*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
6aba47ca 4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
9b254dd1
DJ
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008 Free Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include <ctype.h>
26#include "symtab.h"
27#include "frame.h"
28#include "inferior.h"
60250e8b 29#include "exceptions.h"
c906108c 30#include "breakpoint.h"
03f2053f 31#include "gdb_wait.h"
c906108c
SS
32#include "gdbcore.h"
33#include "gdbcmd.h"
210661e7 34#include "cli/cli-script.h"
c906108c
SS
35#include "target.h"
36#include "gdbthread.h"
37#include "annotate.h"
1adeb98a 38#include "symfile.h"
7a292a7a 39#include "top.h"
c906108c 40#include <signal.h>
2acceee2 41#include "inf-loop.h"
4e052eda 42#include "regcache.h"
fd0407d6 43#include "value.h"
06600e06 44#include "observer.h"
f636b87d 45#include "language.h"
a77053c2 46#include "solib.h"
f17517ea 47#include "main.h"
a77053c2 48
9f976b41 49#include "gdb_assert.h"
034dad6f 50#include "mi/mi-common.h"
4f8d22e3 51#include "event-top.h"
c906108c
SS
52
53/* Prototypes for local functions */
54
96baa820 55static void signals_info (char *, int);
c906108c 56
96baa820 57static void handle_command (char *, int);
c906108c 58
96baa820 59static void sig_print_info (enum target_signal);
c906108c 60
96baa820 61static void sig_print_header (void);
c906108c 62
74b7792f 63static void resume_cleanups (void *);
c906108c 64
96baa820 65static int hook_stop_stub (void *);
c906108c 66
96baa820
JM
67static int restore_selected_frame (void *);
68
69static void build_infrun (void);
70
4ef3f3be 71static int follow_fork (void);
96baa820
JM
72
73static void set_schedlock_func (char *args, int from_tty,
488f131b 74 struct cmd_list_element *c);
96baa820 75
4e1c45ea 76static int currently_stepping (struct thread_info *tp);
96baa820 77
a7212384
UW
78static int currently_stepping_callback (struct thread_info *tp, void *data);
79
96baa820
JM
80static void xdb_handle_command (char *args, int from_tty);
81
6a6b96b9 82static int prepare_to_proceed (int);
ea67f13b 83
96baa820 84void _initialize_infrun (void);
43ff13b4 85
5fbbeb29
CF
86/* When set, stop the 'step' command if we enter a function which has
87 no line number information. The normal behavior is that we step
88 over such function. */
89int step_stop_if_no_debug = 0;
920d2a44
AC
90static void
91show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
92 struct cmd_list_element *c, const char *value)
93{
94 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
95}
5fbbeb29 96
43ff13b4 97/* In asynchronous mode, but simulating synchronous execution. */
96baa820 98
43ff13b4
JM
99int sync_execution = 0;
100
c906108c
SS
101/* wait_for_inferior and normal_stop use this to notify the user
102 when the inferior stopped in a different thread than it had been
96baa820
JM
103 running in. */
104
39f77062 105static ptid_t previous_inferior_ptid;
7a292a7a 106
237fc4c9
PA
107int debug_displaced = 0;
108static void
109show_debug_displaced (struct ui_file *file, int from_tty,
110 struct cmd_list_element *c, const char *value)
111{
112 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
113}
114
527159b7 115static int debug_infrun = 0;
920d2a44
AC
116static void
117show_debug_infrun (struct ui_file *file, int from_tty,
118 struct cmd_list_element *c, const char *value)
119{
120 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
121}
527159b7 122
d4f3574e
SS
123/* If the program uses ELF-style shared libraries, then calls to
124 functions in shared libraries go through stubs, which live in a
125 table called the PLT (Procedure Linkage Table). The first time the
126 function is called, the stub sends control to the dynamic linker,
127 which looks up the function's real address, patches the stub so
128 that future calls will go directly to the function, and then passes
129 control to the function.
130
131 If we are stepping at the source level, we don't want to see any of
132 this --- we just want to skip over the stub and the dynamic linker.
133 The simple approach is to single-step until control leaves the
134 dynamic linker.
135
ca557f44
AC
136 However, on some systems (e.g., Red Hat's 5.2 distribution) the
137 dynamic linker calls functions in the shared C library, so you
138 can't tell from the PC alone whether the dynamic linker is still
139 running. In this case, we use a step-resume breakpoint to get us
140 past the dynamic linker, as if we were using "next" to step over a
141 function call.
d4f3574e 142
cfd8ab24 143 in_solib_dynsym_resolve_code() says whether we're in the dynamic
d4f3574e
SS
144 linker code or not. Normally, this means we single-step. However,
145 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
146 address where we can place a step-resume breakpoint to get past the
147 linker's symbol resolution function.
148
cfd8ab24 149 in_solib_dynsym_resolve_code() can generally be implemented in a
d4f3574e
SS
150 pretty portable way, by comparing the PC against the address ranges
151 of the dynamic linker's sections.
152
153 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
154 it depends on internal details of the dynamic linker. It's usually
155 not too hard to figure out where to put a breakpoint, but it
156 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
157 sanity checking. If it can't figure things out, returning zero and
158 getting the (possibly confusing) stepping behavior is better than
159 signalling an error, which will obscure the change in the
160 inferior's state. */
c906108c 161
c906108c
SS
162/* This function returns TRUE if pc is the address of an instruction
163 that lies within the dynamic linker (such as the event hook, or the
164 dld itself).
165
166 This function must be used only when a dynamic linker event has
167 been caught, and the inferior is being stepped out of the hook, or
168 undefined results are guaranteed. */
169
170#ifndef SOLIB_IN_DYNAMIC_LINKER
171#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
172#endif
173
c2c6d25f 174
7a292a7a
SS
175/* Convert the #defines into values. This is temporary until wfi control
176 flow is completely sorted out. */
177
692590c1
MS
178#ifndef CANNOT_STEP_HW_WATCHPOINTS
179#define CANNOT_STEP_HW_WATCHPOINTS 0
180#else
181#undef CANNOT_STEP_HW_WATCHPOINTS
182#define CANNOT_STEP_HW_WATCHPOINTS 1
183#endif
184
c906108c
SS
185/* Tables of how to react to signals; the user sets them. */
186
187static unsigned char *signal_stop;
188static unsigned char *signal_print;
189static unsigned char *signal_program;
190
191#define SET_SIGS(nsigs,sigs,flags) \
192 do { \
193 int signum = (nsigs); \
194 while (signum-- > 0) \
195 if ((sigs)[signum]) \
196 (flags)[signum] = 1; \
197 } while (0)
198
199#define UNSET_SIGS(nsigs,sigs,flags) \
200 do { \
201 int signum = (nsigs); \
202 while (signum-- > 0) \
203 if ((sigs)[signum]) \
204 (flags)[signum] = 0; \
205 } while (0)
206
39f77062
KB
207/* Value to pass to target_resume() to cause all threads to resume */
208
209#define RESUME_ALL (pid_to_ptid (-1))
c906108c
SS
210
211/* Command list pointer for the "stop" placeholder. */
212
213static struct cmd_list_element *stop_command;
214
c906108c
SS
215/* Function inferior was in as of last step command. */
216
217static struct symbol *step_start_function;
218
c906108c
SS
219/* Nonzero if we want to give control to the user when we're notified
220 of shared library events by the dynamic linker. */
221static int stop_on_solib_events;
920d2a44
AC
222static void
223show_stop_on_solib_events (struct ui_file *file, int from_tty,
224 struct cmd_list_element *c, const char *value)
225{
226 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
227 value);
228}
c906108c 229
c906108c
SS
230/* Nonzero means expecting a trace trap
231 and should stop the inferior and return silently when it happens. */
232
233int stop_after_trap;
234
642fd101
DE
235/* Save register contents here when executing a "finish" command or are
236 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
237 Thus this contains the return value from the called function (assuming
238 values are returned in a register). */
239
72cec141 240struct regcache *stop_registers;
c906108c 241
c906108c
SS
242/* Nonzero after stop if current stack frame should be printed. */
243
244static int stop_print_frame;
245
e02bc4cc 246/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
247 returned by target_wait()/deprecated_target_wait_hook(). This
248 information is returned by get_last_target_status(). */
39f77062 249static ptid_t target_last_wait_ptid;
e02bc4cc
DS
250static struct target_waitstatus target_last_waitstatus;
251
0d1e5fa7
PA
252static void context_switch (ptid_t ptid);
253
4e1c45ea 254void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7
PA
255
256void init_infwait_state (void);
a474d7c2 257
c906108c
SS
258/* This is used to remember when a fork, vfork or exec event
259 was caught by a catchpoint, and thus the event is to be
260 followed at the next resume of the inferior, and not
261 immediately. */
262static struct
488f131b
JB
263{
264 enum target_waitkind kind;
265 struct
c906108c 266 {
3a3e9ee3
PA
267 ptid_t parent_pid;
268 ptid_t child_pid;
c906108c 269 }
488f131b
JB
270 fork_event;
271 char *execd_pathname;
272}
c906108c
SS
273pending_follow;
274
53904c9e
AC
275static const char follow_fork_mode_child[] = "child";
276static const char follow_fork_mode_parent[] = "parent";
277
488f131b 278static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
279 follow_fork_mode_child,
280 follow_fork_mode_parent,
281 NULL
ef346e04 282};
c906108c 283
53904c9e 284static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
285static void
286show_follow_fork_mode_string (struct ui_file *file, int from_tty,
287 struct cmd_list_element *c, const char *value)
288{
289 fprintf_filtered (file, _("\
290Debugger response to a program call of fork or vfork is \"%s\".\n"),
291 value);
292}
c906108c
SS
293\f
294
6604731b 295static int
4ef3f3be 296follow_fork (void)
c906108c 297{
ea1dd7bc 298 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
c906108c 299
6604731b 300 return target_follow_fork (follow_child);
c906108c
SS
301}
302
6604731b
DJ
303void
304follow_inferior_reset_breakpoints (void)
c906108c 305{
4e1c45ea
PA
306 struct thread_info *tp = inferior_thread ();
307
6604731b
DJ
308 /* Was there a step_resume breakpoint? (There was if the user
309 did a "next" at the fork() call.) If so, explicitly reset its
310 thread number.
311
312 step_resumes are a form of bp that are made to be per-thread.
313 Since we created the step_resume bp when the parent process
314 was being debugged, and now are switching to the child process,
315 from the breakpoint package's viewpoint, that's a switch of
316 "threads". We must update the bp's notion of which thread
317 it is for, or it'll be ignored when it triggers. */
318
4e1c45ea
PA
319 if (tp->step_resume_breakpoint)
320 breakpoint_re_set_thread (tp->step_resume_breakpoint);
6604731b
DJ
321
322 /* Reinsert all breakpoints in the child. The user may have set
323 breakpoints after catching the fork, in which case those
324 were never set in the child, but only in the parent. This makes
325 sure the inserted breakpoints match the breakpoint list. */
326
327 breakpoint_re_set ();
328 insert_breakpoints ();
c906108c 329}
c906108c 330
1adeb98a
FN
331/* EXECD_PATHNAME is assumed to be non-NULL. */
332
c906108c 333static void
3a3e9ee3 334follow_exec (ptid_t pid, char *execd_pathname)
c906108c 335{
7a292a7a 336 struct target_ops *tgt;
4e1c45ea 337 struct thread_info *th = inferior_thread ();
7a292a7a 338
c906108c
SS
339 /* This is an exec event that we actually wish to pay attention to.
340 Refresh our symbol table to the newly exec'd program, remove any
341 momentary bp's, etc.
342
343 If there are breakpoints, they aren't really inserted now,
344 since the exec() transformed our inferior into a fresh set
345 of instructions.
346
347 We want to preserve symbolic breakpoints on the list, since
348 we have hopes that they can be reset after the new a.out's
349 symbol table is read.
350
351 However, any "raw" breakpoints must be removed from the list
352 (e.g., the solib bp's), since their address is probably invalid
353 now.
354
355 And, we DON'T want to call delete_breakpoints() here, since
356 that may write the bp's "shadow contents" (the instruction
357 value that was overwritten witha TRAP instruction). Since
358 we now have a new a.out, those shadow contents aren't valid. */
359 update_breakpoints_after_exec ();
360
361 /* If there was one, it's gone now. We cannot truly step-to-next
362 statement through an exec(). */
4e1c45ea
PA
363 th->step_resume_breakpoint = NULL;
364 th->step_range_start = 0;
365 th->step_range_end = 0;
c906108c 366
c906108c 367 /* What is this a.out's name? */
a3f17187 368 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
c906108c
SS
369
370 /* We've followed the inferior through an exec. Therefore, the
371 inferior has essentially been killed & reborn. */
7a292a7a 372
c906108c 373 gdb_flush (gdb_stdout);
6ca15a4b
PA
374
375 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
376
377 if (gdb_sysroot && *gdb_sysroot)
378 {
379 char *name = alloca (strlen (gdb_sysroot)
380 + strlen (execd_pathname)
381 + 1);
382 strcpy (name, gdb_sysroot);
383 strcat (name, execd_pathname);
384 execd_pathname = name;
385 }
c906108c
SS
386
387 /* That a.out is now the one to use. */
388 exec_file_attach (execd_pathname, 0);
389
cce9b6bf
PA
390 /* Reset the shared library package. This ensures that we get a
391 shlib event when the child reaches "_start", at which point the
392 dld will have had a chance to initialize the child. */
393 /* Also, loading a symbol file below may trigger symbol lookups, and
394 we don't want those to be satisfied by the libraries of the
395 previous incarnation of this process. */
396 no_shared_libraries (NULL, 0);
397
398 /* Load the main file's symbols. */
1adeb98a 399 symbol_file_add_main (execd_pathname, 0);
c906108c 400
7a292a7a 401#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 402 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2
MK
403#else
404 solib_create_inferior_hook ();
7a292a7a 405#endif
c906108c
SS
406
407 /* Reinsert all breakpoints. (Those which were symbolic have
408 been reset to the proper address in the new a.out, thanks
409 to symbol_file_command...) */
410 insert_breakpoints ();
411
412 /* The next resume of this inferior should bring it to the shlib
413 startup breakpoints. (If the user had also set bp's on
414 "main" from the old (parent) process, then they'll auto-
415 matically get reset there in the new process.) */
c906108c
SS
416}
417
418/* Non-zero if we just simulating a single-step. This is needed
419 because we cannot remove the breakpoints in the inferior process
420 until after the `wait' in `wait_for_inferior'. */
421static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
422
423/* The thread we inserted single-step breakpoints for. */
424static ptid_t singlestep_ptid;
425
fd48f117
DJ
426/* PC when we started this single-step. */
427static CORE_ADDR singlestep_pc;
428
9f976b41
DJ
429/* If another thread hit the singlestep breakpoint, we save the original
430 thread here so that we can resume single-stepping it later. */
431static ptid_t saved_singlestep_ptid;
432static int stepping_past_singlestep_breakpoint;
6a6b96b9 433
ca67fcb8
VP
434/* If not equal to null_ptid, this means that after stepping over breakpoint
435 is finished, we need to switch to deferred_step_ptid, and step it.
436
437 The use case is when one thread has hit a breakpoint, and then the user
438 has switched to another thread and issued 'step'. We need to step over
439 breakpoint in the thread which hit the breakpoint, but then continue
440 stepping the thread user has selected. */
441static ptid_t deferred_step_ptid;
c906108c 442\f
237fc4c9
PA
443/* Displaced stepping. */
444
445/* In non-stop debugging mode, we must take special care to manage
446 breakpoints properly; in particular, the traditional strategy for
447 stepping a thread past a breakpoint it has hit is unsuitable.
448 'Displaced stepping' is a tactic for stepping one thread past a
449 breakpoint it has hit while ensuring that other threads running
450 concurrently will hit the breakpoint as they should.
451
452 The traditional way to step a thread T off a breakpoint in a
453 multi-threaded program in all-stop mode is as follows:
454
455 a0) Initially, all threads are stopped, and breakpoints are not
456 inserted.
457 a1) We single-step T, leaving breakpoints uninserted.
458 a2) We insert breakpoints, and resume all threads.
459
460 In non-stop debugging, however, this strategy is unsuitable: we
461 don't want to have to stop all threads in the system in order to
462 continue or step T past a breakpoint. Instead, we use displaced
463 stepping:
464
465 n0) Initially, T is stopped, other threads are running, and
466 breakpoints are inserted.
467 n1) We copy the instruction "under" the breakpoint to a separate
468 location, outside the main code stream, making any adjustments
469 to the instruction, register, and memory state as directed by
470 T's architecture.
471 n2) We single-step T over the instruction at its new location.
472 n3) We adjust the resulting register and memory state as directed
473 by T's architecture. This includes resetting T's PC to point
474 back into the main instruction stream.
475 n4) We resume T.
476
477 This approach depends on the following gdbarch methods:
478
479 - gdbarch_max_insn_length and gdbarch_displaced_step_location
480 indicate where to copy the instruction, and how much space must
481 be reserved there. We use these in step n1.
482
483 - gdbarch_displaced_step_copy_insn copies a instruction to a new
484 address, and makes any necessary adjustments to the instruction,
485 register contents, and memory. We use this in step n1.
486
487 - gdbarch_displaced_step_fixup adjusts registers and memory after
488 we have successfuly single-stepped the instruction, to yield the
489 same effect the instruction would have had if we had executed it
490 at its original address. We use this in step n3.
491
492 - gdbarch_displaced_step_free_closure provides cleanup.
493
494 The gdbarch_displaced_step_copy_insn and
495 gdbarch_displaced_step_fixup functions must be written so that
496 copying an instruction with gdbarch_displaced_step_copy_insn,
497 single-stepping across the copied instruction, and then applying
498 gdbarch_displaced_insn_fixup should have the same effects on the
499 thread's memory and registers as stepping the instruction in place
500 would have. Exactly which responsibilities fall to the copy and
501 which fall to the fixup is up to the author of those functions.
502
503 See the comments in gdbarch.sh for details.
504
505 Note that displaced stepping and software single-step cannot
506 currently be used in combination, although with some care I think
507 they could be made to. Software single-step works by placing
508 breakpoints on all possible subsequent instructions; if the
509 displaced instruction is a PC-relative jump, those breakpoints
510 could fall in very strange places --- on pages that aren't
511 executable, or at addresses that are not proper instruction
512 boundaries. (We do generally let other threads run while we wait
513 to hit the software single-step breakpoint, and they might
514 encounter such a corrupted instruction.) One way to work around
515 this would be to have gdbarch_displaced_step_copy_insn fully
516 simulate the effect of PC-relative instructions (and return NULL)
517 on architectures that use software single-stepping.
518
519 In non-stop mode, we can have independent and simultaneous step
520 requests, so more than one thread may need to simultaneously step
521 over a breakpoint. The current implementation assumes there is
522 only one scratch space per process. In this case, we have to
523 serialize access to the scratch space. If thread A wants to step
524 over a breakpoint, but we are currently waiting for some other
525 thread to complete a displaced step, we leave thread A stopped and
526 place it in the displaced_step_request_queue. Whenever a displaced
527 step finishes, we pick the next thread in the queue and start a new
528 displaced step operation on it. See displaced_step_prepare and
529 displaced_step_fixup for details. */
530
531/* If this is not null_ptid, this is the thread carrying out a
532 displaced single-step. This thread's state will require fixing up
533 once it has completed its step. */
534static ptid_t displaced_step_ptid;
535
536struct displaced_step_request
537{
538 ptid_t ptid;
539 struct displaced_step_request *next;
540};
541
542/* A queue of pending displaced stepping requests. */
543struct displaced_step_request *displaced_step_request_queue;
544
545/* The architecture the thread had when we stepped it. */
546static struct gdbarch *displaced_step_gdbarch;
547
548/* The closure provided gdbarch_displaced_step_copy_insn, to be used
549 for post-step cleanup. */
550static struct displaced_step_closure *displaced_step_closure;
551
552/* The address of the original instruction, and the copy we made. */
553static CORE_ADDR displaced_step_original, displaced_step_copy;
554
555/* Saved contents of copy area. */
556static gdb_byte *displaced_step_saved_copy;
557
fff08868
HZ
558/* Enum strings for "set|show displaced-stepping". */
559
560static const char can_use_displaced_stepping_auto[] = "auto";
561static const char can_use_displaced_stepping_on[] = "on";
562static const char can_use_displaced_stepping_off[] = "off";
563static const char *can_use_displaced_stepping_enum[] =
564{
565 can_use_displaced_stepping_auto,
566 can_use_displaced_stepping_on,
567 can_use_displaced_stepping_off,
568 NULL,
569};
570
571/* If ON, and the architecture supports it, GDB will use displaced
572 stepping to step over breakpoints. If OFF, or if the architecture
573 doesn't support it, GDB will instead use the traditional
574 hold-and-step approach. If AUTO (which is the default), GDB will
575 decide which technique to use to step over breakpoints depending on
576 which of all-stop or non-stop mode is active --- displaced stepping
577 in non-stop mode; hold-and-step in all-stop mode. */
578
579static const char *can_use_displaced_stepping =
580 can_use_displaced_stepping_auto;
581
237fc4c9
PA
582static void
583show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
584 struct cmd_list_element *c,
585 const char *value)
586{
fff08868
HZ
587 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
588 fprintf_filtered (file, _("\
589Debugger's willingness to use displaced stepping to step over \
590breakpoints is %s (currently %s).\n"),
591 value, non_stop ? "on" : "off");
592 else
593 fprintf_filtered (file, _("\
594Debugger's willingness to use displaced stepping to step over \
595breakpoints is %s.\n"), value);
237fc4c9
PA
596}
597
fff08868
HZ
598/* Return non-zero if displaced stepping can/should be used to step
599 over breakpoints. */
600
237fc4c9
PA
601static int
602use_displaced_stepping (struct gdbarch *gdbarch)
603{
fff08868
HZ
604 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
605 && non_stop)
606 || can_use_displaced_stepping == can_use_displaced_stepping_on)
237fc4c9
PA
607 && gdbarch_displaced_step_copy_insn_p (gdbarch));
608}
609
610/* Clean out any stray displaced stepping state. */
611static void
612displaced_step_clear (void)
613{
614 /* Indicate that there is no cleanup pending. */
615 displaced_step_ptid = null_ptid;
616
617 if (displaced_step_closure)
618 {
619 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
620 displaced_step_closure);
621 displaced_step_closure = NULL;
622 }
623}
624
625static void
626cleanup_displaced_step_closure (void *ptr)
627{
628 struct displaced_step_closure *closure = ptr;
629
630 gdbarch_displaced_step_free_closure (current_gdbarch, closure);
631}
632
633/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
634void
635displaced_step_dump_bytes (struct ui_file *file,
636 const gdb_byte *buf,
637 size_t len)
638{
639 int i;
640
641 for (i = 0; i < len; i++)
642 fprintf_unfiltered (file, "%02x ", buf[i]);
643 fputs_unfiltered ("\n", file);
644}
645
646/* Prepare to single-step, using displaced stepping.
647
648 Note that we cannot use displaced stepping when we have a signal to
649 deliver. If we have a signal to deliver and an instruction to step
650 over, then after the step, there will be no indication from the
651 target whether the thread entered a signal handler or ignored the
652 signal and stepped over the instruction successfully --- both cases
653 result in a simple SIGTRAP. In the first case we mustn't do a
654 fixup, and in the second case we must --- but we can't tell which.
655 Comments in the code for 'random signals' in handle_inferior_event
656 explain how we handle this case instead.
