we were stepping through, but we have
7273 to go further up to find the exact frame ID, we are stepping
7274 through a more inlined call beyond its call site. */
7275
7276 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7277 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 7278 ecs->event_thread->control.step_frame_id)
edb3359d 7279 && stepped_in_from (get_current_frame (),
16c381f0 7280 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
7281 {
7282 if (debug_infrun)
7283 fprintf_unfiltered (gdb_stdlog,
7284 "infrun: stepping through inlined function\n");
7285
4a4c04f1
BE
7286 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7287 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
edb3359d
DJ
7288 keep_going (ecs);
7289 else
bdc36728 7290 end_stepping_range (ecs);
edb3359d
DJ
7291 return;
7292 }
7293
8c95582d 7294 bool refresh_step_info = true;
f2ffa92b 7295 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
7296 && (ecs->event_thread->current_line != stop_pc_sal.line
7297 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b 7298 {
8c95582d
AB
7299 if (stop_pc_sal.is_stmt)
7300 {
7301 /* We are at the start of a different line. So stop. Note that
7302 we don't stop if we step into the middle of a different line.
7303 That is said to make things like for (;;) statements work
7304 better. */
7305 if (debug_infrun)
7306 fprintf_unfiltered (gdb_stdlog,
7307 "infrun: stepped to a different line\n");
7308 end_stepping_range (ecs);
7309 return;
7310 }
7311 else if (frame_id_eq (get_frame_id (get_current_frame ()),
7312 ecs->event_thread->control.step_frame_id))
7313 {
7314 /* We are at the start of a different line, however, this line is
7315 not marked as a statement, and we have not changed frame. We
7316 ignore this line table entry, and continue stepping forward,
7317 looking for a better place to stop. */
7318 refresh_step_info = false;
7319 if (debug_infrun)
7320 fprintf_unfiltered (gdb_stdlog,
7321 "infrun: stepped to a different line, but "
7322 "it's not the start of a statement\n");
7323 }
488f131b 7324 }
c906108c 7325
488f131b 7326 /* We aren't done stepping.
c906108c 7327
488f131b
JB
7328 Optimize by setting the stepping range to the line.
7329 (We might not be in the original line, but if we entered a
7330 new line in mid-statement, we continue stepping. This makes
8c95582d
AB
7331 things like for(;;) statements work better.)
7332
7333 If we entered a SAL that indicates a non-statement line table entry,
7334 then we update the stepping range, but we don't update the step info,
7335 which includes things like the line number we are stepping away from.
7336 This means we will stop when we find a line table entry that is marked
7337 as is-statement, even if it matches the non-statement one we just
7338 stepped into. */
c906108c 7339
16c381f0
JK
7340 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7341 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 7342 ecs->event_thread->control.may_range_step = 1;
8c95582d
AB
7343 if (refresh_step_info)
7344 set_step_info (ecs->event_thread, frame, stop_pc_sal);
488f131b 7345
527159b7 7346 if (debug_infrun)
8a9de0e4 7347 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 7348 keep_going (ecs);
104c1213
JM
7349}
7350
c447ac0b
PA
7351/* In all-stop mode, if we're currently stepping but have stopped in
7352 some other thread, we may need to switch back to the stepped
7353 thread. Returns true we set the inferior running, false if we left
7354 it stopped (and the event needs further processing). */
7355
7356static int
7357switch_back_to_stepped_thread (struct execution_control_state *ecs)
7358{
fbea99ea 7359 if (!target_is_non_stop_p ())
c447ac0b 7360 {
99619bea
PA
7361 struct thread_info *stepping_thread;
7362
7363 /* If any thread is blocked on some internal breakpoint, and we
7364 simply need to step over that breakpoint to get it going
7365 again, do that first. */
7366
7367 /* However, if we see an event for the stepping thread, then we
7368 know all other threads have been moved past their breakpoints
7369 already. Let the caller check whether the step is finished,
7370 etc., before deciding to move it past a breakpoint. */
7371 if (ecs->event_thread->control.step_range_end != 0)
7372 return 0;
7373
7374 /* Check if the current thread is blocked on an incomplete
7375 step-over, interrupted by a random signal. */
7376 if (ecs->event_thread->control.trap_expected
7377 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 7378 {
99619bea
PA
7379 if (debug_infrun)
7380 {
7381 fprintf_unfiltered (gdb_stdlog,
7382 "infrun: need to finish step-over of [%s]\n",
a068643d 7383 target_pid_to_str (ecs->event_thread->ptid).c_str ());
99619bea
PA
7384 }
7385 keep_going (ecs);
7386 return 1;
7387 }
2adfaa28 7388
99619bea
PA
7389 /* Check if the current thread is blocked by a single-step
7390 breakpoint of another thread. */
7391 if (ecs->hit_singlestep_breakpoint)
7392 {
7393 if (debug_infrun)
7394 {
7395 fprintf_unfiltered (gdb_stdlog,
7396 "infrun: need to step [%s] over single-step "
7397 "breakpoint\n",
a068643d 7398 target_pid_to_str (ecs->ptid).c_str ());
99619bea
PA
7399 }
7400 keep_going (ecs);
7401 return 1;
7402 }
7403
4d9d9d04
PA
7404 /* If this thread needs yet another step-over (e.g., stepping
7405 through a delay slot), do it first before moving on to
7406 another thread. */
7407 if (thread_still_needs_step_over (ecs->event_thread))
7408 {
7409 if (debug_infrun)
7410 {
7411 fprintf_unfiltered (gdb_stdlog,
7412 "infrun: thread [%s] still needs step-over\n",
a068643d 7413 target_pid_to_str (ecs->event_thread->ptid).c_str ());
4d9d9d04
PA
7414 }
7415 keep_going (ecs);
7416 return 1;
7417 }
70509625 7418
483805cf
PA
7419 /* If scheduler locking applies even if not stepping, there's no
7420 need to walk over threads. Above we've checked whether the
7421 current thread is stepping. If some other thread not the
7422 event thread is stepping, then it must be that scheduler
7423 locking is not in effect. */
856e7dd6 7424 if (schedlock_applies (ecs->event_thread))
483805cf
PA
7425 return 0;
7426
4d9d9d04
PA
7427 /* Otherwise, we no longer expect a trap in the current thread.
7428 Clear the trap_expected flag before switching back -- this is
7429 what keep_going does as well, if we call it. */
7430 ecs->event_thread->control.trap_expected = 0;
7431
7432 /* Likewise, clear the signal if it should not be passed. */
7433 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7434 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7435
7436 /* Do all pending step-overs before actually proceeding with
483805cf 7437 step/next/etc. */
4d9d9d04
PA
7438 if (start_step_over ())
7439 {
7440 prepare_to_wait (ecs);
7441 return 1;
7442 }
7443
7444 /* Look for the stepping/nexting thread. */
483805cf 7445 stepping_thread = NULL;
4d9d9d04 7446
08036331 7447 for (thread_info *tp : all_non_exited_threads ())
483805cf 7448 {
f3f8ece4
PA
7449 switch_to_thread_no_regs (tp);
7450
fbea99ea
PA
7451 /* Ignore threads of processes the caller is not
7452 resuming. */
483805cf 7453 if (!sched_multi
5b6d1e4f
PA
7454 && (tp->inf->process_target () != ecs->target
7455 || tp->inf->pid != ecs->ptid.pid ()))
483805cf
PA
7456 continue;
7457
7458 /* When stepping over a breakpoint, we lock all threads
7459 except the one that needs to move past the breakpoint.
7460 If a non-event thread has this set, the "incomplete
7461 step-over" check above should have caught it earlier. */
372316f1
PA
7462 if (tp->control.trap_expected)
7463 {
7464 internal_error (__FILE__, __LINE__,
7465 "[%s] has inconsistent state: "
7466 "trap_expected=%d\n",
a068643d 7467 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
7468 tp->control.trap_expected);
7469 }
483805cf
PA
7470
7471 /* Did we find the stepping thread? */
7472 if (tp->control.step_range_end)
7473 {
7474 /* Yep. There should only one though. */
7475 gdb_assert (stepping_thread == NULL);
7476
7477 /* The event thread is handled at the top, before we
7478 enter this loop. */
7479 gdb_assert (tp != ecs->event_thread);
7480
7481 /* If some thread other than the event thread is
7482 stepping, then scheduler locking can't be in effect,
7483 otherwise we wouldn't have resumed the current event
7484 thread in the first place. */
856e7dd6 7485 gdb_assert (!schedlock_applies (tp));
483805cf
PA
7486
7487 stepping_thread = tp;
7488 }
99619bea
PA
7489 }
7490
483805cf 7491 if (stepping_thread != NULL)
99619bea 7492 {
c447ac0b
PA
7493 if (debug_infrun)
7494 fprintf_unfiltered (gdb_stdlog,
7495 "infrun: switching back to stepped thread\n");
7496
2ac7589c
PA
7497 if (keep_going_stepped_thread (stepping_thread))
7498 {
7499 prepare_to_wait (ecs);
7500 return 1;
7501 }
7502 }
f3f8ece4
PA
7503
7504 switch_to_thread (ecs->event_thread);
2ac7589c 7505 }
2adfaa28 7506
2ac7589c
PA
7507 return 0;
7508}
2adfaa28 7509
2ac7589c
PA
7510/* Set a previously stepped thread back to stepping. Returns true on
7511 success, false if the resume is not possible (e.g., the thread
7512 vanished). */
7513
7514static int
7515keep_going_stepped_thread (struct thread_info *tp)
7516{
7517 struct frame_info *frame;
2ac7589c
PA
7518 struct execution_control_state ecss;
7519 struct execution_control_state *ecs = &ecss;
2adfaa28 7520
2ac7589c
PA
7521 /* If the stepping thread exited, then don't try to switch back and
7522 resume it, which could fail in several different ways depending
7523 on the target. Instead, just keep going.
2adfaa28 7524
2ac7589c
PA
7525 We can find a stepping dead thread in the thread list in two
7526 cases:
2adfaa28 7527
2ac7589c
PA
7528 - The target supports thread exit events, and when the target
7529 tries to delete the thread from the thread list, inferior_ptid
7530 pointed at the exiting thread. In such case, calling
7531 delete_thread does not really remove the thread from the list;
7532 instead, the thread is left listed, with 'exited' state.
