*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
6aba47ca 4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
9b254dd1 5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
0fb0cc75 6 2008, 2009 Free Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include <ctype.h>
26#include "symtab.h"
27#include "frame.h"
28#include "inferior.h"
60250e8b 29#include "exceptions.h"
c906108c 30#include "breakpoint.h"
03f2053f 31#include "gdb_wait.h"
c906108c
SS
32#include "gdbcore.h"
33#include "gdbcmd.h"
210661e7 34#include "cli/cli-script.h"
c906108c
SS
35#include "target.h"
36#include "gdbthread.h"
37#include "annotate.h"
1adeb98a 38#include "symfile.h"
7a292a7a 39#include "top.h"
c906108c 40#include <signal.h>
2acceee2 41#include "inf-loop.h"
4e052eda 42#include "regcache.h"
fd0407d6 43#include "value.h"
06600e06 44#include "observer.h"
f636b87d 45#include "language.h"
a77053c2 46#include "solib.h"
f17517ea 47#include "main.h"
9f976b41 48#include "gdb_assert.h"
034dad6f 49#include "mi/mi-common.h"
4f8d22e3 50#include "event-top.h"
96429cc8 51#include "record.h"
c906108c
SS
52
53/* Prototypes for local functions */
54
96baa820 55static void signals_info (char *, int);
c906108c 56
96baa820 57static void handle_command (char *, int);
c906108c 58
96baa820 59static void sig_print_info (enum target_signal);
c906108c 60
96baa820 61static void sig_print_header (void);
c906108c 62
74b7792f 63static void resume_cleanups (void *);
c906108c 64
96baa820 65static int hook_stop_stub (void *);
c906108c 66
96baa820
JM
67static int restore_selected_frame (void *);
68
69static void build_infrun (void);
70
4ef3f3be 71static int follow_fork (void);
96baa820
JM
72
73static void set_schedlock_func (char *args, int from_tty,
488f131b 74 struct cmd_list_element *c);
96baa820 75
4e1c45ea 76static int currently_stepping (struct thread_info *tp);
96baa820 77
b3444185
PA
78static int currently_stepping_or_nexting_callback (struct thread_info *tp,
79 void *data);
a7212384 80
96baa820
JM
81static void xdb_handle_command (char *args, int from_tty);
82
6a6b96b9 83static int prepare_to_proceed (int);
ea67f13b 84
96baa820 85void _initialize_infrun (void);
43ff13b4 86
e58b0e63
PA
87void nullify_last_target_wait_ptid (void);
88
5fbbeb29
CF
89/* When set, stop the 'step' command if we enter a function which has
90 no line number information. The normal behavior is that we step
91 over such function. */
92int step_stop_if_no_debug = 0;
920d2a44
AC
93static void
94show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
95 struct cmd_list_element *c, const char *value)
96{
97 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
98}
5fbbeb29 99
43ff13b4 100/* In asynchronous mode, but simulating synchronous execution. */
96baa820 101
43ff13b4
JM
102int sync_execution = 0;
103
c906108c
SS
104/* wait_for_inferior and normal_stop use this to notify the user
105 when the inferior stopped in a different thread than it had been
96baa820
JM
106 running in. */
107
39f77062 108static ptid_t previous_inferior_ptid;
7a292a7a 109
237fc4c9
PA
110int debug_displaced = 0;
111static void
112show_debug_displaced (struct ui_file *file, int from_tty,
113 struct cmd_list_element *c, const char *value)
114{
115 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
116}
117
527159b7 118static int debug_infrun = 0;
920d2a44
AC
119static void
120show_debug_infrun (struct ui_file *file, int from_tty,
121 struct cmd_list_element *c, const char *value)
122{
123 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
124}
527159b7 125
d4f3574e
SS
126/* If the program uses ELF-style shared libraries, then calls to
127 functions in shared libraries go through stubs, which live in a
128 table called the PLT (Procedure Linkage Table). The first time the
129 function is called, the stub sends control to the dynamic linker,
130 which looks up the function's real address, patches the stub so
131 that future calls will go directly to the function, and then passes
132 control to the function.
133
134 If we are stepping at the source level, we don't want to see any of
135 this --- we just want to skip over the stub and the dynamic linker.
136 The simple approach is to single-step until control leaves the
137 dynamic linker.
138
ca557f44
AC
139 However, on some systems (e.g., Red Hat's 5.2 distribution) the
140 dynamic linker calls functions in the shared C library, so you
141 can't tell from the PC alone whether the dynamic linker is still
142 running. In this case, we use a step-resume breakpoint to get us
143 past the dynamic linker, as if we were using "next" to step over a
144 function call.
d4f3574e 145
cfd8ab24 146 in_solib_dynsym_resolve_code() says whether we're in the dynamic
d4f3574e
SS
147 linker code or not. Normally, this means we single-step. However,
148 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
149 address where we can place a step-resume breakpoint to get past the
150 linker's symbol resolution function.
151
cfd8ab24 152 in_solib_dynsym_resolve_code() can generally be implemented in a
d4f3574e
SS
153 pretty portable way, by comparing the PC against the address ranges
154 of the dynamic linker's sections.
155
156 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
157 it depends on internal details of the dynamic linker. It's usually
158 not too hard to figure out where to put a breakpoint, but it
159 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
160 sanity checking. If it can't figure things out, returning zero and
161 getting the (possibly confusing) stepping behavior is better than
162 signalling an error, which will obscure the change in the
163 inferior's state. */
c906108c 164
c906108c
SS
165/* This function returns TRUE if pc is the address of an instruction
166 that lies within the dynamic linker (such as the event hook, or the
167 dld itself).
168
169 This function must be used only when a dynamic linker event has
170 been caught, and the inferior is being stepped out of the hook, or
171 undefined results are guaranteed. */
172
173#ifndef SOLIB_IN_DYNAMIC_LINKER
174#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
175#endif
176
c2c6d25f 177
7a292a7a
SS
178/* Convert the #defines into values. This is temporary until wfi control
179 flow is completely sorted out. */
180
692590c1
MS
181#ifndef CANNOT_STEP_HW_WATCHPOINTS
182#define CANNOT_STEP_HW_WATCHPOINTS 0
183#else
184#undef CANNOT_STEP_HW_WATCHPOINTS
185#define CANNOT_STEP_HW_WATCHPOINTS 1
186#endif
187
c906108c
SS
188/* Tables of how to react to signals; the user sets them. */
189
190static unsigned char *signal_stop;
191static unsigned char *signal_print;
192static unsigned char *signal_program;
193
194#define SET_SIGS(nsigs,sigs,flags) \
195 do { \
196 int signum = (nsigs); \
197 while (signum-- > 0) \
198 if ((sigs)[signum]) \
199 (flags)[signum] = 1; \
200 } while (0)
201
202#define UNSET_SIGS(nsigs,sigs,flags) \
203 do { \
204 int signum = (nsigs); \
205 while (signum-- > 0) \
206 if ((sigs)[signum]) \
207 (flags)[signum] = 0; \
208 } while (0)
209
39f77062
KB
210/* Value to pass to target_resume() to cause all threads to resume */
211
212#define RESUME_ALL (pid_to_ptid (-1))
c906108c
SS
213
214/* Command list pointer for the "stop" placeholder. */
215
216static struct cmd_list_element *stop_command;
217
c906108c
SS
218/* Function inferior was in as of last step command. */
219
220static struct symbol *step_start_function;
221
c906108c
SS
222/* Nonzero if we want to give control to the user when we're notified
223 of shared library events by the dynamic linker. */
224static int stop_on_solib_events;
920d2a44
AC
225static void
226show_stop_on_solib_events (struct ui_file *file, int from_tty,
227 struct cmd_list_element *c, const char *value)
228{
229 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
230 value);
231}
c906108c 232
c906108c
SS
233/* Nonzero means expecting a trace trap
234 and should stop the inferior and return silently when it happens. */
235
236int stop_after_trap;
237
642fd101
DE
238/* Save register contents here when executing a "finish" command or are
239 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
240 Thus this contains the return value from the called function (assuming
241 values are returned in a register). */
242
72cec141 243struct regcache *stop_registers;
c906108c 244
c906108c
SS
245/* Nonzero after stop if current stack frame should be printed. */
246
247static int stop_print_frame;
248
e02bc4cc 249/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
250 returned by target_wait()/deprecated_target_wait_hook(). This
251 information is returned by get_last_target_status(). */
39f77062 252static ptid_t target_last_wait_ptid;
e02bc4cc
DS
253static struct target_waitstatus target_last_waitstatus;
254
0d1e5fa7
PA
255static void context_switch (ptid_t ptid);
256
4e1c45ea 257void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7
PA
258
259void init_infwait_state (void);
a474d7c2 260
53904c9e
AC
261static const char follow_fork_mode_child[] = "child";
262static const char follow_fork_mode_parent[] = "parent";
263
488f131b 264static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
265 follow_fork_mode_child,
266 follow_fork_mode_parent,
267 NULL
ef346e04 268};
c906108c 269
53904c9e 270static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
271static void
272show_follow_fork_mode_string (struct ui_file *file, int from_tty,
273 struct cmd_list_element *c, const char *value)
274{
275 fprintf_filtered (file, _("\
276Debugger response to a program call of fork or vfork is \"%s\".\n"),
277 value);
278}
c906108c
SS
279\f
280
e58b0e63
PA
281/* Tell the target to follow the fork we're stopped at. Returns true
282 if the inferior should be resumed; false, if the target for some
283 reason decided it's best not to resume. */
284
6604731b 285static int
4ef3f3be 286follow_fork (void)
c906108c 287{
ea1dd7bc 288 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
289 int should_resume = 1;
290 struct thread_info *tp;
291
292 /* Copy user stepping state to the new inferior thread. FIXME: the
293 followed fork child thread should have a copy of most of the
4e3990f4
DE
294 parent thread structure's run control related fields, not just these.
295 Initialized to avoid "may be used uninitialized" warnings from gcc. */
296 struct breakpoint *step_resume_breakpoint = NULL;
297 CORE_ADDR step_range_start = 0;
298 CORE_ADDR step_range_end = 0;
299 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
300
301 if (!non_stop)
302 {
303 ptid_t wait_ptid;
304 struct target_waitstatus wait_status;
305
306 /* Get the last target status returned by target_wait(). */
307 get_last_target_status (&wait_ptid, &wait_status);
308
309 /* If not stopped at a fork event, then there's nothing else to
310 do. */
311 if (wait_status.kind != TARGET_WAITKIND_FORKED
312 && wait_status.kind != TARGET_WAITKIND_VFORKED)
313 return 1;
314
315 /* Check if we switched over from WAIT_PTID, since the event was
316 reported. */
317 if (!ptid_equal (wait_ptid, minus_one_ptid)
318 && !ptid_equal (inferior_ptid, wait_ptid))
319 {
320 /* We did. Switch back to WAIT_PTID thread, to tell the
321 target to follow it (in either direction). We'll
322 afterwards refuse to resume, and inform the user what
323 happened. */
324 switch_to_thread (wait_ptid);
325 should_resume = 0;
326 }
327 }
328
329 tp = inferior_thread ();
330
331 /* If there were any forks/vforks that were caught and are now to be
332 followed, then do so now. */
333 switch (tp->pending_follow.kind)
334 {
335 case TARGET_WAITKIND_FORKED:
336 case TARGET_WAITKIND_VFORKED:
337 {
338 ptid_t parent, child;
339
340 /* If the user did a next/step, etc, over a fork call,
341 preserve the stepping state in the fork child. */
342 if (follow_child && should_resume)
343 {
344 step_resume_breakpoint
345 = clone_momentary_breakpoint (tp->step_resume_breakpoint);
346 step_range_start = tp->step_range_start;
347 step_range_end = tp->step_range_end;
348 step_frame_id = tp->step_frame_id;
349
350 /* For now, delete the parent's sr breakpoint, otherwise,
351 parent/child sr breakpoints are considered duplicates,
352 and the child version will not be installed. Remove
353 this when the breakpoints module becomes aware of
354 inferiors and address spaces. */
355 delete_step_resume_breakpoint (tp);
356 tp->step_range_start = 0;
357 tp->step_range_end = 0;
358 tp->step_frame_id = null_frame_id;
359 }
360
361 parent = inferior_ptid;
362 child = tp->pending_follow.value.related_pid;
363
364 /* Tell the target to do whatever is necessary to follow
365 either parent or child. */
366 if (target_follow_fork (follow_child))
367 {
368 /* Target refused to follow, or there's some other reason
369 we shouldn't resume. */
370 should_resume = 0;
371 }
372 else
373 {
374 /* This pending follow fork event is now handled, one way
375 or another. The previous selected thread may be gone
376 from the lists by now, but if it is still around, need
377 to clear the pending follow request. */
e09875d4 378 tp = find_thread_ptid (parent);
e58b0e63
PA
379 if (tp)
380 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
381
382 /* This makes sure we don't try to apply the "Switched
383 over from WAIT_PID" logic above. */
384 nullify_last_target_wait_ptid ();
385
386 /* If we followed the child, switch to it... */
387 if (follow_child)
388 {
389 switch_to_thread (child);
390
391 /* ... and preserve the stepping state, in case the
392 user was stepping over the fork call. */
393 if (should_resume)
394 {
395 tp = inferior_thread ();
396 tp->step_resume_breakpoint = step_resume_breakpoint;
397 tp->step_range_start = step_range_start;
398 tp->step_range_end = step_range_end;
399 tp->step_frame_id = step_frame_id;
400 }
401 else
402 {
403 /* If we get here, it was because we're trying to
404 resume from a fork catchpoint, but, the user
405 has switched threads away from the thread that
406 forked. In that case, the resume command
407 issued is most likely not applicable to the
408 child, so just warn, and refuse to resume. */
409 warning (_("\
410Not resuming: switched threads before following fork child.\n"));
411 }
412
413 /* Reset breakpoints in the child as appropriate. */
414 follow_inferior_reset_breakpoints ();
415 }
416 else
417 switch_to_thread (parent);
418 }
419 }
420 break;
421 case TARGET_WAITKIND_SPURIOUS:
422 /* Nothing to follow. */
423 break;
424 default:
425 internal_error (__FILE__, __LINE__,
426 "Unexpected pending_follow.kind %d\n",
427 tp->pending_follow.kind);
428 break;
429 }
c906108c 430
e58b0e63 431 return should_resume;
c906108c
SS
432}
433
6604731b
DJ
434void
435follow_inferior_reset_breakpoints (void)
c906108c 436{
4e1c45ea
PA
437 struct thread_info *tp = inferior_thread ();
438
6604731b
DJ
439 /* Was there a step_resume breakpoint? (There was if the user
440 did a "next" at the fork() call.) If so, explicitly reset its
441 thread number.
442
443 step_resumes are a form of bp that are made to be per-thread.
444 Since we created the step_resume bp when the parent process
445 was being debugged, and now are switching to the child process,
446 from the breakpoint package's viewpoint, that's a switch of
447 "threads". We must update the bp's notion of which thread
448 it is for, or it'll be ignored when it triggers. */
449
4e1c45ea
PA
450 if (tp->step_resume_breakpoint)
451 breakpoint_re_set_thread (tp->step_resume_breakpoint);
6604731b
DJ
452
453 /* Reinsert all breakpoints in the child. The user may have set
454 breakpoints after catching the fork, in which case those
455 were never set in the child, but only in the parent. This makes
456 sure the inserted breakpoints match the breakpoint list. */
457
458 breakpoint_re_set ();
459 insert_breakpoints ();
c906108c 460}
c906108c 461
1adeb98a
FN
462/* EXECD_PATHNAME is assumed to be non-NULL. */
463
c906108c 464static void
3a3e9ee3 465follow_exec (ptid_t pid, char *execd_pathname)
c906108c 466{
7a292a7a 467 struct target_ops *tgt;
4e1c45ea 468 struct thread_info *th = inferior_thread ();
7a292a7a 469
c906108c
SS
470 /* This is an exec event that we actually wish to pay attention to.
471 Refresh our symbol table to the newly exec'd program, remove any
472 momentary bp's, etc.
473
474 If there are breakpoints, they aren't really inserted now,
475 since the exec() transformed our inferior into a fresh set
476 of instructions.
477
478 We want to preserve symbolic breakpoints on the list, since
479 we have hopes that they can be reset after the new a.out's
480 symbol table is read.
481
482 However, any "raw" breakpoints must be removed from the list
483 (e.g., the solib bp's), since their address is probably invalid
484 now.
485
486 And, we DON'T want to call delete_breakpoints() here, since
487 that may write the bp's "shadow contents" (the instruction
488 value that was overwritten witha TRAP instruction). Since
489 we now have a new a.out, those shadow contents aren't valid. */
490 update_breakpoints_after_exec ();
491
492 /* If there was one, it's gone now. We cannot truly step-to-next
493 statement through an exec(). */
4e1c45ea
PA
494 th->step_resume_breakpoint = NULL;
495 th->step_range_start = 0;
496 th->step_range_end = 0;
c906108c 497
a75724bc
PA
498 /* The target reports the exec event to the main thread, even if
499 some other thread does the exec, and even if the main thread was
500 already stopped --- if debugging in non-stop mode, it's possible
501 the user had the main thread held stopped in the previous image
502 --- release it now. This is the same behavior as step-over-exec
503 with scheduler-locking on in all-stop mode. */
504 th->stop_requested = 0;
505
c906108c 506 /* What is this a.out's name? */
a3f17187 507 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
c906108c
SS
508
509 /* We've followed the inferior through an exec. Therefore, the
510 inferior has essentially been killed & reborn. */
7a292a7a 511
c906108c 512 gdb_flush (gdb_stdout);
6ca15a4b
PA
513
514 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
515
516 if (gdb_sysroot && *gdb_sysroot)
517 {
518 char *name = alloca (strlen (gdb_sysroot)
519 + strlen (execd_pathname)
520 + 1);
521 strcpy (name, gdb_sysroot);
522 strcat (name, execd_pathname);
523 execd_pathname = name;
524 }
c906108c
SS
525
526 /* That a.out is now the one to use. */
527 exec_file_attach (execd_pathname, 0);
528
cce9b6bf
PA
529 /* Reset the shared library package. This ensures that we get a
530 shlib event when the child reaches "_start", at which point the
531 dld will have had a chance to initialize the child. */
532 /* Also, loading a symbol file below may trigger symbol lookups, and
533 we don't want those to be satisfied by the libraries of the
534 previous incarnation of this process. */
535 no_shared_libraries (NULL, 0);
536
537 /* Load the main file's symbols. */
1adeb98a 538 symbol_file_add_main (execd_pathname, 0);
c906108c 539
7a292a7a 540#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 541 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2
MK
542#else
543 solib_create_inferior_hook ();
7a292a7a 544#endif
c906108c
SS
545
546 /* Reinsert all breakpoints. (Those which were symbolic have
547 been reset to the proper address in the new a.out, thanks
548 to symbol_file_command...) */
549 insert_breakpoints ();
550
551 /* The next resume of this inferior should bring it to the shlib
552 startup breakpoints. (If the user had also set bp's on
553 "main" from the old (parent) process, then they'll auto-
554 matically get reset there in the new process.) */
c906108c
SS
555}
556
557/* Non-zero if we just simulating a single-step. This is needed
558 because we cannot remove the breakpoints in the inferior process
559 until after the `wait' in `wait_for_inferior'. */
560static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
561
562/* The thread we inserted single-step breakpoints for. */
563static ptid_t singlestep_ptid;
564
fd48f117
DJ
565/* PC when we started this single-step. */
566static CORE_ADDR singlestep_pc;
567
9f976b41
DJ
568/* If another thread hit the singlestep breakpoint, we save the original
569 thread here so that we can resume single-stepping it later. */
570static ptid_t saved_singlestep_ptid;
571static int stepping_past_singlestep_breakpoint;
6a6b96b9 572
ca67fcb8
VP
573/* If not equal to null_ptid, this means that after stepping over breakpoint
574 is finished, we need to switch to deferred_step_ptid, and step it.
575
576 The use case is when one thread has hit a breakpoint, and then the user
577 has switched to another thread and issued 'step'. We need to step over
578 breakpoint in the thread which hit the breakpoint, but then continue
579 stepping the thread user has selected. */
580static ptid_t deferred_step_ptid;
c906108c 581\f
237fc4c9
PA
582/* Displaced stepping. */
583
584/* In non-stop debugging mode, we must take special care to manage
585 breakpoints properly; in particular, the traditional strategy for
586 stepping a thread past a breakpoint it has hit is unsuitable.
587 'Displaced stepping' is a tactic for stepping one thread past a
588 breakpoint it has hit while ensuring that other threads running
589 concurrently will hit the breakpoint as they should.
590
591 The traditional way to step a thread T off a breakpoint in a
592 multi-threaded program in all-stop mode is as follows:
593
594 a0) Initially, all threads are stopped, and breakpoints are not
595 inserted.
596 a1) We single-step T, leaving breakpoints uninserted.
597 a2) We insert breakpoints, and resume all threads.
598
599 In non-stop debugging, however, this strategy is unsuitable: we
600 don't want to have to stop all threads in the system in order to
601 continue or step T past a breakpoint. Instead, we use displaced
602 stepping:
603
604 n0) Initially, T is stopped, other threads are running, and
605 breakpoints are inserted.
606 n1) We copy the instruction "under" the breakpoint to a separate
607 location, outside the main code stream, making any adjustments
608 to the instruction, register, and memory state as directed by
609 T's architecture.
610 n2) We single-step T over the instruction at its new location.
611 n3) We adjust the resulting register and memory state as directed
612 by T's architecture. This includes resetting T's PC to point
613 back into the main instruction stream.
614 n4) We resume T.
615
616 This approach depends on the following gdbarch methods:
617
618 - gdbarch_max_insn_length and gdbarch_displaced_step_location
619 indicate where to copy the instruction, and how much space must
620 be reserved there. We use these in step n1.
621
622 - gdbarch_displaced_step_copy_insn copies a instruction to a new
623 address, and makes any necessary adjustments to the instruction,
624 register contents, and memory. We use this in step n1.
625
626 - gdbarch_displaced_step_fixup adjusts registers and memory after
627 we have successfuly single-stepped the instruction, to yield the
628 same effect the instruction would have had if we had executed it
629 at its original address. We use this in step n3.
630
631 - gdbarch_displaced_step_free_closure provides cleanup.
632
633 The gdbarch_displaced_step_copy_insn and
634 gdbarch_displaced_step_fixup functions must be written so that
635 copying an instruction with gdbarch_displaced_step_copy_insn,
636 single-stepping across the copied instruction, and then applying
637 gdbarch_displaced_insn_fixup should have the same effects on the
638 thread's memory and registers as stepping the instruction in place
639 would have. Exactly which responsibilities fall to the copy and
640 which fall to the fixup is up to the author of those functions.
641
642 See the comments in gdbarch.sh for details.
643
644 Note that displaced stepping and software single-step cannot
645 currently be used in combination, although with some care I think
646 they could be made to. Software single-step works by placing
647 breakpoints on all possible subsequent instructions; if the
648 displaced instruction is a PC-relative jump, those breakpoints
649 could fall in very strange places --- on pages that aren't
650 executable, or at addresses that are not proper instruction
651 boundaries. (We do generally let other threads run while we wait
652 to hit the software single-step breakpoint, and they might
653 encounter such a corrupted instruction.) One way to work around
654 this would be to have gdbarch_displaced_step_copy_insn fully
655 simulate the effect of PC-relative instructions (and return NULL)
656 on architectures that use software single-stepping.
657
658 In non-stop mode, we can have independent and simultaneous step
659 requests, so more than one thread may need to simultaneously step
660 over a breakpoint. The current implementation assumes there is
661 only one scratch space per process. In this case, we have to
662 serialize access to the scratch space. If thread A wants to step
663 over a breakpoint, but we are currently waiting for some other
664 thread to complete a displaced step, we leave thread A stopped and
665 place it in the displaced_step_request_queue. Whenever a displaced
666 step finishes, we pick the next thread in the queue and start a new
667 displaced step operation on it. See displaced_step_prepare and
668 displaced_step_fixup for details. */
669
670/* If this is not null_ptid, this is the thread carrying out a
671 displaced single-step. This thread's state will require fixing up
672 once it has completed its step. */
673static ptid_t displaced_step_ptid;
674
675struct displaced_step_request
676{
677 ptid_t ptid;
678 struct displaced_step_request *next;
679};
680
681/* A queue of pending displaced stepping requests. */
682struct displaced_step_request *displaced_step_request_queue;
683
684/* The architecture the thread had when we stepped it. */
685static struct gdbarch *displaced_step_gdbarch;
686
687/* The closure provided gdbarch_displaced_step_copy_insn, to be used
688 for post-step cleanup. */
689static struct displaced_step_closure *displaced_step_closure;
690
691/* The address of the original instruction, and the copy we made. */
692static CORE_ADDR displaced_step_original, displaced_step_copy;
693
694/* Saved contents of copy area. */
695static gdb_byte *displaced_step_saved_copy;
696
fff08868
HZ
697/* Enum strings for "set|show displaced-stepping". */
698
699static const char can_use_displaced_stepping_auto[] = "auto";
700static const char can_use_displaced_stepping_on[] = "on";
701static const char can_use_displaced_stepping_off[] = "off";
702static const char *can_use_displaced_stepping_enum[] =
703{
704 can_use_displaced_stepping_auto,
705 can_use_displaced_stepping_on,
706 can_use_displaced_stepping_off,
707 NULL,
708};
709
710/* If ON, and the architecture supports it, GDB will use displaced
711 stepping to step over breakpoints. If OFF, or if the architecture
712 doesn't support it, GDB will instead use the traditional
713 hold-and-step approach. If AUTO (which is the default), GDB will
714 decide which technique to use to step over breakpoints depending on
715 which of all-stop or non-stop mode is active --- displaced stepping
716 in non-stop mode; hold-and-step in all-stop mode. */
717
718static const char *can_use_displaced_stepping =
719 can_use_displaced_stepping_auto;
720
237fc4c9
PA
721static void
722show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
723 struct cmd_list_element *c,
724 const char *value)
725{
fff08868
HZ
726 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
727 fprintf_filtered (file, _("\
728Debugger's willingness to use displaced stepping to step over \
729breakpoints is %s (currently %s).\n"),
730 value, non_stop ? "on" : "off");
731 else
732 fprintf_filtered (file, _("\
733Debugger's willingness to use displaced stepping to step over \
734breakpoints is %s.\n"), value);
237fc4c9
PA
735}
736
fff08868
HZ
737/* Return non-zero if displaced stepping can/should be used to step
738 over breakpoints. */
739
237fc4c9
PA
740static int
741use_displaced_stepping (struct gdbarch *gdbarch)
742{
fff08868
HZ
743 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
744 && non_stop)
745 || can_use_displaced_stepping == can_use_displaced_stepping_on)
96429cc8
HZ
746 && gdbarch_displaced_step_copy_insn_p (gdbarch)
747 && !RECORD_IS_USED);
237fc4c9
PA
748}
749
750/* Clean out any stray displaced stepping state. */
751static void
752displaced_step_clear (void)
753{
754 /* Indicate that there is no cleanup pending. */
755 displaced_step_ptid = null_ptid;
756
757 if (displaced_step_closure)
758 {
759 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
760 displaced_step_closure);
761 displaced_step_closure = NULL;
762 }
763}
764
765static void
9f5a595d 766displaced_step_clear_cleanup (void *ignore)
237fc4c9 767{
9f5a595d 768 displaced_step_clear ();
237fc4c9
PA
769}
770
771/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
772void
773displaced_step_dump_bytes (struct ui_file *file,
774 const gdb_byte *buf,
775 size_t len)
776{
777 int i;
778
779 for (i = 0; i < len; i++)
780 fprintf_unfiltered (file, "%02x ", buf[i]);
781 fputs_unfiltered ("\n", file);
782}
783
784/* Prepare to single-step, using displaced stepping.
