gdb/gdbserver:
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
0b302171 4 Copyright (C) 1986-2012 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
22#include "gdb_string.h"
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
60250e8b 27#include "exceptions.h"
c906108c 28#include "breakpoint.h"
03f2053f 29#include "gdb_wait.h"
c906108c
SS
30#include "gdbcore.h"
31#include "gdbcmd.h"
210661e7 32#include "cli/cli-script.h"
c906108c
SS
33#include "target.h"
34#include "gdbthread.h"
35#include "annotate.h"
1adeb98a 36#include "symfile.h"
7a292a7a 37#include "top.h"
c906108c 38#include <signal.h>
2acceee2 39#include "inf-loop.h"
4e052eda 40#include "regcache.h"
fd0407d6 41#include "value.h"
06600e06 42#include "observer.h"
f636b87d 43#include "language.h"
a77053c2 44#include "solib.h"
f17517ea 45#include "main.h"
186c406b
TT
46#include "dictionary.h"
47#include "block.h"
9f976b41 48#include "gdb_assert.h"
034dad6f 49#include "mi/mi-common.h"
4f8d22e3 50#include "event-top.h"
96429cc8 51#include "record.h"
edb3359d 52#include "inline-frame.h"
4efc6507 53#include "jit.h"
06cd862c 54#include "tracepoint.h"
be34f849 55#include "continuations.h"
b4a14fd0 56#include "interps.h"
1bfeeb0f 57#include "skip.h"
c906108c
SS
58
59/* Prototypes for local functions */
60
96baa820 61static void signals_info (char *, int);
c906108c 62
96baa820 63static void handle_command (char *, int);
c906108c 64
96baa820 65static void sig_print_info (enum target_signal);
c906108c 66
96baa820 67static void sig_print_header (void);
c906108c 68
74b7792f 69static void resume_cleanups (void *);
c906108c 70
96baa820 71static int hook_stop_stub (void *);
c906108c 72
96baa820
JM
73static int restore_selected_frame (void *);
74
4ef3f3be 75static int follow_fork (void);
96baa820
JM
76
77static void set_schedlock_func (char *args, int from_tty,
488f131b 78 struct cmd_list_element *c);
96baa820 79
a289b8f6
JK
80static int currently_stepping (struct thread_info *tp);
81
b3444185
PA
82static int currently_stepping_or_nexting_callback (struct thread_info *tp,
83 void *data);
a7212384 84
96baa820
JM
85static void xdb_handle_command (char *args, int from_tty);
86
6a6b96b9 87static int prepare_to_proceed (int);
ea67f13b 88
33d62d64
JK
89static void print_exited_reason (int exitstatus);
90
91static void print_signal_exited_reason (enum target_signal siggnal);
92
93static void print_no_history_reason (void);
94
95static void print_signal_received_reason (enum target_signal siggnal);
96
97static void print_end_stepping_range_reason (void);
98
96baa820 99void _initialize_infrun (void);
43ff13b4 100
e58b0e63
PA
101void nullify_last_target_wait_ptid (void);
102
2c03e5be 103static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
104
105static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
106
2484c66b
UW
107static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
108
5fbbeb29
CF
109/* When set, stop the 'step' command if we enter a function which has
110 no line number information. The normal behavior is that we step
111 over such function. */
112int step_stop_if_no_debug = 0;
920d2a44
AC
113static void
114show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
115 struct cmd_list_element *c, const char *value)
116{
117 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
118}
5fbbeb29 119
1777feb0 120/* In asynchronous mode, but simulating synchronous execution. */
96baa820 121
43ff13b4
JM
122int sync_execution = 0;
123
c906108c
SS
124/* wait_for_inferior and normal_stop use this to notify the user
125 when the inferior stopped in a different thread than it had been
96baa820
JM
126 running in. */
127
39f77062 128static ptid_t previous_inferior_ptid;
7a292a7a 129
6c95b8df
PA
130/* Default behavior is to detach newly forked processes (legacy). */
131int detach_fork = 1;
132
237fc4c9
PA
133int debug_displaced = 0;
134static void
135show_debug_displaced (struct ui_file *file, int from_tty,
136 struct cmd_list_element *c, const char *value)
137{
138 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
139}
140
628fe4e4 141int debug_infrun = 0;
920d2a44
AC
142static void
143show_debug_infrun (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145{
146 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
147}
527159b7 148
03583c20
UW
149
150/* Support for disabling address space randomization. */
151
152int disable_randomization = 1;
153
154static void
155show_disable_randomization (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157{
158 if (target_supports_disable_randomization ())
159 fprintf_filtered (file,
160 _("Disabling randomization of debuggee's "
161 "virtual address space is %s.\n"),
162 value);
163 else
164 fputs_filtered (_("Disabling randomization of debuggee's "
165 "virtual address space is unsupported on\n"
166 "this platform.\n"), file);
167}
168
169static void
170set_disable_randomization (char *args, int from_tty,
171 struct cmd_list_element *c)
172{
173 if (!target_supports_disable_randomization ())
174 error (_("Disabling randomization of debuggee's "
175 "virtual address space is unsupported on\n"
176 "this platform."));
177}
178
179
d4f3574e
SS
180/* If the program uses ELF-style shared libraries, then calls to
181 functions in shared libraries go through stubs, which live in a
182 table called the PLT (Procedure Linkage Table). The first time the
183 function is called, the stub sends control to the dynamic linker,
184 which looks up the function's real address, patches the stub so
185 that future calls will go directly to the function, and then passes
186 control to the function.
187
188 If we are stepping at the source level, we don't want to see any of
189 this --- we just want to skip over the stub and the dynamic linker.
190 The simple approach is to single-step until control leaves the
191 dynamic linker.
192
ca557f44
AC
193 However, on some systems (e.g., Red Hat's 5.2 distribution) the
194 dynamic linker calls functions in the shared C library, so you
195 can't tell from the PC alone whether the dynamic linker is still
196 running. In this case, we use a step-resume breakpoint to get us
197 past the dynamic linker, as if we were using "next" to step over a
198 function call.
d4f3574e 199
cfd8ab24 200 in_solib_dynsym_resolve_code() says whether we're in the dynamic
d4f3574e
SS
201 linker code or not. Normally, this means we single-step. However,
202 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
203 address where we can place a step-resume breakpoint to get past the
204 linker's symbol resolution function.
205
cfd8ab24 206 in_solib_dynsym_resolve_code() can generally be implemented in a
d4f3574e
SS
207 pretty portable way, by comparing the PC against the address ranges
208 of the dynamic linker's sections.
209
210 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
211 it depends on internal details of the dynamic linker. It's usually
212 not too hard to figure out where to put a breakpoint, but it
213 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
214 sanity checking. If it can't figure things out, returning zero and
215 getting the (possibly confusing) stepping behavior is better than
216 signalling an error, which will obscure the change in the
217 inferior's state. */
c906108c 218
c906108c
SS
219/* This function returns TRUE if pc is the address of an instruction
220 that lies within the dynamic linker (such as the event hook, or the
221 dld itself).
222
223 This function must be used only when a dynamic linker event has
224 been caught, and the inferior is being stepped out of the hook, or
225 undefined results are guaranteed. */
226
227#ifndef SOLIB_IN_DYNAMIC_LINKER
228#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
229#endif
230
d914c394
SS
231/* "Observer mode" is somewhat like a more extreme version of
232 non-stop, in which all GDB operations that might affect the
233 target's execution have been disabled. */
234
235static int non_stop_1 = 0;
236
237int observer_mode = 0;
238static int observer_mode_1 = 0;
239
240static void
241set_observer_mode (char *args, int from_tty,
242 struct cmd_list_element *c)
243{
244 extern int pagination_enabled;
245
246 if (target_has_execution)
247 {
248 observer_mode_1 = observer_mode;
249 error (_("Cannot change this setting while the inferior is running."));
250 }
251
252 observer_mode = observer_mode_1;
253
254 may_write_registers = !observer_mode;
255 may_write_memory = !observer_mode;
256 may_insert_breakpoints = !observer_mode;
257 may_insert_tracepoints = !observer_mode;
258 /* We can insert fast tracepoints in or out of observer mode,
259 but enable them if we're going into this mode. */
260 if (observer_mode)
261 may_insert_fast_tracepoints = 1;
262 may_stop = !observer_mode;
263 update_target_permissions ();
264
265 /* Going *into* observer mode we must force non-stop, then
266 going out we leave it that way. */
267 if (observer_mode)
268 {
269 target_async_permitted = 1;
270 pagination_enabled = 0;
271 non_stop = non_stop_1 = 1;
272 }
273
274 if (from_tty)
275 printf_filtered (_("Observer mode is now %s.\n"),
276 (observer_mode ? "on" : "off"));
277}
278
279static void
280show_observer_mode (struct ui_file *file, int from_tty,
281 struct cmd_list_element *c, const char *value)
282{
283 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
284}
285
286/* This updates the value of observer mode based on changes in
287 permissions. Note that we are deliberately ignoring the values of
288 may-write-registers and may-write-memory, since the user may have
289 reason to enable these during a session, for instance to turn on a
290 debugging-related global. */
291
292void
293update_observer_mode (void)
294{
295 int newval;
296
297 newval = (!may_insert_breakpoints
298 && !may_insert_tracepoints
299 && may_insert_fast_tracepoints
300 && !may_stop
301 && non_stop);
302
303 /* Let the user know if things change. */
304 if (newval != observer_mode)
305 printf_filtered (_("Observer mode is now %s.\n"),
306 (newval ? "on" : "off"));
307
308 observer_mode = observer_mode_1 = newval;
309}
c2c6d25f 310
c906108c
SS
311/* Tables of how to react to signals; the user sets them. */
312
313static unsigned char *signal_stop;
314static unsigned char *signal_print;
315static unsigned char *signal_program;
316
2455069d
UW
317/* Table of signals that the target may silently handle.
318 This is automatically determined from the flags above,
319 and simply cached here. */
320static unsigned char *signal_pass;
321
c906108c
SS
322#define SET_SIGS(nsigs,sigs,flags) \
323 do { \
324 int signum = (nsigs); \
325 while (signum-- > 0) \
326 if ((sigs)[signum]) \
327 (flags)[signum] = 1; \
328 } while (0)
329
330#define UNSET_SIGS(nsigs,sigs,flags) \
331 do { \
332 int signum = (nsigs); \
333 while (signum-- > 0) \
334 if ((sigs)[signum]) \
335 (flags)[signum] = 0; \
336 } while (0)
337
1777feb0 338/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 339
edb3359d 340#define RESUME_ALL minus_one_ptid
c906108c
SS
341
342/* Command list pointer for the "stop" placeholder. */
343
344static struct cmd_list_element *stop_command;
345
c906108c
SS
346/* Function inferior was in as of last step command. */
347
348static struct symbol *step_start_function;
349
c906108c
SS
350/* Nonzero if we want to give control to the user when we're notified
351 of shared library events by the dynamic linker. */
628fe4e4 352int stop_on_solib_events;
920d2a44
AC
353static void
354show_stop_on_solib_events (struct ui_file *file, int from_tty,
355 struct cmd_list_element *c, const char *value)
356{
357 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
358 value);
359}
c906108c 360
c906108c
SS
361/* Nonzero means expecting a trace trap
362 and should stop the inferior and return silently when it happens. */
363
364int stop_after_trap;
365
642fd101
DE
366/* Save register contents here when executing a "finish" command or are
367 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
368 Thus this contains the return value from the called function (assuming
369 values are returned in a register). */
370
72cec141 371struct regcache *stop_registers;
c906108c 372
c906108c
SS
373/* Nonzero after stop if current stack frame should be printed. */
374
375static int stop_print_frame;
376
e02bc4cc 377/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
378 returned by target_wait()/deprecated_target_wait_hook(). This
379 information is returned by get_last_target_status(). */
39f77062 380static ptid_t target_last_wait_ptid;
e02bc4cc
DS
381static struct target_waitstatus target_last_waitstatus;
382
0d1e5fa7
PA
383static void context_switch (ptid_t ptid);
384
4e1c45ea 385void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7
PA
386
387void init_infwait_state (void);
a474d7c2 388
53904c9e
AC
389static const char follow_fork_mode_child[] = "child";
390static const char follow_fork_mode_parent[] = "parent";
391
40478521 392static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
393 follow_fork_mode_child,
394 follow_fork_mode_parent,
395 NULL
ef346e04 396};
c906108c 397
53904c9e 398static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
399static void
400show_follow_fork_mode_string (struct ui_file *file, int from_tty,
401 struct cmd_list_element *c, const char *value)
402{
3e43a32a
MS
403 fprintf_filtered (file,
404 _("Debugger response to a program "
405 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
406 value);
407}
c906108c
SS
408\f
409
e58b0e63
PA
410/* Tell the target to follow the fork we're stopped at. Returns true
411 if the inferior should be resumed; false, if the target for some
412 reason decided it's best not to resume. */
413
6604731b 414static int
4ef3f3be 415follow_fork (void)
c906108c 416{
ea1dd7bc 417 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
418 int should_resume = 1;
419 struct thread_info *tp;
420
421 /* Copy user stepping state to the new inferior thread. FIXME: the
422 followed fork child thread should have a copy of most of the
4e3990f4
DE
423 parent thread structure's run control related fields, not just these.
424 Initialized to avoid "may be used uninitialized" warnings from gcc. */
425 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 426 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
427 CORE_ADDR step_range_start = 0;
428 CORE_ADDR step_range_end = 0;
429 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
430
431 if (!non_stop)
432 {
433 ptid_t wait_ptid;
434 struct target_waitstatus wait_status;
435
436 /* Get the last target status returned by target_wait(). */
437 get_last_target_status (&wait_ptid, &wait_status);
438
439 /* If not stopped at a fork event, then there's nothing else to
440 do. */
441 if (wait_status.kind != TARGET_WAITKIND_FORKED
442 && wait_status.kind != TARGET_WAITKIND_VFORKED)
443 return 1;
444
445 /* Check if we switched over from WAIT_PTID, since the event was
446 reported. */
447 if (!ptid_equal (wait_ptid, minus_one_ptid)
448 && !ptid_equal (inferior_ptid, wait_ptid))
449 {
450 /* We did. Switch back to WAIT_PTID thread, to tell the
451 target to follow it (in either direction). We'll
452 afterwards refuse to resume, and inform the user what
453 happened. */
454 switch_to_thread (wait_ptid);
455 should_resume = 0;
456 }
457 }
458
459 tp = inferior_thread ();
460
461 /* If there were any forks/vforks that were caught and are now to be
462 followed, then do so now. */
463 switch (tp->pending_follow.kind)
464 {
465 case TARGET_WAITKIND_FORKED:
466 case TARGET_WAITKIND_VFORKED:
467 {
468 ptid_t parent, child;
469
470 /* If the user did a next/step, etc, over a fork call,
471 preserve the stepping state in the fork child. */
472 if (follow_child && should_resume)
473 {
8358c15c
JK
474 step_resume_breakpoint = clone_momentary_breakpoint
475 (tp->control.step_resume_breakpoint);
16c381f0
JK
476 step_range_start = tp->control.step_range_start;
477 step_range_end = tp->control.step_range_end;
478 step_frame_id = tp->control.step_frame_id;
186c406b
TT
479 exception_resume_breakpoint
480 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
e58b0e63
PA
481
482 /* For now, delete the parent's sr breakpoint, otherwise,
483 parent/child sr breakpoints are considered duplicates,
484 and the child version will not be installed. Remove
485 this when the breakpoints module becomes aware of
486 inferiors and address spaces. */
487 delete_step_resume_breakpoint (tp);
16c381f0
JK
488 tp->control.step_range_start = 0;
489 tp->control.step_range_end = 0;
490 tp->control.step_frame_id = null_frame_id;
186c406b 491 delete_exception_resume_breakpoint (tp);
e58b0e63
PA
492 }
493
494 parent = inferior_ptid;
495 child = tp->pending_follow.value.related_pid;
496
497 /* Tell the target to do whatever is necessary to follow
498 either parent or child. */
499 if (target_follow_fork (follow_child))
500 {
501 /* Target refused to follow, or there's some other reason
502 we shouldn't resume. */
503 should_resume = 0;
504 }
505 else
506 {
507 /* This pending follow fork event is now handled, one way
508 or another. The previous selected thread may be gone
509 from the lists by now, but if it is still around, need
510 to clear the pending follow request. */
e09875d4 511 tp = find_thread_ptid (parent);
e58b0e63
PA
512 if (tp)
513 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
514
515 /* This makes sure we don't try to apply the "Switched
516 over from WAIT_PID" logic above. */
517 nullify_last_target_wait_ptid ();
518
1777feb0 519 /* If we followed the child, switch to it... */
e58b0e63
PA
520 if (follow_child)
521 {
522 switch_to_thread (child);
523
524 /* ... and preserve the stepping state, in case the
525 user was stepping over the fork call. */
526 if (should_resume)
527 {
528 tp = inferior_thread ();
8358c15c
JK
529 tp->control.step_resume_breakpoint
530 = step_resume_breakpoint;
16c381f0
JK
531 tp->control.step_range_start = step_range_start;
532 tp->control.step_range_end = step_range_end;
533 tp->control.step_frame_id = step_frame_id;
186c406b
TT
534 tp->control.exception_resume_breakpoint
535 = exception_resume_breakpoint;
e58b0e63
PA
536 }
537 else
538 {
539 /* If we get here, it was because we're trying to
540 resume from a fork catchpoint, but, the user
541 has switched threads away from the thread that
542 forked. In that case, the resume command
543 issued is most likely not applicable to the
544 child, so just warn, and refuse to resume. */
3e43a32a
MS
545 warning (_("Not resuming: switched threads "
546 "before following fork child.\n"));
e58b0e63
PA
547 }
548
549 /* Reset breakpoints in the child as appropriate. */
550 follow_inferior_reset_breakpoints ();
551 }
552 else
553 switch_to_thread (parent);
554 }
555 }
556 break;
557 case TARGET_WAITKIND_SPURIOUS:
558 /* Nothing to follow. */
559 break;
560 default:
561 internal_error (__FILE__, __LINE__,
562 "Unexpected pending_follow.kind %d\n",
563 tp->pending_follow.kind);
564 break;
565 }
c906108c 566
e58b0e63 567 return should_resume;
c906108c
SS
568}
569
6604731b
DJ
570void
571follow_inferior_reset_breakpoints (void)
c906108c 572{
4e1c45ea
PA
573 struct thread_info *tp = inferior_thread ();
574
6604731b
DJ
575 /* Was there a step_resume breakpoint? (There was if the user
576 did a "next" at the fork() call.) If so, explicitly reset its
577 thread number.
578
579 step_resumes are a form of bp that are made to be per-thread.
580 Since we created the step_resume bp when the parent process
581 was being debugged, and now are switching to the child process,
582 from the breakpoint package's viewpoint, that's a switch of
583 "threads". We must update the bp's notion of which thread
584 it is for, or it'll be ignored when it triggers. */
585
8358c15c
JK
586 if (tp->control.step_resume_breakpoint)
587 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
6604731b 588
186c406b
TT
589 if (tp->control.exception_resume_breakpoint)
590 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
591
6604731b
DJ
592 /* Reinsert all breakpoints in the child. The user may have set
593 breakpoints after catching the fork, in which case those
594 were never set in the child, but only in the parent. This makes
595 sure the inserted breakpoints match the breakpoint list. */
596
597 breakpoint_re_set ();
598 insert_breakpoints ();
c906108c 599}
c906108c 600
6c95b8df
PA
601/* The child has exited or execed: resume threads of the parent the
602 user wanted to be executing. */
603
604static int
605proceed_after_vfork_done (struct thread_info *thread,
606 void *arg)
607{
608 int pid = * (int *) arg;
609
610 if (ptid_get_pid (thread->ptid) == pid
611 && is_running (thread->ptid)
612 && !is_executing (thread->ptid)
613 && !thread->stop_requested
16c381f0 614 && thread->suspend.stop_signal == TARGET_SIGNAL_0)
6c95b8df
PA
615 {
616 if (debug_infrun)
617 fprintf_unfiltered (gdb_stdlog,
618 "infrun: resuming vfork parent thread %s\n",
619 target_pid_to_str (thread->ptid));
620
621 switch_to_thread (thread->ptid);
622 clear_proceed_status ();
623 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
624 }
625
626 return 0;
627}
628
629/* Called whenever we notice an exec or exit event, to handle
630 detaching or resuming a vfork parent. */
631
632static void
633handle_vfork_child_exec_or_exit (int exec)
634{
635 struct inferior *inf = current_inferior ();
636
637 if (inf->vfork_parent)
638 {
639 int resume_parent = -1;
640
641 /* This exec or exit marks the end of the shared memory region
642 between the parent and the child. If the user wanted to
643 detach from the parent, now is the time. */
644
645 if (inf->vfork_parent->pending_detach)
646 {
647 struct thread_info *tp;
648 struct cleanup *old_chain;
649 struct program_space *pspace;
650 struct address_space *aspace;
651
1777feb0 652 /* follow-fork child, detach-on-fork on. */
6c95b8df
PA
653
654 old_chain = make_cleanup_restore_current_thread ();
655
656 /* We're letting loose of the parent. */
657 tp = any_live_thread_of_process (inf->vfork_parent->pid);
658 switch_to_thread (tp->ptid);
659
660 /* We're about to detach from the parent, which implicitly
661 removes breakpoints from its address space. There's a
662 catch here: we want to reuse the spaces for the child,
663 but, parent/child are still sharing the pspace at this
664 point, although the exec in reality makes the kernel give
665 the child a fresh set of new pages. The problem here is
666 that the breakpoints module being unaware of this, would
667 likely chose the child process to write to the parent
668 address space. Swapping the child temporarily away from
669 the spaces has the desired effect. Yes, this is "sort
670 of" a hack. */
671
672 pspace = inf->pspace;
673 aspace = inf->aspace;
674 inf->aspace = NULL;
675 inf->pspace = NULL;
676
677 if (debug_infrun || info_verbose)
678 {
679 target_terminal_ours ();
680
681 if (exec)
682 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
683 "Detaching vfork parent process "
684 "%d after child exec.\n",
6c95b8df
PA
685 inf->vfork_parent->pid);
686 else
687 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
688 "Detaching vfork parent process "
689 "%d after child exit.\n",
6c95b8df
PA
690 inf->vfork_parent->pid);
691 }
692
693 target_detach (NULL, 0);
694
695 /* Put it back. */
696 inf->pspace = pspace;
697 inf->aspace = aspace;
698
699 do_cleanups (old_chain);
700 }
701 else if (exec)
702 {
703 /* We're staying attached to the parent, so, really give the
704 child a new address space. */
705 inf->pspace = add_program_space (maybe_new_address_space ());
706 inf->aspace = inf->pspace->aspace;
707 inf->removable = 1;
708 set_current_program_space (inf->pspace);
709
710 resume_parent = inf->vfork_parent->pid;
711
712 /* Break the bonds. */
713 inf->vfork_parent->vfork_child = NULL;
714 }
715 else
716 {
717 struct cleanup *old_chain;
718 struct program_space *pspace;
719
720 /* If this is a vfork child exiting, then the pspace and
721 aspaces were shared with the parent. Since we're
722 reporting the process exit, we'll be mourning all that is
723 found in the address space, and switching to null_ptid,
724 preparing to start a new inferior. But, since we don't
725 want to clobber the parent's address/program spaces, we
726 go ahead and create a new one for this exiting
727 inferior. */
728
729 /* Switch to null_ptid, so that clone_program_space doesn't want
730 to read the selected frame of a dead process. */
731 old_chain = save_inferior_ptid ();
732 inferior_ptid = null_ptid;
733
734 /* This inferior is dead, so avoid giving the breakpoints
735 module the option to write through to it (cloning a
736 program space resets breakpoints). */
737 inf->aspace = NULL;
738 inf->pspace = NULL;
739 pspace = add_program_space (maybe_new_address_space ());
740 set_current_program_space (pspace);
741 inf->removable = 1;
7dcd53a0 742 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
743 clone_program_space (pspace, inf->vfork_parent->pspace);
744 inf->pspace = pspace;
745 inf->aspace = pspace->aspace;
746
747 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 748 inferior. */
6c95b8df
PA
749 do_cleanups (old_chain);
750
751 resume_parent = inf->vfork_parent->pid;
752 /* Break the bonds. */
753 inf->vfork_parent->vfork_child = NULL;
754 }
755
756 inf->vfork_parent = NULL;
757
758 gdb_assert (current_program_space == inf->pspace);
759
760 if (non_stop && resume_parent != -1)
761 {
762 /* If the user wanted the parent to be running, let it go
763 free now. */
764 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
765
766 if (debug_infrun)
3e43a32a
MS
767 fprintf_unfiltered (gdb_stdlog,
768 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
769 resume_parent);
770
771 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
772
773 do_cleanups (old_chain);
774 }
775 }
776}
777
778/* Enum strings for "set|show displaced-stepping". */
779
780static const char follow_exec_mode_new[] = "new";
781static const char follow_exec_mode_same[] = "same";
40478521 782static const char *const follow_exec_mode_names[] =
6c95b8df
PA
783{
784 follow_exec_mode_new,
785 follow_exec_mode_same,
786 NULL,
787};
788
789static const char *follow_exec_mode_string = follow_exec_mode_same;
790static void
791show_follow_exec_mode_string (struct ui_file *file, int from_tty,
792 struct cmd_list_element *c, const char *value)
793{
794 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
795}
796
1777feb0 797/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 798
c906108c 799static void
3a3e9ee3 800follow_exec (ptid_t pid, char *execd_pathname)
c906108c 801{
4e1c45ea 802 struct thread_info *th = inferior_thread ();
6c95b8df 803 struct inferior *inf = current_inferior ();
7a292a7a 804
c906108c
SS
805 /* This is an exec event that we actually wish to pay attention to.
806 Refresh our symbol table to the newly exec'd program, remove any
807 momentary bp's, etc.
808
809 If there are breakpoints, they aren't really inserted now,
810 since the exec() transformed our inferior into a fresh set
811 of instructions.
812
813 We want to preserve symbolic breakpoints on the list, since
814 we have hopes that they can be reset after the new a.out's
815 symbol table is read.
816
817 However, any "raw" breakpoints must be removed from the list
818 (e.g., the solib bp's), since their address is probably invalid
819 now.
820
821 And, we DON'T want to call delete_breakpoints() here, since
822 that may write the bp's "shadow contents" (the instruction
823 value that was overwritten witha TRAP instruction). Since
1777feb0 824 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
825
826 mark_breakpoints_out ();
827
c906108c
SS
828 update_breakpoints_after_exec ();
829
830 /* If there was one, it's gone now. We cannot truly step-to-next
1777feb0 831 statement through an exec(). */
8358c15c 832 th->control.step_resume_breakpoint = NULL;
186c406b 833 th->control.exception_resume_breakpoint = NULL;
16c381f0
JK
834 th->control.step_range_start = 0;
835 th->control.step_range_end = 0;
c906108c 836
a75724bc
PA
837 /* The target reports the exec event to the main thread, even if
838 some other thread does the exec, and even if the main thread was
839 already stopped --- if debugging in non-stop mode, it's possible
840 the user had the main thread held stopped in the previous image
841 --- release it now. This is the same behavior as step-over-exec
842 with scheduler-locking on in all-stop mode. */
843 th->stop_requested = 0;
844
1777feb0 845 /* What is this a.out's name? */
6c95b8df
PA
846 printf_unfiltered (_("%s is executing new program: %s\n"),
847 target_pid_to_str (inferior_ptid),
848 execd_pathname);
c906108c
SS
849
850 /* We've followed the inferior through an exec. Therefore, the
1777feb0 851 inferior has essentially been killed & reborn. */
7a292a7a 852
c906108c 853 gdb_flush (gdb_stdout);
6ca15a4b
PA
854
855 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
856
857 if (gdb_sysroot && *gdb_sysroot)
858 {
859 char *name = alloca (strlen (gdb_sysroot)
860 + strlen (execd_pathname)
861 + 1);
abbb1732 862
e85a822c
DJ
863 strcpy (name, gdb_sysroot);
864 strcat (name, execd_pathname);
865 execd_pathname = name;
866 }
c906108c 867
cce9b6bf
PA
868 /* Reset the shared library package. This ensures that we get a
869 shlib event when the child reaches "_start", at which point the
870 dld will have had a chance to initialize the child. */
871 /* Also, loading a symbol file below may trigger symbol lookups, and
872 we don't want those to be satisfied by the libraries of the
873 previous incarnation of this process. */
874 no_shared_libraries (NULL, 0);
875
6c95b8df
PA
876 if (follow_exec_mode_string == follow_exec_mode_new)
877 {
878 struct program_space *pspace;
6c95b8df
PA
879
880 /* The user wants to keep the old inferior and program spaces
881 around. Create a new fresh one, and switch to it. */
882
883 inf = add_inferior (current_inferior ()->pid);
884 pspace = add_program_space (maybe_new_address_space ());
885 inf->pspace = pspace;
886 inf->aspace = pspace->aspace;
887
888 exit_inferior_num_silent (current_inferior ()->num);
889
890 set_current_inferior (inf);
891 set_current_program_space (pspace);
892 }
893
894 gdb_assert (current_program_space == inf->pspace);
895
1777feb0 896 /* That a.out is now the one to use. */
6c95b8df
PA
897 exec_file_attach (execd_pathname, 0);
898
c1e56572
JK
899 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
900 (Position Independent Executable) main symbol file will get applied by
901 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
902 the breakpoints with the zero displacement. */
903
7dcd53a0
TT
904 symbol_file_add (execd_pathname,
905 (inf->symfile_flags
906 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
907 NULL, 0);
908
7dcd53a0
TT
909 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
910 set_initial_language ();
c906108c 911
7a292a7a 912#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 913 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2 914#else
268a4a75 915 solib_create_inferior_hook (0);
7a292a7a 916#endif
c906108c 917
4efc6507
DE
918 jit_inferior_created_hook ();
919
c1e56572
JK
920 breakpoint_re_set ();
921
c906108c
SS
922 /* Reinsert all breakpoints. (Those which were symbolic have
923 been reset to the proper address in the new a.out, thanks
1777feb0 924 to symbol_file_command...). */
c906108c
SS
925 insert_breakpoints ();
926
927 /* The next resume of this inferior should bring it to the shlib
928 startup breakpoints. (If the user had also set bp's on
929 "main" from the old (parent) process, then they'll auto-
1777feb0 930 matically get reset there in the new process.). */
c906108c
SS
931}
932
933/* Non-zero if we just simulating a single-step. This is needed
934 because we cannot remove the breakpoints in the inferior process
935 until after the `wait' in `wait_for_inferior'. */
936static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
937
938/* The thread we inserted single-step breakpoints for. */
939static ptid_t singlestep_ptid;
940
fd48f117
DJ
941/* PC when we started this single-step. */
942static CORE_ADDR singlestep_pc;
943
9f976b41
DJ
944/* If another thread hit the singlestep breakpoint, we save the original
945 thread here so that we can resume single-stepping it later. */
946static ptid_t saved_singlestep_ptid;
947static int stepping_past_singlestep_breakpoint;
6a6b96b9 948
ca67fcb8
VP
949/* If not equal to null_ptid, this means that after stepping over breakpoint
950 is finished, we need to switch to deferred_step_ptid, and step it.
951
952 The use case is when one thread has hit a breakpoint, and then the user
1777feb0 953 has switched to another thread and issued 'step'. We need to step over
ca67fcb8
VP
954 breakpoint in the thread which hit the breakpoint, but then continue
955 stepping the thread user has selected. */
956static ptid_t deferred_step_ptid;
c906108c 957\f
237fc4c9
PA
958/* Displaced stepping. */
959
960/* In non-stop debugging mode, we must take special care to manage
961 breakpoints properly; in particular, the traditional strategy for
962 stepping a thread past a breakpoint it has hit is unsuitable.
963 'Displaced stepping' is a tactic for stepping one thread past a
964 breakpoint it has hit while ensuring that other threads running
965 concurrently will hit the breakpoint as they should.
966
967 The traditional way to step a thread T off a breakpoint in a
968 multi-threaded program in all-stop mode is as follows:
969
970 a0) Initially, all threads are stopped, and breakpoints are not
971 inserted.
972 a1) We single-step T, leaving breakpoints uninserted.
973 a2) We insert breakpoints, and resume all threads.
974
975 In non-stop debugging, however, this strategy is unsuitable: we
976 don't want to have to stop all threads in the system in order to
977 continue or step T past a breakpoint. Instead, we use displaced
978 stepping:
979
980 n0) Initially, T is stopped, other threads are running, and
981 breakpoints are inserted.
982 n1) We copy the instruction "under" the breakpoint to a separate
983 location, outside the main code stream, making any adjustments
984 to the instruction, register, and memory state as directed by
985 T's architecture.
986 n2) We single-step T over the instruction at its new location.
987 n3) We adjust the resulting register and memory state as directed
988 by T's architecture. This includes resetting T's PC to point
989 back into the main instruction stream.
990 n4) We resume T.
991
992 This approach depends on the following gdbarch methods:
993
994 - gdbarch_max_insn_length and gdbarch_displaced_step_location
995 indicate where to copy the instruction, and how much space must
996 be reserved there. We use these in step n1.
997
998 - gdbarch_displaced_step_copy_insn copies a instruction to a new
999 address, and makes any necessary adjustments to the instruction,
1000 register contents, and memory. We use this in step n1.
