2011-07-22 Kwok Cheung Yeung <kcy@codesourcery.com>
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
6aba47ca 4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
9b254dd1 5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
7b6bb8da 6 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include <ctype.h>
26#include "symtab.h"
27#include "frame.h"
28#include "inferior.h"
60250e8b 29#include "exceptions.h"
c906108c 30#include "breakpoint.h"
03f2053f 31#include "gdb_wait.h"
c906108c
SS
32#include "gdbcore.h"
33#include "gdbcmd.h"
210661e7 34#include "cli/cli-script.h"
c906108c
SS
35#include "target.h"
36#include "gdbthread.h"
37#include "annotate.h"
1adeb98a 38#include "symfile.h"
7a292a7a 39#include "top.h"
c906108c 40#include <signal.h>
2acceee2 41#include "inf-loop.h"
4e052eda 42#include "regcache.h"
fd0407d6 43#include "value.h"
06600e06 44#include "observer.h"
f636b87d 45#include "language.h"
a77053c2 46#include "solib.h"
f17517ea 47#include "main.h"
186c406b
TT
48#include "dictionary.h"
49#include "block.h"
9f976b41 50#include "gdb_assert.h"
034dad6f 51#include "mi/mi-common.h"
4f8d22e3 52#include "event-top.h"
96429cc8 53#include "record.h"
edb3359d 54#include "inline-frame.h"
4efc6507 55#include "jit.h"
06cd862c 56#include "tracepoint.h"
be34f849 57#include "continuations.h"
c906108c
SS
58
59/* Prototypes for local functions */
60
96baa820 61static void signals_info (char *, int);
c906108c 62
96baa820 63static void handle_command (char *, int);
c906108c 64
96baa820 65static void sig_print_info (enum target_signal);
c906108c 66
96baa820 67static void sig_print_header (void);
c906108c 68
74b7792f 69static void resume_cleanups (void *);
c906108c 70
96baa820 71static int hook_stop_stub (void *);
c906108c 72
96baa820
JM
73static int restore_selected_frame (void *);
74
4ef3f3be 75static int follow_fork (void);
96baa820
JM
76
77static void set_schedlock_func (char *args, int from_tty,
488f131b 78 struct cmd_list_element *c);
96baa820 79
a289b8f6
JK
80static int currently_stepping (struct thread_info *tp);
81
b3444185
PA
82static int currently_stepping_or_nexting_callback (struct thread_info *tp,
83 void *data);
a7212384 84
96baa820
JM
85static void xdb_handle_command (char *args, int from_tty);
86
6a6b96b9 87static int prepare_to_proceed (int);
ea67f13b 88
33d62d64
JK
89static void print_exited_reason (int exitstatus);
90
91static void print_signal_exited_reason (enum target_signal siggnal);
92
93static void print_no_history_reason (void);
94
95static void print_signal_received_reason (enum target_signal siggnal);
96
97static void print_end_stepping_range_reason (void);
98
96baa820 99void _initialize_infrun (void);
43ff13b4 100
e58b0e63
PA
101void nullify_last_target_wait_ptid (void);
102
2c03e5be 103static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
104
105static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
106
2484c66b
UW
107static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
108
5fbbeb29
CF
109/* When set, stop the 'step' command if we enter a function which has
110 no line number information. The normal behavior is that we step
111 over such function. */
112int step_stop_if_no_debug = 0;
920d2a44
AC
113static void
114show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
115 struct cmd_list_element *c, const char *value)
116{
117 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
118}
5fbbeb29 119
1777feb0 120/* In asynchronous mode, but simulating synchronous execution. */
96baa820 121
43ff13b4
JM
122int sync_execution = 0;
123
c906108c
SS
124/* wait_for_inferior and normal_stop use this to notify the user
125 when the inferior stopped in a different thread than it had been
96baa820
JM
126 running in. */
127
39f77062 128static ptid_t previous_inferior_ptid;
7a292a7a 129
6c95b8df
PA
130/* Default behavior is to detach newly forked processes (legacy). */
131int detach_fork = 1;
132
237fc4c9
PA
133int debug_displaced = 0;
134static void
135show_debug_displaced (struct ui_file *file, int from_tty,
136 struct cmd_list_element *c, const char *value)
137{
138 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
139}
140
628fe4e4 141int debug_infrun = 0;
920d2a44
AC
142static void
143show_debug_infrun (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145{
146 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
147}
527159b7 148
d4f3574e
SS
149/* If the program uses ELF-style shared libraries, then calls to
150 functions in shared libraries go through stubs, which live in a
151 table called the PLT (Procedure Linkage Table). The first time the
152 function is called, the stub sends control to the dynamic linker,
153 which looks up the function's real address, patches the stub so
154 that future calls will go directly to the function, and then passes
155 control to the function.
156
157 If we are stepping at the source level, we don't want to see any of
158 this --- we just want to skip over the stub and the dynamic linker.
159 The simple approach is to single-step until control leaves the
160 dynamic linker.
161
ca557f44
AC
162 However, on some systems (e.g., Red Hat's 5.2 distribution) the
163 dynamic linker calls functions in the shared C library, so you
164 can't tell from the PC alone whether the dynamic linker is still
165 running. In this case, we use a step-resume breakpoint to get us
166 past the dynamic linker, as if we were using "next" to step over a
167 function call.
d4f3574e 168
cfd8ab24 169 in_solib_dynsym_resolve_code() says whether we're in the dynamic
d4f3574e
SS
170 linker code or not. Normally, this means we single-step. However,
171 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
172 address where we can place a step-resume breakpoint to get past the
173 linker's symbol resolution function.
174
cfd8ab24 175 in_solib_dynsym_resolve_code() can generally be implemented in a
d4f3574e
SS
176 pretty portable way, by comparing the PC against the address ranges
177 of the dynamic linker's sections.
178
179 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
180 it depends on internal details of the dynamic linker. It's usually
181 not too hard to figure out where to put a breakpoint, but it
182 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
183 sanity checking. If it can't figure things out, returning zero and
184 getting the (possibly confusing) stepping behavior is better than
185 signalling an error, which will obscure the change in the
186 inferior's state. */
c906108c 187
c906108c
SS
188/* This function returns TRUE if pc is the address of an instruction
189 that lies within the dynamic linker (such as the event hook, or the
190 dld itself).
191
192 This function must be used only when a dynamic linker event has
193 been caught, and the inferior is being stepped out of the hook, or
194 undefined results are guaranteed. */
195
196#ifndef SOLIB_IN_DYNAMIC_LINKER
197#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
198#endif
199
d914c394
SS
200/* "Observer mode" is somewhat like a more extreme version of
201 non-stop, in which all GDB operations that might affect the
202 target's execution have been disabled. */
203
204static int non_stop_1 = 0;
205
206int observer_mode = 0;
207static int observer_mode_1 = 0;
208
209static void
210set_observer_mode (char *args, int from_tty,
211 struct cmd_list_element *c)
212{
213 extern int pagination_enabled;
214
215 if (target_has_execution)
216 {
217 observer_mode_1 = observer_mode;
218 error (_("Cannot change this setting while the inferior is running."));
219 }
220
221 observer_mode = observer_mode_1;
222
223 may_write_registers = !observer_mode;
224 may_write_memory = !observer_mode;
225 may_insert_breakpoints = !observer_mode;
226 may_insert_tracepoints = !observer_mode;
227 /* We can insert fast tracepoints in or out of observer mode,
228 but enable them if we're going into this mode. */
229 if (observer_mode)
230 may_insert_fast_tracepoints = 1;
231 may_stop = !observer_mode;
232 update_target_permissions ();
233
234 /* Going *into* observer mode we must force non-stop, then
235 going out we leave it that way. */
236 if (observer_mode)
237 {
238 target_async_permitted = 1;
239 pagination_enabled = 0;
240 non_stop = non_stop_1 = 1;
241 }
242
243 if (from_tty)
244 printf_filtered (_("Observer mode is now %s.\n"),
245 (observer_mode ? "on" : "off"));
246}
247
248static void
249show_observer_mode (struct ui_file *file, int from_tty,
250 struct cmd_list_element *c, const char *value)
251{
252 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
253}
254
255/* This updates the value of observer mode based on changes in
256 permissions. Note that we are deliberately ignoring the values of
257 may-write-registers and may-write-memory, since the user may have
258 reason to enable these during a session, for instance to turn on a
259 debugging-related global. */
260
261void
262update_observer_mode (void)
263{
264 int newval;
265
266 newval = (!may_insert_breakpoints
267 && !may_insert_tracepoints
268 && may_insert_fast_tracepoints
269 && !may_stop
270 && non_stop);
271
272 /* Let the user know if things change. */
273 if (newval != observer_mode)
274 printf_filtered (_("Observer mode is now %s.\n"),
275 (newval ? "on" : "off"));
276
277 observer_mode = observer_mode_1 = newval;
278}
c2c6d25f 279
c906108c
SS
280/* Tables of how to react to signals; the user sets them. */
281
282static unsigned char *signal_stop;
283static unsigned char *signal_print;
284static unsigned char *signal_program;
285
2455069d
UW
286/* Table of signals that the target may silently handle.
287 This is automatically determined from the flags above,
288 and simply cached here. */
289static unsigned char *signal_pass;
290
c906108c
SS
291#define SET_SIGS(nsigs,sigs,flags) \
292 do { \
293 int signum = (nsigs); \
294 while (signum-- > 0) \
295 if ((sigs)[signum]) \
296 (flags)[signum] = 1; \
297 } while (0)
298
299#define UNSET_SIGS(nsigs,sigs,flags) \
300 do { \
301 int signum = (nsigs); \
302 while (signum-- > 0) \
303 if ((sigs)[signum]) \
304 (flags)[signum] = 0; \
305 } while (0)
306
1777feb0 307/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 308
edb3359d 309#define RESUME_ALL minus_one_ptid
c906108c
SS
310
311/* Command list pointer for the "stop" placeholder. */
312
313static struct cmd_list_element *stop_command;
314
c906108c
SS
315/* Function inferior was in as of last step command. */
316
317static struct symbol *step_start_function;
318
c906108c
SS
319/* Nonzero if we want to give control to the user when we're notified
320 of shared library events by the dynamic linker. */
628fe4e4 321int stop_on_solib_events;
920d2a44
AC
322static void
323show_stop_on_solib_events (struct ui_file *file, int from_tty,
324 struct cmd_list_element *c, const char *value)
325{
326 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
327 value);
328}
c906108c 329
c906108c
SS
330/* Nonzero means expecting a trace trap
331 and should stop the inferior and return silently when it happens. */
332
333int stop_after_trap;
334
642fd101
DE
335/* Save register contents here when executing a "finish" command or are
336 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
337 Thus this contains the return value from the called function (assuming
338 values are returned in a register). */
339
72cec141 340struct regcache *stop_registers;
c906108c 341
c906108c
SS
342/* Nonzero after stop if current stack frame should be printed. */
343
344static int stop_print_frame;
345
e02bc4cc 346/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
347 returned by target_wait()/deprecated_target_wait_hook(). This
348 information is returned by get_last_target_status(). */
39f77062 349static ptid_t target_last_wait_ptid;
e02bc4cc
DS
350static struct target_waitstatus target_last_waitstatus;
351
0d1e5fa7
PA
352static void context_switch (ptid_t ptid);
353
4e1c45ea 354void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7
PA
355
356void init_infwait_state (void);
a474d7c2 357
53904c9e
AC
358static const char follow_fork_mode_child[] = "child";
359static const char follow_fork_mode_parent[] = "parent";
360
488f131b 361static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
362 follow_fork_mode_child,
363 follow_fork_mode_parent,
364 NULL
ef346e04 365};
c906108c 366
53904c9e 367static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
368static void
369show_follow_fork_mode_string (struct ui_file *file, int from_tty,
370 struct cmd_list_element *c, const char *value)
371{
3e43a32a
MS
372 fprintf_filtered (file,
373 _("Debugger response to a program "
374 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
375 value);
376}
c906108c
SS
377\f
378
e58b0e63
PA
379/* Tell the target to follow the fork we're stopped at. Returns true
380 if the inferior should be resumed; false, if the target for some
381 reason decided it's best not to resume. */
382
6604731b 383static int
4ef3f3be 384follow_fork (void)
c906108c 385{
ea1dd7bc 386 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
387 int should_resume = 1;
388 struct thread_info *tp;
389
390 /* Copy user stepping state to the new inferior thread. FIXME: the
391 followed fork child thread should have a copy of most of the
4e3990f4
DE
392 parent thread structure's run control related fields, not just these.
393 Initialized to avoid "may be used uninitialized" warnings from gcc. */
394 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 395 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
396 CORE_ADDR step_range_start = 0;
397 CORE_ADDR step_range_end = 0;
398 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
399
400 if (!non_stop)
401 {
402 ptid_t wait_ptid;
403 struct target_waitstatus wait_status;
404
405 /* Get the last target status returned by target_wait(). */
406 get_last_target_status (&wait_ptid, &wait_status);
407
408 /* If not stopped at a fork event, then there's nothing else to
409 do. */
410 if (wait_status.kind != TARGET_WAITKIND_FORKED
411 && wait_status.kind != TARGET_WAITKIND_VFORKED)
412 return 1;
413
414 /* Check if we switched over from WAIT_PTID, since the event was
415 reported. */
416 if (!ptid_equal (wait_ptid, minus_one_ptid)
417 && !ptid_equal (inferior_ptid, wait_ptid))
418 {
419 /* We did. Switch back to WAIT_PTID thread, to tell the
420 target to follow it (in either direction). We'll
421 afterwards refuse to resume, and inform the user what
422 happened. */
423 switch_to_thread (wait_ptid);
424 should_resume = 0;
425 }
426 }
427
428 tp = inferior_thread ();
429
430 /* If there were any forks/vforks that were caught and are now to be
431 followed, then do so now. */
432 switch (tp->pending_follow.kind)
433 {
434 case TARGET_WAITKIND_FORKED:
435 case TARGET_WAITKIND_VFORKED:
436 {
437 ptid_t parent, child;
438
439 /* If the user did a next/step, etc, over a fork call,
440 preserve the stepping state in the fork child. */
441 if (follow_child && should_resume)
442 {
8358c15c
JK
443 step_resume_breakpoint = clone_momentary_breakpoint
444 (tp->control.step_resume_breakpoint);
16c381f0
JK
445 step_range_start = tp->control.step_range_start;
446 step_range_end = tp->control.step_range_end;
447 step_frame_id = tp->control.step_frame_id;
186c406b
TT
448 exception_resume_breakpoint
449 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
e58b0e63
PA
450
451 /* For now, delete the parent's sr breakpoint, otherwise,
452 parent/child sr breakpoints are considered duplicates,
453 and the child version will not be installed. Remove
454 this when the breakpoints module becomes aware of
455 inferiors and address spaces. */
456 delete_step_resume_breakpoint (tp);
16c381f0
JK
457 tp->control.step_range_start = 0;
458 tp->control.step_range_end = 0;
459 tp->control.step_frame_id = null_frame_id;
186c406b 460 delete_exception_resume_breakpoint (tp);
e58b0e63
PA
461 }
462
463 parent = inferior_ptid;
464 child = tp->pending_follow.value.related_pid;
465
466 /* Tell the target to do whatever is necessary to follow
467 either parent or child. */
468 if (target_follow_fork (follow_child))
469 {
470 /* Target refused to follow, or there's some other reason
471 we shouldn't resume. */
472 should_resume = 0;
473 }
474 else
475 {
476 /* This pending follow fork event is now handled, one way
477 or another. The previous selected thread may be gone
478 from the lists by now, but if it is still around, need
479 to clear the pending follow request. */
e09875d4 480 tp = find_thread_ptid (parent);
e58b0e63
PA
481 if (tp)
482 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
483
484 /* This makes sure we don't try to apply the "Switched
485 over from WAIT_PID" logic above. */
486 nullify_last_target_wait_ptid ();
487
1777feb0 488 /* If we followed the child, switch to it... */
e58b0e63
PA
489 if (follow_child)
490 {
491 switch_to_thread (child);
492
493 /* ... and preserve the stepping state, in case the
494 user was stepping over the fork call. */
495 if (should_resume)
496 {
497 tp = inferior_thread ();
8358c15c
JK
498 tp->control.step_resume_breakpoint
499 = step_resume_breakpoint;
16c381f0
JK
500 tp->control.step_range_start = step_range_start;
501 tp->control.step_range_end = step_range_end;
502 tp->control.step_frame_id = step_frame_id;
186c406b
TT
503 tp->control.exception_resume_breakpoint
504 = exception_resume_breakpoint;
e58b0e63
PA
505 }
506 else
507 {
508 /* If we get here, it was because we're trying to
509 resume from a fork catchpoint, but, the user
510 has switched threads away from the thread that
511 forked. In that case, the resume command
512 issued is most likely not applicable to the
513 child, so just warn, and refuse to resume. */
3e43a32a
MS
514 warning (_("Not resuming: switched threads "
515 "before following fork child.\n"));
e58b0e63
PA
516 }
517
518 /* Reset breakpoints in the child as appropriate. */
519 follow_inferior_reset_breakpoints ();
520 }
521 else
522 switch_to_thread (parent);
523 }
524 }
525 break;
526 case TARGET_WAITKIND_SPURIOUS:
527 /* Nothing to follow. */
528 break;
529 default:
530 internal_error (__FILE__, __LINE__,
531 "Unexpected pending_follow.kind %d\n",
532 tp->pending_follow.kind);
533 break;
534 }
c906108c 535
e58b0e63 536 return should_resume;
c906108c
SS
537}
538
6604731b
DJ
539void
540follow_inferior_reset_breakpoints (void)
c906108c 541{
4e1c45ea
PA
542 struct thread_info *tp = inferior_thread ();
543
6604731b
DJ
544 /* Was there a step_resume breakpoint? (There was if the user
545 did a "next" at the fork() call.) If so, explicitly reset its
546 thread number.
547
548 step_resumes are a form of bp that are made to be per-thread.
549 Since we created the step_resume bp when the parent process
550 was being debugged, and now are switching to the child process,
551 from the breakpoint package's viewpoint, that's a switch of
552 "threads". We must update the bp's notion of which thread
553 it is for, or it'll be ignored when it triggers. */
554
8358c15c
JK
555 if (tp->control.step_resume_breakpoint)
556 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
6604731b 557
186c406b
TT
558 if (tp->control.exception_resume_breakpoint)
559 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
560
6604731b
DJ
561 /* Reinsert all breakpoints in the child. The user may have set
562 breakpoints after catching the fork, in which case those
563 were never set in the child, but only in the parent. This makes
564 sure the inserted breakpoints match the breakpoint list. */
565
566 breakpoint_re_set ();
567 insert_breakpoints ();
c906108c 568}
c906108c 569
6c95b8df
PA
570/* The child has exited or execed: resume threads of the parent the
571 user wanted to be executing. */
572
573static int
574proceed_after_vfork_done (struct thread_info *thread,
575 void *arg)
576{
577 int pid = * (int *) arg;
578
579 if (ptid_get_pid (thread->ptid) == pid
580 && is_running (thread->ptid)
581 && !is_executing (thread->ptid)
582 && !thread->stop_requested
16c381f0 583 && thread->suspend.stop_signal == TARGET_SIGNAL_0)
6c95b8df
PA
584 {
585 if (debug_infrun)
586 fprintf_unfiltered (gdb_stdlog,
587 "infrun: resuming vfork parent thread %s\n",
588 target_pid_to_str (thread->ptid));
589
590 switch_to_thread (thread->ptid);
591 clear_proceed_status ();
592 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
593 }
594
595 return 0;
596}
597
598/* Called whenever we notice an exec or exit event, to handle
599 detaching or resuming a vfork parent. */
600
601static void
602handle_vfork_child_exec_or_exit (int exec)
603{
604 struct inferior *inf = current_inferior ();
605
606 if (inf->vfork_parent)
607 {
608 int resume_parent = -1;
609
610 /* This exec or exit marks the end of the shared memory region
611 between the parent and the child. If the user wanted to
612 detach from the parent, now is the time. */
613
614 if (inf->vfork_parent->pending_detach)
615 {
616 struct thread_info *tp;
617 struct cleanup *old_chain;
618 struct program_space *pspace;
619 struct address_space *aspace;
620
1777feb0 621 /* follow-fork child, detach-on-fork on. */
6c95b8df
PA
622
623 old_chain = make_cleanup_restore_current_thread ();
624
625 /* We're letting loose of the parent. */
626 tp = any_live_thread_of_process (inf->vfork_parent->pid);
627 switch_to_thread (tp->ptid);
628
629 /* We're about to detach from the parent, which implicitly
630 removes breakpoints from its address space. There's a
631 catch here: we want to reuse the spaces for the child,
632 but, parent/child are still sharing the pspace at this
633 point, although the exec in reality makes the kernel give
634 the child a fresh set of new pages. The problem here is
635 that the breakpoints module being unaware of this, would
636 likely chose the child process to write to the parent
637 address space. Swapping the child temporarily away from
638 the spaces has the desired effect. Yes, this is "sort
639 of" a hack. */
640
641 pspace = inf->pspace;
642 aspace = inf->aspace;
643 inf->aspace = NULL;
644 inf->pspace = NULL;
645
646 if (debug_infrun || info_verbose)
647 {
648 target_terminal_ours ();
649
650 if (exec)
651 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
652 "Detaching vfork parent process "
653 "%d after child exec.\n",
6c95b8df
PA
654 inf->vfork_parent->pid);
655 else
656 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
657 "Detaching vfork parent process "
658 "%d after child exit.\n",
6c95b8df
PA
659 inf->vfork_parent->pid);
660 }
661
662 target_detach (NULL, 0);
663
664 /* Put it back. */
665 inf->pspace = pspace;
666 inf->aspace = aspace;
667
668 do_cleanups (old_chain);
669 }
670 else if (exec)
671 {
672 /* We're staying attached to the parent, so, really give the
673 child a new address space. */
674 inf->pspace = add_program_space (maybe_new_address_space ());
675 inf->aspace = inf->pspace->aspace;
676 inf->removable = 1;
677 set_current_program_space (inf->pspace);
678
679 resume_parent = inf->vfork_parent->pid;
680
681 /* Break the bonds. */
682 inf->vfork_parent->vfork_child = NULL;
683 }
684 else
685 {
686 struct cleanup *old_chain;
687 struct program_space *pspace;
688
689 /* If this is a vfork child exiting, then the pspace and
690 aspaces were shared with the parent. Since we're
691 reporting the process exit, we'll be mourning all that is
692 found in the address space, and switching to null_ptid,
693 preparing to start a new inferior. But, since we don't
694 want to clobber the parent's address/program spaces, we
695 go ahead and create a new one for this exiting
696 inferior. */
697
698 /* Switch to null_ptid, so that clone_program_space doesn't want
699 to read the selected frame of a dead process. */
700 old_chain = save_inferior_ptid ();
701 inferior_ptid = null_ptid;
702
703 /* This inferior is dead, so avoid giving the breakpoints
704 module the option to write through to it (cloning a
705 program space resets breakpoints). */
706 inf->aspace = NULL;
707 inf->pspace = NULL;
708 pspace = add_program_space (maybe_new_address_space ());
709 set_current_program_space (pspace);
710 inf->removable = 1;
711 clone_program_space (pspace, inf->vfork_parent->pspace);
712 inf->pspace = pspace;
713 inf->aspace = pspace->aspace;
714
715 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 716 inferior. */
6c95b8df
PA
717 do_cleanups (old_chain);
718
719 resume_parent = inf->vfork_parent->pid;
720 /* Break the bonds. */
721 inf->vfork_parent->vfork_child = NULL;
722 }
723
724 inf->vfork_parent = NULL;
725
726 gdb_assert (current_program_space == inf->pspace);
727
728 if (non_stop && resume_parent != -1)
729 {
730 /* If the user wanted the parent to be running, let it go
731 free now. */
732 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
733
734 if (debug_infrun)
3e43a32a
MS
735 fprintf_unfiltered (gdb_stdlog,
736 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
737 resume_parent);
738
739 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
740
741 do_cleanups (old_chain);
742 }
743 }
744}
745
746/* Enum strings for "set|show displaced-stepping". */
747
748static const char follow_exec_mode_new[] = "new";
749static const char follow_exec_mode_same[] = "same";
750static const char *follow_exec_mode_names[] =
751{
752 follow_exec_mode_new,
753 follow_exec_mode_same,
754 NULL,
755};
756
757static const char *follow_exec_mode_string = follow_exec_mode_same;
758static void
759show_follow_exec_mode_string (struct ui_file *file, int from_tty,
760 struct cmd_list_element *c, const char *value)
761{
762 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
763}
764
1777feb0 765/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 766
c906108c 767static void
3a3e9ee3 768follow_exec (ptid_t pid, char *execd_pathname)
c906108c 769{
4e1c45ea 770 struct thread_info *th = inferior_thread ();
6c95b8df 771 struct inferior *inf = current_inferior ();
7a292a7a 772
c906108c
SS
773 /* This is an exec event that we actually wish to pay attention to.
774 Refresh our symbol table to the newly exec'd program, remove any
775 momentary bp's, etc.
776
777 If there are breakpoints, they aren't really inserted now,
778 since the exec() transformed our inferior into a fresh set
779 of instructions.
780
781 We want to preserve symbolic breakpoints on the list, since
782 we have hopes that they can be reset after the new a.out's
783 symbol table is read.
784
785 However, any "raw" breakpoints must be removed from the list
786 (e.g., the solib bp's), since their address is probably invalid
787 now.
788
789 And, we DON'T want to call delete_breakpoints() here, since
790 that may write the bp's "shadow contents" (the instruction
791 value that was overwritten witha TRAP instruction). Since
1777feb0 792 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
793
794 mark_breakpoints_out ();
795
c906108c
SS
796 update_breakpoints_after_exec ();
797
798 /* If there was one, it's gone now. We cannot truly step-to-next
1777feb0 799 statement through an exec(). */
8358c15c 800 th->control.step_resume_breakpoint = NULL;
186c406b 801 th->control.exception_resume_breakpoint = NULL;
16c381f0
JK
802 th->control.step_range_start = 0;
803 th->control.step_range_end = 0;
c906108c 804
a75724bc
PA
805 /* The target reports the exec event to the main thread, even if
806 some other thread does the exec, and even if the main thread was
807 already stopped --- if debugging in non-stop mode, it's possible
808 the user had the main thread held stopped in the previous image
809 --- release it now. This is the same behavior as step-over-exec
810 with scheduler-locking on in all-stop mode. */
811 th->stop_requested = 0;
812
1777feb0 813 /* What is this a.out's name? */
6c95b8df
PA
814 printf_unfiltered (_("%s is executing new program: %s\n"),
815 target_pid_to_str (inferior_ptid),
816 execd_pathname);
c906108c
SS
817
818 /* We've followed the inferior through an exec. Therefore, the
1777feb0 819 inferior has essentially been killed & reborn. */
7a292a7a 820
c906108c 821 gdb_flush (gdb_stdout);
6ca15a4b
PA
822
823 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
824
825 if (gdb_sysroot && *gdb_sysroot)
826 {
827 char *name = alloca (strlen (gdb_sysroot)
828 + strlen (execd_pathname)
829 + 1);
abbb1732 830
e85a822c
DJ
831 strcpy (name, gdb_sysroot);
832 strcat (name, execd_pathname);
833 execd_pathname = name;
834 }
c906108c 835
cce9b6bf
PA
836 /* Reset the shared library package. This ensures that we get a
837 shlib event when the child reaches "_start", at which point the
838 dld will have had a chance to initialize the child. */
839 /* Also, loading a symbol file below may trigger symbol lookups, and
840 we don't want those to be satisfied by the libraries of the
841 previous incarnation of this process. */
842 no_shared_libraries (NULL, 0);
843
6c95b8df
PA
844 if (follow_exec_mode_string == follow_exec_mode_new)
845 {
846 struct program_space *pspace;
6c95b8df
PA
847
848 /* The user wants to keep the old inferior and program spaces
849 around. Create a new fresh one, and switch to it. */
850
851 inf = add_inferior (current_inferior ()->pid);
852 pspace = add_program_space (maybe_new_address_space ());
853 inf->pspace = pspace;
854 inf->aspace = pspace->aspace;
855
856 exit_inferior_num_silent (current_inferior ()->num);
857
858 set_current_inferior (inf);
859 set_current_program_space (pspace);
860 }
861
862 gdb_assert (current_program_space == inf->pspace);
863
1777feb0 864 /* That a.out is now the one to use. */
6c95b8df
PA
865 exec_file_attach (execd_pathname, 0);
866
c1e56572
JK
867 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
868 (Position Independent Executable) main symbol file will get applied by
869 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
870 the breakpoints with the zero displacement. */
871
872 symbol_file_add (execd_pathname, SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET,
873 NULL, 0);
874
875 set_initial_language ();
c906108c 876
7a292a7a 877#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 878 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2 879#else
268a4a75 880 solib_create_inferior_hook (0);
7a292a7a 881#endif
c906108c 882
4efc6507
DE
883 jit_inferior_created_hook ();
884
c1e56572
JK
885 breakpoint_re_set ();
886
c906108c
SS
887 /* Reinsert all breakpoints. (Those which were symbolic have
888 been reset to the proper address in the new a.out, thanks
1777feb0 889 to symbol_file_command...). */
c906108c
SS
890 insert_breakpoints ();
891
892 /* The next resume of this inferior should bring it to the shlib
893 startup breakpoints. (If the user had also set bp's on
894 "main" from the old (parent) process, then they'll auto-
1777feb0 895 matically get reset there in the new process.). */
c906108c
SS
896}
897
898/* Non-zero if we just simulating a single-step. This is needed
899 because we cannot remove the breakpoints in the inferior process
900 until after the `wait' in `wait_for_inferior'. */
901static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
902
903/* The thread we inserted single-step breakpoints for. */
904static ptid_t singlestep_ptid;
905
fd48f117
DJ
906/* PC when we started this single-step. */
907static CORE_ADDR singlestep_pc;
908
9f976b41
DJ
909/* If another thread hit the singlestep breakpoint, we save the original
910 thread here so that we can resume single-stepping it later. */
911static ptid_t saved_singlestep_ptid;
912static int stepping_past_singlestep_breakpoint;
6a6b96b9 913
ca67fcb8
VP
914/* If not equal to null_ptid, this means that after stepping over breakpoint
915 is finished, we need to switch to deferred_step_ptid, and step it.
916
917 The use case is when one thread has hit a breakpoint, and then the user
1777feb0 918 has switched to another thread and issued 'step'. We need to step over
ca67fcb8
VP
919 breakpoint in the thread which hit the breakpoint, but then continue
920 stepping the thread user has selected. */
921static ptid_t deferred_step_ptid;
c906108c 922\f
237fc4c9
PA
923/* Displaced stepping. */
924
925/* In non-stop debugging mode, we must take special care to manage
926 breakpoints properly; in particular, the traditional strategy for
927 stepping a thread past a breakpoint it has hit is unsuitable.
928 'Displaced stepping' is a tactic for stepping one thread past a
929 breakpoint it has hit while ensuring that other threads running
930 concurrently will hit the breakpoint as they should.
931
932 The traditional way to step a thread T off a breakpoint in a
933 multi-threaded program in all-stop mode is as follows:
934
935 a0) Initially, all threads are stopped, and breakpoints are not
936 inserted.
937 a1) We single-step T, leaving breakpoints uninserted.
938 a2) We insert breakpoints, and resume all threads.
939
940 In non-stop debugging, however, this strategy is unsuitable: we
941 don't want to have to stop all threads in the system in order to
942 continue or step T past a breakpoint. Instead, we use displaced
943 stepping:
944
945 n0) Initially, T is stopped, other threads are running, and
946 breakpoints are inserted.
947 n1) We copy the instruction "under" the breakpoint to a separate
948 location, outside the main code stream, making any adjustments
949 to the instruction, register, and memory state as directed by
950 T's architecture.
951 n2) We single-step T over the instruction at its new location.
952 n3) We adjust the resulting register and memory state as directed
953 by T's architecture. This includes resetting T's PC to point
954 back into the main instruction stream.
955 n4) We resume T.
956
957 This approach depends on the following gdbarch methods:
958
959 - gdbarch_max_insn_length and gdbarch_displaced_step_location
960 indicate where to copy the instruction, and how much space must
961 be reserved there. We use these in step n1.
962
963 - gdbarch_displaced_step_copy_insn copies a instruction to a new
964 address, and makes any necessary adjustments to the instruction,
965 register contents, and memory. We use this in step n1.
966
967 - gdbarch_displaced_step_fixup adjusts registers and memory after
968 we have successfuly single-stepped the instruction, to yield the
969 same effect the instruction would have had if we had executed it
970 at its original address. We use this in step n3.
971
972 - gdbarch_displaced_step_free_closure provides cleanup.
973
974 The gdbarch_displaced_step_copy_insn and
975 gdbarch_displaced_step_fixup functions must be written so that
976 copying an instruction with gdbarch_displaced_step_copy_insn,
977 single-stepping across the copied instruction, and then applying
978 gdbarch_displaced_insn_fixup should have the same effects on the
979 thread's memory and registers as stepping the instruction in place
980 would have. Exactly which responsibilities fall to the copy and
981 which fall to the fixup is up to the author of those functions.