657
658 Returns 1 if preparing was successful -- this thread is going to be
659 stepped now; or 0 if displaced stepping this thread got queued. */
660static int
661displaced_step_prepare (ptid_t ptid)
662{
ad53cd71 663 struct cleanup *old_cleanups, *ignore_cleanups;
237fc4c9
PA
664 struct regcache *regcache = get_thread_regcache (ptid);
665 struct gdbarch *gdbarch = get_regcache_arch (regcache);
666 CORE_ADDR original, copy;
667 ULONGEST len;
668 struct displaced_step_closure *closure;
669
670 /* We should never reach this function if the architecture does not
671 support displaced stepping. */
672 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
673
674 /* For the first cut, we're displaced stepping one thread at a
675 time. */
676
677 if (!ptid_equal (displaced_step_ptid, null_ptid))
678 {
679 /* Already waiting for a displaced step to finish. Defer this
680 request and place in queue. */
681 struct displaced_step_request *req, *new_req;
682
683 if (debug_displaced)
684 fprintf_unfiltered (gdb_stdlog,
685 "displaced: defering step of %s\n",
686 target_pid_to_str (ptid));
687
688 new_req = xmalloc (sizeof (*new_req));
689 new_req->ptid = ptid;
690 new_req->next = NULL;
691
692 if (displaced_step_request_queue)
693 {
694 for (req = displaced_step_request_queue;
695 req && req->next;
696 req = req->next)
697 ;
698 req->next = new_req;
699 }
700 else
701 displaced_step_request_queue = new_req;
702
703 return 0;
704 }
705 else
706 {
707 if (debug_displaced)
708 fprintf_unfiltered (gdb_stdlog,
709 "displaced: stepping %s now\n",
710 target_pid_to_str (ptid));
711 }
712
713 displaced_step_clear ();
714
ad53cd71
PA
715 old_cleanups = save_inferior_ptid ();
716 inferior_ptid = ptid;
717
515630c5 718 original = regcache_read_pc (regcache);
237fc4c9
PA
719
720 copy = gdbarch_displaced_step_location (gdbarch);
721 len = gdbarch_max_insn_length (gdbarch);
722
723 /* Save the original contents of the copy area. */
724 displaced_step_saved_copy = xmalloc (len);
ad53cd71
PA
725 ignore_cleanups = make_cleanup (free_current_contents,
726 &displaced_step_saved_copy);
237fc4c9
PA
727 read_memory (copy, displaced_step_saved_copy, len);
728 if (debug_displaced)
729 {
730 fprintf_unfiltered (gdb_stdlog, "displaced: saved 0x%s: ",
731 paddr_nz (copy));
732 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
733 };
734
735 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 736 original, copy, regcache);
237fc4c9
PA
737
738 /* We don't support the fully-simulated case at present. */
739 gdb_assert (closure);
740
741 make_cleanup (cleanup_displaced_step_closure, closure);
742
743 /* Resume execution at the copy. */
515630c5 744 regcache_write_pc (regcache, copy);
237fc4c9 745
ad53cd71
PA
746 discard_cleanups (ignore_cleanups);
747
748 do_cleanups (old_cleanups);
237fc4c9
PA
749
750 if (debug_displaced)
751 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to 0x%s\n",
ad53cd71 752 paddr_nz (copy));
237fc4c9
PA
753
754 /* Save the information we need to fix things up if the step
755 succeeds. */
756 displaced_step_ptid = ptid;
757 displaced_step_gdbarch = gdbarch;
758 displaced_step_closure = closure;
759 displaced_step_original = original;
760 displaced_step_copy = copy;
761 return 1;
762}
763
764static void
765displaced_step_clear_cleanup (void *ignore)
766{
767 displaced_step_clear ();
768}
769
770static void
771write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
772{
773 struct cleanup *ptid_cleanup = save_inferior_ptid ();
774 inferior_ptid = ptid;
775 write_memory (memaddr, myaddr, len);
776 do_cleanups (ptid_cleanup);
777}
778
779static void
780displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
781{
782 struct cleanup *old_cleanups;
783
784 /* Was this event for the pid we displaced? */
785 if (ptid_equal (displaced_step_ptid, null_ptid)
786 || ! ptid_equal (displaced_step_ptid, event_ptid))
787 return;
788
789 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
790
791 /* Restore the contents of the copy area. */
792 {
793 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
794 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
795 displaced_step_saved_copy, len);
796 if (debug_displaced)
797 fprintf_unfiltered (gdb_stdlog, "displaced: restored 0x%s\n",
798 paddr_nz (displaced_step_copy));
799 }
800
801 /* Did the instruction complete successfully? */
802 if (signal == TARGET_SIGNAL_TRAP)
803 {
804 /* Fix up the resulting state. */
805 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
806 displaced_step_closure,
807 displaced_step_original,
808 displaced_step_copy,
809 get_thread_regcache (displaced_step_ptid));
810 }
811 else
812 {
813 /* Since the instruction didn't complete, all we can do is
814 relocate the PC. */
515630c5
UW
815 struct regcache *regcache = get_thread_regcache (event_ptid);
816 CORE_ADDR pc = regcache_read_pc (regcache);
237fc4c9 817 pc = displaced_step_original + (pc - displaced_step_copy);
515630c5 818 regcache_write_pc (regcache, pc);
237fc4c9
PA
819 }
820
821 do_cleanups (old_cleanups);
822
1c5cfe86
PA
823 displaced_step_ptid = null_ptid;
824
237fc4c9
PA
825 /* Are there any pending displaced stepping requests? If so, run
826 one now. */
1c5cfe86 827 while (displaced_step_request_queue)
237fc4c9
PA
828 {
829 struct displaced_step_request *head;
830 ptid_t ptid;
1c5cfe86 831 CORE_ADDR actual_pc;
237fc4c9
PA
832
833 head = displaced_step_request_queue;
834 ptid = head->ptid;
835 displaced_step_request_queue = head->next;
836 xfree (head);
837
ad53cd71
PA
838 context_switch (ptid);
839
1c5cfe86
PA
840 actual_pc = read_pc ();
841
842 if (breakpoint_here_p (actual_pc))
ad53cd71 843 {
1c5cfe86
PA
844 if (debug_displaced)
845 fprintf_unfiltered (gdb_stdlog,
846 "displaced: stepping queued %s now\n",
847 target_pid_to_str (ptid));
848
849 displaced_step_prepare (ptid);
850
851 if (debug_displaced)
852 {
853 gdb_byte buf[4];
854
855 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
856 paddr_nz (actual_pc));
857 read_memory (actual_pc, buf, sizeof (buf));
858 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
859 }
860
861 target_resume (ptid, 1, TARGET_SIGNAL_0);
862
863 /* Done, we're stepping a thread. */
864 break;
ad53cd71 865 }
1c5cfe86
PA
866 else
867 {
868 int step;
869 struct thread_info *tp = inferior_thread ();
870
871 /* The breakpoint we were sitting under has since been
872 removed. */
873 tp->trap_expected = 0;
874
875 /* Go back to what we were trying to do. */
876 step = currently_stepping (tp);
ad53cd71 877
1c5cfe86
PA
878 if (debug_displaced)
879 fprintf_unfiltered (gdb_stdlog, "breakpoint is gone %s: step(%d)\n",
880 target_pid_to_str (tp->ptid), step);
881
882 target_resume (ptid, step, TARGET_SIGNAL_0);
883 tp->stop_signal = TARGET_SIGNAL_0;
884
885 /* This request was discarded. See if there's any other
886 thread waiting for its turn. */
887 }
237fc4c9
PA
888 }
889}
890
5231c1fd
PA
891/* Update global variables holding ptids to hold NEW_PTID if they were
892 holding OLD_PTID. */
893static void
894infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
895{
896 struct displaced_step_request *it;
897
898 if (ptid_equal (inferior_ptid, old_ptid))
899 inferior_ptid = new_ptid;
900
901 if (ptid_equal (singlestep_ptid, old_ptid))
902 singlestep_ptid = new_ptid;
903
904 if (ptid_equal (displaced_step_ptid, old_ptid))
905 displaced_step_ptid = new_ptid;
906
907 if (ptid_equal (deferred_step_ptid, old_ptid))
908 deferred_step_ptid = new_ptid;
909
910 for (it = displaced_step_request_queue; it; it = it->next)
911 if (ptid_equal (it->ptid, old_ptid))
912 it->ptid = new_ptid;
913}
914
237fc4c9
PA
915\f
916/* Resuming. */
c906108c
SS
917
918/* Things to clean up if we QUIT out of resume (). */
c906108c 919static void
74b7792f 920resume_cleanups (void *ignore)
c906108c
SS
921{
922 normal_stop ();
923}
924
53904c9e
AC
925static const char schedlock_off[] = "off";
926static const char schedlock_on[] = "on";
927static const char schedlock_step[] = "step";
488f131b 928static const char *scheduler_enums[] = {
ef346e04
AC
929 schedlock_off,
930 schedlock_on,
931 schedlock_step,
932 NULL
933};
920d2a44
AC
934static const char *scheduler_mode = schedlock_off;
935static void
936show_scheduler_mode (struct ui_file *file, int from_tty,
937 struct cmd_list_element *c, const char *value)
938{
939 fprintf_filtered (file, _("\
940Mode for locking scheduler during execution is \"%s\".\n"),
941 value);
942}
c906108c
SS
943
944static void
96baa820 945set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 946{
eefe576e
AC
947 if (!target_can_lock_scheduler)
948 {
949 scheduler_mode = schedlock_off;
950 error (_("Target '%s' cannot support this command."), target_shortname);
951 }
c906108c
SS
952}
953
954
955/* Resume the inferior, but allow a QUIT. This is useful if the user
956 wants to interrupt some lengthy single-stepping operation
957 (for child processes, the SIGINT goes to the inferior, and so
958 we get a SIGINT random_signal, but for remote debugging and perhaps
959 other targets, that's not true).
960
961 STEP nonzero if we should step (zero to continue instead).
962 SIG is the signal to give the inferior (zero for none). */
963void
96baa820 964resume (int step, enum target_signal sig)
c906108c
SS
965{
966 int should_resume = 1;
74b7792f 967 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
c7e8a53c
PA
968
969 /* Note that these must be reset if we follow a fork below. */
515630c5
UW
970 struct regcache *regcache = get_current_regcache ();
971 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 972 struct thread_info *tp = inferior_thread ();
515630c5 973 CORE_ADDR pc = regcache_read_pc (regcache);
c7e8a53c 974
c906108c
SS
975 QUIT;
976
527159b7 977 if (debug_infrun)
237fc4c9
PA
978 fprintf_unfiltered (gdb_stdlog,
979 "infrun: resume (step=%d, signal=%d), "
4e1c45ea
PA
980 "trap_expected=%d\n",
981 step, sig, tp->trap_expected);
c906108c 982
692590c1
MS
983 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
984 over an instruction that causes a page fault without triggering
985 a hardware watchpoint. The kernel properly notices that it shouldn't
986 stop, because the hardware watchpoint is not triggered, but it forgets
987 the step request and continues the program normally.
988 Work around the problem by removing hardware watchpoints if a step is
989 requested, GDB will check for a hardware watchpoint trigger after the
990 step anyway. */
c36b740a 991 if (CANNOT_STEP_HW_WATCHPOINTS && step)
692590c1 992 remove_hw_watchpoints ();
488f131b 993
692590c1 994
c2c6d25f
JM
995 /* Normally, by the time we reach `resume', the breakpoints are either
996 removed or inserted, as appropriate. The exception is if we're sitting
997 at a permanent breakpoint; we need to step over it, but permanent
998 breakpoints can't be removed. So we have to test for it here. */
237fc4c9 999 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
6d350bb5 1000 {
515630c5
UW
1001 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1002 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5
UW
1003 else
1004 error (_("\
1005The program is stopped at a permanent breakpoint, but GDB does not know\n\
1006how to step past a permanent breakpoint on this architecture. Try using\n\
1007a command like `return' or `jump' to continue execution."));
1008 }
c2c6d25f 1009
237fc4c9
PA
1010 /* If enabled, step over breakpoints by executing a copy of the
1011 instruction at a different address.
1012
1013 We can't use displaced stepping when we have a signal to deliver;
1014 the comments for displaced_step_prepare explain why. The
1015 comments in the handle_inferior event for dealing with 'random
1016 signals' explain what we do instead. */
515630c5 1017 if (use_displaced_stepping (gdbarch)
4e1c45ea 1018 && tp->trap_expected
237fc4c9
PA
1019 && sig == TARGET_SIGNAL_0)
1020 {
1021 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1022 {
1023 /* Got placed in displaced stepping queue. Will be resumed
1024 later when all the currently queued displaced stepping
7f7efbd9
VP
1025 requests finish. The thread is not executing at this point,
1026 and the call to set_executing will be made later. But we
1027 need to call set_running here, since from frontend point of view,
1028 the thread is running. */
1029 set_running (inferior_ptid, 1);
d56b7306
VP
1030 discard_cleanups (old_cleanups);
1031 return;
1032 }
237fc4c9
PA
1033 }
1034
515630c5 1035 if (step && gdbarch_software_single_step_p (gdbarch))
c906108c
SS
1036 {
1037 /* Do it the hard way, w/temp breakpoints */
515630c5 1038 if (gdbarch_software_single_step (gdbarch, get_current_frame ()))
e6590a1b
UW
1039 {
1040 /* ...and don't ask hardware to do it. */
1041 step = 0;
1042 /* and do not pull these breakpoints until after a `wait' in
1043 `wait_for_inferior' */
1044 singlestep_breakpoints_inserted_p = 1;
1045 singlestep_ptid = inferior_ptid;
237fc4c9 1046 singlestep_pc = pc;
e6590a1b 1047 }
c906108c
SS
1048 }
1049
c906108c 1050 /* If there were any forks/vforks/execs that were caught and are
6604731b 1051 now to be followed, then do so. */
c906108c
SS
1052 switch (pending_follow.kind)
1053 {
6604731b
DJ
1054 case TARGET_WAITKIND_FORKED:
1055 case TARGET_WAITKIND_VFORKED:
c906108c 1056 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
6604731b
DJ
1057 if (follow_fork ())
1058 should_resume = 0;
607cecd2
PA
1059
1060 /* Following a child fork will change our notion of current
1061 thread. */
1062 tp = inferior_thread ();
c7e8a53c
PA
1063 regcache = get_current_regcache ();
1064 gdbarch = get_regcache_arch (regcache);
1065 pc = regcache_read_pc (regcache);
c906108c
SS
1066 break;
1067
6604731b 1068 case TARGET_WAITKIND_EXECD:
c906108c 1069 /* follow_exec is called as soon as the exec event is seen. */
6604731b 1070 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
c906108c
SS
1071 break;
1072
1073 default:
1074 break;
1075 }
c906108c
SS
1076
1077 /* Install inferior's terminal modes. */
1078 target_terminal_inferior ();
1079
1080 if (should_resume)
1081 {
39f77062 1082 ptid_t resume_ptid;
dfcd3bfb 1083
488f131b 1084 resume_ptid = RESUME_ALL; /* Default */
ef5cf84e 1085
cd76b0b7
VP
1086 /* If STEP is set, it's a request to use hardware stepping
1087 facilities. But in that case, we should never
1088 use singlestep breakpoint. */
1089 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1090
1091 if (singlestep_breakpoints_inserted_p
1092 && stepping_past_singlestep_breakpoint)
c906108c 1093 {
cd76b0b7
VP
1094 /* The situation here is as follows. In thread T1 we wanted to
1095 single-step. Lacking hardware single-stepping we've
1096 set breakpoint at the PC of the next instruction -- call it
1097 P. After resuming, we've hit that breakpoint in thread T2.
1098 Now we've removed original breakpoint, inserted breakpoint
1099 at P+1, and try to step to advance T2 past breakpoint.
1100 We need to step only T2, as if T1 is allowed to freely run,
1101 it can run past P, and if other threads are allowed to run,
1102 they can hit breakpoint at P+1, and nested hits of single-step
1103 breakpoints is not something we'd want -- that's complicated
1104 to support, and has no value. */
1105 resume_ptid = inferior_ptid;
1106 }
c906108c 1107
e842223a 1108 if ((step || singlestep_breakpoints_inserted_p)
4e1c45ea 1109 && tp->trap_expected)
cd76b0b7 1110 {
74960c60
VP
1111 /* We're allowing a thread to run past a breakpoint it has
1112 hit, by single-stepping the thread with the breakpoint
1113 removed. In which case, we need to single-step only this
1114 thread, and keep others stopped, as they can miss this
1115 breakpoint if allowed to run.
1116
1117 The current code actually removes all breakpoints when
1118 doing this, not just the one being stepped over, so if we
1119 let other threads run, we can actually miss any
1120 breakpoint, not just the one at PC. */
ef5cf84e 1121 resume_ptid = inferior_ptid;
c906108c 1122 }
ef5cf84e 1123
94cc34af
PA
1124 if (non_stop)
1125 {
1126 /* With non-stop mode on, threads are always handled
1127 individually. */
1128 resume_ptid = inferior_ptid;
1129 }
1130 else if ((scheduler_mode == schedlock_on)
1131 || (scheduler_mode == schedlock_step
1132 && (step || singlestep_breakpoints_inserted_p)))
c906108c 1133 {
ef5cf84e 1134 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 1135 resume_ptid = inferior_ptid;
c906108c 1136 }
ef5cf84e 1137
515630c5 1138 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1139 {
1140 /* Most targets can step a breakpoint instruction, thus
1141 executing it normally. But if this one cannot, just
1142 continue and we will hit it anyway. */
237fc4c9 1143 if (step && breakpoint_inserted_here_p (pc))
c4ed33b9
AC
1144 step = 0;
1145 }
237fc4c9
PA
1146
1147 if (debug_displaced
515630c5 1148 && use_displaced_stepping (gdbarch)
4e1c45ea 1149 && tp->trap_expected)
237fc4c9 1150 {
515630c5
UW
1151 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1152 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1153 gdb_byte buf[4];
1154
1155 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
1156 paddr_nz (actual_pc));
1157 read_memory (actual_pc, buf, sizeof (buf));
1158 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1159 }
1160
2020b7ab
PA
1161 /* Avoid confusing the next resume, if the next stop/resume
1162 happens to apply to another thread. */
1163 tp->stop_signal = TARGET_SIGNAL_0;
607cecd2
PA
1164
1165 target_resume (resume_ptid, step, sig);
c906108c
SS
1166 }
1167
1168 discard_cleanups (old_cleanups);
1169}
1170\f
237fc4c9 1171/* Proceeding. */
c906108c
SS
1172
1173/* Clear out all variables saying what to do when inferior is continued.
1174 First do this, then set the ones you want, then call `proceed'. */
1175
a7212384
UW
1176static void
1177clear_proceed_status_thread (struct thread_info *tp)
c906108c 1178{
a7212384
UW
1179 if (debug_infrun)
1180 fprintf_unfiltered (gdb_stdlog,
1181 "infrun: clear_proceed_status_thread (%s)\n",
1182 target_pid_to_str (tp->ptid));
d6b48e9c 1183
a7212384
UW
1184 tp->trap_expected = 0;
1185 tp->step_range_start = 0;
1186 tp->step_range_end = 0;
1187 tp->step_frame_id = null_frame_id;
1188 tp->step_over_calls = STEP_OVER_UNDEBUGGABLE;
1189 tp->stop_requested = 0;
4e1c45ea 1190
a7212384 1191 tp->stop_step = 0;
32400beb 1192
a7212384 1193 tp->proceed_to_finish = 0;
414c69f7 1194
a7212384
UW
1195 /* Discard any remaining commands or status from previous stop. */
1196 bpstat_clear (&tp->stop_bpstat);
1197}
32400beb 1198
a7212384
UW
1199static int
1200clear_proceed_status_callback (struct thread_info *tp, void *data)
1201{
1202 if (is_exited (tp->ptid))
1203 return 0;
d6b48e9c 1204
a7212384
UW
1205 clear_proceed_status_thread (tp);
1206 return 0;
1207}
1208
1209void
1210clear_proceed_status (void)
1211{
1212 if (!ptid_equal (inferior_ptid, null_ptid))
1213 {
1214 struct inferior *inferior;
1215
1216 if (non_stop)
1217 {
1218 /* If in non-stop mode, only delete the per-thread status
1219 of the current thread. */
1220 clear_proceed_status_thread (inferior_thread ());
1221 }
1222 else
1223 {
1224 /* In all-stop mode, delete the per-thread status of
1225 *all* threads. */
1226 iterate_over_threads (clear_proceed_status_callback, NULL);
1227 }
1228
d6b48e9c
PA
1229 inferior = current_inferior ();
1230 inferior->stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
1231 }
1232
c906108c 1233 stop_after_trap = 0;
c906108c
SS
1234 breakpoint_proceeded = 1; /* We're about to proceed... */
1235
d5c31457
UW
1236 if (stop_registers)
1237 {
1238 regcache_xfree (stop_registers);
1239 stop_registers = NULL;
1240 }
c906108c
SS
1241}
1242
ea67f13b
DJ
1243/* This should be suitable for any targets that support threads. */
1244
1245static int
6a6b96b9 1246prepare_to_proceed (int step)
ea67f13b
DJ
1247{
1248 ptid_t wait_ptid;
1249 struct target_waitstatus wait_status;
1250
1251 /* Get the last target status returned by target_wait(). */
1252 get_last_target_status (&wait_ptid, &wait_status);
1253
6a6b96b9 1254 /* Make sure we were stopped at a breakpoint. */
ea67f13b 1255 if (wait_status.kind != TARGET_WAITKIND_STOPPED
6a6b96b9 1256 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
ea67f13b
DJ
1257 {
1258 return 0;
1259 }
1260
6a6b96b9 1261 /* Switched over from WAIT_PID. */
ea67f13b 1262 if (!ptid_equal (wait_ptid, minus_one_ptid)
515630c5 1263 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 1264 {
515630c5
UW
1265 struct regcache *regcache = get_thread_regcache (wait_ptid);
1266
1267 if (breakpoint_here_p (regcache_read_pc (regcache)))
ea67f13b 1268 {
515630c5
UW
1269 /* If stepping, remember current thread to switch back to. */
1270 if (step)
1271 deferred_step_ptid = inferior_ptid;
ea67f13b 1272
515630c5
UW
1273 /* Switch back to WAIT_PID thread. */
1274 switch_to_thread (wait_ptid);
6a6b96b9 1275
515630c5
UW
1276 /* We return 1 to indicate that there is a breakpoint here,
1277 so we need to step over it before continuing to avoid
1278 hitting it straight away. */
1279 return 1;
1280 }
ea67f13b
DJ
1281 }
1282
1283 return 0;
ea67f13b 1284}
e4846b08 1285
c906108c
SS
1286/* Basic routine for continuing the program in various fashions.
1287
1288 ADDR is the address to resume at, or -1 for resume where stopped.
1289 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 1290 or -1 for act according to how it stopped.
c906108c 1291 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
1292 -1 means return after that and print nothing.
1293 You should probably set various step_... variables
1294 before calling here, if you are stepping.
c906108c
SS
1295
1296 You should call clear_proceed_status before calling proceed. */
1297
1298void
96baa820 1299proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c 1300{
515630c5
UW
1301 struct regcache *regcache = get_current_regcache ();
1302 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1303 struct thread_info *tp;
515630c5 1304 CORE_ADDR pc = regcache_read_pc (regcache);
c906108c
SS
1305 int oneproc = 0;
1306
1307 if (step > 0)
515630c5 1308 step_start_function = find_pc_function (pc);
c906108c
SS
1309 if (step < 0)
1310 stop_after_trap = 1;
1311
2acceee2 1312 if (addr == (CORE_ADDR) -1)
c906108c 1313 {
b2175913
MS
1314 if (pc == stop_pc && breakpoint_here_p (pc)
1315 && execution_direction != EXEC_REVERSE)
3352ef37
AC
1316 /* There is a breakpoint at the address we will resume at,
1317 step one instruction before inserting breakpoints so that
1318 we do not stop right away (and report a second hit at this
b2175913
MS
1319 breakpoint).
1320
1321 Note, we don't do this in reverse, because we won't
1322 actually be executing the breakpoint insn anyway.
1323 We'll be (un-)executing the previous instruction. */
1324
c906108c 1325 oneproc = 1;
515630c5
UW
1326 else if (gdbarch_single_step_through_delay_p (gdbarch)
1327 && gdbarch_single_step_through_delay (gdbarch,
1328 get_current_frame ()))
3352ef37
AC
1329 /* We stepped onto an instruction that needs to be stepped
1330 again before re-inserting the breakpoint, do so. */
c906108c
SS
1331 oneproc = 1;
1332 }
1333 else
1334 {
515630c5 1335 regcache_write_pc (regcache, addr);
c906108c
SS
1336 }
1337
527159b7 1338 if (debug_infrun)
8a9de0e4
AC
1339 fprintf_unfiltered (gdb_stdlog,
1340 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
1341 paddr_nz (addr), siggnal, step);
527159b7 1342
94cc34af
PA
1343 if (non_stop)
1344 /* In non-stop, each thread is handled individually. The context
1345 must already be set to the right thread here. */
1346 ;
1347 else
1348 {
1349 /* In a multi-threaded task we may select another thread and
1350 then continue or step.
c906108c 1351
94cc34af
PA
1352 But if the old thread was stopped at a breakpoint, it will
1353 immediately cause another breakpoint stop without any
1354 execution (i.e. it will report a breakpoint hit incorrectly).
1355 So we must step over it first.
c906108c 1356
94cc34af
PA
1357 prepare_to_proceed checks the current thread against the
1358 thread that reported the most recent event. If a step-over
1359 is required it returns TRUE and sets the current thread to
1360 the old thread. */
1361 if (prepare_to_proceed (step))
1362 oneproc = 1;
1363 }
c906108c 1364
4e1c45ea
PA
1365 /* prepare_to_proceed may change the current thread. */
1366 tp = inferior_thread ();
1367
c906108c 1368 if (oneproc)
74960c60 1369 {
4e1c45ea 1370 tp->trap_expected = 1;
237fc4c9
PA
1371 /* If displaced stepping is enabled, we can step over the
1372 breakpoint without hitting it, so leave all breakpoints
1373 inserted. Otherwise we need to disable all breakpoints, step
1374 one instruction, and then re-add them when that step is
1375 finished. */
515630c5 1376 if (!use_displaced_stepping (gdbarch))
237fc4c9 1377 remove_breakpoints ();
74960c60 1378 }
237fc4c9
PA
1379
1380 /* We can insert breakpoints if we're not trying to step over one,
1381 or if we are stepping over one but we're using displaced stepping
1382 to do so. */
4e1c45ea 1383 if (! tp->trap_expected || use_displaced_stepping (gdbarch))
c36b740a 1384 insert_breakpoints ();
c906108c 1385
2020b7ab
PA
1386 if (!non_stop)
1387 {
1388 /* Pass the last stop signal to the thread we're resuming,
1389 irrespective of whether the current thread is the thread that
1390 got the last event or not. This was historically GDB's
1391 behaviour before keeping a stop_signal per thread. */
1392
1393 struct thread_info *last_thread;
1394 ptid_t last_ptid;
1395 struct target_waitstatus last_status;
1396
1397 get_last_target_status (&last_ptid, &last_status);
1398 if (!ptid_equal (inferior_ptid, last_ptid)
1399 && !ptid_equal (last_ptid, null_ptid)
1400 && !ptid_equal (last_ptid, minus_one_ptid))
1401 {
1402 last_thread = find_thread_pid (last_ptid);
1403 if (last_thread)
1404 {
1405 tp->stop_signal = last_thread->stop_signal;
1406 last_thread->stop_signal = TARGET_SIGNAL_0;
1407 }
1408 }
1409 }
1410
c906108c 1411 if (siggnal != TARGET_SIGNAL_DEFAULT)
2020b7ab 1412 tp->stop_signal = siggnal;
c906108c
SS
1413 /* If this signal should not be seen by program,
1414 give it zero. Used for debugging signals. */
2020b7ab
PA
1415 else if (!signal_program[tp->stop_signal])
1416 tp->stop_signal = TARGET_SIGNAL_0;
c906108c
SS
1417
1418 annotate_starting ();
1419
1420 /* Make sure that output from GDB appears before output from the
1421 inferior. */
1422 gdb_flush (gdb_stdout);
1423
e4846b08
JJ
1424 /* Refresh prev_pc value just prior to resuming. This used to be
1425 done in stop_stepping, however, setting prev_pc there did not handle
1426 scenarios such as inferior function calls or returning from
1427 a function via the return command. In those cases, the prev_pc
1428 value was not set properly for subsequent commands. The prev_pc value
1429 is used to initialize the starting line number in the ecs. With an
1430 invalid value, the gdb next command ends up stopping at the position
1431 represented by the next line table entry past our start position.