1001
1002 - gdbarch_displaced_step_fixup adjusts registers and memory after
1003 we have successfuly single-stepped the instruction, to yield the
1004 same effect the instruction would have had if we had executed it
1005 at its original address. We use this in step n3.
1006
1007 - gdbarch_displaced_step_free_closure provides cleanup.
1008
1009 The gdbarch_displaced_step_copy_insn and
1010 gdbarch_displaced_step_fixup functions must be written so that
1011 copying an instruction with gdbarch_displaced_step_copy_insn,
1012 single-stepping across the copied instruction, and then applying
1013 gdbarch_displaced_insn_fixup should have the same effects on the
1014 thread's memory and registers as stepping the instruction in place
1015 would have. Exactly which responsibilities fall to the copy and
1016 which fall to the fixup is up to the author of those functions.
1017
1018 See the comments in gdbarch.sh for details.
1019
1020 Note that displaced stepping and software single-step cannot
1021 currently be used in combination, although with some care I think
1022 they could be made to. Software single-step works by placing
1023 breakpoints on all possible subsequent instructions; if the
1024 displaced instruction is a PC-relative jump, those breakpoints
1025 could fall in very strange places --- on pages that aren't
1026 executable, or at addresses that are not proper instruction
1027 boundaries. (We do generally let other threads run while we wait
1028 to hit the software single-step breakpoint, and they might
1029 encounter such a corrupted instruction.) One way to work around
1030 this would be to have gdbarch_displaced_step_copy_insn fully
1031 simulate the effect of PC-relative instructions (and return NULL)
1032 on architectures that use software single-stepping.
1033
1034 In non-stop mode, we can have independent and simultaneous step
1035 requests, so more than one thread may need to simultaneously step
1036 over a breakpoint. The current implementation assumes there is
1037 only one scratch space per process. In this case, we have to
1038 serialize access to the scratch space. If thread A wants to step
1039 over a breakpoint, but we are currently waiting for some other
1040 thread to complete a displaced step, we leave thread A stopped and
1041 place it in the displaced_step_request_queue. Whenever a displaced
1042 step finishes, we pick the next thread in the queue and start a new
1043 displaced step operation on it. See displaced_step_prepare and
1044 displaced_step_fixup for details. */
1045
237fc4c9
PA
1046struct displaced_step_request
1047{
1048 ptid_t ptid;
1049 struct displaced_step_request *next;
1050};
1051
fc1cf338
PA
1052/* Per-inferior displaced stepping state. */
1053struct displaced_step_inferior_state
1054{
1055 /* Pointer to next in linked list. */
1056 struct displaced_step_inferior_state *next;
1057
1058 /* The process this displaced step state refers to. */
1059 int pid;
1060
1061 /* A queue of pending displaced stepping requests. One entry per
1062 thread that needs to do a displaced step. */
1063 struct displaced_step_request *step_request_queue;
1064
1065 /* If this is not null_ptid, this is the thread carrying out a
1066 displaced single-step in process PID. This thread's state will
1067 require fixing up once it has completed its step. */
1068 ptid_t step_ptid;
1069
1070 /* The architecture the thread had when we stepped it. */
1071 struct gdbarch *step_gdbarch;
1072
1073 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1074 for post-step cleanup. */
1075 struct displaced_step_closure *step_closure;
1076
1077 /* The address of the original instruction, and the copy we
1078 made. */
1079 CORE_ADDR step_original, step_copy;
1080
1081 /* Saved contents of copy area. */
1082 gdb_byte *step_saved_copy;
1083};
1084
1085/* The list of states of processes involved in displaced stepping
1086 presently. */
1087static struct displaced_step_inferior_state *displaced_step_inferior_states;
1088
1089/* Get the displaced stepping state of process PID. */
1090
1091static struct displaced_step_inferior_state *
1092get_displaced_stepping_state (int pid)
1093{
1094 struct displaced_step_inferior_state *state;
1095
1096 for (state = displaced_step_inferior_states;
1097 state != NULL;
1098 state = state->next)
1099 if (state->pid == pid)
1100 return state;
1101
1102 return NULL;
1103}
1104
1105/* Add a new displaced stepping state for process PID to the displaced
1106 stepping state list, or return a pointer to an already existing
1107 entry, if it already exists. Never returns NULL. */
1108
1109static struct displaced_step_inferior_state *
1110add_displaced_stepping_state (int pid)
1111{
1112 struct displaced_step_inferior_state *state;
1113
1114 for (state = displaced_step_inferior_states;
1115 state != NULL;
1116 state = state->next)
1117 if (state->pid == pid)
1118 return state;
237fc4c9 1119
fc1cf338
PA
1120 state = xcalloc (1, sizeof (*state));
1121 state->pid = pid;
1122 state->next = displaced_step_inferior_states;
1123 displaced_step_inferior_states = state;
237fc4c9 1124
fc1cf338
PA
1125 return state;
1126}
1127
a42244db
YQ
1128/* If inferior is in displaced stepping, and ADDR equals to starting address
1129 of copy area, return corresponding displaced_step_closure. Otherwise,
1130 return NULL. */
1131
1132struct displaced_step_closure*
1133get_displaced_step_closure_by_addr (CORE_ADDR addr)
1134{
1135 struct displaced_step_inferior_state *displaced
1136 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1137
1138 /* If checking the mode of displaced instruction in copy area. */
1139 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1140 && (displaced->step_copy == addr))
1141 return displaced->step_closure;
1142
1143 return NULL;
1144}
1145
fc1cf338 1146/* Remove the displaced stepping state of process PID. */
237fc4c9 1147
fc1cf338
PA
1148static void
1149remove_displaced_stepping_state (int pid)
1150{
1151 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1152
fc1cf338
PA
1153 gdb_assert (pid != 0);
1154
1155 it = displaced_step_inferior_states;
1156 prev_next_p = &displaced_step_inferior_states;
1157 while (it)
1158 {
1159 if (it->pid == pid)
1160 {
1161 *prev_next_p = it->next;
1162 xfree (it);
1163 return;
1164 }
1165
1166 prev_next_p = &it->next;
1167 it = *prev_next_p;
1168 }
1169}
1170
1171static void
1172infrun_inferior_exit (struct inferior *inf)
1173{
1174 remove_displaced_stepping_state (inf->pid);
1175}
237fc4c9 1176
fff08868
HZ
1177/* Enum strings for "set|show displaced-stepping". */
1178
1179static const char can_use_displaced_stepping_auto[] = "auto";
1180static const char can_use_displaced_stepping_on[] = "on";
1181static const char can_use_displaced_stepping_off[] = "off";
40478521 1182static const char *const can_use_displaced_stepping_enum[] =
fff08868
HZ
1183{
1184 can_use_displaced_stepping_auto,
1185 can_use_displaced_stepping_on,
1186 can_use_displaced_stepping_off,
1187 NULL,
1188};
1189
1190/* If ON, and the architecture supports it, GDB will use displaced
1191 stepping to step over breakpoints. If OFF, or if the architecture
1192 doesn't support it, GDB will instead use the traditional
1193 hold-and-step approach. If AUTO (which is the default), GDB will
1194 decide which technique to use to step over breakpoints depending on
1195 which of all-stop or non-stop mode is active --- displaced stepping
1196 in non-stop mode; hold-and-step in all-stop mode. */
1197
1198static const char *can_use_displaced_stepping =
1199 can_use_displaced_stepping_auto;
1200
237fc4c9
PA
1201static void
1202show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1203 struct cmd_list_element *c,
1204 const char *value)
1205{
fff08868 1206 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
3e43a32a
MS
1207 fprintf_filtered (file,
1208 _("Debugger's willingness to use displaced stepping "
1209 "to step over breakpoints is %s (currently %s).\n"),
fff08868
HZ
1210 value, non_stop ? "on" : "off");
1211 else
3e43a32a
MS
1212 fprintf_filtered (file,
1213 _("Debugger's willingness to use displaced stepping "
1214 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1215}
1216
fff08868
HZ
1217/* Return non-zero if displaced stepping can/should be used to step
1218 over breakpoints. */
1219
237fc4c9
PA
1220static int
1221use_displaced_stepping (struct gdbarch *gdbarch)
1222{
fff08868
HZ
1223 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
1224 && non_stop)
1225 || can_use_displaced_stepping == can_use_displaced_stepping_on)
96429cc8
HZ
1226 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1227 && !RECORD_IS_USED);
237fc4c9
PA
1228}
1229
1230/* Clean out any stray displaced stepping state. */
1231static void
fc1cf338 1232displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1233{
1234 /* Indicate that there is no cleanup pending. */
fc1cf338 1235 displaced->step_ptid = null_ptid;
237fc4c9 1236
fc1cf338 1237 if (displaced->step_closure)
237fc4c9 1238 {
fc1cf338
PA
1239 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1240 displaced->step_closure);
1241 displaced->step_closure = NULL;
237fc4c9
PA
1242 }
1243}
1244
1245static void
fc1cf338 1246displaced_step_clear_cleanup (void *arg)
237fc4c9 1247{
fc1cf338
PA
1248 struct displaced_step_inferior_state *state = arg;
1249
1250 displaced_step_clear (state);
237fc4c9
PA
1251}
1252
1253/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1254void
1255displaced_step_dump_bytes (struct ui_file *file,
1256 const gdb_byte *buf,
1257 size_t len)
1258{
1259 int i;
1260
1261 for (i = 0; i < len; i++)
1262 fprintf_unfiltered (file, "%02x ", buf[i]);
1263 fputs_unfiltered ("\n", file);
1264}
1265
1266/* Prepare to single-step, using displaced stepping.
1267
1268 Note that we cannot use displaced stepping when we have a signal to
1269 deliver. If we have a signal to deliver and an instruction to step
1270 over, then after the step, there will be no indication from the
1271 target whether the thread entered a signal handler or ignored the
1272 signal and stepped over the instruction successfully --- both cases
1273 result in a simple SIGTRAP. In the first case we mustn't do a
1274 fixup, and in the second case we must --- but we can't tell which.
1275 Comments in the code for 'random signals' in handle_inferior_event
1276 explain how we handle this case instead.
1277
1278 Returns 1 if preparing was successful -- this thread is going to be
1279 stepped now; or 0 if displaced stepping this thread got queued. */
1280static int
1281displaced_step_prepare (ptid_t ptid)
1282{
ad53cd71 1283 struct cleanup *old_cleanups, *ignore_cleanups;
237fc4c9
PA
1284 struct regcache *regcache = get_thread_regcache (ptid);
1285 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1286 CORE_ADDR original, copy;
1287 ULONGEST len;
1288 struct displaced_step_closure *closure;
fc1cf338 1289 struct displaced_step_inferior_state *displaced;
237fc4c9
PA
1290
1291 /* We should never reach this function if the architecture does not
1292 support displaced stepping. */
1293 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1294
fc1cf338
PA
1295 /* We have to displaced step one thread at a time, as we only have
1296 access to a single scratch space per inferior. */
237fc4c9 1297
fc1cf338
PA
1298 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1299
1300 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1301 {
1302 /* Already waiting for a displaced step to finish. Defer this
1303 request and place in queue. */
1304 struct displaced_step_request *req, *new_req;
1305
1306 if (debug_displaced)
1307 fprintf_unfiltered (gdb_stdlog,
1308 "displaced: defering step of %s\n",
1309 target_pid_to_str (ptid));
1310
1311 new_req = xmalloc (sizeof (*new_req));
1312 new_req->ptid = ptid;
1313 new_req->next = NULL;
1314
fc1cf338 1315 if (displaced->step_request_queue)
237fc4c9 1316 {
fc1cf338 1317 for (req = displaced->step_request_queue;
237fc4c9
PA
1318 req && req->next;
1319 req = req->next)
1320 ;
1321 req->next = new_req;
1322 }
1323 else
fc1cf338 1324 displaced->step_request_queue = new_req;
237fc4c9
PA
1325
1326 return 0;
1327 }
1328 else
1329 {
1330 if (debug_displaced)
1331 fprintf_unfiltered (gdb_stdlog,
1332 "displaced: stepping %s now\n",
1333 target_pid_to_str (ptid));
1334 }
1335
fc1cf338 1336 displaced_step_clear (displaced);
237fc4c9 1337
ad53cd71
PA
1338 old_cleanups = save_inferior_ptid ();
1339 inferior_ptid = ptid;
1340
515630c5 1341 original = regcache_read_pc (regcache);
237fc4c9
PA
1342
1343 copy = gdbarch_displaced_step_location (gdbarch);
1344 len = gdbarch_max_insn_length (gdbarch);
1345
1346 /* Save the original contents of the copy area. */
fc1cf338 1347 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1348 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338
PA
1349 &displaced->step_saved_copy);
1350 read_memory (copy, displaced->step_saved_copy, len);
237fc4c9
PA
1351 if (debug_displaced)
1352 {
5af949e3
UW
1353 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1354 paddress (gdbarch, copy));
fc1cf338
PA
1355 displaced_step_dump_bytes (gdb_stdlog,
1356 displaced->step_saved_copy,
1357 len);
237fc4c9
PA
1358 };
1359
1360 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1361 original, copy, regcache);
237fc4c9
PA
1362
1363 /* We don't support the fully-simulated case at present. */
1364 gdb_assert (closure);
1365
9f5a595d
UW
1366 /* Save the information we need to fix things up if the step
1367 succeeds. */
fc1cf338
PA
1368 displaced->step_ptid = ptid;
1369 displaced->step_gdbarch = gdbarch;
1370 displaced->step_closure = closure;
1371 displaced->step_original = original;
1372 displaced->step_copy = copy;
9f5a595d 1373
fc1cf338 1374 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1375
1376 /* Resume execution at the copy. */
515630c5 1377 regcache_write_pc (regcache, copy);
237fc4c9 1378
ad53cd71
PA
1379 discard_cleanups (ignore_cleanups);
1380
1381 do_cleanups (old_cleanups);
237fc4c9
PA
1382
1383 if (debug_displaced)
5af949e3
UW
1384 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1385 paddress (gdbarch, copy));
237fc4c9 1386
237fc4c9
PA
1387 return 1;
1388}
1389
237fc4c9 1390static void
3e43a32a
MS
1391write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1392 const gdb_byte *myaddr, int len)
237fc4c9
PA
1393{
1394 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1395
237fc4c9
PA
1396 inferior_ptid = ptid;
1397 write_memory (memaddr, myaddr, len);
1398 do_cleanups (ptid_cleanup);
1399}
1400
e2d96639
YQ
1401/* Restore the contents of the copy area for thread PTID. */
1402
1403static void
1404displaced_step_restore (struct displaced_step_inferior_state *displaced,
1405 ptid_t ptid)
1406{
1407 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1408
1409 write_memory_ptid (ptid, displaced->step_copy,
1410 displaced->step_saved_copy, len);
1411 if (debug_displaced)
1412 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1413 target_pid_to_str (ptid),
1414 paddress (displaced->step_gdbarch,
1415 displaced->step_copy));
1416}
1417
237fc4c9
PA
1418static void
1419displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
1420{
1421 struct cleanup *old_cleanups;
fc1cf338
PA
1422 struct displaced_step_inferior_state *displaced
1423 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1424
1425 /* Was any thread of this process doing a displaced step? */
1426 if (displaced == NULL)
1427 return;
237fc4c9
PA
1428
1429 /* Was this event for the pid we displaced? */
fc1cf338
PA
1430 if (ptid_equal (displaced->step_ptid, null_ptid)
1431 || ! ptid_equal (displaced->step_ptid, event_ptid))
237fc4c9
PA
1432 return;
1433
fc1cf338 1434 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1435
e2d96639 1436 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9
PA
1437
1438 /* Did the instruction complete successfully? */
1439 if (signal == TARGET_SIGNAL_TRAP)
1440 {
1441 /* Fix up the resulting state. */
fc1cf338
PA
1442 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1443 displaced->step_closure,
1444 displaced->step_original,
1445 displaced->step_copy,
1446 get_thread_regcache (displaced->step_ptid));
237fc4c9
PA
1447 }
1448 else
1449 {
1450 /* Since the instruction didn't complete, all we can do is
1451 relocate the PC. */
515630c5
UW
1452 struct regcache *regcache = get_thread_regcache (event_ptid);
1453 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1454
fc1cf338 1455 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1456 regcache_write_pc (regcache, pc);
237fc4c9
PA
1457 }
1458
1459 do_cleanups (old_cleanups);
1460
fc1cf338 1461 displaced->step_ptid = null_ptid;
1c5cfe86 1462
237fc4c9 1463 /* Are there any pending displaced stepping requests? If so, run
fc1cf338
PA
1464 one now. Leave the state object around, since we're likely to
1465 need it again soon. */
1466 while (displaced->step_request_queue)
237fc4c9
PA
1467 {
1468 struct displaced_step_request *head;
1469 ptid_t ptid;
5af949e3 1470 struct regcache *regcache;
929dfd4f 1471 struct gdbarch *gdbarch;
1c5cfe86 1472 CORE_ADDR actual_pc;
6c95b8df 1473 struct address_space *aspace;
237fc4c9 1474
fc1cf338 1475 head = displaced->step_request_queue;
237fc4c9 1476 ptid = head->ptid;
fc1cf338 1477 displaced->step_request_queue = head->next;
237fc4c9
PA
1478 xfree (head);
1479
ad53cd71
PA
1480 context_switch (ptid);
1481
5af949e3
UW
1482 regcache = get_thread_regcache (ptid);
1483 actual_pc = regcache_read_pc (regcache);
6c95b8df 1484 aspace = get_regcache_aspace (regcache);
1c5cfe86 1485
6c95b8df 1486 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1487 {
1c5cfe86
PA
1488 if (debug_displaced)
1489 fprintf_unfiltered (gdb_stdlog,
1490 "displaced: stepping queued %s now\n",
1491 target_pid_to_str (ptid));
1492
1493 displaced_step_prepare (ptid);
1494
929dfd4f
JB
1495 gdbarch = get_regcache_arch (regcache);
1496
1c5cfe86
PA
1497 if (debug_displaced)
1498 {
929dfd4f 1499 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1500 gdb_byte buf[4];
1501
5af949e3
UW
1502 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1503 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1504 read_memory (actual_pc, buf, sizeof (buf));
1505 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1506 }
1507
fc1cf338
PA
1508 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1509 displaced->step_closure))
929dfd4f 1510 target_resume (ptid, 1, TARGET_SIGNAL_0);
99e40580
UW
1511 else
1512 target_resume (ptid, 0, TARGET_SIGNAL_0);
1c5cfe86
PA
1513
1514 /* Done, we're stepping a thread. */
1515 break;
ad53cd71 1516 }
1c5cfe86
PA
1517 else
1518 {
1519 int step;
1520 struct thread_info *tp = inferior_thread ();
1521
1522 /* The breakpoint we were sitting under has since been
1523 removed. */
16c381f0 1524 tp->control.trap_expected = 0;
1c5cfe86
PA
1525
1526 /* Go back to what we were trying to do. */
1527 step = currently_stepping (tp);
ad53cd71 1528
1c5cfe86 1529 if (debug_displaced)
3e43a32a
MS
1530 fprintf_unfiltered (gdb_stdlog,
1531 "breakpoint is gone %s: step(%d)\n",
1c5cfe86
PA
1532 target_pid_to_str (tp->ptid), step);
1533
1534 target_resume (ptid, step, TARGET_SIGNAL_0);
16c381f0 1535 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1c5cfe86
PA
1536
1537 /* This request was discarded. See if there's any other
1538 thread waiting for its turn. */
1539 }
237fc4c9
PA
1540 }
1541}
1542
5231c1fd
PA
1543/* Update global variables holding ptids to hold NEW_PTID if they were
1544 holding OLD_PTID. */
1545static void
1546infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1547{
1548 struct displaced_step_request *it;
fc1cf338 1549 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
1550
1551 if (ptid_equal (inferior_ptid, old_ptid))
1552 inferior_ptid = new_ptid;
1553
1554 if (ptid_equal (singlestep_ptid, old_ptid))
1555 singlestep_ptid = new_ptid;
1556
5231c1fd
PA
1557 if (ptid_equal (deferred_step_ptid, old_ptid))
1558 deferred_step_ptid = new_ptid;
1559
fc1cf338
PA
1560 for (displaced = displaced_step_inferior_states;
1561 displaced;
1562 displaced = displaced->next)
1563 {
1564 if (ptid_equal (displaced->step_ptid, old_ptid))
1565 displaced->step_ptid = new_ptid;
1566
1567 for (it = displaced->step_request_queue; it; it = it->next)
1568 if (ptid_equal (it->ptid, old_ptid))
1569 it->ptid = new_ptid;
1570 }
5231c1fd
PA
1571}
1572
237fc4c9
PA
1573\f
1574/* Resuming. */
c906108c
SS
1575
1576/* Things to clean up if we QUIT out of resume (). */
c906108c 1577static void
74b7792f 1578resume_cleanups (void *ignore)
c906108c
SS
1579{
1580 normal_stop ();
1581}
1582
53904c9e
AC
1583static const char schedlock_off[] = "off";
1584static const char schedlock_on[] = "on";
1585static const char schedlock_step[] = "step";
40478521 1586static const char *const scheduler_enums[] = {
ef346e04
AC
1587 schedlock_off,
1588 schedlock_on,
1589 schedlock_step,
1590 NULL
1591};
920d2a44
AC
1592static const char *scheduler_mode = schedlock_off;
1593static void
1594show_scheduler_mode (struct ui_file *file, int from_tty,
1595 struct cmd_list_element *c, const char *value)
1596{
3e43a32a
MS
1597 fprintf_filtered (file,
1598 _("Mode for locking scheduler "
1599 "during execution is \"%s\".\n"),
920d2a44
AC
1600 value);
1601}
c906108c
SS
1602
1603static void
96baa820 1604set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1605{
eefe576e
AC
1606 if (!target_can_lock_scheduler)
1607 {
1608 scheduler_mode = schedlock_off;
1609 error (_("Target '%s' cannot support this command."), target_shortname);
1610 }
c906108c
SS
1611}
1612
d4db2f36
PA
1613/* True if execution commands resume all threads of all processes by
1614 default; otherwise, resume only threads of the current inferior
1615 process. */
1616int sched_multi = 0;
1617
2facfe5c
DD
1618/* Try to setup for software single stepping over the specified location.
1619 Return 1 if target_resume() should use hardware single step.
1620
1621 GDBARCH the current gdbarch.
1622 PC the location to step over. */
1623
1624static int
1625maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1626{
1627 int hw_step = 1;
1628
f02253f1
HZ
1629 if (execution_direction == EXEC_FORWARD
1630 && gdbarch_software_single_step_p (gdbarch)
99e40580 1631 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 1632 {
99e40580
UW
1633 hw_step = 0;
1634 /* Do not pull these breakpoints until after a `wait' in
1777feb0 1635 `wait_for_inferior'. */
99e40580
UW
1636 singlestep_breakpoints_inserted_p = 1;
1637 singlestep_ptid = inferior_ptid;
1638 singlestep_pc = pc;
2facfe5c
DD
1639 }
1640 return hw_step;
1641}
c906108c 1642
09cee04b
PA
1643/* Return a ptid representing the set of threads that we will proceed,
1644 in the perspective of the user/frontend. We may actually resume
1645 fewer threads at first, e.g., if a thread is stopped at a
b136cd05
PA
1646 breakpoint that needs stepping-off, but that should not be visible
1647 to the user/frontend, and neither should the frontend/user be
1648 allowed to proceed any of the threads that happen to be stopped for
09cee04b
PA
1649 internal run control handling, if a previous command wanted them
1650 resumed. */
1651
1652ptid_t
1653user_visible_resume_ptid (int step)
1654{
1655 /* By default, resume all threads of all processes. */
1656 ptid_t resume_ptid = RESUME_ALL;
1657
1658 /* Maybe resume only all threads of the current process. */
1659 if (!sched_multi && target_supports_multi_process ())
1660 {
1661 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1662 }
1663
1664 /* Maybe resume a single thread after all. */
1665 if (non_stop)
1666 {
1667 /* With non-stop mode on, threads are always handled
1668 individually. */
1669 resume_ptid = inferior_ptid;
1670 }
1671 else if ((scheduler_mode == schedlock_on)
1672 || (scheduler_mode == schedlock_step
1673 && (step || singlestep_breakpoints_inserted_p)))
1674 {
1675 /* User-settable 'scheduler' mode requires solo thread resume. */
1676 resume_ptid = inferior_ptid;
1677 }
1678
1679 return resume_ptid;
1680}
1681
c906108c
SS
1682/* Resume the inferior, but allow a QUIT. This is useful if the user
1683 wants to interrupt some lengthy single-stepping operation
1684 (for child processes, the SIGINT goes to the inferior, and so
1685 we get a SIGINT random_signal, but for remote debugging and perhaps
1686 other targets, that's not true).
1687
1688 STEP nonzero if we should step (zero to continue instead).
1689 SIG is the signal to give the inferior (zero for none). */
1690void
96baa820 1691resume (int step, enum target_signal sig)
c906108c
SS
1692{
1693 int should_resume = 1;
74b7792f 1694 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1695 struct regcache *regcache = get_current_regcache ();
1696 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1697 struct thread_info *tp = inferior_thread ();
515630c5 1698 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 1699 struct address_space *aspace = get_regcache_aspace (regcache);
c7e8a53c 1700
c906108c
SS
1701 QUIT;
1702
74609e71
YQ
1703 if (current_inferior ()->waiting_for_vfork_done)
1704 {
48f9886d
PA
1705 /* Don't try to single-step a vfork parent that is waiting for
1706 the child to get out of the shared memory region (by exec'ing
1707 or exiting). This is particularly important on software
1708 single-step archs, as the child process would trip on the
1709 software single step breakpoint inserted for the parent
1710 process. Since the parent will not actually execute any
1711 instruction until the child is out of the shared region (such
1712 are vfork's semantics), it is safe to simply continue it.
1713 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1714 the parent, and tell it to `keep_going', which automatically
1715 re-sets it stepping. */
74609e71
YQ
1716 if (debug_infrun)
1717 fprintf_unfiltered (gdb_stdlog,
1718 "infrun: resume : clear step\n");
1719 step = 0;
1720 }
1721
527159b7 1722 if (debug_infrun)
237fc4c9
PA
1723 fprintf_unfiltered (gdb_stdlog,
1724 "infrun: resume (step=%d, signal=%d), "
0d9a9a5f
PA
1725 "trap_expected=%d, current thread [%s] at %s\n",
1726 step, sig, tp->control.trap_expected,
1727 target_pid_to_str (inferior_ptid),
1728 paddress (gdbarch, pc));
c906108c 1729
c2c6d25f
JM
1730 /* Normally, by the time we reach `resume', the breakpoints are either
1731 removed or inserted, as appropriate. The exception is if we're sitting
1732 at a permanent breakpoint; we need to step over it, but permanent
1733 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 1734 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 1735 {
515630c5
UW
1736 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1737 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5 1738 else
ac74f770
MS
1739 error (_("\
1740The program is stopped at a permanent breakpoint, but GDB does not know\n\
1741how to step past a permanent breakpoint on this architecture. Try using\n\
1742a command like `return' or `jump' to continue execution."));
6d350bb5 1743 }
c2c6d25f 1744
237fc4c9
PA
1745 /* If enabled, step over breakpoints by executing a copy of the
1746 instruction at a different address.
1747
1748 We can't use displaced stepping when we have a signal to deliver;
1749 the comments for displaced_step_prepare explain why. The
1750 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
1751 signals' explain what we do instead.
1752
1753 We can't use displaced stepping when we are waiting for vfork_done
1754 event, displaced stepping breaks the vfork child similarly as single
1755 step software breakpoint. */
515630c5 1756 if (use_displaced_stepping (gdbarch)
16c381f0 1757 && (tp->control.trap_expected
929dfd4f 1758 || (step && gdbarch_software_single_step_p (gdbarch)))
74609e71
YQ
1759 && sig == TARGET_SIGNAL_0
1760 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 1761 {
fc1cf338
PA
1762 struct displaced_step_inferior_state *displaced;
1763
237fc4c9 1764 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1765 {
1766 /* Got placed in displaced stepping queue. Will be resumed
1767 later when all the currently queued displaced stepping
7f7efbd9
VP
1768 requests finish. The thread is not executing at this point,
1769 and the call to set_executing will be made later. But we
1770 need to call set_running here, since from frontend point of view,
1771 the thread is running. */
1772 set_running (inferior_ptid, 1);
d56b7306
VP
1773 discard_cleanups (old_cleanups);
1774 return;
1775 }
99e40580 1776
fc1cf338
PA
1777 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1778 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1779 displaced->step_closure);
237fc4c9
PA
1780 }
1781
2facfe5c 1782 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 1783 else if (step)
2facfe5c 1784 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1785
30852783
UW
1786 /* Currently, our software single-step implementation leads to different
1787 results than hardware single-stepping in one situation: when stepping
1788 into delivering a signal which has an associated signal handler,
1789 hardware single-step will stop at the first instruction of the handler,
1790 while software single-step will simply skip execution of the handler.
1791
1792 For now, this difference in behavior is accepted since there is no
1793 easy way to actually implement single-stepping into a signal handler
1794 without kernel support.
1795
1796 However, there is one scenario where this difference leads to follow-on
1797 problems: if we're stepping off a breakpoint by removing all breakpoints
1798 and then single-stepping. In this case, the software single-step
1799 behavior means that even if there is a *breakpoint* in the signal
1800 handler, GDB still would not stop.
1801
1802 Fortunately, we can at least fix this particular issue. We detect
1803 here the case where we are about to deliver a signal while software
1804 single-stepping with breakpoints removed. In this situation, we
1805 revert the decisions to remove all breakpoints and insert single-
1806 step breakpoints, and instead we install a step-resume breakpoint
1807 at the current address, deliver the signal without stepping, and
1808 once we arrive back at the step-resume breakpoint, actually step
1809 over the breakpoint we originally wanted to step over. */
1810 if (singlestep_breakpoints_inserted_p
1811 && tp->control.trap_expected && sig != TARGET_SIGNAL_0)
1812 {
1813 /* If we have nested signals or a pending signal is delivered
1814 immediately after a handler returns, might might already have
1815 a step-resume breakpoint set on the earlier handler. We cannot
1816 set another step-resume breakpoint; just continue on until the
1817 original breakpoint is hit. */
1818 if (tp->control.step_resume_breakpoint == NULL)
1819 {
2c03e5be 1820 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
1821 tp->step_after_step_resume_breakpoint = 1;
1822 }
1823
1824 remove_single_step_breakpoints ();
1825 singlestep_breakpoints_inserted_p = 0;
1826
1827 insert_breakpoints ();
1828 tp->control.trap_expected = 0;
1829 }
1830
c906108c
SS
1831 if (should_resume)
1832 {
39f77062 1833 ptid_t resume_ptid;
dfcd3bfb 1834
cd76b0b7
VP
1835 /* If STEP is set, it's a request to use hardware stepping
1836 facilities. But in that case, we should never
1837 use singlestep breakpoint. */
1838 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1839
d4db2f36
PA
1840 /* Decide the set of threads to ask the target to resume. Start
1841 by assuming everything will be resumed, than narrow the set
1842 by applying increasingly restricting conditions. */
09cee04b 1843 resume_ptid = user_visible_resume_ptid (step);
d4db2f36
PA
1844
1845 /* Maybe resume a single thread after all. */
cd76b0b7
VP
1846 if (singlestep_breakpoints_inserted_p
1847 && stepping_past_singlestep_breakpoint)
c906108c 1848 {
cd76b0b7
VP
1849 /* The situation here is as follows. In thread T1 we wanted to
1850 single-step. Lacking hardware single-stepping we've
1851 set breakpoint at the PC of the next instruction -- call it
1852 P. After resuming, we've hit that breakpoint in thread T2.
1853 Now we've removed original breakpoint, inserted breakpoint
1854 at P+1, and try to step to advance T2 past breakpoint.
1855 We need to step only T2, as if T1 is allowed to freely run,
1856 it can run past P, and if other threads are allowed to run,
1857 they can hit breakpoint at P+1, and nested hits of single-step
1858 breakpoints is not something we'd want -- that's complicated
1859 to support, and has no value. */
1860 resume_ptid = inferior_ptid;
1861 }
d4db2f36 1862 else if ((step || singlestep_breakpoints_inserted_p)
16c381f0 1863 && tp->control.trap_expected)
cd76b0b7 1864 {
74960c60
VP
1865 /* We're allowing a thread to run past a breakpoint it has
1866 hit, by single-stepping the thread with the breakpoint
1867 removed. In which case, we need to single-step only this
1868 thread, and keep others stopped, as they can miss this
1869 breakpoint if allowed to run.