785
786 Note that we cannot use displaced stepping when we have a signal to
787 deliver. If we have a signal to deliver and an instruction to step
788 over, then after the step, there will be no indication from the
789 target whether the thread entered a signal handler or ignored the
790 signal and stepped over the instruction successfully --- both cases
791 result in a simple SIGTRAP. In the first case we mustn't do a
792 fixup, and in the second case we must --- but we can't tell which.
793 Comments in the code for 'random signals' in handle_inferior_event
794 explain how we handle this case instead.
795
796 Returns 1 if preparing was successful -- this thread is going to be
797 stepped now; or 0 if displaced stepping this thread got queued. */
798static int
799displaced_step_prepare (ptid_t ptid)
800{
ad53cd71 801 struct cleanup *old_cleanups, *ignore_cleanups;
237fc4c9
PA
802 struct regcache *regcache = get_thread_regcache (ptid);
803 struct gdbarch *gdbarch = get_regcache_arch (regcache);
804 CORE_ADDR original, copy;
805 ULONGEST len;
806 struct displaced_step_closure *closure;
807
808 /* We should never reach this function if the architecture does not
809 support displaced stepping. */
810 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
811
812 /* For the first cut, we're displaced stepping one thread at a
813 time. */
814
815 if (!ptid_equal (displaced_step_ptid, null_ptid))
816 {
817 /* Already waiting for a displaced step to finish. Defer this
818 request and place in queue. */
819 struct displaced_step_request *req, *new_req;
820
821 if (debug_displaced)
822 fprintf_unfiltered (gdb_stdlog,
823 "displaced: defering step of %s\n",
824 target_pid_to_str (ptid));
825
826 new_req = xmalloc (sizeof (*new_req));
827 new_req->ptid = ptid;
828 new_req->next = NULL;
829
830 if (displaced_step_request_queue)
831 {
832 for (req = displaced_step_request_queue;
833 req && req->next;
834 req = req->next)
835 ;
836 req->next = new_req;
837 }
838 else
839 displaced_step_request_queue = new_req;
840
841 return 0;
842 }
843 else
844 {
845 if (debug_displaced)
846 fprintf_unfiltered (gdb_stdlog,
847 "displaced: stepping %s now\n",
848 target_pid_to_str (ptid));
849 }
850
851 displaced_step_clear ();
852
ad53cd71
PA
853 old_cleanups = save_inferior_ptid ();
854 inferior_ptid = ptid;
855
515630c5 856 original = regcache_read_pc (regcache);
237fc4c9
PA
857
858 copy = gdbarch_displaced_step_location (gdbarch);
859 len = gdbarch_max_insn_length (gdbarch);
860
861 /* Save the original contents of the copy area. */
862 displaced_step_saved_copy = xmalloc (len);
ad53cd71
PA
863 ignore_cleanups = make_cleanup (free_current_contents,
864 &displaced_step_saved_copy);
237fc4c9
PA
865 read_memory (copy, displaced_step_saved_copy, len);
866 if (debug_displaced)
867 {
868 fprintf_unfiltered (gdb_stdlog, "displaced: saved 0x%s: ",
869 paddr_nz (copy));
870 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
871 };
872
873 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 874 original, copy, regcache);
237fc4c9
PA
875
876 /* We don't support the fully-simulated case at present. */
877 gdb_assert (closure);
878
9f5a595d
UW
879 /* Save the information we need to fix things up if the step
880 succeeds. */
881 displaced_step_ptid = ptid;
882 displaced_step_gdbarch = gdbarch;
883 displaced_step_closure = closure;
884 displaced_step_original = original;
885 displaced_step_copy = copy;
886
887 make_cleanup (displaced_step_clear_cleanup, 0);
237fc4c9
PA
888
889 /* Resume execution at the copy. */
515630c5 890 regcache_write_pc (regcache, copy);
237fc4c9 891
ad53cd71
PA
892 discard_cleanups (ignore_cleanups);
893
894 do_cleanups (old_cleanups);
237fc4c9
PA
895
896 if (debug_displaced)
897 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to 0x%s\n",
ad53cd71 898 paddr_nz (copy));
237fc4c9 899
237fc4c9
PA
900 return 1;
901}
902
237fc4c9
PA
903static void
904write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
905{
906 struct cleanup *ptid_cleanup = save_inferior_ptid ();
907 inferior_ptid = ptid;
908 write_memory (memaddr, myaddr, len);
909 do_cleanups (ptid_cleanup);
910}
911
912static void
913displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
914{
915 struct cleanup *old_cleanups;
916
917 /* Was this event for the pid we displaced? */
918 if (ptid_equal (displaced_step_ptid, null_ptid)
919 || ! ptid_equal (displaced_step_ptid, event_ptid))
920 return;
921
922 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
923
924 /* Restore the contents of the copy area. */
925 {
926 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
927 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
928 displaced_step_saved_copy, len);
929 if (debug_displaced)
930 fprintf_unfiltered (gdb_stdlog, "displaced: restored 0x%s\n",
931 paddr_nz (displaced_step_copy));
932 }
933
934 /* Did the instruction complete successfully? */
935 if (signal == TARGET_SIGNAL_TRAP)
936 {
937 /* Fix up the resulting state. */
938 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
939 displaced_step_closure,
940 displaced_step_original,
941 displaced_step_copy,
942 get_thread_regcache (displaced_step_ptid));
943 }
944 else
945 {
946 /* Since the instruction didn't complete, all we can do is
947 relocate the PC. */
515630c5
UW
948 struct regcache *regcache = get_thread_regcache (event_ptid);
949 CORE_ADDR pc = regcache_read_pc (regcache);
237fc4c9 950 pc = displaced_step_original + (pc - displaced_step_copy);
515630c5 951 regcache_write_pc (regcache, pc);
237fc4c9
PA
952 }
953
954 do_cleanups (old_cleanups);
955
1c5cfe86
PA
956 displaced_step_ptid = null_ptid;
957
237fc4c9
PA
958 /* Are there any pending displaced stepping requests? If so, run
959 one now. */
1c5cfe86 960 while (displaced_step_request_queue)
237fc4c9
PA
961 {
962 struct displaced_step_request *head;
963 ptid_t ptid;
1c5cfe86 964 CORE_ADDR actual_pc;
237fc4c9
PA
965
966 head = displaced_step_request_queue;
967 ptid = head->ptid;
968 displaced_step_request_queue = head->next;
969 xfree (head);
970
ad53cd71
PA
971 context_switch (ptid);
972
fb14de7b 973 actual_pc = regcache_read_pc (get_thread_regcache (ptid));
1c5cfe86
PA
974
975 if (breakpoint_here_p (actual_pc))
ad53cd71 976 {
1c5cfe86
PA
977 if (debug_displaced)
978 fprintf_unfiltered (gdb_stdlog,
979 "displaced: stepping queued %s now\n",
980 target_pid_to_str (ptid));
981
982 displaced_step_prepare (ptid);
983
984 if (debug_displaced)
985 {
986 gdb_byte buf[4];
987
988 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
989 paddr_nz (actual_pc));
990 read_memory (actual_pc, buf, sizeof (buf));
991 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
992 }
993
994 target_resume (ptid, 1, TARGET_SIGNAL_0);
995
996 /* Done, we're stepping a thread. */
997 break;
ad53cd71 998 }
1c5cfe86
PA
999 else
1000 {
1001 int step;
1002 struct thread_info *tp = inferior_thread ();
1003
1004 /* The breakpoint we were sitting under has since been
1005 removed. */
1006 tp->trap_expected = 0;
1007
1008 /* Go back to what we were trying to do. */
1009 step = currently_stepping (tp);
ad53cd71 1010
1c5cfe86
PA
1011 if (debug_displaced)
1012 fprintf_unfiltered (gdb_stdlog, "breakpoint is gone %s: step(%d)\n",
1013 target_pid_to_str (tp->ptid), step);
1014
1015 target_resume (ptid, step, TARGET_SIGNAL_0);
1016 tp->stop_signal = TARGET_SIGNAL_0;
1017
1018 /* This request was discarded. See if there's any other
1019 thread waiting for its turn. */
1020 }
237fc4c9
PA
1021 }
1022}
1023
5231c1fd
PA
1024/* Update global variables holding ptids to hold NEW_PTID if they were
1025 holding OLD_PTID. */
1026static void
1027infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1028{
1029 struct displaced_step_request *it;
1030
1031 if (ptid_equal (inferior_ptid, old_ptid))
1032 inferior_ptid = new_ptid;
1033
1034 if (ptid_equal (singlestep_ptid, old_ptid))
1035 singlestep_ptid = new_ptid;
1036
1037 if (ptid_equal (displaced_step_ptid, old_ptid))
1038 displaced_step_ptid = new_ptid;
1039
1040 if (ptid_equal (deferred_step_ptid, old_ptid))
1041 deferred_step_ptid = new_ptid;
1042
1043 for (it = displaced_step_request_queue; it; it = it->next)
1044 if (ptid_equal (it->ptid, old_ptid))
1045 it->ptid = new_ptid;
1046}
1047
237fc4c9
PA
1048\f
1049/* Resuming. */
c906108c
SS
1050
1051/* Things to clean up if we QUIT out of resume (). */
c906108c 1052static void
74b7792f 1053resume_cleanups (void *ignore)
c906108c
SS
1054{
1055 normal_stop ();
1056}
1057
53904c9e
AC
1058static const char schedlock_off[] = "off";
1059static const char schedlock_on[] = "on";
1060static const char schedlock_step[] = "step";
488f131b 1061static const char *scheduler_enums[] = {
ef346e04
AC
1062 schedlock_off,
1063 schedlock_on,
1064 schedlock_step,
1065 NULL
1066};
920d2a44
AC
1067static const char *scheduler_mode = schedlock_off;
1068static void
1069show_scheduler_mode (struct ui_file *file, int from_tty,
1070 struct cmd_list_element *c, const char *value)
1071{
1072 fprintf_filtered (file, _("\
1073Mode for locking scheduler during execution is \"%s\".\n"),
1074 value);
1075}
c906108c
SS
1076
1077static void
96baa820 1078set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1079{
eefe576e
AC
1080 if (!target_can_lock_scheduler)
1081 {
1082 scheduler_mode = schedlock_off;
1083 error (_("Target '%s' cannot support this command."), target_shortname);
1084 }
c906108c
SS
1085}
1086
d4db2f36
PA
1087/* True if execution commands resume all threads of all processes by
1088 default; otherwise, resume only threads of the current inferior
1089 process. */
1090int sched_multi = 0;
1091
2facfe5c
DD
1092/* Try to setup for software single stepping over the specified location.
1093 Return 1 if target_resume() should use hardware single step.
1094
1095 GDBARCH the current gdbarch.
1096 PC the location to step over. */
1097
1098static int
1099maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1100{
1101 int hw_step = 1;
1102
1103 if (gdbarch_software_single_step_p (gdbarch)
1104 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1105 {
1106 hw_step = 0;
1107 /* Do not pull these breakpoints until after a `wait' in
1108 `wait_for_inferior' */
1109 singlestep_breakpoints_inserted_p = 1;
1110 singlestep_ptid = inferior_ptid;
1111 singlestep_pc = pc;
1112 }
1113 return hw_step;
1114}
c906108c
SS
1115
1116/* Resume the inferior, but allow a QUIT. This is useful if the user
1117 wants to interrupt some lengthy single-stepping operation
1118 (for child processes, the SIGINT goes to the inferior, and so
1119 we get a SIGINT random_signal, but for remote debugging and perhaps
1120 other targets, that's not true).
1121
1122 STEP nonzero if we should step (zero to continue instead).
1123 SIG is the signal to give the inferior (zero for none). */
1124void
96baa820 1125resume (int step, enum target_signal sig)
c906108c
SS
1126{
1127 int should_resume = 1;
74b7792f 1128 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1129 struct regcache *regcache = get_current_regcache ();
1130 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1131 struct thread_info *tp = inferior_thread ();
515630c5 1132 CORE_ADDR pc = regcache_read_pc (regcache);
c7e8a53c 1133
c906108c
SS
1134 QUIT;
1135
527159b7 1136 if (debug_infrun)
237fc4c9
PA
1137 fprintf_unfiltered (gdb_stdlog,
1138 "infrun: resume (step=%d, signal=%d), "
4e1c45ea
PA
1139 "trap_expected=%d\n",
1140 step, sig, tp->trap_expected);
c906108c 1141
692590c1
MS
1142 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
1143 over an instruction that causes a page fault without triggering
1144 a hardware watchpoint. The kernel properly notices that it shouldn't
1145 stop, because the hardware watchpoint is not triggered, but it forgets
1146 the step request and continues the program normally.
1147 Work around the problem by removing hardware watchpoints if a step is
1148 requested, GDB will check for a hardware watchpoint trigger after the
1149 step anyway. */
c36b740a 1150 if (CANNOT_STEP_HW_WATCHPOINTS && step)
692590c1 1151 remove_hw_watchpoints ();
488f131b 1152
692590c1 1153
c2c6d25f
JM
1154 /* Normally, by the time we reach `resume', the breakpoints are either
1155 removed or inserted, as appropriate. The exception is if we're sitting
1156 at a permanent breakpoint; we need to step over it, but permanent
1157 breakpoints can't be removed. So we have to test for it here. */
237fc4c9 1158 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
6d350bb5 1159 {
515630c5
UW
1160 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1161 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5
UW
1162 else
1163 error (_("\
1164The program is stopped at a permanent breakpoint, but GDB does not know\n\
1165how to step past a permanent breakpoint on this architecture. Try using\n\
1166a command like `return' or `jump' to continue execution."));
1167 }
c2c6d25f 1168
237fc4c9
PA
1169 /* If enabled, step over breakpoints by executing a copy of the
1170 instruction at a different address.
1171
1172 We can't use displaced stepping when we have a signal to deliver;
1173 the comments for displaced_step_prepare explain why. The
1174 comments in the handle_inferior event for dealing with 'random
1175 signals' explain what we do instead. */
515630c5 1176 if (use_displaced_stepping (gdbarch)
4e1c45ea 1177 && tp->trap_expected
237fc4c9
PA
1178 && sig == TARGET_SIGNAL_0)
1179 {
1180 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1181 {
1182 /* Got placed in displaced stepping queue. Will be resumed
1183 later when all the currently queued displaced stepping
7f7efbd9
VP
1184 requests finish. The thread is not executing at this point,
1185 and the call to set_executing will be made later. But we
1186 need to call set_running here, since from frontend point of view,
1187 the thread is running. */
1188 set_running (inferior_ptid, 1);
d56b7306
VP
1189 discard_cleanups (old_cleanups);
1190 return;
1191 }
237fc4c9
PA
1192 }
1193
2facfe5c
DD
1194 /* Do we need to do it the hard way, w/temp breakpoints? */
1195 if (step)
1196 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1197
c906108c
SS
1198 if (should_resume)
1199 {
39f77062 1200 ptid_t resume_ptid;
dfcd3bfb 1201
cd76b0b7
VP
1202 /* If STEP is set, it's a request to use hardware stepping
1203 facilities. But in that case, we should never
1204 use singlestep breakpoint. */
1205 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1206
d4db2f36
PA
1207 /* Decide the set of threads to ask the target to resume. Start
1208 by assuming everything will be resumed, than narrow the set
1209 by applying increasingly restricting conditions. */
1210
1211 /* By default, resume all threads of all processes. */
1212 resume_ptid = RESUME_ALL;
1213
1214 /* Maybe resume only all threads of the current process. */
1215 if (!sched_multi && target_supports_multi_process ())
1216 {
1217 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1218 }
1219
1220 /* Maybe resume a single thread after all. */
cd76b0b7
VP
1221 if (singlestep_breakpoints_inserted_p
1222 && stepping_past_singlestep_breakpoint)
c906108c 1223 {
cd76b0b7
VP
1224 /* The situation here is as follows. In thread T1 we wanted to
1225 single-step. Lacking hardware single-stepping we've
1226 set breakpoint at the PC of the next instruction -- call it
1227 P. After resuming, we've hit that breakpoint in thread T2.
1228 Now we've removed original breakpoint, inserted breakpoint
1229 at P+1, and try to step to advance T2 past breakpoint.
1230 We need to step only T2, as if T1 is allowed to freely run,
1231 it can run past P, and if other threads are allowed to run,
1232 they can hit breakpoint at P+1, and nested hits of single-step
1233 breakpoints is not something we'd want -- that's complicated
1234 to support, and has no value. */
1235 resume_ptid = inferior_ptid;
1236 }
d4db2f36
PA
1237 else if ((step || singlestep_breakpoints_inserted_p)
1238 && tp->trap_expected)
cd76b0b7 1239 {
74960c60
VP
1240 /* We're allowing a thread to run past a breakpoint it has
1241 hit, by single-stepping the thread with the breakpoint
1242 removed. In which case, we need to single-step only this
1243 thread, and keep others stopped, as they can miss this
1244 breakpoint if allowed to run.
1245
1246 The current code actually removes all breakpoints when
1247 doing this, not just the one being stepped over, so if we
1248 let other threads run, we can actually miss any
1249 breakpoint, not just the one at PC. */
ef5cf84e 1250 resume_ptid = inferior_ptid;
c906108c 1251 }
d4db2f36 1252 else if (non_stop)
94cc34af
PA
1253 {
1254 /* With non-stop mode on, threads are always handled
1255 individually. */
1256 resume_ptid = inferior_ptid;
1257 }
1258 else if ((scheduler_mode == schedlock_on)
1259 || (scheduler_mode == schedlock_step
1260 && (step || singlestep_breakpoints_inserted_p)))
c906108c 1261 {
ef5cf84e 1262 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 1263 resume_ptid = inferior_ptid;
c906108c 1264 }
ef5cf84e 1265
515630c5 1266 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1267 {
1268 /* Most targets can step a breakpoint instruction, thus
1269 executing it normally. But if this one cannot, just
1270 continue and we will hit it anyway. */
237fc4c9 1271 if (step && breakpoint_inserted_here_p (pc))
c4ed33b9
AC
1272 step = 0;
1273 }
237fc4c9
PA
1274
1275 if (debug_displaced
515630c5 1276 && use_displaced_stepping (gdbarch)
4e1c45ea 1277 && tp->trap_expected)
237fc4c9 1278 {
515630c5
UW
1279 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1280 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1281 gdb_byte buf[4];
1282
1283 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
1284 paddr_nz (actual_pc));
1285 read_memory (actual_pc, buf, sizeof (buf));
1286 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1287 }
1288
e58b0e63
PA
1289 /* Install inferior's terminal modes. */
1290 target_terminal_inferior ();
1291
2020b7ab
PA
1292 /* Avoid confusing the next resume, if the next stop/resume
1293 happens to apply to another thread. */
1294 tp->stop_signal = TARGET_SIGNAL_0;
607cecd2
PA
1295
1296 target_resume (resume_ptid, step, sig);
c906108c
SS
1297 }
1298
1299 discard_cleanups (old_cleanups);
1300}
1301\f
237fc4c9 1302/* Proceeding. */
c906108c
SS
1303
1304/* Clear out all variables saying what to do when inferior is continued.
1305 First do this, then set the ones you want, then call `proceed'. */
1306
a7212384
UW
1307static void
1308clear_proceed_status_thread (struct thread_info *tp)
c906108c 1309{
a7212384
UW
1310 if (debug_infrun)
1311 fprintf_unfiltered (gdb_stdlog,
1312 "infrun: clear_proceed_status_thread (%s)\n",
1313 target_pid_to_str (tp->ptid));
d6b48e9c 1314
a7212384
UW
1315 tp->trap_expected = 0;
1316 tp->step_range_start = 0;
1317 tp->step_range_end = 0;
1318 tp->step_frame_id = null_frame_id;
1319 tp->step_over_calls = STEP_OVER_UNDEBUGGABLE;
1320 tp->stop_requested = 0;
4e1c45ea 1321
a7212384 1322 tp->stop_step = 0;
32400beb 1323
a7212384 1324 tp->proceed_to_finish = 0;
414c69f7 1325
a7212384
UW
1326 /* Discard any remaining commands or status from previous stop. */
1327 bpstat_clear (&tp->stop_bpstat);
1328}
32400beb 1329
a7212384
UW
1330static int
1331clear_proceed_status_callback (struct thread_info *tp, void *data)
1332{
1333 if (is_exited (tp->ptid))
1334 return 0;
d6b48e9c 1335
a7212384
UW
1336 clear_proceed_status_thread (tp);
1337 return 0;
1338}
1339
1340void
1341clear_proceed_status (void)
1342{
1343 if (!ptid_equal (inferior_ptid, null_ptid))
1344 {
1345 struct inferior *inferior;
1346
1347 if (non_stop)
1348 {
1349 /* If in non-stop mode, only delete the per-thread status
1350 of the current thread. */
1351 clear_proceed_status_thread (inferior_thread ());
1352 }
1353 else
1354 {
1355 /* In all-stop mode, delete the per-thread status of
1356 *all* threads. */
1357 iterate_over_threads (clear_proceed_status_callback, NULL);
1358 }
1359
d6b48e9c
PA
1360 inferior = current_inferior ();
1361 inferior->stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
1362 }
1363
c906108c 1364 stop_after_trap = 0;
f3b1572e
PA
1365
1366 observer_notify_about_to_proceed ();
c906108c 1367
d5c31457
UW
1368 if (stop_registers)
1369 {
1370 regcache_xfree (stop_registers);
1371 stop_registers = NULL;
1372 }
c906108c
SS
1373}
1374
5a437975
DE
1375/* Check the current thread against the thread that reported the most recent
1376 event. If a step-over is required return TRUE and set the current thread
1377 to the old thread. Otherwise return FALSE.
1378
1379 This should be suitable for any targets that support threads. */
ea67f13b
DJ
1380
1381static int
6a6b96b9 1382prepare_to_proceed (int step)
ea67f13b
DJ
1383{
1384 ptid_t wait_ptid;
1385 struct target_waitstatus wait_status;
5a437975
DE
1386 int schedlock_enabled;
1387
1388 /* With non-stop mode on, threads are always handled individually. */
1389 gdb_assert (! non_stop);
ea67f13b
DJ
1390
1391 /* Get the last target status returned by target_wait(). */
1392 get_last_target_status (&wait_ptid, &wait_status);
1393
6a6b96b9 1394 /* Make sure we were stopped at a breakpoint. */
ea67f13b 1395 if (wait_status.kind != TARGET_WAITKIND_STOPPED
6a6b96b9 1396 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
ea67f13b
DJ
1397 {
1398 return 0;
1399 }
1400
5a437975
DE
1401 schedlock_enabled = (scheduler_mode == schedlock_on
1402 || (scheduler_mode == schedlock_step
1403 && step));
1404
d4db2f36
PA
1405 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
1406 if (schedlock_enabled)
1407 return 0;
1408
1409 /* Don't switch over if we're about to resume some other process
1410 other than WAIT_PTID's, and schedule-multiple is off. */
1411 if (!sched_multi
1412 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
1413 return 0;
1414
6a6b96b9 1415 /* Switched over from WAIT_PID. */
ea67f13b 1416 if (!ptid_equal (wait_ptid, minus_one_ptid)
d4db2f36 1417 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 1418 {
515630c5
UW
1419 struct regcache *regcache = get_thread_regcache (wait_ptid);
1420
1421 if (breakpoint_here_p (regcache_read_pc (regcache)))
ea67f13b 1422 {
515630c5
UW
1423 /* If stepping, remember current thread to switch back to. */
1424 if (step)
1425 deferred_step_ptid = inferior_ptid;
ea67f13b 1426
515630c5
UW
1427 /* Switch back to WAIT_PID thread. */
1428 switch_to_thread (wait_ptid);
6a6b96b9 1429
515630c5
UW
1430 /* We return 1 to indicate that there is a breakpoint here,
1431 so we need to step over it before continuing to avoid
1432 hitting it straight away. */
1433 return 1;
1434 }
ea67f13b
DJ
1435 }
1436
1437 return 0;
ea67f13b 1438}
e4846b08 1439
c906108c
SS
1440/* Basic routine for continuing the program in various fashions.
1441
1442 ADDR is the address to resume at, or -1 for resume where stopped.
1443 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 1444 or -1 for act according to how it stopped.
c906108c 1445 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
1446 -1 means return after that and print nothing.
1447 You should probably set various step_... variables
1448 before calling here, if you are stepping.
c906108c
SS
1449
1450 You should call clear_proceed_status before calling proceed. */
1451
1452void
96baa820 1453proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c 1454{
e58b0e63
PA
1455 struct regcache *regcache;
1456 struct gdbarch *gdbarch;
4e1c45ea 1457 struct thread_info *tp;
e58b0e63 1458 CORE_ADDR pc;
c906108c
SS
1459 int oneproc = 0;
1460
e58b0e63
PA
1461 /* If we're stopped at a fork/vfork, follow the branch set by the
1462 "set follow-fork-mode" command; otherwise, we'll just proceed
1463 resuming the current thread. */
1464 if (!follow_fork ())
1465 {
1466 /* The target for some reason decided not to resume. */
1467 normal_stop ();
1468 return;
1469 }
1470
1471 regcache = get_current_regcache ();
1472 gdbarch = get_regcache_arch (regcache);
1473 pc = regcache_read_pc (regcache);
1474
c906108c 1475 if (step > 0)
515630c5 1476 step_start_function = find_pc_function (pc);
c906108c
SS
1477 if (step < 0)
1478 stop_after_trap = 1;
1479
2acceee2 1480 if (addr == (CORE_ADDR) -1)
c906108c 1481 {
b2175913
MS
1482 if (pc == stop_pc && breakpoint_here_p (pc)
1483 && execution_direction != EXEC_REVERSE)
3352ef37
AC
1484 /* There is a breakpoint at the address we will resume at,
1485 step one instruction before inserting breakpoints so that
1486 we do not stop right away (and report a second hit at this
b2175913
MS
1487 breakpoint).
1488
1489 Note, we don't do this in reverse, because we won't
1490 actually be executing the breakpoint insn anyway.
1491 We'll be (un-)executing the previous instruction. */
1492
c906108c 1493 oneproc = 1;
515630c5
UW
1494 else if (gdbarch_single_step_through_delay_p (gdbarch)
1495 && gdbarch_single_step_through_delay (gdbarch,
1496 get_current_frame ()))
3352ef37
AC
1497 /* We stepped onto an instruction that needs to be stepped
1498 again before re-inserting the breakpoint, do so. */
c906108c
SS
1499 oneproc = 1;
1500 }
1501 else
1502 {
515630c5 1503 regcache_write_pc (regcache, addr);
c906108c
SS
1504 }
1505
527159b7 1506 if (debug_infrun)
8a9de0e4
AC
1507 fprintf_unfiltered (gdb_stdlog,
1508 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
1509 paddr_nz (addr), siggnal, step);
527159b7 1510
94cc34af
PA
1511 if (non_stop)
1512 /* In non-stop, each thread is handled individually. The context
1513 must already be set to the right thread here. */
1514 ;
1515 else
1516 {
1517 /* In a multi-threaded task we may select another thread and
1518 then continue or step.
c906108c 1519
94cc34af
PA
1520 But if the old thread was stopped at a breakpoint, it will
1521 immediately cause another breakpoint stop without any
1522 execution (i.e. it will report a breakpoint hit incorrectly).