1432 On platforms that generate one line table entry per line, this
1433 is not a problem. However, on the ia64, the compiler generates
1434 extraneous line table entries that do not increase the line number.
1435 When we issue the gdb next command on the ia64 after an inferior call
1436 or a return command, we often end up a few instructions forward, still
1437 within the original line we started.
1438
1439 An attempt was made to have init_execution_control_state () refresh
1440 the prev_pc value before calculating the line number. This approach
1441 did not work because on platforms that use ptrace, the pc register
1442 cannot be read unless the inferior is stopped. At that point, we
515630c5 1443 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
e4846b08 1444 call can fail. Setting the prev_pc value here ensures the value is
8fb3e588 1445 updated correctly when the inferior is stopped. */
4e1c45ea 1446 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 1447
59f0d5d9 1448 /* Fill in with reasonable starting values. */
4e1c45ea 1449 init_thread_stepping_state (tp);
59f0d5d9 1450
59f0d5d9
PA
1451 /* Reset to normal state. */
1452 init_infwait_state ();
1453
c906108c 1454 /* Resume inferior. */
2020b7ab 1455 resume (oneproc || step || bpstat_should_step (), tp->stop_signal);
c906108c
SS
1456
1457 /* Wait for it to stop (if not standalone)
1458 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
1459 /* Do this only if we are not using the event loop, or if the target
1460 does not support asynchronous execution. */
362646f5 1461 if (!target_can_async_p ())
43ff13b4 1462 {
ae123ec6 1463 wait_for_inferior (0);
43ff13b4
JM
1464 normal_stop ();
1465 }
c906108c 1466}
c906108c
SS
1467\f
1468
1469/* Start remote-debugging of a machine over a serial link. */
96baa820 1470
c906108c 1471void
8621d6a9 1472start_remote (int from_tty)
c906108c 1473{
d6b48e9c 1474 struct inferior *inferior;
c906108c 1475 init_wait_for_inferior ();
d6b48e9c
PA
1476
1477 inferior = current_inferior ();
1478 inferior->stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 1479
6426a772
JM
1480 /* Always go on waiting for the target, regardless of the mode. */
1481 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 1482 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
1483 nothing is returned (instead of just blocking). Because of this,
1484 targets expecting an immediate response need to, internally, set
1485 things up so that the target_wait() is forced to eventually
1486 timeout. */
1487 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1488 differentiate to its caller what the state of the target is after
1489 the initial open has been performed. Here we're assuming that
1490 the target has stopped. It should be possible to eventually have
1491 target_open() return to the caller an indication that the target
1492 is currently running and GDB state should be set to the same as
1493 for an async run. */
ae123ec6 1494 wait_for_inferior (0);
8621d6a9
DJ
1495
1496 /* Now that the inferior has stopped, do any bookkeeping like
1497 loading shared libraries. We want to do this before normal_stop,
1498 so that the displayed frame is up to date. */
1499 post_create_inferior (&current_target, from_tty);
1500
6426a772 1501 normal_stop ();
c906108c
SS
1502}
1503
1504/* Initialize static vars when a new inferior begins. */
1505
1506void
96baa820 1507init_wait_for_inferior (void)
c906108c
SS
1508{
1509 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 1510
c906108c
SS
1511 breakpoint_init_inferior (inf_starting);
1512
c906108c
SS
1513 /* The first resume is not following a fork/vfork/exec. */
1514 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
c906108c 1515
c906108c 1516 clear_proceed_status ();
9f976b41
DJ
1517
1518 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 1519 deferred_step_ptid = null_ptid;
ca005067
DJ
1520
1521 target_last_wait_ptid = minus_one_ptid;
237fc4c9 1522
0d1e5fa7
PA
1523 previous_inferior_ptid = null_ptid;
1524 init_infwait_state ();
1525
237fc4c9 1526 displaced_step_clear ();
c906108c 1527}
237fc4c9 1528
c906108c 1529\f
b83266a0
SS
1530/* This enum encodes possible reasons for doing a target_wait, so that
1531 wfi can call target_wait in one place. (Ultimately the call will be
1532 moved out of the infinite loop entirely.) */
1533
c5aa993b
JM
1534enum infwait_states
1535{
cd0fc7c3
SS
1536 infwait_normal_state,
1537 infwait_thread_hop_state,
d983da9c 1538 infwait_step_watch_state,
cd0fc7c3 1539 infwait_nonstep_watch_state
b83266a0
SS
1540};
1541
11cf8741
JM
1542/* Why did the inferior stop? Used to print the appropriate messages
1543 to the interface from within handle_inferior_event(). */
1544enum inferior_stop_reason
1545{
11cf8741
JM
1546 /* Step, next, nexti, stepi finished. */
1547 END_STEPPING_RANGE,
11cf8741
JM
1548 /* Inferior terminated by signal. */
1549 SIGNAL_EXITED,
1550 /* Inferior exited. */
1551 EXITED,
1552 /* Inferior received signal, and user asked to be notified. */
b2175913
MS
1553 SIGNAL_RECEIVED,
1554 /* Reverse execution -- target ran out of history info. */
1555 NO_HISTORY
11cf8741
JM
1556};
1557
0d1e5fa7
PA
1558/* The PTID we'll do a target_wait on.*/
1559ptid_t waiton_ptid;
1560
1561/* Current inferior wait state. */
1562enum infwait_states infwait_state;
cd0fc7c3 1563
0d1e5fa7
PA
1564/* Data to be passed around while handling an event. This data is
1565 discarded between events. */
c5aa993b 1566struct execution_control_state
488f131b 1567{
0d1e5fa7 1568 ptid_t ptid;
4e1c45ea
PA
1569 /* The thread that got the event, if this was a thread event; NULL
1570 otherwise. */
1571 struct thread_info *event_thread;
1572
488f131b 1573 struct target_waitstatus ws;
488f131b
JB
1574 int random_signal;
1575 CORE_ADDR stop_func_start;
1576 CORE_ADDR stop_func_end;
1577 char *stop_func_name;
488f131b 1578 int new_thread_event;
488f131b
JB
1579 int wait_some_more;
1580};
1581
1582void init_execution_control_state (struct execution_control_state *ecs);
1583
1584void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 1585
b2175913
MS
1586static void handle_step_into_function (struct execution_control_state *ecs);
1587static void handle_step_into_function_backward (struct execution_control_state *ecs);
44cbf7b5 1588static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
14e60db5 1589static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
44cbf7b5
AC
1590static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
1591 struct frame_id sr_id);
611c83ae
PA
1592static void insert_longjmp_resume_breakpoint (CORE_ADDR);
1593
104c1213
JM
1594static void stop_stepping (struct execution_control_state *ecs);
1595static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 1596static void keep_going (struct execution_control_state *ecs);
488f131b
JB
1597static void print_stop_reason (enum inferior_stop_reason stop_reason,
1598 int stop_info);
104c1213 1599
252fbfc8
PA
1600/* Callback for iterate over threads. If the thread is stopped, but
1601 the user/frontend doesn't know about that yet, go through
1602 normal_stop, as if the thread had just stopped now. ARG points at
1603 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
1604 ptid_is_pid(PTID) is true, applies to all threads of the process
1605 pointed at by PTID. Otherwise, apply only to the thread pointed by
1606 PTID. */
1607
1608static int
1609infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
1610{
1611 ptid_t ptid = * (ptid_t *) arg;
1612
1613 if ((ptid_equal (info->ptid, ptid)
1614 || ptid_equal (minus_one_ptid, ptid)
1615 || (ptid_is_pid (ptid)
1616 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
1617 && is_running (info->ptid)
1618 && !is_executing (info->ptid))
1619 {
1620 struct cleanup *old_chain;
1621 struct execution_control_state ecss;
1622 struct execution_control_state *ecs = &ecss;
1623
1624 memset (ecs, 0, sizeof (*ecs));
1625
1626 old_chain = make_cleanup_restore_current_thread ();
1627
1628 switch_to_thread (info->ptid);
1629
1630 /* Go through handle_inferior_event/normal_stop, so we always
1631 have consistent output as if the stop event had been
1632 reported. */
1633 ecs->ptid = info->ptid;
1634 ecs->event_thread = find_thread_pid (info->ptid);
1635 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1636 ecs->ws.value.sig = TARGET_SIGNAL_0;
1637
1638 handle_inferior_event (ecs);
1639
1640 if (!ecs->wait_some_more)
1641 {
1642 struct thread_info *tp;
1643
1644 normal_stop ();
1645
1646 /* Finish off the continuations. The continations
1647 themselves are responsible for realising the thread
1648 didn't finish what it was supposed to do. */
1649 tp = inferior_thread ();
1650 do_all_intermediate_continuations_thread (tp);
1651 do_all_continuations_thread (tp);
1652 }
1653
1654 do_cleanups (old_chain);
1655 }
1656
1657 return 0;
1658}
1659
1660/* This function is attached as a "thread_stop_requested" observer.
1661 Cleanup local state that assumed the PTID was to be resumed, and
1662 report the stop to the frontend. */
1663
1664void
1665infrun_thread_stop_requested (ptid_t ptid)
1666{
1667 struct displaced_step_request *it, *next, *prev = NULL;
1668
1669 /* PTID was requested to stop. Remove it from the displaced
1670 stepping queue, so we don't try to resume it automatically. */
1671 for (it = displaced_step_request_queue; it; it = next)
1672 {
1673 next = it->next;
1674
1675 if (ptid_equal (it->ptid, ptid)
1676 || ptid_equal (minus_one_ptid, ptid)
1677 || (ptid_is_pid (ptid)
1678 && ptid_get_pid (ptid) == ptid_get_pid (it->ptid)))
1679 {
1680 if (displaced_step_request_queue == it)
1681 displaced_step_request_queue = it->next;
1682 else
1683 prev->next = it->next;
1684
1685 xfree (it);
1686 }
1687 else
1688 prev = it;
1689 }
1690
1691 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
1692}
1693
4e1c45ea
PA
1694/* Callback for iterate_over_threads. */
1695
1696static int
1697delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
1698{
1699 if (is_exited (info->ptid))
1700 return 0;
1701
1702 delete_step_resume_breakpoint (info);
1703 return 0;
1704}
1705
1706/* In all-stop, delete the step resume breakpoint of any thread that
1707 had one. In non-stop, delete the step resume breakpoint of the
1708 thread that just stopped. */
1709
1710static void
1711delete_step_thread_step_resume_breakpoint (void)
1712{
1713 if (!target_has_execution
1714 || ptid_equal (inferior_ptid, null_ptid))
1715 /* If the inferior has exited, we have already deleted the step
1716 resume breakpoints out of GDB's lists. */
1717 return;
1718
1719 if (non_stop)
1720 {
1721 /* If in non-stop mode, only delete the step-resume or
1722 longjmp-resume breakpoint of the thread that just stopped
1723 stepping. */
1724 struct thread_info *tp = inferior_thread ();
1725 delete_step_resume_breakpoint (tp);
1726 }
1727 else
1728 /* In all-stop mode, delete all step-resume and longjmp-resume
1729 breakpoints of any thread that had them. */
1730 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
1731}
1732
1733/* A cleanup wrapper. */
1734
1735static void
1736delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
1737{
1738 delete_step_thread_step_resume_breakpoint ();
1739}
1740
cd0fc7c3 1741/* Wait for control to return from inferior to debugger.
ae123ec6
JB
1742
1743 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1744 as if they were SIGTRAP signals. This can be useful during
1745 the startup sequence on some targets such as HP/UX, where
1746 we receive an EXEC event instead of the expected SIGTRAP.
1747
cd0fc7c3
SS
1748 If inferior gets a signal, we may decide to start it up again
1749 instead of returning. That is why there is a loop in this function.
1750 When this function actually returns it means the inferior
1751 should be left stopped and GDB should read more commands. */
1752
1753void
ae123ec6 1754wait_for_inferior (int treat_exec_as_sigtrap)
cd0fc7c3
SS
1755{
1756 struct cleanup *old_cleanups;
0d1e5fa7 1757 struct execution_control_state ecss;
cd0fc7c3 1758 struct execution_control_state *ecs;
c906108c 1759
527159b7 1760 if (debug_infrun)
ae123ec6
JB
1761 fprintf_unfiltered
1762 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1763 treat_exec_as_sigtrap);
527159b7 1764
4e1c45ea
PA
1765 old_cleanups =
1766 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 1767
cd0fc7c3 1768 ecs = &ecss;
0d1e5fa7
PA
1769 memset (ecs, 0, sizeof (*ecs));
1770
cd0fc7c3
SS
1771 overlay_cache_invalid = 1;
1772
e0bb1c1c
PA
1773 /* We'll update this if & when we switch to a new thread. */
1774 previous_inferior_ptid = inferior_ptid;
1775
cd0fc7c3
SS
1776 /* We have to invalidate the registers BEFORE calling target_wait
1777 because they can be loaded from the target while in target_wait.
1778 This makes remote debugging a bit more efficient for those
1779 targets that provide critical registers as part of their normal
1780 status mechanism. */
1781
1782 registers_changed ();
b83266a0 1783
c906108c
SS
1784 while (1)
1785 {
9a4105ab 1786 if (deprecated_target_wait_hook)
0d1e5fa7 1787 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
cd0fc7c3 1788 else
0d1e5fa7 1789 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
c906108c 1790
ae123ec6
JB
1791 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
1792 {
1793 xfree (ecs->ws.value.execd_pathname);
1794 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1795 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
1796 }
1797
cd0fc7c3
SS
1798 /* Now figure out what to do with the result of the result. */
1799 handle_inferior_event (ecs);
c906108c 1800
cd0fc7c3
SS
1801 if (!ecs->wait_some_more)
1802 break;
1803 }
4e1c45ea 1804
cd0fc7c3
SS
1805 do_cleanups (old_cleanups);
1806}
c906108c 1807
43ff13b4
JM
1808/* Asynchronous version of wait_for_inferior. It is called by the
1809 event loop whenever a change of state is detected on the file
1810 descriptor corresponding to the target. It can be called more than
1811 once to complete a single execution command. In such cases we need
a474d7c2
PA
1812 to keep the state in a global variable ECSS. If it is the last time
1813 that this function is called for a single execution command, then
1814 report to the user that the inferior has stopped, and do the
1815 necessary cleanups. */
43ff13b4
JM
1816
1817void
fba45db2 1818fetch_inferior_event (void *client_data)
43ff13b4 1819{
0d1e5fa7 1820 struct execution_control_state ecss;
a474d7c2 1821 struct execution_control_state *ecs = &ecss;
4f8d22e3
PA
1822 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
1823 int was_sync = sync_execution;
43ff13b4 1824
0d1e5fa7
PA
1825 memset (ecs, 0, sizeof (*ecs));
1826
59f0d5d9 1827 overlay_cache_invalid = 1;
43ff13b4 1828
e0bb1c1c
PA
1829 /* We can only rely on wait_for_more being correct before handling
1830 the event in all-stop, but previous_inferior_ptid isn't used in
1831 non-stop. */
1832 if (!ecs->wait_some_more)
1833 /* We'll update this if & when we switch to a new thread. */
1834 previous_inferior_ptid = inferior_ptid;
1835
4f8d22e3
PA
1836 if (non_stop)
1837 /* In non-stop mode, the user/frontend should not notice a thread
1838 switch due to internal events. Make sure we reverse to the
1839 user selected thread and frame after handling the event and
1840 running any breakpoint commands. */
1841 make_cleanup_restore_current_thread ();
1842
59f0d5d9
PA
1843 /* We have to invalidate the registers BEFORE calling target_wait
1844 because they can be loaded from the target while in target_wait.
1845 This makes remote debugging a bit more efficient for those
1846 targets that provide critical registers as part of their normal
1847 status mechanism. */
43ff13b4 1848
59f0d5d9 1849 registers_changed ();
43ff13b4 1850
9a4105ab 1851 if (deprecated_target_wait_hook)
a474d7c2 1852 ecs->ptid =
0d1e5fa7 1853 deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
43ff13b4 1854 else
0d1e5fa7 1855 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
43ff13b4 1856
94cc34af
PA
1857 if (non_stop
1858 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
1859 && ecs->ws.kind != TARGET_WAITKIND_EXITED
1860 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
1861 /* In non-stop mode, each thread is handled individually. Switch
1862 early, so the global state is set correctly for this
1863 thread. */
1864 context_switch (ecs->ptid);
1865
43ff13b4 1866 /* Now figure out what to do with the result of the result. */
a474d7c2 1867 handle_inferior_event (ecs);
43ff13b4 1868
a474d7c2 1869 if (!ecs->wait_some_more)
43ff13b4 1870 {
d6b48e9c
PA
1871 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
1872
4e1c45ea 1873 delete_step_thread_step_resume_breakpoint ();
f107f563 1874
d6b48e9c
PA
1875 /* We may not find an inferior if this was a process exit. */
1876 if (inf == NULL || inf->stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
1877 normal_stop ();
1878
af679fd0
PA
1879 if (target_has_execution
1880 && ecs->ws.kind != TARGET_WAITKIND_EXITED
1881 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
1882 && ecs->event_thread->step_multi
414c69f7 1883 && ecs->event_thread->stop_step)
c2d11a7d
JM
1884 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1885 else
1886 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4 1887 }
4f8d22e3
PA
1888
1889 /* Revert thread and frame. */
1890 do_cleanups (old_chain);
1891
1892 /* If the inferior was in sync execution mode, and now isn't,
1893 restore the prompt. */
1894 if (was_sync && !sync_execution)
1895 display_gdb_prompt (0);
43ff13b4
JM
1896}
1897
cd0fc7c3
SS
1898/* Prepare an execution control state for looping through a
1899 wait_for_inferior-type loop. */
1900
1901void
96baa820 1902init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3
SS
1903{
1904 ecs->random_signal = 0;
0d1e5fa7
PA
1905}
1906
1907/* Clear context switchable stepping state. */
1908
1909void
4e1c45ea 1910init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 1911{
2afb61aa
PA
1912 struct symtab_and_line sal;
1913
0d1e5fa7
PA
1914 tss->stepping_over_breakpoint = 0;
1915 tss->step_after_step_resume_breakpoint = 0;
1916 tss->stepping_through_solib_after_catch = 0;
1917 tss->stepping_through_solib_catchpoints = NULL;
2afb61aa 1918
4e1c45ea 1919 sal = find_pc_line (tss->prev_pc, 0);
2afb61aa
PA
1920 tss->current_line = sal.line;
1921 tss->current_symtab = sal.symtab;
cd0fc7c3
SS
1922}
1923
e02bc4cc 1924/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
1925 target_wait()/deprecated_target_wait_hook(). The data is actually
1926 cached by handle_inferior_event(), which gets called immediately
1927 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
1928
1929void
488f131b 1930get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 1931{
39f77062 1932 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
1933 *status = target_last_waitstatus;
1934}
1935
ac264b3b
MS
1936void
1937nullify_last_target_wait_ptid (void)
1938{
1939 target_last_wait_ptid = minus_one_ptid;
1940}
1941
dcf4fbde 1942/* Switch thread contexts. */
dd80620e
MS
1943
1944static void
0d1e5fa7 1945context_switch (ptid_t ptid)
dd80620e 1946{
fd48f117
DJ
1947 if (debug_infrun)
1948 {
1949 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1950 target_pid_to_str (inferior_ptid));
1951 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 1952 target_pid_to_str (ptid));
fd48f117
DJ
1953 }
1954
0d1e5fa7 1955 switch_to_thread (ptid);
dd80620e
MS
1956}
1957
4fa8626c
DJ
1958static void
1959adjust_pc_after_break (struct execution_control_state *ecs)
1960{
24a73cce
UW
1961 struct regcache *regcache;
1962 struct gdbarch *gdbarch;
8aad930b 1963 CORE_ADDR breakpoint_pc;
4fa8626c 1964
4fa8626c
DJ
1965 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1966 we aren't, just return.
9709f61c
DJ
1967
1968 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
1969 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1970 implemented by software breakpoints should be handled through the normal
1971 breakpoint layer.
8fb3e588 1972
4fa8626c
DJ
1973 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1974 different signals (SIGILL or SIGEMT for instance), but it is less
1975 clear where the PC is pointing afterwards. It may not match
b798847d
UW
1976 gdbarch_decr_pc_after_break. I don't know any specific target that
1977 generates these signals at breakpoints (the code has been in GDB since at
1978 least 1992) so I can not guess how to handle them here.
8fb3e588 1979
e6cf7916
UW
1980 In earlier versions of GDB, a target with
1981 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
1982 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1983 target with both of these set in GDB history, and it seems unlikely to be
1984 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
1985
1986 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1987 return;
1988
1989 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1990 return;
1991
4058b839
PA
1992 /* In reverse execution, when a breakpoint is hit, the instruction
1993 under it has already been de-executed. The reported PC always
1994 points at the breakpoint address, so adjusting it further would
1995 be wrong. E.g., consider this case on a decr_pc_after_break == 1
1996 architecture:
1997
1998 B1 0x08000000 : INSN1
1999 B2 0x08000001 : INSN2
2000 0x08000002 : INSN3
2001 PC -> 0x08000003 : INSN4
2002
2003 Say you're stopped at 0x08000003 as above. Reverse continuing
2004 from that point should hit B2 as below. Reading the PC when the
2005 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2006 been de-executed already.
2007
2008 B1 0x08000000 : INSN1
2009 B2 PC -> 0x08000001 : INSN2
2010 0x08000002 : INSN3
2011 0x08000003 : INSN4
2012
2013 We can't apply the same logic as for forward execution, because
2014 we would wrongly adjust the PC to 0x08000000, since there's a
2015 breakpoint at PC - 1. We'd then report a hit on B1, although
2016 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2017 behaviour. */
2018 if (execution_direction == EXEC_REVERSE)
2019 return;
2020
24a73cce
UW
2021 /* If this target does not decrement the PC after breakpoints, then
2022 we have nothing to do. */
2023 regcache = get_thread_regcache (ecs->ptid);
2024 gdbarch = get_regcache_arch (regcache);
2025 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2026 return;
2027
8aad930b
AC
2028 /* Find the location where (if we've hit a breakpoint) the
2029 breakpoint would be. */
515630c5
UW
2030 breakpoint_pc = regcache_read_pc (regcache)
2031 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 2032
1c5cfe86
PA
2033 /* Check whether there actually is a software breakpoint inserted at
2034 that location.
2035
2036 If in non-stop mode, a race condition is possible where we've
2037 removed a breakpoint, but stop events for that breakpoint were
2038 already queued and arrive later. To suppress those spurious
2039 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2040 and retire them after a number of stop events are reported. */
2041 if (software_breakpoint_inserted_here_p (breakpoint_pc)
2042 || (non_stop && moribund_breakpoint_here_p (breakpoint_pc)))
8aad930b 2043 {
1c0fdd0e
UW
2044 /* When using hardware single-step, a SIGTRAP is reported for both
2045 a completed single-step and a software breakpoint. Need to
2046 differentiate between the two, as the latter needs adjusting
2047 but the former does not.
2048
2049 The SIGTRAP can be due to a completed hardware single-step only if
2050 - we didn't insert software single-step breakpoints
2051 - the thread to be examined is still the current thread
2052 - this thread is currently being stepped
2053
2054 If any of these events did not occur, we must have stopped due
2055 to hitting a software breakpoint, and have to back up to the
2056 breakpoint address.