1870
1871 The current code actually removes all breakpoints when
1872 doing this, not just the one being stepped over, so if we
1873 let other threads run, we can actually miss any
1874 breakpoint, not just the one at PC. */
ef5cf84e 1875 resume_ptid = inferior_ptid;
c906108c 1876 }
ef5cf84e 1877
515630c5 1878 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1879 {
1880 /* Most targets can step a breakpoint instruction, thus
1881 executing it normally. But if this one cannot, just
1882 continue and we will hit it anyway. */
6c95b8df 1883 if (step && breakpoint_inserted_here_p (aspace, pc))
c4ed33b9
AC
1884 step = 0;
1885 }
237fc4c9
PA
1886
1887 if (debug_displaced
515630c5 1888 && use_displaced_stepping (gdbarch)
16c381f0 1889 && tp->control.trap_expected)
237fc4c9 1890 {
515630c5 1891 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
5af949e3 1892 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
515630c5 1893 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1894 gdb_byte buf[4];
1895
5af949e3
UW
1896 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1897 paddress (resume_gdbarch, actual_pc));
237fc4c9
PA
1898 read_memory (actual_pc, buf, sizeof (buf));
1899 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1900 }
1901
e58b0e63
PA
1902 /* Install inferior's terminal modes. */
1903 target_terminal_inferior ();
1904
2020b7ab
PA
1905 /* Avoid confusing the next resume, if the next stop/resume
1906 happens to apply to another thread. */
16c381f0 1907 tp->suspend.stop_signal = TARGET_SIGNAL_0;
607cecd2 1908
2455069d
UW
1909 /* Advise target which signals may be handled silently. If we have
1910 removed breakpoints because we are stepping over one (which can
1911 happen only if we are not using displaced stepping), we need to
1912 receive all signals to avoid accidentally skipping a breakpoint
1913 during execution of a signal handler. */
1914 if ((step || singlestep_breakpoints_inserted_p)
1915 && tp->control.trap_expected
1916 && !use_displaced_stepping (gdbarch))
1917 target_pass_signals (0, NULL);
1918 else
1919 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
1920
607cecd2 1921 target_resume (resume_ptid, step, sig);
c906108c
SS
1922 }
1923
1924 discard_cleanups (old_cleanups);
1925}
1926\f
237fc4c9 1927/* Proceeding. */
c906108c
SS
1928
1929/* Clear out all variables saying what to do when inferior is continued.
1930 First do this, then set the ones you want, then call `proceed'. */
1931
a7212384
UW
1932static void
1933clear_proceed_status_thread (struct thread_info *tp)
c906108c 1934{
a7212384
UW
1935 if (debug_infrun)
1936 fprintf_unfiltered (gdb_stdlog,
1937 "infrun: clear_proceed_status_thread (%s)\n",
1938 target_pid_to_str (tp->ptid));
d6b48e9c 1939
16c381f0
JK
1940 tp->control.trap_expected = 0;
1941 tp->control.step_range_start = 0;
1942 tp->control.step_range_end = 0;
1943 tp->control.step_frame_id = null_frame_id;
1944 tp->control.step_stack_frame_id = null_frame_id;
1945 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
a7212384 1946 tp->stop_requested = 0;
4e1c45ea 1947
16c381f0 1948 tp->control.stop_step = 0;
32400beb 1949
16c381f0 1950 tp->control.proceed_to_finish = 0;
414c69f7 1951
a7212384 1952 /* Discard any remaining commands or status from previous stop. */
16c381f0 1953 bpstat_clear (&tp->control.stop_bpstat);
a7212384 1954}
32400beb 1955
a7212384
UW
1956static int
1957clear_proceed_status_callback (struct thread_info *tp, void *data)
1958{
1959 if (is_exited (tp->ptid))
1960 return 0;
d6b48e9c 1961
a7212384
UW
1962 clear_proceed_status_thread (tp);
1963 return 0;
1964}
1965
1966void
1967clear_proceed_status (void)
1968{
6c95b8df
PA
1969 if (!non_stop)
1970 {
1971 /* In all-stop mode, delete the per-thread status of all
1972 threads, even if inferior_ptid is null_ptid, there may be
1973 threads on the list. E.g., we may be launching a new
1974 process, while selecting the executable. */
1975 iterate_over_threads (clear_proceed_status_callback, NULL);
1976 }
1977
a7212384
UW
1978 if (!ptid_equal (inferior_ptid, null_ptid))
1979 {
1980 struct inferior *inferior;
1981
1982 if (non_stop)
1983 {
6c95b8df
PA
1984 /* If in non-stop mode, only delete the per-thread status of
1985 the current thread. */
a7212384
UW
1986 clear_proceed_status_thread (inferior_thread ());
1987 }
6c95b8df 1988
d6b48e9c 1989 inferior = current_inferior ();
16c381f0 1990 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
1991 }
1992
c906108c 1993 stop_after_trap = 0;
f3b1572e
PA
1994
1995 observer_notify_about_to_proceed ();
c906108c 1996
d5c31457
UW
1997 if (stop_registers)
1998 {
1999 regcache_xfree (stop_registers);
2000 stop_registers = NULL;
2001 }
c906108c
SS
2002}
2003
5a437975
DE
2004/* Check the current thread against the thread that reported the most recent
2005 event. If a step-over is required return TRUE and set the current thread
2006 to the old thread. Otherwise return FALSE.
2007
1777feb0 2008 This should be suitable for any targets that support threads. */
ea67f13b
DJ
2009
2010static int
6a6b96b9 2011prepare_to_proceed (int step)
ea67f13b
DJ
2012{
2013 ptid_t wait_ptid;
2014 struct target_waitstatus wait_status;
5a437975
DE
2015 int schedlock_enabled;
2016
2017 /* With non-stop mode on, threads are always handled individually. */
2018 gdb_assert (! non_stop);
ea67f13b
DJ
2019
2020 /* Get the last target status returned by target_wait(). */
2021 get_last_target_status (&wait_ptid, &wait_status);
2022
6a6b96b9 2023 /* Make sure we were stopped at a breakpoint. */
ea67f13b 2024 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2b009048
DJ
2025 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
2026 && wait_status.value.sig != TARGET_SIGNAL_ILL
2027 && wait_status.value.sig != TARGET_SIGNAL_SEGV
2028 && wait_status.value.sig != TARGET_SIGNAL_EMT))
ea67f13b
DJ
2029 {
2030 return 0;
2031 }
2032
5a437975
DE
2033 schedlock_enabled = (scheduler_mode == schedlock_on
2034 || (scheduler_mode == schedlock_step
2035 && step));
2036
d4db2f36
PA
2037 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2038 if (schedlock_enabled)
2039 return 0;
2040
2041 /* Don't switch over if we're about to resume some other process
2042 other than WAIT_PTID's, and schedule-multiple is off. */
2043 if (!sched_multi
2044 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2045 return 0;
2046
6a6b96b9 2047 /* Switched over from WAIT_PID. */
ea67f13b 2048 if (!ptid_equal (wait_ptid, minus_one_ptid)
d4db2f36 2049 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 2050 {
515630c5
UW
2051 struct regcache *regcache = get_thread_regcache (wait_ptid);
2052
6c95b8df
PA
2053 if (breakpoint_here_p (get_regcache_aspace (regcache),
2054 regcache_read_pc (regcache)))
ea67f13b 2055 {
515630c5
UW
2056 /* If stepping, remember current thread to switch back to. */
2057 if (step)
2058 deferred_step_ptid = inferior_ptid;
ea67f13b 2059
515630c5
UW
2060 /* Switch back to WAIT_PID thread. */
2061 switch_to_thread (wait_ptid);
6a6b96b9 2062
0d9a9a5f
PA
2063 if (debug_infrun)
2064 fprintf_unfiltered (gdb_stdlog,
2065 "infrun: prepare_to_proceed (step=%d), "
2066 "switched to [%s]\n",
2067 step, target_pid_to_str (inferior_ptid));
2068
515630c5
UW
2069 /* We return 1 to indicate that there is a breakpoint here,
2070 so we need to step over it before continuing to avoid
1777feb0 2071 hitting it straight away. */
515630c5
UW
2072 return 1;
2073 }
ea67f13b
DJ
2074 }
2075
2076 return 0;
ea67f13b 2077}
e4846b08 2078
c906108c
SS
2079/* Basic routine for continuing the program in various fashions.
2080
2081 ADDR is the address to resume at, or -1 for resume where stopped.
2082 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2083 or -1 for act according to how it stopped.
c906108c 2084 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2085 -1 means return after that and print nothing.
2086 You should probably set various step_... variables
2087 before calling here, if you are stepping.
c906108c
SS
2088
2089 You should call clear_proceed_status before calling proceed. */
2090
2091void
96baa820 2092proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c 2093{
e58b0e63
PA
2094 struct regcache *regcache;
2095 struct gdbarch *gdbarch;
4e1c45ea 2096 struct thread_info *tp;
e58b0e63 2097 CORE_ADDR pc;
6c95b8df 2098 struct address_space *aspace;
c906108c
SS
2099 int oneproc = 0;
2100
e58b0e63
PA
2101 /* If we're stopped at a fork/vfork, follow the branch set by the
2102 "set follow-fork-mode" command; otherwise, we'll just proceed
2103 resuming the current thread. */
2104 if (!follow_fork ())
2105 {
2106 /* The target for some reason decided not to resume. */
2107 normal_stop ();
f148b27e
PA
2108 if (target_can_async_p ())
2109 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2110 return;
2111 }
2112
842951eb
PA
2113 /* We'll update this if & when we switch to a new thread. */
2114 previous_inferior_ptid = inferior_ptid;
2115
e58b0e63
PA
2116 regcache = get_current_regcache ();
2117 gdbarch = get_regcache_arch (regcache);
6c95b8df 2118 aspace = get_regcache_aspace (regcache);
e58b0e63
PA
2119 pc = regcache_read_pc (regcache);
2120
c906108c 2121 if (step > 0)
515630c5 2122 step_start_function = find_pc_function (pc);
c906108c
SS
2123 if (step < 0)
2124 stop_after_trap = 1;
2125
2acceee2 2126 if (addr == (CORE_ADDR) -1)
c906108c 2127 {
6c95b8df 2128 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
b2175913 2129 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2130 /* There is a breakpoint at the address we will resume at,
2131 step one instruction before inserting breakpoints so that
2132 we do not stop right away (and report a second hit at this
b2175913
MS
2133 breakpoint).
2134
2135 Note, we don't do this in reverse, because we won't
2136 actually be executing the breakpoint insn anyway.
2137 We'll be (un-)executing the previous instruction. */
2138
c906108c 2139 oneproc = 1;
515630c5
UW
2140 else if (gdbarch_single_step_through_delay_p (gdbarch)
2141 && gdbarch_single_step_through_delay (gdbarch,
2142 get_current_frame ()))
3352ef37
AC
2143 /* We stepped onto an instruction that needs to be stepped
2144 again before re-inserting the breakpoint, do so. */
c906108c
SS
2145 oneproc = 1;
2146 }
2147 else
2148 {
515630c5 2149 regcache_write_pc (regcache, addr);
c906108c
SS
2150 }
2151
527159b7 2152 if (debug_infrun)
8a9de0e4 2153 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
2154 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2155 paddress (gdbarch, addr), siggnal, step);
527159b7 2156
94cc34af
PA
2157 if (non_stop)
2158 /* In non-stop, each thread is handled individually. The context
2159 must already be set to the right thread here. */
2160 ;
2161 else
2162 {
2163 /* In a multi-threaded task we may select another thread and
2164 then continue or step.
c906108c 2165
94cc34af
PA
2166 But if the old thread was stopped at a breakpoint, it will
2167 immediately cause another breakpoint stop without any
2168 execution (i.e. it will report a breakpoint hit incorrectly).
2169 So we must step over it first.
c906108c 2170
94cc34af
PA
2171 prepare_to_proceed checks the current thread against the
2172 thread that reported the most recent event. If a step-over
2173 is required it returns TRUE and sets the current thread to
1777feb0 2174 the old thread. */
94cc34af
PA
2175 if (prepare_to_proceed (step))
2176 oneproc = 1;
2177 }
c906108c 2178
4e1c45ea
PA
2179 /* prepare_to_proceed may change the current thread. */
2180 tp = inferior_thread ();
2181
30852783
UW
2182 if (oneproc)
2183 {
2184 tp->control.trap_expected = 1;
2185 /* If displaced stepping is enabled, we can step over the
2186 breakpoint without hitting it, so leave all breakpoints
2187 inserted. Otherwise we need to disable all breakpoints, step
2188 one instruction, and then re-add them when that step is
2189 finished. */
2190 if (!use_displaced_stepping (gdbarch))
2191 remove_breakpoints ();
2192 }
2193
2194 /* We can insert breakpoints if we're not trying to step over one,
2195 or if we are stepping over one but we're using displaced stepping
2196 to do so. */
2197 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2198 insert_breakpoints ();
2199
2020b7ab
PA
2200 if (!non_stop)
2201 {
2202 /* Pass the last stop signal to the thread we're resuming,
2203 irrespective of whether the current thread is the thread that
2204 got the last event or not. This was historically GDB's
2205 behaviour before keeping a stop_signal per thread. */
2206
2207 struct thread_info *last_thread;
2208 ptid_t last_ptid;
2209 struct target_waitstatus last_status;
2210
2211 get_last_target_status (&last_ptid, &last_status);
2212 if (!ptid_equal (inferior_ptid, last_ptid)
2213 && !ptid_equal (last_ptid, null_ptid)
2214 && !ptid_equal (last_ptid, minus_one_ptid))
2215 {
e09875d4 2216 last_thread = find_thread_ptid (last_ptid);
2020b7ab
PA
2217 if (last_thread)
2218 {
16c381f0
JK
2219 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2220 last_thread->suspend.stop_signal = TARGET_SIGNAL_0;
2020b7ab
PA
2221 }
2222 }
2223 }
2224
c906108c 2225 if (siggnal != TARGET_SIGNAL_DEFAULT)
16c381f0 2226 tp->suspend.stop_signal = siggnal;
c906108c
SS
2227 /* If this signal should not be seen by program,
2228 give it zero. Used for debugging signals. */
16c381f0
JK
2229 else if (!signal_program[tp->suspend.stop_signal])
2230 tp->suspend.stop_signal = TARGET_SIGNAL_0;
c906108c
SS
2231
2232 annotate_starting ();
2233
2234 /* Make sure that output from GDB appears before output from the
2235 inferior. */
2236 gdb_flush (gdb_stdout);
2237
e4846b08
JJ
2238 /* Refresh prev_pc value just prior to resuming. This used to be
2239 done in stop_stepping, however, setting prev_pc there did not handle
2240 scenarios such as inferior function calls or returning from
2241 a function via the return command. In those cases, the prev_pc
2242 value was not set properly for subsequent commands. The prev_pc value
2243 is used to initialize the starting line number in the ecs. With an
2244 invalid value, the gdb next command ends up stopping at the position
2245 represented by the next line table entry past our start position.
2246 On platforms that generate one line table entry per line, this
2247 is not a problem. However, on the ia64, the compiler generates
2248 extraneous line table entries that do not increase the line number.
2249 When we issue the gdb next command on the ia64 after an inferior call
2250 or a return command, we often end up a few instructions forward, still
2251 within the original line we started.
2252
d5cd6034
JB
2253 An attempt was made to refresh the prev_pc at the same time the
2254 execution_control_state is initialized (for instance, just before
2255 waiting for an inferior event). But this approach did not work
2256 because of platforms that use ptrace, where the pc register cannot
2257 be read unless the inferior is stopped. At that point, we are not
2258 guaranteed the inferior is stopped and so the regcache_read_pc() call
2259 can fail. Setting the prev_pc value here ensures the value is updated
2260 correctly when the inferior is stopped. */
4e1c45ea 2261 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 2262
59f0d5d9 2263 /* Fill in with reasonable starting values. */
4e1c45ea 2264 init_thread_stepping_state (tp);
59f0d5d9 2265
59f0d5d9
PA
2266 /* Reset to normal state. */
2267 init_infwait_state ();
2268
c906108c 2269 /* Resume inferior. */
16c381f0 2270 resume (oneproc || step || bpstat_should_step (), tp->suspend.stop_signal);
c906108c
SS
2271
2272 /* Wait for it to stop (if not standalone)
2273 and in any case decode why it stopped, and act accordingly. */
43ff13b4 2274 /* Do this only if we are not using the event loop, or if the target
1777feb0 2275 does not support asynchronous execution. */
362646f5 2276 if (!target_can_async_p ())
43ff13b4 2277 {
e4c8541f 2278 wait_for_inferior ();
43ff13b4
JM
2279 normal_stop ();
2280 }
c906108c 2281}
c906108c
SS
2282\f
2283
2284/* Start remote-debugging of a machine over a serial link. */
96baa820 2285
c906108c 2286void
8621d6a9 2287start_remote (int from_tty)
c906108c 2288{
d6b48e9c 2289 struct inferior *inferior;
d6b48e9c
PA
2290
2291 inferior = current_inferior ();
16c381f0 2292 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 2293
1777feb0 2294 /* Always go on waiting for the target, regardless of the mode. */
6426a772 2295 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 2296 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
2297 nothing is returned (instead of just blocking). Because of this,
2298 targets expecting an immediate response need to, internally, set
2299 things up so that the target_wait() is forced to eventually
1777feb0 2300 timeout. */
6426a772
JM
2301 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2302 differentiate to its caller what the state of the target is after
2303 the initial open has been performed. Here we're assuming that
2304 the target has stopped. It should be possible to eventually have
2305 target_open() return to the caller an indication that the target
2306 is currently running and GDB state should be set to the same as
1777feb0 2307 for an async run. */
e4c8541f 2308 wait_for_inferior ();
8621d6a9
DJ
2309
2310 /* Now that the inferior has stopped, do any bookkeeping like
2311 loading shared libraries. We want to do this before normal_stop,
2312 so that the displayed frame is up to date. */
2313 post_create_inferior (&current_target, from_tty);
2314
6426a772 2315 normal_stop ();
c906108c
SS
2316}
2317
2318/* Initialize static vars when a new inferior begins. */
2319
2320void
96baa820 2321init_wait_for_inferior (void)
c906108c
SS
2322{
2323 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 2324
c906108c
SS
2325 breakpoint_init_inferior (inf_starting);
2326
c906108c 2327 clear_proceed_status ();
9f976b41
DJ
2328
2329 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 2330 deferred_step_ptid = null_ptid;
ca005067
DJ
2331
2332 target_last_wait_ptid = minus_one_ptid;
237fc4c9 2333
842951eb 2334 previous_inferior_ptid = inferior_ptid;
0d1e5fa7
PA
2335 init_infwait_state ();
2336
edb3359d
DJ
2337 /* Discard any skipped inlined frames. */
2338 clear_inline_frame_state (minus_one_ptid);
c906108c 2339}
237fc4c9 2340
c906108c 2341\f
b83266a0
SS
2342/* This enum encodes possible reasons for doing a target_wait, so that
2343 wfi can call target_wait in one place. (Ultimately the call will be
2344 moved out of the infinite loop entirely.) */
2345
c5aa993b
JM
2346enum infwait_states
2347{
cd0fc7c3
SS
2348 infwait_normal_state,
2349 infwait_thread_hop_state,
d983da9c 2350 infwait_step_watch_state,
cd0fc7c3 2351 infwait_nonstep_watch_state
b83266a0
SS
2352};
2353
0d1e5fa7
PA
2354/* The PTID we'll do a target_wait on.*/
2355ptid_t waiton_ptid;
2356
2357/* Current inferior wait state. */
2358enum infwait_states infwait_state;
cd0fc7c3 2359
0d1e5fa7
PA
2360/* Data to be passed around while handling an event. This data is
2361 discarded between events. */
c5aa993b 2362struct execution_control_state
488f131b 2363{
0d1e5fa7 2364 ptid_t ptid;
4e1c45ea
PA
2365 /* The thread that got the event, if this was a thread event; NULL
2366 otherwise. */
2367 struct thread_info *event_thread;
2368
488f131b 2369 struct target_waitstatus ws;
488f131b 2370 int random_signal;
7e324e48 2371 int stop_func_filled_in;
488f131b
JB
2372 CORE_ADDR stop_func_start;
2373 CORE_ADDR stop_func_end;
2c02bd72 2374 const char *stop_func_name;
488f131b 2375 int new_thread_event;
488f131b
JB
2376 int wait_some_more;
2377};
2378
ec9499be 2379static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2380
568d6575
UW
2381static void handle_step_into_function (struct gdbarch *gdbarch,
2382 struct execution_control_state *ecs);
2383static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2384 struct execution_control_state *ecs);
186c406b
TT
2385static void check_exception_resume (struct execution_control_state *,
2386 struct frame_info *, struct symbol *);
611c83ae 2387
104c1213
JM
2388static void stop_stepping (struct execution_control_state *ecs);
2389static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2390static void keep_going (struct execution_control_state *ecs);
104c1213 2391
252fbfc8
PA
2392/* Callback for iterate over threads. If the thread is stopped, but
2393 the user/frontend doesn't know about that yet, go through
2394 normal_stop, as if the thread had just stopped now. ARG points at
2395 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2396 ptid_is_pid(PTID) is true, applies to all threads of the process
2397 pointed at by PTID. Otherwise, apply only to the thread pointed by
2398 PTID. */
2399
2400static int
2401infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2402{
2403 ptid_t ptid = * (ptid_t *) arg;
2404
2405 if ((ptid_equal (info->ptid, ptid)
2406 || ptid_equal (minus_one_ptid, ptid)
2407 || (ptid_is_pid (ptid)
2408 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2409 && is_running (info->ptid)
2410 && !is_executing (info->ptid))
2411 {
2412 struct cleanup *old_chain;
2413 struct execution_control_state ecss;
2414 struct execution_control_state *ecs = &ecss;
2415
2416 memset (ecs, 0, sizeof (*ecs));
2417
2418 old_chain = make_cleanup_restore_current_thread ();
2419
2420 switch_to_thread (info->ptid);
2421
2422 /* Go through handle_inferior_event/normal_stop, so we always
2423 have consistent output as if the stop event had been
2424 reported. */
2425 ecs->ptid = info->ptid;
e09875d4 2426 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8
PA
2427 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2428 ecs->ws.value.sig = TARGET_SIGNAL_0;
2429
2430 handle_inferior_event (ecs);
2431
2432 if (!ecs->wait_some_more)
2433 {
2434 struct thread_info *tp;
2435
2436 normal_stop ();
2437
fa4cd53f 2438 /* Finish off the continuations. */
252fbfc8 2439 tp = inferior_thread ();
fa4cd53f
PA
2440 do_all_intermediate_continuations_thread (tp, 1);
2441 do_all_continuations_thread (tp, 1);
252fbfc8
PA
2442 }
2443
2444 do_cleanups (old_chain);
2445 }
2446
2447 return 0;
2448}
2449
2450/* This function is attached as a "thread_stop_requested" observer.
2451 Cleanup local state that assumed the PTID was to be resumed, and
2452 report the stop to the frontend. */
2453
2c0b251b 2454static void
252fbfc8
PA
2455infrun_thread_stop_requested (ptid_t ptid)
2456{
fc1cf338 2457 struct displaced_step_inferior_state *displaced;
252fbfc8
PA
2458
2459 /* PTID was requested to stop. Remove it from the displaced
2460 stepping queue, so we don't try to resume it automatically. */
fc1cf338
PA
2461
2462 for (displaced = displaced_step_inferior_states;
2463 displaced;
2464 displaced = displaced->next)
252fbfc8 2465 {
fc1cf338 2466 struct displaced_step_request *it, **prev_next_p;
252fbfc8 2467
fc1cf338
PA
2468 it = displaced->step_request_queue;
2469 prev_next_p = &displaced->step_request_queue;
2470 while (it)
252fbfc8 2471 {
fc1cf338
PA
2472 if (ptid_match (it->ptid, ptid))
2473 {
2474 *prev_next_p = it->next;
2475 it->next = NULL;
2476 xfree (it);
2477 }
252fbfc8 2478 else
fc1cf338
PA
2479 {
2480 prev_next_p = &it->next;
2481 }
252fbfc8 2482
fc1cf338 2483 it = *prev_next_p;
252fbfc8 2484 }
252fbfc8
PA
2485 }
2486
2487 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2488}
2489
a07daef3
PA
2490static void
2491infrun_thread_thread_exit (struct thread_info *tp, int silent)
2492{
2493 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2494 nullify_last_target_wait_ptid ();
2495}
2496
4e1c45ea
PA
2497/* Callback for iterate_over_threads. */
2498
2499static int
2500delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2501{
2502 if (is_exited (info->ptid))
2503 return 0;
2504
2505 delete_step_resume_breakpoint (info);
186c406b 2506 delete_exception_resume_breakpoint (info);
4e1c45ea
PA
2507 return 0;
2508}
2509
2510/* In all-stop, delete the step resume breakpoint of any thread that
2511 had one. In non-stop, delete the step resume breakpoint of the
2512 thread that just stopped. */
2513
2514static void
2515delete_step_thread_step_resume_breakpoint (void)
2516{
2517 if (!target_has_execution
2518 || ptid_equal (inferior_ptid, null_ptid))
2519 /* If the inferior has exited, we have already deleted the step
2520 resume breakpoints out of GDB's lists. */
2521 return;
2522
2523 if (non_stop)
2524 {
2525 /* If in non-stop mode, only delete the step-resume or
2526 longjmp-resume breakpoint of the thread that just stopped
2527 stepping. */
2528 struct thread_info *tp = inferior_thread ();
abbb1732 2529
4e1c45ea 2530 delete_step_resume_breakpoint (tp);
186c406b 2531 delete_exception_resume_breakpoint (tp);
4e1c45ea
PA
2532 }
2533 else
2534 /* In all-stop mode, delete all step-resume and longjmp-resume
2535 breakpoints of any thread that had them. */
2536 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2537}
2538
1777feb0 2539/* A cleanup wrapper. */
4e1c45ea
PA
2540
2541static void
2542delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2543{
2544 delete_step_thread_step_resume_breakpoint ();
2545}
2546
223698f8
DE
2547/* Pretty print the results of target_wait, for debugging purposes. */
2548
2549static void
2550print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2551 const struct target_waitstatus *ws)
2552{
2553 char *status_string = target_waitstatus_to_string (ws);
2554 struct ui_file *tmp_stream = mem_fileopen ();
2555 char *text;
223698f8
DE
2556
2557 /* The text is split over several lines because it was getting too long.
2558 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2559 output as a unit; we want only one timestamp printed if debug_timestamp
2560 is set. */
2561
2562 fprintf_unfiltered (tmp_stream,
2563 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2564 if (PIDGET (waiton_ptid) != -1)
2565 fprintf_unfiltered (tmp_stream,
2566 " [%s]", target_pid_to_str (waiton_ptid));
2567 fprintf_unfiltered (tmp_stream, ", status) =\n");
2568 fprintf_unfiltered (tmp_stream,
2569 "infrun: %d [%s],\n",
2570 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2571 fprintf_unfiltered (tmp_stream,
2572 "infrun: %s\n",
2573 status_string);
2574
759ef836 2575 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
2576
2577 /* This uses %s in part to handle %'s in the text, but also to avoid
2578 a gcc error: the format attribute requires a string literal. */
2579 fprintf_unfiltered (gdb_stdlog, "%s", text);
2580
2581 xfree (status_string);
2582 xfree (text);
2583 ui_file_delete (tmp_stream);
2584}
2585
24291992
PA
2586/* Prepare and stabilize the inferior for detaching it. E.g.,
2587 detaching while a thread is displaced stepping is a recipe for
2588 crashing it, as nothing would readjust the PC out of the scratch
2589 pad. */
2590
2591void
2592prepare_for_detach (void)
2593{
2594 struct inferior *inf = current_inferior ();
2595 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2596 struct cleanup *old_chain_1;
2597 struct displaced_step_inferior_state *displaced;
2598
2599 displaced = get_displaced_stepping_state (inf->pid);
2600
2601 /* Is any thread of this process displaced stepping? If not,
2602 there's nothing else to do. */
2603 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2604 return;
2605
2606 if (debug_infrun)
2607 fprintf_unfiltered (gdb_stdlog,
2608 "displaced-stepping in-process while detaching");
2609
2610 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2611 inf->detaching = 1;
2612
2613 while (!ptid_equal (displaced->step_ptid, null_ptid))
2614 {
2615 struct cleanup *old_chain_2;
2616 struct execution_control_state ecss;
2617 struct execution_control_state *ecs;
2618
2619 ecs = &ecss;
2620 memset (ecs, 0, sizeof (*ecs));
2621
2622 overlay_cache_invalid = 1;
2623
24291992
PA
2624 if (deprecated_target_wait_hook)
2625 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2626 else
2627 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2628
2629 if (debug_infrun)
2630 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2631
2632 /* If an error happens while handling the event, propagate GDB's
2633 knowledge of the executing state to the frontend/user running
2634 state. */
3e43a32a
MS
2635 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2636 &minus_one_ptid);
24291992 2637
4d533103
PA
2638 /* In non-stop mode, each thread is handled individually.
2639 Switch early, so the global state is set correctly for this
2640 thread. */
2641 if (non_stop
2642 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2643 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2644 context_switch (ecs->ptid);
2645
24291992
PA
2646 /* Now figure out what to do with the result of the result. */
2647 handle_inferior_event (ecs);
2648
2649 /* No error, don't finish the state yet. */
2650 discard_cleanups (old_chain_2);
2651
2652 /* Breakpoints and watchpoints are not installed on the target
2653 at this point, and signals are passed directly to the
2654 inferior, so this must mean the process is gone. */
2655 if (!ecs->wait_some_more)
2656 {
2657 discard_cleanups (old_chain_1);
2658 error (_("Program exited while detaching"));
2659 }
2660 }
2661
2662 discard_cleanups (old_chain_1);
2663}
2664
cd0fc7c3 2665/* Wait for control to return from inferior to debugger.
ae123ec6 2666
cd0fc7c3
SS
2667 If inferior gets a signal, we may decide to start it up again
2668 instead of returning. That is why there is a loop in this function.
2669 When this function actually returns it means the inferior
2670 should be left stopped and GDB should read more commands. */
2671
2672void
e4c8541f 2673wait_for_inferior (void)
cd0fc7c3
SS
2674{
2675 struct cleanup *old_cleanups;
0d1e5fa7 2676 struct execution_control_state ecss;
cd0fc7c3 2677 struct execution_control_state *ecs;
c906108c 2678
527159b7 2679 if (debug_infrun)
ae123ec6 2680 fprintf_unfiltered
e4c8541f 2681 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 2682
4e1c45ea
PA
2683 old_cleanups =
2684 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 2685
cd0fc7c3 2686 ecs = &ecss;
0d1e5fa7
PA
2687 memset (ecs, 0, sizeof (*ecs));
2688
c906108c
SS
2689 while (1)
2690 {
29f49a6a
PA
2691 struct cleanup *old_chain;
2692
ec9499be 2693 overlay_cache_invalid = 1;
ec9499be 2694
9a4105ab 2695 if (deprecated_target_wait_hook)
47608cb1 2696 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 2697 else
47608cb1 2698 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 2699
f00150c9 2700 if (debug_infrun)
223698f8 2701 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2702
29f49a6a
PA
2703 /* If an error happens while handling the event, propagate GDB's
2704 knowledge of the executing state to the frontend/user running
2705 state. */
2706 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2707
cd0fc7c3
SS
2708 /* Now figure out what to do with the result of the result. */
2709 handle_inferior_event (ecs);
c906108c 2710
29f49a6a
PA
2711 /* No error, don't finish the state yet. */
2712 discard_cleanups (old_chain);
2713
cd0fc7c3
SS
2714 if (!ecs->wait_some_more)
2715 break;
2716 }
4e1c45ea 2717
cd0fc7c3
SS
2718 do_cleanups (old_cleanups);
2719}
c906108c 2720
1777feb0 2721/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 2722 event loop whenever a change of state is detected on the file
1777feb0
MS
2723 descriptor corresponding to the target. It can be called more than
2724 once to complete a single execution command. In such cases we need
2725 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
2726 that this function is called for a single execution command, then
2727 report to the user that the inferior has stopped, and do the
1777feb0 2728 necessary cleanups. */
43ff13b4
JM
2729
2730void
fba45db2 2731fetch_inferior_event (void *client_data)
43ff13b4 2732{
0d1e5fa7 2733 struct execution_control_state ecss;
a474d7c2 2734 struct execution_control_state *ecs = &ecss;
4f8d22e3 2735 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2736 struct cleanup *ts_old_chain;
4f8d22e3 2737 int was_sync = sync_execution;
0f641c01 2738 int cmd_done = 0;
43ff13b4 2739
0d1e5fa7
PA
2740 memset (ecs, 0, sizeof (*ecs));
2741
c5187ac6
PA
2742 /* We're handling a live event, so make sure we're doing live
2743 debugging. If we're looking at traceframes while the target is
2744 running, we're going to need to get back to that mode after
2745 handling the event. */
2746 if (non_stop)
2747 {
2748 make_cleanup_restore_current_traceframe ();
e6e4e701 2749 set_current_traceframe (-1);
c5187ac6
PA
2750 }
2751
4f8d22e3
PA
2752 if (non_stop)
2753 /* In non-stop mode, the user/frontend should not notice a thread
2754 switch due to internal events. Make sure we reverse to the
2755 user selected thread and frame after handling the event and
2756 running any breakpoint commands. */
2757 make_cleanup_restore_current_thread ();
2758
ec9499be 2759 overlay_cache_invalid = 1;
3dd5b83d 2760
32231432
PA
2761 make_cleanup_restore_integer (&execution_direction);
2762 execution_direction = target_execution_direction ();
2763
9a4105ab 2764 if (deprecated_target_wait_hook)
a474d7c2 2765 ecs->ptid =
47608cb1 2766 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2767 else
47608cb1 2768 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2769
f00150c9 2770 if (debug_infrun)
223698f8 2771 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2772
94cc34af
PA
2773 if (non_stop
2774 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
0e5bf2a8 2775 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
94cc34af
PA
2776 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2777 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2778 /* In non-stop mode, each thread is handled individually. Switch
2779 early, so the global state is set correctly for this
2780 thread. */
2781 context_switch (ecs->ptid);
2782
29f49a6a
PA
2783 /* If an error happens while handling the event, propagate GDB's
2784 knowledge of the executing state to the frontend/user running
2785 state. */
2786 if (!non_stop)
2787 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2788 else
2789 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2790
353d1d73
JK
2791 /* Get executed before make_cleanup_restore_current_thread above to apply
2792 still for the thread which has thrown the exception. */
2793 make_bpstat_clear_actions_cleanup ();
2794
43ff13b4 2795 /* Now figure out what to do with the result of the result. */
a474d7c2 2796 handle_inferior_event (ecs);
43ff13b4 2797
a474d7c2 2798 if (!ecs->wait_some_more)
43ff13b4 2799 {
d6b48e9c
PA
2800 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2801
4e1c45ea 2802 delete_step_thread_step_resume_breakpoint ();
f107f563 2803
d6b48e9c 2804 /* We may not find an inferior if this was a process exit. */
16c381f0 2805 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2806 normal_stop ();
2807
af679fd0 2808 if (target_has_execution
0e5bf2a8 2809 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
af679fd0
PA
2810 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2811 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2812 && ecs->event_thread->step_multi
16c381f0 2813 && ecs->event_thread->control.stop_step)
c2d11a7d
JM
2814 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2815 else
0f641c01
PA
2816 {
2817 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2818 cmd_done = 1;
2819 }
43ff13b4 2820 }
4f8d22e3 2821
29f49a6a
PA
2822 /* No error, don't finish the thread states yet. */
2823 discard_cleanups (ts_old_chain);
2824
4f8d22e3
PA
2825 /* Revert thread and frame. */
2826 do_cleanups (old_chain);
2827
2828 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
2829 restore the prompt (a synchronous execution command has finished,
2830 and we're ready for input). */
b4a14fd0 2831 if (interpreter_async && was_sync && !sync_execution)
4f8d22e3 2832 display_gdb_prompt (0);
0f641c01
PA
2833
2834 if (cmd_done
2835 && !was_sync
2836 && exec_done_display_p
2837 && (ptid_equal (inferior_ptid, null_ptid)
2838 || !is_running (inferior_ptid)))
2839 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
2840}
2841
edb3359d
DJ
2842/* Record the frame and location we're currently stepping through. */
2843void
2844set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2845{
2846 struct thread_info *tp = inferior_thread ();
2847
16c381f0
JK
2848 tp->control.step_frame_id = get_frame_id (frame);
2849 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
2850
2851 tp->current_symtab = sal.symtab;
2852 tp->current_line = sal.line;
2853}
2854
0d1e5fa7
PA
2855/* Clear context switchable stepping state. */
2856
2857void
4e1c45ea 2858init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7
PA
2859{
2860 tss->stepping_over_breakpoint = 0;
2861 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
2862}
2863
e02bc4cc 2864/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2865 target_wait()/deprecated_target_wait_hook(). The data is actually
2866 cached by handle_inferior_event(), which gets called immediately
2867 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2868
2869void
488f131b 2870get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2871{
39f77062 2872 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2873 *status = target_last_waitstatus;
2874}
2875
ac264b3b
MS
2876void
2877nullify_last_target_wait_ptid (void)
2878{
2879 target_last_wait_ptid = minus_one_ptid;
2880}
2881
dcf4fbde 2882/* Switch thread contexts. */
dd80620e
MS
2883
2884static void
0d1e5fa7 2885context_switch (ptid_t ptid)
dd80620e 2886{
4b51d87b 2887 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
2888 {
2889 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2890 target_pid_to_str (inferior_ptid));
2891 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2892 target_pid_to_str (ptid));
fd48f117
DJ
2893 }
2894
0d1e5fa7 2895 switch_to_thread (ptid);
dd80620e
MS
2896}
2897
4fa8626c
DJ
2898static void
2899adjust_pc_after_break (struct execution_control_state *ecs)
2900{
24a73cce
UW
2901 struct regcache *regcache;
2902 struct gdbarch *gdbarch;
6c95b8df 2903 struct address_space *aspace;
8aad930b 2904 CORE_ADDR breakpoint_pc;
4fa8626c 2905
4fa8626c
DJ
2906 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2907 we aren't, just return.