1523 So we must step over it first.
c906108c 1524
94cc34af
PA
1525 prepare_to_proceed checks the current thread against the
1526 thread that reported the most recent event. If a step-over
1527 is required it returns TRUE and sets the current thread to
1528 the old thread. */
1529 if (prepare_to_proceed (step))
1530 oneproc = 1;
1531 }
c906108c 1532
4e1c45ea
PA
1533 /* prepare_to_proceed may change the current thread. */
1534 tp = inferior_thread ();
1535
c906108c 1536 if (oneproc)
74960c60 1537 {
4e1c45ea 1538 tp->trap_expected = 1;
237fc4c9
PA
1539 /* If displaced stepping is enabled, we can step over the
1540 breakpoint without hitting it, so leave all breakpoints
1541 inserted. Otherwise we need to disable all breakpoints, step
1542 one instruction, and then re-add them when that step is
1543 finished. */
515630c5 1544 if (!use_displaced_stepping (gdbarch))
237fc4c9 1545 remove_breakpoints ();
74960c60 1546 }
237fc4c9
PA
1547
1548 /* We can insert breakpoints if we're not trying to step over one,
1549 or if we are stepping over one but we're using displaced stepping
1550 to do so. */
4e1c45ea 1551 if (! tp->trap_expected || use_displaced_stepping (gdbarch))
c36b740a 1552 insert_breakpoints ();
c906108c 1553
2020b7ab
PA
1554 if (!non_stop)
1555 {
1556 /* Pass the last stop signal to the thread we're resuming,
1557 irrespective of whether the current thread is the thread that
1558 got the last event or not. This was historically GDB's
1559 behaviour before keeping a stop_signal per thread. */
1560
1561 struct thread_info *last_thread;
1562 ptid_t last_ptid;
1563 struct target_waitstatus last_status;
1564
1565 get_last_target_status (&last_ptid, &last_status);
1566 if (!ptid_equal (inferior_ptid, last_ptid)
1567 && !ptid_equal (last_ptid, null_ptid)
1568 && !ptid_equal (last_ptid, minus_one_ptid))
1569 {
e09875d4 1570 last_thread = find_thread_ptid (last_ptid);
2020b7ab
PA
1571 if (last_thread)
1572 {
1573 tp->stop_signal = last_thread->stop_signal;
1574 last_thread->stop_signal = TARGET_SIGNAL_0;
1575 }
1576 }
1577 }
1578
c906108c 1579 if (siggnal != TARGET_SIGNAL_DEFAULT)
2020b7ab 1580 tp->stop_signal = siggnal;
c906108c
SS
1581 /* If this signal should not be seen by program,
1582 give it zero. Used for debugging signals. */
2020b7ab
PA
1583 else if (!signal_program[tp->stop_signal])
1584 tp->stop_signal = TARGET_SIGNAL_0;
c906108c
SS
1585
1586 annotate_starting ();
1587
1588 /* Make sure that output from GDB appears before output from the
1589 inferior. */
1590 gdb_flush (gdb_stdout);
1591
e4846b08
JJ
1592 /* Refresh prev_pc value just prior to resuming. This used to be
1593 done in stop_stepping, however, setting prev_pc there did not handle
1594 scenarios such as inferior function calls or returning from
1595 a function via the return command. In those cases, the prev_pc
1596 value was not set properly for subsequent commands. The prev_pc value
1597 is used to initialize the starting line number in the ecs. With an
1598 invalid value, the gdb next command ends up stopping at the position
1599 represented by the next line table entry past our start position.
1600 On platforms that generate one line table entry per line, this
1601 is not a problem. However, on the ia64, the compiler generates
1602 extraneous line table entries that do not increase the line number.
1603 When we issue the gdb next command on the ia64 after an inferior call
1604 or a return command, we often end up a few instructions forward, still
1605 within the original line we started.
1606
1607 An attempt was made to have init_execution_control_state () refresh
1608 the prev_pc value before calculating the line number. This approach
1609 did not work because on platforms that use ptrace, the pc register
1610 cannot be read unless the inferior is stopped. At that point, we
515630c5 1611 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
e4846b08 1612 call can fail. Setting the prev_pc value here ensures the value is
8fb3e588 1613 updated correctly when the inferior is stopped. */
4e1c45ea 1614 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 1615
59f0d5d9 1616 /* Fill in with reasonable starting values. */
4e1c45ea 1617 init_thread_stepping_state (tp);
59f0d5d9 1618
59f0d5d9
PA
1619 /* Reset to normal state. */
1620 init_infwait_state ();
1621
c906108c 1622 /* Resume inferior. */
2020b7ab 1623 resume (oneproc || step || bpstat_should_step (), tp->stop_signal);
c906108c
SS
1624
1625 /* Wait for it to stop (if not standalone)
1626 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
1627 /* Do this only if we are not using the event loop, or if the target
1628 does not support asynchronous execution. */
362646f5 1629 if (!target_can_async_p ())
43ff13b4 1630 {
ae123ec6 1631 wait_for_inferior (0);
43ff13b4
JM
1632 normal_stop ();
1633 }
c906108c 1634}
c906108c
SS
1635\f
1636
1637/* Start remote-debugging of a machine over a serial link. */
96baa820 1638
c906108c 1639void
8621d6a9 1640start_remote (int from_tty)
c906108c 1641{
d6b48e9c 1642 struct inferior *inferior;
c906108c 1643 init_wait_for_inferior ();
d6b48e9c
PA
1644
1645 inferior = current_inferior ();
1646 inferior->stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 1647
6426a772
JM
1648 /* Always go on waiting for the target, regardless of the mode. */
1649 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 1650 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
1651 nothing is returned (instead of just blocking). Because of this,
1652 targets expecting an immediate response need to, internally, set
1653 things up so that the target_wait() is forced to eventually
1654 timeout. */
1655 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1656 differentiate to its caller what the state of the target is after
1657 the initial open has been performed. Here we're assuming that
1658 the target has stopped. It should be possible to eventually have
1659 target_open() return to the caller an indication that the target
1660 is currently running and GDB state should be set to the same as
1661 for an async run. */
ae123ec6 1662 wait_for_inferior (0);
8621d6a9
DJ
1663
1664 /* Now that the inferior has stopped, do any bookkeeping like
1665 loading shared libraries. We want to do this before normal_stop,
1666 so that the displayed frame is up to date. */
1667 post_create_inferior (&current_target, from_tty);
1668
6426a772 1669 normal_stop ();
c906108c
SS
1670}
1671
1672/* Initialize static vars when a new inferior begins. */
1673
1674void
96baa820 1675init_wait_for_inferior (void)
c906108c
SS
1676{
1677 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 1678
c906108c
SS
1679 breakpoint_init_inferior (inf_starting);
1680
c906108c 1681 clear_proceed_status ();
9f976b41
DJ
1682
1683 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 1684 deferred_step_ptid = null_ptid;
ca005067
DJ
1685
1686 target_last_wait_ptid = minus_one_ptid;
237fc4c9 1687
0d1e5fa7
PA
1688 previous_inferior_ptid = null_ptid;
1689 init_infwait_state ();
1690
237fc4c9 1691 displaced_step_clear ();
c906108c 1692}
237fc4c9 1693
c906108c 1694\f
b83266a0
SS
1695/* This enum encodes possible reasons for doing a target_wait, so that
1696 wfi can call target_wait in one place. (Ultimately the call will be
1697 moved out of the infinite loop entirely.) */
1698
c5aa993b
JM
1699enum infwait_states
1700{
cd0fc7c3
SS
1701 infwait_normal_state,
1702 infwait_thread_hop_state,
d983da9c 1703 infwait_step_watch_state,
cd0fc7c3 1704 infwait_nonstep_watch_state
b83266a0
SS
1705};
1706
11cf8741
JM
1707/* Why did the inferior stop? Used to print the appropriate messages
1708 to the interface from within handle_inferior_event(). */
1709enum inferior_stop_reason
1710{
11cf8741
JM
1711 /* Step, next, nexti, stepi finished. */
1712 END_STEPPING_RANGE,
11cf8741
JM
1713 /* Inferior terminated by signal. */
1714 SIGNAL_EXITED,
1715 /* Inferior exited. */
1716 EXITED,
1717 /* Inferior received signal, and user asked to be notified. */
b2175913
MS
1718 SIGNAL_RECEIVED,
1719 /* Reverse execution -- target ran out of history info. */
1720 NO_HISTORY
11cf8741
JM
1721};
1722
0d1e5fa7
PA
1723/* The PTID we'll do a target_wait on.*/
1724ptid_t waiton_ptid;
1725
1726/* Current inferior wait state. */
1727enum infwait_states infwait_state;
cd0fc7c3 1728
0d1e5fa7
PA
1729/* Data to be passed around while handling an event. This data is
1730 discarded between events. */
c5aa993b 1731struct execution_control_state
488f131b 1732{
0d1e5fa7 1733 ptid_t ptid;
4e1c45ea
PA
1734 /* The thread that got the event, if this was a thread event; NULL
1735 otherwise. */
1736 struct thread_info *event_thread;
1737
488f131b 1738 struct target_waitstatus ws;
488f131b
JB
1739 int random_signal;
1740 CORE_ADDR stop_func_start;
1741 CORE_ADDR stop_func_end;
1742 char *stop_func_name;
488f131b 1743 int new_thread_event;
488f131b
JB
1744 int wait_some_more;
1745};
1746
1747void init_execution_control_state (struct execution_control_state *ecs);
1748
1749void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 1750
568d6575
UW
1751static void handle_step_into_function (struct gdbarch *gdbarch,
1752 struct execution_control_state *ecs);
1753static void handle_step_into_function_backward (struct gdbarch *gdbarch,
1754 struct execution_control_state *ecs);
44cbf7b5 1755static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
14e60db5 1756static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
44cbf7b5
AC
1757static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
1758 struct frame_id sr_id);
611c83ae
PA
1759static void insert_longjmp_resume_breakpoint (CORE_ADDR);
1760
104c1213
JM
1761static void stop_stepping (struct execution_control_state *ecs);
1762static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 1763static void keep_going (struct execution_control_state *ecs);
488f131b
JB
1764static void print_stop_reason (enum inferior_stop_reason stop_reason,
1765 int stop_info);
104c1213 1766
252fbfc8
PA
1767/* Callback for iterate over threads. If the thread is stopped, but
1768 the user/frontend doesn't know about that yet, go through
1769 normal_stop, as if the thread had just stopped now. ARG points at
1770 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
1771 ptid_is_pid(PTID) is true, applies to all threads of the process
1772 pointed at by PTID. Otherwise, apply only to the thread pointed by
1773 PTID. */
1774
1775static int
1776infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
1777{
1778 ptid_t ptid = * (ptid_t *) arg;
1779
1780 if ((ptid_equal (info->ptid, ptid)
1781 || ptid_equal (minus_one_ptid, ptid)
1782 || (ptid_is_pid (ptid)
1783 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
1784 && is_running (info->ptid)
1785 && !is_executing (info->ptid))
1786 {
1787 struct cleanup *old_chain;
1788 struct execution_control_state ecss;
1789 struct execution_control_state *ecs = &ecss;
1790
1791 memset (ecs, 0, sizeof (*ecs));
1792
1793 old_chain = make_cleanup_restore_current_thread ();
1794
1795 switch_to_thread (info->ptid);
1796
1797 /* Go through handle_inferior_event/normal_stop, so we always
1798 have consistent output as if the stop event had been
1799 reported. */
1800 ecs->ptid = info->ptid;
e09875d4 1801 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8
PA
1802 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1803 ecs->ws.value.sig = TARGET_SIGNAL_0;
1804
1805 handle_inferior_event (ecs);
1806
1807 if (!ecs->wait_some_more)
1808 {
1809 struct thread_info *tp;
1810
1811 normal_stop ();
1812
1813 /* Finish off the continuations. The continations
1814 themselves are responsible for realising the thread
1815 didn't finish what it was supposed to do. */
1816 tp = inferior_thread ();
1817 do_all_intermediate_continuations_thread (tp);
1818 do_all_continuations_thread (tp);
1819 }
1820
1821 do_cleanups (old_chain);
1822 }
1823
1824 return 0;
1825}
1826
1827/* This function is attached as a "thread_stop_requested" observer.
1828 Cleanup local state that assumed the PTID was to be resumed, and
1829 report the stop to the frontend. */
1830
2c0b251b 1831static void
252fbfc8
PA
1832infrun_thread_stop_requested (ptid_t ptid)
1833{
1834 struct displaced_step_request *it, *next, *prev = NULL;
1835
1836 /* PTID was requested to stop. Remove it from the displaced
1837 stepping queue, so we don't try to resume it automatically. */
1838 for (it = displaced_step_request_queue; it; it = next)
1839 {
1840 next = it->next;
1841
1842 if (ptid_equal (it->ptid, ptid)
1843 || ptid_equal (minus_one_ptid, ptid)
1844 || (ptid_is_pid (ptid)
1845 && ptid_get_pid (ptid) == ptid_get_pid (it->ptid)))
1846 {
1847 if (displaced_step_request_queue == it)
1848 displaced_step_request_queue = it->next;
1849 else
1850 prev->next = it->next;
1851
1852 xfree (it);
1853 }
1854 else
1855 prev = it;
1856 }
1857
1858 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
1859}
1860
a07daef3
PA
1861static void
1862infrun_thread_thread_exit (struct thread_info *tp, int silent)
1863{
1864 if (ptid_equal (target_last_wait_ptid, tp->ptid))
1865 nullify_last_target_wait_ptid ();
1866}
1867
4e1c45ea
PA
1868/* Callback for iterate_over_threads. */
1869
1870static int
1871delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
1872{
1873 if (is_exited (info->ptid))
1874 return 0;
1875
1876 delete_step_resume_breakpoint (info);
1877 return 0;
1878}
1879
1880/* In all-stop, delete the step resume breakpoint of any thread that
1881 had one. In non-stop, delete the step resume breakpoint of the
1882 thread that just stopped. */
1883
1884static void
1885delete_step_thread_step_resume_breakpoint (void)
1886{
1887 if (!target_has_execution
1888 || ptid_equal (inferior_ptid, null_ptid))
1889 /* If the inferior has exited, we have already deleted the step
1890 resume breakpoints out of GDB's lists. */
1891 return;
1892
1893 if (non_stop)
1894 {
1895 /* If in non-stop mode, only delete the step-resume or
1896 longjmp-resume breakpoint of the thread that just stopped
1897 stepping. */
1898 struct thread_info *tp = inferior_thread ();
1899 delete_step_resume_breakpoint (tp);
1900 }
1901 else
1902 /* In all-stop mode, delete all step-resume and longjmp-resume
1903 breakpoints of any thread that had them. */
1904 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
1905}
1906
1907/* A cleanup wrapper. */
1908
1909static void
1910delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
1911{
1912 delete_step_thread_step_resume_breakpoint ();
1913}
1914
223698f8
DE
1915/* Pretty print the results of target_wait, for debugging purposes. */
1916
1917static void
1918print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
1919 const struct target_waitstatus *ws)
1920{
1921 char *status_string = target_waitstatus_to_string (ws);
1922 struct ui_file *tmp_stream = mem_fileopen ();
1923 char *text;
1924 long len;
1925
1926 /* The text is split over several lines because it was getting too long.
1927 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
1928 output as a unit; we want only one timestamp printed if debug_timestamp
1929 is set. */
1930
1931 fprintf_unfiltered (tmp_stream,
1932 "infrun: target_wait (%d", PIDGET (waiton_ptid));
1933 if (PIDGET (waiton_ptid) != -1)
1934 fprintf_unfiltered (tmp_stream,
1935 " [%s]", target_pid_to_str (waiton_ptid));
1936 fprintf_unfiltered (tmp_stream, ", status) =\n");
1937 fprintf_unfiltered (tmp_stream,
1938 "infrun: %d [%s],\n",
1939 PIDGET (result_ptid), target_pid_to_str (result_ptid));
1940 fprintf_unfiltered (tmp_stream,
1941 "infrun: %s\n",
1942 status_string);
1943
1944 text = ui_file_xstrdup (tmp_stream, &len);
1945
1946 /* This uses %s in part to handle %'s in the text, but also to avoid
1947 a gcc error: the format attribute requires a string literal. */
1948 fprintf_unfiltered (gdb_stdlog, "%s", text);
1949
1950 xfree (status_string);
1951 xfree (text);
1952 ui_file_delete (tmp_stream);
1953}
1954
cd0fc7c3 1955/* Wait for control to return from inferior to debugger.
ae123ec6
JB
1956
1957 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1958 as if they were SIGTRAP signals. This can be useful during
1959 the startup sequence on some targets such as HP/UX, where
1960 we receive an EXEC event instead of the expected SIGTRAP.
1961
cd0fc7c3
SS
1962 If inferior gets a signal, we may decide to start it up again
1963 instead of returning. That is why there is a loop in this function.
1964 When this function actually returns it means the inferior
1965 should be left stopped and GDB should read more commands. */
1966
1967void
ae123ec6 1968wait_for_inferior (int treat_exec_as_sigtrap)
cd0fc7c3
SS
1969{
1970 struct cleanup *old_cleanups;
0d1e5fa7 1971 struct execution_control_state ecss;
cd0fc7c3 1972 struct execution_control_state *ecs;
c906108c 1973
527159b7 1974 if (debug_infrun)
ae123ec6
JB
1975 fprintf_unfiltered
1976 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1977 treat_exec_as_sigtrap);
527159b7 1978
4e1c45ea
PA
1979 old_cleanups =
1980 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 1981
cd0fc7c3 1982 ecs = &ecss;
0d1e5fa7
PA
1983 memset (ecs, 0, sizeof (*ecs));
1984
cd0fc7c3
SS
1985 overlay_cache_invalid = 1;
1986
e0bb1c1c
PA
1987 /* We'll update this if & when we switch to a new thread. */
1988 previous_inferior_ptid = inferior_ptid;
1989
cd0fc7c3
SS
1990 /* We have to invalidate the registers BEFORE calling target_wait
1991 because they can be loaded from the target while in target_wait.
1992 This makes remote debugging a bit more efficient for those
1993 targets that provide critical registers as part of their normal
1994 status mechanism. */
1995
1996 registers_changed ();
b83266a0 1997
c906108c
SS
1998 while (1)
1999 {
29f49a6a
PA
2000 struct cleanup *old_chain;
2001
9a4105ab 2002 if (deprecated_target_wait_hook)
47608cb1 2003 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 2004 else
47608cb1 2005 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 2006
f00150c9 2007 if (debug_infrun)
223698f8 2008 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2009
ae123ec6
JB
2010 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
2011 {
2012 xfree (ecs->ws.value.execd_pathname);
2013 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2014 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
2015 }
2016
29f49a6a
PA
2017 /* If an error happens while handling the event, propagate GDB's
2018 knowledge of the executing state to the frontend/user running
2019 state. */
2020 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2021
cd0fc7c3
SS
2022 /* Now figure out what to do with the result of the result. */
2023 handle_inferior_event (ecs);
c906108c 2024
29f49a6a
PA
2025 /* No error, don't finish the state yet. */
2026 discard_cleanups (old_chain);
2027
cd0fc7c3
SS
2028 if (!ecs->wait_some_more)
2029 break;
2030 }
4e1c45ea 2031
cd0fc7c3
SS
2032 do_cleanups (old_cleanups);
2033}
c906108c 2034
43ff13b4
JM
2035/* Asynchronous version of wait_for_inferior. It is called by the
2036 event loop whenever a change of state is detected on the file
2037 descriptor corresponding to the target. It can be called more than
2038 once to complete a single execution command. In such cases we need
a474d7c2
PA
2039 to keep the state in a global variable ECSS. If it is the last time
2040 that this function is called for a single execution command, then
2041 report to the user that the inferior has stopped, and do the
2042 necessary cleanups. */
43ff13b4
JM
2043
2044void
fba45db2 2045fetch_inferior_event (void *client_data)
43ff13b4 2046{
0d1e5fa7 2047 struct execution_control_state ecss;
a474d7c2 2048 struct execution_control_state *ecs = &ecss;
4f8d22e3 2049 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2050 struct cleanup *ts_old_chain;
4f8d22e3 2051 int was_sync = sync_execution;
43ff13b4 2052
0d1e5fa7
PA
2053 memset (ecs, 0, sizeof (*ecs));
2054
59f0d5d9 2055 overlay_cache_invalid = 1;
43ff13b4 2056
e0bb1c1c
PA
2057 /* We can only rely on wait_for_more being correct before handling
2058 the event in all-stop, but previous_inferior_ptid isn't used in
2059 non-stop. */
2060 if (!ecs->wait_some_more)
2061 /* We'll update this if & when we switch to a new thread. */
2062 previous_inferior_ptid = inferior_ptid;
2063
4f8d22e3
PA
2064 if (non_stop)
2065 /* In non-stop mode, the user/frontend should not notice a thread
2066 switch due to internal events. Make sure we reverse to the
2067 user selected thread and frame after handling the event and
2068 running any breakpoint commands. */
2069 make_cleanup_restore_current_thread ();
2070
59f0d5d9
PA
2071 /* We have to invalidate the registers BEFORE calling target_wait
2072 because they can be loaded from the target while in target_wait.
2073 This makes remote debugging a bit more efficient for those
2074 targets that provide critical registers as part of their normal
2075 status mechanism. */
43ff13b4 2076
59f0d5d9 2077 registers_changed ();
43ff13b4 2078
9a4105ab 2079 if (deprecated_target_wait_hook)
a474d7c2 2080 ecs->ptid =
47608cb1 2081 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2082 else
47608cb1 2083 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2084
f00150c9 2085 if (debug_infrun)
223698f8 2086 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2087
94cc34af
PA
2088 if (non_stop
2089 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2090 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2091 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2092 /* In non-stop mode, each thread is handled individually. Switch
2093 early, so the global state is set correctly for this
2094 thread. */
2095 context_switch (ecs->ptid);
2096
29f49a6a
PA
2097 /* If an error happens while handling the event, propagate GDB's
2098 knowledge of the executing state to the frontend/user running
2099 state. */
2100 if (!non_stop)
2101 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2102 else
2103 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2104
43ff13b4 2105 /* Now figure out what to do with the result of the result. */
a474d7c2 2106 handle_inferior_event (ecs);
43ff13b4 2107
a474d7c2 2108 if (!ecs->wait_some_more)
43ff13b4 2109 {
d6b48e9c
PA
2110 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2111
4e1c45ea 2112 delete_step_thread_step_resume_breakpoint ();
f107f563 2113
d6b48e9c
PA
2114 /* We may not find an inferior if this was a process exit. */
2115 if (inf == NULL || inf->stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2116 normal_stop ();
2117
af679fd0
PA
2118 if (target_has_execution
2119 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2120 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2121 && ecs->event_thread->step_multi
414c69f7 2122 && ecs->event_thread->stop_step)
c2d11a7d
JM
2123 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2124 else
2125 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4 2126 }
4f8d22e3 2127
29f49a6a
PA
2128 /* No error, don't finish the thread states yet. */
2129 discard_cleanups (ts_old_chain);
2130
4f8d22e3
PA
2131 /* Revert thread and frame. */
2132 do_cleanups (old_chain);
2133
2134 /* If the inferior was in sync execution mode, and now isn't,
2135 restore the prompt. */
2136 if (was_sync && !sync_execution)
2137 display_gdb_prompt (0);
43ff13b4
JM
2138}
2139
cd0fc7c3
SS
2140/* Prepare an execution control state for looping through a
2141 wait_for_inferior-type loop. */
2142
2143void
96baa820 2144init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3
SS
2145{
2146 ecs->random_signal = 0;
0d1e5fa7
PA
2147}
2148
2149/* Clear context switchable stepping state. */
2150
2151void
4e1c45ea 2152init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 2153{
2afb61aa
PA
2154 struct symtab_and_line sal;
2155
0d1e5fa7
PA
2156 tss->stepping_over_breakpoint = 0;
2157 tss->step_after_step_resume_breakpoint = 0;
2158 tss->stepping_through_solib_after_catch = 0;
2159 tss->stepping_through_solib_catchpoints = NULL;
2afb61aa 2160
4e1c45ea 2161 sal = find_pc_line (tss->prev_pc, 0);
2afb61aa
PA
2162 tss->current_line = sal.line;
2163 tss->current_symtab = sal.symtab;
cd0fc7c3
SS
2164}
2165
e02bc4cc 2166/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2167 target_wait()/deprecated_target_wait_hook(). The data is actually
2168 cached by handle_inferior_event(), which gets called immediately
2169 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2170
2171void
488f131b 2172get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2173{
39f77062 2174 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2175 *status = target_last_waitstatus;
2176}
2177
ac264b3b
MS
2178void
2179nullify_last_target_wait_ptid (void)
2180{
2181 target_last_wait_ptid = minus_one_ptid;
2182}
2183
dcf4fbde 2184/* Switch thread contexts. */
dd80620e
MS
2185
2186static void
0d1e5fa7 2187context_switch (ptid_t ptid)
dd80620e 2188{
fd48f117
DJ
2189 if (debug_infrun)
2190 {
2191 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2192 target_pid_to_str (inferior_ptid));
2193 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2194 target_pid_to_str (ptid));
fd48f117
DJ
2195 }
2196
0d1e5fa7 2197 switch_to_thread (ptid);
dd80620e
MS
2198}
2199
4fa8626c
DJ
2200static void
2201adjust_pc_after_break (struct execution_control_state *ecs)
2202{
24a73cce
UW
2203 struct regcache *regcache;
2204 struct gdbarch *gdbarch;
8aad930b 2205 CORE_ADDR breakpoint_pc;
4fa8626c 2206
4fa8626c
DJ
2207 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2208 we aren't, just return.
9709f61c
DJ
2209
2210 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2211 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2212 implemented by software breakpoints should be handled through the normal
2213 breakpoint layer.
8fb3e588 2214
4fa8626c
DJ
2215 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2216 different signals (SIGILL or SIGEMT for instance), but it is less
2217 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2218 gdbarch_decr_pc_after_break. I don't know any specific target that
2219 generates these signals at breakpoints (the code has been in GDB since at
2220 least 1992) so I can not guess how to handle them here.
8fb3e588 2221
e6cf7916
UW
2222 In earlier versions of GDB, a target with
2223 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2224 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2225 target with both of these set in GDB history, and it seems unlikely to be
2226 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2227
2228 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2229 return;
2230
2231 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2232 return;
2233
4058b839
PA
2234 /* In reverse execution, when a breakpoint is hit, the instruction
2235 under it has already been de-executed. The reported PC always
2236 points at the breakpoint address, so adjusting it further would
2237 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2238 architecture:
2239
2240 B1 0x08000000 : INSN1
2241 B2 0x08000001 : INSN2
2242 0x08000002 : INSN3
2243 PC -> 0x08000003 : INSN4
2244
2245 Say you're stopped at 0x08000003 as above. Reverse continuing
2246 from that point should hit B2 as below. Reading the PC when the
2247 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2248 been de-executed already.
2249
2250 B1 0x08000000 : INSN1
2251 B2 PC -> 0x08000001 : INSN2
2252 0x08000002 : INSN3
2253 0x08000003 : INSN4
2254
2255 We can't apply the same logic as for forward execution, because
2256 we would wrongly adjust the PC to 0x08000000, since there's a
2257 breakpoint at PC - 1. We'd then report a hit on B1, although
2258 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2259 behaviour. */
2260 if (execution_direction == EXEC_REVERSE)
2261 return;
2262
24a73cce
UW
2263 /* If this target does not decrement the PC after breakpoints, then
2264 we have nothing to do. */
2265 regcache = get_thread_regcache (ecs->ptid);
2266 gdbarch = get_regcache_arch (regcache);
2267 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2268 return;
2269
8aad930b
AC
2270 /* Find the location where (if we've hit a breakpoint) the
2271 breakpoint would be. */
515630c5
UW
2272 breakpoint_pc = regcache_read_pc (regcache)
2273 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 2274
1c5cfe86
PA
2275 /* Check whether there actually is a software breakpoint inserted at
2276 that location.