2057
2058 As a special case, we could have hardware single-stepped a
2059 software breakpoint. In this case (prev_pc == breakpoint_pc),
2060 we also need to back up to the breakpoint address. */
2061
2062 if (singlestep_breakpoints_inserted_p
2063 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
2064 || !currently_stepping (ecs->event_thread)
2065 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 2066 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 2067 }
4fa8626c
DJ
2068}
2069
0d1e5fa7
PA
2070void
2071init_infwait_state (void)
2072{
2073 waiton_ptid = pid_to_ptid (-1);
2074 infwait_state = infwait_normal_state;
2075}
2076
94cc34af
PA
2077void
2078error_is_running (void)
2079{
2080 error (_("\
2081Cannot execute this command while the selected thread is running."));
2082}
2083
2084void
2085ensure_not_running (void)
2086{
2087 if (is_running (inferior_ptid))
2088 error_is_running ();
2089}
2090
cd0fc7c3
SS
2091/* Given an execution control state that has been freshly filled in
2092 by an event from the inferior, figure out what it means and take
2093 appropriate action. */
c906108c 2094
cd0fc7c3 2095void
96baa820 2096handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 2097{
c8edd8b4 2098 int sw_single_step_trap_p = 0;
d983da9c
DJ
2099 int stopped_by_watchpoint;
2100 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 2101 struct symtab_and_line stop_pc_sal;
d6b48e9c
PA
2102 enum stop_kind stop_soon;
2103
2104 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2105 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2106 && ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2107 {
2108 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2109 gdb_assert (inf);
2110 stop_soon = inf->stop_soon;
2111 }
2112 else
2113 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 2114
e02bc4cc 2115 /* Cache the last pid/waitstatus. */
39f77062 2116 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 2117 target_last_waitstatus = ecs->ws;
e02bc4cc 2118
ca005067
DJ
2119 /* Always clear state belonging to the previous time we stopped. */
2120 stop_stack_dummy = 0;
2121
8c90c137
LM
2122 /* If it's a new process, add it to the thread database */
2123
2124 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
2125 && !ptid_equal (ecs->ptid, minus_one_ptid)
2126 && !in_thread_list (ecs->ptid));
2127
2128 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2129 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
2130 add_thread (ecs->ptid);
2131
88ed393a
JK
2132 ecs->event_thread = find_thread_pid (ecs->ptid);
2133
2134 /* Dependent on valid ECS->EVENT_THREAD. */
2135 adjust_pc_after_break (ecs);
2136
2137 /* Dependent on the current PC value modified by adjust_pc_after_break. */
2138 reinit_frame_cache ();
2139
8c90c137
LM
2140 if (ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2141 {
1c5cfe86
PA
2142 breakpoint_retire_moribund ();
2143
48844aa6
PA
2144 /* Mark the non-executing threads accordingly. In all-stop, all
2145 threads of all processes are stopped when we get any event
2146 reported. In non-stop mode, only the event thread stops. If
2147 we're handling a process exit in non-stop mode, there's
2148 nothing to do, as threads of the dead process are gone, and
2149 threads of any other process were left running. */
2150 if (!non_stop)
2151 set_executing (minus_one_ptid, 0);
2152 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2153 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
2154 set_executing (inferior_ptid, 0);
8c90c137
LM
2155 }
2156
0d1e5fa7 2157 switch (infwait_state)
488f131b
JB
2158 {
2159 case infwait_thread_hop_state:
527159b7 2160 if (debug_infrun)
8a9de0e4 2161 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
488f131b 2162 /* Cancel the waiton_ptid. */
0d1e5fa7 2163 waiton_ptid = pid_to_ptid (-1);
65e82032 2164 break;
b83266a0 2165
488f131b 2166 case infwait_normal_state:
527159b7 2167 if (debug_infrun)
8a9de0e4 2168 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
2169 break;
2170
2171 case infwait_step_watch_state:
2172 if (debug_infrun)
2173 fprintf_unfiltered (gdb_stdlog,
2174 "infrun: infwait_step_watch_state\n");
2175
2176 stepped_after_stopped_by_watchpoint = 1;
488f131b 2177 break;
b83266a0 2178
488f131b 2179 case infwait_nonstep_watch_state:
527159b7 2180 if (debug_infrun)
8a9de0e4
AC
2181 fprintf_unfiltered (gdb_stdlog,
2182 "infrun: infwait_nonstep_watch_state\n");
488f131b 2183 insert_breakpoints ();
c906108c 2184
488f131b
JB
2185 /* FIXME-maybe: is this cleaner than setting a flag? Does it
2186 handle things like signals arriving and other things happening
2187 in combination correctly? */
2188 stepped_after_stopped_by_watchpoint = 1;
2189 break;
65e82032
AC
2190
2191 default:
e2e0b3e5 2192 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 2193 }
0d1e5fa7 2194 infwait_state = infwait_normal_state;
c906108c 2195
488f131b
JB
2196 switch (ecs->ws.kind)
2197 {
2198 case TARGET_WAITKIND_LOADED:
527159b7 2199 if (debug_infrun)
8a9de0e4 2200 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
2201 /* Ignore gracefully during startup of the inferior, as it might
2202 be the shell which has just loaded some objects, otherwise
2203 add the symbols for the newly loaded objects. Also ignore at
2204 the beginning of an attach or remote session; we will query
2205 the full list of libraries once the connection is
2206 established. */
c0236d92 2207 if (stop_soon == NO_STOP_QUIETLY)
488f131b 2208 {
488f131b
JB
2209 /* Check for any newly added shared libraries if we're
2210 supposed to be adding them automatically. Switch
2211 terminal for any messages produced by
2212 breakpoint_re_set. */
2213 target_terminal_ours_for_output ();
aff6338a 2214 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
2215 stack's section table is kept up-to-date. Architectures,
2216 (e.g., PPC64), use the section table to perform
2217 operations such as address => section name and hence
2218 require the table to contain all sections (including
2219 those found in shared libraries). */
aff6338a 2220 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
2221 exec_ops to SOLIB_ADD. This is because current GDB is
2222 only tooled to propagate section_table changes out from
2223 the "current_target" (see target_resize_to_sections), and
2224 not up from the exec stratum. This, of course, isn't
2225 right. "infrun.c" should only interact with the
2226 exec/process stratum, instead relying on the target stack
2227 to propagate relevant changes (stop, section table
2228 changed, ...) up to other layers. */
b0f4b84b 2229#ifdef SOLIB_ADD
aff6338a 2230 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
b0f4b84b
DJ
2231#else
2232 solib_add (NULL, 0, &current_target, auto_solib_add);
2233#endif
488f131b
JB
2234 target_terminal_inferior ();
2235
b0f4b84b
DJ
2236 /* If requested, stop when the dynamic linker notifies
2237 gdb of events. This allows the user to get control
2238 and place breakpoints in initializer routines for
2239 dynamically loaded objects (among other things). */
2240 if (stop_on_solib_events)
2241 {
2242 stop_stepping (ecs);
2243 return;
2244 }
2245
2246 /* NOTE drow/2007-05-11: This might be a good place to check
2247 for "catch load". */
488f131b 2248 }
b0f4b84b
DJ
2249
2250 /* If we are skipping through a shell, or through shared library
2251 loading that we aren't interested in, resume the program. If
2252 we're running the program normally, also resume. But stop if
2253 we're attaching or setting up a remote connection. */
2254 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
2255 {
74960c60
VP
2256 /* Loading of shared libraries might have changed breakpoint
2257 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
2258 if (stop_soon == NO_STOP_QUIETLY
2259 && !breakpoints_always_inserted_mode ())
74960c60 2260 insert_breakpoints ();
b0f4b84b
DJ
2261 resume (0, TARGET_SIGNAL_0);
2262 prepare_to_wait (ecs);
2263 return;
2264 }
2265
2266 break;
c5aa993b 2267
488f131b 2268 case TARGET_WAITKIND_SPURIOUS:
527159b7 2269 if (debug_infrun)
8a9de0e4 2270 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
2271 resume (0, TARGET_SIGNAL_0);
2272 prepare_to_wait (ecs);
2273 return;
c5aa993b 2274
488f131b 2275 case TARGET_WAITKIND_EXITED:
527159b7 2276 if (debug_infrun)
8a9de0e4 2277 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
fb66883a 2278 inferior_ptid = ecs->ptid;
488f131b
JB
2279 target_terminal_ours (); /* Must do this before mourn anyway */
2280 print_stop_reason (EXITED, ecs->ws.value.integer);
2281
2282 /* Record the exit code in the convenience variable $_exitcode, so
2283 that the user can inspect this again later. */
2284 set_internalvar (lookup_internalvar ("_exitcode"),
8b9b9e1a 2285 value_from_longest (builtin_type_int32,
488f131b
JB
2286 (LONGEST) ecs->ws.value.integer));
2287 gdb_flush (gdb_stdout);
2288 target_mourn_inferior ();
1c0fdd0e 2289 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
2290 stop_print_frame = 0;
2291 stop_stepping (ecs);
2292 return;
c5aa993b 2293
488f131b 2294 case TARGET_WAITKIND_SIGNALLED:
527159b7 2295 if (debug_infrun)
8a9de0e4 2296 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
fb66883a 2297 inferior_ptid = ecs->ptid;
488f131b 2298 stop_print_frame = 0;
488f131b 2299 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 2300
488f131b
JB
2301 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
2302 reach here unless the inferior is dead. However, for years
2303 target_kill() was called here, which hints that fatal signals aren't
2304 really fatal on some systems. If that's true, then some changes
2305 may be needed. */
2306 target_mourn_inferior ();
c906108c 2307
2020b7ab 2308 print_stop_reason (SIGNAL_EXITED, ecs->ws.value.sig);
1c0fdd0e 2309 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
2310 stop_stepping (ecs);
2311 return;
c906108c 2312
488f131b
JB
2313 /* The following are the only cases in which we keep going;
2314 the above cases end in a continue or goto. */
2315 case TARGET_WAITKIND_FORKED:
deb3b17b 2316 case TARGET_WAITKIND_VFORKED:
527159b7 2317 if (debug_infrun)
8a9de0e4 2318 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
488f131b
JB
2319 pending_follow.kind = ecs->ws.kind;
2320
3a3e9ee3 2321 pending_follow.fork_event.parent_pid = ecs->ptid;
8e7d2c16 2322 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
c906108c 2323
5a2901d9
DJ
2324 if (!ptid_equal (ecs->ptid, inferior_ptid))
2325 {
0d1e5fa7 2326 context_switch (ecs->ptid);
35f196d9 2327 reinit_frame_cache ();
5a2901d9
DJ
2328 }
2329
488f131b 2330 stop_pc = read_pc ();
675bf4cb 2331
347bddb7 2332 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
675bf4cb 2333
347bddb7 2334 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
04e68871
DJ
2335
2336 /* If no catchpoint triggered for this, then keep going. */
2337 if (ecs->random_signal)
2338 {
2020b7ab 2339 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
04e68871
DJ
2340 keep_going (ecs);
2341 return;
2342 }
2020b7ab 2343 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
2344 goto process_event_stop_test;
2345
2346 case TARGET_WAITKIND_EXECD:
527159b7 2347 if (debug_infrun)
fc5261f2 2348 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b
JB
2349 pending_follow.execd_pathname =
2350 savestring (ecs->ws.value.execd_pathname,
2351 strlen (ecs->ws.value.execd_pathname));
2352
5a2901d9
DJ
2353 if (!ptid_equal (ecs->ptid, inferior_ptid))
2354 {
0d1e5fa7 2355 context_switch (ecs->ptid);
35f196d9 2356 reinit_frame_cache ();
5a2901d9
DJ
2357 }
2358
795e548f
PA
2359 stop_pc = read_pc ();
2360
2361 /* This causes the eventpoints and symbol table to be reset.
2362 Must do this now, before trying to determine whether to
2363 stop. */
2364 follow_exec (inferior_ptid, pending_follow.execd_pathname);
2365 xfree (pending_follow.execd_pathname);
2366
2367 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2368 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2369
04e68871
DJ
2370 /* If no catchpoint triggered for this, then keep going. */
2371 if (ecs->random_signal)
2372 {
2020b7ab 2373 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
04e68871
DJ
2374 keep_going (ecs);
2375 return;
2376 }
2020b7ab 2377 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
2378 goto process_event_stop_test;
2379
b4dc5ffa
MK
2380 /* Be careful not to try to gather much state about a thread
2381 that's in a syscall. It's frequently a losing proposition. */
488f131b 2382 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 2383 if (debug_infrun)
8a9de0e4 2384 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
488f131b
JB
2385 resume (0, TARGET_SIGNAL_0);
2386 prepare_to_wait (ecs);
2387 return;
c906108c 2388
488f131b
JB
2389 /* Before examining the threads further, step this thread to
2390 get it entirely out of the syscall. (We get notice of the
2391 event when the thread is just on the verge of exiting a
2392 syscall. Stepping one instruction seems to get it back
b4dc5ffa 2393 into user code.) */
488f131b 2394 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 2395 if (debug_infrun)
8a9de0e4 2396 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
488f131b 2397 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
488f131b
JB
2398 prepare_to_wait (ecs);
2399 return;
c906108c 2400
488f131b 2401 case TARGET_WAITKIND_STOPPED:
527159b7 2402 if (debug_infrun)
8a9de0e4 2403 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
2020b7ab 2404 ecs->event_thread->stop_signal = ecs->ws.value.sig;
488f131b 2405 break;
c906108c 2406
b2175913
MS
2407 case TARGET_WAITKIND_NO_HISTORY:
2408 /* Reverse execution: target ran out of history info. */
40e12b06 2409 stop_pc = read_pc ();
b2175913
MS
2410 print_stop_reason (NO_HISTORY, 0);
2411 stop_stepping (ecs);
2412 return;
2413
488f131b
JB
2414 /* We had an event in the inferior, but we are not interested
2415 in handling it at this level. The lower layers have already
8e7d2c16 2416 done what needs to be done, if anything.
8fb3e588
AC
2417
2418 One of the possible circumstances for this is when the
2419 inferior produces output for the console. The inferior has
2420 not stopped, and we are ignoring the event. Another possible
2421 circumstance is any event which the lower level knows will be
2422 reported multiple times without an intervening resume. */
488f131b 2423 case TARGET_WAITKIND_IGNORE:
527159b7 2424 if (debug_infrun)
8a9de0e4 2425 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
8e7d2c16 2426 prepare_to_wait (ecs);
488f131b
JB
2427 return;
2428 }
c906108c 2429
488f131b
JB
2430 if (ecs->new_thread_event)
2431 {
94cc34af
PA
2432 if (non_stop)
2433 /* Non-stop assumes that the target handles adding new threads
2434 to the thread list. */
2435 internal_error (__FILE__, __LINE__, "\
2436targets should add new threads to the thread list themselves in non-stop mode.");
2437
2438 /* We may want to consider not doing a resume here in order to
2439 give the user a chance to play with the new thread. It might
2440 be good to make that a user-settable option. */
2441
2442 /* At this point, all threads are stopped (happens automatically
2443 in either the OS or the native code). Therefore we need to
2444 continue all threads in order to make progress. */
2445
488f131b
JB
2446 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
2447 prepare_to_wait (ecs);
2448 return;
2449 }
c906108c 2450
2020b7ab 2451 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
2452 {
2453 /* Do we need to clean up the state of a thread that has
2454 completed a displaced single-step? (Doing so usually affects
2455 the PC, so do it here, before we set stop_pc.) */
2456 displaced_step_fixup (ecs->ptid, ecs->event_thread->stop_signal);
2457
2458 /* If we either finished a single-step or hit a breakpoint, but
2459 the user wanted this thread to be stopped, pretend we got a
2460 SIG0 (generic unsignaled stop). */
2461
2462 if (ecs->event_thread->stop_requested
2463 && ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2464 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2465 }
237fc4c9 2466
515630c5 2467 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 2468
527159b7 2469 if (debug_infrun)
237fc4c9
PA
2470 {
2471 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n",
2472 paddr_nz (stop_pc));
2473 if (STOPPED_BY_WATCHPOINT (&ecs->ws))
2474 {
2475 CORE_ADDR addr;
2476 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2477
2478 if (target_stopped_data_address (&current_target, &addr))
2479 fprintf_unfiltered (gdb_stdlog,
2480 "infrun: stopped data address = 0x%s\n",
2481 paddr_nz (addr));
2482 else
2483 fprintf_unfiltered (gdb_stdlog,
2484 "infrun: (no data address available)\n");
2485 }
2486 }
527159b7 2487
9f976b41
DJ
2488 if (stepping_past_singlestep_breakpoint)
2489 {
1c0fdd0e 2490 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
2491 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2492 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2493
2494 stepping_past_singlestep_breakpoint = 0;
2495
2496 /* We've either finished single-stepping past the single-step
8fb3e588
AC
2497 breakpoint, or stopped for some other reason. It would be nice if
2498 we could tell, but we can't reliably. */
2020b7ab 2499 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 2500 {
527159b7 2501 if (debug_infrun)
8a9de0e4 2502 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
9f976b41 2503 /* Pull the single step breakpoints out of the target. */
e0cd558a 2504 remove_single_step_breakpoints ();
9f976b41
DJ
2505 singlestep_breakpoints_inserted_p = 0;
2506
2507 ecs->random_signal = 0;
2508
0d1e5fa7 2509 context_switch (saved_singlestep_ptid);
9a4105ab
AC
2510 if (deprecated_context_hook)
2511 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
2512
2513 resume (1, TARGET_SIGNAL_0);
2514 prepare_to_wait (ecs);
2515 return;
2516 }
2517 }
2518
ca67fcb8 2519 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 2520 {
94cc34af
PA
2521 /* In non-stop mode, there's never a deferred_step_ptid set. */
2522 gdb_assert (!non_stop);
2523
6a6b96b9
UW
2524 /* If we stopped for some other reason than single-stepping, ignore
2525 the fact that we were supposed to switch back. */
2020b7ab 2526 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
6a6b96b9
UW
2527 {
2528 if (debug_infrun)
2529 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 2530 "infrun: handling deferred step\n");
6a6b96b9
UW
2531
2532 /* Pull the single step breakpoints out of the target. */
2533 if (singlestep_breakpoints_inserted_p)
2534 {
2535 remove_single_step_breakpoints ();
2536 singlestep_breakpoints_inserted_p = 0;
2537 }
2538
2539 /* Note: We do not call context_switch at this point, as the
2540 context is already set up for stepping the original thread. */
ca67fcb8
VP
2541 switch_to_thread (deferred_step_ptid);
2542 deferred_step_ptid = null_ptid;
6a6b96b9
UW
2543 /* Suppress spurious "Switching to ..." message. */
2544 previous_inferior_ptid = inferior_ptid;
2545
2546 resume (1, TARGET_SIGNAL_0);
2547 prepare_to_wait (ecs);
2548 return;
2549 }
ca67fcb8
VP
2550
2551 deferred_step_ptid = null_ptid;
6a6b96b9
UW
2552 }
2553
488f131b
JB
2554 /* See if a thread hit a thread-specific breakpoint that was meant for
2555 another thread. If so, then step that thread past the breakpoint,
2556 and continue it. */
2557
2020b7ab 2558 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
488f131b 2559 {
9f976b41
DJ
2560 int thread_hop_needed = 0;
2561
f8d40ec8
JB
2562 /* Check if a regular breakpoint has been hit before checking
2563 for a potential single step breakpoint. Otherwise, GDB will
2564 not see this breakpoint hit when stepping onto breakpoints. */
c36b740a 2565 if (regular_breakpoint_inserted_here_p (stop_pc))
488f131b 2566 {
c5aa993b 2567 ecs->random_signal = 0;
4fa8626c 2568 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
9f976b41
DJ
2569 thread_hop_needed = 1;
2570 }
1c0fdd0e 2571 else if (singlestep_breakpoints_inserted_p)
9f976b41 2572 {
fd48f117
DJ
2573 /* We have not context switched yet, so this should be true
2574 no matter which thread hit the singlestep breakpoint. */
2575 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2576 if (debug_infrun)
2577 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2578 "trap for %s\n",
2579 target_pid_to_str (ecs->ptid));
2580
9f976b41
DJ
2581 ecs->random_signal = 0;
2582 /* The call to in_thread_list is necessary because PTIDs sometimes
2583 change when we go from single-threaded to multi-threaded. If
2584 the singlestep_ptid is still in the list, assume that it is
2585 really different from ecs->ptid. */
2586 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2587 && in_thread_list (singlestep_ptid))
2588 {
fd48f117
DJ
2589 /* If the PC of the thread we were trying to single-step
2590 has changed, discard this event (which we were going
2591 to ignore anyway), and pretend we saw that thread
2592 trap. This prevents us continuously moving the
2593 single-step breakpoint forward, one instruction at a
2594 time. If the PC has changed, then the thread we were
2595 trying to single-step has trapped or been signalled,
2596 but the event has not been reported to GDB yet.
2597
2598 There might be some cases where this loses signal
2599 information, if a signal has arrived at exactly the
2600 same time that the PC changed, but this is the best
2601 we can do with the information available. Perhaps we
2602 should arrange to report all events for all threads
2603 when they stop, or to re-poll the remote looking for
2604 this particular thread (i.e. temporarily enable
2605 schedlock). */
515630c5
UW
2606
2607 CORE_ADDR new_singlestep_pc
2608 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
2609
2610 if (new_singlestep_pc != singlestep_pc)
fd48f117 2611 {
2020b7ab
PA
2612 enum target_signal stop_signal;
2613
fd48f117
DJ
2614 if (debug_infrun)
2615 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2616 " but expected thread advanced also\n");
2617
2618 /* The current context still belongs to
2619 singlestep_ptid. Don't swap here, since that's
2620 the context we want to use. Just fudge our
2621 state and continue. */
2020b7ab
PA
2622 stop_signal = ecs->event_thread->stop_signal;
2623 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
fd48f117 2624 ecs->ptid = singlestep_ptid;
4e1c45ea 2625 ecs->event_thread = find_thread_pid (ecs->ptid);
2020b7ab 2626 ecs->event_thread->stop_signal = stop_signal;
515630c5 2627 stop_pc = new_singlestep_pc;
fd48f117
DJ
2628 }
2629 else
2630 {
2631 if (debug_infrun)
2632 fprintf_unfiltered (gdb_stdlog,
2633 "infrun: unexpected thread\n");
2634
2635 thread_hop_needed = 1;
2636 stepping_past_singlestep_breakpoint = 1;
2637 saved_singlestep_ptid = singlestep_ptid;
2638 }
9f976b41
DJ
2639 }
2640 }
2641
2642 if (thread_hop_needed)
8fb3e588 2643 {
237fc4c9 2644 int remove_status = 0;
8fb3e588 2645
527159b7 2646 if (debug_infrun)
8a9de0e4 2647 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 2648
8fb3e588
AC
2649 /* Saw a breakpoint, but it was hit by the wrong thread.
2650 Just continue. */
2651
1c0fdd0e 2652 if (singlestep_breakpoints_inserted_p)
488f131b 2653 {
8fb3e588 2654 /* Pull the single step breakpoints out of the target. */
e0cd558a 2655 remove_single_step_breakpoints ();
8fb3e588
AC
2656 singlestep_breakpoints_inserted_p = 0;
2657 }
2658
237fc4c9
PA
2659 /* If the arch can displace step, don't remove the
2660 breakpoints. */
2661 if (!use_displaced_stepping (current_gdbarch))
2662 remove_status = remove_breakpoints ();
2663
8fb3e588
AC
2664 /* Did we fail to remove breakpoints? If so, try
2665 to set the PC past the bp. (There's at least
2666 one situation in which we can fail to remove
2667 the bp's: On HP-UX's that use ttrace, we can't
2668 change the address space of a vforking child
2669 process until the child exits (well, okay, not
2670 then either :-) or execs. */
2671 if (remove_status != 0)
9d9cd7ac 2672 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
2673 else
2674 { /* Single step */
8fb3e588 2675 if (!ptid_equal (inferior_ptid, ecs->ptid))
0d1e5fa7
PA
2676 context_switch (ecs->ptid);
2677
94cc34af
PA
2678 if (!non_stop)
2679 {
2680 /* Only need to require the next event from this
2681 thread in all-stop mode. */
2682 waiton_ptid = ecs->ptid;
2683 infwait_state = infwait_thread_hop_state;
2684 }
8fb3e588 2685
4e1c45ea 2686 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588
AC
2687 keep_going (ecs);
2688 registers_changed ();
2689 return;
2690 }
488f131b 2691 }
1c0fdd0e 2692 else if (singlestep_breakpoints_inserted_p)
8fb3e588
AC
2693 {
2694 sw_single_step_trap_p = 1;
2695 ecs->random_signal = 0;
2696 }
488f131b
JB
2697 }
2698 else
2699 ecs->random_signal = 1;
c906108c 2700
488f131b 2701 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
2702 so, then switch to that thread. */
2703 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 2704 {
527159b7 2705 if (debug_infrun)
8a9de0e4 2706 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 2707
0d1e5fa7 2708 context_switch (ecs->ptid);
c5aa993b 2709
9a4105ab
AC
2710 if (deprecated_context_hook)
2711 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 2712 }
c906108c 2713
1c0fdd0e 2714 if (singlestep_breakpoints_inserted_p)
488f131b
JB
2715 {
2716 /* Pull the single step breakpoints out of the target. */
e0cd558a 2717 remove_single_step_breakpoints ();
488f131b
JB
2718 singlestep_breakpoints_inserted_p = 0;
2719 }
c906108c 2720
d983da9c
DJ
2721 if (stepped_after_stopped_by_watchpoint)
2722 stopped_by_watchpoint = 0;
2723 else
2724 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
2725
2726 /* If necessary, step over this watchpoint. We'll be back to display
2727 it in a moment. */
2728 if (stopped_by_watchpoint
2729 && (HAVE_STEPPABLE_WATCHPOINT
2730 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
488f131b 2731 {
488f131b
JB
2732 /* At this point, we are stopped at an instruction which has
2733 attempted to write to a piece of memory under control of
2734 a watchpoint. The instruction hasn't actually executed
2735 yet. If we were to evaluate the watchpoint expression
2736 now, we would get the old value, and therefore no change
2737 would seem to have occurred.
2738
2739 In order to make watchpoints work `right', we really need
2740 to complete the memory write, and then evaluate the
d983da9c
DJ
2741 watchpoint expression. We do this by single-stepping the
2742 target.
2743
2744 It may not be necessary to disable the watchpoint to stop over
2745 it. For example, the PA can (with some kernel cooperation)
2746 single step over a watchpoint without disabling the watchpoint.