9709f61c
DJ
2908
2909 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2910 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2911 implemented by software breakpoints should be handled through the normal
2912 breakpoint layer.
8fb3e588 2913
4fa8626c
DJ
2914 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2915 different signals (SIGILL or SIGEMT for instance), but it is less
2916 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2917 gdbarch_decr_pc_after_break. I don't know any specific target that
2918 generates these signals at breakpoints (the code has been in GDB since at
2919 least 1992) so I can not guess how to handle them here.
8fb3e588 2920
e6cf7916
UW
2921 In earlier versions of GDB, a target with
2922 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2923 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2924 target with both of these set in GDB history, and it seems unlikely to be
2925 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2926
2927 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2928 return;
2929
2930 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2931 return;
2932
4058b839
PA
2933 /* In reverse execution, when a breakpoint is hit, the instruction
2934 under it has already been de-executed. The reported PC always
2935 points at the breakpoint address, so adjusting it further would
2936 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2937 architecture:
2938
2939 B1 0x08000000 : INSN1
2940 B2 0x08000001 : INSN2
2941 0x08000002 : INSN3
2942 PC -> 0x08000003 : INSN4
2943
2944 Say you're stopped at 0x08000003 as above. Reverse continuing
2945 from that point should hit B2 as below. Reading the PC when the
2946 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2947 been de-executed already.
2948
2949 B1 0x08000000 : INSN1
2950 B2 PC -> 0x08000001 : INSN2
2951 0x08000002 : INSN3
2952 0x08000003 : INSN4
2953
2954 We can't apply the same logic as for forward execution, because
2955 we would wrongly adjust the PC to 0x08000000, since there's a
2956 breakpoint at PC - 1. We'd then report a hit on B1, although
2957 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2958 behaviour. */
2959 if (execution_direction == EXEC_REVERSE)
2960 return;
2961
24a73cce
UW
2962 /* If this target does not decrement the PC after breakpoints, then
2963 we have nothing to do. */
2964 regcache = get_thread_regcache (ecs->ptid);
2965 gdbarch = get_regcache_arch (regcache);
2966 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2967 return;
2968
6c95b8df
PA
2969 aspace = get_regcache_aspace (regcache);
2970
8aad930b
AC
2971 /* Find the location where (if we've hit a breakpoint) the
2972 breakpoint would be. */
515630c5
UW
2973 breakpoint_pc = regcache_read_pc (regcache)
2974 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 2975
1c5cfe86
PA
2976 /* Check whether there actually is a software breakpoint inserted at
2977 that location.
2978
2979 If in non-stop mode, a race condition is possible where we've
2980 removed a breakpoint, but stop events for that breakpoint were
2981 already queued and arrive later. To suppress those spurious
2982 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2983 and retire them after a number of stop events are reported. */
6c95b8df
PA
2984 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2985 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 2986 {
96429cc8 2987 struct cleanup *old_cleanups = NULL;
abbb1732 2988
96429cc8
HZ
2989 if (RECORD_IS_USED)
2990 old_cleanups = record_gdb_operation_disable_set ();
2991
1c0fdd0e
UW
2992 /* When using hardware single-step, a SIGTRAP is reported for both
2993 a completed single-step and a software breakpoint. Need to
2994 differentiate between the two, as the latter needs adjusting
2995 but the former does not.
2996
2997 The SIGTRAP can be due to a completed hardware single-step only if
2998 - we didn't insert software single-step breakpoints
2999 - the thread to be examined is still the current thread
3000 - this thread is currently being stepped
3001
3002 If any of these events did not occur, we must have stopped due
3003 to hitting a software breakpoint, and have to back up to the
3004 breakpoint address.
3005
3006 As a special case, we could have hardware single-stepped a
3007 software breakpoint. In this case (prev_pc == breakpoint_pc),
3008 we also need to back up to the breakpoint address. */
3009
3010 if (singlestep_breakpoints_inserted_p
3011 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
3012 || !currently_stepping (ecs->event_thread)
3013 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 3014 regcache_write_pc (regcache, breakpoint_pc);
96429cc8
HZ
3015
3016 if (RECORD_IS_USED)
3017 do_cleanups (old_cleanups);
8aad930b 3018 }
4fa8626c
DJ
3019}
3020
0d1e5fa7
PA
3021void
3022init_infwait_state (void)
3023{
3024 waiton_ptid = pid_to_ptid (-1);
3025 infwait_state = infwait_normal_state;
3026}
3027
94cc34af
PA
3028void
3029error_is_running (void)
3030{
3e43a32a
MS
3031 error (_("Cannot execute this command while "
3032 "the selected thread is running."));
94cc34af
PA
3033}
3034
3035void
3036ensure_not_running (void)
3037{
3038 if (is_running (inferior_ptid))
3039 error_is_running ();
3040}
3041
edb3359d
DJ
3042static int
3043stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3044{
3045 for (frame = get_prev_frame (frame);
3046 frame != NULL;
3047 frame = get_prev_frame (frame))
3048 {
3049 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3050 return 1;
3051 if (get_frame_type (frame) != INLINE_FRAME)
3052 break;
3053 }
3054
3055 return 0;
3056}
3057
a96d9b2e
SDJ
3058/* Auxiliary function that handles syscall entry/return events.
3059 It returns 1 if the inferior should keep going (and GDB
3060 should ignore the event), or 0 if the event deserves to be
3061 processed. */
ca2163eb 3062
a96d9b2e 3063static int
ca2163eb 3064handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 3065{
ca2163eb
PA
3066 struct regcache *regcache;
3067 struct gdbarch *gdbarch;
3068 int syscall_number;
3069
3070 if (!ptid_equal (ecs->ptid, inferior_ptid))
3071 context_switch (ecs->ptid);
3072
3073 regcache = get_thread_regcache (ecs->ptid);
3074 gdbarch = get_regcache_arch (regcache);
f90263c1 3075 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
3076 stop_pc = regcache_read_pc (regcache);
3077
a96d9b2e
SDJ
3078 if (catch_syscall_enabled () > 0
3079 && catching_syscall_number (syscall_number) > 0)
3080 {
3081 if (debug_infrun)
3082 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3083 syscall_number);
a96d9b2e 3084
16c381f0 3085 ecs->event_thread->control.stop_bpstat
6c95b8df 3086 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 3087 stop_pc, ecs->ptid, &ecs->ws);
16c381f0
JK
3088 ecs->random_signal
3089 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
a96d9b2e 3090
ca2163eb
PA
3091 if (!ecs->random_signal)
3092 {
3093 /* Catchpoint hit. */
16c381f0 3094 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
ca2163eb
PA
3095 return 0;
3096 }
a96d9b2e 3097 }
ca2163eb
PA
3098
3099 /* If no catchpoint triggered for this, then keep going. */
16c381f0 3100 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
ca2163eb
PA
3101 keep_going (ecs);
3102 return 1;
a96d9b2e
SDJ
3103}
3104
7e324e48
GB
3105/* Clear the supplied execution_control_state's stop_func_* fields. */
3106
3107static void
3108clear_stop_func (struct execution_control_state *ecs)
3109{
3110 ecs->stop_func_filled_in = 0;
3111 ecs->stop_func_start = 0;
3112 ecs->stop_func_end = 0;
3113 ecs->stop_func_name = NULL;
3114}
3115
3116/* Lazily fill in the execution_control_state's stop_func_* fields. */
3117
3118static void
3119fill_in_stop_func (struct gdbarch *gdbarch,
3120 struct execution_control_state *ecs)
3121{
3122 if (!ecs->stop_func_filled_in)
3123 {
3124 /* Don't care about return value; stop_func_start and stop_func_name
3125 will both be 0 if it doesn't work. */
3126 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3127 &ecs->stop_func_start, &ecs->stop_func_end);
3128 ecs->stop_func_start
3129 += gdbarch_deprecated_function_start_offset (gdbarch);
3130
3131 ecs->stop_func_filled_in = 1;
3132 }
3133}
3134
cd0fc7c3
SS
3135/* Given an execution control state that has been freshly filled in
3136 by an event from the inferior, figure out what it means and take
3137 appropriate action. */
c906108c 3138
ec9499be 3139static void
96baa820 3140handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 3141{
568d6575
UW
3142 struct frame_info *frame;
3143 struct gdbarch *gdbarch;
d983da9c
DJ
3144 int stopped_by_watchpoint;
3145 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 3146 struct symtab_and_line stop_pc_sal;
d6b48e9c
PA
3147 enum stop_kind stop_soon;
3148
28736962
PA
3149 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3150 {
3151 /* We had an event in the inferior, but we are not interested in
3152 handling it at this level. The lower layers have already
3153 done what needs to be done, if anything.
3154
3155 One of the possible circumstances for this is when the
3156 inferior produces output for the console. The inferior has
3157 not stopped, and we are ignoring the event. Another possible
3158 circumstance is any event which the lower level knows will be
3159 reported multiple times without an intervening resume. */
3160 if (debug_infrun)
3161 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3162 prepare_to_wait (ecs);
3163 return;
3164 }
3165
0e5bf2a8
PA
3166 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3167 && target_can_async_p () && !sync_execution)
3168 {
3169 /* There were no unwaited-for children left in the target, but,
3170 we're not synchronously waiting for events either. Just
3171 ignore. Otherwise, if we were running a synchronous
3172 execution command, we need to cancel it and give the user
3173 back the terminal. */
3174 if (debug_infrun)
3175 fprintf_unfiltered (gdb_stdlog,
3176 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3177 prepare_to_wait (ecs);
3178 return;
3179 }
3180
d6b48e9c 3181 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
0e5bf2a8
PA
3182 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3183 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
d6b48e9c
PA
3184 {
3185 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
abbb1732 3186
d6b48e9c 3187 gdb_assert (inf);
16c381f0 3188 stop_soon = inf->control.stop_soon;
d6b48e9c
PA
3189 }
3190 else
3191 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 3192
1777feb0 3193 /* Cache the last pid/waitstatus. */
39f77062 3194 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 3195 target_last_waitstatus = ecs->ws;
e02bc4cc 3196
ca005067 3197 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 3198 stop_stack_dummy = STOP_NONE;
ca005067 3199
0e5bf2a8
PA
3200 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3201 {
3202 /* No unwaited-for children left. IOW, all resumed children
3203 have exited. */
3204 if (debug_infrun)
3205 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3206
3207 stop_print_frame = 0;
3208 stop_stepping (ecs);
3209 return;
3210 }
3211
1777feb0 3212 /* If it's a new process, add it to the thread database. */
8c90c137
LM
3213
3214 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
3215 && !ptid_equal (ecs->ptid, minus_one_ptid)
3216 && !in_thread_list (ecs->ptid));
3217
3218 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3219 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
3220 add_thread (ecs->ptid);
3221
e09875d4 3222 ecs->event_thread = find_thread_ptid (ecs->ptid);
88ed393a
JK
3223
3224 /* Dependent on valid ECS->EVENT_THREAD. */
3225 adjust_pc_after_break (ecs);
3226
3227 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3228 reinit_frame_cache ();
3229
28736962
PA
3230 breakpoint_retire_moribund ();
3231
2b009048
DJ
3232 /* First, distinguish signals caused by the debugger from signals
3233 that have to do with the program's own actions. Note that
3234 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3235 on the operating system version. Here we detect when a SIGILL or
3236 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3237 something similar for SIGSEGV, since a SIGSEGV will be generated
3238 when we're trying to execute a breakpoint instruction on a
3239 non-executable stack. This happens for call dummy breakpoints
3240 for architectures like SPARC that place call dummies on the
3241 stack. */
2b009048
DJ
3242 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3243 && (ecs->ws.value.sig == TARGET_SIGNAL_ILL
3244 || ecs->ws.value.sig == TARGET_SIGNAL_SEGV
de0a0249 3245 || ecs->ws.value.sig == TARGET_SIGNAL_EMT))
2b009048 3246 {
de0a0249
UW
3247 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3248
3249 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3250 regcache_read_pc (regcache)))
3251 {
3252 if (debug_infrun)
3253 fprintf_unfiltered (gdb_stdlog,
3254 "infrun: Treating signal as SIGTRAP\n");
3255 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
3256 }
2b009048
DJ
3257 }
3258
28736962
PA
3259 /* Mark the non-executing threads accordingly. In all-stop, all
3260 threads of all processes are stopped when we get any event
3261 reported. In non-stop mode, only the event thread stops. If
3262 we're handling a process exit in non-stop mode, there's nothing
3263 to do, as threads of the dead process are gone, and threads of
3264 any other process were left running. */
3265 if (!non_stop)
3266 set_executing (minus_one_ptid, 0);
3267 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3268 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
7aee8dc2 3269 set_executing (ecs->ptid, 0);
8c90c137 3270
0d1e5fa7 3271 switch (infwait_state)
488f131b
JB
3272 {
3273 case infwait_thread_hop_state:
527159b7 3274 if (debug_infrun)
8a9de0e4 3275 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
65e82032 3276 break;
b83266a0 3277
488f131b 3278 case infwait_normal_state:
527159b7 3279 if (debug_infrun)
8a9de0e4 3280 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
3281 break;
3282
3283 case infwait_step_watch_state:
3284 if (debug_infrun)
3285 fprintf_unfiltered (gdb_stdlog,
3286 "infrun: infwait_step_watch_state\n");
3287
3288 stepped_after_stopped_by_watchpoint = 1;
488f131b 3289 break;
b83266a0 3290
488f131b 3291 case infwait_nonstep_watch_state:
527159b7 3292 if (debug_infrun)
8a9de0e4
AC
3293 fprintf_unfiltered (gdb_stdlog,
3294 "infrun: infwait_nonstep_watch_state\n");
488f131b 3295 insert_breakpoints ();
c906108c 3296
488f131b
JB
3297 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3298 handle things like signals arriving and other things happening
3299 in combination correctly? */
3300 stepped_after_stopped_by_watchpoint = 1;
3301 break;
65e82032
AC
3302
3303 default:
e2e0b3e5 3304 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 3305 }
ec9499be 3306
0d1e5fa7 3307 infwait_state = infwait_normal_state;
ec9499be 3308 waiton_ptid = pid_to_ptid (-1);
c906108c 3309
488f131b
JB
3310 switch (ecs->ws.kind)
3311 {
3312 case TARGET_WAITKIND_LOADED:
527159b7 3313 if (debug_infrun)
8a9de0e4 3314 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
3315 /* Ignore gracefully during startup of the inferior, as it might
3316 be the shell which has just loaded some objects, otherwise
3317 add the symbols for the newly loaded objects. Also ignore at
3318 the beginning of an attach or remote session; we will query
3319 the full list of libraries once the connection is
3320 established. */
c0236d92 3321 if (stop_soon == NO_STOP_QUIETLY)
488f131b 3322 {
edcc5120
TT
3323 struct regcache *regcache;
3324
3325 if (!ptid_equal (ecs->ptid, inferior_ptid))
3326 context_switch (ecs->ptid);
3327 regcache = get_thread_regcache (ecs->ptid);
3328
3329 handle_solib_event ();
3330
3331 ecs->event_thread->control.stop_bpstat
3332 = bpstat_stop_status (get_regcache_aspace (regcache),
3333 stop_pc, ecs->ptid, &ecs->ws);
3334 ecs->random_signal
3335 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3336
3337 if (!ecs->random_signal)
3338 {
3339 /* A catchpoint triggered. */
3340 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3341 goto process_event_stop_test;
3342 }
488f131b 3343
b0f4b84b
DJ
3344 /* If requested, stop when the dynamic linker notifies
3345 gdb of events. This allows the user to get control
3346 and place breakpoints in initializer routines for
3347 dynamically loaded objects (among other things). */
edcc5120 3348 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
b0f4b84b
DJ
3349 if (stop_on_solib_events)
3350 {
55409f9d
DJ
3351 /* Make sure we print "Stopped due to solib-event" in
3352 normal_stop. */
3353 stop_print_frame = 1;
3354
b0f4b84b
DJ
3355 stop_stepping (ecs);
3356 return;
3357 }
488f131b 3358 }
b0f4b84b
DJ
3359
3360 /* If we are skipping through a shell, or through shared library
3361 loading that we aren't interested in, resume the program. If
3362 we're running the program normally, also resume. But stop if
3363 we're attaching or setting up a remote connection. */
3364 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3365 {
74960c60
VP
3366 /* Loading of shared libraries might have changed breakpoint
3367 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
3368 if (stop_soon == NO_STOP_QUIETLY
3369 && !breakpoints_always_inserted_mode ())
74960c60 3370 insert_breakpoints ();
b0f4b84b
DJ
3371 resume (0, TARGET_SIGNAL_0);
3372 prepare_to_wait (ecs);
3373 return;
3374 }
3375
3376 break;
c5aa993b 3377
488f131b 3378 case TARGET_WAITKIND_SPURIOUS:
527159b7 3379 if (debug_infrun)
8a9de0e4 3380 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
3381 resume (0, TARGET_SIGNAL_0);
3382 prepare_to_wait (ecs);
3383 return;
c5aa993b 3384
488f131b 3385 case TARGET_WAITKIND_EXITED:
527159b7 3386 if (debug_infrun)
8a9de0e4 3387 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
fb66883a 3388 inferior_ptid = ecs->ptid;
6c95b8df
PA
3389 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3390 set_current_program_space (current_inferior ()->pspace);
3391 handle_vfork_child_exec_or_exit (0);
1777feb0 3392 target_terminal_ours (); /* Must do this before mourn anyway. */
33d62d64 3393 print_exited_reason (ecs->ws.value.integer);
488f131b
JB
3394
3395 /* Record the exit code in the convenience variable $_exitcode, so
3396 that the user can inspect this again later. */
4fa62494
UW
3397 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3398 (LONGEST) ecs->ws.value.integer);
8cf64490
TT
3399
3400 /* Also record this in the inferior itself. */
3401 current_inferior ()->has_exit_code = 1;
3402 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3403
488f131b
JB
3404 gdb_flush (gdb_stdout);
3405 target_mourn_inferior ();
1c0fdd0e 3406 singlestep_breakpoints_inserted_p = 0;
d03285ec 3407 cancel_single_step_breakpoints ();
488f131b
JB
3408 stop_print_frame = 0;
3409 stop_stepping (ecs);
3410 return;
c5aa993b 3411
488f131b 3412 case TARGET_WAITKIND_SIGNALLED:
527159b7 3413 if (debug_infrun)
8a9de0e4 3414 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
fb66883a 3415 inferior_ptid = ecs->ptid;
6c95b8df
PA
3416 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3417 set_current_program_space (current_inferior ()->pspace);
3418 handle_vfork_child_exec_or_exit (0);
488f131b 3419 stop_print_frame = 0;
1777feb0 3420 target_terminal_ours (); /* Must do this before mourn anyway. */
c5aa993b 3421
488f131b
JB
3422 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
3423 reach here unless the inferior is dead. However, for years
3424 target_kill() was called here, which hints that fatal signals aren't
3425 really fatal on some systems. If that's true, then some changes
1777feb0 3426 may be needed. */
488f131b 3427 target_mourn_inferior ();
c906108c 3428
33d62d64 3429 print_signal_exited_reason (ecs->ws.value.sig);
1c0fdd0e 3430 singlestep_breakpoints_inserted_p = 0;
d03285ec 3431 cancel_single_step_breakpoints ();
488f131b
JB
3432 stop_stepping (ecs);
3433 return;
c906108c 3434
488f131b 3435 /* The following are the only cases in which we keep going;
1777feb0 3436 the above cases end in a continue or goto. */
488f131b 3437 case TARGET_WAITKIND_FORKED:
deb3b17b 3438 case TARGET_WAITKIND_VFORKED:
527159b7 3439 if (debug_infrun)
8a9de0e4 3440 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
c906108c 3441
e2d96639
YQ
3442 /* Check whether the inferior is displaced stepping. */
3443 {
3444 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3445 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3446 struct displaced_step_inferior_state *displaced
3447 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3448
3449 /* If checking displaced stepping is supported, and thread
3450 ecs->ptid is displaced stepping. */
3451 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3452 {
3453 struct inferior *parent_inf
3454 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3455 struct regcache *child_regcache;
3456 CORE_ADDR parent_pc;
3457
3458 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3459 indicating that the displaced stepping of syscall instruction
3460 has been done. Perform cleanup for parent process here. Note
3461 that this operation also cleans up the child process for vfork,
3462 because their pages are shared. */
3463 displaced_step_fixup (ecs->ptid, TARGET_SIGNAL_TRAP);
3464
3465 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3466 {
3467 /* Restore scratch pad for child process. */
3468 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3469 }
3470
3471 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3472 the child's PC is also within the scratchpad. Set the child's PC
3473 to the parent's PC value, which has already been fixed up.
3474 FIXME: we use the parent's aspace here, although we're touching
3475 the child, because the child hasn't been added to the inferior
3476 list yet at this point. */
3477
3478 child_regcache
3479 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3480 gdbarch,
3481 parent_inf->aspace);
3482 /* Read PC value of parent process. */
3483 parent_pc = regcache_read_pc (regcache);
3484
3485 if (debug_displaced)
3486 fprintf_unfiltered (gdb_stdlog,
3487 "displaced: write child pc from %s to %s\n",
3488 paddress (gdbarch,
3489 regcache_read_pc (child_regcache)),
3490 paddress (gdbarch, parent_pc));
3491
3492 regcache_write_pc (child_regcache, parent_pc);
3493 }
3494 }
3495
5a2901d9
DJ
3496 if (!ptid_equal (ecs->ptid, inferior_ptid))
3497 {
0d1e5fa7 3498 context_switch (ecs->ptid);
35f196d9 3499 reinit_frame_cache ();
5a2901d9
DJ
3500 }
3501
b242c3c2
PA
3502 /* Immediately detach breakpoints from the child before there's
3503 any chance of letting the user delete breakpoints from the
3504 breakpoint lists. If we don't do this early, it's easy to
3505 leave left over traps in the child, vis: "break foo; catch
3506 fork; c; <fork>; del; c; <child calls foo>". We only follow
3507 the fork on the last `continue', and by that time the
3508 breakpoint at "foo" is long gone from the breakpoint table.
3509 If we vforked, then we don't need to unpatch here, since both
3510 parent and child are sharing the same memory pages; we'll
3511 need to unpatch at follow/detach time instead to be certain
3512 that new breakpoints added between catchpoint hit time and
3513 vfork follow are detached. */
3514 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3515 {
3516 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
3517
3518 /* This won't actually modify the breakpoint list, but will
3519 physically remove the breakpoints from the child. */
3520 detach_breakpoints (child_pid);
3521 }
3522
d03285ec
UW
3523 if (singlestep_breakpoints_inserted_p)
3524 {
1777feb0 3525 /* Pull the single step breakpoints out of the target. */
d03285ec
UW
3526 remove_single_step_breakpoints ();
3527 singlestep_breakpoints_inserted_p = 0;
3528 }
3529
e58b0e63
PA
3530 /* In case the event is caught by a catchpoint, remember that
3531 the event is to be followed at the next resume of the thread,
3532 and not immediately. */
3533 ecs->event_thread->pending_follow = ecs->ws;
3534
fb14de7b 3535 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 3536
16c381f0 3537 ecs->event_thread->control.stop_bpstat
6c95b8df 3538 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3539 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 3540
67822962
PA
3541 /* Note that we're interested in knowing the bpstat actually
3542 causes a stop, not just if it may explain the signal.
3543 Software watchpoints, for example, always appear in the
3544 bpstat. */
16c381f0
JK
3545 ecs->random_signal
3546 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
04e68871
DJ
3547
3548 /* If no catchpoint triggered for this, then keep going. */
3549 if (ecs->random_signal)
3550 {
6c95b8df
PA
3551 ptid_t parent;
3552 ptid_t child;
e58b0e63 3553 int should_resume;
3e43a32a
MS
3554 int follow_child
3555 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 3556
16c381f0 3557 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
e58b0e63
PA
3558
3559 should_resume = follow_fork ();
3560
6c95b8df
PA
3561 parent = ecs->ptid;
3562 child = ecs->ws.value.related_pid;
3563
3564 /* In non-stop mode, also resume the other branch. */
3565 if (non_stop && !detach_fork)
3566 {
3567 if (follow_child)
3568 switch_to_thread (parent);
3569 else
3570 switch_to_thread (child);
3571
3572 ecs->event_thread = inferior_thread ();
3573 ecs->ptid = inferior_ptid;
3574 keep_going (ecs);
3575 }
3576
3577 if (follow_child)
3578 switch_to_thread (child);
3579 else
3580 switch_to_thread (parent);
3581
e58b0e63
PA
3582 ecs->event_thread = inferior_thread ();
3583 ecs->ptid = inferior_ptid;
3584
3585 if (should_resume)
3586 keep_going (ecs);
3587 else
3588 stop_stepping (ecs);
04e68871
DJ
3589 return;
3590 }
16c381f0 3591 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3592 goto process_event_stop_test;
3593
6c95b8df
PA
3594 case TARGET_WAITKIND_VFORK_DONE:
3595 /* Done with the shared memory region. Re-insert breakpoints in
3596 the parent, and keep going. */
3597
3598 if (debug_infrun)
3e43a32a
MS
3599 fprintf_unfiltered (gdb_stdlog,
3600 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
3601
3602 if (!ptid_equal (ecs->ptid, inferior_ptid))
3603 context_switch (ecs->ptid);
3604
3605 current_inferior ()->waiting_for_vfork_done = 0;
56710373 3606 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
3607 /* This also takes care of reinserting breakpoints in the
3608 previously locked inferior. */
3609 keep_going (ecs);
3610 return;
3611
488f131b 3612 case TARGET_WAITKIND_EXECD:
527159b7 3613 if (debug_infrun)
fc5261f2 3614 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 3615
5a2901d9
DJ
3616 if (!ptid_equal (ecs->ptid, inferior_ptid))
3617 {
0d1e5fa7 3618 context_switch (ecs->ptid);
35f196d9 3619 reinit_frame_cache ();
5a2901d9
DJ
3620 }
3621
d03285ec
UW
3622 singlestep_breakpoints_inserted_p = 0;
3623 cancel_single_step_breakpoints ();
3624
fb14de7b 3625 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 3626
6c95b8df
PA
3627 /* Do whatever is necessary to the parent branch of the vfork. */
3628 handle_vfork_child_exec_or_exit (1);
3629
795e548f
PA
3630 /* This causes the eventpoints and symbol table to be reset.