64ce06e4 7533
2ac7589c
PA
7534 - The target's debug interface does not support thread exit
7535 events, and so we have no idea whatsoever if the previously
7536 stepping thread is still alive. For that reason, we need to
7537 synchronously query the target now. */
2adfaa28 7538
00431a78 7539 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
2ac7589c
PA
7540 {
7541 if (debug_infrun)
7542 fprintf_unfiltered (gdb_stdlog,
7543 "infrun: not resuming previously "
7544 "stepped thread, it has vanished\n");
7545
00431a78 7546 delete_thread (tp);
2ac7589c 7547 return 0;
c447ac0b 7548 }
2ac7589c
PA
7549
7550 if (debug_infrun)
7551 fprintf_unfiltered (gdb_stdlog,
7552 "infrun: resuming previously stepped thread\n");
7553
7554 reset_ecs (ecs, tp);
00431a78 7555 switch_to_thread (tp);
2ac7589c 7556
f2ffa92b 7557 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
2ac7589c 7558 frame = get_current_frame ();
2ac7589c
PA
7559
7560 /* If the PC of the thread we were trying to single-step has
7561 changed, then that thread has trapped or been signaled, but the
7562 event has not been reported to GDB yet. Re-poll the target
7563 looking for this particular thread's event (i.e. temporarily
7564 enable schedlock) by:
7565
7566 - setting a break at the current PC
7567 - resuming that particular thread, only (by setting trap
7568 expected)
7569
7570 This prevents us continuously moving the single-step breakpoint
7571 forward, one instruction at a time, overstepping. */
7572
f2ffa92b 7573 if (tp->suspend.stop_pc != tp->prev_pc)
2ac7589c
PA
7574 {
7575 ptid_t resume_ptid;
7576
7577 if (debug_infrun)
7578 fprintf_unfiltered (gdb_stdlog,
7579 "infrun: expected thread advanced also (%s -> %s)\n",
7580 paddress (target_gdbarch (), tp->prev_pc),
f2ffa92b 7581 paddress (target_gdbarch (), tp->suspend.stop_pc));
2ac7589c
PA
7582
7583 /* Clear the info of the previous step-over, as it's no longer
7584 valid (if the thread was trying to step over a breakpoint, it
7585 has already succeeded). It's what keep_going would do too,
7586 if we called it. Do this before trying to insert the sss
7587 breakpoint, otherwise if we were previously trying to step
7588 over this exact address in another thread, the breakpoint is
7589 skipped. */
7590 clear_step_over_info ();
7591 tp->control.trap_expected = 0;
7592
7593 insert_single_step_breakpoint (get_frame_arch (frame),
7594 get_frame_address_space (frame),
f2ffa92b 7595 tp->suspend.stop_pc);
2ac7589c 7596
719546c4 7597 tp->resumed = true;
fbea99ea 7598 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7599 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7600 }
7601 else
7602 {
7603 if (debug_infrun)
7604 fprintf_unfiltered (gdb_stdlog,
7605 "infrun: expected thread still hasn't advanced\n");
7606
7607 keep_going_pass_signal (ecs);
7608 }
7609 return 1;
c447ac0b
PA
7610}
7611
8b061563
PA
7612/* Is thread TP in the middle of (software or hardware)
7613 single-stepping? (Note the result of this function must never be
7614 passed directly as target_resume's STEP parameter.) */
104c1213 7615
a289b8f6 7616static int
b3444185 7617currently_stepping (struct thread_info *tp)
a7212384 7618{
8358c15c
JK
7619 return ((tp->control.step_range_end
7620 && tp->control.step_resume_breakpoint == NULL)
7621 || tp->control.trap_expected
af48d08f 7622 || tp->stepped_breakpoint
8358c15c 7623 || bpstat_should_step ());
a7212384
UW
7624}
7625
b2175913
MS
7626/* Inferior has stepped into a subroutine call with source code that
7627 we should not step over. Do step to the first line of code in
7628 it. */
c2c6d25f
JM
7629
7630static void
568d6575
UW
7631handle_step_into_function (struct gdbarch *gdbarch,
7632 struct execution_control_state *ecs)
c2c6d25f 7633{
7e324e48
GB
7634 fill_in_stop_func (gdbarch, ecs);
7635
f2ffa92b
PA
7636 compunit_symtab *cust
7637 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7638 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7639 ecs->stop_func_start
7640 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7641
51abb421 7642 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7643 /* Use the step_resume_break to step until the end of the prologue,
7644 even if that involves jumps (as it seems to on the vax under
7645 4.2). */
7646 /* If the prologue ends in the middle of a source line, continue to
7647 the end of that source line (if it is still within the function).
7648 Otherwise, just go to end of prologue. */
2afb61aa
PA
7649 if (stop_func_sal.end
7650 && stop_func_sal.pc != ecs->stop_func_start
7651 && stop_func_sal.end < ecs->stop_func_end)
7652 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7653
2dbd5e30
KB
7654 /* Architectures which require breakpoint adjustment might not be able
7655 to place a breakpoint at the computed address. If so, the test
7656 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7657 ecs->stop_func_start to an address at which a breakpoint may be
7658 legitimately placed.
8fb3e588 7659
2dbd5e30
KB
7660 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7661 made, GDB will enter an infinite loop when stepping through
7662 optimized code consisting of VLIW instructions which contain
7663 subinstructions corresponding to different source lines. On
7664 FR-V, it's not permitted to place a breakpoint on any but the
7665 first subinstruction of a VLIW instruction. When a breakpoint is
7666 set, GDB will adjust the breakpoint address to the beginning of
7667 the VLIW instruction. Thus, we need to make the corresponding
7668 adjustment here when computing the stop address. */
8fb3e588 7669
568d6575 7670 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7671 {
7672 ecs->stop_func_start
568d6575 7673 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7674 ecs->stop_func_start);
2dbd5e30
KB
7675 }
7676
f2ffa92b 7677 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
c2c6d25f
JM
7678 {
7679 /* We are already there: stop now. */
bdc36728 7680 end_stepping_range (ecs);
c2c6d25f
JM
7681 return;
7682 }
7683 else
7684 {
7685 /* Put the step-breakpoint there and go until there. */
51abb421 7686 symtab_and_line sr_sal;
c2c6d25f
JM
7687 sr_sal.pc = ecs->stop_func_start;
7688 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7689 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7690
c2c6d25f 7691 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7692 some machines the prologue is where the new fp value is
7693 established. */
a6d9a66e 7694 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7695
7696 /* And make sure stepping stops right away then. */
16c381f0
JK
7697 ecs->event_thread->control.step_range_end
7698 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7699 }
7700 keep_going (ecs);
7701}
d4f3574e 7702
b2175913
MS
7703/* Inferior has stepped backward into a subroutine call with source
7704 code that we should not step over. Do step to the beginning of the
7705 last line of code in it. */
7706
7707static void
568d6575
UW
7708handle_step_into_function_backward (struct gdbarch *gdbarch,
7709 struct execution_control_state *ecs)
b2175913 7710{
43f3e411 7711 struct compunit_symtab *cust;
167e4384 7712 struct symtab_and_line stop_func_sal;
b2175913 7713
7e324e48
GB
7714 fill_in_stop_func (gdbarch, ecs);
7715
f2ffa92b 7716 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7717 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7718 ecs->stop_func_start
7719 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913 7720
f2ffa92b 7721 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
b2175913
MS
7722
7723 /* OK, we're just going to keep stepping here. */
f2ffa92b 7724 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
b2175913
MS
7725 {
7726 /* We're there already. Just stop stepping now. */
bdc36728 7727 end_stepping_range (ecs);
b2175913
MS
7728 }
7729 else
7730 {
7731 /* Else just reset the step range and keep going.
7732 No step-resume breakpoint, they don't work for
7733 epilogues, which can have multiple entry paths. */
16c381f0
JK
7734 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7735 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7736 keep_going (ecs);
7737 }
7738 return;
7739}
7740
d3169d93 7741/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7742 This is used to both functions and to skip over code. */
7743
7744static void
2c03e5be
PA
7745insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7746 struct symtab_and_line sr_sal,
7747 struct frame_id sr_id,
7748 enum bptype sr_type)
44cbf7b5 7749{
611c83ae
PA
7750 /* There should never be more than one step-resume or longjmp-resume
7751 breakpoint per thread, so we should never be setting a new
44cbf7b5 7752 step_resume_breakpoint when one is already active. */
8358c15c 7753 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7754 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7755
7756 if (debug_infrun)
7757 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7758 "infrun: inserting step-resume breakpoint at %s\n",
7759 paddress (gdbarch, sr_sal.pc));
d3169d93 7760
8358c15c 7761 inferior_thread ()->control.step_resume_breakpoint
454dafbd 7762 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
2c03e5be
PA
7763}
7764
9da8c2a0 7765void
2c03e5be
PA
7766insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7767 struct symtab_and_line sr_sal,
7768 struct frame_id sr_id)
7769{
7770 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7771 sr_sal, sr_id,
7772 bp_step_resume);
44cbf7b5 7773}
7ce450bd 7774
2c03e5be
PA
7775/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7776 This is used to skip a potential signal handler.
7ce450bd 7777
14e60db5
DJ
7778 This is called with the interrupted function's frame. The signal
7779 handler, when it returns, will resume the interrupted function at
7780 RETURN_FRAME.pc. */
d303a6c7
AC
7781
7782static void
2c03e5be 7783insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7784{
f4c1edd8 7785 gdb_assert (return_frame != NULL);
d303a6c7 7786
51abb421
PA
7787 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7788
7789 symtab_and_line sr_sal;
568d6575 7790 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7791 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7792 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7793
2c03e5be
PA
7794 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7795 get_stack_frame_id (return_frame),
7796 bp_hp_step_resume);
d303a6c7
AC
7797}
7798
2c03e5be
PA
7799/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7800 is used to skip a function after stepping into it (for "next" or if
7801 the called function has no debugging information).
14e60db5
DJ
7802
7803 The current function has almost always been reached by single
7804 stepping a call or return instruction. NEXT_FRAME belongs to the
7805 current function, and the breakpoint will be set at the caller's
7806 resume address.
7807
7808 This is a separate function rather than reusing
2c03e5be 7809 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7810 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7811 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7812
7813static void
7814insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7815{
14e60db5
DJ
7816 /* We shouldn't have gotten here if we don't know where the call site
7817 is. */
c7ce8faa 7818 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7819
51abb421 7820 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7821
51abb421 7822 symtab_and_line sr_sal;
c7ce8faa
DJ
7823 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7824 frame_unwind_caller_pc (next_frame));
14e60db5 7825 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7826 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7827
a6d9a66e 7828 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7829 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7830}
7831
611c83ae
PA
7832/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7833 new breakpoint at the target of a jmp_buf. The handling of
7834 longjmp-resume uses the same mechanisms used for handling
7835 "step-resume" breakpoints. */
7836
7837static void
a6d9a66e 7838insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7839{
e81a37f7
TT
7840 /* There should never be more than one longjmp-resume breakpoint per
7841 thread, so we should never be setting a new
611c83ae 7842 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7843 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7844
7845 if (debug_infrun)
7846 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7847 "infrun: inserting longjmp-resume breakpoint at %s\n",
7848 paddress (gdbarch, pc));
611c83ae 7849
e81a37f7 7850 inferior_thread ()->control.exception_resume_breakpoint =
454dafbd 7851 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
611c83ae
PA
7852}
7853
186c406b
TT
7854/* Insert an exception resume breakpoint. TP is the thread throwing
7855 the exception. The block B is the block of the unwinder debug hook
7856 function. FRAME is the frame corresponding to the call to this
7857 function. SYM is the symbol of the function argument holding the
7858 target PC of the exception. */
7859
7860static void
7861insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7862 const struct block *b,
186c406b
TT
7863 struct frame_info *frame,
7864 struct symbol *sym)
7865{
a70b8144 7866 try
186c406b 7867 {
63e43d3a 7868 struct block_symbol vsym;
186c406b
TT
7869 struct value *value;
7870 CORE_ADDR handler;
7871 struct breakpoint *bp;
7872
987012b8 7873 vsym = lookup_symbol_search_name (sym->search_name (),
de63c46b 7874 b, VAR_DOMAIN);
63e43d3a 7875 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7876 /* If the value was optimized out, revert to the old behavior. */
7877 if (! value_optimized_out (value))
7878 {
7879 handler = value_as_address (value);
7880
7881 if (debug_infrun)
7882 fprintf_unfiltered (gdb_stdlog,
7883 "infrun: exception resume at %lx\n",
7884 (unsigned long) handler);
7885
7886 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd
TT
7887 handler,
7888 bp_exception_resume).release ();
c70a6932
JK
7889
7890 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7891 frame = NULL;
7892
5d5658a1 7893 bp->thread = tp->global_num;
186c406b
TT
7894 inferior_thread ()->control.exception_resume_breakpoint = bp;
7895 }
7896 }
230d2906 7897 catch (const gdb_exception_error &e)
492d29ea
PA
7898 {
7899 /* We want to ignore errors here. */
7900 }
186c406b
TT
7901}
7902
28106bc2
SDJ
7903/* A helper for check_exception_resume that sets an
7904 exception-breakpoint based on a SystemTap probe. */
7905
7906static void
7907insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7908 const struct bound_probe *probe,
28106bc2
SDJ
7909 struct frame_info *frame)
7910{
7911 struct value *arg_value;
7912 CORE_ADDR handler;
7913 struct breakpoint *bp;
7914
7915 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7916 if (!arg_value)
7917 return;
7918
7919 handler = value_as_address (arg_value);
7920
7921 if (debug_infrun)
7922 fprintf_unfiltered (gdb_stdlog,
7923 "infrun: exception resume at %s\n",
08feed99 7924 paddress (probe->objfile->arch (),
28106bc2
SDJ
7925 handler));
7926
7927 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd 7928 handler, bp_exception_resume).release ();
5d5658a1 7929 bp->thread = tp->global_num;
28106bc2
SDJ
7930 inferior_thread ()->control.exception_resume_breakpoint = bp;
7931}
7932
186c406b
TT
7933/* This is called when an exception has been intercepted. Check to
7934 see whether the exception's destination is of interest, and if so,
7935 set an exception resume breakpoint there. */
7936
7937static void
7938check_exception_resume (struct execution_control_state *ecs,
28106bc2 7939 struct frame_info *frame)
186c406b 7940{
729662a5 7941 struct bound_probe probe;
28106bc2
SDJ
7942 struct symbol *func;
7943
7944 /* First see if this exception unwinding breakpoint was set via a
7945 SystemTap probe point. If so, the probe has two arguments: the
7946 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7947 set a breakpoint there. */
6bac7473 7948 probe = find_probe_by_pc (get_frame_pc (frame));
935676c9 7949 if (probe.prob)
28106bc2 7950 {
729662a5 7951 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7952 return;
7953 }
7954
7955 func = get_frame_function (frame);
7956 if (!func)
7957 return;
186c406b 7958
a70b8144 7959 try
186c406b 7960 {
3977b71f 7961 const struct block *b;
8157b174 7962 struct block_iterator iter;
186c406b
TT
7963 struct symbol *sym;
7964 int argno = 0;
7965
7966 /* The exception breakpoint is a thread-specific breakpoint on
7967 the unwinder's debug hook, declared as:
7968
7969 void _Unwind_DebugHook (void *cfa, void *handler);
7970
7971 The CFA argument indicates the frame to which control is
7972 about to be transferred. HANDLER is the destination PC.
