2004-04-21 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c
AC
3
4 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
c6f0559b
AC
5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
6 Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b
JM
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
c906108c
SS
24
25#include "defs.h"
26#include "gdb_string.h"
27#include <ctype.h>
28#include "symtab.h"
29#include "frame.h"
30#include "inferior.h"
31#include "breakpoint.h"
03f2053f 32#include "gdb_wait.h"
c906108c
SS
33#include "gdbcore.h"
34#include "gdbcmd.h"
210661e7 35#include "cli/cli-script.h"
c906108c
SS
36#include "target.h"
37#include "gdbthread.h"
38#include "annotate.h"
1adeb98a 39#include "symfile.h"
7a292a7a 40#include "top.h"
c906108c 41#include <signal.h>
2acceee2 42#include "inf-loop.h"
4e052eda 43#include "regcache.h"
fd0407d6 44#include "value.h"
06600e06 45#include "observer.h"
f636b87d 46#include "language.h"
9f976b41 47#include "gdb_assert.h"
c906108c
SS
48
49/* Prototypes for local functions */
50
96baa820 51static void signals_info (char *, int);
c906108c 52
96baa820 53static void handle_command (char *, int);
c906108c 54
96baa820 55static void sig_print_info (enum target_signal);
c906108c 56
96baa820 57static void sig_print_header (void);
c906108c 58
74b7792f 59static void resume_cleanups (void *);
c906108c 60
96baa820 61static int hook_stop_stub (void *);
c906108c 62
96baa820 63static void delete_breakpoint_current_contents (void *);
c906108c 64
96baa820
JM
65static int restore_selected_frame (void *);
66
67static void build_infrun (void);
68
4ef3f3be 69static int follow_fork (void);
96baa820
JM
70
71static void set_schedlock_func (char *args, int from_tty,
488f131b 72 struct cmd_list_element *c);
96baa820 73
96baa820
JM
74struct execution_control_state;
75
76static int currently_stepping (struct execution_control_state *ecs);
77
78static void xdb_handle_command (char *args, int from_tty);
79
ea67f13b
DJ
80static int prepare_to_proceed (void);
81
96baa820 82void _initialize_infrun (void);
43ff13b4 83
c906108c
SS
84int inferior_ignoring_startup_exec_events = 0;
85int inferior_ignoring_leading_exec_events = 0;
86
5fbbeb29
CF
87/* When set, stop the 'step' command if we enter a function which has
88 no line number information. The normal behavior is that we step
89 over such function. */
90int step_stop_if_no_debug = 0;
91
43ff13b4 92/* In asynchronous mode, but simulating synchronous execution. */
96baa820 93
43ff13b4
JM
94int sync_execution = 0;
95
c906108c
SS
96/* wait_for_inferior and normal_stop use this to notify the user
97 when the inferior stopped in a different thread than it had been
96baa820
JM
98 running in. */
99
39f77062 100static ptid_t previous_inferior_ptid;
7a292a7a
SS
101
102/* This is true for configurations that may follow through execl() and
103 similar functions. At present this is only true for HP-UX native. */
104
105#ifndef MAY_FOLLOW_EXEC
106#define MAY_FOLLOW_EXEC (0)
c906108c
SS
107#endif
108
7a292a7a
SS
109static int may_follow_exec = MAY_FOLLOW_EXEC;
110
d4f3574e
SS
111/* If the program uses ELF-style shared libraries, then calls to
112 functions in shared libraries go through stubs, which live in a
113 table called the PLT (Procedure Linkage Table). The first time the
114 function is called, the stub sends control to the dynamic linker,
115 which looks up the function's real address, patches the stub so
116 that future calls will go directly to the function, and then passes
117 control to the function.
118
119 If we are stepping at the source level, we don't want to see any of
120 this --- we just want to skip over the stub and the dynamic linker.
121 The simple approach is to single-step until control leaves the
122 dynamic linker.
123
ca557f44
AC
124 However, on some systems (e.g., Red Hat's 5.2 distribution) the
125 dynamic linker calls functions in the shared C library, so you
126 can't tell from the PC alone whether the dynamic linker is still
127 running. In this case, we use a step-resume breakpoint to get us
128 past the dynamic linker, as if we were using "next" to step over a
129 function call.
d4f3574e
SS
130
131 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
132 linker code or not. Normally, this means we single-step. However,
133 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
134 address where we can place a step-resume breakpoint to get past the
135 linker's symbol resolution function.
136
137 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
138 pretty portable way, by comparing the PC against the address ranges
139 of the dynamic linker's sections.
140
141 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
142 it depends on internal details of the dynamic linker. It's usually
143 not too hard to figure out where to put a breakpoint, but it
144 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
145 sanity checking. If it can't figure things out, returning zero and
146 getting the (possibly confusing) stepping behavior is better than
147 signalling an error, which will obscure the change in the
148 inferior's state. */
c906108c
SS
149
150#ifndef IN_SOLIB_DYNSYM_RESOLVE_CODE
151#define IN_SOLIB_DYNSYM_RESOLVE_CODE(pc) 0
152#endif
153
c906108c
SS
154/* This function returns TRUE if pc is the address of an instruction
155 that lies within the dynamic linker (such as the event hook, or the
156 dld itself).
157
158 This function must be used only when a dynamic linker event has
159 been caught, and the inferior is being stepped out of the hook, or
160 undefined results are guaranteed. */
161
162#ifndef SOLIB_IN_DYNAMIC_LINKER
163#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
164#endif
165
166/* On MIPS16, a function that returns a floating point value may call
167 a library helper function to copy the return value to a floating point
168 register. The IGNORE_HELPER_CALL macro returns non-zero if we
169 should ignore (i.e. step over) this function call. */
170#ifndef IGNORE_HELPER_CALL
171#define IGNORE_HELPER_CALL(pc) 0
172#endif
173
174/* On some systems, the PC may be left pointing at an instruction that won't
175 actually be executed. This is usually indicated by a bit in the PSW. If
176 we find ourselves in such a state, then we step the target beyond the
177 nullified instruction before returning control to the user so as to avoid
178 confusion. */
179
180#ifndef INSTRUCTION_NULLIFIED
181#define INSTRUCTION_NULLIFIED 0
182#endif
183
c2c6d25f
JM
184/* We can't step off a permanent breakpoint in the ordinary way, because we
185 can't remove it. Instead, we have to advance the PC to the next
186 instruction. This macro should expand to a pointer to a function that
187 does that, or zero if we have no such function. If we don't have a
188 definition for it, we have to report an error. */
488f131b 189#ifndef SKIP_PERMANENT_BREAKPOINT
c2c6d25f
JM
190#define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
191static void
c2d11a7d 192default_skip_permanent_breakpoint (void)
c2c6d25f 193{
255e7dbf 194 error ("\
c2c6d25f
JM
195The program is stopped at a permanent breakpoint, but GDB does not know\n\
196how to step past a permanent breakpoint on this architecture. Try using\n\
255e7dbf 197a command like `return' or `jump' to continue execution.");
c2c6d25f
JM
198}
199#endif
488f131b 200
c2c6d25f 201
7a292a7a
SS
202/* Convert the #defines into values. This is temporary until wfi control
203 flow is completely sorted out. */
204
205#ifndef HAVE_STEPPABLE_WATCHPOINT
206#define HAVE_STEPPABLE_WATCHPOINT 0
207#else
208#undef HAVE_STEPPABLE_WATCHPOINT
209#define HAVE_STEPPABLE_WATCHPOINT 1
210#endif
211
692590c1
MS
212#ifndef CANNOT_STEP_HW_WATCHPOINTS
213#define CANNOT_STEP_HW_WATCHPOINTS 0
214#else
215#undef CANNOT_STEP_HW_WATCHPOINTS
216#define CANNOT_STEP_HW_WATCHPOINTS 1
217#endif
218
c906108c
SS
219/* Tables of how to react to signals; the user sets them. */
220
221static unsigned char *signal_stop;
222static unsigned char *signal_print;
223static unsigned char *signal_program;
224
225#define SET_SIGS(nsigs,sigs,flags) \
226 do { \
227 int signum = (nsigs); \
228 while (signum-- > 0) \
229 if ((sigs)[signum]) \
230 (flags)[signum] = 1; \
231 } while (0)
232
233#define UNSET_SIGS(nsigs,sigs,flags) \
234 do { \
235 int signum = (nsigs); \
236 while (signum-- > 0) \
237 if ((sigs)[signum]) \
238 (flags)[signum] = 0; \
239 } while (0)
240
39f77062
KB
241/* Value to pass to target_resume() to cause all threads to resume */
242
243#define RESUME_ALL (pid_to_ptid (-1))
c906108c
SS
244
245/* Command list pointer for the "stop" placeholder. */
246
247static struct cmd_list_element *stop_command;
248
249/* Nonzero if breakpoints are now inserted in the inferior. */
250
251static int breakpoints_inserted;
252
253/* Function inferior was in as of last step command. */
254
255static struct symbol *step_start_function;
256
257/* Nonzero if we are expecting a trace trap and should proceed from it. */
258
259static int trap_expected;
260
261#ifdef SOLIB_ADD
262/* Nonzero if we want to give control to the user when we're notified
263 of shared library events by the dynamic linker. */
264static int stop_on_solib_events;
265#endif
266
267#ifdef HP_OS_BUG
268/* Nonzero if the next time we try to continue the inferior, it will
269 step one instruction and generate a spurious trace trap.
270 This is used to compensate for a bug in HP-UX. */
271
272static int trap_expected_after_continue;
273#endif
274
275/* Nonzero means expecting a trace trap
276 and should stop the inferior and return silently when it happens. */
277
278int stop_after_trap;
279
280/* Nonzero means expecting a trap and caller will handle it themselves.
281 It is used after attach, due to attaching to a process;
282 when running in the shell before the child program has been exec'd;
283 and when running some kinds of remote stuff (FIXME?). */
284
c0236d92 285enum stop_kind stop_soon;
c906108c
SS
286
287/* Nonzero if proceed is being used for a "finish" command or a similar
288 situation when stop_registers should be saved. */
289
290int proceed_to_finish;
291
292/* Save register contents here when about to pop a stack dummy frame,
293 if-and-only-if proceed_to_finish is set.
294 Thus this contains the return value from the called function (assuming
295 values are returned in a register). */
296
72cec141 297struct regcache *stop_registers;
c906108c
SS
298
299/* Nonzero if program stopped due to error trying to insert breakpoints. */
300
301static int breakpoints_failed;
302
303/* Nonzero after stop if current stack frame should be printed. */
304
305static int stop_print_frame;
306
307static struct breakpoint *step_resume_breakpoint = NULL;
308static struct breakpoint *through_sigtramp_breakpoint = NULL;
309
310/* On some platforms (e.g., HP-UX), hardware watchpoints have bad
311 interactions with an inferior that is running a kernel function
312 (aka, a system call or "syscall"). wait_for_inferior therefore
313 may have a need to know when the inferior is in a syscall. This
314 is a count of the number of inferior threads which are known to
315 currently be running in a syscall. */
316static int number_of_threads_in_syscalls;
317
e02bc4cc
DS
318/* This is a cached copy of the pid/waitstatus of the last event
319 returned by target_wait()/target_wait_hook(). This information is
320 returned by get_last_target_status(). */
39f77062 321static ptid_t target_last_wait_ptid;
e02bc4cc
DS
322static struct target_waitstatus target_last_waitstatus;
323
c906108c
SS
324/* This is used to remember when a fork, vfork or exec event
325 was caught by a catchpoint, and thus the event is to be
326 followed at the next resume of the inferior, and not
327 immediately. */
328static struct
488f131b
JB
329{
330 enum target_waitkind kind;
331 struct
c906108c 332 {
488f131b 333 int parent_pid;
488f131b 334 int child_pid;
c906108c 335 }
488f131b
JB
336 fork_event;
337 char *execd_pathname;
338}
c906108c
SS
339pending_follow;
340
53904c9e
AC
341static const char follow_fork_mode_child[] = "child";
342static const char follow_fork_mode_parent[] = "parent";
343
488f131b 344static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
345 follow_fork_mode_child,
346 follow_fork_mode_parent,
347 NULL
ef346e04 348};
c906108c 349
53904c9e 350static const char *follow_fork_mode_string = follow_fork_mode_parent;
c906108c
SS
351\f
352
6604731b 353static int
4ef3f3be 354follow_fork (void)
c906108c 355{
ea1dd7bc 356 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
c906108c 357
6604731b 358 return target_follow_fork (follow_child);
c906108c
SS
359}
360
6604731b
DJ
361void
362follow_inferior_reset_breakpoints (void)
c906108c 363{
6604731b
DJ
364 /* Was there a step_resume breakpoint? (There was if the user
365 did a "next" at the fork() call.) If so, explicitly reset its
366 thread number.
367
368 step_resumes are a form of bp that are made to be per-thread.
369 Since we created the step_resume bp when the parent process
370 was being debugged, and now are switching to the child process,
371 from the breakpoint package's viewpoint, that's a switch of
372 "threads". We must update the bp's notion of which thread
373 it is for, or it'll be ignored when it triggers. */
374
375 if (step_resume_breakpoint)
376 breakpoint_re_set_thread (step_resume_breakpoint);
377
378 /* Reinsert all breakpoints in the child. The user may have set
379 breakpoints after catching the fork, in which case those
380 were never set in the child, but only in the parent. This makes
381 sure the inserted breakpoints match the breakpoint list. */
382
383 breakpoint_re_set ();
384 insert_breakpoints ();
c906108c 385}
c906108c 386
1adeb98a
FN
387/* EXECD_PATHNAME is assumed to be non-NULL. */
388
c906108c 389static void
96baa820 390follow_exec (int pid, char *execd_pathname)
c906108c 391{
c906108c 392 int saved_pid = pid;
7a292a7a
SS
393 struct target_ops *tgt;
394
395 if (!may_follow_exec)
396 return;
c906108c 397
c906108c
SS
398 /* This is an exec event that we actually wish to pay attention to.
399 Refresh our symbol table to the newly exec'd program, remove any
400 momentary bp's, etc.
401
402 If there are breakpoints, they aren't really inserted now,
403 since the exec() transformed our inferior into a fresh set
404 of instructions.
405
406 We want to preserve symbolic breakpoints on the list, since
407 we have hopes that they can be reset after the new a.out's
408 symbol table is read.
409
410 However, any "raw" breakpoints must be removed from the list
411 (e.g., the solib bp's), since their address is probably invalid
412 now.
413
414 And, we DON'T want to call delete_breakpoints() here, since
415 that may write the bp's "shadow contents" (the instruction
416 value that was overwritten witha TRAP instruction). Since
417 we now have a new a.out, those shadow contents aren't valid. */
418 update_breakpoints_after_exec ();
419
420 /* If there was one, it's gone now. We cannot truly step-to-next
421 statement through an exec(). */
422 step_resume_breakpoint = NULL;
423 step_range_start = 0;
424 step_range_end = 0;
425
426 /* If there was one, it's gone now. */
427 through_sigtramp_breakpoint = NULL;
428
429 /* What is this a.out's name? */
430 printf_unfiltered ("Executing new program: %s\n", execd_pathname);
431
432 /* We've followed the inferior through an exec. Therefore, the
433 inferior has essentially been killed & reborn. */
7a292a7a
SS
434
435 /* First collect the run target in effect. */
436 tgt = find_run_target ();
437 /* If we can't find one, things are in a very strange state... */
438 if (tgt == NULL)
439 error ("Could find run target to save before following exec");
440
c906108c
SS
441 gdb_flush (gdb_stdout);
442 target_mourn_inferior ();
39f77062 443 inferior_ptid = pid_to_ptid (saved_pid);
488f131b 444 /* Because mourn_inferior resets inferior_ptid. */
7a292a7a 445 push_target (tgt);
c906108c
SS
446
447 /* That a.out is now the one to use. */
448 exec_file_attach (execd_pathname, 0);
449
450 /* And also is where symbols can be found. */
1adeb98a 451 symbol_file_add_main (execd_pathname, 0);
c906108c
SS
452
453 /* Reset the shared library package. This ensures that we get
454 a shlib event when the child reaches "_start", at which point
455 the dld will have had a chance to initialize the child. */
7a292a7a 456#if defined(SOLIB_RESTART)
c906108c 457 SOLIB_RESTART ();
7a292a7a
SS
458#endif
459#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 460 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
7a292a7a 461#endif
c906108c
SS
462
463 /* Reinsert all breakpoints. (Those which were symbolic have
464 been reset to the proper address in the new a.out, thanks
465 to symbol_file_command...) */
466 insert_breakpoints ();
467
468 /* The next resume of this inferior should bring it to the shlib
469 startup breakpoints. (If the user had also set bp's on
470 "main" from the old (parent) process, then they'll auto-
471 matically get reset there in the new process.) */
c906108c
SS
472}
473
474/* Non-zero if we just simulating a single-step. This is needed
475 because we cannot remove the breakpoints in the inferior process
476 until after the `wait' in `wait_for_inferior'. */
477static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
478
479/* The thread we inserted single-step breakpoints for. */
480static ptid_t singlestep_ptid;
481
482/* If another thread hit the singlestep breakpoint, we save the original
483 thread here so that we can resume single-stepping it later. */
484static ptid_t saved_singlestep_ptid;
485static int stepping_past_singlestep_breakpoint;
c906108c
SS
486\f
487
488/* Things to clean up if we QUIT out of resume (). */
c906108c 489static void
74b7792f 490resume_cleanups (void *ignore)
c906108c
SS
491{
492 normal_stop ();
493}
494
53904c9e
AC
495static const char schedlock_off[] = "off";
496static const char schedlock_on[] = "on";
497static const char schedlock_step[] = "step";
498static const char *scheduler_mode = schedlock_off;
488f131b 499static const char *scheduler_enums[] = {
ef346e04
AC
500 schedlock_off,
501 schedlock_on,
502 schedlock_step,
503 NULL
504};
c906108c
SS
505
506static void
96baa820 507set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 508{
1868c04e
AC
509 /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones
510 the set command passed as a parameter. The clone operation will
511 include (BUG?) any ``set'' command callback, if present.
512 Commands like ``info set'' call all the ``show'' command
ce2826aa 513 callbacks. Unfortunately, for ``show'' commands cloned from
1868c04e
AC
514 ``set'', this includes callbacks belonging to ``set'' commands.
515 Making this worse, this only occures if add_show_from_set() is
516 called after add_cmd_sfunc() (BUG?). */
517 if (cmd_type (c) == set_cmd)
c906108c
SS
518 if (!target_can_lock_scheduler)
519 {
520 scheduler_mode = schedlock_off;
488f131b 521 error ("Target '%s' cannot support this command.", target_shortname);
c906108c
SS
522 }
523}
524
525
526/* Resume the inferior, but allow a QUIT. This is useful if the user
527 wants to interrupt some lengthy single-stepping operation
528 (for child processes, the SIGINT goes to the inferior, and so
529 we get a SIGINT random_signal, but for remote debugging and perhaps
530 other targets, that's not true).
531
532 STEP nonzero if we should step (zero to continue instead).
533 SIG is the signal to give the inferior (zero for none). */
534void
96baa820 535resume (int step, enum target_signal sig)
c906108c
SS
536{
537 int should_resume = 1;
74b7792f 538 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
c906108c
SS
539 QUIT;
540
ef5cf84e
MS
541 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
542
c906108c 543
692590c1
MS
544 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
545 over an instruction that causes a page fault without triggering
546 a hardware watchpoint. The kernel properly notices that it shouldn't
547 stop, because the hardware watchpoint is not triggered, but it forgets
548 the step request and continues the program normally.