3631 Must do this now, before trying to determine whether to
3632 stop. */
71b43ef8 3633 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 3634
16c381f0 3635 ecs->event_thread->control.stop_bpstat
6c95b8df 3636 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3637 stop_pc, ecs->ptid, &ecs->ws);
16c381f0
JK
3638 ecs->random_signal
3639 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
795e548f 3640
71b43ef8
PA
3641 /* Note that this may be referenced from inside
3642 bpstat_stop_status above, through inferior_has_execd. */
3643 xfree (ecs->ws.value.execd_pathname);
3644 ecs->ws.value.execd_pathname = NULL;
3645
04e68871
DJ
3646 /* If no catchpoint triggered for this, then keep going. */
3647 if (ecs->random_signal)
3648 {
16c381f0 3649 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
04e68871
DJ
3650 keep_going (ecs);
3651 return;
3652 }
16c381f0 3653 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3654 goto process_event_stop_test;
3655
b4dc5ffa
MK
3656 /* Be careful not to try to gather much state about a thread
3657 that's in a syscall. It's frequently a losing proposition. */
488f131b 3658 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 3659 if (debug_infrun)
3e43a32a
MS
3660 fprintf_unfiltered (gdb_stdlog,
3661 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 3662 /* Getting the current syscall number. */
ca2163eb 3663 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3664 return;
3665 goto process_event_stop_test;
c906108c 3666
488f131b
JB
3667 /* Before examining the threads further, step this thread to
3668 get it entirely out of the syscall. (We get notice of the
3669 event when the thread is just on the verge of exiting a
3670 syscall. Stepping one instruction seems to get it back
b4dc5ffa 3671 into user code.) */
488f131b 3672 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 3673 if (debug_infrun)
3e43a32a
MS
3674 fprintf_unfiltered (gdb_stdlog,
3675 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
ca2163eb 3676 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3677 return;
3678 goto process_event_stop_test;
c906108c 3679
488f131b 3680 case TARGET_WAITKIND_STOPPED:
527159b7 3681 if (debug_infrun)
8a9de0e4 3682 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 3683 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
488f131b 3684 break;
c906108c 3685
b2175913 3686 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
3687 if (debug_infrun)
3688 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 3689 /* Reverse execution: target ran out of history info. */
fb14de7b 3690 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
33d62d64 3691 print_no_history_reason ();
b2175913
MS
3692 stop_stepping (ecs);
3693 return;
488f131b 3694 }
c906108c 3695
488f131b
JB
3696 if (ecs->new_thread_event)
3697 {
94cc34af
PA
3698 if (non_stop)
3699 /* Non-stop assumes that the target handles adding new threads
3700 to the thread list. */
3e43a32a
MS
3701 internal_error (__FILE__, __LINE__,
3702 "targets should add new threads to the thread "
3703 "list themselves in non-stop mode.");
94cc34af
PA
3704
3705 /* We may want to consider not doing a resume here in order to
3706 give the user a chance to play with the new thread. It might
3707 be good to make that a user-settable option. */
3708
3709 /* At this point, all threads are stopped (happens automatically
3710 in either the OS or the native code). Therefore we need to
3711 continue all threads in order to make progress. */
3712
173853dc
PA
3713 if (!ptid_equal (ecs->ptid, inferior_ptid))
3714 context_switch (ecs->ptid);
488f131b
JB
3715 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
3716 prepare_to_wait (ecs);
3717 return;
3718 }
c906108c 3719
2020b7ab 3720 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
3721 {
3722 /* Do we need to clean up the state of a thread that has
3723 completed a displaced single-step? (Doing so usually affects
3724 the PC, so do it here, before we set stop_pc.) */
16c381f0
JK
3725 displaced_step_fixup (ecs->ptid,
3726 ecs->event_thread->suspend.stop_signal);
252fbfc8
PA
3727
3728 /* If we either finished a single-step or hit a breakpoint, but
3729 the user wanted this thread to be stopped, pretend we got a
3730 SIG0 (generic unsignaled stop). */
3731
3732 if (ecs->event_thread->stop_requested
16c381f0
JK
3733 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3734 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
252fbfc8 3735 }
237fc4c9 3736
515630c5 3737 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 3738
527159b7 3739 if (debug_infrun)
237fc4c9 3740 {
5af949e3
UW
3741 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3742 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
3743 struct cleanup *old_chain = save_inferior_ptid ();
3744
3745 inferior_ptid = ecs->ptid;
5af949e3
UW
3746
3747 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3748 paddress (gdbarch, stop_pc));
d92524f1 3749 if (target_stopped_by_watchpoint ())
237fc4c9
PA
3750 {
3751 CORE_ADDR addr;
abbb1732 3752
237fc4c9
PA
3753 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3754
3755 if (target_stopped_data_address (&current_target, &addr))
3756 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
3757 "infrun: stopped data address = %s\n",
3758 paddress (gdbarch, addr));
237fc4c9
PA
3759 else
3760 fprintf_unfiltered (gdb_stdlog,
3761 "infrun: (no data address available)\n");
3762 }
7f82dfc7
JK
3763
3764 do_cleanups (old_chain);
237fc4c9 3765 }
527159b7 3766
9f976b41
DJ
3767 if (stepping_past_singlestep_breakpoint)
3768 {
1c0fdd0e 3769 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
3770 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3771 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3772
3773 stepping_past_singlestep_breakpoint = 0;
3774
3775 /* We've either finished single-stepping past the single-step
8fb3e588
AC
3776 breakpoint, or stopped for some other reason. It would be nice if
3777 we could tell, but we can't reliably. */
16c381f0 3778 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 3779 {
527159b7 3780 if (debug_infrun)
3e43a32a
MS
3781 fprintf_unfiltered (gdb_stdlog,
3782 "infrun: stepping_past_"
3783 "singlestep_breakpoint\n");
9f976b41 3784 /* Pull the single step breakpoints out of the target. */
e0cd558a 3785 remove_single_step_breakpoints ();
9f976b41
DJ
3786 singlestep_breakpoints_inserted_p = 0;
3787
3788 ecs->random_signal = 0;
16c381f0 3789 ecs->event_thread->control.trap_expected = 0;
9f976b41 3790
0d1e5fa7 3791 context_switch (saved_singlestep_ptid);
9a4105ab
AC
3792 if (deprecated_context_hook)
3793 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
3794
3795 resume (1, TARGET_SIGNAL_0);
3796 prepare_to_wait (ecs);
3797 return;
3798 }
3799 }
3800
ca67fcb8 3801 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 3802 {
94cc34af
PA
3803 /* In non-stop mode, there's never a deferred_step_ptid set. */
3804 gdb_assert (!non_stop);
3805
6a6b96b9
UW
3806 /* If we stopped for some other reason than single-stepping, ignore
3807 the fact that we were supposed to switch back. */
16c381f0 3808 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
6a6b96b9
UW
3809 {
3810 if (debug_infrun)
3811 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 3812 "infrun: handling deferred step\n");
6a6b96b9
UW
3813
3814 /* Pull the single step breakpoints out of the target. */
3815 if (singlestep_breakpoints_inserted_p)
3816 {
3817 remove_single_step_breakpoints ();
3818 singlestep_breakpoints_inserted_p = 0;
3819 }
3820
cd3da28e
PA
3821 ecs->event_thread->control.trap_expected = 0;
3822
6a6b96b9
UW
3823 /* Note: We do not call context_switch at this point, as the
3824 context is already set up for stepping the original thread. */
ca67fcb8
VP
3825 switch_to_thread (deferred_step_ptid);
3826 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3827 /* Suppress spurious "Switching to ..." message. */
3828 previous_inferior_ptid = inferior_ptid;
3829
3830 resume (1, TARGET_SIGNAL_0);
3831 prepare_to_wait (ecs);
3832 return;
3833 }
ca67fcb8
VP
3834
3835 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3836 }
3837
488f131b
JB
3838 /* See if a thread hit a thread-specific breakpoint that was meant for
3839 another thread. If so, then step that thread past the breakpoint,
3840 and continue it. */
3841
16c381f0 3842 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
488f131b 3843 {
9f976b41 3844 int thread_hop_needed = 0;
cf00dfa7
VP
3845 struct address_space *aspace =
3846 get_regcache_aspace (get_thread_regcache (ecs->ptid));
9f976b41 3847
f8d40ec8 3848 /* Check if a regular breakpoint has been hit before checking
1777feb0 3849 for a potential single step breakpoint. Otherwise, GDB will
f8d40ec8 3850 not see this breakpoint hit when stepping onto breakpoints. */
6c95b8df 3851 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
488f131b 3852 {
c5aa993b 3853 ecs->random_signal = 0;
6c95b8df 3854 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
9f976b41
DJ
3855 thread_hop_needed = 1;
3856 }
1c0fdd0e 3857 else if (singlestep_breakpoints_inserted_p)
9f976b41 3858 {
fd48f117
DJ
3859 /* We have not context switched yet, so this should be true
3860 no matter which thread hit the singlestep breakpoint. */
3861 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3862 if (debug_infrun)
3863 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3864 "trap for %s\n",
3865 target_pid_to_str (ecs->ptid));
3866
9f976b41
DJ
3867 ecs->random_signal = 0;
3868 /* The call to in_thread_list is necessary because PTIDs sometimes
3869 change when we go from single-threaded to multi-threaded. If
3870 the singlestep_ptid is still in the list, assume that it is
3871 really different from ecs->ptid. */
3872 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3873 && in_thread_list (singlestep_ptid))
3874 {
fd48f117
DJ
3875 /* If the PC of the thread we were trying to single-step
3876 has changed, discard this event (which we were going
3877 to ignore anyway), and pretend we saw that thread
3878 trap. This prevents us continuously moving the
3879 single-step breakpoint forward, one instruction at a
3880 time. If the PC has changed, then the thread we were
3881 trying to single-step has trapped or been signalled,
3882 but the event has not been reported to GDB yet.
3883
3884 There might be some cases where this loses signal
3885 information, if a signal has arrived at exactly the
3886 same time that the PC changed, but this is the best
3887 we can do with the information available. Perhaps we
3888 should arrange to report all events for all threads
3889 when they stop, or to re-poll the remote looking for
3890 this particular thread (i.e. temporarily enable
3891 schedlock). */
515630c5
UW
3892
3893 CORE_ADDR new_singlestep_pc
3894 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3895
3896 if (new_singlestep_pc != singlestep_pc)
fd48f117 3897 {
2020b7ab
PA
3898 enum target_signal stop_signal;
3899
fd48f117
DJ
3900 if (debug_infrun)
3901 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3902 " but expected thread advanced also\n");
3903
3904 /* The current context still belongs to
3905 singlestep_ptid. Don't swap here, since that's
3906 the context we want to use. Just fudge our
3907 state and continue. */
16c381f0
JK
3908 stop_signal = ecs->event_thread->suspend.stop_signal;
3909 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
fd48f117 3910 ecs->ptid = singlestep_ptid;
e09875d4 3911 ecs->event_thread = find_thread_ptid (ecs->ptid);
16c381f0 3912 ecs->event_thread->suspend.stop_signal = stop_signal;
515630c5 3913 stop_pc = new_singlestep_pc;
fd48f117
DJ
3914 }
3915 else
3916 {
3917 if (debug_infrun)
3918 fprintf_unfiltered (gdb_stdlog,
3919 "infrun: unexpected thread\n");
3920
3921 thread_hop_needed = 1;
3922 stepping_past_singlestep_breakpoint = 1;
3923 saved_singlestep_ptid = singlestep_ptid;
3924 }
9f976b41
DJ
3925 }
3926 }
3927
3928 if (thread_hop_needed)
8fb3e588 3929 {
9f5a595d 3930 struct regcache *thread_regcache;
237fc4c9 3931 int remove_status = 0;
8fb3e588 3932
527159b7 3933 if (debug_infrun)
8a9de0e4 3934 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 3935
b3444185
PA
3936 /* Switch context before touching inferior memory, the
3937 previous thread may have exited. */
3938 if (!ptid_equal (inferior_ptid, ecs->ptid))
3939 context_switch (ecs->ptid);
3940
8fb3e588 3941 /* Saw a breakpoint, but it was hit by the wrong thread.
1777feb0 3942 Just continue. */
8fb3e588 3943
1c0fdd0e 3944 if (singlestep_breakpoints_inserted_p)
488f131b 3945 {
1777feb0 3946 /* Pull the single step breakpoints out of the target. */
e0cd558a 3947 remove_single_step_breakpoints ();
8fb3e588
AC
3948 singlestep_breakpoints_inserted_p = 0;
3949 }
3950
237fc4c9
PA
3951 /* If the arch can displace step, don't remove the
3952 breakpoints. */
9f5a595d
UW
3953 thread_regcache = get_thread_regcache (ecs->ptid);
3954 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
3955 remove_status = remove_breakpoints ();
3956
8fb3e588
AC
3957 /* Did we fail to remove breakpoints? If so, try
3958 to set the PC past the bp. (There's at least
3959 one situation in which we can fail to remove
3960 the bp's: On HP-UX's that use ttrace, we can't
3961 change the address space of a vforking child
3962 process until the child exits (well, okay, not
1777feb0 3963 then either :-) or execs. */
8fb3e588 3964 if (remove_status != 0)
9d9cd7ac 3965 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
3966 else
3967 { /* Single step */
94cc34af
PA
3968 if (!non_stop)
3969 {
3970 /* Only need to require the next event from this
3971 thread in all-stop mode. */
3972 waiton_ptid = ecs->ptid;
3973 infwait_state = infwait_thread_hop_state;
3974 }
8fb3e588 3975
4e1c45ea 3976 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588 3977 keep_going (ecs);
8fb3e588
AC
3978 return;
3979 }
488f131b 3980 }
1c0fdd0e 3981 else if (singlestep_breakpoints_inserted_p)
8fb3e588 3982 {
8fb3e588
AC
3983 ecs->random_signal = 0;
3984 }
488f131b
JB
3985 }
3986 else
3987 ecs->random_signal = 1;
c906108c 3988
488f131b 3989 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
3990 so, then switch to that thread. */
3991 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 3992 {
527159b7 3993 if (debug_infrun)
8a9de0e4 3994 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 3995
0d1e5fa7 3996 context_switch (ecs->ptid);
c5aa993b 3997
9a4105ab
AC
3998 if (deprecated_context_hook)
3999 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 4000 }
c906108c 4001
568d6575
UW
4002 /* At this point, get hold of the now-current thread's frame. */
4003 frame = get_current_frame ();
4004 gdbarch = get_frame_arch (frame);
4005
1c0fdd0e 4006 if (singlestep_breakpoints_inserted_p)
488f131b 4007 {
1777feb0 4008 /* Pull the single step breakpoints out of the target. */
e0cd558a 4009 remove_single_step_breakpoints ();
488f131b
JB
4010 singlestep_breakpoints_inserted_p = 0;
4011 }
c906108c 4012
d983da9c
DJ
4013 if (stepped_after_stopped_by_watchpoint)
4014 stopped_by_watchpoint = 0;
4015 else
4016 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4017
4018 /* If necessary, step over this watchpoint. We'll be back to display
4019 it in a moment. */
4020 if (stopped_by_watchpoint
d92524f1 4021 && (target_have_steppable_watchpoint
568d6575 4022 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 4023 {
488f131b
JB
4024 /* At this point, we are stopped at an instruction which has
4025 attempted to write to a piece of memory under control of
4026 a watchpoint. The instruction hasn't actually executed
4027 yet. If we were to evaluate the watchpoint expression
4028 now, we would get the old value, and therefore no change
4029 would seem to have occurred.
4030
4031 In order to make watchpoints work `right', we really need
4032 to complete the memory write, and then evaluate the
d983da9c
DJ
4033 watchpoint expression. We do this by single-stepping the
4034 target.
4035
4036 It may not be necessary to disable the watchpoint to stop over
4037 it. For example, the PA can (with some kernel cooperation)
4038 single step over a watchpoint without disabling the watchpoint.
4039
4040 It is far more common to need to disable a watchpoint to step
4041 the inferior over it. If we have non-steppable watchpoints,
4042 we must disable the current watchpoint; it's simplest to
4043 disable all watchpoints and breakpoints. */
2facfe5c
DD
4044 int hw_step = 1;
4045
d92524f1 4046 if (!target_have_steppable_watchpoint)
2455069d
UW
4047 {
4048 remove_breakpoints ();
4049 /* See comment in resume why we need to stop bypassing signals
4050 while breakpoints have been removed. */
4051 target_pass_signals (0, NULL);
4052 }
2facfe5c 4053 /* Single step */
568d6575 4054 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
2facfe5c 4055 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
0d1e5fa7 4056 waiton_ptid = ecs->ptid;
d92524f1 4057 if (target_have_steppable_watchpoint)
0d1e5fa7 4058 infwait_state = infwait_step_watch_state;
d983da9c 4059 else
0d1e5fa7 4060 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
4061 prepare_to_wait (ecs);
4062 return;
4063 }
4064
7e324e48 4065 clear_stop_func (ecs);
4e1c45ea 4066 ecs->event_thread->stepping_over_breakpoint = 0;
16c381f0
JK
4067 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4068 ecs->event_thread->control.stop_step = 0;
488f131b
JB
4069 stop_print_frame = 1;
4070 ecs->random_signal = 0;
4071 stopped_by_random_signal = 0;
488f131b 4072
edb3359d
DJ
4073 /* Hide inlined functions starting here, unless we just performed stepi or
4074 nexti. After stepi and nexti, always show the innermost frame (not any
4075 inline function call sites). */
16c381f0 4076 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
4077 {
4078 struct address_space *aspace =
4079 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4080
4081 /* skip_inline_frames is expensive, so we avoid it if we can
4082 determine that the address is one where functions cannot have
4083 been inlined. This improves performance with inferiors that
4084 load a lot of shared libraries, because the solib event
4085 breakpoint is defined as the address of a function (i.e. not
4086 inline). Note that we have to check the previous PC as well
4087 as the current one to catch cases when we have just
4088 single-stepped off a breakpoint prior to reinstating it.
4089 Note that we're assuming that the code we single-step to is
4090 not inline, but that's not definitive: there's nothing
4091 preventing the event breakpoint function from containing
4092 inlined code, and the single-step ending up there. If the
4093 user had set a breakpoint on that inlined code, the missing
4094 skip_inline_frames call would break things. Fortunately
4095 that's an extremely unlikely scenario. */
09ac7c10 4096 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
0574c78f
GB
4097 && !(ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4098 && ecs->event_thread->control.trap_expected
4099 && pc_at_non_inline_function (aspace,
09ac7c10
TT
4100 ecs->event_thread->prev_pc,
4101 &ecs->ws)))
0574c78f
GB
4102 skip_inline_frames (ecs->ptid);
4103 }
edb3359d 4104
16c381f0
JK
4105 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4106 && ecs->event_thread->control.trap_expected
568d6575 4107 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 4108 && currently_stepping (ecs->event_thread))
3352ef37 4109 {
b50d7442 4110 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 4111 also on an instruction that needs to be stepped multiple
1777feb0 4112 times before it's been fully executing. E.g., architectures
3352ef37
AC
4113 with a delay slot. It needs to be stepped twice, once for
4114 the instruction and once for the delay slot. */
4115 int step_through_delay
568d6575 4116 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 4117
527159b7 4118 if (debug_infrun && step_through_delay)
8a9de0e4 4119 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
4120 if (ecs->event_thread->control.step_range_end == 0
4121 && step_through_delay)
3352ef37
AC
4122 {
4123 /* The user issued a continue when stopped at a breakpoint.
4124 Set up for another trap and get out of here. */
4e1c45ea 4125 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4126 keep_going (ecs);
4127 return;
4128 }
4129 else if (step_through_delay)
4130 {
4131 /* The user issued a step when stopped at a breakpoint.
4132 Maybe we should stop, maybe we should not - the delay
4133 slot *might* correspond to a line of source. In any
ca67fcb8
VP
4134 case, don't decide that here, just set
4135 ecs->stepping_over_breakpoint, making sure we
4136 single-step again before breakpoints are re-inserted. */
4e1c45ea 4137 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4138 }
4139 }
4140
488f131b
JB
4141 /* Look at the cause of the stop, and decide what to do.
4142 The alternatives are:
0d1e5fa7
PA
4143 1) stop_stepping and return; to really stop and return to the debugger,
4144 2) keep_going and return to start up again
4e1c45ea 4145 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
4146 3) set ecs->random_signal to 1, and the decision between 1 and 2
4147 will be made according to the signal handling tables. */
4148
16c381f0 4149 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
b0f4b84b
DJ
4150 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
4151 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 4152 {
16c381f0
JK
4153 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4154 && stop_after_trap)
488f131b 4155 {
527159b7 4156 if (debug_infrun)
8a9de0e4 4157 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
4158 stop_print_frame = 0;
4159 stop_stepping (ecs);
4160 return;
4161 }
c54cfec8
EZ
4162
4163 /* This is originated from start_remote(), start_inferior() and
4164 shared libraries hook functions. */
b0f4b84b 4165 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 4166 {
527159b7 4167 if (debug_infrun)
8a9de0e4 4168 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
4169 stop_stepping (ecs);
4170 return;
4171 }
4172
c54cfec8 4173 /* This originates from attach_command(). We need to overwrite
a0d21d28
PA
4174 the stop_signal here, because some kernels don't ignore a
4175 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4176 See more comments in inferior.h. On the other hand, if we
a0ef4274 4177 get a non-SIGSTOP, report it to the user - assume the backend
a0d21d28
PA
4178 will handle the SIGSTOP if it should show up later.
4179
4180 Also consider that the attach is complete when we see a
4181 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4182 target extended-remote report it instead of a SIGSTOP
4183 (e.g. gdbserver). We already rely on SIGTRAP being our
e0ba6746
PA
4184 signal, so this is no exception.
4185
4186 Also consider that the attach is complete when we see a
4187 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4188 the target to stop all threads of the inferior, in case the
4189 low level attach operation doesn't stop them implicitly. If
4190 they weren't stopped implicitly, then the stub will report a
4191 TARGET_SIGNAL_0, meaning: stopped for no particular reason
4192 other than GDB's request. */
a0ef4274 4193 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
16c381f0
JK
4194 && (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_STOP
4195 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4196 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_0))
c54cfec8
EZ
4197 {
4198 stop_stepping (ecs);
16c381f0 4199 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
c54cfec8
EZ
4200 return;
4201 }
4202
09ac7c10
TT
4203 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4204 handles this event. */
16c381f0 4205 ecs->event_thread->control.stop_bpstat
6c95b8df 4206 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 4207 stop_pc, ecs->ptid, &ecs->ws);
6c95b8df 4208
fba57f8f
VP
4209 /* Following in case break condition called a
4210 function. */
4211 stop_print_frame = 1;
488f131b 4212
db82e815
PA
4213 /* This is where we handle "moribund" watchpoints. Unlike
4214 software breakpoints traps, hardware watchpoint traps are
4215 always distinguishable from random traps. If no high-level
4216 watchpoint is associated with the reported stop data address
4217 anymore, then the bpstat does not explain the signal ---
4218 simply make sure to ignore it if `stopped_by_watchpoint' is
4219 set. */
4220
4221 if (debug_infrun
16c381f0
JK
4222 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4223 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
db82e815 4224 && stopped_by_watchpoint)
3e43a32a
MS
4225 fprintf_unfiltered (gdb_stdlog,
4226 "infrun: no user watchpoint explains "
4227 "watchpoint SIGTRAP, ignoring\n");
db82e815 4228
73dd234f 4229 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
4230 at one stage in the past included checks for an inferior
4231 function call's call dummy's return breakpoint. The original
4232 comment, that went with the test, read:
73dd234f 4233
8fb3e588
AC
4234 ``End of a stack dummy. Some systems (e.g. Sony news) give
4235 another signal besides SIGTRAP, so check here as well as
4236 above.''
73dd234f 4237
8002d778 4238 If someone ever tries to get call dummys on a
73dd234f 4239 non-executable stack to work (where the target would stop
03cebad2
MK
4240 with something like a SIGSEGV), then those tests might need
4241 to be re-instated. Given, however, that the tests were only
73dd234f 4242 enabled when momentary breakpoints were not being used, I
03cebad2
MK
4243 suspect that it won't be the case.
4244
8fb3e588
AC
4245 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4246 be necessary for call dummies on a non-executable stack on
4247 SPARC. */
73dd234f 4248
16c381f0 4249 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
488f131b 4250 ecs->random_signal
16c381f0 4251 = !(bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
db82e815 4252 || stopped_by_watchpoint
16c381f0
JK
4253 || ecs->event_thread->control.trap_expected
4254 || (ecs->event_thread->control.step_range_end
8358c15c
JK
4255 && (ecs->event_thread->control.step_resume_breakpoint
4256 == NULL)));
488f131b
JB
4257 else
4258 {
16c381f0
JK
4259 ecs->random_signal = !bpstat_explains_signal
4260 (ecs->event_thread->control.stop_bpstat);
488f131b 4261 if (!ecs->random_signal)
16c381f0 4262 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
4263 }
4264 }
4265
4266 /* When we reach this point, we've pretty much decided
4267 that the reason for stopping must've been a random
1777feb0 4268 (unexpected) signal. */
488f131b
JB
4269
4270 else
4271 ecs->random_signal = 1;
488f131b 4272
04e68871 4273process_event_stop_test:
568d6575
UW
4274
4275 /* Re-fetch current thread's frame in case we did a
4276 "goto process_event_stop_test" above. */
4277 frame = get_current_frame ();
4278 gdbarch = get_frame_arch (frame);
4279
488f131b
JB
4280 /* For the program's own signals, act according to
4281 the signal handling tables. */
4282
4283 if (ecs->random_signal)
4284 {
4285 /* Signal not for debugging purposes. */
4286 int printed = 0;
24291992 4287 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
488f131b 4288
527159b7 4289 if (debug_infrun)
2020b7ab 4290 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
16c381f0 4291 ecs->event_thread->suspend.stop_signal);
527159b7 4292
488f131b
JB
4293 stopped_by_random_signal = 1;
4294
16c381f0 4295 if (signal_print[ecs->event_thread->suspend.stop_signal])
488f131b
JB
4296 {
4297 printed = 1;
4298 target_terminal_ours_for_output ();
16c381f0
JK
4299 print_signal_received_reason
4300 (ecs->event_thread->suspend.stop_signal);
488f131b 4301 }
252fbfc8
PA
4302 /* Always stop on signals if we're either just gaining control
4303 of the program, or the user explicitly requested this thread
4304 to remain stopped. */
d6b48e9c 4305 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 4306 || ecs->event_thread->stop_requested
24291992 4307 || (!inf->detaching
16c381f0 4308 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b
JB
4309 {
4310 stop_stepping (ecs);
4311 return;
4312 }
4313 /* If not going to stop, give terminal back
4314 if we took it away. */
4315 else if (printed)
4316 target_terminal_inferior ();
4317
4318 /* Clear the signal if it should not be passed. */
16c381f0
JK
4319 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4320 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
488f131b 4321
fb14de7b 4322 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 4323 && ecs->event_thread->control.trap_expected
8358c15c 4324 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
4325 {
4326 /* We were just starting a new sequence, attempting to
4327 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 4328 Instead this signal arrives. This signal will take us out
68f53502
AC
4329 of the stepping range so GDB needs to remember to, when
4330 the signal handler returns, resume stepping off that
4331 breakpoint. */
4332 /* To simplify things, "continue" is forced to use the same
4333 code paths as single-step - set a breakpoint at the
4334 signal return address and then, once hit, step off that
4335 breakpoint. */
237fc4c9
PA
4336 if (debug_infrun)
4337 fprintf_unfiltered (gdb_stdlog,
4338 "infrun: signal arrived while stepping over "
4339 "breakpoint\n");
d3169d93 4340
2c03e5be 4341 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 4342 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4343 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4344 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4345 keep_going (ecs);
4346 return;
68f53502 4347 }
9d799f85 4348
16c381f0
JK
4349 if (ecs->event_thread->control.step_range_end != 0
4350 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_0
4351 && (ecs->event_thread->control.step_range_start <= stop_pc
4352 && stop_pc < ecs->event_thread->control.step_range_end)
edb3359d 4353 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 4354 ecs->event_thread->control.step_stack_frame_id)
8358c15c 4355 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
4356 {
4357 /* The inferior is about to take a signal that will take it
4358 out of the single step range. Set a breakpoint at the
4359 current PC (which is presumably where the signal handler
4360 will eventually return) and then allow the inferior to
4361 run free.
4362
4363 Note that this is only needed for a signal delivered
4364 while in the single-step range. Nested signals aren't a
4365 problem as they eventually all return. */
237fc4c9
PA
4366 if (debug_infrun)
4367 fprintf_unfiltered (gdb_stdlog,
4368 "infrun: signal may take us out of "
4369 "single-step range\n");
4370
2c03e5be 4371 insert_hp_step_resume_breakpoint_at_frame (frame);
2455069d
UW
4372 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4373 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4374 keep_going (ecs);
4375 return;
d303a6c7 4376 }
9d799f85
AC
4377
4378 /* Note: step_resume_breakpoint may be non-NULL. This occures
4379 when either there's a nested signal, or when there's a
4380 pending signal enabled just as the signal handler returns
4381 (leaving the inferior at the step-resume-breakpoint without
4382 actually executing it). Either way continue until the
4383 breakpoint is really hit. */
488f131b
JB
4384 keep_going (ecs);
4385 return;
4386 }
4387
4388 /* Handle cases caused by hitting a breakpoint. */
4389 {
4390 CORE_ADDR jmp_buf_pc;
4391 struct bpstat_what what;
4392
16c381f0 4393 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
488f131b
JB
4394
4395 if (what.call_dummy)
4396 {
aa7d318d 4397 stop_stack_dummy = what.call_dummy;
c5aa993b 4398 }
c906108c 4399
628fe4e4
JK
4400 /* If we hit an internal event that triggers symbol changes, the
4401 current frame will be invalidated within bpstat_what (e.g., if
4402 we hit an internal solib event). Re-fetch it. */
4403 frame = get_current_frame ();
4404 gdbarch = get_frame_arch (frame);
4405
488f131b 4406 switch (what.main_action)
c5aa993b 4407 {
488f131b 4408 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
611c83ae
PA
4409 /* If we hit the breakpoint at longjmp while stepping, we
4410 install a momentary breakpoint at the target of the
4411 jmp_buf. */
4412
4413 if (debug_infrun)
4414 fprintf_unfiltered (gdb_stdlog,
4415 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4416
4e1c45ea 4417 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 4418
186c406b 4419 if (what.is_longjmp)
c5aa993b 4420 {
186c406b
TT
4421 if (!gdbarch_get_longjmp_target_p (gdbarch)
4422 || !gdbarch_get_longjmp_target (gdbarch,
4423 frame, &jmp_buf_pc))
4424 {
4425 if (debug_infrun)
3e43a32a
MS
4426 fprintf_unfiltered (gdb_stdlog,
4427 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4428 "(!gdbarch_get_longjmp_target)\n");
186c406b
TT
4429 keep_going (ecs);
4430 return;
4431 }
488f131b 4432
186c406b
TT
4433 /* We're going to replace the current step-resume breakpoint
4434 with a longjmp-resume breakpoint. */
4435 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae 4436
186c406b
TT
4437 /* Insert a breakpoint at resume address. */
4438 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4439 }
4440 else
4441 {
4442 struct symbol *func = get_frame_function (frame);
c906108c 4443
186c406b
TT
4444 if (func)
4445 check_exception_resume (ecs, frame, func);
4446 }
488f131b
JB
4447 keep_going (ecs);
4448 return;
c906108c 4449
488f131b 4450 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
527159b7 4451 if (debug_infrun)
611c83ae
PA
4452 fprintf_unfiltered (gdb_stdlog,
4453 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4454
186c406b
TT
4455 if (what.is_longjmp)
4456 {
4457 gdb_assert (ecs->event_thread->control.step_resume_breakpoint
4458 != NULL);
4459 delete_step_resume_breakpoint (ecs->event_thread);
4460 }
4461 else
4462 {
4463 /* There are several cases to consider.
4464
4465 1. The initiating frame no longer exists. In this case
4466 we must stop, because the exception has gone too far.
4467
4468 2. The initiating frame exists, and is the same as the
4469 current frame. We stop, because the exception has been
4470 caught.
4471
4472 3. The initiating frame exists and is different from
4473 the current frame. This means the exception has been
4474 caught beneath the initiating frame, so keep going. */
4475 struct frame_info *init_frame
4476 = frame_find_by_id (ecs->event_thread->initiating_frame);
4477
4478 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4479 != NULL);
4480 delete_exception_resume_breakpoint (ecs->event_thread);
4481
4482 if (init_frame)
4483 {
4484 struct frame_id current_id
4485 = get_frame_id (get_current_frame ());
4486 if (frame_id_eq (current_id,
4487 ecs->event_thread->initiating_frame))
4488 {
4489 /* Case 2. Fall through. */
4490 }
4491 else
4492 {
4493 /* Case 3. */
4494 keep_going (ecs);
4495 return;
4496 }
4497 }
4498
4499 /* For Cases 1 and 2, remove the step-resume breakpoint,
4500 if it exists. */
4501 delete_step_resume_breakpoint (ecs->event_thread);
4502 }
611c83ae 4503
16c381f0 4504 ecs->event_thread->control.stop_step = 1;
33d62d64 4505 print_end_stepping_range_reason ();
611c83ae
PA
4506 stop_stepping (ecs);
4507 return;
488f131b
JB
4508
4509 case BPSTAT_WHAT_SINGLE:
527159b7 4510 if (debug_infrun)
8802d8ed 4511 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4e1c45ea 4512 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b
JB
4513 /* Still need to check other stuff, at least the case
4514 where we are stepping and step out of the right range. */
4515 break;
c906108c 4516
2c03e5be
PA
4517 case BPSTAT_WHAT_STEP_RESUME:
4518 if (debug_infrun)
4519 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4520
4521 delete_step_resume_breakpoint (ecs->event_thread);
9da8c2a0
PA
4522 if (ecs->event_thread->control.proceed_to_finish
4523 && execution_direction == EXEC_REVERSE)
4524 {
4525 struct thread_info *tp = ecs->event_thread;
4526
4527 /* We are finishing a function in reverse, and just hit
4528 the step-resume breakpoint at the start address of the
4529 function, and we're almost there -- just need to back
4530 up by one more single-step, which should take us back
4531 to the function call. */
4532 tp->control.step_range_start = tp->control.step_range_end = 1;
4533 keep_going (ecs);
4534 return;
4535 }
7e324e48 4536 fill_in_stop_func (gdbarch, ecs);
2c03e5be
PA
4537 if (stop_pc == ecs->stop_func_start
4538 && execution_direction == EXEC_REVERSE)
4539 {
4540 /* We are stepping over a function call in reverse, and
4541 just hit the step-resume breakpoint at the start
4542 address of the function. Go back to single-stepping,
4543 which should take us back to the function call. */
4544 ecs->event_thread->stepping_over_breakpoint = 1;
4545 keep_going (ecs);
4546 return;
4547 }
4548 break;
4549
488f131b 4550 case BPSTAT_WHAT_STOP_NOISY:
527159b7 4551 if (debug_infrun)
8802d8ed 4552 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 4553 stop_print_frame = 1;
c906108c 4554
d303a6c7
AC
4555 /* We are about to nuke the step_resume_breakpointt via the
4556 cleanup chain, so no need to worry about it here. */
c5aa993b 4557
488f131b
JB
4558 stop_stepping (ecs);
4559 return;
c5aa993b 4560
488f131b 4561 case BPSTAT_WHAT_STOP_SILENT:
527159b7 4562 if (debug_infrun)
8802d8ed 4563 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 4564 stop_print_frame = 0;
c5aa993b 4565
d303a6c7
AC
4566 /* We are about to nuke the step_resume_breakpoin via the
4567 cleanup chain, so no need to worry about it here. */
c5aa993b 4568
488f131b 4569 stop_stepping (ecs);
e441088d 4570 return;
c5aa993b 4571
2c03e5be 4572 case BPSTAT_WHAT_HP_STEP_RESUME:
527159b7 4573 if (debug_infrun)
2c03e5be 4574 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
527159b7 4575
4e1c45ea
PA
4576 delete_step_resume_breakpoint (ecs->event_thread);
4577 if (ecs->event_thread->step_after_step_resume_breakpoint)
68f53502
AC
4578 {
4579 /* Back when the step-resume breakpoint was inserted, we
4580 were trying to single-step off a breakpoint. Go back
4581 to doing that. */
4e1c45ea
PA
4582 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4583 ecs->event_thread->stepping_over_breakpoint = 1;
68f53502
AC
4584 keep_going (ecs);
4585 return;
4586 }
488f131b
JB
4587 break;
4588
488f131b
JB
4589 case BPSTAT_WHAT_KEEP_CHECKING:
4590 break;
4591 }
4592 }
c906108c 4593
488f131b
JB
4594 /* We come here if we hit a breakpoint but should not
4595 stop for it. Possibly we also were stepping
4596 and should stop for that. So fall through and
4597 test for stepping. But, if not stepping,
4598 do not stop. */
c906108c 4599
a7212384
UW
4600 /* In all-stop mode, if we're currently stepping but have stopped in
4601 some other thread, we need to switch back to the stepped thread. */
4602 if (!non_stop)
4603 {
4604 struct thread_info *tp;
abbb1732 4605
b3444185 4606 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
a7212384
UW
4607 ecs->event_thread);
4608 if (tp)
4609 {
4610 /* However, if the current thread is blocked on some internal
4611 breakpoint, and we simply need to step over that breakpoint
4612 to get it going again, do that first. */
16c381f0
JK
4613 if ((ecs->event_thread->control.trap_expected
4614 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
a7212384
UW
4615 || ecs->event_thread->stepping_over_breakpoint)
4616 {
4617 keep_going (ecs);
4618 return;
4619 }
4620
66852e9c
PA
4621 /* If the stepping thread exited, then don't try to switch
4622 back and resume it, which could fail in several different
4623 ways depending on the target. Instead, just keep going.