2277
2278 If in non-stop mode, a race condition is possible where we've
2279 removed a breakpoint, but stop events for that breakpoint were
2280 already queued and arrive later. To suppress those spurious
2281 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2282 and retire them after a number of stop events are reported. */
2283 if (software_breakpoint_inserted_here_p (breakpoint_pc)
2284 || (non_stop && moribund_breakpoint_here_p (breakpoint_pc)))
8aad930b 2285 {
96429cc8
HZ
2286 struct cleanup *old_cleanups = NULL;
2287 if (RECORD_IS_USED)
2288 old_cleanups = record_gdb_operation_disable_set ();
2289
1c0fdd0e
UW
2290 /* When using hardware single-step, a SIGTRAP is reported for both
2291 a completed single-step and a software breakpoint. Need to
2292 differentiate between the two, as the latter needs adjusting
2293 but the former does not.
2294
2295 The SIGTRAP can be due to a completed hardware single-step only if
2296 - we didn't insert software single-step breakpoints
2297 - the thread to be examined is still the current thread
2298 - this thread is currently being stepped
2299
2300 If any of these events did not occur, we must have stopped due
2301 to hitting a software breakpoint, and have to back up to the
2302 breakpoint address.
2303
2304 As a special case, we could have hardware single-stepped a
2305 software breakpoint. In this case (prev_pc == breakpoint_pc),
2306 we also need to back up to the breakpoint address. */
2307
2308 if (singlestep_breakpoints_inserted_p
2309 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
2310 || !currently_stepping (ecs->event_thread)
2311 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 2312 regcache_write_pc (regcache, breakpoint_pc);
96429cc8
HZ
2313
2314 if (RECORD_IS_USED)
2315 do_cleanups (old_cleanups);
8aad930b 2316 }
4fa8626c
DJ
2317}
2318
0d1e5fa7
PA
2319void
2320init_infwait_state (void)
2321{
2322 waiton_ptid = pid_to_ptid (-1);
2323 infwait_state = infwait_normal_state;
2324}
2325
94cc34af
PA
2326void
2327error_is_running (void)
2328{
2329 error (_("\
2330Cannot execute this command while the selected thread is running."));
2331}
2332
2333void
2334ensure_not_running (void)
2335{
2336 if (is_running (inferior_ptid))
2337 error_is_running ();
2338}
2339
cd0fc7c3
SS
2340/* Given an execution control state that has been freshly filled in
2341 by an event from the inferior, figure out what it means and take
2342 appropriate action. */
c906108c 2343
cd0fc7c3 2344void
96baa820 2345handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 2346{
568d6575
UW
2347 struct frame_info *frame;
2348 struct gdbarch *gdbarch;
c8edd8b4 2349 int sw_single_step_trap_p = 0;
d983da9c
DJ
2350 int stopped_by_watchpoint;
2351 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 2352 struct symtab_and_line stop_pc_sal;
d6b48e9c
PA
2353 enum stop_kind stop_soon;
2354
2355 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2356 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2357 && ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2358 {
2359 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2360 gdb_assert (inf);
2361 stop_soon = inf->stop_soon;
2362 }
2363 else
2364 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 2365
e02bc4cc 2366 /* Cache the last pid/waitstatus. */
39f77062 2367 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 2368 target_last_waitstatus = ecs->ws;
e02bc4cc 2369
ca005067
DJ
2370 /* Always clear state belonging to the previous time we stopped. */
2371 stop_stack_dummy = 0;
2372
8c90c137
LM
2373 /* If it's a new process, add it to the thread database */
2374
2375 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
2376 && !ptid_equal (ecs->ptid, minus_one_ptid)
2377 && !in_thread_list (ecs->ptid));
2378
2379 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2380 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
2381 add_thread (ecs->ptid);
2382
e09875d4 2383 ecs->event_thread = find_thread_ptid (ecs->ptid);
88ed393a
JK
2384
2385 /* Dependent on valid ECS->EVENT_THREAD. */
2386 adjust_pc_after_break (ecs);
2387
2388 /* Dependent on the current PC value modified by adjust_pc_after_break. */
2389 reinit_frame_cache ();
2390
8c90c137
LM
2391 if (ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2392 {
1c5cfe86
PA
2393 breakpoint_retire_moribund ();
2394
48844aa6
PA
2395 /* Mark the non-executing threads accordingly. In all-stop, all
2396 threads of all processes are stopped when we get any event
2397 reported. In non-stop mode, only the event thread stops. If
2398 we're handling a process exit in non-stop mode, there's
2399 nothing to do, as threads of the dead process are gone, and
2400 threads of any other process were left running. */
2401 if (!non_stop)
2402 set_executing (minus_one_ptid, 0);
2403 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2404 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
2405 set_executing (inferior_ptid, 0);
8c90c137
LM
2406 }
2407
0d1e5fa7 2408 switch (infwait_state)
488f131b
JB
2409 {
2410 case infwait_thread_hop_state:
527159b7 2411 if (debug_infrun)
8a9de0e4 2412 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
488f131b 2413 /* Cancel the waiton_ptid. */
0d1e5fa7 2414 waiton_ptid = pid_to_ptid (-1);
65e82032 2415 break;
b83266a0 2416
488f131b 2417 case infwait_normal_state:
527159b7 2418 if (debug_infrun)
8a9de0e4 2419 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
2420 break;
2421
2422 case infwait_step_watch_state:
2423 if (debug_infrun)
2424 fprintf_unfiltered (gdb_stdlog,
2425 "infrun: infwait_step_watch_state\n");
2426
2427 stepped_after_stopped_by_watchpoint = 1;
488f131b 2428 break;
b83266a0 2429
488f131b 2430 case infwait_nonstep_watch_state:
527159b7 2431 if (debug_infrun)
8a9de0e4
AC
2432 fprintf_unfiltered (gdb_stdlog,
2433 "infrun: infwait_nonstep_watch_state\n");
488f131b 2434 insert_breakpoints ();
c906108c 2435
488f131b
JB
2436 /* FIXME-maybe: is this cleaner than setting a flag? Does it
2437 handle things like signals arriving and other things happening
2438 in combination correctly? */
2439 stepped_after_stopped_by_watchpoint = 1;
2440 break;
65e82032
AC
2441
2442 default:
e2e0b3e5 2443 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 2444 }
0d1e5fa7 2445 infwait_state = infwait_normal_state;
c906108c 2446
488f131b
JB
2447 switch (ecs->ws.kind)
2448 {
2449 case TARGET_WAITKIND_LOADED:
527159b7 2450 if (debug_infrun)
8a9de0e4 2451 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
2452 /* Ignore gracefully during startup of the inferior, as it might
2453 be the shell which has just loaded some objects, otherwise
2454 add the symbols for the newly loaded objects. Also ignore at
2455 the beginning of an attach or remote session; we will query
2456 the full list of libraries once the connection is
2457 established. */
c0236d92 2458 if (stop_soon == NO_STOP_QUIETLY)
488f131b 2459 {
488f131b
JB
2460 /* Check for any newly added shared libraries if we're
2461 supposed to be adding them automatically. Switch
2462 terminal for any messages produced by
2463 breakpoint_re_set. */
2464 target_terminal_ours_for_output ();
aff6338a 2465 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
2466 stack's section table is kept up-to-date. Architectures,
2467 (e.g., PPC64), use the section table to perform
2468 operations such as address => section name and hence
2469 require the table to contain all sections (including
2470 those found in shared libraries). */
b0f4b84b 2471#ifdef SOLIB_ADD
aff6338a 2472 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
b0f4b84b
DJ
2473#else
2474 solib_add (NULL, 0, &current_target, auto_solib_add);
2475#endif
488f131b
JB
2476 target_terminal_inferior ();
2477
b0f4b84b
DJ
2478 /* If requested, stop when the dynamic linker notifies
2479 gdb of events. This allows the user to get control
2480 and place breakpoints in initializer routines for
2481 dynamically loaded objects (among other things). */
2482 if (stop_on_solib_events)
2483 {
2484 stop_stepping (ecs);
2485 return;
2486 }
2487
2488 /* NOTE drow/2007-05-11: This might be a good place to check
2489 for "catch load". */
488f131b 2490 }
b0f4b84b
DJ
2491
2492 /* If we are skipping through a shell, or through shared library
2493 loading that we aren't interested in, resume the program. If
2494 we're running the program normally, also resume. But stop if
2495 we're attaching or setting up a remote connection. */
2496 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
2497 {
74960c60
VP
2498 /* Loading of shared libraries might have changed breakpoint
2499 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
2500 if (stop_soon == NO_STOP_QUIETLY
2501 && !breakpoints_always_inserted_mode ())
74960c60 2502 insert_breakpoints ();
b0f4b84b
DJ
2503 resume (0, TARGET_SIGNAL_0);
2504 prepare_to_wait (ecs);
2505 return;
2506 }
2507
2508 break;
c5aa993b 2509
488f131b 2510 case TARGET_WAITKIND_SPURIOUS:
527159b7 2511 if (debug_infrun)
8a9de0e4 2512 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
2513 resume (0, TARGET_SIGNAL_0);
2514 prepare_to_wait (ecs);
2515 return;
c5aa993b 2516
488f131b 2517 case TARGET_WAITKIND_EXITED:
527159b7 2518 if (debug_infrun)
8a9de0e4 2519 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
fb66883a 2520 inferior_ptid = ecs->ptid;
488f131b
JB
2521 target_terminal_ours (); /* Must do this before mourn anyway */
2522 print_stop_reason (EXITED, ecs->ws.value.integer);
2523
2524 /* Record the exit code in the convenience variable $_exitcode, so
2525 that the user can inspect this again later. */
4fa62494
UW
2526 set_internalvar_integer (lookup_internalvar ("_exitcode"),
2527 (LONGEST) ecs->ws.value.integer);
488f131b
JB
2528 gdb_flush (gdb_stdout);
2529 target_mourn_inferior ();
1c0fdd0e 2530 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
2531 stop_print_frame = 0;
2532 stop_stepping (ecs);
2533 return;
c5aa993b 2534
488f131b 2535 case TARGET_WAITKIND_SIGNALLED:
527159b7 2536 if (debug_infrun)
8a9de0e4 2537 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
fb66883a 2538 inferior_ptid = ecs->ptid;
488f131b 2539 stop_print_frame = 0;
488f131b 2540 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 2541
488f131b
JB
2542 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
2543 reach here unless the inferior is dead. However, for years
2544 target_kill() was called here, which hints that fatal signals aren't
2545 really fatal on some systems. If that's true, then some changes
2546 may be needed. */
2547 target_mourn_inferior ();
c906108c 2548
2020b7ab 2549 print_stop_reason (SIGNAL_EXITED, ecs->ws.value.sig);
1c0fdd0e 2550 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
2551 stop_stepping (ecs);
2552 return;
c906108c 2553
488f131b
JB
2554 /* The following are the only cases in which we keep going;
2555 the above cases end in a continue or goto. */
2556 case TARGET_WAITKIND_FORKED:
deb3b17b 2557 case TARGET_WAITKIND_VFORKED:
527159b7 2558 if (debug_infrun)
8a9de0e4 2559 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
c906108c 2560
5a2901d9
DJ
2561 if (!ptid_equal (ecs->ptid, inferior_ptid))
2562 {
0d1e5fa7 2563 context_switch (ecs->ptid);
35f196d9 2564 reinit_frame_cache ();
5a2901d9
DJ
2565 }
2566
b242c3c2
PA
2567 /* Immediately detach breakpoints from the child before there's
2568 any chance of letting the user delete breakpoints from the
2569 breakpoint lists. If we don't do this early, it's easy to
2570 leave left over traps in the child, vis: "break foo; catch
2571 fork; c; <fork>; del; c; <child calls foo>". We only follow
2572 the fork on the last `continue', and by that time the
2573 breakpoint at "foo" is long gone from the breakpoint table.
2574 If we vforked, then we don't need to unpatch here, since both
2575 parent and child are sharing the same memory pages; we'll
2576 need to unpatch at follow/detach time instead to be certain
2577 that new breakpoints added between catchpoint hit time and
2578 vfork follow are detached. */
2579 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
2580 {
2581 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
2582
2583 /* This won't actually modify the breakpoint list, but will
2584 physically remove the breakpoints from the child. */
2585 detach_breakpoints (child_pid);
2586 }
2587
e58b0e63
PA
2588 /* In case the event is caught by a catchpoint, remember that
2589 the event is to be followed at the next resume of the thread,
2590 and not immediately. */
2591 ecs->event_thread->pending_follow = ecs->ws;
2592
fb14de7b 2593 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 2594
347bddb7 2595 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
675bf4cb 2596
347bddb7 2597 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
04e68871
DJ
2598
2599 /* If no catchpoint triggered for this, then keep going. */
2600 if (ecs->random_signal)
2601 {
e58b0e63
PA
2602 int should_resume;
2603
2020b7ab 2604 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
e58b0e63
PA
2605
2606 should_resume = follow_fork ();
2607
2608 ecs->event_thread = inferior_thread ();
2609 ecs->ptid = inferior_ptid;
2610
2611 if (should_resume)
2612 keep_going (ecs);
2613 else
2614 stop_stepping (ecs);
04e68871
DJ
2615 return;
2616 }
2020b7ab 2617 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
2618 goto process_event_stop_test;
2619
2620 case TARGET_WAITKIND_EXECD:
527159b7 2621 if (debug_infrun)
fc5261f2 2622 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 2623
5a2901d9
DJ
2624 if (!ptid_equal (ecs->ptid, inferior_ptid))
2625 {
0d1e5fa7 2626 context_switch (ecs->ptid);
35f196d9 2627 reinit_frame_cache ();
5a2901d9
DJ
2628 }
2629
fb14de7b 2630 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f
PA
2631
2632 /* This causes the eventpoints and symbol table to be reset.
2633 Must do this now, before trying to determine whether to
2634 stop. */
71b43ef8 2635 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f
PA
2636
2637 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2638 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2639
71b43ef8
PA
2640 /* Note that this may be referenced from inside
2641 bpstat_stop_status above, through inferior_has_execd. */
2642 xfree (ecs->ws.value.execd_pathname);
2643 ecs->ws.value.execd_pathname = NULL;
2644
04e68871
DJ
2645 /* If no catchpoint triggered for this, then keep going. */
2646 if (ecs->random_signal)
2647 {
2020b7ab 2648 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
04e68871
DJ
2649 keep_going (ecs);
2650 return;
2651 }
2020b7ab 2652 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
2653 goto process_event_stop_test;
2654
b4dc5ffa
MK
2655 /* Be careful not to try to gather much state about a thread
2656 that's in a syscall. It's frequently a losing proposition. */
488f131b 2657 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 2658 if (debug_infrun)
8a9de0e4 2659 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
488f131b
JB
2660 resume (0, TARGET_SIGNAL_0);
2661 prepare_to_wait (ecs);
2662 return;
c906108c 2663
488f131b
JB
2664 /* Before examining the threads further, step this thread to
2665 get it entirely out of the syscall. (We get notice of the
2666 event when the thread is just on the verge of exiting a
2667 syscall. Stepping one instruction seems to get it back
b4dc5ffa 2668 into user code.) */
488f131b 2669 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 2670 if (debug_infrun)
8a9de0e4 2671 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
488f131b 2672 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
488f131b
JB
2673 prepare_to_wait (ecs);
2674 return;
c906108c 2675
488f131b 2676 case TARGET_WAITKIND_STOPPED:
527159b7 2677 if (debug_infrun)
8a9de0e4 2678 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
2020b7ab 2679 ecs->event_thread->stop_signal = ecs->ws.value.sig;
488f131b 2680 break;
c906108c 2681
b2175913
MS
2682 case TARGET_WAITKIND_NO_HISTORY:
2683 /* Reverse execution: target ran out of history info. */
fb14de7b 2684 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
b2175913
MS
2685 print_stop_reason (NO_HISTORY, 0);
2686 stop_stepping (ecs);
2687 return;
2688
488f131b
JB
2689 /* We had an event in the inferior, but we are not interested
2690 in handling it at this level. The lower layers have already
8e7d2c16 2691 done what needs to be done, if anything.
8fb3e588
AC
2692
2693 One of the possible circumstances for this is when the
2694 inferior produces output for the console. The inferior has
2695 not stopped, and we are ignoring the event. Another possible
2696 circumstance is any event which the lower level knows will be
2697 reported multiple times without an intervening resume. */
488f131b 2698 case TARGET_WAITKIND_IGNORE:
527159b7 2699 if (debug_infrun)
8a9de0e4 2700 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
8e7d2c16 2701 prepare_to_wait (ecs);
488f131b
JB
2702 return;
2703 }
c906108c 2704
488f131b
JB
2705 if (ecs->new_thread_event)
2706 {
94cc34af
PA
2707 if (non_stop)
2708 /* Non-stop assumes that the target handles adding new threads
2709 to the thread list. */
2710 internal_error (__FILE__, __LINE__, "\
2711targets should add new threads to the thread list themselves in non-stop mode.");
2712
2713 /* We may want to consider not doing a resume here in order to
2714 give the user a chance to play with the new thread. It might
2715 be good to make that a user-settable option. */
2716
2717 /* At this point, all threads are stopped (happens automatically
2718 in either the OS or the native code). Therefore we need to
2719 continue all threads in order to make progress. */
2720
488f131b
JB
2721 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
2722 prepare_to_wait (ecs);
2723 return;
2724 }
c906108c 2725
2020b7ab 2726 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
2727 {
2728 /* Do we need to clean up the state of a thread that has
2729 completed a displaced single-step? (Doing so usually affects
2730 the PC, so do it here, before we set stop_pc.) */
2731 displaced_step_fixup (ecs->ptid, ecs->event_thread->stop_signal);
2732
2733 /* If we either finished a single-step or hit a breakpoint, but
2734 the user wanted this thread to be stopped, pretend we got a
2735 SIG0 (generic unsignaled stop). */
2736
2737 if (ecs->event_thread->stop_requested
2738 && ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2739 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2740 }
237fc4c9 2741
515630c5 2742 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 2743
527159b7 2744 if (debug_infrun)
237fc4c9
PA
2745 {
2746 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n",
2747 paddr_nz (stop_pc));
d92524f1 2748 if (target_stopped_by_watchpoint ())
237fc4c9
PA
2749 {
2750 CORE_ADDR addr;
2751 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2752
2753 if (target_stopped_data_address (&current_target, &addr))
2754 fprintf_unfiltered (gdb_stdlog,
2755 "infrun: stopped data address = 0x%s\n",
2756 paddr_nz (addr));
2757 else
2758 fprintf_unfiltered (gdb_stdlog,
2759 "infrun: (no data address available)\n");
2760 }
2761 }
527159b7 2762
9f976b41
DJ
2763 if (stepping_past_singlestep_breakpoint)
2764 {
1c0fdd0e 2765 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
2766 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2767 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2768
2769 stepping_past_singlestep_breakpoint = 0;
2770
2771 /* We've either finished single-stepping past the single-step
8fb3e588
AC
2772 breakpoint, or stopped for some other reason. It would be nice if
2773 we could tell, but we can't reliably. */
2020b7ab 2774 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 2775 {
527159b7 2776 if (debug_infrun)
8a9de0e4 2777 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
9f976b41 2778 /* Pull the single step breakpoints out of the target. */
e0cd558a 2779 remove_single_step_breakpoints ();
9f976b41
DJ
2780 singlestep_breakpoints_inserted_p = 0;
2781
2782 ecs->random_signal = 0;
2783
0d1e5fa7 2784 context_switch (saved_singlestep_ptid);
9a4105ab
AC
2785 if (deprecated_context_hook)
2786 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
2787
2788 resume (1, TARGET_SIGNAL_0);
2789 prepare_to_wait (ecs);
2790 return;
2791 }
2792 }
2793
ca67fcb8 2794 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 2795 {
94cc34af
PA
2796 /* In non-stop mode, there's never a deferred_step_ptid set. */
2797 gdb_assert (!non_stop);
2798
6a6b96b9
UW
2799 /* If we stopped for some other reason than single-stepping, ignore
2800 the fact that we were supposed to switch back. */
2020b7ab 2801 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
6a6b96b9
UW
2802 {
2803 if (debug_infrun)
2804 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 2805 "infrun: handling deferred step\n");
6a6b96b9
UW
2806
2807 /* Pull the single step breakpoints out of the target. */
2808 if (singlestep_breakpoints_inserted_p)
2809 {
2810 remove_single_step_breakpoints ();
2811 singlestep_breakpoints_inserted_p = 0;
2812 }
2813
2814 /* Note: We do not call context_switch at this point, as the
2815 context is already set up for stepping the original thread. */
ca67fcb8
VP
2816 switch_to_thread (deferred_step_ptid);
2817 deferred_step_ptid = null_ptid;
6a6b96b9
UW
2818 /* Suppress spurious "Switching to ..." message. */
2819 previous_inferior_ptid = inferior_ptid;
2820
2821 resume (1, TARGET_SIGNAL_0);
2822 prepare_to_wait (ecs);
2823 return;
2824 }
ca67fcb8
VP
2825
2826 deferred_step_ptid = null_ptid;
6a6b96b9
UW
2827 }
2828
488f131b
JB
2829 /* See if a thread hit a thread-specific breakpoint that was meant for
2830 another thread. If so, then step that thread past the breakpoint,
2831 and continue it. */
2832
2020b7ab 2833 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
488f131b 2834 {
9f976b41
DJ
2835 int thread_hop_needed = 0;
2836
f8d40ec8
JB
2837 /* Check if a regular breakpoint has been hit before checking
2838 for a potential single step breakpoint. Otherwise, GDB will
2839 not see this breakpoint hit when stepping onto breakpoints. */
c36b740a 2840 if (regular_breakpoint_inserted_here_p (stop_pc))
488f131b 2841 {
c5aa993b 2842 ecs->random_signal = 0;
4fa8626c 2843 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
9f976b41
DJ
2844 thread_hop_needed = 1;
2845 }
1c0fdd0e 2846 else if (singlestep_breakpoints_inserted_p)
9f976b41 2847 {
fd48f117
DJ
2848 /* We have not context switched yet, so this should be true
2849 no matter which thread hit the singlestep breakpoint. */
2850 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2851 if (debug_infrun)
2852 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2853 "trap for %s\n",
2854 target_pid_to_str (ecs->ptid));
2855
9f976b41
DJ
2856 ecs->random_signal = 0;
2857 /* The call to in_thread_list is necessary because PTIDs sometimes
2858 change when we go from single-threaded to multi-threaded. If
2859 the singlestep_ptid is still in the list, assume that it is
2860 really different from ecs->ptid. */
2861 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2862 && in_thread_list (singlestep_ptid))
2863 {
fd48f117
DJ
2864 /* If the PC of the thread we were trying to single-step
2865 has changed, discard this event (which we were going
2866 to ignore anyway), and pretend we saw that thread
2867 trap. This prevents us continuously moving the
2868 single-step breakpoint forward, one instruction at a
2869 time. If the PC has changed, then the thread we were
2870 trying to single-step has trapped or been signalled,
2871 but the event has not been reported to GDB yet.
2872
2873 There might be some cases where this loses signal
2874 information, if a signal has arrived at exactly the
2875 same time that the PC changed, but this is the best
2876 we can do with the information available. Perhaps we
2877 should arrange to report all events for all threads
2878 when they stop, or to re-poll the remote looking for
2879 this particular thread (i.e. temporarily enable
2880 schedlock). */
515630c5
UW
2881
2882 CORE_ADDR new_singlestep_pc
2883 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
2884
2885 if (new_singlestep_pc != singlestep_pc)
fd48f117 2886 {
2020b7ab
PA
2887 enum target_signal stop_signal;
2888
fd48f117
DJ
2889 if (debug_infrun)
2890 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2891 " but expected thread advanced also\n");
2892
2893 /* The current context still belongs to
2894 singlestep_ptid. Don't swap here, since that's
2895 the context we want to use. Just fudge our
2896 state and continue. */
2020b7ab
PA
2897 stop_signal = ecs->event_thread->stop_signal;
2898 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
fd48f117 2899 ecs->ptid = singlestep_ptid;
e09875d4 2900 ecs->event_thread = find_thread_ptid (ecs->ptid);
2020b7ab 2901 ecs->event_thread->stop_signal = stop_signal;
515630c5 2902 stop_pc = new_singlestep_pc;
fd48f117
DJ
2903 }
2904 else
2905 {
2906 if (debug_infrun)
2907 fprintf_unfiltered (gdb_stdlog,
2908 "infrun: unexpected thread\n");
2909
2910 thread_hop_needed = 1;
2911 stepping_past_singlestep_breakpoint = 1;
2912 saved_singlestep_ptid = singlestep_ptid;
2913 }
9f976b41
DJ
2914 }
2915 }
2916
2917 if (thread_hop_needed)
8fb3e588 2918 {
9f5a595d 2919 struct regcache *thread_regcache;
237fc4c9 2920 int remove_status = 0;
8fb3e588 2921
527159b7 2922 if (debug_infrun)
8a9de0e4 2923 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 2924
b3444185
PA
2925 /* Switch context before touching inferior memory, the
2926 previous thread may have exited. */
2927 if (!ptid_equal (inferior_ptid, ecs->ptid))
2928 context_switch (ecs->ptid);
2929
8fb3e588
AC
2930 /* Saw a breakpoint, but it was hit by the wrong thread.
2931 Just continue. */
2932
1c0fdd0e 2933 if (singlestep_breakpoints_inserted_p)
488f131b 2934 {
8fb3e588 2935 /* Pull the single step breakpoints out of the target. */
e0cd558a 2936 remove_single_step_breakpoints ();
8fb3e588
AC
2937 singlestep_breakpoints_inserted_p = 0;
2938 }
2939
237fc4c9
PA
2940 /* If the arch can displace step, don't remove the
2941 breakpoints. */
9f5a595d
UW
2942 thread_regcache = get_thread_regcache (ecs->ptid);
2943 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
2944 remove_status = remove_breakpoints ();
2945
8fb3e588
AC
2946 /* Did we fail to remove breakpoints? If so, try
2947 to set the PC past the bp. (There's at least
2948 one situation in which we can fail to remove
2949 the bp's: On HP-UX's that use ttrace, we can't
2950 change the address space of a vforking child
2951 process until the child exits (well, okay, not
2952 then either :-) or execs. */
2953 if (remove_status != 0)
9d9cd7ac 2954 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
2955 else
2956 { /* Single step */
94cc34af
PA
2957 if (!non_stop)
2958 {
2959 /* Only need to require the next event from this
2960 thread in all-stop mode. */
2961 waiton_ptid = ecs->ptid;
2962 infwait_state = infwait_thread_hop_state;
2963 }
8fb3e588 2964
4e1c45ea 2965 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588
AC
2966 keep_going (ecs);
2967 registers_changed ();
2968 return;
2969 }
488f131b 2970 }
1c0fdd0e 2971 else if (singlestep_breakpoints_inserted_p)
8fb3e588
AC
2972 {
2973 sw_single_step_trap_p = 1;
2974 ecs->random_signal = 0;
2975 }
488f131b
JB
2976 }
2977 else
2978 ecs->random_signal = 1;
c906108c 2979
488f131b 2980 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
2981 so, then switch to that thread. */
2982 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 2983 {
527159b7 2984 if (debug_infrun)
8a9de0e4 2985 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 2986
0d1e5fa7 2987 context_switch (ecs->ptid);
c5aa993b 2988
9a4105ab
AC
2989 if (deprecated_context_hook)
2990 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 2991 }
c906108c 2992
568d6575
UW
2993 /* At this point, get hold of the now-current thread's frame. */
2994 frame = get_current_frame ();
2995 gdbarch = get_frame_arch (frame);
2996
1c0fdd0e 2997 if (singlestep_breakpoints_inserted_p)
488f131b
JB
2998 {
2999 /* Pull the single step breakpoints out of the target. */
e0cd558a 3000 remove_single_step_breakpoints ();
488f131b
JB
3001 singlestep_breakpoints_inserted_p = 0;
3002 }
c906108c 3003
d983da9c
DJ
3004 if (stepped_after_stopped_by_watchpoint)
3005 stopped_by_watchpoint = 0;
3006 else
3007 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3008
3009 /* If necessary, step over this watchpoint. We'll be back to display
3010 it in a moment. */
3011 if (stopped_by_watchpoint
d92524f1 3012 && (target_have_steppable_watchpoint
568d6575 3013 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 3014 {
488f131b
JB
3015 /* At this point, we are stopped at an instruction which has
3016 attempted to write to a piece of memory under control of
3017 a watchpoint. The instruction hasn't actually executed
3018 yet. If we were to evaluate the watchpoint expression
3019 now, we would get the old value, and therefore no change
3020 would seem to have occurred.