549 Work around the problem by removing hardware watchpoints if a step is
550 requested, GDB will check for a hardware watchpoint trigger after the
551 step anyway. */
552 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
553 remove_hw_watchpoints ();
488f131b 554
692590c1 555
c2c6d25f
JM
556 /* Normally, by the time we reach `resume', the breakpoints are either
557 removed or inserted, as appropriate. The exception is if we're sitting
558 at a permanent breakpoint; we need to step over it, but permanent
559 breakpoints can't be removed. So we have to test for it here. */
560 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
561 SKIP_PERMANENT_BREAKPOINT ();
562
b0ed3589 563 if (SOFTWARE_SINGLE_STEP_P () && step)
c906108c
SS
564 {
565 /* Do it the hard way, w/temp breakpoints */
c5aa993b 566 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
c906108c
SS
567 /* ...and don't ask hardware to do it. */
568 step = 0;
569 /* and do not pull these breakpoints until after a `wait' in
570 `wait_for_inferior' */
571 singlestep_breakpoints_inserted_p = 1;
9f976b41 572 singlestep_ptid = inferior_ptid;
c906108c
SS
573 }
574
575 /* Handle any optimized stores to the inferior NOW... */
576#ifdef DO_DEFERRED_STORES
577 DO_DEFERRED_STORES;
578#endif
579
c906108c 580 /* If there were any forks/vforks/execs that were caught and are
6604731b 581 now to be followed, then do so. */
c906108c
SS
582 switch (pending_follow.kind)
583 {
6604731b
DJ
584 case TARGET_WAITKIND_FORKED:
585 case TARGET_WAITKIND_VFORKED:
c906108c 586 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
6604731b
DJ
587 if (follow_fork ())
588 should_resume = 0;
c906108c
SS
589 break;
590
6604731b 591 case TARGET_WAITKIND_EXECD:
c906108c 592 /* follow_exec is called as soon as the exec event is seen. */
6604731b 593 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
c906108c
SS
594 break;
595
596 default:
597 break;
598 }
c906108c
SS
599
600 /* Install inferior's terminal modes. */
601 target_terminal_inferior ();
602
603 if (should_resume)
604 {
39f77062 605 ptid_t resume_ptid;
dfcd3bfb 606
488f131b 607 resume_ptid = RESUME_ALL; /* Default */
ef5cf84e
MS
608
609 if ((step || singlestep_breakpoints_inserted_p) &&
9f976b41
DJ
610 (stepping_past_singlestep_breakpoint
611 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
c906108c 612 {
ef5cf84e
MS
613 /* Stepping past a breakpoint without inserting breakpoints.
614 Make sure only the current thread gets to step, so that
615 other threads don't sneak past breakpoints while they are
616 not inserted. */
c906108c 617
ef5cf84e 618 resume_ptid = inferior_ptid;
c906108c 619 }
ef5cf84e
MS
620
621 if ((scheduler_mode == schedlock_on) ||
488f131b 622 (scheduler_mode == schedlock_step &&
ef5cf84e 623 (step || singlestep_breakpoints_inserted_p)))
c906108c 624 {
ef5cf84e 625 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 626 resume_ptid = inferior_ptid;
c906108c 627 }
ef5cf84e 628
c4ed33b9
AC
629 if (CANNOT_STEP_BREAKPOINT)
630 {
631 /* Most targets can step a breakpoint instruction, thus
632 executing it normally. But if this one cannot, just
633 continue and we will hit it anyway. */
634 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
635 step = 0;
636 }
39f77062 637 target_resume (resume_ptid, step, sig);
c906108c
SS
638 }
639
640 discard_cleanups (old_cleanups);
641}
642\f
643
644/* Clear out all variables saying what to do when inferior is continued.
645 First do this, then set the ones you want, then call `proceed'. */
646
647void
96baa820 648clear_proceed_status (void)
c906108c
SS
649{
650 trap_expected = 0;
651 step_range_start = 0;
652 step_range_end = 0;
aa0cd9c1 653 step_frame_id = null_frame_id;
5fbbeb29 654 step_over_calls = STEP_OVER_UNDEBUGGABLE;
c906108c 655 stop_after_trap = 0;
c0236d92 656 stop_soon = NO_STOP_QUIETLY;
c906108c
SS
657 proceed_to_finish = 0;
658 breakpoint_proceeded = 1; /* We're about to proceed... */
659
660 /* Discard any remaining commands or status from previous stop. */
661 bpstat_clear (&stop_bpstat);
662}
663
ea67f13b
DJ
664/* This should be suitable for any targets that support threads. */
665
666static int
667prepare_to_proceed (void)
668{
669 ptid_t wait_ptid;
670 struct target_waitstatus wait_status;
671
672 /* Get the last target status returned by target_wait(). */
673 get_last_target_status (&wait_ptid, &wait_status);
674
675 /* Make sure we were stopped either at a breakpoint, or because
676 of a Ctrl-C. */
677 if (wait_status.kind != TARGET_WAITKIND_STOPPED
678 || (wait_status.value.sig != TARGET_SIGNAL_TRAP &&
679 wait_status.value.sig != TARGET_SIGNAL_INT))
680 {
681 return 0;
682 }
683
684 if (!ptid_equal (wait_ptid, minus_one_ptid)
685 && !ptid_equal (inferior_ptid, wait_ptid))
686 {
687 /* Switched over from WAIT_PID. */
688 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
689
690 if (wait_pc != read_pc ())
691 {
692 /* Switch back to WAIT_PID thread. */
693 inferior_ptid = wait_ptid;
694
695 /* FIXME: This stuff came from switch_to_thread() in
696 thread.c (which should probably be a public function). */
697 flush_cached_frames ();
698 registers_changed ();
699 stop_pc = wait_pc;
700 select_frame (get_current_frame ());
701 }
702
703 /* We return 1 to indicate that there is a breakpoint here,
704 so we need to step over it before continuing to avoid
705 hitting it straight away. */
706 if (breakpoint_here_p (wait_pc))
707 return 1;
708 }
709
710 return 0;
711
712}
e4846b08
JJ
713
714/* Record the pc of the program the last time it stopped. This is
715 just used internally by wait_for_inferior, but need to be preserved
716 over calls to it and cleared when the inferior is started. */
717static CORE_ADDR prev_pc;
718
c906108c
SS
719/* Basic routine for continuing the program in various fashions.
720
721 ADDR is the address to resume at, or -1 for resume where stopped.
722 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 723 or -1 for act according to how it stopped.
c906108c 724 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
725 -1 means return after that and print nothing.
726 You should probably set various step_... variables
727 before calling here, if you are stepping.
c906108c
SS
728
729 You should call clear_proceed_status before calling proceed. */
730
731void
96baa820 732proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c
SS
733{
734 int oneproc = 0;
735
736 if (step > 0)
737 step_start_function = find_pc_function (read_pc ());
738 if (step < 0)
739 stop_after_trap = 1;
740
2acceee2 741 if (addr == (CORE_ADDR) -1)
c906108c
SS
742 {
743 /* If there is a breakpoint at the address we will resume at,
c5aa993b
JM
744 step one instruction before inserting breakpoints
745 so that we do not stop right away (and report a second
c906108c
SS
746 hit at this breakpoint). */
747
748 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
749 oneproc = 1;
750
751#ifndef STEP_SKIPS_DELAY
752#define STEP_SKIPS_DELAY(pc) (0)
753#define STEP_SKIPS_DELAY_P (0)
754#endif
755 /* Check breakpoint_here_p first, because breakpoint_here_p is fast
c5aa993b
JM
756 (it just checks internal GDB data structures) and STEP_SKIPS_DELAY
757 is slow (it needs to read memory from the target). */
c906108c
SS
758 if (STEP_SKIPS_DELAY_P
759 && breakpoint_here_p (read_pc () + 4)
760 && STEP_SKIPS_DELAY (read_pc ()))
761 oneproc = 1;
762 }
763 else
764 {
765 write_pc (addr);
c906108c
SS
766 }
767
c906108c
SS
768 /* In a multi-threaded task we may select another thread
769 and then continue or step.
770
771 But if the old thread was stopped at a breakpoint, it
772 will immediately cause another breakpoint stop without
773 any execution (i.e. it will report a breakpoint hit
774 incorrectly). So we must step over it first.
775
ea67f13b 776 prepare_to_proceed checks the current thread against the thread
c906108c
SS
777 that reported the most recent event. If a step-over is required
778 it returns TRUE and sets the current thread to the old thread. */
ea67f13b
DJ
779 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
780 oneproc = 1;
c906108c
SS
781
782#ifdef HP_OS_BUG
783 if (trap_expected_after_continue)
784 {
785 /* If (step == 0), a trap will be automatically generated after
c5aa993b
JM
786 the first instruction is executed. Force step one
787 instruction to clear this condition. This should not occur
788 if step is nonzero, but it is harmless in that case. */
c906108c
SS
789 oneproc = 1;
790 trap_expected_after_continue = 0;
791 }
792#endif /* HP_OS_BUG */
793
794 if (oneproc)
795 /* We will get a trace trap after one instruction.
796 Continue it automatically and insert breakpoints then. */
797 trap_expected = 1;
798 else
799 {
81d0cc19
GS
800 insert_breakpoints ();
801 /* If we get here there was no call to error() in
802 insert breakpoints -- so they were inserted. */
c906108c
SS
803 breakpoints_inserted = 1;
804 }
805
806 if (siggnal != TARGET_SIGNAL_DEFAULT)
807 stop_signal = siggnal;
808 /* If this signal should not be seen by program,
809 give it zero. Used for debugging signals. */
810 else if (!signal_program[stop_signal])
811 stop_signal = TARGET_SIGNAL_0;
812
813 annotate_starting ();
814
815 /* Make sure that output from GDB appears before output from the
816 inferior. */
817 gdb_flush (gdb_stdout);
818
e4846b08
JJ
819 /* Refresh prev_pc value just prior to resuming. This used to be
820 done in stop_stepping, however, setting prev_pc there did not handle
821 scenarios such as inferior function calls or returning from
822 a function via the return command. In those cases, the prev_pc
823 value was not set properly for subsequent commands. The prev_pc value
824 is used to initialize the starting line number in the ecs. With an
825 invalid value, the gdb next command ends up stopping at the position
826 represented by the next line table entry past our start position.
827 On platforms that generate one line table entry per line, this
828 is not a problem. However, on the ia64, the compiler generates
829 extraneous line table entries that do not increase the line number.
830 When we issue the gdb next command on the ia64 after an inferior call
831 or a return command, we often end up a few instructions forward, still
832 within the original line we started.
833
834 An attempt was made to have init_execution_control_state () refresh
835 the prev_pc value before calculating the line number. This approach
836 did not work because on platforms that use ptrace, the pc register
837 cannot be read unless the inferior is stopped. At that point, we
838 are not guaranteed the inferior is stopped and so the read_pc ()
839 call can fail. Setting the prev_pc value here ensures the value is
840 updated correctly when the inferior is stopped. */
841 prev_pc = read_pc ();
842
c906108c
SS
843 /* Resume inferior. */
844 resume (oneproc || step || bpstat_should_step (), stop_signal);
845
846 /* Wait for it to stop (if not standalone)
847 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
848 /* Do this only if we are not using the event loop, or if the target
849 does not support asynchronous execution. */
6426a772 850 if (!event_loop_p || !target_can_async_p ())
43ff13b4
JM
851 {
852 wait_for_inferior ();
853 normal_stop ();
854 }
c906108c 855}
c906108c
SS
856\f
857
858/* Start remote-debugging of a machine over a serial link. */
96baa820 859
c906108c 860void
96baa820 861start_remote (void)
c906108c
SS
862{
863 init_thread_list ();
864 init_wait_for_inferior ();
c0236d92 865 stop_soon = STOP_QUIETLY;
c906108c 866 trap_expected = 0;
43ff13b4 867
6426a772
JM
868 /* Always go on waiting for the target, regardless of the mode. */
869 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 870 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
871 nothing is returned (instead of just blocking). Because of this,
872 targets expecting an immediate response need to, internally, set
873 things up so that the target_wait() is forced to eventually
874 timeout. */
875 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
876 differentiate to its caller what the state of the target is after
877 the initial open has been performed. Here we're assuming that
878 the target has stopped. It should be possible to eventually have
879 target_open() return to the caller an indication that the target
880 is currently running and GDB state should be set to the same as
881 for an async run. */
882 wait_for_inferior ();
883 normal_stop ();
c906108c
SS
884}
885
886/* Initialize static vars when a new inferior begins. */
887
888void
96baa820 889init_wait_for_inferior (void)
c906108c
SS
890{
891 /* These are meaningless until the first time through wait_for_inferior. */
892 prev_pc = 0;
c906108c
SS
893
894#ifdef HP_OS_BUG
895 trap_expected_after_continue = 0;
896#endif
897 breakpoints_inserted = 0;
898 breakpoint_init_inferior (inf_starting);
899
900 /* Don't confuse first call to proceed(). */
901 stop_signal = TARGET_SIGNAL_0;
902
903 /* The first resume is not following a fork/vfork/exec. */
904 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
c906108c
SS
905
906 /* See wait_for_inferior's handling of SYSCALL_ENTRY/RETURN events. */
907 number_of_threads_in_syscalls = 0;
908
909 clear_proceed_status ();
9f976b41
DJ
910
911 stepping_past_singlestep_breakpoint = 0;
c906108c
SS
912}
913
914static void
96baa820 915delete_breakpoint_current_contents (void *arg)
c906108c
SS
916{
917 struct breakpoint **breakpointp = (struct breakpoint **) arg;
918 if (*breakpointp != NULL)
919 {
920 delete_breakpoint (*breakpointp);
921 *breakpointp = NULL;
922 }
923}
924\f
b83266a0
SS
925/* This enum encodes possible reasons for doing a target_wait, so that
926 wfi can call target_wait in one place. (Ultimately the call will be
927 moved out of the infinite loop entirely.) */
928
c5aa993b
JM
929enum infwait_states
930{
cd0fc7c3
SS
931 infwait_normal_state,
932 infwait_thread_hop_state,
933 infwait_nullified_state,
934 infwait_nonstep_watch_state
b83266a0
SS
935};
936
11cf8741
JM
937/* Why did the inferior stop? Used to print the appropriate messages
938 to the interface from within handle_inferior_event(). */
939enum inferior_stop_reason
940{
941 /* We don't know why. */
942 STOP_UNKNOWN,
943 /* Step, next, nexti, stepi finished. */
944 END_STEPPING_RANGE,
945 /* Found breakpoint. */
946 BREAKPOINT_HIT,
947 /* Inferior terminated by signal. */
948 SIGNAL_EXITED,
949 /* Inferior exited. */
950 EXITED,
951 /* Inferior received signal, and user asked to be notified. */
952 SIGNAL_RECEIVED
953};
954
cd0fc7c3
SS
955/* This structure contains what used to be local variables in
956 wait_for_inferior. Probably many of them can return to being
957 locals in handle_inferior_event. */
958
c5aa993b 959struct execution_control_state
488f131b
JB
960{
961 struct target_waitstatus ws;
962 struct target_waitstatus *wp;
963 int another_trap;
964 int random_signal;
965 CORE_ADDR stop_func_start;
966 CORE_ADDR stop_func_end;
967 char *stop_func_name;
968 struct symtab_and_line sal;
969 int remove_breakpoints_on_following_step;
970 int current_line;
971 struct symtab *current_symtab;
972 int handling_longjmp; /* FIXME */
973 ptid_t ptid;
974 ptid_t saved_inferior_ptid;
975 int update_step_sp;
976 int stepping_through_solib_after_catch;
977 bpstat stepping_through_solib_catchpoints;
978 int enable_hw_watchpoints_after_wait;
979 int stepping_through_sigtramp;
980 int new_thread_event;
981 struct target_waitstatus tmpstatus;
982 enum infwait_states infwait_state;
983 ptid_t waiton_ptid;
984 int wait_some_more;
985};
986
987void init_execution_control_state (struct execution_control_state *ecs);
988
1af510a8 989static void handle_step_into_function (struct execution_control_state *ecs);
488f131b 990void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 991
104c1213 992static void check_sigtramp2 (struct execution_control_state *ecs);
c2c6d25f 993static void step_into_function (struct execution_control_state *ecs);
d4f3574e 994static void step_over_function (struct execution_control_state *ecs);
104c1213
JM
995static void stop_stepping (struct execution_control_state *ecs);
996static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 997static void keep_going (struct execution_control_state *ecs);
488f131b
JB
998static void print_stop_reason (enum inferior_stop_reason stop_reason,
999 int stop_info);
104c1213 1000
cd0fc7c3
SS
1001/* Wait for control to return from inferior to debugger.
1002 If inferior gets a signal, we may decide to start it up again
1003 instead of returning. That is why there is a loop in this function.
1004 When this function actually returns it means the inferior
1005 should be left stopped and GDB should read more commands. */
1006
1007void
96baa820 1008wait_for_inferior (void)
cd0fc7c3
SS
1009{
1010 struct cleanup *old_cleanups;
1011 struct execution_control_state ecss;
1012 struct execution_control_state *ecs;
c906108c 1013
8601f500 1014 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
c906108c
SS
1015 &step_resume_breakpoint);
1016 make_cleanup (delete_breakpoint_current_contents,
1017 &through_sigtramp_breakpoint);
cd0fc7c3
SS
1018
1019 /* wfi still stays in a loop, so it's OK just to take the address of
1020 a local to get the ecs pointer. */
1021 ecs = &ecss;
1022
1023 /* Fill in with reasonable starting values. */
1024 init_execution_control_state (ecs);
1025
c906108c 1026 /* We'll update this if & when we switch to a new thread. */
39f77062 1027 previous_inferior_ptid = inferior_ptid;
c906108c 1028
cd0fc7c3
SS
1029 overlay_cache_invalid = 1;
1030
1031 /* We have to invalidate the registers BEFORE calling target_wait
1032 because they can be loaded from the target while in target_wait.
1033 This makes remote debugging a bit more efficient for those
1034 targets that provide critical registers as part of their normal
1035 status mechanism. */
1036
1037 registers_changed ();
b83266a0 1038
c906108c
SS
1039 while (1)
1040 {
cd0fc7c3 1041 if (target_wait_hook)
39f77062 1042 ecs->ptid = target_wait_hook (ecs->waiton_ptid, ecs->wp);
cd0fc7c3 1043 else
39f77062 1044 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
c906108c 1045
cd0fc7c3
SS
1046 /* Now figure out what to do with the result of the result. */
1047 handle_inferior_event (ecs);
c906108c 1048
cd0fc7c3
SS
1049 if (!ecs->wait_some_more)
1050 break;
1051 }
1052 do_cleanups (old_cleanups);
1053}
c906108c 1054
43ff13b4
JM
1055/* Asynchronous version of wait_for_inferior. It is called by the
1056 event loop whenever a change of state is detected on the file
1057 descriptor corresponding to the target. It can be called more than
1058 once to complete a single execution command. In such cases we need
1059 to keep the state in a global variable ASYNC_ECSS. If it is the
1060 last time that this function is called for a single execution
1061 command, then report to the user that the inferior has stopped, and
1062 do the necessary cleanups. */
1063
1064struct execution_control_state async_ecss;
1065struct execution_control_state *async_ecs;
1066
1067void
fba45db2 1068fetch_inferior_event (void *client_data)
43ff13b4
JM
1069{
1070 static struct cleanup *old_cleanups;
1071
c5aa993b 1072 async_ecs = &async_ecss;
43ff13b4
JM
1073
1074 if (!async_ecs->wait_some_more)
1075 {
488f131b 1076 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
c5aa993b 1077 &step_resume_breakpoint);
43ff13b4 1078 make_exec_cleanup (delete_breakpoint_current_contents,
c5aa993b 1079 &through_sigtramp_breakpoint);
43ff13b4
JM
1080
1081 /* Fill in with reasonable starting values. */
1082 init_execution_control_state (async_ecs);
1083
43ff13b4 1084 /* We'll update this if & when we switch to a new thread. */
39f77062 1085 previous_inferior_ptid = inferior_ptid;
43ff13b4
JM
1086
1087 overlay_cache_invalid = 1;
1088
1089 /* We have to invalidate the registers BEFORE calling target_wait
c5aa993b
JM
1090 because they can be loaded from the target while in target_wait.