4624
4625 We can find a stepping dead thread in the thread list in
4626 two cases:
4627
4628 - The target supports thread exit events, and when the
4629 target tries to delete the thread from the thread list,
4630 inferior_ptid pointed at the exiting thread. In such
4631 case, calling delete_thread does not really remove the
4632 thread from the list; instead, the thread is left listed,
4633 with 'exited' state.
4634
4635 - The target's debug interface does not support thread
4636 exit events, and so we have no idea whatsoever if the
4637 previously stepping thread is still alive. For that
4638 reason, we need to synchronously query the target
4639 now. */
b3444185
PA
4640 if (is_exited (tp->ptid)
4641 || !target_thread_alive (tp->ptid))
4642 {
4643 if (debug_infrun)
3e43a32a
MS
4644 fprintf_unfiltered (gdb_stdlog,
4645 "infrun: not switching back to "
4646 "stepped thread, it has vanished\n");
b3444185
PA
4647
4648 delete_thread (tp->ptid);
4649 keep_going (ecs);
4650 return;
4651 }
4652
a7212384
UW
4653 /* Otherwise, we no longer expect a trap in the current thread.
4654 Clear the trap_expected flag before switching back -- this is
4655 what keep_going would do as well, if we called it. */
16c381f0 4656 ecs->event_thread->control.trap_expected = 0;
a7212384
UW
4657
4658 if (debug_infrun)
4659 fprintf_unfiltered (gdb_stdlog,
4660 "infrun: switching back to stepped thread\n");
4661
4662 ecs->event_thread = tp;
4663 ecs->ptid = tp->ptid;
4664 context_switch (ecs->ptid);
4665 keep_going (ecs);
4666 return;
4667 }
4668 }
4669
8358c15c 4670 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 4671 {
527159b7 4672 if (debug_infrun)
d3169d93
DJ
4673 fprintf_unfiltered (gdb_stdlog,
4674 "infrun: step-resume breakpoint is inserted\n");
527159b7 4675
488f131b
JB
4676 /* Having a step-resume breakpoint overrides anything
4677 else having to do with stepping commands until
4678 that breakpoint is reached. */
488f131b
JB
4679 keep_going (ecs);
4680 return;
4681 }
c5aa993b 4682
16c381f0 4683 if (ecs->event_thread->control.step_range_end == 0)
488f131b 4684 {
527159b7 4685 if (debug_infrun)
8a9de0e4 4686 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 4687 /* Likewise if we aren't even stepping. */
488f131b
JB
4688 keep_going (ecs);
4689 return;
4690 }
c5aa993b 4691
4b7703ad
JB
4692 /* Re-fetch current thread's frame in case the code above caused
4693 the frame cache to be re-initialized, making our FRAME variable
4694 a dangling pointer. */
4695 frame = get_current_frame ();
628fe4e4 4696 gdbarch = get_frame_arch (frame);
7e324e48 4697 fill_in_stop_func (gdbarch, ecs);
4b7703ad 4698
488f131b 4699 /* If stepping through a line, keep going if still within it.
c906108c 4700
488f131b
JB
4701 Note that step_range_end is the address of the first instruction
4702 beyond the step range, and NOT the address of the last instruction
31410e84
MS
4703 within it!
4704
4705 Note also that during reverse execution, we may be stepping
4706 through a function epilogue and therefore must detect when
4707 the current-frame changes in the middle of a line. */
4708
16c381f0
JK
4709 if (stop_pc >= ecs->event_thread->control.step_range_start
4710 && stop_pc < ecs->event_thread->control.step_range_end
31410e84 4711 && (execution_direction != EXEC_REVERSE
388a8562 4712 || frame_id_eq (get_frame_id (frame),
16c381f0 4713 ecs->event_thread->control.step_frame_id)))
488f131b 4714 {
527159b7 4715 if (debug_infrun)
5af949e3
UW
4716 fprintf_unfiltered
4717 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
4718 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4719 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913
MS
4720
4721 /* When stepping backward, stop at beginning of line range
4722 (unless it's the function entry point, in which case
4723 keep going back to the call point). */
16c381f0 4724 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
4725 && stop_pc != ecs->stop_func_start
4726 && execution_direction == EXEC_REVERSE)
4727 {
16c381f0 4728 ecs->event_thread->control.stop_step = 1;
33d62d64 4729 print_end_stepping_range_reason ();
b2175913
MS
4730 stop_stepping (ecs);
4731 }
4732 else
4733 keep_going (ecs);
4734
488f131b
JB
4735 return;
4736 }
c5aa993b 4737
488f131b 4738 /* We stepped out of the stepping range. */
c906108c 4739
488f131b 4740 /* If we are stepping at the source level and entered the runtime
388a8562
MS
4741 loader dynamic symbol resolution code...
4742
4743 EXEC_FORWARD: we keep on single stepping until we exit the run
4744 time loader code and reach the callee's address.
4745
4746 EXEC_REVERSE: we've already executed the callee (backward), and
4747 the runtime loader code is handled just like any other
4748 undebuggable function call. Now we need only keep stepping
4749 backward through the trampoline code, and that's handled further
4750 down, so there is nothing for us to do here. */
4751
4752 if (execution_direction != EXEC_REVERSE
16c381f0 4753 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 4754 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 4755 {
4c8c40e6 4756 CORE_ADDR pc_after_resolver =
568d6575 4757 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 4758
527159b7 4759 if (debug_infrun)
3e43a32a
MS
4760 fprintf_unfiltered (gdb_stdlog,
4761 "infrun: stepped into dynsym resolve code\n");
527159b7 4762
488f131b
JB
4763 if (pc_after_resolver)
4764 {
4765 /* Set up a step-resume breakpoint at the address
4766 indicated by SKIP_SOLIB_RESOLVER. */
4767 struct symtab_and_line sr_sal;
abbb1732 4768
fe39c653 4769 init_sal (&sr_sal);
488f131b 4770 sr_sal.pc = pc_after_resolver;
6c95b8df 4771 sr_sal.pspace = get_frame_program_space (frame);
488f131b 4772
a6d9a66e
UW
4773 insert_step_resume_breakpoint_at_sal (gdbarch,
4774 sr_sal, null_frame_id);
c5aa993b 4775 }
c906108c 4776
488f131b
JB
4777 keep_going (ecs);
4778 return;
4779 }
c906108c 4780
16c381f0
JK
4781 if (ecs->event_thread->control.step_range_end != 1
4782 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4783 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 4784 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 4785 {
527159b7 4786 if (debug_infrun)
3e43a32a
MS
4787 fprintf_unfiltered (gdb_stdlog,
4788 "infrun: stepped into signal trampoline\n");
42edda50 4789 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
4790 a signal trampoline (either by a signal being delivered or by
4791 the signal handler returning). Just single-step until the
4792 inferior leaves the trampoline (either by calling the handler
4793 or returning). */
488f131b
JB
4794 keep_going (ecs);
4795 return;
4796 }
c906108c 4797
c17eaafe
DJ
4798 /* Check for subroutine calls. The check for the current frame
4799 equalling the step ID is not necessary - the check of the
4800 previous frame's ID is sufficient - but it is a common case and
4801 cheaper than checking the previous frame's ID.
14e60db5
DJ
4802
4803 NOTE: frame_id_eq will never report two invalid frame IDs as
4804 being equal, so to get into this block, both the current and
4805 previous frame must have valid frame IDs. */
005ca36a
JB
4806 /* The outer_frame_id check is a heuristic to detect stepping
4807 through startup code. If we step over an instruction which
4808 sets the stack pointer from an invalid value to a valid value,
4809 we may detect that as a subroutine call from the mythical
4810 "outermost" function. This could be fixed by marking
4811 outermost frames as !stack_p,code_p,special_p. Then the
4812 initial outermost frame, before sp was valid, would
ce6cca6d 4813 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 4814 for more. */
edb3359d 4815 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 4816 ecs->event_thread->control.step_stack_frame_id)
005ca36a 4817 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
4818 ecs->event_thread->control.step_stack_frame_id)
4819 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a
JB
4820 outer_frame_id)
4821 || step_start_function != find_pc_function (stop_pc))))
488f131b 4822 {
95918acb 4823 CORE_ADDR real_stop_pc;
8fb3e588 4824
527159b7 4825 if (debug_infrun)
8a9de0e4 4826 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 4827
16c381f0
JK
4828 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4829 || ((ecs->event_thread->control.step_range_end == 1)
d80b854b 4830 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 4831 ecs->stop_func_start)))
95918acb
AC
4832 {
4833 /* I presume that step_over_calls is only 0 when we're
4834 supposed to be stepping at the assembly language level
4835 ("stepi"). Just stop. */
4836 /* Also, maybe we just did a "nexti" inside a prolog, so we
4837 thought it was a subroutine call but it was not. Stop as
4838 well. FENN */
388a8562 4839 /* And this works the same backward as frontward. MVS */
16c381f0 4840 ecs->event_thread->control.stop_step = 1;
33d62d64 4841 print_end_stepping_range_reason ();
95918acb
AC
4842 stop_stepping (ecs);
4843 return;
4844 }
8fb3e588 4845
388a8562
MS
4846 /* Reverse stepping through solib trampolines. */
4847
4848 if (execution_direction == EXEC_REVERSE
16c381f0 4849 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
4850 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4851 || (ecs->stop_func_start == 0
4852 && in_solib_dynsym_resolve_code (stop_pc))))
4853 {
4854 /* Any solib trampoline code can be handled in reverse
4855 by simply continuing to single-step. We have already
4856 executed the solib function (backwards), and a few
4857 steps will take us back through the trampoline to the
4858 caller. */
4859 keep_going (ecs);
4860 return;
4861 }
4862
16c381f0 4863 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 4864 {
b2175913
MS
4865 /* We're doing a "next".
4866
4867 Normal (forward) execution: set a breakpoint at the
4868 callee's return address (the address at which the caller
4869 will resume).
4870
4871 Reverse (backward) execution. set the step-resume
4872 breakpoint at the start of the function that we just
4873 stepped into (backwards), and continue to there. When we
6130d0b7 4874 get there, we'll need to single-step back to the caller. */
b2175913
MS
4875
4876 if (execution_direction == EXEC_REVERSE)
4877 {
4878 struct symtab_and_line sr_sal;
3067f6e5 4879
388a8562
MS
4880 /* Normal function call return (static or dynamic). */
4881 init_sal (&sr_sal);
4882 sr_sal.pc = ecs->stop_func_start;
6c95b8df
PA
4883 sr_sal.pspace = get_frame_program_space (frame);
4884 insert_step_resume_breakpoint_at_sal (gdbarch,
4885 sr_sal, null_frame_id);
b2175913
MS
4886 }
4887 else
568d6575 4888 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4889
8567c30f
AC
4890 keep_going (ecs);
4891 return;
4892 }
a53c66de 4893
95918acb 4894 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
4895 calling routine and the real function), locate the real
4896 function. That's what tells us (a) whether we want to step
4897 into it at all, and (b) what prologue we want to run to the
4898 end of, if we do step into it. */
568d6575 4899 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 4900 if (real_stop_pc == 0)
568d6575 4901 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
4902 if (real_stop_pc != 0)
4903 ecs->stop_func_start = real_stop_pc;
8fb3e588 4904
db5f024e 4905 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
4906 {
4907 struct symtab_and_line sr_sal;
abbb1732 4908
1b2bfbb9
RC
4909 init_sal (&sr_sal);
4910 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4911 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 4912
a6d9a66e
UW
4913 insert_step_resume_breakpoint_at_sal (gdbarch,
4914 sr_sal, null_frame_id);
8fb3e588
AC
4915 keep_going (ecs);
4916 return;
1b2bfbb9
RC
4917 }
4918
95918acb 4919 /* If we have line number information for the function we are
1bfeeb0f
JL
4920 thinking of stepping into and the function isn't on the skip
4921 list, step into it.
95918acb 4922
8fb3e588
AC
4923 If there are several symtabs at that PC (e.g. with include
4924 files), just want to know whether *any* of them have line
4925 numbers. find_pc_line handles this. */
95918acb
AC
4926 {
4927 struct symtab_and_line tmp_sal;
8fb3e588 4928
95918acb 4929 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52
JB
4930 if (tmp_sal.line != 0
4931 && !function_pc_is_marked_for_skip (ecs->stop_func_start))
95918acb 4932 {
b2175913 4933 if (execution_direction == EXEC_REVERSE)
568d6575 4934 handle_step_into_function_backward (gdbarch, ecs);
b2175913 4935 else
568d6575 4936 handle_step_into_function (gdbarch, ecs);
95918acb
AC
4937 return;
4938 }
4939 }
4940
4941 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
4942 set, we stop the step so that the user has a chance to switch
4943 in assembly mode. */
16c381f0 4944 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 4945 && step_stop_if_no_debug)
95918acb 4946 {
16c381f0 4947 ecs->event_thread->control.stop_step = 1;
33d62d64 4948 print_end_stepping_range_reason ();
95918acb
AC
4949 stop_stepping (ecs);
4950 return;
4951 }
4952
b2175913
MS
4953 if (execution_direction == EXEC_REVERSE)
4954 {
4955 /* Set a breakpoint at callee's start address.
4956 From there we can step once and be back in the caller. */
4957 struct symtab_and_line sr_sal;
abbb1732 4958
b2175913
MS
4959 init_sal (&sr_sal);
4960 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4961 sr_sal.pspace = get_frame_program_space (frame);
a6d9a66e
UW
4962 insert_step_resume_breakpoint_at_sal (gdbarch,
4963 sr_sal, null_frame_id);
b2175913
MS
4964 }
4965 else
4966 /* Set a breakpoint at callee's return address (the address
4967 at which the caller will resume). */
568d6575 4968 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4969
95918acb 4970 keep_going (ecs);
488f131b 4971 return;
488f131b 4972 }
c906108c 4973
fdd654f3
MS
4974 /* Reverse stepping through solib trampolines. */
4975
4976 if (execution_direction == EXEC_REVERSE
16c381f0 4977 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
4978 {
4979 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4980 || (ecs->stop_func_start == 0
4981 && in_solib_dynsym_resolve_code (stop_pc)))
4982 {
4983 /* Any solib trampoline code can be handled in reverse
4984 by simply continuing to single-step. We have already
4985 executed the solib function (backwards), and a few
4986 steps will take us back through the trampoline to the
4987 caller. */
4988 keep_going (ecs);
4989 return;
4990 }
4991 else if (in_solib_dynsym_resolve_code (stop_pc))
4992 {
4993 /* Stepped backward into the solib dynsym resolver.
4994 Set a breakpoint at its start and continue, then
4995 one more step will take us out. */
4996 struct symtab_and_line sr_sal;
abbb1732 4997
fdd654f3
MS
4998 init_sal (&sr_sal);
4999 sr_sal.pc = ecs->stop_func_start;
9d1807c3 5000 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
5001 insert_step_resume_breakpoint_at_sal (gdbarch,
5002 sr_sal, null_frame_id);
5003 keep_going (ecs);
5004 return;
5005 }
5006 }
5007
488f131b
JB
5008 /* If we're in the return path from a shared library trampoline,
5009 we want to proceed through the trampoline when stepping. */
568d6575 5010 if (gdbarch_in_solib_return_trampoline (gdbarch,
473347ad
MR
5011 stop_pc, ecs->stop_func_name)
5012 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
488f131b 5013 {
488f131b 5014 /* Determine where this trampoline returns. */
52f729a7 5015 CORE_ADDR real_stop_pc;
abbb1732 5016
568d6575 5017 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
c906108c 5018
527159b7 5019 if (debug_infrun)
3e43a32a
MS
5020 fprintf_unfiltered (gdb_stdlog,
5021 "infrun: stepped into solib return tramp\n");
527159b7 5022
488f131b 5023 /* Only proceed through if we know where it's going. */
d764a824 5024 if (real_stop_pc)
488f131b 5025 {
1777feb0 5026 /* And put the step-breakpoint there and go until there. */
488f131b
JB
5027 struct symtab_and_line sr_sal;
5028
fe39c653 5029 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 5030 sr_sal.pc = real_stop_pc;
488f131b 5031 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5032 sr_sal.pspace = get_frame_program_space (frame);
44cbf7b5
AC
5033
5034 /* Do not specify what the fp should be when we stop since
5035 on some machines the prologue is where the new fp value
5036 is established. */
a6d9a66e
UW
5037 insert_step_resume_breakpoint_at_sal (gdbarch,
5038 sr_sal, null_frame_id);
c906108c 5039
488f131b
JB
5040 /* Restart without fiddling with the step ranges or
5041 other state. */
5042 keep_going (ecs);
5043 return;
5044 }
5045 }
c906108c 5046
2afb61aa 5047 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 5048
1b2bfbb9
RC
5049 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5050 the trampoline processing logic, however, there are some trampolines
5051 that have no names, so we should do trampoline handling first. */
16c381f0 5052 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 5053 && ecs->stop_func_name == NULL
2afb61aa 5054 && stop_pc_sal.line == 0)
1b2bfbb9 5055 {
527159b7 5056 if (debug_infrun)
3e43a32a
MS
5057 fprintf_unfiltered (gdb_stdlog,
5058 "infrun: stepped into undebuggable function\n");
527159b7 5059
1b2bfbb9 5060 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
5061 undebuggable function (where there is no debugging information
5062 and no line number corresponding to the address where the
1b2bfbb9
RC
5063 inferior stopped). Since we want to skip this kind of code,
5064 we keep going until the inferior returns from this
14e60db5
DJ
5065 function - unless the user has asked us not to (via
5066 set step-mode) or we no longer know how to get back
5067 to the call site. */
5068 if (step_stop_if_no_debug
c7ce8faa 5069 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
5070 {
5071 /* If we have no line number and the step-stop-if-no-debug
5072 is set, we stop the step so that the user has a chance to
5073 switch in assembly mode. */
16c381f0 5074 ecs->event_thread->control.stop_step = 1;
33d62d64 5075 print_end_stepping_range_reason ();
1b2bfbb9
RC
5076 stop_stepping (ecs);
5077 return;
5078 }
5079 else
5080 {
5081 /* Set a breakpoint at callee's return address (the address
5082 at which the caller will resume). */
568d6575 5083 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
5084 keep_going (ecs);
5085 return;
5086 }
5087 }
5088
16c381f0 5089 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
5090 {
5091 /* It is stepi or nexti. We always want to stop stepping after
5092 one instruction. */
527159b7 5093 if (debug_infrun)
8a9de0e4 5094 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
16c381f0 5095 ecs->event_thread->control.stop_step = 1;
33d62d64 5096 print_end_stepping_range_reason ();
1b2bfbb9
RC
5097 stop_stepping (ecs);
5098 return;
5099 }
5100
2afb61aa 5101 if (stop_pc_sal.line == 0)
488f131b
JB
5102 {
5103 /* We have no line number information. That means to stop
5104 stepping (does this always happen right after one instruction,
5105 when we do "s" in a function with no line numbers,
5106 or can this happen as a result of a return or longjmp?). */
527159b7 5107 if (debug_infrun)
8a9de0e4 5108 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
16c381f0 5109 ecs->event_thread->control.stop_step = 1;
33d62d64 5110 print_end_stepping_range_reason ();
488f131b
JB
5111 stop_stepping (ecs);
5112 return;
5113 }
c906108c 5114
edb3359d
DJ
5115 /* Look for "calls" to inlined functions, part one. If the inline
5116 frame machinery detected some skipped call sites, we have entered
5117 a new inline function. */
5118
5119 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5120 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
5121 && inline_skipped_frames (ecs->ptid))
5122 {
5123 struct symtab_and_line call_sal;
5124
5125 if (debug_infrun)
5126 fprintf_unfiltered (gdb_stdlog,
5127 "infrun: stepped into inlined function\n");
5128
5129 find_frame_sal (get_current_frame (), &call_sal);
5130
16c381f0 5131 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
5132 {
5133 /* For "step", we're going to stop. But if the call site
5134 for this inlined function is on the same source line as
5135 we were previously stepping, go down into the function
5136 first. Otherwise stop at the call site. */
5137
5138 if (call_sal.line == ecs->event_thread->current_line
5139 && call_sal.symtab == ecs->event_thread->current_symtab)
5140 step_into_inline_frame (ecs->ptid);
5141
16c381f0 5142 ecs->event_thread->control.stop_step = 1;
33d62d64 5143 print_end_stepping_range_reason ();
edb3359d
DJ
5144 stop_stepping (ecs);
5145 return;
5146 }
5147 else
5148 {
5149 /* For "next", we should stop at the call site if it is on a
5150 different source line. Otherwise continue through the
5151 inlined function. */
5152 if (call_sal.line == ecs->event_thread->current_line
5153 && call_sal.symtab == ecs->event_thread->current_symtab)
5154 keep_going (ecs);
5155 else
5156 {
16c381f0 5157 ecs->event_thread->control.stop_step = 1;
33d62d64 5158 print_end_stepping_range_reason ();
edb3359d
DJ
5159 stop_stepping (ecs);
5160 }
5161 return;
5162 }
5163 }
5164
5165 /* Look for "calls" to inlined functions, part two. If we are still
5166 in the same real function we were stepping through, but we have
5167 to go further up to find the exact frame ID, we are stepping
5168 through a more inlined call beyond its call site. */
5169
5170 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5171 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5172 ecs->event_thread->control.step_frame_id)
edb3359d 5173 && stepped_in_from (get_current_frame (),
16c381f0 5174 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
5175 {
5176 if (debug_infrun)
5177 fprintf_unfiltered (gdb_stdlog,
5178 "infrun: stepping through inlined function\n");
5179
16c381f0 5180 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
5181 keep_going (ecs);
5182 else
5183 {
16c381f0 5184 ecs->event_thread->control.stop_step = 1;
33d62d64 5185 print_end_stepping_range_reason ();
edb3359d
DJ
5186 stop_stepping (ecs);
5187 }
5188 return;
5189 }
5190
2afb61aa 5191 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
5192 && (ecs->event_thread->current_line != stop_pc_sal.line
5193 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
5194 {
5195 /* We are at the start of a different line. So stop. Note that
5196 we don't stop if we step into the middle of a different line.
5197 That is said to make things like for (;;) statements work
5198 better. */
527159b7 5199 if (debug_infrun)
3e43a32a
MS
5200 fprintf_unfiltered (gdb_stdlog,
5201 "infrun: stepped to a different line\n");
16c381f0 5202 ecs->event_thread->control.stop_step = 1;
33d62d64 5203 print_end_stepping_range_reason ();
488f131b
JB
5204 stop_stepping (ecs);
5205 return;
5206 }
c906108c 5207
488f131b 5208 /* We aren't done stepping.
c906108c 5209
488f131b
JB
5210 Optimize by setting the stepping range to the line.
5211 (We might not be in the original line, but if we entered a
5212 new line in mid-statement, we continue stepping. This makes
5213 things like for(;;) statements work better.) */
c906108c 5214
16c381f0
JK
5215 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5216 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
edb3359d 5217 set_step_info (frame, stop_pc_sal);
488f131b 5218
527159b7 5219 if (debug_infrun)
8a9de0e4 5220 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 5221 keep_going (ecs);
104c1213
JM
5222}
5223
b3444185 5224/* Is thread TP in the middle of single-stepping? */
104c1213 5225
a289b8f6 5226static int
b3444185 5227currently_stepping (struct thread_info *tp)
a7212384 5228{
8358c15c
JK
5229 return ((tp->control.step_range_end
5230 && tp->control.step_resume_breakpoint == NULL)
5231 || tp->control.trap_expected
8358c15c 5232 || bpstat_should_step ());
a7212384
UW
5233}
5234
b3444185
PA
5235/* Returns true if any thread *but* the one passed in "data" is in the
5236 middle of stepping or of handling a "next". */
a7212384 5237
104c1213 5238static int
b3444185 5239currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
104c1213 5240{
b3444185
PA
5241 if (tp == data)
5242 return 0;
5243
16c381f0 5244 return (tp->control.step_range_end
ede1849f 5245 || tp->control.trap_expected);
104c1213 5246}
c906108c 5247
b2175913
MS
5248/* Inferior has stepped into a subroutine call with source code that
5249 we should not step over. Do step to the first line of code in
5250 it. */
c2c6d25f
JM
5251
5252static void
568d6575
UW
5253handle_step_into_function (struct gdbarch *gdbarch,
5254 struct execution_control_state *ecs)
c2c6d25f
JM
5255{
5256 struct symtab *s;
2afb61aa 5257 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 5258
7e324e48
GB
5259 fill_in_stop_func (gdbarch, ecs);
5260
c2c6d25f
JM
5261 s = find_pc_symtab (stop_pc);
5262 if (s && s->language != language_asm)
568d6575 5263 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 5264 ecs->stop_func_start);
c2c6d25f 5265
2afb61aa 5266 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
5267 /* Use the step_resume_break to step until the end of the prologue,
5268 even if that involves jumps (as it seems to on the vax under
5269 4.2). */
5270 /* If the prologue ends in the middle of a source line, continue to
5271 the end of that source line (if it is still within the function).
5272 Otherwise, just go to end of prologue. */
2afb61aa
PA
5273 if (stop_func_sal.end
5274 && stop_func_sal.pc != ecs->stop_func_start
5275 && stop_func_sal.end < ecs->stop_func_end)
5276 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 5277
2dbd5e30
KB
5278 /* Architectures which require breakpoint adjustment might not be able
5279 to place a breakpoint at the computed address. If so, the test
5280 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5281 ecs->stop_func_start to an address at which a breakpoint may be
5282 legitimately placed.
8fb3e588 5283
2dbd5e30
KB
5284 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5285 made, GDB will enter an infinite loop when stepping through
5286 optimized code consisting of VLIW instructions which contain
5287 subinstructions corresponding to different source lines. On
5288 FR-V, it's not permitted to place a breakpoint on any but the
5289 first subinstruction of a VLIW instruction. When a breakpoint is
5290 set, GDB will adjust the breakpoint address to the beginning of
5291 the VLIW instruction. Thus, we need to make the corresponding
5292 adjustment here when computing the stop address. */
8fb3e588 5293
568d6575 5294 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
5295 {
5296 ecs->stop_func_start
568d6575 5297 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 5298 ecs->stop_func_start);
2dbd5e30
KB
5299 }
5300
c2c6d25f
JM
5301 if (ecs->stop_func_start == stop_pc)
5302 {
5303 /* We are already there: stop now. */
16c381f0 5304 ecs->event_thread->control.stop_step = 1;
33d62d64 5305 print_end_stepping_range_reason ();
c2c6d25f
JM
5306 stop_stepping (ecs);
5307 return;
5308 }
5309 else
5310 {
5311 /* Put the step-breakpoint there and go until there. */
fe39c653 5312 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
5313 sr_sal.pc = ecs->stop_func_start;
5314 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 5315 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 5316
c2c6d25f 5317 /* Do not specify what the fp should be when we stop since on
488f131b
JB
5318 some machines the prologue is where the new fp value is
5319 established. */
a6d9a66e 5320 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
5321
5322 /* And make sure stepping stops right away then. */
16c381f0
JK
5323 ecs->event_thread->control.step_range_end
5324 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
5325 }
5326 keep_going (ecs);
5327}
d4f3574e 5328
b2175913
MS
5329/* Inferior has stepped backward into a subroutine call with source
5330 code that we should not step over. Do step to the beginning of the
5331 last line of code in it. */
5332
5333static void
568d6575
UW
5334handle_step_into_function_backward (struct gdbarch *gdbarch,
5335 struct execution_control_state *ecs)
b2175913
MS
5336{
5337 struct symtab *s;
167e4384 5338 struct symtab_and_line stop_func_sal;
b2175913 5339
7e324e48
GB
5340 fill_in_stop_func (gdbarch, ecs);
5341
b2175913
MS
5342 s = find_pc_symtab (stop_pc);
5343 if (s && s->language != language_asm)
568d6575 5344 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
5345 ecs->stop_func_start);
5346
5347 stop_func_sal = find_pc_line (stop_pc, 0);
5348
5349 /* OK, we're just going to keep stepping here. */
5350 if (stop_func_sal.pc == stop_pc)
5351 {
5352 /* We're there already. Just stop stepping now. */
16c381f0 5353 ecs->event_thread->control.stop_step = 1;
33d62d64 5354 print_end_stepping_range_reason ();
b2175913
MS
5355 stop_stepping (ecs);
5356 }
5357 else
5358 {
5359 /* Else just reset the step range and keep going.
5360 No step-resume breakpoint, they don't work for
5361 epilogues, which can have multiple entry paths. */
16c381f0
JK
5362 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5363 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
5364 keep_going (ecs);
5365 }
5366 return;
5367}
5368
d3169d93 5369/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
5370 This is used to both functions and to skip over code. */
5371
5372static void
2c03e5be
PA
5373insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5374 struct symtab_and_line sr_sal,
5375 struct frame_id sr_id,
5376 enum bptype sr_type)
44cbf7b5 5377{
611c83ae
PA
5378 /* There should never be more than one step-resume or longjmp-resume
5379 breakpoint per thread, so we should never be setting a new
44cbf7b5 5380 step_resume_breakpoint when one is already active. */
8358c15c 5381 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 5382 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
5383
5384 if (debug_infrun)
5385 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5386 "infrun: inserting step-resume breakpoint at %s\n",
5387 paddress (gdbarch, sr_sal.pc));
d3169d93 5388
8358c15c 5389 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
5390 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5391}
5392
9da8c2a0 5393void
2c03e5be
PA
5394insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5395 struct symtab_and_line sr_sal,
5396 struct frame_id sr_id)
5397{
5398 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5399 sr_sal, sr_id,
5400 bp_step_resume);
44cbf7b5 5401}
7ce450bd 5402
2c03e5be
PA
5403/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5404 This is used to skip a potential signal handler.
7ce450bd 5405
14e60db5
DJ
5406 This is called with the interrupted function's frame. The signal
5407 handler, when it returns, will resume the interrupted function at
5408 RETURN_FRAME.pc. */
d303a6c7
AC
5409
5410static void
2c03e5be 5411insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
5412{
5413 struct symtab_and_line sr_sal;
a6d9a66e 5414 struct gdbarch *gdbarch;
d303a6c7 5415
f4c1edd8 5416 gdb_assert (return_frame != NULL);
d303a6c7
AC
5417 init_sal (&sr_sal); /* initialize to zeros */
5418
a6d9a66e 5419 gdbarch = get_frame_arch (return_frame);
568d6575 5420 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 5421 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5422 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 5423
2c03e5be
PA
5424 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5425 get_stack_frame_id (return_frame),
5426 bp_hp_step_resume);
d303a6c7
AC
5427}
5428
2c03e5be
PA
5429/* Insert a "step-resume breakpoint" at the previous frame's PC. This
5430 is used to skip a function after stepping into it (for "next" or if
5431 the called function has no debugging information).
14e60db5
DJ
5432
5433 The current function has almost always been reached by single
5434 stepping a call or return instruction. NEXT_FRAME belongs to the
5435 current function, and the breakpoint will be set at the caller's
5436 resume address.