982
983 See the comments in gdbarch.sh for details.
984
985 Note that displaced stepping and software single-step cannot
986 currently be used in combination, although with some care I think
987 they could be made to. Software single-step works by placing
988 breakpoints on all possible subsequent instructions; if the
989 displaced instruction is a PC-relative jump, those breakpoints
990 could fall in very strange places --- on pages that aren't
991 executable, or at addresses that are not proper instruction
992 boundaries. (We do generally let other threads run while we wait
993 to hit the software single-step breakpoint, and they might
994 encounter such a corrupted instruction.) One way to work around
995 this would be to have gdbarch_displaced_step_copy_insn fully
996 simulate the effect of PC-relative instructions (and return NULL)
997 on architectures that use software single-stepping.
998
999 In non-stop mode, we can have independent and simultaneous step
1000 requests, so more than one thread may need to simultaneously step
1001 over a breakpoint. The current implementation assumes there is
1002 only one scratch space per process. In this case, we have to
1003 serialize access to the scratch space. If thread A wants to step
1004 over a breakpoint, but we are currently waiting for some other
1005 thread to complete a displaced step, we leave thread A stopped and
1006 place it in the displaced_step_request_queue. Whenever a displaced
1007 step finishes, we pick the next thread in the queue and start a new
1008 displaced step operation on it. See displaced_step_prepare and
1009 displaced_step_fixup for details. */
1010
237fc4c9
PA
1011struct displaced_step_request
1012{
1013 ptid_t ptid;
1014 struct displaced_step_request *next;
1015};
1016
fc1cf338
PA
1017/* Per-inferior displaced stepping state. */
1018struct displaced_step_inferior_state
1019{
1020 /* Pointer to next in linked list. */
1021 struct displaced_step_inferior_state *next;
1022
1023 /* The process this displaced step state refers to. */
1024 int pid;
1025
1026 /* A queue of pending displaced stepping requests. One entry per
1027 thread that needs to do a displaced step. */
1028 struct displaced_step_request *step_request_queue;
1029
1030 /* If this is not null_ptid, this is the thread carrying out a
1031 displaced single-step in process PID. This thread's state will
1032 require fixing up once it has completed its step. */
1033 ptid_t step_ptid;
1034
1035 /* The architecture the thread had when we stepped it. */
1036 struct gdbarch *step_gdbarch;
1037
1038 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1039 for post-step cleanup. */
1040 struct displaced_step_closure *step_closure;
1041
1042 /* The address of the original instruction, and the copy we
1043 made. */
1044 CORE_ADDR step_original, step_copy;
1045
1046 /* Saved contents of copy area. */
1047 gdb_byte *step_saved_copy;
1048};
1049
1050/* The list of states of processes involved in displaced stepping
1051 presently. */
1052static struct displaced_step_inferior_state *displaced_step_inferior_states;
1053
1054/* Get the displaced stepping state of process PID. */
1055
1056static struct displaced_step_inferior_state *
1057get_displaced_stepping_state (int pid)
1058{
1059 struct displaced_step_inferior_state *state;
1060
1061 for (state = displaced_step_inferior_states;
1062 state != NULL;
1063 state = state->next)
1064 if (state->pid == pid)
1065 return state;
1066
1067 return NULL;
1068}
1069
1070/* Add a new displaced stepping state for process PID to the displaced
1071 stepping state list, or return a pointer to an already existing
1072 entry, if it already exists. Never returns NULL. */
1073
1074static struct displaced_step_inferior_state *
1075add_displaced_stepping_state (int pid)
1076{
1077 struct displaced_step_inferior_state *state;
1078
1079 for (state = displaced_step_inferior_states;
1080 state != NULL;
1081 state = state->next)
1082 if (state->pid == pid)
1083 return state;
237fc4c9 1084
fc1cf338
PA
1085 state = xcalloc (1, sizeof (*state));
1086 state->pid = pid;
1087 state->next = displaced_step_inferior_states;
1088 displaced_step_inferior_states = state;
237fc4c9 1089
fc1cf338
PA
1090 return state;
1091}
1092
a42244db
YQ
1093/* If inferior is in displaced stepping, and ADDR equals to starting address
1094 of copy area, return corresponding displaced_step_closure. Otherwise,
1095 return NULL. */
1096
1097struct displaced_step_closure*
1098get_displaced_step_closure_by_addr (CORE_ADDR addr)
1099{
1100 struct displaced_step_inferior_state *displaced
1101 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1102
1103 /* If checking the mode of displaced instruction in copy area. */
1104 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1105 && (displaced->step_copy == addr))
1106 return displaced->step_closure;
1107
1108 return NULL;
1109}
1110
fc1cf338 1111/* Remove the displaced stepping state of process PID. */
237fc4c9 1112
fc1cf338
PA
1113static void
1114remove_displaced_stepping_state (int pid)
1115{
1116 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1117
fc1cf338
PA
1118 gdb_assert (pid != 0);
1119
1120 it = displaced_step_inferior_states;
1121 prev_next_p = &displaced_step_inferior_states;
1122 while (it)
1123 {
1124 if (it->pid == pid)
1125 {
1126 *prev_next_p = it->next;
1127 xfree (it);
1128 return;
1129 }
1130
1131 prev_next_p = &it->next;
1132 it = *prev_next_p;
1133 }
1134}
1135
1136static void
1137infrun_inferior_exit (struct inferior *inf)
1138{
1139 remove_displaced_stepping_state (inf->pid);
1140}
237fc4c9 1141
fff08868
HZ
1142/* Enum strings for "set|show displaced-stepping". */
1143
1144static const char can_use_displaced_stepping_auto[] = "auto";
1145static const char can_use_displaced_stepping_on[] = "on";
1146static const char can_use_displaced_stepping_off[] = "off";
1147static const char *can_use_displaced_stepping_enum[] =
1148{
1149 can_use_displaced_stepping_auto,
1150 can_use_displaced_stepping_on,
1151 can_use_displaced_stepping_off,
1152 NULL,
1153};
1154
1155/* If ON, and the architecture supports it, GDB will use displaced
1156 stepping to step over breakpoints. If OFF, or if the architecture
1157 doesn't support it, GDB will instead use the traditional
1158 hold-and-step approach. If AUTO (which is the default), GDB will
1159 decide which technique to use to step over breakpoints depending on
1160 which of all-stop or non-stop mode is active --- displaced stepping
1161 in non-stop mode; hold-and-step in all-stop mode. */
1162
1163static const char *can_use_displaced_stepping =
1164 can_use_displaced_stepping_auto;
1165
237fc4c9
PA
1166static void
1167show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1168 struct cmd_list_element *c,
1169 const char *value)
1170{
fff08868 1171 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
3e43a32a
MS
1172 fprintf_filtered (file,
1173 _("Debugger's willingness to use displaced stepping "
1174 "to step over breakpoints is %s (currently %s).\n"),
fff08868
HZ
1175 value, non_stop ? "on" : "off");
1176 else
3e43a32a
MS
1177 fprintf_filtered (file,
1178 _("Debugger's willingness to use displaced stepping "
1179 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1180}
1181
fff08868
HZ
1182/* Return non-zero if displaced stepping can/should be used to step
1183 over breakpoints. */
1184
237fc4c9
PA
1185static int
1186use_displaced_stepping (struct gdbarch *gdbarch)
1187{
fff08868
HZ
1188 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
1189 && non_stop)
1190 || can_use_displaced_stepping == can_use_displaced_stepping_on)
96429cc8
HZ
1191 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1192 && !RECORD_IS_USED);
237fc4c9
PA
1193}
1194
1195/* Clean out any stray displaced stepping state. */
1196static void
fc1cf338 1197displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1198{
1199 /* Indicate that there is no cleanup pending. */
fc1cf338 1200 displaced->step_ptid = null_ptid;
237fc4c9 1201
fc1cf338 1202 if (displaced->step_closure)
237fc4c9 1203 {
fc1cf338
PA
1204 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1205 displaced->step_closure);
1206 displaced->step_closure = NULL;
237fc4c9
PA
1207 }
1208}
1209
1210static void
fc1cf338 1211displaced_step_clear_cleanup (void *arg)
237fc4c9 1212{
fc1cf338
PA
1213 struct displaced_step_inferior_state *state = arg;
1214
1215 displaced_step_clear (state);
237fc4c9
PA
1216}
1217
1218/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1219void
1220displaced_step_dump_bytes (struct ui_file *file,
1221 const gdb_byte *buf,
1222 size_t len)
1223{
1224 int i;
1225
1226 for (i = 0; i < len; i++)
1227 fprintf_unfiltered (file, "%02x ", buf[i]);
1228 fputs_unfiltered ("\n", file);
1229}
1230
1231/* Prepare to single-step, using displaced stepping.
1232
1233 Note that we cannot use displaced stepping when we have a signal to
1234 deliver. If we have a signal to deliver and an instruction to step
1235 over, then after the step, there will be no indication from the
1236 target whether the thread entered a signal handler or ignored the
1237 signal and stepped over the instruction successfully --- both cases
1238 result in a simple SIGTRAP. In the first case we mustn't do a
1239 fixup, and in the second case we must --- but we can't tell which.
1240 Comments in the code for 'random signals' in handle_inferior_event
1241 explain how we handle this case instead.
1242
1243 Returns 1 if preparing was successful -- this thread is going to be
1244 stepped now; or 0 if displaced stepping this thread got queued. */
1245static int
1246displaced_step_prepare (ptid_t ptid)
1247{
ad53cd71 1248 struct cleanup *old_cleanups, *ignore_cleanups;
237fc4c9
PA
1249 struct regcache *regcache = get_thread_regcache (ptid);
1250 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1251 CORE_ADDR original, copy;
1252 ULONGEST len;
1253 struct displaced_step_closure *closure;
fc1cf338 1254 struct displaced_step_inferior_state *displaced;
237fc4c9
PA
1255
1256 /* We should never reach this function if the architecture does not
1257 support displaced stepping. */
1258 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1259
fc1cf338
PA
1260 /* We have to displaced step one thread at a time, as we only have
1261 access to a single scratch space per inferior. */
237fc4c9 1262
fc1cf338
PA
1263 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1264
1265 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1266 {
1267 /* Already waiting for a displaced step to finish. Defer this
1268 request and place in queue. */
1269 struct displaced_step_request *req, *new_req;
1270
1271 if (debug_displaced)
1272 fprintf_unfiltered (gdb_stdlog,
1273 "displaced: defering step of %s\n",
1274 target_pid_to_str (ptid));
1275
1276 new_req = xmalloc (sizeof (*new_req));
1277 new_req->ptid = ptid;
1278 new_req->next = NULL;
1279
fc1cf338 1280 if (displaced->step_request_queue)
237fc4c9 1281 {
fc1cf338 1282 for (req = displaced->step_request_queue;
237fc4c9
PA
1283 req && req->next;
1284 req = req->next)
1285 ;
1286 req->next = new_req;
1287 }
1288 else
fc1cf338 1289 displaced->step_request_queue = new_req;
237fc4c9
PA
1290
1291 return 0;
1292 }
1293 else
1294 {
1295 if (debug_displaced)
1296 fprintf_unfiltered (gdb_stdlog,
1297 "displaced: stepping %s now\n",
1298 target_pid_to_str (ptid));
1299 }
1300
fc1cf338 1301 displaced_step_clear (displaced);
237fc4c9 1302
ad53cd71
PA
1303 old_cleanups = save_inferior_ptid ();
1304 inferior_ptid = ptid;
1305
515630c5 1306 original = regcache_read_pc (regcache);
237fc4c9
PA
1307
1308 copy = gdbarch_displaced_step_location (gdbarch);
1309 len = gdbarch_max_insn_length (gdbarch);
1310
1311 /* Save the original contents of the copy area. */
fc1cf338 1312 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1313 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338
PA
1314 &displaced->step_saved_copy);
1315 read_memory (copy, displaced->step_saved_copy, len);
237fc4c9
PA
1316 if (debug_displaced)
1317 {
5af949e3
UW
1318 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1319 paddress (gdbarch, copy));
fc1cf338
PA
1320 displaced_step_dump_bytes (gdb_stdlog,
1321 displaced->step_saved_copy,
1322 len);
237fc4c9
PA
1323 };
1324
1325 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1326 original, copy, regcache);
237fc4c9
PA
1327
1328 /* We don't support the fully-simulated case at present. */
1329 gdb_assert (closure);
1330
9f5a595d
UW
1331 /* Save the information we need to fix things up if the step
1332 succeeds. */
fc1cf338
PA
1333 displaced->step_ptid = ptid;
1334 displaced->step_gdbarch = gdbarch;
1335 displaced->step_closure = closure;
1336 displaced->step_original = original;
1337 displaced->step_copy = copy;
9f5a595d 1338
fc1cf338 1339 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1340
1341 /* Resume execution at the copy. */
515630c5 1342 regcache_write_pc (regcache, copy);
237fc4c9 1343
ad53cd71
PA
1344 discard_cleanups (ignore_cleanups);
1345
1346 do_cleanups (old_cleanups);
237fc4c9
PA
1347
1348 if (debug_displaced)
5af949e3
UW
1349 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1350 paddress (gdbarch, copy));
237fc4c9 1351
237fc4c9
PA
1352 return 1;
1353}
1354
237fc4c9 1355static void
3e43a32a
MS
1356write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1357 const gdb_byte *myaddr, int len)
237fc4c9
PA
1358{
1359 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1360
237fc4c9
PA
1361 inferior_ptid = ptid;
1362 write_memory (memaddr, myaddr, len);
1363 do_cleanups (ptid_cleanup);
1364}
1365
1366static void
1367displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
1368{
1369 struct cleanup *old_cleanups;
fc1cf338
PA
1370 struct displaced_step_inferior_state *displaced
1371 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1372
1373 /* Was any thread of this process doing a displaced step? */
1374 if (displaced == NULL)
1375 return;
237fc4c9
PA
1376
1377 /* Was this event for the pid we displaced? */
fc1cf338
PA
1378 if (ptid_equal (displaced->step_ptid, null_ptid)
1379 || ! ptid_equal (displaced->step_ptid, event_ptid))
237fc4c9
PA
1380 return;
1381
fc1cf338 1382 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1383
1384 /* Restore the contents of the copy area. */
1385 {
fc1cf338 1386 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
abbb1732 1387
fc1cf338
PA
1388 write_memory_ptid (displaced->step_ptid, displaced->step_copy,
1389 displaced->step_saved_copy, len);
237fc4c9 1390 if (debug_displaced)
5af949e3 1391 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s\n",
fc1cf338
PA
1392 paddress (displaced->step_gdbarch,
1393 displaced->step_copy));
237fc4c9
PA
1394 }
1395
1396 /* Did the instruction complete successfully? */
1397 if (signal == TARGET_SIGNAL_TRAP)
1398 {
1399 /* Fix up the resulting state. */
fc1cf338
PA
1400 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1401 displaced->step_closure,
1402 displaced->step_original,
1403 displaced->step_copy,
1404 get_thread_regcache (displaced->step_ptid));
237fc4c9
PA
1405 }
1406 else
1407 {
1408 /* Since the instruction didn't complete, all we can do is
1409 relocate the PC. */
515630c5
UW
1410 struct regcache *regcache = get_thread_regcache (event_ptid);
1411 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1412
fc1cf338 1413 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1414 regcache_write_pc (regcache, pc);
237fc4c9
PA
1415 }
1416
1417 do_cleanups (old_cleanups);
1418
fc1cf338 1419 displaced->step_ptid = null_ptid;
1c5cfe86 1420
237fc4c9 1421 /* Are there any pending displaced stepping requests? If so, run
fc1cf338
PA
1422 one now. Leave the state object around, since we're likely to
1423 need it again soon. */
1424 while (displaced->step_request_queue)
237fc4c9
PA
1425 {
1426 struct displaced_step_request *head;
1427 ptid_t ptid;
5af949e3 1428 struct regcache *regcache;
929dfd4f 1429 struct gdbarch *gdbarch;
1c5cfe86 1430 CORE_ADDR actual_pc;
6c95b8df 1431 struct address_space *aspace;
237fc4c9 1432
fc1cf338 1433 head = displaced->step_request_queue;
237fc4c9 1434 ptid = head->ptid;
fc1cf338 1435 displaced->step_request_queue = head->next;
237fc4c9
PA
1436 xfree (head);
1437
ad53cd71
PA
1438 context_switch (ptid);
1439
5af949e3
UW
1440 regcache = get_thread_regcache (ptid);
1441 actual_pc = regcache_read_pc (regcache);
6c95b8df 1442 aspace = get_regcache_aspace (regcache);
1c5cfe86 1443
6c95b8df 1444 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1445 {
1c5cfe86
PA
1446 if (debug_displaced)
1447 fprintf_unfiltered (gdb_stdlog,
1448 "displaced: stepping queued %s now\n",
1449 target_pid_to_str (ptid));
1450
1451 displaced_step_prepare (ptid);
1452
929dfd4f
JB
1453 gdbarch = get_regcache_arch (regcache);
1454
1c5cfe86
PA
1455 if (debug_displaced)
1456 {
929dfd4f 1457 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1458 gdb_byte buf[4];
1459
5af949e3
UW
1460 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1461 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1462 read_memory (actual_pc, buf, sizeof (buf));
1463 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1464 }
1465
fc1cf338
PA
1466 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1467 displaced->step_closure))
929dfd4f 1468 target_resume (ptid, 1, TARGET_SIGNAL_0);
99e40580
UW
1469 else
1470 target_resume (ptid, 0, TARGET_SIGNAL_0);
1c5cfe86
PA
1471
1472 /* Done, we're stepping a thread. */
1473 break;
ad53cd71 1474 }
1c5cfe86
PA
1475 else
1476 {
1477 int step;
1478 struct thread_info *tp = inferior_thread ();
1479
1480 /* The breakpoint we were sitting under has since been
1481 removed. */
16c381f0 1482 tp->control.trap_expected = 0;
1c5cfe86
PA
1483
1484 /* Go back to what we were trying to do. */
1485 step = currently_stepping (tp);
ad53cd71 1486
1c5cfe86 1487 if (debug_displaced)
3e43a32a
MS
1488 fprintf_unfiltered (gdb_stdlog,
1489 "breakpoint is gone %s: step(%d)\n",
1c5cfe86
PA
1490 target_pid_to_str (tp->ptid), step);
1491
1492 target_resume (ptid, step, TARGET_SIGNAL_0);
16c381f0 1493 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1c5cfe86
PA
1494
1495 /* This request was discarded. See if there's any other
1496 thread waiting for its turn. */
1497 }
237fc4c9
PA
1498 }
1499}
1500
5231c1fd
PA
1501/* Update global variables holding ptids to hold NEW_PTID if they were
1502 holding OLD_PTID. */
1503static void
1504infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1505{
1506 struct displaced_step_request *it;
fc1cf338 1507 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
1508
1509 if (ptid_equal (inferior_ptid, old_ptid))
1510 inferior_ptid = new_ptid;
1511
1512 if (ptid_equal (singlestep_ptid, old_ptid))
1513 singlestep_ptid = new_ptid;
1514
5231c1fd
PA
1515 if (ptid_equal (deferred_step_ptid, old_ptid))
1516 deferred_step_ptid = new_ptid;
1517
fc1cf338
PA
1518 for (displaced = displaced_step_inferior_states;
1519 displaced;
1520 displaced = displaced->next)
1521 {
1522 if (ptid_equal (displaced->step_ptid, old_ptid))
1523 displaced->step_ptid = new_ptid;
1524
1525 for (it = displaced->step_request_queue; it; it = it->next)
1526 if (ptid_equal (it->ptid, old_ptid))
1527 it->ptid = new_ptid;
1528 }
5231c1fd
PA
1529}
1530
237fc4c9
PA
1531\f
1532/* Resuming. */
c906108c
SS
1533
1534/* Things to clean up if we QUIT out of resume (). */
c906108c 1535static void
74b7792f 1536resume_cleanups (void *ignore)
c906108c
SS
1537{
1538 normal_stop ();
1539}
1540
53904c9e
AC
1541static const char schedlock_off[] = "off";
1542static const char schedlock_on[] = "on";
1543static const char schedlock_step[] = "step";
488f131b 1544static const char *scheduler_enums[] = {
ef346e04
AC
1545 schedlock_off,
1546 schedlock_on,
1547 schedlock_step,
1548 NULL
1549};
920d2a44
AC
1550static const char *scheduler_mode = schedlock_off;
1551static void
1552show_scheduler_mode (struct ui_file *file, int from_tty,
1553 struct cmd_list_element *c, const char *value)
1554{
3e43a32a
MS
1555 fprintf_filtered (file,
1556 _("Mode for locking scheduler "
1557 "during execution is \"%s\".\n"),
920d2a44
AC
1558 value);
1559}
c906108c
SS
1560
1561static void
96baa820 1562set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1563{
eefe576e
AC
1564 if (!target_can_lock_scheduler)
1565 {
1566 scheduler_mode = schedlock_off;
1567 error (_("Target '%s' cannot support this command."), target_shortname);
1568 }
c906108c
SS
1569}
1570
d4db2f36
PA
1571/* True if execution commands resume all threads of all processes by
1572 default; otherwise, resume only threads of the current inferior
1573 process. */
1574int sched_multi = 0;
1575
2facfe5c
DD
1576/* Try to setup for software single stepping over the specified location.
1577 Return 1 if target_resume() should use hardware single step.
1578
1579 GDBARCH the current gdbarch.
1580 PC the location to step over. */
1581
1582static int
1583maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1584{
1585 int hw_step = 1;
1586
f02253f1
HZ
1587 if (execution_direction == EXEC_FORWARD
1588 && gdbarch_software_single_step_p (gdbarch)
99e40580 1589 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 1590 {
99e40580
UW
1591 hw_step = 0;
1592 /* Do not pull these breakpoints until after a `wait' in
1777feb0 1593 `wait_for_inferior'. */
99e40580
UW
1594 singlestep_breakpoints_inserted_p = 1;
1595 singlestep_ptid = inferior_ptid;
1596 singlestep_pc = pc;
2facfe5c
DD
1597 }
1598 return hw_step;
1599}
c906108c 1600
09cee04b
PA
1601/* Return a ptid representing the set of threads that we will proceed,
1602 in the perspective of the user/frontend. We may actually resume
1603 fewer threads at first, e.g., if a thread is stopped at a
b136cd05
PA
1604 breakpoint that needs stepping-off, but that should not be visible
1605 to the user/frontend, and neither should the frontend/user be
1606 allowed to proceed any of the threads that happen to be stopped for
09cee04b
PA
1607 internal run control handling, if a previous command wanted them
1608 resumed. */
1609
1610ptid_t
1611user_visible_resume_ptid (int step)
1612{
1613 /* By default, resume all threads of all processes. */
1614 ptid_t resume_ptid = RESUME_ALL;
1615
1616 /* Maybe resume only all threads of the current process. */
1617 if (!sched_multi && target_supports_multi_process ())
1618 {
1619 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1620 }
1621
1622 /* Maybe resume a single thread after all. */
1623 if (non_stop)
1624 {
1625 /* With non-stop mode on, threads are always handled
1626 individually. */
1627 resume_ptid = inferior_ptid;
1628 }
1629 else if ((scheduler_mode == schedlock_on)
1630 || (scheduler_mode == schedlock_step
1631 && (step || singlestep_breakpoints_inserted_p)))
1632 {
1633 /* User-settable 'scheduler' mode requires solo thread resume. */
1634 resume_ptid = inferior_ptid;
1635 }
1636
1637 return resume_ptid;
1638}
1639
c906108c
SS
1640/* Resume the inferior, but allow a QUIT. This is useful if the user
1641 wants to interrupt some lengthy single-stepping operation
1642 (for child processes, the SIGINT goes to the inferior, and so
1643 we get a SIGINT random_signal, but for remote debugging and perhaps
1644 other targets, that's not true).
1645
1646 STEP nonzero if we should step (zero to continue instead).
1647 SIG is the signal to give the inferior (zero for none). */
1648void
96baa820 1649resume (int step, enum target_signal sig)
c906108c
SS
1650{
1651 int should_resume = 1;
74b7792f 1652 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1653 struct regcache *regcache = get_current_regcache ();
1654 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1655 struct thread_info *tp = inferior_thread ();
515630c5 1656 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 1657 struct address_space *aspace = get_regcache_aspace (regcache);
c7e8a53c 1658
c906108c
SS
1659 QUIT;
1660
74609e71
YQ
1661 if (current_inferior ()->waiting_for_vfork_done)
1662 {
48f9886d
PA
1663 /* Don't try to single-step a vfork parent that is waiting for
1664 the child to get out of the shared memory region (by exec'ing
1665 or exiting). This is particularly important on software
1666 single-step archs, as the child process would trip on the
1667 software single step breakpoint inserted for the parent
1668 process. Since the parent will not actually execute any
1669 instruction until the child is out of the shared region (such
1670 are vfork's semantics), it is safe to simply continue it.
1671 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1672 the parent, and tell it to `keep_going', which automatically
1673 re-sets it stepping. */
74609e71
YQ
1674 if (debug_infrun)
1675 fprintf_unfiltered (gdb_stdlog,
1676 "infrun: resume : clear step\n");
1677 step = 0;
1678 }
1679
527159b7 1680 if (debug_infrun)
237fc4c9
PA
1681 fprintf_unfiltered (gdb_stdlog,
1682 "infrun: resume (step=%d, signal=%d), "
0d9a9a5f
PA
1683 "trap_expected=%d, current thread [%s] at %s\n",
1684 step, sig, tp->control.trap_expected,
1685 target_pid_to_str (inferior_ptid),
1686 paddress (gdbarch, pc));
c906108c 1687
c2c6d25f
JM
1688 /* Normally, by the time we reach `resume', the breakpoints are either
1689 removed or inserted, as appropriate. The exception is if we're sitting
1690 at a permanent breakpoint; we need to step over it, but permanent
1691 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 1692 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 1693 {
515630c5
UW
1694 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1695 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5 1696 else
ac74f770
MS
1697 error (_("\
1698The program is stopped at a permanent breakpoint, but GDB does not know\n\
1699how to step past a permanent breakpoint on this architecture. Try using\n\
1700a command like `return' or `jump' to continue execution."));
6d350bb5 1701 }
c2c6d25f 1702
237fc4c9
PA
1703 /* If enabled, step over breakpoints by executing a copy of the
1704 instruction at a different address.
1705
1706 We can't use displaced stepping when we have a signal to deliver;
1707 the comments for displaced_step_prepare explain why. The
1708 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
1709 signals' explain what we do instead.
1710
1711 We can't use displaced stepping when we are waiting for vfork_done
1712 event, displaced stepping breaks the vfork child similarly as single
1713 step software breakpoint. */
515630c5 1714 if (use_displaced_stepping (gdbarch)
16c381f0 1715 && (tp->control.trap_expected
929dfd4f 1716 || (step && gdbarch_software_single_step_p (gdbarch)))
74609e71
YQ
1717 && sig == TARGET_SIGNAL_0
1718 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 1719 {
fc1cf338
PA
1720 struct displaced_step_inferior_state *displaced;
1721
237fc4c9 1722 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1723 {
1724 /* Got placed in displaced stepping queue. Will be resumed
1725 later when all the currently queued displaced stepping
7f7efbd9
VP
1726 requests finish. The thread is not executing at this point,
1727 and the call to set_executing will be made later. But we
1728 need to call set_running here, since from frontend point of view,
1729 the thread is running. */
1730 set_running (inferior_ptid, 1);
d56b7306
VP
1731 discard_cleanups (old_cleanups);
1732 return;
1733 }
99e40580 1734
fc1cf338
PA
1735 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1736 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1737 displaced->step_closure);
237fc4c9
PA
1738 }
1739
2facfe5c 1740 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 1741 else if (step)
2facfe5c 1742 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1743
30852783
UW
1744 /* Currently, our software single-step implementation leads to different
1745 results than hardware single-stepping in one situation: when stepping
1746 into delivering a signal which has an associated signal handler,
1747 hardware single-step will stop at the first instruction of the handler,
1748 while software single-step will simply skip execution of the handler.
1749
1750 For now, this difference in behavior is accepted since there is no
1751 easy way to actually implement single-stepping into a signal handler
1752 without kernel support.
1753
1754 However, there is one scenario where this difference leads to follow-on
1755 problems: if we're stepping off a breakpoint by removing all breakpoints
1756 and then single-stepping. In this case, the software single-step
1757 behavior means that even if there is a *breakpoint* in the signal
1758 handler, GDB still would not stop.
1759
1760 Fortunately, we can at least fix this particular issue. We detect
1761 here the case where we are about to deliver a signal while software
1762 single-stepping with breakpoints removed. In this situation, we
1763 revert the decisions to remove all breakpoints and insert single-
1764 step breakpoints, and instead we install a step-resume breakpoint
1765 at the current address, deliver the signal without stepping, and
1766 once we arrive back at the step-resume breakpoint, actually step
1767 over the breakpoint we originally wanted to step over. */
1768 if (singlestep_breakpoints_inserted_p
1769 && tp->control.trap_expected && sig != TARGET_SIGNAL_0)
1770 {
1771 /* If we have nested signals or a pending signal is delivered
1772 immediately after a handler returns, might might already have
1773 a step-resume breakpoint set on the earlier handler. We cannot
1774 set another step-resume breakpoint; just continue on until the
1775 original breakpoint is hit. */
1776 if (tp->control.step_resume_breakpoint == NULL)
1777 {
2c03e5be 1778 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
1779 tp->step_after_step_resume_breakpoint = 1;
1780 }
1781
1782 remove_single_step_breakpoints ();
1783 singlestep_breakpoints_inserted_p = 0;
1784
1785 insert_breakpoints ();
1786 tp->control.trap_expected = 0;
1787 }
1788
c906108c
SS
1789 if (should_resume)
1790 {
39f77062 1791 ptid_t resume_ptid;
dfcd3bfb 1792
cd76b0b7
VP
1793 /* If STEP is set, it's a request to use hardware stepping
1794 facilities. But in that case, we should never
1795 use singlestep breakpoint. */
1796 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1797
d4db2f36
PA
1798 /* Decide the set of threads to ask the target to resume. Start
1799 by assuming everything will be resumed, than narrow the set
1800 by applying increasingly restricting conditions. */
09cee04b 1801 resume_ptid = user_visible_resume_ptid (step);
d4db2f36
PA
1802
1803 /* Maybe resume a single thread after all. */
cd76b0b7
VP
1804 if (singlestep_breakpoints_inserted_p
1805 && stepping_past_singlestep_breakpoint)
c906108c 1806 {
cd76b0b7
VP
1807 /* The situation here is as follows. In thread T1 we wanted to
1808 single-step. Lacking hardware single-stepping we've
1809 set breakpoint at the PC of the next instruction -- call it
1810 P. After resuming, we've hit that breakpoint in thread T2.
1811 Now we've removed original breakpoint, inserted breakpoint
1812 at P+1, and try to step to advance T2 past breakpoint.
1813 We need to step only T2, as if T1 is allowed to freely run,
1814 it can run past P, and if other threads are allowed to run,
1815 they can hit breakpoint at P+1, and nested hits of single-step
1816 breakpoints is not something we'd want -- that's complicated
1817 to support, and has no value. */
1818 resume_ptid = inferior_ptid;
1819 }
d4db2f36 1820 else if ((step || singlestep_breakpoints_inserted_p)
16c381f0 1821 && tp->control.trap_expected)
cd76b0b7 1822 {
74960c60
VP
1823 /* We're allowing a thread to run past a breakpoint it has
1824 hit, by single-stepping the thread with the breakpoint
1825 removed. In which case, we need to single-step only this
1826 thread, and keep others stopped, as they can miss this
1827 breakpoint if allowed to run.
1828
1829 The current code actually removes all breakpoints when
1830 doing this, not just the one being stepped over, so if we
1831 let other threads run, we can actually miss any
1832 breakpoint, not just the one at PC. */
ef5cf84e 1833 resume_ptid = inferior_ptid;
c906108c 1834 }
ef5cf84e 1835
515630c5 1836 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1837 {
1838 /* Most targets can step a breakpoint instruction, thus
1839 executing it normally. But if this one cannot, just
1840 continue and we will hit it anyway. */
6c95b8df 1841 if (step && breakpoint_inserted_here_p (aspace, pc))
c4ed33b9
AC
1842 step = 0;
1843 }
237fc4c9
PA
1844
1845 if (debug_displaced
515630c5 1846 && use_displaced_stepping (gdbarch)
16c381f0 1847 && tp->control.trap_expected)
237fc4c9 1848 {
515630c5 1849 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
5af949e3 1850 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
515630c5 1851 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1852 gdb_byte buf[4];
1853
5af949e3
UW
1854 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1855 paddress (resume_gdbarch, actual_pc));
237fc4c9
PA
1856 read_memory (actual_pc, buf, sizeof (buf));
1857 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1858 }
1859
e58b0e63
PA
1860 /* Install inferior's terminal modes. */
1861 target_terminal_inferior ();
1862
2020b7ab
PA
1863 /* Avoid confusing the next resume, if the next stop/resume
1864 happens to apply to another thread. */
16c381f0 1865 tp->suspend.stop_signal = TARGET_SIGNAL_0;
607cecd2 1866
2455069d
UW
1867 /* Advise target which signals may be handled silently. If we have
1868 removed breakpoints because we are stepping over one (which can
1869 happen only if we are not using displaced stepping), we need to
1870 receive all signals to avoid accidentally skipping a breakpoint
1871 during execution of a signal handler. */
1872 if ((step || singlestep_breakpoints_inserted_p)
1873 && tp->control.trap_expected
1874 && !use_displaced_stepping (gdbarch))
1875 target_pass_signals (0, NULL);
1876 else
1877 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
1878
607cecd2 1879 target_resume (resume_ptid, step, sig);
c906108c
SS
1880 }
1881
1882 discard_cleanups (old_cleanups);
1883}
1884\f
237fc4c9 1885/* Proceeding. */
c906108c
SS
1886
1887/* Clear out all variables saying what to do when inferior is continued.