1091 This makes remote debugging a bit more efficient for those
1092 targets that provide critical registers as part of their normal
1093 status mechanism. */
43ff13b4
JM
1094
1095 registers_changed ();
1096 }
1097
1098 if (target_wait_hook)
488f131b
JB
1099 async_ecs->ptid =
1100 target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4 1101 else
39f77062 1102 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4
JM
1103
1104 /* Now figure out what to do with the result of the result. */
1105 handle_inferior_event (async_ecs);
1106
1107 if (!async_ecs->wait_some_more)
1108 {
adf40b2e 1109 /* Do only the cleanups that have been added by this
488f131b
JB
1110 function. Let the continuations for the commands do the rest,
1111 if there are any. */
43ff13b4
JM
1112 do_exec_cleanups (old_cleanups);
1113 normal_stop ();
c2d11a7d
JM
1114 if (step_multi && stop_step)
1115 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1116 else
1117 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4
JM
1118 }
1119}
1120
cd0fc7c3
SS
1121/* Prepare an execution control state for looping through a
1122 wait_for_inferior-type loop. */
1123
1124void
96baa820 1125init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3 1126{
c2d11a7d 1127 /* ecs->another_trap? */
cd0fc7c3
SS
1128 ecs->random_signal = 0;
1129 ecs->remove_breakpoints_on_following_step = 0;
1130 ecs->handling_longjmp = 0; /* FIXME */
1131 ecs->update_step_sp = 0;
1132 ecs->stepping_through_solib_after_catch = 0;
1133 ecs->stepping_through_solib_catchpoints = NULL;
1134 ecs->enable_hw_watchpoints_after_wait = 0;
1135 ecs->stepping_through_sigtramp = 0;
1136 ecs->sal = find_pc_line (prev_pc, 0);
1137 ecs->current_line = ecs->sal.line;
1138 ecs->current_symtab = ecs->sal.symtab;
1139 ecs->infwait_state = infwait_normal_state;
39f77062 1140 ecs->waiton_ptid = pid_to_ptid (-1);
cd0fc7c3
SS
1141 ecs->wp = &(ecs->ws);
1142}
1143
a0b3c4fd 1144/* Call this function before setting step_resume_breakpoint, as a
53a5351d
JM
1145 sanity check. There should never be more than one step-resume
1146 breakpoint per thread, so we should never be setting a new
1147 step_resume_breakpoint when one is already active. */
a0b3c4fd 1148static void
96baa820 1149check_for_old_step_resume_breakpoint (void)
a0b3c4fd
JM
1150{
1151 if (step_resume_breakpoint)
488f131b
JB
1152 warning
1153 ("GDB bug: infrun.c (wait_for_inferior): dropping old step_resume breakpoint");
a0b3c4fd
JM
1154}
1155
e02bc4cc
DS
1156/* Return the cached copy of the last pid/waitstatus returned by
1157 target_wait()/target_wait_hook(). The data is actually cached by
1158 handle_inferior_event(), which gets called immediately after
1159 target_wait()/target_wait_hook(). */
1160
1161void
488f131b 1162get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 1163{
39f77062 1164 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
1165 *status = target_last_waitstatus;
1166}
1167
dd80620e
MS
1168/* Switch thread contexts, maintaining "infrun state". */
1169
1170static void
1171context_switch (struct execution_control_state *ecs)
1172{
1173 /* Caution: it may happen that the new thread (or the old one!)
1174 is not in the thread list. In this case we must not attempt
1175 to "switch context", or we run the risk that our context may
1176 be lost. This may happen as a result of the target module
1177 mishandling thread creation. */
1178
1179 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
488f131b 1180 { /* Perform infrun state context switch: */
dd80620e 1181 /* Save infrun state for the old thread. */
0ce3d317 1182 save_infrun_state (inferior_ptid, prev_pc,
dd80620e 1183 trap_expected, step_resume_breakpoint,
488f131b 1184 through_sigtramp_breakpoint, step_range_start,
aa0cd9c1 1185 step_range_end, &step_frame_id,
dd80620e
MS
1186 ecs->handling_longjmp, ecs->another_trap,
1187 ecs->stepping_through_solib_after_catch,
1188 ecs->stepping_through_solib_catchpoints,
1189 ecs->stepping_through_sigtramp,
488f131b 1190 ecs->current_line, ecs->current_symtab, step_sp);
dd80620e
MS
1191
1192 /* Load infrun state for the new thread. */
0ce3d317 1193 load_infrun_state (ecs->ptid, &prev_pc,
dd80620e 1194 &trap_expected, &step_resume_breakpoint,
488f131b 1195 &through_sigtramp_breakpoint, &step_range_start,
aa0cd9c1 1196 &step_range_end, &step_frame_id,
dd80620e
MS
1197 &ecs->handling_longjmp, &ecs->another_trap,
1198 &ecs->stepping_through_solib_after_catch,
1199 &ecs->stepping_through_solib_catchpoints,
488f131b
JB
1200 &ecs->stepping_through_sigtramp,
1201 &ecs->current_line, &ecs->current_symtab, &step_sp);
dd80620e
MS
1202 }
1203 inferior_ptid = ecs->ptid;
1204}
1205
1af510a8
JB
1206/* Handle the inferior event in the cases when we just stepped
1207 into a function. */
1208
1209static void
1210handle_step_into_function (struct execution_control_state *ecs)
1211{
1212 CORE_ADDR real_stop_pc;
1213
1214 if ((step_over_calls == STEP_OVER_NONE)
1215 || ((step_range_end == 1)
1216 && in_prologue (prev_pc, ecs->stop_func_start)))
1217 {
1218 /* I presume that step_over_calls is only 0 when we're
1219 supposed to be stepping at the assembly language level
1220 ("stepi"). Just stop. */
1221 /* Also, maybe we just did a "nexti" inside a prolog,
1222 so we thought it was a subroutine call but it was not.
1223 Stop as well. FENN */
1224 stop_step = 1;
1225 print_stop_reason (END_STEPPING_RANGE, 0);
1226 stop_stepping (ecs);
1227 return;
1228 }
1229
1230 if (step_over_calls == STEP_OVER_ALL || IGNORE_HELPER_CALL (stop_pc))
1231 {
1232 /* We're doing a "next". */
1af510a8
JB
1233 step_over_function (ecs);
1234 keep_going (ecs);
1235 return;
1236 }
1237
1238 /* If we are in a function call trampoline (a stub between
1239 the calling routine and the real function), locate the real
1240 function. That's what tells us (a) whether we want to step
1241 into it at all, and (b) what prologue we want to run to
1242 the end of, if we do step into it. */
1243 real_stop_pc = skip_language_trampoline (stop_pc);
1244 if (real_stop_pc == 0)
1245 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
1246 if (real_stop_pc != 0)
1247 ecs->stop_func_start = real_stop_pc;
1248
1249 /* If we have line number information for the function we
1250 are thinking of stepping into, step into it.
1251
1252 If there are several symtabs at that PC (e.g. with include
1253 files), just want to know whether *any* of them have line
1254 numbers. find_pc_line handles this. */
1255 {
1256 struct symtab_and_line tmp_sal;
1257
1258 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
1259 if (tmp_sal.line != 0)
1260 {
1261 step_into_function (ecs);
1262 return;
1263 }
1264 }
1265
1266 /* If we have no line number and the step-stop-if-no-debug
1267 is set, we stop the step so that the user has a chance to
1268 switch in assembly mode. */
1269 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
1270 {
1271 stop_step = 1;
1272 print_stop_reason (END_STEPPING_RANGE, 0);
1273 stop_stepping (ecs);
1274 return;
1275 }
1276
1277 step_over_function (ecs);
1278 keep_going (ecs);
1279 return;
1280}
dd80620e 1281
4fa8626c
DJ
1282static void
1283adjust_pc_after_break (struct execution_control_state *ecs)
1284{
1285 CORE_ADDR stop_pc;
1286
1287 /* If this target does not decrement the PC after breakpoints, then
1288 we have nothing to do. */
1289 if (DECR_PC_AFTER_BREAK == 0)
1290 return;
1291
1292 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1293 we aren't, just return.
9709f61c
DJ
1294
1295 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1296 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1297 by software breakpoints should be handled through the normal breakpoint
1298 layer.
4fa8626c
DJ
1299
1300 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1301 different signals (SIGILL or SIGEMT for instance), but it is less
1302 clear where the PC is pointing afterwards. It may not match
1303 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1304 these signals at breakpoints (the code has been in GDB since at least
1305 1992) so I can not guess how to handle them here.
1306
1307 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1308 would have the PC after hitting a watchpoint affected by
1309 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set
1310 in GDB history, and it seems unlikely to be correct, so
1311 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */
1312
1313 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1314 return;
1315
1316 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1317 return;
1318
1319 /* Find the location where (if we've hit a breakpoint) the breakpoint would
1320 be. */
1321 stop_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1322
1323 /* If we're software-single-stepping, then assume this is a breakpoint.
1324 NOTE drow/2004-01-17: This doesn't check that the PC matches, or that
1325 we're even in the right thread. The software-single-step code needs
1326 some modernization.
1327
1328 If we're not software-single-stepping, then we first check that there
1329 is an enabled software breakpoint at this address. If there is, and
1330 we weren't using hardware-single-step, then we've hit the breakpoint.
1331
1332 If we were using hardware-single-step, we check prev_pc; if we just
1333 stepped over an inserted software breakpoint, then we should decrement
1334 the PC and eventually report hitting the breakpoint. The prev_pc check
1335 prevents us from decrementing the PC if we just stepped over a jump
1336 instruction and landed on the instruction after a breakpoint.
1337
1338 The last bit checks that we didn't hit a breakpoint in a signal handler
1339 without an intervening stop in sigtramp, which is detected by a new
1340 stack pointer value below any usual function calling stack adjustments.
1341
1342 NOTE drow/2004-01-17: I'm not sure that this is necessary. The check
1343 predates checking for software single step at the same time. Also,
1344 if we've moved into a signal handler we should have seen the
1345 signal. */
1346
1347 if ((SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1348 || (software_breakpoint_inserted_here_p (stop_pc)
1349 && !(currently_stepping (ecs)
1350 && prev_pc != stop_pc
1351 && !(step_range_end && INNER_THAN (read_sp (), (step_sp - 16))))))
1352 write_pc_pid (stop_pc, ecs->ptid);
1353}
1354
cd0fc7c3
SS
1355/* Given an execution control state that has been freshly filled in
1356 by an event from the inferior, figure out what it means and take
1357 appropriate action. */
c906108c 1358
cd0fc7c3 1359void
96baa820 1360handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 1361{
65e82032
AC
1362 /* NOTE: cagney/2003-03-28: If you're looking at this code and
1363 thinking that the variable stepped_after_stopped_by_watchpoint
1364 isn't used, then you're wrong! The macro STOPPED_BY_WATCHPOINT,
1365 defined in the file "config/pa/nm-hppah.h", accesses the variable
1366 indirectly. Mutter something rude about the HP merge. */
cd0fc7c3 1367 int stepped_after_stopped_by_watchpoint;
c8edd8b4 1368 int sw_single_step_trap_p = 0;
cd0fc7c3 1369
e02bc4cc 1370 /* Cache the last pid/waitstatus. */
39f77062 1371 target_last_wait_ptid = ecs->ptid;
e02bc4cc
DS
1372 target_last_waitstatus = *ecs->wp;
1373
4fa8626c
DJ
1374 adjust_pc_after_break (ecs);
1375
488f131b
JB
1376 switch (ecs->infwait_state)
1377 {
1378 case infwait_thread_hop_state:
1379 /* Cancel the waiton_ptid. */
1380 ecs->waiton_ptid = pid_to_ptid (-1);
65e82032
AC
1381 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1382 is serviced in this loop, below. */
1383 if (ecs->enable_hw_watchpoints_after_wait)
1384 {
1385 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1386 ecs->enable_hw_watchpoints_after_wait = 0;
1387 }
1388 stepped_after_stopped_by_watchpoint = 0;
1389 break;
b83266a0 1390
488f131b
JB
1391 case infwait_normal_state:
1392 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1393 is serviced in this loop, below. */
1394 if (ecs->enable_hw_watchpoints_after_wait)
1395 {
1396 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1397 ecs->enable_hw_watchpoints_after_wait = 0;
1398 }
1399 stepped_after_stopped_by_watchpoint = 0;
1400 break;
b83266a0 1401
488f131b 1402 case infwait_nullified_state:
65e82032 1403 stepped_after_stopped_by_watchpoint = 0;
488f131b 1404 break;
b83266a0 1405
488f131b
JB
1406 case infwait_nonstep_watch_state:
1407 insert_breakpoints ();
c906108c 1408
488f131b
JB
1409 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1410 handle things like signals arriving and other things happening
1411 in combination correctly? */
1412 stepped_after_stopped_by_watchpoint = 1;
1413 break;
65e82032
AC
1414
1415 default:
1416 internal_error (__FILE__, __LINE__, "bad switch");
488f131b
JB
1417 }
1418 ecs->infwait_state = infwait_normal_state;
c906108c 1419
488f131b 1420 flush_cached_frames ();
c906108c 1421
488f131b 1422 /* If it's a new process, add it to the thread database */
c906108c 1423
488f131b
JB
1424 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1425 && !in_thread_list (ecs->ptid));
1426
1427 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1428 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1429 {
1430 add_thread (ecs->ptid);
c906108c 1431
488f131b
JB
1432 ui_out_text (uiout, "[New ");
1433 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1434 ui_out_text (uiout, "]\n");
c906108c
SS
1435
1436#if 0
488f131b
JB
1437 /* NOTE: This block is ONLY meant to be invoked in case of a
1438 "thread creation event"! If it is invoked for any other
1439 sort of event (such as a new thread landing on a breakpoint),
1440 the event will be discarded, which is almost certainly
1441 a bad thing!
1442
1443 To avoid this, the low-level module (eg. target_wait)
1444 should call in_thread_list and add_thread, so that the
1445 new thread is known by the time we get here. */
1446
1447 /* We may want to consider not doing a resume here in order
1448 to give the user a chance to play with the new thread.
1449 It might be good to make that a user-settable option. */
1450
1451 /* At this point, all threads are stopped (happens
1452 automatically in either the OS or the native code).
1453 Therefore we need to continue all threads in order to
1454 make progress. */
1455
1456 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1457 prepare_to_wait (ecs);
1458 return;
c906108c 1459#endif
488f131b 1460 }
c906108c 1461
488f131b
JB
1462 switch (ecs->ws.kind)
1463 {
1464 case TARGET_WAITKIND_LOADED:
1465 /* Ignore gracefully during startup of the inferior, as it
1466 might be the shell which has just loaded some objects,
1467 otherwise add the symbols for the newly loaded objects. */
c906108c 1468#ifdef SOLIB_ADD
c0236d92 1469 if (stop_soon == NO_STOP_QUIETLY)
488f131b
JB
1470 {
1471 /* Remove breakpoints, SOLIB_ADD might adjust
1472 breakpoint addresses via breakpoint_re_set. */
1473 if (breakpoints_inserted)
1474 remove_breakpoints ();
c906108c 1475
488f131b
JB
1476 /* Check for any newly added shared libraries if we're
1477 supposed to be adding them automatically. Switch
1478 terminal for any messages produced by
1479 breakpoint_re_set. */
1480 target_terminal_ours_for_output ();
aff6338a
AC
1481 /* NOTE: cagney/2003-11-25: Make certain that the target
1482 stack's section table is kept up-to-date. Architectures,
1483 (e.g., PPC64), use the section table to perform
1484 operations such as address => section name and hence
1485 require the table to contain all sections (including
1486 those found in shared libraries). */
1487 /* NOTE: cagney/2003-11-25: Pass current_target and not
1488 exec_ops to SOLIB_ADD. This is because current GDB is
1489 only tooled to propagate section_table changes out from
1490 the "current_target" (see target_resize_to_sections), and
1491 not up from the exec stratum. This, of course, isn't
1492 right. "infrun.c" should only interact with the
1493 exec/process stratum, instead relying on the target stack
1494 to propagate relevant changes (stop, section table
1495 changed, ...) up to other layers. */
1496 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
488f131b
JB
1497 target_terminal_inferior ();
1498
1499 /* Reinsert breakpoints and continue. */
1500 if (breakpoints_inserted)
1501 insert_breakpoints ();
1502 }
c906108c 1503#endif
488f131b
JB
1504 resume (0, TARGET_SIGNAL_0);
1505 prepare_to_wait (ecs);
1506 return;
c5aa993b 1507
488f131b
JB
1508 case TARGET_WAITKIND_SPURIOUS:
1509 resume (0, TARGET_SIGNAL_0);
1510 prepare_to_wait (ecs);
1511 return;
c5aa993b 1512
488f131b
JB
1513 case TARGET_WAITKIND_EXITED:
1514 target_terminal_ours (); /* Must do this before mourn anyway */
1515 print_stop_reason (EXITED, ecs->ws.value.integer);
1516
1517 /* Record the exit code in the convenience variable $_exitcode, so
1518 that the user can inspect this again later. */
1519 set_internalvar (lookup_internalvar ("_exitcode"),
1520 value_from_longest (builtin_type_int,
1521 (LONGEST) ecs->ws.value.integer));
1522 gdb_flush (gdb_stdout);
1523 target_mourn_inferior ();
1524 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1525 stop_print_frame = 0;
1526 stop_stepping (ecs);
1527 return;
c5aa993b 1528
488f131b
JB
1529 case TARGET_WAITKIND_SIGNALLED:
1530 stop_print_frame = 0;
1531 stop_signal = ecs->ws.value.sig;
1532 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 1533
488f131b
JB
1534 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1535 reach here unless the inferior is dead. However, for years
1536 target_kill() was called here, which hints that fatal signals aren't
1537 really fatal on some systems. If that's true, then some changes
1538 may be needed. */
1539 target_mourn_inferior ();
c906108c 1540
488f131b
JB
1541 print_stop_reason (SIGNAL_EXITED, stop_signal);
1542 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1543 stop_stepping (ecs);
1544 return;
c906108c 1545
488f131b
JB
1546 /* The following are the only cases in which we keep going;
1547 the above cases end in a continue or goto. */
1548 case TARGET_WAITKIND_FORKED:
deb3b17b 1549 case TARGET_WAITKIND_VFORKED:
488f131b
JB
1550 stop_signal = TARGET_SIGNAL_TRAP;
1551 pending_follow.kind = ecs->ws.kind;
1552
8e7d2c16
DJ
1553 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1554 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
c906108c 1555
488f131b 1556 stop_pc = read_pc ();
675bf4cb 1557
fa5281d0 1558 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
675bf4cb 1559
488f131b 1560 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
04e68871
DJ
1561
1562 /* If no catchpoint triggered for this, then keep going. */
1563 if (ecs->random_signal)
1564 {
1565 stop_signal = TARGET_SIGNAL_0;
1566 keep_going (ecs);
1567 return;
1568 }
488f131b
JB
1569 goto process_event_stop_test;
1570
1571 case TARGET_WAITKIND_EXECD:
1572 stop_signal = TARGET_SIGNAL_TRAP;
1573
7d2830a3
DJ
1574 /* NOTE drow/2002-12-05: This code should be pushed down into the
1575 target_wait function. Until then following vfork on HP/UX 10.20
1576 is probably broken by this. Of course, it's broken anyway. */
488f131b
JB
1577 /* Is this a target which reports multiple exec events per actual
1578 call to exec()? (HP-UX using ptrace does, for example.) If so,
1579 ignore all but the last one. Just resume the exec'r, and wait
1580 for the next exec event. */
1581 if (inferior_ignoring_leading_exec_events)
1582 {
1583 inferior_ignoring_leading_exec_events--;
1584 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1585 ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.