3021
3022 In order to make watchpoints work `right', we really need
3023 to complete the memory write, and then evaluate the
d983da9c
DJ
3024 watchpoint expression. We do this by single-stepping the
3025 target.
3026
3027 It may not be necessary to disable the watchpoint to stop over
3028 it. For example, the PA can (with some kernel cooperation)
3029 single step over a watchpoint without disabling the watchpoint.
3030
3031 It is far more common to need to disable a watchpoint to step
3032 the inferior over it. If we have non-steppable watchpoints,
3033 we must disable the current watchpoint; it's simplest to
3034 disable all watchpoints and breakpoints. */
2facfe5c
DD
3035 int hw_step = 1;
3036
d92524f1 3037 if (!target_have_steppable_watchpoint)
d983da9c 3038 remove_breakpoints ();
2facfe5c 3039 /* Single step */
568d6575 3040 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
2facfe5c 3041 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
b9412953 3042 registers_changed ();
0d1e5fa7 3043 waiton_ptid = ecs->ptid;
d92524f1 3044 if (target_have_steppable_watchpoint)
0d1e5fa7 3045 infwait_state = infwait_step_watch_state;
d983da9c 3046 else
0d1e5fa7 3047 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
3048 prepare_to_wait (ecs);
3049 return;
3050 }
3051
488f131b
JB
3052 ecs->stop_func_start = 0;
3053 ecs->stop_func_end = 0;
3054 ecs->stop_func_name = 0;
3055 /* Don't care about return value; stop_func_start and stop_func_name
3056 will both be 0 if it doesn't work. */
3057 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3058 &ecs->stop_func_start, &ecs->stop_func_end);
cbf3b44a 3059 ecs->stop_func_start
568d6575 3060 += gdbarch_deprecated_function_start_offset (gdbarch);
4e1c45ea 3061 ecs->event_thread->stepping_over_breakpoint = 0;
347bddb7 3062 bpstat_clear (&ecs->event_thread->stop_bpstat);
414c69f7 3063 ecs->event_thread->stop_step = 0;
488f131b
JB
3064 stop_print_frame = 1;
3065 ecs->random_signal = 0;
3066 stopped_by_random_signal = 0;
488f131b 3067
2020b7ab 3068 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4e1c45ea 3069 && ecs->event_thread->trap_expected
568d6575 3070 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 3071 && currently_stepping (ecs->event_thread))
3352ef37 3072 {
b50d7442 3073 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37
AC
3074 also on an instruction that needs to be stepped multiple
3075 times before it's been fully executing. E.g., architectures
3076 with a delay slot. It needs to be stepped twice, once for
3077 the instruction and once for the delay slot. */
3078 int step_through_delay
568d6575 3079 = gdbarch_single_step_through_delay (gdbarch, frame);
527159b7 3080 if (debug_infrun && step_through_delay)
8a9de0e4 3081 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4e1c45ea 3082 if (ecs->event_thread->step_range_end == 0 && step_through_delay)
3352ef37
AC
3083 {
3084 /* The user issued a continue when stopped at a breakpoint.
3085 Set up for another trap and get out of here. */
4e1c45ea 3086 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
3087 keep_going (ecs);
3088 return;
3089 }
3090 else if (step_through_delay)
3091 {
3092 /* The user issued a step when stopped at a breakpoint.
3093 Maybe we should stop, maybe we should not - the delay
3094 slot *might* correspond to a line of source. In any
ca67fcb8
VP
3095 case, don't decide that here, just set
3096 ecs->stepping_over_breakpoint, making sure we
3097 single-step again before breakpoints are re-inserted. */
4e1c45ea 3098 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
3099 }
3100 }
3101
488f131b
JB
3102 /* Look at the cause of the stop, and decide what to do.
3103 The alternatives are:
0d1e5fa7
PA
3104 1) stop_stepping and return; to really stop and return to the debugger,
3105 2) keep_going and return to start up again
4e1c45ea 3106 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
3107 3) set ecs->random_signal to 1, and the decision between 1 and 2
3108 will be made according to the signal handling tables. */
3109
3110 /* First, distinguish signals caused by the debugger from signals
03cebad2
MK
3111 that have to do with the program's own actions. Note that
3112 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3113 on the operating system version. Here we detect when a SIGILL or
3114 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3115 something similar for SIGSEGV, since a SIGSEGV will be generated
3116 when we're trying to execute a breakpoint instruction on a
3117 non-executable stack. This happens for call dummy breakpoints
3118 for architectures like SPARC that place call dummies on the
237fc4c9 3119 stack.
488f131b 3120
237fc4c9
PA
3121 If we're doing a displaced step past a breakpoint, then the
3122 breakpoint is always inserted at the original instruction;
3123 non-standard signals can't be explained by the breakpoint. */
2020b7ab 3124 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4e1c45ea 3125 || (! ecs->event_thread->trap_expected
237fc4c9 3126 && breakpoint_inserted_here_p (stop_pc)
2020b7ab
PA
3127 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_ILL
3128 || ecs->event_thread->stop_signal == TARGET_SIGNAL_SEGV
3129 || ecs->event_thread->stop_signal == TARGET_SIGNAL_EMT))
b0f4b84b
DJ
3130 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
3131 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 3132 {
2020b7ab 3133 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
488f131b 3134 {
527159b7 3135 if (debug_infrun)
8a9de0e4 3136 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
3137 stop_print_frame = 0;
3138 stop_stepping (ecs);
3139 return;
3140 }
c54cfec8
EZ
3141
3142 /* This is originated from start_remote(), start_inferior() and
3143 shared libraries hook functions. */
b0f4b84b 3144 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 3145 {
527159b7 3146 if (debug_infrun)
8a9de0e4 3147 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
3148 stop_stepping (ecs);
3149 return;
3150 }
3151
c54cfec8 3152 /* This originates from attach_command(). We need to overwrite
a0d21d28
PA
3153 the stop_signal here, because some kernels don't ignore a
3154 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
3155 See more comments in inferior.h. On the other hand, if we
a0ef4274 3156 get a non-SIGSTOP, report it to the user - assume the backend
a0d21d28
PA
3157 will handle the SIGSTOP if it should show up later.
3158
3159 Also consider that the attach is complete when we see a
3160 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
3161 target extended-remote report it instead of a SIGSTOP
3162 (e.g. gdbserver). We already rely on SIGTRAP being our
e0ba6746
PA
3163 signal, so this is no exception.
3164
3165 Also consider that the attach is complete when we see a
3166 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
3167 the target to stop all threads of the inferior, in case the
3168 low level attach operation doesn't stop them implicitly. If
3169 they weren't stopped implicitly, then the stub will report a
3170 TARGET_SIGNAL_0, meaning: stopped for no particular reason
3171 other than GDB's request. */
a0ef4274 3172 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
2020b7ab 3173 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_STOP
e0ba6746
PA
3174 || ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3175 || ecs->event_thread->stop_signal == TARGET_SIGNAL_0))
c54cfec8
EZ
3176 {
3177 stop_stepping (ecs);
2020b7ab 3178 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
c54cfec8
EZ
3179 return;
3180 }
3181
fba57f8f 3182 /* See if there is a breakpoint at the current PC. */
347bddb7 3183 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
fba57f8f
VP
3184
3185 /* Following in case break condition called a
3186 function. */
3187 stop_print_frame = 1;
488f131b 3188
73dd234f 3189 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
3190 at one stage in the past included checks for an inferior
3191 function call's call dummy's return breakpoint. The original
3192 comment, that went with the test, read:
73dd234f 3193
8fb3e588
AC
3194 ``End of a stack dummy. Some systems (e.g. Sony news) give
3195 another signal besides SIGTRAP, so check here as well as
3196 above.''
73dd234f 3197
8002d778 3198 If someone ever tries to get call dummys on a
73dd234f 3199 non-executable stack to work (where the target would stop
03cebad2
MK
3200 with something like a SIGSEGV), then those tests might need
3201 to be re-instated. Given, however, that the tests were only
73dd234f 3202 enabled when momentary breakpoints were not being used, I
03cebad2
MK
3203 suspect that it won't be the case.
3204
8fb3e588
AC
3205 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
3206 be necessary for call dummies on a non-executable stack on
3207 SPARC. */
73dd234f 3208
2020b7ab 3209 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
488f131b 3210 ecs->random_signal
347bddb7 3211 = !(bpstat_explains_signal (ecs->event_thread->stop_bpstat)
4e1c45ea
PA
3212 || ecs->event_thread->trap_expected
3213 || (ecs->event_thread->step_range_end
3214 && ecs->event_thread->step_resume_breakpoint == NULL));
488f131b
JB
3215 else
3216 {
347bddb7 3217 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
488f131b 3218 if (!ecs->random_signal)
2020b7ab 3219 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3220 }
3221 }
3222
3223 /* When we reach this point, we've pretty much decided
3224 that the reason for stopping must've been a random
3225 (unexpected) signal. */
3226
3227 else
3228 ecs->random_signal = 1;
488f131b 3229
04e68871 3230process_event_stop_test:
568d6575
UW
3231
3232 /* Re-fetch current thread's frame in case we did a
3233 "goto process_event_stop_test" above. */
3234 frame = get_current_frame ();
3235 gdbarch = get_frame_arch (frame);
3236
488f131b
JB
3237 /* For the program's own signals, act according to
3238 the signal handling tables. */
3239
3240 if (ecs->random_signal)
3241 {
3242 /* Signal not for debugging purposes. */
3243 int printed = 0;
3244
527159b7 3245 if (debug_infrun)
2020b7ab
PA
3246 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
3247 ecs->event_thread->stop_signal);
527159b7 3248
488f131b
JB
3249 stopped_by_random_signal = 1;
3250
2020b7ab 3251 if (signal_print[ecs->event_thread->stop_signal])
488f131b
JB
3252 {
3253 printed = 1;
3254 target_terminal_ours_for_output ();
2020b7ab 3255 print_stop_reason (SIGNAL_RECEIVED, ecs->event_thread->stop_signal);
488f131b 3256 }
252fbfc8
PA
3257 /* Always stop on signals if we're either just gaining control
3258 of the program, or the user explicitly requested this thread
3259 to remain stopped. */
d6b48e9c 3260 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 3261 || ecs->event_thread->stop_requested
d6b48e9c 3262 || signal_stop_state (ecs->event_thread->stop_signal))
488f131b
JB
3263 {
3264 stop_stepping (ecs);
3265 return;
3266 }
3267 /* If not going to stop, give terminal back
3268 if we took it away. */
3269 else if (printed)
3270 target_terminal_inferior ();
3271
3272 /* Clear the signal if it should not be passed. */
2020b7ab
PA
3273 if (signal_program[ecs->event_thread->stop_signal] == 0)
3274 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
488f131b 3275
fb14de7b 3276 if (ecs->event_thread->prev_pc == stop_pc
4e1c45ea
PA
3277 && ecs->event_thread->trap_expected
3278 && ecs->event_thread->step_resume_breakpoint == NULL)
68f53502
AC
3279 {
3280 /* We were just starting a new sequence, attempting to
3281 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 3282 Instead this signal arrives. This signal will take us out
68f53502
AC
3283 of the stepping range so GDB needs to remember to, when
3284 the signal handler returns, resume stepping off that
3285 breakpoint. */
3286 /* To simplify things, "continue" is forced to use the same
3287 code paths as single-step - set a breakpoint at the
3288 signal return address and then, once hit, step off that
3289 breakpoint. */
237fc4c9
PA
3290 if (debug_infrun)
3291 fprintf_unfiltered (gdb_stdlog,
3292 "infrun: signal arrived while stepping over "
3293 "breakpoint\n");
d3169d93 3294
568d6575 3295 insert_step_resume_breakpoint_at_frame (frame);
4e1c45ea 3296 ecs->event_thread->step_after_step_resume_breakpoint = 1;
9d799f85
AC
3297 keep_going (ecs);
3298 return;
68f53502 3299 }
9d799f85 3300
4e1c45ea 3301 if (ecs->event_thread->step_range_end != 0
2020b7ab 3302 && ecs->event_thread->stop_signal != TARGET_SIGNAL_0
4e1c45ea
PA
3303 && (ecs->event_thread->step_range_start <= stop_pc
3304 && stop_pc < ecs->event_thread->step_range_end)
568d6575 3305 && frame_id_eq (get_frame_id (frame),
4e1c45ea
PA
3306 ecs->event_thread->step_frame_id)
3307 && ecs->event_thread->step_resume_breakpoint == NULL)
d303a6c7
AC
3308 {
3309 /* The inferior is about to take a signal that will take it
3310 out of the single step range. Set a breakpoint at the
3311 current PC (which is presumably where the signal handler
3312 will eventually return) and then allow the inferior to
3313 run free.
3314
3315 Note that this is only needed for a signal delivered
3316 while in the single-step range. Nested signals aren't a
3317 problem as they eventually all return. */
237fc4c9
PA
3318 if (debug_infrun)
3319 fprintf_unfiltered (gdb_stdlog,
3320 "infrun: signal may take us out of "
3321 "single-step range\n");
3322
568d6575 3323 insert_step_resume_breakpoint_at_frame (frame);
9d799f85
AC
3324 keep_going (ecs);
3325 return;
d303a6c7 3326 }
9d799f85
AC
3327
3328 /* Note: step_resume_breakpoint may be non-NULL. This occures
3329 when either there's a nested signal, or when there's a
3330 pending signal enabled just as the signal handler returns
3331 (leaving the inferior at the step-resume-breakpoint without
3332 actually executing it). Either way continue until the
3333 breakpoint is really hit. */
488f131b
JB
3334 keep_going (ecs);
3335 return;
3336 }
3337
3338 /* Handle cases caused by hitting a breakpoint. */
3339 {
3340 CORE_ADDR jmp_buf_pc;
3341 struct bpstat_what what;
3342
347bddb7 3343 what = bpstat_what (ecs->event_thread->stop_bpstat);
488f131b
JB
3344
3345 if (what.call_dummy)
3346 {
3347 stop_stack_dummy = 1;
c5aa993b 3348 }
c906108c 3349
488f131b 3350 switch (what.main_action)
c5aa993b 3351 {
488f131b 3352 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
611c83ae
PA
3353 /* If we hit the breakpoint at longjmp while stepping, we
3354 install a momentary breakpoint at the target of the
3355 jmp_buf. */
3356
3357 if (debug_infrun)
3358 fprintf_unfiltered (gdb_stdlog,
3359 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
3360
4e1c45ea 3361 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 3362
568d6575
UW
3363 if (!gdbarch_get_longjmp_target_p (gdbarch)
3364 || !gdbarch_get_longjmp_target (gdbarch, frame, &jmp_buf_pc))
c5aa993b 3365 {
611c83ae
PA
3366 if (debug_infrun)
3367 fprintf_unfiltered (gdb_stdlog, "\
3368infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
488f131b 3369 keep_going (ecs);
104c1213 3370 return;
c5aa993b 3371 }
488f131b 3372
611c83ae
PA
3373 /* We're going to replace the current step-resume breakpoint
3374 with a longjmp-resume breakpoint. */
4e1c45ea 3375 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae
PA
3376
3377 /* Insert a breakpoint at resume address. */
3378 insert_longjmp_resume_breakpoint (jmp_buf_pc);
c906108c 3379
488f131b
JB
3380 keep_going (ecs);
3381 return;
c906108c 3382
488f131b 3383 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
527159b7 3384 if (debug_infrun)
611c83ae
PA
3385 fprintf_unfiltered (gdb_stdlog,
3386 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
3387
4e1c45ea
PA
3388 gdb_assert (ecs->event_thread->step_resume_breakpoint != NULL);
3389 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae 3390
414c69f7 3391 ecs->event_thread->stop_step = 1;
611c83ae
PA
3392 print_stop_reason (END_STEPPING_RANGE, 0);
3393 stop_stepping (ecs);
3394 return;
488f131b
JB
3395
3396 case BPSTAT_WHAT_SINGLE:
527159b7 3397 if (debug_infrun)
8802d8ed 3398 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4e1c45ea 3399 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b
JB
3400 /* Still need to check other stuff, at least the case
3401 where we are stepping and step out of the right range. */
3402 break;
c906108c 3403
488f131b 3404 case BPSTAT_WHAT_STOP_NOISY:
527159b7 3405 if (debug_infrun)
8802d8ed 3406 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 3407 stop_print_frame = 1;
c906108c 3408
d303a6c7
AC
3409 /* We are about to nuke the step_resume_breakpointt via the
3410 cleanup chain, so no need to worry about it here. */
c5aa993b 3411
488f131b
JB
3412 stop_stepping (ecs);
3413 return;
c5aa993b 3414
488f131b 3415 case BPSTAT_WHAT_STOP_SILENT:
527159b7 3416 if (debug_infrun)
8802d8ed 3417 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 3418 stop_print_frame = 0;
c5aa993b 3419
d303a6c7
AC
3420 /* We are about to nuke the step_resume_breakpoin via the
3421 cleanup chain, so no need to worry about it here. */
c5aa993b 3422
488f131b 3423 stop_stepping (ecs);
e441088d 3424 return;
c5aa993b 3425
488f131b 3426 case BPSTAT_WHAT_STEP_RESUME:
527159b7 3427 if (debug_infrun)
8802d8ed 3428 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
527159b7 3429
4e1c45ea
PA
3430 delete_step_resume_breakpoint (ecs->event_thread);
3431 if (ecs->event_thread->step_after_step_resume_breakpoint)
68f53502
AC
3432 {
3433 /* Back when the step-resume breakpoint was inserted, we
3434 were trying to single-step off a breakpoint. Go back
3435 to doing that. */
4e1c45ea
PA
3436 ecs->event_thread->step_after_step_resume_breakpoint = 0;
3437 ecs->event_thread->stepping_over_breakpoint = 1;
68f53502
AC
3438 keep_going (ecs);
3439 return;
3440 }
b2175913
MS
3441 if (stop_pc == ecs->stop_func_start
3442 && execution_direction == EXEC_REVERSE)
3443 {
3444 /* We are stepping over a function call in reverse, and
3445 just hit the step-resume breakpoint at the start
3446 address of the function. Go back to single-stepping,
3447 which should take us back to the function call. */
3448 ecs->event_thread->stepping_over_breakpoint = 1;
3449 keep_going (ecs);
3450 return;
3451 }
488f131b
JB
3452 break;
3453
488f131b 3454 case BPSTAT_WHAT_CHECK_SHLIBS:
c906108c 3455 {
527159b7 3456 if (debug_infrun)
8802d8ed 3457 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
488f131b
JB
3458
3459 /* Check for any newly added shared libraries if we're
3460 supposed to be adding them automatically. Switch
3461 terminal for any messages produced by
3462 breakpoint_re_set. */
3463 target_terminal_ours_for_output ();
aff6338a 3464 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
3465 stack's section table is kept up-to-date. Architectures,
3466 (e.g., PPC64), use the section table to perform
3467 operations such as address => section name and hence
3468 require the table to contain all sections (including
3469 those found in shared libraries). */
a77053c2 3470#ifdef SOLIB_ADD
aff6338a 3471 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
a77053c2
MK
3472#else
3473 solib_add (NULL, 0, &current_target, auto_solib_add);
3474#endif
488f131b
JB
3475 target_terminal_inferior ();
3476
488f131b
JB
3477 /* If requested, stop when the dynamic linker notifies
3478 gdb of events. This allows the user to get control
3479 and place breakpoints in initializer routines for
3480 dynamically loaded objects (among other things). */
877522db 3481 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 3482 {
488f131b 3483 stop_stepping (ecs);
d4f3574e
SS
3484 return;
3485 }
c5aa993b 3486 else
c5aa993b 3487 {
488f131b 3488 /* We want to step over this breakpoint, then keep going. */
4e1c45ea 3489 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 3490 break;
c5aa993b 3491 }
488f131b 3492 }
488f131b 3493 break;
c906108c 3494
488f131b
JB
3495 case BPSTAT_WHAT_LAST:
3496 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 3497
488f131b
JB
3498 case BPSTAT_WHAT_KEEP_CHECKING:
3499 break;
3500 }
3501 }
c906108c 3502
488f131b
JB
3503 /* We come here if we hit a breakpoint but should not
3504 stop for it. Possibly we also were stepping
3505 and should stop for that. So fall through and
3506 test for stepping. But, if not stepping,
3507 do not stop. */
c906108c 3508
a7212384
UW
3509 /* In all-stop mode, if we're currently stepping but have stopped in
3510 some other thread, we need to switch back to the stepped thread. */
3511 if (!non_stop)
3512 {
3513 struct thread_info *tp;
b3444185 3514 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
a7212384
UW
3515 ecs->event_thread);
3516 if (tp)
3517 {
3518 /* However, if the current thread is blocked on some internal
3519 breakpoint, and we simply need to step over that breakpoint
3520 to get it going again, do that first. */
3521 if ((ecs->event_thread->trap_expected
3522 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
3523 || ecs->event_thread->stepping_over_breakpoint)
3524 {
3525 keep_going (ecs);
3526 return;
3527 }
3528
66852e9c
PA
3529 /* If the stepping thread exited, then don't try to switch
3530 back and resume it, which could fail in several different
3531 ways depending on the target. Instead, just keep going.
3532
3533 We can find a stepping dead thread in the thread list in
3534 two cases:
3535
3536 - The target supports thread exit events, and when the
3537 target tries to delete the thread from the thread list,
3538 inferior_ptid pointed at the exiting thread. In such
3539 case, calling delete_thread does not really remove the
3540 thread from the list; instead, the thread is left listed,
3541 with 'exited' state.
3542
3543 - The target's debug interface does not support thread
3544 exit events, and so we have no idea whatsoever if the
3545 previously stepping thread is still alive. For that
3546 reason, we need to synchronously query the target
3547 now. */
b3444185
PA
3548 if (is_exited (tp->ptid)
3549 || !target_thread_alive (tp->ptid))
3550 {
3551 if (debug_infrun)
3552 fprintf_unfiltered (gdb_stdlog, "\
3553infrun: not switching back to stepped thread, it has vanished\n");
3554
3555 delete_thread (tp->ptid);
3556 keep_going (ecs);
3557 return;
3558 }
3559
a7212384
UW
3560 /* Otherwise, we no longer expect a trap in the current thread.
3561 Clear the trap_expected flag before switching back -- this is
3562 what keep_going would do as well, if we called it. */
3563 ecs->event_thread->trap_expected = 0;
3564
3565 if (debug_infrun)
3566 fprintf_unfiltered (gdb_stdlog,
3567 "infrun: switching back to stepped thread\n");
3568
3569 ecs->event_thread = tp;
3570 ecs->ptid = tp->ptid;
3571 context_switch (ecs->ptid);
3572 keep_going (ecs);
3573 return;
3574 }
3575 }
3576
9d1ff73f
MS
3577 /* Are we stepping to get the inferior out of the dynamic linker's
3578 hook (and possibly the dld itself) after catching a shlib
3579 event? */
4e1c45ea 3580 if (ecs->event_thread->stepping_through_solib_after_catch)
488f131b
JB
3581 {
3582#if defined(SOLIB_ADD)
3583 /* Have we reached our destination? If not, keep going. */
3584 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
3585 {
527159b7 3586 if (debug_infrun)
8a9de0e4 3587 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
4e1c45ea 3588 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 3589 keep_going (ecs);
104c1213 3590 return;
488f131b
JB
3591 }
3592#endif
527159b7 3593 if (debug_infrun)
8a9de0e4 3594 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
488f131b
JB
3595 /* Else, stop and report the catchpoint(s) whose triggering
3596 caused us to begin stepping. */
4e1c45ea 3597 ecs->event_thread->stepping_through_solib_after_catch = 0;
347bddb7
PA
3598 bpstat_clear (&ecs->event_thread->stop_bpstat);
3599 ecs->event_thread->stop_bpstat
3600 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
4e1c45ea 3601 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
488f131b
JB
3602 stop_print_frame = 1;
3603 stop_stepping (ecs);
3604 return;
3605 }
c906108c 3606
4e1c45ea 3607 if (ecs->event_thread->step_resume_breakpoint)
488f131b 3608 {
527159b7 3609 if (debug_infrun)
d3169d93
DJ
3610 fprintf_unfiltered (gdb_stdlog,
3611 "infrun: step-resume breakpoint is inserted\n");
527159b7 3612
488f131b
JB
3613 /* Having a step-resume breakpoint overrides anything
3614 else having to do with stepping commands until
3615 that breakpoint is reached. */
488f131b
JB
3616 keep_going (ecs);
3617 return;
3618 }
c5aa993b 3619
4e1c45ea 3620 if (ecs->event_thread->step_range_end == 0)
488f131b 3621 {
527159b7 3622 if (debug_infrun)
8a9de0e4 3623 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 3624 /* Likewise if we aren't even stepping. */
488f131b
JB
3625 keep_going (ecs);
3626 return;
3627 }
c5aa993b 3628
488f131b 3629 /* If stepping through a line, keep going if still within it.
c906108c 3630
488f131b
JB
3631 Note that step_range_end is the address of the first instruction
3632 beyond the step range, and NOT the address of the last instruction
31410e84
MS
3633 within it!
3634
3635 Note also that during reverse execution, we may be stepping
3636 through a function epilogue and therefore must detect when
3637 the current-frame changes in the middle of a line. */
3638
4e1c45ea 3639 if (stop_pc >= ecs->event_thread->step_range_start
31410e84
MS
3640 && stop_pc < ecs->event_thread->step_range_end
3641 && (execution_direction != EXEC_REVERSE
388a8562 3642 || frame_id_eq (get_frame_id (frame),
31410e84 3643 ecs->event_thread->step_frame_id)))
488f131b 3644 {
527159b7 3645 if (debug_infrun)
b2175913 3646 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
4e1c45ea
PA
3647 paddr_nz (ecs->event_thread->step_range_start),
3648 paddr_nz (ecs->event_thread->step_range_end));
b2175913
MS
3649
3650 /* When stepping backward, stop at beginning of line range
3651 (unless it's the function entry point, in which case
3652 keep going back to the call point). */
3653 if (stop_pc == ecs->event_thread->step_range_start
3654 && stop_pc != ecs->stop_func_start
3655 && execution_direction == EXEC_REVERSE)
3656 {
3657 ecs->event_thread->stop_step = 1;
3658 print_stop_reason (END_STEPPING_RANGE, 0);
3659 stop_stepping (ecs);
3660 }
3661 else
3662 keep_going (ecs);
3663
488f131b
JB
3664 return;
3665 }
c5aa993b 3666
488f131b 3667 /* We stepped out of the stepping range. */
c906108c 3668
488f131b 3669 /* If we are stepping at the source level and entered the runtime
388a8562
MS
3670 loader dynamic symbol resolution code...