1888 First do this, then set the ones you want, then call `proceed'. */
1889
a7212384
UW
1890static void
1891clear_proceed_status_thread (struct thread_info *tp)
c906108c 1892{
a7212384
UW
1893 if (debug_infrun)
1894 fprintf_unfiltered (gdb_stdlog,
1895 "infrun: clear_proceed_status_thread (%s)\n",
1896 target_pid_to_str (tp->ptid));
d6b48e9c 1897
16c381f0
JK
1898 tp->control.trap_expected = 0;
1899 tp->control.step_range_start = 0;
1900 tp->control.step_range_end = 0;
1901 tp->control.step_frame_id = null_frame_id;
1902 tp->control.step_stack_frame_id = null_frame_id;
1903 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
a7212384 1904 tp->stop_requested = 0;
4e1c45ea 1905
16c381f0 1906 tp->control.stop_step = 0;
32400beb 1907
16c381f0 1908 tp->control.proceed_to_finish = 0;
414c69f7 1909
a7212384 1910 /* Discard any remaining commands or status from previous stop. */
16c381f0 1911 bpstat_clear (&tp->control.stop_bpstat);
a7212384 1912}
32400beb 1913
a7212384
UW
1914static int
1915clear_proceed_status_callback (struct thread_info *tp, void *data)
1916{
1917 if (is_exited (tp->ptid))
1918 return 0;
d6b48e9c 1919
a7212384
UW
1920 clear_proceed_status_thread (tp);
1921 return 0;
1922}
1923
1924void
1925clear_proceed_status (void)
1926{
6c95b8df
PA
1927 if (!non_stop)
1928 {
1929 /* In all-stop mode, delete the per-thread status of all
1930 threads, even if inferior_ptid is null_ptid, there may be
1931 threads on the list. E.g., we may be launching a new
1932 process, while selecting the executable. */
1933 iterate_over_threads (clear_proceed_status_callback, NULL);
1934 }
1935
a7212384
UW
1936 if (!ptid_equal (inferior_ptid, null_ptid))
1937 {
1938 struct inferior *inferior;
1939
1940 if (non_stop)
1941 {
6c95b8df
PA
1942 /* If in non-stop mode, only delete the per-thread status of
1943 the current thread. */
a7212384
UW
1944 clear_proceed_status_thread (inferior_thread ());
1945 }
6c95b8df 1946
d6b48e9c 1947 inferior = current_inferior ();
16c381f0 1948 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
1949 }
1950
c906108c 1951 stop_after_trap = 0;
f3b1572e
PA
1952
1953 observer_notify_about_to_proceed ();
c906108c 1954
d5c31457
UW
1955 if (stop_registers)
1956 {
1957 regcache_xfree (stop_registers);
1958 stop_registers = NULL;
1959 }
c906108c
SS
1960}
1961
5a437975
DE
1962/* Check the current thread against the thread that reported the most recent
1963 event. If a step-over is required return TRUE and set the current thread
1964 to the old thread. Otherwise return FALSE.
1965
1777feb0 1966 This should be suitable for any targets that support threads. */
ea67f13b
DJ
1967
1968static int
6a6b96b9 1969prepare_to_proceed (int step)
ea67f13b
DJ
1970{
1971 ptid_t wait_ptid;
1972 struct target_waitstatus wait_status;
5a437975
DE
1973 int schedlock_enabled;
1974
1975 /* With non-stop mode on, threads are always handled individually. */
1976 gdb_assert (! non_stop);
ea67f13b
DJ
1977
1978 /* Get the last target status returned by target_wait(). */
1979 get_last_target_status (&wait_ptid, &wait_status);
1980
6a6b96b9 1981 /* Make sure we were stopped at a breakpoint. */
ea67f13b 1982 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2b009048
DJ
1983 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
1984 && wait_status.value.sig != TARGET_SIGNAL_ILL
1985 && wait_status.value.sig != TARGET_SIGNAL_SEGV
1986 && wait_status.value.sig != TARGET_SIGNAL_EMT))
ea67f13b
DJ
1987 {
1988 return 0;
1989 }
1990
5a437975
DE
1991 schedlock_enabled = (scheduler_mode == schedlock_on
1992 || (scheduler_mode == schedlock_step
1993 && step));
1994
d4db2f36
PA
1995 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
1996 if (schedlock_enabled)
1997 return 0;
1998
1999 /* Don't switch over if we're about to resume some other process
2000 other than WAIT_PTID's, and schedule-multiple is off. */
2001 if (!sched_multi
2002 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2003 return 0;
2004
6a6b96b9 2005 /* Switched over from WAIT_PID. */
ea67f13b 2006 if (!ptid_equal (wait_ptid, minus_one_ptid)
d4db2f36 2007 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 2008 {
515630c5
UW
2009 struct regcache *regcache = get_thread_regcache (wait_ptid);
2010
6c95b8df
PA
2011 if (breakpoint_here_p (get_regcache_aspace (regcache),
2012 regcache_read_pc (regcache)))
ea67f13b 2013 {
515630c5
UW
2014 /* If stepping, remember current thread to switch back to. */
2015 if (step)
2016 deferred_step_ptid = inferior_ptid;
ea67f13b 2017
515630c5
UW
2018 /* Switch back to WAIT_PID thread. */
2019 switch_to_thread (wait_ptid);
6a6b96b9 2020
0d9a9a5f
PA
2021 if (debug_infrun)
2022 fprintf_unfiltered (gdb_stdlog,
2023 "infrun: prepare_to_proceed (step=%d), "
2024 "switched to [%s]\n",
2025 step, target_pid_to_str (inferior_ptid));
2026
515630c5
UW
2027 /* We return 1 to indicate that there is a breakpoint here,
2028 so we need to step over it before continuing to avoid
1777feb0 2029 hitting it straight away. */
515630c5
UW
2030 return 1;
2031 }
ea67f13b
DJ
2032 }
2033
2034 return 0;
ea67f13b 2035}
e4846b08 2036
c906108c
SS
2037/* Basic routine for continuing the program in various fashions.
2038
2039 ADDR is the address to resume at, or -1 for resume where stopped.
2040 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2041 or -1 for act according to how it stopped.
c906108c 2042 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2043 -1 means return after that and print nothing.
2044 You should probably set various step_... variables
2045 before calling here, if you are stepping.
c906108c
SS
2046
2047 You should call clear_proceed_status before calling proceed. */
2048
2049void
96baa820 2050proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c 2051{
e58b0e63
PA
2052 struct regcache *regcache;
2053 struct gdbarch *gdbarch;
4e1c45ea 2054 struct thread_info *tp;
e58b0e63 2055 CORE_ADDR pc;
6c95b8df 2056 struct address_space *aspace;
c906108c
SS
2057 int oneproc = 0;
2058
e58b0e63
PA
2059 /* If we're stopped at a fork/vfork, follow the branch set by the
2060 "set follow-fork-mode" command; otherwise, we'll just proceed
2061 resuming the current thread. */
2062 if (!follow_fork ())
2063 {
2064 /* The target for some reason decided not to resume. */
2065 normal_stop ();
f148b27e
PA
2066 if (target_can_async_p ())
2067 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2068 return;
2069 }
2070
842951eb
PA
2071 /* We'll update this if & when we switch to a new thread. */
2072 previous_inferior_ptid = inferior_ptid;
2073
e58b0e63
PA
2074 regcache = get_current_regcache ();
2075 gdbarch = get_regcache_arch (regcache);
6c95b8df 2076 aspace = get_regcache_aspace (regcache);
e58b0e63
PA
2077 pc = regcache_read_pc (regcache);
2078
c906108c 2079 if (step > 0)
515630c5 2080 step_start_function = find_pc_function (pc);
c906108c
SS
2081 if (step < 0)
2082 stop_after_trap = 1;
2083
2acceee2 2084 if (addr == (CORE_ADDR) -1)
c906108c 2085 {
6c95b8df 2086 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
b2175913 2087 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2088 /* There is a breakpoint at the address we will resume at,
2089 step one instruction before inserting breakpoints so that
2090 we do not stop right away (and report a second hit at this
b2175913
MS
2091 breakpoint).
2092
2093 Note, we don't do this in reverse, because we won't
2094 actually be executing the breakpoint insn anyway.
2095 We'll be (un-)executing the previous instruction. */
2096
c906108c 2097 oneproc = 1;
515630c5
UW
2098 else if (gdbarch_single_step_through_delay_p (gdbarch)
2099 && gdbarch_single_step_through_delay (gdbarch,
2100 get_current_frame ()))
3352ef37
AC
2101 /* We stepped onto an instruction that needs to be stepped
2102 again before re-inserting the breakpoint, do so. */
c906108c
SS
2103 oneproc = 1;
2104 }
2105 else
2106 {
515630c5 2107 regcache_write_pc (regcache, addr);
c906108c
SS
2108 }
2109
527159b7 2110 if (debug_infrun)
8a9de0e4 2111 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
2112 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2113 paddress (gdbarch, addr), siggnal, step);
527159b7 2114
94cc34af
PA
2115 if (non_stop)
2116 /* In non-stop, each thread is handled individually. The context
2117 must already be set to the right thread here. */
2118 ;
2119 else
2120 {
2121 /* In a multi-threaded task we may select another thread and
2122 then continue or step.
c906108c 2123
94cc34af
PA
2124 But if the old thread was stopped at a breakpoint, it will
2125 immediately cause another breakpoint stop without any
2126 execution (i.e. it will report a breakpoint hit incorrectly).
2127 So we must step over it first.
c906108c 2128
94cc34af
PA
2129 prepare_to_proceed checks the current thread against the
2130 thread that reported the most recent event. If a step-over
2131 is required it returns TRUE and sets the current thread to
1777feb0 2132 the old thread. */
94cc34af
PA
2133 if (prepare_to_proceed (step))
2134 oneproc = 1;
2135 }
c906108c 2136
4e1c45ea
PA
2137 /* prepare_to_proceed may change the current thread. */
2138 tp = inferior_thread ();
2139
30852783
UW
2140 if (oneproc)
2141 {
2142 tp->control.trap_expected = 1;
2143 /* If displaced stepping is enabled, we can step over the
2144 breakpoint without hitting it, so leave all breakpoints
2145 inserted. Otherwise we need to disable all breakpoints, step
2146 one instruction, and then re-add them when that step is
2147 finished. */
2148 if (!use_displaced_stepping (gdbarch))
2149 remove_breakpoints ();
2150 }
2151
2152 /* We can insert breakpoints if we're not trying to step over one,
2153 or if we are stepping over one but we're using displaced stepping
2154 to do so. */
2155 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2156 insert_breakpoints ();
2157
2020b7ab
PA
2158 if (!non_stop)
2159 {
2160 /* Pass the last stop signal to the thread we're resuming,
2161 irrespective of whether the current thread is the thread that
2162 got the last event or not. This was historically GDB's
2163 behaviour before keeping a stop_signal per thread. */
2164
2165 struct thread_info *last_thread;
2166 ptid_t last_ptid;
2167 struct target_waitstatus last_status;
2168
2169 get_last_target_status (&last_ptid, &last_status);
2170 if (!ptid_equal (inferior_ptid, last_ptid)
2171 && !ptid_equal (last_ptid, null_ptid)
2172 && !ptid_equal (last_ptid, minus_one_ptid))
2173 {
e09875d4 2174 last_thread = find_thread_ptid (last_ptid);
2020b7ab
PA
2175 if (last_thread)
2176 {
16c381f0
JK
2177 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2178 last_thread->suspend.stop_signal = TARGET_SIGNAL_0;
2020b7ab
PA
2179 }
2180 }
2181 }
2182
c906108c 2183 if (siggnal != TARGET_SIGNAL_DEFAULT)
16c381f0 2184 tp->suspend.stop_signal = siggnal;
c906108c
SS
2185 /* If this signal should not be seen by program,
2186 give it zero. Used for debugging signals. */
16c381f0
JK
2187 else if (!signal_program[tp->suspend.stop_signal])
2188 tp->suspend.stop_signal = TARGET_SIGNAL_0;
c906108c
SS
2189
2190 annotate_starting ();
2191
2192 /* Make sure that output from GDB appears before output from the
2193 inferior. */
2194 gdb_flush (gdb_stdout);
2195
e4846b08
JJ
2196 /* Refresh prev_pc value just prior to resuming. This used to be
2197 done in stop_stepping, however, setting prev_pc there did not handle
2198 scenarios such as inferior function calls or returning from
2199 a function via the return command. In those cases, the prev_pc
2200 value was not set properly for subsequent commands. The prev_pc value
2201 is used to initialize the starting line number in the ecs. With an
2202 invalid value, the gdb next command ends up stopping at the position
2203 represented by the next line table entry past our start position.
2204 On platforms that generate one line table entry per line, this
2205 is not a problem. However, on the ia64, the compiler generates
2206 extraneous line table entries that do not increase the line number.
2207 When we issue the gdb next command on the ia64 after an inferior call
2208 or a return command, we often end up a few instructions forward, still
2209 within the original line we started.
2210
d5cd6034
JB
2211 An attempt was made to refresh the prev_pc at the same time the
2212 execution_control_state is initialized (for instance, just before
2213 waiting for an inferior event). But this approach did not work
2214 because of platforms that use ptrace, where the pc register cannot
2215 be read unless the inferior is stopped. At that point, we are not
2216 guaranteed the inferior is stopped and so the regcache_read_pc() call
2217 can fail. Setting the prev_pc value here ensures the value is updated
2218 correctly when the inferior is stopped. */
4e1c45ea 2219 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 2220
59f0d5d9 2221 /* Fill in with reasonable starting values. */
4e1c45ea 2222 init_thread_stepping_state (tp);
59f0d5d9 2223
59f0d5d9
PA
2224 /* Reset to normal state. */
2225 init_infwait_state ();
2226
c906108c 2227 /* Resume inferior. */
16c381f0 2228 resume (oneproc || step || bpstat_should_step (), tp->suspend.stop_signal);
c906108c
SS
2229
2230 /* Wait for it to stop (if not standalone)
2231 and in any case decode why it stopped, and act accordingly. */
43ff13b4 2232 /* Do this only if we are not using the event loop, or if the target
1777feb0 2233 does not support asynchronous execution. */
362646f5 2234 if (!target_can_async_p ())
43ff13b4 2235 {
e4c8541f 2236 wait_for_inferior ();
43ff13b4
JM
2237 normal_stop ();
2238 }
c906108c 2239}
c906108c
SS
2240\f
2241
2242/* Start remote-debugging of a machine over a serial link. */
96baa820 2243
c906108c 2244void
8621d6a9 2245start_remote (int from_tty)
c906108c 2246{
d6b48e9c 2247 struct inferior *inferior;
d6b48e9c
PA
2248
2249 inferior = current_inferior ();
16c381f0 2250 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 2251
1777feb0 2252 /* Always go on waiting for the target, regardless of the mode. */
6426a772 2253 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 2254 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
2255 nothing is returned (instead of just blocking). Because of this,
2256 targets expecting an immediate response need to, internally, set
2257 things up so that the target_wait() is forced to eventually
1777feb0 2258 timeout. */
6426a772
JM
2259 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2260 differentiate to its caller what the state of the target is after
2261 the initial open has been performed. Here we're assuming that
2262 the target has stopped. It should be possible to eventually have
2263 target_open() return to the caller an indication that the target
2264 is currently running and GDB state should be set to the same as
1777feb0 2265 for an async run. */
e4c8541f 2266 wait_for_inferior ();
8621d6a9
DJ
2267
2268 /* Now that the inferior has stopped, do any bookkeeping like
2269 loading shared libraries. We want to do this before normal_stop,
2270 so that the displayed frame is up to date. */
2271 post_create_inferior (&current_target, from_tty);
2272
6426a772 2273 normal_stop ();
c906108c
SS
2274}
2275
2276/* Initialize static vars when a new inferior begins. */
2277
2278void
96baa820 2279init_wait_for_inferior (void)
c906108c
SS
2280{
2281 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 2282
c906108c
SS
2283 breakpoint_init_inferior (inf_starting);
2284
c906108c 2285 clear_proceed_status ();
9f976b41
DJ
2286
2287 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 2288 deferred_step_ptid = null_ptid;
ca005067
DJ
2289
2290 target_last_wait_ptid = minus_one_ptid;
237fc4c9 2291
842951eb 2292 previous_inferior_ptid = inferior_ptid;
0d1e5fa7
PA
2293 init_infwait_state ();
2294
edb3359d
DJ
2295 /* Discard any skipped inlined frames. */
2296 clear_inline_frame_state (minus_one_ptid);
c906108c 2297}
237fc4c9 2298
c906108c 2299\f
b83266a0
SS
2300/* This enum encodes possible reasons for doing a target_wait, so that
2301 wfi can call target_wait in one place. (Ultimately the call will be
2302 moved out of the infinite loop entirely.) */
2303
c5aa993b
JM
2304enum infwait_states
2305{
cd0fc7c3
SS
2306 infwait_normal_state,
2307 infwait_thread_hop_state,
d983da9c 2308 infwait_step_watch_state,
cd0fc7c3 2309 infwait_nonstep_watch_state
b83266a0
SS
2310};
2311
0d1e5fa7
PA
2312/* The PTID we'll do a target_wait on.*/
2313ptid_t waiton_ptid;
2314
2315/* Current inferior wait state. */
2316enum infwait_states infwait_state;
cd0fc7c3 2317
0d1e5fa7
PA
2318/* Data to be passed around while handling an event. This data is
2319 discarded between events. */
c5aa993b 2320struct execution_control_state
488f131b 2321{
0d1e5fa7 2322 ptid_t ptid;
4e1c45ea
PA
2323 /* The thread that got the event, if this was a thread event; NULL
2324 otherwise. */
2325 struct thread_info *event_thread;
2326
488f131b 2327 struct target_waitstatus ws;
488f131b 2328 int random_signal;
7e324e48 2329 int stop_func_filled_in;
488f131b
JB
2330 CORE_ADDR stop_func_start;
2331 CORE_ADDR stop_func_end;
2332 char *stop_func_name;
488f131b 2333 int new_thread_event;
488f131b
JB
2334 int wait_some_more;
2335};
2336
ec9499be 2337static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2338
568d6575
UW
2339static void handle_step_into_function (struct gdbarch *gdbarch,
2340 struct execution_control_state *ecs);
2341static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2342 struct execution_control_state *ecs);
186c406b
TT
2343static void check_exception_resume (struct execution_control_state *,
2344 struct frame_info *, struct symbol *);
611c83ae 2345
104c1213
JM
2346static void stop_stepping (struct execution_control_state *ecs);
2347static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2348static void keep_going (struct execution_control_state *ecs);
104c1213 2349
252fbfc8
PA
2350/* Callback for iterate over threads. If the thread is stopped, but
2351 the user/frontend doesn't know about that yet, go through
2352 normal_stop, as if the thread had just stopped now. ARG points at
2353 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2354 ptid_is_pid(PTID) is true, applies to all threads of the process
2355 pointed at by PTID. Otherwise, apply only to the thread pointed by
2356 PTID. */
2357
2358static int
2359infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2360{
2361 ptid_t ptid = * (ptid_t *) arg;
2362
2363 if ((ptid_equal (info->ptid, ptid)
2364 || ptid_equal (minus_one_ptid, ptid)
2365 || (ptid_is_pid (ptid)
2366 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2367 && is_running (info->ptid)
2368 && !is_executing (info->ptid))
2369 {
2370 struct cleanup *old_chain;
2371 struct execution_control_state ecss;
2372 struct execution_control_state *ecs = &ecss;
2373
2374 memset (ecs, 0, sizeof (*ecs));
2375
2376 old_chain = make_cleanup_restore_current_thread ();
2377
2378 switch_to_thread (info->ptid);
2379
2380 /* Go through handle_inferior_event/normal_stop, so we always
2381 have consistent output as if the stop event had been
2382 reported. */
2383 ecs->ptid = info->ptid;
e09875d4 2384 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8
PA
2385 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2386 ecs->ws.value.sig = TARGET_SIGNAL_0;
2387
2388 handle_inferior_event (ecs);
2389
2390 if (!ecs->wait_some_more)
2391 {
2392 struct thread_info *tp;
2393
2394 normal_stop ();
2395
fa4cd53f 2396 /* Finish off the continuations. */
252fbfc8 2397 tp = inferior_thread ();
fa4cd53f
PA
2398 do_all_intermediate_continuations_thread (tp, 1);
2399 do_all_continuations_thread (tp, 1);
252fbfc8
PA
2400 }
2401
2402 do_cleanups (old_chain);
2403 }
2404
2405 return 0;
2406}
2407
2408/* This function is attached as a "thread_stop_requested" observer.
2409 Cleanup local state that assumed the PTID was to be resumed, and
2410 report the stop to the frontend. */
2411
2c0b251b 2412static void
252fbfc8
PA
2413infrun_thread_stop_requested (ptid_t ptid)
2414{
fc1cf338 2415 struct displaced_step_inferior_state *displaced;
252fbfc8
PA
2416
2417 /* PTID was requested to stop. Remove it from the displaced
2418 stepping queue, so we don't try to resume it automatically. */
fc1cf338
PA
2419
2420 for (displaced = displaced_step_inferior_states;
2421 displaced;
2422 displaced = displaced->next)
252fbfc8 2423 {
fc1cf338 2424 struct displaced_step_request *it, **prev_next_p;
252fbfc8 2425
fc1cf338
PA
2426 it = displaced->step_request_queue;
2427 prev_next_p = &displaced->step_request_queue;
2428 while (it)
252fbfc8 2429 {
fc1cf338
PA
2430 if (ptid_match (it->ptid, ptid))
2431 {
2432 *prev_next_p = it->next;
2433 it->next = NULL;
2434 xfree (it);
2435 }
252fbfc8 2436 else
fc1cf338
PA
2437 {
2438 prev_next_p = &it->next;
2439 }
252fbfc8 2440
fc1cf338 2441 it = *prev_next_p;
252fbfc8 2442 }
252fbfc8
PA
2443 }
2444
2445 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2446}
2447
a07daef3
PA
2448static void
2449infrun_thread_thread_exit (struct thread_info *tp, int silent)
2450{
2451 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2452 nullify_last_target_wait_ptid ();
2453}
2454
4e1c45ea
PA
2455/* Callback for iterate_over_threads. */
2456
2457static int
2458delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2459{
2460 if (is_exited (info->ptid))
2461 return 0;
2462
2463 delete_step_resume_breakpoint (info);
186c406b 2464 delete_exception_resume_breakpoint (info);
4e1c45ea
PA
2465 return 0;
2466}
2467
2468/* In all-stop, delete the step resume breakpoint of any thread that
2469 had one. In non-stop, delete the step resume breakpoint of the
2470 thread that just stopped. */
2471
2472static void
2473delete_step_thread_step_resume_breakpoint (void)
2474{
2475 if (!target_has_execution
2476 || ptid_equal (inferior_ptid, null_ptid))
2477 /* If the inferior has exited, we have already deleted the step
2478 resume breakpoints out of GDB's lists. */
2479 return;
2480
2481 if (non_stop)
2482 {
2483 /* If in non-stop mode, only delete the step-resume or
2484 longjmp-resume breakpoint of the thread that just stopped
2485 stepping. */
2486 struct thread_info *tp = inferior_thread ();
abbb1732 2487
4e1c45ea 2488 delete_step_resume_breakpoint (tp);
186c406b 2489 delete_exception_resume_breakpoint (tp);
4e1c45ea
PA
2490 }
2491 else
2492 /* In all-stop mode, delete all step-resume and longjmp-resume
2493 breakpoints of any thread that had them. */
2494 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2495}
2496
1777feb0 2497/* A cleanup wrapper. */
4e1c45ea
PA
2498
2499static void
2500delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2501{
2502 delete_step_thread_step_resume_breakpoint ();
2503}
2504
223698f8
DE
2505/* Pretty print the results of target_wait, for debugging purposes. */
2506
2507static void
2508print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2509 const struct target_waitstatus *ws)
2510{
2511 char *status_string = target_waitstatus_to_string (ws);
2512 struct ui_file *tmp_stream = mem_fileopen ();
2513 char *text;
223698f8
DE
2514
2515 /* The text is split over several lines because it was getting too long.
2516 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2517 output as a unit; we want only one timestamp printed if debug_timestamp
2518 is set. */
2519
2520 fprintf_unfiltered (tmp_stream,
2521 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2522 if (PIDGET (waiton_ptid) != -1)
2523 fprintf_unfiltered (tmp_stream,
2524 " [%s]", target_pid_to_str (waiton_ptid));
2525 fprintf_unfiltered (tmp_stream, ", status) =\n");
2526 fprintf_unfiltered (tmp_stream,
2527 "infrun: %d [%s],\n",
2528 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2529 fprintf_unfiltered (tmp_stream,
2530 "infrun: %s\n",
2531 status_string);
2532
759ef836 2533 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
2534
2535 /* This uses %s in part to handle %'s in the text, but also to avoid
2536 a gcc error: the format attribute requires a string literal. */
2537 fprintf_unfiltered (gdb_stdlog, "%s", text);
2538
2539 xfree (status_string);
2540 xfree (text);
2541 ui_file_delete (tmp_stream);
2542}
2543
24291992
PA
2544/* Prepare and stabilize the inferior for detaching it. E.g.,
2545 detaching while a thread is displaced stepping is a recipe for
2546 crashing it, as nothing would readjust the PC out of the scratch
2547 pad. */
2548
2549void
2550prepare_for_detach (void)
2551{
2552 struct inferior *inf = current_inferior ();
2553 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2554 struct cleanup *old_chain_1;
2555 struct displaced_step_inferior_state *displaced;
2556
2557 displaced = get_displaced_stepping_state (inf->pid);
2558
2559 /* Is any thread of this process displaced stepping? If not,
2560 there's nothing else to do. */
2561 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2562 return;
2563
2564 if (debug_infrun)
2565 fprintf_unfiltered (gdb_stdlog,
2566 "displaced-stepping in-process while detaching");
2567
2568 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2569 inf->detaching = 1;
2570
2571 while (!ptid_equal (displaced->step_ptid, null_ptid))
2572 {
2573 struct cleanup *old_chain_2;
2574 struct execution_control_state ecss;
2575 struct execution_control_state *ecs;
2576
2577 ecs = &ecss;
2578 memset (ecs, 0, sizeof (*ecs));
2579
2580 overlay_cache_invalid = 1;
2581
2582 /* We have to invalidate the registers BEFORE calling
2583 target_wait because they can be loaded from the target while
2584 in target_wait. This makes remote debugging a bit more
2585 efficient for those targets that provide critical registers
1777feb0 2586 as part of their normal status mechanism. */
24291992
PA
2587
2588 registers_changed ();
2589
2590 if (deprecated_target_wait_hook)
2591 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2592 else
2593 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2594
2595 if (debug_infrun)
2596 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2597
2598 /* If an error happens while handling the event, propagate GDB's
2599 knowledge of the executing state to the frontend/user running
2600 state. */
3e43a32a
MS
2601 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2602 &minus_one_ptid);
24291992 2603
4d533103
PA
2604 /* In non-stop mode, each thread is handled individually.
2605 Switch early, so the global state is set correctly for this
2606 thread. */
2607 if (non_stop
2608 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2609 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2610 context_switch (ecs->ptid);
2611
24291992
PA
2612 /* Now figure out what to do with the result of the result. */
2613 handle_inferior_event (ecs);
2614
2615 /* No error, don't finish the state yet. */
2616 discard_cleanups (old_chain_2);
2617
2618 /* Breakpoints and watchpoints are not installed on the target
2619 at this point, and signals are passed directly to the
2620 inferior, so this must mean the process is gone. */
2621 if (!ecs->wait_some_more)
2622 {
2623 discard_cleanups (old_chain_1);
2624 error (_("Program exited while detaching"));
2625 }
2626 }
2627
2628 discard_cleanups (old_chain_1);
2629}
2630
cd0fc7c3 2631/* Wait for control to return from inferior to debugger.
ae123ec6 2632
cd0fc7c3
SS
2633 If inferior gets a signal, we may decide to start it up again
2634 instead of returning. That is why there is a loop in this function.
2635 When this function actually returns it means the inferior
2636 should be left stopped and GDB should read more commands. */
2637
2638void
e4c8541f 2639wait_for_inferior (void)
cd0fc7c3
SS
2640{
2641 struct cleanup *old_cleanups;
0d1e5fa7 2642 struct execution_control_state ecss;
cd0fc7c3 2643 struct execution_control_state *ecs;
c906108c 2644
527159b7 2645 if (debug_infrun)
ae123ec6 2646 fprintf_unfiltered
e4c8541f 2647 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 2648
4e1c45ea
PA
2649 old_cleanups =
2650 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 2651
cd0fc7c3 2652 ecs = &ecss;
0d1e5fa7
PA
2653 memset (ecs, 0, sizeof (*ecs));
2654
c906108c
SS
2655 while (1)
2656 {
29f49a6a
PA
2657 struct cleanup *old_chain;
2658
ec9499be
UW
2659 /* We have to invalidate the registers BEFORE calling target_wait
2660 because they can be loaded from the target while in target_wait.
2661 This makes remote debugging a bit more efficient for those
2662 targets that provide critical registers as part of their normal
1777feb0 2663 status mechanism. */
ec9499be
UW
2664
2665 overlay_cache_invalid = 1;
2666 registers_changed ();
2667
9a4105ab 2668 if (deprecated_target_wait_hook)
47608cb1 2669 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 2670 else
47608cb1 2671 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 2672
f00150c9 2673 if (debug_infrun)
223698f8 2674 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2675
29f49a6a
PA
2676 /* If an error happens while handling the event, propagate GDB's
2677 knowledge of the executing state to the frontend/user running
2678 state. */
2679 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2680
a96d9b2e
SDJ
2681 if (ecs->ws.kind == TARGET_WAITKIND_SYSCALL_ENTRY
2682 || ecs->ws.kind == TARGET_WAITKIND_SYSCALL_RETURN)
2683 ecs->ws.value.syscall_number = UNKNOWN_SYSCALL;
2684
cd0fc7c3
SS
2685 /* Now figure out what to do with the result of the result. */
2686 handle_inferior_event (ecs);
c906108c 2687
29f49a6a
PA
2688 /* No error, don't finish the state yet. */
2689 discard_cleanups (old_chain);
2690
cd0fc7c3
SS
2691 if (!ecs->wait_some_more)
2692 break;
2693 }
4e1c45ea 2694
cd0fc7c3
SS
2695 do_cleanups (old_cleanups);
2696}
c906108c 2697
1777feb0 2698/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 2699 event loop whenever a change of state is detected on the file
1777feb0
MS
2700 descriptor corresponding to the target. It can be called more than
2701 once to complete a single execution command. In such cases we need
2702 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
2703 that this function is called for a single execution command, then
2704 report to the user that the inferior has stopped, and do the
1777feb0 2705 necessary cleanups. */
43ff13b4
JM
2706
2707void
fba45db2 2708fetch_inferior_event (void *client_data)
43ff13b4 2709{
0d1e5fa7 2710 struct execution_control_state ecss;
a474d7c2 2711 struct execution_control_state *ecs = &ecss;
4f8d22e3 2712 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2713 struct cleanup *ts_old_chain;
4f8d22e3 2714 int was_sync = sync_execution;
43ff13b4 2715
0d1e5fa7
PA
2716 memset (ecs, 0, sizeof (*ecs));
2717
c5187ac6
PA
2718 /* We're handling a live event, so make sure we're doing live
2719 debugging. If we're looking at traceframes while the target is
2720 running, we're going to need to get back to that mode after
2721 handling the event. */
2722 if (non_stop)
2723 {
2724 make_cleanup_restore_current_traceframe ();
e6e4e701 2725 set_current_traceframe (-1);
c5187ac6
PA
2726 }
2727
4f8d22e3
PA
2728 if (non_stop)
2729 /* In non-stop mode, the user/frontend should not notice a thread
2730 switch due to internal events. Make sure we reverse to the
2731 user selected thread and frame after handling the event and
2732 running any breakpoint commands. */
2733 make_cleanup_restore_current_thread ();
2734
59f0d5d9
PA
2735 /* We have to invalidate the registers BEFORE calling target_wait
2736 because they can be loaded from the target while in target_wait.