1586 parent_pid);
1587 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1588 prepare_to_wait (ecs);
1589 return;
1590 }
1591 inferior_ignoring_leading_exec_events =
1592 target_reported_exec_events_per_exec_call () - 1;
1593
1594 pending_follow.execd_pathname =
1595 savestring (ecs->ws.value.execd_pathname,
1596 strlen (ecs->ws.value.execd_pathname));
1597
488f131b
JB
1598 /* This causes the eventpoints and symbol table to be reset. Must
1599 do this now, before trying to determine whether to stop. */
1600 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1601 xfree (pending_follow.execd_pathname);
c906108c 1602
488f131b
JB
1603 stop_pc = read_pc_pid (ecs->ptid);
1604 ecs->saved_inferior_ptid = inferior_ptid;
1605 inferior_ptid = ecs->ptid;
675bf4cb 1606
fa5281d0 1607 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
675bf4cb 1608
488f131b
JB
1609 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1610 inferior_ptid = ecs->saved_inferior_ptid;
04e68871
DJ
1611
1612 /* If no catchpoint triggered for this, then keep going. */
1613 if (ecs->random_signal)
1614 {
1615 stop_signal = TARGET_SIGNAL_0;
1616 keep_going (ecs);
1617 return;
1618 }
488f131b
JB
1619 goto process_event_stop_test;
1620
1621 /* These syscall events are returned on HP-UX, as part of its
1622 implementation of page-protection-based "hardware" watchpoints.
1623 HP-UX has unfortunate interactions between page-protections and
1624 some system calls. Our solution is to disable hardware watches
1625 when a system call is entered, and reenable them when the syscall
1626 completes. The downside of this is that we may miss the precise
1627 point at which a watched piece of memory is modified. "Oh well."
1628
1629 Note that we may have multiple threads running, which may each
1630 enter syscalls at roughly the same time. Since we don't have a
1631 good notion currently of whether a watched piece of memory is
1632 thread-private, we'd best not have any page-protections active
1633 when any thread is in a syscall. Thus, we only want to reenable
1634 hardware watches when no threads are in a syscall.
1635
1636 Also, be careful not to try to gather much state about a thread
1637 that's in a syscall. It's frequently a losing proposition. */
1638 case TARGET_WAITKIND_SYSCALL_ENTRY:
1639 number_of_threads_in_syscalls++;
1640 if (number_of_threads_in_syscalls == 1)
1641 {
1642 TARGET_DISABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1643 }
1644 resume (0, TARGET_SIGNAL_0);
1645 prepare_to_wait (ecs);
1646 return;
c906108c 1647
488f131b
JB
1648 /* Before examining the threads further, step this thread to
1649 get it entirely out of the syscall. (We get notice of the
1650 event when the thread is just on the verge of exiting a
1651 syscall. Stepping one instruction seems to get it back
1652 into user code.)
c906108c 1653
488f131b
JB
1654 Note that although the logical place to reenable h/w watches
1655 is here, we cannot. We cannot reenable them before stepping
1656 the thread (this causes the next wait on the thread to hang).
c4093a6a 1657
488f131b
JB
1658 Nor can we enable them after stepping until we've done a wait.
1659 Thus, we simply set the flag ecs->enable_hw_watchpoints_after_wait
1660 here, which will be serviced immediately after the target
1661 is waited on. */
1662 case TARGET_WAITKIND_SYSCALL_RETURN:
1663 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1664
1665 if (number_of_threads_in_syscalls > 0)
1666 {
1667 number_of_threads_in_syscalls--;
1668 ecs->enable_hw_watchpoints_after_wait =
1669 (number_of_threads_in_syscalls == 0);
1670 }
1671 prepare_to_wait (ecs);
1672 return;
c906108c 1673
488f131b
JB
1674 case TARGET_WAITKIND_STOPPED:
1675 stop_signal = ecs->ws.value.sig;
1676 break;
c906108c 1677
488f131b
JB
1678 /* We had an event in the inferior, but we are not interested
1679 in handling it at this level. The lower layers have already
8e7d2c16
DJ
1680 done what needs to be done, if anything.
1681
1682 One of the possible circumstances for this is when the
1683 inferior produces output for the console. The inferior has
1684 not stopped, and we are ignoring the event. Another possible
1685 circumstance is any event which the lower level knows will be
1686 reported multiple times without an intervening resume. */
488f131b 1687 case TARGET_WAITKIND_IGNORE:
8e7d2c16 1688 prepare_to_wait (ecs);
488f131b
JB
1689 return;
1690 }
c906108c 1691
488f131b
JB
1692 /* We may want to consider not doing a resume here in order to give
1693 the user a chance to play with the new thread. It might be good
1694 to make that a user-settable option. */
c906108c 1695
488f131b
JB
1696 /* At this point, all threads are stopped (happens automatically in
1697 either the OS or the native code). Therefore we need to continue
1698 all threads in order to make progress. */
1699 if (ecs->new_thread_event)
1700 {
1701 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1702 prepare_to_wait (ecs);
1703 return;
1704 }
c906108c 1705
488f131b
JB
1706 stop_pc = read_pc_pid (ecs->ptid);
1707
9f976b41
DJ
1708 if (stepping_past_singlestep_breakpoint)
1709 {
1710 gdb_assert (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p);
1711 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1712 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1713
1714 stepping_past_singlestep_breakpoint = 0;
1715
1716 /* We've either finished single-stepping past the single-step
1717 breakpoint, or stopped for some other reason. It would be nice if
1718 we could tell, but we can't reliably. */
1719 if (stop_signal == TARGET_SIGNAL_TRAP)
1720 {
1721 /* Pull the single step breakpoints out of the target. */
1722 SOFTWARE_SINGLE_STEP (0, 0);
1723 singlestep_breakpoints_inserted_p = 0;
1724
1725 ecs->random_signal = 0;
1726
1727 ecs->ptid = saved_singlestep_ptid;
1728 context_switch (ecs);
1729 if (context_hook)
1730 context_hook (pid_to_thread_id (ecs->ptid));
1731
1732 resume (1, TARGET_SIGNAL_0);
1733 prepare_to_wait (ecs);
1734 return;
1735 }
1736 }
1737
1738 stepping_past_singlestep_breakpoint = 0;
1739
488f131b
JB
1740 /* See if a thread hit a thread-specific breakpoint that was meant for
1741 another thread. If so, then step that thread past the breakpoint,
1742 and continue it. */
1743
1744 if (stop_signal == TARGET_SIGNAL_TRAP)
1745 {
9f976b41
DJ
1746 int thread_hop_needed = 0;
1747
f8d40ec8
JB
1748 /* Check if a regular breakpoint has been hit before checking
1749 for a potential single step breakpoint. Otherwise, GDB will
1750 not see this breakpoint hit when stepping onto breakpoints. */
4fa8626c 1751 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
488f131b 1752 {
c5aa993b 1753 ecs->random_signal = 0;
4fa8626c 1754 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
9f976b41
DJ
1755 thread_hop_needed = 1;
1756 }
1757 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1758 {
1759 ecs->random_signal = 0;
1760 /* The call to in_thread_list is necessary because PTIDs sometimes
1761 change when we go from single-threaded to multi-threaded. If
1762 the singlestep_ptid is still in the list, assume that it is
1763 really different from ecs->ptid. */
1764 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1765 && in_thread_list (singlestep_ptid))
1766 {
1767 thread_hop_needed = 1;
1768 stepping_past_singlestep_breakpoint = 1;
1769 saved_singlestep_ptid = singlestep_ptid;
1770 }
1771 }
1772
1773 if (thread_hop_needed)
488f131b
JB
1774 {
1775 int remove_status;
1776
1777 /* Saw a breakpoint, but it was hit by the wrong thread.
1778 Just continue. */
488f131b 1779
9f976b41
DJ
1780 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1781 {
1782 /* Pull the single step breakpoints out of the target. */
1783 SOFTWARE_SINGLE_STEP (0, 0);
1784 singlestep_breakpoints_inserted_p = 0;
1785 }
1786
488f131b
JB
1787 remove_status = remove_breakpoints ();
1788 /* Did we fail to remove breakpoints? If so, try
1789 to set the PC past the bp. (There's at least
1790 one situation in which we can fail to remove
1791 the bp's: On HP-UX's that use ttrace, we can't
1792 change the address space of a vforking child
1793 process until the child exits (well, okay, not
1794 then either :-) or execs. */
1795 if (remove_status != 0)
1796 {
1797 /* FIXME! This is obviously non-portable! */
4fa8626c 1798 write_pc_pid (stop_pc + 4, ecs->ptid);
488f131b
JB
1799 /* We need to restart all the threads now,
1800 * unles we're running in scheduler-locked mode.
1801 * Use currently_stepping to determine whether to
1802 * step or continue.
1803 */
1804 /* FIXME MVS: is there any reason not to call resume()? */
1805 if (scheduler_mode == schedlock_on)
1806 target_resume (ecs->ptid,
1807 currently_stepping (ecs), TARGET_SIGNAL_0);
1808 else
1809 target_resume (RESUME_ALL,
1810 currently_stepping (ecs), TARGET_SIGNAL_0);
1811 prepare_to_wait (ecs);
1812 return;
1813 }
1814 else
1815 { /* Single step */
1816 breakpoints_inserted = 0;
1817 if (!ptid_equal (inferior_ptid, ecs->ptid))
1818 context_switch (ecs);
1819 ecs->waiton_ptid = ecs->ptid;
1820 ecs->wp = &(ecs->ws);
1821 ecs->another_trap = 1;
1822
1823 ecs->infwait_state = infwait_thread_hop_state;
1824 keep_going (ecs);
1825 registers_changed ();
1826 return;
1827 }
488f131b 1828 }
f8d40ec8
JB
1829 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1830 {
c8edd8b4 1831 sw_single_step_trap_p = 1;
f8d40ec8
JB
1832 ecs->random_signal = 0;
1833 }
488f131b
JB
1834 }
1835 else
1836 ecs->random_signal = 1;
c906108c 1837
488f131b 1838 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
1839 so, then switch to that thread. */
1840 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 1841 {
488f131b 1842 context_switch (ecs);
c5aa993b 1843
488f131b
JB
1844 if (context_hook)
1845 context_hook (pid_to_thread_id (ecs->ptid));
c5aa993b 1846
488f131b
JB
1847 flush_cached_frames ();
1848 }
c906108c 1849
488f131b
JB
1850 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1851 {
1852 /* Pull the single step breakpoints out of the target. */
1853 SOFTWARE_SINGLE_STEP (0, 0);
1854 singlestep_breakpoints_inserted_p = 0;
1855 }
c906108c 1856
488f131b
JB
1857 /* If PC is pointing at a nullified instruction, then step beyond
1858 it so that the user won't be confused when GDB appears to be ready
1859 to execute it. */
c906108c 1860
488f131b
JB
1861 /* if (INSTRUCTION_NULLIFIED && currently_stepping (ecs)) */
1862 if (INSTRUCTION_NULLIFIED)
1863 {
1864 registers_changed ();
1865 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
c906108c 1866
488f131b
JB
1867 /* We may have received a signal that we want to pass to
1868 the inferior; therefore, we must not clobber the waitstatus
1869 in WS. */
c906108c 1870
488f131b
JB
1871 ecs->infwait_state = infwait_nullified_state;
1872 ecs->waiton_ptid = ecs->ptid;
1873 ecs->wp = &(ecs->tmpstatus);
1874 prepare_to_wait (ecs);
1875 return;
1876 }
c906108c 1877
488f131b
JB
1878 /* It may not be necessary to disable the watchpoint to stop over
1879 it. For example, the PA can (with some kernel cooperation)
1880 single step over a watchpoint without disabling the watchpoint. */
1881 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1882 {
1883 resume (1, 0);
1884 prepare_to_wait (ecs);
1885 return;
1886 }
c906108c 1887
488f131b
JB
1888 /* It is far more common to need to disable a watchpoint to step
1889 the inferior over it. FIXME. What else might a debug
1890 register or page protection watchpoint scheme need here? */
1891 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1892 {
1893 /* At this point, we are stopped at an instruction which has
1894 attempted to write to a piece of memory under control of
1895 a watchpoint. The instruction hasn't actually executed
1896 yet. If we were to evaluate the watchpoint expression
1897 now, we would get the old value, and therefore no change
1898 would seem to have occurred.
1899
1900 In order to make watchpoints work `right', we really need
1901 to complete the memory write, and then evaluate the
1902 watchpoint expression. The following code does that by
1903 removing the watchpoint (actually, all watchpoints and
1904 breakpoints), single-stepping the target, re-inserting
1905 watchpoints, and then falling through to let normal
1906 single-step processing handle proceed. Since this
1907 includes evaluating watchpoints, things will come to a
1908 stop in the correct manner. */
1909
488f131b
JB
1910 remove_breakpoints ();
1911 registers_changed ();
1912 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
c5aa993b 1913
488f131b
JB
1914 ecs->waiton_ptid = ecs->ptid;
1915 ecs->wp = &(ecs->ws);
1916 ecs->infwait_state = infwait_nonstep_watch_state;
1917 prepare_to_wait (ecs);
1918 return;
1919 }
1920
1921 /* It may be possible to simply continue after a watchpoint. */
1922 if (HAVE_CONTINUABLE_WATCHPOINT)
1923 STOPPED_BY_WATCHPOINT (ecs->ws);
1924
1925 ecs->stop_func_start = 0;
1926 ecs->stop_func_end = 0;
1927 ecs->stop_func_name = 0;
1928 /* Don't care about return value; stop_func_start and stop_func_name
1929 will both be 0 if it doesn't work. */
1930 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1931 &ecs->stop_func_start, &ecs->stop_func_end);
1932 ecs->stop_func_start += FUNCTION_START_OFFSET;
1933 ecs->another_trap = 0;
1934 bpstat_clear (&stop_bpstat);
1935 stop_step = 0;
1936 stop_stack_dummy = 0;
1937 stop_print_frame = 1;
1938 ecs->random_signal = 0;
1939 stopped_by_random_signal = 0;
1940 breakpoints_failed = 0;
1941
1942 /* Look at the cause of the stop, and decide what to do.
1943 The alternatives are:
1944 1) break; to really stop and return to the debugger,
1945 2) drop through to start up again
1946 (set ecs->another_trap to 1 to single step once)
1947 3) set ecs->random_signal to 1, and the decision between 1 and 2
1948 will be made according to the signal handling tables. */
1949
1950 /* First, distinguish signals caused by the debugger from signals
03cebad2
MK
1951 that have to do with the program's own actions. Note that
1952 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1953 on the operating system version. Here we detect when a SIGILL or
1954 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1955 something similar for SIGSEGV, since a SIGSEGV will be generated
1956 when we're trying to execute a breakpoint instruction on a
1957 non-executable stack. This happens for call dummy breakpoints
1958 for architectures like SPARC that place call dummies on the
1959 stack. */
488f131b
JB
1960
1961 if (stop_signal == TARGET_SIGNAL_TRAP
1962 || (breakpoints_inserted &&
1963 (stop_signal == TARGET_SIGNAL_ILL
03cebad2 1964 || stop_signal == TARGET_SIGNAL_SEGV
c54cfec8 1965 || stop_signal == TARGET_SIGNAL_EMT))
c0236d92
EZ
1966 || stop_soon == STOP_QUIETLY
1967 || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
488f131b
JB
1968 {
1969 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1970 {
1971 stop_print_frame = 0;
1972 stop_stepping (ecs);
1973 return;
1974 }
c54cfec8
EZ
1975
1976 /* This is originated from start_remote(), start_inferior() and
1977 shared libraries hook functions. */
c0236d92 1978 if (stop_soon == STOP_QUIETLY)
488f131b
JB
1979 {
1980 stop_stepping (ecs);
1981 return;
1982 }
1983
c54cfec8
EZ
1984 /* This originates from attach_command(). We need to overwrite
1985 the stop_signal here, because some kernels don't ignore a
1986 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1987 See more comments in inferior.h. */
c0236d92 1988 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
c54cfec8
EZ
1989 {
1990 stop_stepping (ecs);
1991 if (stop_signal == TARGET_SIGNAL_STOP)
1992 stop_signal = TARGET_SIGNAL_0;
1993 return;
1994 }
1995
488f131b
JB
1996 /* Don't even think about breakpoints
1997 if just proceeded over a breakpoint.
1998
1999 However, if we are trying to proceed over a breakpoint
2000 and end up in sigtramp, then through_sigtramp_breakpoint
2001 will be set and we should check whether we've hit the
2002 step breakpoint. */
2003 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected
2004 && through_sigtramp_breakpoint == NULL)
2005 bpstat_clear (&stop_bpstat);
2006 else
2007 {
2008 /* See if there is a breakpoint at the current PC. */
fa5281d0 2009 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
488f131b 2010
488f131b
JB
2011 /* Following in case break condition called a
2012 function. */
2013 stop_print_frame = 1;
2014 }
2015
73dd234f
AC
2016 /* NOTE: cagney/2003-03-29: These two checks for a random signal
2017 at one stage in the past included checks for an inferior
2018 function call's call dummy's return breakpoint. The original
2019 comment, that went with the test, read:
2020
2021 ``End of a stack dummy. Some systems (e.g. Sony news) give
2022 another signal besides SIGTRAP, so check here as well as
2023 above.''
2024
2025 If someone ever tries to get get call dummys on a
2026 non-executable stack to work (where the target would stop
03cebad2
MK
2027 with something like a SIGSEGV), then those tests might need
2028 to be re-instated. Given, however, that the tests were only
73dd234f 2029 enabled when momentary breakpoints were not being used, I
03cebad2
MK
2030 suspect that it won't be the case.
2031
2032 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2033 be necessary for call dummies on a non-executable stack on
2034 SPARC. */
73dd234f 2035
488f131b
JB
2036 if (stop_signal == TARGET_SIGNAL_TRAP)
2037 ecs->random_signal
2038 = !(bpstat_explains_signal (stop_bpstat)
2039 || trap_expected
488f131b 2040 || (step_range_end && step_resume_breakpoint == NULL));
488f131b
JB
2041 else
2042 {
73dd234f 2043 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
488f131b
JB
2044 if (!ecs->random_signal)
2045 stop_signal = TARGET_SIGNAL_TRAP;
2046 }
2047 }
2048
2049 /* When we reach this point, we've pretty much decided
2050 that the reason for stopping must've been a random
2051 (unexpected) signal. */
2052
2053 else
2054 ecs->random_signal = 1;
488f131b 2055
04e68871 2056process_event_stop_test:
488f131b
JB
2057 /* For the program's own signals, act according to
2058 the signal handling tables. */
2059
2060 if (ecs->random_signal)
2061 {
2062 /* Signal not for debugging purposes. */
2063 int printed = 0;
2064
2065 stopped_by_random_signal = 1;
2066
2067 if (signal_print[stop_signal])
2068 {
2069 printed = 1;
2070 target_terminal_ours_for_output ();
2071 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2072 }
2073 if (signal_stop[stop_signal])
2074 {
2075 stop_stepping (ecs);
2076 return;
2077 }
2078 /* If not going to stop, give terminal back
2079 if we took it away. */
2080 else if (printed)
2081 target_terminal_inferior ();
2082
2083 /* Clear the signal if it should not be passed. */
2084 if (signal_program[stop_signal] == 0)
2085 stop_signal = TARGET_SIGNAL_0;
2086
2087 /* I'm not sure whether this needs to be check_sigtramp2 or
2088 whether it could/should be keep_going.