3671
3672 EXEC_FORWARD: we keep on single stepping until we exit the run
3673 time loader code and reach the callee's address.
3674
3675 EXEC_REVERSE: we've already executed the callee (backward), and
3676 the runtime loader code is handled just like any other
3677 undebuggable function call. Now we need only keep stepping
3678 backward through the trampoline code, and that's handled further
3679 down, so there is nothing for us to do here. */
3680
3681 if (execution_direction != EXEC_REVERSE
3682 && ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 3683 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 3684 {
4c8c40e6 3685 CORE_ADDR pc_after_resolver =
568d6575 3686 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 3687
527159b7 3688 if (debug_infrun)
8a9de0e4 3689 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
527159b7 3690
488f131b
JB
3691 if (pc_after_resolver)
3692 {
3693 /* Set up a step-resume breakpoint at the address
3694 indicated by SKIP_SOLIB_RESOLVER. */
3695 struct symtab_and_line sr_sal;
fe39c653 3696 init_sal (&sr_sal);
488f131b
JB
3697 sr_sal.pc = pc_after_resolver;
3698
44cbf7b5 3699 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c5aa993b 3700 }
c906108c 3701
488f131b
JB
3702 keep_going (ecs);
3703 return;
3704 }
c906108c 3705
4e1c45ea 3706 if (ecs->event_thread->step_range_end != 1
078130d0
PA
3707 && (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3708 || ecs->event_thread->step_over_calls == STEP_OVER_ALL)
568d6575 3709 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 3710 {
527159b7 3711 if (debug_infrun)
8a9de0e4 3712 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
42edda50 3713 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
3714 a signal trampoline (either by a signal being delivered or by
3715 the signal handler returning). Just single-step until the
3716 inferior leaves the trampoline (either by calling the handler
3717 or returning). */
488f131b
JB
3718 keep_going (ecs);
3719 return;
3720 }
c906108c 3721
c17eaafe
DJ
3722 /* Check for subroutine calls. The check for the current frame
3723 equalling the step ID is not necessary - the check of the
3724 previous frame's ID is sufficient - but it is a common case and
3725 cheaper than checking the previous frame's ID.
14e60db5
DJ
3726
3727 NOTE: frame_id_eq will never report two invalid frame IDs as
3728 being equal, so to get into this block, both the current and
3729 previous frame must have valid frame IDs. */
568d6575 3730 if (!frame_id_eq (get_frame_id (frame),
4e1c45ea 3731 ecs->event_thread->step_frame_id)
568d6575 3732 && (frame_id_eq (frame_unwind_id (frame),
b2175913
MS
3733 ecs->event_thread->step_frame_id)
3734 || execution_direction == EXEC_REVERSE))
488f131b 3735 {
95918acb 3736 CORE_ADDR real_stop_pc;
8fb3e588 3737
527159b7 3738 if (debug_infrun)
8a9de0e4 3739 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 3740
078130d0 3741 if ((ecs->event_thread->step_over_calls == STEP_OVER_NONE)
4e1c45ea 3742 || ((ecs->event_thread->step_range_end == 1)
d80b854b 3743 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 3744 ecs->stop_func_start)))
95918acb
AC
3745 {
3746 /* I presume that step_over_calls is only 0 when we're
3747 supposed to be stepping at the assembly language level
3748 ("stepi"). Just stop. */
3749 /* Also, maybe we just did a "nexti" inside a prolog, so we
3750 thought it was a subroutine call but it was not. Stop as
3751 well. FENN */
388a8562 3752 /* And this works the same backward as frontward. MVS */
414c69f7 3753 ecs->event_thread->stop_step = 1;
95918acb
AC
3754 print_stop_reason (END_STEPPING_RANGE, 0);
3755 stop_stepping (ecs);
3756 return;
3757 }
8fb3e588 3758
388a8562
MS
3759 /* Reverse stepping through solib trampolines. */
3760
3761 if (execution_direction == EXEC_REVERSE
3762 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
3763 || (ecs->stop_func_start == 0
3764 && in_solib_dynsym_resolve_code (stop_pc))))
3765 {
3766 /* Any solib trampoline code can be handled in reverse
3767 by simply continuing to single-step. We have already
3768 executed the solib function (backwards), and a few
3769 steps will take us back through the trampoline to the
3770 caller. */
3771 keep_going (ecs);
3772 return;
3773 }
3774
078130d0 3775 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
8567c30f 3776 {
b2175913
MS
3777 /* We're doing a "next".
3778
3779 Normal (forward) execution: set a breakpoint at the
3780 callee's return address (the address at which the caller
3781 will resume).
3782
3783 Reverse (backward) execution. set the step-resume
3784 breakpoint at the start of the function that we just
3785 stepped into (backwards), and continue to there. When we
6130d0b7 3786 get there, we'll need to single-step back to the caller. */
b2175913
MS
3787
3788 if (execution_direction == EXEC_REVERSE)
3789 {
3790 struct symtab_and_line sr_sal;
3067f6e5 3791
388a8562
MS
3792 /* Normal function call return (static or dynamic). */
3793 init_sal (&sr_sal);
3794 sr_sal.pc = ecs->stop_func_start;
3795 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
b2175913
MS
3796 }
3797 else
568d6575 3798 insert_step_resume_breakpoint_at_caller (frame);
b2175913 3799
8567c30f
AC
3800 keep_going (ecs);
3801 return;
3802 }
a53c66de 3803
95918acb 3804 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
3805 calling routine and the real function), locate the real
3806 function. That's what tells us (a) whether we want to step
3807 into it at all, and (b) what prologue we want to run to the
3808 end of, if we do step into it. */
568d6575 3809 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 3810 if (real_stop_pc == 0)
568d6575 3811 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
3812 if (real_stop_pc != 0)
3813 ecs->stop_func_start = real_stop_pc;
8fb3e588 3814
db5f024e 3815 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
3816 {
3817 struct symtab_and_line sr_sal;
3818 init_sal (&sr_sal);
3819 sr_sal.pc = ecs->stop_func_start;
3820
44cbf7b5 3821 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
8fb3e588
AC
3822 keep_going (ecs);
3823 return;
1b2bfbb9
RC
3824 }
3825
95918acb 3826 /* If we have line number information for the function we are
8fb3e588 3827 thinking of stepping into, step into it.
95918acb 3828
8fb3e588
AC
3829 If there are several symtabs at that PC (e.g. with include
3830 files), just want to know whether *any* of them have line
3831 numbers. find_pc_line handles this. */
95918acb
AC
3832 {
3833 struct symtab_and_line tmp_sal;
8fb3e588 3834
95918acb
AC
3835 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
3836 if (tmp_sal.line != 0)
3837 {
b2175913 3838 if (execution_direction == EXEC_REVERSE)
568d6575 3839 handle_step_into_function_backward (gdbarch, ecs);
b2175913 3840 else
568d6575 3841 handle_step_into_function (gdbarch, ecs);
95918acb
AC
3842 return;
3843 }
3844 }
3845
3846 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
3847 set, we stop the step so that the user has a chance to switch
3848 in assembly mode. */
078130d0
PA
3849 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3850 && step_stop_if_no_debug)
95918acb 3851 {
414c69f7 3852 ecs->event_thread->stop_step = 1;
95918acb
AC
3853 print_stop_reason (END_STEPPING_RANGE, 0);
3854 stop_stepping (ecs);
3855 return;
3856 }
3857
b2175913
MS
3858 if (execution_direction == EXEC_REVERSE)
3859 {
3860 /* Set a breakpoint at callee's start address.
3861 From there we can step once and be back in the caller. */
3862 struct symtab_and_line sr_sal;
3863 init_sal (&sr_sal);
3864 sr_sal.pc = ecs->stop_func_start;
3865 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3866 }
3867 else
3868 /* Set a breakpoint at callee's return address (the address
3869 at which the caller will resume). */
568d6575 3870 insert_step_resume_breakpoint_at_caller (frame);
b2175913 3871
95918acb 3872 keep_going (ecs);
488f131b 3873 return;
488f131b 3874 }
c906108c 3875
488f131b
JB
3876 /* If we're in the return path from a shared library trampoline,
3877 we want to proceed through the trampoline when stepping. */
568d6575 3878 if (gdbarch_in_solib_return_trampoline (gdbarch,
e76f05fa 3879 stop_pc, ecs->stop_func_name))
488f131b 3880 {
488f131b 3881 /* Determine where this trampoline returns. */
52f729a7 3882 CORE_ADDR real_stop_pc;
568d6575 3883 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
c906108c 3884
527159b7 3885 if (debug_infrun)
8a9de0e4 3886 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
527159b7 3887
488f131b 3888 /* Only proceed through if we know where it's going. */
d764a824 3889 if (real_stop_pc)
488f131b
JB
3890 {
3891 /* And put the step-breakpoint there and go until there. */
3892 struct symtab_and_line sr_sal;
3893
fe39c653 3894 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 3895 sr_sal.pc = real_stop_pc;
488f131b 3896 sr_sal.section = find_pc_overlay (sr_sal.pc);
44cbf7b5
AC
3897
3898 /* Do not specify what the fp should be when we stop since
3899 on some machines the prologue is where the new fp value
3900 is established. */
3901 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c906108c 3902
488f131b
JB
3903 /* Restart without fiddling with the step ranges or
3904 other state. */
3905 keep_going (ecs);
3906 return;
3907 }
3908 }
c906108c 3909
2afb61aa 3910 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 3911
1b2bfbb9
RC
3912 /* NOTE: tausq/2004-05-24: This if block used to be done before all
3913 the trampoline processing logic, however, there are some trampolines
3914 that have no names, so we should do trampoline handling first. */
078130d0 3915 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 3916 && ecs->stop_func_name == NULL
2afb61aa 3917 && stop_pc_sal.line == 0)
1b2bfbb9 3918 {
527159b7 3919 if (debug_infrun)
8a9de0e4 3920 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
527159b7 3921
1b2bfbb9 3922 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
3923 undebuggable function (where there is no debugging information
3924 and no line number corresponding to the address where the
1b2bfbb9
RC
3925 inferior stopped). Since we want to skip this kind of code,
3926 we keep going until the inferior returns from this
14e60db5
DJ
3927 function - unless the user has asked us not to (via
3928 set step-mode) or we no longer know how to get back
3929 to the call site. */
3930 if (step_stop_if_no_debug
568d6575 3931 || !frame_id_p (frame_unwind_id (frame)))
1b2bfbb9
RC
3932 {
3933 /* If we have no line number and the step-stop-if-no-debug
3934 is set, we stop the step so that the user has a chance to
3935 switch in assembly mode. */
414c69f7 3936 ecs->event_thread->stop_step = 1;
1b2bfbb9
RC
3937 print_stop_reason (END_STEPPING_RANGE, 0);
3938 stop_stepping (ecs);
3939 return;
3940 }
3941 else
3942 {
3943 /* Set a breakpoint at callee's return address (the address
3944 at which the caller will resume). */
568d6575 3945 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
3946 keep_going (ecs);
3947 return;
3948 }
3949 }
3950
4e1c45ea 3951 if (ecs->event_thread->step_range_end == 1)
1b2bfbb9
RC
3952 {
3953 /* It is stepi or nexti. We always want to stop stepping after
3954 one instruction. */
527159b7 3955 if (debug_infrun)
8a9de0e4 3956 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
414c69f7 3957 ecs->event_thread->stop_step = 1;
1b2bfbb9
RC
3958 print_stop_reason (END_STEPPING_RANGE, 0);
3959 stop_stepping (ecs);
3960 return;
3961 }
3962
2afb61aa 3963 if (stop_pc_sal.line == 0)
488f131b
JB
3964 {
3965 /* We have no line number information. That means to stop
3966 stepping (does this always happen right after one instruction,
3967 when we do "s" in a function with no line numbers,
3968 or can this happen as a result of a return or longjmp?). */
527159b7 3969 if (debug_infrun)
8a9de0e4 3970 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
414c69f7 3971 ecs->event_thread->stop_step = 1;
488f131b
JB
3972 print_stop_reason (END_STEPPING_RANGE, 0);
3973 stop_stepping (ecs);
3974 return;
3975 }
c906108c 3976
2afb61aa 3977 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
3978 && (ecs->event_thread->current_line != stop_pc_sal.line
3979 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
3980 {
3981 /* We are at the start of a different line. So stop. Note that
3982 we don't stop if we step into the middle of a different line.
3983 That is said to make things like for (;;) statements work
3984 better. */
527159b7 3985 if (debug_infrun)
8a9de0e4 3986 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
414c69f7 3987 ecs->event_thread->stop_step = 1;
488f131b
JB
3988 print_stop_reason (END_STEPPING_RANGE, 0);
3989 stop_stepping (ecs);
3990 return;
3991 }
c906108c 3992
488f131b 3993 /* We aren't done stepping.
c906108c 3994
488f131b
JB
3995 Optimize by setting the stepping range to the line.
3996 (We might not be in the original line, but if we entered a
3997 new line in mid-statement, we continue stepping. This makes
3998 things like for(;;) statements work better.) */
c906108c 3999
4e1c45ea
PA
4000 ecs->event_thread->step_range_start = stop_pc_sal.pc;
4001 ecs->event_thread->step_range_end = stop_pc_sal.end;
568d6575 4002 ecs->event_thread->step_frame_id = get_frame_id (frame);
4e1c45ea
PA
4003 ecs->event_thread->current_line = stop_pc_sal.line;
4004 ecs->event_thread->current_symtab = stop_pc_sal.symtab;
488f131b 4005
527159b7 4006 if (debug_infrun)
8a9de0e4 4007 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 4008 keep_going (ecs);
104c1213
JM
4009}
4010
b3444185 4011/* Is thread TP in the middle of single-stepping? */
104c1213 4012
a7212384 4013static int
b3444185 4014currently_stepping (struct thread_info *tp)
a7212384 4015{
b3444185
PA
4016 return ((tp->step_range_end && tp->step_resume_breakpoint == NULL)
4017 || tp->trap_expected
4018 || tp->stepping_through_solib_after_catch
4019 || bpstat_should_step ());
a7212384
UW
4020}
4021
b3444185
PA
4022/* Returns true if any thread *but* the one passed in "data" is in the
4023 middle of stepping or of handling a "next". */
a7212384 4024
104c1213 4025static int
b3444185 4026currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
104c1213 4027{
b3444185
PA
4028 if (tp == data)
4029 return 0;
4030
4031 return (tp->step_range_end
4032 || tp->trap_expected
4033 || tp->stepping_through_solib_after_catch);
104c1213 4034}
c906108c 4035
b2175913
MS
4036/* Inferior has stepped into a subroutine call with source code that
4037 we should not step over. Do step to the first line of code in
4038 it. */
c2c6d25f
JM
4039
4040static void
568d6575
UW
4041handle_step_into_function (struct gdbarch *gdbarch,
4042 struct execution_control_state *ecs)
c2c6d25f
JM
4043{
4044 struct symtab *s;
2afb61aa 4045 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f
JM
4046
4047 s = find_pc_symtab (stop_pc);
4048 if (s && s->language != language_asm)
568d6575 4049 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 4050 ecs->stop_func_start);
c2c6d25f 4051
2afb61aa 4052 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
4053 /* Use the step_resume_break to step until the end of the prologue,
4054 even if that involves jumps (as it seems to on the vax under
4055 4.2). */
4056 /* If the prologue ends in the middle of a source line, continue to
4057 the end of that source line (if it is still within the function).
4058 Otherwise, just go to end of prologue. */
2afb61aa
PA
4059 if (stop_func_sal.end
4060 && stop_func_sal.pc != ecs->stop_func_start
4061 && stop_func_sal.end < ecs->stop_func_end)
4062 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 4063
2dbd5e30
KB
4064 /* Architectures which require breakpoint adjustment might not be able
4065 to place a breakpoint at the computed address. If so, the test
4066 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
4067 ecs->stop_func_start to an address at which a breakpoint may be
4068 legitimately placed.
8fb3e588 4069
2dbd5e30
KB
4070 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
4071 made, GDB will enter an infinite loop when stepping through
4072 optimized code consisting of VLIW instructions which contain
4073 subinstructions corresponding to different source lines. On
4074 FR-V, it's not permitted to place a breakpoint on any but the
4075 first subinstruction of a VLIW instruction. When a breakpoint is
4076 set, GDB will adjust the breakpoint address to the beginning of
4077 the VLIW instruction. Thus, we need to make the corresponding
4078 adjustment here when computing the stop address. */
8fb3e588 4079
568d6575 4080 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
4081 {
4082 ecs->stop_func_start
568d6575 4083 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 4084 ecs->stop_func_start);
2dbd5e30
KB
4085 }
4086
c2c6d25f
JM
4087 if (ecs->stop_func_start == stop_pc)
4088 {
4089 /* We are already there: stop now. */
414c69f7 4090 ecs->event_thread->stop_step = 1;
488f131b 4091 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
4092 stop_stepping (ecs);
4093 return;
4094 }
4095 else
4096 {
4097 /* Put the step-breakpoint there and go until there. */
fe39c653 4098 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
4099 sr_sal.pc = ecs->stop_func_start;
4100 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
44cbf7b5 4101
c2c6d25f 4102 /* Do not specify what the fp should be when we stop since on
488f131b
JB
4103 some machines the prologue is where the new fp value is
4104 established. */
44cbf7b5 4105 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c2c6d25f
JM
4106
4107 /* And make sure stepping stops right away then. */
4e1c45ea 4108 ecs->event_thread->step_range_end = ecs->event_thread->step_range_start;
c2c6d25f
JM
4109 }
4110 keep_going (ecs);
4111}
d4f3574e 4112
b2175913
MS
4113/* Inferior has stepped backward into a subroutine call with source
4114 code that we should not step over. Do step to the beginning of the
4115 last line of code in it. */
4116
4117static void
568d6575
UW
4118handle_step_into_function_backward (struct gdbarch *gdbarch,
4119 struct execution_control_state *ecs)
b2175913
MS
4120{
4121 struct symtab *s;
4122 struct symtab_and_line stop_func_sal, sr_sal;
4123
4124 s = find_pc_symtab (stop_pc);
4125 if (s && s->language != language_asm)
568d6575 4126 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
4127 ecs->stop_func_start);
4128
4129 stop_func_sal = find_pc_line (stop_pc, 0);
4130
4131 /* OK, we're just going to keep stepping here. */
4132 if (stop_func_sal.pc == stop_pc)
4133 {
4134 /* We're there already. Just stop stepping now. */
4135 ecs->event_thread->stop_step = 1;
4136 print_stop_reason (END_STEPPING_RANGE, 0);
4137 stop_stepping (ecs);
4138 }
4139 else
4140 {
4141 /* Else just reset the step range and keep going.
4142 No step-resume breakpoint, they don't work for
4143 epilogues, which can have multiple entry paths. */
4144 ecs->event_thread->step_range_start = stop_func_sal.pc;
4145 ecs->event_thread->step_range_end = stop_func_sal.end;
4146 keep_going (ecs);
4147 }
4148 return;
4149}
4150
d3169d93 4151/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
4152 This is used to both functions and to skip over code. */
4153
4154static void
4155insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
4156 struct frame_id sr_id)
4157{
611c83ae
PA
4158 /* There should never be more than one step-resume or longjmp-resume
4159 breakpoint per thread, so we should never be setting a new
44cbf7b5 4160 step_resume_breakpoint when one is already active. */
4e1c45ea 4161 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
d3169d93
DJ
4162
4163 if (debug_infrun)
4164 fprintf_unfiltered (gdb_stdlog,
4165 "infrun: inserting step-resume breakpoint at 0x%s\n",
4166 paddr_nz (sr_sal.pc));
4167
4e1c45ea
PA
4168 inferior_thread ()->step_resume_breakpoint
4169 = set_momentary_breakpoint (sr_sal, sr_id, bp_step_resume);
44cbf7b5 4170}
7ce450bd 4171
d3169d93 4172/* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
14e60db5 4173 to skip a potential signal handler.
7ce450bd 4174
14e60db5
DJ
4175 This is called with the interrupted function's frame. The signal
4176 handler, when it returns, will resume the interrupted function at
4177 RETURN_FRAME.pc. */
d303a6c7
AC
4178
4179static void
44cbf7b5 4180insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 4181{
568d6575 4182 struct gdbarch *gdbarch = get_frame_arch (return_frame);
d303a6c7
AC
4183 struct symtab_and_line sr_sal;
4184
f4c1edd8 4185 gdb_assert (return_frame != NULL);
d303a6c7
AC
4186 init_sal (&sr_sal); /* initialize to zeros */
4187
568d6575 4188 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7
AC
4189 sr_sal.section = find_pc_overlay (sr_sal.pc);
4190
44cbf7b5 4191 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
d303a6c7
AC
4192}
4193
14e60db5
DJ
4194/* Similar to insert_step_resume_breakpoint_at_frame, except
4195 but a breakpoint at the previous frame's PC. This is used to
4196 skip a function after stepping into it (for "next" or if the called
4197 function has no debugging information).
4198
4199 The current function has almost always been reached by single
4200 stepping a call or return instruction. NEXT_FRAME belongs to the
4201 current function, and the breakpoint will be set at the caller's
4202 resume address.
4203
4204 This is a separate function rather than reusing
4205 insert_step_resume_breakpoint_at_frame in order to avoid
4206 get_prev_frame, which may stop prematurely (see the implementation
eb2f4a08 4207 of frame_unwind_id for an example). */
14e60db5
DJ
4208
4209static void
4210insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
4211{
568d6575 4212 struct gdbarch *gdbarch = get_frame_arch (next_frame);
14e60db5
DJ
4213 struct symtab_and_line sr_sal;
4214
4215 /* We shouldn't have gotten here if we don't know where the call site
4216 is. */
eb2f4a08 4217 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
14e60db5
DJ
4218
4219 init_sal (&sr_sal); /* initialize to zeros */
4220
568d6575 4221 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, frame_pc_unwind (next_frame));
14e60db5
DJ
4222 sr_sal.section = find_pc_overlay (sr_sal.pc);
4223
eb2f4a08 4224 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
14e60db5
DJ
4225}
4226
611c83ae
PA
4227/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
4228 new breakpoint at the target of a jmp_buf. The handling of
4229 longjmp-resume uses the same mechanisms used for handling
4230 "step-resume" breakpoints. */
4231
4232static void
4233insert_longjmp_resume_breakpoint (CORE_ADDR pc)
4234{
4235 /* There should never be more than one step-resume or longjmp-resume
4236 breakpoint per thread, so we should never be setting a new
4237 longjmp_resume_breakpoint when one is already active. */
4e1c45ea 4238 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
611c83ae
PA
4239
4240 if (debug_infrun)
4241 fprintf_unfiltered (gdb_stdlog,
4242 "infrun: inserting longjmp-resume breakpoint at 0x%s\n",
4243 paddr_nz (pc));
4244
4e1c45ea 4245 inferior_thread ()->step_resume_breakpoint =
611c83ae
PA
4246 set_momentary_breakpoint_at_pc (pc, bp_longjmp_resume);
4247}
4248
104c1213
JM
4249static void
4250stop_stepping (struct execution_control_state *ecs)
4251{
527159b7 4252 if (debug_infrun)
8a9de0e4 4253 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 4254
cd0fc7c3
SS
4255 /* Let callers know we don't want to wait for the inferior anymore. */
4256 ecs->wait_some_more = 0;
4257}
4258
d4f3574e
SS
4259/* This function handles various cases where we need to continue
4260 waiting for the inferior. */
4261/* (Used to be the keep_going: label in the old wait_for_inferior) */
4262
4263static void
4264keep_going (struct execution_control_state *ecs)
4265{
d4f3574e 4266 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
4267 ecs->event_thread->prev_pc
4268 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 4269
d4f3574e
SS
4270 /* If we did not do break;, it means we should keep running the
4271 inferior and not return to debugger. */
4272
2020b7ab
PA
4273 if (ecs->event_thread->trap_expected
4274 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
d4f3574e
SS
4275 {
4276 /* We took a signal (which we are supposed to pass through to
4e1c45ea
PA
4277 the inferior, else we'd not get here) and we haven't yet
4278 gotten our trap. Simply continue. */
2020b7ab
PA
4279 resume (currently_stepping (ecs->event_thread),
4280 ecs->event_thread->stop_signal);
d4f3574e
SS
4281 }
4282 else
4283 {
4284 /* Either the trap was not expected, but we are continuing
488f131b
JB
4285 anyway (the user asked that this signal be passed to the
4286 child)
4287 -- or --
4288 The signal was SIGTRAP, e.g. it was our signal, but we
4289 decided we should resume from it.
d4f3574e 4290
c36b740a 4291 We're going to run this baby now!
d4f3574e 4292
c36b740a
VP
4293 Note that insert_breakpoints won't try to re-insert
4294 already inserted breakpoints. Therefore, we don't
4295 care if breakpoints were already inserted, or not. */
4296
4e1c45ea 4297 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 4298 {
9f5a595d
UW
4299 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
4300 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
4301 /* Since we can't do a displaced step, we have to remove
4302 the breakpoint while we step it. To keep things
4303 simple, we remove them all. */
4304 remove_breakpoints ();
45e8c884
VP
4305 }
4306 else
d4f3574e 4307 {
e236ba44 4308 struct gdb_exception e;
569631c6
UW
4309 /* Stop stepping when inserting breakpoints
4310 has failed. */
e236ba44
VP
4311 TRY_CATCH (e, RETURN_MASK_ERROR)
4312 {
4313 insert_breakpoints ();
4314 }
4315 if (e.reason < 0)
d4f3574e
SS
4316 {
4317 stop_stepping (ecs);
4318 return;
4319 }
d4f3574e
SS
4320 }
4321
4e1c45ea 4322 ecs->event_thread->trap_expected = ecs->event_thread->stepping_over_breakpoint;
d4f3574e
SS
4323
4324 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
4325 specifies that such a signal should be delivered to the
4326 target program).