2737 This makes remote debugging a bit more efficient for those
2738 targets that provide critical registers as part of their normal
1777feb0 2739 status mechanism. */
43ff13b4 2740
ec9499be 2741 overlay_cache_invalid = 1;
3dd5b83d
PA
2742
2743 /* But don't do it if the current thread is already stopped (hence
2744 this is either a delayed event that will result in
2745 TARGET_WAITKIND_IGNORE, or it's an event for another thread (and
2746 we always clear the register and frame caches when the user
2747 switches threads anyway). If we didn't do this, a spurious
2748 delayed event in all-stop mode would make the user lose the
2749 selected frame. */
2750 if (non_stop || is_executing (inferior_ptid))
2751 registers_changed ();
43ff13b4 2752
32231432
PA
2753 make_cleanup_restore_integer (&execution_direction);
2754 execution_direction = target_execution_direction ();
2755
9a4105ab 2756 if (deprecated_target_wait_hook)
a474d7c2 2757 ecs->ptid =
47608cb1 2758 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2759 else
47608cb1 2760 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2761
f00150c9 2762 if (debug_infrun)
223698f8 2763 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2764
94cc34af
PA
2765 if (non_stop
2766 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2767 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2768 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2769 /* In non-stop mode, each thread is handled individually. Switch
2770 early, so the global state is set correctly for this
2771 thread. */
2772 context_switch (ecs->ptid);
2773
29f49a6a
PA
2774 /* If an error happens while handling the event, propagate GDB's
2775 knowledge of the executing state to the frontend/user running
2776 state. */
2777 if (!non_stop)
2778 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2779 else
2780 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2781
43ff13b4 2782 /* Now figure out what to do with the result of the result. */
a474d7c2 2783 handle_inferior_event (ecs);
43ff13b4 2784
a474d7c2 2785 if (!ecs->wait_some_more)
43ff13b4 2786 {
d6b48e9c
PA
2787 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2788
4e1c45ea 2789 delete_step_thread_step_resume_breakpoint ();
f107f563 2790
d6b48e9c 2791 /* We may not find an inferior if this was a process exit. */
16c381f0 2792 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2793 normal_stop ();
2794
af679fd0
PA
2795 if (target_has_execution
2796 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2797 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2798 && ecs->event_thread->step_multi
16c381f0 2799 && ecs->event_thread->control.stop_step)
c2d11a7d
JM
2800 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2801 else
2802 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4 2803 }
4f8d22e3 2804
29f49a6a
PA
2805 /* No error, don't finish the thread states yet. */
2806 discard_cleanups (ts_old_chain);
2807
4f8d22e3
PA
2808 /* Revert thread and frame. */
2809 do_cleanups (old_chain);
2810
2811 /* If the inferior was in sync execution mode, and now isn't,
2812 restore the prompt. */
2813 if (was_sync && !sync_execution)
2814 display_gdb_prompt (0);
43ff13b4
JM
2815}
2816
edb3359d
DJ
2817/* Record the frame and location we're currently stepping through. */
2818void
2819set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2820{
2821 struct thread_info *tp = inferior_thread ();
2822
16c381f0
JK
2823 tp->control.step_frame_id = get_frame_id (frame);
2824 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
2825
2826 tp->current_symtab = sal.symtab;
2827 tp->current_line = sal.line;
2828}
2829
0d1e5fa7
PA
2830/* Clear context switchable stepping state. */
2831
2832void
4e1c45ea 2833init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7
PA
2834{
2835 tss->stepping_over_breakpoint = 0;
2836 tss->step_after_step_resume_breakpoint = 0;
2837 tss->stepping_through_solib_after_catch = 0;
2838 tss->stepping_through_solib_catchpoints = NULL;
cd0fc7c3
SS
2839}
2840
e02bc4cc 2841/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2842 target_wait()/deprecated_target_wait_hook(). The data is actually
2843 cached by handle_inferior_event(), which gets called immediately
2844 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2845
2846void
488f131b 2847get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2848{
39f77062 2849 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2850 *status = target_last_waitstatus;
2851}
2852
ac264b3b
MS
2853void
2854nullify_last_target_wait_ptid (void)
2855{
2856 target_last_wait_ptid = minus_one_ptid;
2857}
2858
dcf4fbde 2859/* Switch thread contexts. */
dd80620e
MS
2860
2861static void
0d1e5fa7 2862context_switch (ptid_t ptid)
dd80620e 2863{
fd48f117
DJ
2864 if (debug_infrun)
2865 {
2866 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2867 target_pid_to_str (inferior_ptid));
2868 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2869 target_pid_to_str (ptid));
fd48f117
DJ
2870 }
2871
0d1e5fa7 2872 switch_to_thread (ptid);
dd80620e
MS
2873}
2874
4fa8626c
DJ
2875static void
2876adjust_pc_after_break (struct execution_control_state *ecs)
2877{
24a73cce
UW
2878 struct regcache *regcache;
2879 struct gdbarch *gdbarch;
6c95b8df 2880 struct address_space *aspace;
8aad930b 2881 CORE_ADDR breakpoint_pc;
4fa8626c 2882
4fa8626c
DJ
2883 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2884 we aren't, just return.
9709f61c
DJ
2885
2886 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2887 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2888 implemented by software breakpoints should be handled through the normal
2889 breakpoint layer.
8fb3e588 2890
4fa8626c
DJ
2891 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2892 different signals (SIGILL or SIGEMT for instance), but it is less
2893 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2894 gdbarch_decr_pc_after_break. I don't know any specific target that
2895 generates these signals at breakpoints (the code has been in GDB since at
2896 least 1992) so I can not guess how to handle them here.
8fb3e588 2897
e6cf7916
UW
2898 In earlier versions of GDB, a target with
2899 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2900 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2901 target with both of these set in GDB history, and it seems unlikely to be
2902 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2903
2904 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2905 return;
2906
2907 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2908 return;
2909
4058b839
PA
2910 /* In reverse execution, when a breakpoint is hit, the instruction
2911 under it has already been de-executed. The reported PC always
2912 points at the breakpoint address, so adjusting it further would
2913 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2914 architecture:
2915
2916 B1 0x08000000 : INSN1
2917 B2 0x08000001 : INSN2
2918 0x08000002 : INSN3
2919 PC -> 0x08000003 : INSN4
2920
2921 Say you're stopped at 0x08000003 as above. Reverse continuing
2922 from that point should hit B2 as below. Reading the PC when the
2923 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2924 been de-executed already.
2925
2926 B1 0x08000000 : INSN1
2927 B2 PC -> 0x08000001 : INSN2
2928 0x08000002 : INSN3
2929 0x08000003 : INSN4
2930
2931 We can't apply the same logic as for forward execution, because
2932 we would wrongly adjust the PC to 0x08000000, since there's a
2933 breakpoint at PC - 1. We'd then report a hit on B1, although
2934 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2935 behaviour. */
2936 if (execution_direction == EXEC_REVERSE)
2937 return;
2938
24a73cce
UW
2939 /* If this target does not decrement the PC after breakpoints, then
2940 we have nothing to do. */
2941 regcache = get_thread_regcache (ecs->ptid);
2942 gdbarch = get_regcache_arch (regcache);
2943 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2944 return;
2945
6c95b8df
PA
2946 aspace = get_regcache_aspace (regcache);
2947
8aad930b
AC
2948 /* Find the location where (if we've hit a breakpoint) the
2949 breakpoint would be. */
515630c5
UW
2950 breakpoint_pc = regcache_read_pc (regcache)
2951 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 2952
1c5cfe86
PA
2953 /* Check whether there actually is a software breakpoint inserted at
2954 that location.
2955
2956 If in non-stop mode, a race condition is possible where we've
2957 removed a breakpoint, but stop events for that breakpoint were
2958 already queued and arrive later. To suppress those spurious
2959 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2960 and retire them after a number of stop events are reported. */
6c95b8df
PA
2961 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2962 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 2963 {
96429cc8 2964 struct cleanup *old_cleanups = NULL;
abbb1732 2965
96429cc8
HZ
2966 if (RECORD_IS_USED)
2967 old_cleanups = record_gdb_operation_disable_set ();
2968
1c0fdd0e
UW
2969 /* When using hardware single-step, a SIGTRAP is reported for both
2970 a completed single-step and a software breakpoint. Need to
2971 differentiate between the two, as the latter needs adjusting
2972 but the former does not.
2973
2974 The SIGTRAP can be due to a completed hardware single-step only if
2975 - we didn't insert software single-step breakpoints
2976 - the thread to be examined is still the current thread
2977 - this thread is currently being stepped
2978
2979 If any of these events did not occur, we must have stopped due
2980 to hitting a software breakpoint, and have to back up to the
2981 breakpoint address.
2982
2983 As a special case, we could have hardware single-stepped a
2984 software breakpoint. In this case (prev_pc == breakpoint_pc),
2985 we also need to back up to the breakpoint address. */
2986
2987 if (singlestep_breakpoints_inserted_p
2988 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
2989 || !currently_stepping (ecs->event_thread)
2990 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 2991 regcache_write_pc (regcache, breakpoint_pc);
96429cc8
HZ
2992
2993 if (RECORD_IS_USED)
2994 do_cleanups (old_cleanups);
8aad930b 2995 }
4fa8626c
DJ
2996}
2997
0d1e5fa7
PA
2998void
2999init_infwait_state (void)
3000{
3001 waiton_ptid = pid_to_ptid (-1);
3002 infwait_state = infwait_normal_state;
3003}
3004
94cc34af
PA
3005void
3006error_is_running (void)
3007{
3e43a32a
MS
3008 error (_("Cannot execute this command while "
3009 "the selected thread is running."));
94cc34af
PA
3010}
3011
3012void
3013ensure_not_running (void)
3014{
3015 if (is_running (inferior_ptid))
3016 error_is_running ();
3017}
3018
edb3359d
DJ
3019static int
3020stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3021{
3022 for (frame = get_prev_frame (frame);
3023 frame != NULL;
3024 frame = get_prev_frame (frame))
3025 {
3026 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3027 return 1;
3028 if (get_frame_type (frame) != INLINE_FRAME)
3029 break;
3030 }
3031
3032 return 0;
3033}
3034
a96d9b2e
SDJ
3035/* Auxiliary function that handles syscall entry/return events.
3036 It returns 1 if the inferior should keep going (and GDB
3037 should ignore the event), or 0 if the event deserves to be
3038 processed. */
ca2163eb 3039
a96d9b2e 3040static int
ca2163eb 3041handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 3042{
ca2163eb
PA
3043 struct regcache *regcache;
3044 struct gdbarch *gdbarch;
3045 int syscall_number;
3046
3047 if (!ptid_equal (ecs->ptid, inferior_ptid))
3048 context_switch (ecs->ptid);
3049
3050 regcache = get_thread_regcache (ecs->ptid);
3051 gdbarch = get_regcache_arch (regcache);
3052 syscall_number = gdbarch_get_syscall_number (gdbarch, ecs->ptid);
3053 stop_pc = regcache_read_pc (regcache);
3054
a96d9b2e
SDJ
3055 target_last_waitstatus.value.syscall_number = syscall_number;
3056
3057 if (catch_syscall_enabled () > 0
3058 && catching_syscall_number (syscall_number) > 0)
3059 {
3060 if (debug_infrun)
3061 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3062 syscall_number);
a96d9b2e 3063
16c381f0 3064 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
3065 = bpstat_stop_status (get_regcache_aspace (regcache),
3066 stop_pc, ecs->ptid);
16c381f0
JK
3067 ecs->random_signal
3068 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
a96d9b2e 3069
ca2163eb
PA
3070 if (!ecs->random_signal)
3071 {
3072 /* Catchpoint hit. */
16c381f0 3073 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
ca2163eb
PA
3074 return 0;
3075 }
a96d9b2e 3076 }
ca2163eb
PA
3077
3078 /* If no catchpoint triggered for this, then keep going. */
16c381f0 3079 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
ca2163eb
PA
3080 keep_going (ecs);
3081 return 1;
a96d9b2e
SDJ
3082}
3083
7e324e48
GB
3084/* Clear the supplied execution_control_state's stop_func_* fields. */
3085
3086static void
3087clear_stop_func (struct execution_control_state *ecs)
3088{
3089 ecs->stop_func_filled_in = 0;
3090 ecs->stop_func_start = 0;
3091 ecs->stop_func_end = 0;
3092 ecs->stop_func_name = NULL;
3093}
3094
3095/* Lazily fill in the execution_control_state's stop_func_* fields. */
3096
3097static void
3098fill_in_stop_func (struct gdbarch *gdbarch,
3099 struct execution_control_state *ecs)
3100{
3101 if (!ecs->stop_func_filled_in)
3102 {
3103 /* Don't care about return value; stop_func_start and stop_func_name
3104 will both be 0 if it doesn't work. */
3105 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3106 &ecs->stop_func_start, &ecs->stop_func_end);
3107 ecs->stop_func_start
3108 += gdbarch_deprecated_function_start_offset (gdbarch);
3109
3110 ecs->stop_func_filled_in = 1;
3111 }
3112}
3113
cd0fc7c3
SS
3114/* Given an execution control state that has been freshly filled in
3115 by an event from the inferior, figure out what it means and take
3116 appropriate action. */
c906108c 3117
ec9499be 3118static void
96baa820 3119handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 3120{
568d6575
UW
3121 struct frame_info *frame;
3122 struct gdbarch *gdbarch;
d983da9c
DJ
3123 int stopped_by_watchpoint;
3124 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 3125 struct symtab_and_line stop_pc_sal;
d6b48e9c
PA
3126 enum stop_kind stop_soon;
3127
28736962
PA
3128 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3129 {
3130 /* We had an event in the inferior, but we are not interested in
3131 handling it at this level. The lower layers have already
3132 done what needs to be done, if anything.
3133
3134 One of the possible circumstances for this is when the
3135 inferior produces output for the console. The inferior has
3136 not stopped, and we are ignoring the event. Another possible
3137 circumstance is any event which the lower level knows will be
3138 reported multiple times without an intervening resume. */
3139 if (debug_infrun)
3140 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3141 prepare_to_wait (ecs);
3142 return;
3143 }
3144
d6b48e9c 3145 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
28736962 3146 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
d6b48e9c
PA
3147 {
3148 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
abbb1732 3149
d6b48e9c 3150 gdb_assert (inf);
16c381f0 3151 stop_soon = inf->control.stop_soon;
d6b48e9c
PA
3152 }
3153 else
3154 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 3155
1777feb0 3156 /* Cache the last pid/waitstatus. */
39f77062 3157 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 3158 target_last_waitstatus = ecs->ws;
e02bc4cc 3159
ca005067 3160 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 3161 stop_stack_dummy = STOP_NONE;
ca005067 3162
1777feb0 3163 /* If it's a new process, add it to the thread database. */
8c90c137
LM
3164
3165 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
3166 && !ptid_equal (ecs->ptid, minus_one_ptid)
3167 && !in_thread_list (ecs->ptid));
3168
3169 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3170 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
3171 add_thread (ecs->ptid);
3172
e09875d4 3173 ecs->event_thread = find_thread_ptid (ecs->ptid);
88ed393a
JK
3174
3175 /* Dependent on valid ECS->EVENT_THREAD. */
3176 adjust_pc_after_break (ecs);
3177
3178 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3179 reinit_frame_cache ();
3180
28736962
PA
3181 breakpoint_retire_moribund ();
3182
2b009048
DJ
3183 /* First, distinguish signals caused by the debugger from signals
3184 that have to do with the program's own actions. Note that
3185 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3186 on the operating system version. Here we detect when a SIGILL or
3187 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3188 something similar for SIGSEGV, since a SIGSEGV will be generated
3189 when we're trying to execute a breakpoint instruction on a
3190 non-executable stack. This happens for call dummy breakpoints
3191 for architectures like SPARC that place call dummies on the
3192 stack. */
2b009048
DJ
3193 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3194 && (ecs->ws.value.sig == TARGET_SIGNAL_ILL
3195 || ecs->ws.value.sig == TARGET_SIGNAL_SEGV
de0a0249 3196 || ecs->ws.value.sig == TARGET_SIGNAL_EMT))
2b009048 3197 {
de0a0249
UW
3198 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3199
3200 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3201 regcache_read_pc (regcache)))
3202 {
3203 if (debug_infrun)
3204 fprintf_unfiltered (gdb_stdlog,
3205 "infrun: Treating signal as SIGTRAP\n");
3206 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
3207 }
2b009048
DJ
3208 }
3209
28736962
PA
3210 /* Mark the non-executing threads accordingly. In all-stop, all
3211 threads of all processes are stopped when we get any event
3212 reported. In non-stop mode, only the event thread stops. If
3213 we're handling a process exit in non-stop mode, there's nothing
3214 to do, as threads of the dead process are gone, and threads of
3215 any other process were left running. */
3216 if (!non_stop)
3217 set_executing (minus_one_ptid, 0);
3218 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3219 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3220 set_executing (inferior_ptid, 0);
8c90c137 3221
0d1e5fa7 3222 switch (infwait_state)
488f131b
JB
3223 {
3224 case infwait_thread_hop_state:
527159b7 3225 if (debug_infrun)
8a9de0e4 3226 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
65e82032 3227 break;
b83266a0 3228
488f131b 3229 case infwait_normal_state:
527159b7 3230 if (debug_infrun)
8a9de0e4 3231 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
3232 break;
3233
3234 case infwait_step_watch_state:
3235 if (debug_infrun)
3236 fprintf_unfiltered (gdb_stdlog,
3237 "infrun: infwait_step_watch_state\n");
3238
3239 stepped_after_stopped_by_watchpoint = 1;
488f131b 3240 break;
b83266a0 3241
488f131b 3242 case infwait_nonstep_watch_state:
527159b7 3243 if (debug_infrun)
8a9de0e4
AC
3244 fprintf_unfiltered (gdb_stdlog,
3245 "infrun: infwait_nonstep_watch_state\n");
488f131b 3246 insert_breakpoints ();
c906108c 3247
488f131b
JB
3248 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3249 handle things like signals arriving and other things happening
3250 in combination correctly? */
3251 stepped_after_stopped_by_watchpoint = 1;
3252 break;
65e82032
AC
3253
3254 default:
e2e0b3e5 3255 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 3256 }
ec9499be 3257
0d1e5fa7 3258 infwait_state = infwait_normal_state;
ec9499be 3259 waiton_ptid = pid_to_ptid (-1);
c906108c 3260
488f131b
JB
3261 switch (ecs->ws.kind)
3262 {
3263 case TARGET_WAITKIND_LOADED:
527159b7 3264 if (debug_infrun)
8a9de0e4 3265 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
3266 /* Ignore gracefully during startup of the inferior, as it might
3267 be the shell which has just loaded some objects, otherwise
3268 add the symbols for the newly loaded objects. Also ignore at
3269 the beginning of an attach or remote session; we will query
3270 the full list of libraries once the connection is
3271 established. */
c0236d92 3272 if (stop_soon == NO_STOP_QUIETLY)
488f131b 3273 {
488f131b
JB
3274 /* Check for any newly added shared libraries if we're
3275 supposed to be adding them automatically. Switch
3276 terminal for any messages produced by
3277 breakpoint_re_set. */
3278 target_terminal_ours_for_output ();
aff6338a 3279 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
3280 stack's section table is kept up-to-date. Architectures,
3281 (e.g., PPC64), use the section table to perform
3282 operations such as address => section name and hence
3283 require the table to contain all sections (including
3284 those found in shared libraries). */
b0f4b84b 3285#ifdef SOLIB_ADD
aff6338a 3286 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
b0f4b84b
DJ
3287#else
3288 solib_add (NULL, 0, &current_target, auto_solib_add);
3289#endif
488f131b
JB
3290 target_terminal_inferior ();
3291
b0f4b84b
DJ
3292 /* If requested, stop when the dynamic linker notifies
3293 gdb of events. This allows the user to get control
3294 and place breakpoints in initializer routines for
3295 dynamically loaded objects (among other things). */
3296 if (stop_on_solib_events)
3297 {
55409f9d
DJ
3298 /* Make sure we print "Stopped due to solib-event" in
3299 normal_stop. */
3300 stop_print_frame = 1;
3301
b0f4b84b
DJ
3302 stop_stepping (ecs);
3303 return;
3304 }
3305
3306 /* NOTE drow/2007-05-11: This might be a good place to check
3307 for "catch load". */
488f131b 3308 }
b0f4b84b
DJ
3309
3310 /* If we are skipping through a shell, or through shared library
3311 loading that we aren't interested in, resume the program. If
3312 we're running the program normally, also resume. But stop if
3313 we're attaching or setting up a remote connection. */
3314 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3315 {
74960c60
VP
3316 /* Loading of shared libraries might have changed breakpoint
3317 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
3318 if (stop_soon == NO_STOP_QUIETLY
3319 && !breakpoints_always_inserted_mode ())
74960c60 3320 insert_breakpoints ();
b0f4b84b
DJ
3321 resume (0, TARGET_SIGNAL_0);
3322 prepare_to_wait (ecs);
3323 return;
3324 }
3325
3326 break;
c5aa993b 3327
488f131b 3328 case TARGET_WAITKIND_SPURIOUS:
527159b7 3329 if (debug_infrun)
8a9de0e4 3330 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
3331 resume (0, TARGET_SIGNAL_0);
3332 prepare_to_wait (ecs);
3333 return;
c5aa993b 3334
488f131b 3335 case TARGET_WAITKIND_EXITED:
527159b7 3336 if (debug_infrun)
8a9de0e4 3337 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
fb66883a 3338 inferior_ptid = ecs->ptid;
6c95b8df
PA
3339 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3340 set_current_program_space (current_inferior ()->pspace);
3341 handle_vfork_child_exec_or_exit (0);
1777feb0 3342 target_terminal_ours (); /* Must do this before mourn anyway. */
33d62d64 3343 print_exited_reason (ecs->ws.value.integer);
488f131b
JB
3344
3345 /* Record the exit code in the convenience variable $_exitcode, so
3346 that the user can inspect this again later. */
4fa62494
UW
3347 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3348 (LONGEST) ecs->ws.value.integer);
8cf64490
TT
3349
3350 /* Also record this in the inferior itself. */
3351 current_inferior ()->has_exit_code = 1;
3352 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3353
488f131b
JB
3354 gdb_flush (gdb_stdout);
3355 target_mourn_inferior ();
1c0fdd0e 3356 singlestep_breakpoints_inserted_p = 0;
d03285ec 3357 cancel_single_step_breakpoints ();
488f131b
JB
3358 stop_print_frame = 0;
3359 stop_stepping (ecs);
3360 return;
c5aa993b 3361
488f131b 3362 case TARGET_WAITKIND_SIGNALLED:
527159b7 3363 if (debug_infrun)
8a9de0e4 3364 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
fb66883a 3365 inferior_ptid = ecs->ptid;
6c95b8df
PA
3366 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3367 set_current_program_space (current_inferior ()->pspace);
3368 handle_vfork_child_exec_or_exit (0);
488f131b 3369 stop_print_frame = 0;
1777feb0 3370 target_terminal_ours (); /* Must do this before mourn anyway. */
c5aa993b 3371
488f131b
JB
3372 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
3373 reach here unless the inferior is dead. However, for years
3374 target_kill() was called here, which hints that fatal signals aren't
3375 really fatal on some systems. If that's true, then some changes
1777feb0 3376 may be needed. */
488f131b 3377 target_mourn_inferior ();
c906108c 3378
33d62d64 3379 print_signal_exited_reason (ecs->ws.value.sig);
1c0fdd0e 3380 singlestep_breakpoints_inserted_p = 0;
d03285ec 3381 cancel_single_step_breakpoints ();
488f131b
JB
3382 stop_stepping (ecs);
3383 return;
c906108c 3384
488f131b 3385 /* The following are the only cases in which we keep going;
1777feb0 3386 the above cases end in a continue or goto. */
488f131b 3387 case TARGET_WAITKIND_FORKED:
deb3b17b 3388 case TARGET_WAITKIND_VFORKED:
527159b7 3389 if (debug_infrun)
8a9de0e4 3390 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
c906108c 3391
5a2901d9
DJ
3392 if (!ptid_equal (ecs->ptid, inferior_ptid))
3393 {
0d1e5fa7 3394 context_switch (ecs->ptid);
35f196d9 3395 reinit_frame_cache ();
5a2901d9
DJ
3396 }
3397
b242c3c2
PA
3398 /* Immediately detach breakpoints from the child before there's
3399 any chance of letting the user delete breakpoints from the
3400 breakpoint lists. If we don't do this early, it's easy to
3401 leave left over traps in the child, vis: "break foo; catch
3402 fork; c; <fork>; del; c; <child calls foo>". We only follow
3403 the fork on the last `continue', and by that time the
3404 breakpoint at "foo" is long gone from the breakpoint table.
3405 If we vforked, then we don't need to unpatch here, since both
3406 parent and child are sharing the same memory pages; we'll
3407 need to unpatch at follow/detach time instead to be certain
3408 that new breakpoints added between catchpoint hit time and
3409 vfork follow are detached. */
3410 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3411 {
3412 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
3413
3414 /* This won't actually modify the breakpoint list, but will
3415 physically remove the breakpoints from the child. */
3416 detach_breakpoints (child_pid);
3417 }
3418
d03285ec
UW
3419 if (singlestep_breakpoints_inserted_p)
3420 {
1777feb0 3421 /* Pull the single step breakpoints out of the target. */
d03285ec
UW
3422 remove_single_step_breakpoints ();
3423 singlestep_breakpoints_inserted_p = 0;
3424 }
3425
e58b0e63
PA
3426 /* In case the event is caught by a catchpoint, remember that
3427 the event is to be followed at the next resume of the thread,
3428 and not immediately. */
3429 ecs->event_thread->pending_follow = ecs->ws;
3430
fb14de7b 3431 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 3432
16c381f0 3433 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
3434 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3435 stop_pc, ecs->ptid);
675bf4cb 3436
67822962
PA
3437 /* Note that we're interested in knowing the bpstat actually
3438 causes a stop, not just if it may explain the signal.
3439 Software watchpoints, for example, always appear in the
3440 bpstat. */
16c381f0
JK
3441 ecs->random_signal
3442 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
04e68871
DJ
3443
3444 /* If no catchpoint triggered for this, then keep going. */
3445 if (ecs->random_signal)
3446 {
6c95b8df
PA
3447 ptid_t parent;
3448 ptid_t child;
e58b0e63 3449 int should_resume;
3e43a32a
MS
3450 int follow_child
3451 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 3452
16c381f0 3453 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
e58b0e63
PA
3454
3455 should_resume = follow_fork ();
3456
6c95b8df
PA
3457 parent = ecs->ptid;
3458 child = ecs->ws.value.related_pid;
3459
3460 /* In non-stop mode, also resume the other branch. */
3461 if (non_stop && !detach_fork)
3462 {
3463 if (follow_child)
3464 switch_to_thread (parent);
3465 else
3466 switch_to_thread (child);
3467
3468 ecs->event_thread = inferior_thread ();
3469 ecs->ptid = inferior_ptid;
3470 keep_going (ecs);
3471 }
3472
3473 if (follow_child)
3474 switch_to_thread (child);
3475 else
3476 switch_to_thread (parent);
3477
e58b0e63
PA
3478 ecs->event_thread = inferior_thread ();
3479 ecs->ptid = inferior_ptid;
3480
3481 if (should_resume)
3482 keep_going (ecs);
3483 else
3484 stop_stepping (ecs);
04e68871
DJ
3485 return;
3486 }
16c381f0 3487 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3488 goto process_event_stop_test;
3489
6c95b8df
PA
3490 case TARGET_WAITKIND_VFORK_DONE:
3491 /* Done with the shared memory region. Re-insert breakpoints in
3492 the parent, and keep going. */
3493
3494 if (debug_infrun)
3e43a32a
MS
3495 fprintf_unfiltered (gdb_stdlog,
3496 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
3497
3498 if (!ptid_equal (ecs->ptid, inferior_ptid))
3499 context_switch (ecs->ptid);
3500
3501 current_inferior ()->waiting_for_vfork_done = 0;
56710373 3502 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
3503 /* This also takes care of reinserting breakpoints in the
3504 previously locked inferior. */
3505 keep_going (ecs);
3506 return;
3507
488f131b 3508 case TARGET_WAITKIND_EXECD:
527159b7 3509 if (debug_infrun)
fc5261f2 3510 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 3511
5a2901d9
DJ
3512 if (!ptid_equal (ecs->ptid, inferior_ptid))
3513 {
0d1e5fa7 3514 context_switch (ecs->ptid);
35f196d9 3515 reinit_frame_cache ();
5a2901d9
DJ
3516 }
3517
d03285ec
UW
3518 singlestep_breakpoints_inserted_p = 0;
3519 cancel_single_step_breakpoints ();
3520
fb14de7b 3521 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 3522
6c95b8df
PA
3523 /* Do whatever is necessary to the parent branch of the vfork. */
3524 handle_vfork_child_exec_or_exit (1);
3525
795e548f
PA
3526 /* This causes the eventpoints and symbol table to be reset.