2089
2090 This used to jump to step_over_function if we are stepping,
2091 which is wrong.
2092
2093 Suppose the user does a `next' over a function call, and while
2094 that call is in progress, the inferior receives a signal for
2095 which GDB does not stop (i.e., signal_stop[SIG] is false). In
2096 that case, when we reach this point, there is already a
2097 step-resume breakpoint established, right where it should be:
2098 immediately after the function call the user is "next"-ing
2099 over. If we call step_over_function now, two bad things
2100 happen:
2101
2102 - we'll create a new breakpoint, at wherever the current
2103 frame's return address happens to be. That could be
2104 anywhere, depending on what function call happens to be on
2105 the top of the stack at that point. Point is, it's probably
2106 not where we need it.
2107
2108 - the existing step-resume breakpoint (which is at the correct
2109 address) will get orphaned: step_resume_breakpoint will point
2110 to the new breakpoint, and the old step-resume breakpoint
2111 will never be cleaned up.
2112
2113 The old behavior was meant to help HP-UX single-step out of
2114 sigtramps. It would place the new breakpoint at prev_pc, which
2115 was certainly wrong. I don't know the details there, so fixing
2116 this probably breaks that. As with anything else, it's up to
2117 the HP-UX maintainer to furnish a fix that doesn't break other
2118 platforms. --JimB, 20 May 1999 */
2119 check_sigtramp2 (ecs);
2120 keep_going (ecs);
2121 return;
2122 }
2123
2124 /* Handle cases caused by hitting a breakpoint. */
2125 {
2126 CORE_ADDR jmp_buf_pc;
2127 struct bpstat_what what;
2128
2129 what = bpstat_what (stop_bpstat);
2130
2131 if (what.call_dummy)
2132 {
2133 stop_stack_dummy = 1;
2134#ifdef HP_OS_BUG
2135 trap_expected_after_continue = 1;
2136#endif
c5aa993b 2137 }
c906108c 2138
488f131b 2139 switch (what.main_action)
c5aa993b 2140 {
488f131b
JB
2141 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2142 /* If we hit the breakpoint at longjmp, disable it for the
2143 duration of this command. Then, install a temporary
2144 breakpoint at the target of the jmp_buf. */
2145 disable_longjmp_breakpoint ();
2146 remove_breakpoints ();
2147 breakpoints_inserted = 0;
2148 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
c5aa993b 2149 {
488f131b 2150 keep_going (ecs);
104c1213 2151 return;
c5aa993b 2152 }
488f131b
JB
2153
2154 /* Need to blow away step-resume breakpoint, as it
2155 interferes with us */
2156 if (step_resume_breakpoint != NULL)
104c1213 2157 {
488f131b 2158 delete_step_resume_breakpoint (&step_resume_breakpoint);
104c1213 2159 }
488f131b
JB
2160 /* Not sure whether we need to blow this away too, but probably
2161 it is like the step-resume breakpoint. */
2162 if (through_sigtramp_breakpoint != NULL)
c5aa993b 2163 {
488f131b
JB
2164 delete_breakpoint (through_sigtramp_breakpoint);
2165 through_sigtramp_breakpoint = NULL;
c5aa993b 2166 }
c906108c 2167
488f131b
JB
2168#if 0
2169 /* FIXME - Need to implement nested temporary breakpoints */
2170 if (step_over_calls > 0)
2171 set_longjmp_resume_breakpoint (jmp_buf_pc, get_current_frame ());
c5aa993b 2172 else
488f131b 2173#endif /* 0 */
818dd999 2174 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
488f131b
JB
2175 ecs->handling_longjmp = 1; /* FIXME */
2176 keep_going (ecs);
2177 return;
c906108c 2178
488f131b
JB
2179 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2180 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2181 remove_breakpoints ();
2182 breakpoints_inserted = 0;
2183#if 0
2184 /* FIXME - Need to implement nested temporary breakpoints */
2185 if (step_over_calls
aa0cd9c1
AC
2186 && (frame_id_inner (get_frame_id (get_current_frame ()),
2187 step_frame_id)))
c5aa993b 2188 {
488f131b 2189 ecs->another_trap = 1;
d4f3574e
SS
2190 keep_going (ecs);
2191 return;
c5aa993b 2192 }
488f131b
JB
2193#endif /* 0 */
2194 disable_longjmp_breakpoint ();
2195 ecs->handling_longjmp = 0; /* FIXME */
2196 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2197 break;
2198 /* else fallthrough */
2199
2200 case BPSTAT_WHAT_SINGLE:
2201 if (breakpoints_inserted)
c5aa993b 2202 {
488f131b 2203 remove_breakpoints ();
c5aa993b 2204 }
488f131b
JB
2205 breakpoints_inserted = 0;
2206 ecs->another_trap = 1;
2207 /* Still need to check other stuff, at least the case
2208 where we are stepping and step out of the right range. */
2209 break;
c906108c 2210
488f131b
JB
2211 case BPSTAT_WHAT_STOP_NOISY:
2212 stop_print_frame = 1;
c906108c 2213
488f131b
JB
2214 /* We are about to nuke the step_resume_breakpoint and
2215 through_sigtramp_breakpoint via the cleanup chain, so
2216 no need to worry about it here. */
c5aa993b 2217
488f131b
JB
2218 stop_stepping (ecs);
2219 return;
c5aa993b 2220
488f131b
JB
2221 case BPSTAT_WHAT_STOP_SILENT:
2222 stop_print_frame = 0;
c5aa993b 2223
488f131b
JB
2224 /* We are about to nuke the step_resume_breakpoint and
2225 through_sigtramp_breakpoint via the cleanup chain, so
2226 no need to worry about it here. */
c5aa993b 2227
488f131b 2228 stop_stepping (ecs);
e441088d 2229 return;
c5aa993b 2230
488f131b
JB
2231 case BPSTAT_WHAT_STEP_RESUME:
2232 /* This proably demands a more elegant solution, but, yeah
2233 right...
c5aa993b 2234
488f131b
JB
2235 This function's use of the simple variable
2236 step_resume_breakpoint doesn't seem to accomodate
2237 simultaneously active step-resume bp's, although the
2238 breakpoint list certainly can.
c5aa993b 2239
488f131b
JB
2240 If we reach here and step_resume_breakpoint is already
2241 NULL, then apparently we have multiple active
2242 step-resume bp's. We'll just delete the breakpoint we
2243 stopped at, and carry on.
2244
2245 Correction: what the code currently does is delete a
2246 step-resume bp, but it makes no effort to ensure that
2247 the one deleted is the one currently stopped at. MVS */
c5aa993b 2248
488f131b
JB
2249 if (step_resume_breakpoint == NULL)
2250 {
2251 step_resume_breakpoint =
2252 bpstat_find_step_resume_breakpoint (stop_bpstat);
2253 }
2254 delete_step_resume_breakpoint (&step_resume_breakpoint);
2255 break;
2256
2257 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
2258 if (through_sigtramp_breakpoint)
2259 delete_breakpoint (through_sigtramp_breakpoint);
2260 through_sigtramp_breakpoint = NULL;
2261
2262 /* If were waiting for a trap, hitting the step_resume_break
2263 doesn't count as getting it. */
2264 if (trap_expected)
2265 ecs->another_trap = 1;
2266 break;
2267
2268 case BPSTAT_WHAT_CHECK_SHLIBS:
2269 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2270#ifdef SOLIB_ADD
c906108c 2271 {
488f131b
JB
2272 /* Remove breakpoints, we eventually want to step over the
2273 shlib event breakpoint, and SOLIB_ADD might adjust
2274 breakpoint addresses via breakpoint_re_set. */
2275 if (breakpoints_inserted)
2276 remove_breakpoints ();
c5aa993b 2277 breakpoints_inserted = 0;
488f131b
JB
2278
2279 /* Check for any newly added shared libraries if we're
2280 supposed to be adding them automatically. Switch
2281 terminal for any messages produced by
2282 breakpoint_re_set. */
2283 target_terminal_ours_for_output ();
aff6338a
AC
2284 /* NOTE: cagney/2003-11-25: Make certain that the target
2285 stack's section table is kept up-to-date. Architectures,
2286 (e.g., PPC64), use the section table to perform
2287 operations such as address => section name and hence
2288 require the table to contain all sections (including
2289 those found in shared libraries). */
2290 /* NOTE: cagney/2003-11-25: Pass current_target and not
2291 exec_ops to SOLIB_ADD. This is because current GDB is
2292 only tooled to propagate section_table changes out from
2293 the "current_target" (see target_resize_to_sections), and
2294 not up from the exec stratum. This, of course, isn't
2295 right. "infrun.c" should only interact with the
2296 exec/process stratum, instead relying on the target stack
2297 to propagate relevant changes (stop, section table
2298 changed, ...) up to other layers. */
2299 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
488f131b
JB
2300 target_terminal_inferior ();
2301
2302 /* Try to reenable shared library breakpoints, additional
2303 code segments in shared libraries might be mapped in now. */
2304 re_enable_breakpoints_in_shlibs ();
2305
2306 /* If requested, stop when the dynamic linker notifies
2307 gdb of events. This allows the user to get control
2308 and place breakpoints in initializer routines for
2309 dynamically loaded objects (among other things). */
877522db 2310 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 2311 {
488f131b 2312 stop_stepping (ecs);
d4f3574e
SS
2313 return;
2314 }
c5aa993b 2315
488f131b
JB
2316 /* If we stopped due to an explicit catchpoint, then the
2317 (see above) call to SOLIB_ADD pulled in any symbols
2318 from a newly-loaded library, if appropriate.
2319
2320 We do want the inferior to stop, but not where it is
2321 now, which is in the dynamic linker callback. Rather,
2322 we would like it stop in the user's program, just after
2323 the call that caused this catchpoint to trigger. That
2324 gives the user a more useful vantage from which to
2325 examine their program's state. */
2326 else if (what.main_action ==
2327 BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
c906108c 2328 {
488f131b
JB
2329 /* ??rehrauer: If I could figure out how to get the
2330 right return PC from here, we could just set a temp
2331 breakpoint and resume. I'm not sure we can without
2332 cracking open the dld's shared libraries and sniffing
2333 their unwind tables and text/data ranges, and that's
2334 not a terribly portable notion.
2335
2336 Until that time, we must step the inferior out of the
2337 dld callback, and also out of the dld itself (and any
2338 code or stubs in libdld.sl, such as "shl_load" and
2339 friends) until we reach non-dld code. At that point,
2340 we can stop stepping. */
2341 bpstat_get_triggered_catchpoints (stop_bpstat,
2342 &ecs->
2343 stepping_through_solib_catchpoints);
2344 ecs->stepping_through_solib_after_catch = 1;
2345
2346 /* Be sure to lift all breakpoints, so the inferior does
2347 actually step past this point... */
2348 ecs->another_trap = 1;
2349 break;
c906108c 2350 }
c5aa993b 2351 else
c5aa993b 2352 {
488f131b 2353 /* We want to step over this breakpoint, then keep going. */
c5aa993b 2354 ecs->another_trap = 1;
488f131b 2355 break;
c5aa993b 2356 }
488f131b
JB
2357 }
2358#endif
2359 break;
c906108c 2360
488f131b
JB
2361 case BPSTAT_WHAT_LAST:
2362 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 2363
488f131b
JB
2364 case BPSTAT_WHAT_KEEP_CHECKING:
2365 break;
2366 }
2367 }
c906108c 2368
488f131b
JB
2369 /* We come here if we hit a breakpoint but should not
2370 stop for it. Possibly we also were stepping
2371 and should stop for that. So fall through and
2372 test for stepping. But, if not stepping,
2373 do not stop. */
c906108c 2374
488f131b
JB
2375 /* Are we stepping to get the inferior out of the dynamic
2376 linker's hook (and possibly the dld itself) after catching
2377 a shlib event? */
2378 if (ecs->stepping_through_solib_after_catch)
2379 {
2380#if defined(SOLIB_ADD)
2381 /* Have we reached our destination? If not, keep going. */
2382 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2383 {
2384 ecs->another_trap = 1;
2385 keep_going (ecs);
104c1213 2386 return;
488f131b
JB
2387 }
2388#endif
2389 /* Else, stop and report the catchpoint(s) whose triggering
2390 caused us to begin stepping. */
2391 ecs->stepping_through_solib_after_catch = 0;
2392 bpstat_clear (&stop_bpstat);
2393 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2394 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2395 stop_print_frame = 1;
2396 stop_stepping (ecs);
2397 return;
2398 }
c906108c 2399
488f131b
JB
2400 if (step_resume_breakpoint)
2401 {
2402 /* Having a step-resume breakpoint overrides anything
2403 else having to do with stepping commands until
2404 that breakpoint is reached. */
2405 /* I'm not sure whether this needs to be check_sigtramp2 or
2406 whether it could/should be keep_going. */
2407 check_sigtramp2 (ecs);
2408 keep_going (ecs);
2409 return;
2410 }
c5aa993b 2411
488f131b
JB
2412 if (step_range_end == 0)
2413 {
2414 /* Likewise if we aren't even stepping. */
2415 /* I'm not sure whether this needs to be check_sigtramp2 or
2416 whether it could/should be keep_going. */
2417 check_sigtramp2 (ecs);
2418 keep_going (ecs);
2419 return;
2420 }
c5aa993b 2421
488f131b 2422 /* If stepping through a line, keep going if still within it.
c906108c 2423
488f131b
JB
2424 Note that step_range_end is the address of the first instruction
2425 beyond the step range, and NOT the address of the last instruction
2426 within it! */
2427 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2428 {
2429 /* We might be doing a BPSTAT_WHAT_SINGLE and getting a signal.
2430 So definately need to check for sigtramp here. */
2431 check_sigtramp2 (ecs);
2432 keep_going (ecs);
2433 return;
2434 }
c5aa993b 2435
488f131b 2436 /* We stepped out of the stepping range. */
c906108c 2437
488f131b
JB
2438 /* If we are stepping at the source level and entered the runtime
2439 loader dynamic symbol resolution code, we keep on single stepping
2440 until we exit the run time loader code and reach the callee's
2441 address. */
2442 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2443 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc))
2444 {
4c8c40e6
MK
2445 CORE_ADDR pc_after_resolver =
2446 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
c906108c 2447
488f131b
JB
2448 if (pc_after_resolver)
2449 {
2450 /* Set up a step-resume breakpoint at the address
2451 indicated by SKIP_SOLIB_RESOLVER. */
2452 struct symtab_and_line sr_sal;
fe39c653 2453 init_sal (&sr_sal);
488f131b
JB
2454 sr_sal.pc = pc_after_resolver;
2455
2456 check_for_old_step_resume_breakpoint ();
2457 step_resume_breakpoint =
818dd999 2458 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
488f131b
JB
2459 if (breakpoints_inserted)
2460 insert_breakpoints ();
c5aa993b 2461 }
c906108c 2462
488f131b
JB
2463 keep_going (ecs);
2464 return;
2465 }
c906108c 2466
488f131b
JB
2467 /* We can't update step_sp every time through the loop, because
2468 reading the stack pointer would slow down stepping too much.
2469 But we can update it every time we leave the step range. */
2470 ecs->update_step_sp = 1;
c906108c 2471
ca4bb888
AC
2472 /* Did we just step into a singal trampoline (either by stepping out
2473 of a handler, or by taking a signal)? */
08e69816
AC
2474 if (get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME
2475 && !frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id))
488f131b 2476 {
c5aa993b 2477 {
aa0cd9c1 2478 struct frame_id current_frame = get_frame_id (get_current_frame ());
c906108c 2479
aa0cd9c1 2480 if (frame_id_inner (current_frame, step_frame_id))
488f131b
JB
2481 {
2482 /* We have just taken a signal; go until we are back to
2483 the point where we took it and one more. */
c906108c 2484
488f131b
JB
2485 /* This code is needed at least in the following case:
2486 The user types "next" and then a signal arrives (before
2487 the "next" is done). */
d4f3574e 2488
488f131b
JB
2489 /* Note that if we are stopped at a breakpoint, then we need
2490 the step_resume breakpoint to override any breakpoints at
2491 the same location, so that we will still step over the
2492 breakpoint even though the signal happened. */
d4f3574e 2493 struct symtab_and_line sr_sal;
d4f3574e 2494
fe39c653 2495 init_sal (&sr_sal);
488f131b
JB
2496 sr_sal.symtab = NULL;
2497 sr_sal.line = 0;
2498 sr_sal.pc = prev_pc;
2499 /* We could probably be setting the frame to
aa0cd9c1 2500 step_frame_id; I don't think anyone thought to try it. */
d4f3574e
SS
2501 check_for_old_step_resume_breakpoint ();
2502 step_resume_breakpoint =
818dd999 2503 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
d4f3574e
SS
2504 if (breakpoints_inserted)
2505 insert_breakpoints ();
2506 }
488f131b
JB
2507 else
2508 {
2509 /* We just stepped out of a signal handler and into
2510 its calling trampoline.
2511
2512 Normally, we'd call step_over_function from
2513 here, but for some reason GDB can't unwind the
2514 stack correctly to find the real PC for the point
2515 user code where the signal trampoline will return
2516 -- FRAME_SAVED_PC fails, at least on HP-UX 10.20.