2747
2748 It is far more common to need to disable a watchpoint to step
2749 the inferior over it. If we have non-steppable watchpoints,
2750 we must disable the current watchpoint; it's simplest to
2751 disable all watchpoints and breakpoints. */
2752
2753 if (!HAVE_STEPPABLE_WATCHPOINT)
2754 remove_breakpoints ();
488f131b
JB
2755 registers_changed ();
2756 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
0d1e5fa7 2757 waiton_ptid = ecs->ptid;
d983da9c 2758 if (HAVE_STEPPABLE_WATCHPOINT)
0d1e5fa7 2759 infwait_state = infwait_step_watch_state;
d983da9c 2760 else
0d1e5fa7 2761 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
2762 prepare_to_wait (ecs);
2763 return;
2764 }
2765
488f131b
JB
2766 ecs->stop_func_start = 0;
2767 ecs->stop_func_end = 0;
2768 ecs->stop_func_name = 0;
2769 /* Don't care about return value; stop_func_start and stop_func_name
2770 will both be 0 if it doesn't work. */
2771 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2772 &ecs->stop_func_start, &ecs->stop_func_end);
cbf3b44a
UW
2773 ecs->stop_func_start
2774 += gdbarch_deprecated_function_start_offset (current_gdbarch);
4e1c45ea 2775 ecs->event_thread->stepping_over_breakpoint = 0;
347bddb7 2776 bpstat_clear (&ecs->event_thread->stop_bpstat);
414c69f7 2777 ecs->event_thread->stop_step = 0;
488f131b
JB
2778 stop_print_frame = 1;
2779 ecs->random_signal = 0;
2780 stopped_by_random_signal = 0;
488f131b 2781
2020b7ab 2782 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4e1c45ea 2783 && ecs->event_thread->trap_expected
3352ef37 2784 && gdbarch_single_step_through_delay_p (current_gdbarch)
4e1c45ea 2785 && currently_stepping (ecs->event_thread))
3352ef37 2786 {
b50d7442 2787 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37
AC
2788 also on an instruction that needs to be stepped multiple
2789 times before it's been fully executing. E.g., architectures
2790 with a delay slot. It needs to be stepped twice, once for
2791 the instruction and once for the delay slot. */
2792 int step_through_delay
2793 = gdbarch_single_step_through_delay (current_gdbarch,
2794 get_current_frame ());
527159b7 2795 if (debug_infrun && step_through_delay)
8a9de0e4 2796 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4e1c45ea 2797 if (ecs->event_thread->step_range_end == 0 && step_through_delay)
3352ef37
AC
2798 {
2799 /* The user issued a continue when stopped at a breakpoint.
2800 Set up for another trap and get out of here. */
4e1c45ea 2801 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
2802 keep_going (ecs);
2803 return;
2804 }
2805 else if (step_through_delay)
2806 {
2807 /* The user issued a step when stopped at a breakpoint.
2808 Maybe we should stop, maybe we should not - the delay
2809 slot *might* correspond to a line of source. In any
ca67fcb8
VP
2810 case, don't decide that here, just set
2811 ecs->stepping_over_breakpoint, making sure we
2812 single-step again before breakpoints are re-inserted. */
4e1c45ea 2813 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
2814 }
2815 }
2816
488f131b
JB
2817 /* Look at the cause of the stop, and decide what to do.
2818 The alternatives are:
0d1e5fa7
PA
2819 1) stop_stepping and return; to really stop and return to the debugger,
2820 2) keep_going and return to start up again
4e1c45ea 2821 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
2822 3) set ecs->random_signal to 1, and the decision between 1 and 2
2823 will be made according to the signal handling tables. */
2824
2825 /* First, distinguish signals caused by the debugger from signals
03cebad2
MK
2826 that have to do with the program's own actions. Note that
2827 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
2828 on the operating system version. Here we detect when a SIGILL or
2829 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
2830 something similar for SIGSEGV, since a SIGSEGV will be generated
2831 when we're trying to execute a breakpoint instruction on a
2832 non-executable stack. This happens for call dummy breakpoints
2833 for architectures like SPARC that place call dummies on the
237fc4c9 2834 stack.
488f131b 2835
237fc4c9
PA
2836 If we're doing a displaced step past a breakpoint, then the
2837 breakpoint is always inserted at the original instruction;
2838 non-standard signals can't be explained by the breakpoint. */
2020b7ab 2839 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4e1c45ea 2840 || (! ecs->event_thread->trap_expected
237fc4c9 2841 && breakpoint_inserted_here_p (stop_pc)
2020b7ab
PA
2842 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_ILL
2843 || ecs->event_thread->stop_signal == TARGET_SIGNAL_SEGV
2844 || ecs->event_thread->stop_signal == TARGET_SIGNAL_EMT))
b0f4b84b
DJ
2845 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
2846 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 2847 {
2020b7ab 2848 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
488f131b 2849 {
527159b7 2850 if (debug_infrun)
8a9de0e4 2851 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
2852 stop_print_frame = 0;
2853 stop_stepping (ecs);
2854 return;
2855 }
c54cfec8
EZ
2856
2857 /* This is originated from start_remote(), start_inferior() and
2858 shared libraries hook functions. */
b0f4b84b 2859 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 2860 {
527159b7 2861 if (debug_infrun)
8a9de0e4 2862 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
2863 stop_stepping (ecs);
2864 return;
2865 }
2866
c54cfec8 2867 /* This originates from attach_command(). We need to overwrite
a0d21d28
PA
2868 the stop_signal here, because some kernels don't ignore a
2869 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
2870 See more comments in inferior.h. On the other hand, if we
a0ef4274 2871 get a non-SIGSTOP, report it to the user - assume the backend
a0d21d28
PA
2872 will handle the SIGSTOP if it should show up later.
2873
2874 Also consider that the attach is complete when we see a
2875 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
2876 target extended-remote report it instead of a SIGSTOP
2877 (e.g. gdbserver). We already rely on SIGTRAP being our
e0ba6746
PA
2878 signal, so this is no exception.
2879
2880 Also consider that the attach is complete when we see a
2881 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
2882 the target to stop all threads of the inferior, in case the
2883 low level attach operation doesn't stop them implicitly. If
2884 they weren't stopped implicitly, then the stub will report a
2885 TARGET_SIGNAL_0, meaning: stopped for no particular reason
2886 other than GDB's request. */
a0ef4274 2887 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
2020b7ab 2888 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_STOP
e0ba6746
PA
2889 || ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
2890 || ecs->event_thread->stop_signal == TARGET_SIGNAL_0))
c54cfec8
EZ
2891 {
2892 stop_stepping (ecs);
2020b7ab 2893 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
c54cfec8
EZ
2894 return;
2895 }
2896
fba57f8f 2897 /* See if there is a breakpoint at the current PC. */
347bddb7 2898 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
fba57f8f
VP
2899
2900 /* Following in case break condition called a
2901 function. */
2902 stop_print_frame = 1;
488f131b 2903
73dd234f 2904 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
2905 at one stage in the past included checks for an inferior
2906 function call's call dummy's return breakpoint. The original
2907 comment, that went with the test, read:
73dd234f 2908
8fb3e588
AC
2909 ``End of a stack dummy. Some systems (e.g. Sony news) give
2910 another signal besides SIGTRAP, so check here as well as
2911 above.''
73dd234f 2912
8002d778 2913 If someone ever tries to get call dummys on a
73dd234f 2914 non-executable stack to work (where the target would stop
03cebad2
MK
2915 with something like a SIGSEGV), then those tests might need
2916 to be re-instated. Given, however, that the tests were only
73dd234f 2917 enabled when momentary breakpoints were not being used, I
03cebad2
MK
2918 suspect that it won't be the case.
2919
8fb3e588
AC
2920 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2921 be necessary for call dummies on a non-executable stack on
2922 SPARC. */
73dd234f 2923
2020b7ab 2924 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
488f131b 2925 ecs->random_signal
347bddb7 2926 = !(bpstat_explains_signal (ecs->event_thread->stop_bpstat)
4e1c45ea
PA
2927 || ecs->event_thread->trap_expected
2928 || (ecs->event_thread->step_range_end
2929 && ecs->event_thread->step_resume_breakpoint == NULL));
488f131b
JB
2930 else
2931 {
347bddb7 2932 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
488f131b 2933 if (!ecs->random_signal)
2020b7ab 2934 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
2935 }
2936 }
2937
2938 /* When we reach this point, we've pretty much decided
2939 that the reason for stopping must've been a random
2940 (unexpected) signal. */
2941
2942 else
2943 ecs->random_signal = 1;
488f131b 2944
04e68871 2945process_event_stop_test:
488f131b
JB
2946 /* For the program's own signals, act according to
2947 the signal handling tables. */
2948
2949 if (ecs->random_signal)
2950 {
2951 /* Signal not for debugging purposes. */
2952 int printed = 0;
2953
527159b7 2954 if (debug_infrun)
2020b7ab
PA
2955 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
2956 ecs->event_thread->stop_signal);
527159b7 2957
488f131b
JB
2958 stopped_by_random_signal = 1;
2959
2020b7ab 2960 if (signal_print[ecs->event_thread->stop_signal])
488f131b
JB
2961 {
2962 printed = 1;
2963 target_terminal_ours_for_output ();
2020b7ab 2964 print_stop_reason (SIGNAL_RECEIVED, ecs->event_thread->stop_signal);
488f131b 2965 }
252fbfc8
PA
2966 /* Always stop on signals if we're either just gaining control
2967 of the program, or the user explicitly requested this thread
2968 to remain stopped. */
d6b48e9c 2969 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 2970 || ecs->event_thread->stop_requested
d6b48e9c 2971 || signal_stop_state (ecs->event_thread->stop_signal))
488f131b
JB
2972 {
2973 stop_stepping (ecs);
2974 return;
2975 }
2976 /* If not going to stop, give terminal back
2977 if we took it away. */
2978 else if (printed)
2979 target_terminal_inferior ();
2980
2981 /* Clear the signal if it should not be passed. */
2020b7ab
PA
2982 if (signal_program[ecs->event_thread->stop_signal] == 0)
2983 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
488f131b 2984
4e1c45ea
PA
2985 if (ecs->event_thread->prev_pc == read_pc ()
2986 && ecs->event_thread->trap_expected
2987 && ecs->event_thread->step_resume_breakpoint == NULL)
68f53502
AC
2988 {
2989 /* We were just starting a new sequence, attempting to
2990 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 2991 Instead this signal arrives. This signal will take us out
68f53502
AC
2992 of the stepping range so GDB needs to remember to, when
2993 the signal handler returns, resume stepping off that
2994 breakpoint. */
2995 /* To simplify things, "continue" is forced to use the same
2996 code paths as single-step - set a breakpoint at the
2997 signal return address and then, once hit, step off that
2998 breakpoint. */
237fc4c9
PA
2999 if (debug_infrun)
3000 fprintf_unfiltered (gdb_stdlog,
3001 "infrun: signal arrived while stepping over "
3002 "breakpoint\n");
d3169d93 3003
44cbf7b5 3004 insert_step_resume_breakpoint_at_frame (get_current_frame ());
4e1c45ea 3005 ecs->event_thread->step_after_step_resume_breakpoint = 1;
9d799f85
AC
3006 keep_going (ecs);
3007 return;
68f53502 3008 }
9d799f85 3009
4e1c45ea 3010 if (ecs->event_thread->step_range_end != 0
2020b7ab 3011 && ecs->event_thread->stop_signal != TARGET_SIGNAL_0
4e1c45ea
PA
3012 && (ecs->event_thread->step_range_start <= stop_pc
3013 && stop_pc < ecs->event_thread->step_range_end)
9d799f85 3014 && frame_id_eq (get_frame_id (get_current_frame ()),
4e1c45ea
PA
3015 ecs->event_thread->step_frame_id)
3016 && ecs->event_thread->step_resume_breakpoint == NULL)
d303a6c7
AC
3017 {
3018 /* The inferior is about to take a signal that will take it
3019 out of the single step range. Set a breakpoint at the
3020 current PC (which is presumably where the signal handler
3021 will eventually return) and then allow the inferior to
3022 run free.
3023
3024 Note that this is only needed for a signal delivered
3025 while in the single-step range. Nested signals aren't a
3026 problem as they eventually all return. */
237fc4c9
PA
3027 if (debug_infrun)
3028 fprintf_unfiltered (gdb_stdlog,
3029 "infrun: signal may take us out of "
3030 "single-step range\n");
3031
44cbf7b5 3032 insert_step_resume_breakpoint_at_frame (get_current_frame ());
9d799f85
AC
3033 keep_going (ecs);
3034 return;
d303a6c7 3035 }
9d799f85
AC
3036
3037 /* Note: step_resume_breakpoint may be non-NULL. This occures
3038 when either there's a nested signal, or when there's a
3039 pending signal enabled just as the signal handler returns
3040 (leaving the inferior at the step-resume-breakpoint without
3041 actually executing it). Either way continue until the
3042 breakpoint is really hit. */
488f131b
JB
3043 keep_going (ecs);
3044 return;
3045 }
3046
3047 /* Handle cases caused by hitting a breakpoint. */
3048 {
3049 CORE_ADDR jmp_buf_pc;
3050 struct bpstat_what what;
3051
347bddb7 3052 what = bpstat_what (ecs->event_thread->stop_bpstat);
488f131b
JB
3053
3054 if (what.call_dummy)
3055 {
3056 stop_stack_dummy = 1;
c5aa993b 3057 }
c906108c 3058
488f131b 3059 switch (what.main_action)
c5aa993b 3060 {
488f131b 3061 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
611c83ae
PA
3062 /* If we hit the breakpoint at longjmp while stepping, we
3063 install a momentary breakpoint at the target of the
3064 jmp_buf. */
3065
3066 if (debug_infrun)
3067 fprintf_unfiltered (gdb_stdlog,
3068 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
3069
4e1c45ea 3070 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 3071
91104499 3072 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
60ade65d
UW
3073 || !gdbarch_get_longjmp_target (current_gdbarch,
3074 get_current_frame (), &jmp_buf_pc))
c5aa993b 3075 {
611c83ae
PA
3076 if (debug_infrun)
3077 fprintf_unfiltered (gdb_stdlog, "\
3078infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
488f131b 3079 keep_going (ecs);
104c1213 3080 return;
c5aa993b 3081 }
488f131b 3082
611c83ae
PA
3083 /* We're going to replace the current step-resume breakpoint
3084 with a longjmp-resume breakpoint. */
4e1c45ea 3085 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae
PA
3086
3087 /* Insert a breakpoint at resume address. */
3088 insert_longjmp_resume_breakpoint (jmp_buf_pc);
c906108c 3089
488f131b
JB
3090 keep_going (ecs);
3091 return;
c906108c 3092
488f131b 3093 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
527159b7 3094 if (debug_infrun)
611c83ae
PA
3095 fprintf_unfiltered (gdb_stdlog,
3096 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
3097
4e1c45ea
PA
3098 gdb_assert (ecs->event_thread->step_resume_breakpoint != NULL);
3099 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae 3100
414c69f7 3101 ecs->event_thread->stop_step = 1;
611c83ae
PA
3102 print_stop_reason (END_STEPPING_RANGE, 0);
3103 stop_stepping (ecs);
3104 return;
488f131b
JB
3105
3106 case BPSTAT_WHAT_SINGLE:
527159b7 3107 if (debug_infrun)
8802d8ed 3108 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4e1c45ea 3109 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b
JB
3110 /* Still need to check other stuff, at least the case
3111 where we are stepping and step out of the right range. */
3112 break;
c906108c 3113
488f131b 3114 case BPSTAT_WHAT_STOP_NOISY:
527159b7 3115 if (debug_infrun)
8802d8ed 3116 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 3117 stop_print_frame = 1;
c906108c 3118
d303a6c7
AC
3119 /* We are about to nuke the step_resume_breakpointt via the
3120 cleanup chain, so no need to worry about it here. */
c5aa993b 3121
488f131b
JB
3122 stop_stepping (ecs);
3123 return;
c5aa993b 3124
488f131b 3125 case BPSTAT_WHAT_STOP_SILENT:
527159b7 3126 if (debug_infrun)
8802d8ed 3127 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 3128 stop_print_frame = 0;
c5aa993b 3129
d303a6c7
AC
3130 /* We are about to nuke the step_resume_breakpoin via the
3131 cleanup chain, so no need to worry about it here. */
c5aa993b 3132
488f131b 3133 stop_stepping (ecs);
e441088d 3134 return;
c5aa993b 3135
488f131b 3136 case BPSTAT_WHAT_STEP_RESUME:
527159b7 3137 if (debug_infrun)
8802d8ed 3138 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
527159b7 3139
4e1c45ea
PA
3140 delete_step_resume_breakpoint (ecs->event_thread);
3141 if (ecs->event_thread->step_after_step_resume_breakpoint)
68f53502
AC
3142 {
3143 /* Back when the step-resume breakpoint was inserted, we
3144 were trying to single-step off a breakpoint. Go back
3145 to doing that. */
4e1c45ea
PA
3146 ecs->event_thread->step_after_step_resume_breakpoint = 0;
3147 ecs->event_thread->stepping_over_breakpoint = 1;
68f53502
AC
3148 keep_going (ecs);
3149 return;
3150 }
b2175913
MS
3151 if (stop_pc == ecs->stop_func_start
3152 && execution_direction == EXEC_REVERSE)
3153 {
3154 /* We are stepping over a function call in reverse, and
3155 just hit the step-resume breakpoint at the start
3156 address of the function. Go back to single-stepping,
3157 which should take us back to the function call. */
3158 ecs->event_thread->stepping_over_breakpoint = 1;
3159 keep_going (ecs);
3160 return;
3161 }
488f131b
JB
3162 break;
3163
488f131b 3164 case BPSTAT_WHAT_CHECK_SHLIBS:
c906108c 3165 {
527159b7 3166 if (debug_infrun)
8802d8ed 3167 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
488f131b
JB
3168
3169 /* Check for any newly added shared libraries if we're
3170 supposed to be adding them automatically. Switch
3171 terminal for any messages produced by
3172 breakpoint_re_set. */
3173 target_terminal_ours_for_output ();
aff6338a 3174 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
3175 stack's section table is kept up-to-date. Architectures,
3176 (e.g., PPC64), use the section table to perform
3177 operations such as address => section name and hence
3178 require the table to contain all sections (including
3179 those found in shared libraries). */
aff6338a 3180 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
3181 exec_ops to SOLIB_ADD. This is because current GDB is
3182 only tooled to propagate section_table changes out from
3183 the "current_target" (see target_resize_to_sections), and
3184 not up from the exec stratum. This, of course, isn't
3185 right. "infrun.c" should only interact with the
3186 exec/process stratum, instead relying on the target stack
3187 to propagate relevant changes (stop, section table
3188 changed, ...) up to other layers. */
a77053c2 3189#ifdef SOLIB_ADD
aff6338a 3190 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
a77053c2
MK
3191#else
3192 solib_add (NULL, 0, &current_target, auto_solib_add);
3193#endif
488f131b
JB
3194 target_terminal_inferior ();
3195
488f131b
JB
3196 /* If requested, stop when the dynamic linker notifies
3197 gdb of events. This allows the user to get control
3198 and place breakpoints in initializer routines for
3199 dynamically loaded objects (among other things). */
877522db 3200 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 3201 {
488f131b 3202 stop_stepping (ecs);
d4f3574e
SS
3203 return;
3204 }
c5aa993b 3205 else
c5aa993b 3206 {
488f131b 3207 /* We want to step over this breakpoint, then keep going. */
4e1c45ea 3208 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 3209 break;
c5aa993b 3210 }
488f131b 3211 }
488f131b 3212 break;
c906108c 3213
488f131b
JB
3214 case BPSTAT_WHAT_LAST:
3215 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 3216
488f131b
JB
3217 case BPSTAT_WHAT_KEEP_CHECKING:
3218 break;
3219 }
3220 }
c906108c 3221
488f131b
JB
3222 /* We come here if we hit a breakpoint but should not
3223 stop for it. Possibly we also were stepping
3224 and should stop for that. So fall through and
3225 test for stepping. But, if not stepping,
3226 do not stop. */
c906108c 3227
a7212384
UW
3228 /* In all-stop mode, if we're currently stepping but have stopped in
3229 some other thread, we need to switch back to the stepped thread. */
3230 if (!non_stop)
3231 {
3232 struct thread_info *tp;
3233 tp = iterate_over_threads (currently_stepping_callback,
3234 ecs->event_thread);
3235 if (tp)
3236 {
3237 /* However, if the current thread is blocked on some internal
3238 breakpoint, and we simply need to step over that breakpoint
3239 to get it going again, do that first. */
3240 if ((ecs->event_thread->trap_expected
3241 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
3242 || ecs->event_thread->stepping_over_breakpoint)
3243 {
3244 keep_going (ecs);
3245 return;
3246 }
3247
3248 /* Otherwise, we no longer expect a trap in the current thread.
3249 Clear the trap_expected flag before switching back -- this is
3250 what keep_going would do as well, if we called it. */
3251 ecs->event_thread->trap_expected = 0;
3252
3253 if (debug_infrun)
3254 fprintf_unfiltered (gdb_stdlog,
3255 "infrun: switching back to stepped thread\n");
3256
3257 ecs->event_thread = tp;
3258 ecs->ptid = tp->ptid;
3259 context_switch (ecs->ptid);
3260 keep_going (ecs);
3261 return;
3262 }
3263 }
3264
9d1ff73f
MS
3265 /* Are we stepping to get the inferior out of the dynamic linker's
3266 hook (and possibly the dld itself) after catching a shlib
3267 event? */
4e1c45ea 3268 if (ecs->event_thread->stepping_through_solib_after_catch)
488f131b
JB
3269 {
3270#if defined(SOLIB_ADD)
3271 /* Have we reached our destination? If not, keep going. */
3272 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
3273 {
527159b7 3274 if (debug_infrun)
8a9de0e4 3275 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
4e1c45ea 3276 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 3277 keep_going (ecs);
104c1213 3278 return;
488f131b
JB
3279 }
3280#endif
527159b7 3281 if (debug_infrun)
8a9de0e4 3282 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
488f131b
JB
3283 /* Else, stop and report the catchpoint(s) whose triggering
3284 caused us to begin stepping. */
4e1c45ea 3285 ecs->event_thread->stepping_through_solib_after_catch = 0;
347bddb7
PA
3286 bpstat_clear (&ecs->event_thread->stop_bpstat);
3287 ecs->event_thread->stop_bpstat
3288 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
4e1c45ea 3289 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
488f131b
JB
3290 stop_print_frame = 1;
3291 stop_stepping (ecs);
3292 return;
3293 }
c906108c 3294
4e1c45ea 3295 if (ecs->event_thread->step_resume_breakpoint)
488f131b 3296 {
527159b7 3297 if (debug_infrun)
d3169d93
DJ
3298 fprintf_unfiltered (gdb_stdlog,
3299 "infrun: step-resume breakpoint is inserted\n");
527159b7 3300
488f131b
JB
3301 /* Having a step-resume breakpoint overrides anything
3302 else having to do with stepping commands until
3303 that breakpoint is reached. */
488f131b
JB
3304 keep_going (ecs);
3305 return;
3306 }
c5aa993b 3307
4e1c45ea 3308 if (ecs->event_thread->step_range_end == 0)
488f131b 3309 {
527159b7 3310 if (debug_infrun)
8a9de0e4 3311 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 3312 /* Likewise if we aren't even stepping. */
488f131b
JB
3313 keep_going (ecs);
3314 return;
3315 }
c5aa993b 3316
488f131b 3317 /* If stepping through a line, keep going if still within it.
c906108c 3318
488f131b
JB
3319 Note that step_range_end is the address of the first instruction
3320 beyond the step range, and NOT the address of the last instruction
3321 within it! */
4e1c45ea
PA
3322 if (stop_pc >= ecs->event_thread->step_range_start
3323 && stop_pc < ecs->event_thread->step_range_end)
488f131b 3324 {
527159b7 3325 if (debug_infrun)
b2175913 3326 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
4e1c45ea
PA
3327 paddr_nz (ecs->event_thread->step_range_start),
3328 paddr_nz (ecs->event_thread->step_range_end));
b2175913
MS
3329
3330 /* When stepping backward, stop at beginning of line range
3331 (unless it's the function entry point, in which case
3332 keep going back to the call point). */
3333 if (stop_pc == ecs->event_thread->step_range_start
3334 && stop_pc != ecs->stop_func_start
3335 && execution_direction == EXEC_REVERSE)
3336 {
3337 ecs->event_thread->stop_step = 1;
3338 print_stop_reason (END_STEPPING_RANGE, 0);
3339 stop_stepping (ecs);
3340 }
3341 else
3342 keep_going (ecs);
3343
488f131b
JB
3344 return;
3345 }
c5aa993b 3346
488f131b 3347 /* We stepped out of the stepping range. */
c906108c 3348
488f131b
JB
3349 /* If we are stepping at the source level and entered the runtime
3350 loader dynamic symbol resolution code, we keep on single stepping
3351 until we exit the run time loader code and reach the callee's
3352 address. */
078130d0 3353 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 3354 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 3355 {
4c8c40e6
MK
3356 CORE_ADDR pc_after_resolver =
3357 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
c906108c 3358
527159b7 3359 if (debug_infrun)
8a9de0e4 3360 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
527159b7 3361
488f131b
JB
3362 if (pc_after_resolver)
3363 {
3364 /* Set up a step-resume breakpoint at the address
3365 indicated by SKIP_SOLIB_RESOLVER. */
3366 struct symtab_and_line sr_sal;
fe39c653 3367 init_sal (&sr_sal);
488f131b
JB
3368 sr_sal.pc = pc_after_resolver;
3369
44cbf7b5 3370 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c5aa993b 3371 }
c906108c 3372
488f131b
JB
3373 keep_going (ecs);
3374 return;
3375 }
c906108c 3376
4e1c45ea 3377 if (ecs->event_thread->step_range_end != 1
078130d0
PA
3378 && (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3379 || ecs->event_thread->step_over_calls == STEP_OVER_ALL)
42edda50 3380 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
488f131b 3381 {
527159b7 3382 if (debug_infrun)
8a9de0e4 3383 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
42edda50 3384 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
3385 a signal trampoline (either by a signal being delivered or by
3386 the signal handler returning). Just single-step until the
3387 inferior leaves the trampoline (either by calling the handler
3388 or returning). */
488f131b
JB
3389 keep_going (ecs);
3390 return;
3391 }
c906108c 3392
c17eaafe
DJ
3393 /* Check for subroutine calls. The check for the current frame
3394 equalling the step ID is not necessary - the check of the
3395 previous frame's ID is sufficient - but it is a common case and
3396 cheaper than checking the previous frame's ID.