3527 Must do this now, before trying to determine whether to
3528 stop. */
71b43ef8 3529 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 3530
16c381f0 3531 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
3532 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3533 stop_pc, ecs->ptid);
16c381f0
JK
3534 ecs->random_signal
3535 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
795e548f 3536
71b43ef8
PA
3537 /* Note that this may be referenced from inside
3538 bpstat_stop_status above, through inferior_has_execd. */
3539 xfree (ecs->ws.value.execd_pathname);
3540 ecs->ws.value.execd_pathname = NULL;
3541
04e68871
DJ
3542 /* If no catchpoint triggered for this, then keep going. */
3543 if (ecs->random_signal)
3544 {
16c381f0 3545 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
04e68871
DJ
3546 keep_going (ecs);
3547 return;
3548 }
16c381f0 3549 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3550 goto process_event_stop_test;
3551
b4dc5ffa
MK
3552 /* Be careful not to try to gather much state about a thread
3553 that's in a syscall. It's frequently a losing proposition. */
488f131b 3554 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 3555 if (debug_infrun)
3e43a32a
MS
3556 fprintf_unfiltered (gdb_stdlog,
3557 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 3558 /* Getting the current syscall number. */
ca2163eb 3559 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3560 return;
3561 goto process_event_stop_test;
c906108c 3562
488f131b
JB
3563 /* Before examining the threads further, step this thread to
3564 get it entirely out of the syscall. (We get notice of the
3565 event when the thread is just on the verge of exiting a
3566 syscall. Stepping one instruction seems to get it back
b4dc5ffa 3567 into user code.) */
488f131b 3568 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 3569 if (debug_infrun)
3e43a32a
MS
3570 fprintf_unfiltered (gdb_stdlog,
3571 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
ca2163eb 3572 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3573 return;
3574 goto process_event_stop_test;
c906108c 3575
488f131b 3576 case TARGET_WAITKIND_STOPPED:
527159b7 3577 if (debug_infrun)
8a9de0e4 3578 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 3579 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
488f131b 3580 break;
c906108c 3581
b2175913
MS
3582 case TARGET_WAITKIND_NO_HISTORY:
3583 /* Reverse execution: target ran out of history info. */
fb14de7b 3584 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
33d62d64 3585 print_no_history_reason ();
b2175913
MS
3586 stop_stepping (ecs);
3587 return;
488f131b 3588 }
c906108c 3589
488f131b
JB
3590 if (ecs->new_thread_event)
3591 {
94cc34af
PA
3592 if (non_stop)
3593 /* Non-stop assumes that the target handles adding new threads
3594 to the thread list. */
3e43a32a
MS
3595 internal_error (__FILE__, __LINE__,
3596 "targets should add new threads to the thread "
3597 "list themselves in non-stop mode.");
94cc34af
PA
3598
3599 /* We may want to consider not doing a resume here in order to
3600 give the user a chance to play with the new thread. It might
3601 be good to make that a user-settable option. */
3602
3603 /* At this point, all threads are stopped (happens automatically
3604 in either the OS or the native code). Therefore we need to
3605 continue all threads in order to make progress. */
3606
173853dc
PA
3607 if (!ptid_equal (ecs->ptid, inferior_ptid))
3608 context_switch (ecs->ptid);
488f131b
JB
3609 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
3610 prepare_to_wait (ecs);
3611 return;
3612 }
c906108c 3613
2020b7ab 3614 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
3615 {
3616 /* Do we need to clean up the state of a thread that has
3617 completed a displaced single-step? (Doing so usually affects
3618 the PC, so do it here, before we set stop_pc.) */
16c381f0
JK
3619 displaced_step_fixup (ecs->ptid,
3620 ecs->event_thread->suspend.stop_signal);
252fbfc8
PA
3621
3622 /* If we either finished a single-step or hit a breakpoint, but
3623 the user wanted this thread to be stopped, pretend we got a
3624 SIG0 (generic unsignaled stop). */
3625
3626 if (ecs->event_thread->stop_requested
16c381f0
JK
3627 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3628 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
252fbfc8 3629 }
237fc4c9 3630
515630c5 3631 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 3632
527159b7 3633 if (debug_infrun)
237fc4c9 3634 {
5af949e3
UW
3635 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3636 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
3637 struct cleanup *old_chain = save_inferior_ptid ();
3638
3639 inferior_ptid = ecs->ptid;
5af949e3
UW
3640
3641 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3642 paddress (gdbarch, stop_pc));
d92524f1 3643 if (target_stopped_by_watchpoint ())
237fc4c9
PA
3644 {
3645 CORE_ADDR addr;
abbb1732 3646
237fc4c9
PA
3647 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3648
3649 if (target_stopped_data_address (&current_target, &addr))
3650 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
3651 "infrun: stopped data address = %s\n",
3652 paddress (gdbarch, addr));
237fc4c9
PA
3653 else
3654 fprintf_unfiltered (gdb_stdlog,
3655 "infrun: (no data address available)\n");
3656 }
7f82dfc7
JK
3657
3658 do_cleanups (old_chain);
237fc4c9 3659 }
527159b7 3660
9f976b41
DJ
3661 if (stepping_past_singlestep_breakpoint)
3662 {
1c0fdd0e 3663 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
3664 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3665 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3666
3667 stepping_past_singlestep_breakpoint = 0;
3668
3669 /* We've either finished single-stepping past the single-step
8fb3e588
AC
3670 breakpoint, or stopped for some other reason. It would be nice if
3671 we could tell, but we can't reliably. */
16c381f0 3672 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 3673 {
527159b7 3674 if (debug_infrun)
3e43a32a
MS
3675 fprintf_unfiltered (gdb_stdlog,
3676 "infrun: stepping_past_"
3677 "singlestep_breakpoint\n");
9f976b41 3678 /* Pull the single step breakpoints out of the target. */
e0cd558a 3679 remove_single_step_breakpoints ();
9f976b41
DJ
3680 singlestep_breakpoints_inserted_p = 0;
3681
3682 ecs->random_signal = 0;
16c381f0 3683 ecs->event_thread->control.trap_expected = 0;
9f976b41 3684
0d1e5fa7 3685 context_switch (saved_singlestep_ptid);
9a4105ab
AC
3686 if (deprecated_context_hook)
3687 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
3688
3689 resume (1, TARGET_SIGNAL_0);
3690 prepare_to_wait (ecs);
3691 return;
3692 }
3693 }
3694
ca67fcb8 3695 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 3696 {
94cc34af
PA
3697 /* In non-stop mode, there's never a deferred_step_ptid set. */
3698 gdb_assert (!non_stop);
3699
6a6b96b9
UW
3700 /* If we stopped for some other reason than single-stepping, ignore
3701 the fact that we were supposed to switch back. */
16c381f0 3702 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
6a6b96b9
UW
3703 {
3704 if (debug_infrun)
3705 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 3706 "infrun: handling deferred step\n");
6a6b96b9
UW
3707
3708 /* Pull the single step breakpoints out of the target. */
3709 if (singlestep_breakpoints_inserted_p)
3710 {
3711 remove_single_step_breakpoints ();
3712 singlestep_breakpoints_inserted_p = 0;
3713 }
3714
cd3da28e
PA
3715 ecs->event_thread->control.trap_expected = 0;
3716
6a6b96b9
UW
3717 /* Note: We do not call context_switch at this point, as the
3718 context is already set up for stepping the original thread. */
ca67fcb8
VP
3719 switch_to_thread (deferred_step_ptid);
3720 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3721 /* Suppress spurious "Switching to ..." message. */
3722 previous_inferior_ptid = inferior_ptid;
3723
3724 resume (1, TARGET_SIGNAL_0);
3725 prepare_to_wait (ecs);
3726 return;
3727 }
ca67fcb8
VP
3728
3729 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3730 }
3731
488f131b
JB
3732 /* See if a thread hit a thread-specific breakpoint that was meant for
3733 another thread. If so, then step that thread past the breakpoint,
3734 and continue it. */
3735
16c381f0 3736 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
488f131b 3737 {
9f976b41 3738 int thread_hop_needed = 0;
cf00dfa7
VP
3739 struct address_space *aspace =
3740 get_regcache_aspace (get_thread_regcache (ecs->ptid));
9f976b41 3741
f8d40ec8 3742 /* Check if a regular breakpoint has been hit before checking
1777feb0 3743 for a potential single step breakpoint. Otherwise, GDB will
f8d40ec8 3744 not see this breakpoint hit when stepping onto breakpoints. */
6c95b8df 3745 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
488f131b 3746 {
c5aa993b 3747 ecs->random_signal = 0;
6c95b8df 3748 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
9f976b41
DJ
3749 thread_hop_needed = 1;
3750 }
1c0fdd0e 3751 else if (singlestep_breakpoints_inserted_p)
9f976b41 3752 {
fd48f117
DJ
3753 /* We have not context switched yet, so this should be true
3754 no matter which thread hit the singlestep breakpoint. */
3755 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3756 if (debug_infrun)
3757 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3758 "trap for %s\n",
3759 target_pid_to_str (ecs->ptid));
3760
9f976b41
DJ
3761 ecs->random_signal = 0;
3762 /* The call to in_thread_list is necessary because PTIDs sometimes
3763 change when we go from single-threaded to multi-threaded. If
3764 the singlestep_ptid is still in the list, assume that it is
3765 really different from ecs->ptid. */
3766 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3767 && in_thread_list (singlestep_ptid))
3768 {
fd48f117
DJ
3769 /* If the PC of the thread we were trying to single-step
3770 has changed, discard this event (which we were going
3771 to ignore anyway), and pretend we saw that thread
3772 trap. This prevents us continuously moving the
3773 single-step breakpoint forward, one instruction at a
3774 time. If the PC has changed, then the thread we were
3775 trying to single-step has trapped or been signalled,
3776 but the event has not been reported to GDB yet.
3777
3778 There might be some cases where this loses signal
3779 information, if a signal has arrived at exactly the
3780 same time that the PC changed, but this is the best
3781 we can do with the information available. Perhaps we
3782 should arrange to report all events for all threads
3783 when they stop, or to re-poll the remote looking for
3784 this particular thread (i.e. temporarily enable
3785 schedlock). */
515630c5
UW
3786
3787 CORE_ADDR new_singlestep_pc
3788 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3789
3790 if (new_singlestep_pc != singlestep_pc)
fd48f117 3791 {
2020b7ab
PA
3792 enum target_signal stop_signal;
3793
fd48f117
DJ
3794 if (debug_infrun)
3795 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3796 " but expected thread advanced also\n");
3797
3798 /* The current context still belongs to
3799 singlestep_ptid. Don't swap here, since that's
3800 the context we want to use. Just fudge our
3801 state and continue. */
16c381f0
JK
3802 stop_signal = ecs->event_thread->suspend.stop_signal;
3803 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
fd48f117 3804 ecs->ptid = singlestep_ptid;
e09875d4 3805 ecs->event_thread = find_thread_ptid (ecs->ptid);
16c381f0 3806 ecs->event_thread->suspend.stop_signal = stop_signal;
515630c5 3807 stop_pc = new_singlestep_pc;
fd48f117
DJ
3808 }
3809 else
3810 {
3811 if (debug_infrun)
3812 fprintf_unfiltered (gdb_stdlog,
3813 "infrun: unexpected thread\n");
3814
3815 thread_hop_needed = 1;
3816 stepping_past_singlestep_breakpoint = 1;
3817 saved_singlestep_ptid = singlestep_ptid;
3818 }
9f976b41
DJ
3819 }
3820 }
3821
3822 if (thread_hop_needed)
8fb3e588 3823 {
9f5a595d 3824 struct regcache *thread_regcache;
237fc4c9 3825 int remove_status = 0;
8fb3e588 3826
527159b7 3827 if (debug_infrun)
8a9de0e4 3828 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 3829
b3444185
PA
3830 /* Switch context before touching inferior memory, the
3831 previous thread may have exited. */
3832 if (!ptid_equal (inferior_ptid, ecs->ptid))
3833 context_switch (ecs->ptid);
3834
8fb3e588 3835 /* Saw a breakpoint, but it was hit by the wrong thread.
1777feb0 3836 Just continue. */
8fb3e588 3837
1c0fdd0e 3838 if (singlestep_breakpoints_inserted_p)
488f131b 3839 {
1777feb0 3840 /* Pull the single step breakpoints out of the target. */
e0cd558a 3841 remove_single_step_breakpoints ();
8fb3e588
AC
3842 singlestep_breakpoints_inserted_p = 0;
3843 }
3844
237fc4c9
PA
3845 /* If the arch can displace step, don't remove the
3846 breakpoints. */
9f5a595d
UW
3847 thread_regcache = get_thread_regcache (ecs->ptid);
3848 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
3849 remove_status = remove_breakpoints ();
3850
8fb3e588
AC
3851 /* Did we fail to remove breakpoints? If so, try
3852 to set the PC past the bp. (There's at least
3853 one situation in which we can fail to remove
3854 the bp's: On HP-UX's that use ttrace, we can't
3855 change the address space of a vforking child
3856 process until the child exits (well, okay, not
1777feb0 3857 then either :-) or execs. */
8fb3e588 3858 if (remove_status != 0)
9d9cd7ac 3859 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
3860 else
3861 { /* Single step */
94cc34af
PA
3862 if (!non_stop)
3863 {
3864 /* Only need to require the next event from this
3865 thread in all-stop mode. */
3866 waiton_ptid = ecs->ptid;
3867 infwait_state = infwait_thread_hop_state;
3868 }
8fb3e588 3869
4e1c45ea 3870 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588 3871 keep_going (ecs);
8fb3e588
AC
3872 return;
3873 }
488f131b 3874 }
1c0fdd0e 3875 else if (singlestep_breakpoints_inserted_p)
8fb3e588 3876 {
8fb3e588
AC
3877 ecs->random_signal = 0;
3878 }
488f131b
JB
3879 }
3880 else
3881 ecs->random_signal = 1;
c906108c 3882
488f131b 3883 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
3884 so, then switch to that thread. */
3885 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 3886 {
527159b7 3887 if (debug_infrun)
8a9de0e4 3888 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 3889
0d1e5fa7 3890 context_switch (ecs->ptid);
c5aa993b 3891
9a4105ab
AC
3892 if (deprecated_context_hook)
3893 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 3894 }
c906108c 3895
568d6575
UW
3896 /* At this point, get hold of the now-current thread's frame. */
3897 frame = get_current_frame ();
3898 gdbarch = get_frame_arch (frame);
3899
1c0fdd0e 3900 if (singlestep_breakpoints_inserted_p)
488f131b 3901 {
1777feb0 3902 /* Pull the single step breakpoints out of the target. */
e0cd558a 3903 remove_single_step_breakpoints ();
488f131b
JB
3904 singlestep_breakpoints_inserted_p = 0;
3905 }
c906108c 3906
d983da9c
DJ
3907 if (stepped_after_stopped_by_watchpoint)
3908 stopped_by_watchpoint = 0;
3909 else
3910 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3911
3912 /* If necessary, step over this watchpoint. We'll be back to display
3913 it in a moment. */
3914 if (stopped_by_watchpoint
d92524f1 3915 && (target_have_steppable_watchpoint
568d6575 3916 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 3917 {
488f131b
JB
3918 /* At this point, we are stopped at an instruction which has
3919 attempted to write to a piece of memory under control of
3920 a watchpoint. The instruction hasn't actually executed
3921 yet. If we were to evaluate the watchpoint expression
3922 now, we would get the old value, and therefore no change
3923 would seem to have occurred.
3924
3925 In order to make watchpoints work `right', we really need
3926 to complete the memory write, and then evaluate the
d983da9c
DJ
3927 watchpoint expression. We do this by single-stepping the
3928 target.
3929
3930 It may not be necessary to disable the watchpoint to stop over
3931 it. For example, the PA can (with some kernel cooperation)
3932 single step over a watchpoint without disabling the watchpoint.
3933
3934 It is far more common to need to disable a watchpoint to step
3935 the inferior over it. If we have non-steppable watchpoints,
3936 we must disable the current watchpoint; it's simplest to
3937 disable all watchpoints and breakpoints. */
2facfe5c
DD
3938 int hw_step = 1;
3939
d92524f1 3940 if (!target_have_steppable_watchpoint)
2455069d
UW
3941 {
3942 remove_breakpoints ();
3943 /* See comment in resume why we need to stop bypassing signals
3944 while breakpoints have been removed. */
3945 target_pass_signals (0, NULL);
3946 }
2facfe5c 3947 /* Single step */
568d6575 3948 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
2facfe5c 3949 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
0d1e5fa7 3950 waiton_ptid = ecs->ptid;
d92524f1 3951 if (target_have_steppable_watchpoint)
0d1e5fa7 3952 infwait_state = infwait_step_watch_state;
d983da9c 3953 else
0d1e5fa7 3954 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
3955 prepare_to_wait (ecs);
3956 return;
3957 }
3958
7e324e48 3959 clear_stop_func (ecs);
4e1c45ea 3960 ecs->event_thread->stepping_over_breakpoint = 0;
16c381f0
JK
3961 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
3962 ecs->event_thread->control.stop_step = 0;
488f131b
JB
3963 stop_print_frame = 1;
3964 ecs->random_signal = 0;
3965 stopped_by_random_signal = 0;
488f131b 3966
edb3359d
DJ
3967 /* Hide inlined functions starting here, unless we just performed stepi or
3968 nexti. After stepi and nexti, always show the innermost frame (not any
3969 inline function call sites). */
16c381f0 3970 if (ecs->event_thread->control.step_range_end != 1)
edb3359d
DJ
3971 skip_inline_frames (ecs->ptid);
3972
16c381f0
JK
3973 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
3974 && ecs->event_thread->control.trap_expected
568d6575 3975 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 3976 && currently_stepping (ecs->event_thread))
3352ef37 3977 {
b50d7442 3978 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 3979 also on an instruction that needs to be stepped multiple
1777feb0 3980 times before it's been fully executing. E.g., architectures
3352ef37
AC
3981 with a delay slot. It needs to be stepped twice, once for
3982 the instruction and once for the delay slot. */
3983 int step_through_delay
568d6575 3984 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 3985
527159b7 3986 if (debug_infrun && step_through_delay)
8a9de0e4 3987 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
3988 if (ecs->event_thread->control.step_range_end == 0
3989 && step_through_delay)
3352ef37
AC
3990 {
3991 /* The user issued a continue when stopped at a breakpoint.
3992 Set up for another trap and get out of here. */
4e1c45ea 3993 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
3994 keep_going (ecs);
3995 return;
3996 }
3997 else if (step_through_delay)
3998 {
3999 /* The user issued a step when stopped at a breakpoint.
4000 Maybe we should stop, maybe we should not - the delay
4001 slot *might* correspond to a line of source. In any
ca67fcb8
VP
4002 case, don't decide that here, just set
4003 ecs->stepping_over_breakpoint, making sure we
4004 single-step again before breakpoints are re-inserted. */
4e1c45ea 4005 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4006 }
4007 }
4008
488f131b
JB
4009 /* Look at the cause of the stop, and decide what to do.
4010 The alternatives are:
0d1e5fa7
PA
4011 1) stop_stepping and return; to really stop and return to the debugger,
4012 2) keep_going and return to start up again
4e1c45ea 4013 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
4014 3) set ecs->random_signal to 1, and the decision between 1 and 2
4015 will be made according to the signal handling tables. */
4016
16c381f0 4017 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
b0f4b84b
DJ
4018 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
4019 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 4020 {
16c381f0
JK
4021 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4022 && stop_after_trap)
488f131b 4023 {
527159b7 4024 if (debug_infrun)
8a9de0e4 4025 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
4026 stop_print_frame = 0;
4027 stop_stepping (ecs);
4028 return;
4029 }
c54cfec8
EZ
4030
4031 /* This is originated from start_remote(), start_inferior() and
4032 shared libraries hook functions. */
b0f4b84b 4033 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 4034 {
527159b7 4035 if (debug_infrun)
8a9de0e4 4036 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
4037 stop_stepping (ecs);
4038 return;
4039 }
4040
c54cfec8 4041 /* This originates from attach_command(). We need to overwrite
a0d21d28
PA
4042 the stop_signal here, because some kernels don't ignore a
4043 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4044 See more comments in inferior.h. On the other hand, if we
a0ef4274 4045 get a non-SIGSTOP, report it to the user - assume the backend
a0d21d28
PA
4046 will handle the SIGSTOP if it should show up later.
4047
4048 Also consider that the attach is complete when we see a
4049 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4050 target extended-remote report it instead of a SIGSTOP
4051 (e.g. gdbserver). We already rely on SIGTRAP being our
e0ba6746
PA
4052 signal, so this is no exception.
4053
4054 Also consider that the attach is complete when we see a
4055 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4056 the target to stop all threads of the inferior, in case the
4057 low level attach operation doesn't stop them implicitly. If
4058 they weren't stopped implicitly, then the stub will report a
4059 TARGET_SIGNAL_0, meaning: stopped for no particular reason
4060 other than GDB's request. */
a0ef4274 4061 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
16c381f0
JK
4062 && (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_STOP
4063 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4064 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_0))
c54cfec8
EZ
4065 {
4066 stop_stepping (ecs);
16c381f0 4067 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
c54cfec8
EZ
4068 return;
4069 }
4070
fba57f8f 4071 /* See if there is a breakpoint at the current PC. */
16c381f0 4072 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
4073 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4074 stop_pc, ecs->ptid);
4075
fba57f8f
VP
4076 /* Following in case break condition called a
4077 function. */
4078 stop_print_frame = 1;
488f131b 4079
db82e815
PA
4080 /* This is where we handle "moribund" watchpoints. Unlike
4081 software breakpoints traps, hardware watchpoint traps are
4082 always distinguishable from random traps. If no high-level
4083 watchpoint is associated with the reported stop data address
4084 anymore, then the bpstat does not explain the signal ---
4085 simply make sure to ignore it if `stopped_by_watchpoint' is
4086 set. */
4087
4088 if (debug_infrun
16c381f0
JK
4089 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4090 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
db82e815 4091 && stopped_by_watchpoint)
3e43a32a
MS
4092 fprintf_unfiltered (gdb_stdlog,
4093 "infrun: no user watchpoint explains "
4094 "watchpoint SIGTRAP, ignoring\n");
db82e815 4095
73dd234f 4096 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
4097 at one stage in the past included checks for an inferior
4098 function call's call dummy's return breakpoint. The original
4099 comment, that went with the test, read:
73dd234f 4100
8fb3e588
AC
4101 ``End of a stack dummy. Some systems (e.g. Sony news) give
4102 another signal besides SIGTRAP, so check here as well as
4103 above.''
73dd234f 4104
8002d778 4105 If someone ever tries to get call dummys on a
73dd234f 4106 non-executable stack to work (where the target would stop
03cebad2
MK
4107 with something like a SIGSEGV), then those tests might need
4108 to be re-instated. Given, however, that the tests were only
73dd234f 4109 enabled when momentary breakpoints were not being used, I
03cebad2
MK
4110 suspect that it won't be the case.
4111
8fb3e588
AC
4112 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4113 be necessary for call dummies on a non-executable stack on
4114 SPARC. */
73dd234f 4115
16c381f0 4116 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
488f131b 4117 ecs->random_signal
16c381f0 4118 = !(bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
db82e815 4119 || stopped_by_watchpoint
16c381f0
JK
4120 || ecs->event_thread->control.trap_expected
4121 || (ecs->event_thread->control.step_range_end
8358c15c
JK
4122 && (ecs->event_thread->control.step_resume_breakpoint
4123 == NULL)));
488f131b
JB
4124 else
4125 {
16c381f0
JK
4126 ecs->random_signal = !bpstat_explains_signal
4127 (ecs->event_thread->control.stop_bpstat);
488f131b 4128 if (!ecs->random_signal)
16c381f0 4129 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
4130 }
4131 }
4132
4133 /* When we reach this point, we've pretty much decided
4134 that the reason for stopping must've been a random
1777feb0 4135 (unexpected) signal. */
488f131b
JB
4136
4137 else
4138 ecs->random_signal = 1;
488f131b 4139
04e68871 4140process_event_stop_test:
568d6575
UW
4141
4142 /* Re-fetch current thread's frame in case we did a
4143 "goto process_event_stop_test" above. */
4144 frame = get_current_frame ();
4145 gdbarch = get_frame_arch (frame);
4146
488f131b
JB
4147 /* For the program's own signals, act according to
4148 the signal handling tables. */
4149
4150 if (ecs->random_signal)
4151 {
4152 /* Signal not for debugging purposes. */
4153 int printed = 0;
24291992 4154 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
488f131b 4155
527159b7 4156 if (debug_infrun)
2020b7ab 4157 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
16c381f0 4158 ecs->event_thread->suspend.stop_signal);
527159b7 4159
488f131b
JB
4160 stopped_by_random_signal = 1;
4161
16c381f0 4162 if (signal_print[ecs->event_thread->suspend.stop_signal])
488f131b
JB
4163 {
4164 printed = 1;
4165 target_terminal_ours_for_output ();
16c381f0
JK
4166 print_signal_received_reason
4167 (ecs->event_thread->suspend.stop_signal);
488f131b 4168 }
252fbfc8
PA
4169 /* Always stop on signals if we're either just gaining control
4170 of the program, or the user explicitly requested this thread
4171 to remain stopped. */
d6b48e9c 4172 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 4173 || ecs->event_thread->stop_requested
24291992 4174 || (!inf->detaching
16c381f0 4175 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b
JB
4176 {
4177 stop_stepping (ecs);
4178 return;
4179 }
4180 /* If not going to stop, give terminal back
4181 if we took it away. */
4182 else if (printed)
4183 target_terminal_inferior ();
4184
4185 /* Clear the signal if it should not be passed. */
16c381f0
JK
4186 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4187 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
488f131b 4188
fb14de7b 4189 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 4190 && ecs->event_thread->control.trap_expected
8358c15c 4191 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
4192 {
4193 /* We were just starting a new sequence, attempting to
4194 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 4195 Instead this signal arrives. This signal will take us out
68f53502
AC
4196 of the stepping range so GDB needs to remember to, when
4197 the signal handler returns, resume stepping off that
4198 breakpoint. */
4199 /* To simplify things, "continue" is forced to use the same
4200 code paths as single-step - set a breakpoint at the
4201 signal return address and then, once hit, step off that
4202 breakpoint. */
237fc4c9
PA
4203 if (debug_infrun)
4204 fprintf_unfiltered (gdb_stdlog,
4205 "infrun: signal arrived while stepping over "
4206 "breakpoint\n");
d3169d93 4207
2c03e5be 4208 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 4209 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4210 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4211 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4212 keep_going (ecs);
4213 return;
68f53502 4214 }
9d799f85 4215
16c381f0
JK
4216 if (ecs->event_thread->control.step_range_end != 0
4217 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_0
4218 && (ecs->event_thread->control.step_range_start <= stop_pc
4219 && stop_pc < ecs->event_thread->control.step_range_end)
edb3359d 4220 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 4221 ecs->event_thread->control.step_stack_frame_id)
8358c15c 4222 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
4223 {
4224 /* The inferior is about to take a signal that will take it
4225 out of the single step range. Set a breakpoint at the
4226 current PC (which is presumably where the signal handler
4227 will eventually return) and then allow the inferior to
4228 run free.
4229
4230 Note that this is only needed for a signal delivered
4231 while in the single-step range. Nested signals aren't a
4232 problem as they eventually all return. */
237fc4c9
PA
4233 if (debug_infrun)
4234 fprintf_unfiltered (gdb_stdlog,
4235 "infrun: signal may take us out of "
4236 "single-step range\n");
4237
2c03e5be 4238 insert_hp_step_resume_breakpoint_at_frame (frame);
2455069d
UW
4239 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4240 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4241 keep_going (ecs);
4242 return;
d303a6c7 4243 }
9d799f85
AC
4244
4245 /* Note: step_resume_breakpoint may be non-NULL. This occures
4246 when either there's a nested signal, or when there's a
4247 pending signal enabled just as the signal handler returns
4248 (leaving the inferior at the step-resume-breakpoint without
4249 actually executing it). Either way continue until the
4250 breakpoint is really hit. */
488f131b
JB
4251 keep_going (ecs);
4252 return;
4253 }
4254
4255 /* Handle cases caused by hitting a breakpoint. */
4256 {
4257 CORE_ADDR jmp_buf_pc;
4258 struct bpstat_what what;
4259
16c381f0 4260 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
488f131b
JB
4261
4262 if (what.call_dummy)
4263 {
aa7d318d 4264 stop_stack_dummy = what.call_dummy;
c5aa993b 4265 }
c906108c 4266
628fe4e4
JK
4267 /* If we hit an internal event that triggers symbol changes, the
4268 current frame will be invalidated within bpstat_what (e.g., if
4269 we hit an internal solib event). Re-fetch it. */
4270 frame = get_current_frame ();
4271 gdbarch = get_frame_arch (frame);
4272
488f131b 4273 switch (what.main_action)
c5aa993b 4274 {
488f131b 4275 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
611c83ae
PA
4276 /* If we hit the breakpoint at longjmp while stepping, we
4277 install a momentary breakpoint at the target of the
4278 jmp_buf. */
4279
4280 if (debug_infrun)
4281 fprintf_unfiltered (gdb_stdlog,
4282 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4283
4e1c45ea 4284 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 4285
186c406b 4286 if (what.is_longjmp)
c5aa993b 4287 {
186c406b
TT
4288 if (!gdbarch_get_longjmp_target_p (gdbarch)
4289 || !gdbarch_get_longjmp_target (gdbarch,
4290 frame, &jmp_buf_pc))
4291 {
4292 if (debug_infrun)
3e43a32a
MS
4293 fprintf_unfiltered (gdb_stdlog,
4294 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4295 "(!gdbarch_get_longjmp_target)\n");
186c406b
TT
4296 keep_going (ecs);
4297 return;
4298 }
488f131b 4299
186c406b
TT
4300 /* We're going to replace the current step-resume breakpoint
4301 with a longjmp-resume breakpoint. */
4302 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae 4303
186c406b
TT
4304 /* Insert a breakpoint at resume address. */
4305 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4306 }
4307 else
4308 {
4309 struct symbol *func = get_frame_function (frame);
c906108c 4310
186c406b
TT
4311 if (func)
4312 check_exception_resume (ecs, frame, func);
4313 }
488f131b
JB
4314 keep_going (ecs);
4315 return;
c906108c 4316
488f131b 4317 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
527159b7 4318 if (debug_infrun)
611c83ae
PA
4319 fprintf_unfiltered (gdb_stdlog,
4320 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4321
186c406b
TT
4322 if (what.is_longjmp)
4323 {
4324 gdb_assert (ecs->event_thread->control.step_resume_breakpoint
4325 != NULL);
4326 delete_step_resume_breakpoint (ecs->event_thread);
4327 }
4328 else
4329 {
4330 /* There are several cases to consider.
4331
4332 1. The initiating frame no longer exists. In this case
4333 we must stop, because the exception has gone too far.
4334
4335 2. The initiating frame exists, and is the same as the
4336 current frame. We stop, because the exception has been
4337 caught.
4338
4339 3. The initiating frame exists and is different from
4340 the current frame. This means the exception has been
4341 caught beneath the initiating frame, so keep going. */
4342 struct frame_info *init_frame
4343 = frame_find_by_id (ecs->event_thread->initiating_frame);
4344
4345 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4346 != NULL);
4347 delete_exception_resume_breakpoint (ecs->event_thread);
4348
4349 if (init_frame)
4350 {
4351 struct frame_id current_id
4352 = get_frame_id (get_current_frame ());
4353 if (frame_id_eq (current_id,
4354 ecs->event_thread->initiating_frame))
4355 {
4356 /* Case 2. Fall through. */
4357 }
4358 else
4359 {
4360 /* Case 3. */
4361 keep_going (ecs);
4362 return;
4363 }
4364 }
4365
4366 /* For Cases 1 and 2, remove the step-resume breakpoint,
4367 if it exists. */
4368 delete_step_resume_breakpoint (ecs->event_thread);
4369 }
611c83ae 4370
16c381f0 4371 ecs->event_thread->control.stop_step = 1;
33d62d64 4372 print_end_stepping_range_reason ();
611c83ae
PA
4373 stop_stepping (ecs);
4374 return;
488f131b
JB
4375
4376 case BPSTAT_WHAT_SINGLE:
527159b7 4377 if (debug_infrun)
8802d8ed 4378 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4e1c45ea 4379 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b
JB
4380 /* Still need to check other stuff, at least the case
4381 where we are stepping and step out of the right range. */
4382 break;
c906108c 4383
2c03e5be
PA
4384 case BPSTAT_WHAT_STEP_RESUME:
4385 if (debug_infrun)
4386 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4387
4388 delete_step_resume_breakpoint (ecs->event_thread);
9da8c2a0
PA
4389 if (ecs->event_thread->control.proceed_to_finish
4390 && execution_direction == EXEC_REVERSE)
4391 {
4392 struct thread_info *tp = ecs->event_thread;
4393
4394 /* We are finishing a function in reverse, and just hit
4395 the step-resume breakpoint at the start address of the
4396 function, and we're almost there -- just need to back
4397 up by one more single-step, which should take us back
4398 to the function call. */
4399 tp->control.step_range_start = tp->control.step_range_end = 1;
4400 keep_going (ecs);
4401 return;
4402 }
7e324e48 4403 fill_in_stop_func (gdbarch, ecs);
2c03e5be
PA
4404 if (stop_pc == ecs->stop_func_start
4405 && execution_direction == EXEC_REVERSE)
4406 {
4407 /* We are stepping over a function call in reverse, and
4408 just hit the step-resume breakpoint at the start
4409 address of the function. Go back to single-stepping,
4410 which should take us back to the function call. */
4411 ecs->event_thread->stepping_over_breakpoint = 1;
4412 keep_going (ecs);
4413 return;
4414 }
4415 break;
4416
488f131b 4417 case BPSTAT_WHAT_STOP_NOISY:
527159b7 4418 if (debug_infrun)
8802d8ed 4419 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 4420 stop_print_frame = 1;
c906108c 4421
d303a6c7
AC
4422 /* We are about to nuke the step_resume_breakpointt via the
4423 cleanup chain, so no need to worry about it here. */
c5aa993b 4424
488f131b
JB
4425 stop_stepping (ecs);
4426 return;
c5aa993b 4427
488f131b 4428 case BPSTAT_WHAT_STOP_SILENT:
527159b7 4429 if (debug_infrun)
8802d8ed 4430 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 4431 stop_print_frame = 0;
c5aa993b 4432
d303a6c7
AC
4433 /* We are about to nuke the step_resume_breakpoin via the
4434 cleanup chain, so no need to worry about it here. */
c5aa993b 4435
488f131b 4436 stop_stepping (ecs);
e441088d 4437 return;
c5aa993b 4438
2c03e5be 4439 case BPSTAT_WHAT_HP_STEP_RESUME:
527159b7 4440 if (debug_infrun)
2c03e5be 4441 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
527159b7 4442
4e1c45ea
PA
4443 delete_step_resume_breakpoint (ecs->event_thread);
4444 if (ecs->event_thread->step_after_step_resume_breakpoint)
68f53502
AC
4445 {
4446 /* Back when the step-resume breakpoint was inserted, we
4447 were trying to single-step off a breakpoint. Go back
4448 to doing that. */
4e1c45ea
PA
4449 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4450 ecs->event_thread->stepping_over_breakpoint = 1;
68f53502
AC
4451 keep_going (ecs);
4452 return;
4453 }
488f131b
JB
4454 break;
4455
488f131b
JB
4456 case BPSTAT_WHAT_KEEP_CHECKING:
4457 break;
4458 }
4459 }
c906108c 4460
488f131b
JB
4461 /* We come here if we hit a breakpoint but should not
4462 stop for it. Possibly we also were stepping
4463 and should stop for that. So fall through and
4464 test for stepping. But, if not stepping,
4465 do not stop. */
c906108c 4466
a7212384
UW
4467 /* In all-stop mode, if we're currently stepping but have stopped in
4468 some other thread, we need to switch back to the stepped thread. */
4469 if (!non_stop)
4470 {
4471 struct thread_info *tp;
abbb1732 4472
b3444185 4473 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
a7212384
UW
4474 ecs->event_thread);
4475 if (tp)
4476 {
4477 /* However, if the current thread is blocked on some internal
4478 breakpoint, and we simply need to step over that breakpoint
4479 to get it going again, do that first. */
16c381f0
JK
4480 if ((ecs->event_thread->control.trap_expected
4481 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
a7212384
UW
4482 || ecs->event_thread->stepping_over_breakpoint)
4483 {
4484 keep_going (ecs);
4485 return;
4486 }
4487
66852e9c
PA
4488 /* If the stepping thread exited, then don't try to switch
4489 back and resume it, which could fail in several different
4490 ways depending on the target. Instead, just keep going.
4491
4492 We can find a stepping dead thread in the thread list in
4493 two cases:
4494
4495 - The target supports thread exit events, and when the
4496 target tries to delete the thread from the thread list,
4497 inferior_ptid pointed at the exiting thread. In such
4498 case, calling delete_thread does not really remove the
4499 thread from the list; instead, the thread is left listed,
4500 with 'exited' state.
4501
4502 - The target's debug interface does not support thread
4503 exit events, and so we have no idea whatsoever if the
4504 previously stepping thread is still alive. For that
4505 reason, we need to synchronously query the target
4506 now. */
b3444185
PA
4507 if (is_exited (tp->ptid)
4508 || !target_thread_alive (tp->ptid))
4509 {
4510 if (debug_infrun)
3e43a32a
MS
4511 fprintf_unfiltered (gdb_stdlog,
4512 "infrun: not switching back to "
4513 "stepped thread, it has vanished\n");
b3444185
PA
4514
4515 delete_thread (tp->ptid);
4516 keep_going (ecs);
4517 return;
4518 }
4519
a7212384
UW
4520 /* Otherwise, we no longer expect a trap in the current thread.