7973
7974 We ignore the CFA and set a temporary breakpoint at HANDLER.
7975 This is not extremely efficient but it avoids issues in gdb
7976 with computing the DWARF CFA, and it also works even in weird
7977 cases such as throwing an exception from inside a signal
7978 handler. */
7979
7980 b = SYMBOL_BLOCK_VALUE (func);
7981 ALL_BLOCK_SYMBOLS (b, iter, sym)
7982 {
7983 if (!SYMBOL_IS_ARGUMENT (sym))
7984 continue;
7985
7986 if (argno == 0)
7987 ++argno;
7988 else
7989 {
7990 insert_exception_resume_breakpoint (ecs->event_thread,
7991 b, frame, sym);
7992 break;
7993 }
7994 }
7995 }
230d2906 7996 catch (const gdb_exception_error &e)
492d29ea
PA
7997 {
7998 }
186c406b
TT
7999}
8000
104c1213 8001static void
22bcd14b 8002stop_waiting (struct execution_control_state *ecs)
104c1213 8003{
527159b7 8004 if (debug_infrun)
22bcd14b 8005 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 8006
cd0fc7c3
SS
8007 /* Let callers know we don't want to wait for the inferior anymore. */
8008 ecs->wait_some_more = 0;
fbea99ea 8009
53cccef1 8010 /* If all-stop, but there exists a non-stop target, stop all
fbea99ea 8011 threads now that we're presenting the stop to the user. */
53cccef1 8012 if (!non_stop && exists_non_stop_target ())
fbea99ea 8013 stop_all_threads ();
cd0fc7c3
SS
8014}
8015
4d9d9d04
PA
8016/* Like keep_going, but passes the signal to the inferior, even if the
8017 signal is set to nopass. */
d4f3574e
SS
8018
8019static void
4d9d9d04 8020keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 8021{
d7e15655 8022 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
372316f1 8023 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 8024
d4f3574e 8025 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b 8026 ecs->event_thread->prev_pc
fc75c28b 8027 = regcache_read_pc_protected (get_thread_regcache (ecs->event_thread));
d4f3574e 8028
4d9d9d04 8029 if (ecs->event_thread->control.trap_expected)
d4f3574e 8030 {
4d9d9d04
PA
8031 struct thread_info *tp = ecs->event_thread;
8032
8033 if (debug_infrun)
8034 fprintf_unfiltered (gdb_stdlog,
8035 "infrun: %s has trap_expected set, "
8036 "resuming to collect trap\n",
a068643d 8037 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04 8038
a9ba6bae
PA
8039 /* We haven't yet gotten our trap, and either: intercepted a
8040 non-signal event (e.g., a fork); or took a signal which we
8041 are supposed to pass through to the inferior. Simply
8042 continue. */
64ce06e4 8043 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 8044 }
372316f1
PA
8045 else if (step_over_info_valid_p ())
8046 {
8047 /* Another thread is stepping over a breakpoint in-line. If
8048 this thread needs a step-over too, queue the request. In
8049 either case, this resume must be deferred for later. */
8050 struct thread_info *tp = ecs->event_thread;
8051
8052 if (ecs->hit_singlestep_breakpoint
8053 || thread_still_needs_step_over (tp))
8054 {
8055 if (debug_infrun)
8056 fprintf_unfiltered (gdb_stdlog,
8057 "infrun: step-over already in progress: "
8058 "step-over for %s deferred\n",
a068643d 8059 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
8060 thread_step_over_chain_enqueue (tp);
8061 }
8062 else
8063 {
8064 if (debug_infrun)
8065 fprintf_unfiltered (gdb_stdlog,
8066 "infrun: step-over in progress: "
8067 "resume of %s deferred\n",
a068643d 8068 target_pid_to_str (tp->ptid).c_str ());
372316f1 8069 }
372316f1 8070 }
d4f3574e
SS
8071 else
8072 {
31e77af2 8073 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
8074 int remove_bp;
8075 int remove_wps;
8d297bbf 8076 step_over_what step_what;
31e77af2 8077
d4f3574e 8078 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
8079 anyway (if we got a signal, the user asked it be passed to
8080 the child)
8081 -- or --
8082 We got our expected trap, but decided we should resume from
8083 it.
d4f3574e 8084
a9ba6bae 8085 We're going to run this baby now!
d4f3574e 8086
c36b740a
VP
8087 Note that insert_breakpoints won't try to re-insert
8088 already inserted breakpoints. Therefore, we don't
8089 care if breakpoints were already inserted, or not. */
a9ba6bae 8090
31e77af2
PA
8091 /* If we need to step over a breakpoint, and we're not using
8092 displaced stepping to do so, insert all breakpoints
8093 (watchpoints, etc.) but the one we're stepping over, step one
8094 instruction, and then re-insert the breakpoint when that step
8095 is finished. */
963f9c80 8096
6c4cfb24
PA
8097 step_what = thread_still_needs_step_over (ecs->event_thread);
8098
963f9c80 8099 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
8100 || (step_what & STEP_OVER_BREAKPOINT));
8101 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 8102
cb71640d
PA
8103 /* We can't use displaced stepping if we need to step past a
8104 watchpoint. The instruction copied to the scratch pad would
8105 still trigger the watchpoint. */
8106 if (remove_bp
3fc8eb30 8107 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 8108 {
a01bda52 8109 set_step_over_info (regcache->aspace (),
21edc42f
YQ
8110 regcache_read_pc (regcache), remove_wps,
8111 ecs->event_thread->global_num);
45e8c884 8112 }
963f9c80 8113 else if (remove_wps)
21edc42f 8114 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
8115
8116 /* If we now need to do an in-line step-over, we need to stop
8117 all other threads. Note this must be done before
8118 insert_breakpoints below, because that removes the breakpoint
8119 we're about to step over, otherwise other threads could miss
8120 it. */
fbea99ea 8121 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 8122 stop_all_threads ();
abbb1732 8123
31e77af2 8124 /* Stop stepping if inserting breakpoints fails. */
a70b8144 8125 try
31e77af2
PA
8126 {
8127 insert_breakpoints ();
8128 }
230d2906 8129 catch (const gdb_exception_error &e)
31e77af2
PA
8130 {
8131 exception_print (gdb_stderr, e);
22bcd14b 8132 stop_waiting (ecs);
bdf2a94a 8133 clear_step_over_info ();
31e77af2 8134 return;
d4f3574e
SS
8135 }
8136
963f9c80 8137 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 8138
64ce06e4 8139 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
8140 }
8141
488f131b 8142 prepare_to_wait (ecs);
d4f3574e
SS
8143}
8144
4d9d9d04
PA
8145/* Called when we should continue running the inferior, because the
8146 current event doesn't cause a user visible stop. This does the
8147 resuming part; waiting for the next event is done elsewhere. */
8148
8149static void
8150keep_going (struct execution_control_state *ecs)
8151{
8152 if (ecs->event_thread->control.trap_expected
8153 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
8154 ecs->event_thread->control.trap_expected = 0;
8155
8156 if (!signal_program[ecs->event_thread->suspend.stop_signal])
8157 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
8158 keep_going_pass_signal (ecs);
8159}
8160
104c1213
JM
8161/* This function normally comes after a resume, before
8162 handle_inferior_event exits. It takes care of any last bits of
8163 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 8164
104c1213
JM
8165static void
8166prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 8167{
527159b7 8168 if (debug_infrun)
8a9de0e4 8169 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 8170
104c1213 8171 ecs->wait_some_more = 1;
0b333c5e 8172
0e2dba2d
PA
8173 /* If the target can't async, emulate it by marking the infrun event
8174 handler such that as soon as we get back to the event-loop, we
8175 immediately end up in fetch_inferior_event again calling
8176 target_wait. */
8177 if (!target_can_async_p ())
0b333c5e 8178 mark_infrun_async_event_handler ();
c906108c 8179}
11cf8741 8180
fd664c91 8181/* We are done with the step range of a step/next/si/ni command.
b57bacec 8182 Called once for each n of a "step n" operation. */
fd664c91
PA
8183
8184static void
bdc36728 8185end_stepping_range (struct execution_control_state *ecs)
fd664c91 8186{
bdc36728 8187 ecs->event_thread->control.stop_step = 1;
bdc36728 8188 stop_waiting (ecs);
fd664c91
PA
8189}
8190
33d62d64
JK
8191/* Several print_*_reason functions to print why the inferior has stopped.
8192 We always print something when the inferior exits, or receives a signal.
8193 The rest of the cases are dealt with later on in normal_stop and
8194 print_it_typical. Ideally there should be a call to one of these
8195 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 8196 stop_waiting is called.