2517 But signal trampolines are pretty small stubs of
2518 code, anyway, so it's OK instead to just
2519 single-step out. Note: assuming such trampolines
2520 don't exhibit recursion on any platform... */
2521 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2522 &ecs->stop_func_start,
2523 &ecs->stop_func_end);
2524 /* Readjust stepping range */
2525 step_range_start = ecs->stop_func_start;
2526 step_range_end = ecs->stop_func_end;
2527 ecs->stepping_through_sigtramp = 1;
2528 }
d4f3574e 2529 }
c906108c 2530
c906108c 2531
488f131b
JB
2532 /* If this is stepi or nexti, make sure that the stepping range
2533 gets us past that instruction. */
2534 if (step_range_end == 1)
2535 /* FIXME: Does this run afoul of the code below which, if
2536 we step into the middle of a line, resets the stepping
2537 range? */
2538 step_range_end = (step_range_start = prev_pc) + 1;
2539
2540 ecs->remove_breakpoints_on_following_step = 1;
2541 keep_going (ecs);
2542 return;
2543 }
c906108c 2544
9407de8e
DJ
2545 if (((stop_pc == ecs->stop_func_start /* Quick test */
2546 || in_prologue (stop_pc, ecs->stop_func_start))
2547 && !IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
488f131b
JB
2548 || IN_SOLIB_CALL_TRAMPOLINE (stop_pc, ecs->stop_func_name)
2549 || ecs->stop_func_name == 0)
2550 {
2551 /* It's a subroutine call. */
1af510a8 2552 handle_step_into_function (ecs);
488f131b 2553 return;
488f131b 2554 }
c906108c 2555
488f131b 2556 /* We've wandered out of the step range. */
c906108c 2557
488f131b 2558 ecs->sal = find_pc_line (stop_pc, 0);
c906108c 2559
488f131b
JB
2560 if (step_range_end == 1)
2561 {
2562 /* It is stepi or nexti. We always want to stop stepping after
2563 one instruction. */
2564 stop_step = 1;
2565 print_stop_reason (END_STEPPING_RANGE, 0);
2566 stop_stepping (ecs);
2567 return;
2568 }
c906108c 2569
488f131b
JB
2570 /* If we're in the return path from a shared library trampoline,
2571 we want to proceed through the trampoline when stepping. */
2572 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2573 {
488f131b 2574 /* Determine where this trampoline returns. */
5cf4d23a 2575 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
c906108c 2576
488f131b 2577 /* Only proceed through if we know where it's going. */
d764a824 2578 if (real_stop_pc)
488f131b
JB
2579 {
2580 /* And put the step-breakpoint there and go until there. */
2581 struct symtab_and_line sr_sal;
2582
fe39c653 2583 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 2584 sr_sal.pc = real_stop_pc;
488f131b
JB
2585 sr_sal.section = find_pc_overlay (sr_sal.pc);
2586 /* Do not specify what the fp should be when we stop
2587 since on some machines the prologue
2588 is where the new fp value is established. */
2589 check_for_old_step_resume_breakpoint ();
2590 step_resume_breakpoint =
818dd999 2591 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
488f131b
JB
2592 if (breakpoints_inserted)
2593 insert_breakpoints ();
c906108c 2594
488f131b
JB
2595 /* Restart without fiddling with the step ranges or
2596 other state. */
2597 keep_going (ecs);
2598 return;
2599 }
2600 }
c906108c 2601
488f131b
JB
2602 if (ecs->sal.line == 0)
2603 {
2604 /* We have no line number information. That means to stop
2605 stepping (does this always happen right after one instruction,
2606 when we do "s" in a function with no line numbers,
2607 or can this happen as a result of a return or longjmp?). */
2608 stop_step = 1;
2609 print_stop_reason (END_STEPPING_RANGE, 0);
2610 stop_stepping (ecs);
2611 return;
2612 }
c906108c 2613
488f131b
JB
2614 if ((stop_pc == ecs->sal.pc)
2615 && (ecs->current_line != ecs->sal.line
2616 || ecs->current_symtab != ecs->sal.symtab))
2617 {
2618 /* We are at the start of a different line. So stop. Note that
2619 we don't stop if we step into the middle of a different line.
2620 That is said to make things like for (;;) statements work
2621 better. */
2622 stop_step = 1;
2623 print_stop_reason (END_STEPPING_RANGE, 0);
2624 stop_stepping (ecs);
2625 return;
2626 }
c906108c 2627
488f131b 2628 /* We aren't done stepping.
c906108c 2629
488f131b
JB
2630 Optimize by setting the stepping range to the line.
2631 (We might not be in the original line, but if we entered a
2632 new line in mid-statement, we continue stepping. This makes
2633 things like for(;;) statements work better.) */
c906108c 2634
488f131b 2635 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
c5aa993b 2636 {
488f131b
JB
2637 /* If this is the last line of the function, don't keep stepping
2638 (it would probably step us out of the function).
2639 This is particularly necessary for a one-line function,
2640 in which after skipping the prologue we better stop even though
2641 we will be in mid-line. */
2642 stop_step = 1;
2643 print_stop_reason (END_STEPPING_RANGE, 0);
2644 stop_stepping (ecs);
2645 return;
c5aa993b 2646 }
488f131b
JB
2647 step_range_start = ecs->sal.pc;
2648 step_range_end = ecs->sal.end;
aa0cd9c1 2649 step_frame_id = get_frame_id (get_current_frame ());
488f131b
JB
2650 ecs->current_line = ecs->sal.line;
2651 ecs->current_symtab = ecs->sal.symtab;
2652
aa0cd9c1
AC
2653 /* In the case where we just stepped out of a function into the
2654 middle of a line of the caller, continue stepping, but
2655 step_frame_id must be modified to current frame */
65815ea1
AC
2656#if 0
2657 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2658 generous. It will trigger on things like a step into a frameless
2659 stackless leaf function. I think the logic should instead look
2660 at the unwound frame ID has that should give a more robust
2661 indication of what happened. */
2662 if (step-ID == current-ID)
2663 still stepping in same function;
2664 else if (step-ID == unwind (current-ID))
2665 stepped into a function;
2666 else
2667 stepped out of a function;
2668 /* Of course this assumes that the frame ID unwind code is robust
2669 and we're willing to introduce frame unwind logic into this
ce2826aa 2670 function. Fortunately, those days are nearly upon us. */
65815ea1 2671#endif
488f131b 2672 {
aa0cd9c1
AC
2673 struct frame_id current_frame = get_frame_id (get_current_frame ());
2674 if (!(frame_id_inner (current_frame, step_frame_id)))
2675 step_frame_id = current_frame;
488f131b 2676 }
c906108c 2677
488f131b 2678 keep_going (ecs);
104c1213
JM
2679}
2680
2681/* Are we in the middle of stepping? */
2682
2683static int
2684currently_stepping (struct execution_control_state *ecs)
2685{
2686 return ((through_sigtramp_breakpoint == NULL
2687 && !ecs->handling_longjmp
2688 && ((step_range_end && step_resume_breakpoint == NULL)
2689 || trap_expected))
2690 || ecs->stepping_through_solib_after_catch
2691 || bpstat_should_step ());
2692}
c906108c 2693
104c1213
JM
2694static void
2695check_sigtramp2 (struct execution_control_state *ecs)
2696{
f04ceafa
AC
2697 char *name;
2698 struct symtab_and_line sr_sal;
cd0fc7c3 2699
f04ceafa
AC
2700 /* Check that what has happened here is that we have just stepped
2701 the inferior with a signal (because it is a signal which
2702 shouldn't make us stop), thus stepping into sigtramp. */
2703
2704 if (!trap_expected)
2705 return;
2706 if (get_frame_type (get_current_frame ()) != SIGTRAMP_FRAME)
2707 return;
2708 /* Long term, this function can be eliminated, replaced by the code:
2709 get_frame_type(current_frame()) == SIGTRAMP_FRAME (for new
2710 architectures this is very cheap). */
2711 find_pc_partial_function (prev_pc, &name, NULL, NULL);
2712 if (DEPRECATED_PC_IN_SIGTRAMP (prev_pc, name))
2713 return;
2714 if (!INNER_THAN (read_sp (), step_sp))
2715 return;
2716
2717 /* So we need to set a step_resume_break_address breakpoint and
2718 continue until we hit it, and then step. FIXME: This should be
2719 more enduring than a step_resume breakpoint; we should know that
2720 we will later need to keep going rather than re-hitting the
2721 breakpoint here (see the testsuite, gdb.base/signals.exp where it
2722 says "exceedingly difficult"). */
2723
2724 init_sal (&sr_sal); /* initialize to zeroes */
2725 sr_sal.pc = prev_pc;
2726 sr_sal.section = find_pc_overlay (sr_sal.pc);
2727 /* We perhaps could set the frame if we kept track of what the frame
2728 corresponding to prev_pc was. But we don't, so don't. */
2729 through_sigtramp_breakpoint =
2730 set_momentary_breakpoint (sr_sal, null_frame_id, bp_through_sigtramp);
2731 if (breakpoints_inserted)
2732 insert_breakpoints ();
2733
2734 ecs->remove_breakpoints_on_following_step = 1;
2735 ecs->another_trap = 1;
104c1213
JM
2736}
2737
c2c6d25f
JM
2738/* Subroutine call with source code we should not step over. Do step
2739 to the first line of code in it. */
2740
2741static void
2742step_into_function (struct execution_control_state *ecs)
2743{
2744 struct symtab *s;
2745 struct symtab_and_line sr_sal;
2746
2747 s = find_pc_symtab (stop_pc);
2748 if (s && s->language != language_asm)
2749 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2750
2751 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2752 /* Use the step_resume_break to step until the end of the prologue,
2753 even if that involves jumps (as it seems to on the vax under
2754 4.2). */
2755 /* If the prologue ends in the middle of a source line, continue to
2756 the end of that source line (if it is still within the function).
2757 Otherwise, just go to end of prologue. */
c2c6d25f
JM
2758 if (ecs->sal.end
2759 && ecs->sal.pc != ecs->stop_func_start
2760 && ecs->sal.end < ecs->stop_func_end)
2761 ecs->stop_func_start = ecs->sal.end;
c2c6d25f 2762
2dbd5e30
KB
2763 /* Architectures which require breakpoint adjustment might not be able
2764 to place a breakpoint at the computed address. If so, the test
2765 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2766 ecs->stop_func_start to an address at which a breakpoint may be
2767 legitimately placed.
2768
2769 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2770 made, GDB will enter an infinite loop when stepping through
2771 optimized code consisting of VLIW instructions which contain
2772 subinstructions corresponding to different source lines. On
2773 FR-V, it's not permitted to place a breakpoint on any but the
2774 first subinstruction of a VLIW instruction. When a breakpoint is
2775 set, GDB will adjust the breakpoint address to the beginning of
2776 the VLIW instruction. Thus, we need to make the corresponding
2777 adjustment here when computing the stop address. */
2778
2779 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2780 {
2781 ecs->stop_func_start
2782 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2783 ecs->stop_func_start);
2784 }
2785
c2c6d25f
JM
2786 if (ecs->stop_func_start == stop_pc)
2787 {
2788 /* We are already there: stop now. */
2789 stop_step = 1;
488f131b 2790 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
2791 stop_stepping (ecs);
2792 return;
2793 }
2794 else
2795 {
2796 /* Put the step-breakpoint there and go until there. */
fe39c653 2797 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
2798 sr_sal.pc = ecs->stop_func_start;
2799 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2800 /* Do not specify what the fp should be when we stop since on
488f131b
JB
2801 some machines the prologue is where the new fp value is
2802 established. */
c2c6d25f
JM
2803 check_for_old_step_resume_breakpoint ();
2804 step_resume_breakpoint =
818dd999 2805 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
c2c6d25f
JM
2806 if (breakpoints_inserted)
2807 insert_breakpoints ();
2808
2809 /* And make sure stepping stops right away then. */
2810 step_range_end = step_range_start;
2811 }
2812 keep_going (ecs);
2813}
d4f3574e
SS
2814
2815/* We've just entered a callee, and we wish to resume until it returns
2816 to the caller. Setting a step_resume breakpoint on the return
2817 address will catch a return from the callee.
2818
2819 However, if the callee is recursing, we want to be careful not to
2820 catch returns of those recursive calls, but only of THIS instance
4fdf6121 2821 of the caller.
d4f3574e
SS
2822
2823 To do this, we set the step_resume bp's frame to our current
4fdf6121 2824 caller's frame (obtained by doing a frame ID unwind). */
d4f3574e
SS
2825
2826static void
2827step_over_function (struct execution_control_state *ecs)
2828{
2829 struct symtab_and_line sr_sal;
c107cc1b 2830 struct frame_id sr_id;
d4f3574e 2831
fe39c653 2832 init_sal (&sr_sal); /* initialize to zeros */
4443bd83
AC
2833
2834 /* NOTE: cagney/2003-04-06:
2835
2836 At this point the equality get_frame_pc() == get_frame_func()
2837 should hold. This may make it possible for this code to tell the
2838 frame where it's function is, instead of the reverse. This would
2839 avoid the need to search for the frame's function, which can get
2840 very messy when there is no debug info available (look at the
2841 heuristic find pc start code found in targets like the MIPS). */
2842
6913c89a 2843 /* NOTE: cagney/2003-04-06:
4443bd83 2844
6913c89a 2845 The intent of DEPRECATED_SAVED_PC_AFTER_CALL was to:
4443bd83
AC
2846
2847 - provide a very light weight equivalent to frame_unwind_pc()
2848 (nee FRAME_SAVED_PC) that avoids the prologue analyzer
2849
2850 - avoid handling the case where the PC hasn't been saved in the
2851 prologue analyzer
2852
ce2826aa 2853 Unfortunately, not five lines further down, is a call to
4443bd83
AC
2854 get_frame_id() and that is guarenteed to trigger the prologue
2855 analyzer.
2856
2857 The `correct fix' is for the prologe analyzer to handle the case
2858 where the prologue is incomplete (PC in prologue) and,
2859 consequently, the return pc has not yet been saved. It should be
2860 noted that the prologue analyzer needs to handle this case
2861 anyway: frameless leaf functions that don't save the return PC;
2862 single stepping through a prologue.
2863
2864 The d10v handles all this by bailing out of the prologue analsis
2865 when it reaches the current instruction. */
2866
6913c89a
AC
2867 if (DEPRECATED_SAVED_PC_AFTER_CALL_P ())
2868 sr_sal.pc = ADDR_BITS_REMOVE (DEPRECATED_SAVED_PC_AFTER_CALL (get_current_frame ()));
4443bd83
AC
2869 else
2870 sr_sal.pc = ADDR_BITS_REMOVE (frame_pc_unwind (get_current_frame ()));
d4f3574e
SS
2871 sr_sal.section = find_pc_overlay (sr_sal.pc);
2872
2873 check_for_old_step_resume_breakpoint ();
d4f3574e 2874
08e69816
AC
2875 /* NOTE: cagney/2004-03-31: Code using the current value of
2876 "step_frame_id", instead of unwinding that frame ID, removed. On
2877 s390 GNU/Linux, after taking a signal, the program is directly
2878 resumed at the signal handler and, consequently, the PC would
2879 point at at the first instruction of that signal handler but
2880 STEP_FRAME_ID would [incorrectly] at the interrupted code when it
2881 should point at the signal trampoline. By always and locally
2882 doing a frame ID unwind, it's possible to assert that the code is
2883 always using the correct ID. */
2884 sr_id = frame_unwind_id (get_current_frame ());
c107cc1b
AC
2885
2886 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id, bp_step_resume);
d4f3574e
SS
2887
2888 if (breakpoints_inserted)
2889 insert_breakpoints ();
2890}
2891
104c1213
JM
2892static void
2893stop_stepping (struct execution_control_state *ecs)
2894{
cd0fc7c3
SS
2895 /* Let callers know we don't want to wait for the inferior anymore. */
2896 ecs->wait_some_more = 0;
2897}
2898
d4f3574e
SS
2899/* This function handles various cases where we need to continue
2900 waiting for the inferior. */
2901/* (Used to be the keep_going: label in the old wait_for_inferior) */
2902
2903static void
2904keep_going (struct execution_control_state *ecs)
2905{
d4f3574e 2906 /* Save the pc before execution, to compare with pc after stop. */
488f131b 2907 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
d4f3574e
SS
2908
2909 if (ecs->update_step_sp)
2910 step_sp = read_sp ();
2911 ecs->update_step_sp = 0;
2912
2913 /* If we did not do break;, it means we should keep running the
2914 inferior and not return to debugger. */
2915
2916 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2917 {
2918 /* We took a signal (which we are supposed to pass through to
488f131b
JB
2919 the inferior, else we'd have done a break above) and we
2920 haven't yet gotten our trap. Simply continue. */
d4f3574e
SS
2921 resume (currently_stepping (ecs), stop_signal);
2922 }
2923 else
2924 {
2925 /* Either the trap was not expected, but we are continuing
488f131b
JB
2926 anyway (the user asked that this signal be passed to the
2927 child)
2928 -- or --
2929 The signal was SIGTRAP, e.g. it was our signal, but we
2930 decided we should resume from it.
d4f3574e 2931
488f131b 2932 We're going to run this baby now!
d4f3574e 2933
488f131b
JB
2934 Insert breakpoints now, unless we are trying to one-proceed
2935 past a breakpoint. */
d4f3574e 2936 /* If we've just finished a special step resume and we don't
488f131b 2937 want to hit a breakpoint, pull em out. */
d4f3574e
SS
2938 if (step_resume_breakpoint == NULL
2939 && through_sigtramp_breakpoint == NULL
2940 && ecs->remove_breakpoints_on_following_step)
2941 {
2942 ecs->remove_breakpoints_on_following_step = 0;
2943 remove_breakpoints ();
2944 breakpoints_inserted = 0;
2945 }
2946 else if (!breakpoints_inserted &&
2947 (through_sigtramp_breakpoint != NULL || !ecs->another_trap))
2948 {
2949 breakpoints_failed = insert_breakpoints ();
2950 if (breakpoints_failed)
2951 {
2952 stop_stepping (ecs);
2953 return;
2954 }
2955 breakpoints_inserted = 1;
2956 }
2957
2958 trap_expected = ecs->another_trap;
2959
2960 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
2961 specifies that such a signal should be delivered to the
2962 target program).
2963
2964 Typically, this would occure when a user is debugging a
2965 target monitor on a simulator: the target monitor sets a
2966 breakpoint; the simulator encounters this break-point and
2967 halts the simulation handing control to GDB; GDB, noteing
2968 that the break-point isn't valid, returns control back to the
2969 simulator; the simulator then delivers the hardware
2970 equivalent of a SIGNAL_TRAP to the program being debugged. */
2971
2972 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
d4f3574e
SS
2973 stop_signal = TARGET_SIGNAL_0;
2974
d4f3574e
SS
2975
2976 resume (currently_stepping (ecs), stop_signal);
2977 }
2978
488f131b 2979 prepare_to_wait (ecs);
d4f3574e
SS
2980}
2981
104c1213
JM
2982/* This function normally comes after a resume, before
2983 handle_inferior_event exits. It takes care of any last bits of
2984 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 2985
104c1213
JM
2986static void
2987prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 2988{
104c1213
JM
2989 if (ecs->infwait_state == infwait_normal_state)
2990 {
2991 overlay_cache_invalid = 1;
2992
2993 /* We have to invalidate the registers BEFORE calling
488f131b
JB
2994 target_wait because they can be loaded from the target while
2995 in target_wait. This makes remote debugging a bit more
2996 efficient for those targets that provide critical registers
2997 as part of their normal status mechanism. */
104c1213
JM
2998
2999 registers_changed ();
39f77062 3000 ecs->waiton_ptid = pid_to_ptid (-1);
104c1213
JM
3001 ecs->wp = &(ecs->ws);
3002 }
3003 /* This is the old end of the while loop. Let everybody know we
3004 want to wait for the inferior some more and get called again
3005 soon. */
3006 ecs->wait_some_more = 1;
c906108c 3007}
11cf8741
JM
3008
3009/* Print why the inferior has stopped. We always print something when
3010 the inferior exits, or receives a signal. The rest of the cases are
3011 dealt with later on in normal_stop() and print_it_typical(). Ideally
3012 there should be a call to this function from handle_inferior_event()
3013 each time stop_stepping() is called.*/
3014static void
3015print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
3016{
3017 switch (stop_reason)
3018 {
3019 case STOP_UNKNOWN:
3020 /* We don't deal with these cases from handle_inferior_event()
3021 yet. */
3022 break;
3023 case END_STEPPING_RANGE:
3024 /* We are done with a step/next/si/ni command. */
3025 /* For now print nothing. */
fb40c209 3026 /* Print a message only if not in the middle of doing a "step n"
488f131b 3027 operation for n > 1 */
fb40c209 3028 if (!step_multi || !stop_step)
9dc5e2a9 3029 if (ui_out_is_mi_like_p (uiout))
fb40c209 3030 ui_out_field_string (uiout, "reason", "end-stepping-range");
11cf8741
JM
3031 break;
3032 case BREAKPOINT_HIT:
3033 /* We found a breakpoint. */
3034 /* For now print nothing. */
3035 break;
3036 case SIGNAL_EXITED:
3037 /* The inferior was terminated by a signal. */
8b93c638 3038 annotate_signalled ();
9dc5e2a9 3039 if (ui_out_is_mi_like_p (uiout))
fb40c209 3040 ui_out_field_string (uiout, "reason", "exited-signalled");
8b93c638
JM
3041 ui_out_text (uiout, "\nProgram terminated with signal ");
3042 annotate_signal_name ();
488f131b
JB
3043 ui_out_field_string (uiout, "signal-name",
3044 target_signal_to_name (stop_info));
8b93c638
JM
3045 annotate_signal_name_end ();
3046 ui_out_text (uiout, ", ");
3047 annotate_signal_string ();
488f131b
JB
3048 ui_out_field_string (uiout, "signal-meaning",
3049 target_signal_to_string (stop_info));
8b93c638
JM
3050 annotate_signal_string_end ();
3051 ui_out_text (uiout, ".\n");
3052 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
3053 break;
3054 case EXITED:
3055 /* The inferior program is finished. */
8b93c638
JM
3056 annotate_exited (stop_info);
3057 if (stop_info)
3058 {
9dc5e2a9 3059 if (ui_out_is_mi_like_p (uiout))
fb40c209 3060 ui_out_field_string (uiout, "reason", "exited");
8b93c638 3061 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
3062 ui_out_field_fmt (uiout, "exit-code", "0%o",
3063 (unsigned int) stop_info);
8b93c638
JM
3064 ui_out_text (uiout, ".\n");
3065 }
3066 else
3067 {
9dc5e2a9 3068 if (ui_out_is_mi_like_p (uiout))
fb40c209 3069 ui_out_field_string (uiout, "reason", "exited-normally");
8b93c638
JM
3070 ui_out_text (uiout, "\nProgram exited normally.\n");
3071 }
11cf8741
JM
3072 break;
3073 case SIGNAL_RECEIVED:
3074 /* Signal received. The signal table tells us to print about
3075 it. */
8b93c638
JM
3076 annotate_signal ();
3077 ui_out_text (uiout, "\nProgram received signal ");
3078 annotate_signal_name ();
84c6c83c
KS
3079 if (ui_out_is_mi_like_p (uiout))
3080 ui_out_field_string (uiout, "reason", "signal-received");
488f131b
JB
3081 ui_out_field_string (uiout, "signal-name",
3082 target_signal_to_name (stop_info));
8b93c638
JM
3083 annotate_signal_name_end ();
3084 ui_out_text (uiout, ", ");
3085 annotate_signal_string ();
488f131b
JB
3086 ui_out_field_string (uiout, "signal-meaning",
3087 target_signal_to_string (stop_info));
8b93c638
JM
3088 annotate_signal_string_end ();
3089 ui_out_text (uiout, ".\n");
11cf8741
JM
3090 break;
3091 default:
8e65ff28
AC
3092 internal_error (__FILE__, __LINE__,
3093 "print_stop_reason: unrecognized enum value");
11cf8741
JM
3094 break;
3095 }
3096}
c906108c 3097\f
43ff13b4 3098
c906108c
SS
3099/* Here to return control to GDB when the inferior stops for real.