4521 Clear the trap_expected flag before switching back -- this is
4522 what keep_going would do as well, if we called it. */
16c381f0 4523 ecs->event_thread->control.trap_expected = 0;
a7212384
UW
4524
4525 if (debug_infrun)
4526 fprintf_unfiltered (gdb_stdlog,
4527 "infrun: switching back to stepped thread\n");
4528
4529 ecs->event_thread = tp;
4530 ecs->ptid = tp->ptid;
4531 context_switch (ecs->ptid);
4532 keep_going (ecs);
4533 return;
4534 }
4535 }
4536
9d1ff73f
MS
4537 /* Are we stepping to get the inferior out of the dynamic linker's
4538 hook (and possibly the dld itself) after catching a shlib
4539 event? */
4e1c45ea 4540 if (ecs->event_thread->stepping_through_solib_after_catch)
488f131b
JB
4541 {
4542#if defined(SOLIB_ADD)
1777feb0 4543 /* Have we reached our destination? If not, keep going. */
488f131b
JB
4544 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
4545 {
527159b7 4546 if (debug_infrun)
3e43a32a
MS
4547 fprintf_unfiltered (gdb_stdlog,
4548 "infrun: stepping in dynamic linker\n");
4e1c45ea 4549 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 4550 keep_going (ecs);
104c1213 4551 return;
488f131b
JB
4552 }
4553#endif
527159b7 4554 if (debug_infrun)
8a9de0e4 4555 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
488f131b 4556 /* Else, stop and report the catchpoint(s) whose triggering
1777feb0 4557 caused us to begin stepping. */
4e1c45ea 4558 ecs->event_thread->stepping_through_solib_after_catch = 0;
16c381f0
JK
4559 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4560 ecs->event_thread->control.stop_bpstat
347bddb7 4561 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
4e1c45ea 4562 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
488f131b
JB
4563 stop_print_frame = 1;
4564 stop_stepping (ecs);
4565 return;
4566 }
c906108c 4567
8358c15c 4568 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 4569 {
527159b7 4570 if (debug_infrun)
d3169d93
DJ
4571 fprintf_unfiltered (gdb_stdlog,
4572 "infrun: step-resume breakpoint is inserted\n");
527159b7 4573
488f131b
JB
4574 /* Having a step-resume breakpoint overrides anything
4575 else having to do with stepping commands until
4576 that breakpoint is reached. */
488f131b
JB
4577 keep_going (ecs);
4578 return;
4579 }
c5aa993b 4580
16c381f0 4581 if (ecs->event_thread->control.step_range_end == 0)
488f131b 4582 {
527159b7 4583 if (debug_infrun)
8a9de0e4 4584 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 4585 /* Likewise if we aren't even stepping. */
488f131b
JB
4586 keep_going (ecs);
4587 return;
4588 }
c5aa993b 4589
4b7703ad
JB
4590 /* Re-fetch current thread's frame in case the code above caused
4591 the frame cache to be re-initialized, making our FRAME variable
4592 a dangling pointer. */
4593 frame = get_current_frame ();
628fe4e4 4594 gdbarch = get_frame_arch (frame);
7e324e48 4595 fill_in_stop_func (gdbarch, ecs);
4b7703ad 4596
488f131b 4597 /* If stepping through a line, keep going if still within it.
c906108c 4598
488f131b
JB
4599 Note that step_range_end is the address of the first instruction
4600 beyond the step range, and NOT the address of the last instruction
31410e84
MS
4601 within it!
4602
4603 Note also that during reverse execution, we may be stepping
4604 through a function epilogue and therefore must detect when
4605 the current-frame changes in the middle of a line. */
4606
16c381f0
JK
4607 if (stop_pc >= ecs->event_thread->control.step_range_start
4608 && stop_pc < ecs->event_thread->control.step_range_end
31410e84 4609 && (execution_direction != EXEC_REVERSE
388a8562 4610 || frame_id_eq (get_frame_id (frame),
16c381f0 4611 ecs->event_thread->control.step_frame_id)))
488f131b 4612 {
527159b7 4613 if (debug_infrun)
5af949e3
UW
4614 fprintf_unfiltered
4615 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
4616 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4617 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913
MS
4618
4619 /* When stepping backward, stop at beginning of line range
4620 (unless it's the function entry point, in which case
4621 keep going back to the call point). */
16c381f0 4622 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
4623 && stop_pc != ecs->stop_func_start
4624 && execution_direction == EXEC_REVERSE)
4625 {
16c381f0 4626 ecs->event_thread->control.stop_step = 1;
33d62d64 4627 print_end_stepping_range_reason ();
b2175913
MS
4628 stop_stepping (ecs);
4629 }
4630 else
4631 keep_going (ecs);
4632
488f131b
JB
4633 return;
4634 }
c5aa993b 4635
488f131b 4636 /* We stepped out of the stepping range. */
c906108c 4637
488f131b 4638 /* If we are stepping at the source level and entered the runtime
388a8562
MS
4639 loader dynamic symbol resolution code...
4640
4641 EXEC_FORWARD: we keep on single stepping until we exit the run
4642 time loader code and reach the callee's address.
4643
4644 EXEC_REVERSE: we've already executed the callee (backward), and
4645 the runtime loader code is handled just like any other
4646 undebuggable function call. Now we need only keep stepping
4647 backward through the trampoline code, and that's handled further
4648 down, so there is nothing for us to do here. */
4649
4650 if (execution_direction != EXEC_REVERSE
16c381f0 4651 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 4652 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 4653 {
4c8c40e6 4654 CORE_ADDR pc_after_resolver =
568d6575 4655 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 4656
527159b7 4657 if (debug_infrun)
3e43a32a
MS
4658 fprintf_unfiltered (gdb_stdlog,
4659 "infrun: stepped into dynsym resolve code\n");
527159b7 4660
488f131b
JB
4661 if (pc_after_resolver)
4662 {
4663 /* Set up a step-resume breakpoint at the address
4664 indicated by SKIP_SOLIB_RESOLVER. */
4665 struct symtab_and_line sr_sal;
abbb1732 4666
fe39c653 4667 init_sal (&sr_sal);
488f131b 4668 sr_sal.pc = pc_after_resolver;
6c95b8df 4669 sr_sal.pspace = get_frame_program_space (frame);
488f131b 4670
a6d9a66e
UW
4671 insert_step_resume_breakpoint_at_sal (gdbarch,
4672 sr_sal, null_frame_id);
c5aa993b 4673 }
c906108c 4674
488f131b
JB
4675 keep_going (ecs);
4676 return;
4677 }
c906108c 4678
16c381f0
JK
4679 if (ecs->event_thread->control.step_range_end != 1
4680 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4681 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 4682 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 4683 {
527159b7 4684 if (debug_infrun)
3e43a32a
MS
4685 fprintf_unfiltered (gdb_stdlog,
4686 "infrun: stepped into signal trampoline\n");
42edda50 4687 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
4688 a signal trampoline (either by a signal being delivered or by
4689 the signal handler returning). Just single-step until the
4690 inferior leaves the trampoline (either by calling the handler
4691 or returning). */
488f131b
JB
4692 keep_going (ecs);
4693 return;
4694 }
c906108c 4695
c17eaafe
DJ
4696 /* Check for subroutine calls. The check for the current frame
4697 equalling the step ID is not necessary - the check of the
4698 previous frame's ID is sufficient - but it is a common case and
4699 cheaper than checking the previous frame's ID.
14e60db5
DJ
4700
4701 NOTE: frame_id_eq will never report two invalid frame IDs as
4702 being equal, so to get into this block, both the current and
4703 previous frame must have valid frame IDs. */
005ca36a
JB
4704 /* The outer_frame_id check is a heuristic to detect stepping
4705 through startup code. If we step over an instruction which
4706 sets the stack pointer from an invalid value to a valid value,
4707 we may detect that as a subroutine call from the mythical
4708 "outermost" function. This could be fixed by marking
4709 outermost frames as !stack_p,code_p,special_p. Then the
4710 initial outermost frame, before sp was valid, would
ce6cca6d 4711 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 4712 for more. */
edb3359d 4713 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 4714 ecs->event_thread->control.step_stack_frame_id)
005ca36a 4715 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
4716 ecs->event_thread->control.step_stack_frame_id)
4717 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a
JB
4718 outer_frame_id)
4719 || step_start_function != find_pc_function (stop_pc))))
488f131b 4720 {
95918acb 4721 CORE_ADDR real_stop_pc;
8fb3e588 4722
527159b7 4723 if (debug_infrun)
8a9de0e4 4724 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 4725
16c381f0
JK
4726 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4727 || ((ecs->event_thread->control.step_range_end == 1)
d80b854b 4728 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 4729 ecs->stop_func_start)))
95918acb
AC
4730 {
4731 /* I presume that step_over_calls is only 0 when we're
4732 supposed to be stepping at the assembly language level
4733 ("stepi"). Just stop. */
4734 /* Also, maybe we just did a "nexti" inside a prolog, so we
4735 thought it was a subroutine call but it was not. Stop as
4736 well. FENN */
388a8562 4737 /* And this works the same backward as frontward. MVS */
16c381f0 4738 ecs->event_thread->control.stop_step = 1;
33d62d64 4739 print_end_stepping_range_reason ();
95918acb
AC
4740 stop_stepping (ecs);
4741 return;
4742 }
8fb3e588 4743
388a8562
MS
4744 /* Reverse stepping through solib trampolines. */
4745
4746 if (execution_direction == EXEC_REVERSE
16c381f0 4747 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
4748 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4749 || (ecs->stop_func_start == 0
4750 && in_solib_dynsym_resolve_code (stop_pc))))
4751 {
4752 /* Any solib trampoline code can be handled in reverse
4753 by simply continuing to single-step. We have already
4754 executed the solib function (backwards), and a few
4755 steps will take us back through the trampoline to the
4756 caller. */
4757 keep_going (ecs);
4758 return;
4759 }
4760
16c381f0 4761 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 4762 {
b2175913
MS
4763 /* We're doing a "next".
4764
4765 Normal (forward) execution: set a breakpoint at the
4766 callee's return address (the address at which the caller
4767 will resume).
4768
4769 Reverse (backward) execution. set the step-resume
4770 breakpoint at the start of the function that we just
4771 stepped into (backwards), and continue to there. When we
6130d0b7 4772 get there, we'll need to single-step back to the caller. */
b2175913
MS
4773
4774 if (execution_direction == EXEC_REVERSE)
4775 {
4776 struct symtab_and_line sr_sal;
3067f6e5 4777
388a8562
MS
4778 /* Normal function call return (static or dynamic). */
4779 init_sal (&sr_sal);
4780 sr_sal.pc = ecs->stop_func_start;
6c95b8df
PA
4781 sr_sal.pspace = get_frame_program_space (frame);
4782 insert_step_resume_breakpoint_at_sal (gdbarch,
4783 sr_sal, null_frame_id);
b2175913
MS
4784 }
4785 else
568d6575 4786 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4787
8567c30f
AC
4788 keep_going (ecs);
4789 return;
4790 }
a53c66de 4791
95918acb 4792 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
4793 calling routine and the real function), locate the real
4794 function. That's what tells us (a) whether we want to step
4795 into it at all, and (b) what prologue we want to run to the
4796 end of, if we do step into it. */
568d6575 4797 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 4798 if (real_stop_pc == 0)
568d6575 4799 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
4800 if (real_stop_pc != 0)
4801 ecs->stop_func_start = real_stop_pc;
8fb3e588 4802
db5f024e 4803 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
4804 {
4805 struct symtab_and_line sr_sal;
abbb1732 4806
1b2bfbb9
RC
4807 init_sal (&sr_sal);
4808 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4809 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 4810
a6d9a66e
UW
4811 insert_step_resume_breakpoint_at_sal (gdbarch,
4812 sr_sal, null_frame_id);
8fb3e588
AC
4813 keep_going (ecs);
4814 return;
1b2bfbb9
RC
4815 }
4816
95918acb 4817 /* If we have line number information for the function we are
8fb3e588 4818 thinking of stepping into, step into it.
95918acb 4819
8fb3e588
AC
4820 If there are several symtabs at that PC (e.g. with include
4821 files), just want to know whether *any* of them have line
4822 numbers. find_pc_line handles this. */
95918acb
AC
4823 {
4824 struct symtab_and_line tmp_sal;
8fb3e588 4825
95918acb
AC
4826 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4827 if (tmp_sal.line != 0)
4828 {
b2175913 4829 if (execution_direction == EXEC_REVERSE)
568d6575 4830 handle_step_into_function_backward (gdbarch, ecs);
b2175913 4831 else
568d6575 4832 handle_step_into_function (gdbarch, ecs);
95918acb
AC
4833 return;
4834 }
4835 }
4836
4837 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
4838 set, we stop the step so that the user has a chance to switch
4839 in assembly mode. */
16c381f0 4840 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 4841 && step_stop_if_no_debug)
95918acb 4842 {
16c381f0 4843 ecs->event_thread->control.stop_step = 1;
33d62d64 4844 print_end_stepping_range_reason ();
95918acb
AC
4845 stop_stepping (ecs);
4846 return;
4847 }
4848
b2175913
MS
4849 if (execution_direction == EXEC_REVERSE)
4850 {
4851 /* Set a breakpoint at callee's start address.
4852 From there we can step once and be back in the caller. */
4853 struct symtab_and_line sr_sal;
abbb1732 4854
b2175913
MS
4855 init_sal (&sr_sal);
4856 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4857 sr_sal.pspace = get_frame_program_space (frame);
a6d9a66e
UW
4858 insert_step_resume_breakpoint_at_sal (gdbarch,
4859 sr_sal, null_frame_id);
b2175913
MS
4860 }
4861 else
4862 /* Set a breakpoint at callee's return address (the address
4863 at which the caller will resume). */
568d6575 4864 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4865
95918acb 4866 keep_going (ecs);
488f131b 4867 return;
488f131b 4868 }
c906108c 4869
fdd654f3
MS
4870 /* Reverse stepping through solib trampolines. */
4871
4872 if (execution_direction == EXEC_REVERSE
16c381f0 4873 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
4874 {
4875 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4876 || (ecs->stop_func_start == 0
4877 && in_solib_dynsym_resolve_code (stop_pc)))
4878 {
4879 /* Any solib trampoline code can be handled in reverse
4880 by simply continuing to single-step. We have already
4881 executed the solib function (backwards), and a few
4882 steps will take us back through the trampoline to the
4883 caller. */
4884 keep_going (ecs);
4885 return;
4886 }
4887 else if (in_solib_dynsym_resolve_code (stop_pc))
4888 {
4889 /* Stepped backward into the solib dynsym resolver.
4890 Set a breakpoint at its start and continue, then
4891 one more step will take us out. */
4892 struct symtab_and_line sr_sal;
abbb1732 4893
fdd654f3
MS
4894 init_sal (&sr_sal);
4895 sr_sal.pc = ecs->stop_func_start;
9d1807c3 4896 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
4897 insert_step_resume_breakpoint_at_sal (gdbarch,
4898 sr_sal, null_frame_id);
4899 keep_going (ecs);
4900 return;
4901 }
4902 }
4903
488f131b
JB
4904 /* If we're in the return path from a shared library trampoline,
4905 we want to proceed through the trampoline when stepping. */
568d6575 4906 if (gdbarch_in_solib_return_trampoline (gdbarch,
e76f05fa 4907 stop_pc, ecs->stop_func_name))
488f131b 4908 {
488f131b 4909 /* Determine where this trampoline returns. */
52f729a7 4910 CORE_ADDR real_stop_pc;
abbb1732 4911
568d6575 4912 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
c906108c 4913
527159b7 4914 if (debug_infrun)
3e43a32a
MS
4915 fprintf_unfiltered (gdb_stdlog,
4916 "infrun: stepped into solib return tramp\n");
527159b7 4917
488f131b 4918 /* Only proceed through if we know where it's going. */
d764a824 4919 if (real_stop_pc)
488f131b 4920 {
1777feb0 4921 /* And put the step-breakpoint there and go until there. */
488f131b
JB
4922 struct symtab_and_line sr_sal;
4923
fe39c653 4924 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 4925 sr_sal.pc = real_stop_pc;
488f131b 4926 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 4927 sr_sal.pspace = get_frame_program_space (frame);
44cbf7b5
AC
4928
4929 /* Do not specify what the fp should be when we stop since
4930 on some machines the prologue is where the new fp value
4931 is established. */
a6d9a66e
UW
4932 insert_step_resume_breakpoint_at_sal (gdbarch,
4933 sr_sal, null_frame_id);
c906108c 4934
488f131b
JB
4935 /* Restart without fiddling with the step ranges or
4936 other state. */
4937 keep_going (ecs);
4938 return;
4939 }
4940 }
c906108c 4941
2afb61aa 4942 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 4943
1b2bfbb9
RC
4944 /* NOTE: tausq/2004-05-24: This if block used to be done before all
4945 the trampoline processing logic, however, there are some trampolines
4946 that have no names, so we should do trampoline handling first. */
16c381f0 4947 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 4948 && ecs->stop_func_name == NULL
2afb61aa 4949 && stop_pc_sal.line == 0)
1b2bfbb9 4950 {
527159b7 4951 if (debug_infrun)
3e43a32a
MS
4952 fprintf_unfiltered (gdb_stdlog,
4953 "infrun: stepped into undebuggable function\n");
527159b7 4954
1b2bfbb9 4955 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
4956 undebuggable function (where there is no debugging information
4957 and no line number corresponding to the address where the
1b2bfbb9
RC
4958 inferior stopped). Since we want to skip this kind of code,
4959 we keep going until the inferior returns from this
14e60db5
DJ
4960 function - unless the user has asked us not to (via
4961 set step-mode) or we no longer know how to get back
4962 to the call site. */
4963 if (step_stop_if_no_debug
c7ce8faa 4964 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
4965 {
4966 /* If we have no line number and the step-stop-if-no-debug
4967 is set, we stop the step so that the user has a chance to
4968 switch in assembly mode. */
16c381f0 4969 ecs->event_thread->control.stop_step = 1;
33d62d64 4970 print_end_stepping_range_reason ();
1b2bfbb9
RC
4971 stop_stepping (ecs);
4972 return;
4973 }
4974 else
4975 {
4976 /* Set a breakpoint at callee's return address (the address
4977 at which the caller will resume). */
568d6575 4978 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
4979 keep_going (ecs);
4980 return;
4981 }
4982 }
4983
16c381f0 4984 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
4985 {
4986 /* It is stepi or nexti. We always want to stop stepping after
4987 one instruction. */
527159b7 4988 if (debug_infrun)
8a9de0e4 4989 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
16c381f0 4990 ecs->event_thread->control.stop_step = 1;
33d62d64 4991 print_end_stepping_range_reason ();
1b2bfbb9
RC
4992 stop_stepping (ecs);
4993 return;
4994 }
4995
2afb61aa 4996 if (stop_pc_sal.line == 0)
488f131b
JB
4997 {
4998 /* We have no line number information. That means to stop
4999 stepping (does this always happen right after one instruction,
5000 when we do "s" in a function with no line numbers,
5001 or can this happen as a result of a return or longjmp?). */
527159b7 5002 if (debug_infrun)
8a9de0e4 5003 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
16c381f0 5004 ecs->event_thread->control.stop_step = 1;
33d62d64 5005 print_end_stepping_range_reason ();
488f131b
JB
5006 stop_stepping (ecs);
5007 return;
5008 }
c906108c 5009
edb3359d
DJ
5010 /* Look for "calls" to inlined functions, part one. If the inline
5011 frame machinery detected some skipped call sites, we have entered
5012 a new inline function. */
5013
5014 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5015 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
5016 && inline_skipped_frames (ecs->ptid))
5017 {
5018 struct symtab_and_line call_sal;
5019
5020 if (debug_infrun)
5021 fprintf_unfiltered (gdb_stdlog,
5022 "infrun: stepped into inlined function\n");
5023
5024 find_frame_sal (get_current_frame (), &call_sal);
5025
16c381f0 5026 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
5027 {
5028 /* For "step", we're going to stop. But if the call site
5029 for this inlined function is on the same source line as
5030 we were previously stepping, go down into the function
5031 first. Otherwise stop at the call site. */
5032
5033 if (call_sal.line == ecs->event_thread->current_line
5034 && call_sal.symtab == ecs->event_thread->current_symtab)
5035 step_into_inline_frame (ecs->ptid);
5036
16c381f0 5037 ecs->event_thread->control.stop_step = 1;
33d62d64 5038 print_end_stepping_range_reason ();
edb3359d
DJ
5039 stop_stepping (ecs);
5040 return;
5041 }
5042 else
5043 {
5044 /* For "next", we should stop at the call site if it is on a
5045 different source line. Otherwise continue through the
5046 inlined function. */
5047 if (call_sal.line == ecs->event_thread->current_line
5048 && call_sal.symtab == ecs->event_thread->current_symtab)
5049 keep_going (ecs);
5050 else
5051 {
16c381f0 5052 ecs->event_thread->control.stop_step = 1;
33d62d64 5053 print_end_stepping_range_reason ();
edb3359d
DJ
5054 stop_stepping (ecs);
5055 }
5056 return;
5057 }
5058 }
5059
5060 /* Look for "calls" to inlined functions, part two. If we are still
5061 in the same real function we were stepping through, but we have
5062 to go further up to find the exact frame ID, we are stepping
5063 through a more inlined call beyond its call site. */
5064
5065 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5066 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5067 ecs->event_thread->control.step_frame_id)
edb3359d 5068 && stepped_in_from (get_current_frame (),
16c381f0 5069 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
5070 {
5071 if (debug_infrun)
5072 fprintf_unfiltered (gdb_stdlog,
5073 "infrun: stepping through inlined function\n");
5074
16c381f0 5075 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
5076 keep_going (ecs);
5077 else
5078 {
16c381f0 5079 ecs->event_thread->control.stop_step = 1;
33d62d64 5080 print_end_stepping_range_reason ();
edb3359d
DJ
5081 stop_stepping (ecs);
5082 }
5083 return;
5084 }
5085
2afb61aa 5086 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
5087 && (ecs->event_thread->current_line != stop_pc_sal.line
5088 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
5089 {
5090 /* We are at the start of a different line. So stop. Note that
5091 we don't stop if we step into the middle of a different line.
5092 That is said to make things like for (;;) statements work
5093 better. */
527159b7 5094 if (debug_infrun)
3e43a32a
MS
5095 fprintf_unfiltered (gdb_stdlog,
5096 "infrun: stepped to a different line\n");
16c381f0 5097 ecs->event_thread->control.stop_step = 1;
33d62d64 5098 print_end_stepping_range_reason ();
488f131b
JB
5099 stop_stepping (ecs);
5100 return;
5101 }
c906108c 5102
488f131b 5103 /* We aren't done stepping.
c906108c 5104
488f131b
JB
5105 Optimize by setting the stepping range to the line.
5106 (We might not be in the original line, but if we entered a
5107 new line in mid-statement, we continue stepping. This makes
5108 things like for(;;) statements work better.) */
c906108c 5109
16c381f0
JK
5110 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5111 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
edb3359d 5112 set_step_info (frame, stop_pc_sal);
488f131b 5113
527159b7 5114 if (debug_infrun)
8a9de0e4 5115 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 5116 keep_going (ecs);
104c1213
JM
5117}
5118
b3444185 5119/* Is thread TP in the middle of single-stepping? */
104c1213 5120
a289b8f6 5121static int
b3444185 5122currently_stepping (struct thread_info *tp)
a7212384 5123{
8358c15c
JK
5124 return ((tp->control.step_range_end
5125 && tp->control.step_resume_breakpoint == NULL)
5126 || tp->control.trap_expected
5127 || tp->stepping_through_solib_after_catch
5128 || bpstat_should_step ());
a7212384
UW
5129}
5130
b3444185
PA
5131/* Returns true if any thread *but* the one passed in "data" is in the
5132 middle of stepping or of handling a "next". */
a7212384 5133
104c1213 5134static int
b3444185 5135currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
104c1213 5136{
b3444185
PA
5137 if (tp == data)
5138 return 0;
5139
16c381f0
JK
5140 return (tp->control.step_range_end
5141 || tp->control.trap_expected
b3444185 5142 || tp->stepping_through_solib_after_catch);
104c1213 5143}
c906108c 5144
b2175913
MS
5145/* Inferior has stepped into a subroutine call with source code that
5146 we should not step over. Do step to the first line of code in
5147 it. */
c2c6d25f
JM
5148
5149static void
568d6575
UW
5150handle_step_into_function (struct gdbarch *gdbarch,
5151 struct execution_control_state *ecs)
c2c6d25f
JM
5152{
5153 struct symtab *s;
2afb61aa 5154 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 5155
7e324e48
GB
5156 fill_in_stop_func (gdbarch, ecs);
5157
c2c6d25f
JM
5158 s = find_pc_symtab (stop_pc);
5159 if (s && s->language != language_asm)
568d6575 5160 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 5161 ecs->stop_func_start);
c2c6d25f 5162
2afb61aa 5163 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
5164 /* Use the step_resume_break to step until the end of the prologue,
5165 even if that involves jumps (as it seems to on the vax under
5166 4.2). */
5167 /* If the prologue ends in the middle of a source line, continue to
5168 the end of that source line (if it is still within the function).
5169 Otherwise, just go to end of prologue. */
2afb61aa
PA
5170 if (stop_func_sal.end
5171 && stop_func_sal.pc != ecs->stop_func_start
5172 && stop_func_sal.end < ecs->stop_func_end)
5173 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 5174
2dbd5e30
KB
5175 /* Architectures which require breakpoint adjustment might not be able
5176 to place a breakpoint at the computed address. If so, the test
5177 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5178 ecs->stop_func_start to an address at which a breakpoint may be
5179 legitimately placed.
8fb3e588 5180
2dbd5e30
KB
5181 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5182 made, GDB will enter an infinite loop when stepping through
5183 optimized code consisting of VLIW instructions which contain
5184 subinstructions corresponding to different source lines. On
5185 FR-V, it's not permitted to place a breakpoint on any but the
5186 first subinstruction of a VLIW instruction. When a breakpoint is
5187 set, GDB will adjust the breakpoint address to the beginning of
5188 the VLIW instruction. Thus, we need to make the corresponding
5189 adjustment here when computing the stop address. */
8fb3e588 5190
568d6575 5191 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
5192 {
5193 ecs->stop_func_start
568d6575 5194 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 5195 ecs->stop_func_start);
2dbd5e30
KB
5196 }
5197
c2c6d25f
JM
5198 if (ecs->stop_func_start == stop_pc)
5199 {
5200 /* We are already there: stop now. */
16c381f0 5201 ecs->event_thread->control.stop_step = 1;
33d62d64 5202 print_end_stepping_range_reason ();
c2c6d25f
JM
5203 stop_stepping (ecs);
5204 return;
5205 }
5206 else
5207 {
5208 /* Put the step-breakpoint there and go until there. */
fe39c653 5209 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
5210 sr_sal.pc = ecs->stop_func_start;
5211 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 5212 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 5213
c2c6d25f 5214 /* Do not specify what the fp should be when we stop since on
488f131b
JB
5215 some machines the prologue is where the new fp value is
5216 established. */
a6d9a66e 5217 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
5218
5219 /* And make sure stepping stops right away then. */
16c381f0
JK
5220 ecs->event_thread->control.step_range_end
5221 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
5222 }
5223 keep_going (ecs);
5224}
d4f3574e 5225
b2175913
MS
5226/* Inferior has stepped backward into a subroutine call with source
5227 code that we should not step over. Do step to the beginning of the
5228 last line of code in it. */
5229
5230static void
568d6575
UW
5231handle_step_into_function_backward (struct gdbarch *gdbarch,
5232 struct execution_control_state *ecs)
b2175913
MS
5233{
5234 struct symtab *s;
167e4384 5235 struct symtab_and_line stop_func_sal;
b2175913 5236
7e324e48
GB
5237 fill_in_stop_func (gdbarch, ecs);
5238
b2175913
MS
5239 s = find_pc_symtab (stop_pc);
5240 if (s && s->language != language_asm)
568d6575 5241 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
5242 ecs->stop_func_start);
5243
5244 stop_func_sal = find_pc_line (stop_pc, 0);
5245
5246 /* OK, we're just going to keep stepping here. */
5247 if (stop_func_sal.pc == stop_pc)
5248 {
5249 /* We're there already. Just stop stepping now. */
16c381f0 5250 ecs->event_thread->control.stop_step = 1;
33d62d64 5251 print_end_stepping_range_reason ();
b2175913
MS
5252 stop_stepping (ecs);
5253 }
5254 else
5255 {
5256 /* Else just reset the step range and keep going.
5257 No step-resume breakpoint, they don't work for
5258 epilogues, which can have multiple entry paths. */
16c381f0
JK
5259 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5260 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
5261 keep_going (ecs);
5262 }
5263 return;
5264}
5265
d3169d93 5266/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
5267 This is used to both functions and to skip over code. */
5268
5269static void
2c03e5be
PA
5270insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5271 struct symtab_and_line sr_sal,
5272 struct frame_id sr_id,
5273 enum bptype sr_type)
44cbf7b5 5274{
611c83ae
PA
5275 /* There should never be more than one step-resume or longjmp-resume
5276 breakpoint per thread, so we should never be setting a new
44cbf7b5 5277 step_resume_breakpoint when one is already active. */
8358c15c 5278 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 5279 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
5280
5281 if (debug_infrun)
5282 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5283 "infrun: inserting step-resume breakpoint at %s\n",
5284 paddress (gdbarch, sr_sal.pc));
d3169d93 5285
8358c15c 5286 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
5287 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5288}
5289
9da8c2a0 5290void
2c03e5be
PA
5291insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5292 struct symtab_and_line sr_sal,
5293 struct frame_id sr_id)
5294{
5295 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5296 sr_sal, sr_id,
5297 bp_step_resume);
44cbf7b5 5298}
7ce450bd 5299
2c03e5be
PA
5300/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5301 This is used to skip a potential signal handler.
7ce450bd 5302
14e60db5
DJ
5303 This is called with the interrupted function's frame. The signal
5304 handler, when it returns, will resume the interrupted function at
5305 RETURN_FRAME.pc. */
d303a6c7
AC
5306
5307static void
2c03e5be 5308insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
5309{
5310 struct symtab_and_line sr_sal;
a6d9a66e 5311 struct gdbarch *gdbarch;
d303a6c7 5312
f4c1edd8 5313 gdb_assert (return_frame != NULL);
d303a6c7
AC
5314 init_sal (&sr_sal); /* initialize to zeros */
5315
a6d9a66e 5316 gdbarch = get_frame_arch (return_frame);
568d6575 5317 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 5318 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5319 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 5320
2c03e5be
PA
5321 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5322 get_stack_frame_id (return_frame),
5323 bp_hp_step_resume);
d303a6c7
AC
5324}
5325
2c03e5be
PA
5326/* Insert a "step-resume breakpoint" at the previous frame's PC. This
5327 is used to skip a function after stepping into it (for "next" or if
5328 the called function has no debugging information).
14e60db5
DJ
5329
5330 The current function has almost always been reached by single
5331 stepping a call or return instruction. NEXT_FRAME belongs to the
5332 current function, and the breakpoint will be set at the caller's
5333 resume address.