33d62d64 8197
fd664c91
PA
8198 Note that we don't call these directly, instead we delegate that to
8199 the interpreters, through observers. Interpreters then call these
8200 with whatever uiout is right. */
33d62d64 8201
fd664c91
PA
8202void
8203print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 8204{
fd664c91 8205 /* For CLI-like interpreters, print nothing. */
33d62d64 8206
112e8700 8207 if (uiout->is_mi_like_p ())
fd664c91 8208 {
112e8700 8209 uiout->field_string ("reason",
fd664c91
PA
8210 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
8211 }
8212}
33d62d64 8213
fd664c91
PA
8214void
8215print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 8216{
33d62d64 8217 annotate_signalled ();
112e8700
SM
8218 if (uiout->is_mi_like_p ())
8219 uiout->field_string
8220 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8221 uiout->text ("\nProgram terminated with signal ");
33d62d64 8222 annotate_signal_name ();
112e8700 8223 uiout->field_string ("signal-name",
2ea28649 8224 gdb_signal_to_name (siggnal));
33d62d64 8225 annotate_signal_name_end ();
112e8700 8226 uiout->text (", ");
33d62d64 8227 annotate_signal_string ();
112e8700 8228 uiout->field_string ("signal-meaning",
2ea28649 8229 gdb_signal_to_string (siggnal));
33d62d64 8230 annotate_signal_string_end ();
112e8700
SM
8231 uiout->text (".\n");
8232 uiout->text ("The program no longer exists.\n");
33d62d64
JK
8233}
8234
fd664c91
PA
8235void
8236print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 8237{
fda326dd 8238 struct inferior *inf = current_inferior ();
a068643d 8239 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
fda326dd 8240
33d62d64
JK
8241 annotate_exited (exitstatus);
8242 if (exitstatus)
8243 {
112e8700
SM
8244 if (uiout->is_mi_like_p ())
8245 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
6a831f06
PA
8246 std::string exit_code_str
8247 = string_printf ("0%o", (unsigned int) exitstatus);
8248 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
8249 plongest (inf->num), pidstr.c_str (),
8250 string_field ("exit-code", exit_code_str.c_str ()));
33d62d64
JK
8251 }
8252 else
11cf8741 8253 {
112e8700
SM
8254 if (uiout->is_mi_like_p ())
8255 uiout->field_string
8256 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
6a831f06
PA
8257 uiout->message ("[Inferior %s (%s) exited normally]\n",
8258 plongest (inf->num), pidstr.c_str ());
33d62d64 8259 }
33d62d64
JK
8260}
8261
012b3a21
WT
8262/* Some targets/architectures can do extra processing/display of
8263 segmentation faults. E.g., Intel MPX boundary faults.
8264 Call the architecture dependent function to handle the fault. */
8265
8266static void
8267handle_segmentation_fault (struct ui_out *uiout)
8268{
8269 struct regcache *regcache = get_current_regcache ();
ac7936df 8270 struct gdbarch *gdbarch = regcache->arch ();
012b3a21
WT
8271
8272 if (gdbarch_handle_segmentation_fault_p (gdbarch))
8273 gdbarch_handle_segmentation_fault (gdbarch, uiout);
8274}
8275
fd664c91
PA
8276void
8277print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 8278{
f303dbd6
PA
8279 struct thread_info *thr = inferior_thread ();
8280
33d62d64
JK
8281 annotate_signal ();
8282
112e8700 8283 if (uiout->is_mi_like_p ())
f303dbd6
PA
8284 ;
8285 else if (show_thread_that_caused_stop ())
33d62d64 8286 {
f303dbd6 8287 const char *name;
33d62d64 8288
112e8700 8289 uiout->text ("\nThread ");
33eca680 8290 uiout->field_string ("thread-id", print_thread_id (thr));
f303dbd6
PA
8291
8292 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8293 if (name != NULL)
8294 {
112e8700 8295 uiout->text (" \"");
33eca680 8296 uiout->field_string ("name", name);
112e8700 8297 uiout->text ("\"");
f303dbd6 8298 }
33d62d64 8299 }
f303dbd6 8300 else
112e8700 8301 uiout->text ("\nProgram");
f303dbd6 8302
112e8700
SM
8303 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8304 uiout->text (" stopped");
33d62d64
JK
8305 else
8306 {
112e8700 8307 uiout->text (" received signal ");
8b93c638 8308 annotate_signal_name ();
112e8700
SM
8309 if (uiout->is_mi_like_p ())
8310 uiout->field_string
8311 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8312 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 8313 annotate_signal_name_end ();
112e8700 8314 uiout->text (", ");
8b93c638 8315 annotate_signal_string ();
112e8700 8316 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
8317
8318 if (siggnal == GDB_SIGNAL_SEGV)
8319 handle_segmentation_fault (uiout);
8320
8b93c638 8321 annotate_signal_string_end ();
33d62d64 8322 }
112e8700 8323 uiout->text (".\n");
33d62d64 8324}
252fbfc8 8325
fd664c91
PA
8326void
8327print_no_history_reason (struct ui_out *uiout)
33d62d64 8328{
112e8700 8329 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 8330}
43ff13b4 8331
0c7e1a46
PA
8332/* Print current location without a level number, if we have changed
8333 functions or hit a breakpoint. Print source line if we have one.
8334 bpstat_print contains the logic deciding in detail what to print,
8335 based on the event(s) that just occurred. */
8336
243a9253
PA
8337static void
8338print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
8339{
8340 int bpstat_ret;
f486487f 8341 enum print_what source_flag;
0c7e1a46
PA
8342 int do_frame_printing = 1;
8343 struct thread_info *tp = inferior_thread ();
8344
8345 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8346 switch (bpstat_ret)
8347 {
8348 case PRINT_UNKNOWN:
8349 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8350 should) carry around the function and does (or should) use
8351 that when doing a frame comparison. */
8352 if (tp->control.stop_step
8353 && frame_id_eq (tp->control.step_frame_id,
8354 get_frame_id (get_current_frame ()))
f2ffa92b
PA
8355 && (tp->control.step_start_function
8356 == find_pc_function (tp->suspend.stop_pc)))
0c7e1a46
PA
8357 {
8358 /* Finished step, just print source line. */
8359 source_flag = SRC_LINE;
8360 }
8361 else
8362 {
8363 /* Print location and source line. */
8364 source_flag = SRC_AND_LOC;
8365 }
8366 break;
8367 case PRINT_SRC_AND_LOC:
8368 /* Print location and source line. */
8369 source_flag = SRC_AND_LOC;
8370 break;
8371 case PRINT_SRC_ONLY:
8372 source_flag = SRC_LINE;
8373 break;
8374 case PRINT_NOTHING:
8375 /* Something bogus. */
8376 source_flag = SRC_LINE;
8377 do_frame_printing = 0;
8378 break;
8379 default:
8380 internal_error (__FILE__, __LINE__, _("Unknown value."));
8381 }
8382
8383 /* The behavior of this routine with respect to the source
8384 flag is:
8385 SRC_LINE: Print only source line
8386 LOCATION: Print only location
8387 SRC_AND_LOC: Print location and source line. */
8388 if (do_frame_printing)
8389 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
8390}
8391
243a9253
PA
8392/* See infrun.h. */
8393
8394void
4c7d57e7 8395print_stop_event (struct ui_out *uiout, bool displays)
243a9253 8396{
243a9253 8397 struct target_waitstatus last;
243a9253
PA
8398 struct thread_info *tp;
8399
5b6d1e4f 8400 get_last_target_status (nullptr, nullptr, &last);
243a9253 8401
67ad9399
TT
8402 {
8403 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 8404
67ad9399 8405 print_stop_location (&last);
243a9253 8406
67ad9399 8407 /* Display the auto-display expressions. */
4c7d57e7
TT
8408 if (displays)
8409 do_displays ();
67ad9399 8410 }
243a9253
PA
8411
8412 tp = inferior_thread ();
8413 if (tp->thread_fsm != NULL
46e3ed7f 8414 && tp->thread_fsm->finished_p ())
243a9253
PA
8415 {
8416 struct return_value_info *rv;
8417
46e3ed7f 8418 rv = tp->thread_fsm->return_value ();
243a9253
PA
8419 if (rv != NULL)
8420 print_return_value (uiout, rv);
8421 }
0c7e1a46
PA
8422}
8423
388a7084
PA
8424/* See infrun.h. */
8425
8426void
8427maybe_remove_breakpoints (void)
8428{
8429 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8430 {
8431 if (remove_breakpoints ())
8432 {
223ffa71 8433 target_terminal::ours_for_output ();
388a7084
PA
8434 printf_filtered (_("Cannot remove breakpoints because "
8435 "program is no longer writable.\nFurther "
8436 "execution is probably impossible.\n"));
8437 }
8438 }
8439}
8440
4c2f2a79
PA
8441/* The execution context that just caused a normal stop. */
8442
8443struct stop_context
8444{
2d844eaf
TT
8445 stop_context ();
8446 ~stop_context ();
8447
8448 DISABLE_COPY_AND_ASSIGN (stop_context);
8449
8450 bool changed () const;
8451
4c2f2a79
PA
8452 /* The stop ID. */
8453 ULONGEST stop_id;
c906108c 8454
4c2f2a79 8455 /* The event PTID. */
c906108c 8456
4c2f2a79
PA
8457 ptid_t ptid;
8458
8459 /* If stopp for a thread event, this is the thread that caused the
8460 stop. */
8461 struct thread_info *thread;
8462
8463 /* The inferior that caused the stop. */
8464 int inf_num;
8465};
8466
2d844eaf 8467/* Initializes a new stop context. If stopped for a thread event, this
4c2f2a79
PA
8468 takes a strong reference to the thread. */
8469
2d844eaf 8470stop_context::stop_context ()
4c2f2a79 8471{
2d844eaf
TT
8472 stop_id = get_stop_id ();
8473 ptid = inferior_ptid;
8474 inf_num = current_inferior ()->num;
4c2f2a79 8475
d7e15655 8476 if (inferior_ptid != null_ptid)
4c2f2a79
PA
8477 {
8478 /* Take a strong reference so that the thread can't be deleted
8479 yet. */
2d844eaf
TT
8480 thread = inferior_thread ();
8481 thread->incref ();
4c2f2a79
PA
8482 }
8483 else
2d844eaf 8484 thread = NULL;
4c2f2a79
PA
8485}
8486
8487/* Release a stop context previously created with save_stop_context.