5437
5438 This is a separate function rather than reusing
2c03e5be 5439 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 5440 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 5441 of frame_unwind_caller_id for an example). */
14e60db5
DJ
5442
5443static void
5444insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5445{
5446 struct symtab_and_line sr_sal;
a6d9a66e 5447 struct gdbarch *gdbarch;
14e60db5
DJ
5448
5449 /* We shouldn't have gotten here if we don't know where the call site
5450 is. */
c7ce8faa 5451 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
5452
5453 init_sal (&sr_sal); /* initialize to zeros */
5454
a6d9a66e 5455 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
5456 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5457 frame_unwind_caller_pc (next_frame));
14e60db5 5458 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5459 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 5460
a6d9a66e 5461 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 5462 frame_unwind_caller_id (next_frame));
14e60db5
DJ
5463}
5464
611c83ae
PA
5465/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5466 new breakpoint at the target of a jmp_buf. The handling of
5467 longjmp-resume uses the same mechanisms used for handling
5468 "step-resume" breakpoints. */
5469
5470static void
a6d9a66e 5471insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae
PA
5472{
5473 /* There should never be more than one step-resume or longjmp-resume
5474 breakpoint per thread, so we should never be setting a new
5475 longjmp_resume_breakpoint when one is already active. */
8358c15c 5476 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
611c83ae
PA
5477
5478 if (debug_infrun)
5479 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5480 "infrun: inserting longjmp-resume breakpoint at %s\n",
5481 paddress (gdbarch, pc));
611c83ae 5482
8358c15c 5483 inferior_thread ()->control.step_resume_breakpoint =
a6d9a66e 5484 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
5485}
5486
186c406b
TT
5487/* Insert an exception resume breakpoint. TP is the thread throwing
5488 the exception. The block B is the block of the unwinder debug hook
5489 function. FRAME is the frame corresponding to the call to this
5490 function. SYM is the symbol of the function argument holding the
5491 target PC of the exception. */
5492
5493static void
5494insert_exception_resume_breakpoint (struct thread_info *tp,
5495 struct block *b,
5496 struct frame_info *frame,
5497 struct symbol *sym)
5498{
bfd189b1 5499 volatile struct gdb_exception e;
186c406b
TT
5500
5501 /* We want to ignore errors here. */
5502 TRY_CATCH (e, RETURN_MASK_ERROR)
5503 {
5504 struct symbol *vsym;
5505 struct value *value;
5506 CORE_ADDR handler;
5507 struct breakpoint *bp;
5508
5509 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5510 value = read_var_value (vsym, frame);
5511 /* If the value was optimized out, revert to the old behavior. */
5512 if (! value_optimized_out (value))
5513 {
5514 handler = value_as_address (value);
5515
5516 if (debug_infrun)
5517 fprintf_unfiltered (gdb_stdlog,
5518 "infrun: exception resume at %lx\n",
5519 (unsigned long) handler);
5520
5521 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5522 handler, bp_exception_resume);
5523 bp->thread = tp->num;
5524 inferior_thread ()->control.exception_resume_breakpoint = bp;
5525 }
5526 }
5527}
5528
5529/* This is called when an exception has been intercepted. Check to
5530 see whether the exception's destination is of interest, and if so,
5531 set an exception resume breakpoint there. */
5532
5533static void
5534check_exception_resume (struct execution_control_state *ecs,
5535 struct frame_info *frame, struct symbol *func)
5536{
bfd189b1 5537 volatile struct gdb_exception e;
186c406b
TT
5538
5539 TRY_CATCH (e, RETURN_MASK_ERROR)
5540 {
5541 struct block *b;
5542 struct dict_iterator iter;
5543 struct symbol *sym;
5544 int argno = 0;
5545
5546 /* The exception breakpoint is a thread-specific breakpoint on
5547 the unwinder's debug hook, declared as:
5548
5549 void _Unwind_DebugHook (void *cfa, void *handler);
5550
5551 The CFA argument indicates the frame to which control is
5552 about to be transferred. HANDLER is the destination PC.
5553
5554 We ignore the CFA and set a temporary breakpoint at HANDLER.
5555 This is not extremely efficient but it avoids issues in gdb
5556 with computing the DWARF CFA, and it also works even in weird
5557 cases such as throwing an exception from inside a signal
5558 handler. */
5559
5560 b = SYMBOL_BLOCK_VALUE (func);
5561 ALL_BLOCK_SYMBOLS (b, iter, sym)
5562 {
5563 if (!SYMBOL_IS_ARGUMENT (sym))
5564 continue;
5565
5566 if (argno == 0)
5567 ++argno;
5568 else
5569 {
5570 insert_exception_resume_breakpoint (ecs->event_thread,
5571 b, frame, sym);
5572 break;
5573 }
5574 }
5575 }
5576}
5577
104c1213
JM
5578static void
5579stop_stepping (struct execution_control_state *ecs)
5580{
527159b7 5581 if (debug_infrun)
8a9de0e4 5582 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 5583
cd0fc7c3
SS
5584 /* Let callers know we don't want to wait for the inferior anymore. */
5585 ecs->wait_some_more = 0;
5586}
5587
d4f3574e
SS
5588/* This function handles various cases where we need to continue
5589 waiting for the inferior. */
1777feb0 5590/* (Used to be the keep_going: label in the old wait_for_inferior). */
d4f3574e
SS
5591
5592static void
5593keep_going (struct execution_control_state *ecs)
5594{
c4dbc9af
PA
5595 /* Make sure normal_stop is called if we get a QUIT handled before
5596 reaching resume. */
5597 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5598
d4f3574e 5599 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
5600 ecs->event_thread->prev_pc
5601 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 5602
d4f3574e
SS
5603 /* If we did not do break;, it means we should keep running the
5604 inferior and not return to debugger. */
5605
16c381f0
JK
5606 if (ecs->event_thread->control.trap_expected
5607 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
d4f3574e
SS
5608 {
5609 /* We took a signal (which we are supposed to pass through to
4e1c45ea
PA
5610 the inferior, else we'd not get here) and we haven't yet
5611 gotten our trap. Simply continue. */
c4dbc9af
PA
5612
5613 discard_cleanups (old_cleanups);
2020b7ab 5614 resume (currently_stepping (ecs->event_thread),
16c381f0 5615 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5616 }
5617 else
5618 {
5619 /* Either the trap was not expected, but we are continuing
488f131b
JB
5620 anyway (the user asked that this signal be passed to the
5621 child)
5622 -- or --
5623 The signal was SIGTRAP, e.g. it was our signal, but we
5624 decided we should resume from it.
d4f3574e 5625
c36b740a 5626 We're going to run this baby now!
d4f3574e 5627
c36b740a
VP
5628 Note that insert_breakpoints won't try to re-insert
5629 already inserted breakpoints. Therefore, we don't
5630 care if breakpoints were already inserted, or not. */
5631
4e1c45ea 5632 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 5633 {
9f5a595d 5634 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
abbb1732 5635
9f5a595d 5636 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
5637 /* Since we can't do a displaced step, we have to remove
5638 the breakpoint while we step it. To keep things
5639 simple, we remove them all. */
5640 remove_breakpoints ();
45e8c884
VP
5641 }
5642 else
d4f3574e 5643 {
bfd189b1 5644 volatile struct gdb_exception e;
abbb1732 5645
569631c6
UW
5646 /* Stop stepping when inserting breakpoints
5647 has failed. */
e236ba44
VP
5648 TRY_CATCH (e, RETURN_MASK_ERROR)
5649 {
5650 insert_breakpoints ();
5651 }
5652 if (e.reason < 0)
d4f3574e 5653 {
97bd5475 5654 exception_print (gdb_stderr, e);
d4f3574e
SS
5655 stop_stepping (ecs);
5656 return;
5657 }
d4f3574e
SS
5658 }
5659
16c381f0
JK
5660 ecs->event_thread->control.trap_expected
5661 = ecs->event_thread->stepping_over_breakpoint;
d4f3574e
SS
5662
5663 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
5664 specifies that such a signal should be delivered to the
5665 target program).
5666
5667 Typically, this would occure when a user is debugging a
5668 target monitor on a simulator: the target monitor sets a
5669 breakpoint; the simulator encounters this break-point and
5670 halts the simulation handing control to GDB; GDB, noteing
5671 that the break-point isn't valid, returns control back to the
5672 simulator; the simulator then delivers the hardware
1777feb0 5673 equivalent of a SIGNAL_TRAP to the program being debugged. */
488f131b 5674
16c381f0
JK
5675 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
5676 && !signal_program[ecs->event_thread->suspend.stop_signal])
5677 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
d4f3574e 5678
c4dbc9af 5679 discard_cleanups (old_cleanups);
2020b7ab 5680 resume (currently_stepping (ecs->event_thread),
16c381f0 5681 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5682 }
5683
488f131b 5684 prepare_to_wait (ecs);
d4f3574e
SS
5685}
5686
104c1213
JM
5687/* This function normally comes after a resume, before
5688 handle_inferior_event exits. It takes care of any last bits of
5689 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 5690
104c1213
JM
5691static void
5692prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 5693{
527159b7 5694 if (debug_infrun)
8a9de0e4 5695 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 5696
104c1213
JM
5697 /* This is the old end of the while loop. Let everybody know we
5698 want to wait for the inferior some more and get called again
5699 soon. */
5700 ecs->wait_some_more = 1;
c906108c 5701}
11cf8741 5702
33d62d64
JK
5703/* Several print_*_reason functions to print why the inferior has stopped.
5704 We always print something when the inferior exits, or receives a signal.
5705 The rest of the cases are dealt with later on in normal_stop and
5706 print_it_typical. Ideally there should be a call to one of these
5707 print_*_reason functions functions from handle_inferior_event each time
5708 stop_stepping is called. */
5709
5710/* Print why the inferior has stopped.
5711 We are done with a step/next/si/ni command, print why the inferior has
5712 stopped. For now print nothing. Print a message only if not in the middle
5713 of doing a "step n" operation for n > 1. */
5714
5715static void
5716print_end_stepping_range_reason (void)
5717{
16c381f0
JK
5718 if ((!inferior_thread ()->step_multi
5719 || !inferior_thread ()->control.stop_step)
79a45e25
PA
5720 && ui_out_is_mi_like_p (current_uiout))
5721 ui_out_field_string (current_uiout, "reason",
33d62d64
JK
5722 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5723}
5724
5725/* The inferior was terminated by a signal, print why it stopped. */
5726
11cf8741 5727static void
33d62d64 5728print_signal_exited_reason (enum target_signal siggnal)
11cf8741 5729{
79a45e25
PA
5730 struct ui_out *uiout = current_uiout;
5731
33d62d64
JK
5732 annotate_signalled ();
5733 if (ui_out_is_mi_like_p (uiout))
5734 ui_out_field_string
5735 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5736 ui_out_text (uiout, "\nProgram terminated with signal ");
5737 annotate_signal_name ();
5738 ui_out_field_string (uiout, "signal-name",
5739 target_signal_to_name (siggnal));
5740 annotate_signal_name_end ();
5741 ui_out_text (uiout, ", ");
5742 annotate_signal_string ();
5743 ui_out_field_string (uiout, "signal-meaning",
5744 target_signal_to_string (siggnal));
5745 annotate_signal_string_end ();
5746 ui_out_text (uiout, ".\n");
5747 ui_out_text (uiout, "The program no longer exists.\n");
5748}
5749
5750/* The inferior program is finished, print why it stopped. */
5751
5752static void
5753print_exited_reason (int exitstatus)
5754{
fda326dd
TT
5755 struct inferior *inf = current_inferior ();
5756 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
79a45e25 5757 struct ui_out *uiout = current_uiout;
fda326dd 5758
33d62d64
JK
5759 annotate_exited (exitstatus);
5760 if (exitstatus)
5761 {
5762 if (ui_out_is_mi_like_p (uiout))
5763 ui_out_field_string (uiout, "reason",
5764 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
5765 ui_out_text (uiout, "[Inferior ");
5766 ui_out_text (uiout, plongest (inf->num));
5767 ui_out_text (uiout, " (");
5768 ui_out_text (uiout, pidstr);
5769 ui_out_text (uiout, ") exited with code ");
33d62d64 5770 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 5771 ui_out_text (uiout, "]\n");
33d62d64
JK
5772 }
5773 else
11cf8741 5774 {
9dc5e2a9 5775 if (ui_out_is_mi_like_p (uiout))
034dad6f 5776 ui_out_field_string
33d62d64 5777 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
5778 ui_out_text (uiout, "[Inferior ");
5779 ui_out_text (uiout, plongest (inf->num));
5780 ui_out_text (uiout, " (");
5781 ui_out_text (uiout, pidstr);
5782 ui_out_text (uiout, ") exited normally]\n");
33d62d64
JK
5783 }
5784 /* Support the --return-child-result option. */
5785 return_child_result_value = exitstatus;
5786}
5787
5788/* Signal received, print why the inferior has stopped. The signal table
1777feb0 5789 tells us to print about it. */
33d62d64
JK
5790
5791static void
5792print_signal_received_reason (enum target_signal siggnal)
5793{
79a45e25
PA
5794 struct ui_out *uiout = current_uiout;
5795
33d62d64
JK
5796 annotate_signal ();
5797
5798 if (siggnal == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5799 {
5800 struct thread_info *t = inferior_thread ();
5801
5802 ui_out_text (uiout, "\n[");
5803 ui_out_field_string (uiout, "thread-name",
5804 target_pid_to_str (t->ptid));
5805 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5806 ui_out_text (uiout, " stopped");
5807 }
5808 else
5809 {
5810 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 5811 annotate_signal_name ();
33d62d64
JK
5812 if (ui_out_is_mi_like_p (uiout))
5813 ui_out_field_string
5814 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 5815 ui_out_field_string (uiout, "signal-name",
33d62d64 5816 target_signal_to_name (siggnal));
8b93c638
JM
5817 annotate_signal_name_end ();
5818 ui_out_text (uiout, ", ");
5819 annotate_signal_string ();
488f131b 5820 ui_out_field_string (uiout, "signal-meaning",
33d62d64 5821 target_signal_to_string (siggnal));
8b93c638 5822 annotate_signal_string_end ();
33d62d64
JK
5823 }
5824 ui_out_text (uiout, ".\n");
5825}
252fbfc8 5826
33d62d64
JK
5827/* Reverse execution: target ran out of history info, print why the inferior
5828 has stopped. */
252fbfc8 5829
33d62d64
JK
5830static void
5831print_no_history_reason (void)
5832{
79a45e25 5833 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
11cf8741 5834}
43ff13b4 5835
c906108c
SS
5836/* Here to return control to GDB when the inferior stops for real.
5837 Print appropriate messages, remove breakpoints, give terminal our modes.
5838
5839 STOP_PRINT_FRAME nonzero means print the executing frame
5840 (pc, function, args, file, line number and line text).
5841 BREAKPOINTS_FAILED nonzero means stop was due to error
5842 attempting to insert breakpoints. */
5843
5844void
96baa820 5845normal_stop (void)
c906108c 5846{
73b65bb0
DJ
5847 struct target_waitstatus last;
5848 ptid_t last_ptid;
29f49a6a 5849 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
5850
5851 get_last_target_status (&last_ptid, &last);
5852
29f49a6a
PA
5853 /* If an exception is thrown from this point on, make sure to
5854 propagate GDB's knowledge of the executing state to the
5855 frontend/user running state. A QUIT is an easy exception to see
5856 here, so do this before any filtered output. */
c35b1492
PA
5857 if (!non_stop)
5858 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5859 else if (last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
5860 && last.kind != TARGET_WAITKIND_EXITED
5861 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 5862 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 5863
4f8d22e3
PA
5864 /* In non-stop mode, we don't want GDB to switch threads behind the
5865 user's back, to avoid races where the user is typing a command to
5866 apply to thread x, but GDB switches to thread y before the user
5867 finishes entering the command. */
5868
c906108c
SS
5869 /* As with the notification of thread events, we want to delay
5870 notifying the user that we've switched thread context until
5871 the inferior actually stops.
5872
73b65bb0
DJ
5873 There's no point in saying anything if the inferior has exited.
5874 Note that SIGNALLED here means "exited with a signal", not
5875 "received a signal". */
4f8d22e3
PA
5876 if (!non_stop
5877 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
5878 && target_has_execution
5879 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
5880 && last.kind != TARGET_WAITKIND_EXITED
5881 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
5882 {
5883 target_terminal_ours_for_output ();
a3f17187 5884 printf_filtered (_("[Switching to %s]\n"),
c95310c6 5885 target_pid_to_str (inferior_ptid));
b8fa951a 5886 annotate_thread_changed ();
39f77062 5887 previous_inferior_ptid = inferior_ptid;
c906108c 5888 }
c906108c 5889
0e5bf2a8
PA
5890 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
5891 {
5892 gdb_assert (sync_execution || !target_can_async_p ());
5893
5894 target_terminal_ours_for_output ();
5895 printf_filtered (_("No unwaited-for children left.\n"));
5896 }
5897
74960c60 5898 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
5899 {
5900 if (remove_breakpoints ())
5901 {
5902 target_terminal_ours_for_output ();
3e43a32a
MS
5903 printf_filtered (_("Cannot remove breakpoints because "
5904 "program is no longer writable.\nFurther "
5905 "execution is probably impossible.\n"));
c906108c
SS
5906 }
5907 }
c906108c 5908
c906108c
SS
5909 /* If an auto-display called a function and that got a signal,
5910 delete that auto-display to avoid an infinite recursion. */
5911
5912 if (stopped_by_random_signal)
5913 disable_current_display ();
5914
5915 /* Don't print a message if in the middle of doing a "step n"
5916 operation for n > 1 */
af679fd0
PA
5917 if (target_has_execution
5918 && last.kind != TARGET_WAITKIND_SIGNALLED
5919 && last.kind != TARGET_WAITKIND_EXITED
5920 && inferior_thread ()->step_multi
16c381f0 5921 && inferior_thread ()->control.stop_step)
c906108c
SS
5922 goto done;
5923
5924 target_terminal_ours ();
0f641c01 5925 async_enable_stdin ();
c906108c 5926
7abfe014
DJ
5927 /* Set the current source location. This will also happen if we
5928 display the frame below, but the current SAL will be incorrect
5929 during a user hook-stop function. */
d729566a 5930 if (has_stack_frames () && !stop_stack_dummy)
7abfe014
DJ
5931 set_current_sal_from_frame (get_current_frame (), 1);
5932
dd7e2d2b
PA
5933 /* Let the user/frontend see the threads as stopped. */
5934 do_cleanups (old_chain);
5935
5936 /* Look up the hook_stop and run it (CLI internally handles problem
5937 of stop_command's pre-hook not existing). */
5938 if (stop_command)
5939 catch_errors (hook_stop_stub, stop_command,
5940 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5941
d729566a 5942 if (!has_stack_frames ())
d51fd4c8 5943 goto done;
c906108c 5944
32400beb
PA
5945 if (last.kind == TARGET_WAITKIND_SIGNALLED
5946 || last.kind == TARGET_WAITKIND_EXITED)
5947 goto done;
5948
c906108c
SS
5949 /* Select innermost stack frame - i.e., current frame is frame 0,
5950 and current location is based on that.
5951 Don't do this on return from a stack dummy routine,
1777feb0 5952 or if the program has exited. */
c906108c
SS
5953
5954 if (!stop_stack_dummy)
5955 {
0f7d239c 5956 select_frame (get_current_frame ());
c906108c
SS
5957
5958 /* Print current location without a level number, if
c5aa993b
JM
5959 we have changed functions or hit a breakpoint.
5960 Print source line if we have one.
5961 bpstat_print() contains the logic deciding in detail
1777feb0 5962 what to print, based on the event(s) that just occurred. */
c906108c 5963
d01a8610
AS
5964 /* If --batch-silent is enabled then there's no need to print the current
5965 source location, and to try risks causing an error message about
5966 missing source files. */
5967 if (stop_print_frame && !batch_silent)
c906108c
SS
5968 {
5969 int bpstat_ret;
5970 int source_flag;
917317f4 5971 int do_frame_printing = 1;
347bddb7 5972 struct thread_info *tp = inferior_thread ();
c906108c 5973
36dfb11c 5974 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
917317f4
JM
5975 switch (bpstat_ret)
5976 {
5977 case PRINT_UNKNOWN:
aa0cd9c1 5978 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
5979 (or should) carry around the function and does (or
5980 should) use that when doing a frame comparison. */
16c381f0
JK
5981 if (tp->control.stop_step
5982 && frame_id_eq (tp->control.step_frame_id,
aa0cd9c1 5983 get_frame_id (get_current_frame ()))
917317f4 5984 && step_start_function == find_pc_function (stop_pc))
1777feb0
MS
5985 source_flag = SRC_LINE; /* Finished step, just
5986 print source line. */
917317f4 5987 else
1777feb0
MS
5988 source_flag = SRC_AND_LOC; /* Print location and
5989 source line. */
917317f4
JM
5990 break;
5991 case PRINT_SRC_AND_LOC:
1777feb0
MS
5992 source_flag = SRC_AND_LOC; /* Print location and
5993 source line. */
917317f4
JM
5994 break;
5995 case PRINT_SRC_ONLY:
c5394b80 5996 source_flag = SRC_LINE;
917317f4
JM
5997 break;
5998 case PRINT_NOTHING:
488f131b 5999 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
6000 do_frame_printing = 0;
6001 break;
6002 default:
e2e0b3e5 6003 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 6004 }
c906108c
SS
6005
6006 /* The behavior of this routine with respect to the source
6007 flag is:
c5394b80
JM
6008 SRC_LINE: Print only source line
6009 LOCATION: Print only location
1777feb0 6010 SRC_AND_LOC: Print location and source line. */
917317f4 6011 if (do_frame_printing)
b04f3ab4 6012 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
6013
6014 /* Display the auto-display expressions. */
6015 do_displays ();
6016 }
6017 }
6018
6019 /* Save the function value return registers, if we care.
6020 We might be about to restore their previous contents. */
9da8c2a0
PA
6021 if (inferior_thread ()->control.proceed_to_finish
6022 && execution_direction != EXEC_REVERSE)
d5c31457
UW
6023 {
6024 /* This should not be necessary. */
6025 if (stop_registers)
6026 regcache_xfree (stop_registers);
6027
6028 /* NB: The copy goes through to the target picking up the value of
6029 all the registers. */
6030 stop_registers = regcache_dup (get_current_regcache ());
6031 }
c906108c 6032
aa7d318d 6033 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 6034 {
b89667eb
DE
6035 /* Pop the empty frame that contains the stack dummy.
6036 This also restores inferior state prior to the call
16c381f0 6037 (struct infcall_suspend_state). */
b89667eb 6038 struct frame_info *frame = get_current_frame ();
abbb1732 6039
b89667eb
DE
6040 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6041 frame_pop (frame);
3e43a32a
MS
6042 /* frame_pop() calls reinit_frame_cache as the last thing it
6043 does which means there's currently no selected frame. We
6044 don't need to re-establish a selected frame if the dummy call
6045 returns normally, that will be done by
6046 restore_infcall_control_state. However, we do have to handle
6047 the case where the dummy call is returning after being
6048 stopped (e.g. the dummy call previously hit a breakpoint).
6049 We can't know which case we have so just always re-establish
6050 a selected frame here. */
0f7d239c 6051 select_frame (get_current_frame ());
c906108c
SS
6052 }
6053
c906108c
SS
6054done:
6055 annotate_stopped ();
41d2bdb4
PA
6056
6057 /* Suppress the stop observer if we're in the middle of:
6058
6059 - a step n (n > 1), as there still more steps to be done.
6060
6061 - a "finish" command, as the observer will be called in
6062 finish_command_continuation, so it can include the inferior
6063 function's return value.
6064
6065 - calling an inferior function, as we pretend we inferior didn't
6066 run at all. The return value of the call is handled by the
6067 expression evaluator, through call_function_by_hand. */
6068
6069 if (!target_has_execution
6070 || last.kind == TARGET_WAITKIND_SIGNALLED
6071 || last.kind == TARGET_WAITKIND_EXITED
0e5bf2a8 6072 || last.kind == TARGET_WAITKIND_NO_RESUMED
2ca0b532
PA
6073 || (!(inferior_thread ()->step_multi
6074 && inferior_thread ()->control.stop_step)
16c381f0
JK
6075 && !(inferior_thread ()->control.stop_bpstat
6076 && inferior_thread ()->control.proceed_to_finish)
6077 && !inferior_thread ()->control.in_infcall))
347bddb7
PA
6078 {
6079 if (!ptid_equal (inferior_ptid, null_ptid))
16c381f0 6080 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
1d33d6ba 6081 stop_print_frame);
347bddb7 6082 else
1d33d6ba 6083 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 6084 }
347bddb7 6085
48844aa6
PA
6086 if (target_has_execution)
6087 {
6088 if (last.kind != TARGET_WAITKIND_SIGNALLED
6089 && last.kind != TARGET_WAITKIND_EXITED)
6090 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6091 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 6092 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 6093 }
6c95b8df
PA
6094
6095 /* Try to get rid of automatically added inferiors that are no
6096 longer needed. Keeping those around slows down things linearly.
6097 Note that this never removes the current inferior. */
6098 prune_inferiors ();
c906108c
SS
6099}
6100
6101static int
96baa820 6102hook_stop_stub (void *cmd)
c906108c 6103{
5913bcb0 6104 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
6105 return (0);
6106}
6107\f
c5aa993b 6108int
96baa820 6109signal_stop_state (int signo)
c906108c 6110{
d6b48e9c 6111 return signal_stop[signo];
c906108c
SS
6112}
6113
c5aa993b 6114int
96baa820 6115signal_print_state (int signo)
c906108c
SS
6116{
6117 return signal_print[signo];
6118}
6119
c5aa993b 6120int
96baa820 6121signal_pass_state (int signo)
c906108c
SS
6122{
6123 return signal_program[signo];
6124}
6125
2455069d
UW
6126static void
6127signal_cache_update (int signo)
6128{
6129 if (signo == -1)
6130 {
6131 for (signo = 0; signo < (int) TARGET_SIGNAL_LAST; signo++)
6132 signal_cache_update (signo);
6133
6134 return;
6135 }
6136
6137 signal_pass[signo] = (signal_stop[signo] == 0
6138 && signal_print[signo] == 0
6139 && signal_program[signo] == 1);
6140}
6141
488f131b 6142int
7bda5e4a 6143signal_stop_update (int signo, int state)
d4f3574e
SS
6144{
6145 int ret = signal_stop[signo];
abbb1732 6146
d4f3574e 6147 signal_stop[signo] = state;
2455069d 6148 signal_cache_update (signo);
d4f3574e
SS
6149 return ret;
6150}
6151
488f131b 6152int
7bda5e4a 6153signal_print_update (int signo, int state)
d4f3574e
SS
6154{
6155 int ret = signal_print[signo];
abbb1732 6156
d4f3574e 6157 signal_print[signo] = state;
2455069d 6158 signal_cache_update (signo);
d4f3574e
SS
6159 return ret;
6160}
6161
488f131b 6162int
7bda5e4a 6163signal_pass_update (int signo, int state)
d4f3574e
SS
6164{
6165 int ret = signal_program[signo];
abbb1732 6166
d4f3574e 6167 signal_program[signo] = state;
2455069d 6168 signal_cache_update (signo);
d4f3574e
SS
6169 return ret;
6170}
6171
c906108c 6172static void
96baa820 6173sig_print_header (void)
c906108c 6174{
3e43a32a
MS
6175 printf_filtered (_("Signal Stop\tPrint\tPass "
6176 "to program\tDescription\n"));
c906108c
SS
6177}
6178
6179static void
96baa820 6180sig_print_info (enum target_signal oursig)
c906108c 6181{
54363045 6182 const char *name = target_signal_to_name (oursig);
c906108c 6183 int name_padding = 13 - strlen (name);
96baa820 6184
c906108c
SS
6185 if (name_padding <= 0)
6186 name_padding = 0;
6187
6188 printf_filtered ("%s", name);
488f131b 6189 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
6190 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6191 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6192 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6193 printf_filtered ("%s\n", target_signal_to_string (oursig));
6194}
6195
6196/* Specify how various signals in the inferior should be handled. */
6197
6198static void
96baa820 6199handle_command (char *args, int from_tty)
c906108c
SS
6200{
6201 char **argv;
6202 int digits, wordlen;
6203 int sigfirst, signum, siglast;
6204 enum target_signal oursig;
6205 int allsigs;
6206 int nsigs;
6207 unsigned char *sigs;
6208 struct cleanup *old_chain;
6209
6210 if (args == NULL)
6211 {
e2e0b3e5 6212 error_no_arg (_("signal to handle"));
c906108c
SS
6213 }
6214
1777feb0 6215 /* Allocate and zero an array of flags for which signals to handle. */
c906108c
SS
6216
6217 nsigs = (int) TARGET_SIGNAL_LAST;
6218 sigs = (unsigned char *) alloca (nsigs);
6219 memset (sigs, 0, nsigs);
6220
1777feb0 6221 /* Break the command line up into args. */
c906108c 6222
d1a41061 6223 argv = gdb_buildargv (args);
7a292a7a 6224 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6225
6226 /* Walk through the args, looking for signal oursigs, signal names, and
6227 actions. Signal numbers and signal names may be interspersed with
6228 actions, with the actions being performed for all signals cumulatively
1777feb0 6229 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
6230
6231 while (*argv != NULL)
6232 {
6233 wordlen = strlen (*argv);
6234 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6235 {;
6236 }
6237 allsigs = 0;
6238 sigfirst = siglast = -1;
6239
6240 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6241 {
6242 /* Apply action to all signals except those used by the
1777feb0 6243 debugger. Silently skip those. */
c906108c
SS
6244 allsigs = 1;
6245 sigfirst = 0;
6246 siglast = nsigs - 1;
6247 }
6248 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6249 {
6250 SET_SIGS (nsigs, sigs, signal_stop);
6251 SET_SIGS (nsigs, sigs, signal_print);
6252 }
6253 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6254 {
6255 UNSET_SIGS (nsigs, sigs, signal_program);
6256 }
6257 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6258 {
6259 SET_SIGS (nsigs, sigs, signal_print);
6260 }
6261 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6262 {
6263 SET_SIGS (nsigs, sigs, signal_program);
6264 }
6265 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6266 {
6267 UNSET_SIGS (nsigs, sigs, signal_stop);
6268 }
6269 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6270 {
6271 SET_SIGS (nsigs, sigs, signal_program);
6272 }
6273 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6274 {
6275 UNSET_SIGS (nsigs, sigs, signal_print);
6276 UNSET_SIGS (nsigs, sigs, signal_stop);
6277 }
6278 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6279 {
6280 UNSET_SIGS (nsigs, sigs, signal_program);
6281 }
6282 else if (digits > 0)
6283 {
6284 /* It is numeric. The numeric signal refers to our own
6285 internal signal numbering from target.h, not to host/target
6286 signal number. This is a feature; users really should be
6287 using symbolic names anyway, and the common ones like
6288 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6289
6290 sigfirst = siglast = (int)
6291 target_signal_from_command (atoi (*argv));
6292 if ((*argv)[digits] == '-')
6293 {
6294 siglast = (int)
6295 target_signal_from_command (atoi ((*argv) + digits + 1));
6296 }
6297 if (sigfirst > siglast)
6298 {
1777feb0 6299 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
6300 signum = sigfirst;
6301 sigfirst = siglast;
6302 siglast = signum;
6303 }
6304 }
6305 else
6306 {
6307 oursig = target_signal_from_name (*argv);
6308 if (oursig != TARGET_SIGNAL_UNKNOWN)
6309 {
6310 sigfirst = siglast = (int) oursig;
6311 }
6312 else
6313 {
6314 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 6315 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
6316 }
6317 }
6318
6319 /* If any signal numbers or symbol names were found, set flags for
1777feb0 6320 which signals to apply actions to. */
c906108c
SS
6321
6322 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6323 {
6324 switch ((enum target_signal) signum)
6325 {
6326 case TARGET_SIGNAL_TRAP:
6327 case TARGET_SIGNAL_INT:
6328 if (!allsigs && !sigs[signum])
6329 {
9e2f0ad4 6330 if (query (_("%s is used by the debugger.\n\
3e43a32a
MS
6331Are you sure you want to change it? "),
6332 target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
6333 {
6334 sigs[signum] = 1;
6335 }
6336 else
6337 {
a3f17187 6338 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
6339 gdb_flush (gdb_stdout);
6340 }
6341 }
6342 break;
6343 case TARGET_SIGNAL_0:
6344 case TARGET_SIGNAL_DEFAULT:
6345 case TARGET_SIGNAL_UNKNOWN:
6346 /* Make sure that "all" doesn't print these. */
6347 break;
6348 default:
6349 sigs[signum] = 1;
6350 break;
6351 }
6352 }
6353
6354 argv++;
6355 }
6356
3a031f65
PA
6357 for (signum = 0; signum < nsigs; signum++)
6358 if (sigs[signum])
6359 {
2455069d
UW
6360 signal_cache_update (-1);
6361 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
c906108c 6362
3a031f65
PA
6363 if (from_tty)
6364 {
6365 /* Show the results. */
6366 sig_print_header ();
6367 for (; signum < nsigs; signum++)
6368 if (sigs[signum])
6369 sig_print_info (signum);
6370 }
6371
6372 break;
6373 }
c906108c
SS
6374
6375 do_cleanups (old_chain);
6376}
6377
6378static void
96baa820 6379xdb_handle_command (char *args, int from_tty)
c906108c
SS
6380{
6381 char **argv;
6382 struct cleanup *old_chain;
6383
d1a41061
PP
6384 if (args == NULL)
6385 error_no_arg (_("xdb command"));
6386
1777feb0 6387 /* Break the command line up into args. */
c906108c 6388
d1a41061 6389 argv = gdb_buildargv (args);
7a292a7a 6390 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6391 if (argv[1] != (char *) NULL)
6392 {
6393 char *argBuf;
6394 int bufLen;
6395
6396 bufLen = strlen (argv[0]) + 20;
6397 argBuf = (char *) xmalloc (bufLen);
6398 if (argBuf)
6399 {
6400 int validFlag = 1;
6401 enum target_signal oursig;
6402
6403 oursig = target_signal_from_name (argv[0]);
6404 memset (argBuf, 0, bufLen);
6405 if (strcmp (argv[1], "Q") == 0)
6406 sprintf (argBuf, "%s %s", argv[0], "noprint");
6407 else
6408 {
6409 if (strcmp (argv[1], "s") == 0)
6410 {
6411 if (!signal_stop[oursig])
6412 sprintf (argBuf, "%s %s", argv[0], "stop");
6413 else
6414 sprintf (argBuf, "%s %s", argv[0], "nostop");
6415 }
6416 else if (strcmp (argv[1], "i") == 0)
6417 {
6418 if (!signal_program[oursig])
6419 sprintf (argBuf, "%s %s", argv[0], "pass");
6420 else
6421 sprintf (argBuf, "%s %s", argv[0], "nopass");
6422 }
6423 else if (strcmp (argv[1], "r") == 0)
6424 {
6425 if (!signal_print[oursig])
6426 sprintf (argBuf, "%s %s", argv[0], "print");
6427 else
6428 sprintf (argBuf, "%s %s", argv[0], "noprint");
6429 }
6430 else
6431 validFlag = 0;
6432 }
6433 if (validFlag)
6434 handle_command (argBuf, from_tty);
6435 else
a3f17187 6436 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 6437 if (argBuf)
b8c9b27d 6438 xfree (argBuf);
c906108c
SS
6439 }
6440 }
6441 do_cleanups (old_chain);
6442}
6443
6444/* Print current contents of the tables set by the handle command.