14e60db5
DJ
3397
3398 NOTE: frame_id_eq will never report two invalid frame IDs as
3399 being equal, so to get into this block, both the current and
3400 previous frame must have valid frame IDs. */
4e1c45ea
PA
3401 if (!frame_id_eq (get_frame_id (get_current_frame ()),
3402 ecs->event_thread->step_frame_id)
b2175913
MS
3403 && (frame_id_eq (frame_unwind_id (get_current_frame ()),
3404 ecs->event_thread->step_frame_id)
3405 || execution_direction == EXEC_REVERSE))
488f131b 3406 {
95918acb 3407 CORE_ADDR real_stop_pc;
8fb3e588 3408
527159b7 3409 if (debug_infrun)
8a9de0e4 3410 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 3411
078130d0 3412 if ((ecs->event_thread->step_over_calls == STEP_OVER_NONE)
4e1c45ea
PA
3413 || ((ecs->event_thread->step_range_end == 1)
3414 && in_prologue (ecs->event_thread->prev_pc,
3415 ecs->stop_func_start)))
95918acb
AC
3416 {
3417 /* I presume that step_over_calls is only 0 when we're
3418 supposed to be stepping at the assembly language level
3419 ("stepi"). Just stop. */
3420 /* Also, maybe we just did a "nexti" inside a prolog, so we
3421 thought it was a subroutine call but it was not. Stop as
3422 well. FENN */
414c69f7 3423 ecs->event_thread->stop_step = 1;
95918acb
AC
3424 print_stop_reason (END_STEPPING_RANGE, 0);
3425 stop_stepping (ecs);
3426 return;
3427 }
8fb3e588 3428
078130d0 3429 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
8567c30f 3430 {
b2175913
MS
3431 /* We're doing a "next".
3432
3433 Normal (forward) execution: set a breakpoint at the
3434 callee's return address (the address at which the caller
3435 will resume).
3436
3437 Reverse (backward) execution. set the step-resume
3438 breakpoint at the start of the function that we just
3439 stepped into (backwards), and continue to there. When we
6130d0b7 3440 get there, we'll need to single-step back to the caller. */
b2175913
MS
3441
3442 if (execution_direction == EXEC_REVERSE)
3443 {
3444 struct symtab_and_line sr_sal;
3067f6e5
MS
3445
3446 if (ecs->stop_func_start == 0
3447 && in_solib_dynsym_resolve_code (stop_pc))
3448 {
3449 /* Stepped into runtime loader dynamic symbol
3450 resolution code. Since we're in reverse,
3451 we have already backed up through the runtime
3452 loader and the dynamic function. This is just
3453 the trampoline (jump table).
3454
3455 Just keep stepping, we'll soon be home.
3456 */
3457 keep_going (ecs);
3458 return;
3459 }
3460 /* Normal (staticly linked) function call return. */
b2175913
MS
3461 init_sal (&sr_sal);
3462 sr_sal.pc = ecs->stop_func_start;
3463 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3464 }
3465 else
3466 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3467
8567c30f
AC
3468 keep_going (ecs);
3469 return;
3470 }
a53c66de 3471
95918acb 3472 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
3473 calling routine and the real function), locate the real
3474 function. That's what tells us (a) whether we want to step
3475 into it at all, and (b) what prologue we want to run to the
3476 end of, if we do step into it. */
52f729a7 3477 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
95918acb 3478 if (real_stop_pc == 0)
52f729a7
UW
3479 real_stop_pc = gdbarch_skip_trampoline_code
3480 (current_gdbarch, get_current_frame (), stop_pc);
95918acb
AC
3481 if (real_stop_pc != 0)
3482 ecs->stop_func_start = real_stop_pc;
8fb3e588 3483
db5f024e 3484 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
3485 {
3486 struct symtab_and_line sr_sal;
3487 init_sal (&sr_sal);
3488 sr_sal.pc = ecs->stop_func_start;
3489
44cbf7b5 3490 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
8fb3e588
AC
3491 keep_going (ecs);
3492 return;
1b2bfbb9
RC
3493 }
3494
95918acb 3495 /* If we have line number information for the function we are
8fb3e588 3496 thinking of stepping into, step into it.
95918acb 3497
8fb3e588
AC
3498 If there are several symtabs at that PC (e.g. with include
3499 files), just want to know whether *any* of them have line
3500 numbers. find_pc_line handles this. */
95918acb
AC
3501 {
3502 struct symtab_and_line tmp_sal;
8fb3e588 3503
95918acb
AC
3504 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
3505 if (tmp_sal.line != 0)
3506 {
b2175913
MS
3507 if (execution_direction == EXEC_REVERSE)
3508 handle_step_into_function_backward (ecs);
3509 else
3510 handle_step_into_function (ecs);
95918acb
AC
3511 return;
3512 }
3513 }
3514
3515 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
3516 set, we stop the step so that the user has a chance to switch
3517 in assembly mode. */
078130d0
PA
3518 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3519 && step_stop_if_no_debug)
95918acb 3520 {
414c69f7 3521 ecs->event_thread->stop_step = 1;
95918acb
AC
3522 print_stop_reason (END_STEPPING_RANGE, 0);
3523 stop_stepping (ecs);
3524 return;
3525 }
3526
b2175913
MS
3527 if (execution_direction == EXEC_REVERSE)
3528 {
3529 /* Set a breakpoint at callee's start address.
3530 From there we can step once and be back in the caller. */
3531 struct symtab_and_line sr_sal;
3532 init_sal (&sr_sal);
3533 sr_sal.pc = ecs->stop_func_start;
3534 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3535 }
3536 else
3537 /* Set a breakpoint at callee's return address (the address
3538 at which the caller will resume). */
3539 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3540
95918acb 3541 keep_going (ecs);
488f131b 3542 return;
488f131b 3543 }
c906108c 3544
488f131b
JB
3545 /* If we're in the return path from a shared library trampoline,
3546 we want to proceed through the trampoline when stepping. */
e76f05fa
UW
3547 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
3548 stop_pc, ecs->stop_func_name))
488f131b 3549 {
488f131b 3550 /* Determine where this trampoline returns. */
52f729a7
UW
3551 CORE_ADDR real_stop_pc;
3552 real_stop_pc = gdbarch_skip_trampoline_code
3553 (current_gdbarch, get_current_frame (), stop_pc);
c906108c 3554
527159b7 3555 if (debug_infrun)
8a9de0e4 3556 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
527159b7 3557
488f131b 3558 /* Only proceed through if we know where it's going. */
d764a824 3559 if (real_stop_pc)
488f131b
JB
3560 {
3561 /* And put the step-breakpoint there and go until there. */
3562 struct symtab_and_line sr_sal;
3563
fe39c653 3564 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 3565 sr_sal.pc = real_stop_pc;
488f131b 3566 sr_sal.section = find_pc_overlay (sr_sal.pc);
44cbf7b5
AC
3567
3568 /* Do not specify what the fp should be when we stop since
3569 on some machines the prologue is where the new fp value
3570 is established. */
3571 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c906108c 3572
488f131b
JB
3573 /* Restart without fiddling with the step ranges or
3574 other state. */
3575 keep_going (ecs);
3576 return;
3577 }
3578 }
c906108c 3579
2afb61aa 3580 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 3581
1b2bfbb9
RC
3582 /* NOTE: tausq/2004-05-24: This if block used to be done before all
3583 the trampoline processing logic, however, there are some trampolines
3584 that have no names, so we should do trampoline handling first. */
078130d0 3585 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 3586 && ecs->stop_func_name == NULL
2afb61aa 3587 && stop_pc_sal.line == 0)
1b2bfbb9 3588 {
527159b7 3589 if (debug_infrun)
8a9de0e4 3590 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
527159b7 3591
1b2bfbb9 3592 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
3593 undebuggable function (where there is no debugging information
3594 and no line number corresponding to the address where the
1b2bfbb9
RC
3595 inferior stopped). Since we want to skip this kind of code,
3596 we keep going until the inferior returns from this
14e60db5
DJ
3597 function - unless the user has asked us not to (via
3598 set step-mode) or we no longer know how to get back
3599 to the call site. */
3600 if (step_stop_if_no_debug
eb2f4a08 3601 || !frame_id_p (frame_unwind_id (get_current_frame ())))
1b2bfbb9
RC
3602 {
3603 /* If we have no line number and the step-stop-if-no-debug
3604 is set, we stop the step so that the user has a chance to
3605 switch in assembly mode. */
414c69f7 3606 ecs->event_thread->stop_step = 1;
1b2bfbb9
RC
3607 print_stop_reason (END_STEPPING_RANGE, 0);
3608 stop_stepping (ecs);
3609 return;
3610 }
3611 else
3612 {
3613 /* Set a breakpoint at callee's return address (the address
3614 at which the caller will resume). */
14e60db5 3615 insert_step_resume_breakpoint_at_caller (get_current_frame ());
1b2bfbb9
RC
3616 keep_going (ecs);
3617 return;
3618 }
3619 }
3620
4e1c45ea 3621 if (ecs->event_thread->step_range_end == 1)
1b2bfbb9
RC
3622 {
3623 /* It is stepi or nexti. We always want to stop stepping after
3624 one instruction. */
527159b7 3625 if (debug_infrun)
8a9de0e4 3626 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
414c69f7 3627 ecs->event_thread->stop_step = 1;
1b2bfbb9
RC
3628 print_stop_reason (END_STEPPING_RANGE, 0);
3629 stop_stepping (ecs);
3630 return;
3631 }
3632
2afb61aa 3633 if (stop_pc_sal.line == 0)
488f131b
JB
3634 {
3635 /* We have no line number information. That means to stop
3636 stepping (does this always happen right after one instruction,
3637 when we do "s" in a function with no line numbers,
3638 or can this happen as a result of a return or longjmp?). */
527159b7 3639 if (debug_infrun)
8a9de0e4 3640 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
414c69f7 3641 ecs->event_thread->stop_step = 1;
488f131b
JB
3642 print_stop_reason (END_STEPPING_RANGE, 0);
3643 stop_stepping (ecs);
3644 return;
3645 }
c906108c 3646
2afb61aa 3647 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
3648 && (ecs->event_thread->current_line != stop_pc_sal.line
3649 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
3650 {
3651 /* We are at the start of a different line. So stop. Note that
3652 we don't stop if we step into the middle of a different line.
3653 That is said to make things like for (;;) statements work
3654 better. */
527159b7 3655 if (debug_infrun)
8a9de0e4 3656 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
414c69f7 3657 ecs->event_thread->stop_step = 1;
488f131b
JB
3658 print_stop_reason (END_STEPPING_RANGE, 0);
3659 stop_stepping (ecs);
3660 return;
3661 }
c906108c 3662
488f131b 3663 /* We aren't done stepping.
c906108c 3664
488f131b
JB
3665 Optimize by setting the stepping range to the line.
3666 (We might not be in the original line, but if we entered a
3667 new line in mid-statement, we continue stepping. This makes
3668 things like for(;;) statements work better.) */
c906108c 3669
4e1c45ea
PA
3670 ecs->event_thread->step_range_start = stop_pc_sal.pc;
3671 ecs->event_thread->step_range_end = stop_pc_sal.end;
3672 ecs->event_thread->step_frame_id = get_frame_id (get_current_frame ());
3673 ecs->event_thread->current_line = stop_pc_sal.line;
3674 ecs->event_thread->current_symtab = stop_pc_sal.symtab;
488f131b 3675
527159b7 3676 if (debug_infrun)
8a9de0e4 3677 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 3678 keep_going (ecs);
104c1213
JM
3679}
3680
3681/* Are we in the middle of stepping? */
3682
a7212384
UW
3683static int
3684currently_stepping_thread (struct thread_info *tp)
3685{
3686 return (tp->step_range_end && tp->step_resume_breakpoint == NULL)
3687 || tp->trap_expected
3688 || tp->stepping_through_solib_after_catch;
3689}
3690
3691static int
3692currently_stepping_callback (struct thread_info *tp, void *data)
3693{
3694 /* Return true if any thread *but* the one passed in "data" is
3695 in the middle of stepping. */
3696 return tp != data && currently_stepping_thread (tp);
3697}
3698
104c1213 3699static int
4e1c45ea 3700currently_stepping (struct thread_info *tp)
104c1213 3701{
a7212384 3702 return currently_stepping_thread (tp) || bpstat_should_step ();
104c1213 3703}
c906108c 3704
b2175913
MS
3705/* Inferior has stepped into a subroutine call with source code that
3706 we should not step over. Do step to the first line of code in
3707 it. */
c2c6d25f
JM
3708
3709static void
b2175913 3710handle_step_into_function (struct execution_control_state *ecs)
c2c6d25f
JM
3711{
3712 struct symtab *s;
2afb61aa 3713 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f
JM
3714
3715 s = find_pc_symtab (stop_pc);
3716 if (s && s->language != language_asm)
b2175913
MS
3717 ecs->stop_func_start = gdbarch_skip_prologue (current_gdbarch,
3718 ecs->stop_func_start);
c2c6d25f 3719
2afb61aa 3720 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
3721 /* Use the step_resume_break to step until the end of the prologue,
3722 even if that involves jumps (as it seems to on the vax under
3723 4.2). */
3724 /* If the prologue ends in the middle of a source line, continue to
3725 the end of that source line (if it is still within the function).
3726 Otherwise, just go to end of prologue. */
2afb61aa
PA
3727 if (stop_func_sal.end
3728 && stop_func_sal.pc != ecs->stop_func_start
3729 && stop_func_sal.end < ecs->stop_func_end)
3730 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 3731
2dbd5e30
KB
3732 /* Architectures which require breakpoint adjustment might not be able
3733 to place a breakpoint at the computed address. If so, the test
3734 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
3735 ecs->stop_func_start to an address at which a breakpoint may be
3736 legitimately placed.
8fb3e588 3737
2dbd5e30
KB
3738 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
3739 made, GDB will enter an infinite loop when stepping through
3740 optimized code consisting of VLIW instructions which contain
3741 subinstructions corresponding to different source lines. On
3742 FR-V, it's not permitted to place a breakpoint on any but the
3743 first subinstruction of a VLIW instruction. When a breakpoint is
3744 set, GDB will adjust the breakpoint address to the beginning of
3745 the VLIW instruction. Thus, we need to make the corresponding
3746 adjustment here when computing the stop address. */
8fb3e588 3747
2dbd5e30
KB
3748 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
3749 {
3750 ecs->stop_func_start
3751 = gdbarch_adjust_breakpoint_address (current_gdbarch,
8fb3e588 3752 ecs->stop_func_start);
2dbd5e30
KB
3753 }
3754
c2c6d25f
JM
3755 if (ecs->stop_func_start == stop_pc)
3756 {
3757 /* We are already there: stop now. */
414c69f7 3758 ecs->event_thread->stop_step = 1;
488f131b 3759 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
3760 stop_stepping (ecs);
3761 return;
3762 }
3763 else
3764 {
3765 /* Put the step-breakpoint there and go until there. */
fe39c653 3766 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
3767 sr_sal.pc = ecs->stop_func_start;
3768 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
44cbf7b5 3769
c2c6d25f 3770 /* Do not specify what the fp should be when we stop since on
488f131b
JB
3771 some machines the prologue is where the new fp value is
3772 established. */
44cbf7b5 3773 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c2c6d25f
JM
3774
3775 /* And make sure stepping stops right away then. */
4e1c45ea 3776 ecs->event_thread->step_range_end = ecs->event_thread->step_range_start;
c2c6d25f
JM
3777 }
3778 keep_going (ecs);
3779}
d4f3574e 3780
b2175913
MS
3781/* Inferior has stepped backward into a subroutine call with source
3782 code that we should not step over. Do step to the beginning of the
3783 last line of code in it. */
3784
3785static void
3786handle_step_into_function_backward (struct execution_control_state *ecs)
3787{
3788 struct symtab *s;
3789 struct symtab_and_line stop_func_sal, sr_sal;
3790
3791 s = find_pc_symtab (stop_pc);
3792 if (s && s->language != language_asm)
3793 ecs->stop_func_start = gdbarch_skip_prologue (current_gdbarch,
3794 ecs->stop_func_start);
3795
3796 stop_func_sal = find_pc_line (stop_pc, 0);
3797
3798 /* OK, we're just going to keep stepping here. */
3799 if (stop_func_sal.pc == stop_pc)
3800 {
3801 /* We're there already. Just stop stepping now. */
3802 ecs->event_thread->stop_step = 1;
3803 print_stop_reason (END_STEPPING_RANGE, 0);
3804 stop_stepping (ecs);
3805 }
3806 else
3807 {
3808 /* Else just reset the step range and keep going.
3809 No step-resume breakpoint, they don't work for
3810 epilogues, which can have multiple entry paths. */
3811 ecs->event_thread->step_range_start = stop_func_sal.pc;
3812 ecs->event_thread->step_range_end = stop_func_sal.end;
3813 keep_going (ecs);
3814 }
3815 return;
3816}
3817
d3169d93 3818/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
3819 This is used to both functions and to skip over code. */
3820
3821static void
3822insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
3823 struct frame_id sr_id)
3824{
611c83ae
PA
3825 /* There should never be more than one step-resume or longjmp-resume
3826 breakpoint per thread, so we should never be setting a new
44cbf7b5 3827 step_resume_breakpoint when one is already active. */
4e1c45ea 3828 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
d3169d93
DJ
3829
3830 if (debug_infrun)
3831 fprintf_unfiltered (gdb_stdlog,
3832 "infrun: inserting step-resume breakpoint at 0x%s\n",
3833 paddr_nz (sr_sal.pc));
3834
4e1c45ea
PA
3835 inferior_thread ()->step_resume_breakpoint
3836 = set_momentary_breakpoint (sr_sal, sr_id, bp_step_resume);
44cbf7b5 3837}
7ce450bd 3838
d3169d93 3839/* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
14e60db5 3840 to skip a potential signal handler.
7ce450bd 3841
14e60db5
DJ
3842 This is called with the interrupted function's frame. The signal
3843 handler, when it returns, will resume the interrupted function at
3844 RETURN_FRAME.pc. */
d303a6c7
AC
3845
3846static void
44cbf7b5 3847insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
3848{
3849 struct symtab_and_line sr_sal;
3850
f4c1edd8 3851 gdb_assert (return_frame != NULL);
d303a6c7
AC
3852 init_sal (&sr_sal); /* initialize to zeros */
3853
bf6ae464
UW
3854 sr_sal.pc = gdbarch_addr_bits_remove
3855 (current_gdbarch, get_frame_pc (return_frame));
d303a6c7
AC
3856 sr_sal.section = find_pc_overlay (sr_sal.pc);
3857
44cbf7b5 3858 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
d303a6c7
AC
3859}
3860
14e60db5
DJ
3861/* Similar to insert_step_resume_breakpoint_at_frame, except
3862 but a breakpoint at the previous frame's PC. This is used to
3863 skip a function after stepping into it (for "next" or if the called
3864 function has no debugging information).
3865
3866 The current function has almost always been reached by single
3867 stepping a call or return instruction. NEXT_FRAME belongs to the
3868 current function, and the breakpoint will be set at the caller's
3869 resume address.
3870
3871 This is a separate function rather than reusing
3872 insert_step_resume_breakpoint_at_frame in order to avoid
3873 get_prev_frame, which may stop prematurely (see the implementation
eb2f4a08 3874 of frame_unwind_id for an example). */
14e60db5
DJ
3875
3876static void
3877insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
3878{
3879 struct symtab_and_line sr_sal;
3880
3881 /* We shouldn't have gotten here if we don't know where the call site
3882 is. */
eb2f4a08 3883 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
14e60db5
DJ
3884
3885 init_sal (&sr_sal); /* initialize to zeros */
3886
bf6ae464 3887 sr_sal.pc = gdbarch_addr_bits_remove
eb2f4a08 3888 (current_gdbarch, frame_pc_unwind (next_frame));
14e60db5
DJ
3889 sr_sal.section = find_pc_overlay (sr_sal.pc);
3890
eb2f4a08 3891 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
14e60db5
DJ
3892}
3893
611c83ae
PA
3894/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
3895 new breakpoint at the target of a jmp_buf. The handling of
3896 longjmp-resume uses the same mechanisms used for handling
3897 "step-resume" breakpoints. */
3898
3899static void
3900insert_longjmp_resume_breakpoint (CORE_ADDR pc)
3901{
3902 /* There should never be more than one step-resume or longjmp-resume
3903 breakpoint per thread, so we should never be setting a new
3904 longjmp_resume_breakpoint when one is already active. */
4e1c45ea 3905 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
611c83ae
PA
3906
3907 if (debug_infrun)
3908 fprintf_unfiltered (gdb_stdlog,
3909 "infrun: inserting longjmp-resume breakpoint at 0x%s\n",
3910 paddr_nz (pc));
3911
4e1c45ea 3912 inferior_thread ()->step_resume_breakpoint =
611c83ae
PA
3913 set_momentary_breakpoint_at_pc (pc, bp_longjmp_resume);
3914}
3915
104c1213
JM
3916static void
3917stop_stepping (struct execution_control_state *ecs)
3918{
527159b7 3919 if (debug_infrun)
8a9de0e4 3920 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 3921
cd0fc7c3
SS
3922 /* Let callers know we don't want to wait for the inferior anymore. */
3923 ecs->wait_some_more = 0;
3924}
3925
d4f3574e
SS
3926/* This function handles various cases where we need to continue
3927 waiting for the inferior. */
3928/* (Used to be the keep_going: label in the old wait_for_inferior) */
3929
3930static void
3931keep_going (struct execution_control_state *ecs)
3932{
d4f3574e 3933 /* Save the pc before execution, to compare with pc after stop. */
4e1c45ea 3934 ecs->event_thread->prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
d4f3574e 3935
d4f3574e
SS
3936 /* If we did not do break;, it means we should keep running the
3937 inferior and not return to debugger. */
3938
2020b7ab
PA
3939 if (ecs->event_thread->trap_expected
3940 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
d4f3574e
SS
3941 {
3942 /* We took a signal (which we are supposed to pass through to
4e1c45ea
PA
3943 the inferior, else we'd not get here) and we haven't yet
3944 gotten our trap. Simply continue. */
2020b7ab
PA
3945 resume (currently_stepping (ecs->event_thread),
3946 ecs->event_thread->stop_signal);
d4f3574e
SS
3947 }
3948 else
3949 {
3950 /* Either the trap was not expected, but we are continuing
488f131b
JB
3951 anyway (the user asked that this signal be passed to the
3952 child)
3953 -- or --
3954 The signal was SIGTRAP, e.g. it was our signal, but we
3955 decided we should resume from it.
d4f3574e 3956
c36b740a 3957 We're going to run this baby now!
d4f3574e 3958
c36b740a
VP
3959 Note that insert_breakpoints won't try to re-insert
3960 already inserted breakpoints. Therefore, we don't
3961 care if breakpoints were already inserted, or not. */
3962
4e1c45ea 3963 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 3964 {
237fc4c9
PA
3965 if (! use_displaced_stepping (current_gdbarch))
3966 /* Since we can't do a displaced step, we have to remove
3967 the breakpoint while we step it. To keep things
3968 simple, we remove them all. */
3969 remove_breakpoints ();
45e8c884
VP
3970 }
3971 else
d4f3574e 3972 {
e236ba44 3973 struct gdb_exception e;
569631c6
UW
3974 /* Stop stepping when inserting breakpoints
3975 has failed. */
e236ba44
VP
3976 TRY_CATCH (e, RETURN_MASK_ERROR)
3977 {
3978 insert_breakpoints ();
3979 }
3980 if (e.reason < 0)
d4f3574e
SS
3981 {
3982 stop_stepping (ecs);
3983 return;
3984 }
d4f3574e
SS
3985 }
3986
4e1c45ea 3987 ecs->event_thread->trap_expected = ecs->event_thread->stepping_over_breakpoint;
d4f3574e
SS
3988
3989 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
3990 specifies that such a signal should be delivered to the
3991 target program).