3100 Print appropriate messages, remove breakpoints, give terminal our modes.
3101
3102 STOP_PRINT_FRAME nonzero means print the executing frame
3103 (pc, function, args, file, line number and line text).
3104 BREAKPOINTS_FAILED nonzero means stop was due to error
3105 attempting to insert breakpoints. */
3106
3107void
96baa820 3108normal_stop (void)
c906108c 3109{
73b65bb0
DJ
3110 struct target_waitstatus last;
3111 ptid_t last_ptid;
3112
3113 get_last_target_status (&last_ptid, &last);
3114
c906108c
SS
3115 /* As with the notification of thread events, we want to delay
3116 notifying the user that we've switched thread context until
3117 the inferior actually stops.
3118
73b65bb0
DJ
3119 There's no point in saying anything if the inferior has exited.
3120 Note that SIGNALLED here means "exited with a signal", not
3121 "received a signal". */
488f131b 3122 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
3123 && target_has_execution
3124 && last.kind != TARGET_WAITKIND_SIGNALLED
3125 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
3126 {
3127 target_terminal_ours_for_output ();
c3f6f71d 3128 printf_filtered ("[Switching to %s]\n",
39f77062
KB
3129 target_pid_or_tid_to_str (inferior_ptid));
3130 previous_inferior_ptid = inferior_ptid;
c906108c 3131 }
c906108c 3132
4fa8626c 3133 /* NOTE drow/2004-01-17: Is this still necessary? */
c906108c
SS
3134 /* Make sure that the current_frame's pc is correct. This
3135 is a correction for setting up the frame info before doing
3136 DECR_PC_AFTER_BREAK */
b87efeee
AC
3137 if (target_has_execution)
3138 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3139 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
3140 frame code to check for this and sort out any resultant mess.
3141 DECR_PC_AFTER_BREAK needs to just go away. */
2f107107 3142 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
c906108c 3143
c906108c
SS
3144 if (target_has_execution && breakpoints_inserted)
3145 {
3146 if (remove_breakpoints ())
3147 {
3148 target_terminal_ours_for_output ();
3149 printf_filtered ("Cannot remove breakpoints because ");
3150 printf_filtered ("program is no longer writable.\n");
3151 printf_filtered ("It might be running in another process.\n");
3152 printf_filtered ("Further execution is probably impossible.\n");
3153 }
3154 }
3155 breakpoints_inserted = 0;
3156
3157 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3158 Delete any breakpoint that is to be deleted at the next stop. */
3159
3160 breakpoint_auto_delete (stop_bpstat);
3161
3162 /* If an auto-display called a function and that got a signal,
3163 delete that auto-display to avoid an infinite recursion. */
3164
3165 if (stopped_by_random_signal)
3166 disable_current_display ();
3167
3168 /* Don't print a message if in the middle of doing a "step n"
3169 operation for n > 1 */
3170 if (step_multi && stop_step)
3171 goto done;
3172
3173 target_terminal_ours ();
3174
5913bcb0
AC
3175 /* Look up the hook_stop and run it (CLI internally handles problem
3176 of stop_command's pre-hook not existing). */
3177 if (stop_command)
3178 catch_errors (hook_stop_stub, stop_command,
3179 "Error while running hook_stop:\n", RETURN_MASK_ALL);
c906108c
SS
3180
3181 if (!target_has_stack)
3182 {
3183
3184 goto done;
3185 }
3186
3187 /* Select innermost stack frame - i.e., current frame is frame 0,
3188 and current location is based on that.
3189 Don't do this on return from a stack dummy routine,
3190 or if the program has exited. */
3191
3192 if (!stop_stack_dummy)
3193 {
0f7d239c 3194 select_frame (get_current_frame ());
c906108c
SS
3195
3196 /* Print current location without a level number, if
c5aa993b
JM
3197 we have changed functions or hit a breakpoint.
3198 Print source line if we have one.
3199 bpstat_print() contains the logic deciding in detail
3200 what to print, based on the event(s) that just occurred. */
c906108c 3201
6e7f8b9c 3202 if (stop_print_frame && deprecated_selected_frame)
c906108c
SS
3203 {
3204 int bpstat_ret;
3205 int source_flag;
917317f4 3206 int do_frame_printing = 1;
c906108c
SS
3207
3208 bpstat_ret = bpstat_print (stop_bpstat);
917317f4
JM
3209 switch (bpstat_ret)
3210 {
3211 case PRINT_UNKNOWN:
aa0cd9c1
AC
3212 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3213 (or should) carry around the function and does (or
3214 should) use that when doing a frame comparison. */
917317f4 3215 if (stop_step
aa0cd9c1
AC
3216 && frame_id_eq (step_frame_id,
3217 get_frame_id (get_current_frame ()))
917317f4 3218 && step_start_function == find_pc_function (stop_pc))
488f131b 3219 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 3220 else
488f131b 3221 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3222 break;
3223 case PRINT_SRC_AND_LOC:
488f131b 3224 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3225 break;
3226 case PRINT_SRC_ONLY:
c5394b80 3227 source_flag = SRC_LINE;
917317f4
JM
3228 break;
3229 case PRINT_NOTHING:
488f131b 3230 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
3231 do_frame_printing = 0;
3232 break;
3233 default:
488f131b 3234 internal_error (__FILE__, __LINE__, "Unknown value.");
917317f4 3235 }
fb40c209 3236 /* For mi, have the same behavior every time we stop:
488f131b 3237 print everything but the source line. */
9dc5e2a9 3238 if (ui_out_is_mi_like_p (uiout))
fb40c209 3239 source_flag = LOC_AND_ADDRESS;
c906108c 3240
9dc5e2a9 3241 if (ui_out_is_mi_like_p (uiout))
39f77062 3242 ui_out_field_int (uiout, "thread-id",
488f131b 3243 pid_to_thread_id (inferior_ptid));
c906108c
SS
3244 /* The behavior of this routine with respect to the source
3245 flag is:
c5394b80
JM
3246 SRC_LINE: Print only source line
3247 LOCATION: Print only location
3248 SRC_AND_LOC: Print location and source line */
917317f4 3249 if (do_frame_printing)
7789c6f5 3250 print_stack_frame (deprecated_selected_frame, -1, source_flag);
c906108c
SS
3251
3252 /* Display the auto-display expressions. */
3253 do_displays ();
3254 }
3255 }
3256
3257 /* Save the function value return registers, if we care.
3258 We might be about to restore their previous contents. */
3259 if (proceed_to_finish)
72cec141
AC
3260 /* NB: The copy goes through to the target picking up the value of
3261 all the registers. */
3262 regcache_cpy (stop_registers, current_regcache);
c906108c
SS
3263
3264 if (stop_stack_dummy)
3265 {
dbe9fe58
AC
3266 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3267 ends with a setting of the current frame, so we can use that
3268 next. */
3269 frame_pop (get_current_frame ());
c906108c 3270 /* Set stop_pc to what it was before we called the function.
c5aa993b
JM
3271 Can't rely on restore_inferior_status because that only gets
3272 called if we don't stop in the called function. */
c906108c 3273 stop_pc = read_pc ();
0f7d239c 3274 select_frame (get_current_frame ());
c906108c
SS
3275 }
3276
c906108c
SS
3277done:
3278 annotate_stopped ();
7a464420 3279 observer_notify_normal_stop (stop_bpstat);
c906108c
SS
3280}
3281
3282static int
96baa820 3283hook_stop_stub (void *cmd)
c906108c 3284{
5913bcb0 3285 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
3286 return (0);
3287}
3288\f
c5aa993b 3289int
96baa820 3290signal_stop_state (int signo)
c906108c
SS
3291{
3292 return signal_stop[signo];
3293}
3294
c5aa993b 3295int
96baa820 3296signal_print_state (int signo)
c906108c
SS
3297{
3298 return signal_print[signo];
3299}
3300
c5aa993b 3301int
96baa820 3302signal_pass_state (int signo)
c906108c
SS
3303{
3304 return signal_program[signo];
3305}
3306
488f131b 3307int
7bda5e4a 3308signal_stop_update (int signo, int state)
d4f3574e
SS
3309{
3310 int ret = signal_stop[signo];
3311 signal_stop[signo] = state;
3312 return ret;
3313}
3314
488f131b 3315int
7bda5e4a 3316signal_print_update (int signo, int state)
d4f3574e
SS
3317{
3318 int ret = signal_print[signo];
3319 signal_print[signo] = state;
3320 return ret;
3321}
3322
488f131b 3323int
7bda5e4a 3324signal_pass_update (int signo, int state)
d4f3574e
SS
3325{
3326 int ret = signal_program[signo];
3327 signal_program[signo] = state;
3328 return ret;
3329}
3330
c906108c 3331static void
96baa820 3332sig_print_header (void)
c906108c
SS
3333{
3334 printf_filtered ("\
3335Signal Stop\tPrint\tPass to program\tDescription\n");
3336}
3337
3338static void
96baa820 3339sig_print_info (enum target_signal oursig)
c906108c
SS
3340{
3341 char *name = target_signal_to_name (oursig);
3342 int name_padding = 13 - strlen (name);
96baa820 3343
c906108c
SS
3344 if (name_padding <= 0)
3345 name_padding = 0;
3346
3347 printf_filtered ("%s", name);
488f131b 3348 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
3349 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3350 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3351 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3352 printf_filtered ("%s\n", target_signal_to_string (oursig));
3353}
3354
3355/* Specify how various signals in the inferior should be handled. */
3356
3357static void
96baa820 3358handle_command (char *args, int from_tty)
c906108c
SS
3359{
3360 char **argv;
3361 int digits, wordlen;
3362 int sigfirst, signum, siglast;
3363 enum target_signal oursig;
3364 int allsigs;
3365 int nsigs;
3366 unsigned char *sigs;
3367 struct cleanup *old_chain;
3368
3369 if (args == NULL)
3370 {
3371 error_no_arg ("signal to handle");
3372 }
3373
3374 /* Allocate and zero an array of flags for which signals to handle. */
3375
3376 nsigs = (int) TARGET_SIGNAL_LAST;
3377 sigs = (unsigned char *) alloca (nsigs);
3378 memset (sigs, 0, nsigs);
3379
3380 /* Break the command line up into args. */
3381
3382 argv = buildargv (args);
3383 if (argv == NULL)
3384 {
3385 nomem (0);
3386 }
7a292a7a 3387 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3388
3389 /* Walk through the args, looking for signal oursigs, signal names, and
3390 actions. Signal numbers and signal names may be interspersed with
3391 actions, with the actions being performed for all signals cumulatively
3392 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3393
3394 while (*argv != NULL)
3395 {
3396 wordlen = strlen (*argv);
3397 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3398 {;
3399 }
3400 allsigs = 0;
3401 sigfirst = siglast = -1;
3402
3403 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3404 {
3405 /* Apply action to all signals except those used by the
3406 debugger. Silently skip those. */
3407 allsigs = 1;
3408 sigfirst = 0;
3409 siglast = nsigs - 1;
3410 }
3411 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3412 {
3413 SET_SIGS (nsigs, sigs, signal_stop);
3414 SET_SIGS (nsigs, sigs, signal_print);
3415 }
3416 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3417 {
3418 UNSET_SIGS (nsigs, sigs, signal_program);
3419 }
3420 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3421 {
3422 SET_SIGS (nsigs, sigs, signal_print);
3423 }
3424 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3425 {
3426 SET_SIGS (nsigs, sigs, signal_program);
3427 }
3428 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3429 {
3430 UNSET_SIGS (nsigs, sigs, signal_stop);
3431 }
3432 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3433 {
3434 SET_SIGS (nsigs, sigs, signal_program);
3435 }
3436 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3437 {
3438 UNSET_SIGS (nsigs, sigs, signal_print);
3439 UNSET_SIGS (nsigs, sigs, signal_stop);
3440 }
3441 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3442 {
3443 UNSET_SIGS (nsigs, sigs, signal_program);
3444 }
3445 else if (digits > 0)
3446 {
3447 /* It is numeric. The numeric signal refers to our own
3448 internal signal numbering from target.h, not to host/target
3449 signal number. This is a feature; users really should be
3450 using symbolic names anyway, and the common ones like
3451 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3452
3453 sigfirst = siglast = (int)
3454 target_signal_from_command (atoi (*argv));
3455 if ((*argv)[digits] == '-')
3456 {
3457 siglast = (int)
3458 target_signal_from_command (atoi ((*argv) + digits + 1));
3459 }
3460 if (sigfirst > siglast)
3461 {
3462 /* Bet he didn't figure we'd think of this case... */
3463 signum = sigfirst;
3464 sigfirst = siglast;
3465 siglast = signum;
3466 }
3467 }
3468 else
3469 {
3470 oursig = target_signal_from_name (*argv);
3471 if (oursig != TARGET_SIGNAL_UNKNOWN)
3472 {
3473 sigfirst = siglast = (int) oursig;
3474 }
3475 else
3476 {
3477 /* Not a number and not a recognized flag word => complain. */
3478 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
3479 }
3480 }
3481
3482 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 3483 which signals to apply actions to. */
c906108c
SS
3484
3485 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3486 {
3487 switch ((enum target_signal) signum)
3488 {
3489 case TARGET_SIGNAL_TRAP:
3490 case TARGET_SIGNAL_INT:
3491 if (!allsigs && !sigs[signum])
3492 {
3493 if (query ("%s is used by the debugger.\n\
488f131b 3494Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
3495 {
3496 sigs[signum] = 1;
3497 }
3498 else
3499 {
3500 printf_unfiltered ("Not confirmed, unchanged.\n");
3501 gdb_flush (gdb_stdout);
3502 }
3503 }
3504 break;
3505 case TARGET_SIGNAL_0:
3506 case TARGET_SIGNAL_DEFAULT:
3507 case TARGET_SIGNAL_UNKNOWN:
3508 /* Make sure that "all" doesn't print these. */
3509 break;
3510 default:
3511 sigs[signum] = 1;
3512 break;
3513 }
3514 }
3515
3516 argv++;
3517 }
3518
39f77062 3519 target_notice_signals (inferior_ptid);
c906108c
SS
3520
3521 if (from_tty)
3522 {
3523 /* Show the results. */
3524 sig_print_header ();
3525 for (signum = 0; signum < nsigs; signum++)
3526 {
3527 if (sigs[signum])
3528 {
3529 sig_print_info (signum);
3530 }
3531 }
3532 }
3533
3534 do_cleanups (old_chain);
3535}
3536
3537static void
96baa820 3538xdb_handle_command (char *args, int from_tty)
c906108c
SS
3539{
3540 char **argv;
3541 struct cleanup *old_chain;
3542
3543 /* Break the command line up into args. */
3544
3545 argv = buildargv (args);
3546 if (argv == NULL)
3547 {
3548 nomem (0);
3549 }
7a292a7a 3550 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3551 if (argv[1] != (char *) NULL)
3552 {
3553 char *argBuf;
3554 int bufLen;
3555
3556 bufLen = strlen (argv[0]) + 20;
3557 argBuf = (char *) xmalloc (bufLen);
3558 if (argBuf)
3559 {
3560 int validFlag = 1;
3561 enum target_signal oursig;
3562
3563 oursig = target_signal_from_name (argv[0]);
3564 memset (argBuf, 0, bufLen);
3565 if (strcmp (argv[1], "Q") == 0)
3566 sprintf (argBuf, "%s %s", argv[0], "noprint");
3567 else
3568 {
3569 if (strcmp (argv[1], "s") == 0)
3570 {
3571 if (!signal_stop[oursig])
3572 sprintf (argBuf, "%s %s", argv[0], "stop");
3573 else
3574 sprintf (argBuf, "%s %s", argv[0], "nostop");
3575 }
3576 else if (strcmp (argv[1], "i") == 0)
3577 {
3578 if (!signal_program[oursig])
3579 sprintf (argBuf, "%s %s", argv[0], "pass");
3580 else
3581 sprintf (argBuf, "%s %s", argv[0], "nopass");
3582 }
3583 else if (strcmp (argv[1], "r") == 0)
3584 {
3585 if (!signal_print[oursig])
3586 sprintf (argBuf, "%s %s", argv[0], "print");
3587 else
3588 sprintf (argBuf, "%s %s", argv[0], "noprint");
3589 }
3590 else
3591 validFlag = 0;
3592 }
3593 if (validFlag)
3594 handle_command (argBuf, from_tty);
3595 else
3596 printf_filtered ("Invalid signal handling flag.\n");
3597 if (argBuf)
b8c9b27d 3598 xfree (argBuf);
c906108c
SS
3599 }
3600 }
3601 do_cleanups (old_chain);
3602}
3603
3604/* Print current contents of the tables set by the handle command.