4327
4328 Typically, this would occure when a user is debugging a
4329 target monitor on a simulator: the target monitor sets a
4330 breakpoint; the simulator encounters this break-point and
4331 halts the simulation handing control to GDB; GDB, noteing
4332 that the break-point isn't valid, returns control back to the
4333 simulator; the simulator then delivers the hardware
4334 equivalent of a SIGNAL_TRAP to the program being debugged. */
4335
2020b7ab
PA
4336 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4337 && !signal_program[ecs->event_thread->stop_signal])
4338 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
d4f3574e 4339
2020b7ab
PA
4340 resume (currently_stepping (ecs->event_thread),
4341 ecs->event_thread->stop_signal);
d4f3574e
SS
4342 }
4343
488f131b 4344 prepare_to_wait (ecs);
d4f3574e
SS
4345}
4346
104c1213
JM
4347/* This function normally comes after a resume, before
4348 handle_inferior_event exits. It takes care of any last bits of
4349 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 4350
104c1213
JM
4351static void
4352prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 4353{
527159b7 4354 if (debug_infrun)
8a9de0e4 4355 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
0d1e5fa7 4356 if (infwait_state == infwait_normal_state)
104c1213
JM
4357 {
4358 overlay_cache_invalid = 1;
4359
4360 /* We have to invalidate the registers BEFORE calling
488f131b
JB
4361 target_wait because they can be loaded from the target while
4362 in target_wait. This makes remote debugging a bit more
4363 efficient for those targets that provide critical registers
4364 as part of their normal status mechanism. */
104c1213
JM
4365
4366 registers_changed ();
0d1e5fa7 4367 waiton_ptid = pid_to_ptid (-1);
104c1213
JM
4368 }
4369 /* This is the old end of the while loop. Let everybody know we
4370 want to wait for the inferior some more and get called again
4371 soon. */
4372 ecs->wait_some_more = 1;
c906108c 4373}
11cf8741
JM
4374
4375/* Print why the inferior has stopped. We always print something when
4376 the inferior exits, or receives a signal. The rest of the cases are
4377 dealt with later on in normal_stop() and print_it_typical(). Ideally
4378 there should be a call to this function from handle_inferior_event()
4379 each time stop_stepping() is called.*/
4380static void
4381print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
4382{
4383 switch (stop_reason)
4384 {
11cf8741
JM
4385 case END_STEPPING_RANGE:
4386 /* We are done with a step/next/si/ni command. */
4387 /* For now print nothing. */
fb40c209 4388 /* Print a message only if not in the middle of doing a "step n"
488f131b 4389 operation for n > 1 */
414c69f7
PA
4390 if (!inferior_thread ()->step_multi
4391 || !inferior_thread ()->stop_step)
9dc5e2a9 4392 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4393 ui_out_field_string
4394 (uiout, "reason",
4395 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
11cf8741 4396 break;
11cf8741
JM
4397 case SIGNAL_EXITED:
4398 /* The inferior was terminated by a signal. */
8b93c638 4399 annotate_signalled ();
9dc5e2a9 4400 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4401 ui_out_field_string
4402 (uiout, "reason",
4403 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8b93c638
JM
4404 ui_out_text (uiout, "\nProgram terminated with signal ");
4405 annotate_signal_name ();
488f131b
JB
4406 ui_out_field_string (uiout, "signal-name",
4407 target_signal_to_name (stop_info));
8b93c638
JM
4408 annotate_signal_name_end ();
4409 ui_out_text (uiout, ", ");
4410 annotate_signal_string ();
488f131b
JB
4411 ui_out_field_string (uiout, "signal-meaning",
4412 target_signal_to_string (stop_info));
8b93c638
JM
4413 annotate_signal_string_end ();
4414 ui_out_text (uiout, ".\n");
4415 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
4416 break;
4417 case EXITED:
4418 /* The inferior program is finished. */
8b93c638
JM
4419 annotate_exited (stop_info);
4420 if (stop_info)
4421 {
9dc5e2a9 4422 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4423 ui_out_field_string (uiout, "reason",
4424 async_reason_lookup (EXEC_ASYNC_EXITED));
8b93c638 4425 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
4426 ui_out_field_fmt (uiout, "exit-code", "0%o",
4427 (unsigned int) stop_info);
8b93c638
JM
4428 ui_out_text (uiout, ".\n");
4429 }
4430 else
4431 {
9dc5e2a9 4432 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4433 ui_out_field_string
4434 (uiout, "reason",
4435 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8b93c638
JM
4436 ui_out_text (uiout, "\nProgram exited normally.\n");
4437 }
f17517ea
AS
4438 /* Support the --return-child-result option. */
4439 return_child_result_value = stop_info;
11cf8741
JM
4440 break;
4441 case SIGNAL_RECEIVED:
252fbfc8
PA
4442 /* Signal received. The signal table tells us to print about
4443 it. */
8b93c638 4444 annotate_signal ();
252fbfc8
PA
4445
4446 if (stop_info == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
4447 {
4448 struct thread_info *t = inferior_thread ();
4449
4450 ui_out_text (uiout, "\n[");
4451 ui_out_field_string (uiout, "thread-name",
4452 target_pid_to_str (t->ptid));
4453 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
4454 ui_out_text (uiout, " stopped");
4455 }
4456 else
4457 {
4458 ui_out_text (uiout, "\nProgram received signal ");
4459 annotate_signal_name ();
4460 if (ui_out_is_mi_like_p (uiout))
4461 ui_out_field_string
4462 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
4463 ui_out_field_string (uiout, "signal-name",
4464 target_signal_to_name (stop_info));
4465 annotate_signal_name_end ();
4466 ui_out_text (uiout, ", ");
4467 annotate_signal_string ();
4468 ui_out_field_string (uiout, "signal-meaning",
4469 target_signal_to_string (stop_info));
4470 annotate_signal_string_end ();
4471 }
8b93c638 4472 ui_out_text (uiout, ".\n");
11cf8741 4473 break;
b2175913
MS
4474 case NO_HISTORY:
4475 /* Reverse execution: target ran out of history info. */
4476 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
4477 break;
11cf8741 4478 default:
8e65ff28 4479 internal_error (__FILE__, __LINE__,
e2e0b3e5 4480 _("print_stop_reason: unrecognized enum value"));
11cf8741
JM
4481 break;
4482 }
4483}
c906108c 4484\f
43ff13b4 4485
c906108c
SS
4486/* Here to return control to GDB when the inferior stops for real.
4487 Print appropriate messages, remove breakpoints, give terminal our modes.
4488
4489 STOP_PRINT_FRAME nonzero means print the executing frame
4490 (pc, function, args, file, line number and line text).
4491 BREAKPOINTS_FAILED nonzero means stop was due to error
4492 attempting to insert breakpoints. */
4493
4494void
96baa820 4495normal_stop (void)
c906108c 4496{
73b65bb0
DJ
4497 struct target_waitstatus last;
4498 ptid_t last_ptid;
29f49a6a 4499 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
4500
4501 get_last_target_status (&last_ptid, &last);
4502
29f49a6a
PA
4503 /* If an exception is thrown from this point on, make sure to
4504 propagate GDB's knowledge of the executing state to the
4505 frontend/user running state. A QUIT is an easy exception to see
4506 here, so do this before any filtered output. */
c35b1492
PA
4507 if (!non_stop)
4508 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
4509 else if (last.kind != TARGET_WAITKIND_SIGNALLED
4510 && last.kind != TARGET_WAITKIND_EXITED)
4511 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 4512
4f8d22e3
PA
4513 /* In non-stop mode, we don't want GDB to switch threads behind the
4514 user's back, to avoid races where the user is typing a command to
4515 apply to thread x, but GDB switches to thread y before the user
4516 finishes entering the command. */
4517
c906108c
SS
4518 /* As with the notification of thread events, we want to delay
4519 notifying the user that we've switched thread context until
4520 the inferior actually stops.
4521
73b65bb0
DJ
4522 There's no point in saying anything if the inferior has exited.
4523 Note that SIGNALLED here means "exited with a signal", not
4524 "received a signal". */
4f8d22e3
PA
4525 if (!non_stop
4526 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
4527 && target_has_execution
4528 && last.kind != TARGET_WAITKIND_SIGNALLED
4529 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
4530 {
4531 target_terminal_ours_for_output ();
a3f17187 4532 printf_filtered (_("[Switching to %s]\n"),
c95310c6 4533 target_pid_to_str (inferior_ptid));
b8fa951a 4534 annotate_thread_changed ();
39f77062 4535 previous_inferior_ptid = inferior_ptid;
c906108c 4536 }
c906108c 4537
74960c60 4538 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
4539 {
4540 if (remove_breakpoints ())
4541 {
4542 target_terminal_ours_for_output ();
a3f17187
AC
4543 printf_filtered (_("\
4544Cannot remove breakpoints because program is no longer writable.\n\
a3f17187 4545Further execution is probably impossible.\n"));
c906108c
SS
4546 }
4547 }
c906108c 4548
c906108c
SS
4549 /* If an auto-display called a function and that got a signal,
4550 delete that auto-display to avoid an infinite recursion. */
4551
4552 if (stopped_by_random_signal)
4553 disable_current_display ();
4554
4555 /* Don't print a message if in the middle of doing a "step n"
4556 operation for n > 1 */
af679fd0
PA
4557 if (target_has_execution
4558 && last.kind != TARGET_WAITKIND_SIGNALLED
4559 && last.kind != TARGET_WAITKIND_EXITED
4560 && inferior_thread ()->step_multi
414c69f7 4561 && inferior_thread ()->stop_step)
c906108c
SS
4562 goto done;
4563
4564 target_terminal_ours ();
4565
7abfe014
DJ
4566 /* Set the current source location. This will also happen if we
4567 display the frame below, but the current SAL will be incorrect
4568 during a user hook-stop function. */
d729566a 4569 if (has_stack_frames () && !stop_stack_dummy)
7abfe014
DJ
4570 set_current_sal_from_frame (get_current_frame (), 1);
4571
dd7e2d2b
PA
4572 /* Let the user/frontend see the threads as stopped. */
4573 do_cleanups (old_chain);
4574
4575 /* Look up the hook_stop and run it (CLI internally handles problem
4576 of stop_command's pre-hook not existing). */
4577 if (stop_command)
4578 catch_errors (hook_stop_stub, stop_command,
4579 "Error while running hook_stop:\n", RETURN_MASK_ALL);
4580
d729566a 4581 if (!has_stack_frames ())
d51fd4c8 4582 goto done;
c906108c 4583
32400beb
PA
4584 if (last.kind == TARGET_WAITKIND_SIGNALLED
4585 || last.kind == TARGET_WAITKIND_EXITED)
4586 goto done;
4587
c906108c
SS
4588 /* Select innermost stack frame - i.e., current frame is frame 0,
4589 and current location is based on that.
4590 Don't do this on return from a stack dummy routine,
4591 or if the program has exited. */
4592
4593 if (!stop_stack_dummy)
4594 {
0f7d239c 4595 select_frame (get_current_frame ());
c906108c
SS
4596
4597 /* Print current location without a level number, if
c5aa993b
JM
4598 we have changed functions or hit a breakpoint.
4599 Print source line if we have one.
4600 bpstat_print() contains the logic deciding in detail
4601 what to print, based on the event(s) that just occurred. */
c906108c 4602
d01a8610
AS
4603 /* If --batch-silent is enabled then there's no need to print the current
4604 source location, and to try risks causing an error message about
4605 missing source files. */
4606 if (stop_print_frame && !batch_silent)
c906108c
SS
4607 {
4608 int bpstat_ret;
4609 int source_flag;
917317f4 4610 int do_frame_printing = 1;
347bddb7 4611 struct thread_info *tp = inferior_thread ();
c906108c 4612
347bddb7 4613 bpstat_ret = bpstat_print (tp->stop_bpstat);
917317f4
JM
4614 switch (bpstat_ret)
4615 {
4616 case PRINT_UNKNOWN:
b0f4b84b
DJ
4617 /* If we had hit a shared library event breakpoint,
4618 bpstat_print would print out this message. If we hit
4619 an OS-level shared library event, do the same
4620 thing. */
4621 if (last.kind == TARGET_WAITKIND_LOADED)
4622 {
4623 printf_filtered (_("Stopped due to shared library event\n"));
4624 source_flag = SRC_LINE; /* something bogus */
4625 do_frame_printing = 0;
4626 break;
4627 }
4628
aa0cd9c1 4629 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
4630 (or should) carry around the function and does (or
4631 should) use that when doing a frame comparison. */
414c69f7 4632 if (tp->stop_step
347bddb7 4633 && frame_id_eq (tp->step_frame_id,
aa0cd9c1 4634 get_frame_id (get_current_frame ()))
917317f4 4635 && step_start_function == find_pc_function (stop_pc))
488f131b 4636 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 4637 else
488f131b 4638 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
4639 break;
4640 case PRINT_SRC_AND_LOC:
488f131b 4641 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
4642 break;
4643 case PRINT_SRC_ONLY:
c5394b80 4644 source_flag = SRC_LINE;
917317f4
JM
4645 break;
4646 case PRINT_NOTHING:
488f131b 4647 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
4648 do_frame_printing = 0;
4649 break;
4650 default:
e2e0b3e5 4651 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 4652 }
c906108c
SS
4653
4654 /* The behavior of this routine with respect to the source
4655 flag is:
c5394b80
JM
4656 SRC_LINE: Print only source line
4657 LOCATION: Print only location
4658 SRC_AND_LOC: Print location and source line */
917317f4 4659 if (do_frame_printing)
b04f3ab4 4660 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
4661
4662 /* Display the auto-display expressions. */
4663 do_displays ();
4664 }
4665 }
4666
4667 /* Save the function value return registers, if we care.
4668 We might be about to restore their previous contents. */
32400beb 4669 if (inferior_thread ()->proceed_to_finish)
d5c31457
UW
4670 {
4671 /* This should not be necessary. */
4672 if (stop_registers)
4673 regcache_xfree (stop_registers);
4674
4675 /* NB: The copy goes through to the target picking up the value of
4676 all the registers. */
4677 stop_registers = regcache_dup (get_current_regcache ());
4678 }
c906108c
SS
4679
4680 if (stop_stack_dummy)
4681 {
b89667eb
DE
4682 /* Pop the empty frame that contains the stack dummy.
4683 This also restores inferior state prior to the call
4684 (struct inferior_thread_state). */
4685 struct frame_info *frame = get_current_frame ();
4686 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
4687 frame_pop (frame);
4688 /* frame_pop() calls reinit_frame_cache as the last thing it does
4689 which means there's currently no selected frame. We don't need
4690 to re-establish a selected frame if the dummy call returns normally,
4691 that will be done by restore_inferior_status. However, we do have
4692 to handle the case where the dummy call is returning after being
4693 stopped (e.g. the dummy call previously hit a breakpoint). We
4694 can't know which case we have so just always re-establish a
4695 selected frame here. */
0f7d239c 4696 select_frame (get_current_frame ());
c906108c
SS
4697 }
4698
c906108c
SS
4699done:
4700 annotate_stopped ();
41d2bdb4
PA
4701
4702 /* Suppress the stop observer if we're in the middle of:
4703
4704 - a step n (n > 1), as there still more steps to be done.
4705
4706 - a "finish" command, as the observer will be called in
4707 finish_command_continuation, so it can include the inferior
4708 function's return value.
4709
4710 - calling an inferior function, as we pretend we inferior didn't
4711 run at all. The return value of the call is handled by the
4712 expression evaluator, through call_function_by_hand. */
4713
4714 if (!target_has_execution
4715 || last.kind == TARGET_WAITKIND_SIGNALLED
4716 || last.kind == TARGET_WAITKIND_EXITED
4717 || (!inferior_thread ()->step_multi
4718 && !(inferior_thread ()->stop_bpstat
c5a4d20b
PA
4719 && inferior_thread ()->proceed_to_finish)
4720 && !inferior_thread ()->in_infcall))
347bddb7
PA
4721 {
4722 if (!ptid_equal (inferior_ptid, null_ptid))
1d33d6ba
VP
4723 observer_notify_normal_stop (inferior_thread ()->stop_bpstat,
4724 stop_print_frame);
347bddb7 4725 else
1d33d6ba 4726 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 4727 }
347bddb7 4728
48844aa6
PA
4729 if (target_has_execution)
4730 {
4731 if (last.kind != TARGET_WAITKIND_SIGNALLED
4732 && last.kind != TARGET_WAITKIND_EXITED)
4733 /* Delete the breakpoint we stopped at, if it wants to be deleted.
4734 Delete any breakpoint that is to be deleted at the next stop. */
4735 breakpoint_auto_delete (inferior_thread ()->stop_bpstat);
94cc34af 4736 }
c906108c
SS
4737}
4738
4739static int
96baa820 4740hook_stop_stub (void *cmd)
c906108c 4741{
5913bcb0 4742 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
4743 return (0);
4744}
4745\f
c5aa993b 4746int
96baa820 4747signal_stop_state (int signo)
c906108c 4748{
d6b48e9c 4749 return signal_stop[signo];
c906108c
SS
4750}
4751
c5aa993b 4752int
96baa820 4753signal_print_state (int signo)
c906108c
SS
4754{
4755 return signal_print[signo];
4756}
4757
c5aa993b 4758int
96baa820 4759signal_pass_state (int signo)
c906108c
SS
4760{
4761 return signal_program[signo];
4762}
4763
488f131b 4764int
7bda5e4a 4765signal_stop_update (int signo, int state)
d4f3574e
SS
4766{
4767 int ret = signal_stop[signo];
4768 signal_stop[signo] = state;
4769 return ret;
4770}
4771
488f131b 4772int
7bda5e4a 4773signal_print_update (int signo, int state)
d4f3574e
SS
4774{
4775 int ret = signal_print[signo];
4776 signal_print[signo] = state;
4777 return ret;
4778}
4779
488f131b 4780int
7bda5e4a 4781signal_pass_update (int signo, int state)
d4f3574e
SS
4782{
4783 int ret = signal_program[signo];
4784 signal_program[signo] = state;
4785 return ret;
4786}
4787
c906108c 4788static void
96baa820 4789sig_print_header (void)
c906108c 4790{
a3f17187
AC
4791 printf_filtered (_("\
4792Signal Stop\tPrint\tPass to program\tDescription\n"));
c906108c
SS
4793}
4794
4795static void
96baa820 4796sig_print_info (enum target_signal oursig)
c906108c 4797{
54363045 4798 const char *name = target_signal_to_name (oursig);
c906108c 4799 int name_padding = 13 - strlen (name);
96baa820 4800
c906108c
SS
4801 if (name_padding <= 0)
4802 name_padding = 0;
4803
4804 printf_filtered ("%s", name);
488f131b 4805 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
4806 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
4807 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
4808 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
4809 printf_filtered ("%s\n", target_signal_to_string (oursig));
4810}
4811
4812/* Specify how various signals in the inferior should be handled. */
4813
4814static void
96baa820 4815handle_command (char *args, int from_tty)
c906108c
SS
4816{
4817 char **argv;
4818 int digits, wordlen;
4819 int sigfirst, signum, siglast;
4820 enum target_signal oursig;
4821 int allsigs;
4822 int nsigs;
4823 unsigned char *sigs;
4824 struct cleanup *old_chain;
4825
4826 if (args == NULL)
4827 {
e2e0b3e5 4828 error_no_arg (_("signal to handle"));
c906108c
SS
4829 }
4830
4831 /* Allocate and zero an array of flags for which signals to handle. */
4832
4833 nsigs = (int) TARGET_SIGNAL_LAST;
4834 sigs = (unsigned char *) alloca (nsigs);
4835 memset (sigs, 0, nsigs);
4836
4837 /* Break the command line up into args. */
4838
d1a41061 4839 argv = gdb_buildargv (args);
7a292a7a 4840 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
4841
4842 /* Walk through the args, looking for signal oursigs, signal names, and
4843 actions. Signal numbers and signal names may be interspersed with
4844 actions, with the actions being performed for all signals cumulatively
4845 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
4846
4847 while (*argv != NULL)
4848 {
4849 wordlen = strlen (*argv);
4850 for (digits = 0; isdigit ((*argv)[digits]); digits++)
4851 {;
4852 }
4853 allsigs = 0;
4854 sigfirst = siglast = -1;
4855
4856 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
4857 {
4858 /* Apply action to all signals except those used by the
4859 debugger. Silently skip those. */
4860 allsigs = 1;
4861 sigfirst = 0;
4862 siglast = nsigs - 1;
4863 }
4864 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
4865 {
4866 SET_SIGS (nsigs, sigs, signal_stop);
4867 SET_SIGS (nsigs, sigs, signal_print);
4868 }
4869 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
4870 {
4871 UNSET_SIGS (nsigs, sigs, signal_program);
4872 }
4873 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
4874 {
4875 SET_SIGS (nsigs, sigs, signal_print);
4876 }
4877 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
4878 {
4879 SET_SIGS (nsigs, sigs, signal_program);
4880 }
4881 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
4882 {
4883 UNSET_SIGS (nsigs, sigs, signal_stop);
4884 }
4885 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
4886 {
4887 SET_SIGS (nsigs, sigs, signal_program);
4888 }
4889 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
4890 {
4891 UNSET_SIGS (nsigs, sigs, signal_print);
4892 UNSET_SIGS (nsigs, sigs, signal_stop);
4893 }
4894 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
4895 {
4896 UNSET_SIGS (nsigs, sigs, signal_program);
4897 }
4898 else if (digits > 0)
4899 {
4900 /* It is numeric. The numeric signal refers to our own
4901 internal signal numbering from target.h, not to host/target
4902 signal number. This is a feature; users really should be
4903 using symbolic names anyway, and the common ones like
4904 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
4905
4906 sigfirst = siglast = (int)
4907 target_signal_from_command (atoi (*argv));
4908 if ((*argv)[digits] == '-')
4909 {
4910 siglast = (int)
4911 target_signal_from_command (atoi ((*argv) + digits + 1));
4912 }
4913 if (sigfirst > siglast)
4914 {
4915 /* Bet he didn't figure we'd think of this case... */
4916 signum = sigfirst;
4917 sigfirst = siglast;
4918 siglast = signum;
4919 }
4920 }
4921 else
4922 {
4923 oursig = target_signal_from_name (*argv);
4924 if (oursig != TARGET_SIGNAL_UNKNOWN)
4925 {
4926 sigfirst = siglast = (int) oursig;
4927 }
4928 else
4929 {
4930 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 4931 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
4932 }
4933 }
4934
4935 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 4936 which signals to apply actions to. */
c906108c
SS
4937
4938 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
4939 {
4940 switch ((enum target_signal) signum)
4941 {
4942 case TARGET_SIGNAL_TRAP:
4943 case TARGET_SIGNAL_INT:
4944 if (!allsigs && !sigs[signum])
4945 {
9e2f0ad4
HZ
4946 if (query (_("%s is used by the debugger.\n\
4947Are you sure you want to change it? "), target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
4948 {
4949 sigs[signum] = 1;
4950 }
4951 else
4952 {
a3f17187 4953 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
4954 gdb_flush (gdb_stdout);
4955 }
4956 }
4957 break;
4958 case TARGET_SIGNAL_0:
4959 case TARGET_SIGNAL_DEFAULT:
4960 case TARGET_SIGNAL_UNKNOWN:
4961 /* Make sure that "all" doesn't print these. */
4962 break;
4963 default:
4964 sigs[signum] = 1;
4965 break;
4966 }
4967 }
4968
4969 argv++;
4970 }
4971
3a031f65
PA
4972 for (signum = 0; signum < nsigs; signum++)
4973 if (sigs[signum])
4974 {
4975 target_notice_signals (inferior_ptid);
c906108c 4976
3a031f65
PA
4977 if (from_tty)
4978 {
4979 /* Show the results. */
4980 sig_print_header ();
4981 for (; signum < nsigs; signum++)
4982 if (sigs[signum])
4983 sig_print_info (signum);
4984 }
4985
4986 break;
4987 }
c906108c
SS
4988
4989 do_cleanups (old_chain);
4990}
4991
4992static void
96baa820 4993xdb_handle_command (char *args, int from_tty)
c906108c
SS
4994{
4995 char **argv;
4996 struct cleanup *old_chain;
4997
d1a41061
PP
4998 if (args == NULL)
4999 error_no_arg (_("xdb command"));
5000
c906108c
SS
5001 /* Break the command line up into args. */
5002
d1a41061 5003 argv = gdb_buildargv (args);
7a292a7a 5004 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
5005 if (argv[1] != (char *) NULL)
5006 {
5007 char *argBuf;
5008 int bufLen;
5009
5010 bufLen = strlen (argv[0]) + 20;
5011 argBuf = (char *) xmalloc (bufLen);
5012 if (argBuf)
5013 {
5014 int validFlag = 1;
5015 enum target_signal oursig;
5016
5017 oursig = target_signal_from_name (argv[0]);
5018 memset (argBuf, 0, bufLen);
5019 if (strcmp (argv[1], "Q") == 0)
5020 sprintf (argBuf, "%s %s", argv[0], "noprint");
5021 else
5022 {
5023 if (strcmp (argv[1], "s") == 0)
5024 {
5025 if (!signal_stop[oursig])
5026 sprintf (argBuf, "%s %s", argv[0], "stop");
5027 else
5028 sprintf (argBuf, "%s %s", argv[0], "nostop");
5029 }
5030 else if (strcmp (argv[1], "i") == 0)
5031 {
5032 if (!signal_program[oursig])
5033 sprintf (argBuf, "%s %s", argv[0], "pass");
5034 else
5035 sprintf (argBuf, "%s %s", argv[0], "nopass");
5036 }
5037 else if (strcmp (argv[1], "r") == 0)
5038 {
5039 if (!signal_print[oursig])
5040 sprintf (argBuf, "%s %s", argv[0], "print");
5041 else
5042 sprintf (argBuf, "%s %s", argv[0], "noprint");
5043 }
5044 else
5045 validFlag = 0;
5046 }
5047 if (validFlag)
5048 handle_command (argBuf, from_tty);
5049 else
a3f17187 5050 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 5051 if (argBuf)
b8c9b27d 5052 xfree (argBuf);
c906108c
SS
5053 }
5054 }
5055 do_cleanups (old_chain);
5056}
5057
5058/* Print current contents of the tables set by the handle command.
5059 It is possible we should just be printing signals actually used
5060 by the current target (but for things to work right when switching
5061 targets, all signals should be in the signal tables). */
5062
5063static void
96baa820 5064signals_info (char *signum_exp, int from_tty)
c906108c
SS
5065{
5066 enum target_signal oursig;
5067 sig_print_header ();
5068
5069 if (signum_exp)
5070 {
5071 /* First see if this is a symbol name. */
5072 oursig = target_signal_from_name (signum_exp);
5073 if (oursig == TARGET_SIGNAL_UNKNOWN)
5074 {
5075 /* No, try numeric. */
5076 oursig =
bb518678 5077 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
5078 }
5079 sig_print_info (oursig);
5080 return;
5081 }
5082
5083 printf_filtered ("\n");
5084 /* These ugly casts brought to you by the native VAX compiler. */
5085 for (oursig = TARGET_SIGNAL_FIRST;
5086 (int) oursig < (int) TARGET_SIGNAL_LAST;
5087 oursig = (enum target_signal) ((int) oursig + 1))
5088 {
5089 QUIT;
5090
5091 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 5092 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
5093 sig_print_info (oursig);
5094 }
5095
a3f17187 5096 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
c906108c 5097}
4aa995e1
PA
5098
5099/* The $_siginfo convenience variable is a bit special. We don't know
5100 for sure the type of the value until we actually have a chance to
5101 fetch the data. The type can change depending on gdbarch, so it it
5102 also dependent on which thread you have selected.
5103
5104 1. making $_siginfo be an internalvar that creates a new value on
5105 access.
5106
5107 2. making the value of $_siginfo be an lval_computed value. */
5108
5109/* This function implements the lval_computed support for reading a
5110 $_siginfo value. */
5111
5112static void
5113siginfo_value_read (struct value *v)
5114{
5115 LONGEST transferred;
5116
5117 transferred =
5118 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
5119 NULL,
5120 value_contents_all_raw (v),
5121 value_offset (v),
5122 TYPE_LENGTH (value_type (v)));
5123
5124 if (transferred != TYPE_LENGTH (value_type (v)))
5125 error (_("Unable to read siginfo"));
5126}
5127
5128/* This function implements the lval_computed support for writing a
5129 $_siginfo value. */
5130
5131static void
5132siginfo_value_write (struct value *v, struct value *fromval)
5133{
5134 LONGEST transferred;
5135
5136 transferred = target_write (&current_target,
5137 TARGET_OBJECT_SIGNAL_INFO,
5138 NULL,
5139 value_contents_all_raw (fromval),
5140 value_offset (v),
5141 TYPE_LENGTH (value_type (fromval)));
5142
5143 if (transferred != TYPE_LENGTH (value_type (fromval)))
5144 error (_("Unable to write siginfo"));
5145}
5146
5147static struct lval_funcs siginfo_value_funcs =
5148 {
5149 siginfo_value_read,
5150 siginfo_value_write
5151 };
5152
5153/* Return a new value with the correct type for the siginfo object of
5154 the current thread. Return a void value if there's no object
5155 available. */
5156
2c0b251b 5157static struct value *
4aa995e1
PA
5158siginfo_make_value (struct internalvar *var)
5159{
5160 struct type *type;
5161 struct gdbarch *gdbarch;
5162
5163 if (target_has_stack
5164 && !ptid_equal (inferior_ptid, null_ptid))
5165 {
5166 gdbarch = get_frame_arch (get_current_frame ());
5167
5168 if (gdbarch_get_siginfo_type_p (gdbarch))
5169 {
5170 type = gdbarch_get_siginfo_type (gdbarch);
5171
5172 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
5173 }
5174 }
5175
5176 return allocate_value (builtin_type_void);
5177}
5178
c906108c 5179\f
b89667eb
DE
5180/* Inferior thread state.