8488 Releases the strong reference to the thread as well. */
8489
2d844eaf 8490stop_context::~stop_context ()
4c2f2a79 8491{
2d844eaf
TT
8492 if (thread != NULL)
8493 thread->decref ();
4c2f2a79
PA
8494}
8495
8496/* Return true if the current context no longer matches the saved stop
8497 context. */
8498
2d844eaf
TT
8499bool
8500stop_context::changed () const
8501{
8502 if (ptid != inferior_ptid)
8503 return true;
8504 if (inf_num != current_inferior ()->num)
8505 return true;
8506 if (thread != NULL && thread->state != THREAD_STOPPED)
8507 return true;
8508 if (get_stop_id () != stop_id)
8509 return true;
8510 return false;
4c2f2a79
PA
8511}
8512
8513/* See infrun.h. */
8514
8515int
96baa820 8516normal_stop (void)
c906108c 8517{
73b65bb0 8518 struct target_waitstatus last;
73b65bb0 8519
5b6d1e4f 8520 get_last_target_status (nullptr, nullptr, &last);
73b65bb0 8521
4c2f2a79
PA
8522 new_stop_id ();
8523
29f49a6a
PA
8524 /* If an exception is thrown from this point on, make sure to
8525 propagate GDB's knowledge of the executing state to the
8526 frontend/user running state. A QUIT is an easy exception to see
8527 here, so do this before any filtered output. */
731f534f 8528
5b6d1e4f 8529 ptid_t finish_ptid = null_ptid;
731f534f 8530
c35b1492 8531 if (!non_stop)
5b6d1e4f 8532 finish_ptid = minus_one_ptid;
e1316e60
PA
8533 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8534 || last.kind == TARGET_WAITKIND_EXITED)
8535 {
8536 /* On some targets, we may still have live threads in the
8537 inferior when we get a process exit event. E.g., for
8538 "checkpoint", when the current checkpoint/fork exits,
8539 linux-fork.c automatically switches to another fork from
8540 within target_mourn_inferior. */
731f534f 8541 if (inferior_ptid != null_ptid)
5b6d1e4f 8542 finish_ptid = ptid_t (inferior_ptid.pid ());
e1316e60
PA
8543 }
8544 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
5b6d1e4f
PA
8545 finish_ptid = inferior_ptid;
8546
8547 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8548 if (finish_ptid != null_ptid)
8549 {
8550 maybe_finish_thread_state.emplace
8551 (user_visible_resume_target (finish_ptid), finish_ptid);
8552 }
29f49a6a 8553
b57bacec
PA
8554 /* As we're presenting a stop, and potentially removing breakpoints,
8555 update the thread list so we can tell whether there are threads
8556 running on the target. With target remote, for example, we can
8557 only learn about new threads when we explicitly update the thread
8558 list. Do this before notifying the interpreters about signal
8559 stops, end of stepping ranges, etc., so that the "new thread"
8560 output is emitted before e.g., "Program received signal FOO",
8561 instead of after. */
8562 update_thread_list ();
8563
8564 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
76727919 8565 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
b57bacec 8566
c906108c
SS
8567 /* As with the notification of thread events, we want to delay
8568 notifying the user that we've switched thread context until
8569 the inferior actually stops.
8570
73b65bb0
DJ
8571 There's no point in saying anything if the inferior has exited.
8572 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8573 "received a signal".
8574
8575 Also skip saying anything in non-stop mode. In that mode, as we
8576 don't want GDB to switch threads behind the user's back, to avoid
8577 races where the user is typing a command to apply to thread x,
8578 but GDB switches to thread y before the user finishes entering
8579 the command, fetch_inferior_event installs a cleanup to restore
8580 the current thread back to the thread the user had selected right
8581 after this event is handled, so we're not really switching, only
8582 informing of a stop. */
4f8d22e3 8583 if (!non_stop
731f534f 8584 && previous_inferior_ptid != inferior_ptid
73b65bb0
DJ
8585 && target_has_execution
8586 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8587 && last.kind != TARGET_WAITKIND_EXITED
8588 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8589 {
0e454242 8590 SWITCH_THRU_ALL_UIS ()
3b12939d 8591 {
223ffa71 8592 target_terminal::ours_for_output ();
3b12939d 8593 printf_filtered (_("[Switching to %s]\n"),
a068643d 8594 target_pid_to_str (inferior_ptid).c_str ());
3b12939d
PA
8595 annotate_thread_changed ();
8596 }
39f77062 8597 previous_inferior_ptid = inferior_ptid;
c906108c 8598 }
c906108c 8599
0e5bf2a8
PA
8600 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8601 {
0e454242 8602 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8603 if (current_ui->prompt_state == PROMPT_BLOCKED)
8604 {
223ffa71 8605 target_terminal::ours_for_output ();
3b12939d
PA
8606 printf_filtered (_("No unwaited-for children left.\n"));
8607 }
0e5bf2a8
PA
8608 }
8609
b57bacec 8610 /* Note: this depends on the update_thread_list call above. */
388a7084 8611 maybe_remove_breakpoints ();
c906108c 8612
c906108c
SS
8613 /* If an auto-display called a function and that got a signal,
8614 delete that auto-display to avoid an infinite recursion. */
8615
8616 if (stopped_by_random_signal)
8617 disable_current_display ();
8618
0e454242 8619 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8620 {
8621 async_enable_stdin ();
8622 }
c906108c 8623
388a7084 8624 /* Let the user/frontend see the threads as stopped. */
731f534f 8625 maybe_finish_thread_state.reset ();
388a7084
PA
8626
8627 /* Select innermost stack frame - i.e., current frame is frame 0,
8628 and current location is based on that. Handle the case where the
8629 dummy call is returning after being stopped. E.g. the dummy call
8630 previously hit a breakpoint. (If the dummy call returns
8631 normally, we won't reach here.) Do this before the stop hook is
8632 run, so that it doesn't get to see the temporary dummy frame,
8633 which is not where we'll present the stop. */
8634 if (has_stack_frames ())
8635 {
8636 if (stop_stack_dummy == STOP_STACK_DUMMY)
8637 {
8638 /* Pop the empty frame that contains the stack dummy. This
8639 also restores inferior state prior to the call (struct
8640 infcall_suspend_state). */
8641 struct frame_info *frame = get_current_frame ();
8642
8643 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8644 frame_pop (frame);
8645 /* frame_pop calls reinit_frame_cache as the last thing it
8646 does which means there's now no selected frame. */
8647 }
8648
8649 select_frame (get_current_frame ());
8650
8651 /* Set the current source location. */
8652 set_current_sal_from_frame (get_current_frame ());
8653 }
dd7e2d2b
PA
8654
8655 /* Look up the hook_stop and run it (CLI internally handles problem
8656 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8657 if (stop_command != NULL)
8658 {
2d844eaf 8659 stop_context saved_context;
4c2f2a79 8660
a70b8144 8661 try
bf469271
PA
8662 {
8663 execute_cmd_pre_hook (stop_command);
8664 }
230d2906 8665 catch (const gdb_exception &ex)
bf469271
PA
8666 {
8667 exception_fprintf (gdb_stderr, ex,
8668 "Error while running hook_stop:\n");
8669 }
4c2f2a79
PA
8670
8671 /* If the stop hook resumes the target, then there's no point in
8672 trying to notify about the previous stop; its context is
8673 gone. Likewise if the command switches thread or inferior --
8674 the observers would print a stop for the wrong
8675 thread/inferior. */
2d844eaf
TT
8676 if (saved_context.changed ())
8677 return 1;
4c2f2a79 8678 }
dd7e2d2b 8679
388a7084
PA
8680 /* Notify observers about the stop. This is where the interpreters
8681 print the stop event. */
d7e15655 8682 if (inferior_ptid != null_ptid)
76727919 8683 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
388a7084
PA
8684 stop_print_frame);
8685 else
76727919 8686 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
347bddb7 8687
243a9253
PA
8688 annotate_stopped ();
8689
48844aa6
PA
8690 if (target_has_execution)
8691 {
8692 if (last.kind != TARGET_WAITKIND_SIGNALLED
fe726667
PA
8693 && last.kind != TARGET_WAITKIND_EXITED
8694 && last.kind != TARGET_WAITKIND_NO_RESUMED)
48844aa6
PA
8695 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8696 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8697 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8698 }
6c95b8df
PA
8699
8700 /* Try to get rid of automatically added inferiors that are no
8701 longer needed. Keeping those around slows down things linearly.
8702 Note that this never removes the current inferior. */
8703 prune_inferiors ();
4c2f2a79
PA
8704
8705 return 0;
c906108c 8706}
c906108c 8707\f
c5aa993b 8708int
96baa820 8709signal_stop_state (int signo)
c906108c 8710{
d6b48e9c 8711 return signal_stop[signo];
c906108c
SS
8712}
8713
c5aa993b 8714int
96baa820 8715signal_print_state (int signo)
c906108c
SS
8716{
8717 return signal_print[signo];
8718}
8719
c5aa993b 8720int
96baa820 8721signal_pass_state (int signo)
c906108c
SS
8722{
8723 return signal_program[signo];
8724}
8725
2455069d
UW
8726static void
8727signal_cache_update (int signo)
8728{
8729 if (signo == -1)
8730 {
a493e3e2 8731 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8732 signal_cache_update (signo);
8733
8734 return;
8735 }
8736
8737 signal_pass[signo] = (signal_stop[signo] == 0
8738 && signal_print[signo] == 0
ab04a2af
TT
8739 && signal_program[signo] == 1
8740 && signal_catch[signo] == 0);
2455069d
UW
8741}
8742
488f131b 8743int
7bda5e4a 8744signal_stop_update (int signo, int state)
d4f3574e
SS
8745{
8746 int ret = signal_stop[signo];
abbb1732 8747
d4f3574e 8748 signal_stop[signo] = state;
2455069d 8749 signal_cache_update (signo);
d4f3574e
SS
8750 return ret;
8751}
8752
488f131b 8753int
7bda5e4a 8754signal_print_update (int signo, int state)
d4f3574e
SS
8755{
8756 int ret = signal_print[signo];
abbb1732 8757
d4f3574e 8758 signal_print[signo] = state;
2455069d 8759 signal_cache_update (signo);
d4f3574e
SS
8760 return ret;
8761}
8762
488f131b 8763int
7bda5e4a 8764signal_pass_update (int signo, int state)
d4f3574e
SS
8765{
8766 int ret = signal_program[signo];
abbb1732 8767
d4f3574e 8768 signal_program[signo] = state;
2455069d 8769 signal_cache_update (signo);
d4f3574e
SS
8770 return ret;
8771}
8772
ab04a2af
TT
8773/* Update the global 'signal_catch' from INFO and notify the
8774 target. */
8775
8776void
8777signal_catch_update (const unsigned int *info)
8778{
8779 int i;
8780
8781 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8782 signal_catch[i] = info[i] > 0;
8783 signal_cache_update (-1);
adc6a863 8784 target_pass_signals (signal_pass);
ab04a2af
TT
8785}
8786
c906108c 8787static void
96baa820 8788sig_print_header (void)
c906108c 8789{
3e43a32a
MS
8790 printf_filtered (_("Signal Stop\tPrint\tPass "
8791 "to program\tDescription\n"));
c906108c
SS
8792}
8793
8794static void
2ea28649 8795sig_print_info (enum gdb_signal oursig)
c906108c 8796{
2ea28649 8797 const char *name = gdb_signal_to_name (oursig);
c906108c 8798 int name_padding = 13 - strlen (name);
96baa820 8799