6445 It is possible we should just be printing signals actually used
6446 by the current target (but for things to work right when switching
6447 targets, all signals should be in the signal tables). */
6448
6449static void
96baa820 6450signals_info (char *signum_exp, int from_tty)
c906108c
SS
6451{
6452 enum target_signal oursig;
abbb1732 6453
c906108c
SS
6454 sig_print_header ();
6455
6456 if (signum_exp)
6457 {
6458 /* First see if this is a symbol name. */
6459 oursig = target_signal_from_name (signum_exp);
6460 if (oursig == TARGET_SIGNAL_UNKNOWN)
6461 {
6462 /* No, try numeric. */
6463 oursig =
bb518678 6464 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
6465 }
6466 sig_print_info (oursig);
6467 return;
6468 }
6469
6470 printf_filtered ("\n");
6471 /* These ugly casts brought to you by the native VAX compiler. */
6472 for (oursig = TARGET_SIGNAL_FIRST;
6473 (int) oursig < (int) TARGET_SIGNAL_LAST;
6474 oursig = (enum target_signal) ((int) oursig + 1))
6475 {
6476 QUIT;
6477
6478 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 6479 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
6480 sig_print_info (oursig);
6481 }
6482
3e43a32a
MS
6483 printf_filtered (_("\nUse the \"handle\" command "
6484 "to change these tables.\n"));
c906108c 6485}
4aa995e1 6486
c709acd1
PA
6487/* Check if it makes sense to read $_siginfo from the current thread
6488 at this point. If not, throw an error. */
6489
6490static void
6491validate_siginfo_access (void)
6492{
6493 /* No current inferior, no siginfo. */
6494 if (ptid_equal (inferior_ptid, null_ptid))
6495 error (_("No thread selected."));
6496
6497 /* Don't try to read from a dead thread. */
6498 if (is_exited (inferior_ptid))
6499 error (_("The current thread has terminated"));
6500
6501 /* ... or from a spinning thread. */
6502 if (is_running (inferior_ptid))
6503 error (_("Selected thread is running."));
6504}
6505
4aa995e1
PA
6506/* The $_siginfo convenience variable is a bit special. We don't know
6507 for sure the type of the value until we actually have a chance to
7a9dd1b2 6508 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
6509 also dependent on which thread you have selected.
6510
6511 1. making $_siginfo be an internalvar that creates a new value on
6512 access.
6513
6514 2. making the value of $_siginfo be an lval_computed value. */
6515
6516/* This function implements the lval_computed support for reading a
6517 $_siginfo value. */
6518
6519static void
6520siginfo_value_read (struct value *v)
6521{
6522 LONGEST transferred;
6523
c709acd1
PA
6524 validate_siginfo_access ();
6525
4aa995e1
PA
6526 transferred =
6527 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6528 NULL,
6529 value_contents_all_raw (v),
6530 value_offset (v),
6531 TYPE_LENGTH (value_type (v)));
6532
6533 if (transferred != TYPE_LENGTH (value_type (v)))
6534 error (_("Unable to read siginfo"));
6535}
6536
6537/* This function implements the lval_computed support for writing a
6538 $_siginfo value. */
6539
6540static void
6541siginfo_value_write (struct value *v, struct value *fromval)
6542{
6543 LONGEST transferred;
6544
c709acd1
PA
6545 validate_siginfo_access ();
6546
4aa995e1
PA
6547 transferred = target_write (&current_target,
6548 TARGET_OBJECT_SIGNAL_INFO,
6549 NULL,
6550 value_contents_all_raw (fromval),
6551 value_offset (v),
6552 TYPE_LENGTH (value_type (fromval)));
6553
6554 if (transferred != TYPE_LENGTH (value_type (fromval)))
6555 error (_("Unable to write siginfo"));
6556}
6557
c8f2448a 6558static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
6559 {
6560 siginfo_value_read,
6561 siginfo_value_write
6562 };
6563
6564/* Return a new value with the correct type for the siginfo object of
78267919
UW
6565 the current thread using architecture GDBARCH. Return a void value
6566 if there's no object available. */
4aa995e1 6567
2c0b251b 6568static struct value *
78267919 6569siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
4aa995e1 6570{
4aa995e1 6571 if (target_has_stack
78267919
UW
6572 && !ptid_equal (inferior_ptid, null_ptid)
6573 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 6574 {
78267919 6575 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 6576
78267919 6577 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
6578 }
6579
78267919 6580 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
6581}
6582
c906108c 6583\f
16c381f0
JK
6584/* infcall_suspend_state contains state about the program itself like its
6585 registers and any signal it received when it last stopped.
6586 This state must be restored regardless of how the inferior function call
6587 ends (either successfully, or after it hits a breakpoint or signal)
6588 if the program is to properly continue where it left off. */
6589
6590struct infcall_suspend_state
7a292a7a 6591{
16c381f0
JK
6592 struct thread_suspend_state thread_suspend;
6593 struct inferior_suspend_state inferior_suspend;
6594
6595 /* Other fields: */
7a292a7a 6596 CORE_ADDR stop_pc;
b89667eb 6597 struct regcache *registers;
1736ad11 6598
35515841 6599 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
6600 struct gdbarch *siginfo_gdbarch;
6601
6602 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6603 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6604 content would be invalid. */
6605 gdb_byte *siginfo_data;
b89667eb
DE
6606};
6607
16c381f0
JK
6608struct infcall_suspend_state *
6609save_infcall_suspend_state (void)
b89667eb 6610{
16c381f0 6611 struct infcall_suspend_state *inf_state;
b89667eb 6612 struct thread_info *tp = inferior_thread ();
16c381f0 6613 struct inferior *inf = current_inferior ();
1736ad11
JK
6614 struct regcache *regcache = get_current_regcache ();
6615 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6616 gdb_byte *siginfo_data = NULL;
6617
6618 if (gdbarch_get_siginfo_type_p (gdbarch))
6619 {
6620 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6621 size_t len = TYPE_LENGTH (type);
6622 struct cleanup *back_to;
6623
6624 siginfo_data = xmalloc (len);
6625 back_to = make_cleanup (xfree, siginfo_data);
6626
6627 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6628 siginfo_data, 0, len) == len)
6629 discard_cleanups (back_to);
6630 else
6631 {
6632 /* Errors ignored. */
6633 do_cleanups (back_to);
6634 siginfo_data = NULL;
6635 }
6636 }
6637
16c381f0 6638 inf_state = XZALLOC (struct infcall_suspend_state);
1736ad11
JK
6639
6640 if (siginfo_data)
6641 {
6642 inf_state->siginfo_gdbarch = gdbarch;
6643 inf_state->siginfo_data = siginfo_data;
6644 }
b89667eb 6645
16c381f0
JK
6646 inf_state->thread_suspend = tp->suspend;
6647 inf_state->inferior_suspend = inf->suspend;
6648
35515841
JK
6649 /* run_inferior_call will not use the signal due to its `proceed' call with
6650 TARGET_SIGNAL_0 anyway. */
16c381f0 6651 tp->suspend.stop_signal = TARGET_SIGNAL_0;
35515841 6652
b89667eb
DE
6653 inf_state->stop_pc = stop_pc;
6654
1736ad11 6655 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
6656
6657 return inf_state;
6658}
6659
6660/* Restore inferior session state to INF_STATE. */
6661
6662void
16c381f0 6663restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6664{
6665 struct thread_info *tp = inferior_thread ();
16c381f0 6666 struct inferior *inf = current_inferior ();
1736ad11
JK
6667 struct regcache *regcache = get_current_regcache ();
6668 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 6669
16c381f0
JK
6670 tp->suspend = inf_state->thread_suspend;
6671 inf->suspend = inf_state->inferior_suspend;
6672
b89667eb
DE
6673 stop_pc = inf_state->stop_pc;
6674
1736ad11
JK
6675 if (inf_state->siginfo_gdbarch == gdbarch)
6676 {
6677 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6678 size_t len = TYPE_LENGTH (type);
6679
6680 /* Errors ignored. */
6681 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6682 inf_state->siginfo_data, 0, len);
6683 }
6684
b89667eb
DE
6685 /* The inferior can be gone if the user types "print exit(0)"
6686 (and perhaps other times). */
6687 if (target_has_execution)
6688 /* NB: The register write goes through to the target. */
1736ad11 6689 regcache_cpy (regcache, inf_state->registers);
803b5f95 6690
16c381f0 6691 discard_infcall_suspend_state (inf_state);
b89667eb
DE
6692}
6693
6694static void
16c381f0 6695do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 6696{
16c381f0 6697 restore_infcall_suspend_state (state);
b89667eb
DE
6698}
6699
6700struct cleanup *
16c381f0
JK
6701make_cleanup_restore_infcall_suspend_state
6702 (struct infcall_suspend_state *inf_state)
b89667eb 6703{
16c381f0 6704 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
6705}
6706
6707void
16c381f0 6708discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6709{
6710 regcache_xfree (inf_state->registers);
803b5f95 6711 xfree (inf_state->siginfo_data);
b89667eb
DE
6712 xfree (inf_state);
6713}
6714
6715struct regcache *
16c381f0 6716get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
6717{
6718 return inf_state->registers;
6719}
6720
16c381f0
JK
6721/* infcall_control_state contains state regarding gdb's control of the
6722 inferior itself like stepping control. It also contains session state like
6723 the user's currently selected frame. */
b89667eb 6724
16c381f0 6725struct infcall_control_state
b89667eb 6726{
16c381f0
JK
6727 struct thread_control_state thread_control;
6728 struct inferior_control_state inferior_control;
d82142e2
JK
6729
6730 /* Other fields: */
6731 enum stop_stack_kind stop_stack_dummy;
6732 int stopped_by_random_signal;
7a292a7a 6733 int stop_after_trap;
7a292a7a 6734
b89667eb 6735 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 6736 struct frame_id selected_frame_id;
7a292a7a
SS
6737};
6738
c906108c 6739/* Save all of the information associated with the inferior<==>gdb
b89667eb 6740 connection. */
c906108c 6741
16c381f0
JK
6742struct infcall_control_state *
6743save_infcall_control_state (void)
c906108c 6744{
16c381f0 6745 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
4e1c45ea 6746 struct thread_info *tp = inferior_thread ();
d6b48e9c 6747 struct inferior *inf = current_inferior ();
7a292a7a 6748
16c381f0
JK
6749 inf_status->thread_control = tp->control;
6750 inf_status->inferior_control = inf->control;
d82142e2 6751
8358c15c 6752 tp->control.step_resume_breakpoint = NULL;
5b79abe7 6753 tp->control.exception_resume_breakpoint = NULL;
8358c15c 6754
16c381f0
JK
6755 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6756 chain. If caller's caller is walking the chain, they'll be happier if we
6757 hand them back the original chain when restore_infcall_control_state is
6758 called. */
6759 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
6760
6761 /* Other fields: */
6762 inf_status->stop_stack_dummy = stop_stack_dummy;
6763 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6764 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 6765
206415a3 6766 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 6767
7a292a7a 6768 return inf_status;
c906108c
SS
6769}
6770
c906108c 6771static int
96baa820 6772restore_selected_frame (void *args)
c906108c 6773{
488f131b 6774 struct frame_id *fid = (struct frame_id *) args;
c906108c 6775 struct frame_info *frame;
c906108c 6776
101dcfbe 6777 frame = frame_find_by_id (*fid);
c906108c 6778
aa0cd9c1
AC
6779 /* If inf_status->selected_frame_id is NULL, there was no previously
6780 selected frame. */
101dcfbe 6781 if (frame == NULL)
c906108c 6782 {
8a3fe4f8 6783 warning (_("Unable to restore previously selected frame."));
c906108c
SS
6784 return 0;
6785 }
6786
0f7d239c 6787 select_frame (frame);
c906108c
SS
6788
6789 return (1);
6790}
6791
b89667eb
DE
6792/* Restore inferior session state to INF_STATUS. */
6793
c906108c 6794void
16c381f0 6795restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 6796{
4e1c45ea 6797 struct thread_info *tp = inferior_thread ();
d6b48e9c 6798 struct inferior *inf = current_inferior ();
4e1c45ea 6799
8358c15c
JK
6800 if (tp->control.step_resume_breakpoint)
6801 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6802
5b79abe7
TT
6803 if (tp->control.exception_resume_breakpoint)
6804 tp->control.exception_resume_breakpoint->disposition
6805 = disp_del_at_next_stop;
6806
d82142e2 6807 /* Handle the bpstat_copy of the chain. */
16c381f0 6808 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 6809
16c381f0
JK
6810 tp->control = inf_status->thread_control;
6811 inf->control = inf_status->inferior_control;
d82142e2
JK
6812
6813 /* Other fields: */
6814 stop_stack_dummy = inf_status->stop_stack_dummy;
6815 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6816 stop_after_trap = inf_status->stop_after_trap;
c906108c 6817
b89667eb 6818 if (target_has_stack)
c906108c 6819 {
c906108c 6820 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
6821 walking the stack might encounter a garbage pointer and
6822 error() trying to dereference it. */
488f131b
JB
6823 if (catch_errors
6824 (restore_selected_frame, &inf_status->selected_frame_id,
6825 "Unable to restore previously selected frame:\n",
6826 RETURN_MASK_ERROR) == 0)
c906108c
SS
6827 /* Error in restoring the selected frame. Select the innermost
6828 frame. */
0f7d239c 6829 select_frame (get_current_frame ());
c906108c 6830 }
c906108c 6831
72cec141 6832 xfree (inf_status);
7a292a7a 6833}
c906108c 6834
74b7792f 6835static void
16c381f0 6836do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 6837{
16c381f0 6838 restore_infcall_control_state (sts);
74b7792f
AC
6839}
6840
6841struct cleanup *
16c381f0
JK
6842make_cleanup_restore_infcall_control_state
6843 (struct infcall_control_state *inf_status)
74b7792f 6844{
16c381f0 6845 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
6846}
6847
c906108c 6848void
16c381f0 6849discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 6850{
8358c15c
JK
6851 if (inf_status->thread_control.step_resume_breakpoint)
6852 inf_status->thread_control.step_resume_breakpoint->disposition
6853 = disp_del_at_next_stop;
6854
5b79abe7
TT
6855 if (inf_status->thread_control.exception_resume_breakpoint)
6856 inf_status->thread_control.exception_resume_breakpoint->disposition
6857 = disp_del_at_next_stop;
6858
1777feb0 6859 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 6860 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 6861
72cec141 6862 xfree (inf_status);
7a292a7a 6863}
b89667eb 6864\f
0723dbf5
PA
6865int
6866ptid_match (ptid_t ptid, ptid_t filter)
6867{
0723dbf5
PA
6868 if (ptid_equal (filter, minus_one_ptid))
6869 return 1;
6870 if (ptid_is_pid (filter)
6871 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6872 return 1;
6873 else if (ptid_equal (ptid, filter))
6874 return 1;
6875
6876 return 0;
6877}
6878
ca6724c1
KB
6879/* restore_inferior_ptid() will be used by the cleanup machinery
6880 to restore the inferior_ptid value saved in a call to
6881 save_inferior_ptid(). */
ce696e05
KB
6882
6883static void
6884restore_inferior_ptid (void *arg)
6885{
6886 ptid_t *saved_ptid_ptr = arg;
abbb1732 6887
ce696e05
KB
6888 inferior_ptid = *saved_ptid_ptr;
6889 xfree (arg);
6890}
6891
6892/* Save the value of inferior_ptid so that it may be restored by a
6893 later call to do_cleanups(). Returns the struct cleanup pointer
6894 needed for later doing the cleanup. */
6895
6896struct cleanup *
6897save_inferior_ptid (void)
6898{
6899 ptid_t *saved_ptid_ptr;
6900
6901 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6902 *saved_ptid_ptr = inferior_ptid;
6903 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6904}
c5aa993b 6905\f
488f131b 6906
b2175913
MS
6907/* User interface for reverse debugging:
6908 Set exec-direction / show exec-direction commands
6909 (returns error unless target implements to_set_exec_direction method). */
6910
32231432 6911int execution_direction = EXEC_FORWARD;
b2175913
MS
6912static const char exec_forward[] = "forward";
6913static const char exec_reverse[] = "reverse";
6914static const char *exec_direction = exec_forward;
40478521 6915static const char *const exec_direction_names[] = {
b2175913
MS
6916 exec_forward,
6917 exec_reverse,
6918 NULL
6919};
6920
6921static void
6922set_exec_direction_func (char *args, int from_tty,
6923 struct cmd_list_element *cmd)
6924{
6925 if (target_can_execute_reverse)
6926 {
6927 if (!strcmp (exec_direction, exec_forward))
6928 execution_direction = EXEC_FORWARD;
6929 else if (!strcmp (exec_direction, exec_reverse))
6930 execution_direction = EXEC_REVERSE;
6931 }
8bbed405
MS
6932 else
6933 {
6934 exec_direction = exec_forward;
6935 error (_("Target does not support this operation."));
6936 }
b2175913
MS
6937}
6938
6939static void
6940show_exec_direction_func (struct ui_file *out, int from_tty,
6941 struct cmd_list_element *cmd, const char *value)
6942{
6943 switch (execution_direction) {
6944 case EXEC_FORWARD:
6945 fprintf_filtered (out, _("Forward.\n"));
6946 break;
6947 case EXEC_REVERSE:
6948 fprintf_filtered (out, _("Reverse.\n"));
6949 break;
b2175913 6950 default:
d8b34453
PA
6951 internal_error (__FILE__, __LINE__,
6952 _("bogus execution_direction value: %d"),
6953 (int) execution_direction);
b2175913
MS
6954 }
6955}
6956
6957/* User interface for non-stop mode. */
6958
ad52ddc6 6959int non_stop = 0;
ad52ddc6
PA
6960
6961static void
6962set_non_stop (char *args, int from_tty,
6963 struct cmd_list_element *c)
6964{
6965 if (target_has_execution)
6966 {
6967 non_stop_1 = non_stop;
6968 error (_("Cannot change this setting while the inferior is running."));
6969 }
6970
6971 non_stop = non_stop_1;
6972}
6973
6974static void
6975show_non_stop (struct ui_file *file, int from_tty,
6976 struct cmd_list_element *c, const char *value)
6977{
6978 fprintf_filtered (file,
6979 _("Controlling the inferior in non-stop mode is %s.\n"),
6980 value);
6981}
6982
d4db2f36
PA
6983static void
6984show_schedule_multiple (struct ui_file *file, int from_tty,
6985 struct cmd_list_element *c, const char *value)
6986{
3e43a32a
MS
6987 fprintf_filtered (file, _("Resuming the execution of threads "
6988 "of all processes is %s.\n"), value);
d4db2f36 6989}
ad52ddc6 6990
c906108c 6991void
96baa820 6992_initialize_infrun (void)
c906108c 6993{
52f0bd74
AC
6994 int i;
6995 int numsigs;
c906108c 6996
1bedd215
AC
6997 add_info ("signals", signals_info, _("\
6998What debugger does when program gets various signals.\n\
6999Specify a signal as argument to print info on that signal only."));
c906108c
SS
7000 add_info_alias ("handle", "signals", 0);
7001
1bedd215
AC
7002 add_com ("handle", class_run, handle_command, _("\
7003Specify how to handle a signal.\n\
c906108c
SS
7004Args are signals and actions to apply to those signals.\n\
7005Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7006from 1-15 are allowed for compatibility with old versions of GDB.\n\
7007Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7008The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
7009used by the debugger, typically SIGTRAP and SIGINT.\n\
7010Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
7011\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7012Stop means reenter debugger if this signal happens (implies print).\n\
7013Print means print a message if this signal happens.\n\
7014Pass means let program see this signal; otherwise program doesn't know.\n\
7015Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 7016Pass and Stop may be combined."));
c906108c
SS
7017 if (xdb_commands)
7018 {
1bedd215
AC
7019 add_com ("lz", class_info, signals_info, _("\
7020What debugger does when program gets various signals.\n\
7021Specify a signal as argument to print info on that signal only."));
7022 add_com ("z", class_run, xdb_handle_command, _("\
7023Specify how to handle a signal.\n\
c906108c
SS
7024Args are signals and actions to apply to those signals.\n\
7025Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7026from 1-15 are allowed for compatibility with old versions of GDB.\n\
7027Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7028The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7029used by the debugger, typically SIGTRAP and SIGINT.\n\
cce7e648 7030Recognized actions include \"s\" (toggles between stop and nostop),\n\
c906108c
SS
7031\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7032nopass), \"Q\" (noprint)\n\
7033Stop means reenter debugger if this signal happens (implies print).\n\
7034Print means print a message if this signal happens.\n\
7035Pass means let program see this signal; otherwise program doesn't know.\n\
7036Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 7037Pass and Stop may be combined."));
c906108c
SS
7038 }
7039
7040 if (!dbx_commands)
1a966eab
AC
7041 stop_command = add_cmd ("stop", class_obscure,
7042 not_just_help_class_command, _("\
7043There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 7044This allows you to set a list of commands to be run each time execution\n\
1a966eab 7045of the program stops."), &cmdlist);
c906108c 7046
85c07804
AC
7047 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7048Set inferior debugging."), _("\
7049Show inferior debugging."), _("\
7050When non-zero, inferior specific debugging is enabled."),
7051 NULL,
920d2a44 7052 show_debug_infrun,
85c07804 7053 &setdebuglist, &showdebuglist);
527159b7 7054
3e43a32a
MS
7055 add_setshow_boolean_cmd ("displaced", class_maintenance,
7056 &debug_displaced, _("\
237fc4c9
PA
7057Set displaced stepping debugging."), _("\
7058Show displaced stepping debugging."), _("\
7059When non-zero, displaced stepping specific debugging is enabled."),
7060 NULL,
7061 show_debug_displaced,
7062 &setdebuglist, &showdebuglist);
7063
ad52ddc6
PA
7064 add_setshow_boolean_cmd ("non-stop", no_class,
7065 &non_stop_1, _("\
7066Set whether gdb controls the inferior in non-stop mode."), _("\
7067Show whether gdb controls the inferior in non-stop mode."), _("\
7068When debugging a multi-threaded program and this setting is\n\
7069off (the default, also called all-stop mode), when one thread stops\n\
7070(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7071all other threads in the program while you interact with the thread of\n\
7072interest. When you continue or step a thread, you can allow the other\n\
7073threads to run, or have them remain stopped, but while you inspect any\n\
7074thread's state, all threads stop.\n\
7075\n\
7076In non-stop mode, when one thread stops, other threads can continue\n\
7077to run freely. You'll be able to step each thread independently,\n\
7078leave it stopped or free to run as needed."),
7079 set_non_stop,
7080 show_non_stop,
7081 &setlist,
7082 &showlist);
7083
c906108c 7084 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 7085 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
7086 signal_print = (unsigned char *)
7087 xmalloc (sizeof (signal_print[0]) * numsigs);
7088 signal_program = (unsigned char *)
7089 xmalloc (sizeof (signal_program[0]) * numsigs);
2455069d
UW
7090 signal_pass = (unsigned char *)
7091 xmalloc (sizeof (signal_program[0]) * numsigs);
c906108c
SS
7092 for (i = 0; i < numsigs; i++)
7093 {
7094 signal_stop[i] = 1;
7095 signal_print[i] = 1;
7096 signal_program[i] = 1;
7097 }
7098
7099 /* Signals caused by debugger's own actions
7100 should not be given to the program afterwards. */
7101 signal_program[TARGET_SIGNAL_TRAP] = 0;
7102 signal_program[TARGET_SIGNAL_INT] = 0;
7103
7104 /* Signals that are not errors should not normally enter the debugger. */
7105 signal_stop[TARGET_SIGNAL_ALRM] = 0;
7106 signal_print[TARGET_SIGNAL_ALRM] = 0;
7107 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
7108 signal_print[TARGET_SIGNAL_VTALRM] = 0;
7109 signal_stop[TARGET_SIGNAL_PROF] = 0;
7110 signal_print[TARGET_SIGNAL_PROF] = 0;
7111 signal_stop[TARGET_SIGNAL_CHLD] = 0;
7112 signal_print[TARGET_SIGNAL_CHLD] = 0;
7113 signal_stop[TARGET_SIGNAL_IO] = 0;
7114 signal_print[TARGET_SIGNAL_IO] = 0;
7115 signal_stop[TARGET_SIGNAL_POLL] = 0;
7116 signal_print[TARGET_SIGNAL_POLL] = 0;
7117 signal_stop[TARGET_SIGNAL_URG] = 0;
7118 signal_print[TARGET_SIGNAL_URG] = 0;
7119 signal_stop[TARGET_SIGNAL_WINCH] = 0;
7120 signal_print[TARGET_SIGNAL_WINCH] = 0;
16dfc9ce
JB
7121 signal_stop[TARGET_SIGNAL_PRIO] = 0;
7122 signal_print[TARGET_SIGNAL_PRIO] = 0;
c906108c 7123
cd0fc7c3
SS
7124 /* These signals are used internally by user-level thread
7125 implementations. (See signal(5) on Solaris.) Like the above
7126 signals, a healthy program receives and handles them as part of
7127 its normal operation. */
7128 signal_stop[TARGET_SIGNAL_LWP] = 0;
7129 signal_print[TARGET_SIGNAL_LWP] = 0;
7130 signal_stop[TARGET_SIGNAL_WAITING] = 0;
7131 signal_print[TARGET_SIGNAL_WAITING] = 0;
7132 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
7133 signal_print[TARGET_SIGNAL_CANCEL] = 0;
7134
2455069d
UW
7135 /* Update cached state. */
7136 signal_cache_update (-1);
7137
85c07804
AC
7138 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7139 &stop_on_solib_events, _("\
7140Set stopping for shared library events."), _("\
7141Show stopping for shared library events."), _("\
c906108c
SS
7142If nonzero, gdb will give control to the user when the dynamic linker\n\
7143notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
7144to the user would be loading/unloading of a new library."),
7145 NULL,
920d2a44 7146 show_stop_on_solib_events,
85c07804 7147 &setlist, &showlist);
c906108c 7148
7ab04401
AC
7149 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7150 follow_fork_mode_kind_names,
7151 &follow_fork_mode_string, _("\
7152Set debugger response to a program call of fork or vfork."), _("\
7153Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
7154A fork or vfork creates a new process. follow-fork-mode can be:\n\
7155 parent - the original process is debugged after a fork\n\
7156 child - the new process is debugged after a fork\n\
ea1dd7bc 7157The unfollowed process will continue to run.\n\
7ab04401
AC
7158By default, the debugger will follow the parent process."),
7159 NULL,
920d2a44 7160 show_follow_fork_mode_string,
7ab04401
AC
7161 &setlist, &showlist);
7162
6c95b8df
PA
7163 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7164 follow_exec_mode_names,
7165 &follow_exec_mode_string, _("\
7166Set debugger response to a program call of exec."), _("\
7167Show debugger response to a program call of exec."), _("\
7168An exec call replaces the program image of a process.\n\
7169\n\
7170follow-exec-mode can be:\n\
7171\n\
cce7e648 7172 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
7173to this new inferior. The program the process was running before\n\
7174the exec call can be restarted afterwards by restarting the original\n\
7175inferior.\n\
7176\n\
7177 same - the debugger keeps the process bound to the same inferior.\n\
7178The new executable image replaces the previous executable loaded in\n\
7179the inferior. Restarting the inferior after the exec call restarts\n\
7180the executable the process was running after the exec call.\n\
7181\n\
7182By default, the debugger will use the same inferior."),
7183 NULL,
7184 show_follow_exec_mode_string,
7185 &setlist, &showlist);
7186
7ab04401
AC
7187 add_setshow_enum_cmd ("scheduler-locking", class_run,
7188 scheduler_enums, &scheduler_mode, _("\
7189Set mode for locking scheduler during execution."), _("\
7190Show mode for locking scheduler during execution."), _("\
c906108c
SS
7191off == no locking (threads may preempt at any time)\n\
7192on == full locking (no thread except the current thread may run)\n\
7193step == scheduler locked during every single-step operation.\n\
7194 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
7195 Other threads may run while stepping over a function call ('next')."),
7196 set_schedlock_func, /* traps on target vector */
920d2a44 7197 show_scheduler_mode,
7ab04401 7198 &setlist, &showlist);
5fbbeb29 7199
d4db2f36
PA
7200 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7201Set mode for resuming threads of all processes."), _("\
7202Show mode for resuming threads of all processes."), _("\
7203When on, execution commands (such as 'continue' or 'next') resume all\n\
7204threads of all processes. When off (which is the default), execution\n\
7205commands only resume the threads of the current process. The set of\n\
7206threads that are resumed is further refined by the scheduler-locking\n\
7207mode (see help set scheduler-locking)."),
7208 NULL,
7209 show_schedule_multiple,
7210 &setlist, &showlist);
7211
5bf193a2
AC
7212 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7213Set mode of the step operation."), _("\
7214Show mode of the step operation."), _("\
7215When set, doing a step over a function without debug line information\n\
7216will stop at the first instruction of that function. Otherwise, the\n\
7217function is skipped and the step command stops at a different source line."),
7218 NULL,
920d2a44 7219 show_step_stop_if_no_debug,
5bf193a2 7220 &setlist, &showlist);
ca6724c1 7221
fff08868
HZ
7222 add_setshow_enum_cmd ("displaced-stepping", class_run,
7223 can_use_displaced_stepping_enum,
7224 &can_use_displaced_stepping, _("\
237fc4c9
PA
7225Set debugger's willingness to use displaced stepping."), _("\
7226Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
7227If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7228supported by the target architecture. If off, gdb will not use displaced\n\
7229stepping to step over breakpoints, even if such is supported by the target\n\
7230architecture. If auto (which is the default), gdb will use displaced stepping\n\
7231if the target architecture supports it and non-stop mode is active, but will not\n\
7232use it in all-stop mode (see help set non-stop)."),
7233 NULL,
7234 show_can_use_displaced_stepping,
7235 &setlist, &showlist);
237fc4c9 7236
b2175913
MS
7237 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7238 &exec_direction, _("Set direction of execution.\n\
7239Options are 'forward' or 'reverse'."),
7240 _("Show direction of execution (forward/reverse)."),
7241 _("Tells gdb whether to execute forward or backward."),
7242 set_exec_direction_func, show_exec_direction_func,
7243 &setlist, &showlist);
7244
6c95b8df
PA
7245 /* Set/show detach-on-fork: user-settable mode. */
7246
7247 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7248Set whether gdb will detach the child of a fork."), _("\
7249Show whether gdb will detach the child of a fork."), _("\
7250Tells gdb whether to detach the child of a fork."),
7251 NULL, NULL, &setlist, &showlist);
7252
03583c20
UW
7253 /* Set/show disable address space randomization mode. */
7254
7255 add_setshow_boolean_cmd ("disable-randomization", class_support,
7256 &disable_randomization, _("\
7257Set disabling of debuggee's virtual address space randomization."), _("\
7258Show disabling of debuggee's virtual address space randomization."), _("\
7259When this mode is on (which is the default), randomization of the virtual\n\
7260address space is disabled. Standalone programs run with the randomization\n\
7261enabled by default on some platforms."),
7262 &set_disable_randomization,
7263 &show_disable_randomization,
7264 &setlist, &showlist);
7265
ca6724c1 7266 /* ptid initializations */
ca6724c1
KB
7267 inferior_ptid = null_ptid;
7268 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
7269
7270 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 7271 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 7272 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 7273 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
7274
7275 /* Explicitly create without lookup, since that tries to create a
7276 value with a void typed value, and when we get here, gdbarch
7277 isn't initialized yet. At this point, we're quite sure there
7278 isn't another convenience variable of the same name. */
7279 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
d914c394
SS
7280
7281 add_setshow_boolean_cmd ("observer", no_class,
7282 &observer_mode_1, _("\
7283Set whether gdb controls the inferior in observer mode."), _("\
7284Show whether gdb controls the inferior in observer mode."), _("\
7285In observer mode, GDB can get data from the inferior, but not\n\
7286affect its execution. Registers and memory may not be changed,\n\
7287breakpoints may not be set, and the program cannot be interrupted\n\
7288or signalled."),
7289 set_observer_mode,
7290 show_observer_mode,
7291 &setlist,
7292 &showlist);
c906108c 7293}
This page took 1.824739 seconds and 4 git commands to generate.