3992
3993 Typically, this would occure when a user is debugging a
3994 target monitor on a simulator: the target monitor sets a
3995 breakpoint; the simulator encounters this break-point and
3996 halts the simulation handing control to GDB; GDB, noteing
3997 that the break-point isn't valid, returns control back to the
3998 simulator; the simulator then delivers the hardware
3999 equivalent of a SIGNAL_TRAP to the program being debugged. */
4000
2020b7ab
PA
4001 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4002 && !signal_program[ecs->event_thread->stop_signal])
4003 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
d4f3574e 4004
2020b7ab
PA
4005 resume (currently_stepping (ecs->event_thread),
4006 ecs->event_thread->stop_signal);
d4f3574e
SS
4007 }
4008
488f131b 4009 prepare_to_wait (ecs);
d4f3574e
SS
4010}
4011
104c1213
JM
4012/* This function normally comes after a resume, before
4013 handle_inferior_event exits. It takes care of any last bits of
4014 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 4015
104c1213
JM
4016static void
4017prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 4018{
527159b7 4019 if (debug_infrun)
8a9de0e4 4020 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
0d1e5fa7 4021 if (infwait_state == infwait_normal_state)
104c1213
JM
4022 {
4023 overlay_cache_invalid = 1;
4024
4025 /* We have to invalidate the registers BEFORE calling
488f131b
JB
4026 target_wait because they can be loaded from the target while
4027 in target_wait. This makes remote debugging a bit more
4028 efficient for those targets that provide critical registers
4029 as part of their normal status mechanism. */
104c1213
JM
4030
4031 registers_changed ();
0d1e5fa7 4032 waiton_ptid = pid_to_ptid (-1);
104c1213
JM
4033 }
4034 /* This is the old end of the while loop. Let everybody know we
4035 want to wait for the inferior some more and get called again
4036 soon. */
4037 ecs->wait_some_more = 1;
c906108c 4038}
11cf8741
JM
4039
4040/* Print why the inferior has stopped. We always print something when
4041 the inferior exits, or receives a signal. The rest of the cases are
4042 dealt with later on in normal_stop() and print_it_typical(). Ideally
4043 there should be a call to this function from handle_inferior_event()
4044 each time stop_stepping() is called.*/
4045static void
4046print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
4047{
4048 switch (stop_reason)
4049 {
11cf8741
JM
4050 case END_STEPPING_RANGE:
4051 /* We are done with a step/next/si/ni command. */
4052 /* For now print nothing. */
fb40c209 4053 /* Print a message only if not in the middle of doing a "step n"
488f131b 4054 operation for n > 1 */
414c69f7
PA
4055 if (!inferior_thread ()->step_multi
4056 || !inferior_thread ()->stop_step)
9dc5e2a9 4057 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4058 ui_out_field_string
4059 (uiout, "reason",
4060 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
11cf8741 4061 break;
11cf8741
JM
4062 case SIGNAL_EXITED:
4063 /* The inferior was terminated by a signal. */
8b93c638 4064 annotate_signalled ();
9dc5e2a9 4065 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4066 ui_out_field_string
4067 (uiout, "reason",
4068 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8b93c638
JM
4069 ui_out_text (uiout, "\nProgram terminated with signal ");
4070 annotate_signal_name ();
488f131b
JB
4071 ui_out_field_string (uiout, "signal-name",
4072 target_signal_to_name (stop_info));
8b93c638
JM
4073 annotate_signal_name_end ();
4074 ui_out_text (uiout, ", ");
4075 annotate_signal_string ();
488f131b
JB
4076 ui_out_field_string (uiout, "signal-meaning",
4077 target_signal_to_string (stop_info));
8b93c638
JM
4078 annotate_signal_string_end ();
4079 ui_out_text (uiout, ".\n");
4080 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
4081 break;
4082 case EXITED:
4083 /* The inferior program is finished. */
8b93c638
JM
4084 annotate_exited (stop_info);
4085 if (stop_info)
4086 {
9dc5e2a9 4087 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4088 ui_out_field_string (uiout, "reason",
4089 async_reason_lookup (EXEC_ASYNC_EXITED));
8b93c638 4090 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
4091 ui_out_field_fmt (uiout, "exit-code", "0%o",
4092 (unsigned int) stop_info);
8b93c638
JM
4093 ui_out_text (uiout, ".\n");
4094 }
4095 else
4096 {
9dc5e2a9 4097 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4098 ui_out_field_string
4099 (uiout, "reason",
4100 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8b93c638
JM
4101 ui_out_text (uiout, "\nProgram exited normally.\n");
4102 }
f17517ea
AS
4103 /* Support the --return-child-result option. */
4104 return_child_result_value = stop_info;
11cf8741
JM
4105 break;
4106 case SIGNAL_RECEIVED:
252fbfc8
PA
4107 /* Signal received. The signal table tells us to print about
4108 it. */
8b93c638 4109 annotate_signal ();
252fbfc8
PA
4110
4111 if (stop_info == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
4112 {
4113 struct thread_info *t = inferior_thread ();
4114
4115 ui_out_text (uiout, "\n[");
4116 ui_out_field_string (uiout, "thread-name",
4117 target_pid_to_str (t->ptid));
4118 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
4119 ui_out_text (uiout, " stopped");
4120 }
4121 else
4122 {
4123 ui_out_text (uiout, "\nProgram received signal ");
4124 annotate_signal_name ();
4125 if (ui_out_is_mi_like_p (uiout))
4126 ui_out_field_string
4127 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
4128 ui_out_field_string (uiout, "signal-name",
4129 target_signal_to_name (stop_info));
4130 annotate_signal_name_end ();
4131 ui_out_text (uiout, ", ");
4132 annotate_signal_string ();
4133 ui_out_field_string (uiout, "signal-meaning",
4134 target_signal_to_string (stop_info));
4135 annotate_signal_string_end ();
4136 }
8b93c638 4137 ui_out_text (uiout, ".\n");
11cf8741 4138 break;
b2175913
MS
4139 case NO_HISTORY:
4140 /* Reverse execution: target ran out of history info. */
4141 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
4142 break;
11cf8741 4143 default:
8e65ff28 4144 internal_error (__FILE__, __LINE__,
e2e0b3e5 4145 _("print_stop_reason: unrecognized enum value"));
11cf8741
JM
4146 break;
4147 }
4148}
c906108c 4149\f
43ff13b4 4150
c906108c
SS
4151/* Here to return control to GDB when the inferior stops for real.
4152 Print appropriate messages, remove breakpoints, give terminal our modes.
4153
4154 STOP_PRINT_FRAME nonzero means print the executing frame
4155 (pc, function, args, file, line number and line text).
4156 BREAKPOINTS_FAILED nonzero means stop was due to error
4157 attempting to insert breakpoints. */
4158
4159void
96baa820 4160normal_stop (void)
c906108c 4161{
73b65bb0
DJ
4162 struct target_waitstatus last;
4163 ptid_t last_ptid;
4164
4165 get_last_target_status (&last_ptid, &last);
4166
4f8d22e3
PA
4167 /* In non-stop mode, we don't want GDB to switch threads behind the
4168 user's back, to avoid races where the user is typing a command to
4169 apply to thread x, but GDB switches to thread y before the user
4170 finishes entering the command. */
4171
c906108c
SS
4172 /* As with the notification of thread events, we want to delay
4173 notifying the user that we've switched thread context until
4174 the inferior actually stops.
4175
73b65bb0
DJ
4176 There's no point in saying anything if the inferior has exited.
4177 Note that SIGNALLED here means "exited with a signal", not
4178 "received a signal". */
4f8d22e3
PA
4179 if (!non_stop
4180 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
4181 && target_has_execution
4182 && last.kind != TARGET_WAITKIND_SIGNALLED
4183 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
4184 {
4185 target_terminal_ours_for_output ();
a3f17187 4186 printf_filtered (_("[Switching to %s]\n"),
c95310c6 4187 target_pid_to_str (inferior_ptid));
b8fa951a 4188 annotate_thread_changed ();
39f77062 4189 previous_inferior_ptid = inferior_ptid;
c906108c 4190 }
c906108c 4191
4fa8626c 4192 /* NOTE drow/2004-01-17: Is this still necessary? */
c906108c
SS
4193 /* Make sure that the current_frame's pc is correct. This
4194 is a correction for setting up the frame info before doing
b798847d 4195 gdbarch_decr_pc_after_break */
b87efeee
AC
4196 if (target_has_execution)
4197 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
b798847d 4198 gdbarch_decr_pc_after_break, the program counter can change. Ask the
b87efeee 4199 frame code to check for this and sort out any resultant mess.
b798847d 4200 gdbarch_decr_pc_after_break needs to just go away. */
2f107107 4201 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
c906108c 4202
74960c60 4203 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
4204 {
4205 if (remove_breakpoints ())
4206 {
4207 target_terminal_ours_for_output ();
a3f17187
AC
4208 printf_filtered (_("\
4209Cannot remove breakpoints because program is no longer writable.\n\
4210It might be running in another process.\n\
4211Further execution is probably impossible.\n"));
c906108c
SS
4212 }
4213 }
c906108c 4214
c906108c
SS
4215 /* If an auto-display called a function and that got a signal,
4216 delete that auto-display to avoid an infinite recursion. */
4217
4218 if (stopped_by_random_signal)
4219 disable_current_display ();
4220
4221 /* Don't print a message if in the middle of doing a "step n"
4222 operation for n > 1 */
af679fd0
PA
4223 if (target_has_execution
4224 && last.kind != TARGET_WAITKIND_SIGNALLED
4225 && last.kind != TARGET_WAITKIND_EXITED
4226 && inferior_thread ()->step_multi
414c69f7 4227 && inferior_thread ()->stop_step)
c906108c
SS
4228 goto done;
4229
4230 target_terminal_ours ();
4231
7abfe014
DJ
4232 /* Set the current source location. This will also happen if we
4233 display the frame below, but the current SAL will be incorrect
4234 during a user hook-stop function. */
4235 if (target_has_stack && !stop_stack_dummy)
4236 set_current_sal_from_frame (get_current_frame (), 1);
4237
c906108c 4238 if (!target_has_stack)
d51fd4c8 4239 goto done;
c906108c 4240
32400beb
PA
4241 if (last.kind == TARGET_WAITKIND_SIGNALLED
4242 || last.kind == TARGET_WAITKIND_EXITED)
4243 goto done;
4244
c906108c
SS
4245 /* Select innermost stack frame - i.e., current frame is frame 0,
4246 and current location is based on that.
4247 Don't do this on return from a stack dummy routine,
4248 or if the program has exited. */
4249
4250 if (!stop_stack_dummy)
4251 {
0f7d239c 4252 select_frame (get_current_frame ());
c906108c
SS
4253
4254 /* Print current location without a level number, if
c5aa993b
JM
4255 we have changed functions or hit a breakpoint.
4256 Print source line if we have one.
4257 bpstat_print() contains the logic deciding in detail
4258 what to print, based on the event(s) that just occurred. */
c906108c 4259
d01a8610
AS
4260 /* If --batch-silent is enabled then there's no need to print the current
4261 source location, and to try risks causing an error message about
4262 missing source files. */
4263 if (stop_print_frame && !batch_silent)
c906108c
SS
4264 {
4265 int bpstat_ret;
4266 int source_flag;
917317f4 4267 int do_frame_printing = 1;
347bddb7 4268 struct thread_info *tp = inferior_thread ();
c906108c 4269
347bddb7 4270 bpstat_ret = bpstat_print (tp->stop_bpstat);
917317f4
JM
4271 switch (bpstat_ret)
4272 {
4273 case PRINT_UNKNOWN:
b0f4b84b
DJ
4274 /* If we had hit a shared library event breakpoint,
4275 bpstat_print would print out this message. If we hit
4276 an OS-level shared library event, do the same
4277 thing. */
4278 if (last.kind == TARGET_WAITKIND_LOADED)
4279 {
4280 printf_filtered (_("Stopped due to shared library event\n"));
4281 source_flag = SRC_LINE; /* something bogus */
4282 do_frame_printing = 0;
4283 break;
4284 }
4285
aa0cd9c1 4286 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
4287 (or should) carry around the function and does (or
4288 should) use that when doing a frame comparison. */
414c69f7 4289 if (tp->stop_step
347bddb7 4290 && frame_id_eq (tp->step_frame_id,
aa0cd9c1 4291 get_frame_id (get_current_frame ()))
917317f4 4292 && step_start_function == find_pc_function (stop_pc))
488f131b 4293 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 4294 else
488f131b 4295 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
4296 break;
4297 case PRINT_SRC_AND_LOC:
488f131b 4298 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
4299 break;
4300 case PRINT_SRC_ONLY:
c5394b80 4301 source_flag = SRC_LINE;
917317f4
JM
4302 break;
4303 case PRINT_NOTHING:
488f131b 4304 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
4305 do_frame_printing = 0;
4306 break;
4307 default:
e2e0b3e5 4308 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 4309 }
c906108c 4310
9dc5e2a9 4311 if (ui_out_is_mi_like_p (uiout))
b1a268e5
VP
4312 {
4313
4314 ui_out_field_int (uiout, "thread-id",
4315 pid_to_thread_id (inferior_ptid));
4316 if (non_stop)
4317 {
4318 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end
4319 (uiout, "stopped-threads");
4320 ui_out_field_int (uiout, NULL,
4321 pid_to_thread_id (inferior_ptid));
4322 do_cleanups (back_to);
4323 }
4324 else
4325 ui_out_field_string (uiout, "stopped-threads", "all");
4326 }
c906108c
SS
4327 /* The behavior of this routine with respect to the source
4328 flag is:
c5394b80
JM
4329 SRC_LINE: Print only source line
4330 LOCATION: Print only location
4331 SRC_AND_LOC: Print location and source line */
917317f4 4332 if (do_frame_printing)
b04f3ab4 4333 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
4334
4335 /* Display the auto-display expressions. */
4336 do_displays ();
4337 }
4338 }
4339
4340 /* Save the function value return registers, if we care.
4341 We might be about to restore their previous contents. */
32400beb 4342 if (inferior_thread ()->proceed_to_finish)
d5c31457
UW
4343 {
4344 /* This should not be necessary. */
4345 if (stop_registers)
4346 regcache_xfree (stop_registers);
4347
4348 /* NB: The copy goes through to the target picking up the value of
4349 all the registers. */
4350 stop_registers = regcache_dup (get_current_regcache ());
4351 }
c906108c
SS
4352
4353 if (stop_stack_dummy)
4354 {
dbe9fe58
AC
4355 /* Pop the empty frame that contains the stack dummy. POP_FRAME
4356 ends with a setting of the current frame, so we can use that
4357 next. */
4358 frame_pop (get_current_frame ());
c906108c 4359 /* Set stop_pc to what it was before we called the function.
c5aa993b
JM
4360 Can't rely on restore_inferior_status because that only gets
4361 called if we don't stop in the called function. */
c906108c 4362 stop_pc = read_pc ();
0f7d239c 4363 select_frame (get_current_frame ());
c906108c
SS
4364 }
4365
c906108c
SS
4366done:
4367 annotate_stopped ();
af679fd0
PA
4368 if (!suppress_stop_observer
4369 && !(target_has_execution
4370 && last.kind != TARGET_WAITKIND_SIGNALLED
4371 && last.kind != TARGET_WAITKIND_EXITED
4372 && inferior_thread ()->step_multi))
347bddb7
PA
4373 {
4374 if (!ptid_equal (inferior_ptid, null_ptid))
4375 observer_notify_normal_stop (inferior_thread ()->stop_bpstat);
4376 else
4377 observer_notify_normal_stop (NULL);
4378 }
347bddb7 4379
48844aa6
PA
4380 if (target_has_execution)
4381 {
4382 if (last.kind != TARGET_WAITKIND_SIGNALLED
4383 && last.kind != TARGET_WAITKIND_EXITED)
4384 /* Delete the breakpoint we stopped at, if it wants to be deleted.
4385 Delete any breakpoint that is to be deleted at the next stop. */
4386 breakpoint_auto_delete (inferior_thread ()->stop_bpstat);
4387
4388 /* Mark the stopped threads accordingly. In all-stop, all
4389 threads of all processes are stopped when we get any event
4390 reported. In non-stop mode, only the event thread stops. If
4391 we're handling a process exit in non-stop mode, there's
4392 nothing to do, as threads of the dead process are gone, and
4393 threads of any other process were left running. */
94cc34af 4394 if (!non_stop)
48844aa6
PA
4395 set_running (minus_one_ptid, 0);
4396 else if (last.kind != TARGET_WAITKIND_SIGNALLED
4397 && last.kind != TARGET_WAITKIND_EXITED)
94cc34af
PA
4398 set_running (inferior_ptid, 0);
4399 }
d51fd4c8
PA
4400
4401 /* Look up the hook_stop and run it (CLI internally handles problem
4402 of stop_command's pre-hook not existing). */
4403 if (stop_command)
4404 catch_errors (hook_stop_stub, stop_command,
4405 "Error while running hook_stop:\n", RETURN_MASK_ALL);
4406
c906108c
SS
4407}
4408
4409static int
96baa820 4410hook_stop_stub (void *cmd)
c906108c 4411{
5913bcb0 4412 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
4413 return (0);
4414}
4415\f
c5aa993b 4416int
96baa820 4417signal_stop_state (int signo)
c906108c 4418{
d6b48e9c 4419 return signal_stop[signo];
c906108c
SS
4420}
4421
c5aa993b 4422int
96baa820 4423signal_print_state (int signo)
c906108c
SS
4424{
4425 return signal_print[signo];
4426}
4427
c5aa993b 4428int
96baa820 4429signal_pass_state (int signo)
c906108c
SS
4430{
4431 return signal_program[signo];
4432}
4433
488f131b 4434int
7bda5e4a 4435signal_stop_update (int signo, int state)
d4f3574e
SS
4436{
4437 int ret = signal_stop[signo];
4438 signal_stop[signo] = state;
4439 return ret;
4440}
4441
488f131b 4442int
7bda5e4a 4443signal_print_update (int signo, int state)
d4f3574e
SS
4444{
4445 int ret = signal_print[signo];
4446 signal_print[signo] = state;
4447 return ret;
4448}
4449
488f131b 4450int
7bda5e4a 4451signal_pass_update (int signo, int state)
d4f3574e
SS
4452{
4453 int ret = signal_program[signo];
4454 signal_program[signo] = state;
4455 return ret;
4456}
4457
c906108c 4458static void
96baa820 4459sig_print_header (void)
c906108c 4460{
a3f17187
AC
4461 printf_filtered (_("\
4462Signal Stop\tPrint\tPass to program\tDescription\n"));
c906108c
SS
4463}
4464
4465static void
96baa820 4466sig_print_info (enum target_signal oursig)
c906108c
SS
4467{
4468 char *name = target_signal_to_name (oursig);
4469 int name_padding = 13 - strlen (name);
96baa820 4470
c906108c
SS
4471 if (name_padding <= 0)
4472 name_padding = 0;
4473
4474 printf_filtered ("%s", name);
488f131b 4475 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
4476 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
4477 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
4478 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
4479 printf_filtered ("%s\n", target_signal_to_string (oursig));
4480}
4481
4482/* Specify how various signals in the inferior should be handled. */
4483
4484static void
96baa820 4485handle_command (char *args, int from_tty)
c906108c
SS
4486{
4487 char **argv;
4488 int digits, wordlen;
4489 int sigfirst, signum, siglast;
4490 enum target_signal oursig;
4491 int allsigs;
4492 int nsigs;
4493 unsigned char *sigs;
4494 struct cleanup *old_chain;
4495
4496 if (args == NULL)
4497 {
e2e0b3e5 4498 error_no_arg (_("signal to handle"));
c906108c
SS
4499 }
4500
4501 /* Allocate and zero an array of flags for which signals to handle. */
4502
4503 nsigs = (int) TARGET_SIGNAL_LAST;
4504 sigs = (unsigned char *) alloca (nsigs);
4505 memset (sigs, 0, nsigs);
4506
4507 /* Break the command line up into args. */
4508
d1a41061 4509 argv = gdb_buildargv (args);
7a292a7a 4510 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
4511
4512 /* Walk through the args, looking for signal oursigs, signal names, and
4513 actions. Signal numbers and signal names may be interspersed with
4514 actions, with the actions being performed for all signals cumulatively
4515 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
4516
4517 while (*argv != NULL)
4518 {
4519 wordlen = strlen (*argv);
4520 for (digits = 0; isdigit ((*argv)[digits]); digits++)
4521 {;
4522 }
4523 allsigs = 0;
4524 sigfirst = siglast = -1;
4525
4526 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
4527 {
4528 /* Apply action to all signals except those used by the
4529 debugger. Silently skip those. */
4530 allsigs = 1;
4531 sigfirst = 0;
4532 siglast = nsigs - 1;
4533 }
4534 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
4535 {
4536 SET_SIGS (nsigs, sigs, signal_stop);
4537 SET_SIGS (nsigs, sigs, signal_print);
4538 }
4539 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
4540 {
4541 UNSET_SIGS (nsigs, sigs, signal_program);
4542 }
4543 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
4544 {
4545 SET_SIGS (nsigs, sigs, signal_print);
4546 }
4547 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
4548 {
4549 SET_SIGS (nsigs, sigs, signal_program);
4550 }
4551 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
4552 {
4553 UNSET_SIGS (nsigs, sigs, signal_stop);
4554 }
4555 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
4556 {
4557 SET_SIGS (nsigs, sigs, signal_program);
4558 }
4559 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
4560 {
4561 UNSET_SIGS (nsigs, sigs, signal_print);
4562 UNSET_SIGS (nsigs, sigs, signal_stop);
4563 }
4564 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
4565 {
4566 UNSET_SIGS (nsigs, sigs, signal_program);
4567 }
4568 else if (digits > 0)
4569 {
4570 /* It is numeric. The numeric signal refers to our own
4571 internal signal numbering from target.h, not to host/target
4572 signal number. This is a feature; users really should be
4573 using symbolic names anyway, and the common ones like
4574 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
4575
4576 sigfirst = siglast = (int)
4577 target_signal_from_command (atoi (*argv));
4578 if ((*argv)[digits] == '-')
4579 {
4580 siglast = (int)
4581 target_signal_from_command (atoi ((*argv) + digits + 1));
4582 }
4583 if (sigfirst > siglast)
4584 {
4585 /* Bet he didn't figure we'd think of this case... */
4586 signum = sigfirst;
4587 sigfirst = siglast;
4588 siglast = signum;
4589 }
4590 }
4591 else
4592 {
4593 oursig = target_signal_from_name (*argv);
4594 if (oursig != TARGET_SIGNAL_UNKNOWN)
4595 {
4596 sigfirst = siglast = (int) oursig;
4597 }
4598 else
4599 {
4600 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 4601 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
4602 }
4603 }
4604
4605 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 4606 which signals to apply actions to. */
c906108c
SS
4607
4608 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
4609 {
4610 switch ((enum target_signal) signum)
4611 {
4612 case TARGET_SIGNAL_TRAP:
4613 case TARGET_SIGNAL_INT:
4614 if (!allsigs && !sigs[signum])
4615 {
4616 if (query ("%s is used by the debugger.\n\
488f131b 4617Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
4618 {
4619 sigs[signum] = 1;
4620 }
4621 else
4622 {
a3f17187 4623 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
4624 gdb_flush (gdb_stdout);
4625 }
4626 }
4627 break;
4628 case TARGET_SIGNAL_0:
4629 case TARGET_SIGNAL_DEFAULT:
4630 case TARGET_SIGNAL_UNKNOWN:
4631 /* Make sure that "all" doesn't print these. */
4632 break;
4633 default:
4634 sigs[signum] = 1;
4635 break;
4636 }
4637 }
4638
4639 argv++;
4640 }
4641
39f77062 4642 target_notice_signals (inferior_ptid);
c906108c
SS
4643
4644 if (from_tty)
4645 {
4646 /* Show the results. */
4647 sig_print_header ();
4648 for (signum = 0; signum < nsigs; signum++)
4649 {
4650 if (sigs[signum])
4651 {
4652 sig_print_info (signum);
4653 }
4654 }
4655 }
4656
4657 do_cleanups (old_chain);
4658}
4659
4660static void
96baa820 4661xdb_handle_command (char *args, int from_tty)
c906108c
SS
4662{
4663 char **argv;
4664 struct cleanup *old_chain;
4665
d1a41061
PP
4666 if (args == NULL)
4667 error_no_arg (_("xdb command"));
4668
c906108c
SS
4669 /* Break the command line up into args. */
4670
d1a41061 4671 argv = gdb_buildargv (args);
7a292a7a 4672 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
4673 if (argv[1] != (char *) NULL)
4674 {
4675 char *argBuf;
4676 int bufLen;
4677
4678 bufLen = strlen (argv[0]) + 20;
4679 argBuf = (char *) xmalloc (bufLen);
4680 if (argBuf)
4681 {
4682 int validFlag = 1;
4683 enum target_signal oursig;
4684
4685 oursig = target_signal_from_name (argv[0]);
4686 memset (argBuf, 0, bufLen);
4687 if (strcmp (argv[1], "Q") == 0)
4688 sprintf (argBuf, "%s %s", argv[0], "noprint");
4689 else
4690 {
4691 if (strcmp (argv[1], "s") == 0)
4692 {
4693 if (!signal_stop[oursig])
4694 sprintf (argBuf, "%s %s", argv[0], "stop");
4695 else
4696 sprintf (argBuf, "%s %s", argv[0], "nostop");
4697 }
4698 else if (strcmp (argv[1], "i") == 0)
4699 {
4700 if (!signal_program[oursig])
4701 sprintf (argBuf, "%s %s", argv[0], "pass");
4702 else
4703 sprintf (argBuf, "%s %s", argv[0], "nopass");
4704 }
4705 else if (strcmp (argv[1], "r") == 0)
4706 {
4707 if (!signal_print[oursig])
4708 sprintf (argBuf, "%s %s", argv[0], "print");
4709 else
4710 sprintf (argBuf, "%s %s", argv[0], "noprint");
4711 }
4712 else
4713 validFlag = 0;
4714 }
4715 if (validFlag)
4716 handle_command (argBuf, from_tty);
4717 else
a3f17187 4718 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 4719 if (argBuf)
b8c9b27d 4720 xfree (argBuf);
c906108c
SS
4721 }
4722 }
4723 do_cleanups (old_chain);
4724}
4725
4726/* Print current contents of the tables set by the handle command.