5334
5335 This is a separate function rather than reusing
2c03e5be 5336 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 5337 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 5338 of frame_unwind_caller_id for an example). */
14e60db5
DJ
5339
5340static void
5341insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5342{
5343 struct symtab_and_line sr_sal;
a6d9a66e 5344 struct gdbarch *gdbarch;
14e60db5
DJ
5345
5346 /* We shouldn't have gotten here if we don't know where the call site
5347 is. */
c7ce8faa 5348 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
5349
5350 init_sal (&sr_sal); /* initialize to zeros */
5351
a6d9a66e 5352 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
5353 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5354 frame_unwind_caller_pc (next_frame));
14e60db5 5355 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5356 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 5357
a6d9a66e 5358 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 5359 frame_unwind_caller_id (next_frame));
14e60db5
DJ
5360}
5361
611c83ae
PA
5362/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5363 new breakpoint at the target of a jmp_buf. The handling of
5364 longjmp-resume uses the same mechanisms used for handling
5365 "step-resume" breakpoints. */
5366
5367static void
a6d9a66e 5368insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae
PA
5369{
5370 /* There should never be more than one step-resume or longjmp-resume
5371 breakpoint per thread, so we should never be setting a new
5372 longjmp_resume_breakpoint when one is already active. */
8358c15c 5373 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
611c83ae
PA
5374
5375 if (debug_infrun)
5376 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5377 "infrun: inserting longjmp-resume breakpoint at %s\n",
5378 paddress (gdbarch, pc));
611c83ae 5379
8358c15c 5380 inferior_thread ()->control.step_resume_breakpoint =
a6d9a66e 5381 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
5382}
5383
186c406b
TT
5384/* Insert an exception resume breakpoint. TP is the thread throwing
5385 the exception. The block B is the block of the unwinder debug hook
5386 function. FRAME is the frame corresponding to the call to this
5387 function. SYM is the symbol of the function argument holding the
5388 target PC of the exception. */
5389
5390static void
5391insert_exception_resume_breakpoint (struct thread_info *tp,
5392 struct block *b,
5393 struct frame_info *frame,
5394 struct symbol *sym)
5395{
5396 struct gdb_exception e;
5397
5398 /* We want to ignore errors here. */
5399 TRY_CATCH (e, RETURN_MASK_ERROR)
5400 {
5401 struct symbol *vsym;
5402 struct value *value;
5403 CORE_ADDR handler;
5404 struct breakpoint *bp;
5405
5406 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5407 value = read_var_value (vsym, frame);
5408 /* If the value was optimized out, revert to the old behavior. */
5409 if (! value_optimized_out (value))
5410 {
5411 handler = value_as_address (value);
5412
5413 if (debug_infrun)
5414 fprintf_unfiltered (gdb_stdlog,
5415 "infrun: exception resume at %lx\n",
5416 (unsigned long) handler);
5417
5418 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5419 handler, bp_exception_resume);
5420 bp->thread = tp->num;
5421 inferior_thread ()->control.exception_resume_breakpoint = bp;
5422 }
5423 }
5424}
5425
5426/* This is called when an exception has been intercepted. Check to
5427 see whether the exception's destination is of interest, and if so,
5428 set an exception resume breakpoint there. */
5429
5430static void
5431check_exception_resume (struct execution_control_state *ecs,
5432 struct frame_info *frame, struct symbol *func)
5433{
5434 struct gdb_exception e;
5435
5436 TRY_CATCH (e, RETURN_MASK_ERROR)
5437 {
5438 struct block *b;
5439 struct dict_iterator iter;
5440 struct symbol *sym;
5441 int argno = 0;
5442
5443 /* The exception breakpoint is a thread-specific breakpoint on
5444 the unwinder's debug hook, declared as:
5445
5446 void _Unwind_DebugHook (void *cfa, void *handler);
5447
5448 The CFA argument indicates the frame to which control is
5449 about to be transferred. HANDLER is the destination PC.
5450
5451 We ignore the CFA and set a temporary breakpoint at HANDLER.
5452 This is not extremely efficient but it avoids issues in gdb
5453 with computing the DWARF CFA, and it also works even in weird
5454 cases such as throwing an exception from inside a signal
5455 handler. */
5456
5457 b = SYMBOL_BLOCK_VALUE (func);
5458 ALL_BLOCK_SYMBOLS (b, iter, sym)
5459 {
5460 if (!SYMBOL_IS_ARGUMENT (sym))
5461 continue;
5462
5463 if (argno == 0)
5464 ++argno;
5465 else
5466 {
5467 insert_exception_resume_breakpoint (ecs->event_thread,
5468 b, frame, sym);
5469 break;
5470 }
5471 }
5472 }
5473}
5474
104c1213
JM
5475static void
5476stop_stepping (struct execution_control_state *ecs)
5477{
527159b7 5478 if (debug_infrun)
8a9de0e4 5479 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 5480
cd0fc7c3
SS
5481 /* Let callers know we don't want to wait for the inferior anymore. */
5482 ecs->wait_some_more = 0;
5483}
5484
d4f3574e
SS
5485/* This function handles various cases where we need to continue
5486 waiting for the inferior. */
1777feb0 5487/* (Used to be the keep_going: label in the old wait_for_inferior). */
d4f3574e
SS
5488
5489static void
5490keep_going (struct execution_control_state *ecs)
5491{
c4dbc9af
PA
5492 /* Make sure normal_stop is called if we get a QUIT handled before
5493 reaching resume. */
5494 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5495
d4f3574e 5496 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
5497 ecs->event_thread->prev_pc
5498 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 5499
d4f3574e
SS
5500 /* If we did not do break;, it means we should keep running the
5501 inferior and not return to debugger. */
5502
16c381f0
JK
5503 if (ecs->event_thread->control.trap_expected
5504 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
d4f3574e
SS
5505 {
5506 /* We took a signal (which we are supposed to pass through to
4e1c45ea
PA
5507 the inferior, else we'd not get here) and we haven't yet
5508 gotten our trap. Simply continue. */
c4dbc9af
PA
5509
5510 discard_cleanups (old_cleanups);
2020b7ab 5511 resume (currently_stepping (ecs->event_thread),
16c381f0 5512 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5513 }
5514 else
5515 {
5516 /* Either the trap was not expected, but we are continuing
488f131b
JB
5517 anyway (the user asked that this signal be passed to the
5518 child)
5519 -- or --
5520 The signal was SIGTRAP, e.g. it was our signal, but we
5521 decided we should resume from it.
d4f3574e 5522
c36b740a 5523 We're going to run this baby now!
d4f3574e 5524
c36b740a
VP
5525 Note that insert_breakpoints won't try to re-insert
5526 already inserted breakpoints. Therefore, we don't
5527 care if breakpoints were already inserted, or not. */
5528
4e1c45ea 5529 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 5530 {
9f5a595d 5531 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
abbb1732 5532
9f5a595d 5533 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
5534 /* Since we can't do a displaced step, we have to remove
5535 the breakpoint while we step it. To keep things
5536 simple, we remove them all. */
5537 remove_breakpoints ();
45e8c884
VP
5538 }
5539 else
d4f3574e 5540 {
e236ba44 5541 struct gdb_exception e;
abbb1732 5542
569631c6
UW
5543 /* Stop stepping when inserting breakpoints
5544 has failed. */
e236ba44
VP
5545 TRY_CATCH (e, RETURN_MASK_ERROR)
5546 {
5547 insert_breakpoints ();
5548 }
5549 if (e.reason < 0)
d4f3574e 5550 {
97bd5475 5551 exception_print (gdb_stderr, e);
d4f3574e
SS
5552 stop_stepping (ecs);
5553 return;
5554 }
d4f3574e
SS
5555 }
5556
16c381f0
JK
5557 ecs->event_thread->control.trap_expected
5558 = ecs->event_thread->stepping_over_breakpoint;
d4f3574e
SS
5559
5560 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
5561 specifies that such a signal should be delivered to the
5562 target program).
5563
5564 Typically, this would occure when a user is debugging a
5565 target monitor on a simulator: the target monitor sets a
5566 breakpoint; the simulator encounters this break-point and
5567 halts the simulation handing control to GDB; GDB, noteing
5568 that the break-point isn't valid, returns control back to the
5569 simulator; the simulator then delivers the hardware
1777feb0 5570 equivalent of a SIGNAL_TRAP to the program being debugged. */
488f131b 5571
16c381f0
JK
5572 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
5573 && !signal_program[ecs->event_thread->suspend.stop_signal])
5574 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
d4f3574e 5575
c4dbc9af 5576 discard_cleanups (old_cleanups);
2020b7ab 5577 resume (currently_stepping (ecs->event_thread),
16c381f0 5578 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5579 }
5580
488f131b 5581 prepare_to_wait (ecs);
d4f3574e
SS
5582}
5583
104c1213
JM
5584/* This function normally comes after a resume, before
5585 handle_inferior_event exits. It takes care of any last bits of
5586 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 5587
104c1213
JM
5588static void
5589prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 5590{
527159b7 5591 if (debug_infrun)
8a9de0e4 5592 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 5593
104c1213
JM
5594 /* This is the old end of the while loop. Let everybody know we
5595 want to wait for the inferior some more and get called again
5596 soon. */
5597 ecs->wait_some_more = 1;
c906108c 5598}
11cf8741 5599
33d62d64
JK
5600/* Several print_*_reason functions to print why the inferior has stopped.
5601 We always print something when the inferior exits, or receives a signal.
5602 The rest of the cases are dealt with later on in normal_stop and
5603 print_it_typical. Ideally there should be a call to one of these
5604 print_*_reason functions functions from handle_inferior_event each time
5605 stop_stepping is called. */
5606
5607/* Print why the inferior has stopped.
5608 We are done with a step/next/si/ni command, print why the inferior has
5609 stopped. For now print nothing. Print a message only if not in the middle
5610 of doing a "step n" operation for n > 1. */
5611
5612static void
5613print_end_stepping_range_reason (void)
5614{
16c381f0
JK
5615 if ((!inferior_thread ()->step_multi
5616 || !inferior_thread ()->control.stop_step)
33d62d64
JK
5617 && ui_out_is_mi_like_p (uiout))
5618 ui_out_field_string (uiout, "reason",
5619 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5620}
5621
5622/* The inferior was terminated by a signal, print why it stopped. */
5623
11cf8741 5624static void
33d62d64 5625print_signal_exited_reason (enum target_signal siggnal)
11cf8741 5626{
33d62d64
JK
5627 annotate_signalled ();
5628 if (ui_out_is_mi_like_p (uiout))
5629 ui_out_field_string
5630 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5631 ui_out_text (uiout, "\nProgram terminated with signal ");
5632 annotate_signal_name ();
5633 ui_out_field_string (uiout, "signal-name",
5634 target_signal_to_name (siggnal));
5635 annotate_signal_name_end ();
5636 ui_out_text (uiout, ", ");
5637 annotate_signal_string ();
5638 ui_out_field_string (uiout, "signal-meaning",
5639 target_signal_to_string (siggnal));
5640 annotate_signal_string_end ();
5641 ui_out_text (uiout, ".\n");
5642 ui_out_text (uiout, "The program no longer exists.\n");
5643}
5644
5645/* The inferior program is finished, print why it stopped. */
5646
5647static void
5648print_exited_reason (int exitstatus)
5649{
fda326dd
TT
5650 struct inferior *inf = current_inferior ();
5651 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
5652
33d62d64
JK
5653 annotate_exited (exitstatus);
5654 if (exitstatus)
5655 {
5656 if (ui_out_is_mi_like_p (uiout))
5657 ui_out_field_string (uiout, "reason",
5658 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
5659 ui_out_text (uiout, "[Inferior ");
5660 ui_out_text (uiout, plongest (inf->num));
5661 ui_out_text (uiout, " (");
5662 ui_out_text (uiout, pidstr);
5663 ui_out_text (uiout, ") exited with code ");
33d62d64 5664 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 5665 ui_out_text (uiout, "]\n");
33d62d64
JK
5666 }
5667 else
11cf8741 5668 {
9dc5e2a9 5669 if (ui_out_is_mi_like_p (uiout))
034dad6f 5670 ui_out_field_string
33d62d64 5671 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
5672 ui_out_text (uiout, "[Inferior ");
5673 ui_out_text (uiout, plongest (inf->num));
5674 ui_out_text (uiout, " (");
5675 ui_out_text (uiout, pidstr);
5676 ui_out_text (uiout, ") exited normally]\n");
33d62d64
JK
5677 }
5678 /* Support the --return-child-result option. */
5679 return_child_result_value = exitstatus;
5680}
5681
5682/* Signal received, print why the inferior has stopped. The signal table
1777feb0 5683 tells us to print about it. */
33d62d64
JK
5684
5685static void
5686print_signal_received_reason (enum target_signal siggnal)
5687{
5688 annotate_signal ();
5689
5690 if (siggnal == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5691 {
5692 struct thread_info *t = inferior_thread ();
5693
5694 ui_out_text (uiout, "\n[");
5695 ui_out_field_string (uiout, "thread-name",
5696 target_pid_to_str (t->ptid));
5697 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5698 ui_out_text (uiout, " stopped");
5699 }
5700 else
5701 {
5702 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 5703 annotate_signal_name ();
33d62d64
JK
5704 if (ui_out_is_mi_like_p (uiout))
5705 ui_out_field_string
5706 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 5707 ui_out_field_string (uiout, "signal-name",
33d62d64 5708 target_signal_to_name (siggnal));
8b93c638
JM
5709 annotate_signal_name_end ();
5710 ui_out_text (uiout, ", ");
5711 annotate_signal_string ();
488f131b 5712 ui_out_field_string (uiout, "signal-meaning",
33d62d64 5713 target_signal_to_string (siggnal));
8b93c638 5714 annotate_signal_string_end ();
33d62d64
JK
5715 }
5716 ui_out_text (uiout, ".\n");
5717}
252fbfc8 5718
33d62d64
JK
5719/* Reverse execution: target ran out of history info, print why the inferior
5720 has stopped. */
252fbfc8 5721
33d62d64
JK
5722static void
5723print_no_history_reason (void)
5724{
5725 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
11cf8741 5726}
43ff13b4 5727
c906108c
SS
5728/* Here to return control to GDB when the inferior stops for real.
5729 Print appropriate messages, remove breakpoints, give terminal our modes.
5730
5731 STOP_PRINT_FRAME nonzero means print the executing frame
5732 (pc, function, args, file, line number and line text).
5733 BREAKPOINTS_FAILED nonzero means stop was due to error
5734 attempting to insert breakpoints. */
5735
5736void
96baa820 5737normal_stop (void)
c906108c 5738{
73b65bb0
DJ
5739 struct target_waitstatus last;
5740 ptid_t last_ptid;
29f49a6a 5741 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
5742
5743 get_last_target_status (&last_ptid, &last);
5744
29f49a6a
PA
5745 /* If an exception is thrown from this point on, make sure to
5746 propagate GDB's knowledge of the executing state to the
5747 frontend/user running state. A QUIT is an easy exception to see
5748 here, so do this before any filtered output. */
c35b1492
PA
5749 if (!non_stop)
5750 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5751 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5752 && last.kind != TARGET_WAITKIND_EXITED)
5753 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 5754
4f8d22e3
PA
5755 /* In non-stop mode, we don't want GDB to switch threads behind the
5756 user's back, to avoid races where the user is typing a command to
5757 apply to thread x, but GDB switches to thread y before the user
5758 finishes entering the command. */
5759
c906108c
SS
5760 /* As with the notification of thread events, we want to delay
5761 notifying the user that we've switched thread context until
5762 the inferior actually stops.
5763
73b65bb0
DJ
5764 There's no point in saying anything if the inferior has exited.
5765 Note that SIGNALLED here means "exited with a signal", not
5766 "received a signal". */
4f8d22e3
PA
5767 if (!non_stop
5768 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
5769 && target_has_execution
5770 && last.kind != TARGET_WAITKIND_SIGNALLED
5771 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
5772 {
5773 target_terminal_ours_for_output ();
a3f17187 5774 printf_filtered (_("[Switching to %s]\n"),
c95310c6 5775 target_pid_to_str (inferior_ptid));
b8fa951a 5776 annotate_thread_changed ();
39f77062 5777 previous_inferior_ptid = inferior_ptid;
c906108c 5778 }
c906108c 5779
74960c60 5780 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
5781 {
5782 if (remove_breakpoints ())
5783 {
5784 target_terminal_ours_for_output ();
3e43a32a
MS
5785 printf_filtered (_("Cannot remove breakpoints because "
5786 "program is no longer writable.\nFurther "
5787 "execution is probably impossible.\n"));
c906108c
SS
5788 }
5789 }
c906108c 5790
c906108c
SS
5791 /* If an auto-display called a function and that got a signal,
5792 delete that auto-display to avoid an infinite recursion. */
5793
5794 if (stopped_by_random_signal)
5795 disable_current_display ();
5796
5797 /* Don't print a message if in the middle of doing a "step n"
5798 operation for n > 1 */
af679fd0
PA
5799 if (target_has_execution
5800 && last.kind != TARGET_WAITKIND_SIGNALLED
5801 && last.kind != TARGET_WAITKIND_EXITED
5802 && inferior_thread ()->step_multi
16c381f0 5803 && inferior_thread ()->control.stop_step)
c906108c
SS
5804 goto done;
5805
5806 target_terminal_ours ();
5807
7abfe014
DJ
5808 /* Set the current source location. This will also happen if we
5809 display the frame below, but the current SAL will be incorrect
5810 during a user hook-stop function. */
d729566a 5811 if (has_stack_frames () && !stop_stack_dummy)
7abfe014
DJ
5812 set_current_sal_from_frame (get_current_frame (), 1);
5813
dd7e2d2b
PA
5814 /* Let the user/frontend see the threads as stopped. */
5815 do_cleanups (old_chain);
5816
5817 /* Look up the hook_stop and run it (CLI internally handles problem
5818 of stop_command's pre-hook not existing). */
5819 if (stop_command)
5820 catch_errors (hook_stop_stub, stop_command,
5821 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5822
d729566a 5823 if (!has_stack_frames ())
d51fd4c8 5824 goto done;
c906108c 5825
32400beb
PA
5826 if (last.kind == TARGET_WAITKIND_SIGNALLED
5827 || last.kind == TARGET_WAITKIND_EXITED)
5828 goto done;
5829
c906108c
SS
5830 /* Select innermost stack frame - i.e., current frame is frame 0,
5831 and current location is based on that.
5832 Don't do this on return from a stack dummy routine,
1777feb0 5833 or if the program has exited. */
c906108c
SS
5834
5835 if (!stop_stack_dummy)
5836 {
0f7d239c 5837 select_frame (get_current_frame ());
c906108c
SS
5838
5839 /* Print current location without a level number, if
c5aa993b
JM
5840 we have changed functions or hit a breakpoint.
5841 Print source line if we have one.
5842 bpstat_print() contains the logic deciding in detail
1777feb0 5843 what to print, based on the event(s) that just occurred. */
c906108c 5844
d01a8610
AS
5845 /* If --batch-silent is enabled then there's no need to print the current
5846 source location, and to try risks causing an error message about
5847 missing source files. */
5848 if (stop_print_frame && !batch_silent)
c906108c
SS
5849 {
5850 int bpstat_ret;
5851 int source_flag;
917317f4 5852 int do_frame_printing = 1;
347bddb7 5853 struct thread_info *tp = inferior_thread ();
c906108c 5854
16c381f0 5855 bpstat_ret = bpstat_print (tp->control.stop_bpstat);
917317f4
JM
5856 switch (bpstat_ret)
5857 {
5858 case PRINT_UNKNOWN:
b0f4b84b
DJ
5859 /* If we had hit a shared library event breakpoint,
5860 bpstat_print would print out this message. If we hit
5861 an OS-level shared library event, do the same
5862 thing. */
5863 if (last.kind == TARGET_WAITKIND_LOADED)
5864 {
5865 printf_filtered (_("Stopped due to shared library event\n"));
5866 source_flag = SRC_LINE; /* something bogus */
5867 do_frame_printing = 0;
5868 break;
5869 }
5870
aa0cd9c1 5871 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
5872 (or should) carry around the function and does (or
5873 should) use that when doing a frame comparison. */
16c381f0
JK
5874 if (tp->control.stop_step
5875 && frame_id_eq (tp->control.step_frame_id,
aa0cd9c1 5876 get_frame_id (get_current_frame ()))
917317f4 5877 && step_start_function == find_pc_function (stop_pc))
1777feb0
MS
5878 source_flag = SRC_LINE; /* Finished step, just
5879 print source line. */
917317f4 5880 else
1777feb0
MS
5881 source_flag = SRC_AND_LOC; /* Print location and
5882 source line. */
917317f4
JM
5883 break;
5884 case PRINT_SRC_AND_LOC:
1777feb0
MS
5885 source_flag = SRC_AND_LOC; /* Print location and
5886 source line. */
917317f4
JM
5887 break;
5888 case PRINT_SRC_ONLY:
c5394b80 5889 source_flag = SRC_LINE;
917317f4
JM
5890 break;
5891 case PRINT_NOTHING:
488f131b 5892 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
5893 do_frame_printing = 0;
5894 break;
5895 default:
e2e0b3e5 5896 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 5897 }
c906108c
SS
5898
5899 /* The behavior of this routine with respect to the source
5900 flag is:
c5394b80
JM
5901 SRC_LINE: Print only source line
5902 LOCATION: Print only location
1777feb0 5903 SRC_AND_LOC: Print location and source line. */
917317f4 5904 if (do_frame_printing)
b04f3ab4 5905 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
5906
5907 /* Display the auto-display expressions. */
5908 do_displays ();
5909 }
5910 }
5911
5912 /* Save the function value return registers, if we care.
5913 We might be about to restore their previous contents. */
9da8c2a0
PA
5914 if (inferior_thread ()->control.proceed_to_finish
5915 && execution_direction != EXEC_REVERSE)
d5c31457
UW
5916 {
5917 /* This should not be necessary. */
5918 if (stop_registers)
5919 regcache_xfree (stop_registers);
5920
5921 /* NB: The copy goes through to the target picking up the value of
5922 all the registers. */
5923 stop_registers = regcache_dup (get_current_regcache ());
5924 }
c906108c 5925
aa7d318d 5926 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 5927 {
b89667eb
DE
5928 /* Pop the empty frame that contains the stack dummy.
5929 This also restores inferior state prior to the call
16c381f0 5930 (struct infcall_suspend_state). */
b89667eb 5931 struct frame_info *frame = get_current_frame ();
abbb1732 5932
b89667eb
DE
5933 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
5934 frame_pop (frame);
3e43a32a
MS
5935 /* frame_pop() calls reinit_frame_cache as the last thing it
5936 does which means there's currently no selected frame. We
5937 don't need to re-establish a selected frame if the dummy call
5938 returns normally, that will be done by
5939 restore_infcall_control_state. However, we do have to handle
5940 the case where the dummy call is returning after being
5941 stopped (e.g. the dummy call previously hit a breakpoint).
5942 We can't know which case we have so just always re-establish
5943 a selected frame here. */
0f7d239c 5944 select_frame (get_current_frame ());
c906108c
SS
5945 }
5946
c906108c
SS
5947done:
5948 annotate_stopped ();
41d2bdb4
PA
5949
5950 /* Suppress the stop observer if we're in the middle of:
5951
5952 - a step n (n > 1), as there still more steps to be done.
5953
5954 - a "finish" command, as the observer will be called in
5955 finish_command_continuation, so it can include the inferior
5956 function's return value.
5957
5958 - calling an inferior function, as we pretend we inferior didn't
5959 run at all. The return value of the call is handled by the
5960 expression evaluator, through call_function_by_hand. */
5961
5962 if (!target_has_execution
5963 || last.kind == TARGET_WAITKIND_SIGNALLED
5964 || last.kind == TARGET_WAITKIND_EXITED
5965 || (!inferior_thread ()->step_multi
16c381f0
JK
5966 && !(inferior_thread ()->control.stop_bpstat
5967 && inferior_thread ()->control.proceed_to_finish)
5968 && !inferior_thread ()->control.in_infcall))
347bddb7
PA
5969 {
5970 if (!ptid_equal (inferior_ptid, null_ptid))
16c381f0 5971 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
1d33d6ba 5972 stop_print_frame);
347bddb7 5973 else
1d33d6ba 5974 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 5975 }
347bddb7 5976
48844aa6
PA
5977 if (target_has_execution)
5978 {
5979 if (last.kind != TARGET_WAITKIND_SIGNALLED
5980 && last.kind != TARGET_WAITKIND_EXITED)
5981 /* Delete the breakpoint we stopped at, if it wants to be deleted.
5982 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 5983 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 5984 }
6c95b8df
PA
5985
5986 /* Try to get rid of automatically added inferiors that are no
5987 longer needed. Keeping those around slows down things linearly.
5988 Note that this never removes the current inferior. */
5989 prune_inferiors ();
c906108c
SS
5990}
5991
5992static int
96baa820 5993hook_stop_stub (void *cmd)
c906108c 5994{
5913bcb0 5995 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
5996 return (0);
5997}
5998\f
c5aa993b 5999int
96baa820 6000signal_stop_state (int signo)
c906108c 6001{
d6b48e9c 6002 return signal_stop[signo];
c906108c
SS
6003}
6004
c5aa993b 6005int
96baa820 6006signal_print_state (int signo)
c906108c
SS
6007{
6008 return signal_print[signo];
6009}
6010
c5aa993b 6011int
96baa820 6012signal_pass_state (int signo)
c906108c
SS
6013{
6014 return signal_program[signo];
6015}
6016
2455069d
UW
6017static void
6018signal_cache_update (int signo)
6019{
6020 if (signo == -1)
6021 {
6022 for (signo = 0; signo < (int) TARGET_SIGNAL_LAST; signo++)
6023 signal_cache_update (signo);
6024
6025 return;
6026 }
6027
6028 signal_pass[signo] = (signal_stop[signo] == 0
6029 && signal_print[signo] == 0
6030 && signal_program[signo] == 1);
6031}
6032
488f131b 6033int
7bda5e4a 6034signal_stop_update (int signo, int state)
d4f3574e
SS
6035{
6036 int ret = signal_stop[signo];
abbb1732 6037
d4f3574e 6038 signal_stop[signo] = state;
2455069d 6039 signal_cache_update (signo);
d4f3574e
SS
6040 return ret;
6041}
6042
488f131b 6043int
7bda5e4a 6044signal_print_update (int signo, int state)
d4f3574e
SS
6045{
6046 int ret = signal_print[signo];
abbb1732 6047
d4f3574e 6048 signal_print[signo] = state;
2455069d 6049 signal_cache_update (signo);
d4f3574e
SS
6050 return ret;
6051}
6052
488f131b 6053int
7bda5e4a 6054signal_pass_update (int signo, int state)
d4f3574e
SS
6055{
6056 int ret = signal_program[signo];
abbb1732 6057
d4f3574e 6058 signal_program[signo] = state;
2455069d 6059 signal_cache_update (signo);
d4f3574e
SS
6060 return ret;
6061}
6062
c906108c 6063static void
96baa820 6064sig_print_header (void)
c906108c 6065{
3e43a32a
MS
6066 printf_filtered (_("Signal Stop\tPrint\tPass "
6067 "to program\tDescription\n"));
c906108c
SS
6068}
6069
6070static void
96baa820 6071sig_print_info (enum target_signal oursig)
c906108c 6072{
54363045 6073 const char *name = target_signal_to_name (oursig);
c906108c 6074 int name_padding = 13 - strlen (name);
96baa820 6075
c906108c
SS
6076 if (name_padding <= 0)
6077 name_padding = 0;
6078
6079 printf_filtered ("%s", name);
488f131b 6080 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
6081 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6082 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6083 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6084 printf_filtered ("%s\n", target_signal_to_string (oursig));
6085}
6086
6087/* Specify how various signals in the inferior should be handled. */
6088
6089static void
96baa820 6090handle_command (char *args, int from_tty)
c906108c
SS
6091{
6092 char **argv;
6093 int digits, wordlen;
6094 int sigfirst, signum, siglast;
6095 enum target_signal oursig;
6096 int allsigs;
6097 int nsigs;
6098 unsigned char *sigs;
6099 struct cleanup *old_chain;
6100
6101 if (args == NULL)
6102 {
e2e0b3e5 6103 error_no_arg (_("signal to handle"));
c906108c
SS
6104 }
6105
1777feb0 6106 /* Allocate and zero an array of flags for which signals to handle. */
c906108c
SS
6107
6108 nsigs = (int) TARGET_SIGNAL_LAST;
6109 sigs = (unsigned char *) alloca (nsigs);
6110 memset (sigs, 0, nsigs);
6111
1777feb0 6112 /* Break the command line up into args. */
c906108c 6113
d1a41061 6114 argv = gdb_buildargv (args);
7a292a7a 6115 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6116
6117 /* Walk through the args, looking for signal oursigs, signal names, and
6118 actions. Signal numbers and signal names may be interspersed with
6119 actions, with the actions being performed for all signals cumulatively
1777feb0 6120 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
6121
6122 while (*argv != NULL)
6123 {
6124 wordlen = strlen (*argv);
6125 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6126 {;
6127 }
6128 allsigs = 0;
6129 sigfirst = siglast = -1;
6130
6131 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6132 {
6133 /* Apply action to all signals except those used by the
1777feb0 6134 debugger. Silently skip those. */
c906108c
SS
6135 allsigs = 1;
6136 sigfirst = 0;
6137 siglast = nsigs - 1;
6138 }
6139 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6140 {
6141 SET_SIGS (nsigs, sigs, signal_stop);
6142 SET_SIGS (nsigs, sigs, signal_print);
6143 }
6144 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6145 {
6146 UNSET_SIGS (nsigs, sigs, signal_program);
6147 }
6148 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6149 {
6150 SET_SIGS (nsigs, sigs, signal_print);
6151 }
6152 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6153 {
6154 SET_SIGS (nsigs, sigs, signal_program);
6155 }
6156 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6157 {
6158 UNSET_SIGS (nsigs, sigs, signal_stop);
6159 }
6160 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6161 {
6162 SET_SIGS (nsigs, sigs, signal_program);
6163 }
6164 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6165 {
6166 UNSET_SIGS (nsigs, sigs, signal_print);
6167 UNSET_SIGS (nsigs, sigs, signal_stop);
6168 }
6169 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6170 {
6171 UNSET_SIGS (nsigs, sigs, signal_program);
6172 }
6173 else if (digits > 0)
6174 {
6175 /* It is numeric. The numeric signal refers to our own
6176 internal signal numbering from target.h, not to host/target
6177 signal number. This is a feature; users really should be
6178 using symbolic names anyway, and the common ones like
6179 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6180
6181 sigfirst = siglast = (int)
6182 target_signal_from_command (atoi (*argv));
6183 if ((*argv)[digits] == '-')
6184 {
6185 siglast = (int)
6186 target_signal_from_command (atoi ((*argv) + digits + 1));
6187 }
6188 if (sigfirst > siglast)
6189 {
1777feb0 6190 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
6191 signum = sigfirst;
6192 sigfirst = siglast;
6193 siglast = signum;
6194 }
6195 }
6196 else
6197 {
6198 oursig = target_signal_from_name (*argv);
6199 if (oursig != TARGET_SIGNAL_UNKNOWN)
6200 {
6201 sigfirst = siglast = (int) oursig;
6202 }
6203 else
6204 {
6205 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 6206 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
6207 }
6208 }
6209
6210 /* If any signal numbers or symbol names were found, set flags for
1777feb0 6211 which signals to apply actions to. */
c906108c
SS
6212
6213 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6214 {
6215 switch ((enum target_signal) signum)
6216 {
6217 case TARGET_SIGNAL_TRAP:
6218 case TARGET_SIGNAL_INT:
6219 if (!allsigs && !sigs[signum])
6220 {
9e2f0ad4 6221 if (query (_("%s is used by the debugger.\n\
3e43a32a
MS
6222Are you sure you want to change it? "),
6223 target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
6224 {
6225 sigs[signum] = 1;
6226 }
6227 else
6228 {
a3f17187 6229 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
6230 gdb_flush (gdb_stdout);
6231 }
6232 }
6233 break;
6234 case TARGET_SIGNAL_0:
6235 case TARGET_SIGNAL_DEFAULT:
6236 case TARGET_SIGNAL_UNKNOWN:
6237 /* Make sure that "all" doesn't print these. */
6238 break;
6239 default:
6240 sigs[signum] = 1;
6241 break;
6242 }
6243 }
6244
6245 argv++;
6246 }
6247
3a031f65
PA
6248 for (signum = 0; signum < nsigs; signum++)
6249 if (sigs[signum])
6250 {
2455069d
UW
6251 signal_cache_update (-1);
6252 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
c906108c 6253
3a031f65
PA
6254 if (from_tty)
6255 {
6256 /* Show the results. */
6257 sig_print_header ();
6258 for (; signum < nsigs; signum++)
6259 if (sigs[signum])
6260 sig_print_info (signum);
6261 }
6262
6263 break;
6264 }
c906108c
SS
6265
6266 do_cleanups (old_chain);
6267}
6268
6269static void
96baa820 6270xdb_handle_command (char *args, int from_tty)
c906108c
SS
6271{
6272 char **argv;
6273 struct cleanup *old_chain;
6274
d1a41061
PP
6275 if (args == NULL)
6276 error_no_arg (_("xdb command"));
6277
1777feb0 6278 /* Break the command line up into args. */
c906108c 6279
d1a41061 6280 argv = gdb_buildargv (args);
7a292a7a 6281 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6282 if (argv[1] != (char *) NULL)
6283 {
6284 char *argBuf;
6285 int bufLen;
6286
6287 bufLen = strlen (argv[0]) + 20;
6288 argBuf = (char *) xmalloc (bufLen);
6289 if (argBuf)
6290 {
6291 int validFlag = 1;
6292 enum target_signal oursig;
6293
6294 oursig = target_signal_from_name (argv[0]);
6295 memset (argBuf, 0, bufLen);
6296 if (strcmp (argv[1], "Q") == 0)
6297 sprintf (argBuf, "%s %s", argv[0], "noprint");
6298 else
6299 {
6300 if (strcmp (argv[1], "s") == 0)
6301 {
6302 if (!signal_stop[oursig])
6303 sprintf (argBuf, "%s %s", argv[0], "stop");
6304 else
6305 sprintf (argBuf, "%s %s", argv[0], "nostop");
6306 }
6307 else if (strcmp (argv[1], "i") == 0)
6308 {
6309 if (!signal_program[oursig])
6310 sprintf (argBuf, "%s %s", argv[0], "pass");
6311 else
6312 sprintf (argBuf, "%s %s", argv[0], "nopass");
6313 }
6314 else if (strcmp (argv[1], "r") == 0)
6315 {
6316 if (!signal_print[oursig])
6317 sprintf (argBuf, "%s %s", argv[0], "print");
6318 else
6319 sprintf (argBuf, "%s %s", argv[0], "noprint");
6320 }
6321 else
6322 validFlag = 0;
6323 }
6324 if (validFlag)
6325 handle_command (argBuf, from_tty);
6326 else
a3f17187 6327 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 6328 if (argBuf)
b8c9b27d 6329 xfree (argBuf);
c906108c
SS
6330 }
6331 }
6332 do_cleanups (old_chain);
6333}
6334
6335/* Print current contents of the tables set by the handle command.