c906108c
SS
8800 if (name_padding <= 0)
8801 name_padding = 0;
8802
8803 printf_filtered ("%s", name);
488f131b 8804 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8805 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8806 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8807 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8808 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8809}
8810
8811/* Specify how various signals in the inferior should be handled. */
8812
8813static void
0b39b52e 8814handle_command (const char *args, int from_tty)
c906108c 8815{
c906108c 8816 int digits, wordlen;
b926417a 8817 int sigfirst, siglast;
2ea28649 8818 enum gdb_signal oursig;
c906108c 8819 int allsigs;
c906108c
SS
8820
8821 if (args == NULL)
8822 {
e2e0b3e5 8823 error_no_arg (_("signal to handle"));
c906108c
SS
8824 }
8825
1777feb0 8826 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8827
adc6a863
PA
8828 const size_t nsigs = GDB_SIGNAL_LAST;
8829 unsigned char sigs[nsigs] {};
c906108c 8830
1777feb0 8831 /* Break the command line up into args. */
c906108c 8832
773a1edc 8833 gdb_argv built_argv (args);
c906108c
SS
8834
8835 /* Walk through the args, looking for signal oursigs, signal names, and
8836 actions. Signal numbers and signal names may be interspersed with
8837 actions, with the actions being performed for all signals cumulatively
1777feb0 8838 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8839
773a1edc 8840 for (char *arg : built_argv)
c906108c 8841 {
773a1edc
TT
8842 wordlen = strlen (arg);
8843 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8844 {;
8845 }
8846 allsigs = 0;
8847 sigfirst = siglast = -1;
8848
773a1edc 8849 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8850 {
8851 /* Apply action to all signals except those used by the
1777feb0 8852 debugger. Silently skip those. */
c906108c
SS
8853 allsigs = 1;
8854 sigfirst = 0;
8855 siglast = nsigs - 1;
8856 }
773a1edc 8857 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8858 {
8859 SET_SIGS (nsigs, sigs, signal_stop);
8860 SET_SIGS (nsigs, sigs, signal_print);
8861 }
773a1edc 8862 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8863 {
8864 UNSET_SIGS (nsigs, sigs, signal_program);
8865 }
773a1edc 8866 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8867 {
8868 SET_SIGS (nsigs, sigs, signal_print);
8869 }
773a1edc 8870 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8871 {
8872 SET_SIGS (nsigs, sigs, signal_program);
8873 }
773a1edc 8874 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8875 {
8876 UNSET_SIGS (nsigs, sigs, signal_stop);
8877 }
773a1edc 8878 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8879 {
8880 SET_SIGS (nsigs, sigs, signal_program);
8881 }
773a1edc 8882 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8883 {
8884 UNSET_SIGS (nsigs, sigs, signal_print);
8885 UNSET_SIGS (nsigs, sigs, signal_stop);
8886 }
773a1edc 8887 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8888 {
8889 UNSET_SIGS (nsigs, sigs, signal_program);
8890 }
8891 else if (digits > 0)
8892 {
8893 /* It is numeric. The numeric signal refers to our own
8894 internal signal numbering from target.h, not to host/target
8895 signal number. This is a feature; users really should be
8896 using symbolic names anyway, and the common ones like
8897 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8898
8899 sigfirst = siglast = (int)
773a1edc
TT
8900 gdb_signal_from_command (atoi (arg));
8901 if (arg[digits] == '-')
c906108c
SS
8902 {
8903 siglast = (int)
773a1edc 8904 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8905 }
8906 if (sigfirst > siglast)
8907 {
1777feb0 8908 /* Bet he didn't figure we'd think of this case... */
b926417a 8909 std::swap (sigfirst, siglast);
c906108c
SS
8910 }
8911 }
8912 else
8913 {
773a1edc 8914 oursig = gdb_signal_from_name (arg);
a493e3e2 8915 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8916 {
8917 sigfirst = siglast = (int) oursig;
8918 }
8919 else
8920 {
8921 /* Not a number and not a recognized flag word => complain. */
773a1edc 8922 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8923 }
8924 }
8925
8926 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8927 which signals to apply actions to. */
c906108c 8928
b926417a 8929 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
c906108c 8930 {
2ea28649 8931 switch ((enum gdb_signal) signum)
c906108c 8932 {
a493e3e2
PA
8933 case GDB_SIGNAL_TRAP:
8934 case GDB_SIGNAL_INT:
c906108c
SS
8935 if (!allsigs && !sigs[signum])
8936 {
9e2f0ad4 8937 if (query (_("%s is used by the debugger.\n\
3e43a32a 8938Are you sure you want to change it? "),
2ea28649 8939 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8940 {
8941 sigs[signum] = 1;
8942 }
8943 else
c119e040 8944 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8945 }
8946 break;
a493e3e2
PA
8947 case GDB_SIGNAL_0:
8948 case GDB_SIGNAL_DEFAULT:
8949 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8950 /* Make sure that "all" doesn't print these. */
8951 break;
8952 default:
8953 sigs[signum] = 1;
8954 break;
8955 }
8956 }
c906108c
SS
8957 }
8958
b926417a 8959 for (int signum = 0; signum < nsigs; signum++)
3a031f65
PA
8960 if (sigs[signum])
8961 {
2455069d 8962 signal_cache_update (-1);
adc6a863
PA
8963 target_pass_signals (signal_pass);
8964 target_program_signals (signal_program);
c906108c 8965
3a031f65
PA
8966 if (from_tty)
8967 {
8968 /* Show the results. */
8969 sig_print_header ();
8970 for (; signum < nsigs; signum++)
8971 if (sigs[signum])
aead7601 8972 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8973 }
8974
8975 break;
8976 }
c906108c
SS
8977}
8978
de0bea00
MF
8979/* Complete the "handle" command. */
8980
eb3ff9a5 8981static void
de0bea00 8982handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8983 completion_tracker &tracker,
6f937416 8984 const char *text, const char *word)
de0bea00 8985{
de0bea00
MF
8986 static const char * const keywords[] =
8987 {
8988 "all",
8989 "stop",
8990 "ignore",
8991 "print",
8992 "pass",
8993 "nostop",
8994 "noignore",
8995 "noprint",
8996 "nopass",
8997 NULL,
8998 };
8999
eb3ff9a5
PA
9000 signal_completer (ignore, tracker, text, word);
9001 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
9002}
9003
2ea28649
PA
9004enum gdb_signal
9005gdb_signal_from_command (int num)
ed01b82c
PA
9006{
9007 if (num >= 1 && num <= 15)
2ea28649 9008 return (enum gdb_signal) num;
ed01b82c
PA
9009 error (_("Only signals 1-15 are valid as numeric signals.\n\
9010Use \"info signals\" for a list of symbolic signals."));
9011}
9012
c906108c
SS
9013/* Print current contents of the tables set by the handle command.
9014 It is possible we should just be printing signals actually used
9015 by the current target (but for things to work right when switching
9016 targets, all signals should be in the signal tables). */
9017
9018static void
1d12d88f 9019info_signals_command (const char *signum_exp, int from_tty)
c906108c 9020{
2ea28649 9021 enum gdb_signal oursig;
abbb1732 9022
c906108c
SS
9023 sig_print_header ();
9024
9025 if (signum_exp)
9026 {
9027 /* First see if this is a symbol name. */
2ea28649 9028 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 9029 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
9030 {
9031 /* No, try numeric. */
9032 oursig =
2ea28649 9033 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
9034 }
9035 sig_print_info (oursig);
9036 return;
9037 }
9038
9039 printf_filtered ("\n");
9040 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
9041 for (oursig = GDB_SIGNAL_FIRST;
9042 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 9043 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
9044 {
9045 QUIT;
9046
a493e3e2
PA
9047 if (oursig != GDB_SIGNAL_UNKNOWN
9048 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
9049 sig_print_info (oursig);
9050 }
9051
3e43a32a
MS
9052 printf_filtered (_("\nUse the \"handle\" command "
9053 "to change these tables.\n"));
c906108c 9054}
4aa995e1
PA
9055
9056/* The $_siginfo convenience variable is a bit special. We don't know
9057 for sure the type of the value until we actually have a chance to
7a9dd1b2 9058 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
9059 also dependent on which thread you have selected.
9060
9061 1. making $_siginfo be an internalvar that creates a new value on
9062 access.
9063
9064 2. making the value of $_siginfo be an lval_computed value. */
9065
9066/* This function implements the lval_computed support for reading a
9067 $_siginfo value. */
9068
9069static void
9070siginfo_value_read (struct value *v)
9071{
9072 LONGEST transferred;
9073
a911d87a
PA
9074 /* If we can access registers, so can we access $_siginfo. Likewise
9075 vice versa. */
9076 validate_registers_access ();
c709acd1 9077
4aa995e1 9078 transferred =
8b88a78e 9079 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
4aa995e1
PA
9080 NULL,
9081 value_contents_all_raw (v),
9082 value_offset (v),
9083 TYPE_LENGTH (value_type (v)));
9084
9085 if (transferred != TYPE_LENGTH (value_type (v)))
9086 error (_("Unable to read siginfo"));
9087}
9088
9089/* This function implements the lval_computed support for writing a
9090 $_siginfo value. */
9091
9092static void
9093siginfo_value_write (struct value *v, struct value *fromval)
9094{
9095 LONGEST transferred;
9096
a911d87a
PA
9097 /* If we can access registers, so can we access $_siginfo. Likewise
9098 vice versa. */
9099 validate_registers_access ();
c709acd1 9100
8b88a78e 9101 transferred = target_write (current_top_target (),
4aa995e1
PA
9102 TARGET_OBJECT_SIGNAL_INFO,
9103 NULL,
9104 value_contents_all_raw (fromval),
9105 value_offset (v),
9106 TYPE_LENGTH (value_type (fromval)));
9107
9108 if (transferred != TYPE_LENGTH (value_type (fromval)))
9109 error (_("Unable to write siginfo"));
9110}
9111
c8f2448a 9112static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
9113 {
9114 siginfo_value_read,
9115 siginfo_value_write
9116 };
9117
9118/* Return a new value with the correct type for the siginfo object of
78267919
UW
9119 the current thread using architecture GDBARCH. Return a void value
9120 if there's no object available. */
4aa995e1 9121
2c0b251b 9122static struct value *
22d2b532
SDJ
9123siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
9124 void *ignore)
4aa995e1 9125{
4aa995e1 9126 if (target_has_stack
d7e15655 9127 && inferior_ptid != null_ptid
78267919 9128 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 9129 {
78267919 9130 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 9131
78267919 9132 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
9133 }
9134
78267919 9135 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
9136}
9137
c906108c 9138\f
16c381f0
JK
9139/* infcall_suspend_state contains state about the program itself like its
9140 registers and any signal it received when it last stopped.