4727 It is possible we should just be printing signals actually used
4728 by the current target (but for things to work right when switching
4729 targets, all signals should be in the signal tables). */
4730
4731static void
96baa820 4732signals_info (char *signum_exp, int from_tty)
c906108c
SS
4733{
4734 enum target_signal oursig;
4735 sig_print_header ();
4736
4737 if (signum_exp)
4738 {
4739 /* First see if this is a symbol name. */
4740 oursig = target_signal_from_name (signum_exp);
4741 if (oursig == TARGET_SIGNAL_UNKNOWN)
4742 {
4743 /* No, try numeric. */
4744 oursig =
bb518678 4745 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
4746 }
4747 sig_print_info (oursig);
4748 return;
4749 }
4750
4751 printf_filtered ("\n");
4752 /* These ugly casts brought to you by the native VAX compiler. */
4753 for (oursig = TARGET_SIGNAL_FIRST;
4754 (int) oursig < (int) TARGET_SIGNAL_LAST;
4755 oursig = (enum target_signal) ((int) oursig + 1))
4756 {
4757 QUIT;
4758
4759 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 4760 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
4761 sig_print_info (oursig);
4762 }
4763
a3f17187 4764 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
c906108c
SS
4765}
4766\f
7a292a7a
SS
4767struct inferior_status
4768{
4769 enum target_signal stop_signal;
4770 CORE_ADDR stop_pc;
4771 bpstat stop_bpstat;
4772 int stop_step;
4773 int stop_stack_dummy;
4774 int stopped_by_random_signal;
ca67fcb8 4775 int stepping_over_breakpoint;
7a292a7a
SS
4776 CORE_ADDR step_range_start;
4777 CORE_ADDR step_range_end;
aa0cd9c1 4778 struct frame_id step_frame_id;
5fbbeb29 4779 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
4780 CORE_ADDR step_resume_break_address;
4781 int stop_after_trap;
c0236d92 4782 int stop_soon;
7a292a7a
SS
4783
4784 /* These are here because if call_function_by_hand has written some
4785 registers and then decides to call error(), we better not have changed
4786 any registers. */
72cec141 4787 struct regcache *registers;
7a292a7a 4788
101dcfbe
AC
4789 /* A frame unique identifier. */
4790 struct frame_id selected_frame_id;
4791
7a292a7a
SS
4792 int breakpoint_proceeded;
4793 int restore_stack_info;
4794 int proceed_to_finish;
4795};
4796
c906108c
SS
4797/* Save all of the information associated with the inferior<==>gdb
4798 connection. INF_STATUS is a pointer to a "struct inferior_status"
4799 (defined in inferior.h). */
4800
7a292a7a 4801struct inferior_status *
96baa820 4802save_inferior_status (int restore_stack_info)
c906108c 4803{
72cec141 4804 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
4e1c45ea 4805 struct thread_info *tp = inferior_thread ();
d6b48e9c 4806 struct inferior *inf = current_inferior ();
7a292a7a 4807
2020b7ab 4808 inf_status->stop_signal = tp->stop_signal;
c906108c 4809 inf_status->stop_pc = stop_pc;
414c69f7 4810 inf_status->stop_step = tp->stop_step;
c906108c
SS
4811 inf_status->stop_stack_dummy = stop_stack_dummy;
4812 inf_status->stopped_by_random_signal = stopped_by_random_signal;
4e1c45ea
PA
4813 inf_status->stepping_over_breakpoint = tp->trap_expected;
4814 inf_status->step_range_start = tp->step_range_start;
4815 inf_status->step_range_end = tp->step_range_end;
4816 inf_status->step_frame_id = tp->step_frame_id;
078130d0 4817 inf_status->step_over_calls = tp->step_over_calls;
c906108c 4818 inf_status->stop_after_trap = stop_after_trap;
d6b48e9c 4819 inf_status->stop_soon = inf->stop_soon;
c906108c
SS
4820 /* Save original bpstat chain here; replace it with copy of chain.
4821 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
4822 hand them back the original chain when restore_inferior_status is
4823 called. */
347bddb7
PA
4824 inf_status->stop_bpstat = tp->stop_bpstat;
4825 tp->stop_bpstat = bpstat_copy (tp->stop_bpstat);
c906108c
SS
4826 inf_status->breakpoint_proceeded = breakpoint_proceeded;
4827 inf_status->restore_stack_info = restore_stack_info;
32400beb 4828 inf_status->proceed_to_finish = tp->proceed_to_finish;
c5aa993b 4829
594f7785 4830 inf_status->registers = regcache_dup (get_current_regcache ());
c906108c 4831
206415a3 4832 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
7a292a7a 4833 return inf_status;
c906108c
SS
4834}
4835
c906108c 4836static int
96baa820 4837restore_selected_frame (void *args)
c906108c 4838{
488f131b 4839 struct frame_id *fid = (struct frame_id *) args;
c906108c 4840 struct frame_info *frame;
c906108c 4841
101dcfbe 4842 frame = frame_find_by_id (*fid);
c906108c 4843
aa0cd9c1
AC
4844 /* If inf_status->selected_frame_id is NULL, there was no previously
4845 selected frame. */
101dcfbe 4846 if (frame == NULL)
c906108c 4847 {
8a3fe4f8 4848 warning (_("Unable to restore previously selected frame."));
c906108c
SS
4849 return 0;
4850 }
4851
0f7d239c 4852 select_frame (frame);
c906108c
SS
4853
4854 return (1);
4855}
4856
4857void
96baa820 4858restore_inferior_status (struct inferior_status *inf_status)
c906108c 4859{
4e1c45ea 4860 struct thread_info *tp = inferior_thread ();
d6b48e9c 4861 struct inferior *inf = current_inferior ();
4e1c45ea 4862
2020b7ab 4863 tp->stop_signal = inf_status->stop_signal;
c906108c 4864 stop_pc = inf_status->stop_pc;
414c69f7 4865 tp->stop_step = inf_status->stop_step;
c906108c
SS
4866 stop_stack_dummy = inf_status->stop_stack_dummy;
4867 stopped_by_random_signal = inf_status->stopped_by_random_signal;
4e1c45ea
PA
4868 tp->trap_expected = inf_status->stepping_over_breakpoint;
4869 tp->step_range_start = inf_status->step_range_start;
4870 tp->step_range_end = inf_status->step_range_end;
4871 tp->step_frame_id = inf_status->step_frame_id;
078130d0 4872 tp->step_over_calls = inf_status->step_over_calls;
c906108c 4873 stop_after_trap = inf_status->stop_after_trap;
d6b48e9c 4874 inf->stop_soon = inf_status->stop_soon;
347bddb7
PA
4875 bpstat_clear (&tp->stop_bpstat);
4876 tp->stop_bpstat = inf_status->stop_bpstat;
c906108c 4877 breakpoint_proceeded = inf_status->breakpoint_proceeded;
32400beb 4878 tp->proceed_to_finish = inf_status->proceed_to_finish;
c906108c 4879
c906108c
SS
4880 /* The inferior can be gone if the user types "print exit(0)"
4881 (and perhaps other times). */
4882 if (target_has_execution)
72cec141 4883 /* NB: The register write goes through to the target. */
594f7785 4884 regcache_cpy (get_current_regcache (), inf_status->registers);
72cec141 4885 regcache_xfree (inf_status->registers);
c906108c 4886
c906108c
SS
4887 /* FIXME: If we are being called after stopping in a function which
4888 is called from gdb, we should not be trying to restore the
4889 selected frame; it just prints a spurious error message (The
4890 message is useful, however, in detecting bugs in gdb (like if gdb
4891 clobbers the stack)). In fact, should we be restoring the
4892 inferior status at all in that case? . */
4893
4894 if (target_has_stack && inf_status->restore_stack_info)
4895 {
c906108c 4896 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
4897 walking the stack might encounter a garbage pointer and
4898 error() trying to dereference it. */
488f131b
JB
4899 if (catch_errors
4900 (restore_selected_frame, &inf_status->selected_frame_id,
4901 "Unable to restore previously selected frame:\n",
4902 RETURN_MASK_ERROR) == 0)
c906108c
SS
4903 /* Error in restoring the selected frame. Select the innermost
4904 frame. */
0f7d239c 4905 select_frame (get_current_frame ());
c906108c
SS
4906
4907 }
c906108c 4908
72cec141 4909 xfree (inf_status);
7a292a7a 4910}
c906108c 4911
74b7792f
AC
4912static void
4913do_restore_inferior_status_cleanup (void *sts)
4914{
4915 restore_inferior_status (sts);
4916}
4917
4918struct cleanup *
4919make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
4920{
4921 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
4922}
4923
c906108c 4924void
96baa820 4925discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
4926{
4927 /* See save_inferior_status for info on stop_bpstat. */
4928 bpstat_clear (&inf_status->stop_bpstat);
72cec141 4929 regcache_xfree (inf_status->registers);
72cec141 4930 xfree (inf_status);
7a292a7a
SS
4931}
4932
47932f85 4933int
3a3e9ee3 4934inferior_has_forked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
4935{
4936 struct target_waitstatus last;
4937 ptid_t last_ptid;
4938
4939 get_last_target_status (&last_ptid, &last);
4940
4941 if (last.kind != TARGET_WAITKIND_FORKED)
4942 return 0;
4943
3a3e9ee3 4944 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
4945 return 0;
4946
4947 *child_pid = last.value.related_pid;
4948 return 1;
4949}
4950
4951int
3a3e9ee3 4952inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
4953{
4954 struct target_waitstatus last;
4955 ptid_t last_ptid;
4956
4957 get_last_target_status (&last_ptid, &last);
4958
4959 if (last.kind != TARGET_WAITKIND_VFORKED)
4960 return 0;
4961
3a3e9ee3 4962 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
4963 return 0;
4964
4965 *child_pid = last.value.related_pid;
4966 return 1;
4967}
4968
4969int
3a3e9ee3 4970inferior_has_execd (ptid_t pid, char **execd_pathname)
47932f85
DJ
4971{
4972 struct target_waitstatus last;
4973 ptid_t last_ptid;
4974
4975 get_last_target_status (&last_ptid, &last);
4976
4977 if (last.kind != TARGET_WAITKIND_EXECD)
4978 return 0;
4979
3a3e9ee3 4980 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
4981 return 0;
4982
4983 *execd_pathname = xstrdup (last.value.execd_pathname);
4984 return 1;
4985}
4986
ca6724c1
KB
4987/* Oft used ptids */
4988ptid_t null_ptid;
4989ptid_t minus_one_ptid;
4990
4991/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 4992
ca6724c1
KB
4993ptid_t
4994ptid_build (int pid, long lwp, long tid)
4995{
4996 ptid_t ptid;
4997
4998 ptid.pid = pid;
4999 ptid.lwp = lwp;
5000 ptid.tid = tid;
5001 return ptid;
5002}
5003
5004/* Create a ptid from just a pid. */
5005
5006ptid_t
5007pid_to_ptid (int pid)
5008{
5009 return ptid_build (pid, 0, 0);
5010}
5011
5012/* Fetch the pid (process id) component from a ptid. */
5013
5014int
5015ptid_get_pid (ptid_t ptid)
5016{
5017 return ptid.pid;
5018}
5019
5020/* Fetch the lwp (lightweight process) component from a ptid. */
5021
5022long
5023ptid_get_lwp (ptid_t ptid)
5024{
5025 return ptid.lwp;
5026}
5027
5028/* Fetch the tid (thread id) component from a ptid. */
5029
5030long
5031ptid_get_tid (ptid_t ptid)
5032{
5033 return ptid.tid;
5034}
5035
5036/* ptid_equal() is used to test equality of two ptids. */
5037
5038int
5039ptid_equal (ptid_t ptid1, ptid_t ptid2)
5040{
5041 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 5042 && ptid1.tid == ptid2.tid);
ca6724c1
KB
5043}
5044
252fbfc8
PA
5045/* Returns true if PTID represents a process. */
5046
5047int
5048ptid_is_pid (ptid_t ptid)
5049{
5050 if (ptid_equal (minus_one_ptid, ptid))
5051 return 0;
5052 if (ptid_equal (null_ptid, ptid))
5053 return 0;
5054
5055 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
5056}
5057
ca6724c1
KB
5058/* restore_inferior_ptid() will be used by the cleanup machinery
5059 to restore the inferior_ptid value saved in a call to
5060 save_inferior_ptid(). */
ce696e05
KB
5061
5062static void
5063restore_inferior_ptid (void *arg)
5064{
5065 ptid_t *saved_ptid_ptr = arg;
5066 inferior_ptid = *saved_ptid_ptr;
5067 xfree (arg);
5068}
5069
5070/* Save the value of inferior_ptid so that it may be restored by a
5071 later call to do_cleanups(). Returns the struct cleanup pointer
5072 needed for later doing the cleanup. */
5073
5074struct cleanup *
5075save_inferior_ptid (void)
5076{
5077 ptid_t *saved_ptid_ptr;
5078
5079 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
5080 *saved_ptid_ptr = inferior_ptid;
5081 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
5082}
c5aa993b 5083\f
488f131b 5084
b2175913
MS
5085/* User interface for reverse debugging:
5086 Set exec-direction / show exec-direction commands
5087 (returns error unless target implements to_set_exec_direction method). */
5088
5089enum exec_direction_kind execution_direction = EXEC_FORWARD;
5090static const char exec_forward[] = "forward";
5091static const char exec_reverse[] = "reverse";
5092static const char *exec_direction = exec_forward;
5093static const char *exec_direction_names[] = {
5094 exec_forward,
5095 exec_reverse,
5096 NULL
5097};
5098
5099static void
5100set_exec_direction_func (char *args, int from_tty,
5101 struct cmd_list_element *cmd)
5102{
5103 if (target_can_execute_reverse)
5104 {
5105 if (!strcmp (exec_direction, exec_forward))
5106 execution_direction = EXEC_FORWARD;
5107 else if (!strcmp (exec_direction, exec_reverse))
5108 execution_direction = EXEC_REVERSE;
5109 }
5110}
5111
5112static void
5113show_exec_direction_func (struct ui_file *out, int from_tty,
5114 struct cmd_list_element *cmd, const char *value)
5115{
5116 switch (execution_direction) {
5117 case EXEC_FORWARD:
5118 fprintf_filtered (out, _("Forward.\n"));
5119 break;
5120 case EXEC_REVERSE:
5121 fprintf_filtered (out, _("Reverse.\n"));
5122 break;
5123 case EXEC_ERROR:
5124 default:
5125 fprintf_filtered (out,
5126 _("Forward (target `%s' does not support exec-direction).\n"),
5127 target_shortname);
5128 break;
5129 }
5130}
5131
5132/* User interface for non-stop mode. */
5133
ad52ddc6
PA
5134int non_stop = 0;
5135static int non_stop_1 = 0;
5136
5137static void
5138set_non_stop (char *args, int from_tty,
5139 struct cmd_list_element *c)
5140{
5141 if (target_has_execution)
5142 {
5143 non_stop_1 = non_stop;
5144 error (_("Cannot change this setting while the inferior is running."));
5145 }
5146
5147 non_stop = non_stop_1;
5148}
5149
5150static void
5151show_non_stop (struct ui_file *file, int from_tty,
5152 struct cmd_list_element *c, const char *value)
5153{
5154 fprintf_filtered (file,
5155 _("Controlling the inferior in non-stop mode is %s.\n"),
5156 value);
5157}
5158
5159
c906108c 5160void
96baa820 5161_initialize_infrun (void)
c906108c 5162{
52f0bd74
AC
5163 int i;
5164 int numsigs;
c906108c
SS
5165 struct cmd_list_element *c;
5166
1bedd215
AC
5167 add_info ("signals", signals_info, _("\
5168What debugger does when program gets various signals.\n\
5169Specify a signal as argument to print info on that signal only."));
c906108c
SS
5170 add_info_alias ("handle", "signals", 0);
5171
1bedd215
AC
5172 add_com ("handle", class_run, handle_command, _("\
5173Specify how to handle a signal.\n\
c906108c
SS
5174Args are signals and actions to apply to those signals.\n\
5175Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5176from 1-15 are allowed for compatibility with old versions of GDB.\n\
5177Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5178The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
5179used by the debugger, typically SIGTRAP and SIGINT.\n\
5180Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
5181\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
5182Stop means reenter debugger if this signal happens (implies print).\n\
5183Print means print a message if this signal happens.\n\
5184Pass means let program see this signal; otherwise program doesn't know.\n\
5185Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 5186Pass and Stop may be combined."));
c906108c
SS
5187 if (xdb_commands)
5188 {
1bedd215
AC
5189 add_com ("lz", class_info, signals_info, _("\
5190What debugger does when program gets various signals.\n\
5191Specify a signal as argument to print info on that signal only."));
5192 add_com ("z", class_run, xdb_handle_command, _("\
5193Specify how to handle a signal.\n\
c906108c
SS
5194Args are signals and actions to apply to those signals.\n\
5195Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5196from 1-15 are allowed for compatibility with old versions of GDB.\n\
5197Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5198The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
5199used by the debugger, typically SIGTRAP and SIGINT.\n\
5200Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
5201\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
5202nopass), \"Q\" (noprint)\n\
5203Stop means reenter debugger if this signal happens (implies print).\n\
5204Print means print a message if this signal happens.\n\
5205Pass means let program see this signal; otherwise program doesn't know.\n\
5206Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 5207Pass and Stop may be combined."));
c906108c
SS
5208 }
5209
5210 if (!dbx_commands)
1a966eab
AC
5211 stop_command = add_cmd ("stop", class_obscure,
5212 not_just_help_class_command, _("\
5213There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 5214This allows you to set a list of commands to be run each time execution\n\
1a966eab 5215of the program stops."), &cmdlist);
c906108c 5216
85c07804
AC
5217 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
5218Set inferior debugging."), _("\
5219Show inferior debugging."), _("\
5220When non-zero, inferior specific debugging is enabled."),
5221 NULL,
920d2a44 5222 show_debug_infrun,
85c07804 5223 &setdebuglist, &showdebuglist);
527159b7 5224
237fc4c9
PA
5225 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
5226Set displaced stepping debugging."), _("\
5227Show displaced stepping debugging."), _("\
5228When non-zero, displaced stepping specific debugging is enabled."),
5229 NULL,
5230 show_debug_displaced,
5231 &setdebuglist, &showdebuglist);
5232
ad52ddc6
PA
5233 add_setshow_boolean_cmd ("non-stop", no_class,
5234 &non_stop_1, _("\
5235Set whether gdb controls the inferior in non-stop mode."), _("\
5236Show whether gdb controls the inferior in non-stop mode."), _("\
5237When debugging a multi-threaded program and this setting is\n\
5238off (the default, also called all-stop mode), when one thread stops\n\
5239(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
5240all other threads in the program while you interact with the thread of\n\
5241interest. When you continue or step a thread, you can allow the other\n\
5242threads to run, or have them remain stopped, but while you inspect any\n\
5243thread's state, all threads stop.\n\
5244\n\
5245In non-stop mode, when one thread stops, other threads can continue\n\
5246to run freely. You'll be able to step each thread independently,\n\
5247leave it stopped or free to run as needed."),
5248 set_non_stop,
5249 show_non_stop,
5250 &setlist,
5251 &showlist);
5252
c906108c 5253 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 5254 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
5255 signal_print = (unsigned char *)
5256 xmalloc (sizeof (signal_print[0]) * numsigs);
5257 signal_program = (unsigned char *)
5258 xmalloc (sizeof (signal_program[0]) * numsigs);
5259 for (i = 0; i < numsigs; i++)
5260 {
5261 signal_stop[i] = 1;
5262 signal_print[i] = 1;
5263 signal_program[i] = 1;
5264 }
5265
5266 /* Signals caused by debugger's own actions
5267 should not be given to the program afterwards. */
5268 signal_program[TARGET_SIGNAL_TRAP] = 0;
5269 signal_program[TARGET_SIGNAL_INT] = 0;
5270
5271 /* Signals that are not errors should not normally enter the debugger. */
5272 signal_stop[TARGET_SIGNAL_ALRM] = 0;
5273 signal_print[TARGET_SIGNAL_ALRM] = 0;
5274 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
5275 signal_print[TARGET_SIGNAL_VTALRM] = 0;
5276 signal_stop[TARGET_SIGNAL_PROF] = 0;
5277 signal_print[TARGET_SIGNAL_PROF] = 0;
5278 signal_stop[TARGET_SIGNAL_CHLD] = 0;
5279 signal_print[TARGET_SIGNAL_CHLD] = 0;
5280 signal_stop[TARGET_SIGNAL_IO] = 0;
5281 signal_print[TARGET_SIGNAL_IO] = 0;
5282 signal_stop[TARGET_SIGNAL_POLL] = 0;
5283 signal_print[TARGET_SIGNAL_POLL] = 0;
5284 signal_stop[TARGET_SIGNAL_URG] = 0;
5285 signal_print[TARGET_SIGNAL_URG] = 0;
5286 signal_stop[TARGET_SIGNAL_WINCH] = 0;
5287 signal_print[TARGET_SIGNAL_WINCH] = 0;
5288
cd0fc7c3
SS
5289 /* These signals are used internally by user-level thread
5290 implementations. (See signal(5) on Solaris.) Like the above
5291 signals, a healthy program receives and handles them as part of
5292 its normal operation. */
5293 signal_stop[TARGET_SIGNAL_LWP] = 0;
5294 signal_print[TARGET_SIGNAL_LWP] = 0;
5295 signal_stop[TARGET_SIGNAL_WAITING] = 0;
5296 signal_print[TARGET_SIGNAL_WAITING] = 0;
5297 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
5298 signal_print[TARGET_SIGNAL_CANCEL] = 0;
5299
85c07804
AC
5300 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
5301 &stop_on_solib_events, _("\
5302Set stopping for shared library events."), _("\
5303Show stopping for shared library events."), _("\
c906108c
SS
5304If nonzero, gdb will give control to the user when the dynamic linker\n\
5305notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
5306to the user would be loading/unloading of a new library."),
5307 NULL,
920d2a44 5308 show_stop_on_solib_events,
85c07804 5309 &setlist, &showlist);
c906108c 5310
7ab04401
AC
5311 add_setshow_enum_cmd ("follow-fork-mode", class_run,
5312 follow_fork_mode_kind_names,
5313 &follow_fork_mode_string, _("\
5314Set debugger response to a program call of fork or vfork."), _("\
5315Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
5316A fork or vfork creates a new process. follow-fork-mode can be:\n\
5317 parent - the original process is debugged after a fork\n\
5318 child - the new process is debugged after a fork\n\
ea1dd7bc 5319The unfollowed process will continue to run.\n\
7ab04401
AC
5320By default, the debugger will follow the parent process."),
5321 NULL,
920d2a44 5322 show_follow_fork_mode_string,
7ab04401
AC
5323 &setlist, &showlist);
5324
5325 add_setshow_enum_cmd ("scheduler-locking", class_run,
5326 scheduler_enums, &scheduler_mode, _("\
5327Set mode for locking scheduler during execution."), _("\
5328Show mode for locking scheduler during execution."), _("\
c906108c
SS
5329off == no locking (threads may preempt at any time)\n\
5330on == full locking (no thread except the current thread may run)\n\
5331step == scheduler locked during every single-step operation.\n\
5332 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
5333 Other threads may run while stepping over a function call ('next')."),
5334 set_schedlock_func, /* traps on target vector */
920d2a44 5335 show_scheduler_mode,
7ab04401 5336 &setlist, &showlist);
5fbbeb29 5337
5bf193a2
AC
5338 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
5339Set mode of the step operation."), _("\
5340Show mode of the step operation."), _("\
5341When set, doing a step over a function without debug line information\n\
5342will stop at the first instruction of that function. Otherwise, the\n\
5343function is skipped and the step command stops at a different source line."),
5344 NULL,
920d2a44 5345 show_step_stop_if_no_debug,
5bf193a2 5346 &setlist, &showlist);
ca6724c1 5347
fff08868
HZ
5348 add_setshow_enum_cmd ("displaced-stepping", class_run,
5349 can_use_displaced_stepping_enum,
5350 &can_use_displaced_stepping, _("\
237fc4c9
PA
5351Set debugger's willingness to use displaced stepping."), _("\
5352Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
5353If on, gdb will use displaced stepping to step over breakpoints if it is\n\
5354supported by the target architecture. If off, gdb will not use displaced\n\
5355stepping to step over breakpoints, even if such is supported by the target\n\
5356architecture. If auto (which is the default), gdb will use displaced stepping\n\
5357if the target architecture supports it and non-stop mode is active, but will not\n\
5358use it in all-stop mode (see help set non-stop)."),
5359 NULL,
5360 show_can_use_displaced_stepping,
5361 &setlist, &showlist);
237fc4c9 5362
b2175913
MS
5363 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
5364 &exec_direction, _("Set direction of execution.\n\
5365Options are 'forward' or 'reverse'."),
5366 _("Show direction of execution (forward/reverse)."),
5367 _("Tells gdb whether to execute forward or backward."),
5368 set_exec_direction_func, show_exec_direction_func,
5369 &setlist, &showlist);
5370
ca6724c1
KB
5371 /* ptid initializations */
5372 null_ptid = ptid_build (0, 0, 0);
5373 minus_one_ptid = ptid_build (-1, 0, 0);
5374 inferior_ptid = null_ptid;
5375 target_last_wait_ptid = minus_one_ptid;
237fc4c9 5376 displaced_step_ptid = null_ptid;
5231c1fd
PA
5377
5378 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 5379 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
c906108c 5380}
This page took 1.067319 seconds and 4 git commands to generate.