6336 It is possible we should just be printing signals actually used
6337 by the current target (but for things to work right when switching
6338 targets, all signals should be in the signal tables). */
6339
6340static void
96baa820 6341signals_info (char *signum_exp, int from_tty)
c906108c
SS
6342{
6343 enum target_signal oursig;
abbb1732 6344
c906108c
SS
6345 sig_print_header ();
6346
6347 if (signum_exp)
6348 {
6349 /* First see if this is a symbol name. */
6350 oursig = target_signal_from_name (signum_exp);
6351 if (oursig == TARGET_SIGNAL_UNKNOWN)
6352 {
6353 /* No, try numeric. */
6354 oursig =
bb518678 6355 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
6356 }
6357 sig_print_info (oursig);
6358 return;
6359 }
6360
6361 printf_filtered ("\n");
6362 /* These ugly casts brought to you by the native VAX compiler. */
6363 for (oursig = TARGET_SIGNAL_FIRST;
6364 (int) oursig < (int) TARGET_SIGNAL_LAST;
6365 oursig = (enum target_signal) ((int) oursig + 1))
6366 {
6367 QUIT;
6368
6369 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 6370 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
6371 sig_print_info (oursig);
6372 }
6373
3e43a32a
MS
6374 printf_filtered (_("\nUse the \"handle\" command "
6375 "to change these tables.\n"));
c906108c 6376}
4aa995e1
PA
6377
6378/* The $_siginfo convenience variable is a bit special. We don't know
6379 for sure the type of the value until we actually have a chance to
7a9dd1b2 6380 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
6381 also dependent on which thread you have selected.
6382
6383 1. making $_siginfo be an internalvar that creates a new value on
6384 access.
6385
6386 2. making the value of $_siginfo be an lval_computed value. */
6387
6388/* This function implements the lval_computed support for reading a
6389 $_siginfo value. */
6390
6391static void
6392siginfo_value_read (struct value *v)
6393{
6394 LONGEST transferred;
6395
6396 transferred =
6397 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6398 NULL,
6399 value_contents_all_raw (v),
6400 value_offset (v),
6401 TYPE_LENGTH (value_type (v)));
6402
6403 if (transferred != TYPE_LENGTH (value_type (v)))
6404 error (_("Unable to read siginfo"));
6405}
6406
6407/* This function implements the lval_computed support for writing a
6408 $_siginfo value. */
6409
6410static void
6411siginfo_value_write (struct value *v, struct value *fromval)
6412{
6413 LONGEST transferred;
6414
6415 transferred = target_write (&current_target,
6416 TARGET_OBJECT_SIGNAL_INFO,
6417 NULL,
6418 value_contents_all_raw (fromval),
6419 value_offset (v),
6420 TYPE_LENGTH (value_type (fromval)));
6421
6422 if (transferred != TYPE_LENGTH (value_type (fromval)))
6423 error (_("Unable to write siginfo"));
6424}
6425
c8f2448a 6426static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
6427 {
6428 siginfo_value_read,
6429 siginfo_value_write
6430 };
6431
6432/* Return a new value with the correct type for the siginfo object of
78267919
UW
6433 the current thread using architecture GDBARCH. Return a void value
6434 if there's no object available. */
4aa995e1 6435
2c0b251b 6436static struct value *
78267919 6437siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
4aa995e1 6438{
4aa995e1 6439 if (target_has_stack
78267919
UW
6440 && !ptid_equal (inferior_ptid, null_ptid)
6441 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 6442 {
78267919 6443 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 6444
78267919 6445 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
6446 }
6447
78267919 6448 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
6449}
6450
c906108c 6451\f
16c381f0
JK
6452/* infcall_suspend_state contains state about the program itself like its
6453 registers and any signal it received when it last stopped.
6454 This state must be restored regardless of how the inferior function call
6455 ends (either successfully, or after it hits a breakpoint or signal)
6456 if the program is to properly continue where it left off. */
6457
6458struct infcall_suspend_state
7a292a7a 6459{
16c381f0
JK
6460 struct thread_suspend_state thread_suspend;
6461 struct inferior_suspend_state inferior_suspend;
6462
6463 /* Other fields: */
7a292a7a 6464 CORE_ADDR stop_pc;
b89667eb 6465 struct regcache *registers;
1736ad11 6466
35515841 6467 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
6468 struct gdbarch *siginfo_gdbarch;
6469
6470 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6471 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6472 content would be invalid. */
6473 gdb_byte *siginfo_data;
b89667eb
DE
6474};
6475
16c381f0
JK
6476struct infcall_suspend_state *
6477save_infcall_suspend_state (void)
b89667eb 6478{
16c381f0 6479 struct infcall_suspend_state *inf_state;
b89667eb 6480 struct thread_info *tp = inferior_thread ();
16c381f0 6481 struct inferior *inf = current_inferior ();
1736ad11
JK
6482 struct regcache *regcache = get_current_regcache ();
6483 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6484 gdb_byte *siginfo_data = NULL;
6485
6486 if (gdbarch_get_siginfo_type_p (gdbarch))
6487 {
6488 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6489 size_t len = TYPE_LENGTH (type);
6490 struct cleanup *back_to;
6491
6492 siginfo_data = xmalloc (len);
6493 back_to = make_cleanup (xfree, siginfo_data);
6494
6495 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6496 siginfo_data, 0, len) == len)
6497 discard_cleanups (back_to);
6498 else
6499 {
6500 /* Errors ignored. */
6501 do_cleanups (back_to);
6502 siginfo_data = NULL;
6503 }
6504 }
6505
16c381f0 6506 inf_state = XZALLOC (struct infcall_suspend_state);
1736ad11
JK
6507
6508 if (siginfo_data)
6509 {
6510 inf_state->siginfo_gdbarch = gdbarch;
6511 inf_state->siginfo_data = siginfo_data;
6512 }
b89667eb 6513
16c381f0
JK
6514 inf_state->thread_suspend = tp->suspend;
6515 inf_state->inferior_suspend = inf->suspend;
6516
35515841
JK
6517 /* run_inferior_call will not use the signal due to its `proceed' call with
6518 TARGET_SIGNAL_0 anyway. */
16c381f0 6519 tp->suspend.stop_signal = TARGET_SIGNAL_0;
35515841 6520
b89667eb
DE
6521 inf_state->stop_pc = stop_pc;
6522
1736ad11 6523 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
6524
6525 return inf_state;
6526}
6527
6528/* Restore inferior session state to INF_STATE. */
6529
6530void
16c381f0 6531restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6532{
6533 struct thread_info *tp = inferior_thread ();
16c381f0 6534 struct inferior *inf = current_inferior ();
1736ad11
JK
6535 struct regcache *regcache = get_current_regcache ();
6536 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 6537
16c381f0
JK
6538 tp->suspend = inf_state->thread_suspend;
6539 inf->suspend = inf_state->inferior_suspend;
6540
b89667eb
DE
6541 stop_pc = inf_state->stop_pc;
6542
1736ad11
JK
6543 if (inf_state->siginfo_gdbarch == gdbarch)
6544 {
6545 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6546 size_t len = TYPE_LENGTH (type);
6547
6548 /* Errors ignored. */
6549 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6550 inf_state->siginfo_data, 0, len);
6551 }
6552
b89667eb
DE
6553 /* The inferior can be gone if the user types "print exit(0)"
6554 (and perhaps other times). */
6555 if (target_has_execution)
6556 /* NB: The register write goes through to the target. */
1736ad11 6557 regcache_cpy (regcache, inf_state->registers);
803b5f95 6558
16c381f0 6559 discard_infcall_suspend_state (inf_state);
b89667eb
DE
6560}
6561
6562static void
16c381f0 6563do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 6564{
16c381f0 6565 restore_infcall_suspend_state (state);
b89667eb
DE
6566}
6567
6568struct cleanup *
16c381f0
JK
6569make_cleanup_restore_infcall_suspend_state
6570 (struct infcall_suspend_state *inf_state)
b89667eb 6571{
16c381f0 6572 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
6573}
6574
6575void
16c381f0 6576discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6577{
6578 regcache_xfree (inf_state->registers);
803b5f95 6579 xfree (inf_state->siginfo_data);
b89667eb
DE
6580 xfree (inf_state);
6581}
6582
6583struct regcache *
16c381f0 6584get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
6585{
6586 return inf_state->registers;
6587}
6588
16c381f0
JK
6589/* infcall_control_state contains state regarding gdb's control of the
6590 inferior itself like stepping control. It also contains session state like
6591 the user's currently selected frame. */
b89667eb 6592
16c381f0 6593struct infcall_control_state
b89667eb 6594{
16c381f0
JK
6595 struct thread_control_state thread_control;
6596 struct inferior_control_state inferior_control;
d82142e2
JK
6597
6598 /* Other fields: */
6599 enum stop_stack_kind stop_stack_dummy;
6600 int stopped_by_random_signal;
7a292a7a 6601 int stop_after_trap;
7a292a7a 6602
b89667eb 6603 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 6604 struct frame_id selected_frame_id;
7a292a7a
SS
6605};
6606
c906108c 6607/* Save all of the information associated with the inferior<==>gdb
b89667eb 6608 connection. */
c906108c 6609
16c381f0
JK
6610struct infcall_control_state *
6611save_infcall_control_state (void)
c906108c 6612{
16c381f0 6613 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
4e1c45ea 6614 struct thread_info *tp = inferior_thread ();
d6b48e9c 6615 struct inferior *inf = current_inferior ();
7a292a7a 6616
16c381f0
JK
6617 inf_status->thread_control = tp->control;
6618 inf_status->inferior_control = inf->control;
d82142e2 6619
8358c15c 6620 tp->control.step_resume_breakpoint = NULL;
5b79abe7 6621 tp->control.exception_resume_breakpoint = NULL;
8358c15c 6622
16c381f0
JK
6623 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6624 chain. If caller's caller is walking the chain, they'll be happier if we
6625 hand them back the original chain when restore_infcall_control_state is
6626 called. */
6627 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
6628
6629 /* Other fields: */
6630 inf_status->stop_stack_dummy = stop_stack_dummy;
6631 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6632 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 6633
206415a3 6634 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 6635
7a292a7a 6636 return inf_status;
c906108c
SS
6637}
6638
c906108c 6639static int
96baa820 6640restore_selected_frame (void *args)
c906108c 6641{
488f131b 6642 struct frame_id *fid = (struct frame_id *) args;
c906108c 6643 struct frame_info *frame;
c906108c 6644
101dcfbe 6645 frame = frame_find_by_id (*fid);
c906108c 6646
aa0cd9c1
AC
6647 /* If inf_status->selected_frame_id is NULL, there was no previously
6648 selected frame. */
101dcfbe 6649 if (frame == NULL)
c906108c 6650 {
8a3fe4f8 6651 warning (_("Unable to restore previously selected frame."));
c906108c
SS
6652 return 0;
6653 }
6654
0f7d239c 6655 select_frame (frame);
c906108c
SS
6656
6657 return (1);
6658}
6659
b89667eb
DE
6660/* Restore inferior session state to INF_STATUS. */
6661
c906108c 6662void
16c381f0 6663restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 6664{
4e1c45ea 6665 struct thread_info *tp = inferior_thread ();
d6b48e9c 6666 struct inferior *inf = current_inferior ();
4e1c45ea 6667
8358c15c
JK
6668 if (tp->control.step_resume_breakpoint)
6669 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6670
5b79abe7
TT
6671 if (tp->control.exception_resume_breakpoint)
6672 tp->control.exception_resume_breakpoint->disposition
6673 = disp_del_at_next_stop;
6674
d82142e2 6675 /* Handle the bpstat_copy of the chain. */
16c381f0 6676 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 6677
16c381f0
JK
6678 tp->control = inf_status->thread_control;
6679 inf->control = inf_status->inferior_control;
d82142e2
JK
6680
6681 /* Other fields: */
6682 stop_stack_dummy = inf_status->stop_stack_dummy;
6683 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6684 stop_after_trap = inf_status->stop_after_trap;
c906108c 6685
b89667eb 6686 if (target_has_stack)
c906108c 6687 {
c906108c 6688 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
6689 walking the stack might encounter a garbage pointer and
6690 error() trying to dereference it. */
488f131b
JB
6691 if (catch_errors
6692 (restore_selected_frame, &inf_status->selected_frame_id,
6693 "Unable to restore previously selected frame:\n",
6694 RETURN_MASK_ERROR) == 0)
c906108c
SS
6695 /* Error in restoring the selected frame. Select the innermost
6696 frame. */
0f7d239c 6697 select_frame (get_current_frame ());
c906108c 6698 }
c906108c 6699
72cec141 6700 xfree (inf_status);
7a292a7a 6701}
c906108c 6702
74b7792f 6703static void
16c381f0 6704do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 6705{
16c381f0 6706 restore_infcall_control_state (sts);
74b7792f
AC
6707}
6708
6709struct cleanup *
16c381f0
JK
6710make_cleanup_restore_infcall_control_state
6711 (struct infcall_control_state *inf_status)
74b7792f 6712{
16c381f0 6713 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
6714}
6715
c906108c 6716void
16c381f0 6717discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 6718{
8358c15c
JK
6719 if (inf_status->thread_control.step_resume_breakpoint)
6720 inf_status->thread_control.step_resume_breakpoint->disposition
6721 = disp_del_at_next_stop;
6722
5b79abe7
TT
6723 if (inf_status->thread_control.exception_resume_breakpoint)
6724 inf_status->thread_control.exception_resume_breakpoint->disposition
6725 = disp_del_at_next_stop;
6726
1777feb0 6727 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 6728 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 6729
72cec141 6730 xfree (inf_status);
7a292a7a 6731}
b89667eb 6732\f
47932f85 6733int
3a3e9ee3 6734inferior_has_forked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
6735{
6736 struct target_waitstatus last;
6737 ptid_t last_ptid;
6738
6739 get_last_target_status (&last_ptid, &last);
6740
6741 if (last.kind != TARGET_WAITKIND_FORKED)
6742 return 0;
6743
3a3e9ee3 6744 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
6745 return 0;
6746
6747 *child_pid = last.value.related_pid;
6748 return 1;
6749}
6750
6751int
3a3e9ee3 6752inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
6753{
6754 struct target_waitstatus last;
6755 ptid_t last_ptid;
6756
6757 get_last_target_status (&last_ptid, &last);
6758
6759 if (last.kind != TARGET_WAITKIND_VFORKED)
6760 return 0;
6761
3a3e9ee3 6762 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
6763 return 0;
6764
6765 *child_pid = last.value.related_pid;
6766 return 1;
6767}
6768
6769int
3a3e9ee3 6770inferior_has_execd (ptid_t pid, char **execd_pathname)
47932f85
DJ
6771{
6772 struct target_waitstatus last;
6773 ptid_t last_ptid;
6774
6775 get_last_target_status (&last_ptid, &last);
6776
6777 if (last.kind != TARGET_WAITKIND_EXECD)
6778 return 0;
6779
3a3e9ee3 6780 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
6781 return 0;
6782
6783 *execd_pathname = xstrdup (last.value.execd_pathname);
6784 return 1;
6785}
6786
a96d9b2e
SDJ
6787int
6788inferior_has_called_syscall (ptid_t pid, int *syscall_number)
6789{
6790 struct target_waitstatus last;
6791 ptid_t last_ptid;
6792
6793 get_last_target_status (&last_ptid, &last);
6794
6795 if (last.kind != TARGET_WAITKIND_SYSCALL_ENTRY &&
6796 last.kind != TARGET_WAITKIND_SYSCALL_RETURN)
6797 return 0;
6798
6799 if (!ptid_equal (last_ptid, pid))
6800 return 0;
6801
6802 *syscall_number = last.value.syscall_number;
6803 return 1;
6804}
6805
0723dbf5
PA
6806int
6807ptid_match (ptid_t ptid, ptid_t filter)
6808{
0723dbf5
PA
6809 if (ptid_equal (filter, minus_one_ptid))
6810 return 1;
6811 if (ptid_is_pid (filter)
6812 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6813 return 1;
6814 else if (ptid_equal (ptid, filter))
6815 return 1;
6816
6817 return 0;
6818}
6819
ca6724c1
KB
6820/* restore_inferior_ptid() will be used by the cleanup machinery
6821 to restore the inferior_ptid value saved in a call to
6822 save_inferior_ptid(). */
ce696e05
KB
6823
6824static void
6825restore_inferior_ptid (void *arg)
6826{
6827 ptid_t *saved_ptid_ptr = arg;
abbb1732 6828
ce696e05
KB
6829 inferior_ptid = *saved_ptid_ptr;
6830 xfree (arg);
6831}
6832
6833/* Save the value of inferior_ptid so that it may be restored by a
6834 later call to do_cleanups(). Returns the struct cleanup pointer
6835 needed for later doing the cleanup. */
6836
6837struct cleanup *
6838save_inferior_ptid (void)
6839{
6840 ptid_t *saved_ptid_ptr;
6841
6842 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6843 *saved_ptid_ptr = inferior_ptid;
6844 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6845}
c5aa993b 6846\f
488f131b 6847
b2175913
MS
6848/* User interface for reverse debugging:
6849 Set exec-direction / show exec-direction commands
6850 (returns error unless target implements to_set_exec_direction method). */
6851
32231432 6852int execution_direction = EXEC_FORWARD;
b2175913
MS
6853static const char exec_forward[] = "forward";
6854static const char exec_reverse[] = "reverse";
6855static const char *exec_direction = exec_forward;
6856static const char *exec_direction_names[] = {
6857 exec_forward,
6858 exec_reverse,
6859 NULL
6860};
6861
6862static void
6863set_exec_direction_func (char *args, int from_tty,
6864 struct cmd_list_element *cmd)
6865{
6866 if (target_can_execute_reverse)
6867 {
6868 if (!strcmp (exec_direction, exec_forward))
6869 execution_direction = EXEC_FORWARD;
6870 else if (!strcmp (exec_direction, exec_reverse))
6871 execution_direction = EXEC_REVERSE;
6872 }
8bbed405
MS
6873 else
6874 {
6875 exec_direction = exec_forward;
6876 error (_("Target does not support this operation."));
6877 }
b2175913
MS
6878}
6879
6880static void
6881show_exec_direction_func (struct ui_file *out, int from_tty,
6882 struct cmd_list_element *cmd, const char *value)
6883{
6884 switch (execution_direction) {
6885 case EXEC_FORWARD:
6886 fprintf_filtered (out, _("Forward.\n"));
6887 break;
6888 case EXEC_REVERSE:
6889 fprintf_filtered (out, _("Reverse.\n"));
6890 break;
b2175913 6891 default:
d8b34453
PA
6892 internal_error (__FILE__, __LINE__,
6893 _("bogus execution_direction value: %d"),
6894 (int) execution_direction);
b2175913
MS
6895 }
6896}
6897
6898/* User interface for non-stop mode. */
6899
ad52ddc6 6900int non_stop = 0;
ad52ddc6
PA
6901
6902static void
6903set_non_stop (char *args, int from_tty,
6904 struct cmd_list_element *c)
6905{
6906 if (target_has_execution)
6907 {
6908 non_stop_1 = non_stop;
6909 error (_("Cannot change this setting while the inferior is running."));
6910 }
6911
6912 non_stop = non_stop_1;
6913}
6914
6915static void
6916show_non_stop (struct ui_file *file, int from_tty,
6917 struct cmd_list_element *c, const char *value)
6918{
6919 fprintf_filtered (file,
6920 _("Controlling the inferior in non-stop mode is %s.\n"),
6921 value);
6922}
6923
d4db2f36
PA
6924static void
6925show_schedule_multiple (struct ui_file *file, int from_tty,
6926 struct cmd_list_element *c, const char *value)
6927{
3e43a32a
MS
6928 fprintf_filtered (file, _("Resuming the execution of threads "
6929 "of all processes is %s.\n"), value);
d4db2f36 6930}
ad52ddc6 6931
c906108c 6932void
96baa820 6933_initialize_infrun (void)
c906108c 6934{
52f0bd74
AC
6935 int i;
6936 int numsigs;
c906108c 6937
1bedd215
AC
6938 add_info ("signals", signals_info, _("\
6939What debugger does when program gets various signals.\n\
6940Specify a signal as argument to print info on that signal only."));
c906108c
SS
6941 add_info_alias ("handle", "signals", 0);
6942
1bedd215
AC
6943 add_com ("handle", class_run, handle_command, _("\
6944Specify how to handle a signal.\n\
c906108c
SS
6945Args are signals and actions to apply to those signals.\n\
6946Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6947from 1-15 are allowed for compatibility with old versions of GDB.\n\
6948Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6949The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
6950used by the debugger, typically SIGTRAP and SIGINT.\n\
6951Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
6952\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
6953Stop means reenter debugger if this signal happens (implies print).\n\
6954Print means print a message if this signal happens.\n\
6955Pass means let program see this signal; otherwise program doesn't know.\n\
6956Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 6957Pass and Stop may be combined."));
c906108c
SS
6958 if (xdb_commands)
6959 {
1bedd215
AC
6960 add_com ("lz", class_info, signals_info, _("\
6961What debugger does when program gets various signals.\n\
6962Specify a signal as argument to print info on that signal only."));
6963 add_com ("z", class_run, xdb_handle_command, _("\
6964Specify how to handle a signal.\n\
c906108c
SS
6965Args are signals and actions to apply to those signals.\n\
6966Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6967from 1-15 are allowed for compatibility with old versions of GDB.\n\
6968Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6969The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 6970used by the debugger, typically SIGTRAP and SIGINT.\n\
cce7e648 6971Recognized actions include \"s\" (toggles between stop and nostop),\n\
c906108c
SS
6972\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
6973nopass), \"Q\" (noprint)\n\
6974Stop means reenter debugger if this signal happens (implies print).\n\
6975Print means print a message if this signal happens.\n\
6976Pass means let program see this signal; otherwise program doesn't know.\n\
6977Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 6978Pass and Stop may be combined."));
c906108c
SS
6979 }
6980
6981 if (!dbx_commands)
1a966eab
AC
6982 stop_command = add_cmd ("stop", class_obscure,
6983 not_just_help_class_command, _("\
6984There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 6985This allows you to set a list of commands to be run each time execution\n\
1a966eab 6986of the program stops."), &cmdlist);
c906108c 6987
85c07804
AC
6988 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
6989Set inferior debugging."), _("\
6990Show inferior debugging."), _("\
6991When non-zero, inferior specific debugging is enabled."),
6992 NULL,
920d2a44 6993 show_debug_infrun,
85c07804 6994 &setdebuglist, &showdebuglist);
527159b7 6995
3e43a32a
MS
6996 add_setshow_boolean_cmd ("displaced", class_maintenance,
6997 &debug_displaced, _("\
237fc4c9
PA
6998Set displaced stepping debugging."), _("\
6999Show displaced stepping debugging."), _("\
7000When non-zero, displaced stepping specific debugging is enabled."),
7001 NULL,
7002 show_debug_displaced,
7003 &setdebuglist, &showdebuglist);
7004
ad52ddc6
PA
7005 add_setshow_boolean_cmd ("non-stop", no_class,
7006 &non_stop_1, _("\
7007Set whether gdb controls the inferior in non-stop mode."), _("\
7008Show whether gdb controls the inferior in non-stop mode."), _("\
7009When debugging a multi-threaded program and this setting is\n\
7010off (the default, also called all-stop mode), when one thread stops\n\
7011(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7012all other threads in the program while you interact with the thread of\n\
7013interest. When you continue or step a thread, you can allow the other\n\
7014threads to run, or have them remain stopped, but while you inspect any\n\
7015thread's state, all threads stop.\n\
7016\n\
7017In non-stop mode, when one thread stops, other threads can continue\n\
7018to run freely. You'll be able to step each thread independently,\n\
7019leave it stopped or free to run as needed."),
7020 set_non_stop,
7021 show_non_stop,
7022 &setlist,
7023 &showlist);
7024
c906108c 7025 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 7026 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
7027 signal_print = (unsigned char *)
7028 xmalloc (sizeof (signal_print[0]) * numsigs);
7029 signal_program = (unsigned char *)
7030 xmalloc (sizeof (signal_program[0]) * numsigs);
2455069d
UW
7031 signal_pass = (unsigned char *)
7032 xmalloc (sizeof (signal_program[0]) * numsigs);
c906108c
SS
7033 for (i = 0; i < numsigs; i++)
7034 {
7035 signal_stop[i] = 1;
7036 signal_print[i] = 1;
7037 signal_program[i] = 1;
7038 }
7039
7040 /* Signals caused by debugger's own actions
7041 should not be given to the program afterwards. */
7042 signal_program[TARGET_SIGNAL_TRAP] = 0;
7043 signal_program[TARGET_SIGNAL_INT] = 0;
7044
7045 /* Signals that are not errors should not normally enter the debugger. */
7046 signal_stop[TARGET_SIGNAL_ALRM] = 0;
7047 signal_print[TARGET_SIGNAL_ALRM] = 0;
7048 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
7049 signal_print[TARGET_SIGNAL_VTALRM] = 0;
7050 signal_stop[TARGET_SIGNAL_PROF] = 0;
7051 signal_print[TARGET_SIGNAL_PROF] = 0;
7052 signal_stop[TARGET_SIGNAL_CHLD] = 0;
7053 signal_print[TARGET_SIGNAL_CHLD] = 0;
7054 signal_stop[TARGET_SIGNAL_IO] = 0;
7055 signal_print[TARGET_SIGNAL_IO] = 0;
7056 signal_stop[TARGET_SIGNAL_POLL] = 0;
7057 signal_print[TARGET_SIGNAL_POLL] = 0;
7058 signal_stop[TARGET_SIGNAL_URG] = 0;
7059 signal_print[TARGET_SIGNAL_URG] = 0;
7060 signal_stop[TARGET_SIGNAL_WINCH] = 0;
7061 signal_print[TARGET_SIGNAL_WINCH] = 0;
16dfc9ce
JB
7062 signal_stop[TARGET_SIGNAL_PRIO] = 0;
7063 signal_print[TARGET_SIGNAL_PRIO] = 0;
c906108c 7064
cd0fc7c3
SS
7065 /* These signals are used internally by user-level thread
7066 implementations. (See signal(5) on Solaris.) Like the above
7067 signals, a healthy program receives and handles them as part of
7068 its normal operation. */
7069 signal_stop[TARGET_SIGNAL_LWP] = 0;
7070 signal_print[TARGET_SIGNAL_LWP] = 0;
7071 signal_stop[TARGET_SIGNAL_WAITING] = 0;
7072 signal_print[TARGET_SIGNAL_WAITING] = 0;
7073 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
7074 signal_print[TARGET_SIGNAL_CANCEL] = 0;
7075
2455069d
UW
7076 /* Update cached state. */
7077 signal_cache_update (-1);
7078
85c07804
AC
7079 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7080 &stop_on_solib_events, _("\
7081Set stopping for shared library events."), _("\
7082Show stopping for shared library events."), _("\
c906108c
SS
7083If nonzero, gdb will give control to the user when the dynamic linker\n\
7084notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
7085to the user would be loading/unloading of a new library."),
7086 NULL,
920d2a44 7087 show_stop_on_solib_events,
85c07804 7088 &setlist, &showlist);
c906108c 7089
7ab04401
AC
7090 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7091 follow_fork_mode_kind_names,
7092 &follow_fork_mode_string, _("\
7093Set debugger response to a program call of fork or vfork."), _("\
7094Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
7095A fork or vfork creates a new process. follow-fork-mode can be:\n\
7096 parent - the original process is debugged after a fork\n\
7097 child - the new process is debugged after a fork\n\
ea1dd7bc 7098The unfollowed process will continue to run.\n\
7ab04401
AC
7099By default, the debugger will follow the parent process."),
7100 NULL,
920d2a44 7101 show_follow_fork_mode_string,
7ab04401
AC
7102 &setlist, &showlist);
7103
6c95b8df
PA
7104 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7105 follow_exec_mode_names,
7106 &follow_exec_mode_string, _("\
7107Set debugger response to a program call of exec."), _("\
7108Show debugger response to a program call of exec."), _("\
7109An exec call replaces the program image of a process.\n\
7110\n\
7111follow-exec-mode can be:\n\
7112\n\
cce7e648 7113 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
7114to this new inferior. The program the process was running before\n\
7115the exec call can be restarted afterwards by restarting the original\n\
7116inferior.\n\
7117\n\
7118 same - the debugger keeps the process bound to the same inferior.\n\
7119The new executable image replaces the previous executable loaded in\n\
7120the inferior. Restarting the inferior after the exec call restarts\n\
7121the executable the process was running after the exec call.\n\
7122\n\
7123By default, the debugger will use the same inferior."),
7124 NULL,
7125 show_follow_exec_mode_string,
7126 &setlist, &showlist);
7127
7ab04401
AC
7128 add_setshow_enum_cmd ("scheduler-locking", class_run,
7129 scheduler_enums, &scheduler_mode, _("\
7130Set mode for locking scheduler during execution."), _("\
7131Show mode for locking scheduler during execution."), _("\
c906108c
SS
7132off == no locking (threads may preempt at any time)\n\
7133on == full locking (no thread except the current thread may run)\n\
7134step == scheduler locked during every single-step operation.\n\
7135 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
7136 Other threads may run while stepping over a function call ('next')."),
7137 set_schedlock_func, /* traps on target vector */
920d2a44 7138 show_scheduler_mode,
7ab04401 7139 &setlist, &showlist);
5fbbeb29 7140
d4db2f36
PA
7141 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7142Set mode for resuming threads of all processes."), _("\
7143Show mode for resuming threads of all processes."), _("\
7144When on, execution commands (such as 'continue' or 'next') resume all\n\
7145threads of all processes. When off (which is the default), execution\n\
7146commands only resume the threads of the current process. The set of\n\
7147threads that are resumed is further refined by the scheduler-locking\n\
7148mode (see help set scheduler-locking)."),
7149 NULL,
7150 show_schedule_multiple,
7151 &setlist, &showlist);
7152
5bf193a2
AC
7153 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7154Set mode of the step operation."), _("\
7155Show mode of the step operation."), _("\
7156When set, doing a step over a function without debug line information\n\
7157will stop at the first instruction of that function. Otherwise, the\n\
7158function is skipped and the step command stops at a different source line."),
7159 NULL,
920d2a44 7160 show_step_stop_if_no_debug,
5bf193a2 7161 &setlist, &showlist);
ca6724c1 7162
fff08868
HZ
7163 add_setshow_enum_cmd ("displaced-stepping", class_run,
7164 can_use_displaced_stepping_enum,
7165 &can_use_displaced_stepping, _("\
237fc4c9
PA
7166Set debugger's willingness to use displaced stepping."), _("\
7167Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
7168If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7169supported by the target architecture. If off, gdb will not use displaced\n\
7170stepping to step over breakpoints, even if such is supported by the target\n\
7171architecture. If auto (which is the default), gdb will use displaced stepping\n\
7172if the target architecture supports it and non-stop mode is active, but will not\n\
7173use it in all-stop mode (see help set non-stop)."),
7174 NULL,
7175 show_can_use_displaced_stepping,
7176 &setlist, &showlist);
237fc4c9 7177
b2175913
MS
7178 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7179 &exec_direction, _("Set direction of execution.\n\
7180Options are 'forward' or 'reverse'."),
7181 _("Show direction of execution (forward/reverse)."),
7182 _("Tells gdb whether to execute forward or backward."),
7183 set_exec_direction_func, show_exec_direction_func,
7184 &setlist, &showlist);
7185
6c95b8df
PA
7186 /* Set/show detach-on-fork: user-settable mode. */
7187
7188 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7189Set whether gdb will detach the child of a fork."), _("\
7190Show whether gdb will detach the child of a fork."), _("\
7191Tells gdb whether to detach the child of a fork."),
7192 NULL, NULL, &setlist, &showlist);
7193
ca6724c1 7194 /* ptid initializations */
ca6724c1
KB
7195 inferior_ptid = null_ptid;
7196 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
7197
7198 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 7199 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 7200 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 7201 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
7202
7203 /* Explicitly create without lookup, since that tries to create a
7204 value with a void typed value, and when we get here, gdbarch
7205 isn't initialized yet. At this point, we're quite sure there
7206 isn't another convenience variable of the same name. */
7207 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
d914c394
SS
7208
7209 add_setshow_boolean_cmd ("observer", no_class,
7210 &observer_mode_1, _("\
7211Set whether gdb controls the inferior in observer mode."), _("\
7212Show whether gdb controls the inferior in observer mode."), _("\
7213In observer mode, GDB can get data from the inferior, but not\n\
7214affect its execution. Registers and memory may not be changed,\n\
7215breakpoints may not be set, and the program cannot be interrupted\n\
7216or signalled."),
7217 set_observer_mode,
7218 show_observer_mode,
7219 &setlist,
7220 &showlist);
c906108c 7221}
This page took 1.837472 seconds and 4 git commands to generate.