9141 This state must be restored regardless of how the inferior function call
9142 ends (either successfully, or after it hits a breakpoint or signal)
9143 if the program is to properly continue where it left off. */
9144
6bf78e29 9145class infcall_suspend_state
7a292a7a 9146{
6bf78e29
AB
9147public:
9148 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
9149 once the inferior function call has finished. */
9150 infcall_suspend_state (struct gdbarch *gdbarch,
9151 const struct thread_info *tp,
9152 struct regcache *regcache)
9153 : m_thread_suspend (tp->suspend),
9154 m_registers (new readonly_detached_regcache (*regcache))
9155 {
9156 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
9157
9158 if (gdbarch_get_siginfo_type_p (gdbarch))
9159 {
9160 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9161 size_t len = TYPE_LENGTH (type);
9162
9163 siginfo_data.reset ((gdb_byte *) xmalloc (len));
9164
9165 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9166 siginfo_data.get (), 0, len) != len)
9167 {
9168 /* Errors ignored. */
9169 siginfo_data.reset (nullptr);
9170 }
9171 }
9172
9173 if (siginfo_data)
9174 {
9175 m_siginfo_gdbarch = gdbarch;
9176 m_siginfo_data = std::move (siginfo_data);
9177 }
9178 }
9179
9180 /* Return a pointer to the stored register state. */
16c381f0 9181
6bf78e29
AB
9182 readonly_detached_regcache *registers () const
9183 {
9184 return m_registers.get ();
9185 }
9186
9187 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
9188
9189 void restore (struct gdbarch *gdbarch,
9190 struct thread_info *tp,
9191 struct regcache *regcache) const
9192 {
9193 tp->suspend = m_thread_suspend;
9194
9195 if (m_siginfo_gdbarch == gdbarch)
9196 {
9197 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9198
9199 /* Errors ignored. */
9200 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9201 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
9202 }
9203
9204 /* The inferior can be gone if the user types "print exit(0)"
9205 (and perhaps other times). */
9206 if (target_has_execution)
9207 /* NB: The register write goes through to the target. */
9208 regcache->restore (registers ());
9209 }
9210
9211private:
9212 /* How the current thread stopped before the inferior function call was
9213 executed. */
9214 struct thread_suspend_state m_thread_suspend;
9215
9216 /* The registers before the inferior function call was executed. */
9217 std::unique_ptr<readonly_detached_regcache> m_registers;
1736ad11 9218
35515841 9219 /* Format of SIGINFO_DATA or NULL if it is not present. */
6bf78e29 9220 struct gdbarch *m_siginfo_gdbarch = nullptr;
1736ad11
JK
9221
9222 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
9223 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
9224 content would be invalid. */
6bf78e29 9225 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
b89667eb
DE
9226};
9227
cb524840
TT
9228infcall_suspend_state_up
9229save_infcall_suspend_state ()
b89667eb 9230{
b89667eb 9231 struct thread_info *tp = inferior_thread ();
1736ad11 9232 struct regcache *regcache = get_current_regcache ();
ac7936df 9233 struct gdbarch *gdbarch = regcache->arch ();
1736ad11 9234
6bf78e29
AB
9235 infcall_suspend_state_up inf_state
9236 (new struct infcall_suspend_state (gdbarch, tp, regcache));
1736ad11 9237
6bf78e29
AB
9238 /* Having saved the current state, adjust the thread state, discarding
9239 any stop signal information. The stop signal is not useful when
9240 starting an inferior function call, and run_inferior_call will not use
9241 the signal due to its `proceed' call with GDB_SIGNAL_0. */
a493e3e2 9242 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 9243
b89667eb
DE
9244 return inf_state;
9245}
9246
9247/* Restore inferior session state to INF_STATE. */
9248
9249void
16c381f0 9250restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
9251{
9252 struct thread_info *tp = inferior_thread ();
1736ad11 9253 struct regcache *regcache = get_current_regcache ();
ac7936df 9254 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 9255
6bf78e29 9256 inf_state->restore (gdbarch, tp, regcache);
16c381f0 9257 discard_infcall_suspend_state (inf_state);
b89667eb
DE
9258}
9259
b89667eb 9260void
16c381f0 9261discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 9262{
dd848631 9263 delete inf_state;
b89667eb
DE
9264}
9265
daf6667d 9266readonly_detached_regcache *
16c381f0 9267get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb 9268{
6bf78e29 9269 return inf_state->registers ();
b89667eb
DE
9270}
9271
16c381f0
JK
9272/* infcall_control_state contains state regarding gdb's control of the
9273 inferior itself like stepping control. It also contains session state like
9274 the user's currently selected frame. */
b89667eb 9275
16c381f0 9276struct infcall_control_state
b89667eb 9277{
16c381f0
JK
9278 struct thread_control_state thread_control;
9279 struct inferior_control_state inferior_control;
d82142e2
JK
9280
9281 /* Other fields: */
ee841dd8
TT
9282 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9283 int stopped_by_random_signal = 0;
7a292a7a 9284
b89667eb 9285 /* ID if the selected frame when the inferior function call was made. */
ee841dd8 9286 struct frame_id selected_frame_id {};
7a292a7a
SS
9287};
9288
c906108c 9289/* Save all of the information associated with the inferior<==>gdb
b89667eb 9290 connection. */
c906108c 9291
cb524840
TT
9292infcall_control_state_up
9293save_infcall_control_state ()
c906108c 9294{
cb524840 9295 infcall_control_state_up inf_status (new struct infcall_control_state);
4e1c45ea 9296 struct thread_info *tp = inferior_thread ();
d6b48e9c 9297 struct inferior *inf = current_inferior ();
7a292a7a 9298
16c381f0
JK
9299 inf_status->thread_control = tp->control;
9300 inf_status->inferior_control = inf->control;
d82142e2 9301
8358c15c 9302 tp->control.step_resume_breakpoint = NULL;
5b79abe7 9303 tp->control.exception_resume_breakpoint = NULL;
8358c15c 9304
16c381f0
JK
9305 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9306 chain. If caller's caller is walking the chain, they'll be happier if we
9307 hand them back the original chain when restore_infcall_control_state is
9308 called. */
9309 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
9310
9311 /* Other fields: */
9312 inf_status->stop_stack_dummy = stop_stack_dummy;
9313 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 9314
206415a3 9315 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 9316
7a292a7a 9317 return inf_status;
c906108c
SS
9318}
9319
bf469271
PA
9320static void
9321restore_selected_frame (const frame_id &fid)
c906108c 9322{
bf469271 9323 frame_info *frame = frame_find_by_id (fid);
c906108c 9324
aa0cd9c1
AC
9325 /* If inf_status->selected_frame_id is NULL, there was no previously
9326 selected frame. */
101dcfbe 9327 if (frame == NULL)
c906108c 9328 {
8a3fe4f8 9329 warning (_("Unable to restore previously selected frame."));
bf469271 9330 return;
c906108c
SS
9331 }
9332
0f7d239c 9333 select_frame (frame);
c906108c
SS
9334}
9335
b89667eb
DE
9336/* Restore inferior session state to INF_STATUS. */
9337
c906108c 9338void
16c381f0 9339restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 9340{
4e1c45ea 9341 struct thread_info *tp = inferior_thread ();
d6b48e9c 9342 struct inferior *inf = current_inferior ();
4e1c45ea 9343
8358c15c
JK
9344 if (tp->control.step_resume_breakpoint)
9345 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9346
5b79abe7
TT
9347 if (tp->control.exception_resume_breakpoint)
9348 tp->control.exception_resume_breakpoint->disposition
9349 = disp_del_at_next_stop;
9350
d82142e2 9351 /* Handle the bpstat_copy of the chain. */
16c381f0 9352 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 9353
16c381f0
JK
9354 tp->control = inf_status->thread_control;
9355 inf->control = inf_status->inferior_control;
d82142e2
JK
9356
9357 /* Other fields: */
9358 stop_stack_dummy = inf_status->stop_stack_dummy;
9359 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 9360
b89667eb 9361 if (target_has_stack)
c906108c 9362 {
bf469271 9363 /* The point of the try/catch is that if the stack is clobbered,
101dcfbe
AC
9364 walking the stack might encounter a garbage pointer and
9365 error() trying to dereference it. */
a70b8144 9366 try
bf469271
PA
9367 {
9368 restore_selected_frame (inf_status->selected_frame_id);
9369 }
230d2906 9370 catch (const gdb_exception_error &ex)
bf469271
PA
9371 {
9372 exception_fprintf (gdb_stderr, ex,
9373 "Unable to restore previously selected frame:\n");
9374 /* Error in restoring the selected frame. Select the
9375 innermost frame. */
9376 select_frame (get_current_frame ());
9377 }
c906108c 9378 }
c906108c 9379
ee841dd8 9380 delete inf_status;
7a292a7a 9381}
c906108c
SS
9382
9383void
16c381f0 9384discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 9385{
8358c15c
JK
9386 if (inf_status->thread_control.step_resume_breakpoint)
9387 inf_status->thread_control.step_resume_breakpoint->disposition
9388 = disp_del_at_next_stop;
9389
5b79abe7
TT
9390 if (inf_status->thread_control.exception_resume_breakpoint)
9391 inf_status->thread_control.exception_resume_breakpoint->disposition
9392 = disp_del_at_next_stop;
9393
1777feb0 9394 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 9395 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 9396
ee841dd8 9397 delete inf_status;
7a292a7a 9398}
b89667eb 9399\f
7f89fd65 9400/* See infrun.h. */
0c557179
SDJ
9401
9402void
9403clear_exit_convenience_vars (void)
9404{
9405 clear_internalvar (lookup_internalvar ("_exitsignal"));
9406 clear_internalvar (lookup_internalvar ("_exitcode"));
9407}
c5aa993b 9408\f
488f131b 9409
b2175913
MS
9410/* User interface for reverse debugging:
9411 Set exec-direction / show exec-direction commands
9412 (returns error unless target implements to_set_exec_direction method). */
9413
170742de 9414enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
9415static const char exec_forward[] = "forward";
9416static const char exec_reverse[] = "reverse";
9417static const char *exec_direction = exec_forward;
40478521 9418static const char *const exec_direction_names[] = {
b2175913
MS
9419 exec_forward,
9420 exec_reverse,
9421 NULL
9422};
9423
9424static void
eb4c3f4a 9425set_exec_direction_func (const char *args, int from_tty,
b2175913
MS
9426 struct cmd_list_element *cmd)
9427{
9428 if (target_can_execute_reverse)
9429 {
9430 if (!strcmp (exec_direction, exec_forward))
9431 execution_direction = EXEC_FORWARD;
9432 else if (!strcmp (exec_direction, exec_reverse))
9433 execution_direction = EXEC_REVERSE;
9434 }
8bbed405
MS
9435 else
9436 {
9437 exec_direction = exec_forward;
9438 error (_("Target does not support this operation."));
9439 }
b2175913
MS
9440}
9441
9442static void
9443show_exec_direction_func (struct ui_file *out, int from_tty,
9444 struct cmd_list_element *cmd, const char *value)
9445{
9446 switch (execution_direction) {
9447 case EXEC_FORWARD:
9448 fprintf_filtered (out, _("Forward.\n"));
9449 break;
9450 case EXEC_REVERSE:
9451 fprintf_filtered (out, _("Reverse.\n"));
9452 break;
b2175913 9453 default:
d8b34453
PA
9454 internal_error (__FILE__, __LINE__,
9455 _("bogus execution_direction value: %d"),
9456 (int) execution_direction);
b2175913
MS
9457 }
9458}
9459
d4db2f36
PA
9460static void
9461show_schedule_multiple (struct ui_file *file, int from_tty,
9462 struct cmd_list_element *c, const char *value)
9463{
3e43a32a
MS
9464 fprintf_filtered (file, _("Resuming the execution of threads "
9465 "of all processes is %s.\n"), value);
d4db2f36 9466}
ad52ddc6 9467
22d2b532
SDJ
9468/* Implementation of `siginfo' variable. */
9469
9470static const struct internalvar_funcs siginfo_funcs =
9471{
9472 siginfo_make_value,
9473 NULL,
9474 NULL
9475};
9476
372316f1
PA
9477/* Callback for infrun's target events source. This is marked when a
9478 thread has a pending status to process. */
9479
9480static void
9481infrun_async_inferior_event_handler (gdb_client_data data)
9482{
b1a35af2 9483 inferior_event_handler (INF_REG_EVENT);
372316f1
PA
9484}
9485
6c265988 9486void _initialize_infrun ();
c906108c 9487void
6c265988 9488_initialize_infrun ()
c906108c 9489{
de0bea00 9490 struct cmd_list_element *c;
c906108c 9491
372316f1
PA
9492 /* Register extra event sources in the event loop. */
9493 infrun_async_inferior_event_token
9494 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9495
11db9430 9496 add_info ("signals", info_signals_command, _("\
1bedd215
AC
9497What debugger does when program gets various signals.\n\
9498Specify a signal as argument to print info on that signal only."));
c906108c
SS
9499 add_info_alias ("handle", "signals", 0);
9500
de0bea00 9501 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9502Specify how to handle signals.\n\
486c7739 9503Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9504Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9505If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9506will be displayed instead.\n\
9507\n\
c906108c
SS
9508Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9509from 1-15 are allowed for compatibility with old versions of GDB.\n\
9510Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9511The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9512used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9513\n\
1bedd215 9514Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9515\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9516Stop means reenter debugger if this signal happens (implies print).\n\
9517Print means print a message if this signal happens.\n\
9518Pass means let program see this signal; otherwise program doesn't know.\n\
9519Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9520Pass and Stop may be combined.\n\
9521\n\
9522Multiple signals may be specified. Signal numbers and signal names\n\
9523may be interspersed with actions, with the actions being performed for\n\
9524all signals cumulatively specified."));
de0bea00 9525 set_cmd_completer (c, handle_completer);
486c7739 9526
c906108c 9527 if (!dbx_commands)
1a966eab
AC
9528 stop_command = add_cmd ("stop", class_obscure,
9529 not_just_help_class_command, _("\
9530There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9531This allows you to set a list of commands to be run each time execution\n\
1a966eab 9532of the program stops."), &cmdlist);
c906108c 9533
ccce17b0 9534 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9535Set inferior debugging."), _("\
9536Show inferior debugging."), _("\
9537When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9538 NULL,
9539 show_debug_infrun,
9540 &setdebuglist, &showdebuglist);
527159b7 9541
3e43a32a
MS
9542 add_setshow_boolean_cmd ("displaced", class_maintenance,
9543 &debug_displaced, _("\
237fc4c9
PA
9544Set displaced stepping debugging."), _("\
9545Show displaced stepping debugging."), _("\
9546When non-zero, displaced stepping specific debugging is enabled."),
9547 NULL,
9548 show_debug_displaced,
9549 &setdebuglist, &showdebuglist);
9550
ad52ddc6
PA
9551 add_setshow_boolean_cmd ("non-stop", no_class,
9552 &non_stop_1, _("\
9553Set whether gdb controls the inferior in non-stop mode."), _("\
9554Show whether gdb controls the inferior in non-stop mode."), _("\
9555When debugging a multi-threaded program and this setting is\n\
9556off (the default, also called all-stop mode), when one thread stops\n\
9557(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9558all other threads in the program while you interact with the thread of\n\
9559interest. When you continue or step a thread, you can allow the other\n\
9560threads to run, or have them remain stopped, but while you inspect any\n\
9561thread's state, all threads stop.\n\
9562\n\
9563In non-stop mode, when one thread stops, other threads can continue\n\
9564to run freely. You'll be able to step each thread independently,\n\
9565leave it stopped or free to run as needed."),
9566 set_non_stop,
9567 show_non_stop,
9568 &setlist,
9569 &showlist);
9570
adc6a863 9571 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
c906108c
SS
9572 {
9573 signal_stop[i] = 1;
9574 signal_print[i] = 1;
9575 signal_program[i] = 1;
ab04a2af 9576 signal_catch[i] = 0;
c906108c
SS
9577 }
9578
4d9d9d04
PA
9579 /* Signals caused by debugger's own actions should not be given to
9580 the program afterwards.