5181 These are details related to the inferior itself, and don't include
5182 things like what frame the user had selected or what gdb was doing
5183 with the target at the time.
5184 For inferior function calls these are things we want to restore
5185 regardless of whether the function call successfully completes
5186 or the dummy frame has to be manually popped. */
5187
5188struct inferior_thread_state
7a292a7a
SS
5189{
5190 enum target_signal stop_signal;
5191 CORE_ADDR stop_pc;
b89667eb
DE
5192 struct regcache *registers;
5193};
5194
5195struct inferior_thread_state *
5196save_inferior_thread_state (void)
5197{
5198 struct inferior_thread_state *inf_state = XMALLOC (struct inferior_thread_state);
5199 struct thread_info *tp = inferior_thread ();
5200
5201 inf_state->stop_signal = tp->stop_signal;
5202 inf_state->stop_pc = stop_pc;
5203
5204 inf_state->registers = regcache_dup (get_current_regcache ());
5205
5206 return inf_state;
5207}
5208
5209/* Restore inferior session state to INF_STATE. */
5210
5211void
5212restore_inferior_thread_state (struct inferior_thread_state *inf_state)
5213{
5214 struct thread_info *tp = inferior_thread ();
5215
5216 tp->stop_signal = inf_state->stop_signal;
5217 stop_pc = inf_state->stop_pc;
5218
5219 /* The inferior can be gone if the user types "print exit(0)"
5220 (and perhaps other times). */
5221 if (target_has_execution)
5222 /* NB: The register write goes through to the target. */
5223 regcache_cpy (get_current_regcache (), inf_state->registers);
5224 regcache_xfree (inf_state->registers);
5225 xfree (inf_state);
5226}
5227
5228static void
5229do_restore_inferior_thread_state_cleanup (void *state)
5230{
5231 restore_inferior_thread_state (state);
5232}
5233
5234struct cleanup *
5235make_cleanup_restore_inferior_thread_state (struct inferior_thread_state *inf_state)
5236{
5237 return make_cleanup (do_restore_inferior_thread_state_cleanup, inf_state);
5238}
5239
5240void
5241discard_inferior_thread_state (struct inferior_thread_state *inf_state)
5242{
5243 regcache_xfree (inf_state->registers);
5244 xfree (inf_state);
5245}
5246
5247struct regcache *
5248get_inferior_thread_state_regcache (struct inferior_thread_state *inf_state)
5249{
5250 return inf_state->registers;
5251}
5252
5253/* Session related state for inferior function calls.
5254 These are the additional bits of state that need to be restored
5255 when an inferior function call successfully completes. */
5256
5257struct inferior_status
5258{
7a292a7a
SS
5259 bpstat stop_bpstat;
5260 int stop_step;
5261 int stop_stack_dummy;
5262 int stopped_by_random_signal;
ca67fcb8 5263 int stepping_over_breakpoint;
7a292a7a
SS
5264 CORE_ADDR step_range_start;
5265 CORE_ADDR step_range_end;
aa0cd9c1 5266 struct frame_id step_frame_id;
5fbbeb29 5267 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
5268 CORE_ADDR step_resume_break_address;
5269 int stop_after_trap;
c0236d92 5270 int stop_soon;
7a292a7a 5271
b89667eb 5272 /* ID if the selected frame when the inferior function call was made. */
101dcfbe
AC
5273 struct frame_id selected_frame_id;
5274
7a292a7a 5275 int proceed_to_finish;
c5a4d20b 5276 int in_infcall;
7a292a7a
SS
5277};
5278
c906108c 5279/* Save all of the information associated with the inferior<==>gdb
b89667eb 5280 connection. */
c906108c 5281
7a292a7a 5282struct inferior_status *
b89667eb 5283save_inferior_status (void)
c906108c 5284{
72cec141 5285 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
4e1c45ea 5286 struct thread_info *tp = inferior_thread ();
d6b48e9c 5287 struct inferior *inf = current_inferior ();
7a292a7a 5288
414c69f7 5289 inf_status->stop_step = tp->stop_step;
c906108c
SS
5290 inf_status->stop_stack_dummy = stop_stack_dummy;
5291 inf_status->stopped_by_random_signal = stopped_by_random_signal;
4e1c45ea
PA
5292 inf_status->stepping_over_breakpoint = tp->trap_expected;
5293 inf_status->step_range_start = tp->step_range_start;
5294 inf_status->step_range_end = tp->step_range_end;
5295 inf_status->step_frame_id = tp->step_frame_id;
078130d0 5296 inf_status->step_over_calls = tp->step_over_calls;
c906108c 5297 inf_status->stop_after_trap = stop_after_trap;
d6b48e9c 5298 inf_status->stop_soon = inf->stop_soon;
c906108c
SS
5299 /* Save original bpstat chain here; replace it with copy of chain.
5300 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
5301 hand them back the original chain when restore_inferior_status is
5302 called. */
347bddb7
PA
5303 inf_status->stop_bpstat = tp->stop_bpstat;
5304 tp->stop_bpstat = bpstat_copy (tp->stop_bpstat);
32400beb 5305 inf_status->proceed_to_finish = tp->proceed_to_finish;
c5a4d20b 5306 inf_status->in_infcall = tp->in_infcall;
c5aa993b 5307
206415a3 5308 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 5309
7a292a7a 5310 return inf_status;
c906108c
SS
5311}
5312
c906108c 5313static int
96baa820 5314restore_selected_frame (void *args)
c906108c 5315{
488f131b 5316 struct frame_id *fid = (struct frame_id *) args;
c906108c 5317 struct frame_info *frame;
c906108c 5318
101dcfbe 5319 frame = frame_find_by_id (*fid);
c906108c 5320
aa0cd9c1
AC
5321 /* If inf_status->selected_frame_id is NULL, there was no previously
5322 selected frame. */
101dcfbe 5323 if (frame == NULL)
c906108c 5324 {
8a3fe4f8 5325 warning (_("Unable to restore previously selected frame."));
c906108c
SS
5326 return 0;
5327 }
5328
0f7d239c 5329 select_frame (frame);
c906108c
SS
5330
5331 return (1);
5332}
5333
b89667eb
DE
5334/* Restore inferior session state to INF_STATUS. */
5335
c906108c 5336void
96baa820 5337restore_inferior_status (struct inferior_status *inf_status)
c906108c 5338{
4e1c45ea 5339 struct thread_info *tp = inferior_thread ();
d6b48e9c 5340 struct inferior *inf = current_inferior ();
4e1c45ea 5341
414c69f7 5342 tp->stop_step = inf_status->stop_step;
c906108c
SS
5343 stop_stack_dummy = inf_status->stop_stack_dummy;
5344 stopped_by_random_signal = inf_status->stopped_by_random_signal;
4e1c45ea
PA
5345 tp->trap_expected = inf_status->stepping_over_breakpoint;
5346 tp->step_range_start = inf_status->step_range_start;
5347 tp->step_range_end = inf_status->step_range_end;
5348 tp->step_frame_id = inf_status->step_frame_id;
078130d0 5349 tp->step_over_calls = inf_status->step_over_calls;
c906108c 5350 stop_after_trap = inf_status->stop_after_trap;
d6b48e9c 5351 inf->stop_soon = inf_status->stop_soon;
347bddb7
PA
5352 bpstat_clear (&tp->stop_bpstat);
5353 tp->stop_bpstat = inf_status->stop_bpstat;
b89667eb 5354 inf_status->stop_bpstat = NULL;
32400beb 5355 tp->proceed_to_finish = inf_status->proceed_to_finish;
c5a4d20b 5356 tp->in_infcall = inf_status->in_infcall;
c906108c 5357
b89667eb 5358 if (target_has_stack)
c906108c 5359 {
c906108c 5360 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
5361 walking the stack might encounter a garbage pointer and
5362 error() trying to dereference it. */
488f131b
JB
5363 if (catch_errors
5364 (restore_selected_frame, &inf_status->selected_frame_id,
5365 "Unable to restore previously selected frame:\n",
5366 RETURN_MASK_ERROR) == 0)
c906108c
SS
5367 /* Error in restoring the selected frame. Select the innermost
5368 frame. */
0f7d239c 5369 select_frame (get_current_frame ());
c906108c 5370 }
c906108c 5371
72cec141 5372 xfree (inf_status);
7a292a7a 5373}
c906108c 5374
74b7792f
AC
5375static void
5376do_restore_inferior_status_cleanup (void *sts)
5377{
5378 restore_inferior_status (sts);
5379}
5380
5381struct cleanup *
5382make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
5383{
5384 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
5385}
5386
c906108c 5387void
96baa820 5388discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
5389{
5390 /* See save_inferior_status for info on stop_bpstat. */
5391 bpstat_clear (&inf_status->stop_bpstat);
72cec141 5392 xfree (inf_status);
7a292a7a 5393}
b89667eb 5394\f
47932f85 5395int
3a3e9ee3 5396inferior_has_forked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
5397{
5398 struct target_waitstatus last;
5399 ptid_t last_ptid;
5400
5401 get_last_target_status (&last_ptid, &last);
5402
5403 if (last.kind != TARGET_WAITKIND_FORKED)
5404 return 0;
5405
3a3e9ee3 5406 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
5407 return 0;
5408
5409 *child_pid = last.value.related_pid;
5410 return 1;
5411}
5412
5413int
3a3e9ee3 5414inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
5415{
5416 struct target_waitstatus last;
5417 ptid_t last_ptid;
5418
5419 get_last_target_status (&last_ptid, &last);
5420
5421 if (last.kind != TARGET_WAITKIND_VFORKED)
5422 return 0;
5423
3a3e9ee3 5424 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
5425 return 0;
5426
5427 *child_pid = last.value.related_pid;
5428 return 1;
5429}
5430
5431int
3a3e9ee3 5432inferior_has_execd (ptid_t pid, char **execd_pathname)
47932f85
DJ
5433{
5434 struct target_waitstatus last;
5435 ptid_t last_ptid;
5436
5437 get_last_target_status (&last_ptid, &last);
5438
5439 if (last.kind != TARGET_WAITKIND_EXECD)
5440 return 0;
5441
3a3e9ee3 5442 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
5443 return 0;
5444
5445 *execd_pathname = xstrdup (last.value.execd_pathname);
5446 return 1;
5447}
5448
ca6724c1
KB
5449/* Oft used ptids */
5450ptid_t null_ptid;
5451ptid_t minus_one_ptid;
5452
5453/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 5454
ca6724c1
KB
5455ptid_t
5456ptid_build (int pid, long lwp, long tid)
5457{
5458 ptid_t ptid;
5459
5460 ptid.pid = pid;
5461 ptid.lwp = lwp;
5462 ptid.tid = tid;
5463 return ptid;
5464}
5465
5466/* Create a ptid from just a pid. */
5467
5468ptid_t
5469pid_to_ptid (int pid)
5470{
5471 return ptid_build (pid, 0, 0);
5472}
5473
5474/* Fetch the pid (process id) component from a ptid. */
5475
5476int
5477ptid_get_pid (ptid_t ptid)
5478{
5479 return ptid.pid;
5480}
5481
5482/* Fetch the lwp (lightweight process) component from a ptid. */
5483
5484long
5485ptid_get_lwp (ptid_t ptid)
5486{
5487 return ptid.lwp;
5488}
5489
5490/* Fetch the tid (thread id) component from a ptid. */
5491
5492long
5493ptid_get_tid (ptid_t ptid)
5494{
5495 return ptid.tid;
5496}
5497
5498/* ptid_equal() is used to test equality of two ptids. */
5499
5500int
5501ptid_equal (ptid_t ptid1, ptid_t ptid2)
5502{
5503 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 5504 && ptid1.tid == ptid2.tid);
ca6724c1
KB
5505}
5506
252fbfc8
PA
5507/* Returns true if PTID represents a process. */
5508
5509int
5510ptid_is_pid (ptid_t ptid)
5511{
5512 if (ptid_equal (minus_one_ptid, ptid))
5513 return 0;
5514 if (ptid_equal (null_ptid, ptid))
5515 return 0;
5516
5517 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
5518}
5519
ca6724c1
KB
5520/* restore_inferior_ptid() will be used by the cleanup machinery
5521 to restore the inferior_ptid value saved in a call to
5522 save_inferior_ptid(). */
ce696e05
KB
5523
5524static void
5525restore_inferior_ptid (void *arg)
5526{
5527 ptid_t *saved_ptid_ptr = arg;
5528 inferior_ptid = *saved_ptid_ptr;
5529 xfree (arg);
5530}
5531
5532/* Save the value of inferior_ptid so that it may be restored by a
5533 later call to do_cleanups(). Returns the struct cleanup pointer
5534 needed for later doing the cleanup. */
5535
5536struct cleanup *
5537save_inferior_ptid (void)
5538{
5539 ptid_t *saved_ptid_ptr;
5540
5541 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
5542 *saved_ptid_ptr = inferior_ptid;
5543 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
5544}
c5aa993b 5545\f
488f131b 5546
b2175913
MS
5547/* User interface for reverse debugging:
5548 Set exec-direction / show exec-direction commands
5549 (returns error unless target implements to_set_exec_direction method). */
5550
5551enum exec_direction_kind execution_direction = EXEC_FORWARD;
5552static const char exec_forward[] = "forward";
5553static const char exec_reverse[] = "reverse";
5554static const char *exec_direction = exec_forward;
5555static const char *exec_direction_names[] = {
5556 exec_forward,
5557 exec_reverse,
5558 NULL
5559};
5560
5561static void
5562set_exec_direction_func (char *args, int from_tty,
5563 struct cmd_list_element *cmd)
5564{
5565 if (target_can_execute_reverse)
5566 {
5567 if (!strcmp (exec_direction, exec_forward))
5568 execution_direction = EXEC_FORWARD;
5569 else if (!strcmp (exec_direction, exec_reverse))
5570 execution_direction = EXEC_REVERSE;
5571 }
5572}
5573
5574static void
5575show_exec_direction_func (struct ui_file *out, int from_tty,
5576 struct cmd_list_element *cmd, const char *value)
5577{
5578 switch (execution_direction) {
5579 case EXEC_FORWARD:
5580 fprintf_filtered (out, _("Forward.\n"));
5581 break;
5582 case EXEC_REVERSE:
5583 fprintf_filtered (out, _("Reverse.\n"));
5584 break;
5585 case EXEC_ERROR:
5586 default:
5587 fprintf_filtered (out,
5588 _("Forward (target `%s' does not support exec-direction).\n"),
5589 target_shortname);
5590 break;
5591 }
5592}
5593
5594/* User interface for non-stop mode. */
5595
ad52ddc6
PA
5596int non_stop = 0;
5597static int non_stop_1 = 0;
5598
5599static void
5600set_non_stop (char *args, int from_tty,
5601 struct cmd_list_element *c)
5602{
5603 if (target_has_execution)
5604 {
5605 non_stop_1 = non_stop;
5606 error (_("Cannot change this setting while the inferior is running."));
5607 }
5608
5609 non_stop = non_stop_1;
5610}
5611
5612static void
5613show_non_stop (struct ui_file *file, int from_tty,
5614 struct cmd_list_element *c, const char *value)
5615{
5616 fprintf_filtered (file,
5617 _("Controlling the inferior in non-stop mode is %s.\n"),
5618 value);
5619}
5620
d4db2f36
PA
5621static void
5622show_schedule_multiple (struct ui_file *file, int from_tty,
5623 struct cmd_list_element *c, const char *value)
5624{
5625 fprintf_filtered (file, _("\
5626Resuming the execution of threads of all processes is %s.\n"), value);
5627}
ad52ddc6 5628
c906108c 5629void
96baa820 5630_initialize_infrun (void)
c906108c 5631{
52f0bd74
AC
5632 int i;
5633 int numsigs;
c906108c
SS
5634 struct cmd_list_element *c;
5635
1bedd215
AC
5636 add_info ("signals", signals_info, _("\
5637What debugger does when program gets various signals.\n\
5638Specify a signal as argument to print info on that signal only."));
c906108c
SS
5639 add_info_alias ("handle", "signals", 0);
5640
1bedd215
AC
5641 add_com ("handle", class_run, handle_command, _("\
5642Specify how to handle a signal.\n\
c906108c
SS
5643Args are signals and actions to apply to those signals.\n\
5644Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5645from 1-15 are allowed for compatibility with old versions of GDB.\n\
5646Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5647The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
5648used by the debugger, typically SIGTRAP and SIGINT.\n\
5649Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
5650\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
5651Stop means reenter debugger if this signal happens (implies print).\n\
5652Print means print a message if this signal happens.\n\
5653Pass means let program see this signal; otherwise program doesn't know.\n\
5654Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 5655Pass and Stop may be combined."));
c906108c
SS
5656 if (xdb_commands)
5657 {
1bedd215
AC
5658 add_com ("lz", class_info, signals_info, _("\
5659What debugger does when program gets various signals.\n\
5660Specify a signal as argument to print info on that signal only."));
5661 add_com ("z", class_run, xdb_handle_command, _("\
5662Specify how to handle a signal.\n\
c906108c
SS
5663Args are signals and actions to apply to those signals.\n\
5664Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5665from 1-15 are allowed for compatibility with old versions of GDB.\n\
5666Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5667The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
5668used by the debugger, typically SIGTRAP and SIGINT.\n\
5669Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
5670\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
5671nopass), \"Q\" (noprint)\n\
5672Stop means reenter debugger if this signal happens (implies print).\n\
5673Print means print a message if this signal happens.\n\
5674Pass means let program see this signal; otherwise program doesn't know.\n\
5675Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 5676Pass and Stop may be combined."));
c906108c
SS
5677 }
5678
5679 if (!dbx_commands)
1a966eab
AC
5680 stop_command = add_cmd ("stop", class_obscure,
5681 not_just_help_class_command, _("\
5682There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 5683This allows you to set a list of commands to be run each time execution\n\
1a966eab 5684of the program stops."), &cmdlist);
c906108c 5685
85c07804
AC
5686 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
5687Set inferior debugging."), _("\
5688Show inferior debugging."), _("\
5689When non-zero, inferior specific debugging is enabled."),
5690 NULL,
920d2a44 5691 show_debug_infrun,
85c07804 5692 &setdebuglist, &showdebuglist);
527159b7 5693
237fc4c9
PA
5694 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
5695Set displaced stepping debugging."), _("\
5696Show displaced stepping debugging."), _("\
5697When non-zero, displaced stepping specific debugging is enabled."),
5698 NULL,
5699 show_debug_displaced,
5700 &setdebuglist, &showdebuglist);
5701
ad52ddc6
PA
5702 add_setshow_boolean_cmd ("non-stop", no_class,
5703 &non_stop_1, _("\
5704Set whether gdb controls the inferior in non-stop mode."), _("\
5705Show whether gdb controls the inferior in non-stop mode."), _("\
5706When debugging a multi-threaded program and this setting is\n\
5707off (the default, also called all-stop mode), when one thread stops\n\
5708(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
5709all other threads in the program while you interact with the thread of\n\
5710interest. When you continue or step a thread, you can allow the other\n\
5711threads to run, or have them remain stopped, but while you inspect any\n\
5712thread's state, all threads stop.\n\
5713\n\
5714In non-stop mode, when one thread stops, other threads can continue\n\
5715to run freely. You'll be able to step each thread independently,\n\
5716leave it stopped or free to run as needed."),
5717 set_non_stop,
5718 show_non_stop,
5719 &setlist,
5720 &showlist);
5721
c906108c 5722 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 5723 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
5724 signal_print = (unsigned char *)
5725 xmalloc (sizeof (signal_print[0]) * numsigs);
5726 signal_program = (unsigned char *)
5727 xmalloc (sizeof (signal_program[0]) * numsigs);
5728 for (i = 0; i < numsigs; i++)
5729 {
5730 signal_stop[i] = 1;
5731 signal_print[i] = 1;
5732 signal_program[i] = 1;
5733 }
5734
5735 /* Signals caused by debugger's own actions
5736 should not be given to the program afterwards. */
5737 signal_program[TARGET_SIGNAL_TRAP] = 0;
5738 signal_program[TARGET_SIGNAL_INT] = 0;
5739
5740 /* Signals that are not errors should not normally enter the debugger. */
5741 signal_stop[TARGET_SIGNAL_ALRM] = 0;
5742 signal_print[TARGET_SIGNAL_ALRM] = 0;
5743 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
5744 signal_print[TARGET_SIGNAL_VTALRM] = 0;
5745 signal_stop[TARGET_SIGNAL_PROF] = 0;
5746 signal_print[TARGET_SIGNAL_PROF] = 0;
5747 signal_stop[TARGET_SIGNAL_CHLD] = 0;
5748 signal_print[TARGET_SIGNAL_CHLD] = 0;
5749 signal_stop[TARGET_SIGNAL_IO] = 0;
5750 signal_print[TARGET_SIGNAL_IO] = 0;
5751 signal_stop[TARGET_SIGNAL_POLL] = 0;
5752 signal_print[TARGET_SIGNAL_POLL] = 0;
5753 signal_stop[TARGET_SIGNAL_URG] = 0;
5754 signal_print[TARGET_SIGNAL_URG] = 0;
5755 signal_stop[TARGET_SIGNAL_WINCH] = 0;
5756 signal_print[TARGET_SIGNAL_WINCH] = 0;
5757
cd0fc7c3
SS
5758 /* These signals are used internally by user-level thread
5759 implementations. (See signal(5) on Solaris.) Like the above
5760 signals, a healthy program receives and handles them as part of
5761 its normal operation. */
5762 signal_stop[TARGET_SIGNAL_LWP] = 0;
5763 signal_print[TARGET_SIGNAL_LWP] = 0;
5764 signal_stop[TARGET_SIGNAL_WAITING] = 0;
5765 signal_print[TARGET_SIGNAL_WAITING] = 0;
5766 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
5767 signal_print[TARGET_SIGNAL_CANCEL] = 0;
5768
85c07804
AC
5769 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
5770 &stop_on_solib_events, _("\
5771Set stopping for shared library events."), _("\
5772Show stopping for shared library events."), _("\
c906108c
SS
5773If nonzero, gdb will give control to the user when the dynamic linker\n\
5774notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
5775to the user would be loading/unloading of a new library."),
5776 NULL,
920d2a44 5777 show_stop_on_solib_events,
85c07804 5778 &setlist, &showlist);
c906108c 5779
7ab04401
AC
5780 add_setshow_enum_cmd ("follow-fork-mode", class_run,
5781 follow_fork_mode_kind_names,
5782 &follow_fork_mode_string, _("\
5783Set debugger response to a program call of fork or vfork."), _("\
5784Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
5785A fork or vfork creates a new process. follow-fork-mode can be:\n\
5786 parent - the original process is debugged after a fork\n\
5787 child - the new process is debugged after a fork\n\
ea1dd7bc 5788The unfollowed process will continue to run.\n\
7ab04401
AC
5789By default, the debugger will follow the parent process."),
5790 NULL,
920d2a44 5791 show_follow_fork_mode_string,
7ab04401
AC
5792 &setlist, &showlist);
5793
5794 add_setshow_enum_cmd ("scheduler-locking", class_run,
5795 scheduler_enums, &scheduler_mode, _("\
5796Set mode for locking scheduler during execution."), _("\
5797Show mode for locking scheduler during execution."), _("\
c906108c
SS
5798off == no locking (threads may preempt at any time)\n\
5799on == full locking (no thread except the current thread may run)\n\
5800step == scheduler locked during every single-step operation.\n\
5801 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
5802 Other threads may run while stepping over a function call ('next')."),
5803 set_schedlock_func, /* traps on target vector */
920d2a44 5804 show_scheduler_mode,
7ab04401 5805 &setlist, &showlist);
5fbbeb29 5806
d4db2f36
PA
5807 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
5808Set mode for resuming threads of all processes."), _("\
5809Show mode for resuming threads of all processes."), _("\
5810When on, execution commands (such as 'continue' or 'next') resume all\n\
5811threads of all processes. When off (which is the default), execution\n\
5812commands only resume the threads of the current process. The set of\n\
5813threads that are resumed is further refined by the scheduler-locking\n\
5814mode (see help set scheduler-locking)."),
5815 NULL,
5816 show_schedule_multiple,
5817 &setlist, &showlist);
5818
5bf193a2
AC
5819 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
5820Set mode of the step operation."), _("\
5821Show mode of the step operation."), _("\
5822When set, doing a step over a function without debug line information\n\
5823will stop at the first instruction of that function. Otherwise, the\n\
5824function is skipped and the step command stops at a different source line."),
5825 NULL,
920d2a44 5826 show_step_stop_if_no_debug,
5bf193a2 5827 &setlist, &showlist);
ca6724c1 5828
fff08868
HZ
5829 add_setshow_enum_cmd ("displaced-stepping", class_run,
5830 can_use_displaced_stepping_enum,
5831 &can_use_displaced_stepping, _("\
237fc4c9
PA
5832Set debugger's willingness to use displaced stepping."), _("\
5833Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
5834If on, gdb will use displaced stepping to step over breakpoints if it is\n\
5835supported by the target architecture. If off, gdb will not use displaced\n\
5836stepping to step over breakpoints, even if such is supported by the target\n\
5837architecture. If auto (which is the default), gdb will use displaced stepping\n\
5838if the target architecture supports it and non-stop mode is active, but will not\n\
5839use it in all-stop mode (see help set non-stop)."),
5840 NULL,
5841 show_can_use_displaced_stepping,
5842 &setlist, &showlist);
237fc4c9 5843
b2175913
MS
5844 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
5845 &exec_direction, _("Set direction of execution.\n\
5846Options are 'forward' or 'reverse'."),
5847 _("Show direction of execution (forward/reverse)."),
5848 _("Tells gdb whether to execute forward or backward."),
5849 set_exec_direction_func, show_exec_direction_func,
5850 &setlist, &showlist);
5851
ca6724c1
KB
5852 /* ptid initializations */
5853 null_ptid = ptid_build (0, 0, 0);
5854 minus_one_ptid = ptid_build (-1, 0, 0);
5855 inferior_ptid = null_ptid;
5856 target_last_wait_ptid = minus_one_ptid;
237fc4c9 5857 displaced_step_ptid = null_ptid;
5231c1fd
PA
5858
5859 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 5860 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 5861 observer_attach_thread_exit (infrun_thread_thread_exit);
4aa995e1
PA
5862
5863 /* Explicitly create without lookup, since that tries to create a
5864 value with a void typed value, and when we get here, gdbarch
5865 isn't initialized yet. At this point, we're quite sure there
5866 isn't another convenience variable of the same name. */
5867 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
c906108c 5868}
This page took 1.169233 seconds and 4 git commands to generate.