3605 It is possible we should just be printing signals actually used
3606 by the current target (but for things to work right when switching
3607 targets, all signals should be in the signal tables). */
3608
3609static void
96baa820 3610signals_info (char *signum_exp, int from_tty)
c906108c
SS
3611{
3612 enum target_signal oursig;
3613 sig_print_header ();
3614
3615 if (signum_exp)
3616 {
3617 /* First see if this is a symbol name. */
3618 oursig = target_signal_from_name (signum_exp);
3619 if (oursig == TARGET_SIGNAL_UNKNOWN)
3620 {
3621 /* No, try numeric. */
3622 oursig =
bb518678 3623 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
3624 }
3625 sig_print_info (oursig);
3626 return;
3627 }
3628
3629 printf_filtered ("\n");
3630 /* These ugly casts brought to you by the native VAX compiler. */
3631 for (oursig = TARGET_SIGNAL_FIRST;
3632 (int) oursig < (int) TARGET_SIGNAL_LAST;
3633 oursig = (enum target_signal) ((int) oursig + 1))
3634 {
3635 QUIT;
3636
3637 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 3638 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
3639 sig_print_info (oursig);
3640 }
3641
3642 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
3643}
3644\f
7a292a7a
SS
3645struct inferior_status
3646{
3647 enum target_signal stop_signal;
3648 CORE_ADDR stop_pc;
3649 bpstat stop_bpstat;
3650 int stop_step;
3651 int stop_stack_dummy;
3652 int stopped_by_random_signal;
3653 int trap_expected;
3654 CORE_ADDR step_range_start;
3655 CORE_ADDR step_range_end;
aa0cd9c1 3656 struct frame_id step_frame_id;
5fbbeb29 3657 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
3658 CORE_ADDR step_resume_break_address;
3659 int stop_after_trap;
c0236d92 3660 int stop_soon;
72cec141 3661 struct regcache *stop_registers;
7a292a7a
SS
3662
3663 /* These are here because if call_function_by_hand has written some
3664 registers and then decides to call error(), we better not have changed
3665 any registers. */
72cec141 3666 struct regcache *registers;
7a292a7a 3667
101dcfbe
AC
3668 /* A frame unique identifier. */
3669 struct frame_id selected_frame_id;
3670
7a292a7a
SS
3671 int breakpoint_proceeded;
3672 int restore_stack_info;
3673 int proceed_to_finish;
3674};
3675
7a292a7a 3676void
96baa820
JM
3677write_inferior_status_register (struct inferior_status *inf_status, int regno,
3678 LONGEST val)
7a292a7a 3679{
12c266ea 3680 int size = DEPRECATED_REGISTER_RAW_SIZE (regno);
7a292a7a
SS
3681 void *buf = alloca (size);
3682 store_signed_integer (buf, size, val);
0818c12a 3683 regcache_raw_write (inf_status->registers, regno, buf);
7a292a7a
SS
3684}
3685
c906108c
SS
3686/* Save all of the information associated with the inferior<==>gdb
3687 connection. INF_STATUS is a pointer to a "struct inferior_status"
3688 (defined in inferior.h). */
3689
7a292a7a 3690struct inferior_status *
96baa820 3691save_inferior_status (int restore_stack_info)
c906108c 3692{
72cec141 3693 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
7a292a7a 3694
c906108c
SS
3695 inf_status->stop_signal = stop_signal;
3696 inf_status->stop_pc = stop_pc;
3697 inf_status->stop_step = stop_step;
3698 inf_status->stop_stack_dummy = stop_stack_dummy;
3699 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3700 inf_status->trap_expected = trap_expected;
3701 inf_status->step_range_start = step_range_start;
3702 inf_status->step_range_end = step_range_end;
aa0cd9c1 3703 inf_status->step_frame_id = step_frame_id;
c906108c
SS
3704 inf_status->step_over_calls = step_over_calls;
3705 inf_status->stop_after_trap = stop_after_trap;
c0236d92 3706 inf_status->stop_soon = stop_soon;
c906108c
SS
3707 /* Save original bpstat chain here; replace it with copy of chain.
3708 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
3709 hand them back the original chain when restore_inferior_status is
3710 called. */
c906108c
SS
3711 inf_status->stop_bpstat = stop_bpstat;
3712 stop_bpstat = bpstat_copy (stop_bpstat);
3713 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3714 inf_status->restore_stack_info = restore_stack_info;
3715 inf_status->proceed_to_finish = proceed_to_finish;
c5aa993b 3716
72cec141 3717 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
c906108c 3718
72cec141 3719 inf_status->registers = regcache_dup (current_regcache);
c906108c 3720
7a424e99 3721 inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame);
7a292a7a 3722 return inf_status;
c906108c
SS
3723}
3724
c906108c 3725static int
96baa820 3726restore_selected_frame (void *args)
c906108c 3727{
488f131b 3728 struct frame_id *fid = (struct frame_id *) args;
c906108c 3729 struct frame_info *frame;
c906108c 3730
101dcfbe 3731 frame = frame_find_by_id (*fid);
c906108c 3732
aa0cd9c1
AC
3733 /* If inf_status->selected_frame_id is NULL, there was no previously
3734 selected frame. */
101dcfbe 3735 if (frame == NULL)
c906108c
SS
3736 {
3737 warning ("Unable to restore previously selected frame.\n");
3738 return 0;
3739 }
3740
0f7d239c 3741 select_frame (frame);
c906108c
SS
3742
3743 return (1);
3744}
3745
3746void
96baa820 3747restore_inferior_status (struct inferior_status *inf_status)
c906108c
SS
3748{
3749 stop_signal = inf_status->stop_signal;
3750 stop_pc = inf_status->stop_pc;
3751 stop_step = inf_status->stop_step;
3752 stop_stack_dummy = inf_status->stop_stack_dummy;
3753 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3754 trap_expected = inf_status->trap_expected;
3755 step_range_start = inf_status->step_range_start;
3756 step_range_end = inf_status->step_range_end;
aa0cd9c1 3757 step_frame_id = inf_status->step_frame_id;
c906108c
SS
3758 step_over_calls = inf_status->step_over_calls;
3759 stop_after_trap = inf_status->stop_after_trap;
c0236d92 3760 stop_soon = inf_status->stop_soon;
c906108c
SS
3761 bpstat_clear (&stop_bpstat);
3762 stop_bpstat = inf_status->stop_bpstat;
3763 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3764 proceed_to_finish = inf_status->proceed_to_finish;
3765
72cec141
AC
3766 /* FIXME: Is the restore of stop_registers always needed. */
3767 regcache_xfree (stop_registers);
3768 stop_registers = inf_status->stop_registers;
c906108c
SS
3769
3770 /* The inferior can be gone if the user types "print exit(0)"
3771 (and perhaps other times). */
3772 if (target_has_execution)
72cec141
AC
3773 /* NB: The register write goes through to the target. */
3774 regcache_cpy (current_regcache, inf_status->registers);
3775 regcache_xfree (inf_status->registers);
c906108c 3776
c906108c
SS
3777 /* FIXME: If we are being called after stopping in a function which
3778 is called from gdb, we should not be trying to restore the
3779 selected frame; it just prints a spurious error message (The
3780 message is useful, however, in detecting bugs in gdb (like if gdb
3781 clobbers the stack)). In fact, should we be restoring the
3782 inferior status at all in that case? . */
3783
3784 if (target_has_stack && inf_status->restore_stack_info)
3785 {
c906108c 3786 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
3787 walking the stack might encounter a garbage pointer and
3788 error() trying to dereference it. */
488f131b
JB
3789 if (catch_errors
3790 (restore_selected_frame, &inf_status->selected_frame_id,
3791 "Unable to restore previously selected frame:\n",
3792 RETURN_MASK_ERROR) == 0)
c906108c
SS
3793 /* Error in restoring the selected frame. Select the innermost
3794 frame. */
0f7d239c 3795 select_frame (get_current_frame ());
c906108c
SS
3796
3797 }
c906108c 3798
72cec141 3799 xfree (inf_status);
7a292a7a 3800}
c906108c 3801
74b7792f
AC
3802static void
3803do_restore_inferior_status_cleanup (void *sts)
3804{
3805 restore_inferior_status (sts);
3806}
3807
3808struct cleanup *
3809make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3810{
3811 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3812}
3813
c906108c 3814void
96baa820 3815discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
3816{
3817 /* See save_inferior_status for info on stop_bpstat. */
3818 bpstat_clear (&inf_status->stop_bpstat);
72cec141
AC
3819 regcache_xfree (inf_status->registers);
3820 regcache_xfree (inf_status->stop_registers);
3821 xfree (inf_status);
7a292a7a
SS
3822}
3823
47932f85
DJ
3824int
3825inferior_has_forked (int pid, int *child_pid)
3826{
3827 struct target_waitstatus last;
3828 ptid_t last_ptid;
3829
3830 get_last_target_status (&last_ptid, &last);
3831
3832 if (last.kind != TARGET_WAITKIND_FORKED)
3833 return 0;
3834
3835 if (ptid_get_pid (last_ptid) != pid)
3836 return 0;
3837
3838 *child_pid = last.value.related_pid;
3839 return 1;
3840}
3841
3842int
3843inferior_has_vforked (int pid, int *child_pid)
3844{
3845 struct target_waitstatus last;
3846 ptid_t last_ptid;
3847
3848 get_last_target_status (&last_ptid, &last);
3849
3850 if (last.kind != TARGET_WAITKIND_VFORKED)
3851 return 0;
3852
3853 if (ptid_get_pid (last_ptid) != pid)
3854 return 0;
3855
3856 *child_pid = last.value.related_pid;
3857 return 1;
3858}
3859
3860int
3861inferior_has_execd (int pid, char **execd_pathname)
3862{
3863 struct target_waitstatus last;
3864 ptid_t last_ptid;
3865
3866 get_last_target_status (&last_ptid, &last);
3867
3868 if (last.kind != TARGET_WAITKIND_EXECD)
3869 return 0;
3870
3871 if (ptid_get_pid (last_ptid) != pid)
3872 return 0;
3873
3874 *execd_pathname = xstrdup (last.value.execd_pathname);
3875 return 1;
3876}
3877
ca6724c1
KB
3878/* Oft used ptids */
3879ptid_t null_ptid;
3880ptid_t minus_one_ptid;
3881
3882/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 3883
ca6724c1
KB
3884ptid_t
3885ptid_build (int pid, long lwp, long tid)
3886{
3887 ptid_t ptid;
3888
3889 ptid.pid = pid;
3890 ptid.lwp = lwp;
3891 ptid.tid = tid;
3892 return ptid;
3893}
3894
3895/* Create a ptid from just a pid. */
3896
3897ptid_t
3898pid_to_ptid (int pid)
3899{
3900 return ptid_build (pid, 0, 0);
3901}
3902
3903/* Fetch the pid (process id) component from a ptid. */
3904
3905int
3906ptid_get_pid (ptid_t ptid)
3907{
3908 return ptid.pid;
3909}
3910
3911/* Fetch the lwp (lightweight process) component from a ptid. */
3912
3913long
3914ptid_get_lwp (ptid_t ptid)
3915{
3916 return ptid.lwp;
3917}
3918
3919/* Fetch the tid (thread id) component from a ptid. */
3920
3921long
3922ptid_get_tid (ptid_t ptid)
3923{
3924 return ptid.tid;
3925}
3926
3927/* ptid_equal() is used to test equality of two ptids. */
3928
3929int
3930ptid_equal (ptid_t ptid1, ptid_t ptid2)
3931{
3932 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 3933 && ptid1.tid == ptid2.tid);
ca6724c1
KB
3934}
3935
3936/* restore_inferior_ptid() will be used by the cleanup machinery
3937 to restore the inferior_ptid value saved in a call to
3938 save_inferior_ptid(). */
ce696e05
KB
3939
3940static void
3941restore_inferior_ptid (void *arg)
3942{
3943 ptid_t *saved_ptid_ptr = arg;
3944 inferior_ptid = *saved_ptid_ptr;
3945 xfree (arg);
3946}
3947
3948/* Save the value of inferior_ptid so that it may be restored by a
3949 later call to do_cleanups(). Returns the struct cleanup pointer
3950 needed for later doing the cleanup. */
3951
3952struct cleanup *
3953save_inferior_ptid (void)
3954{
3955 ptid_t *saved_ptid_ptr;
3956
3957 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3958 *saved_ptid_ptr = inferior_ptid;
3959 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3960}
c5aa993b 3961\f
488f131b 3962
7a292a7a 3963static void
96baa820 3964build_infrun (void)
7a292a7a 3965{
72cec141 3966 stop_registers = regcache_xmalloc (current_gdbarch);
7a292a7a 3967}
c906108c 3968
c906108c 3969void
96baa820 3970_initialize_infrun (void)
c906108c 3971{
52f0bd74
AC
3972 int i;
3973 int numsigs;
c906108c
SS
3974 struct cmd_list_element *c;
3975
046a4708
AC
3976 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3977 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
0f71a2f6 3978
c906108c
SS
3979 add_info ("signals", signals_info,
3980 "What debugger does when program gets various signals.\n\
3981Specify a signal as argument to print info on that signal only.");
3982 add_info_alias ("handle", "signals", 0);
3983
3984 add_com ("handle", class_run, handle_command,
3985 concat ("Specify how to handle a signal.\n\
3986Args are signals and actions to apply to those signals.\n\
3987Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3988from 1-15 are allowed for compatibility with old versions of GDB.\n\
3989Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3990The special arg \"all\" is recognized to mean all signals except those\n\
488f131b 3991used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
3992\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3993Stop means reenter debugger if this signal happens (implies print).\n\
3994Print means print a message if this signal happens.\n\
3995Pass means let program see this signal; otherwise program doesn't know.\n\
3996Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3997Pass and Stop may be combined.", NULL));
3998 if (xdb_commands)
3999 {
4000 add_com ("lz", class_info, signals_info,
4001 "What debugger does when program gets various signals.\n\
4002Specify a signal as argument to print info on that signal only.");
4003 add_com ("z", class_run, xdb_handle_command,
4004 concat ("Specify how to handle a signal.\n\
4005Args are signals and actions to apply to those signals.\n\
4006Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4007from 1-15 are allowed for compatibility with old versions of GDB.\n\
4008Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4009The special arg \"all\" is recognized to mean all signals except those\n\
488f131b 4010used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
4011\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
4012nopass), \"Q\" (noprint)\n\
4013Stop means reenter debugger if this signal happens (implies print).\n\
4014Print means print a message if this signal happens.\n\
4015Pass means let program see this signal; otherwise program doesn't know.\n\
4016Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4017Pass and Stop may be combined.", NULL));
4018 }
4019
4020 if (!dbx_commands)
488f131b
JB
4021 stop_command =
4022 add_cmd ("stop", class_obscure, not_just_help_class_command, "There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c
SS
4023This allows you to set a list of commands to be run each time execution\n\
4024of the program stops.", &cmdlist);
4025
4026 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 4027 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
4028 signal_print = (unsigned char *)
4029 xmalloc (sizeof (signal_print[0]) * numsigs);
4030 signal_program = (unsigned char *)
4031 xmalloc (sizeof (signal_program[0]) * numsigs);
4032 for (i = 0; i < numsigs; i++)
4033 {
4034 signal_stop[i] = 1;
4035 signal_print[i] = 1;
4036 signal_program[i] = 1;
4037 }
4038
4039 /* Signals caused by debugger's own actions
4040 should not be given to the program afterwards. */
4041 signal_program[TARGET_SIGNAL_TRAP] = 0;
4042 signal_program[TARGET_SIGNAL_INT] = 0;
4043
4044 /* Signals that are not errors should not normally enter the debugger. */
4045 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4046 signal_print[TARGET_SIGNAL_ALRM] = 0;
4047 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4048 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4049 signal_stop[TARGET_SIGNAL_PROF] = 0;
4050 signal_print[TARGET_SIGNAL_PROF] = 0;
4051 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4052 signal_print[TARGET_SIGNAL_CHLD] = 0;
4053 signal_stop[TARGET_SIGNAL_IO] = 0;
4054 signal_print[TARGET_SIGNAL_IO] = 0;
4055 signal_stop[TARGET_SIGNAL_POLL] = 0;
4056 signal_print[TARGET_SIGNAL_POLL] = 0;
4057 signal_stop[TARGET_SIGNAL_URG] = 0;
4058 signal_print[TARGET_SIGNAL_URG] = 0;
4059 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4060 signal_print[TARGET_SIGNAL_WINCH] = 0;
4061
cd0fc7c3
SS
4062 /* These signals are used internally by user-level thread
4063 implementations. (See signal(5) on Solaris.) Like the above
4064 signals, a healthy program receives and handles them as part of
4065 its normal operation. */
4066 signal_stop[TARGET_SIGNAL_LWP] = 0;
4067 signal_print[TARGET_SIGNAL_LWP] = 0;
4068 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4069 signal_print[TARGET_SIGNAL_WAITING] = 0;
4070 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4071 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4072
c906108c
SS
4073#ifdef SOLIB_ADD
4074 add_show_from_set
4075 (add_set_cmd ("stop-on-solib-events", class_support, var_zinteger,
4076 (char *) &stop_on_solib_events,
4077 "Set stopping for shared library events.\n\
4078If nonzero, gdb will give control to the user when the dynamic linker\n\
4079notifies gdb of shared library events. The most common event of interest\n\
488f131b 4080to the user would be loading/unloading of a new library.\n", &setlist), &showlist);
c906108c
SS
4081#endif
4082
4083 c = add_set_enum_cmd ("follow-fork-mode",
4084 class_run,
488f131b 4085 follow_fork_mode_kind_names, &follow_fork_mode_string,
c906108c
SS
4086 "Set debugger response to a program call of fork \
4087or vfork.\n\
4088A fork or vfork creates a new process. follow-fork-mode can be:\n\
4089 parent - the original process is debugged after a fork\n\
4090 child - the new process is debugged after a fork\n\
ea1dd7bc 4091The unfollowed process will continue to run.\n\
488f131b 4092By default, the debugger will follow the parent process.", &setlist);
c906108c
SS
4093 add_show_from_set (c, &showlist);
4094
488f131b 4095 c = add_set_enum_cmd ("scheduler-locking", class_run, scheduler_enums, /* array of string names */
1ed2a135 4096 &scheduler_mode, /* current mode */
c906108c
SS
4097 "Set mode for locking scheduler during execution.\n\
4098off == no locking (threads may preempt at any time)\n\
4099on == full locking (no thread except the current thread may run)\n\
4100step == scheduler locked during every single-step operation.\n\
4101 In this mode, no other thread may run during a step command.\n\
488f131b 4102 Other threads may run while stepping over a function call ('next').", &setlist);
c906108c 4103
9f60d481 4104 set_cmd_sfunc (c, set_schedlock_func); /* traps on target vector */
c906108c 4105 add_show_from_set (c, &showlist);
5fbbeb29
CF
4106
4107 c = add_set_cmd ("step-mode", class_run,
488f131b
JB
4108 var_boolean, (char *) &step_stop_if_no_debug,
4109 "Set mode of the step operation. When set, doing a step over a\n\
5fbbeb29
CF
4110function without debug line information will stop at the first\n\
4111instruction of that function. Otherwise, the function is skipped and\n\
488f131b 4112the step command stops at a different source line.", &setlist);
5fbbeb29 4113 add_show_from_set (c, &showlist);
ca6724c1
KB
4114
4115 /* ptid initializations */
4116 null_ptid = ptid_build (0, 0, 0);
4117 minus_one_ptid = ptid_build (-1, 0, 0);
4118 inferior_ptid = null_ptid;
4119 target_last_wait_ptid = minus_one_ptid;
c906108c 4120}
This page took 0.711192 seconds and 4 git commands to generate.