9581
9582 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9583 explicitly specifies that it should be delivered to the target
9584 program. Typically, that would occur when a user is debugging a
9585 target monitor on a simulator: the target monitor sets a
9586 breakpoint; the simulator encounters this breakpoint and halts
9587 the simulation handing control to GDB; GDB, noting that the stop
9588 address doesn't map to any known breakpoint, returns control back
9589 to the simulator; the simulator then delivers the hardware
9590 equivalent of a GDB_SIGNAL_TRAP to the program being
9591 debugged. */
a493e3e2
PA
9592 signal_program[GDB_SIGNAL_TRAP] = 0;
9593 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9594
9595 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9596 signal_stop[GDB_SIGNAL_ALRM] = 0;
9597 signal_print[GDB_SIGNAL_ALRM] = 0;
9598 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9599 signal_print[GDB_SIGNAL_VTALRM] = 0;
9600 signal_stop[GDB_SIGNAL_PROF] = 0;
9601 signal_print[GDB_SIGNAL_PROF] = 0;
9602 signal_stop[GDB_SIGNAL_CHLD] = 0;
9603 signal_print[GDB_SIGNAL_CHLD] = 0;
9604 signal_stop[GDB_SIGNAL_IO] = 0;
9605 signal_print[GDB_SIGNAL_IO] = 0;
9606 signal_stop[GDB_SIGNAL_POLL] = 0;
9607 signal_print[GDB_SIGNAL_POLL] = 0;
9608 signal_stop[GDB_SIGNAL_URG] = 0;
9609 signal_print[GDB_SIGNAL_URG] = 0;
9610 signal_stop[GDB_SIGNAL_WINCH] = 0;
9611 signal_print[GDB_SIGNAL_WINCH] = 0;
9612 signal_stop[GDB_SIGNAL_PRIO] = 0;
9613 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9614
cd0fc7c3
SS
9615 /* These signals are used internally by user-level thread
9616 implementations. (See signal(5) on Solaris.) Like the above
9617 signals, a healthy program receives and handles them as part of
9618 its normal operation. */
a493e3e2
PA
9619 signal_stop[GDB_SIGNAL_LWP] = 0;
9620 signal_print[GDB_SIGNAL_LWP] = 0;
9621 signal_stop[GDB_SIGNAL_WAITING] = 0;
9622 signal_print[GDB_SIGNAL_WAITING] = 0;
9623 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9624 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9625 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9626 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9627
2455069d
UW
9628 /* Update cached state. */
9629 signal_cache_update (-1);
9630
85c07804
AC
9631 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9632 &stop_on_solib_events, _("\
9633Set stopping for shared library events."), _("\
9634Show stopping for shared library events."), _("\
c906108c
SS
9635If nonzero, gdb will give control to the user when the dynamic linker\n\
9636notifies gdb of shared library events. The most common event of interest\n\
85c07804 9637to the user would be loading/unloading of a new library."),
f9e14852 9638 set_stop_on_solib_events,
920d2a44 9639 show_stop_on_solib_events,
85c07804 9640 &setlist, &showlist);
c906108c 9641
7ab04401
AC
9642 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9643 follow_fork_mode_kind_names,
9644 &follow_fork_mode_string, _("\
9645Set debugger response to a program call of fork or vfork."), _("\
9646Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9647A fork or vfork creates a new process. follow-fork-mode can be:\n\
9648 parent - the original process is debugged after a fork\n\
9649 child - the new process is debugged after a fork\n\
ea1dd7bc 9650The unfollowed process will continue to run.\n\
7ab04401
AC
9651By default, the debugger will follow the parent process."),
9652 NULL,
920d2a44 9653 show_follow_fork_mode_string,
7ab04401
AC
9654 &setlist, &showlist);
9655
6c95b8df
PA
9656 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9657 follow_exec_mode_names,
9658 &follow_exec_mode_string, _("\
9659Set debugger response to a program call of exec."), _("\
9660Show debugger response to a program call of exec."), _("\
9661An exec call replaces the program image of a process.\n\
9662\n\
9663follow-exec-mode can be:\n\
9664\n\
cce7e648 9665 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9666to this new inferior. The program the process was running before\n\
9667the exec call can be restarted afterwards by restarting the original\n\
9668inferior.\n\
9669\n\
9670 same - the debugger keeps the process bound to the same inferior.\n\
9671The new executable image replaces the previous executable loaded in\n\
9672the inferior. Restarting the inferior after the exec call restarts\n\
9673the executable the process was running after the exec call.\n\
9674\n\
9675By default, the debugger will use the same inferior."),
9676 NULL,
9677 show_follow_exec_mode_string,
9678 &setlist, &showlist);
9679
7ab04401
AC
9680 add_setshow_enum_cmd ("scheduler-locking", class_run,
9681 scheduler_enums, &scheduler_mode, _("\
9682Set mode for locking scheduler during execution."), _("\
9683Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9684off == no locking (threads may preempt at any time)\n\
9685on == full locking (no thread except the current thread may run)\n\
9686 This applies to both normal execution and replay mode.\n\
9687step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9688 In this mode, other threads may run during other commands.\n\
9689 This applies to both normal execution and replay mode.\n\
9690replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9691 set_schedlock_func, /* traps on target vector */
920d2a44 9692 show_scheduler_mode,
7ab04401 9693 &setlist, &showlist);
5fbbeb29 9694
d4db2f36
PA
9695 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9696Set mode for resuming threads of all processes."), _("\
9697Show mode for resuming threads of all processes."), _("\
9698When on, execution commands (such as 'continue' or 'next') resume all\n\
9699threads of all processes. When off (which is the default), execution\n\
9700commands only resume the threads of the current process. The set of\n\
9701threads that are resumed is further refined by the scheduler-locking\n\
9702mode (see help set scheduler-locking)."),
9703 NULL,
9704 show_schedule_multiple,
9705 &setlist, &showlist);
9706
5bf193a2
AC
9707 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9708Set mode of the step operation."), _("\
9709Show mode of the step operation."), _("\
9710When set, doing a step over a function without debug line information\n\
9711will stop at the first instruction of that function. Otherwise, the\n\
9712function is skipped and the step command stops at a different source line."),
9713 NULL,
920d2a44 9714 show_step_stop_if_no_debug,
5bf193a2 9715 &setlist, &showlist);
ca6724c1 9716
72d0e2c5
YQ
9717 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9718 &can_use_displaced_stepping, _("\
237fc4c9
PA
9719Set debugger's willingness to use displaced stepping."), _("\
9720Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9721If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9722supported by the target architecture. If off, gdb will not use displaced\n\
9723stepping to step over breakpoints, even if such is supported by the target\n\
9724architecture. If auto (which is the default), gdb will use displaced stepping\n\
9725if the target architecture supports it and non-stop mode is active, but will not\n\
9726use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9727 NULL,
9728 show_can_use_displaced_stepping,
9729 &setlist, &showlist);
237fc4c9 9730
b2175913
MS
9731 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9732 &exec_direction, _("Set direction of execution.\n\
9733Options are 'forward' or 'reverse'."),
9734 _("Show direction of execution (forward/reverse)."),
9735 _("Tells gdb whether to execute forward or backward."),
9736 set_exec_direction_func, show_exec_direction_func,
9737 &setlist, &showlist);
9738
6c95b8df
PA
9739 /* Set/show detach-on-fork: user-settable mode. */
9740
9741 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9742Set whether gdb will detach the child of a fork."), _("\
9743Show whether gdb will detach the child of a fork."), _("\
9744Tells gdb whether to detach the child of a fork."),
9745 NULL, NULL, &setlist, &showlist);
9746
03583c20
UW
9747 /* Set/show disable address space randomization mode. */
9748
9749 add_setshow_boolean_cmd ("disable-randomization", class_support,
9750 &disable_randomization, _("\
9751Set disabling of debuggee's virtual address space randomization."), _("\
9752Show disabling of debuggee's virtual address space randomization."), _("\
9753When this mode is on (which is the default), randomization of the virtual\n\
9754address space is disabled. Standalone programs run with the randomization\n\
9755enabled by default on some platforms."),
9756 &set_disable_randomization,
9757 &show_disable_randomization,
9758 &setlist, &showlist);
9759
ca6724c1 9760 /* ptid initializations */
ca6724c1
KB
9761 inferior_ptid = null_ptid;
9762 target_last_wait_ptid = minus_one_ptid;
5231c1fd 9763
76727919
TT
9764 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9765 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9766 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9767 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
4aa995e1
PA
9768
9769 /* Explicitly create without lookup, since that tries to create a
9770 value with a void typed value, and when we get here, gdbarch
9771 isn't initialized yet. At this point, we're quite sure there
9772 isn't another convenience variable of the same name. */
22d2b532 9773 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9774
9775 add_setshow_boolean_cmd ("observer", no_class,
9776 &observer_mode_1, _("\
9777Set whether gdb controls the inferior in observer mode."), _("\
9778Show whether gdb controls the inferior in observer mode."), _("\
9779In observer mode, GDB can get data from the inferior, but not\n\
9780affect its execution. Registers and memory may not be changed,\n\
9781breakpoints may not be set, and the program cannot be interrupted\n\
9782or signalled."),
9783 set_observer_mode,
9784 show_observer_mode,
9785 &setlist,
9786 &showlist);
c906108c 9787}
This page took 2.722267 seconds and 4 git commands to generate.